Compare commits

..

2 Commits

Author SHA1 Message Date
Pascal Seitz
4c7437f2e0 fix typing 2022-09-27 19:12:49 +08:00
Pascal Seitz
cc82f94c72 sparse dense codec experiment 2022-09-27 17:12:12 +08:00
378 changed files with 18354 additions and 46863 deletions

View File

@@ -2,14 +2,9 @@ name: Coverage
on:
push:
branches: [main]
branches: [ main ]
pull_request:
branches: [main]
# Ensures that we cancel running jobs for the same PR / same workflow.
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
branches: [ main ]
jobs:
coverage:
@@ -21,7 +16,7 @@ jobs:
- uses: Swatinem/rust-cache@v2
- uses: taiki-e/install-action@cargo-llvm-cov
- name: Generate code coverage
run: cargo +nightly llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
run: cargo +nightly llvm-cov --all-features --workspace --lcov --output-path lcov.info
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
continue-on-error: true

View File

@@ -8,11 +8,6 @@ env:
CARGO_TERM_COLOR: always
NUM_FUNCTIONAL_TEST_ITERATIONS: 20000
# Ensures that we cancel running jobs for the same PR / same workflow.
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs:
test:

View File

@@ -9,11 +9,6 @@ on:
env:
CARGO_TERM_COLOR: always
# Ensures that we cancel running jobs for the same PR / same workflow.
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs:
check:
@@ -53,7 +48,7 @@ jobs:
strategy:
matrix:
features: [
{ label: "all", flags: "mmap,stopwords,lz4-compression,zstd-compression,failpoints" },
{ label: "all", flags: "mmap,brotli-compression,lz4-compression,snappy-compression,zstd-compression,failpoints" },
{ label: "quickwit", flags: "mmap,quickwit,failpoints" }
]

2
.gitignore vendored
View File

@@ -13,5 +13,3 @@ benchmark
.idea
trace.dat
cargo-timing*
control
variable

View File

@@ -254,7 +254,7 @@ The token positions of all of the terms are then stored in a separate file with
The [TermInfo](src/postings/term_info.rs) gives an offset (expressed in position this time) in this file. As we iterate through the docset,
we advance the position reader by the number of term frequencies of the current document.
## [fieldnorm/](src/fieldnorm): Here is my doc, how many tokens in this field?
## [fieldnorms/](src/fieldnorms): Here is my doc, how many tokens in this field?
The [BM25](https://en.wikipedia.org/wiki/Okapi_BM25) formula also requires to know the number of tokens stored in a specific field for a given document. We store this information on one byte per document in the fieldnorm.
The fieldnorm is therefore compressed. Values up to 40 are encoded unchanged.

View File

@@ -1,153 +1,10 @@
Tantivy 0.21
================================
#### Bugfixes
- Fix track fast field memory consumption, which led to higher memory consumption than the budget allowed during indexing [#2148](https://github.com/quickwit-oss/tantivy/issues/2148)[#2147](https://github.com/quickwit-oss/tantivy/issues/2147)(@PSeitz)
- Fix a regression from 0.20 where sort index by date wasn't working anymore [#2124](https://github.com/quickwit-oss/tantivy/issues/2124)(@PSeitz)
- Fix getting the root facet on the `FacetCollector`. [#2086](https://github.com/quickwit-oss/tantivy/issues/2086)(@adamreichold)
- Align numerical type priority order of columnar and query. [#2088](https://github.com/quickwit-oss/tantivy/issues/2088)(@fmassot)
#### Breaking Changes
- Remove support for Brotli and Snappy compression [#2123](https://github.com/quickwit-oss/tantivy/issues/2123)(@adamreichold)
#### Features/Improvements
- Implement lenient query parser [#2129](https://github.com/quickwit-oss/tantivy/pull/2129)(@trinity-1686a)
- order_by_u64_field and order_by_fast_field allow sorting in ascending and descending order [#2111](https://github.com/quickwit-oss/tantivy/issues/2111)(@naveenann)
- Allow dynamic filters in text analyzer builder [#2110](https://github.com/quickwit-oss/tantivy/issues/2110)(@fulmicoton @fmassot)
- **Aggregation**
- Add missing parameter for term aggregation [#2149](https://github.com/quickwit-oss/tantivy/issues/2149)[#2103](https://github.com/quickwit-oss/tantivy/issues/2103)(@PSeitz)
- Add missing parameter for percentiles [#2157](https://github.com/quickwit-oss/tantivy/issues/2157)(@PSeitz)
- Add missing parameter for stats,min,max,count,sum,avg [#2151](https://github.com/quickwit-oss/tantivy/issues/2151)(@PSeitz)
- Improve aggregation deserialization error message [#2150](https://github.com/quickwit-oss/tantivy/issues/2150)(@PSeitz)
- Add validation for type Bytes to term_agg [#2077](https://github.com/quickwit-oss/tantivy/issues/2077)(@PSeitz)
- Alternative mixed field collection [#2135](https://github.com/quickwit-oss/tantivy/issues/2135)(@PSeitz)
- Add missing query_terms impl for TermSetQuery. [#2120](https://github.com/quickwit-oss/tantivy/issues/2120)(@adamreichold)
- Minor improvements to OwnedBytes [#2134](https://github.com/quickwit-oss/tantivy/issues/2134)(@adamreichold)
- Remove allocations in split compound words [#2080](https://github.com/quickwit-oss/tantivy/issues/2080)(@PSeitz)
- Ngram tokenizer now returns an error with invalid arguments [#2102](https://github.com/quickwit-oss/tantivy/issues/2102)(@fmassot)
- Make TextAnalyzerBuilder public [#2097](https://github.com/quickwit-oss/tantivy/issues/2097)(@adamreichold)
- Return an error when tokenizer is not found while indexing [#2093](https://github.com/quickwit-oss/tantivy/issues/2093)(@naveenann)
- Delayed column opening during merge [#2132](https://github.com/quickwit-oss/tantivy/issues/2132)(@PSeitz)
Tantivy 0.20.2
================================
- Align numerical type priority order on the search side. [#2088](https://github.com/quickwit-oss/tantivy/issues/2088) (@fmassot)
- Fix is_child_of function not considering the root facet. [#2086](https://github.com/quickwit-oss/tantivy/issues/2086) (@adamreichhold)
Tantivy 0.20.1
================================
- Fix building on windows with mmap [#2070](https://github.com/quickwit-oss/tantivy/issues/2070) (@ChillFish8)
Tantivy 0.20
================================
#### Bugfixes
- Fix phrase queries with slop (slop supports now transpositions, algorithm that carries slop so far for num terms > 2) [#2031](https://github.com/quickwit-oss/tantivy/issues/2031)[#2020](https://github.com/quickwit-oss/tantivy/issues/2020)(@PSeitz)
- Handle error for exists on MMapDirectory [#1988](https://github.com/quickwit-oss/tantivy/issues/1988) (@PSeitz)
- Aggregation
- Fix min doc_count empty merge bug [#2057](https://github.com/quickwit-oss/tantivy/issues/2057) (@PSeitz)
- Fix: Sort order for term aggregations (sort order on key was inverted) [#1858](https://github.com/quickwit-oss/tantivy/issues/1858) (@PSeitz)
#### Features/Improvements
- Add PhrasePrefixQuery [#1842](https://github.com/quickwit-oss/tantivy/issues/1842) (@trinity-1686a)
- Add `coerce` option for text and numbers types (convert the value instead of returning an error during indexing) [#1904](https://github.com/quickwit-oss/tantivy/issues/1904) (@PSeitz)
- Add regex tokenizer [#1759](https://github.com/quickwit-oss/tantivy/issues/1759)(@mkleen)
- Move tokenizer API to seperate crate. Having a seperate crate with a stable API will allow us to use tokenizers with different tantivy versions. [#1767](https://github.com/quickwit-oss/tantivy/issues/1767) (@PSeitz)
- **Columnar crate**: New fast field handling (@fulmicoton @PSeitz) [#1806](https://github.com/quickwit-oss/tantivy/issues/1806)[#1809](https://github.com/quickwit-oss/tantivy/issues/1809)
- Support for fast fields with optional values. Previously tantivy supported only single-valued and multi-value fast fields. The encoding of optional fast fields is now very compact.
- Fast field Support for JSON (schemaless fast fields). Support multiple types on the same column. [#1876](https://github.com/quickwit-oss/tantivy/issues/1876) (@fulmicoton)
- Unified access for fast fields over different cardinalities.
- Unified storage for typed and untyped fields.
- Move fastfield codecs into columnar. [#1782](https://github.com/quickwit-oss/tantivy/issues/1782) (@fulmicoton)
- Sparse dense index for optional values [#1716](https://github.com/quickwit-oss/tantivy/issues/1716) (@PSeitz)
- Switch to nanosecond precision in DateTime fastfield [#2016](https://github.com/quickwit-oss/tantivy/issues/2016) (@PSeitz)
- **Aggregation**
- Add `date_histogram` aggregation (only `fixed_interval` for now) [#1900](https://github.com/quickwit-oss/tantivy/issues/1900) (@PSeitz)
- Add `percentiles` aggregations [#1984](https://github.com/quickwit-oss/tantivy/issues/1984) (@PSeitz)
- [**breaking**] Drop JSON support on intermediate agg result (we use postcard as format in `quickwit` to send intermediate results) [#1992](https://github.com/quickwit-oss/tantivy/issues/1992) (@PSeitz)
- Set memory limit in bytes for aggregations after which they abort (Previously there was only the bucket limit) [#1942](https://github.com/quickwit-oss/tantivy/issues/1942)[#1957](https://github.com/quickwit-oss/tantivy/issues/1957)(@PSeitz)
- Add support for u64,i64,f64 fields in term aggregation [#1883](https://github.com/quickwit-oss/tantivy/issues/1883) (@PSeitz)
- Allow histogram bounds to be passed as Rfc3339 [#2076](https://github.com/quickwit-oss/tantivy/issues/2076) (@PSeitz)
- Add count, min, max, and sum aggregations [#1794](https://github.com/quickwit-oss/tantivy/issues/1794) (@guilload)
- Switch to Aggregation without serde_untagged => better deserialization errors. [#2003](https://github.com/quickwit-oss/tantivy/issues/2003) (@PSeitz)
- Switch to ms in histogram for date type (ES compatibility) [#2045](https://github.com/quickwit-oss/tantivy/issues/2045) (@PSeitz)
- Reduce term aggregation memory consumption [#2013](https://github.com/quickwit-oss/tantivy/issues/2013) (@PSeitz)
- Reduce agg memory consumption: Replace generic aggregation collector (which has a high memory requirement per instance) in aggregation tree with optimized versions behind a trait.
- Split term collection count and sub_agg (Faster term agg with less memory consumption for cases without sub-aggs) [#1921](https://github.com/quickwit-oss/tantivy/issues/1921) (@PSeitz)
- Schemaless aggregations: In combination with stacker tantivy supports now schemaless aggregations via the JSON type.
- Add aggregation support for JSON type [#1888](https://github.com/quickwit-oss/tantivy/issues/1888) (@PSeitz)
- Mixed types support on JSON fields in aggs [#1971](https://github.com/quickwit-oss/tantivy/issues/1971) (@PSeitz)
- Perf: Fetch blocks of vals in aggregation for all cardinality [#1950](https://github.com/quickwit-oss/tantivy/issues/1950) (@PSeitz)
- Allow histogram bounds to be passed as Rfc3339 [#2076](https://github.com/quickwit-oss/tantivy/issues/2076) (@PSeitz)
- `Searcher` with disabled scoring via `EnableScoring::Disabled` [#1780](https://github.com/quickwit-oss/tantivy/issues/1780) (@shikhar)
- Enable tokenizer on json fields [#2053](https://github.com/quickwit-oss/tantivy/issues/2053) (@PSeitz)
- Enforcing "NOT" and "-" queries consistency in UserInputAst [#1609](https://github.com/quickwit-oss/tantivy/issues/1609) (@bazhenov)
- Faster indexing
- Refactor tokenization pipeline to use GATs [#1924](https://github.com/quickwit-oss/tantivy/issues/1924) (@trinity-1686a)
- Faster term hash map [#2058](https://github.com/quickwit-oss/tantivy/issues/2058)[#1940](https://github.com/quickwit-oss/tantivy/issues/1940) (@PSeitz)
- tokenizer-api: reduce Tokenizer allocation overhead [#2062](https://github.com/quickwit-oss/tantivy/issues/2062) (@PSeitz)
- Refactor vint [#2010](https://github.com/quickwit-oss/tantivy/issues/2010) (@PSeitz)
- Faster search
- Work in batches of docs on the SegmentCollector (Only for cases without score for now) [#1937](https://github.com/quickwit-oss/tantivy/issues/1937) (@PSeitz)
- Faster fast field range queries using SIMD [#1954](https://github.com/quickwit-oss/tantivy/issues/1954) (@fulmicoton)
- Improve fast field range query performance [#1864](https://github.com/quickwit-oss/tantivy/issues/1864) (@PSeitz)
- Make BM25 scoring more flexible [#1855](https://github.com/quickwit-oss/tantivy/issues/1855) (@alexcole)
- Switch fs2 to fs4 as it is now unmaintained and does not support illumos [#1944](https://github.com/quickwit-oss/tantivy/issues/1944) (@Toasterson)
- Made BooleanWeight and BoostWeight public [#1991](https://github.com/quickwit-oss/tantivy/issues/1991) (@fulmicoton)
- Make index compatible with virtual drives on Windows [#1843](https://github.com/quickwit-oss/tantivy/issues/1843) (@gyk)
- Add stop words for Hungarian language [#2069](https://github.com/quickwit-oss/tantivy/issues/2069) (@tnxbutno)
- Auto downgrade index record option, instead of vint error [#1857](https://github.com/quickwit-oss/tantivy/issues/1857) (@PSeitz)
- Enable range query on fast field for u64 compatible types [#1762](https://github.com/quickwit-oss/tantivy/issues/1762) (@PSeitz) [#1876]
- sstable
- Isolating sstable and stacker in independant crates. [#1718](https://github.com/quickwit-oss/tantivy/issues/1718) (@fulmicoton)
- New sstable format [#1943](https://github.com/quickwit-oss/tantivy/issues/1943)[#1953](https://github.com/quickwit-oss/tantivy/issues/1953) (@trinity-1686a)
- Use DeltaReader directly to implement Dictionnary::ord_to_term [#1928](https://github.com/quickwit-oss/tantivy/issues/1928) (@trinity-1686a)
- Use DeltaReader directly to implement Dictionnary::term_ord [#1925](https://github.com/quickwit-oss/tantivy/issues/1925) (@trinity-1686a)
- Add seperate tokenizer manager for fast fields [#2019](https://github.com/quickwit-oss/tantivy/issues/2019) (@PSeitz)
- Make construction of LevenshteinAutomatonBuilder for FuzzyTermQuery instances lazy. [#1756](https://github.com/quickwit-oss/tantivy/issues/1756) (@adamreichold)
- Added support for madvise when opening an mmaped Index [#2036](https://github.com/quickwit-oss/tantivy/issues/2036) (@fulmicoton)
- Rename `DatePrecision` to `DateTimePrecision` [#2051](https://github.com/quickwit-oss/tantivy/issues/2051) (@guilload)
- Query Parser
- Quotation mark can now be used for phrase queries. [#2050](https://github.com/quickwit-oss/tantivy/issues/2050) (@fulmicoton)
- PhrasePrefixQuery is supported in the query parser via: `field:"phrase ter"*` [#2044](https://github.com/quickwit-oss/tantivy/issues/2044) (@adamreichold)
- Docs
- Update examples for literate docs [#1880](https://github.com/quickwit-oss/tantivy/issues/1880) (@PSeitz)
- Add ip field example [#1775](https://github.com/quickwit-oss/tantivy/issues/1775) (@PSeitz)
- Fix doc store cache documentation [#1821](https://github.com/quickwit-oss/tantivy/issues/1821) (@PSeitz)
- Fix BooleanQuery document [#1999](https://github.com/quickwit-oss/tantivy/issues/1999) (@RT_Enzyme)
- Update comments in the faceted search example [#1737](https://github.com/quickwit-oss/tantivy/issues/1737) (@DawChihLiou)
Tantivy 0.19
================================
#### Bugfixes
- Fix missing fieldnorms for u64, i64, f64, bool, bytes and date [#1620](https://github.com/quickwit-oss/tantivy/pull/1620) (@PSeitz)
- Fix interpolation overflow in linear interpolation fastfield codec [#1480](https://github.com/quickwit-oss/tantivy/pull/1480) (@PSeitz @fulmicoton)
#### Features/Improvements
- Add support for `IN` in queryparser , e.g. `field: IN [val1 val2 val3]` [#1683](https://github.com/quickwit-oss/tantivy/pull/1683) (@trinity-1686a)
- Skip score calculation, when no scoring is required [#1646](https://github.com/quickwit-oss/tantivy/pull/1646) (@PSeitz)
- Limit fast fields to u32 (`get_val(u32)`) [#1644](https://github.com/quickwit-oss/tantivy/pull/1644) (@PSeitz)
- The `DateTime` type has been updated to hold timestamps with microseconds precision.
`DateOptions` and `DatePrecision` have been added to configure Date fields. The precision is used to hint on fast values compression. Otherwise, seconds precision is used everywhere else (i.e terms, indexing) [#1396](https://github.com/quickwit-oss/tantivy/pull/1396) (@evanxg852000)
- Add IP address field type [#1553](https://github.com/quickwit-oss/tantivy/pull/1553) (@PSeitz)
- Add boolean field type [#1382](https://github.com/quickwit-oss/tantivy/pull/1382) (@boraarslan)
- Remove Searcher pool and make `Searcher` cloneable. (@PSeitz)
- Validate settings on create [#1570](https://github.com/quickwit-oss/tantivy/pull/1570) (@PSeitz)
- Detect and apply gcd on fastfield codecs [#1418](https://github.com/quickwit-oss/tantivy/pull/1418) (@PSeitz)
- Doc store
- use separate thread to compress block store [#1389](https://github.com/quickwit-oss/tantivy/pull/1389) [#1510](https://github.com/quickwit-oss/tantivy/pull/1510) (@PSeitz @fulmicoton)
- Expose doc store cache size [#1403](https://github.com/quickwit-oss/tantivy/pull/1403) (@PSeitz)
- Enable compression levels for doc store [#1378](https://github.com/quickwit-oss/tantivy/pull/1378) (@PSeitz)
- Make block size configurable [#1374](https://github.com/quickwit-oss/tantivy/pull/1374) (@kryesh)
- Make `tantivy::TantivyError` cloneable [#1402](https://github.com/quickwit-oss/tantivy/pull/1402) (@PSeitz)
- Add support for phrase slop in query language [#1393](https://github.com/quickwit-oss/tantivy/pull/1393) (@saroh)
- Aggregation
- Add aggregation support for date type [#1693](https://github.com/quickwit-oss/tantivy/pull/1693)(@PSeitz)
- Add support for keyed parameter in range and histgram aggregations [#1424](https://github.com/quickwit-oss/tantivy/pull/1424) (@k-yomo)
- Add aggregation bucket limit [#1363](https://github.com/quickwit-oss/tantivy/pull/1363) (@PSeitz)
- Faster indexing
- [#1610](https://github.com/quickwit-oss/tantivy/pull/1610) (@PSeitz)
- [#1594](https://github.com/quickwit-oss/tantivy/pull/1594) (@PSeitz)
- [#1582](https://github.com/quickwit-oss/tantivy/pull/1582) (@PSeitz)
- [#1611](https://github.com/quickwit-oss/tantivy/pull/1611) (@PSeitz)
- Added a pre-configured stop word filter for various language [#1666](https://github.com/quickwit-oss/tantivy/pull/1666) (@adamreichold)
- Updated [Date Field Type](https://github.com/quickwit-oss/tantivy/pull/1396)
The `DateTime` type has been updated to hold timestamps with microseconds precision.
`DateOptions` and `DatePrecision` have been added to configure Date fields. The precision is used to hint on fast values compression. Otherwise, seconds precision is used everywhere else (i.e terms, indexing).
- Remove Searcher pool and make `Searcher` cloneable.
Tantivy 0.18
================================
@@ -165,10 +22,6 @@ Tantivy 0.18
- Add terms aggregation (@PSeitz)
- Add support for zstd compression (@kryesh)
Tantivy 0.18.1
================================
- Hotfix: positions computation. #1629 (@fmassot, @fulmicoton, @PSeitz)
Tantivy 0.17
================================

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy"
version = "0.21.0"
version = "0.18.0"
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
license = "MIT"
categories = ["database-implementations", "data-structures"]
@@ -11,59 +11,55 @@ repository = "https://github.com/quickwit-oss/tantivy"
readme = "README.md"
keywords = ["search", "information", "retrieval"]
edition = "2021"
rust-version = "1.62"
exclude = ["benches/*.json", "benches/*.txt"]
[dependencies]
oneshot = "0.1.5"
base64 = "0.21.0"
oneshot = "0.1.3"
base64 = "0.13.0"
byteorder = "1.4.3"
crc32fast = "1.3.2"
once_cell = "1.10.0"
regex = { version = "1.5.5", default-features = false, features = ["std", "unicode"] }
aho-corasick = "1.0"
tantivy-fst = "0.4.0"
memmap2 = { version = "0.7.1", optional = true }
lz4_flex = { version = "0.11", default-features = false, optional = true }
zstd = { version = "0.12", optional = true, default-features = false }
tantivy-fst = "0.3.0"
memmap2 = { version = "0.5.3", optional = true }
lz4_flex = { version = "0.9.2", default-features = false, features = ["checked-decode"], optional = true }
brotli = { version = "3.3.4", optional = true }
zstd = { version = "0.11", optional = true }
snap = { version = "1.0.5", optional = true }
tempfile = { version = "3.3.0", optional = true }
log = "0.4.16"
serde = { version = "1.0.136", features = ["derive"] }
serde_json = "1.0.79"
num_cpus = "1.13.1"
fs4 = { version = "0.6.3", optional = true }
fs2 = { version = "0.4.3", optional = true }
levenshtein_automata = "0.2.1"
uuid = { version = "1.0.0", features = ["v4", "serde"] }
crossbeam-channel = "0.5.4"
tantivy-query-grammar = { version="0.18.0", path="./query-grammar" }
tantivy-bitpacker = { version="0.2", path="./bitpacker" }
common = { version = "0.3", path = "./common/", package = "tantivy-common" }
fastfield_codecs = { version="0.2", path="./fastfield_codecs", default-features = false }
ownedbytes = { version="0.3", path="./ownedbytes" }
stable_deref_trait = "1.2.0"
rust-stemmers = "1.2.0"
downcast-rs = "1.2.0"
bitpacking = { version = "0.8.4", default-features = false, features = ["bitpacker4x"] }
census = "0.4.0"
rustc-hash = "1.1.0"
fnv = "1.0.7"
thiserror = "1.0.30"
htmlescape = "0.3.1"
fail = { version = "0.5.0", optional = true }
murmurhash32 = "0.3.0"
fail = "0.5.0"
murmurhash32 = "0.2.0"
time = { version = "0.3.10", features = ["serde-well-known"] }
smallvec = "1.8.0"
rayon = "1.5.2"
lru = "0.11.0"
lru = "0.7.5"
fastdivide = "0.4.0"
itertools = "0.11.0"
itertools = "0.10.3"
measure_time = "0.8.2"
serde_cbor = { version = "0.11.2", optional = true }
async-trait = "0.1.53"
arc-swap = "1.5.0"
columnar = { version= "0.2", path="./columnar", package ="tantivy-columnar" }
sstable = { version= "0.2", path="./sstable", package ="tantivy-sstable", optional = true }
stacker = { version= "0.2", path="./stacker", package ="tantivy-stacker" }
query-grammar = { version= "0.21.0", path="./query-grammar", package = "tantivy-query-grammar" }
tantivy-bitpacker = { version= "0.5", path="./bitpacker" }
common = { version= "0.6", path = "./common/", package = "tantivy-common" }
tokenizer-api = { version= "0.2", path="./tokenizer-api", package="tantivy-tokenizer-api" }
sketches-ddsketch = { version = "0.2.1", features = ["use_serde"] }
futures-util = { version = "0.3.28", optional = true }
[target.'cfg(windows)'.dependencies]
winapi = "0.3.9"
@@ -73,16 +69,11 @@ maplit = "1.0.2"
matches = "0.1.9"
pretty_assertions = "1.2.1"
proptest = "1.0.0"
criterion = "0.3.5"
test-log = "0.2.10"
env_logger = "0.10.0"
env_logger = "0.9.0"
pprof = { version = "0.10.0", features = ["flamegraph", "criterion"] }
futures = "0.3.21"
paste = "1.0.11"
more-asserts = "0.3.1"
rand_distr = "0.4.3"
[target.'cfg(not(windows))'.dev-dependencies]
criterion = "0.5"
pprof = { git = "https://github.com/PSeitz/pprof-rs/", rev = "53af24b", features = ["flamegraph", "criterion"] } # temp fork that works with criterion 0.5
[dev-dependencies.fail]
version = "0.5.0"
@@ -93,30 +84,26 @@ opt-level = 3
debug = false
debug-assertions = false
[profile.bench]
opt-level = 3
debug = true
debug-assertions = false
[profile.test]
debug-assertions = true
overflow-checks = true
[features]
default = ["mmap", "stopwords", "lz4-compression"]
mmap = ["fs4", "tempfile", "memmap2"]
stopwords = []
default = ["mmap", "lz4-compression" ]
mmap = ["fs2", "tempfile", "memmap2"]
brotli-compression = ["brotli"]
lz4-compression = ["lz4_flex"]
snappy-compression = ["snap"]
zstd-compression = ["zstd"]
failpoints = ["fail", "fail/failpoints"]
failpoints = ["fail/failpoints"]
unstable = [] # useful for benches.
quickwit = ["sstable", "futures-util"]
quickwit = ["serde_cbor"]
[workspace]
members = ["query-grammar", "bitpacker", "common", "ownedbytes", "stacker", "sstable", "tokenizer-api", "columnar"]
members = ["query-grammar", "bitpacker", "common", "fastfield_codecs", "ownedbytes"]
# Following the "fail" crate best practises, we isolate
# tests that define specific behavior in fail check points
@@ -137,3 +124,4 @@ harness = false
[[bench]]
name = "index-bench"
harness = false

View File

@@ -1,5 +1,5 @@
test:
@echo "Run test only... No examples."
echo "Run test only... No examples."
cargo test --tests --lib
fmt:

View File

@@ -26,12 +26,10 @@ Your mileage WILL vary depending on the nature of queries and their load.
<img src="doc/assets/images/searchbenchmark.png">
Details about the benchmark can be found at this [repository](https://github.com/quickwit-oss/search-benchmark-game).
# Features
- Full-text search
- Configurable tokenizer (stemming available for 17 Latin languages) with third party support for Chinese ([tantivy-jieba](https://crates.io/crates/tantivy-jieba) and [cang-jie](https://crates.io/crates/cang-jie)), Japanese ([lindera](https://github.com/lindera-morphology/lindera-tantivy), [Vaporetto](https://crates.io/crates/vaporetto_tantivy), and [tantivy-tokenizer-tiny-segmenter](https://crates.io/crates/tantivy-tokenizer-tiny-segmenter)) and Korean ([lindera](https://github.com/lindera-morphology/lindera-tantivy) + [lindera-ko-dic-builder](https://github.com/lindera-morphology/lindera-ko-dic-builder))
- Configurable tokenizer (stemming available for 17 Latin languages with third party support for Chinese ([tantivy-jieba](https://crates.io/crates/tantivy-jieba) and [cang-jie](https://crates.io/crates/cang-jie)), Japanese ([lindera](https://github.com/lindera-morphology/lindera-tantivy), [Vaporetto](https://crates.io/crates/vaporetto_tantivy), and [tantivy-tokenizer-tiny-segmenter](https://crates.io/crates/tantivy-tokenizer-tiny-segmenter)) and Korean ([lindera](https://github.com/lindera-morphology/lindera-tantivy) + [lindera-ko-dic-builder](https://github.com/lindera-morphology/lindera-ko-dic-builder))
- Fast (check out the :racehorse: :sparkles: [benchmark](https://tantivy-search.github.io/bench/) :sparkles: :racehorse:)
- Tiny startup time (<10ms), perfect for command-line tools
- BM25 scoring (the same as Lucene)
@@ -43,13 +41,13 @@ Details about the benchmark can be found at this [repository](https://github.com
- SIMD integer compression when the platform/CPU includes the SSE2 instruction set
- Single valued and multivalued u64, i64, and f64 fast fields (equivalent of doc values in Lucene)
- `&[u8]` fast fields
- Text, i64, u64, f64, dates, ip, bool, and hierarchical facet fields
- Compressed document store (LZ4, Zstd, None)
- Text, i64, u64, f64, dates, and hierarchical facet fields
- LZ4 compressed document store
- Range queries
- Faceted search
- Configurable indexing (optional term frequency and position indexing)
- JSON Field
- Aggregation Collector: histogram, range buckets, average, and stats metrics
- Aggregation Collector: range buckets, average, and stats metrics
- LogMergePolicy with deletes
- Searcher Warmer API
- Cheesy logo with a horse
@@ -60,7 +58,7 @@ Distributed search is out of the scope of Tantivy, but if you are looking for th
# Getting started
Tantivy works on stable Rust and supports Linux, macOS, and Windows.
Tantivy works on stable Rust (>= 1.27) and supports Linux, macOS, and Windows.
- [Tantivy's simple search example](https://tantivy-search.github.io/examples/basic_search.html)
- [tantivy-cli and its tutorial](https://github.com/quickwit-oss/tantivy-cli) - `tantivy-cli` is an actual command-line interface that makes it easy for you to create a search engine,
@@ -82,21 +80,48 @@ There are many ways to support this project.
# Contributing code
We use the GitHub Pull Request workflow: reference a GitHub ticket and/or include a comprehensive commit message when opening a PR.
Feel free to update CHANGELOG.md with your contribution.
## Tokenizer
When implementing a tokenizer for tantivy depend on the `tantivy-tokenizer-api` crate.
## Clone and build locally
Tantivy compiles on stable Rust.
Tantivy compiles on stable Rust but requires `Rust >= 1.27`.
To check out and run tests, you can simply run:
```bash
git clone https://github.com/quickwit-oss/tantivy.git
cd tantivy
cargo test
git clone https://github.com/quickwit-oss/tantivy.git
cd tantivy
cargo build
```
## Run tests
Some tests will not run with just `cargo test` because of `fail-rs`.
To run the tests exhaustively, run `./run-tests.sh`.
## Debug
You might find it useful to step through the programme with a debugger.
### A failing test
Make sure you haven't run `cargo clean` after the most recent `cargo test` or `cargo build` to guarantee that the `target/` directory exists. Use this bash script to find the name of the most recent debug build of Tantivy and run it under `rust-gdb`:
```bash
find target/debug/ -maxdepth 1 -executable -type f -name "tantivy*" -printf '%TY-%Tm-%Td %TT %p\n' | sort -r | cut -d " " -f 3 | xargs -I RECENT_DBG_TANTIVY rust-gdb RECENT_DBG_TANTIVY
```
Now that you are in `rust-gdb`, you can set breakpoints on lines and methods that match your source code and run the debug executable with flags that you normally pass to `cargo test` like this:
```bash
$gdb run --test-threads 1 --test $NAME_OF_TEST
```
### An example
By default, `rustc` compiles everything in the `examples/` directory in debug mode. This makes it easy for you to make examples to reproduce bugs:
```bash
rust-gdb target/debug/examples/$EXAMPLE_NAME
$ gdb run
```
# Companies Using Tantivy

View File

@@ -1,21 +0,0 @@
# Release a new Tantivy Version
## Steps
1. Identify new packages in workspace since last release
2. Identify changed packages in workspace since last release
3. Bump version in `Cargo.toml` and their dependents for all changed packages
4. Update version of root `Cargo.toml`
5. Publish version starting with leaf nodes
6. Set git tag with new version
In conjucation with `cargo-release` Steps 1-4 (I'm not sure if the change detection works):
Set new packages to version 0.0.0
Replace prev-tag-name
```bash
cargo release --workspace --no-publish -v --prev-tag-name 0.19 --push-remote origin minor --no-tag --execute
```
no-tag or it will create tags for all the subpackages

View File

@@ -1,18 +0,0 @@
Make schema_builder API fluent.
fix doc serialization and prevent compression problems
u64 , etc. shoudl return Resutl<Option> now that we support optional missing a column is really not an error
remove fastfield codecs
ditch the first_or_default trick. if it is still useful, improve its implementation.
rename FastFieldReaders::open to load
remove fast field reader
find a way to unify the two DateTime.
readd type check in the filter wrapper
add unit test on columnar list columns.
make sure sort works

23
appveyor.yml Normal file
View File

@@ -0,0 +1,23 @@
# Appveyor configuration template for Rust using rustup for Rust installation
# https://github.com/starkat99/appveyor-rust
os: Visual Studio 2015
environment:
matrix:
- channel: stable
target: x86_64-pc-windows-msvc
install:
- appveyor DownloadFile https://win.rustup.rs/ -FileName rustup-init.exe
- rustup-init -yv --default-toolchain %channel% --default-host %target%
- set PATH=%PATH%;%USERPROFILE%\.cargo\bin
- if defined msys_bits set PATH=%PATH%;C:\msys64\mingw%msys_bits%\bin
- rustc -vV
- cargo -vV
build: false
test_script:
- REM SET RUST_LOG=tantivy,test & cargo test --all --verbose --no-default-features --features lz4-compression --features mmap
- REM SET RUST_LOG=tantivy,test & cargo test test_store --verbose --no-default-features --features lz4-compression --features snappy-compression --features brotli-compression --features mmap
- REM SET RUST_BACKTRACE=1 & cargo build --examples

View File

@@ -1,13 +1,11 @@
use criterion::{criterion_group, criterion_main, Criterion};
use tantivy::tokenizer::{
LowerCaser, RemoveLongFilter, SimpleTokenizer, TextAnalyzer, TokenizerManager,
};
use tantivy::tokenizer::TokenizerManager;
const ALICE_TXT: &str = include_str!("alice.txt");
pub fn criterion_benchmark(c: &mut Criterion) {
let tokenizer_manager = TokenizerManager::default();
let mut tokenizer = tokenizer_manager.get("default").unwrap();
let tokenizer = tokenizer_manager.get("default").unwrap();
c.bench_function("default-tokenize-alice", |b| {
b.iter(|| {
let mut word_count = 0;
@@ -18,26 +16,7 @@ pub fn criterion_benchmark(c: &mut Criterion) {
assert_eq!(word_count, 30_731);
})
});
let mut dynamic_analyzer = TextAnalyzer::builder(SimpleTokenizer::default())
.dynamic()
.filter_dynamic(RemoveLongFilter::limit(40))
.filter_dynamic(LowerCaser)
.build();
c.bench_function("dynamic-tokenize-alice", |b| {
b.iter(|| {
let mut word_count = 0;
let mut token_stream = dynamic_analyzer.token_stream(ALICE_TXT);
while token_stream.advance() {
word_count += 1;
}
assert_eq!(word_count, 30_731);
})
});
}
criterion_group! {
name = benches;
config = Criterion::default().sample_size(200);
targets = criterion_benchmark
}
criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);

File diff suppressed because one or more lines are too long

View File

@@ -1,15 +1,10 @@
use criterion::{criterion_group, criterion_main, Criterion, Throughput};
use criterion::{criterion_group, criterion_main, Criterion};
use pprof::criterion::{Output, PProfProfiler};
use tantivy::schema::{FAST, INDEXED, STORED, STRING, TEXT};
use tantivy::schema::{INDEXED, STORED, STRING, TEXT};
use tantivy::Index;
const HDFS_LOGS: &str = include_str!("hdfs.json");
const GH_LOGS: &str = include_str!("gh.json");
const WIKI: &str = include_str!("wiki.json");
fn get_lines(input: &str) -> Vec<&str> {
input.trim().split('\n').collect()
}
const NUM_REPEATS: usize = 2;
pub fn hdfs_index_benchmark(c: &mut Criterion) {
let schema = {
@@ -33,147 +28,85 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
};
let mut group = c.benchmark_group("index-hdfs");
group.throughput(Throughput::Bytes(HDFS_LOGS.len() as u64));
group.sample_size(20);
group.bench_function("index-hdfs-no-commit", |b| {
let lines = get_lines(HDFS_LOGS);
b.iter(|| {
let index = Index::create_in_ram(schema.clone());
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
for _ in 0..NUM_REPEATS {
for doc_json in HDFS_LOGS.trim().split("\n") {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
}
}
})
});
group.bench_function("index-hdfs-with-commit", |b| {
let lines = get_lines(HDFS_LOGS);
b.iter(|| {
let index = Index::create_in_ram(schema.clone());
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
for _ in 0..NUM_REPEATS {
for doc_json in HDFS_LOGS.trim().split("\n") {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
}
}
index_writer.commit().unwrap();
})
});
group.bench_function("index-hdfs-no-commit-with-docstore", |b| {
let lines = get_lines(HDFS_LOGS);
b.iter(|| {
let index = Index::create_in_ram(schema_with_store.clone());
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
for _ in 0..NUM_REPEATS {
for doc_json in HDFS_LOGS.trim().split("\n") {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
}
}
})
});
group.bench_function("index-hdfs-with-commit-with-docstore", |b| {
let lines = get_lines(HDFS_LOGS);
b.iter(|| {
let index = Index::create_in_ram(schema_with_store.clone());
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
for _ in 0..NUM_REPEATS {
for doc_json in HDFS_LOGS.trim().split("\n") {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
}
}
index_writer.commit().unwrap();
})
});
group.bench_function("index-hdfs-no-commit-json-without-docstore", |b| {
let lines = get_lines(HDFS_LOGS);
b.iter(|| {
let index = Index::create_in_ram(dynamic_schema.clone());
let json_field = dynamic_schema.get_field("json").unwrap();
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let json_val: serde_json::Map<String, serde_json::Value> =
serde_json::from_str(doc_json).unwrap();
let doc = tantivy::doc!(json_field=>json_val);
index_writer.add_document(doc).unwrap();
for _ in 0..NUM_REPEATS {
for doc_json in HDFS_LOGS.trim().split("\n") {
let json_val: serde_json::Map<String, serde_json::Value> =
serde_json::from_str(doc_json).unwrap();
let doc = tantivy::doc!(json_field=>json_val);
index_writer.add_document(doc).unwrap();
}
}
index_writer.commit().unwrap();
})
});
}
pub fn gh_index_benchmark(c: &mut Criterion) {
let dynamic_schema = {
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
schema_builder.add_json_field("json", TEXT | FAST);
schema_builder.build()
};
let mut group = c.benchmark_group("index-gh");
group.throughput(Throughput::Bytes(GH_LOGS.len() as u64));
group.bench_function("index-gh-no-commit", |b| {
let lines = get_lines(GH_LOGS);
group.bench_function("index-hdfs-with-commit-json-without-docstore", |b| {
b.iter(|| {
let json_field = dynamic_schema.get_field("json").unwrap();
let index = Index::create_in_ram(dynamic_schema.clone());
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let json_val: serde_json::Map<String, serde_json::Value> =
serde_json::from_str(doc_json).unwrap();
let doc = tantivy::doc!(json_field=>json_val);
index_writer.add_document(doc).unwrap();
}
})
});
group.bench_function("index-gh-with-commit", |b| {
let lines = get_lines(GH_LOGS);
b.iter(|| {
let json_field = dynamic_schema.get_field("json").unwrap();
let index = Index::create_in_ram(dynamic_schema.clone());
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let json_val: serde_json::Map<String, serde_json::Value> =
serde_json::from_str(doc_json).unwrap();
let doc = tantivy::doc!(json_field=>json_val);
index_writer.add_document(doc).unwrap();
}
index_writer.commit().unwrap();
})
});
}
pub fn wiki_index_benchmark(c: &mut Criterion) {
let dynamic_schema = {
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
schema_builder.add_json_field("json", TEXT | FAST);
schema_builder.build()
};
let mut group = c.benchmark_group("index-wiki");
group.throughput(Throughput::Bytes(WIKI.len() as u64));
group.bench_function("index-wiki-no-commit", |b| {
let lines = get_lines(WIKI);
b.iter(|| {
let json_field = dynamic_schema.get_field("json").unwrap();
let index = Index::create_in_ram(dynamic_schema.clone());
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let json_val: serde_json::Map<String, serde_json::Value> =
serde_json::from_str(doc_json).unwrap();
let doc = tantivy::doc!(json_field=>json_val);
index_writer.add_document(doc).unwrap();
}
})
});
group.bench_function("index-wiki-with-commit", |b| {
let lines = get_lines(WIKI);
b.iter(|| {
let json_field = dynamic_schema.get_field("json").unwrap();
let index = Index::create_in_ram(dynamic_schema.clone());
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let json_val: serde_json::Map<String, serde_json::Value> =
serde_json::from_str(doc_json).unwrap();
let doc = tantivy::doc!(json_field=>json_val);
index_writer.add_document(doc).unwrap();
for _ in 0..NUM_REPEATS {
for doc_json in HDFS_LOGS.trim().split("\n") {
let json_val: serde_json::Map<String, serde_json::Value> =
serde_json::from_str(doc_json).unwrap();
let doc = tantivy::doc!(json_field=>json_val);
index_writer.add_document(doc).unwrap();
}
}
index_writer.commit().unwrap();
})
@@ -182,17 +115,7 @@ pub fn wiki_index_benchmark(c: &mut Criterion) {
criterion_group! {
name = benches;
config = Criterion::default();
config = Criterion::default().with_profiler(PProfProfiler::new(100, Output::Flamegraph(None)));
targets = hdfs_index_benchmark
}
criterion_group! {
name = gh_benches;
config = Criterion::default().with_profiler(PProfProfiler::new(100, Output::Flamegraph(None)));
targets = gh_index_benchmark
}
criterion_group! {
name = wiki_benches;
config = Criterion::default().with_profiler(PProfProfiler::new(100, Output::Flamegraph(None)));
targets = wiki_index_benchmark
}
criterion_main!(benches, gh_benches, wiki_benches);
criterion_main!(benches);

File diff suppressed because one or more lines are too long

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy-bitpacker"
version = "0.5.0"
version = "0.2.0"
edition = "2021"
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
license = "MIT"
@@ -8,15 +8,8 @@ categories = []
description = """Tantivy-sub crate: bitpacking"""
repository = "https://github.com/quickwit-oss/tantivy"
keywords = []
documentation = "https://docs.rs/tantivy-bitpacker/latest/tantivy_bitpacker"
homepage = "https://github.com/quickwit-oss/tantivy"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
bitpacking = {version="0.8", default-features=false, features = ["bitpacker1x"]}
[dev-dependencies]
rand = "0.8"
proptest = "1"

View File

@@ -4,39 +4,9 @@ extern crate test;
#[cfg(test)]
mod tests {
use rand::seq::IteratorRandom;
use rand::thread_rng;
use tantivy_bitpacker::{BitPacker, BitUnpacker, BlockedBitpacker};
use tantivy_bitpacker::BlockedBitpacker;
use test::Bencher;
#[inline(never)]
fn create_bitpacked_data(bit_width: u8, num_els: u32) -> Vec<u8> {
let mut bitpacker = BitPacker::new();
let mut buffer = Vec::new();
for _ in 0..num_els {
// the values do not matter.
bitpacker.write(0u64, bit_width, &mut buffer).unwrap();
bitpacker.flush(&mut buffer).unwrap();
}
buffer
}
#[bench]
fn bench_bitpacking_read(b: &mut Bencher) {
let bit_width = 3;
let num_els = 1_000_000u32;
let bit_unpacker = BitUnpacker::new(bit_width);
let data = create_bitpacked_data(bit_width, num_els);
let idxs: Vec<u32> = (0..num_els).choose_multiple(&mut thread_rng(), 100_000);
b.iter(|| {
let mut out = 0u64;
for &idx in &idxs {
out = out.wrapping_add(bit_unpacker.get(idx, &data[..]));
}
out
});
}
#[bench]
fn bench_blockedbitp_read(b: &mut Bencher) {
let mut blocked_bitpacker = BlockedBitpacker::new();
@@ -44,9 +14,9 @@ mod tests {
blocked_bitpacker.add(val * val);
}
b.iter(|| {
let mut out = 0u64;
let mut out = 0;
for val in 0..=21500 {
out = out.wrapping_add(blocked_bitpacker.get(val));
out = blocked_bitpacker.get(val);
}
out
});

View File

@@ -1,14 +1,10 @@
use std::convert::TryInto;
use std::io;
use std::ops::{Range, RangeInclusive};
use bitpacking::{BitPacker as ExternalBitPackerTrait, BitPacker1x};
pub struct BitPacker {
mini_buffer: u64,
mini_buffer_written: usize,
}
impl Default for BitPacker {
fn default() -> Self {
BitPacker::new()
@@ -23,20 +19,21 @@ impl BitPacker {
}
#[inline]
pub fn write<TWrite: io::Write + ?Sized>(
pub fn write<TWrite: io::Write>(
&mut self,
val: u64,
num_bits: u8,
output: &mut TWrite,
) -> io::Result<()> {
let val_u64 = val as u64;
let num_bits = num_bits as usize;
if self.mini_buffer_written + num_bits > 64 {
self.mini_buffer |= val.wrapping_shl(self.mini_buffer_written as u32);
self.mini_buffer |= val_u64.wrapping_shl(self.mini_buffer_written as u32);
output.write_all(self.mini_buffer.to_le_bytes().as_ref())?;
self.mini_buffer = val.wrapping_shr((64 - self.mini_buffer_written) as u32);
self.mini_buffer = val_u64.wrapping_shr((64 - self.mini_buffer_written) as u32);
self.mini_buffer_written = self.mini_buffer_written + num_bits - 64;
} else {
self.mini_buffer |= val << self.mini_buffer_written;
self.mini_buffer |= val_u64 << self.mini_buffer_written;
self.mini_buffer_written += num_bits;
if self.mini_buffer_written == 64 {
output.write_all(self.mini_buffer.to_le_bytes().as_ref())?;
@@ -47,7 +44,7 @@ impl BitPacker {
Ok(())
}
pub fn flush<TWrite: io::Write + ?Sized>(&mut self, output: &mut TWrite) -> io::Result<()> {
pub fn flush<TWrite: io::Write>(&mut self, output: &mut TWrite) -> io::Result<()> {
if self.mini_buffer_written > 0 {
let num_bytes = (self.mini_buffer_written + 7) / 8;
let bytes = self.mini_buffer.to_le_bytes();
@@ -58,33 +55,29 @@ impl BitPacker {
Ok(())
}
pub fn close<TWrite: io::Write + ?Sized>(&mut self, output: &mut TWrite) -> io::Result<()> {
pub fn close<TWrite: io::Write>(&mut self, output: &mut TWrite) -> io::Result<()> {
self.flush(output)?;
// Padding the write file to simplify reads.
output.write_all(&[0u8; 7])?;
Ok(())
}
}
#[derive(Clone, Debug, Default, Copy)]
#[derive(Clone, Debug, Default)]
pub struct BitUnpacker {
num_bits: u32,
num_bits: u64,
mask: u64,
}
impl BitUnpacker {
/// Creates a bit unpacker, that assumes the same bitwidth for all values.
///
/// The bitunpacker works by doing an unaligned read of 8 bytes.
/// For this reason, values of `num_bits` between
/// [57..63] are forbidden.
pub fn new(num_bits: u8) -> BitUnpacker {
assert!(num_bits <= 7 * 8 || num_bits == 64);
let mask: u64 = if num_bits == 64 {
!0u64
} else {
(1u64 << num_bits) - 1u64
};
BitUnpacker {
num_bits: u32::from(num_bits),
num_bits: u64::from(num_bits),
mask,
}
}
@@ -94,152 +87,23 @@ impl BitUnpacker {
}
#[inline]
pub fn get(&self, idx: u32, data: &[u8]) -> u64 {
pub fn get(&self, idx: u64, data: &[u8]) -> u64 {
if self.num_bits == 0 {
return 0u64;
}
let addr_in_bits = idx * self.num_bits;
let addr = (addr_in_bits >> 3) as usize;
if addr + 8 > data.len() {
if self.num_bits == 0 {
return 0;
}
let bit_shift = addr_in_bits & 7;
return self.get_slow_path(addr, bit_shift, data);
}
let addr = addr_in_bits >> 3;
let bit_shift = addr_in_bits & 7;
let bytes: [u8; 8] = (&data[addr..addr + 8]).try_into().unwrap();
let val_unshifted_unmasked: u64 = u64::from_le_bytes(bytes);
let val_shifted = val_unshifted_unmasked >> bit_shift;
val_shifted & self.mask
}
#[inline(never)]
fn get_slow_path(&self, addr: usize, bit_shift: u32, data: &[u8]) -> u64 {
let mut bytes: [u8; 8] = [0u8; 8];
let available_bytes = data.len() - addr;
// This function is meant to only be called if we did not have 8 bytes to load.
debug_assert!(available_bytes < 8);
bytes[..available_bytes].copy_from_slice(&data[addr..]);
let val_unshifted_unmasked: u64 = u64::from_le_bytes(bytes);
let val_shifted = val_unshifted_unmasked >> bit_shift;
val_shifted & self.mask
}
// Decodes the range of bitpacked `u32` values with idx
// in [start_idx, start_idx + output.len()).
//
// #Panics
//
// This methods panics if `num_bits` is > 32.
fn get_batch_u32s(&self, start_idx: u32, data: &[u8], output: &mut [u32]) {
assert!(
self.bit_width() <= 32,
"Bitwidth must be <= 32 to use this method."
debug_assert!(
addr + 8 <= data.len() as u64,
"The fast field field should have been padded with 7 bytes."
);
let end_idx = start_idx + output.len() as u32;
let end_bit_read = end_idx * self.num_bits;
let end_byte_read = (end_bit_read + 7) / 8;
assert!(
end_byte_read as usize <= data.len(),
"Requested index is out of bounds."
);
// Simple slow implementation of get_batch_u32s, to deal with our ramps.
let get_batch_ramp = |start_idx: u32, output: &mut [u32]| {
for (out, idx) in output.iter_mut().zip(start_idx..) {
*out = self.get(idx, data) as u32;
}
};
// We use an unrolled routine to decode 32 values at once.
// We therefore decompose our range of values to decode into three ranges:
// - Entrance ramp: [start_idx, fast_track_start) (up to 31 values)
// - Highway: [fast_track_start, fast_track_end) (a length multiple of 32s)
// - Exit ramp: [fast_track_end, start_idx + output.len()) (up to 31 values)
// We want the start of the fast track to start align with bytes.
// A sufficient condition is to start with an idx that is a multiple of 8,
// so highway start is the closest multiple of 8 that is >= start_idx.
let entrance_ramp_len = 8 - (start_idx % 8) % 8;
let highway_start: u32 = start_idx + entrance_ramp_len;
if highway_start + BitPacker1x::BLOCK_LEN as u32 > end_idx {
// We don't have enough values to have even a single block of highway.
// Let's just supply the values the simple way.
get_batch_ramp(start_idx, output);
return;
}
let num_blocks: u32 = (end_idx - highway_start) / BitPacker1x::BLOCK_LEN as u32;
// Entrance ramp
get_batch_ramp(start_idx, &mut output[..entrance_ramp_len as usize]);
// Highway
let mut offset = (highway_start * self.num_bits) as usize / 8;
let mut output_cursor = (highway_start - start_idx) as usize;
for _ in 0..num_blocks {
offset += BitPacker1x.decompress(
&data[offset..],
&mut output[output_cursor..],
self.num_bits as u8,
);
output_cursor += 32;
}
// Exit ramp
let highway_end = highway_start + num_blocks * BitPacker1x::BLOCK_LEN as u32;
get_batch_ramp(highway_end, &mut output[output_cursor..]);
}
pub fn get_ids_for_value_range(
&self,
range: RangeInclusive<u64>,
id_range: Range<u32>,
data: &[u8],
positions: &mut Vec<u32>,
) {
if self.bit_width() > 32 {
self.get_ids_for_value_range_slow(range, id_range, data, positions)
} else {
if *range.start() > u32::MAX as u64 {
positions.clear();
return;
}
let range_u32 = (*range.start() as u32)..=(*range.end()).min(u32::MAX as u64) as u32;
self.get_ids_for_value_range_fast(range_u32, id_range, data, positions)
}
}
fn get_ids_for_value_range_slow(
&self,
range: RangeInclusive<u64>,
id_range: Range<u32>,
data: &[u8],
positions: &mut Vec<u32>,
) {
positions.clear();
for i in id_range {
// If we cared we could make this branchless, but the slow implementation should rarely
// kick in.
let val = self.get(i, data);
if range.contains(&val) {
positions.push(i);
}
}
}
fn get_ids_for_value_range_fast(
&self,
value_range: RangeInclusive<u32>,
id_range: Range<u32>,
data: &[u8],
positions: &mut Vec<u32>,
) {
positions.resize(id_range.len(), 0u32);
self.get_batch_u32s(id_range.start, data, positions);
crate::filter_vec::filter_vec_in_place(value_range, id_range.start, positions)
let bytes: [u8; 8] = (&data[(addr as usize)..(addr as usize) + 8])
.try_into()
.unwrap();
let val_unshifted_unmasked: u64 = u64::from_le_bytes(bytes);
let val_shifted = (val_unshifted_unmasked >> bit_shift) as u64;
val_shifted & self.mask
}
}
@@ -247,7 +111,7 @@ impl BitUnpacker {
mod test {
use super::{BitPacker, BitUnpacker};
fn create_bitpacker(len: usize, num_bits: u8) -> (BitUnpacker, Vec<u64>, Vec<u8>) {
fn create_fastfield_bitpacker(len: usize, num_bits: u8) -> (BitUnpacker, Vec<u64>, Vec<u8>) {
let mut data = Vec::new();
let mut bitpacker = BitPacker::new();
let max_val: u64 = (1u64 << num_bits as u64) - 1u64;
@@ -258,15 +122,15 @@ mod test {
bitpacker.write(val, num_bits, &mut data).unwrap();
}
bitpacker.close(&mut data).unwrap();
assert_eq!(data.len(), ((num_bits as usize) * len + 7) / 8);
assert_eq!(data.len(), ((num_bits as usize) * len + 7) / 8 + 7);
let bitunpacker = BitUnpacker::new(num_bits);
(bitunpacker, vals, data)
}
fn test_bitpacker_util(len: usize, num_bits: u8) {
let (bitunpacker, vals, data) = create_bitpacker(len, num_bits);
let (bitunpacker, vals, data) = create_fastfield_bitpacker(len, num_bits);
for (i, val) in vals.iter().enumerate() {
assert_eq!(bitunpacker.get(i as u32, &data), *val);
assert_eq!(bitunpacker.get(i as u64, &data), *val);
}
}
@@ -278,103 +142,4 @@ mod test {
test_bitpacker_util(6, 14);
test_bitpacker_util(1000, 14);
}
use proptest::prelude::*;
fn num_bits_strategy() -> impl Strategy<Value = u8> {
prop_oneof!(Just(0), Just(1), 2u8..56u8, Just(56), Just(64),)
}
fn vals_strategy() -> impl Strategy<Value = (u8, Vec<u64>)> {
(num_bits_strategy(), 0usize..100usize).prop_flat_map(|(num_bits, len)| {
let max_val = if num_bits == 64 {
u64::MAX
} else {
(1u64 << num_bits as u32) - 1
};
let vals = proptest::collection::vec(0..=max_val, len);
vals.prop_map(move |vals| (num_bits, vals))
})
}
fn test_bitpacker_aux(num_bits: u8, vals: &[u64]) {
let mut buffer: Vec<u8> = Vec::new();
let mut bitpacker = BitPacker::new();
for &val in vals {
bitpacker.write(val, num_bits, &mut buffer).unwrap();
}
bitpacker.flush(&mut buffer).unwrap();
assert_eq!(buffer.len(), (vals.len() * num_bits as usize + 7) / 8);
let bitunpacker = BitUnpacker::new(num_bits);
let max_val = if num_bits == 64 {
u64::MAX
} else {
(1u64 << num_bits) - 1
};
for (i, val) in vals.iter().copied().enumerate() {
assert!(val <= max_val);
assert_eq!(bitunpacker.get(i as u32, &buffer), val);
}
}
proptest::proptest! {
#[test]
fn test_bitpacker_proptest((num_bits, vals) in vals_strategy()) {
test_bitpacker_aux(num_bits, &vals);
}
}
#[test]
#[should_panic]
fn test_get_batch_panics_over_32_bits() {
let bitunpacker = BitUnpacker::new(33);
let mut output: [u32; 1] = [0u32];
bitunpacker.get_batch_u32s(0, &[0, 0, 0, 0, 0, 0, 0, 0], &mut output[..]);
}
#[test]
fn test_get_batch_limit() {
let bitunpacker = BitUnpacker::new(1);
let mut output: [u32; 3] = [0u32, 0u32, 0u32];
bitunpacker.get_batch_u32s(8 * 4 - 3, &[0u8, 0u8, 0u8, 0u8], &mut output[..]);
}
#[test]
#[should_panic]
fn test_get_batch_panics_when_off_scope() {
let bitunpacker = BitUnpacker::new(1);
let mut output: [u32; 3] = [0u32, 0u32, 0u32];
// We are missing exactly one bit.
bitunpacker.get_batch_u32s(8 * 4 - 2, &[0u8, 0u8, 0u8, 0u8], &mut output[..]);
}
proptest::proptest! {
#[test]
fn test_get_batch_u32s_proptest(num_bits in 0u8..=32u8) {
let mask =
if num_bits == 32u8 {
u32::MAX
} else {
(1u32 << num_bits) - 1
};
let mut buffer: Vec<u8> = Vec::new();
let mut bitpacker = BitPacker::new();
for val in 0..100 {
bitpacker.write(val & mask as u64, num_bits, &mut buffer).unwrap();
}
bitpacker.flush(&mut buffer).unwrap();
let bitunpacker = BitUnpacker::new(num_bits);
let mut output: Vec<u32> = Vec::new();
for len in [0, 1, 2, 32, 33, 34, 64] {
for start_idx in 0u32..32u32 {
output.resize(len as usize, 0);
bitunpacker.get_batch_u32s(start_idx, &buffer, &mut output);
for i in 0..len {
let expected = (start_idx + i as u32) & mask;
assert_eq!(output[i], expected);
}
}
}
}
}
}

View File

@@ -64,8 +64,10 @@ fn mem_usage<T>(items: &Vec<T>) -> usize {
impl BlockedBitpacker {
pub fn new() -> Self {
let mut compressed_blocks = vec![];
compressed_blocks.resize(8, 0);
Self {
compressed_blocks: vec![0; 8],
compressed_blocks,
buffer: vec![],
offset_and_bits: vec![],
}
@@ -82,7 +84,7 @@ impl BlockedBitpacker {
#[inline]
pub fn add(&mut self, val: u64) {
self.buffer.push(val);
if self.buffer.len() == BLOCK_SIZE {
if self.buffer.len() == BLOCK_SIZE as usize {
self.flush();
}
}
@@ -124,11 +126,11 @@ impl BlockedBitpacker {
}
#[inline]
pub fn get(&self, idx: usize) -> u64 {
let metadata_pos = idx / BLOCK_SIZE;
let pos_in_block = idx % BLOCK_SIZE;
let metadata_pos = idx / BLOCK_SIZE as usize;
let pos_in_block = idx % BLOCK_SIZE as usize;
if let Some(metadata) = self.offset_and_bits.get(metadata_pos) {
let unpacked = BitUnpacker::new(metadata.num_bits()).get(
pos_in_block as u32,
pos_in_block as u64,
&self.compressed_blocks[metadata.offset() as usize..],
);
unpacked + metadata.base_value()

