Merge pull request #2559 from quickwit-oss/trinity/sstable-partial-automaton

allow warming partially an sstable for an automaton
This commit is contained in:
trinity-1686a
2025-01-08 16:35:35 +01:00
committed by GitHub
15 changed files with 872 additions and 52 deletions

View File

@@ -67,6 +67,7 @@ tokenizer-api = { version = "0.3", path = "./tokenizer-api", package = "tantivy-
sketches-ddsketch = { version = "0.3.0", features = ["use_serde"] }
hyperloglogplus = { version = "0.4.1", features = ["const-loop"] }
futures-util = { version = "0.3.28", optional = true }
futures-channel = { version = "0.3.28", optional = true }
fnv = "1.0.7"
[target.'cfg(windows)'.dependencies]
@@ -121,7 +122,7 @@ zstd-compression = ["zstd"]
failpoints = ["fail", "fail/failpoints"]
unstable = [] # useful for benches.
quickwit = ["sstable", "futures-util"]
quickwit = ["sstable", "futures-util", "futures-channel"]
# Compares only the hash of a string when indexing data.
# Increases indexing speed, but may lead to extremely rare missing terms, when there's a hash collision.

View File

@@ -3,6 +3,12 @@ use std::io;
use common::json_path_writer::JSON_END_OF_PATH;
use common::BinarySerializable;
use fnv::FnvHashSet;
#[cfg(feature = "quickwit")]
use futures_util::{FutureExt, StreamExt, TryStreamExt};
#[cfg(feature = "quickwit")]
use itertools::Itertools;
#[cfg(feature = "quickwit")]
use tantivy_fst::automaton::{AlwaysMatch, Automaton};
use crate::directory::FileSlice;
use crate::positions::PositionReader;
@@ -219,13 +225,18 @@ impl InvertedIndexReader {
self.termdict.get_async(term.serialized_value_bytes()).await
}
async fn get_term_range_async(
&self,
async fn get_term_range_async<'a, A: Automaton + 'a>(
&'a self,
terms: impl std::ops::RangeBounds<Term>,
automaton: A,
limit: Option<u64>,
) -> io::Result<impl Iterator<Item = TermInfo> + '_> {
merge_holes_under_bytes: usize,
) -> io::Result<impl Iterator<Item = TermInfo> + 'a>
where
A::State: Clone,
{
use std::ops::Bound;
let range_builder = self.termdict.range();
let range_builder = self.termdict.search(automaton);
let range_builder = match terms.start_bound() {
Bound::Included(bound) => range_builder.ge(bound.serialized_value_bytes()),
Bound::Excluded(bound) => range_builder.gt(bound.serialized_value_bytes()),
@@ -242,7 +253,9 @@ impl InvertedIndexReader {
range_builder
};
let mut stream = range_builder.into_stream_async().await?;
let mut stream = range_builder
.into_stream_async_merging_holes(merge_holes_under_bytes)
.await?;
let iter = std::iter::from_fn(move || stream.next().map(|(_k, v)| v.clone()));
@@ -288,7 +301,9 @@ impl InvertedIndexReader {
limit: Option<u64>,
with_positions: bool,
) -> io::Result<bool> {
let mut term_info = self.get_term_range_async(terms, limit).await?;
let mut term_info = self
.get_term_range_async(terms, AlwaysMatch, limit, 0)
.await?;
let Some(first_terminfo) = term_info.next() else {
// no key matches, nothing more to load
@@ -315,6 +330,84 @@ impl InvertedIndexReader {
Ok(true)
}
/// Warmup a block postings given a range of `Term`s.
/// This method is for an advanced usage only.
///
/// returns a boolean, whether a term matching the range was found in the dictionary
pub async fn warm_postings_automaton<
A: Automaton + Clone + Send + 'static,
E: FnOnce(Box<dyn FnOnce() -> io::Result<()> + Send>) -> F,
F: std::future::Future<Output = io::Result<()>>,
>(
&self,
automaton: A,
// with_positions: bool, at the moment we have no use for it, and supporting it would add
// complexity to the coalesce
executor: E,
) -> io::Result<bool>
where
A::State: Clone,
{
// merge holes under 4MiB, that's how many bytes we can hope to receive during a TTFB from
// S3 (~80MiB/s, and 50ms latency)
const MERGE_HOLES_UNDER_BYTES: usize = (80 * 1024 * 1024 * 50) / 1000;
// we build a first iterator to download everything. Simply calling the function already
// download everything we need from the sstable, but doesn't start iterating over it.
let _term_info_iter = self
.get_term_range_async(.., automaton.clone(), None, MERGE_HOLES_UNDER_BYTES)
.await?;
let (sender, posting_ranges_to_load_stream) = futures_channel::mpsc::unbounded();
let termdict = self.termdict.clone();
let cpu_bound_task = move || {
// then we build a 2nd iterator, this one with no holes, so we don't go through blocks
// we can't match.
// This makes the assumption there is a caching layer below us, which gives sync read
// for free after the initial async access. This might not always be true, but is in
// Quickwit.
// We build things from this closure otherwise we get into lifetime issues that can only
// be solved with self referential strucs. Returning an io::Result from here is a bit
// more leaky abstraction-wise, but a lot better than the alternative
let mut stream = termdict.search(automaton).into_stream()?;
// we could do without an iterator, but this allows us access to coalesce which simplify
// things
let posting_ranges_iter =
std::iter::from_fn(move || stream.next().map(|(_k, v)| v.postings_range.clone()));
let merged_posting_ranges_iter = posting_ranges_iter.coalesce(|range1, range2| {
if range1.end + MERGE_HOLES_UNDER_BYTES >= range2.start {
Ok(range1.start..range2.end)
} else {
Err((range1, range2))
}
});
for posting_range in merged_posting_ranges_iter {
if let Err(_) = sender.unbounded_send(posting_range) {
// this should happen only when search is cancelled
return Err(io::Error::other("failed to send posting range back"));
}
}
Ok(())
};
let task_handle = executor(Box::new(cpu_bound_task));
let posting_downloader = posting_ranges_to_load_stream
.map(|posting_slice| {
self.postings_file_slice
.read_bytes_slice_async(posting_slice)
.map(|result| result.map(|_slice| ()))
})
.buffer_unordered(5)
.try_collect::<Vec<()>>();
let (_, slices_downloaded) =
futures_util::future::try_join(task_handle, posting_downloader).await?;
Ok(!slices_downloaded.is_empty())
}
/// Warmup the block postings for all terms.
/// This method is for an advanced usage only.
///

