mirror of
https://github.com/quickwit-oss/tantivy.git
synced 2025-12-28 21:12:54 +00:00
Compare commits
1 Commits
0.25.0
...
agg_format
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b345c11786 |
@@ -46,7 +46,7 @@ The file of a segment has the format
|
||||
|
||||
```segment-id . ext```
|
||||
|
||||
The extension signals which data structure (or [`SegmentComponent`](src/index/segment_component.rs)) is stored in the file.
|
||||
The extension signals which data structure (or [`SegmentComponent`](src/core/segment_component.rs)) is stored in the file.
|
||||
|
||||
A small `meta.json` file is in charge of keeping track of the list of segments, as well as the schema.
|
||||
|
||||
@@ -102,7 +102,7 @@ but users can extend tantivy with their own implementation.
|
||||
|
||||
Tantivy's document follows a very strict schema, decided before building any index.
|
||||
|
||||
The schema defines all of the fields that the indexes [`Document`](src/schema/document/mod.rs) may and should contain, their types (`text`, `i64`, `u64`, `Date`, ...) as well as how it should be indexed / represented in tantivy.
|
||||
The schema defines all of the fields that the indexes [`Document`](src/schema/document.rs) may and should contain, their types (`text`, `i64`, `u64`, `Date`, ...) as well as how it should be indexed / represented in tantivy.
|
||||
|
||||
Depending on the type of the field, you can decide to
|
||||
|
||||
|
||||
118
CHANGELOG.md
118
CHANGELOG.md
@@ -1,101 +1,3 @@
|
||||
Tantivy 0.25
|
||||
================================
|
||||
|
||||
## Bugfixes
|
||||
- fix union performance regression in tantivy 0.24 [#2663](https://github.com/quickwit-oss/tantivy/pull/2663)(@PSeitz)
|
||||
- make zstd optional in sstable [#2633](https://github.com/quickwit-oss/tantivy/pull/2633)(@Parth)
|
||||
- Fix TopDocs::order_by_string_fast_field for asc order [#2672](https://github.com/quickwit-oss/tantivy/pull/2672)(@stuhood @PSeitz)
|
||||
|
||||
## Features/Improvements
|
||||
- add docs/example and Vec<u32> values to sstable [#2660](https://github.com/quickwit-oss/tantivy/pull/2660)(@PSeitz)
|
||||
- Add string fast field support to `TopDocs`. [#2642](https://github.com/quickwit-oss/tantivy/pull/2642)(@stuhood)
|
||||
- update edition to 2024 [#2620](https://github.com/quickwit-oss/tantivy/pull/2620)(@PSeitz)
|
||||
- Allow optional spaces between the field name and the value in the query parser [#2678](https://github.com/quickwit-oss/tantivy/pull/2678)(@Darkheir)
|
||||
- Support mixed field types in query parser [#2676](https://github.com/quickwit-oss/tantivy/pull/2676)(@trinity-1686a)
|
||||
- Add per-field size details [#2679](https://github.com/quickwit-oss/tantivy/pull/2679)(@fulmicoton)
|
||||
|
||||
Tantivy 0.24
|
||||
================================
|
||||
Tantivy 0.24 will be backwards compatible with indices created with v0.22 and v0.21. The new minimum rust version will be 1.75. Tantivy 0.23 will be skipped.
|
||||
|
||||
#### Bugfixes
|
||||
- fix potential endless loop in merge [#2457](https://github.com/quickwit-oss/tantivy/pull/2457)(@PSeitz)
|
||||
- fix bug that causes out-of-order sstable key. [#2445](https://github.com/quickwit-oss/tantivy/pull/2445)(@fulmicoton)
|
||||
- fix ReferenceValue API flaw [#2372](https://github.com/quickwit-oss/tantivy/pull/2372)(@PSeitz)
|
||||
- fix `OwnedBytes` debug panic [#2512](https://github.com/quickwit-oss/tantivy/pull/2512)(@b41sh)
|
||||
- catch panics during merges [#2582](https://github.com/quickwit-oss/tantivy/pull/2582)(@rdettai)
|
||||
- switch from u32 to usize in bitpacker. This enables multivalued columns larger than 4GB, which crashed during merge before. [#2581](https://github.com/quickwit-oss/tantivy/pull/2581) [#2586](https://github.com/quickwit-oss/tantivy/pull/2586)(@fulmicoton-dd @PSeitz)
|
||||
|
||||
#### Breaking API Changes
|
||||
- remove index sorting [#2434](https://github.com/quickwit-oss/tantivy/pull/2434)(@PSeitz)
|
||||
|
||||
#### Features/Improvements
|
||||
- **Aggregation**
|
||||
- Support for cardinality aggregation [#2337](https://github.com/quickwit-oss/tantivy/pull/2337) [#2446](https://github.com/quickwit-oss/tantivy/pull/2446) (@raphaelcoeffic @PSeitz)
|
||||
- Support for extended stats aggregation [#2247](https://github.com/quickwit-oss/tantivy/pull/2247)(@giovannicuccu)
|
||||
- Add Key::I64 and Key::U64 variants in aggregation to avoid f64 precision issues [#2468](https://github.com/quickwit-oss/tantivy/pull/2468)(@PSeitz)
|
||||
- Faster term aggregation fetch terms [#2447](https://github.com/quickwit-oss/tantivy/pull/2447)(@PSeitz)
|
||||
- Improve custom order deserialization [#2451](https://github.com/quickwit-oss/tantivy/pull/2451)(@PSeitz)
|
||||
- Change AggregationLimits behavior [#2495](https://github.com/quickwit-oss/tantivy/pull/2495)(@PSeitz)
|
||||
- lower contention on AggregationLimits [#2394](https://github.com/quickwit-oss/tantivy/pull/2394)(@PSeitz)
|
||||
- fix postcard compatibility for top_hits, add postcard test [#2346](https://github.com/quickwit-oss/tantivy/pull/2346)(@PSeitz)
|
||||
- reduce top hits memory consumption [#2426](https://github.com/quickwit-oss/tantivy/pull/2426)(@PSeitz)
|
||||
- check unsupported parameters top_hits [#2351](https://github.com/quickwit-oss/tantivy/pull/2351)(@PSeitz)
|
||||
- Change AggregationLimits to AggregationLimitsGuard [#2495](https://github.com/quickwit-oss/tantivy/pull/2495)(@PSeitz)
|
||||
- add support for counting non integer in aggregation [#2547](https://github.com/quickwit-oss/tantivy/pull/2547)(@trinity-1686a)
|
||||
- **Range Queries**
|
||||
- Support fast field range queries on json fields [#2456](https://github.com/quickwit-oss/tantivy/pull/2456)(@PSeitz)
|
||||
- Add support for str fast field range query [#2460](https://github.com/quickwit-oss/tantivy/pull/2460) [#2452](https://github.com/quickwit-oss/tantivy/pull/2452) [#2453](https://github.com/quickwit-oss/tantivy/pull/2453)(@PSeitz)
|
||||
- modify fastfield range query heuristic [#2375](https://github.com/quickwit-oss/tantivy/pull/2375)(@trinity-1686a)
|
||||
- add FastFieldRangeQuery for explicit range queries on fast field (for `RangeQuery` it is autodetected) [#2477](https://github.com/quickwit-oss/tantivy/pull/2477)(@PSeitz)
|
||||
|
||||
- add format backwards-compatibility tests [#2485](https://github.com/quickwit-oss/tantivy/pull/2485)(@PSeitz)
|
||||
- add columnar format compatibility tests [#2433](https://github.com/quickwit-oss/tantivy/pull/2433)(@PSeitz)
|
||||
- Improved snippet ranges algorithm [#2474](https://github.com/quickwit-oss/tantivy/pull/2474)(@gezihuzi)
|
||||
- make find_field_with_default return json fields without path [#2476](https://github.com/quickwit-oss/tantivy/pull/2476)(@trinity-1686a)
|
||||
- Make `BooleanQuery` support `minimum_number_should_match` [#2405](https://github.com/quickwit-oss/tantivy/pull/2405)(@LebranceBW)
|
||||
- Make `NUM_MERGE_THREADS` configurable [#2535](https://github.com/quickwit-oss/tantivy/pull/2535)(@Barre)
|
||||
|
||||
- **RegexPhraseQuery**
|
||||
`RegexPhraseQuery` supports phrase queries with regex. E.g. query "b.* b.* wolf" matches "big bad wolf". Slop is supported as well: "b.* wolf"~2 matches "big bad wolf" [#2516](https://github.com/quickwit-oss/tantivy/pull/2516)(@PSeitz)
|
||||
|
||||
- **Optional Index in Multivalue Columnar Index**
|
||||
For mostly empty multivalued indices there was a large overhead during creation when iterating all docids (merge case).
|
||||
This is alleviated by placing an optional index in the multivalued index to mark documents that have values.
|
||||
This will slightly increase space and access time. [#2439](https://github.com/quickwit-oss/tantivy/pull/2439)(@PSeitz)
|
||||
|
||||
- **Store DateTime as nanoseconds in doc store** DateTime in the doc store was truncated to microseconds previously. This removes this truncation, while still keeping backwards compatibility. [#2486](https://github.com/quickwit-oss/tantivy/pull/2486)(@PSeitz)
|
||||
|
||||
- **Performace/Memory**
|
||||
- lift clauses in LogicalAst for optimized ast during execution [#2449](https://github.com/quickwit-oss/tantivy/pull/2449)(@PSeitz)
|
||||
- Use Vec instead of BTreeMap to back OwnedValue object [#2364](https://github.com/quickwit-oss/tantivy/pull/2364)(@fulmicoton)
|
||||
- Replace TantivyDocument with CompactDoc. CompactDoc is much smaller and provides similar performance. [#2402](https://github.com/quickwit-oss/tantivy/pull/2402)(@PSeitz)
|
||||
- Recycling buffer in PrefixPhraseScorer [#2443](https://github.com/quickwit-oss/tantivy/pull/2443)(@fulmicoton)
|
||||
|
||||
- **Json Type**
|
||||
- JSON supports now all values on the root level. Previously an object was required. This enables support for flat mixed types. allow more JSON values, fix i64 special case [#2383](https://github.com/quickwit-oss/tantivy/pull/2383)(@PSeitz)
|
||||
- add json path constructor to term [#2367](https://github.com/quickwit-oss/tantivy/pull/2367)(@PSeitz)
|
||||
|
||||
- **QueryParser**
|
||||
- fix de-escaping too much in query parser [#2427](https://github.com/quickwit-oss/tantivy/pull/2427)(@trinity-1686a)
|
||||
- improve query parser [#2416](https://github.com/quickwit-oss/tantivy/pull/2416)(@trinity-1686a)
|
||||
- Support field grouping `title:(return AND "pink panther")` [#2333](https://github.com/quickwit-oss/tantivy/pull/2333)(@trinity-1686a)
|
||||
- allow term starting with wildcard [#2568](https://github.com/quickwit-oss/tantivy/pull/2568)(@trinity-1686a)
|
||||
|
||||
- Exist queries match subpath fields [#2558](https://github.com/quickwit-oss/tantivy/pull/2558)(@rdettai)
|
||||
- add access benchmark for columnar [#2432](https://github.com/quickwit-oss/tantivy/pull/2432)(@PSeitz)
|
||||
- extend indexwriter proptests [#2342](https://github.com/quickwit-oss/tantivy/pull/2342)(@PSeitz)
|
||||
- add bench & test for columnar merging [#2428](https://github.com/quickwit-oss/tantivy/pull/2428)(@PSeitz)
|
||||
- Change in Executor API [#2391](https://github.com/quickwit-oss/tantivy/pull/2391)(@fulmicoton)
|
||||
- Removed usage of num_cpus [#2387](https://github.com/quickwit-oss/tantivy/pull/2387)(@fulmicoton)
|
||||
- use bingang for agg and stacker benchmark [#2378](https://github.com/quickwit-oss/tantivy/pull/2378)[#2492](https://github.com/quickwit-oss/tantivy/pull/2492)(@PSeitz)
|
||||
- cleanup top level exports [#2382](https://github.com/quickwit-oss/tantivy/pull/2382)(@PSeitz)
|
||||
- make convert_to_fast_value_and_append_to_json_term pub [#2370](https://github.com/quickwit-oss/tantivy/pull/2370)(@PSeitz)
|
||||
- remove JsonTermWriter [#2238](https://github.com/quickwit-oss/tantivy/pull/2238)(@PSeitz)
|
||||
- validate sort by field type [#2336](https://github.com/quickwit-oss/tantivy/pull/2336)(@PSeitz)
|
||||
- Fix trait bound of StoreReader::iter [#2360](https://github.com/quickwit-oss/tantivy/pull/2360)(@adamreichold)
|
||||
- remove read_postings_no_deletes [#2526](https://github.com/quickwit-oss/tantivy/pull/2526)(@PSeitz)
|
||||
|
||||
Tantivy 0.22
|
||||
================================
|
||||
|
||||
@@ -106,7 +8,7 @@ Tantivy 0.22 will be able to read indices created with Tantivy 0.21.
|
||||
- Fix bug that can cause `get_docids_for_value_range` to panic. [#2295](https://github.com/quickwit-oss/tantivy/pull/2295)(@fulmicoton)
|
||||
- Avoid 1 document indices by increase min memory to 15MB for indexing [#2176](https://github.com/quickwit-oss/tantivy/pull/2176)(@PSeitz)
|
||||
- Fix merge panic for JSON fields [#2284](https://github.com/quickwit-oss/tantivy/pull/2284)(@PSeitz)
|
||||
- Fix bug occurring when merging JSON object indexed with positions. [#2253](https://github.com/quickwit-oss/tantivy/pull/2253)(@fulmicoton)
|
||||
- Fix bug occuring when merging JSON object indexed with positions. [#2253](https://github.com/quickwit-oss/tantivy/pull/2253)(@fulmicoton)
|
||||
- Fix empty DateHistogram gap bug [#2183](https://github.com/quickwit-oss/tantivy/pull/2183)(@PSeitz)
|
||||
- Fix range query end check (fields with less than 1 value per doc are affected) [#2226](https://github.com/quickwit-oss/tantivy/pull/2226)(@PSeitz)
|
||||
- Handle exclusive out of bounds ranges on fastfield range queries [#2174](https://github.com/quickwit-oss/tantivy/pull/2174)(@PSeitz)
|
||||
@@ -124,7 +26,7 @@ Tantivy 0.22 will be able to read indices created with Tantivy 0.21.
|
||||
- Support to deserialize f64 from string [#2311](https://github.com/quickwit-oss/tantivy/pull/2311)(@PSeitz)
|
||||
- Add a top_hits aggregator [#2198](https://github.com/quickwit-oss/tantivy/pull/2198)(@ditsuke)
|
||||
- Support bool type in term aggregation [#2318](https://github.com/quickwit-oss/tantivy/pull/2318)(@PSeitz)
|
||||
- Support ip addresses in term aggregation [#2319](https://github.com/quickwit-oss/tantivy/pull/2319)(@PSeitz)
|
||||
- Support ip adresses in term aggregation [#2319](https://github.com/quickwit-oss/tantivy/pull/2319)(@PSeitz)
|
||||
- Support date type in term aggregation [#2172](https://github.com/quickwit-oss/tantivy/pull/2172)(@PSeitz)
|
||||
- Support escaped dot when addressing field [#2250](https://github.com/quickwit-oss/tantivy/pull/2250)(@PSeitz)
|
||||
|
||||
@@ -214,7 +116,7 @@ Tantivy 0.20
|
||||
- Add PhrasePrefixQuery [#1842](https://github.com/quickwit-oss/tantivy/issues/1842) (@trinity-1686a)
|
||||
- Add `coerce` option for text and numbers types (convert the value instead of returning an error during indexing) [#1904](https://github.com/quickwit-oss/tantivy/issues/1904) (@PSeitz)
|
||||
- Add regex tokenizer [#1759](https://github.com/quickwit-oss/tantivy/issues/1759)(@mkleen)
|
||||
- Move tokenizer API to separate crate. Having a separate crate with a stable API will allow us to use tokenizers with different tantivy versions. [#1767](https://github.com/quickwit-oss/tantivy/issues/1767) (@PSeitz)
|
||||
- Move tokenizer API to seperate crate. Having a seperate crate with a stable API will allow us to use tokenizers with different tantivy versions. [#1767](https://github.com/quickwit-oss/tantivy/issues/1767) (@PSeitz)
|
||||
- **Columnar crate**: New fast field handling (@fulmicoton @PSeitz) [#1806](https://github.com/quickwit-oss/tantivy/issues/1806)[#1809](https://github.com/quickwit-oss/tantivy/issues/1809)
|
||||
- Support for fast fields with optional values. Previously tantivy supported only single-valued and multi-value fast fields. The encoding of optional fast fields is now very compact.
|
||||
- Fast field Support for JSON (schemaless fast fields). Support multiple types on the same column. [#1876](https://github.com/quickwit-oss/tantivy/issues/1876) (@fulmicoton)
|
||||
@@ -261,13 +163,13 @@ Tantivy 0.20
|
||||
- Auto downgrade index record option, instead of vint error [#1857](https://github.com/quickwit-oss/tantivy/issues/1857) (@PSeitz)
|
||||
- Enable range query on fast field for u64 compatible types [#1762](https://github.com/quickwit-oss/tantivy/issues/1762) (@PSeitz) [#1876]
|
||||
- sstable
|
||||
- Isolating sstable and stacker in independent crates. [#1718](https://github.com/quickwit-oss/tantivy/issues/1718) (@fulmicoton)
|
||||
- Isolating sstable and stacker in independant crates. [#1718](https://github.com/quickwit-oss/tantivy/issues/1718) (@fulmicoton)
|
||||
- New sstable format [#1943](https://github.com/quickwit-oss/tantivy/issues/1943)[#1953](https://github.com/quickwit-oss/tantivy/issues/1953) (@trinity-1686a)
|
||||
- Use DeltaReader directly to implement Dictionary::ord_to_term [#1928](https://github.com/quickwit-oss/tantivy/issues/1928) (@trinity-1686a)
|
||||
- Use DeltaReader directly to implement Dictionary::term_ord [#1925](https://github.com/quickwit-oss/tantivy/issues/1925) (@trinity-1686a)
|
||||
- Add separate tokenizer manager for fast fields [#2019](https://github.com/quickwit-oss/tantivy/issues/2019) (@PSeitz)
|
||||
- Use DeltaReader directly to implement Dictionnary::ord_to_term [#1928](https://github.com/quickwit-oss/tantivy/issues/1928) (@trinity-1686a)
|
||||
- Use DeltaReader directly to implement Dictionnary::term_ord [#1925](https://github.com/quickwit-oss/tantivy/issues/1925) (@trinity-1686a)
|
||||
- Add seperate tokenizer manager for fast fields [#2019](https://github.com/quickwit-oss/tantivy/issues/2019) (@PSeitz)
|
||||
- Make construction of LevenshteinAutomatonBuilder for FuzzyTermQuery instances lazy. [#1756](https://github.com/quickwit-oss/tantivy/issues/1756) (@adamreichold)
|
||||
- Added support for madvise when opening an mmapped Index [#2036](https://github.com/quickwit-oss/tantivy/issues/2036) (@fulmicoton)
|
||||
- Added support for madvise when opening an mmaped Index [#2036](https://github.com/quickwit-oss/tantivy/issues/2036) (@fulmicoton)
|
||||
- Rename `DatePrecision` to `DateTimePrecision` [#2051](https://github.com/quickwit-oss/tantivy/issues/2051) (@guilload)
|
||||
- Query Parser
|
||||
- Quotation mark can now be used for phrase queries. [#2050](https://github.com/quickwit-oss/tantivy/issues/2050) (@fulmicoton)
|
||||
@@ -306,7 +208,7 @@ Tantivy 0.19
|
||||
- Add support for phrase slop in query language [#1393](https://github.com/quickwit-oss/tantivy/pull/1393) (@saroh)
|
||||
- Aggregation
|
||||
- Add aggregation support for date type [#1693](https://github.com/quickwit-oss/tantivy/pull/1693)(@PSeitz)
|
||||
- Add support for keyed parameter in range and histogram aggregations [#1424](https://github.com/quickwit-oss/tantivy/pull/1424) (@k-yomo)
|
||||
- Add support for keyed parameter in range and histgram aggregations [#1424](https://github.com/quickwit-oss/tantivy/pull/1424) (@k-yomo)
|
||||
- Add aggregation bucket limit [#1363](https://github.com/quickwit-oss/tantivy/pull/1363) (@PSeitz)
|
||||
- Faster indexing
|
||||
- [#1610](https://github.com/quickwit-oss/tantivy/pull/1610) (@PSeitz)
|
||||
@@ -749,7 +651,7 @@ Tantivy 0.4.0
|
||||
- Raise the limit of number of fields (previously 256 fields) (@fulmicoton)
|
||||
- Removed u32 fields. They are replaced by u64 and i64 fields (#65) (@fulmicoton)
|
||||
- Optimized skip in SegmentPostings (#130) (@lnicola)
|
||||
- Replacing rustc_serialize by serde. Kudos to benchmark@KodrAus and @lnicola
|
||||
- Replacing rustc_serialize by serde. Kudos to @KodrAus and @lnicola
|
||||
- Using error-chain (@KodrAus)
|
||||
- QueryParser: (@fulmicoton)
|
||||
- Explicit error returned when searched for a term that is not indexed
|
||||
|
||||
10
CITATION.cff
10
CITATION.cff
@@ -1,10 +0,0 @@
|
||||
cff-version: 1.2.0
|
||||
message: "If you use this software, please cite it as below."
|
||||
authors:
|
||||
- alias: Quickwit Inc.
|
||||
website: "https://quickwit.io"
|
||||
title: "tantivy"
|
||||
version: 0.22.0
|
||||
doi: 10.5281/zenodo.13942948
|
||||
date-released: 2024-10-17
|
||||
url: "https://github.com/quickwit-oss/tantivy"
|
||||
49
Cargo.toml
49
Cargo.toml
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy"
|
||||
version = "0.25.0"
|
||||
version = "0.23.0"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = ["database-implementations", "data-structures"]
|
||||
@@ -11,7 +11,7 @@ repository = "https://github.com/quickwit-oss/tantivy"
|
||||
readme = "README.md"
|
||||
keywords = ["search", "information", "retrieval"]
|
||||
edition = "2021"
|
||||
rust-version = "1.85"
|
||||
rust-version = "1.66"
|
||||
exclude = ["benches/*.json", "benches/*.txt"]
|
||||
|
||||
[dependencies]
|
||||
@@ -29,52 +29,50 @@ tantivy-fst = "0.5"
|
||||
memmap2 = { version = "0.9.0", optional = true }
|
||||
lz4_flex = { version = "0.11", default-features = false, optional = true }
|
||||
zstd = { version = "0.13", optional = true, default-features = false }
|
||||
tempfile = { version = "3.12.0", optional = true }
|
||||
tempfile = { version = "3.3.0", optional = true }
|
||||
log = "0.4.16"
|
||||
serde = { version = "1.0.219", features = ["derive"] }
|
||||
serde_json = "1.0.140"
|
||||
fs4 = { version = "0.13.1", optional = true }
|
||||
serde = { version = "1.0.136", features = ["derive"] }
|
||||
serde_json = "1.0.79"
|
||||
fs4 = { version = "0.8.0", optional = true }
|
||||
levenshtein_automata = "0.2.1"
|
||||
uuid = { version = "1.0.0", features = ["v4", "serde"] }
|
||||
crossbeam-channel = "0.5.4"
|
||||
rust-stemmers = "1.2.0"
|
||||
downcast-rs = "2.0.1"
|
||||
downcast-rs = "1.2.1"
|
||||
bitpacking = { version = "0.9.2", default-features = false, features = [
|
||||
"bitpacker4x",
|
||||
] }
|
||||
census = "0.4.2"
|
||||
rustc-hash = "2.0.0"
|
||||
thiserror = "2.0.1"
|
||||
rustc-hash = "1.1.0"
|
||||
thiserror = "1.0.30"
|
||||
htmlescape = "0.3.1"
|
||||
fail = { version = "0.5.0", optional = true }
|
||||
time = { version = "0.3.35", features = ["serde-well-known"] }
|
||||
time = { version = "0.3.10", features = ["serde-well-known"] }
|
||||
smallvec = "1.8.0"
|
||||
rayon = "1.5.2"
|
||||
lru = "0.12.0"
|
||||
fastdivide = "0.4.0"
|
||||
itertools = "0.14.0"
|
||||
measure_time = "0.9.0"
|
||||
itertools = "0.13.0"
|
||||
measure_time = "0.8.2"
|
||||
arc-swap = "1.5.0"
|
||||
bon = "3.3.1"
|
||||
|
||||
columnar = { version = "0.6", path = "./columnar", package = "tantivy-columnar" }
|
||||
sstable = { version = "0.6", path = "./sstable", package = "tantivy-sstable", optional = true }
|
||||
stacker = { version = "0.6", path = "./stacker", package = "tantivy-stacker" }
|
||||
query-grammar = { version = "0.25.0", path = "./query-grammar", package = "tantivy-query-grammar" }
|
||||
tantivy-bitpacker = { version = "0.9", path = "./bitpacker" }
|
||||
common = { version = "0.10", path = "./common/", package = "tantivy-common" }
|
||||
tokenizer-api = { version = "0.6", path = "./tokenizer-api", package = "tantivy-tokenizer-api" }
|
||||
columnar = { version = "0.3", path = "./columnar", package = "tantivy-columnar" }
|
||||
sstable = { version = "0.3", path = "./sstable", package = "tantivy-sstable", optional = true }
|
||||
stacker = { version = "0.3", path = "./stacker", package = "tantivy-stacker" }
|
||||
query-grammar = { version = "0.22.0", path = "./query-grammar", package = "tantivy-query-grammar" }
|
||||
tantivy-bitpacker = { version = "0.6", path = "./bitpacker" }
|
||||
common = { version = "0.7", path = "./common/", package = "tantivy-common" }
|
||||
tokenizer-api = { version = "0.3", path = "./tokenizer-api", package = "tantivy-tokenizer-api" }
|
||||
sketches-ddsketch = { version = "0.3.0", features = ["use_serde"] }
|
||||
hyperloglogplus = { version = "0.4.1", features = ["const-loop"] }
|
||||
futures-util = { version = "0.3.28", optional = true }
|
||||
futures-channel = { version = "0.3.28", optional = true }
|
||||
fnv = "1.0.7"
|
||||
|
||||
[target.'cfg(windows)'.dependencies]
|
||||
winapi = "0.3.9"
|
||||
|
||||
[dev-dependencies]
|
||||
binggan = "0.14.0"
|
||||
binggan = "0.8.0"
|
||||
rand = "0.8.5"
|
||||
maplit = "1.0.2"
|
||||
matches = "0.1.9"
|
||||
@@ -112,20 +110,17 @@ debug-assertions = true
|
||||
overflow-checks = true
|
||||
|
||||
[features]
|
||||
default = ["mmap", "stopwords", "lz4-compression", "columnar-zstd-compression"]
|
||||
default = ["mmap", "stopwords", "lz4-compression"]
|
||||
mmap = ["fs4", "tempfile", "memmap2"]
|
||||
stopwords = []
|
||||
|
||||
lz4-compression = ["lz4_flex"]
|
||||
zstd-compression = ["zstd"]
|
||||
|
||||
# enable zstd-compression in columnar (and sstable)
|
||||
columnar-zstd-compression = ["columnar/zstd-compression"]
|
||||
|
||||
failpoints = ["fail", "fail/failpoints"]
|
||||
unstable = [] # useful for benches.
|
||||
|
||||
quickwit = ["sstable", "futures-util", "futures-channel"]
|
||||
quickwit = ["sstable", "futures-util"]
|
||||
|
||||
# Compares only the hash of a string when indexing data.
|
||||
# Increases indexing speed, but may lead to extremely rare missing terms, when there's a hash collision.
|
||||
|
||||
2
TODO.txt
2
TODO.txt
@@ -1,7 +1,7 @@
|
||||
Make schema_builder API fluent.
|
||||
fix doc serialization and prevent compression problems
|
||||
|
||||
u64 , etc. should return Result<Option> now that we support optional missing a column is really not an error
|
||||
u64 , etc. shoudl return Resutl<Option> now that we support optional missing a column is really not an error
|
||||
remove fastfield codecs
|
||||
ditch the first_or_default trick. if it is still useful, improve its implementation.
|
||||
rename FastFieldReaders::open to load
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
use binggan::plugins::PeakMemAllocPlugin;
|
||||
use binggan::{black_box, InputGroup, PeakMemAlloc, INSTRUMENTED_SYSTEM};
|
||||
use rand::prelude::SliceRandom;
|
||||
use rand::rngs::StdRng;
|
||||
@@ -18,9 +17,7 @@ pub static GLOBAL: &PeakMemAlloc<std::alloc::System> = &INSTRUMENTED_SYSTEM;
|
||||
/// runner.register("average_u64", move |index| average_u64(index));
|
||||
macro_rules! register {
|
||||
($runner:expr, $func:ident) => {
|
||||
$runner.register(stringify!($func), move |index| {
|
||||
$func(index);
|
||||
})
|
||||
$runner.register(stringify!($func), move |index| $func(index))
|
||||
};
|
||||
}
|
||||
|
||||
@@ -45,8 +42,7 @@ fn main() {
|
||||
}
|
||||
|
||||
fn bench_agg(mut group: InputGroup<Index>) {
|
||||
group.add_plugin(PeakMemAllocPlugin::new(GLOBAL));
|
||||
|
||||
group.set_alloc(GLOBAL); // Set the peak mem allocator. This will enable peak memory reporting.