View File

@@ -1,365 +0,0 @@
//! SIMD filtering of a vector as described in the following blog post.
//! <https://quickwit.io/blog/filtering%20a%20vector%20with%20simd%20instructions%20avx-2%20and%20avx-512>
use std::arch::x86_64::{
__m256i as DataType, _mm256_add_epi32 as op_add, _mm256_cmpgt_epi32 as op_greater,
_mm256_lddqu_si256 as load_unaligned, _mm256_or_si256 as op_or, _mm256_set1_epi32 as set1,
_mm256_storeu_si256 as store_unaligned, _mm256_xor_si256 as op_xor, *,
};
use std::ops::RangeInclusive;
const NUM_LANES: usize = 8;
const HIGHEST_BIT: u32 = 1 << 31;
#[inline]
fn u32_to_i32(val: u32) -> i32 {
(val ^ HIGHEST_BIT) as i32
}
#[inline]
unsafe fn u32_to_i32_avx2(vals_u32x8s: DataType) -> DataType {
const HIGHEST_BIT_MASK: DataType = from_u32x8([HIGHEST_BIT; NUM_LANES]);
op_xor(vals_u32x8s, HIGHEST_BIT_MASK)
}
pub fn filter_vec_in_place(range: RangeInclusive<u32>, offset: u32, output: &mut Vec<u32>) {
// We use a monotonic mapping from u32 to i32 to make the comparison possible in AVX2.
let range_i32: RangeInclusive<i32> = u32_to_i32(*range.start())..=u32_to_i32(*range.end());
let num_words = output.len() / NUM_LANES;
let mut output_len = unsafe {
filter_vec_avx2_aux(
output.as_ptr() as *const __m256i,
range_i32,
output.as_mut_ptr(),
offset,
num_words,
)
};
let reminder_start = num_words * NUM_LANES;
for i in reminder_start..output.len() {
let val = output[i];
output[output_len] = offset + i as u32;
output_len += if range.contains(&val) { 1 } else { 0 };
}
output.truncate(output_len);
}
#[target_feature(enable = "avx2")]
unsafe fn filter_vec_avx2_aux(
mut input: *const __m256i,
range: RangeInclusive<i32>,
output: *mut u32,
offset: u32,
num_words: usize,
) -> usize {
let mut output_tail = output;
let range_simd = set1(*range.start())..=set1(*range.end());
let mut ids = from_u32x8([
offset,
offset + 1,
offset + 2,
offset + 3,
offset + 4,
offset + 5,
offset + 6,
offset + 7,
]);
const SHIFT: __m256i = from_u32x8([NUM_LANES as u32; NUM_LANES]);
for _ in 0..num_words {
let word = load_unaligned(input);
let word = u32_to_i32_avx2(word);
let keeper_bitset = compute_filter_bitset(word, range_simd.clone());
let added_len = keeper_bitset.count_ones();
let filtered_doc_ids = compact(ids, keeper_bitset);
store_unaligned(output_tail as *mut __m256i, filtered_doc_ids);
output_tail = output_tail.offset(added_len as isize);
ids = op_add(ids, SHIFT);
input = input.offset(1);
}
output_tail.offset_from(output) as usize
}
#[inline]
#[target_feature(enable = "avx2")]
unsafe fn compact(data: DataType, mask: u8) -> DataType {
let vperm_mask = MASK_TO_PERMUTATION[mask as usize];
_mm256_permutevar8x32_epi32(data, vperm_mask)
}
#[inline]
#[target_feature(enable = "avx2")]
unsafe fn compute_filter_bitset(val: __m256i, range: std::ops::RangeInclusive<__m256i>) -> u8 {
let too_low = op_greater(*range.start(), val);
let too_high = op_greater(val, *range.end());
let inside = op_or(too_low, too_high);
255 - std::arch::x86_64::_mm256_movemask_ps(std::mem::transmute::<DataType, __m256>(inside))
as u8
}
union U8x32 {
vector: DataType,
vals: [u32; NUM_LANES],
}
const fn from_u32x8(vals: [u32; NUM_LANES]) -> DataType {
unsafe { U8x32 { vals }.vector }
}
const MASK_TO_PERMUTATION: [DataType; 256] = [
from_u32x8([0, 0, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 0, 0, 0, 0, 0, 0, 0]),
from_u32x8([1, 0, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 0, 0, 0, 0, 0, 0]),
from_u32x8([2, 0, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 0, 0, 0, 0, 0, 0]),
from_u32x8([1, 2, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 0, 0, 0, 0, 0]),
from_u32x8([3, 0, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 3, 0, 0, 0, 0, 0, 0]),
from_u32x8([1, 3, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 3, 0, 0, 0, 0, 0]),
from_u32x8([2, 3, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 3, 0, 0, 0, 0, 0]),
from_u32x8([1, 2, 3, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 3, 0, 0, 0, 0]),
from_u32x8([4, 0, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 4, 0, 0, 0, 0, 0, 0]),
from_u32x8([1, 4, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 4, 0, 0, 0, 0, 0]),
from_u32x8([2, 4, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 4, 0, 0, 0, 0, 0]),
from_u32x8([1, 2, 4, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 4, 0, 0, 0, 0]),
from_u32x8([3, 4, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 3, 4, 0, 0, 0, 0, 0]),
from_u32x8([1, 3, 4, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 3, 4, 0, 0, 0, 0]),
from_u32x8([2, 3, 4, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 3, 4, 0, 0, 0, 0]),
from_u32x8([1, 2, 3, 4, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 3, 4, 0, 0, 0]),
from_u32x8([5, 0, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 5, 0, 0, 0, 0, 0, 0]),
from_u32x8([1, 5, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 5, 0, 0, 0, 0, 0]),
from_u32x8([2, 5, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 5, 0, 0, 0, 0, 0]),
from_u32x8([1, 2, 5, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 5, 0, 0, 0, 0]),
from_u32x8([3, 5, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 3, 5, 0, 0, 0, 0, 0]),
from_u32x8([1, 3, 5, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 3, 5, 0, 0, 0, 0]),
from_u32x8([2, 3, 5, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 3, 5, 0, 0, 0, 0]),
from_u32x8([1, 2, 3, 5, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 3, 5, 0, 0, 0]),
from_u32x8([4, 5, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 4, 5, 0, 0, 0, 0, 0]),
from_u32x8([1, 4, 5, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 4, 5, 0, 0, 0, 0]),
from_u32x8([2, 4, 5, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 4, 5, 0, 0, 0, 0]),
from_u32x8([1, 2, 4, 5, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 4, 5, 0, 0, 0]),
from_u32x8([3, 4, 5, 0, 0, 0, 0, 0]),
from_u32x8([0, 3, 4, 5, 0, 0, 0, 0]),
from_u32x8([1, 3, 4, 5, 0, 0, 0, 0]),
from_u32x8([0, 1, 3, 4, 5, 0, 0, 0]),
from_u32x8([2, 3, 4, 5, 0, 0, 0, 0]),
from_u32x8([0, 2, 3, 4, 5, 0, 0, 0]),
from_u32x8([1, 2, 3, 4, 5, 0, 0, 0]),
from_u32x8([0, 1, 2, 3, 4, 5, 0, 0]),
from_u32x8([6, 0, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 6, 0, 0, 0, 0, 0, 0]),
from_u32x8([1, 6, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 6, 0, 0, 0, 0, 0]),
from_u32x8([2, 6, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 6, 0, 0, 0, 0, 0]),
from_u32x8([1, 2, 6, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 6, 0, 0, 0, 0]),
from_u32x8([3, 6, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 3, 6, 0, 0, 0, 0, 0]),
from_u32x8([1, 3, 6, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 3, 6, 0, 0, 0, 0]),
from_u32x8([2, 3, 6, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 3, 6, 0, 0, 0, 0]),
from_u32x8([1, 2, 3, 6, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 3, 6, 0, 0, 0]),
from_u32x8([4, 6, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 4, 6, 0, 0, 0, 0, 0]),
from_u32x8([1, 4, 6, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 4, 6, 0, 0, 0, 0]),
from_u32x8([2, 4, 6, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 4, 6, 0, 0, 0, 0]),
from_u32x8([1, 2, 4, 6, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 4, 6, 0, 0, 0]),
from_u32x8([3, 4, 6, 0, 0, 0, 0, 0]),
from_u32x8([0, 3, 4, 6, 0, 0, 0, 0]),
from_u32x8([1, 3, 4, 6, 0, 0, 0, 0]),
from_u32x8([0, 1, 3, 4, 6, 0, 0, 0]),
from_u32x8([2, 3, 4, 6, 0, 0, 0, 0]),
from_u32x8([0, 2, 3, 4, 6, 0, 0, 0]),
from_u32x8([1, 2, 3, 4, 6, 0, 0, 0]),
from_u32x8([0, 1, 2, 3, 4, 6, 0, 0]),
from_u32x8([5, 6, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 5, 6, 0, 0, 0, 0, 0]),
from_u32x8([1, 5, 6, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 5, 6, 0, 0, 0, 0]),
from_u32x8([2, 5, 6, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 5, 6, 0, 0, 0, 0]),
from_u32x8([1, 2, 5, 6, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 5, 6, 0, 0, 0]),
from_u32x8([3, 5, 6, 0, 0, 0, 0, 0]),
from_u32x8([0, 3, 5, 6, 0, 0, 0, 0]),
from_u32x8([1, 3, 5, 6, 0, 0, 0, 0]),
from_u32x8([0, 1, 3, 5, 6, 0, 0, 0]),
from_u32x8([2, 3, 5, 6, 0, 0, 0, 0]),
from_u32x8([0, 2, 3, 5, 6, 0, 0, 0]),
from_u32x8([1, 2, 3, 5, 6, 0, 0, 0]),
from_u32x8([0, 1, 2, 3, 5, 6, 0, 0]),
from_u32x8([4, 5, 6, 0, 0, 0, 0, 0]),
from_u32x8([0, 4, 5, 6, 0, 0, 0, 0]),
from_u32x8([1, 4, 5, 6, 0, 0, 0, 0]),
from_u32x8([0, 1, 4, 5, 6, 0, 0, 0]),
from_u32x8([2, 4, 5, 6, 0, 0, 0, 0]),
from_u32x8([0, 2, 4, 5, 6, 0, 0, 0]),
from_u32x8([1, 2, 4, 5, 6, 0, 0, 0]),
from_u32x8([0, 1, 2, 4, 5, 6, 0, 0]),
from_u32x8([3, 4, 5, 6, 0, 0, 0, 0]),
from_u32x8([0, 3, 4, 5, 6, 0, 0, 0]),
from_u32x8([1, 3, 4, 5, 6, 0, 0, 0]),
from_u32x8([0, 1, 3, 4, 5, 6, 0, 0]),
from_u32x8([2, 3, 4, 5, 6, 0, 0, 0]),
from_u32x8([0, 2, 3, 4, 5, 6, 0, 0]),
from_u32x8([1, 2, 3, 4, 5, 6, 0, 0]),
from_u32x8([0, 1, 2, 3, 4, 5, 6, 0]),
from_u32x8([7, 0, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 7, 0, 0, 0, 0, 0, 0]),
from_u32x8([1, 7, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 7, 0, 0, 0, 0, 0]),
from_u32x8([2, 7, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 7, 0, 0, 0, 0, 0]),
from_u32x8([1, 2, 7, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 7, 0, 0, 0, 0]),
from_u32x8([3, 7, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 3, 7, 0, 0, 0, 0, 0]),
from_u32x8([1, 3, 7, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 3, 7, 0, 0, 0, 0]),
from_u32x8([2, 3, 7, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 3, 7, 0, 0, 0, 0]),
from_u32x8([1, 2, 3, 7, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 3, 7, 0, 0, 0]),
from_u32x8([4, 7, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 4, 7, 0, 0, 0, 0, 0]),
from_u32x8([1, 4, 7, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 4, 7, 0, 0, 0, 0]),
from_u32x8([2, 4, 7, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 4, 7, 0, 0, 0, 0]),
from_u32x8([1, 2, 4, 7, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 4, 7, 0, 0, 0]),
from_u32x8([3, 4, 7, 0, 0, 0, 0, 0]),
from_u32x8([0, 3, 4, 7, 0, 0, 0, 0]),
from_u32x8([1, 3, 4, 7, 0, 0, 0, 0]),
from_u32x8([0, 1, 3, 4, 7, 0, 0, 0]),
from_u32x8([2, 3, 4, 7, 0, 0, 0, 0]),
from_u32x8([0, 2, 3, 4, 7, 0, 0, 0]),
from_u32x8([1, 2, 3, 4, 7, 0, 0, 0]),
from_u32x8([0, 1, 2, 3, 4, 7, 0, 0]),
from_u32x8([5, 7, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 5, 7, 0, 0, 0, 0, 0]),
from_u32x8([1, 5, 7, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 5, 7, 0, 0, 0, 0]),
from_u32x8([2, 5, 7, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 5, 7, 0, 0, 0, 0]),
from_u32x8([1, 2, 5, 7, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 5, 7, 0, 0, 0]),
from_u32x8([3, 5, 7, 0, 0, 0, 0, 0]),
from_u32x8([0, 3, 5, 7, 0, 0, 0, 0]),
from_u32x8([1, 3, 5, 7, 0, 0, 0, 0]),
from_u32x8([0, 1, 3, 5, 7, 0, 0, 0]),
from_u32x8([2, 3, 5, 7, 0, 0, 0, 0]),
from_u32x8([0, 2, 3, 5, 7, 0, 0, 0]),
from_u32x8([1, 2, 3, 5, 7, 0, 0, 0]),
from_u32x8([0, 1, 2, 3, 5, 7, 0, 0]),
from_u32x8([4, 5, 7, 0, 0, 0, 0, 0]),
from_u32x8([0, 4, 5, 7, 0, 0, 0, 0]),
from_u32x8([1, 4, 5, 7, 0, 0, 0, 0]),
from_u32x8([0, 1, 4, 5, 7, 0, 0, 0]),
from_u32x8([2, 4, 5, 7, 0, 0, 0, 0]),
from_u32x8([0, 2, 4, 5, 7, 0, 0, 0]),
from_u32x8([1, 2, 4, 5, 7, 0, 0, 0]),
from_u32x8([0, 1, 2, 4, 5, 7, 0, 0]),
from_u32x8([3, 4, 5, 7, 0, 0, 0, 0]),
from_u32x8([0, 3, 4, 5, 7, 0, 0, 0]),
from_u32x8([1, 3, 4, 5, 7, 0, 0, 0]),
from_u32x8([0, 1, 3, 4, 5, 7, 0, 0]),
from_u32x8([2, 3, 4, 5, 7, 0, 0, 0]),
from_u32x8([0, 2, 3, 4, 5, 7, 0, 0]),
from_u32x8([1, 2, 3, 4, 5, 7, 0, 0]),
from_u32x8([0, 1, 2, 3, 4, 5, 7, 0]),
from_u32x8([6, 7, 0, 0, 0, 0, 0, 0]),
from_u32x8([0, 6, 7, 0, 0, 0, 0, 0]),
from_u32x8([1, 6, 7, 0, 0, 0, 0, 0]),
from_u32x8([0, 1, 6, 7, 0, 0, 0, 0]),
from_u32x8([2, 6, 7, 0, 0, 0, 0, 0]),
from_u32x8([0, 2, 6, 7, 0, 0, 0, 0]),
from_u32x8([1, 2, 6, 7, 0, 0, 0, 0]),
from_u32x8([0, 1, 2, 6, 7, 0, 0, 0]),
from_u32x8([3, 6, 7, 0, 0, 0, 0, 0]),
from_u32x8([0, 3, 6, 7, 0, 0, 0, 0]),
from_u32x8([1, 3, 6, 7, 0, 0, 0, 0]),
from_u32x8([0, 1, 3, 6, 7, 0, 0, 0]),
from_u32x8([2, 3, 6, 7, 0, 0, 0, 0]),
from_u32x8([0, 2, 3, 6, 7, 0, 0, 0]),
from_u32x8([1, 2, 3, 6, 7, 0, 0, 0]),
from_u32x8([0, 1, 2, 3, 6, 7, 0, 0]),
from_u32x8([4, 6, 7, 0, 0, 0, 0, 0]),
from_u32x8([0, 4, 6, 7, 0, 0, 0, 0]),
from_u32x8([1, 4, 6, 7, 0, 0, 0, 0]),
from_u32x8([0, 1, 4, 6, 7, 0, 0, 0]),
from_u32x8([2, 4, 6, 7, 0, 0, 0, 0]),
from_u32x8([0, 2, 4, 6, 7, 0, 0, 0]),
from_u32x8([1, 2, 4, 6, 7, 0, 0, 0]),
from_u32x8([0, 1, 2, 4, 6, 7, 0, 0]),
from_u32x8([3, 4, 6, 7, 0, 0, 0, 0]),
from_u32x8([0, 3, 4, 6, 7, 0, 0, 0]),
from_u32x8([1, 3, 4, 6, 7, 0, 0, 0]),
from_u32x8([0, 1, 3, 4, 6, 7, 0, 0]),
from_u32x8([2, 3, 4, 6, 7, 0, 0, 0]),
from_u32x8([0, 2, 3, 4, 6, 7, 0, 0]),
from_u32x8([1, 2, 3, 4, 6, 7, 0, 0]),
from_u32x8([0, 1, 2, 3, 4, 6, 7, 0]),
from_u32x8([5, 6, 7, 0, 0, 0, 0, 0]),
from_u32x8([0, 5, 6, 7, 0, 0, 0, 0]),
from_u32x8([1, 5, 6, 7, 0, 0, 0, 0]),
from_u32x8([0, 1, 5, 6, 7, 0, 0, 0]),
from_u32x8([2, 5, 6, 7, 0, 0, 0, 0]),
from_u32x8([0, 2, 5, 6, 7, 0, 0, 0]),
from_u32x8([1, 2, 5, 6, 7, 0, 0, 0]),
from_u32x8([0, 1, 2, 5, 6, 7, 0, 0]),
from_u32x8([3, 5, 6, 7, 0, 0, 0, 0]),
from_u32x8([0, 3, 5, 6, 7, 0, 0, 0]),
from_u32x8([1, 3, 5, 6, 7, 0, 0, 0]),
from_u32x8([0, 1, 3, 5, 6, 7, 0, 0]),
from_u32x8([2, 3, 5, 6, 7, 0, 0, 0]),
from_u32x8([0, 2, 3, 5, 6, 7, 0, 0]),
from_u32x8([1, 2, 3, 5, 6, 7, 0, 0]),
from_u32x8([0, 1, 2, 3, 5, 6, 7, 0]),
from_u32x8([4, 5, 6, 7, 0, 0, 0, 0]),
from_u32x8([0, 4, 5, 6, 7, 0, 0, 0]),
from_u32x8([1, 4, 5, 6, 7, 0, 0, 0]),
from_u32x8([0, 1, 4, 5, 6, 7, 0, 0]),
from_u32x8([2, 4, 5, 6, 7, 0, 0, 0]),
from_u32x8([0, 2, 4, 5, 6, 7, 0, 0]),
from_u32x8([1, 2, 4, 5, 6, 7, 0, 0]),
from_u32x8([0, 1, 2, 4, 5, 6, 7, 0]),
from_u32x8([3, 4, 5, 6, 7, 0, 0, 0]),
from_u32x8([0, 3, 4, 5, 6, 7, 0, 0]),
from_u32x8([1, 3, 4, 5, 6, 7, 0, 0]),
from_u32x8([0, 1, 3, 4, 5, 6, 7, 0]),
from_u32x8([2, 3, 4, 5, 6, 7, 0, 0]),
from_u32x8([0, 2, 3, 4, 5, 6, 7, 0]),
from_u32x8([1, 2, 3, 4, 5, 6, 7, 0]),
from_u32x8([0, 1, 2, 3, 4, 5, 6, 7]),
];

View File

@@ -1,165 +0,0 @@
use std::ops::RangeInclusive;
#[cfg(target_arch = "x86_64")]
mod avx2;
mod scalar;
#[derive(Clone, Copy, Eq, PartialEq, Debug)]
#[repr(u8)]
enum FilterImplPerInstructionSet {
#[cfg(target_arch = "x86_64")]
AVX2 = 0u8,
Scalar = 1u8,
}
impl FilterImplPerInstructionSet {
#[inline]
pub fn is_available(&self) -> bool {
match *self {
#[cfg(target_arch = "x86_64")]
FilterImplPerInstructionSet::AVX2 => is_x86_feature_detected!("avx2"),
FilterImplPerInstructionSet::Scalar => true,
}
}
}
// List of available implementation in preferred order.
#[cfg(target_arch = "x86_64")]
const IMPLS: [FilterImplPerInstructionSet; 2] = [
FilterImplPerInstructionSet::AVX2,
FilterImplPerInstructionSet::Scalar,
];
#[cfg(not(target_arch = "x86_64"))]
const IMPLS: [FilterImplPerInstructionSet; 1] = [FilterImplPerInstructionSet::Scalar];
impl FilterImplPerInstructionSet {
#[allow(unused_variables)]
#[inline]
fn from(code: u8) -> FilterImplPerInstructionSet {
#[cfg(target_arch = "x86_64")]
if code == FilterImplPerInstructionSet::AVX2 as u8 {
return FilterImplPerInstructionSet::AVX2;
}
FilterImplPerInstructionSet::Scalar
}
#[inline]
fn filter_vec_in_place(self, range: RangeInclusive<u32>, offset: u32, output: &mut Vec<u32>) {
match self {
#[cfg(target_arch = "x86_64")]
FilterImplPerInstructionSet::AVX2 => avx2::filter_vec_in_place(range, offset, output),
FilterImplPerInstructionSet::Scalar => {
scalar::filter_vec_in_place(range, offset, output)
}
}
}
}
#[inline]
fn get_best_available_instruction_set() -> FilterImplPerInstructionSet {
use std::sync::atomic::{AtomicU8, Ordering};
static INSTRUCTION_SET_BYTE: AtomicU8 = AtomicU8::new(u8::MAX);
let instruction_set_byte: u8 = INSTRUCTION_SET_BYTE.load(Ordering::Relaxed);
if instruction_set_byte == u8::MAX {
// Let's initialize the instruction set and cache it.
let instruction_set = IMPLS
.into_iter()
.find(FilterImplPerInstructionSet::is_available)
.unwrap();
INSTRUCTION_SET_BYTE.store(instruction_set as u8, Ordering::Relaxed);
return instruction_set;
}
FilterImplPerInstructionSet::from(instruction_set_byte)
}
pub fn filter_vec_in_place(range: RangeInclusive<u32>, offset: u32, output: &mut Vec<u32>) {
get_best_available_instruction_set().filter_vec_in_place(range, offset, output)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_get_best_available_instruction_set() {
// This does not test much unfortunately.
// We just make sure the function returns without crashing and returns the same result.
let instruction_set = get_best_available_instruction_set();
assert_eq!(get_best_available_instruction_set(), instruction_set);
}
#[cfg(target_arch = "x86_64")]
#[test]
fn test_instruction_set_to_code_from_code() {
for instruction_set in [
FilterImplPerInstructionSet::AVX2,
FilterImplPerInstructionSet::Scalar,
] {
let code = instruction_set as u8;
assert_eq!(instruction_set, FilterImplPerInstructionSet::from(code));
}
}
fn test_filter_impl_empty_aux(filter_impl: FilterImplPerInstructionSet) {
let mut output = vec![];
filter_impl.filter_vec_in_place(0..=u32::MAX, 0, &mut output);
assert_eq!(&output, &[]);
}
fn test_filter_impl_simple_aux(filter_impl: FilterImplPerInstructionSet) {
let mut output = vec![3, 2, 1, 5, 11, 2, 5, 10, 2];
filter_impl.filter_vec_in_place(3..=10, 0, &mut output);
assert_eq!(&output, &[0, 3, 6, 7]);
}
fn test_filter_impl_simple_aux_shifted(filter_impl: FilterImplPerInstructionSet) {
let mut output = vec![3, 2, 1, 5, 11, 2, 5, 10, 2];
filter_impl.filter_vec_in_place(3..=10, 10, &mut output);
assert_eq!(&output, &[10, 13, 16, 17]);
}
fn test_filter_impl_simple_outside_i32_range(filter_impl: FilterImplPerInstructionSet) {
let mut output = vec![u32::MAX, i32::MAX as u32 + 1, 0, 1, 3, 1, 1, 1, 1];
filter_impl.filter_vec_in_place(1..=i32::MAX as u32 + 1u32, 0, &mut output);
assert_eq!(&output, &[1, 3, 4, 5, 6, 7, 8]);
}
fn test_filter_impl_test_suite(filter_impl: FilterImplPerInstructionSet) {
test_filter_impl_empty_aux(filter_impl);
test_filter_impl_simple_aux(filter_impl);
test_filter_impl_simple_aux_shifted(filter_impl);
test_filter_impl_simple_outside_i32_range(filter_impl);
}
#[test]
#[cfg(target_arch = "x86_64")]
fn test_filter_implementation_avx2() {
if FilterImplPerInstructionSet::AVX2.is_available() {
test_filter_impl_test_suite(FilterImplPerInstructionSet::AVX2);
}
}
#[test]
fn test_filter_implementation_scalar() {
test_filter_impl_test_suite(FilterImplPerInstructionSet::Scalar);
}
#[cfg(target_arch = "x86_64")]
proptest::proptest! {
#[test]
fn test_filter_compare_scalar_and_avx2_impl_proptest(
start in proptest::prelude::any::<u32>(),
end in proptest::prelude::any::<u32>(),
offset in 0u32..2u32,
mut vals in proptest::collection::vec(0..u32::MAX, 0..30)) {
if FilterImplPerInstructionSet::AVX2.is_available() {
let mut vals_clone = vals.clone();
FilterImplPerInstructionSet::AVX2.filter_vec_in_place(start..=end, offset, &mut vals);
FilterImplPerInstructionSet::Scalar.filter_vec_in_place(start..=end, offset, &mut vals_clone);
assert_eq!(&vals, &vals_clone);
}
}
}
}

View File

@@ -1,13 +0,0 @@
use std::ops::RangeInclusive;
pub fn filter_vec_in_place(range: RangeInclusive<u32>, offset: u32, output: &mut Vec<u32>) {
// We restrict the accepted boundary, because unsigned integers & SIMD don't
// play well.
let mut output_cursor = 0;
for i in 0..output.len() {
let val = output[i];
output[output_cursor] = offset + i as u32;
output_cursor += if range.contains(&val) { 1 } else { 0 };
}
output.truncate(output_cursor);
}

View File

@@ -1,8 +1,5 @@
mod bitpacker;
mod blocked_bitpacker;
mod filter_vec;
use std::cmp::Ordering;
pub use crate::bitpacker::{BitPacker, BitUnpacker};
pub use crate::blocked_bitpacker::BlockedBitpacker;
@@ -40,104 +37,44 @@ pub fn compute_num_bits(n: u64) -> u8 {
}
}
/// Computes the (min, max) of an iterator of `PartialOrd` values.
///
/// For values implementing `Ord` (in a way consistent to their `PartialOrd` impl),
/// this function behaves as expected.
///
/// For values with partial ordering, the behavior is non-trivial and may
/// depends on the order of the values.
/// For floats however, it simply returns the same results as if NaN were
/// skipped.
pub fn minmax<I, T>(mut vals: I) -> Option<(T, T)>
where
I: Iterator<Item = T>,
T: Copy + PartialOrd,
T: Copy + Ord,
{
let first_el = vals.find(|val| {
// We use this to make sure we skip all NaN values when
// working with a float type.
val.partial_cmp(val) == Some(Ordering::Equal)
})?;
let mut min_so_far: T = first_el;
let mut max_so_far: T = first_el;
for val in vals {
if val.partial_cmp(&min_so_far) == Some(Ordering::Less) {
min_so_far = val;
}
if val.partial_cmp(&max_so_far) == Some(Ordering::Greater) {
max_so_far = val;
}
if let Some(first_el) = vals.next() {
return Some(vals.fold((first_el, first_el), |(min_val, max_val), el| {
(min_val.min(el), max_val.max(el))
}));
}
Some((min_so_far, max_so_far))
None
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_compute_num_bits() {
assert_eq!(compute_num_bits(1), 1u8);
assert_eq!(compute_num_bits(0), 0u8);
assert_eq!(compute_num_bits(2), 2u8);
assert_eq!(compute_num_bits(3), 2u8);
assert_eq!(compute_num_bits(4), 3u8);
assert_eq!(compute_num_bits(255), 8u8);
assert_eq!(compute_num_bits(256), 9u8);
assert_eq!(compute_num_bits(5_000_000_000), 33u8);
}
#[test]
fn test_minmax_empty() {
let vals: Vec<u32> = vec![];
assert_eq!(minmax(vals.into_iter()), None);
}
#[test]
fn test_minmax_one() {
assert_eq!(minmax(vec![1].into_iter()), Some((1, 1)));
}
#[test]
fn test_minmax_two() {
assert_eq!(minmax(vec![1, 2].into_iter()), Some((1, 2)));
assert_eq!(minmax(vec![2, 1].into_iter()), Some((1, 2)));
}
#[test]
fn test_minmax_nan() {
assert_eq!(
minmax(vec![f64::NAN, 1f64, 2f64].into_iter()),
Some((1f64, 2f64))
);
assert_eq!(
minmax(vec![2f64, f64::NAN, 1f64].into_iter()),
Some((1f64, 2f64))
);
assert_eq!(
minmax(vec![2f64, 1f64, f64::NAN].into_iter()),
Some((1f64, 2f64))
);
}
#[test]
fn test_minmax_inf() {
assert_eq!(
minmax(vec![f64::INFINITY, 1f64, 2f64].into_iter()),
Some((1f64, f64::INFINITY))
);
assert_eq!(
minmax(vec![-f64::INFINITY, 1f64, 2f64].into_iter()),
Some((-f64::INFINITY, 2f64))
);
assert_eq!(
minmax(vec![2f64, f64::INFINITY, 1f64].into_iter()),
Some((1f64, f64::INFINITY))
);
assert_eq!(
minmax(vec![2f64, 1f64, -f64::INFINITY].into_iter()),
Some((-f64::INFINITY, 2f64))
);
}
#[test]
fn test_compute_num_bits() {
assert_eq!(compute_num_bits(1), 1u8);
assert_eq!(compute_num_bits(0), 0u8);
assert_eq!(compute_num_bits(2), 2u8);
assert_eq!(compute_num_bits(3), 2u8);
assert_eq!(compute_num_bits(4), 3u8);
assert_eq!(compute_num_bits(255), 8u8);
assert_eq!(compute_num_bits(256), 9u8);
assert_eq!(compute_num_bits(5_000_000_000), 33u8);
}
#[test]
fn test_minmax_empty() {
let vals: Vec<u32> = vec![];
assert_eq!(minmax(vals.into_iter()), None);
}
#[test]
fn test_minmax_one() {
assert_eq!(minmax(vec![1].into_iter()), Some((1, 1)));
}
#[test]
fn test_minmax_two() {
assert_eq!(minmax(vec![1, 2].into_iter()), Some((1, 2)));
assert_eq!(minmax(vec![2, 1].into_iter()), Some((1, 2)));
}

23
ci/before_deploy.ps1 Normal file
View File

@@ -0,0 +1,23 @@
# This script takes care of packaging the build artifacts that will go in the
# release zipfile
$SRC_DIR = $PWD.Path
$STAGE = [System.Guid]::NewGuid().ToString()
Set-Location $ENV:Temp
New-Item -Type Directory -Name $STAGE
Set-Location $STAGE
$ZIP = "$SRC_DIR\$($Env:CRATE_NAME)-$($Env:APPVEYOR_REPO_TAG_NAME)-$($Env:TARGET).zip"
# TODO Update this to package the right artifacts
Copy-Item "$SRC_DIR\target\$($Env:TARGET)\release\hello.exe" '.\'
7z a "$ZIP" *
Push-AppveyorArtifact "$ZIP"
Remove-Item *.* -Force
Set-Location ..
Remove-Item $STAGE
Set-Location $SRC_DIR

33
ci/before_deploy.sh Normal file
View File

@@ -0,0 +1,33 @@
# This script takes care of building your crate and packaging it for release
set -ex
main() {
local src=$(pwd) \
stage=
case $TRAVIS_OS_NAME in
linux)
stage=$(mktemp -d)
;;
osx)
stage=$(mktemp -d -t tmp)
;;
esac
test -f Cargo.lock || cargo generate-lockfile
# TODO Update this to build the artifacts that matter to you
cross rustc --bin hello --target $TARGET --release -- -C lto
# TODO Update this to package the right artifacts
cp target/$TARGET/release/hello $stage/
cd $stage
tar czf $src/$CRATE_NAME-$TRAVIS_TAG-$TARGET.tar.gz *
cd $src
rm -rf $stage
}
main

47
ci/install.sh Normal file
View File

@@ -0,0 +1,47 @@
set -ex
main() {
local target=
if [ $TRAVIS_OS_NAME = linux ]; then
target=x86_64-unknown-linux-musl
sort=sort
else
target=x86_64-apple-darwin
sort=gsort # for `sort --sort-version`, from brew's coreutils.
fi
# Builds for iOS are done on OSX, but require the specific target to be
# installed.
case $TARGET in
aarch64-apple-ios)
rustup target install aarch64-apple-ios
;;
armv7-apple-ios)
rustup target install armv7-apple-ios
;;
armv7s-apple-ios)
rustup target install armv7s-apple-ios
;;
i386-apple-ios)
rustup target install i386-apple-ios
;;
x86_64-apple-ios)
rustup target install x86_64-apple-ios
;;
esac
# This fetches latest stable release
local tag=$(git ls-remote --tags --refs --exit-code https://github.com/japaric/cross \
| cut -d/ -f3 \
| grep -E '^v[0.1.0-9.]+$' \
| $sort --version-sort \
| tail -n1)
curl -LSfs https://japaric.github.io/trust/install.sh | \
sh -s -- \
--force \
--git japaric/cross \
--tag $tag \
--target $target
}
main

30
ci/script.sh Normal file
View File

@@ -0,0 +1,30 @@
#!/usr/bin/env bash
# This script takes care of testing your crate
set -ex
main() {
if [ ! -z $CODECOV ]; then
echo "Codecov"
cargo build --verbose && cargo coverage --verbose --all && bash <(curl -s https://codecov.io/bash) -s target/kcov
else
echo "Build"
cross build --target $TARGET
if [ ! -z $DISABLE_TESTS ]; then
return
fi
echo "Test"
cross test --target $TARGET --no-default-features --features mmap
cross test --target $TARGET --no-default-features --features mmap query-grammar
fi
for example in $(ls examples/*.rs)
do
cargo run --example $(basename $example .rs)
done
}
# we don't run the "test phase" when doing deploys
if [ -z $TRAVIS_TAG ]; then
main
fi

View File

@@ -1,90 +0,0 @@
# configuration file for git-cliff{ pattern = "foo", replace = "bar"}
# see https://github.com/orhun/git-cliff#configuration-file
[changelog]
# changelog header
header = """
"""
# template for the changelog body
# https://tera.netlify.app/docs/#introduction
body = """
{% if version %}\
{{ version | trim_start_matches(pat="v") }} ({{ timestamp | date(format="%Y-%m-%d") }})
==================
{% else %}\
## [unreleased]
{% endif %}\
{% for commit in commits %}
- {% if commit.breaking %}[**breaking**] {% endif %}{{ commit.message | split(pat="\n") | first | trim | upper_first }}(@{{ commit.author.name }})\
{% endfor %}
"""
# remove the leading and trailing whitespace from the template
trim = true
# changelog footer
footer = """
"""
postprocessors = [
{ pattern = 'Paul Masurel', replace = "fulmicoton"}, # replace with github user
{ pattern = 'PSeitz', replace = "PSeitz"}, # replace with github user
{ pattern = 'Adam Reichold', replace = "adamreichold"}, # replace with github user
{ pattern = 'trinity-1686a', replace = "trinity-1686a"}, # replace with github user
{ pattern = 'Michael Kleen', replace = "mkleen"}, # replace with github user
{ pattern = 'Adrien Guillo', replace = "guilload"}, # replace with github user
{ pattern = 'François Massot', replace = "fmassot"}, # replace with github user
{ pattern = 'Naveen Aiathurai', replace = "naveenann"}, # replace with github user
{ pattern = '', replace = ""}, # replace with github user
]
[git]
# parse the commits based on https://www.conventionalcommits.org
# This is required or commit.message contains the whole commit message and not just the title
conventional_commits = true
# filter out the commits that are not conventional
filter_unconventional = false
# process each line of a commit as an individual commit
split_commits = false
# regex for preprocessing the commit messages
commit_preprocessors = [
{ pattern = '\((\w+\s)?#([0-9]+)\)', replace = "[#${2}](https://github.com/quickwit-oss/tantivy/issues/${2})"}, # replace issue numbers
]
#link_parsers = [
#{ pattern = "#(\\d+)", href = "https://github.com/quickwit-oss/tantivy/pulls/$1"},
#]
# regex for parsing and grouping commits
commit_parsers = [
{ message = "^feat", group = "Features"},
{ message = "^fix", group = "Bug Fixes"},
{ message = "^doc", group = "Documentation"},
{ message = "^perf", group = "Performance"},
{ message = "^refactor", group = "Refactor"},
{ message = "^style", group = "Styling"},
{ message = "^test", group = "Testing"},
{ message = "^chore\\(release\\): prepare for", skip = true},
{ message = "(?i)clippy", skip = true},
{ message = "(?i)dependabot", skip = true},
{ message = "(?i)fmt", skip = true},
{ message = "(?i)bump", skip = true},
{ message = "(?i)readme", skip = true},
{ message = "(?i)comment", skip = true},
{ message = "(?i)spelling", skip = true},
{ message = "^chore", group = "Miscellaneous Tasks"},
{ body = ".*security", group = "Security"},
{ message = ".*", group = "Other", default_scope = "other"},
]
# protect breaking changes from being skipped due to matching a skipping commit_parser
protect_breaking_commits = false
# filter out the commits that are not matched by commit parsers
filter_commits = false
# glob pattern for matching git tags
tag_pattern = "v[0-9]*"
# regex for skipping tags
skip_tags = "v0.1.0-beta.1"
# regex for ignoring tags
ignore_tags = ""
# sort the tags topologically
topo_order = false
# sort the commits inside sections by oldest/newest order
sort_commits = "newest"
# limit the number of commits included in the changelog.
# limit_commits = 42

View File

@@ -1,28 +0,0 @@
[package]
name = "tantivy-columnar"
version = "0.2.0"
edition = "2021"
license = "MIT"
homepage = "https://github.com/quickwit-oss/tantivy"
repository = "https://github.com/quickwit-oss/tantivy"
description = "column oriented storage for tantivy"
categories = ["database-implementations", "data-structures", "compression"]
[dependencies]
itertools = "0.11.0"
fnv = "1.0.7"
fastdivide = "0.4.0"
stacker = { version= "0.2", path = "../stacker", package="tantivy-stacker"}
sstable = { version= "0.2", path = "../sstable", package = "tantivy-sstable" }
common = { version= "0.6", path = "../common", package = "tantivy-common" }
tantivy-bitpacker = { version= "0.5", path = "../bitpacker/" }
serde = "1.0.152"
[dev-dependencies]
proptest = "1"
more-asserts = "0.3.1"
rand = "0.8"
[features]
unstable = []

View File

@@ -1,109 +0,0 @@
# Columnar format
This crate describes columnar format used in tantivy.
## Goals
This format is special in the following way.
- it needs to be compact
- accessing a specific column does not require to load the entire columnar. It can be done in 2 to 3 random access.
- columns of several types can be associated with the same column name.
- it needs to support columns with different types `(str, u64, i64, f64)`
and different cardinality `(required, optional, multivalued)`.
- columns, once loaded, offer cheap random access.
- it is designed to allow range queries.
# Coercion rules
Users can create a columnar by inserting rows to a `ColumnarWriter`,
and serializing it into a `Write` object.
Nothing prevents a user from recording values with different type to the same `column_name`.
In that case, `tantivy-columnar`'s behavior is as follows:
- JsonValues are grouped into 3 types (String, Number, bool).
Values that corresponds to different groups are mapped to different columns. For instance, String values are treated independently
from Number or boolean values. `tantivy-columnar` will simply emit several columns associated to a given column_name.
- Only one column for a given json value type is emitted. If number values with different number types are recorded (e.g. u64, i64, f64),
`tantivy-columnar` will pick the first type that can represents the set of appended value, with the following prioriy order (`i64`, `u64`, `f64`).
`i64` is picked over `u64` as it is likely to yield less change of types. Most use cases strictly requiring `u64` show the
restriction on 50% of the values (e.g. a 64-bit hash). On the other hand, a lot of use cases can show rare negative value.
# Columnar format
This columnar format may have more than one column (with different types) associated to the same `column_name` (see [Coercion rules](#coercion-rules) above).
The `(column_name, columne_type)` couple however uniquely identifies a column.
That couple is serialized as a column `column_key`. The format of that key is:
`[column_name][ZERO_BYTE][column_type_header: u8]`
```
COLUMNAR:=
[COLUMNAR_DATA]
[COLUMNAR_KEY_TO_DATA_INDEX]
[COLUMNAR_FOOTER];
# Columns are sorted by their column key.
COLUMNAR_DATA:=
[COLUMN_DATA]+;
COLUMNAR_FOOTER := [RANGE_SSTABLE_BYTES_LEN: 8 bytes little endian]
```
The columnar file starts by the actual column data, concatenated one after the other,
sorted by column key.
A sstable associates
`(column name, column_cardinality, column_type) to range of bytes.
Column name may not contain the zero byte `\0`.
Listing all columns associated to `column_name` can therefore
be done by listing all keys prefixed by
`[column_name][ZERO_BYTE]`
The associated range of bytes refer to a range of bytes
This crate exposes a columnar format for tantivy.
This format is described in README.md
The crate introduces the following concepts.
`Columnar` is an equivalent of a dataframe.
It maps `column_key` to `Column`.
A `Column<T>` asssociates a `RowId` (u32) to any
number of values.
This is made possible by wrapping a `ColumnIndex` and a `ColumnValue` object.
The `ColumnValue<T>` represents a mapping that associates each `RowId` to
exactly one single value.
The `ColumnIndex` then maps each RowId to a set of `RowId` in the
`ColumnValue`.
For optimization, and compression purposes, the `ColumnIndex` has three
possible representation, each for different cardinalities.
- Full
All RowId have exactly one value. The ColumnIndex is the trivial mapping.
- Optional
All RowIds can have at most one value. The ColumnIndex is the trivial mapping `ColumnRowId -> Option<ColumnValueRowId>`.
- Multivalued
All RowIds can have any number of values.
The column index is mapping values to a range.
All these objects are implemented an unit tested independently
in their own module:
- columnar
- column_index
- column_values
- column

View File

@@ -1,124 +0,0 @@
#![feature(test)]
use std::ops::RangeInclusive;
use std::sync::Arc;
use common::OwnedBytes;
use rand::rngs::StdRng;
use rand::seq::SliceRandom;
use rand::{random, Rng, SeedableRng};
use tantivy_columnar::ColumnValues;
use test::Bencher;
extern crate test;
// TODO does this make sense for IPv6 ?
fn generate_random() -> Vec<u64> {
let mut permutation: Vec<u64> = (0u64..100_000u64)
.map(|el| el + random::<u16>() as u64)
.collect();
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
permutation
}
fn get_u128_column_random() -> Arc<dyn ColumnValues<u128>> {
let permutation = generate_random();
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
get_u128_column_from_data(&permutation)
}
fn get_u128_column_from_data(data: &[u128]) -> Arc<dyn ColumnValues<u128>> {
let mut out = vec![];
tantivy_columnar::column_values::serialize_column_values_u128(&data, &mut out).unwrap();
let out = OwnedBytes::new(out);
tantivy_columnar::column_values::open_u128_mapped::<u128>(out).unwrap()
}
const FIFTY_PERCENT_RANGE: RangeInclusive<u64> = 1..=50;
const SINGLE_ITEM: u64 = 90;
const SINGLE_ITEM_RANGE: RangeInclusive<u64> = 90..=90;
fn get_data_50percent_item() -> Vec<u128> {
let mut rng = StdRng::from_seed([1u8; 32]);
let mut data = vec![];
for _ in 0..300_000 {
let val = rng.gen_range(1..=100);
data.push(val);
}
data.push(SINGLE_ITEM);
data.shuffle(&mut rng);
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
data
}
#[bench]
fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_row_ids_for_value_range(
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_row_ids_for_value_range(
*SINGLE_ITEM_RANGE.start() as u128..=*SINGLE_ITEM_RANGE.end() as u128,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
let data = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_row_ids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
positions
});
}
// U128 RANGE END
#[bench]
fn bench_intfastfield_scan_all_fflookup_u128(b: &mut Bencher) {
let column = get_u128_column_random();
b.iter(|| {
let mut a = 0u128;
for i in 0u64..column.num_vals() as u64 {
a += column.get_val(i as u32);
}
a
});
}
#[bench]
fn bench_intfastfield_jumpy_stride5_u128(b: &mut Bencher) {
let column = get_u128_column_random();
b.iter(|| {
let n = column.num_vals();
let mut a = 0u128;
for i in (0..n / 5).map(|val| val * 5) {
a += column.get_val(i);
}
a
});
}

View File

@@ -1,211 +0,0 @@
#![feature(test)]
extern crate test;
use std::ops::RangeInclusive;
use std::sync::Arc;
use rand::prelude::*;
use tantivy_columnar::column_values::{serialize_and_load_u64_based_column_values, CodecType};
use tantivy_columnar::*;
use test::Bencher;
// Warning: this generates the same permutation at each call
fn generate_permutation() -> Vec<u64> {
let mut permutation: Vec<u64> = (0u64..100_000u64).collect();
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
permutation
}
fn generate_random() -> Vec<u64> {
let mut permutation: Vec<u64> = (0u64..100_000u64)
.map(|el| el + random::<u16>() as u64)
.collect();
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
permutation
}
// Warning: this generates the same permutation at each call
fn generate_permutation_gcd() -> Vec<u64> {
let mut permutation: Vec<u64> = (1u64..100_000u64).map(|el| el * 1000).collect();
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
permutation
}
pub fn serialize_and_load(column: &[u64], codec_type: CodecType) -> Arc<dyn ColumnValues<u64>> {
serialize_and_load_u64_based_column_values(&column, &[codec_type])
}
#[bench]
fn bench_intfastfield_jumpy_veclookup(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
b.iter(|| {
let mut a = 0u64;
for _ in 0..n {
a = permutation[a as usize];
}
a
});
}
#[bench]
fn bench_intfastfield_jumpy_fflookup_bitpacked(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
b.iter(|| {
let mut a = 0u64;
for _ in 0..n {
a = column.get_val(a as u32);
}
a
});
}
const FIFTY_PERCENT_RANGE: RangeInclusive<u64> = 1..=50;
const SINGLE_ITEM: u64 = 90;
const SINGLE_ITEM_RANGE: RangeInclusive<u64> = 90..=90;
const ONE_PERCENT_ITEM_RANGE: RangeInclusive<u64> = 49..=49;
fn get_data_50percent_item() -> Vec<u128> {
let mut rng = StdRng::from_seed([1u8; 32]);
let mut data = vec![];
for _ in 0..300_000 {
let val = rng.gen_range(1..=100);
data.push(val);
}
data.push(SINGLE_ITEM);
data.shuffle(&mut rng);
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
data
}
// U64 RANGE START
#[bench]
fn bench_intfastfield_getrange_u64_50percent_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
b.iter(|| {
let mut positions = Vec::new();
column.get_row_ids_for_value_range(
FIFTY_PERCENT_RANGE,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u64_1percent_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
b.iter(|| {
let mut positions = Vec::new();
column.get_row_ids_for_value_range(
ONE_PERCENT_ITEM_RANGE,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u64_single_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
b.iter(|| {
let mut positions = Vec::new();
column.get_row_ids_for_value_range(SINGLE_ITEM_RANGE, 0..data.len() as u32, &mut positions);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u64_hit_all(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
b.iter(|| {
let mut positions = Vec::new();
column.get_row_ids_for_value_range(0..=u64::MAX, 0..data.len() as u32, &mut positions);
positions
});
}
// U64 RANGE END
#[bench]
fn bench_intfastfield_stride7_vec(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
b.iter(|| {
let mut a = 0u64;
for i in (0..n / 7).map(|val| val * 7) {
a += permutation[i as usize];
}
a
});
}
#[bench]
fn bench_intfastfield_stride7_fflookup(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
b.iter(|| {
let mut a = 0;
for i in (0..n / 7).map(|val| val * 7) {
a += column.get_val(i as u32);
}
a
});
}
#[bench]
fn bench_intfastfield_scan_all_fflookup(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
let column_ref = column.as_ref();
b.iter(|| {
let mut a = 0u64;
for i in 0u32..n as u32 {
a += column_ref.get_val(i);
}
a
});
}
#[bench]
fn bench_intfastfield_scan_all_fflookup_gcd(b: &mut Bencher) {
let permutation = generate_permutation_gcd();
let n = permutation.len();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
b.iter(|| {
let mut a = 0u64;
for i in 0..n {
a += column.get_val(i as u32);
}
a
});
}
#[bench]
fn bench_intfastfield_scan_all_vec(b: &mut Bencher) {
let permutation = generate_permutation();
b.iter(|| {
let mut a = 0u64;
for i in 0..permutation.len() {
a += permutation[i as usize] as u64;
}
a
});
}

View File

@@ -1,17 +0,0 @@
[package]
name = "tantivy-columnar-cli"
version = "0.1.0"
edition = "2021"
license = "MIT"
[dependencies]
columnar = {path="../", package="tantivy-columnar"}
serde_json = "1"
serde_json_borrow = {git="https://github.com/PSeitz/serde_json_borrow/"}
serde = "1"
[workspace]
members = []
[profile.release]
debug = true

View File

@@ -1,134 +0,0 @@
use columnar::ColumnarWriter;
use columnar::NumericalValue;
use serde_json_borrow;
use std::fs::File;
use std::io;
use std::io::BufRead;
use std::io::BufReader;
use std::time::Instant;
#[derive(Default)]
struct JsonStack {
path: String,
stack: Vec<usize>,
}
impl JsonStack {
fn push(&mut self, seg: &str) {
let len = self.path.len();
self.stack.push(len);
self.path.push('.');
self.path.push_str(seg);
}
fn pop(&mut self) {
if let Some(len) = self.stack.pop() {
self.path.truncate(len);
}
}
fn path(&self) -> &str {
&self.path[1..]
}
}
fn append_json_to_columnar(
doc: u32,
json_value: &serde_json_borrow::Value,
columnar: &mut ColumnarWriter,
stack: &mut JsonStack,
) -> usize {
let mut count = 0;
match json_value {
serde_json_borrow::Value::Null => {}
serde_json_borrow::Value::Bool(val) => {
columnar.record_numerical(
doc,
stack.path(),
NumericalValue::from(if *val { 1u64 } else { 0u64 }),
);
count += 1;
}
serde_json_borrow::Value::Number(num) => {
let numerical_value: NumericalValue = if let Some(num_i64) = num.as_i64() {
num_i64.into()
} else if let Some(num_u64) = num.as_u64() {
num_u64.into()
} else if let Some(num_f64) = num.as_f64() {
num_f64.into()
} else {
panic!();
};
count += 1;
columnar.record_numerical(
doc,
stack.path(),
numerical_value,
);
}
serde_json_borrow::Value::Str(msg) => {
columnar.record_str(
doc,
stack.path(),
msg,
);
count += 1;
},
serde_json_borrow::Value::Array(vals) => {
for val in vals {
count += append_json_to_columnar(doc, val, columnar, stack);
}
},
serde_json_borrow::Value::Object(json_map) => {
for (child_key, child_val) in json_map {
stack.push(child_key);
count += append_json_to_columnar(doc, child_val, columnar, stack);
stack.pop();
}
},
}
count
}
fn main() -> io::Result<()> {
let file = File::open("gh_small.json")?;
let mut reader = BufReader::new(file);
let mut line = String::with_capacity(100);
let mut columnar = columnar::ColumnarWriter::default();
let mut doc = 0;
let start = Instant::now();
let mut stack = JsonStack::default();
let mut total_count = 0;
let start_build = Instant::now();
loop {
line.clear();
let len = reader.read_line(&mut line)?;
if len == 0 {
break;
}
let Ok(json_value) = serde_json::from_str::<serde_json_borrow::Value>(&line) else { continue; };
total_count += append_json_to_columnar(doc, &json_value, &mut columnar, &mut stack);
doc += 1;
}
println!("Build in {:?}", start_build.elapsed());
println!("value count {total_count}");
let mut buffer = Vec::new();
let start_serialize = Instant::now();
columnar.serialize(doc, None, &mut buffer)?;
println!("Serialized in {:?}", start_serialize.elapsed());
println!("num docs: {doc}, {:?}", start.elapsed());
println!("buffer len {} MB", buffer.len() / 1_000_000);
let columnar = columnar::ColumnarReader::open(buffer)?;
for (column_name, dynamic_column) in columnar.list_columns()? {
let num_bytes = dynamic_column.num_bytes();
let typ = dynamic_column.column_type();
if num_bytes > 1_000_000 {
println!("{column_name} {typ:?} {} KB", num_bytes / 1_000);
}
}
println!("{} columns", columnar.num_columns());
Ok(())
}

View File

@@ -1,47 +0,0 @@
# zero to one
* revisit line codec
* add columns from schema on merge
* Plugging JSON
* replug examples
* move datetime to quickwit common
* switch to nanos
* reintroduce the gcd map.
# Perf and Size
* remove alloc in `ord_to_term`
+ multivaued range queries restrat frm the beginning all of the time.
* re-add ZSTD compression for dictionaries
no systematic monotonic mapping
consider removing multilinear
f32?
adhoc solution for bool?
add metrics helper for aggregate. sum(row_id)
review inline absence/presence
improv perf of select using PDEP
compare with roaring bitmap/elias fano etc etc.
SIMD range? (see blog post)
Add alignment?
Consider another codec to bridge the gap between few and 5k elements
# Cleanup and rationalization
in benchmark, unify percent vs ratio, f32 vs f64.
investigate if should have better errors? io::Error is overused at the moment.
rename rank/select in unit tests
Review the public API via cargo doc
go through TODOs
remove all doc_id occurences -> row_id
use the rank & select naming in unit tests branch.
multi-linear -> blockwise
linear codec -> simply a multiplication for the index column
rename columnar to something more explicit, like column_dictionary or columnar_table
rename fastfield -> column
document changes
rationalization FastFieldValue, HasColumnType
isolate u128_based and uniform naming
# Other
fix enhance column-cli
# Santa claus
autodetect datetime ipaddr, plug customizable tokenizer.

View File

@@ -1,132 +0,0 @@
use std::cmp::Ordering;
use crate::{Column, DocId, RowId};
#[derive(Debug, Default, Clone)]
pub struct ColumnBlockAccessor<T> {
val_cache: Vec<T>,
docid_cache: Vec<DocId>,
missing_docids_cache: Vec<DocId>,
row_id_cache: Vec<RowId>,
}
impl<T: PartialOrd + Copy + std::fmt::Debug + Send + Sync + 'static + Default>
ColumnBlockAccessor<T>
{
#[inline]
pub fn fetch_block(&mut self, docs: &[u32], accessor: &Column<T>) {
self.docid_cache.clear();
self.row_id_cache.clear();
accessor.row_ids_for_docs(docs, &mut self.docid_cache, &mut self.row_id_cache);
self.val_cache.resize(self.row_id_cache.len(), T::default());
accessor
.values
.get_vals(&self.row_id_cache, &mut self.val_cache);
}
#[inline]
pub fn fetch_block_with_missing(&mut self, docs: &[u32], accessor: &Column<T>, missing: T) {
self.fetch_block(docs, accessor);
// We can compare docid_cache with docs to find missing docs
if docs.len() != self.docid_cache.len() || accessor.index.is_multivalue() {
self.missing_docids_cache.clear();
find_missing_docs(docs, &self.docid_cache, |doc| {
self.missing_docids_cache.push(doc);
self.val_cache.push(missing);
});
self.docid_cache
.extend_from_slice(&self.missing_docids_cache);
}
}
#[inline]
pub fn iter_vals(&self) -> impl Iterator<Item = T> + '_ {
self.val_cache.iter().cloned()
}
#[inline]
pub fn iter_docid_vals(&self) -> impl Iterator<Item = (DocId, T)> + '_ {
self.docid_cache
.iter()
.cloned()
.zip(self.val_cache.iter().cloned())
}
}
/// Given two sorted lists of docids `docs` and `hits`, hits is a subset of `docs`.
/// Return all docs that are not in `hits`.
fn find_missing_docs<F>(docs: &[u32], hits: &[u32], mut callback: F)
where F: FnMut(u32) {
let mut docs_iter = docs.iter();
let mut hits_iter = hits.iter();
let mut doc = docs_iter.next();
let mut hit = hits_iter.next();
while let (Some(&current_doc), Some(&current_hit)) = (doc, hit) {
match current_doc.cmp(&current_hit) {
Ordering::Less => {
callback(current_doc);
doc = docs_iter.next();
}
Ordering::Equal => {
doc = docs_iter.next();
hit = hits_iter.next();
}
Ordering::Greater => {
hit = hits_iter.next();
}
}
}
while let Some(&current_doc) = doc {
callback(current_doc);
doc = docs_iter.next();
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_find_missing_docs() {
let docs: Vec<u32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
let hits: Vec<u32> = vec![2, 4, 6, 8, 10];
let mut missing_docs: Vec<u32> = Vec::new();
find_missing_docs(&docs, &hits, |missing_doc| {
missing_docs.push(missing_doc);
});
assert_eq!(missing_docs, vec![1, 3, 5, 7, 9]);
}
#[test]
fn test_find_missing_docs_empty() {
let docs: Vec<u32> = Vec::new();
let hits: Vec<u32> = vec![2, 4, 6, 8, 10];
let mut missing_docs: Vec<u32> = Vec::new();
find_missing_docs(&docs, &hits, |missing_doc| {
missing_docs.push(missing_doc);
});
assert_eq!(missing_docs, vec![]);
}
#[test]
fn test_find_missing_docs_all_missing() {
let docs: Vec<u32> = vec![1, 2, 3, 4, 5];
let hits: Vec<u32> = Vec::new();
let mut missing_docs: Vec<u32> = Vec::new();
find_missing_docs(&docs, &hits, |missing_doc| {
missing_docs.push(missing_doc);
});
assert_eq!(missing_docs, vec![1, 2, 3, 4, 5]);
}
}

View File

@@ -1,121 +0,0 @@
use std::ops::Deref;
use std::sync::Arc;
use std::{fmt, io};
use sstable::{Dictionary, VoidSSTable};
use crate::column::Column;
use crate::RowId;
/// Dictionary encoded column.
///
/// The column simply gives access to a regular u64-column that, in
/// which the values are term-ordinals.
///
/// These ordinals are ids uniquely identify the bytes that are stored in
/// the column. These ordinals are small, and sorted in the same order
/// as the term_ord_column.
#[derive(Clone)]
pub struct BytesColumn {
pub(crate) dictionary: Arc<Dictionary<VoidSSTable>>,
pub(crate) term_ord_column: Column<u64>,
}
impl fmt::Debug for BytesColumn {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("BytesColumn")
.field("term_ord_column", &self.term_ord_column)
.finish()
}
}
impl BytesColumn {
pub fn empty(num_docs: u32) -> BytesColumn {
BytesColumn {
dictionary: Arc::new(Dictionary::empty()),
term_ord_column: Column::build_empty_column(num_docs),
}
}
/// Fills the given `output` buffer with the term associated to the ordinal `ord`.
///
/// Returns `false` if the term does not exist (e.g. `term_ord` is greater or equal to the
/// overll number of terms).
pub fn ord_to_bytes(&self, ord: u64, output: &mut Vec<u8>) -> io::Result<bool> {
self.dictionary.ord_to_term(ord, output)
}
/// Returns the number of rows in the column.
pub fn num_rows(&self) -> RowId {
self.term_ord_column.num_docs()
}
pub fn term_ords(&self, row_id: RowId) -> impl Iterator<Item = u64> + '_ {
self.term_ord_column.values_for_doc(row_id)
}
/// Returns the column of ordinals
pub fn ords(&self) -> &Column<u64> {
&self.term_ord_column
}
pub fn num_terms(&self) -> usize {
self.dictionary.num_terms()
}
pub fn dictionary(&self) -> &Dictionary<VoidSSTable> {
self.dictionary.as_ref()
}
}
#[derive(Clone)]
pub struct StrColumn(BytesColumn);
impl fmt::Debug for StrColumn {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self.term_ord_column)
}
}
impl From<StrColumn> for BytesColumn {
fn from(str_column: StrColumn) -> BytesColumn {
str_column.0
}
}
impl StrColumn {
pub fn wrap(bytes_column: BytesColumn) -> StrColumn {
StrColumn(bytes_column)
}
pub fn dictionary(&self) -> &Dictionary<VoidSSTable> {
self.0.dictionary.as_ref()
}
/// Fills the buffer
pub fn ord_to_str(&self, term_ord: u64, output: &mut String) -> io::Result<bool> {
unsafe {
let buf = output.as_mut_vec();
if !self.0.dictionary.ord_to_term(term_ord, buf)? {
return Ok(false);
}
// TODO consider remove checks if it hurts performance.
if std::str::from_utf8(buf.as_slice()).is_err() {
buf.clear();
return Err(io::Error::new(
io::ErrorKind::InvalidData,
"Not valid utf-8",
));
}
}
Ok(true)
}
}
impl Deref for StrColumn {
type Target = BytesColumn;
fn deref(&self) -> &Self::Target {
&self.0
}
}

View File

@@ -1,199 +0,0 @@
mod dictionary_encoded;
mod serialize;
use std::fmt::{self, Debug};
use std::io::Write;
use std::ops::{Deref, Range, RangeInclusive};
use std::sync::Arc;
use common::BinarySerializable;
pub use dictionary_encoded::{BytesColumn, StrColumn};
pub use serialize::{
open_column_bytes, open_column_str, open_column_u128, open_column_u64,
serialize_column_mappable_to_u128, serialize_column_mappable_to_u64,
};
use crate::column_index::ColumnIndex;
use crate::column_values::monotonic_mapping::StrictlyMonotonicMappingToInternal;
use crate::column_values::{monotonic_map_column, ColumnValues};
use crate::{Cardinality, DocId, EmptyColumnValues, MonotonicallyMappableToU64, RowId};
#[derive(Clone)]
pub struct Column<T = u64> {
pub index: ColumnIndex,
pub values: Arc<dyn ColumnValues<T>>,
}
impl<T: Debug + PartialOrd + Send + Sync + Copy + 'static> Debug for Column<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let num_docs = self.num_docs();
let entries = (0..num_docs)
.map(|i| (i, self.values_for_doc(i).collect::<Vec<_>>()))
.filter(|(_, vals)| !vals.is_empty());
f.debug_map().entries(entries).finish()
}
}
impl<T: PartialOrd + Default> Column<T> {
pub fn build_empty_column(num_docs: u32) -> Column<T> {
Column {
index: ColumnIndex::Empty { num_docs },
values: Arc::new(EmptyColumnValues),
}
}
}
impl<T: MonotonicallyMappableToU64> Column<T> {
pub fn to_u64_monotonic(self) -> Column<u64> {
let values = Arc::new(monotonic_map_column(
self.values,
StrictlyMonotonicMappingToInternal::<T>::new(),
));
Column {
index: self.index,
values,
}
}
}
impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
#[inline]
pub fn get_cardinality(&self) -> Cardinality {
self.index.get_cardinality()
}
pub fn num_docs(&self) -> RowId {
match &self.index {
ColumnIndex::Empty { num_docs } => *num_docs,
ColumnIndex::Full => self.values.num_vals(),
ColumnIndex::Optional(optional_index) => optional_index.num_docs(),
ColumnIndex::Multivalued(col_index) => {
// The multivalued index contains all value start row_id,
// and one extra value at the end with the overall number of rows.
col_index.num_docs()
}
}
}
pub fn min_value(&self) -> T {
self.values.min_value()
}
pub fn max_value(&self) -> T {
self.values.max_value()
}
pub fn first(&self, row_id: RowId) -> Option<T> {
self.values_for_doc(row_id).next()
}
/// Translates a block of docis to row_ids.
///
/// returns the row_ids and the matching docids on the same index
/// e.g.
/// DocId In: [0, 5, 6]
/// DocId Out: [0, 0, 6, 6]
/// RowId Out: [0, 1, 2, 3]
#[inline]
pub fn row_ids_for_docs(
&self,
doc_ids: &[DocId],
doc_ids_out: &mut Vec<DocId>,
row_ids: &mut Vec<RowId>,
) {
self.index.docids_to_rowids(doc_ids, doc_ids_out, row_ids)
}
pub fn values_for_doc(&self, doc_id: DocId) -> impl Iterator<Item = T> + '_ {
self.value_row_ids(doc_id)
.map(|value_row_id: RowId| self.values.get_val(value_row_id))
}
/// Get the docids of values which are in the provided value range.
#[inline]
pub fn get_docids_for_value_range(
&self,
value_range: RangeInclusive<T>,
selected_docid_range: Range<u32>,
doc_ids: &mut Vec<u32>,
) {
// convert passed docid range to row id range
let rowid_range = self
.index
.docid_range_to_rowids(selected_docid_range.clone());
// Load rows
self.values
.get_row_ids_for_value_range(value_range, rowid_range, doc_ids);
// Convert rows to docids
self.index
.select_batch_in_place(selected_docid_range.start, doc_ids);
}
/// Fills the output vector with the (possibly multiple values that are associated_with
/// `row_id`.
///
/// This method clears the `output` vector.
pub fn fill_vals(&self, row_id: RowId, output: &mut Vec<T>) {
output.clear();
output.extend(self.values_for_doc(row_id));
}
pub fn first_or_default_col(self, default_value: T) -> Arc<dyn ColumnValues<T>> {
Arc::new(FirstValueWithDefault {
column: self,
default_value,
})
}
}
impl<T> Deref for Column<T> {
type Target = ColumnIndex;
fn deref(&self) -> &Self::Target {
&self.index
}
}
impl BinarySerializable for Cardinality {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> std::io::Result<()> {
self.to_code().serialize(writer)
}
fn deserialize<R: std::io::Read>(reader: &mut R) -> std::io::Result<Self> {
let cardinality_code = u8::deserialize(reader)?;
let cardinality = Cardinality::try_from_code(cardinality_code)?;
Ok(cardinality)
}
}
// TODO simplify or optimize
struct FirstValueWithDefault<T: Copy> {
column: Column<T>,
default_value: T,
}
impl<T: PartialOrd + Debug + Send + Sync + Copy + 'static> ColumnValues<T>
for FirstValueWithDefault<T>
{
fn get_val(&self, idx: u32) -> T {
self.column.first(idx).unwrap_or(self.default_value)
}
fn min_value(&self) -> T {
self.column.values.min_value()
}
fn max_value(&self) -> T {
self.column.values.max_value()
}
fn num_vals(&self) -> u32 {
match &self.column.index {
ColumnIndex::Empty { .. } => 0u32,
ColumnIndex::Full => self.column.values.num_vals(),
ColumnIndex::Optional(optional_idx) => optional_idx.num_docs(),
ColumnIndex::Multivalued(multivalue_idx) => multivalue_idx.num_docs(),
}
}
}

