mirror of
https://github.com/quickwit-oss/tantivy.git
synced 2025-12-28 13:02:55 +00:00
Compare commits
5 Commits
column-rea
...
refact-cod
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e765706487 | ||
|
|
fdd0f63787 | ||
|
|
fd60e6fe08 | ||
|
|
02c3252d1e | ||
|
|
4a6f36937c |
@@ -95,7 +95,7 @@ called [`Directory`](src/directory/directory.rs).
|
||||
Contrary to Lucene however, "files" are quite different from some kind of `io::Read` object.
|
||||
Check out [`src/directory/directory.rs`](src/directory/directory.rs) trait for more details.
|
||||
|
||||
Tantivy ships two main directory implementation: the `MmapDirectory` and the `RamDirectory`,
|
||||
Tantivy ships two main directory implementation: the `MMapDirectory` and the `RAMDirectory`,
|
||||
but users can extend tantivy with their own implementation.
|
||||
|
||||
## [schema/](src/schema): What are documents?
|
||||
|
||||
@@ -30,7 +30,7 @@ log = "0.4.16"
|
||||
serde = { version = "1.0.136", features = ["derive"] }
|
||||
serde_json = "1.0.79"
|
||||
num_cpus = "1.13.1"
|
||||
fs2 = { version = "0.4.3", optional = true }
|
||||
fs2={ version = "0.4.3", optional = true }
|
||||
levenshtein_automata = "0.2.1"
|
||||
uuid = { version = "1.0.0", features = ["v4", "serde"] }
|
||||
crossbeam-channel = "0.5.4"
|
||||
@@ -56,6 +56,7 @@ lru = "0.7.5"
|
||||
fastdivide = "0.4.0"
|
||||
itertools = "0.10.3"
|
||||
measure_time = "0.8.2"
|
||||
pretty_assertions = "1.2.1"
|
||||
serde_cbor = { version = "0.11.2", optional = true }
|
||||
async-trait = "0.1.53"
|
||||
arc-swap = "1.5.0"
|
||||
@@ -67,7 +68,6 @@ winapi = "0.3.9"
|
||||
rand = "0.8.5"
|
||||
maplit = "1.0.2"
|
||||
matches = "0.1.9"
|
||||
pretty_assertions = "1.2.1"
|
||||
proptest = "1.0.0"
|
||||
criterion = "0.3.5"
|
||||
test-log = "0.2.10"
|
||||
|
||||
@@ -127,7 +127,6 @@ $ gdb run
|
||||
# Companies Using Tantivy
|
||||
|
||||
<p align="left">
|
||||
<img align="center" src="doc/assets/images/etsy.png" alt="Etsy" height="25" width="auto" />
|
||||
<img align="center" src="doc/assets/images/Nuclia.png#gh-light-mode-only" alt="Nuclia" height="25" width="auto" />
|
||||
<img align="center" src="doc/assets/images/humanfirst.png#gh-light-mode-only" alt="Humanfirst.ai" height="30" width="auto" />
|
||||
<img align="center" src="doc/assets/images/element.io.svg#gh-light-mode-only" alt="Element.io" height="25" width="auto" />
|
||||
|
||||
@@ -11,10 +11,7 @@ mod writer;
|
||||
|
||||
pub use bitset::*;
|
||||
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
|
||||
pub use vint::{
|
||||
deserialize_vint_u128, read_u32_vint, read_u32_vint_no_advance, serialize_vint_u128,
|
||||
serialize_vint_u32, write_u32_vint, VInt, VIntU128,
|
||||
};
|
||||
pub use vint::{read_u32_vint, read_u32_vint_no_advance, serialize_vint_u32, write_u32_vint, VInt};
|
||||
pub use writer::{AntiCallToken, CountingWriter, TerminatingWrite};
|
||||
|
||||
/// Has length trait
|
||||
@@ -55,13 +52,13 @@ const HIGHEST_BIT: u64 = 1 << 63;
|
||||
/// to values over 2^63, and all values end up requiring 64 bits.
|
||||
///
|
||||
/// # See also
|
||||
/// The reverse mapping is [`u64_to_i64()`].
|
||||
/// The [reverse mapping is `u64_to_i64`](./fn.u64_to_i64.html).
|
||||
#[inline]
|
||||
pub fn i64_to_u64(val: i64) -> u64 {
|
||||
(val as u64) ^ HIGHEST_BIT
|
||||
}
|
||||
|
||||
/// Reverse the mapping given by [`i64_to_u64()`].
|
||||
/// Reverse the mapping given by [`i64_to_u64`](./fn.i64_to_u64.html).
|
||||
#[inline]
|
||||
pub fn u64_to_i64(val: u64) -> i64 {
|
||||
(val ^ HIGHEST_BIT) as i64
|
||||
@@ -83,7 +80,7 @@ pub fn u64_to_i64(val: u64) -> i64 {
|
||||
/// explains the mapping in a clear manner.
|
||||
///
|
||||
/// # See also
|
||||
/// The reverse mapping is [`u64_to_f64()`].
|
||||
/// The [reverse mapping is `u64_to_f64`](./fn.u64_to_f64.html).
|
||||
#[inline]
|
||||
pub fn f64_to_u64(val: f64) -> u64 {
|
||||
let bits = val.to_bits();
|
||||
@@ -94,7 +91,7 @@ pub fn f64_to_u64(val: f64) -> u64 {
|
||||
}
|
||||
}
|
||||
|
||||
/// Reverse the mapping given by [`f64_to_u64()`].
|
||||
/// Reverse the mapping given by [`i64_to_u64`](./fn.i64_to_u64.html).
|
||||
#[inline]
|
||||
pub fn u64_to_f64(val: u64) -> f64 {
|
||||
f64::from_bits(if val & HIGHEST_BIT != 0 {
|
||||
|
||||
@@ -5,75 +5,6 @@ use byteorder::{ByteOrder, LittleEndian};
|
||||
|
||||
use super::BinarySerializable;
|
||||
|
||||
/// Variable int serializes a u128 number
|
||||
pub fn serialize_vint_u128(mut val: u128, output: &mut Vec<u8>) {
|
||||
loop {
|
||||
let next_byte: u8 = (val % 128u128) as u8;
|
||||
val /= 128u128;
|
||||
if val == 0 {
|
||||
output.push(next_byte | STOP_BIT);
|
||||
return;
|
||||
} else {
|
||||
output.push(next_byte);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Deserializes a u128 number
|
||||
///
|
||||
/// Returns the number and the slice after the vint
|
||||
pub fn deserialize_vint_u128(data: &[u8]) -> io::Result<(u128, &[u8])> {
|
||||
let mut result = 0u128;
|
||||
let mut shift = 0u64;
|
||||
for i in 0..19 {
|
||||
let b = data[i];
|
||||
result |= u128::from(b % 128u8) << shift;
|
||||
if b >= STOP_BIT {
|
||||
return Ok((result, &data[i + 1..]));
|
||||
}
|
||||
shift += 7;
|
||||
}
|
||||
Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
"Failed to deserialize u128 vint",
|
||||
))
|
||||
}
|
||||
|
||||
/// Wrapper over a `u128` that serializes as a variable int.
|
||||
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
|
||||
pub struct VIntU128(pub u128);
|
||||
|
||||
impl BinarySerializable for VIntU128 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
let mut buffer = vec![];
|
||||
serialize_vint_u128(self.0, &mut buffer);
|
||||
writer.write_all(&buffer)
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let mut bytes = reader.bytes();
|
||||
let mut result = 0u128;
|
||||
let mut shift = 0u64;
|
||||
loop {
|
||||
match bytes.next() {
|
||||
Some(Ok(b)) => {
|
||||
result |= u128::from(b % 128u8) << shift;
|
||||
if b >= STOP_BIT {
|
||||
return Ok(VIntU128(result));
|
||||
}
|
||||
shift += 7;
|
||||
}
|
||||
_ => {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
"Reach end of buffer while reading VInt",
|
||||
));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Wrapper over a `u64` that serializes as a variable int.
|
||||
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
|
||||
pub struct VInt(pub u64);
|
||||
@@ -245,7 +176,6 @@ impl BinarySerializable for VInt {
|
||||
mod tests {
|
||||
|
||||
use super::{serialize_vint_u32, BinarySerializable, VInt};
|
||||
use crate::vint::{deserialize_vint_u128, serialize_vint_u128, VIntU128};
|
||||
|
||||
fn aux_test_vint(val: u64) {
|
||||
let mut v = [14u8; 10];
|
||||
@@ -287,26 +217,6 @@ mod tests {
|
||||
assert_eq!(&buffer[..len_vint], res2, "array wrong for {}", val);
|
||||
}
|
||||
|
||||
fn aux_test_vint_u128(val: u128) {
|
||||
let mut data = vec![];
|
||||
serialize_vint_u128(val, &mut data);
|
||||
let (deser_val, _data) = deserialize_vint_u128(&data).unwrap();
|
||||
assert_eq!(val, deser_val);
|
||||
|
||||
let mut out = vec![];
|
||||
VIntU128(val).serialize(&mut out).unwrap();
|
||||
let deser_val = VIntU128::deserialize(&mut &out[..]).unwrap();
|
||||
assert_eq!(val, deser_val.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_vint_u128() {
|
||||
aux_test_vint_u128(0);
|
||||
aux_test_vint_u128(1);
|
||||
aux_test_vint_u128(u128::MAX / 3);
|
||||
aux_test_vint_u128(u128::MAX);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_vint_u32() {
|
||||
aux_test_serialize_vint_u32(0);
|
||||
|
||||
@@ -55,14 +55,14 @@ impl<W: TerminatingWrite> TerminatingWrite for CountingWriter<W> {
|
||||
}
|
||||
|
||||
/// Struct used to prevent from calling
|
||||
/// [`terminate_ref`](TerminatingWrite::terminate_ref) directly
|
||||
/// [`terminate_ref`](trait.TerminatingWrite.html#tymethod.terminate_ref) directly
|
||||
///
|
||||
/// The point is that while the type is public, it cannot be built by anyone
|
||||
/// outside of this module.
|
||||
pub struct AntiCallToken(());
|
||||
|
||||
/// Trait used to indicate when no more write need to be done on a writer
|
||||
pub trait TerminatingWrite: Write + Send + Sync {
|
||||
pub trait TerminatingWrite: Write + Send {
|
||||
/// Indicate that the writer will no longer be used. Internally call terminate_ref.
|
||||
fn terminate(mut self) -> io::Result<()>
|
||||
where Self: Sized {
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 85 KiB |
@@ -7,12 +7,10 @@
|
||||
// Of course, you can have a look at the tantivy's built-in collectors
|
||||
// such as the `CountCollector` for more examples.
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
// ---
|
||||
// Importing tantivy...
|
||||
use tantivy::collector::{Collector, SegmentCollector};
|
||||
use tantivy::fastfield::{DynamicFastFieldReader, FastFieldReader};
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Field, Schema, FAST, INDEXED, TEXT};
|
||||
use tantivy::{doc, Index, Score, SegmentReader};
|
||||
@@ -97,7 +95,7 @@ impl Collector for StatsCollector {
|
||||
}
|
||||
|
||||
struct StatsSegmentCollector {
|
||||
fast_field_reader: Arc<dyn Column<u64>>,
|
||||
fast_field_reader: DynamicFastFieldReader<u64>,
|
||||
stats: Stats,
|
||||
}
|
||||
|
||||
@@ -105,7 +103,7 @@ impl SegmentCollector for StatsSegmentCollector {
|
||||
type Fruit = Option<Stats>;
|
||||
|
||||
fn collect(&mut self, doc: u32, _score: Score) {
|
||||
let value = self.fast_field_reader.get_val(doc as u64) as f64;
|
||||
let value = self.fast_field_reader.get(doc) as f64;
|
||||
self.stats.count += 1;
|
||||
self.stats.sum += value;
|
||||
self.stats.squared_sum += value * value;
|
||||
|
||||
@@ -36,7 +36,8 @@ fn main() -> tantivy::Result<()> {
|
||||
// need to be able to be able to retrieve it
|
||||
// for our application.
|
||||
//
|
||||
// We can make our index lighter by omitting the `STORED` flag.
|
||||
// We can make our index lighter and
|
||||
// by omitting `STORED` flag.
