mirror of
https://github.com/neondatabase/neon.git
synced 2026-01-17 10:22:56 +00:00
Compare commits
1 Commits
initdb-cac
...
feature-be
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
639dcb24ff |
@@ -9,6 +9,9 @@ default = []
|
||||
# Enables test-only APIs, incuding failpoints. In particular, enables the `fail_point!` macro,
|
||||
# which adds some runtime cost to run tests on outage conditions
|
||||
testing = ["fail/failpoints"]
|
||||
# Just a marker that compiles mock structs that are used in both tests and benchmarks. We
|
||||
# hide them behind a feature flag so that we can apply stronger lints to prod-only code.
|
||||
bench = []
|
||||
|
||||
[dependencies]
|
||||
anyhow.workspace = true
|
||||
|
||||
@@ -3,10 +3,10 @@
|
||||
# How to run
|
||||
|
||||
To run all benchmarks:
|
||||
`cargo bench`
|
||||
`cargo bench --features bench`
|
||||
|
||||
To run a specific file:
|
||||
`cargo bench --bench bench_layer_map`
|
||||
`cargo bench --features bench --bench bench_layer_map`
|
||||
|
||||
To run a specific function:
|
||||
`cargo bench --bench bench_layer_map -- real_map_uniform_queries`
|
||||
`cargo bench --features bench --bench bench_layer_map -- real_map_uniform_queries`
|
||||
|
||||
@@ -1,245 +1,264 @@
|
||||
use pageserver::keyspace::{KeyPartitioning, KeySpace};
|
||||
use pageserver::repository::Key;
|
||||
use pageserver::tenant::layer_map::LayerMap;
|
||||
use pageserver::tenant::storage_layer::{Layer, LayerDescriptor, LayerFileName};
|
||||
use rand::prelude::{SeedableRng, SliceRandom, StdRng};
|
||||
use std::cmp::{max, min};
|
||||
use std::fs::File;
|
||||
use std::io::{BufRead, BufReader};
|
||||
use std::path::PathBuf;
|
||||
use std::str::FromStr;
|
||||
use std::sync::Arc;
|
||||
use std::time::Instant;
|
||||
// Hiding this code under a compilation flag allows us to lint it differently than prod code
|
||||
#[cfg(feature = "bench")]
|
||||
pub mod bench {
|
||||
use pageserver::keyspace::{KeyPartitioning, KeySpace};
|
||||
use pageserver::repository::Key;
|
||||
use pageserver::tenant::layer_map::LayerMap;
|
||||
use pageserver::tenant::storage_layer::mock::LayerDescriptor;
|
||||
use pageserver::tenant::storage_layer::{Layer, LayerFileName};
|
||||
use rand::prelude::{SeedableRng, SliceRandom, StdRng};
|
||||
use std::cmp::{max, min};
|
||||
use std::fs::File;
|
||||
use std::io::{BufRead, BufReader};
|
||||
use std::path::PathBuf;
|
||||
use std::str::FromStr;
|
||||
use std::sync::Arc;
|
||||
use std::time::Instant;
|
||||
|
||||
use utils::lsn::Lsn;
|
||||
use utils::lsn::Lsn;
|
||||
|
||||
use criterion::{black_box, criterion_group, criterion_main, Criterion};
|
||||
use criterion::{black_box, criterion_group, criterion_main, Criterion};
|
||||
|
||||
fn build_layer_map(filename_dump: PathBuf) -> LayerMap<LayerDescriptor> {
|
||||
let mut layer_map = LayerMap::<LayerDescriptor>::default();
|
||||
fn build_layer_map(filename_dump: PathBuf) -> LayerMap<LayerDescriptor> {
|
||||
let mut layer_map = LayerMap::<LayerDescriptor>::default();
|
||||
|
||||
let mut min_lsn = Lsn(u64::MAX);
|
||||
let mut max_lsn = Lsn(0);
|
||||
let mut min_lsn = Lsn(u64::MAX);
|
||||
let mut max_lsn = Lsn(0);
|
||||
|
||||
let filenames = BufReader::new(File::open(filename_dump).unwrap()).lines();
|
||||
let filenames = BufReader::new(File::open(filename_dump).unwrap()).lines();