View File

@@ -1,94 +0,0 @@
use std::io;
use std::io::Write;
use std::sync::Arc;
use common::OwnedBytes;
use sstable::Dictionary;
use crate::column::{BytesColumn, Column};
use crate::column_index::{serialize_column_index, SerializableColumnIndex};
use crate::column_values::{
load_u64_based_column_values, serialize_column_values_u128, serialize_u64_based_column_values,
CodecType, MonotonicallyMappableToU128, MonotonicallyMappableToU64,
};
use crate::iterable::Iterable;
use crate::StrColumn;
pub fn serialize_column_mappable_to_u128<T: MonotonicallyMappableToU128>(
column_index: SerializableColumnIndex<'_>,
iterable: &dyn Iterable<T>,
output: &mut impl Write,
) -> io::Result<()> {
let column_index_num_bytes = serialize_column_index(column_index, output)?;
serialize_column_values_u128(iterable, output)?;
output.write_all(&column_index_num_bytes.to_le_bytes())?;
Ok(())
}
pub fn serialize_column_mappable_to_u64<T: MonotonicallyMappableToU64>(
column_index: SerializableColumnIndex<'_>,
column_values: &impl Iterable<T>,
output: &mut impl Write,
) -> io::Result<()> {
let column_index_num_bytes = serialize_column_index(column_index, output)?;
serialize_u64_based_column_values(
column_values,
&[CodecType::Bitpacked, CodecType::BlockwiseLinear],
output,
)?;
output.write_all(&column_index_num_bytes.to_le_bytes())?;
Ok(())
}
pub fn open_column_u64<T: MonotonicallyMappableToU64>(bytes: OwnedBytes) -> io::Result<Column<T>> {
let (body, column_index_num_bytes_payload) = bytes.rsplit(4);
let column_index_num_bytes = u32::from_le_bytes(
column_index_num_bytes_payload
.as_slice()
.try_into()
.unwrap(),
);
let (column_index_data, column_values_data) = body.split(column_index_num_bytes as usize);
let column_index = crate::column_index::open_column_index(column_index_data)?;
let column_values = load_u64_based_column_values(column_values_data)?;
Ok(Column {
index: column_index,
values: column_values,
})
}
pub fn open_column_u128<T: MonotonicallyMappableToU128>(
bytes: OwnedBytes,
) -> io::Result<Column<T>> {
let (body, column_index_num_bytes_payload) = bytes.rsplit(4);
let column_index_num_bytes = u32::from_le_bytes(
column_index_num_bytes_payload
.as_slice()
.try_into()
.unwrap(),
);
let (column_index_data, column_values_data) = body.split(column_index_num_bytes as usize);
let column_index = crate::column_index::open_column_index(column_index_data)?;
let column_values = crate::column_values::open_u128_mapped(column_values_data)?;
Ok(Column {
index: column_index,
values: column_values,
})
}
pub fn open_column_bytes(data: OwnedBytes) -> io::Result<BytesColumn> {
let (body, dictionary_len_bytes) = data.rsplit(4);
let dictionary_len = u32::from_le_bytes(dictionary_len_bytes.as_slice().try_into().unwrap());
let (dictionary_bytes, column_bytes) = body.split(dictionary_len as usize);
let dictionary = Arc::new(Dictionary::from_bytes(dictionary_bytes)?);
let term_ord_column = crate::column::open_column_u64::<u64>(column_bytes)?;
Ok(BytesColumn {
dictionary,
term_ord_column,
})
}
pub fn open_column_str(data: OwnedBytes) -> io::Result<StrColumn> {
let bytes_column = open_column_bytes(data)?;
Ok(StrColumn::wrap(bytes_column))
}

View File

@@ -1,210 +0,0 @@
mod shuffled;
mod stacked;
use common::ReadOnlyBitSet;
use shuffled::merge_column_index_shuffled;
use stacked::merge_column_index_stacked;
use crate::column_index::SerializableColumnIndex;
use crate::{Cardinality, ColumnIndex, MergeRowOrder};
fn detect_cardinality_single_column_index(
column_index: &ColumnIndex,
alive_bitset_opt: &Option<ReadOnlyBitSet>,
) -> Cardinality {
let Some(alive_bitset) = alive_bitset_opt else {
return column_index.get_cardinality();
};
let cardinality_before_deletes = column_index.get_cardinality();
if cardinality_before_deletes == Cardinality::Full {
// The columnar cardinality can only become more restrictive in the presence of deletes
// (where cardinality sorted from the more restrictive to the least restrictive are Full,
// Optional, Multivalued)
//
// If we are already "Full", we are guaranteed to stay "Full" after deletes.
return Cardinality::Full;
}
let mut cardinality_so_far = Cardinality::Full;
for doc_id in alive_bitset.iter() {
let num_values = column_index.value_row_ids(doc_id).len();
let row_cardinality = match num_values {
0 => Cardinality::Optional,
1 => Cardinality::Full,
_ => Cardinality::Multivalued,
};
cardinality_so_far = cardinality_so_far.max(row_cardinality);
if cardinality_so_far >= cardinality_before_deletes {
// There won't be any improvement in the cardinality.
// We can early exit.
return cardinality_before_deletes;
}
}
cardinality_so_far
}
fn detect_cardinality(
column_indexes: &[ColumnIndex],
merge_row_order: &MergeRowOrder,
) -> Cardinality {
match merge_row_order {
MergeRowOrder::Stack(_) => column_indexes
.iter()
.map(ColumnIndex::get_cardinality)
.max()
.unwrap_or(Cardinality::Full),
MergeRowOrder::Shuffled(shuffle_merge_order) => {
let mut merged_cardinality = Cardinality::Full;
for (column_index, alive_bitset_opt) in column_indexes
.iter()
.zip(shuffle_merge_order.alive_bitsets.iter())
{
let cardinality: Cardinality =
detect_cardinality_single_column_index(column_index, alive_bitset_opt);
if cardinality == Cardinality::Multivalued {
return cardinality;
}
merged_cardinality = merged_cardinality.max(cardinality);
}
merged_cardinality
}
}
}
pub fn merge_column_index<'a>(
columns: &'a [ColumnIndex],
merge_row_order: &'a MergeRowOrder,
) -> SerializableColumnIndex<'a> {
// For simplification, we do not try to detect whether the cardinality could be
// downgraded thanks to deletes.
let cardinality_after_merge = detect_cardinality(columns, merge_row_order);
match merge_row_order {
MergeRowOrder::Stack(stack_merge_order) => {
merge_column_index_stacked(columns, cardinality_after_merge, stack_merge_order)
}
MergeRowOrder::Shuffled(complex_merge_order) => {
merge_column_index_shuffled(columns, cardinality_after_merge, complex_merge_order)
}
}
}
// TODO actually, the shuffled code path is a bit too general.
// In practise, we do not really shuffle everything.
// The merge order restricted to a specific column keeps the original row order.
//
// This may offer some optimization that we have not explored yet.
#[cfg(test)]
mod tests {
use crate::column_index::merge::detect_cardinality;
use crate::column_index::multivalued_index::MultiValueIndex;
use crate::column_index::{merge_column_index, OptionalIndex, SerializableColumnIndex};
use crate::{
Cardinality, ColumnIndex, MergeRowOrder, RowAddr, RowId, ShuffleMergeOrder, StackMergeOrder,
};
#[test]
fn test_detect_cardinality() {
assert_eq!(
detect_cardinality(&[], &StackMergeOrder::stack_for_test(&[]).into()),
Cardinality::Full
);
let optional_index: ColumnIndex = OptionalIndex::for_test(1, &[]).into();
let multivalued_index: ColumnIndex = MultiValueIndex::for_test(&[0, 1]).into();
assert_eq!(
detect_cardinality(
&[optional_index.clone(), ColumnIndex::Empty { num_docs: 0 }],
&StackMergeOrder::stack_for_test(&[1, 0]).into()
),
Cardinality::Optional
);
assert_eq!(
detect_cardinality(
&[optional_index.clone(), ColumnIndex::Full],
&StackMergeOrder::stack_for_test(&[1, 1]).into()
),
Cardinality::Optional
);
assert_eq!(
detect_cardinality(
&[
multivalued_index.clone(),
ColumnIndex::Empty { num_docs: 0 }
],
&StackMergeOrder::stack_for_test(&[1, 0]).into()
),
Cardinality::Multivalued
);
assert_eq!(
detect_cardinality(
&[multivalued_index.clone(), optional_index.clone()],
&StackMergeOrder::stack_for_test(&[1, 1]).into()
),
Cardinality::Multivalued
);
assert_eq!(
detect_cardinality(
&[optional_index, multivalued_index],
&StackMergeOrder::stack_for_test(&[1, 1]).into()
),
Cardinality::Multivalued
);
}
#[test]
fn test_merge_index_multivalued_sorted() {
let column_indexes: Vec<ColumnIndex> = vec![MultiValueIndex::for_test(&[0, 2, 5]).into()];
let merge_row_order: MergeRowOrder = ShuffleMergeOrder::for_test(
&[2],
vec![
RowAddr {
segment_ord: 0u32,
row_id: 1u32,
},
RowAddr {
segment_ord: 0u32,
row_id: 0u32,
},
],
)
.into();
let merged_column_index = merge_column_index(&column_indexes[..], &merge_row_order);
let SerializableColumnIndex::Multivalued(start_index_iterable) = merged_column_index else {
panic!("Excpected a multivalued index")
};
let start_indexes: Vec<RowId> = start_index_iterable.boxed_iter().collect();
assert_eq!(&start_indexes, &[0, 3, 5]);
}
#[test]
fn test_merge_index_multivalued_sorted_several_segment() {
let column_indexes: Vec<ColumnIndex> = vec![
MultiValueIndex::for_test(&[0, 2, 5]).into(),
ColumnIndex::Empty { num_docs: 0 },
MultiValueIndex::for_test(&[0, 1, 4]).into(),
];
let merge_row_order: MergeRowOrder = ShuffleMergeOrder::for_test(
&[2, 0, 2],
vec![
RowAddr {
segment_ord: 2u32,
row_id: 1u32,
},
RowAddr {
segment_ord: 0u32,
row_id: 0u32,
},
RowAddr {
segment_ord: 2u32,
row_id: 0u32,
},
],
)
.into();
let merged_column_index = merge_column_index(&column_indexes[..], &merge_row_order);
let SerializableColumnIndex::Multivalued(start_index_iterable) = merged_column_index else {
panic!("Excpected a multivalued index")
};
let start_indexes: Vec<RowId> = start_index_iterable.boxed_iter().collect();
assert_eq!(&start_indexes, &[0, 3, 5, 6]);
}
}

View File

@@ -1,171 +0,0 @@
use std::iter;
use crate::column_index::{SerializableColumnIndex, Set};
use crate::iterable::Iterable;
use crate::{Cardinality, ColumnIndex, RowId, ShuffleMergeOrder};
pub fn merge_column_index_shuffled<'a>(
column_indexes: &'a [ColumnIndex],
cardinality_after_merge: Cardinality,
shuffle_merge_order: &'a ShuffleMergeOrder,
) -> SerializableColumnIndex<'a> {
match cardinality_after_merge {
Cardinality::Full => SerializableColumnIndex::Full,
Cardinality::Optional => {
let non_null_row_ids =
merge_column_index_shuffled_optional(column_indexes, shuffle_merge_order);
SerializableColumnIndex::Optional {
non_null_row_ids,
num_rows: shuffle_merge_order.num_rows(),
}
}
Cardinality::Multivalued => {
let multivalue_start_index =
merge_column_index_shuffled_multivalued(column_indexes, shuffle_merge_order);
SerializableColumnIndex::Multivalued(multivalue_start_index)
}
}
}
/// Merge several column indexes into one, ordering rows according to the merge_order passed as
/// argument. While it is true that the `merge_order` may imply deletes and hence could in theory a
/// multivalued index into an optional one, this is not supported today for simplification.
///
/// In other words the column_indexes passed as argument may NOT be multivalued.
fn merge_column_index_shuffled_optional<'a>(
column_indexes: &'a [ColumnIndex],
merge_order: &'a ShuffleMergeOrder,
) -> Box<dyn Iterable<RowId> + 'a> {
Box::new(ShuffledIndex {
column_indexes,
merge_order,
})
}
struct ShuffledIndex<'a> {
column_indexes: &'a [ColumnIndex],
merge_order: &'a ShuffleMergeOrder,
}
impl<'a> Iterable<u32> for ShuffledIndex<'a> {
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
Box::new(
self.merge_order
.iter_new_to_old_row_addrs()
.enumerate()
.filter_map(|(new_row_id, old_row_addr)| {
let column_index = &self.column_indexes[old_row_addr.segment_ord as usize];
let row_id = new_row_id as u32;
if column_index.has_value(old_row_addr.row_id) {
Some(row_id)
} else {
None
}
}),
)
}
}
fn merge_column_index_shuffled_multivalued<'a>(
column_indexes: &'a [ColumnIndex],
merge_order: &'a ShuffleMergeOrder,
) -> Box<dyn Iterable<RowId> + 'a> {
Box::new(ShuffledMultivaluedIndex {
column_indexes,
merge_order,
})
}
struct ShuffledMultivaluedIndex<'a> {
column_indexes: &'a [ColumnIndex],
merge_order: &'a ShuffleMergeOrder,
}
fn iter_num_values<'a>(
column_indexes: &'a [ColumnIndex],
merge_order: &'a ShuffleMergeOrder,
) -> impl Iterator<Item = u32> + 'a {
merge_order.iter_new_to_old_row_addrs().map(|row_addr| {
let column_index = &column_indexes[row_addr.segment_ord as usize];
match column_index {
ColumnIndex::Empty { .. } => 0u32,
ColumnIndex::Full => 1,
ColumnIndex::Optional(optional_index) => {
u32::from(optional_index.contains(row_addr.row_id))
}
ColumnIndex::Multivalued(multivalued_index) => {
multivalued_index.range(row_addr.row_id).len() as u32
}
}
})
}
/// Transforms an iterator containing the number of vals per row (with `num_rows` elements)
/// into a `start_offset` iterator starting at 0 and (with `num_rows + 1` element)
fn integrate_num_vals(num_vals: impl Iterator<Item = u32>) -> impl Iterator<Item = RowId> {
iter::once(0u32).chain(num_vals.scan(0, |state, num_vals| {
*state += num_vals;
Some(*state)
}))
}
impl<'a> Iterable<u32> for ShuffledMultivaluedIndex<'a> {
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
let num_vals_per_row = iter_num_values(self.column_indexes, self.merge_order);
Box::new(integrate_num_vals(num_vals_per_row))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::column_index::OptionalIndex;
use crate::RowAddr;
#[test]
fn test_integrate_num_vals_empty() {
assert!(integrate_num_vals(iter::empty()).eq(iter::once(0)));
}
#[test]
fn test_integrate_num_vals_one_el() {
assert!(integrate_num_vals(iter::once(10)).eq([0, 10].into_iter()));
}
#[test]
fn test_integrate_num_vals_several() {
assert!(integrate_num_vals([3, 0, 10, 20].into_iter()).eq([0, 3, 3, 13, 33].into_iter()));
}
#[test]
fn test_merge_column_index_optional_shuffle() {
let optional_index: ColumnIndex = OptionalIndex::for_test(2, &[0]).into();
let column_indexes = vec![optional_index, ColumnIndex::Full];
let row_addrs = vec![
RowAddr {
segment_ord: 0u32,
row_id: 1u32,
},
RowAddr {
segment_ord: 1u32,
row_id: 0u32,
},
];
let shuffle_merge_order = ShuffleMergeOrder::for_test(&[2, 1], row_addrs);
let serializable_index = merge_column_index_shuffled(
&column_indexes[..],
Cardinality::Optional,
&shuffle_merge_order,
);
let SerializableColumnIndex::Optional {
non_null_row_ids,
num_rows,
} = serializable_index
else {
panic!()
};
assert_eq!(num_rows, 2);
let non_null_rows: Vec<RowId> = non_null_row_ids.boxed_iter().collect();
assert_eq!(&non_null_rows, &[1]);
}
}

View File

@@ -1,151 +0,0 @@
use std::iter;
use crate::column_index::{SerializableColumnIndex, Set};
use crate::iterable::Iterable;
use crate::{Cardinality, ColumnIndex, RowId, StackMergeOrder};
/// Simple case:
/// The new mapping just consists in stacking the different column indexes.
///
/// There are no sort nor deletes involved.
pub fn merge_column_index_stacked<'a>(
columns: &'a [ColumnIndex],
cardinality_after_merge: Cardinality,
stack_merge_order: &'a StackMergeOrder,
) -> SerializableColumnIndex<'a> {
match cardinality_after_merge {
Cardinality::Full => SerializableColumnIndex::Full,
Cardinality::Optional => SerializableColumnIndex::Optional {
non_null_row_ids: Box::new(StackedOptionalIndex {
columns,
stack_merge_order,
}),
num_rows: stack_merge_order.num_rows(),
},
Cardinality::Multivalued => {
let stacked_multivalued_index = StackedMultivaluedIndex {
columns,
stack_merge_order,
};
SerializableColumnIndex::Multivalued(Box::new(stacked_multivalued_index))
}
}
}
struct StackedOptionalIndex<'a> {
columns: &'a [ColumnIndex],
stack_merge_order: &'a StackMergeOrder,
}
impl<'a> Iterable<RowId> for StackedOptionalIndex<'a> {
fn boxed_iter(&self) -> Box<dyn Iterator<Item = RowId> + 'a> {
Box::new(
self.columns
.iter()
.enumerate()
.flat_map(|(columnar_id, column_index_opt)| {
let columnar_row_range = self.stack_merge_order.columnar_range(columnar_id);
let rows_it: Box<dyn Iterator<Item = RowId>> = match column_index_opt {
ColumnIndex::Full => Box::new(columnar_row_range),
ColumnIndex::Optional(optional_index) => Box::new(
optional_index
.iter_rows()
.map(move |row_id: RowId| columnar_row_range.start + row_id),
),
ColumnIndex::Multivalued(_) => {
panic!("No multivalued index is allowed when stacking column index");
}
ColumnIndex::Empty { .. } => Box::new(std::iter::empty()),
};
rows_it
}),
)
}
}
#[derive(Clone, Copy)]
struct StackedMultivaluedIndex<'a> {
columns: &'a [ColumnIndex],
stack_merge_order: &'a StackMergeOrder,
}
fn convert_column_opt_to_multivalued_index<'a>(
column_index_opt: &'a ColumnIndex,
num_rows: RowId,
) -> Box<dyn Iterator<Item = RowId> + 'a> {
match column_index_opt {
ColumnIndex::Empty { .. } => Box::new(iter::repeat(0u32).take(num_rows as usize + 1)),
ColumnIndex::Full => Box::new(0..num_rows + 1),
ColumnIndex::Optional(optional_index) => {
Box::new(
(0..num_rows)
// TODO optimize
.map(|row_id| optional_index.rank(row_id))
.chain(std::iter::once(optional_index.num_non_nulls())),
)
}
ColumnIndex::Multivalued(multivalued_index) => multivalued_index.start_index_column.iter(),
}
}
impl<'a> Iterable<RowId> for StackedMultivaluedIndex<'a> {
fn boxed_iter(&self) -> Box<dyn Iterator<Item = RowId> + '_> {
let multivalued_indexes =
self.columns
.iter()
.enumerate()
.map(|(columnar_id, column_opt)| {
let num_rows =
self.stack_merge_order.columnar_range(columnar_id).len() as RowId;
convert_column_opt_to_multivalued_index(column_opt, num_rows)
});
stack_multivalued_indexes(multivalued_indexes)
}
}
// Refactor me
fn stack_multivalued_indexes<'a>(
mut multivalued_indexes: impl Iterator<Item = Box<dyn Iterator<Item = RowId> + 'a>> + 'a,
) -> Box<dyn Iterator<Item = RowId> + 'a> {
let mut offset = 0;
let mut last_row_id = 0;
let mut current_it = multivalued_indexes.next();
Box::new(std::iter::from_fn(move || loop {
let Some(multivalued_index) = current_it.as_mut() else {
return None;
};
if let Some(row_id) = multivalued_index.next() {
last_row_id = offset + row_id;
return Some(last_row_id);
}
offset = last_row_id;
loop {
current_it = multivalued_indexes.next();
if current_it.as_mut()?.next().is_some() {
break;
}
}
}))
}
#[cfg(test)]
mod tests {
use crate::RowId;
fn it<'a>(row_ids: &'a [RowId]) -> Box<dyn Iterator<Item = RowId> + 'a> {
Box::new(row_ids.iter().copied())
}
#[test]
fn test_stack() {
let columns = [
it(&[0u32, 0u32]),
it(&[0u32, 1u32, 1u32, 4u32]),
it(&[0u32, 3u32, 5u32]),
it(&[0u32, 4u32]),
]
.into_iter();
let start_offsets: Vec<RowId> = super::stack_multivalued_indexes(columns).collect();
assert_eq!(start_offsets, &[0, 0, 1, 1, 4, 7, 9, 13]);
}
}

View File

@@ -1,180 +0,0 @@
mod merge;
mod multivalued_index;
mod optional_index;
mod serialize;
use std::ops::Range;
pub use merge::merge_column_index;
pub use optional_index::{OptionalIndex, Set};
pub use serialize::{open_column_index, serialize_column_index, SerializableColumnIndex};
use crate::column_index::multivalued_index::MultiValueIndex;
use crate::{Cardinality, DocId, RowId};
#[derive(Clone, Debug)]
pub enum ColumnIndex {
Empty {
num_docs: u32,
},
Full,
Optional(OptionalIndex),
/// In addition, at index num_rows, an extra value is added
/// containing the overal number of values.
Multivalued(MultiValueIndex),
}
impl From<OptionalIndex> for ColumnIndex {
fn from(optional_index: OptionalIndex) -> ColumnIndex {
ColumnIndex::Optional(optional_index)
}
}
impl From<MultiValueIndex> for ColumnIndex {
fn from(multi_value_index: MultiValueIndex) -> ColumnIndex {
ColumnIndex::Multivalued(multi_value_index)
}
}
impl ColumnIndex {
#[inline]
pub fn is_multivalue(&self) -> bool {
matches!(self, ColumnIndex::Multivalued(_))
}
// Returns the cardinality of the column index.
//
// By convention, if the column contains no docs, we consider that it is
// full.
#[inline]
pub fn get_cardinality(&self) -> Cardinality {
match self {
ColumnIndex::Empty { num_docs: 0 } | ColumnIndex::Full => Cardinality::Full,
ColumnIndex::Empty { .. } => Cardinality::Optional,
ColumnIndex::Optional(_) => Cardinality::Optional,
ColumnIndex::Multivalued(_) => Cardinality::Multivalued,
}
}
/// Returns true if and only if there are at least one value associated to the row.
pub fn has_value(&self, doc_id: DocId) -> bool {
match self {
ColumnIndex::Empty { .. } => false,
ColumnIndex::Full => true,
ColumnIndex::Optional(optional_index) => optional_index.contains(doc_id),
ColumnIndex::Multivalued(multivalued_index) => {
!multivalued_index.range(doc_id).is_empty()
}
}
}
pub fn value_row_ids(&self, doc_id: DocId) -> Range<RowId> {
match self {
ColumnIndex::Empty { .. } => 0..0,
ColumnIndex::Full => doc_id..doc_id + 1,
ColumnIndex::Optional(optional_index) => {
if let Some(val) = optional_index.rank_if_exists(doc_id) {
val..val + 1
} else {
0..0
}
}
ColumnIndex::Multivalued(multivalued_index) => multivalued_index.range(doc_id),
}
}
/// Translates a block of docis to row_ids.
///
/// returns the row_ids and the matching docids on the same index
/// e.g.
/// DocId In: [0, 5, 6]
/// DocId Out: [0, 0, 6, 6]
/// RowId Out: [0, 1, 2, 3]
#[inline]
pub fn docids_to_rowids(
&self,
doc_ids: &[DocId],
doc_ids_out: &mut Vec<DocId>,
row_ids: &mut Vec<RowId>,
) {
match self {
ColumnIndex::Empty { .. } => {}
ColumnIndex::Full => {
doc_ids_out.extend_from_slice(doc_ids);
row_ids.extend_from_slice(doc_ids);
}
ColumnIndex::Optional(optional_index) => {
for doc_id in doc_ids {
if let Some(row_id) = optional_index.rank_if_exists(*doc_id) {
doc_ids_out.push(*doc_id);
row_ids.push(row_id);
}
}
}
ColumnIndex::Multivalued(multivalued_index) => {
for doc_id in doc_ids {
for row_id in multivalued_index.range(*doc_id) {
doc_ids_out.push(*doc_id);
row_ids.push(row_id);
}
}
}
}
}
pub fn docid_range_to_rowids(&self, doc_id: Range<DocId>) -> Range<RowId> {
match self {
ColumnIndex::Empty { .. } => 0..0,
ColumnIndex::Full => doc_id,
ColumnIndex::Optional(optional_index) => {
let row_start = optional_index.rank(doc_id.start);
let row_end = optional_index.rank(doc_id.end);
row_start..row_end
}
ColumnIndex::Multivalued(multivalued_index) => {
let end_docid = doc_id.end.min(multivalued_index.num_docs() - 1) + 1;
let start_docid = doc_id.start.min(end_docid);
let row_start = multivalued_index.start_index_column.get_val(start_docid);
let row_end = multivalued_index.start_index_column.get_val(end_docid);
row_start..row_end
}
}
}
pub fn select_batch_in_place(&self, doc_id_start: DocId, rank_ids: &mut Vec<RowId>) {
match self {
ColumnIndex::Empty { .. } => {
rank_ids.clear();
}
ColumnIndex::Full => {
// No need to do anything:
// value_idx and row_idx are the same.
}
ColumnIndex::Optional(optional_index) => {
optional_index.select_batch(&mut rank_ids[..]);
}
ColumnIndex::Multivalued(multivalued_index) => {
multivalued_index.select_batch_in_place(doc_id_start, rank_ids)
}
}
}
}
#[cfg(test)]
mod tests {
use crate::{Cardinality, ColumnIndex};
#[test]
fn test_column_index_get_cardinality() {
assert_eq!(
ColumnIndex::Empty { num_docs: 0 }.get_cardinality(),
Cardinality::Full
);
assert_eq!(ColumnIndex::Full.get_cardinality(), Cardinality::Full);
assert_eq!(
ColumnIndex::Empty { num_docs: 1 }.get_cardinality(),
Cardinality::Optional
);
}
}

View File

@@ -1,144 +0,0 @@
use std::io;
use std::io::Write;
use std::ops::Range;
use std::sync::Arc;
use common::OwnedBytes;
use crate::column_values::{
load_u64_based_column_values, serialize_u64_based_column_values, CodecType, ColumnValues,
};
use crate::iterable::Iterable;
use crate::{DocId, RowId};
pub fn serialize_multivalued_index(
multivalued_index: &dyn Iterable<RowId>,
output: &mut impl Write,
) -> io::Result<()> {
serialize_u64_based_column_values(
multivalued_index,
&[CodecType::Bitpacked, CodecType::Linear],
output,
)?;
Ok(())
}
pub fn open_multivalued_index(bytes: OwnedBytes) -> io::Result<MultiValueIndex> {
let start_index_column: Arc<dyn ColumnValues<RowId>> = load_u64_based_column_values(bytes)?;
Ok(MultiValueIndex { start_index_column })
}
#[derive(Clone)]
/// Index to resolve value range for given doc_id.
/// Starts at 0.
pub struct MultiValueIndex {
pub start_index_column: Arc<dyn crate::ColumnValues<RowId>>,
}
impl std::fmt::Debug for MultiValueIndex {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.debug_struct("MultiValuedIndex")
.field("num_rows", &self.start_index_column.num_vals())
.finish_non_exhaustive()
}
}
impl From<Arc<dyn ColumnValues<RowId>>> for MultiValueIndex {
fn from(start_index_column: Arc<dyn ColumnValues<RowId>>) -> Self {
MultiValueIndex { start_index_column }
}
}
impl MultiValueIndex {
pub fn for_test(start_offsets: &[RowId]) -> MultiValueIndex {
let mut buffer = Vec::new();
serialize_multivalued_index(&start_offsets, &mut buffer).unwrap();
let bytes = OwnedBytes::new(buffer);
open_multivalued_index(bytes).unwrap()
}
/// Returns `[start, end)`, such that the values associated with
/// the given document are `start..end`.
#[inline]
pub(crate) fn range(&self, doc_id: DocId) -> Range<RowId> {
let start = self.start_index_column.get_val(doc_id);
let end = self.start_index_column.get_val(doc_id + 1);
start..end
}
/// Returns the number of documents in the index.
#[inline]
pub fn num_docs(&self) -> u32 {
self.start_index_column.num_vals() - 1
}
/// Converts a list of ranks (row ids of values) in a 1:n index to the corresponding list of
/// docids. Positions are converted inplace to docids.
///
/// Since there is no index for value pos -> docid, but docid -> value pos range, we scan the
/// index.
///
/// Correctness: positions needs to be sorted. idx_reader needs to contain monotonically
/// increasing positions.
///
/// TODO: Instead of a linear scan we can employ a exponential search into binary search to
/// match a docid to its value position.
#[allow(clippy::bool_to_int_with_if)]
pub(crate) fn select_batch_in_place(&self, docid_start: DocId, ranks: &mut Vec<u32>) {
if ranks.is_empty() {
return;
}
let mut cur_doc = docid_start;
let mut last_doc = None;
assert!(self.start_index_column.get_val(docid_start) <= ranks[0]);
let mut write_doc_pos = 0;
for i in 0..ranks.len() {
let pos = ranks[i];
loop {
let end = self.start_index_column.get_val(cur_doc + 1);
if end > pos {
ranks[write_doc_pos] = cur_doc;
write_doc_pos += if last_doc == Some(cur_doc) { 0 } else { 1 };
last_doc = Some(cur_doc);
break;
}
cur_doc += 1;
}
}
ranks.truncate(write_doc_pos);
}
}
#[cfg(test)]
mod tests {
use std::ops::Range;
use super::MultiValueIndex;
fn index_to_pos_helper(
index: &MultiValueIndex,
doc_id_range: Range<u32>,
positions: &[u32],
) -> Vec<u32> {
let mut positions = positions.to_vec();
index.select_batch_in_place(doc_id_range.start, &mut positions);
positions
}
#[test]
fn test_positions_to_docid() {
let index = MultiValueIndex::for_test(&[0, 10, 12, 15, 22, 23]);
assert_eq!(index.num_docs(), 5);
let positions = &[10u32, 11, 15, 20, 21, 22];
assert_eq!(index_to_pos_helper(&index, 0..5, positions), vec![1, 3, 4]);
assert_eq!(index_to_pos_helper(&index, 1..5, positions), vec![1, 3, 4]);
assert_eq!(index_to_pos_helper(&index, 0..5, &[9]), vec![0]);
assert_eq!(index_to_pos_helper(&index, 1..5, &[10]), vec![1]);
assert_eq!(index_to_pos_helper(&index, 1..5, &[11]), vec![1]);
assert_eq!(index_to_pos_helper(&index, 2..5, &[12]), vec![2]);
assert_eq!(index_to_pos_helper(&index, 2..5, &[12, 14]), vec![2]);
assert_eq!(index_to_pos_helper(&index, 2..5, &[12, 14, 15]), vec![2, 3]);
}
}

View File

@@ -1,524 +0,0 @@
use std::io::{self, Write};
use std::sync::Arc;
mod set;
mod set_block;
use common::{BinarySerializable, OwnedBytes, VInt};
pub use set::{SelectCursor, Set, SetCodec};
use set_block::{
DenseBlock, DenseBlockCodec, SparseBlock, SparseBlockCodec, DENSE_BLOCK_NUM_BYTES,
};
use crate::iterable::Iterable;
use crate::{DocId, InvalidData, RowId};
/// The threshold for for number of elements after which we switch to dense block encoding.
///
/// We simply pick the value that minimize the size of the blocks.
const DENSE_BLOCK_THRESHOLD: u32 =
set_block::DENSE_BLOCK_NUM_BYTES / std::mem::size_of::<u16>() as u32; //< 5_120
const ELEMENTS_PER_BLOCK: u32 = u16::MAX as u32 + 1;
const BLOCK_SIZE: RowId = 1 << 16;
#[derive(Copy, Clone, Debug)]
struct BlockMeta {
non_null_rows_before_block: u32,
start_byte_offset: u32,
block_variant: BlockVariant,
}
#[derive(Clone, Copy, Debug)]
enum BlockVariant {
Dense,
Sparse { num_vals: u16 },
}
impl BlockVariant {
pub fn empty() -> Self {
Self::Sparse { num_vals: 0 }
}
pub fn num_bytes_in_block(&self) -> u32 {
match *self {
BlockVariant::Dense => set_block::DENSE_BLOCK_NUM_BYTES,
BlockVariant::Sparse { num_vals } => num_vals as u32 * 2,
}
}
}
/// This codec is inspired by roaring bitmaps.
/// In the dense blocks, however, in order to accelerate `select`
/// we interleave an offset over two bytes. (more on this lower)
///
/// The lower 16 bits of doc ids are stored as u16 while the upper 16 bits are given by the block
/// id. Each block contains 1<<16 docids.
///
/// # Serialized Data Layout
/// The data starts with the block data. Each block is either dense or sparse encoded, depending on
/// the number of values in the block. A block is sparse when it contains less than
/// DENSE_BLOCK_THRESHOLD (6144) values.
/// [Sparse data block | dense data block, .. #repeat*; Desc: Either a sparse or dense encoded
/// block]
/// ### Sparse block data
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block]
/// ### Dense block data
/// [Dense codec for the whole block; Desc: Similar to a bitvec(0..ELEMENTS_PER_BLOCK) + Metadata
/// for faster lookups. See dense.rs]
///
/// The data is followed by block metadata, to know which area of the raw block data belongs to
/// which block. Only metadata for blocks with elements is recorded to
/// keep the overhead low for scenarios with many very sparse columns. The block metadata consists
/// of the block index and the number of values in the block. Since we don't store empty blocks
/// num_vals is incremented by 1, e.g. 0 means 1 value.
///
/// The last u16 is storing the number of metadata blocks.
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block][(u16 LE, u16 LE), .. #repeat*;
/// Desc: (Block Id u16, Num Elements u16)][u16 LE; Desc: num blocks with values u16]
///
/// # Opening
/// When opening the data layout, the data is expanded to `Vec<SparseCodecBlockVariant>`, where the
/// index is the block index. For each block `byte_start` and `offset` is computed.
#[derive(Clone)]
pub struct OptionalIndex {
num_rows: RowId,
num_non_null_rows: RowId,
block_data: OwnedBytes,
block_metas: Arc<[BlockMeta]>,
}
impl std::fmt::Debug for OptionalIndex {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("OptionalIndex")
.field("num_rows", &self.num_rows)
.field("num_non_null_rows", &self.num_non_null_rows)
.finish_non_exhaustive()
}
}
/// Splits a value address into lower and upper 16bits.
/// The lower 16 bits are the value in the block
/// The upper 16 bits are the block index
#[derive(Copy, Debug, Clone)]
struct RowAddr {
block_id: u16,
in_block_row_id: u16,
}
#[inline(always)]
fn row_addr_from_row_id(row_id: RowId) -> RowAddr {
RowAddr {
block_id: (row_id / BLOCK_SIZE) as u16,
in_block_row_id: (row_id % BLOCK_SIZE) as u16,
}
}
enum BlockSelectCursor<'a> {
Dense(<DenseBlock<'a> as Set<u16>>::SelectCursor<'a>),
Sparse(<SparseBlock<'a> as Set<u16>>::SelectCursor<'a>),
}
impl<'a> BlockSelectCursor<'a> {
fn select(&mut self, rank: u16) -> u16 {
match self {
BlockSelectCursor::Dense(dense_select_cursor) => dense_select_cursor.select(rank),
BlockSelectCursor::Sparse(sparse_select_cursor) => sparse_select_cursor.select(rank),
}
}
}
pub struct OptionalIndexSelectCursor<'a> {
current_block_cursor: BlockSelectCursor<'a>,
current_block_id: u16,
// The current block is guaranteed to contain ranks < end_rank.
current_block_end_rank: RowId,
optional_index: &'a OptionalIndex,
block_doc_idx_start: RowId,
num_null_rows_before_block: RowId,
}
impl<'a> OptionalIndexSelectCursor<'a> {
fn search_and_load_block(&mut self, rank: RowId) {
if rank < self.current_block_end_rank {
// we are already in the right block
return;
}
self.current_block_id = self.optional_index.find_block(rank, self.current_block_id);
self.current_block_end_rank = self
.optional_index
.block_metas
.get(self.current_block_id as usize + 1)
.map(|block_meta| block_meta.non_null_rows_before_block)
.unwrap_or(u32::MAX);
self.block_doc_idx_start = (self.current_block_id as u32) * ELEMENTS_PER_BLOCK;
let block_meta = self.optional_index.block_metas[self.current_block_id as usize];
self.num_null_rows_before_block = block_meta.non_null_rows_before_block;
let block: Block<'_> = self.optional_index.block(block_meta);
self.current_block_cursor = match block {
Block::Dense(dense_block) => BlockSelectCursor::Dense(dense_block.select_cursor()),
Block::Sparse(sparse_block) => BlockSelectCursor::Sparse(sparse_block.select_cursor()),
};
}
}
impl<'a> SelectCursor<RowId> for OptionalIndexSelectCursor<'a> {
fn select(&mut self, rank: RowId) -> RowId {
self.search_and_load_block(rank);
let index_in_block = (rank - self.num_null_rows_before_block) as u16;
self.current_block_cursor.select(index_in_block) as RowId + self.block_doc_idx_start
}
}
impl Set<RowId> for OptionalIndex {
type SelectCursor<'b> = OptionalIndexSelectCursor<'b> where Self: 'b;
// Check if value at position is not null.
#[inline]
fn contains(&self, row_id: RowId) -> bool {
let RowAddr {
block_id,
in_block_row_id,
} = row_addr_from_row_id(row_id);
let block_meta = self.block_metas[block_id as usize];
match self.block(block_meta) {
Block::Dense(dense_block) => dense_block.contains(in_block_row_id),
Block::Sparse(sparse_block) => sparse_block.contains(in_block_row_id),
}
}
#[inline]
fn rank(&self, doc_id: DocId) -> RowId {
let RowAddr {
block_id,
in_block_row_id,
} = row_addr_from_row_id(doc_id);
let block_meta = self.block_metas[block_id as usize];
let block = self.block(block_meta);
let block_offset_row_id = match block {
Block::Dense(dense_block) => dense_block.rank(in_block_row_id),
Block::Sparse(sparse_block) => sparse_block.rank(in_block_row_id),
} as u32;
block_meta.non_null_rows_before_block + block_offset_row_id
}
#[inline]
fn rank_if_exists(&self, doc_id: DocId) -> Option<RowId> {
let RowAddr {
block_id,
in_block_row_id,
} = row_addr_from_row_id(doc_id);
let block_meta = self.block_metas[block_id as usize];
let block = self.block(block_meta);
let block_offset_row_id = match block {
Block::Dense(dense_block) => dense_block.rank_if_exists(in_block_row_id),
Block::Sparse(sparse_block) => sparse_block.rank_if_exists(in_block_row_id),
}? as u32;
Some(block_meta.non_null_rows_before_block + block_offset_row_id)
}
#[inline]
fn select(&self, rank: RowId) -> RowId {
let block_pos = self.find_block(rank, 0);
let block_doc_idx_start = (block_pos as u32) * ELEMENTS_PER_BLOCK;
let block_meta = self.block_metas[block_pos as usize];
let block: Block<'_> = self.block(block_meta);
let index_in_block = (rank - block_meta.non_null_rows_before_block) as u16;
let in_block_rank = match block {
Block::Dense(dense_block) => dense_block.select(index_in_block),
Block::Sparse(sparse_block) => sparse_block.select(index_in_block),
};
block_doc_idx_start + in_block_rank as u32
}
fn select_cursor(&self) -> OptionalIndexSelectCursor<'_> {
OptionalIndexSelectCursor {
current_block_cursor: BlockSelectCursor::Sparse(
SparseBlockCodec::open(b"").select_cursor(),
),
current_block_id: 0u16,
current_block_end_rank: 0u32, //< this is sufficient to force the first load
optional_index: self,
block_doc_idx_start: 0u32,
num_null_rows_before_block: 0u32,
}
}
}
impl OptionalIndex {
pub fn for_test(num_rows: RowId, row_ids: &[RowId]) -> OptionalIndex {
assert!(row_ids
.last()
.copied()
.map(|last_row_id| last_row_id < num_rows)
.unwrap_or(true));
let mut buffer = Vec::new();
serialize_optional_index(&row_ids, num_rows, &mut buffer).unwrap();
let bytes = OwnedBytes::new(buffer);
open_optional_index(bytes).unwrap()
}
pub fn num_docs(&self) -> RowId {
self.num_rows
}
pub fn num_non_nulls(&self) -> RowId {
self.num_non_null_rows
}
pub fn iter_rows(&self) -> impl Iterator<Item = RowId> + '_ {
// TODO optimize
let mut select_batch = self.select_cursor();
(0..self.num_non_null_rows).map(move |rank| select_batch.select(rank))
}
pub fn select_batch(&self, ranks: &mut [RowId]) {
let mut select_cursor = self.select_cursor();
for rank in ranks.iter_mut() {
*rank = select_cursor.select(*rank);
}
}
#[inline]
fn block(&self, block_meta: BlockMeta) -> Block<'_> {
let BlockMeta {
start_byte_offset,
block_variant,
..
} = block_meta;
let start_byte_offset = start_byte_offset as usize;
let bytes = self.block_data.as_slice();
match block_variant {
BlockVariant::Dense => Block::Dense(DenseBlockCodec::open(
&bytes[start_byte_offset..start_byte_offset + DENSE_BLOCK_NUM_BYTES as usize],
)),
BlockVariant::Sparse { num_vals } => {
let end_byte_offset = start_byte_offset + num_vals as usize * 2;
let sparse_bytes = &bytes[start_byte_offset..end_byte_offset];
Block::Sparse(SparseBlockCodec::open(sparse_bytes))
}
}
}
#[inline]
fn find_block(&self, dense_idx: u32, start_block_pos: u16) -> u16 {
for block_pos in start_block_pos..self.block_metas.len() as u16 {
let offset = self.block_metas[block_pos as usize].non_null_rows_before_block;
if offset > dense_idx {
return block_pos - 1u16;
}
}
self.block_metas.len() as u16 - 1u16
}
// TODO Add a good API for the codec_idx to original_idx translation.
// The Iterator API is a probably a bad idea
}
#[derive(Copy, Clone)]
enum Block<'a> {
Dense(DenseBlock<'a>),
Sparse(SparseBlock<'a>),
}
#[derive(Debug, Copy, Clone)]
enum OptionalIndexCodec {
Dense = 0,
Sparse = 1,
}
impl OptionalIndexCodec {
fn to_code(self) -> u8 {
self as u8
}
fn try_from_code(code: u8) -> Result<Self, InvalidData> {
match code {
0 => Ok(Self::Dense),
1 => Ok(Self::Sparse),
_ => Err(InvalidData),
}
}
}
impl BinarySerializable for OptionalIndexCodec {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(&[self.to_code()])
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let optional_codec_code = u8::deserialize(reader)?;
let optional_codec = Self::try_from_code(optional_codec_code)?;
Ok(optional_codec)
}
}
fn serialize_optional_index_block(block_els: &[u16], out: &mut impl io::Write) -> io::Result<()> {
let is_sparse = is_sparse(block_els.len() as u32);
if is_sparse {
SparseBlockCodec::serialize(block_els.iter().copied(), out)?;
} else {
DenseBlockCodec::serialize(block_els.iter().copied(), out)?;
}
Ok(())
}
pub fn serialize_optional_index<W: io::Write>(
non_null_rows: &dyn Iterable<RowId>,
num_rows: RowId,
output: &mut W,
) -> io::Result<()> {
VInt(num_rows as u64).serialize(output)?;
let mut rows_it = non_null_rows.boxed_iter();
let mut block_metadata: Vec<SerializedBlockMeta> = Vec::new();
let mut current_block = Vec::new();
// This if-statement for the first element ensures that
// `block_metadata` is not empty in the loop below.
let Some(idx) = rows_it.next() else {
output.write_all(&0u16.to_le_bytes())?;
return Ok(());
};
let row_addr = row_addr_from_row_id(idx);
let mut current_block_id = row_addr.block_id;
current_block.push(row_addr.in_block_row_id);
for idx in rows_it {
let value_addr = row_addr_from_row_id(idx);
if current_block_id != value_addr.block_id {
serialize_optional_index_block(&current_block[..], output)?;
block_metadata.push(SerializedBlockMeta {
block_id: current_block_id,
num_non_null_rows: current_block.len() as u32,
});
current_block.clear();
current_block_id = value_addr.block_id;
}
current_block.push(value_addr.in_block_row_id);
}
// handle last block
serialize_optional_index_block(&current_block[..], output)?;
block_metadata.push(SerializedBlockMeta {
block_id: current_block_id,
num_non_null_rows: current_block.len() as u32,
});
for block in &block_metadata {
output.write_all(&block.to_bytes())?;
}
output.write_all((block_metadata.len() as u16).to_le_bytes().as_ref())?;
Ok(())
}
const SERIALIZED_BLOCK_META_NUM_BYTES: usize = 4;
#[derive(Clone, Copy, Debug)]
struct SerializedBlockMeta {
block_id: u16,
num_non_null_rows: u32, //< takes values in 1..=u16::MAX
}
// TODO unit tests
impl SerializedBlockMeta {
#[inline]
fn from_bytes(bytes: [u8; SERIALIZED_BLOCK_META_NUM_BYTES]) -> SerializedBlockMeta {
let block_id = u16::from_le_bytes(bytes[0..2].try_into().unwrap());
let num_non_null_rows: u32 =
u16::from_le_bytes(bytes[2..4].try_into().unwrap()) as u32 + 1u32;
SerializedBlockMeta {
block_id,
num_non_null_rows,
}
}
#[inline]
fn to_bytes(self) -> [u8; SERIALIZED_BLOCK_META_NUM_BYTES] {
assert!(self.num_non_null_rows > 0);
let mut bytes = [0u8; SERIALIZED_BLOCK_META_NUM_BYTES];
bytes[0..2].copy_from_slice(&self.block_id.to_le_bytes());
// We don't store empty blocks, therefore we can subtract 1.
// This way we will be able to use u16 when the number of elements is 1 << 16 or u16::MAX+1
bytes[2..4].copy_from_slice(&((self.num_non_null_rows - 1u32) as u16).to_le_bytes());
bytes
}
}
#[inline]
fn is_sparse(num_rows_in_block: u32) -> bool {
num_rows_in_block < DENSE_BLOCK_THRESHOLD
}
fn deserialize_optional_index_block_metadatas(
data: &[u8],
num_rows: u32,
) -> (Box<[BlockMeta]>, u32) {
let num_blocks = data.len() / SERIALIZED_BLOCK_META_NUM_BYTES;
let mut block_metas = Vec::with_capacity(num_blocks + 1);
let mut start_byte_offset = 0;
let mut non_null_rows_before_block = 0;
for block_meta_bytes in data.chunks_exact(SERIALIZED_BLOCK_META_NUM_BYTES) {
let block_meta_bytes: [u8; SERIALIZED_BLOCK_META_NUM_BYTES] =
block_meta_bytes.try_into().unwrap();
let SerializedBlockMeta {
block_id,
num_non_null_rows,
} = SerializedBlockMeta::from_bytes(block_meta_bytes);
block_metas.resize(
block_id as usize,
BlockMeta {
non_null_rows_before_block,
start_byte_offset,
block_variant: BlockVariant::empty(),
},
);
let block_variant = if is_sparse(num_non_null_rows) {
BlockVariant::Sparse {
num_vals: num_non_null_rows as u16,
}
} else {
BlockVariant::Dense
};
block_metas.push(BlockMeta {
non_null_rows_before_block,
start_byte_offset,
block_variant,
});
start_byte_offset += block_variant.num_bytes_in_block();
non_null_rows_before_block += num_non_null_rows;
}
block_metas.resize(
((num_rows + BLOCK_SIZE - 1) / BLOCK_SIZE) as usize,
BlockMeta {
non_null_rows_before_block,
start_byte_offset,
block_variant: BlockVariant::empty(),
},
);
(block_metas.into_boxed_slice(), non_null_rows_before_block)
}
pub fn open_optional_index(bytes: OwnedBytes) -> io::Result<OptionalIndex> {
let (mut bytes, num_non_empty_blocks_bytes) = bytes.rsplit(2);
let num_non_empty_block_bytes =
u16::from_le_bytes(num_non_empty_blocks_bytes.as_slice().try_into().unwrap());
let num_rows = VInt::deserialize_u64(&mut bytes)? as u32;
let block_metas_num_bytes =
num_non_empty_block_bytes as usize * SERIALIZED_BLOCK_META_NUM_BYTES;
let (block_data, block_metas) = bytes.rsplit(block_metas_num_bytes);
let (block_metas, num_non_null_rows) =
deserialize_optional_index_block_metadatas(block_metas.as_slice(), num_rows);
let optional_index = OptionalIndex {
num_rows,
num_non_null_rows,
block_data,
block_metas: block_metas.into(),
};
Ok(optional_index)
}
#[cfg(test)]
mod tests;

View File

@@ -1,47 +0,0 @@
use std::io;
/// A codec makes it possible to serialize a set of
/// elements, and open the resulting Set representation.
pub trait SetCodec {
type Item: Copy + TryFrom<usize> + Eq + std::hash::Hash + std::fmt::Debug;
type Reader<'a>: Set<Self::Item>;
/// Serializes a set of unique sorted u16 elements.
///
/// May panic if the elements are not sorted.
fn serialize(els: impl Iterator<Item = Self::Item>, wrt: impl io::Write) -> io::Result<()>;
fn open(data: &[u8]) -> Self::Reader<'_>;
}
/// Stateful object that makes it possible to compute several select in a row,
/// provided the rank passed as argument are increasing.
pub trait SelectCursor<T> {
// May panic if rank is greater than the number of elements in the Set,
// or if rank is < than value provided in the previous call.
fn select(&mut self, rank: T) -> T;
}
pub trait Set<T> {
type SelectCursor<'b>: SelectCursor<T>
where Self: 'b;
/// Returns true if the elements is contained in the Set
fn contains(&self, el: T) -> bool;
/// Returns the number of rows in the set that are < `el`
fn rank(&self, el: T) -> T;
/// If the set contains `el` returns the element rank.
/// If the set does not contain the element, it returns `None`.
fn rank_if_exists(&self, el: T) -> Option<T>;
/// Return the rank-th value stored in this bitmap.
///
/// # Panics
///
/// May panic if rank is greater than the number of elements in the Set.
fn select(&self, rank: T) -> T;
/// Creates a brand new select cursor.
fn select_cursor(&self) -> Self::SelectCursor<'_>;
}

View File

@@ -1,278 +0,0 @@
use std::convert::TryInto;
use std::io::{self, Write};
use common::BinarySerializable;
use crate::column_index::optional_index::{SelectCursor, Set, SetCodec, ELEMENTS_PER_BLOCK};
#[inline(always)]
fn get_bit_at(input: u64, n: u16) -> bool {
input & (1 << n) != 0
}
#[inline]
fn set_bit_at(input: &mut u64, n: u16) {
*input |= 1 << n;
}
/// For the `DenseCodec`, `data` which contains the encoded blocks.
/// Each block consists of [u8; 12]. The first 8 bytes is a bitvec for 64 elements.
/// The last 4 bytes are the offset, the number of set bits so far.
///
/// When translating the original index to a dense index, the correct block can be computed
/// directly `orig_idx/64`. Inside the block the position is `orig_idx%64`.
///
/// When translating a dense index to the original index, we can use the offset to find the correct
/// block. Direct computation is not possible, but we can employ a linear or binary search.
const ELEMENTS_PER_MINI_BLOCK: u16 = 64;
const MINI_BLOCK_BITVEC_NUM_BYTES: usize = 8;
const MINI_BLOCK_OFFSET_NUM_BYTES: usize = 2;
pub const MINI_BLOCK_NUM_BYTES: usize = MINI_BLOCK_BITVEC_NUM_BYTES + MINI_BLOCK_OFFSET_NUM_BYTES;
/// Number of bytes in a dense block.
pub const DENSE_BLOCK_NUM_BYTES: u32 =
(ELEMENTS_PER_BLOCK / ELEMENTS_PER_MINI_BLOCK as u32) * MINI_BLOCK_NUM_BYTES as u32;
pub struct DenseBlockCodec;
impl SetCodec for DenseBlockCodec {
type Item = u16;
type Reader<'a> = DenseBlock<'a>;
fn serialize(els: impl Iterator<Item = u16>, wrt: impl io::Write) -> io::Result<()> {
serialize_dense_codec(els, wrt)
}
#[inline]
fn open(data: &[u8]) -> Self::Reader<'_> {
assert_eq!(data.len(), DENSE_BLOCK_NUM_BYTES as usize);
DenseBlock(data)
}
}
/// Interpreting the bitvec as a set of integer within 0..=63
/// and given an element, returns the number of elements in the
/// set lesser than the element.
///
/// # Panics
///
/// May panic or return a wrong result if el <= 64.
#[inline(always)]
fn rank_u64(bitvec: u64, el: u16) -> u16 {
debug_assert!(el < 64);
let mask = (1u64 << el) - 1;
let masked_bitvec = bitvec & mask;
masked_bitvec.count_ones() as u16
}
#[inline(always)]
fn select_u64(mut bitvec: u64, rank: u16) -> u16 {
for _ in 0..rank {
bitvec &= bitvec - 1;
}
bitvec.trailing_zeros() as u16
}
// TODO test the following solution on Intel... on Ryzen Zen <3 it is a catastrophy.
// #[target_feature(enable = "bmi2")]
// unsafe fn select_bitvec_unsafe(bitvec: u64, rank: u16) -> u16 {
// let pdep = _pdep_u64(1u64 << rank, bitvec);
// pdep.trailing_zeros() as u16
// }
#[derive(Clone, Copy, Debug)]
struct DenseMiniBlock {
bitvec: u64,
rank: u16,
}
impl DenseMiniBlock {
fn from_bytes(data: [u8; MINI_BLOCK_NUM_BYTES]) -> Self {
let bitvec = u64::from_le_bytes(data[..MINI_BLOCK_BITVEC_NUM_BYTES].try_into().unwrap());
let rank = u16::from_le_bytes(data[MINI_BLOCK_BITVEC_NUM_BYTES..].try_into().unwrap());
Self { bitvec, rank }
}
fn to_bytes(self) -> [u8; MINI_BLOCK_NUM_BYTES] {
let mut bytes = [0u8; MINI_BLOCK_NUM_BYTES];
bytes[..MINI_BLOCK_BITVEC_NUM_BYTES].copy_from_slice(&self.bitvec.to_le_bytes());
bytes[MINI_BLOCK_BITVEC_NUM_BYTES..].copy_from_slice(&self.rank.to_le_bytes());
bytes
}
}
#[derive(Copy, Clone)]
pub struct DenseBlock<'a>(&'a [u8]);
pub struct DenseBlockSelectCursor<'a> {
block_id: u16,
dense_block: DenseBlock<'a>,
}
impl<'a> SelectCursor<u16> for DenseBlockSelectCursor<'a> {
#[inline]
fn select(&mut self, rank: u16) -> u16 {
self.block_id = self
.dense_block
.find_miniblock_containing_rank(rank, self.block_id)
.unwrap();
let index_block = self.dense_block.mini_block(self.block_id);
let in_block_rank = rank - index_block.rank;
self.block_id * ELEMENTS_PER_MINI_BLOCK + select_u64(index_block.bitvec, in_block_rank)
}
}
impl<'a> Set<u16> for DenseBlock<'a> {
type SelectCursor<'b> = DenseBlockSelectCursor<'a> where Self: 'b;
#[inline(always)]
fn contains(&self, el: u16) -> bool {
let mini_block_id = el / ELEMENTS_PER_MINI_BLOCK;
let bitvec = self.mini_block(mini_block_id).bitvec;
let pos_in_bitvec = el % ELEMENTS_PER_MINI_BLOCK;
get_bit_at(bitvec, pos_in_bitvec)
}
#[inline(always)]
fn rank_if_exists(&self, el: u16) -> Option<u16> {
let block_pos = el / ELEMENTS_PER_MINI_BLOCK;
let index_block = self.mini_block(block_pos);
let pos_in_block_bit_vec = el % ELEMENTS_PER_MINI_BLOCK;
let ones_in_block = rank_u64(index_block.bitvec, pos_in_block_bit_vec);
let rank = index_block.rank + ones_in_block;
if get_bit_at(index_block.bitvec, pos_in_block_bit_vec) {
Some(rank)
} else {
None
}
}
#[inline(always)]
fn rank(&self, el: u16) -> u16 {
let block_pos = el / ELEMENTS_PER_MINI_BLOCK;
let index_block = self.mini_block(block_pos);
let pos_in_block_bit_vec = el % ELEMENTS_PER_MINI_BLOCK;
let ones_in_block = rank_u64(index_block.bitvec, pos_in_block_bit_vec);
index_block.rank + ones_in_block
}
#[inline(always)]
fn select(&self, rank: u16) -> u16 {
let block_id = self.find_miniblock_containing_rank(rank, 0).unwrap();
let index_block = self.mini_block(block_id);
let in_block_rank = rank - index_block.rank;
block_id * ELEMENTS_PER_MINI_BLOCK + select_u64(index_block.bitvec, in_block_rank)
}
#[inline(always)]
fn select_cursor(&self) -> Self::SelectCursor<'_> {
DenseBlockSelectCursor {
block_id: 0,
dense_block: *self,
}
}
}
impl<'a> DenseBlock<'a> {
#[inline]
fn mini_block(&self, mini_block_id: u16) -> DenseMiniBlock {
let data_start_pos = mini_block_id as usize * MINI_BLOCK_NUM_BYTES;
DenseMiniBlock::from_bytes(
self.0[data_start_pos..data_start_pos + MINI_BLOCK_NUM_BYTES]
.try_into()
.unwrap(),
)
}
#[inline]
fn iter_miniblocks(
&self,
from_block_id: u16,
) -> impl Iterator<Item = (u16, DenseMiniBlock)> + '_ {
self.0
.chunks_exact(MINI_BLOCK_NUM_BYTES)
.enumerate()
.skip(from_block_id as usize)
.map(|(block_id, bytes)| {
let mini_block = DenseMiniBlock::from_bytes(bytes.try_into().unwrap());
(block_id as u16, mini_block)
})
}
/// Finds the block position containing the dense_idx.
///
/// # Correctness
/// dense_idx needs to be smaller than the number of values in the index
///
/// The last offset number is equal to the number of values in the index.
#[inline]
fn find_miniblock_containing_rank(&self, rank: u16, from_block_id: u16) -> Option<u16> {
self.iter_miniblocks(from_block_id)
.take_while(|(_, block)| block.rank <= rank)
.map(|(block_id, _)| block_id)
.last()
}
}
/// Iterator over all values, true if set, otherwise false
pub fn serialize_dense_codec(
els: impl Iterator<Item = u16>,
mut output: impl Write,
) -> io::Result<()> {
let mut non_null_rows_before: u16 = 0u16;
let mut block = 0u64;
let mut current_block_id = 0u16;
for el in els {
let block_id = el / ELEMENTS_PER_MINI_BLOCK;
let in_offset = el % ELEMENTS_PER_MINI_BLOCK;
while block_id > current_block_id {
let dense_mini_block = DenseMiniBlock {
bitvec: block,
rank: non_null_rows_before,
};
output.write_all(&dense_mini_block.to_bytes())?;
non_null_rows_before += block.count_ones() as u16;
block = 0u64;
current_block_id += 1u16;
}
set_bit_at(&mut block, in_offset);
}
while current_block_id <= u16::MAX / ELEMENTS_PER_MINI_BLOCK {
block.serialize(&mut output)?;
non_null_rows_before.serialize(&mut output)?;
// This will overflow to 0 exactly if all bits are set.
// This is however not problem as we won't use this last value.
non_null_rows_before = non_null_rows_before.wrapping_add(block.count_ones() as u16);
block = 0u64;
current_block_id += 1u16;
}
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_select_bitvec() {
assert_eq!(select_u64(1u64, 0), 0);
assert_eq!(select_u64(2u64, 0), 1);
assert_eq!(select_u64(4u64, 0), 2);
assert_eq!(select_u64(8u64, 0), 3);
assert_eq!(select_u64(1 | 8u64, 0), 0);
assert_eq!(select_u64(1 | 8u64, 1), 3);
}
#[test]
fn test_count_ones() {
for i in 0..=63 {
assert_eq!(rank_u64(u64::MAX, i), i);
}
}
#[test]
fn test_dense() {
assert_eq!(DENSE_BLOCK_NUM_BYTES, 10_240);
}
}

View File

@@ -1,8 +0,0 @@
mod dense;
mod sparse;
pub use dense::{DenseBlock, DenseBlockCodec, DENSE_BLOCK_NUM_BYTES};
pub use sparse::{SparseBlock, SparseBlockCodec};
#[cfg(test)]
mod tests;

