This commit is contained in:
tuna2134
2024-09-11 02:25:29 +00:00
16 changed files with 107 additions and 22191 deletions

View File

@@ -1,3 +1,4 @@
BERT_MODEL_PATH=models/debert.onnx
MAIN_MODEL_PATH=models/model_opt.onnx
STYLE_VECTORS_PATH=models/style_vectors.json
STYLE_VECTORS_PATH=models/style_vectors.json
TOKENIZER_PATH=models/tokenizer.json

2
.gitignore vendored
View File

@@ -1,6 +1,6 @@
target
models/*.onnx
models/*.json
venv
venv/
.env
output.wav

View File

@@ -1,6 +1,6 @@
[workspace]
resolver = "2"
members = [ "sbv2_api","sbv2_core"]
members = ["sbv2_api", "sbv2_core"]
[workspace.dependencies]
anyhow = "1.0.86"

View File

@@ -10,3 +10,7 @@ dotenvy = "0.15.7"
sbv2_core = { version = "0.1.0", path = "../sbv2_core" }
serde = { version = "1.0.210", features = ["derive"] }
tokio = { version = "1.40.0", features = ["full"] }
[features]
cuda = ["sbv2_core/cuda"]
cuda_tf32 = ["sbv2_core/cuda_tf32"]

View File

@@ -9,6 +9,7 @@ use sbv2_core::tts::TTSModel;
use serde::Deserialize;
use std::env;
use std::sync::Arc;
use tokio::fs;
use tokio::sync::Mutex;
mod error;
@@ -29,9 +30,10 @@ async fn synthesize(
tts_model
} else {
*tts_model = Some(TTSModel::new(
&env::var("BERT_MODEL_PATH")?,
&env::var("MAIN_MODEL_PATH")?,
&env::var("STYLE_VECTORS_PATH")?,
&fs::read(env::var("BERT_MODEL_PATH")?).await?,
&fs::read(env::var("MAIN_MODEL_PATH")?).await?,
&fs::read(env::var("STYLE_VECTORS_PATH")?).await?,
&fs::read(env::var("TOKENIZER_PATH")?).await?,
)?);
tts_model.as_ref().unwrap()
};

View File

@@ -16,3 +16,7 @@ serde = { version = "1.0.210", features = ["derive"] }
serde_json = "1.0.128"
thiserror = "1.0.63"
tokenizers = "0.20.0"
[features]
cuda = ["ort/cuda"]
cuda_tf32 = []

View File

@@ -4,13 +4,13 @@ use crate::norm::{replace_punctuation, PUNCTUATIONS};
use jpreprocess::*;
use once_cell::sync::Lazy;
use regex::Regex;
use std::cmp::Reverse;
use std::collections::HashSet;
use std::sync::Arc;
use tokenizers::Tokenizer;
type JPreprocessType = JPreprocess<DefaultFetcher>;
fn get_jtalk() -> Result<JPreprocessType> {
fn initialize_jtalk() -> Result<JPreprocessType> {
let config = JPreprocessConfig {
dictionary: SystemDictionaryConfig::Bundled(kind::JPreprocessDictionaryKind::NaistJdic),
user_dictionary: None,
@@ -50,7 +50,7 @@ pub struct JTalk {
impl JTalk {
pub fn new() -> Result<Self> {
let jpreprocess = Arc::new(get_jtalk()?);
let jpreprocess = Arc::new(initialize_jtalk()?);
Ok(Self { jpreprocess })
}
@@ -64,7 +64,7 @@ impl JTalk {
static KATAKANA_PATTERN: Lazy<Regex> = Lazy::new(|| Regex::new(r"[\u30A0-\u30FF]+").unwrap());
static MORA_PATTERN: Lazy<Vec<String>> = Lazy::new(|| {
let mut sorted_keys: Vec<String> = MORA_KATA_TO_MORA_PHONEMES.keys().cloned().collect();
sorted_keys.sort_by(|a, b| b.len().cmp(&a.len()));
sorted_keys.sort_by_key(|b| Reverse(b.len()));
sorted_keys
});
static LONG_PATTERN: Lazy<Regex> = Lazy::new(|| Regex::new(r"(\w)(ー*)").unwrap());
@@ -128,8 +128,8 @@ impl JTalkProcess {
JTalkProcess::align_tones(phone_w_punct, phone_tone_list_wo_punct)?;
let mut sep_tokenized: Vec<Vec<String>> = Vec::new();
for i in 0..seq_text.len() {
let text = seq_text[i].clone();
for seq_text_item in &seq_text {
let text = seq_text_item.clone();
if !PUNCTUATIONS.contains(&text.as_str()) {
sep_tokenized.push(text.chars().map(|x| x.to_string()).collect());
} else {
@@ -390,22 +390,3 @@ impl JTalkProcess {
Ok(phones)
}
}
pub fn get_tokenizer() -> Result<Tokenizer> {
let tokenizer = Tokenizer::from_file("tokenizer.json")?;
Ok(tokenizer)
}
pub fn tokenize(text: &str, tokenizer: &Tokenizer) -> Result<(Vec<i64>, Vec<i64>)> {
let mut token_ids = vec![1];
let mut attention_masks = vec![1];
for content in text.chars() {
let token = tokenizer.encode(content.to_string(), false)?;
let ids = token.get_ids();
token_ids.extend(ids.iter().map(|&x| x as i64));
attention_masks.extend(token.get_attention_mask().iter().map(|&x| x as i64));
}
token_ids.push(2);
attention_masks.push(1);
Ok((token_ids, attention_masks))
}

