Compare commits

..

2 Commits

Author SHA1 Message Date
Paul Masurel
1658be3792 Various changes. Need to cherrypick some of them and put them into master 2017-12-25 10:35:10 +09:00
Paul Masurel
23fad88b35 NOBUG common crawl, streamdict works with 64 bits (hopefully) 2017-12-21 22:44:50 +09:00
238 changed files with 103896 additions and 14701 deletions

3
.gitignore vendored
View File

@@ -1,4 +1,3 @@
*.swp
target
target/debug
.vscode
@@ -9,4 +8,4 @@ benchmark
cpp/simdcomp/bitpackingbenchmark
*.bk
.idea
trace.dat
trace.dat

View File

@@ -1,127 +1,35 @@
# Based on the "trust" template v0.1.2
# https://github.com/japaric/trust/tree/v0.1.2
dist: trusty
language: rust
services: docker
sudo: required
rust:
- nightly
env:
global:
- CRATE_NAME=tantivy
matrix:
include:
# Android
- env: TARGET=aarch64-linux-android DISABLE_TESTS=1
- env: TARGET=arm-linux-androideabi DISABLE_TESTS=1
- env: TARGET=armv7-linux-androideabi DISABLE_TESTS=1
- env: TARGET=i686-linux-android DISABLE_TESTS=1
- env: TARGET=x86_64-linux-android DISABLE_TESTS=1
# iOS
#- env: TARGET=aarch64-apple-ios DISABLE_TESTS=1
# os: osx
#- env: TARGET=armv7-apple-ios DISABLE_TESTS=1
# os: osx
#- env: TARGET=armv7s-apple-ios DISABLE_TESTS=1
# os: osx
#- env: TARGET=i386-apple-ios DISABLE_TESTS=1
# os: osx
- env: TARGET=x86_64-apple-ios DISABLE_TESTS=1
os: osx
# Linux
- env: TARGET=aarch64-unknown-linux-gnu
# - env: TARGET=arm-unknown-linux-gnueabi
# - env: TARGET=armv7-unknown-linux-gnueabihf
- env: TARGET=i686-unknown-linux-gnu
#- env: TARGET=i686-unknown-linux-musl
#- env: TARGET=mips-unknown-linux-gnu
#- env: TARGET=mips64-unknown-linux-gnuabi64
#- env: TARGET=mips64el-unknown-linux-gnuabi64
#- env: TARGET=mipsel-unknown-linux-gnu
#- env: TARGET=powerpc-unknown-linux-gnu
#- env: TARGET=powerpc64-unknown-linux-gnu
#- env: TARGET=powerpc64le-unknown-linux-gnu
#- env: TARGET=s390x-unknown-linux-gnu DISABLE_TESTS=1
- env: TARGET=x86_64-unknown-linux-gnu
- env: TARGET=x86_64-unknown-linux-musl
# OSX
#- env: TARGET=i686-apple-darwin
# os: osx
- env: TARGET=x86_64-apple-darwin
os: osx
# *BSD
#- env: TARGET=i686-unknown-freebsd DISABLE_TESTS=1
#- env: TARGET=x86_64-unknown-freebsd DISABLE_TESTS=1
#- env: TARGET=x86_64-unknown-netbsd DISABLE_TESTS=1
# Windows
#- env: TARGET=x86_64-pc-windows-gnu
# Bare metal
# These targets don't support std and as such are likely not suitable for
# most crates.
# - env: TARGET=thumbv6m-none-eabi
# - env: TARGET=thumbv7em-none-eabi
# - env: TARGET=thumbv7em-none-eabihf
# - env: TARGET=thumbv7m-none-eabi
# Testing other channels
#- env: TARGET=x86_64-unknown-linux-gnu
# rust: nightly
#- env: TARGET=x86_64-apple-darwin
# os: osx
# rust: nightly
before_install:
- set -e
- rustup self update
install:
- sh ci/install.sh
- source ~/.cargo/env || true
- CC=gcc-4.8
- CXX=g++-4.8
- TRAVIS_CARGO_NIGHTLY_FEATURE=""
- secure: eC8HjTi1wgRVCsMAeXEXt8Ckr0YBSGOEnQkkW4/Nde/OZ9jJjz2nmP1ELQlDE7+czHub2QvYtDMG0parcHZDx/Kus0yvyn08y3g2rhGIiE7y8OCvQm1Mybu2D/p7enm6shXquQ6Z5KRfRq+18mHy80wy9ABMA/ukEZdvnfQ76/Een8/Lb0eHaDoXDXn3PqLVtByvSfQQ7OhS60dEScu8PWZ6/l1057P5NpdWbMExBE7Ro4zYXNhkJeGZx0nP/Bd4Jjdt1XfPzMEybV6NZ5xsTILUBFTmOOt603IsqKGov089NExqxYu5bD3K+S4MzF1Nd6VhomNPJqLDCfhlymJCUj5n5Ku4yidlhQbM4Ej9nGrBalJnhcjBjPua5tmMF2WCxP9muKn/2tIOu1/+wc0vMf9Yd3wKIkf5+FtUxCgs2O+NslWvmOMAMI/yD25m7hb4t1IwE/4Bk+GVcWJRWXbo0/m6ZUHzRzdjUY2a1qvw7C9udzdhg7gcnXwsKrSWi2NjMiIVw86l+Zim0nLpKIN41sxZHLaFRG63Ki8zQ/481LGn32awJ6i3sizKS0WD+N1DfR2qYMrwYHaMN0uR0OFXYTJkFvTFttAeUY3EKmRKAuMhmO2YRdSr4/j/G5E9HMc1gSGJj6PxgpQU7EpvxRsmoVAEJr0mszmOj9icGHep/FM=
addons:
apt:
sources:
- ubuntu-toolchain-r-test
packages:
- gcc-4.8
- g++-4.8
- libcurl4-openssl-dev
- libelf-dev
- libdw-dev
- binutils-dev
before_script:
- |
pip install 'travis-cargo<0.2' --user &&
export PATH=$HOME/.local/bin:$PATH
script:
- bash ci/script.sh
after_script: set +e
before_deploy:
- sh ci/before_deploy.sh
#
#deploy:
# # - Create a `public_repo` GitHub token. Go to: https://github.com/settings/tokens/new
# # - Encrypt it: `travis encrypt 0123456789012345678901234567890123456789
# # - Paste the output down here
# api_key:
# secure: eC8HjTi1wgRVCsMAeXEXt8Ckr0YBSGOEnQkkW4/Nde/OZ9jJjz2nmP1ELQlDE7+czHub2QvYtDMG0parcHZDx/Kus0yvyn08y3g2rhGIiE7y8OCvQm1Mybu2D/p7enm6shXquQ6Z5KRfRq+18mHy80wy9ABMA/ukEZdvnfQ76/Een8/Lb0eHaDoXDXn3PqLVtByvSfQQ7OhS60dEScu8PWZ6/l1057P5NpdWbMExBE7Ro4zYXNhkJeGZx0nP/Bd4Jjdt1XfPzMEybV6NZ5xsTILUBFTmOOt603IsqKGov089NExqxYu5bD3K+S4MzF1Nd6VhomNPJqLDCfhlymJCUj5n5Ku4yidlhQbM4Ej9nGrBalJnhcjBjPua5tmMF2WCxP9muKn/2tIOu1/+wc0vMf9Yd3wKIkf5+FtUxCgs2O+NslWvmOMAMI/yD25m7hb4t1IwE/4Bk+GVcWJRWXbo0/m6ZUHzRzdjUY2a1qvw7C9udzdhg7gcnXwsKrSWi2NjMiIVw86l+Zim0nLpKIN41sxZHLaFRG63Ki8zQ/481LGn32awJ6i3sizKS0WD+N1DfR2qYMrwYHaMN0uR0OFXYTJkFvTFttAeUY3EKmRKAuMhmO2YRdSr4/j/G5E9HMc1gSGJj6PxgpQU7EpvxRsmoVAEJr0mszmOj9icGHep/FM=
# file_glob: true
# file: $CRATE_NAME-$TRAVIS_TAG-$TARGET.*
# on:
# # TODO Here you can pick which targets will generate binary releases
# # In this example, there are some targets that are tested using the stable
# # and nightly channels. This condition makes sure there is only one release
# # for such targets and that's generated using the stable channel
# condition: $TRAVIS_RUST_VERSION = stable
# tags: true
# provider: releases
# skip_cleanup: true
cache: cargo
before_cache:
# Travis can't cache files that are not readable by "others"
- chmod -R a+r $HOME/.cargo
#branches:
# only:
# # release tags
# - /^v\d+\.\d+\.\d+.*$/
# - master
notifications:
email:
on_success: never
- |
travis-cargo build &&
travis-cargo test &&
travis-cargo bench
- cargo run --example simple_search
after_success:
- bash ./script/build-doc.sh
- travis-cargo doc-upload
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then travis-cargo coveralls --no-sudo --verify; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then ./kcov/build/src/kcov --verify --coveralls-id=$TRAVIS_JOB_ID --include-path=`pwd`/src --exclude-path=`pwd`/cpp --exclude-pattern=/.cargo target/kcov target/debug/tantivy-*; fi

11
AUTHORS
View File

@@ -1,11 +0,0 @@
# This is the list of authors of tantivy for copyright purposes.
Paul Masurel
Laurentiu Nicola
Dru Sellers
Ashley Mannix
Michael J. Curry
Jason Wolfe
# As an employee of Google I am required to add Google LLC
# in the list of authors, but this project is not affiliated to Google
# in any other way.
Google LLC

View File

@@ -1,59 +1,3 @@
Tantivy 0.6.1
=========================
- Bugfix #324. GC removing was removing file that were still in useful
- Added support for parsing AllQuery and RangeQuery via QueryParser
- AllQuery: `*`
- RangeQuery:
- Inclusive `field:[startIncl to endIncl]`
- Exclusive `field:{startExcl to endExcl}`
- Mixed `field:[startIncl to endExcl}` and vice versa
- Unbounded `field:[start to *]`, `field:[* to end]`
Tantivy 0.6
==========================
Special thanks to @drusellers and @jason-wolfe for their contributions
to this release!
- Removed C code. Tantivy is now pure Rust. (@pmasurel)
- BM25 (@pmasurel)
- Approximate field norms encoded over 1 byte. (@pmasurel)
- Compiles on stable rust (@pmasurel)
- Add &[u8] fastfield for associating arbitrary bytes to each document (@jason-wolfe) (#270)
- Completely uncompressed
- Internally: One u64 fast field for indexes, one fast field for the bytes themselves.
- Add NGram token support (@drusellers)
- Add Stopword Filter support (@drusellers)
- Add a FuzzyTermQuery (@drusellers)
- Add a RegexQuery (@drusellers)
- Various performance improvements (@pmasurel)_
Tantivy 0.5.2
===========================
- bugfix #274
- bugfix #280
- bugfix #289
Tantivy 0.5.1
==========================
- bugfix #254 : tantivy failed if no documents in a segment contained a specific field.
Tantivy 0.5
==========================
- Faceting
- RangeQuery
- Configurable tokenization pipeline
- Bugfix in PhraseQuery
- Various query optimisation
- Allowing very large indexes
- 64 bits file address
- Smarter encoding of the `TermInfo` objects
Tantivy 0.4.3
==========================
@@ -113,7 +57,7 @@ Tantivy 0.3
Special thanks to @Kodraus @lnicola @Ameobea @manuel-woelker @celaus
for their contribution to this release.
Thanks also to everyone in tantivy gitter chat
Thanks also to everyone in tantivy gitter chat
for their advise and company :)
https://gitter.im/tantivy-search/tantivy
@@ -121,9 +65,9 @@ https://gitter.im/tantivy-search/tantivy
Warning:
Tantivy 0.3 is NOT backward compatible with tantivy 0.2
Tantivy 0.3 is NOT backward compatible with tantivy 0.2
code and index format.
You should not expect backward compatibility before
You should not expect backward compatibility before
tantivy 1.0.
@@ -149,7 +93,7 @@ Thanks to @KodrAus ! (#108)
the natural ordering.
- Building binary targets for tantivy-cli (Thanks to @KodrAus)
- Misc invisible bug fixes, and code cleanup.
- Use
- Use

View File

@@ -1,10 +1,11 @@
[package]
name = "tantivy"
version = "0.6.1"
version = "0.5.0-dev"
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
build = "build.rs"
license = "MIT"
categories = ["database-implementations", "data-structures"]
description = """Search engine library"""
description = """Tantivy is a search engine library."""
documentation = "https://tantivy-search.github.io/tantivy/tantivy/index.html"
homepage = "https://github.com/tantivy-search/tantivy"
repository = "https://github.com/tantivy-search/tantivy"
@@ -12,16 +13,13 @@ readme = "README.md"
keywords = ["search", "information", "retrieval"]
[dependencies]
base64 = "0.9.1"
byteorder = "1.0"
memmap = "0.4"
lazy_static = "0.2.1"
tinysegmenter = "0.1.0"
regex = "0.2"
fst = {version="0.3", default-features=false}
fst-regex = { version="0.2" }
lz4 = {version="1.20", optional=true}
snap = {version="0.2"}
atomicwrites = {version="0.2.2", optional=true}
fst = "0.1.37"
atomicwrites = "0.1.3"
tempfile = "2.1"
log = "0.3.6"
combine = "2.2"
@@ -29,12 +27,16 @@ tempdir = "0.3"
serde = "1.0"
serde_derive = "1.0"
serde_json = "1.0"
bincode = "0.8"
libc = {version = "0.2.20", optional=true}
num_cpus = "1.2"
itertools = "0.5.9"
levenshtein_automata = {version="0.1", features=["fst_automaton"]}
lz4 = "1.20"
bit-set = "0.4.0"
uuid = { version = "0.6", features = ["v4", "serde"] }
time = "0.1"
uuid = { version = "0.5", features = ["v4", "serde"] }
chan = "0.1"
version = "2"
crossbeam = "0.3"
futures = "0.1"
futures-cpupool = "0.1"
@@ -42,12 +44,6 @@ error-chain = "0.8"
owning_ref = "0.3"
stable_deref_trait = "1.0.0"
rust-stemmers = "0.1.0"
downcast = { version="0.9" }
matches = "0.1"
bitpacking = "0.5"
census = "0.1"
fnv = "1.0.6"
owned-read = "0.1"
[target.'cfg(windows)'.dependencies]
winapi = "0.2"
@@ -56,23 +52,21 @@ winapi = "0.2"
rand = "0.3"
env_logger = "0.4"
[build-dependencies]
cc = {version = "1.0.0", optional=true}
[profile.release]
opt-level = 3
debug = false
lto = true
debug-assertions = false
[features]
default = ["mmap"]
mmap = ["fst/mmap", "atomicwrites"]
lz4-compression = ["lz4"]
default = ["simdcompression"]
simdcompression = ["libc", "cc"]
streamdict = []
[badges]
travis-ci = { repository = "tantivy-search/tantivy" }
[[example]]
name = "simple_search"
required-features = ["mmap"]
[[example]]
name = "custom_tokenizer"

View File

@@ -1,4 +1,4 @@
Copyright (c) 2018 by the project authors, as listed in the AUTHORS file.
Copyright (c) 2016 Paul Masurel
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

View File

@@ -4,50 +4,35 @@
[![Coverage Status](https://coveralls.io/repos/github/tantivy-search/tantivy/badge.svg?branch=master&refresh1)](https://coveralls.io/github/tantivy-search/tantivy?branch=master)
[![Join the chat at https://gitter.im/tantivy-search/tantivy](https://badges.gitter.im/tantivy-search/tantivy.svg)](https://gitter.im/tantivy-search/tantivy?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Build status](https://ci.appveyor.com/api/projects/status/r7nb13kj23u8m9pj/branch/master?svg=true)](https://ci.appveyor.com/project/fulmicoton/tantivy/branch/master)
[![Build status](https://ci.appveyor.com/api/projects/status/r7nb13kj23u8m9pj?svg=true)](https://ci.appveyor.com/project/fulmicoton/tantivy)
![beacon for google analytics](https://ga-beacon.appspot.com/UA-88834340-1/tantivy/README)
**Tantivy** is a **full text search engine library** written in rust.
It is closer to Lucene than to Elastic Search and Solr in the sense it is not
an off-the-shelf search engine server, but rather a crate that can be used
to build such a search engine.
It is strongly inspired by Lucene's design.
Tantivy is, in fact, strongly inspired by Lucene's design.
# Features
- Full-text search
- Tiny startup time (<10ms), perfect for command line tools
- BM25 scoring (the same as lucene)
- Basic query language (`+michael +jackson`)
- Phrase queries search (\"michael jackson\"`)
- configurable indexing (optional term frequency and position indexing)
- tf-idf scoring
- Basic query language
- Phrase queries
- Incremental indexing
- Multithreaded indexing (indexing English Wikipedia takes < 3 minutes on my desktop)
- Mmap directory
- SIMD integer compression when the platform/CPU includes the SSE2 instruction set.
- Single valued and multivalued u64 and i64 fast fields (equivalent of doc values in Lucene)
- `&[u8]` fast fields
- mmap based
- optional SIMD integer compression
- u64 and i64 fast fields (equivalent of doc values in Lucene)
- LZ4 compressed document store
- Range queries
- Faceted search
- Configurable indexing (optional term frequency and position indexing
- Cheesy logo with a horse
# Non-features
Tantivy supports Linux, MacOS and Windows.
- Distributed search and will not be in the scope of tantivy.
# Supported OS and compiler
Tantivy works on stable rust (>= 1.27) and supports Linux, MacOS and Windows.
# Getting started
- [tantivy's simple search example](http://fulmicoton.com/tantivy-examples/simple_search.html)
- [tantivy's usage example](http://fulmicoton.com/tantivy-examples/simple_search.html)
- [tantivy-cli and its tutorial](https://github.com/tantivy-search/tantivy-cli).
`tantivy-cli` is an actual command line interface that makes it easy for you to create a search engine,
index documents and search via the CLI or a small server with a REST API.
It will walk you through getting a wikipedia search engine up and running in a few minutes.
- [reference doc]
- [For the last released version](https://docs.rs/tantivy/)
@@ -55,16 +40,21 @@ It will walk you through getting a wikipedia search engine up and running in a f
# Compiling
## Development
Tantivy compiles on stable rust but requires `Rust >= 1.27`.
To check out and run tests, you can simply run :
Tantivy requires Rust Nightly because it uses requires the features [`box_syntax`](https://doc.rust-lang.org/stable/book/box-syntax-and-patterns.html), [`optin_builtin_traits`](https://github.com/rust-lang/rfcs/blob/master/text/0019-opt-in-builtin-traits.md), and [`conservative_impl_trait`](https://github.com/rust-lang/rfcs/blob/master/text/1522-conservative-impl-trait.md).
The project can then be built using `cargo`.
git clone git@github.com:tantivy-search/tantivy.git
cd tantivy
cargo build
Alternatively, if you are trying to compile `tantivy` without simd compression,
you can disable this functionality. In this case, this submodule is not required
and you can compile tantivy by using the `--no-default-features` flag.
cargo build --no-default-features
# Contribute
Send me an email (paul.masurel at gmail.com) if you want to contribute to tantivy.

View File

@@ -4,8 +4,11 @@
os: Visual Studio 2015
environment:
matrix:
- channel: stable
- channel: nightly
target: x86_64-pc-windows-msvc
- channel: nightly
target: x86_64-pc-windows-gnu
msys_bits: 64
install:
- appveyor DownloadFile https://win.rustup.rs/ -FileName rustup-init.exe

61
build.rs Normal file
View File

@@ -0,0 +1,61 @@
#[cfg(feature = "simdcompression")]
mod build {
extern crate cc;
pub fn build() {
let mut config = cc::Build::new();
config
.include("./cpp/simdcomp/include")
.file("cpp/simdcomp/src/avxbitpacking.c")
.file("cpp/simdcomp/src/simdintegratedbitpacking.c")
.file("cpp/simdcomp/src/simdbitpacking.c")
.file("cpp/simdcomp/src/simdpackedsearch.c")
.file("cpp/simdcomp/src/simdcomputil.c")
.file("cpp/simdcomp/src/simdpackedselect.c")
.file("cpp/simdcomp/src/simdfor.c")
.file("cpp/simdcomp_wrapper.c");
if !cfg!(debug_assertions) {
config.opt_level(3);
if cfg!(target_env = "msvc") {
config
.define("NDEBUG", None)
.flag("/Gm-")
.flag("/GS-")
.flag("/Gy")
.flag("/Oi")
.flag("/GL");
}
}
if !cfg!(target_env = "msvc") {
config
.include("./cpp/streamvbyte/include")
.file("cpp/streamvbyte/src/streamvbyte.c")
.file("cpp/streamvbyte/src/streamvbytedelta.c")
.flag("-msse4.1")
.flag("-march=native")
.flag("-std=c99");
}
config.compile("libsimdcomp.a");
// Workaround for linking static libraries built with /GL
// https://github.com/rust-lang/rust/issues/26003
if !cfg!(debug_assertions) && cfg!(target_env = "msvc") {
println!("cargo:rustc-link-lib=dylib=simdcomp");
}
println!("cargo:rerun-if-changed=cpp");
}
}
#[cfg(not(feature = "simdcompression"))]
mod build {
pub fn build() {}
}
fn main() {
build::build();
}

View File

@@ -1,23 +0,0 @@
# This script takes care of packaging the build artifacts that will go in the
# release zipfile
$SRC_DIR = $PWD.Path
$STAGE = [System.Guid]::NewGuid().ToString()
Set-Location $ENV:Temp
New-Item -Type Directory -Name $STAGE
Set-Location $STAGE
$ZIP = "$SRC_DIR\$($Env:CRATE_NAME)-$($Env:APPVEYOR_REPO_TAG_NAME)-$($Env:TARGET).zip"
# TODO Update this to package the right artifacts
Copy-Item "$SRC_DIR\target\$($Env:TARGET)\release\hello.exe" '.\'
7z a "$ZIP" *
Push-AppveyorArtifact "$ZIP"
Remove-Item *.* -Force
Set-Location ..
Remove-Item $STAGE
Set-Location $SRC_DIR

View File

@@ -1,33 +0,0 @@
# This script takes care of building your crate and packaging it for release
set -ex
main() {
local src=$(pwd) \
stage=
case $TRAVIS_OS_NAME in
linux)
stage=$(mktemp -d)
;;
osx)
stage=$(mktemp -d -t tmp)
;;
esac
test -f Cargo.lock || cargo generate-lockfile
# TODO Update this to build the artifacts that matter to you
cross rustc --bin hello --target $TARGET --release -- -C lto
# TODO Update this to package the right artifacts
cp target/$TARGET/release/hello $stage/
cd $stage
tar czf $src/$CRATE_NAME-$TRAVIS_TAG-$TARGET.tar.gz *
cd $src
rm -rf $stage
}
main

View File

@@ -1,47 +0,0 @@
set -ex
main() {
local target=
if [ $TRAVIS_OS_NAME = linux ]; then
target=x86_64-unknown-linux-musl
sort=sort
else
target=x86_64-apple-darwin
sort=gsort # for `sort --sort-version`, from brew's coreutils.
fi
# Builds for iOS are done on OSX, but require the specific target to be
# installed.
case $TARGET in
aarch64-apple-ios)
rustup target install aarch64-apple-ios
;;
armv7-apple-ios)
rustup target install armv7-apple-ios
;;
armv7s-apple-ios)
rustup target install armv7s-apple-ios
;;
i386-apple-ios)
rustup target install i386-apple-ios
;;
x86_64-apple-ios)
rustup target install x86_64-apple-ios
;;
esac
# This fetches latest stable release
local tag=$(git ls-remote --tags --refs --exit-code https://github.com/japaric/cross \
| cut -d/ -f3 \
| grep -E '^v[0.1.0-9.]+$' \
| $sort --version-sort \
| tail -n1)
curl -LSfs https://japaric.github.io/trust/install.sh | \
sh -s -- \
--force \
--git japaric/cross \
--tag $tag \
--target $target
}
main

View File

@@ -1,23 +0,0 @@
# This script takes care of testing your crate
set -ex
main() {
cross build --target $TARGET
cross build --target $TARGET --release
if [ ! -z $DISABLE_TESTS ]; then
return
fi
cross test --target $TARGET
# cross test --target $TARGET --release
# cross run --target $TARGET
# cross run --target $TARGET --release
}
# we don't run the "test phase" when doing deploys
if [ -z $TRAVIS_TAG ]; then
main
fi

9
cpp/simdcomp/.gitignore vendored Normal file
View File

@@ -0,0 +1,9 @@
Makefile.in
lib*
unit*
*.o
src/*.lo
src/*.o
src/.deps
src/.dirstamp
src/.libs

11
cpp/simdcomp/.travis.yml Normal file
View File

@@ -0,0 +1,11 @@
language: c
sudo: false
compiler:
- gcc
- clang
branches:
only:
- master
script: make && ./unit

9
cpp/simdcomp/CHANGELOG Normal file
View File

@@ -0,0 +1,9 @@
Upcoming
- added missing include
- improved portability (MSVC)
- implemented C89 compatibility
Version 0.0.3 (19 May 2014)
- improved documentation
Version 0.0.2 (6 February 2014)
- added go demo
Version 0.0.1 (5 February 2014)

27
cpp/simdcomp/LICENSE Normal file
View File

@@ -0,0 +1,27 @@
Copyright (c) 2014--, The authors
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.
* Neither the name of the {organization} nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

137
cpp/simdcomp/README.md Normal file
View File

@@ -0,0 +1,137 @@
The SIMDComp library
====================
[![Build Status](https://travis-ci.org/lemire/simdcomp.png)](https://travis-ci.org/lemire/simdcomp)
A simple C library for compressing lists of integers using binary packing and SIMD instructions.
The assumption is either that you have a list of 32-bit integers where most of them are small, or a list of 32-bit integers where differences between successive integers are small. No software is able to reliably compress an array of 32-bit random numbers.
This library can decode at least 4 billions of compressed integers per second on most
desktop or laptop processors. That is, it can decompress data at a rate of 15 GB/s.
This is significantly faster than generic codecs like gzip, LZO, Snappy or LZ4.
On a Skylake Intel processor, it can decode integers at a rate 0.3 cycles per integer,
which can easily translate into more than 8 decoded billions integers per second.
Contributors: Daniel Lemire, Nathan Kurz, Christoph Rupp, Anatol Belski, Nick White and others
What is it for?
-------------
This is a low-level library for fast integer compression. By design it does not define a compressed
format. It is up to the (sophisticated) user to create a compressed format.
Requirements
-------------
- Your processor should support SSE4.1 (It is supported by most Intel and AMD processors released since 2008.)
- It is possible to build the core part of the code if your processor support SSE2 (Pentium4 or better)
- C99 compliant compiler (GCC is assumed)
- A Linux-like distribution is assumed by the makefile
For a plain C version that does not use SIMD instructions, see https://github.com/lemire/LittleIntPacker
Usage
-------
Compression works over blocks of 128 integers.
For a complete working example, see example.c (you can build it and
run it with "make example; ./example").
1) Lists of integers in random order.
```C
const uint32_t b = maxbits(datain);// computes bit width
simdpackwithoutmask(datain, buffer, b);//compressed to buffer, compressing 128 32-bit integers down to b*32 bytes
simdunpack(buffer, backbuffer, b);//uncompressed to backbuffer
```
While 128 32-bit integers are read, only b 128-bit words are written. Thus, the compression ratio is 32/b.
2) Sorted lists of integers.
We used differential coding: we store the difference between successive integers. For this purpose, we need an initial value (called offset).
```C
uint32_t offset = 0;
uint32_t b1 = simdmaxbitsd1(offset,datain); // bit width
simdpackwithoutmaskd1(offset, datain, buffer, b1);//compressing 128 32-bit integers down to b1*32 bytes
simdunpackd1(offset, buffer, backbuffer, b1);//uncompressed
```
General example for arrays of arbitrary length:
```C
int compress_decompress_demo() {
size_t k, N = 9999;
__m128i * endofbuf;
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint8_t * buffer;
uint32_t * backbuffer = malloc(N * sizeof(uint32_t));
uint32_t b;
for (k = 0; k < N; ++k){ /* start with k=0, not k=1! */
datain[k] = k;
}
b = maxbits_length(datain, N);
buffer = malloc(simdpack_compressedbytes(N,b)); // allocate just enough memory
endofbuf = simdpack_length(datain, N, (__m128i *)buffer, b);
/* compressed data is stored between buffer and endofbuf using (endofbuf-buffer)*sizeof(__m128i) bytes */
/* would be safe to do : buffer = realloc(buffer,(endofbuf-(__m128i *)buffer)*sizeof(__m128i)); */
simdunpack_length((const __m128i *)buffer, N, backbuffer, b);
for (k = 0; k < N; ++k){
if(datain[k] != backbuffer[k]) {
printf("bug\n");
return -1;
}
}
return 0;
}
```
3) Frame-of-Reference
We also have frame-of-reference (FOR) functions (see simdfor.h header). They work like the bit packing
routines, but do not use differential coding so they allow faster search in some cases, at the expense
of compression.
Setup
---------
make
make test
and if you are daring:
make install
Go
--------
If you are a go user, there is a "go" folder where you will find a simple demo.
Other libraries
----------------
* Fast decoder for VByte-compressed integers https://github.com/lemire/MaskedVByte
* Fast integer compression in C using StreamVByte https://github.com/lemire/streamvbyte
* FastPFOR is a C++ research library well suited to compress unsorted arrays: https://github.com/lemire/FastPFor
* SIMDCompressionAndIntersection is a C++ research library well suited for sorted arrays (differential coding)
and computing intersections: https://github.com/lemire/SIMDCompressionAndIntersection
* TurboPFor is a C library that offers lots of interesting optimizations. Well worth checking! (GPL license) https://github.com/powturbo/TurboPFor
* Oroch is a C++ library that offers a usable API (MIT license) https://github.com/ademakov/Oroch
References
------------
* Daniel Lemire, Leonid Boytsov, Nathan Kurz, SIMD Compression and the Intersection of Sorted Integers, Software Practice & Experience 46 (6) 2016. http://arxiv.org/abs/1401.6399
* Daniel Lemire and Leonid Boytsov, Decoding billions of integers per second through vectorization, Software Practice & Experience 45 (1), 2015. http://arxiv.org/abs/1209.2137 http://onlinelibrary.wiley.com/doi/10.1002/spe.2203/abstract
* Jeff Plaisance, Nathan Kurz, Daniel Lemire, Vectorized VByte Decoding, International Symposium on Web Algorithms 2015, 2015. http://arxiv.org/abs/1503.07387
* Wayne Xin Zhao, Xudong Zhang, Daniel Lemire, Dongdong Shan, Jian-Yun Nie, Hongfei Yan, Ji-Rong Wen, A General SIMD-based Approach to Accelerating Compression Algorithms, ACM Transactions on Information Systems 33 (3), 2015. http://arxiv.org/abs/1502.01916
* T. D. Wu, Bitpacking techniques for indexing genomes: I. Hash tables, Algorithms for Molecular Biology 11 (5), 2016. http://almob.biomedcentral.com/articles/10.1186/s13015-016-0069-5

View File

@@ -0,0 +1,235 @@
/**
* This code is released under a BSD License.
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "simdcomp.h"
#ifdef _MSC_VER
# include <windows.h>
__int64 freq;
typedef __int64 time_snap_t;
static time_snap_t time_snap(void)
{
__int64 now;
QueryPerformanceCounter((LARGE_INTEGER *)&now);
return (__int64)((now*1000000)/freq);
}
# define TIME_SNAP_FMT "%I64d"
#else
# define time_snap clock
# define TIME_SNAP_FMT "%lu"
typedef clock_t time_snap_t;
#endif
void benchmarkSelect() {
uint32_t buffer[128];
uint32_t backbuffer[128];
uint32_t initial = 33;
uint32_t b;
time_snap_t S1, S2, S3;
int i;
printf("benchmarking select \n");
/* this test creates delta encoded buffers with different bits, then
* performs lower bound searches for each key */
for (b = 0; b <= 32; b++) {
uint32_t prev = initial;
uint32_t out[128];
/* initialize the buffer */
for (i = 0; i < 128; i++) {
buffer[i] = ((uint32_t)(1655765 * i )) ;
if(b < 32) buffer[i] %= (1<<b);
}
for (i = 0; i < 128; i++) {
buffer[i] = buffer[i] + prev;
prev = buffer[i];
}
for (i = 1; i < 128; i++) {
if(buffer[i] < buffer[i-1] )
buffer[i] = buffer[i-1];
}
assert(simdmaxbitsd1(initial, buffer)<=b);
for (i = 0; i < 128; i++) {
out[i] = 0; /* memset would do too */
}
/* delta-encode to 'i' bits */
simdpackwithoutmaskd1(initial, buffer, (__m128i *)out, b);
S1 = time_snap();
for (i = 0; i < 128 * 10; i++) {
uint32_t valretrieved = simdselectd1(initial, (__m128i *)out, b, (uint32_t)i % 128);
assert(valretrieved == buffer[i%128]);
}
S2 = time_snap();
for (i = 0; i < 128 * 10; i++) {
simdunpackd1(initial, (__m128i *)out, backbuffer, b);
assert(backbuffer[i % 128] == buffer[i % 128]);
}
S3 = time_snap();
printf("bit width = %d, fast select function time = " TIME_SNAP_FMT ", naive time = " TIME_SNAP_FMT " \n", b, (S2-S1), (S3-S2));
}
}
int uint32_cmp(const void *a, const void *b)
{
const uint32_t *ia = (const uint32_t *)a;
const uint32_t *ib = (const uint32_t *)b;
if(*ia < *ib)
return -1;
else if (*ia > *ib)
return 1;
return 0;
}
/* adapted from wikipedia */
int binary_search(uint32_t * A, uint32_t key, int imin, int imax)
{
int imid;
imax --;
while(imin + 1 < imax) {
imid = imin + ((imax - imin) / 2);
if (A[imid] > key) {
imax = imid;
} else if (A[imid] < key) {
imin = imid;
} else {
return imid;
}
}
return imax;
}
/* adapted from wikipedia */
int lower_bound(uint32_t * A, uint32_t key, int imin, int imax)
{
int imid;
imax --;
while(imin + 1 < imax) {
imid = imin + ((imax - imin) / 2);
if (A[imid] >= key) {
imax = imid;
} else if (A[imid] < key) {
imin = imid;
}
}
if(A[imin] >= key) return imin;
return imax;
}
void benchmarkSearch() {
uint32_t buffer[128];
uint32_t backbuffer[128];
uint32_t out[128];
uint32_t result, initial = 0;
uint32_t b, i;
time_snap_t S1, S2, S3, S4;
printf("benchmarking search \n");
/* this test creates delta encoded buffers with different bits, then
* performs lower bound searches for each key */
for (b = 0; b <= 32; b++) {
uint32_t prev = initial;
/* initialize the buffer */
for (i = 0; i < 128; i++) {
buffer[i] = ((uint32_t)rand()) ;
if(b < 32) buffer[i] %= (1<<b);
}
qsort(buffer,128, sizeof(uint32_t), uint32_cmp);
for (i = 0; i < 128; i++) {
buffer[i] = buffer[i] + prev;
prev = buffer[i];
}
for (i = 1; i < 128; i++) {
if(buffer[i] < buffer[i-1] )
buffer[i] = buffer[i-1];
}
assert(simdmaxbitsd1(initial, buffer)<=b);
for (i = 0; i < 128; i++) {
out[i] = 0; /* memset would do too */
}
/* delta-encode to 'i' bits */
simdpackwithoutmaskd1(initial, buffer, (__m128i *)out, b);
simdunpackd1(initial, (__m128i *)out, backbuffer, b);
for (i = 0; i < 128; i++) {
assert(buffer[i] == backbuffer[i]);
}
S1 = time_snap();
for (i = 0; i < 128 * 10; i++) {
int pos;
uint32_t pseudorandomkey = buffer[i%128];
__m128i vecinitial = _mm_set1_epi32(initial);
pos = simdsearchd1(&vecinitial, (__m128i *)out, b,
pseudorandomkey, &result);
if((result < pseudorandomkey) || (buffer[pos] != result)) {
printf("bug A.\n");
} else if (pos > 0) {
if(buffer[pos-1] >= pseudorandomkey)
printf("bug B.\n");
}
}
S2 = time_snap();
for (i = 0; i < 128 * 10; i++) {
int pos;
uint32_t pseudorandomkey = buffer[i%128];
simdunpackd1(initial, (__m128i *)out, backbuffer, b);
pos = lower_bound(backbuffer, pseudorandomkey, 0, 128);
result = backbuffer[pos];
if((result < pseudorandomkey) || (buffer[pos] != result)) {
printf("bug C.\n");
} else if (pos > 0) {
if(buffer[pos-1] >= pseudorandomkey)
printf("bug D.\n");
}
}
S3 = time_snap();
for (i = 0; i < 128 * 10; i++) {
int pos;
uint32_t pseudorandomkey = buffer[i%128];
pos = simdsearchwithlengthd1(initial, (__m128i *)out, b, 128,
pseudorandomkey, &result);
if((result < pseudorandomkey) || (buffer[pos] != result)) {
printf("bug A.\n");
} else if (pos > 0) {
if(buffer[pos-1] >= pseudorandomkey)
printf("bug B.\n");
}
}
S4 = time_snap();
printf("bit width = %d, fast search function time = " TIME_SNAP_FMT ", naive time = " TIME_SNAP_FMT " , fast with length time = " TIME_SNAP_FMT " \n", b, (S2-S1), (S3-S2), (S4-S3) );
}
}
int main() {
#ifdef _MSC_VER
QueryPerformanceFrequency((LARGE_INTEGER *)&freq);
#endif
benchmarkSearch();
benchmarkSelect();
return 0;
}

View File

@@ -0,0 +1,205 @@
#include <stdio.h>
#include "simdcomp.h"
#define RDTSC_START(cycles) \
do { \
register unsigned cyc_high, cyc_low; \
__asm volatile( \
"cpuid\n\t" \
"rdtsc\n\t" \
"mov %%edx, %0\n\t" \
"mov %%eax, %1\n\t" \
: "=r"(cyc_high), "=r"(cyc_low)::"%rax", "%rbx", "%rcx", "%rdx"); \
(cycles) = ((uint64_t)cyc_high << 32) | cyc_low; \
} while (0)
#define RDTSC_FINAL(cycles) \
do { \
register unsigned cyc_high, cyc_low; \
__asm volatile( \
"rdtscp\n\t" \
"mov %%edx, %0\n\t" \
"mov %%eax, %1\n\t" \
"cpuid\n\t" \
: "=r"(cyc_high), "=r"(cyc_low)::"%rax", "%rbx", "%rcx", "%rdx"); \
(cycles) = ((uint64_t)cyc_high << 32) | cyc_low; \
} while (0)
uint32_t * get_random_array_from_bit_width(uint32_t length, uint32_t bit) {
uint32_t * answer = malloc(sizeof(uint32_t) * length);
uint32_t mask = (uint32_t) ((UINT64_C(1) << bit) - 1);
uint32_t i;
for(i = 0; i < length; ++i) {
answer[i] = rand() & mask;
}
return answer;
}
uint32_t * get_random_array_from_bit_width_d1(uint32_t length, uint32_t bit) {
uint32_t * answer = malloc(sizeof(uint32_t) * length);
uint32_t mask = (uint32_t) ((UINT64_C(1) << bit) - 1);
uint32_t i;
answer[0] = rand() & mask;
for(i = 1; i < length; ++i) {
answer[i] = answer[i-1] + (rand() & mask);
}
return answer;
}
void demo128() {
const uint32_t length = 128;
uint32_t bit;
printf("# --- %s\n", __func__);
printf("# compressing %d integers\n",length);
printf("# format: bit width, pack in cycles per int, unpack in cycles per int\n");
for(bit = 1; bit <= 32; ++bit) {
uint32_t i;
uint32_t * data = get_random_array_from_bit_width(length, bit);
__m128i * buffer = malloc(length * sizeof(uint32_t));
uint32_t * backdata = malloc(length * sizeof(uint32_t));
uint32_t repeat = 500;
uint64_t min_diff;
printf("%d\t",bit);
min_diff = (uint64_t)-1;
for (i = 0; i < repeat; i++) {
uint64_t cycles_start, cycles_final, cycles_diff;
__asm volatile("" ::: /* pretend to clobber */ "memory");
RDTSC_START(cycles_start);
simdpackwithoutmask(data,buffer, bit);
RDTSC_FINAL(cycles_final);
cycles_diff = (cycles_final - cycles_start);
if (cycles_diff < min_diff) min_diff = cycles_diff;
}
printf("%.2f\t",min_diff*1.0/length);
min_diff = (uint64_t)-1;
for (i = 0; i < repeat; i++) {
uint64_t cycles_start, cycles_final, cycles_diff;
__asm volatile("" ::: /* pretend to clobber */ "memory");
RDTSC_START(cycles_start);
simdunpack(buffer, backdata,bit);
RDTSC_FINAL(cycles_final);
cycles_diff = (cycles_final - cycles_start);
if (cycles_diff < min_diff) min_diff = cycles_diff;
}
printf("%.2f\t",min_diff*1.0/length);
free(data);
free(buffer);
free(backdata);
printf("\n");
}
printf("\n\n"); /* two blank lines are required by gnuplot */
}
void demo128_d1() {
const uint32_t length = 128;
uint32_t bit;
printf("# --- %s\n", __func__);
printf("# compressing %d integers\n",length);
printf("# format: bit width, pack in cycles per int, unpack in cycles per int\n");
for(bit = 1; bit <= 32; ++bit) {
uint32_t i;
uint32_t * data = get_random_array_from_bit_width_d1(length, bit);
__m128i * buffer = malloc(length * sizeof(uint32_t));
uint32_t * backdata = malloc(length * sizeof(uint32_t));
uint32_t repeat = 500;
uint64_t min_diff;
printf("%d\t",bit);
min_diff = (uint64_t)-1;
for (i = 0; i < repeat; i++) {
uint64_t cycles_start, cycles_final, cycles_diff;
__asm volatile("" ::: /* pretend to clobber */ "memory");
RDTSC_START(cycles_start);
simdpackwithoutmaskd1(0,data,buffer, bit);
RDTSC_FINAL(cycles_final);
cycles_diff = (cycles_final - cycles_start);
if (cycles_diff < min_diff) min_diff = cycles_diff;
}
printf("%.2f\t",min_diff*1.0/length);
min_diff = (uint64_t)-1;
for (i = 0; i < repeat; i++) {
uint64_t cycles_start, cycles_final, cycles_diff;
__asm volatile("" ::: /* pretend to clobber */ "memory");
RDTSC_START(cycles_start);
simdunpackd1(0,buffer, backdata,bit);
RDTSC_FINAL(cycles_final);
cycles_diff = (cycles_final - cycles_start);
if (cycles_diff < min_diff) min_diff = cycles_diff;
}
printf("%.2f\t",min_diff*1.0/length);
free(data);
free(buffer);
free(backdata);
printf("\n");
}
printf("\n\n"); /* two blank lines are required by gnuplot */
}
#ifdef __AVX2__
void demo256() {
const uint32_t length = 256;
uint32_t bit;
printf("# --- %s\n", __func__);
printf("# compressing %d integers\n",length);
printf("# format: bit width, pack in cycles per int, unpack in cycles per int\n");
for(bit = 1; bit <= 32; ++bit) {
uint32_t i;
uint32_t * data = get_random_array_from_bit_width(length, bit);
__m256i * buffer = malloc(length * sizeof(uint32_t));
uint32_t * backdata = malloc(length * sizeof(uint32_t));
uint32_t repeat = 500;
uint64_t min_diff;
printf("%d\t",bit);
min_diff = (uint64_t)-1;
for (i = 0; i < repeat; i++) {
uint64_t cycles_start, cycles_final, cycles_diff;
__asm volatile("" ::: /* pretend to clobber */ "memory");
RDTSC_START(cycles_start);
avxpackwithoutmask(data,buffer, bit);
RDTSC_FINAL(cycles_final);
cycles_diff = (cycles_final - cycles_start);
if (cycles_diff < min_diff) min_diff = cycles_diff;
}
printf("%.2f\t",min_diff*1.0/length);
min_diff = (uint64_t)-1;
for (i = 0; i < repeat; i++) {
uint64_t cycles_start, cycles_final, cycles_diff;
__asm volatile("" ::: /* pretend to clobber */ "memory");
RDTSC_START(cycles_start);
avxunpack(buffer, backdata,bit);
RDTSC_FINAL(cycles_final);
cycles_diff = (cycles_final - cycles_start);
if (cycles_diff < min_diff) min_diff = cycles_diff;
}
printf("%.2f\t",min_diff*1.0/length);
free(data);
free(buffer);
free(backdata);
printf("\n");
}
printf("\n\n"); /* two blank lines are required by gnuplot */
}
#endif /* avx 2 */
int main() {
demo128();
demo128_d1();
#ifdef __AVX2__
demo256();
#endif
return 0;
}