View File

@@ -93,6 +93,7 @@ impl TermInfoBlockMeta {
}
}
#[derive(Clone)]
pub struct TermInfoStore {
num_terms: usize,
block_meta_bytes: OwnedBytes,

View File

@@ -1,4 +1,5 @@
use std::io::{self, Write};
use std::sync::Arc;
use common::{BinarySerializable, CountingWriter};
use once_cell::sync::Lazy;
@@ -113,8 +114,9 @@ static EMPTY_TERM_DICT_FILE: Lazy<FileSlice> = Lazy::new(|| {
/// The `Fst` crate is used to associate terms to their
/// respective `TermOrdinal`. The `TermInfoStore` then makes it
/// possible to fetch the associated `TermInfo`.
#[derive(Clone)]
pub struct TermDictionary {
fst_index: tantivy_fst::Map<OwnedBytes>,
fst_index: Arc<tantivy_fst::Map<OwnedBytes>>,
term_info_store: TermInfoStore,
}
@@ -136,7 +138,7 @@ impl TermDictionary {
let fst_index = open_fst_index(fst_file_slice)?;
let term_info_store = TermInfoStore::open(values_file_slice)?;
Ok(TermDictionary {
fst_index,
fst_index: Arc::new(fst_index),
term_info_store,
})
}

View File

@@ -74,6 +74,7 @@ const CURRENT_TYPE: DictionaryType = DictionaryType::SSTable;
// TODO in the future this should become an enum of supported dictionaries
/// A TermDictionary wrapping either an FST based dictionary or a SSTable based one.
#[derive(Clone)]
pub struct TermDictionary(InnerTermDict);
impl TermDictionary {

View File

@@ -28,6 +28,7 @@ pub type TermDictionaryBuilder<W> = sstable::Writer<W, TermInfoValueWriter>;
pub type TermStreamer<'a, A = AlwaysMatch> = sstable::Streamer<'a, TermSSTable, A>;
/// SSTable used to store TermInfo objects.
#[derive(Clone)]
pub struct TermSSTable;
pub type TermStreamerBuilder<'a, A = AlwaysMatch> = sstable::StreamerBuilder<'a, TermSSTable, A>;

View File

@@ -11,6 +11,8 @@ description = "sstables for tantivy"
[dependencies]
common = {version= "0.7", path="../common", package="tantivy-common"}
futures-util = "0.3.30"
itertools = "0.13.0"
tantivy-bitpacker = { version= "0.6", path="../bitpacker" }
tantivy-fst = "0.5"
# experimental gives us access to Decompressor::upper_bound

