mirror of
https://github.com/quickwit-oss/tantivy.git
synced 2025-12-30 05:52:54 +00:00
Compare commits
84 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e0b62e00ac | ||
|
|
ce97beb86f | ||
|
|
c0f21a45ae | ||
|
|
73657dff77 | ||
|
|
e3c9be1f92 | ||
|
|
ba61ed6ef3 | ||
|
|
d0e1600135 | ||
|
|
e9020d17d4 | ||
|
|
5ba0031f7d | ||
|
|
22dde8f9ae | ||
|
|
14cc24614e | ||
|
|
8a1079b2dc | ||
|
|
794ff1ffc9 | ||
|
|
c6912ce89a | ||
|
|
618e3bd11b | ||
|
|
b2f99c6217 | ||
|
|
76de5bab6f | ||
|
|
b7eb31162b | ||
|
|
63c66005db | ||
|
|
7d513a44c5 | ||
|
|
ca87fcd454 | ||
|
|
08a92675dc | ||
|
|
f7f4b354d6 | ||
|
|
25d44fcec8 | ||
|
|
842fe9295f | ||
|
|
f88b7200b2 | ||
|
|
8725594d47 | ||
|
|
43a784671a | ||
|
|
c363bbd23d | ||
|
|
70e591e230 | ||
|
|
5277367cb0 | ||
|
|
8b02bff9b8 | ||
|
|
60225bdd45 | ||
|
|
938bfec8b7 | ||
|
|
dabcaa5809 | ||
|
|
d410a3b0c0 | ||
|
|
fc93391d0e | ||
|
|
f8e79271ab | ||
|
|
33835b6a01 | ||
|
|
270ca5123c | ||
|
|
714366d3b9 | ||
|
|
40659d4d07 | ||
|
|
e1e131a804 | ||
|
|
70da310b2d | ||
|
|
85010b589a | ||
|
|
2340dca628 | ||
|
|
71a26d5b24 | ||
|
|
203751f2fe | ||
|
|
7963b0b4aa | ||
|
|
d5eefca11d | ||
|
|
5d6c8de23e | ||
|
|
a06365f39f | ||
|
|
f4b374110f | ||
|
|
c37af9c1ff | ||
|
|
33794a114c | ||
|
|
8676a1f57b | ||
|
|
021ff2ad63 | ||
|
|
39e027667b | ||
|
|
a1d65c3df3 | ||
|
|
2e4615c2d3 | ||
|
|
610091e2c4 | ||
|
|
c301e7b1c4 | ||
|
|
d9eb093368 | ||
|
|
d4b090124c | ||
|
|
811c68cdb2 | ||
|
|
bc1c789897 | ||
|
|
e7c8c331bd | ||
|
|
2f01152a3c | ||
|
|
4e84c70387 | ||
|
|
f2c77f06c5 | ||
|
|
74334f9c9a | ||
|
|
cc4beb61ba | ||
|
|
6742e5981b | ||
|
|
b128299976 | ||
|
|
945af922d1 | ||
|
|
295d07e55c | ||
|
|
080fa4d1f4 | ||
|
|
988c2b35e7 | ||
|
|
bf3cc12610 | ||
|
|
a2400f4e73 | ||
|
|
436ec6caea | ||
|
|
4a6123d3ff | ||
|
|
5a2fe42c24 | ||
|
|
5379c99ea2 |
4
.github/workflows/coverage.yml
vendored
4
.github/workflows/coverage.yml
vendored
@@ -15,11 +15,11 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Install Rust
|
||||
run: rustup toolchain install nightly-2024-07-01 --profile minimal --component llvm-tools-preview
|
||||
run: rustup toolchain install nightly-2025-12-01 --profile minimal --component llvm-tools-preview
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- uses: taiki-e/install-action@cargo-llvm-cov
|
||||
- name: Generate code coverage
|
||||
run: cargo +nightly-2024-07-01 llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
|
||||
run: cargo +nightly-2025-12-01 llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v3
|
||||
continue-on-error: true
|
||||
|
||||
42
CHANGELOG.md
42
CHANGELOG.md
@@ -1,6 +1,34 @@
|
||||
Tantivy 0.23 - Unreleased
|
||||
Tantivy 0.25
|
||||
================================
|
||||
Tantivy 0.23 will be backwards compatible with indices created with v0.22 and v0.21. The new minimum rust version will be 1.75.
|
||||
|
||||
## Bugfixes
|
||||
- fix union performance regression in tantivy 0.24 [#2663](https://github.com/quickwit-oss/tantivy/pull/2663)(@PSeitz)
|
||||
- make zstd optional in sstable [#2633](https://github.com/quickwit-oss/tantivy/pull/2633)(@Parth)
|
||||
- Fix TopDocs::order_by_string_fast_field for asc order [#2672](https://github.com/quickwit-oss/tantivy/pull/2672)(@stuhood @PSeitz)
|
||||
|
||||
## Features/Improvements
|
||||
- add docs/example and Vec<u32> values to sstable [#2660](https://github.com/quickwit-oss/tantivy/pull/2660)(@PSeitz)
|
||||
- Add string fast field support to `TopDocs`. [#2642](https://github.com/quickwit-oss/tantivy/pull/2642)(@stuhood)
|
||||
- update edition to 2024 [#2620](https://github.com/quickwit-oss/tantivy/pull/2620)(@PSeitz)
|
||||
- Allow optional spaces between the field name and the value in the query parser [#2678](https://github.com/quickwit-oss/tantivy/pull/2678)(@Darkheir)
|
||||
- Support mixed field types in query parser [#2676](https://github.com/quickwit-oss/tantivy/pull/2676)(@trinity-1686a)
|
||||
- Add per-field size details [#2679](https://github.com/quickwit-oss/tantivy/pull/2679)(@fulmicoton)
|
||||
|
||||
Tantivy 0.24.2
|
||||
================================
|
||||
- Fix TopNComputer for reverse order. [#2672](https://github.com/quickwit-oss/tantivy/pull/2672)(@stuhood @PSeitz)
|
||||
|
||||
Affected queries are [order_by_fast_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_fast_field) and
|
||||
[order_by_u64_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_u64_field)
|
||||
for `Order::Asc`
|
||||
|
||||
Tantivy 0.24.1
|
||||
================================
|
||||
- Fix: bump required rust version to 1.81
|
||||
|
||||
Tantivy 0.24
|
||||
================================
|
||||
Tantivy 0.24 will be backwards compatible with indices created with v0.22 and v0.21. The new minimum rust version will be 1.75. Tantivy 0.23 will be skipped.
|
||||
|
||||
#### Bugfixes
|
||||
- fix potential endless loop in merge [#2457](https://github.com/quickwit-oss/tantivy/pull/2457)(@PSeitz)
|
||||
@@ -50,7 +78,7 @@ This will slightly increase space and access time. [#2439](https://github.com/qu
|
||||
|
||||
- **Store DateTime as nanoseconds in doc store** DateTime in the doc store was truncated to microseconds previously. This removes this truncation, while still keeping backwards compatibility. [#2486](https://github.com/quickwit-oss/tantivy/pull/2486)(@PSeitz)
|
||||
|
||||
- **Performace/Memory**
|
||||
- **Performance/Memory**
|
||||
- lift clauses in LogicalAst for optimized ast during execution [#2449](https://github.com/quickwit-oss/tantivy/pull/2449)(@PSeitz)
|
||||
- Use Vec instead of BTreeMap to back OwnedValue object [#2364](https://github.com/quickwit-oss/tantivy/pull/2364)(@fulmicoton)
|
||||
- Replace TantivyDocument with CompactDoc. CompactDoc is much smaller and provides similar performance. [#2402](https://github.com/quickwit-oss/tantivy/pull/2402)(@PSeitz)
|
||||
@@ -80,6 +108,14 @@ This will slightly increase space and access time. [#2439](https://github.com/qu
|
||||
- Fix trait bound of StoreReader::iter [#2360](https://github.com/quickwit-oss/tantivy/pull/2360)(@adamreichold)
|
||||
- remove read_postings_no_deletes [#2526](https://github.com/quickwit-oss/tantivy/pull/2526)(@PSeitz)
|
||||
|
||||
Tantivy 0.22.1
|
||||
================================
|
||||
- Fix TopNComputer for reverse order. [#2672](https://github.com/quickwit-oss/tantivy/pull/2672)(@stuhood @PSeitz)
|
||||
|
||||
Affected queries are [order_by_fast_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_fast_field) and
|
||||
[order_by_u64_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_u64_field)
|
||||
for `Order::Asc`
|
||||
|
||||
Tantivy 0.22
|
||||
================================
|
||||
|
||||
|
||||
40
Cargo.toml
40
Cargo.toml
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy"
|
||||
version = "0.22.0"
|
||||
version = "0.26.0"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = ["database-implementations", "data-structures"]
|
||||
@@ -11,7 +11,7 @@ repository = "https://github.com/quickwit-oss/tantivy"
|
||||
readme = "README.md"
|
||||
keywords = ["search", "information", "retrieval"]
|
||||
edition = "2021"
|
||||
rust-version = "1.75"
|
||||
rust-version = "1.85"
|
||||
exclude = ["benches/*.json", "benches/*.txt"]
|
||||
|
||||
[dependencies]
|
||||
@@ -33,7 +33,7 @@ tempfile = { version = "3.12.0", optional = true }
|
||||
log = "0.4.16"
|
||||
serde = { version = "1.0.219", features = ["derive"] }
|
||||
serde_json = "1.0.140"
|
||||
fs4 = { version = "0.8.0", optional = true }
|
||||
fs4 = { version = "0.13.1", optional = true }
|
||||
levenshtein_automata = "0.2.1"
|
||||
uuid = { version = "1.0.0", features = ["v4", "serde"] }
|
||||
crossbeam-channel = "0.5.4"
|
||||
@@ -57,18 +57,19 @@ measure_time = "0.9.0"
|
||||
arc-swap = "1.5.0"
|
||||
bon = "3.3.1"
|
||||
|
||||
columnar = { version = "0.3", path = "./columnar", package = "tantivy-columnar" }
|
||||
sstable = { version = "0.3", path = "./sstable", package = "tantivy-sstable", optional = true }
|
||||
stacker = { version = "0.3", path = "./stacker", package = "tantivy-stacker" }
|
||||
query-grammar = { version = "0.22.0", path = "./query-grammar", package = "tantivy-query-grammar" }
|
||||
tantivy-bitpacker = { version = "0.6", path = "./bitpacker" }
|
||||
common = { version = "0.7", path = "./common/", package = "tantivy-common" }
|
||||
tokenizer-api = { version = "0.3", path = "./tokenizer-api", package = "tantivy-tokenizer-api" }
|
||||
columnar = { version = "0.6", path = "./columnar", package = "tantivy-columnar" }
|
||||
sstable = { version = "0.6", path = "./sstable", package = "tantivy-sstable", optional = true }
|
||||
stacker = { version = "0.6", path = "./stacker", package = "tantivy-stacker" }
|
||||
query-grammar = { version = "0.25.0", path = "./query-grammar", package = "tantivy-query-grammar" }
|
||||
tantivy-bitpacker = { version = "0.9", path = "./bitpacker" }
|
||||
common = { version = "0.10", path = "./common/", package = "tantivy-common" }
|
||||
tokenizer-api = { version = "0.6", path = "./tokenizer-api", package = "tantivy-tokenizer-api" }
|
||||
sketches-ddsketch = { version = "0.3.0", features = ["use_serde"] }
|
||||
hyperloglogplus = { version = "0.4.1", features = ["const-loop"] }
|
||||
futures-util = { version = "0.3.28", optional = true }
|
||||
futures-channel = { version = "0.3.28", optional = true }
|
||||
fnv = "1.0.7"
|
||||
typetag = "0.2.21"
|
||||
|
||||
[target.'cfg(windows)'.dependencies]
|
||||
winapi = "0.3.9"
|
||||
@@ -87,7 +88,7 @@ more-asserts = "0.3.1"
|
||||
rand_distr = "0.4.3"
|
||||
time = { version = "0.3.10", features = ["serde-well-known", "macros"] }
|
||||
postcard = { version = "1.0.4", features = [
|
||||
"use-std",
|
||||
"use-std",
|
||||
], default-features = false }
|
||||
|
||||
[target.'cfg(not(windows))'.dev-dependencies]
|
||||
@@ -112,13 +113,16 @@ debug-assertions = true
|
||||
overflow-checks = true
|
||||
|
||||
[features]
|
||||
default = ["mmap", "stopwords", "lz4-compression"]
|
||||
default = ["mmap", "stopwords", "lz4-compression", "columnar-zstd-compression"]
|
||||
mmap = ["fs4", "tempfile", "memmap2"]
|
||||
stopwords = []
|
||||
|
||||
lz4-compression = ["lz4_flex"]
|
||||
zstd-compression = ["zstd"]
|
||||
|
||||
# enable zstd-compression in columnar (and sstable)
|
||||
columnar-zstd-compression = ["columnar/zstd-compression"]
|
||||
|
||||
failpoints = ["fail", "fail/failpoints"]
|
||||
unstable = [] # useful for benches.
|
||||
|
||||
@@ -164,3 +168,15 @@ harness = false
|
||||
[[bench]]
|
||||
name = "agg_bench"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "exists_json"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "and_or_queries"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "range_queries"
|
||||
harness = false
|
||||
|
||||
@@ -23,8 +23,6 @@ performance for different types of queries/collections.
|
||||
|
||||
Your mileage WILL vary depending on the nature of queries and their load.
|
||||
|
||||
<img src="doc/assets/images/searchbenchmark.png">
|
||||
|
||||
Details about the benchmark can be found at this [repository](https://github.com/quickwit-oss/search-benchmark-game).
|
||||
|
||||
## Features
|
||||
@@ -125,6 +123,7 @@ You can also find other bindings on [GitHub](https://github.com/search?q=tantivy
|
||||
- [seshat](https://github.com/matrix-org/seshat/): A matrix message database/indexer
|
||||
- [tantiny](https://github.com/baygeldin/tantiny): Tiny full-text search for Ruby
|
||||
- [lnx](https://github.com/lnx-search/lnx): adaptable, typo tolerant search engine with a REST API
|
||||
- [Bichon](https://github.com/rustmailer/bichon): A lightweight, high-performance Rust email archiver with WebUI
|
||||
- and [more](https://github.com/search?q=tantivy)!
|
||||
|
||||
### On average, how much faster is Tantivy compared to Lucene?
|
||||
|
||||
27
RELEASE.md
27
RELEASE.md
@@ -1,4 +1,4 @@
|
||||
# Release a new Tantivy Version
|
||||
# Releasing a new Tantivy Version
|
||||
|
||||
## Steps
|
||||
|
||||
@@ -10,12 +10,29 @@
|
||||
6. Set git tag with new version
|
||||
|
||||
|
||||
In conjucation with `cargo-release` Steps 1-4 (I'm not sure if the change detection works):
|
||||
Set new packages to version 0.0.0
|
||||
[`cargo-release`](https://github.com/crate-ci/cargo-release) will help us with steps 1-5:
|
||||
|
||||
Replace prev-tag-name
|
||||
```bash
|
||||
cargo release --workspace --no-publish -v --prev-tag-name 0.19 --push-remote origin minor --no-tag --execute
|
||||
cargo release --workspace --no-publish -v --prev-tag-name 0.24 --push-remote origin minor --no-tag
|
||||
```
|
||||
|
||||
no-tag or it will create tags for all the subpackages
|
||||
`no-tag` or it will create tags for all the subpackages
|
||||
|
||||
cargo release will _not_ ignore unchanged packages, but it will print warnings for them.
|
||||
e.g. "warning: updating ownedbytes to 0.10.0 despite no changes made since tag 0.24"
|
||||
|
||||
We need to manually ignore these unchanged packages
|
||||
```bash
|
||||
cargo release --workspace --no-publish -v --prev-tag-name 0.24 --push-remote origin minor --no-tag --exclude tokenizer-api
|
||||
```
|
||||
|
||||
Add `--execute` to actually publish the packages, otherwise it will only print the commands that would be run.
|
||||
|
||||
### Tag Version
|
||||
```bash
|
||||
git tag 0.25.0
|
||||
git push upstream tag 0.25.0
|
||||
```
|
||||
|
||||
|
||||
|
||||
2
TODO.txt
2
TODO.txt
@@ -10,7 +10,7 @@ rename FastFieldReaders::open to load
|
||||
remove fast field reader
|
||||
|
||||
find a way to unify the two DateTime.
|
||||
readd type check in the filter wrapper
|
||||
re-add type check in the filter wrapper
|
||||
|
||||
add unit test on columnar list columns.
|
||||
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
use binggan::plugins::PeakMemAllocPlugin;
|
||||
use binggan::{black_box, InputGroup, PeakMemAlloc, INSTRUMENTED_SYSTEM};
|
||||
use rand::distributions::WeightedIndex;
|
||||
use rand::prelude::SliceRandom;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
@@ -54,11 +55,19 @@ fn bench_agg(mut group: InputGroup<Index>) {
|
||||
register!(group, extendedstats_f64);
|
||||
register!(group, percentiles_f64);
|
||||
register!(group, terms_few);
|
||||
register!(group, terms_all_unique);
|
||||
register!(group, terms_many);
|
||||
register!(group, terms_many_top_1000);
|
||||
register!(group, terms_many_order_by_term);
|
||||
register!(group, terms_many_with_top_hits);
|
||||
register!(group, terms_all_unique_with_avg_sub_agg);
|
||||
register!(group, terms_many_with_avg_sub_agg);
|
||||
register!(group, terms_few_with_avg_sub_agg);
|
||||
register!(group, terms_status_with_avg_sub_agg);
|
||||
register!(group, terms_status);
|
||||
register!(group, terms_few_with_histogram);
|
||||
register!(group, terms_status_with_histogram);
|
||||
|
||||
register!(group, terms_many_json_mixed_type_with_avg_sub_agg);
|
||||
|
||||
register!(group, cardinality_agg);
|
||||
@@ -71,8 +80,15 @@ fn bench_agg(mut group: InputGroup<Index>) {
|
||||
register!(group, histogram);
|
||||
register!(group, histogram_hard_bounds);
|
||||
register!(group, histogram_with_avg_sub_agg);
|
||||
register!(group, histogram_with_term_agg_few);
|
||||
register!(group, avg_and_range_with_avg_sub_agg);
|
||||
|
||||
// Filter aggregation benchmarks
|
||||
register!(group, filter_agg_all_query_count_agg);
|
||||
register!(group, filter_agg_term_query_count_agg);
|
||||
register!(group, filter_agg_all_query_with_sub_aggs);
|
||||
register!(group, filter_agg_term_query_with_sub_aggs);
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
@@ -123,12 +139,12 @@ fn extendedstats_f64(index: &Index) {
|
||||
}
|
||||
fn percentiles_f64(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"mypercentiles": {
|
||||
"percentiles": {
|
||||
"field": "score_f64",
|
||||
"percents": [ 95, 99, 99.9 ]
|
||||
"mypercentiles": {
|
||||
"percentiles": {
|
||||
"field": "score_f64",
|
||||
"percents": [ 95, 99, 99.9 ]
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
@@ -165,6 +181,19 @@ fn terms_few(index: &Index) {
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_status(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": { "terms": { "field": "text_few_terms_status" } },
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_all_unique(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": { "terms": { "field": "text_all_unique_terms" } },
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn terms_many(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": { "terms": { "field": "text_many_terms" } },
|
||||
@@ -213,6 +242,63 @@ fn terms_many_with_avg_sub_agg(index: &Index) {
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_all_unique_with_avg_sub_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_all_unique_terms" },
|
||||
"aggs": {
|
||||
"average_f64": { "avg": { "field": "score_f64" } }
|
||||
}
|
||||
},
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_few_with_histogram(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_few_terms" },
|
||||
"aggs": {
|
||||
"histo": {"histogram": { "field": "score_f64", "interval": 10 }}
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_status_with_histogram(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_few_terms_status" },
|
||||
"aggs": {
|
||||
"histo": {"histogram": { "field": "score_f64", "interval": 10 }}
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn terms_few_with_avg_sub_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_few_terms" },
|
||||
"aggs": {
|
||||
"average_f64": { "avg": { "field": "score_f64" } }
|
||||
}
|
||||
},
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_status_with_avg_sub_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_few_terms_status" },
|
||||
"aggs": {
|
||||
"average_f64": { "avg": { "field": "score_f64" } }
|
||||
}
|
||||
},
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn terms_many_json_mixed_type_with_avg_sub_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
@@ -339,6 +425,17 @@ fn histogram_with_avg_sub_agg(index: &Index) {
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn histogram_with_term_agg_few(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"rangef64": {
|
||||
"histogram": { "field": "score_f64", "interval": 10 },
|
||||
"aggs": {
|
||||
"my_texts": { "terms": { "field": "text_few_terms" } }
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn avg_and_range_with_avg_sub_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"rangef64": {
|
||||
@@ -386,14 +483,21 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
.set_stored();
|
||||
let text_field = schema_builder.add_text_field("text", text_fieldtype);
|
||||
let json_field = schema_builder.add_json_field("json", FAST);
|
||||
let text_field_all_unique_terms =
|
||||
schema_builder.add_text_field("text_all_unique_terms", STRING | FAST);
|
||||
let text_field_many_terms = schema_builder.add_text_field("text_many_terms", STRING | FAST);
|
||||
let text_field_many_terms = schema_builder.add_text_field("text_many_terms", STRING | FAST);
|
||||
let text_field_few_terms = schema_builder.add_text_field("text_few_terms", STRING | FAST);
|
||||
let text_field_few_terms_status =
|
||||
schema_builder.add_text_field("text_few_terms_status", STRING | FAST);
|
||||
let score_fieldtype = tantivy::schema::NumericOptions::default().set_fast();
|
||||
let score_field = schema_builder.add_u64_field("score", score_fieldtype.clone());
|
||||
let score_field_f64 = schema_builder.add_f64_field("score_f64", score_fieldtype.clone());
|
||||
let score_field_i64 = schema_builder.add_i64_field("score_i64", score_fieldtype);
|
||||
let index = Index::create_from_tempdir(schema_builder.build())?;
|
||||
let few_terms_data = ["INFO", "ERROR", "WARN", "DEBUG"];
|
||||
// Approximate production log proportions: INFO dominant, WARN and DEBUG occasional, ERROR rare.
|
||||
let log_level_distribution = WeightedIndex::new([80u32, 3, 12, 5]).unwrap();
|
||||
|
||||
let lg_norm = rand_distr::LogNormal::new(2.996f64, 0.979f64).unwrap();
|
||||
|
||||
@@ -409,15 +513,21 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
index_writer.add_document(doc!())?;
|
||||
}
|
||||
if cardinality == Cardinality::Multivalued {
|
||||
let log_level_sample_a = few_terms_data[log_level_distribution.sample(&mut rng)];
|
||||
let log_level_sample_b = few_terms_data[log_level_distribution.sample(&mut rng)];
|
||||
index_writer.add_document(doc!(
|
||||
json_field => json!({"mixed_type": 10.0}),
|
||||
json_field => json!({"mixed_type": 10.0}),
|
||||
text_field => "cool",
|
||||
text_field => "cool",
|
||||
text_field_all_unique_terms => "cool",
|
||||
text_field_all_unique_terms => "coolo",
|
||||
text_field_many_terms => "cool",
|
||||
text_field_many_terms => "cool",
|
||||
text_field_few_terms => "cool",
|
||||
text_field_few_terms => "cool",
|
||||
text_field_few_terms_status => log_level_sample_a,
|
||||
text_field_few_terms_status => log_level_sample_b,
|
||||
score_field => 1u64,
|
||||
score_field => 1u64,
|
||||
score_field_f64 => lg_norm.sample(&mut rng),
|
||||
@@ -442,8 +552,10 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
json_field => json,
|
||||
text_field_all_unique_terms => format!("unique_term_{}", rng.gen::<u64>()),
|
||||
text_field_many_terms => many_terms_data.choose(&mut rng).unwrap().to_string(),
|
||||
text_field_few_terms => few_terms_data.choose(&mut rng).unwrap().to_string(),
|
||||
text_field_few_terms_status => few_terms_data[log_level_distribution.sample(&mut rng)],
|
||||
score_field => val as u64,
|
||||
score_field_f64 => lg_norm.sample(&mut rng),
|
||||
score_field_i64 => val as i64,
|
||||
@@ -460,3 +572,61 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
|
||||
Ok(index)
|
||||
}
|
||||
|
||||
// Filter aggregation benchmarks
|
||||
|
||||
fn filter_agg_all_query_count_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"filtered": {
|
||||
"filter": "*",
|
||||
"aggs": {
|
||||
"count": { "value_count": { "field": "score" } }
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn filter_agg_term_query_count_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"filtered": {
|
||||
"filter": "text:cool",
|
||||
"aggs": {
|
||||
"count": { "value_count": { "field": "score" } }
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn filter_agg_all_query_with_sub_aggs(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"filtered": {
|
||||
"filter": "*",
|
||||
"aggs": {
|
||||
"avg_score": { "avg": { "field": "score" } },
|
||||
"stats_score": { "stats": { "field": "score_f64" } },
|
||||
"terms_text": {
|
||||
"terms": { "field": "text_few_terms" }
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn filter_agg_term_query_with_sub_aggs(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"filtered": {
|
||||
"filter": "text:cool",
|
||||
"aggs": {
|
||||
"avg_score": { "avg": { "field": "score" } },
|
||||
"stats_score": { "stats": { "field": "score_f64" } },
|
||||
"terms_text": {
|
||||
"terms": { "field": "text_few_terms" }
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
218
benches/and_or_queries.rs
Normal file
218
benches/and_or_queries.rs
Normal file
@@ -0,0 +1,218 @@
|
||||
// Benchmarks boolean conjunction queries using binggan.
