mirror of
https://github.com/neondatabase/neon.git
synced 2026-02-13 23:50:36 +00:00
Compare commits
18 Commits
jcsp/rfc-p
...
walpropose
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a8a1cc5e80 | ||
|
|
8a0b3d7c32 | ||
|
|
1a19b4d2e7 | ||
|
|
3bf6ecb2a6 | ||
|
|
f550c26aca | ||
|
|
2ce477b622 | ||
|
|
e8db6b91c5 | ||
|
|
029623bfe7 | ||
|
|
227eb21303 | ||
|
|
0e1ff5db4c | ||
|
|
fbaca131ca | ||
|
|
090a644392 | ||
|
|
2cced770da | ||
|
|
7038ce40ce | ||
|
|
ce45fd4cc7 | ||
|
|
6cc8c31fd8 | ||
|
|
ba92668e37 | ||
|
|
16f0622222 |
1
Cargo.lock
generated
1
Cargo.lock
generated
@@ -3417,6 +3417,7 @@ dependencies = [
|
||||
"metrics",
|
||||
"once_cell",
|
||||
"pin-project-lite",
|
||||
"rand",
|
||||
"scopeguard",
|
||||
"serde",
|
||||
"serde_json",
|
||||
|
||||
@@ -223,6 +223,7 @@ async fn handle_attach_hook(mut req: Request<Body>) -> Result<Response<Body>, Ap
|
||||
if attach_req.pageserver_id.is_some() {
|
||||
tenant_state.generation += 1;
|
||||
}
|
||||
tenant_state.pageserver = attach_req.pageserver_id;
|
||||
let generation = tenant_state.generation;
|
||||
|
||||
locked.save().await.map_err(ApiError::InternalServerError)?;
|
||||
|
||||
@@ -1,599 +0,0 @@
|
||||
# Seamless tenant migration
|
||||
|
||||
- Author: john@neon.tech
|
||||
- Created on 2023-08-11
|
||||
- Implemented on ..
|
||||
|
||||
## Summary
|
||||
|
||||
The preceding [generation numbers RFC](025-generation-numbers.md) may be thought of as "making tenant
|
||||
migration safe". Following that,
|
||||
this RFC is about how those migrations are to be done:
|
||||
|
||||
1. Seamlessly (without interruption to client availability)
|
||||
2. Quickly (enabling faster operations)
|
||||
3. Efficiently (minimizing I/O and $ cost)
|
||||
|
||||
These points are in priority order: if we have to sacrifice
|
||||
efficiency to make a migration seamless for clients, we will
|
||||
do so, etc.
|
||||
|
||||
This is accomplished by introducing two high level changes:
|
||||
|
||||
- A dual-attached state for tenants, used in a control-plane-orchestrated
|
||||
migration procedure that preserves availability during a migration.
|
||||
- Warm secondary locations for tenants, where on-disk content is primed
|
||||
for a fast migration of the tenant from its current attachment to this
|
||||
secondary location.
|
||||
|
||||
## Motivation
|
||||
|
||||
Migrating tenants between pageservers is essential to operating a service
|
||||
at scale, in several contexts:
|
||||
|
||||
1. Responding to a pageserver node failure by migrating tenants to other pageservers
|
||||
2. Balancing load and capacity across pageservers, for example when a user expands their
|
||||
database and they need to migrate to a pageserver with more capacity.
|
||||
3. Restarting pageservers for upgrades and maintenance
|
||||
|
||||
The current situation steps for migration are:
|
||||
|
||||
- detach from old node; skip if old node is dead; (the [skip part is still WIP](https://github.com/neondatabase/cloud/issues/5426)).
|
||||
- attach to new node
|
||||
- re-configure endpoints to use the new node
|
||||
|
||||
Once [generation numbers](025-generation-numbers.md) are implemented,
|
||||
the detach step is no longer critical for correctness. So, we can
|
||||
|
||||
- attach to a new node,
|
||||
- re-configure endpoints to use the new node, and then
|
||||
- detach from the old node.
|
||||
|
||||
However, this still does not meet our seamless/fast/efficient goals:
|
||||
|
||||
- Not fast: The new node will have to download potentially large amounts
|
||||
of data from S3, which may take many minutes.
|
||||
- Not seamless: If we attach to a new pageserver before detaching an old one,
|
||||
the new one might delete some objects that interrupt availability of reads on the old one.
|
||||
- Not efficient: the old pageserver will continue uploading
|
||||
S3 content during the migration that will never be read.
|
||||
|
||||
The user expectations for availability are:
|
||||
|
||||
- For planned maintenance, there should be zero availability
|
||||
gap. This expectation is fulfilled by this RFC.
|
||||
- For unplanned changes (e.g. node failures), there should be
|
||||
minimal availability gap. This RFC provides the _mechanism_
|
||||
to fail over quickly, but does not provide the failure _detection_
|
||||
nor failover _policy_.
|
||||
|
||||
## Non Goals
|
||||
|
||||
- Defining service tiers with different storage strategies: the same
|
||||
level of HA & overhead will apply to all tenants. This doesn't rule out
|
||||
adding such tiers in future.
|
||||
- Enabling pageserver failover in the absence of a control plane: the control
|
||||
plane will remain the source of truth for what should be attached where.
|
||||
- Totally avoiding availability gaps on unplanned migrations during
|
||||
a failure (we expect a small, bounded window of
|
||||
read unavailability of very recent LSNs)
|
||||
- Workload balancing: this RFC defines the mechanism for moving tenants
|
||||
around, not the higher level logic for deciding who goes where.
|
||||
- Defining all possible configuration flows for tenants: the migration process
|
||||
defined in this RFC demonstrates the sufficiency of the pageserver API, but
|
||||
is not the only kind of configuration change the control plane will ever do.
|
||||
The APIs defined here should let the control plane move tenants around in
|
||||
whatever way is needed while preserving data safety and read availability.
|
||||
|
||||
## Impacted components
|
||||
|
||||
Pageserver, control plane
|
||||
|
||||
## Terminology
|
||||
|
||||
- **Attachment**: a tenant is _attached_ to a pageserver if it has
|
||||
been issued a generation number, and is running an instance of
|
||||
the `Tenant` type, ingesting the WAL, and available to serve
|
||||
page reads.
|
||||
- **Location**: locations are a superset of attachments. A location
|
||||
is a combination of a tenant and a pageserver. We may _attach_ at a _location_.
|
||||
|
||||
- **Secondary location**: a location which is not currently attached.
|
||||
- **Warm secondary location**: a location which is not currently attached, but is endeavoring to maintain a warm local cache of layers. We avoid calling this a _warm standby_ to avoid confusion with similar postgres features.
|
||||
|
||||
## Implementation (high level)
|
||||
|
||||
### Warm secondary locations
|
||||
|
||||
To enable faster migrations, we will identify at least one _secondary location_
|
||||
for each tenant. This secondary location will keep a warm cache of layers
|
||||
for the tenant, so that if it is later attached, it can catch up with the
|
||||
latest LSN quickly: rather than downloading everything, it only has to replay
|
||||
the recent part of the WAL to advance from the remote_consistent_offset to the
|
||||
most recent LSN in the WAL.
|
||||
|
||||
The control plane is responsible for selecting secondary locations, and
|
||||
calling into pageservers to configure tenants into a secondary mode at this
|
||||
new location, as well as attaching the tenant in its existing primary location.
|
||||
|
||||
The attached pageserver for a tenant will publish a [layer heatmap](#layer-heatmap)
|
||||
to advise secondaries of which layers should be downloaded.
|
||||
|
||||
### Location modes
|
||||
|
||||
Currently, we consider a tenant to be in one of two states on a pageserver:
|
||||
|
||||
- Attached: active `Tenant` object, and layers on local disk
|
||||
- Detached: no layers on local disk, no runtime state.
|
||||
|
||||
We will extend this with finer-grained modes, whose purpose will become
|
||||
clear in later sections:
|
||||
|
||||
- **AttachedSingle**: equivalent the existing attached state.
|
||||
- **AttachedMulti**: like AttachedSingle, holds an up to date generation, but
|
||||
does not do deletions.
|
||||
- **AttachedStale**: like AttachedSingle, holds a stale generation,
|
||||
do not do any remote storage operations.
|
||||
- **Secondary**: keep local state on disk, periodically update from S3.
|
||||
- **Detached**: equivalent to existing detached state.
|
||||
|
||||
To control these finer grained states, a new pageserver API endpoint will be added.
|
||||
|
||||
### Cutover procedure
|
||||
|
||||
Define old location and new location as "Node A" and "Node B". Consider
|
||||
the case where both nodes are available, and Node B was previously configured
|
||||
as a secondary location for the tenant we are migrating.
|
||||
|
||||
The cutover procedure is orchestrated by the control plane, calling into
|
||||
the pageservers' APIs:
|
||||
|
||||
1. Call to Node A requesting it to flush to S3 and enter AttachedStale state
|
||||
2. Increment generation, and call to Node B requesting it to enter AttachedMulti
|
||||
state with the new generation.
|
||||
3. Call to Node B, requesting it to download the latest hot layers from remote storage,
|
||||
according to the latest heatmap flushed by Node A.
|
||||
4. Wait for Node B's WAL ingestion to catch up with node A's
|
||||
5. Update endpoints to use node B instead of node A
|
||||
6. Call to node B requesting it to enter state AttachedSingle.
|
||||
7. Call to node A requesting it to enter state Secondary
|
||||
|
||||
The following table summarizes how the state of the system advances:
|
||||
|
||||
| Step | Node A | Node B | Node used by endpoints |
|
||||
| :-----------: | :------------: | :------------: | :--------------------: |
|
||||
| 1 (_initial_) | AttachedSingle | Secondary | A |
|
||||
| 2 | AttachedStale | AttachedMulti | A |
|
||||
| 3 | AttachedStale | AttachedMulti | A |
|
||||
| 4 | AttachedStale | AttachedMulti | A |
|
||||
| 5 (_cutover_) | AttachedStale | AttachedMulti | B |
|
||||
| 6 | AttachedStale | AttachedSingle | B |
|
||||
| 7 (_final_) | Secondary | AttachedSingle | B |
|
||||
|
||||
The procedure described for a clean handover from a live node to a secondary
|
||||
is also used for failure cases and for migrations to a location that is not
|
||||
configured as a secondary, by simply skipping irrelevant steps, as described in
|
||||
the following sections.
|
||||
|
||||
#### Migration from an unresponsive node
|
||||
|
||||
If node A is unavailable, then all calls into
|
||||
node A are skipped and we don't wait for B to catch up before
|
||||
switching updating the endpoints to use B.
|
||||
|
||||
#### Migration to a location that is not a secondary
|
||||
|
||||
If node B is initially in Detached state, the procedure is identical. Since Node B
|
||||
is coming from a Detached state rather than Secondary, the download of layers and
|
||||
catch up with WAL will take much longer.
|
||||
|
||||
We might do this if:
|
||||
|
||||
- Attached and secondary locations are both critically low on disk, and we need
|
||||
to migrate to a third node with more resources available.
|
||||
- We are migrating a tenant which does not use secondary locations to save on cost.
|
||||
|
||||
#### Permanent migration away from a node
|
||||
|
||||
In the final step of the migration, we generally request the original node to enter a Secondary
|
||||
state. This is typical if we are doing a planned migration during maintenance, or to
|
||||
balance CPU/network load away from a node.
|
||||
|
||||
One might also want to permanently migrate away: this can be done by simply removing the secondary
|
||||
location after the migration is complete, or as an optimization by substituting the Detached state
|
||||
for the Secondary state in the final step.
|
||||
|
||||
#### Cutover diagram
|
||||
|
||||
```mermaid
|
||||
sequenceDiagram
|
||||
participant CP as Control plane
|
||||
participant A as Node A
|
||||
participant B as Node B
|
||||
participant E as Endpoint
|
||||
|
||||
CP->>A: PUT Flush & go to AttachedStale
|
||||
note right of A: A continues to ingest WAL
|
||||
CP->>B: PUT AttachedMulti
|
||||
CP->>B: PUT Download layers from latest heatmap
|
||||
note right of B: B downloads from S3
|
||||
loop Poll until download complete
|
||||
CP->>B: GET download status
|
||||
end
|
||||
activate B
|
||||
note right of B: B ingests WAL
|
||||
loop Poll until catch up
|
||||
CP->>B: GET visible WAL
|
||||
CP->>A: GET visible WAL
|
||||
end
|
||||
deactivate B
|
||||
CP->>E: Configure to use Node B
|
||||
E->>B: Connect for reads
|
||||
CP->>B: PUT AttachedSingle
|
||||
CP->>A: PUT Secondary
|
||||
```
|
||||
|
||||
#### Cutover from an unavailable pageserver
|
||||
|
||||
This case is far simpler: we may skip straight to our intended
|
||||
end state.
|
||||
|
||||
```mermaid
|
||||
sequenceDiagram
|
||||
participant A as Node A
|
||||
participant CP as Control plane
|
||||
participant B as Node B
|
||||
participant E as Endpoint
|
||||
|
||||
note right of A: Node A offline
|
||||
activate A
|
||||
CP->>B: PUT AttachedSingle
|
||||
CP->>E: Configure to use Node B
|
||||
E->>B: Connect for reads
|
||||
deactivate A
|
||||
```
|
||||
|
||||
## Implementation (detail)
|
||||
|
||||
### Purpose of AttachedMulti, AttachedStale
|
||||
|
||||
#### AttachedMulti
|
||||
|
||||
Ordinarily, an attached pageserver whose generation is the latest may delete
|
||||
layers at will (e.g. during compaction). If a previous generation pageserver
|
||||
is also still attached, and in use by endpoints, then this layer deletion could
|
||||
lead to a loss of availability for the endpoint when reading from the previous
|
||||
generation pageserver.
|
||||
|
||||
The _AttachedMulti_ state simply disables deletions. These will be enqueued
|
||||
in `RemoteTimelineClient` until the control plane transitions the
|
||||
node into AttachedSingle, which unblocks deletions. Other remote storage operations
|
||||
such as uploads are not blocked.
|
||||
|
||||
AttachedMulti is not required for data safety, only to preserve availability
|
||||
on pageservers running with stale generations.
|
||||
|
||||
A node enters AttachedMulti only when explicitly asked to by the control plane. It should
|
||||
only remain in this state for the duration of a migration.
|
||||
|
||||
If a control plane bug leaves
|
||||
the node in AttachedMulti for a long time, then we must avoid unbounded memory use from enqueued
|
||||
deletions. This may be accomplished simply, by dropping enqueued deletions when some modest
|
||||
threshold of delayed deletions (e.g. 10k layers per tenant) is reached. As with all deletions,
|
||||
it is safe to skip them, and the leaked objects will be eventually cleaned up by scrub or
|
||||
by timeline deletion.
|
||||
|
||||
During AttachedMulti, the Tenant is free to drop layers from local disk in response to
|
||||
disk pressure: only the deletion of remote layers is blocked.
|
||||
|
||||
#### AttachedStale
|
||||
|
||||
Currently, a pageserver with a stale generation number will continue to
|
||||
upload layers, but be prevented from completing deletions. This is safe, but inefficient: layers uploaded by this stale generation
|
||||
will not be read back by future generations of pageservers.
|
||||
|
||||
The _AttachedStale_ state disables S3 uploads. The stale pageserver
|
||||
will continue to ingest the WAL and write layers to local disk, but not to
|
||||
do any uploads to S3.
|
||||
|
||||
A node may enter AttachedStale in two ways:
|
||||
|
||||
- Explicitly, when control plane calls into the node at the start of a migration.
|
||||
- Implicitly, when the node tries to validate some deletions and discovers
|
||||
that its generation is stale.
|
||||
|
||||
The AttachedStale state also disables sending consumption metrics from
|
||||
that location: it is interpreted as an indication that some other pageserver
|
||||
is already attached or is about to be attached, and that new pageserver will
|
||||
be responsible for sending consumption metrics.
|
||||
|
||||
#### Disk Pressure & AttachedStale
|
||||
|
||||
Over long periods of time, a tenant location in AttachedStale will accumulate data
|
||||
on local disk, as it cannot evict any layers written since it entered the
|
||||
AttachStale state. We rely on the control plane to revert the location to
|
||||
Secondary or Detached at the end of a migration.
|
||||
|
||||
This scenario is particularly noteworthy when evacuating all tenants on a pageserver:
|
||||
since _all_ the attached tenants will go into AttachedStale, we will be doing no
|
||||
uploads at all, therefore ingested data will cause disk usage to increase continuously.
|
||||
Under nominal conditions, the available disk space on pageservers should be sufficient
|
||||
to complete the evacuation before this becomes a problem, but we must also handle
|
||||
the case where we hit a low disk situation while in this state.
|
||||
|
||||
The concept of disk pressure already exists in the pageserver: the `disk_usage_eviction_task`
|
||||
touches each Tenant when it determines that a low-disk condition requires
|
||||
some layer eviction. Having selected layers for eviction, the eviction
|
||||
task calls `Timeline::evict_layers`.
|
||||
|
||||
**Safety**: If evict_layers is called while in AttachedStale state, and some of the to-be-evicted
|
||||
layers are not yet uploaded to S3, then the block on uploads will be lifted. This
|
||||
will result in leaking some objects once a migration is complete, but will enable
|
||||
the node to manage its disk space properly: if a node is left with some tenants
|
||||
in AttachedStale indefinitely due to a network partition or control plane bug,
|
||||
these tenants will not cause a full disk condition.
|
||||
|
||||
### Warm secondary updates
|
||||
|
||||
#### Layer heatmap
|
||||
|
||||
The secondary location's job is to serve reads **with the same quality of service as the original location
|
||||
was serving them around the time of a migration**. This does not mean the secondary
|
||||
location needs the whole set of layers: inactive layers that might soon
|
||||
be evicted on the attached pageserver need not be downloaded by the
|
||||
secondary. A totally idle tenant only needs to maintain enough on-disk
|
||||
state to enable a fast cold start (i.e. the most recent image layers are
|
||||
typically sufficient).
|
||||
|
||||
To enable this, we introduce the concept of a _layer heatmap_, which
|
||||
acts as an advisory input to secondary locations to decide which
|
||||
layers to download from S3.
|
||||
|
||||
#### Attached pageserver
|
||||
|
||||
The attached pageserver, if in state AttachedSingle, periodically
|
||||
uploads a serialized heat map to S3. It may skip this if there
|
||||
is no change since the last time it uploaded (e.g. if the tenant
|
||||
is totally idle).
|
||||
|
||||
Additionally, when the tenant is flushed to remote storage prior to a migration
|
||||
(the first step in [cutover procedure](#cutover-procedure)),
|
||||
the heatmap is written out. This enables a future attached pageserver
|
||||
to get an up to date view when deciding which layers to download.
|
||||
|
||||
#### Secondary location behavior
|
||||
|
||||
Secondary warm locations run a simple loop, implemented separately from
|
||||
the main `Tenant` type, which represents attached tenants:
|
||||
|
||||
- Download the layer heatmap
|
||||
- Select any "hot enough" layers to download, if there is sufficient
|
||||
free disk space.
|
||||
- Download layers, if they were not previously evicted (see below)
|
||||
- Download the latest index_part.json
|
||||
- Check if any layers currently on disk are no longer referenced by
|
||||
IndexPart & delete them
|
||||
|
||||
Note that the heatmap is only advisory: if a secondary location has plenty
|
||||
of disk space, it may choose to retain layers that aren't referenced
|
||||
by the heatmap, as long as they are still referenced by the IndexPart. Conversely,
|
||||
if a node is very low on disk space, it might opt to raise the heat threshold required
|
||||
to both downloading a layer, until more disk space is available.
|
||||
|
||||
#### Secondary locations & disk pressure
|
||||
|
||||
Secondary locations are subject to eviction on disk pressure, just as
|
||||
attached locations are. For eviction purposes, the access time of a
|
||||
layer in a secondary location will be the access time given in the heatmap,
|
||||
rather than the literal time at which the local layer file was accessed.
|
||||
|
||||
The heatmap will indicate which layers are in local storage on the attached
|
||||
location. The secondary will always attempt to get back to having that
|
||||
set of layers on disk, but to avoid flapping, it will remember the access
|
||||
time of the layer it was most recently asked to evict, and layers whose
|
||||
access time is below that will not be re-downloaded.
|
||||
|
||||
The resulting behavior is that after a layer is evicted from a secondary
|
||||
location, it is only re-downloaded once the attached pageserver accesses
|
||||
the layer and uploads a heatmap reflecting that access time. On a pageserver
|
||||
restart, the secondary location will attempt to download all layers in
|
||||
the heatmap again, if they are not on local disk.
|
||||
|
||||
This behavior will be slightly different when secondary locations are
|
||||
used for "low energy tenants", but that is beyond the scope of this RFC.
|
||||
|
||||
### Location configuration API
|
||||
|
||||
Currently, the `/tenant/<tenant_id>/config` API defines various
|
||||
tunables like compaction settings, which apply to the tenant irrespective
|
||||
of which pageserver it is running on.
|
||||
|
||||
A new "location config" structure will be introduced, which defines
|
||||
configuration which is per-tenant, but local to a particular pageserver,
|
||||
such as the attachment mode and whether it is a secondary.
|
||||
|
||||
The pageserver will expose a new per-tenant API for setting
|
||||
the state: `/tenant/<tenant_id>/location/config`.
|
||||
|
||||
Body content:
|
||||
|
||||
```
|
||||
{
|
||||
state: 'enum{Detached, Secondary, AttachedSingle, AttachedMulti, AttachedStale}',
|
||||
generation: Option<u32>,
|
||||
configuration: `Option<TenantConfig>`
|
||||
flush: bool
|
||||
}
|
||||
```
|
||||
|
||||
Existing `/attach` and `/detach` endpoint will have the same
|
||||
behavior as calling `/location/config` with `AttachedSingle` and `Detached`
|
||||
states respectively. These endpoints will be deprecated and later
|
||||
removed.
|
||||
|
||||
The generation attribute is mandatory for entering `AttachedSingle` or
|
||||
`AttachedMulti`.
|
||||
|
||||
The configuration attribute is mandatory when entering any state other
|
||||
than `Detached`. This configuration is the same as the body for
|
||||
the existing `/tenant/<tenant_id>/config` endpoint.
|
||||
|
||||
The `flush` argument indicates whether the pageservers should flush
|
||||
to S3 before proceeding: this only has any effect if the node is
|
||||
currently in AttachedSingle or AttachedMulti. This is used
|
||||
during the first phase of migration, when transitioning the
|
||||
old pageserver to AttachedSingle.
|
||||
|
||||
The `/re-attach` API response will be extended to include a `state` as
|
||||
well as a `generation`, enabling the pageserver to enter the
|
||||
correct state for each tenant on startup.
|
||||
|
||||
### Database schema for locations
|
||||
|
||||
A new table `ProjectLocation`:
|
||||
|
||||
- pageserver_id: int
|
||||
- tenant_id: TenantId
|
||||
- generation: Option<int>
|
||||
- state: `enum(Secondary, AttachedSingle, AttachedMulti)`
|
||||
|
||||
Notes:
|
||||
|
||||
- It is legacy for a Project to have zero `ProjectLocation`s
|
||||
- The `pageserver` column in `Project` now means "to which pageserver should
|
||||
endpoints connect", rather than simply which pageserver is attached.
|
||||
- The `generation` column in `Project` remains, and is incremented and used
|
||||
to set the generation of `ProjectLocation` rows when they are set into
|
||||
an attached state.
|
||||
- The `Detached` state is implicitly represented as the absence of
|
||||
a `ProjectLocation`.
|
||||
|
||||
### Executing migrations
|
||||
|
||||
Migrations will be implemented as Go functions, within the
|
||||
existing `Operation` framework in the control plane. These
|
||||
operations are persistent, such that they will always keep
|
||||
trying until completion: this property is important to avoid
|
||||
leaving garbage behind on pageservers, such as AttachedStale
|
||||
locations.
|
||||
|
||||
### Recovery from failures during migration
|
||||
|
||||
During migration, the control plane may encounter failures of either
|
||||
the original or new pageserver, or both:
|
||||
|
||||
- If the original fails, skip past waiting for the new pageserver
|
||||
to catch up, and put it into AttachedSingle immediately.
|
||||
- If the new node fails, put the old pageserver into Secondary
|
||||
and then back into AttachedSingle (this has the effect of
|
||||
retaining on-disk state and granting it a fresh generation number).
|
||||
- If both nodes fail, keep trying until one of them is available
|
||||
again.
|
||||
|
||||
### Control plane -> Pageserver reconciliation
|
||||
|
||||
A migration may be done while the old node is unavailable,
|
||||
in which case the old node may still be running in an AttachedStale
|
||||
state.
|
||||
|
||||
In this case, it is undesirable to have the migration `Operation`
|
||||
stay alive until the old node eventually comes back online
|
||||
and can be cleaned up. To handle this, the control plane
|
||||
should run a background reconciliation process to compare
|
||||
a pageserver's attachments with the database, and clean up
|
||||
any that shouldn't be there any more.
|
||||
|
||||
Note that there will be no work to do if the old node was really
|
||||
offline, as during startup it will call into `/re-attach` and
|
||||
be updated that way. The reconciliation will only be needed
|
||||
if the node was unavailable but still running.
|
||||
|
||||
## Alternatives considered
|
||||
|
||||
### Only enabling secondary locations for tenants on a higher service tier
|
||||
|
||||
This will make sense in future, especially for tiny databases that may be
|
||||
downloaded from S3 in milliseconds when needed.
|
||||
|
||||
However, it is not wise to do it immediately, because pageservers contain
|
||||
a mixture of higher and lower tier workloads. If we had 1 tenant with
|
||||
a secondary location and 9 without, then those other 9 tenants will do
|
||||
a lot of I/O as they try to recover from S3, which may degrade the
|
||||
service of the tenant which had a secondary location.
|
||||
|
||||
Until we segregate tenant on different service tiers on different pageserver
|
||||
nodes, or implement & test QoS to ensure that tenants with secondaries are
|
||||
not harmed by tenants without, we should use the same failover approach
|
||||
for all the tenants.
|
||||
|
||||
### Hot secondary locations (continuous WAL replay)
|
||||
|
||||
Instead of secondary locations populating their caches from S3, we could
|
||||
have them consume the WAL from safekeepers. The downsides of this would be:
|
||||
|
||||
- Double load on safekeepers, which are a less scalable service than S3
|
||||
- Secondary locations' on-disk state would end up subtly different to
|
||||
the remote state, which would make synchronizing with S3 more complex/expensive
|
||||
when going into attached state.
|
||||
|
||||
The downside of only updating secondary locations from S3 is that we will
|
||||
have a delay during migration from replaying the LSN range between what's
|
||||
in S3 and what's in the pageserver. This range will be very small on
|
||||
planned migrations, as we have the old pageserver flush to S3 immediately
|
||||
before attaching the new pageserver. On unplanned migrations (old pageserver
|
||||
is unavailable), the range of LSNs to replay is bounded by the flush frequency
|
||||
on the old pageserver. However, the migration doesn't have to wait for the
|
||||
replay: it's just that not-yet-replayed LSNs will be unavailable for read
|
||||
until the new pageserver catches up.
|
||||
|
||||
We expect that pageserver reads of the most recent LSNs will be relatively
|
||||
rare, as for an active endpoint those pages will usually still be in the postgres
|
||||
page cache: this leads us to prefer synchronizing from S3 on secondary
|
||||
locations, rather than consuming the WAL from safekeepers.
|
||||
|
||||
### Cold secondary locations
|
||||
|
||||
It is not functionally necessary to keep warm caches on secondary locations at all. However, if we do not, then
|
||||
we would experience a de-facto availability loss in unplanned migrations, as reads to the new node would take an extremely long time (many seconds, perhaps minutes).
|
||||
|
||||
Warm caches on secondary locations are necessary to meet
|
||||
our availability goals.
|
||||
|
||||
### Pageserver-granularity failover
|
||||
|
||||
Instead of migrating tenants individually, we could have entire spare nodes,
|
||||
and on a node death, move all its work to one of these spares.
|
||||
|
||||
This approach is avoided for several reasons:
|
||||
|
||||
- we would still need fine-grained tenant migration for other
|
||||
purposes such as balancing load
|
||||
- by sharing the spare capacity over many peers rather than one spare node,
|
||||
these peers may use the capacity for other purposes, until it is needed
|
||||
to handle migrated tenants. e.g. for keeping a deeper cache of their
|
||||
attached tenants.
|
||||
|
||||
### Readonly during migration
|
||||
|
||||
We could simplify migrations by making both previous and new nodes go into a
|
||||
readonly state, then flush remote content from the previous node, then activate
|
||||
attachment on the secondary node.
|
||||
|
||||
The downside to this approach is a potentially large gap in readability of
|
||||
recent LSNs while loading data onto the new node. To avoid this, it is worthwhile
|
||||
to incur the extra cost of double-replaying the WAL onto old and new nodes' local
|
||||
storage during a migration.
|
||||
|
||||
### Peer-to-peer pageserver communication
|
||||
|
||||
Rather than uploading the heatmap to S3, attached pageservers could make it
|
||||
available to peers.
|
||||
|
||||
Currently, pageservers have no peer to peer communication, so adding this
|
||||
for heatmaps would incur significant overhead in deployment and configuration
|
||||
of the service, and ensuring that when a new pageserver is deployed, other
|
||||
pageservers are updated to be aware of it.
|
||||
|
||||
As well as simplifying implementation, putting heatmaps in S3 will be useful
|
||||
for future analytics purposes -- gathering aggregated statistics on activity
|
||||
pattersn across many tenants may be done directly from data in S3.
|
||||
@@ -1,244 +0,0 @@
|
||||
# Sharding Phase 1: Static Key-space Sharding
|
||||
|
||||
## Summary
|
||||
|
||||
To enable databases with sizes approaching the capacity of a pageserver's disk,
|
||||
it is necessary to break up the storage for the database, or _shard_ it.
|
||||
|
||||
Sharding in general is a complex area. This RFC aims to define a modest initial
|
||||
capability that will permit creating large-capacity databases using a static configuration
|
||||
defined at time of Tenant creation.
|
||||
|
||||
## Motivation
|
||||
|
||||
Currently, all data for a Tenant, including all its timelines, is stored on a single
|
||||
pageserver. The local storage required may be several times larger than the actual
|
||||
database size, due to LSM write inflation.
|
||||
|
||||
If a database is larger than what one pageserver can hold, then it becomes impossible
|
||||
for the pageserver to hold it in local storage, as it must do to provide service to
|
||||
clients.
|
||||
|
||||
### Prior art
|
||||
|
||||
Numerous: sharding is a long-discussed feature for the pageserver.
|
||||
|
||||
Prior art in other distributed systems is too broad to capture here: pretty much
|
||||
any scale out storage system does something like this.
|
||||
|
||||
## Requirements
|
||||
|
||||
- Enable creating a large (for example, 16TiB) database without requiring dedicated
|
||||
pageserver nodes.
|
||||
- Share read/write bandwidth costs for large databases across pageservers, as well
|
||||
as storage capacity, in order to avoid large capacity databases acting as I/O hotspots
|
||||
that disrupt service to other tenants.
|
||||
- Our data distribution scheme should handle sparse/nonuniform keys well, since postgres
|
||||
does not write out a single contiguous ranges of page numbers.
|
||||
|
||||
*Note: the definition of 'large database' is arbitrary, but the lower bound is to ensure that a database
|
||||
that a user might create on a current-gen enterprise SSD should also work well on
|
||||
Neon. The upper bound is whatever postgres can handle: i.e. we must make sure that the
|
||||
pageserver backend is not the limiting factor in the database size*.
|
||||
|
||||
## Non Goals
|
||||
|
||||
- Independently distributing timelines within the same tenant. If a tenant has many
|
||||
timelines, then sharding may be a less efficient mechanism for distributing load than
|
||||
sharing out timelines between pageservers.
|
||||
- Distributing work in the LSN dimension: this RFC focuses on the Key dimension only,
|
||||
based on the idea that separate mechanisms will make sense for each dimension.
|
||||
|
||||
## Impacted Components
|
||||
|
||||
pageserver, control plane, safekeeper (optional)
|
||||
|
||||
## Terminology
|
||||
|
||||
**Key**: a postgres page number. In the sense that the pageserver is a versioned key-value store,
|
||||
the page number is the key in that store.
|
||||
|
||||
**LSN dimension**: this just means the range of LSNs (history), when talking about the range
|
||||
of keys and LSNs as a two dimensional space.
|
||||
|
||||
## Implementation
|
||||
|
||||
### Key sharding vs. LSN sharding
|
||||
|
||||
When we think of sharding across the two dimensional key/lsn space, this is an
|
||||
opportunity to think about how the two dimensions differ:
|
||||
- Sharding the key space distributes the _write_ workload of ingesting data
|
||||
and compacting. This work must be carefully managed so that exactly one
|
||||
node owns a given key.
|
||||
- Sharding the LSN space distributes the _historical read_ workload. This work
|
||||
can be done by anyone without any special coordination, as long as they can
|
||||
see the remote index and layers.
|
||||
|
||||
The key sharding is the harder part, and also the more urgent one, to support larger
|
||||
capacity databases. Because distributing historical LSN read work is a relatively
|
||||
simpler problem that most users don't have, we defer it to future work. It is anticipated
|
||||
that some quite simple P2P offload model will enable distributing work for historical
|
||||
reads: a node which is low on space can call out to peer to ask it to download and
|
||||
serve reads from a historical layer.
|
||||
|
||||
### Key mapping scheme
|
||||
|
||||
Having decided to focus on key sharding, we must next decide how we will map
|
||||
keys to shards.
|
||||
|
||||
It is proposed to use a "wide striping" approach, to obtain a good compromise
|
||||
between data locality and avoiding entire large relations mapping to the same shard.
|
||||
|
||||
The mapping is quite simple:
|
||||
- Define a stripe size, such as 256MiB. Map this to a key count, such that a contiguous
|
||||
range of 256MiB keys would all fall into this stripe, i.e. divide by 8kiB to get 32k.
|
||||
- Map a key to a stripe by integer division.
|
||||
- Map a stripe to a shard by taking the shard index modulo the shard count.
|
||||
|
||||
This scheme will achieve a good balance as long as there is no aliasing of the keys
|
||||
to the stripe width. In the example above, if someone had 4 shards and wrote
|
||||
keys that were all 4*32k apart, they would all map to the same shard. However, we do
|
||||
not have to worry about this, since end users do not control page numbers: as long as
|
||||
we do not pick stripe sizes that map to any problematic postgres behaviors, we'll be fine.
|
||||
|
||||
### Important Types
|
||||
|
||||
#### `ShardMap`
|
||||
|
||||
Provides all the information needed to route a request for a particular
|
||||
key to the correct pageserver:
|
||||
- Stripe size
|
||||
- Shard count
|
||||
- Address of the pageserver hosting each shard
|
||||
|
||||
This structure's size is linear with the number of shards.
|
||||
|
||||
#### `ShardIdentity`
|
||||
|
||||
Provides the information needed to know whether a particular key belongs
|
||||
to a particular shard:
|
||||
- Stripe size
|
||||
- Shard count
|
||||
- Shard index
|
||||
|
||||
This structure's size is constant.
|
||||
|
||||
### Pageserver changes
|
||||
|
||||
Everywhere the Pageserver currently deals with Tenants, it will move to dealing with
|
||||
TenantShards, which are just a `Tenant` plus a `ShardIdentity` telling it which part
|
||||
of the keyspace it owns.
|
||||
|
||||
When the pageserver subscribes to a safekeeper for WAL updates, it must provide
|
||||
its `ShardIdentity` to receive the relevant subset of the WAL.
|
||||
|
||||
When the pageserver writes layers and index_part.json to remote storage, it must
|
||||
include the shard index & count in the name, to avoid collisions (the count is
|
||||
necessary for future-proofing: the count will vary in time). These keys
|
||||
will also include a generation number: the [generation numbers](025-generation-numbers.md) system will work
|
||||
exactly the same for TenantShards as it does for Tenants today: each shard will have
|
||||
its own generation number.
|
||||
|
||||
The pageserver doesn't have to do anything special during ingestion, compaction
|
||||
or GC. It is implicitly operating on the subset of keys that map to its ShardIdentity.
|
||||
This will result in sparse layer files, containing keys only in the stripes that this
|
||||
shard owns. Where optimizations currently exist in compaction for spotting "gaps" in
|
||||
the key range, these should be updated to ignore gaps that are due to sharding, to
|
||||
avoid spuriously splitting up layers ito stripe-sized pieces.
|
||||
|
||||
### Pageserver Controller changes
|
||||
|
||||
The pageserver controller is a new component, which is responsible for abstracting
|
||||
away the business of managing individual tenant placement on pagservers. It will
|
||||
also act as the abstraction on top of sharding, so that the control plane continue
|
||||
to see a Tenant as a single object, even though the reality is that it is many
|
||||
TenantShards.
|
||||
|
||||
For the rest of this RFC, think of the Pageserver Controller as a component of
|
||||
the control plane. The actual implementation is beyond the scope of this RFC
|
||||
and will be described in more detail elsewhere.
|
||||
|
||||
### Safekeeper changes
|
||||
|
||||
The safekeeper's API for subscribing to a WAL will be extended to enable callers
|
||||
to provide a `ShardIdentity`. In this mode it will only send WAL entries that
|
||||
fall within the keyspace belonging to the shard, and WAL entries that are to
|
||||
be mirrored to all shards.
|
||||
|
||||
Metadata updates describing databases+relations are mirrored to
|
||||
all shards, and other WAL messages are only provided to the shard
|
||||
that owns the key being updated. For any operation that updates multiple
|
||||
keys, it will be provided to all the shards whose key ranges intersect with
|
||||
one or more of the keys referenced in the WAL message.
|
||||
|
||||
### Pageserver Controller
|
||||
|
||||
### Endpoints
|
||||
|
||||
Compute endpoints will need to:
|
||||
- Accept a ShardMap as part of their configuration from the control plane
|
||||
- Route pageserver requests according to that ShardMap
|
||||
|
||||
### Control Plane
|
||||
|
||||
#### Publishing ShardMap updates
|
||||
|
||||
The control plane will provide an API for the pageserver controller to publish updates
|
||||
to the ShardMap for a tenant. When such an update is provided, it will be used to
|
||||
update the configuration of any endpoints currently active for the tenant.