View File

@@ -6,20 +6,6 @@ pub mod mora;
pub mod nlp;
pub mod norm;
pub mod style;
pub mod tokenizer;
pub mod tts;
pub mod utils;
pub fn add(left: usize, right: usize) -> usize {
left + right
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_works() {
let result = add(2, 2);
assert_eq!(result, 4);
}
}

View File

@@ -1,20 +1,38 @@
use std::{fs, time::Instant};
use sbv2_core::{error, tts};
fn main() -> error::Result<()> {
let text = "眠たい";
let tts_model = tts::TTSModel::new(
"models/debert.onnx",
"models/model_opt.onnx",
"models/style_vectors.json",
fs::read("models/debert.onnx")?,
fs::read("models/model_opt.onnx")?,
fs::read("models/style_vectors.json")?,
fs::read("models/tokenizer.json")?,
)?;
let (bert_ori, phones, tones, lang_ids) = tts_model.parse_text(text)?;
let style_vector = tts_model.get_style_vector(0, 1.0)?;
let data = tts_model.synthesize(bert_ori.to_owned(), phones, tones, lang_ids, style_vector)?;
let data = tts_model.synthesize(
bert_ori.to_owned(),
phones.clone(),
tones.clone(),
lang_ids.clone(),
style_vector.clone(),
)?;
std::fs::write("output.wav", data)?;
let now = Instant::now();
for _ in 0..10 {
tts_model.synthesize(
bert_ori.to_owned(),
phones.clone(),
tones.clone(),
lang_ids.clone(),
style_vector.clone(),
)?;
}
println!("Time taken: {}", now.elapsed().as_millis());
Ok(())
}

View File

@@ -4,14 +4,27 @@ use ndarray::{array, s, Array1, Array2, Axis};
use ort::{GraphOptimizationLevel, Session};
use std::io::Cursor;
pub fn load_model(model_file: &str) -> Result<Session> {
let session = Session::builder()?
#[allow(clippy::vec_init_then_push)]
pub fn load_model<P: AsRef<[u8]>>(model_file: P) -> Result<Session> {
let mut exp = Vec::new();
#[cfg(feature = "cuda")]
{
let mut cuda = ort::CUDAExecutionProvider::default()
.with_conv_algorithm_search(ort::CUDAExecutionProviderCuDNNConvAlgoSearch::Default);
#[cfg(feature = "cuda_tf32")]
{
cuda = cuda.with_tf32(true);
}
exp.push(cuda.build());
}
exp.push(ort::CPUExecutionProvider::default().build());
Ok(Session::builder()?
.with_execution_providers(exp)?
.with_optimization_level(GraphOptimizationLevel::Level3)?
.with_intra_threads(num_cpus::get_physical())?
.with_parallel_execution(true)?
.with_inter_threads(num_cpus::get_physical())?
.commit_from_file(model_file)?;
Ok(session)
.commit_from_memory(model_file.as_ref())?)
}
pub fn synthesize(

