- Return sub-actions time spans for prewarm, prewarm offload, and
promotion in http handlers.
- Set `synchronous_standby_names=walproposer` for promoted endpoints.
Otherwise, walproposer on promoted standby ignores reply from safekeeper
and is stuck on lsn COMMIT eternally.
Commit 1dce2a9e74 changed how the `neon.pageserver_connstring` setting
is formed, but it messed up setting the `neon.stripe_size` setting so
that it was set twice. That got mixed up during development of the
patch, as commit 7fef4435c1 landed first and was merged incorrectly.
## Problem
I discovered two bugs corresponding to safekeeper migration, which
together might lead to a data loss during the migration. The second bug
is from a hadron patch and might lead to a data loss during the
safekeeper restore in hadron as well.
1. `switch_membership` returns the current `term` instead of
`last_log_term`. It is used to choose the `sync_position` in the
algorithm, so we might choose the wrong one and break the correctness
guarantees.
2. The current `term` is used to choose the most advanced SK in
`pull_timeline` with higher priority than `flush_lsn`. It is incorrect
because the most advanced safekeeper is the one with the highest
`(last_log_term, flush_lsn)` pair. The compute might bump term on the
least advanced sk, making it the best choice to pull from, and thus
making committed log entries "uncommitted" after `pull_timeline`
Part of https://databricks.atlassian.net/browse/LKB-1017
## Summary of changes
- Return `last_log_term` in `switch_membership`
- Use `(last_log_term, flush_lsn)` as a primary key for choosing the
most advanced sk in `pull_timeline` and deny pulling if the `max_term`
is higher than on the most advanced sk (hadron only)
- Write tests for both cases
- Retry `sync_safekeepers` in `compute_ctl`
- Take into the account the quorum size when calculating `sync_position`
Add DELETE /lfc/prewarm route which handles ongoing prewarm
cancellation, update API spec, add prewarm Cancelled state
Add offload Cancelled state when LFC is not initialized
Add a new 'pageserver_connection_info' field in the compute spec. It
replaces the old 'pageserver_connstring' field with a more complicated
struct that includes both libpq and grpc URLs, for each shard (or only
one of the the URLs, depending on the configuration). It also includes a
flag suggesting which one to use; compute_ctl now uses it to decide
which protocol to use for the basebackup.
This is backwards-compatible with everything that's in production. If
the control plane fills in `pageserver_connection_info`, compute_ctl
uses that. If it fills in the
`pageserver_connstring`/`shard_stripe_size` fields, it uses those. As
last resort, it uses the 'neon.pageserver_connstring' GUC from the list
of Postgres settings.
The 'grpc' flag in the endpoint config is now more of a suggestion, and
it's used to populate the 'prefer_protocol' flag in the compute spec.
Regardless of the flag, compute_ctl gets both URLs, so it can choose to
use libpq or grpc as it wishes. It currently always obeys the flag to
choose which method to use for getting the basebackup, but Postgres
itself will always use the libpq protocol. (That will be changed with
the new rust-based communicator project, which implements the gRPC
client in the compute).
After that, the `pageserver_connection_info.prefer_protocol` flag in the
spec file can be used to control whether compute_ctl uses grpc or libpq.
The actual compute's grpc usage will be controlled by the
`neon.enable_new_communicator` GUC (not yet; that will be introduced in
the future, with the new rust-base communicator project). It can be set
separately from 'prefer_protocol'.
Later:
- Once all old computes are gone, remove the code to pass
`neon.pageserver_connstring`
## Problem
For certificate auth, we need to configure pg_hba and pg_ident for it to
work.
HCC needs to mount this config map to all pg compute pod.
## Summary of changes
Create `databricks_pg_hba` and `databricks_pg_ident` to configure where
the files are located on the pod. These configs are pass down to
`compute_ctl`. Compute_ctl uses these config to update `pg_hba.conf` and
`pg_ident.conf` file.
