Originally I wanted to switch back to the `neon` branch before merging
#10825, but I forgot to do it. Do it in a separate PR now.
No actual change of the source code, only changes the branch name (so
that maybe in a few weeks we can delete the temporary branch
`arpad/neon-rebase`).
Avoids compiling the crate and its dependencies into binaries that don't
need them. Shrinks the compute_ctl binary from about 31MB to 28MB in the
release-line-debug-size-lto profile.
## Problem
We want to switch proxy and ideally all Rust services to structured JSON
logging to support better filtering and cross-referencing with tracing.
## Summary of changes
* Introduce a custom tracing-subscriber to write the JSON. In a first
attempt a customized tracing::fmt::FmtSubscriber was used, but it's very
inefficient and can still generate invalid JSON. It's also doesn't allow
us to add important fields to the root object.
* Make this opt in: the `LOGFMT` env var can be set to `"json"` to
enable to new logger at startup.
Update `tokio` base crates and their deps. Pin `tokio` to at least 1.41
which stabilized task ID APIs.
To dedup `mio` dep the `notify` crate is updated. It's used in
`compute_tools`.
9f81828429/compute_tools/src/pg_helpers.rs (L258-L367)
## Problem
Because dashmap 6 switched to hashbrown RawTable API, it required us to
use unsafe code in the upgrade:
https://github.com/neondatabase/neon/pull/8107
## Summary of changes
Switch to clashmap, a fork maintained by me which removes much of the
unsafe and ultimately switches to HashTable instead of RawTable to
remove much of the unsafe requirement on us.
Only a few things that needed updating:
- async_trait was removed
- Message::Text takes a Utf8Bytes object instead of a String
Signed-off-by: Tristan Partin <tristan@neon.tech>
Co-authored-by: Conrad Ludgate <connor@neon.tech>
## Problem
Unlike CPU profiles, the `/profile/heap` endpoint can't automatically
generate SVG flamegraphs. This requires the user to install and use
`pprof` tooling, which is unnecessary and annoying.
Resolves#10203.
## Summary of changes
Add `format=svg` for the `/profile/heap` route, and generate an SVG
flamegraph using the `inferno` crate, similarly to what `pprof-rs`
already does for CPU profiles.
This is a refactor to create better abstractions related to our
management server. It cleans up the code, and prepares everything for
authorized communication to and from the control plane.
Signed-off-by: Tristan Partin <tristan@neon.tech>
## Problem
Frame pointers are typically disabled by default (depending on CPU
architecture), to improve performance. This frees up a CPU register, and
avoids a couple of instructions per function call. However, it makes
stack unwinding much more inefficient, since it has to use DWARF debug
information instead, and gives worse results with e.g. `perf` and eBPF
profiles. The `backtrace` implementation of `libunwind` is also
suspected to cause seg faults.
The performance benefit of frame pointer omission doesn't appear to
matter that much on modern 64-bit CPU architectures (which have plenty
of registers and optimized instruction execution), and benchmarks did
not show measurable overhead.
The Rust standard library and jemalloc already enable frame pointers by
default.
For more information, see
https://www.brendangregg.com/blog/2024-03-17/the-return-of-the-frame-pointers.html.
Resolves#10224.
Touches #10225.
## Summary of changes
Enable frame pointers in all builds, and use frame pointers for pprof-rs
stack sampling.
## Problem
Jemalloc heap profiles aren't symbolized. This is inconvenient, and
doesn't work with Grafana Cloud Profiles.
Resolves#9964.
## Summary of changes
Symbolize the heap profiles in-process, and strip unnecessary cruft.
This uses about 100 MB additional memory to cache the DWARF information,
but I believe this is already the case with CPU profiles, which use the
same library for symbolization. With cached DWARF information, the
symbolization CPU overhead is negligible.