|
||||
register!(group, average_u64);
|
||||
register!(group, average_f64);
|
||||
register!(group, average_f64_u64);
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
[package]
|
||||
name = "tantivy-bitpacker"
|
||||
version = "0.9.0"
|
||||
edition = "2024"
|
||||
version = "0.6.0"
|
||||
edition = "2021"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = []
|
||||
|
||||
@@ -65,7 +65,7 @@ impl BitPacker {
|
||||
|
||||
#[derive(Clone, Debug, Default, Copy)]
|
||||
pub struct BitUnpacker {
|
||||
num_bits: usize,
|
||||
num_bits: u32,
|
||||
mask: u64,
|
||||
}
|
||||
|
||||
@@ -83,7 +83,7 @@ impl BitUnpacker {
|
||||
(1u64 << num_bits) - 1u64
|
||||
};
|
||||
BitUnpacker {
|
||||
num_bits: usize::from(num_bits),
|
||||
num_bits: u32::from(num_bits),
|
||||
mask,
|
||||
}
|
||||
}
|
||||
@@ -94,14 +94,14 @@ impl BitUnpacker {
|
||||
|
||||
#[inline]
|
||||
pub fn get(&self, idx: u32, data: &[u8]) -> u64 {
|
||||
let addr_in_bits = idx as usize * self.num_bits;
|
||||
let addr = addr_in_bits >> 3;
|
||||
let addr_in_bits = idx * self.num_bits;
|
||||
let addr = (addr_in_bits >> 3) as usize;
|
||||
if addr + 8 > data.len() {
|
||||
if self.num_bits == 0 {
|
||||
return 0;
|
||||
}
|
||||
let bit_shift = addr_in_bits & 7;
|
||||
return self.get_slow_path(addr, bit_shift as u32, data);
|
||||
return self.get_slow_path(addr, bit_shift, data);
|
||||
}
|
||||
let bit_shift = addr_in_bits & 7;
|
||||
let bytes: [u8; 8] = (&data[addr..addr + 8]).try_into().unwrap();
|
||||
@@ -134,13 +134,12 @@ impl BitUnpacker {
|
||||
"Bitwidth must be <= 32 to use this method."
|
||||
);
|
||||
|
||||
let end_idx: u32 = start_idx + output.len() as u32;
|
||||
let end_idx = start_idx + output.len() as u32;
|
||||
|
||||
// We use `usize` here to avoid overflow issues.
|
||||
let end_bit_read = (end_idx as usize) * self.num_bits;
|
||||
let end_bit_read = end_idx * self.num_bits;
|
||||
let end_byte_read = (end_bit_read + 7) / 8;
|
||||
assert!(
|
||||
end_byte_read <= data.len(),
|
||||
end_byte_read as usize <= data.len(),
|
||||
"Requested index is out of bounds."
|
||||
);
|
||||
|
||||
@@ -160,24 +159,24 @@ impl BitUnpacker {
|
||||
// We want the start of the fast track to start align with bytes.
|
||||
// A sufficient condition is to start with an idx that is a multiple of 8,
|
||||
// so highway start is the closest multiple of 8 that is >= start_idx.
|
||||
let entrance_ramp_len: u32 = 8 - (start_idx % 8) % 8;
|
||||
let entrance_ramp_len = 8 - (start_idx % 8) % 8;
|
||||
|
||||
let highway_start: u32 = start_idx + entrance_ramp_len;
|
||||
|
||||
if highway_start + (BitPacker1x::BLOCK_LEN as u32) > end_idx {
|
||||
if highway_start + BitPacker1x::BLOCK_LEN as u32 > end_idx {
|
||||
// We don't have enough values to have even a single block of highway.
|
||||
// Let's just supply the values the simple way.
|
||||
get_batch_ramp(start_idx, output);
|
||||
return;
|
||||
}
|
||||
|
||||
let num_blocks: usize = (end_idx - highway_start) as usize / BitPacker1x::BLOCK_LEN;
|
||||
let num_blocks: u32 = (end_idx - highway_start) / BitPacker1x::BLOCK_LEN as u32;
|
||||
|
||||
// Entrance ramp
|
||||
get_batch_ramp(start_idx, &mut output[..entrance_ramp_len as usize]);
|
||||
|
||||
// Highway
|
||||
let mut offset = (highway_start as usize * self.num_bits) / 8;
|
||||
let mut offset = (highway_start * self.num_bits) as usize / 8;
|
||||
let mut output_cursor = (highway_start - start_idx) as usize;
|
||||
for _ in 0..num_blocks {
|
||||
offset += BitPacker1x.decompress(
|
||||
@@ -189,7 +188,7 @@ impl BitUnpacker {
|
||||
}
|
||||
|
||||
// Exit ramp
|
||||
let highway_end: u32 = highway_start + (num_blocks * BitPacker1x::BLOCK_LEN) as u32;
|
||||
let highway_end = highway_start + num_blocks * BitPacker1x::BLOCK_LEN as u32;
|
||||
get_batch_ramp(highway_end, &mut output[output_cursor..]);
|
||||
}
|
||||
|
||||
@@ -369,9 +368,9 @@ mod test {
|
||||
for start_idx in 0u32..32u32 {
|
||||
output.resize(len, 0);
|
||||
bitunpacker.get_batch_u32s(start_idx, &buffer, &mut output);
|
||||
for (i, output_byte) in output.iter().enumerate() {
|
||||
for i in 0..len {
|
||||
let expected = (start_idx + i as u32) & mask;
|
||||
assert_eq!(*output_byte, expected);
|
||||
assert_eq!(output[i], expected);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use super::bitpacker::BitPacker;
|
||||
use super::compute_num_bits;
|
||||
use crate::{BitUnpacker, minmax};
|
||||
use crate::{minmax, BitUnpacker};
|
||||
|
||||
const BLOCK_SIZE: usize = 128;
|
||||
|
||||
@@ -34,7 +34,7 @@ struct BlockedBitpackerEntryMetaData {
|
||||
|
||||
impl BlockedBitpackerEntryMetaData {
|
||||
fn new(offset: u64, num_bits: u8, base_value: u64) -> Self {
|
||||
let encoded = offset | (u64::from(num_bits) << (64 - 8));
|
||||
let encoded = offset | (num_bits as u64) << (64 - 8);
|
||||
Self {
|
||||
encoded,
|
||||
base_value,
|
||||
|
||||
@@ -35,8 +35,8 @@ const IMPLS: [FilterImplPerInstructionSet; 2] = [
|
||||
const IMPLS: [FilterImplPerInstructionSet; 1] = [FilterImplPerInstructionSet::Scalar];
|
||||
|
||||
impl FilterImplPerInstructionSet {
|
||||
#[allow(unused_variables)]
|
||||
#[inline]
|
||||
#[allow(unused_variables)] // on non-x86_64, code is unused.
|
||||
fn from(code: u8) -> FilterImplPerInstructionSet {
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
if code == FilterImplPerInstructionSet::AVX2 as u8 {
|
||||
|
||||
@@ -33,7 +33,11 @@ pub use crate::blocked_bitpacker::BlockedBitpacker;
|
||||
/// number of bits.
|
||||
pub fn compute_num_bits(n: u64) -> u8 {
|
||||
let amplitude = (64u32 - n.leading_zeros()) as u8;
|
||||
if amplitude <= 64 - 8 { amplitude } else { 64 }
|
||||
if amplitude <= 64 - 8 {
|
||||
amplitude
|
||||
} else {
|
||||
64
|
||||
}
|
||||
}
|
||||
|
||||
/// Computes the (min, max) of an iterator of `PartialOrd` values.
|
||||
|
||||
@@ -16,14 +16,14 @@ body = """
|
||||
|
||||
{%- if version %} in {{ version }}{%- endif -%}
|
||||
{% for commit in commits %}
|
||||
{% if commit.remote.pr_title -%}
|
||||
{%- set commit_message = commit.remote.pr_title -%}
|
||||
{% if commit.github.pr_title -%}
|
||||
{%- set commit_message = commit.github.pr_title -%}
|
||||
{%- else -%}
|
||||
{%- set commit_message = commit.message -%}
|
||||
{%- endif -%}
|
||||
- {{ commit_message | split(pat="\n") | first | trim }}\
|
||||
{% if commit.remote.pr_number %} \
|
||||
[#{{ commit.remote.pr_number }}]({{ self::remote_url() }}/pull/{{ commit.remote.pr_number }}){% if commit.remote.username %}(@{{ commit.remote.username }}){%- endif -%} \
|
||||
{% if commit.github.pr_number %} \
|
||||
[#{{ commit.github.pr_number }}]({{ self::remote_url() }}/pull/{{ commit.github.pr_number }}){% if commit.github.username %}(@{{ commit.github.username }}){%- endif -%} \
|
||||
{%- endif %}
|
||||
{%- endfor -%}
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
[package]
|
||||
name = "tantivy-columnar"
|
||||
version = "0.6.0"
|
||||
edition = "2024"
|
||||
version = "0.3.0"
|
||||
edition = "2021"
|
||||
license = "MIT"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
repository = "https://github.com/quickwit-oss/tantivy"
|
||||
@@ -9,21 +9,21 @@ description = "column oriented storage for tantivy"
|
||||
categories = ["database-implementations", "data-structures", "compression"]
|
||||
|
||||
[dependencies]
|
||||
itertools = "0.14.0"
|
||||
itertools = "0.13.0"
|
||||
fastdivide = "0.4.0"
|
||||
|
||||
stacker = { version= "0.6", path = "../stacker", package="tantivy-stacker"}
|
||||
sstable = { version= "0.6", path = "../sstable", package = "tantivy-sstable" }
|
||||
common = { version= "0.10", path = "../common", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.9", path = "../bitpacker/" }
|
||||
stacker = { version= "0.3", path = "../stacker", package="tantivy-stacker"}
|
||||
sstable = { version= "0.3", path = "../sstable", package = "tantivy-sstable" }
|
||||
common = { version= "0.7", path = "../common", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.6", path = "../bitpacker/" }
|
||||
serde = "1.0.152"
|
||||
downcast-rs = "2.0.1"
|
||||
downcast-rs = "1.2.0"
|
||||
|
||||
[dev-dependencies]
|
||||
proptest = "1"
|
||||
more-asserts = "0.3.1"
|
||||
rand = "0.8"
|
||||
binggan = "0.14.0"
|
||||
binggan = "0.8.1"
|
||||
|
||||
[[bench]]
|
||||
name = "bench_merge"
|
||||
@@ -33,29 +33,6 @@ harness = false
|
||||
name = "bench_access"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_first_vals"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_values_u64"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_values_u128"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_create_column_values"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_column_values_get"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_optional_index"
|
||||
harness = false
|
||||
|
||||
[features]
|
||||
zstd-compression = ["sstable/zstd-compression"]
|
||||
unstable = []
|
||||
|
||||
@@ -31,7 +31,7 @@ restriction on 50% of the values (e.g. a 64-bit hash). On the other hand, a lot
|
||||
# Columnar format
|
||||
|
||||
This columnar format may have more than one column (with different types) associated to the same `column_name` (see [Coercion rules](#coercion-rules) above).
|
||||
The `(column_name, column_type)` couple however uniquely identifies a column.
|
||||
The `(column_name, columne_type)` couple however uniquely identifies a column.
|
||||
That couple is serialized as a column `column_key`. The format of that key is:
|
||||
`[column_name][ZERO_BYTE][column_type_header: u8]`
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
use binggan::{InputGroup, black_box};
|
||||
use binggan::{black_box, InputGroup};
|
||||
use common::*;
|
||||
use tantivy_columnar::Column;
|
||||
|
||||
@@ -19,7 +19,7 @@ fn main() {
|
||||
|
||||
let mut add_card = |card1: Card| {
|
||||
inputs.push((
|
||||
card1.to_string(),
|
||||
format!("{card1}"),
|
||||
generate_columnar_and_open(card1, NUM_DOCS),
|
||||
));
|
||||
};
|
||||
@@ -50,7 +50,6 @@ fn bench_group(mut runner: InputGroup<Column>) {
|
||||
let mut buffer = vec![None; BLOCK_SIZE];
|
||||
for i in (0..NUM_DOCS).step_by(BLOCK_SIZE) {
|
||||
// fill docs
|
||||
#[allow(clippy::needless_range_loop)]
|
||||
for idx in 0..BLOCK_SIZE {
|
||||
docs[idx] = idx as u32 + i;
|
||||
}
|
||||
|
||||
@@ -1,61 +0,0 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use binggan::{InputGroup, black_box};
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use tantivy_columnar::ColumnValues;
|
||||
use tantivy_columnar::column_values::{CodecType, serialize_and_load_u64_based_column_values};
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55_000_u64)
|
||||
.map(|num| num + rng.r#gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
|
||||
type Col = Arc<dyn ColumnValues<u64>>;
|
||||
|
||||
fn main() {
|
||||
let data = get_data();
|
||||
let inputs: Vec<(String, Col)> = vec![
|
||||
(
|
||||
"bitpacked".to_string(),
|
||||
serialize_and_load_u64_based_column_values(&data.as_slice(), &[CodecType::Bitpacked]),
|
||||
),
|
||||
(
|
||||
"linear".to_string(),
|
||||
serialize_and_load_u64_based_column_values(&data.as_slice(), &[CodecType::Linear]),
|
||||
),
|
||||
(
|
||||
"blockwise_linear".to_string(),
|
||||
serialize_and_load_u64_based_column_values(
|
||||
&data.as_slice(),
|
||||
&[CodecType::BlockwiseLinear],
|
||||
),
|
||||
),
|
||||
];
|
||||
|
||||
let mut group: InputGroup<Col> = InputGroup::new_with_inputs(inputs);
|
||||
|
||||
group.register("fastfield_get", |col: &Col| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
sum = sum.wrapping_add(col.get_val(pos as u32));
|
||||
}
|
||||
black_box(sum);
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
@@ -1,44 +0,0 @@
|
||||
use binggan::{InputGroup, black_box};
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use tantivy_columnar::column_values::{CodecType, serialize_u64_based_column_values};
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55_000_u64)
|
||||
.map(|num| num + rng.r#gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let data = get_data();
|
||||
let mut group: InputGroup<(CodecType, Vec<u64>)> = InputGroup::new_with_inputs(vec![
|
||||
(
|
||||
"bitpacked codec".to_string(),
|
||||
(CodecType::Bitpacked, data.clone()),
|
||||
),
|
||||
(
|
||||
"linear codec".to_string(),
|
||||
(CodecType::Linear, data.clone()),
|
||||
),
|
||||
(
|
||||
"blockwise linear codec".to_string(),
|
||||
(CodecType::BlockwiseLinear, data.clone()),
|
||||
),
|
||||
]);
|
||||
|
||||
group.register("serialize column_values", |data| {
|
||||
let mut buffer = Vec::new();
|
||||
serialize_u64_based_column_values(&data.1.as_slice(), &[data.0], &mut buffer).unwrap();
|
||||
black_box(buffer.len());
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
@@ -1,9 +1,12 @@
|
||||
#![feature(test)]
|
||||
extern crate test;
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use binggan::{InputGroup, black_box};
|
||||
use rand::prelude::*;
|
||||
use tantivy_columnar::column_values::{CodecType, serialize_and_load_u64_based_column_values};
|
||||
use tantivy_columnar::column_values::{serialize_and_load_u64_based_column_values, CodecType};
|
||||
use tantivy_columnar::*;
|
||||
use test::{black_box, Bencher};
|
||||
|
||||
struct Columns {
|
||||
pub optional: Column,
|
||||
@@ -65,45 +68,88 @@ pub fn serialize_and_load(column: &[u64], codec_type: CodecType) -> Arc<dyn Colu
|
||||
serialize_and_load_u64_based_column_values(&column, &[codec_type])
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let Columns {
|
||||
optional,
|
||||
full,
|
||||
multi,
|
||||
} = get_test_columns();
|
||||
|
||||
let inputs = vec![
|
||||
("full".to_string(), full),
|
||||
("optional".to_string(), optional),
|
||||
("multi".to_string(), multi),
|
||||
];
|
||||
|
||||
let mut group = InputGroup::new_with_inputs(inputs);
|
||||
|
||||
group.register("first_full_scan", |column| {
|
||||
fn run_bench_on_column_full_scan(b: &mut Bencher, column: Column) {
|
||||
let num_iter = black_box(NUM_VALUES);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for i in 0..NUM_VALUES as u32 {
|
||||
for i in 0..num_iter as u32 {
|
||||
let val = column.first(i);
|
||||
sum += val.unwrap_or(0);
|
||||
}
|
||||
black_box(sum);
|
||||
sum
|
||||
});
|
||||
|
||||
group.register("first_block_fetch", |column| {
|
||||
let mut block: Vec<Option<u64>> = vec![None; 64];
|
||||
let fetch_docids = (0..64).collect::<Vec<_>>();
|
||||
}
|
||||
fn run_bench_on_column_block_fetch(b: &mut Bencher, column: Column) {
|
||||
let mut block: Vec<Option<u64>> = vec![None; 64];
|
||||
let fetch_docids = (0..64).collect::<Vec<_>>();
|
||||
b.iter(move || {
|
||||
column.first_vals(&fetch_docids, &mut block);
|
||||
black_box(block[0]);
|
||||
block[0]
|
||||
});
|
||||
|
||||
group.register("first_block_single_calls", |column| {
|
||||
let mut block: Vec<Option<u64>> = vec![None; 64];
|
||||
let fetch_docids = (0..64).collect::<Vec<_>>();
|
||||
}
|
||||
fn run_bench_on_column_block_single_calls(b: &mut Bencher, column: Column) {
|
||||
let mut block: Vec<Option<u64>> = vec![None; 64];
|
||||
let fetch_docids = (0..64).collect::<Vec<_>>();
|
||||
b.iter(move || {
|
||||
for i in 0..fetch_docids.len() {
|
||||
block[i] = column.first(fetch_docids[i]);
|
||||
}
|
||||
black_box(block[0]);
|
||||
block[0]
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
/// Column first method
|
||||
#[bench]
|
||||
fn bench_get_first_on_full_column_full_scan(b: &mut Bencher) {
|
||||
let column = get_test_columns().full;
|
||||
run_bench_on_column_full_scan(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_first_on_optional_column_full_scan(b: &mut Bencher) {
|
||||
let column = get_test_columns().optional;
|
||||
run_bench_on_column_full_scan(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_first_on_multi_column_full_scan(b: &mut Bencher) {
|
||||
let column = get_test_columns().multi;
|
||||
run_bench_on_column_full_scan(b, column);
|
||||
}
|
||||
|
||||
/// Block fetch column accessor
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_optional_column(b: &mut Bencher) {
|
||||
let column = get_test_columns().optional;
|
||||
run_bench_on_column_block_fetch(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_multi_column(b: &mut Bencher) {
|
||||
let column = get_test_columns().multi;
|
||||
run_bench_on_column_block_fetch(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_full_column(b: &mut Bencher) {
|
||||
let column = get_test_columns().full;
|
||||
run_bench_on_column_block_fetch(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_optional_column_single_calls(b: &mut Bencher) {
|
||||
let column = get_test_columns().optional;
|
||||
run_bench_on_column_block_single_calls(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_multi_column_single_calls(b: &mut Bencher) {
|
||||
let column = get_test_columns().multi;
|
||||
run_bench_on_column_block_single_calls(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_full_column_single_calls(b: &mut Bencher) {
|
||||
let column = get_test_columns().full;
|
||||
run_bench_on_column_block_single_calls(b, column);
|
||||
}
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
pub mod common;
|
||||
|
||||
use binggan::BenchRunner;
|
||||
use common::{Card, generate_columnar_with_name};
|
||||
use binggan::{black_box, BenchRunner};
|
||||
use common::{generate_columnar_with_name, Card};
|
||||
use tantivy_columnar::*;
|
||||
|
||||
const NUM_DOCS: u32 = 100_000;
|
||||
@@ -29,7 +29,7 @@ fn main() {
|
||||
add_combo(Card::Multi, Card::Dense);
|
||||
add_combo(Card::Multi, Card::Sparse);
|
||||
|
||||
let mut runner: BenchRunner = BenchRunner::new();
|
||||
let runner: BenchRunner = BenchRunner::new();
|
||||
let mut group = runner.new_group();
|
||||
for (input_name, columnar_readers) in inputs.iter() {
|
||||
group.register_with_input(
|
||||
@@ -41,7 +41,7 @@ fn main() {
|
||||
let merge_row_order = StackMergeOrder::stack(&columnar_readers[..]);
|
||||
|
||||
merge_columnar(&columnar_readers, &[], merge_row_order.into(), &mut out).unwrap();
|
||||
Some(out.len() as u64)
|
||||
black_box(out);
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
@@ -1,106 +0,0 @@
|
||||
use binggan::{InputGroup, black_box};
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use tantivy_columnar::column_index::{OptionalIndex, Set};
|
||||
|
||||
const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
|
||||
fn gen_optional_index(fill_ratio: f64) -> OptionalIndex {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let vals: Vec<u32> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _)| pos as u32)
|
||||
.collect();
|
||||
OptionalIndex::for_test(TOTAL_NUM_VALUES, &vals)
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
start: u32,
|
||||
end: u32,
|
||||
avg_step_size: u32,
|
||||
avg_deviation: u32,
|
||||
) -> impl Iterator<Item = u32> {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end { None } else { Some(current) }
|
||||
})
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
}
|
||||
|
||||
fn walk_over_data(codec: &OptionalIndex, avg_step_size: u32) -> Option<u32> {
|
||||
walk_over_data_from_positions(
|
||||
codec,
|
||||
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
|
||||
)
|
||||
}
|
||||
|
||||
fn walk_over_data_from_positions(
|
||||
codec: &OptionalIndex,
|
||||
positions: impl Iterator<Item = u32>,
|
||||
) -> Option<u32> {
|
||||
let mut dense_idx: Option<u32> = None;
|
||||
for idx in positions {
|
||||
dense_idx = dense_idx.or(codec.rank_if_exists(idx));
|
||||
}
|
||||
dense_idx
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// Build separate inputs for each fill ratio.
|
||||
let inputs: Vec<(String, OptionalIndex)> = vec![
|
||||
("fill=1%".to_string(), gen_optional_index(0.01)),
|
||||
("fill=5%".to_string(), gen_optional_index(0.05)),
|
||||
("fill=10%".to_string(), gen_optional_index(0.10)),
|
||||
("fill=50%".to_string(), gen_optional_index(0.50)),
|
||||
("fill=90%".to_string(), gen_optional_index(0.90)),
|
||||
];
|
||||
|
||||
let mut group: InputGroup<OptionalIndex> = InputGroup::new_with_inputs(inputs);
|
||||
|
||||
// Translate orig->codec (rank_if_exists) with sampling
|
||||
group.register("orig_to_codec_10pct_hit", |codec: &OptionalIndex| {
|
||||
black_box(walk_over_data(codec, 100));
|
||||
});
|
||||
group.register("orig_to_codec_1pct_hit", |codec: &OptionalIndex| {
|
||||
black_box(walk_over_data(codec, 1000));
|
||||
});
|
||||
group.register("orig_to_codec_full_scan", |codec: &OptionalIndex| {
|
||||
black_box(walk_over_data_from_positions(codec, 0..TOTAL_NUM_VALUES));
|
||||
});
|
||||
|
||||
// Translate codec->orig (select/select_batch) on sampled ranks
|
||||
fn bench_translate_codec_to_orig_util(codec: &OptionalIndex, percent_hit: f32) {
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
let idxs: Vec<u32> = if percent_hit == 100.0f32 {
|
||||
(0..num_non_nulls).collect()
|
||||
} else {
|
||||
n_percent_step_iterator(percent_hit, num_non_nulls).collect()
|
||||
};
|
||||
let mut output = vec![0u32; idxs.len()];
|
||||
output.copy_from_slice(&idxs[..]);
|
||||
codec.select_batch(&mut output);
|
||||
black_box(output);
|
||||
}
|
||||
|
||||
group.register("codec_to_orig_0.005pct_hit", |codec: &OptionalIndex| {
|
||||
bench_translate_codec_to_orig_util(codec, 0.005);
|
||||
});
|
||||
group.register("codec_to_orig_10pct_hit", |codec: &OptionalIndex| {
|
||||
bench_translate_codec_to_orig_util(codec, 10.0);
|
||||
});
|
||||
group.register("codec_to_orig_full_scan", |codec: &OptionalIndex| {
|
||||
bench_translate_codec_to_orig_util(codec, 100.0);
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
@@ -1,12 +1,15 @@
|
||||
#![feature(test)]
|
||||
|
||||
use std::ops::RangeInclusive;
|
||||
use std::sync::Arc;
|
||||
|
||||
use binggan::{InputGroup, black_box};
|
||||
use common::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::{Rng, SeedableRng, random};
|
||||
use rand::{random, Rng, SeedableRng};
|
||||
use tantivy_columnar::ColumnValues;
|
||||
use test::Bencher;
|
||||
extern crate test;
|
||||
|
||||
// TODO does this make sense for IPv6 ?