View File

@@ -1,111 +0,0 @@
use crate::column_index::optional_index::{SelectCursor, Set, SetCodec};
pub struct SparseBlockCodec;
impl SetCodec for SparseBlockCodec {
type Item = u16;
type Reader<'a> = SparseBlock<'a>;
fn serialize(
els: impl Iterator<Item = u16>,
mut wrt: impl std::io::Write,
) -> std::io::Result<()> {
for el in els {
wrt.write_all(&el.to_le_bytes())?;
}
Ok(())
}
fn open(data: &[u8]) -> Self::Reader<'_> {
SparseBlock(data)
}
}
#[derive(Copy, Clone)]
pub struct SparseBlock<'a>(&'a [u8]);
impl<'a> SelectCursor<u16> for SparseBlock<'a> {
#[inline]
fn select(&mut self, rank: u16) -> u16 {
<SparseBlock<'a> as Set<u16>>::select(self, rank)
}
}
impl<'a> Set<u16> for SparseBlock<'a> {
type SelectCursor<'b> = Self where Self: 'b;
#[inline(always)]
fn contains(&self, el: u16) -> bool {
self.binary_search(el).is_ok()
}
#[inline(always)]
fn rank_if_exists(&self, el: u16) -> Option<u16> {
self.binary_search(el).ok()
}
#[inline(always)]
fn rank(&self, el: u16) -> u16 {
self.binary_search(el).unwrap_or_else(|el| el)
}
#[inline(always)]
fn select(&self, rank: u16) -> u16 {
let offset = rank as usize * 2;
u16::from_le_bytes(self.0[offset..offset + 2].try_into().unwrap())
}
#[inline(always)]
fn select_cursor(&self) -> Self::SelectCursor<'_> {
*self
}
}
#[inline(always)]
fn get_u16(data: &[u8], byte_position: usize) -> u16 {
let bytes: [u8; 2] = data[byte_position..byte_position + 2].try_into().unwrap();
u16::from_le_bytes(bytes)
}
impl<'a> SparseBlock<'a> {
#[inline(always)]
fn value_at_idx(&self, data: &[u8], idx: u16) -> u16 {
let start_offset: usize = idx as usize * 2;
get_u16(data, start_offset)
}
#[inline]
fn num_vals(&self) -> u16 {
(self.0.len() / 2) as u16
}
#[inline]
#[allow(clippy::comparison_chain)]
// Looks for the element in the block. Returns the positions if found.
fn binary_search(&self, target: u16) -> Result<u16, u16> {
let data = &self.0;
let mut size = self.num_vals();
let mut left = 0;
let mut right = size;
// TODO try different implem.
// e.g. exponential search into binary search
while left < right {
let mid = left + size / 2;
// TODO do boundary check only once, and then use an
// unsafe `value_at_idx`
let mid_val = self.value_at_idx(data, mid);
if target > mid_val {
left = mid + 1;
} else if target < mid_val {
right = mid;
} else {
return Ok(mid);
}
size = right - left;
}
Err(left)
}
}

View File

@@ -1,109 +0,0 @@
use std::collections::HashMap;
use crate::column_index::optional_index::set_block::dense::DENSE_BLOCK_NUM_BYTES;
use crate::column_index::optional_index::set_block::{DenseBlockCodec, SparseBlockCodec};
use crate::column_index::optional_index::{SelectCursor, Set, SetCodec};
fn test_set_helper<C: SetCodec<Item = u16>>(vals: &[u16]) -> usize {
let mut buffer = Vec::new();
C::serialize(vals.iter().copied(), &mut buffer).unwrap();
let tested_set = C::open(buffer.as_slice());
let hash_set: HashMap<C::Item, C::Item> = vals
.iter()
.copied()
.enumerate()
.map(|(ord, val)| (val, C::Item::try_from(ord).ok().unwrap()))
.collect();
for val in 0u16..=u16::MAX {
assert_eq!(tested_set.contains(val), hash_set.contains_key(&val));
assert_eq!(tested_set.rank_if_exists(val), hash_set.get(&val).copied());
assert_eq!(
tested_set.rank(val),
vals.iter().cloned().take_while(|v| *v < val).count() as u16
);
}
for rank in 0..vals.len() {
assert_eq!(tested_set.select(rank as u16), vals[rank]);
}
buffer.len()
}
#[test]
fn test_dense_block_set_u16_empty() {
let buffer_len = test_set_helper::<DenseBlockCodec>(&[]);
assert_eq!(buffer_len, DENSE_BLOCK_NUM_BYTES as usize);
}
#[test]
fn test_dense_block_set_u16_max() {
let buffer_len = test_set_helper::<DenseBlockCodec>(&[u16::MAX]);
assert_eq!(buffer_len, DENSE_BLOCK_NUM_BYTES as usize);
}
#[test]
fn test_sparse_block_set_u16_empty() {
let buffer_len = test_set_helper::<SparseBlockCodec>(&[]);
assert_eq!(buffer_len, 0);
}
#[test]
fn test_sparse_block_set_u16_max() {
let buffer_len = test_set_helper::<SparseBlockCodec>(&[u16::MAX]);
assert_eq!(buffer_len, 2);
}
use proptest::prelude::*;
proptest! {
#![proptest_config(ProptestConfig::with_cases(1))]
#[test]
fn test_prop_test_dense(els in proptest::collection::btree_set(0..=u16::MAX, 0..=u16::MAX as usize)) {
let vals: Vec<u16> = els.into_iter().collect();
let buffer_len = test_set_helper::<DenseBlockCodec>(&vals);
assert_eq!(buffer_len, DENSE_BLOCK_NUM_BYTES as usize);
}
#[test]
fn test_prop_test_sparse(els in proptest::collection::btree_set(0..=u16::MAX, 0..=u16::MAX as usize)) {
let vals: Vec<u16> = els.into_iter().collect();
let buffer_len = test_set_helper::<SparseBlockCodec>(&vals);
assert_eq!(buffer_len, vals.len() * 2);
}
}
#[test]
fn test_simple_translate_codec_codec_idx_to_original_idx_dense() {
let mut buffer = Vec::new();
DenseBlockCodec::serialize([1, 3, 17, 32, 30_000, 30_001].iter().copied(), &mut buffer)
.unwrap();
let tested_set = DenseBlockCodec::open(buffer.as_slice());
assert!(tested_set.contains(1));
let mut select_cursor = tested_set.select_cursor();
assert_eq!(select_cursor.select(0), 1);
assert_eq!(select_cursor.select(1), 3);
assert_eq!(select_cursor.select(2), 17);
}
#[test]
fn test_simple_translate_codec_idx_to_original_idx_sparse() {
let mut buffer = Vec::new();
SparseBlockCodec::serialize([1, 3, 17].iter().copied(), &mut buffer).unwrap();
let tested_set = SparseBlockCodec::open(buffer.as_slice());
assert!(tested_set.contains(1));
let mut select_cursor = tested_set.select_cursor();
assert_eq!(SelectCursor::select(&mut select_cursor, 0), 1);
assert_eq!(SelectCursor::select(&mut select_cursor, 1), 3);
assert_eq!(SelectCursor::select(&mut select_cursor, 2), 17);
}
#[test]
fn test_simple_translate_codec_idx_to_original_idx_dense() {
let mut buffer = Vec::new();
DenseBlockCodec::serialize(0u16..150u16, &mut buffer).unwrap();
let tested_set = DenseBlockCodec::open(buffer.as_slice());
assert!(tested_set.contains(1));
let mut select_cursor = tested_set.select_cursor();
for i in 0..150 {
assert_eq!(i, select_cursor.select(i));
}
}

View File

@@ -1,371 +0,0 @@
use proptest::prelude::{any, prop, *};
use proptest::strategy::Strategy;
use proptest::{prop_oneof, proptest};
use super::*;
#[test]
fn test_dense_block_threshold() {
assert_eq!(super::DENSE_BLOCK_THRESHOLD, 5_120);
}
fn random_bitvec() -> BoxedStrategy<Vec<bool>> {
prop_oneof![
1 => prop::collection::vec(proptest::bool::weighted(1.0), 0..100),
1 => prop::collection::vec(proptest::bool::weighted(0.00), 0..(ELEMENTS_PER_BLOCK as usize * 3)), // empty blocks
1 => prop::collection::vec(proptest::bool::weighted(1.00), 0..(ELEMENTS_PER_BLOCK as usize + 10)), // full block
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..100),
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..u16::MAX as usize),
8 => vec![any::<bool>()],
]
.boxed()
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(50))]
#[test]
fn test_with_random_bitvecs(bitvec1 in random_bitvec(), bitvec2 in random_bitvec(), bitvec3 in random_bitvec()) {
let mut bitvec = Vec::new();
bitvec.extend_from_slice(&bitvec1);
bitvec.extend_from_slice(&bitvec2);
bitvec.extend_from_slice(&bitvec3);
test_null_index(&bitvec[..]);
}
}
#[test]
fn test_with_random_sets_simple() {
let vals = 10..BLOCK_SIZE * 2;
let mut out: Vec<u8> = Vec::new();
serialize_optional_index(&vals, 100, &mut out).unwrap();
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
let ranks: Vec<u32> = (65_472u32..65_473u32).collect();
let els: Vec<u32> = ranks.iter().copied().map(|rank| rank + 10).collect();
let mut select_cursor = null_index.select_cursor();
for (rank, el) in ranks.iter().copied().zip(els.iter().copied()) {
assert_eq!(select_cursor.select(rank), el);
}
}
#[test]
fn test_optional_index_trailing_empty_blocks() {
test_null_index(&[false]);
}
#[test]
fn test_optional_index_one_block_false() {
let mut iter = vec![false; ELEMENTS_PER_BLOCK as usize];
iter.push(true);
test_null_index(&iter[..]);
}
#[test]
fn test_optional_index_one_block_true() {
let mut iter = vec![true; ELEMENTS_PER_BLOCK as usize];
iter.push(true);
test_null_index(&iter[..]);
}
impl<'a> Iterable<RowId> for &'a [bool] {
fn boxed_iter(&self) -> Box<dyn Iterator<Item = RowId> + 'a> {
Box::new(
self.iter()
.cloned()
.enumerate()
.filter(|(_pos, val)| *val)
.map(|(pos, _val)| pos as u32),
)
}
}
fn test_null_index(data: &[bool]) {
let mut out: Vec<u8> = Vec::new();
serialize_optional_index(&data, data.len() as RowId, &mut out).unwrap();
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
let orig_idx_with_value: Vec<u32> = data
.iter()
.enumerate()
.filter(|(_pos, val)| **val)
.map(|(pos, _val)| pos as u32)
.collect();
let mut select_iter = null_index.select_cursor();
for i in 0..orig_idx_with_value.len() {
assert_eq!(select_iter.select(i as u32), orig_idx_with_value[i]);
}
let step_size = (orig_idx_with_value.len() / 100).max(1);
for (dense_idx, orig_idx) in orig_idx_with_value.iter().enumerate().step_by(step_size) {
assert_eq!(null_index.rank_if_exists(*orig_idx), Some(dense_idx as u32));
}
// 100 samples
let step_size = (data.len() / 100).max(1);
for (pos, value) in data.iter().enumerate().step_by(step_size) {
assert_eq!(null_index.contains(pos as u32), *value);
}
}
#[test]
fn test_optional_index_test_translation() {
let optional_index = OptionalIndex::for_test(4, &[0, 2]);
let mut select_cursor = optional_index.select_cursor();
assert_eq!(select_cursor.select(0), 0);
assert_eq!(select_cursor.select(1), 2);
}
#[test]
fn test_optional_index_translate() {
let optional_index = OptionalIndex::for_test(4, &[0, 2]);
assert_eq!(optional_index.rank_if_exists(0), Some(0));
assert_eq!(optional_index.rank_if_exists(2), Some(1));
}
#[test]
fn test_optional_index_small() {
let optional_index = OptionalIndex::for_test(4, &[0, 2]);
assert!(optional_index.contains(0));
assert!(!optional_index.contains(1));
assert!(optional_index.contains(2));
assert!(!optional_index.contains(3));
}
#[test]
fn test_optional_index_large() {
let row_ids = &[ELEMENTS_PER_BLOCK, ELEMENTS_PER_BLOCK + 1];
let optional_index = OptionalIndex::for_test(ELEMENTS_PER_BLOCK + 2, row_ids);
assert!(!optional_index.contains(0));
assert!(!optional_index.contains(100));
assert!(!optional_index.contains(ELEMENTS_PER_BLOCK - 1));
assert!(optional_index.contains(ELEMENTS_PER_BLOCK));
assert!(optional_index.contains(ELEMENTS_PER_BLOCK + 1));
}
fn test_optional_index_iter_aux(row_ids: &[RowId], num_rows: RowId) {
let optional_index = OptionalIndex::for_test(num_rows, row_ids);
assert_eq!(optional_index.num_docs(), num_rows);
assert!(optional_index.iter_rows().eq(row_ids.iter().copied()));
}
#[test]
fn test_optional_index_iter_empty() {
test_optional_index_iter_aux(&[], 0u32);
}
fn test_optional_index_rank_aux(row_ids: &[RowId]) {
let num_rows = row_ids.last().copied().unwrap_or(0u32) + 1;
let null_index = OptionalIndex::for_test(num_rows, row_ids);
assert_eq!(null_index.num_docs(), num_rows);
for (row_id, row_val) in row_ids.iter().copied().enumerate() {
assert_eq!(null_index.rank(row_val), row_id as u32);
assert_eq!(null_index.rank_if_exists(row_val), Some(row_id as u32));
if row_val > 0 && !null_index.contains(&row_val - 1) {
assert_eq!(null_index.rank(row_val - 1), row_id as u32);
}
assert_eq!(null_index.rank(row_val + 1), row_id as u32 + 1);
}
}
#[test]
fn test_optional_index_rank() {
test_optional_index_rank_aux(&[1u32]);
test_optional_index_rank_aux(&[0u32, 1u32]);
let mut block = Vec::new();
block.push(3u32);
block.extend((0..BLOCK_SIZE).map(|i| i + BLOCK_SIZE + 1));
test_optional_index_rank_aux(&block);
}
#[test]
fn test_optional_index_iter_empty_one() {
test_optional_index_iter_aux(&[1], 2u32);
test_optional_index_iter_aux(&[100_000], 200_000u32);
}
#[test]
fn test_optional_index_iter_dense_block() {
let mut block = Vec::new();
block.push(3u32);
block.extend((0..BLOCK_SIZE).map(|i| i + BLOCK_SIZE + 1));
test_optional_index_iter_aux(&block, 3 * BLOCK_SIZE);
}
#[test]
fn test_optional_index_for_tests() {
let optional_index = OptionalIndex::for_test(4, &[1, 2]);
assert!(!optional_index.contains(0));
assert!(optional_index.contains(1));
assert!(optional_index.contains(2));
assert!(!optional_index.contains(3));
assert_eq!(optional_index.num_docs(), 4);
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use test::Bencher;
use super::*;
const TOTAL_NUM_VALUES: u32 = 1_000_000;
fn gen_bools(fill_ratio: f64) -> OptionalIndex {
let mut out = Vec::new();
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
let vals: Vec<RowId> = (0..TOTAL_NUM_VALUES)
.map(|_| rng.gen_bool(fill_ratio))
.enumerate()
.filter(|(pos, val)| *val)
.map(|(pos, _)| pos as RowId)
.collect();
serialize_optional_index(&&vals[..], TOTAL_NUM_VALUES, &mut out).unwrap();
let codec = open_optional_index(OwnedBytes::new(out)).unwrap();
codec
}
fn random_range_iterator(
start: u32,
end: u32,
avg_step_size: u32,
avg_deviation: u32,
) -> impl Iterator<Item = u32> {
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
let mut current = start;
std::iter::from_fn(move || {
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
if current >= end {
None
} else {
Some(current)
}
})
}
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
let ratio = percent as f32 / 100.0;
let step_size = (1f32 / ratio) as u32;
let deviation = step_size - 1;
random_range_iterator(0, num_values, step_size, deviation)
}
fn walk_over_data(codec: &OptionalIndex, avg_step_size: u32) -> Option<u32> {
walk_over_data_from_positions(
codec,
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
)
}
fn walk_over_data_from_positions(
codec: &OptionalIndex,
positions: impl Iterator<Item = u32>,
) -> Option<u32> {
let mut dense_idx: Option<u32> = None;
for idx in positions {
dense_idx = dense_idx.or(codec.rank_if_exists(idx));
}
dense_idx
}
#[bench]
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.05f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.05f64);
bench.iter(|| walk_over_data(&codec, 1000));
}
#[bench]
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
}
#[bench]
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
let codec = gen_bools(0.1f64);
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
}
#[bench]
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
let codec = gen_bools(0.9f64);
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
}
#[bench]
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.1f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.5f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.9f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.01f64, 0.005f32, bench);
}
#[bench]
fn bench_translate_codec_to_orig_10percent_filled_0comma005percent_hit(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.1f64, 0.005f32, bench);
}
#[bench]
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.01f64, 10f32, bench);
}
#[bench]
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.01f64, 100f32, bench);
}
fn bench_translate_codec_to_orig_util(
percent_filled: f64,
percent_hit: f32,
bench: &mut Bencher,
) {
let codec = gen_bools(percent_filled);
let num_non_nulls = codec.num_non_nulls();
let idxs: Vec<u32> = if percent_hit == 100.0f32 {
(0..num_non_nulls).collect()
} else {
n_percent_step_iterator(percent_hit, num_non_nulls).collect()
};
let mut output = vec![0u32; idxs.len()];
bench.iter(|| {
output.copy_from_slice(&idxs[..]);
codec.select_batch(&mut output);
});
}
#[bench]
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.9f64, 0.005, bench);
}
#[bench]
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.9f64, 100.0f32, bench);
}
}

View File

@@ -1,77 +0,0 @@
use std::io;
use std::io::Write;
use common::{CountingWriter, OwnedBytes};
use crate::column_index::multivalued_index::serialize_multivalued_index;
use crate::column_index::optional_index::serialize_optional_index;
use crate::column_index::ColumnIndex;
use crate::iterable::Iterable;
use crate::{Cardinality, RowId};
pub enum SerializableColumnIndex<'a> {
Full,
Optional {
non_null_row_ids: Box<dyn Iterable<RowId> + 'a>,
num_rows: RowId,
},
// TODO remove the Arc<dyn> apart from serialization this is not
// dynamic at all.
Multivalued(Box<dyn Iterable<RowId> + 'a>),
}
impl<'a> SerializableColumnIndex<'a> {
pub fn get_cardinality(&self) -> Cardinality {
match self {
SerializableColumnIndex::Full => Cardinality::Full,
SerializableColumnIndex::Optional { .. } => Cardinality::Optional,
SerializableColumnIndex::Multivalued(_) => Cardinality::Multivalued,
}
}
}
pub fn serialize_column_index(
column_index: SerializableColumnIndex,
output: &mut impl Write,
) -> io::Result<u32> {
let mut output = CountingWriter::wrap(output);
let cardinality = column_index.get_cardinality().to_code();
output.write_all(&[cardinality])?;
match column_index {
SerializableColumnIndex::Full => {}
SerializableColumnIndex::Optional {
non_null_row_ids,
num_rows,
} => serialize_optional_index(non_null_row_ids.as_ref(), num_rows, &mut output)?,
SerializableColumnIndex::Multivalued(multivalued_index) => {
serialize_multivalued_index(&*multivalued_index, &mut output)?
}
}
let column_index_num_bytes = output.written_bytes() as u32;
Ok(column_index_num_bytes)
}
pub fn open_column_index(mut bytes: OwnedBytes) -> io::Result<ColumnIndex> {
if bytes.is_empty() {
return Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
"Failed to deserialize column index. Empty buffer.",
));
}
let cardinality_code = bytes[0];
let cardinality = Cardinality::try_from_code(cardinality_code)?;
bytes.advance(1);
match cardinality {
Cardinality::Full => Ok(ColumnIndex::Full),
Cardinality::Optional => {
let optional_index = super::optional_index::open_optional_index(bytes)?;
Ok(ColumnIndex::Optional(optional_index))
}
Cardinality::Multivalued => {
let multivalue_index = super::multivalued_index::open_multivalued_index(bytes)?;
Ok(ColumnIndex::Multivalued(multivalue_index))
}
}
}
// TODO unit tests

View File

@@ -1,135 +0,0 @@
use std::sync::Arc;
use common::OwnedBytes;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use test::{self, Bencher};
use super::*;
use crate::column_values::u64_based::*;
fn get_data() -> Vec<u64> {
let mut rng = StdRng::seed_from_u64(2u64);
let mut data: Vec<_> = (100..55000_u64)
.map(|num| num + rng.gen::<u8>() as u64)
.collect();
data.push(99_000);
data.insert(1000, 2000);
data.insert(2000, 100);
data.insert(3000, 4100);
data.insert(4000, 100);
data.insert(5000, 800);
data
}
fn compute_stats(vals: impl Iterator<Item = u64>) -> ColumnStats {
let mut stats_collector = StatsCollector::default();
for val in vals {
stats_collector.collect(val);
}
stats_collector.stats()
}
#[inline(never)]
fn value_iter() -> impl Iterator<Item = u64> {
0..20_000
}
fn get_reader_for_bench<Codec: ColumnCodec>(data: &[u64]) -> Codec::ColumnValues {
let mut bytes = Vec::new();
let stats = compute_stats(data.iter().cloned());
let mut codec_serializer = Codec::estimator();
for val in data {
codec_serializer.collect(*val);
}
codec_serializer.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes);
Codec::load(OwnedBytes::new(bytes)).unwrap()
}
fn bench_get<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
let col = get_reader_for_bench::<Codec>(data);
b.iter(|| {
let mut sum = 0u64;
for pos in value_iter() {
let val = col.get_val(pos as u32);
sum = sum.wrapping_add(val);
}
sum
});
}
#[inline(never)]
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn ColumnValues>) {
b.iter(|| {
let mut sum = 0u64;
for pos in value_iter() {
let val = col.get_val(pos as u32);
sum = sum.wrapping_add(val);
}
sum
});
}
fn bench_get_dynamic<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
let col = Arc::new(get_reader_for_bench::<Codec>(data));
bench_get_dynamic_helper(b, col);
}
fn bench_create<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
let stats = compute_stats(data.iter().cloned());
let mut bytes = Vec::new();
b.iter(|| {
bytes.clear();
let mut codec_serializer = Codec::estimator();
for val in data.iter().take(1024) {
codec_serializer.collect(*val);
}
codec_serializer.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes)
});
}
#[bench]
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<BlockwiseLinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<BlockwiseLinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
}

View File

@@ -1,40 +0,0 @@
use std::fmt::Debug;
use std::sync::Arc;
use crate::iterable::Iterable;
use crate::{ColumnIndex, ColumnValues, MergeRowOrder};
pub(crate) struct MergedColumnValues<'a, T> {
pub(crate) column_indexes: &'a [ColumnIndex],
pub(crate) column_values: &'a [Option<Arc<dyn ColumnValues<T>>>],
pub(crate) merge_row_order: &'a MergeRowOrder,
}
impl<'a, T: Copy + PartialOrd + Debug> Iterable<T> for MergedColumnValues<'a, T> {
fn boxed_iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
match self.merge_row_order {
MergeRowOrder::Stack(_) => Box::new(
self.column_values
.iter()
.flatten()
.flat_map(|column_value| column_value.iter()),
),
MergeRowOrder::Shuffled(shuffle_merge_order) => Box::new(
shuffle_merge_order
.iter_new_to_old_row_addrs()
.flat_map(|row_addr| {
let column_index = &self.column_indexes[row_addr.segment_ord as usize];
let column_values =
self.column_values[row_addr.segment_ord as usize].as_ref()?;
let value_range = column_index.value_row_ids(row_addr.row_id);
Some((value_range, column_values))
})
.flat_map(|(value_range, column_values)| {
value_range
.into_iter()
.map(|val| column_values.get_val(val))
}),
),
}
}
}

View File

@@ -1,208 +0,0 @@
#![warn(missing_docs)]
//! # `fastfield_codecs`
//!
//! - Columnar storage of data for tantivy [`crate::Column`].
//! - Encode data in different codecs.
//! - Monotonically map values to u64/u128
use std::fmt::Debug;
use std::ops::{Range, RangeInclusive};
use std::sync::Arc;
pub use monotonic_mapping::{MonotonicallyMappableToU64, StrictlyMonotonicFn};
pub use monotonic_mapping_u128::MonotonicallyMappableToU128;
mod merge;
pub(crate) mod monotonic_mapping;
pub(crate) mod monotonic_mapping_u128;
mod stats;
mod u128_based;
mod u64_based;
mod vec_column;
mod monotonic_column;
pub(crate) use merge::MergedColumnValues;
pub use stats::ColumnStats;
pub use u128_based::{open_u128_mapped, serialize_column_values_u128};
pub use u64_based::{
load_u64_based_column_values, serialize_and_load_u64_based_column_values,
serialize_u64_based_column_values, CodecType, ALL_U64_CODEC_TYPES,
};
pub use vec_column::VecColumn;
pub use self::monotonic_column::monotonic_map_column;
use crate::RowId;
/// `ColumnValues` provides access to a dense field column.
///
/// `Column` are just a wrapper over `ColumnValues` and a `ColumnIndex`.
///
/// Any methods with a default and specialized implementation need to be called in the
/// wrappers that implement the trait: Arc and MonotonicMappingColumn
pub trait ColumnValues<T: PartialOrd = u64>: Send + Sync {
/// Return the value associated with the given idx.
///
/// This accessor should return as fast as possible.
///
/// # Panics
///
/// May panic if `idx` is greater than the column length.
fn get_val(&self, idx: u32) -> T;
/// Allows to push down multiple fetch calls, to avoid dynamic dispatch overhead.
///
/// idx and output should have the same length
///
/// # Panics
///
/// May panic if `idx` is greater than the column length.
fn get_vals(&self, indexes: &[u32], output: &mut [T]) {
assert!(indexes.len() == output.len());
let out_and_idx_chunks = output.chunks_exact_mut(4).zip(indexes.chunks_exact(4));
for (out_x4, idx_x4) in out_and_idx_chunks {
out_x4[0] = self.get_val(idx_x4[0]);
out_x4[1] = self.get_val(idx_x4[1]);
out_x4[2] = self.get_val(idx_x4[2]);
out_x4[3] = self.get_val(idx_x4[3]);
}
let step_size = 4;
let cutoff = indexes.len() - indexes.len() % step_size;
for idx in cutoff..indexes.len() {
output[idx] = self.get_val(indexes[idx]);
}
}
/// Fills an output buffer with the fast field values
/// associated with the `DocId` going from
/// `start` to `start + output.len()`.
///
/// # Panics
///
/// Must panic if `start + output.len()` is greater than
/// the segment's `maxdoc`.
#[inline(always)]
fn get_range(&self, start: u64, output: &mut [T]) {
for (out, idx) in output.iter_mut().zip(start..) {
*out = self.get_val(idx as u32);
}
}
/// Get the row ids of values which are in the provided value range.
///
/// Note that position == docid for single value fast fields
fn get_row_ids_for_value_range(
&self,
value_range: RangeInclusive<T>,
row_id_range: Range<RowId>,
row_id_hits: &mut Vec<RowId>,
) {
let row_id_range = row_id_range.start..row_id_range.end.min(self.num_vals());
for idx in row_id_range.start..row_id_range.end {
let val = self.get_val(idx);
if value_range.contains(&val) {
row_id_hits.push(idx);
}
}
}
/// Returns a lower bound for this column of values.
///
/// All values are guaranteed to be higher than `.min_value()`
/// but this value is not necessary the best boundary value.
///
/// We have
/// ∀i < self.num_vals(), self.get_val(i) >= self.min_value()
/// But we don't have necessarily
/// ∃i < self.num_vals(), self.get_val(i) == self.min_value()
fn min_value(&self) -> T;
/// Returns an upper bound for this column of values.
///
/// All values are guaranteed to be lower than `.max_value()`
/// but this value is not necessary the best boundary value.
///
/// We have
/// ∀i < self.num_vals(), self.get_val(i) <= self.max_value()
/// But we don't have necessarily
/// ∃i < self.num_vals(), self.get_val(i) == self.max_value()
fn max_value(&self) -> T;
/// The number of values in the column.
fn num_vals(&self) -> u32;
/// Returns a iterator over the data
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = T> + 'a> {
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
}
}
/// Empty column of values.
pub struct EmptyColumnValues;
impl<T: PartialOrd + Default> ColumnValues<T> for EmptyColumnValues {
fn get_val(&self, _idx: u32) -> T {
panic!("Internal Error: Called get_val of empty column.")
}
fn min_value(&self) -> T {
T::default()
}
fn max_value(&self) -> T {
T::default()
}
fn num_vals(&self) -> u32 {
0
}
}
impl<T: Copy + PartialOrd + Debug> ColumnValues<T> for Arc<dyn ColumnValues<T>> {
#[inline(always)]
fn get_val(&self, idx: u32) -> T {
self.as_ref().get_val(idx)
}
#[inline(always)]
fn min_value(&self) -> T {
self.as_ref().min_value()
}
#[inline(always)]
fn max_value(&self) -> T {
self.as_ref().max_value()
}
#[inline(always)]
fn num_vals(&self) -> u32 {
self.as_ref().num_vals()
}
#[inline(always)]
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
self.as_ref().iter()
}
#[inline(always)]
fn get_range(&self, start: u64, output: &mut [T]) {
self.as_ref().get_range(start, output)
}
#[inline(always)]
fn get_row_ids_for_value_range(
&self,
range: RangeInclusive<T>,
doc_id_range: Range<u32>,
positions: &mut Vec<u32>,
) {
self.as_ref()
.get_row_ids_for_value_range(range, doc_id_range, positions)
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench;

View File

@@ -1,120 +0,0 @@
use std::fmt::Debug;
use std::marker::PhantomData;
use std::ops::{Range, RangeInclusive};
use crate::column_values::monotonic_mapping::StrictlyMonotonicFn;
use crate::ColumnValues;
struct MonotonicMappingColumn<C, T, Input> {
from_column: C,
monotonic_mapping: T,
_phantom: PhantomData<Input>,
}
/// Creates a view of a column transformed by a strictly monotonic mapping. See
/// [`StrictlyMonotonicFn`].
///
/// E.g. apply a gcd monotonic_mapping([100, 200, 300]) == [1, 2, 3]
/// monotonic_mapping.mapping() is expected to be injective, and we should always have
/// monotonic_mapping.inverse(monotonic_mapping.mapping(el)) == el
///
/// The inverse of the mapping is required for:
/// `fn get_positions_for_value_range(&self, range: RangeInclusive<T>) -> Vec<u64> `
/// The user provides the original value range and we need to monotonic map them in the same way the
/// serialization does before calling the underlying column.
///
/// Note that when opening a codec, the monotonic_mapping should be the inverse of the mapping
/// during serialization. And therefore the monotonic_mapping_inv when opening is the same as
/// monotonic_mapping during serialization.
pub fn monotonic_map_column<C, T, Input, Output>(
from_column: C,
monotonic_mapping: T,
) -> impl ColumnValues<Output>
where
C: ColumnValues<Input>,
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
Input: PartialOrd + Debug + Send + Sync + Clone,
Output: PartialOrd + Debug + Send + Sync + Clone,
{
MonotonicMappingColumn {
from_column,
monotonic_mapping,
_phantom: PhantomData,
}
}
impl<C, T, Input, Output> ColumnValues<Output> for MonotonicMappingColumn<C, T, Input>
where
C: ColumnValues<Input>,
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
Input: PartialOrd + Send + Debug + Sync + Clone,
Output: PartialOrd + Send + Debug + Sync + Clone,
{
#[inline(always)]
fn get_val(&self, idx: u32) -> Output {
let from_val = self.from_column.get_val(idx);
self.monotonic_mapping.mapping(from_val)
}
fn min_value(&self) -> Output {
let from_min_value = self.from_column.min_value();
self.monotonic_mapping.mapping(from_min_value)
}
fn max_value(&self) -> Output {
let from_max_value = self.from_column.max_value();
self.monotonic_mapping.mapping(from_max_value)
}
fn num_vals(&self) -> u32 {
self.from_column.num_vals()
}
fn iter(&self) -> Box<dyn Iterator<Item = Output> + '_> {
Box::new(
self.from_column
.iter()
.map(|el| self.monotonic_mapping.mapping(el)),
)
}
fn get_row_ids_for_value_range(
&self,
range: RangeInclusive<Output>,
doc_id_range: Range<u32>,
positions: &mut Vec<u32>,
) {
self.from_column.get_row_ids_for_value_range(
self.monotonic_mapping.inverse(range.start().clone())
..=self.monotonic_mapping.inverse(range.end().clone()),
doc_id_range,
positions,
)
}
// We voluntarily do not implement get_range as it yields a regression,
// and we do not have any specialized implementation anyway.
}
#[cfg(test)]
mod tests {
use super::*;
use crate::column_values::monotonic_mapping::{
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
};
use crate::column_values::VecColumn;
#[test]
fn test_monotonic_mapping_iter() {
let vals: Vec<u64> = (0..100u64).map(|el| el * 10).collect();
let col = VecColumn::from(&vals);
let mapped = monotonic_map_column(
col,
StrictlyMonotonicMappingInverter::from(StrictlyMonotonicMappingToInternal::<i64>::new()),
);
let val_i64s: Vec<u64> = mapped.iter().collect();
for i in 0..100 {
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
}
}
}

View File

@@ -1,211 +0,0 @@
use std::fmt::Debug;
use std::marker::PhantomData;
use common::DateTime;
use super::MonotonicallyMappableToU128;
use crate::RowId;
/// Monotonic maps a value to u64 value space.
/// Monotonic mapping enables `PartialOrd` on u64 space without conversion to original space.
pub trait MonotonicallyMappableToU64: 'static + PartialOrd + Debug + Copy + Send + Sync {
/// Converts a value to u64.
///
/// Internally all fast field values are encoded as u64.
fn to_u64(self) -> u64;
/// Converts a value from u64
///
/// Internally all fast field values are encoded as u64.
/// **Note: To be used for converting encoded Term, Posting values.**
fn from_u64(val: u64) -> Self;
}
/// Values need to be strictly monotonic mapped to a `Internal` value (u64 or u128) that can be
/// used in fast field codecs.
///
/// The monotonic mapping is required so that `PartialOrd` can be used on `Internal` without
/// converting to `External`.
///
/// All strictly monotonic functions are invertible because they are guaranteed to have a one-to-one
/// mapping from their range to their domain. The `inverse` method is required when opening a codec,
/// so a value can be converted back to its original domain (e.g. ip address or f64) from its
/// internal representation.
pub trait StrictlyMonotonicFn<External, Internal> {
/// Strictly monotonically maps the value from External to Internal.
fn mapping(&self, inp: External) -> Internal;
/// Inverse of `mapping`. Maps the value from Internal to External.
fn inverse(&self, out: Internal) -> External;
}
/// Inverts a strictly monotonic mapping from `StrictlyMonotonicFn<A, B>` to
/// `StrictlyMonotonicFn<B, A>`.
///
/// # Warning
///
/// This type comes with a footgun. A type being strictly monotonic does not impose that the inverse
/// mapping is strictly monotonic over the entire space External. e.g. a -> a * 2. Use at your own
/// risks.
pub(crate) struct StrictlyMonotonicMappingInverter<T> {
orig_mapping: T,
}
impl<T> From<T> for StrictlyMonotonicMappingInverter<T> {
fn from(orig_mapping: T) -> Self {
Self { orig_mapping }
}
}
impl<From, To, T> StrictlyMonotonicFn<To, From> for StrictlyMonotonicMappingInverter<T>
where T: StrictlyMonotonicFn<From, To>
{
#[inline(always)]
fn mapping(&self, val: To) -> From {
self.orig_mapping.inverse(val)
}
#[inline(always)]
fn inverse(&self, val: From) -> To {
self.orig_mapping.mapping(val)
}
}
/// Applies the strictly monotonic mapping from `T` without any additional changes.
pub(crate) struct StrictlyMonotonicMappingToInternal<T> {
_phantom: PhantomData<T>,
}
impl<T> StrictlyMonotonicMappingToInternal<T> {
pub(crate) fn new() -> StrictlyMonotonicMappingToInternal<T> {
Self {
_phantom: PhantomData,
}
}
}
impl<External: MonotonicallyMappableToU128, T: MonotonicallyMappableToU128>
StrictlyMonotonicFn<External, u128> for StrictlyMonotonicMappingToInternal<T>
where T: MonotonicallyMappableToU128
{
#[inline(always)]
fn mapping(&self, inp: External) -> u128 {
External::to_u128(inp)
}
#[inline(always)]
fn inverse(&self, out: u128) -> External {
External::from_u128(out)
}
}
impl<External: MonotonicallyMappableToU64, T: MonotonicallyMappableToU64>
StrictlyMonotonicFn<External, u64> for StrictlyMonotonicMappingToInternal<T>
where T: MonotonicallyMappableToU64
{
#[inline(always)]
fn mapping(&self, inp: External) -> u64 {
External::to_u64(inp)
}
#[inline(always)]
fn inverse(&self, out: u64) -> External {
External::from_u64(out)
}
}
impl MonotonicallyMappableToU64 for u64 {
#[inline(always)]
fn to_u64(self) -> u64 {
self
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
val
}
}
impl MonotonicallyMappableToU64 for i64 {
#[inline(always)]
fn to_u64(self) -> u64 {
common::i64_to_u64(self)
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
common::u64_to_i64(val)
}
}
impl MonotonicallyMappableToU64 for DateTime {
#[inline(always)]
fn to_u64(self) -> u64 {
common::i64_to_u64(self.into_timestamp_nanos())
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
DateTime::from_timestamp_nanos(common::u64_to_i64(val))
}
}
impl MonotonicallyMappableToU64 for bool {
#[inline(always)]
fn to_u64(self) -> u64 {
u64::from(self)
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
val > 0
}
}
impl MonotonicallyMappableToU64 for RowId {
#[inline(always)]
fn to_u64(self) -> u64 {
u64::from(self)
}
#[inline(always)]
fn from_u64(val: u64) -> RowId {
val as RowId
}
}
// TODO remove me.
// Tantivy should refuse NaN values and work with NotNaN internally.
impl MonotonicallyMappableToU64 for f64 {
#[inline(always)]
fn to_u64(self) -> u64 {
common::f64_to_u64(self)
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
common::u64_to_f64(val)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn strictly_monotonic_test() {
// identity mapping
test_round_trip(&StrictlyMonotonicMappingToInternal::<u64>::new(), 100u64);
// round trip to i64
test_round_trip(&StrictlyMonotonicMappingToInternal::<i64>::new(), 100u64);
// TODO
// identity mapping
// test_round_trip(&StrictlyMonotonicMappingToInternal::<u128>::new(), 100u128);
}
fn test_round_trip<T: StrictlyMonotonicFn<K, L>, K: std::fmt::Debug + Eq + Copy, L>(
mapping: &T,
test_val: K,
) {
assert_eq!(mapping.inverse(mapping.mapping(test_val)), test_val);
}
}

View File

@@ -1,103 +0,0 @@
use std::io;
use std::io::Write;
use std::num::NonZeroU64;
use common::{BinarySerializable, VInt};
use crate::RowId;
/// Column statistics.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct ColumnStats {
/// GCD of the elements `el - min(column)`.
pub gcd: NonZeroU64,
/// Minimum value of the column.
pub min_value: u64,
/// Maximum value of the column.
pub max_value: u64,
/// Number of rows in the column.
pub num_rows: RowId,
}
impl ColumnStats {
/// Amplitude of value.
/// Difference between the maximum and the minimum value.
pub fn amplitude(&self) -> u64 {
self.max_value - self.min_value
}
}
impl BinarySerializable for ColumnStats {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
VInt(self.min_value).serialize(writer)?;
VInt(self.gcd.get()).serialize(writer)?;
VInt(self.amplitude() / self.gcd).serialize(writer)?;
VInt(self.num_rows as u64).serialize(writer)?;
Ok(())
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let min_value = VInt::deserialize(reader)?.0;
let gcd = VInt::deserialize(reader)?.0;
let gcd = NonZeroU64::new(gcd)
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "GCD of 0 is forbidden"))?;
let amplitude = VInt::deserialize(reader)?.0 * gcd.get();
let max_value = min_value + amplitude;
let num_rows = VInt::deserialize(reader)?.0 as RowId;
Ok(ColumnStats {
min_value,
max_value,
num_rows,
gcd,
})
}
}
#[cfg(test)]
mod tests {
use std::num::NonZeroU64;
use common::BinarySerializable;
use crate::column_values::ColumnStats;
#[track_caller]
fn test_stats_ser_deser_aux(stats: &ColumnStats, num_bytes: usize) {
let mut buffer: Vec<u8> = Vec::new();
stats.serialize(&mut buffer).unwrap();
assert_eq!(buffer.len(), num_bytes);
let deser_stats = ColumnStats::deserialize(&mut &buffer[..]).unwrap();
assert_eq!(stats, &deser_stats);
}
#[test]
fn test_stats_serialization() {
test_stats_ser_deser_aux(
&(ColumnStats {
gcd: NonZeroU64::new(3).unwrap(),
min_value: 1,
max_value: 3001,
num_rows: 10,
}),
5,
);
test_stats_ser_deser_aux(
&(ColumnStats {
gcd: NonZeroU64::new(1_000).unwrap(),
min_value: 1,
max_value: 3001,
num_rows: 10,
}),
5,
);
test_stats_ser_deser_aux(
&(ColumnStats {
gcd: NonZeroU64::new(1).unwrap(),
min_value: 0,
max_value: 0,
num_rows: 0,
}),
4,
);
}
}

View File

@@ -1,178 +0,0 @@
use std::fmt::Debug;
use std::io;
use std::io::Write;
use std::sync::Arc;
mod compact_space;
use common::{BinarySerializable, OwnedBytes, VInt};
use compact_space::{CompactSpaceCompressor, CompactSpaceDecompressor};
use crate::column_values::monotonic_map_column;
use crate::column_values::monotonic_mapping::{
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
};
use crate::iterable::Iterable;
use crate::{ColumnValues, MonotonicallyMappableToU128};
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(crate) struct U128Header {
pub num_vals: u32,
pub codec_type: U128FastFieldCodecType,
}
impl BinarySerializable for U128Header {
fn serialize<W: io::Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
VInt(self.num_vals as u64).serialize(writer)?;
self.codec_type.serialize(writer)?;
Ok(())
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let num_vals = VInt::deserialize(reader)?.0 as u32;
let codec_type = U128FastFieldCodecType::deserialize(reader)?;
Ok(U128Header {
num_vals,
codec_type,
})
}
}
/// Serializes u128 values with the compact space codec.
pub fn serialize_column_values_u128<T: MonotonicallyMappableToU128>(
iterable: &dyn Iterable<T>,
output: &mut impl io::Write,
) -> io::Result<()> {
let compressor = CompactSpaceCompressor::train_from(
iterable
.boxed_iter()
.map(MonotonicallyMappableToU128::to_u128),
);
let header = U128Header {
num_vals: compressor.num_vals(),
codec_type: U128FastFieldCodecType::CompactSpace,
};
header.serialize(output)?;
compressor.compress_into(
iterable
.boxed_iter()
.map(MonotonicallyMappableToU128::to_u128),
output,
)?;
Ok(())
}
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
#[repr(u8)]
/// Available codecs to use to encode the u128 (via [`MonotonicallyMappableToU128`]) converted data.
pub(crate) enum U128FastFieldCodecType {
/// This codec takes a large number space (u128) and reduces it to a compact number space, by
/// removing the holes.
CompactSpace = 1,
}
impl BinarySerializable for U128FastFieldCodecType {
fn serialize<W: Write + ?Sized>(&self, wrt: &mut W) -> io::Result<()> {
self.to_code().serialize(wrt)
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let code = u8::deserialize(reader)?;
let codec_type: Self = Self::from_code(code)
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
Ok(codec_type)
}
}
impl U128FastFieldCodecType {
pub(crate) fn to_code(self) -> u8 {
self as u8
}
pub(crate) fn from_code(code: u8) -> Option<Self> {
match code {
1 => Some(Self::CompactSpace),
_ => None,
}
}
}
/// Returns the correct codec reader wrapped in the `Arc` for the data.
pub fn open_u128_mapped<T: MonotonicallyMappableToU128 + Debug>(
mut bytes: OwnedBytes,
) -> io::Result<Arc<dyn ColumnValues<T>>> {
let header = U128Header::deserialize(&mut bytes)?;
assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
let reader = CompactSpaceDecompressor::open(bytes)?;
let inverted: StrictlyMonotonicMappingInverter<StrictlyMonotonicMappingToInternal<T>> =
StrictlyMonotonicMappingToInternal::<T>::new().into();
Ok(Arc::new(monotonic_map_column(reader, inverted)))
}
#[cfg(test)]
pub mod tests {
use super::*;
use crate::column_values::u64_based::{
serialize_and_load_u64_based_column_values, serialize_u64_based_column_values,
ALL_U64_CODEC_TYPES,
};
use crate::column_values::CodecType;
#[test]
fn test_serialize_deserialize_u128_header() {
let original = U128Header {
num_vals: 11,
codec_type: U128FastFieldCodecType::CompactSpace,
};
let mut out = Vec::new();
original.serialize(&mut out).unwrap();
let restored = U128Header::deserialize(&mut &out[..]).unwrap();
assert_eq!(restored, original);
}
#[test]
fn test_serialize_deserialize() {
let original = [1u64, 5u64, 10u64];
let restored: Vec<u64> =
serialize_and_load_u64_based_column_values(&&original[..], &ALL_U64_CODEC_TYPES)
.iter()
.collect();
assert_eq!(&restored, &original[..]);
}
#[test]
fn test_fastfield_bool_size_bitwidth_1() {
let mut buffer = Vec::new();
serialize_u64_based_column_values::<bool>(
&&[false, true][..],
&ALL_U64_CODEC_TYPES,
&mut buffer,
)
.unwrap();
// TODO put the header as a footer so that it serves as a padding.
// 5 bytes of header, 1 byte of value, 7 bytes of padding.
assert_eq!(buffer.len(), 5 + 1);
}
#[test]
fn test_fastfield_bool_bit_size_bitwidth_0() {
let mut buffer = Vec::new();
serialize_u64_based_column_values::<bool>(
&&[false, true][..],
&ALL_U64_CODEC_TYPES,
&mut buffer,
)
.unwrap();
// 6 bytes of header, 0 bytes of value, 7 bytes of padding.
assert_eq!(buffer.len(), 6);
}
#[test]
fn test_fastfield_gcd() {
let mut buffer = Vec::new();
let vals: Vec<u64> = (0..80).map(|val| (val % 7) * 1_000u64).collect();
serialize_u64_based_column_values(&&vals[..], &[CodecType::Bitpacked], &mut buffer)
.unwrap();
// Values are stored over 3 bits.
assert_eq!(buffer.len(), 6 + (3 * 80 / 8));
}
}

View File

@@ -1,189 +0,0 @@
use std::io::{self, Write};
use std::num::NonZeroU64;
use std::ops::{Range, RangeInclusive};
use common::{BinarySerializable, OwnedBytes};
use fastdivide::DividerU64;
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
use crate::{ColumnValues, RowId};
/// Depending on the field type, a different
/// fast field is required.
#[derive(Clone)]
pub struct BitpackedReader {
data: OwnedBytes,
bit_unpacker: BitUnpacker,
stats: ColumnStats,
}
#[inline(always)]
const fn div_ceil(n: u64, q: NonZeroU64) -> u64 {
// copied from unstable rust standard library.
let d = n / q.get();
let r = n % q.get();
if r > 0 {
d + 1
} else {
d
}
}
// The bitpacked codec applies a linear transformation `f` over data that are bitpacked.
// f is defined by:
// f: bitpacked -> stats.min_value + stats.gcd * bitpacked
//
// In order to run range queries, we invert the transformation.
// `transform_range_before_linear_transformation` returns the range of values
// [min_bipacked_value..max_bitpacked_value] such that
// f(bitpacked) ∈ [min_value, max_value] <=> bitpacked ∈ [min_bitpacked_value, max_bitpacked_value]
fn transform_range_before_linear_transformation(
stats: &ColumnStats,
range: RangeInclusive<u64>,
) -> Option<RangeInclusive<u64>> {
if range.is_empty() {
return None;
}
if stats.min_value > *range.end() {
return None;
}
if stats.max_value < *range.start() {
return None;
}
let shifted_range =
range.start().saturating_sub(stats.min_value)..=range.end().saturating_sub(stats.min_value);
let start_before_gcd_multiplication: u64 = div_ceil(*shifted_range.start(), stats.gcd);
let end_before_gcd_multiplication: u64 = *shifted_range.end() / stats.gcd;
Some(start_before_gcd_multiplication..=end_before_gcd_multiplication)
}
impl ColumnValues for BitpackedReader {
#[inline(always)]
fn get_val(&self, doc: u32) -> u64 {
self.stats.min_value + self.stats.gcd.get() * self.bit_unpacker.get(doc, &self.data)
}
#[inline]
fn min_value(&self) -> u64 {
self.stats.min_value
}
#[inline]
fn max_value(&self) -> u64 {
self.stats.max_value
}
#[inline]
fn num_vals(&self) -> RowId {
self.stats.num_rows
}
fn get_row_ids_for_value_range(
&self,
range: RangeInclusive<u64>,
doc_id_range: Range<u32>,
positions: &mut Vec<u32>,
) {
let Some(transformed_range) =
transform_range_before_linear_transformation(&self.stats, range)
else {
positions.clear();
return;
};
self.bit_unpacker.get_ids_for_value_range(
transformed_range,
doc_id_range,
&self.data,
positions,
);
}
}
fn num_bits(stats: &ColumnStats) -> u8 {
compute_num_bits(stats.amplitude() / stats.gcd)
}
#[derive(Default)]
pub struct BitpackedCodecEstimator;
impl ColumnCodecEstimator for BitpackedCodecEstimator {
fn collect(&mut self, _value: u64) {}
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
let num_bits_per_value = num_bits(stats);
Some(stats.num_bytes() + (stats.num_rows as u64 * (num_bits_per_value as u64) + 7) / 8)
}
fn serialize(
&self,
stats: &ColumnStats,
vals: &mut dyn Iterator<Item = u64>,
wrt: &mut dyn Write,
) -> io::Result<()> {
stats.serialize(wrt)?;
let num_bits = num_bits(stats);
let mut bit_packer = BitPacker::new();
let divider = DividerU64::divide_by(stats.gcd.get());
for val in vals {
bit_packer.write(divider.divide(val - stats.min_value), num_bits, wrt)?;
}
bit_packer.close(wrt)?;
Ok(())
}
}
pub struct BitpackedCodec;
impl ColumnCodec for BitpackedCodec {
type ColumnValues = BitpackedReader;
type Estimator = BitpackedCodecEstimator;
/// Opens a fast field given a file.
fn load(mut data: OwnedBytes) -> io::Result<Self::ColumnValues> {
let stats = ColumnStats::deserialize(&mut data)?;
let num_bits = num_bits(&stats);
let bit_unpacker = BitUnpacker::new(num_bits);
Ok(BitpackedReader {
data,
bit_unpacker,
stats,
})
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::column_values::u64_based::tests::create_and_validate;
#[test]
fn test_with_codec_data_sets_simple() {
create_and_validate::<BitpackedCodec>(&[4, 3, 12], "name");
}
#[test]
fn test_with_codec_data_sets_simple_gcd() {
create_and_validate::<BitpackedCodec>(&[1000, 2000, 3000], "name");
}
#[test]
fn test_with_codec_data_sets() {
let data_sets = crate::column_values::u64_based::tests::get_codec_test_datasets();
for (mut data, name) in data_sets {
create_and_validate::<BitpackedCodec>(&data, name);
data.reverse();
create_and_validate::<BitpackedCodec>(&data, name);
}
}
#[test]
fn bitpacked_fast_field_rand() {
for _ in 0..500 {
let mut data = (0..1 + rand::random::<u8>() as usize)
.map(|_| rand::random::<i64>() as u64 / 2)
.collect::<Vec<_>>();
create_and_validate::<BitpackedCodec>(&data, "rand");
data.reverse();
create_and_validate::<BitpackedCodec>(&data, "rand");
}
}
}

View File

@@ -1,281 +0,0 @@
use std::io::Write;
use std::sync::Arc;
use std::{io, iter};
use common::{BinarySerializable, CountingWriter, DeserializeFrom, OwnedBytes};
use fastdivide::DividerU64;
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use crate::column_values::u64_based::line::Line;
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
use crate::column_values::{ColumnValues, VecColumn};
use crate::MonotonicallyMappableToU64;
const BLOCK_SIZE: u32 = 512u32;
#[derive(Debug, Default)]
struct Block {
line: Line,
bit_unpacker: BitUnpacker,
data_start_offset: usize,
}
impl BinarySerializable for Block {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
self.line.serialize(writer)?;
self.bit_unpacker.bit_width().serialize(writer)?;
Ok(())
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let line = Line::deserialize(reader)?;
let bit_width = u8::deserialize(reader)?;
Ok(Block {
line,
bit_unpacker: BitUnpacker::new(bit_width),
data_start_offset: 0,
})
}
}
fn compute_num_blocks(num_vals: u32) -> u32 {
(num_vals + BLOCK_SIZE - 1) / BLOCK_SIZE
}
pub struct BlockwiseLinearEstimator {
block: Vec<u64>,
values_num_bytes: u64,
meta_num_bytes: u64,
}
impl Default for BlockwiseLinearEstimator {
fn default() -> Self {
Self {
block: Vec::with_capacity(BLOCK_SIZE as usize),
values_num_bytes: 0u64,
meta_num_bytes: 0u64,
}
}
}
impl BlockwiseLinearEstimator {
fn flush_block_estimate(&mut self) {
if self.block.is_empty() {
return;
}
let line = Line::train(&VecColumn::from(&self.block));
let mut max_value = 0u64;
for (i, buffer_val) in self.block.iter().enumerate() {
let interpolated_val = line.eval(i as u32);
let val = buffer_val.wrapping_sub(interpolated_val);
max_value = val.max(max_value);
}
let bit_width = compute_num_bits(max_value) as usize;
self.values_num_bytes += (bit_width * self.block.len() + 7) as u64 / 8;
self.meta_num_bytes += 1 + line.num_bytes();
}
}
impl ColumnCodecEstimator for BlockwiseLinearEstimator {
fn collect(&mut self, value: u64) {
self.block.push(value);
if self.block.len() == BLOCK_SIZE as usize {
self.flush_block_estimate();
self.block.clear();
}
}
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
let mut estimate = 4 + stats.num_bytes() + self.meta_num_bytes + self.values_num_bytes;
if stats.gcd.get() > 1 {
let estimate_gain_from_gcd =
(stats.gcd.get() as f32).log2().floor() * stats.num_rows as f32 / 8.0f32;
estimate = estimate.saturating_sub(estimate_gain_from_gcd as u64);
}
Some(estimate)
}
fn finalize(&mut self) {
self.flush_block_estimate();
}
fn serialize(
&self,
stats: &ColumnStats,
mut vals: &mut dyn Iterator<Item = u64>,
wrt: &mut dyn Write,
) -> io::Result<()> {
stats.serialize(wrt)?;
let mut buffer = Vec::with_capacity(BLOCK_SIZE as usize);
let num_blocks = compute_num_blocks(stats.num_rows) as usize;
let mut blocks = Vec::with_capacity(num_blocks);
let mut bit_packer = BitPacker::new();
let gcd_divider = DividerU64::divide_by(stats.gcd.get());
for _ in 0..num_blocks {
buffer.clear();
buffer.extend(
(&mut vals)
.map(MonotonicallyMappableToU64::to_u64)
.take(BLOCK_SIZE as usize),
);
for buffer_val in buffer.iter_mut() {
*buffer_val = gcd_divider.divide(*buffer_val - stats.min_value);
}
let line = Line::train(&VecColumn::from(&buffer));
assert!(!buffer.is_empty());
for (i, buffer_val) in buffer.iter_mut().enumerate() {
let interpolated_val = line.eval(i as u32);
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
}
let bit_width = buffer.iter().copied().map(compute_num_bits).max().unwrap();
for &buffer_val in &buffer {
bit_packer.write(buffer_val, bit_width, wrt)?;
}
blocks.push(Block {
line,
bit_unpacker: BitUnpacker::new(bit_width),
data_start_offset: 0,
});
}
bit_packer.close(wrt)?;
assert_eq!(blocks.len(), num_blocks);
let mut counting_wrt = CountingWriter::wrap(wrt);
for block in &blocks {
block.serialize(&mut counting_wrt)?;
}
let footer_len = counting_wrt.written_bytes();
(footer_len as u32).serialize(&mut counting_wrt)?;
Ok(())
}
}
pub struct BlockwiseLinearCodec;
impl ColumnCodec<u64> for BlockwiseLinearCodec {
type ColumnValues = BlockwiseLinearReader;
type Estimator = BlockwiseLinearEstimator;
fn load(mut bytes: OwnedBytes) -> io::Result<Self::ColumnValues> {
let stats = ColumnStats::deserialize(&mut bytes)?;
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
let footer_offset = bytes.len() - 4 - footer_len as usize;
let (data, mut footer) = bytes.split(footer_offset);
let num_blocks = compute_num_blocks(stats.num_rows);
let mut blocks: Vec<Block> = iter::repeat_with(|| Block::deserialize(&mut footer))
.take(num_blocks as usize)
.collect::<io::Result<_>>()?;
let mut start_offset = 0;
for block in &mut blocks {
block.data_start_offset = start_offset;
start_offset += (block.bit_unpacker.bit_width() as usize) * BLOCK_SIZE as usize / 8;
}
Ok(BlockwiseLinearReader {
blocks: blocks.into_boxed_slice().into(),
data,
stats,
})
}
}
#[derive(Clone)]
pub struct BlockwiseLinearReader {
blocks: Arc<[Block]>,
data: OwnedBytes,
stats: ColumnStats,
}
impl ColumnValues for BlockwiseLinearReader {
#[inline(always)]
fn get_val(&self, idx: u32) -> u64 {
let block_id = (idx / BLOCK_SIZE) as usize;
let idx_within_block = idx % BLOCK_SIZE;
let block = &self.blocks[block_id];
let interpoled_val: u64 = block.line.eval(idx_within_block);
let block_bytes = &self.data[block.data_start_offset..];
let bitpacked_diff = block.bit_unpacker.get(idx_within_block, block_bytes);
// TODO optimize me! the line parameters could be tweaked to include the multiplication and
// remove the dependency.
self.stats.min_value
+ self
.stats
.gcd
.get()
.wrapping_mul(interpoled_val.wrapping_add(bitpacked_diff))
}
#[inline(always)]
fn min_value(&self) -> u64 {
self.stats.min_value
}
#[inline(always)]
fn max_value(&self) -> u64 {
self.stats.max_value
}
#[inline(always)]
fn num_vals(&self) -> u32 {
self.stats.num_rows
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::column_values::u64_based::tests::create_and_validate;
#[test]
fn test_with_codec_data_sets_simple() {
create_and_validate::<BlockwiseLinearCodec>(
&[11, 20, 40, 20, 10, 10, 10, 10, 10, 10],
"simple test",
)
.unwrap();
}
#[test]
fn test_with_codec_data_sets_simple_gcd() {
let (_, actual_compression_rate) = create_and_validate::<BlockwiseLinearCodec>(
&[10, 20, 40, 20, 10, 10, 10, 10, 10, 10],
"name",
)
.unwrap();
assert_eq!(actual_compression_rate, 0.175);
}
#[test]
fn test_with_codec_data_sets() {
let data_sets = crate::column_values::u64_based::tests::get_codec_test_datasets();
for (mut data, name) in data_sets {
create_and_validate::<BlockwiseLinearCodec>(&data, name);
data.reverse();
create_and_validate::<BlockwiseLinearCodec>(&data, name);
}
}
#[test]
fn test_blockwise_linear_fast_field_rand() {
for _ in 0..500 {
let mut data = (0..1 + rand::random::<u8>() as usize)
.map(|_| rand::random::<i64>() as u64 / 2)
.collect::<Vec<_>>();
create_and_validate::<BlockwiseLinearCodec>(&data, "rand");
data.reverse();
create_and_validate::<BlockwiseLinearCodec>(&data, "rand");
}
}
}