195
cpp/simdcomp/example.c Normal file
View File

@@ -0,0 +1,195 @@
/* Type "make example" to build this example program. */
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include "simdcomp.h"
/**
We provide several different code examples.
**/
/* very simple test to illustrate a simple application */
int compress_decompress_demo() {
size_t k, N = 9999;
__m128i * endofbuf;
int howmanybytes;
float compratio;
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint8_t * buffer;
uint32_t * backbuffer = malloc(N * sizeof(uint32_t));
uint32_t b;
printf("== simple test\n");
for (k = 0; k < N; ++k) { /* start with k=0, not k=1! */
datain[k] = k;
}
b = maxbits_length(datain, N);
buffer = malloc(simdpack_compressedbytes(N,b));
endofbuf = simdpack_length(datain, N, (__m128i *)buffer, b);
howmanybytes = (endofbuf-(__m128i *)buffer)*sizeof(__m128i); /* number of compressed bytes */
compratio = N*sizeof(uint32_t) * 1.0 / howmanybytes;
/* endofbuf points to the end of the compressed data */
buffer = realloc(buffer,(endofbuf-(__m128i *)buffer)*sizeof(__m128i)); /* optional but safe. */
printf("Compressed %d integers down to %d bytes (comp. ratio = %f).\n",(int)N,howmanybytes,compratio);
/* in actual applications b must be stored and retrieved: caller is responsible for that. */
simdunpack_length((const __m128i *)buffer, N, backbuffer, b); /* will return a pointer to endofbuf */
for (k = 0; k < N; ++k) {
if(datain[k] != backbuffer[k]) {
printf("bug at %lu \n",(unsigned long)k);
return -1;
}
}
printf("Code works!\n");
free(datain);
free(buffer);
free(backbuffer);
return 0;
}
/* compresses data from datain to buffer, returns how many bytes written
used below in simple_demo */
size_t compress(uint32_t * datain, size_t length, uint8_t * buffer) {
uint32_t offset;
uint8_t * initout;
size_t k;
if(length/SIMDBlockSize*SIMDBlockSize != length) {
printf("Data length should be a multiple of %i \n",SIMDBlockSize);
}
offset = 0;
initout = buffer;
for(k = 0; k < length / SIMDBlockSize; ++k) {
uint32_t b = simdmaxbitsd1(offset,
datain + k * SIMDBlockSize);
*buffer++ = b;
simdpackwithoutmaskd1(offset, datain + k * SIMDBlockSize, (__m128i *) buffer,
b);
offset = datain[k * SIMDBlockSize + SIMDBlockSize - 1];
buffer += b * sizeof(__m128i);
}
return buffer - initout;
}
/* Another illustration ... */
void simple_demo() {
size_t REPEAT = 10, gap;
size_t N = 1000 * SIMDBlockSize;/* SIMDBlockSize is 128 */
uint32_t * datain = malloc(N * sizeof(uint32_t));
size_t compsize;
clock_t start, end;
uint8_t * buffer = malloc(N * sizeof(uint32_t) + N / SIMDBlockSize); /* output buffer */
uint32_t * backbuffer = malloc(SIMDBlockSize * sizeof(uint32_t));
printf("== simple demo\n");
for (gap = 1; gap <= 243; gap *= 3) {
size_t k, repeat;
uint32_t offset = 0;
uint32_t bogus = 0;
double numberofseconds;
printf("\n");
printf(" gap = %lu \n", (unsigned long) gap);
datain[0] = 0;
for (k = 1; k < N; ++k)
datain[k] = datain[k-1] + ( rand() % (gap + 1) );
compsize = compress(datain,N,buffer);
printf("compression ratio = %f \n", (N * sizeof(uint32_t))/ (compsize * 1.0 ));
start = clock();
for(repeat = 0; repeat < REPEAT; ++repeat) {
uint8_t * decbuffer = buffer;
for (k = 0; k * SIMDBlockSize < N; ++k) {
uint8_t b = *decbuffer++;
simdunpackd1(offset, (__m128i *) decbuffer, backbuffer, b);
/* do something here with backbuffer */
bogus += backbuffer[3];
decbuffer += b * sizeof(__m128i);
offset = backbuffer[SIMDBlockSize - 1];
}
}
end = clock();
numberofseconds = (end-start)/(double)CLOCKS_PER_SEC;
printf("decoding speed in million of integers per second %f \n",N*REPEAT/(numberofseconds*1000.0*1000.0));
start = clock();
for(repeat = 0; repeat < REPEAT; ++repeat) {
uint8_t * decbuffer = buffer;
for (k = 0; k * SIMDBlockSize < N; ++k) {
memcpy(backbuffer,decbuffer+k*SIMDBlockSize,SIMDBlockSize*sizeof(uint32_t));
bogus += backbuffer[3] - backbuffer[100];
}
}
end = clock();
numberofseconds = (end-start)/(double)CLOCKS_PER_SEC;
printf("memcpy speed in million of integers per second %f \n",N*REPEAT/(numberofseconds*1000.0*1000.0));
printf("ignore me %i \n",bogus);
printf("All tests are in CPU cache. Avoid out-of-cache decoding in applications.\n");
}
free(buffer);
free(datain);
free(backbuffer);
}
/* Used below in more_sophisticated_demo ... */
size_t varying_bit_width_compress(uint32_t * datain, size_t length, uint8_t * buffer) {
uint8_t * initout;
size_t k;
if(length/SIMDBlockSize*SIMDBlockSize != length) {
printf("Data length should be a multiple of %i \n",SIMDBlockSize);
}
initout = buffer;
for(k = 0; k < length / SIMDBlockSize; ++k) {
uint32_t b = maxbits(datain);
*buffer++ = b;
simdpackwithoutmask(datain, (__m128i *)buffer, b);
datain += SIMDBlockSize;
buffer += b * sizeof(__m128i);
}
return buffer - initout;
}
/* Here we compress the data in blocks of 128 integers with varying bit width */
int varying_bit_width_demo() {
size_t nn = 128 * 2;
uint32_t * datainn = malloc(nn * sizeof(uint32_t));
uint8_t * buffern = malloc(nn * sizeof(uint32_t) + nn / SIMDBlockSize);
uint8_t * initbuffern = buffern;
uint32_t * backbuffern = malloc(nn * sizeof(uint32_t));
size_t k, compsize;
printf("== varying bit-width demo\n");
for(k=0; k<nn; ++k) {
datainn[k] = rand() % (k + 1);
}
compsize = varying_bit_width_compress(datainn,nn,buffern);
printf("encoded size: %u (original size: %u)\n", (unsigned)compsize,
(unsigned)(nn * sizeof(uint32_t)));
for (k = 0; k * SIMDBlockSize < nn; ++k) {
uint32_t b = *buffern;
buffern++;
simdunpack((const __m128i *)buffern, backbuffern + k * SIMDBlockSize, b);
buffern += b * sizeof(__m128i);
}
for (k = 0; k < nn; ++k) {
if(backbuffern[k] != datainn[k]) {
printf("bug\n");
return -1;
}
}
printf("Code works!\n");
free(datainn);
free(initbuffern);
free(backbuffern);
return 0;
}
int main() {
if(compress_decompress_demo() != 0) return -1;
if(varying_bit_width_demo() != 0) return -1;
simple_demo();
return 0;
}

13
cpp/simdcomp/go/README.md Normal file
View File

@@ -0,0 +1,13 @@
Simple Go demo
==============
Setup
======
Start by installing the simdcomp library (make && make install).
Then type:
go run test.go

71
cpp/simdcomp/go/test.go Normal file
View File

@@ -0,0 +1,71 @@
/////////
// This particular file is in the public domain.
// Author: Daniel Lemire
////////
package main
/*
#cgo LDFLAGS: -lsimdcomp
#include <simdcomp.h>
*/
import "C"
import "fmt"
//////////
// For this demo, we pack and unpack blocks of 128 integers
/////////
func main() {
// I am going to use C types. Alternative might be to use unsafe.Pointer calls, see http://bit.ly/1ndw3W3
// this is our original data
var data [128]C.uint32_t
for i := C.uint32_t(0); i < C.uint32_t(128); i++ {
data[i] = i
}
////////////
// We first pack without differential coding
///////////
// computing how many bits per int. is needed
b := C.maxbits(&data[0])
ratio := 32.0/float64(b)
fmt.Println("Bit width ", b)
fmt.Println(fmt.Sprintf("Compression ratio %f ", ratio))
// we are now going to create a buffer to receive the packed data (each __m128i uses 128 bits)
out := make([] C.__m128i,b)
C.simdpackwithoutmask( &data[0],&out[0],b);
var recovereddata [128]C.uint32_t
C.simdunpack(&out[0],&recovereddata[0],b)
for i := 0; i < 128; i++ {
if data[i] != recovereddata[i] {
fmt.Println("Bug ")
return
}
}
///////////
// Next, we use differential coding
//////////
offset := C.uint32_t(0) // if you pack data from K to K + 128, offset should be the value at K-1. When K = 0, choose a default
b1 := C.simdmaxbitsd1(offset,&data[0])
ratio1 := 32.0/float64(b1)
fmt.Println("Bit width ", b1)
fmt.Println(fmt.Sprintf("Compression ratio %f ", ratio1))
// we are now going to create a buffer to receive the packed data (each __m128i uses 128 bits)
out = make([] C.__m128i,b1)
C.simdpackwithoutmaskd1(offset, &data[0],&out[0],b1);
C.simdunpackd1(offset,&out[0],&recovereddata[0],b1)
for i := 0; i < 128; i++ {
if data[i] != recovereddata[i] {
fmt.Println("Bug ")
return
}
}
fmt.Println("test succesful.")
}

View File

@@ -0,0 +1,40 @@
/**
* This code is released under a BSD License.
*/
#ifndef INCLUDE_AVXBITPACKING_H_
#define INCLUDE_AVXBITPACKING_H_
#ifdef __AVX2__
#include "portability.h"
/* AVX2 is required */
#include <immintrin.h>
/* for memset */
#include <string.h>
#include "simdcomputil.h"
enum{ AVXBlockSize = 256};
/* max integer logarithm over a range of AVXBlockSize integers (256 integer) */
uint32_t avxmaxbits(const uint32_t * begin);
/* reads 256 values from "in", writes "bit" 256-bit vectors to "out" */
void avxpack(const uint32_t * in,__m256i * out, const uint32_t bit);
/* reads 256 values from "in", writes "bit" 256-bit vectors to "out" */
void avxpackwithoutmask(const uint32_t * in,__m256i * out, const uint32_t bit);
/* reads "bit" 256-bit vectors from "in", writes 256 values to "out" */
void avxunpack(const __m256i * in,uint32_t * out, const uint32_t bit);
#endif /* __AVX2__ */
#endif /* INCLUDE_AVXBITPACKING_H_ */

View File

@@ -0,0 +1,81 @@
/**
* This code is released under a BSD License.
*/
#ifndef SIMDBITCOMPAT_H_
#define SIMDBITCOMPAT_H_
#include <iso646.h> /* mostly for Microsoft compilers */
#include <string.h>
#if SIMDCOMP_DEBUG
# define SIMDCOMP_ALWAYS_INLINE inline
# define SIMDCOMP_NEVER_INLINE
# define SIMDCOMP_PURE
#else
# if defined(__GNUC__)
# if __GNUC__ >= 3
# define SIMDCOMP_ALWAYS_INLINE inline __attribute__((always_inline))
# define SIMDCOMP_NEVER_INLINE __attribute__((noinline))
# define SIMDCOMP_PURE __attribute__((pure))
# else
# define SIMDCOMP_ALWAYS_INLINE inline
# define SIMDCOMP_NEVER_INLINE
# define SIMDCOMP_PURE
# endif
# elif defined(_MSC_VER)
# define SIMDCOMP_ALWAYS_INLINE __forceinline
# define SIMDCOMP_NEVER_INLINE
# define SIMDCOMP_PURE
# else
# if __has_attribute(always_inline)
# define SIMDCOMP_ALWAYS_INLINE inline __attribute__((always_inline))
# else
# define SIMDCOMP_ALWAYS_INLINE inline
# endif
# if __has_attribute(noinline)
# define SIMDCOMP_NEVER_INLINE __attribute__((noinline))
# else
# define SIMDCOMP_NEVER_INLINE
# endif
# if __has_attribute(pure)
# define SIMDCOMP_PURE __attribute__((pure))
# else
# define SIMDCOMP_PURE
# endif
# endif
#endif
#if defined(_MSC_VER) && _MSC_VER < 1600
typedef unsigned int uint32_t;
typedef unsigned char uint8_t;
typedef signed char int8_t;
#else
#include <stdint.h> /* part of Visual Studio 2010 and better, others likely anyway */
#endif
#if defined(_MSC_VER)
#define SIMDCOMP_ALIGNED(x) __declspec(align(x))
#else
#if defined(__GNUC__)
#define SIMDCOMP_ALIGNED(x) __attribute__ ((aligned(x)))
#endif
#endif
#if defined(_MSC_VER)
# include <intrin.h>
/* 64-bit needs extending */
# define SIMDCOMP_CTZ(result, mask) do { \
unsigned long index; \
if (!_BitScanForward(&(index), (mask))) { \
(result) = 32U; \
} else { \
(result) = (uint32_t)(index); \
} \
} while (0)
#else
# define SIMDCOMP_CTZ(result, mask) \
result = __builtin_ctz(mask)
#endif
#endif /* SIMDBITCOMPAT_H_ */

View File

@@ -0,0 +1,72 @@
/**
* This code is released under a BSD License.
*/
#ifndef SIMDBITPACKING_H_
#define SIMDBITPACKING_H_
#include "portability.h"
/* SSE2 is required */
#include <emmintrin.h>
/* for memset */
#include <string.h>
#include "simdcomputil.h"
/***
* Please see example.c for various examples on how to make good use
* of these functions.
*/
/* reads 128 values from "in", writes "bit" 128-bit vectors to "out".
* The input values are masked so that only the least significant "bit" bits are used. */
void simdpack(const uint32_t * in,__m128i * out, const uint32_t bit);
/* reads 128 values from "in", writes "bit" 128-bit vectors to "out".
* The input values are assumed to be less than 1<<bit. */
void simdpackwithoutmask(const uint32_t * in,__m128i * out, const uint32_t bit);
/* reads "bit" 128-bit vectors from "in", writes 128 values to "out" */
void simdunpack(const __m128i * in,uint32_t * out, const uint32_t bit);
/* how many compressed bytes are needed to compressed length integers using a bit width of bit with
the simdpackFOR_length function. */
int simdpack_compressedbytes(int length, const uint32_t bit);
/* like simdpack, but supports an undetermined number of inputs.
* This is useful if you need to unpack an array of integers that is not divisible by 128 integers.
* Returns a pointer to the (advanced) compressed array. Compressed data is stored in the memory location between
the provided (out) pointer and the returned pointer. */
__m128i * simdpack_length(const uint32_t * in, size_t length, __m128i * out, const uint32_t bit);
/* like simdunpack, but supports an undetermined number of inputs.
* This is useful if you need to unpack an array of integers that is not divisible by 128 integers.
* Returns a pointer to the (advanced) compressed array. The read compressed data is between the provided
(in) pointer and the returned pointer. */
const __m128i * simdunpack_length(const __m128i * in, size_t length, uint32_t * out, const uint32_t bit);
/* like simdpack, but supports an undetermined small number of inputs. This is useful if you need to pack less
than 128 integers.
* Note that this function is much slower.
* Returns a pointer to the (advanced) compressed array. Compressed data is stored in the memory location
between the provided (out) pointer and the returned pointer. */
__m128i * simdpack_shortlength(const uint32_t * in, int length, __m128i * out, const uint32_t bit);
/* like simdunpack, but supports an undetermined small number of inputs. This is useful if you need to unpack less
than 128 integers.
* Note that this function is much slower.
* Returns a pointer to the (advanced) compressed array. The read compressed data is between the provided (in)
pointer and the returned pointer. */
const __m128i * simdunpack_shortlength(const __m128i * in, int length, uint32_t * out, const uint32_t bit);
/* given a block of 128 packed values, this function sets the value at index "index" to "value" */
void simdfastset(__m128i * in128, uint32_t b, uint32_t value, size_t index);
#endif /* SIMDBITPACKING_H_ */

View File

@@ -0,0 +1,22 @@
/**
* This code is released under a BSD License.
*/
#ifndef SIMDCOMP_H_
#define SIMDCOMP_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "simdbitpacking.h"
#include "simdcomputil.h"
#include "simdfor.h"
#include "simdintegratedbitpacking.h"
#include "avxbitpacking.h"
#ifdef __cplusplus
} // extern "C"
#endif
#endif

View File

@@ -0,0 +1,54 @@
/**
* This code is released under a BSD License.
*/
#ifndef SIMDCOMPUTIL_H_
#define SIMDCOMPUTIL_H_
#include "portability.h"
/* SSE2 is required */
#include <emmintrin.h>
/* returns the integer logarithm of v (bit width) */
uint32_t bits(const uint32_t v);
/* max integer logarithm over a range of SIMDBlockSize integers (128 integer) */
uint32_t maxbits(const uint32_t * begin);
/* same as maxbits, but we specify the number of integers */
uint32_t maxbits_length(const uint32_t * in,uint32_t length);
enum{ SIMDBlockSize = 128};
/* computes (quickly) the minimal value of 128 values */
uint32_t simdmin(const uint32_t * in);
/* computes (quickly) the minimal value of the specified number of values */
uint32_t simdmin_length(const uint32_t * in, uint32_t length);
#ifdef __SSE4_1__
/* computes (quickly) the minimal and maximal value of the specified number of values */
void simdmaxmin_length(const uint32_t * in, uint32_t length, uint32_t * getmin, uint32_t * getmax);
/* computes (quickly) the minimal and maximal value of the 128 values */
void simdmaxmin(const uint32_t * in, uint32_t * getmin, uint32_t * getmax);
#endif
/* like maxbit over 128 integers (SIMDBlockSize) with provided initial value
and using differential coding */
uint32_t simdmaxbitsd1(uint32_t initvalue, const uint32_t * in);
/* like simdmaxbitsd1, but calculates maxbits over |length| integers
with provided initial value. |length| can be any arbitrary value. */
uint32_t simdmaxbitsd1_length(uint32_t initvalue, const uint32_t * in,
uint32_t length);
#endif /* SIMDCOMPUTIL_H_ */

View File

@@ -0,0 +1,72 @@
/**
* This code is released under a BSD License.
*/
#ifndef INCLUDE_SIMDFOR_H_
#define INCLUDE_SIMDFOR_H_
#include "portability.h"
/* SSE2 is required */
#include <emmintrin.h>
#include "simdcomputil.h"
#include "simdbitpacking.h"
#ifdef __cplusplus
extern "C" {
#endif
/* reads 128 values from "in", writes "bit" 128-bit vectors to "out" */
void simdpackFOR(uint32_t initvalue, const uint32_t * in,__m128i * out, const uint32_t bit);
/* reads "bit" 128-bit vectors from "in", writes 128 values to "out" */
void simdunpackFOR(uint32_t initvalue, const __m128i * in,uint32_t * out, const uint32_t bit);
/* how many compressed bytes are needed to compressed length integers using a bit width of bit with
the simdpackFOR_length function. */
int simdpackFOR_compressedbytes(int length, const uint32_t bit);
/* like simdpackFOR, but supports an undetermined number of inputs.
This is useful if you need to pack less than 128 integers. Note that this function is much slower.
Compressed data is stored in the memory location between
the provided (out) pointer and the returned pointer. */
__m128i * simdpackFOR_length(uint32_t initvalue, const uint32_t * in, int length, __m128i * out, const uint32_t bit);
/* like simdunpackFOR, but supports an undetermined number of inputs.
This is useful if you need to unpack less than 128 integers. Note that this function is much slower.
The read compressed data is between the provided
(in) pointer and the returned pointer. */
const __m128i * simdunpackFOR_length(uint32_t initvalue, const __m128i * in, int length, uint32_t * out, const uint32_t bit);
/* returns the value stored at the specified "slot".
* */
uint32_t simdselectFOR(uint32_t initvalue, const __m128i *in, uint32_t bit,
int slot);
/* given a block of 128 packed values, this function sets the value at index "index" to "value" */
void simdfastsetFOR(uint32_t initvalue, __m128i * in, uint32_t bit, uint32_t value, size_t index);
/* searches "bit" 128-bit vectors from "in" (= length<=128 encoded integers) for the first encoded uint32 value
* which is >= |key|, and returns its position. It is assumed that the values
* stored are in sorted order.
* The encoded key is stored in "*presult".
* The first length decoded integers, ignoring others. If no value is larger or equal to the key,
* length is returned. Length should be no larger than 128.
*
* If no value is larger or equal to the key,
* length is returned */
int simdsearchwithlengthFOR(uint32_t initvalue, const __m128i *in, uint32_t bit,
int length, uint32_t key, uint32_t *presult);
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* INCLUDE_SIMDFOR_H_ */

View File

@@ -0,0 +1,98 @@
/**
* This code is released under a BSD License.
*/
#ifndef SIMD_INTEGRATED_BITPACKING_H
#define SIMD_INTEGRATED_BITPACKING_H
#include "portability.h"
/* SSE2 is required */
#include <emmintrin.h>
#include "simdcomputil.h"
#include "simdbitpacking.h"
#ifdef __cplusplus
extern "C" {
#endif
/* reads 128 values from "in", writes "bit" 128-bit vectors to "out"
integer values should be in sorted order (for best results).
The differences are masked so that only the least significant "bit" bits are used. */
void simdpackd1(uint32_t initvalue, const uint32_t * in,__m128i * out, const uint32_t bit);
/* reads 128 values from "in", writes "bit" 128-bit vectors to "out"
integer values should be in sorted order (for best results).
The difference values are assumed to be less than 1<<bit. */
void simdpackwithoutmaskd1(uint32_t initvalue, const uint32_t * in,__m128i * out, const uint32_t bit);
/* reads "bit" 128-bit vectors from "in", writes 128 values to "out" */
void simdunpackd1(uint32_t initvalue, const __m128i * in,uint32_t * out, const uint32_t bit);
/* searches "bit" 128-bit vectors from "in" (= 128 encoded integers) for the first encoded uint32 value
* which is >= |key|, and returns its position. It is assumed that the values
* stored are in sorted order.
* The encoded key is stored in "*presult". If no value is larger or equal to the key,
* 128 is returned. The pointer initOffset is a pointer to the last four value decoded
* (when starting out, this can be a zero vector or initialized with _mm_set1_epi32(init)),
* and the vector gets updated.
**/
int
simdsearchd1(__m128i * initOffset, const __m128i *in, uint32_t bit,
uint32_t key, uint32_t *presult);
/* searches "bit" 128-bit vectors from "in" (= length<=128 encoded integers) for the first encoded uint32 value
* which is >= |key|, and returns its position. It is assumed that the values
* stored are in sorted order.
* The encoded key is stored in "*presult".
* The first length decoded integers, ignoring others. If no value is larger or equal to the key,
* length is returned. Length should be no larger than 128.
*
* If no value is larger or equal to the key,
* length is returned */
int simdsearchwithlengthd1(uint32_t initvalue, const __m128i *in, uint32_t bit,
int length, uint32_t key, uint32_t *presult);
/* returns the value stored at the specified "slot".
* */
uint32_t simdselectd1(uint32_t initvalue, const __m128i *in, uint32_t bit,
int slot);
/* given a block of 128 packed values, this function sets the value at index "index" to "value",
* you must somehow know the previous value.
* Because of differential coding, all following values are incremented by the offset between this new
* value and the old value...
* This functions is useful if you want to modify the last value.
*/
void simdfastsetd1fromprevious( __m128i * in, uint32_t bit, uint32_t previousvalue, uint32_t value, size_t index);
/* given a block of 128 packed values, this function sets the value at index "index" to "value",
* This function computes the previous value if needed.
* Because of differential coding, all following values are incremented by the offset between this new
* value and the old value...
* This functions is useful if you want to modify the last value.
*/
void simdfastsetd1(uint32_t initvalue, __m128i * in, uint32_t bit, uint32_t value, size_t index);
/*Simply scan the data
* The pointer initOffset is a pointer to the last four value decoded
* (when starting out, this can be a zero vector or initialized with _mm_set1_epi32(init);),
* and the vector gets updated.
* */
void
simdscand1(__m128i * initOffset, const __m128i *in, uint32_t bit);
#ifdef __cplusplus
} // extern "C"
#endif
#endif

79
cpp/simdcomp/makefile Normal file
View File

@@ -0,0 +1,79 @@
# minimalist makefile
.SUFFIXES:
#
.SUFFIXES: .cpp .o .c .h
ifeq ($(DEBUG),1)
CFLAGS = -fPIC -std=c89 -ggdb -msse4.1 -march=native -Wall -Wextra -Wshadow -fsanitize=undefined -fno-omit-frame-pointer -fsanitize=address
else
CFLAGS = -fPIC -std=c89 -O3 -msse4.1 -march=native -Wall -Wextra -Wshadow
endif # debug
LDFLAGS = -shared
LIBNAME=libsimdcomp.so.0.0.3
all: unit unit_chars bitpackingbenchmark $(LIBNAME)
test:
./unit
./unit_chars
install: $(OBJECTS)
cp $(LIBNAME) /usr/local/lib
ln -s /usr/local/lib/$(LIBNAME) /usr/local/lib/libsimdcomp.so
ldconfig
cp $(HEADERS) /usr/local/include
HEADERS=./include/simdbitpacking.h ./include/simdcomputil.h ./include/simdintegratedbitpacking.h ./include/simdcomp.h ./include/simdfor.h ./include/avxbitpacking.h
uninstall:
for h in $(HEADERS) ; do rm /usr/local/$$h; done
rm /usr/local/lib/$(LIBNAME)
rm /usr/local/lib/libsimdcomp.so
ldconfig
OBJECTS= simdbitpacking.o simdintegratedbitpacking.o simdcomputil.o \
simdpackedsearch.o simdpackedselect.o simdfor.o avxbitpacking.o
$(LIBNAME): $(OBJECTS)
$(CC) $(CFLAGS) -o $(LIBNAME) $(OBJECTS) $(LDFLAGS)
avxbitpacking.o: ./src/avxbitpacking.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/avxbitpacking.c -Iinclude
simdfor.o: ./src/simdfor.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/simdfor.c -Iinclude
simdcomputil.o: ./src/simdcomputil.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/simdcomputil.c -Iinclude
simdbitpacking.o: ./src/simdbitpacking.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/simdbitpacking.c -Iinclude
simdintegratedbitpacking.o: ./src/simdintegratedbitpacking.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/simdintegratedbitpacking.c -Iinclude
simdpackedsearch.o: ./src/simdpackedsearch.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/simdpackedsearch.c -Iinclude
simdpackedselect.o: ./src/simdpackedselect.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/simdpackedselect.c -Iinclude
example: ./example.c $(HEADERS) $(OBJECTS)
$(CC) $(CFLAGS) -o example ./example.c -Iinclude $(OBJECTS)
unit: ./tests/unit.c $(HEADERS) $(OBJECTS)
$(CC) $(CFLAGS) -o unit ./tests/unit.c -Iinclude $(OBJECTS)
bitpackingbenchmark: ./benchmarks/bitpackingbenchmark.c $(HEADERS) $(OBJECTS)
$(CC) $(CFLAGS) -o bitpackingbenchmark ./benchmarks/bitpackingbenchmark.c -Iinclude $(OBJECTS)
benchmark: ./benchmarks/benchmark.c $(HEADERS) $(OBJECTS)
$(CC) $(CFLAGS) -o benchmark ./benchmarks/benchmark.c -Iinclude $(OBJECTS)
dynunit: ./tests/unit.c $(HEADERS) $(LIBNAME)
$(CC) $(CFLAGS) -o dynunit ./tests/unit.c -Iinclude -lsimdcomp
unit_chars: ./tests/unit_chars.c $(HEADERS) $(OBJECTS)
$(CC) $(CFLAGS) -o unit_chars ./tests/unit_chars.c -Iinclude $(OBJECTS)
clean:
rm -f unit *.o $(LIBNAME) example benchmark bitpackingbenchmark dynunit unit_chars

104
cpp/simdcomp/makefile.vc Normal file
View File

@@ -0,0 +1,104 @@
!IFNDEF MACHINE
!IF "$(PROCESSOR_ARCHITECTURE)"=="AMD64"
MACHINE=x64
!ELSE
MACHINE=x86
!ENDIF
!ENDIF
!IFNDEF DEBUG
DEBUG=no
!ENDIF
!IFNDEF CC
CC=cl.exe
!ENDIF
!IFNDEF AR
AR=lib.exe
!ENDIF
!IFNDEF LINK
LINK=link.exe
!ENDIF
!IFNDEF PGO
PGO=no
!ENDIF
!IFNDEF PGI
PGI=no
!ENDIF
INC = /Iinclude
!IF "$(DEBUG)"=="yes"
CFLAGS = /nologo /MDd /LDd /Od /Zi /D_DEBUG /RTC1 /W3 /GS /Gm
ARFLAGS = /nologo
LDFLAGS = /nologo /debug /nodefaultlib:msvcrt
!ELSE
CFLAGS = /nologo /MD /O2 /Zi /DNDEBUG /W3 /Gm- /GS /Gy /Oi /GL /MP
ARFLAGS = /nologo /LTCG
LDFLAGS = /nologo /LTCG /DYNAMICBASE /incremental:no /debug /opt:ref,icf
!ENDIF
!IF "$(PGI)"=="yes"
LDFLAGS = $(LDFLAGS) /ltcg:pgi
!ENDIF
!IF "$(PGO)"=="yes"
LDFLAGS = $(LDFLAGS) /ltcg:pgo
!ENDIF
LIB_OBJS = simdbitpacking.obj simdintegratedbitpacking.obj simdcomputil.obj \
simdpackedsearch.obj simdpackedselect.obj simdfor.obj
all: lib dll dynunit unit_chars example benchmark
# need some good use case scenario to train the instrumented build
@if "$(PGI)"=="yes" echo Running PGO training
@if "$(PGI)"=="yes" benchmark.exe >nul 2>&1
@if "$(PGI)"=="yes" example.exe >nul 2>&1
$(LIB_OBJS):
$(CC) $(INC) $(CFLAGS) /c src/simdbitpacking.c src/simdintegratedbitpacking.c src/simdcomputil.c \
src/simdpackedsearch.c src/simdpackedselect.c src/simdfor.c
lib: $(LIB_OBJS)
$(AR) $(ARFLAGS) /OUT:simdcomp_a.lib $(LIB_OBJS)
dll: $(LIB_OBJS)
$(LINK) /DLL $(LDFLAGS) /OUT:simdcomp.dll /IMPLIB:simdcomp.lib /DEF:simdcomp.def $(LIB_OBJS)
unit: lib
$(CC) $(INC) $(CFLAGS) /c src/unit.c
$(LINK) $(LDFLAGS) /OUT:unit.exe unit.obj simdcomp_a.lib
dynunit: dll
$(CC) $(INC) $(CFLAGS) /c src/unit.c
$(LINK) $(LDFLAGS) /OUT:unit.exe unit.obj simdcomp.lib
unit_chars: lib
$(CC) $(INC) $(CFLAGS) /c src/unit_chars.c
$(LINK) $(LDFLAGS) /OUT:unit_chars.exe unit_chars.obj simdcomp.lib
example: lib
$(CC) $(INC) $(CFLAGS) /c example.c
$(LINK) $(LDFLAGS) /OUT:example.exe example.obj simdcomp.lib
benchmark: lib
$(CC) $(INC) $(CFLAGS) /c src/benchmark.c
$(LINK) $(LDFLAGS) /OUT:benchmark.exe benchmark.obj simdcomp.lib
clean:
del /Q *.obj
del /Q *.lib
del /Q *.exe
del /Q *.dll
del /Q *.pgc
del /Q *.pgd
del /Q *.pdb

16
cpp/simdcomp/package.json Normal file
View File

@@ -0,0 +1,16 @@
{
"name": "simdcomp",
"version": "0.0.3",
"repo": "lemire/simdcomp",
"description": "A simple C library for compressing lists of integers",
"license": "BSD-3-Clause",
"src": [
"src/simdbitpacking.c",
"src/simdcomputil.c",
"src/simdintegratedbitpacking.c",
"include/simdbitpacking.h",
"include/simdcomp.h",
"include/simdcomputil.h",
"include/simdintegratedbitpacking.h"
]
}

View File

@@ -0,0 +1,182 @@
#!/usr/bin/env python
import sys
def howmany(bit):
""" how many values are we going to pack? """
return 256
def howmanywords(bit):
return (howmany(bit) * bit + 255)/256
def howmanybytes(bit):
return howmanywords(bit) * 16
print("""
/** code generated by avxpacking.py starts here **/
""")
print("""typedef void (*avxpackblockfnc)(const uint32_t * pin, __m256i * compressed);""")
print("""typedef void (*avxunpackblockfnc)(const __m256i * compressed, uint32_t * pout);""")
def plurial(number):
if(number <> 1):
return "s"
else :
return ""
print("")
print("static void avxpackblock0(const uint32_t * pin, __m256i * compressed) {");
print(" (void)compressed;");
print(" (void) pin; /* we consumed {0} 32-bit integer{1} */ ".format(howmany(0),plurial(howmany(0))));
print("}");
print("")
for bit in range(1,33):
print("")
print("/* we are going to pack {0} {1}-bit values, touching {2} 256-bit words, using {3} bytes */ ".format(howmany(bit),bit,howmanywords(bit),howmanybytes(bit)))
print("static void avxpackblock{0}(const uint32_t * pin, __m256i * compressed) {{".format(bit));
print(" const __m256i * in = (const __m256i *) pin;");
print(" /* we are going to touch {0} 256-bit word{1} */ ".format(howmanywords(bit),plurial(howmanywords(bit))));
if(howmanywords(bit) == 1):
print(" __m256i w0;")
else:
print(" __m256i w0, w1;")
if( (bit & (bit-1)) <> 0) : print(" __m256i tmp; /* used to store inputs at word boundary */")
oldword = 0
for j in range(howmany(bit)/8):
firstword = j * bit / 32
if(firstword > oldword):
print(" _mm256_storeu_si256(compressed + {0}, w{1});".format(oldword,oldword%2))
oldword = firstword
secondword = (j * bit + bit - 1)/32
firstshift = (j*bit) % 32
if( firstword == secondword):
if(firstshift == 0):
print(" w{0} = _mm256_lddqu_si256 (in + {1});".format(firstword%2,j))
else:
print(" w{0} = _mm256_or_si256(w{0},_mm256_slli_epi32(_mm256_lddqu_si256 (in + {1}) , {2}));".format(firstword%2,j,firstshift))
else:
print(" tmp = _mm256_lddqu_si256 (in + {0});".format(j))
print(" w{0} = _mm256_or_si256(w{0},_mm256_slli_epi32(tmp , {2}));".format(firstword%2,j,firstshift))
secondshift = 32-firstshift
print(" w{0} = _mm256_srli_epi32(tmp,{2});".format(secondword%2,j,secondshift))
print(" _mm256_storeu_si256(compressed + {0}, w{1});".format(secondword,secondword%2))
print("}");
print("")
print("")
print("static void avxpackblockmask0(const uint32_t * pin, __m256i * compressed) {");
print(" (void)compressed;");
print(" (void) pin; /* we consumed {0} 32-bit integer{1} */ ".format(howmany(0),plurial(howmany(0))));
print("}");
print("")
for bit in range(1,33):
print("")
print("/* we are going to pack {0} {1}-bit values, touching {2} 256-bit words, using {3} bytes */ ".format(howmany(bit),bit,howmanywords(bit),howmanybytes(bit)))
print("static void avxpackblockmask{0}(const uint32_t * pin, __m256i * compressed) {{".format(bit));
print(" /* we are going to touch {0} 256-bit word{1} */ ".format(howmanywords(bit),plurial(howmanywords(bit))));
if(howmanywords(bit) == 1):
print(" __m256i w0;")
else:
print(" __m256i w0, w1;")
print(" const __m256i * in = (const __m256i *) pin;");
if(bit < 32): print(" const __m256i mask = _mm256_set1_epi32({0});".format((1<<bit)-1));
def maskfnc(x):
if(bit == 32): return x
return " _mm256_and_si256 ( mask, {0}) ".format(x)
if( (bit & (bit-1)) <> 0) : print(" __m256i tmp; /* used to store inputs at word boundary */")
oldword = 0
for j in range(howmany(bit)/8):
firstword = j * bit / 32
if(firstword > oldword):
print(" _mm256_storeu_si256(compressed + {0}, w{1});".format(oldword,oldword%2))
oldword = firstword
secondword = (j * bit + bit - 1)/32
firstshift = (j*bit) % 32
loadstr = maskfnc(" _mm256_lddqu_si256 (in + {0}) ".format(j))
if( firstword == secondword):
if(firstshift == 0):
print(" w{0} = {1};".format(firstword%2,loadstr))
else:
print(" w{0} = _mm256_or_si256(w{0},_mm256_slli_epi32({1} , {2}));".format(firstword%2,loadstr,firstshift))
else:
print(" tmp = {0};".format(loadstr))
print(" w{0} = _mm256_or_si256(w{0},_mm256_slli_epi32(tmp , {2}));".format(firstword%2,j,firstshift))
secondshift = 32-firstshift
print(" w{0} = _mm256_srli_epi32(tmp,{2});".format(secondword%2,j,secondshift))
print(" _mm256_storeu_si256(compressed + {0}, w{1});".format(secondword,secondword%2))
print("}");
print("")
print("static void avxunpackblock0(const __m256i * compressed, uint32_t * pout) {");
print(" (void) compressed;");
print(" memset(pout,0,{0});".format(howmany(0)));
print("}");
print("")
for bit in range(1,33):
print("")
print("/* we packed {0} {1}-bit values, touching {2} 256-bit words, using {3} bytes */ ".format(howmany(bit),bit,howmanywords(bit),howmanybytes(bit)))
print("static void avxunpackblock{0}(const __m256i * compressed, uint32_t * pout) {{".format(bit));
print(" /* we are going to access {0} 256-bit word{1} */ ".format(howmanywords(bit),plurial(howmanywords(bit))));
if(howmanywords(bit) == 1):
print(" __m256i w0;")
else:
print(" __m256i w0, w1;")
print(" __m256i * out = (__m256i *) pout;");
if(bit < 32): print(" const __m256i mask = _mm256_set1_epi32({0});".format((1<<bit)-1));
maskstr = " _mm256_and_si256 ( mask, {0}) "
if (bit == 32) : maskstr = " {0} " # no need
oldword = 0
print(" w0 = _mm256_lddqu_si256 (compressed);")
for j in range(howmany(bit)/8):
firstword = j * bit / 32
secondword = (j * bit + bit - 1)/32
if(secondword > oldword):
print(" w{0} = _mm256_lddqu_si256 (compressed + {1});".format(secondword%2,secondword))
oldword = secondword
firstshift = (j*bit) % 32
firstshiftstr = "_mm256_srli_epi32( w{0} , "+str(firstshift)+") "
if(firstshift == 0):
firstshiftstr =" w{0} " # no need
wfirst = firstshiftstr.format(firstword%2)
if( firstword == secondword):
if(firstshift + bit <> 32):
wfirst = maskstr.format(wfirst)
print(" _mm256_storeu_si256(out + {0}, {1});".format(j,wfirst))
else:
secondshift = (32-firstshift)
wsecond = "_mm256_slli_epi32( w{0} , {1} ) ".format((firstword+1)%2,secondshift)
wfirstorsecond = " _mm256_or_si256 ({0},{1}) ".format(wfirst,wsecond)
wfirstorsecond = maskstr.format(wfirstorsecond)
print(" _mm256_storeu_si256(out + {0},\n {1});".format(j,wfirstorsecond))
print("}");
print("")
print("static avxpackblockfnc avxfuncPackArr[] = {")
for bit in range(0,32):
print("&avxpackblock{0},".format(bit))
print("&avxpackblock32")
print("};")
print("static avxpackblockfnc avxfuncPackMaskArr[] = {")
for bit in range(0,32):
print("&avxpackblockmask{0},".format(bit))
print("&avxpackblockmask32")
print("};")
print("static avxunpackblockfnc avxfuncUnpackArr[] = {")
for bit in range(0,32):
print("&avxunpackblock{0},".format(bit))
print("&avxunpackblock32")
print("};")
print("/** code generated by avxpacking.py ends here **/")

152
cpp/simdcomp/scripts/simdfor.py Executable file
View File

@@ -0,0 +1,152 @@
#!/usr/bin/env python3
from math import ceil
print("""
/**
* Blablabla
*
*/
""");
def mask(bit):
return str((1 << bit) - 1)
for length in [32]:
print("""
static __m128i iunpackFOR0(__m128i initOffset, const __m128i * _in , uint32_t * _out) {
__m128i *out = (__m128i*)(_out);
int i;
(void) _in;
for (i = 0; i < 8; ++i) {
_mm_store_si128(out++, initOffset);
_mm_store_si128(out++, initOffset);
_mm_store_si128(out++, initOffset);
_mm_store_si128(out++, initOffset);
}
return initOffset;
}
""")
print("""
static void ipackFOR0(__m128i initOffset , const uint32_t * _in , __m128i * out ) {
(void) initOffset;
(void) _in;
(void) out;
}
""")
for bit in range(1,33):
offsetVar = " initOffset";
print("""
static void ipackFOR"""+str(bit)+"""(__m128i """+offsetVar+""", const uint32_t * _in, __m128i * out) {
const __m128i *in = (const __m128i*)(_in);
__m128i OutReg;
""");
if (bit != 32):
print(" __m128i CurrIn = _mm_load_si128(in);");
print(" __m128i InReg = _mm_sub_epi32(CurrIn, initOffset);");
else:
print(" __m128i InReg = _mm_load_si128(in);");
print(" (void) initOffset;");
inwordpointer = 0
valuecounter = 0
for k in range(ceil((length * bit) / 32)):
if(valuecounter == length): break
for x in range(inwordpointer,32,bit):
if(x!=0) :
print(" OutReg = _mm_or_si128(OutReg, _mm_slli_epi32(InReg, " + str(x) + "));");
else:
print(" OutReg = InReg; ");
if((x+bit>=32) ):
while(inwordpointer<32):
inwordpointer += bit
print(" _mm_store_si128(out, OutReg);");
print("");
if(valuecounter + 1 < length):
print(" ++out;")
inwordpointer -= 32;
if(inwordpointer>0):
print(" OutReg = _mm_srli_epi32(InReg, " + str(bit) + " - " + str(inwordpointer) + ");");
if(valuecounter + 1 < length):
print(" ++in;")
if (bit != 32):
print(" CurrIn = _mm_load_si128(in);");
print(" InReg = _mm_sub_epi32(CurrIn, initOffset);");
else:
print(" InReg = _mm_load_si128(in);");
print("");
valuecounter = valuecounter + 1
if(valuecounter == length): break
assert(valuecounter == length)
print("\n}\n\n""")
for bit in range(1,32):
offsetVar = " initOffset";
print("""\n
static __m128i iunpackFOR"""+str(bit)+"""(__m128i """+offsetVar+""", const __m128i* in, uint32_t * _out) {
""");
print(""" __m128i* out = (__m128i*)(_out);
__m128i InReg = _mm_load_si128(in);
__m128i OutReg;
__m128i tmp;
const __m128i mask = _mm_set1_epi32((1U<<"""+str(bit)+""")-1);
""");
MainText = "";
MainText += "\n";
inwordpointer = 0
valuecounter = 0
for k in range(ceil((length * bit) / 32)):
for x in range(inwordpointer,32,bit):
if(valuecounter == length): break
if (x > 0):
MainText += " tmp = _mm_srli_epi32(InReg," + str(x) +");\n";
else:
MainText += " tmp = InReg;\n";
if(x+bit<32):
MainText += " OutReg = _mm_and_si128(tmp, mask);\n";
else:
MainText += " OutReg = tmp;\n";
if((x+bit>=32) ):
while(inwordpointer<32):
inwordpointer += bit
if(valuecounter + 1 < length):
MainText += " ++in;"
MainText += " InReg = _mm_load_si128(in);\n";
inwordpointer -= 32;
if(inwordpointer>0):
MainText += " OutReg = _mm_or_si128(OutReg, _mm_and_si128(_mm_slli_epi32(InReg, " + str(bit) + "-" + str(inwordpointer) + "), mask));\n\n";
if (bit != 32):
MainText += " OutReg = _mm_add_epi32(OutReg, initOffset);\n";
MainText += " _mm_store_si128(out++, OutReg);\n\n";
MainText += "";
valuecounter = valuecounter + 1
if(valuecounter == length): break
assert(valuecounter == length)
print(MainText)
print(" return initOffset;");
print("\n}\n\n")
print("""
static __m128i iunpackFOR32(__m128i initvalue , const __m128i* in, uint32_t * _out) {
__m128i * mout = (__m128i *)_out;
__m128i invec;
size_t k;
for(k = 0; k < 128/4; ++k) {
invec = _mm_load_si128(in++);
_mm_store_si128(mout++, invec);
}
return invec;
}
""")

40
cpp/simdcomp/simdcomp.def Normal file
View File

@@ -0,0 +1,40 @@
EXPORTS
simdpack
simdpackwithoutmask
simdunpack
bits
maxbits
maxbits_length
simdmin
simdmin_length
simdmaxmin
simdmaxmin_length
simdmaxbitsd1
simdmaxbitsd1_length
simdpackd1
simdpackwithoutmaskd1
simdunpackd1
simdsearchd1
simdsearchwithlengthd1
simdselectd1
simdpackFOR
simdselectFOR
simdsearchwithlengthFOR
simdunpackFOR
simdmin_length
simdmaxmin
simdmaxmin_length
simdpack_length
simdpackFOR_length
simdunpackFOR_length
simdpack_shortlength
simdfastsetFOR
simdfastset
simdfastsetd1
simdunpack_length
simdunpack_shortlength
simdsearchwithlengthFOR
simdscand1
simdfastsetd1fromprevious
simdfastsetd1