|
||||
fn generate_random() -> Vec<u64> {
|
||||
@@ -44,77 +47,78 @@ fn get_data_50percent_item() -> Vec<u128> {
|
||||
}
|
||||
data.push(SINGLE_ITEM);
|
||||
data.shuffle(&mut rng);
|
||||
data.iter().map(|el| *el as u128).collect::<Vec<_>>()
|
||||
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
data
|
||||
}
|
||||
|
||||
fn main() {
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let column_range = get_u128_column_from_data(&data);
|
||||
let column_random = get_u128_column_random();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
struct Inputs {
|
||||
data: Vec<u128>,
|
||||
column_range: Arc<dyn ColumnValues<u128>>,
|
||||
column_random: Arc<dyn ColumnValues<u128>>,
|
||||
}
|
||||
|
||||
let inputs = Inputs {
|
||||
data,
|
||||
column_range,
|
||||
column_random,
|
||||
};
|
||||
let mut group: InputGroup<Inputs> =
|
||||
InputGroup::new_with_inputs(vec![("u128 benches".to_string(), inputs)]);
|
||||
|
||||
group.register(
|
||||
"intfastfield_getrange_u128_50percent_hit",
|
||||
|inp: &Inputs| {
|
||||
let mut positions = Vec::new();
|
||||
inp.column_range.get_row_ids_for_value_range(
|
||||
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
|
||||
0..inp.data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
black_box(positions.len());
|
||||
},
|
||||
);
|
||||
|
||||
group.register("intfastfield_getrange_u128_single_hit", |inp: &Inputs| {
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
inp.column_range.get_row_ids_for_value_range(
|
||||
column.get_row_ids_for_value_range(
|
||||
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(
|
||||
*SINGLE_ITEM_RANGE.start() as u128..=*SINGLE_ITEM_RANGE.end() as u128,
|
||||
0..inp.data.len() as u32,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
black_box(positions.len());
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
group.register("intfastfield_getrange_u128_hit_all", |inp: &Inputs| {
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
inp.column_range.get_row_ids_for_value_range(
|
||||
0..=u128::MAX,
|
||||
0..inp.data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
black_box(positions.len());
|
||||
column.get_row_ids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
// U128 RANGE END
|
||||
|
||||
group.register("intfastfield_scan_all_fflookup_u128", |inp: &Inputs| {
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
let mut a = 0u128;
|
||||
for i in 0u64..inp.column_random.num_vals() as u64 {
|
||||
a += inp.column_random.get_val(i as u32);
|
||||
for i in 0u64..column.num_vals() as u64 {
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
black_box(a);
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
group.register("intfastfield_jumpy_stride5_u128", |inp: &Inputs| {
|
||||
let n = inp.column_random.num_vals();
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_stride5_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
let n = column.num_vals();
|
||||
let mut a = 0u128;
|
||||
for i in (0..n / 5).map(|val| val * 5) {
|
||||
a += inp.column_random.get_val(i);
|
||||
a += column.get_val(i);
|
||||
}
|
||||
black_box(a);
|
||||
a
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
@@ -1,10 +1,13 @@
|
||||
#![feature(test)]
|
||||
extern crate test;
|
||||
|
||||
use std::ops::RangeInclusive;
|
||||
use std::sync::Arc;
|
||||
|
||||
use binggan::{InputGroup, black_box};
|
||||
use rand::prelude::*;
|
||||
use tantivy_columnar::column_values::{CodecType, serialize_and_load_u64_based_column_values};
|
||||
use tantivy_columnar::column_values::{serialize_and_load_u64_based_column_values, CodecType};
|
||||
use tantivy_columnar::*;
|
||||
use test::Bencher;
|
||||
|
||||
// Warning: this generates the same permutation at each call
|
||||
fn generate_permutation() -> Vec<u64> {
|
||||
@@ -24,11 +27,37 @@ pub fn serialize_and_load(column: &[u64], codec_type: CodecType) -> Arc<dyn Colu
|
||||
serialize_and_load_u64_based_column_values(&column, &[codec_type])
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_veclookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = permutation[a as usize];
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_fflookup_bitpacked(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = column.get_val(a as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
const FIFTY_PERCENT_RANGE: RangeInclusive<u64> = 1..=50;
|
||||
const SINGLE_ITEM: u64 = 90;
|
||||
const SINGLE_ITEM_RANGE: RangeInclusive<u64> = 90..=90;
|
||||
const ONE_PERCENT_ITEM_RANGE: RangeInclusive<u64> = 49..=49;
|
||||
|
||||
fn get_data_50percent_item() -> Vec<u128> {
|
||||
let mut rng = StdRng::from_seed([1u8; 32]);
|
||||
|
||||
@@ -40,122 +69,135 @@ fn get_data_50percent_item() -> Vec<u128> {
|
||||
data.push(SINGLE_ITEM);
|
||||
|
||||
data.shuffle(&mut rng);
|
||||
data.iter().map(|el| *el as u128).collect::<Vec<_>>()
|
||||
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
data
|
||||
}
|
||||
|
||||
type VecCol = (Vec<u64>, Arc<dyn ColumnValues<u64>>);
|
||||
// U64 RANGE START
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_50percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(
|
||||
FIFTY_PERCENT_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
fn bench_access() {
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_1percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(
|
||||
ONE_PERCENT_ITEM_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_single_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(SINGLE_ITEM_RANGE, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_hit_all(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(0..=u64::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
// U64 RANGE END
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_vec(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let column_perm: Arc<dyn ColumnValues<u64>> =
|
||||
serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
|
||||
let permutation_gcd = generate_permutation_gcd();
|
||||
let column_perm_gcd: Arc<dyn ColumnValues<u64>> =
|
||||
serialize_and_load(&permutation_gcd, CodecType::Bitpacked);
|
||||
|
||||
let mut group: InputGroup<VecCol> = InputGroup::new_with_inputs(vec![
|
||||
(
|
||||
"access".to_string(),
|
||||
(permutation.clone(), column_perm.clone()),
|
||||
),
|
||||
(
|
||||
"access_gcd".to_string(),
|
||||
(permutation_gcd.clone(), column_perm_gcd.clone()),
|
||||
),
|
||||
]);
|
||||
|
||||
group.register("stride7_vec", |inp: &VecCol| {
|
||||
let n = inp.0.len();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += inp.0[i];
|
||||
a += permutation[i as usize];
|
||||
}
|
||||
black_box(a);
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
group.register("fullscan_vec", |inp: &VecCol| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..inp.0.len() {
|
||||
a += inp.0[i];
|
||||
}
|
||||
black_box(a);
|
||||
});
|
||||
|
||||
group.register("stride7_column_values", |inp: &VecCol| {
|
||||
let n = inp.1.num_vals() as usize;
|
||||
let mut a = 0u64;
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut a = 0;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += inp.1.get_val(i as u32);
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
black_box(a);
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
group.register("fullscan_column_values", |inp: &VecCol| {
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
let column_ref = column.as_ref();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0u32..n as u32 {
|
||||
a += column_ref.get_val(i);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_gcd(b: &mut Bencher) {
|
||||
let permutation = generate_permutation_gcd();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
let n = inp.1.num_vals() as usize;
|
||||
for i in 0..n {
|
||||
a += inp.1.get_val(i as u32);
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
black_box(a);
|
||||
a
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
fn bench_range() {
|
||||
let data_50 = get_data_50percent_item();
|
||||
let data_u64 = data_50.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column_data: Arc<dyn ColumnValues<u64>> =
|
||||
serialize_and_load(&data_u64, CodecType::Bitpacked);
|
||||
|
||||
let mut group: InputGroup<Arc<dyn ColumnValues<u64>>> =
|
||||
InputGroup::new_with_inputs(vec![("dist_50pct_item".to_string(), column_data.clone())]);
|
||||
|
||||
group.register(
|
||||
"fastfield_getrange_u64_50percent_hit",
|
||||
|col: &Arc<dyn ColumnValues<u64>>| {
|
||||
let mut positions = Vec::new();
|
||||
col.get_row_ids_for_value_range(FIFTY_PERCENT_RANGE, 0..col.num_vals(), &mut positions);
|
||||
black_box(positions.len());
|
||||
},
|
||||
);
|
||||
|
||||
group.register(
|
||||
"fastfield_getrange_u64_1percent_hit",
|
||||
|col: &Arc<dyn ColumnValues<u64>>| {
|
||||
let mut positions = Vec::new();
|
||||
col.get_row_ids_for_value_range(
|
||||
ONE_PERCENT_ITEM_RANGE,
|
||||
0..col.num_vals(),
|
||||
&mut positions,
|
||||
);
|
||||
black_box(positions.len());
|
||||
},
|
||||
);
|
||||
|
||||
group.register(
|
||||
"fastfield_getrange_u64_single_hit",
|
||||
|col: &Arc<dyn ColumnValues<u64>>| {
|
||||
let mut positions = Vec::new();
|
||||
col.get_row_ids_for_value_range(SINGLE_ITEM_RANGE, 0..col.num_vals(), &mut positions);
|
||||
black_box(positions.len());
|
||||
},
|
||||
);
|
||||
|
||||
group.register(
|
||||
"fastfield_getrange_u64_hit_all",
|
||||
|col: &Arc<dyn ColumnValues<u64>>| {
|
||||
let mut positions = Vec::new();
|
||||
col.get_row_ids_for_value_range(0..=u64::MAX, 0..col.num_vals(), &mut positions);
|
||||
black_box(positions.len());
|
||||
},
|
||||
);
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
fn main() {
|
||||
bench_access();
|
||||
bench_range();
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_vec(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..permutation.len() {
|
||||
a += permutation[i as usize] as u64;
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
@@ -1,18 +0,0 @@
|
||||
[package]
|
||||
name = "tantivy-columnar-inspect"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
license = "MIT"
|
||||
|
||||
[dependencies]
|
||||
tantivy = {path="../..", package="tantivy"}
|
||||
columnar = {path="../", package="tantivy-columnar"}
|
||||
common = {path="../../common", package="tantivy-common"}
|
||||
|
||||
[workspace]
|
||||
members = []
|
||||
|
||||
[profile.release]
|
||||
debug = true
|
||||
#debug-assertions = true
|
||||
#overflow-checks = true
|
||||
@@ -1,54 +0,0 @@
|
||||
use columnar::ColumnarReader;
|
||||
use common::file_slice::{FileSlice, WrapFile};
|
||||
use std::io;
|
||||
use std::path::Path;
|
||||
use tantivy::directory::footer::Footer;
|
||||
|
||||
fn main() -> io::Result<()> {
|
||||
println!("Opens a columnar file written by tantivy and validates it.");
|
||||
let path = std::env::args().nth(1).unwrap();
|
||||
|
||||
let path = Path::new(&path);
|
||||
println!("Reading {:?}", path);
|
||||
let _reader = open_and_validate_columnar(path.to_str().unwrap())?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn validate_columnar_reader(reader: &ColumnarReader) {
|
||||
let num_rows = reader.num_rows();
|
||||
println!("num_rows: {}", num_rows);
|
||||
let columns = reader.list_columns().unwrap();
|
||||
println!("num columns: {:?}", columns.len());
|
||||
for (col_name, dynamic_column_handle) in columns {
|
||||
let col = dynamic_column_handle.open().unwrap();
|
||||
match col {
|
||||
columnar::DynamicColumn::Bool(_)
|
||||
| columnar::DynamicColumn::I64(_)
|
||||
| columnar::DynamicColumn::U64(_)
|
||||
| columnar::DynamicColumn::F64(_)
|
||||
| columnar::DynamicColumn::IpAddr(_)
|
||||
| columnar::DynamicColumn::DateTime(_)
|
||||
| columnar::DynamicColumn::Bytes(_) => {}
|
||||
columnar::DynamicColumn::Str(str_column) => {
|
||||
let num_vals = str_column.ords().values.num_vals();
|
||||
let num_terms_dict = str_column.num_terms() as u64;
|
||||
let max_ord = str_column.ords().values.iter().max().unwrap_or_default();
|
||||
println!("{col_name:35} num_vals {num_vals:10} \t num_terms_dict {num_terms_dict:8} max_ord: {max_ord:8}",);
|
||||
for ord in str_column.ords().values.iter() {
|
||||
assert!(ord < num_terms_dict);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Opens a columnar file that was written by tantivy and validates it.
|
||||
pub fn open_and_validate_columnar(path: &str) -> io::Result<ColumnarReader> {
|
||||
let wrap_file = WrapFile::new(std::fs::File::open(path)?)?;
|
||||
let slice = FileSlice::new(std::sync::Arc::new(wrap_file));
|
||||
let (_footer, slice) = Footer::extract_footer(slice.clone()).unwrap();
|
||||
let reader = ColumnarReader::open(slice).unwrap();
|
||||
validate_columnar_reader(&reader);
|
||||
Ok(reader)
|
||||
}
|
||||
@@ -10,7 +10,7 @@
|
||||
|
||||
# Perf and Size
|
||||
* remove alloc in `ord_to_term`
|
||||
+ multivaued range queries restart from the beginning all of the time.
|
||||
+ multivaued range queries restrat frm the beginning all of the time.
|
||||
* re-add ZSTD compression for dictionaries
|
||||
no systematic monotonic mapping
|
||||
consider removing multilinear
|
||||
@@ -30,7 +30,7 @@ investigate if should have better errors? io::Error is overused at the moment.
|
||||
rename rank/select in unit tests
|
||||
Review the public API via cargo doc
|
||||
go through TODOs
|
||||
remove all doc_id occurrences -> row_id
|
||||
remove all doc_id occurences -> row_id
|
||||
use the rank & select naming in unit tests branch.
|
||||
multi-linear -> blockwise
|
||||
linear codec -> simply a multiplication for the index column
|
||||
@@ -43,5 +43,5 @@ isolate u128_based and uniform naming
|
||||
# Other
|
||||
fix enhance column-cli
|
||||
|
||||
# Santa Claus
|
||||
# Santa claus
|
||||
autodetect datetime ipaddr, plug customizable tokenizer.
|
||||
|
||||
@@ -66,7 +66,7 @@ impl<T: PartialOrd + Copy + std::fmt::Debug + Send + Sync + 'static + Default>
|
||||
&'a self,
|
||||
docs: &'a [u32],
|
||||
accessor: &Column<T>,
|
||||
) -> impl Iterator<Item = (DocId, T)> + 'a + use<'a, T> {
|
||||
) -> impl Iterator<Item = (DocId, T)> + '_ {
|
||||
if accessor.index.get_cardinality().is_full() {
|
||||
docs.iter().cloned().zip(self.val_cache.iter().cloned())
|
||||
} else {
|
||||
@@ -139,7 +139,7 @@ mod tests {
|
||||
missing_docs.push(missing_doc);
|
||||
});
|
||||
|
||||
assert_eq!(missing_docs, Vec::<u32>::new());
|
||||
assert_eq!(missing_docs, vec![]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
||||
@@ -4,8 +4,8 @@ use std::{fmt, io};
|
||||
|
||||
use sstable::{Dictionary, VoidSSTable};
|
||||
|
||||
use crate::RowId;
|
||||
use crate::column::Column;
|
||||
use crate::RowId;
|
||||
|
||||
/// Dictionary encoded column.
|
||||
///
|
||||
|
||||
@@ -9,14 +9,13 @@ use std::sync::Arc;
|
||||
use common::BinarySerializable;
|
||||
pub use dictionary_encoded::{BytesColumn, StrColumn};
|
||||
pub use serialize::{
|
||||
open_column_bytes, open_column_str, open_column_u64, open_column_u128,
|
||||
open_column_u128_as_compact_u64, serialize_column_mappable_to_u64,
|
||||
serialize_column_mappable_to_u128,
|
||||
open_column_bytes, open_column_str, open_column_u128, open_column_u128_as_compact_u64,
|
||||
open_column_u64, serialize_column_mappable_to_u128, serialize_column_mappable_to_u64,
|
||||
};
|
||||
|
||||
use crate::column_index::{ColumnIndex, Set};
|
||||
use crate::column_values::monotonic_mapping::StrictlyMonotonicMappingToInternal;
|
||||
use crate::column_values::{ColumnValues, monotonic_map_column};
|
||||
use crate::column_values::{monotonic_map_column, ColumnValues};
|
||||
use crate::{Cardinality, DocId, EmptyColumnValues, MonotonicallyMappableToU64, RowId};
|
||||
|
||||
#[derive(Clone)]
|
||||
@@ -114,7 +113,7 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Translates a block of docids to row_ids.
|
||||
/// Translates a block of docis to row_ids.
|
||||
///
|
||||
/// returns the row_ids and the matching docids on the same index
|
||||
/// e.g.
|
||||
|
||||
@@ -6,10 +6,10 @@ use common::OwnedBytes;
|
||||
use sstable::Dictionary;
|
||||
|
||||
use crate::column::{BytesColumn, Column};
|
||||
use crate::column_index::{SerializableColumnIndex, serialize_column_index};
|
||||
use crate::column_index::{serialize_column_index, SerializableColumnIndex};
|
||||
use crate::column_values::{
|
||||
CodecType, MonotonicallyMappableToU64, MonotonicallyMappableToU128,
|
||||
load_u64_based_column_values, serialize_column_values_u128, serialize_u64_based_column_values,
|
||||
CodecType, MonotonicallyMappableToU128, MonotonicallyMappableToU64,
|
||||
};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{StrColumn, Version};
|
||||
|
||||
@@ -99,9 +99,9 @@ mod tests {
|
||||
|
||||
use crate::column_index::merge::detect_cardinality;
|
||||
use crate::column_index::multivalued_index::{
|
||||
MultiValueIndex, open_multivalued_index, serialize_multivalued_index,
|
||||
open_multivalued_index, serialize_multivalued_index, MultiValueIndex,
|
||||
};
|
||||
use crate::column_index::{OptionalIndex, SerializableColumnIndex, merge_column_index};
|
||||
use crate::column_index::{merge_column_index, OptionalIndex, SerializableColumnIndex};
|
||||
use crate::{
|
||||
Cardinality, ColumnIndex, MergeRowOrder, RowAddr, RowId, ShuffleMergeOrder, StackMergeOrder,
|
||||
};
|
||||
@@ -173,7 +173,7 @@ mod tests {
|
||||
.into();
|
||||
let merged_column_index = merge_column_index(&column_indexes[..], &merge_row_order);
|
||||
let SerializableColumnIndex::Multivalued(start_index_iterable) = merged_column_index else {
|
||||
panic!("Expected a multivalued index")
|
||||
panic!("Excpected a multivalued index")
|
||||
};
|
||||
let mut output = Vec::new();
|
||||
serialize_multivalued_index(&start_index_iterable, &mut output).unwrap();
|
||||
@@ -211,7 +211,7 @@ mod tests {
|
||||
|
||||
let merged_column_index = merge_column_index(&column_indexes[..], &merge_row_order);
|
||||
let SerializableColumnIndex::Multivalued(start_index_iterable) = merged_column_index else {
|
||||
panic!("Expected a multivalued index")
|
||||
panic!("Excpected a multivalued index")
|
||||
};
|
||||
let mut output = Vec::new();
|
||||
serialize_multivalued_index(&start_index_iterable, &mut output).unwrap();
|
||||
|
||||
@@ -58,7 +58,7 @@ struct ShuffledIndex<'a> {
|
||||
merge_order: &'a ShuffleMergeOrder,
|
||||
}
|
||||
|
||||
impl Iterable<u32> for ShuffledIndex<'_> {
|
||||
impl<'a> Iterable<u32> for ShuffledIndex<'a> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
|
||||
Box::new(
|
||||
self.merge_order
|
||||
@@ -127,7 +127,7 @@ fn integrate_num_vals(num_vals: impl Iterator<Item = u32>) -> impl Iterator<Item
|
||||
)
|
||||
}
|
||||
|
||||
impl Iterable<u32> for ShuffledMultivaluedIndex<'_> {
|
||||
impl<'a> Iterable<u32> for ShuffledMultivaluedIndex<'a> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
|
||||
let num_vals_per_row = iter_num_values(self.column_indexes, self.merge_order);
|
||||
Box::new(integrate_num_vals(num_vals_per_row))
|
||||
@@ -137,8 +137,8 @@ impl Iterable<u32> for ShuffledMultivaluedIndex<'_> {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::RowAddr;
|
||||
use crate::column_index::OptionalIndex;
|
||||
use crate::RowAddr;
|
||||
|
||||
#[test]
|
||||
fn test_integrate_num_vals_empty() {
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
use std::ops::Range;
|
||||
|
||||
use crate::column_index::SerializableColumnIndex;
|
||||
use crate::column_index::multivalued_index::{MultiValueIndex, SerializableMultivalueIndex};
|
||||
use crate::column_index::serialize::SerializableOptionalIndex;
|
||||
use crate::column_index::SerializableColumnIndex;
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{Cardinality, ColumnIndex, RowId, StackMergeOrder};
|
||||
|
||||
@@ -56,7 +56,7 @@ fn get_doc_ids_with_values<'a>(
|
||||
ColumnIndex::Full => Box::new(doc_range),
|
||||
ColumnIndex::Optional(optional_index) => Box::new(
|
||||
optional_index
|
||||
.iter_docs()
|
||||
.iter_rows()
|
||||
.map(move |row| row + doc_range.start),
|
||||
),
|
||||
ColumnIndex::Multivalued(multivalued_index) => match multivalued_index {
|
||||
@@ -73,7 +73,7 @@ fn get_doc_ids_with_values<'a>(
|
||||
MultiValueIndex::MultiValueIndexV2(multivalued_index) => Box::new(
|
||||
multivalued_index
|
||||
.optional_index
|
||||
.iter_docs()
|
||||
.iter_rows()
|
||||
.map(move |row| row + doc_range.start),
|
||||
),
|
||||
},
|
||||
@@ -123,7 +123,7 @@ fn get_num_values_iterator<'a>(
|
||||
}
|
||||
}
|
||||
|
||||
impl Iterable<u32> for StackedStartOffsets<'_> {
|
||||
impl<'a> Iterable<u32> for StackedStartOffsets<'a> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
|
||||
let num_values_it = (0..self.column_indexes.len()).flat_map(|columnar_id| {
|
||||
let num_docs = self.stack_merge_order.columnar_range(columnar_id).len() as u32;
|
||||
@@ -177,7 +177,7 @@ impl<'a> Iterable<RowId> for StackedOptionalIndex<'a> {
|
||||
ColumnIndex::Full => Box::new(columnar_row_range),
|
||||
ColumnIndex::Optional(optional_index) => Box::new(
|
||||
optional_index
|
||||
.iter_docs()
|
||||
.iter_rows()
|
||||
.map(move |row_id: RowId| columnar_row_range.start + row_id),
|
||||
),
|
||||
ColumnIndex::Multivalued(_) => {
|
||||
|
||||
@@ -14,7 +14,7 @@ pub use merge::merge_column_index;
|
||||
pub(crate) use multivalued_index::SerializableMultivalueIndex;
|
||||
pub use optional_index::{OptionalIndex, Set};
|
||||
pub use serialize::{
|
||||
SerializableColumnIndex, SerializableOptionalIndex, open_column_index, serialize_column_index,
|
||||
open_column_index, serialize_column_index, SerializableColumnIndex, SerializableOptionalIndex,
|
||||
};
|
||||
|
||||
use crate::column_index::multivalued_index::MultiValueIndex;
|
||||
@@ -28,7 +28,7 @@ pub enum ColumnIndex {
|
||||
Full,
|
||||
Optional(OptionalIndex),
|
||||
/// In addition, at index num_rows, an extra value is added
|
||||
/// containing the overall number of values.
|
||||
/// containing the overal number of values.
|
||||
Multivalued(MultiValueIndex),
|
||||
}
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@ use common::{CountingWriter, OwnedBytes};
|
||||
use super::optional_index::{open_optional_index, serialize_optional_index};
|
||||
use super::{OptionalIndex, SerializableOptionalIndex, Set};
|
||||
use crate::column_values::{
|
||||
CodecType, ColumnValues, load_u64_based_column_values, serialize_u64_based_column_values,
|
||||
load_u64_based_column_values, serialize_u64_based_column_values, CodecType, ColumnValues,
|
||||
};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{DocId, RowId, Version};
|
||||
|
||||
@@ -7,7 +7,7 @@ mod set_block;
|
||||
use common::{BinarySerializable, OwnedBytes, VInt};
|
||||
pub use set::{SelectCursor, Set, SetCodec};
|
||||
use set_block::{
|
||||
DENSE_BLOCK_NUM_BYTES, DenseBlock, DenseBlockCodec, SparseBlock, SparseBlockCodec,
|
||||
DenseBlock, DenseBlockCodec, SparseBlock, SparseBlockCodec, DENSE_BLOCK_NUM_BYTES,
|
||||
};
|
||||
|
||||
use crate::iterable::Iterable;
|
||||
@@ -80,23 +80,23 @@ impl BlockVariant {
|
||||
/// index is the block index. For each block `byte_start` and `offset` is computed.
|
||||
#[derive(Clone)]
|
||||
pub struct OptionalIndex {
|
||||
num_docs: RowId,
|
||||
num_non_null_docs: RowId,
|
||||
num_rows: RowId,
|
||||
num_non_null_rows: RowId,
|
||||
block_data: OwnedBytes,
|
||||
block_metas: Arc<[BlockMeta]>,
|
||||
}
|
||||
|
||||
impl Iterable<u32> for &OptionalIndex {
|
||||
impl<'a> Iterable<u32> for &'a OptionalIndex {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
|
||||
Box::new(self.iter_docs())
|
||||
Box::new(self.iter_rows())
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for OptionalIndex {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
||||
f.debug_struct("OptionalIndex")
|
||||
.field("num_docs", &self.num_docs)
|
||||
.field("num_non_null_docs", &self.num_non_null_docs)
|
||||
.field("num_rows", &self.num_rows)
|
||||
.field("num_non_null_rows", &self.num_non_null_rows)
|
||||
.finish_non_exhaustive()
|
||||
}
|
||||
}
|
||||
@@ -123,7 +123,7 @@ enum BlockSelectCursor<'a> {
|
||||
Sparse(<SparseBlock<'a> as Set<u16>>::SelectCursor<'a>),
|
||||
}
|
||||
|
||||
impl BlockSelectCursor<'_> {
|
||||
impl<'a> BlockSelectCursor<'a> {
|
||||
fn select(&mut self, rank: u16) -> u16 {
|
||||
match self {
|
||||
BlockSelectCursor::Dense(dense_select_cursor) => dense_select_cursor.select(rank),
|
||||
@@ -141,7 +141,7 @@ pub struct OptionalIndexSelectCursor<'a> {
|
||||
num_null_rows_before_block: RowId,
|
||||
}
|
||||
|
||||
impl OptionalIndexSelectCursor<'_> {
|
||||
impl<'a> OptionalIndexSelectCursor<'a> {
|
||||
fn search_and_load_block(&mut self, rank: RowId) {
|
||||
if rank < self.current_block_end_rank {
|
||||
// we are already in the right block
|
||||
@@ -165,7 +165,7 @@ impl OptionalIndexSelectCursor<'_> {
|
||||
}
|
||||
}
|
||||
|
||||
impl SelectCursor<RowId> for OptionalIndexSelectCursor<'_> {
|
||||
impl<'a> SelectCursor<RowId> for OptionalIndexSelectCursor<'a> {
|
||||
fn select(&mut self, rank: RowId) -> RowId {
|
||||
self.search_and_load_block(rank);
|
||||
let index_in_block = (rank - self.num_null_rows_before_block) as u16;
|
||||
@@ -174,9 +174,7 @@ impl SelectCursor<RowId> for OptionalIndexSelectCursor<'_> {
|
||||
}
|
||||
|
||||
impl Set<RowId> for OptionalIndex {
|
||||
type SelectCursor<'b>
|
||||
= OptionalIndexSelectCursor<'b>
|
||||
where Self: 'b;
|
||||
type SelectCursor<'b> = OptionalIndexSelectCursor<'b> where Self: 'b;
|
||||
// Check if value at position is not null.
|
||||
#[inline]
|
||||
fn contains(&self, row_id: RowId) -> bool {
|
||||
@@ -259,13 +257,11 @@ impl Set<RowId> for OptionalIndex {
|
||||
|
||||
impl OptionalIndex {
|
||||
pub fn for_test(num_rows: RowId, row_ids: &[RowId]) -> OptionalIndex {
|
||||
assert!(
|
||||
row_ids
|
||||
.last()
|
||||
.copied()
|
||||
.map(|last_row_id| last_row_id < num_rows)
|
||||
.unwrap_or(true)
|
||||
);
|
||||
assert!(row_ids
|
||||
.last()
|
||||
.copied()
|
||||
.map(|last_row_id| last_row_id < num_rows)
|
||||
.unwrap_or(true));
|
||||
let mut buffer = Vec::new();
|
||||
serialize_optional_index(&row_ids, num_rows, &mut buffer).unwrap();
|
||||
let bytes = OwnedBytes::new(buffer);
|
||||
@@ -273,17 +269,17 @@ impl OptionalIndex {
|
||||
}
|
||||
|
||||
pub fn num_docs(&self) -> RowId {
|
||||
self.num_docs
|
||||
self.num_rows
|
||||
}
|
||||
|
||||
pub fn num_non_nulls(&self) -> RowId {
|
||||
self.num_non_null_docs
|
||||
self.num_non_null_rows
|
||||
}
|
||||
|
||||
pub fn iter_docs(&self) -> impl Iterator<Item = RowId> + '_ {
|
||||
pub fn iter_rows(&self) -> impl Iterator<Item = RowId> + '_ {
|
||||
// TODO optimize
|
||||
let mut select_batch = self.select_cursor();
|
||||
(0..self.num_non_null_docs).map(move |rank| select_batch.select(rank))
|
||||
(0..self.num_non_null_rows).map(move |rank| select_batch.select(rank))
|
||||
}
|
||||
pub fn select_batch(&self, ranks: &mut [RowId]) {
|
||||
let mut select_cursor = self.select_cursor();
|
||||
@@ -507,7 +503,7 @@ fn deserialize_optional_index_block_metadatas(
|
||||
non_null_rows_before_block += num_non_null_rows;
|
||||
}
|
||||
block_metas.resize(
|
||||
num_rows.div_ceil(ELEMENTS_PER_BLOCK) as usize,
|
||||
((num_rows + ELEMENTS_PER_BLOCK - 1) / ELEMENTS_PER_BLOCK) as usize,
|
||||
BlockMeta {
|
||||
non_null_rows_before_block,
|
||||
start_byte_offset,
|
||||
@@ -521,15 +517,15 @@ pub fn open_optional_index(bytes: OwnedBytes) -> io::Result<OptionalIndex> {
|
||||
let (mut bytes, num_non_empty_blocks_bytes) = bytes.rsplit(2);
|
||||
let num_non_empty_block_bytes =
|
||||
u16::from_le_bytes(num_non_empty_blocks_bytes.as_slice().try_into().unwrap());
|
||||
let num_docs = VInt::deserialize_u64(&mut bytes)? as u32;
|
||||
let num_rows = VInt::deserialize_u64(&mut bytes)? as u32;
|
||||
let block_metas_num_bytes =
|
||||
num_non_empty_block_bytes as usize * SERIALIZED_BLOCK_META_NUM_BYTES;
|
||||
let (block_data, block_metas) = bytes.rsplit(block_metas_num_bytes);
|
||||
let (block_metas, num_non_null_docs) =
|
||||
deserialize_optional_index_block_metadatas(block_metas.as_slice(), num_docs);
|
||||
let (block_metas, num_non_null_rows) =
|
||||
deserialize_optional_index_block_metadatas(block_metas.as_slice(), num_rows);
|
||||
let optional_index = OptionalIndex {
|
||||
num_docs,
|
||||
num_non_null_docs,
|
||||
num_rows,
|
||||
num_non_null_rows,
|
||||
block_data,
|
||||
block_metas: block_metas.into(),
|
||||
};
|
||||
|
||||
@@ -2,7 +2,7 @@ use std::io::{self, Write};
|
||||
|
||||
use common::BinarySerializable;
|
||||
|
||||
use crate::column_index::optional_index::{ELEMENTS_PER_BLOCK, SelectCursor, Set, SetCodec};
|
||||
use crate::column_index::optional_index::{SelectCursor, Set, SetCodec, ELEMENTS_PER_BLOCK};
|
||||
|
||||
#[inline(always)]
|
||||
fn get_bit_at(input: u64, n: u16) -> bool {
|
||||
@@ -23,6 +23,7 @@ fn set_bit_at(input: &mut u64, n: u16) {
|
||||
///
|
||||
/// When translating a dense index to the original index, we can use the offset to find the correct
|
||||
/// block. Direct computation is not possible, but we can employ a linear or binary search.