View File

@@ -0,0 +1,271 @@
use tantivy_fst::Automaton;
/// Returns whether a block can match an automaton based on its bounds.
///
/// start key is exclusive, and optional to account for the first block. end key is inclusive and
/// mandatory.
pub(crate) fn can_block_match_automaton(
start_key_opt: Option<&[u8]>,
end_key: &[u8],
automaton: &impl Automaton,
) -> bool {
let start_key = if let Some(start_key) = start_key_opt {
start_key
} else {
// if start_key_opt is None, we would allow an automaton matching the empty string to match
if automaton.is_match(&automaton.start()) {
return true;
}
&[]
};
can_block_match_automaton_with_start(start_key, end_key, automaton)
}
// similar to can_block_match_automaton, ignoring the edge case of the initial block
fn can_block_match_automaton_with_start(
start_key: &[u8],
end_key: &[u8],
automaton: &impl Automaton,
) -> bool {
// notation: in loops, we use `kb` to denotate a key byte (a byte taken from the start/end key),
// and `rb`, a range byte (usually all values higher than a `kb` when comparing with
// start_key, or all values lower than a `kb` when comparing with end_key)
if start_key >= end_key {
return false;
}
let common_prefix_len = crate::common_prefix_len(start_key, end_key);
let mut base_state = automaton.start();
for kb in &start_key[0..common_prefix_len] {
base_state = automaton.accept(&base_state, *kb);
}
// this is not required for correctness, but allows dodging more expensive checks
if !automaton.can_match(&base_state) {
return false;
}
// we have 3 distinct case:
// - keys are `abc` and `abcd` => we test for abc[\0-d].*
// - keys are `abcd` and `abce` => we test for abc[d-e].*
// - keys are `abcd` and `abc` => contradiction with start_key < end_key.
//
// ideally for (abc, abcde] we could test for abc([\0-c].*|d([\0-d].*|e)?)
// but let's start simple (and correct), and tighten our bounds latter
//
// and for (abcde, abcfg] we could test for abc(d(e.+|[f-\xff].*)|e.*|f([\0-f].*|g)?)
// abc (
// d(e.+|[f-\xff].*) |
// e.* |
// f([\0-f].*|g)?
// )
//
// these are all written as regex, but can be converted to operations we can do:
// - [x-y] is a for c in x..=y
// - .* is a can_match()
// - .+ is a for c in 0..=255 { accept(c).can_match() }
// - ? is a the thing before can_match(), or current state.is_match()
// - | means test both side
// we have two cases, either start_key is a prefix of end_key (e.g. (abc, abcjp]),
// or it is not (e.g. (abcdg, abcjp]). It is not possible however that end_key be a prefix of
// start_key (or that both are equal) because we already handled start_key >= end_key.
//
// if we are in the first case, we want to visit the following states:
// abc (
// [\0-i].* |
// j (
// [\0-o].* |
// p
// )?
// )
// Everything after `abc` is handled by `match_range_end`
//
// if we are in the 2nd case, we want to visit the following states:
// abc (
// d(g.+|[h-\xff].*) | // this is handled by match_range_start
//
// [e-i].* | // this is handled here
//
// j ( // this is handled by match_range_end (but countrary to the other
// [\0-o].* | // case, j is already consumed so to not check [\0-i].* )
// p
// )?
// )
let Some(start_range) = start_key.get(common_prefix_len) else {
return match_range_end(&end_key[common_prefix_len..], &automaton, base_state);
};
let end_range = end_key[common_prefix_len];
// things starting with start_range were handled in match_range_start
// this starting with end_range are handled bellow.
// this can run for 0 iteration in cases such as (abc, abd]
for rb in (start_range + 1)..end_range {
let new_state = automaton.accept(&base_state, rb);
if automaton.can_match(&new_state) {
return true;
}
}
let state_for_start = automaton.accept(&base_state, *start_range);
if match_range_start(
&start_key[common_prefix_len + 1..],
&automaton,
state_for_start,
) {
return true;
}
let state_for_end = automaton.accept(&base_state, end_range);
if automaton.is_match(&state_for_end) {
return true;
}
match_range_end(&end_key[common_prefix_len + 1..], &automaton, state_for_end)
}
fn match_range_start<S, A: Automaton<State = S>>(
start_key: &[u8],
automaton: &A,
mut state: S,
) -> bool {
// case (abcdgj, abcpqr], `abcd` is already consumed, we need to handle:
// - [h-\xff].*
// - g[k-\xff].*
// - gj.+ == gf[\0-\xff].*
for kb in start_key {
// this is an optimisation, and is not needed for correctness
if !automaton.can_match(&state) {
return false;
}
// does the [h-\xff].* part. we skip if kb==255 as [\{0100}-\xff] is an empty range, and
// this would overflow in our u8 world
if *kb < u8::MAX {
for rb in (kb + 1)..=u8::MAX {
let temp_state = automaton.accept(&state, rb);
if automaton.can_match(&temp_state) {
return true;
}
}
}
// push g
state = automaton.accept(&state, *kb);
}
// this isn't required for correctness, but can save us from looping 256 below
if !automaton.can_match(&state) {
return false;
}
// does the final `.+`, which is the same as `[\0-\xff].*`
for rb in 0..=u8::MAX {
let temp_state = automaton.accept(&state, rb);
if automaton.can_match(&temp_state) {
return true;
}
}
false
}
fn match_range_end<S, A: Automaton<State = S>>(
end_key: &[u8],
automaton: &A,
mut state: S,
) -> bool {
// for (abcdef, abcmps]. the prefix `abcm` has been consumed, `[d-l].*` was handled elsewhere,
// we just need to handle
// - [\0-o].*
// - p
// - p[\0-r].*
// - ps
for kb in end_key {
// this is an optimisation, and is not needed for correctness
if !automaton.can_match(&state) {
return false;
}
// does the `[\0-o].*`
for rb in 0..*kb {
let temp_state = automaton.accept(&state, rb);
if automaton.can_match(&temp_state) {
return true;
}
}
// push p
state = automaton.accept(&state, *kb);
// verify the `p` case
if automaton.is_match(&state) {
return true;
}
}
false
}
#[cfg(test)]
pub(crate) mod tests {
use proptest::prelude::*;
use tantivy_fst::Automaton;
use super::*;
pub(crate) struct EqBuffer(pub Vec<u8>);
impl Automaton for EqBuffer {
type State = Option<usize>;
fn start(&self) -> Self::State {
Some(0)
}
fn is_match(&self, state: &Self::State) -> bool {
*state == Some(self.0.len())
}
fn accept(&self, state: &Self::State, byte: u8) -> Self::State {
state
.filter(|pos| self.0.get(*pos) == Some(&byte))
.map(|pos| pos + 1)
}
fn can_match(&self, state: &Self::State) -> bool {
state.is_some()
}
fn will_always_match(&self, _state: &Self::State) -> bool {
false
}
}
fn gen_key_strategy() -> impl Strategy<Value = Vec<u8>> {
// we only generate bytes in [0, 1, 2, 254, 255] to reduce the search space without
// ignoring edge cases that might ocure with integer over/underflow
proptest::collection::vec(prop_oneof![0u8..=2, 254u8..=255], 0..5)
}
proptest! {
#![proptest_config(ProptestConfig {
cases: 10000, .. ProptestConfig::default()
})]
#[test]
fn test_proptest_automaton_match_block(start in gen_key_strategy(), end in gen_key_strategy(), key in gen_key_strategy()) {
let expected = start < key && end >= key;
let automaton = EqBuffer(key);
assert_eq!(can_block_match_automaton(Some(&start), &end, &automaton), expected);
}
#[test]
fn test_proptest_automaton_match_first_block(end in gen_key_strategy(), key in gen_key_strategy()) {
let expected = end >= key;
let automaton = EqBuffer(key);
assert_eq!(can_block_match_automaton(None, &end, &automaton), expected);
}
}
}