|
||||
//
|
||||
// What’s measured:
|
||||
// - Or and And queries with varying selectivity (only `Term` queries for now on leafs)
|
||||
// - Nested AND/OR combinations (on multiple fields)
|
||||
// - No-scoring path using the Count collector (focus on iterator/skip performance)
|
||||
// - Top-K retrieval (k=10) using the TopDocs collector
|
||||
//
|
||||
// Corpus model:
|
||||
// - Synthetic docs; each token a/b/c is independently included per doc
|
||||
// - If none of a/b/c are included, emit a neutral filler token to keep doc length similar
|
||||
//
|
||||
// Notes:
|
||||
// - After optimization, when scoring is disabled Tantivy reads doc-only postings
|
||||
// (IndexRecordOption::Basic), avoiding frequency decoding overhead.
|
||||
// - This bench isolates boolean iteration speed and intersection/union cost.
|
||||
// - Use `cargo bench --bench boolean_conjunction` to run.
|
||||
|
||||
use binggan::{black_box, BenchGroup, BenchRunner};
|
||||
use rand::prelude::*;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::SeedableRng;
|
||||
use tantivy::collector::sort_key::SortByStaticFastValue;
|
||||
use tantivy::collector::{Collector, Count, TopDocs};
|
||||
use tantivy::query::{Query, QueryParser};
|
||||
use tantivy::schema::{Schema, FAST, TEXT};
|
||||
use tantivy::{doc, Index, Order, ReloadPolicy, Searcher};
|
||||
|
||||
#[derive(Clone)]
|
||||
struct BenchIndex {
|
||||
#[allow(dead_code)]
|
||||
index: Index,
|
||||
searcher: Searcher,
|
||||
query_parser: QueryParser,
|
||||
}
|
||||
|
||||
/// Build a single index containing both fields (title, body) and
|
||||
/// return two BenchIndex views:
|
||||
/// - single_field: QueryParser defaults to only "body"
|
||||
/// - multi_field: QueryParser defaults to ["title", "body"]
|
||||
fn build_shared_indices(num_docs: usize, p_a: f32, p_b: f32, p_c: f32) -> (BenchIndex, BenchIndex) {
|
||||
// Unified schema (two text fields)
|
||||
let mut schema_builder = Schema::builder();
|
||||
let f_title = schema_builder.add_text_field("title", TEXT);
|
||||
let f_body = schema_builder.add_text_field("body", TEXT);
|
||||
let f_score = schema_builder.add_u64_field("score", FAST);
|
||||
let f_score2 = schema_builder.add_u64_field("score2", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
// Populate index with stable RNG for reproducibility.
|
||||
let mut rng = StdRng::from_seed([7u8; 32]);
|
||||
|
||||
// Populate: spread each present token 90/10 to body/title
|
||||
{
|
||||
let mut writer = index.writer_with_num_threads(1, 500_000_000).unwrap();
|
||||
for _ in 0..num_docs {
|
||||
let has_a = rng.gen_bool(p_a as f64);
|
||||
let has_b = rng.gen_bool(p_b as f64);
|
||||
let has_c = rng.gen_bool(p_c as f64);
|
||||
let score = rng.gen_range(0u64..100u64);
|
||||
let score2 = rng.gen_range(0u64..100_000u64);
|
||||
let mut title_tokens: Vec<&str> = Vec::new();
|
||||
let mut body_tokens: Vec<&str> = Vec::new();
|
||||
if has_a {
|
||||
if rng.gen_bool(0.1) {
|
||||
title_tokens.push("a");
|
||||
} else {
|
||||
body_tokens.push("a");
|
||||
}
|
||||
}
|
||||
if has_b {
|
||||
if rng.gen_bool(0.1) {
|
||||
title_tokens.push("b");
|
||||
} else {
|
||||
body_tokens.push("b");
|
||||
}
|
||||
}
|
||||
if has_c {
|
||||
if rng.gen_bool(0.1) {
|
||||
title_tokens.push("c");
|
||||
} else {
|
||||
body_tokens.push("c");
|
||||
}
|
||||
}
|
||||
if title_tokens.is_empty() && body_tokens.is_empty() {
|
||||
body_tokens.push("z");
|
||||
}
|
||||
writer
|
||||
.add_document(doc!(
|
||||
f_title=>title_tokens.join(" "),
|
||||
f_body=>body_tokens.join(" "),
|
||||
f_score=>score,
|
||||
f_score2=>score2,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
writer.commit().unwrap();
|
||||
}
|
||||
|
||||
// Prepare reader/searcher once.
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::Manual)
|
||||
.try_into()
|
||||
.unwrap();
|
||||
let searcher = reader.searcher();
|
||||
|
||||
// Build two query parsers with different default fields.
|
||||
let qp_single = QueryParser::for_index(&index, vec![f_body]);
|
||||
let qp_multi = QueryParser::for_index(&index, vec![f_title, f_body]);
|
||||
|
||||
let single_view = BenchIndex {
|
||||
index: index.clone(),
|
||||
searcher: searcher.clone(),
|
||||
query_parser: qp_single,
|
||||
};
|
||||
let multi_view = BenchIndex {
|
||||
index,
|
||||
searcher,
|
||||
query_parser: qp_multi,
|
||||
};
|
||||
(single_view, multi_view)
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// Prepare corpora with varying selectivity. Build one index per corpus
|
||||
// and derive two views (single-field vs multi-field) from it.
|
||||
let scenarios = vec![
|
||||
(
|
||||
"N=1M, p(a)=5%, p(b)=1%, p(c)=15%".to_string(),
|
||||
1_000_000,
|
||||
0.05,
|
||||
0.01,
|
||||
0.15,
|
||||
),
|
||||
(
|
||||
"N=1M, p(a)=1%, p(b)=1%, p(c)=15%".to_string(),
|
||||
1_000_000,
|
||||
0.01,
|
||||
0.01,
|
||||
0.15,
|
||||
),
|
||||
];
|
||||
|
||||
let queries = &["a", "+a +b", "+a +b +c", "a OR b", "a OR b OR c"];
|
||||
|
||||
let mut runner = BenchRunner::new();
|
||||
for (label, n, pa, pb, pc) in scenarios {
|
||||
let (single_view, multi_view) = build_shared_indices(n, pa, pb, pc);
|
||||
|
||||
for (view_name, bench_index) in [("single_field", single_view), ("multi_field", multi_view)]
|
||||
{
|
||||
// Single-field group: default field is body only
|
||||
let mut group = runner.new_group();
|
||||
group.set_name(format!("{} — {}", view_name, label));
|
||||
for query_str in queries {
|
||||
add_bench_task(&mut group, &bench_index, query_str, Count, "count");
|
||||
add_bench_task(
|
||||
&mut group,
|
||||
&bench_index,
|
||||
query_str,
|
||||
TopDocs::with_limit(10).order_by_score(),
|
||||
"top10",
|
||||
);
|
||||
add_bench_task(
|
||||
&mut group,
|
||||
&bench_index,
|
||||
query_str,
|
||||
TopDocs::with_limit(10).order_by_fast_field::<u64>("score", Order::Asc),
|
||||
"top10_by_ff",
|
||||
);
|
||||
add_bench_task(
|
||||
&mut group,
|
||||
&bench_index,
|
||||
query_str,
|
||||
TopDocs::with_limit(10).order_by((
|
||||
SortByStaticFastValue::<u64>::for_field("score"),
|
||||
SortByStaticFastValue::<u64>::for_field("score2"),
|
||||
)),
|
||||
"top10_by_2ff",
|
||||
);
|
||||
}
|
||||
group.run();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn add_bench_task<C: Collector + 'static>(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query_str: &str,
|
||||
collector: C,
|
||||
collector_name: &str,
|
||||
) {
|
||||
let task_name = format!("{}_{}", query_str.replace(" ", "_"), collector_name);
|
||||
let query = bench_index.query_parser.parse_query(query_str).unwrap();
|
||||
let search_task = SearchTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
collector,
|
||||
query,
|
||||
};
|
||||
bench_group.register(task_name, move |_| black_box(search_task.run()));
|
||||
}
|
||||
|
||||
struct SearchTask<C: Collector> {
|
||||
searcher: Searcher,
|
||||
collector: C,
|
||||
query: Box<dyn Query>,
|
||||
}
|
||||
|
||||
impl<C: Collector> SearchTask<C> {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> usize {
|
||||
self.searcher.search(&self.query, &self.collector).unwrap();
|
||||
1
|
||||
}
|
||||
}
|
||||
69
benches/exists_json.rs
Normal file
69
benches/exists_json.rs
Normal file
@@ -0,0 +1,69 @@
|
||||
use binggan::plugins::PeakMemAllocPlugin;
|
||||
use binggan::{black_box, InputGroup, PeakMemAlloc, INSTRUMENTED_SYSTEM};
|
||||
use serde_json::json;
|
||||
use tantivy::collector::Count;
|
||||
use tantivy::query::ExistsQuery;
|
||||
use tantivy::schema::{Schema, FAST, TEXT};
|
||||
use tantivy::{doc, Index};
|
||||
|
||||
#[global_allocator]
|
||||
pub static GLOBAL: &PeakMemAlloc<std::alloc::System> = &INSTRUMENTED_SYSTEM;
|
||||
|
||||
fn main() {
|
||||
let doc_count: usize = 500_000;
|
||||
let subfield_counts: &[usize] = &[1, 2, 3, 4, 5, 6, 7, 8, 16, 256, 4096, 65536, 262144];
|
||||
|
||||
let indices: Vec<(String, Index)> = subfield_counts
|
||||
.iter()
|
||||
.map(|&sub_fields| {
|
||||
(
|
||||
format!("subfields={sub_fields}"),
|
||||
build_index_with_json_subfields(doc_count, sub_fields),
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
|
||||
let mut group = InputGroup::new_with_inputs(indices);
|
||||
group.add_plugin(PeakMemAllocPlugin::new(GLOBAL));
|
||||
|
||||
group.config().num_iter_group = Some(1);
|
||||
group.config().num_iter_bench = Some(1);
|
||||
group.register("exists_json", exists_json_union);
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
fn exists_json_union(index: &Index) {
|
||||
let reader = index.reader().expect("reader");
|
||||
let searcher = reader.searcher();
|
||||
let query = ExistsQuery::new("json".to_string(), true);
|
||||
let count = searcher.search(&query, &Count).expect("exists search");
|
||||
// Prevents optimizer from eliding the search
|
||||
black_box(count);
|
||||
}
|
||||
|
||||
fn build_index_with_json_subfields(num_docs: usize, num_subfields: usize) -> Index {
|
||||
// Schema: single JSON field stored as FAST to support ExistsQuery.
|
||||
let mut schema_builder = Schema::builder();
|
||||
let json_field = schema_builder.add_json_field("json", TEXT | FAST);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
let index = Index::create_from_tempdir(schema).expect("create index");
|
||||
{
|
||||
let mut index_writer = index
|
||||
.writer_with_num_threads(1, 200_000_000)
|
||||
.expect("writer");
|
||||
for i in 0..num_docs {
|
||||
let sub = i % num_subfields;
|
||||
// Only one subpath set per document; rotate subpaths so that
|
||||
// no single subpath is full, but the union covers all docs.
|
||||
let v = json!({ format!("field_{sub}"): i as u64 });
|
||||
index_writer
|
||||
.add_document(doc!(json_field => v))
|
||||
.expect("add_document");
|
||||
}
|
||||
index_writer.commit().expect("commit");
|
||||
}
|
||||
|
||||
index
|
||||
}
|
||||
365
benches/range_queries.rs
Normal file
365
benches/range_queries.rs
Normal file
@@ -0,0 +1,365 @@
|
||||
use std::ops::Bound;
|
||||
|
||||
use binggan::{black_box, BenchGroup, BenchRunner};
|
||||
use rand::prelude::*;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::SeedableRng;
|
||||
use tantivy::collector::{Count, DocSetCollector, TopDocs};
|
||||
use tantivy::query::RangeQuery;
|
||||
use tantivy::schema::{Schema, FAST, INDEXED};
|
||||
use tantivy::{doc, Index, Order, ReloadPolicy, Searcher, Term};
|
||||
|
||||
#[derive(Clone)]
|
||||
struct BenchIndex {
|
||||
#[allow(dead_code)]
|
||||
index: Index,
|
||||
searcher: Searcher,
|
||||
}
|
||||
|
||||
fn build_shared_indices(num_docs: usize, distribution: &str) -> BenchIndex {
|
||||
// Schema with fast fields only
|
||||
let mut schema_builder = Schema::builder();
|
||||
let f_num_rand_fast = schema_builder.add_u64_field("num_rand_fast", INDEXED | FAST);
|
||||
let f_num_asc_fast = schema_builder.add_u64_field("num_asc_fast", INDEXED | FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
// Populate index with stable RNG for reproducibility.
|
||||
let mut rng = StdRng::from_seed([7u8; 32]);
|
||||
|
||||
{
|
||||
let mut writer = index.writer_with_num_threads(1, 4_000_000_000).unwrap();
|
||||
|
||||
match distribution {
|
||||
"dense" => {
|
||||
for doc_id in 0..num_docs {
|
||||
let num_rand = rng.gen_range(0u64..1000u64);
|
||||
let num_asc = (doc_id / 10000) as u64;
|
||||
|
||||
writer
|
||||
.add_document(doc!(
|
||||
f_num_rand_fast=>num_rand,
|
||||
f_num_asc_fast=>num_asc,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
"sparse" => {
|
||||
for doc_id in 0..num_docs {
|
||||
let num_rand = rng.gen_range(0u64..10000000u64);
|
||||
let num_asc = doc_id as u64;
|
||||
|
||||
writer
|
||||
.add_document(doc!(
|
||||
f_num_rand_fast=>num_rand,
|
||||
f_num_asc_fast=>num_asc,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
panic!("Unsupported distribution type");
|
||||
}
|
||||
}
|
||||
writer.commit().unwrap();
|
||||
}
|
||||
|
||||
// Prepare reader/searcher once.
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::Manual)
|
||||
.try_into()
|
||||
.unwrap();
|
||||
let searcher = reader.searcher();
|
||||
|
||||
BenchIndex { index, searcher }
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// Prepare corpora with varying scenarios
|
||||
let scenarios = vec![
|
||||
// Dense distribution - random values in small range (0-999)
|
||||
(
|
||||
"dense_values_search_low_value_range".to_string(),
|
||||
10_000_000,
|
||||
"dense",
|
||||
0,
|
||||
9,
|
||||
),
|
||||
(
|
||||
"dense_values_search_high_value_range".to_string(),
|
||||
10_000_000,
|
||||
"dense",
|
||||
990,
|
||||
999,
|
||||
),
|
||||
(
|
||||
"dense_values_search_out_of_range".to_string(),
|
||||
10_000_000,
|
||||
"dense",
|
||||
1000,
|
||||
1002,
|
||||
),
|
||||
(
|
||||
"sparse_values_search_low_value_range".to_string(),
|
||||
10_000_000,
|
||||
"sparse",
|
||||
0,
|
||||
9,
|
||||
),
|
||||
(
|
||||
"sparse_values_search_high_value_range".to_string(),
|
||||
10_000_000,
|
||||
"sparse",
|
||||
9_999_990,
|
||||
9_999_999,
|
||||
),
|
||||
(
|
||||
"sparse_values_search_out_of_range".to_string(),
|
||||
10_000_000,
|
||||
"sparse",
|
||||
10_000_000,
|
||||
10_000_002,
|
||||
),
|
||||
];
|
||||
|
||||
let mut runner = BenchRunner::new();
|
||||
for (scenario_id, n, num_rand_distribution, range_low, range_high) in scenarios {
|
||||
// Build index for this scenario
|
||||
let bench_index = build_shared_indices(n, num_rand_distribution);
|
||||
|
||||
// Create benchmark group
|
||||
let mut group = runner.new_group();
|
||||
|
||||
// Now set the name (this moves scenario_id)
|
||||
group.set_name(scenario_id);
|
||||
|
||||
// Define fast field types
|
||||
let field_names = ["num_rand_fast", "num_asc_fast"];
|
||||
|
||||
// Generate range queries for fast fields
|
||||
for &field_name in &field_names {
|
||||
// Create the range query
|
||||
let field = bench_index.searcher.schema().get_field(field_name).unwrap();
|
||||
let lower_term = Term::from_field_u64(field, range_low);
|
||||
let upper_term = Term::from_field_u64(field, range_high);
|
||||
|
||||
let query = RangeQuery::new(Bound::Included(lower_term), Bound::Included(upper_term));
|
||||
|
||||
run_benchmark_tasks(
|
||||
&mut group,
|
||||
&bench_index,
|
||||
query,
|
||||
field_name,
|
||||
range_low,
|
||||
range_high,
|
||||
);
|
||||
}
|
||||
|
||||
group.run();
|
||||
}
|
||||
}
|
||||
|
||||
/// Run all benchmark tasks for a given range query and field name
|
||||
fn run_benchmark_tasks(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query: RangeQuery,
|
||||
field_name: &str,
|
||||
range_low: u64,
|
||||
range_high: u64,
|
||||
) {
|
||||
// Test count
|
||||
add_bench_task_count(
|
||||
bench_group,
|
||||
bench_index,
|
||||
query.clone(),
|
||||
"count",
|
||||
field_name,
|
||||
range_low,
|
||||
range_high,
|
||||
);
|
||||
|
||||
// Test top 100 by the field (ascending order)
|
||||
{
|
||||
let collector_name = format!("top100_by_{}_asc", field_name);
|
||||
let field_name_owned = field_name.to_string();
|
||||
add_bench_task_top100_asc(
|
||||
bench_group,
|
||||
bench_index,
|
||||
query.clone(),
|
||||
&collector_name,
|
||||
field_name,
|
||||
range_low,
|
||||
range_high,
|
||||
field_name_owned,
|
||||
);
|
||||
}
|
||||
|
||||
// Test top 100 by the field (descending order)
|
||||
{
|
||||
let collector_name = format!("top100_by_{}_desc", field_name);
|
||||
let field_name_owned = field_name.to_string();
|
||||
add_bench_task_top100_desc(
|
||||
bench_group,
|
||||
bench_index,
|
||||
query,
|
||||
&collector_name,
|
||||
field_name,
|
||||
range_low,
|
||||
range_high,
|
||||
field_name_owned,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn add_bench_task_count(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query: RangeQuery,
|
||||
collector_name: &str,
|
||||
field_name: &str,
|
||||
range_low: u64,
|
||||
range_high: u64,
|
||||
) {
|
||||
let task_name = format!(
|
||||
"range_{}_[{} TO {}]_{}",
|
||||
field_name, range_low, range_high, collector_name
|
||||
);
|
||||
|
||||
let search_task = CountSearchTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
query,
|
||||
};
|
||||
bench_group.register(task_name, move |_| black_box(search_task.run()));
|
||||
}
|
||||
|
||||
fn add_bench_task_docset(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query: RangeQuery,
|
||||
collector_name: &str,
|
||||
field_name: &str,
|
||||
range_low: u64,
|
||||
range_high: u64,
|
||||
) {
|
||||
let task_name = format!(
|
||||
"range_{}_[{} TO {}]_{}",
|
||||
field_name, range_low, range_high, collector_name
|
||||
);
|
||||
|
||||
let search_task = DocSetSearchTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
query,
|
||||
};
|
||||
bench_group.register(task_name, move |_| black_box(search_task.run()));
|
||||
}
|
||||
|
||||
fn add_bench_task_top100_asc(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query: RangeQuery,
|
||||
collector_name: &str,
|
||||
field_name: &str,
|
||||
range_low: u64,
|
||||
range_high: u64,
|
||||
field_name_owned: String,
|
||||
) {
|
||||
let task_name = format!(
|
||||
"range_{}_[{} TO {}]_{}",
|
||||
field_name, range_low, range_high, collector_name
|
||||
);
|
||||
|
||||
let search_task = Top100AscSearchTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
query,
|
||||
field_name: field_name_owned,
|
||||
};
|
||||
bench_group.register(task_name, move |_| black_box(search_task.run()));
|
||||
}
|
||||
|
||||
fn add_bench_task_top100_desc(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query: RangeQuery,
|
||||
collector_name: &str,
|
||||
field_name: &str,
|
||||
range_low: u64,
|
||||
range_high: u64,
|
||||
field_name_owned: String,
|
||||
) {
|
||||
let task_name = format!(
|
||||
"range_{}_[{} TO {}]_{}",
|
||||
field_name, range_low, range_high, collector_name
|
||||
);
|
||||
|
||||
let search_task = Top100DescSearchTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
query,
|
||||
field_name: field_name_owned,
|
||||
};
|
||||
bench_group.register(task_name, move |_| black_box(search_task.run()));
|
||||
}
|
||||
|
||||
struct CountSearchTask {
|
||||
searcher: Searcher,
|
||||
query: RangeQuery,
|
||||
}
|
||||
|
||||
impl CountSearchTask {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> usize {
|
||||
self.searcher.search(&self.query, &Count).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
struct DocSetSearchTask {
|
||||
searcher: Searcher,
|
||||
query: RangeQuery,
|
||||
}
|
||||
|
||||
impl DocSetSearchTask {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> usize {
|
||||
let result = self.searcher.search(&self.query, &DocSetCollector).unwrap();
|
||||
result.len()
|
||||
}
|
||||
}
|
||||
|
||||
struct Top100AscSearchTask {
|
||||
searcher: Searcher,
|
||||
query: RangeQuery,
|
||||
field_name: String,
|
||||
}
|
||||
|
||||
impl Top100AscSearchTask {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> usize {
|
||||
let collector =
|
||||
TopDocs::with_limit(100).order_by_fast_field::<u64>(&self.field_name, Order::Asc);
|
||||
let result = self.searcher.search(&self.query, &collector).unwrap();
|
||||
for (_score, doc_address) in &result {
|
||||
let _doc: tantivy::TantivyDocument = self.searcher.doc(*doc_address).unwrap();
|
||||
}
|
||||
result.len()
|
||||
}
|
||||
}
|
||||
|
||||
struct Top100DescSearchTask {
|
||||
searcher: Searcher,
|
||||
query: RangeQuery,
|
||||
field_name: String,
|
||||
}
|
||||
|
||||
impl Top100DescSearchTask {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> usize {
|
||||
let collector =
|
||||
TopDocs::with_limit(100).order_by_fast_field::<u64>(&self.field_name, Order::Desc);
|
||||
let result = self.searcher.search(&self.query, &collector).unwrap();
|
||||
for (_score, doc_address) in &result {
|
||||
let _doc: tantivy::TantivyDocument = self.searcher.doc(*doc_address).unwrap();
|
||||
}
|
||||
result.len()
|
||||
}
|
||||
}
|
||||
@@ -1,7 +1,7 @@
|
||||
[package]
|
||||
name = "tantivy-bitpacker"
|
||||
version = "0.6.0"
|
||||
edition = "2021"
|
||||
version = "0.9.0"
|
||||
edition = "2024"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = []
|
||||
|
||||
@@ -48,7 +48,7 @@ impl BitPacker {
|
||||
|
||||
pub fn flush<TWrite: io::Write + ?Sized>(&mut self, output: &mut TWrite) -> io::Result<()> {
|
||||
if self.mini_buffer_written > 0 {
|
||||
let num_bytes = (self.mini_buffer_written + 7) / 8;
|
||||
let num_bytes = self.mini_buffer_written.div_ceil(8);
|
||||
let bytes = self.mini_buffer.to_le_bytes();
|
||||
output.write_all(&bytes[..num_bytes])?;
|
||||
self.mini_buffer_written = 0;
|
||||
@@ -138,7 +138,7 @@ impl BitUnpacker {
|
||||
|
||||
// We use `usize` here to avoid overflow issues.
