Compare commits

..

24 Commits

Author SHA1 Message Date
Paul Masurel
ebb82dc549 clippy 2025-10-08 17:07:07 +02:00
PSeitz
270ca5123c refactor postings (#2709)
rename shallow_seek to seek_block
remove full_block from public postings API

This is as preparation to optionally handle Bitsets in the postings
2025-10-08 16:55:25 +02:00
Mustafa S. Moiz
714366d3b9 docs: correct grammar (#2704)
Correct phrasing for a single line in the docs (`one documents` -> `a document`).
2025-10-08 16:47:09 +02:00
PSeitz-dd
40659d4d07 improve naming in buffered_union (#2705) 2025-09-24 10:58:46 +02:00
PSeitz
e1e131a804 add and/or queries benchmark (#2701) 2025-09-22 16:32:49 +02:00
PSeitz-dd
70da310b2d perf: deduplicate queries (#2698)
* deduplicate queries

Deduplicate queries in the UserInputAst after parsing queries

* add return type
2025-09-22 12:16:58 +02:00
PSeitz
85010b589a clippy (#2700)
* clippy

* clippy

* clippy

* clippy + fmt

---------

Co-authored-by: Pascal Seitz <pascal.seitz@datadoghq.com>
2025-09-19 18:04:25 +02:00
PSeitz-dd
2340dca628 fix compiler warnings (#2699)
* fix compiler warnings

* fix import
2025-09-19 15:55:04 +02:00
Remi
71a26d5b24 Fix CI with rust 1.90 (#2696)
* Empty commit

* Fix dead code lint error
2025-09-18 23:06:33 +02:00
PSeitz-dd
203751f2fe Optimize ExistsQuery for a high number of dynamic columns (#2694)
* Optimize ExistsQuery for a high number of dynamic columns

The previous algorithm checked _each_ doc in _each_ column for
existence. This causes huge cost on JSON fields with e.g. 100k columns.
Compute a bitset instead if we have more than one column.

add `iter_docs` to the multivalued_index

* add benchmark

subfields=1
exists_json_union    Memory: 89.3 KB (+2.01%)    Avg: 0.4865ms (-26.03%)    Median: 0.4865ms (-26.03%)    [0.4865ms .. 0.4865ms]
subfields=2
exists_json_union    Memory: 68.1 KB     Avg: 1.7048ms (-0.46%)    Median: 1.7048ms (-0.46%)    [1.7048ms .. 1.7048ms]
subfields=3
exists_json_union    Memory: 61.8 KB     Avg: 2.0742ms (-2.22%)    Median: 2.0742ms (-2.22%)    [2.0742ms .. 2.0742ms]
subfields=4
exists_json_union    Memory: 119.8 KB (+103.44%)    Avg: 3.9500ms (+42.62%)    Median: 3.9500ms (+42.62%)    [3.9500ms .. 3.9500ms]
subfields=5
exists_json_union    Memory: 120.4 KB (+107.65%)    Avg: 3.9610ms (+20.65%)    Median: 3.9610ms (+20.65%)    [3.9610ms .. 3.9610ms]
subfields=6
exists_json_union    Memory: 120.6 KB (+107.49%)    Avg: 3.8903ms (+3.11%)    Median: 3.8903ms (+3.11%)    [3.8903ms .. 3.8903ms]
subfields=7
exists_json_union    Memory: 120.9 KB (+106.93%)    Avg: 3.6220ms (-16.22%)    Median: 3.6220ms (-16.22%)    [3.6220ms .. 3.6220ms]
subfields=8
exists_json_union    Memory: 121.3 KB (+106.23%)    Avg: 4.0981ms (-15.97%)    Median: 4.0981ms (-15.97%)    [4.0981ms .. 4.0981ms]
subfields=16
exists_json_union    Memory: 123.1 KB (+103.09%)    Avg: 4.3483ms (-92.26%)    Median: 4.3483ms (-92.26%)    [4.3483ms .. 4.3483ms]
subfields=256
exists_json_union    Memory: 204.6 KB (+19.85%)    Avg: 3.8874ms (-99.01%)    Median: 3.8874ms (-99.01%)    [3.8874ms .. 3.8874ms]
subfields=4096
exists_json_union    Memory: 2.0 MB     Avg: 3.5571ms (-99.90%)    Median: 3.5571ms (-99.90%)    [3.5571ms .. 3.5571ms]
subfields=65536
exists_json_union    Memory: 28.3 MB     Avg: 14.4417ms (-99.97%)    Median: 14.4417ms (-99.97%)    [14.4417ms .. 14.4417ms]
subfields=262144
exists_json_union    Memory: 113.3 MB     Avg: 66.2860ms (-99.95%)    Median: 66.2860ms (-99.95%)    [66.2860ms .. 66.2860ms]

* rename methods
2025-09-16 18:21:03 +02:00
PSeitz-dd
7963b0b4aa Add fast field fallback for term query if not indexed (#2693)
* Add fast field fallback for term query if not indexed

* only fallback without scores
2025-09-12 14:58:21 +02:00
Paul Masurel
d5eefca11d Merge pull request #2692 from quickwit-oss/paul.masurel/coerce-floats-too-in-search-too
This PR changes the logic used on the ingestion of floats.
2025-09-10 09:46:54 +02:00
Paul Masurel
5d6c8de23e Align search float search logic to the columnar coercion rules
It applies the same logic on floats as for u64 or i64.
In all case, the idea is (for the inverted index) to coerce number
to their canonical representation, before indexing and before searching.

That way a document with the float 1.0 will be searchable when the user
searches for 1.

Note that contrary to the columnar, we do not attempt to coerce all of the
terms associated to a given json path to a single numerical type.
We simply rely on this "point-wise" canonicalization.
2025-09-09 19:28:17 +02:00
PSeitz
a06365f39f Update CHANGELOG.md for bugfixes (#2674)
* Update CHANGELOG.md

* Update CHANGELOG.md
2025-09-04 11:51:00 +02:00
Raphaël Cohen
f4b374110f feat: Regex query grammar (#2677)
* feat: Regex query grammar

* feat: Disable regexes by default

* chore: Apply formatting
2025-09-03 10:07:04 +02:00
PSeitz-dd
c37af9c1ff update release instructions (#2687) 2025-08-22 07:57:48 +08:00
PSeitz
33794a114c chore: Release (#2686)
Co-authored-by: Pascal Seitz <pascal.seitz@datadoghq.com>
2025-08-20 18:29:37 +08:00
PSeitz-dd
8676a1f57b prepare release: update Changelog (#2685) 2025-08-20 16:07:53 +08:00
PSeitz-dd
021ff2ad63 move bench to binggan (#2684) 2025-08-14 17:02:44 +08:00
Paul Masurel
39e027667b per field size details (#2679)
* Added per-field size details.

This also does a bunch of refactoring.

merging field metadata does not silently asserts that arguments should be sorted.
merging does not set `stored`.

We do not rely on a hashmap to group fields, but instead rely on the fact that
the term dictionary is sorted.

The inverted level method that exposes field metadata is not exposed
as public anymore.

* CR comment

---------

Co-authored-by: Paul Masurel <paul.masurel@datadoghq.com>
2025-08-13 13:12:22 +02:00
PSeitz-dd
a1d65c3df3 test stable ordering with pagination (#2683) 2025-08-13 15:36:28 +08:00
trinity-1686a
2e4615c2d3 Merge pull request #2678 from Darkheir/feat/query_grammar_space_between_field_and_value
feat: Support spaces between field name and value
2025-08-11 09:57:23 +02:00
Darkheir
610091e2c4 feat: Applies PR review suggestion 2025-08-04 10:12:51 +02:00
Darkheir
d4b090124c feat: Support spaces between field name and value 2025-07-23 11:12:13 +02:00
79 changed files with 2514 additions and 1084 deletions

View File

@@ -2,14 +2,30 @@ Tantivy 0.25
================================
## Bugfixes
- fix union performance regression in tantivy 0.24 [#2663](https://github.com/quickwit-oss/tantivy/pull/2663)(@PSeitz-dd)
- fix union performance regression in tantivy 0.24 [#2663](https://github.com/quickwit-oss/tantivy/pull/2663)(@PSeitz)
- make zstd optional in sstable [#2633](https://github.com/quickwit-oss/tantivy/pull/2633)(@Parth)
- Fix TopDocs::order_by_string_fast_field for asc order [#2672](https://github.com/quickwit-oss/tantivy/pull/2672)(@stuhood @PSeitz)
## Features/Improvements
- add docs/example and Vec<u32> values to sstable [#2660](https://github.com/quickwit-oss/tantivy/pull/2660)(@PSeitz)
- Add string fast field support to `TopDocs`. [#2642](https://github.com/quickwit-oss/tantivy/pull/2642)(@stuhood)
- update edition to 2024 [#2620](https://github.com/quickwit-oss/tantivy/pull/2620)(@PSeitz)
- Allow optional spaces between the field name and the value in the query parser [#2678](https://github.com/quickwit-oss/tantivy/pull/2678)(@Darkheir)
- Support mixed field types in query parser [#2676](https://github.com/quickwit-oss/tantivy/pull/2676)(@trinity-1686a)
- Add per-field size details [#2679](https://github.com/quickwit-oss/tantivy/pull/2679)(@fulmicoton)
Tantivy 0.24.2
================================
- Fix TopNComputer for reverse order. [#2672](https://github.com/quickwit-oss/tantivy/pull/2672)(@stuhood @PSeitz)
Affected queries are [order_by_fast_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_fast_field) and
[order_by_u64_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_u64_field)
for `Order::Asc`
Tantivy 0.24.1
================================
- Fix: bump required rust version to 1.81
Tantivy 0.24
================================
Tantivy 0.24 will be backwards compatible with indices created with v0.22 and v0.21. The new minimum rust version will be 1.75. Tantivy 0.23 will be skipped.
@@ -92,6 +108,14 @@ This will slightly increase space and access time. [#2439](https://github.com/qu
- Fix trait bound of StoreReader::iter [#2360](https://github.com/quickwit-oss/tantivy/pull/2360)(@adamreichold)
- remove read_postings_no_deletes [#2526](https://github.com/quickwit-oss/tantivy/pull/2526)(@PSeitz)
Tantivy 0.22.1
================================
- Fix TopNComputer for reverse order. [#2672](https://github.com/quickwit-oss/tantivy/pull/2672)(@stuhood @PSeitz)
Affected queries are [order_by_fast_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_fast_field) and
[order_by_u64_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_u64_field)
for `Order::Asc`
Tantivy 0.22
================================

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy"
version = "0.24.0"
version = "0.25.0"
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
license = "MIT"
categories = ["database-implementations", "data-structures"]
@@ -57,13 +57,13 @@ measure_time = "0.9.0"
arc-swap = "1.5.0"
bon = "3.3.1"
columnar = { version = "0.5", path = "./columnar", package = "tantivy-columnar" }
sstable = { version = "0.5", path = "./sstable", package = "tantivy-sstable", optional = true }
stacker = { version = "0.5", path = "./stacker", package = "tantivy-stacker" }
query-grammar = { version = "0.24.0", path = "./query-grammar", package = "tantivy-query-grammar" }
tantivy-bitpacker = { version = "0.8", path = "./bitpacker" }
common = { version = "0.9", path = "./common/", package = "tantivy-common" }
tokenizer-api = { version = "0.5", path = "./tokenizer-api", package = "tantivy-tokenizer-api" }
columnar = { version = "0.6", path = "./columnar", package = "tantivy-columnar" }
sstable = { version = "0.6", path = "./sstable", package = "tantivy-sstable", optional = true }
stacker = { version = "0.6", path = "./stacker", package = "tantivy-stacker" }
query-grammar = { version = "0.25.0", path = "./query-grammar", package = "tantivy-query-grammar" }
tantivy-bitpacker = { version = "0.9", path = "./bitpacker" }
common = { version = "0.10", path = "./common/", package = "tantivy-common" }
tokenizer-api = { version = "0.6", path = "./tokenizer-api", package = "tantivy-tokenizer-api" }
sketches-ddsketch = { version = "0.3.0", features = ["use_serde"] }
hyperloglogplus = { version = "0.4.1", features = ["const-loop"] }
futures-util = { version = "0.3.28", optional = true }
@@ -167,3 +167,12 @@ harness = false
[[bench]]
name = "agg_bench"
harness = false
[[bench]]
name = "exists_json"
harness = false
[[bench]]
name = "and_or_queries"
harness = false

View File

@@ -1,4 +1,4 @@
# Release a new Tantivy Version
# Releasing a new Tantivy Version
## Steps
@@ -10,12 +10,29 @@
6. Set git tag with new version
In conjucation with `cargo-release` Steps 1-4 (I'm not sure if the change detection works):
Set new packages to version 0.0.0
[`cargo-release`](https://github.com/crate-ci/cargo-release) will help us with steps 1-5:
Replace prev-tag-name
```bash
cargo release --workspace --no-publish -v --prev-tag-name 0.19 --push-remote origin minor --no-tag --execute
cargo release --workspace --no-publish -v --prev-tag-name 0.24 --push-remote origin minor --no-tag
```
no-tag or it will create tags for all the subpackages
`no-tag` or it will create tags for all the subpackages
cargo release will _not_ ignore unchanged packages, but it will print warnings for them.
e.g. "warning: updating ownedbytes to 0.10.0 despite no changes made since tag 0.24"
We need to manually ignore these unchanged packages
```bash
cargo release --workspace --no-publish -v --prev-tag-name 0.24 --push-remote origin minor --no-tag --exclude tokenizer-api
```
Add `--execute` to actually publish the packages, otherwise it will only print the commands that would be run.
### Tag Version
```bash
git tag 0.25.0
git push upstream tag 0.25.0
```

224
benches/and_or_queries.rs Normal file
View File

@@ -0,0 +1,224 @@
// Benchmarks boolean conjunction queries using binggan.
//
// Whats measured:
// - Or and And queries with varying selectivity (only `Term` queries for now on leafs)
// - Nested AND/OR combinations (on multiple fields)
// - No-scoring path using the Count collector (focus on iterator/skip performance)
// - Top-K retrieval (k=10) using the TopDocs collector
//
// Corpus model:
// - Synthetic docs; each token a/b/c is independently included per doc
// - If none of a/b/c are included, emit a neutral filler token to keep doc length similar
//
// Notes:
// - After optimization, when scoring is disabled Tantivy reads doc-only postings
// (IndexRecordOption::Basic), avoiding frequency decoding overhead.
// - This bench isolates boolean iteration speed and intersection/union cost.
// - Use `cargo bench --bench boolean_conjunction` to run.
use binggan::{black_box, BenchRunner};
use rand::prelude::*;
use rand::rngs::StdRng;
use rand::SeedableRng;
use tantivy::collector::{Count, TopDocs};
use tantivy::query::QueryParser;
use tantivy::schema::{Schema, TEXT};
use tantivy::{doc, Index, ReloadPolicy, Searcher};
#[derive(Clone)]
struct BenchIndex {
#[allow(dead_code)]
index: Index,
searcher: Searcher,
query_parser: QueryParser,
}
impl BenchIndex {
#[inline(always)]
fn count_query(&self, query_str: &str) -> usize {
let query = self.query_parser.parse_query(query_str).unwrap();
self.searcher.search(&query, &Count).unwrap()
}
#[inline(always)]
fn topk_len(&self, query_str: &str, k: usize) -> usize {
let query = self.query_parser.parse_query(query_str).unwrap();
self.searcher
.search(&query, &TopDocs::with_limit(k))
.unwrap()
.len()
}
}
/// Build a single index containing both fields (title, body) and
/// return two BenchIndex views:
/// - single_field: QueryParser defaults to only "body"
/// - multi_field: QueryParser defaults to ["title", "body"]
fn build_shared_indices(num_docs: usize, p_a: f32, p_b: f32, p_c: f32) -> (BenchIndex, BenchIndex) {
// Unified schema (two text fields)
let mut schema_builder = Schema::builder();
let f_title = schema_builder.add_text_field("title", TEXT);
let f_body = schema_builder.add_text_field("body", TEXT);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
// Populate index with stable RNG for reproducibility.
let mut rng = StdRng::from_seed([7u8; 32]);
// Populate: spread each present token 90/10 to body/title
{
let mut writer = index.writer(500_000_000).unwrap();
for _ in 0..num_docs {
let has_a = rng.gen_bool(p_a as f64);
let has_b = rng.gen_bool(p_b as f64);
let has_c = rng.gen_bool(p_c as f64);
let mut title_tokens: Vec<&str> = Vec::new();
let mut body_tokens: Vec<&str> = Vec::new();
if has_a {
if rng.gen_bool(0.1) {
title_tokens.push("a");
} else {
body_tokens.push("a");
}
}
if has_b {
if rng.gen_bool(0.1) {
title_tokens.push("b");
} else {
body_tokens.push("b");
}
}
if has_c {
if rng.gen_bool(0.1) {
title_tokens.push("c");
} else {
body_tokens.push("c");
}
}
if title_tokens.is_empty() && body_tokens.is_empty() {
body_tokens.push("z");
}
writer
.add_document(doc!(
f_title=>title_tokens.join(" "),
f_body=>body_tokens.join(" ")
))
.unwrap();
}
writer.commit().unwrap();
}
// Prepare reader/searcher once.
let reader = index
.reader_builder()
.reload_policy(ReloadPolicy::Manual)
.try_into()
.unwrap();
let searcher = reader.searcher();
// Build two query parsers with different default fields.
let qp_single = QueryParser::for_index(&index, vec![f_body]);
let qp_multi = QueryParser::for_index(&index, vec![f_title, f_body]);
let single_view = BenchIndex {
index: index.clone(),
searcher: searcher.clone(),
query_parser: qp_single,
};
let multi_view = BenchIndex {
index,
searcher,
query_parser: qp_multi,
};
(single_view, multi_view)
}
fn main() {
// Prepare corpora with varying selectivity. Build one index per corpus
// and derive two views (single-field vs multi-field) from it.
let scenarios = vec![
(
"N=1M, p(a)=5%, p(b)=1%, p(c)=15%".to_string(),
1_000_000,
0.05,
0.01,
0.15,
),
(
"N=1M, p(a)=1%, p(b)=1%, p(c)=15%".to_string(),
1_000_000,
0.01,
0.01,
0.15,
),
];
let mut runner = BenchRunner::new();
for (label, n, pa, pb, pc) in scenarios {
let (single_view, multi_view) = build_shared_indices(n, pa, pb, pc);
// Single-field group: default field is body only
{
let mut group = runner.new_group();
group.set_name(format!("single_field — {}", label));
group.register_with_input("+a_+b_count", &single_view, |benv: &BenchIndex| {
black_box(benv.count_query("+a +b"))
});
group.register_with_input("+a_+b_+c_count", &single_view, |benv: &BenchIndex| {
black_box(benv.count_query("+a +b +c"))
});
group.register_with_input("+a_+b_top10", &single_view, |benv: &BenchIndex| {
black_box(benv.topk_len("+a +b", 10))
});
group.register_with_input("+a_+b_+c_top10", &single_view, |benv: &BenchIndex| {
black_box(benv.topk_len("+a +b +c", 10))
});
// OR queries
group.register_with_input("a_OR_b_count", &single_view, |benv: &BenchIndex| {
black_box(benv.count_query("a OR b"))
});
group.register_with_input("a_OR_b_OR_c_count", &single_view, |benv: &BenchIndex| {
black_box(benv.count_query("a OR b OR c"))
});
group.register_with_input("a_OR_b_top10", &single_view, |benv: &BenchIndex| {
black_box(benv.topk_len("a OR b", 10))
});
group.register_with_input("a_OR_b_OR_c_top10", &single_view, |benv: &BenchIndex| {
black_box(benv.topk_len("a OR b OR c", 10))
});
group.run();
}
// Multi-field group: default fields are [title, body]
{
let mut group = runner.new_group();
group.set_name(format!("multi_field — {}", label));
group.register_with_input("+a_+b_count", &multi_view, |benv: &BenchIndex| {
black_box(benv.count_query("+a +b"))
});
group.register_with_input("+a_+b_+c_count", &multi_view, |benv: &BenchIndex| {
black_box(benv.count_query("+a +b +c"))
});
group.register_with_input("+a_+b_top10", &multi_view, |benv: &BenchIndex| {
black_box(benv.topk_len("+a +b", 10))
});
group.register_with_input("+a_+b_+c_top10", &multi_view, |benv: &BenchIndex| {
black_box(benv.topk_len("+a +b +c", 10))
});
// OR queries
group.register_with_input("a_OR_b_count", &multi_view, |benv: &BenchIndex| {
black_box(benv.count_query("a OR b"))
});
group.register_with_input("a_OR_b_OR_c_count", &multi_view, |benv: &BenchIndex| {
black_box(benv.count_query("a OR b OR c"))
});
group.register_with_input("a_OR_b_top10", &multi_view, |benv: &BenchIndex| {
black_box(benv.topk_len("a OR b", 10))
});
group.register_with_input("a_OR_b_OR_c_top10", &multi_view, |benv: &BenchIndex| {
black_box(benv.topk_len("a OR b OR c", 10))
});
group.run();
}
}
}

69
benches/exists_json.rs Normal file
View File

@@ -0,0 +1,69 @@
use binggan::plugins::PeakMemAllocPlugin;
use binggan::{black_box, InputGroup, PeakMemAlloc, INSTRUMENTED_SYSTEM};
use serde_json::json;
use tantivy::collector::Count;
use tantivy::query::ExistsQuery;
use tantivy::schema::{Schema, FAST, TEXT};
use tantivy::{doc, Index};
#[global_allocator]
pub static GLOBAL: &PeakMemAlloc<std::alloc::System> = &INSTRUMENTED_SYSTEM;
fn main() {
let doc_count: usize = 500_000;
let subfield_counts: &[usize] = &[1, 2, 3, 4, 5, 6, 7, 8, 16, 256, 4096, 65536, 262144];
let indices: Vec<(String, Index)> = subfield_counts
.iter()
.map(|&sub_fields| {
(
format!("subfields={sub_fields}"),
build_index_with_json_subfields(doc_count, sub_fields),
)
})
.collect();
let mut group = InputGroup::new_with_inputs(indices);
group.add_plugin(PeakMemAllocPlugin::new(GLOBAL));
group.config().num_iter_group = Some(1);
group.config().num_iter_bench = Some(1);
group.register("exists_json", exists_json_union);
group.run();
}
fn exists_json_union(index: &Index) {
let reader = index.reader().expect("reader");
let searcher = reader.searcher();
let query = ExistsQuery::new("json".to_string(), true);
let count = searcher.search(&query, &Count).expect("exists search");
// Prevents optimizer from eliding the search
black_box(count);
}
fn build_index_with_json_subfields(num_docs: usize, num_subfields: usize) -> Index {
// Schema: single JSON field stored as FAST to support ExistsQuery.
let mut schema_builder = Schema::builder();
let json_field = schema_builder.add_json_field("json", TEXT | FAST);
let schema = schema_builder.build();
let index = Index::create_from_tempdir(schema).expect("create index");
{
let mut index_writer = index
.writer_with_num_threads(1, 200_000_000)
.expect("writer");
for i in 0..num_docs {
let sub = i % num_subfields;
// Only one subpath set per document; rotate subpaths so that
// no single subpath is full, but the union covers all docs.
let v = json!({ format!("field_{sub}"): i as u64 });
index_writer
.add_document(doc!(json_field => v))
.expect("add_document");
}
index_writer.commit().expect("commit");
}
index
}

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy-bitpacker"
version = "0.8.0"
version = "0.9.0"
edition = "2024"
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
license = "MIT"

View File

@@ -1,7 +1,3 @@
// manual divceil actually generates code that is not optimal (to accept the full range of u32) and
// perf matters here.
#![allow(clippy::manual_div_ceil)]
use std::io;
use std::ops::{Range, RangeInclusive};
@@ -52,7 +48,7 @@ impl BitPacker {
pub fn flush<TWrite: io::Write + ?Sized>(&mut self, output: &mut TWrite) -> io::Result<()> {
if self.mini_buffer_written > 0 {
let num_bytes = (self.mini_buffer_written + 7) / 8;
let num_bytes = self.mini_buffer_written.div_ceil(8);
let bytes = self.mini_buffer.to_le_bytes();
output.write_all(&bytes[..num_bytes])?;
self.mini_buffer_written = 0;
@@ -142,7 +138,7 @@ impl BitUnpacker {
// We use `usize` here to avoid overflow issues.
let end_bit_read = (end_idx as usize) * self.num_bits;
let end_byte_read = (end_bit_read + 7) / 8;
let end_byte_read = end_bit_read.div_ceil(8);
assert!(
end_byte_read <= data.len(),
"Requested index is out of bounds."