Example profiles:
*
[pageserver.pb.gz](https://github.com/user-attachments/files/18141395/pageserver.pb.gz)
*
[safekeeper.pb.gz](https://github.com/user-attachments/files/18141396/safekeeper.pb.gz)
## Problem
We want to use safekeeper http client in storage controller and
neon_local.
## Summary of changes
Extract it to separate crate. No functional changes.
For a while already, we've been unable to update the Azure SDK crates
due to Azure adopting use of a non-tokio async runtime, see #7545.
The effort to upstream the fix got stalled, and I think it's better to
switch to a patched version of the SDK that is up to date.
Now we have a fork of the SDK under the neondatabase github org, to
which I have applied Conrad's rebased patches to:
https://github.com/neondatabase/azure-sdk-for-rust/tree/neon .
The existence of a fork will also help with shipping bulk delete support
before it's upstreamed (#7931).
Also, in related news, the Azure SDK has gotten a rift in development,
where the main branch pertains to a future, to-be-officially-blessed
release of the SDK, and the older versions, which we are currently
using, are on the `legacy` branch. Upstream doesn't really want patches
for the `legacy` branch any more, they want to focus on the `main`
efforts. However, even then, the `legacy` branch is still newer than
what we are having right now, so let's switch to `legacy` for now.
Depending on how long it takes, we can switch to the official version of
the SDK once it's released or switch to the upstream `main` branch if
there is changes we want before that.
As a nice side effect of this PR, we now use reqwest 0.12 everywhere,
dropping the dependency on version 0.11.
Fixes#7545
(stacked on #9990 and #9995)
Partially fixes#1287 with a custom option field to enable the fixed
behaviour. This allows us to gradually roll out the fix without silently
changing the observed behaviour for our customers.
related to https://github.com/neondatabase/cloud/issues/15284
## Problem
We don't have good observability for memory usage. This would be useful
e.g. to debug OOM incidents or optimize performance or resource usage.
We would also like to use continuous profiling with e.g. [Grafana Cloud
Profiles](https://grafana.com/products/cloud/profiles-for-continuous-profiling/)
(see https://github.com/neondatabase/cloud/issues/14888).
This PR is intended as a proof of concept, to try it out in staging and
drive further discussions about profiling more broadly.
Touches https://github.com/neondatabase/neon/issues/9534.
Touches https://github.com/neondatabase/cloud/issues/14888.
Depends on #9779.
Depends on #9780.
## Summary of changes
Adds a HTTP route `/profile/heap` that takes a heap profile and returns
it. Query parameters:
* `format`: output format (`jemalloc` or `pprof`; default `pprof`).
Unlike CPU profiles (see #9764), heap profiles are not symbolized and
require the original binary to translate addresses to function names. To
make this work with Grafana, we'll probably have to symbolize the
process server-side -- this is left as future work, as is other output
formats like SVG.
Heap profiles don't work on macOS due to limitations in jemalloc.
# Problem
The timeout-based batching adds latency to unbatchable workloads.
We can choose a short batching timeout (e.g. 10us) but that requires
high-resolution timers, which tokio doesn't have.
I thoroughly explored options to use OS timers (see
[this](https://github.com/neondatabase/neon/pull/9822) abandoned PR).
In short, it's not an attractive option because any timer implementation
adds non-trivial overheads.
# Solution
The insight is that, in the steady state of a batchable workload, the
time we spend in `get_vectored` will be hundreds of microseconds anyway.
If we prepare the next batch concurrently to `get_vectored`, we will
have a sizeable batch ready once `get_vectored` of the current batch is
done and do not need an explicit timeout.
This can be reasonably described as **pipelining of the protocol
handler**.
# Implementation
We model the sub-protocol handler for pagestream requests
(`handle_pagrequests`) as two futures that form a pipeline:
2. Batching: read requests from the connection and fill the current
batch
3. Execution: `take` the current batch, execute it using `get_vectored`,
and send the response.
The Reading and Batching stage are connected through a new type of
channel called `spsc_fold`.
See the long comment in the `handle_pagerequests_pipelined` for details.