|
||||
let end_bit_read = (end_idx as usize) * self.num_bits;
|
||||
let end_byte_read = (end_bit_read + 7) / 8;
|
||||
let end_byte_read = end_bit_read.div_ceil(8);
|
||||
assert!(
|
||||
end_byte_read <= data.len(),
|
||||
"Requested index is out of bounds."
|
||||
@@ -258,7 +258,7 @@ mod test {
|
||||
bitpacker.write(val, num_bits, &mut data).unwrap();
|
||||
}
|
||||
bitpacker.close(&mut data).unwrap();
|
||||
assert_eq!(data.len(), ((num_bits as usize) * len + 7) / 8);
|
||||
assert_eq!(data.len(), ((num_bits as usize) * len).div_ceil(8));
|
||||
let bitunpacker = BitUnpacker::new(num_bits);
|
||||
(bitunpacker, vals, data)
|
||||
}
|
||||
@@ -304,7 +304,7 @@ mod test {
|
||||
bitpacker.write(val, num_bits, &mut buffer).unwrap();
|
||||
}
|
||||
bitpacker.flush(&mut buffer).unwrap();
|
||||
assert_eq!(buffer.len(), (vals.len() * num_bits as usize + 7) / 8);
|
||||
assert_eq!(buffer.len(), (vals.len() * num_bits as usize).div_ceil(8));
|
||||
let bitunpacker = BitUnpacker::new(num_bits);
|
||||
let max_val = if num_bits == 64 {
|
||||
u64::MAX
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use super::bitpacker::BitPacker;
|
||||
use super::compute_num_bits;
|
||||
use crate::{minmax, BitUnpacker};
|
||||
use crate::{BitUnpacker, minmax};
|
||||
|
||||
const BLOCK_SIZE: usize = 128;
|
||||
|
||||
@@ -140,10 +140,10 @@ impl BlockedBitpacker {
|
||||
pub fn iter(&self) -> impl Iterator<Item = u64> + '_ {
|
||||
// todo performance: we could decompress a whole block and cache it instead
|
||||
let bitpacked_elems = self.offset_and_bits.len() * BLOCK_SIZE;
|
||||
let iter = (0..bitpacked_elems)
|
||||
|
||||
(0..bitpacked_elems)
|
||||
.map(move |idx| self.get(idx))
|
||||
.chain(self.buffer.iter().cloned());
|
||||
iter
|
||||
.chain(self.buffer.iter().cloned())
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -19,7 +19,7 @@ fn u32_to_i32(val: u32) -> i32 {
|
||||
#[inline]
|
||||
unsafe fn u32_to_i32_avx2(vals_u32x8s: DataType) -> DataType {
|
||||
const HIGHEST_BIT_MASK: DataType = from_u32x8([HIGHEST_BIT; NUM_LANES]);
|
||||
op_xor(vals_u32x8s, HIGHEST_BIT_MASK)
|
||||
unsafe { op_xor(vals_u32x8s, HIGHEST_BIT_MASK) }
|
||||
}
|
||||
|
||||
pub fn filter_vec_in_place(range: RangeInclusive<u32>, offset: u32, output: &mut Vec<u32>) {
|
||||
@@ -66,17 +66,19 @@ unsafe fn filter_vec_avx2_aux(
|
||||
]);
|
||||
const SHIFT: __m256i = from_u32x8([NUM_LANES as u32; NUM_LANES]);
|
||||
for _ in 0..num_words {
|
||||
let word = load_unaligned(input);
|
||||
let word = u32_to_i32_avx2(word);
|
||||
let keeper_bitset = compute_filter_bitset(word, range_simd.clone());
|
||||
let added_len = keeper_bitset.count_ones();
|
||||
let filtered_doc_ids = compact(ids, keeper_bitset);
|
||||
store_unaligned(output_tail as *mut __m256i, filtered_doc_ids);
|
||||
output_tail = output_tail.offset(added_len as isize);
|
||||
ids = op_add(ids, SHIFT);
|
||||
input = input.offset(1);
|
||||
unsafe {
|
||||
let word = load_unaligned(input);
|
||||
let word = u32_to_i32_avx2(word);
|
||||
let keeper_bitset = compute_filter_bitset(word, range_simd.clone());
|
||||
let added_len = keeper_bitset.count_ones();
|
||||
let filtered_doc_ids = compact(ids, keeper_bitset);
|
||||
store_unaligned(output_tail as *mut __m256i, filtered_doc_ids);
|
||||
output_tail = output_tail.offset(added_len as isize);
|
||||
ids = op_add(ids, SHIFT);
|
||||
input = input.offset(1);
|
||||
}
|
||||
}
|
||||
output_tail.offset_from(output) as usize
|
||||
unsafe { output_tail.offset_from(output) as usize }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@@ -92,8 +94,7 @@ unsafe fn compute_filter_bitset(val: __m256i, range: std::ops::RangeInclusive<__
|
||||
let too_low = op_greater(*range.start(), val);
|
||||
let too_high = op_greater(val, *range.end());
|
||||
let inside = op_or(too_low, too_high);
|
||||
255 - std::arch::x86_64::_mm256_movemask_ps(std::mem::transmute::<DataType, __m256>(inside))
|
||||
as u8
|
||||
255 - std::arch::x86_64::_mm256_movemask_ps(_mm256_castsi256_ps(inside)) as u8
|
||||
}
|
||||
|
||||
union U8x32 {
|
||||
|
||||
@@ -33,11 +33,7 @@ pub use crate::blocked_bitpacker::BlockedBitpacker;
|
||||
/// number of bits.
|
||||
pub fn compute_num_bits(n: u64) -> u8 {
|
||||
let amplitude = (64u32 - n.leading_zeros()) as u8;
|
||||
if amplitude <= 64 - 8 {
|
||||
amplitude
|
||||
} else {
|
||||
64
|
||||
}
|
||||
if amplitude <= 64 - 8 { amplitude } else { 64 }
|
||||
}
|
||||
|
||||
/// Computes the (min, max) of an iterator of `PartialOrd` values.
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
[package]
|
||||
name = "tantivy-columnar"
|
||||
version = "0.3.0"
|
||||
edition = "2021"
|
||||
version = "0.6.0"
|
||||
edition = "2024"
|
||||
license = "MIT"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
repository = "https://github.com/quickwit-oss/tantivy"
|
||||
@@ -12,10 +12,10 @@ categories = ["database-implementations", "data-structures", "compression"]
|
||||
itertools = "0.14.0"
|
||||
fastdivide = "0.4.0"
|
||||
|
||||
stacker = { version= "0.3", path = "../stacker", package="tantivy-stacker"}
|
||||
sstable = { version= "0.3", path = "../sstable", package = "tantivy-sstable" }
|
||||
common = { version= "0.7", path = "../common", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.6", path = "../bitpacker/" }
|
||||
stacker = { version= "0.6", path = "../stacker", package="tantivy-stacker"}
|
||||
sstable = { version= "0.6", path = "../sstable", package = "tantivy-sstable" }
|
||||
common = { version= "0.10", path = "../common", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.9", path = "../bitpacker/" }
|
||||
serde = "1.0.152"
|
||||
downcast-rs = "2.0.1"
|
||||
|
||||
@@ -33,6 +33,29 @@ harness = false
|
||||
name = "bench_access"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_first_vals"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_values_u64"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_values_u128"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_create_column_values"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_column_values_get"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_optional_index"
|
||||
harness = false
|
||||
|
||||
[features]
|
||||
unstable = []
|
||||
zstd-compression = ["sstable/zstd-compression"]
|
||||
|
||||
@@ -73,7 +73,7 @@ The crate introduces the following concepts.
|
||||
`Columnar` is an equivalent of a dataframe.
|
||||
It maps `column_key` to `Column`.
|
||||
|
||||
A `Column<T>` asssociates a `RowId` (u32) to any
|
||||
A `Column<T>` associates a `RowId` (u32) to any
|
||||
number of values.
|
||||
|
||||
This is made possible by wrapping a `ColumnIndex` and a `ColumnValue` object.
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
use binggan::{black_box, InputGroup};
|
||||
use binggan::{InputGroup, black_box};
|
||||
use common::*;
|
||||
use tantivy_columnar::Column;
|
||||
|
||||
@@ -19,7 +19,7 @@ fn main() {
|
||||
|
||||
let mut add_card = |card1: Card| {
|
||||
inputs.push((
|
||||
format!("{card1}"),
|
||||
card1.to_string(),
|
||||
generate_columnar_and_open(card1, NUM_DOCS),
|
||||
));
|
||||
};
|
||||
@@ -50,6 +50,7 @@ fn bench_group(mut runner: InputGroup<Column>) {
|
||||
let mut buffer = vec![None; BLOCK_SIZE];
|
||||
for i in (0..NUM_DOCS).step_by(BLOCK_SIZE) {
|
||||
// fill docs
|
||||
#[allow(clippy::needless_range_loop)]
|
||||
for idx in 0..BLOCK_SIZE {
|
||||
docs[idx] = idx as u32 + i;
|
||||
}
|
||||
|
||||
61
columnar/benches/bench_column_values_get.rs
Normal file
61
columnar/benches/bench_column_values_get.rs
Normal file
@@ -0,0 +1,61 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use binggan::{InputGroup, black_box};
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use tantivy_columnar::ColumnValues;
|
||||
use tantivy_columnar::column_values::{CodecType, serialize_and_load_u64_based_column_values};
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55_000_u64)
|
||||
.map(|num| num + rng.r#gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
|
||||
type Col = Arc<dyn ColumnValues<u64>>;
|
||||
|
||||
fn main() {
|
||||
let data = get_data();
|
||||
let inputs: Vec<(String, Col)> = vec![
|
||||
(
|
||||
"bitpacked".to_string(),
|
||||
serialize_and_load_u64_based_column_values(&data.as_slice(), &[CodecType::Bitpacked]),
|
||||
),
|
||||
(
|
||||
"linear".to_string(),
|
||||
serialize_and_load_u64_based_column_values(&data.as_slice(), &[CodecType::Linear]),
|
||||
),
|
||||
(
|
||||
"blockwise_linear".to_string(),
|
||||
serialize_and_load_u64_based_column_values(
|
||||
&data.as_slice(),
|
||||
&[CodecType::BlockwiseLinear],
|
||||
),
|
||||
),
|
||||
];
|
||||
|
||||
let mut group: InputGroup<Col> = InputGroup::new_with_inputs(inputs);
|
||||
|
||||
group.register("fastfield_get", |col: &Col| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
sum = sum.wrapping_add(col.get_val(pos as u32));
|
||||
}
|
||||
black_box(sum);
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
44
columnar/benches/bench_create_column_values.rs
Normal file
44
columnar/benches/bench_create_column_values.rs
Normal file
@@ -0,0 +1,44 @@
|
||||
use binggan::{InputGroup, black_box};
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use tantivy_columnar::column_values::{CodecType, serialize_u64_based_column_values};
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55_000_u64)
|
||||
.map(|num| num + rng.r#gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let data = get_data();
|
||||
let mut group: InputGroup<(CodecType, Vec<u64>)> = InputGroup::new_with_inputs(vec![
|
||||
(
|
||||
"bitpacked codec".to_string(),
|
||||
(CodecType::Bitpacked, data.clone()),
|
||||
),
|
||||
(
|
||||
"linear codec".to_string(),
|
||||
(CodecType::Linear, data.clone()),
|
||||
),
|
||||
(
|
||||
"blockwise linear codec".to_string(),
|
||||
(CodecType::BlockwiseLinear, data.clone()),
|
||||
),
|
||||
]);
|
||||
|
||||
group.register("serialize column_values", |data| {
|
||||
let mut buffer = Vec::new();
|
||||
serialize_u64_based_column_values(&data.1.as_slice(), &[data.0], &mut buffer).unwrap();
|
||||
black_box(buffer.len());
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
@@ -1,12 +1,9 @@
|
||||
#![feature(test)]
|
||||
extern crate test;
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use binggan::{InputGroup, black_box};
|
||||
use rand::prelude::*;
|
||||
use tantivy_columnar::column_values::{serialize_and_load_u64_based_column_values, CodecType};
|
||||
use tantivy_columnar::column_values::{CodecType, serialize_and_load_u64_based_column_values};
|
||||
use tantivy_columnar::*;
|
||||
use test::{black_box, Bencher};
|
||||
|
||||
struct Columns {
|
||||
pub optional: Column,
|
||||
@@ -68,88 +65,38 @@ pub fn serialize_and_load(column: &[u64], codec_type: CodecType) -> Arc<dyn Colu
|
||||
serialize_and_load_u64_based_column_values(&column, &[codec_type])
|
||||
}
|
||||
|
||||
fn run_bench_on_column_full_scan(b: &mut Bencher, column: Column) {
|
||||
let num_iter = black_box(NUM_VALUES);
|
||||
b.iter(|| {
|
||||
fn main() {
|
||||
let Columns {
|
||||
optional,
|
||||
full,
|
||||
multi,
|
||||
} = get_test_columns();
|
||||
|
||||
let inputs = vec![
|
||||
("full".to_string(), full),
|
||||
("optional".to_string(), optional),
|
||||
("multi".to_string(), multi),
|
||||
];
|
||||
|
||||
let mut group = InputGroup::new_with_inputs(inputs);
|
||||
|
||||
group.register("first_full_scan", |column| {
|
||||
let mut sum = 0u64;
|
||||
for i in 0..num_iter as u32 {
|
||||
for i in 0..NUM_VALUES as u32 {
|
||||
let val = column.first(i);
|
||||
sum += val.unwrap_or(0);
|
||||
}
|
||||
sum
|
||||
black_box(sum);
|
||||
});
|
||||
}
|
||||
fn run_bench_on_column_block_fetch(b: &mut Bencher, column: Column) {
|
||||
let mut block: Vec<Option<u64>> = vec![None; 64];
|
||||
let fetch_docids = (0..64).collect::<Vec<_>>();
|
||||
b.iter(move || {
|
||||
column.first_vals(&fetch_docids, &mut block);
|
||||
block[0]
|
||||
});
|
||||
}
|
||||
fn run_bench_on_column_block_single_calls(b: &mut Bencher, column: Column) {
|
||||
let mut block: Vec<Option<u64>> = vec![None; 64];
|
||||
let fetch_docids = (0..64).collect::<Vec<_>>();
|
||||
b.iter(move || {
|
||||
|
||||
group.register("first_block_single_calls", |column| {
|
||||
let mut block: Vec<Option<u64>> = vec![None; 64];
|
||||
let fetch_docids = (0..64).collect::<Vec<_>>();
|
||||
for i in 0..fetch_docids.len() {
|
||||
block[i] = column.first(fetch_docids[i]);
|
||||
}
|
||||
block[0]
|
||||
black_box(block[0]);
|
||||
});
|
||||
}
|
||||
|
||||
/// Column first method
|
||||
#[bench]
|
||||
fn bench_get_first_on_full_column_full_scan(b: &mut Bencher) {
|
||||
let column = get_test_columns().full;
|
||||
run_bench_on_column_full_scan(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_first_on_optional_column_full_scan(b: &mut Bencher) {
|
||||
let column = get_test_columns().optional;
|
||||
run_bench_on_column_full_scan(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_first_on_multi_column_full_scan(b: &mut Bencher) {
|
||||
let column = get_test_columns().multi;
|
||||
run_bench_on_column_full_scan(b, column);
|
||||
}
|
||||
|
||||
/// Block fetch column accessor
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_optional_column(b: &mut Bencher) {
|
||||
let column = get_test_columns().optional;
|
||||
run_bench_on_column_block_fetch(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_multi_column(b: &mut Bencher) {
|
||||
let column = get_test_columns().multi;
|
||||
run_bench_on_column_block_fetch(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_full_column(b: &mut Bencher) {
|
||||
let column = get_test_columns().full;
|
||||
run_bench_on_column_block_fetch(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_optional_column_single_calls(b: &mut Bencher) {
|
||||
let column = get_test_columns().optional;
|
||||
run_bench_on_column_block_single_calls(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_multi_column_single_calls(b: &mut Bencher) {
|
||||
let column = get_test_columns().multi;
|
||||
run_bench_on_column_block_single_calls(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_full_column_single_calls(b: &mut Bencher) {
|
||||
let column = get_test_columns().full;
|
||||
run_bench_on_column_block_single_calls(b, column);
|
||||
group.run();
|
||||
}
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
pub mod common;
|
||||
|
||||
use binggan::BenchRunner;
|
||||
use common::{generate_columnar_with_name, Card};
|
||||
use common::{Card, generate_columnar_with_name};
|
||||
use tantivy_columnar::*;
|
||||
|
||||
const NUM_DOCS: u32 = 100_000;
|
||||
|
||||
106
columnar/benches/bench_optional_index.rs
Normal file
106
columnar/benches/bench_optional_index.rs
Normal file
@@ -0,0 +1,106 @@
|
||||
use binggan::{InputGroup, black_box};
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use tantivy_columnar::column_index::{OptionalIndex, Set};
|
||||
|
||||
const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
|
||||
fn gen_optional_index(fill_ratio: f64) -> OptionalIndex {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let vals: Vec<u32> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _)| pos as u32)
|
||||
.collect();
|
||||
OptionalIndex::for_test(TOTAL_NUM_VALUES, &vals)
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
start: u32,
|
||||
end: u32,
|
||||
avg_step_size: u32,
|
||||
avg_deviation: u32,
|
||||
) -> impl Iterator<Item = u32> {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end { None } else { Some(current) }
|
||||
})
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
}
|
||||
|
||||
fn walk_over_data(codec: &OptionalIndex, avg_step_size: u32) -> Option<u32> {
|
||||
walk_over_data_from_positions(
|
||||
codec,
|
||||
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
|
||||
)
|
||||
}
|
||||
|
||||
fn walk_over_data_from_positions(
|
||||
codec: &OptionalIndex,
|
||||
positions: impl Iterator<Item = u32>,
|
||||
) -> Option<u32> {
|
||||
let mut dense_idx: Option<u32> = None;
|
||||
for idx in positions {
|
||||
dense_idx = dense_idx.or(codec.rank_if_exists(idx));
|
||||
}
|
||||
dense_idx
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// Build separate inputs for each fill ratio.
|
||||
let inputs: Vec<(String, OptionalIndex)> = vec![
|
||||
("fill=1%".to_string(), gen_optional_index(0.01)),
|
||||
("fill=5%".to_string(), gen_optional_index(0.05)),
|
||||
("fill=10%".to_string(), gen_optional_index(0.10)),
|
||||
("fill=50%".to_string(), gen_optional_index(0.50)),
|
||||
("fill=90%".to_string(), gen_optional_index(0.90)),
|
||||
];
|
||||
|
||||
let mut group: InputGroup<OptionalIndex> = InputGroup::new_with_inputs(inputs);
|
||||
|
||||
// Translate orig->codec (rank_if_exists) with sampling
|
||||
group.register("orig_to_codec_10pct_hit", |codec: &OptionalIndex| {
|
||||
black_box(walk_over_data(codec, 100));
|
||||
});
|
||||
group.register("orig_to_codec_1pct_hit", |codec: &OptionalIndex| {
|
||||
black_box(walk_over_data(codec, 1000));
|
||||
});
|
||||
group.register("orig_to_codec_full_scan", |codec: &OptionalIndex| {
|
||||
black_box(walk_over_data_from_positions(codec, 0..TOTAL_NUM_VALUES));
|
||||
});
|
||||
|
||||
// Translate codec->orig (select/select_batch) on sampled ranks
|
||||
fn bench_translate_codec_to_orig_util(codec: &OptionalIndex, percent_hit: f32) {
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
let idxs: Vec<u32> = if percent_hit == 100.0f32 {
|
||||
(0..num_non_nulls).collect()
|
||||
} else {
|
||||
n_percent_step_iterator(percent_hit, num_non_nulls).collect()
|
||||
};
|
||||
let mut output = vec![0u32; idxs.len()];
|
||||
output.copy_from_slice(&idxs[..]);
|
||||
codec.select_batch(&mut output);
|
||||
black_box(output);
|
||||
}
|
||||
|
||||
group.register("codec_to_orig_0.005pct_hit", |codec: &OptionalIndex| {
|
||||
bench_translate_codec_to_orig_util(codec, 0.005);
|
||||
});
|
||||
group.register("codec_to_orig_10pct_hit", |codec: &OptionalIndex| {
|
||||
bench_translate_codec_to_orig_util(codec, 10.0);
|
||||
});
|
||||
group.register("codec_to_orig_full_scan", |codec: &OptionalIndex| {
|
||||
bench_translate_codec_to_orig_util(codec, 100.0);
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
@@ -1,15 +1,12 @@
|
||||
#![feature(test)]
|
||||
|
||||
use std::ops::RangeInclusive;
|
||||
use std::sync::Arc;
|
||||
|
||||
use binggan::{InputGroup, black_box};
|
||||
use common::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::{random, Rng, SeedableRng};
|
||||
use rand::{Rng, SeedableRng, random};
|
||||
use tantivy_columnar::ColumnValues;
|
||||
use test::Bencher;
|
||||
extern crate test;
|
||||
|
||||
// TODO does this make sense for IPv6 ?