|
||||
|
||||
let mut updates = layer_map.batch_update();
|
||||
for fname in filenames {
|
||||
let fname = fname.unwrap();
|
||||
let fname = LayerFileName::from_str(&fname).unwrap();
|
||||
let layer = LayerDescriptor::from(fname);
|
||||
let mut updates = layer_map.batch_update();
|
||||
for fname in filenames {
|
||||
let fname = fname.unwrap();
|
||||
let fname = LayerFileName::from_str(&fname).unwrap();
|
||||
let layer = LayerDescriptor::from(fname);
|
||||
|
||||
let lsn_range = layer.get_lsn_range();
|
||||
min_lsn = min(min_lsn, lsn_range.start);
|
||||
max_lsn = max(max_lsn, Lsn(lsn_range.end.0 - 1));
|
||||
let lsn_range = layer.get_lsn_range();
|
||||
min_lsn = min(min_lsn, lsn_range.start);
|
||||
max_lsn = max(max_lsn, Lsn(lsn_range.end.0 - 1));
|
||||
|
||||
updates.insert_historic(Arc::new(layer));
|
||||
}
|
||||
|
||||
println!("min: {min_lsn}, max: {max_lsn}");
|
||||
|
||||
updates.flush();
|
||||
layer_map
|
||||
}
|
||||
|
||||
/// Construct a layer map query pattern for benchmarks
|
||||
fn uniform_query_pattern(layer_map: &LayerMap<LayerDescriptor>) -> Vec<(Key, Lsn)> {
|
||||
// For each image layer we query one of the pages contained, at LSN right
|
||||
// before the image layer was created. This gives us a somewhat uniform
|
||||
// coverage of both the lsn and key space because image layers have
|
||||
// approximately equal sizes and cover approximately equal WAL since
|
||||
// last image.
|
||||
layer_map
|
||||
.iter_historic_layers()
|
||||
.filter_map(|l| {
|
||||
if l.is_incremental() {
|
||||
None
|
||||
} else {
|
||||
let kr = l.get_key_range();
|
||||
let lr = l.get_lsn_range();
|
||||
|
||||
let key_inside = kr.start.next();
|
||||
let lsn_before = Lsn(lr.start.0 - 1);
|
||||
|
||||
Some((key_inside, lsn_before))
|
||||
}
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
// Construct a partitioning for testing get_difficulty map when we
|
||||
// don't have an exact result of `collect_keyspace` to work with.
|
||||
fn uniform_key_partitioning(layer_map: &LayerMap<LayerDescriptor>, _lsn: Lsn) -> KeyPartitioning {
|
||||
let mut parts = Vec::new();
|
||||
|
||||
// We add a partition boundary at the start of each image layer,
|
||||
// no matter what lsn range it covers. This is just the easiest
|
||||
// thing to do. A better thing to do would be to get a real
|
||||
// partitioning from some database. Even better, remove the need
|
||||
// for key partitions by deciding where to create image layers
|
||||
// directly based on a coverage-based difficulty map.
|
||||
let mut keys: Vec<_> = layer_map
|
||||
.iter_historic_layers()
|
||||
.filter_map(|l| {
|
||||
if l.is_incremental() {
|
||||
None
|
||||
} else {
|
||||
let kr = l.get_key_range();
|
||||
Some(kr.start.next())
|
||||
}
|
||||
})
|
||||
.collect();
|
||||
keys.sort();
|
||||
|
||||
let mut current_key = Key::from_hex("000000000000000000000000000000000000").unwrap();
|
||||
for key in keys {
|
||||
parts.push(KeySpace {
|
||||
ranges: vec![current_key..key],
|
||||
});
|
||||
current_key = key;
|
||||
}
|
||||
|
||||
KeyPartitioning { parts }
|
||||
}
|
||||
|
||||
// Benchmark using metadata extracted from our performance test environment, from
|
||||
// a project where we have run pgbench many timmes. The pgbench database was initialized
|
||||
// between each test run.