We append `include_if_exists {databricks_pg_hba}` to `pg_hba.conf` and
similarly to `pg_ident.conf`. So that it will refer to databricks config
file without much change to existing pg default config file.
---------
Co-authored-by: Jarupat Jisarojito <jarupat.jisarojito@databricks.com>
Co-authored-by: William Huang <william.huang@databricks.com>
Co-authored-by: HaoyuHuang <haoyu.huang.68@gmail.com>
## Problem
We need the set the following Postgres GUCs to the correct value before
starting Postgres in the compute instance:
```
databricks.workspace_url
databricks.enable_databricks_identity_login
databricks.enable_sql_restrictions
```
## Summary of changes
Plumbed through `workspace_url` and other GUC settings via
`DatabricksSettings` in `ComputeSpec`. The spec is sent to the compute
instance when it starts up and the GUCs are written to `postgresql.conf`
before the postgres process is launched.
---------
Co-authored-by: Jarupat Jisarojito <jarupat.jisarojito@databricks.com>
Co-authored-by: William Huang <william.huang@databricks.com>
## Problem
Copy certificate and key from secret mount directory to `pgdata`
directory where `postgres` is the owner and we can set the key
permission to 0600.
## Summary of changes
- Added new pgparam `pg_compute_tls_settings` to specify where k8s
secret for certificate and key are mounted.
- Added a new field to `ComputeSpec` called `databricks_settings`. This
is a struct that will be used to store any other settings that needs to
be propagate to Compute but should not be persisted to `ComputeSpec` in
the database.
- Then when the compute container start up, as part of `prepare_pgdata`
function, it will copied `server.key` and `server.crt` from k8s mounted
directory to `pgdata` directory.
## How is this tested?
Add unit tests.
Manual test via KIND
Co-authored-by: Jarupat Jisarojito <jarupat.jisarojito@databricks.com>
## Problem
While configuring or reconfiguring PG due to PageServer movements, it's
possible PG may get stuck if PageServer is moved around after fetching
the spec from StorageController.
## Summary of changes
To fix this issue, this PR introduces two changes:
1. Fail the PG query directly if the query cannot request configuration
for certain number of times.
2. Introduce a new state `RefreshConfiguration` in compute tools to
differentiate it from `RefreshConfigurationPending`. If compute tool is
already in `RefreshConfiguration` state, then it will not accept new
request configuration requests.
## How is this tested?
Chaos testing.
Co-authored-by: Chen Luo <chen.luo@databricks.com>
## Problem
In our experience running the system so far, almost all of the "hang
compute" situations are due to the compute (postgres) pointing at the
wrong pageservers. We currently mainly rely on the promethesus exporter
(PGExporter) running on PG to detect and report any down time, but these
can be unreliable because the read and write probes the PGExporter runs
do not always generate pageserver requests due to caching, even though
the real user might be experiencing down time when touching uncached
pages.
We are also about to start disk-wiping node pool rotation operations in
prod clusters for our pageservers, and it is critical to have a
convenient way to monitor the impact of these node pool rotations so
that we can quickly respond to any issues. These metrics should provide
very clear signals to address this operational need.
## Summary of changes
Added a pair of metrics to detect issues between postgres' PageStream
protocol (e.g. get_page_at_lsn, get_base_backup, etc.) communications
with pageservers:
* On the compute node (compute_ctl), exports a counter metric that is
incremented every time postgres requests a configuration refresh.
Postgres today only requests these configuration refreshes when it
cannot connect to a pageserver or if the pageserver rejects its request
by disconnecting.
* On the pageserver, exports a counter metric that is incremented every
time it receives a PageStream request that cannot be handled because the
tenant is not known or if the request was routed to the wrong shard
(e.g. secondary).
### How I plan to use metrics
I plan to use the metrics added here to create alerts. The alerts can
fire, for example, if these counters have been continuously increasing
for over a certain period of time. During rollouts, misrouted requests
may occasionally happen, but they should soon die down as
reconfigurations make progress. We can start with something like raising
the alert if the counters have been increasing continuously for over 5
minutes.