# Changes
- Refactor `handle_pagerequests`
- separate functions for
- reading one protocol message; produces a `BatchedFeMessage` with just
one page request in it
- batching; tried to merge an incoming `BatchedFeMessage` into an
existing `BatchedFeMessage`; returns `None` on success and returns back
the incoming message in case merging isn't possible
- execution of a batched message
- unify the timeline handle acquisition & request span construction; it
now happen in the function that reads the protocol message
- Implement serial and pipelined model
- serial: what we had before any of the batching changes
- read one protocol message
- execute protocol messages
- pipelined: the design described above
- optionality for execution of the pipeline: either via concurrent
futures vs tokio tasks
- Pageserver config
- remove batching timeout field
- add ability to configure pipelining mode
- add ability to limit max batch size for pipelined configurations
(required for the rollout, cf
https://github.com/neondatabase/cloud/issues/20620 )
- ability to configure execution mode
- Tests
- remove `batch_timeout` parametrization
- rename `test_getpage_merge_smoke` to `test_throughput`
- add parametrization to test different max batch sizes and execution
moes
- rename `test_timer_precision` to `test_latency`
- rename the test case file to `test_page_service_batching.py`
- better descriptions of what the tests actually do
## On the holding The `TimelineHandle` in the pending batch
While batching, we hold the `TimelineHandle` in the pending batch.
Therefore, the timeline will not finish shutting down while we're
batching.
This is not a problem in practice because the concurrently ongoing
`get_vectored` call will fail quickly with an error indicating that the
timeline is shutting down.
This results in the Execution stage returning a `QueryError::Shutdown`,
which causes the pipeline / entire page service connection to shut down.
This drops all references to the
`Arc<Mutex<Option<Box<BatchedFeMessage>>>>` object, thereby dropping the
contained `TimelineHandle`s.
- => fixes https://github.com/neondatabase/neon/issues/9850
# Performance
Local run of the benchmarks, results in [this empty
commit](1cf5b1463f)
in the PR branch.
Key take-aways:
* `concurrent-futures` and `tasks` deliver identical `batching_factor`
* tail latency impact unknown, cf
https://github.com/neondatabase/neon/issues/9837
* `concurrent-futures` has higher throughput than `tasks` in all
workloads (=lower `time` metric)
* In unbatchable workloads, `concurrent-futures` has 5% higher
`CPU-per-throughput` than that of `tasks`, and 15% higher than that of
`serial`.
* In batchable-32 workload, `concurrent-futures` has 8% lower
`CPU-per-throughput` than that of `tasks` (comparison to tput of
`serial` is irrelevant)
* in unbatchable workloads, mean and tail latencies of
`concurrent-futures` is practically identical to `serial`, whereas
`tasks` adds 20-30us of overhead
Overall, `concurrent-futures` seems like a slightly more attractive
choice.
# Rollout
This change is disabled-by-default.
Rollout plan:
- https://github.com/neondatabase/cloud/issues/20620
# Refs
- epic: https://github.com/neondatabase/neon/issues/9376
- this sub-task: https://github.com/neondatabase/neon/issues/9377
- the abandoned attempt to improve batching timeout resolution:
https://github.com/neondatabase/neon/pull/9820
- closes https://github.com/neondatabase/neon/issues/9850
- fixes https://github.com/neondatabase/neon/issues/9835
Our rust-postgres fork is getting messy. Mostly because proxy wants more
control over the raw protocol than tokio-postgres provides. As such,
it's diverging more and more. Storage and compute also make use of
rust-postgres, but in more normal usage, thus they don't need our crazy
changes.
Idea:
* proxy maintains their subset
* other teams use a minimal patch set against upstream rust-postgres
Reviewing this code will be difficult. To implement it, I
1. Copied tokio-postgres, postgres-protocol and postgres-types from
00940fcdb5
2. Updated their package names with the `2` suffix to make them compile
in the workspace.