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,234 @@
/**
* This code is released under a BSD License.
*/
#include "simdcomputil.h"
#ifdef __SSE4_1__
#include <smmintrin.h>
#endif
#include <assert.h>
#define Delta(curr, prev) \
_mm_sub_epi32(curr, \
_mm_or_si128(_mm_slli_si128(curr, 4), _mm_srli_si128(prev, 12)))
/* returns the integer logarithm of v (bit width) */
uint32_t bits(const uint32_t v) {
#ifdef _MSC_VER
unsigned long answer;
if (v == 0) {
return 0;
}
_BitScanReverse(&answer, v);
return answer + 1;
#else
return v == 0 ? 0 : 32 - __builtin_clz(v); /* assume GCC-like compiler if not microsoft */
#endif
}
static uint32_t maxbitas32int(const __m128i accumulator) {
const __m128i _tmp1 = _mm_or_si128(_mm_srli_si128(accumulator, 8), accumulator); /* (A,B,C,D) xor (0,0,A,B) = (A,B,C xor A,D xor B)*/
const __m128i _tmp2 = _mm_or_si128(_mm_srli_si128(_tmp1, 4), _tmp1); /* (A,B,C xor A,D xor B) xor (0,0,0,C xor A)*/
uint32_t ans = _mm_cvtsi128_si32(_tmp2);
return bits(ans);
}
SIMDCOMP_PURE uint32_t maxbits(const uint32_t * begin) {
const __m128i* pin = (const __m128i*)(begin);
__m128i accumulator = _mm_loadu_si128(pin);
uint32_t k = 1;
for(; 4*k < SIMDBlockSize; ++k) {
__m128i newvec = _mm_loadu_si128(pin+k);
accumulator = _mm_or_si128(accumulator,newvec);
}
return maxbitas32int(accumulator);
}
static uint32_t orasint(const __m128i accumulator) {
const __m128i _tmp1 = _mm_or_si128(_mm_srli_si128(accumulator, 8), accumulator); /* (A,B,C,D) xor (0,0,A,B) = (A,B,C xor A,D xor B)*/
const __m128i _tmp2 = _mm_or_si128(_mm_srli_si128(_tmp1, 4), _tmp1); /* (A,B,C xor A,D xor B) xor (0,0,0,C xor A)*/
return _mm_cvtsi128_si32(_tmp2);
}
#ifdef __SSE4_1__
static uint32_t minasint(const __m128i accumulator) {
const __m128i _tmp1 = _mm_min_epu32(_mm_srli_si128(accumulator, 8), accumulator); /* (A,B,C,D) xor (0,0,A,B) = (A,B,C xor A,D xor B)*/
const __m128i _tmp2 = _mm_min_epu32(_mm_srli_si128(_tmp1, 4), _tmp1); /* (A,B,C xor A,D xor B) xor (0,0,0,C xor A)*/
return _mm_cvtsi128_si32(_tmp2);
}
static uint32_t maxasint(const __m128i accumulator) {
const __m128i _tmp1 = _mm_max_epu32(_mm_srli_si128(accumulator, 8), accumulator); /* (A,B,C,D) xor (0,0,A,B) = (A,B,C xor A,D xor B)*/
const __m128i _tmp2 = _mm_max_epu32(_mm_srli_si128(_tmp1, 4), _tmp1); /* (A,B,C xor A,D xor B) xor (0,0,0,C xor A)*/
return _mm_cvtsi128_si32(_tmp2);
}
uint32_t simdmin(const uint32_t * in) {
const __m128i* pin = (const __m128i*)(in);
__m128i accumulator = _mm_loadu_si128(pin);
uint32_t k = 1;
for(; 4*k < SIMDBlockSize; ++k) {
__m128i newvec = _mm_loadu_si128(pin+k);
accumulator = _mm_min_epu32(accumulator,newvec);
}
return minasint(accumulator);
}
void simdmaxmin(const uint32_t * in, uint32_t * getmin, uint32_t * getmax) {
const __m128i* pin = (const __m128i*)(in);
__m128i minaccumulator = _mm_loadu_si128(pin);
__m128i maxaccumulator = minaccumulator;
uint32_t k = 1;
for(; 4*k < SIMDBlockSize; ++k) {
__m128i newvec = _mm_loadu_si128(pin+k);
minaccumulator = _mm_min_epu32(minaccumulator,newvec);
maxaccumulator = _mm_max_epu32(maxaccumulator,newvec);
}
*getmin = minasint(minaccumulator);
*getmax = maxasint(maxaccumulator);
}
uint32_t simdmin_length(const uint32_t * in, uint32_t length) {
uint32_t currentmin = 0xFFFFFFFF;
uint32_t lengthdividedby4 = length / 4;
uint32_t offset = lengthdividedby4 * 4;
uint32_t k;
if (lengthdividedby4 > 0) {
const __m128i* pin = (const __m128i*)(in);
__m128i accumulator = _mm_loadu_si128(pin);
k = 1;
for(; 4*k < lengthdividedby4 * 4; ++k) {
__m128i newvec = _mm_loadu_si128(pin+k);
accumulator = _mm_min_epu32(accumulator,newvec);
}
currentmin = minasint(accumulator);
}
for (k = offset; k < length; ++k)
if (in[k] < currentmin)
currentmin = in[k];
return currentmin;
}
void simdmaxmin_length(const uint32_t * in, uint32_t length, uint32_t * getmin, uint32_t * getmax) {
uint32_t lengthdividedby4 = length / 4;
uint32_t offset = lengthdividedby4 * 4;
uint32_t k;
*getmin = 0xFFFFFFFF;
*getmax = 0;
if (lengthdividedby4 > 0) {
const __m128i* pin = (const __m128i*)(in);
__m128i minaccumulator = _mm_loadu_si128(pin);
__m128i maxaccumulator = minaccumulator;
k = 1;
for(; 4*k < lengthdividedby4 * 4; ++k) {
__m128i newvec = _mm_loadu_si128(pin+k);
minaccumulator = _mm_min_epu32(minaccumulator,newvec);
maxaccumulator = _mm_max_epu32(maxaccumulator,newvec);
}
*getmin = minasint(minaccumulator);
*getmax = maxasint(maxaccumulator);
}
for (k = offset; k < length; ++k) {
if (in[k] < *getmin)
*getmin = in[k];
if (in[k] > *getmax)
*getmax = in[k];
}
}
#endif
SIMDCOMP_PURE uint32_t maxbits_length(const uint32_t * in,uint32_t length) {
uint32_t k;
uint32_t lengthdividedby4 = length / 4;
uint32_t offset = lengthdividedby4 * 4;
uint32_t bigxor = 0;
if(lengthdividedby4 > 0) {
const __m128i* pin = (const __m128i*)(in);
__m128i accumulator = _mm_loadu_si128(pin);
k = 1;
for(; 4*k < 4*lengthdividedby4; ++k) {
__m128i newvec = _mm_loadu_si128(pin+k);
accumulator = _mm_or_si128(accumulator,newvec);
}
bigxor = orasint(accumulator);
}
for(k = offset; k < length; ++k)
bigxor |= in[k];
return bits(bigxor);
}
/* maxbit over 128 integers (SIMDBlockSize) with provided initial value */
uint32_t simdmaxbitsd1(uint32_t initvalue, const uint32_t * in) {
__m128i initoffset = _mm_set1_epi32 (initvalue);
const __m128i* pin = (const __m128i*)(in);
__m128i newvec = _mm_loadu_si128(pin);
__m128i accumulator = Delta(newvec , initoffset);
__m128i oldvec = newvec;
uint32_t k = 1;
for(; 4*k < SIMDBlockSize; ++k) {
newvec = _mm_loadu_si128(pin+k);
accumulator = _mm_or_si128(accumulator,Delta(newvec , oldvec));
oldvec = newvec;
}
initoffset = oldvec;
return maxbitas32int(accumulator);
}
/* maxbit over |length| integers with provided initial value */
uint32_t simdmaxbitsd1_length(uint32_t initvalue, const uint32_t * in,
uint32_t length) {
__m128i newvec;
__m128i oldvec;
__m128i initoffset;
__m128i accumulator;
const __m128i *pin;
uint32_t tmparray[4];
uint32_t k = 1;
uint32_t acc;
assert(length > 0);
pin = (const __m128i *)(in);
initoffset = _mm_set1_epi32(initvalue);
switch (length) {
case 1:
newvec = _mm_set1_epi32(in[0]);
break;
case 2:
newvec = _mm_setr_epi32(in[0], in[1], in[1], in[1]);
break;
case 3:
newvec = _mm_setr_epi32(in[0], in[1], in[2], in[2]);
break;
default:
newvec = _mm_loadu_si128(pin);
break;
}
accumulator = Delta(newvec, initoffset);
oldvec = newvec;
/* process 4 integers and build an accumulator */
while (k * 4 + 4 <= length) {
newvec = _mm_loadu_si128(pin + k);
accumulator = _mm_or_si128(accumulator, Delta(newvec, oldvec));
oldvec = newvec;
k++;
}
/* extract the accumulator as an integer */
_mm_storeu_si128((__m128i *)(tmparray), accumulator);
acc = tmparray[0] | tmparray[1] | tmparray[2] | tmparray[3];
/* now process the remaining integers */
for (k *= 4; k < length; k++)
acc |= in[k] - (k == 0 ? initvalue : in[k - 1]);
/* return the number of bits */
return bits(acc);
}

14501
cpp/simdcomp/src/simdfor.c Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

900
cpp/simdcomp/tests/unit.c Normal file
View File

@@ -0,0 +1,900 @@
/**
* This code is released under a BSD License.
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include "simdcomp.h"
int testshortpack() {
int bit;
size_t i;
size_t length;
__m128i * bb;
srand(0);
printf("testshortpack\n");
for (bit = 0; bit < 32; ++bit) {
const size_t N = 128;
uint32_t * data = malloc(N * sizeof(uint32_t));
uint32_t * backdata = malloc(N * sizeof(uint32_t));
uint32_t * buffer = malloc((2 * N + 1024) * sizeof(uint32_t));
for (i = 0; i < N; ++i) {
data[i] = rand() & ((1 << bit) - 1);
}
for (length = 0; length <= N; ++length) {
for (i = 0; i < N; ++i) {
backdata[i] = 0;
}
bb = simdpack_shortlength(data, length, (__m128i *) buffer,
bit);
if((bb - (__m128i *) buffer) * sizeof(__m128i) != (unsigned) simdpack_compressedbytes(length,bit)) {
printf("bug\n");
return -1;
}
simdunpack_shortlength((__m128i *) buffer, length,
backdata, bit);
for (i = 0; i < length; ++i) {
if (data[i] != backdata[i]) {
printf("bug\n");
return -1;
}
}
}
free(data);
free(backdata);
free(buffer);
}
return 0;
}
int testlongpack() {
int bit;
size_t i;
size_t length;
__m128i * bb;
srand(0);
printf("testlongpack\n");
for (bit = 0; bit < 32; ++bit) {
const size_t N = 2048;
uint32_t * data = malloc(N * sizeof(uint32_t));
uint32_t * backdata = malloc(N * sizeof(uint32_t));
uint32_t * buffer = malloc((2 * N + 1024) * sizeof(uint32_t));
for (i = 0; i < N; ++i) {
data[i] = rand() & ((1 << bit) - 1);
}
for (length = 0; length <= N; ++length) {
for (i = 0; i < N; ++i) {
backdata[i] = 0;
}
bb = simdpack_length(data, length, (__m128i *) buffer,
bit);
if((bb - (__m128i *) buffer) * sizeof(__m128i) != (unsigned) simdpack_compressedbytes(length,bit)) {
printf("bug\n");
return -1;
}
simdunpack_length((__m128i *) buffer, length,
backdata, bit);
for (i = 0; i < length; ++i) {
if (data[i] != backdata[i]) {
printf("bug\n");
return -1;
}
}
}
free(data);
free(backdata);
free(buffer);
}
return 0;
}
int testset() {
int bit;
size_t i;
const size_t N = 128;
uint32_t * data = malloc(N * sizeof(uint32_t));
uint32_t * backdata = malloc(N * sizeof(uint32_t));
uint32_t * buffer = malloc((2 * N + 1024) * sizeof(uint32_t));
srand(0);
for (bit = 0; bit < 32; ++bit) {
printf("simple set %d \n",bit);
for (i = 0; i < N; ++i) {
data[i] = rand() & ((1 << bit) - 1);
}
for (i = 0; i < N; ++i) {
backdata[i] = 0;
}
simdpack(data, (__m128i *) buffer, bit);
simdunpack((__m128i *) buffer, backdata, bit);
for (i = 0; i < N; ++i) {
if (data[i] != backdata[i]) {
printf("bug\n");
return -1;
}
}
for(i = N ; i > 0; i--) {
simdfastset((__m128i *) buffer, bit, data[N - i], i - 1);
}
simdunpack((__m128i *) buffer, backdata, bit);
for (i = 0; i < N; ++i) {
if (data[i] != backdata[N - i - 1]) {
printf("bug\n");
return -1;
}
}
simdpack(data, (__m128i *) buffer, bit);
for(i = 1 ; i <= N; i++) {
simdfastset((__m128i *) buffer, bit, data[i - 1], i - 1);
}
simdunpack((__m128i *) buffer, backdata, bit);
for (i = 0; i < N; ++i) {
if (data[i] != backdata[i]) {
printf("bug\n");
return -1;
}
}
}
free(data);
free(backdata);
free(buffer);
return 0;
}
#ifdef __SSE4_1__
int testsetd1() {
int bit;
size_t i;
uint32_t newvalue;
const size_t N = 128;
uint32_t * data = malloc(N * sizeof(uint32_t));
uint32_t * datazeroes = malloc(N * sizeof(uint32_t));
uint32_t * backdata = malloc(N * sizeof(uint32_t));
uint32_t * buffer = malloc((2 * N + 1024) * sizeof(uint32_t));
srand(0);
for (bit = 0; bit < 32; ++bit) {
printf("simple set d1 %d \n",bit);
data[0] = rand() & ((1 << bit) - 1);
datazeroes[0] = 0;
for (i = 1; i < N; ++i) {
data[i] = data[i - 1] + (rand() & ((1 << bit) - 1));
datazeroes[i] = 0;
}
for (i = 0; i < N; ++i) {
backdata[i] = 0;
}
simdpackd1(0,datazeroes, (__m128i *) buffer, bit);
for(i = 1 ; i <= N; i++) {
simdfastsetd1(0,(__m128i *) buffer, bit, data[i - 1], i - 1);
newvalue = simdselectd1(0, (const __m128i *) buffer, bit,i - 1);
if( newvalue != data[i-1] ) {
printf("bad set-select\n");
return -1;
}
}
simdunpackd1(0,(__m128i *) buffer, backdata, bit);
for (i = 0; i < N; ++i) {
if (data[i] != backdata[i])
return -1;
}
}
free(data);
free(backdata);
free(buffer);
free(datazeroes);
return 0;
}
#endif
int testsetFOR() {
int bit;
size_t i;
uint32_t newvalue;
const size_t N = 128;
uint32_t * data = malloc(N * sizeof(uint32_t));
uint32_t * datazeroes = malloc(N * sizeof(uint32_t));
uint32_t * backdata = malloc(N * sizeof(uint32_t));
uint32_t * buffer = malloc((2 * N + 1024) * sizeof(uint32_t));
srand(0);
for (bit = 0; bit < 32; ++bit) {
printf("simple set FOR %d \n",bit);
for (i = 0; i < N; ++i) {
data[i] = (rand() & ((1 << bit) - 1));
datazeroes[i] = 0;
}
for (i = 0; i < N; ++i) {
backdata[i] = 0;
}
simdpackFOR(0,datazeroes, (__m128i *) buffer, bit);
for(i = 1 ; i <= N; i++) {
simdfastsetFOR(0,(__m128i *) buffer, bit, data[i - 1], i - 1);
newvalue = simdselectFOR(0, (const __m128i *) buffer, bit,i - 1);
if( newvalue != data[i-1] ) {
printf("bad set-select\n");
return -1;
}
}
simdunpackFOR(0,(__m128i *) buffer, backdata, bit);
for (i = 0; i < N; ++i) {
if (data[i] != backdata[i])
return -1;
}
}
free(data);
free(backdata);
free(buffer);
free(datazeroes);
return 0;
}
int testshortFORpack() {
int bit;
size_t i;
__m128i * rb;
size_t length;
uint32_t offset = 7;
srand(0);
for (bit = 0; bit < 32; ++bit) {
const size_t N = 128;
uint32_t * data = malloc(N * sizeof(uint32_t));
uint32_t * backdata = malloc(N * sizeof(uint32_t));
uint32_t * buffer = malloc((2 * N + 1024) * sizeof(uint32_t));
for (i = 0; i < N; ++i) {
data[i] = (rand() & ((1 << bit) - 1)) + offset;
}
for (length = 0; length <= N; ++length) {
for (i = 0; i < N; ++i) {
backdata[i] = 0;
}
rb = simdpackFOR_length(offset,data, length, (__m128i *) buffer,
bit);
if(((rb - (__m128i *) buffer)*sizeof(__m128i)) != (unsigned) simdpackFOR_compressedbytes(length,bit)) {
return -1;
}
simdunpackFOR_length(offset,(__m128i *) buffer, length,
backdata, bit);
for (i = 0; i < length; ++i) {
if (data[i] != backdata[i])
return -1;
}
}
free(data);
free(backdata);
free(buffer);
}
return 0;
}
#ifdef __AVX2__
int testbabyavx() {
int bit;
int trial;
unsigned int i,j;
const size_t N = AVXBlockSize;
srand(0);
printf("testbabyavx\n");
printf("bit = ");
for (bit = 0; bit < 32; ++bit) {
printf(" %d ",bit);
fflush(stdout);
for(trial = 0; trial < 100; ++trial) {
uint32_t * data = malloc(N * sizeof(uint32_t)+ 64 * sizeof(uint32_t));
uint32_t * backdata = malloc(N * sizeof(uint32_t) + 64 * sizeof(uint32_t) );
__m256i * buffer = malloc((2 * N + 1024) * sizeof(uint32_t) + 32);
for (i = 0; i < N; ++i) {
data[i] = rand() & ((uint32_t)(1 << bit) - 1);
}
for (i = 0; i < N; ++i) {
backdata[i] = 0;
}
if(avxmaxbits(data) != maxbits_length(data,N)) {
printf("avxmaxbits is buggy\n");
return -1;
}
avxpackwithoutmask(data, buffer, bit);
avxunpack(buffer, backdata, bit);
for (i = 0; i < AVXBlockSize; ++i) {
if (data[i] != backdata[i]) {
printf("bug\n");
for (j = 0; j < N; ++j) {
if (data[j] != backdata[j]) {
printf("data[%d]=%d v.s. backdata[%d]=%d\n",j,data[j],j,backdata[j]);
} else {
printf("data[%d]=%d\n",j,data[j]);
}
}
return -1;
}
}
free(data);
free(backdata);
free(buffer);
}
}
printf("\n");
return 0;
}
int testavx2() {
int N = 5000 * AVXBlockSize, gap;
__m256i * buffer = malloc(AVXBlockSize * sizeof(uint32_t));
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint32_t * backbuffer = malloc(AVXBlockSize * sizeof(uint32_t));
for (gap = 1; gap <= 387420489; gap *= 3) {
int k;
printf(" gap = %u \n", gap);
for (k = 0; k < N; ++k)
datain[k] = k * gap;
for (k = 0; k * AVXBlockSize < N; ++k) {
/*
First part works for general arrays (sorted or unsorted)
*/
int j;
/* we compute the bit width */
const uint32_t b = avxmaxbits(datain + k * AVXBlockSize);
if(avxmaxbits(datain + k * AVXBlockSize) != maxbits_length(datain + k * AVXBlockSize,AVXBlockSize)) {
printf("avxmaxbits is buggy %d %d \n",
avxmaxbits(datain + k * AVXBlockSize),
maxbits_length(datain + k * AVXBlockSize,AVXBlockSize));
return -1;
}
printf("bit width = %d\n",b);
/* we read 256 integers at "datain + k * AVXBlockSize" and
write b 256-bit vectors at "buffer" */
avxpackwithoutmask(datain + k * AVXBlockSize, buffer, b);
/* we read back b1 128-bit vectors at "buffer" and write 128 integers at backbuffer */
avxunpack(buffer, backbuffer, b);/* uncompressed */
for (j = 0; j < AVXBlockSize; ++j) {
if (backbuffer[j] != datain[k * AVXBlockSize + j]) {
int i;
printf("bug in avxpack\n");
for(i = 0; i < AVXBlockSize; ++i) {
printf("data[%d]=%d got back %d %s\n",i,
datain[k * AVXBlockSize + i],backbuffer[i],
datain[k * AVXBlockSize + i]!=backbuffer[i]?"bug":"");
}
return -2;
}
}
}
}
free(buffer);
free(datain);
free(backbuffer);
printf("Code looks good.\n");
return 0;
}
#endif /* avx2 */
int test() {
int N = 5000 * SIMDBlockSize, gap;
__m128i * buffer = malloc(SIMDBlockSize * sizeof(uint32_t));
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint32_t * backbuffer = malloc(SIMDBlockSize * sizeof(uint32_t));
for (gap = 1; gap <= 387420489; gap *= 3) {
int k;
printf(" gap = %u \n", gap);
for (k = 0; k < N; ++k)
datain[k] = k * gap;
for (k = 0; k * SIMDBlockSize < N; ++k) {
/*
First part works for general arrays (sorted or unsorted)
*/
int j;
/* we compute the bit width */
const uint32_t b = maxbits(datain + k * SIMDBlockSize);
/* we read 128 integers at "datain + k * SIMDBlockSize" and
write b 128-bit vectors at "buffer" */
simdpackwithoutmask(datain + k * SIMDBlockSize, buffer, b);
/* we read back b1 128-bit vectors at "buffer" and write 128 integers at backbuffer */
simdunpack(buffer, backbuffer, b);/* uncompressed */
for (j = 0; j < SIMDBlockSize; ++j) {
if (backbuffer[j] != datain[k * SIMDBlockSize + j]) {
printf("bug in simdpack\n");
return -2;
}
}
{
/*
next part assumes that the data is sorted (uses differential coding)
*/
uint32_t offset = 0;
/* we compute the bit width */
const uint32_t b1 = simdmaxbitsd1(offset,
datain + k * SIMDBlockSize);
/* we read 128 integers at "datain + k * SIMDBlockSize" and
write b1 128-bit vectors at "buffer" */
simdpackwithoutmaskd1(offset, datain + k * SIMDBlockSize, buffer,
b1);
/* we read back b1 128-bit vectors at "buffer" and write 128 integers at backbuffer */
simdunpackd1(offset, buffer, backbuffer, b1);
for (j = 0; j < SIMDBlockSize; ++j) {
if (backbuffer[j] != datain[k * SIMDBlockSize + j]) {
printf("bug in simdpack d1\n");
return -3;
}
}
offset = datain[k * SIMDBlockSize + SIMDBlockSize - 1];
}
}
}
free(buffer);
free(datain);
free(backbuffer);
printf("Code looks good.\n");
return 0;
}
#ifdef __SSE4_1__
int testFOR() {
int N = 5000 * SIMDBlockSize, gap;
__m128i * buffer = malloc(SIMDBlockSize * sizeof(uint32_t));
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint32_t * backbuffer = malloc(SIMDBlockSize * sizeof(uint32_t));
uint32_t tmax, tmin, tb;
for (gap = 1; gap <= 387420489; gap *= 2) {
int k;
printf(" gap = %u \n", gap);
for (k = 0; k < N; ++k)
datain[k] = k * gap;
for (k = 0; k * SIMDBlockSize < N; ++k) {
int j;
simdmaxmin_length(datain + k * SIMDBlockSize,SIMDBlockSize,&tmin,&tmax);
/* we compute the bit width */
tb = bits(tmax - tmin);
/* we read 128 integers at "datain + k * SIMDBlockSize" and
write b 128-bit vectors at "buffer" */
simdpackFOR(tmin,datain + k * SIMDBlockSize, buffer, tb);
for (j = 0; j < SIMDBlockSize; ++j) {
uint32_t selectedvalue = simdselectFOR(tmin,buffer,tb,j);
if (selectedvalue != datain[k * SIMDBlockSize + j]) {
printf("bug in simdselectFOR\n");
return -3;
}
}
/* we read back b1 128-bit vectors at "buffer" and write 128 integers at backbuffer */
simdunpackFOR(tmin,buffer, backbuffer, tb);/* uncompressed */
for (j = 0; j < SIMDBlockSize; ++j) {
if (backbuffer[j] != datain[k * SIMDBlockSize + j]) {
printf("bug in simdpackFOR\n");
return -2;
}
}
}
}
free(buffer);
free(datain);
free(backbuffer);
printf("Code looks good.\n");
return 0;
}
#endif
#define MAX 300
int test_simdmaxbitsd1_length() {
uint32_t result, buffer[MAX + 1];
int i, j;
memset(&buffer[0], 0xff, sizeof(buffer));
/* this test creates buffers of different length; each buffer is
* initialized to result in the following deltas:
* length 1: 2
* length 2: 1 2
* length 3: 1 1 2
* length 4: 1 1 1 2
* length 5: 1 1 1 1 2
* etc. Each sequence's "maxbits" is 2. */
for (i = 0; i < MAX; i++) {
for (j = 0; j < i; j++)
buffer[j] = j + 1;
buffer[i] = i + 2;
result = simdmaxbitsd1_length(0, &buffer[0], i + 1);
if (result != 2) {
printf("simdmaxbitsd1_length: unexpected result %u in loop %d\n",
result, i);
return -1;
}
}
printf("simdmaxbitsd1_length: ok\n");
return 0;
}
int uint32_cmp(const void *a, const void *b)
{
const uint32_t *ia = (const uint32_t *)a;
const uint32_t *ib = (const uint32_t *)b;
if(*ia < *ib)
return -1;
else if (*ia > *ib)
return 1;
return 0;
}
#ifdef __SSE4_1__
int test_simdpackedsearch() {
uint32_t buffer[128];
uint32_t result = 0;
int b, i;
uint32_t init = 0;
__m128i initial = _mm_set1_epi32(init);
/* initialize the buffer */
for (i = 0; i < 128; i++)
buffer[i] = (uint32_t)(i + 1);
/* this test creates delta encoded buffers with different bits, then
* performs lower bound searches for each key */
for (b = 1; b <= 32; b++) {
uint32_t out[128];
/* delta-encode to 'i' bits */
simdpackwithoutmaskd1(init, buffer, (__m128i *)out, b);
initial = _mm_setzero_si128();
printf("simdsearchd1: %d bits\n", b);
/* now perform the searches */
initial = _mm_set1_epi32(init);
assert(simdsearchd1(&initial, (__m128i *)out, b, 0, &result) == 0);
assert(result > 0);
for (i = 1; i <= 128; i++) {
initial = _mm_set1_epi32(init);
assert(simdsearchd1(&initial, (__m128i *)out, b,
(uint32_t)i, &result) == i - 1);
assert(result == (unsigned)i);
}
initial = _mm_set1_epi32(init);
assert(simdsearchd1(&initial, (__m128i *)out, b, 200, &result)
== 128);
assert(result > 200);
}
printf("simdsearchd1: ok\n");
return 0;
}
int test_simdpackedsearchFOR() {
uint32_t buffer[128];
uint32_t result = 0;
int b;
uint32_t i;
uint32_t maxv, tmin, tmax, tb;
uint32_t out[128];
/* this test creates delta encoded buffers with different bits, then
* performs lower bound searches for each key */
for (b = 1; b <= 32; b++) {
/* initialize the buffer */
maxv = (b == 32)
? 0xFFFFFFFF
: ((1U<<b) - 1);
for (i = 0; i < 128; i++)
buffer[i] = maxv * (i + 1) / 128;
simdmaxmin_length(buffer,SIMDBlockSize,&tmin,&tmax);
/* we compute the bit width */
tb = bits(tmax - tmin);
/* delta-encode to 'i' bits */
simdpackFOR(tmin, buffer, (__m128i *)out, tb);
printf("simdsearchd1: %d bits\n", b);
/* now perform the searches */
for (i = 0; i < 128; i++) {
assert(buffer[i] == simdselectFOR(tmin, (__m128i *)out, tb,i));
}
for (i = 0; i < 128; i++) {
int x = simdsearchwithlengthFOR(tmin, (__m128i *)out, tb,
128,buffer[i], &result) ;
assert(simdselectFOR(tmin, (__m128i *)out, tb,x) == buffer[x]);
assert(simdselectFOR(tmin, (__m128i *)out, tb,x) == result);
assert(buffer[x] == result);
assert(result == buffer[i]);
assert(buffer[x] == buffer[i]);
}
}
printf("simdsearchFOR: ok\n");
return 0;
}
int test_simdpackedsearch_advanced() {
uint32_t buffer[128];
uint32_t backbuffer[128];
uint32_t out[128];
uint32_t result = 0;
uint32_t b, i;
uint32_t init = 0;
__m128i initial = _mm_set1_epi32(init);
/* this test creates delta encoded buffers with different bits, then
* performs lower bound searches for each key */
for (b = 0; b <= 32; b++) {
uint32_t prev = init;
/* initialize the buffer */
for (i = 0; i < 128; i++) {
buffer[i] = ((uint32_t)(1431655765 * i + 0xFFFFFFFF)) ;
if(b < 32) buffer[i] %= (1<<b);
}
qsort(buffer,128, sizeof(uint32_t), uint32_cmp);
for (i = 0; i < 128; i++) {
buffer[i] = buffer[i] + prev;
prev = buffer[i];
}
for (i = 1; i < 128; i++) {
if(buffer[i] < buffer[i-1] )
buffer[i] = buffer[i-1];
}
assert(simdmaxbitsd1(init, buffer)<=b);
for (i = 0; i < 128; i++) {
out[i] = 0; /* memset would do too */
}
/* delta-encode to 'i' bits */
simdpackwithoutmaskd1(init, buffer, (__m128i *)out, b);
simdunpackd1(init, (__m128i *)out, backbuffer, b);
for (i = 0; i < 128; i++) {
assert(buffer[i] == backbuffer[i]);
}
printf("advanced simdsearchd1: %d bits\n", b);
for (i = 0; i < 128; i++) {
int pos;
initial = _mm_set1_epi32(init);
pos = simdsearchd1(&initial, (__m128i *)out, b,
buffer[i], &result);
assert(pos == simdsearchwithlengthd1(init, (__m128i *)out, b, 128,
buffer[i], &result));
assert(buffer[pos] == buffer[i]);
if(pos > 0)
assert(buffer[pos - 1] < buffer[i]);
assert(result == buffer[i]);
}
for (i = 0; i < 128; i++) {
int pos;
if(buffer[i] == 0) continue;
initial = _mm_set1_epi32(init);
pos = simdsearchd1(&initial, (__m128i *)out, b,
buffer[i] - 1, &result);
assert(pos == simdsearchwithlengthd1(init, (__m128i *)out, b, 128,
buffer[i] - 1, &result));
assert(buffer[pos] >= buffer[i] - 1);
if(pos > 0)
assert(buffer[pos - 1] < buffer[i] - 1);
assert(result == buffer[pos]);
}
for (i = 0; i < 128; i++) {
int pos;
if (buffer[i] + 1 == 0)
continue;
initial = _mm_set1_epi32(init);
pos = simdsearchd1(&initial, (__m128i *) out, b,
buffer[i] + 1, &result);
assert(pos == simdsearchwithlengthd1(init, (__m128i *)out, b, 128,
buffer[i] + 1, &result));
if(pos == 128) {
assert(buffer[i] == buffer[127]);
} else {
assert(buffer[pos] >= buffer[i] + 1);
if (pos > 0)
assert(buffer[pos - 1] < buffer[i] + 1);
assert(result == buffer[pos]);
}
}
}
printf("advanced simdsearchd1: ok\n");
return 0;
}
int test_simdpackedselect() {
uint32_t buffer[128];
uint32_t initial = 33;
int b, i;
/* initialize the buffer */
for (i = 0; i < 128; i++)
buffer[i] = (uint32_t)(initial + i);
/* this test creates delta encoded buffers with different bits, then
* performs lower bound searches for each key */
for (b = 1; b <= 32; b++) {
uint32_t out[128];
/* delta-encode to 'i' bits */
simdpackwithoutmaskd1(initial, buffer, (__m128i *)out, b);
printf("simdselectd1: %d bits\n", b);
/* now perform the searches */
for (i = 0; i < 128; i++) {
assert(simdselectd1(initial, (__m128i *)out, b, (uint32_t)i)
== initial + i);
}
}
printf("simdselectd1: ok\n");
return 0;
}
int test_simdpackedselect_advanced() {
uint32_t buffer[128];
uint32_t initial = 33;
uint32_t b;
int i;
/* this test creates delta encoded buffers with different bits, then
* performs lower bound searches for each key */
for (b = 0; b <= 32; b++) {
uint32_t prev = initial;
uint32_t out[128];
/* initialize the buffer */
for (i = 0; i < 128; i++) {
buffer[i] = ((uint32_t)(165576 * i)) ;
if(b < 32) buffer[i] %= (1<<b);
}
for (i = 0; i < 128; i++) {
buffer[i] = buffer[i] + prev;
prev = buffer[i];
}
for (i = 1; i < 128; i++) {
if(buffer[i] < buffer[i-1] )
buffer[i] = buffer[i-1];
}
assert(simdmaxbitsd1(initial, buffer)<=b);
for (i = 0; i < 128; i++) {
out[i] = 0; /* memset would do too */
}
/* delta-encode to 'i' bits */
simdpackwithoutmaskd1(initial, buffer, (__m128i *)out, b);
printf("simdselectd1: %d bits\n", b);
/* now perform the searches */
for (i = 0; i < 128; i++) {
uint32_t valretrieved = simdselectd1(initial, (__m128i *)out, b, (uint32_t)i);
assert(valretrieved == buffer[i]);
}
}
printf("advanced simdselectd1: ok\n");
return 0;
}
#endif
int main() {
int r;
r = testsetFOR();
if (r) {
printf("test failure 1\n");
return r;
}
#ifdef __SSE4_1__
r = testsetd1();
if (r) {
printf("test failure 2\n");
return r;
}
#endif
r = testset();
if (r) {
printf("test failure 3\n");
return r;
}
r = testshortFORpack();
if (r) {
printf("test failure 4\n");
return r;
}
r = testshortpack();
if (r) {
printf("test failure 5\n");
return r;
}
r = testlongpack();
if (r) {
printf("test failure 6\n");
return r;
}
#ifdef __SSE4_1__
r = test_simdpackedsearchFOR();
if (r) {
printf("test failure 7\n");
return r;
}
r = testFOR();
if (r) {
printf("test failure 8\n");
return r;
}
#endif
#ifdef __AVX2__
r= testbabyavx();
if (r) {
printf("test failure baby avx\n");
return r;
}
r = testavx2();
if (r) {
printf("test failure 9 avx\n");
return r;
}
#endif
r = test();
if (r) {
printf("test failure 9\n");
return r;
}
r = test_simdmaxbitsd1_length();
if (r) {
printf("test failure 10\n");
return r;
}
#ifdef __SSE4_1__
r = test_simdpackedsearch();
if (r) {
printf("test failure 11\n");
return r;
}
r = test_simdpackedsearch_advanced();
if (r) {
printf("test failure 12\n");
return r;
}
r = test_simdpackedselect();
if (r) {
printf("test failure 13\n");
return r;
}
r = test_simdpackedselect_advanced();
if (r) {
printf("test failure 14\n");
return r;
}
#endif
printf("All tests OK!\n");
return 0;
}

View File

@@ -0,0 +1,102 @@
/**
* This code is released under a BSD License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "simdcomp.h"
#define get_random_char() (uint8_t)(rand() % 256);
int main() {
int N = 5000 * SIMDBlockSize, gap;
__m128i * buffer = malloc(SIMDBlockSize * sizeof(uint32_t));
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint32_t * backbuffer = malloc(SIMDBlockSize * sizeof(uint32_t));
srand(time(NULL));
for (gap = 1; gap <= 387420489; gap *= 3) {
int k;
printf(" gap = %u \n", gap);
/* simulate some random character string, don't care about endiannes */
for (k = 0; k < N; ++k) {
uint8_t _tmp[4];
_tmp[0] = get_random_char();
_tmp[1] = get_random_char();
_tmp[2] = get_random_char();
_tmp[3] = get_random_char();
memmove(&datain[k], _tmp, 4);
}
for (k = 0; k * SIMDBlockSize < N; ++k) {
/*
First part works for general arrays (sorted or unsorted)
*/
int j;
/* we compute the bit width */
const uint32_t b = maxbits(datain + k * SIMDBlockSize);
/* we read 128 integers at "datain + k * SIMDBlockSize" and
write b 128-bit vectors at "buffer" */
simdpackwithoutmask(datain + k * SIMDBlockSize, buffer, b);
/* we read back b1 128-bit vectors at "buffer" and write 128 integers at backbuffer */
simdunpack(buffer, backbuffer, b);/* uncompressed */
for (j = 0; j < SIMDBlockSize; ++j) {
uint8_t chars_back[4];
uint8_t chars_in[4];
memmove(chars_back, &backbuffer[j], 4);
memmove(chars_in, &datain[k * SIMDBlockSize + j], 4);
if (chars_in[0] != chars_back[0]
|| chars_in[1] != chars_back[1]
|| chars_in[2] != chars_back[2]
|| chars_in[3] != chars_back[3]) {
printf("bug in simdpack\n");
return -2;
}
}
{
/*
next part assumes that the data is sorted (uses differential coding)
*/
uint32_t offset = 0;
/* we compute the bit width */
const uint32_t b1 = simdmaxbitsd1(offset,
datain + k * SIMDBlockSize);
/* we read 128 integers at "datain + k * SIMDBlockSize" and
write b1 128-bit vectors at "buffer" */
simdpackwithoutmaskd1(offset, datain + k * SIMDBlockSize, buffer,
b1);
/* we read back b1 128-bit vectors at "buffer" and write 128 integers at backbuffer */
simdunpackd1(offset, buffer, backbuffer, b1);
for (j = 0; j < SIMDBlockSize; ++j) {
uint8_t chars_back[4];
uint8_t chars_in[4];
memmove(chars_back, &backbuffer[j], 4);
memmove(chars_in, &datain[k * SIMDBlockSize + j], 4);
if (chars_in[0] != chars_back[0]
|| chars_in[1] != chars_back[1]
|| chars_in[2] != chars_back[2]
|| chars_in[3] != chars_back[3]) {
printf("bug in simdpack\n");
return -3;
}
}
offset = datain[k * SIMDBlockSize + SIMDBlockSize - 1];
}
}
}
free(buffer);
free(datain);
free(backbuffer);
printf("Code looks good.\n");
return 0;
}

42
cpp/simdcomp_wrapper.c vendored Normal file
View File

@@ -0,0 +1,42 @@
#include "simdcomp.h"
#include "simdcomputil.h"
// assumes datain has a size of 128 uint32
// and that buffer is large enough to host the data.
size_t compress_sorted(
const uint32_t* datain,
uint8_t* output,
const uint32_t offset) {
const uint32_t b = simdmaxbitsd1(offset, datain);
*output++ = b;
simdpackwithoutmaskd1(offset, datain, (__m128i *) output, b);
return 1 + b * sizeof(__m128i);
}
// assumes datain has a size of 128 uint32
// and that buffer is large enough to host the data.
size_t uncompress_sorted(
const uint8_t* compressed_data,
uint32_t* output,
uint32_t offset) {
const uint32_t b = *compressed_data++;
simdunpackd1(offset, (__m128i *)compressed_data, output, b);
return 1 + b * sizeof(__m128i);
}
size_t compress_unsorted(
const uint32_t* datain,
uint8_t* output) {
const uint32_t b = maxbits(datain);
*output++ = b;
simdpackwithoutmask(datain, (__m128i *) output, b);
return 1 + b * sizeof(__m128i);
}
size_t uncompress_unsorted(
const uint8_t* compressed_data,
uint32_t* output) {
const uint32_t b = *compressed_data++;
simdunpack((__m128i *)compressed_data, output, b);
return 1 + b * sizeof(__m128i);
}

32
cpp/streamvbyte/.gitignore vendored Normal file
View File

@@ -0,0 +1,32 @@
# Object files
*.o
*.ko
*.obj
*.elf
# Precompiled Headers
*.gch
*.pch
# Libraries
*.lib
*.a
*.la
*.lo
# Shared objects (inc. Windows DLLs)
*.dll
*.so
*.so.*
*.dylib
# Executables
*.exe
*.out
*.app
*.i*86
*.x86_64
*.hex
# Debug files
*.dSYM/

View File

@@ -0,0 +1,7 @@
language: c
sudo: false
compiler:
- gcc
- clang
script: make && ./unit

202
cpp/streamvbyte/LICENSE Normal file
View File

@@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

60
cpp/streamvbyte/README.md Normal file
View File

@@ -0,0 +1,60 @@
streamvbyte
===========
[![Build Status](https://travis-ci.org/lemire/streamvbyte.png)](https://travis-ci.org/lemire/streamvbyte)
StreamVByte is a new integer compression technique that applies SIMD instructions (vectorization) to
Google's Group Varint approach. The net result is faster than other byte-oriented compression
techniques.
The approach is patent-free, the code is available under the Apache License.
It includes fast differential coding.
It assumes a recent Intel processor (e.g., haswell or better) .
The code should build using most standard-compliant C99 compilers. The provided makefile
expects a Linux-like system.
Usage:
make
./unit
See example.c for an example.
Short code sample:
```C
// suppose that datain is an array of uint32_t integers
size_t compsize = streamvbyte_encode(datain, N, compressedbuffer); // encoding
// here the result is stored in compressedbuffer using compsize bytes
streamvbyte_decode(compressedbuffer, recovdata, N); // decoding (fast)
```
If the values are sorted, then it might be preferable to use differential coding:
```C
// suppose that datain is an array of uint32_t integers
size_t compsize = streamvbyte_delta_encode(datain, N, compressedbuffer,0); // encoding
// here the result is stored in compressedbuffer using compsize bytes
streamvbyte_delta_decode(compressedbuffer, recovdata, N,0); // decoding (fast)
```
You have to know how many integers were coded when you decompress. You can store this
information along with the compressed stream.
See also
--------
* SIMDCompressionAndIntersection: A C++ library to compress and intersect sorted lists of integers using SIMD instructions https://github.com/lemire/SIMDCompressionAndIntersect
* The FastPFOR C++ library : Fast integer compression https://github.com/lemire/FastPFor
* High-performance dictionary coding https://github.com/lemire/dictionary
* LittleIntPacker: C library to pack and unpack short arrays of integers as fast as possible https://github.com/lemire/LittleIntPacker
* The SIMDComp library: A simple C library for compressing lists of integers using binary packing https://github.com/lemire/simdcomp
* MaskedVByte: Fast decoder for VByte-compressed integers https://github.com/lemire/MaskedVByte
* CSharpFastPFOR: A C# integer compression library https://github.com/Genbox/CSharpFastPFOR
* JavaFastPFOR: A java integer compression library https://github.com/lemire/JavaFastPFOR
* Encoding: Integer Compression Libraries for Go https://github.com/zhenjl/encoding
* FrameOfReference is a C++ library dedicated to frame-of-reference (FOR) compression: https://github.com/lemire/FrameOfReference
* libvbyte: A fast implementation for varbyte 32bit/64bit integer compression https://github.com/cruppstahl/libvbyte
* TurboPFor is a C library that offers lots of interesting optimizations. Well worth checking! (GPL license) https://github.com/powturbo/TurboPFor
* Oroch is a C++ library that offers a usable API (MIT license) https://github.com/ademakov/Oroch

24
cpp/streamvbyte/example.c Normal file
View File

@@ -0,0 +1,24 @@
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "streamvbyte.h"
int main() {
int N = 5000;
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint8_t * compressedbuffer = malloc(N * sizeof(uint32_t));
uint32_t * recovdata = malloc(N * sizeof(uint32_t));
for (int k = 0; k < N; ++k)
datain[k] = 120;
size_t compsize = streamvbyte_encode(datain, N, compressedbuffer); // encoding
// here the result is stored in compressedbuffer using compsize bytes
size_t compsize2 = streamvbyte_decode(compressedbuffer, recovdata,
N); // decoding (fast)
assert(compsize == compsize2);
free(datain);
free(compressedbuffer);
free(recovdata);
printf("Compressed %d integers down to %d bytes.\n",N,(int) compsize);
return 0;
}

View File

@@ -0,0 +1,19 @@
#ifndef VARINTDECODE_H_
#define VARINTDECODE_H_
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <stdint.h>// please use a C99-compatible compiler
#include <stddef.h>
// Encode an array of a given length read from in to bout in varint format.
// Returns the number of bytes written.
size_t streamvbyte_encode(const uint32_t *in, uint32_t length, uint8_t *out);
// Read "length" 32-bit integers in varint format from in, storing the result in out.
// Returns the number of bytes read.
size_t streamvbyte_decode(const uint8_t* in, uint32_t* out, uint32_t length);
#endif /* VARINTDECODE_H_ */

View File

@@ -0,0 +1,24 @@
/*
* streamvbytedelta.h
*
* Created on: Apr 14, 2016
* Author: lemire
*/
#ifndef INCLUDE_STREAMVBYTEDELTA_H_
#define INCLUDE_STREAMVBYTEDELTA_H_
// Encode an array of a given length read from in to bout in StreamVByte format.
// Returns the number of bytes written.
// this version uses differential coding (coding differences between values) starting at prev (you can often set prev to zero)
size_t streamvbyte_delta_encode(const uint32_t *in, uint32_t length, uint8_t *out, uint32_t prev);
// Read "length" 32-bit integers in StreamVByte format from in, storing the result in out.
// Returns the number of bytes read.
// this version uses differential coding (coding differences between values) starting at prev (you can often set prev to zero)
size_t streamvbyte_delta_decode(const uint8_t* in, uint32_t* out, uint32_t length, uint32_t prev);
#endif /* INCLUDE_STREAMVBYTEDELTA_H_ */