## How is this tested?
New integration tests in
`test_runner/regress/test_hadron_ps_connectivity_metrics.py`
Co-authored-by: William Huang <william.huang@databricks.com>
## Problem
This is a follow-up to TODO, as part
of the effort to rewire the compute reconfiguration/notification
mechanism to make it more robust. Please refer to that commit or ticket
BRC-1778 for full context of the problem.
## Summary of changes
The previous change added mechanism in `compute_ctl` that makes it
possible to refresh the configuration of PG on-demand by having
`compute_ctl` go out to download a new config from the control
plane/HCC. This change wired this mechanism up with PG so that PG will
signal `compute_ctl` to refresh its configuration when it suspects that
it could be talking to incorrect pageservers due to a stale
configuration.
PG will become suspicious that it is talking to the wrong pageservers in
the following situations:
1. It cannot connect to a pageserver (e.g., getting a network-level
connection refused error)
2. It can connect to a pageserver, but the pageserver does not return
any data for the GetPage request
3. It can connect to a pageserver, but the pageserver returns a
malformed response
4. It can connect to a pageserver, but there is an error receiving the
GetPage request response for any other reason
This change also includes a minor tweak to `compute_ctl`'s config
refresh behavior. Upon receiving a request to refresh PG configuration,
`compute_ctl` will reach out to download a config, but it will not
attempt to apply the configuration if the config is the same as the old
config is it replacing. This optimization is added because the act of
reconfiguring itself requires working pageserver connections. In many
failure situations it is likely that PG detects an issue with a
pageserver before the control plane can detect the issue, migrate
tenants, and update the compute config. In this case even the latest
compute config won't point PG to working pageservers, causing the
configuration attempt to hang and negatively impact PG's
time-to-recovery. With this change, `compute_ctl` only attempts
reconfiguration if the refreshed config points PG to different
pageservers.
## How is this tested?
The new code paths are exercised in all existing tests because this
mechanism is on by default.
Explicitly tested in `test_runner/regress/test_change_pageserver.py`.
Co-authored-by: William Huang <william.huang@databricks.com>
## Problem
We have been dealing with a number of issues with the SC compute
notification mechanism. Various race conditions exist in the
PG/HCC/cplane/PS distributed system, and relying on the SC to send
notifications to the compute node to notify it of PS changes is not
robust. We decided to pursue a more robust option where the compute node
itself discovers whether it may be pointing to the incorrect PSs and
proactively reconfigure itself if issues are suspected.
## Summary of changes
To support this self-healing reconfiguration mechanism several pieces
are needed. This PR adds a mechanism to `compute_ctl` called "refresh
configuration", where the compute node reaches out to the control plane
to pull a new config and reconfigure PG using the new config, instead of
listening for a notification message containing a config to arrive from
the control plane. Main changes to compute_ctl:
1. The `compute_ctl` state machine now has a new State,
`RefreshConfigurationPending`. The compute node may enter this state
upon receiving a signal that it may be using the incorrect page servers.
2. Upon entering the `RefreshConfigurationPending` state, the background
configurator thread in `compute_ctl` wakes up, pulls a new config from
the control plane, and reconfigures PG (with `pg_ctl reload`) according
to the new config.
3. The compute node may enter the new `RefreshConfigurationPending`
state from `Running` or `Failed` states. If the configurator managed to
configure the compute node successfully, it will enter the `Running`
state, otherwise, it stays in `RefreshConfigurationPending` and the
configurator thread will wait for the next notification if an incorrect
config is still suspected.
4. Added various plumbing in `compute_ctl` data structures to allow the
configurator thread to perform the config fetch.
The "incorrect config suspected" notification is delivered using a HTTP
endpoint, `/refresh_configuration`, on `compute_ctl`. This endpoint is
currently not called by anyone other than the tests. In a follow up PR I
will set up some code in the PG extension/libpagestore to call this HTTP
endpoint whenever PG suspects that it is pointing to the wrong page
servers.