|
||||
let body = schema_builder.add_text_field("body", TEXT);
|
||||
|
||||
let schema = schema_builder.build();
|
||||
|
||||
@@ -3,6 +3,7 @@ use std::collections::{HashMap, HashSet};
|
||||
use std::sync::{Arc, RwLock, Weak};
|
||||
|
||||
use tantivy::collector::TopDocs;
|
||||
use tantivy::fastfield::FastFieldReader;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Field, Schema, FAST, TEXT};
|
||||
use tantivy::{
|
||||
@@ -51,7 +52,7 @@ impl Warmer for DynamicPriceColumn {
|
||||
let product_id_reader = segment.fast_fields().u64(self.field)?;
|
||||
let product_ids: Vec<ProductId> = segment
|
||||
.doc_ids_alive()
|
||||
.map(|doc| product_id_reader.get_val(doc as u64))
|
||||
.map(|doc| product_id_reader.get(doc))
|
||||
.collect();
|
||||
let mut prices_it = self.price_fetcher.fetch_prices(&product_ids).into_iter();
|
||||
let mut price_vals: Vec<Price> = Vec::new();
|
||||
|
||||
@@ -14,10 +14,6 @@ tantivy-bitpacker = { version="0.2", path = "../bitpacker/" }
|
||||
ownedbytes = { version = "0.3.0", path = "../ownedbytes" }
|
||||
prettytable-rs = {version="0.9.0", optional= true}
|
||||
rand = {version="0.8.3", optional= true}
|
||||
fastdivide = "0.4"
|
||||
log = "0.4"
|
||||
itertools = { version = "0.10.3" }
|
||||
measure_time = { version="0.8.2", optional=true}
|
||||
|
||||
[dev-dependencies]
|
||||
more-asserts = "0.3.0"
|
||||
@@ -25,7 +21,6 @@ proptest = "1.0.0"
|
||||
rand = "0.8.3"
|
||||
|
||||
[features]
|
||||
bin = ["prettytable-rs", "rand", "measure_time"]
|
||||
bin = ["prettytable-rs", "rand"]
|
||||
default = ["bin"]
|
||||
unstable = []
|
||||
|
||||
|
||||
@@ -4,222 +4,88 @@ extern crate test;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::iter;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::bitpacked::BitpackedCodec;
|
||||
use fastfield_codecs::blockwise_linear::BlockwiseLinearCodec;
|
||||
use fastfield_codecs::linear::LinearCodec;
|
||||
use fastfield_codecs::*;
|
||||
use ownedbytes::OwnedBytes;
|
||||
use rand::prelude::*;
|
||||
use test::Bencher;
|
||||
|
||||
use super::*;
|
||||
|
||||
// Warning: this generates the same permutation at each call
|
||||
fn generate_permutation() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (0u64..100_000u64).collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
fn generate_random() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (0u64..100_000u64)
|
||||
.map(|el| el + random::<u16>() as u64)
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut data: Vec<_> = (100..55000_u64)
|
||||
.map(|num| num + rand::random::<u8>() as u64)
|
||||
.collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
// Warning: this generates the same permutation at each call
|
||||
fn generate_permutation_gcd() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (1u64..100_000u64).map(|el| el * 1000).collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default>(
|
||||
column: &[T],
|
||||
) -> Arc<dyn Column<T>> {
|
||||
let mut buffer = Vec::new();
|
||||
serialize(VecColumn::from(&column), &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
open(OwnedBytes::new(buffer)).unwrap()
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_veclookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = permutation[a as usize];
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = column.get_val(a as u64);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
fn get_exp_data() -> Vec<u64> {
|
||||
let mut data = vec![];
|
||||
for i in 0..100 {
|
||||
let num = i * i;
|
||||
data.extend(iter::repeat(i as u64).take(num));
|
||||
}
|
||||
data.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
|
||||
// lengt = 328350
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
fn get_data_50percent_item() -> (u128, u128, Vec<u128>) {
|
||||
let mut permutation = get_exp_data();
|
||||
let major_item = 20;
|
||||
let minor_item = 10;
|
||||
permutation.extend(iter::repeat(major_item).take(permutation.len()));
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
(major_item as u128, minor_item as u128, permutation)
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
fn get_u128_column_random() -> Arc<dyn Column<u128>> {
|
||||
let permutation = generate_random();
|
||||
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
get_u128_column_from_data(&permutation)
|
||||
}
|
||||
|
||||
fn get_u128_column_from_data(data: &[u128]) -> Arc<dyn Column<u128>> {
|
||||
let mut out = vec![];
|
||||
serialize_u128(VecColumn::from(&data), &mut out).unwrap();
|
||||
let out = OwnedBytes::new(out);
|
||||
open_u128(out).unwrap()
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
|
||||
let (major_item, _minor_item, data) = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| column.get_between_vals(major_item..=major_item));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
|
||||
let (_major_item, minor_item, data) = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| column.get_between_vals(minor_item..=minor_item));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
|
||||
let (_major_item, _minor_item, data) = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| column.get_between_vals(0..=u128::MAX));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
fn bench_get<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let mut bytes = vec![];
|
||||
Codec::serialize(&mut bytes, &data).unwrap();
|
||||
let reader = Codec::open_from_bytes(OwnedBytes::new(bytes)).unwrap();
|
||||
b.iter(|| {
|
||||
let mut a = 0u128;
|
||||
for i in 0u64..column.num_vals() as u64 {
|
||||
a += column.get_val(i);
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = reader.get_val(pos as u64);
|
||||
debug_assert_eq!(data[pos as usize], val);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
a
|
||||
sum
|
||||
});
|
||||
}
|
||||
fn bench_create<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let mut bytes = Vec::new();
|
||||
b.iter(|| {
|
||||
bytes.clear();
|
||||
Codec::serialize(&mut bytes, &data).unwrap();
|
||||
});
|
||||
}
|
||||
|
||||
use ownedbytes::OwnedBytes;
|
||||
use test::Bencher;
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_stride5_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
let n = column.num_vals();
|
||||
let mut a = 0u128;
|
||||
for i in (0..n / 5).map(|val| val * 5) {
|
||||
a += column.get_val(i as u64);
|
||||
}
|
||||
a
|
||||
});
|
||||
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_vec(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += permutation[i as usize];
|
||||
}
|
||||
a
|
||||
});
|
||||
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<LinearCodec>(b, &data);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += column.get_val(i as u64);
|
||||
}
|
||||
a
|
||||
});
|
||||
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0u64..n as u64 {
|
||||
a += column.get_val(i);
|
||||
}
|
||||
a
|
||||
});
|
||||
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_gcd(b: &mut Bencher) {
|
||||
let permutation = generate_permutation_gcd();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..n as u64 {
|
||||
a += column.get_val(i);
|
||||
}
|
||||
a
|
||||
});
|
||||
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<LinearCodec>(b, &data);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_vec(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..permutation.len() {
|
||||
a += permutation[i as usize] as u64;
|
||||
}
|
||||
a
|
||||
});
|
||||
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
pub fn stats_from_vec(data: &[u64]) -> FastFieldStats {
|
||||
let min_value = data.iter().cloned().min().unwrap_or(0);
|
||||
let max_value = data.iter().cloned().max().unwrap_or(0);
|
||||
FastFieldStats {
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: data.len() as u64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::BinarySerializable;
|
||||
use ownedbytes::OwnedBytes;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::serialize::NormalizedHeader;
|
||||
use crate::{Column, FastFieldCodec, FastFieldCodecType};
|
||||
use crate::{FastFieldCodec, FastFieldCodecType, FastFieldDataAccess};
|
||||
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
@@ -12,26 +12,80 @@ use crate::{Column, FastFieldCodec, FastFieldCodecType};
|
||||
pub struct BitpackedReader {
|
||||
data: OwnedBytes,
|
||||
bit_unpacker: BitUnpacker,
|
||||
normalized_header: NormalizedHeader,
|
||||
min_value_u64: u64,
|
||||
max_value_u64: u64,
|
||||
num_vals: u64,
|
||||
}
|
||||
|
||||
impl Column for BitpackedReader {
|
||||
impl FastFieldDataAccess for BitpackedReader {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u64) -> u64 {
|
||||
self.bit_unpacker.get(doc, &self.data)
|
||||
self.min_value_u64 + self.bit_unpacker.get(doc, &self.data)
|
||||
}
|
||||
#[inline]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The BitpackedReader assumes a normalized vector.
|
||||
0
|
||||
self.min_value_u64
|
||||
}
|
||||
#[inline]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.normalized_header.max_value
|
||||
self.max_value_u64
|
||||
}
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.normalized_header.num_vals
|
||||
self.num_vals
|
||||
}
|
||||
}
|
||||
pub struct BitpackedSerializerLegacy<'a, W: 'a + Write> {
|
||||
bit_packer: BitPacker,
|
||||
write: &'a mut W,
|
||||
min_value: u64,
|
||||
num_vals: u64,
|
||||
amplitude: u64,
|
||||
num_bits: u8,
|
||||
}
|
||||
|
||||
impl<'a, W: Write> BitpackedSerializerLegacy<'a, W> {
|
||||
/// Creates a new fast field serializer.
|
||||
///
|
||||
/// The serializer in fact encode the values by bitpacking
|
||||
/// `(val - min_value)`.
|
||||
///
|
||||
/// It requires a `min_value` and a `max_value` to compute
|
||||
/// compute the minimum number of bits required to encode
|
||||
/// values.
|
||||
pub fn open(
|
||||
write: &'a mut W,
|
||||
min_value: u64,
|
||||
max_value: u64,
|
||||
) -> io::Result<BitpackedSerializerLegacy<'a, W>> {
|
||||
assert!(min_value <= max_value);
|
||||
let amplitude = max_value - min_value;
|
||||
let num_bits = compute_num_bits(amplitude);
|
||||
let bit_packer = BitPacker::new();
|
||||
Ok(BitpackedSerializerLegacy {
|
||||
bit_packer,
|
||||
write,
|
||||
min_value,
|
||||
num_vals: 0,
|
||||
amplitude,
|
||||
num_bits,
|
||||
})
|
||||
}
|
||||
/// Pushes a new value to the currently open u64 fast field.
|
||||
#[inline]
|
||||
pub fn add_val(&mut self, val: u64) -> io::Result<()> {
|
||||
let val_to_write: u64 = val - self.min_value;
|
||||
self.bit_packer
|
||||
.write(val_to_write, self.num_bits, &mut self.write)?;
|
||||
self.num_vals += 1;
|
||||
Ok(())
|
||||
}
|
||||
pub fn close_field(mut self) -> io::Result<()> {
|
||||
self.bit_packer.close(&mut self.write)?;
|
||||
self.min_value.serialize(&mut self.write)?;
|
||||
self.amplitude.serialize(&mut self.write)?;
|
||||
self.num_vals.serialize(&mut self.write)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -44,50 +98,64 @@ impl FastFieldCodec for BitpackedCodec {
|
||||
type Reader = BitpackedReader;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn open_from_bytes(
|
||||
data: OwnedBytes,
|
||||
normalized_header: NormalizedHeader,
|
||||
) -> io::Result<Self::Reader> {
|
||||
let num_bits = compute_num_bits(normalized_header.max_value);
|
||||
fn open_from_bytes(bytes: OwnedBytes) -> io::Result<Self::Reader> {
|
||||
let footer_offset = bytes.len() - 24;
|
||||
let (data, mut footer) = bytes.split(footer_offset);
|
||||
let min_value = u64::deserialize(&mut footer)?;
|
||||
let amplitude = u64::deserialize(&mut footer)?;
|
||||
let num_vals = u64::deserialize(&mut footer)?;
|
||||
let max_value = min_value + amplitude;
|
||||
let num_bits = compute_num_bits(amplitude);
|
||||
let bit_unpacker = BitUnpacker::new(num_bits);
|
||||
Ok(BitpackedReader {
|
||||
data,
|
||||
bit_unpacker,
|
||||
normalized_header,
|
||||
min_value_u64: min_value,
|
||||
max_value_u64: max_value,
|
||||
num_vals,
|
||||
})
|
||||
}
|
||||
|
||||
/// Serializes data with the BitpackedFastFieldSerializer.
|
||||
///
|
||||
/// The bitpacker assumes that the column has been normalized.
|
||||
/// i.e. It has already been shifted by its minimum value, so that its
|
||||
/// current minimum value is 0.
|
||||
/// The serializer in fact encode the values by bitpacking
|
||||
/// `(val - min_value)`.
|
||||
///
|
||||
/// Ideally, we made a shift upstream on the column so that `col.min_value() == 0`.
|
||||
fn serialize(column: &dyn Column, write: &mut impl Write) -> io::Result<()> {
|
||||
assert_eq!(column.min_value(), 0u64);
|
||||
let num_bits = compute_num_bits(column.max_value());
|
||||
let mut bit_packer = BitPacker::new();
|
||||
let mut reader = column.reader();
|
||||
while reader.advance() {
|
||||
let val = reader.get();
|
||||
bit_packer.write(val, num_bits, write)?;
|
||||
/// It requires a `min_value` and a `max_value` to compute
|
||||
/// compute the minimum number of bits required to encode
|
||||
/// values.
|
||||
fn serialize(
|
||||
write: &mut impl Write,
|
||||
fastfield_accessor: &dyn FastFieldDataAccess,
|
||||
) -> io::Result<()> {
|
||||
let mut serializer = BitpackedSerializerLegacy::open(
|
||||
write,
|
||||
fastfield_accessor.min_value(),
|
||||
fastfield_accessor.max_value(),
|
||||
)?;
|
||||
|
||||
for val in fastfield_accessor.iter() {
|
||||
serializer.add_val(val)?;
|
||||
}
|
||||
bit_packer.close(write)?;
|
||||
serializer.close_field()?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn estimate(column: &impl Column) -> Option<f32> {
|
||||
let num_bits = compute_num_bits(column.max_value());
|
||||
fn is_applicable(_fastfield_accessor: &impl FastFieldDataAccess) -> bool {
|
||||
true
|
||||
}
|
||||
fn estimate(fastfield_accessor: &impl FastFieldDataAccess) -> f32 {
|
||||
let amplitude = fastfield_accessor.max_value() - fastfield_accessor.min_value();
|
||||
let num_bits = compute_num_bits(amplitude);
|
||||
let num_bits_uncompressed = 64;
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
num_bits as f32 / num_bits_uncompressed as f32
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::tests::get_codec_test_datasets;
|
||||
use crate::tests::get_codec_test_data_sets;
|
||||
|
||||
fn create_and_validate(data: &[u64], name: &str) {
|
||||
crate::tests::create_and_validate::<BitpackedCodec>(data, name);
|
||||
@@ -95,7 +163,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_data_sets() {
|
||||
let data_sets = get_codec_test_datasets();
|
||||
let data_sets = get_codec_test_data_sets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate(&data, name);
|
||||
data.reverse();
|
||||
|
||||
@@ -1,188 +1,439 @@
|
||||
use std::sync::Arc;
|
||||
use std::{io, iter};
|
||||
//! The BlockwiseLinear codec uses linear interpolation to guess a values and stores the
|
||||
//! offset, but in blocks of 512.
|
||||
//!
|
||||
//! With a CHUNK_SIZE of 512 and 29 byte metadata per block, we get a overhead for metadata of 232 /
|
||||
//! 512 = 0,45 bits per element. The additional space required per element in a block is the the
|
||||
//! maximum deviation of the linear interpolation estimation function.
|
||||
//!
|
||||
//! E.g. if the maximum deviation of an element is 12, all elements cost 4bits.
|
||||
//!
|
||||
//! Size per block:
|
||||
//! Num Elements * Maximum Deviation from Interpolation + 29 Byte Metadata
|
||||
|
||||
use std::io::{self, Read, Write};
|
||||
use std::ops::Sub;
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, DeserializeFrom};
|
||||
use ownedbytes::OwnedBytes;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::line::Line;
|
||||
use crate::serialize::NormalizedHeader;
|
||||
use crate::{Column, FastFieldCodec, FastFieldCodecType, VecColumn};
|
||||
use crate::linear::{get_calculated_value, get_slope};
|
||||
use crate::{FastFieldCodec, FastFieldCodecType, FastFieldDataAccess};
|
||||
|
||||
const CHUNK_SIZE: usize = 512;
|
||||
const CHUNK_SIZE: u64 = 512;
|
||||
|
||||
#[derive(Debug, Default)]
|
||||
struct Block {
|
||||
line: Line,
|
||||
bit_unpacker: BitUnpacker,
|
||||
data_start_offset: usize,
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct BlockwiseLinearReader {
|
||||
data: OwnedBytes,
|
||||
pub footer: BlockwiseLinearFooter,
|
||||
}
|
||||
|
||||
impl BinarySerializable for Block {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.line.serialize(writer)?;
|
||||
self.bit_unpacker.bit_width().serialize(writer)?;
|
||||
#[derive(Clone, Debug, Default)]
|
||||
struct Function {
|
||||
// The offset in the data is required, because we have different bit_widths per block
|
||||
data_start_offset: u64,
|
||||
// start_pos in the block will be CHUNK_SIZE * BLOCK_NUM
|
||||
start_pos: u64,
|
||||
// only used during serialization, 0 after deserialization
|
||||
end_pos: u64,
|
||||
// only used during serialization, 0 after deserialization
|
||||
value_start_pos: u64,
|
||||
// only used during serialization, 0 after deserialization
|
||||
value_end_pos: u64,
|
||||
slope: f32,
|
||||
// The offset so that all values are positive when writing them
|
||||
positive_val_offset: u64,
|
||||
num_bits: u8,
|
||||
bit_unpacker: BitUnpacker,
|
||||
}
|
||||
|
||||
impl Function {
|
||||
fn calc_slope(&mut self) {
|
||||
let num_vals = self.end_pos - self.start_pos;
|
||||
self.slope = get_slope(self.value_start_pos, self.value_end_pos, num_vals);
|
||||
}
|
||||
// split the interpolation into two function, change self and return the second split
|
||||
fn split(&mut self, split_pos: u64, split_pos_value: u64) -> Function {
|
||||
let mut new_function = Function {
|
||||
start_pos: split_pos,
|
||||
end_pos: self.end_pos,
|
||||
value_start_pos: split_pos_value,
|
||||
value_end_pos: self.value_end_pos,
|
||||
..Default::default()
|
||||
};
|
||||
new_function.calc_slope();
|
||||
self.end_pos = split_pos;
|
||||
self.value_end_pos = split_pos_value;
|
||||
self.calc_slope();
|
||||
new_function
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for Function {
|
||||
fn serialize<W: Write>(&self, write: &mut W) -> io::Result<()> {
|
||||
self.data_start_offset.serialize(write)?;
|
||||
self.value_start_pos.serialize(write)?;
|
||||
self.positive_val_offset.serialize(write)?;
|
||||
self.slope.serialize(write)?;
|
||||
self.num_bits.serialize(write)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let line = Line::deserialize(reader)?;
|
||||
let bit_width = u8::deserialize(reader)?;
|
||||
Ok(Block {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
data_start_offset: 0,
|
||||
})
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Function> {
|
||||
let data_start_offset = u64::deserialize(reader)?;
|
||||
let value_start_pos = u64::deserialize(reader)?;
|
||||
let offset = u64::deserialize(reader)?;
|
||||
let slope = f32::deserialize(reader)?;
|
||||
let num_bits = u8::deserialize(reader)?;
|
||||
let interpolation = Function {
|
||||
data_start_offset,
|
||||
value_start_pos,
|
||||
positive_val_offset: offset,
|
||||
num_bits,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
slope,
|
||||
..Default::default()
|
||||
};
|
||||
|
||||
Ok(interpolation)
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_num_blocks(num_vals: u64) -> usize {
|
||||
(num_vals as usize + CHUNK_SIZE - 1) / CHUNK_SIZE
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct BlockwiseLinearFooter {
|
||||
pub num_vals: u64,
|
||||
pub min_value: u64,
|
||||
pub max_value: u64,
|
||||
interpolations: Vec<Function>,
|
||||
}
|
||||
|
||||
impl BinarySerializable for BlockwiseLinearFooter {
|
||||
fn serialize<W: Write>(&self, write: &mut W) -> io::Result<()> {
|
||||
let mut out = vec![];
|
||||
self.num_vals.serialize(&mut out)?;
|
||||
self.min_value.serialize(&mut out)?;
|
||||
self.max_value.serialize(&mut out)?;
|
||||
self.interpolations.serialize(&mut out)?;
|
||||
write.write_all(&out)?;
|
||||
(out.len() as u32).serialize(write)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<BlockwiseLinearFooter> {
|
||||
let mut footer = BlockwiseLinearFooter {
|
||||
num_vals: u64::deserialize(reader)?,
|
||||
min_value: u64::deserialize(reader)?,
|
||||
max_value: u64::deserialize(reader)?,
|
||||
interpolations: Vec::<Function>::deserialize(reader)?,
|
||||
};
|
||||
for (num, interpol) in footer.interpolations.iter_mut().enumerate() {
|
||||
interpol.start_pos = CHUNK_SIZE * num as u64;
|
||||
}
|
||||
Ok(footer)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_interpolation_position(doc: u64) -> usize {
|
||||
let index = doc / CHUNK_SIZE;
|
||||
index as usize
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_interpolation_function(doc: u64, interpolations: &[Function]) -> &Function {
|
||||
&interpolations[get_interpolation_position(doc)]
|
||||
}
|
||||
|
||||
impl FastFieldDataAccess for BlockwiseLinearReader {
|
||||
#[inline]
|
||||
fn get_val(&self, idx: u64) -> u64 {
|
||||
let interpolation = get_interpolation_function(idx, &self.footer.interpolations);
|
||||
let in_block_idx = idx - interpolation.start_pos;
|
||||
let calculated_value = get_calculated_value(
|
||||
interpolation.value_start_pos,
|
||||
in_block_idx,
|
||||
interpolation.slope,
|
||||
);
|
||||
let diff = interpolation.bit_unpacker.get(
|
||||
in_block_idx,
|
||||
&self.data[interpolation.data_start_offset as usize..],
|
||||
);
|
||||
(calculated_value + diff) - interpolation.positive_val_offset
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn min_value(&self) -> u64 {
|
||||
self.footer.min_value
|
||||
}
|
||||
#[inline]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.footer.max_value
|
||||
}
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.footer.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
/// Same as LinearSerializer, but working on chunks of CHUNK_SIZE elements.