58
cpp/streamvbyte/makefile Normal file
View File

@@ -0,0 +1,58 @@
# minimalist makefile
.SUFFIXES:
#
.SUFFIXES: .cpp .o .c .h
CFLAGS = -fPIC -march=native -std=c99 -O3 -Wall -Wextra -pedantic -Wshadow
LDFLAGS = -shared
LIBNAME=libstreamvbyte.so.0.0.1
all: unit $(LIBNAME)
test:
./unit
install: $(OBJECTS)
cp $(LIBNAME) /usr/local/lib
ln -s /usr/local/lib/$(LIBNAME) /usr/local/lib/libstreamvbyte.so
ldconfig
cp $(HEADERS) /usr/local/include
HEADERS=./include/streamvbyte.h ./include/streamvbytedelta.h
uninstall:
for h in $(HEADERS) ; do rm /usr/local/$$h; done
rm /usr/local/lib/$(LIBNAME)
rm /usr/local/lib/libstreamvbyte.so
ldconfig
OBJECTS= streamvbyte.o streamvbytedelta.o
streamvbytedelta.o: ./src/streamvbytedelta.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/streamvbytedelta.c -Iinclude
streamvbyte.o: ./src/streamvbyte.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/streamvbyte.c -Iinclude
$(LIBNAME): $(OBJECTS)
$(CC) $(CFLAGS) -o $(LIBNAME) $(OBJECTS) $(LDFLAGS)
example: ./example.c $(HEADERS) $(OBJECTS)
$(CC) $(CFLAGS) -o example ./example.c -Iinclude $(OBJECTS)
unit: ./tests/unit.c $(HEADERS) $(OBJECTS)
$(CC) $(CFLAGS) -o unit ./tests/unit.c -Iinclude $(OBJECTS)
dynunit: ./tests/unit.c $(HEADERS) $(LIBNAME)
$(CC) $(CFLAGS) -o dynunit ./tests/unit.c -Iinclude -lstreamvbyte
clean:
rm -f unit *.o $(LIBNAME) example

View File

@@ -0,0 +1,495 @@
#include "streamvbyte.h"
#if defined(_MSC_VER)
/* Microsoft C/C++-compatible compiler */
#include <intrin.h>
#elif defined(__GNUC__) && (defined(__x86_64__) || defined(__i386__))
/* GCC-compatible compiler, targeting x86/x86-64 */
#include <x86intrin.h>
#elif defined(__GNUC__) && defined(__ARM_NEON__)
/* GCC-compatible compiler, targeting ARM with NEON */
#include <arm_neon.h>
#elif defined(__GNUC__) && defined(__IWMMXT__)
/* GCC-compatible compiler, targeting ARM with WMMX */
#include <mmintrin.h>
#elif (defined(__GNUC__) || defined(__xlC__)) && (defined(__VEC__) || defined(__ALTIVEC__))
/* XLC or GCC-compatible compiler, targeting PowerPC with VMX/VSX */
#include <altivec.h>
#elif defined(__GNUC__) && defined(__SPE__)
/* GCC-compatible compiler, targeting PowerPC with SPE */
#include <spe.h>
#endif
static uint8_t lengthTable[256] = { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9,
10, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 6, 7, 8, 9, 7, 8,
9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10,
11, 12, 10, 11, 12, 13, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10,
11, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 7, 8, 9, 10,
8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 8, 9, 10, 11, 9, 10, 11,
12, 10, 11, 12, 13, 11, 12, 13, 14, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10,
11, 9, 10, 11, 12, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12,
13, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14, 9, 10,
11, 12, 10, 11, 12, 13, 11, 12, 13, 14, 12, 13, 14, 15, 7, 8, 9, 10, 8,
9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 8, 9, 10, 11, 9, 10, 11, 12,
10, 11, 12, 13, 11, 12, 13, 14, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12,
13, 14, 12, 13, 14, 15, 10, 11, 12, 13, 11, 12, 13, 14, 12, 13, 14, 15,
13, 14, 15, 16 };
static uint8_t shuffleTable[256][16] = { { 0, -1, -1, -1, 1, -1, -1, -1, 2, -1,
-1, -1, 3, -1, -1, -1 }, // 1111
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, -1, -1, -1 }, // 2111
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, -1, -1, -1 }, // 3111
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, -1, -1, -1 }, // 4111
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, -1, -1, -1 }, // 1211
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, -1, -1, -1 }, // 2211
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, -1, -1, -1 }, // 3211
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, -1, -1, -1 }, // 4211
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, -1, -1, -1 }, // 1311
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, -1, -1, -1 }, // 2311
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, -1, -1, -1 }, // 3311
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, -1, -1, -1 }, // 4311
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, -1, -1, -1 }, // 1411
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, -1, -1, -1 }, // 2411
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, -1, -1, -1 }, // 3411
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, -1, -1, -1 }, // 4411
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1 }, // 1121
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, -1, -1, -1 }, // 2121
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, -1, -1, -1 }, // 3121
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, -1, -1, -1 }, // 4121
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, -1, -1, -1 }, // 1221
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, -1, -1, -1 }, // 2221
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, -1, -1, -1 }, // 3221
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, -1, -1, -1 }, // 4221
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, -1, -1, -1 }, // 1321
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, -1, -1, -1 }, // 2321
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, -1, -1, -1 }, // 3321
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, -1, -1, -1 }, // 4321
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, -1, -1, -1 }, // 1421
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, -1, -1, -1 }, // 2421
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, -1, -1, -1 }, // 3421
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, -1, -1, -1 }, // 4421
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1 }, // 1131
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, -1, -1, -1 }, // 2131
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, -1, -1, -1 }, // 3131
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, -1, -1, -1 }, // 4131
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, -1, -1, -1 }, // 1231
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, -1, -1, -1 }, // 2231
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, -1, -1, -1 }, // 3231
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, -1, -1, -1 }, // 4231
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, -1, -1, -1 }, // 1331
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, -1, -1, -1 }, // 2331
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, -1, -1, -1 }, // 3331
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, -1, -1, -1 }, // 4331
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, -1, -1, -1 }, // 1431
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, -1, -1, -1 }, // 2431
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, -1, -1, -1 }, // 3431
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, -1, -1, -1 }, // 4431
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1 }, // 1141
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, -1, -1, -1 }, // 2141
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, -1, -1, -1 }, // 3141
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, -1, -1, -1 }, // 4141
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, -1, -1, -1 }, // 1241
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, -1, -1, -1 }, // 2241
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, -1, -1, -1 }, // 3241
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, -1, -1, -1 }, // 4241
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, -1, -1, -1 }, // 1341
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, -1, -1, -1 }, // 2341
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, -1, -1, -1 }, // 3341
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, -1, -1, -1 }, // 4341
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1 }, // 1441
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, -1, -1 }, // 2441
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, -1, -1, -1 }, // 3441
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1, -1 }, // 4441
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1 }, // 1112
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, 5, -1, -1 }, // 2112
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, 6, -1, -1 }, // 3112
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, 7, -1, -1 }, // 4112
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, 5, -1, -1 }, // 1212
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, 6, -1, -1 }, // 2212
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, 7, -1, -1 }, // 3212
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, 8, -1, -1 }, // 4212
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, 6, -1, -1 }, // 1312
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, 7, -1, -1 }, // 2312
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, 8, -1, -1 }, // 3312
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, 9, -1, -1 }, // 4312
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, 7, -1, -1 }, // 1412
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, 8, -1, -1 }, // 2412
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, 9, -1, -1 }, // 3412
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, -1, -1 }, // 4412
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1 }, // 1122
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, 6, -1, -1 }, // 2122
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, 7, -1, -1 }, // 3122
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, 8, -1, -1 }, // 4122
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, 6, -1, -1 }, // 1222
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, 7, -1, -1 }, // 2222
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8, -1, -1 }, // 3222
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, 9, -1, -1 }, // 4222
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, 7, -1, -1 }, // 1322
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, 8, -1, -1 }, // 2322
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, 9, -1, -1 }, // 3322
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, 10, -1, -1 }, // 4322
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, 8, -1, -1 }, // 1422
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, 9, -1, -1 }, // 2422
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, 10, -1, -1 }, // 3422
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, 11, -1, -1 }, // 4422
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1 }, // 1132
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, 7, -1, -1 }, // 2132
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, 8, -1, -1 }, // 3132
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, 9, -1, -1 }, // 4132
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, 7, -1, -1 }, // 1232
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, 8, -1, -1 }, // 2232
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, 9, -1, -1 }, // 3232
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, 10, -1, -1 }, // 4232
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, 8, -1, -1 }, // 1332
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, 9, -1, -1 }, // 2332
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, 10, -1, -1 }, // 3332
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, 11, -1, -1 }, // 4332
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, 9, -1, -1 }, // 1432
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, 10, -1, -1 }, // 2432
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, 11, -1, -1 }, // 3432
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, 12, -1, -1 }, // 4432
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1 }, // 1142
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, 8, -1, -1 }, // 2142
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, 9, -1, -1 }, // 3142
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, 10, -1, -1 }, // 4142
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, 8, -1, -1 }, // 1242
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, 9, -1, -1 }, // 2242
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, 10, -1, -1 }, // 3242
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1 }, // 4242
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, 9, -1, -1 }, // 1342
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, 10, -1, -1 }, // 2342
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, 11, -1, -1 }, // 3342
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, 12, -1, -1 }, // 4342
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, -1 }, // 1442
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, -1, -1 }, // 2442
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1 }, // 3442
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, -1, -1 }, // 4442
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1 }, // 1113
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, 5, 6, -1 }, // 2113
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, 6, 7, -1 }, // 3113
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, 7, 8, -1 }, // 4113
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, 5, 6, -1 }, // 1213
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, 6, 7, -1 }, // 2213
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, 7, 8, -1 }, // 3213
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, 8, 9, -1 }, // 4213
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, 6, 7, -1 }, // 1313
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, 7, 8, -1 }, // 2313
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, 8, 9, -1 }, // 3313
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, 9, 10, -1 }, // 4313
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, 7, 8, -1 }, // 1413
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, 8, 9, -1 }, // 2413
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, 9, 10, -1 }, // 3413
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, 11, -1 }, // 4413
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1 }, // 1123
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, 6, 7, -1 }, // 2123
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, 7, 8, -1 }, // 3123
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, 8, 9, -1 }, // 4123
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, 6, 7, -1 }, // 1223
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, 7, 8, -1 }, // 2223
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8, 9, -1 }, // 3223
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, 9, 10, -1 }, // 4223
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, 7, 8, -1 }, // 1323
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, 8, 9, -1 }, // 2323
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, 9, 10, -1 }, // 3323
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, 10, 11, -1 }, // 4323
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, 8, 9, -1 }, // 1423
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, 9, 10, -1 }, // 2423
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, 10, 11, -1 }, // 3423
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, 11, 12, -1 }, // 4423
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1 }, // 1133
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, 7, 8, -1 }, // 2133
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, 8, 9, -1 }, // 3133
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, 9, 10, -1 }, // 4133
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, 7, 8, -1 }, // 1233
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, 8, 9, -1 }, // 2233
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, 9, 10, -1 }, // 3233
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, 10, 11, -1 }, // 4233
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, 8, 9, -1 }, // 1333
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, 9, 10, -1 }, // 2333
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, 10, 11, -1 }, // 3333
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, 11, 12, -1 }, // 4333
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, 9, 10, -1 }, // 1433
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, 10, 11, -1 }, // 2433
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, 11, 12, -1 }, // 3433
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, 12, 13, -1 }, // 4433
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1 }, // 1143
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, 8, 9, -1 }, // 2143
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, 9, 10, -1 }, // 3143
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, 10, 11, -1 }, // 4143
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, 8, 9, -1 }, // 1243
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, 9, 10, -1 }, // 2243
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, 10, 11, -1 }, // 3243
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, 12, -1 }, // 4243
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, 9, 10, -1 }, // 1343
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, 10, 11, -1 }, // 2343
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, 11, 12, -1 }, // 3343
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, 12, 13, -1 }, // 4343
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, -1 }, // 1443
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1 }, // 2443
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, -1 }, // 3443
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -1 }, // 4443
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6 }, // 1114
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, 5, 6, 7 }, // 2114
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, 6, 7, 8 }, // 3114
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, 7, 8, 9 }, // 4114
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, 5, 6, 7 }, // 1214
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, 6, 7, 8 }, // 2214
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, 7, 8, 9 }, // 3214
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, 8, 9, 10 }, // 4214
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, 6, 7, 8 }, // 1314
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, 7, 8, 9 }, // 2314
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, 8, 9, 10 }, // 3314
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, 9, 10, 11 }, // 4314
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, 7, 8, 9 }, // 1414
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, 8, 9, 10 }, // 2414
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, 9, 10, 11 }, // 3414
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, 11, 12 }, // 4414
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7 }, // 1124
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, 6, 7, 8 }, // 2124
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, 7, 8, 9 }, // 3124
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, 8, 9, 10 }, // 4124
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, 6, 7, 8 }, // 1224
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, 7, 8, 9 }, // 2224
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8, 9, 10 }, // 3224
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, 9, 10, 11 }, // 4224
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, 7, 8, 9 }, // 1324
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, 8, 9, 10 }, // 2324
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, 9, 10, 11 }, // 3324
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, 10, 11, 12 }, // 4324
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, 8, 9, 10 }, // 1424
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, 9, 10, 11 }, // 2424
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, 10, 11, 12 }, // 3424
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, 11, 12, 13 }, // 4424
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8 }, // 1134
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, 7, 8, 9 }, // 2134
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, 8, 9, 10 }, // 3134
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, 9, 10, 11 }, // 4134
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, 7, 8, 9 }, // 1234
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, 8, 9, 10 }, // 2234
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, 9, 10, 11 }, // 3234
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, 10, 11, 12 }, // 4234
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, 8, 9, 10 }, // 1334
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, 9, 10, 11 }, // 2334
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, 10, 11, 12 }, // 3334
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, 11, 12, 13 }, // 4334
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, 9, 10, 11 }, // 1434
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, 10, 11, 12 }, // 2434
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, 11, 12, 13 }, // 3434
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, 12, 13, 14 }, // 4434
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9 }, // 1144
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, 8, 9, 10 }, // 2144
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, 9, 10, 11 }, // 3144
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, 10, 11, 12 }, // 4144
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, 8, 9, 10 }, // 1244
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, 9, 10, 11 }, // 2244
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, 10, 11, 12 }, // 3244
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, 12, 13 }, // 4244
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, 9, 10, 11 }, // 1344
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, 10, 11, 12 }, // 2344
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, 11, 12, 13 }, // 3344
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, 12, 13, 14 }, // 4344
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }, // 1444
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, // 2444
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }, // 3444
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } // 4444
};
static uint8_t _encode_data(uint32_t val, uint8_t *__restrict__ *dataPtrPtr) {
uint8_t *dataPtr = *dataPtrPtr;
uint8_t code;
if (val < (1 << 8)) { // 1 byte
*dataPtr = (uint8_t)(val);
*dataPtrPtr += 1;
code = 0;
} else if (val < (1 << 16)) { // 2 bytes
*(uint16_t *) dataPtr = (uint16_t)(val);
*dataPtrPtr += 2;
code = 1;
} else if (val < (1 << 24)) { // 3 bytes
*(uint16_t *) dataPtr = (uint16_t)(val);
*(dataPtr + 2) = (uint8_t)(val >> 16);
*dataPtrPtr += 3;
code = 2;
} else { // 4 bytes
*(uint32_t *) dataPtr = val;
*dataPtrPtr += 4;
code = 3;
}
return code;
}
static uint8_t *svb_encode_scalar(const uint32_t *in,
uint8_t *__restrict__ keyPtr, uint8_t *__restrict__ dataPtr,
uint32_t count) {
if (count == 0)
return dataPtr; // exit immediately if no data
uint8_t shift = 0; // cycles 0, 2, 4, 6, 0, 2, 4, 6, ...
uint8_t key = 0;
for (uint32_t c = 0; c < count; c++) {
if (shift == 8) {
shift = 0;
*keyPtr++ = key;
key = 0;
}
uint32_t val = in[c];
uint8_t code = _encode_data(val, &dataPtr);
key |= code << shift;
shift += 2;
}
*keyPtr = key; // write last key (no increment needed)
return dataPtr; // pointer to first unused data byte
}
// Encode an array of a given length read from in to bout in streamvbyte format.
// Returns the number of bytes written.
size_t streamvbyte_encode(const uint32_t *in, uint32_t count, uint8_t *out) {
uint8_t *keyPtr = out;
uint32_t keyLen = (count + 3) / 4; // 2-bits rounded to full byte
uint8_t *dataPtr = keyPtr + keyLen; // variable byte data after all keys
return svb_encode_scalar(in, keyPtr, dataPtr, count) - out;
}
static inline __m128i _decode_avx(uint32_t key,
const uint8_t *__restrict__ *dataPtrPtr) {
uint8_t len = lengthTable[key];
__m128i Data = _mm_loadu_si128((__m128i *) *dataPtrPtr);
__m128i Shuf = *(__m128i *) &shuffleTable[key];
Data = _mm_shuffle_epi8(Data, Shuf);
*dataPtrPtr += len;
return Data;
}
static inline void _write_avx(uint32_t *out, __m128i Vec) {
_mm_storeu_si128((__m128i *) out, Vec);
}
static inline uint32_t _decode_data(const uint8_t **dataPtrPtr, uint8_t code) {
const uint8_t *dataPtr = *dataPtrPtr;
uint32_t val;
if (code == 0) { // 1 byte
val = (uint32_t) * dataPtr;
dataPtr += 1;
} else if (code == 1) { // 2 bytes
val = (uint32_t) * (uint16_t *) dataPtr;
dataPtr += 2;
} else if (code == 2) { // 3 bytes
val = (uint32_t) * (uint16_t *) dataPtr;
val |= *(dataPtr + 2) << 16;
dataPtr += 3;
} else { // code == 3
val = *(uint32_t *) dataPtr; // 4 bytes
dataPtr += 4;
}
*dataPtrPtr = dataPtr;
return val;
}
static const uint8_t *svb_decode_scalar(uint32_t *outPtr, const uint8_t *keyPtr,
const uint8_t *dataPtr, uint32_t count) {
if (count == 0)
return dataPtr; // no reads or writes if no data
uint8_t shift = 0;
uint32_t key = *keyPtr++;
for (uint32_t c = 0; c < count; c++) {
if (shift == 8) {
shift = 0;
key = *keyPtr++;
}
uint32_t val = _decode_data(&dataPtr, (key >> shift) & 0x3);
*outPtr++ = val;
shift += 2;
}
return dataPtr; // pointer to first unused byte after end
}
const uint8_t *svb_decode_avx_simple(uint32_t *out,
const uint8_t *__restrict__ keyPtr, const uint8_t *__restrict__ dataPtr,
uint64_t count) {
uint64_t keybytes = count / 4; // number of key bytes
__m128i Data;
if (keybytes >= 8) {
int64_t Offset = -(int64_t) keybytes / 8 + 1;
const uint64_t *keyPtr64 = (const uint64_t *) keyPtr - Offset;
uint64_t nextkeys = keyPtr64[Offset];
for (; Offset != 0; ++Offset) {
uint64_t keys = nextkeys;
nextkeys = keyPtr64[Offset + 1];
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 4, Data);
keys >>= 16;
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out + 8, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 12, Data);
keys >>= 16;
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out + 16, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 20, Data);
keys >>= 16;
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out + 24, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 28, Data);
out += 32;
}
{
uint64_t keys = nextkeys;
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 4, Data);
keys >>= 16;
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out + 8, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 12, Data);
keys >>= 16;
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out + 16, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 20, Data);
keys >>= 16;
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out + 24, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 28, Data);
out += 32;
}
}
uint64_t consumedkeys = keybytes - (keybytes & 7);
return svb_decode_scalar(out, keyPtr + consumedkeys, dataPtr, count & 31);
}
// Read count 32-bit integers in maskedvbyte format from in, storing the result in out. Returns the number of bytes read.
size_t streamvbyte_decode(const uint8_t* in, uint32_t* out, uint32_t count) {
if (count == 0)
return 0;
const uint8_t *keyPtr = in; // full list of keys is next
uint32_t keyLen = ((count + 3) / 4); // 2-bits per key (rounded up)
const uint8_t *dataPtr = keyPtr + keyLen; // data starts at end of keys
return svb_decode_avx_simple(out, keyPtr, dataPtr, count) - in;
}

View File

@@ -0,0 +1,575 @@
#include "streamvbyte.h"
#if defined(_MSC_VER)
/* Microsoft C/C++-compatible compiler */
#include <intrin.h>
#elif defined(__GNUC__) && (defined(__x86_64__) || defined(__i386__))
/* GCC-compatible compiler, targeting x86/x86-64 */
#include <x86intrin.h>
#elif defined(__GNUC__) && defined(__ARM_NEON__)
/* GCC-compatible compiler, targeting ARM with NEON */
#include <arm_neon.h>
#elif defined(__GNUC__) && defined(__IWMMXT__)
/* GCC-compatible compiler, targeting ARM with WMMX */
#include <mmintrin.h>
#elif (defined(__GNUC__) || defined(__xlC__)) && (defined(__VEC__) || defined(__ALTIVEC__))
/* XLC or GCC-compatible compiler, targeting PowerPC with VMX/VSX */
#include <altivec.h>
#elif defined(__GNUC__) && defined(__SPE__)
/* GCC-compatible compiler, targeting PowerPC with SPE */
#include <spe.h>
#endif
static uint8_t lengthTable[256] = { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9,
10, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 6, 7, 8, 9, 7, 8,
9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10,
11, 12, 10, 11, 12, 13, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10,
11, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 7, 8, 9, 10,
8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 8, 9, 10, 11, 9, 10, 11,
12, 10, 11, 12, 13, 11, 12, 13, 14, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10,
11, 9, 10, 11, 12, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12,
13, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14, 9, 10,
11, 12, 10, 11, 12, 13, 11, 12, 13, 14, 12, 13, 14, 15, 7, 8, 9, 10, 8,
9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 8, 9, 10, 11, 9, 10, 11, 12,
10, 11, 12, 13, 11, 12, 13, 14, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12,
13, 14, 12, 13, 14, 15, 10, 11, 12, 13, 11, 12, 13, 14, 12, 13, 14, 15,
13, 14, 15, 16 };
static uint8_t shuffleTable[256][16] = { { 0, -1, -1, -1, 1, -1, -1, -1, 2, -1,
-1, -1, 3, -1, -1, -1 }, // 1111
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, -1, -1, -1 }, // 2111
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, -1, -1, -1 }, // 3111
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, -1, -1, -1 }, // 4111
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, -1, -1, -1 }, // 1211
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, -1, -1, -1 }, // 2211
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, -1, -1, -1 }, // 3211
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, -1, -1, -1 }, // 4211
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, -1, -1, -1 }, // 1311
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, -1, -1, -1 }, // 2311
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, -1, -1, -1 }, // 3311
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, -1, -1, -1 }, // 4311
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, -1, -1, -1 }, // 1411
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, -1, -1, -1 }, // 2411
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, -1, -1, -1 }, // 3411
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, -1, -1, -1 }, // 4411
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1 }, // 1121
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, -1, -1, -1 }, // 2121
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, -1, -1, -1 }, // 3121
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, -1, -1, -1 }, // 4121
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, -1, -1, -1 }, // 1221
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, -1, -1, -1 }, // 2221
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, -1, -1, -1 }, // 3221
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, -1, -1, -1 }, // 4221
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, -1, -1, -1 }, // 1321
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, -1, -1, -1 }, // 2321
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, -1, -1, -1 }, // 3321
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, -1, -1, -1 }, // 4321
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, -1, -1, -1 }, // 1421
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, -1, -1, -1 }, // 2421
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, -1, -1, -1 }, // 3421
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, -1, -1, -1 }, // 4421
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1 }, // 1131
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, -1, -1, -1 }, // 2131
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, -1, -1, -1 }, // 3131
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, -1, -1, -1 }, // 4131
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, -1, -1, -1 }, // 1231
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, -1, -1, -1 }, // 2231
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, -1, -1, -1 }, // 3231
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, -1, -1, -1 }, // 4231
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, -1, -1, -1 }, // 1331
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, -1, -1, -1 }, // 2331
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, -1, -1, -1 }, // 3331
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, -1, -1, -1 }, // 4331
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, -1, -1, -1 }, // 1431
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, -1, -1, -1 }, // 2431
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, -1, -1, -1 }, // 3431
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, -1, -1, -1 }, // 4431
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1 }, // 1141
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, -1, -1, -1 }, // 2141
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, -1, -1, -1 }, // 3141
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, -1, -1, -1 }, // 4141
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, -1, -1, -1 }, // 1241
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, -1, -1, -1 }, // 2241
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, -1, -1, -1 }, // 3241
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, -1, -1, -1 }, // 4241
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, -1, -1, -1 }, // 1341
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, -1, -1, -1 }, // 2341
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, -1, -1, -1 }, // 3341
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, -1, -1, -1 }, // 4341
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1 }, // 1441
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, -1, -1 }, // 2441
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, -1, -1, -1 }, // 3441
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1, -1 }, // 4441
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1 }, // 1112
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, 5, -1, -1 }, // 2112
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, 6, -1, -1 }, // 3112
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, 7, -1, -1 }, // 4112
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, 5, -1, -1 }, // 1212
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, 6, -1, -1 }, // 2212
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, 7, -1, -1 }, // 3212
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, 8, -1, -1 }, // 4212
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, 6, -1, -1 }, // 1312
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, 7, -1, -1 }, // 2312
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, 8, -1, -1 }, // 3312
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, 9, -1, -1 }, // 4312
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, 7, -1, -1 }, // 1412
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, 8, -1, -1 }, // 2412
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, 9, -1, -1 }, // 3412
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, -1, -1 }, // 4412
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1 }, // 1122
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, 6, -1, -1 }, // 2122
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, 7, -1, -1 }, // 3122
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, 8, -1, -1 }, // 4122
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, 6, -1, -1 }, // 1222
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, 7, -1, -1 }, // 2222
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8, -1, -1 }, // 3222
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, 9, -1, -1 }, // 4222
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, 7, -1, -1 }, // 1322
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, 8, -1, -1 }, // 2322
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, 9, -1, -1 }, // 3322
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, 10, -1, -1 }, // 4322
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, 8, -1, -1 }, // 1422
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, 9, -1, -1 }, // 2422
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, 10, -1, -1 }, // 3422
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, 11, -1, -1 }, // 4422
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1 }, // 1132
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, 7, -1, -1 }, // 2132
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, 8, -1, -1 }, // 3132
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, 9, -1, -1 }, // 4132
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, 7, -1, -1 }, // 1232
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, 8, -1, -1 }, // 2232
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, 9, -1, -1 }, // 3232
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, 10, -1, -1 }, // 4232
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, 8, -1, -1 }, // 1332
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, 9, -1, -1 }, // 2332
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, 10, -1, -1 }, // 3332
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, 11, -1, -1 }, // 4332
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, 9, -1, -1 }, // 1432
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, 10, -1, -1 }, // 2432
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, 11, -1, -1 }, // 3432
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, 12, -1, -1 }, // 4432
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1 }, // 1142
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, 8, -1, -1 }, // 2142
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, 9, -1, -1 }, // 3142
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, 10, -1, -1 }, // 4142
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, 8, -1, -1 }, // 1242
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, 9, -1, -1 }, // 2242
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, 10, -1, -1 }, // 3242
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1 }, // 4242
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, 9, -1, -1 }, // 1342
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, 10, -1, -1 }, // 2342
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, 11, -1, -1 }, // 3342
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, 12, -1, -1 }, // 4342
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, -1 }, // 1442
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, -1, -1 }, // 2442
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1 }, // 3442
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, -1, -1 }, // 4442
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1 }, // 1113
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, 5, 6, -1 }, // 2113
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, 6, 7, -1 }, // 3113
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, 7, 8, -1 }, // 4113
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, 5, 6, -1 }, // 1213
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, 6, 7, -1 }, // 2213
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, 7, 8, -1 }, // 3213
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, 8, 9, -1 }, // 4213
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, 6, 7, -1 }, // 1313
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, 7, 8, -1 }, // 2313
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, 8, 9, -1 }, // 3313
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, 9, 10, -1 }, // 4313
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, 7, 8, -1 }, // 1413
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, 8, 9, -1 }, // 2413
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, 9, 10, -1 }, // 3413
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, 11, -1 }, // 4413
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1 }, // 1123
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, 6, 7, -1 }, // 2123
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, 7, 8, -1 }, // 3123
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, 8, 9, -1 }, // 4123
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, 6, 7, -1 }, // 1223
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, 7, 8, -1 }, // 2223
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8, 9, -1 }, // 3223
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, 9, 10, -1 }, // 4223
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, 7, 8, -1 }, // 1323
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, 8, 9, -1 }, // 2323
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, 9, 10, -1 }, // 3323
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, 10, 11, -1 }, // 4323
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, 8, 9, -1 }, // 1423
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, 9, 10, -1 }, // 2423
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, 10, 11, -1 }, // 3423
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, 11, 12, -1 }, // 4423
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1 }, // 1133
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, 7, 8, -1 }, // 2133
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, 8, 9, -1 }, // 3133
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, 9, 10, -1 }, // 4133
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, 7, 8, -1 }, // 1233
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, 8, 9, -1 }, // 2233
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, 9, 10, -1 }, // 3233
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, 10, 11, -1 }, // 4233
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, 8, 9, -1 }, // 1333
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, 9, 10, -1 }, // 2333
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, 10, 11, -1 }, // 3333
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, 11, 12, -1 }, // 4333
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, 9, 10, -1 }, // 1433
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, 10, 11, -1 }, // 2433
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, 11, 12, -1 }, // 3433
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, 12, 13, -1 }, // 4433
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1 }, // 1143
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, 8, 9, -1 }, // 2143
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, 9, 10, -1 }, // 3143
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, 10, 11, -1 }, // 4143
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, 8, 9, -1 }, // 1243
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, 9, 10, -1 }, // 2243
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, 10, 11, -1 }, // 3243
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, 12, -1 }, // 4243
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, 9, 10, -1 }, // 1343
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, 10, 11, -1 }, // 2343
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, 11, 12, -1 }, // 3343
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, 12, 13, -1 }, // 4343
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, -1 }, // 1443
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1 }, // 2443
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, -1 }, // 3443
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -1 }, // 4443
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6 }, // 1114
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, 5, 6, 7 }, // 2114
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, 6, 7, 8 }, // 3114
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, 7, 8, 9 }, // 4114
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, 5, 6, 7 }, // 1214
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, 6, 7, 8 }, // 2214
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, 7, 8, 9 }, // 3214
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, 8, 9, 10 }, // 4214
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, 6, 7, 8 }, // 1314
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, 7, 8, 9 }, // 2314
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, 8, 9, 10 }, // 3314
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, 9, 10, 11 }, // 4314
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, 7, 8, 9 }, // 1414
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, 8, 9, 10 }, // 2414
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, 9, 10, 11 }, // 3414
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, 11, 12 }, // 4414
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7 }, // 1124
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, 6, 7, 8 }, // 2124
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, 7, 8, 9 }, // 3124
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, 8, 9, 10 }, // 4124
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, 6, 7, 8 }, // 1224
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, 7, 8, 9 }, // 2224
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8, 9, 10 }, // 3224
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, 9, 10, 11 }, // 4224
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, 7, 8, 9 }, // 1324
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, 8, 9, 10 }, // 2324
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, 9, 10, 11 }, // 3324
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, 10, 11, 12 }, // 4324
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, 8, 9, 10 }, // 1424
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, 9, 10, 11 }, // 2424
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, 10, 11, 12 }, // 3424
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, 11, 12, 13 }, // 4424
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8 }, // 1134
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, 7, 8, 9 }, // 2134
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, 8, 9, 10 }, // 3134
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, 9, 10, 11 }, // 4134
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, 7, 8, 9 }, // 1234
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, 8, 9, 10 }, // 2234
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, 9, 10, 11 }, // 3234
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, 10, 11, 12 }, // 4234
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, 8, 9, 10 }, // 1334
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, 9, 10, 11 }, // 2334
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, 10, 11, 12 }, // 3334
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, 11, 12, 13 }, // 4334
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, 9, 10, 11 }, // 1434
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, 10, 11, 12 }, // 2434
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, 11, 12, 13 }, // 3434
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, 12, 13, 14 }, // 4434
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9 }, // 1144
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, 8, 9, 10 }, // 2144
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, 9, 10, 11 }, // 3144
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, 10, 11, 12 }, // 4144
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, 8, 9, 10 }, // 1244
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, 9, 10, 11 }, // 2244
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, 10, 11, 12 }, // 3244
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, 12, 13 }, // 4244
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, 9, 10, 11 }, // 1344
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, 10, 11, 12 }, // 2344
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, 11, 12, 13 }, // 3344
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, 12, 13, 14 }, // 4344
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }, // 1444
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, // 2444
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }, // 3444
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } // 4444
};
static uint8_t _encode_data(uint32_t val, uint8_t *__restrict__ *dataPtrPtr) {
uint8_t *dataPtr = *dataPtrPtr;
uint8_t code;
if (val < (1 << 8)) { // 1 byte
*dataPtr = (uint8_t)(val);
*dataPtrPtr += 1;
code = 0;
} else if (val < (1 << 16)) { // 2 bytes
*(uint16_t *) dataPtr = (uint16_t)(val);
*dataPtrPtr += 2;
code = 1;
} else if (val < (1 << 24)) { // 3 bytes
*(uint16_t *) dataPtr = (uint16_t)(val);
*(dataPtr + 2) = (uint8_t)(val >> 16);
*dataPtrPtr += 3;
code = 2;
} else { // 4 bytes
*(uint32_t *) dataPtr = val;
*dataPtrPtr += 4;
code = 3;
}
return code;
}
static uint8_t *svb_encode_scalar_d1_init(const uint32_t *in,
uint8_t *__restrict__ keyPtr, uint8_t *__restrict__ dataPtr,
uint32_t count, uint32_t prev) {
if (count == 0)
return dataPtr; // exit immediately if no data
uint8_t shift = 0; // cycles 0, 2, 4, 6, 0, 2, 4, 6, ...
uint8_t key = 0;
for (uint32_t c = 0; c < count; c++) {
if (shift == 8) {
shift = 0;
*keyPtr++ = key;
key = 0;
}
uint32_t val = in[c] - prev;
prev = in[c];
uint8_t code = _encode_data(val, &dataPtr);
key |= code << shift;
shift += 2;
}
*keyPtr = key; // write last key (no increment needed)
return dataPtr; // pointer to first unused data byte
}
size_t streamvbyte_delta_encode(const uint32_t *in, uint32_t count, uint8_t *out,
uint32_t prev) {
uint8_t *keyPtr = out; // keys come immediately after 32-bit count
uint32_t keyLen = (count + 3) / 4; // 2-bits rounded to full byte
uint8_t *dataPtr = keyPtr + keyLen; // variable byte data after all keys
return svb_encode_scalar_d1_init(in, keyPtr, dataPtr, count, prev) - out;
}
static inline __m128i _decode_avx(uint32_t key, const uint8_t *__restrict__ *dataPtrPtr) {
uint8_t len = lengthTable[key];
__m128i Data = _mm_loadu_si128((__m128i *) *dataPtrPtr);
__m128i Shuf = *(__m128i *) &shuffleTable[key];
Data = _mm_shuffle_epi8(Data, Shuf);
*dataPtrPtr += len;
return Data;
}
#define BroadcastLastXMM 0xFF // bits 0-7 all set to choose highest element
static inline void _write_avx(uint32_t *out, __m128i Vec) {
_mm_storeu_si128((__m128i *) out, Vec);
}
static __m128i _write_avx_d1(uint32_t *out, __m128i Vec, __m128i Prev) {
__m128i Add = _mm_slli_si128(Vec, 4); // Cycle 1: [- A B C] (already done)
Prev = _mm_shuffle_epi32(Prev, BroadcastLastXMM); // Cycle 2: [P P P P]
Vec = _mm_add_epi32(Vec, Add); // Cycle 2: [A AB BC CD]
Add = _mm_slli_si128(Vec, 8); // Cycle 3: [- - A AB]
Vec = _mm_add_epi32(Vec, Prev); // Cycle 3: [PA PAB PBC PCD]
Vec = _mm_add_epi32(Vec, Add); // Cycle 4: [PA PAB PABC PABCD]
_write_avx(out, Vec);
return Vec;
}
#ifndef _MSC_VER
static __m128i High16To32 = {0xFFFF0B0AFFFF0908, 0xFFFF0F0EFFFF0D0C};
#else
static __m128i High16To32 = {8, 9, -1, -1, 10, 11, -1, -1,
12, 13, -1, -1, 14, 15, -1, -1};
#endif
static inline __m128i _write_16bit_avx_d1(uint32_t *out, __m128i Vec, __m128i Prev) {
// vec == [A B C D E F G H] (16 bit values)
__m128i Add = _mm_slli_si128(Vec, 2); // [- A B C D E F G]
Prev = _mm_shuffle_epi32(Prev, BroadcastLastXMM); // [P P P P] (32-bit)
Vec = _mm_add_epi32(Vec, Add); // [A AB BC CD DE FG GH]
Add = _mm_slli_si128(Vec, 4); // [- - A AB BC CD DE EF]
Vec = _mm_add_epi32(Vec, Add); // [A AB ABC ABCD BCDE CDEF DEFG EFGH]
__m128i V1 = _mm_cvtepu16_epi32(Vec); // [A AB ABC ABCD] (32-bit)
V1 = _mm_add_epi32(V1, Prev); // [PA PAB PABC PABCD] (32-bit)
__m128i V2 =
_mm_shuffle_epi8(Vec, High16To32); // [BCDE CDEF DEFG EFGH] (32-bit)
V2 = _mm_add_epi32(V1, V2); // [PABCDE PABCDEF PABCDEFG PABCDEFGH] (32-bit)
_write_avx(out, V1);
_write_avx(out + 4, V2);
return V2;
}
static inline uint32_t _decode_data(const uint8_t **dataPtrPtr, uint8_t code) {
const uint8_t *dataPtr = *dataPtrPtr;
uint32_t val;
if (code == 0) { // 1 byte
val = (uint32_t) * dataPtr;
dataPtr += 1;
} else if (code == 1) { // 2 bytes
val = (uint32_t) * (uint16_t *) dataPtr;
dataPtr += 2;
} else if (code == 2) { // 3 bytes
val = (uint32_t) * (uint16_t *) dataPtr;
val |= *(dataPtr + 2) << 16;
dataPtr += 3;
} else { // code == 3
val = *(uint32_t *) dataPtr; // 4 bytes
dataPtr += 4;
}
*dataPtrPtr = dataPtr;
return val;
}
const uint8_t *svb_decode_scalar_d1_init(uint32_t *outPtr, const uint8_t *keyPtr,
const uint8_t *dataPtr, uint32_t count,
uint32_t prev) {
if (count == 0)
return dataPtr; // no reads or writes if no data
uint8_t shift = 0;
uint32_t key = *keyPtr++;
for (uint32_t c = 0; c < count; c++) {
if (shift == 8) {
shift = 0;
key = *keyPtr++;
}
uint32_t val = _decode_data(&dataPtr, (key >> shift) & 0x3);
val += prev;
*outPtr++ = val;
prev = val;
shift += 2;
}
return dataPtr; // pointer to first unused byte after end
}
const uint8_t *svb_decode_avx_d1_init(uint32_t *out, const uint8_t *__restrict__ keyPtr,
const uint8_t *__restrict__ dataPtr, uint64_t count, uint32_t prev) {
uint64_t keybytes = count / 4; // number of key bytes
if (keybytes >= 8) {
__m128i Prev = _mm_set1_epi32(prev);
__m128i Data;
int64_t Offset = -(int64_t) keybytes / 8 + 1;
const uint64_t *keyPtr64 = (const uint64_t *) keyPtr - Offset;
uint64_t nextkeys = keyPtr64[Offset];
for (; Offset != 0; ++Offset) {
uint64_t keys = nextkeys;
nextkeys = keyPtr64[Offset + 1];
// faster 16-bit delta since we only have 8-bit values
if (!keys) { // 32 1-byte ints in a row
Data = _mm_cvtepu8_epi16(_mm_lddqu_si128((__m128i *) (dataPtr)));
Prev = _write_16bit_avx_d1(out, Data, Prev);
Data = _mm_cvtepu8_epi16(
_mm_lddqu_si128((__m128i *) (dataPtr + 8)));
Prev = _write_16bit_avx_d1(out + 8, Data, Prev);
Data = _mm_cvtepu8_epi16(
_mm_lddqu_si128((__m128i *) (dataPtr + 16)));
Prev = _write_16bit_avx_d1(out + 16, Data, Prev);
Data = _mm_cvtepu8_epi16(
_mm_lddqu_si128((__m128i *) (dataPtr + 24)));
Prev = _write_16bit_avx_d1(out + 24, Data, Prev);
out += 32;
dataPtr += 32;
continue;
}
Data = _decode_avx(keys & 0x00FF, &dataPtr);
Prev = _write_avx_d1(out, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 4, Data, Prev);
keys >>= 16;
Data = _decode_avx((keys & 0x00FF), &dataPtr);
Prev = _write_avx_d1(out + 8, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 12, Data, Prev);
keys >>= 16;
Data = _decode_avx((keys & 0x00FF), &dataPtr);
Prev = _write_avx_d1(out + 16, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 20, Data, Prev);
keys >>= 16;
Data = _decode_avx((keys & 0x00FF), &dataPtr);
Prev = _write_avx_d1(out + 24, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 28, Data, Prev);
out += 32;
}
{
uint64_t keys = nextkeys;
// faster 16-bit delta since we only have 8-bit values
if (!keys) { // 32 1-byte ints in a row
Data = _mm_cvtepu8_epi16(_mm_lddqu_si128((__m128i *) (dataPtr)));
Prev = _write_16bit_avx_d1(out, Data, Prev);
Data = _mm_cvtepu8_epi16(
_mm_lddqu_si128((__m128i *) (dataPtr + 8)));
Prev = _write_16bit_avx_d1(out + 8, Data, Prev);
Data = _mm_cvtepu8_epi16(
_mm_lddqu_si128((__m128i *) (dataPtr + 16)));
Prev = _write_16bit_avx_d1(out + 16, Data, Prev);
Data = _mm_cvtepu8_epi16(
_mm_loadl_epi64((__m128i *) (dataPtr + 24)));
Prev = _write_16bit_avx_d1(out + 24, Data, Prev);
out += 32;
dataPtr += 32;
} else {
Data = _decode_avx(keys & 0x00FF, &dataPtr);
Prev = _write_avx_d1(out, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 4, Data, Prev);
keys >>= 16;
Data = _decode_avx((keys & 0x00FF), &dataPtr);
Prev = _write_avx_d1(out + 8, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 12, Data, Prev);
keys >>= 16;
Data = _decode_avx((keys & 0x00FF), &dataPtr);
Prev = _write_avx_d1(out + 16, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 20, Data, Prev);
keys >>= 16;
Data = _decode_avx((keys & 0x00FF), &dataPtr);
Prev = _write_avx_d1(out + 24, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 28, Data, Prev);
out += 32;
}
}
prev = out[-1];
}
uint64_t consumedkeys = keybytes - (keybytes & 7);
return svb_decode_scalar_d1_init(out, keyPtr + consumedkeys, dataPtr,
count & 31, prev);
}
size_t streamvbyte_delta_decode(const uint8_t* in, uint32_t* out,
uint32_t count, uint32_t prev) {
uint32_t keyLen = ((count + 3) / 4); // 2-bits per key (rounded up)
const uint8_t *keyPtr = in;
const uint8_t *dataPtr = keyPtr + keyLen; // data starts at end of keys
return svb_decode_avx_d1_init(out, keyPtr, dataPtr, count, prev) - in;
}

View File

@@ -0,0 +1,73 @@
#include <stdio.h>
#include <stdlib.h>
#include "streamvbyte.h"
#include "streamvbytedelta.h"
int main() {
int N = 4096;
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint8_t * compressedbuffer = malloc(2 * N * sizeof(uint32_t));
uint32_t * recovdata = malloc(N * sizeof(uint32_t));
for (int length = 0; length <= N;) {
printf("length = %d \n", length);
for (uint32_t gap = 1; gap <= 387420489; gap *= 3) {
for (int k = 0; k < length; ++k)
datain[k] = gap;
size_t compsize = streamvbyte_encode(datain, length,
compressedbuffer);
size_t usedbytes = streamvbyte_decode(compressedbuffer, recovdata,
length);
if (compsize != usedbytes) {
printf(
"[streamvbyte_decode] code is buggy gap = %d, size mismatch %d %d \n",
(int) gap, (int) compsize, (int) usedbytes);
return -1;
}
for (int k = 0; k < length; ++k) {
if (recovdata[k] != datain[k]) {
printf("[streamvbyte_decode] code is buggy gap = %d\n",
(int) gap);
return -1;
}
}
}
printf("Delta \n");
for (size_t gap = 1; gap <= 531441; gap *= 3) {
for (int k = 0; k < length; ++k)
datain[k] = gap * k;
size_t compsize = streamvbyte_delta_encode(datain, length,
compressedbuffer, 0);
size_t usedbytes = streamvbyte_delta_decode(compressedbuffer,
recovdata, length, 0);
if (compsize != usedbytes) {
printf(
"[streamvbyte_delta_decode] code is buggy gap = %d, size mismatch %d %d \n",
(int) gap, (int) compsize, (int) usedbytes);
return -1;
}
for (int k = 0; k < length; ++k) {
if (recovdata[k] != datain[k]) {
printf(
"[streamvbyte_delta_decode] code is buggy gap = %d\n",
(int) gap);
return -1;
}
}
}
if (length < 128)
++length;
else {
length *= 2;
}
}
free(datain);
free(compressedbuffer);
free(recovdata);
printf("Code looks good.\n");
return 0;
}