## How is this tested?
Modified `test_runner/regress/test_change_pageserver.py` to add a
scenario where we use the new `/refresh_configuration` mechanism instead
of the existing `/configure` mechanism (which requires us sending a full
config to compute_ctl) to have the compute node reload and reconfigure
its pageservers.
I took one shortcut to reduce the scope of this change when it comes to
testing: the compute node uses a local config file instead of pulling a
config over the network from the HCC. This simplifies the test setup in
the following ways:
* The existing test framework is set up to use local config files for
compute nodes only, so it's convenient if I just stick with it.
* The HCC today generates a compute config with production settings
(e.g., assuming 4 CPUs, 16GB RAM, with local file caches), which is
probably not suitable in tests. We may need to add another test-only
endpoint config to the control plane to make this work.
The config-fetch part of the code is relatively straightforward (and
well-covered in both production and the KIND test) so it is probably
fine to replace it with loading from the local config file for these
integration tests.
In addition to making sure that the tests pass, I also manually
inspected the logs to make sure that the compute node is indeed
reloading the config using the new mechanism instead of going down the
old `/configure` path (it turns out the test has bugs which causes
compute `/configure` messages to be sent despite the test intending to
disable/blackhole them).
```test
2024-09-24T18:53:29.573650Z INFO http request{otel.name=/refresh_configuration http.method=POST}: serving /refresh_configuration POST request
2024-09-24T18:53:29.573689Z INFO configurator_main_loop: compute node suspects its configuration is out of date, now refreshing configuration
2024-09-24T18:53:29.573706Z INFO configurator_main_loop: reloading config.json from path: /workspaces/hadron/test_output/test_change_pageserver_using_refresh[release-pg16]/repo/endpoints/ep-1/spec.json
PG:2024-09-24 18:53:29.574 GMT [52799] LOG: received SIGHUP, reloading configuration files
PG:2024-09-24 18:53:29.575 GMT [52799] LOG: parameter "neon.extension_server_port" cannot be changed without restarting the server
PG:2024-09-24 18:53:29.575 GMT [52799] LOG: parameter "neon.pageserver_connstring" changed to "postgresql://no_user@localhost:15008"
...
```
Co-authored-by: William Huang <william.huang@databricks.com>
https://github.com/neondatabase/cloud/issues/19011
- Accept `ComputeSpec` in `/promote` instead of just passing safekeepers
and LSN. Update API spec
- Add corner case tests for promotion when promotion or perwarm fails
(using failpoints)
- Print root error for prewarm and promotion in status handlers
Currently, the exporter exposes the same LFC metrics that are exposed by
the "autoscaling" sql_exporter in the docker image. With this, we can
remove the dedicated sql_exporter instance. (Actually doing the removal
is left as a TODO until this is rolled out to production and we have
changed autoscaling-agent to fetch the metrics from this new endpoint.)
The exporter runs as a Postgres background worker process. This is
extracted from the Rust communicator rewrite project, which will use the
same worker process for much more, to handle the communications with the
pageservers. For now, though, it merely handles the metrics requests.
In the future, we will add more metrics, and perhaps even APIs to
control the running Postgres instance.
The exporter listens on a Unix Domain socket within the Postgres data
directory. A Unix Domain socket is a bit unconventional, but it has some
advantages:
- Permissions are taken care of. Only processes that can access the data
directory, and therefore already have full access to the running
Postgres instance, can connect to it.
- No need to allocate and manage a new port number for the listener
It has some downsides too: it's not immediately accessible from the
outside world, and the functions to work with Unix Domain sockets are
more low-level than TCP sockets (see the symlink hack in
`postgres_metrics_client.rs`, for example).
To expose the metrics from the local Unix Domain Socket to the
autoscaling agent, introduce a new '/autoscaling_metrics' endpoint in
the compute_ctl's HTTP server. Currently it merely forwards the request
to the Postgres instance, but we could add rate limiting and access
control there in the future.
