- Remove repeated tenant & timeline from span
- Demote logging of the path to debug level
- Log completion at info level, in the same function where we log errors
- distinguish between layer file download success & on-demand download
succeeding as a whole in the log message wording
- Assert that the span contains a tenant id and a timeline id
fixes https://github.com/neondatabase/neon/issues/3945
Before:
```
INFO compaction_loop{tenant_id=$TENANT_ID}:compact_timeline{timeline=$TIMELINE_ID}:download_remote_layer{tenant_id=$TENANT_ID timeline_id=$TIMELINE_ID layer=000000000000000000000000000000000000-FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF__00000000020C8A71-00000000020CAF91}: download complete: /storage/pageserver/data/tenants/$TENANT_ID/timelines/$TIMELINE_ID/000000000000000000000000000000000000-FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF__00000000020C8A71-00000000020CAF91
INFO compaction_loop{tenant_id=$TENANT_ID}:compact_timeline{timeline=$TIMELINE_ID}:download_remote_layer{tenant_id=$TENANT_ID timeline_id=$TIMELINE_ID layer=000000000000000000000000000000000000-FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF__00000000020C8A71-00000000020CAF91}: Rebuilt layer map. Did 9 insertions to process a batch of 1 updates.
```
After:
```
INFO compaction_loop{tenant_id=$TENANT_ID}:compact_timeline{timeline=$TIMELINE_ID}:download_remote_layer{layer=000000000000000000000000000000000000-FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF__00000000020C8A71-00000000020CAF91}: layer file download finished
INFO compaction_loop{tenant_id=$TENANT_ID}:compact_timeline{timeline=$TIMELINE_ID}:download_remote_layer{layer=000000000000000000000000000000000000-FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF__00000000020C8A71-00000000020CAF91}: Rebuilt layer map. Did 9 insertions to process a batch of 1 updates.
INFO compaction_loop{tenant_id=$TENANT_ID}:compact_timeline{timeline=$TIMELINE_ID}:download_remote_layer{layer=000000000000000000000000000000000000-FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF__00000000020C8A71-00000000020CAF91}: on-demand download successful
```
See https://github.com/neondatabase/neon/pull/3991
Brings the changes back with the right way to use new `toml_edit` to
deserialize values and a unit test for this.
All non-trivial updates extracted into separate commits, also `carho hakari` data and its manifest format were updated.
3 sets of crates remain unupdated:
* `base64` — touches proxy in a lot of places and changed its api (by 0.21 version) quite strongly since our version (0.13).
* `opentelemetry` and `opentelemetry-*` crates
```
error[E0308]: mismatched types
--> libs/tracing-utils/src/http.rs:65:21
|
65 | span.set_parent(parent_ctx);
| ---------- ^^^^^^^^^^ expected struct `opentelemetry_api::context::Context`, found struct `opentelemetry::Context`
| |
| arguments to this method are incorrect
|
= note: struct `opentelemetry::Context` and struct `opentelemetry_api::context::Context` have similar names, but are actually distinct types
note: struct `opentelemetry::Context` is defined in crate `opentelemetry_api`
--> /Users/someonetoignore/.cargo/registry/src/github.com-1ecc6299db9ec823/opentelemetry_api-0.19.0/src/context.rs:77:1
|
77 | pub struct Context {
| ^^^^^^^^^^^^^^^^^^
note: struct `opentelemetry_api::context::Context` is defined in crate `opentelemetry_api`
--> /Users/someonetoignore/.cargo/registry/src/github.com-1ecc6299db9ec823/opentelemetry_api-0.18.0/src/context.rs:77:1
|
77 | pub struct Context {
| ^^^^^^^^^^^^^^^^^^
= note: perhaps two different versions of crate `opentelemetry_api` are being used?
note: associated function defined here
--> /Users/someonetoignore/.cargo/registry/src/github.com-1ecc6299db9ec823/tracing-opentelemetry-0.18.0/src/span_ext.rs:43:8
|
43 | fn set_parent(&self, cx: Context);
| ^^^^^^^^^^
For more information about this error, try `rustc --explain E0308`.
error: could not compile `tracing-utils` due to previous error
warning: build failed, waiting for other jobs to finish...
error: could not compile `tracing-utils` due to previous error
```
`tracing-opentelemetry` of version `0.19` is not yet released, that is supposed to have the update we need.