View File

@@ -7,6 +7,7 @@ use zstd::bulk::Decompressor;
pub struct BlockReader {
buffer: Vec<u8>,
reader: OwnedBytes,
next_readers: std::vec::IntoIter<OwnedBytes>,
offset: usize,
}
@@ -15,6 +16,18 @@ impl BlockReader {
BlockReader {
buffer: Vec::new(),
reader,
next_readers: Vec::new().into_iter(),
offset: 0,
}
}
pub fn from_multiple_blocks(readers: Vec<OwnedBytes>) -> BlockReader {
let mut next_readers = readers.into_iter();
let reader = next_readers.next().unwrap_or_else(OwnedBytes::empty);
BlockReader {
buffer: Vec::new(),
reader,
next_readers,
offset: 0,
}
}
@@ -34,42 +47,52 @@ impl BlockReader {
self.offset = 0;
self.buffer.clear();
let block_len = match self.reader.len() {
0 => return Ok(false),
1..=3 => {
loop {
let block_len = match self.reader.len() {
0 => {
// we are out of data for this block. Check if we have another block after
if let Some(new_reader) = self.next_readers.next() {
self.reader = new_reader;
continue;
} else {
return Ok(false);
}
}
1..=3 => {
return Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
"failed to read block_len",
))
}
_ => self.reader.read_u32() as usize,
};
if block_len <= 1 {
return Ok(false);
}
let compress = self.reader.read_u8();
let block_len = block_len - 1;
if self.reader.len() < block_len {
return Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
"failed to read block_len",
))
"failed to read block content",
));
}
_ => self.reader.read_u32() as usize,
};
if block_len <= 1 {
return Ok(false);
}
let compress = self.reader.read_u8();
let block_len = block_len - 1;
if compress == 1 {
let required_capacity =
Decompressor::upper_bound(&self.reader[..block_len]).unwrap_or(1024 * 1024);
self.buffer.reserve(required_capacity);
Decompressor::new()?
.decompress_to_buffer(&self.reader[..block_len], &mut self.buffer)?;
if self.reader.len() < block_len {
return Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
"failed to read block content",
));
}
if compress == 1 {
let required_capacity =
Decompressor::upper_bound(&self.reader[..block_len]).unwrap_or(1024 * 1024);
self.buffer.reserve(required_capacity);
Decompressor::new()?
.decompress_to_buffer(&self.reader[..block_len], &mut self.buffer)?;
self.reader.advance(block_len);
} else {
self.buffer.resize(block_len, 0u8);
self.reader.read_exact(&mut self.buffer[..])?;
}
self.reader.advance(block_len);
} else {
self.buffer.resize(block_len, 0u8);
self.reader.read_exact(&mut self.buffer[..])?;
return Ok(true);
}
Ok(true)
}
#[inline(always)]