View File

@@ -140,6 +140,7 @@ impl BlockedBitpacker {
pub fn iter(&self) -> impl Iterator<Item = u64> + '_ {
// todo performance: we could decompress a whole block and cache it instead
let bitpacked_elems = self.offset_and_bits.len() * BLOCK_SIZE;
(0..bitpacked_elems)
.map(move |idx| self.get(idx))
.chain(self.buffer.iter().cloned())

View File

@@ -1,5 +1,3 @@
// #[allow(clippy::manual_div_ceil)]
mod bitpacker;
mod blocked_bitpacker;
mod filter_vec;

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy-columnar"
version = "0.5.0"
version = "0.6.0"
edition = "2024"
license = "MIT"
homepage = "https://github.com/quickwit-oss/tantivy"
@@ -12,10 +12,10 @@ categories = ["database-implementations", "data-structures", "compression"]
itertools = "0.14.0"
fastdivide = "0.4.0"
stacker = { version= "0.5", path = "../stacker", package="tantivy-stacker"}
sstable = { version= "0.5", path = "../sstable", package = "tantivy-sstable" }
common = { version= "0.9", path = "../common", package = "tantivy-common" }
tantivy-bitpacker = { version= "0.8", path = "../bitpacker/" }
stacker = { version= "0.6", path = "../stacker", package="tantivy-stacker"}
sstable = { version= "0.6", path = "../sstable", package = "tantivy-sstable" }
common = { version= "0.10", path = "../common", package = "tantivy-common" }
tantivy-bitpacker = { version= "0.9", path = "../bitpacker/" }
serde = "1.0.152"
downcast-rs = "2.0.1"
@@ -33,6 +33,29 @@ harness = false
name = "bench_access"
harness = false
[[bench]]
name = "bench_first_vals"
harness = false
[[bench]]
name = "bench_values_u64"
harness = false
[[bench]]
name = "bench_values_u128"
harness = false
[[bench]]
name = "bench_create_column_values"
harness = false
[[bench]]
name = "bench_column_values_get"
harness = false
[[bench]]
name = "bench_optional_index"
harness = false
[features]
unstable = []
zstd-compression = ["sstable/zstd-compression"]

View File

@@ -19,7 +19,7 @@ fn main() {
let mut add_card = |card1: Card| {
inputs.push((
format!("{card1}"),
card1.to_string(),
generate_columnar_and_open(card1, NUM_DOCS),
));
};
@@ -50,6 +50,7 @@ fn bench_group(mut runner: InputGroup<Column>) {
let mut buffer = vec![None; BLOCK_SIZE];
for i in (0..NUM_DOCS).step_by(BLOCK_SIZE) {
// fill docs
#[allow(clippy::needless_range_loop)]
for idx in 0..BLOCK_SIZE {
docs[idx] = idx as u32 + i;
}

View File

@@ -0,0 +1,61 @@
use std::sync::Arc;
use binggan::{InputGroup, black_box};
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use tantivy_columnar::ColumnValues;
use tantivy_columnar::column_values::{CodecType, serialize_and_load_u64_based_column_values};
fn get_data() -> Vec<u64> {
let mut rng = StdRng::seed_from_u64(2u64);
let mut data: Vec<_> = (100..55_000_u64)
.map(|num| num + rng.r#gen::<u8>() as u64)
.collect();
data.push(99_000);
data.insert(1000, 2000);
data.insert(2000, 100);
data.insert(3000, 4100);
data.insert(4000, 100);
data.insert(5000, 800);
data
}
#[inline(never)]
fn value_iter() -> impl Iterator<Item = u64> {
0..20_000
}
type Col = Arc<dyn ColumnValues<u64>>;
fn main() {
let data = get_data();
let inputs: Vec<(String, Col)> = vec![
(
"bitpacked".to_string(),
serialize_and_load_u64_based_column_values(&data.as_slice(), &[CodecType::Bitpacked]),
),
(
"linear".to_string(),
serialize_and_load_u64_based_column_values(&data.as_slice(), &[CodecType::Linear]),
),
(
"blockwise_linear".to_string(),
serialize_and_load_u64_based_column_values(
&data.as_slice(),
&[CodecType::BlockwiseLinear],
),
),
];
let mut group: InputGroup<Col> = InputGroup::new_with_inputs(inputs);
group.register("fastfield_get", |col: &Col| {
let mut sum = 0u64;
for pos in value_iter() {
sum = sum.wrapping_add(col.get_val(pos as u32));
}
black_box(sum);
});
group.run();
}

View File

@@ -0,0 +1,44 @@
use binggan::{InputGroup, black_box};
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use tantivy_columnar::column_values::{CodecType, serialize_u64_based_column_values};
fn get_data() -> Vec<u64> {
let mut rng = StdRng::seed_from_u64(2u64);
let mut data: Vec<_> = (100..55_000_u64)
.map(|num| num + rng.r#gen::<u8>() as u64)
.collect();
data.push(99_000);
data.insert(1000, 2000);
data.insert(2000, 100);
data.insert(3000, 4100);
data.insert(4000, 100);
data.insert(5000, 800);
data
}
fn main() {
let data = get_data();
let mut group: InputGroup<(CodecType, Vec<u64>)> = InputGroup::new_with_inputs(vec![
(
"bitpacked codec".to_string(),
(CodecType::Bitpacked, data.clone()),
),
(
"linear codec".to_string(),
(CodecType::Linear, data.clone()),
),
(
"blockwise linear codec".to_string(),
(CodecType::BlockwiseLinear, data.clone()),
),
]);
group.register("serialize column_values", |data| {
let mut buffer = Vec::new();
serialize_u64_based_column_values(&data.1.as_slice(), &[data.0], &mut buffer).unwrap();
black_box(buffer.len());
});
group.run();
}

View File

@@ -1,12 +1,9 @@
#![feature(test)]
extern crate test;
use std::sync::Arc;
use binggan::{InputGroup, black_box};
use rand::prelude::*;
use tantivy_columnar::column_values::{CodecType, serialize_and_load_u64_based_column_values};
use tantivy_columnar::*;
use test::{Bencher, black_box};
struct Columns {
pub optional: Column,
@@ -68,88 +65,45 @@ pub fn serialize_and_load(column: &[u64], codec_type: CodecType) -> Arc<dyn Colu
serialize_and_load_u64_based_column_values(&column, &[codec_type])
}
fn run_bench_on_column_full_scan(b: &mut Bencher, column: Column) {
let num_iter = black_box(NUM_VALUES);
b.iter(|| {
fn main() {
let Columns {
optional,
full,
multi,
} = get_test_columns();
let inputs = vec![
("full".to_string(), full),
("optional".to_string(), optional),
("multi".to_string(), multi),
];
let mut group = InputGroup::new_with_inputs(inputs);
group.register("first_full_scan", |column| {
let mut sum = 0u64;
for i in 0..num_iter as u32 {
for i in 0..NUM_VALUES as u32 {
let val = column.first(i);
sum += val.unwrap_or(0);
}
sum
black_box(sum);
});
}
fn run_bench_on_column_block_fetch(b: &mut Bencher, column: Column) {
let mut block: Vec<Option<u64>> = vec![None; 64];
let fetch_docids = (0..64).collect::<Vec<_>>();
b.iter(move || {
group.register("first_block_fetch", |column| {
let mut block: Vec<Option<u64>> = vec![None; 64];
let fetch_docids = (0..64).collect::<Vec<_>>();
column.first_vals(&fetch_docids, &mut block);
block[0]
black_box(block[0]);
});
}
fn run_bench_on_column_block_single_calls(b: &mut Bencher, column: Column) {
let mut block: Vec<Option<u64>> = vec![None; 64];
let fetch_docids = (0..64).collect::<Vec<_>>();
b.iter(move || {
group.register("first_block_single_calls", |column| {
let mut block: Vec<Option<u64>> = vec![None; 64];
let fetch_docids = (0..64).collect::<Vec<_>>();
for i in 0..fetch_docids.len() {
block[i] = column.first(fetch_docids[i]);
}
block[0]
black_box(block[0]);
});
}
/// Column first method
#[bench]
fn bench_get_first_on_full_column_full_scan(b: &mut Bencher) {
let column = get_test_columns().full;
run_bench_on_column_full_scan(b, column);
}
#[bench]
fn bench_get_first_on_optional_column_full_scan(b: &mut Bencher) {
let column = get_test_columns().optional;
run_bench_on_column_full_scan(b, column);
}
#[bench]
fn bench_get_first_on_multi_column_full_scan(b: &mut Bencher) {
let column = get_test_columns().multi;
run_bench_on_column_full_scan(b, column);
}
/// Block fetch column accessor
#[bench]
fn bench_get_block_first_on_optional_column(b: &mut Bencher) {
let column = get_test_columns().optional;
run_bench_on_column_block_fetch(b, column);
}
#[bench]
fn bench_get_block_first_on_multi_column(b: &mut Bencher) {
let column = get_test_columns().multi;
run_bench_on_column_block_fetch(b, column);
}
#[bench]
fn bench_get_block_first_on_full_column(b: &mut Bencher) {
let column = get_test_columns().full;
run_bench_on_column_block_fetch(b, column);
}
#[bench]
fn bench_get_block_first_on_optional_column_single_calls(b: &mut Bencher) {
let column = get_test_columns().optional;
run_bench_on_column_block_single_calls(b, column);
}
#[bench]
fn bench_get_block_first_on_multi_column_single_calls(b: &mut Bencher) {
let column = get_test_columns().multi;
run_bench_on_column_block_single_calls(b, column);
}
#[bench]
fn bench_get_block_first_on_full_column_single_calls(b: &mut Bencher) {
let column = get_test_columns().full;
run_bench_on_column_block_single_calls(b, column);
group.run();
}

View File

@@ -0,0 +1,106 @@
use binggan::{InputGroup, black_box};
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use tantivy_columnar::column_index::{OptionalIndex, Set};
const TOTAL_NUM_VALUES: u32 = 1_000_000;
fn gen_optional_index(fill_ratio: f64) -> OptionalIndex {
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
let vals: Vec<u32> = (0..TOTAL_NUM_VALUES)
.map(|_| rng.gen_bool(fill_ratio))
.enumerate()
.filter(|(_pos, val)| *val)
.map(|(pos, _)| pos as u32)
.collect();
OptionalIndex::for_test(TOTAL_NUM_VALUES, &vals)
}
fn random_range_iterator(
start: u32,
end: u32,
avg_step_size: u32,
avg_deviation: u32,
) -> impl Iterator<Item = u32> {
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
let mut current = start;
std::iter::from_fn(move || {
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
if current >= end { None } else { Some(current) }
})
}
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
let ratio = percent / 100.0;
let step_size = (1f32 / ratio) as u32;
let deviation = step_size - 1;
random_range_iterator(0, num_values, step_size, deviation)
}
fn walk_over_data(codec: &OptionalIndex, avg_step_size: u32) -> Option<u32> {
walk_over_data_from_positions(
codec,
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
)
}
fn walk_over_data_from_positions(
codec: &OptionalIndex,
positions: impl Iterator<Item = u32>,
) -> Option<u32> {
let mut dense_idx: Option<u32> = None;
for idx in positions {
dense_idx = dense_idx.or(codec.rank_if_exists(idx));
}
dense_idx
}
fn main() {
// Build separate inputs for each fill ratio.
let inputs: Vec<(String, OptionalIndex)> = vec![
("fill=1%".to_string(), gen_optional_index(0.01)),
("fill=5%".to_string(), gen_optional_index(0.05)),
("fill=10%".to_string(), gen_optional_index(0.10)),
("fill=50%".to_string(), gen_optional_index(0.50)),
("fill=90%".to_string(), gen_optional_index(0.90)),
];
let mut group: InputGroup<OptionalIndex> = InputGroup::new_with_inputs(inputs);
// Translate orig->codec (rank_if_exists) with sampling
group.register("orig_to_codec_10pct_hit", |codec: &OptionalIndex| {
black_box(walk_over_data(codec, 100));
});
group.register("orig_to_codec_1pct_hit", |codec: &OptionalIndex| {
black_box(walk_over_data(codec, 1000));
});
group.register("orig_to_codec_full_scan", |codec: &OptionalIndex| {
black_box(walk_over_data_from_positions(codec, 0..TOTAL_NUM_VALUES));
});
// Translate codec->orig (select/select_batch) on sampled ranks
fn bench_translate_codec_to_orig_util(codec: &OptionalIndex, percent_hit: f32) {
let num_non_nulls = codec.num_non_nulls();
let idxs: Vec<u32> = if percent_hit == 100.0f32 {
(0..num_non_nulls).collect()
} else {
n_percent_step_iterator(percent_hit, num_non_nulls).collect()
};
let mut output = vec![0u32; idxs.len()];
output.copy_from_slice(&idxs[..]);
codec.select_batch(&mut output);
black_box(output);
}
group.register("codec_to_orig_0.005pct_hit", |codec: &OptionalIndex| {
bench_translate_codec_to_orig_util(codec, 0.005);
});
group.register("codec_to_orig_10pct_hit", |codec: &OptionalIndex| {
bench_translate_codec_to_orig_util(codec, 10.0);
});
group.register("codec_to_orig_full_scan", |codec: &OptionalIndex| {
bench_translate_codec_to_orig_util(codec, 100.0);
});
group.run();
}

View File

@@ -1,15 +1,12 @@
#![feature(test)]
use std::ops::RangeInclusive;
use std::sync::Arc;
use binggan::{InputGroup, black_box};
use common::OwnedBytes;
use rand::rngs::StdRng;
use rand::seq::SliceRandom;
use rand::{Rng, SeedableRng, random};
use tantivy_columnar::ColumnValues;
use test::Bencher;
extern crate test;
// TODO does this make sense for IPv6 ?
fn generate_random() -> Vec<u64> {
@@ -47,78 +44,77 @@ fn get_data_50percent_item() -> Vec<u128> {
}
data.push(SINGLE_ITEM);
data.shuffle(&mut rng);
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
data
data.iter().map(|el| *el as u128).collect::<Vec<_>>()
}
#[bench]
fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
fn main() {
let data = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
let column_range = get_u128_column_from_data(&data);
let column_random = get_u128_column_random();
b.iter(|| {
struct Inputs {
data: Vec<u128>,
column_range: Arc<dyn ColumnValues<u128>>,
column_random: Arc<dyn ColumnValues<u128>>,
}
let inputs = Inputs {
data,
column_range,
column_random,
};
let mut group: InputGroup<Inputs> =
InputGroup::new_with_inputs(vec![("u128 benches".to_string(), inputs)]);
group.register(
"intfastfield_getrange_u128_50percent_hit",
|inp: &Inputs| {
let mut positions = Vec::new();
inp.column_range.get_row_ids_for_value_range(
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
0..inp.data.len() as u32,
&mut positions,
);
black_box(positions.len());
},
);
group.register("intfastfield_getrange_u128_single_hit", |inp: &Inputs| {
let mut positions = Vec::new();
column.get_row_ids_for_value_range(
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_row_ids_for_value_range(
inp.column_range.get_row_ids_for_value_range(
*SINGLE_ITEM_RANGE.start() as u128..=*SINGLE_ITEM_RANGE.end() as u128,
0..data.len() as u32,
0..inp.data.len() as u32,
&mut positions,
);
positions
black_box(positions.len());
});
}
#[bench]
fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
let data = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| {
group.register("intfastfield_getrange_u128_hit_all", |inp: &Inputs| {
let mut positions = Vec::new();
column.get_row_ids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
positions
inp.column_range.get_row_ids_for_value_range(
0..=u128::MAX,
0..inp.data.len() as u32,
&mut positions,
);
black_box(positions.len());
});
}
// U128 RANGE END
#[bench]
fn bench_intfastfield_scan_all_fflookup_u128(b: &mut Bencher) {
let column = get_u128_column_random();
b.iter(|| {
group.register("intfastfield_scan_all_fflookup_u128", |inp: &Inputs| {
let mut a = 0u128;
for i in 0u64..column.num_vals() as u64 {
a += column.get_val(i as u32);
for i in 0u64..inp.column_random.num_vals() as u64 {
a += inp.column_random.get_val(i as u32);
}
a
black_box(a);
});
}
#[bench]
fn bench_intfastfield_jumpy_stride5_u128(b: &mut Bencher) {
let column = get_u128_column_random();
b.iter(|| {
let n = column.num_vals();
group.register("intfastfield_jumpy_stride5_u128", |inp: &Inputs| {
let n = inp.column_random.num_vals();
let mut a = 0u128;
for i in (0..n / 5).map(|val| val * 5) {
a += column.get_val(i);
a += inp.column_random.get_val(i);
}
a
black_box(a);
});
group.run();
}