|
||||
|
||||
The ShardMap will be opaque to the Control Plane: it doesn't need to do anything with it
|
||||
other than storing and passing on to endpoints.
|
||||
|
||||
#### Attaching via the Pageserver Controller
|
||||
|
||||
The Control Plane will issue attach/create API calls to the pageserver controller
|
||||
instead of directly to pageservers. This will relieve the control plane of the need
|
||||
to know about sharding.
|
||||
|
||||
#### Enabling sharding for large tenants
|
||||
|
||||
When a Tenant is created, it is up to the control plane to provide a hint to
|
||||
the pageserver about how large it will be. This may be implemented as a service tier,
|
||||
where users creating very large databases would be onboarded to the tier, and then
|
||||
the Tenants they create would be created with a larger number of shards. For the
|
||||
general population of users we should continue to use 1 shard by default.
|
||||
|
||||
## Next Steps
|
||||
|
||||
Clearly, the mechanism described in this RFC has substantial limitations:
|
||||
- A) the number of shards in a tenant is defined at creation time.
|
||||
- B) data is not distributed across the LSN dimension
|
||||
|
||||
To address `A`, a _splitting_ feature will later be added. One shard can split its
|
||||
data into a number of children by doing a special compaction operation to generate
|
||||
image layers broken up child-shard-wise, and then writing out an index_part.json for
|
||||
each child. This will then require coordination with the pageserver controller to
|
||||
safely attach these new child shards and then move them around to distribute work.
|
||||
The opposite _merging_ operation can also be imagined, but is unlikely to be implemented:
|
||||
once a Tenant has been sharded, there is little value in merging it again.
|
||||
|
||||
To address `B`, it is envisaged to have some gossip mechanism for pageservers to communicate
|
||||
about their workload, and then a getpageatlsn offload mechanism where one pageserver can
|
||||
ask another to go read the necessary layers from remote storage to serve the read. This
|
||||
requires relativly little coordination because it is read-only: any node can service any
|
||||
read. All reads to a particular shard would still flow through one node, but the
|
||||
disk capactity & I/O impact of servicing the read would be distributed.
|
||||
|
||||
## FAQ/Alternatives
|
||||
|
||||
### Why stripe the data, rather than using contiguous ranges of keyspace for each shard?
|
||||
|
||||
When a database is growing under a write workload, writes may predominantly hit the
|
||||
end of the keyspace, creating a bandwidth hotspot on that shard. Similarly, if the user
|
||||
is intensively re-writing a particular relation, if that relation lived in a particular
|
||||
shard then it would not achieve our goal of distributing the write work across shards.
|
||||
|
||||
### Why not proxy read requests through one pageserver, so that endpoints don't have to change?
|
||||
|
||||
Two reasons:
|
||||
1. This would not achieve scale-out of network bandwidth: a busy tenant with a large
|
||||
database would still cause a load hotspot on the pageserver routing its read requests.
|
||||
2. Implementing a proxy model as a stop-gap would not be a cheap option, because
|
||||
it requires making pageservers aware of their peers, and adding synchronisation to
|
||||
keep pageservers aware of their peers as they come and go.
|
||||
@@ -1,119 +0,0 @@
|
||||
# Pageserver Controller Phase 1: Generations
|
||||
|
||||
## Summary
|
||||
|
||||
In the [generation numbers RFC](025-generation-numbers.md), it was proposed that
|
||||
the console/control plane would act as the central coordinator for issuing generation
|
||||
numbers.
|
||||
|
||||
That approach has not proven practical, so this RFC proposes an alternative implementation
|
||||
where generation numbers are managed in a different service.
|
||||
|
||||
Calls to generation-aware pageserver APIs like create/attach will call out to this
|
||||
new _pageserver controller_ to acquire generation numbers. This service will also
|
||||
form the basis for satisfying future pageserver management requirements, such as
|
||||
coordinating sharding, doing automatic capacity balancing, and many more.
|
||||
|
||||
## Motivation
|
||||
|
||||
This is a dependency for delivering high availability.
|
||||
|
||||
### Prior art
|
||||
|
||||
None
|
||||
|
||||
## Requirements
|
||||
|
||||
- Provide a hook for the pageserver to use when it receives an attach/create/load API
|
||||
call, which will yield a generation that is safe for the pageserver to use.
|
||||
- Implement the /re-attach and /validate APIs required for the generation numbers feature
|
||||
to work.
|
||||
|
||||
## Non Goals
|
||||
|
||||
- This is not intended to interact with any components other than the pageserver, or
|
||||
to integrate with the broader control plane in any way.
|
||||
|
||||
## Impacted Components
|
||||
|
||||
pageserver, pageserver controller (new)
|
||||
|
||||
## Implementation
|
||||
|
||||
We may start from the minimal `attachment_service` used in automated tests.
|
||||
|
||||
### Data store
|
||||
|
||||
For generation numbers, we need a persistent, linearizable data store. Postgres is sufficient for
|
||||
this: we already have postgres instances used for other control plane work.
|
||||
|
||||
The storage for the Pageserver Controller will be independent of other components:
|
||||
it might use the same physical database server but would use an independent database.
|
||||
|
||||
### Deployment
|
||||
|
||||
There will be one instance per region. In future we would aim to define the concept
|
||||
of a pageserver cluster and have one controller per cluster, but in the short term
|
||||
one per region will be functionally okay for current scale.
|
||||
|
||||
The pageserver controller will be deployed within kubernetes, in the same way as
|
||||
the storage broker (which is currently via a [helm chart](https://github.com/neondatabase/helm-charts/tree/main/charts/neon-storage-broker)).
|
||||
|
||||
### Security
|
||||
|
||||
The pageserver controller's API will do authentication with JWT, the same as
|
||||
the pageserver's existing API.
|
||||
|
||||
### Correctness
|
||||
|
||||
It is essential that pageservers call into the controller at the _very start_ of
|
||||
handling attach/create/load API requests. They should not do any work at all until
|
||||
they have acquired that generation number.
|
||||
|
||||
If the call fails, they must retry: it is not safe to proceed without a generation number.
|
||||
|
||||
## Future
|
||||
|
||||
Having a call chain that goes `Control plane -> Pageserver -> Pageserver controller`
|
||||
is clearly a little strange: we are only doing this to avoid needing to make changes
|
||||
to the control plane.
|
||||
|
||||
In future, we will change the control plane to call directly into the pageserver
|
||||
controller, which would then call onwards into the pageserver. This would be a fairly
|
||||
small change to the controller, since all the logic around storing and updating
|
||||
generation numbers would stay the same: just the behavior of the API frontend
|
||||
would be different.
|
||||
|
||||
The work to enable pageservers to communicate with the controller is not wasted,
|
||||
because they still communicate in that direction when invoking `/re-attach`
|
||||
and `/validate`
|
||||
|
||||
## Alternatives considered
|
||||
|
||||
### Run in the console/control plane codebase
|
||||
|
||||
The control plane is a large Go codebase that uses extensive code generation, and
|
||||
has to be quite generic to manage many different types of component.
|
||||
|
||||
### Direct DB access
|
||||
|
||||
We could have pageservers call directly into a shared database to acquire and update
|
||||
generation numbers (with carefully crafted transactions to protect against concurrent
|
||||
attaches getting the same generation, etc).
|
||||
|
||||
Pros:
|
||||
- No extra service required, simpler deployment
|
||||
|
||||
Cons:
|
||||
- No future path to a cleaner architecture: the pageserver controller can be implemented
|
||||
as an extensible place for implement more functionality in future, whereas a mechanism
|
||||
to do generation numbers via SQL queries from the pageserver would be specialized
|
||||
and the code would probably be disposed of in the relatively near future.
|
||||
- Puts onus entirely on SQL query correctness to mediate concurrent access.
|
||||
The pageserver controller also has to be correct in this respect in case there
|
||||
is more than one instance running, but it is much less likely to hit this path,
|
||||
so the overall risk of issues is lower when using a central service.
|
||||
|
||||
|
||||
The main downside to that approach is that it doesn't provide the future path that
|
||||
the pageserver controller does
|
||||
@@ -363,8 +363,15 @@ pub struct TimelineInfo {
|
||||
pub latest_gc_cutoff_lsn: Lsn,
|
||||
#[serde_as(as = "DisplayFromStr")]
|
||||
pub disk_consistent_lsn: Lsn,
|
||||
|
||||
/// The LSN that we have succesfully uploaded to remote storage
|
||||
#[serde_as(as = "DisplayFromStr")]
|
||||
pub remote_consistent_lsn: Lsn,
|
||||
|
||||
/// The LSN that we are advertizing to safekeepers
|
||||
#[serde_as(as = "DisplayFromStr")]
|
||||
pub remote_consistent_lsn_visible: Lsn,
|
||||
|
||||
pub current_logical_size: Option<u64>, // is None when timeline is Unloaded
|
||||
/// Sum of the size of all layer files.
|
||||
/// If a layer is present in both local FS and S3, it counts only once.
|
||||
|
||||
@@ -29,3 +29,4 @@ workspace_hack.workspace = true
|
||||
[dev-dependencies]
|
||||
tempfile.workspace = true
|
||||
test-context.workspace = true
|
||||
rand.workspace = true
|
||||
|
||||
@@ -20,6 +20,7 @@ use std::{
|
||||
|
||||
use anyhow::{bail, Context};
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
use tokio::io;
|
||||
use toml_edit::Item;
|
||||
use tracing::info;
|
||||
@@ -42,6 +43,9 @@ pub const DEFAULT_REMOTE_STORAGE_S3_CONCURRENCY_LIMIT: usize = 100;
|
||||
/// <https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjectsV2.html#API_ListObjectsV2_RequestSyntax>
|
||||
pub const DEFAULT_MAX_KEYS_PER_LIST_RESPONSE: Option<i32> = None;
|
||||
|
||||
/// As defined in S3 docs
|
||||
pub const MAX_KEYS_PER_DELETE: usize = 1000;
|
||||
|
||||
const REMOTE_STORAGE_PREFIX_SEPARATOR: char = '/';
|
||||
|
||||
/// Path on the remote storage, relative to some inner prefix.
|
||||
@@ -50,6 +54,25 @@ const REMOTE_STORAGE_PREFIX_SEPARATOR: char = '/';
|
||||
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
|
||||
pub struct RemotePath(PathBuf);
|
||||
|
||||
impl Serialize for RemotePath {
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where
|
||||
S: serde::Serializer,
|
||||
{
|
||||
serializer.collect_str(self)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'de> Deserialize<'de> for RemotePath {
|
||||
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
||||
where
|
||||
D: serde::Deserializer<'de>,
|
||||
{
|
||||
let str = String::deserialize(deserializer)?;
|
||||
Ok(Self(PathBuf::from(&str)))
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Display for RemotePath {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "{}", self.0.display())
|
||||
@@ -88,6 +111,10 @@ impl RemotePath {
|
||||
pub fn extension(&self) -> Option<&str> {
|
||||
self.0.extension()?.to_str()
|
||||
}
|
||||
|
||||
pub fn strip_prefix(&self, p: &RemotePath) -> Result<&Path, std::path::StripPrefixError> {
|
||||
self.0.strip_prefix(&p.0)
|
||||
}
|
||||
}
|
||||
|
||||
/// Storage (potentially remote) API to manage its state.
|
||||
|
||||
@@ -33,11 +33,10 @@ use tracing::debug;
|
||||
|
||||
use super::StorageMetadata;
|
||||
use crate::{
|
||||
Download, DownloadError, RemotePath, RemoteStorage, S3Config, REMOTE_STORAGE_PREFIX_SEPARATOR,
|
||||
Download, DownloadError, RemotePath, RemoteStorage, S3Config, MAX_KEYS_PER_DELETE,
|
||||
REMOTE_STORAGE_PREFIX_SEPARATOR,
|
||||
};
|
||||
|
||||
const MAX_DELETE_OBJECTS_REQUEST_SIZE: usize = 1000;
|
||||
|
||||
pub(super) mod metrics;
|
||||
|
||||
use self::metrics::{AttemptOutcome, RequestKind};
|
||||
@@ -500,7 +499,7 @@ impl RemoteStorage for S3Bucket {
|
||||
delete_objects.push(obj_id);
|
||||
}
|
||||
|
||||
for chunk in delete_objects.chunks(MAX_DELETE_OBJECTS_REQUEST_SIZE) {
|
||||
for chunk in delete_objects.chunks(MAX_KEYS_PER_DELETE) {
|
||||
let started_at = start_measuring_requests(kind);
|
||||
|
||||
let resp = self
|
||||
|
||||
@@ -378,21 +378,30 @@ impl AsyncTestContext for MaybeEnabledS3WithSimpleTestBlobs {
|
||||
fn create_s3_client(
|
||||
max_keys_per_list_response: Option<i32>,
|
||||
) -> anyhow::Result<Arc<GenericRemoteStorage>> {
|
||||
use rand::Rng;
|
||||
|
||||
let remote_storage_s3_bucket = env::var("REMOTE_STORAGE_S3_BUCKET")
|
||||
.context("`REMOTE_STORAGE_S3_BUCKET` env var is not set, but real S3 tests are enabled")?;
|
||||
let remote_storage_s3_region = env::var("REMOTE_STORAGE_S3_REGION")
|
||||
.context("`REMOTE_STORAGE_S3_REGION` env var is not set, but real S3 tests are enabled")?;
|
||||
let random_prefix_part = std::time::SystemTime::now()
|
||||
|
||||
// due to how time works, we've had test runners use the same nanos as bucket prefixes.
|
||||
// millis is just a debugging aid for easier finding the prefix later.
|
||||
let millis = std::time::SystemTime::now()
|
||||
.duration_since(UNIX_EPOCH)
|
||||
.context("random s3 test prefix part calculation")?
|
||||
.as_nanos();
|
||||
.as_millis();
|
||||
|
||||
// because nanos can be the same for two threads so can millis, add randomness
|
||||
let random = rand::thread_rng().gen::<u32>();
|
||||
|
||||
let remote_storage_config = RemoteStorageConfig {
|
||||
max_concurrent_syncs: NonZeroUsize::new(100).unwrap(),
|
||||
max_sync_errors: NonZeroU32::new(5).unwrap(),
|
||||
storage: RemoteStorageKind::AwsS3(S3Config {
|
||||
bucket_name: remote_storage_s3_bucket,
|
||||
bucket_region: remote_storage_s3_region,
|
||||
prefix_in_bucket: Some(format!("pagination_should_work_test_{random_prefix_part}/")),
|
||||
prefix_in_bucket: Some(format!("test_{millis}_{random:08x}/")),
|
||||
endpoint: None,
|
||||
concurrency_limit: NonZeroUsize::new(100).unwrap(),
|
||||
max_keys_per_list_response,
|
||||
|
||||
@@ -89,6 +89,22 @@ impl Generation {
|
||||
Self::Broken => panic!("Attempted to use a broken generation"),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn next(&self) -> Generation {
|
||||
match self {
|
||||
Self::Valid(n) => Self::Valid(*n + 1),
|
||||
Self::None => Self::Valid(1),
|
||||
Self::Broken => panic!("Attempted to use a broken generation"),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn into(self) -> Option<u32> {
|
||||
if let Self::Valid(v) = self {
|
||||
Some(v)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Serialize for Generation {
|
||||
|
||||
@@ -24,6 +24,9 @@ pub enum ApiError {
|
||||
#[error("Precondition failed: {0}")]
|
||||
PreconditionFailed(Box<str>),
|
||||
|
||||
#[error("Shutting down")]
|
||||
ShuttingDown,
|
||||
|
||||
#[error(transparent)]
|
||||
InternalServerError(anyhow::Error),
|
||||
}
|
||||
@@ -52,6 +55,10 @@ impl ApiError {
|
||||
self.to_string(),
|
||||
StatusCode::PRECONDITION_FAILED,
|
||||
),
|
||||
ApiError::ShuttingDown => HttpErrorBody::response_from_msg_and_status(
|
||||
"Shutting down".to_string(),
|
||||
StatusCode::SERVICE_UNAVAILABLE,
|
||||
),
|
||||
ApiError::InternalServerError(err) => HttpErrorBody::response_from_msg_and_status(
|
||||
err.to_string(),
|
||||
StatusCode::INTERNAL_SERVER_ERROR,
|
||||
|
||||
@@ -216,6 +216,24 @@ impl std::fmt::Debug for PrettyLocation<'_, '_> {
|
||||
}
|
||||
}
|
||||
|
||||
/// When you will store a secret but want to make sure it won't
|
||||
/// be accidentally logged, wrap it in a SecretString, whose Debug
|
||||
/// implementation does not expose the contents.
|
||||
#[derive(Clone, Eq, PartialEq)]
|
||||
pub struct SecretString(String);
|
||||
|
||||
impl SecretString {
|
||||
pub fn get_contents(&self) -> &str {
|
||||
self.0.as_str()
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for SecretString {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "[SECRET]")
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use metrics::{core::Opts, IntCounterVec};
|
||||
|
||||
@@ -8,6 +8,7 @@ use anyhow::{anyhow, Context};
|
||||
use clap::{Arg, ArgAction, Command};
|
||||
|
||||
use metrics::launch_timestamp::{set_launch_timestamp_metric, LaunchTimestamp};
|
||||
use pageserver::control_plane_client::ControlPlaneClient;
|
||||
use pageserver::disk_usage_eviction_task::{self, launch_disk_usage_global_eviction_task};
|
||||
use pageserver::metrics::{STARTUP_DURATION, STARTUP_IS_LOADING};
|
||||
use pageserver::task_mgr::WALRECEIVER_RUNTIME;
|
||||
@@ -20,6 +21,7 @@ use metrics::set_build_info_metric;
|
||||
use pageserver::{
|
||||
config::{defaults::*, PageServerConf},
|
||||
context::{DownloadBehavior, RequestContext},
|
||||
deletion_queue::DeletionQueue,
|
||||
http, page_cache, page_service, task_mgr,
|
||||
task_mgr::TaskKind,
|
||||
task_mgr::{BACKGROUND_RUNTIME, COMPUTE_REQUEST_RUNTIME, MGMT_REQUEST_RUNTIME},
|
||||
@@ -346,9 +348,22 @@ fn start_pageserver(
|
||||
}
|
||||
};
|
||||
|
||||
// Top-level cancellation token for the process
|
||||
let shutdown_pageserver = tokio_util::sync::CancellationToken::new();
|
||||
|
||||
// Set up remote storage client
|
||||
let remote_storage = create_remote_storage_client(conf)?;
|
||||
|
||||
// Set up deletion queue
|
||||
let (deletion_queue, deletion_workers) = DeletionQueue::new(
|
||||
remote_storage.clone(),
|
||||
ControlPlaneClient::new(conf, &shutdown_pageserver),
|
||||
conf,
|
||||
);
|
||||
if let Some(deletion_workers) = deletion_workers {
|
||||
deletion_workers.spawn_with(BACKGROUND_RUNTIME.handle());
|
||||
}
|
||||
|
||||
// Up to this point no significant I/O has been done: this should have been fast. Record
|
||||
// duration prior to starting I/O intensive phase of startup.
|
||||
startup_checkpoint("initial", "Starting loading tenants");
|
||||
@@ -379,13 +394,13 @@ fn start_pageserver(
|
||||
};
|
||||
|
||||
// Scan the local 'tenants/' directory and start loading the tenants
|
||||
let shutdown_pageserver = tokio_util::sync::CancellationToken::new();
|
||||
|
||||
let deletion_queue_client = deletion_queue.new_client();
|
||||
BACKGROUND_RUNTIME.block_on(mgr::init_tenant_mgr(
|
||||
conf,
|
||||
TenantSharedResources {
|
||||
broker_client: broker_client.clone(),
|
||||
remote_storage: remote_storage.clone(),
|
||||
deletion_queue_client,
|
||||
},
|
||||
order,
|
||||
shutdown_pageserver.clone(),
|
||||
@@ -481,9 +496,10 @@ fn start_pageserver(
|
||||
http::routes::State::new(
|
||||
conf,
|
||||
http_auth.clone(),
|
||||
remote_storage,
|
||||
remote_storage.clone(),
|
||||
broker_client.clone(),
|
||||
disk_usage_eviction_state,
|
||||
deletion_queue.new_client(),
|
||||
)
|
||||
.context("Failed to initialize router state")?,
|
||||
);
|
||||
@@ -611,7 +627,12 @@ fn start_pageserver(
|
||||
// Right now that tree doesn't reach very far, and `task_mgr` is used instead.
|
||||
// The plan is to change that over time.
|
||||
shutdown_pageserver.take();
|
||||
BACKGROUND_RUNTIME.block_on(pageserver::shutdown_pageserver(0));
|
||||
let bg_remote_storage = remote_storage.clone();
|
||||
let bg_deletion_queue = deletion_queue.clone();
|
||||
BACKGROUND_RUNTIME.block_on(pageserver::shutdown_pageserver(
|
||||
bg_remote_storage.map(|_| bg_deletion_queue),
|
||||
0,
|
||||
));
|
||||
unreachable!()
|
||||
}
|
||||
})
|
||||
|
||||
@@ -11,6 +11,7 @@ use std::env;
|
||||
use storage_broker::Uri;
|
||||
use utils::crashsafe::path_with_suffix_extension;
|
||||
use utils::id::ConnectionId;
|
||||
use utils::logging::SecretString;
|
||||
|
||||
use once_cell::sync::OnceCell;
|
||||
use reqwest::Url;
|
||||
@@ -207,6 +208,9 @@ pub struct PageServerConf {
|
||||
pub background_task_maximum_delay: Duration,
|
||||
|
||||
pub control_plane_api: Option<Url>,
|
||||
|
||||
/// JWT token for use with the control plane API.
|
||||
pub control_plane_api_token: Option<SecretString>,
|
||||
}
|
||||
|
||||
/// We do not want to store this in a PageServerConf because the latter may be logged
|
||||
@@ -283,6 +287,7 @@ struct PageServerConfigBuilder {
|
||||
background_task_maximum_delay: BuilderValue<Duration>,
|
||||
|
||||
control_plane_api: BuilderValue<Option<Url>>,
|
||||
control_plane_api_token: BuilderValue<Option<SecretString>>,
|
||||
}
|
||||
|
||||
impl Default for PageServerConfigBuilder {
|
||||
@@ -347,6 +352,7 @@ impl Default for PageServerConfigBuilder {
|
||||
.unwrap()),
|
||||
|
||||
control_plane_api: Set(None),
|
||||
control_plane_api_token: Set(None),
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -475,8 +481,8 @@ impl PageServerConfigBuilder {
|
||||
self.background_task_maximum_delay = BuilderValue::Set(delay);
|
||||
}
|
||||
|
||||
pub fn control_plane_api(&mut self, api: Url) {
|
||||
self.control_plane_api = BuilderValue::Set(Some(api))
|
||||
pub fn control_plane_api(&mut self, api: Option<Url>) {
|
||||
self.control_plane_api = BuilderValue::Set(api)
|
||||
}
|
||||
|
||||
pub fn build(self) -> anyhow::Result<PageServerConf> {
|
||||
@@ -567,6 +573,9 @@ impl PageServerConfigBuilder {
|
||||
control_plane_api: self
|
||||
.control_plane_api
|
||||
.ok_or(anyhow!("missing control_plane_api"))?,
|
||||
control_plane_api_token: self
|
||||
.control_plane_api_token
|
||||
.ok_or(anyhow!("missing control_plane_api_token"))?,
|
||||
})
|
||||
}
|
||||
}
|
||||
@@ -580,6 +589,27 @@ impl PageServerConf {
|
||||
self.workdir.join(TENANTS_SEGMENT_NAME)
|
||||
}
|
||||
|
||||
pub fn deletion_prefix(&self) -> PathBuf {
|
||||
self.workdir.join("deletion")
|
||||
}
|
||||
|
||||
pub fn deletion_list_path(&self, sequence: u64) -> PathBuf {
|
||||
// Encode a version in the filename, so that if we ever switch away from JSON we can
|
||||
// increment this.
|
||||
const VERSION: u8 = 1;
|
||||
|
||||
self.deletion_prefix()
|
||||
.join(format!("{sequence:016x}-{VERSION:02x}.list"))
|
||||
}
|
||||
|
||||
pub fn deletion_header_path(&self) -> PathBuf {
|
||||
// Encode a version in the filename, so that if we ever switch away from JSON we can
|
||||
// increment this.
|
||||
const VERSION: u8 = 1;
|
||||
|
||||
self.deletion_prefix().join(format!("header-{VERSION:02x}"))
|
||||
}
|
||||
|
||||
pub fn tenant_path(&self, tenant_id: &TenantId) -> PathBuf {
|
||||
self.tenants_path().join(tenant_id.to_string())
|
||||
}
|
||||
@@ -747,7 +777,14 @@ impl PageServerConf {
|
||||
},
|
||||
"ondemand_download_behavior_treat_error_as_warn" => builder.ondemand_download_behavior_treat_error_as_warn(parse_toml_bool(key, item)?),
|
||||
"background_task_maximum_delay" => builder.background_task_maximum_delay(parse_toml_duration(key, item)?),
|
||||
"control_plane_api" => builder.control_plane_api(parse_toml_string(key, item)?.parse().context("failed to parse control plane URL")?),
|
||||
"control_plane_api" => {
|
||||
let parsed = parse_toml_string(key, item)?;
|
||||
if parsed.is_empty() {
|
||||
builder.control_plane_api(None)
|
||||
} else {
|
||||
builder.control_plane_api(Some(parsed.parse().context("failed to parse control plane URL")?))
|
||||
}
|
||||
},
|
||||
_ => bail!("unrecognized pageserver option '{key}'"),
|
||||
}
|
||||
}
|
||||
@@ -917,6 +954,7 @@ impl PageServerConf {
|
||||
ondemand_download_behavior_treat_error_as_warn: false,
|
||||
background_task_maximum_delay: Duration::ZERO,
|
||||
control_plane_api: None,
|
||||
control_plane_api_token: None,
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1140,7 +1178,8 @@ background_task_maximum_delay = '334 s'
|
||||
background_task_maximum_delay: humantime::parse_duration(
|
||||
defaults::DEFAULT_BACKGROUND_TASK_MAXIMUM_DELAY
|
||||
)?,
|
||||
control_plane_api: None
|
||||
control_plane_api: None,
|
||||
control_plane_api_token: None
|
||||
},
|
||||
"Correct defaults should be used when no config values are provided"
|
||||
);
|
||||
@@ -1196,7 +1235,8 @@ background_task_maximum_delay = '334 s'
|
||||
test_remote_failures: 0,
|
||||
ondemand_download_behavior_treat_error_as_warn: false,
|
||||
background_task_maximum_delay: Duration::from_secs(334),
|
||||
control_plane_api: None
|
||||
control_plane_api: None,
|
||||
control_plane_api_token: None
|
||||
},
|
||||
"Should be able to parse all basic config values correctly"
|
||||
);
|
||||
|
||||
@@ -1,7 +1,9 @@
|
||||
use std::collections::HashMap;
|
||||
|
||||
use hyper::StatusCode;
|
||||
use pageserver_api::control_api::{ReAttachRequest, ReAttachResponse};
|
||||
use pageserver_api::control_api::{
|
||||
ReAttachRequest, ReAttachResponse, ValidateRequest, ValidateRequestTenant, ValidateResponse,
|
||||
};
|
||||
use serde::{de::DeserializeOwned, Serialize};
|
||||
use tokio_util::sync::CancellationToken;
|
||||
use url::Url;
|
||||
use utils::{
|
||||
@@ -12,25 +14,34 @@ use utils::{
|
||||
|
||||
use crate::config::PageServerConf;
|
||||
|
||||
// Backoffs when control plane requests do not succeed: compromise between reducing load
|
||||
// on control plane, and retrying frequently when we are blocked on a control plane
|
||||
// response to make progress.
|
||||
const BACKOFF_INCREMENT: f64 = 0.1;
|
||||
const BACKOFF_MAX: f64 = 10.0;
|
||||
|
||||
/// The Pageserver's client for using the control plane API: this is a small subset
|
||||
/// of the overall control plane API, for dealing with generations (see docs/rfcs/025-generation-numbers.md)
|
||||
pub(crate) struct ControlPlaneClient {
|
||||
pub struct ControlPlaneClient {
|
||||
http_client: reqwest::Client,
|
||||
base_url: Url,
|
||||
node_id: NodeId,
|
||||
cancel: CancellationToken,
|
||||
}
|
||||
|
||||
/// Represent operations which internally retry on all errors other than
|
||||
/// cancellation token firing: the only way they can fail is ShuttingDown.
|
||||
pub enum RetryForeverError {
|
||||
ShuttingDown,
|
||||
}
|
||||
|
||||
#[async_trait::async_trait]
|
||||
pub trait ControlPlaneGenerationsApi {
|
||||
async fn re_attach(&self) -> Result<HashMap<TenantId, Generation>, RetryForeverError>;
|
||||
async fn validate(
|
||||
&self,
|
||||
tenants: Vec<(TenantId, Generation)>,
|
||||
) -> Result<HashMap<TenantId, bool>, RetryForeverError>;
|
||||
}
|
||||
|
||||
impl ControlPlaneClient {
|
||||
/// A None return value indicates that the input `conf` object does not have control
|
||||
/// plane API enabled.
|
||||
pub(crate) fn new(conf: &'static PageServerConf, cancel: &CancellationToken) -> Option<Self> {
|
||||
pub fn new(conf: &'static PageServerConf, cancel: &CancellationToken) -> Option<Self> {
|
||||
let mut url = match conf.control_plane_api.as_ref() {
|
||||
Some(u) => u.clone(),
|
||||
None => return None,
|
||||
@@ -42,39 +53,78 @@ impl ControlPlaneClient {
|
||||
segs.pop_if_empty().push("");
|
||||
}
|
||||
|
||||
let client = reqwest::ClientBuilder::new()
|
||||
.build()
|
||||
.expect("Failed to construct http client");
|
||||
let mut client = reqwest::ClientBuilder::new();
|
||||
|
||||
if let Some(jwt) = &conf.control_plane_api_token {
|
||||
let mut headers = hyper::HeaderMap::new();
|
||||
headers.insert("Authorization", jwt.get_contents().parse().unwrap());
|
||||
client = client.default_headers(headers);
|
||||
}
|
||||
|
||||
Some(Self {
|
||||
http_client: client,
|
||||
http_client: client.build().expect("Failed to construct HTTP client"),
|
||||
base_url: url,
|
||||
node_id: conf.id,
|
||||
cancel: cancel.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
async fn try_re_attach(
|
||||
async fn retry_http_forever<R, T>(
|
||||
&self,
|
||||
url: Url,
|
||||
request: &ReAttachRequest,
|
||||
) -> anyhow::Result<ReAttachResponse> {
|
||||
match self.http_client.post(url).json(request).send().await {
|
||||
Err(e) => Err(anyhow::Error::from(e)),
|
||||
Ok(r) => {
|
||||
if r.status() == StatusCode::OK {
|
||||
r.json::<ReAttachResponse>()
|
||||
.await
|
||||
.map_err(anyhow::Error::from)
|
||||
} else {
|
||||
Err(anyhow::anyhow!("Unexpected status {}", r.status()))
|
||||
}
|
||||
url: &url::Url,
|
||||
request: R,
|
||||
) -> Result<T, RetryForeverError>
|
||||
where
|
||||
R: Serialize,
|
||||
T: DeserializeOwned,
|
||||
{
|
||||
#[derive(thiserror::Error, Debug)]
|
||||
enum RemoteAttemptError {
|
||||
#[error("shutdown")]
|
||||
Shutdown,
|
||||
#[error("remote: {0}")]
|
||||
Remote(reqwest::Error),
|
||||
}
|
||||
|
||||
match backoff::retry(
|
||||
|| async {
|
||||
let response = self
|
||||
.http_client
|
||||
.post(url.clone())
|
||||
.json(&request)
|
||||
.send()
|
||||
.await
|
||||
.map_err(RemoteAttemptError::Remote)?;
|
||||
|
||||
response
|
||||
.error_for_status_ref()
|
||||
.map_err(RemoteAttemptError::Remote)?;
|
||||
response
|
||||
.json::<T>()
|
||||
.await
|
||||
.map_err(RemoteAttemptError::Remote)
|
||||
},
|
||||
|_| false,
|
||||
3,
|
||||
u32::MAX,
|
||||
"calling control plane generation validation API",
|
||||
backoff::Cancel::new(self.cancel.clone(), || RemoteAttemptError::Shutdown),
|
||||
)
|
||||
.await
|
||||
{
|
||||
Err(RemoteAttemptError::Shutdown) => Err(RetryForeverError::ShuttingDown),
|
||||
Err(RemoteAttemptError::Remote(_)) => {
|
||||
panic!("We retry forever, this should never be reached");
|
||||
}
|
||||
Ok(r) => Ok(r),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Block until we get a successful response
|
||||
pub(crate) async fn re_attach(&self) -> anyhow::Result<HashMap<TenantId, Generation>> {
|
||||
#[async_trait::async_trait]
|
||||
impl ControlPlaneGenerationsApi for ControlPlaneClient {
|
||||
/// Block until we get a successful response, or error out if we are shut down
|
||||
async fn re_attach(&self) -> Result<HashMap<TenantId, Generation>, RetryForeverError> {
|
||||
let re_attach_path = self
|
||||
.base_url
|
||||
.join("re-attach")
|
||||
@@ -83,37 +133,47 @@ impl ControlPlaneClient {
|
||||
node_id: self.node_id,
|
||||
};
|
||||
|
||||
let mut attempt = 0;
|
||||
loop {
|
||||
let result = self.try_re_attach(re_attach_path.clone(), &request).await;
|
||||
match result {
|
||||
Ok(res) => {
|
||||
tracing::info!(
|
||||
"Received re-attach response with {} tenants",
|
||||
res.tenants.len()
|
||||
);
|
||||
let response: ReAttachResponse = self.retry_http_forever(&re_attach_path, request).await?;
|
||||
tracing::info!(
|
||||
"Received re-attach response with {} tenants",
|
||||
response.tenants.len()
|
||||
);
|
||||
|
||||
return Ok(res
|
||||
.tenants
|
||||
.into_iter()
|
||||
.map(|t| (t.id, Generation::new(t.generation)))
|
||||
.collect::<HashMap<_, _>>());
|
||||
}
|
||||
Err(e) => {
|
||||
tracing::error!("Error re-attaching tenants, retrying: {e:#}");
|
||||
backoff::exponential_backoff(
|
||||
attempt,
|
||||
BACKOFF_INCREMENT,
|
||||
BACKOFF_MAX,
|
||||
&self.cancel,
|
||||
)
|
||||
.await;
|
||||
if self.cancel.is_cancelled() {
|
||||
return Err(anyhow::anyhow!("Shutting down"));
|
||||
}
|
||||
attempt += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(response
|
||||
.tenants
|
||||
.into_iter()
|
||||
.map(|t| (t.id, Generation::new(t.generation)))
|
||||
.collect::<HashMap<_, _>>())
|
||||
}
|
||||
|
||||
/// Block until we get a successful response, or error out if we are shut down
|
||||
async fn validate(
|
||||
&self,
|
||||
tenants: Vec<(TenantId, Generation)>,
|
||||
) -> Result<HashMap<TenantId, bool>, RetryForeverError> {
|
||||
let re_attach_path = self
|
||||
.base_url
|
||||
.join("validate")
|
||||
.expect("Failed to build validate path");
|
||||
|
||||
let request = ValidateRequest {
|
||||
tenants: tenants
|
||||
.into_iter()
|
||||
.map(|(id, gen)| ValidateRequestTenant {
|
||||
id,
|
||||
gen: gen
|
||||
.into()
|
||||
.expect("Generation should always be valid for a Tenant doing deletions"),
|
||||
})
|
||||
.collect(),
|
||||
};
|
||||
|
||||
let response: ValidateResponse = self.retry_http_forever(&re_attach_path, request).await?;
|
||||
|
||||
Ok(response
|
||||
.tenants
|
||||
.into_iter()
|
||||
.map(|rt| (rt.id, rt.valid))
|
||||
.collect())
|
||||
}
|
||||
}
|
||||
|
||||
1312
pageserver/src/deletion_queue.rs
Normal file
1312
pageserver/src/deletion_queue.rs
Normal file
File diff suppressed because it is too large
Load Diff
156
pageserver/src/deletion_queue/deleter.rs
Normal file
156
pageserver/src/deletion_queue/deleter.rs
Normal file
@@ -0,0 +1,156 @@
|
||||
//! The deleter is the final stage in the deletion queue. It accumulates remote
|
||||
//! paths to delete, and periodically executes them in batches of up to 1000
|
||||
//! using the DeleteObjects request.
|
||||
//!
|
||||
//! Its purpose is to increase efficiency of remote storage I/O by issuing a smaller
|
||||
//! number of full-sized DeleteObjects requests, rather than a larger number of
|
||||
//! smaller requests.
|
||||
|
||||
use remote_storage::GenericRemoteStorage;
|
||||
use remote_storage::RemotePath;
|
||||
use remote_storage::MAX_KEYS_PER_DELETE;
|
||||
use std::time::Duration;
|
||||
use tokio_util::sync::CancellationToken;
|
||||
use tracing::info;
|
||||
use tracing::warn;
|
||||
|
||||
use crate::metrics;
|
||||
|
||||
use super::DeletionQueueError;
|
||||
use super::FlushOp;
|
||||
|
||||
const AUTOFLUSH_INTERVAL: Duration = Duration::from_secs(10);
|
||||
|
||||
pub(super) enum DeleterMessage {
|
||||
Delete(Vec<RemotePath>),
|
||||
Flush(FlushOp),
|
||||
}
|
||||
|
||||
/// Non-persistent deletion queue, for coalescing multiple object deletes into
|
||||
/// larger DeleteObjects requests.