* similarly, `rustls`, `tokio-rustls`, `rustls-*` and `tls-listener` crates have similar issue:
```
error[E0308]: mismatched types
--> libs/postgres_backend/tests/simple_select.rs:112:78
|
112 | let mut make_tls_connect = tokio_postgres_rustls::MakeRustlsConnect::new(client_cfg);
| --------------------------------------------- ^^^^^^^^^^ expected struct `rustls::client::client_conn::ClientConfig`, found struct `ClientConfig`
| |
| arguments to this function are incorrect
|
= note: struct `ClientConfig` and struct `rustls::client::client_conn::ClientConfig` have similar names, but are actually distinct types
note: struct `ClientConfig` is defined in crate `rustls`
--> /Users/someonetoignore/.cargo/registry/src/github.com-1ecc6299db9ec823/rustls-0.21.0/src/client/client_conn.rs:125:1
|
125 | pub struct ClientConfig {
| ^^^^^^^^^^^^^^^^^^^^^^^
note: struct `rustls::client::client_conn::ClientConfig` is defined in crate `rustls`
--> /Users/someonetoignore/.cargo/registry/src/github.com-1ecc6299db9ec823/rustls-0.20.8/src/client/client_conn.rs:91:1
|
91 | pub struct ClientConfig {
| ^^^^^^^^^^^^^^^^^^^^^^^
= note: perhaps two different versions of crate `rustls` are being used?
note: associated function defined here
--> /Users/someonetoignore/.cargo/registry/src/github.com-1ecc6299db9ec823/tokio-postgres-rustls-0.9.0/src/lib.rs:23:12
|
23 | pub fn new(config: ClientConfig) -> Self {
| ^^^
For more information about this error, try `rustc --explain E0308`.
error: could not compile `postgres_backend` due to previous error
warning: build failed, waiting for other jobs to finish...
```
* aws crates: I could not make new API to work with bucket endpoint overload, and console e2e tests failed.
Other our tests passed, further investigation is worth to be done in https://github.com/neondatabase/neon/issues/4008
All non-trivial updates extracted into separate commits, also `carho
hakari` data and its manifest format were updated.
3 sets of crates remain unupdated:
* `base64` — touches proxy in a lot of places and changed its api (by
0.21 version) quite strongly since our version (0.13).
* `opentelemetry` and `opentelemetry-*` crates
```
error[E0308]: mismatched types
--> libs/tracing-utils/src/http.rs:65:21
|
65 | span.set_parent(parent_ctx);
| ---------- ^^^^^^^^^^ expected struct `opentelemetry_api::context::Context`, found struct `opentelemetry::Context`
| |
| arguments to this method are incorrect
|
= note: struct `opentelemetry::Context` and struct `opentelemetry_api::context::Context` have similar names, but are actually distinct types
note: struct `opentelemetry::Context` is defined in crate `opentelemetry_api`
--> /Users/someonetoignore/.cargo/registry/src/github.com-1ecc6299db9ec823/opentelemetry_api-0.19.0/src/context.rs:77:1
|
77 | pub struct Context {
| ^^^^^^^^^^^^^^^^^^
note: struct `opentelemetry_api::context::Context` is defined in crate `opentelemetry_api`
--> /Users/someonetoignore/.cargo/registry/src/github.com-1ecc6299db9ec823/opentelemetry_api-0.18.0/src/context.rs:77:1
|
77 | pub struct Context {
| ^^^^^^^^^^^^^^^^^^
= note: perhaps two different versions of crate `opentelemetry_api` are being used?
note: associated function defined here
--> /Users/someonetoignore/.cargo/registry/src/github.com-1ecc6299db9ec823/tracing-opentelemetry-0.18.0/src/span_ext.rs:43:8
|
43 | fn set_parent(&self, cx: Context);
| ^^^^^^^^^^
For more information about this error, try `rustc --explain E0308`.
error: could not compile `tracing-utils` due to previous error
warning: build failed, waiting for other jobs to finish...
error: could not compile `tracing-utils` due to previous error
```
`tracing-opentelemetry` of version `0.19` is not yet released, that is
supposed to have the update we need.