View File

@@ -1,226 +0,0 @@
extern crate tantivy;
extern crate tempdir;
#[macro_use]
extern crate serde_json;
use std::path::Path;
use tantivy::collector::TopCollector;
use tantivy::query::QueryParser;
use tantivy::schema::*;
use tantivy::tokenizer::NgramTokenizer;
use tantivy::Index;
use tempdir::TempDir;
fn main() {
// Let's create a temporary directory for the
// sake of this example
if let Ok(dir) = TempDir::new("tantivy_token_example_dir") {
run_example(dir.path()).unwrap();
dir.close().unwrap();
}
}
fn run_example(index_path: &Path) -> tantivy::Result<()> {
// # Defining the schema
//
// The Tantivy index requires a very strict schema.
// The schema declares which fields are in the index,
// and for each field, its type and "the way it should
// be indexed".
// first we need to define a schema ...
let mut schema_builder = SchemaBuilder::default();
// Our first field is title.
// In this example we want to use NGram searching
// we will set that to 3 characters, so any three
// char in the title should be findable.
let text_field_indexing = TextFieldIndexing::default()
.set_tokenizer("ngram3")
.set_index_option(IndexRecordOption::WithFreqsAndPositions);
let text_options = TextOptions::default()
.set_indexing_options(text_field_indexing)
.set_stored();
schema_builder.add_text_field("title", text_options);
// Our second field is body.
// We want full-text search for it, but we do not
// need to be able to be able to retrieve it
// for our application.
//
// We can make our index lighter and
// by omitting `STORED` flag.
schema_builder.add_text_field("body", TEXT);
let schema = schema_builder.build();
// # Indexing documents
//
// Let's create a brand new index.
//
// This will actually just save a meta.json
// with our schema in the directory.
let index = Index::create_in_dir(index_path, schema.clone())?;
// here we are registering our custome tokenizer
// this will store tokens of 3 characters each
index
.tokenizers()
.register("ngram3", NgramTokenizer::new(3, 3, false));
// To insert document we need an index writer.
// There must be only one writer at a time.
// This single `IndexWriter` is already
// multithreaded.
//
// Here we use a buffer of 50MB per thread. Using a bigger
// heap for the indexer can increase its throughput.
let mut index_writer = index.writer(50_000_000)?;
// Let's index our documents!
// We first need a handle on the title and the body field.
// ### Create a document "manually".
//
// We can create a document manually, by setting the fields
// one by one in a Document object.
let title = schema.get_field("title").unwrap();
let body = schema.get_field("body").unwrap();
let mut old_man_doc = Document::default();
old_man_doc.add_text(title, "The Old Man and the Sea");
old_man_doc.add_text(
body,
"He was an old man who fished alone in a skiff in the Gulf Stream and \
he had gone eighty-four days now without taking a fish.",
);
// ... and add it to the `IndexWriter`.
index_writer.add_document(old_man_doc);
// ### Create a document directly from json.
//
// Alternatively, we can use our schema to parse a
// document object directly from json.
// The document is a string, but we use the `json` macro
// from `serde_json` for the convenience of multi-line support.
let json = json!({
"title": "Of Mice and Men",
"body": "A few miles south of Soledad, the Salinas River drops in close to the hillside \
bank and runs deep and green. The water is warm too, for it has slipped twinkling \
over the yellow sands in the sunlight before reaching the narrow pool. On one \
side of the river the golden foothill slopes curve up to the strong and rocky \
Gabilan Mountains, but on the valley side the water is lined with trees—willows \
fresh and green with every spring, carrying in their lower leaf junctures the \
debris of the winters flooding; and sycamores with mottled, white, recumbent \
limbs and branches that arch over the pool"
});
let mice_and_men_doc = schema.parse_document(&json.to_string())?;
index_writer.add_document(mice_and_men_doc);
// Multi-valued field are allowed, they are
// expressed in JSON by an array.
// The following document has two titles.
let json = json!({
"title": ["Frankenstein", "The Modern Prometheus"],
"body": "You will rejoice to hear that no disaster has accompanied the commencement of an \
enterprise which you have regarded with such evil forebodings. I arrived here \
yesterday, and my first task is to assure my dear sister of my welfare and \
increasing confidence in the success of my undertaking."
});
let frankenstein_doc = schema.parse_document(&json.to_string())?;
index_writer.add_document(frankenstein_doc);
// This is an example, so we will only index 3 documents
// here. You can check out tantivy's tutorial to index
// the English wikipedia. Tantivy's indexing is rather fast.
// Indexing 5 million articles of the English wikipedia takes
// around 4 minutes on my computer!
// ### Committing
//
// At this point our documents are not searchable.
//
//
// We need to call .commit() explicitly to force the
// index_writer to finish processing the documents in the queue,
// flush the current index to the disk, and advertise
// the existence of new documents.
//
// This call is blocking.
index_writer.commit()?;
// If `.commit()` returns correctly, then all of the
// documents that have been added are guaranteed to be
// persistently indexed.
//
// In the scenario of a crash or a power failure,
// tantivy behaves as if has rolled back to its last
// commit.
// # Searching
//
// Let's search our index. Start by reloading
// searchers in the index. This should be done
// after every commit().
index.load_searchers()?;
// Afterwards create one (or more) searchers.
//
// You should create a searcher
// every time you start a "search query".
let searcher = index.searcher();
// The query parser can interpret human queries.
// Here, if the user does not specify which
// field they want to search, tantivy will search
// in both title and body.
let query_parser = QueryParser::for_index(&index, vec![title, body]);
// here we want to get a hit on the 'ken' in Frankenstein
let query = query_parser.parse_query("ken")?;
// A query defines a set of documents, as
// well as the way they should be scored.
//
// A query created by the query parser is scored according
// to a metric called Tf-Idf, and will consider
// any document matching at least one of our terms.
// ### Collectors
//
// We are not interested in all of the documents but
// only in the top 10. Keeping track of our top 10 best documents
// is the role of the TopCollector.
let mut top_collector = TopCollector::with_limit(10);
// We can now perform our query.
searcher.search(&*query, &mut top_collector)?;
// Our top collector now contains the 10
// most relevant doc ids...
let doc_addresses = top_collector.docs();
// The actual documents still need to be
// retrieved from Tantivy's store.
//
// Since the body field was not configured as stored,
// the document returned will only contain
// a title.
for doc_address in doc_addresses {
let retrieved_doc = searcher.doc(&doc_address)?;
println!("{}", schema.to_json(&retrieved_doc));
}
// Wait for indexing and merging threads to shut down.
// Usually this isn't needed, but in `main` we try to
// delete the temporary directory and that fails on
// Windows if the files are still open.
index_writer.wait_merging_threads()?;
Ok(())
}

View File

@@ -5,11 +5,11 @@ extern crate tempdir;
extern crate serde_json;
use std::path::Path;
use tempdir::TempDir;
use tantivy::Index;
use tantivy::schema::*;
use tantivy::collector::TopCollector;
use tantivy::query::QueryParser;
use tantivy::schema::*;
use tantivy::Index;
use tempdir::TempDir;
fn main() {
// Let's create a temporary directory for the
@@ -20,7 +20,10 @@ fn main() {
}
}
fn run_example(index_path: &Path) -> tantivy::Result<()> {
// # Defining the schema
//
// The Tantivy index requires a very strict schema.
@@ -28,6 +31,7 @@ fn run_example(index_path: &Path) -> tantivy::Result<()> {
// and for each field, its type and "the way it should
// be indexed".
// first we need to define a schema ...
let mut schema_builder = SchemaBuilder::default();
@@ -58,13 +62,16 @@ fn run_example(index_path: &Path) -> tantivy::Result<()> {
let schema = schema_builder.build();
// # Indexing documents
//
// Let's create a brand new index.
//
// This will actually just save a meta.json
// with our schema in the directory.
let index = Index::create_in_dir(index_path, schema.clone())?;
let index = Index::create(index_path, schema.clone())?;
// To insert document we need an index writer.
// There must be only one writer at a time.
@@ -78,6 +85,7 @@ fn run_example(index_path: &Path) -> tantivy::Result<()> {
// Let's index our documents!
// We first need a handle on the title and the body field.
// ### Create a document "manually".
//
// We can create a document manually, by setting the fields
@@ -90,7 +98,7 @@ fn run_example(index_path: &Path) -> tantivy::Result<()> {
old_man_doc.add_text(
body,
"He was an old man who fished alone in a skiff in the Gulf Stream and \
he had gone eighty-four days now without taking a fish.",
he had gone eighty-four days now without taking a fish.",
);
// ... and add it to the `IndexWriter`.
@@ -137,6 +145,7 @@ fn run_example(index_path: &Path) -> tantivy::Result<()> {
// Indexing 5 million articles of the English wikipedia takes
// around 4 minutes on my computer!
// ### Committing
//
// At this point our documents are not searchable.
@@ -158,6 +167,7 @@ fn run_example(index_path: &Path) -> tantivy::Result<()> {
// tantivy behaves as if has rolled back to its last
// commit.
// # Searching
//
// Let's search our index. Start by reloading
@@ -182,6 +192,7 @@ fn run_example(index_path: &Path) -> tantivy::Result<()> {
// A ticket has been opened regarding this problem.
let query = query_parser.parse_query("sea whale")?;
// A query defines a set of documents, as
// well as the way they should be scored.
//

View File

@@ -1 +0,0 @@
use_try_shorthand = true

10
script/build-doc.sh Executable file
View File

@@ -0,0 +1,10 @@
#!/bin/bash
DEST=target/doc/tantivy/docs/
mkdir -p $DEST
for f in $(ls docs/*.md)
do
rustdoc $f -o $DEST --markdown-css ../../rustdoc.css --markdown-css style.css
done
cp docs/*.css $DEST

5
script/profile.sh Normal file
View File

@@ -0,0 +1,5 @@
#/bin/bash
valgrind --tool=cachegrind target/release/tantivy-bench -i /data/wiki-index -q ./queries.txt -n 3
valgrind --tool=callgrind target/release/tantivy-bench -i /data/wiki-index -q ./queries.txt -n 3

View File

@@ -1,9 +1,9 @@
use collector::Collector;
use DocId;
use Result;
use Score;
use collector::Collector;
use SegmentLocalId;
use SegmentReader;
use DocId;
use Score;
/// Collector that does nothing.
/// This is used in the chain Collector and will hopefully
@@ -16,66 +16,11 @@ impl Collector for DoNothingCollector {
}
#[inline]
fn collect(&mut self, _doc: DocId, _score: Score) {}
#[inline]
fn requires_scoring(&self) -> bool {
false
}
}
/// Zero-cost abstraction used to collect on multiple collectors.
/// This contraption is only usable if the type of your collectors
/// are known at compile time.
///
/// ```rust
/// #[macro_use]
/// extern crate tantivy;
/// use tantivy::schema::{SchemaBuilder, TEXT};
/// use tantivy::{Index, Result};
/// use tantivy::collector::{CountCollector, TopCollector, chain};
/// use tantivy::query::QueryParser;
///
/// # fn main() { example().unwrap(); }
/// fn example() -> Result<()> {
/// let mut schema_builder = SchemaBuilder::new();
/// let title = schema_builder.add_text_field("title", TEXT);
/// let schema = schema_builder.build();
/// let index = Index::create_in_ram(schema);
/// {
/// let mut index_writer = index.writer(3_000_000)?;
/// index_writer.add_document(doc!(
/// title => "The Name of the Wind",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of Muadib",
/// ));
/// index_writer.add_document(doc!(
/// title => "A Dairy Cow",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of a Young Girl",
/// ));
/// index_writer.commit().unwrap();
/// }
///
/// index.load_searchers()?;
/// let searcher = index.searcher();
///
/// {
/// let mut top_collector = TopCollector::with_limit(2);
/// let mut count_collector = CountCollector::default();
/// {
/// let mut collectors = chain().push(&mut top_collector).push(&mut count_collector);
/// let query_parser = QueryParser::for_index(&index, vec![title]);
/// let query = query_parser.parse_query("diary")?;
/// searcher.search(&*query, &mut collectors).unwrap();
/// }
/// assert_eq!(count_collector.count(), 2);
/// assert!(top_collector.at_capacity());
/// }
///
/// Ok(())
/// }
/// ```
pub struct ChainedCollector<Left: Collector, Right: Collector> {
left: Left,
right: Right,
@@ -97,8 +42,8 @@ impl<Left: Collector, Right: Collector> Collector for ChainedCollector<Left, Rig
segment_local_id: SegmentLocalId,
segment: &SegmentReader,
) -> Result<()> {
self.left.set_segment(segment_local_id, segment)?;
self.right.set_segment(segment_local_id, segment)?;
try!(self.left.set_segment(segment_local_id, segment));
try!(self.right.set_segment(segment_local_id, segment));
Ok(())
}
@@ -106,10 +51,6 @@ impl<Left: Collector, Right: Collector> Collector for ChainedCollector<Left, Rig
self.left.collect(doc, score);
self.right.collect(doc, score);
}
fn requires_scoring(&self) -> bool {
self.left.requires_scoring() || self.right.requires_scoring()
}
}
/// Creates a `ChainedCollector`

View File

@@ -1,60 +1,12 @@
use super::Collector;
use DocId;
use Result;
use Score;
use SegmentLocalId;
use Result;
use SegmentReader;
use SegmentLocalId;
/// `CountCollector` collector only counts how many
/// documents match the query.
///
/// ```rust
/// #[macro_use]
/// extern crate tantivy;
/// use tantivy::schema::{SchemaBuilder, TEXT};
/// use tantivy::{Index, Result};
/// use tantivy::collector::CountCollector;
/// use tantivy::query::QueryParser;
///
/// # fn main() { example().unwrap(); }
/// fn example() -> Result<()> {
/// let mut schema_builder = SchemaBuilder::new();
/// let title = schema_builder.add_text_field("title", TEXT);
/// let schema = schema_builder.build();
/// let index = Index::create_in_ram(schema);
/// {
/// let mut index_writer = index.writer(3_000_000)?;
/// index_writer.add_document(doc!(
/// title => "The Name of the Wind",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of Muadib",
/// ));
/// index_writer.add_document(doc!(
/// title => "A Dairy Cow",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of a Young Girl",
/// ));
/// index_writer.commit().unwrap();
/// }
///
/// index.load_searchers()?;
/// let searcher = index.searcher();
///
/// {
/// let mut count_collector = CountCollector::default();
/// let query_parser = QueryParser::for_index(&index, vec![title]);
/// let query = query_parser.parse_query("diary")?;
/// searcher.search(&*query, &mut count_collector).unwrap();
///
/// assert_eq!(count_collector.count(), 2);
/// }
///
/// Ok(())
/// }
/// ```
#[derive(Default)]
pub struct CountCollector {
count: usize,
}
@@ -67,6 +19,12 @@ impl CountCollector {
}
}
impl Default for CountCollector {
fn default() -> CountCollector {
CountCollector { count: 0 }
}
}
impl Collector for CountCollector {
fn set_segment(&mut self, _: SegmentLocalId, _: &SegmentReader) -> Result<()> {
Ok(())
@@ -75,27 +33,23 @@ impl Collector for CountCollector {
fn collect(&mut self, _: DocId, _: Score) {
self.count += 1;
}
fn requires_scoring(&self) -> bool {
false
}
}
#[cfg(test)]
mod tests {
use collector::{Collector, CountCollector};
use super::*;
use test::Bencher;
use collector::Collector;
#[test]
fn test_count_collector() {
let mut count_collector = CountCollector::default();
assert_eq!(count_collector.count(), 0);
count_collector.collect(0u32, 1f32);
assert_eq!(count_collector.count(), 1);
assert_eq!(count_collector.count(), 1);
count_collector.collect(1u32, 1f32);
assert_eq!(count_collector.count(), 2);
assert!(!count_collector.requires_scoring());
#[bench]
fn build_collector(b: &mut Bencher) {
b.iter(|| {
let mut count_collector = CountCollector::default();
for doc in 0..1_000_000 {
count_collector.collect(doc, 1f32);
}
count_collector.count()
});
}
}

View File

@@ -1,660 +1,113 @@
use collector::Collector;
use docset::SkipResult;
use fastfield::FacetReader;
use schema::Facet;
use schema::Field;
use std::cell::UnsafeCell;
use std::collections::btree_map;
use std::collections::BTreeMap;
use std::collections::BTreeSet;
use std::collections::BinaryHeap;
use std::collections::Bound;
use std::iter::Peekable;
use std::mem;
use std::{u64, usize};
use termdict::TermMerger;
use std::cmp::Eq;
use std::collections::HashMap;
use std::hash::Hash;
use collector::Collector;
use fastfield::FastFieldReader;
use schema::Field;
use std::cmp::Ordering;
use DocId;
use Result;
use Score;
use SegmentLocalId;
use SegmentReader;
use SegmentLocalId;
struct Hit<'a> {
count: u64,
facet: &'a Facet,
}
impl<'a> Eq for Hit<'a> {}
impl<'a> PartialEq<Hit<'a>> for Hit<'a> {
fn eq(&self, other: &Hit) -> bool {
self.count == other.count
}
}
impl<'a> PartialOrd<Hit<'a>> for Hit<'a> {
fn partial_cmp(&self, other: &Hit) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<'a> Ord for Hit<'a> {
fn cmp(&self, other: &Self) -> Ordering {
other.count.cmp(&self.count)
}
}
struct SegmentFacetCounter {
pub facet_reader: FacetReader,
pub facet_ords: Vec<u64>,
pub facet_counts: Vec<u64>,
}
fn facet_depth(facet_bytes: &[u8]) -> usize {
if facet_bytes.is_empty() {
0
} else {
facet_bytes.iter().cloned().filter(|b| *b == 0u8).count() + 1
}
}
/// Collector for faceting
///
/// The collector collects all facets. You need to configure it
/// beforehand with the facet you want to extract.
///
/// This is done by calling `.add_facet(...)` with the root of the
/// facet you want to extract as argument.
///
/// Facet counts will only be computed for the facet that are direct children
/// of such a root facet.
///
/// For instance, if your index represents books, your hierarchy of facets
/// may contain `category`, `language`.
///
/// The category facet may include `subcategories`. For instance, a book
/// could belong to `/category/fiction/fantasy`.
///
/// If you request the facet counts for `/category`, the result will be
/// the breakdown of counts for the direct children of `/category`
/// (e.g. `/category/fiction`, `/category/biography`, `/category/personal_development`).
///
/// Once collection is finished, you can harvest its results in the form
/// of a `FacetCounts` object, and extract your face t counts from it.
///
/// This implementation assumes you are working with a number of facets that
/// is much hundreds of time lower than your number of documents.
///
///
/// ```rust
/// #[macro_use]
/// extern crate tantivy;
/// use tantivy::schema::{Facet, SchemaBuilder, TEXT};
/// use tantivy::{Index, Result};
/// use tantivy::collector::FacetCollector;
/// use tantivy::query::AllQuery;
///
/// # fn main() { example().unwrap(); }
/// fn example() -> Result<()> {
/// let mut schema_builder = SchemaBuilder::new();
///
/// // Facet have their own specific type.
/// // It is not a bad practise to put all of your
/// // facet information in the same field.
/// let facet = schema_builder.add_facet_field("facet");
/// let title = schema_builder.add_text_field("title", TEXT);
/// let schema = schema_builder.build();
/// let index = Index::create_in_ram(schema);
/// {
/// let mut index_writer = index.writer(3_000_000)?;
/// // a document can be associated to any number of facets
/// index_writer.add_document(doc!(
/// title => "The Name of the Wind",
/// facet => Facet::from("/lang/en"),
/// facet => Facet::from("/category/fiction/fantasy")
/// ));
/// index_writer.add_document(doc!(
/// title => "Dune",
/// facet => Facet::from("/lang/en"),
/// facet => Facet::from("/category/fiction/sci-fi")
/// ));
/// index_writer.add_document(doc!(
/// title => "La Vénus d'Ille",
/// facet => Facet::from("/lang/fr"),
/// facet => Facet::from("/category/fiction/fantasy"),
/// facet => Facet::from("/category/fiction/horror")
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of a Young Girl",
/// facet => Facet::from("/lang/en"),
/// facet => Facet::from("/category/biography")
/// ));
/// index_writer.commit().unwrap();
/// }
///
/// index.load_searchers()?;
/// let searcher = index.searcher();
///
/// {
/// let mut facet_collector = FacetCollector::for_field(facet);
/// facet_collector.add_facet("/lang");
/// facet_collector.add_facet("/category");
/// searcher.search(&AllQuery, &mut facet_collector).unwrap();
///
/// // this object contains count aggregate for all of the facets.
/// let counts = facet_collector.harvest();
///
/// // This lists all of the facet counts
/// let facets: Vec<(&Facet, u64)> = counts
/// .get("/category")
/// .collect();
/// assert_eq!(facets, vec![
/// (&Facet::from("/category/biography"), 1),
/// (&Facet::from("/category/fiction"), 3)
/// ]);
/// }
///
/// {
/// let mut facet_collector = FacetCollector::for_field(facet);
/// facet_collector.add_facet("/category/fiction");
/// searcher.search(&AllQuery, &mut facet_collector).unwrap();
///
/// // this object contains count aggregate for all of the facets.
/// let counts = facet_collector.harvest();
///
/// // This lists all of the facet counts
/// let facets: Vec<(&Facet, u64)> = counts
/// .get("/category/fiction")
/// .collect();
/// assert_eq!(facets, vec![
/// (&Facet::from("/category/fiction/fantasy"), 2),
/// (&Facet::from("/category/fiction/horror"), 1),
/// (&Facet::from("/category/fiction/sci-fi"), 1)
/// ]);
/// }
///
/// {
/// let mut facet_collector = FacetCollector::for_field(facet);
/// facet_collector.add_facet("/category/fiction");
/// searcher.search(&AllQuery, &mut facet_collector).unwrap();
///
/// // this object contains count aggregate for all of the facets.
/// let counts = facet_collector.harvest();
///
/// // This lists all of the facet counts
/// let facets: Vec<(&Facet, u64)> = counts.top_k("/category/fiction", 1);
/// assert_eq!(facets, vec![
/// (&Facet::from("/category/fiction/fantasy"), 2)
/// ]);
/// }
///
/// Ok(())
/// }
/// ```
pub struct FacetCollector {
facet_ords: Vec<u64>,
/// Facet collector for i64/u64 fast field
pub struct FacetCollector<T>
where
T: FastFieldReader,
T::ValueType: Eq + Hash,
{
counters: HashMap<T::ValueType, u64>,
field: Field,
ff_reader: Option<UnsafeCell<FacetReader>>,
segment_counters: Vec<SegmentFacetCounter>,
// facet_ord -> collapse facet_id
current_segment_collapse_mapping: Vec<usize>,
// collapse facet_id -> count
current_segment_counts: Vec<u64>,
// collapse facet_id -> facet_ord
current_collapse_facet_ords: Vec<u64>,
facets: BTreeSet<Facet>,
ff_reader: Option<T>,
}
fn skip<'a, I: Iterator<Item = &'a Facet>>(
target: &[u8],
collapse_it: &mut Peekable<I>,
) -> SkipResult {
loop {
match collapse_it.peek() {
Some(facet_bytes) => match facet_bytes.encoded_bytes().cmp(target) {
Ordering::Less => {}
Ordering::Greater => {
return SkipResult::OverStep;
}
Ordering::Equal => {
return SkipResult::Reached;
}
},
None => {
return SkipResult::End;
}
}
collapse_it.next();
}
}
impl FacetCollector {
/// Create a facet collector to collect the facets
/// from a specific facet `Field`.
///
/// This function does not check whether the field
/// is of the proper type.
pub fn for_field(field: Field) -> FacetCollector {
impl<T> FacetCollector<T>
where
T: FastFieldReader,
T::ValueType: Eq + Hash,
{
/// Creates a new facet collector for aggregating a given field.
pub fn new(field: Field) -> FacetCollector<T> {
FacetCollector {
facet_ords: Vec::with_capacity(255),
segment_counters: Vec::new(),
field,
counters: HashMap::new(),
field: field,
ff_reader: None,
facets: BTreeSet::new(),
current_segment_collapse_mapping: Vec::new(),
current_collapse_facet_ords: Vec::new(),
current_segment_counts: Vec::new(),
}
}
/// Adds a facet that we want to record counts
///
/// Adding facet `Facet::from("/country")` for instance,
/// will record the counts of all of the direct children of the facet country
/// (e.g. `/country/FR`, `/country/UK`).
///
/// Adding two facets within which one is the prefix of the other is forbidden.
/// If you need the correct number of unique documents for two such facets,
/// just add them in separate `FacetCollector`.
pub fn add_facet<T>(&mut self, facet_from: T)
where
Facet: From<T>,
{
let facet = Facet::from(facet_from);
for old_facet in &self.facets {
assert!(
!old_facet.is_prefix_of(&facet),
"Tried to add a facet which is a descendant of an already added facet."
);
assert!(
!facet.is_prefix_of(old_facet),
"Tried to add a facet which is an ancestor of an already added facet."
);
}
self.facets.insert(facet);
}
fn set_collapse_mapping(&mut self, facet_reader: &FacetReader) {
self.current_segment_collapse_mapping.clear();
self.current_collapse_facet_ords.clear();
self.current_segment_counts.clear();
let mut collapse_facet_it = self.facets.iter().peekable();
self.current_collapse_facet_ords.push(0);
let mut facet_streamer = facet_reader.facet_dict().range().into_stream();
if !facet_streamer.advance() {
return;
}
'outer: loop {
// at the begining of this loop, facet_streamer
// is positionned on a term that has not been processed yet.
let skip_result = skip(facet_streamer.key(), &mut collapse_facet_it);
match skip_result {
SkipResult::Reached => {
// we reach a facet we decided to collapse.
let collapse_depth = facet_depth(facet_streamer.key());
let mut collapsed_id = 0;
self.current_segment_collapse_mapping.push(0);
while facet_streamer.advance() {
let depth = facet_depth(facet_streamer.key());
if depth <= collapse_depth {
continue 'outer;
}
if depth == collapse_depth + 1 {
collapsed_id = self.current_collapse_facet_ords.len();
self.current_collapse_facet_ords
.push(facet_streamer.term_ord());
self.current_segment_collapse_mapping.push(collapsed_id);
} else {
self.current_segment_collapse_mapping.push(collapsed_id);
}
}
break;
}
SkipResult::End | SkipResult::OverStep => {
self.current_segment_collapse_mapping.push(0);
if !facet_streamer.advance() {
break;
}
}
}
}
}
fn finalize_segment(&mut self) {
if self.ff_reader.is_some() {
self.segment_counters.push(SegmentFacetCounter {
facet_reader: self.ff_reader.take().unwrap().into_inner(),
facet_ords: mem::replace(&mut self.current_collapse_facet_ords, Vec::new()),
facet_counts: mem::replace(&mut self.current_segment_counts, Vec::new()),
});
}
}
/// Returns the results of the collection.
///
/// This method does not just return the counters,
/// it also translates the facet ordinals of the last segment.
pub fn harvest(mut self) -> FacetCounts {
self.finalize_segment();
let collapsed_facet_ords: Vec<&[u64]> = self.segment_counters
.iter()
.map(|segment_counter| &segment_counter.facet_ords[..])
.collect();
let collapsed_facet_counts: Vec<&[u64]> = self.segment_counters
.iter()
.map(|segment_counter| &segment_counter.facet_counts[..])
.collect();
let facet_streams = self.segment_counters
.iter()
.map(|seg_counts| seg_counts.facet_reader.facet_dict().range().into_stream())
.collect::<Vec<_>>();
let mut facet_merger = TermMerger::new(facet_streams);
let mut facet_counts = BTreeMap::new();
while facet_merger.advance() {
let count = facet_merger
.current_kvs()
.iter()
.map(|it| {
let seg_ord = it.segment_ord;
let term_ord = it.streamer.term_ord();
collapsed_facet_ords[seg_ord]
.binary_search(&term_ord)
.map(|collapsed_term_id| {
if collapsed_term_id == 0 {
0
} else {
collapsed_facet_counts[seg_ord][collapsed_term_id]
}
})
.unwrap_or(0)
})
.sum();
if count > 0u64 {
let bytes: Vec<u8> = facet_merger.key().to_owned();
// may create an corrupted facet if the term dicitonary is corrupted
let facet = unsafe { Facet::from_encoded(bytes) };
facet_counts.insert(facet, count);
}
}
FacetCounts { facet_counts }
}
}
impl Collector for FacetCollector {
impl<T> Collector for FacetCollector<T>
where
T: FastFieldReader,
T::ValueType: Eq + Hash,
{
fn set_segment(&mut self, _: SegmentLocalId, reader: &SegmentReader) -> Result<()> {
self.finalize_segment();
let facet_reader = reader.facet_reader(self.field)?;
self.set_collapse_mapping(&facet_reader);
self.current_segment_counts
.resize(self.current_collapse_facet_ords.len(), 0);
self.ff_reader = Some(UnsafeCell::new(facet_reader));
self.ff_reader = Some(reader.get_fast_field_reader(self.field)?);
Ok(())
}
fn collect(&mut self, doc: DocId, _: Score) {
let facet_reader: &mut FacetReader = unsafe {
&mut *self.ff_reader
.as_ref()
.expect("collect() was called before set_segment. This should never happen.")
.get()
};
facet_reader.facet_ords(doc, &mut self.facet_ords);
let mut previous_collapsed_ord: usize = usize::MAX;
for &facet_ord in &self.facet_ords {
let collapsed_ord = self.current_segment_collapse_mapping[facet_ord as usize];
self.current_segment_counts[collapsed_ord] += if collapsed_ord == previous_collapsed_ord
{
0
} else {
1
};
previous_collapsed_ord = collapsed_ord;
}
}
fn requires_scoring(&self) -> bool {
false
}
}
/// Intermediary result of the `FacetCollector` that stores
/// the facet counts for all the segments.
pub struct FacetCounts {
facet_counts: BTreeMap<Facet, u64>,
}
pub struct FacetChildIterator<'a> {
underlying: btree_map::Range<'a, Facet, u64>,
}
impl<'a> Iterator for FacetChildIterator<'a> {
type Item = (&'a Facet, u64);
fn next(&mut self) -> Option<Self::Item> {
self.underlying.next().map(|(facet, count)| (facet, *count))
}
}
impl FacetCounts {
pub fn get<T>(&self, facet_from: T) -> FacetChildIterator
where
Facet: From<T>,
{
let facet = Facet::from(facet_from);
let left_bound = Bound::Excluded(facet.clone());
let right_bound = if facet.is_root() {
Bound::Unbounded
} else {
let mut facet_after_bytes: Vec<u8> = facet.encoded_bytes().to_owned();
facet_after_bytes.push(1u8);
let facet_after = unsafe { Facet::from_encoded(facet_after_bytes) }; // ok logic
Bound::Excluded(facet_after)
};
let underlying: btree_map::Range<_, _> = self.facet_counts.range((left_bound, right_bound));
FacetChildIterator { underlying }
}
pub fn top_k<T>(&self, facet: T, k: usize) -> Vec<(&Facet, u64)>
where
Facet: From<T>,
{
let mut heap = BinaryHeap::with_capacity(k);
let mut it = self.get(facet);
for (facet, count) in (&mut it).take(k) {
heap.push(Hit { count, facet });
}
let mut lowest_count: u64 = heap.peek().map(|hit| hit.count).unwrap_or(u64::MIN);
for (facet, count) in it {
if count > lowest_count {
lowest_count = count;
if let Some(mut head) = heap.peek_mut() {
*head = Hit { count, facet };
}
}
}
heap.into_sorted_vec()
.into_iter()
.map(|hit| (hit.facet, hit.count))
.collect::<Vec<_>>()
let val = self.ff_reader
.as_ref()
.expect("collect() was called before set_segment. This should never happen.")
.get(doc);
*(self.counters.entry(val).or_insert(0)) += 1;
}
}
#[cfg(test)]
mod tests {
use super::{FacetCollector, FacetCounts};
use core::Index;
use query::AllQuery;
use rand::{thread_rng, Rng};
use schema::Field;
use schema::{Document, Facet, SchemaBuilder};
use std::iter;
#[test]
fn test_facet_collector_drilldown() {
let mut schema_builder = SchemaBuilder::new();
let facet_field = schema_builder.add_facet_field("facet");
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer = index.writer_with_num_threads(1, 3_000_000).unwrap();
let num_facets: usize = 3 * 4 * 5;
let facets: Vec<Facet> = (0..num_facets)
.map(|mut n| {
let top = n % 3;
n /= 3;
let mid = n % 4;
n /= 4;
let leaf = n % 5;
Facet::from(&format!("/top{}/mid{}/leaf{}", top, mid, leaf))
})
.collect();
for i in 0..num_facets * 10 {
let mut doc = Document::new();
doc.add_facet(facet_field, facets[i % num_facets].clone());
index_writer.add_document(doc);
}
index_writer.commit().unwrap();
index.load_searchers().unwrap();
let searcher = index.searcher();
let mut facet_collector = FacetCollector::for_field(facet_field);
facet_collector.add_facet(Facet::from("/top1"));
searcher.search(&AllQuery, &mut facet_collector).unwrap();
let counts: FacetCounts = facet_collector.harvest();
{
let facets: Vec<(String, u64)> = counts
.get("/top1")
.map(|(facet, count)| (facet.to_string(), count))
.collect();
assert_eq!(
facets,
[
("/top1/mid0", 50),
("/top1/mid1", 50),
("/top1/mid2", 50),
("/top1/mid3", 50),
].iter()
.map(|&(facet_str, count)| (String::from(facet_str), count))
.collect::<Vec<_>>()
);
}
}
#[test]
#[should_panic(
expected = "Tried to add a facet which is a descendant of \
an already added facet."
)]
fn test_misused_facet_collector() {
let mut facet_collector = FacetCollector::for_field(Field(0));
facet_collector.add_facet(Facet::from("/country"));
facet_collector.add_facet(Facet::from("/country/europe"));
}
#[test]
fn test_non_used_facet_collector() {
let mut facet_collector = FacetCollector::for_field(Field(0));
facet_collector.add_facet(Facet::from("/country"));
facet_collector.add_facet(Facet::from("/countryeurope"));
}
#[test]
fn test_facet_collector_topk() {
let mut schema_builder = SchemaBuilder::new();
let facet_field = schema_builder.add_facet_field("facet");
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut docs: Vec<Document> = vec![("a", 10), ("b", 100), ("c", 7), ("d", 12), ("e", 21)]
.into_iter()
.flat_map(|(c, count)| {
let facet = Facet::from(&format!("/facet_{}", c));
let doc = doc!(facet_field => facet);
iter::repeat(doc).take(count)
})
.collect();
thread_rng().shuffle(&mut docs[..]);
let mut index_writer = index.writer_with_num_threads(1, 3_000_000).unwrap();
for doc in docs {
index_writer.add_document(doc);
}
index_writer.commit().unwrap();
index.load_searchers().unwrap();
let searcher = index.searcher();
let mut facet_collector = FacetCollector::for_field(facet_field);
facet_collector.add_facet("/");
searcher.search(&AllQuery, &mut facet_collector).unwrap();
let counts: FacetCounts = facet_collector.harvest();
{
let facets: Vec<(&Facet, u64)> = counts.top_k("/", 3);
assert_eq!(
facets,
vec![
(&Facet::from("/facet_b"), 100),
(&Facet::from("/facet_e"), 21),
(&Facet::from("/facet_d"), 12),
]
);
}
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use collector::FacetCollector;
use query::AllQuery;
use rand::{thread_rng, Rng};
use schema::Facet;
use schema::SchemaBuilder;
use test::Bencher;
use collector::{chain, FacetCollector};
use query::QueryParser;
use fastfield::{I64FastFieldReader, U64FastFieldReader};
use schema::{self, FAST, STRING};
use Index;
#[bench]
fn bench_facet_collector(b: &mut Bencher) {
let mut schema_builder = SchemaBuilder::new();
let facet_field = schema_builder.add_facet_field("facet");
#[test]
// create 10 documents, set num field value to 0 or 1 for even/odd ones
// make sure we have facet counters correctly filled
fn test_facet_collector_results() {
let mut schema_builder = schema::SchemaBuilder::new();
let num_field_i64 = schema_builder.add_i64_field("num_i64", FAST);
let num_field_u64 = schema_builder.add_u64_field("num_u64", FAST);
let text_field = schema_builder.add_text_field("text", STRING);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut docs = vec![];
for val in 0..50 {
let facet = Facet::from(&format!("/facet_{}", val));
for _ in 0..val * val {
docs.push(doc!(facet_field=>facet.clone()));
let index = Index::create_in_ram(schema.clone());
{
let mut index_writer = index.writer_with_num_threads(1, 40_000_000).unwrap();
{
for i in 0u64..10u64 {
index_writer.add_document(doc!(
num_field_i64 => ((i as i64) % 3i64) as i64,
num_field_u64 => (i % 2u64) as u64,
text_field => "text"
));
}
}
assert_eq!(index_writer.commit().unwrap(), 10u64);
}
// 40425 docs
thread_rng().shuffle(&mut docs[..]);
let mut index_writer = index.writer_with_num_threads(1, 3_000_000).unwrap();
for doc in docs {
index_writer.add_document(doc);
}
index_writer.commit().unwrap();
index.load_searchers().unwrap();
let searcher = index.searcher();
let mut ffvf_i64: FacetCollector<I64FastFieldReader> = FacetCollector::new(num_field_i64);
let mut ffvf_u64: FacetCollector<U64FastFieldReader> = FacetCollector::new(num_field_u64);
b.iter(|| {
let searcher = index.searcher();
let mut facet_collector = FacetCollector::for_field(facet_field);
searcher.search(&AllQuery, &mut facet_collector).unwrap();
});
{
// perform the query
let mut facet_collectors = chain().push(&mut ffvf_i64).push(&mut ffvf_u64);
let query_parser = QueryParser::for_index(&index, vec![text_field]);
let query = query_parser.parse_query("text:text").unwrap();
query.search(&searcher, &mut facet_collectors).unwrap();
}
assert_eq!(ffvf_u64.counters[&0], 5);
assert_eq!(ffvf_u64.counters[&1], 5);
assert_eq!(ffvf_i64.counters[&0], 4);
assert_eq!(ffvf_i64.counters[&1], 3);
}
}

View File

@@ -1,123 +0,0 @@
use std::cmp::Eq;
use std::collections::HashMap;
use std::hash::Hash;
use collector::Collector;
use fastfield::FastFieldReader;
use schema::Field;
use DocId;
use Result;
use Score;
use SegmentReader;
use SegmentLocalId;
/// Facet collector for i64/u64 fast field
pub struct IntFacetCollector<T>
where
T: FastFieldReader,
T::ValueType: Eq + Hash,
{
counters: HashMap<T::ValueType, u64>,
field: Field,
ff_reader: Option<T>,
}
impl<T> IntFacetCollector<T>
where
T: FastFieldReader,
T::ValueType: Eq + Hash,
{
/// Creates a new facet collector for aggregating a given field.
pub fn new(field: Field) -> IntFacetCollector<T> {
IntFacetCollector {
counters: HashMap::new(),
field: field,
ff_reader: None,
}
}
}
impl<T> Collector for IntFacetCollector<T>
where
T: FastFieldReader,
T::ValueType: Eq + Hash,
{
fn set_segment(&mut self, _: SegmentLocalId, reader: &SegmentReader) -> Result<()> {
self.ff_reader = Some(reader.get_fast_field_reader(self.field)?);
Ok(())
}
fn collect(&mut self, doc: DocId, _: Score) {
let val = self.ff_reader
.as_ref()
.expect(
"collect() was called before set_segment. \
This should never happen.",
)
.get(doc);
*(self.counters.entry(val).or_insert(0)) += 1;
}
}
#[cfg(test)]
mod tests {
use collector::{chain, IntFacetCollector};
use query::QueryParser;
use fastfield::{I64FastFieldReader, U64FastFieldReader};
use schema::{self, FAST, STRING};
use Index;
#[test]
// create 10 documents, set num field value to 0 or 1 for even/odd ones
// make sure we have facet counters correctly filled
fn test_facet_collector_results() {
let mut schema_builder = schema::SchemaBuilder::new();
let num_field_i64 = schema_builder.add_i64_field("num_i64", FAST);
let num_field_u64 = schema_builder.add_u64_field("num_u64", FAST);
let text_field = schema_builder.add_text_field("text", STRING);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
{
let mut index_writer = index.writer_with_num_threads(1, 40_000_000).unwrap();
{
for i in 0u64..10u64 {
index_writer.add_document(doc!(
num_field_i64 => ((i as i64) % 3i64) as i64,
num_field_u64 => (i % 2u64) as u64,
text_field => "text"
));
}
}
assert_eq!(index_writer.commit().unwrap(), 10u64);
}
index.load_searchers().unwrap();
let searcher = index.searcher();
let mut ffvf_i64: IntFacetCollector<I64FastFieldReader> = IntFacetCollector::new(num_field_i64);
let mut ffvf_u64: IntFacetCollector<U64FastFieldReader> = IntFacetCollector::new(num_field_u64);
{
// perform the query
let mut facet_collectors = chain().push(&mut ffvf_i64).push(&mut ffvf_u64);
let mut query_parser = QueryParser::for_index(index, vec![text_field]);
let query = query_parser.parse_query("text:text").unwrap();
query.search(&searcher, &mut facet_collectors).unwrap();
}
assert_eq!(ffvf_u64.counters[&0], 5);
assert_eq!(ffvf_u64.counters[&1], 5);
assert_eq!(ffvf_i64.counters[&0], 4);
assert_eq!(ffvf_i64.counters[&1], 3);
}
}

View File

@@ -2,11 +2,11 @@
Defines how the documents matching a search query should be processed.
*/
use DocId;
use Result;
use Score;
use SegmentLocalId;
use SegmentReader;
use SegmentLocalId;
use DocId;
use Score;
use Result;
mod count_collector;
pub use self::count_collector::CountCollector;
@@ -21,7 +21,7 @@ mod facet_collector;
pub use self::facet_collector::FacetCollector;
mod chained_collector;
pub use self::chained_collector::{chain, ChainedCollector};
pub use self::chained_collector::chain;
/// Collectors are in charge of collecting and retaining relevant
/// information from the document found and scored by the query.
@@ -62,9 +62,6 @@ pub trait Collector {
) -> Result<()>;
/// The query pushes the scored document to the collector via this method.
fn collect(&mut self, doc: DocId, score: Score);
/// Returns true iff the collector requires to compute scores for documents.
fn requires_scoring(&self) -> bool;
}
impl<'a, C: Collector> Collector for &'a mut C {
@@ -77,11 +74,7 @@ impl<'a, C: Collector> Collector for &'a mut C {
}
/// The query pushes the scored document to the collector via this method.
fn collect(&mut self, doc: DocId, score: Score) {
C::collect(self, doc, score)
}
fn requires_scoring(&self) -> bool {
C::requires_scoring(self)
(*self).collect(doc, score);
}
}
@@ -89,13 +82,14 @@ impl<'a, C: Collector> Collector for &'a mut C {
pub mod tests {
use super::*;
use core::SegmentReader;
use fastfield::BytesFastFieldReader;
use fastfield::FastFieldReader;
use schema::Field;
use test::Bencher;
use DocId;
use Score;
use core::SegmentReader;
use SegmentLocalId;
use fastfield::U64FastFieldReader;
use fastfield::FastFieldReader;
use schema::Field;
/// Stores all of the doc ids.
/// This collector is only used for tests.
@@ -105,7 +99,6 @@ pub mod tests {
offset: DocId,
segment_max_doc: DocId,
docs: Vec<DocId>,
scores: Vec<Score>,
}
impl TestCollector {
@@ -113,19 +106,14 @@ pub mod tests {
pub fn docs(self) -> Vec<DocId> {
self.docs
}
pub fn scores(self) -> Vec<Score> {
self.scores
}
}
impl Default for TestCollector {
fn default() -> TestCollector {
TestCollector {
docs: Vec::new(),
offset: 0,
segment_max_doc: 0,
docs: Vec::new(),
scores: Vec::new(),
}
}
}
@@ -137,13 +125,8 @@ pub mod tests {
Ok(())
}
fn collect(&mut self, doc: DocId, score: Score) {
fn collect(&mut self, doc: DocId, _score: Score) {
self.docs.push(doc + self.offset);
self.scores.push(score);
}
fn requires_scoring(&self) -> bool {
true
}
}
@@ -154,14 +137,14 @@ pub mod tests {
pub struct FastFieldTestCollector {
vals: Vec<u64>,
field: Field,
ff_reader: Option<FastFieldReader<u64>>,
ff_reader: Option<U64FastFieldReader>,
}
impl FastFieldTestCollector {
pub fn for_field(field: Field) -> FastFieldTestCollector {
FastFieldTestCollector {
vals: Vec::new(),
field,
field: field,
ff_reader: None,
}
}
@@ -173,7 +156,7 @@ pub mod tests {
impl Collector for FastFieldTestCollector {
fn set_segment(&mut self, _: SegmentLocalId, reader: &SegmentReader) -> Result<()> {
self.ff_reader = Some(reader.fast_field_reader(self.field)?);
self.ff_reader = Some(reader.get_fast_field_reader(self.field)?);
Ok(())
}
@@ -181,57 +164,8 @@ pub mod tests {
let val = self.ff_reader.as_ref().unwrap().get(doc);
self.vals.push(val);
}
fn requires_scoring(&self) -> bool {
false
}
}
/// Collects in order all of the fast field bytes for all of the
/// docs in the `DocSet`
///
/// This collector is mainly useful for tests.
pub struct BytesFastFieldTestCollector {
vals: Vec<u8>,
field: Field,
ff_reader: Option<BytesFastFieldReader>,
}
impl BytesFastFieldTestCollector {
pub fn for_field(field: Field) -> BytesFastFieldTestCollector {
BytesFastFieldTestCollector {
vals: Vec::new(),
field,
ff_reader: None,
}
}
pub fn vals(self) -> Vec<u8> {
self.vals
}
}
impl Collector for BytesFastFieldTestCollector {
fn set_segment(&mut self, _segment_local_id: u32, segment: &SegmentReader) -> Result<()> {
self.ff_reader = Some(segment.bytes_fast_field_reader(self.field)?);
Ok(())
}
fn collect(&mut self, doc: u32, _score: f32) {
let val = self.ff_reader.as_ref().unwrap().get_val(doc);
self.vals.extend(val);
}
fn requires_scoring(&self) -> bool {
false
}
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use collector::{Collector, CountCollector};
use test::Bencher;
#[bench]
fn build_collector(b: &mut Bencher) {
b.iter(|| {