|
||||
pub(super) struct Deleter {
|
||||
// Accumulate up to 1000 keys for the next deletion operation
|
||||
accumulator: Vec<RemotePath>,
|
||||
|
||||
rx: tokio::sync::mpsc::Receiver<DeleterMessage>,
|
||||
|
||||
cancel: CancellationToken,
|
||||
remote_storage: GenericRemoteStorage,
|
||||
}
|
||||
|
||||
impl Deleter {
|
||||
pub(super) fn new(
|
||||
remote_storage: GenericRemoteStorage,
|
||||
rx: tokio::sync::mpsc::Receiver<DeleterMessage>,
|
||||
cancel: CancellationToken,
|
||||
) -> Self {
|
||||
Self {
|
||||
remote_storage,
|
||||
rx,
|
||||
cancel,
|
||||
accumulator: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Wrap the remote `delete_objects` with a failpoint
|
||||
async fn remote_delete(&self) -> Result<(), anyhow::Error> {
|
||||
fail::fail_point!("deletion-queue-before-execute", |_| {
|
||||
info!("Skipping execution, failpoint set");
|
||||
metrics::DELETION_QUEUE
|
||||
.remote_errors
|
||||
.with_label_values(&["failpoint"])
|
||||
.inc();
|
||||
Err(anyhow::anyhow!("failpoint hit"))
|
||||
});
|
||||
|
||||
self.remote_storage.delete_objects(&self.accumulator).await
|
||||
}
|
||||
|
||||
/// Block until everything in accumulator has been executed
|
||||
async fn flush(&mut self) -> Result<(), DeletionQueueError> {
|
||||
while !self.accumulator.is_empty() && !self.cancel.is_cancelled() {
|
||||
match self.remote_delete().await {
|
||||
Ok(()) => {
|
||||
// Note: we assume that the remote storage layer returns Ok(()) if some
|
||||
// or all of the deleted objects were already gone.
|
||||
metrics::DELETION_QUEUE
|
||||
.keys_executed
|
||||
.inc_by(self.accumulator.len() as u64);
|
||||
info!(
|
||||
"Executed deletion batch {}..{}",
|
||||
self.accumulator
|
||||
.first()
|
||||
.expect("accumulator should be non-empty"),
|
||||
self.accumulator
|
||||
.last()
|
||||
.expect("accumulator should be non-empty"),
|
||||
);
|
||||
self.accumulator.clear();
|
||||
}
|
||||
Err(e) => {
|
||||
warn!("DeleteObjects request failed: {e:#}, will retry");
|
||||
metrics::DELETION_QUEUE
|
||||
.remote_errors
|
||||
.with_label_values(&["execute"])
|
||||
.inc();
|
||||
}
|
||||
};
|
||||
}
|
||||
if self.cancel.is_cancelled() {
|
||||
// Expose an error because we may not have actually flushed everything
|
||||
Err(DeletionQueueError::ShuttingDown)
|
||||
} else {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) async fn background(&mut self) -> Result<(), DeletionQueueError> {
|
||||
self.accumulator.reserve(MAX_KEYS_PER_DELETE);
|
||||
|
||||
loop {
|
||||
if self.cancel.is_cancelled() {
|
||||
return Err(DeletionQueueError::ShuttingDown);
|
||||
}
|
||||
|
||||
let msg = match tokio::time::timeout(AUTOFLUSH_INTERVAL, self.rx.recv()).await {
|
||||
Ok(Some(m)) => m,
|
||||
Ok(None) => {
|
||||
// All queue senders closed
|
||||
info!("Shutting down");
|
||||
return Err(DeletionQueueError::ShuttingDown);
|
||||
}
|
||||
Err(_) => {
|
||||
// Timeout, we hit deadline to execute whatever we have in hand. These functions will
|
||||
// return immediately if no work is pending
|
||||
self.flush().await?;
|
||||
|
||||
continue;
|
||||
}
|
||||
};
|
||||
|
||||
match msg {
|
||||
DeleterMessage::Delete(mut list) => {
|
||||
while !list.is_empty() || self.accumulator.len() == MAX_KEYS_PER_DELETE {
|
||||
if self.accumulator.len() == MAX_KEYS_PER_DELETE {
|
||||
self.flush().await?;
|
||||
// If we have received this number of keys, proceed with attempting to execute
|
||||
assert_eq!(self.accumulator.len(), 0);
|
||||
}
|
||||
|
||||
let available_slots = MAX_KEYS_PER_DELETE - self.accumulator.len();
|
||||
let take_count = std::cmp::min(available_slots, list.len());
|
||||
for path in list.drain(list.len() - take_count..) {
|
||||
self.accumulator.push(path);
|
||||
}
|
||||
}
|
||||
}
|
||||
DeleterMessage::Flush(flush_op) => {
|
||||
// If flush() errors, we drop the flush_op and the caller will get
|
||||
// an error recv()'ing their oneshot channel.
|
||||
self.flush().await?;
|
||||
flush_op.notify();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
487
pageserver/src/deletion_queue/list_writer.rs
Normal file
487
pageserver/src/deletion_queue/list_writer.rs
Normal file
@@ -0,0 +1,487 @@
|
||||
//! The list writer is the first stage in the deletion queue. It accumulates
|
||||
//! layers to delete, and periodically writes out these layers into a persistent
|
||||
//! DeletionList.
|
||||
//!
|
||||
//! The purpose of writing DeletionLists is to decouple the decision to
|
||||
//! delete an object from the validation required to execute it: even if
|
||||
//! validation is not possible, e.g. due to a control plane outage, we can
|
||||
//! still persist our intent to delete an object, in a way that would
|
||||
//! survive a restart.
|
||||
//!
|
||||
//! DeletionLists are passed onwards to the Validator.
|
||||
|
||||
use super::DeletionHeader;
|
||||
use super::DeletionList;
|
||||
use super::FlushOp;
|
||||
use super::ValidatorQueueMessage;
|
||||
|
||||
use std::collections::HashMap;
|
||||
use std::fs::create_dir_all;
|
||||
use std::time::Duration;
|
||||
|
||||
use regex::Regex;
|
||||
use remote_storage::RemotePath;
|
||||
use tokio_util::sync::CancellationToken;
|
||||
use tracing::debug;
|
||||
use tracing::info;
|
||||
use tracing::warn;
|
||||
use utils::generation::Generation;
|
||||
use utils::id::TenantId;
|
||||
use utils::id::TimelineId;
|
||||
|
||||
use crate::config::PageServerConf;
|
||||
use crate::deletion_queue::TEMP_SUFFIX;
|
||||
use crate::metrics;
|
||||
use crate::tenant::remote_timeline_client::remote_layer_path;
|
||||
use crate::tenant::storage_layer::LayerFileName;
|
||||
|
||||
// The number of keys in a DeletionList before we will proactively persist it
|
||||
// (without reaching a flush deadline). This aims to deliver objects of the order
|
||||
// of magnitude 1MB when we are under heavy delete load.
|
||||
const DELETION_LIST_TARGET_SIZE: usize = 16384;
|
||||
|
||||
// Ordinarily, we only flush to DeletionList periodically, to bound the window during
|
||||
// which we might leak objects from not flushing a DeletionList after
|
||||
// the objects are already unlinked from timeline metadata.
|
||||
const FRONTEND_DEFAULT_TIMEOUT: Duration = Duration::from_millis(10000);
|
||||
|
||||
// If someone is waiting for a flush to DeletionList, only delay a little to accumulate
|
||||
// more objects before doing the flush.
|
||||
const FRONTEND_FLUSHING_TIMEOUT: Duration = Duration::from_millis(100);
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(super) struct DeletionOp {
|
||||
pub(super) tenant_id: TenantId,
|
||||
pub(super) timeline_id: TimelineId,
|
||||
// `layers` and `objects` are both just lists of objects. `layers` is used if you do not
|
||||
// have a config object handy to project it to a remote key, and need the consuming worker
|
||||
// to do it for you.
|
||||
pub(super) layers: Vec<(LayerFileName, Generation)>,
|
||||
pub(super) objects: Vec<RemotePath>,
|
||||
|
||||
/// The _current_ generation of the Tenant attachment in which we are enqueuing
|
||||
/// this deletion.
|
||||
pub(super) generation: Generation,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(super) struct RecoverOp {
|
||||
pub(super) attached_tenants: HashMap<TenantId, Generation>,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(super) enum ListWriterQueueMessage {
|
||||
Delete(DeletionOp),
|
||||
// Wait until all prior deletions make it into a persistent DeletionList
|
||||
Flush(FlushOp),
|
||||
// Wait until all prior deletions have been executed (i.e. objects are actually deleted)
|
||||
FlushExecute(FlushOp),
|
||||
// Call once after re-attaching to control plane, to notify the deletion queue about
|
||||
// latest attached generations & load any saved deletion lists from disk.
|
||||
Recover(RecoverOp),
|
||||
}
|
||||
|
||||
pub(super) struct ListWriter {
|
||||
conf: &'static PageServerConf,
|
||||
|
||||
// Incoming frontend requests to delete some keys
|
||||
rx: tokio::sync::mpsc::Receiver<ListWriterQueueMessage>,
|
||||
|
||||
// Outbound requests to the backend to execute deletion lists we have composed.
|
||||
tx: tokio::sync::mpsc::Sender<ValidatorQueueMessage>,
|
||||
|
||||
// The list we are currently building, contains a buffer of keys to delete
|
||||
// and our next sequence number
|
||||
pending: DeletionList,
|
||||
|
||||
// These FlushOps should notify the next time we flush
|
||||
pending_flushes: Vec<FlushOp>,
|
||||
|
||||
// Worker loop is torn down when this fires.
|
||||
cancel: CancellationToken,
|
||||
|
||||
// Safety guard to do recovery exactly once
|
||||
recovered: bool,
|
||||
}
|
||||
|
||||
impl ListWriter {
|
||||
// Initially DeletionHeader.validated_sequence is zero. The place we start our
|
||||
// sequence numbers must be higher than that.
|
||||
const BASE_SEQUENCE: u64 = 1;
|
||||
|
||||
pub(super) fn new(
|
||||
conf: &'static PageServerConf,
|
||||
rx: tokio::sync::mpsc::Receiver<ListWriterQueueMessage>,
|
||||
tx: tokio::sync::mpsc::Sender<ValidatorQueueMessage>,
|
||||
cancel: CancellationToken,
|
||||
) -> Self {
|
||||
Self {
|
||||
pending: DeletionList::new(Self::BASE_SEQUENCE),
|
||||
conf,
|
||||
rx,
|
||||
tx,
|
||||
pending_flushes: Vec::new(),
|
||||
cancel,
|
||||
recovered: false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to flush `list` to persistent storage
|
||||
///
|
||||
/// This does not return errors, because on failure to flush we do not lose
|
||||
/// any state: flushing will be retried implicitly on the next deadline
|
||||
async fn flush(&mut self) {
|
||||
if self.pending.is_empty() {
|
||||
for f in self.pending_flushes.drain(..) {
|
||||
f.notify();
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
match self.pending.save(self.conf).await {
|
||||
Ok(_) => {
|
||||
info!(sequence = self.pending.sequence, "Stored deletion list");
|
||||
|
||||
for f in self.pending_flushes.drain(..) {
|
||||
f.notify();
|
||||
}
|
||||
|
||||
// Take the list we've accumulated, replace it with a fresh list for the next sequence
|
||||
let next_list = DeletionList::new(self.pending.sequence + 1);
|
||||
let list = std::mem::replace(&mut self.pending, next_list);
|
||||
|
||||
if let Err(e) = self.tx.send(ValidatorQueueMessage::Delete(list)).await {
|
||||
// This is allowed to fail: it will only happen if the backend worker is shut down,
|
||||
// so we can just drop this on the floor.
|
||||
info!("Deletion list dropped, this is normal during shutdown ({e:#})");
|
||||
}
|
||||
}
|
||||
Err(e) => {
|
||||
metrics::DELETION_QUEUE.unexpected_errors.inc();
|
||||
warn!(
|
||||
sequence = self.pending.sequence,
|
||||
"Failed to write deletion list, will retry later ({e:#})"
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Load the header, to learn the sequence number up to which deletions
|
||||
/// have been validated. We will apply validated=true to DeletionLists
|
||||
/// <= this sequence when loading them.
|
||||
///
|
||||
/// It is not an error for the header to not exist: we return None, and
|
||||
/// the caller should act as if validated_sequence is 0
|
||||
async fn load_validated_sequence(&self) -> Result<Option<u64>, anyhow::Error> {
|
||||
let header_path = self.conf.deletion_header_path();
|
||||
match tokio::fs::read(&header_path).await {
|
||||
Ok(header_bytes) => {
|
||||
match serde_json::from_slice::<DeletionHeader>(&header_bytes) {
|
||||
Ok(h) => Ok(Some(h.validated_sequence)),
|
||||
Err(e) => {
|
||||
warn!(
|
||||
"Failed to deserialize deletion header, ignoring {}: {e:#}",
|
||||
header_path.display()
|
||||
);
|
||||
// This should never happen unless we make a mistake with our serialization.
|
||||
// Ignoring a deletion header is not consequential for correctnes because all deletions
|
||||
// are ultimately allowed to fail: worst case we leak some objects for the scrubber to clean up.
|
||||
metrics::DELETION_QUEUE.unexpected_errors.inc();
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
}
|
||||
Err(e) => {
|
||||
if e.kind() == std::io::ErrorKind::NotFound {
|
||||
debug!(
|
||||
"Deletion header {} not found, first start?",
|
||||
header_path.display()
|
||||
);
|
||||
Ok(None)
|
||||
} else {
|
||||
Err(anyhow::anyhow!(e))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async fn recover(
|
||||
&mut self,
|
||||
attached_tenants: HashMap<TenantId, Generation>,
|
||||
) -> Result<(), anyhow::Error> {
|
||||
debug!(
|
||||
"recovering with {} attached tenants",
|
||||
attached_tenants.len()
|
||||
);
|
||||
|
||||
// Load the header
|
||||
let validated_sequence = self.load_validated_sequence().await?.unwrap_or(0);
|
||||
|
||||
self.pending.sequence = validated_sequence + 1;
|
||||
|
||||
let deletion_directory = self.conf.deletion_prefix();
|
||||
let mut dir = match tokio::fs::read_dir(&deletion_directory).await {
|
||||
Ok(d) => d,
|
||||
Err(e) => {
|
||||
warn!(
|
||||
"Failed to open deletion list directory {}: {e:#}",
|
||||
deletion_directory.display(),
|
||||
);
|
||||
|
||||
// Give up: if we can't read the deletion list directory, we probably can't
|
||||
// write lists into it later, so the queue won't work.
|
||||
return Err(e.into());
|
||||
}
|
||||
};
|
||||
|
||||
let list_name_pattern =
|
||||
Regex::new("(?<sequence>[a-zA-Z0-9]{16})-(?<version>[a-zA-Z0-9]{2}).list").unwrap();
|
||||
|
||||
let header_path = self.conf.deletion_header_path();
|
||||
let mut seqs: Vec<u64> = Vec::new();
|
||||
while let Some(dentry) = dir.next_entry().await? {
|
||||
let file_name = dentry.file_name();
|
||||
let dentry_str = file_name.to_string_lossy();
|
||||
|
||||
if Some(file_name.as_os_str()) == header_path.file_name() {
|
||||
// Don't try and parse the header's name like a list
|
||||
continue;
|
||||
}
|
||||
|
||||
if dentry_str.ends_with(TEMP_SUFFIX) {
|
||||
info!("Cleaning up temporary file {dentry_str}");
|
||||
let absolute_path = deletion_directory.join(dentry.file_name());
|
||||
if let Err(e) = tokio::fs::remove_file(&absolute_path).await {
|
||||
// Non-fatal error: we will just leave the file behind but not
|
||||
// try and load it.
|
||||
warn!(
|
||||
"Failed to clean up temporary file {}: {e:#}",
|
||||
absolute_path.display()
|
||||
);
|
||||
}
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
let file_name = dentry.file_name().to_owned();
|
||||
let basename = file_name.to_string_lossy();
|
||||
let seq_part = if let Some(m) = list_name_pattern.captures(&basename) {
|
||||
m.name("sequence")
|
||||
.expect("Non optional group should be present")
|
||||
.as_str()
|
||||
} else {
|
||||
warn!("Unexpected key in deletion queue: {basename}");
|
||||
metrics::DELETION_QUEUE.unexpected_errors.inc();
|
||||
continue;
|
||||
};
|
||||
|
||||
let seq: u64 = match u64::from_str_radix(seq_part, 16) {
|
||||
Ok(s) => s,
|
||||
Err(e) => {
|
||||
warn!("Malformed key '{basename}': {e}");
|
||||
metrics::DELETION_QUEUE.unexpected_errors.inc();
|
||||
continue;
|
||||
}
|
||||
};
|
||||
seqs.push(seq);
|
||||
}
|
||||
seqs.sort();
|
||||
|
||||
// Start our next deletion list from after the last location validated by
|
||||
// previous process lifetime, or after the last location found (it is updated
|
||||
// below after enumerating the deletion lists)
|
||||
self.pending.sequence = validated_sequence + 1;
|
||||
if let Some(max_list_seq) = seqs.last() {
|
||||
self.pending.sequence = std::cmp::max(self.pending.sequence, max_list_seq + 1);
|
||||
}
|
||||
|
||||
for s in seqs {
|
||||
let list_path = self.conf.deletion_list_path(s);
|
||||
|
||||
let list_bytes = tokio::fs::read(&list_path).await?;
|
||||
|
||||
let mut deletion_list = match serde_json::from_slice::<DeletionList>(&list_bytes) {
|
||||
Ok(l) => l,
|
||||
Err(e) => {
|
||||
// Drop the list on the floor: any objects it referenced will be left behind
|
||||
// for scrubbing to clean up. This should never happen unless we have a serialization bug.
|
||||
warn!(sequence = s, "Failed to deserialize deletion list: {e}");
|
||||
metrics::DELETION_QUEUE.unexpected_errors.inc();
|
||||
continue;
|
||||
}
|
||||
};
|
||||
|
||||
if deletion_list.sequence <= validated_sequence {
|
||||
// If the deletion list falls below valid_seq, we may assume that it was
|
||||
// already validated the last time this pageserver ran. Otherwise, we still
|
||||
// load it, as it may still contain content valid in this generation.
|
||||
deletion_list.validated = true;
|
||||
} else {
|
||||
// Special case optimization: if a tenant is still attached, and no other
|
||||
// generation was issued to another node in the interval while we restarted,
|
||||
// then we may treat deletion lists from the previous generation as if they
|
||||
// belong to our currently attached generation, and proceed to validate & execute.
|
||||
for (tenant_id, tenant_list) in &mut deletion_list.tenants {
|
||||
if let Some(attached_gen) = attached_tenants.get(tenant_id) {
|
||||
if attached_gen.previous() == tenant_list.generation {
|
||||
tenant_list.generation = *attached_gen;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
info!(
|
||||
validated = deletion_list.validated,
|
||||
sequence = deletion_list.sequence,
|
||||
"Recovered deletion list"
|
||||
);
|
||||
|
||||
// We will drop out of recovery if this fails: it indicates that we are shutting down
|
||||
// or the backend has panicked
|
||||
metrics::DELETION_QUEUE
|
||||
.keys_submitted
|
||||
.inc_by(deletion_list.len() as u64);
|
||||
self.tx
|
||||
.send(ValidatorQueueMessage::Delete(deletion_list))
|
||||
.await?;
|
||||
}
|
||||
|
||||
info!(next_sequence = self.pending.sequence, "Replay complete");
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// This is the front-end ingest, where we bundle up deletion requests into DeletionList
|
||||
/// and write them out, for later validation by the backend and execution by the executor.
|
||||
pub(super) async fn background(&mut self) {
|
||||
info!("Started deletion frontend worker");
|
||||
|
||||
// Synchronous, but we only do it once per process lifetime so it's tolerable
|
||||
if let Err(e) = create_dir_all(&self.conf.deletion_prefix()) {
|
||||
tracing::error!(
|
||||
"Failed to create deletion list directory {}, deletions will not be executed ({e})",
|
||||
self.conf.deletion_prefix().display()
|
||||
);
|
||||
metrics::DELETION_QUEUE.unexpected_errors.inc();
|
||||
return;
|
||||
}
|
||||
|
||||
while !self.cancel.is_cancelled() {
|
||||
let timeout = if self.pending_flushes.is_empty() {
|
||||
FRONTEND_DEFAULT_TIMEOUT
|
||||
} else {
|
||||
FRONTEND_FLUSHING_TIMEOUT
|
||||
};
|
||||
|
||||
let msg = match tokio::time::timeout(timeout, self.rx.recv()).await {
|
||||
Ok(Some(msg)) => msg,
|
||||
Ok(None) => {
|
||||
// Queue sender destroyed, shutting down
|
||||
break;
|
||||
}
|
||||
Err(_) => {
|
||||
// Hit deadline, flush.
|
||||
self.flush().await;
|
||||
continue;
|
||||
}
|
||||
};
|
||||
|
||||
match msg {
|
||||
ListWriterQueueMessage::Delete(op) => {
|
||||
assert!(
|
||||
self.recovered,
|
||||
"Cannot process deletions before recovery. This is a bug."
|
||||
);
|
||||
|
||||
debug!(
|
||||
"Delete: ingesting {} layers, {} other objects",
|
||||
op.layers.len(),
|
||||
op.objects.len()
|
||||
);
|
||||
|
||||
let mut layer_paths = Vec::new();
|
||||
for (layer, generation) in op.layers {
|
||||
layer_paths.push(remote_layer_path(
|
||||
&op.tenant_id,
|
||||
&op.timeline_id,
|
||||
&layer,
|
||||
generation,
|
||||
));
|
||||
}
|
||||
layer_paths.extend(op.objects);
|
||||
|
||||
if !self.pending.push(
|
||||
&op.tenant_id,
|
||||
&op.timeline_id,
|
||||
op.generation,
|
||||
&mut layer_paths,
|
||||
) {
|
||||
self.flush().await;
|
||||
let retry_succeeded = self.pending.push(
|
||||
&op.tenant_id,
|
||||
&op.timeline_id,
|
||||
op.generation,
|
||||
&mut layer_paths,
|
||||
);
|
||||
if !retry_succeeded {
|
||||
// Unexpected: after we flush, we should have
|
||||
// drained self.pending, so a conflict on
|
||||
// generation numbers should be impossible.
|
||||
tracing::error!(
|
||||
"Failed to enqueue deletions, leaking objects. This is a bug."
|
||||
);
|
||||
metrics::DELETION_QUEUE.unexpected_errors.inc();
|
||||
}
|
||||
}
|
||||
}
|
||||
ListWriterQueueMessage::Flush(op) => {
|
||||
if self.pending.is_empty() {
|
||||
// Execute immediately
|
||||
debug!("Flush: No pending objects, flushing immediately");
|
||||
op.notify()
|
||||
} else {
|
||||
// Execute next time we flush
|
||||
debug!("Flush: adding to pending flush list for next deadline flush");
|
||||
self.pending_flushes.push(op);
|
||||
}
|
||||
}
|
||||
ListWriterQueueMessage::FlushExecute(op) => {
|
||||
debug!("FlushExecute: passing through to backend");
|
||||
// We do not flush to a deletion list here: the client sends a Flush before the FlushExecute
|
||||
if let Err(e) = self.tx.send(ValidatorQueueMessage::Flush(op)).await {
|
||||
info!("Can't flush, shutting down ({e})");
|
||||
// Caller will get error when their oneshot sender was dropped.
|
||||
}
|
||||
}
|
||||
ListWriterQueueMessage::Recover(op) => {
|
||||
if self.recovered {
|
||||
tracing::error!(
|
||||
"Deletion queue recovery called more than once. This is a bug."
|
||||
);
|
||||
metrics::DELETION_QUEUE.unexpected_errors.inc();
|
||||
// Non-fatal: although this is a bug, since we did recovery at least once we may proceed.
|
||||
continue;
|
||||
}
|
||||
|
||||
if let Err(e) = self.recover(op.attached_tenants).await {
|
||||
// This should only happen in truly unrecoverable cases, like the recovery finding that the backend
|
||||
// queue receiver has been dropped, or something is critically broken with
|
||||
// the local filesystem holding deletion lists.
|
||||
info!(
|
||||
"Deletion queue recover aborted, deletion queue will not proceed ({e})"
|
||||
);
|
||||
metrics::DELETION_QUEUE.unexpected_errors.inc();
|
||||
return;
|
||||
} else {
|
||||
self.recovered = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if self.pending.len() > DELETION_LIST_TARGET_SIZE || !self.pending_flushes.is_empty() {
|
||||
self.flush().await;
|
||||
}
|
||||
}
|
||||
info!("Deletion queue shut down.");
|
||||
}
|
||||
}
|
||||
414
pageserver/src/deletion_queue/validator.rs
Normal file
414
pageserver/src/deletion_queue/validator.rs
Normal file
@@ -0,0 +1,414 @@
|
||||
//! The validator is responsible for validating DeletionLists for execution,
|
||||
//! based on whethe the generation in the DeletionList is still the latest
|
||||
//! generation for a tenant.
|
||||
//!
|
||||
//! The purpose of validation is to ensure split-brain safety in the cluster
|
||||
//! of pageservers: a deletion may only be executed if the tenant generation
|
||||
//! that originated it is still current. See docs/rfcs/025-generation-numbers.md
|
||||
//! The purpose of accumulating lists before validating them is to reduce load
|
||||
//! on the control plane API by issuing fewer, larger requests.
|
||||
//!
|
||||
//! In addition to validating DeletionLists, the validator validates updates to remote_consistent_lsn
|
||||
//! for timelines: these are logically deletions because the safekeepers use remote_consistent_lsn
|
||||
//! to decide when old
|
||||
//!
|
||||
//! Deletions are passed onward to the Deleter.
|
||||
|
||||
use std::collections::HashMap;
|
||||
use std::path::PathBuf;
|
||||
use std::sync::Arc;
|
||||
use std::time::Duration;
|
||||
|
||||
use tokio_util::sync::CancellationToken;
|
||||
use tracing::debug;
|
||||
use tracing::info;
|
||||
use tracing::warn;
|
||||
|
||||
use crate::config::PageServerConf;
|
||||
use crate::control_plane_client::ControlPlaneGenerationsApi;
|
||||
use crate::control_plane_client::RetryForeverError;
|
||||
use crate::metrics;
|
||||
|
||||
use super::deleter::DeleterMessage;
|
||||
use super::DeletionHeader;
|
||||
use super::DeletionList;
|
||||
use super::DeletionQueueError;
|
||||
use super::FlushOp;
|
||||
use super::VisibleLsnUpdates;
|
||||
|
||||
// After this length of time, do any validation work that is pending,
|
||||
// even if we haven't accumulated many keys to delete.
|
||||
//
|
||||
// This also causes updates to remote_consistent_lsn to be validated, even
|
||||
// if there were no deletions enqueued.
|
||||
const AUTOFLUSH_INTERVAL: Duration = Duration::from_secs(10);
|
||||
|
||||
// If we have received this number of keys, proceed with attempting to execute
|
||||
const AUTOFLUSH_KEY_COUNT: usize = 16384;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(super) enum ValidatorQueueMessage {
|
||||
Delete(DeletionList),
|
||||
Flush(FlushOp),
|
||||
}
|
||||
pub(super) struct Validator<C>
|
||||
where
|
||||
C: ControlPlaneGenerationsApi,
|
||||
{
|
||||
conf: &'static PageServerConf,
|
||||
rx: tokio::sync::mpsc::Receiver<ValidatorQueueMessage>,
|
||||
tx: tokio::sync::mpsc::Sender<DeleterMessage>,
|
||||
|
||||
// Client for calling into control plane API for validation of deletes
|
||||
control_plane_client: Option<C>,
|
||||
|
||||
// DeletionLists which are waiting generation validation. Not safe to
|
||||
// execute until [`validate`] has processed them.
|
||||
pending_lists: Vec<DeletionList>,
|
||||
|
||||
// DeletionLists which have passed validation and are ready to execute.
|
||||
validated_lists: Vec<DeletionList>,
|
||||
|
||||
// Sum of all the lengths of lists in pending_lists
|
||||
pending_key_count: usize,
|
||||
|
||||
// Lsn validation state: we read projected LSNs and write back visible LSNs
|
||||
// after validation. This is the LSN equivalent of `pending_validation_lists`:
|
||||
// it is drained in [`validate`]
|
||||
lsn_table: Arc<std::sync::RwLock<VisibleLsnUpdates>>,
|
||||
|
||||
// If we failed to rewrite a deletion list due to local filesystem I/O failure,
|
||||
// we must remember that and refuse to advance our persistent validated sequence
|
||||
// number past the failure.
|
||||
list_write_failed: Option<u64>,
|
||||
|
||||
cancel: CancellationToken,
|
||||
}
|
||||
|
||||
impl<C> Validator<C>
|
||||
where
|
||||
C: ControlPlaneGenerationsApi,
|
||||
{
|
||||
pub(super) fn new(
|
||||
conf: &'static PageServerConf,
|
||||
rx: tokio::sync::mpsc::Receiver<ValidatorQueueMessage>,
|
||||
tx: tokio::sync::mpsc::Sender<DeleterMessage>,
|
||||
control_plane_client: Option<C>,
|
||||
lsn_table: Arc<std::sync::RwLock<VisibleLsnUpdates>>,
|
||||
cancel: CancellationToken,
|
||||
) -> Self {
|
||||
Self {
|
||||
conf,
|
||||
rx,
|
||||
tx,
|
||||
control_plane_client,
|
||||
lsn_table,
|
||||
pending_lists: Vec::new(),
|
||||
validated_lists: Vec::new(),
|
||||
pending_key_count: 0,
|
||||
list_write_failed: None,
|
||||
cancel,
|
||||
}
|
||||
}
|
||||
/// Process any outstanding validations of generations of pending LSN updates or pending
|
||||
/// DeletionLists.
|
||||
///
|
||||
/// Valid LSN updates propagate back to Timelines immediately, valid DeletionLists
|
||||
/// go into the queue of ready-to-execute lists.
|
||||
async fn validate(&mut self) -> Result<(), DeletionQueueError> {
|
||||
let mut tenant_generations = HashMap::new();
|
||||
for list in &self.pending_lists {
|
||||
for (tenant_id, tenant_list) in &list.tenants {
|
||||
// Note: DeletionLists are in logical time order, so generation always
|
||||
// goes up. By doing a simple insert() we will always end up with
|
||||
// the latest generation seen for a tenant.
|
||||
tenant_generations.insert(*tenant_id, tenant_list.generation);
|
||||
}
|
||||
}
|
||||
|
||||
let pending_lsn_updates = {
|
||||
let mut lsn_table = self.lsn_table.write().expect("Lock should not be poisoned");
|
||||
std::mem::take(&mut *lsn_table)
|
||||
};
|
||||
for (tenant_id, update) in &pending_lsn_updates.tenants {
|
||||
let entry = tenant_generations
|
||||
.entry(*tenant_id)
|
||||
.or_insert(update.generation);
|
||||
if update.generation > *entry {
|
||||
*entry = update.generation;
|
||||
}
|
||||
}
|
||||
|
||||
if tenant_generations.is_empty() {
|
||||
// No work to do
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
let tenants_valid = if let Some(control_plane_client) = &self.control_plane_client {
|
||||
match control_plane_client
|
||||
.validate(tenant_generations.iter().map(|(k, v)| (*k, *v)).collect())
|
||||
.await
|
||||
{
|
||||
Ok(tenants) => tenants,
|
||||
Err(RetryForeverError::ShuttingDown) => {
|
||||
// The only way a validation call returns an error is when the cancellation token fires
|
||||
return Err(DeletionQueueError::ShuttingDown);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Control plane API disabled. In legacy mode we consider everything valid.
|
||||
tenant_generations.keys().map(|k| (*k, true)).collect()
|
||||
};
|
||||
|
||||
let mut validated_sequence: Option<u64> = None;
|
||||
|
||||
// Apply the validation results to the pending LSN updates
|
||||
for (tenant_id, tenant_lsn_state) in pending_lsn_updates.tenants {
|
||||
let validated_generation = tenant_generations
|
||||
.get(&tenant_id)
|
||||
.expect("Map was built from the same keys we're reading");
|
||||
|
||||
let valid = tenants_valid
|
||||
.get(&tenant_id)
|
||||
.copied()
|
||||
// If the tenant was missing from the validation response, it has been deleted.
|
||||
// The Timeline that requested the LSN update is probably already torn down,
|
||||
// or will be torn down soon. In this case, drop the update by setting valid=false.
|
||||
.unwrap_or(false);
|
||||
|
||||
if valid && *validated_generation == tenant_lsn_state.generation {
|
||||
for (_timeline_id, pending_lsn) in tenant_lsn_state.timelines {
|
||||
pending_lsn.result_slot.store(pending_lsn.projected);
|
||||
}
|
||||
} else {
|
||||
// If we failed validation, then do not apply any of the projected updates
|
||||
warn!("Dropped remote consistent LSN updates for tenant {tenant_id} in stale generation {:?}", tenant_lsn_state.generation);
|
||||
metrics::DELETION_QUEUE.dropped_lsn_updates.inc();
|
||||
}
|
||||
}
|
||||
|
||||
// Apply the validation results to the pending deletion lists
|
||||
for list in &mut self.pending_lists {
|
||||
// Filter the list based on whether the server responded valid: true.
|
||||
// If a tenant is omitted in the response, it has been deleted, and we should
|
||||
// proceed with deletion.
|
||||
let mut mutated = false;
|
||||
list.tenants.retain(|tenant_id, tenant| {
|
||||
let validated_generation = tenant_generations
|
||||
.get(tenant_id)
|
||||
.expect("Map was built from the same keys we're reading");
|
||||
|
||||
// If the tenant was missing from the validation response, it has been deleted.
|
||||
// This means that a deletion is valid, but also redundant since the tenant's
|
||||
// objects should have already been deleted. Treat it as invalid to drop the
|
||||
// redundant deletion.
|
||||
let valid = tenants_valid.get(tenant_id).copied().unwrap_or(false);
|
||||
|
||||
// A list is valid if it comes from the current _or previous_ generation.
|
||||
// - The previous generation case is permitted due to how we store deletion lists locally:
|
||||
// if we see the immediately previous generation in a locally stored deletion list,
|
||||
// it proves that this node's disk was used for both current & previous generations,
|
||||
// and therefore no other node was involved in between: the two generations may be
|
||||
// logically treated as the same.
|
||||
// - In that previous generation case, we rewrote it to the current generation
|
||||
// in recover(), so the comparison here is simply an equality.
|
||||
|
||||
let this_list_valid = valid
|
||||
&& (tenant.generation == *validated_generation);
|
||||
|
||||
if !this_list_valid {
|
||||
warn!("Dropping stale deletions for tenant {tenant_id} in generation {:?}, objects may be leaked", tenant.generation);
|
||||
metrics::DELETION_QUEUE.keys_dropped.inc_by(tenant.len() as u64);
|
||||
mutated = true;
|
||||
}
|
||||
this_list_valid
|
||||
});
|
||||
list.validated = true;
|
||||
|
||||
if mutated {
|
||||
// Save the deletion list if we had to make changes due to stale generations. The
|
||||
// saved list is valid for execution.
|
||||
if let Err(e) = list.save(self.conf).await {
|
||||
// Highly unexpected. Could happen if e.g. disk full.
|
||||
// If we didn't save the trimmed list, it is _not_ valid to execute.
|
||||
warn!("Failed to save modified deletion list {list}: {e:#}");
|
||||
metrics::DELETION_QUEUE.unexpected_errors.inc();
|
||||
|
||||
// Rather than have a complex retry process, just drop it and leak the objects,
|
||||
// scrubber will clean up eventually.
|
||||
list.tenants.clear(); // Result is a valid-but-empty list, which is a no-op for execution.
|
||||
|
||||
// We must remember this failure, to prevent later writing out a header that
|
||||
// would imply the unwritable list was valid on disk.
|
||||
if self.list_write_failed.is_none() {
|
||||
self.list_write_failed = Some(list.sequence);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
validated_sequence = Some(list.sequence);
|
||||
}
|
||||
|
||||
if let Some(validated_sequence) = validated_sequence {
|
||||
if let Some(list_write_failed) = self.list_write_failed {
|
||||
// Rare error case: we failed to write out a deletion list to excise invalid
|
||||
// entries, so we cannot advance the header's valid sequence number past that point.
|
||||
//
|
||||
// In this state we will continue to validate, execute and delete deletion lists,
|
||||
// we just cannot update the header. It should be noticed and fixed by a human due to
|
||||
// the nonzero value of our unexpected_errors metric.
|
||||
warn!(
|
||||
sequence_number = list_write_failed,
|
||||
"Cannot write header because writing a deletion list failed earlier",
|
||||
);
|
||||
} else {
|
||||
// Write the queue header to record how far validation progressed. This avoids having
|
||||
// to rewrite each DeletionList to set validated=true in it.
|
||||
let header = DeletionHeader::new(validated_sequence);
|
||||
|
||||
// Drop result because the validated_sequence is an optimization. If we fail to save it,
|
||||
// then restart, we will drop some deletion lists, creating work for scrubber.
|
||||
// The save() function logs a warning on error.
|
||||
if let Err(e) = header.save(self.conf).await {
|
||||
warn!("Failed to write deletion queue header: {e:#}");
|
||||
metrics::DELETION_QUEUE.unexpected_errors.inc();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Transfer the validated lists to the validated queue, for eventual execution
|
||||
self.validated_lists.append(&mut self.pending_lists);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
async fn cleanup_lists(&mut self, list_paths: Vec<PathBuf>) {
|
||||
for list_path in list_paths {
|
||||
debug!("Removing deletion list {}", list_path.display());
|
||||
|
||||
if let Err(e) = tokio::fs::remove_file(&list_path).await {
|
||||
// Unexpected: we should have permissions and nothing else should
|
||||
// be touching these files. We will leave the file behind. Subsequent
|
||||
// pageservers will try and load it again: hopefully whatever storage
|
||||
// issue (probably permissions) has been fixed by then.
|
||||
tracing::error!("Failed to delete {}: {e:#}", list_path.display());
|
||||
metrics::DELETION_QUEUE.unexpected_errors.inc();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async fn flush(&mut self) -> Result<(), DeletionQueueError> {
|
||||
tracing::debug!("Flushing with {} pending lists", self.pending_lists.len());
|
||||
|
||||
// Issue any required generation validation calls to the control plane
|
||||
self.validate().await?;
|
||||
|
||||
// After successful validation, nothing is pending: any lists that
|
||||
// made it through validation will be in validated_lists.
|
||||
assert!(self.pending_lists.is_empty());
|
||||
self.pending_key_count = 0;
|
||||
|
||||
tracing::debug!(
|
||||
"Validation complete, have {} validated lists",
|
||||
self.validated_lists.len()
|
||||
);
|
||||
|
||||
// Return quickly if we have no validated lists to execute. This avoids flushing the
|
||||
// executor when an idle backend hits its autoflush interval
|
||||
if self.validated_lists.is_empty() {
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// Drain `validated_lists` into the executor
|
||||
let mut executing_lists = Vec::new();
|
||||
for list in self.validated_lists.drain(..) {
|
||||
let list_path = self.conf.deletion_list_path(list.sequence);
|
||||
let objects = list.into_remote_paths();
|
||||
self.tx
|
||||
.send(DeleterMessage::Delete(objects))
|
||||
.await
|
||||
.map_err(|_| DeletionQueueError::ShuttingDown)?;
|
||||
executing_lists.push(list_path);
|
||||
}
|
||||
|
||||
self.flush_executor().await?;
|
||||
|
||||
// Erase the deletion lists whose keys have all be deleted from remote storage
|
||||
self.cleanup_lists(executing_lists).await;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
async fn flush_executor(&mut self) -> Result<(), DeletionQueueError> {
|
||||
// Flush the executor, so that all the keys referenced by these deletion lists
|
||||
// are actually removed from remote storage. This is a precondition to deleting
|
||||
// the deletion lists themselves.
|
||||
let (flush_op, rx) = FlushOp::new();
|
||||
self.tx
|
||||
.send(DeleterMessage::Flush(flush_op))
|
||||
.await
|
||||
.map_err(|_| DeletionQueueError::ShuttingDown)?;
|
||||
|
||||
rx.await.map_err(|_| DeletionQueueError::ShuttingDown)
|
||||
}
|
||||
|
||||
pub(super) async fn background(&mut self) {
|
||||
tracing::info!("Started deletion backend worker");
|
||||
|
||||
while !self.cancel.is_cancelled() {
|
||||
let msg = match tokio::time::timeout(AUTOFLUSH_INTERVAL, self.rx.recv()).await {
|
||||
Ok(Some(m)) => m,
|
||||
Ok(None) => {
|
||||
// All queue senders closed
|
||||
info!("Shutting down");
|
||||
break;
|
||||
}
|
||||
Err(_) => {
|
||||
// Timeout, we hit deadline to execute whatever we have in hand. These functions will
|
||||
// return immediately if no work is pending.
|
||||
match self.flush().await {
|
||||
Ok(()) => {}
|
||||
Err(DeletionQueueError::ShuttingDown) => {
|
||||
// If we are shutting down, then auto-flush can safely be skipped
|
||||
}
|
||||
}
|
||||
|
||||
continue;
|
||||
}
|
||||
};
|
||||
|
||||
match msg {
|
||||
ValidatorQueueMessage::Delete(list) => {
|
||||
if list.validated {
|
||||
// A pre-validated list may only be seen during recovery, if we are recovering
|
||||
// a DeletionList whose on-disk state has validated=true
|
||||
self.validated_lists.push(list)
|
||||
} else {
|
||||
self.pending_key_count += list.len();
|
||||
self.pending_lists.push(list);
|
||||
}
|
||||
|
||||
if self.pending_key_count > AUTOFLUSH_KEY_COUNT {
|
||||
match self.flush().await {
|
||||
Ok(()) => {}
|
||||
Err(DeletionQueueError::ShuttingDown) => {
|
||||
// If we are shutting down, then auto-flush can safely be skipped
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ValidatorQueueMessage::Flush(op) => {
|
||||
match self.flush().await {
|
||||
Ok(()) => {
|
||||
op.notify();
|
||||
}
|
||||
Err(DeletionQueueError::ShuttingDown) => {
|
||||
// If we fail due to shutting down, we will just drop `op` to propagate that status.