|
||||
fn bench_from_captest_env(c: &mut Criterion) {
|
||||
// TODO consider compressing this file
|
||||
let layer_map = build_layer_map(PathBuf::from("benches/odd-brook-layernames.txt"));
|
||||
let queries: Vec<(Key, Lsn)> = uniform_query_pattern(&layer_map);
|
||||
|
||||
// Test with uniform query pattern
|
||||
c.bench_function("captest_uniform_queries", |b| {
|
||||
b.iter(|| {
|
||||
for q in queries.clone().into_iter() {
|
||||
black_box(layer_map.search(q.0, q.1));
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
// test with a key that corresponds to the RelDir entry. See pgdatadir_mapping.rs.
|
||||
c.bench_function("captest_rel_dir_query", |b| {
|
||||
b.iter(|| {
|
||||
let result = black_box(layer_map.search(
|
||||
Key::from_hex("000000067F00008000000000000000000001").unwrap(),
|
||||
// This LSN is higher than any of the LSNs in the tree
|
||||
Lsn::from_str("D0/80208AE1").unwrap(),
|
||||
));
|
||||
result.unwrap();
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
// Benchmark using metadata extracted from a real project that was taknig
|
||||
// too long processing layer map queries.
|
||||
fn bench_from_real_project(c: &mut Criterion) {
|
||||
// Init layer map
|
||||
let now = Instant::now();
|
||||
let layer_map = build_layer_map(PathBuf::from("benches/odd-brook-layernames.txt"));
|
||||
println!("Finished layer map init in {:?}", now.elapsed());
|
||||
|
||||
// Choose uniformly distributed queries
|
||||
let queries: Vec<(Key, Lsn)> = uniform_query_pattern(&layer_map);
|
||||
|
||||
// Choose inputs for get_difficulty_map
|
||||
let latest_lsn = layer_map
|
||||
.iter_historic_layers()
|
||||
.map(|l| l.get_lsn_range().end)
|
||||
.max()
|
||||
.unwrap();
|
||||
let partitioning = uniform_key_partitioning(&layer_map, latest_lsn);
|
||||
|
||||
// Check correctness of get_difficulty_map
|
||||
// TODO put this in a dedicated test outside of this mod
|
||||
{
|
||||
println!("running correctness check");
|
||||
|
||||
let now = Instant::now();
|
||||
let result_bruteforce = layer_map.get_difficulty_map_bruteforce(latest_lsn, &partitioning);
|
||||
assert!(result_bruteforce.len() == partitioning.parts.len());
|
||||
println!("Finished bruteforce in {:?}", now.elapsed());
|
||||
|
||||
let now = Instant::now();
|
||||
let result_fast = layer_map.get_difficulty_map(latest_lsn, &partitioning, None);
|
||||
assert!(result_fast.len() == partitioning.parts.len());
|
||||
println!("Finished fast in {:?}", now.elapsed());
|
||||
|
||||
// Assert results are equal. Manually iterate for easier debugging.
|
||||
let zip = std::iter::zip(
|
||||
&partitioning.parts,
|
||||
std::iter::zip(result_bruteforce, result_fast),
|
||||
);
|
||||
for (_part, (bruteforce, fast)) in zip {
|
||||
assert_eq!(bruteforce, fast);
|
||||
updates.insert_historic(Arc::new(layer));
|
||||
}
|
||||
|
||||
println!("No issues found");
|
||||
println!("min: {min_lsn}, max: {max_lsn}");
|
||||
|
||||
updates.flush();
|
||||
layer_map
|
||||
}
|
||||
|
||||
// Define and name the benchmark function
|
||||
let mut group = c.benchmark_group("real_map");
|
||||
group.bench_function("uniform_queries", |b| {
|
||||
b.iter(|| {
|
||||
for q in queries.clone().into_iter() {
|
||||
black_box(layer_map.search(q.0, q.1));
|
||||
}
|
||||
});
|
||||
});
|
||||
group.bench_function("get_difficulty_map", |b| {
|
||||
b.iter(|| {
|
||||
layer_map.get_difficulty_map(latest_lsn, &partitioning, Some(3));
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
/// Construct a layer map query pattern for benchmarks
|
||||
fn uniform_query_pattern(layer_map: &LayerMap<LayerDescriptor>) -> Vec<(Key, Lsn)> {
|
||||
// For each image layer we query one of the pages contained, at LSN right
|
||||
// before the image layer was created. This gives us a somewhat uniform
|
||||
// coverage of both the lsn and key space because image layers have
|
||||
// approximately equal sizes and cover approximately equal WAL since
|
||||
// last image.