View File

@@ -1,66 +1,14 @@
use super::Collector;
use DocId;
use Result;
use Score;
use SegmentLocalId;
use Result;
use SegmentReader;
use SegmentLocalId;
/// Multicollector makes it possible to collect on more than one collector.
/// It should only be used for use cases where the Collector types is unknown
/// at compile time.
/// If the type of the collectors is known, you should prefer to use `ChainedCollector`.
///
/// ```rust
/// #[macro_use]
/// extern crate tantivy;
/// use tantivy::schema::{SchemaBuilder, TEXT};
/// use tantivy::{Index, Result};
/// use tantivy::collector::{CountCollector, TopCollector, MultiCollector};
/// use tantivy::query::QueryParser;
///
/// # fn main() { example().unwrap(); }
/// fn example() -> Result<()> {
/// let mut schema_builder = SchemaBuilder::new();
/// let title = schema_builder.add_text_field("title", TEXT);
/// let schema = schema_builder.build();
/// let index = Index::create_in_ram(schema);
/// {
/// let mut index_writer = index.writer(3_000_000)?;
/// index_writer.add_document(doc!(
/// title => "The Name of the Wind",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of Muadib",
/// ));
/// index_writer.add_document(doc!(
/// title => "A Dairy Cow",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of a Young Girl",
/// ));
/// index_writer.commit().unwrap();
/// }
///
/// index.load_searchers()?;
/// let searcher = index.searcher();
///
/// {
/// let mut top_collector = TopCollector::with_limit(2);
/// let mut count_collector = CountCollector::default();
/// {
/// let mut collectors =
/// MultiCollector::from(vec![&mut top_collector, &mut count_collector]);
/// let query_parser = QueryParser::for_index(&index, vec![title]);
/// let query = query_parser.parse_query("diary")?;
/// searcher.search(&*query, &mut collectors).unwrap();
/// }
/// assert_eq!(count_collector.count(), 2);
/// assert!(top_collector.at_capacity());
/// }
///
/// Ok(())
/// }
/// ```
pub struct MultiCollector<'a> {
collectors: Vec<&'a mut Collector>,
}
@@ -68,7 +16,9 @@ pub struct MultiCollector<'a> {
impl<'a> MultiCollector<'a> {
/// Constructor
pub fn from(collectors: Vec<&'a mut Collector>) -> MultiCollector {
MultiCollector { collectors }
MultiCollector {
collectors: collectors,
}
}
}
@@ -79,7 +29,7 @@ impl<'a> Collector for MultiCollector<'a> {
segment: &SegmentReader,
) -> Result<()> {
for collector in &mut self.collectors {
collector.set_segment(segment_local_id, segment)?;
try!(collector.set_segment(segment_local_id, segment));
}
Ok(())
}
@@ -89,11 +39,6 @@ impl<'a> Collector for MultiCollector<'a> {
collector.collect(doc, score);
}
}
fn requires_scoring(&self) -> bool {
self.collectors
.iter()
.any(|collector| collector.requires_scoring())
}
}
#[cfg(test)]

View File

@@ -1,12 +1,12 @@
use super::Collector;
use std::cmp::Ordering;
use std::collections::BinaryHeap;
use DocAddress;
use DocId;
use Result;
use Score;
use SegmentLocalId;
use SegmentReader;
use SegmentLocalId;
use DocAddress;
use Result;
use std::collections::BinaryHeap;
use std::cmp::Ordering;
use DocId;
use Score;
// Rust heap is a max-heap and we need a min heap.
#[derive(Clone, Copy)]
@@ -43,61 +43,7 @@ impl Eq for GlobalScoredDoc {}
/// with the best scores.
///
/// The implementation is based on a `BinaryHeap`.
/// The theorical complexity for collecting the top `K` out of `n` documents
/// is `O(n log K)`.
///
/// ```rust
/// #[macro_use]
/// extern crate tantivy;
/// use tantivy::schema::{SchemaBuilder, TEXT};
/// use tantivy::{Index, Result, DocId, Score};
/// use tantivy::collector::TopCollector;
/// use tantivy::query::QueryParser;
///
/// # fn main() { example().unwrap(); }
/// fn example() -> Result<()> {
/// let mut schema_builder = SchemaBuilder::new();
/// let title = schema_builder.add_text_field("title", TEXT);
/// let schema = schema_builder.build();
/// let index = Index::create_in_ram(schema);
/// {
/// let mut index_writer = index.writer_with_num_threads(1, 3_000_000)?;
/// index_writer.add_document(doc!(
/// title => "The Name of the Wind",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of Muadib",
/// ));
/// index_writer.add_document(doc!(
/// title => "A Dairy Cow",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of a Young Girl",
/// ));
/// index_writer.commit().unwrap();
/// }
///
/// index.load_searchers()?;
/// let searcher = index.searcher();
///
/// {
/// let mut top_collector = TopCollector::with_limit(2);
/// let query_parser = QueryParser::for_index(&index, vec![title]);
/// let query = query_parser.parse_query("diary")?;
/// searcher.search(&*query, &mut top_collector).unwrap();
///
/// let score_docs: Vec<(Score, DocId)> = top_collector
/// .score_docs()
/// .into_iter()
/// .map(|(score, doc_address)| (score, doc_address.doc()))
/// .collect();
///
/// assert_eq!(score_docs, vec![(0.7261542, 1), (0.6099695, 3)]);
/// }
///
/// Ok(())
/// }
/// ```
/// The theorical complexity is `O(n log K)`.
pub struct TopCollector {
limit: usize,
heap: BinaryHeap<GlobalScoredDoc>,
@@ -114,7 +60,7 @@ impl TopCollector {
panic!("Limit must be strictly greater than 0.");
}
TopCollector {
limit,
limit: limit,
heap: BinaryHeap::with_capacity(limit),
segment_id: 0,
}
@@ -173,25 +119,21 @@ impl Collector for TopCollector {
}
} else {
let wrapped_doc = GlobalScoredDoc {
score,
score: score,
doc_address: DocAddress(self.segment_id, doc),
};
self.heap.push(wrapped_doc);
}
}
fn requires_scoring(&self) -> bool {
true
}
}
#[cfg(test)]
mod tests {
use super::*;
use collector::Collector;
use DocId;
use Score;
use collector::Collector;
#[test]
fn test_top_collector_not_at_capacity() {
@@ -240,5 +182,4 @@ mod tests {
fn test_top_0() {
TopCollector::with_limit(0);
}
}

View File

@@ -1,39 +1,67 @@
use common::serialize::BinarySerializable;
use std::io;
use std::io::Write;
use std::io;
use common::serialize::BinarySerializable;
use std::mem;
use std::ops::Deref;
use std::ptr;
pub(crate) struct BitPacker {
/// Computes the number of bits that will be used for bitpacking.
///
/// In general the target is the minimum number of bits
/// required to express the amplitude given in argument.
///
/// e.g. If the amplitude is 10, we can store all ints on simply 4bits.
///
/// The logic is slightly more convoluted here as for optimization
/// reasons, we want to ensure that a value spawns over at most 8 bytes
/// of aligns bytes.
///
/// Spanning over 9 bytes is possible for instance, if we do
/// bitpacking with an amplitude of 63 bits.
/// In this case, the second int will start on bit
/// 63 (which belongs to byte 7) and ends at byte 15;
/// Hence 9 bytes (from byte 7 to byte 15 included).
///
/// To avoid this, we force the number of bits to 64bits
/// when the result is greater than `64-8 = 56 bits`.
///
/// Note that this only affects rare use cases spawning over
/// a very large range of values. Even in this case, it results
/// in an extra cost of at most 12% compared to the optimal
/// number of bits.
pub fn compute_num_bits(amplitude: u64) -> u8 {
let amplitude = (64u32 - amplitude.leading_zeros()) as u8;
if amplitude <= 64 - 8 {
amplitude
} else {
64
}
}
pub struct BitPacker {
mini_buffer: u64,
mini_buffer_written: usize,
num_bits: usize,
}
impl BitPacker {
pub fn new() -> BitPacker {
pub fn new(num_bits: usize) -> BitPacker {
BitPacker {
mini_buffer: 0u64,
mini_buffer_written: 0,
num_bits,
}
}
pub fn write<TWrite: Write>(
&mut self,
val: u64,
num_bits: u8,
output: &mut TWrite,
) -> io::Result<()> {
pub fn write<TWrite: Write>(&mut self, val: u64, output: &mut TWrite) -> io::Result<()> {
let val_u64 = val as u64;
let num_bits = num_bits as usize;
if self.mini_buffer_written + num_bits > 64 {
if self.mini_buffer_written + self.num_bits > 64 {
self.mini_buffer |= val_u64.wrapping_shl(self.mini_buffer_written as u32);
self.mini_buffer.serialize(output)?;
self.mini_buffer = val_u64.wrapping_shr((64 - self.mini_buffer_written) as u32);
self.mini_buffer_written = self.mini_buffer_written + num_bits - 64;
self.mini_buffer_written = self.mini_buffer_written + (self.num_bits as usize) - 64;
} else {
self.mini_buffer |= val_u64 << self.mini_buffer_written;
self.mini_buffer_written += num_bits;
self.mini_buffer_written += self.num_bits;
if self.mini_buffer_written == 64 {
self.mini_buffer.serialize(output)?;
self.mini_buffer_written = 0;
@@ -43,10 +71,10 @@ impl BitPacker {
Ok(())
}
pub fn flush<TWrite: Write>(&mut self, output: &mut TWrite) -> io::Result<()> {
pub(crate) fn flush<TWrite: Write>(&mut self, output: &mut TWrite) -> io::Result<()> {
if self.mini_buffer_written > 0 {
let num_bytes = (self.mini_buffer_written + 7) / 8;
let arr: [u8; 8] = unsafe { mem::transmute::<u64, [u8; 8]>(self.mini_buffer.to_le()) };
let arr: [u8; 8] = unsafe { mem::transmute::<u64, [u8; 8]>(self.mini_buffer) };
output.write_all(&arr[..num_bytes])?;
self.mini_buffer_written = 0;
}
@@ -61,7 +89,6 @@ impl BitPacker {
}
}
#[derive(Clone)]
pub struct BitUnpacker<Data>
where
Data: Deref<Target = [u8]>,
@@ -75,14 +102,14 @@ impl<Data> BitUnpacker<Data>
where
Data: Deref<Target = [u8]>,
{
pub fn new(data: Data, num_bits: u8) -> BitUnpacker<Data> {
pub fn new(data: Data, num_bits: usize) -> BitUnpacker<Data> {
let mask: u64 = if num_bits == 64 {
!0u64
} else {
(1u64 << num_bits) - 1u64
};
BitUnpacker {
num_bits: num_bits as usize,
num_bits,
mask,
data,
}
@@ -90,7 +117,7 @@ where
pub fn get(&self, idx: usize) -> u64 {
if self.num_bits == 0 {
return 0u64;
return 0;
}
let data: &[u8] = &*self.data;
let num_bits = self.num_bits;
@@ -98,24 +125,37 @@ where
let addr_in_bits = idx * num_bits;
let addr = addr_in_bits >> 3;
let bit_shift = addr_in_bits & 7;
debug_assert!(
addr + 8 <= data.len(),
"The fast field field should have been padded with 7 bytes."
);
let val_unshifted_unmasked: u64 =
u64::from_le(unsafe { ptr::read_unaligned(data[addr..].as_ptr() as *const u64) });
let val_shifted = (val_unshifted_unmasked >> bit_shift) as u64;
val_shifted & mask
if cfg!(feature = "simdcompression") {
// for simdcompression,
// the bitpacker is only used for fastfields,
// and we expect them to be always padded.
debug_assert!(
addr + 8 <= data.len(),
"The fast field field should have been padded with 7 bytes."
);
let val_unshifted_unmasked: u64 =
unsafe { *(data[addr..].as_ptr() as *const u64) };
let val_shifted = (val_unshifted_unmasked >> bit_shift) as u64;
(val_shifted & mask)
} else {
let val_unshifted_unmasked: u64 = if addr + 8 <= data.len() {
unsafe { *(data[addr..].as_ptr() as *const u64) }
} else {
let mut buffer = [0u8; 8];
for i in addr..data.len() {
buffer[i - addr] += data[i];
}
unsafe { *(buffer[..].as_ptr() as *const u64) }
};
let val_shifted = (val_unshifted_unmasked >> bit_shift) as u64;
(val_shifted & mask)
}
}
/// Reads a range of values from the fast field.
///
/// The range of values read is from
/// `[start..start + output.len()[`
pub fn get_range(&self, start: u32, output: &mut [u64]) {
if self.num_bits == 0 {
for val in output.iter_mut() {
*val = 0u64;
*val = 0;
}
} else {
let data: &[u8] = &*self.data;
@@ -126,7 +166,7 @@ where
let addr = addr_in_bits >> 3;
let bit_shift = addr_in_bits & 7;
let val_unshifted_unmasked: u64 =
unsafe { ptr::read_unaligned(data[addr..].as_ptr() as *const u64) };
unsafe { *(data[addr..].as_ptr() as *const u64) };
let val_shifted = (val_unshifted_unmasked >> bit_shift) as u64;
*output_val = val_shifted & mask;
addr_in_bits += num_bits;
@@ -137,25 +177,37 @@ where
#[cfg(test)]
mod test {
use super::{BitPacker, BitUnpacker};
use super::{compute_num_bits, BitPacker, BitUnpacker};
fn create_fastfield_bitpacker(len: usize, num_bits: u8) -> (BitUnpacker<Vec<u8>>, Vec<u64>) {
#[test]
fn test_compute_num_bits() {
assert_eq!(compute_num_bits(1), 1u8);
assert_eq!(compute_num_bits(0), 0u8);
assert_eq!(compute_num_bits(2), 2u8);
assert_eq!(compute_num_bits(3), 2u8);
assert_eq!(compute_num_bits(4), 3u8);
assert_eq!(compute_num_bits(255), 8u8);
assert_eq!(compute_num_bits(256), 9u8);
assert_eq!(compute_num_bits(5_000_000_000), 33u8);
}
fn create_fastfield_bitpacker(len: usize, num_bits: usize) -> (BitUnpacker<Vec<u8>>, Vec<u64>) {
let mut data = Vec::new();
let mut bitpacker = BitPacker::new();
let max_val: u64 = (1u64 << num_bits as u64) - 1u64;
let mut bitpacker = BitPacker::new(num_bits);
let max_val: u64 = (1 << num_bits) - 1;
let vals: Vec<u64> = (0u64..len as u64)
.map(|i| if max_val == 0 { 0 } else { i % max_val })
.collect();
for &val in &vals {
bitpacker.write(val, num_bits, &mut data).unwrap();
bitpacker.write(val, &mut data).unwrap();
}
bitpacker.close(&mut data).unwrap();
assert_eq!(data.len(), ((num_bits as usize) * len + 7) / 8 + 7);
assert_eq!(data.len(), (num_bits * len + 7) / 8 + 7);
let bitunpacker = BitUnpacker::new(data, num_bits);
(bitunpacker, vals)
}
fn test_bitpacker_util(len: usize, num_bits: u8) {
fn test_bitpacker_util(len: usize, num_bits: usize) {
let (bitunpacker, vals) = create_fastfield_bitpacker(len, num_bits);
for (i, val) in vals.iter().enumerate() {
assert_eq!(bitunpacker.get(i), *val);

View File

@@ -1,395 +0,0 @@
use std::fmt;
use std::u64;
#[derive(Clone, Copy, Eq, PartialEq)]
pub(crate) struct TinySet(u64);
impl fmt::Debug for TinySet {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.into_iter().collect::<Vec<u32>>().fmt(f)
}
}
pub struct TinySetIterator(TinySet);
impl Iterator for TinySetIterator {
type Item = u32;
fn next(&mut self) -> Option<Self::Item> {
self.0.pop_lowest()
}
}
impl IntoIterator for TinySet {
type Item = u32;
type IntoIter = TinySetIterator;
fn into_iter(self) -> Self::IntoIter {
TinySetIterator(self)
}
}
impl TinySet {
/// Returns an empty `TinySet`.
pub fn empty() -> TinySet {
TinySet(0u64)
}
/// Returns the complement of the set in `[0, 64[`.
fn complement(&self) -> TinySet {
TinySet(!self.0)
}
/// Returns true iff the `TinySet` contains the element `el`.
pub fn contains(&self, el: u32) -> bool {
!self.intersect(TinySet::singleton(el)).is_empty()
}
/// Returns the intersection of `self` and `other`
pub fn intersect(&self, other: TinySet) -> TinySet {
TinySet(self.0 & other.0)
}
/// Creates a new `TinySet` containing only one element
/// within `[0; 64[`
#[inline(always)]
pub fn singleton(el: u32) -> TinySet {
TinySet(1u64 << u64::from(el))
}
/// Insert a new element within [0..64[
#[inline(always)]
pub fn insert(self, el: u32) -> TinySet {
self.union(TinySet::singleton(el))
}
/// Insert a new element within [0..64[
#[inline(always)]
pub fn insert_mut(&mut self, el: u32) -> bool {
let old = *self;
*self = old.insert(el);
old != *self
}
/// Returns the union of two tinysets
#[inline(always)]
pub fn union(self, other: TinySet) -> TinySet {
TinySet(self.0 | other.0)
}
/// Returns true iff the `TinySet` is empty.
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.0 == 0u64
}
/// Returns the lowest element in the `TinySet`
/// and removes it.
#[inline(always)]
pub fn pop_lowest(&mut self) -> Option<u32> {
if self.is_empty() {
None
} else {
let lowest = self.0.trailing_zeros() as u32;
self.0 ^= TinySet::singleton(lowest).0;
Some(lowest)
}
}
/// Returns a `TinySet` than contains all values up
/// to limit excluded.
///
/// The limit is assumed to be strictly lower than 64.
pub fn range_lower(upper_bound: u32) -> TinySet {
TinySet((1u64 << u64::from(upper_bound % 64u32)) - 1u64)
}
/// Returns a `TinySet` that contains all values greater
/// or equal to the given limit, included. (and up to 63)
///
/// The limit is assumed to be strictly lower than 64.
pub fn range_greater_or_equal(from_included: u32) -> TinySet {
TinySet::range_lower(from_included).complement()
}
pub fn clear(&mut self) {
self.0 = 0u64;
}
pub fn len(&self) -> u32 {
self.0.count_ones()
}
}
#[derive(Clone)]
pub struct BitSet {
tinysets: Box<[TinySet]>,
len: usize, //< Technically it should be u32, but we
// count multiple inserts.
// `usize` guards us from overflow.
max_value: u32,
}
fn num_buckets(max_val: u32) -> u32 {
(max_val + 63u32) / 64u32
}
impl BitSet {
/// Create a new `BitSet` that may contain elements
/// within `[0, max_val[`.
pub fn with_max_value(max_value: u32) -> BitSet {
let num_buckets = num_buckets(max_value);
let tinybisets = vec![TinySet::empty(); num_buckets as usize].into_boxed_slice();
BitSet {
tinysets: tinybisets,
len: 0,
max_value,
}
}
/// Removes all elements from the `BitSet`.
pub fn clear(&mut self) {
for tinyset in self.tinysets.iter_mut() {
*tinyset = TinySet::empty();
}
}
/// Returns the number of elements in the `BitSet`.
pub fn len(&self) -> usize {
self.len
}
/// Inserts an element in the `BitSet`
pub fn insert(&mut self, el: u32) {
// we do not check saturated els.
let higher = el / 64u32;
let lower = el % 64u32;
self.len += if self.tinysets[higher as usize].insert_mut(lower) {
1
} else {
0
};
}
/// Returns true iff the elements is in the `BitSet`.
pub fn contains(&self, el: u32) -> bool {
self.tinyset(el / 64u32).contains(el % 64)
}
/// Returns the first non-empty `TinySet` associated to a bucket lower
/// or greater than bucket.
///
/// Reminder: the tiny set with the bucket `bucket`, represents the
/// elements from `bucket * 64` to `(bucket+1) * 64`.
pub(crate) fn first_non_empty_bucket(&self, bucket: u32) -> Option<u32> {
self.tinysets[bucket as usize..]
.iter()
.cloned()
.position(|tinyset| !tinyset.is_empty())
.map(|delta_bucket| bucket + delta_bucket as u32)
}
pub fn max_value(&self) -> u32 {
self.max_value
}
/// Returns the tiny bitset representing the
/// the set restricted to the number range from
/// `bucket * 64` to `(bucket + 1) * 64`.
pub(crate) fn tinyset(&self, bucket: u32) -> TinySet {
self.tinysets[bucket as usize]
}
}
#[cfg(test)]
mod tests {
use super::BitSet;
use super::TinySet;
use docset::DocSet;
use query::BitSetDocSet;
use std::collections::BTreeSet;
use std::collections::HashSet;
use tests;
use tests::generate_nonunique_unsorted;
#[test]
fn test_tiny_set() {
assert!(TinySet::empty().is_empty());
{
let mut u = TinySet::empty().insert(1u32);
assert_eq!(u.pop_lowest(), Some(1u32));
assert!(u.pop_lowest().is_none())
}
{
let mut u = TinySet::empty().insert(1u32).insert(1u32);
assert_eq!(u.pop_lowest(), Some(1u32));
assert!(u.pop_lowest().is_none())
}
{
let mut u = TinySet::empty().insert(2u32);
assert_eq!(u.pop_lowest(), Some(2u32));
u.insert_mut(1u32);
assert_eq!(u.pop_lowest(), Some(1u32));
assert!(u.pop_lowest().is_none());
}
{
let mut u = TinySet::empty().insert(63u32);
assert_eq!(u.pop_lowest(), Some(63u32));
assert!(u.pop_lowest().is_none());
}
}
#[test]
fn test_bitset() {
let test_against_hashset = |els: &[u32], max_value: u32| {
let mut hashset: HashSet<u32> = HashSet::new();
let mut bitset = BitSet::with_max_value(max_value);
for &el in els {
assert!(el < max_value);
hashset.insert(el);
bitset.insert(el);
}
for el in 0..max_value {
assert_eq!(hashset.contains(&el), bitset.contains(el));
}
assert_eq!(bitset.max_value(), max_value);
};
test_against_hashset(&[], 0);
test_against_hashset(&[], 1);
test_against_hashset(&[0u32], 1);
test_against_hashset(&[0u32], 100);
test_against_hashset(&[1u32, 2u32], 4);
test_against_hashset(&[99u32], 100);
test_against_hashset(&[63u32], 64);
test_against_hashset(&[62u32, 63u32], 64);
}
#[test]
fn test_bitset_large() {
let arr = generate_nonunique_unsorted(1_000_000, 50_000);
let mut btreeset: BTreeSet<u32> = BTreeSet::new();
let mut bitset = BitSet::with_max_value(1_000_000);
for el in arr {
btreeset.insert(el);
bitset.insert(el);
}
for i in 0..1_000_000 {
assert_eq!(btreeset.contains(&i), bitset.contains(i));
}
assert_eq!(btreeset.len(), bitset.len());
let mut bitset_docset = BitSetDocSet::from(bitset);
for el in btreeset.into_iter() {
bitset_docset.advance();
assert_eq!(bitset_docset.doc(), el);
}
assert!(!bitset_docset.advance());
}
#[test]
fn test_bitset_num_buckets() {
use super::num_buckets;
assert_eq!(num_buckets(0u32), 0);
assert_eq!(num_buckets(1u32), 1);
assert_eq!(num_buckets(64u32), 1);
assert_eq!(num_buckets(65u32), 2);
assert_eq!(num_buckets(128u32), 2);
assert_eq!(num_buckets(129u32), 3);
}
#[test]
fn test_tinyset_range() {
assert_eq!(
TinySet::range_lower(3).into_iter().collect::<Vec<u32>>(),
[0, 1, 2]
);
assert!(TinySet::range_lower(0).is_empty());
assert_eq!(
TinySet::range_lower(63).into_iter().collect::<Vec<u32>>(),
(0u32..63u32).collect::<Vec<_>>()
);
assert_eq!(
TinySet::range_lower(1).into_iter().collect::<Vec<u32>>(),
[0]
);
assert_eq!(
TinySet::range_lower(2).into_iter().collect::<Vec<u32>>(),
[0, 1]
);
assert_eq!(
TinySet::range_greater_or_equal(3)
.into_iter()
.collect::<Vec<u32>>(),
(3u32..64u32).collect::<Vec<_>>()
);
}
#[test]
fn test_bitset_len() {
let mut bitset = BitSet::with_max_value(1_000);
assert_eq!(bitset.len(), 0);
bitset.insert(3u32);
assert_eq!(bitset.len(), 1);
bitset.insert(103u32);
assert_eq!(bitset.len(), 2);
bitset.insert(3u32);
assert_eq!(bitset.len(), 2);
bitset.insert(103u32);
assert_eq!(bitset.len(), 2);
bitset.insert(104u32);
assert_eq!(bitset.len(), 3);
}
#[test]
fn test_bitset_clear() {
let mut bitset = BitSet::with_max_value(1_000);
let els = tests::sample(1_000, 0.01f32);
for &el in &els {
bitset.insert(el);
}
assert!(els.iter().all(|el| bitset.contains(*el)));
bitset.clear();
for el in 0u32..1000u32 {
assert!(!bitset.contains(el));
}
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use super::BitSet;
use super::TinySet;
use test;
#[bench]
fn bench_tinyset_pop(b: &mut test::Bencher) {
b.iter(|| {
let mut tinyset = TinySet::singleton(test::black_box(31u32));
tinyset.pop_lowest();
tinyset.pop_lowest();
tinyset.pop_lowest();
tinyset.pop_lowest();
tinyset.pop_lowest();
tinyset.pop_lowest();
});
}
#[bench]
fn bench_tinyset_sum(b: &mut test::Bencher) {
let tiny_set = TinySet::empty().insert(10u32).insert(14u32).insert(21u32);
b.iter(|| {
assert_eq!(test::black_box(tiny_set).into_iter().sum::<u32>(), 45u32);
});
}
#[bench]
fn bench_tinyarr_sum(b: &mut test::Bencher) {
let v = [10u32, 14u32, 21u32];
b.iter(|| test::black_box(v).iter().cloned().sum::<u32>());
}
#[bench]
fn bench_bitset_initialize(b: &mut test::Bencher) {
b.iter(|| BitSet::with_max_value(1_000_000));
}
}

View File

@@ -1,43 +1,17 @@
use common::BinarySerializable;
use common::CountingWriter;
use common::VInt;
use directory::ReadOnlySource;
use directory::WritePtr;
use schema::Field;
use std::collections::HashMap;
use std::io::Write;
use std::io::{self, Read};
#[derive(Eq, PartialEq, Hash, Copy, Ord, PartialOrd, Clone, Debug)]
pub struct FileAddr {
field: Field,
idx: usize,
}
impl FileAddr {
fn new(field: Field, idx: usize) -> FileAddr {
FileAddr { field, idx }
}
}
impl BinarySerializable for FileAddr {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
self.field.serialize(writer)?;
VInt(self.idx as u64).serialize(writer)?;
Ok(())
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
let field = Field::deserialize(reader)?;
let idx = VInt::deserialize(reader)?.0 as usize;
Ok(FileAddr { field, idx })
}
}
use common::CountingWriter;
use std::collections::HashMap;
use schema::Field;
use common::VInt;
use directory::WritePtr;
use std::io;
use directory::ReadOnlySource;
use common::BinarySerializable;
/// A `CompositeWrite` is used to write a `CompositeFile`.
pub struct CompositeWrite<W = WritePtr> {
write: CountingWriter<W>,
offsets: HashMap<FileAddr, usize>,
offsets: HashMap<Field, usize>,
}
impl<W: Write> CompositeWrite<W> {
@@ -52,15 +26,9 @@ impl<W: Write> CompositeWrite<W> {
/// Start writing a new field.
pub fn for_field(&mut self, field: Field) -> &mut CountingWriter<W> {
self.for_field_with_idx(field, 0)
}
/// Start writing a new field.
pub fn for_field_with_idx(&mut self, field: Field, idx: usize) -> &mut CountingWriter<W> {
let offset = self.write.written_bytes();
let file_addr = FileAddr::new(field, idx);
assert!(!self.offsets.contains_key(&file_addr));
self.offsets.insert(file_addr, offset);
assert!(!self.offsets.contains_key(&field));
self.offsets.insert(field, offset);
&mut self.write
}
@@ -74,16 +42,16 @@ impl<W: Write> CompositeWrite<W> {
let mut offset_fields: Vec<_> = self.offsets
.iter()
.map(|(file_addr, offset)| (*offset, *file_addr))
.map(|(field, offset)| (offset, field))
.collect();
offset_fields.sort();
let mut prev_offset = 0;
for (offset, file_addr) in offset_fields {
for (offset, field) in offset_fields {
VInt((offset - prev_offset) as u64).serialize(&mut self.write)?;
file_addr.serialize(&mut self.write)?;
prev_offset = offset;
field.serialize(&mut self.write)?;
prev_offset = *offset;
}
let footer_len = (self.write.written_bytes() - footer_offset) as u32;
@@ -102,7 +70,7 @@ impl<W: Write> CompositeWrite<W> {
#[derive(Clone)]
pub struct CompositeFile {
data: ReadOnlySource,
offsets_index: HashMap<FileAddr, (usize, usize)>,
offsets_index: HashMap<Field, (usize, usize)>,
}
impl CompositeFile {
@@ -118,7 +86,7 @@ impl CompositeFile {
let mut footer_buffer = footer_data.as_slice();
let num_fields = VInt::deserialize(&mut footer_buffer)?.0 as usize;
let mut file_addrs = vec![];
let mut fields = vec![];
let mut offsets = vec![];
let mut field_index = HashMap::new();
@@ -126,16 +94,16 @@ impl CompositeFile {
let mut offset = 0;
for _ in 0..num_fields {
offset += VInt::deserialize(&mut footer_buffer)?.0 as usize;
let file_addr = FileAddr::deserialize(&mut footer_buffer)?;
let field = Field::deserialize(&mut footer_buffer)?;
offsets.push(offset);
file_addrs.push(file_addr);
fields.push(field);
}
offsets.push(footer_start);
for i in 0..num_fields {
let file_addr = file_addrs[i];
let field = fields[i];
let start_offset = offsets[i];
let end_offset = offsets[i + 1];
field_index.insert(file_addr, (start_offset, end_offset));
field_index.insert(field, (start_offset, end_offset));
}
Ok(CompositeFile {
@@ -156,14 +124,8 @@ impl CompositeFile {
/// Returns the `ReadOnlySource` associated
/// to a given `Field` and stored in a `CompositeFile`.
pub fn open_read(&self, field: Field) -> Option<ReadOnlySource> {
self.open_read_with_idx(field, 0)
}
/// Returns the `ReadOnlySource` associated
/// to a given `Field` and stored in a `CompositeFile`.
pub fn open_read_with_idx(&self, field: Field, idx: usize) -> Option<ReadOnlySource> {
self.offsets_index
.get(&FileAddr { field, idx })
.get(&field)
.map(|&(from, to)| self.data.slice(from, to))
}
}
@@ -171,12 +133,12 @@ impl CompositeFile {
#[cfg(test)]
mod test {
use std::io::Write;
use super::{CompositeFile, CompositeWrite};
use common::BinarySerializable;
use common::VInt;
use directory::{Directory, RAMDirectory};
use schema::Field;
use std::io::Write;
use common::VInt;
use common::BinarySerializable;
use std::path::Path;
#[test]

View File

@@ -1,5 +1,5 @@
use std::io;
use std::io::Write;
use std::io;
pub struct CountingWriter<W> {
underlying: W,

View File

@@ -1,59 +1,22 @@
pub mod bitpacker;
mod bitset;
mod composite_file;
mod counting_writer;
mod serialize;
mod timer;
mod vint;
mod counting_writer;
mod composite_file;
pub mod bitpacker;
pub use self::bitset::BitSet;
pub(crate) use self::bitset::TinySet;
pub(crate) use self::composite_file::{CompositeFile, CompositeWrite};
pub use self::counting_writer::CountingWriter;
pub use self::serialize::{BinarySerializable, FixedSize};
pub use self::serialize::BinarySerializable;
pub use self::timer::Timing;
pub use self::timer::TimerTree;
pub use self::timer::OpenTimer;
pub use self::vint::VInt;
pub use byteorder::LittleEndian as Endianness;
pub use self::counting_writer::CountingWriter;
use std::io;
/// Computes the number of bits that will be used for bitpacking.
///
/// In general the target is the minimum number of bits
/// required to express the amplitude given in argument.
///
/// e.g. If the amplitude is 10, we can store all ints on simply 4bits.
///
/// The logic is slightly more convoluted here as for optimization
/// reasons, we want to ensure that a value spawns over at most 8 bytes
/// of aligns bytes.
///
/// Spanning over 9 bytes is possible for instance, if we do
/// bitpacking with an amplitude of 63 bits.
/// In this case, the second int will start on bit
/// 63 (which belongs to byte 7) and ends at byte 15;
/// Hence 9 bytes (from byte 7 to byte 15 included).
///
/// To avoid this, we force the number of bits to 64bits
/// when the result is greater than `64-8 = 56 bits`.
///
/// Note that this only affects rare use cases spawning over
/// a very large range of values. Even in this case, it results
/// in an extra cost of at most 12% compared to the optimal
/// number of bits.
pub(crate) fn compute_num_bits(n: u64) -> u8 {
let amplitude = (64u32 - n.leading_zeros()) as u8;
if amplitude <= 64 - 8 {
amplitude
} else {
64
}
}
pub(crate) fn is_power_of_2(n: usize) -> bool {
(n > 0) && (n & (n - 1) == 0)
}
/// Create a default io error given a string.
pub(crate) fn make_io_err(msg: String) -> io::Error {
pub fn make_io_err(msg: String) -> io::Error {
io::Error::new(io::ErrorKind::Other, msg)
}
@@ -102,10 +65,9 @@ pub fn u64_to_i64(val: u64) -> i64 {
}
#[cfg(test)]
pub(crate) mod test {
mod test {
pub use super::serialize::test::fixed_size_test;
use super::{compute_num_bits, i64_to_u64, u64_to_i64};
use super::{i64_to_u64, u64_to_i64};
fn test_i64_converter_helper(val: i64) {
assert_eq!(u64_to_i64(i64_to_u64(val)), val);
@@ -122,16 +84,4 @@ pub(crate) mod test {
test_i64_converter_helper(i);
}
}
#[test]
fn test_compute_num_bits() {
assert_eq!(compute_num_bits(1), 1u8);
assert_eq!(compute_num_bits(0), 0u8);
assert_eq!(compute_num_bits(2), 2u8);
assert_eq!(compute_num_bits(3), 2u8);
assert_eq!(compute_num_bits(4), 3u8);
assert_eq!(compute_num_bits(255), 8u8);
assert_eq!(compute_num_bits(256), 9u8);
assert_eq!(compute_num_bits(5_000_000_000), 33u8);
}
}

View File

@@ -1,25 +1,16 @@
use byteorder::{ReadBytesExt, WriteBytesExt};
use common::Endianness;
use common::VInt;
use byteorder::LittleEndian as Endianness;
use std::fmt;
use std::io;
use std::io::Read;
use std::io::Write;
use std::io::Read;
use std::io;
use common::VInt;
/// Trait for a simple binary serialization.
pub trait BinarySerializable: fmt::Debug + Sized {
/// Serialize
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()>;
/// Deserialize
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self>;
}
/// `FixedSize` marks a `BinarySerializable` as
/// always serializing to the same size.
pub trait FixedSize: BinarySerializable {
const SIZE_IN_BYTES: usize;
}
impl BinarySerializable for () {
fn serialize<W: Write>(&self, _: &mut W) -> io::Result<()> {
Ok(())
@@ -29,10 +20,6 @@ impl BinarySerializable for () {
}
}
impl FixedSize for () {
const SIZE_IN_BYTES: usize = 0;
}
impl<T: BinarySerializable> BinarySerializable for Vec<T> {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
VInt(self.len() as u64).serialize(writer)?;
@@ -72,10 +59,6 @@ impl BinarySerializable for u32 {
}
}
impl FixedSize for u32 {
const SIZE_IN_BYTES: usize = 4;
}
impl BinarySerializable for u64 {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u64::<Endianness>(*self)
@@ -85,10 +68,6 @@ impl BinarySerializable for u64 {
}
}
impl FixedSize for u64 {
const SIZE_IN_BYTES: usize = 8;
}
impl BinarySerializable for i64 {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_i64::<Endianness>(*self)
@@ -98,10 +77,6 @@ impl BinarySerializable for i64 {
}
}
impl FixedSize for i64 {
const SIZE_IN_BYTES: usize = 8;
}
impl BinarySerializable for u8 {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u8(*self)
@@ -111,10 +86,6 @@ impl BinarySerializable for u8 {
}
}
impl FixedSize for u8 {
const SIZE_IN_BYTES: usize = 1;
}
impl BinarySerializable for String {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
let data: &[u8] = self.as_bytes();
@@ -133,78 +104,63 @@ impl BinarySerializable for String {
}
#[cfg(test)]
pub mod test {
mod test {
use super::*;
use common::VInt;
use super::*;
pub fn fixed_size_test<O: BinarySerializable + FixedSize + Default>() {
let mut buffer = Vec::new();
O::default().serialize(&mut buffer).unwrap();
assert_eq!(buffer.len(), O::SIZE_IN_BYTES);
}
fn serialize_test<T: BinarySerializable + Eq>(v: T) -> usize {
fn serialize_test<T: BinarySerializable + Eq>(v: T, num_bytes: usize) {
let mut buffer: Vec<u8> = Vec::new();
v.serialize(&mut buffer).unwrap();
let num_bytes = buffer.len();
if num_bytes != 0 {
v.serialize(&mut buffer).unwrap();
assert_eq!(buffer.len(), num_bytes);
} else {
v.serialize(&mut buffer).unwrap();
}
let mut cursor = &buffer[..];
let deser = T::deserialize(&mut cursor).unwrap();
assert_eq!(deser, v);
num_bytes
}
#[test]
fn test_serialize_u8() {
fixed_size_test::<u8>();
serialize_test(3u8, 1);
serialize_test(5u8, 1);
}
#[test]
fn test_serialize_u32() {
fixed_size_test::<u32>();
assert_eq!(4, serialize_test(3u32));
assert_eq!(4, serialize_test(5u32));
assert_eq!(4, serialize_test(u32::max_value()));
}
#[test]
fn test_serialize_i64() {
fixed_size_test::<i64>();
}
#[test]
fn test_serialize_u64() {
fixed_size_test::<u64>();
serialize_test(3u32, 4);
serialize_test(5u32, 4);
serialize_test(u32::max_value(), 4);
}
#[test]
fn test_serialize_string() {
assert_eq!(serialize_test(String::from("")), 1);
assert_eq!(serialize_test(String::from("ぽよぽよ")), 1 + 3 * 4);
assert_eq!(
serialize_test(String::from("富士さん見える。")),
1 + 3 * 8
);
serialize_test(String::from(""), 1);
serialize_test(String::from("ぽよぽよ"), 1 + 3 * 4);
serialize_test(String::from("富士さん見える。"), 1 + 3 * 8);
}
#[test]
fn test_serialize_vec() {
assert_eq!(serialize_test(Vec::<u8>::new()), 1);
assert_eq!(serialize_test(vec![1u32, 3u32]), 1 + 4 * 2);
let v: Vec<u8> = Vec::new();
serialize_test(v, 1);
serialize_test(vec![1u32, 3u32], 1 + 4 * 2);
}
#[test]
fn test_serialize_vint() {
for i in 0..10_000 {
serialize_test(VInt(i as u64));
serialize_test(VInt(i as u64), 0);
}
assert_eq!(serialize_test(VInt(7u64)), 1);
assert_eq!(serialize_test(VInt(127u64)), 1);
assert_eq!(serialize_test(VInt(128u64)), 2);
assert_eq!(serialize_test(VInt(129u64)), 2);
assert_eq!(serialize_test(VInt(1234u64)), 2);
assert_eq!(serialize_test(VInt(16_383u64)), 2);
assert_eq!(serialize_test(VInt(16_384u64)), 3);
assert_eq!(serialize_test(VInt(u64::max_value())), 10);
serialize_test(VInt(7u64), 1);
serialize_test(VInt(127u64), 1);
serialize_test(VInt(128u64), 2);
serialize_test(VInt(129u64), 2);
serialize_test(VInt(1234u64), 2);
serialize_test(VInt(16_383), 2);
serialize_test(VInt(16_384), 3);
serialize_test(VInt(u64::max_value()), 10);
}
}

99
src/common/timer.rs Normal file
View File

@@ -0,0 +1,99 @@
use time::PreciseTime;
pub struct OpenTimer<'a> {
name: &'static str,
timer_tree: &'a mut TimerTree,
start: PreciseTime,
depth: u32,
}
impl<'a> OpenTimer<'a> {
/// Starts timing a new named subtask
///
/// The timer is stopped automatically
/// when the `OpenTimer` is dropped.
pub fn open(&mut self, name: &'static str) -> OpenTimer {
OpenTimer {
name: name,
timer_tree: self.timer_tree,
start: PreciseTime::now(),
depth: self.depth + 1,
}
}
}
impl<'a> Drop for OpenTimer<'a> {
fn drop(&mut self) {
self.timer_tree.timings.push(Timing {
name: self.name,
duration: self.start
.to(PreciseTime::now())
.num_microseconds()
.unwrap(),
depth: self.depth,
});
}
}
/// Timing recording
#[derive(Debug, Serialize)]
pub struct Timing {
name: &'static str,
duration: i64,
depth: u32,
}
/// Timer tree
#[derive(Debug, Serialize)]
pub struct TimerTree {
timings: Vec<Timing>,
}
impl TimerTree {
/// Returns the total time elapsed in microseconds
pub fn total_time(&self) -> i64 {
self.timings.last().unwrap().duration
}
/// Open a new named subtask
pub fn open(&mut self, name: &'static str) -> OpenTimer {
OpenTimer {
name: name,
timer_tree: self,
start: PreciseTime::now(),
depth: 0,
}
}
}
impl Default for TimerTree {
fn default() -> TimerTree {
TimerTree {
timings: Vec::new(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_timer() {
let mut timer_tree = TimerTree::default();
{
let mut a = timer_tree.open("a");
{
let mut ab = a.open("b");
{
let _abc = ab.open("c");
}
{
let _abd = ab.open("d");
}
}
}
assert_eq!(timer_tree.timings.len(), 4);
}
}

View File

@@ -1,7 +1,7 @@
use super::BinarySerializable;
use std::io;
use std::io::Read;
use std::io::Write;
use std::io::Read;
/// Wrapper over a `u64` that serializes as a variable int.
#[derive(Debug, Eq, PartialEq)]
@@ -11,10 +11,6 @@ impl VInt {
pub fn val(&self) -> u64 {
self.0
}
pub fn deserialize_u64<R: Read>(reader: &mut R) -> io::Result<u64> {
VInt::deserialize(reader).map(|vint| vint.0)
}
}
impl BinarySerializable for VInt {