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1093,6 +1093,9 @@ components:
|
||||
remote_consistent_lsn:
|
||||
type: string
|
||||
format: hex
|
||||
remote_consistent_lsn_visible:
|
||||
type: string
|
||||
format: hex
|
||||
ancestor_timeline_id:
|
||||
type: string
|
||||
format: hex
|
||||
|
||||
@@ -5,6 +5,7 @@ use std::collections::HashMap;
|
||||
use std::sync::Arc;
|
||||
|
||||
use anyhow::{anyhow, Context, Result};
|
||||
use futures::TryFutureExt;
|
||||
use hyper::StatusCode;
|
||||
use hyper::{Body, Request, Response, Uri};
|
||||
use metrics::launch_timestamp::LaunchTimestamp;
|
||||
@@ -24,6 +25,7 @@ use super::models::{
|
||||
TimelineCreateRequest, TimelineGcRequest, TimelineInfo,
|
||||
};
|
||||
use crate::context::{DownloadBehavior, RequestContext};
|
||||
use crate::deletion_queue::DeletionQueueClient;
|
||||
use crate::metrics::{StorageTimeOperation, STORAGE_TIME_GLOBAL};
|
||||
use crate::pgdatadir_mapping::LsnForTimestamp;
|
||||
use crate::task_mgr::TaskKind;
|
||||
@@ -34,7 +36,7 @@ use crate::tenant::mgr::{
|
||||
use crate::tenant::size::ModelInputs;
|
||||
use crate::tenant::storage_layer::LayerAccessStatsReset;
|
||||
use crate::tenant::timeline::Timeline;
|
||||
use crate::tenant::{LogicalSizeCalculationCause, PageReconstructError};
|
||||
use crate::tenant::{LogicalSizeCalculationCause, PageReconstructError, TenantSharedResources};
|
||||
use crate::{config::PageServerConf, tenant::mgr};
|
||||
use crate::{disk_usage_eviction_task, tenant};
|
||||
use utils::{
|
||||
@@ -61,6 +63,7 @@ pub struct State {
|
||||
remote_storage: Option<GenericRemoteStorage>,
|
||||
broker_client: storage_broker::BrokerClientChannel,
|
||||
disk_usage_eviction_state: Arc<disk_usage_eviction_task::State>,
|
||||
deletion_queue_client: DeletionQueueClient,
|
||||
}
|
||||
|
||||
impl State {
|
||||
@@ -70,6 +73,7 @@ impl State {
|
||||
remote_storage: Option<GenericRemoteStorage>,
|
||||
broker_client: storage_broker::BrokerClientChannel,
|
||||
disk_usage_eviction_state: Arc<disk_usage_eviction_task::State>,
|
||||
deletion_queue_client: DeletionQueueClient,
|
||||
) -> anyhow::Result<Self> {
|
||||
let allowlist_routes = ["/v1/status", "/v1/doc", "/swagger.yml"]
|
||||
.iter()
|
||||
@@ -82,8 +86,17 @@ impl State {
|
||||
remote_storage,
|
||||
broker_client,
|
||||
disk_usage_eviction_state,
|
||||
deletion_queue_client,
|
||||
})
|
||||
}
|
||||
|
||||
fn tenant_resources(&self) -> TenantSharedResources {
|
||||
TenantSharedResources {
|
||||
broker_client: self.broker_client.clone(),
|
||||
remote_storage: self.remote_storage.clone(),
|
||||
deletion_queue_client: self.deletion_queue_client.clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
@@ -283,7 +296,12 @@ async fn build_timeline_info_common(
|
||||
};
|
||||
let current_physical_size = Some(timeline.layer_size_sum().await);
|
||||
let state = timeline.current_state();
|
||||
let remote_consistent_lsn = timeline.get_remote_consistent_lsn().unwrap_or(Lsn(0));
|
||||
let remote_consistent_lsn_projected = timeline
|
||||
.get_remote_consistent_lsn_projected()
|
||||
.unwrap_or(Lsn(0));
|
||||
let remote_consistent_lsn_visible = timeline
|
||||
.get_remote_consistent_lsn_visible()
|
||||
.unwrap_or(Lsn(0));
|
||||
|
||||
let walreceiver_status = timeline.walreceiver_status();
|
||||
|
||||
@@ -293,7 +311,8 @@ async fn build_timeline_info_common(
|
||||
ancestor_timeline_id,
|
||||
ancestor_lsn,
|
||||
disk_consistent_lsn: timeline.get_disk_consistent_lsn(),
|
||||
remote_consistent_lsn,
|
||||
remote_consistent_lsn: remote_consistent_lsn_projected,
|
||||
remote_consistent_lsn_visible,
|
||||
last_record_lsn,
|
||||
prev_record_lsn: Some(timeline.get_prev_record_lsn()),
|
||||
latest_gc_cutoff_lsn: *timeline.get_latest_gc_cutoff_lsn(),
|
||||
@@ -492,24 +511,23 @@ async fn tenant_attach_handler(
|
||||
|
||||
let generation = get_request_generation(state, maybe_body.as_ref().and_then(|r| r.generation))?;
|
||||
|
||||
if let Some(remote_storage) = &state.remote_storage {
|
||||
mgr::attach_tenant(
|
||||
state.conf,
|
||||
tenant_id,
|
||||
generation,
|
||||
tenant_conf,
|
||||
state.broker_client.clone(),
|
||||
remote_storage.clone(),
|
||||
&ctx,
|
||||
)
|
||||
.instrument(info_span!("tenant_attach", %tenant_id))
|
||||
.await?;
|
||||
} else {
|
||||
if state.remote_storage.is_none() {
|
||||
return Err(ApiError::BadRequest(anyhow!(
|
||||
"attach_tenant is not possible because pageserver was configured without remote storage"
|
||||
)));
|
||||
}
|
||||
|
||||
mgr::attach_tenant(
|
||||
state.conf,
|
||||
tenant_id,
|
||||
generation,
|
||||
tenant_conf,
|
||||
state.tenant_resources(),
|
||||
&ctx,
|
||||
)
|
||||
.instrument(info_span!("tenant_attach", %tenant_id))
|
||||
.await?;
|
||||
|
||||
json_response(StatusCode::ACCEPTED, ())
|
||||
}
|
||||
|
||||
@@ -570,6 +588,7 @@ async fn tenant_load_handler(
|
||||
generation,
|
||||
state.broker_client.clone(),
|
||||
state.remote_storage.clone(),
|
||||
state.deletion_queue_client.clone(),
|
||||
&ctx,
|
||||
)
|
||||
.instrument(info_span!("load", %tenant_id))
|
||||
@@ -911,8 +930,7 @@ async fn tenant_create_handler(
|
||||
tenant_conf,
|
||||
target_tenant_id,
|
||||
generation,
|
||||
state.broker_client.clone(),
|
||||
state.remote_storage.clone(),
|
||||
state.tenant_resources(),
|
||||
&ctx,
|
||||
)
|
||||
.instrument(info_span!("tenant_create", tenant_id = %target_tenant_id))
|
||||
@@ -1129,6 +1147,39 @@ async fn timeline_download_remote_layers_handler_get(
|
||||
json_response(StatusCode::OK, info)
|
||||
}
|
||||
|
||||
async fn deletion_queue_flush(
|
||||
r: Request<Body>,
|
||||
cancel: CancellationToken,
|
||||
) -> Result<Response<Body>, ApiError> {
|
||||
let state = get_state(&r);
|
||||
|
||||
if state.remote_storage.is_none() {
|
||||
// Nothing to do if remote storage is disabled.
|
||||
return json_response(StatusCode::OK, ());
|
||||
}
|
||||
|
||||
let execute = parse_query_param(&r, "execute")?.unwrap_or(false);
|
||||
|
||||
let flush = async {
|
||||
if execute {
|
||||
state.deletion_queue_client.flush_execute().await
|
||||
} else {
|
||||
state.deletion_queue_client.flush().await
|
||||
}
|
||||
}
|
||||
// DeletionQueueError's only case is shutting down.
|
||||
.map_err(|_| ApiError::ShuttingDown);
|
||||
|
||||
tokio::select! {
|
||||
res = flush => {
|
||||
res.map(|()| json_response(StatusCode::OK, ()))?
|
||||
}
|
||||
_ = cancel.cancelled() => {
|
||||
Err(ApiError::ShuttingDown)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async fn active_timeline_of_active_tenant(
|
||||
tenant_id: TenantId,
|
||||
timeline_id: TimelineId,
|
||||
@@ -1463,6 +1514,9 @@ pub fn make_router(
|
||||
.put("/v1/disk_usage_eviction/run", |r| {
|
||||
api_handler(r, disk_usage_eviction_run)
|
||||
})
|
||||
.put("/v1/deletion_queue/flush", |r| {
|
||||
api_handler(r, deletion_queue_flush)
|
||||
})
|
||||
.put("/v1/tenant/:tenant_id/break", |r| {
|
||||
testing_api_handler("set tenant state to broken", r, handle_tenant_break)
|
||||
})
|
||||
|
||||
@@ -3,7 +3,8 @@ pub mod basebackup;
|
||||
pub mod config;
|
||||
pub mod consumption_metrics;
|
||||
pub mod context;
|
||||
mod control_plane_client;
|
||||
pub mod control_plane_client;
|
||||
pub mod deletion_queue;
|
||||
pub mod disk_usage_eviction_task;
|
||||
pub mod http;
|
||||
pub mod import_datadir;
|
||||
@@ -27,6 +28,7 @@ pub mod failpoint_support;
|
||||
use std::path::Path;
|
||||
|
||||
use crate::task_mgr::TaskKind;
|
||||
use deletion_queue::DeletionQueue;
|
||||
use tracing::info;
|
||||
|
||||
/// Current storage format version
|
||||
@@ -48,8 +50,8 @@ static ZERO_PAGE: bytes::Bytes = bytes::Bytes::from_static(&[0u8; 8192]);
|
||||
|
||||
pub use crate::metrics::preinitialize_metrics;
|
||||
|
||||
#[tracing::instrument]
|
||||
pub async fn shutdown_pageserver(exit_code: i32) {
|
||||
#[tracing::instrument(skip_all, fields(%exit_code))]
|
||||
pub async fn shutdown_pageserver(deletion_queue: Option<DeletionQueue>, exit_code: i32) {
|
||||
use std::time::Duration;
|
||||
// Shut down the libpq endpoint task. This prevents new connections from
|
||||
// being accepted.
|
||||
@@ -77,6 +79,11 @@ pub async fn shutdown_pageserver(exit_code: i32) {
|
||||
)
|
||||
.await;
|
||||
|
||||
// Best effort to persist any outstanding deletions, to avoid leaking objects
|
||||
if let Some(mut deletion_queue) = deletion_queue {
|
||||
deletion_queue.shutdown(Duration::from_secs(5)).await;
|
||||
}
|
||||
|
||||
// Shut down the HTTP endpoint last, so that you can still check the server's
|
||||
// status while it's shutting down.
|
||||
// FIXME: We should probably stop accepting commands like attach/detach earlier.
|
||||
|
||||
@@ -291,6 +291,14 @@ static RESIDENT_PHYSICAL_SIZE: Lazy<UIntGaugeVec> = Lazy::new(|| {
|
||||
.expect("failed to define a metric")
|
||||
});
|
||||
|
||||
pub(crate) static RESIDENT_PHYSICAL_SIZE_GLOBAL: Lazy<UIntGauge> = Lazy::new(|| {
|
||||
register_uint_gauge!(
|
||||
"pageserver_resident_physical_size_global",
|
||||
"Like `pageserver_resident_physical_size`, but without tenant/timeline dimensions."
|
||||
)
|
||||
.expect("failed to define a metric")
|
||||
});
|
||||
|
||||
static REMOTE_PHYSICAL_SIZE: Lazy<UIntGaugeVec> = Lazy::new(|| {
|
||||
register_uint_gauge_vec!(
|
||||
"pageserver_remote_physical_size",
|
||||
@@ -301,6 +309,14 @@ static REMOTE_PHYSICAL_SIZE: Lazy<UIntGaugeVec> = Lazy::new(|| {
|
||||
.expect("failed to define a metric")
|
||||
});
|
||||
|
||||
static REMOTE_PHYSICAL_SIZE_GLOBAL: Lazy<UIntGauge> = Lazy::new(|| {
|
||||
register_uint_gauge!(
|
||||
"pageserver_remote_physical_size_global",
|
||||
"Like `pageserver_remote_physical_size`, but without tenant/timeline dimensions."
|
||||
)
|
||||
.expect("failed to define a metric")
|
||||
});
|
||||
|
||||
pub(crate) static REMOTE_ONDEMAND_DOWNLOADED_LAYERS: Lazy<IntCounter> = Lazy::new(|| {
|
||||
register_int_counter!(
|
||||
"pageserver_remote_ondemand_downloaded_layers_total",
|
||||
@@ -887,6 +903,54 @@ static REMOTE_TIMELINE_CLIENT_BYTES_FINISHED_COUNTER: Lazy<IntCounterVec> = Lazy
|
||||
.expect("failed to define a metric")
|
||||
});
|
||||
|
||||
pub(crate) struct DeletionQueueMetrics {
|
||||
pub(crate) keys_submitted: IntCounter,
|
||||
pub(crate) keys_dropped: IntCounter,
|
||||
pub(crate) keys_executed: IntCounter,
|
||||
pub(crate) dropped_lsn_updates: IntCounter,
|
||||
pub(crate) unexpected_errors: IntCounter,
|
||||
pub(crate) remote_errors: IntCounterVec,
|
||||
}
|
||||
pub(crate) static DELETION_QUEUE: Lazy<DeletionQueueMetrics> = Lazy::new(|| {
|
||||
DeletionQueueMetrics{
|
||||
|
||||
keys_submitted: register_int_counter!(
|
||||
"pageserver_deletion_queue_submitted_total",
|
||||
"Number of objects submitted for deletion"
|
||||
)
|
||||
.expect("failed to define a metric"),
|
||||
|
||||
keys_dropped: register_int_counter!(
|
||||
"pageserver_deletion_queue_dropped_total",
|
||||
"Number of object deletions dropped due to stale generation."
|
||||
)
|
||||
.expect("failed to define a metric"),
|
||||
|
||||
keys_executed: register_int_counter!(
|
||||
"pageserver_deletion_queue_executed_total",
|
||||
"Number of objects deleted. Only includes objects that we actually deleted, sum with pageserver_deletion_queue_dropped_total for the total number of keys processed."
|
||||
)
|
||||
.expect("failed to define a metric"),
|
||||
|
||||
dropped_lsn_updates: register_int_counter!(
|
||||
"pageserver_deletion_queue_dropped_lsn_updates_total",
|
||||
"Updates to remote_consistent_lsn dropped due to stale generation number."
|
||||
)
|
||||
.expect("failed to define a metric"),
|
||||
unexpected_errors: register_int_counter!(
|
||||
"pageserver_deletion_queue_unexpected_errors_total",
|
||||
"Number of unexpected condiions that may stall the queue: any value above zero is unexpected."
|
||||
)
|
||||
.expect("failed to define a metric"),
|
||||
remote_errors: register_int_counter_vec!(
|
||||
"pageserver_deletion_queue_remote_errors_total",
|
||||
"Retryable remote I/O errors while executing deletions, for example 503 responses to DeleteObjects",
|
||||
&["op_kind"],
|
||||
)
|
||||
.expect("failed to define a metric")
|
||||
}
|
||||
});
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub enum RemoteOpKind {
|
||||
Upload,
|
||||
@@ -1161,7 +1225,7 @@ pub struct TimelineMetrics {
|
||||
pub load_layer_map_histo: StorageTimeMetrics,
|
||||
pub garbage_collect_histo: StorageTimeMetrics,
|
||||
pub last_record_gauge: IntGauge,
|
||||
pub resident_physical_size_gauge: UIntGauge,
|
||||
resident_physical_size_gauge: UIntGauge,
|
||||
/// copy of LayeredTimeline.current_logical_size
|
||||
pub current_logical_size_gauge: UIntGauge,
|
||||
pub num_persistent_files_created: IntCounter,
|
||||
@@ -1239,10 +1303,29 @@ impl TimelineMetrics {
|
||||
}
|
||||
|
||||
pub fn record_new_file_metrics(&self, sz: u64) {
|
||||
self.resident_physical_size_gauge.add(sz);
|
||||
self.resident_physical_size_add(sz);
|
||||
self.num_persistent_files_created.inc_by(1);
|
||||
self.persistent_bytes_written.inc_by(sz);
|
||||
}
|
||||
|
||||
pub fn resident_physical_size_sub(&self, sz: u64) {
|
||||
self.resident_physical_size_gauge.sub(sz);
|
||||
crate::metrics::RESIDENT_PHYSICAL_SIZE_GLOBAL.sub(sz);
|
||||
}
|
||||
|
||||
pub fn resident_physical_size_add(&self, sz: u64) {
|
||||
self.resident_physical_size_gauge.add(sz);
|
||||
crate::metrics::RESIDENT_PHYSICAL_SIZE_GLOBAL.add(sz);
|
||||
}
|
||||
|
||||
pub fn resident_physical_size_set(&self, sz: u64) {
|
||||
self.resident_physical_size_gauge.set(sz);
|
||||
crate::metrics::RESIDENT_PHYSICAL_SIZE_GLOBAL.set(sz);
|
||||
}
|
||||
|
||||
pub fn resident_physical_size_get(&self) -> u64 {
|
||||
self.resident_physical_size_gauge.get()
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for TimelineMetrics {
|
||||
@@ -1250,7 +1333,10 @@ impl Drop for TimelineMetrics {
|
||||
let tenant_id = &self.tenant_id;
|
||||
let timeline_id = &self.timeline_id;
|
||||
let _ = LAST_RECORD_LSN.remove_label_values(&[tenant_id, timeline_id]);
|
||||
let _ = RESIDENT_PHYSICAL_SIZE.remove_label_values(&[tenant_id, timeline_id]);
|
||||
{
|
||||
RESIDENT_PHYSICAL_SIZE_GLOBAL.sub(self.resident_physical_size_get());
|
||||
let _ = RESIDENT_PHYSICAL_SIZE.remove_label_values(&[tenant_id, timeline_id]);
|
||||
}
|
||||
let _ = CURRENT_LOGICAL_SIZE.remove_label_values(&[tenant_id, timeline_id]);
|
||||
let _ = NUM_PERSISTENT_FILES_CREATED.remove_label_values(&[tenant_id, timeline_id]);
|
||||
let _ = PERSISTENT_BYTES_WRITTEN.remove_label_values(&[tenant_id, timeline_id]);
|
||||
@@ -1304,10 +1390,43 @@ use std::time::{Duration, Instant};
|
||||
use crate::context::{PageContentKind, RequestContext};
|
||||
use crate::task_mgr::TaskKind;
|
||||
|
||||
/// Maintain a per timeline gauge in addition to the global gauge.
|
||||
struct PerTimelineRemotePhysicalSizeGauge {
|
||||
last_set: u64,
|
||||
gauge: UIntGauge,
|
||||
}
|
||||
|
||||
impl PerTimelineRemotePhysicalSizeGauge {
|
||||
fn new(per_timeline_gauge: UIntGauge) -> Self {
|
||||
Self {
|
||||
last_set: per_timeline_gauge.get(),
|
||||
gauge: per_timeline_gauge,
|
||||
}
|
||||
}
|
||||
fn set(&mut self, sz: u64) {
|
||||
self.gauge.set(sz);
|
||||
if sz < self.last_set {
|
||||
REMOTE_PHYSICAL_SIZE_GLOBAL.sub(self.last_set - sz);
|
||||
} else {
|
||||
REMOTE_PHYSICAL_SIZE_GLOBAL.add(sz - self.last_set);
|
||||
};
|
||||
self.last_set = sz;
|
||||
}
|
||||
fn get(&self) -> u64 {
|
||||
self.gauge.get()
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for PerTimelineRemotePhysicalSizeGauge {
|
||||
fn drop(&mut self) {
|
||||
REMOTE_PHYSICAL_SIZE_GLOBAL.sub(self.last_set);
|
||||
}
|
||||
}
|
||||
|
||||
pub struct RemoteTimelineClientMetrics {
|
||||
tenant_id: String,
|
||||
timeline_id: String,
|
||||
remote_physical_size_gauge: Mutex<Option<UIntGauge>>,
|
||||
remote_physical_size_gauge: Mutex<Option<PerTimelineRemotePhysicalSizeGauge>>,
|
||||
calls_unfinished_gauge: Mutex<HashMap<(&'static str, &'static str), IntGauge>>,
|
||||
bytes_started_counter: Mutex<HashMap<(&'static str, &'static str), IntCounter>>,
|
||||
bytes_finished_counter: Mutex<HashMap<(&'static str, &'static str), IntCounter>>,
|
||||
@@ -1325,18 +1444,24 @@ impl RemoteTimelineClientMetrics {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn remote_physical_size_gauge(&self) -> UIntGauge {
|
||||
pub(crate) fn remote_physical_size_set(&self, sz: u64) {
|
||||
let mut guard = self.remote_physical_size_gauge.lock().unwrap();
|
||||
guard
|
||||
.get_or_insert_with(|| {
|
||||
let gauge = guard.get_or_insert_with(|| {
|
||||
PerTimelineRemotePhysicalSizeGauge::new(
|
||||
REMOTE_PHYSICAL_SIZE
|
||||
.get_metric_with_label_values(&[
|
||||
&self.tenant_id.to_string(),
|
||||
&self.timeline_id.to_string(),
|
||||
])
|
||||
.unwrap()
|
||||
})
|
||||
.clone()
|
||||
.unwrap(),
|
||||
)
|
||||
});
|
||||
gauge.set(sz);
|
||||
}
|
||||
|
||||
pub(crate) fn remote_physical_size_get(&self) -> u64 {
|
||||
let guard = self.remote_physical_size_gauge.lock().unwrap();
|
||||
guard.as_ref().map(|gauge| gauge.get()).unwrap_or(0)
|
||||
}
|
||||
|
||||
pub fn remote_operation_time(
|
||||
@@ -1675,6 +1800,9 @@ pub fn preinitialize_metrics() {
|
||||
Lazy::force(c);
|
||||
});
|
||||
|
||||
// Deletion queue stats
|
||||
Lazy::force(&DELETION_QUEUE);
|
||||
|
||||
// countervecs
|
||||
[&BACKGROUND_LOOP_PERIOD_OVERRUN_COUNT]
|
||||
.into_iter()
|
||||
|
||||
@@ -37,7 +37,7 @@ impl Key {
|
||||
| self.field6 as i128
|
||||
}
|
||||
|
||||
pub fn from_i128(x: i128) -> Self {
|
||||
pub const fn from_i128(x: i128) -> Self {
|
||||
Key {
|
||||
field1: ((x >> 120) & 0xf) as u8,
|
||||
field2: ((x >> 104) & 0xFFFF) as u32,
|
||||
|
||||
@@ -456,7 +456,7 @@ async fn task_finish(
|
||||
}
|
||||
|
||||
if shutdown_process {
|
||||
shutdown_pageserver(1).await;
|
||||
shutdown_pageserver(None, 1).await;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -57,6 +57,7 @@ use self::timeline::EvictionTaskTenantState;
|
||||
use self::timeline::TimelineResources;
|
||||
use crate::config::PageServerConf;
|
||||
use crate::context::{DownloadBehavior, RequestContext};
|
||||
use crate::deletion_queue::DeletionQueueClient;
|
||||
use crate::import_datadir;
|
||||
use crate::is_uninit_mark;
|
||||
use crate::metrics::TENANT_ACTIVATION;
|
||||
@@ -117,7 +118,7 @@ mod span;
|
||||
|
||||
pub mod metadata;
|
||||
mod par_fsync;
|
||||
mod remote_timeline_client;
|
||||
pub mod remote_timeline_client;
|
||||
pub mod storage_layer;
|
||||
|
||||
pub mod config;
|
||||
@@ -157,6 +158,7 @@ pub const TENANT_DELETED_MARKER_FILE_NAME: &str = "deleted";
|
||||
pub struct TenantSharedResources {
|
||||
pub broker_client: storage_broker::BrokerClientChannel,
|
||||
pub remote_storage: Option<GenericRemoteStorage>,
|
||||
pub deletion_queue_client: DeletionQueueClient,
|
||||
}
|
||||
|
||||
///
|
||||
@@ -197,6 +199,9 @@ pub struct Tenant {
|
||||
// provides access to timeline data sitting in the remote storage
|
||||
pub(crate) remote_storage: Option<GenericRemoteStorage>,
|
||||
|
||||
// Access to global deletion queue for when this tenant wants to schedule a deletion
|
||||
deletion_queue_client: DeletionQueueClient,
|
||||
|
||||
/// Cached logical sizes updated updated on each [`Tenant::gather_size_inputs`].
|
||||
cached_logical_sizes: tokio::sync::Mutex<HashMap<(TimelineId, Lsn), u64>>,
|
||||
cached_synthetic_tenant_size: Arc<AtomicU64>,
|
||||
@@ -523,15 +528,20 @@ impl Tenant {
|
||||
conf: &'static PageServerConf,
|
||||
tenant_id: TenantId,
|
||||
generation: Generation,
|
||||
broker_client: storage_broker::BrokerClientChannel,
|
||||
resources: TenantSharedResources,
|
||||
tenants: &'static tokio::sync::RwLock<TenantsMap>,
|
||||
remote_storage: GenericRemoteStorage,
|
||||
ctx: &RequestContext,
|
||||
) -> anyhow::Result<Arc<Tenant>> {
|
||||
// TODO dedup with spawn_load
|
||||
let tenant_conf =
|
||||
Self::load_tenant_config(conf, &tenant_id).context("load tenant config")?;
|
||||
|
||||
let TenantSharedResources {
|
||||
broker_client,
|
||||
remote_storage,
|
||||
deletion_queue_client,
|
||||
} = resources;
|
||||
|
||||
let wal_redo_manager = Arc::new(PostgresRedoManager::new(conf, tenant_id));
|
||||
let tenant = Arc::new(Tenant::new(
|
||||
TenantState::Attaching,
|
||||
@@ -540,7 +550,8 @@ impl Tenant {
|
||||
wal_redo_manager,
|
||||
tenant_id,
|
||||
generation,
|
||||
Some(remote_storage.clone()),
|
||||
remote_storage.clone(),
|
||||
deletion_queue_client,
|
||||
));
|
||||
|
||||
// Do all the hard work in the background
|
||||
@@ -571,7 +582,7 @@ impl Tenant {
|
||||
let pending_deletion = {
|
||||
match DeleteTenantFlow::should_resume_deletion(
|
||||
conf,
|
||||
Some(&remote_storage),
|
||||
remote_storage.as_ref(),
|
||||
&tenant_clone,
|
||||
)
|
||||
.await
|
||||
@@ -660,6 +671,7 @@ impl Tenant {
|
||||
for timeline_id in remote_timeline_ids {
|
||||
let client = RemoteTimelineClient::new(
|
||||
remote_storage.clone(),
|
||||
self.deletion_queue_client.clone(),
|
||||
self.conf,
|
||||
self.tenant_id,
|
||||
timeline_id,
|
||||
@@ -726,6 +738,7 @@ impl Tenant {
|
||||
remote_metadata,
|
||||
TimelineResources {
|
||||
remote_client: Some(remote_client),
|
||||
deletion_queue_client: self.deletion_queue_client.clone(),
|
||||
},
|
||||
ctx,
|
||||
)
|
||||
@@ -750,6 +763,7 @@ impl Tenant {
|
||||
timeline_id,
|
||||
&index_part.metadata,
|
||||
Some(remote_timeline_client),
|
||||
self.deletion_queue_client.clone(),
|
||||
None,
|
||||
)
|
||||
.await
|
||||
@@ -851,6 +865,7 @@ impl Tenant {
|
||||
tenant_id,
|
||||
Generation::broken(),
|
||||
None,
|
||||
DeletionQueueClient::broken(),
|
||||
))
|
||||
}
|
||||
|
||||
@@ -895,6 +910,7 @@ impl Tenant {
|
||||
tenant_id,
|
||||
generation,
|
||||
remote_storage.clone(),
|
||||
resources.deletion_queue_client.clone(),
|
||||
);
|
||||
let tenant = Arc::new(tenant);
|
||||
|
||||
@@ -1302,6 +1318,7 @@ impl Tenant {
|
||||
timeline_id,
|
||||
&local_metadata,
|
||||
Some(remote_client),
|
||||
self.deletion_queue_client.clone(),
|
||||
init_order,
|
||||
)
|
||||
.await
|
||||
@@ -1351,6 +1368,7 @@ impl Tenant {
|
||||
timeline_id,
|
||||
&local_metadata,
|
||||
None,
|
||||
self.deletion_queue_client.clone(),
|
||||
init_order,
|
||||
)
|
||||
.await
|
||||
@@ -2242,6 +2260,9 @@ impl Tenant {
|
||||
Ok(timeline)
|
||||
}
|
||||
|
||||
// Allow too_many_arguments because a constructor's argument list naturally grows with the
|
||||
// number of attributes in the struct: breaking these out into a builder wouldn't be helpful.