View File

@@ -143,6 +143,16 @@ where TValueReader: value::ValueReader
}
}
pub fn from_multiple_blocks(reader: Vec<OwnedBytes>) -> Self {
DeltaReader {
idx: 0,
common_prefix_len: 0,
suffix_range: 0..0,
value_reader: TValueReader::default(),
block_reader: BlockReader::from_multiple_blocks(reader),
}
}
pub fn empty() -> Self {
DeltaReader::new(OwnedBytes::empty())
}

View File

@@ -7,6 +7,8 @@ use std::sync::Arc;
use common::bounds::{transform_bound_inner_res, TransformBound};
use common::file_slice::FileSlice;
use common::{BinarySerializable, OwnedBytes};
use futures_util::{stream, StreamExt, TryStreamExt};
use itertools::Itertools;
use tantivy_fst::automaton::AlwaysMatch;
use tantivy_fst::Automaton;
@@ -98,20 +100,52 @@ impl<TSSTable: SSTable> Dictionary<TSSTable> {
&self,
key_range: impl RangeBounds<[u8]>,
limit: Option<u64>,
automaton: &impl Automaton,
merge_holes_under_bytes: usize,
) -> io::Result<DeltaReader<TSSTable::ValueReader>> {
let slice = self.file_slice_for_range(key_range, limit);
let data = slice.read_bytes_async().await?;
Ok(TSSTable::delta_reader(data))
let match_all = automaton.will_always_match(&automaton.start());
if match_all {
let slice = self.file_slice_for_range(key_range, limit);
let data = slice.read_bytes_async().await?;
Ok(TSSTable::delta_reader(data))
} else {
let blocks = stream::iter(self.get_block_iterator_for_range_and_automaton(
key_range,
automaton,
merge_holes_under_bytes,
));
let data = blocks
.map(|block_addr| {
self.sstable_slice
.read_bytes_slice_async(block_addr.byte_range)
})
.buffered(5)
.try_collect::<Vec<_>>()
.await?;
Ok(DeltaReader::from_multiple_blocks(data))
}
}
pub(crate) fn sstable_delta_reader_for_key_range(
&self,
key_range: impl RangeBounds<[u8]>,
limit: Option<u64>,
automaton: &impl Automaton,
) -> io::Result<DeltaReader<TSSTable::ValueReader>> {
let slice = self.file_slice_for_range(key_range, limit);
let data = slice.read_bytes()?;
Ok(TSSTable::delta_reader(data))
let match_all = automaton.will_always_match(&automaton.start());
if match_all {
let slice = self.file_slice_for_range(key_range, limit);
let data = slice.read_bytes()?;
Ok(TSSTable::delta_reader(data))
} else {
// if operations are sync, we assume latency is almost null, and there is no point in
// merging accross holes
let blocks = self.get_block_iterator_for_range_and_automaton(key_range, automaton, 0);
let data = blocks
.map(|block_addr| self.sstable_slice.read_bytes_slice(block_addr.byte_range))
.collect::<Result<Vec<_>, _>>()?;
Ok(DeltaReader::from_multiple_blocks(data))
}
}
pub(crate) fn sstable_delta_reader_block(
@@ -204,6 +238,42 @@ impl<TSSTable: SSTable> Dictionary<TSSTable> {
self.sstable_slice.slice((start_bound, end_bound))
}
fn get_block_iterator_for_range_and_automaton<'a>(
&'a self,
key_range: impl RangeBounds<[u8]>,
automaton: &'a impl Automaton,
merge_holes_under_bytes: usize,
) -> impl Iterator<Item = BlockAddr> + 'a {
let lower_bound = match key_range.start_bound() {
Bound::Included(key) | Bound::Excluded(key) => {
self.sstable_index.locate_with_key(key).unwrap_or(u64::MAX)
}
Bound::Unbounded => 0,
};
let upper_bound = match key_range.end_bound() {
Bound::Included(key) | Bound::Excluded(key) => {
self.sstable_index.locate_with_key(key).unwrap_or(u64::MAX)
}
Bound::Unbounded => u64::MAX,
};
let block_range = lower_bound..=upper_bound;
self.sstable_index
.get_block_for_automaton(automaton)
.filter(move |(block_id, _)| block_range.contains(block_id))
.map(|(_, block_addr)| block_addr)
.coalesce(move |first, second| {
if first.byte_range.end + merge_holes_under_bytes >= second.byte_range.start {
Ok(BlockAddr {
first_ordinal: first.first_ordinal,
byte_range: first.byte_range.start..second.byte_range.end,
})
} else {
Err((first, second))
}
})
}
/// Opens a `TermDictionary`.
pub fn open(term_dictionary_file: FileSlice) -> io::Result<Self> {
let (main_slice, footer_len_slice) = term_dictionary_file.split_from_end(20);