---------
Co-authored-by: Conrad Ludgate <conrad@neon.tech>
## Problem
See https://databricks.slack.com/archives/C092W8NBXC0/p1752924508578339
In case of larger number of databases and large `max_connections` we can
open too many connection for parallel apply config which may cause `Too
many open files` error.
## Summary of changes
Limit maximal number of parallel config apply connections by 100.
---------
Co-authored-by: Kosntantin Knizhnik <konstantin.knizhnik@databricks.com>
## Problem
We currently offload LFC state unconditionally, which can cause
problems. Imagine a situation:
1. Endpoint started with `autoprewarm: true`.
2. While prewarming is not completed, we upload the new incomplete
state.
3. Compute gets interrupted and restarts.
4. We start again and try to prewarm with the state from 2. instead of
the previous complete state.
During the orchestrated prewarming, it's probably not a big issue, but
it's still better to do not interfere with the prewarm process.
## Summary of changes
Do not offload LFC state if we are currently prewarming or any issue
occurred. While on it, also introduce `Skipped` LFC prewarm status,
which is used when the corresponding LFC state is not present in the
endpoint storage. It's primarily needed to distinguish the first compute
start for particular endpoint, as it's completely valid to do not have
LFC state yet.
## Problem
See https://databricks.slack.com/archives/C09254R641L/p1752004515032899
stripe_size GUC update may be delayed at different backends and so cause
inconsistency with connection strings (shard map).
## Summary of changes
Postmaster should store stripe_size in shared memory as well as
connection strings.
It should be also enforced that stripe size is defined prior to
connection strings in postgresql.conf
---------
Co-authored-by: Konstantin Knizhnik <knizhnik@neon.tech>
Co-authored-by: Kosntantin Knizhnik <konstantin.knizhnik@databricks.com>
- Remove a few obsolete "allowed error messages" from tests. The
pageserver doesn't emit those messages anymore.
- Remove misplaced and outdated docstring comment from
`test_tenants.py`. A docstring is supposed to be the first thing in a
function, but we had added some code before it. And it was outdated, as
we haven't supported running without safekeepers for a long time.
- Fix misc typos in comments
- Remove obsolete comment about backwards compatibility with safekeepers
without `TIMELINE_STATUS` API. All safekeepers have it by now.
All Errors that can occur during get_installed_extensions() come from
tokio-postgres functions, e.g. if the database is being shut down
("FATAL: terminating connection due to administrator command"). I'm
seeing a lot of such errors in the logs with the regression tests, with
very verbose stack traces. The compute_ctl stack trace is pretty useless
for errors originating from the Postgres connection, the error message
has all the information, so stop printing the stack trace.
I changed the result type of the functions to return the originating
tokio_postgres Error rather than anyhow::Error, so that if we introduce
other error sources to the functions where the stack trace might be
useful, we'll be forced to revisit this, probably by introducing a new
Error type that separates postgres errors from other errors. But this
will do for now.
On December 8th, 2023, an engineering escalation (INC-110) was opened
after it was found that BYPASSRLS was being applied to all roles.
PR that introduced the issue:
https://github.com/neondatabase/neon/pull/5657
Subsequent commit on main:
ad99fa5f03
NOBYPASSRLS and INHERIT are the defaults for a Postgres role, but
because it isn't easy to know if a Postgres cluster is affected by the
issue, we need to keep the migration around for a long time, if not
indefinitely, so any cluster can be fixed.
Branching is the gift that keeps on giving...
Signed-off-by: Tristan Partin <tristan.partin@databricks.com>
Signed-off-by: Tristan Partin <tristan.partin@databricks.com>
After https://github.com/neondatabase/neon/pull/12240 we observed
issues in our go code as `ComputeStatus` is not stateless, thus doesn't
deserialize as string.