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
state: TenantState,
|
||||
conf: &'static PageServerConf,
|
||||
@@ -2250,6 +2271,7 @@ impl Tenant {
|
||||
tenant_id: TenantId,
|
||||
generation: Generation,
|
||||
remote_storage: Option<GenericRemoteStorage>,
|
||||
deletion_queue_client: DeletionQueueClient,
|
||||
) -> Tenant {
|
||||
let (state, mut rx) = watch::channel(state);
|
||||
|
||||
@@ -2317,6 +2339,7 @@ impl Tenant {
|
||||
gc_cs: tokio::sync::Mutex::new(()),
|
||||
walredo_mgr,
|
||||
remote_storage,
|
||||
deletion_queue_client,
|
||||
state,
|
||||
cached_logical_sizes: tokio::sync::Mutex::new(HashMap::new()),
|
||||
cached_synthetic_tenant_size: Arc::new(AtomicU64::new(0)),
|
||||
@@ -2856,6 +2879,7 @@ impl Tenant {
|
||||
let remote_client = if let Some(remote_storage) = self.remote_storage.as_ref() {
|
||||
let remote_client = RemoteTimelineClient::new(
|
||||
remote_storage.clone(),
|
||||
self.deletion_queue_client.clone(),
|
||||
self.conf,
|
||||
self.tenant_id,
|
||||
timeline_id,
|
||||
@@ -2866,7 +2890,10 @@ impl Tenant {
|
||||
None
|
||||
};
|
||||
|
||||
TimelineResources { remote_client }
|
||||
TimelineResources {
|
||||
remote_client,
|
||||
deletion_queue_client: self.deletion_queue_client.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates intermediate timeline structure and its files.
|
||||
@@ -3322,6 +3349,7 @@ pub mod harness {
|
||||
use utils::logging;
|
||||
use utils::lsn::Lsn;
|
||||
|
||||
use crate::deletion_queue::mock::MockDeletionQueue;
|
||||
use crate::{
|
||||
config::PageServerConf,
|
||||
repository::Key,
|
||||
@@ -3383,6 +3411,7 @@ pub mod harness {
|
||||
pub generation: Generation,
|
||||
pub remote_storage: GenericRemoteStorage,
|
||||
pub remote_fs_dir: PathBuf,
|
||||
pub deletion_queue: MockDeletionQueue,
|
||||
}
|
||||
|
||||
static LOG_HANDLE: OnceCell<()> = OnceCell::new();
|
||||
@@ -3431,6 +3460,7 @@ pub mod harness {
|
||||
storage: RemoteStorageKind::LocalFs(remote_fs_dir.clone()),
|
||||
};
|
||||
let remote_storage = GenericRemoteStorage::from_config(&config).unwrap();
|
||||
let deletion_queue = MockDeletionQueue::new(Some(remote_storage.clone()));
|
||||
|
||||
Ok(Self {
|
||||
conf,
|
||||
@@ -3439,6 +3469,7 @@ pub mod harness {
|
||||
generation: Generation::new(0xdeadbeef),
|
||||
remote_storage,
|
||||
remote_fs_dir,
|
||||
deletion_queue,
|
||||
})
|
||||
}
|
||||
|
||||
@@ -3463,6 +3494,7 @@ pub mod harness {
|
||||
self.tenant_id,
|
||||
self.generation,
|
||||
Some(self.remote_storage.clone()),
|
||||
self.deletion_queue.new_client(),
|
||||
));
|
||||
tenant
|
||||
.load(None, ctx)
|
||||
@@ -4193,7 +4225,8 @@ mod tests {
|
||||
//
|
||||
#[tokio::test]
|
||||
async fn test_bulk_insert() -> anyhow::Result<()> {
|
||||
let (tenant, ctx) = TenantHarness::create("test_bulk_insert")?.load().await;
|
||||
let harness = TenantHarness::create("test_bulk_insert")?;
|
||||
let (tenant, ctx) = harness.load().await;
|
||||
let tline = tenant
|
||||
.create_test_timeline(TIMELINE_ID, Lsn(0x08), DEFAULT_PG_VERSION, &ctx)
|
||||
.await?;
|
||||
@@ -4240,7 +4273,8 @@ mod tests {
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_random_updates() -> anyhow::Result<()> {
|
||||
let (tenant, ctx) = TenantHarness::create("test_random_updates")?.load().await;
|
||||
let harness = TenantHarness::create("test_random_updates")?;
|
||||
let (tenant, ctx) = harness.load().await;
|
||||
let tline = tenant
|
||||
.create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
|
||||
.await?;
|
||||
|
||||
@@ -20,7 +20,10 @@ use utils::crashsafe;
|
||||
|
||||
use crate::config::PageServerConf;
|
||||
use crate::context::{DownloadBehavior, RequestContext};
|
||||
use crate::control_plane_client::ControlPlaneClient;
|
||||
use crate::control_plane_client::{
|
||||
ControlPlaneClient, ControlPlaneGenerationsApi, RetryForeverError,
|
||||
};
|
||||
use crate::deletion_queue::DeletionQueueClient;
|
||||
use crate::task_mgr::{self, TaskKind};
|
||||
use crate::tenant::config::TenantConfOpt;
|
||||
use crate::tenant::delete::DeleteTenantFlow;
|
||||
@@ -116,7 +119,23 @@ pub async fn init_tenant_mgr(
|
||||
|
||||
// If we are configured to use the control plane API, then it is the source of truth for what tenants to load.
|
||||
let tenant_generations = if let Some(client) = ControlPlaneClient::new(conf, &cancel) {
|
||||
Some(client.re_attach().await?)
|
||||
let result = match client.re_attach().await {
|
||||
Ok(tenants) => tenants,
|
||||
Err(RetryForeverError::ShuttingDown) => {
|
||||
anyhow::bail!("Shut down while waiting for control plane re-attach response")
|
||||
}
|
||||
};
|
||||
|
||||
// The deletion queue needs to know about the startup attachment state to decide which (if any) stored
|
||||
// deletion list entries may still be valid. We provide that by pushing a recovery operation into
|
||||
// the queue. Sequential processing of te queue ensures that recovery is done before any new tenant deletions
|
||||
// are processed, even though we don't block on recovery completing here.
|
||||
resources
|
||||
.deletion_queue_client
|
||||
.recover(result.clone())
|
||||
.await?;
|
||||
|
||||
Some(result)
|
||||
} else {
|
||||
info!("Control plane API not configured, tenant generations are disabled");
|
||||
None
|
||||
@@ -285,29 +304,21 @@ pub(crate) fn schedule_local_tenant_processing(
|
||||
|
||||
let tenant = if conf.tenant_attaching_mark_file_path(&tenant_id).exists() {
|
||||
info!("tenant {tenant_id} has attaching mark file, resuming its attach operation");
|
||||
if let Some(remote_storage) = resources.remote_storage {
|
||||
match Tenant::spawn_attach(
|
||||
conf,
|
||||
tenant_id,
|
||||
generation,
|
||||
resources.broker_client,
|
||||
tenants,
|
||||
remote_storage,
|
||||
ctx,
|
||||
) {
|
||||
Ok(tenant) => tenant,
|
||||
Err(e) => {
|
||||
error!("Failed to spawn_attach tenant {tenant_id}, reason: {e:#}");
|
||||
Tenant::create_broken_tenant(conf, tenant_id, format!("{e:#}"))
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if resources.remote_storage.is_none() {
|
||||
warn!("tenant {tenant_id} has attaching mark file, but pageserver has no remote storage configured");
|
||||
Tenant::create_broken_tenant(
|
||||
conf,
|
||||
tenant_id,
|
||||
"attaching mark file present but no remote storage configured".to_string(),
|
||||
)
|
||||
} else {
|
||||
match Tenant::spawn_attach(conf, tenant_id, generation, resources, tenants, ctx) {
|
||||
Ok(tenant) => tenant,
|
||||
Err(e) => {
|
||||
error!("Failed to spawn_attach tenant {tenant_id}, reason: {e:#}");
|
||||
Tenant::create_broken_tenant(conf, tenant_id, format!("{e:#}"))
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
info!("tenant {tenant_id} is assumed to be loadable, starting load operation");
|
||||
@@ -438,8 +449,7 @@ pub async fn create_tenant(
|
||||
tenant_conf: TenantConfOpt,
|
||||
tenant_id: TenantId,
|
||||
generation: Generation,
|
||||
broker_client: storage_broker::BrokerClientChannel,
|
||||
remote_storage: Option<GenericRemoteStorage>,
|
||||
resources: TenantSharedResources,
|
||||
ctx: &RequestContext,
|
||||
) -> Result<Arc<Tenant>, TenantMapInsertError> {
|
||||
tenant_map_insert(tenant_id, || async {
|
||||
@@ -450,13 +460,9 @@ pub async fn create_tenant(
|
||||
// TODO: tenant directory remains on disk if we bail out from here on.
|
||||
// See https://github.com/neondatabase/neon/issues/4233
|
||||
|
||||
let tenant_resources = TenantSharedResources {
|
||||
broker_client,
|
||||
remote_storage,
|
||||
};
|
||||
let created_tenant =
|
||||
schedule_local_tenant_processing(conf, tenant_id, &tenant_directory,
|
||||
generation, tenant_resources, None, &TENANTS, ctx)?;
|
||||
generation, resources, None, &TENANTS, ctx)?;
|
||||
// TODO: tenant object & its background loops remain, untracked in tenant map, if we fail here.
|
||||
// See https://github.com/neondatabase/neon/issues/4233
|
||||
|
||||
@@ -622,6 +628,7 @@ pub async fn load_tenant(
|
||||
generation: Generation,
|
||||
broker_client: storage_broker::BrokerClientChannel,
|
||||
remote_storage: Option<GenericRemoteStorage>,
|
||||
deletion_queue_client: DeletionQueueClient,
|
||||
ctx: &RequestContext,
|
||||
) -> Result<(), TenantMapInsertError> {
|
||||
tenant_map_insert(tenant_id, || async {
|
||||
@@ -635,6 +642,7 @@ pub async fn load_tenant(
|
||||
let resources = TenantSharedResources {
|
||||
broker_client,
|
||||
remote_storage,
|
||||
deletion_queue_client
|
||||
};
|
||||
let new_tenant = schedule_local_tenant_processing(conf, tenant_id, &tenant_path, generation, resources, None, &TENANTS, ctx)
|
||||
.with_context(|| {
|
||||
@@ -702,8 +710,7 @@ pub async fn attach_tenant(
|
||||
tenant_id: TenantId,
|
||||
generation: Generation,
|
||||
tenant_conf: TenantConfOpt,
|
||||
broker_client: storage_broker::BrokerClientChannel,
|
||||
remote_storage: GenericRemoteStorage,
|
||||
resources: TenantSharedResources,
|
||||
ctx: &RequestContext,
|
||||
) -> Result<(), TenantMapInsertError> {
|
||||
tenant_map_insert(tenant_id, || async {
|
||||
@@ -718,10 +725,7 @@ pub async fn attach_tenant(
|
||||
.context("check for attach marker file existence")?;
|
||||
anyhow::ensure!(marker_file_exists, "create_tenant_files should have created the attach marker file");
|
||||
|
||||
let resources = TenantSharedResources {
|
||||
broker_client,
|
||||
remote_storage: Some(remote_storage),
|
||||
};
|
||||
|
||||
let attached_tenant = schedule_local_tenant_processing(conf, tenant_id, &tenant_dir, generation, resources, None, &TENANTS, ctx)?;
|
||||
// TODO: tenant object & its background loops remain, untracked in tenant map, if we fail here.
|
||||
// See https://github.com/neondatabase/neon/issues/4233
|
||||
|
||||
@@ -116,8 +116,12 @@
|
||||
//! # Completion
|
||||
//!
|
||||
//! Once an operation has completed, we update
|
||||
//! [`UploadQueueInitialized::last_uploaded_consistent_lsn`] which indicates
|
||||
//! to safekeepers that they can delete the WAL up to that LSN.
|
||||
//! [`UploadQueueInitialized::projected_remote_consistent_lsn`] immediately,
|
||||
//! and submit a request through the DeletionQueue to update
|
||||
//! [`UploadQueueInitialized::visible_remote_consistent_lsn`] after it has
|
||||
//! validated that our generation is not stale. It is this visible value
|
||||
//! that is advertized to safekeepers as a signal that that they can
|
||||
//! delete the WAL up to that LSN.
|
||||
//!
|
||||
//! The [`RemoteTimelineClient::wait_completion`] method can be used to wait
|
||||
//! for all pending operations to complete. It does not prevent more
|
||||
@@ -200,7 +204,6 @@
|
||||
//! [`Tenant::timeline_init_and_sync`]: super::Tenant::timeline_init_and_sync
|
||||
//! [`Timeline::load_layer_map`]: super::Timeline::load_layer_map
|
||||
|
||||
mod delete;
|
||||
mod download;
|
||||
pub mod index;
|
||||
mod upload;
|
||||
@@ -226,6 +229,7 @@ use tracing::{debug, error, info, instrument, warn};
|
||||
use tracing::{info_span, Instrument};
|
||||
use utils::lsn::Lsn;
|
||||
|
||||
use crate::deletion_queue::DeletionQueueClient;
|
||||
use crate::metrics::{
|
||||
MeasureRemoteOp, RemoteOpFileKind, RemoteOpKind, RemoteTimelineClientMetrics,
|
||||
RemoteTimelineClientMetricsCallTrackSize, REMOTE_ONDEMAND_DOWNLOADED_BYTES,
|
||||
@@ -324,6 +328,8 @@ pub struct RemoteTimelineClient {
|
||||
metrics: Arc<RemoteTimelineClientMetrics>,
|
||||
|
||||
storage_impl: GenericRemoteStorage,
|
||||
|
||||
deletion_queue_client: DeletionQueueClient,
|
||||
}
|
||||
|
||||
impl RemoteTimelineClient {
|
||||
@@ -335,6 +341,7 @@ impl RemoteTimelineClient {
|
||||
///
|
||||
pub fn new(
|
||||
remote_storage: GenericRemoteStorage,
|
||||
deletion_queue_client: DeletionQueueClient,
|
||||
conf: &'static PageServerConf,
|
||||
tenant_id: TenantId,
|
||||
timeline_id: TimelineId,
|
||||
@@ -352,6 +359,7 @@ impl RemoteTimelineClient {
|
||||
timeline_id,
|
||||
generation,
|
||||
storage_impl: remote_storage,
|
||||
deletion_queue_client,
|
||||
upload_queue: Mutex::new(UploadQueue::Uninitialized),
|
||||
metrics: Arc::new(RemoteTimelineClientMetrics::new(&tenant_id, &timeline_id)),
|
||||
}
|
||||
@@ -413,13 +421,24 @@ impl RemoteTimelineClient {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn last_uploaded_consistent_lsn(&self) -> Option<Lsn> {
|
||||
match &*self.upload_queue.lock().unwrap() {
|
||||
pub fn remote_consistent_lsn_projected(&self) -> Option<Lsn> {
|
||||
match &mut *self.upload_queue.lock().unwrap() {
|
||||
UploadQueue::Uninitialized => None,
|
||||
UploadQueue::Initialized(q) => Some(q.last_uploaded_consistent_lsn),
|
||||
UploadQueue::Stopped(q) => {
|
||||
Some(q.upload_queue_for_deletion.last_uploaded_consistent_lsn)
|
||||
}
|
||||
UploadQueue::Initialized(q) => q.get_last_remote_consistent_lsn_projected(),
|
||||
UploadQueue::Stopped(q) => q
|
||||
.upload_queue_for_deletion
|
||||
.get_last_remote_consistent_lsn_projected(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn remote_consistent_lsn_visible(&self) -> Option<Lsn> {
|
||||
match &mut *self.upload_queue.lock().unwrap() {
|
||||
UploadQueue::Uninitialized => None,
|
||||
UploadQueue::Initialized(q) => Some(q.get_last_remote_consistent_lsn_visible()),
|
||||
UploadQueue::Stopped(q) => Some(
|
||||
q.upload_queue_for_deletion
|
||||
.get_last_remote_consistent_lsn_visible(),
|
||||
),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -434,11 +453,11 @@ impl RemoteTimelineClient {
|
||||
} else {
|
||||
0
|
||||
};
|
||||
self.metrics.remote_physical_size_gauge().set(size);
|
||||
self.metrics.remote_physical_size_set(size);
|
||||
}
|
||||
|
||||
pub fn get_remote_physical_size(&self) -> u64 {
|
||||
self.metrics.remote_physical_size_gauge().get()
|
||||
self.metrics.remote_physical_size_get()
|
||||
}
|
||||
|
||||
//
|
||||
@@ -643,7 +662,7 @@ impl RemoteTimelineClient {
|
||||
/// successfully.
|
||||
pub fn schedule_layer_file_deletion(
|
||||
self: &Arc<Self>,
|
||||
names: &[LayerFileName],
|
||||
names: Vec<LayerFileName>,
|
||||
) -> anyhow::Result<()> {
|
||||
let mut guard = self.upload_queue.lock().unwrap();
|
||||
let upload_queue = guard.initialized_mut()?;
|
||||
@@ -663,10 +682,10 @@ impl RemoteTimelineClient {
|
||||
// Decorate our list of names with each name's generation, dropping
|
||||
// makes that are unexpectedly missing from our metadata.
|
||||
let with_generations: Vec<_> = names
|
||||
.iter()
|
||||
.into_iter()
|
||||
.filter_map(|name| {
|
||||
// Remove from latest_files, learning the file's remote generation in the process
|
||||
let meta = upload_queue.latest_files.remove(name);
|
||||
let meta = upload_queue.latest_files.remove(&name);
|
||||
|
||||
if let Some(meta) = meta {
|
||||
upload_queue.latest_files_changes_since_metadata_upload_scheduled += 1;
|
||||
@@ -688,19 +707,17 @@ impl RemoteTimelineClient {
|
||||
self.schedule_index_upload(upload_queue, metadata);
|
||||
}
|
||||
|
||||
// schedule the actual deletions
|
||||
for (name, generation) in with_generations {
|
||||
let op = UploadOp::Delete(Delete {
|
||||
file_kind: RemoteOpFileKind::Layer,
|
||||
layer_file_name: name.clone(),
|
||||
scheduled_from_timeline_delete: false,
|
||||
generation,
|
||||
});
|
||||
self.calls_unfinished_metric_begin(&op);
|
||||
upload_queue.queued_operations.push_back(op);
|
||||
info!("scheduled layer file deletion {name}");
|
||||
for (name, gen) in &with_generations {
|
||||
info!("scheduling deletion of layer {}{}", name, gen.get_suffix());
|
||||
}
|
||||
|
||||
// schedule the actual deletions
|
||||
let op = UploadOp::Delete(Delete {
|
||||
layers: with_generations,
|
||||
});
|
||||
self.calls_unfinished_metric_begin(&op);
|
||||
upload_queue.queued_operations.push_back(op);
|
||||
|
||||
// Launch the tasks immediately, if possible
|
||||
self.launch_queued_tasks(upload_queue);
|
||||
};
|
||||
@@ -833,9 +850,7 @@ impl RemoteTimelineClient {
|
||||
pub(crate) async fn delete_all(self: &Arc<Self>) -> anyhow::Result<()> {
|
||||
debug_assert_current_span_has_tenant_and_timeline_id();
|
||||
|
||||
let (mut receiver, deletions_queued) = {
|
||||
let mut deletions_queued = 0;
|
||||
|
||||
let layers: Vec<RemotePath> = {
|
||||
let mut locked = self.upload_queue.lock().unwrap();
|
||||
let stopped = locked.stopped_mut()?;
|
||||
|
||||
@@ -847,42 +862,30 @@ impl RemoteTimelineClient {
|
||||
|
||||
stopped
|
||||
.upload_queue_for_deletion
|
||||
.queued_operations
|
||||
.reserve(stopped.upload_queue_for_deletion.latest_files.len());
|
||||
|
||||
// schedule the actual deletions
|
||||
for (name, meta) in &stopped.upload_queue_for_deletion.latest_files {
|
||||
let op = UploadOp::Delete(Delete {
|
||||
file_kind: RemoteOpFileKind::Layer,
|
||||
layer_file_name: name.clone(),
|
||||
scheduled_from_timeline_delete: true,
|
||||
generation: meta.generation,
|
||||
});
|
||||
|
||||
self.calls_unfinished_metric_begin(&op);
|
||||
stopped
|
||||
.upload_queue_for_deletion
|
||||
.queued_operations
|
||||
.push_back(op);
|
||||
|
||||
info!("scheduled layer file deletion {name}");
|
||||
deletions_queued += 1;
|
||||
}
|
||||
|
||||
self.launch_queued_tasks(&mut stopped.upload_queue_for_deletion);
|
||||
|
||||
(
|
||||
self.schedule_barrier(&mut stopped.upload_queue_for_deletion),
|
||||
deletions_queued,
|
||||
)
|
||||
.latest_files
|
||||
.drain()
|
||||
.map(|(file_name, meta)| {
|
||||
remote_layer_path(
|
||||
&self.tenant_id,
|
||||
&self.timeline_id,
|
||||
&file_name,
|
||||
meta.generation,
|
||||
)
|
||||
})
|
||||
.collect()
|
||||
};
|
||||
|
||||
receiver.changed().await.context("upload queue shut down")?;
|
||||
let layer_deletion_count = layers.len();
|
||||
self.deletion_queue_client.push_immediate(layers).await?;
|
||||
|
||||
// Do not delete index part yet, it is needed for possible retry. If we remove it first
|
||||
// and retry will arrive to different pageserver there wont be any traces of it on remote storage
|
||||
let timeline_storage_path = remote_timeline_path(&self.tenant_id, &self.timeline_id);
|
||||
|
||||
// Execute all pending deletions, so that when we proceed to do a list_prefixes below, we aren't
|
||||
// taking the burden of listing all the layers that we already know we should delete.
|
||||
self.deletion_queue_client.flush_immediate().await?;
|
||||
|
||||
let remaining = backoff::retry(
|
||||
|| async {
|
||||
self.storage_impl
|
||||
@@ -910,17 +913,9 @@ impl RemoteTimelineClient {
|
||||
})
|
||||
.collect();
|
||||
|
||||
let not_referenced_count = remaining.len();
|
||||
if !remaining.is_empty() {
|
||||
backoff::retry(
|
||||
|| async { self.storage_impl.delete_objects(&remaining).await },
|
||||
|_e| false,
|
||||
FAILED_UPLOAD_WARN_THRESHOLD,
|
||||
FAILED_REMOTE_OP_RETRIES,
|
||||
"delete_objects",
|
||||
backoff::Cancel::new(shutdown_token(), || anyhow::anyhow!("Cancelled!")),
|
||||
)
|
||||
.await
|
||||
.context("delete_objects")?;
|
||||
self.deletion_queue_client.push_immediate(remaining).await?;
|
||||
}
|
||||
|
||||
fail::fail_point!("timeline-delete-before-index-delete", |_| {
|
||||
@@ -931,18 +926,14 @@ impl RemoteTimelineClient {
|
||||
|
||||
let index_file_path = timeline_storage_path.join(Path::new(IndexPart::FILE_NAME));
|
||||
|
||||
debug!("deleting index part");
|
||||
debug!("enqueuing index part deletion");
|
||||
self.deletion_queue_client
|
||||
.push_immediate([index_file_path].to_vec())
|
||||
.await?;
|
||||
|
||||
backoff::retry(
|
||||
|| async { self.storage_impl.delete(&index_file_path).await },
|
||||
|_e| false,
|
||||
FAILED_UPLOAD_WARN_THRESHOLD,
|
||||
FAILED_REMOTE_OP_RETRIES,
|
||||
"delete_index",
|
||||
backoff::Cancel::new(shutdown_token(), || anyhow::anyhow!("Cancelled")),
|
||||
)
|
||||
.await
|
||||
.context("delete_index")?;
|
||||
// Timeline deletion is rare and we have probably emitted a reasonably number of objects: wait
|
||||
// for a flush to a persistent deletion list so that we may be sure deletion will occur.
|
||||
self.deletion_queue_client.flush_immediate().await?;
|
||||
|
||||
fail::fail_point!("timeline-delete-after-index-delete", |_| {
|
||||
Err(anyhow::anyhow!(
|
||||
@@ -950,7 +941,7 @@ impl RemoteTimelineClient {
|
||||
))?
|
||||
});
|
||||
|
||||
info!(prefix=%timeline_storage_path, referenced=deletions_queued, not_referenced=%remaining.len(), "done deleting in timeline prefix, including index_part.json");
|
||||
info!(prefix=%timeline_storage_path, referenced=layer_deletion_count, not_referenced=%not_referenced_count, "done deleting in timeline prefix, including index_part.json");
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -1140,21 +1131,16 @@ impl RemoteTimelineClient {
|
||||
}
|
||||
res
|
||||
}
|
||||
UploadOp::Delete(delete) => {
|
||||
let path = &self
|
||||
.conf
|
||||
.timeline_path(&self.tenant_id, &self.timeline_id)
|
||||
.join(delete.layer_file_name.file_name());
|
||||
delete::delete_layer(self.conf, &self.storage_impl, path, delete.generation)
|
||||
.measure_remote_op(
|
||||
self.tenant_id,
|
||||
self.timeline_id,
|
||||
delete.file_kind,
|
||||
RemoteOpKind::Delete,
|
||||
Arc::clone(&self.metrics),
|
||||
)
|
||||
.await
|
||||
}
|
||||
UploadOp::Delete(delete) => self
|
||||
.deletion_queue_client
|
||||
.push_layers(
|
||||
self.tenant_id,
|
||||
self.timeline_id,
|
||||
self.generation,
|
||||
delete.layers.clone(),
|
||||
)
|
||||
.await
|
||||
.map_err(|e| anyhow::anyhow!(e)),
|
||||
UploadOp::Barrier(_) => {
|
||||
// unreachable. Barrier operations are handled synchronously in
|
||||
// launch_queued_tasks
|
||||
@@ -1210,18 +1196,12 @@ impl RemoteTimelineClient {
|
||||
}
|
||||
|
||||
// The task has completed successfully. Remove it from the in-progress list.
|
||||
{
|
||||
let lsn_update = {
|
||||
let mut upload_queue_guard = self.upload_queue.lock().unwrap();
|
||||
let upload_queue = match upload_queue_guard.deref_mut() {
|
||||
UploadQueue::Uninitialized => panic!("callers are responsible for ensuring this is only called on an initialized queue"),
|
||||
UploadQueue::Stopped(stopped) => {
|
||||
// Special care is needed for deletions, if it was an earlier deletion (not scheduled from deletion)
|
||||
// then stop() took care of it so we just return.
|
||||
// For deletions that come from delete_all we still want to maintain metrics, launch following tasks, etc.
|
||||
match &task.op {
|
||||
UploadOp::Delete(delete) if delete.scheduled_from_timeline_delete => Some(&mut stopped.upload_queue_for_deletion),
|
||||
_ => None
|
||||
}
|
||||
UploadQueue::Stopped(_stopped) => {
|
||||
None
|
||||
},
|
||||
UploadQueue::Initialized(qi) => { Some(qi) }
|
||||
};
|
||||
@@ -1236,23 +1216,51 @@ impl RemoteTimelineClient {
|
||||
|
||||
upload_queue.inprogress_tasks.remove(&task.task_id);
|
||||
|
||||
match task.op {
|
||||
let lsn_update = match task.op {
|
||||
UploadOp::UploadLayer(_, _) => {
|
||||
upload_queue.num_inprogress_layer_uploads -= 1;
|
||||
None
|
||||
}
|
||||
UploadOp::UploadMetadata(_, lsn) => {
|
||||
upload_queue.num_inprogress_metadata_uploads -= 1;
|
||||
upload_queue.last_uploaded_consistent_lsn = lsn; // XXX monotonicity check?
|
||||
// XXX monotonicity check?
|
||||
|
||||
upload_queue.projected_remote_consistent_lsn = Some(lsn);
|
||||
if self.generation.is_none() {
|
||||
// Legacy mode: skip validating generation
|
||||
upload_queue.visible_remote_consistent_lsn.store(lsn);
|
||||
None
|
||||
} else {
|
||||
Some((lsn, upload_queue.visible_remote_consistent_lsn.clone()))
|
||||
}
|
||||
}
|
||||
UploadOp::Delete(_) => {
|
||||
upload_queue.num_inprogress_deletions -= 1;
|
||||
None
|
||||
}
|
||||
UploadOp::Barrier(_) => unreachable!(),
|
||||
};
|
||||
|
||||
// Launch any queued tasks that were unblocked by this one.
|
||||
self.launch_queued_tasks(upload_queue);
|
||||
lsn_update
|
||||
};
|
||||
|
||||
if let Some((lsn, slot)) = lsn_update {
|
||||
// Updates to the remote_consistent_lsn we advertise to pageservers
|
||||
// are all routed through the DeletionQueue, to enforce important
|
||||
// data safety guarantees (see docs/rfcs/025-generation-numbers.md)
|
||||
self.deletion_queue_client
|
||||
.update_remote_consistent_lsn(
|
||||
self.tenant_id,
|
||||
self.timeline_id,
|
||||
self.generation,
|
||||
lsn,
|
||||
slot,
|
||||
)
|
||||
.await;
|
||||
}
|
||||
|
||||
self.calls_unfinished_metric_end(&task.op);
|
||||
}
|
||||
|
||||
@@ -1278,8 +1286,8 @@ impl RemoteTimelineClient {
|
||||
reason: "metadata uploads are tiny",
|
||||
},
|
||||
),
|
||||
UploadOp::Delete(delete) => (
|
||||
delete.file_kind,
|
||||
UploadOp::Delete(_delete) => (
|
||||
RemoteOpFileKind::Layer,
|
||||
RemoteOpKind::Delete,
|
||||
DontTrackSize {
|
||||
reason: "should we track deletes? positive or negative sign?",
|
||||
@@ -1341,7 +1349,10 @@ impl RemoteTimelineClient {
|
||||
latest_files: initialized.latest_files.clone(),
|
||||
latest_files_changes_since_metadata_upload_scheduled: 0,
|
||||
latest_metadata: initialized.latest_metadata.clone(),
|
||||
last_uploaded_consistent_lsn: initialized.last_uploaded_consistent_lsn,
|
||||
projected_remote_consistent_lsn: None,
|
||||
visible_remote_consistent_lsn: initialized
|
||||
.visible_remote_consistent_lsn
|
||||
.clone(),
|
||||
num_inprogress_layer_uploads: 0,
|
||||
num_inprogress_metadata_uploads: 0,
|
||||
num_inprogress_deletions: 0,
|
||||
@@ -1405,13 +1416,13 @@ pub fn remote_layer_path(
|
||||
tenant_id: &TenantId,
|
||||
timeline_id: &TimelineId,
|
||||
layer_file_name: &LayerFileName,
|
||||
layer_meta: &LayerFileMetadata,
|
||||
generation: Generation,
|
||||
) -> RemotePath {
|
||||
// Generation-aware key format
|
||||
let path = format!(
|
||||
"tenants/{tenant_id}/{TIMELINES_SEGMENT_NAME}/{timeline_id}/{0}{1}",
|
||||
layer_file_name.file_name(),
|
||||
layer_meta.generation.get_suffix()
|
||||
generation.get_suffix()
|
||||
);
|
||||
|
||||
RemotePath::from_string(&path).expect("Failed to construct path")
|
||||
@@ -1554,7 +1565,6 @@ mod tests {
|
||||
|
||||
impl TestSetup {
|
||||
async fn new(test_name: &str) -> anyhow::Result<Self> {
|
||||
// Use a current-thread runtime in the test
|
||||
let test_name = Box::leak(Box::new(format!("remote_timeline_client__{test_name}")));
|
||||
let harness = TenantHarness::create(test_name)?;
|
||||
let (tenant, ctx) = harness.load().await;
|
||||
@@ -1580,6 +1590,7 @@ mod tests {
|
||||
timeline_id: TIMELINE_ID,
|
||||
generation,
|
||||
storage_impl: self.harness.remote_storage.clone(),
|
||||
deletion_queue_client: self.harness.deletion_queue.new_client(),
|
||||
upload_queue: Mutex::new(UploadQueue::Uninitialized),
|
||||
metrics: Arc::new(RemoteTimelineClientMetrics::new(
|
||||
&self.harness.tenant_id,
|
||||
@@ -1749,7 +1760,7 @@ mod tests {
|
||||
)
|
||||
.unwrap();
|
||||
client
|
||||
.schedule_layer_file_deletion(&[layer_file_name_1.clone()])
|
||||
.schedule_layer_file_deletion([layer_file_name_1.clone()].to_vec())
|
||||
.unwrap();
|
||||
{
|
||||
let mut guard = client.upload_queue.lock().unwrap();
|
||||
@@ -1775,6 +1786,7 @@ mod tests {
|
||||
|
||||
// Finish them
|
||||
client.wait_completion().await.unwrap();
|
||||
harness.deletion_queue.pump().await;
|
||||
|
||||
assert_remote_files(
|
||||
&[
|
||||
|
||||
@@ -1,34 +0,0 @@
|
||||
//! Helper functions to delete files from remote storage with a RemoteStorage
|
||||
use anyhow::Context;
|
||||
use std::path::Path;
|
||||
use tracing::debug;
|
||||
|
||||
use remote_storage::GenericRemoteStorage;
|
||||
|
||||
use crate::{
|
||||
config::PageServerConf,
|
||||
tenant::{remote_timeline_client::remote_path, Generation},
|
||||
};
|
||||
|
||||
pub(super) async fn delete_layer<'a>(
|
||||
conf: &'static PageServerConf,
|
||||
storage: &'a GenericRemoteStorage,
|
||||
local_layer_path: &'a Path,
|
||||
generation: Generation,
|
||||
) -> anyhow::Result<()> {
|
||||
fail::fail_point!("before-delete-layer", |_| {
|
||||
anyhow::bail!("failpoint before-delete-layer")
|
||||
});
|
||||
debug!("Deleting layer from remote storage: {local_layer_path:?}",);
|
||||
|
||||
let path_to_delete = remote_path(conf, local_layer_path, generation)?;
|
||||
|
||||
// We don't want to print an error if the delete failed if the file has
|
||||
// already been deleted. Thankfully, in this situation S3 already
|
||||
// does not yield an error. While OS-provided local file system APIs do yield
|
||||
// errors, we avoid them in the `LocalFs` wrapper.
|
||||
storage
|
||||
.delete(&path_to_delete)
|
||||
.await
|
||||
.with_context(|| format!("delete remote layer from storage at {path_to_delete:?}"))
|
||||
}
|
||||
@@ -50,7 +50,12 @@ pub async fn download_layer_file<'a>(
|
||||
.timeline_path(&tenant_id, &timeline_id)
|
||||
.join(layer_file_name.file_name());
|
||||
|
||||
let remote_path = remote_layer_path(&tenant_id, &timeline_id, layer_file_name, layer_metadata);
|
||||
let remote_path = remote_layer_path(
|
||||
&tenant_id,
|
||||
&timeline_id,
|
||||
layer_file_name,
|
||||
layer_metadata.generation,
|
||||
);
|
||||
|
||||
// Perform a rename inspired by durable_rename from file_utils.c.
|
||||
// The sequence:
|
||||
|
||||
@@ -38,6 +38,7 @@ use std::time::{Duration, Instant, SystemTime};
|
||||
use crate::context::{
|
||||
AccessStatsBehavior, DownloadBehavior, RequestContext, RequestContextBuilder,
|
||||
};
|
||||
use crate::deletion_queue::DeletionQueueClient;
|
||||
use crate::tenant::remote_timeline_client::index::LayerFileMetadata;
|
||||
use crate::tenant::storage_layer::delta_layer::DeltaEntry;
|
||||
use crate::tenant::storage_layer::{
|
||||
@@ -143,6 +144,7 @@ fn drop_wlock<T>(rlock: tokio::sync::RwLockWriteGuard<'_, T>) {
|
||||
/// The outward-facing resources required to build a Timeline
|
||||
pub struct TimelineResources {
|
||||
pub remote_client: Option<RemoteTimelineClient>,
|
||||
pub deletion_queue_client: DeletionQueueClient,
|
||||
}
|
||||
|
||||
pub struct Timeline {
|
||||
@@ -521,9 +523,23 @@ impl Timeline {
|
||||
self.disk_consistent_lsn.load()
|
||||
}
|
||||
|
||||
pub fn get_remote_consistent_lsn(&self) -> Option<Lsn> {
|
||||
/// remote_consistent_lsn from the perspective of the tenant's current generation,
|
||||
/// not validated with control plane yet.
|
||||
/// See [`Self::get_remote_consistent_lsn_visible`].
|
||||
pub fn get_remote_consistent_lsn_projected(&self) -> Option<Lsn> {
|
||||
if let Some(remote_client) = &self.remote_client {
|
||||
remote_client.last_uploaded_consistent_lsn()
|
||||
remote_client.remote_consistent_lsn_projected()
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// remote_consistent_lsn which the tenant is guaranteed not to go backward from,
|
||||
/// i.e. a value of remote_consistent_lsn_projected which has undergone
|
||||
/// generation validation in the deletion queue.
|
||||
pub fn get_remote_consistent_lsn_visible(&self) -> Option<Lsn> {
|
||||
if let Some(remote_client) = &self.remote_client {
|
||||
remote_client.remote_consistent_lsn_visible()
|
||||
} else {
|
||||
None
|
||||
}
|
||||
@@ -543,7 +559,7 @@ impl Timeline {
|
||||
}
|
||||
|
||||
pub fn resident_physical_size(&self) -> u64 {
|
||||
self.metrics.resident_physical_size_gauge.get()
|
||||
self.metrics.resident_physical_size_get()
|
||||
}
|
||||
|
||||
///
|
||||
@@ -1293,10 +1309,7 @@ impl Timeline {
|
||||
// will treat the file as a local layer again, count it towards resident size,
|
||||
// and it'll be like the layer removal never happened.
|
||||
// The bump in resident size is perhaps unexpected but overall a robust behavior.
|
||||
self.metrics
|
||||
.resident_physical_size_gauge
|
||||
.sub(layer_file_size);
|
||||
|
||||
self.metrics.resident_physical_size_sub(layer_file_size);
|
||||
self.metrics.evictions.inc();
|
||||
|
||||
if let Some(delta) = local_layer_residence_duration {
|
||||
@@ -1820,7 +1833,7 @@ impl Timeline {
|
||||
for (layer, m) in needs_upload {
|
||||
rtc.schedule_layer_file_upload(&layer.layer_desc().filename(), &m)?;
|
||||
}
|
||||
rtc.schedule_layer_file_deletion(&needs_cleanup)?;
|
||||
rtc.schedule_layer_file_deletion(needs_cleanup)?;
|
||||
rtc.schedule_index_upload_for_file_changes()?;
|
||||
// Tenant::create_timeline will wait for these uploads to happen before returning, or
|
||||
// on retry.
|
||||
@@ -1830,9 +1843,7 @@ impl Timeline {
|
||||
"loaded layer map with {} layers at {}, total physical size: {}",
|
||||
num_layers, disk_consistent_lsn, total_physical_size
|
||||
);
|
||||
self.metrics
|
||||
.resident_physical_size_gauge
|
||||
.set(total_physical_size);
|
||||
self.metrics.resident_physical_size_set(total_physical_size);
|
||||
|
||||
timer.stop_and_record();
|
||||
Ok(())
|
||||
@@ -3875,7 +3886,7 @@ impl Timeline {
|
||||
|
||||
// Also schedule the deletions in remote storage
|
||||
if let Some(remote_client) = &self.remote_client {
|
||||
remote_client.schedule_layer_file_deletion(&layer_names_to_delete)?;
|
||||
remote_client.schedule_layer_file_deletion(layer_names_to_delete)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
@@ -4210,7 +4221,7 @@ impl Timeline {
|
||||
}
|
||||
|
||||
if let Some(remote_client) = &self.remote_client {
|
||||
remote_client.schedule_layer_file_deletion(&layer_names_to_delete)?;
|
||||
remote_client.schedule_layer_file_deletion(layer_names_to_delete)?;
|
||||
}
|
||||
|
||||
apply.flush();
|
||||
@@ -4382,7 +4393,7 @@ impl Timeline {
|
||||
|
||||
// XXX the temp file is still around in Err() case
|
||||
// and consumes space until we clean up upon pageserver restart.
|
||||
self_clone.metrics.resident_physical_size_gauge.add(*size);
|
||||
self_clone.metrics.resident_physical_size_add(*size);
|
||||
|
||||
// Download complete. Replace the RemoteLayer with the corresponding
|
||||
// Delta- or ImageLayer in the layer map.
|
||||
|
||||
@@ -14,6 +14,7 @@ use utils::{
|
||||
|
||||
use crate::{
|
||||
config::PageServerConf,
|
||||
deletion_queue::DeletionQueueClient,
|
||||
task_mgr::{self, TaskKind},
|
||||
tenant::{
|
||||
metadata::TimelineMetadata,
|
||||
@@ -407,6 +408,7 @@ impl DeleteTimelineFlow {
|
||||
timeline_id: TimelineId,
|
||||
local_metadata: &TimelineMetadata,
|
||||
remote_client: Option<RemoteTimelineClient>,
|
||||
deletion_queue_client: DeletionQueueClient,
|
||||
init_order: Option<&InitializationOrder>,
|
||||
) -> anyhow::Result<()> {
|
||||
// Note: here we even skip populating layer map. Timeline is essentially uninitialized.
|
||||
@@ -416,7 +418,10 @@ impl DeleteTimelineFlow {
|
||||
timeline_id,
|
||||
local_metadata,
|
||||
None, // Ancestor is not needed for deletion.
|
||||
TimelineResources { remote_client },
|
||||
TimelineResources {
|
||||
remote_client,
|
||||
deletion_queue_client,
|
||||
},
|
||||
init_order,
|
||||
// Important. We dont pass ancestor above because it can be missing.
|
||||
// Thus we need to skip the validation here.
|
||||
|
||||
@@ -263,7 +263,7 @@ impl LayerManager {
|
||||
let desc = layer.layer_desc();
|
||||
if !layer.is_remote_layer() {
|
||||
layer.delete_resident_layer_file()?;
|
||||
metrics.resident_physical_size_gauge.sub(desc.file_size);
|
||||
metrics.resident_physical_size_sub(desc.file_size);
|
||||
}
|
||||
|
||||
// TODO Removing from the bottom of the layer map is expensive.
|
||||
|
||||
@@ -370,8 +370,9 @@ pub(super) async fn handle_walreceiver_connection(
|
||||
})?;
|
||||
|
||||
if let Some(last_lsn) = status_update {
|
||||
let timeline_remote_consistent_lsn =
|
||||
timeline.get_remote_consistent_lsn().unwrap_or(Lsn(0));
|
||||
let timeline_remote_consistent_lsn = timeline
|
||||
.get_remote_consistent_lsn_visible()
|
||||
.unwrap_or(Lsn(0));
|
||||
|
||||
// The last LSN we processed. It is not guaranteed to survive pageserver crash.
|
||||
let last_received_lsn = last_lsn;
|
||||
|
||||
@@ -1,5 +1,3 @@
|
||||
use crate::metrics::RemoteOpFileKind;
|
||||
|
||||
use super::storage_layer::LayerFileName;
|
||||
use super::Generation;
|
||||
use crate::tenant::metadata::TimelineMetadata;
|
||||
@@ -11,6 +9,7 @@ use std::fmt::Debug;
|
||||
use chrono::NaiveDateTime;
|
||||
use std::sync::Arc;
|
||||
use tracing::info;
|
||||
use utils::lsn::AtomicLsn;
|
||||
|
||||
use std::sync::atomic::AtomicU32;
|
||||
use utils::lsn::Lsn;
|
||||
@@ -58,7 +57,12 @@ pub(crate) struct UploadQueueInitialized {
|
||||
/// uploaded. `Lsn(0)` if nothing was uploaded yet.
|
||||
/// Unlike `latest_files` or `latest_metadata`, this value is never ahead.
|
||||
/// Safekeeper can rely on it to make decisions for WAL storage.
|
||||
pub(crate) last_uploaded_consistent_lsn: Lsn,
|
||||
///
|
||||
/// visible_remote_consistent_lsn is only updated after our generation has been validated with
|
||||
/// the control plane (unlesss a timeline's generation is None, in which case
|
||||
/// we skip validation)
|
||||
pub(crate) projected_remote_consistent_lsn: Option<Lsn>,
|
||||
pub(crate) visible_remote_consistent_lsn: Arc<AtomicLsn>,
|
||||
|
||||
// Breakdown of different kinds of tasks currently in-progress
|
||||
pub(crate) num_inprogress_layer_uploads: usize,
|
||||
@@ -81,6 +85,14 @@ impl UploadQueueInitialized {
|
||||
pub(super) fn no_pending_work(&self) -> bool {
|
||||
self.inprogress_tasks.is_empty() && self.queued_operations.is_empty()
|
||||
}
|
||||
|
||||
pub(super) fn get_last_remote_consistent_lsn_visible(&self) -> Lsn {
|
||||
self.visible_remote_consistent_lsn.load()
|
||||
}
|
||||
|
||||
pub(super) fn get_last_remote_consistent_lsn_projected(&self) -> Option<Lsn> {
|
||||
self.projected_remote_consistent_lsn
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
@@ -114,9 +126,8 @@ impl UploadQueue {
|
||||
latest_files: HashMap::new(),
|
||||
latest_files_changes_since_metadata_upload_scheduled: 0,
|
||||
latest_metadata: metadata.clone(),
|
||||
// We haven't uploaded anything yet, so, `last_uploaded_consistent_lsn` must be 0 to prevent
|
||||
// safekeepers from garbage-collecting anything.
|
||||
last_uploaded_consistent_lsn: Lsn(0),
|
||||
projected_remote_consistent_lsn: None,
|
||||
visible_remote_consistent_lsn: Arc::new(AtomicLsn::new(0)),
|
||||
// what follows are boring default initializations
|
||||
task_counter: 0,
|
||||
num_inprogress_layer_uploads: 0,
|
||||
@@ -158,7 +169,10 @@ impl UploadQueue {
|
||||
latest_files: files,
|
||||
latest_files_changes_since_metadata_upload_scheduled: 0,
|
||||
latest_metadata: index_part.metadata.clone(),
|
||||
last_uploaded_consistent_lsn: index_part.metadata.disk_consistent_lsn(),
|
||||
projected_remote_consistent_lsn: Some(index_part.metadata.disk_consistent_lsn()),
|
||||
visible_remote_consistent_lsn: Arc::new(
|
||||
index_part.metadata.disk_consistent_lsn().into(),
|
||||
),
|
||||
// what follows are boring default initializations
|
||||
task_counter: 0,
|
||||
num_inprogress_layer_uploads: 0,
|
||||
@@ -201,12 +215,11 @@ pub(crate) struct UploadTask {
|
||||
pub(crate) op: UploadOp,
|
||||
}
|
||||
|
||||
/// A deletion of some layers within the lifetime of a timeline. This is not used
|
||||
/// for timeline deletion, which skips this queue and goes directly to DeletionQueue.