* similarly, `rustls`, `tokio-rustls`, `rustls-*` and `tls-listener`
crates have similar issue:
```
error[E0308]: mismatched types
--> libs/postgres_backend/tests/simple_select.rs:112:78
|
112 | let mut make_tls_connect = tokio_postgres_rustls::MakeRustlsConnect::new(client_cfg);
| --------------------------------------------- ^^^^^^^^^^ expected struct `rustls::client::client_conn::ClientConfig`, found struct `ClientConfig`
| |
| arguments to this function are incorrect
|
= note: struct `ClientConfig` and struct `rustls::client::client_conn::ClientConfig` have similar names, but are actually distinct types
note: struct `ClientConfig` is defined in crate `rustls`
--> /Users/someonetoignore/.cargo/registry/src/github.com-1ecc6299db9ec823/rustls-0.21.0/src/client/client_conn.rs:125:1
|
125 | pub struct ClientConfig {
| ^^^^^^^^^^^^^^^^^^^^^^^
note: struct `rustls::client::client_conn::ClientConfig` is defined in crate `rustls`
--> /Users/someonetoignore/.cargo/registry/src/github.com-1ecc6299db9ec823/rustls-0.20.8/src/client/client_conn.rs:91:1
|
91 | pub struct ClientConfig {
| ^^^^^^^^^^^^^^^^^^^^^^^
= note: perhaps two different versions of crate `rustls` are being used?
note: associated function defined here
--> /Users/someonetoignore/.cargo/registry/src/github.com-1ecc6299db9ec823/tokio-postgres-rustls-0.9.0/src/lib.rs:23:12
|
23 | pub fn new(config: ClientConfig) -> Self {
| ^^^
For more information about this error, try `rustc --explain E0308`.
error: could not compile `postgres_backend` due to previous error
warning: build failed, waiting for other jobs to finish...
```
* aws crates: I could not make new API to work with bucket endpoint
overload, and console e2e tests failed.
Other our tests passed, further investigation is worth to be done in
https://github.com/neondatabase/neon/issues/4008
This patch adds a pageserver-global background loop that evicts layers
in response to a shortage of available bytes in the $repo/tenants
directory's filesystem.
The loop runs periodically at a configurable `period`.
Each loop iteration uses `statvfs` to determine filesystem-level space
usage. It compares the returned usage data against two different types
of thresholds. The iteration tries to evict layers until app-internal
accounting says we should be below the thresholds. We cross-check this
internal accounting with the real world by making another `statvfs` at
the end of the iteration. We're good if that second statvfs shows that
we're _actually_ below the configured thresholds. If we're still above
one or more thresholds, we emit a warning log message, leaving it to the
operator to investigate further.
There are two thresholds:
- `max_usage_pct` is the relative available space, expressed in percent
of the total filesystem space. If the actual usage is higher, the
threshold is exceeded.
- `min_avail_bytes` is the absolute available space in bytes. If the
actual usage is lower, the threshold is exceeded.
The iteration evicts layers in LRU fashion with a reservation of up to
`tenant_min_resident_size` bytes of the most recent layers per tenant.
The layers not part of the per-tenant reservation are evicted
least-recently-used first until we're below all thresholds. The
`tenant_min_resident_size` can be overridden per tenant as
`min_resident_size_override` (bytes).
In addition to the loop, there is also an HTTP endpoint to perform one
loop iteration synchronous to the request. The endpoint takes an
absolute number of bytes that the iteration needs to evict before
pressure is relieved. The tests use this endpoint, which is a great
simplification over setting up loopback-mounts in the tests, which would
be required to test the statvfs part of the implementation. We will rely
on manual testing in staging to test the statvfs parts.
The HTTP endpoint is also handy in emergencies where an operator wants
the pageserver to evict a given amount of space _now. Hence, it's
arguments documented in openapi_spec.yml. The response type isn't
documented though because we don't consider it stable. The endpoint
should _not_ be used by Console but it could be used by on-call.
Co-authored-by: Joonas Koivunen <joonas@neon.tech>
Co-authored-by: Dmitry Rodionov <dmitry@neon.tech>
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
- Add support for splitting async postgres_backend into read and write halfes.