|
||||
pub struct BlockwiseLinearCodec;
|
||||
|
||||
impl FastFieldCodec for BlockwiseLinearCodec {
|
||||
const CODEC_TYPE: crate::FastFieldCodecType = FastFieldCodecType::BlockwiseLinear;
|
||||
const CODEC_TYPE: FastFieldCodecType = FastFieldCodecType::BlockwiseLinear;
|
||||
|
||||
type Reader = BlockwiseLinearReader;
|
||||
|
||||
fn open_from_bytes(
|
||||
bytes: ownedbytes::OwnedBytes,
|
||||
normalized_header: NormalizedHeader,
|
||||
) -> io::Result<Self::Reader> {
|
||||
/// Opens a fast field given a file.
|
||||
fn open_from_bytes(bytes: OwnedBytes) -> io::Result<Self::Reader> {
|
||||
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
|
||||
let footer_offset = bytes.len() - 4 - footer_len as usize;
|
||||
let (data, mut footer) = bytes.split(footer_offset);
|
||||
let num_blocks = compute_num_blocks(normalized_header.num_vals);
|
||||
let mut blocks: Vec<Block> = iter::repeat_with(|| Block::deserialize(&mut footer))
|
||||
.take(num_blocks)
|
||||
.collect::<io::Result<_>>()?;
|
||||
|
||||
let mut start_offset = 0;
|
||||
for block in &mut blocks {
|
||||
block.data_start_offset = start_offset;
|
||||
start_offset += (block.bit_unpacker.bit_width() as usize) * CHUNK_SIZE / 8;
|
||||
}
|
||||
Ok(BlockwiseLinearReader {
|
||||
blocks: Arc::new(blocks),
|
||||
data,
|
||||
normalized_header,
|
||||
})
|
||||
let footer = BlockwiseLinearFooter::deserialize(&mut footer)?;
|
||||
Ok(BlockwiseLinearReader { data, footer })
|
||||
}
|
||||
|
||||
// Estimate first_chunk and extrapolate
|
||||
fn estimate(column: &impl crate::Column) -> Option<f32> {
|
||||
if column.num_vals() < 10 * CHUNK_SIZE as u64 {
|
||||
return None;
|
||||
/// Creates a new fast field serializer.
|
||||
fn serialize(
|
||||
write: &mut impl Write,
|
||||
fastfield_accessor: &dyn FastFieldDataAccess,
|
||||
) -> io::Result<()> {
|
||||
assert!(fastfield_accessor.min_value() <= fastfield_accessor.max_value());
|
||||
|
||||
let first_val = fastfield_accessor.get_val(0);
|
||||
let last_val = fastfield_accessor.get_val(fastfield_accessor.num_vals() as u64 - 1);
|
||||
|
||||
let mut first_function = Function {
|
||||
end_pos: fastfield_accessor.num_vals(),
|
||||
value_start_pos: first_val,
|
||||
value_end_pos: last_val,
|
||||
..Default::default()
|
||||
};
|
||||
first_function.calc_slope();
|
||||
let mut interpolations = vec![first_function];
|
||||
|
||||
// Since we potentially apply multiple passes over the data, the data is cached.
|
||||
// Multiple iteration can be expensive (merge with index sorting can add lot of overhead per
|
||||
// iteration)
|
||||
let data = fastfield_accessor.iter().collect::<Vec<_>>();
|
||||
|
||||
//// let's split this into chunks of CHUNK_SIZE
|
||||
for data_pos in (0..data.len() as u64).step_by(CHUNK_SIZE as usize).skip(1) {
|
||||
let new_fun = {
|
||||
let current_interpolation = interpolations.last_mut().unwrap();
|
||||
current_interpolation.split(data_pos, data[data_pos as usize])
|
||||
};
|
||||
interpolations.push(new_fun);
|
||||
}
|
||||
let mut first_chunk: Vec<u64> = crate::iter_from_reader(column.reader())
|
||||
.take(CHUNK_SIZE as usize)
|
||||
.collect();
|
||||
let line = Line::train(&VecColumn::from(&first_chunk));
|
||||
for (i, buffer_val) in first_chunk.iter_mut().enumerate() {
|
||||
let interpolated_val = line.eval(i as u64);
|
||||
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
|
||||
// calculate offset and max (-> numbits) for each function
|
||||
for interpolation in &mut interpolations {
|
||||
let mut offset = 0;
|
||||
let mut rel_positive_max = 0;
|
||||
for (pos, actual_value) in data
|
||||
[interpolation.start_pos as usize..interpolation.end_pos as usize]
|
||||
.iter()
|
||||
.cloned()
|
||||
.enumerate()
|
||||
{
|
||||
let calculated_value = get_calculated_value(
|
||||
interpolation.value_start_pos,
|
||||
pos as u64,
|
||||
interpolation.slope,
|
||||
);
|
||||
if calculated_value > actual_value {
|
||||
// negative value we need to apply an offset
|
||||
// we ignore negative values in the max value calculation, because negative
|
||||
// values will be offset to 0
|
||||
offset = offset.max(calculated_value - actual_value);
|
||||
} else {
|
||||
// positive value no offset reuqired
|
||||
rel_positive_max = rel_positive_max.max(actual_value - calculated_value);
|
||||
}
|
||||
}
|
||||
|
||||
interpolation.positive_val_offset = offset;
|
||||
interpolation.num_bits = compute_num_bits(rel_positive_max + offset);
|
||||
}
|
||||
let estimated_bit_width = first_chunk
|
||||
let mut bit_packer = BitPacker::new();
|
||||
|
||||
let write = &mut CountingWriter::wrap(write);
|
||||
for interpolation in &mut interpolations {
|
||||
interpolation.data_start_offset = write.written_bytes();
|
||||
let num_bits = interpolation.num_bits;
|
||||
for (pos, actual_value) in data
|
||||
[interpolation.start_pos as usize..interpolation.end_pos as usize]
|
||||
.iter()
|
||||
.cloned()
|
||||
.enumerate()
|
||||
{
|
||||
let calculated_value = get_calculated_value(
|
||||
interpolation.value_start_pos,
|
||||
pos as u64,
|
||||
interpolation.slope,
|
||||
);
|
||||
let diff = (actual_value + interpolation.positive_val_offset) - calculated_value;
|
||||
bit_packer.write(diff, num_bits, write)?;
|
||||
}
|
||||
bit_packer.flush(write)?;
|
||||
}
|
||||
bit_packer.close(write)?;
|
||||
|
||||
let footer = BlockwiseLinearFooter {
|
||||
num_vals: fastfield_accessor.num_vals(),
|
||||
min_value: fastfield_accessor.min_value(),
|
||||
max_value: fastfield_accessor.max_value(),
|
||||
interpolations,
|
||||
};
|
||||
footer.serialize(write)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn is_applicable(fastfield_accessor: &impl FastFieldDataAccess) -> bool {
|
||||
if fastfield_accessor.num_vals() < 5_000 {
|
||||
return false;
|
||||
}
|
||||
// On serialization the offset is added to the actual value.
|
||||
// We need to make sure this won't run into overflow calculation issues.
|
||||
// For this we take the maximum theroretical offset and add this to the max value.
|
||||
// If this doesn't overflow the algorithm should be fine
|
||||
let theorethical_maximum_offset =
|
||||
fastfield_accessor.max_value() - fastfield_accessor.min_value();
|
||||
if fastfield_accessor
|
||||
.max_value()
|
||||
.checked_add(theorethical_maximum_offset)
|
||||
.is_none()
|
||||
{
|
||||
return false;
|
||||
}
|
||||
true
|
||||
}
|
||||
/// estimation for linear interpolation is hard because, you don't know
|
||||
/// where the local maxima are for the deviation of the calculated value and
|
||||
/// the offset is also unknown.
|
||||
fn estimate(fastfield_accessor: &impl FastFieldDataAccess) -> f32 {
|
||||
let first_val_in_first_block = fastfield_accessor.get_val(0);
|
||||
let last_elem_in_first_chunk = CHUNK_SIZE.min(fastfield_accessor.num_vals());
|
||||
let last_val_in_first_block =
|
||||
fastfield_accessor.get_val(last_elem_in_first_chunk as u64 - 1);
|
||||
let slope = get_slope(
|
||||
first_val_in_first_block,
|
||||
last_val_in_first_block,
|
||||
fastfield_accessor.num_vals(),
|
||||
);
|
||||
|
||||
// let's sample at 0%, 5%, 10% .. 95%, 100%, but for the first block only
|
||||
let sample_positions = (0..20)
|
||||
.map(|pos| (last_elem_in_first_chunk as f32 / 100.0 * pos as f32 * 5.0) as usize)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let max_distance = sample_positions
|
||||
.iter()
|
||||
.map(|el| ((el + 1) as f32 * 3.0) as u64)
|
||||
.map(compute_num_bits)
|
||||
.map(|pos| {
|
||||
let calculated_value =
|
||||
get_calculated_value(first_val_in_first_block, *pos as u64, slope);
|
||||
let actual_value = fastfield_accessor.get_val(*pos as u64);
|
||||
distance(calculated_value, actual_value)
|
||||
})
|
||||
.max()
|
||||
.unwrap();
|
||||
|
||||
let metadata_per_block = {
|
||||
let mut out = vec![];
|
||||
Block::default().serialize(&mut out).unwrap();
|
||||
out.len()
|
||||
};
|
||||
let num_bits = estimated_bit_width as u64 * column.num_vals() as u64
|
||||
// Estimate one block and extrapolate the cost to all blocks.
|
||||
// the theory would be that we don't have the actual max_distance, but we are close within
|
||||
// 50% threshold.
|
||||
// It is multiplied by 2 because in a log case scenario the line would be as much above as
|
||||
// below. So the offset would = max_distance
|
||||
//
|
||||
let relative_max_value = (max_distance as f32 * 1.5) * 2.0;
|
||||
|
||||
let num_bits = compute_num_bits(relative_max_value as u64) as u64 * fastfield_accessor.num_vals() as u64
|
||||
// function metadata per block
|
||||
+ metadata_per_block as u64 * (column.num_vals() / CHUNK_SIZE as u64);
|
||||
let num_bits_uncompressed = 64 * column.num_vals();
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
+ 29 * (fastfield_accessor.num_vals() / CHUNK_SIZE);
|
||||
let num_bits_uncompressed = 64 * fastfield_accessor.num_vals();
|
||||
num_bits as f32 / num_bits_uncompressed as f32
|
||||
}
|
||||
}
|
||||
|
||||
fn distance<T: Sub<Output = T> + Ord>(x: T, y: T) -> T {
|
||||
if x < y {
|
||||
y - x
|
||||
} else {
|
||||
x - y
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::tests::get_codec_test_data_sets;
|
||||
|
||||
fn create_and_validate(data: &[u64], name: &str) -> (f32, f32) {
|
||||
crate::tests::create_and_validate::<BlockwiseLinearCodec, BlockwiseLinearReader>(data, name)
|
||||
}
|
||||
|
||||
fn serialize(column: &dyn crate::Column, wrt: &mut impl io::Write) -> io::Result<()> {
|
||||
// The BitpackedReader assumes a normalized vector.