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct Delete {
|
||||
pub(crate) file_kind: RemoteOpFileKind,
|
||||
pub(crate) layer_file_name: LayerFileName,
|
||||
pub(crate) scheduled_from_timeline_delete: bool,
|
||||
pub(crate) generation: Generation,
|
||||
pub(crate) layers: Vec<(LayerFileName, Generation)>,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
@@ -217,7 +230,7 @@ pub(crate) enum UploadOp {
|
||||
/// Upload the metadata file
|
||||
UploadMetadata(IndexPart, Lsn),
|
||||
|
||||
/// Delete a layer file
|
||||
/// Delete layer files
|
||||
Delete(Delete),
|
||||
|
||||
/// Barrier. When the barrier operation is reached,
|
||||
@@ -239,13 +252,9 @@ impl std::fmt::Display for UploadOp {
|
||||
UploadOp::UploadMetadata(_, lsn) => {
|
||||
write!(f, "UploadMetadata(lsn: {})", lsn)
|
||||
}
|
||||
UploadOp::Delete(delete) => write!(
|
||||
f,
|
||||
"Delete(path: {}, scheduled_from_timeline_delete: {}, gen: {:?})",
|
||||
delete.layer_file_name.file_name(),
|
||||
delete.scheduled_from_timeline_delete,
|
||||
delete.generation
|
||||
),
|
||||
UploadOp::Delete(delete) => {
|
||||
write!(f, "Delete({} layers)", delete.layers.len(),)
|
||||
}
|
||||
UploadOp::Barrier(_) => write!(f, "Barrier"),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -7,12 +7,12 @@ OBJS = \
|
||||
extension_server.o \
|
||||
file_cache.o \
|
||||
libpagestore.o \
|
||||
libpqwalproposer.o \
|
||||
neon.o \
|
||||
neon_utils.o \
|
||||
pagestore_smgr.o \
|
||||
relsize_cache.o \
|
||||
walproposer.o \
|
||||
walproposer_utils.o \
|
||||
walproposer_pg.o \
|
||||
control_plane_connector.o
|
||||
|
||||
PG_CPPFLAGS = -I$(libpq_srcdir)
|
||||
|
||||
@@ -30,7 +30,7 @@
|
||||
|
||||
#include "neon.h"
|
||||
#include "walproposer.h"
|
||||
#include "walproposer_utils.h"
|
||||
#include "neon_utils.h"
|
||||
|
||||
#define PageStoreTrace DEBUG5
|
||||
|
||||
|
||||
@@ -1,424 +0,0 @@
|
||||
#include "postgres.h"
|
||||
|
||||
#include "libpq-fe.h"
|
||||
#include "neon.h"
|
||||
#include "walproposer.h"
|
||||
|
||||
/* Header in walproposer.h -- Wrapper struct to abstract away the libpq connection */
|
||||
struct WalProposerConn
|
||||
{
|
||||
PGconn *pg_conn;
|
||||
bool is_nonblocking; /* whether the connection is non-blocking */
|
||||
char *recvbuf; /* last received data from
|
||||
* walprop_async_read */
|
||||
};
|
||||
|
||||
/* Helper function */
|
||||
static bool
|
||||
ensure_nonblocking_status(WalProposerConn *conn, bool is_nonblocking)
|
||||
{
|
||||
/* If we're already correctly blocking or nonblocking, all good */
|
||||
if (is_nonblocking == conn->is_nonblocking)
|
||||
return true;
|
||||
|
||||
/* Otherwise, set it appropriately */
|
||||
if (PQsetnonblocking(conn->pg_conn, is_nonblocking) == -1)
|
||||
return false;
|
||||
|
||||
conn->is_nonblocking = is_nonblocking;
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Exported function definitions */
|
||||
char *
|
||||
walprop_error_message(WalProposerConn *conn)
|
||||
{
|
||||
return PQerrorMessage(conn->pg_conn);
|
||||
}
|
||||
|
||||
WalProposerConnStatusType
|
||||
walprop_status(WalProposerConn *conn)
|
||||
{
|
||||
switch (PQstatus(conn->pg_conn))
|
||||
{
|
||||
case CONNECTION_OK:
|
||||
return WP_CONNECTION_OK;
|
||||
case CONNECTION_BAD:
|
||||
return WP_CONNECTION_BAD;
|
||||
default:
|
||||
return WP_CONNECTION_IN_PROGRESS;
|
||||
}
|
||||
}
|
||||
|
||||
WalProposerConn *
|
||||
walprop_connect_start(char *conninfo, char *password)
|
||||
{
|
||||
WalProposerConn *conn;
|
||||
PGconn *pg_conn;
|
||||
const char *keywords[3];
|
||||
const char *values[3];
|
||||
int n;
|
||||
|
||||
/*
|
||||
* Connect using the given connection string. If the
|
||||
* NEON_AUTH_TOKEN environment variable was set, use that as
|
||||
* the password.
|
||||
*
|
||||
* The connection options are parsed in the order they're given, so
|
||||
* when we set the password before the connection string, the
|
||||
* connection string can override the password from the env variable.
|
||||
* Seems useful, although we don't currently use that capability
|
||||
* anywhere.
|
||||
*/
|
||||
n = 0;
|
||||
if (password)
|
||||
{
|
||||
keywords[n] = "password";
|
||||
values[n] = password;
|
||||
n++;
|
||||
}
|
||||
keywords[n] = "dbname";
|
||||
values[n] = conninfo;
|
||||
n++;
|
||||
keywords[n] = NULL;
|
||||
values[n] = NULL;
|
||||
n++;
|
||||
pg_conn = PQconnectStartParams(keywords, values, 1);
|
||||
|
||||
/*
|
||||
* Allocation of a PQconn can fail, and will return NULL. We want to fully
|
||||
* replicate the behavior of PQconnectStart here.
|
||||
*/
|
||||
if (!pg_conn)
|
||||
return NULL;
|
||||
|
||||
/*
|
||||
* And in theory this allocation can fail as well, but it's incredibly
|
||||
* unlikely if we just successfully allocated a PGconn.
|
||||
*
|
||||
* palloc will exit on failure though, so there's not much we could do if
|
||||
* it *did* fail.
|
||||
*/
|
||||
conn = palloc(sizeof(WalProposerConn));
|
||||
conn->pg_conn = pg_conn;
|
||||
conn->is_nonblocking = false; /* connections always start in blocking
|
||||
* mode */
|
||||
conn->recvbuf = NULL;
|
||||
return conn;
|
||||
}
|
||||
|
||||
WalProposerConnectPollStatusType
|
||||
walprop_connect_poll(WalProposerConn *conn)
|
||||
{
|
||||
WalProposerConnectPollStatusType return_val;
|
||||
|
||||
switch (PQconnectPoll(conn->pg_conn))
|
||||
{
|
||||
case PGRES_POLLING_FAILED:
|
||||
return_val = WP_CONN_POLLING_FAILED;
|
||||
break;
|
||||
case PGRES_POLLING_READING:
|
||||
return_val = WP_CONN_POLLING_READING;
|
||||
break;
|
||||
case PGRES_POLLING_WRITING:
|
||||
return_val = WP_CONN_POLLING_WRITING;
|
||||
break;
|
||||
case PGRES_POLLING_OK:
|
||||
return_val = WP_CONN_POLLING_OK;
|
||||
break;
|
||||
|
||||
/*
|
||||
* There's a comment at its source about this constant being
|
||||
* unused. We'll expect it's never returned.
|
||||
*/
|
||||
case PGRES_POLLING_ACTIVE:
|
||||
elog(FATAL, "Unexpected PGRES_POLLING_ACTIVE returned from PQconnectPoll");
|
||||
|
||||
/*
|
||||
* This return is never actually reached, but it's here to make
|
||||
* the compiler happy
|
||||
*/
|
||||
return WP_CONN_POLLING_FAILED;
|
||||
|
||||
default:
|
||||
Assert(false);
|
||||
return_val = WP_CONN_POLLING_FAILED; /* keep the compiler quiet */
|
||||
}
|
||||
|
||||
return return_val;
|
||||
}
|
||||
|
||||
bool
|
||||
walprop_send_query(WalProposerConn *conn, char *query)
|
||||
{
|
||||
/*
|
||||
* We need to be in blocking mode for sending the query to run without
|
||||
* requiring a call to PQflush
|
||||
*/
|
||||
if (!ensure_nonblocking_status(conn, false))
|
||||
return false;
|
||||
|
||||
/* PQsendQuery returns 1 on success, 0 on failure */
|
||||
if (!PQsendQuery(conn->pg_conn, query))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
WalProposerExecStatusType
|
||||
walprop_get_query_result(WalProposerConn *conn)
|
||||
{
|
||||
PGresult *result;
|
||||
WalProposerExecStatusType return_val;
|
||||
|
||||
/* Marker variable if we need to log an unexpected success result */
|
||||
char *unexpected_success = NULL;
|
||||
|
||||
/* Consume any input that we might be missing */
|
||||
if (!PQconsumeInput(conn->pg_conn))
|
||||
return WP_EXEC_FAILED;
|
||||
|
||||
if (PQisBusy(conn->pg_conn))
|
||||
return WP_EXEC_NEEDS_INPUT;
|
||||
|
||||
|
||||
result = PQgetResult(conn->pg_conn);
|
||||
|
||||
/*
|
||||
* PQgetResult returns NULL only if getting the result was successful &
|
||||
* there's no more of the result to get.
|
||||
*/
|
||||
if (!result)
|
||||
{
|
||||
elog(WARNING, "[libpqwalproposer] Unexpected successful end of command results");
|
||||
return WP_EXEC_UNEXPECTED_SUCCESS;
|
||||
}
|
||||
|
||||
/* Helper macro to reduce boilerplate */
|
||||
#define UNEXPECTED_SUCCESS(msg) \
|
||||
return_val = WP_EXEC_UNEXPECTED_SUCCESS; \
|
||||
unexpected_success = msg; \
|
||||
break;
|
||||
|
||||
|
||||
switch (PQresultStatus(result))
|
||||
{
|
||||
/* "true" success case */
|
||||
case PGRES_COPY_BOTH:
|
||||
return_val = WP_EXEC_SUCCESS_COPYBOTH;
|
||||
break;
|
||||
|
||||
/* Unexpected success case */
|
||||
case PGRES_EMPTY_QUERY:
|
||||
UNEXPECTED_SUCCESS("empty query return");
|
||||
case PGRES_COMMAND_OK:
|
||||
UNEXPECTED_SUCCESS("data-less command end");
|
||||
case PGRES_TUPLES_OK:
|
||||
UNEXPECTED_SUCCESS("tuples return");
|
||||
case PGRES_COPY_OUT:
|
||||
UNEXPECTED_SUCCESS("'Copy Out' response");
|
||||
case PGRES_COPY_IN:
|
||||
UNEXPECTED_SUCCESS("'Copy In' response");
|
||||
case PGRES_SINGLE_TUPLE:
|
||||
UNEXPECTED_SUCCESS("single tuple return");
|
||||
case PGRES_PIPELINE_SYNC:
|
||||
UNEXPECTED_SUCCESS("pipeline sync point");
|
||||
|
||||
/* Failure cases */
|
||||
case PGRES_BAD_RESPONSE:
|
||||
case PGRES_NONFATAL_ERROR:
|
||||
case PGRES_FATAL_ERROR:
|
||||
case PGRES_PIPELINE_ABORTED:
|
||||
return_val = WP_EXEC_FAILED;
|
||||
break;
|
||||
|
||||
default:
|
||||
Assert(false);
|
||||
return_val = WP_EXEC_FAILED; /* keep the compiler quiet */
|
||||
}
|
||||
|
||||
if (unexpected_success)
|
||||
elog(WARNING, "[libpqwalproposer] Unexpected successful %s", unexpected_success);
|
||||
|
||||
return return_val;
|
||||
}
|
||||
|
||||
pgsocket
|
||||
walprop_socket(WalProposerConn *conn)
|
||||
{
|
||||
return PQsocket(conn->pg_conn);
|
||||
}
|
||||
|
||||
int
|
||||
walprop_flush(WalProposerConn *conn)
|
||||
{
|
||||
return (PQflush(conn->pg_conn));
|
||||
}
|
||||
|
||||
void
|
||||
walprop_finish(WalProposerConn *conn)
|
||||
{
|
||||
if (conn->recvbuf != NULL)
|
||||
PQfreemem(conn->recvbuf);
|
||||
PQfinish(conn->pg_conn);
|
||||
pfree(conn);
|
||||
}
|
||||
|
||||
/*
|
||||
* Receive a message from the safekeeper.
|
||||
*
|
||||
* On success, the data is placed in *buf. It is valid until the next call
|
||||
* to this function.
|
||||
*/
|
||||
PGAsyncReadResult
|
||||
walprop_async_read(WalProposerConn *conn, char **buf, int *amount)
|
||||
{
|
||||
int result;
|
||||
|
||||
if (conn->recvbuf != NULL)
|
||||
{
|
||||
PQfreemem(conn->recvbuf);
|
||||
conn->recvbuf = NULL;
|
||||
}
|
||||
|
||||
/* Call PQconsumeInput so that we have the data we need */
|
||||
if (!PQconsumeInput(conn->pg_conn))
|
||||
{
|
||||
*amount = 0;
|
||||
*buf = NULL;
|
||||
return PG_ASYNC_READ_FAIL;
|
||||
}
|
||||
|
||||
/*
|
||||
* The docs for PQgetCopyData list the return values as: 0 if the copy is
|
||||
* still in progress, but no "complete row" is available -1 if the copy is
|
||||
* done -2 if an error occurred (> 0) if it was successful; that value is
|
||||
* the amount transferred.
|
||||
*
|
||||
* The protocol we use between walproposer and safekeeper means that we
|
||||
* *usually* wouldn't expect to see that the copy is done, but this can
|
||||
* sometimes be triggered by the server returning an ErrorResponse (which
|
||||
* also happens to have the effect that the copy is done).
|
||||
*/
|
||||
switch (result = PQgetCopyData(conn->pg_conn, &conn->recvbuf, true))
|
||||
{
|
||||
case 0:
|
||||
*amount = 0;
|
||||
*buf = NULL;
|
||||
return PG_ASYNC_READ_TRY_AGAIN;
|
||||
case -1:
|
||||
{
|
||||
/*
|
||||
* If we get -1, it's probably because of a server error; the
|
||||
* safekeeper won't normally send a CopyDone message.
|
||||
*
|
||||
* We can check PQgetResult to make sure that the server
|
||||
* failed; it'll always result in PGRES_FATAL_ERROR
|
||||
*/
|
||||
ExecStatusType status = PQresultStatus(PQgetResult(conn->pg_conn));
|
||||
|
||||
if (status != PGRES_FATAL_ERROR)
|
||||
elog(FATAL, "unexpected result status %d after failed PQgetCopyData", status);
|
||||
|
||||
/*
|
||||
* If there was actually an error, it'll be properly reported
|
||||
* by calls to PQerrorMessage -- we don't have to do anything
|
||||
* else
|
||||
*/
|
||||
*amount = 0;
|
||||
*buf = NULL;
|
||||
return PG_ASYNC_READ_FAIL;
|
||||
}
|
||||
case -2:
|
||||
*amount = 0;
|
||||
*buf = NULL;
|
||||
return PG_ASYNC_READ_FAIL;
|
||||
default:
|
||||
/* Positive values indicate the size of the returned result */
|
||||
*amount = result;
|
||||
*buf = conn->recvbuf;
|
||||
return PG_ASYNC_READ_SUCCESS;
|
||||
}
|
||||
}
|
||||
|
||||
PGAsyncWriteResult
|
||||
walprop_async_write(WalProposerConn *conn, void const *buf, size_t size)
|
||||
{
|
||||
int result;
|
||||
|
||||
/* If we aren't in non-blocking mode, switch to it. */
|
||||
if (!ensure_nonblocking_status(conn, true))
|
||||
return PG_ASYNC_WRITE_FAIL;
|
||||
|
||||
/*
|
||||
* The docs for PQputcopyData list the return values as: 1 if the data was
|
||||
* queued, 0 if it was not queued because of full buffers, or -1 if an
|
||||
* error occurred
|
||||
*/
|
||||
result = PQputCopyData(conn->pg_conn, buf, size);
|
||||
|
||||
/*
|
||||
* We won't get a result of zero because walproposer always empties the
|
||||
* connection's buffers before sending more
|
||||
*/
|
||||
Assert(result != 0);
|
||||
|
||||
switch (result)
|
||||
{
|
||||
case 1:
|
||||
/* good -- continue */
|
||||
break;
|
||||
case -1:
|
||||
return PG_ASYNC_WRITE_FAIL;
|
||||
default:
|
||||
elog(FATAL, "invalid return %d from PQputCopyData", result);
|
||||
}
|
||||
|
||||
/*
|
||||
* After queueing the data, we still need to flush to get it to send. This
|
||||
* might take multiple tries, but we don't want to wait around until it's
|
||||
* done.
|
||||
*
|
||||
* PQflush has the following returns (directly quoting the docs): 0 if
|
||||
* sucessful, 1 if it was unable to send all the data in the send queue
|
||||
* yet -1 if it failed for some reason
|
||||
*/
|
||||
switch (result = PQflush(conn->pg_conn))
|
||||
{
|
||||
case 0:
|
||||
return PG_ASYNC_WRITE_SUCCESS;
|
||||
case 1:
|
||||
return PG_ASYNC_WRITE_TRY_FLUSH;
|
||||
case -1:
|
||||
return PG_ASYNC_WRITE_FAIL;
|
||||
default:
|
||||
elog(FATAL, "invalid return %d from PQflush", result);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This function is very similar to walprop_async_write. For more
|
||||
* information, refer to the comments there.
|
||||
*/
|
||||
bool
|
||||
walprop_blocking_write(WalProposerConn *conn, void const *buf, size_t size)
|
||||
{
|
||||
int result;
|
||||
|
||||
/* If we are in non-blocking mode, switch out of it. */
|
||||
if (!ensure_nonblocking_status(conn, false))
|
||||
return false;
|
||||
|
||||
if ((result = PQputCopyData(conn->pg_conn, buf, size)) == -1)
|
||||
return false;
|
||||
|
||||
Assert(result == 1);
|
||||
|
||||
/* Because the connection is non-blocking, flushing returns 0 or -1 */
|
||||
|
||||
if ((result = PQflush(conn->pg_conn)) == -1)
|
||||
return false;
|
||||
|
||||
Assert(result == 0);
|
||||
return true;
|
||||
}
|
||||
@@ -18,6 +18,10 @@ extern char *neon_auth_token;
|
||||
extern char *neon_timeline;
|
||||
extern char *neon_tenant;
|
||||
|
||||
extern char *wal_acceptors_list;
|
||||
extern int wal_acceptor_reconnect_timeout;
|
||||
extern int wal_acceptor_connection_timeout;
|
||||
|
||||
extern void pg_init_libpagestore(void);
|
||||
extern void pg_init_walproposer(void);
|
||||
|
||||
@@ -30,4 +34,10 @@ extern void pg_init_extension_server(void);
|
||||
extern bool neon_redo_read_buffer_filter(XLogReaderState *record, uint8 block_id);
|
||||
extern bool (*old_redo_read_buffer_filter) (XLogReaderState *record, uint8 block_id);
|
||||
|
||||
extern uint64 BackpressureThrottlingTime(void);
|
||||
extern void replication_feedback_get_lsns(XLogRecPtr *writeLsn, XLogRecPtr *flushLsn, XLogRecPtr *applyLsn);
|
||||
|
||||
extern void PGDLLEXPORT WalProposerSync(int argc, char *argv[]);
|
||||
extern void PGDLLEXPORT WalProposerMain(Datum main_arg);
|
||||
|
||||
#endif /* NEON_H */
|
||||
|
||||
116
pgxn/neon/neon_utils.c
Normal file
116
pgxn/neon/neon_utils.c
Normal file
@@ -0,0 +1,116 @@
|
||||
#include "postgres.h"
|
||||
|
||||
#include "access/timeline.h"
|
||||
#include "access/xlogutils.h"
|
||||
#include "common/logging.h"
|
||||
#include "common/ip.h"
|
||||
#include "funcapi.h"
|
||||
#include "libpq/libpq.h"
|
||||
#include "libpq/pqformat.h"
|
||||
#include "miscadmin.h"
|
||||
#include "postmaster/interrupt.h"
|
||||
#include "replication/slot.h"
|
||||
#include "replication/walsender_private.h"
|
||||
|
||||
#include "storage/ipc.h"
|
||||
#include "utils/builtins.h"
|
||||
#include "utils/ps_status.h"
|
||||
|
||||
#include "libpq-fe.h"
|
||||
#include <netinet/tcp.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#if PG_VERSION_NUM >= 150000
|
||||
#include "access/xlogutils.h"
|
||||
#include "access/xlogrecovery.h"
|
||||
#endif
|
||||
#if PG_MAJORVERSION_NUM >= 16
|
||||
#include "utils/guc.h"
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Convert a character which represents a hexadecimal digit to an integer.
|
||||
*
|
||||
* Returns -1 if the character is not a hexadecimal digit.
|
||||
*/
|
||||
int
|
||||
HexDecodeChar(char c)
|
||||
{
|
||||
if (c >= '0' && c <= '9')
|
||||
return c - '0';
|
||||
if (c >= 'a' && c <= 'f')
|
||||
return c - 'a' + 10;
|
||||
if (c >= 'A' && c <= 'F')
|
||||
return c - 'A' + 10;
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Decode a hex string into a byte string, 2 hex chars per byte.
|
||||
*
|
||||
* Returns false if invalid characters are encountered; otherwise true.
|
||||
*/
|
||||
bool
|
||||
HexDecodeString(uint8 *result, char *input, int nbytes)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < nbytes; ++i)
|
||||
{
|
||||
int n1 = HexDecodeChar(input[i * 2]);
|
||||
int n2 = HexDecodeChar(input[i * 2 + 1]);
|
||||
|
||||
if (n1 < 0 || n2 < 0)
|
||||
return false;
|
||||
result[i] = n1 * 16 + n2;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/* --------------------------------
|
||||
* pq_getmsgint32_le - get a binary 4-byte int from a message buffer in native (LE) order
|
||||
* --------------------------------
|
||||
*/
|
||||
uint32
|
||||
pq_getmsgint32_le(StringInfo msg)
|
||||
{
|
||||
uint32 n32;
|
||||
|
||||
pq_copymsgbytes(msg, (char *) &n32, sizeof(n32));
|
||||
|
||||
return n32;
|
||||
}
|
||||
|
||||
/* --------------------------------
|
||||
* pq_getmsgint64 - get a binary 8-byte int from a message buffer in native (LE) order
|
||||
* --------------------------------
|
||||
*/
|
||||
uint64
|
||||
pq_getmsgint64_le(StringInfo msg)
|
||||
{
|
||||
uint64 n64;
|
||||
|
||||
pq_copymsgbytes(msg, (char *) &n64, sizeof(n64));
|
||||
|
||||
return n64;
|
||||
}
|
||||
|
||||
/* append a binary [u]int32 to a StringInfo buffer in native (LE) order */
|
||||
void
|
||||
pq_sendint32_le(StringInfo buf, uint32 i)
|
||||
{
|
||||
enlargeStringInfo(buf, sizeof(uint32));
|
||||
memcpy(buf->data + buf->len, &i, sizeof(uint32));
|
||||
buf->len += sizeof(uint32);
|
||||
}
|
||||
|
||||
/* append a binary [u]int64 to a StringInfo buffer in native (LE) order */
|
||||
void
|
||||
pq_sendint64_le(StringInfo buf, uint64 i)
|
||||
{
|
||||
enlargeStringInfo(buf, sizeof(uint64));
|
||||
memcpy(buf->data + buf->len, &i, sizeof(uint64));
|
||||
buf->len += sizeof(uint64);
|
||||
}
|
||||
12
pgxn/neon/neon_utils.h
Normal file
12
pgxn/neon/neon_utils.h
Normal file
@@ -0,0 +1,12 @@
|
||||
#ifndef __NEON_UTILS_H__
|
||||
#define __NEON_UTILS_H__
|
||||
|
||||
#include "postgres.h"
|
||||
|
||||
bool HexDecodeString(uint8 *result, char *input, int nbytes);
|
||||
uint32 pq_getmsgint32_le(StringInfo msg);
|
||||
uint64 pq_getmsgint64_le(StringInfo msg);
|
||||
void pq_sendint32_le(StringInfo buf, uint32 i);
|
||||
void pq_sendint64_le(StringInfo buf, uint64 i);
|
||||
|
||||
#endif /* __NEON_UTILS_H__ */
|
||||
@@ -1790,6 +1790,14 @@ neon_zeroextend(SMgrRelation reln, ForkNumber forkNum, BlockNumber blocknum,
|
||||
if (!XLogInsertAllowed())
|
||||
return;
|
||||
|
||||
/* ensure we have enough xlog buffers to log max-sized records */
|
||||
XLogEnsureRecordSpace(Min(remblocks, (XLR_MAX_BLOCK_ID - 1)), 0);
|
||||
|
||||
/*
|
||||
* Iterate over all the pages. They are collected into batches of
|
||||
* XLR_MAX_BLOCK_ID pages, and a single WAL-record is written for each
|
||||
* batch.
|
||||
*/
|
||||
while (remblocks > 0)
|
||||
{
|
||||
int count = Min(remblocks, XLR_MAX_BLOCK_ID);
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,8 +1,8 @@
|
||||
#ifndef __NEON_WALPROPOSER_H__
|
||||
#define __NEON_WALPROPOSER_H__
|
||||
|
||||
#include "access/xlogdefs.h"
|
||||
#include "postgres.h"
|
||||
#include "access/xlogdefs.h"
|
||||
#include "port.h"
|
||||
#include "access/xlog_internal.h"
|
||||
#include "access/transam.h"
|
||||
@@ -16,29 +16,15 @@
|
||||
#define MAX_SAFEKEEPERS 32
|
||||
#define MAX_SEND_SIZE (XLOG_BLCKSZ * 16) /* max size of a single* WAL
|
||||
* message */
|
||||
#define XLOG_HDR_SIZE (1 + 8 * 3) /* 'w' + startPos + walEnd + timestamp */
|
||||
#define XLOG_HDR_START_POS 1 /* offset of start position in wal sender*
|
||||
* message header */
|
||||
#define XLOG_HDR_END_POS (1 + 8) /* offset of end position in wal sender*
|
||||
* message header */
|
||||
|
||||
/*
|
||||
* In the spirit of WL_SOCKET_READABLE and others, this corresponds to no events having occurred,
|
||||
* because all WL_* events are given flags equal to some (1 << i), starting from i = 0
|
||||
*/
|
||||
#define WL_NO_EVENTS 0
|
||||
|
||||
extern char *wal_acceptors_list;
|
||||
extern int wal_acceptor_reconnect_timeout;
|
||||
extern int wal_acceptor_connection_timeout;
|
||||
extern bool am_wal_proposer;
|
||||
|
||||
struct WalProposerConn; /* Defined in libpqwalproposer */
|
||||
struct WalProposerConn; /* Defined in implementation (walprop_pg.c) */
|
||||
typedef struct WalProposerConn WalProposerConn;
|
||||
|
||||
struct WalMessage;
|
||||
typedef struct WalMessage WalMessage;
|
||||
|
||||
/* Possible return values from ReadPGAsync */
|
||||
typedef enum
|
||||
{
|
||||
@@ -52,7 +38,7 @@ typedef enum
|
||||
PG_ASYNC_READ_TRY_AGAIN,
|
||||
/* Reading failed. Check PQerrorMessage(conn) */
|
||||
PG_ASYNC_READ_FAIL,
|
||||
} PGAsyncReadResult;
|
||||
} PGAsyncReadResult;
|
||||
|
||||
/* Possible return values from WritePGAsync */
|
||||
typedef enum
|
||||
@@ -71,7 +57,7 @@ typedef enum
|
||||
PG_ASYNC_WRITE_TRY_FLUSH,
|
||||
/* Writing failed. Check PQerrorMessage(conn) */
|
||||
PG_ASYNC_WRITE_FAIL,
|
||||
} PGAsyncWriteResult;
|
||||
} PGAsyncWriteResult;
|
||||
|
||||
/*
|
||||
* WAL safekeeper state, which is used to wait for some event.
|
||||
@@ -147,7 +133,7 @@ typedef enum
|
||||
* to read.
|
||||
*/
|
||||
SS_ACTIVE,
|
||||
} SafekeeperState;
|
||||
} SafekeeperState;
|
||||
|
||||
/* Consensus logical timestamp. */
|
||||
typedef uint64 term_t;
|
||||
@@ -171,12 +157,12 @@ typedef struct ProposerGreeting
|
||||
uint8 tenant_id[16];
|
||||
TimeLineID timeline;
|
||||
uint32 walSegSize;
|
||||
} ProposerGreeting;
|
||||
} ProposerGreeting;
|
||||
|
||||
typedef struct AcceptorProposerMessage
|
||||
{
|
||||
uint64 tag;
|
||||
} AcceptorProposerMessage;
|
||||
} AcceptorProposerMessage;
|
||||
|
||||
/*
|
||||
* Acceptor -> Proposer initial response: the highest term acceptor voted for.
|
||||
@@ -186,7 +172,7 @@ typedef struct AcceptorGreeting
|
||||
AcceptorProposerMessage apm;
|
||||
term_t term;
|
||||
NNodeId nodeId;
|
||||
} AcceptorGreeting;
|
||||
} AcceptorGreeting;
|
||||
|
||||
/*
|
||||
* Proposer -> Acceptor vote request.
|
||||
@@ -196,20 +182,20 @@ typedef struct VoteRequest
|
||||
uint64 tag;
|
||||
term_t term;
|
||||
pg_uuid_t proposerId; /* for monitoring/debugging */
|
||||
} VoteRequest;
|
||||
} VoteRequest;
|
||||
|
||||
/* Element of term switching chain. */
|
||||
typedef struct TermSwitchEntry
|
||||
{
|
||||
term_t term;
|
||||
XLogRecPtr lsn;
|
||||
} TermSwitchEntry;
|
||||
} TermSwitchEntry;
|
||||
|
||||
typedef struct TermHistory
|
||||
{
|
||||
uint32 n_entries;
|
||||
TermSwitchEntry *entries;
|
||||
} TermHistory;
|
||||
} TermHistory;
|
||||
|
||||
/* Vote itself, sent from safekeeper to proposer */
|
||||
typedef struct VoteResponse
|
||||
@@ -227,7 +213,7 @@ typedef struct VoteResponse
|
||||
* recovery of some safekeeper */
|
||||
TermHistory termHistory;
|
||||
XLogRecPtr timelineStartLsn; /* timeline globally starts at this LSN */
|
||||
} VoteResponse;
|
||||
} VoteResponse;
|
||||
|
||||
/*
|
||||
* Proposer -> Acceptor message announcing proposer is elected and communicating
|
||||
@@ -243,7 +229,7 @@ typedef struct ProposerElected
|
||||
TermHistory *termHistory;
|
||||
/* timeline globally starts at this LSN */
|
||||
XLogRecPtr timelineStartLsn;
|
||||
} ProposerElected;
|
||||
} ProposerElected;
|
||||
|
||||
/*
|
||||
* Header of request with WAL message sent from proposer to safekeeper.
|
||||
@@ -268,7 +254,7 @@ typedef struct AppendRequestHeader
|
||||
*/
|
||||
XLogRecPtr truncateLsn;
|
||||
pg_uuid_t proposerId; /* for monitoring/debugging */
|
||||
} AppendRequestHeader;
|
||||
} AppendRequestHeader;
|
||||
|
||||
/*
|
||||
* Hot standby feedback received from replica
|
||||
@@ -278,7 +264,7 @@ typedef struct HotStandbyFeedback
|
||||
TimestampTz ts;
|
||||
FullTransactionId xmin;
|
||||
FullTransactionId catalog_xmin;
|
||||
} HotStandbyFeedback;
|
||||
} HotStandbyFeedback;
|
||||
|
||||
typedef struct PageserverFeedback
|
||||
{
|
||||
@@ -289,7 +275,7 @@ typedef struct PageserverFeedback
|
||||
XLogRecPtr disk_consistent_lsn;
|
||||
XLogRecPtr remote_consistent_lsn;
|
||||
TimestampTz replytime;
|
||||
} PageserverFeedback;
|
||||
} PageserverFeedback;
|
||||
|
||||
typedef struct WalproposerShmemState
|
||||
{
|
||||
@@ -297,7 +283,7 @@ typedef struct WalproposerShmemState
|
||||
PageserverFeedback feedback;
|
||||
term_t mineLastElectedTerm;
|
||||
pg_atomic_uint64 backpressureThrottlingTime;
|
||||
} WalproposerShmemState;
|
||||
} WalproposerShmemState;
|
||||
|
||||
/*
|
||||
* Report safekeeper state to proposer
|
||||
@@ -321,17 +307,22 @@ typedef struct AppendResponse
|
||||
/* and custom neon feedback. */
|
||||
/* This part of the message is extensible. */
|
||||
PageserverFeedback rf;
|
||||
} AppendResponse;
|
||||
} AppendResponse;
|
||||
|
||||
/* PageserverFeedback is extensible part of the message that is parsed separately */
|
||||
/* Other fields are fixed part */
|
||||
#define APPENDRESPONSE_FIXEDPART_SIZE offsetof(AppendResponse, rf)
|
||||
|
||||
struct WalProposer;
|
||||
typedef struct WalProposer WalProposer;
|
||||
|
||||
/*
|
||||
* Descriptor of safekeeper
|
||||
*/
|
||||
typedef struct Safekeeper
|
||||
{
|
||||
WalProposer *wp;
|
||||
|
||||
char const *host;
|
||||
char const *port;
|
||||
|
||||
@@ -340,7 +331,7 @@ typedef struct Safekeeper
|
||||
*
|
||||
* May contain private information like password and should not be logged.