View File

@@ -1,277 +0,0 @@
use std::io;
use common::{BinarySerializable, OwnedBytes};
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use super::line::Line;
use super::ColumnValues;
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
use crate::column_values::VecColumn;
use crate::RowId;
const HALF_SPACE: u64 = u64::MAX / 2;
const LINE_ESTIMATION_BLOCK_LEN: usize = 512;
/// Depending on the field type, a different
/// fast field is required.
#[derive(Clone)]
pub struct LinearReader {
data: OwnedBytes,
linear_params: LinearParams,
stats: ColumnStats,
}
impl ColumnValues for LinearReader {
#[inline]
fn get_val(&self, doc: u32) -> u64 {
let interpoled_val: u64 = self.linear_params.line.eval(doc);
let bitpacked_diff = self.linear_params.bit_unpacker.get(doc, &self.data);
interpoled_val.wrapping_add(bitpacked_diff)
}
#[inline(always)]
fn min_value(&self) -> u64 {
self.stats.min_value
}
#[inline(always)]
fn max_value(&self) -> u64 {
self.stats.max_value
}
#[inline]
fn num_vals(&self) -> u32 {
self.stats.num_rows
}
}
/// Fastfield serializer, which tries to guess values by linear interpolation
/// and stores the difference bitpacked.
pub struct LinearCodec;
#[derive(Debug, Clone)]
struct LinearParams {
line: Line,
bit_unpacker: BitUnpacker,
}
impl BinarySerializable for LinearParams {
fn serialize<W: io::Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
self.line.serialize(writer)?;
self.bit_unpacker.bit_width().serialize(writer)?;
Ok(())
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let line = Line::deserialize(reader)?;
let bit_width = u8::deserialize(reader)?;
Ok(Self {
line,
bit_unpacker: BitUnpacker::new(bit_width),
})
}
}
pub struct LinearCodecEstimator {
block: Vec<u64>,
line: Option<Line>,
row_id: RowId,
min_deviation: u64,
max_deviation: u64,
first_val: u64,
last_val: u64,
}
impl Default for LinearCodecEstimator {
fn default() -> LinearCodecEstimator {
LinearCodecEstimator {
block: Vec::with_capacity(LINE_ESTIMATION_BLOCK_LEN),
line: None,
row_id: 0,
min_deviation: u64::MAX,
max_deviation: u64::MIN,
first_val: 0u64,
last_val: 0u64,
}
}
}
impl ColumnCodecEstimator for LinearCodecEstimator {
fn finalize(&mut self) {
if let Some(line) = self.line.as_mut() {
line.intercept = line
.intercept
.wrapping_add(self.min_deviation)
.wrapping_sub(HALF_SPACE);
}
}
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
let line = self.line?;
let amplitude = self.max_deviation - self.min_deviation;
let num_bits = compute_num_bits(amplitude);
let linear_params = LinearParams {
line,
bit_unpacker: BitUnpacker::new(num_bits),
};
Some(
stats.num_bytes()
+ linear_params.num_bytes()
+ (num_bits as u64 * stats.num_rows as u64 + 7) / 8,
)
}
fn serialize(
&self,
stats: &ColumnStats,
vals: &mut dyn Iterator<Item = u64>,
wrt: &mut dyn io::Write,
) -> io::Result<()> {
stats.serialize(wrt)?;
let line = self.line.unwrap();
let amplitude = self.max_deviation - self.min_deviation;
let num_bits = compute_num_bits(amplitude);
let linear_params = LinearParams {
line,
bit_unpacker: BitUnpacker::new(num_bits),
};
linear_params.serialize(wrt)?;
let mut bit_packer = BitPacker::new();
for (pos, value) in vals.enumerate() {
let calculated_value = line.eval(pos as u32);
let offset = value.wrapping_sub(calculated_value);
bit_packer.write(offset, num_bits, wrt)?;
}
bit_packer.close(wrt)?;
Ok(())
}
fn collect(&mut self, value: u64) {
if let Some(line) = self.line {
self.collect_after_line_estimation(&line, value);
} else {
self.collect_before_line_estimation(value);
}
}
}
impl LinearCodecEstimator {
#[inline]
fn collect_after_line_estimation(&mut self, line: &Line, value: u64) {
let interpoled_val: u64 = line.eval(self.row_id);
let deviation = value.wrapping_add(HALF_SPACE).wrapping_sub(interpoled_val);
self.min_deviation = self.min_deviation.min(deviation);
self.max_deviation = self.max_deviation.max(deviation);
if self.row_id == 0 {
self.first_val = value;
}
self.last_val = value;
self.row_id += 1u32;
}
#[inline]
fn collect_before_line_estimation(&mut self, value: u64) {
self.block.push(value);
if self.block.len() == LINE_ESTIMATION_BLOCK_LEN {
let line = Line::train(&VecColumn::from(&self.block));
let block = std::mem::take(&mut self.block);
for val in block {
self.collect_after_line_estimation(&line, val);
}
self.line = Some(line);
}
}
}
impl ColumnCodec for LinearCodec {
type ColumnValues = LinearReader;
type Estimator = LinearCodecEstimator;
fn load(mut data: OwnedBytes) -> io::Result<Self::ColumnValues> {
let stats = ColumnStats::deserialize(&mut data)?;
let linear_params = LinearParams::deserialize(&mut data)?;
Ok(LinearReader {
stats,
linear_params,
data,
})
}
}
#[cfg(test)]
mod tests {
use rand::RngCore;
use super::*;
use crate::column_values::u64_based::tests::{create_and_validate, get_codec_test_datasets};
#[test]
fn test_compression_simple() {
let vals = (100u64..)
.take(super::LINE_ESTIMATION_BLOCK_LEN)
.collect::<Vec<_>>();
create_and_validate::<LinearCodec>(&vals, "simple monotonically large").unwrap();
}
#[test]
fn test_compression() {
let data = (10..=6_000_u64).collect::<Vec<_>>();
let (estimate, actual_compression) =
create_and_validate::<LinearCodec>(&data, "simple monotonically large").unwrap();
assert_le!(actual_compression, 0.001);
assert_le!(estimate, 0.02);
}
#[test]
fn test_with_codec_datasets() {
let data_sets = get_codec_test_datasets();
for (mut data, name) in data_sets {
create_and_validate::<LinearCodec>(&data, name);
data.reverse();
create_and_validate::<LinearCodec>(&data, name);
}
}
#[test]
fn linear_interpol_fast_field_test_large_amplitude() {
let data = vec![
i64::MAX as u64 / 2,
i64::MAX as u64 / 3,
i64::MAX as u64 / 2,
];
create_and_validate::<LinearCodec>(&data, "large amplitude");
}
#[test]
fn overflow_error_test() {
let data = vec![1572656989877777, 1170935903116329, 720575940379279, 0];
create_and_validate::<LinearCodec>(&data, "overflow test");
}
#[test]
fn linear_interpol_fast_concave_data() {
let data = vec![0, 1, 2, 5, 8, 10, 20, 50];
create_and_validate::<LinearCodec>(&data, "concave data");
}
#[test]
fn linear_interpol_fast_convex_data() {
let data = vec![0, 40, 60, 70, 75, 77];
create_and_validate::<LinearCodec>(&data, "convex data");
}
#[test]
fn linear_interpol_fast_field_test_simple() {
let data = (10..=20_u64).collect::<Vec<_>>();
create_and_validate::<LinearCodec>(&data, "simple monotonically");
}
#[test]
fn linear_interpol_fast_field_rand() {
let mut rng = rand::thread_rng();
for _ in 0..50 {
let mut data = (0..10_000).map(|_| rng.next_u64()).collect::<Vec<_>>();
create_and_validate::<LinearCodec>(&data, "random");
data.reverse();
create_and_validate::<LinearCodec>(&data, "random");
}
}
}

View File

@@ -1,214 +0,0 @@
mod bitpacked;
mod blockwise_linear;
mod line;
mod linear;
mod stats_collector;
use std::io;
use std::io::Write;
use std::sync::Arc;
use common::{BinarySerializable, OwnedBytes};
use crate::column_values::monotonic_mapping::{
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
};
pub use crate::column_values::u64_based::bitpacked::BitpackedCodec;
pub use crate::column_values::u64_based::blockwise_linear::BlockwiseLinearCodec;
pub use crate::column_values::u64_based::linear::LinearCodec;
pub use crate::column_values::u64_based::stats_collector::StatsCollector;
use crate::column_values::{monotonic_map_column, ColumnStats};
use crate::iterable::Iterable;
use crate::{ColumnValues, MonotonicallyMappableToU64};
/// A `ColumnCodecEstimator` is in charge of gathering all
/// data required to serialize a column.
///
/// This happens during a first pass on data of the column elements.
/// During that pass, all column estimators receive a call to their
/// `.collect(el)`.
///
/// After this first pass, finalize is called.
/// `.estimate(..)` then should return an accurate estimation of the
/// size of the serialized column (were we to pick this codec.).
/// `.serialize(..)` then serializes the column using this codec.
pub trait ColumnCodecEstimator<T = u64>: 'static {
/// Records a new value for estimation.
/// This method will be called for each element of the column during
/// `estimation`.
fn collect(&mut self, value: u64);
/// Finalizes the first pass phase.
fn finalize(&mut self) {}
/// Returns an accurate estimation of the number of bytes that will
/// be used to represent this column.
fn estimate(&self, stats: &ColumnStats) -> Option<u64>;
/// Serializes the column using the given codec.
/// This constitutes a second pass over the columns values.
fn serialize(
&self,
stats: &ColumnStats,
vals: &mut dyn Iterator<Item = T>,
wrt: &mut dyn io::Write,
) -> io::Result<()>;
}
/// A column codec describes a colunm serialization format.
pub trait ColumnCodec<T: PartialOrd = u64> {
/// Specialized `ColumnValues` type.
type ColumnValues: ColumnValues<T> + 'static;
/// `Estimator` for the given codec.
type Estimator: ColumnCodecEstimator + Default;
/// Loads a column that has been serialized using this codec.
fn load(bytes: OwnedBytes) -> io::Result<Self::ColumnValues>;
/// Returns an estimator.
fn estimator() -> Self::Estimator {
Self::Estimator::default()
}
/// Returns a boxed estimator.
fn boxed_estimator() -> Box<dyn ColumnCodecEstimator> {
Box::new(Self::estimator())
}
}
/// Available codecs to use to encode the u64 (via [`MonotonicallyMappableToU64`]) converted data.
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
#[repr(u8)]
pub enum CodecType {
/// Bitpack all values in the value range. The number of bits is defined by the amplitude
/// `column.max_value() - column.min_value()`
Bitpacked = 0u8,
/// Linear interpolation puts a line between the first and last value and then bitpacks the
/// values by the offset from the line. The number of bits is defined by the max deviation from
/// the line.
Linear = 1u8,
/// Same as [`CodecType::Linear`], but encodes in blocks of 512 elements.
BlockwiseLinear = 2u8,
}
/// List of all available u64-base codecs.
pub const ALL_U64_CODEC_TYPES: [CodecType; 3] = [
CodecType::Bitpacked,
CodecType::Linear,
CodecType::BlockwiseLinear,
];
impl CodecType {
fn to_code(self) -> u8 {
self as u8
}
fn try_from_code(code: u8) -> Option<CodecType> {
match code {
0u8 => Some(CodecType::Bitpacked),
1u8 => Some(CodecType::Linear),
2u8 => Some(CodecType::BlockwiseLinear),
_ => None,
}
}
fn load<T: MonotonicallyMappableToU64>(
&self,
bytes: OwnedBytes,
) -> io::Result<Arc<dyn ColumnValues<T>>> {
match self {
CodecType::Bitpacked => load_specific_codec::<BitpackedCodec, T>(bytes),
CodecType::Linear => load_specific_codec::<LinearCodec, T>(bytes),
CodecType::BlockwiseLinear => load_specific_codec::<BlockwiseLinearCodec, T>(bytes),
}
}
}
fn load_specific_codec<C: ColumnCodec, T: MonotonicallyMappableToU64>(
bytes: OwnedBytes,
) -> io::Result<Arc<dyn ColumnValues<T>>> {
let reader = C::load(bytes)?;
let reader_typed = monotonic_map_column(
reader,
StrictlyMonotonicMappingInverter::from(StrictlyMonotonicMappingToInternal::<T>::new()),
);
Ok(Arc::new(reader_typed))
}
impl CodecType {
/// Returns a boxed codec estimator associated to a given `CodecType`.
pub fn estimator(&self) -> Box<dyn ColumnCodecEstimator> {
match self {
CodecType::Bitpacked => BitpackedCodec::boxed_estimator(),
CodecType::Linear => LinearCodec::boxed_estimator(),
CodecType::BlockwiseLinear => BlockwiseLinearCodec::boxed_estimator(),
}
}
}
/// Serializes a given column of u64-mapped values.
pub fn serialize_u64_based_column_values<T: MonotonicallyMappableToU64>(
vals: &dyn Iterable<T>,
codec_types: &[CodecType],
wrt: &mut dyn Write,
) -> io::Result<()> {
let mut stats_collector = StatsCollector::default();
let mut estimators: Vec<(CodecType, Box<dyn ColumnCodecEstimator>)> =
Vec::with_capacity(codec_types.len());
for &codec_type in codec_types {
estimators.push((codec_type, codec_type.estimator()));
}
for val in vals.boxed_iter() {
let val_u64 = val.to_u64();
stats_collector.collect(val_u64);
for (_, estimator) in &mut estimators {
estimator.collect(val_u64);
}
}
for (_, estimator) in &mut estimators {
estimator.finalize();
}
let stats = stats_collector.stats();
let (_, best_codec, best_codec_estimator) = estimators
.into_iter()
.flat_map(|(codec_type, estimator)| {
let num_bytes = estimator.estimate(&stats)?;
Some((num_bytes, codec_type, estimator))
})
.min_by_key(|(num_bytes, _, _)| *num_bytes)
.ok_or_else(|| {
io::Error::new(io::ErrorKind::InvalidData, "No available applicable codec.")
})?;
best_codec.to_code().serialize(wrt)?;
best_codec_estimator.serialize(
&stats,
&mut vals.boxed_iter().map(MonotonicallyMappableToU64::to_u64),
wrt,
)?;
Ok(())
}
/// Load u64-based column values.
///
/// This method first identifies the codec off the first byte.
pub fn load_u64_based_column_values<T: MonotonicallyMappableToU64>(
mut bytes: OwnedBytes,
) -> io::Result<Arc<dyn ColumnValues<T>>> {
let codec_type: CodecType = bytes
.first()
.copied()
.and_then(CodecType::try_from_code)
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Failed to read codec type"))?;
bytes.advance(1);
codec_type.load(bytes)
}
/// Helper function to serialize a column (autodetect from all codecs) and then open it
pub fn serialize_and_load_u64_based_column_values<T: MonotonicallyMappableToU64>(
vals: &dyn Iterable,
codec_types: &[CodecType],
) -> Arc<dyn ColumnValues<T>> {
let mut buffer = Vec::new();
serialize_u64_based_column_values(vals, codec_types, &mut buffer).unwrap();
load_u64_based_column_values::<T>(OwnedBytes::new(buffer)).unwrap()
}
#[cfg(test)]
mod tests;

View File

@@ -1,200 +0,0 @@
use std::num::NonZeroU64;
use fastdivide::DividerU64;
use crate::column_values::ColumnStats;
use crate::RowId;
/// Compute the gcd of two non null numbers.
///
/// It is recommended, but not required, to feed values such that `large >= small`.
fn compute_gcd(mut large: NonZeroU64, mut small: NonZeroU64) -> NonZeroU64 {
loop {
let rem: u64 = large.get() % small;
if let Some(new_small) = NonZeroU64::new(rem) {
(large, small) = (small, new_small);
} else {
return small;
}
}
}
#[derive(Default)]
pub struct StatsCollector {
min_max_opt: Option<(u64, u64)>,
num_rows: RowId,
// We measure the GCD of the difference between the values and the minimal value.
// This is the same as computing the difference between the values and the first value.
//
// This way, we can compress i64-converted-to-u64 (e.g. timestamp that were supplied in
// seconds, only to be converted in nanoseconds).
increment_gcd_opt: Option<(NonZeroU64, DividerU64)>,
first_value_opt: Option<u64>,
}
impl StatsCollector {
pub fn stats(&self) -> ColumnStats {
let (min_value, max_value) = self.min_max_opt.unwrap_or((0u64, 0u64));
let increment_gcd = if let Some((increment_gcd, _)) = self.increment_gcd_opt {
increment_gcd
} else {
NonZeroU64::new(1u64).unwrap()
};
ColumnStats {
min_value,
max_value,
num_rows: self.num_rows,
gcd: increment_gcd,
}
}
#[inline]
fn update_increment_gcd(&mut self, value: u64) {
let Some(first_value) = self.first_value_opt else {
// We set the first value and just quit.
self.first_value_opt = Some(value);
return;
};
let Some(non_zero_value) = NonZeroU64::new(value.abs_diff(first_value)) else {
// We can simply skip 0 values.
return;
};
let Some((gcd, gcd_divider)) = self.increment_gcd_opt else {
self.set_increment_gcd(non_zero_value);
return;
};
if gcd.get() == 1 {
// It won't see any update now.
return;
}
let remainder =
non_zero_value.get() - (gcd_divider.divide(non_zero_value.get())) * gcd.get();
if remainder == 0 {
return;
}
let new_gcd = compute_gcd(non_zero_value, gcd);
self.set_increment_gcd(new_gcd);
}
fn set_increment_gcd(&mut self, gcd: NonZeroU64) {
let new_divider = DividerU64::divide_by(gcd.get());
self.increment_gcd_opt = Some((gcd, new_divider));
}
pub fn collect(&mut self, value: u64) {
self.min_max_opt = Some(if let Some((min, max)) = self.min_max_opt {
(min.min(value), max.max(value))
} else {
(value, value)
});
self.num_rows += 1;
self.update_increment_gcd(value);
}
}
#[cfg(test)]
mod tests {
use std::num::NonZeroU64;
use crate::column_values::u64_based::stats_collector::{compute_gcd, StatsCollector};
use crate::column_values::u64_based::ColumnStats;
fn compute_stats(vals: impl Iterator<Item = u64>) -> ColumnStats {
let mut stats_collector = StatsCollector::default();
for val in vals {
stats_collector.collect(val);
}
stats_collector.stats()
}
fn find_gcd(vals: impl Iterator<Item = u64>) -> u64 {
compute_stats(vals).gcd.get()
}
#[test]
fn test_compute_gcd() {
let test_compute_gcd_aux = |large, small, expected| {
let large = NonZeroU64::new(large).unwrap();
let small = NonZeroU64::new(small).unwrap();
let expected = NonZeroU64::new(expected).unwrap();
assert_eq!(compute_gcd(small, large), expected);
assert_eq!(compute_gcd(large, small), expected);
};
test_compute_gcd_aux(1, 4, 1);
test_compute_gcd_aux(2, 4, 2);
test_compute_gcd_aux(10, 25, 5);
test_compute_gcd_aux(25, 25, 25);
}
#[test]
fn test_gcd() {
assert_eq!(find_gcd([0].into_iter()), 1);
assert_eq!(find_gcd([0, 10].into_iter()), 10);
assert_eq!(find_gcd([10, 0].into_iter()), 10);
assert_eq!(find_gcd([].into_iter()), 1);
assert_eq!(find_gcd([15, 30, 5, 10].into_iter()), 5);
assert_eq!(find_gcd([15, 16, 10].into_iter()), 1);
assert_eq!(find_gcd([0, 5, 5, 5].into_iter()), 5);
assert_eq!(find_gcd([0, 0].into_iter()), 1);
assert_eq!(find_gcd([1, 10, 4, 1, 7, 10].into_iter()), 3);
assert_eq!(find_gcd([1, 10, 0, 4, 1, 7, 10].into_iter()), 1);
}
#[test]
fn test_stats() {
assert_eq!(
compute_stats([].into_iter()),
ColumnStats {
gcd: NonZeroU64::new(1).unwrap(),
min_value: 0,
max_value: 0,
num_rows: 0
}
);
assert_eq!(
compute_stats([0, 1].into_iter()),
ColumnStats {
gcd: NonZeroU64::new(1).unwrap(),
min_value: 0,
max_value: 1,
num_rows: 2
}
);
assert_eq!(
compute_stats([0, 1].into_iter()),
ColumnStats {
gcd: NonZeroU64::new(1).unwrap(),
min_value: 0,
max_value: 1,
num_rows: 2
}
);
assert_eq!(
compute_stats([10, 20, 30].into_iter()),
ColumnStats {
gcd: NonZeroU64::new(10).unwrap(),
min_value: 10,
max_value: 30,
num_rows: 3
}
);
assert_eq!(
compute_stats([10, 50, 10, 30].into_iter()),
ColumnStats {
gcd: NonZeroU64::new(20).unwrap(),
min_value: 10,
max_value: 50,
num_rows: 4
}
);
assert_eq!(
compute_stats([10, 0, 30].into_iter()),
ColumnStats {
gcd: NonZeroU64::new(10).unwrap(),
min_value: 0,
max_value: 30,
num_rows: 3
}
);
}
}

View File

@@ -1,415 +0,0 @@
use proptest::prelude::*;
use proptest::strategy::Strategy;
use proptest::{prop_oneof, proptest};
#[test]
fn test_serialize_and_load_simple() {
let mut buffer = Vec::new();
let vals = &[1u64, 2u64, 5u64];
serialize_u64_based_column_values(
&&vals[..],
&[CodecType::Bitpacked, CodecType::BlockwiseLinear],
&mut buffer,
)
.unwrap();
assert_eq!(buffer.len(), 7);
let col = load_u64_based_column_values::<u64>(OwnedBytes::new(buffer)).unwrap();
assert_eq!(col.num_vals(), 3);
assert_eq!(col.get_val(0), 1);
assert_eq!(col.get_val(1), 2);
assert_eq!(col.get_val(2), 5);
}
#[test]
fn test_empty_column_i64() {
let vals: [i64; 0] = [];
let mut num_acceptable_codecs = 0;
for codec in ALL_U64_CODEC_TYPES {
let mut buffer = Vec::new();
if serialize_u64_based_column_values(&&vals[..], &[codec], &mut buffer).is_err() {
continue;
}
num_acceptable_codecs += 1;
let col = load_u64_based_column_values::<i64>(OwnedBytes::new(buffer)).unwrap();
assert_eq!(col.num_vals(), 0);
assert_eq!(col.min_value(), i64::MIN);
assert_eq!(col.max_value(), i64::MIN);
}
assert!(num_acceptable_codecs > 0);
}
#[test]
fn test_empty_column_u64() {
let vals: [u64; 0] = [];
let mut num_acceptable_codecs = 0;
for codec in ALL_U64_CODEC_TYPES {
let mut buffer = Vec::new();
if serialize_u64_based_column_values(&&vals[..], &[codec], &mut buffer).is_err() {
continue;
}
num_acceptable_codecs += 1;
let col = load_u64_based_column_values::<u64>(OwnedBytes::new(buffer)).unwrap();
assert_eq!(col.num_vals(), 0);
assert_eq!(col.min_value(), u64::MIN);
assert_eq!(col.max_value(), u64::MIN);
}
assert!(num_acceptable_codecs > 0);
}
#[test]
fn test_empty_column_f64() {
let vals: [f64; 0] = [];
let mut num_acceptable_codecs = 0;
for codec in ALL_U64_CODEC_TYPES {
let mut buffer = Vec::new();
if serialize_u64_based_column_values(&&vals[..], &[codec], &mut buffer).is_err() {
continue;
}
num_acceptable_codecs += 1;
let col = load_u64_based_column_values::<f64>(OwnedBytes::new(buffer)).unwrap();
assert_eq!(col.num_vals(), 0);
// FIXME. f64::MIN would be better!
assert!(col.min_value().is_nan());
assert!(col.max_value().is_nan());
}
assert!(num_acceptable_codecs > 0);
}
pub(crate) fn create_and_validate<TColumnCodec: ColumnCodec>(
vals: &[u64],
name: &str,
) -> Option<(f32, f32)> {
let mut stats_collector = StatsCollector::default();
let mut codec_estimator: TColumnCodec::Estimator = Default::default();
for val in vals.boxed_iter() {
stats_collector.collect(val);
codec_estimator.collect(val);
}
codec_estimator.finalize();
let stats = stats_collector.stats();
let estimation = codec_estimator.estimate(&stats)?;
let mut buffer = Vec::new();
codec_estimator
.serialize(&stats, vals.boxed_iter().as_mut(), &mut buffer)
.unwrap();
let actual_compression = buffer.len() as u64;
let reader = TColumnCodec::load(OwnedBytes::new(buffer)).unwrap();
assert_eq!(reader.num_vals(), vals.len() as u32);
let mut buffer = Vec::new();
for (doc, orig_val) in vals.iter().copied().enumerate() {
let val = reader.get_val(doc as u32);
assert_eq!(
val, orig_val,
"val `{val}` does not match orig_val {orig_val:?}, in data set {name}, data `{vals:?}`",
);
buffer.resize(1, 0);
reader.get_vals(&[doc as u32], &mut buffer);
let val = buffer[0];
assert_eq!(
val, orig_val,
"val `{val}` does not match orig_val {orig_val:?}, in data set {name}, data `{vals:?}`",
);
}
let all_docs: Vec<u32> = (0..vals.len() as u32).collect();
buffer.resize(all_docs.len(), 0);
reader.get_vals(&all_docs, &mut buffer);
assert_eq!(vals, buffer);
if !vals.is_empty() {
let test_rand_idx = rand::thread_rng().gen_range(0..=vals.len() - 1);
let expected_positions: Vec<u32> = vals
.iter()
.enumerate()
.filter(|(_, el)| **el == vals[test_rand_idx])
.map(|(pos, _)| pos as u32)
.collect();
let mut positions = Vec::new();
reader.get_row_ids_for_value_range(
vals[test_rand_idx]..=vals[test_rand_idx],
0..vals.len() as u32,
&mut positions,
);
assert_eq!(expected_positions, positions);
}
if actual_compression > 1000 {
assert!(relative_difference(estimation, actual_compression) < 0.10f32);
}
Some((
compression_rate(estimation, stats.num_rows),
compression_rate(actual_compression, stats.num_rows),
))
}
fn compression_rate(num_bytes: u64, num_values: u32) -> f32 {
num_bytes as f32 / (num_values as f32 * 8.0)
}
fn relative_difference(left: u64, right: u64) -> f32 {
let left = left as f32;
let right = right as f32;
2.0f32 * (left - right).abs() / (left + right)
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(100))]
#[test]
fn test_proptest_small_bitpacked(data in proptest::collection::vec(num_strategy(), 1..10)) {
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
}
#[test]
fn test_proptest_small_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
}
#[test]
fn test_proptest_small_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
}
}
#[test]
fn test_small_blockwise_linear_example() {
create_and_validate::<BlockwiseLinearCodec>(
&[9223372036854775808, 9223370937344622593],
"proptest multilinearinterpol",
);
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(10))]
#[test]
fn test_proptest_large_bitpacked(data in proptest::collection::vec(num_strategy(), 1..6000)) {
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
}
#[test]
fn test_proptest_large_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
}
#[test]
fn test_proptest_large_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
}
}
fn num_strategy() -> impl Strategy<Value = u64> {
prop_oneof![
1 => prop::num::u64::ANY.prop_map(|num| u64::MAX - (num % 10) ),
1 => prop::num::u64::ANY.prop_map(|num| num % 10 ),
20 => prop::num::u64::ANY,
]
}
pub fn get_codec_test_datasets() -> Vec<(Vec<u64>, &'static str)> {
let mut data_and_names = vec![];
let data = (10..=10_000_u64).collect::<Vec<_>>();
data_and_names.push((data, "simple monotonically increasing"));
data_and_names.push((
vec![5, 6, 7, 8, 9, 10, 99, 100],
"offset in linear interpol",
));
data_and_names.push((vec![5, 50, 3, 13, 1, 1000, 35], "rand small"));
data_and_names.push((vec![10], "single value"));
data_and_names.push((
vec![1572656989877777, 1170935903116329, 720575940379279, 0],
"overflow error",
));
data_and_names
}
fn test_codec<C: ColumnCodec>() {
let codec_name = std::any::type_name::<C>();
for (data, dataset_name) in get_codec_test_datasets() {
let estimate_actual_opt: Option<(f32, f32)> =
tests::create_and_validate::<C>(&data, dataset_name);
let result = if let Some((estimate, actual)) = estimate_actual_opt {
format!("Estimate `{estimate}` Actual `{actual}`")
} else {
"Disabled".to_string()
};
println!("Codec {codec_name}, DataSet {dataset_name}, {result}");
}
}
#[test]
fn test_codec_bitpacking() {
test_codec::<BitpackedCodec>();
}
#[test]
fn test_codec_interpolation() {
test_codec::<LinearCodec>();
}
#[test]
fn test_codec_multi_interpolation() {
test_codec::<BlockwiseLinearCodec>();
}
use super::*;
fn estimate<C: ColumnCodec>(vals: &[u64]) -> Option<f32> {
let mut stats_collector = StatsCollector::default();
let mut estimator = C::Estimator::default();
for &val in vals {
stats_collector.collect(val);
estimator.collect(val);
}
estimator.finalize();
let stats = stats_collector.stats();
let num_bytes = estimator.estimate(&stats)?;
if stats.num_rows == 0 {
return None;
}
Some(num_bytes as f32 / (8.0 * stats.num_rows as f32))
}
#[test]
fn estimation_good_interpolation_case() {
let data = (10..=20000_u64).collect::<Vec<_>>();
let linear_interpol_estimation = estimate::<LinearCodec>(&data).unwrap();
assert_le!(linear_interpol_estimation, 0.01);
let multi_linear_interpol_estimation = estimate::<BlockwiseLinearCodec>(&data).unwrap();
assert_le!(multi_linear_interpol_estimation, 0.2);
assert_lt!(linear_interpol_estimation, multi_linear_interpol_estimation);
let bitpacked_estimation = estimate::<BitpackedCodec>(&data).unwrap();
assert_lt!(linear_interpol_estimation, bitpacked_estimation);
}
#[test]
fn estimation_test_bad_interpolation_case_monotonically_increasing() {
let mut data: Vec<u64> = (201..=20000_u64).collect();
data.push(1_000_000);
// in this case the linear interpolation can't in fact not be worse than bitpacking,
// but the estimator adds some threshold, which leads to estimated worse behavior
let linear_interpol_estimation = estimate::<LinearCodec>(&data[..]).unwrap();
assert_le!(linear_interpol_estimation, 0.35);
let bitpacked_estimation = estimate::<BitpackedCodec>(&data).unwrap();
assert_le!(bitpacked_estimation, 0.32);
assert_le!(bitpacked_estimation, linear_interpol_estimation);
}
#[test]
fn test_fast_field_codec_type_to_code() {
let mut count_codec = 0;
for code in 0..=255 {
if let Some(codec_type) = CodecType::try_from_code(code) {
assert_eq!(codec_type.to_code(), code);
count_codec += 1;
}
}
assert_eq!(count_codec, 3);
}
fn test_fastfield_gcd_i64_with_codec(codec_type: CodecType, num_vals: usize) -> io::Result<()> {
let mut vals: Vec<i64> = (-4..=(num_vals as i64) - 5).map(|val| val * 1000).collect();
let mut buffer: Vec<u8> = Vec::new();
crate::column_values::serialize_u64_based_column_values(
&&vals[..],
&[codec_type],
&mut buffer,
)?;
let buffer = OwnedBytes::new(buffer);
let column = crate::column_values::load_u64_based_column_values::<i64>(buffer.clone())?;
assert_eq!(column.get_val(0), -4000i64);
assert_eq!(column.get_val(1), -3000i64);
assert_eq!(column.get_val(2), -2000i64);
assert_eq!(column.max_value(), (num_vals as i64 - 5) * 1000);
assert_eq!(column.min_value(), -4000i64);
// Can't apply gcd
let mut buffer_without_gcd = Vec::new();
vals.pop();
vals.push(1001i64);
crate::column_values::serialize_u64_based_column_values(
&&vals[..],
&[codec_type],
&mut buffer_without_gcd,
)?;
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
assert!(buffer_without_gcd.len() > buffer.len());
Ok(())
}
#[test]
fn test_fastfield_gcd_i64() -> io::Result<()> {
for &codec_type in &[
CodecType::Bitpacked,
CodecType::BlockwiseLinear,
CodecType::Linear,
] {
test_fastfield_gcd_i64_with_codec(codec_type, 5500)?;
}
Ok(())
}
fn test_fastfield_gcd_u64_with_codec(codec_type: CodecType, num_vals: usize) -> io::Result<()> {
let mut vals: Vec<u64> = (1..=num_vals).map(|i| i as u64 * 1000u64).collect();
let mut buffer: Vec<u8> = Vec::new();
crate::column_values::serialize_u64_based_column_values(
&&vals[..],
&[codec_type],
&mut buffer,
)?;
let buffer = OwnedBytes::new(buffer);
let column = crate::column_values::load_u64_based_column_values::<u64>(buffer.clone())?;
assert_eq!(column.get_val(0), 1000u64);
assert_eq!(column.get_val(1), 2000u64);
assert_eq!(column.get_val(2), 3000u64);
assert_eq!(column.max_value(), num_vals as u64 * 1000);
assert_eq!(column.min_value(), 1000u64);
// Can't apply gcd
let mut buffer_without_gcd = Vec::new();
vals.pop();
vals.push(1001u64);
crate::column_values::serialize_u64_based_column_values(
&&vals[..],
&[codec_type],
&mut buffer_without_gcd,
)?;
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
assert!(buffer_without_gcd.len() > buffer.len());
Ok(())
}
#[test]
fn test_fastfield_gcd_u64() -> io::Result<()> {
for &codec_type in &[
CodecType::Bitpacked,
CodecType::BlockwiseLinear,
CodecType::Linear,
] {
test_fastfield_gcd_u64_with_codec(codec_type, 5500)?;
}
Ok(())
}
#[test]
pub fn test_fastfield2() {
let test_fastfield = crate::column_values::serialize_and_load_u64_based_column_values::<u64>(
&&[100u64, 200u64, 300u64][..],
&ALL_U64_CODEC_TYPES,
);
assert_eq!(test_fastfield.get_val(0), 100);
assert_eq!(test_fastfield.get_val(1), 200);
assert_eq!(test_fastfield.get_val(2), 300);
}

View File

@@ -1,52 +0,0 @@
use std::fmt::Debug;
use tantivy_bitpacker::minmax;
use crate::ColumnValues;
/// VecColumn provides `Column` over a slice.
pub struct VecColumn<'a, T = u64> {
pub(crate) values: &'a [T],
pub(crate) min_value: T,
pub(crate) max_value: T,
}
impl<'a, T: Copy + PartialOrd + Send + Sync + Debug> ColumnValues<T> for VecColumn<'a, T> {
fn get_val(&self, position: u32) -> T {
self.values[position as usize]
}
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
Box::new(self.values.iter().copied())
}
fn min_value(&self) -> T {
self.min_value
}
fn max_value(&self) -> T {
self.max_value
}
fn num_vals(&self) -> u32 {
self.values.len() as u32
}
fn get_range(&self, start: u64, output: &mut [T]) {
output.copy_from_slice(&self.values[start as usize..][..output.len()])
}
}
impl<'a, T: Copy + PartialOrd + Default, V> From<&'a V> for VecColumn<'a, T>
where V: AsRef<[T]> + ?Sized
{
fn from(values: &'a V) -> Self {
let values = values.as_ref();
let (min_value, max_value) = minmax(values.iter().copied()).unwrap_or_default();
Self {
values,
min_value,
max_value,
}
}
}

View File

@@ -1,183 +0,0 @@
use std::fmt;
use std::fmt::Debug;
use std::net::Ipv6Addr;
use serde::{Deserialize, Serialize};
use crate::value::NumericalType;
use crate::InvalidData;
/// The column type represents the column type.
/// Any changes need to be propagated to `COLUMN_TYPES`.
#[derive(Hash, Eq, PartialEq, Debug, Clone, Copy, Ord, PartialOrd, Serialize, Deserialize)]
#[repr(u8)]
pub enum ColumnType {
I64 = 0u8,
U64 = 1u8,
F64 = 2u8,
Bytes = 3u8,
Str = 4u8,
Bool = 5u8,
IpAddr = 6u8,
DateTime = 7u8,
}
impl fmt::Display for ColumnType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let short_str = match self {
ColumnType::I64 => "i64",
ColumnType::U64 => "u64",
ColumnType::F64 => "f64",
ColumnType::Bytes => "bytes",
ColumnType::Str => "str",
ColumnType::Bool => "bool",
ColumnType::IpAddr => "ip",
ColumnType::DateTime => "datetime",
};
write!(f, "{short_str}")
}
}
// The order needs to match _exactly_ the order in the enum
const COLUMN_TYPES: [ColumnType; 8] = [
ColumnType::I64,
ColumnType::U64,
ColumnType::F64,
ColumnType::Bytes,
ColumnType::Str,
ColumnType::Bool,
ColumnType::IpAddr,
ColumnType::DateTime,
];
impl ColumnType {
pub fn to_code(self) -> u8 {
self as u8
}
pub fn is_date_time(&self) -> bool {
self == &ColumnType::DateTime
}
pub(crate) fn try_from_code(code: u8) -> Result<ColumnType, InvalidData> {
COLUMN_TYPES.get(code as usize).copied().ok_or(InvalidData)
}
}
impl From<NumericalType> for ColumnType {
fn from(numerical_type: NumericalType) -> Self {
match numerical_type {
NumericalType::I64 => ColumnType::I64,
NumericalType::U64 => ColumnType::U64,
NumericalType::F64 => ColumnType::F64,
}
}
}
impl ColumnType {
pub fn numerical_type(&self) -> Option<NumericalType> {
match self {
ColumnType::I64 => Some(NumericalType::I64),
ColumnType::U64 => Some(NumericalType::U64),
ColumnType::F64 => Some(NumericalType::F64),
ColumnType::Bytes
| ColumnType::Str
| ColumnType::Bool
| ColumnType::IpAddr
| ColumnType::DateTime => None,
}
}
}
// TODO remove if possible
pub trait HasAssociatedColumnType: 'static + Debug + Send + Sync + Copy + PartialOrd {
fn column_type() -> ColumnType;
fn default_value() -> Self;
}
impl HasAssociatedColumnType for u64 {
fn column_type() -> ColumnType {
ColumnType::U64
}
fn default_value() -> Self {
0u64
}
}
impl HasAssociatedColumnType for i64 {
fn column_type() -> ColumnType {
ColumnType::I64
}
fn default_value() -> Self {
0i64
}
}
impl HasAssociatedColumnType for f64 {
fn column_type() -> ColumnType {
ColumnType::F64
}
fn default_value() -> Self {
Default::default()
}
}
impl HasAssociatedColumnType for bool {
fn column_type() -> ColumnType {
ColumnType::Bool
}
fn default_value() -> Self {
Default::default()
}
}
impl HasAssociatedColumnType for common::DateTime {
fn column_type() -> ColumnType {
ColumnType::DateTime
}
fn default_value() -> Self {
Default::default()
}
}
impl HasAssociatedColumnType for Ipv6Addr {
fn column_type() -> ColumnType {
ColumnType::IpAddr
}
fn default_value() -> Self {
Ipv6Addr::from([0u8; 16])
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::Cardinality;
#[test]
fn test_column_type_to_code() {
for (code, expected_column_type) in super::COLUMN_TYPES.iter().copied().enumerate() {
if let Ok(column_type) = ColumnType::try_from_code(code as u8) {
assert_eq!(column_type, expected_column_type);
}
}
for code in COLUMN_TYPES.len() as u8..=u8::MAX {
assert!(ColumnType::try_from_code(code).is_err());
}
}
#[test]
fn test_cardinality_to_code() {
let mut num_cardinality = 0;
for code in u8::MIN..=u8::MAX {
if let Ok(cardinality) = Cardinality::try_from_code(code) {
assert_eq!(cardinality.to_code(), code);
num_cardinality += 1;
}
}
assert_eq!(num_cardinality, 3);
}
}

View File

@@ -1,73 +0,0 @@
use crate::InvalidData;
pub const VERSION_FOOTER_NUM_BYTES: usize = MAGIC_BYTES.len() + std::mem::size_of::<u32>();
/// We end the file by these 4 bytes just to somewhat identify that
/// this is indeed a columnar file.
const MAGIC_BYTES: [u8; 4] = [2, 113, 119, 66];
pub fn footer() -> [u8; VERSION_FOOTER_NUM_BYTES] {
let mut footer_bytes = [0u8; VERSION_FOOTER_NUM_BYTES];
footer_bytes[0..4].copy_from_slice(&Version::V1.to_bytes());
footer_bytes[4..8].copy_from_slice(&MAGIC_BYTES[..]);
footer_bytes
}
pub fn parse_footer(footer_bytes: [u8; VERSION_FOOTER_NUM_BYTES]) -> Result<Version, InvalidData> {
if footer_bytes[4..8] != MAGIC_BYTES {
return Err(InvalidData);
}
Version::try_from_bytes(footer_bytes[0..4].try_into().unwrap())
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[repr(u32)]
pub enum Version {
V1 = 1u32,
}
impl Version {
fn to_bytes(self) -> [u8; 4] {
(self as u32).to_le_bytes()
}
fn try_from_bytes(bytes: [u8; 4]) -> Result<Version, InvalidData> {
let code = u32::from_le_bytes(bytes);
match code {
1u32 => Ok(Version::V1),
_ => Err(InvalidData),
}
}
}
#[cfg(test)]
mod tests {
use std::collections::HashSet;
use super::*;
#[test]
fn test_footer_dserialization() {
let parsed_version: Version = parse_footer(footer()).unwrap();
assert_eq!(Version::V1, parsed_version);
}
#[test]
fn test_version_serialization() {
let version_to_tests: Vec<u32> = [0, 1 << 8, 1 << 16, 1 << 24]
.iter()
.copied()
.flat_map(|offset| (0..255).map(move |el| el + offset))
.collect();
let mut valid_versions: HashSet<u32> = HashSet::default();
for &i in &version_to_tests {
let version_res = Version::try_from_bytes(i.to_le_bytes());
if let Ok(version) = version_res {
assert_eq!(version, Version::V1);
assert_eq!(version.to_bytes(), i.to_le_bytes());
valid_versions.insert(i);
}
}
assert_eq!(valid_versions.len(), 1);
}
}

View File

@@ -1,210 +0,0 @@
use std::io::{self, Write};
use common::{BitSet, CountingWriter, ReadOnlyBitSet};
use sstable::{SSTable, Streamer, TermOrdinal, VoidSSTable};
use super::term_merger::TermMerger;
use crate::column::serialize_column_mappable_to_u64;
use crate::column_index::SerializableColumnIndex;
use crate::iterable::Iterable;
use crate::{BytesColumn, MergeRowOrder, ShuffleMergeOrder};
// Serialize [Dictionary, Column, dictionary num bytes U32::LE]
// Column: [Column Index, Column Values, column index num bytes U32::LE]
pub fn merge_bytes_or_str_column(
column_index: SerializableColumnIndex<'_>,
bytes_columns: &[Option<BytesColumn>],
merge_row_order: &MergeRowOrder,
output: &mut impl Write,
) -> io::Result<()> {
// Serialize dict and generate mapping for values
let mut output = CountingWriter::wrap(output);
// TODO !!! Remove useless terms.
let term_ord_mapping = serialize_merged_dict(bytes_columns, merge_row_order, &mut output)?;
let dictionary_num_bytes: u32 = output.written_bytes() as u32;
let output = output.finish();
let remapped_term_ordinals_values = RemappedTermOrdinalsValues {
bytes_columns,
term_ord_mapping: &term_ord_mapping,
merge_row_order,
};
serialize_column_mappable_to_u64(column_index, &remapped_term_ordinals_values, output)?;
output.write_all(&dictionary_num_bytes.to_le_bytes())?;
Ok(())
}
struct RemappedTermOrdinalsValues<'a> {
bytes_columns: &'a [Option<BytesColumn>],
term_ord_mapping: &'a TermOrdinalMapping,
merge_row_order: &'a MergeRowOrder,
}
impl<'a> Iterable for RemappedTermOrdinalsValues<'a> {
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
match self.merge_row_order {
MergeRowOrder::Stack(_) => self.boxed_iter_stacked(),
MergeRowOrder::Shuffled(shuffle_merge_order) => {
self.boxed_iter_shuffled(shuffle_merge_order)
}
}
}
}
impl<'a> RemappedTermOrdinalsValues<'a> {
fn boxed_iter_stacked(&self) -> Box<dyn Iterator<Item = u64> + '_> {
let iter = self
.bytes_columns
.iter()
.enumerate()
.flat_map(|(seg_ord, bytes_column_opt)| {
let bytes_column = bytes_column_opt.as_ref()?;
Some((seg_ord, bytes_column))
})
.flat_map(move |(seg_ord, bytes_column)| {
let term_ord_after_merge_mapping =
self.term_ord_mapping.get_segment(seg_ord as u32);
bytes_column
.ords()
.values
.iter()
.map(move |term_ord| term_ord_after_merge_mapping[term_ord as usize])
});
Box::new(iter)
}
fn boxed_iter_shuffled<'b>(
&'b self,
shuffle_merge_order: &'b ShuffleMergeOrder,
) -> Box<dyn Iterator<Item = u64> + 'b> {
Box::new(
shuffle_merge_order
.iter_new_to_old_row_addrs()
.flat_map(move |old_addr| {
let segment_ord = self.term_ord_mapping.get_segment(old_addr.segment_ord);
self.bytes_columns[old_addr.segment_ord as usize]
.as_ref()
.into_iter()
.flat_map(move |bytes_column| {
bytes_column
.term_ords(old_addr.row_id)
.map(|old_term_ord: u64| segment_ord[old_term_ord as usize])
})
}),
)
}
}
fn compute_term_bitset(column: &BytesColumn, row_bitset: &ReadOnlyBitSet) -> BitSet {
let num_terms = column.dictionary().num_terms();
let mut term_bitset = BitSet::with_max_value(num_terms as u32);
for row_id in row_bitset.iter() {
for term_ord in column.term_ord_column.values_for_doc(row_id) {
term_bitset.insert(term_ord as u32);
}
}
term_bitset
}
fn is_term_present(bitsets: &[Option<BitSet>], term_merger: &TermMerger) -> bool {
for (segment_ord, from_term_ord) in term_merger.matching_segments() {
if let Some(bitset) = bitsets[segment_ord].as_ref() {
if bitset.contains(from_term_ord as u32) {
return true;
}
} else {
return true;
}
}
false
}
fn serialize_merged_dict(
bytes_columns: &[Option<BytesColumn>],
merge_row_order: &MergeRowOrder,
output: &mut impl Write,
) -> io::Result<TermOrdinalMapping> {
let mut term_ord_mapping = TermOrdinalMapping::default();
let mut field_term_streams = Vec::new();
for column_opt in bytes_columns.iter() {
if let Some(column) = column_opt {
term_ord_mapping.add_segment(column.dictionary.num_terms());
let terms: Streamer<VoidSSTable> = column.dictionary.stream()?;
field_term_streams.push(terms);
} else {
term_ord_mapping.add_segment(0);
field_term_streams.push(Streamer::empty());
}
}
let mut merged_terms = TermMerger::new(field_term_streams);
let mut sstable_builder = sstable::VoidSSTable::writer(output);
match merge_row_order {
MergeRowOrder::Stack(_) => {
let mut current_term_ord = 0;
while merged_terms.advance() {
let term_bytes: &[u8] = merged_terms.key();
sstable_builder.insert(term_bytes, &())?;
for (segment_ord, from_term_ord) in merged_terms.matching_segments() {
term_ord_mapping.register_from_to(segment_ord, from_term_ord, current_term_ord);
}
current_term_ord += 1;
}
sstable_builder.finish()?;
}
MergeRowOrder::Shuffled(shuffle_merge_order) => {
assert_eq!(shuffle_merge_order.alive_bitsets.len(), bytes_columns.len());
let mut term_bitsets: Vec<Option<BitSet>> = Vec::with_capacity(bytes_columns.len());
for (alive_bitset_opt, bytes_column_opt) in shuffle_merge_order
.alive_bitsets
.iter()
.zip(bytes_columns.iter())
{
match (alive_bitset_opt, bytes_column_opt) {
(Some(alive_bitset), Some(bytes_column)) => {
let term_bitset = compute_term_bitset(bytes_column, alive_bitset);
term_bitsets.push(Some(term_bitset));
}
_ => {
term_bitsets.push(None);
}
}
}
let mut current_term_ord = 0;
while merged_terms.advance() {
let term_bytes: &[u8] = merged_terms.key();
if !is_term_present(&term_bitsets[..], &merged_terms) {
continue;
}
sstable_builder.insert(term_bytes, &())?;
for (segment_ord, from_term_ord) in merged_terms.matching_segments() {
term_ord_mapping.register_from_to(segment_ord, from_term_ord, current_term_ord);
}
current_term_ord += 1;
}
sstable_builder.finish()?;
}
}
Ok(term_ord_mapping)
}
#[derive(Default, Debug)]
struct TermOrdinalMapping {
per_segment_new_term_ordinals: Vec<Vec<TermOrdinal>>,
}
impl TermOrdinalMapping {
fn add_segment(&mut self, max_term_ord: usize) {
self.per_segment_new_term_ordinals
.push(vec![TermOrdinal::default(); max_term_ord]);
}
fn register_from_to(&mut self, segment_ord: usize, from_ord: TermOrdinal, to_ord: TermOrdinal) {
self.per_segment_new_term_ordinals[segment_ord][from_ord as usize] = to_ord;
}
fn get_segment(&self, segment_ord: u32) -> &[TermOrdinal] {
&(self.per_segment_new_term_ordinals[segment_ord as usize])[..]
}
}

View File

@@ -1,129 +0,0 @@
use std::ops::Range;
use common::{BitSet, OwnedBytes, ReadOnlyBitSet};
use crate::{ColumnarReader, RowAddr, RowId};
pub struct StackMergeOrder {
// This does not start at 0. The first row is the number of
// rows in the first columnar.
cumulated_row_ids: Vec<RowId>,
}
impl StackMergeOrder {
#[cfg(test)]
pub fn stack_for_test(num_rows_per_columnar: &[u32]) -> StackMergeOrder {
let mut cumulated_row_ids: Vec<RowId> = Vec::with_capacity(num_rows_per_columnar.len());
let mut cumulated_row_id = 0;
for &num_rows in num_rows_per_columnar {
cumulated_row_id += num_rows;
cumulated_row_ids.push(cumulated_row_id);
}
StackMergeOrder { cumulated_row_ids }
}
pub fn stack(columnars: &[&ColumnarReader]) -> StackMergeOrder {
let mut cumulated_row_ids: Vec<RowId> = Vec::with_capacity(columnars.len());
let mut cumulated_row_id = 0;
for columnar in columnars {
cumulated_row_id += columnar.num_rows();
cumulated_row_ids.push(cumulated_row_id);
}
StackMergeOrder { cumulated_row_ids }
}
pub fn num_rows(&self) -> RowId {
self.cumulated_row_ids.last().copied().unwrap_or(0)
}
pub fn offset(&self, columnar_id: usize) -> RowId {
if columnar_id == 0 {
return 0;
}
self.cumulated_row_ids[columnar_id - 1]
}
pub fn columnar_range(&self, columnar_id: usize) -> Range<RowId> {
self.offset(columnar_id)..self.offset(columnar_id + 1)
}
}
pub enum MergeRowOrder {
/// Columnar tables are simply stacked one above the other.
/// If the i-th columnar_readers has n_rows_i rows, then
/// in the resulting columnar,
/// rows [r0..n_row_0) contains the row of `columnar_readers[0]`, in ordder
/// rows [n_row_0..n_row_0 + n_row_1 contains the row of `columnar_readers[1]`, in order.
/// ..
/// No documents is deleted.
Stack(StackMergeOrder),
/// Some more complex mapping, that may interleaves rows from the different readers and
/// drop rows, or do both.
Shuffled(ShuffleMergeOrder),
}
impl From<StackMergeOrder> for MergeRowOrder {
fn from(stack_merge_order: StackMergeOrder) -> MergeRowOrder {
MergeRowOrder::Stack(stack_merge_order)
}
}
impl From<ShuffleMergeOrder> for MergeRowOrder {
fn from(shuffle_merge_order: ShuffleMergeOrder) -> MergeRowOrder {
MergeRowOrder::Shuffled(shuffle_merge_order)
}
}
impl MergeRowOrder {
pub fn num_rows(&self) -> RowId {
match self {
MergeRowOrder::Stack(stack_row_order) => stack_row_order.num_rows(),
MergeRowOrder::Shuffled(complex_mapping) => complex_mapping.num_rows(),
}
}
}
pub struct ShuffleMergeOrder {
pub new_row_id_to_old_row_id: Vec<RowAddr>,
pub alive_bitsets: Vec<Option<ReadOnlyBitSet>>,
}
impl ShuffleMergeOrder {
pub fn for_test(
segment_num_rows: &[RowId],
new_row_id_to_old_row_id: Vec<RowAddr>,
) -> ShuffleMergeOrder {
let mut alive_bitsets: Vec<BitSet> = segment_num_rows
.iter()
.map(|&num_rows| BitSet::with_max_value(num_rows))
.collect();
for &RowAddr {
segment_ord,
row_id,
} in &new_row_id_to_old_row_id
{
alive_bitsets[segment_ord as usize].insert(row_id);
}
let alive_bitsets: Vec<Option<ReadOnlyBitSet>> = alive_bitsets
.into_iter()
.map(|alive_bitset| {
let mut buffer = Vec::new();
alive_bitset.serialize(&mut buffer).unwrap();
let data = OwnedBytes::new(buffer);
Some(ReadOnlyBitSet::open(data))
})
.collect();
ShuffleMergeOrder {
new_row_id_to_old_row_id,
alive_bitsets,
}
}
pub fn num_rows(&self) -> RowId {
self.new_row_id_to_old_row_id.len() as RowId
}
pub fn iter_new_to_old_row_addrs(&self) -> impl Iterator<Item = RowAddr> + '_ {
self.new_row_id_to_old_row_id.iter().copied()
}
}

View File

@@ -1,486 +0,0 @@
mod merge_dict_column;
mod merge_mapping;
mod term_merger;
use std::collections::{BTreeMap, HashSet};
use std::io;
use std::net::Ipv6Addr;
use std::sync::Arc;
use itertools::Itertools;
pub use merge_mapping::{MergeRowOrder, ShuffleMergeOrder, StackMergeOrder};
use super::writer::ColumnarSerializer;
use crate::column::{serialize_column_mappable_to_u128, serialize_column_mappable_to_u64};
use crate::column_values::MergedColumnValues;
use crate::columnar::merge::merge_dict_column::merge_bytes_or_str_column;
use crate::columnar::writer::CompatibleNumericalTypes;
use crate::columnar::ColumnarReader;
use crate::dynamic_column::DynamicColumn;
use crate::{
BytesColumn, Column, ColumnIndex, ColumnType, ColumnValues, DynamicColumnHandle, NumericalType,
NumericalValue,
};
/// Column types are grouped into different categories.
/// After merge, all columns belonging to the same category are coerced to
/// the same column type.
///
/// In practise, today, only Numerical colummns are coerced into one type today.
///
/// See also [README.md].
///
/// The ordering has to match the ordering of the variants in [ColumnType].
#[derive(Copy, Clone, Eq, PartialOrd, Ord, PartialEq, Hash, Debug)]
pub(crate) enum ColumnTypeCategory {
Numerical,
Bytes,
Str,
Bool,
IpAddr,
DateTime,
}
impl From<ColumnType> for ColumnTypeCategory {
fn from(column_type: ColumnType) -> Self {
match column_type {
ColumnType::I64 => ColumnTypeCategory::Numerical,
ColumnType::U64 => ColumnTypeCategory::Numerical,
ColumnType::F64 => ColumnTypeCategory::Numerical,
ColumnType::Bytes => ColumnTypeCategory::Bytes,
ColumnType::Str => ColumnTypeCategory::Str,
ColumnType::Bool => ColumnTypeCategory::Bool,
ColumnType::IpAddr => ColumnTypeCategory::IpAddr,
ColumnType::DateTime => ColumnTypeCategory::DateTime,
}
}
}
/// Merge several columnar table together.
///
/// If several columns with the same name are conflicting with the numerical types in the
/// input columnars, the first type compatible out of i64, u64, f64 in that order will be used.
///
/// `require_columns` makes it possible to ensure that some columns will be present in the
/// resulting columnar. When a required column is a numerical column type, one of two things can
/// happen:
/// - If the required column type is compatible with all of the input columnar, the resulsting
/// merged
/// columnar will simply coerce the input column and use the required column type.
/// - If the required column type is incompatible with one of the input columnar, the merged
/// will fail with an InvalidData error.
///
/// `merge_row_order` makes it possible to remove or reorder row in the resulting
/// `Columnar` table.
///
/// Reminder: a string and a numerical column may bare the same column name. This is not
/// considered a conflict.
pub fn merge_columnar(
columnar_readers: &[&ColumnarReader],
required_columns: &[(String, ColumnType)],
merge_row_order: MergeRowOrder,
output: &mut impl io::Write,
) -> io::Result<()> {
let mut serializer = ColumnarSerializer::new(output);
let num_rows_per_columnar = columnar_readers
.iter()
.map(|reader| reader.num_rows())
.collect::<Vec<u32>>();
let columns_to_merge =
group_columns_for_merge(columnar_readers, required_columns, &merge_row_order)?;
for res in columns_to_merge {
let ((column_name, _column_type_category), grouped_columns) = res;
let grouped_columns = grouped_columns.open(&merge_row_order)?;
if grouped_columns.is_empty() {
continue;
}
let column_type = grouped_columns.column_type_after_merge();
let mut columns = grouped_columns.columns;
coerce_columns(column_type, &mut columns)?;
let mut column_serializer =
serializer.start_serialize_column(column_name.as_bytes(), column_type);
merge_column(
column_type,
&num_rows_per_columnar,
columns,
&merge_row_order,
&mut column_serializer,
)?;
column_serializer.finalize()?;
}
serializer.finalize(merge_row_order.num_rows())?;
Ok(())
}
fn dynamic_column_to_u64_monotonic(dynamic_column: DynamicColumn) -> Option<Column<u64>> {
match dynamic_column {
DynamicColumn::Bool(column) => Some(column.to_u64_monotonic()),
DynamicColumn::I64(column) => Some(column.to_u64_monotonic()),
DynamicColumn::U64(column) => Some(column.to_u64_monotonic()),
DynamicColumn::F64(column) => Some(column.to_u64_monotonic()),
DynamicColumn::DateTime(column) => Some(column.to_u64_monotonic()),
DynamicColumn::IpAddr(_) | DynamicColumn::Bytes(_) | DynamicColumn::Str(_) => None,
}
}
fn merge_column(
column_type: ColumnType,
num_docs_per_column: &[u32],
columns: Vec<Option<DynamicColumn>>,
merge_row_order: &MergeRowOrder,
wrt: &mut impl io::Write,
) -> io::Result<()> {
match column_type {
ColumnType::I64
| ColumnType::U64
| ColumnType::F64
| ColumnType::DateTime
| ColumnType::Bool => {
let mut column_indexes: Vec<ColumnIndex> = Vec::with_capacity(columns.len());
let mut column_values: Vec<Option<Arc<dyn ColumnValues>>> =
Vec::with_capacity(columns.len());
for (i, dynamic_column_opt) in columns.into_iter().enumerate() {
if let Some(Column { index: idx, values }) =
dynamic_column_opt.and_then(dynamic_column_to_u64_monotonic)
{
column_indexes.push(idx);
column_values.push(Some(values));
} else {
column_indexes.push(ColumnIndex::Empty {
num_docs: num_docs_per_column[i],
});
column_values.push(None);
}
}
let merged_column_index =
crate::column_index::merge_column_index(&column_indexes[..], merge_row_order);
let merge_column_values = MergedColumnValues {
column_indexes: &column_indexes[..],
column_values: &column_values[..],
merge_row_order,
};
serialize_column_mappable_to_u64(merged_column_index, &merge_column_values, wrt)?;
}
ColumnType::IpAddr => {
let mut column_indexes: Vec<ColumnIndex> = Vec::with_capacity(columns.len());
let mut column_values: Vec<Option<Arc<dyn ColumnValues<Ipv6Addr>>>> =
Vec::with_capacity(columns.len());
for (i, dynamic_column_opt) in columns.into_iter().enumerate() {
if let Some(DynamicColumn::IpAddr(Column { index: idx, values })) =
dynamic_column_opt
{
column_indexes.push(idx);
column_values.push(Some(values));
} else {
column_indexes.push(ColumnIndex::Empty {
num_docs: num_docs_per_column[i],
});
column_values.push(None);
}
}
let merged_column_index =
crate::column_index::merge_column_index(&column_indexes[..], merge_row_order);
let merge_column_values = MergedColumnValues {
column_indexes: &column_indexes[..],
column_values: &column_values,
merge_row_order,
};
serialize_column_mappable_to_u128(merged_column_index, &merge_column_values, wrt)?;
}
ColumnType::Bytes | ColumnType::Str => {
let mut column_indexes: Vec<ColumnIndex> = Vec::with_capacity(columns.len());
let mut bytes_columns: Vec<Option<BytesColumn>> = Vec::with_capacity(columns.len());
for (i, dynamic_column_opt) in columns.into_iter().enumerate() {
match dynamic_column_opt {
Some(DynamicColumn::Str(str_column)) => {
column_indexes.push(str_column.term_ord_column.index.clone());
bytes_columns.push(Some(str_column.into()));
}
Some(DynamicColumn::Bytes(bytes_column)) => {
column_indexes.push(bytes_column.term_ord_column.index.clone());
bytes_columns.push(Some(bytes_column));
}
_ => {
column_indexes.push(ColumnIndex::Empty {
num_docs: num_docs_per_column[i],
});
bytes_columns.push(None);
}
}
}
let merged_column_index =
crate::column_index::merge_column_index(&column_indexes[..], merge_row_order);
merge_bytes_or_str_column(merged_column_index, &bytes_columns, merge_row_order, wrt)?;
}
}
Ok(())
}
struct GroupedColumns {
required_column_type: Option<ColumnType>,
columns: Vec<Option<DynamicColumn>>,
}
impl GroupedColumns {
/// Check is column group can be skipped during serialization.
fn is_empty(&self) -> bool {
self.required_column_type.is_none() && self.columns.iter().all(Option::is_none)
}
/// Returns the column type after merge.
///
/// This method does not check if the column types can actually be coerced to
/// this type.
fn column_type_after_merge(&self) -> ColumnType {
if let Some(required_type) = self.required_column_type {
return required_type;
}
let column_type: HashSet<ColumnType> = self
.columns
.iter()
.flatten()
.map(|column| column.column_type())
.collect();
if column_type.len() == 1 {
return column_type.into_iter().next().unwrap();
}
// At the moment, only the numerical categorical column type has more than one possible
// column type.
assert!(self
.columns
.iter()
.flatten()
.all(|el| ColumnTypeCategory::from(el.column_type()) == ColumnTypeCategory::Numerical));
merged_numerical_columns_type(self.columns.iter().flatten()).into()
}
}
struct GroupedColumnsHandle {
required_column_type: Option<ColumnType>,
columns: Vec<Option<DynamicColumnHandle>>,
}
impl GroupedColumnsHandle {
fn new(num_columnars: usize) -> Self {
GroupedColumnsHandle {
required_column_type: None,
columns: vec![None; num_columnars],
}
}
fn open(self, merge_row_order: &MergeRowOrder) -> io::Result<GroupedColumns> {
let mut columns: Vec<Option<DynamicColumn>> = Vec::new();
for (columnar_id, column) in self.columns.iter().enumerate() {
if let Some(column) = column {
let column = column.open()?;
// We skip columns that end up with 0 documents.
// That way, we make sure they don't end up influencing the merge type or
// creating empty columns.
if is_empty_after_merge(merge_row_order, &column, columnar_id) {
columns.push(None);
} else {
columns.push(Some(column));
}
} else {
columns.push(None);
}
}
Ok(GroupedColumns {
required_column_type: self.required_column_type,
columns,
})
}
/// Set the dynamic column for a given columnar.
fn set_column(&mut self, columnar_id: usize, column: DynamicColumnHandle) {
self.columns[columnar_id] = Some(column);
}
/// Force the existence of a column, as well as its type.
fn require_type(&mut self, required_type: ColumnType) -> io::Result<()> {
if let Some(existing_required_type) = self.required_column_type {
if existing_required_type == required_type {
// This was just a duplicate in the `required_columns`.
// Nothing to do.
return Ok(());
} else {
return Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Required column conflicts with another required column of the same type \
category.",
));
}
}
self.required_column_type = Some(required_type);
Ok(())
}
}
/// Returns the type of the merged numerical column.
///
/// This function picks the first numerical type out of i64, u64, f64 (order matters
/// here), that is compatible with all the `columns`.
///
/// # Panics
/// Panics if one of the column is not numerical.
fn merged_numerical_columns_type<'a>(
columns: impl Iterator<Item = &'a DynamicColumn>,
) -> NumericalType {
let mut compatible_numerical_types = CompatibleNumericalTypes::default();
for column in columns {
let (min_value, max_value) =
min_max_if_numerical(column).expect("All columns re required to be numerical");
compatible_numerical_types.accept_value(min_value);
compatible_numerical_types.accept_value(max_value);
}
compatible_numerical_types.to_numerical_type()
}
fn is_empty_after_merge(
merge_row_order: &MergeRowOrder,
column: &DynamicColumn,
columnar_ord: usize,
) -> bool {
if column.num_values() == 0u32 {
// It was empty before the merge.
return true;
}
match merge_row_order {
MergeRowOrder::Stack(_) => {
// If we are stacking the columnar, no rows are being deleted.
false
}
MergeRowOrder::Shuffled(shuffled) => {
if let Some(alive_bitset) = &shuffled.alive_bitsets[columnar_ord] {
let column_index = column.column_index();
match column_index {
ColumnIndex::Empty { .. } => true,
ColumnIndex::Full => alive_bitset.len() == 0,
ColumnIndex::Optional(optional_index) => {
for doc in optional_index.iter_rows() {
if alive_bitset.contains(doc) {
return false;
}
}
true
}
ColumnIndex::Multivalued(multivalued_index) => {
for (doc_id, (start_index, end_index)) in multivalued_index
.start_index_column
.iter()
.tuple_windows()
.enumerate()
{
let doc_id = doc_id as u32;
if start_index == end_index {
// There are no values in this document
continue;
}
// The document contains values and is present in the alive bitset.
// The column is therefore not empty.
if alive_bitset.contains(doc_id) {
return false;
}
}
true
}
}
} else {
// No document is being deleted.
// The shuffle is applying a permutation.
false
}
}
}
}
/// Iterates over the columns of the columnar readers, grouped by column name.
/// Key functionality is that `open` of the Columns is done lazy per group.
fn group_columns_for_merge<'a>(
columnar_readers: &'a [&'a ColumnarReader],
required_columns: &'a [(String, ColumnType)],
_merge_row_order: &'a MergeRowOrder,
) -> io::Result<BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle>> {
let mut columns: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> = BTreeMap::new();
for &(ref column_name, column_type) in required_columns {
columns
.entry((column_name.clone(), column_type.into()))
.or_insert_with(|| GroupedColumnsHandle::new(columnar_readers.len()))
.require_type(column_type)?;
}
for (columnar_id, columnar_reader) in columnar_readers.iter().enumerate() {
let column_name_and_handle = columnar_reader.iter_columns()?;
for (column_name, handle) in column_name_and_handle {
let column_category: ColumnTypeCategory = handle.column_type().into();
columns
.entry((column_name, column_category))
.or_insert_with(|| GroupedColumnsHandle::new(columnar_readers.len()))
.set_column(columnar_id, handle);
}
}
Ok(columns)
}
fn coerce_columns(
column_type: ColumnType,
columns: &mut [Option<DynamicColumn>],
) -> io::Result<()> {
for column_opt in columns.iter_mut() {
if let Some(column) = column_opt.take() {
*column_opt = Some(coerce_column(column_type, column)?);
}
}
Ok(())
}
fn coerce_column(column_type: ColumnType, column: DynamicColumn) -> io::Result<DynamicColumn> {
if let Some(numerical_type) = column_type.numerical_type() {
column
.coerce_numerical(numerical_type)
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidInput, ""))
} else {
if column.column_type() != column_type {
return Err(io::Error::new(
io::ErrorKind::InvalidInput,
format!(
"Cannot coerce column of type `{:?}` to `{column_type:?}`",
column.column_type()
),
));
}
Ok(column)
}
}
/// Returns the (min, max) of a column provided it is numerical (i64, u64. f64).
///
/// The min and the max are simply the numerical value as defined by `ColumnValue::min_value()`,
/// and `ColumnValue::max_value()`.
///
/// It is important to note that these values are only guaranteed to be lower/upper bound
/// (as opposed to min/max value).
/// If a column is empty, the min and max values are currently set to 0.
fn min_max_if_numerical(column: &DynamicColumn) -> Option<(NumericalValue, NumericalValue)> {
match column {
DynamicColumn::I64(column) => Some((column.min_value().into(), column.max_value().into())),
DynamicColumn::U64(column) => Some((column.min_value().into(), column.max_value().into())),
DynamicColumn::F64(column) => Some((column.min_value().into(), column.max_value().into())),
DynamicColumn::Bool(_)
| DynamicColumn::IpAddr(_)
| DynamicColumn::DateTime(_)
| DynamicColumn::Bytes(_)
| DynamicColumn::Str(_) => None,
}
}
#[cfg(test)]
mod tests;