|
||||
fn generate_random() -> Vec<u64> {
|
||||
@@ -47,78 +44,77 @@ fn get_data_50percent_item() -> Vec<u128> {
|
||||
}
|
||||
data.push(SINGLE_ITEM);
|
||||
data.shuffle(&mut rng);
|
||||
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
data
|
||||
data.iter().map(|el| *el as u128).collect::<Vec<_>>()
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
|
||||
fn main() {
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
let column_range = get_u128_column_from_data(&data);
|
||||
let column_random = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
struct Inputs {
|
||||
data: Vec<u128>,
|
||||
column_range: Arc<dyn ColumnValues<u128>>,
|
||||
column_random: Arc<dyn ColumnValues<u128>>,
|
||||
}
|
||||
|
||||
let inputs = Inputs {
|
||||
data,
|
||||
column_range,
|
||||
column_random,
|
||||
};
|
||||
let mut group: InputGroup<Inputs> =
|
||||
InputGroup::new_with_inputs(vec![("u128 benches".to_string(), inputs)]);
|
||||
|
||||
group.register(
|
||||
"intfastfield_getrange_u128_50percent_hit",
|
||||
|inp: &Inputs| {
|
||||
let mut positions = Vec::new();
|
||||
inp.column_range.get_row_ids_for_value_range(
|
||||
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
|
||||
0..inp.data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
black_box(positions.len());
|
||||
},
|
||||
);
|
||||
|
||||
group.register("intfastfield_getrange_u128_single_hit", |inp: &Inputs| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(
|
||||
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(
|
||||
inp.column_range.get_row_ids_for_value_range(
|
||||
*SINGLE_ITEM_RANGE.start() as u128..=*SINGLE_ITEM_RANGE.end() as u128,
|
||||
0..data.len() as u32,
|
||||
0..inp.data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
black_box(positions.len());
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
group.register("intfastfield_getrange_u128_hit_all", |inp: &Inputs| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
inp.column_range.get_row_ids_for_value_range(
|
||||
0..=u128::MAX,
|
||||
0..inp.data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
black_box(positions.len());
|
||||
});
|
||||
}
|
||||
// U128 RANGE END
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
group.register("intfastfield_scan_all_fflookup_u128", |inp: &Inputs| {
|
||||
let mut a = 0u128;
|
||||
for i in 0u64..column.num_vals() as u64 {
|
||||
a += column.get_val(i as u32);
|
||||
for i in 0u64..inp.column_random.num_vals() as u64 {
|
||||
a += inp.column_random.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
black_box(a);
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_stride5_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
let n = column.num_vals();
|
||||
group.register("intfastfield_jumpy_stride5_u128", |inp: &Inputs| {
|
||||
let n = inp.column_random.num_vals();
|
||||
let mut a = 0u128;
|
||||
for i in (0..n / 5).map(|val| val * 5) {
|
||||
a += column.get_val(i);
|
||||
a += inp.column_random.get_val(i);
|
||||
}
|
||||
a
|
||||
black_box(a);
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
@@ -1,13 +1,10 @@
|
||||
#![feature(test)]
|
||||
extern crate test;
|
||||
|
||||
use std::ops::RangeInclusive;
|
||||
use std::sync::Arc;
|
||||
|
||||
use binggan::{InputGroup, black_box};
|
||||
use rand::prelude::*;
|
||||
use tantivy_columnar::column_values::{serialize_and_load_u64_based_column_values, CodecType};
|
||||
use tantivy_columnar::column_values::{CodecType, serialize_and_load_u64_based_column_values};
|
||||
use tantivy_columnar::*;
|
||||
use test::Bencher;
|
||||
|
||||
// Warning: this generates the same permutation at each call
|
||||
fn generate_permutation() -> Vec<u64> {
|
||||
@@ -27,37 +24,11 @@ pub fn serialize_and_load(column: &[u64], codec_type: CodecType) -> Arc<dyn Colu
|
||||
serialize_and_load_u64_based_column_values(&column, &[codec_type])
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_veclookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = permutation[a as usize];
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_fflookup_bitpacked(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = column.get_val(a as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
const FIFTY_PERCENT_RANGE: RangeInclusive<u64> = 1..=50;
|
||||
const SINGLE_ITEM: u64 = 90;
|
||||
const SINGLE_ITEM_RANGE: RangeInclusive<u64> = 90..=90;
|
||||
const ONE_PERCENT_ITEM_RANGE: RangeInclusive<u64> = 49..=49;
|
||||
|
||||
fn get_data_50percent_item() -> Vec<u128> {
|
||||
let mut rng = StdRng::from_seed([1u8; 32]);
|
||||
|
||||
@@ -69,135 +40,122 @@ fn get_data_50percent_item() -> Vec<u128> {
|
||||
data.push(SINGLE_ITEM);
|
||||
|
||||
data.shuffle(&mut rng);
|
||||
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
data
|
||||
data.iter().map(|el| *el as u128).collect::<Vec<_>>()
|
||||
}
|
||||
|
||||
// U64 RANGE START
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_50percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(
|
||||
FIFTY_PERCENT_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
type VecCol = (Vec<u64>, Arc<dyn ColumnValues<u64>>);
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_1percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(
|
||||
ONE_PERCENT_ITEM_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_single_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(SINGLE_ITEM_RANGE, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_hit_all(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(0..=u64::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
// U64 RANGE END
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_vec(b: &mut Bencher) {
|
||||
fn bench_access() {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let column_perm: Arc<dyn ColumnValues<u64>> =
|
||||
serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
|
||||
let permutation_gcd = generate_permutation_gcd();
|
||||
let column_perm_gcd: Arc<dyn ColumnValues<u64>> =
|
||||
serialize_and_load(&permutation_gcd, CodecType::Bitpacked);
|
||||
|
||||
let mut group: InputGroup<VecCol> = InputGroup::new_with_inputs(vec![
|
||||
(
|
||||
"access".to_string(),
|
||||
(permutation.clone(), column_perm.clone()),
|
||||
),
|
||||
(
|
||||
"access_gcd".to_string(),
|
||||
(permutation_gcd.clone(), column_perm_gcd.clone()),
|
||||
),
|
||||
]);
|
||||
|
||||
group.register("stride7_vec", |inp: &VecCol| {
|
||||
let n = inp.0.len();
|
||||
let mut a = 0u64;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += permutation[i as usize];
|
||||
a += inp.0[i];
|
||||
}
|
||||
a
|
||||
black_box(a);
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut a = 0;
|
||||
group.register("fullscan_vec", |inp: &VecCol| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..inp.0.len() {
|
||||
a += inp.0[i];
|
||||
}
|
||||
black_box(a);
|
||||
});
|
||||
|
||||
group.register("stride7_column_values", |inp: &VecCol| {
|
||||
let n = inp.1.num_vals() as usize;
|
||||
let mut a = 0u64;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += column.get_val(i as u32);
|
||||
a += inp.1.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
black_box(a);
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
let column_ref = column.as_ref();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0u32..n as u32 {
|
||||
a += column_ref.get_val(i);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_gcd(b: &mut Bencher) {
|
||||
let permutation = generate_permutation_gcd();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
group.register("fullscan_column_values", |inp: &VecCol| {
|
||||
let mut a = 0u64;
|
||||
let n = inp.1.num_vals() as usize;
|
||||
for i in 0..n {
|
||||
a += column.get_val(i as u32);
|
||||
a += inp.1.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
black_box(a);
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_vec(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..permutation.len() {
|
||||
a += permutation[i as usize] as u64;
|
||||
}
|
||||
a
|
||||
});
|
||||
fn bench_range() {
|
||||
let data_50 = get_data_50percent_item();
|
||||
let data_u64 = data_50.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column_data: Arc<dyn ColumnValues<u64>> =
|
||||
serialize_and_load(&data_u64, CodecType::Bitpacked);
|
||||
|
||||
let mut group: InputGroup<Arc<dyn ColumnValues<u64>>> =
|
||||
InputGroup::new_with_inputs(vec![("dist_50pct_item".to_string(), column_data.clone())]);
|
||||
|
||||
group.register(
|
||||
"fastfield_getrange_u64_50percent_hit",
|
||||
|col: &Arc<dyn ColumnValues<u64>>| {
|
||||
let mut positions = Vec::new();
|
||||
col.get_row_ids_for_value_range(FIFTY_PERCENT_RANGE, 0..col.num_vals(), &mut positions);
|
||||
black_box(positions.len());
|
||||
},
|
||||
);
|
||||
|
||||
group.register(
|
||||
"fastfield_getrange_u64_1percent_hit",
|
||||
|col: &Arc<dyn ColumnValues<u64>>| {
|
||||
let mut positions = Vec::new();
|
||||
col.get_row_ids_for_value_range(
|
||||
ONE_PERCENT_ITEM_RANGE,
|
||||
0..col.num_vals(),
|
||||
&mut positions,
|
||||
);
|
||||
black_box(positions.len());
|
||||
},
|
||||
);
|
||||
|
||||
group.register(
|
||||
"fastfield_getrange_u64_single_hit",
|
||||
|col: &Arc<dyn ColumnValues<u64>>| {
|
||||
let mut positions = Vec::new();
|
||||
col.get_row_ids_for_value_range(SINGLE_ITEM_RANGE, 0..col.num_vals(), &mut positions);
|
||||
black_box(positions.len());
|
||||
},
|
||||
);
|
||||
|
||||
group.register(
|
||||
"fastfield_getrange_u64_hit_all",
|
||||
|col: &Arc<dyn ColumnValues<u64>>| {
|
||||
let mut positions = Vec::new();
|
||||
col.get_row_ids_for_value_range(0..=u64::MAX, 0..col.num_vals(), &mut positions);
|
||||
black_box(positions.len());
|
||||
},
|
||||
);
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
fn main() {
|
||||
bench_access();
|
||||
bench_range();
|
||||
}
|
||||
|
||||
@@ -66,7 +66,7 @@ impl<T: PartialOrd + Copy + std::fmt::Debug + Send + Sync + 'static + Default>
|
||||
&'a self,
|
||||
docs: &'a [u32],
|
||||
accessor: &Column<T>,
|
||||
) -> impl Iterator<Item = (DocId, T)> + 'a {
|
||||
) -> impl Iterator<Item = (DocId, T)> + 'a + use<'a, T> {
|
||||
if accessor.index.get_cardinality().is_full() {
|
||||
docs.iter().cloned().zip(self.val_cache.iter().cloned())
|
||||
} else {
|
||||
|
||||
@@ -4,8 +4,8 @@ use std::{fmt, io};
|
||||
|
||||
use sstable::{Dictionary, VoidSSTable};
|
||||
|
||||
use crate::column::Column;
|
||||
use crate::RowId;
|
||||
use crate::column::Column;
|
||||
|
||||
/// Dictionary encoded column.
|
||||
///
|
||||
|
||||
@@ -9,13 +9,14 @@ use std::sync::Arc;
|
||||
use common::BinarySerializable;
|
||||
pub use dictionary_encoded::{BytesColumn, StrColumn};
|
||||
pub use serialize::{
|
||||
open_column_bytes, open_column_str, open_column_u128, open_column_u128_as_compact_u64,
|
||||
open_column_u64, serialize_column_mappable_to_u128, serialize_column_mappable_to_u64,
|
||||
open_column_bytes, open_column_str, open_column_u64, open_column_u128,
|
||||
open_column_u128_as_compact_u64, serialize_column_mappable_to_u64,
|
||||
serialize_column_mappable_to_u128,
|
||||
};
|
||||
|
||||
use crate::column_index::{ColumnIndex, Set};
|
||||
use crate::column_values::monotonic_mapping::StrictlyMonotonicMappingToInternal;
|
||||
use crate::column_values::{monotonic_map_column, ColumnValues};
|
||||
use crate::column_values::{ColumnValues, monotonic_map_column};
|
||||
use crate::{Cardinality, DocId, EmptyColumnValues, MonotonicallyMappableToU64, RowId};
|
||||
|
||||
#[derive(Clone)]
|
||||
@@ -113,7 +114,7 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Translates a block of docis to row_ids.
|
||||
/// Translates a block of docids to row_ids.
|
||||
///
|
||||
/// returns the row_ids and the matching docids on the same index
|
||||
/// e.g.
|
||||
@@ -130,6 +131,8 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
self.index.docids_to_rowids(doc_ids, doc_ids_out, row_ids)
|
||||
}
|
||||
|
||||
/// Get an iterator over the values for the provided docid.
|
||||
#[inline]
|
||||
pub fn values_for_doc(&self, doc_id: DocId) -> impl Iterator<Item = T> + '_ {
|
||||
self.index
|
||||
.value_row_ids(doc_id)
|
||||
@@ -157,15 +160,6 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
.select_batch_in_place(selected_docid_range.start, doc_ids);
|
||||
}
|
||||
|
||||
/// Fills the output vector with the (possibly multiple values that are associated_with
|
||||
/// `row_id`.
|
||||
///
|
||||
/// This method clears the `output` vector.
|
||||
pub fn fill_vals(&self, row_id: RowId, output: &mut Vec<T>) {
|
||||
output.clear();
|
||||
output.extend(self.values_for_doc(row_id));
|
||||
}
|
||||
|
||||
pub fn first_or_default_col(self, default_value: T) -> Arc<dyn ColumnValues<T>> {
|
||||
Arc::new(FirstValueWithDefault {
|
||||
column: self,
|
||||
|
||||
@@ -6,10 +6,10 @@ use common::OwnedBytes;
|
||||
use sstable::Dictionary;
|
||||
|
||||
use crate::column::{BytesColumn, Column};
|
||||
use crate::column_index::{serialize_column_index, SerializableColumnIndex};
|
||||
use crate::column_index::{SerializableColumnIndex, serialize_column_index};
|
||||
use crate::column_values::{
|
||||
CodecType, MonotonicallyMappableToU64, MonotonicallyMappableToU128,
|
||||
load_u64_based_column_values, serialize_column_values_u128, serialize_u64_based_column_values,
|
||||
CodecType, MonotonicallyMappableToU128, MonotonicallyMappableToU64,
|
||||
};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{StrColumn, Version};
|
||||
|
||||
@@ -99,9 +99,9 @@ mod tests {
|
||||
|
||||
use crate::column_index::merge::detect_cardinality;
|
||||
use crate::column_index::multivalued_index::{
|
||||
open_multivalued_index, serialize_multivalued_index, MultiValueIndex,
|
||||
MultiValueIndex, open_multivalued_index, serialize_multivalued_index,
|
||||
};
|
||||
use crate::column_index::{merge_column_index, OptionalIndex, SerializableColumnIndex};
|
||||
use crate::column_index::{OptionalIndex, SerializableColumnIndex, merge_column_index};
|
||||
use crate::{
|
||||
Cardinality, ColumnIndex, MergeRowOrder, RowAddr, RowId, ShuffleMergeOrder, StackMergeOrder,
|
||||
};
|
||||
|
||||
@@ -137,8 +137,8 @@ impl Iterable<u32> for ShuffledMultivaluedIndex<'_> {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_index::OptionalIndex;
|
||||
use crate::RowAddr;
|
||||
use crate::column_index::OptionalIndex;
|
||||
|
||||
#[test]
|
||||
fn test_integrate_num_vals_empty() {
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
use std::ops::Range;
|
||||
|
||||
use crate::column_index::SerializableColumnIndex;
|
||||
use crate::column_index::multivalued_index::{MultiValueIndex, SerializableMultivalueIndex};
|
||||
use crate::column_index::serialize::SerializableOptionalIndex;
|
||||
use crate::column_index::SerializableColumnIndex;
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{Cardinality, ColumnIndex, RowId, StackMergeOrder};
|
||||
|
||||
@@ -56,7 +56,7 @@ fn get_doc_ids_with_values<'a>(
|
||||
ColumnIndex::Full => Box::new(doc_range),
|
||||
ColumnIndex::Optional(optional_index) => Box::new(
|
||||
optional_index
|
||||
.iter_docs()
|
||||
.iter_non_null_docs()
|
||||
.map(move |row| row + doc_range.start),
|
||||
),
|
||||
ColumnIndex::Multivalued(multivalued_index) => match multivalued_index {
|
||||
@@ -73,7 +73,7 @@ fn get_doc_ids_with_values<'a>(
|
||||
MultiValueIndex::MultiValueIndexV2(multivalued_index) => Box::new(
|
||||
multivalued_index
|
||||
.optional_index
|
||||
.iter_docs()
|
||||
.iter_non_null_docs()
|
||||
.map(move |row| row + doc_range.start),
|
||||
),
|
||||
},
|
||||
@@ -105,10 +105,11 @@ fn get_num_values_iterator<'a>(
|
||||
) -> Box<dyn Iterator<Item = u32> + 'a> {
|
||||
match column_index {
|
||||
ColumnIndex::Empty { .. } => Box::new(std::iter::empty()),
|
||||
ColumnIndex::Full => Box::new(std::iter::repeat(1u32).take(num_docs as usize)),
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
Box::new(std::iter::repeat(1u32).take(optional_index.num_non_nulls() as usize))
|
||||
}
|
||||
ColumnIndex::Full => Box::new(std::iter::repeat_n(1u32, num_docs as usize)),
|
||||
ColumnIndex::Optional(optional_index) => Box::new(std::iter::repeat_n(
|
||||
1u32,
|
||||
optional_index.num_non_nulls() as usize,
|
||||
)),
|
||||
ColumnIndex::Multivalued(multivalued_index) => Box::new(
|
||||
multivalued_index
|
||||
.get_start_index_column()
|
||||
@@ -177,7 +178,7 @@ impl<'a> Iterable<RowId> for StackedOptionalIndex<'a> {
|
||||
ColumnIndex::Full => Box::new(columnar_row_range),
|
||||
ColumnIndex::Optional(optional_index) => Box::new(
|
||||
optional_index
|
||||
.iter_docs()
|
||||
.iter_non_null_docs()
|
||||
.map(move |row_id: RowId| columnar_row_range.start + row_id),
|
||||
),
|
||||
ColumnIndex::Multivalued(_) => {
|
||||
|
||||
@@ -14,7 +14,7 @@ pub use merge::merge_column_index;
|
||||
pub(crate) use multivalued_index::SerializableMultivalueIndex;
|
||||
pub use optional_index::{OptionalIndex, Set};
|
||||
pub use serialize::{
|
||||
open_column_index, serialize_column_index, SerializableColumnIndex, SerializableOptionalIndex,
|
||||
SerializableColumnIndex, SerializableOptionalIndex, open_column_index, serialize_column_index,
|
||||
};
|
||||
|
||||
use crate::column_index::multivalued_index::MultiValueIndex;
|
||||
|
||||
@@ -8,7 +8,7 @@ use common::{CountingWriter, OwnedBytes};
|
||||
use super::optional_index::{open_optional_index, serialize_optional_index};
|
||||
use super::{OptionalIndex, SerializableOptionalIndex, Set};
|
||||
use crate::column_values::{
|
||||
load_u64_based_column_values, serialize_u64_based_column_values, CodecType, ColumnValues,
|
||||
CodecType, ColumnValues, load_u64_based_column_values, serialize_u64_based_column_values,
|
||||
};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{DocId, RowId, Version};
|
||||
@@ -215,6 +215,32 @@ impl MultiValueIndex {
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns an iterator over document ids that have at least one value.
|
||||
pub fn iter_non_null_docs(&self) -> Box<dyn Iterator<Item = DocId> + '_> {
|
||||
match self {
|
||||
MultiValueIndex::MultiValueIndexV1(idx) => {
|
||||
let mut doc: DocId = 0u32;
|
||||
let num_docs = idx.num_docs();
|
||||
Box::new(std::iter::from_fn(move || {
|
||||
// This is not the most efficient way to do this, but it's legacy code.
|
||||
while doc < num_docs {
|
||||
let cur = doc;
|
||||
doc += 1;
|
||||
let start = idx.start_index_column.get_val(cur);
|
||||
let end = idx.start_index_column.get_val(cur + 1);
|
||||
if end > start {
|
||||
return Some(cur);
|
||||
}
|
||||
}
|
||||
None
|
||||
}))
|
||||
}
|
||||
MultiValueIndex::MultiValueIndexV2(idx) => {
|
||||
Box::new(idx.optional_index.iter_non_null_docs())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Converts a list of ranks (row ids of values) in a 1:n index to the corresponding list of
|
||||
/// docids. Positions are converted inplace to docids.
|
||||
///
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
use std::io::{self, Write};
|
||||
use std::io;
|
||||
use std::sync::Arc;
|
||||
|
||||
mod set;
|
||||
@@ -7,11 +7,11 @@ mod set_block;
|
||||
use common::{BinarySerializable, OwnedBytes, VInt};
|
||||
pub use set::{SelectCursor, Set, SetCodec};
|
||||
use set_block::{
|
||||
DenseBlock, DenseBlockCodec, SparseBlock, SparseBlockCodec, DENSE_BLOCK_NUM_BYTES,
|
||||
DENSE_BLOCK_NUM_BYTES, DenseBlock, DenseBlockCodec, SparseBlock, SparseBlockCodec,
|
||||
};
|
||||
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{DocId, InvalidData, RowId};
|
||||
use crate::{DocId, RowId};
|
||||
|
||||
/// The threshold for for number of elements after which we switch to dense block encoding.
|
||||
///
|
||||
@@ -88,7 +88,7 @@ pub struct OptionalIndex {
|
||||
|
||||
impl Iterable<u32> for &OptionalIndex {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
|
||||
Box::new(self.iter_docs())
|
||||
Box::new(self.iter_non_null_docs())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -259,11 +259,13 @@ impl Set<RowId> for OptionalIndex {
|
||||
|
||||
impl OptionalIndex {
|
||||
pub fn for_test(num_rows: RowId, row_ids: &[RowId]) -> OptionalIndex {
|
||||
assert!(row_ids
|
||||
.last()
|
||||
.copied()
|
||||
.map(|last_row_id| last_row_id < num_rows)
|
||||
.unwrap_or(true));
|
||||
assert!(
|
||||
row_ids
|
||||
.last()
|
||||
.copied()
|
||||
.map(|last_row_id| last_row_id < num_rows)
|
||||
.unwrap_or(true)
|
||||
);
|
||||
let mut buffer = Vec::new();
|
||||
serialize_optional_index(&row_ids, num_rows, &mut buffer).unwrap();
|
||||
let bytes = OwnedBytes::new(buffer);
|
||||
@@ -278,8 +280,9 @@ impl OptionalIndex {
|
||||
self.num_non_null_docs
|
||||
}
|
||||
|
||||
pub fn iter_docs(&self) -> impl Iterator<Item = RowId> + '_ {
|
||||
// TODO optimize
|
||||
pub fn iter_non_null_docs(&self) -> impl Iterator<Item = RowId> + '_ {
|
||||
// TODO optimize. We could iterate over the blocks directly.
|
||||
// We use the dense value ids and retrieve the doc ids via select.