View File

@@ -8,8 +8,8 @@ pub struct Data {
pub data: Vec<Vec<f32>>,
}
pub fn load_style(path: &str) -> Result<Array2<f32>> {
let data: Data = serde_json::from_str(&std::fs::read_to_string(path)?)?;
pub fn load_style<P: AsRef<[u8]>>(path: P) -> Result<Array2<f32>> {
let data: Data = serde_json::from_slice(path.as_ref())?;
Ok(Array2::from_shape_vec(
data.shape,
data.data.iter().flatten().copied().collect(),

View File

@@ -0,0 +1,21 @@
use crate::error::Result;
use tokenizers::Tokenizer;
pub fn get_tokenizer<P: AsRef<[u8]>>(p: P) -> Result<Tokenizer> {
let tokenizer = Tokenizer::from_bytes(p)?;
Ok(tokenizer)
}
pub fn tokenize(text: &str, tokenizer: &Tokenizer) -> Result<(Vec<i64>, Vec<i64>)> {
let mut token_ids = vec![1];
let mut attention_masks = vec![1];
for content in text.chars() {
let token = tokenizer.encode(content.to_string(), false)?;
let ids = token.get_ids();
token_ids.extend(ids.iter().map(|&x| x as i64));
attention_masks.extend(token.get_attention_mask().iter().map(|&x| x as i64));
}
token_ids.push(2);
attention_masks.push(1);
Ok((token_ids, attention_masks))
}

View File

@@ -1,9 +1,11 @@
use crate::error::Result;
use crate::{bert, jtalk, model, nlp, norm, style, utils};
use crate::{bert, jtalk, model, nlp, norm, style, tokenizer, utils};
use ndarray::{concatenate, s, Array, Array1, Array2, Axis};
use ort::Session;
use tokenizers::Tokenizer;
pub struct TTSModel {
tokenizer: Tokenizer,
bert: Session,
vits2: Session,
style_vectors: Array2<f32>,
@@ -11,23 +13,26 @@ pub struct TTSModel {
}
impl TTSModel {
pub fn new(
bert_model_path: &str,
main_model_path: &str,
style_vector_path: &str,
pub fn new<P: AsRef<[u8]>>(
bert_model_bytes: P,
main_model_bytes: P,
style_vector_bytes: P,
tokenizer_bytes: P,
) -> Result<Self> {
let bert = model::load_model(bert_model_path)?;
let vits2 = model::load_model(main_model_path)?;
let style_vectors = style::load_style(style_vector_path)?;
let bert = model::load_model(bert_model_bytes)?;
let vits2 = model::load_model(main_model_bytes)?;
let style_vectors = style::load_style(style_vector_bytes)?;
let jtalk = jtalk::JTalk::new()?;
let tokenizer = tokenizer::get_tokenizer(tokenizer_bytes)?;
Ok(TTSModel {
bert,
vits2,
style_vectors,
jtalk,
tokenizer,
})
}
#[allow(clippy::type_complexity)]
pub fn parse_text(
&self,
text: &str,
@@ -40,13 +45,11 @@ impl TTSModel {
let phones = utils::intersperse(&phones, 0);
let tones = utils::intersperse(&tones, 0);
let lang_ids = utils::intersperse(&lang_ids, 0);
for i in 0..word2ph.len() {
word2ph[i] *= 2;
for item in &mut word2ph {
*item *= 2;
}
word2ph[0] += 1;
let tokenizer = jtalk::get_tokenizer()?;
let (token_ids, attention_masks) = jtalk::tokenize(&normalized_text, &tokenizer)?;
let (token_ids, attention_masks) = tokenizer::tokenize(&normalized_text, &self.tokenizer)?;
let bert_content = bert::predict(&self.bert, token_ids, attention_masks)?;
@@ -58,9 +61,9 @@ impl TTSModel {
);
let mut phone_level_feature = vec![];
for i in 0..word2ph.len() {
for (i, reps) in word2ph.iter().enumerate() {
let repeat_feature = {
let (reps_rows, reps_cols) = (word2ph[i], 1);
let (reps_rows, reps_cols) = (*reps, 1);
let arr_len = bert_content.slice(s![i, ..]).len();
let mut results: Array2<f32> =

View File

@@ -1,6 +1,5 @@
import requests
res = requests.post('http://localhost:3000/synthesize', json={
"text": "おはようございます",
})

File diff suppressed because it is too large Load Diff