View File

@@ -3,103 +3,39 @@
mod stream;
pub const COMPRESSION_BLOCK_SIZE: usize = 128;
const COMPRESSED_BLOCK_MAX_SIZE: usize = COMPRESSION_BLOCK_SIZE * 4 + 1;
pub use self::stream::CompressedIntStream;
use bitpacking::{BitPacker, BitPacker4x};
#[cfg(not(feature = "simdcompression"))]
mod pack {
mod compression_pack_nosimd;
pub use self::compression_pack_nosimd::{BlockDecoder, BlockEncoder};
}
#[cfg(feature = "simdcompression")]
mod pack {
mod compression_pack_simd;
pub use self::compression_pack_simd::{BlockDecoder, BlockEncoder};
}
pub use self::pack::{BlockDecoder, BlockEncoder};
#[cfg(any(not(feature = "simdcompression"), target_env = "msvc"))]
mod vint {
mod compression_vint_nosimd;
pub(crate) use self::compression_vint_nosimd::*;
}
#[cfg(all(feature = "simdcompression", not(target_env = "msvc")))]
mod vint {
mod compression_vint_simd;
pub(crate) use self::compression_vint_simd::*;
}
/// Returns the size in bytes of a compressed block, given `num_bits`.
pub fn compressed_block_size(num_bits: u8) -> usize {
1 + (num_bits as usize) * COMPRESSION_BLOCK_SIZE / 8
1 + (num_bits as usize) * 16
}
pub struct BlockEncoder {
bitpacker: BitPacker4x,
pub output: [u8; COMPRESSED_BLOCK_MAX_SIZE],
pub output_len: usize,
}
impl BlockEncoder {
pub fn new() -> BlockEncoder {
BlockEncoder {
bitpacker: BitPacker4x::new(),
output: [0u8; COMPRESSED_BLOCK_MAX_SIZE],
output_len: 0,
}
}
pub fn compress_block_sorted(&mut self, block: &[u32], offset: u32) -> &[u8] {
let num_bits = self.bitpacker.num_bits_sorted(offset, block);
self.output[0] = num_bits;
let written_size =
1 + self.bitpacker
.compress_sorted(offset, block, &mut self.output[1..], num_bits);
&self.output[..written_size]
}
pub fn compress_block_unsorted(&mut self, block: &[u32]) -> &[u8] {
let num_bits = self.bitpacker.num_bits(block);
self.output[0] = num_bits;
let written_size = 1 + self.bitpacker
.compress(block, &mut self.output[1..], num_bits);
&self.output[..written_size]
}
}
pub struct BlockDecoder {
bitpacker: BitPacker4x,
pub output: [u32; COMPRESSION_BLOCK_SIZE + 1],
pub output_len: usize,
}
impl BlockDecoder {
pub fn new() -> BlockDecoder {
BlockDecoder::with_val(0u32)
}
pub fn with_val(val: u32) -> BlockDecoder {
let mut output = [val; COMPRESSION_BLOCK_SIZE + 1];
output[COMPRESSION_BLOCK_SIZE] = 0u32;
BlockDecoder {
bitpacker: BitPacker4x::new(),
output,
output_len: 0,
}
}
pub fn uncompress_block_sorted(&mut self, compressed_data: &[u8], offset: u32) -> usize {
let num_bits = compressed_data[0];
self.output_len = COMPRESSION_BLOCK_SIZE;
1 + self.bitpacker.decompress_sorted(
offset,
&compressed_data[1..],
&mut self.output,
num_bits,
)
}
pub fn uncompress_block_unsorted<'a>(&mut self, compressed_data: &'a [u8]) -> usize {
let num_bits = compressed_data[0];
self.output_len = COMPRESSION_BLOCK_SIZE;
1 + self.bitpacker
.decompress(&compressed_data[1..], &mut self.output, num_bits)
}
#[inline]
pub fn output_array(&self) -> &[u32] {
&self.output[..self.output_len]
}
#[inline]
pub fn output(&self, idx: usize) -> u32 {
self.output[idx]
}
}
mod vint;
pub trait VIntEncoder {
/// Compresses an array of `u32` integers,
/// using [delta-encoding](https://en.wikipedia.org/wiki/Delta_encoding)
@@ -176,10 +112,14 @@ impl VIntDecoder for BlockDecoder {
}
}
pub const COMPRESSION_BLOCK_SIZE: usize = 128;
#[cfg(test)]
pub mod tests {
use super::*;
use tests;
use test::Bencher;
#[test]
fn test_encode_sorted_block() {
@@ -268,34 +208,11 @@ pub mod tests {
}
}
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use super::*;
use rand::Rng;
use rand::SeedableRng;
use rand::XorShiftRng;
use test::Bencher;
fn generate_array_with_seed(n: usize, ratio: f32, seed_val: u32) -> Vec<u32> {
let seed: &[u32; 4] = &[1, 2, 3, seed_val];
let mut rng: XorShiftRng = XorShiftRng::from_seed(*seed);
(0..u32::max_value())
.filter(|_| rng.next_f32() < ratio)
.take(n)
.collect()
}
pub fn generate_array(n: usize, ratio: f32) -> Vec<u32> {
generate_array_with_seed(n, ratio, 4)
}
#[bench]
fn bench_compress(b: &mut Bencher) {
let mut encoder = BlockEncoder::new();
let data = generate_array(COMPRESSION_BLOCK_SIZE, 0.1);
let data = tests::generate_array(COMPRESSION_BLOCK_SIZE, 0.1);
b.iter(|| {
encoder.compress_block_sorted(&data, 0u32);
});
@@ -304,7 +221,7 @@ mod bench {
#[bench]
fn bench_uncompress(b: &mut Bencher) {
let mut encoder = BlockEncoder::new();
let data = generate_array(COMPRESSION_BLOCK_SIZE, 0.1);
let data = tests::generate_array(COMPRESSION_BLOCK_SIZE, 0.1);
let compressed = encoder.compress_block_sorted(&data, 0u32);
let mut decoder = BlockDecoder::new();
b.iter(|| {
@@ -331,7 +248,7 @@ mod bench {
#[bench]
fn bench_compress_vint(b: &mut Bencher) {
let mut encoder = BlockEncoder::new();
let data = generate_array(NUM_INTS_BENCH_VINT, 0.001);
let data = tests::generate_array(NUM_INTS_BENCH_VINT, 0.001);
b.iter(|| {
encoder.compress_vint_sorted(&data, 0u32);
});
@@ -340,11 +257,12 @@ mod bench {
#[bench]
fn bench_uncompress_vint(b: &mut Bencher) {
let mut encoder = BlockEncoder::new();
let data = generate_array(NUM_INTS_BENCH_VINT, 0.001);
let data = tests::generate_array(NUM_INTS_BENCH_VINT, 0.001);
let compressed = encoder.compress_vint_sorted(&data, 0u32);
let mut decoder = BlockDecoder::new();
b.iter(|| {
decoder.uncompress_vint_sorted(compressed, 0u32, NUM_INTS_BENCH_VINT);
});
}
}

View File

@@ -0,0 +1,142 @@
use common::bitpacker::compute_num_bits;
use common::bitpacker::{BitPacker, BitUnpacker};
use common::CountingWriter;
use std::cmp;
use std::io::Write;
use super::super::COMPRESSION_BLOCK_SIZE;
const COMPRESSED_BLOCK_MAX_SIZE: usize = COMPRESSION_BLOCK_SIZE * 4 + 1;
pub fn compress_sorted(vals: &mut [u32], output: &mut [u8], offset: u32) -> usize {
let mut max_delta = 0;
{
let mut local_offset = offset;
for i in 0..COMPRESSION_BLOCK_SIZE {
let val = vals[i];
let delta = val - local_offset;
max_delta = cmp::max(max_delta, delta);
vals[i] = delta;
local_offset = val;
}
}
let mut counting_writer = CountingWriter::wrap(output);
let num_bits = compute_num_bits(max_delta as u64);
counting_writer.write_all(&[num_bits]).unwrap();
let mut bit_packer = BitPacker::new(num_bits as usize);
for val in vals {
bit_packer.write(*val as u64, &mut counting_writer).unwrap();
}
counting_writer.written_bytes()
}
pub struct BlockEncoder {
pub output: [u8; COMPRESSED_BLOCK_MAX_SIZE],
pub output_len: usize,
input_buffer: [u32; COMPRESSION_BLOCK_SIZE],
}
impl BlockEncoder {
pub fn new() -> BlockEncoder {
BlockEncoder {
output: [0u8; COMPRESSED_BLOCK_MAX_SIZE],
output_len: 0,
input_buffer: [0u32; COMPRESSION_BLOCK_SIZE],
}
}
pub fn compress_block_sorted(&mut self, vals: &[u32], offset: u32) -> &[u8] {
self.input_buffer.clone_from_slice(vals);
let compressed_size = compress_sorted(&mut self.input_buffer, &mut self.output, offset);
&self.output[..compressed_size]
}
pub fn compress_block_unsorted(&mut self, vals: &[u32]) -> &[u8] {
let compressed_size = {
let output: &mut [u8] = &mut self.output;
let max = vals.iter()
.cloned()
.max()
.expect("compress unsorted called with an empty array");
let num_bits = compute_num_bits(max as u64);
let mut counting_writer = CountingWriter::wrap(output);
counting_writer.write_all(&[num_bits]).unwrap();
let mut bit_packer = BitPacker::new(num_bits as usize);
for val in vals {
bit_packer.write(*val as u64, &mut counting_writer).unwrap();
}
for _ in vals.len()..COMPRESSION_BLOCK_SIZE {
bit_packer
.write(vals[0] as u64, &mut counting_writer)
.unwrap();
}
bit_packer.flush(&mut counting_writer).expect(
"Flushing the bitpacking \
in an in RAM buffer should never fail",
);
// we avoid writing "closing", because we
// do not want 7 bytes of padding here.
counting_writer.written_bytes()
};
&self.output[..compressed_size]
}
}
pub struct BlockDecoder {
pub output: [u32; COMPRESSED_BLOCK_MAX_SIZE],
pub output_len: usize,
}
impl BlockDecoder {
pub fn new() -> BlockDecoder {
BlockDecoder::with_val(0u32)
}
pub fn with_val(val: u32) -> BlockDecoder {
BlockDecoder {
output: [val; COMPRESSED_BLOCK_MAX_SIZE],
output_len: 0,
}
}
pub fn uncompress_block_sorted<'a>(
&mut self,
compressed_data: &'a [u8],
mut offset: u32,
) -> usize {
let consumed_size = {
let num_bits = compressed_data[0];
let bit_unpacker = BitUnpacker::new(&compressed_data[1..], num_bits as usize);
for i in 0..COMPRESSION_BLOCK_SIZE {
let delta = bit_unpacker.get(i);
let val = offset + delta as u32;
self.output[i] = val;
offset = val;
}
1 + (num_bits as usize * COMPRESSION_BLOCK_SIZE + 7) / 8
};
self.output_len = COMPRESSION_BLOCK_SIZE;
consumed_size
}
pub fn uncompress_block_unsorted<'a>(&mut self, compressed_data: &'a [u8]) -> usize {
let num_bits = compressed_data[0];
let bit_unpacker = BitUnpacker::new(&compressed_data[1..], num_bits as usize);
for i in 0..COMPRESSION_BLOCK_SIZE {
self.output[i] = bit_unpacker.get(i) as u32;
}
let consumed_size = 1 + (num_bits as usize * COMPRESSION_BLOCK_SIZE + 7) / 8;
self.output_len = COMPRESSION_BLOCK_SIZE;
consumed_size
}
#[inline]
pub fn output_array(&self) -> &[u32] {
&self.output[..self.output_len]
}
#[inline]
pub fn output(&self, idx: usize) -> u32 {
self.output[idx]
}
}

View File

@@ -0,0 +1,118 @@
use super::super::COMPRESSION_BLOCK_SIZE;
const COMPRESSED_BLOCK_MAX_SIZE: usize = COMPRESSION_BLOCK_SIZE * 4 + 1;
mod simdcomp {
use libc::size_t;
extern "C" {
pub fn compress_sorted(data: *const u32, output: *mut u8, offset: u32) -> size_t;
pub fn uncompress_sorted(
compressed_data: *const u8,
output: *mut u32,
offset: u32,
) -> size_t;
pub fn compress_unsorted(data: *const u32, output: *mut u8) -> size_t;
pub fn uncompress_unsorted(compressed_data: *const u8, output: *mut u32) -> size_t;
}
}
fn compress_sorted(vals: &[u32], output: &mut [u8], offset: u32) -> usize {
unsafe { simdcomp::compress_sorted(vals.as_ptr(), output.as_mut_ptr(), offset) }
}
fn uncompress_sorted(compressed_data: &[u8], output: &mut [u32], offset: u32) -> usize {
unsafe {
simdcomp::uncompress_sorted(compressed_data.as_ptr(), output.as_mut_ptr(), offset)
}
}
fn compress_unsorted(vals: &[u32], output: &mut [u8]) -> usize {
unsafe { simdcomp::compress_unsorted(vals.as_ptr(), output.as_mut_ptr()) }
}
fn uncompress_unsorted(compressed_data: &[u8], output: &mut [u32]) -> usize {
unsafe { simdcomp::uncompress_unsorted(compressed_data.as_ptr(), output.as_mut_ptr()) }
}
pub struct BlockEncoder {
pub output: [u8; COMPRESSED_BLOCK_MAX_SIZE],
pub output_len: usize,
}
impl BlockEncoder {
pub fn new() -> BlockEncoder {
BlockEncoder {
output: [0u8; COMPRESSED_BLOCK_MAX_SIZE],
output_len: 0,
}
}
pub fn compress_block_sorted(&mut self, vals: &[u32], offset: u32) -> &[u8] {
let compressed_size = compress_sorted(vals, &mut self.output, offset);
&self.output[..compressed_size]
}
pub fn compress_block_unsorted(&mut self, vals: &[u32]) -> &[u8] {
let compressed_size = compress_unsorted(vals, &mut self.output);
&self.output[..compressed_size]
}
}
pub struct BlockDecoder {
pub output: [u32; COMPRESSED_BLOCK_MAX_SIZE],
pub output_len: usize,
}
impl BlockDecoder {
pub fn new() -> BlockDecoder {
BlockDecoder::with_val(0u32)
}
pub fn with_val(val: u32) -> BlockDecoder {
BlockDecoder {
output: [val; COMPRESSED_BLOCK_MAX_SIZE],
output_len: 0,
}
}
pub fn uncompress_block_sorted(&mut self, compressed_data: &[u8], offset: u32) -> usize {
let consumed_size = uncompress_sorted(compressed_data, &mut self.output, offset);
self.output_len = COMPRESSION_BLOCK_SIZE;
consumed_size
}
pub fn uncompress_block_unsorted<'a>(&mut self, compressed_data: &'a [u8]) -> usize {
let consumed_size = uncompress_unsorted(compressed_data, &mut self.output);
self.output_len = COMPRESSION_BLOCK_SIZE;
consumed_size
}
#[inline]
pub fn output_array(&self) -> &[u32] {
&self.output[..self.output_len]
}
#[inline]
pub fn output(&self, idx: usize) -> u32 {
self.output[idx]
}
}
#[cfg(test)]
mod tests {
use super::BlockEncoder;
#[test]
fn test_all_docs_compression_len() {
let data: Vec<u32> = (0u32..128u32).collect();
let mut encoder = BlockEncoder::new();
let compressed = encoder.compress_block_sorted(&data, 0u32);
assert_eq!(compressed.len(), 17);
}
}

View File

@@ -1,8 +1,7 @@
use compression::compressed_block_size;
use compression::BlockDecoder;
use compression::COMPRESSION_BLOCK_SIZE;
use directory::ReadOnlySource;
use owned_read::OwnedRead;
use compression::compressed_block_size;
use directory::{ReadOnlySource, SourceRead};
/// Reads a stream of compressed ints.
///
@@ -11,13 +10,8 @@ use owned_read::OwnedRead;
/// The `.skip(...)` makes it possible to avoid
/// decompressing blocks that are not required.
pub struct CompressedIntStream {
buffer: OwnedRead,
buffer: SourceRead,
block_decoder: BlockDecoder,
cached_addr: usize, // address of the currently decoded block
cached_next_addr: usize, // address following the currently decoded block
addr: usize, // address of the block associated to the current position
inner_offset: usize,
}
@@ -25,50 +19,36 @@ impl CompressedIntStream {
/// Opens a compressed int stream.
pub(crate) fn wrap(source: ReadOnlySource) -> CompressedIntStream {
CompressedIntStream {
buffer: OwnedRead::new(source),
buffer: SourceRead::from(source),
block_decoder: BlockDecoder::new(),
cached_addr: usize::max_value(),
cached_next_addr: usize::max_value(),
addr: 0,
inner_offset: 0,
inner_offset: COMPRESSION_BLOCK_SIZE,
}
}
/// Loads the block at the given address and return the address of the
/// following block
pub fn read_block(&mut self, addr: usize) -> usize {
if self.cached_addr == addr {
// we are already on this block.
// no need to read.
self.cached_next_addr
} else {
let next_addr = addr + self.block_decoder
.uncompress_block_unsorted(self.buffer.slice_from(addr));
self.cached_addr = addr;
self.cached_next_addr = next_addr;
next_addr
}
}
/// Fills a buffer with the next `output.len()` integers.
/// This does not consume / advance the stream.
/// Fills a buffer with the next `output.len()` integers,
/// and advance the stream by that many els.
pub fn read(&mut self, output: &mut [u32]) {
let mut cursor = self.addr;
let mut inner_offset = self.inner_offset;
let mut num_els: usize = output.len();
let mut start = 0;
let mut start: usize = 0;
loop {
cursor = self.read_block(cursor);
let block = &self.block_decoder.output_array()[inner_offset..];
let block_len = block.len();
if num_els >= block_len {
output[start..start + block_len].clone_from_slice(&block);
start += block_len;
num_els -= block_len;
inner_offset = 0;
let available = COMPRESSION_BLOCK_SIZE - self.inner_offset;
if num_els >= available {
if available > 0 {
let uncompressed_block =
&self.block_decoder.output_array()[self.inner_offset..];
output[start..][..available].clone_from_slice(uncompressed_block);
}
num_els -= available;
start += available;
let num_consumed_bytes = self.block_decoder
.uncompress_block_unsorted(self.buffer.as_ref());
self.buffer.advance(num_consumed_bytes);
self.inner_offset = 0;
} else {
output[start..].clone_from_slice(&block[..num_els]);
let uncompressed_block = &self.block_decoder.output_array()
[self.inner_offset..self.inner_offset + num_els];
output[start..][..num_els].clone_from_slice(uncompressed_block);
self.inner_offset += num_els;
break;
}
}
@@ -78,22 +58,23 @@ impl CompressedIntStream {
///
/// If a full block is skipped, calling
/// `.skip(...)` will avoid decompressing it.
///
/// May panic if the end of the stream is reached.
pub fn skip(&mut self, mut skip_len: usize) {
loop {
let available = COMPRESSION_BLOCK_SIZE - self.inner_offset;
if available >= skip_len {
self.inner_offset += skip_len;
break;
} else {
skip_len -= available;
// entirely skip decompressing some blocks.
let num_bits: u8 = self.buffer.get(self.addr);
let available = COMPRESSION_BLOCK_SIZE - self.inner_offset;
if available >= skip_len {
self.inner_offset += skip_len;
} else {
skip_len -= available;
// entirely skip decompressing some blocks.
while skip_len >= COMPRESSION_BLOCK_SIZE {
skip_len -= COMPRESSION_BLOCK_SIZE;
let num_bits: u8 = self.buffer.as_ref()[0];
let block_len = compressed_block_size(num_bits);
self.addr += block_len;
self.inner_offset = 0;
self.buffer.advance(block_len);
}
let num_consumed_bytes = self.block_decoder
.uncompress_block_unsorted(self.buffer.as_ref());
self.buffer.advance(num_consumed_bytes);
self.inner_offset = skip_len;
}
}
}
@@ -103,14 +84,14 @@ pub mod tests {
use super::CompressedIntStream;
use compression::compressed_block_size;
use compression::BlockEncoder;
use compression::COMPRESSION_BLOCK_SIZE;
use compression::BlockEncoder;
use directory::ReadOnlySource;
fn create_stream_buffer() -> ReadOnlySource {
let mut buffer: Vec<u8> = vec![];
let mut encoder = BlockEncoder::new();
let vals: Vec<u32> = (0u32..1152u32).collect();
let vals: Vec<u32> = (0u32..1_025u32).collect();
for chunk in vals.chunks(COMPRESSION_BLOCK_SIZE) {
let compressed_block = encoder.compress_block_unsorted(chunk);
let num_bits = compressed_block[0];
@@ -132,24 +113,13 @@ pub mod tests {
stream.read(&mut block[0..2]);
assert_eq!(block[0], 0);
assert_eq!(block[1], 1);
// reading does not consume the stream
stream.read(&mut block[0..2]);
assert_eq!(block[0], 0);
assert_eq!(block[1], 1);
stream.skip(2);
stream.skip(5);
stream.read(&mut block[0..3]);
stream.skip(3);
assert_eq!(block[0], 7);
assert_eq!(block[1], 8);
assert_eq!(block[2], 9);
stream.skip(500);
stream.read(&mut block[0..3]);
stream.skip(3);
assert_eq!(block[0], 510);
assert_eq!(block[1], 511);
assert_eq!(block[2], 512);

View File

@@ -0,0 +1,72 @@
mod streamvbyte {
use libc::size_t;
extern "C" {
pub fn streamvbyte_delta_encode(
data: *const u32,
num_els: u32,
output: *mut u8,
offset: u32,
) -> size_t;
pub fn streamvbyte_delta_decode(
compressed_data: *const u8,
output: *mut u32,
num_els: u32,
offset: u32,
) -> size_t;
pub fn streamvbyte_encode(data: *const u32, num_els: u32, output: *mut u8) -> size_t;
pub fn streamvbyte_decode(
compressed_data: *const u8,
output: *mut u32,
num_els: usize,
) -> size_t;
}
}
#[inline(always)]
pub(crate) fn compress_sorted<'a>(input: &[u32], output: &'a mut [u8], offset: u32) -> &'a [u8] {
let compress_length = unsafe {
streamvbyte::streamvbyte_delta_encode(
input.as_ptr(),
input.len() as u32,
output.as_mut_ptr(),
offset,
)
};
&output[..compress_length]
}
#[inline(always)]
pub(crate) fn compress_unsorted<'a>(input: &[u32], output: &'a mut [u8]) -> &'a [u8] {
let compress_length = unsafe {
streamvbyte::streamvbyte_encode(input.as_ptr(), input.len() as u32, output.as_mut_ptr())
};
&output[..compress_length]
}
#[inline(always)]
pub(crate) fn uncompress_sorted<'a>(
compressed_data: &'a [u8],
output: &mut [u32],
offset: u32,
) -> usize {
unsafe {
streamvbyte::streamvbyte_delta_decode(
compressed_data.as_ptr(),
output.as_mut_ptr(),
output.len() as u32,
offset,
)
}
}
#[inline(always)]
pub(crate) fn uncompress_unsorted<'a>(compressed_data: &'a [u8], output: &mut [u32]) -> usize {
unsafe {
streamvbyte::streamvbyte_decode(compressed_data.as_ptr(), output.as_mut_ptr(), output.len())
}
}

View File

@@ -1,33 +1,29 @@
use core::SegmentId;
use Result;
use error::{ErrorKind, ResultExt};
use schema::Schema;
use serde_json;
use schema::Schema;
use std::sync::Arc;
use std::borrow::BorrowMut;
use std::fmt;
use std::sync::Arc;
use Result;
use super::pool::LeasedItem;
use super::pool::Pool;
use super::segment::create_segment;
use super::segment::Segment;
use core::searcher::Searcher;
use core::IndexMeta;
use core::SegmentMeta;
use core::SegmentReader;
use core::META_FILEPATH;
use directory::ManagedDirectory;
#[cfg(feature = "mmap")]
use directory::MmapDirectory;
use directory::{Directory, RAMDirectory};
use core::SegmentId;
use directory::{Directory, MmapDirectory, RAMDirectory};
use indexer::index_writer::open_index_writer;
use indexer::index_writer::HEAP_SIZE_MIN;
use indexer::segment_updater::save_new_metas;
use indexer::DirectoryLock;
use core::searcher::Searcher;
use std::convert::From;
use num_cpus;
use super::segment::Segment;
use core::SegmentReader;
use super::pool::Pool;
use core::SegmentMeta;
use super::pool::LeasedItem;
use std::path::Path;
use tokenizer::TokenizerManager;
use core::IndexMeta;
use IndexWriter;
use directory::ManagedDirectory;
use core::META_FILEPATH;
use super::segment::create_segment;
use indexer::segment_updater::save_new_metas;
use tokenizer::TokenizerManager;
const NUM_SEARCHERS: usize = 12;
@@ -52,17 +48,27 @@ impl Index {
/// This should only be used for unit tests.
pub fn create_in_ram(schema: Schema) -> Index {
let ram_directory = RAMDirectory::create();
Index::create(ram_directory, schema).expect("Creating a RAMDirectory should never fail")
// unwrap is ok here
let directory = ManagedDirectory::new(ram_directory).expect(
"Creating a managed directory from a brand new RAM directory \
should never fail.",
);
Index::from_directory(directory, schema).expect("Creating a RAMDirectory should never fail")
}
/// Creates a new index in a given filepath.
/// The index will use the `MMapDirectory`.
///
/// If a previous index was in this directory, then its meta file will be destroyed.
#[cfg(feature = "mmap")]
pub fn create_in_dir<P: AsRef<Path>>(directory_path: P, schema: Schema) -> Result<Index> {
pub fn create<P: AsRef<Path>>(directory_path: P, schema: Schema) -> Result<Index> {
let mmap_directory = MmapDirectory::open(directory_path)?;
Index::create(mmap_directory, schema)
let directory = ManagedDirectory::new(mmap_directory)?;
Index::from_directory(directory, schema)
}
/// Accessor for the tokenizer manager.
pub fn tokenizers(&self) -> &TokenizerManager {
&self.tokenizers
}
/// Creates a new index in a temp directory.
@@ -73,25 +79,12 @@ impl Index {
///
/// The temp directory is only used for testing the `MmapDirectory`.
/// For other unit tests, prefer the `RAMDirectory`, see: `create_in_ram`.
#[cfg(feature = "mmap")]
pub fn create_from_tempdir(schema: Schema) -> Result<Index> {
let mmap_directory = MmapDirectory::create_from_tempdir()?;
Index::create(mmap_directory, schema)
}
/// Creates a new index given an implementation of the trait `Directory`
pub fn create<Dir: Directory>(dir: Dir, schema: Schema) -> Result<Index> {
let directory = ManagedDirectory::new(dir)?;
let directory = ManagedDirectory::new(mmap_directory)?;
Index::from_directory(directory, schema)
}
/// Create a new index from a directory.
fn from_directory(mut directory: ManagedDirectory, schema: Schema) -> Result<Index> {
save_new_metas(schema.clone(), 0, directory.borrow_mut())?;
let metas = IndexMeta::with_schema(schema);
Index::create_from_metas(directory, &metas)
}
/// Creates a new index given a directory and an `IndexMeta`.
fn create_from_metas(directory: ManagedDirectory, metas: &IndexMeta) -> Result<Index> {
let schema = metas.schema.clone();
@@ -105,28 +98,27 @@ impl Index {
Ok(index)
}
/// Accessor for the tokenizer manager.
pub fn tokenizers(&self) -> &TokenizerManager {
&self.tokenizers
/// Create a new index from a directory.
pub fn from_directory(mut directory: ManagedDirectory, schema: Schema) -> Result<Index> {
save_new_metas(schema.clone(), 0, directory.borrow_mut())?;
let metas = IndexMeta::with_schema(schema);
Index::create_from_metas(directory, &metas)
}
/// Opens a new directory from an index path.
#[cfg(feature = "mmap")]
pub fn open_in_dir<P: AsRef<Path>>(directory_path: P) -> Result<Index> {
pub fn open<P: AsRef<Path>>(directory_path: P) -> Result<Index> {
let mmap_directory = MmapDirectory::open(directory_path)?;
Index::open(mmap_directory)
}
/// Open the index using the provided directory
pub fn open<D: Directory>(directory: D) -> Result<Index> {
let directory = ManagedDirectory::new(directory)?;
let directory = ManagedDirectory::new(mmap_directory)?;
let metas = load_metas(&directory)?;
Index::create_from_metas(directory, &metas)
}
/// Reads the index meta file from the directory.
pub fn load_metas(&self) -> Result<IndexMeta> {
load_metas(self.directory())
/// Returns the index opstamp.
///
/// The opstamp is the number of documents that have been added
/// from the beginning of time, and until the moment of the last commit.
pub fn opstamp(&self) -> u64 {
load_metas(self.directory()).unwrap().opstamp
}
/// Open a new index writer. Attempts to acquire a lockfile.
@@ -137,13 +129,9 @@ impl Index {
/// `IndexWriter` on the system is accessing the index directory,
/// it is safe to manually delete the lockfile.
///
/// - `num_threads` defines the number of indexing workers that
/// num_threads specifies the number of indexing workers that
/// should work at the same time.
///
/// - `overall_heap_size_in_bytes` sets the amount of memory
/// allocated for all indexing thread.
/// Each thread will receive a budget of `overall_heap_size_in_bytes / num_threads`.
///
/// # Errors
/// If the lockfile already exists, returns `Error::FileAlreadyExists`.
/// # Panics
@@ -151,35 +139,20 @@ impl Index {
pub fn writer_with_num_threads(
&self,
num_threads: usize,
overall_heap_size_in_bytes: usize,
heap_size_in_bytes: usize,
) -> Result<IndexWriter> {
let directory_lock = DirectoryLock::lock(self.directory().box_clone())?;
let heap_size_in_bytes_per_thread = overall_heap_size_in_bytes / num_threads;
open_index_writer(
self,
num_threads,
heap_size_in_bytes_per_thread,
directory_lock,
)
open_index_writer(self, num_threads, heap_size_in_bytes)
}
/// Creates a multithreaded writer
///
/// Tantivy will automatically define the number of threads to use.
/// `overall_heap_size_in_bytes` is the total target memory usage that will be split
/// between a given number of threads.
/// It just calls `writer_with_num_threads` with the number of cores as `num_threads`
///
/// # Errors
/// If the lockfile already exists, returns `Error::FileAlreadyExists`.
/// # Panics
/// If the heap size per thread is too small, panics.
pub fn writer(&self, overall_heap_size_in_bytes: usize) -> Result<IndexWriter> {
let mut num_threads = num_cpus::get();
let heap_size_in_bytes_per_thread = overall_heap_size_in_bytes / num_threads;
if heap_size_in_bytes_per_thread < HEAP_SIZE_MIN {
num_threads = (overall_heap_size_in_bytes / HEAP_SIZE_MIN).max(1);
}
self.writer_with_num_threads(num_threads, overall_heap_size_in_bytes)
pub fn writer(&self, heap_size_in_bytes: usize) -> Result<IndexWriter> {
self.writer_with_num_threads(num_cpus::get(), heap_size_in_bytes)
}
/// Accessor to the index schema
@@ -204,8 +177,8 @@ impl Index {
/// Creates a new segment.
pub fn new_segment(&self) -> Segment {
let segment_meta = SegmentMeta::new(SegmentId::generate_random(), 0);
self.segment(segment_meta)
let segment_meta = SegmentMeta::new(SegmentId::generate_random());
create_segment(self.clone(), segment_meta)
}
/// Return a reference to the index directory.
@@ -221,7 +194,7 @@ impl Index {
/// Reads the meta.json and returns the list of
/// `SegmentMeta` from the last commit.
pub fn searchable_segment_metas(&self) -> Result<Vec<SegmentMeta>> {
Ok(self.load_metas()?.segments)
Ok(load_metas(self.directory())?.segments)
}
/// Returns the list of segment ids that are searchable.
@@ -244,9 +217,8 @@ impl Index {
.iter()
.map(SegmentReader::open)
.collect::<Result<_>>()?;
let schema = self.schema();
let searchers = (0..NUM_SEARCHERS)
.map(|_| Searcher::new(schema.clone(), segment_readers.clone()))
.map(|_| Searcher::from(segment_readers.clone()))
.collect();
self.searcher_pool.publish_new_generation(searchers);
Ok(())

View File

@@ -1,7 +1,5 @@
use core::SegmentMeta;
use schema::Schema;
use serde_json;
use std::fmt;
use core::SegmentMeta;
/// Meta information about the `Index`.
///
@@ -11,13 +9,11 @@ use std::fmt;
/// * the index `docstamp`
/// * the schema
///
#[derive(Clone, Serialize, Deserialize)]
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct IndexMeta {
pub segments: Vec<SegmentMeta>,
pub schema: Schema,
pub opstamp: u64,
#[serde(skip_serializing_if = "Option::is_none")]
pub payload: Option<String>,
}
impl IndexMeta {
@@ -26,43 +22,6 @@ impl IndexMeta {
segments: vec![],
schema,
opstamp: 0u64,
payload: None,
}
}
}
impl fmt::Debug for IndexMeta {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"{}",
serde_json::ser::to_string(self)
.expect("JSON serialization for IndexMeta should never fail.")
)
}
}
#[cfg(test)]
mod tests {
use super::IndexMeta;
use schema::{SchemaBuilder, TEXT};
use serde_json;
#[test]
fn test_serialize_metas() {
let schema = {
let mut schema_builder = SchemaBuilder::new();
schema_builder.add_text_field("text", TEXT);
schema_builder.build()
};
let index_metas = IndexMeta {
segments: Vec::new(),
schema: schema,
opstamp: 0u64,
payload: None,
};
let json = serde_json::ser::to_string(&index_metas).expect("serialization failed");
assert_eq!(json, r#"{"segments":[],"schema":[{"name":"text","type":"text","options":{"indexing":{"record":"position","tokenizer":"default"},"stored":false}}],"opstamp":0}"#);
}
}

View File

@@ -1,14 +1,13 @@
use common::BinarySerializable;
use compression::CompressedIntStream;
use directory::ReadOnlySource;
use postings::FreqReadingOption;
use postings::TermInfo;
use directory::{ReadOnlySource, SourceRead};
use termdict::{TermDictionary, TermDictionaryImpl};
use postings::{BlockSegmentPostings, SegmentPostings};
use schema::FieldType;
use postings::TermInfo;
use schema::IndexRecordOption;
use schema::Term;
use termdict::TermDictionary;
use owned_read::OwnedRead;
use std::cmp;
use fastfield::DeleteBitSet;
use schema::Schema;
use compression::CompressedIntStream;
/// The inverted index reader is in charge of accessing
/// the inverted index associated to a specific field.
@@ -24,54 +23,37 @@ use owned_read::OwnedRead;
/// `InvertedIndexReader` are created by calling
/// the `SegmentReader`'s [`.inverted_index(...)`] method
pub struct InvertedIndexReader {
termdict: TermDictionary,
termdict: TermDictionaryImpl,
postings_source: ReadOnlySource,
positions_source: ReadOnlySource,
record_option: IndexRecordOption,
total_num_tokens: u64,
delete_bitset: DeleteBitSet,
schema: Schema,
}
impl InvertedIndexReader {
pub(crate) fn new(
termdict: TermDictionary,
termdict_source: ReadOnlySource,
postings_source: ReadOnlySource,
positions_source: ReadOnlySource,
record_option: IndexRecordOption,
delete_bitset: DeleteBitSet,
schema: Schema,
) -> InvertedIndexReader {
let total_num_tokens_data = postings_source.slice(0, 8);
let mut total_num_tokens_cursor = total_num_tokens_data.as_slice();
let total_num_tokens = u64::deserialize(&mut total_num_tokens_cursor).unwrap_or(0u64);
InvertedIndexReader {
termdict,
postings_source: postings_source.slice_from(8),
termdict: TermDictionaryImpl::from_source(termdict_source),
postings_source,
positions_source,
record_option,
total_num_tokens,
}
}
/// Creates an empty `InvertedIndexReader` object, which
/// contains no terms at all.
pub fn empty(field_type: FieldType) -> InvertedIndexReader {
let record_option = field_type
.get_index_record_option()
.unwrap_or(IndexRecordOption::Basic);
InvertedIndexReader {
termdict: TermDictionary::empty(field_type),
postings_source: ReadOnlySource::empty(),
positions_source: ReadOnlySource::empty(),
record_option,
total_num_tokens: 0u64,
delete_bitset,
schema,
}
}
/// Returns the term info associated with the term.
pub fn get_term_info(&self, term: &Term) -> Option<TermInfo> {
self.termdict.get(term.value_bytes())
self.termdict.get(term.as_slice())
}
/// Return the term dictionary datastructure.
pub fn terms(&self) -> &TermDictionary {
pub fn terms(&self) -> &TermDictionaryImpl {
&self.termdict
}
@@ -93,7 +75,7 @@ impl InvertedIndexReader {
let offset = term_info.postings_offset as usize;
let end_source = self.postings_source.len();
let postings_slice = self.postings_source.slice(offset, end_source);
let postings_reader = OwnedRead::new(postings_slice);
let postings_reader = SourceRead::from(postings_slice);
block_postings.reset(term_info.doc_freq as usize, postings_reader);
}
@@ -104,19 +86,15 @@ impl InvertedIndexReader {
pub fn read_block_postings_from_terminfo(
&self,
term_info: &TermInfo,
requested_option: IndexRecordOption,
option: IndexRecordOption,
) -> BlockSegmentPostings {
let offset = term_info.postings_offset as usize;
let postings_data = self.postings_source.slice_from(offset);
let freq_reading_option = match (self.record_option, requested_option) {
(IndexRecordOption::Basic, _) => FreqReadingOption::NoFreq,
(_, IndexRecordOption::Basic) => FreqReadingOption::SkipFreq,
(_, _) => FreqReadingOption::ReadFreq,
};
let has_freq = option.has_freq();
BlockSegmentPostings::from_data(
term_info.doc_freq as usize,
OwnedRead::new(postings_data),
freq_reading_option,
SourceRead::from(postings_data),
has_freq,
)
}
@@ -130,6 +108,7 @@ impl InvertedIndexReader {
option: IndexRecordOption,
) -> SegmentPostings {
let block_postings = self.read_block_postings_from_terminfo(term_info, option);
let delete_bitset = self.delete_bitset.clone();
let position_stream = {
if option.has_positions() {
let position_offset = term_info.positions_offset;
@@ -141,13 +120,7 @@ impl InvertedIndexReader {
None
}
};
SegmentPostings::from_block_postings(block_postings, position_stream)
}
/// Returns the total number of tokens recorded for all documents
/// (including deleted documents).
pub fn total_num_tokens(&self) -> u64 {
self.total_num_tokens
SegmentPostings::from_block_postings(block_postings, delete_bitset, position_stream)
}
/// Returns the segment postings associated with the term, and with the given option,
@@ -161,23 +134,19 @@ impl InvertedIndexReader {
/// `TextIndexingOptions` that does not index position will return a `SegmentPostings`
/// with `DocId`s and frequencies.
pub fn read_postings(&self, term: &Term, option: IndexRecordOption) -> Option<SegmentPostings> {
let field = term.field();
let field_entry = self.schema.get_field_entry(field);
let term_info = get!(self.get_term_info(term));
Some(self.read_postings_from_terminfo(&term_info, option))
}
pub(crate) fn read_postings_no_deletes(
&self,
term: &Term,
option: IndexRecordOption,
) -> Option<SegmentPostings> {
let term_info = get!(self.get_term_info(term));
Some(self.read_postings_from_terminfo(&term_info, option))
let maximum_option = get!(field_entry.field_type().get_index_record_option());
let best_effort_option = cmp::min(maximum_option, option);
Some(self.read_postings_from_terminfo(&term_info, best_effort_option))
}
/// Returns the number of documents containing the term.
pub fn doc_freq(&self, term: &Term) -> u32 {
self.get_term_info(term)
.map(|term_info| term_info.doc_freq)
.unwrap_or(0u32)
match self.get_term_info(term) {
Some(term_info) => term_info.doc_freq,
None => 0,
}
}
}

View File

@@ -1,24 +1,24 @@
pub mod index;
mod index_meta;
mod inverted_index_reader;
mod pool;
pub mod searcher;
mod segment;
mod segment_component;
mod segment_id;
mod segment_meta;
pub mod index;
mod segment_reader;
mod segment_id;
mod segment_component;
mod segment;
mod index_meta;
mod pool;
mod segment_meta;
mod inverted_index_reader;
pub use self::index::Index;
pub use self::index_meta::IndexMeta;
pub use self::inverted_index_reader::InvertedIndexReader;
pub use self::searcher::Searcher;
pub use self::segment::Segment;
pub use self::segment::SerializableSegment;
pub use self::segment_component::SegmentComponent;
pub use self::segment_id::SegmentId;
pub use self::segment_meta::SegmentMeta;
pub use self::segment_reader::SegmentReader;
pub use self::segment::Segment;
pub use self::segment::SerializableSegment;
pub use self::index::Index;
pub use self::segment_meta::SegmentMeta;
pub use self::index_meta::IndexMeta;
use std::path::PathBuf;

View File

@@ -1,8 +1,8 @@
use crossbeam::sync::MsQueue;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering;
use std::mem;
use std::ops::{Deref, DerefMut};
use crossbeam::sync::MsQueue;
use std::sync::Arc;
pub struct GenerationItem<T> {
@@ -114,8 +114,8 @@ impl<T> Drop for LeasedItem<T> {
#[cfg(test)]
mod tests {
use super::Pool;
use std::iter;
use super::Pool;
#[test]
fn test_pool() {

View File

@@ -1,15 +1,16 @@
use collector::Collector;
use core::InvertedIndexReader;
use core::SegmentReader;
use query::Query;
use schema::Document;
use schema::Schema;
use schema::{Field, Term};
use std::fmt;
use std::sync::Arc;
use termdict::TermMerger;
use DocAddress;
use Result;
use core::SegmentReader;
use schema::Document;
use collector::Collector;
use common::TimerTree;
use query::Query;
use DocId;
use DocAddress;
use schema::{Field, Term};
use termdict::{TermDictionary, TermMerger};
use std::sync::Arc;
use std::fmt;
use core::InvertedIndexReader;
/// Holds a list of `SegmentReader`s ready for search.
///
@@ -17,18 +18,10 @@ use Result;
/// the destruction of the `Searcher`.
///
pub struct Searcher {
schema: Schema,
segment_readers: Vec<SegmentReader>,
}
impl Searcher {
/// Creates a new `Searcher`
pub(crate) fn new(schema: Schema, segment_readers: Vec<SegmentReader>) -> Searcher {
Searcher {
schema,
segment_readers,
}
}
/// Fetches a document from tantivy's store given a `DocAddress`.
///
/// The searcher uses the segment ordinal to route the
@@ -39,26 +32,21 @@ impl Searcher {
segment_reader.doc(doc_id)
}
/// Access the schema associated to the index of this searcher.
pub fn schema(&self) -> &Schema {
&self.schema
}
/// Returns the overall number of documents in the index.
pub fn num_docs(&self) -> u64 {
pub fn num_docs(&self) -> DocId {
self.segment_readers
.iter()
.map(|segment_reader| segment_reader.num_docs() as u64)
.sum::<u64>()
.map(|segment_reader| segment_reader.num_docs())
.fold(0u32, |acc, val| acc + val)
}
/// Return the overall number of documents containing
/// the given term.
pub fn doc_freq(&self, term: &Term) -> u64 {
pub fn doc_freq(&self, term: &Term) -> u32 {
self.segment_readers
.iter()
.map(|segment_reader| segment_reader.inverted_index(term.field()).doc_freq(term) as u64)
.sum::<u64>()
.map(|segment_reader| segment_reader.inverted_index(term.field()).doc_freq(term))
.fold(0u32, |acc, val| acc + val)
}
/// Return the list of segment readers
@@ -72,7 +60,7 @@ impl Searcher {
}
/// Runs a query on the segment readers wrapped by the searcher
pub fn search<C: Collector>(&self, query: &Query, collector: &mut C) -> Result<()> {
pub fn search<C: Collector>(&self, query: &Query, collector: &mut C) -> Result<TimerTree> {
query.search(self, collector)
}
@@ -106,6 +94,12 @@ impl FieldSearcher {
}
}
impl From<Vec<SegmentReader>> for Searcher {
fn from(segment_readers: Vec<SegmentReader>) -> Searcher {
Searcher { segment_readers }
}
}
impl fmt::Debug for Searcher {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let segment_ids = self.segment_readers

View File

@@ -1,16 +1,16 @@
use super::SegmentComponent;
use core::Index;
use core::SegmentId;
use core::SegmentMeta;
use directory::error::{OpenReadError, OpenWriteError};
use directory::Directory;
use directory::{ReadOnlySource, WritePtr};
use indexer::segment_serializer::SegmentSerializer;
use Result;
use std::path::PathBuf;
use schema::Schema;
use std::fmt;
use std::path::PathBuf;
use core::SegmentId;
use directory::{FileProtection, ReadOnlySource, WritePtr};
use indexer::segment_serializer::SegmentSerializer;
use super::SegmentComponent;
use core::Index;
use std::result;
use Result;
use directory::Directory;
use core::SegmentMeta;
use directory::error::{OpenReadError, OpenWriteError};
/// A segment is a piece of the index.
#[derive(Clone)]
@@ -28,7 +28,6 @@ impl fmt::Debug for Segment {
/// Creates a new segment given an `Index` and a `SegmentId`
///
/// The function is here to make it private outside `tantivy`.
/// #[doc(hidden)]
pub fn create_segment(index: Index, meta: SegmentMeta) -> Segment {
Segment { index, meta }
}
@@ -50,11 +49,8 @@ impl Segment {
}
#[doc(hidden)]
pub fn with_delete_meta(self, num_deleted_docs: u32, opstamp: u64) -> Segment {
Segment {
index: self.index,
meta: self.meta.with_delete_meta(num_deleted_docs, opstamp),
}
pub fn set_delete_meta(&mut self, num_deleted_docs: u32, opstamp: u64) {
self.meta.set_delete_meta(num_deleted_docs, opstamp);
}
/// Returns the segment's id.
@@ -70,6 +66,16 @@ impl Segment {
self.meta.relative_path(component)
}
/// Protects a specific component file from being deleted.
///
/// Returns a FileProtection object. The file is guaranteed
/// to not be garbage collected as long as this `FileProtection` object
/// lives.
pub fn protect_from_delete(&self, component: SegmentComponent) -> FileProtection {
let path = self.relative_path(component);
self.index.directory().protect_file_from_delete(&path)
}
/// Open one of the component file for a *regular* read.
pub fn open_read(
&self,
@@ -99,3 +105,35 @@ pub trait SerializableSegment {
/// The number of documents in the segment.
fn write(&self, serializer: SegmentSerializer) -> Result<u32>;
}
#[cfg(test)]
mod tests {
use core::SegmentComponent;
use directory::Directory;
use std::collections::HashSet;
use schema::SchemaBuilder;
use Index;
#[test]
fn test_segment_protect_component() {
let mut index = Index::create_in_ram(SchemaBuilder::new().build());
let segment = index.new_segment();
let path = segment.relative_path(SegmentComponent::POSTINGS);
let directory = index.directory_mut();
directory.atomic_write(&*path, &vec![0u8]).unwrap();
let living_files = HashSet::new();
{
let _file_protection = segment.protect_from_delete(SegmentComponent::POSTINGS);
assert!(directory.exists(&*path));
directory.garbage_collect(|| living_files.clone());
assert!(directory.exists(&*path));
}
directory.garbage_collect(|| living_files);
assert!(!directory.exists(&*path));
}
}