|
||||
assert_eq!(column.min_value(), 0);
|
||||
let mut buffer = Vec::with_capacity(CHUNK_SIZE);
|
||||
let num_vals = column.num_vals();
|
||||
const HIGHEST_BIT: u64 = 1 << 63;
|
||||
pub fn i64_to_u64(val: i64) -> u64 {
|
||||
(val as u64) ^ HIGHEST_BIT
|
||||
}
|
||||
|
||||
let num_blocks = compute_num_blocks(num_vals);
|
||||
let mut blocks = Vec::with_capacity(num_blocks);
|
||||
#[test]
|
||||
fn test_compression_i64() {
|
||||
let data = (i64::MAX - 600_000..=i64::MAX - 550_000)
|
||||
.map(i64_to_u64)
|
||||
.collect::<Vec<_>>();
|
||||
let (estimate, actual_compression) =
|
||||
create_and_validate(&data, "simple monotonically large i64");
|
||||
assert!(actual_compression < 0.2);
|
||||
assert!(estimate < 0.20);
|
||||
assert!(estimate > 0.15);
|
||||
assert!(actual_compression > 0.01);
|
||||
}
|
||||
|
||||
let mut vals = crate::iter_from_reader(column.reader());
|
||||
#[test]
|
||||
fn test_compression() {
|
||||
let data = (10..=6_000_u64).collect::<Vec<_>>();
|
||||
let (estimate, actual_compression) =
|
||||
create_and_validate(&data, "simple monotonically large");
|
||||
assert!(actual_compression < 0.2);
|
||||
assert!(estimate < 0.20);
|
||||
assert!(estimate > 0.15);
|
||||
assert!(actual_compression > 0.01);
|
||||
}
|
||||
|
||||
let mut bit_packer = BitPacker::new();
|
||||
|
||||
for _ in 0..num_blocks {
|
||||
buffer.clear();
|
||||
buffer.extend((&mut vals).take(CHUNK_SIZE));
|
||||
let line = Line::train(&VecColumn::from(&buffer));
|
||||
|
||||
assert!(!buffer.is_empty());
|
||||
|
||||
for (i, buffer_val) in buffer.iter_mut().enumerate() {
|
||||
let interpolated_val = line.eval(i as u64);
|
||||
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
|
||||
}
|
||||
let bit_width = buffer.iter().copied().map(compute_num_bits).max().unwrap();
|
||||
|
||||
for &buffer_val in &buffer {
|
||||
bit_packer.write(buffer_val, bit_width, wrt)?;
|
||||
}
|
||||
|
||||
blocks.push(Block {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
data_start_offset: 0,
|
||||
});
|
||||
#[test]
|
||||
fn test_with_codec_data_sets() {
|
||||
let data_sets = get_codec_test_data_sets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate(&data, name);
|
||||
data.reverse();
|
||||
create_and_validate(&data, name);
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn test_simple() {
|
||||
let data = (10..=20_u64).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "simple monotonically");
|
||||
}
|
||||
|
||||
bit_packer.close(wrt)?;
|
||||
|
||||
assert_eq!(blocks.len(), compute_num_blocks(num_vals));
|
||||
|
||||
let mut counting_wrt = CountingWriter::wrap(wrt);
|
||||
for block in &blocks {
|
||||
block.serialize(&mut counting_wrt)?;
|
||||
#[test]
|
||||
fn border_cases_1() {
|
||||
let data = (0..1024).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "border case");
|
||||
}
|
||||
#[test]
|
||||
fn border_case_2() {
|
||||
let data = (0..1025).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "border case");
|
||||
}
|
||||
#[test]
|
||||
fn rand() {
|
||||
for _ in 0..10 {
|
||||
let mut data = (5_000..20_000)
|
||||
.map(|_| rand::random::<u32>() as u64)
|
||||
.collect::<Vec<_>>();
|
||||
let _ = create_and_validate(&data, "random");
|
||||
data.reverse();
|
||||
create_and_validate(&data, "random");
|
||||
}
|
||||
let footer_len = counting_wrt.written_bytes();
|
||||
(footer_len as u32).serialize(&mut counting_wrt)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct BlockwiseLinearReader {
|
||||
blocks: Arc<Vec<Block>>,
|
||||
normalized_header: NormalizedHeader,
|
||||
data: OwnedBytes,
|
||||
}
|
||||
|
||||
impl Column for BlockwiseLinearReader {
|
||||
#[inline(always)]
|
||||
fn get_val(&self, idx: u64) -> u64 {
|
||||
let block_id = (idx / CHUNK_SIZE as u64) as usize;
|
||||
let idx_within_block = idx % (CHUNK_SIZE as u64);
|
||||
let block = &self.blocks[block_id];
|
||||
let interpoled_val: u64 = block.line.eval(idx_within_block);
|
||||
let block_bytes = &self.data[block.data_start_offset..];
|
||||
let bitpacked_diff = block.bit_unpacker.get(idx_within_block, block_bytes);
|
||||
interpoled_val.wrapping_add(bitpacked_diff)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u64 {
|
||||
// The BlockwiseLinearReader assumes a normalized vector.
|
||||
0u64
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.normalized_header.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.normalized_header.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,382 +0,0 @@
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
use tantivy_bitpacker::minmax;
|
||||
|
||||
pub trait Column<T: PartialOrd + Copy + 'static = u64>: Send + Sync {
|
||||
/// Return a `ColumnReader`.
|
||||
fn reader(&self) -> Box<dyn ColumnReader<T> + '_> {
|
||||
// Box::new(ColumnReaderAdapter { column: self, idx: 0, })
|
||||
Box::new(ColumnReaderAdapter::from(self))
|
||||
}
|
||||
|
||||
/// Return the value associated to the given idx.
|
||||
///
|
||||
/// This accessor should return as fast as possible.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `idx` is greater than the column length.
|
||||
///
|
||||
/// TODO remove to force people to use `.reader()`.
|
||||
fn get_val(&self, idx: u64) -> T;
|
||||
|
||||
/// Fills an output buffer with the fast field values
|
||||
/// associated with the `DocId` going from
|
||||
/// `start` to `start + output.len()`.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Must panic if `start + output.len()` is greater than
|
||||
/// the segment's `maxdoc`.
|
||||
#[inline]
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
for (out, idx) in output.iter_mut().zip(start..) {
|
||||
*out = self.get_val(idx);
|
||||
}
|
||||
}
|
||||
|
||||
/// Return the positions of values which are in the provided range.
|
||||
#[inline]
|
||||
fn get_between_vals(&self, range: RangeInclusive<T>) -> Vec<u64> {
|
||||
let mut vals = Vec::new();
|
||||
for idx in 0..self.num_vals() {
|
||||
let val = self.get_val(idx);
|
||||
if range.contains(&val) {
|
||||
vals.push(idx);
|
||||
}
|
||||
}
|
||||
vals
|
||||
}
|
||||
|
||||
/// Returns the minimum value for this fast field.
|
||||
///
|
||||
/// This min_value may not be exact.
|
||||
/// For instance, the min value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.min_value()`.
|
||||
fn min_value(&self) -> T;
|
||||
|
||||
/// Returns the maximum value for this fast field.
|
||||
///
|
||||
/// This max_value may not be exact.
|
||||
/// For instance, the max value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.max_value()`.
|
||||
fn max_value(&self) -> T;
|
||||
|
||||
fn num_vals(&self) -> u64;
|
||||
}
|
||||
|
||||
/// `ColumnReader` makes it possible to read forward through a column.
|
||||
pub trait ColumnReader<T = u64> {
|
||||
/// Advance the reader to the target_idx.
|
||||
///
|
||||
/// After a successful call to seek,
|
||||
/// `.get()` should returns `column.get_val(target_idx)`.
|
||||
fn seek(&mut self, target_idx: u64) -> T;
|
||||
|
||||
fn advance(&mut self) -> bool;
|
||||
|
||||
/// Get the current value without advancing the reader
|
||||
fn get(&self) -> T;
|
||||
}
|
||||
|
||||
pub fn iter_from_reader<'a, T: 'static>(
|
||||
mut column_reader: Box<dyn ColumnReader<T> + 'a>,
|
||||
) -> impl Iterator<Item = T> + 'a {
|
||||
std::iter::from_fn(move || {
|
||||
if !column_reader.advance() {
|
||||
return None;
|
||||
}
|
||||
Some(column_reader.get())
|
||||
})
|
||||
}
|
||||
|
||||
pub(crate) struct ColumnReaderAdapter<'a, C: ?Sized, T> {
|
||||
column: &'a C,
|
||||
idx: u64,
|
||||
len: u64,
|
||||
_phantom: PhantomData<T>,
|
||||
}
|
||||
|
||||
impl<'a, C: Column<T> + ?Sized, T: Copy + PartialOrd + 'static> From<&'a C>
|
||||
for ColumnReaderAdapter<'a, C, T>
|
||||
{
|
||||
fn from(column: &'a C) -> Self {
|
||||
ColumnReaderAdapter {
|
||||
column,
|
||||
idx: u64::MAX,
|
||||
len: column.num_vals(),
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T, C: ?Sized> ColumnReader<T> for ColumnReaderAdapter<'a, C, T>
|
||||
where
|
||||
C: Column<T>,
|
||||
T: PartialOrd<T> + Copy + 'static,
|
||||
{
|
||||
fn seek(&mut self, idx: u64) -> T {
|
||||
self.idx = idx;
|
||||
self.get()
|
||||
}
|
||||
|
||||
fn advance(&mut self) -> bool {
|
||||
self.idx = self.idx.wrapping_add(1);
|
||||
self.idx < self.len
|
||||
}
|
||||
|
||||
fn get(&self) -> T {
|
||||
self.column.get_val(self.idx)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct VecColumn<'a, T = u64> {
|
||||
values: &'a [T],
|
||||
min_value: T,
|
||||
max_value: T,
|
||||
}
|
||||
|
||||
impl<'a, C: Column<T>, T> Column<T> for &'a C
|
||||
where T: Copy + PartialOrd + 'static
|
||||
{
|
||||
fn get_val(&self, idx: u64) -> T {
|
||||
(*self).get_val(idx)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
(*self).min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
(*self).max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
(*self).num_vals()
|
||||
}
|
||||
|
||||
fn reader(&self) -> Box<dyn ColumnReader<T> + '_> {
|
||||
(*self).reader()
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
(*self).get_range(start, output)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Send + Sync + 'static> Column<T> for VecColumn<'a, T> {
|
||||
fn get_val(&self, position: u64) -> T {
|
||||
self.values[position as usize]
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
self.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.values.len() as u64
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
output.copy_from_slice(&self.values[start as usize..][..output.len()])
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + Ord + Default, V> From<&'a V> for VecColumn<'a, T>
|
||||
where V: AsRef<[T]> + ?Sized
|
||||
{
|
||||
fn from(values: &'a V) -> Self {
|
||||
let values = values.as_ref();
|
||||
let (min_value, max_value) = minmax(values.iter().copied()).unwrap_or_default();
|
||||
Self {
|
||||
values,
|
||||
min_value,
|
||||
max_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct MonotonicMappingColumn<C, T, Input> {
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
_phantom: PhantomData<Input>,
|
||||
}
|
||||
|
||||
/// Creates a view of a column transformed by a monotonic mapping.
|
||||
pub fn monotonic_map_column<C, T, Input: PartialOrd + Copy, Output: PartialOrd + Copy>(
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
) -> impl Column<Output>
|
||||
where
|
||||
C: Column<Input>,
|
||||
T: Fn(Input) -> Output + Send + Sync,
|
||||
Input: Send + Sync + 'static,
|
||||
Output: Send + Sync + 'static,
|
||||
{
|
||||
MonotonicMappingColumn {
|
||||
from_column,
|
||||
monotonic_mapping,
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
impl<C, T, Input: PartialOrd + Copy, Output: PartialOrd + Copy> Column<Output>
|
||||
for MonotonicMappingColumn<C, T, Input>
|
||||
where
|
||||
C: Column<Input>,
|
||||
T: Fn(Input) -> Output + Send + Sync,
|
||||
Input: Send + Sync + 'static,
|
||||
Output: Send + Sync + 'static,
|
||||
{
|
||||
#[inline]
|
||||
fn get_val(&self, idx: u64) -> Output {
|
||||
let from_val = self.from_column.get_val(idx);
|
||||
(self.monotonic_mapping)(from_val)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> Output {
|
||||
let from_min_value = self.from_column.min_value();
|
||||
(self.monotonic_mapping)(from_min_value)
|
||||
}
|
||||
|
||||
fn max_value(&self) -> Output {
|
||||
let from_max_value = self.from_column.max_value();
|
||||
(self.monotonic_mapping)(from_max_value)
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.from_column.num_vals()
|
||||
}
|
||||
|
||||
fn reader(&self) -> Box<dyn ColumnReader<Output> + '_> {
|
||||
Box::new(MonotonicMappingColumnReader {
|
||||
col_reader: self.from_column.reader(),
|
||||
monotonic_mapping: &self.monotonic_mapping,
|
||||
intermdiary_type: PhantomData,
|
||||
})
|
||||
}
|
||||
|
||||
// We voluntarily do not implement get_range as it yields a regression,
|
||||
// and we do not have any specialized implementation anyway.
|
||||
}
|
||||
|
||||
struct MonotonicMappingColumnReader<'a, Transform, U> {
|
||||
col_reader: Box<dyn ColumnReader<U> + 'a>,
|
||||
monotonic_mapping: &'a Transform,
|
||||
intermdiary_type: PhantomData<U>,
|
||||
}
|
||||
|
||||
impl<'a, U, V, Transform> ColumnReader<V> for MonotonicMappingColumnReader<'a, Transform, U>
|
||||
where
|
||||
U: Copy,
|
||||
V: Copy,
|
||||
Transform: Fn(U) -> V,
|
||||
{
|
||||
fn seek(&mut self, idx: u64) -> V {
|
||||
let intermediary_value = self.col_reader.seek(idx);
|
||||
(*self.monotonic_mapping)(intermediary_value)
|
||||
}
|
||||
|
||||
fn advance(&mut self) -> bool {
|
||||
self.col_reader.advance()
|
||||
}
|
||||
|
||||
fn get(&self) -> V {
|
||||
(*self.monotonic_mapping)(self.col_reader.get())
|
||||
}
|
||||
}
|
||||
|
||||
pub struct IterColumn<T>(T);
|
||||
|
||||
impl<T> From<T> for IterColumn<T>
|
||||
where T: Iterator + Clone + ExactSizeIterator
|
||||
{
|
||||
fn from(iter: T) -> Self {
|
||||
IterColumn(iter)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Column<T::Item> for IterColumn<T>
|
||||
where
|
||||
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
|
||||
T::Item: PartialOrd + Copy + 'static,
|
||||
{
|
||||
fn get_val(&self, idx: u64) -> T::Item {
|
||||
self.0.clone().nth(idx as usize).unwrap()
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T::Item {
|
||||
self.0.clone().next().unwrap()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T::Item {
|
||||
self.0.clone().last().unwrap()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.0.len() as u64
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::MonotonicallyMappableToU64;
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping() {
|
||||
let vals = &[1u64, 3u64][..];
|
||||
let col = VecColumn::from(vals);
|
||||
let mapped = monotonic_map_column(col, |el| el + 4);
|
||||
assert_eq!(mapped.min_value(), 5u64);
|
||||
assert_eq!(mapped.max_value(), 7u64);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.get_val(0), 5);
|
||||
assert_eq!(mapped.get_val(1), 7);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_as_col() {
|
||||
let col = IterColumn::from(10..100);
|
||||
assert_eq!(col.num_vals(), 90);
|
||||
assert_eq!(col.max_value(), 99);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_iter() {
|
||||
let vals: Vec<u64> = (-1..99).map(i64::to_u64).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(col, |el| i64::from_u64(el) * 10i64);
|
||||
let val_i64s: Vec<i64> = crate::iter_from_reader(mapped.reader()).collect();
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_get_range() {
|
||||
let vals: Vec<u64> = (-1..99).map(i64::to_u64).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(col, |el| i64::from_u64(el) * 10i64);
|
||||
assert_eq!(mapped.min_value(), -10i64);
|
||||
assert_eq!(mapped.max_value(), 980i64);
|
||||
assert_eq!(mapped.num_vals(), 100);
|
||||
let val_i64s: Vec<i64> = crate::iter_from_reader(mapped.reader()).collect();
|
||||
assert_eq!(val_i64s.len(), 100);
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
|
||||
assert_eq!(val_i64s[i as usize], i64::from_u64(vals[i as usize]) * 10);
|
||||
}
|
||||
let mut buf = [0i64; 20];
|
||||
mapped.get_range(7, &mut buf[..]);
|
||||
assert_eq!(&val_i64s[7..][..20], &buf);
|
||||
}
|
||||
}
|
||||
@@ -1,43 +0,0 @@
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
/// The range of a blank in value space.
|
||||
///
|
||||
/// A blank is an unoccupied space in the data.
|
||||
/// Use try_into() to construct.
|
||||
/// A range has to have at least length of 3. Invalid ranges will be rejected.
|
||||
///
|
||||
/// Ordered by range length.