|
||||
|
||||
const ELEMENTS_PER_MINI_BLOCK: u16 = 64;
|
||||
const MINI_BLOCK_BITVEC_NUM_BYTES: usize = 8;
|
||||
const MINI_BLOCK_OFFSET_NUM_BYTES: usize = 2;
|
||||
@@ -108,7 +109,7 @@ pub struct DenseBlockSelectCursor<'a> {
|
||||
dense_block: DenseBlock<'a>,
|
||||
}
|
||||
|
||||
impl SelectCursor<u16> for DenseBlockSelectCursor<'_> {
|
||||
impl<'a> SelectCursor<u16> for DenseBlockSelectCursor<'a> {
|
||||
#[inline]
|
||||
fn select(&mut self, rank: u16) -> u16 {
|
||||
self.block_id = self
|
||||
@@ -122,9 +123,7 @@ impl SelectCursor<u16> for DenseBlockSelectCursor<'_> {
|
||||
}
|
||||
|
||||
impl<'a> Set<u16> for DenseBlock<'a> {
|
||||
type SelectCursor<'b>
|
||||
= DenseBlockSelectCursor<'a>
|
||||
where Self: 'b;
|
||||
type SelectCursor<'b> = DenseBlockSelectCursor<'a> where Self: 'b;
|
||||
|
||||
#[inline(always)]
|
||||
fn contains(&self, el: u16) -> bool {
|
||||
@@ -174,7 +173,7 @@ impl<'a> Set<u16> for DenseBlock<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
impl DenseBlock<'_> {
|
||||
impl<'a> DenseBlock<'a> {
|
||||
#[inline]
|
||||
fn mini_block(&self, mini_block_id: u16) -> DenseMiniBlock {
|
||||
let data_start_pos = mini_block_id as usize * MINI_BLOCK_NUM_BYTES;
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
mod dense;
|
||||
mod sparse;
|
||||
|
||||
pub use dense::{DENSE_BLOCK_NUM_BYTES, DenseBlock, DenseBlockCodec};
|
||||
pub use dense::{DenseBlock, DenseBlockCodec, DENSE_BLOCK_NUM_BYTES};
|
||||
pub use sparse::{SparseBlock, SparseBlockCodec};
|
||||
|
||||
#[cfg(test)]
|
||||
|
||||
@@ -31,10 +31,8 @@ impl<'a> SelectCursor<u16> for SparseBlock<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
impl Set<u16> for SparseBlock<'_> {
|
||||
type SelectCursor<'b>
|
||||
= Self
|
||||
where Self: 'b;
|
||||
impl<'a> Set<u16> for SparseBlock<'a> {
|
||||
type SelectCursor<'b> = Self where Self: 'b;
|
||||
|
||||
#[inline(always)]
|
||||
fn contains(&self, el: u16) -> bool {
|
||||
@@ -69,7 +67,7 @@ fn get_u16(data: &[u8], byte_position: usize) -> u16 {
|
||||
u16::from_le_bytes(bytes)
|
||||
}
|
||||
|
||||
impl SparseBlock<'_> {
|
||||
impl<'a> SparseBlock<'a> {
|
||||
#[inline(always)]
|
||||
fn value_at_idx(&self, data: &[u8], idx: u16) -> u16 {
|
||||
let start_offset: usize = idx as usize * 2;
|
||||
@@ -82,7 +80,7 @@ impl SparseBlock<'_> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[expect(clippy::comparison_chain)]
|
||||
#[allow(clippy::comparison_chain)]
|
||||
// Looks for the element in the block. Returns the positions if found.
|
||||
fn binary_search(&self, target: u16) -> Result<u16, u16> {
|
||||
let data = &self.0;
|
||||
|
||||
@@ -110,8 +110,8 @@ fn test_null_index(data: &[bool]) {
|
||||
.map(|(pos, _val)| pos as u32)
|
||||
.collect();
|
||||
let mut select_iter = null_index.select_cursor();
|
||||
for (i, expected) in orig_idx_with_value.iter().enumerate() {
|
||||
assert_eq!(select_iter.select(i as u32), *expected);
|
||||
for i in 0..orig_idx_with_value.len() {
|
||||
assert_eq!(select_iter.select(i as u32), orig_idx_with_value[i]);
|
||||
}
|
||||
|
||||
let step_size = (orig_idx_with_value.len() / 100).max(1);
|
||||
@@ -164,7 +164,7 @@ fn test_optional_index_large() {
|
||||
fn test_optional_index_iter_aux(row_ids: &[RowId], num_rows: RowId) {
|
||||
let optional_index = OptionalIndex::for_test(num_rows, row_ids);
|
||||
assert_eq!(optional_index.num_docs(), num_rows);
|
||||
assert!(optional_index.iter_docs().eq(row_ids.iter().copied()));
|
||||
assert!(optional_index.iter_rows().eq(row_ids.iter().copied()));
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -219,3 +219,174 @@ fn test_optional_index_for_tests() {
|
||||
assert!(!optional_index.contains(3));
|
||||
assert_eq!(optional_index.num_docs(), 4);
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::Bencher;
|
||||
|
||||
use super::*;
|
||||
|
||||
const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
fn gen_bools(fill_ratio: f64) -> OptionalIndex {
|
||||
let mut out = Vec::new();
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let vals: Vec<RowId> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _)| pos as RowId)
|
||||
.collect();
|
||||
serialize_optional_index(&&vals[..], TOTAL_NUM_VALUES, &mut out).unwrap();
|
||||
|
||||
open_optional_index(OwnedBytes::new(out)).unwrap()
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
start: u32,
|
||||
end: u32,
|
||||
avg_step_size: u32,
|
||||
avg_deviation: u32,
|
||||
) -> impl Iterator<Item = u32> {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end {
|
||||
None
|
||||
} else {
|
||||
Some(current)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
}
|
||||
|
||||
fn walk_over_data(codec: &OptionalIndex, avg_step_size: u32) -> Option<u32> {
|
||||
walk_over_data_from_positions(
|
||||
codec,
|
||||
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
|
||||
)
|
||||
}
|
||||
|
||||
fn walk_over_data_from_positions(
|
||||
codec: &OptionalIndex,
|
||||
positions: impl Iterator<Item = u32>,
|
||||
) -> Option<u32> {
|
||||
let mut dense_idx: Option<u32> = None;
|
||||
for idx in positions {
|
||||
dense_idx = dense_idx.or(codec.rank_if_exists(idx));
|
||||
}
|
||||
dense_idx
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 1000));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.5f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 0.005f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_10percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.1f64, 0.005f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 10f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 100f32, bench);
|
||||
}
|
||||
|
||||
fn bench_translate_codec_to_orig_util(
|
||||
percent_filled: f64,
|
||||
percent_hit: f32,
|
||||
bench: &mut Bencher,
|
||||
) {
|
||||
let codec = gen_bools(percent_filled);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
let idxs: Vec<u32> = if percent_hit == 100.0f32 {
|
||||
(0..num_non_nulls).collect()
|
||||
} else {
|
||||
n_percent_step_iterator(percent_hit, num_non_nulls).collect()
|
||||
};
|
||||
let mut output = vec![0u32; idxs.len()];
|
||||
bench.iter(|| {
|
||||
output.copy_from_slice(&idxs[..]);
|
||||
codec.select_batch(&mut output);
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.9f64, 0.005, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.9f64, 100.0f32, bench);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,11 +3,11 @@ use std::io::Write;
|
||||
|
||||
use common::{CountingWriter, OwnedBytes};
|
||||
|
||||
use super::OptionalIndex;
|
||||
use super::multivalued_index::SerializableMultivalueIndex;
|
||||
use crate::column_index::ColumnIndex;
|
||||
use super::OptionalIndex;
|
||||
use crate::column_index::multivalued_index::serialize_multivalued_index;
|
||||
use crate::column_index::optional_index::serialize_optional_index;
|
||||
use crate::column_index::ColumnIndex;
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{Cardinality, RowId, Version};
|
||||
|
||||
@@ -31,7 +31,7 @@ pub enum SerializableColumnIndex<'a> {
|
||||
Multivalued(SerializableMultivalueIndex<'a>),
|
||||
}
|
||||
|
||||
impl SerializableColumnIndex<'_> {
|
||||
impl<'a> SerializableColumnIndex<'a> {
|
||||
pub fn get_cardinality(&self) -> Cardinality {
|
||||
match self {
|
||||
SerializableColumnIndex::Full => Cardinality::Full,
|
||||
|
||||
139
columnar/src/column_values/bench.rs
Normal file
139
columnar/src/column_values/bench.rs
Normal file
@@ -0,0 +1,139 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::*;
|
||||
use crate::column_values::u64_based::*;
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55000_u64)
|
||||
.map(|num| num + rng.gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
fn compute_stats(vals: impl Iterator<Item = u64>) -> ColumnStats {
|
||||
let mut stats_collector = StatsCollector::default();
|
||||
for val in vals {
|
||||
stats_collector.collect(val);
|
||||
}
|
||||
stats_collector.stats()
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
|
||||
fn get_reader_for_bench<Codec: ColumnCodec>(data: &[u64]) -> Codec::ColumnValues {
|
||||
let mut bytes = Vec::new();
|
||||
let stats = compute_stats(data.iter().cloned());
|
||||
let mut codec_serializer = Codec::estimator();
|
||||
for val in data {
|
||||
codec_serializer.collect(*val);
|
||||
}
|
||||
codec_serializer
|
||||
.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes)
|
||||
.unwrap();
|
||||
|
||||
Codec::load(OwnedBytes::new(bytes)).unwrap()
|
||||
}
|
||||
|
||||
fn bench_get<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = get_reader_for_bench::<Codec>(data);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn ColumnValues>) {
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
fn bench_get_dynamic<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = Arc::new(get_reader_for_bench::<Codec>(data));
|
||||
bench_get_dynamic_helper(b, col);
|
||||
}
|
||||
fn bench_create<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let stats = compute_stats(data.iter().cloned());
|
||||
|
||||
let mut bytes = Vec::new();
|
||||
b.iter(|| {
|
||||
bytes.clear();
|
||||
let mut codec_serializer = Codec::estimator();
|
||||
for val in data.iter().take(1024) {
|
||||
codec_serializer.collect(*val);
|
||||
}
|
||||
|
||||
codec_serializer.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes)
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
@@ -10,7 +10,7 @@ pub(crate) struct MergedColumnValues<'a, T> {
|
||||
pub(crate) merge_row_order: &'a MergeRowOrder,
|
||||
}
|
||||
|
||||
impl<T: Copy + PartialOrd + Debug + 'static> Iterable<T> for MergedColumnValues<'_, T> {
|
||||
impl<'a, T: Copy + PartialOrd + Debug + 'static> Iterable<T> for MergedColumnValues<'a, T> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
|
||||
match self.merge_row_order {
|
||||
MergeRowOrder::Stack(_) => Box::new(
|
||||
|
||||
@@ -26,13 +26,13 @@ mod monotonic_column;
|
||||
|
||||
pub(crate) use merge::MergedColumnValues;
|
||||
pub use stats::ColumnStats;
|
||||
pub use u64_based::{
|
||||
ALL_U64_CODEC_TYPES, CodecType, load_u64_based_column_values,
|
||||
serialize_and_load_u64_based_column_values, serialize_u64_based_column_values,
|
||||
};
|
||||
pub use u128_based::{
|
||||
CompactSpaceU64Accessor, open_u128_as_compact_u64, open_u128_mapped,
|
||||
serialize_column_values_u128,
|
||||
open_u128_as_compact_u64, open_u128_mapped, serialize_column_values_u128,
|
||||
CompactSpaceU64Accessor,
|
||||
};
|
||||
pub use u64_based::{
|
||||
load_u64_based_column_values, serialize_and_load_u64_based_column_values,
|
||||
serialize_u64_based_column_values, CodecType, ALL_U64_CODEC_TYPES,
|
||||
};
|
||||
pub use vec_column::VecColumn;
|
||||
|
||||
@@ -242,3 +242,6 @@ impl<T: Copy + PartialOrd + Debug + 'static> ColumnValues<T> for Arc<dyn ColumnV
|
||||
.get_row_ids_for_value_range(range, doc_id_range, positions)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench;
|
||||
|
||||
@@ -2,8 +2,8 @@ use std::fmt::Debug;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
|
||||
use crate::ColumnValues;
|
||||
use crate::column_values::monotonic_mapping::StrictlyMonotonicFn;
|
||||
use crate::ColumnValues;
|
||||
|
||||
struct MonotonicMappingColumn<C, T, Input> {
|
||||
from_column: C,
|
||||
@@ -99,10 +99,10 @@ where
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::VecColumn;
|
||||
use crate::column_values::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
|
||||
};
|
||||
use crate::column_values::VecColumn;
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_iter() {
|
||||
|
||||
@@ -184,7 +184,7 @@ impl CompactSpaceBuilder {
|
||||
|
||||
let mut covered_space = Vec::with_capacity(self.blanks.len());
|
||||
|
||||
// beginning of the blanks
|
||||
// begining of the blanks
|
||||
if let Some(first_blank_start) = self.blanks.first().map(RangeInclusive::start) {
|
||||
if *first_blank_start != 0 {
|
||||
covered_space.push(0..=first_blank_start - 1);
|
||||
|
||||
@@ -24,8 +24,8 @@ use build_compact_space::get_compact_space;
|
||||
use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt, VIntU128};
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker};
|
||||
|
||||
use crate::RowId;
|
||||
use crate::column_values::ColumnValues;
|
||||
use crate::RowId;
|
||||
|
||||
/// The cost per blank is quite hard actually, since blanks are delta encoded, the actual cost of
|
||||
/// blanks depends on the number of blanks.
|
||||
@@ -653,14 +653,12 @@ mod tests {
|
||||
),
|
||||
&[3]
|
||||
);
|
||||
assert!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=99998u128,
|
||||
complete_range.clone()
|
||||
)
|
||||
.is_empty()
|
||||
);
|
||||
assert!(get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=99998u128,
|
||||
complete_range.clone()
|
||||
)
|
||||
.is_empty());
|
||||
assert_eq!(
|
||||
&get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
|
||||
@@ -128,13 +128,13 @@ pub fn open_u128_as_compact_u64(mut bytes: OwnedBytes) -> io::Result<Arc<dyn Col
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub(crate) mod tests {
|
||||
pub mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::CodecType;
|
||||
use crate::column_values::u64_based::{
|
||||
ALL_U64_CODEC_TYPES, serialize_and_load_u64_based_column_values,
|
||||
serialize_u64_based_column_values,
|
||||
serialize_and_load_u64_based_column_values, serialize_u64_based_column_values,
|
||||
ALL_U64_CODEC_TYPES,
|
||||
};
|
||||
use crate::column_values::CodecType;
|
||||
|
||||
#[test]
|
||||
fn test_serialize_deserialize_u128_header() {
|
||||
|
||||
@@ -4,7 +4,7 @@ use std::ops::{Range, RangeInclusive};
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use fastdivide::DividerU64;
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker, compute_num_bits};
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
|
||||
use crate::{ColumnValues, RowId};
|
||||
@@ -23,7 +23,11 @@ const fn div_ceil(n: u64, q: NonZeroU64) -> u64 {
|
||||
// copied from unstable rust standard library.
|
||||
let d = n / q.get();
|
||||
let r = n % q.get();
|
||||
if r > 0 { d + 1 } else { d }
|
||||
if r > 0 {
|
||||
d + 1
|
||||
} else {
|
||||
d
|
||||
}
|
||||
}
|
||||
|
||||
// The bitpacked codec applies a linear transformation `f` over data that are bitpacked.
|
||||
|
||||
@@ -4,12 +4,12 @@ use std::{io, iter};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, DeserializeFrom, OwnedBytes};
|
||||
use fastdivide::DividerU64;
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker, compute_num_bits};
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::MonotonicallyMappableToU64;
|
||||
use crate::column_values::u64_based::line::Line;
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
|
||||
use crate::column_values::{ColumnValues, VecColumn};
|
||||
use crate::MonotonicallyMappableToU64;
|
||||
|
||||
const BLOCK_SIZE: u32 = 512u32;
|
||||
|
||||
@@ -39,7 +39,7 @@ impl BinarySerializable for Block {
|
||||
}
|
||||
|
||||
fn compute_num_blocks(num_vals: u32) -> u32 {
|
||||
num_vals.div_ceil(BLOCK_SIZE)
|
||||
(num_vals + BLOCK_SIZE - 1) / BLOCK_SIZE
|
||||
}
|
||||
|
||||
pub struct BlockwiseLinearEstimator {
|
||||
|
||||
@@ -122,11 +122,12 @@ impl Line {
|
||||
line
|
||||
}
|
||||
|
||||
/// Returns a line that attempts to approximate a function
|
||||
/// Returns a line that attemps to approximate a function
|
||||
/// f: i in 0..[ys.num_vals()) -> ys[i].
|
||||
///
|
||||
/// - The approximation is always lower than the actual value. Or more rigorously, formally
|
||||
/// `f(i).wrapping_sub(ys[i])` is small for any i in [0..ys.len()).
|
||||
/// - The approximation is always lower than the actual value.
|
||||
/// Or more rigorously, formally `f(i).wrapping_sub(ys[i])` is small
|
||||
/// for any i in [0..ys.len()).
|
||||
/// - It computes without panicking for any value of it.
|
||||
///
|
||||
/// This function is only invariable by translation if all of the
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
use std::io;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker, compute_num_bits};
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use super::ColumnValues;
|
||||
use super::line::Line;
|
||||
use crate::RowId;
|
||||
use crate::column_values::VecColumn;
|
||||
use super::ColumnValues;
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
|
||||
use crate::column_values::VecColumn;
|
||||
use crate::RowId;
|
||||
|
||||
const HALF_SPACE: u64 = u64::MAX / 2;
|
||||
const LINE_ESTIMATION_BLOCK_LEN: usize = 512;
|
||||
|
||||
@@ -17,7 +17,7 @@ pub use crate::column_values::u64_based::bitpacked::BitpackedCodec;
|
||||
pub use crate::column_values::u64_based::blockwise_linear::BlockwiseLinearCodec;
|
||||
pub use crate::column_values::u64_based::linear::LinearCodec;
|
||||
pub use crate::column_values::u64_based::stats_collector::StatsCollector;
|
||||
use crate::column_values::{ColumnStats, monotonic_map_column};
|
||||
use crate::column_values::{monotonic_map_column, ColumnStats};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{ColumnValues, MonotonicallyMappableToU64};
|
||||
|
||||
|
||||
@@ -2,8 +2,8 @@ use std::num::NonZeroU64;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
|
||||
use crate::RowId;
|
||||
use crate::column_values::ColumnStats;
|
||||
use crate::RowId;
|
||||
|
||||
/// Compute the gcd of two non null numbers.
|
||||
///
|
||||
@@ -96,8 +96,8 @@ impl StatsCollector {
|
||||
mod tests {
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use crate::column_values::u64_based::stats_collector::{compute_gcd, StatsCollector};
|
||||
use crate::column_values::u64_based::ColumnStats;
|
||||
use crate::column_values::u64_based::stats_collector::{StatsCollector, compute_gcd};
|
||||
|
||||
fn compute_stats(vals: impl Iterator<Item = u64>) -> ColumnStats {
|
||||
let mut stats_collector = StatsCollector::default();
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
use proptest::prelude::*;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
use rand::Rng;
|
||||
|
||||
#[test]
|
||||
fn test_serialize_and_load_simple() {
|
||||
|
||||
@@ -4,8 +4,8 @@ use std::net::Ipv6Addr;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::InvalidData;
|
||||
use crate::value::NumericalType;
|
||||
use crate::InvalidData;
|
||||
|
||||
/// The column type represents the column type.
|
||||
/// Any changes need to be propagated to `COLUMN_TYPES`.
|
||||
|
||||
@@ -3,7 +3,7 @@ use std::io::{self, Write};
|
||||
use common::{BitSet, CountingWriter, ReadOnlyBitSet};
|
||||
use sstable::{SSTable, Streamer, TermOrdinal, VoidSSTable};
|
||||
|
||||
use super::term_merger::{TermMerger, TermsWithSegmentOrd};
|
||||
use super::term_merger::TermMerger;
|
||||
use crate::column::serialize_column_mappable_to_u64;
|
||||
use crate::column_index::SerializableColumnIndex;
|
||||
use crate::iterable::Iterable;
|
||||
@@ -39,7 +39,7 @@ struct RemappedTermOrdinalsValues<'a> {
|
||||
merge_row_order: &'a MergeRowOrder,
|
||||
}
|
||||
|
||||
impl Iterable for RemappedTermOrdinalsValues<'_> {
|
||||
impl<'a> Iterable for RemappedTermOrdinalsValues<'a> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
match self.merge_row_order {
|
||||
MergeRowOrder::Stack(_) => self.boxed_iter_stacked(),
|
||||
@@ -50,7 +50,7 @@ impl Iterable for RemappedTermOrdinalsValues<'_> {
|
||||
}
|
||||
}
|
||||
|
||||
impl RemappedTermOrdinalsValues<'_> {
|
||||
impl<'a> RemappedTermOrdinalsValues<'a> {
|
||||
fn boxed_iter_stacked(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
let iter = self
|
||||
.bytes_columns
|
||||
@@ -126,17 +126,14 @@ fn serialize_merged_dict(
|
||||
let mut term_ord_mapping = TermOrdinalMapping::default();
|
||||
|
||||
let mut field_term_streams = Vec::new();
|
||||
for (segment_ord, column_opt) in bytes_columns.iter().enumerate() {
|
||||
for column_opt in bytes_columns.iter() {
|
||||
if let Some(column) = column_opt {
|
||||
term_ord_mapping.add_segment(column.dictionary.num_terms());
|
||||
let terms: Streamer<VoidSSTable> = column.dictionary.stream()?;
|
||||
field_term_streams.push(TermsWithSegmentOrd { terms, segment_ord });
|
||||
field_term_streams.push(terms);
|
||||
} else {
|
||||
term_ord_mapping.add_segment(0);
|
||||
field_term_streams.push(TermsWithSegmentOrd {
|
||||
terms: Streamer::empty(),
|
||||
segment_ord,
|
||||
});
|
||||
field_term_streams.push(Streamer::empty());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -194,7 +191,6 @@ fn serialize_merged_dict(
|
||||
|
||||
#[derive(Default, Debug)]
|
||||
struct TermOrdinalMapping {
|
||||
/// Contains the new term ordinals for each segment.
|
||||
per_segment_new_term_ordinals: Vec<Vec<TermOrdinal>>,
|
||||
}
|
||||
|
||||
@@ -209,6 +205,6 @@ impl TermOrdinalMapping {
|
||||
}
|
||||
|
||||
fn get_segment(&self, segment_ord: u32) -> &[TermOrdinal] {
|
||||
&self.per_segment_new_term_ordinals[segment_ord as usize]
|
||||
&(self.per_segment_new_term_ordinals[segment_ord as usize])[..]
|
||||
}
|
||||
}
|
||||
|
||||
@@ -26,7 +26,7 @@ impl StackMergeOrder {
|
||||
let mut cumulated_row_ids: Vec<RowId> = Vec::with_capacity(columnars.len());
|
||||
let mut cumulated_row_id = 0;
|
||||
for columnar in columnars {
|
||||
cumulated_row_id += columnar.num_docs();
|
||||
cumulated_row_id += columnar.num_rows();
|
||||
cumulated_row_ids.push(cumulated_row_id);
|
||||
}
|
||||
StackMergeOrder { cumulated_row_ids }
|
||||
|
||||
@@ -10,11 +10,11 @@ use std::sync::Arc;
|
||||
pub use merge_mapping::{MergeRowOrder, ShuffleMergeOrder, StackMergeOrder};
|
||||
|
||||
use super::writer::ColumnarSerializer;
|
||||
use crate::column::{serialize_column_mappable_to_u64, serialize_column_mappable_to_u128};
|
||||
use crate::column::{serialize_column_mappable_to_u128, serialize_column_mappable_to_u64};
|
||||
use crate::column_values::MergedColumnValues;
|
||||
use crate::columnar::ColumnarReader;
|
||||
use crate::columnar::merge::merge_dict_column::merge_bytes_or_str_column;
|
||||
use crate::columnar::writer::CompatibleNumericalTypes;
|
||||
use crate::columnar::ColumnarReader;
|
||||
use crate::dynamic_column::DynamicColumn;
|
||||
use crate::{
|
||||
BytesColumn, Column, ColumnIndex, ColumnType, ColumnValues, DynamicColumnHandle, NumericalType,
|
||||
@@ -25,7 +25,7 @@ use crate::{
|
||||
/// After merge, all columns belonging to the same category are coerced to
|
||||
/// the same column type.
|
||||
///
|
||||
/// In practise, today, only Numerical columns are coerced into one type today.
|
||||
/// In practise, today, only Numerical colummns are coerced into one type today.
|
||||
///
|
||||
/// See also [README.md].
|
||||
///
|
||||
@@ -63,10 +63,11 @@ impl From<ColumnType> for ColumnTypeCategory {
|
||||
/// `require_columns` makes it possible to ensure that some columns will be present in the
|
||||
/// resulting columnar. When a required column is a numerical column type, one of two things can
|
||||
/// happen:
|
||||
/// - If the required column type is compatible with all of the input columnar, the resulting merged
|
||||
/// columnar will simply coerce the input column and use the required column type.
|
||||
/// - If the required column type is incompatible with one of the input columnar, the merged will
|
||||
/// fail with an InvalidData error.
|
||||
/// - If the required column type is compatible with all of the input columnar, the resulsting
|
||||
/// merged
|
||||
/// columnar will simply coerce the input column and use the required column type.
|
||||
/// - If the required column type is incompatible with one of the input columnar, the merged
|
||||
/// will fail with an InvalidData error.
|
||||
///
|
||||
/// `merge_row_order` makes it possible to remove or reorder row in the resulting
|
||||
/// `Columnar` table.
|
||||
@@ -80,12 +81,13 @@ pub fn merge_columnar(
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let mut serializer = ColumnarSerializer::new(output);
|
||||
let num_docs_per_columnar = columnar_readers
|
||||
let num_rows_per_columnar = columnar_readers
|
||||
.iter()
|
||||
.map(|reader| reader.num_docs())
|
||||
.map(|reader| reader.num_rows())
|
||||
.collect::<Vec<u32>>();
|
||||
|
||||
let columns_to_merge = group_columns_for_merge(columnar_readers, required_columns)?;
|
||||
let columns_to_merge =
|
||||
group_columns_for_merge(columnar_readers, required_columns, &merge_row_order)?;
|
||||
for res in columns_to_merge {
|
||||
let ((column_name, _column_type_category), grouped_columns) = res;
|
||||
let grouped_columns = grouped_columns.open(&merge_row_order)?;
|
||||
@@ -93,18 +95,15 @@ pub fn merge_columnar(
|
||||
continue;
|
||||
}
|
||||
|
||||
let column_type_after_merge = grouped_columns.column_type_after_merge();
|
||||
let column_type = grouped_columns.column_type_after_merge();
|
||||
let mut columns = grouped_columns.columns;
|
||||
// Make sure the number of columns is the same as the number of columnar readers.
|
||||
// Or num_docs_per_columnar would be incorrect.
|
||||
assert_eq!(columns.len(), columnar_readers.len());
|
||||
coerce_columns(column_type_after_merge, &mut columns)?;
|
||||
coerce_columns(column_type, &mut columns)?;
|
||||
|
||||
let mut column_serializer =
|
||||
serializer.start_serialize_column(column_name.as_bytes(), column_type_after_merge);
|
||||
serializer.start_serialize_column(column_name.as_bytes(), column_type);
|
||||
merge_column(
|
||||
column_type_after_merge,
|
||||
&num_docs_per_columnar,
|
||||
column_type,
|
||||
&num_rows_per_columnar,
|
||||
columns,
|
||||
&merge_row_order,
|
||||
&mut column_serializer,
|
||||
@@ -130,7 +129,7 @@ fn dynamic_column_to_u64_monotonic(dynamic_column: DynamicColumn) -> Option<Colu
|
||||
fn merge_column(
|
||||
column_type: ColumnType,
|
||||
num_docs_per_column: &[u32],
|
||||
columns_to_merge: Vec<Option<DynamicColumn>>,
|
||||
columns: Vec<Option<DynamicColumn>>,
|
||||
merge_row_order: &MergeRowOrder,
|
||||
wrt: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
@@ -140,21 +139,20 @@ fn merge_column(
|
||||
| ColumnType::F64
|
||||
| ColumnType::DateTime
|
||||
| ColumnType::Bool => {
|
||||
let mut column_indexes: Vec<ColumnIndex> = Vec::with_capacity(columns_to_merge.len());
|
||||
let mut column_indexes: Vec<ColumnIndex> = Vec::with_capacity(columns.len());
|
||||
let mut column_values: Vec<Option<Arc<dyn ColumnValues>>> =
|
||||
Vec::with_capacity(columns_to_merge.len());
|
||||
for (i, dynamic_column_opt) in columns_to_merge.into_iter().enumerate() {
|
||||
match dynamic_column_opt.and_then(dynamic_column_to_u64_monotonic) {
|
||||
Some(Column { index: idx, values }) => {
|
||||
column_indexes.push(idx);
|
||||
column_values.push(Some(values));
|
||||
}
|
||||
None => {
|
||||
column_indexes.push(ColumnIndex::Empty {
|
||||
num_docs: num_docs_per_column[i],
|
||||
});
|
||||
column_values.push(None);
|
||||
}
|
||||
Vec::with_capacity(columns.len());
|
||||
for (i, dynamic_column_opt) in columns.into_iter().enumerate() {
|
||||
if let Some(Column { index: idx, values }) =
|
||||
dynamic_column_opt.and_then(dynamic_column_to_u64_monotonic)
|
||||
{
|
||||
column_indexes.push(idx);
|
||||
column_values.push(Some(values));
|
||||
} else {
|
||||
column_indexes.push(ColumnIndex::Empty {
|
||||
num_docs: num_docs_per_column[i],
|
||||
});
|
||||
column_values.push(None);
|
||||
}
|
||||
}
|
||||
let merged_column_index =
|
||||
@@ -167,10 +165,10 @@ fn merge_column(
|
||||
serialize_column_mappable_to_u64(merged_column_index, &merge_column_values, wrt)?;
|
||||
}
|
||||
ColumnType::IpAddr => {
|
||||
let mut column_indexes: Vec<ColumnIndex> = Vec::with_capacity(columns_to_merge.len());
|
||||
let mut column_indexes: Vec<ColumnIndex> = Vec::with_capacity(columns.len());
|
||||
let mut column_values: Vec<Option<Arc<dyn ColumnValues<Ipv6Addr>>>> =
|
||||
Vec::with_capacity(columns_to_merge.len());
|
||||
for (i, dynamic_column_opt) in columns_to_merge.into_iter().enumerate() {
|
||||
Vec::with_capacity(columns.len());
|
||||
for (i, dynamic_column_opt) in columns.into_iter().enumerate() {
|
||||
if let Some(DynamicColumn::IpAddr(Column { index: idx, values })) =
|
||||
dynamic_column_opt
|
||||
{
|
||||
@@ -195,10 +193,9 @@ fn merge_column(
|
||||
serialize_column_mappable_to_u128(merged_column_index, &merge_column_values, wrt)?;
|
||||
}
|
||||
ColumnType::Bytes | ColumnType::Str => {
|
||||
let mut column_indexes: Vec<ColumnIndex> = Vec::with_capacity(columns_to_merge.len());
|
||||
let mut bytes_columns: Vec<Option<BytesColumn>> =
|
||||
Vec::with_capacity(columns_to_merge.len());
|
||||
for (i, dynamic_column_opt) in columns_to_merge.into_iter().enumerate() {
|
||||
let mut column_indexes: Vec<ColumnIndex> = Vec::with_capacity(columns.len());
|
||||
let mut bytes_columns: Vec<Option<BytesColumn>> = Vec::with_capacity(columns.len());
|
||||
for (i, dynamic_column_opt) in columns.into_iter().enumerate() {
|
||||
match dynamic_column_opt {
|
||||
Some(DynamicColumn::Str(str_column)) => {
|
||||
column_indexes.push(str_column.term_ord_column.index.clone());
|
||||
@@ -252,15 +249,13 @@ impl GroupedColumns {
|
||||
if column_type.len() == 1 {
|
||||
return column_type.into_iter().next().unwrap();
|
||||
}
|
||||
// At the moment, only the numerical column type category has more than one possible
|
||||
// At the moment, only the numerical categorical column type has more than one possible
|
||||
// column type.