|
||||
let mut select_batch = self.select_cursor();
|
||||
(0..self.num_non_null_docs).map(move |rank| select_batch.select(rank))
|
||||
}
|
||||
@@ -332,38 +335,6 @@ enum Block<'a> {
|
||||
Sparse(SparseBlock<'a>),
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
enum OptionalIndexCodec {
|
||||
Dense = 0,
|
||||
Sparse = 1,
|
||||
}
|
||||
|
||||
impl OptionalIndexCodec {
|
||||
fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
fn try_from_code(code: u8) -> Result<Self, InvalidData> {
|
||||
match code {
|
||||
0 => Ok(Self::Dense),
|
||||
1 => Ok(Self::Sparse),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for OptionalIndexCodec {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(&[self.to_code()])
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let optional_codec_code = u8::deserialize(reader)?;
|
||||
let optional_codec = Self::try_from_code(optional_codec_code)?;
|
||||
Ok(optional_codec)
|
||||
}
|
||||
}
|
||||
|
||||
fn serialize_optional_index_block(block_els: &[u16], out: &mut impl io::Write) -> io::Result<()> {
|
||||
let is_sparse = is_sparse(block_els.len() as u32);
|
||||
if is_sparse {
|
||||
|
||||
@@ -2,7 +2,7 @@ use std::io::{self, Write};
|
||||
|
||||
use common::BinarySerializable;
|
||||
|
||||
use crate::column_index::optional_index::{SelectCursor, Set, SetCodec, ELEMENTS_PER_BLOCK};
|
||||
use crate::column_index::optional_index::{ELEMENTS_PER_BLOCK, SelectCursor, Set, SetCodec};
|
||||
|
||||
#[inline(always)]
|
||||
fn get_bit_at(input: u64, n: u16) -> bool {
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
mod dense;
|
||||
mod sparse;
|
||||
|
||||
pub use dense::{DenseBlock, DenseBlockCodec, DENSE_BLOCK_NUM_BYTES};
|
||||
pub use dense::{DENSE_BLOCK_NUM_BYTES, DenseBlock, DenseBlockCodec};
|
||||
pub use sparse::{SparseBlock, SparseBlockCodec};
|
||||
|
||||
#[cfg(test)]
|
||||
|
||||
@@ -164,7 +164,11 @@ fn test_optional_index_large() {
|
||||
fn test_optional_index_iter_aux(row_ids: &[RowId], num_rows: RowId) {
|
||||
let optional_index = OptionalIndex::for_test(num_rows, row_ids);
|
||||
assert_eq!(optional_index.num_docs(), num_rows);
|
||||
assert!(optional_index.iter_docs().eq(row_ids.iter().copied()));
|
||||
assert!(
|
||||
optional_index
|
||||
.iter_non_null_docs()
|
||||
.eq(row_ids.iter().copied())
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -219,174 +223,3 @@ fn test_optional_index_for_tests() {
|
||||
assert!(!optional_index.contains(3));
|
||||
assert_eq!(optional_index.num_docs(), 4);
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::Bencher;
|
||||
|
||||
use super::*;
|
||||
|
||||
const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
fn gen_bools(fill_ratio: f64) -> OptionalIndex {
|
||||
let mut out = Vec::new();
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let vals: Vec<RowId> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _)| pos as RowId)
|
||||
.collect();
|
||||
serialize_optional_index(&&vals[..], TOTAL_NUM_VALUES, &mut out).unwrap();
|
||||
|
||||
open_optional_index(OwnedBytes::new(out)).unwrap()
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
start: u32,
|
||||
end: u32,
|
||||
avg_step_size: u32,
|
||||
avg_deviation: u32,
|
||||
) -> impl Iterator<Item = u32> {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end {
|
||||
None
|
||||
} else {
|
||||
Some(current)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
}
|
||||
|
||||
fn walk_over_data(codec: &OptionalIndex, avg_step_size: u32) -> Option<u32> {
|
||||
walk_over_data_from_positions(
|
||||
codec,
|
||||
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
|
||||
)
|
||||
}
|
||||
|
||||
fn walk_over_data_from_positions(
|
||||
codec: &OptionalIndex,
|
||||
positions: impl Iterator<Item = u32>,
|
||||
) -> Option<u32> {
|
||||
let mut dense_idx: Option<u32> = None;
|
||||
for idx in positions {
|
||||
dense_idx = dense_idx.or(codec.rank_if_exists(idx));
|
||||
}
|
||||
dense_idx
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 1000));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.5f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 0.005f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_10percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.1f64, 0.005f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 10f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 100f32, bench);
|
||||
}
|
||||
|
||||
fn bench_translate_codec_to_orig_util(
|
||||
percent_filled: f64,
|
||||
percent_hit: f32,
|
||||
bench: &mut Bencher,
|
||||
) {
|
||||
let codec = gen_bools(percent_filled);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
let idxs: Vec<u32> = if percent_hit == 100.0f32 {
|
||||
(0..num_non_nulls).collect()
|
||||
} else {
|
||||
n_percent_step_iterator(percent_hit, num_non_nulls).collect()
|
||||
};
|
||||
let mut output = vec![0u32; idxs.len()];
|
||||
bench.iter(|| {
|
||||
output.copy_from_slice(&idxs[..]);
|
||||
codec.select_batch(&mut output);
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.9f64, 0.005, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.9f64, 100.0f32, bench);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,11 +3,11 @@ use std::io::Write;
|
||||
|
||||
use common::{CountingWriter, OwnedBytes};
|
||||
|
||||
use super::multivalued_index::SerializableMultivalueIndex;
|
||||
use super::OptionalIndex;
|
||||
use super::multivalued_index::SerializableMultivalueIndex;
|
||||
use crate::column_index::ColumnIndex;
|
||||
use crate::column_index::multivalued_index::serialize_multivalued_index;
|
||||
use crate::column_index::optional_index::serialize_optional_index;
|
||||
use crate::column_index::ColumnIndex;
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{Cardinality, RowId, Version};
|
||||
|
||||
|
||||
@@ -1,139 +0,0 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::*;
|
||||
use crate::column_values::u64_based::*;
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55000_u64)
|
||||
.map(|num| num + rng.gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
fn compute_stats(vals: impl Iterator<Item = u64>) -> ColumnStats {
|
||||
let mut stats_collector = StatsCollector::default();
|
||||
for val in vals {
|
||||
stats_collector.collect(val);
|
||||
}
|
||||
stats_collector.stats()
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
|
||||
fn get_reader_for_bench<Codec: ColumnCodec>(data: &[u64]) -> Codec::ColumnValues {
|
||||
let mut bytes = Vec::new();
|
||||
let stats = compute_stats(data.iter().cloned());
|
||||
let mut codec_serializer = Codec::estimator();
|
||||
for val in data {
|
||||
codec_serializer.collect(*val);
|
||||
}
|
||||
codec_serializer
|
||||
.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes)
|
||||
.unwrap();
|
||||
|
||||
Codec::load(OwnedBytes::new(bytes)).unwrap()
|
||||
}
|
||||
|
||||
fn bench_get<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = get_reader_for_bench::<Codec>(data);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn ColumnValues>) {
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
fn bench_get_dynamic<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = Arc::new(get_reader_for_bench::<Codec>(data));
|
||||
bench_get_dynamic_helper(b, col);
|
||||
}
|
||||
fn bench_create<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let stats = compute_stats(data.iter().cloned());
|
||||
|
||||
let mut bytes = Vec::new();
|
||||
b.iter(|| {
|
||||
bytes.clear();
|
||||
let mut codec_serializer = Codec::estimator();
|
||||
for val in data.iter().take(1024) {
|
||||
codec_serializer.collect(*val);
|
||||
}
|
||||
|
||||
codec_serializer.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes)
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
@@ -26,13 +26,13 @@ mod monotonic_column;
|
||||
|
||||
pub(crate) use merge::MergedColumnValues;
|
||||
pub use stats::ColumnStats;
|
||||
pub use u128_based::{
|
||||
open_u128_as_compact_u64, open_u128_mapped, serialize_column_values_u128,
|
||||
CompactSpaceU64Accessor,
|
||||
};
|
||||
pub use u64_based::{
|
||||
load_u64_based_column_values, serialize_and_load_u64_based_column_values,
|
||||
serialize_u64_based_column_values, CodecType, ALL_U64_CODEC_TYPES,
|
||||
ALL_U64_CODEC_TYPES, CodecType, load_u64_based_column_values,
|
||||
serialize_and_load_u64_based_column_values, serialize_u64_based_column_values,
|
||||
};
|
||||
pub use u128_based::{
|
||||
CompactSpaceU64Accessor, open_u128_as_compact_u64, open_u128_mapped,
|
||||
serialize_column_values_u128,
|
||||
};
|
||||
pub use vec_column::VecColumn;
|
||||
|
||||
@@ -242,6 +242,3 @@ impl<T: Copy + PartialOrd + Debug + 'static> ColumnValues<T> for Arc<dyn ColumnV
|
||||
.get_row_ids_for_value_range(range, doc_id_range, positions)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench;
|
||||
|
||||
@@ -2,8 +2,8 @@ use std::fmt::Debug;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
|
||||
use crate::column_values::monotonic_mapping::StrictlyMonotonicFn;
|
||||
use crate::ColumnValues;
|
||||
use crate::column_values::monotonic_mapping::StrictlyMonotonicFn;
|
||||
|
||||
struct MonotonicMappingColumn<C, T, Input> {
|
||||
from_column: C,
|
||||
@@ -99,10 +99,10 @@ where
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::VecColumn;
|
||||
use crate::column_values::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
|
||||
};
|
||||
use crate::column_values::VecColumn;
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_iter() {
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
use std::fmt::Debug;
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
/// Montonic maps a value to u128 value space
|
||||
/// Monotonic maps a value to u128 value space
|
||||
/// Monotonic mapping enables `PartialOrd` on u128 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU128: 'static + PartialOrd + Copy + Debug + Send + Sync {
|
||||
/// Converts a value to u128.
|
||||
|
||||
@@ -185,10 +185,10 @@ impl CompactSpaceBuilder {
|
||||
let mut covered_space = Vec::with_capacity(self.blanks.len());
|
||||
|
||||
// beginning of the blanks
|
||||
if let Some(first_blank_start) = self.blanks.first().map(RangeInclusive::start) {
|
||||
if *first_blank_start != 0 {
|
||||
covered_space.push(0..=first_blank_start - 1);
|
||||
}
|
||||
if let Some(first_blank_start) = self.blanks.first().map(RangeInclusive::start)
|
||||
&& *first_blank_start != 0
|
||||
{
|
||||
covered_space.push(0..=first_blank_start - 1);
|
||||
}
|
||||
|
||||
// Between the blanks
|
||||
@@ -202,10 +202,10 @@ impl CompactSpaceBuilder {
|
||||
covered_space.extend(between_blanks);
|
||||
|
||||
// end of the blanks
|
||||
if let Some(last_blank_end) = self.blanks.last().map(RangeInclusive::end) {
|
||||
if *last_blank_end != u128::MAX {
|
||||
covered_space.push(last_blank_end + 1..=u128::MAX);
|
||||
}
|
||||
if let Some(last_blank_end) = self.blanks.last().map(RangeInclusive::end)
|
||||
&& *last_blank_end != u128::MAX
|
||||
{
|
||||
covered_space.push(last_blank_end + 1..=u128::MAX);
|
||||
}
|
||||
|
||||
if covered_space.is_empty() {
|
||||
|
||||
@@ -24,8 +24,8 @@ use build_compact_space::get_compact_space;
|
||||
use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt, VIntU128};
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker};
|
||||
|
||||
use crate::column_values::ColumnValues;
|
||||
use crate::RowId;
|
||||
use crate::column_values::ColumnValues;
|
||||
|
||||
/// The cost per blank is quite hard actually, since blanks are delta encoded, the actual cost of
|
||||
/// blanks depends on the number of blanks.
|
||||
@@ -653,12 +653,14 @@ mod tests {
|
||||
),
|
||||
&[3]
|
||||
);
|
||||
assert!(get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=99998u128,
|
||||
complete_range.clone()
|
||||
)
|
||||
.is_empty());
|
||||
assert!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=99998u128,
|
||||
complete_range.clone()
|
||||
)
|
||||
.is_empty()
|
||||
);
|
||||
assert_eq!(
|
||||
&get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
|
||||
@@ -130,11 +130,11 @@ pub fn open_u128_as_compact_u64(mut bytes: OwnedBytes) -> io::Result<Arc<dyn Col
|
||||
#[cfg(test)]
|
||||
pub(crate) mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::u64_based::{
|
||||
serialize_and_load_u64_based_column_values, serialize_u64_based_column_values,
|
||||
ALL_U64_CODEC_TYPES,
|
||||
};
|
||||
use crate::column_values::CodecType;
|
||||
use crate::column_values::u64_based::{
|
||||
ALL_U64_CODEC_TYPES, serialize_and_load_u64_based_column_values,
|
||||
serialize_u64_based_column_values,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn test_serialize_deserialize_u128_header() {
|
||||
|
||||
@@ -4,7 +4,7 @@ use std::ops::{Range, RangeInclusive};
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use fastdivide::DividerU64;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker, compute_num_bits};
|
||||
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
|
||||
use crate::{ColumnValues, RowId};
|
||||
@@ -23,11 +23,7 @@ const fn div_ceil(n: u64, q: NonZeroU64) -> u64 {
|
||||
// copied from unstable rust standard library.
|
||||
let d = n / q.get();
|
||||
let r = n % q.get();
|
||||
if r > 0 {
|
||||
d + 1
|
||||
} else {
|
||||
d
|
||||
}
|
||||
if r > 0 { d + 1 } else { d }
|
||||
}
|
||||
|
||||
// The bitpacked codec applies a linear transformation `f` over data that are bitpacked.
|
||||
@@ -45,12 +41,6 @@ fn transform_range_before_linear_transformation(
|
||||
if range.is_empty() {
|
||||
return None;
|
||||
}
|
||||
if stats.min_value > *range.end() {
|
||||
return None;
|
||||
}
|
||||
if stats.max_value < *range.start() {
|
||||
return None;
|
||||
}
|
||||
let shifted_range =
|
||||
range.start().saturating_sub(stats.min_value)..=range.end().saturating_sub(stats.min_value);
|
||||
let start_before_gcd_multiplication: u64 = div_ceil(*shifted_range.start(), stats.gcd);
|
||||
@@ -109,7 +99,7 @@ impl ColumnCodecEstimator for BitpackedCodecEstimator {
|
||||
|
||||
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
|
||||
let num_bits_per_value = num_bits(stats);
|
||||
Some(stats.num_bytes() + (stats.num_rows as u64 * (num_bits_per_value as u64) + 7) / 8)
|
||||
Some(stats.num_bytes() + (stats.num_rows as u64 * (num_bits_per_value as u64)).div_ceil(8))
|
||||
}
|
||||
|
||||
fn serialize(
|
||||
|
||||
@@ -4,12 +4,12 @@ use std::{io, iter};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, DeserializeFrom, OwnedBytes};
|
||||
use fastdivide::DividerU64;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker, compute_num_bits};
|
||||
|
||||
use crate::MonotonicallyMappableToU64;
|
||||
use crate::column_values::u64_based::line::Line;
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
|
||||
use crate::column_values::{ColumnValues, VecColumn};
|
||||
use crate::MonotonicallyMappableToU64;
|
||||
|
||||
const BLOCK_SIZE: u32 = 512u32;
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@ use crate::column_values::ColumnValues;
|
||||
const MID_POINT: u64 = (1u64 << 32) - 1u64;
|
||||
|
||||
/// `Line` describes a line function `y: ax + b` using integer
|
||||
/// arithmetics.
|
||||
/// arithmetic.
|
||||
///
|
||||
/// The slope is in fact a decimal split into a 32 bit integer value,
|
||||
/// and a 32-bit decimal value.
|
||||
@@ -94,7 +94,7 @@ impl Line {
|
||||
// `(i, ys[])`.
|
||||
//
|
||||
// The best intercept therefore has the form
|
||||
// `y[i] - line.eval(i)` (using wrapping arithmetics).
|
||||
// `y[i] - line.eval(i)` (using wrapping arithmetic).
|
||||
// In other words, the best intercept is one of the `y - Line::eval(ys[i])`
|
||||
// and our task is just to pick the one that minimizes our error.
|
||||
//
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
use std::io;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker, compute_num_bits};
|
||||
|
||||
use super::line::Line;
|
||||
use super::ColumnValues;
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
|
||||
use crate::column_values::VecColumn;
|
||||
use super::line::Line;
|
||||
use crate::RowId;
|
||||
use crate::column_values::VecColumn;
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
|
||||
|
||||
const HALF_SPACE: u64 = u64::MAX / 2;
|
||||
const LINE_ESTIMATION_BLOCK_LEN: usize = 512;
|
||||
@@ -117,7 +117,7 @@ impl ColumnCodecEstimator for LinearCodecEstimator {
|
||||
Some(
|
||||
stats.num_bytes()
|
||||
+ linear_params.num_bytes()
|
||||
+ (num_bits as u64 * stats.num_rows as u64 + 7) / 8,
|
||||
+ (num_bits as u64 * stats.num_rows as u64).div_ceil(8),
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ pub use crate::column_values::u64_based::bitpacked::BitpackedCodec;
|
||||
pub use crate::column_values::u64_based::blockwise_linear::BlockwiseLinearCodec;
|
||||
pub use crate::column_values::u64_based::linear::LinearCodec;
|
||||
pub use crate::column_values::u64_based::stats_collector::StatsCollector;
|
||||
use crate::column_values::{monotonic_map_column, ColumnStats};
|
||||
use crate::column_values::{ColumnStats, monotonic_map_column};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{ColumnValues, MonotonicallyMappableToU64};
|
||||
|
||||
@@ -52,7 +52,7 @@ pub trait ColumnCodecEstimator<T = u64>: 'static {
|
||||
) -> io::Result<()>;
|
||||
}
|
||||
|
||||
/// A column codec describes a colunm serialization format.
|
||||
/// A column codec describes a column serialization format.
|
||||
pub trait ColumnCodec<T: PartialOrd = u64> {
|
||||
/// Specialized `ColumnValues` type.
|
||||
type ColumnValues: ColumnValues<T> + 'static;
|
||||
|
||||
@@ -2,8 +2,8 @@ use std::num::NonZeroU64;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
|
||||
use crate::column_values::ColumnStats;
|
||||
use crate::RowId;
|
||||
use crate::column_values::ColumnStats;
|
||||
|
||||
/// Compute the gcd of two non null numbers.
|
||||
///
|
||||
@@ -96,8 +96,8 @@ impl StatsCollector {
|
||||
mod tests {
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use crate::column_values::u64_based::stats_collector::{compute_gcd, StatsCollector};
|
||||
use crate::column_values::u64_based::ColumnStats;
|
||||
use crate::column_values::u64_based::stats_collector::{StatsCollector, compute_gcd};
|
||||
|
||||
fn compute_stats(vals: impl Iterator<Item = u64>) -> ColumnStats {
|
||||
let mut stats_collector = StatsCollector::default();
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
use proptest::prelude::*;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
use rand::Rng;
|
||||
|
||||
#[test]
|
||||
fn test_serialize_and_load_simple() {
|
||||
|
||||
@@ -4,8 +4,8 @@ use std::net::Ipv6Addr;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::value::NumericalType;
|
||||
use crate::InvalidData;
|
||||
use crate::value::NumericalType;
|
||||
|
||||
/// The column type represents the column type.
|
||||
/// Any changes need to be propagated to `COLUMN_TYPES`.
|
||||
|
||||
@@ -10,11 +10,11 @@ use std::sync::Arc;
|
||||
pub use merge_mapping::{MergeRowOrder, ShuffleMergeOrder, StackMergeOrder};
|
||||
|
||||
use super::writer::ColumnarSerializer;
|
||||
use crate::column::{serialize_column_mappable_to_u128, serialize_column_mappable_to_u64};
|
||||
use crate::column::{serialize_column_mappable_to_u64, serialize_column_mappable_to_u128};
|
||||
use crate::column_values::MergedColumnValues;
|
||||
use crate::columnar::ColumnarReader;
|
||||
use crate::columnar::merge::merge_dict_column::merge_bytes_or_str_column;
|
||||
use crate::columnar::writer::CompatibleNumericalTypes;
|
||||
use crate::columnar::ColumnarReader;
|
||||
use crate::dynamic_column::DynamicColumn;
|
||||
use crate::{
|
||||
BytesColumn, Column, ColumnIndex, ColumnType, ColumnValues, DynamicColumnHandle, NumericalType,
|
||||
@@ -144,16 +144,17 @@ fn merge_column(
|
||||
let mut column_values: Vec<Option<Arc<dyn ColumnValues>>> =
|
||||
Vec::with_capacity(columns_to_merge.len());
|
||||
for (i, dynamic_column_opt) in columns_to_merge.into_iter().enumerate() {
|
||||
if let Some(Column { index: idx, values }) =
|
||||
dynamic_column_opt.and_then(dynamic_column_to_u64_monotonic)
|
||||
{
|
||||
column_indexes.push(idx);
|
||||
column_values.push(Some(values));
|
||||
} else {
|
||||
column_indexes.push(ColumnIndex::Empty {
|
||||
num_docs: num_docs_per_column[i],
|
||||
});
|
||||
column_values.push(None);
|
||||
match dynamic_column_opt.and_then(dynamic_column_to_u64_monotonic) {
|
||||
Some(Column { index: idx, values }) => {
|
||||
column_indexes.push(idx);
|
||||
column_values.push(Some(values));
|
||||
}
|
||||
None => {
|
||||
column_indexes.push(ColumnIndex::Empty {
|
||||
num_docs: num_docs_per_column[i],
|
||||
});
|
||||
column_values.push(None);
|
||||
}
|
||||
}
|
||||
}
|
||||
let merged_column_index =
|
||||
@@ -253,11 +254,13 @@ impl GroupedColumns {
|
||||
}
|
||||
// At the moment, only the numerical column type category has more than one possible
|
||||
// column type.
|
||||
assert!(self
|
||||
.columns
|
||||
.iter()
|
||||
.flatten()
|
||||
.all(|el| ColumnTypeCategory::from(el.column_type()) == ColumnTypeCategory::Numerical));
|
||||
assert!(
|
||||
self.columns
|
||||
.iter()
|
||||
.flatten()
|
||||
.all(|el| ColumnTypeCategory::from(el.column_type())
|
||||
== ColumnTypeCategory::Numerical)
|
||||
);
|
||||
merged_numerical_columns_type(self.columns.iter().flatten()).into()
|
||||
}
|
||||
}
|
||||
@@ -364,7 +367,7 @@ fn is_empty_after_merge(
|
||||
ColumnIndex::Empty { .. } => true,
|
||||
ColumnIndex::Full => alive_bitset.len() == 0,
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
for doc in optional_index.iter_docs() {
|
||||
for doc in optional_index.iter_non_null_docs() {
|
||||
if alive_bitset.contains(doc) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -74,18 +74,19 @@ impl<'a> TermMerger<'a> {
|
||||
/// False if there is none.
|
||||
pub fn advance(&mut self) -> bool {
|
||||
self.advance_segments();
|
||||
if let Some(head) = self.heap.pop() {
|
||||
self.term_streams_with_segment.push(head);
|
||||
while let Some(next_streamer) = self.heap.peek() {
|
||||
if self.term_streams_with_segment[0].terms.key() != next_streamer.terms.key() {
|
||||
break;
|
||||
match self.heap.pop() {
|
||||
Some(head) => {
|
||||
self.term_streams_with_segment.push(head);
|
||||
while let Some(next_streamer) = self.heap.peek() {
|
||||
if self.term_streams_with_segment[0].terms.key() != next_streamer.terms.key() {
|
||||
break;
|
||||
}
|
||||
let next_heap_it = self.heap.pop().unwrap(); // safe : we peeked beforehand
|
||||
self.term_streams_with_segment.push(next_heap_it);
|
||||
}
|
||||
let next_heap_it = self.heap.pop().unwrap(); // safe : we peeked beforehand
|
||||
self.term_streams_with_segment.push(next_heap_it);
|
||||
true
|
||||
}
|
||||
true
|
||||
} else {
|
||||
false
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -3,7 +3,7 @@ use proptest::collection::vec;
|
||||
use proptest::prelude::*;
|
||||
|
||||
use super::*;
|
||||
use crate::columnar::{merge_columnar, ColumnarReader, MergeRowOrder, StackMergeOrder};
|
||||
use crate::columnar::{ColumnarReader, MergeRowOrder, StackMergeOrder, merge_columnar};
|
||||
use crate::{Cardinality, ColumnarWriter, DynamicColumn, HasAssociatedColumnType, RowId};
|
||||
|
||||
fn make_columnar<T: Into<NumericalValue> + HasAssociatedColumnType + Copy>(
|
||||
|
||||
@@ -5,9 +5,9 @@ mod reader;
|
||||
mod writer;
|
||||
|
||||
pub use column_type::{ColumnType, HasAssociatedColumnType};
|
||||
pub use format_version::{Version, CURRENT_VERSION};
|
||||
pub use format_version::{CURRENT_VERSION, Version};
|
||||
#[cfg(test)]
|
||||
pub(crate) use merge::ColumnTypeCategory;
|
||||
pub use merge::{merge_columnar, MergeRowOrder, ShuffleMergeOrder, StackMergeOrder};
|
||||
pub use merge::{MergeRowOrder, ShuffleMergeOrder, StackMergeOrder, merge_columnar};
|
||||
pub use reader::ColumnarReader;
|
||||
pub use writer::ColumnarWriter;
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
use std::{fmt, io, mem};
|
||||
|
||||
use common::BinarySerializable;
|
||||
use common::file_slice::FileSlice;
|
||||
use common::json_path_writer::JSON_PATH_SEGMENT_SEP;
|
||||
use common::BinarySerializable;
|
||||
use sstable::{Dictionary, RangeSSTable};
|
||||
|
||||
use crate::columnar::{format_version, ColumnType};
|
||||
use crate::columnar::{ColumnType, format_version};
|
||||
use crate::dynamic_column::DynamicColumnHandle;
|
||||
use crate::{RowId, Version};
|
||||
|
||||
|
||||
@@ -244,7 +244,7 @@ impl SymbolValue for UnorderedId {
|
||||
|
||||
fn compute_num_bytes_for_u64(val: u64) -> usize {
|
||||
let msb = (64u32 - val.leading_zeros()) as usize;
|
||||
(msb + 7) / 8
|
||||
msb.div_ceil(8)
|
||||
}
|
||||
|
||||
fn encode_zig_zag(n: i64) -> u64 {
|
||||
|
||||
@@ -42,7 +42,7 @@ impl ColumnWriter {
|
||||
&self,
|
||||
arena: &MemoryArena,
|
||||
buffer: &'a mut Vec<u8>,
|
||||
) -> impl Iterator<Item = ColumnOperation<V>> + 'a {
|
||||
) -> impl Iterator<Item = ColumnOperation<V>> + 'a + use<'a, V> {
|
||||
buffer.clear();
|
||||
self.values.read_to_end(arena, buffer);
|
||||
let mut cursor: &[u8] = &buffer[..];
|
||||
@@ -104,9 +104,10 @@ pub(crate) struct NumericalColumnWriter {
|
||||
|
||||
impl NumericalColumnWriter {
|
||||
pub fn force_numerical_type(&mut self, numerical_type: NumericalType) {
|
||||
assert!(self
|
||||
.compatible_numerical_types
|
||||
.is_type_accepted(numerical_type));
|
||||
assert!(
|
||||
self.compatible_numerical_types
|
||||
.is_type_accepted(numerical_type)
|
||||
);
|
||||
self.compatible_numerical_types = CompatibleNumericalTypes::StaticType(numerical_type);
|
||||
}
|
||||
}
|
||||
@@ -211,7 +212,7 @@ impl NumericalColumnWriter {
|
||||
self,
|
||||
arena: &MemoryArena,
|
||||
buffer: &'a mut Vec<u8>,
|
||||
) -> impl Iterator<Item = ColumnOperation<NumericalValue>> + 'a {
|
||||
) -> impl Iterator<Item = ColumnOperation<NumericalValue>> + 'a + use<'a> {
|
||||
self.column_writer.operation_iterator(arena, buffer)
|
||||
}
|
||||
}
|
||||
@@ -255,7 +256,7 @@ impl StrOrBytesColumnWriter {
|
||||
&self,
|
||||
arena: &MemoryArena,
|
||||
byte_buffer: &'a mut Vec<u8>,
|
||||
) -> impl Iterator<Item = ColumnOperation<UnorderedId>> + 'a {
|
||||
) -> impl Iterator<Item = ColumnOperation<UnorderedId>> + 'a + use<'a> {
|
||||
self.column_writer.operation_iterator(arena, byte_buffer)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,13 +8,13 @@ use std::net::Ipv6Addr;
|
||||
|
||||
use column_operation::ColumnOperation;
|
||||
pub(crate) use column_writers::CompatibleNumericalTypes;
|
||||
use common::json_path_writer::JSON_END_OF_PATH;
|
||||
use common::CountingWriter;
|
||||
use common::json_path_writer::JSON_END_OF_PATH;
|
||||
pub(crate) use serializer::ColumnarSerializer;
|
||||
use stacker::{Addr, ArenaHashMap, MemoryArena};
|
||||
|
||||
use crate::column_index::{SerializableColumnIndex, SerializableOptionalIndex};
|
||||
use crate::column_values::{MonotonicallyMappableToU128, MonotonicallyMappableToU64};
|
||||
use crate::column_values::{MonotonicallyMappableToU64, MonotonicallyMappableToU128};
|
||||
use crate::columnar::column_type::ColumnType;
|
||||
use crate::columnar::writer::column_writers::{
|
||||
ColumnWriter, NumericalColumnWriter, StrOrBytesColumnWriter,
|
||||
|
||||
@@ -3,11 +3,11 @@ use std::io::Write;
|
||||
|
||||
use common::json_path_writer::JSON_END_OF_PATH;
|
||||
use common::{BinarySerializable, CountingWriter};
|
||||
use sstable::value::RangeValueWriter;
|
||||
use sstable::RangeSSTable;
|
||||
use sstable::value::RangeValueWriter;
|
||||
|
||||
use crate::columnar::ColumnType;
|
||||
use crate::RowId;
|
||||
use crate::columnar::ColumnType;
|
||||
|
||||
pub struct ColumnarSerializer<W: io::Write> {
|
||||
wrt: CountingWriter<W>,
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use crate::RowId;
|
||||
use crate::column_index::{SerializableMultivalueIndex, SerializableOptionalIndex};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::RowId;
|
||||
|
||||
/// The `IndexBuilder` interprets a sequence of
|
||||
/// calls of the form:
|
||||
@@ -31,12 +31,13 @@ pub struct OptionalIndexBuilder {
|
||||
|
||||
impl OptionalIndexBuilder {
|
||||
pub fn finish(&mut self, num_rows: RowId) -> impl Iterable<RowId> + '_ {
|
||||
debug_assert!(self
|
||||
.docs
|
||||
.last()
|
||||
.copied()
|
||||
.map(|last_doc| last_doc < num_rows)
|
||||
.unwrap_or(true));
|
||||
debug_assert!(
|
||||
self.docs
|
||||
.last()
|
||||
.copied()
|
||||
.map(|last_doc| last_doc < num_rows)
|
||||
.unwrap_or(true)
|
||||
);
|
||||
&self.docs[..]