3. Updated proxy to use those packages
4. Copied in the code from tokio-postgres-rustls 0.13 (with some patches
applied https://github.com/jbg/tokio-postgres-rustls/pull/32https://github.com/jbg/tokio-postgres-rustls/pull/33)
5. Removed as much dead code as I could find in the vendored libraries
6. Updated the tokio-postgres-rustls code to use our existing channel
binding implementation
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
Co-authored-by: Stas Kelvic <stas@neon.tech>
# Context
This PR contains PoC-level changes for a product feature that allows
onboarding large databases into Neon without going through the regular
data path.
# Changes
This internal RFC provides all the context
* https://github.com/neondatabase/cloud/pull/19799
In the language of the RFC, this PR covers
* the Importer code (`fast_import`)
* all the Pageserver changes (mgmt API changes, flow implementation,
etc)
* a basic test for the Pageserver changes
# Reviewing
As acknowledged in the RFC, the code added in this PR is not ready for
general availability.
Also, the **architecture is not to be discussed in this PR**, but in the
RFC and associated Slack channel instead.
Reviewers of this PR should take that into consideration.
The quality bar to apply during review depends on what area of the code
is being reviewed:
* Importer code (`fast_import`): practically anything goes
* Core flow (`flow.rs`):
* Malicious input data must be expected and the existing threat models
apply.
* The code must not be safe to execute on *dedicated* Pageserver
instances:
* This means in particular that tenants *on other* Pageserver instances
must not be affected negatively wrt data confidentiality, integrity or
availability.
* Other code: the usual quality bar
* Pay special attention to correct use of gate guards, timeline
cancellation in all places during shutdown & migration, etc.
* Consider the broader system impact; if you find potentially
problematic interactions with Storage features that were not covered in
the RFC, bring that up during the review.
I recommend submitting three separate reviews, for the three high-level
areas with different quality bars.
# References
(Internal-only)
* refs https://github.com/neondatabase/cloud/issues/17507
* refs https://github.com/neondatabase/company_projects/issues/293
* refs https://github.com/neondatabase/company_projects/issues/309
* refs https://github.com/neondatabase/cloud/issues/20646
---------
Co-authored-by: Stas Kelvich <stas.kelvich@gmail.com>
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
Co-authored-by: John Spray <john@neon.tech>
## Problem
We don't have a convenient way to gather CPU profiles from a running
binary, e.g. during production incidents or end-to-end benchmarks, nor
during microbenchmarks (particularly on macOS).
We would also like to have continuous profiling in production, likely
using [Grafana Cloud
Profiles](https://grafana.com/products/cloud/profiles-for-continuous-profiling/).
We may choose to use either eBPF profiles or pprof profiles for this
(pending testing and discussion with SREs), but pprof profiles appear
useful regardless for the reasons listed above. See
https://github.com/neondatabase/cloud/issues/14888.
This PR is intended as a proof of concept, to try it out in staging and
drive further discussions about profiling more broadly.
Touches #9534.
Touches https://github.com/neondatabase/cloud/issues/14888.
## Summary of changes
Adds a HTTP route `/profile/cpu` that takes a CPU profile and returns
it. Defaults to a 5-second pprof Protobuf profile for use with e.g.
`pprof` or Grafana Alloy, but can also emit an SVG flamegraph. Query
parameters:
* `format`: output format (`pprof` or `svg`)
* `frequency`: sampling frequency in microseconds (default 100)
* `seconds`: number of seconds to profile (default 5)
Also integrates pprof profiles into Criterion benchmarks, such that
flamegraph reports can be taken with `cargo bench ... --profile-duration
<seconds>`. Output under `target/criterion/*/profile/flamegraph.svg`.
