Using tantivy-fst version 0.3.

This commit is contained in:
Paul Masurel
2020-03-31 23:24:54 +09:00
parent d04368b1d4
commit cfbdef5186
3 changed files with 38 additions and 10 deletions

View File

@@ -18,7 +18,7 @@ byteorder = "1.0"
crc32fast = "1.2.0"
once_cell = "1.0"
regex ={version = "1.3.0", default-features = false, features = ["std"]}
tantivy-fst = "0.2.1"
tantivy-fst = {path="../tantivy-fst", version="0.3"}
memmap = {version = "0.7", optional=true}
lz4 = {version="1.20", optional=true}
snap = "1"
@@ -29,7 +29,7 @@ serde = {version="1.0", features=["derive"]}
serde_json = "1.0"
num_cpus = "1.2"
fs2={version="0.4", optional=true}
levenshtein_automata = "0.1"
levenshtein_automata = "0.2"
notify = {version="4", optional=true}
uuid = { version = "0.8", features = ["v4", "serde"] }
crossbeam = "0.7"

View File

@@ -2,10 +2,36 @@ use crate::query::{AutomatonWeight, Query, Weight};
use crate::schema::Term;
use crate::Searcher;
use crate::TantivyError::InvalidArgument;
use levenshtein_automata::{LevenshteinAutomatonBuilder, DFA};
use levenshtein_automata::{Distance, LevenshteinAutomatonBuilder, DFA};
use once_cell::sync::Lazy;
use std::collections::HashMap;
use std::ops::Range;
use tantivy_fst::Automaton;
struct DFAWrapper(pub DFA);
impl Automaton for DFAWrapper {
type State = u32;
fn start(&self) -> Self::State {
self.0.initial_state()
}
fn is_match(&self, state: &Self::State) -> bool {
match self.0.distance(*state) {
Distance::Exact(_) => true,
Distance::AtLeast(_) => false,
}
}
fn can_match(&self, state: &u32) -> bool {
state != levenshtein_automata::SINK_STATE
}
fn accept(&self, state: &Self::State, byte: u8) -> Self::State {
self.0.transition(*state, byte)
}
}
/// A range of Levenshtein distances that we will build DFAs for our terms
/// The computation is exponential, so best keep it to low single digits
@@ -101,7 +127,7 @@ impl FuzzyTermQuery {
}
}
fn specialized_weight(&self) -> crate::Result<AutomatonWeight<DFA>> {
fn specialized_weight(&self) -> crate::Result<AutomatonWeight<DFAWrapper>> {
// LEV_BUILDER is a HashMap, whose `get` method returns an Option
match LEV_BUILDER.get(&(self.distance, false)) {
// Unwrap the option and build the Ok(AutomatonWeight)
@@ -111,7 +137,10 @@ impl FuzzyTermQuery {
} else {
automaton_builder.build_dfa(self.term.text())
};
Ok(AutomatonWeight::new(self.term.field(), automaton))
Ok(AutomatonWeight::new(
self.term.field(),
DFAWrapper(automaton),
))
}
None => Err(InvalidArgument(format!(
"Levenshtein distance of {} is not allowed. Choose a value in the {:?} range",

View File

@@ -55,8 +55,8 @@ pub enum QueryParserError {
/// The tokenizer for the given field is unknown
/// The two argument strings are the name of the field, the name of the tokenizer
#[fail(
display = "The tokenizer '{:?}' for the field '{:?}' is unknown",
_0, _1
display = "The tokenizer '{:?}' for the field '{:?}' is unknown",
_0, _1
)]
UnknownTokenizer(String, String),
/// The query contains a range query with a phrase as one of the bounds.
@@ -1049,7 +1049,7 @@ mod test {
test_parse_query_to_logical_ast_helper(
"title:a AND title:b",
"(+Term(field=0,bytes=[97]) +Term(field=0,bytes=[98]))",
default_conjunction
default_conjunction,
);
}
}
@@ -1060,9 +1060,8 @@ mod test {
test_parse_query_to_logical_ast_helper(
"title:a OR title:b",
"(Term(field=0,bytes=[97]) Term(field=0,bytes=[98]))",
default_conjunction
default_conjunction,
);
}
}
}