|
||||
#[derive(Debug, Eq, PartialEq, Clone)]
|
||||
pub(crate) struct BlankRange {
|
||||
blank_range: RangeInclusive<u128>,
|
||||
}
|
||||
impl TryFrom<RangeInclusive<u128>> for BlankRange {
|
||||
type Error = &'static str;
|
||||
fn try_from(range: RangeInclusive<u128>) -> Result<Self, Self::Error> {
|
||||
let blank_size = range.end().saturating_sub(*range.start());
|
||||
if blank_size < 2 {
|
||||
Err("invalid range")
|
||||
} else {
|
||||
Ok(BlankRange { blank_range: range })
|
||||
}
|
||||
}
|
||||
}
|
||||
impl BlankRange {
|
||||
pub(crate) fn blank_size(&self) -> u128 {
|
||||
self.blank_range.end() - self.blank_range.start() + 1
|
||||
}
|
||||
pub(crate) fn blank_range(&self) -> RangeInclusive<u128> {
|
||||
self.blank_range.clone()
|
||||
}
|
||||
}
|
||||
|
||||
impl Ord for BlankRange {
|
||||
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
|
||||
self.blank_size().cmp(&other.blank_size())
|
||||
}
|
||||
}
|
||||
impl PartialOrd for BlankRange {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
|
||||
Some(self.blank_size().cmp(&other.blank_size()))
|
||||
}
|
||||
}
|
||||
@@ -1,231 +0,0 @@
|
||||
use std::collections::{BTreeSet, BinaryHeap};
|
||||
use std::iter;
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::blank_range::BlankRange;
|
||||
use super::{CompactSpace, RangeMapping};
|
||||
|
||||
/// Put the blanks for the sorted values into a binary heap
|
||||
fn get_blanks(values_sorted: &BTreeSet<u128>) -> BinaryHeap<BlankRange> {
|
||||
let mut blanks: BinaryHeap<BlankRange> = BinaryHeap::new();
|
||||
for (first, second) in values_sorted.iter().tuple_windows() {
|
||||
// Correctness Overflow: the values are deduped and sorted (BTreeSet property), that means
|
||||
// there's always space between two values.
|
||||
let blank_range = first + 1..=second - 1;
|
||||
let blank_range: Result<BlankRange, _> = blank_range.try_into();
|
||||
if let Ok(blank_range) = blank_range {
|
||||
blanks.push(blank_range);
|
||||
}
|
||||
}
|
||||
|
||||
blanks
|
||||
}
|
||||
|
||||
struct BlankCollector {
|
||||
blanks: Vec<BlankRange>,
|
||||
staged_blanks_sum: u128,
|
||||
}
|
||||
impl BlankCollector {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
blanks: vec![],
|
||||
staged_blanks_sum: 0,
|
||||
}
|
||||
}
|
||||
fn stage_blank(&mut self, blank: BlankRange) {
|
||||
self.staged_blanks_sum += blank.blank_size();
|
||||
self.blanks.push(blank);
|
||||
}
|
||||
fn drain(&mut self) -> impl Iterator<Item = BlankRange> + '_ {
|
||||
self.staged_blanks_sum = 0;
|
||||
self.blanks.drain(..)
|
||||
}
|
||||
fn staged_blanks_sum(&self) -> u128 {
|
||||
self.staged_blanks_sum
|
||||
}
|
||||
fn num_staged_blanks(&self) -> usize {
|
||||
self.blanks.len()
|
||||
}
|
||||
}
|
||||
fn num_bits(val: u128) -> u8 {
|
||||
(128u32 - val.leading_zeros()) as u8
|
||||
}
|
||||
|
||||
/// Will collect blanks and add them to compact space if more bits are saved than cost from
|
||||
/// metadata.
|
||||
pub fn get_compact_space(
|
||||
values_deduped_sorted: &BTreeSet<u128>,
|
||||
total_num_values: u64,
|
||||
cost_per_blank: usize,
|
||||
) -> CompactSpace {
|
||||
let mut compact_space_builder = CompactSpaceBuilder::new();
|
||||
if values_deduped_sorted.is_empty() {
|
||||
return compact_space_builder.finish();
|
||||
}
|
||||
|
||||
let mut blanks: BinaryHeap<BlankRange> = get_blanks(values_deduped_sorted);
|
||||
// Replace after stabilization of https://github.com/rust-lang/rust/issues/62924
|
||||
|
||||
// We start by space that's limited to min_value..=max_value
|
||||
let min_value = *values_deduped_sorted.iter().next().unwrap_or(&0);
|
||||
let max_value = *values_deduped_sorted.iter().last().unwrap_or(&0);
|
||||
|
||||
// +1 for null, in case min and max covers the whole space, we are off by one.
|
||||
let mut amplitude_compact_space = (max_value - min_value).saturating_add(1);
|
||||
if min_value != 0 {
|
||||
compact_space_builder.add_blanks(iter::once(0..=min_value - 1));
|
||||
}
|
||||
if max_value != u128::MAX {
|
||||
compact_space_builder.add_blanks(iter::once(max_value + 1..=u128::MAX));
|
||||
}
|
||||
|
||||
let mut amplitude_bits: u8 = num_bits(amplitude_compact_space);
|
||||
|
||||
let mut blank_collector = BlankCollector::new();
|
||||
// We will stage blanks until they reduce the compact space by at least 1 bit and then flush
|
||||
// them if the metadata cost is lower than the total number of saved bits.
|
||||
// Binary heap to process the gaps by their size
|
||||
while let Some(blank_range) = blanks.pop() {
|
||||
blank_collector.stage_blank(blank_range);
|
||||
|
||||
let staged_spaces_sum: u128 = blank_collector.staged_blanks_sum();
|
||||
let amplitude_new_compact_space = amplitude_compact_space - staged_spaces_sum;
|
||||
let amplitude_new_bits = num_bits(amplitude_new_compact_space);
|
||||
if amplitude_bits == amplitude_new_bits {
|
||||
continue;
|
||||
}
|
||||
let saved_bits = (amplitude_bits - amplitude_new_bits) as usize * total_num_values as usize;
|
||||
// TODO: Maybe calculate exact cost of blanks and run this more expensive computation only,
|
||||
// when amplitude_new_bits changes
|
||||
let cost = blank_collector.num_staged_blanks() * cost_per_blank;
|
||||
if cost >= saved_bits {
|
||||
// Continue here, since although we walk over the blanks by size,
|
||||
// we can potentially save a lot at the last bits, which are smaller blanks
|
||||
//
|
||||
// E.g. if the first range reduces the compact space by 1000 from 2000 to 1000, which
|
||||
// saves 11-10=1 bit and the next range reduces the compact space by 950 to
|
||||
// 50, which saves 10-6=4 bit
|
||||
continue;
|
||||
}
|
||||
|
||||
amplitude_compact_space = amplitude_new_compact_space;
|
||||
amplitude_bits = amplitude_new_bits;
|
||||
compact_space_builder.add_blanks(blank_collector.drain().map(|blank| blank.blank_range()));
|
||||
}
|
||||
|
||||
// special case, when we don't collected any blanks because:
|
||||
// * the data is empty (early exit)
|
||||
// * the algorithm did decide it's not worth the cost, which can be the case for single values
|
||||
//
|
||||
// We drain one collected blank unconditionally, so the empty case is reserved for empty
|
||||
// data, and therefore empty compact_space means the data is empty and no data is covered
|
||||
// (conversely to all data) and we can assign null to it.
|
||||
if compact_space_builder.is_empty() {
|
||||
compact_space_builder.add_blanks(
|
||||
blank_collector
|
||||
.drain()
|
||||
.map(|blank| blank.blank_range())
|
||||
.take(1),
|
||||
);
|
||||
}
|
||||
|
||||
let compact_space = compact_space_builder.finish();
|
||||
if max_value - min_value != u128::MAX {
|
||||
debug_assert_eq!(
|
||||
compact_space.amplitude_compact_space(),
|
||||
amplitude_compact_space
|
||||
);
|
||||
}
|
||||
compact_space
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
struct CompactSpaceBuilder {
|
||||
blanks: Vec<RangeInclusive<u128>>,
|
||||
}
|
||||
|
||||
impl CompactSpaceBuilder {
|
||||
/// Creates a new compact space builder which will initially cover the whole space.
|
||||
fn new() -> Self {
|
||||
Self { blanks: Vec::new() }
|
||||
}
|
||||
|
||||
/// Assumes that repeated add_blank calls don't overlap and are not adjacent,
|
||||
/// e.g. [3..=5, 5..=10] is not allowed
|
||||
///
|
||||
/// Both of those assumptions are true when blanks are produced from sorted values.
|
||||
fn add_blanks(&mut self, blank: impl Iterator<Item = RangeInclusive<u128>>) {
|
||||
self.blanks.extend(blank);
|
||||
}
|
||||
|
||||
fn is_empty(&self) -> bool {
|
||||
self.blanks.is_empty()
|
||||
}
|
||||
|
||||
/// Convert blanks to covered space and assign null value
|
||||
fn finish(mut self) -> CompactSpace {
|
||||
// sort by start. ranges are not allowed to overlap
|
||||
self.blanks.sort_unstable_by_key(|blank| *blank.start());
|
||||
|
||||
let mut covered_space = Vec::with_capacity(self.blanks.len());
|
||||
|
||||
// begining of the blanks
|
||||
if let Some(first_blank_start) = self.blanks.first().map(RangeInclusive::start) {
|
||||
if *first_blank_start != 0 {
|
||||
covered_space.push(0..=first_blank_start - 1);
|
||||
}
|
||||
}
|
||||
|
||||
// Between the blanks
|
||||
let between_blanks = self.blanks.iter().tuple_windows().map(|(left, right)| {
|
||||
assert!(
|
||||
left.end() < right.start(),
|
||||
"overlapping or adjacent ranges detected"
|
||||
);
|
||||
*left.end() + 1..=*right.start() - 1
|
||||
});
|
||||
covered_space.extend(between_blanks);
|
||||
|
||||
// end of the blanks
|
||||
if let Some(last_blank_end) = self.blanks.last().map(RangeInclusive::end) {
|
||||
if *last_blank_end != u128::MAX {
|
||||
covered_space.push(last_blank_end + 1..=u128::MAX);
|
||||
}
|
||||
}
|
||||
|
||||
if covered_space.is_empty() {
|
||||
covered_space.push(0..=0); // empty data case
|
||||
};
|
||||
|
||||
let mut compact_start: u64 = 1; // 0 is reserved for `null`
|
||||
let mut ranges_mapping: Vec<RangeMapping> = Vec::with_capacity(covered_space.len());
|
||||
for cov in covered_space {
|
||||
let range_mapping = super::RangeMapping {
|
||||
value_range: cov,
|
||||
compact_start,
|
||||
};
|
||||
let covered_range_len = range_mapping.range_length();
|
||||
ranges_mapping.push(range_mapping);
|
||||
compact_start += covered_range_len as u64;
|
||||
}
|
||||
// println!("num ranges {}", ranges_mapping.len());
|
||||
CompactSpace { ranges_mapping }
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_binary_heap_pop_order() {
|
||||
let mut blanks: BinaryHeap<BlankRange> = BinaryHeap::new();
|
||||
blanks.push((0..=10).try_into().unwrap());
|
||||
blanks.push((100..=200).try_into().unwrap());
|
||||
blanks.push((100..=110).try_into().unwrap());
|
||||
assert_eq!(blanks.pop().unwrap().blank_size(), 101);
|
||||
assert_eq!(blanks.pop().unwrap().blank_size(), 11);
|
||||
}
|
||||
}
|
||||
@@ -1,689 +0,0 @@
|
||||
/// This codec takes a large number space (u128) and reduces it to a compact number space.
|
||||
///
|
||||
/// It will find spaces in the number range. For example:
|
||||
///
|
||||
/// 100, 101, 102, 103, 104, 50000, 50001
|
||||
/// could be mapped to
|
||||
/// 100..104 -> 0..4
|
||||
/// 50000..50001 -> 5..6
|
||||
///
|
||||
/// Compact space 0..=6 requires much less bits than 100..=50001
|
||||
///
|
||||
/// The codec is created to compress ip addresses, but may be employed in other use cases.
|
||||
use std::{
|
||||
cmp::Ordering,
|
||||
collections::BTreeSet,
|
||||
io::{self, Write},
|
||||
ops::RangeInclusive,
|
||||
};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, VInt, VIntU128};
|
||||
use ownedbytes::OwnedBytes;
|
||||
use tantivy_bitpacker::{self, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::compact_space::build_compact_space::get_compact_space;
|
||||
use crate::{iter_from_reader, Column, ColumnReader};
|
||||
|
||||
mod blank_range;
|
||||
mod build_compact_space;
|
||||
|
||||
/// The cost per blank is quite hard actually, since blanks are delta encoded, the actual cost of
|
||||
/// blanks depends on the number of blanks.
|
||||
///
|
||||
/// The number is taken by looking at a real dataset. It is optimized for larger datasets.
|
||||
const COST_PER_BLANK_IN_BITS: usize = 36;
|
||||
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub struct CompactSpace {
|
||||
ranges_mapping: Vec<RangeMapping>,
|
||||
}
|
||||
|
||||
/// Maps the range from the original space to compact_start + range.len()
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
struct RangeMapping {
|
||||
value_range: RangeInclusive<u128>,
|
||||
compact_start: u64,
|
||||
}
|
||||
impl RangeMapping {
|
||||
fn range_length(&self) -> u64 {
|
||||
(self.value_range.end() - self.value_range.start()) as u64 + 1
|
||||
}
|
||||
|
||||
// The last value of the compact space in this range
|
||||
fn compact_end(&self) -> u64 {
|
||||
self.compact_start + self.range_length() - 1
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for CompactSpace {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.ranges_mapping.len() as u64).serialize(writer)?;
|
||||
|
||||
let mut prev_value = 0;
|
||||
for value_range in self
|
||||
.ranges_mapping
|
||||
.iter()
|
||||
.map(|range_mapping| &range_mapping.value_range)
|
||||
{
|
||||
let blank_delta_start = value_range.start() - prev_value;
|
||||
VIntU128(blank_delta_start).serialize(writer)?;
|
||||
prev_value = *value_range.start();
|
||||
|
||||
let blank_delta_end = value_range.end() - prev_value;
|
||||
VIntU128(blank_delta_end).serialize(writer)?;
|
||||
prev_value = *value_range.end();
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_ranges = VInt::deserialize(reader)?.0;
|
||||
let mut ranges_mapping: Vec<RangeMapping> = vec![];
|
||||
let mut value = 0u128;
|
||||
let mut compact_start = 1u64; // 0 is reserved for `null`
|
||||
for _ in 0..num_ranges {
|
||||
let blank_delta_start = VIntU128::deserialize(reader)?.0;
|
||||
value += blank_delta_start;
|
||||
let blank_start = value;
|
||||
|
||||
let blank_delta_end = VIntU128::deserialize(reader)?.0;
|
||||
value += blank_delta_end;
|
||||
let blank_end = value;
|
||||
|
||||
let range_mapping = RangeMapping {
|
||||
value_range: blank_start..=blank_end,
|
||||
compact_start,
|
||||
};
|
||||
let range_length = range_mapping.range_length();
|
||||
ranges_mapping.push(range_mapping);
|
||||
compact_start += range_length as u64;
|
||||
}
|
||||
|
||||
Ok(Self { ranges_mapping })
|
||||
}
|
||||
}
|
||||
|
||||
impl CompactSpace {
|
||||
/// Amplitude is the value range of the compact space including the sentinel value used to
|
||||
/// identify null values. The compact space is 0..=amplitude .
|
||||
///
|
||||
/// It's only used to verify we don't exceed u64 number space, which would indicate a bug.