View File

@@ -3,6 +3,7 @@ use std::ops::Range;
use merge::ValueMerger;
mod block_match_automaton;
mod delta;
mod dictionary;
pub mod merge;

View File

@@ -1,10 +1,12 @@
use common::OwnedBytes;
use tantivy_fst::Automaton;
use crate::block_match_automaton::can_block_match_automaton;
use crate::{BlockAddr, SSTable, SSTableDataCorruption, TermOrdinal};
#[derive(Default, Debug, Clone)]
pub struct SSTableIndex {
blocks: Vec<BlockMeta>,
pub(crate) blocks: Vec<BlockMeta>,
}
impl SSTableIndex {
@@ -74,6 +76,31 @@ impl SSTableIndex {
// locate_with_ord always returns an index within range
self.get_block(self.locate_with_ord(ord)).unwrap()
}
pub(crate) fn get_block_for_automaton<'a>(
&'a self,
automaton: &'a impl Automaton,
) -> impl Iterator<Item = (u64, BlockAddr)> + 'a {
std::iter::once((None, &self.blocks[0]))
.chain(self.blocks.windows(2).map(|window| {
let [prev, curr] = window else {
unreachable!();
};
(Some(&*prev.last_key_or_greater), curr)
}))
.enumerate()
.filter_map(move |(pos, (prev_key, current_block))| {
if can_block_match_automaton(
prev_key,
&current_block.last_key_or_greater,
automaton,
) {
Some((pos as u64, current_block.block_addr.clone()))
} else {
None
}
})
}
}
#[derive(Debug, Clone)]
@@ -99,3 +126,106 @@ impl SSTable for IndexSSTable {
type ValueWriter = crate::value::index::IndexValueWriter;
}
#[cfg(test)]
mod tests {
use super::*;
use crate::block_match_automaton::tests::EqBuffer;
#[test]
fn test_get_block_for_automaton() {
let sstable = SSTableIndex {
blocks: vec![
BlockMeta {
last_key_or_greater: vec![0, 1, 2],
block_addr: BlockAddr {
first_ordinal: 0,
byte_range: 0..10,
},
},
BlockMeta {
last_key_or_greater: vec![0, 2, 2],
block_addr: BlockAddr {
first_ordinal: 5,
byte_range: 10..20,
},
},
BlockMeta {
last_key_or_greater: vec![0, 3, 2],
block_addr: BlockAddr {
first_ordinal: 10,
byte_range: 20..30,
},
},
],
};
let res = sstable
.get_block_for_automaton(&EqBuffer(vec![0, 1, 1]))
.collect::<Vec<_>>();
assert_eq!(
res,
vec![(
0,
BlockAddr {
first_ordinal: 0,
byte_range: 0..10
}
)]
);
let res = sstable
.get_block_for_automaton(&EqBuffer(vec![0, 2, 1]))
.collect::<Vec<_>>();
assert_eq!(
res,
vec![(
1,
BlockAddr {
first_ordinal: 5,
byte_range: 10..20
}
)]
);
let res = sstable
.get_block_for_automaton(&EqBuffer(vec![0, 3, 1]))
.collect::<Vec<_>>();
assert_eq!(
res,
vec![(
2,
BlockAddr {
first_ordinal: 10,
byte_range: 20..30
}
)]
);
let res = sstable
.get_block_for_automaton(&EqBuffer(vec![0, 4, 1]))
.collect::<Vec<_>>();
assert!(res.is_empty());
let complex_automaton = EqBuffer(vec![0, 1, 1]).union(EqBuffer(vec![0, 3, 1]));
let res = sstable
.get_block_for_automaton(&complex_automaton)
.collect::<Vec<_>>();
assert_eq!(
res,
vec![
(
0,
BlockAddr {
first_ordinal: 0,
byte_range: 0..10
}
),
(
2,
BlockAddr {
first_ordinal: 10,
byte_range: 20..30
}
)
]
);
}
}