```
could not check compute activity: json: cannot unmarshal object into Go struct field
ComputeState.status of type computeclient.ComputeStatus
```
- Fix this by splitting this status into two.
- Update compute OpenApi spec to reflect changes to `/terminate` in
previous PR
## Problem
If we have catalog update AND a pageserver migration batched in a single
spec, we will not be able to apply the spec (running the SQL) because
the compute is not attached to the right pageserver and we are not able
to read anything if we don't pick up the latest pageserver connstring.
This is not a case for now because cplane always schedules shard split /
pageserver migrations with `skip_pg_catalog_updates` (I suppose).
Context:
https://databricks.slack.com/archives/C09254R641L/p1752163559259399?thread_ts=1752160163.141149&cid=C09254R641L
With this fix, backpressure will likely not be able to affect
reconfigurations.
## Summary of changes
Do `pg_reload_conf` before we apply specs in SQL.
---------
Signed-off-by: Alex Chi Z <chi@neon.tech>
This patch tightens up `page_api::Client`. It's mostly superficial
changes, but also adds a new constructor that takes an existing gRPC
channel, for use with the communicator connection pool.
- Add ComputeSpec flag `offload_lfc_interval_seconds` controlling
whether LFC should be offloaded to endpoint storage. Default value
(None) means "don't offload".
- Add glue code around it for `neon_local` and integration tests.
- Add `autoprewarm` mode for `test_lfc_prewarm` testing
`offload_lfc_interval_seconds` and `autoprewarm` flags in conjunction.
- Rename `compute_ctl_lfc_prewarm_requests_total` and
`compute_ctl_lfc_offload_requests_total` to
`compute_ctl_lfc_prewarms_total`
and `compute_ctl_lfc_offloads_total` to reflect we count prewarms and
offloads, not `compute_ctl` requests of those.
Don't count request in metrics if there is a prewarm/offload already
ongoing.
https://github.com/neondatabase/cloud/issues/19011
Resolves: https://github.com/neondatabase/cloud/issues/30770
## Problem
The background installed extensions worker relied on `interval.tick()`
to go to sleep for a period of time. This can lead to bugs due to the
interval being updated at the end of the loop as the first tick is
[instantaneous](https://docs.rs/tokio/latest/tokio/time/struct.Interval.html#method.tick).
## Summary of changes
Changed it to a `tokio::time::sleep` to prevent this issue. Now it puts
the thread to sleep and only wakes up after the specified duration
Add support to transport syslogs over TLS. Since TLS params essentially
require passing host and port separately, add a boolean flag to the
configuration template and also use the same `action` format for
plaintext logs. This allows seamless transition.
The plaintext host:port is picked from `AUDIT_LOGGING_ENDPOINT` (as
earlier) and from `AUDIT_LOGGING_TLS_ENDPOINT`. The TLS host:port is
used when defined and non-empty.
`remote_endpoint` is split separately to hostname and port as required
by `omfwd` module.
Also the address parsing and config content generation are split to more
testable functions with basic tests added.
## Problem
Previously, the background worker that collects the list of installed
extensions across DBs had a timeout set to 1 hour. This cause a problem
with computes that had a `suspend_timeout` > 1 hour as this collection
was treated as activity, preventing compute shutdown.
Issue: https://github.com/neondatabase/cloud/issues/30147
## Summary of changes
Passing the `suspend_timeout` as part of the `ComputeSpec` so that any
updates to this are taken into account by the background worker and
updates its collection interval.
## Problem
The gRPC API does not provide LSN leases.
## Summary of changes
* Add LSN lease support to the gRPC API.
* Use gRPC LSN leases for static computes with `grpc://` connstrings.
* Move `PageserverProtocol` into the `compute_api::spec` module and
reuse it.
## Problem
`compute_ctl` should support gRPC base backups.
Requires #12111.
Requires #12243.
Touches #11926.
## Summary of changes
Support `grpc://` connstrings for `compute_ctl` base backups.