|
||||
assert!(
|
||||
self.columns
|
||||
.iter()
|
||||
.flatten()
|
||||
.all(|el| ColumnTypeCategory::from(el.column_type())
|
||||
== ColumnTypeCategory::Numerical)
|
||||
);
|
||||
assert!(self
|
||||
.columns
|
||||
.iter()
|
||||
.flatten()
|
||||
.all(|el| ColumnTypeCategory::from(el.column_type()) == ColumnTypeCategory::Numerical));
|
||||
merged_numerical_columns_type(self.columns.iter().flatten()).into()
|
||||
}
|
||||
}
|
||||
@@ -367,7 +362,7 @@ fn is_empty_after_merge(
|
||||
ColumnIndex::Empty { .. } => true,
|
||||
ColumnIndex::Full => alive_bitset.len() == 0,
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
for doc in optional_index.iter_docs() {
|
||||
for doc in optional_index.iter_rows() {
|
||||
if alive_bitset.contains(doc) {
|
||||
return false;
|
||||
}
|
||||
@@ -397,6 +392,7 @@ fn is_empty_after_merge(
|
||||
fn group_columns_for_merge<'a>(
|
||||
columnar_readers: &'a [&'a ColumnarReader],
|
||||
required_columns: &'a [(String, ColumnType)],
|
||||
_merge_row_order: &'a MergeRowOrder,
|
||||
) -> io::Result<BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle>> {
|
||||
let mut columns: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> = BTreeMap::new();
|
||||
|
||||
|
||||
@@ -5,29 +5,28 @@ use sstable::TermOrdinal;
|
||||
|
||||
use crate::Streamer;
|
||||
|
||||
/// The terms of a column with the ordinal of the segment.
|
||||
pub struct TermsWithSegmentOrd<'a> {
|
||||
pub terms: Streamer<'a>,
|
||||
pub struct HeapItem<'a> {
|
||||
pub streamer: Streamer<'a>,
|
||||
pub segment_ord: usize,
|
||||
}
|
||||
|
||||
impl PartialEq for TermsWithSegmentOrd<'_> {
|
||||
impl<'a> PartialEq for HeapItem<'a> {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.segment_ord == other.segment_ord
|
||||
}
|
||||
}
|
||||
|
||||
impl Eq for TermsWithSegmentOrd<'_> {}
|
||||
impl<'a> Eq for HeapItem<'a> {}
|
||||
|
||||
impl<'a> PartialOrd for TermsWithSegmentOrd<'a> {
|
||||
fn partial_cmp(&self, other: &TermsWithSegmentOrd<'a>) -> Option<Ordering> {
|
||||
impl<'a> PartialOrd for HeapItem<'a> {
|
||||
fn partial_cmp(&self, other: &HeapItem<'a>) -> Option<Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Ord for TermsWithSegmentOrd<'a> {
|
||||
fn cmp(&self, other: &TermsWithSegmentOrd<'a>) -> Ordering {
|
||||
(&other.terms.key(), &other.segment_ord).cmp(&(&self.terms.key(), &self.segment_ord))
|
||||
impl<'a> Ord for HeapItem<'a> {
|
||||
fn cmp(&self, other: &HeapItem<'a>) -> Ordering {
|
||||
(&other.streamer.key(), &other.segment_ord).cmp(&(&self.streamer.key(), &self.segment_ord))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -36,34 +35,42 @@ impl<'a> Ord for TermsWithSegmentOrd<'a> {
|
||||
///
|
||||
/// The item yield is actually a pair with
|
||||
/// - the term
|
||||
/// - a slice with the ordinal of the segments containing the terms.
|
||||
/// - a slice with the ordinal of the segments containing
|
||||
/// the terms.
|
||||
pub struct TermMerger<'a> {
|
||||
heap: BinaryHeap<TermsWithSegmentOrd<'a>>,
|
||||
term_streams_with_segment: Vec<TermsWithSegmentOrd<'a>>,
|
||||
heap: BinaryHeap<HeapItem<'a>>,
|
||||
current_streamers: Vec<HeapItem<'a>>,
|
||||
}
|
||||
|
||||
impl<'a> TermMerger<'a> {
|
||||
/// Stream of merged term dictionary
|
||||
pub fn new(term_streams_with_segment: Vec<TermsWithSegmentOrd<'a>>) -> TermMerger<'a> {
|
||||
pub fn new(streams: Vec<Streamer<'a>>) -> TermMerger<'a> {
|
||||
TermMerger {
|
||||
heap: BinaryHeap::new(),
|
||||
term_streams_with_segment,
|
||||
current_streamers: streams
|
||||
.into_iter()
|
||||
.enumerate()
|
||||
.map(|(ord, streamer)| HeapItem {
|
||||
streamer,
|
||||
segment_ord: ord,
|
||||
})
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn matching_segments<'b: 'a>(
|
||||
&'b self,
|
||||
) -> impl 'b + Iterator<Item = (usize, TermOrdinal)> {
|
||||
self.term_streams_with_segment
|
||||
self.current_streamers
|
||||
.iter()
|
||||
.map(|heap_item| (heap_item.segment_ord, heap_item.terms.term_ord()))
|
||||
.map(|heap_item| (heap_item.segment_ord, heap_item.streamer.term_ord()))
|
||||
}
|
||||
|
||||
fn advance_segments(&mut self) {
|
||||
let streamers = &mut self.term_streams_with_segment;
|
||||
let streamers = &mut self.current_streamers;
|
||||
let heap = &mut self.heap;
|
||||
for mut heap_item in streamers.drain(..) {
|
||||
if heap_item.terms.advance() {
|
||||
if heap_item.streamer.advance() {
|
||||
heap.push(heap_item);
|
||||
}
|
||||
}
|
||||
@@ -74,19 +81,18 @@ impl<'a> TermMerger<'a> {
|
||||
/// False if there is none.
|
||||
pub fn advance(&mut self) -> bool {
|
||||
self.advance_segments();
|
||||
match self.heap.pop() {
|
||||
Some(head) => {
|
||||
self.term_streams_with_segment.push(head);
|
||||
while let Some(next_streamer) = self.heap.peek() {
|
||||
if self.term_streams_with_segment[0].terms.key() != next_streamer.terms.key() {
|
||||
break;
|
||||
}
|
||||
let next_heap_it = self.heap.pop().unwrap(); // safe : we peeked beforehand
|
||||
self.term_streams_with_segment.push(next_heap_it);
|
||||
if let Some(head) = self.heap.pop() {
|
||||
self.current_streamers.push(head);
|
||||
while let Some(next_streamer) = self.heap.peek() {
|
||||
if self.current_streamers[0].streamer.key() != next_streamer.streamer.key() {
|
||||
break;
|
||||
}
|
||||
true
|
||||
let next_heap_it = self.heap.pop().unwrap(); // safe : we peeked beforehand
|
||||
self.current_streamers.push(next_heap_it);
|
||||
}
|
||||
_ => false,
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
@@ -96,6 +102,6 @@ impl<'a> TermMerger<'a> {
|
||||
/// if and only if advance() has been called before
|
||||
/// and "true" was returned.
|
||||
pub fn key(&self) -> &[u8] {
|
||||
self.term_streams_with_segment[0].terms.key()
|
||||
self.current_streamers[0].streamer.key()
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,10 +1,7 @@
|
||||
use itertools::Itertools;
|
||||
use proptest::collection::vec;
|
||||
use proptest::prelude::*;
|
||||
|
||||
use super::*;
|
||||
use crate::columnar::{ColumnarReader, MergeRowOrder, StackMergeOrder, merge_columnar};
|
||||
use crate::{Cardinality, ColumnarWriter, DynamicColumn, HasAssociatedColumnType, RowId};
|
||||
use crate::{Cardinality, ColumnarWriter, HasAssociatedColumnType, RowId};
|
||||
|
||||
fn make_columnar<T: Into<NumericalValue> + HasAssociatedColumnType + Copy>(
|
||||
column_name: &str,
|
||||
@@ -29,8 +26,9 @@ fn test_column_coercion_to_u64() {
|
||||
// u64 type
|
||||
let columnar2 = make_columnar("numbers", &[u64::MAX]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
|
||||
group_columns_for_merge(columnars, &[]).unwrap();
|
||||
group_columns_for_merge(columnars, &[], &merge_order).unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
|
||||
}
|
||||
@@ -40,8 +38,9 @@ fn test_column_coercion_to_i64() {
|
||||
let columnar1 = make_columnar("numbers", &[-1i64]);
|
||||
let columnar2 = make_columnar("numbers", &[2u64]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
|
||||
group_columns_for_merge(columnars, &[]).unwrap();
|
||||
group_columns_for_merge(columnars, &[], &merge_order).unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
|
||||
}
|
||||
@@ -64,8 +63,14 @@ fn test_group_columns_with_required_column() {
|
||||
let columnar1 = make_columnar("numbers", &[1i64]);
|
||||
let columnar2 = make_columnar("numbers", &[2u64]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
|
||||
group_columns_for_merge(columnars, &[("numbers".to_string(), ColumnType::U64)]).unwrap();
|
||||
group_columns_for_merge(
|
||||
&[&columnar1, &columnar2],
|
||||
&[("numbers".to_string(), ColumnType::U64)],
|
||||
&merge_order,
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
|
||||
}
|
||||
@@ -75,9 +80,13 @@ fn test_group_columns_required_column_with_no_existing_columns() {
|
||||
let columnar1 = make_columnar("numbers", &[2u64]);
|
||||
let columnar2 = make_columnar("numbers", &[2u64]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let column_map: BTreeMap<_, _> =
|
||||
group_columns_for_merge(columnars, &[("required_col".to_string(), ColumnType::Str)])
|
||||
.unwrap();
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<_, _> = group_columns_for_merge(
|
||||
columnars,
|
||||
&[("required_col".to_string(), ColumnType::Str)],
|
||||
&merge_order,
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(column_map.len(), 2);
|
||||
let columns = &column_map
|
||||
.get(&("required_col".to_string(), ColumnTypeCategory::Str))
|
||||
@@ -93,8 +102,14 @@ fn test_group_columns_required_column_is_above_all_columns_have_the_same_type_ru
|
||||
let columnar1 = make_columnar("numbers", &[2i64]);
|
||||
let columnar2 = make_columnar("numbers", &[2i64]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
|
||||
group_columns_for_merge(columnars, &[("numbers".to_string(), ColumnType::U64)]).unwrap();
|
||||
group_columns_for_merge(
|
||||
columnars,
|
||||
&[("numbers".to_string(), ColumnType::U64)],
|
||||
&merge_order,
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
|
||||
}
|
||||
@@ -104,8 +119,9 @@ fn test_missing_column() {
|
||||
let columnar1 = make_columnar("numbers", &[-1i64]);
|
||||
let columnar2 = make_columnar("numbers2", &[2u64]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
|
||||
group_columns_for_merge(columnars, &[]).unwrap();
|
||||
group_columns_for_merge(columnars, &[], &merge_order).unwrap();
|
||||
assert_eq!(column_map.len(), 2);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
|
||||
{
|
||||
@@ -208,7 +224,7 @@ fn test_merge_columnar_numbers() {
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_docs(), 3);
|
||||
assert_eq!(columnar_reader.num_rows(), 3);
|
||||
assert_eq!(columnar_reader.num_columns(), 1);
|
||||
let cols = columnar_reader.read_columns("numbers").unwrap();
|
||||
let dynamic_column = cols[0].open().unwrap();
|
||||
@@ -236,7 +252,7 @@ fn test_merge_columnar_texts() {
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_docs(), 3);
|
||||
assert_eq!(columnar_reader.num_rows(), 3);
|
||||
assert_eq!(columnar_reader.num_columns(), 1);
|
||||
let cols = columnar_reader.read_columns("texts").unwrap();
|
||||
let dynamic_column = cols[0].open().unwrap();
|
||||
@@ -285,7 +301,7 @@ fn test_merge_columnar_byte() {
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_docs(), 4);
|
||||
assert_eq!(columnar_reader.num_rows(), 4);
|
||||
assert_eq!(columnar_reader.num_columns(), 1);
|
||||
let cols = columnar_reader.read_columns("bytes").unwrap();
|
||||
let dynamic_column = cols[0].open().unwrap();
|
||||
@@ -341,7 +357,7 @@ fn test_merge_columnar_byte_with_missing() {
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_docs(), 3 + 2 + 3);
|
||||
assert_eq!(columnar_reader.num_rows(), 3 + 2 + 3);
|
||||
assert_eq!(columnar_reader.num_columns(), 2);
|
||||
let cols = columnar_reader.read_columns("col").unwrap();
|
||||
let dynamic_column = cols[0].open().unwrap();
|
||||
@@ -393,7 +409,7 @@ fn test_merge_columnar_different_types() {
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_docs(), 4);
|
||||
assert_eq!(columnar_reader.num_rows(), 4);
|
||||
assert_eq!(columnar_reader.num_columns(), 2);
|
||||
let cols = columnar_reader.read_columns("mixed").unwrap();
|
||||
|
||||
@@ -403,11 +419,11 @@ fn test_merge_columnar_different_types() {
|
||||
panic!()
|
||||
};
|
||||
assert_eq!(vals.get_cardinality(), Cardinality::Optional);
|
||||
assert_eq!(vals.values_for_doc(0).collect_vec(), Vec::<i64>::new());
|
||||
assert_eq!(vals.values_for_doc(1).collect_vec(), Vec::<i64>::new());
|
||||
assert_eq!(vals.values_for_doc(2).collect_vec(), Vec::<i64>::new());
|
||||
assert_eq!(vals.values_for_doc(0).collect_vec(), vec![]);
|
||||
assert_eq!(vals.values_for_doc(1).collect_vec(), vec![]);
|
||||
assert_eq!(vals.values_for_doc(2).collect_vec(), vec![]);
|
||||
assert_eq!(vals.values_for_doc(3).collect_vec(), vec![1]);
|
||||
assert_eq!(vals.values_for_doc(4).collect_vec(), Vec::<i64>::new());
|
||||
assert_eq!(vals.values_for_doc(4).collect_vec(), vec![]);
|
||||
|
||||
// text column
|
||||
let dynamic_column = cols[1].open().unwrap();
|
||||
@@ -458,7 +474,7 @@ fn test_merge_columnar_different_empty_cardinality() {
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_docs(), 2);
|
||||
assert_eq!(columnar_reader.num_rows(), 2);
|
||||
assert_eq!(columnar_reader.num_columns(), 2);
|
||||
let cols = columnar_reader.read_columns("mixed").unwrap();
|
||||
|
||||
@@ -470,119 +486,3 @@ fn test_merge_columnar_different_empty_cardinality() {
|
||||
let dynamic_column = cols[1].open().unwrap();
|
||||
assert_eq!(dynamic_column.get_cardinality(), Cardinality::Optional);
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct ColumnSpec {
|
||||
column_name: String,
|
||||
/// (row_id, term)
|
||||
terms: Vec<(RowId, Vec<u8>)>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
struct ColumnarSpec {
|
||||
columns: Vec<ColumnSpec>,
|
||||
}
|
||||
|
||||
/// Generate a random (row_id, term) pair:
|
||||
/// - row_id in [0..10]
|
||||
/// - term is either from POSSIBLE_TERMS or random bytes
|
||||
fn rowid_and_term_strategy() -> impl Strategy<Value = (RowId, Vec<u8>)> {
|
||||
const POSSIBLE_TERMS: &[&[u8]] = &[b"a", b"b", b"allo"];
|
||||
|
||||
let term_strat = prop_oneof![
|
||||
// pick from the fixed list
|
||||
(0..POSSIBLE_TERMS.len()).prop_map(|i| POSSIBLE_TERMS[i].to_vec()),
|
||||
// or random bytes (length 0..10)
|
||||
prop::collection::vec(any::<u8>(), 0..10),
|
||||
];
|
||||
|
||||
(0u32..11, term_strat)
|
||||
}
|
||||
|
||||
/// Generate one ColumnSpec, with a random name and a random list of (row_id, term).
|
||||
/// We sort it by row_id so that data is in ascending order.
|
||||
fn column_spec_strategy() -> impl Strategy<Value = ColumnSpec> {
|
||||
let column_name = prop_oneof![
|
||||
Just("col".to_string()),
|
||||
Just("col2".to_string()),
|
||||
"col.*".prop_map(|s| s),
|
||||
];
|
||||
|
||||
// We'll produce 0..8 (rowid,term) entries for this column
|
||||
let data_strat = vec(rowid_and_term_strategy(), 0..8).prop_map(|mut pairs| {
|
||||
// Sort by row_id
|
||||
pairs.sort_by_key(|(row_id, _)| *row_id);
|
||||
pairs
|
||||
});
|
||||
|
||||
(column_name, data_strat).prop_map(|(name, data)| ColumnSpec {
|
||||
column_name: name,
|
||||
terms: data,
|
||||
})
|
||||
}
|
||||
|
||||
/// Strategy to generate an ColumnarSpec
|
||||
fn columnar_strategy() -> impl Strategy<Value = ColumnarSpec> {
|
||||
vec(column_spec_strategy(), 0..3).prop_map(|columns| ColumnarSpec { columns })
|
||||
}
|
||||
|
||||
/// Strategy to generate multiple ColumnarSpecs, each of which we will treat
|
||||
/// as one "columnar" to be merged together.
|
||||
fn columnars_strategy() -> impl Strategy<Value = Vec<ColumnarSpec>> {
|
||||
vec(columnar_strategy(), 1..4)
|
||||
}
|
||||
|
||||
/// Build a `ColumnarReader` from a `ColumnarSpec`
|
||||
fn build_columnar(spec: &ColumnarSpec) -> ColumnarReader {
|
||||
let mut writer = ColumnarWriter::default();
|
||||
let mut max_row_id = 0;
|
||||
for col in &spec.columns {
|
||||
for &(row_id, ref term) in &col.terms {
|
||||
writer.record_bytes(row_id, &col.column_name, term);
|
||||
max_row_id = max_row_id.max(row_id);
|
||||
}
|
||||
}
|
||||
|
||||
let mut buffer = Vec::new();
|
||||
writer.serialize(max_row_id + 1, &mut buffer).unwrap();
|
||||
ColumnarReader::open(buffer).unwrap()
|
||||
}
|
||||
|
||||
proptest! {
|
||||
// We just test that the merge_columnar function doesn't crash.
|
||||
#![proptest_config(ProptestConfig::with_cases(256))]
|
||||
#[test]
|
||||
fn test_merge_columnar_bytes_no_crash(columnars in columnars_strategy(), second_merge_columnars in columnars_strategy()) {
|
||||
let columnars: Vec<ColumnarReader> = columnars.iter()
|
||||
.map(build_columnar)
|
||||
.collect();
|
||||
|
||||
let mut out = Vec::new();
|
||||
let columnar_refs: Vec<&ColumnarReader> = columnars.iter().collect();
|
||||
let stack_merge_order = StackMergeOrder::stack(&columnar_refs);
|
||||
merge_columnar(
|
||||
&columnar_refs,
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut out,
|
||||
).unwrap();
|
||||
|
||||
let merged_reader = ColumnarReader::open(out).unwrap();
|
||||
|
||||
// Merge the second set of columnars with the result of the first merge
|
||||
let mut columnars: Vec<ColumnarReader> = second_merge_columnars.iter()
|
||||
.map(build_columnar)
|
||||
.collect();
|
||||
columnars.push(merged_reader);
|
||||
let mut out = Vec::new();
|
||||
let columnar_refs: Vec<&ColumnarReader> = columnars.iter().collect();
|
||||
let stack_merge_order = StackMergeOrder::stack(&columnar_refs);
|
||||
merge_columnar(
|
||||
&columnar_refs,
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut out,
|
||||
).unwrap();
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
@@ -5,9 +5,9 @@ mod reader;
|
||||
mod writer;
|
||||
|
||||
pub use column_type::{ColumnType, HasAssociatedColumnType};
|
||||
pub use format_version::{CURRENT_VERSION, Version};
|
||||
pub use format_version::{Version, CURRENT_VERSION};
|
||||
#[cfg(test)]
|
||||
pub(crate) use merge::ColumnTypeCategory;
|
||||
pub use merge::{MergeRowOrder, ShuffleMergeOrder, StackMergeOrder, merge_columnar};
|
||||
pub use merge::{merge_columnar, MergeRowOrder, ShuffleMergeOrder, StackMergeOrder};
|
||||
pub use reader::ColumnarReader;
|
||||
pub use writer::ColumnarWriter;
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
use std::{fmt, io, mem};
|
||||
|
||||
use common::BinarySerializable;
|
||||
use common::file_slice::FileSlice;
|
||||
use common::json_path_writer::JSON_PATH_SEGMENT_SEP;
|
||||
use common::BinarySerializable;
|
||||
use sstable::{Dictionary, RangeSSTable};
|
||||
|
||||
use crate::columnar::{ColumnType, format_version};
|
||||
use crate::columnar::{format_version, ColumnType};
|
||||
use crate::dynamic_column::DynamicColumnHandle;
|
||||
use crate::{RowId, Version};
|
||||
|
||||
@@ -19,13 +18,13 @@ fn io_invalid_data(msg: String) -> io::Error {
|
||||
pub struct ColumnarReader {
|
||||
column_dictionary: Dictionary<RangeSSTable>,
|
||||
column_data: FileSlice,
|
||||
num_docs: RowId,
|
||||
num_rows: RowId,
|
||||
format_version: Version,
|
||||
}
|
||||
|
||||
impl fmt::Debug for ColumnarReader {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
let num_rows = self.num_docs();
|
||||
let num_rows = self.num_rows();
|
||||
let columns = self.list_columns().unwrap();
|
||||
let num_cols = columns.len();
|
||||
let mut debug_struct = f.debug_struct("Columnar");
|
||||
@@ -77,19 +76,6 @@ fn read_all_columns_in_stream(
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
fn column_dictionary_prefix_for_column_name(column_name: &str) -> String {
|
||||
// Each column is a associated to a given `column_key`,
|
||||
// that starts by `column_name\0column_header`.
|
||||
//
|
||||
// Listing the columns associated to the given column name is therefore equivalent to
|
||||
// listing `column_key` with the prefix `column_name\0`.
|
||||
format!("{}{}", column_name, '\0')
|
||||
}
|
||||
|
||||
fn column_dictionary_prefix_for_subpath(root_path: &str) -> String {
|
||||
format!("{}{}", root_path, JSON_PATH_SEGMENT_SEP as char)
|
||||
}
|
||||
|
||||
impl ColumnarReader {
|
||||
/// Opens a new Columnar file.
|
||||
pub fn open<F>(file_slice: F) -> io::Result<ColumnarReader>
|
||||
@@ -112,13 +98,13 @@ impl ColumnarReader {
|
||||
Ok(ColumnarReader {
|
||||
column_dictionary,
|
||||
column_data,
|
||||
num_docs: num_rows,
|
||||
num_rows,
|
||||
format_version,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn num_docs(&self) -> RowId {
|
||||
self.num_docs
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
self.num_rows
|
||||
}
|
||||
// Iterate over the columns in a sorted way
|
||||
pub fn iter_columns(
|
||||
@@ -158,14 +144,32 @@ impl ColumnarReader {
|
||||
Ok(self.iter_columns()?.collect())
|
||||
}
|
||||
|
||||
fn stream_for_column_range(&self, column_name: &str) -> sstable::StreamerBuilder<RangeSSTable> {
|
||||
// Each column is a associated to a given `column_key`,
|
||||
// that starts by `column_name\0column_header`.
|
||||
//
|
||||
// Listing the columns associated to the given column name is therefore equivalent to
|
||||
// listing `column_key` with the prefix `column_name\0`.
|
||||
//
|
||||
// This is in turn equivalent to searching for the range
|
||||
// `[column_name,\0`..column_name\1)`.
|
||||
// TODO can we get some more generic `prefix(..)` logic in the dictionary.
|
||||
let mut start_key = column_name.to_string();
|
||||
start_key.push('\0');
|
||||
let mut end_key = column_name.to_string();
|
||||
end_key.push(1u8 as char);
|
||||
self.column_dictionary
|
||||
.range()
|
||||
.ge(start_key.as_bytes())
|
||||
.lt(end_key.as_bytes())
|
||||
}
|
||||
|
||||
pub async fn read_columns_async(
|
||||
&self,
|
||||
column_name: &str,
|
||||
) -> io::Result<Vec<DynamicColumnHandle>> {
|
||||
let prefix = column_dictionary_prefix_for_column_name(column_name);
|
||||
let stream = self
|
||||
.column_dictionary
|
||||
.prefix_range(prefix)
|
||||
.stream_for_column_range(column_name)
|
||||
.into_stream_async()
|
||||
.await?;
|
||||
read_all_columns_in_stream(stream, &self.column_data, self.format_version)
|
||||
@@ -176,35 +180,7 @@ impl ColumnarReader {
|
||||
/// There can be more than one column associated to a given column name, provided they have
|
||||
/// different types.
|
||||
pub fn read_columns(&self, column_name: &str) -> io::Result<Vec<DynamicColumnHandle>> {
|
||||
let prefix = column_dictionary_prefix_for_column_name(column_name);
|
||||
let stream = self.column_dictionary.prefix_range(prefix).into_stream()?;
|
||||
read_all_columns_in_stream(stream, &self.column_data, self.format_version)
|
||||
}
|
||||
|
||||
pub async fn read_subpath_columns_async(
|
||||
&self,
|
||||
root_path: &str,
|
||||
) -> io::Result<Vec<DynamicColumnHandle>> {
|
||||
let prefix = column_dictionary_prefix_for_subpath(root_path);
|
||||
let stream = self
|
||||
.column_dictionary
|
||||
.prefix_range(prefix)
|
||||
.into_stream_async()
|
||||
.await?;
|
||||
read_all_columns_in_stream(stream, &self.column_data, self.format_version)
|
||||
}
|
||||
|
||||
/// Get all inner columns for a given JSON prefix, i.e columns for which the name starts
|
||||
/// with the prefix then contain the [`JSON_PATH_SEGMENT_SEP`].
|
||||
///
|
||||
/// There can be more than one column associated to each path within the JSON structure,
|
||||
/// provided they have different types.
|
||||
pub fn read_subpath_columns(&self, root_path: &str) -> io::Result<Vec<DynamicColumnHandle>> {
|
||||
let prefix = column_dictionary_prefix_for_subpath(root_path);
|
||||
let stream = self
|
||||
.column_dictionary
|
||||
.prefix_range(prefix.as_bytes())
|
||||
.into_stream()?;
|
||||
let stream = self.stream_for_column_range(column_name).into_stream()?;
|
||||
read_all_columns_in_stream(stream, &self.column_data, self.format_version)
|
||||
}
|
||||
|
||||
@@ -216,8 +192,6 @@ impl ColumnarReader {
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use common::json_path_writer::JSON_PATH_SEGMENT_SEP;
|
||||
|
||||
use crate::{ColumnType, ColumnarReader, ColumnarWriter};
|
||||
|
||||
#[test]
|
||||
@@ -250,64 +224,6 @@ mod tests {
|
||||
assert_eq!(columns[0].1.column_type(), ColumnType::U64);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_read_columns() {
|
||||
let mut columnar_writer = ColumnarWriter::default();
|
||||
columnar_writer.record_column_type("col", ColumnType::U64, false);
|
||||
columnar_writer.record_numerical(1, "col", 1u64);
|
||||
let mut buffer = Vec::new();
|
||||
columnar_writer.serialize(2, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
{
|
||||
let columns = columnar.read_columns("col").unwrap();
|
||||
assert_eq!(columns.len(), 1);
|
||||
assert_eq!(columns[0].column_type(), ColumnType::U64);
|
||||
}
|
||||
{
|
||||
let columns = columnar.read_columns("other").unwrap();
|
||||
assert_eq!(columns.len(), 0);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_read_subpath_columns() {
|
||||
let mut columnar_writer = ColumnarWriter::default();
|
||||
columnar_writer.record_str(
|
||||
0,
|
||||
&format!("col1{}subcol1", JSON_PATH_SEGMENT_SEP as char),
|
||||
"hello",
|
||||
);
|
||||
columnar_writer.record_numerical(
|
||||
0,
|
||||
&format!("col1{}subcol2", JSON_PATH_SEGMENT_SEP as char),
|
||||
1i64,
|
||||
);
|
||||
columnar_writer.record_str(1, "col1", "hello");
|
||||
columnar_writer.record_str(0, "col2", "hello");
|
||||
let mut buffer = Vec::new();
|
||||
columnar_writer.serialize(2, &mut buffer).unwrap();
|
||||
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
{
|
||||
let columns = columnar.read_subpath_columns("col1").unwrap();
|
||||
assert_eq!(columns.len(), 2);
|
||||
assert_eq!(columns[0].column_type(), ColumnType::Str);
|
||||
assert_eq!(columns[1].column_type(), ColumnType::I64);
|
||||
}
|
||||
{
|
||||
let columns = columnar.read_subpath_columns("col1.subcol1").unwrap();
|
||||
assert_eq!(columns.len(), 0);
|
||||
}
|
||||
{
|
||||
let columns = columnar.read_subpath_columns("col2").unwrap();
|
||||
assert_eq!(columns.len(), 0);
|
||||
}
|
||||
{
|
||||
let columns = columnar.read_subpath_columns("other").unwrap();
|
||||
assert_eq!(columns.len(), 0);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic(expected = "Input type forbidden")]
|
||||
fn test_list_columns_strict_typing_panics_on_wrong_types() {
|
||||
|
||||
@@ -87,7 +87,7 @@ impl<V: SymbolValue> ColumnOperation<V> {
|
||||
minibuf
|
||||
}
|
||||
|
||||
/// Deserialize a column operation.