View File

@@ -1,13 +1,10 @@
#![feature(test)]
extern crate test;
use std::ops::RangeInclusive;
use std::sync::Arc;
use binggan::{InputGroup, black_box};
use rand::prelude::*;
use tantivy_columnar::column_values::{CodecType, serialize_and_load_u64_based_column_values};
use tantivy_columnar::*;
use test::Bencher;
// Warning: this generates the same permutation at each call
fn generate_permutation() -> Vec<u64> {
@@ -27,37 +24,11 @@ pub fn serialize_and_load(column: &[u64], codec_type: CodecType) -> Arc<dyn Colu
serialize_and_load_u64_based_column_values(&column, &[codec_type])
}
#[bench]
fn bench_intfastfield_jumpy_veclookup(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
b.iter(|| {
let mut a = 0u64;
for _ in 0..n {
a = permutation[a as usize];
}
a
});
}
#[bench]
fn bench_intfastfield_jumpy_fflookup_bitpacked(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
b.iter(|| {
let mut a = 0u64;
for _ in 0..n {
a = column.get_val(a as u32);
}
a
});
}
const FIFTY_PERCENT_RANGE: RangeInclusive<u64> = 1..=50;
const SINGLE_ITEM: u64 = 90;
const SINGLE_ITEM_RANGE: RangeInclusive<u64> = 90..=90;
const ONE_PERCENT_ITEM_RANGE: RangeInclusive<u64> = 49..=49;
fn get_data_50percent_item() -> Vec<u128> {
let mut rng = StdRng::from_seed([1u8; 32]);
@@ -69,135 +40,122 @@ fn get_data_50percent_item() -> Vec<u128> {
data.push(SINGLE_ITEM);
data.shuffle(&mut rng);
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
data
data.iter().map(|el| *el as u128).collect::<Vec<_>>()
}
// U64 RANGE START
#[bench]
fn bench_intfastfield_getrange_u64_50percent_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
b.iter(|| {
let mut positions = Vec::new();
column.get_row_ids_for_value_range(
FIFTY_PERCENT_RANGE,
0..data.len() as u32,
&mut positions,
);
positions
});
}
type VecCol = (Vec<u64>, Arc<dyn ColumnValues<u64>>);
#[bench]
fn bench_intfastfield_getrange_u64_1percent_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
b.iter(|| {
let mut positions = Vec::new();
column.get_row_ids_for_value_range(
ONE_PERCENT_ITEM_RANGE,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u64_single_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
b.iter(|| {
let mut positions = Vec::new();
column.get_row_ids_for_value_range(SINGLE_ITEM_RANGE, 0..data.len() as u32, &mut positions);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u64_hit_all(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
b.iter(|| {
let mut positions = Vec::new();
column.get_row_ids_for_value_range(0..=u64::MAX, 0..data.len() as u32, &mut positions);
positions
});
}
// U64 RANGE END
#[bench]
fn bench_intfastfield_stride7_vec(b: &mut Bencher) {
fn bench_access() {
let permutation = generate_permutation();
let n = permutation.len();
b.iter(|| {
let column_perm: Arc<dyn ColumnValues<u64>> =
serialize_and_load(&permutation, CodecType::Bitpacked);
let permutation_gcd = generate_permutation_gcd();
let column_perm_gcd: Arc<dyn ColumnValues<u64>> =
serialize_and_load(&permutation_gcd, CodecType::Bitpacked);
let mut group: InputGroup<VecCol> = InputGroup::new_with_inputs(vec![
(
"access".to_string(),
(permutation.clone(), column_perm.clone()),
),
(
"access_gcd".to_string(),
(permutation_gcd.clone(), column_perm_gcd.clone()),
),
]);
group.register("stride7_vec", |inp: &VecCol| {
let n = inp.0.len();
let mut a = 0u64;
for i in (0..n / 7).map(|val| val * 7) {
a += permutation[i as usize];
a += inp.0[i];
}
a
black_box(a);
});
}
#[bench]
fn bench_intfastfield_stride7_fflookup(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
b.iter(|| {
let mut a = 0;
group.register("fullscan_vec", |inp: &VecCol| {
let mut a = 0u64;
for i in 0..inp.0.len() {
a += inp.0[i];
}
black_box(a);
});
group.register("stride7_column_values", |inp: &VecCol| {
let n = inp.1.num_vals() as usize;
let mut a = 0u64;
for i in (0..n / 7).map(|val| val * 7) {
a += column.get_val(i as u32);
a += inp.1.get_val(i as u32);
}
a
black_box(a);
});
}
#[bench]
fn bench_intfastfield_scan_all_fflookup(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
let column_ref = column.as_ref();
b.iter(|| {
let mut a = 0u64;
for i in 0u32..n as u32 {
a += column_ref.get_val(i);
}
a
});
}
#[bench]
fn bench_intfastfield_scan_all_fflookup_gcd(b: &mut Bencher) {
let permutation = generate_permutation_gcd();
let n = permutation.len();
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
b.iter(|| {
group.register("fullscan_column_values", |inp: &VecCol| {
let mut a = 0u64;
let n = inp.1.num_vals() as usize;
for i in 0..n {
a += column.get_val(i as u32);
a += inp.1.get_val(i as u32);
}
a
black_box(a);
});
group.run();
}
#[bench]
fn bench_intfastfield_scan_all_vec(b: &mut Bencher) {
let permutation = generate_permutation();
b.iter(|| {
let mut a = 0u64;
for i in 0..permutation.len() {
a += permutation[i as usize] as u64;
}
a
});
fn bench_range() {
let data_50 = get_data_50percent_item();
let data_u64 = data_50.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column_data: Arc<dyn ColumnValues<u64>> =
serialize_and_load(&data_u64, CodecType::Bitpacked);
let mut group: InputGroup<Arc<dyn ColumnValues<u64>>> =
InputGroup::new_with_inputs(vec![("dist_50pct_item".to_string(), column_data.clone())]);
group.register(
"fastfield_getrange_u64_50percent_hit",
|col: &Arc<dyn ColumnValues<u64>>| {
let mut positions = Vec::new();
col.get_row_ids_for_value_range(FIFTY_PERCENT_RANGE, 0..col.num_vals(), &mut positions);
black_box(positions.len());
},
);
group.register(
"fastfield_getrange_u64_1percent_hit",
|col: &Arc<dyn ColumnValues<u64>>| {
let mut positions = Vec::new();
col.get_row_ids_for_value_range(
ONE_PERCENT_ITEM_RANGE,
0..col.num_vals(),
&mut positions,
);
black_box(positions.len());
},
);
group.register(
"fastfield_getrange_u64_single_hit",
|col: &Arc<dyn ColumnValues<u64>>| {
let mut positions = Vec::new();
col.get_row_ids_for_value_range(SINGLE_ITEM_RANGE, 0..col.num_vals(), &mut positions);
black_box(positions.len());
},
);
group.register(
"fastfield_getrange_u64_hit_all",
|col: &Arc<dyn ColumnValues<u64>>| {
let mut positions = Vec::new();
col.get_row_ids_for_value_range(0..=u64::MAX, 0..col.num_vals(), &mut positions);
black_box(positions.len());
},
);
group.run();
}
fn main() {
bench_access();
bench_range();
}

View File

@@ -56,7 +56,7 @@ fn get_doc_ids_with_values<'a>(
ColumnIndex::Full => Box::new(doc_range),
ColumnIndex::Optional(optional_index) => Box::new(
optional_index
.iter_docs()
.iter_non_null_docs()
.map(move |row| row + doc_range.start),
),
ColumnIndex::Multivalued(multivalued_index) => match multivalued_index {
@@ -73,7 +73,7 @@ fn get_doc_ids_with_values<'a>(
MultiValueIndex::MultiValueIndexV2(multivalued_index) => Box::new(
multivalued_index
.optional_index
.iter_docs()
.iter_non_null_docs()
.map(move |row| row + doc_range.start),
),
},
@@ -105,10 +105,11 @@ fn get_num_values_iterator<'a>(
) -> Box<dyn Iterator<Item = u32> + 'a> {
match column_index {
ColumnIndex::Empty { .. } => Box::new(std::iter::empty()),
ColumnIndex::Full => Box::new(std::iter::repeat(1u32).take(num_docs as usize)),
ColumnIndex::Optional(optional_index) => {
Box::new(std::iter::repeat(1u32).take(optional_index.num_non_nulls() as usize))
}
ColumnIndex::Full => Box::new(std::iter::repeat_n(1u32, num_docs as usize)),
ColumnIndex::Optional(optional_index) => Box::new(std::iter::repeat_n(
1u32,
optional_index.num_non_nulls() as usize,
)),
ColumnIndex::Multivalued(multivalued_index) => Box::new(
multivalued_index
.get_start_index_column()
@@ -177,7 +178,7 @@ impl<'a> Iterable<RowId> for StackedOptionalIndex<'a> {
ColumnIndex::Full => Box::new(columnar_row_range),
ColumnIndex::Optional(optional_index) => Box::new(
optional_index
.iter_docs()
.iter_non_null_docs()
.map(move |row_id: RowId| columnar_row_range.start + row_id),
),
ColumnIndex::Multivalued(_) => {

View File

@@ -215,6 +215,32 @@ impl MultiValueIndex {
}
}
/// Returns an iterator over document ids that have at least one value.
pub fn iter_non_null_docs(&self) -> Box<dyn Iterator<Item = DocId> + '_> {
match self {
MultiValueIndex::MultiValueIndexV1(idx) => {
let mut doc: DocId = 0u32;
let num_docs = idx.num_docs();
Box::new(std::iter::from_fn(move || {
// This is not the most efficient way to do this, but it's legacy code.
while doc < num_docs {
let cur = doc;
doc += 1;
let start = idx.start_index_column.get_val(cur);
let end = idx.start_index_column.get_val(cur + 1);
if end > start {
return Some(cur);
}
}
None
}))
}
MultiValueIndex::MultiValueIndexV2(idx) => {
Box::new(idx.optional_index.iter_non_null_docs())
}
}
}
/// Converts a list of ranks (row ids of values) in a 1:n index to the corresponding list of
/// docids. Positions are converted inplace to docids.
///

View File

@@ -1,4 +1,4 @@
use std::io::{self, Write};
use std::io;
use std::sync::Arc;
mod set;
@@ -11,7 +11,7 @@ use set_block::{
};
use crate::iterable::Iterable;
use crate::{DocId, InvalidData, RowId};
use crate::{DocId, RowId};
/// The threshold for for number of elements after which we switch to dense block encoding.
///
@@ -88,7 +88,7 @@ pub struct OptionalIndex {
impl Iterable<u32> for &OptionalIndex {
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
Box::new(self.iter_docs())
Box::new(self.iter_non_null_docs())
}
}
@@ -280,8 +280,9 @@ impl OptionalIndex {
self.num_non_null_docs
}
pub fn iter_docs(&self) -> impl Iterator<Item = RowId> + '_ {
// TODO optimize
pub fn iter_non_null_docs(&self) -> impl Iterator<Item = RowId> + '_ {
// TODO optimize. We could iterate over the blocks directly.
// We use the dense value ids and retrieve the doc ids via select.
let mut select_batch = self.select_cursor();
(0..self.num_non_null_docs).map(move |rank| select_batch.select(rank))
}
@@ -334,38 +335,6 @@ enum Block<'a> {
Sparse(SparseBlock<'a>),
}
#[derive(Debug, Copy, Clone)]
enum OptionalIndexCodec {
Dense = 0,
Sparse = 1,
}
impl OptionalIndexCodec {
fn to_code(self) -> u8 {
self as u8
}
fn try_from_code(code: u8) -> Result<Self, InvalidData> {
match code {
0 => Ok(Self::Dense),
1 => Ok(Self::Sparse),
_ => Err(InvalidData),
}
}
}
impl BinarySerializable for OptionalIndexCodec {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(&[self.to_code()])
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let optional_codec_code = u8::deserialize(reader)?;
let optional_codec = Self::try_from_code(optional_codec_code)?;
Ok(optional_codec)
}
}
fn serialize_optional_index_block(block_els: &[u16], out: &mut impl io::Write) -> io::Result<()> {
let is_sparse = is_sparse(block_els.len() as u32);
if is_sparse {

View File

@@ -164,7 +164,11 @@ fn test_optional_index_large() {
fn test_optional_index_iter_aux(row_ids: &[RowId], num_rows: RowId) {
let optional_index = OptionalIndex::for_test(num_rows, row_ids);
assert_eq!(optional_index.num_docs(), num_rows);
assert!(optional_index.iter_docs().eq(row_ids.iter().copied()));
assert!(
optional_index
.iter_non_null_docs()
.eq(row_ids.iter().copied())
);
}
#[test]
@@ -219,170 +223,3 @@ fn test_optional_index_for_tests() {
assert!(!optional_index.contains(3));
assert_eq!(optional_index.num_docs(), 4);
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use test::Bencher;
use super::*;
const TOTAL_NUM_VALUES: u32 = 1_000_000;
fn gen_bools(fill_ratio: f64) -> OptionalIndex {
let mut out = Vec::new();
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
let vals: Vec<RowId> = (0..TOTAL_NUM_VALUES)
.map(|_| rng.gen_bool(fill_ratio))
.enumerate()
.filter(|(_pos, val)| *val)
.map(|(pos, _)| pos as RowId)
.collect();
serialize_optional_index(&&vals[..], TOTAL_NUM_VALUES, &mut out).unwrap();
open_optional_index(OwnedBytes::new(out)).unwrap()
}
fn random_range_iterator(
start: u32,
end: u32,
avg_step_size: u32,
avg_deviation: u32,
) -> impl Iterator<Item = u32> {
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
let mut current = start;
std::iter::from_fn(move || {
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
if current >= end { None } else { Some(current) }
})
}
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
let ratio = percent / 100.0;
let step_size = (1f32 / ratio) as u32;
let deviation = step_size - 1;
random_range_iterator(0, num_values, step_size, deviation)
}
fn walk_over_data(codec: &OptionalIndex, avg_step_size: u32) -> Option<u32> {
walk_over_data_from_positions(
codec,
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
)
}
fn walk_over_data_from_positions(
codec: &OptionalIndex,
positions: impl Iterator<Item = u32>,
) -> Option<u32> {
let mut dense_idx: Option<u32> = None;
for idx in positions {
dense_idx = dense_idx.or(codec.rank_if_exists(idx));
}
dense_idx
}
#[bench]
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.05f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.05f64);
bench.iter(|| walk_over_data(&codec, 1000));
}
#[bench]
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
}
#[bench]
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
let codec = gen_bools(0.1f64);
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
}
#[bench]
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
let codec = gen_bools(0.9f64);
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
}
#[bench]
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.1f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.5f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.9f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.01f64, 0.005f32, bench);
}
#[bench]
fn bench_translate_codec_to_orig_10percent_filled_0comma005percent_hit(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.1f64, 0.005f32, bench);
}
#[bench]
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.01f64, 10f32, bench);
}
#[bench]
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.01f64, 100f32, bench);
}
fn bench_translate_codec_to_orig_util(
percent_filled: f64,
percent_hit: f32,
bench: &mut Bencher,
) {
let codec = gen_bools(percent_filled);
let num_non_nulls = codec.num_non_nulls();
let idxs: Vec<u32> = if percent_hit == 100.0f32 {
(0..num_non_nulls).collect()
} else {
n_percent_step_iterator(percent_hit, num_non_nulls).collect()
};
let mut output = vec![0u32; idxs.len()];
bench.iter(|| {
output.copy_from_slice(&idxs[..]);
codec.select_batch(&mut output);
});
}
#[bench]
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.9f64, 0.005, bench);
}
#[bench]
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.9f64, 100.0f32, bench);
}
}

View File

@@ -1,139 +0,0 @@
use std::sync::Arc;
use common::OwnedBytes;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use test::{self, Bencher};
use super::*;
use crate::column_values::u64_based::*;
fn get_data() -> Vec<u64> {
let mut rng = StdRng::seed_from_u64(2u64);
let mut data: Vec<_> = (100..55000_u64)
.map(|num| num + rng.r#gen::<u8>() as u64)
.collect();
data.push(99_000);
data.insert(1000, 2000);
data.insert(2000, 100);
data.insert(3000, 4100);
data.insert(4000, 100);
data.insert(5000, 800);
data
}
fn compute_stats(vals: impl Iterator<Item = u64>) -> ColumnStats {
let mut stats_collector = StatsCollector::default();
for val in vals {
stats_collector.collect(val);
}
stats_collector.stats()
}
#[inline(never)]
fn value_iter() -> impl Iterator<Item = u64> {
0..20_000
}
fn get_reader_for_bench<Codec: ColumnCodec>(data: &[u64]) -> Codec::ColumnValues {
let mut bytes = Vec::new();
let stats = compute_stats(data.iter().cloned());
let mut codec_serializer = Codec::estimator();
for val in data {
codec_serializer.collect(*val);
}
codec_serializer
.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes)
.unwrap();
Codec::load(OwnedBytes::new(bytes)).unwrap()
}
fn bench_get<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
let col = get_reader_for_bench::<Codec>(data);
b.iter(|| {
let mut sum = 0u64;
for pos in value_iter() {
let val = col.get_val(pos as u32);
sum = sum.wrapping_add(val);
}
sum
});
}
#[inline(never)]
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn ColumnValues>) {
b.iter(|| {
let mut sum = 0u64;
for pos in value_iter() {
let val = col.get_val(pos as u32);
sum = sum.wrapping_add(val);
}
sum
});
}
fn bench_get_dynamic<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
let col = Arc::new(get_reader_for_bench::<Codec>(data));
bench_get_dynamic_helper(b, col);
}
fn bench_create<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
let stats = compute_stats(data.iter().cloned());
let mut bytes = Vec::new();
b.iter(|| {
bytes.clear();
let mut codec_serializer = Codec::estimator();
for val in data.iter().take(1024) {
codec_serializer.collect(*val);
}
codec_serializer.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes)
});
}
#[bench]
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<BlockwiseLinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<BlockwiseLinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
}

View File

@@ -242,6 +242,3 @@ impl<T: Copy + PartialOrd + Debug + 'static> ColumnValues<T> for Arc<dyn ColumnV
.get_row_ids_for_value_range(range, doc_id_range, positions)
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench;

View File

@@ -185,10 +185,10 @@ impl CompactSpaceBuilder {
let mut covered_space = Vec::with_capacity(self.blanks.len());
// beginning of the blanks
if let Some(first_blank_start) = self.blanks.first().map(RangeInclusive::start) {
if *first_blank_start != 0 {
covered_space.push(0..=first_blank_start - 1);
}
if let Some(first_blank_start) = self.blanks.first().map(RangeInclusive::start)
&& *first_blank_start != 0
{
covered_space.push(0..=first_blank_start - 1);
}
// Between the blanks
@@ -202,10 +202,10 @@ impl CompactSpaceBuilder {
covered_space.extend(between_blanks);
// end of the blanks
if let Some(last_blank_end) = self.blanks.last().map(RangeInclusive::end) {
if *last_blank_end != u128::MAX {
covered_space.push(last_blank_end + 1..=u128::MAX);
}
if let Some(last_blank_end) = self.blanks.last().map(RangeInclusive::end)
&& *last_blank_end != u128::MAX
{
covered_space.push(last_blank_end + 1..=u128::MAX);
}
if covered_space.is_empty() {

View File

@@ -105,7 +105,7 @@ impl ColumnCodecEstimator for BitpackedCodecEstimator {
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
let num_bits_per_value = num_bits(stats);
Some(stats.num_bytes() + (stats.num_rows as u64 * (num_bits_per_value as u64) + 7) / 8)
Some(stats.num_bytes() + (stats.num_rows as u64 * (num_bits_per_value as u64)).div_ceil(8))
}
fn serialize(

View File

@@ -117,7 +117,7 @@ impl ColumnCodecEstimator for LinearCodecEstimator {
Some(
stats.num_bytes()
+ linear_params.num_bytes()
+ (num_bits as u64 * stats.num_rows as u64 + 7) / 8,
+ (num_bits as u64 * stats.num_rows as u64).div_ceil(8),
)
}

View File

@@ -367,7 +367,7 @@ fn is_empty_after_merge(
ColumnIndex::Empty { .. } => true,
ColumnIndex::Full => alive_bitset.len() == 0,
ColumnIndex::Optional(optional_index) => {
for doc in optional_index.iter_docs() {
for doc in optional_index.iter_non_null_docs() {
if alive_bitset.contains(doc) {
return false;
}

View File

@@ -1,5 +1,3 @@
#![allow(clippy::manual_div_ceil)]
mod column_type;
mod format_version;
mod merge;

View File

@@ -244,7 +244,7 @@ impl SymbolValue for UnorderedId {
fn compute_num_bytes_for_u64(val: u64) -> usize {
let msb = (64u32 - val.leading_zeros()) as usize;
(msb + 7) / 8
msb.div_ceil(8)
}
fn encode_zig_zag(n: i64) -> u64 {

View File

@@ -17,15 +17,10 @@
//! column.
//! - [column_values]: Stores the values of a column in a dense format.
// #![cfg_attr(all(feature = "unstable", test), feature(test))]
#[cfg(test)]
#[macro_use]
extern crate more_asserts;
#[cfg(all(test, feature = "unstable"))]
extern crate test;
use std::fmt::Display;
use std::io;

View File

@@ -1,3 +1,5 @@
use std::str::FromStr;
use common::DateTime;
use crate::InvalidData;
@@ -9,6 +11,23 @@ pub enum NumericalValue {
F64(f64),
}
impl FromStr for NumericalValue {
type Err = ();
fn from_str(s: &str) -> Result<Self, ()> {
if let Ok(val_i64) = s.parse::<i64>() {
return Ok(val_i64.into());
}
if let Ok(val_u64) = s.parse::<u64>() {
return Ok(val_u64.into());
}
if let Ok(val_f64) = s.parse::<f64>() {
return Ok(NumericalValue::from(val_f64).normalize());
}
Err(())
}
}
impl NumericalValue {
pub fn numerical_type(&self) -> NumericalType {
match self {
@@ -26,7 +45,7 @@ impl NumericalValue {
if val <= i64::MAX as u64 {
NumericalValue::I64(val as i64)
} else {
NumericalValue::F64(val as f64)
NumericalValue::U64(val)
}
}
NumericalValue::I64(val) => NumericalValue::I64(val),
@@ -141,6 +160,7 @@ impl Coerce for DateTime {
#[cfg(test)]
mod tests {
use super::NumericalType;
use crate::NumericalValue;
#[test]
fn test_numerical_type_code() {
@@ -153,4 +173,58 @@ mod tests {
}
assert_eq!(num_numerical_type, 3);
}
#[test]
fn test_parse_numerical() {
assert_eq!(
"123".parse::<NumericalValue>().unwrap(),
NumericalValue::I64(123)
);
assert_eq!(
"18446744073709551615".parse::<NumericalValue>().unwrap(),
NumericalValue::U64(18446744073709551615u64)
);
assert_eq!(
"1.0".parse::<NumericalValue>().unwrap(),
NumericalValue::I64(1i64)
);
assert_eq!(
"1.1".parse::<NumericalValue>().unwrap(),
NumericalValue::F64(1.1f64)
);
assert_eq!(
"-1.0".parse::<NumericalValue>().unwrap(),
NumericalValue::I64(-1i64)
);
}
#[test]
fn test_normalize_numerical() {
assert_eq!(
NumericalValue::from(1u64).normalize(),
NumericalValue::I64(1i64),
);
let limit_val = i64::MAX as u64 + 1u64;
assert_eq!(
NumericalValue::from(limit_val).normalize(),
NumericalValue::U64(limit_val),
);
assert_eq!(
NumericalValue::from(-1i64).normalize(),
NumericalValue::I64(-1i64),
);
assert_eq!(
NumericalValue::from(-2.0f64).normalize(),
NumericalValue::I64(-2i64),
);
assert_eq!(
NumericalValue::from(-2.1f64).normalize(),
NumericalValue::F64(-2.1f64),
);
let large_float = 2.0f64.powf(70.0f64);
assert_eq!(
NumericalValue::from(large_float).normalize(),
NumericalValue::F64(large_float),
);
}
}