View File

@@ -5,8 +5,9 @@ use std::sync::Arc;
use common::{BinarySerializable, FixedSize, OwnedBytes};
use tantivy_bitpacker::{compute_num_bits, BitPacker};
use tantivy_fst::raw::Fst;
use tantivy_fst::{IntoStreamer, Map, MapBuilder, Streamer};
use tantivy_fst::{Automaton, IntoStreamer, Map, MapBuilder, Streamer};
use crate::block_match_automaton::can_block_match_automaton;
use crate::{common_prefix_len, SSTableDataCorruption, TermOrdinal};
#[derive(Debug, Clone)]
@@ -64,6 +65,41 @@ impl SSTableIndex {
SSTableIndex::V3Empty(v3_empty) => v3_empty.get_block_with_ord(ord),
}
}
pub fn get_block_for_automaton<'a>(
&'a self,
automaton: &'a impl Automaton,
) -> impl Iterator<Item = (u64, BlockAddr)> + 'a {
match self {
SSTableIndex::V2(v2_index) => {
BlockIter::V2(v2_index.get_block_for_automaton(automaton))
}
SSTableIndex::V3(v3_index) => {
BlockIter::V3(v3_index.get_block_for_automaton(automaton))
}
SSTableIndex::V3Empty(v3_empty) => {
BlockIter::V3Empty(std::iter::once((0, v3_empty.block_addr.clone())))
}
}
}
}
enum BlockIter<V2, V3, T> {
V2(V2),
V3(V3),
V3Empty(std::iter::Once<T>),
}
impl<V2: Iterator<Item = T>, V3: Iterator<Item = T>, T> Iterator for BlockIter<V2, V3, T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
match self {
BlockIter::V2(v2) => v2.next(),
BlockIter::V3(v3) => v3.next(),
BlockIter::V3Empty(once) => once.next(),
}
}
}
#[derive(Debug, Clone)]
@@ -123,6 +159,59 @@ impl SSTableIndexV3 {
pub(crate) fn get_block_with_ord(&self, ord: TermOrdinal) -> BlockAddr {
self.block_addr_store.binary_search_ord(ord).1
}
pub(crate) fn get_block_for_automaton<'a>(
&'a self,
automaton: &'a impl Automaton,
) -> impl Iterator<Item = (u64, BlockAddr)> + 'a {
// this is more complicated than other index formats: we don't have a ready made list of
// blocks, and instead need to stream-decode the sstable.
GetBlockForAutomaton {
streamer: self.fst_index.stream(),
block_addr_store: &self.block_addr_store,
prev_key: None,
automaton,
}
}
}
// TODO we iterate over the entire Map to find matching blocks,
// we could manually iterate on the underlying Fst and skip whole branches if our Automaton says
// cannot match. this isn't as bad as it sounds given the fst is a lot smaller than the rest of the
// sstable.
// To do that, we can't use tantivy_fst's Stream with an automaton, as we need to know 2 consecutive
// fst keys to form a proper opinion on whether this is a match, which we wan't translate into a
// single automaton
struct GetBlockForAutomaton<'a, A: Automaton> {
streamer: tantivy_fst::map::Stream<'a>,
block_addr_store: &'a BlockAddrStore,
prev_key: Option<Vec<u8>>,
automaton: &'a A,
}
impl<A: Automaton> Iterator for GetBlockForAutomaton<'_, A> {
type Item = (u64, BlockAddr);
fn next(&mut self) -> Option<Self::Item> {
while let Some((new_key, block_id)) = self.streamer.next() {
if let Some(prev_key) = self.prev_key.as_mut() {
if can_block_match_automaton(Some(prev_key), new_key, self.automaton) {
prev_key.clear();
prev_key.extend_from_slice(new_key);
return Some((block_id, self.block_addr_store.get(block_id).unwrap()));
}
prev_key.clear();
prev_key.extend_from_slice(new_key);
} else {
self.prev_key = Some(new_key.to_owned());
if can_block_match_automaton(None, new_key, self.automaton) {
return Some((block_id, self.block_addr_store.get(block_id).unwrap()));
}
}
}
None
}
}
#[derive(Debug, Clone)]
@@ -734,7 +823,8 @@ fn find_best_slope(elements: impl Iterator<Item = (usize, u64)> + Clone) -> (u32
mod tests {
use common::OwnedBytes;
use super::{BlockAddr, SSTableIndexBuilder, SSTableIndexV3};
use super::*;
use crate::block_match_automaton::tests::EqBuffer;
use crate::SSTableDataCorruption;
#[test]
@@ -823,4 +913,108 @@ mod tests {
(12345, 1)
);
}
#[test]
fn test_get_block_for_automaton() {
let sstable_index_builder = SSTableIndexBuilder {
blocks: vec![
BlockMeta {
last_key_or_greater: vec![0, 1, 2],
block_addr: BlockAddr {
first_ordinal: 0,
byte_range: 0..10,
},
},
BlockMeta {
last_key_or_greater: vec![0, 2, 2],
block_addr: BlockAddr {
first_ordinal: 5,
byte_range: 10..20,
},
},
BlockMeta {
last_key_or_greater: vec![0, 3, 2],
block_addr: BlockAddr {
first_ordinal: 10,
byte_range: 20..30,
},
},
],
};
let mut sstable_index_bytes = Vec::new();
let fst_len = sstable_index_builder
.serialize(&mut sstable_index_bytes)
.unwrap();
let sstable = SSTableIndexV3::load(OwnedBytes::new(sstable_index_bytes), fst_len).unwrap();
let res = sstable
.get_block_for_automaton(&EqBuffer(vec![0, 1, 1]))
.collect::<Vec<_>>();
assert_eq!(
res,
vec![(
0,
BlockAddr {
first_ordinal: 0,
byte_range: 0..10
}
)]
);
let res = sstable
.get_block_for_automaton(&EqBuffer(vec![0, 2, 1]))
.collect::<Vec<_>>();
assert_eq!(
res,
vec![(
1,
BlockAddr {
first_ordinal: 5,
byte_range: 10..20
}
)]
);
let res = sstable
.get_block_for_automaton(&EqBuffer(vec![0, 3, 1]))
.collect::<Vec<_>>();
assert_eq!(
res,
vec![(
2,
BlockAddr {
first_ordinal: 10,
byte_range: 20..30
}
)]
);
let res = sstable
.get_block_for_automaton(&EqBuffer(vec![0, 4, 1]))
.collect::<Vec<_>>();
assert!(res.is_empty());
let complex_automaton = EqBuffer(vec![0, 1, 1]).union(EqBuffer(vec![0, 3, 1]));
let res = sstable
.get_block_for_automaton(&complex_automaton)
.collect::<Vec<_>>();
assert_eq!(
res,
vec![
(
0,
BlockAddr {
first_ordinal: 0,
byte_range: 0..10
}
),
(
2,
BlockAddr {
first_ordinal: 10,
byte_range: 20..30
}
)
]
);
}
}