|
||||
/// Deserialize a colummn operation.
|
||||
/// Returns None if the buffer is empty.
|
||||
///
|
||||
/// Panics if the payload is invalid:
|
||||
@@ -122,6 +122,7 @@ impl<T> From<T> for ColumnOperation<T> {
|
||||
// In order to limit memory usage, and in order
|
||||
// to benefit from the stacker, we do this by serialization our data
|
||||
// as "Symbols".
|
||||
#[allow(clippy::from_over_into)]
|
||||
pub(super) trait SymbolValue: Clone + Copy {
|
||||
// Serializes the symbol into the given buffer.
|
||||
// Returns the number of bytes written into the buffer.
|
||||
|
||||
@@ -42,7 +42,7 @@ impl ColumnWriter {
|
||||
&self,
|
||||
arena: &MemoryArena,
|
||||
buffer: &'a mut Vec<u8>,
|
||||
) -> impl Iterator<Item = ColumnOperation<V>> + 'a + use<'a, V> {
|
||||
) -> impl Iterator<Item = ColumnOperation<V>> + 'a {
|
||||
buffer.clear();
|
||||
self.values.read_to_end(arena, buffer);
|
||||
let mut cursor: &[u8] = &buffer[..];
|
||||
@@ -104,10 +104,9 @@ pub(crate) struct NumericalColumnWriter {
|
||||
|
||||
impl NumericalColumnWriter {
|
||||
pub fn force_numerical_type(&mut self, numerical_type: NumericalType) {
|
||||
assert!(
|
||||
self.compatible_numerical_types
|
||||
.is_type_accepted(numerical_type)
|
||||
);
|
||||
assert!(self
|
||||
.compatible_numerical_types
|
||||
.is_type_accepted(numerical_type));
|
||||
self.compatible_numerical_types = CompatibleNumericalTypes::StaticType(numerical_type);
|
||||
}
|
||||
}
|
||||
@@ -212,7 +211,7 @@ impl NumericalColumnWriter {
|
||||
self,
|
||||
arena: &MemoryArena,
|
||||
buffer: &'a mut Vec<u8>,
|
||||
) -> impl Iterator<Item = ColumnOperation<NumericalValue>> + 'a + use<'a> {
|
||||
) -> impl Iterator<Item = ColumnOperation<NumericalValue>> + 'a {
|
||||
self.column_writer.operation_iterator(arena, buffer)
|
||||
}
|
||||
}
|
||||
@@ -256,7 +255,7 @@ impl StrOrBytesColumnWriter {
|
||||
&self,
|
||||
arena: &MemoryArena,
|
||||
byte_buffer: &'a mut Vec<u8>,
|
||||
) -> impl Iterator<Item = ColumnOperation<UnorderedId>> + 'a + use<'a> {
|
||||
) -> impl Iterator<Item = ColumnOperation<UnorderedId>> + 'a {
|
||||
self.column_writer.operation_iterator(arena, byte_buffer)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,13 +8,13 @@ use std::net::Ipv6Addr;
|
||||
|
||||
use column_operation::ColumnOperation;
|
||||
pub(crate) use column_writers::CompatibleNumericalTypes;
|
||||
use common::CountingWriter;
|
||||
use common::json_path_writer::JSON_END_OF_PATH;
|
||||
use common::CountingWriter;
|
||||
pub(crate) use serializer::ColumnarSerializer;
|
||||
use stacker::{Addr, ArenaHashMap, MemoryArena};
|
||||
|
||||
use crate::column_index::{SerializableColumnIndex, SerializableOptionalIndex};
|
||||
use crate::column_values::{MonotonicallyMappableToU64, MonotonicallyMappableToU128};
|
||||
use crate::column_values::{MonotonicallyMappableToU128, MonotonicallyMappableToU64};
|
||||
use crate::columnar::column_type::ColumnType;
|
||||
use crate::columnar::writer::column_writers::{
|
||||
ColumnWriter, NumericalColumnWriter, StrOrBytesColumnWriter,
|
||||
@@ -285,6 +285,7 @@ impl ColumnarWriter {
|
||||
.map(|(column_name, addr)| (column_name, ColumnType::DateTime, addr)),
|
||||
);
|
||||
columns.sort_unstable_by_key(|(column_name, col_type, _)| (*column_name, *col_type));
|
||||
|
||||
let (arena, buffers, dictionaries) = (&self.arena, &mut self.buffers, &self.dictionaries);
|
||||
let mut symbol_byte_buffer: Vec<u8> = Vec::new();
|
||||
for (column_name, column_type, addr) in columns {
|
||||
@@ -391,7 +392,7 @@ impl ColumnarWriter {
|
||||
|
||||
// Serialize [Dictionary, Column, dictionary num bytes U32::LE]
|
||||
// Column: [Column Index, Column Values, column index num bytes U32::LE]
|
||||
#[expect(clippy::too_many_arguments)]
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn serialize_bytes_or_str_column(
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
|
||||
@@ -3,11 +3,11 @@ use std::io::Write;
|
||||
|
||||
use common::json_path_writer::JSON_END_OF_PATH;
|
||||
use common::{BinarySerializable, CountingWriter};
|
||||
use sstable::RangeSSTable;
|
||||
use sstable::value::RangeValueWriter;
|
||||
use sstable::RangeSSTable;
|
||||
|
||||
use crate::RowId;
|
||||
use crate::columnar::ColumnType;
|
||||
use crate::RowId;
|
||||
|
||||
pub struct ColumnarSerializer<W: io::Write> {
|
||||
wrt: CountingWriter<W>,
|
||||
@@ -67,7 +67,7 @@ pub struct ColumnSerializer<'a, W: io::Write> {
|
||||
start_offset: u64,
|
||||
}
|
||||
|
||||
impl<W: io::Write> ColumnSerializer<'_, W> {
|
||||
impl<'a, W: io::Write> ColumnSerializer<'a, W> {
|
||||
pub fn finalize(self) -> io::Result<()> {
|
||||
let end_offset: u64 = self.columnar_serializer.wrt.written_bytes();
|
||||
let byte_range = self.start_offset..end_offset;
|
||||
@@ -80,7 +80,7 @@ impl<W: io::Write> ColumnSerializer<'_, W> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<W: io::Write> io::Write for ColumnSerializer<'_, W> {
|
||||
impl<'a, W: io::Write> io::Write for ColumnSerializer<'a, W> {
|
||||
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
|
||||
self.columnar_serializer.wrt.write(buf)
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use crate::RowId;
|
||||
use crate::column_index::{SerializableMultivalueIndex, SerializableOptionalIndex};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::RowId;
|
||||
|
||||
/// The `IndexBuilder` interprets a sequence of
|
||||
/// calls of the form:
|
||||
@@ -31,13 +31,12 @@ pub struct OptionalIndexBuilder {
|
||||
|
||||
impl OptionalIndexBuilder {
|
||||
pub fn finish(&mut self, num_rows: RowId) -> impl Iterable<RowId> + '_ {
|
||||
debug_assert!(
|
||||
self.docs
|
||||
.last()
|
||||
.copied()
|
||||
.map(|last_doc| last_doc < num_rows)
|
||||
.unwrap_or(true)
|
||||
);
|
||||
debug_assert!(self
|
||||
.docs
|
||||
.last()
|
||||
.copied()
|
||||
.map(|last_doc| last_doc < num_rows)
|
||||
.unwrap_or(true));
|
||||
&self.docs[..]
|
||||
}
|
||||
|
||||
@@ -49,13 +48,12 @@ impl OptionalIndexBuilder {
|
||||
impl IndexBuilder for OptionalIndexBuilder {
|
||||
#[inline(always)]
|
||||
fn record_row(&mut self, doc: RowId) {
|
||||
debug_assert!(
|
||||
self.docs
|
||||
.last()
|
||||
.copied()
|
||||
.map(|prev_doc| doc > prev_doc)
|
||||
.unwrap_or(true)
|
||||
);
|
||||
debug_assert!(self
|
||||
.docs
|
||||
.last()
|
||||
.copied()
|
||||
.map(|prev_doc| doc > prev_doc)
|
||||
.unwrap_or(true));
|
||||
self.docs.push(doc);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,8 +3,8 @@ use std::path::PathBuf;
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::{
|
||||
CURRENT_VERSION, Cardinality, Column, ColumnarReader, DynamicColumn, StackMergeOrder,
|
||||
merge_columnar,
|
||||
merge_columnar, Cardinality, Column, ColumnarReader, DynamicColumn, StackMergeOrder,
|
||||
CURRENT_VERSION,
|
||||
};
|
||||
|
||||
const NUM_DOCS: u32 = u16::MAX as u32;
|
||||
|
||||
@@ -6,7 +6,7 @@ use common::file_slice::FileSlice;
|
||||
use common::{ByteCount, DateTime, HasLen, OwnedBytes};
|
||||
|
||||
use crate::column::{BytesColumn, Column, StrColumn};
|
||||
use crate::column_values::{StrictlyMonotonicFn, monotonic_map_column};
|
||||
use crate::column_values::{monotonic_map_column, StrictlyMonotonicFn};
|
||||
use crate::columnar::ColumnType;
|
||||
use crate::{Cardinality, ColumnIndex, ColumnValues, NumericalType, Version};
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@ pub trait Iterable<T = u64> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = T> + '_>;
|
||||
}
|
||||
|
||||
impl<T: Copy> Iterable<T> for &[T] {
|
||||
impl<'a, T: Copy> Iterable<T> for &'a [T] {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
|
||||
Box::new(self.iter().copied())
|
||||
}
|
||||
|
||||
@@ -17,10 +17,15 @@
|
||||
//! column.
|
||||
//! - [column_values]: Stores the values of a column in a dense format.
|
||||
|
||||
#![cfg_attr(all(feature = "unstable", test), feature(test))]
|
||||
|
||||
#[cfg(test)]
|
||||
#[macro_use]
|
||||
extern crate more_asserts;
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
extern crate test;
|
||||
|
||||
use std::fmt::Display;
|
||||
use std::io;
|
||||
|
||||
@@ -39,11 +44,11 @@ pub use block_accessor::ColumnBlockAccessor;
|
||||
pub use column::{BytesColumn, Column, StrColumn};
|
||||
pub use column_index::ColumnIndex;
|
||||
pub use column_values::{
|
||||
ColumnValues, EmptyColumnValues, MonotonicallyMappableToU64, MonotonicallyMappableToU128,
|
||||
ColumnValues, EmptyColumnValues, MonotonicallyMappableToU128, MonotonicallyMappableToU64,
|
||||
};
|
||||
pub use columnar::{
|
||||
CURRENT_VERSION, ColumnType, ColumnarReader, ColumnarWriter, HasAssociatedColumnType,
|
||||
MergeRowOrder, ShuffleMergeOrder, StackMergeOrder, Version, merge_columnar,
|
||||
merge_columnar, ColumnType, ColumnarReader, ColumnarWriter, HasAssociatedColumnType,
|
||||
MergeRowOrder, ShuffleMergeOrder, StackMergeOrder, Version, CURRENT_VERSION,
|
||||
};
|
||||
use sstable::VoidSSTable;
|
||||
pub use value::{NumericalType, NumericalValue};
|
||||
|
||||
@@ -380,7 +380,7 @@ fn assert_columnar_eq(
|
||||
right: &ColumnarReader,
|
||||
lenient_on_numerical_value: bool,
|
||||
) {
|
||||
assert_eq!(left.num_docs(), right.num_docs());
|
||||
assert_eq!(left.num_rows(), right.num_rows());
|
||||
let left_columns = left.list_columns().unwrap();
|
||||
let right_columns = right.list_columns().unwrap();
|
||||
assert_eq!(left_columns.len(), right_columns.len());
|
||||
@@ -588,7 +588,7 @@ proptest! {
|
||||
#[test]
|
||||
fn test_single_columnar_builder_proptest(docs in columnar_docs_strategy()) {
|
||||
let columnar = build_columnar(&docs[..]);
|
||||
assert_eq!(columnar.num_docs() as usize, docs.len());
|
||||
assert_eq!(columnar.num_rows() as usize, docs.len());
|
||||
let mut expected_columns: HashMap<(&str, ColumnTypeCategory), HashMap<u32, Vec<&ColumnValue>> > = Default::default();
|
||||
for (doc_id, doc_vals) in docs.iter().enumerate() {
|
||||
for (col_name, col_val) in doc_vals {
|
||||
@@ -715,9 +715,8 @@ fn test_columnar_merging_number_columns() {
|
||||
// TODO test required_columns
|
||||
// TODO document edge case: required_columns incompatible with values.
|
||||
|
||||
#[allow(clippy::type_complexity)]
|
||||
fn columnar_docs_and_remap()
|
||||
-> impl Strategy<Value = (Vec<Vec<Vec<(&'static str, ColumnValue)>>>, Vec<RowAddr>)> {
|
||||
fn columnar_docs_and_remap(
|
||||
) -> impl Strategy<Value = (Vec<Vec<Vec<(&'static str, ColumnValue)>>>, Vec<RowAddr>)> {
|
||||
proptest::collection::vec(columnar_docs_strategy(), 2..=3).prop_flat_map(
|
||||
|columnars_docs: Vec<Vec<Vec<(&str, ColumnValue)>>>| {
|
||||
let row_addrs: Vec<RowAddr> = columnars_docs
|
||||
@@ -820,7 +819,7 @@ fn test_columnar_merge_empty() {
|
||||
)
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
assert_eq!(merged_columnar.num_docs(), 0);
|
||||
assert_eq!(merged_columnar.num_rows(), 0);
|
||||
assert_eq!(merged_columnar.num_columns(), 0);
|
||||
}
|
||||
|
||||
@@ -846,7 +845,7 @@ fn test_columnar_merge_single_str_column() {
|
||||
)
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
assert_eq!(merged_columnar.num_docs(), 1);
|
||||
assert_eq!(merged_columnar.num_rows(), 1);
|
||||
assert_eq!(merged_columnar.num_columns(), 1);
|
||||
}
|
||||
|
||||
@@ -878,7 +877,7 @@ fn test_delete_decrease_cardinality() {
|
||||
)
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
assert_eq!(merged_columnar.num_docs(), 1);
|
||||
assert_eq!(merged_columnar.num_rows(), 1);
|
||||
assert_eq!(merged_columnar.num_columns(), 1);
|
||||
let cols = merged_columnar.read_columns("c").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
|
||||
@@ -17,31 +17,6 @@ impl NumericalValue {
|
||||
NumericalValue::F64(_) => NumericalType::F64,
|
||||
}
|
||||
}
|
||||
|
||||
/// Tries to normalize the numerical value in the following priorities:
|
||||
/// i64, i64, f64
|
||||
pub fn normalize(self) -> Self {
|
||||
match self {
|
||||
NumericalValue::U64(val) => {
|
||||
if val <= i64::MAX as u64 {
|
||||
NumericalValue::I64(val as i64)
|
||||
} else {
|
||||
NumericalValue::F64(val as f64)
|
||||
}
|
||||
}
|
||||
NumericalValue::I64(val) => NumericalValue::I64(val),
|
||||
NumericalValue::F64(val) => {
|
||||
let fract = val.fract();
|
||||
if fract == 0.0 && val >= i64::MIN as f64 && val <= i64::MAX as f64 {
|
||||
NumericalValue::I64(val as i64)
|
||||
} else if fract == 0.0 && val >= u64::MIN as f64 && val <= u64::MAX as f64 {
|
||||
NumericalValue::U64(val as u64)
|
||||
} else {
|
||||
NumericalValue::F64(val)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<u64> for NumericalValue {
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
[package]
|
||||
name = "tantivy-common"
|
||||
version = "0.10.0"
|
||||
version = "0.7.0"
|
||||
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
|
||||
license = "MIT"
|
||||
edition = "2024"
|
||||
edition = "2021"
|
||||
description = "common traits and utility functions used by multiple tantivy subcrates"
|
||||
documentation = "https://docs.rs/tantivy_common/"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
@@ -13,13 +13,13 @@ repository = "https://github.com/quickwit-oss/tantivy"
|
||||
|
||||
[dependencies]
|
||||
byteorder = "1.4.3"
|
||||
ownedbytes = { version= "0.9", path="../ownedbytes" }
|
||||
ownedbytes = { version= "0.7", path="../ownedbytes" }
|
||||
async-trait = "0.1"
|
||||
time = { version = "0.3.10", features = ["serde-well-known"] }
|
||||
serde = { version = "1.0.136", features = ["derive"] }
|
||||
|
||||
[dev-dependencies]
|
||||
binggan = "0.14.0"
|
||||
binggan = "0.8.1"
|
||||
proptest = "1.0.0"
|
||||
rand = "0.8.4"
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
use binggan::{BenchRunner, black_box};
|
||||
use binggan::{black_box, BenchRunner};
|
||||
use rand::seq::IteratorRandom;
|
||||
use rand::thread_rng;
|
||||
use tantivy_common::{BitSet, TinySet, serialize_vint_u32};
|
||||
use tantivy_common::{serialize_vint_u32, BitSet, TinySet};
|
||||
|
||||
fn bench_vint() {
|
||||
let mut runner = BenchRunner::new();
|
||||
|
||||
@@ -1,130 +0,0 @@
|
||||
use std::io;
|
||||
use std::ops::Bound;
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct BoundsRange<T> {
|
||||
pub lower_bound: Bound<T>,
|
||||
pub upper_bound: Bound<T>,
|
||||
}
|
||||
impl<T> BoundsRange<T> {
|
||||
pub fn new(lower_bound: Bound<T>, upper_bound: Bound<T>) -> Self {
|
||||
BoundsRange {
|
||||
lower_bound,
|
||||
upper_bound,
|
||||
}
|
||||
}
|
||||
pub fn is_unbounded(&self) -> bool {
|
||||
matches!(self.lower_bound, Bound::Unbounded) && matches!(self.upper_bound, Bound::Unbounded)
|
||||
}
|
||||
pub fn map_bound<TTo>(&self, transform: impl Fn(&T) -> TTo) -> BoundsRange<TTo> {
|
||||
BoundsRange {
|
||||
lower_bound: map_bound(&self.lower_bound, &transform),
|
||||
upper_bound: map_bound(&self.upper_bound, &transform),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn map_bound_res<TTo, Err>(
|
||||
&self,
|
||||
transform: impl Fn(&T) -> Result<TTo, Err>,
|
||||
) -> Result<BoundsRange<TTo>, Err> {
|
||||
Ok(BoundsRange {
|
||||
lower_bound: map_bound_res(&self.lower_bound, &transform)?,
|
||||
upper_bound: map_bound_res(&self.upper_bound, &transform)?,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn transform_inner<TTo>(
|
||||
&self,
|
||||
transform_lower: impl Fn(&T) -> TransformBound<TTo>,
|
||||
transform_upper: impl Fn(&T) -> TransformBound<TTo>,
|
||||
) -> BoundsRange<TTo> {
|
||||
BoundsRange {
|
||||
lower_bound: transform_bound_inner(&self.lower_bound, &transform_lower),
|
||||
upper_bound: transform_bound_inner(&self.upper_bound, &transform_upper),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the first set inner value
|
||||
pub fn get_inner(&self) -> Option<&T> {
|
||||
inner_bound(&self.lower_bound).or(inner_bound(&self.upper_bound))
|
||||
}
|
||||
}
|
||||
|
||||
pub enum TransformBound<T> {
|
||||
/// Overwrite the bounds
|
||||
NewBound(Bound<T>),
|
||||
/// Use Existing bounds with new value
|
||||
Existing(T),
|
||||
}
|
||||
|
||||
/// Takes a bound and transforms the inner value into a new bound via a closure.
|
||||
/// The bound variant may change by the value returned value from the closure.
|
||||
pub fn transform_bound_inner_res<TFrom, TTo>(
|
||||
bound: &Bound<TFrom>,
|
||||
transform: impl Fn(&TFrom) -> io::Result<TransformBound<TTo>>,
|
||||
) -> io::Result<Bound<TTo>> {
|
||||
use self::Bound::*;
|
||||
Ok(match bound {
|
||||
Excluded(from_val) => match transform(from_val)? {
|
||||
TransformBound::NewBound(new_val) => new_val,
|
||||
TransformBound::Existing(new_val) => Excluded(new_val),
|
||||
},
|
||||
Included(from_val) => match transform(from_val)? {
|
||||
TransformBound::NewBound(new_val) => new_val,
|
||||
TransformBound::Existing(new_val) => Included(new_val),
|
||||
},
|
||||
Unbounded => Unbounded,
|
||||
})
|
||||
}
|
||||
|
||||
/// Takes a bound and transforms the inner value into a new bound via a closure.
|
||||
/// The bound variant may change by the value returned value from the closure.
|
||||
pub fn transform_bound_inner<TFrom, TTo>(
|
||||
bound: &Bound<TFrom>,
|
||||
transform: impl Fn(&TFrom) -> TransformBound<TTo>,
|
||||
) -> Bound<TTo> {
|
||||
use self::Bound::*;
|
||||
match bound {
|
||||
Excluded(from_val) => match transform(from_val) {
|
||||
TransformBound::NewBound(new_val) => new_val,
|
||||
TransformBound::Existing(new_val) => Excluded(new_val),
|
||||
},
|
||||
Included(from_val) => match transform(from_val) {
|
||||
TransformBound::NewBound(new_val) => new_val,
|
||||
TransformBound::Existing(new_val) => Included(new_val),
|
||||
},
|
||||
Unbounded => Unbounded,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the inner value of a `Bound`
|
||||
pub fn inner_bound<T>(val: &Bound<T>) -> Option<&T> {
|
||||
match val {
|
||||
Bound::Included(term) | Bound::Excluded(term) => Some(term),
|
||||
Bound::Unbounded => None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn map_bound<TFrom, TTo>(
|
||||
bound: &Bound<TFrom>,
|
||||
transform: impl Fn(&TFrom) -> TTo,
|
||||
) -> Bound<TTo> {
|
||||
use self::Bound::*;
|
||||
match bound {
|
||||
Excluded(from_val) => Bound::Excluded(transform(from_val)),
|
||||
Included(from_val) => Bound::Included(transform(from_val)),
|
||||
Unbounded => Unbounded,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn map_bound_res<TFrom, TTo, Err>(
|
||||
bound: &Bound<TFrom>,
|
||||
transform: impl Fn(&TFrom) -> Result<TTo, Err>,
|
||||
) -> Result<Bound<TTo>, Err> {
|
||||
use self::Bound::*;
|
||||
Ok(match bound {
|
||||
Excluded(from_val) => Excluded(transform(from_val)?),
|
||||
Included(from_val) => Included(transform(from_val)?),
|
||||
Unbounded => Unbounded,
|
||||
})
|
||||
}
|
||||
@@ -1,6 +1,5 @@
|
||||
use std::fs::File;
|
||||
use std::ops::{Deref, Range, RangeBounds};
|
||||
use std::path::Path;
|
||||
use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
|
||||
@@ -74,7 +73,7 @@ impl FileHandle for WrapFile {
|
||||
{
|
||||
use std::io::{Read, Seek};
|
||||
let mut file = self.file.try_clone()?; // Clone the file to read from it separately
|
||||
// Seek to the start position in the file
|
||||
// Seek to the start position in the file
|
||||
file.seek(io::SeekFrom::Start(start as u64))?;
|
||||
// Read the data into the buffer
|
||||
file.read_exact(&mut buffer)?;
|
||||
@@ -178,12 +177,6 @@ fn combine_ranges<R: RangeBounds<usize>>(orig_range: Range<usize>, rel_range: R)
|
||||
}
|
||||
|
||||
impl FileSlice {
|
||||
/// Creates a FileSlice from a path.
|
||||
pub fn open(path: &Path) -> io::Result<FileSlice> {
|
||||
let wrap_file = WrapFile::new(File::open(path)?)?;
|
||||
Ok(FileSlice::new(Arc::new(wrap_file)))
|
||||
}
|
||||
|
||||
/// Wraps a FileHandle.
|
||||
pub fn new(file_handle: Arc<dyn FileHandle>) -> Self {
|
||||
let num_bytes = file_handle.len();
|
||||
@@ -346,8 +339,8 @@ mod tests {
|
||||
use std::sync::Arc;
|
||||
|
||||
use super::{FileHandle, FileSlice};
|
||||
use crate::HasLen;
|
||||
use crate::file_slice::combine_ranges;
|
||||
use crate::HasLen;
|
||||
|
||||
#[test]
|
||||
fn test_file_slice() -> io::Result<()> {
|
||||
|
||||
@@ -5,7 +5,6 @@ use std::ops::Deref;
|
||||
pub use byteorder::LittleEndian as Endianness;
|
||||
|
||||
mod bitset;
|
||||
pub mod bounds;
|
||||
mod byte_count;
|
||||
mod datetime;
|
||||
pub mod file_slice;
|
||||
@@ -22,7 +21,7 @@ pub use json_path_writer::JsonPathWriter;
|
||||
pub use ownedbytes::{OwnedBytes, StableDeref};
|
||||
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
|
||||
pub use vint::{
|
||||
VInt, VIntU128, read_u32_vint, read_u32_vint_no_advance, serialize_vint_u32, write_u32_vint,
|
||||
read_u32_vint, read_u32_vint_no_advance, serialize_vint_u32, write_u32_vint, VInt, VIntU128,
|
||||
};
|
||||
pub use writer::{AntiCallToken, CountingWriter, TerminatingWrite};
|
||||
|
||||
@@ -130,11 +129,11 @@ pub fn replace_in_place(needle: u8, replacement: u8, bytes: &mut [u8]) {
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub(crate) mod test {
|
||||
pub mod test {
|
||||
|
||||
use proptest::prelude::*;
|
||||
|
||||
use super::{f64_to_u64, i64_to_u64, u64_to_f64, u64_to_i64};
|
||||
use super::{f64_to_u64, i64_to_u64, u64_to_f64, u64_to_i64, BinarySerializable, FixedSize};
|
||||
|
||||
fn test_i64_converter_helper(val: i64) {
|
||||
assert_eq!(u64_to_i64(i64_to_u64(val)), val);
|
||||
@@ -144,6 +143,12 @@ pub(crate) mod test {
|
||||
assert_eq!(u64_to_f64(f64_to_u64(val)), val);
|
||||
}
|
||||
|
||||
pub fn fixed_size_test<O: BinarySerializable + FixedSize + Default>() {
|
||||
let mut buffer = Vec::new();
|
||||
O::default().serialize(&mut buffer).unwrap();
|
||||
assert_eq!(buffer.len(), O::SIZE_IN_BYTES);
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#[test]
|
||||
fn test_f64_converter_monotonicity_proptest((left, right) in (proptest::num::f64::NORMAL, proptest::num::f64::NORMAL)) {
|
||||
@@ -177,10 +182,8 @@ pub(crate) mod test {
|
||||
|
||||
#[test]
|
||||
fn test_f64_order() {
|
||||
assert!(
|
||||
!(f64_to_u64(f64::NEG_INFINITY)..f64_to_u64(f64::INFINITY))
|
||||
.contains(&f64_to_u64(f64::NAN))
|
||||
); // nan is not a number
|
||||
assert!(!(f64_to_u64(f64::NEG_INFINITY)..f64_to_u64(f64::INFINITY))
|
||||
.contains(&f64_to_u64(f64::NAN))); // nan is not a number
|
||||
assert!(f64_to_u64(1.5) > f64_to_u64(1.0)); // same exponent, different mantissa
|
||||
assert!(f64_to_u64(2.0) > f64_to_u64(1.0)); // same mantissa, different exponent
|
||||
assert!(f64_to_u64(2.0) > f64_to_u64(1.5)); // different exponent and mantissa
|
||||
|
||||
@@ -74,14 +74,14 @@ impl FixedSize for () {
|
||||
|
||||
impl<T: BinarySerializable> BinarySerializable for Vec<T> {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
BinarySerializable::serialize(&VInt(self.len() as u64), writer)?;
|
||||
VInt(self.len() as u64).serialize(writer)?;
|
||||
for it in self {
|
||||
it.serialize(writer)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Vec<T>> {
|
||||
let num_items = <VInt as BinarySerializable>::deserialize(reader)?.val();
|
||||
let num_items = VInt::deserialize(reader)?.val();
|
||||
let mut items: Vec<T> = Vec::with_capacity(num_items as usize);
|
||||
for _ in 0..num_items {
|
||||
let item = T::deserialize(reader)?;
|
||||
@@ -236,12 +236,12 @@ impl FixedSize for bool {
|
||||
impl BinarySerializable for String {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
let data: &[u8] = self.as_bytes();
|
||||
BinarySerializable::serialize(&VInt(data.len() as u64), writer)?;
|
||||
VInt(data.len() as u64).serialize(writer)?;
|
||||
writer.write_all(data)
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<String> {
|
||||
let string_length = <VInt as BinarySerializable>::deserialize(reader)?.val() as usize;
|
||||
let string_length = VInt::deserialize(reader)?.val() as usize;
|
||||
let mut result = String::with_capacity(string_length);
|
||||
reader
|
||||
.take(string_length as u64)
|
||||
@@ -253,12 +253,12 @@ impl BinarySerializable for String {
|
||||
impl<'a> BinarySerializable for Cow<'a, str> {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
let data: &[u8] = self.as_bytes();
|
||||
BinarySerializable::serialize(&VInt(data.len() as u64), writer)?;
|
||||
VInt(data.len() as u64).serialize(writer)?;
|
||||
writer.write_all(data)
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Cow<'a, str>> {
|
||||
let string_length = <VInt as BinarySerializable>::deserialize(reader)?.val() as usize;
|
||||
let string_length = VInt::deserialize(reader)?.val() as usize;
|
||||
let mut result = String::with_capacity(string_length);
|
||||
reader
|
||||
.take(string_length as u64)
|
||||
@@ -269,18 +269,18 @@ impl<'a> BinarySerializable for Cow<'a, str> {
|
||||
|
||||
impl<'a> BinarySerializable for Cow<'a, [u8]> {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
BinarySerializable::serialize(&VInt(self.len() as u64), writer)?;
|
||||
VInt(self.len() as u64).serialize(writer)?;
|
||||
for it in self.iter() {
|
||||
BinarySerializable::serialize(it, writer)?;
|
||||
it.serialize(writer)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Cow<'a, [u8]>> {
|
||||
let num_items = <VInt as BinarySerializable>::deserialize(reader)?.val();
|
||||
let num_items = VInt::deserialize(reader)?.val();
|
||||
let mut items: Vec<u8> = Vec::with_capacity(num_items as usize);
|
||||
for _ in 0..num_items {
|
||||
let item = <u8 as BinarySerializable>::deserialize(reader)?;
|
||||
let item = u8::deserialize(reader)?;
|
||||
items.push(item);
|
||||
}
|
||||
Ok(Cow::Owned(items))
|
||||
|
||||
@@ -222,7 +222,7 @@ impl BinarySerializable for VInt {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use super::{BinarySerializable, VInt, serialize_vint_u32};
|
||||
use super::{serialize_vint_u32, BinarySerializable, VInt};
|
||||
|
||||
fn aux_test_vint(val: u64) {
|
||||
let mut v = [14u8; 10];
|
||||
|
||||
@@ -87,7 +87,7 @@ impl<W: TerminatingWrite> TerminatingWrite for BufWriter<W> {
|
||||
}
|
||||
}
|
||||
|
||||
impl TerminatingWrite for &mut Vec<u8> {
|
||||
impl<'a> TerminatingWrite for &'a mut Vec<u8> {
|
||||
fn terminate_ref(&mut self, _a: AntiCallToken) -> io::Result<()> {
|
||||
self.flush()
|
||||
}
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 7.4 KiB After Width: | Height: | Size: 30 KiB |
@@ -2,7 +2,7 @@
|
||||
|
||||
> Tantivy is a **search** engine **library** for Rust.