|
||||
fn amplitude_compact_space(&self) -> u128 {
|
||||
self.ranges_mapping
|
||||
.last()
|
||||
.map(|last_range| last_range.compact_end() as u128)
|
||||
.unwrap_or(1) // compact space starts at 1, 0 == null
|
||||
}
|
||||
|
||||
fn get_range_mapping(&self, pos: usize) -> &RangeMapping {
|
||||
&self.ranges_mapping[pos]
|
||||
}
|
||||
|
||||
/// Returns either Ok(the value in the compact space) or if it is outside the compact space the
|
||||
/// Err(position where it would be inserted)
|
||||
fn u128_to_compact(&self, value: u128) -> Result<u64, usize> {
|
||||
self.ranges_mapping
|
||||
.binary_search_by(|probe| {
|
||||
let value_range = &probe.value_range;
|
||||
if value < *value_range.start() {
|
||||
Ordering::Greater
|
||||
} else if value > *value_range.end() {
|
||||
Ordering::Less
|
||||
} else {
|
||||
Ordering::Equal
|
||||
}
|
||||
})
|
||||
.map(|pos| {
|
||||
let range_mapping = &self.ranges_mapping[pos];
|
||||
let pos_in_range = (value - range_mapping.value_range.start()) as u64;
|
||||
range_mapping.compact_start + pos_in_range
|
||||
})
|
||||
}
|
||||
|
||||
/// Unpacks a value from compact space u64 to u128 space
|
||||
fn compact_to_u128(&self, compact: u64) -> u128 {
|
||||
let pos = self
|
||||
.ranges_mapping
|
||||
.binary_search_by_key(&compact, |range_mapping| range_mapping.compact_start)
|
||||
// Correctness: Overflow. The first range starts at compact space 0, the error from
|
||||
// binary search can never be 0
|
||||
.map_or_else(|e| e - 1, |v| v);
|
||||
|
||||
let range_mapping = &self.ranges_mapping[pos];
|
||||
let diff = compact - range_mapping.compact_start;
|
||||
range_mapping.value_range.start() + diff as u128
|
||||
}
|
||||
}
|
||||
|
||||
pub struct CompactSpaceCompressor {
|
||||
params: IPCodecParams,
|
||||
}
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct IPCodecParams {
|
||||
compact_space: CompactSpace,
|
||||
bit_unpacker: BitUnpacker,
|
||||
min_value: u128,
|
||||
max_value: u128,
|
||||
num_vals: u64,
|
||||
num_bits: u8,
|
||||
}
|
||||
|
||||
impl CompactSpaceCompressor {
|
||||
/// Taking the vals as Vec may cost a lot of memory. It is used to sort the vals.
|
||||
pub fn train_from(column: &impl Column<u128>) -> Self {
|
||||
let mut values_sorted = BTreeSet::new();
|
||||
|
||||
let total_num_values = column.num_vals();
|
||||
|
||||
values_sorted.extend(iter_from_reader(column.reader()));
|
||||
|
||||
let compact_space =
|
||||
get_compact_space(&values_sorted, total_num_values, COST_PER_BLANK_IN_BITS);
|
||||
|
||||
let amplitude_compact_space = compact_space.amplitude_compact_space();
|
||||
|
||||
assert!(
|
||||
amplitude_compact_space <= u64::MAX as u128,
|
||||
"case unsupported."
|
||||
);
|
||||
|
||||
let num_bits = tantivy_bitpacker::compute_num_bits(amplitude_compact_space as u64);
|
||||
let min_value = *values_sorted.iter().next().unwrap_or(&0);
|
||||
let max_value = *values_sorted.iter().last().unwrap_or(&0);
|
||||
assert_eq!(
|
||||
compact_space
|
||||
.u128_to_compact(max_value)
|
||||
.expect("could not convert max value to compact space"),
|
||||
amplitude_compact_space as u64
|
||||
);
|
||||
CompactSpaceCompressor {
|
||||
params: IPCodecParams {
|
||||
compact_space,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: total_num_values as u64,
|
||||
num_bits,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
fn write_footer(self, writer: &mut impl Write) -> io::Result<()> {
|
||||
let writer = &mut CountingWriter::wrap(writer);
|
||||
self.params.serialize(writer)?;
|
||||
|
||||
let footer_len = writer.written_bytes() as u32;
|
||||
footer_len.serialize(writer)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn compress_into(
|
||||
self,
|
||||
mut vals: Box<dyn ColumnReader<u128> + '_>,
|
||||
write: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
let mut bitpacker = BitPacker::default();
|
||||
while vals.advance() {
|
||||
let val = vals.get();
|
||||
let compact = self
|
||||
.params
|
||||
.compact_space
|
||||
.u128_to_compact(val)
|
||||
.map_err(|_| {
|
||||
io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
"Could not convert value to compact_space. This is a bug.",
|
||||
)
|
||||
})?;
|
||||
bitpacker.write(compact, self.params.num_bits, write)?;
|
||||
}
|
||||
bitpacker.close(write)?;
|
||||
self.write_footer(write)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct CompactSpaceDecompressor {
|
||||
data: OwnedBytes,
|
||||
params: IPCodecParams,
|
||||
}
|
||||
|
||||
impl BinarySerializable for IPCodecParams {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
// header flags for future optional dictionary encoding
|
||||
let footer_flags = 0u64;
|
||||
footer_flags.serialize(writer)?;
|
||||
|
||||
VIntU128(self.min_value).serialize(writer)?;
|
||||
VIntU128(self.max_value).serialize(writer)?;
|
||||
VIntU128(self.num_vals as u128).serialize(writer)?;
|
||||
self.num_bits.serialize(writer)?;
|
||||
|
||||
self.compact_space.serialize(writer)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let _header_flags = u64::deserialize(reader)?;
|
||||
let min_value = VIntU128::deserialize(reader)?.0;
|
||||
let max_value = VIntU128::deserialize(reader)?.0;
|
||||
let num_vals = VIntU128::deserialize(reader)?.0 as u64;
|
||||
let num_bits = u8::deserialize(reader)?;
|
||||
let compact_space = CompactSpace::deserialize(reader)?;
|
||||
|
||||
Ok(Self {
|
||||
compact_space,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals,
|
||||
num_bits,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Column<u128> for CompactSpaceDecompressor {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u64) -> u128 {
|
||||
self.get(doc)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u128 {
|
||||
self.min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u128 {
|
||||
self.max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.params.num_vals
|
||||
}
|
||||
|
||||
fn get_between_vals(&self, range: RangeInclusive<u128>) -> Vec<u64> {
|
||||
self.get_between_vals(range)
|
||||
}
|
||||
|
||||
fn reader(&self) -> Box<dyn ColumnReader<u128> + '_> {
|
||||
Box::new(self.specialized_reader())
|
||||
}
|
||||
}
|
||||
|
||||
impl CompactSpaceDecompressor {
|
||||
pub fn open(data: OwnedBytes) -> io::Result<CompactSpaceDecompressor> {
|
||||
let (data_slice, footer_len_bytes) = data.split_at(data.len() - 4);
|
||||
let footer_len = u32::deserialize(&mut &footer_len_bytes[..])?;
|
||||
|
||||
let data_footer = &data_slice[data_slice.len() - footer_len as usize..];
|
||||
let params = IPCodecParams::deserialize(&mut &data_footer[..])?;
|
||||
let decompressor = CompactSpaceDecompressor { data, params };
|
||||
|
||||
Ok(decompressor)
|
||||
}
|
||||
|
||||
/// Converting to compact space for the decompressor is more complex, since we may get values
|
||||
/// which are outside the compact space. e.g. if we map
|
||||
/// 1000 => 5
|
||||
/// 2000 => 6
|
||||
///
|
||||
/// and we want a mapping for 1005, there is no equivalent compact space. We instead return an
|
||||
/// error with the index of the next range.
|
||||
fn u128_to_compact(&self, value: u128) -> Result<u64, usize> {
|
||||
self.params.compact_space.u128_to_compact(value)
|
||||
}
|
||||
|
||||
fn compact_to_u128(&self, compact: u64) -> u128 {
|
||||
self.params.compact_space.compact_to_u128(compact)
|
||||
}
|
||||
|
||||
/// Comparing on compact space: Random dataset 0,24 (50% random hit) - 1.05 GElements/s
|
||||
/// Comparing on compact space: Real dataset 1.08 GElements/s
|
||||
///
|
||||
/// Comparing on original space: Real dataset .06 GElements/s (not completely optimized)
|
||||
pub fn get_between_vals(&self, range: RangeInclusive<u128>) -> Vec<u64> {
|
||||
if range.start() > range.end() {
|
||||
return Vec::new();
|
||||
}
|
||||
let from_value = *range.start();
|
||||
let to_value = *range.end();
|
||||
assert!(to_value >= from_value);
|
||||
let compact_from = self.u128_to_compact(from_value);
|
||||
let compact_to = self.u128_to_compact(to_value);
|
||||
|
||||
// Quick return, if both ranges fall into the same non-mapped space, the range can't cover
|
||||
// any values, so we can early exit
|
||||
match (compact_to, compact_from) {
|
||||
(Err(pos1), Err(pos2)) if pos1 == pos2 => return Vec::new(),
|
||||
_ => {}
|
||||
}
|
||||
|
||||
let compact_from = compact_from.unwrap_or_else(|pos| {
|
||||
// Correctness: Out of bounds, if this value is Err(last_index + 1), we early exit,
|
||||
// since the to_value also mapps into the same non-mapped space
|
||||
let range_mapping = self.params.compact_space.get_range_mapping(pos);
|
||||
range_mapping.compact_start
|
||||
});
|
||||
// If there is no compact space, we go to the closest upperbound compact space
|
||||
let compact_to = compact_to.unwrap_or_else(|pos| {
|
||||
// Correctness: Overflow, if this value is Err(0), we early exit,
|
||||
// since the from_value also mapps into the same non-mapped space
|
||||
|
||||
// Get end of previous range
|
||||
let pos = pos - 1;
|
||||
let range_mapping = self.params.compact_space.get_range_mapping(pos);
|
||||
range_mapping.compact_end()
|
||||
});
|
||||
|
||||
let range = compact_from..=compact_to;
|
||||
let mut positions = Vec::new();
|
||||
|
||||
let step_size = 4;
|
||||
let cutoff = self.params.num_vals - self.params.num_vals % step_size;
|
||||
|
||||
let mut push_if_in_range = |idx, val| {
|
||||
if range.contains(&val) {
|
||||
positions.push(idx);
|
||||
}
|
||||
};
|
||||
let get_val = |idx| self.params.bit_unpacker.get(idx as u64, &self.data);
|
||||
// unrolled loop
|
||||
for idx in (0..cutoff).step_by(step_size as usize) {
|
||||
let idx1 = idx;
|
||||
let idx2 = idx + 1;
|
||||
let idx3 = idx + 2;
|
||||
let idx4 = idx + 3;
|
||||
let val1 = get_val(idx1);
|
||||
let val2 = get_val(idx2);
|
||||
let val3 = get_val(idx3);
|
||||
let val4 = get_val(idx4);
|
||||
push_if_in_range(idx1, val1);
|
||||
push_if_in_range(idx2, val2);
|
||||
push_if_in_range(idx3, val3);
|
||||
push_if_in_range(idx4, val4);
|
||||
}
|
||||
|
||||
// handle rest
|
||||
for idx in cutoff..self.params.num_vals {
|
||||
push_if_in_range(idx, get_val(idx));
|
||||
}
|
||||
|
||||
positions
|
||||
}
|
||||
|
||||
fn specialized_reader(&self) -> CompactSpaceReader<'_> {
|
||||
CompactSpaceReader {
|
||||
data: self.data.as_slice(),
|
||||
params: &self.params,
|
||||
idx: 0u64,
|
||||
len: self.params.num_vals,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn get(&self, idx: u64) -> u128 {
|
||||
let compact = self.params.bit_unpacker.get(idx, &self.data);
|
||||
self.compact_to_u128(compact)
|
||||
}
|
||||
|
||||
pub fn min_value(&self) -> u128 {
|
||||
self.params.min_value
|
||||
}
|
||||
|
||||
pub fn max_value(&self) -> u128 {
|
||||
self.params.max_value
|
||||
}
|
||||
}
|
||||
|
||||
pub struct CompactSpaceReader<'a> {
|
||||
data: &'a [u8],
|
||||
params: &'a IPCodecParams,
|
||||
idx: u64,
|
||||
len: u64,
|
||||
}
|
||||
|
||||
impl<'a> ColumnReader<u128> for CompactSpaceReader<'a> {
|
||||
fn seek(&mut self, target_idx: u64) -> u128 {
|
||||
self.idx = target_idx;
|
||||
self.get()
|
||||
}
|
||||
|
||||
fn advance(&mut self) -> bool {
|
||||
self.idx = self.idx.wrapping_add(1);
|
||||
self.idx < self.len
|
||||
}
|
||||
|
||||
fn get(&self) -> u128 {
|
||||
let compact_code = self.params.bit_unpacker.get(self.idx, self.data);
|
||||
self.params.compact_space.compact_to_u128(compact_code)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use super::*;
|
||||
use crate::{open_u128, serialize_u128, VecColumn};
|
||||
|
||||
#[test]
|
||||
fn compact_space_test() {
|
||||
let ips = &[
|
||||
2u128, 4u128, 1000, 1001, 1002, 1003, 1004, 1005, 1008, 1010, 1012, 1260,
|
||||
]
|
||||
.into_iter()
|
||||
.collect();
|
||||
let compact_space = get_compact_space(ips, ips.len() as u64, 11);
|
||||
let amplitude = compact_space.amplitude_compact_space();
|
||||
assert_eq!(amplitude, 17);
|
||||
assert_eq!(1, compact_space.u128_to_compact(2).unwrap());
|
||||
assert_eq!(2, compact_space.u128_to_compact(3).unwrap());
|
||||
assert_eq!(compact_space.u128_to_compact(100).unwrap_err(), 1);
|
||||
|
||||
for (num1, num2) in (0..3).tuple_windows() {
|
||||
assert_eq!(
|
||||
compact_space.get_range_mapping(num1).compact_end() + 1,
|
||||
compact_space.get_range_mapping(num2).compact_start
|
||||
);
|
||||
}
|
||||
|
||||
let mut output: Vec<u8> = Vec::new();
|
||||
compact_space.serialize(&mut output).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
compact_space,
|
||||
CompactSpace::deserialize(&mut &output[..]).unwrap()
|
||||
);
|
||||
|
||||
for ip in ips {
|
||||
let compact = compact_space.u128_to_compact(*ip).unwrap();
|
||||
assert_eq!(compact_space.compact_to_u128(compact), *ip);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn compact_space_amplitude_test() {
|
||||
let ips = &[100000u128, 1000000].into_iter().collect();
|
||||
let compact_space = get_compact_space(ips, ips.len() as u64, 1);
|
||||
let amplitude = compact_space.amplitude_compact_space();
|
||||
assert_eq!(amplitude, 2);
|
||||
}
|
||||
|
||||
fn test_all(data: OwnedBytes, expected: &[u128]) {
|
||||
let decompressor = CompactSpaceDecompressor::open(data).unwrap();
|
||||