View File

@@ -1,107 +0,0 @@
use std::cmp::Ordering;
use std::collections::BinaryHeap;
use sstable::TermOrdinal;
use crate::Streamer;
pub struct HeapItem<'a> {
pub streamer: Streamer<'a>,
pub segment_ord: usize,
}
impl<'a> PartialEq for HeapItem<'a> {
fn eq(&self, other: &Self) -> bool {
self.segment_ord == other.segment_ord
}
}
impl<'a> Eq for HeapItem<'a> {}
impl<'a> PartialOrd for HeapItem<'a> {
fn partial_cmp(&self, other: &HeapItem<'a>) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<'a> Ord for HeapItem<'a> {
fn cmp(&self, other: &HeapItem<'a>) -> Ordering {
(&other.streamer.key(), &other.segment_ord).cmp(&(&self.streamer.key(), &self.segment_ord))
}
}
/// Given a list of sorted term streams,
/// returns an iterator over sorted unique terms.
///
/// The item yield is actually a pair with
/// - the term
/// - a slice with the ordinal of the segments containing
/// the terms.
pub struct TermMerger<'a> {
heap: BinaryHeap<HeapItem<'a>>,
current_streamers: Vec<HeapItem<'a>>,
}
impl<'a> TermMerger<'a> {
/// Stream of merged term dictionary
pub fn new(streams: Vec<Streamer<'a>>) -> TermMerger<'a> {
TermMerger {
heap: BinaryHeap::new(),
current_streamers: streams
.into_iter()
.enumerate()
.map(|(ord, streamer)| HeapItem {
streamer,
segment_ord: ord,
})
.collect(),
}
}
pub(crate) fn matching_segments<'b: 'a>(
&'b self,
) -> impl 'b + Iterator<Item = (usize, TermOrdinal)> {
self.current_streamers
.iter()
.map(|heap_item| (heap_item.segment_ord, heap_item.streamer.term_ord()))
}
fn advance_segments(&mut self) {
let streamers = &mut self.current_streamers;
let heap = &mut self.heap;
for mut heap_item in streamers.drain(..) {
if heap_item.streamer.advance() {
heap.push(heap_item);
}
}
}
/// Advance the term iterator to the next term.
/// Returns true if there is indeed another term
/// False if there is none.
pub fn advance(&mut self) -> bool {
self.advance_segments();
if let Some(head) = self.heap.pop() {
self.current_streamers.push(head);
while let Some(next_streamer) = self.heap.peek() {
if self.current_streamers[0].streamer.key() != next_streamer.streamer.key() {
break;
}
let next_heap_it = self.heap.pop().unwrap(); // safe : we peeked beforehand
self.current_streamers.push(next_heap_it);
}
true
} else {
false
}
}
/// Returns the current term.
///
/// This method may be called
/// if and only if advance() has been called before
/// and "true" was returned.
pub fn key(&self) -> &[u8] {
self.current_streamers[0].streamer.key()
}
}

View File

@@ -1,496 +0,0 @@
use std::collections::BTreeMap;
use itertools::Itertools;
use super::*;
use crate::{Cardinality, ColumnarWriter, HasAssociatedColumnType, RowId};
fn make_columnar<T: Into<NumericalValue> + HasAssociatedColumnType + Copy>(
column_name: &str,
vals: &[T],
) -> ColumnarReader {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_column_type(column_name, T::column_type(), false);
for (row_id, val) in vals.iter().copied().enumerate() {
dataframe_writer.record_numerical(row_id as RowId, column_name, val.into());
}
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer
.serialize(vals.len() as RowId, None, &mut buffer)
.unwrap();
ColumnarReader::open(buffer).unwrap()
}
#[test]
fn test_column_coercion_to_u64() {
// i64 type
let columnar1 = make_columnar("numbers", &[1i64]);
// u64 type
let columnar2 = make_columnar("numbers", &[u64::MAX]);
let columnars = &[&columnar1, &columnar2];
let merge_order = StackMergeOrder::stack(columnars).into();
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
group_columns_for_merge(columnars, &[], &merge_order).unwrap();
assert_eq!(column_map.len(), 1);
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
}
#[test]
fn test_column_coercion_to_i64() {
let columnar1 = make_columnar("numbers", &[-1i64]);
let columnar2 = make_columnar("numbers", &[2u64]);
let columnars = &[&columnar1, &columnar2];
let merge_order = StackMergeOrder::stack(columnars).into();
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
group_columns_for_merge(columnars, &[], &merge_order).unwrap();
assert_eq!(column_map.len(), 1);
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
}
//#[test]
// fn test_impossible_coercion_returns_an_error() {
// let columnar1 = make_columnar("numbers", &[u64::MAX]);
// let merge_order = StackMergeOrder::stack(&[&columnar1]).into();
// let group_error = group_columns_for_merge_iter(
//&[&columnar1],
//&[("numbers".to_string(), ColumnType::I64)],
//&merge_order,
//)
//.unwrap_err();
// assert_eq!(group_error.kind(), io::ErrorKind::InvalidInput);
//}
#[test]
fn test_group_columns_with_required_column() {
let columnar1 = make_columnar("numbers", &[1i64]);
let columnar2 = make_columnar("numbers", &[2u64]);
let columnars = &[&columnar1, &columnar2];
let merge_order = StackMergeOrder::stack(columnars).into();
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
group_columns_for_merge(
&[&columnar1, &columnar2],
&[("numbers".to_string(), ColumnType::U64)],
&merge_order,
)
.unwrap();
assert_eq!(column_map.len(), 1);
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
}
#[test]
fn test_group_columns_required_column_with_no_existing_columns() {
let columnar1 = make_columnar("numbers", &[2u64]);
let columnar2 = make_columnar("numbers", &[2u64]);
let columnars = &[&columnar1, &columnar2];
let merge_order = StackMergeOrder::stack(columnars).into();
let column_map: BTreeMap<_, _> = group_columns_for_merge(
columnars,
&[("required_col".to_string(), ColumnType::Str)],
&merge_order,
)
.unwrap();
assert_eq!(column_map.len(), 2);
let columns = &column_map
.get(&("required_col".to_string(), ColumnTypeCategory::Str))
.unwrap()
.columns;
assert_eq!(columns.len(), 2);
assert!(columns[0].is_none());
assert!(columns[1].is_none());
}
#[test]
fn test_group_columns_required_column_is_above_all_columns_have_the_same_type_rule() {
let columnar1 = make_columnar("numbers", &[2i64]);
let columnar2 = make_columnar("numbers", &[2i64]);
let columnars = &[&columnar1, &columnar2];
let merge_order = StackMergeOrder::stack(columnars).into();
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
group_columns_for_merge(
columnars,
&[("numbers".to_string(), ColumnType::U64)],
&merge_order,
)
.unwrap();
assert_eq!(column_map.len(), 1);
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
}
#[test]
fn test_missing_column() {
let columnar1 = make_columnar("numbers", &[-1i64]);
let columnar2 = make_columnar("numbers2", &[2u64]);
let columnars = &[&columnar1, &columnar2];
let merge_order = StackMergeOrder::stack(columnars).into();
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
group_columns_for_merge(columnars, &[], &merge_order).unwrap();
assert_eq!(column_map.len(), 2);
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
{
let columns = &column_map
.get(&("numbers".to_string(), ColumnTypeCategory::Numerical))
.unwrap()
.columns;
assert!(columns[0].is_some());
assert!(columns[1].is_none());
}
{
let columns = &column_map
.get(&("numbers2".to_string(), ColumnTypeCategory::Numerical))
.unwrap()
.columns;
assert!(columns[0].is_none());
assert!(columns[1].is_some());
}
}
fn make_numerical_columnar_multiple_columns(
columns: &[(&str, &[&[NumericalValue]])],
) -> ColumnarReader {
let mut dataframe_writer = ColumnarWriter::default();
for (column_name, column_values) in columns {
for (row_id, vals) in column_values.iter().enumerate() {
for val in vals.iter() {
dataframe_writer.record_numerical(row_id as u32, column_name, *val);
}
}
}
let num_rows = columns
.iter()
.map(|(_, val_rows)| val_rows.len() as RowId)
.max()
.unwrap_or(0u32);
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer
.serialize(num_rows, None, &mut buffer)
.unwrap();
ColumnarReader::open(buffer).unwrap()
}
#[track_caller]
fn make_byte_columnar_multiple_columns(
columns: &[(&str, &[&[&[u8]]])],
num_rows: u32,
) -> ColumnarReader {
let mut dataframe_writer = ColumnarWriter::default();
for (column_name, column_values) in columns {
assert_eq!(
column_values.len(),
num_rows as usize,
"All columns must have `{num_rows}` rows"
);
for (row_id, vals) in column_values.iter().enumerate() {
for val in vals.iter() {
dataframe_writer.record_bytes(row_id as u32, column_name, val);
}
}
}
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer
.serialize(num_rows, None, &mut buffer)
.unwrap();
ColumnarReader::open(buffer).unwrap()
}
fn make_text_columnar_multiple_columns(columns: &[(&str, &[&[&str]])]) -> ColumnarReader {
let mut dataframe_writer = ColumnarWriter::default();
for (column_name, column_values) in columns {
for (row_id, vals) in column_values.iter().enumerate() {
for val in vals.iter() {
dataframe_writer.record_str(row_id as u32, column_name, val);
}
}
}
let num_rows = columns
.iter()
.map(|(_, val_rows)| val_rows.len() as RowId)
.max()
.unwrap_or(0u32);
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer
.serialize(num_rows, None, &mut buffer)
.unwrap();
ColumnarReader::open(buffer).unwrap()
}
#[test]
fn test_merge_columnar_numbers() {
let columnar1 =
make_numerical_columnar_multiple_columns(&[("numbers", &[&[NumericalValue::from(-1f64)]])]);
let columnar2 = make_numerical_columnar_multiple_columns(&[(
"numbers",
&[&[], &[NumericalValue::from(-3f64)]],
)]);
let mut buffer = Vec::new();
let columnars = &[&columnar1, &columnar2];
let stack_merge_order = StackMergeOrder::stack(columnars);
crate::columnar::merge_columnar(
columnars,
&[],
MergeRowOrder::Stack(stack_merge_order),
&mut buffer,
)
.unwrap();
let columnar_reader = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar_reader.num_rows(), 3);
assert_eq!(columnar_reader.num_columns(), 1);
let cols = columnar_reader.read_columns("numbers").unwrap();
let dynamic_column = cols[0].open().unwrap();
let DynamicColumn::F64(vals) = dynamic_column else {
panic!()
};
assert_eq!(vals.get_cardinality(), Cardinality::Optional);
assert_eq!(vals.first(0u32), Some(-1f64));
assert_eq!(vals.first(1u32), None);
assert_eq!(vals.first(2u32), Some(-3f64));
}
#[test]
fn test_merge_columnar_texts() {
let columnar1 = make_text_columnar_multiple_columns(&[("texts", &[&["a"]])]);
let columnar2 = make_text_columnar_multiple_columns(&[("texts", &[&[], &["b"]])]);
let mut buffer = Vec::new();
let columnars = &[&columnar1, &columnar2];
let stack_merge_order = StackMergeOrder::stack(columnars);
crate::columnar::merge_columnar(
columnars,
&[],
MergeRowOrder::Stack(stack_merge_order),
&mut buffer,
)
.unwrap();
let columnar_reader = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar_reader.num_rows(), 3);
assert_eq!(columnar_reader.num_columns(), 1);
let cols = columnar_reader.read_columns("texts").unwrap();
let dynamic_column = cols[0].open().unwrap();
let DynamicColumn::Str(vals) = dynamic_column else {
panic!()
};
assert_eq!(vals.ords().get_cardinality(), Cardinality::Optional);
let get_str_for_ord = |ord| {
let mut out = String::new();
vals.ord_to_str(ord, &mut out).unwrap();
out
};
assert_eq!(vals.dictionary.num_terms(), 2);
assert_eq!(get_str_for_ord(0), "a");
assert_eq!(get_str_for_ord(1), "b");
let get_str_for_row = |row_id| {
let term_ords: Vec<u64> = vals.term_ords(row_id).collect();
assert!(term_ords.len() <= 1);
let mut out = String::new();
if term_ords.len() == 1 {
vals.ord_to_str(term_ords[0], &mut out).unwrap();
}
out
};
assert_eq!(get_str_for_row(0), "a");
assert_eq!(get_str_for_row(1), "");
assert_eq!(get_str_for_row(2), "b");
}
#[test]
fn test_merge_columnar_byte() {
let columnar1 = make_byte_columnar_multiple_columns(&[("bytes", &[&[b"bbbb"], &[b"baaa"]])], 2);
let columnar2 = make_byte_columnar_multiple_columns(&[("bytes", &[&[], &[b"a"]])], 2);
let mut buffer = Vec::new();
let columnars = &[&columnar1, &columnar2];
let stack_merge_order = StackMergeOrder::stack(columnars);
crate::columnar::merge_columnar(
columnars,
&[],
MergeRowOrder::Stack(stack_merge_order),
&mut buffer,
)
.unwrap();
let columnar_reader = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar_reader.num_rows(), 4);
assert_eq!(columnar_reader.num_columns(), 1);
let cols = columnar_reader.read_columns("bytes").unwrap();
let dynamic_column = cols[0].open().unwrap();
let DynamicColumn::Bytes(vals) = dynamic_column else {
panic!()
};
let get_bytes_for_ord = |ord| {
let mut out = Vec::new();
vals.ord_to_bytes(ord, &mut out).unwrap();
out
};
assert_eq!(vals.dictionary.num_terms(), 3);
assert_eq!(get_bytes_for_ord(0), b"a");
assert_eq!(get_bytes_for_ord(1), b"baaa");
assert_eq!(get_bytes_for_ord(2), b"bbbb");
let get_bytes_for_row = |row_id| {
let term_ords: Vec<u64> = vals.term_ords(row_id).collect();
assert!(term_ords.len() <= 1);
let mut out = Vec::new();
if term_ords.len() == 1 {
vals.ord_to_bytes(term_ords[0], &mut out).unwrap();
}
out
};
assert_eq!(get_bytes_for_row(0), b"bbbb");
assert_eq!(get_bytes_for_row(1), b"baaa");
assert_eq!(get_bytes_for_row(2), b"");
assert_eq!(get_bytes_for_row(3), b"a");
}
#[test]
fn test_merge_columnar_byte_with_missing() {
let columnar1 = make_byte_columnar_multiple_columns(&[], 3);
let columnar2 = make_byte_columnar_multiple_columns(&[("col", &[&[b"b"], &[]])], 2);
let columnar3 = make_byte_columnar_multiple_columns(
&[
("col", &[&[], &[b"b"], &[b"a", b"b"]]),
("col2", &[&[b"hello"], &[], &[b"a", b"b"]]),
],
3,
);
let mut buffer = Vec::new();
let columnars = &[&columnar1, &columnar2, &columnar3];
let stack_merge_order = StackMergeOrder::stack(columnars);
crate::columnar::merge_columnar(
columnars,
&[],
MergeRowOrder::Stack(stack_merge_order),
&mut buffer,
)
.unwrap();
let columnar_reader = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar_reader.num_rows(), 3 + 2 + 3);
assert_eq!(columnar_reader.num_columns(), 2);
let cols = columnar_reader.read_columns("col").unwrap();
let dynamic_column = cols[0].open().unwrap();
let DynamicColumn::Bytes(vals) = dynamic_column else {
panic!()
};
let get_bytes_for_ord = |ord| {
let mut out = Vec::new();
vals.ord_to_bytes(ord, &mut out).unwrap();
out
};
assert_eq!(vals.dictionary.num_terms(), 2);
assert_eq!(get_bytes_for_ord(0), b"a");
assert_eq!(get_bytes_for_ord(1), b"b");
let get_bytes_for_row = |row_id| {
let terms: Vec<Vec<u8>> = vals
.term_ords(row_id)
.map(|term_ord| {
let mut out = Vec::new();
vals.ord_to_bytes(term_ord, &mut out).unwrap();
out
})
.collect();
terms
};
assert!(get_bytes_for_row(0).is_empty());
assert!(get_bytes_for_row(1).is_empty());
assert!(get_bytes_for_row(2).is_empty());
assert_eq!(get_bytes_for_row(3), vec![b"b".to_vec()]);
assert!(get_bytes_for_row(4).is_empty());
assert!(get_bytes_for_row(5).is_empty());
assert_eq!(get_bytes_for_row(6), vec![b"b".to_vec()]);
assert_eq!(get_bytes_for_row(7), vec![b"a".to_vec(), b"b".to_vec()]);
}
#[test]
fn test_merge_columnar_different_types() {
let columnar1 = make_text_columnar_multiple_columns(&[("mixed", &[&["a"]])]);
let columnar2 = make_text_columnar_multiple_columns(&[("mixed", &[&[], &["b"]])]);
let columnar3 = make_columnar("mixed", &[1i64]);
let mut buffer = Vec::new();
let columnars = &[&columnar1, &columnar2, &columnar3];
let stack_merge_order = StackMergeOrder::stack(columnars);
crate::columnar::merge_columnar(
columnars,
&[],
MergeRowOrder::Stack(stack_merge_order),
&mut buffer,
)
.unwrap();
let columnar_reader = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar_reader.num_rows(), 4);
assert_eq!(columnar_reader.num_columns(), 2);
let cols = columnar_reader.read_columns("mixed").unwrap();
// numeric column
let dynamic_column = cols[0].open().unwrap();
let DynamicColumn::I64(vals) = dynamic_column else {
panic!()
};
assert_eq!(vals.get_cardinality(), Cardinality::Optional);
assert_eq!(vals.values_for_doc(0).collect_vec(), vec![]);
assert_eq!(vals.values_for_doc(1).collect_vec(), vec![]);
assert_eq!(vals.values_for_doc(2).collect_vec(), vec![]);
assert_eq!(vals.values_for_doc(3).collect_vec(), vec![1]);
assert_eq!(vals.values_for_doc(4).collect_vec(), vec![]);
// text column
let dynamic_column = cols[1].open().unwrap();
let DynamicColumn::Str(vals) = dynamic_column else {
panic!()
};
assert_eq!(vals.ords().get_cardinality(), Cardinality::Optional);
let get_str_for_ord = |ord| {
let mut out = String::new();
vals.ord_to_str(ord, &mut out).unwrap();
out
};
assert_eq!(vals.dictionary.num_terms(), 2);
assert_eq!(get_str_for_ord(0), "a");
assert_eq!(get_str_for_ord(1), "b");
let get_str_for_row = |row_id| {
let term_ords: Vec<String> = vals
.term_ords(row_id)
.map(|el| {
let mut out = String::new();
vals.ord_to_str(el, &mut out).unwrap();
out
})
.collect();
term_ords
};
assert_eq!(get_str_for_row(0), vec!["a".to_string()]);
assert_eq!(get_str_for_row(1), Vec::<String>::new());
assert_eq!(get_str_for_row(2), vec!["b".to_string()]);
assert_eq!(get_str_for_row(3), Vec::<String>::new());
}
#[test]
fn test_merge_columnar_different_empty_cardinality() {
let columnar1 = make_text_columnar_multiple_columns(&[("mixed", &[&["a"]])]);
let columnar2 = make_columnar("mixed", &[1i64]);
let mut buffer = Vec::new();
let columnars = &[&columnar1, &columnar2];
let stack_merge_order = StackMergeOrder::stack(columnars);
crate::columnar::merge_columnar(
columnars,
&[],
MergeRowOrder::Stack(stack_merge_order),
&mut buffer,
)
.unwrap();
let columnar_reader = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar_reader.num_rows(), 2);
assert_eq!(columnar_reader.num_columns(), 2);
let cols = columnar_reader.read_columns("mixed").unwrap();
// numeric column
let dynamic_column = cols[0].open().unwrap();
assert_eq!(dynamic_column.get_cardinality(), Cardinality::Optional);
// text column
let dynamic_column = cols[1].open().unwrap();
assert_eq!(dynamic_column.get_cardinality(), Cardinality::Optional);
}

View File

@@ -1,12 +0,0 @@
mod column_type;
mod format_version;
mod merge;
mod reader;
mod writer;
pub use column_type::{ColumnType, HasAssociatedColumnType};
#[cfg(test)]
pub(crate) use merge::ColumnTypeCategory;
pub use merge::{merge_columnar, MergeRowOrder, ShuffleMergeOrder, StackMergeOrder};
pub use reader::ColumnarReader;
pub use writer::ColumnarWriter;

View File

@@ -1,229 +0,0 @@
use std::{fmt, io, mem};
use common::file_slice::FileSlice;
use common::BinarySerializable;
use sstable::{Dictionary, RangeSSTable};
use crate::columnar::{format_version, ColumnType};
use crate::dynamic_column::DynamicColumnHandle;
use crate::RowId;
fn io_invalid_data(msg: String) -> io::Error {
io::Error::new(io::ErrorKind::InvalidData, msg)
}
/// The ColumnarReader makes it possible to access a set of columns
/// associated to field names.
#[derive(Clone)]
pub struct ColumnarReader {
column_dictionary: Dictionary<RangeSSTable>,
column_data: FileSlice,
num_rows: RowId,
}
impl fmt::Debug for ColumnarReader {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let num_rows = self.num_rows();
let columns = self.list_columns().unwrap();
let num_cols = columns.len();
let mut debug_struct = f.debug_struct("Columnar");
debug_struct
.field("num_rows", &num_rows)
.field("num_cols", &num_cols);
for (col_name, dynamic_column_handle) in columns.into_iter().take(5) {
let col = dynamic_column_handle.open().unwrap();
if col.num_values() > 10 {
debug_struct.field(&col_name, &"..");
} else {
debug_struct.field(&col_name, &col);
}
}
if num_cols > 5 {
debug_struct.finish_non_exhaustive()?;
} else {
debug_struct.finish()?;
}
Ok(())
}
}
/// Functions by both the async/sync code listing columns.
/// It takes a stream from the column sstable and return the list of
/// `DynamicColumn` available in it.
fn read_all_columns_in_stream(
mut stream: sstable::Streamer<'_, RangeSSTable>,
column_data: &FileSlice,
) -> io::Result<Vec<DynamicColumnHandle>> {
let mut results = Vec::new();
while stream.advance() {
let key_bytes: &[u8] = stream.key();
let Some(column_code) = key_bytes.last().copied() else {
return Err(io_invalid_data("Empty column name.".to_string()));
};
let column_type = ColumnType::try_from_code(column_code)
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
let range = stream.value();
let file_slice = column_data.slice(range.start as usize..range.end as usize);
let dynamic_column_handle = DynamicColumnHandle {
file_slice,
column_type,
};
results.push(dynamic_column_handle);
}
Ok(results)
}
impl ColumnarReader {
/// Opens a new Columnar file.
pub fn open<F>(file_slice: F) -> io::Result<ColumnarReader>
where FileSlice: From<F> {
Self::open_inner(file_slice.into())
}
fn open_inner(file_slice: FileSlice) -> io::Result<ColumnarReader> {
let (file_slice_without_sstable_len, footer_slice) = file_slice
.split_from_end(mem::size_of::<u64>() + 4 + format_version::VERSION_FOOTER_NUM_BYTES);
let footer_bytes = footer_slice.read_bytes()?;
let sstable_len = u64::deserialize(&mut &footer_bytes[0..8])?;
let num_rows = u32::deserialize(&mut &footer_bytes[8..12])?;
let version_footer_bytes: [u8; format_version::VERSION_FOOTER_NUM_BYTES] =
footer_bytes[12..].try_into().unwrap();
let _version = format_version::parse_footer(version_footer_bytes)?;
let (column_data, sstable) =
file_slice_without_sstable_len.split_from_end(sstable_len as usize);
let column_dictionary = Dictionary::open(sstable)?;
Ok(ColumnarReader {
column_dictionary,
column_data,
num_rows,
})
}
pub fn num_rows(&self) -> RowId {
self.num_rows
}
// Iterate over the columns in a sorted way
pub fn iter_columns(
&self,
) -> io::Result<impl Iterator<Item = (String, DynamicColumnHandle)> + '_> {
let mut stream = self.column_dictionary.stream()?;
Ok(std::iter::from_fn(move || {
if stream.advance() {
let key_bytes: &[u8] = stream.key();
let column_code: u8 = key_bytes.last().cloned().unwrap();
// TODO Error Handling. The API gets quite ugly when returning the error here, so
// instead we could just check the first N columns upfront.
let column_type: ColumnType = ColumnType::try_from_code(column_code)
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))
.unwrap();
let range = stream.value().clone();
let column_name =
// The last two bytes are respectively the 0u8 separator and the column_type.
String::from_utf8_lossy(&key_bytes[..key_bytes.len() - 2]).to_string();
let file_slice = self
.column_data
.slice(range.start as usize..range.end as usize);
let column_handle = DynamicColumnHandle {
file_slice,
column_type,
};
Some((column_name, column_handle))
} else {
None
}
}))
}
// TODO Add unit tests
pub fn list_columns(&self) -> io::Result<Vec<(String, DynamicColumnHandle)>> {
Ok(self.iter_columns()?.collect())
}
fn stream_for_column_range(&self, column_name: &str) -> sstable::StreamerBuilder<RangeSSTable> {
// Each column is a associated to a given `column_key`,
// that starts by `column_name\0column_header`.
//
// Listing the columns associated to the given column name is therefore equivalent to
// listing `column_key` with the prefix `column_name\0`.
//
// This is in turn equivalent to searching for the range
// `[column_name,\0`..column_name\1)`.
// TODO can we get some more generic `prefix(..)` logic in the dictionary.
let mut start_key = column_name.to_string();
start_key.push('\0');
let mut end_key = column_name.to_string();
end_key.push(1u8 as char);
self.column_dictionary
.range()
.ge(start_key.as_bytes())
.lt(end_key.as_bytes())
}
pub async fn read_columns_async(
&self,
column_name: &str,
) -> io::Result<Vec<DynamicColumnHandle>> {
let stream = self
.stream_for_column_range(column_name)
.into_stream_async()
.await?;
read_all_columns_in_stream(stream, &self.column_data)
}
/// Get all columns for the given column name.
///
/// There can be more than one column associated to a given column name, provided they have
/// different types.
pub fn read_columns(&self, column_name: &str) -> io::Result<Vec<DynamicColumnHandle>> {
let stream = self.stream_for_column_range(column_name).into_stream()?;
read_all_columns_in_stream(stream, &self.column_data)
}
/// Return the number of columns in the columnar.
pub fn num_columns(&self) -> usize {
self.column_dictionary.num_terms()
}
}
#[cfg(test)]
mod tests {
use crate::{ColumnType, ColumnarReader, ColumnarWriter};
#[test]
fn test_list_columns() {
let mut columnar_writer = ColumnarWriter::default();
columnar_writer.record_column_type("col1", ColumnType::Str, false);
columnar_writer.record_column_type("col2", ColumnType::U64, false);
let mut buffer = Vec::new();
columnar_writer.serialize(1, None, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
let columns = columnar.list_columns().unwrap();
assert_eq!(columns.len(), 2);
assert_eq!(&columns[0].0, "col1");
assert_eq!(columns[0].1.column_type(), ColumnType::Str);
assert_eq!(&columns[1].0, "col2");
assert_eq!(columns[1].1.column_type(), ColumnType::U64);
}
#[test]
fn test_list_columns_strict_typing_prevents_coercion() {
let mut columnar_writer = ColumnarWriter::default();
columnar_writer.record_column_type("count", ColumnType::U64, false);
columnar_writer.record_numerical(1, "count", 1u64);
let mut buffer = Vec::new();
columnar_writer.serialize(2, None, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
let columns = columnar.list_columns().unwrap();
assert_eq!(columns.len(), 1);
assert_eq!(&columns[0].0, "count");
assert_eq!(columns[0].1.column_type(), ColumnType::U64);
}
#[test]
#[should_panic(expected = "Input type forbidden")]
fn test_list_columns_strict_typing_panics_on_wrong_types() {
let mut columnar_writer = ColumnarWriter::default();
columnar_writer.record_column_type("count", ColumnType::U64, false);
columnar_writer.record_numerical(1, "count", 1i64);
}
}

View File

@@ -1,360 +0,0 @@
use std::net::Ipv6Addr;
use crate::dictionary::UnorderedId;
use crate::utils::{place_bits, pop_first_byte, select_bits};
use crate::value::NumericalValue;
use crate::{InvalidData, NumericalType, RowId};
/// When we build a columnar dataframe, we first just group
/// all mutations per column, and appends them in append-only buffer
/// in the stacker.
///
/// These ColumnOperation<T> are therefore serialize/deserialized
/// in memory.
///
/// We represents all of these operations as `ColumnOperation`.
#[derive(Eq, PartialEq, Debug, Clone, Copy)]
pub(super) enum ColumnOperation<T> {
NewDoc(RowId),
Value(T),
}
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
struct ColumnOperationMetadata {
op_type: ColumnOperationType,
len: u8,
}
impl ColumnOperationMetadata {
fn to_code(self) -> u8 {
place_bits::<0, 6>(self.len) | place_bits::<6, 8>(self.op_type.to_code())
}
fn try_from_code(code: u8) -> Result<Self, InvalidData> {
let len = select_bits::<0, 6>(code);
let typ_code = select_bits::<6, 8>(code);
let column_type = ColumnOperationType::try_from_code(typ_code)?;
Ok(ColumnOperationMetadata {
op_type: column_type,
len,
})
}
}
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[repr(u8)]
enum ColumnOperationType {
NewDoc = 0u8,
AddValue = 1u8,
}
impl ColumnOperationType {
pub fn to_code(self) -> u8 {
self as u8
}
pub fn try_from_code(code: u8) -> Result<Self, InvalidData> {
match code {
0 => Ok(Self::NewDoc),
1 => Ok(Self::AddValue),
_ => Err(InvalidData),
}
}
}
impl<V: SymbolValue> ColumnOperation<V> {
pub(super) fn serialize(self) -> impl AsRef<[u8]> {
let mut minibuf = MiniBuffer::default();
let column_op_metadata = match self {
ColumnOperation::NewDoc(new_doc) => {
let symbol_len = new_doc.serialize(&mut minibuf.bytes[1..]);
ColumnOperationMetadata {
op_type: ColumnOperationType::NewDoc,
len: symbol_len,
}
}
ColumnOperation::Value(val) => {
let symbol_len = val.serialize(&mut minibuf.bytes[1..]);
ColumnOperationMetadata {
op_type: ColumnOperationType::AddValue,
len: symbol_len,
}
}
};
minibuf.bytes[0] = column_op_metadata.to_code();
// +1 for the metadata
minibuf.len = 1 + column_op_metadata.len;
minibuf
}
/// Deserialize a colummn operation.
/// Returns None if the buffer is empty.
///
/// Panics if the payload is invalid:
/// this deserialize method is meant to target in memory.
pub(super) fn deserialize(bytes: &mut &[u8]) -> Option<Self> {
let column_op_metadata_byte = pop_first_byte(bytes)?;
let column_op_metadata = ColumnOperationMetadata::try_from_code(column_op_metadata_byte)
.expect("Invalid op metadata byte");
let symbol_bytes: &[u8];
(symbol_bytes, *bytes) = bytes.split_at(column_op_metadata.len as usize);
match column_op_metadata.op_type {
ColumnOperationType::NewDoc => {
let new_doc = u32::deserialize(symbol_bytes);
Some(ColumnOperation::NewDoc(new_doc))
}
ColumnOperationType::AddValue => {
let value = V::deserialize(symbol_bytes);
Some(ColumnOperation::Value(value))
}
}
}
}
impl<T> From<T> for ColumnOperation<T> {
fn from(value: T) -> Self {
ColumnOperation::Value(value)
}
}
// Serialization trait very local to the writer.
// As we write fast fields, we accumulate them in "in memory".
// In order to limit memory usage, and in order
// to benefit from the stacker, we do this by serialization our data
// as "Symbols".
#[allow(clippy::from_over_into)]
pub(super) trait SymbolValue: Clone + Copy {
// Serializes the symbol into the given buffer.
// Returns the number of bytes written into the buffer.
/// # Panics
/// May not exceed 9bytes
fn serialize(self, buffer: &mut [u8]) -> u8;
// Panics if invalid
fn deserialize(bytes: &[u8]) -> Self;
}
impl SymbolValue for bool {
fn serialize(self, buffer: &mut [u8]) -> u8 {
buffer[0] = u8::from(self);
1u8
}
fn deserialize(bytes: &[u8]) -> Self {
bytes[0] == 1u8
}
}
impl SymbolValue for Ipv6Addr {
fn serialize(self, buffer: &mut [u8]) -> u8 {
buffer[0..16].copy_from_slice(&self.octets());
16
}
fn deserialize(bytes: &[u8]) -> Self {
let octets: [u8; 16] = bytes[0..16].try_into().unwrap();
Ipv6Addr::from(octets)
}
}
#[derive(Default)]
struct MiniBuffer {
pub bytes: [u8; 17],
pub len: u8,
}
impl AsRef<[u8]> for MiniBuffer {
fn as_ref(&self) -> &[u8] {
&self.bytes[..self.len as usize]
}
}
impl SymbolValue for NumericalValue {
fn deserialize(mut bytes: &[u8]) -> Self {
let type_code = pop_first_byte(&mut bytes).unwrap();
let symbol_type = NumericalType::try_from_code(type_code).unwrap();
let mut octet: [u8; 8] = [0u8; 8];
octet[..bytes.len()].copy_from_slice(bytes);
match symbol_type {
NumericalType::U64 => {
let val: u64 = u64::from_le_bytes(octet);
NumericalValue::U64(val)
}
NumericalType::I64 => {
let encoded: u64 = u64::from_le_bytes(octet);
let val: i64 = decode_zig_zag(encoded);
NumericalValue::I64(val)
}
NumericalType::F64 => {
debug_assert_eq!(bytes.len(), 8);
let val: f64 = f64::from_le_bytes(octet);
NumericalValue::F64(val)
}
}
}
/// F64: Serialize with a fixed size of 9 bytes
/// U64: Serialize without leading zeroes
/// I64: ZigZag encoded and serialize without leading zeroes
fn serialize(self, output: &mut [u8]) -> u8 {
match self {
NumericalValue::F64(val) => {
output[0] = NumericalType::F64 as u8;
output[1..9].copy_from_slice(&val.to_le_bytes());
9u8
}
NumericalValue::U64(val) => {
let len = compute_num_bytes_for_u64(val) as u8;
output[0] = NumericalType::U64 as u8;
output[1..9].copy_from_slice(&val.to_le_bytes());
len + 1u8
}
NumericalValue::I64(val) => {
let zig_zag_encoded = encode_zig_zag(val);
let len = compute_num_bytes_for_u64(zig_zag_encoded) as u8;
output[0] = NumericalType::I64 as u8;
output[1..9].copy_from_slice(&zig_zag_encoded.to_le_bytes());
len + 1u8
}
}
}
}
impl SymbolValue for u32 {
fn serialize(self, output: &mut [u8]) -> u8 {
let len = compute_num_bytes_for_u64(self as u64);
output[0..4].copy_from_slice(&self.to_le_bytes());
len as u8
}
fn deserialize(bytes: &[u8]) -> Self {
let mut quartet: [u8; 4] = [0u8; 4];
quartet[..bytes.len()].copy_from_slice(bytes);
u32::from_le_bytes(quartet)
}
}
impl SymbolValue for UnorderedId {
fn serialize(self, output: &mut [u8]) -> u8 {
self.0.serialize(output)
}
fn deserialize(bytes: &[u8]) -> Self {
UnorderedId(u32::deserialize(bytes))
}
}
fn compute_num_bytes_for_u64(val: u64) -> usize {
let msb = (64u32 - val.leading_zeros()) as usize;
(msb + 7) / 8
}
fn encode_zig_zag(n: i64) -> u64 {
((n << 1) ^ (n >> 63)) as u64
}
fn decode_zig_zag(n: u64) -> i64 {
((n >> 1) as i64) ^ (-((n & 1) as i64))
}
#[cfg(test)]
mod tests {
use super::*;
#[track_caller]
fn test_zig_zag_aux(val: i64) {
let encoded = super::encode_zig_zag(val);
assert_eq!(decode_zig_zag(encoded), val);
if let Some(abs_val) = val.checked_abs() {
let abs_val = abs_val as u64;
assert!(encoded <= abs_val * 2);
}
}
#[test]
fn test_zig_zag() {
assert_eq!(encode_zig_zag(0i64), 0u64);
assert_eq!(encode_zig_zag(-1i64), 1u64);
assert_eq!(encode_zig_zag(1i64), 2u64);
test_zig_zag_aux(0i64);
test_zig_zag_aux(i64::MIN);
test_zig_zag_aux(i64::MAX);
}
use proptest::prelude::any;
use proptest::proptest;
proptest! {
#[test]
fn test_proptest_zig_zag(val in any::<i64>()) {
test_zig_zag_aux(val);
}
}
#[test]
fn test_column_op_metadata_byte_serialization() {
for len in 0..=15 {
for op_type in [ColumnOperationType::AddValue, ColumnOperationType::NewDoc] {
let column_op_metadata = ColumnOperationMetadata { op_type, len };
let column_op_metadata_code = column_op_metadata.to_code();
let serdeser_metadata =
ColumnOperationMetadata::try_from_code(column_op_metadata_code).unwrap();
assert_eq!(column_op_metadata, serdeser_metadata);
}
}
}
#[track_caller]
fn ser_deser_symbol(column_op: ColumnOperation<NumericalValue>) {
let buf = column_op.serialize();
let mut buffer = buf.as_ref().to_vec();
buffer.extend_from_slice(b"234234");
let mut bytes = &buffer[..];
let serdeser_symbol = ColumnOperation::deserialize(&mut bytes).unwrap();
assert_eq!(bytes.len() + buf.as_ref().len(), buffer.len());
assert_eq!(column_op, serdeser_symbol);
}
#[test]
fn test_compute_num_bytes_for_u64() {
assert_eq!(compute_num_bytes_for_u64(0), 0);
assert_eq!(compute_num_bytes_for_u64(1), 1);
assert_eq!(compute_num_bytes_for_u64(255), 1);
assert_eq!(compute_num_bytes_for_u64(256), 2);
assert_eq!(compute_num_bytes_for_u64((1 << 16) - 1), 2);
assert_eq!(compute_num_bytes_for_u64(1 << 16), 3);
}
#[test]
fn test_symbol_serialization() {
ser_deser_symbol(ColumnOperation::NewDoc(0));
ser_deser_symbol(ColumnOperation::NewDoc(3));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(0i64)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(1i64)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(257u64)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(-257i64)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(i64::MIN)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(0u64)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(u64::MIN)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(u64::MAX)));
}
fn test_column_operation_unordered_aux(val: u32, expected_len: usize) {
let column_op = ColumnOperation::Value(UnorderedId(val));
let minibuf = column_op.serialize();
assert_eq!({ minibuf.as_ref().len() }, expected_len);
let mut buf = minibuf.as_ref().to_vec();
buf.extend_from_slice(&[2, 2, 2, 2, 2, 2]);
let mut cursor = &buf[..];
let column_op_serdeser: ColumnOperation<UnorderedId> =
ColumnOperation::deserialize(&mut cursor).unwrap();
assert_eq!(column_op_serdeser, ColumnOperation::Value(UnorderedId(val)));
assert_eq!(cursor.len() + expected_len, buf.len());
}
#[test]
fn test_column_operation_unordered() {
test_column_operation_unordered_aux(300u32, 3);
test_column_operation_unordered_aux(1u32, 2);
test_column_operation_unordered_aux(0u32, 1);
}
}

View File

@@ -1,363 +0,0 @@
use std::cmp::Ordering;
use stacker::{ExpUnrolledLinkedList, MemoryArena};
use crate::columnar::writer::column_operation::{ColumnOperation, SymbolValue};
use crate::dictionary::{DictionaryBuilder, UnorderedId};
use crate::{Cardinality, NumericalType, NumericalValue, RowId};
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[repr(u8)]
enum DocumentStep {
Same = 0,
Next = 1,
Skipped = 2,
}
#[inline(always)]
fn delta_with_last_doc(last_doc_opt: Option<u32>, doc: u32) -> DocumentStep {
let expected_next_doc = last_doc_opt.map(|last_doc| last_doc + 1).unwrap_or(0u32);
match doc.cmp(&expected_next_doc) {
Ordering::Less => DocumentStep::Same,
Ordering::Equal => DocumentStep::Next,
Ordering::Greater => DocumentStep::Skipped,
}
}
#[derive(Copy, Clone, Default)]
pub struct ColumnWriter {
// Detected cardinality of the column so far.
cardinality: Cardinality,
// Last document inserted.
// None if no doc has been added yet.
last_doc_opt: Option<u32>,
// Buffer containing the serialized values.
values: ExpUnrolledLinkedList,
}
impl ColumnWriter {
/// Returns an iterator over the Symbol that have been recorded
/// for the given column.
pub(super) fn operation_iterator<'a, V: SymbolValue>(
&self,
arena: &MemoryArena,
old_to_new_ids_opt: Option<&[RowId]>,
buffer: &'a mut Vec<u8>,
) -> impl Iterator<Item = ColumnOperation<V>> + 'a {
buffer.clear();
self.values.read_to_end(arena, buffer);
if let Some(old_to_new_ids) = old_to_new_ids_opt {
// TODO avoid the extra deserialization / serialization.
let mut sorted_ops: Vec<(RowId, ColumnOperation<V>)> = Vec::new();
let mut new_doc = 0u32;
let mut cursor = &buffer[..];
for op in std::iter::from_fn(|| ColumnOperation::<V>::deserialize(&mut cursor)) {
if let ColumnOperation::NewDoc(doc) = &op {
new_doc = old_to_new_ids[*doc as usize];
sorted_ops.push((new_doc, ColumnOperation::NewDoc(new_doc)));
} else {
sorted_ops.push((new_doc, op));
}
}
// stable sort is crucial here.
sorted_ops.sort_by_key(|(new_doc_id, _)| *new_doc_id);
buffer.clear();
for (_, op) in sorted_ops {
buffer.extend_from_slice(op.serialize().as_ref());
}
}
let mut cursor: &[u8] = &buffer[..];
std::iter::from_fn(move || ColumnOperation::deserialize(&mut cursor))
}
/// Records a change of the document being recorded.
///
/// This function will also update the cardinality of the column
/// if necessary.
pub(super) fn record<S: SymbolValue>(&mut self, doc: RowId, value: S, arena: &mut MemoryArena) {
// Difference between `doc` and the last doc.
match delta_with_last_doc(self.last_doc_opt, doc) {
DocumentStep::Same => {
// This is the last encounterred document.
self.cardinality = Cardinality::Multivalued;
}
DocumentStep::Next => {
self.last_doc_opt = Some(doc);
self.write_symbol::<S>(ColumnOperation::NewDoc(doc), arena);
}
DocumentStep::Skipped => {
self.cardinality = self.cardinality.max(Cardinality::Optional);
self.last_doc_opt = Some(doc);
self.write_symbol::<S>(ColumnOperation::NewDoc(doc), arena);
}
}
self.write_symbol(ColumnOperation::Value(value), arena);
}
// Get the cardinality.
// The overall number of docs in the column is necessary to
// deal with the case where the all docs contain 1 value, except some documents
// at the end of the column.
pub(crate) fn get_cardinality(&self, num_docs: RowId) -> Cardinality {
match delta_with_last_doc(self.last_doc_opt, num_docs) {
DocumentStep::Same | DocumentStep::Next => self.cardinality,
DocumentStep::Skipped => self.cardinality.max(Cardinality::Optional),
}
}
/// Appends a new symbol to the `ColumnWriter`.
fn write_symbol<V: SymbolValue>(
&mut self,
column_operation: ColumnOperation<V>,
arena: &mut MemoryArena,
) {
self.values
.writer(arena)
.extend_from_slice(column_operation.serialize().as_ref());
}
}
#[derive(Clone, Copy, Default)]
pub(crate) struct NumericalColumnWriter {
compatible_numerical_types: CompatibleNumericalTypes,
column_writer: ColumnWriter,
}
impl NumericalColumnWriter {
pub fn force_numerical_type(&mut self, numerical_type: NumericalType) {
assert!(self
.compatible_numerical_types
.is_type_accepted(numerical_type));
self.compatible_numerical_types = CompatibleNumericalTypes::StaticType(numerical_type);
}
}
/// State used to store what types are still acceptable
/// after having seen a set of numerical values.
#[derive(Clone, Copy)]
pub(crate) enum CompatibleNumericalTypes {
Dynamic {
all_values_within_i64_range: bool,
all_values_within_u64_range: bool,
},
StaticType(NumericalType),
}
impl Default for CompatibleNumericalTypes {
fn default() -> CompatibleNumericalTypes {
CompatibleNumericalTypes::Dynamic {
all_values_within_i64_range: true,
all_values_within_u64_range: true,
}
}
}
impl CompatibleNumericalTypes {
pub fn is_type_accepted(&self, numerical_type: NumericalType) -> bool {
match self {
CompatibleNumericalTypes::Dynamic {
all_values_within_i64_range,
all_values_within_u64_range,
} => match numerical_type {
NumericalType::I64 => *all_values_within_i64_range,
NumericalType::U64 => *all_values_within_u64_range,
NumericalType::F64 => true,
},
CompatibleNumericalTypes::StaticType(static_numerical_type) => {
*static_numerical_type == numerical_type
}
}
}
pub fn accept_value(&mut self, numerical_value: NumericalValue) {
match self {
CompatibleNumericalTypes::Dynamic {
all_values_within_i64_range,
all_values_within_u64_range,
} => match numerical_value {
NumericalValue::I64(val_i64) => {
let value_within_u64_range = val_i64 >= 0i64;
*all_values_within_u64_range &= value_within_u64_range;
}
NumericalValue::U64(val_u64) => {
let value_within_i64_range = val_u64 < i64::MAX as u64;
*all_values_within_i64_range &= value_within_i64_range;
}
NumericalValue::F64(_) => {
*all_values_within_i64_range = false;
*all_values_within_u64_range = false;
}
},
CompatibleNumericalTypes::StaticType(typ) => {
assert_eq!(
numerical_value.numerical_type(),
*typ,
"Input type forbidden. This column has been forced to type {typ:?}, received \
{numerical_value:?}"
);
}
}
}
pub fn to_numerical_type(self) -> NumericalType {
for numerical_type in [NumericalType::I64, NumericalType::U64] {
if self.is_type_accepted(numerical_type) {
return numerical_type;
}
}
NumericalType::F64
}
}
impl NumericalColumnWriter {
pub fn numerical_type(&self) -> NumericalType {
self.compatible_numerical_types.to_numerical_type()
}
pub fn cardinality(&self, num_docs: RowId) -> Cardinality {
self.column_writer.get_cardinality(num_docs)
}
pub fn record_numerical_value(
&mut self,
doc: RowId,
value: NumericalValue,
arena: &mut MemoryArena,
) {
self.compatible_numerical_types.accept_value(value);
self.column_writer.record(doc, value, arena);
}
pub(super) fn operation_iterator<'a>(
self,
arena: &MemoryArena,
old_to_new_ids: Option<&[RowId]>,
buffer: &'a mut Vec<u8>,
) -> impl Iterator<Item = ColumnOperation<NumericalValue>> + 'a {
self.column_writer
.operation_iterator(arena, old_to_new_ids, buffer)
}
}
#[derive(Copy, Clone)]
pub(crate) struct StrOrBytesColumnWriter {
pub(crate) dictionary_id: u32,
pub(crate) column_writer: ColumnWriter,
// If true, when facing a multivalued cardinality,
// values associated to a given document will be sorted.
//
// This is useful for facets.
//
// If false, the order of appearance in the document will be
// observed.
pub(crate) sort_values_within_row: bool,
}
impl StrOrBytesColumnWriter {
pub(crate) fn with_dictionary_id(dictionary_id: u32) -> StrOrBytesColumnWriter {
StrOrBytesColumnWriter {
dictionary_id,
column_writer: Default::default(),
sort_values_within_row: false,
}
}
pub(crate) fn record_bytes(
&mut self,
doc: RowId,
bytes: &[u8],
dictionaries: &mut [DictionaryBuilder],
arena: &mut MemoryArena,
) {
let unordered_id = dictionaries[self.dictionary_id as usize].get_or_allocate_id(bytes);
self.column_writer.record(doc, unordered_id, arena);
}
pub(super) fn operation_iterator<'a>(
&self,
arena: &MemoryArena,
old_to_new_ids: Option<&[RowId]>,
byte_buffer: &'a mut Vec<u8>,
) -> impl Iterator<Item = ColumnOperation<UnorderedId>> + 'a {
self.column_writer
.operation_iterator(arena, old_to_new_ids, byte_buffer)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_delta_with_last_doc() {
assert_eq!(delta_with_last_doc(None, 0u32), DocumentStep::Next);
assert_eq!(delta_with_last_doc(None, 1u32), DocumentStep::Skipped);
assert_eq!(delta_with_last_doc(None, 2u32), DocumentStep::Skipped);
assert_eq!(delta_with_last_doc(Some(0u32), 0u32), DocumentStep::Same);
assert_eq!(delta_with_last_doc(Some(1u32), 1u32), DocumentStep::Same);
assert_eq!(delta_with_last_doc(Some(1u32), 2u32), DocumentStep::Next);
assert_eq!(delta_with_last_doc(Some(1u32), 3u32), DocumentStep::Skipped);
assert_eq!(delta_with_last_doc(Some(1u32), 4u32), DocumentStep::Skipped);
}
#[track_caller]
fn test_column_writer_coercion_iter_aux(
values: impl Iterator<Item = NumericalValue>,
expected_numerical_type: NumericalType,
) {
let mut compatible_numerical_types = CompatibleNumericalTypes::default();
for value in values {
compatible_numerical_types.accept_value(value);
}
assert_eq!(
compatible_numerical_types.to_numerical_type(),
expected_numerical_type
);
}
#[track_caller]
fn test_column_writer_coercion_aux(
values: &[NumericalValue],
expected_numerical_type: NumericalType,
) {
test_column_writer_coercion_iter_aux(values.iter().copied(), expected_numerical_type);
test_column_writer_coercion_iter_aux(values.iter().rev().copied(), expected_numerical_type);
}
#[test]
fn test_column_writer_coercion() {
test_column_writer_coercion_aux(&[], NumericalType::I64);
test_column_writer_coercion_aux(&[1i64.into()], NumericalType::I64);
test_column_writer_coercion_aux(&[1u64.into()], NumericalType::I64);
// We don't detect exact integer at the moment. We could!
test_column_writer_coercion_aux(&[1f64.into()], NumericalType::F64);
test_column_writer_coercion_aux(&[u64::MAX.into()], NumericalType::U64);
test_column_writer_coercion_aux(&[(i64::MAX as u64).into()], NumericalType::U64);
test_column_writer_coercion_aux(&[(1u64 << 63).into()], NumericalType::U64);
test_column_writer_coercion_aux(&[1i64.into(), 1u64.into()], NumericalType::I64);
test_column_writer_coercion_aux(&[u64::MAX.into(), (-1i64).into()], NumericalType::F64);
}
#[test]
#[should_panic]
fn test_compatible_numerical_types_static_incompatible_type() {
let mut compatible_numerical_types =
CompatibleNumericalTypes::StaticType(NumericalType::U64);
compatible_numerical_types.accept_value(NumericalValue::I64(1i64));
}
#[test]
fn test_compatible_numerical_types_static_different_type_forbidden() {
let mut compatible_numerical_types =
CompatibleNumericalTypes::StaticType(NumericalType::U64);
compatible_numerical_types.accept_value(NumericalValue::U64(u64::MAX));
}
#[test]
fn test_compatible_numerical_types_static() {
for typ in [NumericalType::I64, NumericalType::I64, NumericalType::F64] {
let compatible_numerical_types = CompatibleNumericalTypes::StaticType(typ);
assert_eq!(compatible_numerical_types.to_numerical_type(), typ);
}
}
}