|
||||
*/
|
||||
char conninfo[MAXCONNINFO];
|
||||
char conninfo[MAXCONNINFO];
|
||||
|
||||
/*
|
||||
* postgres protocol connection to the WAL acceptor
|
||||
@@ -373,27 +364,12 @@ typedef struct Safekeeper
|
||||
int eventPos; /* position in wait event set. Equal to -1 if*
|
||||
* no event */
|
||||
SafekeeperState state; /* safekeeper state machine state */
|
||||
TimestampTz latestMsgReceivedAt; /* when latest msg is received */
|
||||
TimestampTz latestMsgReceivedAt; /* when latest msg is received */
|
||||
AcceptorGreeting greetResponse; /* acceptor greeting */
|
||||
VoteResponse voteResponse; /* the vote */
|
||||
AppendResponse appendResponse; /* feedback for master */
|
||||
} Safekeeper;
|
||||
|
||||
extern void PGDLLEXPORT WalProposerSync(int argc, char *argv[]);
|
||||
extern void PGDLLEXPORT WalProposerMain(Datum main_arg);
|
||||
extern void WalProposerBroadcast(XLogRecPtr startpos, XLogRecPtr endpos);
|
||||
extern void WalProposerPoll(void);
|
||||
extern void ParsePageserverFeedbackMessage(StringInfo reply_message,
|
||||
PageserverFeedback *rf);
|
||||
extern void StartProposerReplication(StartReplicationCmd *cmd);
|
||||
|
||||
extern Size WalproposerShmemSize(void);
|
||||
extern bool WalproposerShmemInit(void);
|
||||
extern void replication_feedback_set(PageserverFeedback *rf);
|
||||
extern void replication_feedback_get_lsns(XLogRecPtr *writeLsn, XLogRecPtr *flushLsn, XLogRecPtr *applyLsn);
|
||||
|
||||
/* libpqwalproposer hooks & helper type */
|
||||
|
||||
/* Re-exported PostgresPollingStatusType */
|
||||
typedef enum
|
||||
{
|
||||
@@ -406,7 +382,7 @@ typedef enum
|
||||
* 'libpq-fe.h' still has PGRES_POLLING_ACTIVE, but says it's unused.
|
||||
* We've removed it here to avoid clutter.
|
||||
*/
|
||||
} WalProposerConnectPollStatusType;
|
||||
} WalProposerConnectPollStatusType;
|
||||
|
||||
/* Re-exported and modified ExecStatusType */
|
||||
typedef enum
|
||||
@@ -431,7 +407,7 @@ typedef enum
|
||||
WP_EXEC_NEEDS_INPUT,
|
||||
/* Catch-all failure. Check PQerrorMessage. */
|
||||
WP_EXEC_FAILED,
|
||||
} WalProposerExecStatusType;
|
||||
} WalProposerExecStatusType;
|
||||
|
||||
/* Re-exported ConnStatusType */
|
||||
typedef enum
|
||||
@@ -445,67 +421,252 @@ typedef enum
|
||||
* that extra functionality, so we collect them into a single tag here.
|
||||
*/
|
||||
WP_CONNECTION_IN_PROGRESS,
|
||||
} WalProposerConnStatusType;
|
||||
|
||||
/* Re-exported PQerrorMessage */
|
||||
extern char *walprop_error_message(WalProposerConn *conn);
|
||||
|
||||
/* Re-exported PQstatus */
|
||||
extern WalProposerConnStatusType walprop_status(WalProposerConn *conn);
|
||||
|
||||
/* Re-exported PQconnectStart */
|
||||
extern WalProposerConn * walprop_connect_start(char *conninfo, char *password);
|
||||
|
||||
/* Re-exported PQconectPoll */
|
||||
extern WalProposerConnectPollStatusType walprop_connect_poll(WalProposerConn *conn);
|
||||
|
||||
/* Blocking wrapper around PQsendQuery */
|
||||
extern bool walprop_send_query(WalProposerConn *conn, char *query);
|
||||
|
||||
/* Wrapper around PQconsumeInput + PQisBusy + PQgetResult */
|
||||
extern WalProposerExecStatusType walprop_get_query_result(WalProposerConn *conn);
|
||||
|
||||
/* Re-exported PQsocket */
|
||||
extern pgsocket walprop_socket(WalProposerConn *conn);
|
||||
|
||||
/* Wrapper around PQconsumeInput (if socket's read-ready) + PQflush */
|
||||
extern int walprop_flush(WalProposerConn *conn);
|
||||
|
||||
/* Re-exported PQfinish */
|
||||
extern void walprop_finish(WalProposerConn *conn);
|
||||
} WalProposerConnStatusType;
|
||||
|
||||
/*
|
||||
* Ergonomic wrapper around PGgetCopyData
|
||||
*
|
||||
* Reads a CopyData block from a safekeeper, setting *amount to the number
|
||||
* of bytes returned.
|
||||
*
|
||||
* This function is allowed to assume certain properties specific to the
|
||||
* protocol with the safekeepers, so it should not be used as-is for any
|
||||
* other purpose.
|
||||
*
|
||||
* Note: If possible, using <AsyncRead> is generally preferred, because it
|
||||
* performs a bit of extra checking work that's always required and is normally
|
||||
* somewhat verbose.
|
||||
* Collection of hooks for walproposer, to call postgres functions,
|
||||
* read WAL and send it over the network.
|
||||
*/
|
||||
extern PGAsyncReadResult walprop_async_read(WalProposerConn *conn, char **buf, int *amount);
|
||||
typedef struct walproposer_api
|
||||
{
|
||||
/*
|
||||
* Get WalproposerShmemState. This is used to store information about last
|
||||
* elected term.
|
||||
*/
|
||||
WalproposerShmemState *(*get_shmem_state) (void);
|
||||
|
||||
/*
|
||||
* Start receiving notifications about new WAL. This is an infinite loop
|
||||
* which calls WalProposerBroadcast() and WalProposerPoll() to send the
|
||||
* WAL.
|
||||
*/
|
||||
void (*start_streaming) (WalProposer *wp, XLogRecPtr startpos);
|
||||
|
||||
/* Get pointer to the latest available WAL. */
|
||||
XLogRecPtr (*get_flush_rec_ptr) (void);
|
||||
|
||||
/* Get current time. */
|
||||
TimestampTz (*get_current_timestamp) (void);
|
||||
|
||||
/* Get postgres timeline. */
|
||||
TimeLineID (*get_timeline_id) (void);
|
||||
|
||||
/* Current error message, aka PQerrorMessage. */
|
||||
char *(*conn_error_message) (WalProposerConn *conn);
|
||||
|
||||
/* Connection status, aka PQstatus. */
|
||||
WalProposerConnStatusType (*conn_status) (WalProposerConn *conn);
|
||||
|
||||
/* Start the connection, aka PQconnectStart. */
|
||||
WalProposerConn *(*conn_connect_start) (char *conninfo);
|
||||
|
||||
/* Poll an asynchronous connection, aka PQconnectPoll. */
|
||||
WalProposerConnectPollStatusType (*conn_connect_poll) (WalProposerConn *conn);
|
||||
|
||||
/* Send a blocking SQL query, aka PQsendQuery. */
|
||||
bool (*conn_send_query) (WalProposerConn *conn, char *query);
|
||||
|
||||
/* Read the query result, aka PQgetResult. */
|
||||
WalProposerExecStatusType (*conn_get_query_result) (WalProposerConn *conn);
|
||||
|
||||
/* Flush buffer to the network, aka PQflush. */
|
||||
int (*conn_flush) (WalProposerConn *conn);
|
||||
|
||||
/* Close the connection, aka PQfinish. */
|
||||
void (*conn_finish) (WalProposerConn *conn);
|
||||
|
||||
/* Try to read CopyData message, aka PQgetCopyData. */
|
||||
PGAsyncReadResult (*conn_async_read) (WalProposerConn *conn, char **buf, int *amount);
|
||||
|
||||
/* Try to write CopyData message, aka PQputCopyData. */
|
||||
PGAsyncWriteResult (*conn_async_write) (WalProposerConn *conn, void const *buf, size_t size);
|
||||
|
||||
/* Blocking CopyData write, aka PQputCopyData + PQflush. */
|
||||
bool (*conn_blocking_write) (WalProposerConn *conn, void const *buf, size_t size);
|
||||
|
||||
/* Download WAL from startpos to endpos and make it available locally. */
|
||||
bool (*recovery_download) (Safekeeper *sk, TimeLineID timeline, XLogRecPtr startpos, XLogRecPtr endpos);
|
||||
|
||||
/* Read WAL from disk to buf. */
|
||||
void (*wal_read) (XLogReaderState *state, char *buf, XLogRecPtr startptr, Size count);
|
||||
|
||||
/* Allocate WAL reader. */
|
||||
XLogReaderState *(*wal_reader_allocate) (void);
|
||||
|
||||
/* Deallocate event set. */
|
||||
void (*free_event_set) (void);
|
||||
|
||||
/* Initialize event set. */
|
||||
void (*init_event_set) (int n_safekeepers);
|
||||
|
||||
/* Update events for an existing safekeeper connection. */
|
||||
void (*update_event_set) (Safekeeper *sk, uint32 events);
|
||||
|
||||
/* Add a new safekeeper connection to the event set. */
|
||||
void (*add_safekeeper_event_set) (Safekeeper *sk, uint32 events);
|
||||
|
||||
/*
|
||||
* Wait until some event happens: - timeout is reached - socket event for
|
||||
* safekeeper connection - new WAL is available
|
||||
*
|
||||
* Returns 0 if timeout is reached, 1 if some event happened. Updates
|
||||
* events mask to indicate events and sets sk to the safekeeper which has
|
||||
* an event.
|
||||
*/
|
||||
int (*wait_event_set) (long timeout, Safekeeper **sk, uint32 *events);
|
||||
|
||||
/* Read random bytes. */
|
||||
bool (*strong_random) (void *buf, size_t len);
|
||||
|
||||
/*
|
||||
* Get a basebackup LSN. Used to cross-validate with the latest available
|
||||
* LSN on the safekeepers.
|
||||
*/
|
||||
XLogRecPtr (*get_redo_start_lsn) (void);
|
||||
|
||||
/*
|
||||
* Finish sync safekeepers with the given LSN. This function should not
|
||||
* return and should exit the program.
|
||||
*/
|
||||
void (*finish_sync_safekeepers) (XLogRecPtr lsn);
|
||||
|
||||
/*
|
||||
* Called after every new message from the safekeeper. Used to propagate
|
||||
* backpressure feedback and to confirm WAL persistence (has been commited
|
||||
* on the quorum of safekeepers).
|
||||
*/
|
||||
void (*process_safekeeper_feedback) (WalProposer *wp, XLogRecPtr commitLsn);
|
||||
|
||||
/*
|
||||
* Called on peer_horizon_lsn updates. Used to advance replication slot
|
||||
* and to free up disk space by deleting unnecessary WAL.
|
||||
*/
|
||||
void (*confirm_wal_streamed) (XLogRecPtr lsn);
|
||||
} walproposer_api;
|
||||
|
||||
/*
|
||||
* Ergonomic wrapper around PQputCopyData + PQflush
|
||||
*
|
||||
* Starts to write a CopyData block to a safekeeper.
|
||||
*
|
||||
* For information on the meaning of return codes, refer to PGAsyncWriteResult.
|
||||
* Configuration of the WAL proposer.
|
||||
*/
|
||||
extern PGAsyncWriteResult walprop_async_write(WalProposerConn *conn, void const *buf, size_t size);
|
||||
typedef struct WalProposerConfig
|
||||
{
|
||||
/* hex-encoded TenantId cstr */
|
||||
char *neon_tenant;
|
||||
|
||||
/* hex-encoded TimelineId cstr */
|
||||
char *neon_timeline;
|
||||
|
||||
/*
|
||||
* Comma-separated list of safekeepers, in the following format:
|
||||
* host1:port1,host2:port2,host3:port3
|
||||
*
|
||||
* This cstr should be editable.
|
||||
*/
|
||||
char *safekeepers_list;
|
||||
|
||||
/*
|
||||
* WalProposer reconnects to offline safekeepers once in this interval.
|
||||
* Time is in milliseconds.
|
||||
*/
|
||||
int safekeeper_reconnect_timeout;
|
||||
|
||||
/*
|
||||
* WalProposer terminates the connection if it doesn't receive any message
|
||||
* from the safekeeper in this interval. Time is in milliseconds.
|
||||
*/
|
||||
int safekeeper_connection_timeout;
|
||||
|
||||
/*
|
||||
* WAL segment size. Will be passed to safekeepers in greet request. Also
|
||||
* used to detect page headers.
|
||||
*/
|
||||
int wal_segment_size;
|
||||
|
||||
/*
|
||||
* If safekeeper was started in sync mode, walproposer will not subscribe
|
||||
* for new WAL and will exit when quorum of safekeepers will be synced to
|
||||
* the latest available LSN.
|
||||
*/
|
||||
bool syncSafekeepers;
|
||||
|
||||
/* Will be passed to safekeepers in greet request. */
|
||||
uint64 systemId;
|
||||
} WalProposerConfig;
|
||||
|
||||
|
||||
/*
|
||||
* Blocking equivalent to walprop_async_write_fn
|
||||
*
|
||||
* Returns 'true' if successful, 'false' on failure.
|
||||
* WAL proposer state.
|
||||
*/
|
||||
extern bool walprop_blocking_write(WalProposerConn *conn, void const *buf, size_t size);
|
||||
typedef struct WalProposer
|
||||
{
|
||||
WalProposerConfig *config;
|
||||
int n_safekeepers;
|
||||
|
||||
extern uint64 BackpressureThrottlingTime(void);
|
||||
/* (n_safekeepers / 2) + 1 */
|
||||
int quorum;
|
||||
|
||||
Safekeeper safekeeper[MAX_SAFEKEEPERS];
|
||||
|
||||
/* WAL has been generated up to this point */
|
||||
XLogRecPtr availableLsn;
|
||||
|
||||
/* last commitLsn broadcasted to safekeepers */
|
||||
XLogRecPtr lastSentCommitLsn;
|
||||
|
||||
ProposerGreeting greetRequest;
|
||||
|
||||
/* Vote request for safekeeper */
|
||||
VoteRequest voteRequest;
|
||||
|
||||
/*
|
||||
* Minimal LSN which may be needed for recovery of some safekeeper,
|
||||
* record-aligned (first record which might not yet received by someone).
|
||||
*/
|
||||
XLogRecPtr truncateLsn;
|
||||
|
||||
/*
|
||||
* Term of the proposer. We want our term to be highest and unique, so we
|
||||
* collect terms from safekeepers quorum, choose max and +1. After that
|
||||
* our term is fixed and must not change. If we observe that some
|
||||
* safekeeper has higher term, it means that we have another running
|
||||
* compute, so we must stop immediately.
|
||||
*/
|
||||
term_t propTerm;
|
||||
|
||||
/* term history of the proposer */
|
||||
TermHistory propTermHistory;
|
||||
|
||||
/* epoch start lsn of the proposer */
|
||||
XLogRecPtr propEpochStartLsn;
|
||||
|
||||
/* Most advanced acceptor epoch */
|
||||
term_t donorEpoch;
|
||||
|
||||
/* Most advanced acceptor */
|
||||
int donor;
|
||||
|
||||
/* timeline globally starts at this LSN */
|
||||
XLogRecPtr timelineStartLsn;
|
||||
|
||||
/* number of votes collected from safekeepers */
|
||||
int n_votes;
|
||||
|
||||
/* number of successful connections over the lifetime of walproposer */
|
||||
int n_connected;
|
||||
|
||||
/*
|
||||
* Timestamp of the last reconnection attempt. Related to
|
||||
* config->safekeeper_reconnect_timeout
|
||||
*/
|
||||
TimestampTz last_reconnect_attempt;
|
||||
|
||||
walproposer_api api;
|
||||
} WalProposer;
|
||||
|
||||
extern WalProposer *WalProposerCreate(WalProposerConfig *config, walproposer_api api);
|
||||
extern void WalProposerStart(WalProposer *wp);
|
||||
extern void WalProposerBroadcast(WalProposer *wp, XLogRecPtr startpos, XLogRecPtr endpos);
|
||||
extern void WalProposerPoll(WalProposer *wp);
|
||||
extern void ParsePageserverFeedbackMessage(StringInfo reply_message,
|
||||
PageserverFeedback *rf);
|
||||
|
||||
#endif /* __NEON_WALPROPOSER_H__ */
|
||||
|
||||
1667
pgxn/neon/walproposer_pg.c
Normal file
1667
pgxn/neon/walproposer_pg.c
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1,659 +0,0 @@
|
||||
#include "postgres.h"
|
||||
|
||||
#include "access/timeline.h"
|
||||
#include "access/xlogutils.h"
|
||||
#include "common/logging.h"
|
||||
#include "common/ip.h"
|
||||
#include "funcapi.h"
|
||||
#include "libpq/libpq.h"
|
||||
#include "libpq/pqformat.h"
|
||||
#include "miscadmin.h"
|
||||
#include "postmaster/interrupt.h"
|
||||
#include "replication/slot.h"
|
||||
#include "walproposer_utils.h"
|
||||
#include "replication/walsender_private.h"
|
||||
|
||||
#include "storage/ipc.h"
|
||||
#include "utils/builtins.h"
|
||||
#include "utils/ps_status.h"
|
||||
|
||||
#include "libpq-fe.h"
|
||||
#include <netinet/tcp.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#if PG_VERSION_NUM >= 150000
|
||||
#include "access/xlogutils.h"
|
||||
#include "access/xlogrecovery.h"
|
||||
#endif
|
||||
#if PG_MAJORVERSION_NUM >= 16
|
||||
#include "utils/guc.h"
|
||||
#endif
|
||||
|
||||
/*
|
||||
* These variables are used similarly to openLogFile/SegNo,
|
||||
* but for walproposer to write the XLOG during recovery. walpropFileTLI is the TimeLineID
|
||||
* corresponding the filename of walpropFile.
|
||||
*/
|
||||
static int walpropFile = -1;
|
||||
static TimeLineID walpropFileTLI = 0;
|
||||
static XLogSegNo walpropSegNo = 0;
|
||||
|
||||
/* START cloned file-local variables and functions from walsender.c */
|
||||
|
||||
/*
|
||||
* How far have we sent WAL already? This is also advertised in
|
||||
* MyWalSnd->sentPtr. (Actually, this is the next WAL location to send.)
|
||||
*/
|
||||
static XLogRecPtr sentPtr = InvalidXLogRecPtr;
|
||||
|
||||
static void WalSndLoop(void);
|
||||
static void XLogBroadcastWalProposer(void);
|
||||
/* END cloned file-level variables and functions from walsender.c */
|
||||
|
||||
int
|
||||
CompareLsn(const void *a, const void *b)
|
||||
{
|
||||
XLogRecPtr lsn1 = *((const XLogRecPtr *) a);
|
||||
XLogRecPtr lsn2 = *((const XLogRecPtr *) b);
|
||||
|
||||
if (lsn1 < lsn2)
|
||||
return -1;
|
||||
else if (lsn1 == lsn2)
|
||||
return 0;
|
||||
else
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Returns a human-readable string corresonding to the SafekeeperState
|
||||
*
|
||||
* The string should not be freed.
|
||||
*
|
||||
* The strings are intended to be used as a prefix to "state", e.g.:
|
||||
*
|
||||
* elog(LOG, "currently in %s state", FormatSafekeeperState(sk->state));
|
||||
*
|
||||
* If this sort of phrasing doesn't fit the message, instead use something like:
|
||||
*
|
||||
* elog(LOG, "currently in state [%s]", FormatSafekeeperState(sk->state));
|
||||
*/
|
||||
char *
|
||||
FormatSafekeeperState(SafekeeperState state)
|
||||
{
|
||||
char *return_val = NULL;
|
||||
|
||||
switch (state)
|
||||
{
|
||||
case SS_OFFLINE:
|
||||
return_val = "offline";
|
||||
break;
|
||||
case SS_CONNECTING_READ:
|
||||
case SS_CONNECTING_WRITE:
|
||||
return_val = "connecting";
|
||||
break;
|
||||
case SS_WAIT_EXEC_RESULT:
|
||||
return_val = "receiving query result";
|
||||
break;
|
||||
case SS_HANDSHAKE_RECV:
|
||||
return_val = "handshake (receiving)";
|
||||
break;
|
||||
case SS_VOTING:
|
||||
return_val = "voting";
|
||||
break;
|
||||
case SS_WAIT_VERDICT:
|
||||
return_val = "wait-for-verdict";
|
||||
break;
|
||||
case SS_SEND_ELECTED_FLUSH:
|
||||
return_val = "send-announcement-flush";
|
||||
break;
|
||||
case SS_IDLE:
|
||||
return_val = "idle";
|
||||
break;
|
||||
case SS_ACTIVE:
|
||||
return_val = "active";
|
||||
break;
|
||||
}
|
||||
|
||||
Assert(return_val != NULL);
|
||||
|
||||
return return_val;
|
||||
}
|
||||
|
||||
/* Asserts that the provided events are expected for given safekeeper's state */
|
||||
void
|
||||
AssertEventsOkForState(uint32 events, Safekeeper *sk)
|
||||
{
|
||||
uint32 expected = SafekeeperStateDesiredEvents(sk->state);
|
||||
|
||||
/*
|
||||
* The events are in-line with what we're expecting, under two conditions:
|
||||
* (a) if we aren't expecting anything, `events` has no read- or
|
||||
* write-ready component. (b) if we are expecting something, there's
|
||||
* overlap (i.e. `events & expected != 0`)
|
||||
*/
|
||||
bool events_ok_for_state; /* long name so the `Assert` is more
|
||||
* clear later */
|
||||
|
||||
if (expected == WL_NO_EVENTS)
|
||||
events_ok_for_state = ((events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE)) == 0);
|
||||
else
|
||||
events_ok_for_state = ((events & expected) != 0);
|
||||
|
||||
if (!events_ok_for_state)
|
||||
{
|
||||
/*
|
||||
* To give a descriptive message in the case of failure, we use elog
|
||||
* and then an assertion that's guaranteed to fail.
|
||||
*/
|
||||
elog(WARNING, "events %s mismatched for safekeeper %s:%s in state [%s]",
|
||||
FormatEvents(events), sk->host, sk->port, FormatSafekeeperState(sk->state));
|
||||
Assert(events_ok_for_state);
|
||||
}
|
||||
}
|
||||
|
||||
/* Returns the set of events a safekeeper in this state should be waiting on
|
||||
*
|
||||
* This will return WL_NO_EVENTS (= 0) for some events. */
|
||||
uint32
|
||||
SafekeeperStateDesiredEvents(SafekeeperState state)
|
||||
{
|
||||
uint32 result = WL_NO_EVENTS;
|
||||
|
||||
/* If the state doesn't have a modifier, we can check the base state */
|
||||
switch (state)
|
||||
{
|
||||
/* Connecting states say what they want in the name */
|
||||
case SS_CONNECTING_READ:
|
||||
result = WL_SOCKET_READABLE;
|
||||
break;
|
||||
case SS_CONNECTING_WRITE:
|
||||
result = WL_SOCKET_WRITEABLE;
|
||||
break;
|
||||
|
||||
/* Reading states need the socket to be read-ready to continue */
|
||||
case SS_WAIT_EXEC_RESULT:
|
||||
case SS_HANDSHAKE_RECV:
|
||||
case SS_WAIT_VERDICT:
|
||||
result = WL_SOCKET_READABLE;
|
||||
break;
|
||||
|
||||
/*
|
||||
* Idle states use read-readiness as a sign that the connection
|
||||
* has been disconnected.
|
||||
*/
|
||||
case SS_VOTING:
|
||||
case SS_IDLE:
|
||||
result = WL_SOCKET_READABLE;
|
||||
break;
|
||||
|
||||
/*
|
||||
* Flush states require write-ready for flushing. Active state
|
||||
* does both reading and writing.
|
||||
*
|
||||
* TODO: SS_ACTIVE sometimes doesn't need to be write-ready. We
|
||||
* should check sk->flushWrite here to set WL_SOCKET_WRITEABLE.
|
||||
*/
|
||||
case SS_SEND_ELECTED_FLUSH:
|
||||
case SS_ACTIVE:
|
||||
result = WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE;
|
||||
break;
|
||||
|
||||
/* The offline state expects no events. */
|
||||
case SS_OFFLINE:
|
||||
result = WL_NO_EVENTS;
|
||||
break;
|
||||
|
||||
default:
|
||||
Assert(false);
|
||||
break;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Returns a human-readable string corresponding to the event set
|
||||
*
|
||||
* If the events do not correspond to something set as the `events` field of a `WaitEvent`, the
|
||||
* returned string may be meaingless.
|
||||
*
|
||||
* The string should not be freed. It should also not be expected to remain the same between
|
||||
* function calls. */
|
||||
char *
|
||||
FormatEvents(uint32 events)
|
||||
{
|
||||
static char return_str[8];
|
||||
|
||||
/* Helper variable to check if there's extra bits */
|
||||
uint32 all_flags = WL_LATCH_SET
|
||||
| WL_SOCKET_READABLE
|
||||
| WL_SOCKET_WRITEABLE
|
||||
| WL_TIMEOUT
|
||||
| WL_POSTMASTER_DEATH
|
||||
| WL_EXIT_ON_PM_DEATH
|
||||
| WL_SOCKET_CONNECTED;
|
||||
|
||||
/*
|
||||
* The formatting here isn't supposed to be *particularly* useful -- it's
|
||||
* just to give an sense of what events have been triggered without
|
||||
* needing to remember your powers of two.
|
||||
*/
|
||||
|
||||
return_str[0] = (events & WL_LATCH_SET) ? 'L' : '_';
|
||||
return_str[1] = (events & WL_SOCKET_READABLE) ? 'R' : '_';
|
||||
return_str[2] = (events & WL_SOCKET_WRITEABLE) ? 'W' : '_';
|
||||
return_str[3] = (events & WL_TIMEOUT) ? 'T' : '_';
|
||||
return_str[4] = (events & WL_POSTMASTER_DEATH) ? 'D' : '_';
|
||||
return_str[5] = (events & WL_EXIT_ON_PM_DEATH) ? 'E' : '_';
|
||||
return_str[5] = (events & WL_SOCKET_CONNECTED) ? 'C' : '_';
|
||||
|
||||
if (events & (~all_flags))
|
||||
{
|
||||
elog(WARNING, "Event formatting found unexpected component %d",
|
||||
events & (~all_flags));
|
||||
return_str[6] = '*';
|
||||
return_str[7] = '\0';
|
||||
}
|
||||
else
|
||||
return_str[6] = '\0';
|
||||
|
||||
return (char *) &return_str;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert a character which represents a hexadecimal digit to an integer.
|
||||
*
|
||||
* Returns -1 if the character is not a hexadecimal digit.
|
||||
*/
|
||||
static int
|
||||
HexDecodeChar(char c)
|
||||
{
|
||||
if (c >= '0' && c <= '9')
|
||||
return c - '0';
|
||||
if (c >= 'a' && c <= 'f')
|
||||
return c - 'a' + 10;
|
||||
if (c >= 'A' && c <= 'F')
|
||||
return c - 'A' + 10;
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Decode a hex string into a byte string, 2 hex chars per byte.
|
||||
*
|
||||
* Returns false if invalid characters are encountered; otherwise true.
|
||||
*/
|
||||
bool
|
||||
HexDecodeString(uint8 *result, char *input, int nbytes)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < nbytes; ++i)
|
||||
{
|
||||
int n1 = HexDecodeChar(input[i * 2]);
|
||||
int n2 = HexDecodeChar(input[i * 2 + 1]);
|
||||
|
||||
if (n1 < 0 || n2 < 0)
|
||||
return false;
|
||||
result[i] = n1 * 16 + n2;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/* --------------------------------
|
||||
* pq_getmsgint32_le - get a binary 4-byte int from a message buffer in native (LE) order
|
||||
* --------------------------------
|
||||
*/
|
||||
uint32
|
||||
pq_getmsgint32_le(StringInfo msg)
|
||||
{
|
||||
uint32 n32;
|
||||
|
||||
pq_copymsgbytes(msg, (char *) &n32, sizeof(n32));
|
||||
|
||||
return n32;
|
||||
}
|
||||
|
||||
/* --------------------------------
|
||||
* pq_getmsgint64 - get a binary 8-byte int from a message buffer in native (LE) order
|
||||
* --------------------------------
|
||||
*/
|
||||
uint64
|
||||
pq_getmsgint64_le(StringInfo msg)
|
||||
{
|
||||
uint64 n64;
|
||||
|
||||
pq_copymsgbytes(msg, (char *) &n64, sizeof(n64));
|
||||
|
||||
return n64;
|
||||
}
|
||||
|
||||
/* append a binary [u]int32 to a StringInfo buffer in native (LE) order */
|
||||
void
|
||||
pq_sendint32_le(StringInfo buf, uint32 i)
|
||||
{
|
||||
enlargeStringInfo(buf, sizeof(uint32));
|
||||
memcpy(buf->data + buf->len, &i, sizeof(uint32));
|
||||
buf->len += sizeof(uint32);
|
||||
}
|
||||
|
||||
/* append a binary [u]int64 to a StringInfo buffer in native (LE) order */
|
||||
void
|
||||
pq_sendint64_le(StringInfo buf, uint64 i)
|
||||
{
|
||||
enlargeStringInfo(buf, sizeof(uint64));
|
||||
memcpy(buf->data + buf->len, &i, sizeof(uint64));
|
||||
buf->len += sizeof(uint64);
|
||||
}
|
||||
|
||||
/*
|
||||
* Write XLOG data to disk.
|
||||
*/
|
||||
void
|
||||
XLogWalPropWrite(char *buf, Size nbytes, XLogRecPtr recptr)
|
||||
{
|
||||
int startoff;
|
||||
int byteswritten;
|
||||
|
||||
while (nbytes > 0)
|
||||
{
|
||||
int segbytes;
|
||||
|
||||
/* Close the current segment if it's completed */
|
||||
if (walpropFile >= 0 && !XLByteInSeg(recptr, walpropSegNo, wal_segment_size))
|
||||
XLogWalPropClose(recptr);
|
||||
|
||||
if (walpropFile < 0)
|
||||
{
|
||||
#if PG_VERSION_NUM >= 150000
|
||||
/* FIXME Is it ok to use hardcoded value here? */
|
||||
TimeLineID tli = 1;
|
||||
#else
|
||||
bool use_existent = true;
|
||||
#endif
|
||||
/* Create/use new log file */
|
||||
XLByteToSeg(recptr, walpropSegNo, wal_segment_size);
|
||||
#if PG_VERSION_NUM >= 150000
|
||||
walpropFile = XLogFileInit(walpropSegNo, tli);
|
||||
walpropFileTLI = tli;
|
||||
#else
|
||||
walpropFile = XLogFileInit(walpropSegNo, &use_existent, false);
|
||||
walpropFileTLI = ThisTimeLineID;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Calculate the start offset of the received logs */
|
||||
startoff = XLogSegmentOffset(recptr, wal_segment_size);
|
||||
|
||||
if (startoff + nbytes > wal_segment_size)
|
||||
segbytes = wal_segment_size - startoff;
|
||||
else
|
||||
segbytes = nbytes;
|
||||
|
||||
/* OK to write the logs */
|
||||
errno = 0;
|
||||
|
||||
byteswritten = pg_pwrite(walpropFile, buf, segbytes, (off_t) startoff);
|
||||
if (byteswritten <= 0)
|
||||
{
|
||||
char xlogfname[MAXFNAMELEN];
|
||||
int save_errno;
|
||||
|
||||
/* if write didn't set errno, assume no disk space */
|
||||
if (errno == 0)
|
||||
errno = ENOSPC;
|
||||
|
||||
save_errno = errno;
|
||||
XLogFileName(xlogfname, walpropFileTLI, walpropSegNo, wal_segment_size);
|
||||
errno = save_errno;
|
||||
ereport(PANIC,
|
||||
(errcode_for_file_access(),
|
||||
errmsg("could not write to log segment %s "
|
||||
"at offset %u, length %lu: %m",
|
||||
xlogfname, startoff, (unsigned long) segbytes)));
|
||||
}
|
||||
|
||||
/* Update state for write */
|
||||
recptr += byteswritten;
|
||||
|
||||
nbytes -= byteswritten;
|
||||
buf += byteswritten;
|
||||
}
|
||||
|
||||
/*
|
||||
* Close the current segment if it's fully written up in the last cycle of
|
||||
* the loop.
|
||||
*/
|
||||
if (walpropFile >= 0 && !XLByteInSeg(recptr, walpropSegNo, wal_segment_size))
|
||||
{
|
||||
XLogWalPropClose(recptr);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Close the current segment.
|
||||
*/
|
||||
void
|
||||
XLogWalPropClose(XLogRecPtr recptr)
|
||||
{
|
||||
Assert(walpropFile >= 0 && !XLByteInSeg(recptr, walpropSegNo, wal_segment_size));
|
||||
|
||||
if (close(walpropFile) != 0)
|
||||
{
|
||||
char xlogfname[MAXFNAMELEN];
|
||||
|
||||
XLogFileName(xlogfname, walpropFileTLI, walpropSegNo, wal_segment_size);
|
||||
|
||||
ereport(PANIC,
|
||||
(errcode_for_file_access(),
|
||||
errmsg("could not close log segment %s: %m",
|
||||
xlogfname)));
|
||||
}
|
||||
|
||||
walpropFile = -1;
|
||||
}
|
||||
|
||||
/* START of cloned functions from walsender.c */
|
||||
|
||||
/*
|
||||
* Subscribe for new WAL and stream it in the loop to safekeepers.
|
||||
*
|
||||
* At the moment, this never returns, but an ereport(ERROR) will take us back
|
||||
* to the main loop.
|
||||
*/
|
||||
void
|
||||
StartProposerReplication(StartReplicationCmd *cmd)
|
||||
{
|
||||
XLogRecPtr FlushPtr;
|
||||
TimeLineID currTLI;
|
||||
|
||||
#if PG_VERSION_NUM < 150000
|
||||
if (ThisTimeLineID == 0)
|
||||
ereport(ERROR,
|
||||
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
||||
errmsg("IDENTIFY_SYSTEM has not been run before START_REPLICATION")));
|
||||
#endif
|
||||
|
||||
/*
|
||||
* We assume here that we're logging enough information in the WAL for
|
||||
* log-shipping, since this is checked in PostmasterMain().
|
||||
*
|
||||
* NOTE: wal_level can only change at shutdown, so in most cases it is
|
||||
* difficult for there to be WAL data that we can still see that was
|
||||
* written at wal_level='minimal'.
|
||||
*/
|
||||
|
||||
if (cmd->slotname)
|
||||
{
|
||||
ReplicationSlotAcquire(cmd->slotname, true);
|
||||
if (SlotIsLogical(MyReplicationSlot))
|
||||
ereport(ERROR,
|
||||
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
||||
errmsg("cannot use a logical replication slot for physical replication")));
|
||||
|
||||
/*
|
||||
* We don't need to verify the slot's restart_lsn here; instead we
|
||||
* rely on the caller requesting the starting point to use. If the
|
||||
* WAL segment doesn't exist, we'll fail later.
|
||||
*/
|
||||
}
|
||||
|
||||
/*
|
||||
* Select the timeline. If it was given explicitly by the client, use
|
||||
* that. Otherwise use the timeline of the last replayed record, which is
|
||||
* kept in ThisTimeLineID.
|
||||
*
|
||||
* Neon doesn't currently use PG Timelines, but it may in the future, so
|
||||
* we keep this code around to lighten the load for when we need it.
|
||||
*/
|
||||
#if PG_VERSION_NUM >= 150000
|
||||
FlushPtr = GetFlushRecPtr(&currTLI);
|
||||
#else
|
||||
FlushPtr = GetFlushRecPtr();
|
||||
currTLI = ThisTimeLineID;
|
||||
#endif
|
||||
|
||||
/*
|
||||
* When we first start replication the standby will be behind the
|
||||
* primary. For some applications, for example synchronous
|
||||
* replication, it is important to have a clear state for this initial
|
||||
* catchup mode, so we can trigger actions when we change streaming
|
||||
* state later. We may stay in this state for a long time, which is
|
||||
* exactly why we want to be able to monitor whether or not we are
|
||||
* still here.
|
||||
*/
|
||||
WalSndSetState(WALSNDSTATE_CATCHUP);
|
||||
|
||||
/*
|
||||
* Don't allow a request to stream from a future point in WAL that
|
||||
* hasn't been flushed to disk in this server yet.
|
||||
*/
|
||||
if (FlushPtr < cmd->startpoint)
|
||||
{
|
||||
ereport(ERROR,
|
||||
(errmsg("requested starting point %X/%X is ahead of the WAL flush position of this server %X/%X",
|
||||
LSN_FORMAT_ARGS(cmd->startpoint),
|
||||
LSN_FORMAT_ARGS(FlushPtr))));
|
||||
}
|
||||
|
||||
/* Start streaming from the requested point */
|
||||
sentPtr = cmd->startpoint;
|
||||
|
||||
/* Initialize shared memory status, too */
|
||||
SpinLockAcquire(&MyWalSnd->mutex);
|
||||
MyWalSnd->sentPtr = sentPtr;
|
||||
SpinLockRelease(&MyWalSnd->mutex);
|
||||
|
||||
SyncRepInitConfig();
|
||||
|
||||
/* Infinite send loop, never returns */
|
||||
WalSndLoop();
|
||||
|
||||
WalSndSetState(WALSNDSTATE_STARTUP);
|
||||
|
||||
if (cmd->slotname)
|
||||
ReplicationSlotRelease();
|
||||
}
|
||||
|
||||
/*
|
||||
* Main loop that waits for LSN updates and calls the walproposer.
|
||||
* Synchronous replication sets latch in WalSndWakeup at walsender.c
|
||||
*/
|
||||
static void
|
||||
WalSndLoop(void)
|
||||
{
|
||||
/* Clear any already-pending wakeups */
|
||||
ResetLatch(MyLatch);
|
||||
|
||||
for (;;)
|
||||
{
|
||||
CHECK_FOR_INTERRUPTS();
|
||||
|
||||
XLogBroadcastWalProposer();
|
||||
|
||||
if (MyWalSnd->state == WALSNDSTATE_CATCHUP)
|
||||
WalSndSetState(WALSNDSTATE_STREAMING);
|
||||
WalProposerPoll();
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Notify walproposer about the new WAL position.