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy-common"
version = "0.9.0"
version = "0.10.0"
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
license = "MIT"
edition = "2024"

View File

@@ -9,7 +9,7 @@ use crate::ByteCount;
pub struct TinySet(u64);
impl fmt::Debug for TinySet {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.into_iter().collect::<Vec<u32>>().fmt(f)
}
}
@@ -182,9 +182,8 @@ pub struct BitSet {
max_value: u32,
}
#[inline(always)]
fn num_buckets(max_val: u32) -> u32 {
(max_val + 63u32) / 64u32
max_val.div_ceil(64u32)
}
impl BitSet {

View File

@@ -1,6 +1,4 @@
// manual divceil actually generates code that is not optimal (to accept the full range of u32) and
// perf matters here.
#![allow(clippy::len_without_is_empty, clippy::manual_div_ceil)]
#![allow(clippy::len_without_is_empty)]
use std::ops::Deref;

View File

@@ -29,6 +29,7 @@ impl BinarySerializable for VIntU128 {
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
#[allow(clippy::unbuffered_bytes)]
let mut bytes = reader.bytes();
let mut result = 0u128;
let mut shift = 0u64;
@@ -52,7 +53,7 @@ impl BinarySerializable for VIntU128 {
}
}
/// Wrapper over a `u64` that serializes as a variable int.
/// Wrapper over a `u64` that serializes as a variable int.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct VInt(pub u64);
@@ -196,6 +197,7 @@ impl BinarySerializable for VInt {
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
#[allow(clippy::unbuffered_bytes)]
let mut bytes = reader.bytes();
let mut result = 0u64;
let mut shift = 0u64;

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy-query-grammar"
version = "0.24.0"
version = "0.25.0"
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
license = "MIT"
categories = ["database-implementations", "data-structures"]
@@ -15,3 +15,5 @@ edition = "2024"
nom = "7"
serde = { version = "1.0.219", features = ["derive"] }
serde_json = "1.0.140"
ordered-float = "5.0.0"
fnv = "1.0.7"

View File

@@ -117,6 +117,22 @@ where F: nom::Parser<I, (O, ErrorList), Infallible> {
}
}
pub(crate) fn terminated_infallible<I, O1, O2, F, G>(
mut first: F,
mut second: G,
) -> impl FnMut(I) -> JResult<I, O1>
where
F: nom::Parser<I, (O1, ErrorList), Infallible>,
G: nom::Parser<I, (O2, ErrorList), Infallible>,
{
move |input: I| {
let (input, (o1, mut err)) = first.parse(input)?;
let (input, (_, mut err2)) = second.parse(input)?;
err.append(&mut err2);
Ok((input, (o1, err)))
}
}
pub(crate) fn delimited_infallible<I, O1, O2, O3, F, G, H>(
mut first: F,
mut second: G,

View File

@@ -31,7 +31,17 @@ pub fn parse_query_lenient(query: &str) -> (UserInputAst, Vec<LenientError>) {
#[cfg(test)]
mod tests {
use crate::{parse_query, parse_query_lenient};
use crate::{UserInputAst, parse_query, parse_query_lenient};
#[test]
fn test_deduplication() {
let ast: UserInputAst = parse_query("a a").unwrap();
let json = serde_json::to_string(&ast).unwrap();
assert_eq!(
json,
r#"{"type":"bool","clauses":[[null,{"type":"literal","field_name":null,"phrase":"a","delimiter":"none","slop":0,"prefix":false}]]}"#
);
}
#[test]
fn test_parse_query_serialization() {

View File

@@ -1,6 +1,7 @@
use std::borrow::Cow;
use std::iter::once;
use fnv::FnvHashSet;
use nom::IResult;
use nom::branch::alt;
use nom::bytes::complete::tag;
@@ -36,7 +37,7 @@ fn field_name(inp: &str) -> IResult<&str, String> {
alt((first_char, escape_sequence())),
many0(alt((simple_char, escape_sequence(), char('\\')))),
)),
char(':'),
tuple((multispace0, char(':'), multispace0)),
),
|(first_char, next)| once(first_char).chain(next).collect(),
)(inp)
@@ -68,7 +69,7 @@ fn interpret_escape(source: &str) -> String {
/// Consume a word outside of any context.
// TODO should support escape sequences
fn word(inp: &str) -> IResult<&str, Cow<str>> {
fn word(inp: &str) -> IResult<&str, Cow<'_, str>> {
map_res(
recognize(tuple((
alt((
@@ -366,7 +367,10 @@ fn literal(inp: &str) -> IResult<&str, UserInputAst> {
// something (a field name) got parsed before
alt((
map(
tuple((opt(field_name), alt((range, set, exists, term_or_phrase)))),
tuple((
opt(field_name),
alt((range, set, exists, regex, term_or_phrase)),
)),
|(field_name, leaf): (Option<String>, UserInputLeaf)| leaf.set_field(field_name).into(),
),
term_group,
@@ -388,6 +392,10 @@ fn literal_no_group_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>>
value((), peek(one_of("{[><"))),
map(range_infallible, |(range, errs)| (Some(range), errs)),
),
(
value((), peek(one_of("/"))),
map(regex_infallible, |(regex, errs)| (Some(regex), errs)),
),
),
delimited_infallible(space0_infallible, term_or_phrase_infallible, nothing),
),
@@ -688,6 +696,61 @@ fn set_infallible(mut inp: &str) -> JResult<&str, UserInputLeaf> {
}
}
fn regex(inp: &str) -> IResult<&str, UserInputLeaf> {
map(
terminated(
delimited(
char('/'),
many1(alt((preceded(char('\\'), char('/')), none_of("/")))),
char('/'),
),
peek(alt((multispace1, eof))),
),
|elements| UserInputLeaf::Regex {
field: None,
pattern: elements.into_iter().collect::<String>(),
},
)(inp)
}
fn regex_infallible(inp: &str) -> JResult<&str, UserInputLeaf> {
match terminated_infallible(
delimited_infallible(
opt_i_err(char('/'), "missing delimiter /"),
opt_i(many1(alt((preceded(char('\\'), char('/')), none_of("/"))))),
opt_i_err(char('/'), "missing delimiter /"),
),
opt_i_err(
peek(alt((multispace1, eof))),
"expected whitespace or end of input",
),
)(inp)
{
Ok((rest, (elements_part, errors))) => {
let pattern = match elements_part {
Some(elements_part) => elements_part.into_iter().collect(),
None => String::new(),
};
let res = UserInputLeaf::Regex {
field: None,
pattern,
};
Ok((rest, (res, errors)))
}
Err(e) => {
let errs = vec![LenientErrorInternal {
pos: inp.len(),
message: e.to_string(),
}];
let res = UserInputLeaf::Regex {
field: None,
pattern: String::new(),
};
Ok((inp, (res, errs)))
}
}
}
fn negate(expr: UserInputAst) -> UserInputAst {
expr.unary(Occur::MustNot)
}
@@ -752,7 +815,7 @@ fn boosted_leaf(inp: &str) -> IResult<&str, UserInputAst> {
tuple((leaf, fallible(boost))),
|(leaf, boost_opt)| match boost_opt {
Some(boost) if (boost - 1.0).abs() > f64::EPSILON => {
UserInputAst::Boost(Box::new(leaf), boost)
UserInputAst::Boost(Box::new(leaf), boost.into())
}
_ => leaf,
},
@@ -764,7 +827,7 @@ fn boosted_leaf_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>> {
tuple_infallible((leaf_infallible, boost)),
|((leaf, boost_opt), error)| match boost_opt {
Some(boost) if (boost - 1.0).abs() > f64::EPSILON => (
leaf.map(|leaf| UserInputAst::Boost(Box::new(leaf), boost)),
leaf.map(|leaf| UserInputAst::Boost(Box::new(leaf), boost.into())),
error,
),
_ => (leaf, error),
@@ -1015,12 +1078,25 @@ pub fn parse_to_ast_lenient(query_str: &str) -> (UserInputAst, Vec<LenientError>
(rewrite_ast(res), errors)
}
/// Removes unnecessary children clauses in AST
///
/// Motivated by [issue #1433](https://github.com/quickwit-oss/tantivy/issues/1433)
fn rewrite_ast(mut input: UserInputAst) -> UserInputAst {
if let UserInputAst::Clause(terms) = &mut input {
for term in terms {
if let UserInputAst::Clause(sub_clauses) = &mut input {
// call rewrite_ast recursively on children clauses if applicable
let mut new_clauses = Vec::with_capacity(sub_clauses.len());
for (occur, clause) in sub_clauses.drain(..) {
let rewritten_clause = rewrite_ast(clause);
new_clauses.push((occur, rewritten_clause));
}
*sub_clauses = new_clauses;
// remove duplicate child clauses
// e.g. (+a +b) OR (+c +d) OR (+a +b) => (+a +b) OR (+c +d)
let mut seen = FnvHashSet::default();
sub_clauses.retain(|term| seen.insert(term.clone()));
// Removes unnecessary children clauses in AST
//
// Motivated by [issue #1433](https://github.com/quickwit-oss/tantivy/issues/1433)
for term in sub_clauses {
rewrite_ast_clause(term);
}
}
@@ -1282,6 +1358,10 @@ mod test {
super::field_name("~my~field:a"),
Ok(("a", "~my~field".to_string()))
);
assert_eq!(
super::field_name(".my.field.name : a"),
Ok(("a", ".my.field.name".to_string()))
);
for special_char in SPECIAL_CHARS.iter() {
let query = &format!("\\{special_char}my\\{special_char}field:a");
assert_eq!(
@@ -1688,4 +1768,72 @@ mod test {
fn test_invalid_field() {
test_is_parse_err(r#"!bc:def"#, "!bc:def");
}
#[test]
fn test_regex_parser() {
let r = parse_to_ast(r#"a:/joh?n(ath[oa]n)/"#);
assert!(r.is_ok(), "Failed to parse custom query: {r:?}");
let (_, input) = r.unwrap();
match input {
UserInputAst::Leaf(leaf) => match leaf.as_ref() {
UserInputLeaf::Regex { field, pattern } => {
assert_eq!(field, &Some("a".to_string()));
assert_eq!(pattern, "joh?n(ath[oa]n)");
}
_ => panic!("Expected a regex leaf, got {leaf:?}"),
},
_ => panic!("Expected a leaf"),
}
let r = parse_to_ast(r#"a:/\\/cgi-bin\\/luci.*/"#);
assert!(r.is_ok(), "Failed to parse custom query: {r:?}");
let (_, input) = r.unwrap();
match input {
UserInputAst::Leaf(leaf) => match leaf.as_ref() {
UserInputLeaf::Regex { field, pattern } => {
assert_eq!(field, &Some("a".to_string()));
assert_eq!(pattern, "\\/cgi-bin\\/luci.*");
}
_ => panic!("Expected a regex leaf, got {leaf:?}"),
},
_ => panic!("Expected a leaf"),
}
}
#[test]
fn test_regex_parser_lenient() {
let literal = |query| literal_infallible(query).unwrap().1;
let (res, errs) = literal(r#"a:/joh?n(ath[oa]n)/"#);
let expected = UserInputLeaf::Regex {
field: Some("a".to_string()),
pattern: "joh?n(ath[oa]n)".to_string(),
}
.into();
assert_eq!(res.unwrap(), expected);
assert!(errs.is_empty(), "Expected no errors, got: {errs:?}");
let (res, errs) = literal("title:/joh?n(ath[oa]n)");
let expected = UserInputLeaf::Regex {
field: Some("title".to_string()),
pattern: "joh?n(ath[oa]n)".to_string(),
}
.into();
assert_eq!(res.unwrap(), expected);
assert_eq!(errs.len(), 1, "Expected 1 error, got: {errs:?}");
assert_eq!(
errs[0].message, "missing delimiter /",
"Unexpected error message",
);
}
#[test]
fn test_space_before_value() {
test_parse_query_to_ast_helper("field : a", r#""field":a"#);
test_parse_query_to_ast_helper("field: a", r#""field":a"#);
test_parse_query_to_ast_helper("field :a", r#""field":a"#);
test_parse_query_to_ast_helper(
"field : 'happy tax payer' AND other_field : 1",
r#"(+"field":'happy tax payer' +"other_field":1)"#,
);
}
}

View File

@@ -5,7 +5,7 @@ use serde::Serialize;
use crate::Occur;
#[derive(PartialEq, Clone, Serialize)]
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
pub enum UserInputLeaf {
@@ -23,6 +23,10 @@ pub enum UserInputLeaf {
Exists {
field: String,
},
Regex {
field: Option<String>,
pattern: String,
},
}
impl UserInputLeaf {
@@ -46,6 +50,7 @@ impl UserInputLeaf {
UserInputLeaf::Exists { field: _ } => UserInputLeaf::Exists {
field: field.expect("Exist query without a field isn't allowed"),
},
UserInputLeaf::Regex { field: _, pattern } => UserInputLeaf::Regex { field, pattern },
}
}
@@ -103,11 +108,19 @@ impl Debug for UserInputLeaf {
UserInputLeaf::Exists { field } => {
write!(formatter, "$exists(\"{field}\")")
}
UserInputLeaf::Regex { field, pattern } => {
if let Some(field) = field {
// TODO properly escape field (in case of \")
write!(formatter, "\"{field}\":")?;
}
// TODO properly escape pattern (in case of \")
write!(formatter, "/{pattern}/")
}
}
}
}
#[derive(Copy, Clone, Eq, PartialEq, Debug, Serialize)]
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug, Serialize)]
#[serde(rename_all = "snake_case")]
pub enum Delimiter {
SingleQuotes,
@@ -115,7 +128,7 @@ pub enum Delimiter {
None,
}
#[derive(PartialEq, Clone, Serialize)]
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
#[serde(rename_all = "snake_case")]
pub struct UserInputLiteral {
pub field_name: Option<String>,
@@ -154,7 +167,7 @@ impl fmt::Debug for UserInputLiteral {
}
}
#[derive(PartialEq, Debug, Clone, Serialize)]
#[derive(PartialEq, Eq, Hash, Debug, Clone, Serialize)]
#[serde(tag = "type", content = "value")]
#[serde(rename_all = "snake_case")]
pub enum UserInputBound {
@@ -191,11 +204,11 @@ impl UserInputBound {
}
}
#[derive(PartialEq, Clone, Serialize)]
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
#[serde(into = "UserInputAstSerde")]
pub enum UserInputAst {
Clause(Vec<(Option<Occur>, UserInputAst)>),
Boost(Box<UserInputAst>, f64),
Boost(Box<UserInputAst>, ordered_float::OrderedFloat<f64>),
Leaf(Box<UserInputLeaf>),
}
@@ -217,9 +230,10 @@ impl From<UserInputAst> for UserInputAstSerde {
fn from(ast: UserInputAst) -> Self {
match ast {
UserInputAst::Clause(clause) => UserInputAstSerde::Bool { clauses: clause },
UserInputAst::Boost(underlying, boost) => {
UserInputAstSerde::Boost { underlying, boost }
}
UserInputAst::Boost(underlying, boost) => UserInputAstSerde::Boost {
underlying,
boost: boost.into_inner(),
},
UserInputAst::Leaf(leaf) => UserInputAstSerde::Leaf(leaf),
}
}
@@ -378,7 +392,7 @@ mod tests {
#[test]
fn test_boost_serialization() {
let inner_ast = UserInputAst::Leaf(Box::new(UserInputLeaf::All));
let boost_ast = UserInputAst::Boost(Box::new(inner_ast), 2.5);
let boost_ast = UserInputAst::Boost(Box::new(inner_ast), 2.5.into());
let json = serde_json::to_string(&boost_ast).unwrap();
assert_eq!(
json,
@@ -405,7 +419,7 @@ mod tests {
}))),
),
])),
2.5,
2.5.into(),
);
let json = serde_json::to_string(&boost_ast).unwrap();
assert_eq!(

View File

@@ -301,7 +301,7 @@ impl SegmentAggregationCollector for SegmentHistogramCollector {
let bounds = self.bounds;
let interval = self.interval;
let offset = self.offset;
let get_bucket_pos = |val| (get_bucket_pos_f64(val, interval, offset) as i64);
let get_bucket_pos = |val| get_bucket_pos_f64(val, interval, offset) as i64;
bucket_agg_accessor
.column_block_accessor

View File

@@ -1293,6 +1293,220 @@ mod tests {
assert_eq!(page_0, &page_2[..page_0.len()]);
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(20))]
/// Build multiple segments with equal-scoring docs and verify stable ordering
/// across pages when increasing limit or offset.
#[test]
fn proptest_stable_ordering_across_segments_with_pagination(
docs_per_segment in proptest::collection::vec(1usize..50, 2..5)
) {
use crate::indexer::NoMergePolicy;
// Build an index with multiple segments; all docs will have the same score using AllQuery.
let mut schema_builder = Schema::builder();
let text = schema_builder.add_text_field("text", TEXT);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut writer = index.writer_for_tests().unwrap();
writer.set_merge_policy(Box::new(NoMergePolicy));
for num_docs in &docs_per_segment {
for _ in 0..*num_docs {
writer.add_document(doc!(text => "x")).unwrap();
}
writer.commit().unwrap();
}
let reader = index.reader().unwrap();
let searcher = reader.searcher();
let total_docs: usize = docs_per_segment.iter().sum();
// Full result set, first assert all scores are identical.
let full_with_scores: Vec<(Score, DocAddress)> = searcher
.search(&AllQuery, &TopDocs::with_limit(total_docs))
.unwrap();
// Sanity: at least one document was returned.
prop_assert!(!full_with_scores.is_empty());
let first_score = full_with_scores[0].0;
prop_assert!(full_with_scores.iter().all(|(score, _)| *score == first_score));
// Keep only the addresses for the remaining checks.
let full: Vec<DocAddress> = full_with_scores
.into_iter()
.map(|(_score, addr)| addr)
.collect();
// Sanity: we actually created multiple segments and have documents.
prop_assert!(docs_per_segment.len() >= 2);
prop_assert!(total_docs >= 2);
// 1) Increasing limit should preserve prefix ordering.
for k in 1..=total_docs {
let page: Vec<DocAddress> = searcher
.search(&AllQuery, &TopDocs::with_limit(k))
.unwrap()
.into_iter()
.map(|(_score, addr)| addr)
.collect();
prop_assert_eq!(page, full[..k].to_vec());
}
// 2) Offset + limit pages should always match the corresponding slice.
// For each offset, check three representative page sizes:
// - first page (size 1)
// - a middle page (roughly half of remaining)
// - the last page (size = remaining)
for offset in 0..total_docs {
let remaining = total_docs - offset;
let assert_page_eq = |limit: usize| -> proptest::test_runner::TestCaseResult {
let page: Vec<DocAddress> = searcher
.search(&AllQuery, &TopDocs::with_limit(limit).and_offset(offset))
.unwrap()
.into_iter()
.map(|(_score, addr)| addr)
.collect();
prop_assert_eq!(page, full[offset..offset + limit].to_vec());
Ok(())
};
// Smallest page.
assert_page_eq(1)?;
// A middle-sized page (dedupes to 1 if remaining == 1).
assert_page_eq((remaining / 2).max(1))?;
// Largest page for this offset.
assert_page_eq(remaining)?;
}
// 3) Concatenating fixed-size pages by offset reproduces the full order.
for page_size in 1..=total_docs.min(5) {
let mut concat: Vec<DocAddress> = Vec::new();
let mut offset = 0;
while offset < total_docs {
let size = page_size.min(total_docs - offset);
let page: Vec<DocAddress> = searcher
.search(&AllQuery, &TopDocs::with_limit(size).and_offset(offset))
.unwrap()
.into_iter()
.map(|(_score, addr)| addr)
.collect();
concat.extend(page);
offset += size;
}
// Avoid moving `full` across loop iterations.
prop_assert_eq!(concat, full.clone());
}
}
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(20))]
/// Build multiple segments with same-scoring term matches and verify stable ordering
/// across pages for a real scoring query (TermQuery with identical TF and fieldnorm).
#[test]
fn proptest_stable_ordering_across_segments_with_term_query_and_pagination(
docs_per_segment in proptest::collection::vec(1usize..50, 2..5)
) {
use crate::indexer::NoMergePolicy;
use crate::schema::IndexRecordOption;
use crate::query::TermQuery;
use crate::Term;
// Build an index with multiple segments; each doc has exactly one token "x",
// ensuring equal BM25 scores across all matching docs (same TF=1 and fieldnorm=1).
let mut schema_builder = Schema::builder();
let text = schema_builder.add_text_field("text", TEXT);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut writer = index.writer_for_tests().unwrap();
writer.set_merge_policy(Box::new(NoMergePolicy));
for num_docs in &docs_per_segment {
for _ in 0..*num_docs {
writer.add_document(doc!(text => "x")).unwrap();
}
writer.commit().unwrap();
}
let reader = index.reader().unwrap();
let searcher = reader.searcher();
let total_docs: usize = docs_per_segment.iter().sum();
let term = Term::from_field_text(text, "x");
let tq = TermQuery::new(term, IndexRecordOption::WithFreqs);
// Full result set, first assert all scores are identical across docs.
let full_with_scores: Vec<(Score, DocAddress)> = searcher
.search(&tq, &TopDocs::with_limit(total_docs))
.unwrap();
// Sanity: at least one document was returned.
prop_assert!(!full_with_scores.is_empty());
let first_score = full_with_scores[0].0;
prop_assert!(full_with_scores.iter().all(|(score, _)| *score == first_score));
// Keep only the addresses for the remaining checks.
let full: Vec<DocAddress> = full_with_scores
.into_iter()
.map(|(_score, addr)| addr)
.collect();
// Sanity: we actually created multiple segments and have documents.
prop_assert!(docs_per_segment.len() >= 2);
prop_assert!(total_docs >= 2);
// 1) Increasing limit should preserve prefix ordering.
for k in 1..=total_docs {
let page: Vec<DocAddress> = searcher
.search(&tq, &TopDocs::with_limit(k))
.unwrap()
.into_iter()
.map(|(_score, addr)| addr)
.collect();
prop_assert_eq!(page, full[..k].to_vec());
}
// 2) Offset + limit pages should always match the corresponding slice.
// Check three representative page sizes for each offset: 1, ~half, and remaining.
for offset in 0..total_docs {
let remaining = total_docs - offset;
let assert_page_eq = |limit: usize| -> proptest::test_runner::TestCaseResult {
let page: Vec<DocAddress> = searcher
.search(&tq, &TopDocs::with_limit(limit).and_offset(offset))
.unwrap()
.into_iter()
.map(|(_score, addr)| addr)
.collect();
prop_assert_eq!(page, full[offset..offset + limit].to_vec());
Ok(())
};
assert_page_eq(1)?;
assert_page_eq((remaining / 2).max(1))?;
assert_page_eq(remaining)?;
}
// 3) Concatenating fixed-size pages by offset reproduces the full order.
for page_size in 1..=total_docs.min(5) {
let mut concat: Vec<DocAddress> = Vec::new();
let mut offset = 0;
while offset < total_docs {
let size = page_size.min(total_docs - offset);
let page: Vec<DocAddress> = searcher
.search(&tq, &TopDocs::with_limit(size).and_offset(offset))
.unwrap()
.into_iter()
.map(|(_score, addr)| addr)
.collect();
concat.extend(page);
offset += size;
}
prop_assert_eq!(concat, full.clone());
}
}
}
#[test]
#[should_panic]
fn test_top_0() {