Example profiles:
* pprof profile (use [`pprof`](https://github.com/google/pprof)):
[profile.pb.gz](https://github.com/user-attachments/files/17756788/profile.pb.gz)
* Web interface: `pprof -http :6060 profile.pb.gz`
* Interactive flamegraph:
[profile.svg.gz](https://github.com/user-attachments/files/17756782/profile.svg.gz)
## Problem
We are pining our fork of rust-postgres to a commit hash and that
prevents us from making
further changes to it. The latest commit in rust-postgres requires
https://github.com/neondatabase/neon/pull/8747,
but that seems to have gone stale. I reverted rust-postgres `neon`
branch to the pinned commit in
https://github.com/neondatabase/rust-postgres/pull/31.
## Summary of changes
Switch back to using the `neon` branch of the rust-postgres fork.
The PROXY Protocol V2 offers a "command" concept. It can be of two
different values. "Local" and "Proxy". The spec suggests that "Local" be
used for health-checks. We can thus use this to silence logging for such
health checks such as those from NLB.
This additionally refactors the flow to be a bit more type-safe, self
documenting and using zerocopy deser.
It seems the ecosystem is not so keen on moving to aws-lc-rs as it's
build setup is more complicated than ring (requiring cmake).
Eventually I expect the ecosystem should pivot to
https://github.com/ctz/graviola/tree/main/rustls-graviola as it
stabilises (it has a very simply build step and license), but for now
let's try not have a headache of juggling two crypto libs.
I also noticed that tonic will just fail with tls without a default
provider, so I added some defensive code for that.
## Problem
We wish to have high level WAL decoding logic in `wal_decoder::decoder`
module.
## Summary of Changes
For this we need the `Value` and `NeonWalRecord` types accessible there, so:
1. Move `Value` and `NeonWalRecord` to `pageserver::value` and
`pageserver::record` respectively.
2. Get rid of `pageserver::repository` (follow up from (1))
3. Move PG specific WAL record types to `postgres_ffi::walrecord`. In
theory they could live in `wal_decoder`, but it would create a circular
dependency between `wal_decoder` and `postgres_ffi`. Long term it makes
sense for those types to be PG version specific, so that will work out nicely.
4. Move higher level WAL record types (to be ingested by pageserver)
into `wal_decoder::models`
Related: https://github.com/neondatabase/neon/issues/9335
Epic: https://github.com/neondatabase/neon/issues/9329
The forever ongoing effort of juggling multiple versions of rustls :3
now with new crypto library aws-lc.
Because of dependencies, it is currently impossible to not have both
ring and aws-lc in the dep tree, therefore our only options are not
updating rustls or having both crypto backends enabled...
According to benchmarks run by the rustls maintainer, aws-lc is faster
than ring in some cases too <https://jbp.io/graviola/>, so it's not
without its upsides,
Update hyper and tonic again in the storage broker, this time with a fix
for the issue that made us revert the update last time.
The first commit is a revert of #9268, the second a fix for the issue.
fixes#9231.
## Problem
The S3 tests couldn't use SSO authentication for local tests against S3.
## Summary of changes
Enable the `sso` feature of `aws-config`. Also run `cargo hakari
generate` which made some updates to `workspace_hack`.
Follow-up of #9234 to give hyper 1.0 the version-free name, and the
legacy version of hyper the one with the version number inside. As we
move away from hyper 0.14, we can remove the `hyper0` name piece by
piece.
Part of #9255
Because:
- it's nice to be up-to-date,
- we already had axum 0.7 in our dependency tree, so this avoids having
to compile two versions, and
- removes one of the remaining dpendencies to hyper version 0
Also bumps the 'tokio-tungstenite' dependency, to avoid having two
versions in the dependency tree.
Fixes#9231 .
Upgrade hyper to 1.4.0 and use hyper 1.4 instead of 0.14 in the storage
broker, together with tonic 0.12. The two upgrades go hand in hand.
Thanks to the broker being independent from other components, we can
upgrade its hyper version without touching the other components, which
makes things easier.
* tracing-utils now returns a `Layer` impl. Removes the need for crates
to
import OTel crates.
* Drop the /v1/traces URI check. Verified that the code does the right
thing.