|
||||
*/
|
||||
static void
|
||||
XLogBroadcastWalProposer(void)
|
||||
{
|
||||
XLogRecPtr startptr;
|
||||
XLogRecPtr endptr;
|
||||
|
||||
/* Start from the last sent position */
|
||||
startptr = sentPtr;
|
||||
|
||||
/*
|
||||
* Streaming the current timeline on a primary.
|
||||
*
|
||||
* Attempt to send all data that's already been written out and
|
||||
* fsync'd to disk. We cannot go further than what's been written out
|
||||
* given the current implementation of WALRead(). And in any case
|
||||
* it's unsafe to send WAL that is not securely down to disk on the
|
||||
* primary: if the primary subsequently crashes and restarts, standbys
|
||||
* must not have applied any WAL that got lost on the primary.
|
||||
*/
|
||||
#if PG_VERSION_NUM >= 150000
|
||||
endptr = GetFlushRecPtr(NULL);
|
||||
#else
|
||||
endptr = GetFlushRecPtr();
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Record the current system time as an approximation of the time at which
|
||||
* this WAL location was written for the purposes of lag tracking.
|
||||
*
|
||||
* In theory we could make XLogFlush() record a time in shmem whenever WAL
|
||||
* is flushed and we could get that time as well as the LSN when we call
|
||||
* GetFlushRecPtr() above (and likewise for the cascading standby
|
||||
* equivalent), but rather than putting any new code into the hot WAL path
|
||||
* it seems good enough to capture the time here. We should reach this
|
||||
* after XLogFlush() runs WalSndWakeupProcessRequests(), and although that
|
||||
* may take some time, we read the WAL flush pointer and take the time
|
||||
* very close to together here so that we'll get a later position if it is
|
||||
* still moving.
|
||||
*
|
||||
* Because LagTrackerWrite ignores samples when the LSN hasn't advanced,
|
||||
* this gives us a cheap approximation for the WAL flush time for this
|
||||
* LSN.
|
||||
*
|
||||
* Note that the LSN is not necessarily the LSN for the data contained in
|
||||
* the present message; it's the end of the WAL, which might be further
|
||||
* ahead. All the lag tracking machinery cares about is finding out when
|
||||
* that arbitrary LSN is eventually reported as written, flushed and
|
||||
* applied, so that it can measure the elapsed time.
|
||||
*/
|
||||
LagTrackerWrite(endptr, GetCurrentTimestamp());
|
||||
|
||||
/* Do we have any work to do? */
|
||||
Assert(startptr <= endptr);
|
||||
if (endptr <= startptr)
|
||||
return;
|
||||
|
||||
WalProposerBroadcast(startptr, endptr);
|
||||
sentPtr = endptr;
|
||||
|
||||
/* Update shared memory status */
|
||||
{
|
||||
WalSnd *walsnd = MyWalSnd;
|
||||
|
||||
SpinLockAcquire(&walsnd->mutex);
|
||||
walsnd->sentPtr = sentPtr;
|
||||
SpinLockRelease(&walsnd->mutex);
|
||||
}
|
||||
|
||||
/* Report progress of XLOG streaming in PS display */
|
||||
if (update_process_title)
|
||||
{
|
||||
char activitymsg[50];
|
||||
|
||||
snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X",
|
||||
LSN_FORMAT_ARGS(sentPtr));
|
||||
set_ps_display(activitymsg);
|
||||
}
|
||||
}
|
||||
@@ -1,19 +0,0 @@
|
||||
#ifndef __NEON_WALPROPOSER_UTILS_H__
|
||||
#define __NEON_WALPROPOSER_UTILS_H__
|
||||
|
||||
#include "walproposer.h"
|
||||
|
||||
int CompareLsn(const void *a, const void *b);
|
||||
char *FormatSafekeeperState(SafekeeperState state);
|
||||
void AssertEventsOkForState(uint32 events, Safekeeper *sk);
|
||||
uint32 SafekeeperStateDesiredEvents(SafekeeperState state);
|
||||
char *FormatEvents(uint32 events);
|
||||
bool HexDecodeString(uint8 *result, char *input, int nbytes);
|
||||
uint32 pq_getmsgint32_le(StringInfo msg);
|
||||
uint64 pq_getmsgint64_le(StringInfo msg);
|
||||
void pq_sendint32_le(StringInfo buf, uint32 i);
|
||||
void pq_sendint64_le(StringInfo buf, uint64 i);
|
||||
void XLogWalPropWrite(char *buf, Size nbytes, XLogRecPtr recptr);
|
||||
void XLogWalPropClose(XLogRecPtr recptr);
|
||||
|
||||
#endif /* __NEON_WALPROPOSER_UTILS_H__ */
|
||||
@@ -1481,6 +1481,16 @@ class NeonAttachmentService:
|
||||
self.running = False
|
||||
return self
|
||||
|
||||
def attach_hook(self, tenant_id: TenantId, pageserver_id: int) -> int:
|
||||
response = requests.post(
|
||||
f"{self.env.control_plane_api}/attach_hook",
|
||||
json={"tenant_id": str(tenant_id), "pageserver_id": pageserver_id},
|
||||
)
|
||||
response.raise_for_status()
|
||||
gen = response.json()["gen"]
|
||||
assert isinstance(gen, int)
|
||||
return gen
|
||||
|
||||
def __enter__(self) -> "NeonAttachmentService":
|
||||
return self
|
||||
|
||||
@@ -1689,12 +1699,7 @@ class NeonPageserver(PgProtocol):
|
||||
to call into the pageserver HTTP client.
|
||||
"""
|
||||
if self.env.attachment_service is not None:
|
||||
response = requests.post(
|
||||
f"{self.env.control_plane_api}/attach_hook",
|
||||
json={"tenant_id": str(tenant_id), "pageserver_id": self.id},
|
||||
)
|
||||
response.raise_for_status()
|
||||
generation = response.json()["gen"]
|
||||
generation = self.env.attachment_service.attach_hook(tenant_id, self.id)
|
||||
else:
|
||||
generation = None
|
||||
|
||||
|
||||
@@ -620,3 +620,8 @@ class PageserverHttpClient(requests.Session):
|
||||
},
|
||||
)
|
||||
self.verbose_error(res)
|
||||
|
||||
def deletion_queue_flush(self, execute: bool = False):
|
||||
self.put(
|
||||
f"http://localhost:{self.port}/v1/deletion_queue/flush?execute={'true' if execute else 'false'}"
|
||||
).raise_for_status()
|
||||
|
||||
@@ -267,7 +267,7 @@ def assert_prefix_not_empty(neon_env_builder: "NeonEnvBuilder", prefix: Optional
|
||||
|
||||
|
||||
def list_prefix(
|
||||
neon_env_builder: "NeonEnvBuilder", prefix: Optional[str] = None
|
||||
neon_env_builder: "NeonEnvBuilder", prefix: Optional[str] = None, delimiter: str = "/"
|
||||
) -> ListObjectsV2OutputTypeDef:
|
||||
"""
|
||||
Note that this function takes into account prefix_in_bucket.
|
||||
@@ -287,7 +287,7 @@ def list_prefix(
|
||||
|
||||
# Note that this doesnt use pagination, so list is not guaranteed to be exhaustive.
|
||||
response = remote.client.list_objects_v2(
|
||||
Delimiter="/",
|
||||
Delimiter=delimiter,
|
||||
Bucket=remote.bucket_name,
|
||||
Prefix=prefix,
|
||||
)
|
||||
|
||||
@@ -74,11 +74,13 @@ class EvictionEnv:
|
||||
pgbench_init_lsns: Dict[TenantId, Lsn]
|
||||
|
||||
def timelines_du(self) -> Tuple[int, int, int]:
|
||||
return poor_mans_du(self.neon_env, [(tid, tlid) for tid, tlid in self.timelines])
|
||||
return poor_mans_du(
|
||||
self.neon_env, [(tid, tlid) for tid, tlid in self.timelines], verbose=False
|
||||
)
|
||||
|
||||
def du_by_timeline(self) -> Dict[Tuple[TenantId, TimelineId], int]:
|
||||
return {
|
||||
(tid, tlid): poor_mans_du(self.neon_env, [(tid, tlid)])[0]
|
||||
(tid, tlid): poor_mans_du(self.neon_env, [(tid, tlid)], verbose=True)[0]
|
||||
for tid, tlid in self.timelines
|
||||
}
|
||||
|
||||
@@ -89,7 +91,21 @@ class EvictionEnv:
|
||||
"""
|
||||
lsn = self.pgbench_init_lsns[tenant_id]
|
||||
with self.neon_env.endpoints.create_start("main", tenant_id=tenant_id, lsn=lsn) as endpoint:
|
||||
self.pg_bin.run(["pgbench", "-S", endpoint.connstr()])
|
||||
# instead of using pgbench --select-only which does point selects,
|
||||
# run full table scans for all tables
|
||||
with endpoint.connect() as conn:
|
||||
cur = conn.cursor()
|
||||
|
||||
tables_cols = {
|
||||
"pgbench_accounts": "abalance",
|
||||
"pgbench_tellers": "tbalance",
|
||||
"pgbench_branches": "bbalance",
|
||||
"pgbench_history": "delta",
|
||||
}
|
||||
|
||||
for table, column in tables_cols.items():
|
||||
cur.execute(f"select avg({column}) from {table}")
|
||||
_avg = cur.fetchone()
|
||||
|
||||
def pageserver_start_with_disk_usage_eviction(
|
||||
self, period, max_usage_pct, min_avail_bytes, mock_behavior
|
||||
@@ -127,6 +143,19 @@ class EvictionEnv:
|
||||
self.neon_env.pageserver.allowed_errors.append(".*WARN.* disk usage still high.*")
|
||||
|
||||
|
||||
def human_bytes(amt: float) -> str:
|
||||
suffixes = ["", "Ki", "Mi", "Gi"]
|
||||
|
||||
last = suffixes[-1]
|
||||
|
||||
for name in suffixes:
|
||||
if amt < 1024 or name == last:
|
||||
return f"{int(round(amt))} {name}B"
|
||||
amt = amt / 1024
|
||||
|
||||
raise RuntimeError("unreachable")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def eviction_env(request, neon_env_builder: NeonEnvBuilder, pg_bin: PgBin) -> EvictionEnv:
|
||||
"""
|
||||
@@ -215,8 +244,12 @@ def test_broken_tenants_are_skipped(eviction_env: EvictionEnv):
|
||||
|
||||
healthy_tenant_id, healthy_timeline_id = env.timelines[1]
|
||||
|
||||
broken_size_pre, _, _ = poor_mans_du(env.neon_env, [(broken_tenant_id, broken_timeline_id)])
|
||||
healthy_size_pre, _, _ = poor_mans_du(env.neon_env, [(healthy_tenant_id, healthy_timeline_id)])
|
||||
broken_size_pre, _, _ = poor_mans_du(
|
||||
env.neon_env, [(broken_tenant_id, broken_timeline_id)], verbose=True
|
||||
)
|
||||
healthy_size_pre, _, _ = poor_mans_du(
|
||||
env.neon_env, [(healthy_tenant_id, healthy_timeline_id)], verbose=True
|
||||
)
|
||||
|
||||
# try to evict everything, then validate that broken tenant wasn't touched
|
||||
target = broken_size_pre + healthy_size_pre
|
||||
@@ -224,8 +257,12 @@ def test_broken_tenants_are_skipped(eviction_env: EvictionEnv):
|
||||
response = env.pageserver_http.disk_usage_eviction_run({"evict_bytes": target})
|
||||
log.info(f"{response}")
|
||||
|
||||
broken_size_post, _, _ = poor_mans_du(env.neon_env, [(broken_tenant_id, broken_timeline_id)])
|
||||
healthy_size_post, _, _ = poor_mans_du(env.neon_env, [(healthy_tenant_id, healthy_timeline_id)])
|
||||
broken_size_post, _, _ = poor_mans_du(
|
||||
env.neon_env, [(broken_tenant_id, broken_timeline_id)], verbose=True
|
||||
)
|
||||
healthy_size_post, _, _ = poor_mans_du(
|
||||
env.neon_env, [(healthy_tenant_id, healthy_timeline_id)], verbose=True
|
||||
)
|
||||
|
||||
assert broken_size_pre == broken_size_post, "broken tenant should not be touched"
|
||||
assert healthy_size_post < healthy_size_pre
|
||||
@@ -366,18 +403,16 @@ def test_partial_evict_tenant(eviction_env: EvictionEnv):
|
||||
du_by_timeline = env.du_by_timeline()
|
||||
|
||||
# pick any tenant
|
||||
[our_tenant, other_tenant] = list(du_by_timeline.keys())
|
||||
(tenant_id, timeline_id) = our_tenant
|
||||
[warm, cold] = list(du_by_timeline.keys())
|
||||
(tenant_id, timeline_id) = warm
|
||||
|
||||
# make our tenant more recently used than the other one
|
||||
# make picked tenant more recently used than the other one
|
||||
env.warm_up_tenant(tenant_id)
|
||||
|
||||
# Build up enough pressure to require evictions from both tenants,
|
||||
# but not enough to fall into global LRU.
|
||||
# So, set target to all occipied space, except 2*env.layer_size per tenant
|
||||
target = (
|
||||
du_by_timeline[other_tenant] + (du_by_timeline[our_tenant] // 2) - 2 * 2 * env.layer_size
|
||||
)
|
||||
# So, set target to all occupied space, except 2*env.layer_size per tenant
|
||||
target = du_by_timeline[cold] + (du_by_timeline[warm] // 2) - 2 * 2 * env.layer_size
|
||||
response = ps_http.disk_usage_eviction_run({"evict_bytes": target})
|
||||
log.info(f"{response}")
|
||||
|
||||
@@ -392,22 +427,33 @@ def test_partial_evict_tenant(eviction_env: EvictionEnv):
|
||||
later_tenant_usage < du_by_timeline[tenant]
|
||||
), "all tenants should have lost some layers"
|
||||
|
||||
warm_size = later_du_by_timeline[warm]
|
||||
|
||||
# bounds for warmed_size
|
||||
warm_lower = 0.5 * du_by_timeline[warm]
|
||||
|
||||
# We don't know exactly whether the cold tenant needs 2 or just 1 env.layer_size wiggle room.
|
||||
# So, check for up to 3 here.
|
||||
warm_upper = warm_lower + 3 * env.layer_size
|
||||
|
||||
cold_size = later_du_by_timeline[cold]
|
||||
cold_upper = 2 * env.layer_size
|
||||
|
||||
log.info(
|
||||
f"expecting for warm tenant: {human_bytes(warm_lower)} < {human_bytes(warm_size)} < {human_bytes(warm_upper)}"
|
||||
)
|
||||
log.info(f"expecting for cold tenant: {human_bytes(cold_size)} < {human_bytes(cold_upper)}")
|
||||
|
||||
assert warm_size > warm_lower, "warmed up tenant should be at about half size (lower)"
|
||||
assert warm_size < warm_upper, "warmed up tenant should be at about half size (upper)"
|
||||
|
||||
assert (
|
||||
later_du_by_timeline[our_tenant] > 0.5 * du_by_timeline[our_tenant]
|
||||
), "our warmed up tenant should be at about half capacity, part 1"
|
||||
assert (
|
||||
# We don't know exactly whether the cold tenant needs 2 or just 1 env.layer_size wiggle room.
|
||||
# So, check for up to 3 here.
|
||||
later_du_by_timeline[our_tenant]
|
||||
< 0.5 * du_by_timeline[our_tenant] + 3 * env.layer_size
|
||||
), "our warmed up tenant should be at about half capacity, part 2"
|
||||
assert (
|
||||
later_du_by_timeline[other_tenant] < 2 * env.layer_size
|
||||
), "the other tenant should be evicted to is min_resident_size, i.e., max layer file size"
|
||||
cold_size < cold_upper
|
||||
), "the cold tenant should be evicted to its min_resident_size, i.e., max layer file size"
|
||||
|
||||
|
||||
def poor_mans_du(
|
||||
env: NeonEnv, timelines: list[Tuple[TenantId, TimelineId]]
|
||||
env: NeonEnv, timelines: list[Tuple[TenantId, TimelineId]], verbose: bool = False
|
||||
) -> Tuple[int, int, int]:
|
||||
"""
|
||||
Disk usage, largest, smallest layer for layer files over the given (tenant, timeline) tuples;
|
||||
@@ -430,9 +476,11 @@ def poor_mans_du(
|
||||
smallest_layer = min(smallest_layer, size)
|
||||
else:
|
||||
smallest_layer = size
|
||||
log.info(f"{tenant_id}/{timeline_id} => {file.name} {size}")
|
||||
if verbose:
|
||||
log.info(f"{tenant_id}/{timeline_id} => {file.name} {size} ({human_bytes(size)})")
|
||||
|
||||
log.info(f"{tenant_id}/{timeline_id}: sum {total}")
|
||||
if verbose:
|
||||
log.info(f"{tenant_id}/{timeline_id}: sum {total} ({human_bytes(total)})")
|
||||
total_on_disk += total
|
||||
|
||||
assert smallest_layer is not None or total_on_disk == 0 and largest_layer == 0
|
||||
|
||||
352
test_runner/regress/test_pageserver_generations.py
Normal file
352
test_runner/regress/test_pageserver_generations.py
Normal file
@@ -0,0 +1,352 @@
|
||||
"""
|
||||
|
||||
Tests in this module exercise the pageserver's behavior around generation numbers,
|
||||
as defined in docs/rfcs/025-generation-numbers.md. Briefly, the behaviors we require
|
||||
of the pageserver are:
|
||||
- Do not start a tenant without a generation number if control_plane_api is set
|
||||
- Remote objects must be suffixed with generation
|
||||
- Deletions may only be executed after validating generation
|
||||
- Updates to remote_consistent_lsn may only be made visible after validating generation
|
||||
"""
|
||||
|
||||
|
||||
import re
|
||||
import time
|
||||
from typing import Optional
|
||||
|
||||
import pytest
|
||||
from fixtures.log_helper import log
|
||||
from fixtures.neon_fixtures import (
|
||||
NeonEnv,
|
||||
NeonEnvBuilder,
|
||||
PgBin,
|
||||
last_flush_lsn_upload,
|
||||
wait_for_last_flush_lsn,
|
||||
)
|
||||
from fixtures.pageserver.utils import list_prefix
|
||||
from fixtures.remote_storage import (
|
||||
RemoteStorageKind,
|
||||
)
|
||||
from fixtures.types import TenantId, TimelineId
|
||||
from fixtures.utils import print_gc_result, wait_until
|
||||
|
||||
# A tenant configuration that is convenient for generating uploads and deletions
|
||||
# without a large amount of postgres traffic.
|
||||
TENANT_CONF = {
|
||||
# small checkpointing and compaction targets to ensure we generate many upload operations
|
||||
"checkpoint_distance": f"{128 * 1024}",
|
||||
"compaction_threshold": "1",
|
||||
"compaction_target_size": f"{128 * 1024}",
|
||||
# no PITR horizon, we specify the horizon when we request on-demand GC
|
||||
"pitr_interval": "0s",
|
||||
# disable background compaction and GC. We invoke it manually when we want it to happen.
|
||||
"gc_period": "0s",
|
||||
"compaction_period": "0s",
|
||||
# create image layers eagerly, so that GC can remove some layers
|
||||
"image_creation_threshold": "1",
|
||||
}
|
||||
|
||||
|
||||
def generate_uploads_and_deletions(
|
||||
env: NeonEnv,
|
||||
*,
|
||||
init: bool = True,
|
||||
tenant_id: Optional[TenantId] = None,
|
||||
timeline_id: Optional[TimelineId] = None,
|
||||
data: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Using the environment's default tenant + timeline, generate a load pattern
|
||||
that results in some uploads and some deletions to remote storage.
|
||||
"""
|
||||
|
||||
if tenant_id is None:
|
||||
tenant_id = env.initial_tenant
|
||||
assert tenant_id is not None
|
||||
|
||||
if timeline_id is None:
|
||||
timeline_id = env.initial_timeline
|
||||
assert timeline_id is not None
|
||||
|
||||
ps_http = env.pageserver.http_client()
|
||||
|
||||
with env.endpoints.create_start("main", tenant_id=tenant_id) as endpoint:
|
||||
if init:
|
||||
endpoint.safe_psql("CREATE TABLE foo (id INTEGER PRIMARY KEY, val text)")
|
||||
last_flush_lsn_upload(env, endpoint, tenant_id, timeline_id)
|
||||
|
||||
def churn(data):
|
||||
endpoint.safe_psql_many(
|
||||
[
|
||||
f"""
|
||||
INSERT INTO foo (id, val)
|
||||
SELECT g, '{data}'
|
||||
FROM generate_series(1, 20000) g
|
||||
ON CONFLICT (id) DO UPDATE
|
||||
SET val = EXCLUDED.val
|
||||
""",
|
||||
# to ensure that GC can actually remove some layers
|
||||
"VACUUM foo",
|
||||
]
|
||||
)
|
||||
assert tenant_id is not None
|
||||
assert timeline_id is not None
|
||||
wait_for_last_flush_lsn(env, endpoint, tenant_id, timeline_id)
|
||||
ps_http.timeline_checkpoint(tenant_id, timeline_id)
|
||||
|
||||
# Compaction should generate some GC-elegible layers
|
||||
for i in range(0, 2):
|
||||
churn(f"{i if data is None else data}")
|
||||
|
||||
gc_result = ps_http.timeline_gc(tenant_id, timeline_id, 0)
|
||||
print_gc_result(gc_result)
|
||||
assert gc_result["layers_removed"] > 0
|
||||
|
||||
|
||||
def get_metric_or_0(ps_http, metric: str) -> int:
|
||||
v = ps_http.get_metric_value(metric)
|
||||
return 0 if v is None else int(v)
|
||||
|
||||
|
||||
def get_deletion_queue_executed(ps_http) -> int:
|
||||
return get_metric_or_0(ps_http, "pageserver_deletion_queue_executed_total")
|
||||
|
||||
|
||||
def get_deletion_queue_submitted(ps_http) -> int:
|
||||
return get_metric_or_0(ps_http, "pageserver_deletion_queue_submitted_total")
|
||||
|
||||
|
||||
def get_deletion_queue_dropped(ps_http) -> int:
|
||||
return get_metric_or_0(ps_http, "pageserver_deletion_queue_dropped_total")
|
||||
|
||||
|
||||
def get_deletion_queue_unexpected_errors(ps_http) -> int:
|
||||
return get_metric_or_0(ps_http, "pageserver_deletion_queue_unexpected_errors_total")
|
||||
|
||||
|
||||
def get_deletion_queue_dropped_lsn_updates(ps_http) -> int:
|
||||
return get_metric_or_0(ps_http, "pageserver_deletion_queue_dropped_lsn_updates_total")
|
||||
|
||||
|
||||
def get_deletion_queue_depth(ps_http) -> int:
|
||||
"""
|
||||
Queue depth if at least one deletion has been submitted, else None
|
||||
"""
|
||||
submitted = get_deletion_queue_submitted(ps_http)
|
||||
executed = get_deletion_queue_executed(ps_http)
|
||||
dropped = get_deletion_queue_dropped(ps_http)
|
||||
depth = submitted - executed - dropped
|
||||
log.info(f"get_deletion_queue_depth: {depth} ({submitted} - {executed} - {dropped})")
|
||||
|
||||
assert depth >= 0
|
||||
return int(depth)
|
||||
|
||||
|
||||
def assert_deletion_queue(ps_http, size_fn) -> None:
|
||||
v = get_deletion_queue_depth(ps_http)
|
||||
assert v is not None
|
||||
assert size_fn(v) is True
|
||||
|
||||
|
||||
def test_generations_upgrade(neon_env_builder: NeonEnvBuilder):
|
||||
"""
|
||||
Validate behavior when a pageserver is run without generation support enabled,
|
||||
then started again after activating it:
|
||||
- Before upgrade, no objects should have generation suffixes
|
||||
- After upgrade, the bucket should contain a mixture.
|
||||
- In both cases, postgres I/O should work.
|
||||
"""
|
||||
neon_env_builder.enable_generations = True
|
||||
neon_env_builder.enable_pageserver_remote_storage(
|
||||
RemoteStorageKind.MOCK_S3,
|
||||
)
|
||||
|
||||
env = neon_env_builder.init_configs()
|
||||
env.broker.try_start()
|
||||
for sk in env.safekeepers:
|
||||
sk.start()
|
||||
assert env.attachment_service is not None
|
||||
env.attachment_service.start()
|
||||
|
||||
env.pageserver.start(overrides=('--pageserver-config-override=control_plane_api=""',))
|
||||
|
||||
env.neon_cli.create_tenant(
|
||||
tenant_id=env.initial_tenant, conf=TENANT_CONF, timeline_id=env.initial_timeline
|
||||
)
|
||||
generate_uploads_and_deletions(env)
|
||||
|
||||
def parse_generation_suffix(key):
|
||||
m = re.match(".+-([0-9a-zA-Z]{8})$", key)
|
||||
if m is None:
|
||||
return None
|
||||
else:
|
||||
log.info(f"match: {m}")
|
||||
log.info(f"group: {m.group(1)}")
|
||||
return int(m.group(1), 16)
|
||||
|
||||
pre_upgrade_keys = list(
|
||||
[o["Key"] for o in list_prefix(neon_env_builder, delimiter="")["Contents"]]
|
||||
)
|
||||
for key in pre_upgrade_keys:
|
||||
assert parse_generation_suffix(key) is None
|
||||
|
||||
env.pageserver.stop()
|
||||
|
||||
# Starting without the override that disabled control_plane_api
|
||||
env.pageserver.start()
|
||||
|
||||
generate_uploads_and_deletions(env, init=False)
|
||||
|
||||
legacy_objects: list[str] = []
|
||||
suffixed_objects = []
|
||||
post_upgrade_keys = list(
|
||||
[o["Key"] for o in list_prefix(neon_env_builder, delimiter="")["Contents"]]
|
||||
)
|
||||
for key in post_upgrade_keys:
|
||||
log.info(f"post-upgrade key: {key}")
|
||||
if parse_generation_suffix(key) is not None:
|
||||
suffixed_objects.append(key)
|
||||
else:
|
||||
legacy_objects.append(key)
|
||||
|
||||
# Bucket now contains a mixture of suffixed and non-suffixed objects
|
||||
assert len(suffixed_objects) > 0
|
||||
assert len(legacy_objects) > 0
|
||||
|
||||
assert get_deletion_queue_unexpected_errors(env.pageserver.http_client()) == 0
|
||||
|
||||
|
||||
def test_deferred_deletion(neon_env_builder: NeonEnvBuilder):
|
||||
neon_env_builder.enable_generations = True
|
||||
neon_env_builder.enable_pageserver_remote_storage(
|
||||
RemoteStorageKind.MOCK_S3,
|
||||
)
|
||||
env = neon_env_builder.init_start(initial_tenant_conf=TENANT_CONF)
|
||||
assert env.attachment_service is not None
|
||||
|
||||
some_other_pageserver = 1234
|
||||
ps_http = env.pageserver.http_client()
|
||||
|
||||
generate_uploads_and_deletions(env)
|
||||
|
||||
# Flush: pending deletions should all complete
|
||||
assert_deletion_queue(ps_http, lambda n: n > 0)
|
||||
ps_http.deletion_queue_flush(execute=True)
|
||||
assert_deletion_queue(ps_http, lambda n: n == 0)
|
||||
assert get_deletion_queue_dropped(ps_http) == 0
|
||||
|
||||
# Our visible remote_consistent_lsn should match projected
|
||||
timeline = ps_http.timeline_detail(env.initial_tenant, env.initial_timeline)
|
||||
assert timeline["remote_consistent_lsn"] == timeline["remote_consistent_lsn_visible"]
|
||||
assert get_deletion_queue_dropped_lsn_updates(ps_http) == 0
|
||||
|
||||
env.pageserver.allowed_errors.extend(
|
||||
[".*Dropped remote consistent LSN updates.*", ".*Dropping stale deletions.*"]
|
||||
)
|
||||
|
||||
# Now advance the generation in the control plane: subsequent validations
|
||||
# from the running pageserver will fail. No more deletions should happen.
|
||||
env.attachment_service.attach_hook(env.initial_tenant, some_other_pageserver)
|
||||
generate_uploads_and_deletions(env, init=False)
|
||||
|
||||
assert_deletion_queue(ps_http, lambda n: n > 0)
|
||||
queue_depth_before = get_deletion_queue_depth(ps_http)
|
||||
executed_before = get_deletion_queue_executed(ps_http)
|
||||
ps_http.deletion_queue_flush(execute=True)
|
||||
|
||||
# Queue drains to zero because we dropped deletions
|
||||
assert_deletion_queue(ps_http, lambda n: n == 0)
|
||||
# The executed counter has not incremented
|
||||
assert get_deletion_queue_executed(ps_http) == executed_before
|
||||
# The dropped counter has incremented to consume all of the deletions that were previously enqueued
|
||||
assert get_deletion_queue_dropped(ps_http) == queue_depth_before
|
||||
|
||||
# Flush to S3 and see that remote_consistent_lsn does not advance: it cannot
|
||||
# because generation validation fails.
|
||||
timeline = ps_http.timeline_detail(env.initial_tenant, env.initial_timeline)
|
||||
assert timeline["remote_consistent_lsn"] != timeline["remote_consistent_lsn_visible"]
|
||||
assert get_deletion_queue_dropped_lsn_updates(ps_http) > 0
|
||||
|
||||
# TODO: list bucket and confirm all objects have a generation suffix.
|
||||
|
||||
assert get_deletion_queue_unexpected_errors(ps_http) == 0
|
||||
|
||||
|
||||
@pytest.mark.parametrize("keep_attachment", [True, False])
|
||||
def test_deletion_queue_recovery(
|
||||
neon_env_builder: NeonEnvBuilder, pg_bin: PgBin, keep_attachment: bool
|
||||
):
|
||||
"""
|
||||
:param keep_attachment: If true, we re-attach after restart. Else, we act as if some other
|
||||
node took the attachment while we were restarting.
|
||||
"""
|
||||
neon_env_builder.enable_generations = True
|
||||
neon_env_builder.enable_pageserver_remote_storage(
|
||||
RemoteStorageKind.MOCK_S3,
|
||||
)
|
||||
env = neon_env_builder.init_start(initial_tenant_conf=TENANT_CONF)
|
||||
|
||||
ps_http = env.pageserver.http_client()
|
||||
|
||||
# Prevent deletion lists from being executed, to build up some backlog of deletions
|
||||
ps_http.configure_failpoints(
|
||||
[
|
||||
("deletion-queue-before-execute", "return"),
|
||||
]
|
||||
)
|
||||
|
||||
generate_uploads_and_deletions(env)
|
||||
|
||||
# There should be entries in the deletion queue
|
||||
assert_deletion_queue(ps_http, lambda n: n > 0)
|
||||
ps_http.deletion_queue_flush()
|
||||
before_restart_depth = get_deletion_queue_depth(ps_http)
|
||||
|
||||
assert get_deletion_queue_unexpected_errors(ps_http) == 0
|
||||
assert get_deletion_queue_dropped_lsn_updates(ps_http) == 0
|
||||
|
||||
log.info(f"Restarting pageserver with {before_restart_depth} deletions enqueued")
|
||||
env.pageserver.stop(immediate=True)
|
||||
|
||||
if not keep_attachment:
|
||||
some_other_pageserver = 101010
|
||||
assert env.attachment_service is not None
|
||||
env.attachment_service.attach_hook(env.initial_tenant, some_other_pageserver)
|
||||
|
||||
env.pageserver.start()
|
||||
|
||||
def assert_deletions_submitted(n: int):
|
||||
assert ps_http.get_metric_value("pageserver_deletion_queue_submitted_total") == n
|
||||
|
||||
# After restart, issue a flush to kick the deletion frontend to do recovery.
|
||||
# It should recover all the operations we submitted before the restart.
|
||||
ps_http.deletion_queue_flush(execute=False)
|
||||
wait_until(20, 0.25, lambda: assert_deletions_submitted(before_restart_depth))
|
||||
|
||||
# The queue should drain through completely if we flush it
|
||||
ps_http.deletion_queue_flush(execute=True)
|
||||
wait_until(10, 1, lambda: assert_deletion_queue(ps_http, lambda n: n == 0))
|
||||
|
||||
if keep_attachment:
|
||||
# If we kept the attachment, then our pre-restart deletions should have executed
|
||||
# successfully
|
||||
assert get_deletion_queue_executed(ps_http) == before_restart_depth
|
||||
else:
|
||||
# If we lost the attachment, we should have dropped our pre-restart deletions.
|
||||
assert get_deletion_queue_dropped(ps_http) == before_restart_depth
|
||||
env.pageserver.allowed_errors.extend([".*Dropping stale deletions.*"])
|
||||
|
||||
assert get_deletion_queue_unexpected_errors(ps_http) == 0
|
||||
assert get_deletion_queue_dropped_lsn_updates(ps_http) == 0
|
||||
|
||||
# Restart again
|
||||
env.pageserver.stop(immediate=True)
|
||||
env.pageserver.start()
|
||||
|
||||
# No deletion lists should be recovered: this demonstrates that deletion lists
|
||||
# were cleaned up after being executed or dropped in the previous process lifetime.
|
||||
time.sleep(1)
|
||||
assert_deletion_queue(ps_http, lambda n: n == 0)
|
||||
|
||||
assert get_deletion_queue_unexpected_errors(ps_http) == 0
|
||||
assert get_deletion_queue_dropped_lsn_updates(ps_http) == 0
|
||||
@@ -18,6 +18,9 @@ from werkzeug.wrappers.request import Request
|
||||
from werkzeug.wrappers.response import Response
|
||||
|
||||
|
||||
# TODO: collect all of the env setup *AFTER* removal of RemoteStorageKind.NOOP
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"remote_storage_kind", [RemoteStorageKind.NOOP, RemoteStorageKind.LOCAL_FS]
|
||||
)
|
||||
@@ -68,6 +71,14 @@ def test_metric_collection(
|
||||
env = neon_env_builder.init_start(initial_tenant_conf={"pitr_interval": "0 sec"})
|
||||
# httpserver is shut down before pageserver during passing run
|
||||
env.pageserver.allowed_errors.append(".*metrics endpoint refused the sent metrics*")
|
||||
# we have a fast rate of calculation, these can happen at shutdown
|
||||
env.pageserver.allowed_errors.append(
|
||||
".*synthetic_size_worker:calculate_synthetic_size.*:gather_size_inputs.*: failed to calculate logical size at .*: cancelled.*"
|
||||
)
|
||||
env.pageserver.allowed_errors.append(
|
||||
".*synthetic_size_worker: failed to calculate synthetic size for tenant .*: failed to calculate some logical_sizes"
|
||||
)
|
||||
|
||||
tenant_id = env.initial_tenant
|
||||
timeline_id = env.initial_timeline
|
||||
endpoint = env.endpoints.create_start("main", tenant_id=tenant_id)
|
||||
@@ -211,6 +222,14 @@ def test_metric_collection_cleans_up_tempfile(
|
||||
|
||||
# httpserver is shut down before pageserver during passing run
|
||||
env.pageserver.allowed_errors.append(".*metrics endpoint refused the sent metrics*")
|
||||
# we have a fast rate of calculation, these can happen at shutdown
|
||||
env.pageserver.allowed_errors.append(
|
||||
".*synthetic_size_worker:calculate_synthetic_size.*:gather_size_inputs.*: failed to calculate logical size at .*: cancelled.*"
|
||||
)
|
||||
env.pageserver.allowed_errors.append(
|
||||
".*synthetic_size_worker: failed to calculate synthetic size for tenant .*: failed to calculate some logical_sizes"
|
||||
)
|
||||
|
||||
tenant_id = env.initial_tenant
|
||||
timeline_id = env.initial_timeline
|
||||
endpoint = env.endpoints.create_start("main", tenant_id=tenant_id)
|
||||
|
||||
@@ -43,6 +43,12 @@ def test_tenant_delete_smoke(
|
||||
neon_env_builder.enable_pageserver_remote_storage(remote_storage_kind)
|
||||
|
||||
env = neon_env_builder.init_start()
|
||||
env.pageserver.allowed_errors.extend(
|
||||
[
|
||||
# The deletion queue will complain when it encounters simulated S3 errors
|
||||
".*deletion executor: DeleteObjects request failed.*",
|
||||
]
|
||||
)
|
||||
|
||||
# lucky race with stopping from flushing a layer we fail to schedule any uploads
|
||||
env.pageserver.allowed_errors.append(
|
||||
@@ -195,6 +201,14 @@ def test_delete_tenant_exercise_crash_safety_failpoints(
|
||||
]
|
||||
)
|
||||
|
||||
if simulate_failures:
|
||||
env.pageserver.allowed_errors.extend(
|
||||
[
|
||||
# The deletion queue will complain when it encounters simulated S3 errors
|
||||
".*deletion executor: DeleteObjects request failed.*",
|
||||
]
|
||||
)
|
||||
|
||||
ps_http = env.pageserver.http_client()
|
||||
|
||||
timeline_id = env.neon_cli.create_timeline("delete", tenant_id=tenant_id)
|
||||
@@ -383,6 +397,7 @@ def test_tenant_delete_is_resumed_on_attach(
|
||||
assert not tenant_path.exists()
|
||||
|
||||
if remote_storage_kind in available_s3_storages():
|
||||
ps_http.deletion_queue_flush(execute=True)
|
||||
assert_prefix_empty(
|
||||
neon_env_builder,
|
||||
prefix="/".join(
|
||||
|
||||
@@ -807,6 +807,8 @@ def test_delete_orphaned_objects(
|
||||
reason = timeline_info["state"]["Broken"]["reason"]
|
||||
assert reason.endswith(f"failpoint: {failpoint}"), reason
|
||||
|
||||
ps_http.deletion_queue_flush(execute=True)
|
||||
|
||||
for orphan in orphans:
|
||||
assert not orphan.exists()
|
||||
assert env.pageserver.log_contains(
|
||||
|
||||
Reference in New Issue
Block a user