View File

@@ -86,16 +86,24 @@ where
bound_as_byte_slice(&self.upper),
);
self.term_dict
.sstable_delta_reader_for_key_range(key_range, self.limit)
.sstable_delta_reader_for_key_range(key_range, self.limit, &self.automaton)
}
async fn delta_reader_async(&self) -> io::Result<DeltaReader<TSSTable::ValueReader>> {
async fn delta_reader_async(
&self,
merge_holes_under_bytes: usize,
) -> io::Result<DeltaReader<TSSTable::ValueReader>> {
let key_range = (
bound_as_byte_slice(&self.lower),
bound_as_byte_slice(&self.upper),
);
self.term_dict
.sstable_delta_reader_for_key_range_async(key_range, self.limit)
.sstable_delta_reader_for_key_range_async(
key_range,
self.limit,
&self.automaton,
merge_holes_under_bytes,
)
.await
}
@@ -130,7 +138,16 @@ where
/// See `into_stream(..)`
pub async fn into_stream_async(self) -> io::Result<Streamer<'a, TSSTable, A>> {
let delta_reader = self.delta_reader_async().await?;
self.into_stream_async_merging_holes(0).await
}
/// Same as `into_stream_async`, but tries to issue a single io operation when requesting
/// blocks that are not consecutive, but also less than `merge_holes_under_bytes` bytes appart.
pub async fn into_stream_async_merging_holes(
self,
merge_holes_under_bytes: usize,
) -> io::Result<Streamer<'a, TSSTable, A>> {
let delta_reader = self.delta_reader_async(merge_holes_under_bytes).await?;
self.into_stream_given_delta_reader(delta_reader)
}
@@ -327,4 +344,7 @@ mod tests {
assert!(!term_streamer.advance());
Ok(())
}
// TODO add test for sparse search with a block of poison (starts with 0xffffffff) => such a
// block instantly causes an unexpected EOF error
}