* Leave a TODO to hook in an error handler for OTel to log errors to
when it
assumes the regular pipeline cannot be used/is broken.
These were not referenced in any of the other Cargo.toml files in the
workspace. They were not being built because of that, so there was
little harm in having them listed, but let's be tidy.
PR #7782 set the dependency in Cargo.toml to 'master', and locked the
version to commit that contained a specific fix, because we needed the
fix before it was included in a versioned release. The fix was later
included in parquet crate version 52.0.0, so we can now switch back to
using a released version. The latest release is 53.0.0, switch straight
to that.
---------
Co-authored-by: Conrad Ludgate <conradludgate@gmail.com>
I wanted to use some features from the newer version. The PR that needed
the new version is not ready yet (and might never be), but seems nice to
stay up in any case.
We modified the crate in an incompatible way and upgraded to the new
version in PR #8076. However, it was reverted in #8654. The revert
reverted the Cargo.lock reference to it, but since Cargo.toml still
points to the (tip of the) 'neon' branch, every time you make any other
unrelated changes to Cargo.toml, it also tries to update the
rust-postgres crates to the tip of the 'neon' branch again, which
doesn't work.
To fix, lock the crates to the exact commit SHA that works.
This PR simplifies the pageserver configuration parsing as follows:
* introduce the `pageserver_api::config::ConfigToml` type
* implement `Default` for `ConfigToml`
* use serde derive to do the brain-dead leg-work of processing the toml
document
* use `serde(default)` to fill in default values
* in `pageserver` crate:
* use `toml_edit` to deserialize the pageserver.toml string into a
`ConfigToml`
* `PageServerConfig::parse_and_validate` then
* consumes the `ConfigToml`
* destructures it exhaustively into its constituent fields
* constructs the `PageServerConfig`
The rules are:
* in `ConfigToml`, use `deny_unknown_fields` everywhere
* static default values go in `pageserver_api`
* if there cannot be a static default value (e.g. which default IO
engine to use, because it depends on the runtime), make the field in
`ConfigToml` an `Option`
* if runtime-augmentation of a value is needed, do that in
`parse_and_validate`
* a good example is `virtual_file_io_engine` or `l0_flush`, both of
which need to execute code to determine the effective value in
`PageServerConf`
The benefits:
* massive amount of brain-dead repetitive code can be deleted
* "unused variable" compile-time errors when removing a config value,
due to the exhaustive destructuring in `parse_and_validate`
* compile-time errors guide you when adding a new config field
Drawbacks:
* serde derive is sometimes a bit too magical
* `deny_unknown_fields` is easy to miss
Future Work / Benefits:
* make `neon_local` use `pageserver_api` to construct `ConfigToml` and
write it to `pageserver.toml`
* This provides more type safety / coompile-time errors than the current
approach.
### Refs
Fixes#3682
### Future Work
* `remote_storage` deser doesn't reject unknown fields
https://github.com/neondatabase/neon/issues/8915
* clean up `libs/pageserver_api/src/config.rs` further
* break up into multiple files, at least for tenant config
* move `models` as appropriate / refine distinction between config and
API models / be explicit about when it's the same
* use `pub(crate)` visibility on `mod defaults` to detect stale values
In proxy I switched to a leaky-bucket impl using the GCRA algorithm. I
figured I could share the code with pageserver and remove the
leaky_bucket crate dependency with some very basic tokio timers and
queues for fairness.
The underlying algorithm should be fairly clear how it works from the
comments I have left in the code.
---
In benchmarking pageserver, @problame found that the new implementation
fixes a getpage throughput discontinuity in pageserver under the
`pagebench get-page-latest-lsn` benchmark with the clickbench dataset
(`test_perf_olap.py`).
The discontinuity is that for any of `--num-clients={2,3,4}`, getpage
throughput remains 10k.
With `--num-clients=5` and greater, getpage throughput then jumps to the
configured 20k rate limit.
With the changes in this PR, the discontinuity is gone, and we scale
throughput linearly to `--num-clients` until the configured rate limit.