View File

@@ -1,3 +1,4 @@
use columnar::NumericalValue;
use common::json_path_writer::{JSON_END_OF_PATH, JSON_PATH_SEGMENT_SEP};
use common::{replace_in_place, JsonPathWriter};
use rustc_hash::FxHashMap;
@@ -152,7 +153,7 @@ pub(crate) fn index_json_value<'a, V: Value<'a>>(
if let Ok(i64_val) = val.try_into() {
term_buffer.append_type_and_fast_value::<i64>(i64_val);
} else {
term_buffer.append_type_and_fast_value(val);
term_buffer.append_type_and_fast_value::<u64>(val);
}
postings_writer.subscribe(doc, 0u32, term_buffer, ctx);
}
@@ -166,12 +167,30 @@ pub(crate) fn index_json_value<'a, V: Value<'a>>(
postings_writer.subscribe(doc, 0u32, term_buffer, ctx);
}
ReferenceValueLeaf::F64(val) => {
if !val.is_finite() {
return;
};
set_path_id(
term_buffer,
ctx.path_to_unordered_id
.get_or_allocate_unordered_id(json_path_writer.as_str()),
);
term_buffer.append_type_and_fast_value(val);
// Normalize here is important.
// In the inverted index, we coerce all numerical values to their canonical
// representation.
//
// (We do the same thing on the query side)
match NumericalValue::F64(val).normalize() {
NumericalValue::I64(val_i64) => {
term_buffer.append_type_and_fast_value::<i64>(val_i64);
}
NumericalValue::U64(val_u64) => {
term_buffer.append_type_and_fast_value::<u64>(val_u64);
}
NumericalValue::F64(val_f64) => {
term_buffer.append_type_and_fast_value::<f64>(val_f64);
}
}
postings_writer.subscribe(doc, 0u32, term_buffer, ctx);
}
ReferenceValueLeaf::Bool(val) => {
@@ -241,8 +260,8 @@ pub(crate) fn index_json_value<'a, V: Value<'a>>(
///
/// The term must be json + JSON path.
pub fn convert_to_fast_value_and_append_to_json_term(
mut term: Term,
phrase: &str,
term: &Term,
text: &str,
truncate_date_for_search: bool,
) -> Option<Term> {
assert_eq!(
@@ -254,31 +273,50 @@ pub fn convert_to_fast_value_and_append_to_json_term(
0,
"JSON value bytes should be empty"
);
if let Ok(dt) = OffsetDateTime::parse(phrase, &Rfc3339) {
let mut dt = DateTime::from_utc(dt.to_offset(UtcOffset::UTC));
if truncate_date_for_search {
dt = dt.truncate(DATE_TIME_PRECISION_INDEXED);
try_convert_to_datetime_and_append_to_json_term(term, text, truncate_date_for_search)
.or_else(|| try_convert_to_number_and_append_to_json_term(term, text))
.or_else(|| try_convert_to_bool_and_append_to_json_term_typed(term, text))
}
fn try_convert_to_datetime_and_append_to_json_term(
term: &Term,
text: &str,
truncate_date_for_search: bool,
) -> Option<Term> {
let dt = OffsetDateTime::parse(text, &Rfc3339).ok()?;
let mut dt = DateTime::from_utc(dt.to_offset(UtcOffset::UTC));
if truncate_date_for_search {
dt = dt.truncate(DATE_TIME_PRECISION_INDEXED);
}
let mut term_clone = term.clone();
term_clone.append_type_and_fast_value(dt);
Some(term_clone)
}
fn try_convert_to_number_and_append_to_json_term(term: &Term, text: &str) -> Option<Term> {
let numerical_value: NumericalValue = str::parse::<NumericalValue>(text).ok()?;
let mut term_clone = term.clone();
// Parse is actually returning normalized values already today, but let's not
// not rely on that hidden contract.
match numerical_value.normalize() {
NumericalValue::I64(i64_value) => {
term_clone.append_type_and_fast_value::<i64>(i64_value);
}
NumericalValue::U64(u64_value) => {
term_clone.append_type_and_fast_value::<u64>(u64_value);
}
NumericalValue::F64(f64_value) => {
term_clone.append_type_and_fast_value::<f64>(f64_value);
}
term.append_type_and_fast_value(dt);
return Some(term);
}
if let Ok(i64_val) = str::parse::<i64>(phrase) {
term.append_type_and_fast_value(i64_val);
return Some(term);
}
if let Ok(u64_val) = str::parse::<u64>(phrase) {
term.append_type_and_fast_value(u64_val);
return Some(term);
}
if let Ok(f64_val) = str::parse::<f64>(phrase) {
term.append_type_and_fast_value(f64_val);
return Some(term);
}
if let Ok(bool_val) = str::parse::<bool>(phrase) {
term.append_type_and_fast_value(bool_val);
return Some(term);
}
None
Some(term_clone)
}
fn try_convert_to_bool_and_append_to_json_term_typed(term: &Term, text: &str) -> Option<Term> {
let val = str::parse::<bool>(text).ok()?;
let mut term_clone = term.clone();
term_clone.append_type_and_fast_value(val);
Some(term_clone)
}
/// Splits a json path supplied to the query parser in such a way that

View File

@@ -484,10 +484,8 @@ impl Directory for MmapDirectory {
.map_err(LockError::wrap_io_error)?;
if lock.is_blocking {
file.lock_exclusive().map_err(LockError::wrap_io_error)?;
} else {
if !file.try_lock_exclusive().map_err(|_| LockError::LockBusy)? {
return Err(LockError::LockBusy);
}
} else if !file.try_lock_exclusive().map_err(|_| LockError::LockBusy)? {
return Err(LockError::LockBusy);
}
// dropping the file handle will release the lock.
Ok(DirectoryLock::from(Box::new(ReleaseLockFile {

View File

@@ -216,7 +216,7 @@ impl IndexBuilder {
/// Opens or creates a new index in the provided directory
pub fn open_or_create<T: Into<Box<dyn Directory>>>(self, dir: T) -> crate::Result<Index> {
let dir = dir.into();
let dir: Box<dyn Directory> = dir.into();
if !Index::exists(&*dir)? {
return self.create(dir);
}
@@ -494,7 +494,7 @@ impl Index {
.into_iter()
.map(|segment| SegmentReader::open(&segment)?.fields_metadata())
.collect::<Result<_, _>>()?;
Ok(merge_field_meta_data(fields_metadata, &self.schema()))
Ok(merge_field_meta_data(fields_metadata))
}
/// Creates a new segment_meta (Advanced user only).

View File

@@ -1,8 +1,7 @@
use std::io;
use common::json_path_writer::JSON_END_OF_PATH;
use common::BinarySerializable;
use fnv::FnvHashSet;
use common::{BinarySerializable, ByteCount};
#[cfg(feature = "quickwit")]
use futures_util::{FutureExt, StreamExt, TryStreamExt};
#[cfg(feature = "quickwit")]
@@ -36,6 +35,33 @@ pub struct InvertedIndexReader {
total_num_tokens: u64,
}
/// Object that records the amount of space used by a field in an inverted index.
pub(crate) struct InvertedIndexFieldSpace {
pub field_name: String,
pub field_type: Type,
pub postings_size: ByteCount,
pub positions_size: ByteCount,
pub num_terms: u64,
}
/// Returns None if the term is not a valid JSON path.
fn extract_field_name_and_field_type_from_json_path(term: &[u8]) -> Option<(String, Type)> {
let index = term.iter().position(|&byte| byte == JSON_END_OF_PATH)?;
let field_type_code = term.get(index + 1).copied()?;
let field_type = Type::from_code(field_type_code)?;
// Let's flush the current field.
let field_name = String::from_utf8_lossy(&term[..index]).to_string();
Some((field_name, field_type))
}
impl InvertedIndexFieldSpace {
fn record(&mut self, term_info: &TermInfo) {
self.postings_size += ByteCount::from(term_info.posting_num_bytes() as u64);
self.positions_size += ByteCount::from(term_info.positions_num_bytes() as u64);
self.num_terms += 1;
}
}
impl InvertedIndexReader {
pub(crate) fn new(
termdict: TermDictionary,
@@ -81,20 +107,56 @@ impl InvertedIndexReader {
///
/// Notice: This requires a full scan and therefore **very expensive**.
/// TODO: Move to sstable to use the index.
pub fn list_encoded_fields(&self) -> io::Result<Vec<(String, Type)>> {
pub(crate) fn list_encoded_json_fields(&self) -> io::Result<Vec<InvertedIndexFieldSpace>> {
let mut stream = self.termdict.stream()?;
let mut fields = Vec::new();
let mut fields_set = FnvHashSet::default();
while let Some((term, _term_info)) = stream.next() {
if let Some(index) = term.iter().position(|&byte| byte == JSON_END_OF_PATH) {
if !fields_set.contains(&term[..index + 2]) {
fields_set.insert(term[..index + 2].to_vec());
let typ = Type::from_code(term[index + 1]).unwrap();
fields.push((String::from_utf8_lossy(&term[..index]).to_string(), typ));
let mut fields: Vec<InvertedIndexFieldSpace> = Vec::new();
let mut current_field_opt: Option<InvertedIndexFieldSpace> = None;
// Current field bytes, including the JSON_END_OF_PATH.
let mut current_field_bytes: Vec<u8> = Vec::new();
while let Some((term, term_info)) = stream.next() {
if let Some(current_field) = &mut current_field_opt {
if term.starts_with(&current_field_bytes) {
// We are still in the same field.
current_field.record(term_info);
continue;
}
}
// This is a new field!
// Let's flush the current field.
fields.extend(current_field_opt.take());
current_field_bytes.clear();
// And create a new one.
let Some((field_name, field_type)) =
extract_field_name_and_field_type_from_json_path(term)
else {
error!(
"invalid term bytes encountered {term:?}. this only happens if the term \
dictionary is corrupted. please report"
);
continue;
};
let mut field_space = InvertedIndexFieldSpace {
field_name,
field_type,
postings_size: ByteCount::default(),
positions_size: ByteCount::default(),
num_terms: 0u64,
};
field_space.record(term_info);
// We include the json type and the json end of path to make sure the prefix check
// is meaningful.
current_field_bytes.extend_from_slice(&term[..field_space.field_name.len() + 2]);
current_field_opt = Some(field_space);
}
// We need to flush the last field as well.
fields.extend(current_field_opt.take());
Ok(fields)
}

View File

@@ -1,8 +1,8 @@
use std::collections::HashMap;
use std::ops::BitOrAssign;
use std::sync::{Arc, RwLock};
use std::{fmt, io};
use common::{ByteCount, HasLen};
use fnv::FnvHashMap;
use itertools::Itertools;
@@ -304,12 +304,16 @@ impl SegmentReader {
for (field, field_entry) in self.schema().fields() {
let field_name = field_entry.name().to_string();
let is_indexed = field_entry.is_indexed();
if is_indexed {
let is_json = field_entry.field_type().value_type() == Type::Json;
if is_json {
let term_dictionary_json_field_num_bytes: u64 = self
.termdict_composite
.open_read(field)
.map(|file_slice| file_slice.len() as u64)
.unwrap_or(0u64);
let inv_index = self.inverted_index(field)?;
let encoded_fields_in_index = inv_index.list_encoded_fields()?;
let encoded_fields_in_index = inv_index.list_encoded_json_fields()?;
let mut build_path = |field_name: &str, mut json_path: String| {
// In this case we need to map the potential fast field to the field name
// accepted by the query parser.
@@ -328,30 +332,65 @@ impl SegmentReader {
format!("{field_name}.{json_path}")
}
};
indexed_fields.extend(
encoded_fields_in_index
.into_iter()
.map(|(name, typ)| (build_path(&field_name, name), typ))
.map(|(field_name, typ)| FieldMetadata {
indexed: true,
stored: false,
field_name,
fast: false,
typ,
}),
);
let total_num_terms = encoded_fields_in_index
.iter()
.map(|field_space| field_space.num_terms)
.sum();
indexed_fields.extend(encoded_fields_in_index.into_iter().map(|field_space| {
let field_name = build_path(&field_name, field_space.field_name);
// It is complex to attribute the exact amount of bytes required by specific
// field in the json field. Instead, as a proxy, we
// attribute the total amount of bytes for the entire json field,
// proportionally to the number of terms in each
// fields.
let term_dictionary_size = (term_dictionary_json_field_num_bytes
* field_space.num_terms)
.checked_div(total_num_terms)
.unwrap_or(0);
FieldMetadata {
postings_size: Some(field_space.postings_size),
positions_size: Some(field_space.positions_size),
term_dictionary_size: Some(ByteCount::from(term_dictionary_size)),
fast_size: None,
// The stored flag will be set at the end of this function!
stored: field_entry.is_stored(),
field_name,
typ: field_space.field_type,
}
}));
} else {
let postings_size: ByteCount = self
.postings_composite
.open_read(field)
.map(|posting_fileslice| posting_fileslice.len())
.unwrap_or(0)
.into();
let positions_size: ByteCount = self
.positions_composite
.open_read(field)
.map(|positions_fileslice| positions_fileslice.len())
.unwrap_or(0)
.into();
let term_dictionary_size: ByteCount = self
.termdict_composite
.open_read(field)
.map(|term_dictionary_fileslice| term_dictionary_fileslice.len())
.unwrap_or(0)
.into();
indexed_fields.push(FieldMetadata {
indexed: true,
stored: false,
field_name: field_name.to_string(),
fast: false,
typ: field_entry.field_type().value_type(),
// The stored flag will be set at the end of this function!
stored: field_entry.is_stored(),
fast_size: None,
term_dictionary_size: Some(term_dictionary_size),
postings_size: Some(postings_size),
positions_size: Some(positions_size),
});
}
}
}
let mut fast_fields: Vec<FieldMetadata> = self
let fast_fields: Vec<FieldMetadata> = self
.fast_fields()
.columnar()
.iter_columns()?
@@ -363,23 +402,21 @@ impl SegmentReader {
.get(&field_name)
.unwrap_or(&field_name)
.to_string();
let stored = is_field_stored(&field_name, &self.schema);
FieldMetadata {
indexed: false,
stored: false,
field_name,
fast: true,
typ: Type::from(handle.column_type()),
stored,
fast_size: Some(handle.num_bytes()),
term_dictionary_size: None,
postings_size: None,
positions_size: None,
}
})
.collect();
// Since the type is encoded differently in the fast field and in the inverted index,
// the order of the fields is not guaranteed to be the same. Therefore, we sort the fields.
// If we are sure that the order is the same, we can remove this sort.
indexed_fields.sort_unstable();
fast_fields.sort_unstable();
let merged = merge_field_meta_data(vec![indexed_fields, fast_fields], &self.schema);
Ok(merged)
let merged_field_metadatas: Vec<FieldMetadata> =
merge_field_meta_data(vec![indexed_fields, fast_fields]);
Ok(merged_field_metadatas)
}
/// Returns the segment id
@@ -443,20 +480,47 @@ pub struct FieldMetadata {
// Notice: Don't reorder the declaration of 1.field_name 2.typ, as it is used for ordering by
// field_name then typ.
pub typ: Type,
/// Is the field indexed for search
pub indexed: bool,
/// Is the field stored in the doc store
pub stored: bool,
/// Is the field stored in the columnar storage
pub fast: bool,
/// Size occupied in the columnar storage (None if not fast)
pub fast_size: Option<ByteCount>,
/// term_dictionary
pub term_dictionary_size: Option<ByteCount>,
/// Size occupied in the index postings storage (None if not indexed)
pub postings_size: Option<ByteCount>,
/// Size occupied in the index postings storage (None if positions are not recorded)
pub positions_size: Option<ByteCount>,
}
impl BitOrAssign for FieldMetadata {
fn bitor_assign(&mut self, rhs: Self) {
assert!(self.field_name == rhs.field_name);
assert!(self.typ == rhs.typ);
self.indexed |= rhs.indexed;
fn merge_options(left: Option<ByteCount>, right: Option<ByteCount>) -> Option<ByteCount> {
match (left, right) {
(Some(l), Some(r)) => Some(l + r),
(None, right) => right,
(left, None) => left,
}
}
impl FieldMetadata {
/// Returns true if and only if the field is indexed.
pub fn is_indexed(&self) -> bool {
self.postings_size.is_some()
}
/// Returns true if and only if the field is a fast field (i.e.: recorded in columnar format).
pub fn is_fast(&self) -> bool {
self.fast_size.is_some()
}
/// Merges two field metadata.
pub fn merge(&mut self, rhs: Self) {
assert_eq!(self.field_name, rhs.field_name);
assert_eq!(self.typ, rhs.typ);
self.stored |= rhs.stored;
self.fast |= rhs.fast;
self.fast_size = merge_options(self.fast_size, rhs.fast_size);
self.term_dictionary_size =
merge_options(self.term_dictionary_size, rhs.term_dictionary_size);
self.postings_size = merge_options(self.postings_size, rhs.postings_size);
self.positions_size = merge_options(self.positions_size, rhs.positions_size);
}
}
@@ -469,23 +533,29 @@ fn is_field_stored(field_name: &str, schema: &Schema) -> bool {
}
/// Helper to merge the field metadata from multiple segments.
pub fn merge_field_meta_data(
field_metadatas: Vec<Vec<FieldMetadata>>,
schema: &Schema,
) -> Vec<FieldMetadata> {
pub fn merge_field_meta_data(mut field_metadatas: Vec<Vec<FieldMetadata>>) -> Vec<FieldMetadata> {
// READ BEFORE REMOVING THIS!
//
// Because we replace field sep by `.`, fields are not always sorted.
// Also, to enforce such an implicit contract, we would have to add
// assert here.
//
// Sorting is linear time on pre-sorted data, so we are simply better off sorting data here.
for field_metadatas in &mut field_metadatas {
field_metadatas.sort_unstable();
}
let mut merged_field_metadata = Vec::new();
for (_key, mut group) in &field_metadatas
.into_iter()
.kmerge_by(|left, right| left < right)
.kmerge()
// TODO: Remove allocation
.chunk_by(|el| (el.field_name.to_string(), el.typ))
{
let mut merged: FieldMetadata = group.next().unwrap();
for el in group {
merged |= el;
merged.merge(el);
}
// Currently is_field_stored is maybe too slow for the high cardinality case
merged.stored = is_field_stored(&merged.field_name, schema);
merged_field_metadata.push(merged);
}
merged_field_metadata
@@ -507,7 +577,7 @@ fn intersect_alive_bitset(
}
impl fmt::Debug for SegmentReader {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "SegmentReader({:?})", self.segment_id)
}
}
@@ -516,122 +586,168 @@ impl fmt::Debug for SegmentReader {
mod test {
use super::*;
use crate::index::Index;
use crate::schema::{SchemaBuilder, Term, STORED, TEXT};
use crate::schema::{Term, STORED, TEXT};
use crate::IndexWriter;
#[track_caller]
fn assert_merge(fields_metadatas: &[Vec<FieldMetadata>], expected: &[FieldMetadata]) {
use itertools::Itertools;
let num_els = fields_metadatas.len();
for permutation in fields_metadatas.iter().cloned().permutations(num_els) {
let res = merge_field_meta_data(permutation);
assert_eq!(&res, &expected);
}
}
#[test]
fn test_merge_field_meta_data_same() {
let schema = SchemaBuilder::new().build();
fn test_merge_field_meta_data_same_field() {
let field_metadata1 = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: true,
stored: false,
fast: true,
term_dictionary_size: Some(ByteCount::from(100u64)),
postings_size: Some(ByteCount::from(1_000u64)),
positions_size: Some(ByteCount::from(2_000u64)),
fast_size: Some(ByteCount::from(1_000u64).into()),
};
let field_metadata2 = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: true,
stored: false,
fast: true,
term_dictionary_size: Some(ByteCount::from(80u64)),
postings_size: Some(ByteCount::from(1_500u64)),
positions_size: Some(ByteCount::from(2_500u64)),
fast_size: Some(ByteCount::from(3_000u64).into()),
};
let res = merge_field_meta_data(
vec![vec![field_metadata1.clone()], vec![field_metadata2]],
&schema,
let expected = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
stored: false,
term_dictionary_size: Some(ByteCount::from(180u64)),
postings_size: Some(ByteCount::from(2_500u64)),
positions_size: Some(ByteCount::from(4_500u64)),
fast_size: Some(ByteCount::from(4_000u64).into()),
};
assert_merge(
&[vec![field_metadata1.clone()], vec![field_metadata2]],
&[expected],
);
assert_eq!(res, vec![field_metadata1]);
}
#[track_caller]
#[test]
fn test_merge_field_meta_data_different() {
let schema = SchemaBuilder::new().build();
let field_metadata1 = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: false,
stored: false,
fast: true,
fast_size: Some(1_000u64.into()),
term_dictionary_size: Some(100u64.into()),
postings_size: Some(2_000u64.into()),
positions_size: Some(4_000u64.into()),
};
let field_metadata2 = FieldMetadata {
field_name: "b".to_string(),
typ: crate::schema::Type::Str,
indexed: false,
stored: false,
fast: true,
fast_size: Some(1_002u64.into()),
term_dictionary_size: None,
postings_size: None,
positions_size: None,
};
let field_metadata3 = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: true,
term_dictionary_size: Some(101u64.into()),
postings_size: Some(2_001u64.into()),
positions_size: Some(4_001u64.into()),
stored: false,
fast: false,
fast_size: None,
};
let res = merge_field_meta_data(
vec![
let expected = vec![
FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
stored: false,
term_dictionary_size: Some(201u64.into()),
postings_size: Some(4_001u64.into()),
positions_size: Some(8_001u64.into()),
fast_size: Some(1_000u64.into()),
},
FieldMetadata {
field_name: "b".to_string(),
typ: crate::schema::Type::Str,
stored: false,
term_dictionary_size: None,
postings_size: None,
positions_size: None,
fast_size: Some(1_002u64.into()),
},
];
assert_merge(
&[
vec![field_metadata1.clone(), field_metadata2.clone()],
vec![field_metadata3],
],
&schema,
&expected,
);
let field_metadata_expected1 = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: true,
stored: false,
fast: true,
};
assert_eq!(res, vec![field_metadata_expected1, field_metadata2.clone()]);
}
#[test]
fn test_merge_field_meta_data_merge() {
use pretty_assertions::assert_eq;
let get_meta_data = |name: &str, typ: Type| FieldMetadata {
field_name: name.to_string(),
typ,
indexed: false,
term_dictionary_size: None,
postings_size: None,
positions_size: None,
stored: false,
fast: true,
fast_size: Some(1u64.into()),
};
let schema = SchemaBuilder::new().build();
let mut metas = vec![get_meta_data("d", Type::Str), get_meta_data("e", Type::U64)];
metas.sort();
let res = merge_field_meta_data(vec![vec![get_meta_data("e", Type::Str)], metas], &schema);
assert_eq!(
res,
vec![
let metas = vec![get_meta_data("d", Type::Str), get_meta_data("e", Type::U64)];
assert_merge(
&[vec![get_meta_data("e", Type::Str)], metas],
&[
get_meta_data("d", Type::Str),
get_meta_data("e", Type::Str),
get_meta_data("e", Type::U64),
]
],
);
}
#[test]
fn test_merge_field_meta_data_bitxor() {
let field_metadata1 = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: false,
term_dictionary_size: None,
postings_size: None,
positions_size: None,
stored: false,
fast: true,
fast_size: Some(10u64.into()),
};
let field_metadata2 = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: true,
term_dictionary_size: Some(10u64.into()),
postings_size: Some(11u64.into()),
positions_size: Some(12u64.into()),
stored: false,
fast: false,
fast_size: None,
};
let field_metadata_expected = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: true,
term_dictionary_size: Some(10u64.into()),
postings_size: Some(11u64.into()),
positions_size: Some(12u64.into()),
stored: false,
fast: true,
fast_size: Some(10u64.into()),
};
let mut res1 = field_metadata1.clone();
res1 |= field_metadata2.clone();
res1.merge(field_metadata2.clone());
let mut res2 = field_metadata2.clone();
res2 |= field_metadata1;
res2.merge(field_metadata1);
assert_eq!(res1, field_metadata_expected);
assert_eq!(res2, field_metadata_expected);
}
@@ -662,6 +778,7 @@ mod test {
assert_eq!(4, searcher.segment_reader(0).max_doc());
Ok(())
}
#[test]
fn test_alive_docs_iterator() -> crate::Result<()> {
let mut schema_builder = Schema::builder();