|
||||
layer_map
|
||||
.iter_historic_layers()
|
||||
.filter_map(|l| {
|
||||
if l.is_incremental() {
|
||||
None
|
||||
} else {
|
||||
let kr = l.get_key_range();
|
||||
let lr = l.get_lsn_range();
|
||||
|
||||
// Benchmark using synthetic data. Arrange image layers on stacked diagonal lines.
|
||||
fn bench_sequential(c: &mut Criterion) {
|
||||
// Init layer map. Create 100_000 layers arranged in 1000 diagonal lines.
|
||||
//
|
||||
// TODO This code is pretty slow and runs even if we're only running other
|
||||
// benchmarks. It needs to be somewhere else, but it's not clear where.
|
||||
// Putting it inside the `bench_function` closure is not a solution
|
||||
// because then it runs multiple times during warmup.
|
||||
let now = Instant::now();
|
||||
let mut layer_map = LayerMap::default();
|
||||
let mut updates = layer_map.batch_update();
|
||||
for i in 0..100_000 {
|
||||
let i32 = (i as u32) % 100;
|
||||
let zero = Key::from_hex("000000000000000000000000000000000000").unwrap();
|
||||
let layer = LayerDescriptor {
|
||||
key: zero.add(10 * i32)..zero.add(10 * i32 + 1),
|
||||
lsn: Lsn(i)..Lsn(i + 1),
|
||||
is_incremental: false,
|
||||
short_id: format!("Layer {}", i),
|
||||
};
|
||||
updates.insert_historic(Arc::new(layer));
|
||||
let key_inside = kr.start.next();
|
||||
let lsn_before = Lsn(lr.start.0 - 1);
|
||||
|
||||
Some((key_inside, lsn_before))
|
||||
}
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
updates.flush();
|
||||
println!("Finished layer map init in {:?}", now.elapsed());
|
||||
|
||||
// Choose 100 uniformly random queries
|
||||
let rng = &mut StdRng::seed_from_u64(1);
|
||||
let queries: Vec<(Key, Lsn)> = uniform_query_pattern(&layer_map)
|
||||
.choose_multiple(rng, 100)
|
||||
.copied()
|
||||
.collect();
|
||||
// Construct a partitioning for testing get_difficulty map when we
|
||||
// don't have an exact result of `collect_keyspace` to work with.
|
||||
fn uniform_key_partitioning(
|
||||
layer_map: &LayerMap<LayerDescriptor>,
|
||||
_lsn: Lsn,
|
||||
) -> KeyPartitioning {
|
||||
let mut parts = Vec::new();
|
||||
|
||||
// Define and name the benchmark function
|
||||
let mut group = c.benchmark_group("sequential");
|
||||
group.bench_function("uniform_queries", |b| {
|
||||
b.iter(|| {
|
||||
for q in queries.clone().into_iter() {
|
||||
black_box(layer_map.search(q.0, q.1));
|
||||
}
|
||||
// We add a partition boundary at the start of each image layer,
|
||||
// no matter what lsn range it covers. This is just the easiest
|
||||
// thing to do. A better thing to do would be to get a real
|
||||
// partitioning from some database. Even better, remove the need
|
||||
// for key partitions by deciding where to create image layers
|
||||
// directly based on a coverage-based difficulty map.
|
||||
let mut keys: Vec<_> = layer_map
|
||||
.iter_historic_layers()
|
||||
.filter_map(|l| {
|
||||
if l.is_incremental() {
|
||||
None
|
||||
} else {
|
||||
let kr = l.get_key_range();
|
||||
Some(kr.start.next())
|
||||
}
|
||||
})
|
||||
.collect();
|
||||
keys.sort();
|
||||
|
||||
let mut current_key = Key::from_hex("000000000000000000000000000000000000").unwrap();
|
||||
for key in keys {
|
||||
parts.push(KeySpace {
|
||||
ranges: vec![current_key..key],
|
||||
});
|
||||
current_key = key;
|
||||
}
|
||||
|
||||
KeyPartitioning { parts }
|
||||
}
|
||||
|
||||
// Benchmark using metadata extracted from our performance test environment, from
|
||||
// a project where we have run pgbench many timmes. The pgbench database was initialized
|
||||
// between each test run.