More context in
https://github.com/neondatabase/cloud/issues/16886#issuecomment-2315257641.
closes https://github.com/neondatabase/cloud/issues/16886
---------
Co-authored-by: Joonas Koivunen <joonas@neon.tech>
Co-authored-by: Christian Schwarz <christian@neon.tech>
Part of [Epic: Bypass PageCache for user data
blocks](https://github.com/neondatabase/neon/issues/7386).
# Problem
`InMemoryLayer` still uses the `PageCache` for all data stored in the
`VirtualFile` that underlies the `EphemeralFile`.
# Background
Before this PR, `EphemeralFile` is a fancy and (code-bloated) buffered
writer around a `VirtualFile` that supports `blob_io`.
The `InMemoryLayerInner::index` stores offsets into the `EphemeralFile`.
At those offset, we find a varint length followed by the serialized
`Value`.
Vectored reads (`get_values_reconstruct_data`) are not in fact vectored
- each `Value` that needs to be read is read sequentially.
The `will_init` bit of information which we use to early-exit the
`get_values_reconstruct_data` for a given key is stored in the
serialized `Value`, meaning we have to read & deserialize the `Value`
from the `EphemeralFile`.
The L0 flushing **also** needs to re-determine the `will_init` bit of
information, by deserializing each value during L0 flush.
# Changes
1. Store the value length and `will_init` information in the
`InMemoryLayer::index`. The `EphemeralFile` thus only needs to store the
values.
2. For `get_values_reconstruct_data`:
- Use the in-memory `index` figures out which values need to be read.
Having the `will_init` stored in the index enables us to do that.
- View the EphemeralFile as a byte array of "DIO chunks", each 512 bytes
in size (adjustable constant). A "DIO chunk" is the minimal unit that we
can read under direct IO.
- Figure out which chunks need to be read to retrieve the serialized
bytes for thes values we need to read.
- Coalesce chunk reads such that each DIO chunk is only read once to
serve all value reads that need data from that chunk.
- Merge adjacent chunk reads into larger
`EphemeralFile::read_exact_at_eof_ok` of up to 128k (adjustable
constant).
3. The new `EphemeralFile::read_exact_at_eof_ok` fills the IO buffer
from the underlying VirtualFile and/or its in-memory buffer.
4. The L0 flush code is changed to use the `index` directly, `blob_io`
5. We can remove the `ephemeral_file::page_caching` construct now.
The `get_values_reconstruct_data` changes seem like a bit overkill but
they are necessary so we issue the equivalent amount of read system
calls compared to before this PR where it was highly likely that even if
the first PageCache access was a miss, remaining reads within the same
`get_values_reconstruct_data` call from the same `EphemeralFile` page
were a hit.
The "DIO chunk" stuff is truly unnecessary for page cache bypass, but,
since we're working on [direct
IO](https://github.com/neondatabase/neon/issues/8130) and
https://github.com/neondatabase/neon/issues/8719 specifically, we need
to do _something_ like this anyways in the near future.
# Alternative Design
The original plan was to use the `vectored_blob_io` code it relies on
the invariant of Delta&Image layers that `index order == values order`.
Further, `vectored_blob_io` code's strategy for merging IOs is limited
to adjacent reads. However, with direct IO, there is another level of
merging that should be done, specifically, if multiple reads map to the
same "DIO chunk" (=alignment-requirement-sized and -aligned region of
the file), then it's "free" to read the chunk into an IO buffer and
serve the two reads from that buffer.
=> https://github.com/neondatabase/neon/issues/8719
# Testing / Performance
Correctness of the IO merging code is ensured by unit tests.
Additionally, minimal tests are added for the `EphemeralFile`
implementation and the bit-packed `InMemoryLayerIndexValue`.
Performance testing results are presented below.
All pref testing done on my M2 MacBook Pro, running a Linux VM.
It's a release build without `--features testing`.