|
||||
|
||||
If you are familiar with Lucene, it's an excellent approximation to consider tantivy as Lucene for Rust. Tantivy is heavily inspired by Lucene's design and
|
||||
If you are familiar with Lucene, it's an excellent approximation to consider tantivy as Lucene for rust. tantivy is heavily inspired by Lucene's design and
|
||||
they both have the same scope and targeted use cases.
|
||||
|
||||
If you are not familiar with Lucene, let's break down our little tagline.
|
||||
@@ -17,7 +17,7 @@ relevancy, collapsing, highlighting, spatial search.
|
||||
experience. But keep in mind this is just a toolbox.
|
||||
Which bring us to the second keyword...
|
||||
|
||||
- **Library** means that you will have to write code. Tantivy is not an *all-in-one* server solution like Elasticsearch for instance.
|
||||
- **Library** means that you will have to write code. tantivy is not an *all-in-one* server solution like elastic search for instance.
|
||||
|
||||
Sometimes a functionality will not be available in tantivy because it is too
|
||||
specific to your use case. By design, tantivy should make it possible to extend
|
||||
@@ -31,4 +31,4 @@ relevancy, collapsing, highlighting, spatial search.
|
||||
index from a different format.
|
||||
|
||||
Tantivy exposes a lot of low level API to do all of these things.
|
||||
|
||||
|
||||
@@ -11,7 +11,7 @@ directory shipped with tantivy is the `MmapDirectory`.
|
||||
While this design has some downsides, this greatly simplifies the source code of
|
||||
tantivy. Caching is also entirely delegated to the OS.
|
||||
|
||||
Tantivy works entirely (or almost) by directly reading the datastructures as they are laid on disk. As a result, the act of opening an indexing does not involve loading different datastructures from the disk into random access memory : starting a process, opening an index, and performing your first query can typically be done in a matter of milliseconds.
|
||||
`tantivy` works entirely (or almost) by directly reading the datastructures as they are laid on disk. As a result, the act of opening an indexing does not involve loading different datastructures from the disk into random access memory : starting a process, opening an index, and performing your first query can typically be done in a matter of milliseconds.
|
||||
|
||||
This is an interesting property for a command line search engine, or for some multi-tenant log search engine : spawning a new process for each new query can be a perfectly sensible solution in some use case.
|
||||
|
||||
|
||||
@@ -31,13 +31,13 @@ Compression ratio is mainly affected on the fast field of the sorted property, e
|
||||
When data is presorted by a field and search queries request sorting by the same field, we can leverage the natural order of the documents.
|
||||
E.g. if the data is sorted by timestamp and want the top n newest docs containing a term, we can simply leveraging the order of the docids.
|
||||
|
||||
Note: tantivy 0.16 does not do this optimization yet.
|
||||
Note: Tantivy 0.16 does not do this optimization yet.
|
||||
|
||||
### Pruning
|
||||
|
||||
Let's say we want all documents and want to apply the filter `>= 2010-08-11`. When the data is sorted, we could make a lookup in the fast field to find the docid range and use this as the filter.
|
||||
|
||||
Note: tantivy 0.16 does not do this optimization yet.
|
||||
Note: Tantivy 0.16 does not do this optimization yet.
|
||||
|
||||
### Other?
|
||||
|
||||
@@ -45,7 +45,7 @@ In principle there are many algorithms possible that exploit the monotonically i
|
||||
|
||||
## Usage
|
||||
|
||||
The index sorting can be configured setting [`sort_by_field`](https://github.com/quickwit-oss/tantivy/blob/000d76b11a139a84b16b9b95060a1c93e8b9851c/src/core/index_meta.rs#L238) on `IndexSettings` and passing it to a `IndexBuilder`. As of tantivy 0.16 only fast fields are allowed to be used.
|
||||
The index sorting can be configured setting [`sort_by_field`](https://github.com/quickwit-oss/tantivy/blob/000d76b11a139a84b16b9b95060a1c93e8b9851c/src/core/index_meta.rs#L238) on `IndexSettings` and passing it to a `IndexBuilder`. As of Tantivy 0.16 only fast fields are allowed to be used.
|
||||
|
||||
```rust
|
||||
let settings = IndexSettings {
|
||||
|
||||
@@ -39,7 +39,7 @@ Its representation is done by separating segments by a unicode char `\x01`, and
|
||||
- `value`: The value representation is just the regular Value representation.
|
||||
|
||||
This representation is designed to align the natural sort of Terms with the lexicographical sort
|
||||
of their binary representation (tantivy's dictionary (whether fst or sstable) is sorted and does prefix encoding).
|
||||
of their binary representation (Tantivy's dictionary (whether fst or sstable) is sorted and does prefix encoding).
|
||||
|
||||
In the example above, the terms will be sorted as
|
||||
|
||||
|
||||
@@ -51,7 +51,7 @@ fn main() -> tantivy::Result<()> {
|
||||
|
||||
// Our second field is body.
|
||||
// We want full-text search for it, but we do not
|
||||
// need to be able to retrieve it
|
||||
// need to be able to be able to retrieve it
|
||||
// for our application.
|
||||
//
|
||||
// We can make our index lighter by omitting the `STORED` flag.
|
||||
|
||||
@@ -28,7 +28,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let mut index_writer: IndexWriter = index.writer_with_num_threads(1, 50_000_000)?;
|
||||
index_writer.add_document(doc!(title => "The Old Man and the Sea"))?;
|
||||
index_writer.add_document(doc!(title => "Of Mice and Men"))?;
|
||||
index_writer.add_document(doc!(title => "The modern Prometheus"))?;
|
||||
index_writer.add_document(doc!(title => "The modern Promotheus"))?;
|
||||
index_writer.commit()?;
|
||||
|
||||
let reader = index.reader()?;
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
[package]
|
||||
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
|
||||
name = "ownedbytes"
|
||||
version = "0.9.0"
|
||||
version = "0.7.0"
|
||||
edition = "2021"
|
||||
description = "Expose data as static slice"
|
||||
license = "MIT"
|
||||
|
||||
@@ -151,7 +151,7 @@ impl fmt::Debug for OwnedBytes {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
// We truncate the bytes in order to make sure the debug string
|
||||
// is not too long.
|
||||
let bytes_truncated: &[u8] = if self.len() > 10 {
|
||||
let bytes_truncated: &[u8] = if self.len() > 8 {
|
||||
&self.as_slice()[..10]
|
||||
} else {
|
||||
self.as_slice()
|
||||
@@ -252,11 +252,6 @@ mod tests {
|
||||
format!("{short_bytes:?}"),
|
||||
"OwnedBytes([97, 98, 99, 100], len=4)"
|
||||
);
|
||||
let medium_bytes = OwnedBytes::new(b"abcdefghi".as_ref());
|
||||
assert_eq!(
|
||||
format!("{medium_bytes:?}"),
|
||||
"OwnedBytes([97, 98, 99, 100, 101, 102, 103, 104, 105], len=9)"
|
||||
);
|
||||
let long_bytes = OwnedBytes::new(b"abcdefghijklmnopq".as_ref());
|
||||
assert_eq!(
|
||||
format!("{long_bytes:?}"),
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-query-grammar"
|
||||
version = "0.25.0"
|
||||
version = "0.22.0"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = ["database-implementations", "data-structures"]
|
||||
@@ -9,9 +9,7 @@ homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
repository = "https://github.com/quickwit-oss/tantivy"
|
||||
readme = "README.md"
|
||||
keywords = ["search", "information", "retrieval"]
|
||||
edition = "2024"
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
nom = "7"
|
||||
serde = { version = "1.0.219", features = ["derive"] }
|
||||
serde_json = "1.0.140"
|
||||
|
||||
@@ -3,7 +3,6 @@
|
||||
use std::convert::Infallible;
|
||||
|
||||
use nom::{AsChar, IResult, InputLength, InputTakeAtPosition};
|
||||
use serde::Serialize;
|
||||
|
||||
pub(crate) type ErrorList = Vec<LenientErrorInternal>;
|
||||
pub(crate) type JResult<I, O> = IResult<I, (O, ErrorList), Infallible>;
|
||||
@@ -16,8 +15,7 @@ pub(crate) struct LenientErrorInternal {
|
||||
}
|
||||
|
||||
/// A recoverable error and the position it happened at
|
||||
#[derive(Debug, PartialEq, Serialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
#[derive(Debug, PartialEq)]
|
||||
pub struct LenientError {
|
||||
pub pos: usize,
|
||||
pub message: String,
|
||||
@@ -111,8 +109,6 @@ where F: nom::Parser<I, (O, ErrorList), Infallible> {
|
||||
move |input: I| match f.parse(input) {
|
||||
Ok((input, (output, _err))) => Ok((input, output)),
|
||||
Err(Err::Incomplete(needed)) => Err(Err::Incomplete(needed)),
|
||||
// old versions don't understand this is uninhabited and need the empty match to help,
|
||||
// newer versions warn because this arm is unreachable (which it is indeed).
|
||||
Err(Err::Error(val)) | Err(Err::Failure(val)) => match val {},
|
||||
}
|
||||
}
|
||||
@@ -186,19 +182,19 @@ macro_rules! tuple_trait_impl(
|
||||
);
|
||||
|
||||
macro_rules! tuple_trait_inner(
|
||||
($it:tt, $self:expr_2021, $input:expr_2021, (), $error_list:expr_2021, $head:ident $($id:ident)+) => ({
|
||||
($it:tt, $self:expr, $input:expr, (), $error_list:expr, $head:ident $($id:ident)+) => ({
|
||||
let (i, (o, mut err)) = $self.$it.parse($input.clone())?;
|
||||
$error_list.append(&mut err);
|
||||
|
||||
succ!($it, tuple_trait_inner!($self, i, ( o ), $error_list, $($id)+))
|
||||
});
|
||||
($it:tt, $self:expr_2021, $input:expr_2021, ($($parsed:tt)*), $error_list:expr_2021, $head:ident $($id:ident)+) => ({
|
||||
($it:tt, $self:expr, $input:expr, ($($parsed:tt)*), $error_list:expr, $head:ident $($id:ident)+) => ({
|
||||
let (i, (o, mut err)) = $self.$it.parse($input.clone())?;
|
||||
$error_list.append(&mut err);
|
||||
|
||||
succ!($it, tuple_trait_inner!($self, i, ($($parsed)* , o), $error_list, $($id)+))
|
||||
});
|
||||
($it:tt, $self:expr_2021, $input:expr_2021, ($($parsed:tt)*), $error_list:expr_2021, $head:ident) => ({
|
||||
($it:tt, $self:expr, $input:expr, ($($parsed:tt)*), $error_list:expr, $head:ident) => ({
|
||||
let (i, (o, mut err)) = $self.$it.parse($input.clone())?;
|
||||
$error_list.append(&mut err);
|
||||
|
||||
@@ -328,13 +324,13 @@ macro_rules! alt_trait_impl(
|
||||
);
|
||||
|
||||
macro_rules! alt_trait_inner(
|
||||
($it:tt, $self:expr_2021, $input:expr_2021, $head_cond:ident $head:ident, $($id_cond:ident $id:ident),+) => (
|
||||
($it:tt, $self:expr, $input:expr, $head_cond:ident $head:ident, $($id_cond:ident $id:ident),+) => (
|
||||
match $self.$it.0.parse($input.clone()) {
|
||||
Err(_) => succ!($it, alt_trait_inner!($self, $input, $($id_cond $id),+)),
|
||||
Ok((input_left, _)) => Some($self.$it.1.parse(input_left)),
|
||||
}
|
||||
);
|
||||
($it:tt, $self:expr_2021, $input:expr_2021, $head_cond:ident $head:ident) => (
|
||||
($it:tt, $self:expr, $input:expr, $head_cond:ident $head:ident) => (
|
||||
None
|
||||
);
|
||||
);
|
||||
@@ -355,21 +351,3 @@ where
|
||||
{
|
||||
move |i: I| l.choice(i.clone()).unwrap_or_else(|| default.parse(i))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_lenient_error_serialization() {
|
||||
let error = LenientError {
|
||||
pos: 42,
|
||||
message: "test error message".to_string(),
|
||||
};
|
||||
|
||||
assert_eq!(
|
||||
serde_json::to_string(&error).unwrap(),
|
||||
"{\"pos\":42,\"message\":\"test error message\"}"
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
#![allow(clippy::derive_partial_eq_without_eq)]
|
||||
|
||||
use serde::Serialize;
|
||||
|
||||
mod infallible;
|
||||
mod occur;
|
||||
mod query_grammar;
|
||||
@@ -14,8 +12,6 @@ pub use crate::user_input_ast::{
|
||||
Delimiter, UserInputAst, UserInputBound, UserInputLeaf, UserInputLiteral,
|
||||
};
|
||||
|
||||
#[derive(Debug, Serialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub struct Error;
|
||||
|
||||
/// Parse a query
|
||||
@@ -28,31 +24,3 @@ pub fn parse_query(query: &str) -> Result<UserInputAst, Error> {
|
||||
pub fn parse_query_lenient(query: &str) -> (UserInputAst, Vec<LenientError>) {
|
||||
parse_to_ast_lenient(query)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::{parse_query, parse_query_lenient};
|
||||
|
||||
#[test]
|
||||
fn test_parse_query_serialization() {
|
||||
let ast = parse_query("title:hello OR title:x").unwrap();
|
||||
let json = serde_json::to_string(&ast).unwrap();
|
||||
assert_eq!(
|
||||
json,
|
||||
r#"{"type":"bool","clauses":[["should",{"type":"literal","field_name":"title","phrase":"hello","delimiter":"none","slop":0,"prefix":false}],["should",{"type":"literal","field_name":"title","phrase":"x","delimiter":"none","slop":0,"prefix":false}]]}"#
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_query_wrong_query() {
|
||||
assert!(parse_query("title:").is_err());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_query_lenient_wrong_query() {
|
||||
let (_, errors) = parse_query_lenient("title:");
|
||||
assert!(errors.len() == 1);
|
||||
let json = serde_json::to_string(&errors).unwrap();
|
||||
assert_eq!(json, r#"[{"pos":6,"message":"expected word"}]"#);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,20 +1,17 @@
|
||||
use std::fmt;
|
||||
use std::fmt::Write;
|
||||
|
||||
use serde::Serialize;
|
||||
|
||||
/// Defines whether a term in a query must be present,
|
||||
/// should be present or must not be present.
|
||||
#[derive(Debug, Clone, Hash, Copy, Eq, PartialEq, Serialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
#[derive(Debug, Clone, Hash, Copy, Eq, PartialEq)]
|
||||
pub enum Occur {
|
||||
/// For a given document to be considered for scoring,
|
||||
/// at least one of the queries with the Should or the Must
|
||||
/// at least one of the terms with the Should or the Must
|
||||
/// Occur constraint must be within the document.
|
||||
Should,
|
||||
/// Document without the queries are excluded from the search.
|
||||
/// Document without the term are excluded from the search.
|
||||
Must,
|
||||
/// Document that contain the query are excluded from the
|
||||
/// Document that contain the term are excluded from the
|
||||
/// search.
|
||||
MustNot,
|
||||
}
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
use std::borrow::Cow;
|
||||
use std::iter::once;
|
||||
|
||||
use nom::IResult;
|
||||
use nom::branch::alt;
|
||||
use nom::bytes::complete::tag;
|
||||
use nom::character::complete::{
|
||||
@@ -11,11 +10,12 @@ use nom::combinator::{eof, map, map_res, opt, peek, recognize, value, verify};
|
||||
use nom::error::{Error, ErrorKind};
|
||||
use nom::multi::{many0, many1, separated_list0};
|
||||
use nom::sequence::{delimited, preceded, separated_pair, terminated, tuple};
|
||||
use nom::IResult;
|
||||
|
||||
use super::user_input_ast::{UserInputAst, UserInputBound, UserInputLeaf, UserInputLiteral};
|
||||
use crate::Occur;
|
||||
use crate::infallible::*;
|
||||
use crate::user_input_ast::Delimiter;
|
||||
use crate::Occur;
|
||||
|
||||
// Note: '-' char is only forbidden at the beginning of a field name, would be clearer to add it to
|
||||
// special characters.
|
||||
@@ -36,7 +36,7 @@ fn field_name(inp: &str) -> IResult<&str, String> {
|
||||
alt((first_char, escape_sequence())),
|
||||
many0(alt((simple_char, escape_sequence(), char('\\')))),
|
||||
)),
|
||||
tuple((multispace0, char(':'), multispace0)),
|
||||
char(':'),
|
||||
),
|
||||
|(first_char, next)| once(first_char).chain(next).collect(),
|
||||
)(inp)
|
||||
@@ -321,17 +321,7 @@ fn exists(inp: &str) -> IResult<&str, UserInputLeaf> {
|
||||
UserInputLeaf::Exists {
|
||||
field: String::new(),
|
||||
},
|
||||
tuple((
|
||||
multispace0,
|
||||
char('*'),
|
||||
peek(alt((
|
||||
value(
|
||||
"",
|
||||
satisfy(|c: char| c.is_whitespace() || ESCAPE_IN_WORD.contains(&c)),
|
||||
),
|
||||
eof,
|
||||
))),
|
||||
)),
|
||||
tuple((multispace0, char('*'))),
|
||||
)(inp)
|
||||
}
|
||||
|
||||
@@ -341,14 +331,7 @@ fn exists_precond(inp: &str) -> IResult<&str, (), ()> {
|
||||
peek(tuple((
|
||||
field_name,
|
||||
multispace0,
|
||||
char('*'),
|
||||
peek(alt((
|
||||
value(
|
||||
"",
|
||||
satisfy(|c: char| c.is_whitespace() || ESCAPE_IN_WORD.contains(&c)),
|
||||
),
|
||||
eof,
|
||||
))), // we need to check this isn't a wildcard query
|
||||
char('*'), // when we are here, we know it can't be anything but a exists
|
||||
))),
|
||||
)(inp)
|
||||
.map_err(|e| e.map(|_| ()))
|
||||
@@ -784,7 +767,7 @@ fn occur_leaf(inp: &str) -> IResult<&str, (Option<Occur>, UserInputAst)> {
|
||||
tuple((fallible(occur_symbol), boosted_leaf))(inp)
|
||||
}
|
||||
|
||||
#[expect(clippy::type_complexity)]
|
||||
#[allow(clippy::type_complexity)]
|
||||
fn operand_occur_leaf_infallible(
|
||||
inp: &str,
|
||||
) -> JResult<&str, (Option<BinaryOperand>, Option<Occur>, Option<UserInputAst>)> {
|
||||
@@ -850,7 +833,7 @@ fn aggregate_infallible_expressions(
|
||||
if early_operand {
|
||||
err.push(LenientErrorInternal {
|
||||
pos: 0,
|
||||
message: "Found unexpected boolean operator before term".to_string(),
|
||||
message: "Found unexpeted boolean operator before term".to_string(),
|
||||
});
|
||||
}
|
||||
|
||||
@@ -873,7 +856,7 @@ fn aggregate_infallible_expressions(
|
||||
_ => Some(Occur::Should),
|
||||
};
|
||||
if occur == &Some(Occur::MustNot) && default_op == Some(Occur::Should) {
|
||||
// if occur is MustNot *and* operation is OR, we synthesize a ShouldNot
|
||||
// if occur is MustNot *and* operation is OR, we synthetize a ShouldNot
|
||||
clauses.push(vec![(
|
||||
Some(Occur::Should),
|
||||
ast.clone().unary(Occur::MustNot),
|
||||
@@ -889,7 +872,7 @@ fn aggregate_infallible_expressions(
|
||||
None => None,
|
||||
};
|
||||
if occur == &Some(Occur::MustNot) && default_op == Some(Occur::Should) {
|
||||
// if occur is MustNot *and* operation is OR, we synthesize a ShouldNot
|
||||
// if occur is MustNot *and* operation is OR, we synthetize a ShouldNot
|
||||
clauses.push(vec![(
|
||||
Some(Occur::Should),
|
||||
ast.clone().unary(Occur::MustNot),
|
||||
@@ -914,7 +897,7 @@ fn aggregate_infallible_expressions(
|
||||
}
|
||||
Some(BinaryOperand::Or) => {
|
||||
if last_occur == Some(Occur::MustNot) {
|
||||
// if occur is MustNot *and* operation is OR, we synthesize a ShouldNot
|
||||
// if occur is MustNot *and* operation is OR, we synthetize a ShouldNot
|
||||
clauses.push(vec![(Some(Occur::Should), last_ast.unary(Occur::MustNot))]);
|
||||
} else {
|
||||
clauses.push(vec![(last_occur.or(Some(Occur::Should)), last_ast)]);
|
||||
@@ -1030,7 +1013,7 @@ fn rewrite_ast(mut input: UserInputAst) -> UserInputAst {
|
||||
|
||||
fn rewrite_ast_clause(input: &mut (Option<Occur>, UserInputAst)) {
|
||||
match input {
|
||||
(None, UserInputAst::Clause(clauses)) if clauses.len() == 1 => {
|
||||
(None, UserInputAst::Clause(ref mut clauses)) if clauses.len() == 1 => {
|
||||
*input = clauses.pop().unwrap(); // safe because clauses.len() == 1
|
||||
}
|
||||
_ => {}
|
||||
@@ -1074,7 +1057,7 @@ mod test {
|
||||
valid_parse("1", 1.0, "");
|
||||
valid_parse("0.234234 aaa", 0.234234f64, " aaa");
|
||||
error_parse(".3332");
|
||||
// TODO trinity-1686a: I disagree that it should fail, I think it should succeed,
|
||||
// TODO trinity-1686a: I disagree that it should fail, I think it should succeeed,
|
||||
// consuming only "1", and leave "." for the next thing (which will likely fail then)
|
||||
// error_parse("1.");
|
||||
error_parse("-1.");
|
||||
@@ -1283,10 +1266,6 @@ mod test {
|
||||
super::field_name("~my~field:a"),
|
||||
Ok(("a", "~my~field".to_string()))
|
||||
);
|
||||
assert_eq!(
|
||||
super::field_name(".my.field.name : a"),
|
||||
Ok(("a", ".my.field.name".to_string()))
|
||||
);
|
||||
for special_char in SPECIAL_CHARS.iter() {
|
||||
let query = &format!("\\{special_char}my\\{special_char}field:a");
|
||||
assert_eq!(
|
||||
@@ -1380,7 +1359,7 @@ mod test {
|
||||
|
||||
#[test]
|
||||
fn test_range_parser_lenient() {
|
||||
let literal = |query| literal_infallible(query).unwrap().1.0.unwrap();
|
||||
let literal = |query| literal_infallible(query).unwrap().1 .0.unwrap();
|
||||
|
||||
// same tests as non-lenient
|
||||
let res = literal("title: <hello");
|
||||
@@ -1488,7 +1467,7 @@ mod test {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_query_to_trimming_spaces() {
|
||||
fn test_parse_query_to_triming_spaces() {
|
||||
test_parse_query_to_ast_helper(" abc", "abc");
|
||||
test_parse_query_to_ast_helper("abc ", "abc");
|
||||
test_parse_query_to_ast_helper("( a OR abc)", "(?a ?abc)");
|
||||
@@ -1518,11 +1497,6 @@ mod test {
|
||||
test_is_parse_err(r#"field:(+a -"b c""#, r#"(+"field":a -"field":"b c")"#);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn field_re_specification() {
|
||||
test_parse_query_to_ast_helper(r#"field:(abc AND b:cde)"#, r#"(+"field":abc +"b":cde)"#);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_query_single_term() {
|
||||
test_parse_query_to_ast_helper("abc", "abc");
|
||||
@@ -1645,19 +1619,13 @@ mod test {
|
||||
|
||||
#[test]
|
||||
fn test_exist_query() {
|
||||
test_parse_query_to_ast_helper("a:*", "$exists(\"a\")");
|
||||
test_parse_query_to_ast_helper("a: *", "$exists(\"a\")");
|
||||
test_parse_query_to_ast_helper("a:*", "\"a\":*");
|
||||
test_parse_query_to_ast_helper("a: *", "\"a\":*");
|
||||
// an exist followed by default term being b
|
||||
test_is_parse_err("a:*b", "(*\"a\":* *b)");
|
||||
|
||||
test_parse_query_to_ast_helper(
|
||||
"(hello AND toto:*) OR happy",
|
||||
"(?(+hello +$exists(\"toto\")) ?happy)",
|
||||
);
|
||||
test_parse_query_to_ast_helper("(a:*)", "$exists(\"a\")");
|
||||
|
||||
// these are term/wildcard query (not a phrase prefix)
|
||||
// this is a term query (not a phrase prefix)
|
||||
test_parse_query_to_ast_helper("a:b*", "\"a\":b*");
|
||||
test_parse_query_to_ast_helper("a:*b", "\"a\":*b");
|
||||
test_parse_query_to_ast_helper(r#"a:*def*"#, "\"a\":*def*");
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -1693,15 +1661,4 @@ mod test {
|
||||
fn test_invalid_field() {
|
||||
test_is_parse_err(r#"!bc:def"#, "!bc:def");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_space_before_value() {
|
||||
test_parse_query_to_ast_helper("field : a", r#""field":a"#);
|
||||
test_parse_query_to_ast_helper("field: a", r#""field":a"#);
|
||||
test_parse_query_to_ast_helper("field :a", r#""field":a"#);
|
||||
test_parse_query_to_ast_helper(
|
||||
"field : 'happy tax payer' AND other_field : 1",
|
||||
r#"(+"field":'happy tax payer' +"other_field":1)"#,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,13 +1,9 @@
|
||||
use std::fmt;
|
||||
use std::fmt::{Debug, Formatter};
|
||||
|
||||
use serde::Serialize;
|
||||
|
||||
use crate::Occur;
|
||||
|
||||
#[derive(PartialEq, Clone, Serialize)]
|
||||
#[serde(tag = "type")]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
#[derive(PartialEq, Clone)]
|
||||
pub enum UserInputLeaf {
|
||||
Literal(UserInputLiteral),
|
||||
All,
|
||||
@@ -51,7 +47,7 @@ impl UserInputLeaf {
|
||||
|
||||
pub(crate) fn set_default_field(&mut self, default_field: String) {
|
||||
match self {
|
||||
UserInputLeaf::Literal(literal) if literal.field_name.is_none() => {
|
||||
UserInputLeaf::Literal(ref mut literal) if literal.field_name.is_none() => {
|
||||
literal.field_name = Some(default_field)
|
||||
}
|
||||
UserInputLeaf::All => {
|
||||
@@ -59,8 +55,12 @@ impl UserInputLeaf {
|
||||
field: default_field,
|
||||
}
|
||||
}
|
||||
UserInputLeaf::Range { field, .. } if field.is_none() => *field = Some(default_field),
|
||||
UserInputLeaf::Set { field, .. } if field.is_none() => *field = Some(default_field),
|
||||
UserInputLeaf::Range { ref mut field, .. } if field.is_none() => {
|
||||
*field = Some(default_field)
|
||||
}
|
||||
UserInputLeaf::Set { ref mut field, .. } if field.is_none() => {
|
||||
*field = Some(default_field)
|
||||
}
|
||||
_ => (), // field was already set, do nothing
|
||||
}
|
||||
}
|
||||
@@ -71,11 +71,11 @@ impl Debug for UserInputLeaf {
|
||||
match self {
|
||||
UserInputLeaf::Literal(literal) => literal.fmt(formatter),
|
||||
UserInputLeaf::Range {
|
||||
field,
|
||||
lower,
|
||||
upper,
|
||||
ref field,
|
||||
ref lower,
|
||||
ref upper,
|
||||
} => {
|
||||
if let Some(field) = field {
|
||||
if let Some(ref field) = field {
|
||||
// TODO properly escape field (in case of \")
|
||||
write!(formatter, "\"{field}\":")?;
|
||||
}
|
||||
@@ -85,7 +85,7 @@ impl Debug for UserInputLeaf {
|
||||
Ok(())
|
||||
}
|
||||
UserInputLeaf::Set { field, elements } => {
|
||||
if let Some(field) = field {
|
||||
if let Some(ref field) = field {
|
||||
// TODO properly escape field (in case of \")
|
||||
write!(formatter, "\"{field}\": ")?;
|
||||
}
|
||||
@@ -101,22 +101,20 @@ impl Debug for UserInputLeaf {
|
||||
}
|
||||
UserInputLeaf::All => write!(formatter, "*"),
|
||||
UserInputLeaf::Exists { field } => {
|
||||
write!(formatter, "$exists(\"{field}\")")
|
||||
write!(formatter, "\"{field}\":*")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Debug, Serialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
|
||||
pub enum Delimiter {
|
||||
SingleQuotes,
|
||||
DoubleQuotes,
|
||||
None,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Clone, Serialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
#[derive(PartialEq, Clone)]
|
||||
pub struct UserInputLiteral {
|
||||
pub field_name: Option<String>,
|
||||
pub phrase: String,
|
||||
@@ -154,9 +152,7 @@ impl fmt::Debug for UserInputLiteral {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Debug, Clone, Serialize)]
|
||||
#[serde(tag = "type", content = "value")]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
#[derive(PartialEq, Debug, Clone)]
|
||||
pub enum UserInputBound {
|
||||
Inclusive(String),
|
||||
Exclusive(String),
|
||||
@@ -191,38 +187,11 @@ impl UserInputBound {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Clone, Serialize)]
|
||||
#[serde(into = "UserInputAstSerde")]
|
||||
#[derive(PartialEq, Clone)]
|
||||
pub enum UserInputAst {
|
||||
Clause(Vec<(Option<Occur>, UserInputAst)>),
|
||||
Leaf(Box<UserInputLeaf>),
|
||||
Boost(Box<UserInputAst>, f64),
|
||||
Leaf(Box<UserInputLeaf>),
|
||||
}
|
||||
|
||||
#[derive(Serialize)]
|
||||
#[serde(tag = "type", rename_all = "snake_case")]
|
||||
enum UserInputAstSerde {
|
||||
Bool {
|
||||
clauses: Vec<(Option<Occur>, UserInputAst)>,
|
||||
},
|
||||
Boost {
|
||||
underlying: Box<UserInputAst>,
|
||||
boost: f64,
|
||||
},
|
||||
#[serde(untagged)]
|
||||
Leaf(Box<UserInputLeaf>),
|
||||
}
|
||||
|
||||
impl From<UserInputAst> for UserInputAstSerde {
|
||||
fn from(ast: UserInputAst) -> Self {
|
||||
match ast {
|
||||
UserInputAst::Clause(clause) => UserInputAstSerde::Bool { clauses: clause },
|
||||
UserInputAst::Boost(underlying, boost) => {
|
||||
UserInputAstSerde::Boost { underlying, boost }
|
||||
}
|
||||
UserInputAst::Leaf(leaf) => UserInputAstSerde::Leaf(leaf),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl UserInputAst {
|
||||
@@ -263,7 +232,7 @@ impl UserInputAst {
|
||||
.iter_mut()
|
||||
.for_each(|(_, ast)| ast.set_default_field(field.clone())),
|
||||
UserInputAst::Leaf(leaf) => leaf.set_default_field(field),
|
||||
UserInputAst::Boost(ast, _) => ast.set_default_field(field),
|
||||
UserInputAst::Boost(ref mut ast, _) => ast.set_default_field(field),
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -298,7 +267,7 @@ impl fmt::Debug for UserInputAst {
|
||||
match *self {
|
||||
UserInputAst::Clause(ref subqueries) => {
|
||||
if subqueries.is_empty() {
|
||||
// TODO this will break ast reserialization, is writing "( )" enough?