for (idx, expected_val) in expected.iter().cloned().enumerate() {
|
||||
let val = decompressor.get(idx as u64);
|
||||
assert_eq!(val, expected_val);
|
||||
|
||||
let test_range = |range: RangeInclusive<u128>| {
|
||||
let expected_positions = expected
|
||||
.iter()
|
||||
.positions(|val| range.contains(val))
|
||||
.map(|pos| pos as u64)
|
||||
.collect::<Vec<_>>();
|
||||
let positions = decompressor.get_between_vals(range);
|
||||
assert_eq!(positions, expected_positions);
|
||||
};
|
||||
|
||||
test_range(expected_val.saturating_sub(1)..=expected_val);
|
||||
test_range(expected_val..=expected_val);
|
||||
test_range(expected_val..=expected_val.saturating_add(1));
|
||||
test_range(expected_val.saturating_sub(1)..=expected_val.saturating_add(1));
|
||||
}
|
||||
}
|
||||
|
||||
fn test_aux_vals(u128_vals: &[u128]) -> OwnedBytes {
|
||||
let mut out = Vec::new();
|
||||
serialize_u128(VecColumn::from(u128_vals), &mut out).unwrap();
|
||||
|
||||
let data = OwnedBytes::new(out);
|
||||
test_all(data.clone(), u128_vals);
|
||||
data
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_1() {
|
||||
let vals = &[
|
||||
1u128,
|
||||
100u128,
|
||||
3u128,
|
||||
99999u128,
|
||||
100000u128,
|
||||
100001u128,
|
||||
4_000_211_221u128,
|
||||
4_000_211_222u128,
|
||||
333u128,
|
||||
];
|
||||
let data = test_aux_vals(vals);
|
||||
let decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
let positions = decomp.get_between_vals(0..=1);
|
||||
assert_eq!(positions, vec![0]);
|
||||
let positions = decomp.get_between_vals(0..=2);
|
||||
assert_eq!(positions, vec![0]);
|
||||
let positions = decomp.get_between_vals(0..=3);
|
||||
assert_eq!(positions, vec![0, 2]);
|
||||
assert_eq!(decomp.get_between_vals(99999u128..=99999u128), vec![3]);
|
||||
assert_eq!(decomp.get_between_vals(99999u128..=100000u128), vec![3, 4]);
|
||||
assert_eq!(decomp.get_between_vals(99998u128..=100000u128), vec![3, 4]);
|
||||
assert_eq!(decomp.get_between_vals(99998u128..=99999u128), vec![3]);
|
||||
assert_eq!(decomp.get_between_vals(99998u128..=99998u128), vec![]);
|
||||
assert_eq!(decomp.get_between_vals(333u128..=333u128), vec![8]);
|
||||
assert_eq!(decomp.get_between_vals(332u128..=333u128), vec![8]);
|
||||
assert_eq!(decomp.get_between_vals(332u128..=334u128), vec![8]);
|
||||
assert_eq!(decomp.get_between_vals(333u128..=334u128), vec![8]);
|
||||
|
||||
assert_eq!(
|
||||
decomp.get_between_vals(4_000_211_221u128..=5_000_000_000u128),
|
||||
vec![6, 7]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_empty() {
|
||||
let vals = &[];
|
||||
let data = test_aux_vals(vals);
|
||||
let _decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_2() {
|
||||
let vals = &[
|
||||
100u128,
|
||||
99999u128,
|
||||
100000u128,
|
||||
100001u128,
|
||||
4_000_211_221u128,
|
||||
4_000_211_222u128,
|
||||
333u128,
|
||||
];
|
||||
let data = test_aux_vals(vals);
|
||||
let decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
let positions = decomp.get_between_vals(0..=5);
|
||||
assert_eq!(positions, vec![]);
|
||||
let positions = decomp.get_between_vals(0..=100);
|
||||
assert_eq!(positions, vec![0]);
|
||||
let positions = decomp.get_between_vals(0..=105);
|
||||
assert_eq!(positions, vec![0]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_3() {
|
||||
let vals = &[
|
||||
200u128,
|
||||
201,
|
||||
202,
|
||||
203,
|
||||
204,
|
||||
204,
|
||||
206,
|
||||
207,
|
||||
208,
|
||||
209,
|
||||
210,
|
||||
1_000_000,
|
||||
5_000_000_000,
|
||||
];
|
||||
let mut out = Vec::new();
|
||||
serialize_u128(VecColumn::from(vals), &mut out).unwrap();
|
||||
let decomp = open_u128(OwnedBytes::new(out)).unwrap();
|
||||
|
||||
assert_eq!(decomp.get_between_vals(199..=200), vec![0]);
|
||||
assert_eq!(decomp.get_between_vals(199..=201), vec![0, 1]);
|
||||
assert_eq!(decomp.get_between_vals(200..=200), vec![0]);
|
||||
assert_eq!(decomp.get_between_vals(1_000_000..=1_000_000), vec![11]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bug1() {
|
||||
let vals = &[9223372036854775806];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bug2() {
|
||||
let vals = &[340282366920938463463374607431768211455u128];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bug3() {
|
||||
let vals = &[340282366920938463463374607431768211454];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bug4() {
|
||||
let vals = &[340282366920938463463374607431768211455, 0];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_first_large_gaps() {
|
||||
let vals = &[1_000_000_000u128; 100];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
use itertools::Itertools;
|
||||
use proptest::prelude::*;
|
||||
|
||||
fn num_strategy() -> impl Strategy<Value = u128> {
|
||||
prop_oneof![
|
||||
1 => prop::num::u128::ANY.prop_map(|num| u128::MAX - (num % 10) ),
|
||||
1 => prop::num::u128::ANY.prop_map(|num| i64::MAX as u128 + 5 - (num % 10) ),
|
||||
1 => prop::num::u128::ANY.prop_map(|num| i128::MAX as u128 + 5 - (num % 10) ),
|
||||
1 => prop::num::u128::ANY.prop_map(|num| num % 10 ),
|
||||
20 => prop::num::u128::ANY,
|
||||
]
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(10))]
|
||||
|
||||
#[test]
|
||||
fn compress_decompress_random(vals in proptest::collection::vec(num_strategy()
|
||||
, 1..1000)) {
|
||||
let _data = test_aux_vals(&vals);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,170 +0,0 @@
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
|
||||
/// Compute the gcd of two non null numbers.
|
||||
///
|
||||
/// It is recommended, but not required, to feed values such that `large >= small`.
|
||||
fn compute_gcd(mut large: NonZeroU64, mut small: NonZeroU64) -> NonZeroU64 {
|
||||
loop {
|
||||
let rem: u64 = large.get() % small;
|
||||
if let Some(new_small) = NonZeroU64::new(rem) {
|
||||
(large, small) = (small, new_small);
|
||||
} else {
|
||||
return small;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find GCD for iterator of numbers
|
||||
pub fn find_gcd(numbers: impl Iterator<Item = u64>) -> Option<NonZeroU64> {
|
||||
let mut numbers = numbers.flat_map(NonZeroU64::new);
|
||||
let mut gcd: NonZeroU64 = numbers.next()?;
|
||||
if gcd.get() == 1 {
|
||||
return Some(gcd);
|
||||
}
|
||||
|
||||
let mut gcd_divider = DividerU64::divide_by(gcd.get());
|
||||
for val in numbers {
|
||||
let remainder = val.get() - (gcd_divider.divide(val.get())) * gcd.get();
|
||||
if remainder == 0 {
|
||||
continue;
|
||||
}
|
||||
gcd = compute_gcd(val, gcd);
|
||||
if gcd.get() == 1 {
|
||||
return Some(gcd);
|
||||
}
|
||||
|
||||
gcd_divider = DividerU64::divide_by(gcd.get());
|
||||
}
|
||||
Some(gcd)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::io;
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use ownedbytes::OwnedBytes;
|
||||
|
||||
use crate::gcd::{compute_gcd, find_gcd};
|
||||
use crate::{FastFieldCodecType, VecColumn};
|
||||
|
||||
fn test_fastfield_gcd_i64_with_codec(
|
||||
codec_type: FastFieldCodecType,
|
||||
num_vals: usize,
|
||||
) -> io::Result<()> {
|
||||
let mut vals: Vec<i64> = (-4..=(num_vals as i64) - 5).map(|val| val * 1000).collect();
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
crate::serialize(VecColumn::from(&vals), &mut buffer, &[codec_type])?;
|
||||
let buffer = OwnedBytes::new(buffer);
|
||||
let column = crate::open::<i64>(buffer.clone())?;
|
||||
assert_eq!(column.get_val(0), -4000i64);
|
||||
assert_eq!(column.get_val(1), -3000i64);
|
||||
assert_eq!(column.get_val(2), -2000i64);
|
||||
assert_eq!(column.max_value(), (num_vals as i64 - 5) * 1000);
|
||||
assert_eq!(column.min_value(), -4000i64);
|
||||
|
||||
// Can't apply gcd
|
||||
let mut buffer_without_gcd = Vec::new();
|
||||
vals.pop();
|
||||
vals.push(1001i64);
|
||||
crate::serialize(
|
||||
VecColumn::from(&vals),
|
||||
&mut buffer_without_gcd,
|
||||
&[codec_type],
|
||||
)?;
|
||||
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
|
||||
assert!(buffer_without_gcd.len() > buffer.len());
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd_i64() -> io::Result<()> {
|
||||
for &codec_type in &[
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
FastFieldCodecType::Linear,
|
||||
] {
|
||||
test_fastfield_gcd_i64_with_codec(codec_type, 5500)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn test_fastfield_gcd_u64_with_codec(
|
||||
codec_type: FastFieldCodecType,
|
||||
num_vals: usize,
|
||||
) -> io::Result<()> {
|
||||
let mut vals: Vec<u64> = (1..=num_vals).map(|i| i as u64 * 1000u64).collect();
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
crate::serialize(VecColumn::from(&vals), &mut buffer, &[codec_type])?;
|
||||
let buffer = OwnedBytes::new(buffer);
|
||||
let column = crate::open::<u64>(buffer.clone())?;
|
||||
assert_eq!(column.get_val(0), 1000u64);
|
||||
assert_eq!(column.get_val(1), 2000u64);
|
||||
assert_eq!(column.get_val(2), 3000u64);
|
||||
assert_eq!(column.max_value(), num_vals as u64 * 1000);
|
||||
assert_eq!(column.min_value(), 1000u64);
|
||||
|
||||
// Can't apply gcd
|
||||
let mut buffer_without_gcd = Vec::new();
|
||||
vals.pop();
|
||||
vals.push(1001u64);
|
||||
crate::serialize(
|
||||
VecColumn::from(&vals),
|
||||
&mut buffer_without_gcd,
|
||||
&[codec_type],
|
||||
)?;
|
||||
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
|
||||
assert!(buffer_without_gcd.len() > buffer.len());
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd_u64() -> io::Result<()> {
|
||||
for &codec_type in &[
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
FastFieldCodecType::Linear,
|
||||
] {
|
||||
test_fastfield_gcd_u64_with_codec(codec_type, 5500)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn test_fastfield2() {
|
||||
let test_fastfield = crate::serialize_and_load(&[100u64, 200u64, 300u64]);
|
||||
assert_eq!(test_fastfield.get_val(0), 100);
|
||||
assert_eq!(test_fastfield.get_val(1), 200);
|
||||
assert_eq!(test_fastfield.get_val(2), 300);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compute_gcd() {
|
||||
let test_compute_gcd_aux = |large, small, expected| {
|
||||
let large = NonZeroU64::new(large).unwrap();
|
||||
let small = NonZeroU64::new(small).unwrap();
|
||||
let expected = NonZeroU64::new(expected).unwrap();
|
||||
assert_eq!(compute_gcd(small, large), expected);
|
||||
assert_eq!(compute_gcd(large, small), expected);
|
||||
};
|
||||
test_compute_gcd_aux(1, 4, 1);
|
||||
test_compute_gcd_aux(2, 4, 2);
|
||||
test_compute_gcd_aux(10, 25, 5);
|
||||
test_compute_gcd_aux(25, 25, 25);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn find_gcd_test() {
|
||||
assert_eq!(find_gcd([0].into_iter()), None);
|
||||
assert_eq!(find_gcd([0, 10].into_iter()), NonZeroU64::new(10));
|
||||
assert_eq!(find_gcd([10, 0].into_iter()), NonZeroU64::new(10));
|
||||
assert_eq!(find_gcd([].into_iter()), None);
|
||||
assert_eq!(find_gcd([15, 30, 5, 10].into_iter()), NonZeroU64::new(5));
|
||||
assert_eq!(find_gcd([15, 16, 10].into_iter()), NonZeroU64::new(1));
|
||||
assert_eq!(find_gcd([0, 5, 5, 5].into_iter()), NonZeroU64::new(5));
|
||||
assert_eq!(find_gcd([0, 0].into_iter()), None);
|
||||
}
|
||||
}
|
||||
@@ -1,40 +1,27 @@
|
||||
#![cfg_attr(all(feature = "unstable", test), feature(test))]
|
||||
|
||||
#[cfg(test)]
|
||||
#[macro_use]
|
||||
extern crate more_asserts;
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
extern crate test;
|
||||
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::BinarySerializable;
|
||||
use compact_space::CompactSpaceDecompressor;
|
||||
use ownedbytes::OwnedBytes;
|
||||
use serialize::Header;
|
||||
|
||||
mod bitpacked;
|
||||
mod blockwise_linear;
|
||||
mod compact_space;
|
||||
mod line;
|
||||
mod linear;
|
||||
mod monotonic_mapping;
|
||||
pub mod bitpacked;
|
||||
pub mod blockwise_linear;
|
||||
pub mod linear;
|
||||
|
||||
mod column;
|
||||
mod gcd;
|
||||
mod serialize;
|
||||
|
||||
use self::bitpacked::BitpackedCodec;
|
||||
use self::blockwise_linear::BlockwiseLinearCodec;
|
||||
pub use self::column::{iter_from_reader, monotonic_map_column, Column, ColumnReader, VecColumn};
|
||||
use self::linear::LinearCodec;
|
||||
pub use self::monotonic_mapping::MonotonicallyMappableToU64;
|
||||
pub use self::serialize::{
|
||||
estimate, serialize, serialize_and_load, serialize_u128, NormalizedHeader,
|
||||
};
|
||||
pub trait FastFieldDataAccess {
|
||||
fn get_val(&self, doc: u64) -> u64;
|
||||
fn min_value(&self) -> u64;
|
||||
fn max_value(&self) -> u64;
|
||||
fn num_vals(&self) -> u64;
|
||||
/// Returns a iterator over the data
|
||||
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = u64> + 'a> {
|
||||
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
@@ -42,6 +29,7 @@ pub enum FastFieldCodecType {
|
||||
Bitpacked = 1,
|
||||
Linear = 2,
|
||||
BlockwiseLinear = 3,
|
||||
Gcd = 4,
|
||||
}
|
||||
|
||||
impl BinarySerializable for FastFieldCodecType {
|
||||
@@ -67,169 +55,148 @@ impl FastFieldCodecType {
|
||||
1 => Some(Self::Bitpacked),
|
||||
2 => Some(Self::Linear),
|
||||
3 => Some(Self::BlockwiseLinear),
|
||||
4 => Some(Self::Gcd),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open_u128(bytes: OwnedBytes) -> io::Result<Arc<dyn Column<u128>>> {
|
||||
Ok(Arc::new(CompactSpaceDecompressor::open(bytes)?))