View File

@@ -615,7 +615,7 @@ impl<D: Document> IndexWriter<D> {
/// It is also possible to add a payload to the `commit`
/// using this API.
/// See [`PreparedCommit::set_payload()`].
pub fn prepare_commit(&mut self) -> crate::Result<PreparedCommit<D>> {
pub fn prepare_commit(&mut self) -> crate::Result<PreparedCommit<'_, D>> {
// Here, because we join all of the worker threads,
// all of the segment update for this commit have been
// sent.

View File

@@ -61,6 +61,8 @@ type AddBatchReceiver<D> = channel::Receiver<AddBatch<D>>;
#[cfg(test)]
mod tests_mmap {
use common::ByteCount;
use crate::aggregation::agg_req::Aggregations;
use crate::aggregation::agg_result::AggregationResults;
use crate::aggregation::AggregationCollector;
@@ -280,11 +282,14 @@ mod tests_mmap {
field_name_out
};
let mut fields = reader.searcher().segment_readers()[0]
let mut fields: Vec<(String, Type)> = reader.searcher().segment_readers()[0]
.inverted_index(field)
.unwrap()
.list_encoded_fields()
.unwrap();
.list_encoded_json_fields()
.unwrap()
.into_iter()
.map(|field_space| (field_space.field_name, field_space.field_type))
.collect();
assert_eq!(fields.len(), 8);
fields.sort();
let mut expected_fields = vec![
@@ -385,7 +390,12 @@ mod tests_mmap {
let reader = &searcher.segment_readers()[0];
let inverted_index = reader.inverted_index(json_field).unwrap();
assert_eq!(
inverted_index.list_encoded_fields().unwrap(),
inverted_index
.list_encoded_json_fields()
.unwrap()
.into_iter()
.map(|field_space| (field_space.field_name, field_space.field_type))
.collect::<Vec<_>>(),
[
("k8s.container.name".to_string(), Type::Str),
("sub\u{1}a".to_string(), Type::I64),
@@ -402,19 +412,41 @@ mod tests_mmap {
fn test_json_fields_metadata_expanded_dots_one_segment() {
test_json_fields_metadata(true, true);
}
#[test]
fn test_json_fields_metadata_expanded_dots_multi_segment() {
test_json_fields_metadata(true, false);
}
#[test]
fn test_json_fields_metadata_no_expanded_dots_one_segment() {
test_json_fields_metadata(false, true);
}
#[test]
fn test_json_fields_metadata_no_expanded_dots_multi_segment() {
test_json_fields_metadata(false, false);
}
#[track_caller]
fn assert_size_eq(lhs: Option<ByteCount>, rhs: Option<ByteCount>) {
let ignore_actual_values = |size_opt: Option<ByteCount>| size_opt.map(|val| val > 0);
assert_eq!(ignore_actual_values(lhs), ignore_actual_values(rhs));
}
#[track_caller]
fn assert_field_metadata_eq_but_ignore_field_size(
expected: &FieldMetadata,
actual: &FieldMetadata,
) {
assert_eq!(&expected.field_name, &actual.field_name);
assert_eq!(&expected.typ, &actual.typ);
assert_eq!(&expected.stored, &actual.stored);
assert_size_eq(expected.postings_size, actual.postings_size);
assert_size_eq(expected.positions_size, actual.positions_size);
assert_size_eq(expected.fast_size, actual.fast_size);
}
fn test_json_fields_metadata(expanded_dots: bool, one_segment: bool) {
use pretty_assertions::assert_eq;
let mut schema_builder = Schema::builder();
@@ -453,81 +485,101 @@ mod tests_mmap {
assert_eq!(searcher.num_docs(), 3);
let fields_metadata = index.fields_metadata().unwrap();
assert_eq!(
fields_metadata,
[
FieldMetadata {
field_name: "empty".to_string(),
indexed: true,
stored: true,
fast: true,
typ: Type::U64
let expected_fields = &[
FieldMetadata {
field_name: "empty".to_string(),
stored: true,
typ: Type::U64,
term_dictionary_size: Some(0u64.into()),
fast_size: Some(1u64.into()),
postings_size: Some(0u64.into()),
positions_size: Some(0u64.into()),
},
FieldMetadata {
field_name: if expanded_dots {
"json.shadow.k8s.container.name".to_string()
} else {
"json.shadow.k8s\\.container\\.name".to_string()
},
FieldMetadata {
field_name: if expanded_dots {
"json.shadow.k8s.container.name".to_string()
} else {
"json.shadow.k8s\\.container\\.name".to_string()
},
indexed: true,
stored: true,
fast: true,
typ: Type::Str
},
FieldMetadata {
field_name: "json.shadow.sub.a".to_string(),
indexed: true,
stored: true,
fast: true,
typ: Type::I64
},
FieldMetadata {
field_name: "json.shadow.sub.b".to_string(),
indexed: true,
stored: true,
fast: true,
typ: Type::I64
},
FieldMetadata {
field_name: "json.shadow.suber.a".to_string(),
indexed: true,
stored: true,
fast: true,
typ: Type::I64
},
FieldMetadata {
field_name: "json.shadow.suber.a".to_string(),
indexed: true,
stored: true,
fast: true,
typ: Type::Str
},
FieldMetadata {
field_name: "json.shadow.suber.b".to_string(),
indexed: true,
stored: true,
fast: true,
typ: Type::I64
},
FieldMetadata {
field_name: "json.shadow.val".to_string(),
indexed: true,
stored: true,
fast: true,
typ: Type::Str
},
FieldMetadata {
field_name: "numbers".to_string(),
indexed: false,
stored: false,
fast: true,
typ: Type::U64
}
]
);
stored: true,
typ: Type::Str,
term_dictionary_size: Some(1u64.into()),
fast_size: Some(1u64.into()),
postings_size: Some(1u64.into()),
positions_size: Some(1u64.into()),
},
FieldMetadata {
field_name: "json.shadow.sub.a".to_string(),
typ: Type::I64,
stored: true,
fast_size: Some(1u64.into()),
term_dictionary_size: Some(1u64.into()),
postings_size: Some(1u64.into()),
positions_size: Some(1u64.into()),
},
FieldMetadata {
field_name: "json.shadow.sub.b".to_string(),
typ: Type::I64,
stored: true,
fast_size: Some(1u64.into()),
term_dictionary_size: Some(1u64.into()),
postings_size: Some(1u64.into()),
positions_size: Some(1u64.into()),
},
FieldMetadata {
field_name: "json.shadow.suber.a".to_string(),
stored: true,
typ: Type::I64,
fast_size: Some(1u64.into()),
term_dictionary_size: Some(1u64.into()),
postings_size: Some(1u64.into()),
positions_size: Some(1u64.into()),
},
FieldMetadata {
field_name: "json.shadow.suber.a".to_string(),
typ: Type::Str,
stored: true,
fast_size: Some(1u64.into()),
term_dictionary_size: Some(1u64.into()),
postings_size: Some(1u64.into()),
positions_size: Some(1u64.into()),
},
FieldMetadata {
field_name: "json.shadow.suber.b".to_string(),
typ: Type::I64,
stored: true,
fast_size: Some(1u64.into()),
term_dictionary_size: Some(1u64.into()),
postings_size: Some(1u64.into()),
positions_size: Some(1u64.into()),
},
FieldMetadata {
field_name: "json.shadow.val".to_string(),
typ: Type::Str,
stored: true,
fast_size: Some(1u64.into()),
term_dictionary_size: Some(1u64.into()),
postings_size: Some(1u64.into()),
positions_size: Some(1u64.into()),
},
FieldMetadata {
field_name: "numbers".to_string(),
stored: false,
typ: Type::U64,
fast_size: Some(1u64.into()),
term_dictionary_size: None,
postings_size: None,
positions_size: None,
},
];
assert_eq!(fields_metadata.len(), expected_fields.len());
for (expected, value) in expected_fields.iter().zip(fields_metadata.iter()) {
assert_field_metadata_eq_but_ignore_field_size(expected, value);
}
let query_parser = QueryParser::for_index(&index, vec![]);
// Test if returned field name can be queried
for indexed_field in fields_metadata.iter().filter(|meta| meta.indexed) {
for indexed_field in fields_metadata.iter().filter(|meta| meta.is_indexed()) {
let val = if indexed_field.typ == Type::Str {
"a"
} else {
@@ -543,7 +595,10 @@ mod tests_mmap {
}
}
// Test if returned field name can be used for aggregation
for fast_field in fields_metadata.iter().filter(|meta| meta.fast) {
for fast_field in fields_metadata
.iter()
.filter(|field_metadata| field_metadata.is_fast())
{
let agg_req_str = json!(
{
"termagg": {

View File

@@ -55,7 +55,7 @@
//! // between indexing threads.
//! let mut index_writer: IndexWriter = index.writer(100_000_000)?;
//!
//! // Let's index one documents!
//! // Let's index a document!
//! index_writer.add_document(doc!(
//! title => "The Old Man and the Sea",
//! body => "He was an old man who fished alone in a skiff in \
@@ -165,7 +165,7 @@ mod macros;
mod future_result;
// Re-exports
pub use common::DateTime;
pub use common::{ByteCount, DateTime};
pub use {columnar, query_grammar, time};
pub use crate::error::TantivyError;
@@ -370,6 +370,8 @@ macro_rules! fail_point {
/// Common test utilities.
#[cfg(test)]
pub mod tests {
use std::collections::BTreeMap;
use common::{BinarySerializable, FixedSize};
use query_grammar::{UserInputAst, UserInputLeaf, UserInputLiteral};
use rand::distributions::{Bernoulli, Uniform};
@@ -382,7 +384,7 @@ pub mod tests {
use crate::index::SegmentReader;
use crate::merge_policy::NoMergePolicy;
use crate::postings::Postings;
use crate::query::BooleanQuery;
use crate::query::{BooleanQuery, QueryParser};
use crate::schema::*;
use crate::{DateTime, DocAddress, Index, IndexWriter, ReloadPolicy};
@@ -1223,4 +1225,49 @@ pub mod tests {
);
assert_eq!(dt_from_ts_nanos.to_hms_micro(), offset_dt.to_hms_micro());
}
#[test]
fn test_json_number_ambiguity() {
let mut schema_builder = Schema::builder();
let json_field = schema_builder.add_json_field("number", crate::schema::TEXT);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer = index.writer_for_tests().unwrap();
{
let mut doc = TantivyDocument::new();
let mut obj = BTreeMap::default();
obj.insert("key".to_string(), OwnedValue::I64(1i64));
doc.add_object(json_field, obj);
index_writer.add_document(doc).unwrap();
}
{
let mut doc = TantivyDocument::new();
let mut obj = BTreeMap::default();
obj.insert("key".to_string(), OwnedValue::U64(1u64));
doc.add_object(json_field, obj);
index_writer.add_document(doc).unwrap();
}
{
let mut doc = TantivyDocument::new();
let mut obj = BTreeMap::default();
obj.insert("key".to_string(), OwnedValue::F64(1.0f64));
doc.add_object(json_field, obj);
index_writer.add_document(doc).unwrap();
}
index_writer.commit().unwrap();
let searcher = index.reader().unwrap().searcher();
assert_eq!(searcher.num_docs(), 3);
{
let parser = QueryParser::for_index(&index, vec![]);
let query = parser.parse_query("number.key:1").unwrap();
let count = searcher.search(&query, &crate::collector::Count).unwrap();
assert_eq!(count, 3);
}
{
let parser = QueryParser::for_index(&index, vec![]);
let query = parser.parse_query("number.key:1.0").unwrap();
let count = searcher.search(&query, &crate::collector::Count).unwrap();
assert_eq!(count, 3);
}
}
}

View File

@@ -40,6 +40,9 @@ const COMPRESSION_BLOCK_SIZE: usize = BitPacker4x::BLOCK_LEN;
#[cfg(test)]
pub(crate) mod tests {
use std::iter;
use proptest::prelude::*;
use proptest::sample::select;

View File

@@ -227,19 +227,6 @@ impl BlockSegmentPostings {
self.doc_decoder.output_array()
}
/// Returns a full block, regardless of whether the block is complete or incomplete (
/// as it happens for the last block of the posting list).
///
/// In the latter case, the block is guaranteed to be padded with the sentinel value:
/// `TERMINATED`. The array is also guaranteed to be aligned on 16 bytes = 128 bits.
///
/// This method is useful to run SSE2 linear search.
#[inline]
pub(crate) fn full_block(&self) -> &[DocId; COMPRESSION_BLOCK_SIZE] {
debug_assert!(self.block_is_loaded());
self.doc_decoder.full_output()
}
/// Return the document at index `idx` of the block.
#[inline]
pub fn doc(&self, idx: usize) -> u32 {
@@ -275,22 +262,36 @@ impl BlockSegmentPostings {
///
/// If all docs are smaller than target, the block loaded may be empty,
/// or be the last an incomplete VInt block.
pub fn seek(&mut self, target_doc: DocId) {
self.shallow_seek(target_doc);
pub fn seek(&mut self, target_doc: DocId) -> usize {
// Move to the block that might contain our document.
self.seek_block(target_doc);
self.load_block();
// At this point we are on the block that might contain our document.
let doc = self.doc_decoder.seek_within_block(target_doc);
// The last block is not full and padded with TERMINATED,
// so we are guaranteed to have at least one value (real or padding)
// that is >= target_doc.
debug_assert!(doc < COMPRESSION_BLOCK_SIZE);
// `doc` is now the first element >= `target_doc`.
// If all docs are smaller than target, the current block is incomplete and padded
// with TERMINATED. After the search, the cursor points to the first TERMINATED.
doc
}
pub(crate) fn position_offset(&self) -> u64 {
self.skip_reader.position_offset()
}
/// Dangerous API! This calls seek on the skip list,
/// Dangerous API! This calls seeks the next block on the skip list,
/// but does not `.load_block()` afterwards.
///
/// `.load_block()` needs to be called manually afterwards.
/// If all docs are smaller than target, the block loaded may be empty,
/// or be the last an incomplete VInt block.
pub(crate) fn shallow_seek(&mut self, target_doc: DocId) {
pub(crate) fn seek_block(&mut self, target_doc: DocId) {
if self.skip_reader.seek(target_doc) {
self.block_max_score_cache = None;
self.block_loaded = false;

View File

@@ -151,9 +151,11 @@ impl BlockDecoder {
&self.output[..self.output_len]
}
/// Return in-block index of first value >= `target`.
/// Uses the padded buffer to enable branchless search.
#[inline]
pub(crate) fn full_output(&self) -> &[u32; COMPRESSION_BLOCK_SIZE] {
&self.output
pub(crate) fn seek_within_block(&self, target: u32) -> usize {
crate::postings::branchless_binary_search(&self.output, target)
}
#[inline]

View File

@@ -4,7 +4,7 @@ use crate::docset::DocSet;
use crate::fastfield::AliveBitSet;
use crate::positions::PositionReader;
use crate::postings::compression::COMPRESSION_BLOCK_SIZE;
use crate::postings::{branchless_binary_search, BlockSegmentPostings, Postings};
use crate::postings::{BlockSegmentPostings, Postings};
use crate::{DocId, TERMINATED};
/// `SegmentPostings` represents the inverted list or postings associated with
@@ -175,26 +175,11 @@ impl DocSet for SegmentPostings {
return self.doc();
}
self.block_cursor.seek(target);
// At this point we are on the block, that might contain our document.
let output = self.block_cursor.full_block();
self.cur = branchless_binary_search(output, target);
// The last block is not full and padded with the value TERMINATED,
// so that we are guaranteed to have at least doc in the block (a real one or the padding)
// that is greater or equal to the target.
debug_assert!(self.cur < COMPRESSION_BLOCK_SIZE);
// `doc` is now the first element >= `target`
// If all docs are smaller than target the current block should be incomplemented and padded
// with the value `TERMINATED`.
//
// After the search, the cursor should point to the first value of TERMINATED.
let doc = output[self.cur];
// Delegate block-local search to BlockSegmentPostings::seek, which returns
// the in-block index of the first doc >= target.
self.cur = self.block_cursor.seek(target);
let doc = self.doc();
debug_assert!(doc >= target);
debug_assert_eq!(doc, self.doc());
doc
}