We see definitive improvement in ingest performance microbenchmark and
an ad-hoc microbenchmark for getpage against InMemoryLayer.
```
baseline: commit 7c74112b2a origin/main
HEAD: ef1c55c52e
```
<details>
```
cargo bench --bench bench_ingest -- 'ingest 128MB/100b seq, no delta'
baseline
ingest-small-values/ingest 128MB/100b seq, no delta
time: [483.50 ms 498.73 ms 522.53 ms]
thrpt: [244.96 MiB/s 256.65 MiB/s 264.73 MiB/s]
HEAD
ingest-small-values/ingest 128MB/100b seq, no delta
time: [479.22 ms 482.92 ms 487.35 ms]
thrpt: [262.64 MiB/s 265.06 MiB/s 267.10 MiB/s]
```
</details>
We don't have a micro-benchmark for InMemoryLayer and it's quite
cumbersome to add one. So, I did manual testing in `neon_local`.
<details>
```
./target/release/neon_local stop
rm -rf .neon
./target/release/neon_local init
./target/release/neon_local start
./target/release/neon_local tenant create --set-default
./target/release/neon_local endpoint create foo
./target/release/neon_local endpoint start foo
psql 'postgresql://cloud_admin@127.0.0.1:55432/postgres'
psql (13.16 (Debian 13.16-0+deb11u1), server 15.7)
CREATE TABLE wal_test (
id SERIAL PRIMARY KEY,
data TEXT
);
DO $$
DECLARE
i INTEGER := 1;
BEGIN
WHILE i <= 500000 LOOP
INSERT INTO wal_test (data) VALUES ('data');
i := i + 1;
END LOOP;
END $$;
-- => result is one L0 from initdb and one 137M-sized ephemeral-2
DO $$
DECLARE
i INTEGER := 1;
random_id INTEGER;
random_record wal_test%ROWTYPE;
start_time TIMESTAMP := clock_timestamp();
selects_completed INTEGER := 0;
min_id INTEGER := 1; -- Minimum ID value
max_id INTEGER := 100000; -- Maximum ID value, based on your insert range
iters INTEGER := 100000000; -- Number of iterations to run
BEGIN
WHILE i <= iters LOOP
-- Generate a random ID within the known range
random_id := min_id + floor(random() * (max_id - min_id + 1))::int;
-- Select the row with the generated random ID
SELECT * INTO random_record
FROM wal_test
WHERE id = random_id;
-- Increment the select counter
selects_completed := selects_completed + 1;
-- Check if a second has passed
IF EXTRACT(EPOCH FROM clock_timestamp() - start_time) >= 1 THEN
-- Print the number of selects completed in the last second
RAISE NOTICE 'Selects completed in last second: %', selects_completed;
-- Reset counters for the next second
selects_completed := 0;
start_time := clock_timestamp();
END IF;
-- Increment the loop counter
i := i + 1;
END LOOP;
END $$;
./target/release/neon_local stop
baseline: commit 7c74112b2a origin/main
NOTICE: Selects completed in last second: 1864
NOTICE: Selects completed in last second: 1850
NOTICE: Selects completed in last second: 1851
NOTICE: Selects completed in last second: 1918
NOTICE: Selects completed in last second: 1911
NOTICE: Selects completed in last second: 1879
NOTICE: Selects completed in last second: 1858
NOTICE: Selects completed in last second: 1827
NOTICE: Selects completed in last second: 1933
ours
NOTICE: Selects completed in last second: 1915
NOTICE: Selects completed in last second: 1928
NOTICE: Selects completed in last second: 1913
NOTICE: Selects completed in last second: 1932
NOTICE: Selects completed in last second: 1846
NOTICE: Selects completed in last second: 1955
NOTICE: Selects completed in last second: 1991
NOTICE: Selects completed in last second: 1973
```
NB: the ephemeral file sizes differ by ca 1MiB, ours being 1MiB smaller.
</details>
# Rollout
This PR changes the code in-place and is not gated by a feature flag.