|
||||
}
|
||||
|
||||
@@ -48,12 +49,13 @@ impl OptionalIndexBuilder {
|
||||
impl IndexBuilder for OptionalIndexBuilder {
|
||||
#[inline(always)]
|
||||
fn record_row(&mut self, doc: RowId) {
|
||||
debug_assert!(self
|
||||
.docs
|
||||
.last()
|
||||
.copied()
|
||||
.map(|prev_doc| doc > prev_doc)
|
||||
.unwrap_or(true));
|
||||
debug_assert!(
|
||||
self.docs
|
||||
.last()
|
||||
.copied()
|
||||
.map(|prev_doc| doc > prev_doc)
|
||||
.unwrap_or(true)
|
||||
);
|
||||
self.docs.push(doc);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,8 +3,8 @@ use std::path::PathBuf;
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::{
|
||||
merge_columnar, Cardinality, Column, ColumnarReader, DynamicColumn, StackMergeOrder,
|
||||
CURRENT_VERSION,
|
||||
CURRENT_VERSION, Cardinality, Column, ColumnarReader, DynamicColumn, StackMergeOrder,
|
||||
merge_columnar,
|
||||
};
|
||||
|
||||
const NUM_DOCS: u32 = u16::MAX as u32;
|
||||
|
||||
@@ -3,10 +3,11 @@ use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
|
||||
use common::file_slice::FileSlice;
|
||||
use common::{ByteCount, DateTime, HasLen, OwnedBytes};
|
||||
use common::{ByteCount, DateTime, OwnedBytes};
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::column::{BytesColumn, Column, StrColumn};
|
||||
use crate::column_values::{monotonic_map_column, StrictlyMonotonicFn};
|
||||
use crate::column_values::{StrictlyMonotonicFn, monotonic_map_column};
|
||||
use crate::columnar::ColumnType;
|
||||
use crate::{Cardinality, ColumnIndex, ColumnValues, NumericalType, Version};
|
||||
|
||||
@@ -317,10 +318,89 @@ impl DynamicColumnHandle {
|
||||
}
|
||||
|
||||
pub fn num_bytes(&self) -> ByteCount {
|
||||
self.file_slice.len().into()
|
||||
self.file_slice.num_bytes()
|
||||
}
|
||||
|
||||
/// Legacy helper returning the column space usage.
|
||||
pub fn column_and_dictionary_num_bytes(&self) -> io::Result<ColumnSpaceUsage> {
|
||||
self.space_usage()
|
||||
}
|
||||
|
||||
/// Return the space usage of the column, optionally broken down by dictionary and column
|
||||
/// values.
|
||||
///
|
||||
/// For dictionary encoded columns (strings and bytes), this splits the total footprint into
|
||||
/// the dictionary and the remaining column data (including index and values).
|
||||
/// For all other column types, the dictionary size is `None` and the column size
|
||||
/// equals the total bytes.
|
||||
pub fn space_usage(&self) -> io::Result<ColumnSpaceUsage> {
|
||||
let total_num_bytes = self.num_bytes();
|
||||
let dynamic_column = self.open()?;
|
||||
let dictionary_num_bytes = match &dynamic_column {
|
||||
DynamicColumn::Bytes(bytes_column) => bytes_column.dictionary().num_bytes(),
|
||||
DynamicColumn::Str(str_column) => str_column.dictionary().num_bytes(),
|
||||
_ => {
|
||||
return Ok(ColumnSpaceUsage::new(self.num_bytes(), None));
|
||||
}
|
||||
};
|
||||
assert!(dictionary_num_bytes <= total_num_bytes);
|
||||
let column_num_bytes =
|
||||
ByteCount::from(total_num_bytes.get_bytes() - dictionary_num_bytes.get_bytes());
|
||||
Ok(ColumnSpaceUsage::new(
|
||||
column_num_bytes,
|
||||
Some(dictionary_num_bytes),
|
||||
))
|
||||
}
|
||||
|
||||
pub fn column_type(&self) -> ColumnType {
|
||||
self.column_type
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents space usage of a column.
|
||||
///
|
||||
/// `column_num_bytes` tracks the column payload (index, values and footer).
|
||||
/// For dictionary encoded columns, `dictionary_num_bytes` captures the dictionary footprint.
|
||||
/// [`ColumnSpaceUsage::total_num_bytes`] returns the sum of both parts.
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub struct ColumnSpaceUsage {
|
||||
column_num_bytes: ByteCount,
|
||||
dictionary_num_bytes: Option<ByteCount>,
|
||||
}
|
||||
|
||||
impl ColumnSpaceUsage {
|
||||
pub(crate) fn new(
|
||||
column_num_bytes: ByteCount,
|
||||
dictionary_num_bytes: Option<ByteCount>,
|
||||
) -> Self {
|
||||
ColumnSpaceUsage {
|
||||
column_num_bytes,
|
||||
dictionary_num_bytes,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn column_num_bytes(&self) -> ByteCount {
|
||||
self.column_num_bytes
|
||||
}
|
||||
|
||||
pub fn dictionary_num_bytes(&self) -> Option<ByteCount> {
|
||||
self.dictionary_num_bytes
|
||||
}
|
||||
|
||||
pub fn total_num_bytes(&self) -> ByteCount {
|
||||
self.column_num_bytes + self.dictionary_num_bytes.unwrap_or_default()
|
||||
}
|
||||
|
||||
/// Merge two space usage values by summing their components.
|
||||
pub fn merge(&self, other: &ColumnSpaceUsage) -> ColumnSpaceUsage {
|
||||
let dictionary_num_bytes = match (self.dictionary_num_bytes, other.dictionary_num_bytes) {
|
||||
(Some(lhs), Some(rhs)) => Some(lhs + rhs),
|
||||
(Some(val), None) | (None, Some(val)) => Some(val),
|
||||
(None, None) => None,
|
||||
};
|
||||
ColumnSpaceUsage {
|
||||
column_num_bytes: self.column_num_bytes + other.column_num_bytes,
|
||||
dictionary_num_bytes,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -17,15 +17,10 @@
|
||||
//! column.
|
||||
//! - [column_values]: Stores the values of a column in a dense format.
|
||||
|
||||
#![cfg_attr(all(feature = "unstable", test), feature(test))]
|
||||
|
||||
#[cfg(test)]
|
||||
#[macro_use]
|
||||
extern crate more_asserts;
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
extern crate test;
|
||||
|
||||
use std::fmt::Display;
|
||||
use std::io;
|
||||
|
||||
@@ -44,16 +39,16 @@ pub use block_accessor::ColumnBlockAccessor;
|
||||
pub use column::{BytesColumn, Column, StrColumn};
|
||||
pub use column_index::ColumnIndex;
|
||||
pub use column_values::{
|
||||
ColumnValues, EmptyColumnValues, MonotonicallyMappableToU128, MonotonicallyMappableToU64,
|
||||
ColumnValues, EmptyColumnValues, MonotonicallyMappableToU64, MonotonicallyMappableToU128,
|
||||
};
|
||||
pub use columnar::{
|
||||
merge_columnar, ColumnType, ColumnarReader, ColumnarWriter, HasAssociatedColumnType,
|
||||
MergeRowOrder, ShuffleMergeOrder, StackMergeOrder, Version, CURRENT_VERSION,
|
||||
CURRENT_VERSION, ColumnType, ColumnarReader, ColumnarWriter, HasAssociatedColumnType,
|
||||
MergeRowOrder, ShuffleMergeOrder, StackMergeOrder, Version, merge_columnar,
|
||||
};
|
||||
use sstable::VoidSSTable;
|
||||
pub use value::{NumericalType, NumericalValue};
|
||||
|
||||
pub use self::dynamic_column::{DynamicColumn, DynamicColumnHandle};
|
||||
pub use self::dynamic_column::{ColumnSpaceUsage, DynamicColumn, DynamicColumnHandle};
|
||||
|
||||
pub type RowId = u32;
|
||||
pub type DocId = u32;
|
||||
|
||||
@@ -716,8 +716,8 @@ fn test_columnar_merging_number_columns() {
|
||||
// TODO document edge case: required_columns incompatible with values.
|
||||
|
||||
#[allow(clippy::type_complexity)]
|
||||
fn columnar_docs_and_remap(
|
||||
) -> impl Strategy<Value = (Vec<Vec<Vec<(&'static str, ColumnValue)>>>, Vec<RowAddr>)> {
|
||||
fn columnar_docs_and_remap()
|
||||
-> impl Strategy<Value = (Vec<Vec<Vec<(&'static str, ColumnValue)>>>, Vec<RowAddr>)> {
|
||||
proptest::collection::vec(columnar_docs_strategy(), 2..=3).prop_flat_map(
|
||||
|columnars_docs: Vec<Vec<Vec<(&str, ColumnValue)>>>| {
|
||||
let row_addrs: Vec<RowAddr> = columnars_docs
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
use std::str::FromStr;
|
||||
|
||||
use common::DateTime;
|
||||
|
||||
use crate::InvalidData;
|
||||
@@ -9,6 +11,23 @@ pub enum NumericalValue {
|
||||
F64(f64),
|
||||
}
|
||||
|
||||
impl FromStr for NumericalValue {
|
||||
type Err = ();
|
||||
|
||||
fn from_str(s: &str) -> Result<Self, ()> {
|
||||
if let Ok(val_i64) = s.parse::<i64>() {
|
||||
return Ok(val_i64.into());
|
||||
}
|
||||
if let Ok(val_u64) = s.parse::<u64>() {
|
||||
return Ok(val_u64.into());
|
||||
}
|
||||
if let Ok(val_f64) = s.parse::<f64>() {
|
||||
return Ok(NumericalValue::from(val_f64).normalize());
|
||||
}
|
||||
Err(())
|
||||
}
|
||||
}
|
||||
|
||||
impl NumericalValue {
|
||||
pub fn numerical_type(&self) -> NumericalType {
|
||||
match self {
|
||||
@@ -26,7 +45,7 @@ impl NumericalValue {
|
||||
if val <= i64::MAX as u64 {
|
||||
NumericalValue::I64(val as i64)
|
||||
} else {
|
||||
NumericalValue::F64(val as f64)
|
||||
NumericalValue::U64(val)
|
||||
}
|
||||
}
|
||||
NumericalValue::I64(val) => NumericalValue::I64(val),
|
||||
@@ -141,6 +160,7 @@ impl Coerce for DateTime {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::NumericalType;
|
||||
use crate::NumericalValue;
|
||||
|
||||
#[test]
|
||||
fn test_numerical_type_code() {
|
||||
@@ -153,4 +173,58 @@ mod tests {
|
||||
}
|
||||
assert_eq!(num_numerical_type, 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_numerical() {
|
||||
assert_eq!(
|
||||
"123".parse::<NumericalValue>().unwrap(),
|
||||
NumericalValue::I64(123)
|
||||
);
|
||||
assert_eq!(
|
||||
"18446744073709551615".parse::<NumericalValue>().unwrap(),
|
||||
NumericalValue::U64(18446744073709551615u64)
|
||||
);
|
||||
assert_eq!(
|
||||
"1.0".parse::<NumericalValue>().unwrap(),
|
||||
NumericalValue::I64(1i64)
|
||||
);
|
||||
assert_eq!(
|
||||
"1.1".parse::<NumericalValue>().unwrap(),
|
||||
NumericalValue::F64(1.1f64)
|
||||
);
|
||||
assert_eq!(
|
||||
"-1.0".parse::<NumericalValue>().unwrap(),
|
||||
NumericalValue::I64(-1i64)
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_normalize_numerical() {
|
||||
assert_eq!(
|
||||
NumericalValue::from(1u64).normalize(),
|
||||
NumericalValue::I64(1i64),
|
||||
);
|
||||
let limit_val = i64::MAX as u64 + 1u64;
|
||||
assert_eq!(
|
||||
NumericalValue::from(limit_val).normalize(),
|
||||
NumericalValue::U64(limit_val),
|
||||
);
|
||||
assert_eq!(
|
||||
NumericalValue::from(-1i64).normalize(),
|
||||
NumericalValue::I64(-1i64),
|
||||
);
|
||||
assert_eq!(
|
||||
NumericalValue::from(-2.0f64).normalize(),
|
||||
NumericalValue::I64(-2i64),
|
||||
);
|
||||
assert_eq!(
|
||||
NumericalValue::from(-2.1f64).normalize(),
|
||||
NumericalValue::F64(-2.1f64),
|
||||
);
|
||||
let large_float = 2.0f64.powf(70.0f64);
|
||||
assert_eq!(
|
||||
NumericalValue::from(large_float).normalize(),
|
||||
NumericalValue::F64(large_float),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
[package]
|
||||
name = "tantivy-common"
|
||||
version = "0.7.0"
|
||||
version = "0.10.0"
|
||||
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
|
||||
license = "MIT"
|
||||
edition = "2021"
|
||||
edition = "2024"
|
||||
description = "common traits and utility functions used by multiple tantivy subcrates"
|
||||
documentation = "https://docs.rs/tantivy_common/"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
@@ -13,7 +13,7 @@ repository = "https://github.com/quickwit-oss/tantivy"
|
||||
|
||||
[dependencies]
|
||||
byteorder = "1.4.3"
|
||||
ownedbytes = { version= "0.7", path="../ownedbytes" }
|
||||
ownedbytes = { version= "0.9", path="../ownedbytes" }
|
||||
async-trait = "0.1"
|
||||
time = { version = "0.3.10", features = ["serde-well-known"] }
|
||||
serde = { version = "1.0.136", features = ["derive"] }
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
use binggan::{black_box, BenchRunner};
|
||||
use binggan::{BenchRunner, black_box};
|
||||
use rand::seq::IteratorRandom;
|
||||
use rand::thread_rng;
|
||||
use tantivy_common::{serialize_vint_u32, BitSet, TinySet};
|
||||
use tantivy_common::{BitSet, TinySet, serialize_vint_u32};
|
||||
|
||||
fn bench_vint() {
|
||||
let mut runner = BenchRunner::new();
|
||||
|
||||
@@ -183,7 +183,7 @@ pub struct BitSet {
|
||||
}
|
||||
|
||||
fn num_buckets(max_val: u32) -> u32 {
|
||||
(max_val + 63u32) / 64u32
|
||||
max_val.div_ceil(64u32)
|
||||
}
|
||||
|
||||
impl BitSet {
|
||||
|
||||
@@ -65,11 +65,11 @@ pub fn transform_bound_inner_res<TFrom, TTo>(
|
||||
) -> io::Result<Bound<TTo>> {
|
||||
use self::Bound::*;
|
||||
Ok(match bound {
|
||||
Excluded(ref from_val) => match transform(from_val)? {
|
||||
Excluded(from_val) => match transform(from_val)? {
|
||||
TransformBound::NewBound(new_val) => new_val,
|
||||
TransformBound::Existing(new_val) => Excluded(new_val),
|
||||
},
|
||||
Included(ref from_val) => match transform(from_val)? {
|
||||
Included(from_val) => match transform(from_val)? {
|
||||
TransformBound::NewBound(new_val) => new_val,
|
||||
TransformBound::Existing(new_val) => Included(new_val),
|
||||
},
|
||||
@@ -85,11 +85,11 @@ pub fn transform_bound_inner<TFrom, TTo>(
|
||||
) -> Bound<TTo> {
|
||||
use self::Bound::*;
|
||||
match bound {
|
||||
Excluded(ref from_val) => match transform(from_val) {
|
||||
Excluded(from_val) => match transform(from_val) {
|
||||
TransformBound::NewBound(new_val) => new_val,
|
||||
TransformBound::Existing(new_val) => Excluded(new_val),
|
||||
},
|
||||
Included(ref from_val) => match transform(from_val) {
|
||||
Included(from_val) => match transform(from_val) {
|
||||
TransformBound::NewBound(new_val) => new_val,
|
||||
TransformBound::Existing(new_val) => Included(new_val),
|
||||
},
|
||||
@@ -111,8 +111,8 @@ pub fn map_bound<TFrom, TTo>(
|
||||
) -> Bound<TTo> {
|
||||
use self::Bound::*;
|
||||
match bound {
|
||||
Excluded(ref from_val) => Bound::Excluded(transform(from_val)),
|
||||
Included(ref from_val) => Bound::Included(transform(from_val)),
|
||||
Excluded(from_val) => Bound::Excluded(transform(from_val)),
|
||||
Included(from_val) => Bound::Included(transform(from_val)),
|
||||
Unbounded => Unbounded,
|
||||
}
|
||||
}
|
||||
@@ -123,8 +123,8 @@ pub fn map_bound_res<TFrom, TTo, Err>(
|
||||
) -> Result<Bound<TTo>, Err> {
|
||||
use self::Bound::*;
|
||||
Ok(match bound {
|
||||
Excluded(ref from_val) => Excluded(transform(from_val)?),
|
||||
Included(ref from_val) => Included(transform(from_val)?),
|
||||
Excluded(from_val) => Excluded(transform(from_val)?),
|
||||
Included(from_val) => Included(transform(from_val)?),
|
||||
Unbounded => Unbounded,
|
||||
})
|
||||
}
|
||||
|
||||
@@ -74,7 +74,7 @@ impl FileHandle for WrapFile {
|
||||
{
|
||||
use std::io::{Read, Seek};
|
||||
let mut file = self.file.try_clone()?; // Clone the file to read from it separately
|
||||
// Seek to the start position in the file
|
||||
// Seek to the start position in the file
|
||||
file.seek(io::SeekFrom::Start(start as u64))?;
|
||||
// Read the data into the buffer
|
||||
file.read_exact(&mut buffer)?;
|
||||
@@ -346,8 +346,8 @@ mod tests {
|
||||
use std::sync::Arc;
|
||||
|
||||
use super::{FileHandle, FileSlice};
|
||||
use crate::file_slice::combine_ranges;
|
||||
use crate::HasLen;
|
||||
use crate::file_slice::combine_ranges;
|
||||
|
||||
#[test]
|
||||
fn test_file_slice() -> io::Result<()> {
|
||||
|
||||
@@ -22,7 +22,7 @@ pub use json_path_writer::JsonPathWriter;
|
||||
pub use ownedbytes::{OwnedBytes, StableDeref};
|
||||
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
|
||||
pub use vint::{
|
||||
read_u32_vint, read_u32_vint_no_advance, serialize_vint_u32, write_u32_vint, VInt, VIntU128,
|
||||
VInt, VIntU128, read_u32_vint, read_u32_vint_no_advance, serialize_vint_u32, write_u32_vint,
|
||||
};
|
||||
pub use writer::{AntiCallToken, CountingWriter, TerminatingWrite};
|
||||
|
||||
@@ -177,8 +177,10 @@ pub(crate) mod test {
|
||||
|
||||
#[test]
|
||||
fn test_f64_order() {
|
||||
assert!(!(f64_to_u64(f64::NEG_INFINITY)..f64_to_u64(f64::INFINITY))
|
||||
.contains(&f64_to_u64(f64::NAN))); // nan is not a number
|
||||
assert!(
|
||||
!(f64_to_u64(f64::NEG_INFINITY)..f64_to_u64(f64::INFINITY))
|
||||
.contains(&f64_to_u64(f64::NAN))
|
||||
); // nan is not a number
|
||||
assert!(f64_to_u64(1.5) > f64_to_u64(1.0)); // same exponent, different mantissa
|
||||
assert!(f64_to_u64(2.0) > f64_to_u64(1.0)); // same mantissa, different exponent
|
||||
assert!(f64_to_u64(2.0) > f64_to_u64(1.5)); // different exponent and mantissa
|
||||
|
||||
@@ -28,7 +28,9 @@ impl BinarySerializable for VIntU128 {
|
||||
writer.write_all(&buffer)
|
||||
}
|
||||
|
||||
#[allow(clippy::unbuffered_bytes)]
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
#[allow(clippy::unbuffered_bytes)]
|
||||
let mut bytes = reader.bytes();
|
||||
let mut result = 0u128;
|
||||
let mut shift = 0u64;
|
||||
@@ -195,7 +197,9 @@ impl BinarySerializable for VInt {
|
||||
writer.write_all(&buffer[0..num_bytes])
|
||||
}
|
||||
|
||||
#[allow(clippy::unbuffered_bytes)]
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
#[allow(clippy::unbuffered_bytes)]
|
||||
let mut bytes = reader.bytes();
|
||||
let mut result = 0u64;
|
||||
let mut shift = 0u64;
|
||||
@@ -222,7 +226,7 @@ impl BinarySerializable for VInt {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use super::{serialize_vint_u32, BinarySerializable, VInt};
|
||||
use super::{BinarySerializable, VInt, serialize_vint_u32};
|
||||
|
||||
fn aux_test_vint(val: u64) {
|
||||
let mut v = [14u8; 10];
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 30 KiB After Width: | Height: | Size: 7.4 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 653 KiB |
@@ -51,7 +51,7 @@ fn main() -> tantivy::Result<()> {
|
||||
|
||||
// Our second field is body.
|
||||
// We want full-text search for it, but we do not
|
||||
// need to be able to be able to retrieve it
|
||||
// need to be able to retrieve it
|
||||
// for our application.
|
||||
//
|
||||
// We can make our index lighter by omitting the `STORED` flag.
|
||||
@@ -208,7 +208,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// is the role of the `TopDocs` collector.
|
||||
|
||||
// We can now perform our query.