View File

@@ -75,7 +75,7 @@ impl InvertedIndexSerializer {
field: Field,
total_num_tokens: u64,
fieldnorm_reader: Option<FieldNormReader>,
) -> io::Result<FieldSerializer> {
) -> io::Result<FieldSerializer<'_>> {
let field_entry: &FieldEntry = self.schema.get_field_entry(field);
let term_dictionary_write = self.terms_write.for_field(field);
let postings_write = self.postings_write.for_field(field);
@@ -126,7 +126,7 @@ impl<'a> FieldSerializer<'a> {
let term_dictionary_builder = TermDictionaryBuilder::create(term_dictionary_write)?;
let average_fieldnorm = fieldnorm_reader
.as_ref()
.map(|ff_reader| (total_num_tokens as Score / ff_reader.num_docs() as Score))
.map(|ff_reader| total_num_tokens as Score / ff_reader.num_docs() as Score)
.unwrap_or(0.0);
let postings_serializer = PostingsSerializer::new(
postings_write,

View File

@@ -1,5 +1,3 @@
use serde::{Deserialize, Serialize};
use crate::fieldnorm::FieldNormReader;
use crate::query::Explanation;
use crate::schema::Field;
@@ -68,12 +66,6 @@ fn compute_tf_cache(average_fieldnorm: Score) -> [Score; 256] {
cache
}
#[derive(Clone, PartialEq, Debug, Serialize, Deserialize)]
pub struct Bm25Params {
pub idf: Score,
pub avg_fieldnorm: Score,
}
/// A struct used for computing BM25 scores.
#[derive(Clone)]
pub struct Bm25Weight {

View File

@@ -167,7 +167,7 @@ pub fn block_wand(
let block_max_score_upperbound: Score = scorers[..pivot_len]
.iter_mut()
.map(|scorer| {
scorer.shallow_seek(pivot_doc);
scorer.seek_block(pivot_doc);
scorer.block_max_score()
})
.sum();
@@ -234,7 +234,7 @@ pub fn block_wand_single_scorer(
return;
}
doc = last_doc_in_block + 1;
scorer.shallow_seek(doc);
scorer.seek_block(doc);
}
// Seek will effectively load that block.
doc = scorer.seek(doc);
@@ -256,7 +256,7 @@ pub fn block_wand_single_scorer(
}
}
doc += 1;
scorer.shallow_seek(doc);
scorer.seek_block(doc);
}
}

View File

@@ -1,12 +1,15 @@
use core::fmt::Debug;
use columnar::{ColumnIndex, DynamicColumn};
use common::BitSet;
use super::{ConstScorer, EmptyScorer};
use crate::docset::{DocSet, TERMINATED};
use crate::index::SegmentReader;
use crate::query::all_query::AllScorer;
use crate::query::boost_query::BoostScorer;
use crate::query::explanation::does_not_match;
use crate::query::{EnableScoring, Explanation, Query, Scorer, Weight};
use crate::query::{BitSetDocSet, EnableScoring, Explanation, Query, Scorer, Weight};
use crate::schema::Type;
use crate::{DocId, Score, TantivyError};
@@ -113,13 +116,49 @@ impl Weight for ExistsWeight {
non_empty_columns.push(column)
}
}
// TODO: we can optimizer more here since in most cases we will have only one index
if !non_empty_columns.is_empty() {
let docset = ExistsDocSet::new(non_empty_columns, reader.max_doc());
Ok(Box::new(ConstScorer::new(docset, boost)))
} else {
Ok(Box::new(EmptyScorer))
if non_empty_columns.is_empty() {
return Ok(Box::new(EmptyScorer));
}
// If any column is full, all docs match.
let max_doc = reader.max_doc();
if non_empty_columns
.iter()
.any(|col| matches!(col.column_index(), ColumnIndex::Full))
{
let all_scorer = AllScorer::new(max_doc);
return Ok(Box::new(BoostScorer::new(all_scorer, boost)));
}
// If we have a single dynamic column, use ExistsDocSet
// NOTE: A lower number may be better for very sparse columns
if non_empty_columns.len() < 4 {
let docset = ExistsDocSet::new(non_empty_columns, reader.max_doc());
return Ok(Box::new(ConstScorer::new(docset, boost)));
}
// If we have many dynamic columns, precompute a bitset of matching docs
let mut doc_bitset = BitSet::with_max_value(max_doc);
for column in &non_empty_columns {
match column.column_index() {
ColumnIndex::Empty { .. } => {}
ColumnIndex::Full => {
// Handled by AllScorer return above.
}
ColumnIndex::Optional(optional_index) => {
for doc in optional_index.iter_non_null_docs() {
doc_bitset.insert(doc);
}
}
ColumnIndex::Multivalued(multi_idx) => {
for doc in multi_idx.iter_non_null_docs() {
doc_bitset.insert(doc);
}
}
}
}
let docset = BitSetDocSet::from(doc_bitset);
Ok(Box::new(ConstScorer::new(docset, boost)))
}
fn explain(&self, reader: &SegmentReader, doc: DocId) -> crate::Result<Explanation> {
@@ -294,6 +333,43 @@ mod tests {
Ok(())
}
#[test]
fn test_exists_query_json_union_no_single_full_subpath() -> crate::Result<()> {
// Build docs where no single subpath exists for all docs, but the union does.
let mut schema_builder = Schema::builder();
let json = schema_builder.add_json_field("json", TEXT | FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
{
let mut index_writer = index.writer_for_tests()?;
for i in 0u64..100u64 {
if i % 2 == 0 {
// only subpath `a`
index_writer.add_document(doc!(json => json!({"a": i})))?;
} else {
// only subpath `b`
index_writer.add_document(doc!(json => json!({"b": i})))?;
}
}
index_writer.commit()?;
}
let reader = index.reader()?;
let searcher = reader.searcher();
// No single subpath is full
assert_eq!(count_existing_fields(&searcher, "json.a", false)?, 50);
assert_eq!(count_existing_fields(&searcher, "json.b", false)?, 50);
// Root exists with subpaths disabled is zero
assert_eq!(count_existing_fields(&searcher, "json", false)?, 0);
// Root exists with subpaths enabled should match all docs via union
assert_eq!(count_existing_fields(&searcher, "json", true)?, 100);
Ok(())
}
#[test]
fn test_exists_query_misc_supported_types() -> crate::Result<()> {
let mut schema_builder = Schema::builder();

View File

@@ -104,7 +104,7 @@ mod tests {
let query = query_parser.parse_query("a a a a a").unwrap();
let mut terms = Vec::new();
query.query_terms(&mut |term, pos| terms.push((term, pos)));
assert_eq!(vec![(&term_a, false); 5], terms);
assert_eq!(vec![(&term_a, false); 1], terms);
}
{
let query = query_parser.parse_query("a -b").unwrap();

View File

@@ -1,8 +1,11 @@
use std::fmt;
use std::ops::Bound;
use std::sync::Arc;
use tantivy_fst::Regex;
use crate::query::Occur;
use crate::schema::Term;
use crate::schema::{Field, Term};
use crate::Score;
#[derive(Clone)]
@@ -21,6 +24,10 @@ pub enum LogicalLiteral {
elements: Vec<Term>,
},
All,
Regex {
pattern: Arc<Regex>,
field: Field,
},
}
pub enum LogicalAst {
@@ -38,6 +45,7 @@ impl LogicalAst {
}
}
// TODO: Move to rewrite_ast in query_grammar
pub fn simplify(self) -> LogicalAst {
match self {
LogicalAst::Clause(clauses) => {
@@ -147,6 +155,10 @@ impl fmt::Debug for LogicalLiteral {
write!(formatter, "]")
}
LogicalLiteral::All => write!(formatter, "*"),
LogicalLiteral::Regex {
ref pattern,
ref field,
} => write!(formatter, "Regex({field:?}, {pattern:?})"),
}
}
}

View File

@@ -2,12 +2,14 @@ use std::net::{AddrParseError, IpAddr};
use std::num::{ParseFloatError, ParseIntError};
use std::ops::Bound;
use std::str::{FromStr, ParseBoolError};
use std::sync::Arc;
use base64::engine::general_purpose::STANDARD as BASE64;
use base64::Engine;
use itertools::Itertools;
use query_grammar::{UserInputAst, UserInputBound, UserInputLeaf, UserInputLiteral};
use rustc_hash::FxHashMap;
use tantivy_fst::Regex;
use super::logical_ast::*;
use crate::index::Index;
@@ -15,7 +17,7 @@ use crate::json_utils::convert_to_fast_value_and_append_to_json_term;
use crate::query::range_query::{is_type_valid_for_fastfield_range_query, RangeQuery};
use crate::query::{
AllQuery, BooleanQuery, BoostQuery, EmptyQuery, FuzzyTermQuery, Occur, PhrasePrefixQuery,
PhraseQuery, Query, TermQuery, TermSetQuery,
PhraseQuery, Query, RegexQuery, TermQuery, TermSetQuery,
};
use crate::schema::{
Facet, FacetParseError, Field, FieldType, IndexRecordOption, IntoIpv6Addr, JsonObjectOptions,
@@ -206,6 +208,7 @@ pub struct QueryParser {
tokenizer_manager: TokenizerManager,
boost: FxHashMap<Field, Score>,
fuzzy: FxHashMap<Field, Fuzzy>,
regexes_allowed: bool,
}
#[derive(Clone)]
@@ -260,6 +263,7 @@ impl QueryParser {
conjunction_by_default: false,
boost: Default::default(),
fuzzy: Default::default(),
regexes_allowed: false,
}
}
@@ -320,6 +324,11 @@ impl QueryParser {
);
}
/// Allow regexes in queries
pub fn allow_regexes(&mut self) {
self.regexes_allowed = true;
}
/// Parse a query
///
/// Note that `parse_query` returns an error if the input
@@ -486,24 +495,17 @@ impl QueryParser {
Ok(terms.into_iter().next().unwrap())
}
FieldType::JsonObject(ref json_options) => {
let get_term_with_path = || {
Term::from_field_json_path(
field,
json_path,
json_options.is_expand_dots_enabled(),
)
};
let mut term = Term::from_field_json_path(
field,
json_path,
json_options.is_expand_dots_enabled(),
);
if let Some(term) =
// Try to convert the phrase to a fast value
convert_to_fast_value_and_append_to_json_term(
get_term_with_path(),
phrase,
false,
)
convert_to_fast_value_and_append_to_json_term(&term, phrase, false)
{
Ok(term)
} else {
let mut term = get_term_with_path();
term.append_type_and_str(phrase);
Ok(term)
}
@@ -670,7 +672,7 @@ impl QueryParser {
}
UserInputAst::Boost(ast, boost) => {
let (ast, errors) = self.compute_logical_ast_with_occur_lenient(*ast);
(ast.boost(boost as Score), errors)
(ast.boost(boost.into_inner() as Score), errors)
}
UserInputAst::Leaf(leaf) => {
let (ast, errors) = self.compute_logical_ast_from_leaf_lenient(*leaf);
@@ -860,6 +862,51 @@ impl QueryParser {
"Range query need to target a specific field.".to_string(),
)],
),
UserInputLeaf::Regex { field, pattern } => {
if !self.regexes_allowed {
return (
None,
vec![QueryParserError::UnsupportedQuery(
"Regex queries are not allowed.".to_string(),
)],
);
}
let full_path = try_tuple!(field.ok_or_else(|| {
QueryParserError::UnsupportedQuery(
"Regex query need to target a specific field.".to_string(),
)
}));
let (field, json_path) = try_tuple!(self
.split_full_path(&full_path)
.ok_or_else(|| QueryParserError::FieldDoesNotExist(full_path.clone())));
if !json_path.is_empty() {
return (
None,
vec![QueryParserError::UnsupportedQuery(
"Regex query does not support json paths.".to_string(),
)],
);
}
if !matches!(
self.schema.get_field_entry(field).field_type(),
FieldType::Str(_)
) {
return (
None,
vec![QueryParserError::UnsupportedQuery(
"Regex query only supported on text fields".to_string(),
)],
);
}
let pattern = try_tuple!(Regex::new(&pattern).map_err(|e| {
QueryParserError::UnsupportedQuery(format!("Invalid regex: {e}"))
}));
let logical_ast = LogicalAst::Leaf(Box::new(LogicalLiteral::Regex {
pattern: Arc::new(pattern),
field,
}));
(Some(logical_ast), Vec::new())
}
}
}
}
@@ -902,6 +949,9 @@ fn convert_literal_to_query(
LogicalLiteral::Range { lower, upper } => Box::new(RangeQuery::new(lower, upper)),
LogicalLiteral::Set { elements, .. } => Box::new(TermSetQuery::new(elements)),
LogicalLiteral::All => Box::new(AllQuery),
LogicalLiteral::Regex { pattern, field } => {
Box::new(RegexQuery::from_regex(pattern, field))
}
}
}
@@ -971,7 +1021,7 @@ fn generate_literals_for_json_object(
// Try to convert the phrase to a fast value
if let Some(term) =
convert_to_fast_value_and_append_to_json_term(get_term_with_path(), phrase, true)
convert_to_fast_value_and_append_to_json_term(&get_term_with_path(), phrase, true)
{
logical_literals.push(LogicalLiteral::Term(term));
}
@@ -1100,11 +1150,15 @@ mod test {
query: &str,
default_conjunction: bool,
default_fields: &[&'static str],
allow_regexes: bool,
) -> Result<LogicalAst, QueryParserError> {
let mut query_parser = make_query_parser_with_default_fields(default_fields);
if default_conjunction {
query_parser.set_conjunction_by_default();
}
if allow_regexes {
query_parser.allow_regexes();
}
query_parser.parse_query_to_logical_ast(query)
}
@@ -1116,6 +1170,7 @@ mod test {
query,
default_conjunction,
&["title", "text"],
true,
)
}
@@ -1130,6 +1185,7 @@ mod test {
query,
default_conjunction,
default_fields,
true,
)
.unwrap();
let query_str = format!("{query:?}");
@@ -1790,6 +1846,15 @@ mod test {
}
}
#[test]
fn test_space_before_value() {
test_parse_query_to_logical_ast_helper(
"title: a",
r#"Term(field=0, type=Str, "a")"#,
false,
);
}
#[test]
fn test_escaped_field() {
let mut schema_builder = Schema::builder();
@@ -1984,4 +2049,66 @@ mod test {
Err(QueryParserError::ExpectedInt(_))
);
}
#[test]
pub fn test_deduplication() {
let query = "be be";
test_parse_query_to_logical_ast_helper(
query,
"(Term(field=0, type=Str, \"be\") Term(field=1, type=Str, \"be\"))",
false,
);
}
#[test]
pub fn test_regex() {
let expected_regex = tantivy_fst::Regex::new(r".*b").unwrap();
test_parse_query_to_logical_ast_helper(
"title:/.*b/",
format!("Regex(Field(0), {:#?})", expected_regex).as_str(),
false,
);
// Invalid field
let err = parse_query_to_logical_ast("float:/.*b/", false).unwrap_err();
assert_eq!(
err.to_string(),
"Unsupported query: Regex query only supported on text fields"
);
// No field specified
let err = parse_query_to_logical_ast("/.*b/", false).unwrap_err();
assert_eq!(
err.to_string(),
"Unsupported query: Regex query need to target a specific field."
);
// Regex on a json path
let err = parse_query_to_logical_ast("title.subpath:/.*b/", false).unwrap_err();
assert_eq!(
err.to_string(),
"Unsupported query: Regex query does not support json paths."
);
// Invalid regex
let err = parse_query_to_logical_ast("title:/[A-Z*b/", false).unwrap_err();
assert_eq!(
err.to_string(),
"Unsupported query: Invalid regex: regex parse error:\n [A-Z*b\n ^\nerror: \
unclosed character class"
);
// Regexes not allowed
let err = parse_query_to_logical_ast_with_default_fields(
"title:/.*b/",
false,
&["title", "text"],
false,
)
.unwrap_err();
assert_eq!(
err.to_string(),
"Unsupported query: Regex queries are not allowed."
);
}
}

View File

@@ -12,10 +12,14 @@ pub use self::range_query_fastfield::*;
// TODO is this correct?
pub(crate) fn is_type_valid_for_fastfield_range_query(typ: Type) -> bool {
match typ {
Type::Str | Type::U64 | Type::I64 | Type::F64 | Type::Bool | Type::Date | Type::Json => {
true
}
Type::IpAddr => true,
Type::Str
| Type::U64
| Type::I64
| Type::F64
| Type::Bool
| Type::Date
| Type::Json
| Type::IpAddr => true,
Type::Facet | Type::Bytes => false,
}
}

View File

@@ -258,7 +258,7 @@ fn search_on_json_numerical_field(
let bounds = match typ.numerical_type().unwrap() {
NumericalType::I64 => {
let bounds = bounds.map_bound(|term| (term.as_i64().unwrap()));
let bounds = bounds.map_bound(|term| term.as_i64().unwrap());
match actual_column_type {
NumericalType::I64 => bounds.map_bound(|&term| term.to_u64()),
NumericalType::U64 => {
@@ -282,7 +282,7 @@ fn search_on_json_numerical_field(
}
}
NumericalType::U64 => {
let bounds = bounds.map_bound(|term| (term.as_u64().unwrap()));
let bounds = bounds.map_bound(|term| term.as_u64().unwrap());
match actual_column_type {
NumericalType::U64 => bounds.map_bound(|&term| term.to_u64()),
NumericalType::I64 => {
@@ -306,7 +306,7 @@ fn search_on_json_numerical_field(
}
}
NumericalType::F64 => {
let bounds = bounds.map_bound(|term| (term.as_f64().unwrap()));
let bounds = bounds.map_bound(|term| term.as_f64().unwrap());
match actual_column_type {
NumericalType::U64 => transform_from_f64_bounds::<u64>(&bounds),
NumericalType::I64 => transform_from_f64_bounds::<i64>(&bounds),