|
||||
fn bench_from_captest_env(c: &mut Criterion) {
|
||||
// TODO consider compressing this file
|
||||
let layer_map = build_layer_map(PathBuf::from("benches/odd-brook-layernames.txt"));
|
||||
let queries: Vec<(Key, Lsn)> = uniform_query_pattern(&layer_map);
|
||||
|
||||
// Test with uniform query pattern
|
||||
c.bench_function("captest_uniform_queries", |b| {
|
||||
b.iter(|| {
|
||||
for q in queries.clone().into_iter() {
|
||||
black_box(layer_map.search(q.0, q.1));
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
|
||||
// test with a key that corresponds to the RelDir entry. See pgdatadir_mapping.rs.
|
||||
c.bench_function("captest_rel_dir_query", |b| {
|
||||
b.iter(|| {
|
||||
let result = black_box(layer_map.search(
|
||||
Key::from_hex("000000067F00008000000000000000000001").unwrap(),
|
||||
// This LSN is higher than any of the LSNs in the tree
|
||||
Lsn::from_str("D0/80208AE1").unwrap(),
|
||||
));
|
||||
result.unwrap();
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
// Benchmark using metadata extracted from a real project that was taknig
|
||||
// too long processing layer map queries.
|
||||
fn bench_from_real_project(c: &mut Criterion) {
|
||||
// Init layer map
|
||||
let now = Instant::now();
|
||||
let layer_map = build_layer_map(PathBuf::from("benches/odd-brook-layernames.txt"));
|
||||
println!("Finished layer map init in {:?}", now.elapsed());
|
||||
|
||||
// Choose uniformly distributed queries
|
||||
let queries: Vec<(Key, Lsn)> = uniform_query_pattern(&layer_map);
|
||||
|
||||
// Choose inputs for get_difficulty_map
|
||||
let latest_lsn = layer_map
|
||||
.iter_historic_layers()
|
||||
.map(|l| l.get_lsn_range().end)
|
||||
.max()
|
||||
.unwrap();
|
||||
let partitioning = uniform_key_partitioning(&layer_map, latest_lsn);
|
||||
|
||||
// Check correctness of get_difficulty_map
|
||||
// TODO put this in a dedicated test outside of this mod
|
||||
{
|
||||
println!("running correctness check");
|
||||
|
||||
let now = Instant::now();
|
||||
let result_bruteforce =
|
||||
layer_map.get_difficulty_map_bruteforce(latest_lsn, &partitioning);
|
||||
assert!(result_bruteforce.len() == partitioning.parts.len());
|
||||
println!("Finished bruteforce in {:?}", now.elapsed());
|
||||
|
||||
let now = Instant::now();
|
||||
let result_fast = layer_map.get_difficulty_map(latest_lsn, &partitioning, None);
|
||||
assert!(result_fast.len() == partitioning.parts.len());
|
||||
println!("Finished fast in {:?}", now.elapsed());
|
||||
|
||||
// Assert results are equal. Manually iterate for easier debugging.
|
||||
let zip = std::iter::zip(
|
||||
&partitioning.parts,
|
||||
std::iter::zip(result_bruteforce, result_fast),
|
||||
);
|
||||
for (_part, (bruteforce, fast)) in zip {
|
||||
assert_eq!(bruteforce, fast);
|
||||
}
|
||||
|
||||
println!("No issues found");
|
||||
}
|
||||
|
||||
// Define and name the benchmark function
|
||||
let mut group = c.benchmark_group("real_map");
|
||||
group.bench_function("uniform_queries", |b| {
|
||||
b.iter(|| {
|
||||
for q in queries.clone().into_iter() {
|
||||
black_box(layer_map.search(q.0, q.1));
|
||||
}
|
||||
});
|
||||
});
|
||||
group.bench_function("get_difficulty_map", |b| {
|
||||
b.iter(|| {
|
||||
layer_map.get_difficulty_map(latest_lsn, &partitioning, Some(3));
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
// Benchmark using synthetic data. Arrange image layers on stacked diagonal lines.
|
||||
fn bench_sequential(c: &mut Criterion) {
|
||||
// Init layer map. Create 100_000 layers arranged in 1000 diagonal lines.