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
|
||||
// The actual documents still need to be
|
||||
// retrieved from Tantivy's store.
|
||||
@@ -226,7 +226,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let query = query_parser.parse_query("title:sea^20 body:whale^70")?;
|
||||
|
||||
let (_score, doc_address) = searcher
|
||||
.search(&query, &TopDocs::with_limit(1))?
|
||||
.search(&query, &TopDocs::with_limit(1).order_by_score())?
|
||||
.into_iter()
|
||||
.next()
|
||||
.unwrap();
|
||||
|
||||
@@ -100,7 +100,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// here we want to get a hit on the 'ken' in Frankenstein
|
||||
let query = query_parser.parse_query("ken")?;
|
||||
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
|
||||
for (_, doc_address) in top_docs {
|
||||
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
|
||||
|
||||
@@ -50,14 +50,14 @@ fn main() -> tantivy::Result<()> {
|
||||
{
|
||||
// Simple exact search on the date
|
||||
let query = query_parser.parse_query("occurred_at:\"2022-06-22T12:53:50.53Z\"")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 1);
|
||||
}
|
||||
{
|
||||
// Range query on the date field
|
||||
let query = query_parser
|
||||
.parse_query(r#"occurred_at:[2022-06-22T12:58:00Z TO 2022-06-23T00:00:00Z}"#)?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(4))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(4).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 1);
|
||||
for (_score, doc_address) in count_docs {
|
||||
let retrieved_doc = searcher.doc::<TantivyDocument>(doc_address)?;
|
||||
|
||||
@@ -28,7 +28,7 @@ fn extract_doc_given_isbn(
|
||||
// The second argument is here to tell we don't care about decoding positions,
|
||||
// or term frequencies.
|
||||
let term_query = TermQuery::new(isbn_term.clone(), IndexRecordOption::Basic);
|
||||
let top_docs = searcher.search(&term_query, &TopDocs::with_limit(1))?;
|
||||
let top_docs = searcher.search(&term_query, &TopDocs::with_limit(1).order_by_score())?;
|
||||
|
||||
if let Some((_score, doc_address)) = top_docs.first() {
|
||||
let doc = searcher.doc(*doc_address)?;
|
||||
|
||||
212
examples/filter_aggregation.rs
Normal file
212
examples/filter_aggregation.rs
Normal file
@@ -0,0 +1,212 @@
|
||||
// # Filter Aggregation Example
|
||||
//
|
||||
// This example demonstrates filter aggregations - creating buckets of documents
|
||||
// matching specific queries, with nested aggregations computed on each bucket.
|
||||
//
|
||||
// Filter aggregations are useful for computing metrics on different subsets of
|
||||
// your data in a single query, like "average price overall + average price for
|
||||
// electronics + count of in-stock items".
|
||||
|
||||
use serde_json::json;
|
||||
use tantivy::aggregation::agg_req::Aggregations;
|
||||
use tantivy::aggregation::AggregationCollector;
|
||||
use tantivy::query::AllQuery;
|
||||
use tantivy::schema::{Schema, FAST, INDEXED, TEXT};
|
||||
use tantivy::{doc, Index};
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// Create a simple product schema
|
||||
let mut schema_builder = Schema::builder();
|
||||
schema_builder.add_text_field("category", TEXT | FAST);
|
||||
schema_builder.add_text_field("brand", TEXT | FAST);
|
||||
schema_builder.add_u64_field("price", FAST);
|
||||
schema_builder.add_f64_field("rating", FAST);
|
||||
schema_builder.add_bool_field("in_stock", FAST | INDEXED);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
// Create index and add sample products
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
let mut writer = index.writer(50_000_000)?;
|
||||
|
||||
writer.add_document(doc!(
|
||||
schema.get_field("category")? => "electronics",
|
||||
schema.get_field("brand")? => "apple",
|
||||
schema.get_field("price")? => 999u64,
|
||||
schema.get_field("rating")? => 4.5f64,
|
||||
schema.get_field("in_stock")? => true
|
||||
))?;
|
||||
writer.add_document(doc!(
|
||||
schema.get_field("category")? => "electronics",
|
||||
schema.get_field("brand")? => "samsung",
|
||||
schema.get_field("price")? => 799u64,
|
||||
schema.get_field("rating")? => 4.2f64,
|
||||
schema.get_field("in_stock")? => true
|
||||
))?;
|
||||
writer.add_document(doc!(
|
||||
schema.get_field("category")? => "clothing",
|
||||
schema.get_field("brand")? => "nike",
|
||||
schema.get_field("price")? => 120u64,
|
||||
schema.get_field("rating")? => 4.1f64,
|
||||
schema.get_field("in_stock")? => false
|
||||
))?;
|
||||
writer.add_document(doc!(
|
||||
schema.get_field("category")? => "books",
|
||||
schema.get_field("brand")? => "penguin",
|
||||
schema.get_field("price")? => 25u64,
|
||||
schema.get_field("rating")? => 4.8f64,
|
||||
schema.get_field("in_stock")? => true
|
||||
))?;
|
||||
|
||||
writer.commit()?;
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
|
||||
// Example 1: Basic filter with metric aggregation
|
||||
println!("=== Example 1: Electronics average price ===");
|
||||
let agg_req = json!({
|
||||
"electronics": {
|
||||
"filter": "category:electronics",
|
||||
"aggs": {
|
||||
"avg_price": { "avg": { "field": "price" } }
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
let agg: Aggregations = serde_json::from_value(agg_req)?;
|
||||
let collector = AggregationCollector::from_aggs(agg, Default::default());
|
||||
let result = searcher.search(&AllQuery, &collector)?;
|
||||
|
||||
let expected = json!({
|
||||
"electronics": {
|
||||
"doc_count": 2,
|
||||
"avg_price": { "value": 899.0 }
|
||||
}
|
||||
});
|
||||
assert_eq!(serde_json::to_value(&result)?, expected);
|
||||
println!("{}\n", serde_json::to_string_pretty(&result)?);
|
||||
|
||||
// Example 2: Multiple independent filters
|
||||
println!("=== Example 2: Multiple filters in one query ===");
|
||||
let agg_req = json!({
|
||||
"electronics": {
|
||||
"filter": "category:electronics",
|
||||
"aggs": { "avg_price": { "avg": { "field": "price" } } }
|
||||
},
|
||||
"in_stock": {
|
||||
"filter": "in_stock:true",
|
||||
"aggs": { "count": { "value_count": { "field": "brand" } } }
|
||||
},
|
||||
"high_rated": {
|
||||
"filter": "rating:[4.5 TO *]",
|
||||
"aggs": { "count": { "value_count": { "field": "brand" } } }
|
||||
}
|
||||
});
|
||||
|
||||
let agg: Aggregations = serde_json::from_value(agg_req)?;
|
||||
let collector = AggregationCollector::from_aggs(agg, Default::default());
|
||||
let result = searcher.search(&AllQuery, &collector)?;
|
||||
|
||||
let expected = json!({
|
||||
"electronics": {
|
||||
"doc_count": 2,
|
||||
"avg_price": { "value": 899.0 }
|
||||
},
|
||||
"in_stock": {
|
||||
"doc_count": 3,
|
||||
"count": { "value": 3.0 }
|
||||
},
|
||||
"high_rated": {
|
||||
"doc_count": 2,
|
||||
"count": { "value": 2.0 }
|
||||
}
|
||||
});
|
||||
assert_eq!(serde_json::to_value(&result)?, expected);
|
||||
println!("{}\n", serde_json::to_string_pretty(&result)?);
|
||||
|
||||
// Example 3: Nested filters - progressive refinement
|
||||
println!("=== Example 3: Nested filters ===");
|
||||
let agg_req = json!({
|
||||
"in_stock": {
|
||||
"filter": "in_stock:true",
|
||||
"aggs": {
|
||||
"electronics": {
|
||||
"filter": "category:electronics",
|
||||
"aggs": {
|
||||
"expensive": {
|
||||
"filter": "price:[800 TO *]",
|
||||
"aggs": {
|
||||
"avg_rating": { "avg": { "field": "rating" } }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
let agg: Aggregations = serde_json::from_value(agg_req)?;
|
||||
let collector = AggregationCollector::from_aggs(agg, Default::default());
|
||||
let result = searcher.search(&AllQuery, &collector)?;
|
||||
|
||||
let expected = json!({
|
||||
"in_stock": {
|
||||
"doc_count": 3, // apple, samsung, penguin
|
||||
"electronics": {
|
||||
"doc_count": 2, // apple, samsung
|
||||
"expensive": {
|
||||
"doc_count": 1, // only apple (999)
|
||||
"avg_rating": { "value": 4.5 }
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
assert_eq!(serde_json::to_value(&result)?, expected);
|
||||
println!("{}\n", serde_json::to_string_pretty(&result)?);
|
||||
|
||||
// Example 4: Filter with sub-aggregation (terms)
|
||||
println!("=== Example 4: Filter with terms sub-aggregation ===");
|
||||
let agg_req = json!({
|
||||
"electronics": {
|
||||
"filter": "category:electronics",
|
||||
"aggs": {
|
||||
"by_brand": {
|
||||
"terms": { "field": "brand" },
|
||||
"aggs": {
|
||||
"avg_price": { "avg": { "field": "price" } }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
let agg: Aggregations = serde_json::from_value(agg_req)?;
|
||||
let collector = AggregationCollector::from_aggs(agg, Default::default());
|
||||
let result = searcher.search(&AllQuery, &collector)?;
|
||||
|
||||
let expected = json!({
|
||||
"electronics": {
|
||||
"doc_count": 2,
|
||||
"by_brand": {
|
||||
"buckets": [
|
||||
{
|
||||
"key": "samsung",
|
||||
"doc_count": 1,
|
||||
"avg_price": { "value": 799.0 }
|
||||
},
|
||||
{
|
||||
"key": "apple",
|
||||
"doc_count": 1,
|
||||
"avg_price": { "value": 999.0 }
|
||||
}
|
||||
],
|
||||
"sum_other_doc_count": 0,
|
||||
"doc_count_error_upper_bound": 0
|
||||
}
|
||||
}
|
||||
});
|
||||
assert_eq!(serde_json::to_value(&result)?, expected);
|
||||
println!("{}", serde_json::to_string_pretty(&result)?);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -85,7 +85,6 @@ fn main() -> tantivy::Result<()> {
|
||||
index_writer.add_document(doc!(
|
||||
title => "The Diary of a Young Girl",
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
|
||||
// ### Committing
|
||||
//
|
||||
@@ -146,7 +145,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let query = FuzzyTermQuery::new(term, 2, true);
|
||||
|
||||
let (top_docs, count) = searcher
|
||||
.search(&query, &(TopDocs::with_limit(5), Count))
|
||||
.search(&query, &(TopDocs::with_limit(5).order_by_score(), Count))
|
||||
.unwrap();
|
||||
assert_eq!(count, 3);
|
||||
assert_eq!(top_docs.len(), 3);
|
||||
|
||||
@@ -69,25 +69,25 @@ fn main() -> tantivy::Result<()> {
|
||||
{
|
||||
// Inclusive range queries
|
||||
let query = query_parser.parse_query("ip:[192.168.0.80 TO 192.168.0.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 1);
|
||||
}
|
||||
{
|
||||
// Exclusive range queries
|
||||
let query = query_parser.parse_query("ip:{192.168.0.80 TO 192.168.1.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 0);
|
||||
}
|
||||
{
|
||||
// Find docs with IP addresses smaller equal 192.168.1.100
|
||||
let query = query_parser.parse_query("ip:[* TO 192.168.1.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
{
|
||||
// Find docs with IP addresses smaller than 192.168.1.100
|
||||
let query = query_parser.parse_query("ip:[* TO 192.168.1.100}")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
|
||||
|
||||
@@ -59,12 +59,12 @@ fn main() -> tantivy::Result<()> {
|
||||
let query_parser = QueryParser::for_index(&index, vec![event_type, attributes]);
|
||||
{
|
||||
let query = query_parser.parse_query("target:submit-button")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
{
|
||||
let query = query_parser.parse_query("target:submit")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
{
|
||||
@@ -74,33 +74,33 @@ fn main() -> tantivy::Result<()> {
|
||||
}
|
||||
{
|
||||
let query = query_parser.parse_query("click AND cart.product_id:133")?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(hits.len(), 1);
|
||||
}
|
||||
{
|
||||
// The sub-fields in the json field marked as default field still need to be explicitly
|
||||
// addressed
|
||||
let query = query_parser.parse_query("click AND 133")?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(hits.len(), 0);
|
||||
}
|
||||
{
|
||||
// Default json fields are ignored if they collide with the schema
|
||||
let query = query_parser.parse_query("event_type:holiday-sale")?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(hits.len(), 0);
|
||||
}
|
||||
// # Query via full attribute path
|
||||
{
|
||||
// This only searches in our schema's `event_type` field
|
||||
let query = query_parser.parse_query("event_type:click")?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(hits.len(), 2);
|
||||
}
|
||||
{
|
||||
// Default json fields can still be accessed by full path
|
||||
let query = query_parser.parse_query("attributes.event_type:holiday-sale")?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(hits.len(), 1);
|
||||
}
|
||||
Ok(())
|
||||
|
||||
@@ -63,7 +63,7 @@ fn main() -> Result<()> {
|
||||
// but not "in the Gulf Stream".
|
||||
let query = query_parser.parse_query("\"in the su\"*")?;
|
||||
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
let mut titles = top_docs
|
||||
.into_iter()
|
||||
.map(|(_score, doc_address)| {
|
||||
|
||||
@@ -107,7 +107,8 @@ fn main() -> tantivy::Result<()> {
|
||||
IndexRecordOption::Basic,
|
||||
);
|
||||
|
||||
let (top_docs, count) = searcher.search(&query, &(TopDocs::with_limit(2), Count))?;
|
||||
let (top_docs, count) =
|
||||
searcher.search(&query, &(TopDocs::with_limit(2).order_by_score(), Count))?;
|
||||
|
||||
assert_eq!(count, 2);
|
||||
|
||||
@@ -128,7 +129,8 @@ fn main() -> tantivy::Result<()> {
|
||||
IndexRecordOption::Basic,
|
||||
);
|
||||
|
||||
let (_top_docs, count) = searcher.search(&query, &(TopDocs::with_limit(2), Count))?;
|
||||
let (_top_docs, count) =
|
||||
searcher.search(&query, &(TopDocs::with_limit(2).order_by_score(), Count))?;
|
||||
|
||||
assert_eq!(count, 0);
|
||||
|
||||
|
||||
@@ -50,7 +50,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let query_parser = QueryParser::for_index(&index, vec![title, body]);
|
||||
let query = query_parser.parse_query("sycamore spring")?;
|
||||
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
|
||||
let snippet_generator = SnippetGenerator::create(&searcher, &*query, body)?;
|
||||
|
||||
|
||||
@@ -102,7 +102,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// stop words are applied on the query as well.
|
||||
// The following will be equivalent to `title:frankenstein`
|
||||
let query = query_parser.parse_query("title:\"the Frankenstein\"")?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
|
||||
for (score, doc_address) in top_docs {
|
||||
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
|
||||
|
||||
@@ -164,7 +164,7 @@ fn main() -> tantivy::Result<()> {
|
||||
move |doc_id: DocId| Reverse(price[doc_id as usize])
|
||||
};
|
||||
|
||||
let most_expensive_first = TopDocs::with_limit(10).custom_score(score_by_price);
|
||||
let most_expensive_first = TopDocs::with_limit(10).order_by(score_by_price);
|
||||
|
||||
let hits = searcher.search(&query, &most_expensive_first)?;
|
||||
assert_eq!(
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
[package]
|
||||
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
|
||||
name = "ownedbytes"
|
||||
version = "0.7.0"
|
||||
version = "0.9.0"
|
||||
edition = "2021"
|
||||
description = "Expose data as static slice"
|
||||
license = "MIT"
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-query-grammar"
|
||||
version = "0.22.0"
|
||||
version = "0.25.0"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = ["database-implementations", "data-structures"]
|
||||
@@ -9,9 +9,11 @@ homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
repository = "https://github.com/quickwit-oss/tantivy"
|
||||
readme = "README.md"
|
||||
keywords = ["search", "information", "retrieval"]
|
||||
edition = "2021"
|
||||
edition = "2024"
|
||||
|
||||
[dependencies]
|
||||
nom = "7"
|
||||
serde = { version = "1.0.219", features = ["derive"] }
|
||||
serde_json = "1.0.140"
|
||||
ordered-float = "5.0.0"
|
||||
fnv = "1.0.7"
|
||||
|
||||
@@ -117,6 +117,22 @@ where F: nom::Parser<I, (O, ErrorList), Infallible> {
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn terminated_infallible<I, O1, O2, F, G>(
|
||||
mut first: F,
|
||||
mut second: G,
|
||||
) -> impl FnMut(I) -> JResult<I, O1>
|
||||
where
|
||||
F: nom::Parser<I, (O1, ErrorList), Infallible>,
|
||||
G: nom::Parser<I, (O2, ErrorList), Infallible>,
|
||||
{
|
||||
move |input: I| {
|
||||
let (input, (o1, mut err)) = first.parse(input)?;
|
||||
let (input, (_, mut err2)) = second.parse(input)?;
|
||||
err.append(&mut err2);
|
||||
Ok((input, (o1, err)))
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn delimited_infallible<I, O1, O2, O3, F, G, H>(
|
||||
mut first: F,
|
||||
mut second: G,
|
||||
@@ -186,19 +202,19 @@ macro_rules! tuple_trait_impl(
|
||||
);
|
||||
|
||||
macro_rules! tuple_trait_inner(
|
||||
($it:tt, $self:expr, $input:expr, (), $error_list:expr, $head:ident $($id:ident)+) => ({
|
||||
($it:tt, $self:expr_2021, $input:expr_2021, (), $error_list:expr_2021, $head:ident $($id:ident)+) => ({
|
||||
let (i, (o, mut err)) = $self.$it.parse($input.clone())?;
|
||||
$error_list.append(&mut err);
|
||||
|
||||
succ!($it, tuple_trait_inner!($self, i, ( o ), $error_list, $($id)+))
|
||||
});
|
||||
($it:tt, $self:expr, $input:expr, ($($parsed:tt)*), $error_list:expr, $head:ident $($id:ident)+) => ({
|
||||
($it:tt, $self:expr_2021, $input:expr_2021, ($($parsed:tt)*), $error_list:expr_2021, $head:ident $($id:ident)+) => ({
|
||||
let (i, (o, mut err)) = $self.$it.parse($input.clone())?;
|
||||
$error_list.append(&mut err);
|
||||
|
||||
succ!($it, tuple_trait_inner!($self, i, ($($parsed)* , o), $error_list, $($id)+))
|
||||
});
|
||||
($it:tt, $self:expr, $input:expr, ($($parsed:tt)*), $error_list:expr, $head:ident) => ({
|
||||
($it:tt, $self:expr_2021, $input:expr_2021, ($($parsed:tt)*), $error_list:expr_2021, $head:ident) => ({
|
||||
let (i, (o, mut err)) = $self.$it.parse($input.clone())?;
|
||||
$error_list.append(&mut err);
|
||||
|
||||
@@ -328,13 +344,13 @@ macro_rules! alt_trait_impl(
|
||||
);
|
||||
|
||||
macro_rules! alt_trait_inner(
|
||||
($it:tt, $self:expr, $input:expr, $head_cond:ident $head:ident, $($id_cond:ident $id:ident),+) => (
|
||||
($it:tt, $self:expr_2021, $input:expr_2021, $head_cond:ident $head:ident, $($id_cond:ident $id:ident),+) => (
|
||||
match $self.$it.0.parse($input.clone()) {
|
||||
Err(_) => succ!($it, alt_trait_inner!($self, $input, $($id_cond $id),+)),
|
||||
Ok((input_left, _)) => Some($self.$it.1.parse(input_left)),
|
||||
}
|
||||
);
|
||||
($it:tt, $self:expr, $input:expr, $head_cond:ident $head:ident) => (
|
||||
($it:tt, $self:expr_2021, $input:expr_2021, $head_cond:ident $head:ident) => (
|
||||
None
|
||||
);
|
||||
);
|
||||
|
||||
@@ -31,7 +31,17 @@ pub fn parse_query_lenient(query: &str) -> (UserInputAst, Vec<LenientError>) {
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::{parse_query, parse_query_lenient};
|
||||
use crate::{UserInputAst, parse_query, parse_query_lenient};
|
||||
|
||||
#[test]
|
||||
fn test_deduplication() {
|
||||
let ast: UserInputAst = parse_query("a a").unwrap();
|
||||
let json = serde_json::to_string(&ast).unwrap();
|
||||
assert_eq!(
|
||||
json,
|
||||
r#"{"type":"bool","clauses":[[null,{"type":"literal","field_name":null,"phrase":"a","delimiter":"none","slop":0,"prefix":false}]]}"#
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_query_serialization() {
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
use std::borrow::Cow;
|
||||
use std::iter::once;
|
||||
|
||||
use fnv::FnvHashSet;
|
||||
use nom::IResult;
|
||||
use nom::branch::alt;
|
||||
use nom::bytes::complete::tag;
|
||||
use nom::character::complete::{
|
||||
@@ -10,12 +12,11 @@ use nom::combinator::{eof, map, map_res, opt, peek, recognize, value, verify};
|
||||
use nom::error::{Error, ErrorKind};
|
||||
use nom::multi::{many0, many1, separated_list0};
|
||||
use nom::sequence::{delimited, preceded, separated_pair, terminated, tuple};
|
||||
use nom::IResult;
|
||||
|
||||
use super::user_input_ast::{UserInputAst, UserInputBound, UserInputLeaf, UserInputLiteral};
|
||||
use crate::Occur;
|
||||
use crate::infallible::*;
|
||||
use crate::user_input_ast::Delimiter;
|
||||
use crate::Occur;
|
||||
|
||||
// Note: '-' char is only forbidden at the beginning of a field name, would be clearer to add it to
|
||||
// special characters.
|
||||
@@ -36,7 +37,7 @@ fn field_name(inp: &str) -> IResult<&str, String> {
|
||||
alt((first_char, escape_sequence())),
|
||||
many0(alt((simple_char, escape_sequence(), char('\\')))),
|
||||
)),
|
||||
char(':'),
|
||||
tuple((multispace0, char(':'), multispace0)),
|
||||
),
|
||||
|(first_char, next)| once(first_char).chain(next).collect(),
|
||||
)(inp)
|
||||
@@ -68,7 +69,7 @@ fn interpret_escape(source: &str) -> String {
|
||||
|
||||
/// Consume a word outside of any context.