View File

@@ -1,5 +1,3 @@
use std::slice;
/// Enum describing each component of a tantivy segment.
/// Each component is stored in its own file,
/// using the pattern `segment_uuid`.`component_extension`,
@@ -28,7 +26,7 @@ pub enum SegmentComponent {
impl SegmentComponent {
/// Iterates through the components.
pub fn iterator() -> slice::Iter<'static, SegmentComponent> {
pub fn iterator() -> impl Iterator<Item = &'static SegmentComponent> {
static SEGMENT_COMPONENTS: [SegmentComponent; 7] = [
SegmentComponent::POSTINGS,
SegmentComponent::POSITIONS,

View File

@@ -1,6 +1,6 @@
use std::cmp::{Ord, Ordering};
use std::fmt;
use uuid::Uuid;
use std::fmt;
use std::cmp::{Ord, Ordering};
#[cfg(test)]
use std::sync::atomic;

View File

@@ -1,14 +1,7 @@
use super::SegmentComponent;
use census::{Inventory, TrackedObject};
use core::SegmentId;
use serde;
use std::collections::HashSet;
use std::fmt;
use super::SegmentComponent;
use std::path::PathBuf;
lazy_static! {
static ref INVENTORY: Inventory<InnerSegmentMeta> = { Inventory::new() };
}
use std::collections::HashSet;
#[derive(Clone, Debug, Serialize, Deserialize)]
struct DeleteMeta {
@@ -20,72 +13,32 @@ struct DeleteMeta {
///
/// For instance the number of docs it contains,
/// how many are deleted, etc.
#[derive(Clone)]
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SegmentMeta {
tracked: TrackedObject<InnerSegmentMeta>,
}
impl fmt::Debug for SegmentMeta {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
self.tracked.fmt(f)
}
}
impl serde::Serialize for SegmentMeta {
fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as serde::Serializer>::Ok, <S as serde::Serializer>::Error>
where
S: serde::Serializer,
{
self.tracked.serialize(serializer)
}
}
impl<'a> serde::Deserialize<'a> for SegmentMeta {
fn deserialize<D>(deserializer: D) -> Result<Self, <D as serde::Deserializer<'a>>::Error>
where
D: serde::Deserializer<'a>,
{
let inner = InnerSegmentMeta::deserialize(deserializer)?;
let tracked = INVENTORY.track(inner);
Ok(SegmentMeta { tracked: tracked })
}
segment_id: SegmentId,
max_doc: u32,
deletes: Option<DeleteMeta>,
}
impl SegmentMeta {
/// Lists all living `SegmentMeta` object at the time of the call.
pub fn all() -> Vec<SegmentMeta> {
INVENTORY
.list()
.into_iter()
.map(|inner| SegmentMeta { tracked: inner })
.collect::<Vec<_>>()
}
/// Creates a new `SegmentMeta` object.
#[doc(hidden)]
pub fn new(segment_id: SegmentId, max_doc: u32) -> SegmentMeta {
let inner = InnerSegmentMeta {
segment_id,
max_doc,
deletes: None,
};
/// Creates a new segment meta for
/// a segment with no deletes and no documents.
pub fn new(segment_id: SegmentId) -> SegmentMeta {
SegmentMeta {
tracked: INVENTORY.track(inner),
segment_id,
max_doc: 0,
deletes: None,
}
}
/// Returns the segment id.
pub fn id(&self) -> SegmentId {
self.tracked.segment_id
self.segment_id
}
/// Returns the number of deleted documents.
pub fn num_deleted_docs(&self) -> u32 {
self.tracked
.deletes
self.deletes
.as_ref()
.map(|delete_meta| delete_meta.num_deleted_docs)
.unwrap_or(0u32)
@@ -127,7 +80,7 @@ impl SegmentMeta {
/// and all the doc ids contains in this segment
/// are exactly (0..max_doc).
pub fn max_doc(&self) -> u32 {
self.tracked.max_doc
self.max_doc
}
/// Return the number of documents in the segment.
@@ -138,36 +91,25 @@ impl SegmentMeta {
/// Returns the opstamp of the last delete operation
/// taken in account in this segment.
pub fn delete_opstamp(&self) -> Option<u64> {
self.tracked
.deletes
.as_ref()
.map(|delete_meta| delete_meta.opstamp)
self.deletes.as_ref().map(|delete_meta| delete_meta.opstamp)
}
/// Returns true iff the segment meta contains
/// delete information.
pub fn has_deletes(&self) -> bool {
self.num_deleted_docs() > 0
self.deletes.is_some()
}
#[doc(hidden)]
pub fn with_delete_meta(self, num_deleted_docs: u32, opstamp: u64) -> SegmentMeta {
let delete_meta = DeleteMeta {
pub fn set_max_doc(&mut self, max_doc: u32) {
self.max_doc = max_doc;
}
#[doc(hidden)]
pub fn set_delete_meta(&mut self, num_deleted_docs: u32, opstamp: u64) {
self.deletes = Some(DeleteMeta {
num_deleted_docs,
opstamp,
};
let tracked = self.tracked.map(move |inner_meta| InnerSegmentMeta {
segment_id: inner_meta.segment_id,
max_doc: inner_meta.max_doc,
deletes: Some(delete_meta),
});
SegmentMeta { tracked }
}
}
#[derive(Clone, Debug, Serialize, Deserialize)]
struct InnerSegmentMeta {
segment_id: SegmentId,
max_doc: u32,
deletes: Option<DeleteMeta>,
}

View File

@@ -1,30 +1,24 @@
use common::CompositeFile;
use common::HasLen;
use core::InvertedIndexReader;
use core::Segment;
use core::SegmentComponent;
use core::SegmentId;
use core::SegmentMeta;
use error::ErrorKind;
use fastfield::DeleteBitSet;
use fastfield::FacetReader;
use fastfield::FastFieldReader;
use fastfield::{self, FastFieldNotAvailableError};
use fastfield::{BytesFastFieldReader, FastValue, MultiValueIntFastFieldReader};
use fieldnorm::FieldNormReader;
use schema::Cardinality;
use schema::Document;
use schema::Field;
use schema::FieldType;
use schema::Schema;
use std::collections::HashMap;
use std::fmt;
use std::sync::Arc;
use std::sync::RwLock;
use store::StoreReader;
use termdict::TermDictionary;
use DocId;
use Result;
use core::Segment;
use core::SegmentId;
use core::SegmentComponent;
use std::sync::RwLock;
use common::HasLen;
use core::SegmentMeta;
use fastfield::{self, FastFieldNotAvailableError};
use fastfield::DeleteBitSet;
use store::StoreReader;
use directory::ReadOnlySource;
use schema::Document;
use DocId;
use std::sync::Arc;
use std::collections::HashMap;
use common::CompositeFile;
use std::fmt;
use core::InvertedIndexReader;
use schema::Field;
use fastfield::{FastFieldReader, U64FastFieldReader};
use schema::Schema;
/// Entry point to access all of the datastructures of the `Segment`
///
@@ -37,8 +31,6 @@ use Result;
/// The segment reader has a very low memory footprint,
/// as close to all of the memory data is mmapped.
///
///
/// TODO fix not decoding docfreq
#[derive(Clone)]
pub struct SegmentReader {
inv_idx_reader_cache: Arc<RwLock<HashMap<Field, Arc<InvertedIndexReader>>>>,
@@ -53,7 +45,7 @@ pub struct SegmentReader {
fieldnorms_composite: CompositeFile,
store_reader: StoreReader,
delete_bitset_opt: Option<DeleteBitSet>,
delete_bitset: DeleteBitSet,
schema: Schema,
}
@@ -75,22 +67,10 @@ impl SegmentReader {
self.segment_meta.num_docs()
}
/// Returns the schema of the index this segment belongs to.
pub fn schema(&self) -> &Schema {
&self.schema
}
/// Return the number of documents that have been
/// deleted in the segment.
pub fn num_deleted_docs(&self) -> DocId {
self.delete_bitset()
.map(|delete_set| delete_set.len() as DocId)
.unwrap_or(0u32)
}
/// Returns true iff some of the documents of the segment have been deleted.
pub fn has_deletes(&self) -> bool {
self.delete_bitset().is_some()
self.delete_bitset.len() as DocId
}
/// Accessor to a segment's fast field reader given a field.
@@ -103,93 +83,21 @@ impl SegmentReader {
///
/// # Panics
/// May panic if the index is corrupted.
pub fn fast_field_reader<Item: FastValue>(
pub fn get_fast_field_reader<TFastFieldReader: FastFieldReader>(
&self,
field: Field,
) -> fastfield::Result<FastFieldReader<Item>> {
) -> fastfield::Result<TFastFieldReader> {
let field_entry = self.schema.get_field_entry(field);
if Item::fast_field_cardinality(field_entry.field_type()) == Some(Cardinality::SingleValue)
{
if !TFastFieldReader::is_enabled(field_entry.field_type()) {
Err(FastFieldNotAvailableError::new(field_entry))
} else {
self.fast_fields_composite
.open_read(field)
.ok_or_else(|| FastFieldNotAvailableError::new(field_entry))
.map(FastFieldReader::open)
} else {
Err(FastFieldNotAvailableError::new(field_entry))
.map(TFastFieldReader::open)
}
}
pub(crate) fn fast_field_reader_with_idx<Item: FastValue>(
&self,
field: Field,
idx: usize,
) -> fastfield::Result<FastFieldReader<Item>> {
if let Some(ff_source) = self.fast_fields_composite.open_read_with_idx(field, idx) {
Ok(FastFieldReader::open(ff_source))
} else {
let field_entry = self.schema.get_field_entry(field);
Err(FastFieldNotAvailableError::new(field_entry))
}
}
/// Accessor to the `MultiValueIntFastFieldReader` associated to a given `Field`.
/// May panick if the field is not a multivalued fastfield of the type `Item`.
pub fn multi_fast_field_reader<Item: FastValue>(
&self,
field: Field,
) -> fastfield::Result<MultiValueIntFastFieldReader<Item>> {
let field_entry = self.schema.get_field_entry(field);
if Item::fast_field_cardinality(field_entry.field_type()) == Some(Cardinality::MultiValues)
{
let idx_reader = self.fast_field_reader_with_idx(field, 0)?;
let vals_reader = self.fast_field_reader_with_idx(field, 1)?;
Ok(MultiValueIntFastFieldReader::open(idx_reader, vals_reader))
} else {
Err(FastFieldNotAvailableError::new(field_entry))
}
}
/// Accessor to the `BytesFastFieldReader` associated to a given `Field`.
pub fn bytes_fast_field_reader(&self, field: Field) -> fastfield::Result<BytesFastFieldReader> {
let field_entry = self.schema.get_field_entry(field);
match field_entry.field_type() {
&FieldType::Bytes => {}
_ => return Err(FastFieldNotAvailableError::new(field_entry)),
}
let idx_reader = self.fast_fields_composite
.open_read_with_idx(field, 0)
.ok_or_else(|| FastFieldNotAvailableError::new(field_entry))
.map(FastFieldReader::open)?;
let values = self.fast_fields_composite
.open_read_with_idx(field, 1)
.ok_or_else(|| FastFieldNotAvailableError::new(field_entry))?;
Ok(BytesFastFieldReader::open(idx_reader, values))
}
/// Accessor to the `FacetReader` associated to a given `Field`.
pub fn facet_reader(&self, field: Field) -> Result<FacetReader> {
let field_entry = self.schema.get_field_entry(field);
if field_entry.field_type() != &FieldType::HierarchicalFacet {
return Err(ErrorKind::InvalidArgument(format!(
"The field {:?} is not a \
hierarchical facet.",
field_entry
)).into());
}
let term_ords_reader = self.multi_fast_field_reader(field)?;
let termdict_source = self.termdict_composite.open_read(field).ok_or_else(|| {
ErrorKind::InvalidArgument(format!(
"The field \"{}\" is a hierarchical \
but this segment does not seem to have the field term \
dictionary.",
field_entry.name()
))
})?;
let termdict = TermDictionary::from_source(termdict_source);
let facet_reader = FacetReader::new(term_ords_reader, termdict);
Ok(facet_reader)
}
/// Accessor to the segment's `Field norms`'s reader.
///
/// Field norms are the length (in tokens) of the fields.
@@ -198,17 +106,10 @@ impl SegmentReader {
///
/// They are simply stored as a fast field, serialized in
/// the `.fieldnorm` file of the segment.
pub fn get_fieldnorms_reader(&self, field: Field) -> FieldNormReader {
if let Some(fieldnorm_source) = self.fieldnorms_composite.open_read(field) {
FieldNormReader::open(fieldnorm_source)
} else {
let field_name = self.schema.get_field_name(field);
let err_msg = format!(
"Field norm not found for field {:?}. Was it market as indexed during indexing.",
field_name
);
panic!(err_msg);
}
pub fn get_fieldnorms_reader(&self, field: Field) -> Option<U64FastFieldReader> {
self.fieldnorms_composite
.open_read(field)
.map(U64FastFieldReader::open)
}
/// Accessor to the segment's `StoreReader`.
@@ -241,11 +142,11 @@ impl SegmentReader {
let fieldnorms_data = segment.open_read(SegmentComponent::FIELDNORMS)?;
let fieldnorms_composite = CompositeFile::open(&fieldnorms_data)?;
let delete_bitset_opt = if segment.meta().has_deletes() {
let delete_bitset = if segment.meta().has_deletes() {
let delete_data = segment.open_read(SegmentComponent::DELETE)?;
Some(DeleteBitSet::open(delete_data))
DeleteBitSet::open(delete_data)
} else {
None
DeleteBitSet::empty()
};
let schema = segment.schema();
@@ -258,15 +159,13 @@ impl SegmentReader {
fieldnorms_composite,
segment_id: segment.id(),
store_reader,
delete_bitset_opt,
delete_bitset,
positions_composite,
schema,
})
}
/// Returns a field reader associated to the field given in argument.
/// If the field was not present in the index during indexing time,
/// the InvertedIndexReader is empty.
///
/// The field reader is in charge of iterating through the
/// term dictionary associated to a specific field,
@@ -277,43 +176,27 @@ impl SegmentReader {
.expect("Lock poisoned. This should never happen")
.get(&field)
{
return Arc::clone(inv_idx_reader);
}
let field_entry = self.schema.get_field_entry(field);
let field_type = field_entry.field_type();
let record_option_opt = field_type.get_index_record_option();
if record_option_opt.is_none() {
panic!("Field {:?} does not seem indexed.", field_entry.name());
Arc::clone(inv_idx_reader);
}
let record_option = record_option_opt.unwrap();
let postings_source_opt = self.postings_composite.open_read(field);
if postings_source_opt.is_none() {
// no documents in the segment contained this field.
// As a result, no data is associated to the inverted index.
//
// Returns an empty inverted index.
return Arc::new(InvertedIndexReader::empty(field_type.clone()));
}
let postings_source = postings_source_opt.unwrap();
let termdict_source = self.termdict_composite
let termdict_source: ReadOnlySource = self.termdict_composite
.open_read(field)
.expect("Failed to open field term dictionary in composite file. Is the field indexed");
.expect("Index corrupted. Failed to open field term dictionary in composite file.");
let postings_source = self.postings_composite
.open_read(field)
.expect("Index corrupted. Failed to open field postings in composite file.");
let positions_source = self.positions_composite
.open_read(field)
.expect("Index corrupted. Failed to open field positions in composite file.");
let inv_idx_reader = Arc::new(InvertedIndexReader::new(
TermDictionary::from_source(termdict_source),
termdict_source,
postings_source,
positions_source,
record_option,
self.delete_bitset.clone(),
self.schema.clone(),
));
// by releasing the lock in between, we may end up opening the inverting index
@@ -341,21 +224,14 @@ impl SegmentReader {
/// Returns the bitset representing
/// the documents that have been deleted.
pub fn delete_bitset(&self) -> Option<&DeleteBitSet> {
self.delete_bitset_opt.as_ref()
pub fn delete_bitset(&self) -> &DeleteBitSet {
&self.delete_bitset
}
/// Returns true iff the `doc` is marked
/// as deleted.
pub fn is_deleted(&self, doc: DocId) -> bool {
self.delete_bitset()
.map(|delete_set| delete_set.is_deleted(doc))
.unwrap_or(false)
}
/// Returns an iterator that will iterate over the alive document ids
pub fn doc_ids_alive(&self) -> SegmentReaderAliveDocsIterator {
SegmentReaderAliveDocsIterator::new(&self)
self.delete_bitset.is_deleted(doc)
}
}
@@ -364,90 +240,3 @@ impl fmt::Debug for SegmentReader {
write!(f, "SegmentReader({:?})", self.segment_id)
}
}
/// Implements the iterator trait to allow easy iteration
/// over non-deleted ("alive") DocIds in a SegmentReader
pub struct SegmentReaderAliveDocsIterator<'a> {
reader: &'a SegmentReader,
max_doc: DocId,
current: DocId,
}
impl<'a> SegmentReaderAliveDocsIterator<'a> {
pub fn new(reader: &'a SegmentReader) -> SegmentReaderAliveDocsIterator<'a> {
SegmentReaderAliveDocsIterator {
reader: reader,
max_doc: reader.max_doc(),
current: 0,
}
}
}
impl<'a> Iterator for SegmentReaderAliveDocsIterator<'a> {
type Item = DocId;
fn next(&mut self) -> Option<Self::Item> {
// TODO: Use TinySet (like in BitSetDocSet) to speed this process up
if self.current >= self.max_doc {
return None;
}
// find the next alive doc id
while self.reader.is_deleted(self.current) {
self.current += 1;
if self.current >= self.max_doc {
return None;
}
}
// capture the current alive DocId
let result = Some(self.current);
// move down the chain
self.current += 1;
result
}
}
#[cfg(test)]
mod test {
use core::Index;
use schema::{SchemaBuilder, Term, STORED, TEXT};
use DocId;
#[test]
fn test_alive_docs_iterator() {
let mut schema_builder = SchemaBuilder::new();
schema_builder.add_text_field("name", TEXT | STORED);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
let name = schema.get_field("name").unwrap();
{
let mut index_writer = index.writer_with_num_threads(1, 3_000_000).unwrap();
index_writer.add_document(doc!(name => "tantivy"));
index_writer.add_document(doc!(name => "horse"));
index_writer.add_document(doc!(name => "jockey"));
index_writer.add_document(doc!(name => "cap"));
// we should now have one segment with two docs
index_writer.commit().unwrap();
}
{
let mut index_writer2 = index.writer(50_000_000).unwrap();
index_writer2.delete_term(Term::from_field_text(name, "horse"));
index_writer2.delete_term(Term::from_field_text(name, "cap"));
// ok, now we should have a deleted doc
index_writer2.commit().unwrap();
}
index.load_searchers().unwrap();
let searcher = index.searcher();
let docs: Vec<DocId> = searcher.segment_reader(0).doc_ids_alive().collect();
assert_eq!(vec![0u32, 2u32], docs);
}
}

4
src/datastruct/mod.rs Normal file
View File

@@ -0,0 +1,4 @@
mod skip;
pub mod stacker;
pub use self::skip::{SkipList, SkipListBuilder};

View File

@@ -1,20 +1,20 @@
#![allow(dead_code)]
mod skiplist;
mod skiplist_builder;
mod skiplist;
pub use self::skiplist::SkipList;
pub use self::skiplist_builder::SkipListBuilder;
pub use self::skiplist::SkipList;
#[cfg(test)]
mod tests {
use super::{SkipList, SkipListBuilder};
use super::*;
#[test]
fn test_skiplist() {
let mut output: Vec<u8> = Vec::new();
let mut skip_list_builder: SkipListBuilder<u32> = SkipListBuilder::new(8);
let mut skip_list_builder: SkipListBuilder<u32> = SkipListBuilder::new(10);
skip_list_builder.insert(2, &3).unwrap();
skip_list_builder.write::<Vec<u8>>(&mut output).unwrap();
let mut skip_list: SkipList<u32> = SkipList::from(output.as_slice());
@@ -24,7 +24,7 @@ mod tests {
#[test]
fn test_skiplist2() {
let mut output: Vec<u8> = Vec::new();
let skip_list_builder: SkipListBuilder<u32> = SkipListBuilder::new(8);
let skip_list_builder: SkipListBuilder<u32> = SkipListBuilder::new(10);
skip_list_builder.write::<Vec<u8>>(&mut output).unwrap();
let mut skip_list: SkipList<u32> = SkipList::from(output.as_slice());
assert_eq!(skip_list.next(), None);
@@ -71,7 +71,7 @@ mod tests {
#[test]
fn test_skiplist5() {
let mut output: Vec<u8> = Vec::new();
let mut skip_list_builder: SkipListBuilder<()> = SkipListBuilder::new(4);
let mut skip_list_builder: SkipListBuilder<()> = SkipListBuilder::new(3);
skip_list_builder.insert(2, &()).unwrap();
skip_list_builder.insert(3, &()).unwrap();
skip_list_builder.insert(5, &()).unwrap();
@@ -103,7 +103,7 @@ mod tests {
#[test]
fn test_skiplist7() {
let mut output: Vec<u8> = Vec::new();
let mut skip_list_builder: SkipListBuilder<()> = SkipListBuilder::new(4);
let mut skip_list_builder: SkipListBuilder<()> = SkipListBuilder::new(3);
for i in 0..1000 {
skip_list_builder.insert(i, &()).unwrap();
}
@@ -121,48 +121,35 @@ mod tests {
#[test]
fn test_skiplist8() {
let mut output: Vec<u8> = Vec::new();
let mut skip_list_builder: SkipListBuilder<u64> = SkipListBuilder::new(8);
let mut skip_list_builder: SkipListBuilder<u32> = SkipListBuilder::new(10);
skip_list_builder.insert(2, &3).unwrap();
skip_list_builder.write::<Vec<u8>>(&mut output).unwrap();
assert_eq!(output.len(), 11);
assert_eq!(output.len(), 13);
assert_eq!(output[0], 1u8 + 128u8);
}
#[test]
fn test_skiplist9() {
let mut output: Vec<u8> = Vec::new();
let mut skip_list_builder: SkipListBuilder<u64> = SkipListBuilder::new(4);
for i in 0..4 * 4 * 4 {
let mut skip_list_builder: SkipListBuilder<u32> = SkipListBuilder::new(3);
for i in 0..9 {
skip_list_builder.insert(i, &i).unwrap();
}
skip_list_builder.write::<Vec<u8>>(&mut output).unwrap();
assert_eq!(output.len(), 774);
assert_eq!(output[0], 4u8 + 128u8);
assert_eq!(output.len(), 117);
assert_eq!(output[0], 3u8 + 128u8);
}
#[test]
fn test_skiplist10() {
// checking that void gets serialized to nothing.
let mut output: Vec<u8> = Vec::new();
let mut skip_list_builder: SkipListBuilder<()> = SkipListBuilder::new(4);
for i in 0..((4 * 4 * 4) - 1) {
let mut skip_list_builder: SkipListBuilder<()> = SkipListBuilder::new(3);
for i in 0..9 {
skip_list_builder.insert(i, &()).unwrap();
}
skip_list_builder.write::<Vec<u8>>(&mut output).unwrap();
assert_eq!(output.len(), 230);
assert_eq!(output[0], 128u8 + 3u8);
}
#[test]
fn test_skiplist11() {
// checking that void gets serialized to nothing.
let mut output: Vec<u8> = Vec::new();
let mut skip_list_builder: SkipListBuilder<()> = SkipListBuilder::new(4);
for i in 0..(4 * 4) {
skip_list_builder.insert(i, &()).unwrap();
}
skip_list_builder.write::<Vec<u8>>(&mut output).unwrap();
assert_eq!(output.len(), 65);
assert_eq!(output.len(), 81);
assert_eq!(output[0], 128u8 + 3u8);
}

View File

@@ -1,26 +1,28 @@
use common::{BinarySerializable, VInt};
use std::cmp::max;
use common::BinarySerializable;
use std::marker::PhantomData;
use DocId;
use std::cmp::max;
static EMPTY: [u8; 0] = [];
struct Layer<'a, T> {
data: &'a [u8],
cursor: &'a [u8],
next_id: Option<u64>,
next_id: DocId,
_phantom_: PhantomData<T>,
}
impl<'a, T: BinarySerializable> Iterator for Layer<'a, T> {
type Item = (u64, T);
type Item = (DocId, T);
fn next(&mut self) -> Option<(u64, T)> {
if let Some(cur_id) = self.next_id {
let cur_val = T::deserialize(&mut self.cursor).unwrap();
self.next_id = VInt::deserialize_u64(&mut self.cursor).ok();
Some((cur_id, cur_val))
} else {
fn next(&mut self) -> Option<(DocId, T)> {
if self.next_id == u32::max_value() {
None
} else {
let cur_val = T::deserialize(&mut self.cursor).unwrap();
let cur_id = self.next_id;
self.next_id = u32::deserialize(&mut self.cursor).unwrap_or(u32::max_value());
Some((cur_id, cur_val))
}
}
}
@@ -28,7 +30,7 @@ impl<'a, T: BinarySerializable> Iterator for Layer<'a, T> {
impl<'a, T: BinarySerializable> From<&'a [u8]> for Layer<'a, T> {
fn from(data: &'a [u8]) -> Layer<'a, T> {
let mut cursor = data;
let next_id = VInt::deserialize_u64(&mut cursor).ok();
let next_id = u32::deserialize(&mut cursor).unwrap_or(u32::max_value());
Layer {
data,
cursor,
@@ -43,14 +45,14 @@ impl<'a, T: BinarySerializable> Layer<'a, T> {
Layer {
data: &EMPTY,
cursor: &EMPTY,
next_id: None,
next_id: DocId::max_value(),
_phantom_: PhantomData,
}
}
fn seek_offset(&mut self, offset: usize) {
self.cursor = &self.data[offset..];
self.next_id = VInt::deserialize_u64(&mut self.cursor).ok();
self.next_id = u32::deserialize(&mut self.cursor).unwrap_or(u32::max_value());
}
// Returns the last element (key, val)
@@ -58,61 +60,54 @@ impl<'a, T: BinarySerializable> Layer<'a, T> {
//
// If there is no such element anymore,
// returns None.
//
// If the element exists, it will be returned
// at the next call to `.next()`.
fn seek(&mut self, key: u64) -> Option<(u64, T)> {
let mut result: Option<(u64, T)> = None;
loop {
if let Some(next_id) = self.next_id {
if next_id < key {
if let Some(v) = self.next() {
result = Some(v);
continue;
}
fn seek(&mut self, doc_id: DocId) -> Option<(DocId, T)> {
let mut val = None;
while self.next_id < doc_id {
match self.next() {
None => {
break;
}
v => {
val = v;
}
}
return result;
}
val
}
}
pub struct SkipList<'a, T: BinarySerializable> {
data_layer: Layer<'a, T>,
skip_layers: Vec<Layer<'a, u64>>,
skip_layers: Vec<Layer<'a, u32>>,
}
impl<'a, T: BinarySerializable> Iterator for SkipList<'a, T> {
type Item = (u64, T);
type Item = (DocId, T);
fn next(&mut self) -> Option<(u64, T)> {
fn next(&mut self) -> Option<(DocId, T)> {
self.data_layer.next()
}
}
impl<'a, T: BinarySerializable> SkipList<'a, T> {
pub fn seek(&mut self, key: u64) -> Option<(u64, T)> {
let mut next_layer_skip: Option<(u64, u64)> = None;
pub fn seek(&mut self, doc_id: DocId) -> Option<(DocId, T)> {
let mut next_layer_skip: Option<(DocId, u32)> = None;
for skip_layer in &mut self.skip_layers {
if let Some((_, offset)) = next_layer_skip {
skip_layer.seek_offset(offset as usize);
}
next_layer_skip = skip_layer.seek(key);
next_layer_skip = skip_layer.seek(doc_id);
}
if let Some((_, offset)) = next_layer_skip {
self.data_layer.seek_offset(offset as usize);
}
self.data_layer.seek(key)
self.data_layer.seek(doc_id)
}
}
impl<'a, T: BinarySerializable> From<&'a [u8]> for SkipList<'a, T> {
fn from(mut data: &'a [u8]) -> SkipList<'a, T> {
let offsets: Vec<u64> = Vec::<VInt>::deserialize(&mut data)
.unwrap()
.into_iter()
.map(|el| el.0)
.collect();
let offsets: Vec<u32> = Vec::deserialize(&mut data).unwrap();
let num_layers = offsets.len();
let layers_data: &[u8] = data;
let data_layer: Layer<'a, T> = if num_layers == 0 {

View File

@@ -1,11 +1,13 @@
use common::{is_power_of_2, BinarySerializable, VInt};
use std::io;
use std::io::Write;
use common::BinarySerializable;
use std::marker::PhantomData;
use DocId;
use std::io;
struct LayerBuilder<T: BinarySerializable> {
period_mask: usize,
period: usize,
buffer: Vec<u8>,
remaining: usize,
len: usize,
_phantom_: PhantomData<T>,
}
@@ -21,33 +23,34 @@ impl<T: BinarySerializable> LayerBuilder<T> {
}
fn with_period(period: usize) -> LayerBuilder<T> {
assert!(is_power_of_2(period), "The period has to be a power of 2.");
LayerBuilder {
period_mask: (period - 1),
period,
buffer: Vec::new(),
remaining: period,
len: 0,
_phantom_: PhantomData,
}
}
fn insert(&mut self, key: u64, value: &T) -> io::Result<Option<(u64, u64)>> {
fn insert(&mut self, doc_id: DocId, value: &T) -> io::Result<Option<(DocId, u32)>> {
self.remaining -= 1;
self.len += 1;
let offset = self.written_size() as u64;
VInt(key).serialize(&mut self.buffer)?;
let offset = self.written_size() as u32;
doc_id.serialize(&mut self.buffer)?;
value.serialize(&mut self.buffer)?;
let emit_skip_info = (self.period_mask & self.len) == 0;
if emit_skip_info {
Ok(Some((key, offset)))
Ok(if self.remaining == 0 {
self.remaining = self.period;
Some((doc_id, offset))
} else {
Ok(None)
}
None
})
}
}
pub struct SkipListBuilder<T: BinarySerializable> {
period: usize,
data_layer: LayerBuilder<T>,
skip_layers: Vec<LayerBuilder<u64>>,
skip_layers: Vec<LayerBuilder<u32>>,
}
impl<T: BinarySerializable> SkipListBuilder<T> {
@@ -59,7 +62,7 @@ impl<T: BinarySerializable> SkipListBuilder<T> {
}
}
fn get_skip_layer(&mut self, layer_id: usize) -> &mut LayerBuilder<u64> {
fn get_skip_layer(&mut self, layer_id: usize) -> &mut LayerBuilder<u32> {
if layer_id == self.skip_layers.len() {
let layer_builder = LayerBuilder::with_period(self.period);
self.skip_layers.push(layer_builder);
@@ -67,9 +70,9 @@ impl<T: BinarySerializable> SkipListBuilder<T> {
&mut self.skip_layers[layer_id]
}
pub fn insert(&mut self, key: u64, dest: &T) -> io::Result<()> {
pub fn insert(&mut self, doc_id: DocId, dest: &T) -> io::Result<()> {
let mut layer_id = 0;
let mut skip_pointer = self.data_layer.insert(key, dest)?;
let mut skip_pointer = self.data_layer.insert(doc_id, dest)?;
loop {
skip_pointer = match skip_pointer {
Some((skip_doc_id, skip_offset)) => self.get_skip_layer(layer_id)
@@ -83,11 +86,13 @@ impl<T: BinarySerializable> SkipListBuilder<T> {
}
pub fn write<W: Write>(self, output: &mut W) -> io::Result<()> {
let mut size: u64 = self.data_layer.buffer.len() as u64;
let mut layer_sizes = vec![VInt(size)];
let mut size: u32 = 0;
let mut layer_sizes: Vec<u32> = Vec::new();
size += self.data_layer.buffer.len() as u32;
layer_sizes.push(size);
for layer in self.skip_layers.iter().rev() {
size += layer.buffer.len() as u64;
layer_sizes.push(VInt(size));
size += layer.buffer.len() as u32;
layer_sizes.push(size);
}
layer_sizes.serialize(output)?;
self.data_layer.write(output)?;

View File

@@ -0,0 +1,161 @@
use std::mem;
use super::heap::{Heap, HeapAllocable};
#[inline]
pub fn is_power_of_2(val: u32) -> bool {
val & (val - 1) == 0
}
#[inline]
pub fn jump_needed(val: u32) -> bool {
val > 3 && is_power_of_2(val)
}
#[derive(Debug, Clone)]
pub struct ExpUnrolledLinkedList {
len: u32,
end: u32,
val0: u32,
val1: u32,
val2: u32,
next: u32, // inline of the first block
}
impl ExpUnrolledLinkedList {
pub fn iter<'a>(&self, addr: u32, heap: &'a Heap) -> ExpUnrolledLinkedListIterator<'a> {
ExpUnrolledLinkedListIterator {
heap,
addr: addr + 2u32 * (mem::size_of::<u32>() as u32),
len: self.len,
consumed: 0,
}
}
pub fn push(&mut self, val: u32, heap: &Heap) {
self.len += 1;
if jump_needed(self.len) {
// we need to allocate another block.
// ... As we want to grow block exponentially
// the next block as a size of (length so far),
// and we need to add 1u32 to store the pointer
// to the next element.
let new_block_size: usize = (self.len as usize + 1) * mem::size_of::<u32>();
let new_block_addr: u32 = heap.allocate_space(new_block_size);
heap.set(self.end, &new_block_addr);
self.end = new_block_addr;
}
heap.set(self.end, &val);
self.end += mem::size_of::<u32>() as u32;
}
}
impl HeapAllocable for u32 {
fn with_addr(_addr: u32) -> u32 {
0u32
}
}
impl HeapAllocable for ExpUnrolledLinkedList {
fn with_addr(addr: u32) -> ExpUnrolledLinkedList {
let last_addr = addr + mem::size_of::<u32>() as u32 * 2u32;
ExpUnrolledLinkedList {
len: 0u32,
end: last_addr,
val0: 0u32,
val1: 0u32,
val2: 0u32,
next: 0u32,
}
}
}
pub struct ExpUnrolledLinkedListIterator<'a> {
heap: &'a Heap,
addr: u32,
len: u32,
consumed: u32,
}
impl<'a> Iterator for ExpUnrolledLinkedListIterator<'a> {
type Item = u32;
fn next(&mut self) -> Option<u32> {
if self.consumed == self.len {
None
} else {
let addr: u32;
self.consumed += 1;
if jump_needed(self.consumed) {
addr = *self.heap.get_mut_ref(self.addr);
} else {
addr = self.addr;
}
self.addr = addr + mem::size_of::<u32>() as u32;
Some(*self.heap.get_mut_ref(addr))
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use super::super::heap::Heap;
use test::Bencher;
const NUM_STACK: usize = 10_000;
const STACK_SIZE: u32 = 1000;
#[test]
fn test_stack() {
let heap = Heap::with_capacity(1_000_000);
let (addr, stack) = heap.allocate_object::<ExpUnrolledLinkedList>();
stack.push(1u32, &heap);
stack.push(2u32, &heap);
stack.push(4u32, &heap);
stack.push(8u32, &heap);
{
let mut it = stack.iter(addr, &heap);
assert_eq!(it.next().unwrap(), 1u32);
assert_eq!(it.next().unwrap(), 2u32);
assert_eq!(it.next().unwrap(), 4u32);
assert_eq!(it.next().unwrap(), 8u32);
assert!(it.next().is_none());
}
}
#[bench]
fn bench_push_vec(bench: &mut Bencher) {
bench.iter(|| {
let mut vecs = Vec::with_capacity(100);
for _ in 0..NUM_STACK {
vecs.push(Vec::new());
}
for s in 0..NUM_STACK {
for i in 0u32..STACK_SIZE {
let t = s * 392017 % NUM_STACK;
vecs[t].push(i);
}
}
});
}
#[bench]
fn bench_push_stack(bench: &mut Bencher) {
let heap = Heap::with_capacity(64_000_000);
bench.iter(|| {
let mut stacks = Vec::with_capacity(100);
for _ in 0..NUM_STACK {
let (_, stack) = heap.allocate_object::<ExpUnrolledLinkedList>();
stacks.push(stack);
}
for s in 0..NUM_STACK {
for i in 0u32..STACK_SIZE {
let t = s * 392017 % NUM_STACK;
stacks[t].push(i, &heap);
}
}
heap.clear();
});
}
}

View File

@@ -0,0 +1,300 @@
use std::iter;
use std::mem;
use super::heap::{BytesRef, Heap, HeapAllocable};
mod murmurhash2 {
const SEED: u32 = 3_242_157_231u32;
#[inline(always)]
pub fn murmurhash2(key: &[u8]) -> u32 {
let mut key_ptr: *const u32 = key.as_ptr() as *const u32;
let m: u32 = 0x5bd1_e995;
let r = 24;
let len = key.len() as u32;
let mut h: u32 = SEED ^ len;
let num_blocks = len >> 2;
for _ in 0..num_blocks {
let mut k: u32 = unsafe { *key_ptr };
k = k.wrapping_mul(m);
k ^= k >> r;
k = k.wrapping_mul(m);
k = k.wrapping_mul(m);
h ^= k;
key_ptr = key_ptr.wrapping_offset(1);
}
// Handle the last few bytes of the input array
let remaining = len & 3;
let key_ptr_u8: *const u8 = key_ptr as *const u8;
match remaining {
3 => {
h ^= unsafe { u32::from(*key_ptr_u8.wrapping_offset(2)) } << 16;
h ^= unsafe { u32::from(*key_ptr_u8.wrapping_offset(1)) } << 8;
h ^= unsafe { u32::from(*key_ptr_u8) };
h = h.wrapping_mul(m);
}
2 => {
h ^= unsafe { u32::from(*key_ptr_u8.wrapping_offset(1)) } << 8;
h ^= unsafe { u32::from(*key_ptr_u8) };
h = h.wrapping_mul(m);
}
1 => {
h ^= unsafe { u32::from(*key_ptr_u8) };
h = h.wrapping_mul(m);
}
_ => {}
}
h ^= h >> 13;
h = h.wrapping_mul(m);
h ^ (h >> 15)
}
}
/// Split the thread memory budget into
/// - the heap size
/// - the hash table "table" itself.
///
/// Returns (the heap size in bytes, the hash table size in number of bits)
pub(crate) fn split_memory(per_thread_memory_budget: usize) -> (usize, usize) {
let table_size_limit: usize = per_thread_memory_budget / 5;
let compute_table_size = |num_bits: usize| {
(1 << num_bits) * mem::size_of::<KeyValue>()
};
let table_num_bits: usize = (1..)
.into_iter()
.take_while(|num_bits: &usize| compute_table_size(*num_bits) < table_size_limit)
.last()
.expect(&format!(
"Per thread memory is too small: {}",
per_thread_memory_budget
));
let table_size = compute_table_size(table_num_bits);
let heap_size = per_thread_memory_budget - table_size;
(heap_size, table_num_bits)
}
/// `KeyValue` is the item stored in the hash table.
/// The key is actually a `BytesRef` object stored in an external heap.
/// The `value_addr` also points to an address in the heap.
///
/// The key and the value are actually stored contiguously.
/// For this reason, the (start, stop) information is actually redundant
/// and can be simplified in the future
#[derive(Copy, Clone, Default)]
struct KeyValue {
key_value_addr: BytesRef,
hash: u32,
}
impl KeyValue {
fn is_empty(&self) -> bool {
self.key_value_addr.is_null()
}
}
/// Customized `HashMap` with string keys
///
/// This `HashMap` takes String as keys. Keys are
/// stored in a user defined heap.
///
/// The quirky API has the benefit of avoiding
/// the computation of the hash of the key twice,
/// or copying the key as long as there is no insert.
///
pub struct HashMap<'a> {
table: Box<[KeyValue]>,
heap: &'a Heap,
mask: usize,
occupied: Vec<usize>,
}
struct QuadraticProbing {
hash: usize,
i: usize,
mask: usize,
}
impl QuadraticProbing {
fn compute(hash: usize, mask: usize) -> QuadraticProbing {
QuadraticProbing { hash, i: 0, mask }
}
#[inline]
fn next_probe(&mut self) -> usize {
self.i += 1;
(self.hash + self.i * self.i) & self.mask
}
}
impl<'a> HashMap<'a> {
pub fn new(num_bucket_power_of_2: usize, heap: &'a Heap) -> HashMap<'a> {
let table_size = 1 << num_bucket_power_of_2;
let table: Vec<KeyValue> = iter::repeat(KeyValue::default()).take(table_size).collect();
HashMap {
table: table.into_boxed_slice(),
heap,
mask: table_size - 1,
occupied: Vec::with_capacity(table_size / 2),
}
}
fn probe(&self, hash: u32) -> QuadraticProbing {
QuadraticProbing::compute(hash as usize, self.mask)
}
pub fn is_saturated(&self) -> bool {
self.table.len() < self.occupied.len() * 3
}
#[inline(never)]
fn get_key_value(&self, bytes_ref: BytesRef) -> (&[u8], u32) {
let key_bytes: &[u8] = self.heap.get_slice(bytes_ref);
let expull_addr: u32 = bytes_ref.addr() + 2 + key_bytes.len() as u32;
(key_bytes, expull_addr)
}
pub fn set_bucket(&mut self, hash: u32, key_bytes_ref: BytesRef, bucket: usize) {
self.occupied.push(bucket);
self.table[bucket] = KeyValue {
key_value_addr: key_bytes_ref,
hash,
};
}
pub fn iter<'b: 'a>(&'b self) -> impl Iterator<Item = (&'a [u8], u32)> + 'b {
self.occupied.iter().cloned().map(move |bucket: usize| {
let kv = self.table[bucket];
self.get_key_value(kv.key_value_addr)
})
}
pub fn get_or_create<S: AsRef<[u8]>, V: HeapAllocable>(&mut self, key: S) -> &mut V {
let key_bytes: &[u8] = key.as_ref();
let hash = murmurhash2::murmurhash2(key.as_ref());
let mut probe = self.probe(hash);
loop {
let bucket = probe.next_probe();
let kv: KeyValue = self.table[bucket];
if kv.is_empty() {
let key_bytes_ref = self.heap.allocate_and_set(key_bytes);
let (addr, val): (u32, &mut V) = self.heap.allocate_object();
assert_eq!(addr, key_bytes_ref.addr() + 2 + key_bytes.len() as u32);
self.set_bucket(hash, key_bytes_ref, bucket);
return val;
} else if kv.hash == hash {
let (stored_key, expull_addr): (&[u8], u32) = self.get_key_value(kv.key_value_addr);
if stored_key == key_bytes {
return self.heap.get_mut_ref(expull_addr);
}
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use super::super::heap::{Heap, HeapAllocable};
use super::murmurhash2::murmurhash2;
use test::Bencher;
use std::collections::HashSet;
use super::split_memory;
struct TestValue {
val: u32,
_addr: u32,
}
impl HeapAllocable for TestValue {
fn with_addr(addr: u32) -> TestValue {
TestValue {
val: 0u32,
_addr: addr,
}
}
}
#[test]
fn test_hashmap_size() {
assert_eq!(split_memory(100_000), (67232, 9));
assert_eq!(split_memory(1_000_000), (737856, 12));
assert_eq!(split_memory(10_000_000), (7902848, 15));
}
#[test]
fn test_hash_map() {
let heap = Heap::with_capacity(2_000_000);
let mut hash_map: HashMap = HashMap::new(18, &heap);
{
let v: &mut TestValue = hash_map.get_or_create("abc");
assert_eq!(v.val, 0u32);
v.val = 3u32;
}
{
let v: &mut TestValue = hash_map.get_or_create("abcd");
assert_eq!(v.val, 0u32);
v.val = 4u32;
}
{
let v: &mut TestValue = hash_map.get_or_create("abc");
assert_eq!(v.val, 3u32);
}
{
let v: &mut TestValue = hash_map.get_or_create("abcd");
assert_eq!(v.val, 4u32);
}
let mut iter_values = hash_map.iter();
{
let (_, addr) = iter_values.next().unwrap();
let val: &TestValue = heap.get_ref(addr);
assert_eq!(val.val, 3u32);
}
{
let (_, addr) = iter_values.next().unwrap();
let val: &TestValue = heap.get_ref(addr);
assert_eq!(val.val, 4u32);
}
assert!(iter_values.next().is_none());
}
#[test]
fn test_murmur() {
let s1 = "abcdef";
let s2 = "abcdeg";
for i in 0..5 {
assert_eq!(
murmurhash2(&s1[i..5].as_bytes()),
murmurhash2(&s2[i..5].as_bytes())
);
}
}
#[test]
fn test_murmur_collisions() {
let mut set: HashSet<u32> = HashSet::default();
for i in 0..10_000 {
let s = format!("hash{}", i);
let hash = murmurhash2(s.as_bytes());
set.insert(hash);
}
assert_eq!(set.len(), 10_000);
}
#[bench]
fn bench_murmurhash_2(b: &mut Bencher) {
let keys: Vec<&'static str> =
vec!["wer qwe qwe qwe ", "werbq weqweqwe2 ", "weraq weqweqwe3 "];
b.iter(|| {
keys.iter()
.map(|&s| s.as_bytes())
.map(murmurhash2::murmurhash2)
.map(|h| h as u64)
.last()
.unwrap()
});
}
}

Some files were not shown because too many files have changed in this diff Show More