View File

@@ -11,7 +11,7 @@ mod tests {
use crate::docset::DocSet;
use crate::postings::compression::COMPRESSION_BLOCK_SIZE;
use crate::query::{EnableScoring, Query, QueryParser, Scorer, TermQuery};
use crate::schema::{Field, IndexRecordOption, Schema, STRING, TEXT};
use crate::schema::{Field, IndexRecordOption, Schema, FAST, STRING, TEXT};
use crate::{assert_nearly_equals, DocAddress, Index, IndexWriter, Term, TERMINATED};
#[test]
@@ -212,4 +212,232 @@ mod tests {
}
Ok(())
}
#[test]
fn test_term_query_fallback_to_fastfield() -> crate::Result<()> {
use crate::collector::Count;
use crate::schema::FAST;
// Create a FAST-only numeric field (not indexed)
let mut schema_builder = Schema::builder();
let num_field = schema_builder.add_u64_field("num", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
{
let mut index_writer: IndexWriter = index.writer_for_tests()?;
index_writer.add_document(doc!(num_field => 10u64))?;
index_writer.add_document(doc!(num_field => 20u64))?;
index_writer.add_document(doc!(num_field => 10u64))?;
index_writer.commit()?;
}
let reader = index.reader()?;
let searcher = reader.searcher();
// TermQuery should fall back to a fastfield range query and match correctly.
let tq_10 = TermQuery::new(
Term::from_field_u64(num_field, 10u64),
IndexRecordOption::Basic,
);
let tq_20 = TermQuery::new(
Term::from_field_u64(num_field, 20u64),
IndexRecordOption::Basic,
);
let tq_30 = TermQuery::new(
Term::from_field_u64(num_field, 30u64),
IndexRecordOption::Basic,
);
let count_10 = searcher.search(&tq_10, &Count)?;
let count_20 = searcher.search(&tq_20, &Count)?;
let count_30 = searcher.search(&tq_30, &Count)?;
assert_eq!(count_10, 2);
assert_eq!(count_20, 1);
assert_eq!(count_30, 0);
Ok(())
}
#[test]
fn test_term_query_fallback_text_fast_only() -> crate::Result<()> {
use crate::collector::Count;
// FAST-only text field (not indexed)
let mut schema_builder = Schema::builder();
let text_field = schema_builder.add_text_field("text", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
{
let mut index_writer: IndexWriter = index.writer_for_tests()?;
index_writer.add_document(doc!(text_field => "hello"))?;
index_writer.add_document(doc!(text_field => "world"))?;
index_writer.add_document(doc!(text_field => "hello"))?;
index_writer.commit()?;
}
let searcher = index.reader()?.searcher();
let tq_hello = TermQuery::new(
Term::from_field_text(text_field, "hello"),
IndexRecordOption::Basic,
);
let tq_world = TermQuery::new(
Term::from_field_text(text_field, "world"),
IndexRecordOption::Basic,
);
let tq_missing = TermQuery::new(
Term::from_field_text(text_field, "nope"),
IndexRecordOption::Basic,
);
assert_eq!(searcher.search(&tq_hello, &Count)?, 2);
assert_eq!(searcher.search(&tq_world, &Count)?, 1);
assert_eq!(searcher.search(&tq_missing, &Count)?, 0);
Ok(())
}
#[test]
fn test_term_query_fallback_json_fast_only() -> crate::Result<()> {
use crate::collector::Count;
use crate::fastfield::FastValue;
use crate::schema::FAST;
let mut schema_builder = Schema::builder();
let json_field = schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
{
let mut index_writer: IndexWriter = index.writer_for_tests()?;
index_writer.add_document(doc!(json_field => json!({"a": 10, "b": "x"})))?;
index_writer.add_document(doc!(json_field => json!({"a": 20, "b": "y"})))?;
index_writer.add_document(doc!(json_field => json!({"a": 10, "b": "z"})))?;
index_writer.commit()?;
}
fn json_term_fast<T: FastValue>(field: Field, path: &str, v: T) -> Term {
let mut term = Term::from_field_json_path(field, path, true);
term.append_type_and_fast_value(v);
term
}
fn json_term_str(field: Field, path: &str, v: &str) -> Term {
let mut term = Term::from_field_json_path(field, path, true);
term.append_type_and_str(v);
term
}
let searcher = index.reader()?.searcher();
// numeric path match
let tq_a10 = TermQuery::new(
json_term_fast(json_field, "a", 10u64),
IndexRecordOption::Basic,
);
let tq_a20 = TermQuery::new(
json_term_fast(json_field, "a", 20u64),
IndexRecordOption::Basic,
);
let tq_a30 = TermQuery::new(
json_term_fast(json_field, "a", 30u64),
IndexRecordOption::Basic,
);
assert_eq!(searcher.search(&tq_a10, &Count)?, 2);
assert_eq!(searcher.search(&tq_a20, &Count)?, 1);
assert_eq!(searcher.search(&tq_a30, &Count)?, 0);
// string path match
let tq_bx = TermQuery::new(
json_term_str(json_field, "b", "x"),
IndexRecordOption::Basic,
);
let tq_by = TermQuery::new(
json_term_str(json_field, "b", "y"),
IndexRecordOption::Basic,
);
let tq_bm = TermQuery::new(
json_term_str(json_field, "b", "missing"),
IndexRecordOption::Basic,
);
assert_eq!(searcher.search(&tq_bx, &Count)?, 1);
assert_eq!(searcher.search(&tq_by, &Count)?, 1);
assert_eq!(searcher.search(&tq_bm, &Count)?, 0);
Ok(())
}
#[test]
fn test_term_query_fallback_ip_fast_only() -> crate::Result<()> {
use std::net::IpAddr;
use std::str::FromStr;
use crate::collector::Count;
use crate::schema::{IntoIpv6Addr, FAST};
let mut schema_builder = Schema::builder();
let ip_field = schema_builder.add_ip_addr_field("ip", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let ip1 = IpAddr::from_str("127.0.0.1").unwrap().into_ipv6_addr();
let ip2 = IpAddr::from_str("127.0.0.2").unwrap().into_ipv6_addr();
{
let mut index_writer: IndexWriter = index.writer_for_tests()?;
index_writer.add_document(doc!(ip_field => ip1))?;
index_writer.add_document(doc!(ip_field => ip2))?;
index_writer.add_document(doc!(ip_field => ip1))?;
index_writer.commit()?;
}
let searcher = index.reader()?.searcher();
let tq_ip1 = TermQuery::new(
Term::from_field_ip_addr(ip_field, ip1),
IndexRecordOption::Basic,
);
let tq_ip2 = TermQuery::new(
Term::from_field_ip_addr(ip_field, ip2),
IndexRecordOption::Basic,
);
let ip3 = IpAddr::from_str("127.0.0.3").unwrap().into_ipv6_addr();
let tq_ip3 = TermQuery::new(
Term::from_field_ip_addr(ip_field, ip3),
IndexRecordOption::Basic,
);
assert_eq!(searcher.search(&tq_ip1, &Count)?, 2);
assert_eq!(searcher.search(&tq_ip2, &Count)?, 1);
assert_eq!(searcher.search(&tq_ip3, &Count)?, 0);
Ok(())
}
#[test]
fn test_term_query_fallback_fastfield_with_scores_errors() -> crate::Result<()> {
use crate::collector::TopDocs;
// FAST-only numeric field (not indexed) should error when scoring is required
let mut schema_builder = Schema::builder();
let num_field = schema_builder.add_u64_field("num", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
{
let mut index_writer: IndexWriter = index.writer_for_tests()?;
index_writer.add_document(doc!(num_field => 10u64))?;
index_writer.add_document(doc!(num_field => 20u64))?;
index_writer.commit()?;
}
let searcher = index.reader()?.searcher();
let tq = TermQuery::new(
Term::from_field_u64(num_field, 10u64),
IndexRecordOption::Basic,
);
// Using TopDocs requires scoring; since the field is not indexed,
// TermQuery cannot score and should return a SchemaError.
let res = searcher.search(&tq, &TopDocs::with_limit(1));
assert!(matches!(res, Err(crate::TantivyError::SchemaError(_))));
Ok(())
}
}

View File

@@ -1,8 +1,10 @@
use std::fmt;
use std::ops::Bound;
use super::term_weight::TermWeight;
use crate::query::bm25::Bm25Weight;
use crate::query::{EnableScoring, Explanation, Query, Weight};
use crate::query::range_query::is_type_valid_for_fastfield_range_query;
use crate::query::{EnableScoring, Explanation, Query, RangeQuery, Weight};
use crate::schema::IndexRecordOption;
use crate::Term;
@@ -99,7 +101,7 @@ impl TermQuery {
EnableScoring::Enabled {
statistics_provider,
..
} => Bm25Weight::for_terms(statistics_provider, &[self.term.clone()])?,
} => Bm25Weight::for_terms(statistics_provider, std::slice::from_ref(&self.term))?,
EnableScoring::Disabled { .. } => {
Bm25Weight::new(Explanation::new("<no score>", 1.0f32), 1.0f32)
}
@@ -122,6 +124,24 @@ impl TermQuery {
impl Query for TermQuery {
fn weight(&self, enable_scoring: EnableScoring<'_>) -> crate::Result<Box<dyn Weight>> {
// If the field is not indexed but is a suitable fast field, fall back to a range query
// on the fast field matching exactly this term.
//
// Note: This is considerable slower since it requires to scan the entire fast field.
// TODO: The range query would gain from having a single-value optimization
let schema = enable_scoring.schema();
let field_entry = schema.get_field_entry(self.term.field());
if !field_entry.is_indexed()
&& field_entry.is_fast()
&& is_type_valid_for_fastfield_range_query(self.term.typ())
&& !enable_scoring.is_scoring_enabled()
{
let range_query = RangeQuery::new(
Bound::Included(self.term.clone()),
Bound::Included(self.term.clone()),
);
return range_query.weight(enable_scoring);
}
Ok(Box::new(self.specialized_weight(enable_scoring)?))
}
fn query_terms<'a>(&'a self, visitor: &mut dyn FnMut(&'a Term, bool)) {

View File

@@ -25,8 +25,8 @@ impl TermScorer {
}
}
pub(crate) fn shallow_seek(&mut self, target_doc: DocId) {
self.postings.block_cursor.shallow_seek(target_doc);
pub(crate) fn seek_block(&mut self, target_doc: DocId) {
self.postings.block_cursor.seek_block(target_doc);
}
#[cfg(test)]
@@ -175,7 +175,7 @@ mod tests {
let fieldnorms: Vec<u32> = std::iter::repeat_n(10u32, 3_000).collect();
let mut term_scorer = TermScorer::create_for_test(&doc_and_tfs, &fieldnorms, bm25_weight);
assert_eq!(term_scorer.doc(), 0u32);
term_scorer.shallow_seek(1289);
term_scorer.seek_block(1289);
assert_eq!(term_scorer.doc(), 0u32);
term_scorer.seek(1289);
assert_eq!(term_scorer.doc(), 1290);
@@ -242,9 +242,9 @@ mod tests {
let bm25_weight = Bm25Weight::for_one_term(10, 129, 20.0);
let mut docs = TermScorer::create_for_test(&doc_tfs[..], &fieldnorms[..], bm25_weight);
assert_nearly_equals!(docs.block_max_score(), 2.5161593);
docs.shallow_seek(135);
docs.seek_block(135);
assert_nearly_equals!(docs.block_max_score(), 3.4597192);
docs.shallow_seek(256);
docs.seek_block(256);
// the block is not loaded yet.
assert_nearly_equals!(docs.block_max_score(), 5.2971773);
assert_eq!(256, docs.seek(256));
@@ -275,7 +275,7 @@ mod tests {
{
let mut term_scorer = term_weight.specialized_scorer(reader, 1.0)?;
for d in docs {
term_scorer.shallow_seek(d);
term_scorer.seek_block(d);
block_max_scores_b.push(term_scorer.block_max_score());
}
}

View File

@@ -5,8 +5,10 @@ use crate::query::score_combiner::{DoNothingCombiner, ScoreCombiner};
use crate::query::Scorer;
use crate::{DocId, Score};
const HORIZON_NUM_TINYBITSETS: usize = 64;
const HORIZON: u32 = 64u32 * HORIZON_NUM_TINYBITSETS as u32;
// The buffered union looks ahead within a fixed-size sliding window
// of upcoming document IDs (the "horizon").
const HORIZON_NUM_TINYBITSETS: usize = HORIZON as usize / 64;
const HORIZON: u32 = 64u32 * 64u32;
// `drain_filter` is not stable yet.
// This function is similar except that it does is not unstable, and
@@ -27,12 +29,26 @@ where P: FnMut(&mut T) -> bool {
/// Creates a `DocSet` that iterate through the union of two or more `DocSet`s.
pub struct BufferedUnionScorer<TScorer, TScoreCombiner = DoNothingCombiner> {
/// Active scorers (already filtered of `TERMINATED`).
docsets: Vec<TScorer>,
/// Sliding window presence map for upcoming docs.
///
/// There are `HORIZON_NUM_TINYBITSETS` buckets, each covering
/// a span of 64 doc IDs. Bucket `i` represents the range
/// `[window_start_doc + i*64, window_start_doc + (i+1)*64)`.
bitsets: Box<[TinySet; HORIZON_NUM_TINYBITSETS]>,
// Index of the current TinySet bucket within the sliding window.
bucket_idx: usize,
/// Per-doc score combiners for the current window.
///
/// these accumulators merge contributions from all scorers that
/// hit the same doc within the buffered window.
scores: Box<[TScoreCombiner; HORIZON as usize]>,
cursor: usize,
offset: DocId,
/// Start doc ID (inclusive) of the current sliding window.
window_start_doc: DocId,
/// Current doc ID of the union.
doc: DocId,
/// Combined score for current `doc` as produced by `TScoreCombiner`.
score: Score,
}
@@ -74,8 +90,8 @@ impl<TScorer: Scorer, TScoreCombiner: ScoreCombiner> BufferedUnionScorer<TScorer
docsets: non_empty_docsets,
bitsets: Box::new([TinySet::empty(); HORIZON_NUM_TINYBITSETS]),
scores: Box::new([score_combiner_fn(); HORIZON as usize]),
cursor: HORIZON_NUM_TINYBITSETS,
offset: 0,
bucket_idx: HORIZON_NUM_TINYBITSETS,
window_start_doc: 0,
doc: 0,
score: 0.0,
};
@@ -89,8 +105,10 @@ impl<TScorer: Scorer, TScoreCombiner: ScoreCombiner> BufferedUnionScorer<TScorer
fn refill(&mut self) -> bool {
if let Some(min_doc) = self.docsets.iter().map(DocSet::doc).min() {
self.offset = min_doc;
self.cursor = 0;
// Reset the sliding window to start at the smallest doc
// across all scorers and prebuffer within the horizon.
self.window_start_doc = min_doc;
self.bucket_idx = 0;
self.doc = min_doc;
refill(
&mut self.docsets,
@@ -105,16 +123,16 @@ impl<TScorer: Scorer, TScoreCombiner: ScoreCombiner> BufferedUnionScorer<TScorer
}
fn advance_buffered(&mut self) -> bool {
while self.cursor < HORIZON_NUM_TINYBITSETS {
if let Some(val) = self.bitsets[self.cursor].pop_lowest() {
let delta = val + (self.cursor as u32) * 64;
self.doc = self.offset + delta;
while self.bucket_idx < HORIZON_NUM_TINYBITSETS {
if let Some(val) = self.bitsets[self.bucket_idx].pop_lowest() {
let delta = val + (self.bucket_idx as u32) * 64;
self.doc = self.window_start_doc + delta;
let score_combiner = &mut self.scores[delta as usize];
self.score = score_combiner.score();
score_combiner.clear();
return true;
} else {
self.cursor += 1;
self.bucket_idx += 1;
}
}
false
@@ -144,19 +162,19 @@ where
if self.doc >= target {
return self.doc;
}
let gap = target - self.offset;
let gap = target - self.window_start_doc;
if gap < HORIZON {
// Our value is within the buffered horizon.
// Skipping to corresponding bucket.
let new_cursor = gap as usize / 64;
for obsolete_tinyset in &mut self.bitsets[self.cursor..new_cursor] {
// Skipping to corresponding bucket.
let new_bucket_idx = gap as usize / 64;
for obsolete_tinyset in &mut self.bitsets[self.bucket_idx..new_bucket_idx] {
obsolete_tinyset.clear();
}
for score_combiner in &mut self.scores[self.cursor * 64..new_cursor * 64] {
for score_combiner in &mut self.scores[self.bucket_idx * 64..new_bucket_idx * 64] {
score_combiner.clear();
}
self.cursor = new_cursor;
self.bucket_idx = new_bucket_idx;
// Advancing until we reach the end of the bucket
// or we reach a doc greater or equal to the target.
@@ -211,7 +229,7 @@ where
if self.doc == TERMINATED {
return 0;
}
let mut count = self.bitsets[self.cursor..HORIZON_NUM_TINYBITSETS]
let mut count = self.bitsets[self.bucket_idx..HORIZON_NUM_TINYBITSETS]
.iter()
.map(|bitset| bitset.len())
.sum::<u32>()
@@ -225,7 +243,7 @@ where
bitset.clear();
}
}
self.cursor = HORIZON_NUM_TINYBITSETS;
self.bucket_idx = HORIZON_NUM_TINYBITSETS;
count
}
}

View File

@@ -41,6 +41,7 @@
//! use tantivy::schema::document::{DeserializeError, DocumentDeserialize, DocumentDeserializer};
//!
//! /// Our custom document to let us use a map of `serde_json::Values`.
//! #[allow(dead_code)]
//! pub struct MyCustomDocument {
//! // Tantivy provides trait implementations for common `serde_json` types.
//! fields: BTreeMap<Field, serde_json::Value>
@@ -79,6 +80,7 @@
//! }
//!
//! /// Our custom iterator just helps us to avoid some messy generics.
//! #[allow(dead_code)]
//! pub struct MyCustomIter<'a>(btree_map::Iter<'a, Field, serde_json::Value>);
//! impl<'a> Iterator for MyCustomIter<'a> {
//! // Here we can see our field-value pairs being produced by the iterator.

View File

@@ -1561,6 +1561,7 @@ fn to_ascii(text: &str, output: &mut String) {
#[cfg(test)]
mod tests {
use super::to_ascii;
use crate::tokenizer::{AsciiFoldingFilter, RawTokenizer, SimpleTokenizer, TextAnalyzer};

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy-sstable"
version = "0.5.0"
version = "0.6.0"
edition = "2024"
license = "MIT"
homepage = "https://github.com/quickwit-oss/tantivy"
@@ -10,10 +10,10 @@ categories = ["database-implementations", "data-structures", "compression"]
description = "sstables for tantivy"
[dependencies]
common = {version= "0.9", path="../common", package="tantivy-common"}
common = {version= "0.10", path="../common", package="tantivy-common"}
futures-util = "0.3.30"
itertools = "0.14.0"
tantivy-bitpacker = { version= "0.8", path="../bitpacker" }
tantivy-bitpacker = { version= "0.9", path="../bitpacker" }
tantivy-fst = "0.5"
# experimental gives us access to Decompressor::upper_bound
zstd = { version = "0.13", optional = true, features = ["experimental"] }

View File

@@ -608,12 +608,12 @@ impl<TSSTable: SSTable> Dictionary<TSSTable> {
/// Returns a range builder, to stream all of the terms
/// within an interval.
pub fn range(&self) -> StreamerBuilder<TSSTable> {
pub fn range(&self) -> StreamerBuilder<'_, TSSTable> {
StreamerBuilder::new(self, AlwaysMatch)
}
/// Returns a range builder filtered with a prefix.
pub fn prefix_range<K: AsRef<[u8]>>(&self, prefix: K) -> StreamerBuilder<TSSTable> {
pub fn prefix_range<K: AsRef<[u8]>>(&self, prefix: K) -> StreamerBuilder<'_, TSSTable> {
let lower_bound = prefix.as_ref();
let mut upper_bound = lower_bound.to_vec();
for idx in (0..upper_bound.len()).rev() {
@@ -632,7 +632,7 @@ impl<TSSTable: SSTable> Dictionary<TSSTable> {
}
/// A stream of all the sorted terms.
pub fn stream(&self) -> io::Result<Streamer<TSSTable>> {
pub fn stream(&self) -> io::Result<Streamer<'_, TSSTable>> {
self.range().into_stream()
}
@@ -696,9 +696,10 @@ mod tests {
fn read_bytes(&self, range: Range<usize>) -> std::io::Result<OwnedBytes> {
let allowed_range = self.allowed_range.lock().unwrap();
if !allowed_range.contains(&range.start) || !allowed_range.contains(&(range.end - 1)) {
return Err(std::io::Error::other(format!(
"invalid range, allowed {allowed_range:?}, requested {range:?}"
)));
return Err(std::io::Error::new(
std::io::ErrorKind::Other,
format!("invalid range, allowed {allowed_range:?}, requested {range:?}"),
));
}
Ok(self.bytes.slice(range))

View File

@@ -1,5 +1,3 @@
#![allow(clippy::manual_div_ceil)]
//! `tantivy_sstable` is a crate that provides a sorted string table data structure.
//!
//! It is used in `tantivy` to store the term dictionary.

View File

@@ -54,14 +54,14 @@ pub fn merge_sstable<SST: SSTable, W: io::Write, M: ValueMerger<SST::Value>>(
}
}
for _ in 0..len - 1 {
if let Some(mut head) = heap.peek_mut() {
if head.0.key() == writer.last_inserted_key() {
value_merger.add(head.0.value());
if !head.0.advance()? {
PeekMut::pop(head);
}
continue;
if let Some(mut head) = heap.peek_mut()
&& head.0.key() == writer.last_inserted_key()
{
value_merger.add(head.0.value());
if !head.0.advance()? {
PeekMut::pop(head);
}
continue;
}
break;
}

View File

@@ -438,7 +438,7 @@ impl BlockAddrBlockMetadata {
let ordinal_addr = range_start_addr + self.range_start_nbits as usize;
let range_end_addr = range_start_addr + num_bits;
if (range_end_addr + self.range_start_nbits as usize + 7) / 8 > data.len() {
if (range_end_addr + self.range_start_nbits as usize).div_ceil(8) > data.len() {
return None;
}

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy-stacker"
version = "0.5.0"
version = "0.6.0"
edition = "2024"
license = "MIT"
homepage = "https://github.com/quickwit-oss/tantivy"
@@ -9,7 +9,7 @@ description = "term hashmap used for indexing"
[dependencies]
murmurhash32 = "0.3"
common = { version = "0.9", path = "../common/", package = "tantivy-common" }
common = { version = "0.10", path = "../common/", package = "tantivy-common" }
ahash = { version = "0.8.11", default-features = false, optional = true }
rand_distr = "0.4.3"

View File

@@ -10,7 +10,8 @@ pub fn fast_short_slice_copy(src: &[u8], dst: &mut [u8]) {
#[track_caller]
fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
panic!(
"source slice length ({src_len}) does not match destination slice length ({dst_len})",
"source slice length ({}) does not match destination slice length ({})",
src_len, dst_len,
);
}

View File

@@ -1,3 +1,5 @@
#![cfg_attr(all(feature = "unstable", test), feature(test))]
#[cfg(all(test, feature = "unstable"))]
extern crate test;

View File

@@ -274,13 +274,12 @@ impl SharedArenaHashMap {
let kv: KeyValue = self.table[bucket];
if kv.is_empty() {
return None;
} else if kv.hash == hash {
if let Some(val_addr) =
} else if kv.hash == hash
&& let Some(val_addr) =
self.get_value_addr_if_key_match(key, kv.key_value_addr, memory_arena)
{
let v = memory_arena.read(val_addr);
return Some(v);
}
{
let v = memory_arena.read(val_addr);
return Some(v);
}
}
}
@@ -334,15 +333,14 @@ impl SharedArenaHashMap {
self.set_bucket(hash, key_addr, bucket);
return val;
}
if kv.hash == hash {
if let Some(val_addr) =
if kv.hash == hash
&& let Some(val_addr) =
self.get_value_addr_if_key_match(key, kv.key_value_addr, memory_arena)
{
let v = memory_arena.read(val_addr);
let new_v = updater(Some(v));
memory_arena.write_at(val_addr, new_v);
return new_v;
}
{
let v = memory_arena.read(val_addr);
let new_v = updater(Some(v));
memory_arena.write_at(val_addr, new_v);
return new_v;
}
// This allows fetching the next bucket before the loop jmp
bucket = probe.next_probe();

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy-tokenizer-api"
version = "0.5.0"
version = "0.6.0"
license = "MIT"
edition = "2021"
description = "Tokenizer API of tantivy"