|
||||
// TODO this will break ast reserialization, is writing "( )" enought?
|
||||
write!(formatter, "<emptyclause>")?;
|
||||
} else {
|
||||
write!(formatter, "(")?;
|
||||
@@ -316,126 +285,3 @@ impl fmt::Debug for UserInputAst {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_all_leaf_serialization() {
|
||||
let ast = UserInputAst::Leaf(Box::new(UserInputLeaf::All));
|
||||
let json = serde_json::to_string(&ast).unwrap();
|
||||
assert_eq!(json, r#"{"type":"all"}"#);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_literal_leaf_serialization() {
|
||||
let literal = UserInputLiteral {
|
||||
field_name: Some("title".to_string()),
|
||||
phrase: "hello".to_string(),
|
||||
delimiter: Delimiter::None,
|
||||
slop: 0,
|
||||
prefix: false,
|
||||
};
|
||||
let ast = UserInputAst::Leaf(Box::new(UserInputLeaf::Literal(literal)));
|
||||
let json = serde_json::to_string(&ast).unwrap();
|
||||
assert_eq!(
|
||||
json,
|
||||
r#"{"type":"literal","field_name":"title","phrase":"hello","delimiter":"none","slop":0,"prefix":false}"#
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_leaf_serialization() {
|
||||
let range = UserInputLeaf::Range {
|
||||
field: Some("price".to_string()),
|
||||
lower: UserInputBound::Inclusive("10".to_string()),
|
||||
upper: UserInputBound::Exclusive("100".to_string()),
|
||||
};
|
||||
let ast = UserInputAst::Leaf(Box::new(range));
|
||||
let json = serde_json::to_string(&ast).unwrap();
|
||||
assert_eq!(
|
||||
json,
|
||||
r#"{"type":"range","field":"price","lower":{"type":"inclusive","value":"10"},"upper":{"type":"exclusive","value":"100"}}"#
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_leaf_unbounded_serialization() {
|
||||
let range = UserInputLeaf::Range {
|
||||
field: Some("price".to_string()),
|
||||
lower: UserInputBound::Inclusive("10".to_string()),
|
||||
upper: UserInputBound::Unbounded,
|
||||
};
|
||||
let ast = UserInputAst::Leaf(Box::new(range));
|
||||
let json = serde_json::to_string(&ast).unwrap();
|
||||
assert_eq!(
|
||||
json,
|
||||
r#"{"type":"range","field":"price","lower":{"type":"inclusive","value":"10"},"upper":{"type":"unbounded"}}"#
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_boost_serialization() {
|
||||
let inner_ast = UserInputAst::Leaf(Box::new(UserInputLeaf::All));
|
||||
let boost_ast = UserInputAst::Boost(Box::new(inner_ast), 2.5);
|
||||
let json = serde_json::to_string(&boost_ast).unwrap();
|
||||
assert_eq!(
|
||||
json,
|
||||
r#"{"type":"boost","underlying":{"type":"all"},"boost":2.5}"#
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_boost_serialization2() {
|
||||
let boost_ast = UserInputAst::Boost(
|
||||
Box::new(UserInputAst::Clause(vec![
|
||||
(
|
||||
Some(Occur::Must),
|
||||
UserInputAst::Leaf(Box::new(UserInputLeaf::All)),
|
||||
),
|
||||
(
|
||||
Some(Occur::Should),
|
||||
UserInputAst::Leaf(Box::new(UserInputLeaf::Literal(UserInputLiteral {
|
||||
field_name: Some("title".to_string()),
|
||||
phrase: "hello".to_string(),
|
||||
delimiter: Delimiter::None,
|
||||
slop: 0,
|
||||
prefix: false,
|
||||
}))),
|
||||
),
|
||||
])),
|
||||
2.5,
|
||||
);
|
||||
let json = serde_json::to_string(&boost_ast).unwrap();
|
||||
assert_eq!(
|
||||
json,
|
||||
r#"{"type":"boost","underlying":{"type":"bool","clauses":[["must",{"type":"all"}],["should",{"type":"literal","field_name":"title","phrase":"hello","delimiter":"none","slop":0,"prefix":false}]]},"boost":2.5}"#
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_clause_serialization() {
|
||||
let clause = UserInputAst::Clause(vec![
|
||||
(
|
||||
Some(Occur::Must),
|
||||
UserInputAst::Leaf(Box::new(UserInputLeaf::All)),
|
||||
),
|
||||
(
|
||||
Some(Occur::Should),
|
||||
UserInputAst::Leaf(Box::new(UserInputLeaf::Literal(UserInputLiteral {
|
||||
field_name: Some("title".to_string()),
|
||||
phrase: "hello".to_string(),
|
||||
delimiter: Delimiter::None,
|
||||
slop: 0,
|
||||
prefix: false,
|
||||
}))),
|
||||
),
|
||||
]);
|
||||
let json = serde_json::to_string(&clause).unwrap();
|
||||
assert_eq!(
|
||||
json,
|
||||
r#"{"type":"bool","clauses":[["must",{"type":"all"}],["should",{"type":"literal","field_name":"title","phrase":"hello","delimiter":"none","slop":0,"prefix":false}]]}"#
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -21,10 +21,7 @@ impl<K, V, S> MemoryConsumption for HashMap<K, V, S> {
|
||||
|
||||
/// Aggregation memory limit after which the request fails. Defaults to DEFAULT_MEMORY_LIMIT
|
||||
/// (500MB). The limit is shared by all SegmentCollectors
|
||||
///
|
||||
/// The memory limit is also a guard, which tracks how much it allocated and releases it's memory
|
||||
/// on the shared counter. Cloning will create a new guard.
|
||||
pub struct AggregationLimitsGuard {
|
||||
pub struct AggregationLimits {
|
||||
/// The counter which is shared between the aggregations for one request.
|
||||
memory_consumption: Arc<AtomicU64>,
|
||||
/// The memory_limit in bytes
|
||||
@@ -32,41 +29,28 @@ pub struct AggregationLimitsGuard {
|
||||
/// The maximum number of buckets _returned_
|
||||
/// This is not counting intermediate buckets.
|
||||
bucket_limit: u32,
|
||||
/// Allocated memory with this guard.
|
||||
allocated_with_the_guard: u64,
|
||||
}
|
||||
impl Clone for AggregationLimitsGuard {
|
||||
impl Clone for AggregationLimits {
|
||||
fn clone(&self) -> Self {
|
||||
Self {
|
||||
memory_consumption: Arc::clone(&self.memory_consumption),
|
||||
memory_limit: self.memory_limit,
|
||||
bucket_limit: self.bucket_limit,
|
||||
allocated_with_the_guard: 0,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for AggregationLimitsGuard {
|
||||
/// Removes the memory consumed tracked by this _instance_ of AggregationLimits.
|
||||
/// This is used to clear the segment specific memory consumption all at once.
|
||||
fn drop(&mut self) {
|
||||
self.memory_consumption
|
||||
.fetch_sub(self.allocated_with_the_guard, Ordering::Relaxed);
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for AggregationLimitsGuard {
|
||||
impl Default for AggregationLimits {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
memory_consumption: Default::default(),
|
||||
memory_limit: DEFAULT_MEMORY_LIMIT.into(),
|
||||
bucket_limit: DEFAULT_BUCKET_LIMIT,
|
||||
allocated_with_the_guard: 0,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl AggregationLimitsGuard {
|
||||
impl AggregationLimits {
|
||||
/// *memory_limit*
|
||||
/// memory_limit is defined in bytes.
|
||||
/// Aggregation fails when the estimated memory consumption of the aggregation is higher than
|
||||
@@ -83,15 +67,24 @@ impl AggregationLimitsGuard {
|
||||
memory_consumption: Default::default(),
|
||||
memory_limit: memory_limit.unwrap_or(DEFAULT_MEMORY_LIMIT).into(),
|
||||
bucket_limit: bucket_limit.unwrap_or(DEFAULT_BUCKET_LIMIT),
|
||||
}
|
||||
}
|
||||
|
||||
/// Create a new ResourceLimitGuard, that will release the memory when dropped.
|
||||
pub fn new_guard(&self) -> ResourceLimitGuard {
|
||||
ResourceLimitGuard {
|
||||
// The counter which is shared between the aggregations for one request.
|
||||
memory_consumption: Arc::clone(&self.memory_consumption),
|
||||
// The memory_limit in bytes
|
||||
memory_limit: self.memory_limit,
|
||||
allocated_with_the_guard: 0,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn add_memory_consumed(&mut self, add_num_bytes: u64) -> crate::Result<()> {
|
||||
pub(crate) fn add_memory_consumed(&self, add_num_bytes: u64) -> crate::Result<()> {
|
||||
let prev_value = self
|
||||
.memory_consumption
|
||||
.fetch_add(add_num_bytes, Ordering::Relaxed);
|
||||
self.allocated_with_the_guard += add_num_bytes;
|
||||
validate_memory_consumption(prev_value + add_num_bytes, self.memory_limit)?;
|
||||
Ok(())
|
||||
}
|
||||
@@ -116,6 +109,34 @@ fn validate_memory_consumption(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub struct ResourceLimitGuard {
|
||||
/// The counter which is shared between the aggregations for one request.
|
||||
memory_consumption: Arc<AtomicU64>,
|
||||
/// The memory_limit in bytes
|
||||
memory_limit: ByteCount,
|
||||
/// Allocated memory with this guard.
|
||||
allocated_with_the_guard: u64,
|
||||
}
|
||||
|
||||
impl ResourceLimitGuard {
|
||||
pub(crate) fn add_memory_consumed(&self, add_num_bytes: u64) -> crate::Result<()> {
|
||||
let prev_value = self
|
||||
.memory_consumption
|
||||
.fetch_add(add_num_bytes, Ordering::Relaxed);
|
||||
validate_memory_consumption(prev_value + add_num_bytes, self.memory_limit)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for ResourceLimitGuard {
|
||||
/// Removes the memory consumed tracked by this _instance_ of AggregationLimits.
|
||||
/// This is used to clear the segment specific memory consumption all at once.
|
||||
fn drop(&mut self) {
|
||||
self.memory_consumption
|
||||
.fetch_sub(self.allocated_with_the_guard, Ordering::Relaxed);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::aggregation::tests::exec_request_with_query;
|
||||
|
||||
@@ -5,6 +5,7 @@ use std::io;
|
||||
|
||||
use columnar::{Column, ColumnBlockAccessor, ColumnType, DynamicColumn, StrColumn};
|
||||
|
||||
use super::agg_limits::ResourceLimitGuard;
|
||||
use super::agg_req::{Aggregation, AggregationVariants, Aggregations};
|
||||
use super::bucket::{
|
||||
DateHistogramAggregationReq, HistogramAggregation, RangeAggregation, TermsAggregation,
|
||||
@@ -13,7 +14,7 @@ use super::metric::{
|
||||
AverageAggregation, CardinalityAggregationReq, CountAggregation, ExtendedStatsAggregation,
|
||||
MaxAggregation, MinAggregation, StatsAggregation, SumAggregation,
|
||||
};
|
||||
use super::segment_agg_result::AggregationLimitsGuard;
|
||||
use super::segment_agg_result::AggregationLimits;
|
||||
use super::VecWithNames;
|
||||
use crate::aggregation::{f64_to_fastfield_u64, Key};
|
||||
use crate::index::SegmentReader;
|
||||
@@ -45,7 +46,7 @@ pub struct AggregationWithAccessor {
|
||||
pub(crate) str_dict_column: Option<StrColumn>,
|
||||
pub(crate) field_type: ColumnType,
|
||||
pub(crate) sub_aggregation: AggregationsWithAccessor,
|
||||
pub(crate) limits: AggregationLimitsGuard,
|
||||
pub(crate) limits: ResourceLimitGuard,
|
||||
pub(crate) column_block_accessor: ColumnBlockAccessor<u64>,
|
||||
/// Used for missing term aggregation, which checks all columns for existence.
|
||||
/// And also for `top_hits` aggregation, which may sort on multiple fields.
|
||||
@@ -68,7 +69,7 @@ impl AggregationWithAccessor {
|
||||
sub_aggregation: &Aggregations,
|
||||
reader: &SegmentReader,
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
limits: AggregationLimitsGuard,
|
||||
limits: AggregationLimits,
|
||||
) -> crate::Result<Vec<AggregationWithAccessor>> {
|
||||
let mut agg = agg.clone();
|
||||
|
||||
@@ -90,7 +91,7 @@ impl AggregationWithAccessor {
|
||||
&limits,
|
||||
)?,
|
||||
agg: agg.clone(),
|
||||
limits: limits.clone(),
|
||||
limits: limits.new_guard(),
|
||||
missing_value_for_accessor: None,
|
||||
str_dict_column: None,
|
||||
column_block_accessor: Default::default(),
|
||||
@@ -105,7 +106,6 @@ impl AggregationWithAccessor {
|
||||
value_accessors: HashMap<String, Vec<DynamicColumn>>|
|
||||
-> crate::Result<()> {
|
||||
let (accessor, field_type) = accessors.first().expect("at least one accessor");
|
||||
let limits = limits.clone();
|
||||
let res = AggregationWithAccessor {
|
||||
segment_ordinal,
|
||||
// TODO: We should do away with the `accessor` field altogether
|
||||
@@ -120,7 +120,7 @@ impl AggregationWithAccessor {
|
||||
&limits,
|
||||
)?,
|
||||
agg: agg.clone(),
|
||||
limits,
|
||||
limits: limits.new_guard(),
|
||||
missing_value_for_accessor: None,
|
||||
str_dict_column: None,
|
||||
column_block_accessor: Default::default(),
|
||||
@@ -186,8 +186,6 @@ impl AggregationWithAccessor {
|
||||
.map(|missing| match missing {
|
||||
Key::Str(_) => ColumnType::Str,
|
||||
Key::F64(_) => ColumnType::F64,
|
||||
Key::I64(_) => ColumnType::I64,
|
||||
Key::U64(_) => ColumnType::U64,
|
||||
})
|
||||
.unwrap_or(ColumnType::U64);
|
||||
let column_and_types = get_all_ff_reader_or_empty(
|
||||
@@ -234,18 +232,14 @@ impl AggregationWithAccessor {
|
||||
missing.clone()
|
||||
};
|
||||
|
||||
let missing_value_for_accessor =
|
||||
if let Some(missing) = missing_value_term_agg.as_ref() {
|
||||
get_missing_val_as_u64_lenient(
|
||||
column_type,
|
||||
missing,
|
||||
agg.agg.get_fast_field_names()[0],
|
||||
)?
|
||||
} else {
|
||||
None
|
||||
};
|
||||
let missing_value_for_accessor = if let Some(missing) =
|
||||
missing_value_term_agg.as_ref()
|
||||
{
|
||||
get_missing_val(column_type, missing, agg.agg.get_fast_field_names()[0])?
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let limits = limits.clone();
|
||||
let agg = AggregationWithAccessor {
|
||||
segment_ordinal,
|
||||
missing_value_for_accessor,
|
||||
@@ -261,7 +255,7 @@ impl AggregationWithAccessor {
|
||||
)?,
|
||||
agg: agg.clone(),
|
||||
str_dict_column: str_dict_column.clone(),
|
||||
limits,
|
||||
limits: limits.new_guard(),
|
||||
column_block_accessor: Default::default(),
|
||||
};
|
||||
res.push(agg);
|
||||
@@ -271,6 +265,10 @@ impl AggregationWithAccessor {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| Count(CountAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| Max(MaxAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
@@ -295,24 +293,6 @@ impl AggregationWithAccessor {
|
||||
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
Count(CountAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
}) => {
|
||||
let allowed_column_types = [
|
||||
ColumnType::I64,
|
||||
ColumnType::U64,
|
||||
ColumnType::F64,
|
||||
ColumnType::Str,
|
||||
ColumnType::DateTime,
|
||||
ColumnType::Bool,
|
||||
ColumnType::IpAddr,
|
||||
// ColumnType::Bytes Unsupported
|
||||
];
|
||||
let (accessor, column_type) =
|
||||
get_ff_reader(reader, field_name, Some(&allowed_column_types))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
Percentiles(ref percentiles) => {
|
||||
let (accessor, column_type) = get_ff_reader(
|
||||
reader,
|
||||
@@ -350,14 +330,7 @@ impl AggregationWithAccessor {
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the missing value as internal u64 representation
|
||||
///
|
||||
/// For terms we use u64::MAX as sentinel value
|
||||
/// For numerical data we convert the value into the representation
|
||||
/// we would get from the fast field, when we open it as u64_lenient_for_type.
|
||||
///
|
||||
/// That way we can use it the same way as if it would come from the fastfield.
|
||||
fn get_missing_val_as_u64_lenient(
|
||||
fn get_missing_val(
|
||||
column_type: ColumnType,
|
||||
missing: &Key,
|
||||
field_name: &str,
|
||||
@@ -366,18 +339,9 @@ fn get_missing_val_as_u64_lenient(
|
||||
Key::Str(_) if column_type == ColumnType::Str => Some(u64::MAX),
|
||||
// Allow fallback to number on text fields
|
||||
Key::F64(_) if column_type == ColumnType::Str => Some(u64::MAX),
|
||||
Key::U64(_) if column_type == ColumnType::Str => Some(u64::MAX),
|
||||
Key::I64(_) if column_type == ColumnType::Str => Some(u64::MAX),
|
||||
Key::F64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val, &column_type)
|
||||
}
|
||||
// NOTE: We may loose precision of the passed missing value by casting i64 and u64 to f64.
|
||||
Key::I64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val as f64, &column_type)
|
||||
}
|
||||
Key::U64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val as f64, &column_type)
|
||||
}
|
||||
_ => {
|
||||
return Err(crate::TantivyError::InvalidArgument(format!(
|
||||
"Missing value {missing:?} for field {field_name} is not supported for column \
|
||||
@@ -401,7 +365,7 @@ pub(crate) fn get_aggs_with_segment_accessor_and_validate(
|
||||
aggs: &Aggregations,
|
||||
reader: &SegmentReader,
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
limits: &AggregationLimitsGuard,
|
||||
limits: &AggregationLimits,
|
||||
) -> crate::Result<AggregationsWithAccessor> {
|
||||
let mut aggss = Vec::new();
|
||||
for (key, agg) in aggs.iter() {
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
//! Contains the final aggregation tree.
|
||||
//!
|
||||
//! This tree can be converted via the `into()` method from `IntermediateAggregationResults`.
|
||||
//! This conversion computes the final result. For example: The intermediate result contains
|
||||
//! intermediate average results, which is the sum and the number of values. The actual average is
|
||||
@@ -188,7 +187,7 @@ pub enum BucketEntries<T> {
|
||||
}
|
||||
|
||||
impl<T> BucketEntries<T> {
|
||||
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = &'a T> + 'a> {
|
||||
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = &T> + 'a> {
|
||||
match self {
|
||||
BucketEntries::Vec(vec) => Box::new(vec.iter()),
|
||||
BucketEntries::HashMap(map) => Box::new(map.values()),
|
||||
|
||||
@@ -5,7 +5,7 @@ use crate::aggregation::agg_result::AggregationResults;
|
||||
use crate::aggregation::buf_collector::DOC_BLOCK_SIZE;
|
||||
use crate::aggregation::collector::AggregationCollector;
|
||||
use crate::aggregation::intermediate_agg_result::IntermediateAggregationResults;
|
||||
use crate::aggregation::segment_agg_result::AggregationLimitsGuard;
|
||||
use crate::aggregation::segment_agg_result::AggregationLimits;
|
||||
use crate::aggregation::tests::{get_test_index_2_segments, get_test_index_from_values_and_terms};
|
||||
use crate::aggregation::DistributedAggregationCollector;
|
||||
use crate::query::{AllQuery, TermQuery};
|
||||
@@ -130,7 +130,7 @@ fn test_aggregation_flushing(
|
||||
let agg_res: AggregationResults = if use_distributed_collector {
|
||||
let collector = DistributedAggregationCollector::from_aggs(
|
||||
agg_req.clone(),
|
||||
AggregationLimitsGuard::default(),
|
||||
AggregationLimits::default(),
|
||||
);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
@@ -146,7 +146,7 @@ fn test_aggregation_flushing(
|
||||
.expect("Post deserialization failed");
|
||||
|
||||
intermediate_agg_result
|
||||
.into_final_result(agg_req, Default::default())
|
||||
.into_final_result(agg_req, &Default::default())
|
||||
.unwrap()
|
||||
} else {
|
||||
let collector = get_collector(agg_req);
|
||||
@@ -460,7 +460,7 @@ fn test_aggregation_level2(
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let res = searcher.search(&term_query, &collector).unwrap();
|
||||
res.into_final_result(agg_req.clone(), Default::default())
|
||||
res.into_final_result(agg_req.clone(), &Default::default())
|
||||
.unwrap()
|
||||
} else {
|
||||
let collector = get_collector(agg_req.clone());
|
||||
@@ -870,7 +870,7 @@ fn test_aggregation_on_json_object_mixed_types() {
|
||||
.add_document(doc!(json => json!({"mixed_type": "blue", "mixed_price": 5.0})))
|
||||
.unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
// => Segment with all boolean
|
||||
// => Segment with all boolen
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": true, "mixed_price": "no_price"})))
|
||||
.unwrap();
|
||||
@@ -939,11 +939,11 @@ fn test_aggregation_on_json_object_mixed_types() {
|
||||
},
|
||||
"termagg": {
|
||||
"buckets": [
|
||||
{ "doc_count": 1, "key": 10, "min_price": { "value": 10.0 } },
|
||||
{ "doc_count": 1, "key": 10.0, "key_as_string": "10", "min_price": { "value": 10.0 } },
|
||||
{ "doc_count": 3, "key": "blue", "min_price": { "value": 5.0 } },
|
||||
{ "doc_count": 2, "key": "red", "min_price": { "value": 1.0 } },
|
||||
{ "doc_count": 1, "key": -20.5, "min_price": { "value": -20.5 } },
|
||||
{ "doc_count": 2, "key": 1, "key_as_string": "true", "min_price": { "value": null } },
|
||||
{ "doc_count": 1, "key": -20.5, "key_as_string": "-20.5", "min_price": { "value": -20.5 } },
|
||||
{ "doc_count": 2, "key": 1.0, "key_as_string": "true", "min_price": { "value": null } },
|
||||
],
|
||||
"sum_other_doc_count": 0
|
||||
}
|
||||
@@ -951,60 +951,3 @@ fn test_aggregation_on_json_object_mixed_types() {
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_aggregation_on_json_object_mixed_numerical_segments() {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let json = schema_builder.add_json_field("json", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
// => Segment with all values f64 numeric
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_price": 10.5})))
|
||||
.unwrap();
|
||||
// Gets converted to f64!
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_price": 10})))
|
||||
.unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
// => Segment with all values i64 numeric
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_price": 10})))
|
||||
.unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
|
||||
index_writer.commit().unwrap();
|
||||
|
||||
// All bucket types
|
||||
let agg_req_str = r#"
|
||||
{
|
||||
"termagg": {
|
||||
"terms": {
|
||||
"field": "json.mixed_price"
|
||||
}
|
||||
}
|
||||
} "#;
|
||||
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
|
||||
let aggregation_collector = get_collector(agg);
|
||||
let reader = index.reader().unwrap();
|
||||
let searcher = reader.searcher();
|
||||
|
||||
let aggregation_results = searcher.search(&AllQuery, &aggregation_collector).unwrap();
|
||||
let aggregation_res_json = serde_json::to_value(aggregation_results).unwrap();
|
||||
use pretty_assertions::assert_eq;
|
||||
assert_eq!(
|
||||
&aggregation_res_json,
|
||||
&serde_json::json!({
|
||||
"termagg": {
|
||||
"buckets": [
|
||||
{ "doc_count": 2, "key": 10},
|
||||
{ "doc_count": 1, "key": 10.5},
|
||||
],
|
||||
"doc_count_error_upper_bound": 0,
|
||||
"sum_other_doc_count": 0
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user