Safekeeper needs this for bidirectional streams. To this end, encapsulate
reading-writing postgres messages to framed.rs with split support without any
additional changes (relying on BufRead for reading and BytesMut out buffer for
writing).
- Use async postgres_backend throughout safekeeper (and in proxy auth link
part).
- In both safekeeper COPY streams, do read-write from the same thread/task with
select! for easier error handling.
- Tidy up finishing CopyBoth streams in safekeeper sending and receiving WAL
-- join split parts back catching errors from them before returning.
Initially I hoped to do that read-write without split at all, through polling
IO:
https://github.com/neondatabase/neon/pull/3522
However that turned out to be more complicated than I initially expected
due to 1) borrow checking and 2) anon Future types. 1) required Rc<Refcell<...>>
which is Send construct just to satisfy the checker; 2) can be workaround with
transmute. But this is so messy that I decided to leave split.
To untie cyclic dependency between sync and async versions of postgres_backend,
copy QueryError and some logging/error routines to postgres_backend.rs. This is
temporal glue to make commits smaller, sync version will be dropped by the
upcoming commit completely.
## Describe your changes
## Issue ticket number and link
#3479
## Checklist before requesting a review
- [x] I have performed a self-review of my code.
- [ ] If it is a core feature, I have added thorough tests.
- [ ] Do we need to implement analytics? if so did you add the relevant
metrics to the dashboard?
- [ ] If this PR requires public announcement, mark it with
/release-notes label and add several sentences in this section.
This patch adds basic access statistics for historic layers
and exposes them in the management API's `LayerMapInfo`.
We record the accesses in the `{Delta,Image}Layer::load()` function
because it's the common path of
* page_service (`Timline::get_reconstruct_data()`)
* Compaction (`PersistentLayer::iter()` and `PersistentLayer::key_iter()`)
The stats survive residence status changes, and record these as well.
When scraping the layer map endpoint to record its evolution over time,
one must account for stat resets because they are in-memory only and
will reset on pageserver restart.
Use the launch timestamp header added by (#3527) to identify pageserver restarts.
This is PR https://github.com/neondatabase/neon/pull/3496
- add parse_query_param()
- use Cow<> where possible
- move param parsing code to utils::http::request
This was originally PR https://github.com/neondatabase/neon/pull/3502
which targeted a different branch.
closes #3510
I looked at "cargo tree" output and noticed that through various
dependencies, we are depending on both native-tls and rustls. We have
tried to standardize on rustls for everything, but dependencies on
native-tls have crept in recently. One such dependency came from
'reqwest' with default features in pageserver, used for
consumption_metrics. Another dependency was from 'sentry'. Both
'reqwest' and 'sentry' use native-tls by default, but can use 'rustls'
if compiled with the right feature flags.
Added basic instrumentation to integrate sentry with the proxy, pageserver, and safekeeper processes.
Currently in sentry there are three projects, one for each process. Sentry url is sent to all three processes separately via cli args.
* Support configuring the log format as json or plain.
Separately test json and plain logger. They would be competing on the
same global subscriber otherwise.
* Implement log_format for pageserver config
* Implement configurable log format for safekeeper.
* etcd-client is not updated, since we plan to replace it with another client and the new version errors with some missing prost library error
* clap had released another major update that requires changing every CLI declaration again, deserves a separate PR
Instead of spawning helper threads, we now use Tokio tasks. There
are multiple Tokio runtimes, for different kinds of tasks. One for
serving libpq client connections, another for background operations
like GC and compaction, and so on. That's not strictly required, we
could use just one runtime, but with this you can still get an
overview of what's happening with "top -H".
There's one subtle behavior in how TenantState is updated. Before this
patch, if you deleted all timelines from a tenant, its GC and
compaction loops were stopped, and the tenant went back to Idle
state. We no longer do that. The empty tenant stays Active. The
changes to test_tenant_tasks.py are related to that.
There's still plenty of synchronous code and blocking. For example, we
still use blocking std::io functions for all file I/O, and the
communication with WAL redo processes is still uses low-level unix
poll(). We might want to rewrite those later, but this will do for
now. The model is that local file I/O is considered to be fast enough
that blocking - and preventing other tasks running in the same thread -
is acceptable.