|
||||
//
|
||||
// TODO This code is pretty slow and runs even if we're only running other
|
||||
// benchmarks. It needs to be somewhere else, but it's not clear where.
|
||||
// Putting it inside the `bench_function` closure is not a solution
|
||||
// because then it runs multiple times during warmup.
|
||||
let now = Instant::now();
|
||||
let mut layer_map = LayerMap::default();
|
||||
let mut updates = layer_map.batch_update();
|
||||
for i in 0..100_000 {
|
||||
let i32 = (i as u32) % 100;
|
||||
let zero = Key::from_hex("000000000000000000000000000000000000").unwrap();
|
||||
let layer = LayerDescriptor {
|
||||
key: zero.add(10 * i32)..zero.add(10 * i32 + 1),
|
||||
lsn: Lsn(i)..Lsn(i + 1),
|
||||
is_incremental: false,
|
||||
short_id: format!("Layer {}", i),
|
||||
};
|
||||
updates.insert_historic(Arc::new(layer));
|
||||
}
|
||||
updates.flush();
|
||||
println!("Finished layer map init in {:?}", now.elapsed());
|
||||
|
||||
// Choose 100 uniformly random queries
|
||||
let rng = &mut StdRng::seed_from_u64(1);
|
||||
let queries: Vec<(Key, Lsn)> = uniform_query_pattern(&layer_map)
|
||||
.choose_multiple(rng, 100)
|
||||
.copied()
|
||||
.collect();
|
||||
|
||||
// Define and name the benchmark function
|
||||
let mut group = c.benchmark_group("sequential");
|
||||
group.bench_function("uniform_queries", |b| {
|
||||
b.iter(|| {
|
||||
for q in queries.clone().into_iter() {
|
||||
black_box(layer_map.search(q.0, q.1));
|
||||
}
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
criterion_group!(group_1, bench_from_captest_env);
|
||||
criterion_group!(group_2, bench_from_real_project);
|
||||
criterion_group!(group_3, bench_sequential);
|
||||
}
|
||||
|
||||
criterion_group!(group_1, bench_from_captest_env);
|
||||
criterion_group!(group_2, bench_from_real_project);
|
||||
criterion_group!(group_3, bench_sequential);
|
||||
criterion_main!(group_1, group_2, group_3);
|
||||
#[cfg(feature = "bench")]
|
||||
use criterion::criterion_main;
|
||||
|
||||
#[cfg(feature = "bench")]
|
||||
criterion_main!(bench::group_1, bench::group_2, bench::group_3);
|
||||
|
||||
#[cfg(not(feature = "bench"))]
|
||||
fn main() {
|
||||
panic!("Use `--features bench` to run benchmarks")
|
||||
}
|
||||
|
||||
@@ -762,7 +762,8 @@ where
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::{LayerMap, Replacement};
|
||||
use crate::tenant::storage_layer::{Layer, LayerDescriptor, LayerFileName};
|
||||
use crate::tenant::storage_layer::mock::LayerDescriptor;
|
||||
use crate::tenant::storage_layer::{Layer, LayerFileName};
|
||||
use std::str::FromStr;
|
||||
use std::sync::Arc;
|
||||
|
||||
|
||||
@@ -460,80 +460,86 @@ pub fn downcast_remote_layer(
|
||||
}
|
||||
}
|
||||
|
||||
/// Holds metadata about a layer without any content. Used mostly for testing.
|
||||
///
|
||||
/// To use filenames as fixtures, parse them as [`LayerFileName`] then convert from that to a
|
||||
/// LayerDescriptor.
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct LayerDescriptor {
|
||||
pub key: Range<Key>,
|
||||
pub lsn: Range<Lsn>,
|
||||
pub is_incremental: bool,
|
||||
pub short_id: String,
|
||||
}
|
||||
// Hiding this code under a compilation flag allows us to lint it differently than prod code
|
||||
#[cfg(any(test, feature = "bench"))]
|
||||
pub mod mock {
|
||||
use super::*;
|
||||
|
||||
impl Layer for LayerDescriptor {
|
||||
fn get_key_range(&self) -> Range<Key> {
|
||||
self.key.clone()
|
||||
/// Holds metadata about a layer without any content. Used mostly for testing.
|
||||
///
|
||||
/// To use filenames as fixtures, parse them as [`LayerFileName`] then convert from that to a
|
||||
/// LayerDescriptor.