View File

@@ -1,872 +0,0 @@
mod column_operation;
mod column_writers;
mod serializer;
mod value_index;
use std::io;
use std::net::Ipv6Addr;
use column_operation::ColumnOperation;
pub(crate) use column_writers::CompatibleNumericalTypes;
use common::CountingWriter;
pub(crate) use serializer::ColumnarSerializer;
use stacker::{Addr, ArenaHashMap, MemoryArena};
use crate::column_index::SerializableColumnIndex;
use crate::column_values::{
ColumnValues, MonotonicallyMappableToU128, MonotonicallyMappableToU64, VecColumn,
};
use crate::columnar::column_type::ColumnType;
use crate::columnar::writer::column_writers::{
ColumnWriter, NumericalColumnWriter, StrOrBytesColumnWriter,
};
use crate::columnar::writer::value_index::{IndexBuilder, PreallocatedIndexBuilders};
use crate::dictionary::{DictionaryBuilder, TermIdMapping, UnorderedId};
use crate::value::{Coerce, NumericalType, NumericalValue};
use crate::{Cardinality, RowId};
/// This is a set of buffers that are used to temporarily write the values into before passing them
/// to the fast field codecs.
#[derive(Default)]
struct SpareBuffers {
value_index_builders: PreallocatedIndexBuilders,
u64_values: Vec<u64>,
ip_addr_values: Vec<Ipv6Addr>,
}
/// Makes it possible to create a new columnar.
///
/// ```rust
/// use tantivy_columnar::ColumnarWriter;
///
/// let mut columnar_writer = ColumnarWriter::default();
/// columnar_writer.record_str(0u32 /* doc id */, "product_name", "Red backpack");
/// columnar_writer.record_numerical(0u32 /* doc id */, "price", 10u64);
/// columnar_writer.record_str(1u32 /* doc id */, "product_name", "Apple");
/// columnar_writer.record_numerical(0u32 /* doc id */, "price", 10.5f64); //< uh oh we ended up mixing integer and floats.
/// let mut wrt: Vec<u8> = Vec::new();
/// columnar_writer.serialize(2u32, None, &mut wrt).unwrap();
/// ```
#[derive(Default)]
pub struct ColumnarWriter {
numerical_field_hash_map: ArenaHashMap,
datetime_field_hash_map: ArenaHashMap,
bool_field_hash_map: ArenaHashMap,
ip_addr_field_hash_map: ArenaHashMap,
bytes_field_hash_map: ArenaHashMap,
str_field_hash_map: ArenaHashMap,
arena: MemoryArena,
// Dictionaries used to store dictionary-encoded values.
dictionaries: Vec<DictionaryBuilder>,
buffers: SpareBuffers,
}
#[inline]
fn mutate_or_create_column<V, TMutator>(
arena_hash_map: &mut ArenaHashMap,
column_name: &str,
updater: TMutator,
) where
V: Copy + 'static,
TMutator: FnMut(Option<V>) -> V,
{
assert!(
!column_name.as_bytes().contains(&0u8),
"key may not contain the 0 byte"
);
arena_hash_map.mutate_or_create(column_name.as_bytes(), updater);
}
impl ColumnarWriter {
pub fn mem_usage(&self) -> usize {
self.arena.mem_usage()
+ self.numerical_field_hash_map.mem_usage()
+ self.bool_field_hash_map.mem_usage()
+ self.bytes_field_hash_map.mem_usage()
+ self.str_field_hash_map.mem_usage()
+ self.ip_addr_field_hash_map.mem_usage()
+ self.datetime_field_hash_map.mem_usage()
+ self
.dictionaries
.iter()
.map(|dict| dict.mem_usage())
.sum::<usize>()
}
/// Returns the list of doc ids from 0..num_docs sorted by the `sort_field`
/// column.
///
/// If the column is multivalued, use the first value for scoring.
/// If no value is associated to a specific row, the document is assigned
/// the lowest possible score.
///
/// The sort applied is stable.
pub fn sort_order(&self, sort_field: &str, num_docs: RowId, reversed: bool) -> Vec<u32> {
let Some(numerical_col_writer) = self
.numerical_field_hash_map
.get::<NumericalColumnWriter>(sort_field.as_bytes())
.or_else(|| {
self.datetime_field_hash_map
.get::<NumericalColumnWriter>(sort_field.as_bytes())
})
else {
return Vec::new();
};
let mut symbols_buffer = Vec::new();
let mut values = Vec::new();
let mut start_doc_check_fill = 0;
let mut current_doc_opt: Option<RowId> = None;
// Assumption: NewDoc will never call the same doc twice and is strictly increasing between
// calls
for op in numerical_col_writer.operation_iterator(&self.arena, None, &mut symbols_buffer) {
match op {
ColumnOperation::NewDoc(doc) => {
current_doc_opt = Some(doc);
}
ColumnOperation::Value(numerical_value) => {
if let Some(current_doc) = current_doc_opt {
// Fill up with 0.0 since last doc
values.extend((start_doc_check_fill..current_doc).map(|doc| (0.0, doc)));
start_doc_check_fill = current_doc + 1;
// handle multi values
current_doc_opt = None;
let score: f32 = f64::coerce(numerical_value) as f32;
values.push((score, current_doc));
}
}
}
}
for doc in values.len() as u32..num_docs {
values.push((0.0f32, doc));
}
values.sort_by(|(left_score, _), (right_score, _)| {
if reversed {
right_score.total_cmp(left_score)
} else {
left_score.total_cmp(right_score)
}
});
values.into_iter().map(|(_score, doc)| doc).collect()
}
/// Records a column type. This is useful to bypass the coercion process,
/// makes sure the empty is present in the resulting columnar, or set
/// the `sort_values_within_row`.
///
/// `sort_values_within_row` is only allowed for `Bytes` or `Str` columns.
pub fn record_column_type(
&mut self,
column_name: &str,
column_type: ColumnType,
sort_values_within_row: bool,
) {
if sort_values_within_row {
assert!(
column_type == ColumnType::Bytes || column_type == ColumnType::Str,
"sort_values_within_row is only allowed for Bytes and Str columns",
);
}
match column_type {
ColumnType::Str | ColumnType::Bytes => {
let (hash_map, dictionaries) = (
if column_type == ColumnType::Str {
&mut self.str_field_hash_map
} else {
&mut self.bytes_field_hash_map
},
&mut self.dictionaries,
);
mutate_or_create_column(
hash_map,
column_name,
|column_opt: Option<StrOrBytesColumnWriter>| {
let mut column_writer = if let Some(column_writer) = column_opt {
column_writer
} else {
let dictionary_id = dictionaries.len() as u32;
dictionaries.push(DictionaryBuilder::default());
StrOrBytesColumnWriter::with_dictionary_id(dictionary_id)
};
column_writer.sort_values_within_row = sort_values_within_row;
column_writer
},
);
}
ColumnType::Bool => {
mutate_or_create_column(
&mut self.bool_field_hash_map,
column_name,
|column_opt: Option<ColumnWriter>| column_opt.unwrap_or_default(),
);
}
ColumnType::DateTime => {
mutate_or_create_column(
&mut self.datetime_field_hash_map,
column_name,
|column_opt: Option<ColumnWriter>| column_opt.unwrap_or_default(),
);
}
ColumnType::I64 | ColumnType::F64 | ColumnType::U64 => {
let numerical_type = column_type.numerical_type().unwrap();
mutate_or_create_column(
&mut self.numerical_field_hash_map,
column_name,
|column_opt: Option<NumericalColumnWriter>| {
let mut column: NumericalColumnWriter = column_opt.unwrap_or_default();
column.force_numerical_type(numerical_type);
column
},
);
}
ColumnType::IpAddr => mutate_or_create_column(
&mut self.ip_addr_field_hash_map,
column_name,
|column_opt: Option<ColumnWriter>| column_opt.unwrap_or_default(),
),
}
}
pub fn record_numerical<T: Into<NumericalValue> + Copy>(
&mut self,
doc: RowId,
column_name: &str,
numerical_value: T,
) {
let (hash_map, arena) = (&mut self.numerical_field_hash_map, &mut self.arena);
mutate_or_create_column(
hash_map,
column_name,
|column_opt: Option<NumericalColumnWriter>| {
let mut column: NumericalColumnWriter = column_opt.unwrap_or_default();
column.record_numerical_value(doc, numerical_value.into(), arena);
column
},
);
}
pub fn record_ip_addr(&mut self, doc: RowId, column_name: &str, ip_addr: Ipv6Addr) {
assert!(
!column_name.as_bytes().contains(&0u8),
"key may not contain the 0 byte"
);
let (hash_map, arena) = (&mut self.ip_addr_field_hash_map, &mut self.arena);
hash_map.mutate_or_create(
column_name.as_bytes(),
|column_opt: Option<ColumnWriter>| {
let mut column: ColumnWriter = column_opt.unwrap_or_default();
column.record(doc, ip_addr, arena);
column
},
);
}
pub fn record_bool(&mut self, doc: RowId, column_name: &str, val: bool) {
let (hash_map, arena) = (&mut self.bool_field_hash_map, &mut self.arena);
mutate_or_create_column(hash_map, column_name, |column_opt: Option<ColumnWriter>| {
let mut column: ColumnWriter = column_opt.unwrap_or_default();
column.record(doc, val, arena);
column
});
}
pub fn record_datetime(&mut self, doc: RowId, column_name: &str, datetime: common::DateTime) {
let (hash_map, arena) = (&mut self.datetime_field_hash_map, &mut self.arena);
mutate_or_create_column(hash_map, column_name, |column_opt: Option<ColumnWriter>| {
let mut column: ColumnWriter = column_opt.unwrap_or_default();
column.record(
doc,
NumericalValue::I64(datetime.into_timestamp_nanos()),
arena,
);
column
});
}
pub fn record_str(&mut self, doc: RowId, column_name: &str, value: &str) {
let (hash_map, arena, dictionaries) = (
&mut self.str_field_hash_map,
&mut self.arena,
&mut self.dictionaries,
);
hash_map.mutate_or_create(
column_name.as_bytes(),
|column_opt: Option<StrOrBytesColumnWriter>| {
let mut column: StrOrBytesColumnWriter = column_opt.unwrap_or_else(|| {
// Each column has its own dictionary
let dictionary_id = dictionaries.len() as u32;
dictionaries.push(DictionaryBuilder::default());
StrOrBytesColumnWriter::with_dictionary_id(dictionary_id)
});
column.record_bytes(doc, value.as_bytes(), dictionaries, arena);
column
},
);
}
pub fn record_bytes(&mut self, doc: RowId, column_name: &str, value: &[u8]) {
assert!(
!column_name.as_bytes().contains(&0u8),
"key may not contain the 0 byte"
);
let (hash_map, arena, dictionaries) = (
&mut self.bytes_field_hash_map,
&mut self.arena,
&mut self.dictionaries,
);
hash_map.mutate_or_create(
column_name.as_bytes(),
|column_opt: Option<StrOrBytesColumnWriter>| {
let mut column: StrOrBytesColumnWriter = column_opt.unwrap_or_else(|| {
// Each column has its own dictionary
let dictionary_id = dictionaries.len() as u32;
dictionaries.push(DictionaryBuilder::default());
StrOrBytesColumnWriter::with_dictionary_id(dictionary_id)
});
column.record_bytes(doc, value, dictionaries, arena);
column
},
);
}
pub fn serialize(
&mut self,
num_docs: RowId,
old_to_new_row_ids: Option<&[RowId]>,
wrt: &mut dyn io::Write,
) -> io::Result<()> {
let mut serializer = ColumnarSerializer::new(wrt);
let mut columns: Vec<(&[u8], ColumnType, Addr)> = self
.numerical_field_hash_map
.iter()
.map(|(column_name, addr, _)| {
let numerical_column_writer: NumericalColumnWriter =
self.numerical_field_hash_map.read(addr);
let column_type = numerical_column_writer.numerical_type().into();
(column_name, column_type, addr)
})
.collect();
columns.extend(
self.bytes_field_hash_map
.iter()
.map(|(term, addr, _)| (term, ColumnType::Bytes, addr)),
);
columns.extend(
self.str_field_hash_map
.iter()
.map(|(column_name, addr, _)| (column_name, ColumnType::Str, addr)),
);
columns.extend(
self.bool_field_hash_map
.iter()
.map(|(column_name, addr, _)| (column_name, ColumnType::Bool, addr)),
);
columns.extend(
self.ip_addr_field_hash_map
.iter()
.map(|(column_name, addr, _)| (column_name, ColumnType::IpAddr, addr)),
);
columns.extend(
self.datetime_field_hash_map
.iter()
.map(|(column_name, addr, _)| (column_name, ColumnType::DateTime, addr)),
);
columns.sort_unstable_by_key(|(column_name, col_type, _)| (*column_name, *col_type));
let (arena, buffers, dictionaries) = (&self.arena, &mut self.buffers, &self.dictionaries);
let mut symbol_byte_buffer: Vec<u8> = Vec::new();
for (column_name, column_type, addr) in columns {
match column_type {
ColumnType::Bool => {
let column_writer: ColumnWriter = self.bool_field_hash_map.read(addr);
let cardinality = column_writer.get_cardinality(num_docs);
let mut column_serializer =
serializer.start_serialize_column(column_name, column_type);
serialize_bool_column(
cardinality,
num_docs,
column_writer.operation_iterator(
arena,
old_to_new_row_ids,
&mut symbol_byte_buffer,
),
buffers,
&mut column_serializer,
)?;
column_serializer.finalize()?;
}
ColumnType::IpAddr => {
let column_writer: ColumnWriter = self.ip_addr_field_hash_map.read(addr);
let cardinality = column_writer.get_cardinality(num_docs);
let mut column_serializer =
serializer.start_serialize_column(column_name, ColumnType::IpAddr);
serialize_ip_addr_column(
cardinality,
num_docs,
column_writer.operation_iterator(
arena,
old_to_new_row_ids,
&mut symbol_byte_buffer,
),
buffers,
&mut column_serializer,
)?;
column_serializer.finalize()?;
}
ColumnType::Bytes | ColumnType::Str => {
let str_or_bytes_column_writer: StrOrBytesColumnWriter =
if column_type == ColumnType::Bytes {
self.bytes_field_hash_map.read(addr)
} else {
self.str_field_hash_map.read(addr)
};
let dictionary_builder =
&dictionaries[str_or_bytes_column_writer.dictionary_id as usize];
let cardinality = str_or_bytes_column_writer
.column_writer
.get_cardinality(num_docs);
let mut column_serializer =
serializer.start_serialize_column(column_name, column_type);
serialize_bytes_or_str_column(
cardinality,
num_docs,
str_or_bytes_column_writer.sort_values_within_row,
dictionary_builder,
str_or_bytes_column_writer.operation_iterator(
arena,
old_to_new_row_ids,
&mut symbol_byte_buffer,
),
buffers,
&mut column_serializer,
)?;
column_serializer.finalize()?;
}
ColumnType::F64 | ColumnType::I64 | ColumnType::U64 => {
let numerical_column_writer: NumericalColumnWriter =
self.numerical_field_hash_map.read(addr);
let cardinality = numerical_column_writer.cardinality(num_docs);
let mut column_serializer =
serializer.start_serialize_column(column_name, column_type);
let numerical_type = column_type.numerical_type().unwrap();
serialize_numerical_column(
cardinality,
num_docs,
numerical_type,
numerical_column_writer.operation_iterator(
arena,
old_to_new_row_ids,
&mut symbol_byte_buffer,
),
buffers,
&mut column_serializer,
)?;
column_serializer.finalize()?;
}
ColumnType::DateTime => {
let column_writer: ColumnWriter = self.datetime_field_hash_map.read(addr);
let cardinality = column_writer.get_cardinality(num_docs);
let mut column_serializer =
serializer.start_serialize_column(column_name, ColumnType::DateTime);
serialize_numerical_column(
cardinality,
num_docs,
NumericalType::I64,
column_writer.operation_iterator(
arena,
old_to_new_row_ids,
&mut symbol_byte_buffer,
),
buffers,
&mut column_serializer,
)?;
column_serializer.finalize()?;
}
};
}
serializer.finalize(num_docs)?;
Ok(())
}
}
// Serialize [Dictionary, Column, dictionary num bytes U32::LE]
// Column: [Column Index, Column Values, column index num bytes U32::LE]
fn serialize_bytes_or_str_column(
cardinality: Cardinality,
num_docs: RowId,
sort_values_within_row: bool,
dictionary_builder: &DictionaryBuilder,
operation_it: impl Iterator<Item = ColumnOperation<UnorderedId>>,
buffers: &mut SpareBuffers,
wrt: impl io::Write,
) -> io::Result<()> {
let SpareBuffers {
value_index_builders,
u64_values,
..
} = buffers;
let mut counting_writer = CountingWriter::wrap(wrt);
let term_id_mapping: TermIdMapping = dictionary_builder.serialize(&mut counting_writer)?;
let dictionary_num_bytes: u32 = counting_writer.written_bytes() as u32;
let mut wrt = counting_writer.finish();
let operation_iterator = operation_it.map(|symbol: ColumnOperation<UnorderedId>| {
// We map unordered ids to ordered ids.
match symbol {
ColumnOperation::Value(unordered_id) => {
let ordered_id = term_id_mapping.to_ord(unordered_id);
ColumnOperation::Value(ordered_id.0 as u64)
}
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
}
});
send_to_serialize_column_mappable_to_u64(
operation_iterator,
cardinality,
num_docs,
sort_values_within_row,
value_index_builders,
u64_values,
&mut wrt,
)?;
wrt.write_all(&dictionary_num_bytes.to_le_bytes()[..])?;
Ok(())
}
fn serialize_numerical_column(
cardinality: Cardinality,
num_docs: RowId,
numerical_type: NumericalType,
op_iterator: impl Iterator<Item = ColumnOperation<NumericalValue>>,
buffers: &mut SpareBuffers,
wrt: &mut impl io::Write,
) -> io::Result<()> {
let SpareBuffers {
value_index_builders,
u64_values,
..
} = buffers;
match numerical_type {
NumericalType::I64 => {
send_to_serialize_column_mappable_to_u64(
coerce_numerical_symbol::<i64>(op_iterator),
cardinality,
num_docs,
false,
value_index_builders,
u64_values,
wrt,
)?;
}
NumericalType::U64 => {
send_to_serialize_column_mappable_to_u64(
coerce_numerical_symbol::<u64>(op_iterator),
cardinality,
num_docs,
false,
value_index_builders,
u64_values,
wrt,
)?;
}
NumericalType::F64 => {
send_to_serialize_column_mappable_to_u64(
coerce_numerical_symbol::<f64>(op_iterator),
cardinality,
num_docs,
false,
value_index_builders,
u64_values,
wrt,
)?;
}
};
Ok(())
}
fn serialize_bool_column(
cardinality: Cardinality,
num_docs: RowId,
column_operations_it: impl Iterator<Item = ColumnOperation<bool>>,
buffers: &mut SpareBuffers,
wrt: &mut impl io::Write,
) -> io::Result<()> {
let SpareBuffers {
value_index_builders,
u64_values,
..
} = buffers;
send_to_serialize_column_mappable_to_u64(
column_operations_it.map(|bool_column_operation| match bool_column_operation {
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
ColumnOperation::Value(bool_val) => ColumnOperation::Value(bool_val.to_u64()),
}),
cardinality,
num_docs,
false,
value_index_builders,
u64_values,
wrt,
)?;
Ok(())
}
fn serialize_ip_addr_column(
cardinality: Cardinality,
num_docs: RowId,
column_operations_it: impl Iterator<Item = ColumnOperation<Ipv6Addr>>,
buffers: &mut SpareBuffers,
wrt: &mut impl io::Write,
) -> io::Result<()> {
let SpareBuffers {
value_index_builders,
ip_addr_values,
..
} = buffers;
send_to_serialize_column_mappable_to_u128(
column_operations_it,
cardinality,
num_docs,
value_index_builders,
ip_addr_values,
wrt,
)?;
Ok(())
}
fn send_to_serialize_column_mappable_to_u128<
T: Copy + Ord + std::fmt::Debug + Send + Sync + MonotonicallyMappableToU128 + PartialOrd,
>(
op_iterator: impl Iterator<Item = ColumnOperation<T>>,
cardinality: Cardinality,
num_rows: RowId,
value_index_builders: &mut PreallocatedIndexBuilders,
values: &mut Vec<T>,
mut wrt: impl io::Write,
) -> io::Result<()>
where
for<'a> VecColumn<'a, T>: ColumnValues<T>,
{
values.clear();
// TODO: split index and values
let serializable_column_index = match cardinality {
Cardinality::Full => {
consume_operation_iterator(
op_iterator,
value_index_builders.borrow_required_index_builder(),
values,
);
SerializableColumnIndex::Full
}
Cardinality::Optional => {
let optional_index_builder = value_index_builders.borrow_optional_index_builder();
consume_operation_iterator(op_iterator, optional_index_builder, values);
let optional_index = optional_index_builder.finish(num_rows);
SerializableColumnIndex::Optional {
num_rows,
non_null_row_ids: Box::new(optional_index),
}
}
Cardinality::Multivalued => {
let multivalued_index_builder = value_index_builders.borrow_multivalued_index_builder();
consume_operation_iterator(op_iterator, multivalued_index_builder, values);
let multivalued_index = multivalued_index_builder.finish(num_rows);
SerializableColumnIndex::Multivalued(Box::new(multivalued_index))
}
};
crate::column::serialize_column_mappable_to_u128(
serializable_column_index,
&&values[..],
&mut wrt,
)?;
Ok(())
}
fn sort_values_within_row_in_place(multivalued_index: &[RowId], values: &mut [u64]) {
let mut start_index: usize = 0;
for end_index in multivalued_index.iter().copied() {
let end_index = end_index as usize;
values[start_index..end_index].sort_unstable();
start_index = end_index;
}
}
fn send_to_serialize_column_mappable_to_u64(
op_iterator: impl Iterator<Item = ColumnOperation<u64>>,
cardinality: Cardinality,
num_rows: RowId,
sort_values_within_row: bool,
value_index_builders: &mut PreallocatedIndexBuilders,
values: &mut Vec<u64>,
mut wrt: impl io::Write,
) -> io::Result<()>
where
for<'a> VecColumn<'a, u64>: ColumnValues<u64>,
{
values.clear();
let serializable_column_index = match cardinality {
Cardinality::Full => {
consume_operation_iterator(
op_iterator,
value_index_builders.borrow_required_index_builder(),
values,
);
SerializableColumnIndex::Full
}
Cardinality::Optional => {
let optional_index_builder = value_index_builders.borrow_optional_index_builder();
consume_operation_iterator(op_iterator, optional_index_builder, values);
let optional_index = optional_index_builder.finish(num_rows);
SerializableColumnIndex::Optional {
non_null_row_ids: Box::new(optional_index),
num_rows,
}
}
Cardinality::Multivalued => {
let multivalued_index_builder = value_index_builders.borrow_multivalued_index_builder();
consume_operation_iterator(op_iterator, multivalued_index_builder, values);
let multivalued_index = multivalued_index_builder.finish(num_rows);
if sort_values_within_row {
sort_values_within_row_in_place(multivalued_index, values);
}
SerializableColumnIndex::Multivalued(Box::new(multivalued_index))
}
};
crate::column::serialize_column_mappable_to_u64(
serializable_column_index,
&&values[..],
&mut wrt,
)?;
Ok(())
}
fn coerce_numerical_symbol<T>(
operation_iterator: impl Iterator<Item = ColumnOperation<NumericalValue>>,
) -> impl Iterator<Item = ColumnOperation<u64>>
where T: Coerce + MonotonicallyMappableToU64 {
operation_iterator.map(|symbol| match symbol {
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
ColumnOperation::Value(numerical_value) => {
ColumnOperation::Value(T::coerce(numerical_value).to_u64())
}
})
}
fn consume_operation_iterator<T: Ord, TIndexBuilder: IndexBuilder>(
operation_iterator: impl Iterator<Item = ColumnOperation<T>>,
index_builder: &mut TIndexBuilder,
values: &mut Vec<T>,
) {
for symbol in operation_iterator {
match symbol {
ColumnOperation::NewDoc(doc) => {
index_builder.record_row(doc);
}
ColumnOperation::Value(value) => {
index_builder.record_value();
values.push(value);
}
}
}
}
#[cfg(test)]
mod tests {
use stacker::MemoryArena;
use crate::columnar::writer::column_operation::ColumnOperation;
use crate::{Cardinality, NumericalValue};
#[test]
fn test_column_writer_required_simple() {
let mut arena = MemoryArena::default();
let mut column_writer = super::ColumnWriter::default();
column_writer.record(0u32, NumericalValue::from(14i64), &mut arena);
column_writer.record(1u32, NumericalValue::from(15i64), &mut arena);
column_writer.record(2u32, NumericalValue::from(-16i64), &mut arena);
assert_eq!(column_writer.get_cardinality(3), Cardinality::Full);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&arena, None, &mut buffer)
.collect();
assert_eq!(symbols.len(), 6);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
assert!(matches!(
symbols[1],
ColumnOperation::Value(NumericalValue::I64(14i64))
));
assert!(matches!(symbols[2], ColumnOperation::NewDoc(1u32)));
assert!(matches!(
symbols[3],
ColumnOperation::Value(NumericalValue::I64(15i64))
));
assert!(matches!(symbols[4], ColumnOperation::NewDoc(2u32)));
assert!(matches!(
symbols[5],
ColumnOperation::Value(NumericalValue::I64(-16i64))
));
}
#[test]
fn test_column_writer_optional_cardinality_missing_first() {
let mut arena = MemoryArena::default();
let mut column_writer = super::ColumnWriter::default();
column_writer.record(1u32, NumericalValue::from(15i64), &mut arena);
column_writer.record(2u32, NumericalValue::from(-16i64), &mut arena);
assert_eq!(column_writer.get_cardinality(3), Cardinality::Optional);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&arena, None, &mut buffer)
.collect();
assert_eq!(symbols.len(), 4);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(1u32)));
assert!(matches!(
symbols[1],
ColumnOperation::Value(NumericalValue::I64(15i64))
));
assert!(matches!(symbols[2], ColumnOperation::NewDoc(2u32)));
assert!(matches!(
symbols[3],
ColumnOperation::Value(NumericalValue::I64(-16i64))
));
}
#[test]
fn test_column_writer_optional_cardinality_missing_last() {
let mut arena = MemoryArena::default();
let mut column_writer = super::ColumnWriter::default();
column_writer.record(0u32, NumericalValue::from(15i64), &mut arena);
assert_eq!(column_writer.get_cardinality(2), Cardinality::Optional);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&arena, None, &mut buffer)
.collect();
assert_eq!(symbols.len(), 2);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
assert!(matches!(
symbols[1],
ColumnOperation::Value(NumericalValue::I64(15i64))
));
}
#[test]
fn test_column_writer_multivalued() {
let mut arena = MemoryArena::default();
let mut column_writer = super::ColumnWriter::default();
column_writer.record(0u32, NumericalValue::from(16i64), &mut arena);
column_writer.record(0u32, NumericalValue::from(17i64), &mut arena);
assert_eq!(column_writer.get_cardinality(1), Cardinality::Multivalued);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&arena, None, &mut buffer)
.collect();
assert_eq!(symbols.len(), 3);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
assert!(matches!(
symbols[1],
ColumnOperation::Value(NumericalValue::I64(16i64))
));
assert!(matches!(
symbols[2],
ColumnOperation::Value(NumericalValue::I64(17i64))
));
}
}

View File

@@ -1,110 +0,0 @@
use std::io;
use std::io::Write;
use common::{BinarySerializable, CountingWriter};
use sstable::value::RangeValueWriter;
use sstable::RangeSSTable;
use crate::columnar::ColumnType;
use crate::RowId;
pub struct ColumnarSerializer<W: io::Write> {
wrt: CountingWriter<W>,
sstable_range: sstable::Writer<Vec<u8>, RangeValueWriter>,
prepare_key_buffer: Vec<u8>,
}
/// Returns a key consisting of the concatenation of the key and the column_type_and_cardinality
/// code.
fn prepare_key(key: &[u8], column_type: ColumnType, buffer: &mut Vec<u8>) {
buffer.clear();
buffer.extend_from_slice(key);
buffer.push(0u8);
buffer.push(column_type.to_code());
}
impl<W: io::Write> ColumnarSerializer<W> {
pub(crate) fn new(wrt: W) -> ColumnarSerializer<W> {
let sstable_range: sstable::Writer<Vec<u8>, RangeValueWriter> =
sstable::Dictionary::<RangeSSTable>::builder(Vec::with_capacity(100_000)).unwrap();
ColumnarSerializer {
wrt: CountingWriter::wrap(wrt),
sstable_range,
prepare_key_buffer: Vec::new(),
}
}
/// Creates a ColumnSerializer.
pub fn start_serialize_column<'a>(
&'a mut self,
column_name: &[u8],
column_type: ColumnType,
) -> ColumnSerializer<'a, W> {
let start_offset = self.wrt.written_bytes();
prepare_key(column_name, column_type, &mut self.prepare_key_buffer);
ColumnSerializer {
columnar_serializer: self,
start_offset,
}
}
pub(crate) fn finalize(mut self, num_rows: RowId) -> io::Result<()> {
let sstable_bytes: Vec<u8> = self.sstable_range.finish()?;
let sstable_num_bytes: u64 = sstable_bytes.len() as u64;
self.wrt.write_all(&sstable_bytes)?;
self.wrt.write_all(&sstable_num_bytes.to_le_bytes()[..])?;
num_rows.serialize(&mut self.wrt)?;
self.wrt
.write_all(&super::super::format_version::footer())?;
self.wrt.flush()?;
Ok(())
}
}
pub struct ColumnSerializer<'a, W: io::Write> {
columnar_serializer: &'a mut ColumnarSerializer<W>,
start_offset: u64,
}
impl<'a, W: io::Write> ColumnSerializer<'a, W> {
pub fn finalize(self) -> io::Result<()> {
let end_offset: u64 = self.columnar_serializer.wrt.written_bytes();
let byte_range = self.start_offset..end_offset;
self.columnar_serializer.sstable_range.insert(
&self.columnar_serializer.prepare_key_buffer[..],
&byte_range,
)?;
self.columnar_serializer.prepare_key_buffer.clear();
Ok(())
}
}
impl<'a, W: io::Write> io::Write for ColumnSerializer<'a, W> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.columnar_serializer.wrt.write(buf)
}
fn flush(&mut self) -> io::Result<()> {
self.columnar_serializer.wrt.flush()
}
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.columnar_serializer.wrt.write_all(buf)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::columnar::column_type::ColumnType;
#[test]
fn test_prepare_key_bytes() {
let mut buffer: Vec<u8> = b"somegarbage".to_vec();
prepare_key(b"root\0child", ColumnType::Str, &mut buffer);
assert_eq!(buffer.len(), 12);
assert_eq!(&buffer[..10], b"root\0child");
assert_eq!(buffer[10], 0u8);
assert_eq!(buffer[11], ColumnType::Str.to_code());
}
}

View File

@@ -1,165 +0,0 @@
use crate::iterable::Iterable;
use crate::RowId;
/// The `IndexBuilder` interprets a sequence of
/// calls of the form:
/// (record_doc,record_value+)*
/// and can then serialize the results into an index to associate docids with their value[s].
///
/// It has different implementation depending on whether the
/// cardinality is required, optional, or multivalued.
pub(crate) trait IndexBuilder {
fn record_row(&mut self, doc: RowId);
#[inline]
fn record_value(&mut self) {}
}
/// The FullIndexBuilder does nothing.
#[derive(Default)]
pub struct FullIndexBuilder;
impl IndexBuilder for FullIndexBuilder {
#[inline(always)]
fn record_row(&mut self, _doc: RowId) {}
}
#[derive(Default)]
pub struct OptionalIndexBuilder {
docs: Vec<RowId>,
}
impl OptionalIndexBuilder {
pub fn finish(&mut self, num_rows: RowId) -> impl Iterable<RowId> + '_ {
debug_assert!(self
.docs
.last()
.copied()
.map(|last_doc| last_doc < num_rows)
.unwrap_or(true));
&self.docs[..]
}
fn reset(&mut self) {
self.docs.clear();
}
}
impl IndexBuilder for OptionalIndexBuilder {
#[inline(always)]
fn record_row(&mut self, doc: RowId) {
debug_assert!(self
.docs
.last()
.copied()
.map(|prev_doc| doc > prev_doc)
.unwrap_or(true));
self.docs.push(doc);
}
}
#[derive(Default)]
pub struct MultivaluedIndexBuilder {
start_offsets: Vec<RowId>,
total_num_vals_seen: u32,
}
impl MultivaluedIndexBuilder {
pub fn finish(&mut self, num_docs: RowId) -> &[u32] {
self.start_offsets
.resize(num_docs as usize + 1, self.total_num_vals_seen);
&self.start_offsets[..]
}
fn reset(&mut self) {
self.start_offsets.clear();
self.start_offsets.push(0u32);
self.total_num_vals_seen = 0;
}
}
impl IndexBuilder for MultivaluedIndexBuilder {
fn record_row(&mut self, row_id: RowId) {
self.start_offsets
.resize(row_id as usize + 1, self.total_num_vals_seen);
}
fn record_value(&mut self) {
self.total_num_vals_seen += 1;
}
}
/// The `SpareIndexBuilders` is there to avoid allocating a
/// new index builder for every single column.
#[derive(Default)]
pub struct PreallocatedIndexBuilders {
required_index_builder: FullIndexBuilder,
optional_index_builder: OptionalIndexBuilder,
multivalued_index_builder: MultivaluedIndexBuilder,
}
impl PreallocatedIndexBuilders {
pub fn borrow_required_index_builder(&mut self) -> &mut FullIndexBuilder {
&mut self.required_index_builder
}
pub fn borrow_optional_index_builder(&mut self) -> &mut OptionalIndexBuilder {
self.optional_index_builder.reset();
&mut self.optional_index_builder
}
pub fn borrow_multivalued_index_builder(&mut self) -> &mut MultivaluedIndexBuilder {
self.multivalued_index_builder.reset();
&mut self.multivalued_index_builder
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_optional_value_index_builder() {
let mut opt_value_index_builder = OptionalIndexBuilder::default();
opt_value_index_builder.record_row(0u32);
opt_value_index_builder.record_value();
assert_eq!(
&opt_value_index_builder
.finish(1u32)
.boxed_iter()
.collect::<Vec<u32>>(),
&[0]
);
opt_value_index_builder.reset();
opt_value_index_builder.record_row(1u32);
opt_value_index_builder.record_value();
assert_eq!(
&opt_value_index_builder
.finish(2u32)
.boxed_iter()
.collect::<Vec<u32>>(),
&[1]
);
}
#[test]
fn test_multivalued_value_index_builder() {
let mut multivalued_value_index_builder = MultivaluedIndexBuilder::default();
multivalued_value_index_builder.record_row(1u32);
multivalued_value_index_builder.record_value();
multivalued_value_index_builder.record_value();
multivalued_value_index_builder.record_row(2u32);
multivalued_value_index_builder.record_value();
assert_eq!(
multivalued_value_index_builder.finish(4u32).to_vec(),
vec![0, 0, 2, 3, 3]
);
multivalued_value_index_builder.reset();
multivalued_value_index_builder.record_row(2u32);
multivalued_value_index_builder.record_value();
multivalued_value_index_builder.record_value();
assert_eq!(
multivalued_value_index_builder.finish(4u32).to_vec(),
vec![0, 0, 0, 2, 2]
);
}
}

View File

@@ -1,91 +0,0 @@
use std::io;
use fnv::FnvHashMap;
use sstable::SSTable;
pub(crate) struct TermIdMapping {
unordered_to_ord: Vec<OrderedId>,
}
impl TermIdMapping {
pub fn to_ord(&self, unordered: UnorderedId) -> OrderedId {
self.unordered_to_ord[unordered.0 as usize]
}
}
/// When we add values, we cannot know their ordered id yet.
/// For this reason, we temporarily assign them a `UnorderedId`
/// that will be mapped to an `OrderedId` upon serialization.
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
pub struct UnorderedId(pub u32);
#[derive(Clone, Copy, Hash, PartialEq, Eq, Debug)]
pub struct OrderedId(pub u32);
/// `DictionaryBuilder` for dictionary encoding.
///
/// It stores the different terms encounterred and assigns them a temporary value
/// we call unordered id.
///
/// Upon serialization, we will sort the ids and hence build a `UnorderedId -> Term ordinal`
/// mapping.
#[derive(Default)]
pub(crate) struct DictionaryBuilder {
dict: FnvHashMap<Vec<u8>, UnorderedId>,
memory_consumption: usize,
}
impl DictionaryBuilder {
/// Get or allocate an unordered id.
/// (This ID is simply an auto-incremented id.)
pub fn get_or_allocate_id(&mut self, term: &[u8]) -> UnorderedId {
if let Some(term_id) = self.dict.get(term) {
return *term_id;
}
let new_id = UnorderedId(self.dict.len() as u32);
self.dict.insert(term.to_vec(), new_id);
self.memory_consumption += term.len();
self.memory_consumption += 40; // Term Metadata + HashMap overhead
new_id
}
/// Serialize the dictionary into an fst, and returns the
/// `UnorderedId -> TermOrdinal` map.
pub fn serialize<'a, W: io::Write + 'a>(&self, wrt: &mut W) -> io::Result<TermIdMapping> {
let mut terms: Vec<(&[u8], UnorderedId)> =
self.dict.iter().map(|(k, v)| (k.as_slice(), *v)).collect();
terms.sort_unstable_by_key(|(key, _)| *key);
// TODO Remove the allocation.
let mut unordered_to_ord: Vec<OrderedId> = vec![OrderedId(0u32); terms.len()];
let mut sstable_builder = sstable::VoidSSTable::writer(wrt);
for (ord, (key, unordered_id)) in terms.into_iter().enumerate() {
let ordered_id = OrderedId(ord as u32);
sstable_builder.insert(key, &())?;
unordered_to_ord[unordered_id.0 as usize] = ordered_id;
}
sstable_builder.finish()?;
Ok(TermIdMapping { unordered_to_ord })
}
pub(crate) fn mem_usage(&self) -> usize {
self.memory_consumption
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_dictionary_builder() {
let mut dictionary_builder = DictionaryBuilder::default();
let hello_uid = dictionary_builder.get_or_allocate_id(b"hello");
let happy_uid = dictionary_builder.get_or_allocate_id(b"happy");
let tax_uid = dictionary_builder.get_or_allocate_id(b"tax");
let mut buffer = Vec::new();
let id_mapping = dictionary_builder.serialize(&mut buffer).unwrap();
assert_eq!(id_mapping.to_ord(hello_uid), OrderedId(1));
assert_eq!(id_mapping.to_ord(happy_uid), OrderedId(0));
assert_eq!(id_mapping.to_ord(tax_uid), OrderedId(2));
}
}

View File

@@ -1,296 +0,0 @@
use std::net::Ipv6Addr;
use std::sync::Arc;
use std::{fmt, io};
use common::file_slice::FileSlice;
use common::{ByteCount, DateTime, HasLen, OwnedBytes};
use crate::column::{BytesColumn, Column, StrColumn};
use crate::column_values::{monotonic_map_column, StrictlyMonotonicFn};
use crate::columnar::ColumnType;
use crate::{Cardinality, ColumnIndex, NumericalType};
#[derive(Clone)]
pub enum DynamicColumn {
Bool(Column<bool>),
I64(Column<i64>),
U64(Column<u64>),
F64(Column<f64>),
IpAddr(Column<Ipv6Addr>),
DateTime(Column<DateTime>),
Bytes(BytesColumn),
Str(StrColumn),
}
impl fmt::Debug for DynamicColumn {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "[{} {} |", self.get_cardinality(), self.column_type())?;
match self {
DynamicColumn::Bool(col) => write!(f, " {col:?}")?,
DynamicColumn::I64(col) => write!(f, " {col:?}")?,
DynamicColumn::U64(col) => write!(f, " {col:?}")?,
DynamicColumn::F64(col) => write!(f, "{col:?}")?,
DynamicColumn::IpAddr(col) => write!(f, "{col:?}")?,
DynamicColumn::DateTime(col) => write!(f, "{col:?}")?,
DynamicColumn::Bytes(col) => write!(f, "{col:?}")?,
DynamicColumn::Str(col) => write!(f, "{col:?}")?,
}
write!(f, "]")
}
}
impl DynamicColumn {
pub fn column_index(&self) -> &ColumnIndex {
match self {
DynamicColumn::Bool(c) => &c.index,
DynamicColumn::I64(c) => &c.index,
DynamicColumn::U64(c) => &c.index,
DynamicColumn::F64(c) => &c.index,
DynamicColumn::IpAddr(c) => &c.index,
DynamicColumn::DateTime(c) => &c.index,
DynamicColumn::Bytes(c) => &c.ords().index,
DynamicColumn::Str(c) => &c.ords().index,
}
}
pub fn get_cardinality(&self) -> Cardinality {
self.column_index().get_cardinality()
}
pub fn num_values(&self) -> u32 {
match self {
DynamicColumn::Bool(c) => c.values.num_vals(),
DynamicColumn::I64(c) => c.values.num_vals(),
DynamicColumn::U64(c) => c.values.num_vals(),
DynamicColumn::F64(c) => c.values.num_vals(),
DynamicColumn::IpAddr(c) => c.values.num_vals(),
DynamicColumn::DateTime(c) => c.values.num_vals(),
DynamicColumn::Bytes(c) => c.ords().values.num_vals(),
DynamicColumn::Str(c) => c.ords().values.num_vals(),
}
}
pub fn column_type(&self) -> ColumnType {
match self {
DynamicColumn::Bool(_) => ColumnType::Bool,
DynamicColumn::I64(_) => ColumnType::I64,
DynamicColumn::U64(_) => ColumnType::U64,
DynamicColumn::F64(_) => ColumnType::F64,
DynamicColumn::IpAddr(_) => ColumnType::IpAddr,
DynamicColumn::DateTime(_) => ColumnType::DateTime,
DynamicColumn::Bytes(_) => ColumnType::Bytes,
DynamicColumn::Str(_) => ColumnType::Str,
}
}
pub fn coerce_numerical(self, target_numerical_type: NumericalType) -> Option<Self> {
match target_numerical_type {
NumericalType::I64 => self.coerce_to_i64(),
NumericalType::U64 => self.coerce_to_u64(),
NumericalType::F64 => self.coerce_to_f64(),
}
}
pub fn is_numerical(&self) -> bool {
self.column_type().numerical_type().is_some()
}
pub fn is_f64(&self) -> bool {
self.column_type().numerical_type() == Some(NumericalType::F64)
}
pub fn is_i64(&self) -> bool {
self.column_type().numerical_type() == Some(NumericalType::I64)
}
pub fn is_u64(&self) -> bool {
self.column_type().numerical_type() == Some(NumericalType::U64)
}
fn coerce_to_f64(self) -> Option<DynamicColumn> {
match self {
DynamicColumn::I64(column) => Some(DynamicColumn::F64(Column {
index: column.index,
values: Arc::new(monotonic_map_column(column.values, MapI64ToF64)),
})),
DynamicColumn::U64(column) => Some(DynamicColumn::F64(Column {
index: column.index,
values: Arc::new(monotonic_map_column(column.values, MapU64ToF64)),
})),
DynamicColumn::F64(_) => Some(self),
_ => None,
}
}
fn coerce_to_i64(self) -> Option<DynamicColumn> {
match self {
DynamicColumn::U64(column) => {
if column.max_value() > i64::MAX as u64 {
return None;
}
Some(DynamicColumn::I64(Column {
index: column.index,
values: Arc::new(monotonic_map_column(column.values, MapU64ToI64)),
}))
}
DynamicColumn::I64(_) => Some(self),
_ => None,
}
}
fn coerce_to_u64(self) -> Option<DynamicColumn> {
match self {
DynamicColumn::I64(column) => {
if column.min_value() < 0 {
return None;
}
Some(DynamicColumn::U64(Column {
index: column.index,
values: Arc::new(monotonic_map_column(column.values, MapI64ToU64)),
}))
}
DynamicColumn::U64(_) => Some(self),
_ => None,
}
}
}
struct MapI64ToF64;
impl StrictlyMonotonicFn<i64, f64> for MapI64ToF64 {
#[inline(always)]
fn mapping(&self, inp: i64) -> f64 {
inp as f64
}
#[inline(always)]
fn inverse(&self, out: f64) -> i64 {
out as i64
}
}
struct MapU64ToF64;
impl StrictlyMonotonicFn<u64, f64> for MapU64ToF64 {
#[inline(always)]
fn mapping(&self, inp: u64) -> f64 {
inp as f64
}
#[inline(always)]
fn inverse(&self, out: f64) -> u64 {
out as u64
}
}
struct MapU64ToI64;
impl StrictlyMonotonicFn<u64, i64> for MapU64ToI64 {
#[inline(always)]
fn mapping(&self, inp: u64) -> i64 {
inp as i64
}
#[inline(always)]
fn inverse(&self, out: i64) -> u64 {
out as u64
}
}
struct MapI64ToU64;
impl StrictlyMonotonicFn<i64, u64> for MapI64ToU64 {
#[inline(always)]
fn mapping(&self, inp: i64) -> u64 {
inp as u64
}
#[inline(always)]
fn inverse(&self, out: u64) -> i64 {
out as i64
}
}
macro_rules! static_dynamic_conversions {
($typ:ty, $enum_name:ident) => {
impl From<DynamicColumn> for Option<$typ> {
fn from(dynamic_column: DynamicColumn) -> Option<$typ> {
if let DynamicColumn::$enum_name(col) = dynamic_column {
Some(col)
} else {
None
}
}
}
impl From<$typ> for DynamicColumn {
fn from(typed_column: $typ) -> Self {
DynamicColumn::$enum_name(typed_column)
}
}
};
}
static_dynamic_conversions!(Column<bool>, Bool);
static_dynamic_conversions!(Column<u64>, U64);
static_dynamic_conversions!(Column<i64>, I64);
static_dynamic_conversions!(Column<f64>, F64);
static_dynamic_conversions!(Column<DateTime>, DateTime);
static_dynamic_conversions!(StrColumn, Str);
static_dynamic_conversions!(BytesColumn, Bytes);
static_dynamic_conversions!(Column<Ipv6Addr>, IpAddr);
#[derive(Clone, Debug)]
pub struct DynamicColumnHandle {
pub(crate) file_slice: FileSlice,
pub(crate) column_type: ColumnType,
}
impl DynamicColumnHandle {
// TODO rename load
pub fn open(&self) -> io::Result<DynamicColumn> {
let column_bytes: OwnedBytes = self.file_slice.read_bytes()?;
self.open_internal(column_bytes)
}
#[doc(hidden)]
pub fn file_slice(&self) -> &FileSlice {
&self.file_slice
}
/// Returns the `u64` fast field reader reader associated with `fields` of types
/// Str, u64, i64, f64, bool, or datetime.
///
/// If not, the fastfield reader will returns the u64-value associated with the original
/// FastValue.
pub fn open_u64_lenient(&self) -> io::Result<Option<Column<u64>>> {
let column_bytes = self.file_slice.read_bytes()?;
match self.column_type {
ColumnType::Str | ColumnType::Bytes => {
let column: BytesColumn = crate::column::open_column_bytes(column_bytes)?;
Ok(Some(column.term_ord_column))
}
ColumnType::IpAddr => Ok(None),
ColumnType::Bool
| ColumnType::I64
| ColumnType::U64
| ColumnType::F64
| ColumnType::DateTime => {
let column = crate::column::open_column_u64::<u64>(column_bytes)?;
Ok(Some(column))
}
}
}
fn open_internal(&self, column_bytes: OwnedBytes) -> io::Result<DynamicColumn> {
let dynamic_column: DynamicColumn = match self.column_type {
ColumnType::Bytes => crate::column::open_column_bytes(column_bytes)?.into(),
ColumnType::Str => crate::column::open_column_str(column_bytes)?.into(),
ColumnType::I64 => crate::column::open_column_u64::<i64>(column_bytes)?.into(),
ColumnType::U64 => crate::column::open_column_u64::<u64>(column_bytes)?.into(),
ColumnType::F64 => crate::column::open_column_u64::<f64>(column_bytes)?.into(),
ColumnType::Bool => crate::column::open_column_u64::<bool>(column_bytes)?.into(),
ColumnType::IpAddr => crate::column::open_column_u128::<Ipv6Addr>(column_bytes)?.into(),
ColumnType::DateTime => {
crate::column::open_column_u64::<DateTime>(column_bytes)?.into()
}
};
Ok(dynamic_column)
}
pub fn num_bytes(&self) -> ByteCount {
self.file_slice.len().into()
}
pub fn column_type(&self) -> ColumnType {
self.column_type
}
}

View File

@@ -1,19 +0,0 @@
use std::ops::Range;
pub trait Iterable<T = u64> {
fn boxed_iter(&self) -> Box<dyn Iterator<Item = T> + '_>;
}
impl<'a, T: Copy> Iterable<T> for &'a [T] {
fn boxed_iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
Box::new(self.iter().copied())
}
}
impl<T: Copy> Iterable<T> for Range<T>
where Range<T>: Iterator<Item = T>
{
fn boxed_iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
Box::new(self.clone())
}
}

View File

@@ -1,111 +0,0 @@
#![cfg_attr(all(feature = "unstable", test), feature(test))]
#[cfg(test)]
#[macro_use]
extern crate more_asserts;
#[cfg(all(test, feature = "unstable"))]
extern crate test;
use std::fmt::Display;
use std::io;
mod block_accessor;
mod column;
mod column_index;
pub mod column_values;
mod columnar;
mod dictionary;
mod dynamic_column;
mod iterable;
pub(crate) mod utils;
mod value;
pub use block_accessor::ColumnBlockAccessor;
pub use column::{BytesColumn, Column, StrColumn};
pub use column_index::ColumnIndex;
pub use column_values::{
ColumnValues, EmptyColumnValues, MonotonicallyMappableToU128, MonotonicallyMappableToU64,
};
pub use columnar::{
merge_columnar, ColumnType, ColumnarReader, ColumnarWriter, HasAssociatedColumnType,
MergeRowOrder, ShuffleMergeOrder, StackMergeOrder,
};
use sstable::VoidSSTable;
pub use value::{NumericalType, NumericalValue};
pub use self::dynamic_column::{DynamicColumn, DynamicColumnHandle};
pub type RowId = u32;
pub type DocId = u32;
#[derive(Clone, Copy, Debug)]
pub struct RowAddr {
pub segment_ord: u32,
pub row_id: RowId,
}
pub use sstable::Dictionary;
pub type Streamer<'a> = sstable::Streamer<'a, VoidSSTable>;
pub use common::DateTime;
#[derive(Copy, Clone, Debug)]
pub struct InvalidData;
impl From<InvalidData> for io::Error {
fn from(_: InvalidData) -> Self {
io::Error::new(io::ErrorKind::InvalidData, "Invalid data")
}
}
/// Enum describing the number of values that can exist per document
/// (or per row if you will).
///
/// The cardinality must fit on 2 bits.
#[derive(Clone, Copy, Hash, Default, Debug, PartialEq, Eq, PartialOrd, Ord)]
#[repr(u8)]
pub enum Cardinality {
/// All documents contain exactly one value.
/// `Full` is the default for auto-detecting the Cardinality, since it is the most strict.
#[default]
Full = 0,
/// All documents contain at most one value.
Optional = 1,
/// All documents may contain any number of values.
Multivalued = 2,
}
impl Display for Cardinality {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let short_str = match self {
Cardinality::Full => "full",
Cardinality::Optional => "opt",
Cardinality::Multivalued => "mult",
};
write!(f, "{short_str}")
}
}
impl Cardinality {
pub fn is_optional(&self) -> bool {
matches!(self, Cardinality::Optional)
}
pub fn is_multivalue(&self) -> bool {
matches!(self, Cardinality::Multivalued)
}
pub(crate) fn to_code(self) -> u8 {
self as u8
}
pub(crate) fn try_from_code(code: u8) -> Result<Cardinality, InvalidData> {
match code {
0 => Ok(Cardinality::Full),
1 => Ok(Cardinality::Optional),
2 => Ok(Cardinality::Multivalued),
_ => Err(InvalidData),
}
}
}
#[cfg(test)]
mod tests;

View File

@@ -1,945 +0,0 @@
use std::collections::HashMap;
use std::fmt::Debug;
use std::net::Ipv6Addr;
use common::DateTime;
use proptest::prelude::*;
use proptest::sample::subsequence;
use crate::column_values::MonotonicallyMappableToU128;
use crate::columnar::{ColumnType, ColumnTypeCategory};
use crate::dynamic_column::{DynamicColumn, DynamicColumnHandle};
use crate::value::{Coerce, NumericalValue};
use crate::{
BytesColumn, Cardinality, Column, ColumnarReader, ColumnarWriter, RowAddr, RowId,
ShuffleMergeOrder, StackMergeOrder,
};
#[test]
fn test_dataframe_writer_str() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_str(1u32, "my_string", "hello");
dataframe_writer.record_str(3u32, "my_string", "helloeee");
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(5, None, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("my_string").unwrap();
assert_eq!(cols.len(), 1);
assert_eq!(cols[0].num_bytes(), 87);
}
#[test]
fn test_dataframe_writer_bytes() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_bytes(1u32, "my_string", b"hello");
dataframe_writer.record_bytes(3u32, "my_string", b"helloeee");
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(5, None, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("my_string").unwrap();
assert_eq!(cols.len(), 1);
assert_eq!(cols[0].num_bytes(), 87);
}
#[test]
fn test_dataframe_writer_bool() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_bool(1u32, "bool.value", false);
dataframe_writer.record_bool(3u32, "bool.value", true);
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(5, None, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("bool.value").unwrap();
assert_eq!(cols.len(), 1);
assert_eq!(cols[0].num_bytes(), 22);
assert_eq!(cols[0].column_type(), ColumnType::Bool);
let dyn_bool_col = cols[0].open().unwrap();
let DynamicColumn::Bool(bool_col) = dyn_bool_col else {
panic!();
};
let vals: Vec<Option<bool>> = (0..5).map(|row_id| bool_col.first(row_id)).collect();
assert_eq!(&vals, &[None, Some(false), None, Some(true), None,]);
}
#[test]
fn test_dataframe_writer_u64_multivalued() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_numerical(2u32, "divisor", 2u64);
dataframe_writer.record_numerical(3u32, "divisor", 3u64);
dataframe_writer.record_numerical(4u32, "divisor", 2u64);
dataframe_writer.record_numerical(5u32, "divisor", 5u64);
dataframe_writer.record_numerical(6u32, "divisor", 2u64);
dataframe_writer.record_numerical(6u32, "divisor", 3u64);
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(7, None, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("divisor").unwrap();
assert_eq!(cols.len(), 1);
assert_eq!(cols[0].num_bytes(), 29);
let dyn_i64_col = cols[0].open().unwrap();
let DynamicColumn::I64(divisor_col) = dyn_i64_col else {
panic!();
};
assert_eq!(
divisor_col.get_cardinality(),
crate::Cardinality::Multivalued
);
assert_eq!(divisor_col.num_docs(), 7);
}
#[test]
fn test_dataframe_writer_ip_addr() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_ip_addr(1, "ip_addr", Ipv6Addr::from_u128(1001));
dataframe_writer.record_ip_addr(3, "ip_addr", Ipv6Addr::from_u128(1050));
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(5, None, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("ip_addr").unwrap();
assert_eq!(cols.len(), 1);
assert_eq!(cols[0].num_bytes(), 42);
assert_eq!(cols[0].column_type(), ColumnType::IpAddr);
let dyn_bool_col = cols[0].open().unwrap();
let DynamicColumn::IpAddr(ip_col) = dyn_bool_col else {
panic!();
};
let vals: Vec<Option<Ipv6Addr>> = (0..5).map(|row_id| ip_col.first(row_id)).collect();
assert_eq!(
&vals,
&[
None,
Some(Ipv6Addr::from_u128(1001)),
None,
Some(Ipv6Addr::from_u128(1050)),
None,
]
);
}
#[test]
fn test_dataframe_writer_numerical() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_numerical(1u32, "srical.value", NumericalValue::U64(12u64));
dataframe_writer.record_numerical(2u32, "srical.value", NumericalValue::U64(13u64));
dataframe_writer.record_numerical(4u32, "srical.value", NumericalValue::U64(15u64));
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(6, None, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("srical.value").unwrap();
assert_eq!(cols.len(), 1);
// Right now this 31 bytes are spent as follows
//
// - header 14 bytes
// - vals 8 //< due to padding? could have been 1byte?.
// - null footer 6 bytes
assert_eq!(cols[0].num_bytes(), 33);
let column = cols[0].open().unwrap();
let DynamicColumn::I64(column_i64) = column else {
panic!();
};
assert_eq!(column_i64.index.get_cardinality(), Cardinality::Optional);
assert_eq!(column_i64.first(0), None);
assert_eq!(column_i64.first(1), Some(12i64));
assert_eq!(column_i64.first(2), Some(13i64));
assert_eq!(column_i64.first(3), None);
assert_eq!(column_i64.first(4), Some(15i64));
assert_eq!(column_i64.first(5), None);
assert_eq!(column_i64.first(6), None); //< we can change the spec for that one.
}
#[test]
fn test_dataframe_sort_by_full() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_numerical(0u32, "value", NumericalValue::U64(1));
dataframe_writer.record_numerical(1u32, "value", NumericalValue::U64(2));
let data = dataframe_writer.sort_order("value", 2, false);
assert_eq!(data, vec![0, 1]);
}
#[test]
fn test_dataframe_sort_by_opt() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_numerical(1u32, "value", NumericalValue::U64(3));
dataframe_writer.record_numerical(3u32, "value", NumericalValue::U64(2));
let data = dataframe_writer.sort_order("value", 5, false);
// 0, 2, 4 is 0.0
assert_eq!(data, vec![0, 2, 4, 3, 1]);
let data = dataframe_writer.sort_order("value", 5, true);
assert_eq!(
data,
vec![4, 2, 0, 3, 1].into_iter().rev().collect::<Vec<_>>()
);
}
#[test]
fn test_dataframe_sort_by_multi() {
let mut dataframe_writer = ColumnarWriter::default();
// valid for sort
dataframe_writer.record_numerical(1u32, "value", NumericalValue::U64(2));
// those are ignored for sort
dataframe_writer.record_numerical(1u32, "value", NumericalValue::U64(4));
dataframe_writer.record_numerical(1u32, "value", NumericalValue::U64(4));
// valid for sort
dataframe_writer.record_numerical(3u32, "value", NumericalValue::U64(3));
// ignored, would change sort order
dataframe_writer.record_numerical(3u32, "value", NumericalValue::U64(1));
let data = dataframe_writer.sort_order("value", 4, false);
assert_eq!(data, vec![0, 2, 1, 3]);
}
#[test]
fn test_dictionary_encoded_str() {
let mut buffer = Vec::new();
let mut columnar_writer = ColumnarWriter::default();
columnar_writer.record_str(1, "my.column", "a");
columnar_writer.record_str(3, "my.column", "c");
columnar_writer.record_str(3, "my.column2", "different_column!");
columnar_writer.record_str(4, "my.column", "b");
columnar_writer.serialize(5, None, &mut buffer).unwrap();
let columnar_reader = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar_reader.num_columns(), 2);
let col_handles = columnar_reader.read_columns("my.column").unwrap();
assert_eq!(col_handles.len(), 1);
let DynamicColumn::Str(str_col) = col_handles[0].open().unwrap() else {
panic!();
};
let index: Vec<Option<u64>> = (0..5).map(|row_id| str_col.ords().first(row_id)).collect();
assert_eq!(index, &[None, Some(0), None, Some(2), Some(1)]);
assert_eq!(str_col.num_rows(), 5);
let mut term_buffer = String::new();
let term_ords = str_col.ords();
assert_eq!(term_ords.first(0), None);
assert_eq!(term_ords.first(1), Some(0));
str_col.ord_to_str(0u64, &mut term_buffer).unwrap();
assert_eq!(term_buffer, "a");
assert_eq!(term_ords.first(2), None);
assert_eq!(term_ords.first(3), Some(2));
str_col.ord_to_str(2u64, &mut term_buffer).unwrap();
assert_eq!(term_buffer, "c");
assert_eq!(term_ords.first(4), Some(1));
str_col.ord_to_str(1u64, &mut term_buffer).unwrap();
assert_eq!(term_buffer, "b");
}
#[test]
fn test_dictionary_encoded_bytes() {
let mut buffer = Vec::new();
let mut columnar_writer = ColumnarWriter::default();
columnar_writer.record_bytes(1, "my.column", b"a");
columnar_writer.record_bytes(3, "my.column", b"c");
columnar_writer.record_bytes(3, "my.column2", b"different_column!");
columnar_writer.record_bytes(4, "my.column", b"b");
columnar_writer.serialize(5, None, &mut buffer).unwrap();
let columnar_reader = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar_reader.num_columns(), 2);
let col_handles = columnar_reader.read_columns("my.column").unwrap();
assert_eq!(col_handles.len(), 1);
let DynamicColumn::Bytes(bytes_col) = col_handles[0].open().unwrap() else {
panic!();
};
let index: Vec<Option<u64>> = (0..5)
.map(|row_id| bytes_col.ords().first(row_id))
.collect();
assert_eq!(index, &[None, Some(0), None, Some(2), Some(1)]);
assert_eq!(bytes_col.num_rows(), 5);
let mut term_buffer = Vec::new();
let term_ords = bytes_col.ords();
assert_eq!(term_ords.first(0), None);
assert_eq!(term_ords.first(1), Some(0));
bytes_col
.dictionary
.ord_to_term(0u64, &mut term_buffer)
.unwrap();
assert_eq!(term_buffer, b"a");
assert_eq!(term_ords.first(2), None);
assert_eq!(term_ords.first(3), Some(2));
bytes_col
.dictionary
.ord_to_term(2u64, &mut term_buffer)
.unwrap();
assert_eq!(term_buffer, b"c");
assert_eq!(term_ords.first(4), Some(1));
bytes_col
.dictionary
.ord_to_term(1u64, &mut term_buffer)
.unwrap();
assert_eq!(term_buffer, b"b");
}
fn num_strategy() -> impl Strategy<Value = NumericalValue> {
prop_oneof![
3 => Just(NumericalValue::U64(0u64)),
3 => Just(NumericalValue::U64(u64::MAX)),
3 => Just(NumericalValue::I64(0i64)),
3 => Just(NumericalValue::I64(i64::MIN)),
3 => Just(NumericalValue::I64(i64::MAX)),
3 => Just(NumericalValue::F64(1.2f64)),
1 => any::<f64>().prop_map(NumericalValue::from),
1 => any::<u64>().prop_map(NumericalValue::from),
1 => any::<i64>().prop_map(NumericalValue::from),
]
}
#[derive(Debug, Clone, Copy)]
enum ColumnValue {
Str(&'static str),
Bytes(&'static [u8]),
Numerical(NumericalValue),
IpAddr(Ipv6Addr),
Bool(bool),
DateTime(DateTime),
}
impl<T: Into<NumericalValue>> From<T> for ColumnValue {
fn from(val: T) -> ColumnValue {
ColumnValue::Numerical(val.into())
}
}
impl ColumnValue {
pub(crate) fn column_type_category(&self) -> ColumnTypeCategory {
match self {
ColumnValue::Str(_) => ColumnTypeCategory::Str,
ColumnValue::Bytes(_) => ColumnTypeCategory::Bytes,
ColumnValue::Numerical(_) => ColumnTypeCategory::Numerical,
ColumnValue::IpAddr(_) => ColumnTypeCategory::IpAddr,
ColumnValue::Bool(_) => ColumnTypeCategory::Bool,
ColumnValue::DateTime(_) => ColumnTypeCategory::DateTime,
}
}
}
fn column_name_strategy() -> impl Strategy<Value = &'static str> {
prop_oneof![Just("c1"), Just("c2")]
}
fn string_strategy() -> impl Strategy<Value = &'static str> {
prop_oneof![Just("a"), Just("b")]
}
fn bytes_strategy() -> impl Strategy<Value = &'static [u8]> {
prop_oneof![Just(&[0u8][..]), Just(&[1u8][..])]
}
// A random column value
fn column_value_strategy() -> impl Strategy<Value = ColumnValue> {
prop_oneof![
10 => string_strategy().prop_map(|s| ColumnValue::Str(s)),
1 => bytes_strategy().prop_map(|b| ColumnValue::Bytes(b)),
40 => num_strategy().prop_map(|n| ColumnValue::Numerical(n)),
1 => (1u16..3u16).prop_map(|ip_addr_byte| ColumnValue::IpAddr(Ipv6Addr::new(
127,
0,
0,
0,
0,
0,
0,
ip_addr_byte
))),
1 => any::<bool>().prop_map(|b| ColumnValue::Bool(b)),
1 => (0_679_723_993i64..1_679_723_995i64)
.prop_map(|val| { ColumnValue::DateTime(DateTime::from_timestamp_secs(val)) })
]
}
// A document contains up to 4 values.
fn doc_strategy() -> impl Strategy<Value = Vec<(&'static str, ColumnValue)>> {
proptest::collection::vec((column_name_strategy(), column_value_strategy()), 0..=4)
}
fn num_docs_strategy() -> impl Strategy<Value = usize> {
prop_oneof!(
// We focus heavily on the 0..2 case as we assume it is sufficient to cover all edge cases.
0usize..=3usize,
// We leave 50% of the effort exploring more defensively.
3usize..=12usize
)
}
// A columnar contains up to 2 docs.
fn columnar_docs_strategy() -> impl Strategy<Value = Vec<Vec<(&'static str, ColumnValue)>>> {
num_docs_strategy()
.prop_flat_map(|num_docs| proptest::collection::vec(doc_strategy(), num_docs))
}
fn columnar_docs_and_mapping_strategy(
) -> impl Strategy<Value = (Vec<Vec<(&'static str, ColumnValue)>>, Vec<RowId>)> {
columnar_docs_strategy().prop_flat_map(|docs| {
permutation_strategy(docs.len()).prop_map(move |permutation| (docs.clone(), permutation))
})
}
fn permutation_strategy(n: usize) -> impl Strategy<Value = Vec<RowId>> {
Just((0u32..n as RowId).collect()).prop_shuffle()
}
fn permutation_and_subset_strategy(n: usize) -> impl Strategy<Value = Vec<usize>> {
let vals: Vec<usize> = (0..n).collect();
subsequence(vals, 0..=n).prop_shuffle()
}
fn build_columnar_with_mapping(
docs: &[Vec<(&'static str, ColumnValue)>],
old_to_new_row_ids_opt: Option<&[RowId]>,
) -> ColumnarReader {
let num_docs = docs.len() as u32;
let mut buffer = Vec::new();
let mut columnar_writer = ColumnarWriter::default();
for (doc_id, vals) in docs.iter().enumerate() {
for (column_name, col_val) in vals {
match *col_val {
ColumnValue::Str(str_val) => {
columnar_writer.record_str(doc_id as u32, column_name, str_val);
}
ColumnValue::Bytes(bytes) => {
columnar_writer.record_bytes(doc_id as u32, column_name, bytes)
}
ColumnValue::Numerical(num) => {
columnar_writer.record_numerical(doc_id as u32, column_name, num);
}
ColumnValue::IpAddr(ip_addr) => {
columnar_writer.record_ip_addr(doc_id as u32, column_name, ip_addr);
}
ColumnValue::Bool(bool_val) => {
columnar_writer.record_bool(doc_id as u32, column_name, bool_val);
}
ColumnValue::DateTime(date_time) => {
columnar_writer.record_datetime(doc_id as u32, column_name, date_time);
}
}
}
}
columnar_writer
.serialize(num_docs, old_to_new_row_ids_opt, &mut buffer)
.unwrap();
let columnar_reader = ColumnarReader::open(buffer).unwrap();
columnar_reader
}
fn build_columnar(docs: &[Vec<(&'static str, ColumnValue)>]) -> ColumnarReader {
build_columnar_with_mapping(docs, None)
}
fn assert_columnar_eq_strict(left: &ColumnarReader, right: &ColumnarReader) {
assert_columnar_eq(left, right, false);
}
fn assert_columnar_eq(
left: &ColumnarReader,
right: &ColumnarReader,
lenient_on_numerical_value: bool,
) {
assert_eq!(left.num_rows(), right.num_rows());
let left_columns = left.list_columns().unwrap();
let right_columns = right.list_columns().unwrap();
assert_eq!(left_columns.len(), right_columns.len());
for i in 0..left_columns.len() {
assert_eq!(left_columns[i].0, right_columns[i].0);
let left_column = left_columns[i].1.open().unwrap();
let right_column = right_columns[i].1.open().unwrap();
assert_dyn_column_eq(&left_column, &right_column, lenient_on_numerical_value);
}
}
fn assert_column_eq<T: Copy + PartialOrd + Debug + Send + Sync + 'static>(
left: &Column<T>,
right: &Column<T>,
) {
assert_eq!(left.get_cardinality(), right.get_cardinality());
assert_eq!(left.num_docs(), right.num_docs());
let num_docs = left.num_docs();
for doc in 0..num_docs {
assert_eq!(
left.index.value_row_ids(doc),
right.index.value_row_ids(doc)
);
}
assert_eq!(left.values.num_vals(), right.values.num_vals());
let num_vals = left.values.num_vals();
for i in 0..num_vals {
assert_eq!(left.values.get_val(i), right.values.get_val(i));
}
}
fn assert_bytes_column_eq(left: &BytesColumn, right: &BytesColumn) {
assert_eq!(
left.term_ord_column.get_cardinality(),
right.term_ord_column.get_cardinality()
);
assert_eq!(left.num_rows(), right.num_rows());
assert_column_eq(&left.term_ord_column, &right.term_ord_column);
assert_eq!(left.dictionary.num_terms(), right.dictionary.num_terms());
let num_terms = left.dictionary.num_terms();
let mut left_terms = left.dictionary.stream().unwrap();
let mut right_terms = right.dictionary.stream().unwrap();
for _ in 0..num_terms {
assert!(left_terms.advance());
assert!(right_terms.advance());
assert_eq!(left_terms.key(), right_terms.key());
}
assert!(!left_terms.advance());
assert!(!right_terms.advance());
}
fn assert_dyn_column_eq(
left_dyn_column: &DynamicColumn,
right_dyn_column: &DynamicColumn,
lenient_on_numerical_value: bool,
) {
assert_eq!(
&left_dyn_column.get_cardinality(),
&right_dyn_column.get_cardinality()
);
match &(left_dyn_column, right_dyn_column) {
(DynamicColumn::Bool(left_col), DynamicColumn::Bool(right_col)) => {
assert_column_eq(left_col, right_col);
}
(DynamicColumn::I64(left_col), DynamicColumn::I64(right_col)) => {
assert_column_eq(left_col, right_col);
}
(DynamicColumn::U64(left_col), DynamicColumn::U64(right_col)) => {
assert_column_eq(left_col, right_col);
}
(DynamicColumn::F64(left_col), DynamicColumn::F64(right_col)) => {
assert_column_eq(left_col, right_col);
}
(DynamicColumn::DateTime(left_col), DynamicColumn::DateTime(right_col)) => {
assert_column_eq(left_col, right_col);
}
(DynamicColumn::IpAddr(left_col), DynamicColumn::IpAddr(right_col)) => {
assert_column_eq(left_col, right_col);
}
(DynamicColumn::Bytes(left_col), DynamicColumn::Bytes(right_col)) => {
assert_bytes_column_eq(left_col, right_col);
}
(DynamicColumn::Str(left_col), DynamicColumn::Str(right_col)) => {
assert_bytes_column_eq(left_col, right_col);
}
(left, right) => {
if lenient_on_numerical_value {
assert_eq!(
ColumnTypeCategory::from(left.column_type()),
ColumnTypeCategory::from(right.column_type())
);
} else {
panic!(
"Column type are not the same: {:?} vs {:?}",
left.column_type(),
right.column_type()
);
}
}
}
}
trait AssertEqualToColumnValue {
fn assert_equal_to_column_value(&self, column_value: &ColumnValue);
}
impl AssertEqualToColumnValue for bool {
fn assert_equal_to_column_value(&self, column_value: &ColumnValue) {
let ColumnValue::Bool(val) = column_value else {
panic!()
};
assert_eq!(self, val);
}
}
impl AssertEqualToColumnValue for Ipv6Addr {
fn assert_equal_to_column_value(&self, column_value: &ColumnValue) {
let ColumnValue::IpAddr(val) = column_value else {
panic!()
};
assert_eq!(self, val);
}
}
impl<T: Coerce + PartialEq + Debug + Into<NumericalValue>> AssertEqualToColumnValue for T {
fn assert_equal_to_column_value(&self, column_value: &ColumnValue) {
let ColumnValue::Numerical(num) = column_value else {
panic!()
};
assert_eq!(self, &T::coerce(*num));
}
}
impl AssertEqualToColumnValue for DateTime {
fn assert_equal_to_column_value(&self, column_value: &ColumnValue) {
let ColumnValue::DateTime(dt) = column_value else {
panic!()
};
assert_eq!(self, dt);
}
}
fn assert_column_values<
T: AssertEqualToColumnValue + PartialEq + Copy + PartialOrd + Debug + Send + Sync + 'static,
>(
col: &Column<T>,
expected: &HashMap<u32, Vec<&ColumnValue>>,
) {
let mut num_non_empty_rows = 0;
for doc in 0..col.num_docs() {
let doc_vals: Vec<T> = col.values_for_doc(doc).collect();
if doc_vals.is_empty() {
continue;
}
num_non_empty_rows += 1;
let expected_vals = expected.get(&doc).unwrap();
assert_eq!(doc_vals.len(), expected_vals.len());
for (val, &expected) in doc_vals.iter().zip(expected_vals.iter()) {
val.assert_equal_to_column_value(expected)
}
}
assert_eq!(num_non_empty_rows, expected.len());
}
fn assert_bytes_column_values(
col: &BytesColumn,
expected: &HashMap<u32, Vec<&ColumnValue>>,
is_str: bool,
) {
let mut num_non_empty_rows = 0;
let mut buffer = Vec::new();
for doc in 0..col.term_ord_column.num_docs() {
let doc_vals: Vec<u64> = col.term_ords(doc).collect();
if doc_vals.is_empty() {
continue;
}
let expected_vals = expected.get(&doc).unwrap();
assert_eq!(doc_vals.len(), expected_vals.len());
for (&expected_col_val, &ord) in expected_vals.iter().zip(&doc_vals) {
col.ord_to_bytes(ord, &mut buffer).unwrap();
match expected_col_val {
ColumnValue::Str(str_val) => {
assert!(is_str);
assert_eq!(str_val.as_bytes(), &buffer);
}
ColumnValue::Bytes(bytes_val) => {
assert!(!is_str);
assert_eq!(bytes_val, &buffer);
}
_ => {
panic!();
}
}
}
num_non_empty_rows += 1;
}
assert_eq!(num_non_empty_rows, expected.len());
}
// This proptest attempts to create a tiny columnar based of up to 3 rows, and checks that the
// resulting columnar matches the row data.
proptest! {
#![proptest_config(ProptestConfig::with_cases(500))]
#[test]
fn test_single_columnar_builder_proptest(docs in columnar_docs_strategy()) {
let columnar = build_columnar(&docs[..]);
assert_eq!(columnar.num_rows() as usize, docs.len());
let mut expected_columns: HashMap<(&str, ColumnTypeCategory), HashMap<u32, Vec<&ColumnValue>> > = Default::default();
for (doc_id, doc_vals) in docs.iter().enumerate() {
for (col_name, col_val) in doc_vals {
expected_columns
.entry((col_name, col_val.column_type_category()))
.or_default()
.entry(doc_id as u32)
.or_default()
.push(col_val);
}
}
let column_list = columnar.list_columns().unwrap();
assert_eq!(expected_columns.len(), column_list.len());
for (column_name, column) in column_list {
let dynamic_column = column.open().unwrap();
let col_category: ColumnTypeCategory = dynamic_column.column_type().into();
let expected_col_values: &HashMap<u32, Vec<&ColumnValue>> = expected_columns.get(&(column_name.as_str(), col_category)).unwrap();
match &dynamic_column {
DynamicColumn::Bool(col) =>
assert_column_values(col, expected_col_values),
DynamicColumn::I64(col) =>
assert_column_values(col, expected_col_values),
DynamicColumn::U64(col) =>
assert_column_values(col, expected_col_values),
DynamicColumn::F64(col) =>
assert_column_values(col, expected_col_values),
DynamicColumn::IpAddr(col) =>
assert_column_values(col, expected_col_values),
DynamicColumn::DateTime(col) =>
assert_column_values(col, expected_col_values),
DynamicColumn::Bytes(col) =>
assert_bytes_column_values(col, expected_col_values, false),
DynamicColumn::Str(col) =>
assert_bytes_column_values(col, expected_col_values, true),
}
}
}
}
// Same as `test_single_columnar_builder_proptest` but with a shuffling mapping.
proptest! {
#![proptest_config(ProptestConfig::with_cases(500))]
#[test]
fn test_single_columnar_builder_with_shuffle_proptest((docs, mapping) in columnar_docs_and_mapping_strategy()) {
let columnar = build_columnar_with_mapping(&docs[..], Some(&mapping));
assert_eq!(columnar.num_rows() as usize, docs.len());
let mut expected_columns: HashMap<(&str, ColumnTypeCategory), HashMap<u32, Vec<&ColumnValue>> > = Default::default();
for (doc_id, doc_vals) in docs.iter().enumerate() {
for (col_name, col_val) in doc_vals {
expected_columns
.entry((col_name, col_val.column_type_category()))
.or_default()
.entry(mapping[doc_id])
.or_default()
.push(col_val);
}
}
let column_list = columnar.list_columns().unwrap();
assert_eq!(expected_columns.len(), column_list.len());
for (column_name, column) in column_list {
let dynamic_column = column.open().unwrap();
let col_category: ColumnTypeCategory = dynamic_column.column_type().into();
let expected_col_values: &HashMap<u32, Vec<&ColumnValue>> = expected_columns.get(&(column_name.as_str(), col_category)).unwrap();
for _doc_id in 0..columnar.num_rows() {
match &dynamic_column {
DynamicColumn::Bool(col) =>
assert_column_values(col, expected_col_values),
DynamicColumn::I64(col) =>
assert_column_values(col, expected_col_values),
DynamicColumn::U64(col) =>
assert_column_values(col, expected_col_values),
DynamicColumn::F64(col) =>
assert_column_values(col, expected_col_values),
DynamicColumn::IpAddr(col) =>
assert_column_values(col, expected_col_values),
DynamicColumn::DateTime(col) =>
assert_column_values(col, expected_col_values),
DynamicColumn::Bytes(col) =>
assert_bytes_column_values(col, expected_col_values, false),
DynamicColumn::Str(col) =>
assert_bytes_column_values(col, expected_col_values, true),
}
}
}
}
}
// This tests create 2 or 3 random small columnar and attempts to merge them.
// It compares the resulting merged dataframe with what would have been obtained by building the
// dataframe from the concatenated rows to begin with.
proptest! {
#![proptest_config(ProptestConfig::with_cases(1000))]
#[test]
fn test_columnar_merge_proptest(columnar_docs in proptest::collection::vec(columnar_docs_strategy(), 2..=3)) {
let columnar_readers: Vec<ColumnarReader> = columnar_docs.iter()
.map(|docs| build_columnar(&docs[..]))
.collect::<Vec<_>>();
let columnar_readers_arr: Vec<&ColumnarReader> = columnar_readers.iter().collect();
let mut output: Vec<u8> = Vec::new();
let stack_merge_order = StackMergeOrder::stack(&columnar_readers_arr[..]).into();
crate::merge_columnar(&columnar_readers_arr[..], &[], stack_merge_order, &mut output).unwrap();
let merged_columnar = ColumnarReader::open(output).unwrap();
let concat_rows: Vec<Vec<(&'static str, ColumnValue)>> = columnar_docs.iter().cloned().flatten().collect();
let expected_merged_columnar = build_columnar(&concat_rows[..]);
assert_columnar_eq_strict(&merged_columnar, &expected_merged_columnar);
}
}
#[test]
fn test_columnar_merging_empty_columnar() {
let columnar_docs: Vec<Vec<Vec<(&str, ColumnValue)>>> =
vec![vec![], vec![vec![("c1", ColumnValue::Str("a"))]]];
let columnar_readers: Vec<ColumnarReader> = columnar_docs
.iter()
.map(|docs| build_columnar(&docs[..]))
.collect::<Vec<_>>();
let columnar_readers_arr: Vec<&ColumnarReader> = columnar_readers.iter().collect();
let mut output: Vec<u8> = Vec::new();
let stack_merge_order = StackMergeOrder::stack(&columnar_readers_arr[..]);
crate::merge_columnar(
&columnar_readers_arr[..],
&[],
crate::MergeRowOrder::Stack(stack_merge_order),
&mut output,
)
.unwrap();
let merged_columnar = ColumnarReader::open(output).unwrap();
let concat_rows: Vec<Vec<(&'static str, ColumnValue)>> =
columnar_docs.iter().cloned().flatten().collect();
let expected_merged_columnar = build_columnar(&concat_rows[..]);
assert_columnar_eq_strict(&merged_columnar, &expected_merged_columnar);
}
#[test]
fn test_columnar_merging_number_columns() {
let columnar_docs: Vec<Vec<Vec<(&str, ColumnValue)>>> = vec![
// columnar 1
vec![
// doc 1.1
vec![("c2", ColumnValue::Numerical(0i64.into()))],
],
// columnar2
vec![
// doc 2.1
vec![("c2", ColumnValue::Numerical(0u64.into()))],
// doc 2.2
vec![("c2", ColumnValue::Numerical(u64::MAX.into()))],
],
];
let columnar_readers: Vec<ColumnarReader> = columnar_docs
.iter()
.map(|docs| build_columnar(&docs[..]))
.collect::<Vec<_>>();
let columnar_readers_arr: Vec<&ColumnarReader> = columnar_readers.iter().collect();
let mut output: Vec<u8> = Vec::new();
let stack_merge_order = StackMergeOrder::stack(&columnar_readers_arr[..]);
crate::merge_columnar(
&columnar_readers_arr[..],
&[],
crate::MergeRowOrder::Stack(stack_merge_order),
&mut output,
)
.unwrap();
let merged_columnar = ColumnarReader::open(output).unwrap();
let concat_rows: Vec<Vec<(&'static str, ColumnValue)>> =
columnar_docs.iter().cloned().flatten().collect();
let expected_merged_columnar = build_columnar(&concat_rows[..]);
assert_columnar_eq_strict(&merged_columnar, &expected_merged_columnar);
}
// TODO add non trivial remap and merge
// TODO test required_columns
// TODO document edge case: required_columns incompatible with values.
fn columnar_docs_and_remap(
) -> impl Strategy<Value = (Vec<Vec<Vec<(&'static str, ColumnValue)>>>, Vec<RowAddr>)> {
proptest::collection::vec(columnar_docs_strategy(), 2..=3).prop_flat_map(
|columnars_docs: Vec<Vec<Vec<(&str, ColumnValue)>>>| {
let row_addrs: Vec<RowAddr> = columnars_docs
.iter()
.enumerate()
.flat_map(|(segment_ord, columnar_docs)| {
(0u32..columnar_docs.len() as u32).map(move |row_id| RowAddr {
segment_ord: segment_ord as u32,
row_id,
})
})
.collect();
permutation_and_subset_strategy(row_addrs.len()).prop_map(move |shuffled_subset| {
let shuffled_row_addr_subset: Vec<RowAddr> =
shuffled_subset.iter().map(|ord| row_addrs[*ord]).collect();
(columnars_docs.clone(), shuffled_row_addr_subset)
})
},
)
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(1000))]
#[test]
fn test_columnar_merge_and_remap_proptest((columnar_docs, shuffle_merge_order) in columnar_docs_and_remap()) {
let shuffled_rows: Vec<Vec<(&'static str, ColumnValue)>> = shuffle_merge_order.iter()
.map(|row_addr| columnar_docs[row_addr.segment_ord as usize][row_addr.row_id as usize].clone())
.collect();
let expected_merged_columnar = build_columnar(&shuffled_rows[..]);
let columnar_readers: Vec<ColumnarReader> = columnar_docs.iter()
.map(|docs| build_columnar(&docs[..]))
.collect::<Vec<_>>();
let columnar_readers_arr: Vec<&ColumnarReader> = columnar_readers.iter().collect();
let mut output: Vec<u8> = Vec::new();
let segment_num_rows: Vec<RowId> = columnar_docs.iter().map(|docs| docs.len() as RowId).collect();
let shuffle_merge_order = ShuffleMergeOrder::for_test(&segment_num_rows, shuffle_merge_order);
crate::merge_columnar(&columnar_readers_arr[..], &[], shuffle_merge_order.into(), &mut output).unwrap();
let merged_columnar = ColumnarReader::open(output).unwrap();
assert_columnar_eq(&merged_columnar, &expected_merged_columnar, true);
}
}
#[test]
fn test_columnar_merge_empty() {
let columnar_reader_1 = build_columnar(&[]);
let rows: &[Vec<_>] = &[vec![("c1", ColumnValue::Str("a"))]][..];
let columnar_reader_2 = build_columnar(rows);
let mut output: Vec<u8> = Vec::new();
let segment_num_rows: Vec<RowId> = vec![0, 0];
let shuffle_merge_order = ShuffleMergeOrder::for_test(&segment_num_rows, vec![]);
crate::merge_columnar(
&[&columnar_reader_1, &columnar_reader_2],
&[],
shuffle_merge_order.into(),
&mut output,
)
.unwrap();
let merged_columnar = ColumnarReader::open(output).unwrap();
assert_eq!(merged_columnar.num_rows(), 0);
assert_eq!(merged_columnar.num_columns(), 0);
}
#[test]
fn test_columnar_merge_single_str_column() {
let columnar_reader_1 = build_columnar(&[]);
let rows: &[Vec<_>] = &[vec![("c1", ColumnValue::Str("a"))]][..];
let columnar_reader_2 = build_columnar(rows);
let mut output: Vec<u8> = Vec::new();
let segment_num_rows: Vec<RowId> = vec![0, 1];
let shuffle_merge_order = ShuffleMergeOrder::for_test(
&segment_num_rows,
vec![RowAddr {
segment_ord: 1u32,
row_id: 0u32,
}],
);
crate::merge_columnar(
&[&columnar_reader_1, &columnar_reader_2],
&[],
shuffle_merge_order.into(),
&mut output,
)
.unwrap();
let merged_columnar = ColumnarReader::open(output).unwrap();
assert_eq!(merged_columnar.num_rows(), 1);
assert_eq!(merged_columnar.num_columns(), 1);
}
#[test]
fn test_delete_decrease_cardinality() {
let columnar_reader_1 = build_columnar(&[]);
let rows: &[Vec<_>] = &[
vec![
("c", ColumnValue::from(0i64)),
("c", ColumnValue::from(0i64)),
],
vec![("c", ColumnValue::from(0i64))],
][..];
// c is multivalued here
let columnar_reader_2 = build_columnar(rows);
let mut output: Vec<u8> = Vec::new();
let shuffle_merge_order = ShuffleMergeOrder::for_test(
&[0, 2],
vec![RowAddr {
segment_ord: 1u32,
row_id: 1u32,
}],
);
crate::merge_columnar(
&[&columnar_reader_1, &columnar_reader_2],
&[],
shuffle_merge_order.into(),
&mut output,
)
.unwrap();
let merged_columnar = ColumnarReader::open(output).unwrap();
assert_eq!(merged_columnar.num_rows(), 1);
assert_eq!(merged_columnar.num_columns(), 1);
let cols = merged_columnar.read_columns("c").unwrap();
assert_eq!(cols.len(), 1);
assert_eq!(cols[0].column_type(), ColumnType::I64);
assert_eq!(cols[0].open().unwrap().get_cardinality(), Cardinality::Full);
}