|
||||
// TODO should support escape sequences
|
||||
fn word(inp: &str) -> IResult<&str, Cow<str>> {
|
||||
fn word(inp: &str) -> IResult<&str, Cow<'_, str>> {
|
||||
map_res(
|
||||
recognize(tuple((
|
||||
alt((
|
||||
@@ -305,15 +306,14 @@ fn term_group_infallible(inp: &str) -> JResult<&str, UserInputAst> {
|
||||
let (inp, (field_name, _, _, _)) =
|
||||
tuple((field_name, multispace0, char('('), multispace0))(inp).expect("precondition failed");
|
||||
|
||||
let res = delimited_infallible(
|
||||
delimited_infallible(
|
||||
nothing,
|
||||
map(ast_infallible, |(mut ast, errors)| {
|
||||
ast.set_default_field(field_name.to_string());
|
||||
(ast, errors)
|
||||
}),
|
||||
opt_i_err(char(')'), "expected ')'"),
|
||||
)(inp);
|
||||
res
|
||||
)(inp)
|
||||
}
|
||||
|
||||
fn exists(inp: &str) -> IResult<&str, UserInputLeaf> {
|
||||
@@ -367,7 +367,10 @@ fn literal(inp: &str) -> IResult<&str, UserInputAst> {
|
||||
// something (a field name) got parsed before
|
||||
alt((
|
||||
map(
|
||||
tuple((opt(field_name), alt((range, set, exists, term_or_phrase)))),
|
||||
tuple((
|
||||
opt(field_name),
|
||||
alt((range, set, exists, regex, term_or_phrase)),
|
||||
)),
|
||||
|(field_name, leaf): (Option<String>, UserInputLeaf)| leaf.set_field(field_name).into(),
|
||||
),
|
||||
term_group,
|
||||
@@ -389,6 +392,10 @@ fn literal_no_group_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>>
|
||||
value((), peek(one_of("{[><"))),
|
||||
map(range_infallible, |(range, errs)| (Some(range), errs)),
|
||||
),
|
||||
(
|
||||
value((), peek(one_of("/"))),
|
||||
map(regex_infallible, |(regex, errs)| (Some(regex), errs)),
|
||||
),
|
||||
),
|
||||
delimited_infallible(space0_infallible, term_or_phrase_infallible, nothing),
|
||||
),
|
||||
@@ -689,6 +696,61 @@ fn set_infallible(mut inp: &str) -> JResult<&str, UserInputLeaf> {
|
||||
}
|
||||
}
|
||||
|
||||
fn regex(inp: &str) -> IResult<&str, UserInputLeaf> {
|
||||
map(
|
||||
terminated(
|
||||
delimited(
|
||||
char('/'),
|
||||
many1(alt((preceded(char('\\'), char('/')), none_of("/")))),
|
||||
char('/'),
|
||||
),
|
||||
peek(alt((multispace1, eof))),
|
||||
),
|
||||
|elements| UserInputLeaf::Regex {
|
||||
field: None,
|
||||
pattern: elements.into_iter().collect::<String>(),
|
||||
},
|
||||
)(inp)
|
||||
}
|
||||
|
||||
fn regex_infallible(inp: &str) -> JResult<&str, UserInputLeaf> {
|
||||
match terminated_infallible(
|
||||
delimited_infallible(
|
||||
opt_i_err(char('/'), "missing delimiter /"),
|
||||
opt_i(many1(alt((preceded(char('\\'), char('/')), none_of("/"))))),
|
||||
opt_i_err(char('/'), "missing delimiter /"),
|
||||
),
|
||||
opt_i_err(
|
||||
peek(alt((multispace1, eof))),
|
||||
"expected whitespace or end of input",
|
||||
),
|
||||
)(inp)
|
||||
{
|
||||
Ok((rest, (elements_part, errors))) => {
|
||||
let pattern = match elements_part {
|
||||
Some(elements_part) => elements_part.into_iter().collect(),
|
||||
None => String::new(),
|
||||
};
|
||||
let res = UserInputLeaf::Regex {
|
||||
field: None,
|
||||
pattern,
|
||||
};
|
||||
Ok((rest, (res, errors)))
|
||||
}
|
||||
Err(e) => {
|
||||
let errs = vec![LenientErrorInternal {
|
||||
pos: inp.len(),
|
||||
message: e.to_string(),
|
||||
}];
|
||||
let res = UserInputLeaf::Regex {
|
||||
field: None,
|
||||
pattern: String::new(),
|
||||
};
|
||||
Ok((inp, (res, errs)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn negate(expr: UserInputAst) -> UserInputAst {
|
||||
expr.unary(Occur::MustNot)
|
||||
}
|
||||
@@ -696,7 +758,17 @@ fn negate(expr: UserInputAst) -> UserInputAst {
|
||||
fn leaf(inp: &str) -> IResult<&str, UserInputAst> {
|
||||
alt((
|
||||
delimited(char('('), ast, char(')')),
|
||||
map(char('*'), |_| UserInputAst::from(UserInputLeaf::All)),
|
||||
map(
|
||||
terminated(
|
||||
char('*'),
|
||||
peek(alt((
|
||||
value((), multispace1),
|
||||
value((), char(')')),
|
||||
value((), eof),
|
||||
))),
|
||||
),
|
||||
|_| UserInputAst::from(UserInputLeaf::All),
|
||||
),
|
||||
map(preceded(tuple((tag("NOT"), multispace1)), leaf), negate),
|
||||
literal,
|
||||
))(inp)
|
||||
@@ -717,7 +789,17 @@ fn leaf_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>> {
|
||||
),
|
||||
),
|
||||
(
|
||||
value((), char('*')),
|
||||
value(
|
||||
(),
|
||||
terminated(
|
||||
char('*'),
|
||||
peek(alt((
|
||||
value((), multispace1),
|
||||
value((), char(')')),
|
||||
value((), eof),
|
||||
))),
|
||||
),
|
||||
),
|
||||
map(nothing, |_| {
|
||||
(Some(UserInputAst::from(UserInputLeaf::All)), Vec::new())
|
||||
}),
|
||||
@@ -753,7 +835,7 @@ fn boosted_leaf(inp: &str) -> IResult<&str, UserInputAst> {
|
||||
tuple((leaf, fallible(boost))),
|
||||
|(leaf, boost_opt)| match boost_opt {
|
||||
Some(boost) if (boost - 1.0).abs() > f64::EPSILON => {
|
||||
UserInputAst::Boost(Box::new(leaf), boost)
|
||||
UserInputAst::Boost(Box::new(leaf), boost.into())
|
||||
}
|
||||
_ => leaf,
|
||||
},
|
||||
@@ -765,7 +847,7 @@ fn boosted_leaf_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>> {
|
||||
tuple_infallible((leaf_infallible, boost)),
|
||||
|((leaf, boost_opt), error)| match boost_opt {
|
||||
Some(boost) if (boost - 1.0).abs() > f64::EPSILON => (
|
||||
leaf.map(|leaf| UserInputAst::Boost(Box::new(leaf), boost)),
|
||||
leaf.map(|leaf| UserInputAst::Boost(Box::new(leaf), boost.into())),
|
||||
error,
|
||||
),
|
||||
_ => (leaf, error),
|
||||
@@ -1016,12 +1098,25 @@ pub fn parse_to_ast_lenient(query_str: &str) -> (UserInputAst, Vec<LenientError>
|
||||
(rewrite_ast(res), errors)
|
||||
}
|
||||
|
||||
/// Removes unnecessary children clauses in AST
|
||||
///
|
||||
/// Motivated by [issue #1433](https://github.com/quickwit-oss/tantivy/issues/1433)
|
||||
fn rewrite_ast(mut input: UserInputAst) -> UserInputAst {
|
||||
if let UserInputAst::Clause(terms) = &mut input {
|
||||
for term in terms {
|
||||
if let UserInputAst::Clause(sub_clauses) = &mut input {
|
||||
// call rewrite_ast recursively on children clauses if applicable
|
||||
let mut new_clauses = Vec::with_capacity(sub_clauses.len());
|
||||
for (occur, clause) in sub_clauses.drain(..) {
|
||||
let rewritten_clause = rewrite_ast(clause);
|
||||
new_clauses.push((occur, rewritten_clause));
|
||||
}
|
||||
*sub_clauses = new_clauses;
|
||||
|
||||
// remove duplicate child clauses
|
||||
// e.g. (+a +b) OR (+c +d) OR (+a +b) => (+a +b) OR (+c +d)
|
||||
let mut seen = FnvHashSet::default();
|
||||
sub_clauses.retain(|term| seen.insert(term.clone()));
|
||||
|
||||
// Removes unnecessary children clauses in AST
|
||||
//
|
||||
// Motivated by [issue #1433](https://github.com/quickwit-oss/tantivy/issues/1433)
|
||||
for term in sub_clauses {
|
||||
rewrite_ast_clause(term);
|
||||
}
|
||||
}
|
||||
@@ -1030,7 +1125,7 @@ fn rewrite_ast(mut input: UserInputAst) -> UserInputAst {
|
||||
|
||||
fn rewrite_ast_clause(input: &mut (Option<Occur>, UserInputAst)) {
|
||||
match input {
|
||||
(None, UserInputAst::Clause(ref mut clauses)) if clauses.len() == 1 => {
|
||||
(None, UserInputAst::Clause(clauses)) if clauses.len() == 1 => {
|
||||
*input = clauses.pop().unwrap(); // safe because clauses.len() == 1
|
||||
}
|
||||
_ => {}
|
||||
@@ -1283,6 +1378,10 @@ mod test {
|
||||
super::field_name("~my~field:a"),
|
||||
Ok(("a", "~my~field".to_string()))
|
||||
);
|
||||
assert_eq!(
|
||||
super::field_name(".my.field.name : a"),
|
||||
Ok(("a", ".my.field.name".to_string()))
|
||||
);
|
||||
for special_char in SPECIAL_CHARS.iter() {
|
||||
let query = &format!("\\{special_char}my\\{special_char}field:a");
|
||||
assert_eq!(
|
||||
@@ -1376,7 +1475,7 @@ mod test {
|
||||
|
||||
#[test]
|
||||
fn test_range_parser_lenient() {
|
||||
let literal = |query| literal_infallible(query).unwrap().1 .0.unwrap();
|
||||
let literal = |query| literal_infallible(query).unwrap().1.0.unwrap();
|
||||
|
||||
// same tests as non-lenient
|
||||
let res = literal("title: <hello");
|
||||
@@ -1592,6 +1691,21 @@ mod test {
|
||||
test_parse_query_to_ast_helper("abc:a b", "(*\"abc\":a *b)");
|
||||
test_parse_query_to_ast_helper("abc:\"a b\"", "\"abc\":\"a b\"");
|
||||
test_parse_query_to_ast_helper("foo:[1 TO 5]", "\"foo\":[\"1\" TO \"5\"]");
|
||||
|
||||
// Phrase prefixed with *
|
||||
test_parse_query_to_ast_helper("foo:(*A)", "\"foo\":*A");
|
||||
test_parse_query_to_ast_helper("*A", "*A");
|
||||
test_parse_query_to_ast_helper("(*A)", "*A");
|
||||
test_parse_query_to_ast_helper("foo:(A OR B)", "(?\"foo\":A ?\"foo\":B)");
|
||||
test_parse_query_to_ast_helper("foo:(A* OR B*)", "(?\"foo\":A* ?\"foo\":B*)");
|
||||
test_parse_query_to_ast_helper("foo:(*A OR *B)", "(?\"foo\":*A ?\"foo\":*B)");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_query_all() {
|
||||
test_parse_query_to_ast_helper("*", "*");
|
||||
test_parse_query_to_ast_helper("(*)", "*");
|
||||
test_parse_query_to_ast_helper("(* )", "*");
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -1689,4 +1803,72 @@ mod test {
|
||||
fn test_invalid_field() {
|
||||
test_is_parse_err(r#"!bc:def"#, "!bc:def");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_regex_parser() {
|
||||
let r = parse_to_ast(r#"a:/joh?n(ath[oa]n)/"#);
|
||||
assert!(r.is_ok(), "Failed to parse custom query: {r:?}");
|
||||
let (_, input) = r.unwrap();
|
||||
match input {
|
||||
UserInputAst::Leaf(leaf) => match leaf.as_ref() {
|
||||
UserInputLeaf::Regex { field, pattern } => {
|
||||
assert_eq!(field, &Some("a".to_string()));
|
||||
assert_eq!(pattern, "joh?n(ath[oa]n)");
|
||||
}
|
||||
_ => panic!("Expected a regex leaf, got {leaf:?}"),
|
||||
},
|
||||
_ => panic!("Expected a leaf"),
|
||||
}
|
||||
let r = parse_to_ast(r#"a:/\\/cgi-bin\\/luci.*/"#);
|
||||
assert!(r.is_ok(), "Failed to parse custom query: {r:?}");
|
||||
let (_, input) = r.unwrap();
|
||||
match input {
|
||||
UserInputAst::Leaf(leaf) => match leaf.as_ref() {
|
||||
UserInputLeaf::Regex { field, pattern } => {
|
||||
assert_eq!(field, &Some("a".to_string()));
|
||||
assert_eq!(pattern, "\\/cgi-bin\\/luci.*");
|
||||
}
|
||||
_ => panic!("Expected a regex leaf, got {leaf:?}"),
|
||||
},
|
||||
_ => panic!("Expected a leaf"),
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_regex_parser_lenient() {
|
||||
let literal = |query| literal_infallible(query).unwrap().1;
|
||||
|
||||
let (res, errs) = literal(r#"a:/joh?n(ath[oa]n)/"#);
|
||||
let expected = UserInputLeaf::Regex {
|
||||
field: Some("a".to_string()),
|
||||
pattern: "joh?n(ath[oa]n)".to_string(),
|
||||
}
|
||||
.into();
|
||||
assert_eq!(res.unwrap(), expected);
|
||||
assert!(errs.is_empty(), "Expected no errors, got: {errs:?}");
|
||||
|
||||
let (res, errs) = literal("title:/joh?n(ath[oa]n)");
|
||||
let expected = UserInputLeaf::Regex {
|
||||
field: Some("title".to_string()),
|
||||
pattern: "joh?n(ath[oa]n)".to_string(),
|
||||
}
|
||||
.into();
|
||||
assert_eq!(res.unwrap(), expected);
|
||||
assert_eq!(errs.len(), 1, "Expected 1 error, got: {errs:?}");
|
||||
assert_eq!(
|
||||
errs[0].message, "missing delimiter /",
|
||||
"Unexpected error message",
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_space_before_value() {
|
||||
test_parse_query_to_ast_helper("field : a", r#""field":a"#);
|
||||
test_parse_query_to_ast_helper("field: a", r#""field":a"#);
|
||||
test_parse_query_to_ast_helper("field :a", r#""field":a"#);
|
||||
test_parse_query_to_ast_helper(
|
||||
"field : 'happy tax payer' AND other_field : 1",
|
||||
r#"(+"field":'happy tax payer' +"other_field":1)"#,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -5,7 +5,7 @@ use serde::Serialize;
|
||||
|
||||
use crate::Occur;
|
||||
|
||||
#[derive(PartialEq, Clone, Serialize)]
|
||||
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
|
||||
#[serde(tag = "type")]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub enum UserInputLeaf {
|
||||
@@ -23,6 +23,10 @@ pub enum UserInputLeaf {
|
||||
Exists {
|
||||
field: String,
|
||||
},
|
||||
Regex {
|
||||
field: Option<String>,
|
||||
pattern: String,
|
||||
},
|
||||
}
|
||||
|
||||
impl UserInputLeaf {
|
||||
@@ -46,12 +50,13 @@ impl UserInputLeaf {
|
||||
UserInputLeaf::Exists { field: _ } => UserInputLeaf::Exists {
|
||||
field: field.expect("Exist query without a field isn't allowed"),
|
||||
},
|
||||
UserInputLeaf::Regex { field: _, pattern } => UserInputLeaf::Regex { field, pattern },
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn set_default_field(&mut self, default_field: String) {
|
||||
match self {
|
||||
UserInputLeaf::Literal(ref mut literal) if literal.field_name.is_none() => {
|
||||
UserInputLeaf::Literal(literal) if literal.field_name.is_none() => {
|
||||
literal.field_name = Some(default_field)
|
||||
}
|
||||
UserInputLeaf::All => {
|
||||
@@ -59,12 +64,8 @@ impl UserInputLeaf {
|
||||
field: default_field,
|
||||
}
|
||||
}
|
||||
UserInputLeaf::Range { ref mut field, .. } if field.is_none() => {
|
||||
*field = Some(default_field)
|
||||
}
|
||||
UserInputLeaf::Set { ref mut field, .. } if field.is_none() => {
|
||||
*field = Some(default_field)
|
||||
}
|
||||
UserInputLeaf::Range { field, .. } if field.is_none() => *field = Some(default_field),
|
||||
UserInputLeaf::Set { field, .. } if field.is_none() => *field = Some(default_field),
|
||||
_ => (), // field was already set, do nothing
|
||||
}
|
||||
}
|
||||
@@ -75,11 +76,11 @@ impl Debug for UserInputLeaf {
|
||||
match self {
|
||||
UserInputLeaf::Literal(literal) => literal.fmt(formatter),
|
||||
UserInputLeaf::Range {
|
||||
ref field,
|
||||
ref lower,
|
||||
ref upper,
|
||||
field,
|
||||
lower,
|
||||
upper,
|
||||
} => {
|
||||
if let Some(ref field) = field {
|
||||
if let Some(field) = field {
|
||||
// TODO properly escape field (in case of \")
|
||||
write!(formatter, "\"{field}\":")?;
|
||||
}
|
||||
@@ -89,7 +90,7 @@ impl Debug for UserInputLeaf {
|
||||
Ok(())
|
||||
}
|
||||
UserInputLeaf::Set { field, elements } => {
|
||||
if let Some(ref field) = field {
|
||||
if let Some(field) = field {
|
||||
// TODO properly escape field (in case of \")
|
||||
write!(formatter, "\"{field}\": ")?;
|
||||
}
|
||||
@@ -107,11 +108,19 @@ impl Debug for UserInputLeaf {
|
||||
UserInputLeaf::Exists { field } => {
|
||||
write!(formatter, "$exists(\"{field}\")")
|
||||
}
|
||||
UserInputLeaf::Regex { field, pattern } => {
|
||||
if let Some(field) = field {
|
||||
// TODO properly escape field (in case of \")
|
||||
write!(formatter, "\"{field}\":")?;
|
||||
}
|
||||
// TODO properly escape pattern (in case of \")
|
||||
write!(formatter, "/{pattern}/")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Debug, Serialize)]
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug, Serialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub enum Delimiter {
|
||||
SingleQuotes,
|
||||
@@ -119,7 +128,7 @@ pub enum Delimiter {
|
||||
None,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Clone, Serialize)]
|
||||
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub struct UserInputLiteral {
|
||||
pub field_name: Option<String>,
|
||||
@@ -158,7 +167,7 @@ impl fmt::Debug for UserInputLiteral {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Debug, Clone, Serialize)]
|
||||
#[derive(PartialEq, Eq, Hash, Debug, Clone, Serialize)]
|
||||
#[serde(tag = "type", content = "value")]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub enum UserInputBound {
|
||||
@@ -195,11 +204,11 @@ impl UserInputBound {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Clone, Serialize)]
|
||||
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
|
||||
#[serde(into = "UserInputAstSerde")]
|
||||
pub enum UserInputAst {
|
||||
Clause(Vec<(Option<Occur>, UserInputAst)>),
|
||||
Boost(Box<UserInputAst>, f64),
|
||||
Boost(Box<UserInputAst>, ordered_float::OrderedFloat<f64>),
|
||||
Leaf(Box<UserInputLeaf>),
|
||||
}
|
||||
|
||||
@@ -221,9 +230,10 @@ impl From<UserInputAst> for UserInputAstSerde {
|
||||
fn from(ast: UserInputAst) -> Self {
|
||||
match ast {
|
||||
UserInputAst::Clause(clause) => UserInputAstSerde::Bool { clauses: clause },
|
||||
UserInputAst::Boost(underlying, boost) => {
|
||||
UserInputAstSerde::Boost { underlying, boost }
|
||||
}
|
||||
UserInputAst::Boost(underlying, boost) => UserInputAstSerde::Boost {
|
||||
underlying,
|
||||
boost: boost.into_inner(),
|
||||
},
|
||||
UserInputAst::Leaf(leaf) => UserInputAstSerde::Leaf(leaf),
|
||||
}
|
||||
}
|
||||
@@ -267,7 +277,7 @@ impl UserInputAst {
|
||||
.iter_mut()
|
||||
.for_each(|(_, ast)| ast.set_default_field(field.clone())),
|
||||
UserInputAst::Leaf(leaf) => leaf.set_default_field(field),
|
||||
UserInputAst::Boost(ref mut ast, _) => ast.set_default_field(field),
|
||||
UserInputAst::Boost(ast, _) => ast.set_default_field(field),
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -382,7 +392,7 @@ mod tests {
|
||||
#[test]
|
||||
fn test_boost_serialization() {
|
||||
let inner_ast = UserInputAst::Leaf(Box::new(UserInputLeaf::All));
|
||||
let boost_ast = UserInputAst::Boost(Box::new(inner_ast), 2.5);
|
||||
let boost_ast = UserInputAst::Boost(Box::new(inner_ast), 2.5.into());
|
||||
let json = serde_json::to_string(&boost_ast).unwrap();
|
||||
assert_eq!(
|
||||
json,
|
||||
@@ -409,7 +419,7 @@ mod tests {
|
||||
}))),
|
||||
),
|
||||
])),
|
||||
2.5,
|
||||
2.5.into(),
|
||||
);
|
||||
let json = serde_json::to_string(&boost_ast).unwrap();
|
||||
assert_eq!(
|
||||
|
||||
@@ -20,17 +20,16 @@ Contains all metric aggregations, like average aggregation. Metric aggregations
|
||||
#### agg_req
|
||||
agg_req contains the users aggregation request. Deserialization from json is compatible with elasticsearch aggregation requests.
|
||||
|
||||
#### agg_req_with_accessor
|
||||
agg_req_with_accessor contains the users aggregation request enriched with fast field accessors etc, which are
|
||||
#### agg_data
|
||||
agg_data contains the users aggregation request enriched with fast field accessors etc, which are
|
||||
used during collection.
|
||||
|
||||
#### segment_agg_result
|
||||
segment_agg_result contains the aggregation result tree, which is used for collection of a segment.
|
||||
The tree from agg_req_with_accessor is passed during collection.
|
||||
agg_data is passed during collection.
|
||||
|
||||
#### intermediate_agg_result
|
||||
intermediate_agg_result contains the aggregation tree for merging with other trees.
|
||||
|
||||
#### agg_result
|
||||
agg_result contains the final aggregation tree.
|
||||
|
||||
|
||||
105
src/aggregation/accessor_helpers.rs
Normal file
105
src/aggregation/accessor_helpers.rs
Normal file
@@ -0,0 +1,105 @@
|
||||
//! This will enhance the request tree with access to the fastfield and metadata.
|
||||
|
||||
use std::io;
|
||||
|
||||
use columnar::{Column, ColumnType};
|
||||
|
||||
use crate::aggregation::{f64_to_fastfield_u64, Key};
|
||||
use crate::index::SegmentReader;
|
||||
|
||||
/// Get the missing value as internal u64 representation
|
||||
///
|
||||
/// For terms we use u64::MAX as sentinel value
|
||||
/// For numerical data we convert the value into the representation
|
||||
/// we would get from the fast field, when we open it as u64_lenient_for_type.
|
||||
///
|
||||
/// That way we can use it the same way as if it would come from the fastfield.
|
||||
pub(crate) fn get_missing_val_as_u64_lenient(
|
||||
column_type: ColumnType,
|
||||
column_max_value: u64,
|
||||
missing: &Key,
|
||||
field_name: &str,
|
||||
) -> crate::Result<Option<u64>> {
|
||||
let missing_val = match missing {
|
||||
Key::Str(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
|
||||
// Allow fallback to number on text fields
|
||||
Key::F64(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
|
||||
Key::U64(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
|
||||
Key::I64(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
|
||||
Key::F64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val, &column_type)
|
||||
}
|
||||
// NOTE: We may loose precision of the passed missing value by casting i64 and u64 to f64.
|
||||
Key::I64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val as f64, &column_type)
|
||||
}
|
||||
Key::U64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val as f64, &column_type)
|
||||
}
|
||||
_ => {
|
||||
return Err(crate::TantivyError::InvalidArgument(format!(
|
||||
"Missing value {missing:?} for field {field_name} is not supported for column \
|
||||
type {column_type:?}"
|
||||
)));
|
||||
}
|
||||
};
|
||||
Ok(missing_val)
|
||||
}
|
||||
|
||||
pub(crate) fn get_numeric_or_date_column_types() -> &'static [ColumnType] {
|
||||
&[
|
||||
ColumnType::F64,
|
||||
ColumnType::U64,
|
||||
ColumnType::I64,
|
||||
ColumnType::DateTime,
|
||||
]
|
||||
}
|
||||
|
||||
/// Get fast field reader or empty as default.
|
||||
pub(crate) fn get_ff_reader(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
allowed_column_types: Option<&[ColumnType]>,
|
||||
) -> crate::Result<(columnar::Column<u64>, ColumnType)> {
|
||||
let ff_fields = reader.fast_fields();
|
||||
let ff_field_with_type = ff_fields
|
||||
.u64_lenient_for_type(allowed_column_types, field_name)?
|
||||
.unwrap_or_else(|| {
|
||||
(
|
||||
Column::build_empty_column(reader.num_docs()),
|
||||
ColumnType::U64,
|
||||
)
|
||||
});
|
||||
Ok(ff_field_with_type)
|
||||
}
|
||||
|
||||
pub(crate) fn get_dynamic_columns(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
) -> crate::Result<Vec<columnar::DynamicColumn>> {
|
||||
let ff_fields = reader.fast_fields().dynamic_column_handles(field_name)?;
|
||||
let cols = ff_fields
|
||||
.iter()
|
||||
.map(|h| h.open())
|
||||
.collect::<io::Result<_>>()?;
|
||||
assert!(!ff_fields.is_empty(), "field {field_name} not found");
|
||||
Ok(cols)
|
||||
}
|
||||
|
||||
/// Get all fast field reader or empty as default.
|
||||
///
|
||||
/// Is guaranteed to return at least one column.
|
||||
pub(crate) fn get_all_ff_reader_or_empty(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
allowed_column_types: Option<&[ColumnType]>,
|
||||
fallback_type: ColumnType,
|
||||
) -> crate::Result<Vec<(columnar::Column<u64>, ColumnType)>> {
|
||||
let ff_fields = reader.fast_fields();
|
||||
let mut ff_field_with_type =
|
||||
ff_fields.u64_lenient_for_type_all(allowed_column_types, field_name)?;
|
||||
if ff_field_with_type.is_empty() {
|
||||
ff_field_with_type.push((Column::build_empty_column(reader.num_docs()), fallback_type));
|
||||
}
|
||||
Ok(ff_field_with_type)
|
||||
}
|
||||
1095
src/aggregation/agg_data.rs
Normal file
1095
src/aggregation/agg_data.rs
Normal file
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user