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct LayerDescriptor {
|
||||
pub key: Range<Key>,
|
||||
pub lsn: Range<Lsn>,
|
||||
pub is_incremental: bool,
|
||||
pub short_id: String,
|
||||
}
|
||||
|
||||
fn get_lsn_range(&self) -> Range<Lsn> {
|
||||
self.lsn.clone()
|
||||
}
|
||||
impl Layer for LayerDescriptor {
|
||||
fn get_key_range(&self) -> Range<Key> {
|
||||
self.key.clone()
|
||||
}
|
||||
|
||||
fn is_incremental(&self) -> bool {
|
||||
self.is_incremental
|
||||
}
|
||||
fn get_lsn_range(&self) -> Range<Lsn> {
|
||||
self.lsn.clone()
|
||||
}
|
||||
|
||||
fn get_value_reconstruct_data(
|
||||
&self,
|
||||
_key: Key,
|
||||
_lsn_range: Range<Lsn>,
|
||||
_reconstruct_data: &mut ValueReconstructState,
|
||||
_ctx: &RequestContext,
|
||||
) -> Result<ValueReconstructResult> {
|
||||
todo!("This method shouldn't be part of the Layer trait")
|
||||
}
|
||||
fn is_incremental(&self) -> bool {
|
||||
self.is_incremental
|
||||
}
|
||||
|
||||
fn short_id(&self) -> String {
|
||||
self.short_id.clone()
|
||||
}
|
||||
fn get_value_reconstruct_data(
|
||||
&self,
|
||||
_key: Key,
|
||||
_lsn_range: Range<Lsn>,
|
||||
_reconstruct_data: &mut ValueReconstructState,
|
||||
_ctx: &RequestContext,
|
||||
) -> Result<ValueReconstructResult> {
|
||||
todo!("This method shouldn't be part of the Layer trait")
|
||||
}
|
||||
|
||||
fn dump(&self, _verbose: bool, _ctx: &RequestContext) -> Result<()> {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
fn short_id(&self) -> String {
|
||||
self.short_id.clone()
|
||||
}
|
||||
|
||||
impl From<DeltaFileName> for LayerDescriptor {
|
||||
fn from(value: DeltaFileName) -> Self {
|
||||
let short_id = value.to_string();
|
||||
LayerDescriptor {
|
||||
key: value.key_range,
|
||||
lsn: value.lsn_range,
|
||||
is_incremental: true,
|
||||
short_id,
|
||||
fn dump(&self, _verbose: bool, _ctx: &RequestContext) -> Result<()> {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<ImageFileName> for LayerDescriptor {
|
||||
fn from(value: ImageFileName) -> Self {
|
||||
let short_id = value.to_string();
|
||||
let lsn = value.lsn_as_range();
|
||||
LayerDescriptor {
|
||||
key: value.key_range,
|
||||
lsn,
|
||||
is_incremental: false,
|
||||
short_id,
|
||||
impl From<DeltaFileName> for LayerDescriptor {
|
||||
fn from(value: DeltaFileName) -> Self {
|
||||
let short_id = value.to_string();
|
||||
LayerDescriptor {
|
||||
key: value.key_range,
|
||||
lsn: value.lsn_range,
|
||||
is_incremental: true,
|
||||
short_id,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<LayerFileName> for LayerDescriptor {
|
||||
fn from(value: LayerFileName) -> Self {
|
||||
match value {
|
||||
LayerFileName::Delta(d) => Self::from(d),
|
||||
LayerFileName::Image(i) => Self::from(i),
|
||||
impl From<ImageFileName> for LayerDescriptor {
|
||||
fn from(value: ImageFileName) -> Self {
|
||||
let short_id = value.to_string();
|
||||
let lsn = value.lsn_as_range();
|
||||
LayerDescriptor {
|
||||
key: value.key_range,
|
||||
lsn,
|
||||
is_incremental: false,
|
||||
short_id,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<LayerFileName> for LayerDescriptor {
|
||||
fn from(value: LayerFileName) -> Self {
|
||||
match value {
|
||||
LayerFileName::Delta(d) => Self::from(d),
|
||||
LayerFileName::Image(i) => Self::from(i),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user