View File

@@ -1,76 +0,0 @@
const fn compute_mask(num_bits: u8) -> u8 {
if num_bits == 8 {
u8::MAX
} else {
(1u8 << num_bits) - 1
}
}
#[inline(always)]
#[must_use]
pub(crate) fn select_bits<const START: u8, const END: u8>(code: u8) -> u8 {
assert!(START <= END);
assert!(END <= 8);
let num_bits: u8 = END - START;
let mask: u8 = compute_mask(num_bits);
(code >> START) & mask
}
#[inline(always)]
#[must_use]
pub(crate) fn place_bits<const START: u8, const END: u8>(code: u8) -> u8 {
assert!(START <= END);
assert!(END <= 8);
let num_bits: u8 = END - START;
let mask: u8 = compute_mask(num_bits);
assert!(code <= mask);
code << START
}
/// Pop-front one bytes from a slice of bytes.
#[inline(always)]
pub fn pop_first_byte(bytes: &mut &[u8]) -> Option<u8> {
if bytes.is_empty() {
return None;
}
let first_byte = bytes[0];
*bytes = &bytes[1..];
Some(first_byte)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_select_bits() {
assert_eq!(255u8, select_bits::<0, 8>(255u8));
assert_eq!(0u8, select_bits::<0, 0>(255u8));
assert_eq!(8u8, select_bits::<0, 4>(8u8));
assert_eq!(4u8, select_bits::<1, 4>(8u8));
assert_eq!(0u8, select_bits::<1, 3>(8u8));
}
#[test]
fn test_place_bits() {
assert_eq!(255u8, place_bits::<0, 8>(255u8));
assert_eq!(4u8, place_bits::<2, 3>(1u8));
assert_eq!(0u8, place_bits::<2, 2>(0u8));
}
#[test]
#[should_panic]
fn test_place_bits_overflows() {
let _ = place_bits::<1, 4>(8u8);
}
#[test]
fn test_pop_first_byte() {
let mut cursor: &[u8] = &b"abcd"[..];
assert_eq!(pop_first_byte(&mut cursor), Some(b'a'));
assert_eq!(pop_first_byte(&mut cursor), Some(b'b'));
assert_eq!(pop_first_byte(&mut cursor), Some(b'c'));
assert_eq!(pop_first_byte(&mut cursor), Some(b'd'));
assert_eq!(pop_first_byte(&mut cursor), None);
}
}

View File

@@ -1,131 +0,0 @@
use common::DateTime;
use crate::InvalidData;
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum NumericalValue {
I64(i64),
U64(u64),
F64(f64),
}
impl NumericalValue {
pub fn numerical_type(&self) -> NumericalType {
match self {
NumericalValue::I64(_) => NumericalType::I64,
NumericalValue::U64(_) => NumericalType::U64,
NumericalValue::F64(_) => NumericalType::F64,
}
}
}
impl From<u64> for NumericalValue {
fn from(val: u64) -> NumericalValue {
NumericalValue::U64(val)
}
}
impl From<i64> for NumericalValue {
fn from(val: i64) -> Self {
NumericalValue::I64(val)
}
}
impl From<f64> for NumericalValue {
fn from(val: f64) -> Self {
NumericalValue::F64(val)
}
}
#[derive(Clone, Copy, Debug, Default, Hash, Eq, PartialEq)]
#[repr(u8)]
pub enum NumericalType {
#[default]
I64 = 0,
U64 = 1,
F64 = 2,
}
impl NumericalType {
pub fn to_code(self) -> u8 {
self as u8
}
pub fn try_from_code(code: u8) -> Result<NumericalType, InvalidData> {
match code {
0 => Ok(NumericalType::I64),
1 => Ok(NumericalType::U64),
2 => Ok(NumericalType::F64),
_ => Err(InvalidData),
}
}
}
/// We voluntarily avoid using `Into` here to keep this
/// implementation quirk as private as possible.
///
/// # Panics
/// This coercion trait actually panics if it is used
/// to convert a loose types to a stricter type.
///
/// The level is strictness is somewhat arbitrary.
/// - i64
/// - u64
/// - f64.
pub(crate) trait Coerce {
fn coerce(numerical_value: NumericalValue) -> Self;
}
impl Coerce for i64 {
fn coerce(value: NumericalValue) -> Self {
match value {
NumericalValue::I64(val) => val,
NumericalValue::U64(val) => val as i64,
NumericalValue::F64(_) => unreachable!(),
}
}
}
impl Coerce for u64 {
fn coerce(value: NumericalValue) -> Self {
match value {
NumericalValue::I64(val) => val as u64,
NumericalValue::U64(val) => val,
NumericalValue::F64(_) => unreachable!(),
}
}
}
impl Coerce for f64 {
fn coerce(value: NumericalValue) -> Self {
match value {
NumericalValue::I64(val) => val as f64,
NumericalValue::U64(val) => val as f64,
NumericalValue::F64(val) => val,
}
}
}
impl Coerce for DateTime {
fn coerce(value: NumericalValue) -> Self {
let timestamp_micros = i64::coerce(value);
DateTime::from_timestamp_nanos(timestamp_micros)
}
}
#[cfg(test)]
mod tests {
use super::NumericalType;
#[test]
fn test_numerical_type_code() {
let mut num_numerical_type = 0;
for code in u8::MIN..=u8::MAX {
if let Ok(numerical_type) = NumericalType::try_from_code(code) {
assert_eq!(numerical_type.to_code(), code);
num_numerical_type += 1;
}
}
assert_eq!(num_numerical_type, 3);
}
}

View File

@@ -1,23 +1,16 @@
[package]
name = "tantivy-common"
version = "0.6.0"
version = "0.3.0"
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
license = "MIT"
edition = "2021"
description = "common traits and utility functions used by multiple tantivy subcrates"
documentation = "https://docs.rs/tantivy_common/"
homepage = "https://github.com/quickwit-oss/tantivy"
repository = "https://github.com/quickwit-oss/tantivy"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
byteorder = "1.4.3"
ownedbytes = { version= "0.6", path="../ownedbytes" }
async-trait = "0.1"
time = { version = "0.3.10", features = ["serde-well-known"] }
serde = { version = "1.0.136", features = ["derive"] }
ownedbytes = { version="0.3", path="../ownedbytes" }
[dev-dependencies]
proptest = "1.0.0"

View File

@@ -1,39 +0,0 @@
#![feature(test)]
extern crate test;
#[cfg(test)]
mod tests {
use rand::seq::IteratorRandom;
use rand::thread_rng;
use tantivy_common::serialize_vint_u32;
use test::Bencher;
#[bench]
fn bench_vint(b: &mut Bencher) {
let vals: Vec<u32> = (0..20_000).collect();
b.iter(|| {
let mut out = 0u64;
for val in vals.iter().cloned() {
let mut buf = [0u8; 8];
serialize_vint_u32(val, &mut buf);
out += u64::from(buf[0]);
}
out
});
}
#[bench]
fn bench_vint_rand(b: &mut Bencher) {
let vals: Vec<u32> = (0..20_000).choose_multiple(&mut thread_rng(), 100_000);
b.iter(|| {
let mut out = 0u64;
for val in vals.iter().cloned() {
let mut buf = [0u8; 8];
serialize_vint_u32(val, &mut buf);
out += u64::from(buf[0]);
}
out
});
}
}

View File

@@ -4,8 +4,6 @@ use std::{fmt, io, u64};
use ownedbytes::OwnedBytes;
use crate::ByteCount;
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct TinySet(u64);
@@ -153,7 +151,7 @@ impl TinySet {
if self.is_empty() {
None
} else {
let lowest = self.0.trailing_zeros();
let lowest = self.0.trailing_zeros() as u32;
self.0 ^= TinySet::singleton(lowest).0;
Some(lowest)
}
@@ -388,8 +386,8 @@ impl ReadOnlyBitSet {
}
/// Number of bytes used in the bitset representation.
pub fn num_bytes(&self) -> ByteCount {
self.data.len().into()
pub fn num_bytes(&self) -> usize {
self.data.len()
}
}
@@ -423,7 +421,7 @@ mod tests {
bitset.serialize(&mut out).unwrap();
let bitset = ReadOnlyBitSet::open(OwnedBytes::new(out));
assert_eq!(bitset.len(), i as usize);
assert_eq!(bitset.len() as usize, i as usize);
}
}
@@ -434,7 +432,7 @@ mod tests {
bitset.serialize(&mut out).unwrap();
let bitset = ReadOnlyBitSet::open(OwnedBytes::new(out));
assert_eq!(bitset.len(), 64);
assert_eq!(bitset.len() as usize, 64);
}
#[test]

View File

@@ -1,114 +0,0 @@
use std::iter::Sum;
use std::ops::{Add, AddAssign};
use serde::{Deserialize, Serialize};
/// Indicates space usage in bytes
#[derive(Copy, Clone, Default, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct ByteCount(u64);
impl std::fmt::Debug for ByteCount {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_str(&self.human_readable())
}
}
impl std::fmt::Display for ByteCount {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_str(&self.human_readable())
}
}
const SUFFIX_AND_THRESHOLD: [(&str, u64); 5] = [
("KB", 1_000),
("MB", 1_000_000),
("GB", 1_000_000_000),
("TB", 1_000_000_000_000),
("PB", 1_000_000_000_000_000),
];
impl ByteCount {
#[inline]
pub fn get_bytes(&self) -> u64 {
self.0
}
pub fn human_readable(&self) -> String {
for (suffix, threshold) in SUFFIX_AND_THRESHOLD.iter().rev() {
if self.get_bytes() >= *threshold {
let unit_num = self.get_bytes() as f64 / *threshold as f64;
return format!("{unit_num:.2} {suffix}");
}
}
format!("{:.2} B", self.get_bytes())
}
}
impl From<u64> for ByteCount {
fn from(value: u64) -> Self {
ByteCount(value)
}
}
impl From<usize> for ByteCount {
fn from(value: usize) -> Self {
ByteCount(value as u64)
}
}
impl Sum for ByteCount {
#[inline]
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(ByteCount::default(), |acc, x| acc + x)
}
}
impl PartialEq<u64> for ByteCount {
#[inline]
fn eq(&self, other: &u64) -> bool {
self.get_bytes() == *other
}
}
impl PartialOrd<u64> for ByteCount {
#[inline]
fn partial_cmp(&self, other: &u64) -> Option<std::cmp::Ordering> {
self.get_bytes().partial_cmp(other)
}
}
impl Add for ByteCount {
type Output = Self;
#[inline]
fn add(self, other: Self) -> Self {
Self(self.get_bytes() + other.get_bytes())
}
}
impl AddAssign for ByteCount {
#[inline]
fn add_assign(&mut self, other: Self) {
*self = Self(self.get_bytes() + other.get_bytes());
}
}
#[cfg(test)]
mod test {
use crate::ByteCount;
#[test]
fn test_bytes() {
assert_eq!(ByteCount::from(0u64).human_readable(), "0 B");
assert_eq!(ByteCount::from(300u64).human_readable(), "300 B");
assert_eq!(ByteCount::from(1_000_000u64).human_readable(), "1.00 MB");
assert_eq!(ByteCount::from(1_500_000u64).human_readable(), "1.50 MB");
assert_eq!(
ByteCount::from(1_500_000_000u64).human_readable(),
"1.50 GB"
);
assert_eq!(
ByteCount::from(3_213_000_000_000u64).human_readable(),
"3.21 TB"
);
}
}

View File

@@ -1,166 +0,0 @@
#![allow(deprecated)]
use std::fmt;
use serde::{Deserialize, Serialize};
use time::format_description::well_known::Rfc3339;
use time::{OffsetDateTime, PrimitiveDateTime, UtcOffset};
/// Precision with which datetimes are truncated when stored in fast fields. This setting is only
/// relevant for fast fields. In the docstore, datetimes are always saved with nanosecond precision.
#[derive(
Clone, Copy, Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize, Default,
)]
#[serde(rename_all = "lowercase")]
pub enum DateTimePrecision {
/// Second precision.
#[default]
Seconds,
/// Millisecond precision.
Milliseconds,
/// Microsecond precision.
Microseconds,
/// Nanosecond precision.
Nanoseconds,
}
#[deprecated(since = "0.20.0", note = "Use `DateTimePrecision` instead")]
pub type DatePrecision = DateTimePrecision;
/// A date/time value with nanoseconds precision.
///
/// This timestamp does not carry any explicit time zone information.
/// Users are responsible for applying the provided conversion
/// functions consistently. Internally the time zone is assumed
/// to be UTC, which is also used implicitly for JSON serialization.
///
/// All constructors and conversions are provided as explicit
/// functions and not by implementing any `From`/`Into` traits
/// to prevent unintended usage.
#[derive(Clone, Default, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct DateTime {
// Timestamp in nanoseconds.
pub(crate) timestamp_nanos: i64,
}
impl DateTime {
/// Minimum possible `DateTime` value.
pub const MIN: DateTime = DateTime {
timestamp_nanos: i64::MIN,
};
/// Maximum possible `DateTime` value.
pub const MAX: DateTime = DateTime {
timestamp_nanos: i64::MAX,
};
/// Create new from UNIX timestamp in seconds
pub const fn from_timestamp_secs(seconds: i64) -> Self {
Self {
timestamp_nanos: seconds * 1_000_000_000,
}
}
/// Create new from UNIX timestamp in milliseconds
pub const fn from_timestamp_millis(milliseconds: i64) -> Self {
Self {
timestamp_nanos: milliseconds * 1_000_000,
}
}
/// Create new from UNIX timestamp in microseconds.
pub const fn from_timestamp_micros(microseconds: i64) -> Self {
Self {
timestamp_nanos: microseconds * 1_000,
}
}
/// Create new from UNIX timestamp in nanoseconds.
pub const fn from_timestamp_nanos(nanoseconds: i64) -> Self {
Self {
timestamp_nanos: nanoseconds,
}
}
/// Create new from `OffsetDateTime`
///
/// The given date/time is converted to UTC and the actual
/// time zone is discarded.
pub fn from_utc(dt: OffsetDateTime) -> Self {
let timestamp_nanos = dt.unix_timestamp_nanos() as i64;
Self { timestamp_nanos }
}
/// Create new from `PrimitiveDateTime`
///
/// Implicitly assumes that the given date/time is in UTC!
/// Otherwise the original value must only be reobtained with
/// [`Self::into_primitive()`].
pub fn from_primitive(dt: PrimitiveDateTime) -> Self {
Self::from_utc(dt.assume_utc())
}
/// Convert to UNIX timestamp in seconds.
pub const fn into_timestamp_secs(self) -> i64 {
self.timestamp_nanos / 1_000_000_000
}
/// Convert to UNIX timestamp in milliseconds.
pub const fn into_timestamp_millis(self) -> i64 {
self.timestamp_nanos / 1_000_000
}
/// Convert to UNIX timestamp in microseconds.
pub const fn into_timestamp_micros(self) -> i64 {
self.timestamp_nanos / 1_000
}
/// Convert to UNIX timestamp in nanoseconds.
pub const fn into_timestamp_nanos(self) -> i64 {
self.timestamp_nanos
}
/// Convert to UTC `OffsetDateTime`
pub fn into_utc(self) -> OffsetDateTime {
let utc_datetime = OffsetDateTime::from_unix_timestamp_nanos(self.timestamp_nanos as i128)
.expect("valid UNIX timestamp");
debug_assert_eq!(UtcOffset::UTC, utc_datetime.offset());
utc_datetime
}
/// Convert to `OffsetDateTime` with the given time zone
pub fn into_offset(self, offset: UtcOffset) -> OffsetDateTime {
self.into_utc().to_offset(offset)
}
/// Convert to `PrimitiveDateTime` without any time zone
///
/// The value should have been constructed with [`Self::from_primitive()`].
/// Otherwise the time zone is implicitly assumed to be UTC.
pub fn into_primitive(self) -> PrimitiveDateTime {
let utc_datetime = self.into_utc();
// Discard the UTC time zone offset
debug_assert_eq!(UtcOffset::UTC, utc_datetime.offset());
PrimitiveDateTime::new(utc_datetime.date(), utc_datetime.time())
}
/// Truncates the microseconds value to the corresponding precision.
pub fn truncate(self, precision: DateTimePrecision) -> Self {
let truncated_timestamp_micros = match precision {
DateTimePrecision::Seconds => (self.timestamp_nanos / 1_000_000_000) * 1_000_000_000,
DateTimePrecision::Milliseconds => (self.timestamp_nanos / 1_000_000) * 1_000_000,
DateTimePrecision::Microseconds => (self.timestamp_nanos / 1_000) * 1_000,
DateTimePrecision::Nanoseconds => self.timestamp_nanos,
};
Self {
timestamp_nanos: truncated_timestamp_micros,
}
}
}
impl fmt::Debug for DateTime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let utc_rfc3339 = self.into_utc().format(&Rfc3339).map_err(|_| fmt::Error)?;
f.write_str(&utc_rfc3339)
}
}

View File

@@ -1,166 +0,0 @@
use std::cell::RefCell;
use std::iter::Peekable;
use std::rc::Rc;
pub trait GroupByIteratorExtended: Iterator {
/// Return an `Iterator` that groups iterator elements. Consecutive elements that map to the
/// same key are assigned to the same group.
///
/// The returned Iterator item is `(K, impl Iterator)`, where Iterator are the items of the
/// group.
///
/// ```
/// use tantivy_common::GroupByIteratorExtended;
///
/// // group data into blocks of larger than zero or not.
/// let data: Vec<i32> = vec![1, 3, -2, -2, 1, 0, 1, 2];
/// // groups: |---->|------>|--------->|
///
/// let mut data_grouped = Vec::new();
/// // Note: group is an iterator
/// for (key, group) in data.into_iter().group_by(|val| *val >= 0) {
/// data_grouped.push((key, group.collect()));
/// }
/// assert_eq!(data_grouped, vec![(true, vec![1, 3]), (false, vec![-2, -2]), (true, vec![1, 0, 1, 2])]);
/// ```
fn group_by<K, F>(self, key: F) -> GroupByIterator<Self, F, K>
where
Self: Sized,
F: FnMut(&Self::Item) -> K,
K: PartialEq + Clone,
Self::Item: Clone,
{
GroupByIterator::new(self, key)
}
}
impl<I: Iterator> GroupByIteratorExtended for I {}
pub struct GroupByIterator<I, F, K: Clone>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
{
// I really would like to avoid the Rc<RefCell>, but the Iterator is shared between
// `GroupByIterator` and `GroupIter`. In practice they are used consecutive and
// `GroupByIter` is finished before calling next on `GroupByIterator`. I'm not sure there
// is a solution with lifetimes for that, because we would need to enforce it in the usage
// somehow.
//
// One potential solution would be to replace the iterator approach with something similar.
inner: Rc<RefCell<GroupByShared<I, F, K>>>,
}
struct GroupByShared<I, F, K: Clone>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
{
iter: Peekable<I>,
group_by_fn: F,
}
impl<I, F, K> GroupByIterator<I, F, K>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
K: Clone,
{
fn new(inner: I, group_by_fn: F) -> Self {
let inner = GroupByShared {
iter: inner.peekable(),
group_by_fn,
};
Self {
inner: Rc::new(RefCell::new(inner)),
}
}
}
impl<I, F, K> Iterator for GroupByIterator<I, F, K>
where
I: Iterator,
I::Item: Clone,
F: FnMut(&I::Item) -> K,
K: Clone,
{
type Item = (K, GroupIterator<I, F, K>);
fn next(&mut self) -> Option<Self::Item> {
let mut inner = self.inner.borrow_mut();
let value = inner.iter.peek()?.clone();
let key = (inner.group_by_fn)(&value);
let inner = self.inner.clone();
let group_iter = GroupIterator {
inner,
group_key: key.clone(),
};
Some((key, group_iter))
}
}
pub struct GroupIterator<I, F, K: Clone>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
{
inner: Rc<RefCell<GroupByShared<I, F, K>>>,
group_key: K,
}
impl<I, F, K: PartialEq + Clone> Iterator for GroupIterator<I, F, K>
where
I: Iterator,
I::Item: Clone,
F: FnMut(&I::Item) -> K,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
let mut inner = self.inner.borrow_mut();
// peek if next value is in group
let peek_val = inner.iter.peek()?.clone();
if (inner.group_by_fn)(&peek_val) == self.group_key {
inner.iter.next()
} else {
None
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn group_by_collect<I: Iterator<Item = u32>>(iter: I) -> Vec<(I::Item, Vec<I::Item>)> {
iter.group_by(|val| val / 10)
.map(|(el, iter)| (el, iter.collect::<Vec<_>>()))
.collect::<Vec<_>>()
}
#[test]
fn group_by_two_groups() {
let vals = vec![1u32, 4, 15];
let grouped_vals = group_by_collect(vals.into_iter());
assert_eq!(grouped_vals, vec![(0, vec![1, 4]), (1, vec![15])]);
}
#[test]
fn group_by_test_empty() {
let vals = vec![];
let grouped_vals = group_by_collect(vals.into_iter());
assert_eq!(grouped_vals, vec![]);
}
#[test]
fn group_by_three_groups() {
let vals = vec![1u32, 4, 15, 1];
let grouped_vals = group_by_collect(vals.into_iter());
assert_eq!(
grouped_vals,
vec![(0, vec![1, 4]), (1, vec![15]), (0, vec![1])]
);
}
}

View File

@@ -5,23 +5,15 @@ use std::ops::Deref;
pub use byteorder::LittleEndian as Endianness;
mod bitset;
mod byte_count;
mod datetime;
pub mod file_slice;
mod group_by;
mod serialize;
mod vint;
mod writer;
pub use bitset::*;
pub use byte_count::ByteCount;
#[allow(deprecated)]
pub use datetime::DatePrecision;
pub use datetime::{DateTime, DateTimePrecision};
pub use group_by::GroupByIteratorExtended;
pub use ownedbytes::{OwnedBytes, StableDeref};
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
pub use vint::{
read_u32_vint, read_u32_vint_no_advance, serialize_vint_u32, write_u32_vint, VInt, VIntU128,
deserialize_vint_u128, read_u32_vint, read_u32_vint_no_advance, serialize_vint_u128,
serialize_vint_u32, write_u32_vint, VInt, VIntU128,
};
pub use writer::{AntiCallToken, CountingWriter, TerminatingWrite};
@@ -112,21 +104,6 @@ pub fn u64_to_f64(val: u64) -> f64 {
})
}
/// Replaces a given byte in the `bytes` slice of bytes.
///
/// This function assumes that the needle is rarely contained in the bytes string
/// and offers a fast path if the needle is not present.
pub fn replace_in_place(needle: u8, replacement: u8, bytes: &mut [u8]) {
if !bytes.contains(&needle) {
return;
}
for b in bytes {
if *b == needle {
*b = replacement;
}
}
}
#[cfg(test)]
pub mod test {
@@ -191,20 +168,4 @@ pub mod test {
assert!(f64_to_u64(-2.0) < f64_to_u64(1.0));
assert!(f64_to_u64(-2.0) < f64_to_u64(-1.5));
}
#[test]
fn test_replace_in_place() {
let test_aux = |before_replacement: &[u8], expected: &[u8]| {
let mut bytes: Vec<u8> = before_replacement.to_vec();
super::replace_in_place(b'b', b'c', &mut bytes);
assert_eq!(&bytes[..], expected);
};
test_aux(b"", b"");
test_aux(b"b", b"c");
test_aux(b"baaa", b"caaa");
test_aux(b"aaab", b"aaac");
test_aux(b"aaabaa", b"aaacaa");
test_aux(b"aaaaaa", b"aaaaaa");
test_aux(b"bbbb", b"cccc");
}
}

View File

@@ -5,37 +5,12 @@ use byteorder::{ReadBytesExt, WriteBytesExt};
use crate::{Endianness, VInt};
#[derive(Default)]
struct Counter(u64);
impl io::Write for Counter {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.0 += buf.len() as u64;
Ok(buf.len())
}
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.0 += buf.len() as u64;
Ok(())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
/// Trait for a simple binary serialization.
pub trait BinarySerializable: fmt::Debug + Sized {
/// Serialize
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()>;
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()>;
/// Deserialize
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self>;
fn num_bytes(&self) -> u64 {
let mut counter = Counter::default();
self.serialize(&mut counter).unwrap();
counter.0
}
}
pub trait DeserializeFrom<T: BinarySerializable> {
@@ -59,7 +34,7 @@ pub trait FixedSize: BinarySerializable {
}
impl BinarySerializable for () {
fn serialize<W: Write + ?Sized>(&self, _: &mut W) -> io::Result<()> {
fn serialize<W: Write>(&self, _: &mut W) -> io::Result<()> {
Ok(())
}
fn deserialize<R: Read>(_: &mut R) -> io::Result<Self> {
@@ -72,7 +47,7 @@ impl FixedSize for () {
}
impl<T: BinarySerializable> BinarySerializable for Vec<T> {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
VInt(self.len() as u64).serialize(writer)?;
for it in self {
it.serialize(writer)?;
@@ -91,7 +66,7 @@ impl<T: BinarySerializable> BinarySerializable for Vec<T> {
}
impl<Left: BinarySerializable, Right: BinarySerializable> BinarySerializable for (Left, Right) {
fn serialize<W: Write + ?Sized>(&self, write: &mut W) -> io::Result<()> {
fn serialize<W: Write>(&self, write: &mut W) -> io::Result<()> {
self.0.serialize(write)?;
self.1.serialize(write)
}
@@ -106,7 +81,7 @@ impl<Left: BinarySerializable + FixedSize, Right: BinarySerializable + FixedSize
}
impl BinarySerializable for u32 {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u32::<Endianness>(*self)
}
@@ -119,22 +94,8 @@ impl FixedSize for u32 {
const SIZE_IN_BYTES: usize = 4;
}
impl BinarySerializable for u16 {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u16::<Endianness>(*self)
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<u16> {
reader.read_u16::<Endianness>()
}
}
impl FixedSize for u16 {
const SIZE_IN_BYTES: usize = 2;
}
impl BinarySerializable for u64 {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u64::<Endianness>(*self)
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
@@ -146,21 +107,8 @@ impl FixedSize for u64 {
const SIZE_IN_BYTES: usize = 8;
}
impl BinarySerializable for u128 {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u128::<Endianness>(*self)
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
reader.read_u128::<Endianness>()
}
}
impl FixedSize for u128 {
const SIZE_IN_BYTES: usize = 16;
}
impl BinarySerializable for f32 {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_f32::<Endianness>(*self)
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
@@ -173,7 +121,7 @@ impl FixedSize for f32 {
}
impl BinarySerializable for i64 {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_i64::<Endianness>(*self)
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
@@ -186,7 +134,7 @@ impl FixedSize for i64 {
}
impl BinarySerializable for f64 {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_f64::<Endianness>(*self)
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
@@ -199,7 +147,7 @@ impl FixedSize for f64 {
}
impl BinarySerializable for u8 {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u8(*self)
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<u8> {
@@ -212,7 +160,7 @@ impl FixedSize for u8 {
}
impl BinarySerializable for bool {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u8(u8::from(*self))
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<bool> {
@@ -233,7 +181,7 @@ impl FixedSize for bool {
}
impl BinarySerializable for String {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
let data: &[u8] = self.as_bytes();
VInt(data.len() as u64).serialize(writer)?;
writer.write_all(data)

View File

@@ -1,6 +1,8 @@
use std::io;
use std::io::{Read, Write};
use byteorder::{ByteOrder, LittleEndian};
use super::BinarySerializable;
/// Variable int serializes a u128 number
@@ -17,12 +19,32 @@ pub fn serialize_vint_u128(mut val: u128, output: &mut Vec<u8>) {
}
}
/// Deserializes a u128 number
///
/// Returns the number and the slice after the vint
pub fn deserialize_vint_u128(data: &[u8]) -> io::Result<(u128, &[u8])> {
let mut result = 0u128;
let mut shift = 0u64;
for i in 0..19 {
let b = data[i];
result |= u128::from(b % 128u8) << shift;
if b >= STOP_BIT {
return Ok((result, &data[i + 1..]));
}
shift += 7;
}
Err(io::Error::new(
io::ErrorKind::InvalidData,
"Failed to deserialize u128 vint",
))
}
/// Wrapper over a `u128` that serializes as a variable int.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct VIntU128(pub u128);
impl BinarySerializable for VIntU128 {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
let mut buffer = vec![];
serialize_vint_u128(self.0, &mut buffer);
writer.write_all(&buffer)
@@ -58,13 +80,17 @@ pub struct VInt(pub u64);
const STOP_BIT: u8 = 128;
#[inline]
pub fn serialize_vint_u32(val: u32, buf: &mut [u8; 8]) -> &[u8] {
const START_2: u64 = 1 << 7;
const START_3: u64 = 1 << 14;
const START_4: u64 = 1 << 21;
const START_5: u64 = 1 << 28;
const STOP_1: u64 = START_2 - 1;
const STOP_2: u64 = START_3 - 1;
const STOP_3: u64 = START_4 - 1;
const STOP_4: u64 = START_5 - 1;
const MASK_1: u64 = 127;
const MASK_2: u64 = MASK_1 << 7;
const MASK_3: u64 = MASK_2 << 7;
@@ -73,29 +99,25 @@ pub fn serialize_vint_u32(val: u32, buf: &mut [u8; 8]) -> &[u8] {
let val = u64::from(val);
const STOP_BIT: u64 = 128u64;
let (res, num_bytes) = if val < START_2 {
(val | STOP_BIT, 1)
} else if val < START_3 {
(
let (res, num_bytes) = match val {
0..=STOP_1 => (val | STOP_BIT, 1),
START_2..=STOP_2 => (
(val & MASK_1) | ((val & MASK_2) << 1) | (STOP_BIT << (8)),
2,
)
} else if val < START_4 {
(
),
START_3..=STOP_3 => (
(val & MASK_1) | ((val & MASK_2) << 1) | ((val & MASK_3) << 2) | (STOP_BIT << (8 * 2)),
3,
)
} else if val < START_5 {
(
),
START_4..=STOP_4 => (
(val & MASK_1)
| ((val & MASK_2) << 1)
| ((val & MASK_3) << 2)
| ((val & MASK_4) << 3)
| (STOP_BIT << (8 * 3)),
4,
)
} else {
(
),
_ => (
(val & MASK_1)
| ((val & MASK_2) << 1)
| ((val & MASK_3) << 2)
@@ -103,9 +125,9 @@ pub fn serialize_vint_u32(val: u32, buf: &mut [u8; 8]) -> &[u8] {
| ((val & MASK_5) << 4)
| (STOP_BIT << (8 * 4)),
5,
)
),
};
*buf = res.to_le_bytes();
LittleEndian::write_u64(&mut buf[..], res);
&buf[0..num_bytes]
}
@@ -135,7 +157,7 @@ fn vint_len(data: &[u8]) -> usize {
/// If the buffer does not start by a valid
/// vint payload
pub fn read_u32_vint(data: &mut &[u8]) -> u32 {
let (result, vlen) = read_u32_vint_no_advance(data);
let (result, vlen) = read_u32_vint_no_advance(*data);
*data = &data[vlen..];
result
}
@@ -189,7 +211,7 @@ impl VInt {
}
impl BinarySerializable for VInt {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
let mut buffer = [0u8; 10];
let num_bytes = self.serialize_into(&mut buffer);
writer.write_all(&buffer[0..num_bytes])
@@ -223,6 +245,7 @@ impl BinarySerializable for VInt {
mod tests {
use super::{serialize_vint_u32, BinarySerializable, VInt};
use crate::vint::{deserialize_vint_u128, serialize_vint_u128, VIntU128};
fn aux_test_vint(val: u64) {
let mut v = [14u8; 10];
@@ -261,7 +284,27 @@ mod tests {
let mut buffer2 = [0u8; 8];
let len_vint = VInt(val as u64).serialize_into(&mut buffer);
let res2 = serialize_vint_u32(val, &mut buffer2);
assert_eq!(&buffer[..len_vint], res2, "array wrong for {val}");
assert_eq!(&buffer[..len_vint], res2, "array wrong for {}", val);
}
fn aux_test_vint_u128(val: u128) {
let mut data = vec![];
serialize_vint_u128(val, &mut data);
let (deser_val, _data) = deserialize_vint_u128(&data).unwrap();
assert_eq!(val, deser_val);
let mut out = vec![];
VIntU128(val).serialize(&mut out).unwrap();
let deser_val = VIntU128::deserialize(&mut &out[..]).unwrap();
assert_eq!(val, deser_val.0);
}
#[test]
fn test_vint_u128() {
aux_test_vint_u128(0);
aux_test_vint_u128(1);
aux_test_vint_u128(u128::MAX / 3);
aux_test_vint_u128(u128::MAX);
}
#[test]

View File

@@ -1,266 +1,130 @@
// # Aggregation example
//
// This example shows how you can use built-in aggregations.
// We will use nested aggregations with buckets and metrics:
// - Range buckets and compute the average in each bucket.
// - Term aggregation and compute the min price in each bucket
// ---
// We will use range buckets and compute the average in each bucket.
//
use serde_json::{Deserializer, Value};
use tantivy::aggregation::agg_req::Aggregations;
use serde_json::Value;
use tantivy::aggregation::agg_req::{
Aggregation, Aggregations, BucketAggregation, BucketAggregationType, MetricAggregation,
RangeAggregation,
};
use tantivy::aggregation::agg_result::AggregationResults;
use tantivy::aggregation::metric::AverageAggregation;
use tantivy::aggregation::AggregationCollector;
use tantivy::query::AllQuery;
use tantivy::schema::{self, IndexRecordOption, Schema, TextFieldIndexing, FAST};
use tantivy::Index;
use tantivy::query::TermQuery;
use tantivy::schema::{self, Cardinality, IndexRecordOption, Schema, TextFieldIndexing};
use tantivy::{doc, Index, Term};
fn main() -> tantivy::Result<()> {
// # Create Schema
//
// Lets create a schema for a footwear shop, with 4 fields: name, category, stock and price.
// category, stock and price will be fast fields as that's the requirement
// for aggregation queries.
//
let mut schema_builder = Schema::builder();
// In preparation of the `TermsAggregation`, the category field is configured with:
// - `set_fast`
// - `raw` tokenizer
//
// The tokenizer is set to "raw", because the fast field uses the same dictionary as the
// inverted index. (This behaviour will change in tantivy 0.20, where the fast field will
// always be raw tokenized independent from the regular tokenizing)
//
let text_fieldtype = schema::TextOptions::default()
.set_indexing_options(
TextFieldIndexing::default()
.set_index_option(IndexRecordOption::WithFreqs)
.set_tokenizer("raw"),
TextFieldIndexing::default().set_index_option(IndexRecordOption::WithFreqs),
)
.set_fast(None)
.set_stored();
schema_builder.add_text_field("category", text_fieldtype);
schema_builder.add_f64_field("stock", FAST);
schema_builder.add_f64_field("price", FAST);
let text_field = schema_builder.add_text_field("text", text_fieldtype);
let score_fieldtype =
crate::schema::NumericOptions::default().set_fast(Cardinality::SingleValue);
let highscore_field = schema_builder.add_f64_field("highscore", score_fieldtype.clone());
let price_field = schema_builder.add_f64_field("price", score_fieldtype.clone());
let schema = schema_builder.build();
// # Indexing documents
//
// Lets index a bunch of documents for this example.
let index = Index::create_in_ram(schema.clone());
let data = r#"{
"name": "Almond Toe Court Shoes, Patent Black",
"category": "Womens Footwear",
"price": 99.00,
"stock": 5
}
{
"name": "Suede Shoes, Blue",
"category": "Womens Footwear",
"price": 42.00,
"stock": 4
}
{
"name": "Leather Driver Saddle Loafers, Tan",
"category": "Mens Footwear",
"price": 34.00,
"stock": 12
}
{
"name": "Flip Flops, Red",
"category": "Mens Footwear",
"price": 19.00,
"stock": 6
}
{
"name": "Flip Flops, Blue",
"category": "Mens Footwear",
"price": 19.00,
"stock": 0
}
{
"name": "Gold Button Cardigan, Black",
"category": "Womens Casualwear",
"price": 167.00,
"stock": 6
}
{
"name": "Cotton Shorts, Medium Red",
"category": "Womens Casualwear",
"price": 30.00,
"stock": 5
}
{
"name": "Fine Stripe Short SleeveShirt, Grey",
"category": "Mens Casualwear",
"price": 49.99,
"stock": 9
}
{
"name": "Fine Stripe Short SleeveShirt, Green",
"category": "Mens Casualwear",
"price": 49.99,
"offer": 39.99,
"stock": 9
}
{
"name": "Sharkskin Waistcoat, Charcoal",
"category": "Mens Formalwear",
"price": 75.00,
"stock": 2
}
{
"name": "Lightweight Patch PocketBlazer, Deer",
"category": "Mens Formalwear",
"price": 175.50,
"stock": 1
}
{
"name": "Bird Print Dress, Black",
"category": "Womens Formalwear",
"price": 270.00,
"stock": 10
}
{
"name": "Mid Twist Cut-Out Dress, Pink",
"category": "Womens Formalwear",
"price": 540.00,
"stock": 5
}"#;
let stream = Deserializer::from_str(data).into_iter::<Value>();
let index = Index::create_in_ram(schema);
let mut index_writer = index.writer(50_000_000)?;
let mut num_indexed = 0;
for value in stream {
let doc = schema.parse_document(&serde_json::to_string(&value.unwrap())?)?;
index_writer.add_document(doc)?;
num_indexed += 1;
if num_indexed > 4 {
// Writing the first segment
index_writer.commit()?;
}
}
// writing the segment
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 1f64,
price_field => 0f64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 3f64,
price_field => 1f64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 5f64,
price_field => 1f64,
))?;
index_writer.add_document(doc!(
text_field => "nohit",
highscore_field => 6f64,
price_field => 2f64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 7f64,
price_field => 2f64,
))?;
index_writer.commit()?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 11f64,
price_field => 10f64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 14f64,
price_field => 15f64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 15f64,
price_field => 20f64,
))?;
// Writing the second segment
index_writer.commit()?;
// We have two segments now. The `AggregationCollector` will run the aggregation on each
// segment and then merge the results into an `IntermediateAggregationResult`.
let reader = index.reader()?;
let text_field = reader.searcher().schema().get_field("text").unwrap();
let term_query = TermQuery::new(
Term::from_field_text(text_field, "cool"),
IndexRecordOption::Basic,
);
let sub_agg_req_1: Aggregations = vec![(
"average_price".to_string(),
Aggregation::Metric(MetricAggregation::Average(
AverageAggregation::from_field_name("price".to_string()),
)),
)]
.into_iter()
.collect();
let agg_req_1: Aggregations = vec![(
"score_ranges".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Range(RangeAggregation {
field: "highscore".to_string(),
ranges: vec![
(-1f64..9f64).into(),
(9f64..14f64).into(),
(14f64..20f64).into(),
],
..Default::default()
}),
sub_aggregation: sub_agg_req_1.clone(),
}),
)]
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
// ---
// # Aggregation Query
//
//
// We can construct the query by building the request structure or by deserializing from JSON.
// The JSON API is more stable and therefore recommended.
//
// ## Request 1
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();
let agg_req_str = r#"
{
"group_by_stock": {
"aggs": {
"average_price": { "avg": { "field": "price" } }
},
"range": {
"field": "stock",
"ranges": [
{ "key": "few", "to": 1.0 },
{ "key": "some", "from": 1.0, "to": 10.0 },
{ "key": "many", "from": 10.0 }
]
}
}
} "#;
// In this Aggregation we want to get the average price for different groups, depending on how
// many items are in stock. We define custom ranges `few`, `some`, `many` via the
// range aggregation.
// For every bucket we want the average price, so we create a nested metric aggregation on the
// range bucket aggregation. Only buckets support nested aggregations.
// ### Request JSON API
//
let agg_req: Aggregations = serde_json::from_str(agg_req_str)?;
let collector = AggregationCollector::from_aggs(agg_req, Default::default());
// We use the `AllQuery` which will pass all documents to the AggregationCollector.
let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
let res: Value = serde_json::to_value(agg_res)?;
// ### Aggregation Result
//
// The resulting structure deserializes in the same JSON format as elastic search.
//
let expected_res = r#"
{
"group_by_stock":{
"buckets":[
{"average_price":{"value":19.0},"doc_count":1,"key":"few","to":1.0},
{"average_price":{"value":124.748},"doc_count":10,"from":1.0,"key":"some","to":10.0},
{"average_price":{"value":152.0},"doc_count":2,"from":10.0,"key":"many"}
]
}
}
"#;
let expected_json: Value = serde_json::from_str(expected_res)?;
assert_eq!(expected_json, res);
// ### Request 2
//
// Now we are interested in the minimum price per category, so we create a bucket per
// category via `TermsAggregation`. We are interested in the highest minimum prices, and set the
// order of the buckets `"order": { "min_price": "desc" }` to be sorted by the the metric of
// the sub aggregation. (awesome)
//
let agg_req_str = r#"
{
"min_price_per_category": {
"aggs": {
"min_price": { "min": { "field": "price" } }
},
"terms": {
"field": "category",
"min_doc_count": 1,
"order": { "min_price": "desc" }
}
}
} "#;
let agg_req: Aggregations = serde_json::from_str(agg_req_str)?;
let collector = AggregationCollector::from_aggs(agg_req, Default::default());
let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
let res: Value = serde_json::to_value(agg_res)?;
// Minimum price per category, sorted by minimum price descending
//
// As you can see, the starting prices for `Formalwear` are higher than `Casualwear`.
//
let expected_res = r#"
{
"min_price_per_category": {
"buckets": [
{ "doc_count": 2, "key": "Womens Formalwear", "min_price": { "value": 270.0 } },
{ "doc_count": 2, "key": "Mens Formalwear", "min_price": { "value": 75.0 } },
{ "doc_count": 2, "key": "Mens Casualwear", "min_price": { "value": 49.99 } },
{ "doc_count": 2, "key": "Womens Footwear", "min_price": { "value": 42.0 } },
{ "doc_count": 2, "key": "Womens Casualwear", "min_price": { "value": 30.0 } },
{ "doc_count": 3, "key": "Mens Footwear", "min_price": { "value": 19.0 } }
],
"sum_other_doc_count": 0
}
}
"#;
let expected_json: Value = serde_json::from_str(expected_res)?;
assert_eq!(expected_json, res);
let res: Value = serde_json::to_value(&agg_res)?;
println!("{}", serde_json::to_string_pretty(&res)?);
Ok(())
}

View File

@@ -221,19 +221,5 @@ fn main() -> tantivy::Result<()> {
println!("{}", schema.to_json(&retrieved_doc));
}
// We can also get an explanation to understand
// how a found document got its score.
let query = query_parser.parse_query("title:sea^20 body:whale^70")?;
let (_score, doc_address) = searcher
.search(&query, &TopDocs::with_limit(1))?
.into_iter()
.next()
.unwrap();
let explanation = query.explain(&searcher, doc_address)?;
println!("{}", explanation.to_pretty_json());
Ok(())
}

View File

@@ -7,12 +7,14 @@
// Of course, you can have a look at the tantivy's built-in collectors
// such as the `CountCollector` for more examples.
use columnar::Column;
use std::sync::Arc;
use fastfield_codecs::Column;
// ---
// Importing tantivy...
use tantivy::collector::{Collector, SegmentCollector};
use tantivy::query::QueryParser;
use tantivy::schema::{Schema, FAST, INDEXED, TEXT};
use tantivy::schema::{Field, Schema, FAST, INDEXED, TEXT};
use tantivy::{doc, Index, Score, SegmentReader};
#[derive(Default)]
@@ -50,11 +52,11 @@ impl Stats {
}
struct StatsCollector {
field: String,
field: Field,
}
impl StatsCollector {
fn with_field(field: String) -> StatsCollector {
fn with_field(field: Field) -> StatsCollector {
StatsCollector { field }
}
}
@@ -71,7 +73,7 @@ impl Collector for StatsCollector {
_segment_local_id: u32,
segment_reader: &SegmentReader,
) -> tantivy::Result<StatsSegmentCollector> {
let fast_field_reader = segment_reader.fast_fields().u64(&self.field)?;
let fast_field_reader = segment_reader.fast_fields().u64(self.field)?;
Ok(StatsSegmentCollector {
fast_field_reader,
stats: Stats::default(),
@@ -95,7 +97,7 @@ impl Collector for StatsCollector {
}
struct StatsSegmentCollector {
fast_field_reader: Column,
fast_field_reader: Arc<dyn Column<u64>>,
stats: Stats,
}
@@ -103,14 +105,10 @@ impl SegmentCollector for StatsSegmentCollector {
type Fruit = Option<Stats>;
fn collect(&mut self, doc: u32, _score: Score) {
// Since we know the values are single value, we could call `first_or_default_col` on the
// column and fetch single values.
for value in self.fast_field_reader.values_for_doc(doc) {
let value = value as f64;
self.stats.count += 1;
self.stats.sum += value;
self.stats.squared_sum += value * value;
}
let value = self.fast_field_reader.get_val(doc as u64) as f64;
self.stats.count += 1;
self.stats.sum += value;
self.stats.squared_sum += value * value;
}
fn harvest(self) -> <Self as SegmentCollector>::Fruit {
@@ -171,11 +169,9 @@ fn main() -> tantivy::Result<()> {
let searcher = reader.searcher();
let query_parser = QueryParser::for_index(&index, vec![product_name, product_description]);
// here we want to search for `broom` and use `StatsCollector` on the hits.
// here we want to get a hit on the 'ken' in Frankenstein
let query = query_parser.parse_query("broom")?;
if let Some(stats) =
searcher.search(&query, &StatsCollector::with_field("price".to_string()))?
{
if let Some(stats) = searcher.search(&query, &StatsCollector::with_field(price))? {
println!("count: {}", stats.count());
println!("mean: {}", stats.mean());
println!("standard deviation: {}", stats.standard_deviation());

Some files were not shown because too many files have changed in this diff Show More