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open<T: MonotonicallyMappableToU64>(
|
||||
mut bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn Column<T>>> {
|
||||
let header = Header::deserialize(&mut bytes)?;
|
||||
match header.codec_type {
|
||||
FastFieldCodecType::Bitpacked => open_specific_codec::<BitpackedCodec, _>(bytes, &header),
|
||||
FastFieldCodecType::Linear => open_specific_codec::<LinearCodec, _>(bytes, &header),
|
||||
FastFieldCodecType::BlockwiseLinear => {
|
||||
open_specific_codec::<BlockwiseLinearCodec, _>(bytes, &header)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64>(
|
||||
bytes: OwnedBytes,
|
||||
header: &Header,
|
||||
) -> io::Result<Arc<dyn Column<Item>>> {
|
||||
let normalized_header = header.normalized();
|
||||
let reader = C::open_from_bytes(bytes, normalized_header)?;
|
||||
let min_value = header.min_value;
|
||||
if let Some(gcd) = header.gcd {
|
||||
let monotonic_mapping = move |val: u64| Item::from_u64(min_value + val * gcd.get());
|
||||
Ok(Arc::new(monotonic_map_column(reader, monotonic_mapping)))
|
||||
} else {
|
||||
let monotonic_mapping = move |val: u64| Item::from_u64(min_value + val);
|
||||
Ok(Arc::new(monotonic_map_column(reader, monotonic_mapping)))
|
||||
}
|
||||
}
|
||||
|
||||
/// The FastFieldSerializerEstimate trait is required on all variants
|
||||
/// of fast field compressions, to decide which one to choose.
|
||||
trait FastFieldCodec: 'static {
|
||||
pub trait FastFieldCodec {
|
||||
/// A codex needs to provide a unique name and id, which is
|
||||
/// used for debugging and de/serialization.
|
||||
const CODEC_TYPE: FastFieldCodecType;
|
||||
|
||||
type Reader: Column<u64> + 'static;
|
||||
type Reader: FastFieldDataAccess;
|
||||
|
||||
/// Reads the metadata and returns the CodecReader
|
||||
fn open_from_bytes(bytes: OwnedBytes, header: NormalizedHeader) -> io::Result<Self::Reader>;
|
||||
fn open_from_bytes(bytes: OwnedBytes) -> io::Result<Self::Reader>;
|
||||
|
||||
/// Serializes the data using the serializer into write.
|
||||
///
|
||||
/// The column iterator should be preferred over using column `get_val` method for
|
||||
/// The fastfield_accessor iterator should be preferred over using fastfield_accessor for
|
||||
/// performance reasons.
|
||||
fn serialize(column: &dyn Column<u64>, write: &mut impl Write) -> io::Result<()>;
|
||||
fn serialize(
|
||||
write: &mut impl Write,
|
||||
fastfield_accessor: &dyn FastFieldDataAccess,
|
||||
) -> io::Result<()>;
|
||||
|
||||
/// Check if the Codec is able to compress the data
|
||||
fn is_applicable(fastfield_accessor: &impl FastFieldDataAccess) -> bool;
|
||||
|
||||
/// Returns an estimate of the compression ratio.
|
||||
/// If the codec is not applicable, returns `None`.
|
||||
///
|
||||
/// The baseline is uncompressed 64bit data.
|
||||
///
|
||||
/// It could make sense to also return a value representing
|
||||
/// computational complexity.
|
||||
fn estimate(column: &impl Column) -> Option<f32>;
|
||||
fn estimate(fastfield_accessor: &impl FastFieldDataAccess) -> f32;
|
||||
}
|
||||
|
||||
pub const ALL_CODEC_TYPES: [FastFieldCodecType; 3] = [
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
FastFieldCodecType::Linear,
|
||||
];
|
||||
#[derive(Debug, Clone)]
|
||||
/// Statistics are used in codec detection and stored in the fast field footer.
|
||||
pub struct FastFieldStats {
|
||||
pub min_value: u64,
|
||||
pub max_value: u64,
|
||||
pub num_vals: u64,
|
||||
}
|
||||
|
||||
impl<'a> FastFieldDataAccess for &'a [u64] {
|
||||
fn get_val(&self, position: u64) -> u64 {
|
||||
self[position as usize]
|
||||
}
|
||||
|
||||
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = u64> + 'b> {
|
||||
Box::new((self as &[u64]).iter().cloned())
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u64 {
|
||||
self.iter().min().unwrap_or(0)
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.iter().max().unwrap_or(0)
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.len() as u64
|
||||
}
|
||||
}
|
||||
|
||||
impl FastFieldDataAccess for Vec<u64> {
|
||||
fn get_val(&self, position: u64) -> u64 {
|
||||
self[position as usize]
|
||||
}
|
||||
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = u64> + 'b> {
|
||||
Box::new((self as &[u64]).iter().cloned())
|
||||
}
|
||||
fn min_value(&self) -> u64 {
|
||||
self.iter().min().unwrap_or(0)
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.iter().max().unwrap_or(0)
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.len() as u64
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use proptest::prelude::*;
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
use proptest::arbitrary::any;
|
||||
use proptest::proptest;
|
||||
|
||||
use crate::bitpacked::BitpackedCodec;
|
||||
use crate::blockwise_linear::BlockwiseLinearCodec;
|
||||
use crate::linear::LinearCodec;
|
||||
use crate::serialize::Header;
|
||||
|
||||
pub(crate) fn create_and_validate<Codec: FastFieldCodec>(
|
||||
data: &[u64],
|
||||
name: &str,
|
||||
) -> Option<(f32, f32)> {
|
||||
let col = &VecColumn::from(data);
|
||||
let header = Header::compute_header(col, &[Codec::CODEC_TYPE])?;
|
||||
let normalized_col = header.normalize_column(col);
|
||||
let estimation = Codec::estimate(&normalized_col)?;
|
||||
|
||||
let mut out = Vec::new();
|
||||
let col = VecColumn::from(data);
|
||||
serialize(col, &mut out, &[Codec::CODEC_TYPE]).unwrap();
|
||||
pub fn create_and_validate<Codec: FastFieldCodec>(data: &[u64], name: &str) -> (f32, f32) {
|
||||
if !Codec::is_applicable(&data) {
|
||||
return (f32::MAX, 0.0);
|
||||
}
|
||||
let estimation = Codec::estimate(&data);
|
||||
let mut out: Vec<u8> = Vec::new();
|
||||
Codec::serialize(&mut out, &data).unwrap();
|
||||
|
||||
let actual_compression = out.len() as f32 / (data.len() as f32 * 8.0);
|
||||
|
||||
let reader = crate::open::<u64>(OwnedBytes::new(out)).unwrap();
|
||||
let reader = Codec::open_from_bytes(OwnedBytes::new(out)).unwrap();
|
||||
assert_eq!(reader.num_vals(), data.len() as u64);
|
||||
for (doc, orig_val) in data.iter().copied().enumerate() {
|
||||
for (doc, orig_val) in data.iter().enumerate() {
|
||||
let val = reader.get_val(doc as u64);
|
||||
assert_eq!(
|
||||
val, orig_val,
|
||||
"val `{val}` does not match orig_val {orig_val:?}, in data set {name}, data \
|
||||
`{data:?}`",
|
||||
);
|
||||
if val != *orig_val {
|
||||
panic!(
|
||||
"val {val:?} does not match orig_val {orig_val:?}, in data set {name}, data \
|
||||
{data:?}",
|
||||
);
|
||||
}
|
||||
}
|
||||
Some((estimation, actual_compression))
|
||||
(estimation, actual_compression)
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(100))]
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_bitpacked(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
fn test_proptest_small(data in proptest::collection::vec(any::<u64>(), 1..10)) {
|
||||
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
|
||||
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
fn test_proptest_large(data in proptest::collection::vec(any::<u64>(), 1..6000)) {
|
||||
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
|
||||
}
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(10))]
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_bitpacked(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
|
||||
}
|
||||
}
|
||||
|
||||
fn num_strategy() -> impl Strategy<Value = u64> {
|
||||
prop_oneof![
|
||||
1 => prop::num::u64::ANY.prop_map(|num| u64::MAX - (num % 10) ),
|
||||
1 => prop::num::u64::ANY.prop_map(|num| num % 10 ),
|
||||
20 => prop::num::u64::ANY,
|
||||
]
|
||||
}
|
||||
|
||||
pub fn get_codec_test_datasets() -> Vec<(Vec<u64>, &'static str)> {
|
||||
pub fn get_codec_test_data_sets() -> Vec<(Vec<u64>, &'static str)> {
|
||||
let mut data_and_names = vec![];
|
||||
|
||||
let data = (10..=10_000_u64).collect::<Vec<_>>();
|
||||
let data = (10..=20_u64).collect::<Vec<_>>();
|
||||
data_and_names.push((data, "simple monotonically increasing"));
|
||||
|
||||
data_and_names.push((
|
||||
@@ -239,23 +206,17 @@ mod tests {
|
||||
data_and_names.push((vec![5, 50, 3, 13, 1, 1000, 35], "rand small"));
|
||||
data_and_names.push((vec![10], "single value"));
|
||||
|
||||
data_and_names.push((
|
||||
vec![1572656989877777, 1170935903116329, 720575940379279, 0],
|
||||
"overflow error",
|
||||
));
|
||||
|
||||
data_and_names
|
||||
}
|
||||
|
||||
fn test_codec<C: FastFieldCodec>() {
|
||||
let codec_name = format!("{:?}", C::CODEC_TYPE);
|
||||
for (data, dataset_name) in get_codec_test_datasets() {
|
||||
let estimate_actual_opt: Option<(f32, f32)> =
|
||||
crate::tests::create_and_validate::<C>(&data, dataset_name);
|
||||
let result = if let Some((estimate, actual)) = estimate_actual_opt {
|
||||
format!("Estimate `{estimate}` Actual `{actual}`")
|
||||
} else {
|
||||
for (data, dataset_name) in get_codec_test_data_sets() {
|
||||
let (estimate, actual) = crate::tests::create_and_validate::<C>(&data, dataset_name);
|
||||
let result = if estimate == f32::MAX {
|
||||
"Disabled".to_string()
|
||||
} else {
|
||||
format!("Estimate `{estimate}` Actual `{actual}`")
|
||||
};
|
||||
println!("Codec {codec_name}, DataSet {dataset_name}, {result}");
|
||||
}
|
||||
@@ -278,50 +239,38 @@ mod tests {
|
||||
#[test]
|
||||
fn estimation_good_interpolation_case() {
|
||||
let data = (10..=20000_u64).collect::<Vec<_>>();
|
||||
let data: VecColumn = data.as_slice().into();
|
||||
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data);
|
||||
assert_le!(linear_interpol_estimation, 0.01);
|
||||
|
||||
let multi_linear_interpol_estimation = BlockwiseLinearCodec::estimate(&data).unwrap();
|
||||
let multi_linear_interpol_estimation = BlockwiseLinearCodec::estimate(&data);
|
||||
assert_le!(multi_linear_interpol_estimation, 0.2);
|
||||
assert_lt!(linear_interpol_estimation, multi_linear_interpol_estimation);
|
||||
assert_le!(linear_interpol_estimation, multi_linear_interpol_estimation);
|
||||
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_lt!(linear_interpol_estimation, bitpacked_estimation);
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data);
|
||||
assert_le!(linear_interpol_estimation, bitpacked_estimation);
|
||||
}
|
||||
#[test]
|
||||
fn estimation_test_bad_interpolation_case() {
|
||||
let data: &[u64] = &[200, 10, 10, 10, 10, 1000, 20];
|
||||
let data = vec![200, 10, 10, 10, 10, 1000, 20];
|
||||
|
||||
let data: VecColumn = data.into();
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
assert_le!(linear_interpol_estimation, 0.34);
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data);
|
||||
assert_le!(linear_interpol_estimation, 0.32);
|
||||
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data);
|
||||
assert_le!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn estimation_prefer_bitpacked() {
|
||||
let data = VecColumn::from(&[10, 10, 10, 10]);
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn estimation_test_bad_interpolation_case_monotonically_increasing() {
|
||||
let mut data: Vec<u64> = (200..=20000_u64).collect();
|
||||
let mut data = (200..=20000_u64).collect::<Vec<_>>();
|
||||
data.push(1_000_000);
|
||||
let data: VecColumn = data.as_slice().into();
|
||||
|
||||
// in this case the linear interpolation can't in fact not be worse than bitpacking,
|
||||
// but the estimator adds some threshold, which leads to estimated worse behavior
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data);
|
||||
assert_le!(linear_interpol_estimation, 0.35);
|
||||
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data);
|
||||
assert_le!(bitpacked_estimation, 0.32);
|
||||
assert_le!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
@@ -335,134 +284,6 @@ mod tests {
|
||||
count_codec += 1;
|
||||
}
|
||||
}
|
||||
assert_eq!(count_codec, 3);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
use std::sync::Arc;
|
||||
|
||||
use ownedbytes::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::*;
|
||||
use crate::Column;
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55000_u64)
|
||||
.map(|num| num + rng.gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
fn get_reader_for_bench<Codec: FastFieldCodec>(data: &[u64]) -> Codec::Reader {
|
||||
let mut bytes = Vec::new();
|
||||
let min_value = *data.iter().min().unwrap();
|
||||
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
|
||||
let col = VecColumn::from(&data);
|
||||
let normalized_header = crate::NormalizedHeader {
|
||||
num_vals: col.num_vals(),
|
||||
max_value: col.max_value(),
|
||||
};
|
||||
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
|
||||
Codec::open_from_bytes(OwnedBytes::new(bytes), normalized_header).unwrap()
|
||||
}
|
||||
fn bench_get<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = get_reader_for_bench::<Codec>(data);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u64);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn Column>) {
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u64);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
fn bench_get_dynamic<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = Arc::new(get_reader_for_bench::<Codec>(data));
|
||||
bench_get_dynamic_helper(b, col);
|
||||
}
|
||||
fn bench_create<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let min_value = *data.iter().min().unwrap();
|
||||
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
|
||||
|
||||
let mut bytes = Vec::new();
|
||||
b.iter(|| {
|
||||
bytes.clear();
|
||||
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
|
||||
assert_eq!(count_codec, 4);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,206 +0,0 @@
|
||||
use std::io;
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use common::{BinarySerializable, VInt};
|
||||
|
||||
use crate::Column;
|
||||
|
||||
const MID_POINT: u64 = (1u64 << 32) - 1u64;
|
||||
|
||||
/// `Line` describes a line function `y: ax + b` using integer
|
||||
/// arithmetics.
|
||||
///
|
||||
/// The slope is in fact a decimal split into a 32 bit integer value,
|
||||
/// and a 32-bit decimal value.
|
||||
///
|
||||
/// The multiplication then becomes.
|
||||
/// `y = m * x >> 32 + b`
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Line {
|
||||
slope: u64,
|
||||
intercept: u64,
|
||||
}
|
||||
|
||||
/// Compute the line slope.
|
||||
///
|
||||
/// This function has the nice property of being
|
||||
/// invariant by translation.
|
||||
/// `
|
||||
/// compute_slope(y0, y1)
|
||||
/// = compute_slope(y0 + X % 2^64, y1 + X % 2^64)
|
||||
/// `
|
||||
fn compute_slope(y0: u64, y1: u64, num_vals: NonZeroU64) -> u64 {
|
||||
let dy = y1.wrapping_sub(y0);
|
||||
let sign = dy <= (1 << 63);
|
||||
let abs_dy = if sign {
|
||||
y1.wrapping_sub(y0)
|
||||
} else {
|
||||
y0.wrapping_sub(y1)
|
||||
};
|
||||
if abs_dy >= 1 << 32 {
|
||||
// This is outside of realm we handle.
|
||||
// Let's just bail.
|
||||
return 0u64;
|
||||
}
|
||||
|
||||
let abs_slope = (abs_dy << 32) / num_vals.get();
|
||||
if sign {
|
||||
abs_slope
|
||||
} else {
|
||||
// The complement does indeed create the
|
||||
// opposite decreasing slope...
|
||||
//
|
||||
// Intuitively (without the bitshifts and % u64::MAX)
|
||||
// ```
|
||||
// (x + shift)*(u64::MAX - abs_slope)
|
||||
// - (x * (u64::MAX - abs_slope))
|
||||
// = - shift * abs_slope
|
||||
// ```
|
||||
u64::MAX - abs_slope
|
||||
}
|
||||
}
|
||||
|
||||
impl Line {
|
||||
#[inline(always)]
|
||||
pub fn eval(&self, x: u64) -> u64 {
|
||||
let linear_part = (x.wrapping_mul(self.slope) >> 32) as i32 as u64;
|
||||
self.intercept.wrapping_add(linear_part)
|
||||
}
|
||||
|
||||
// Same as train, but the intercept is only estimated from provided sample positions
|
||||
pub fn estimate(ys: &dyn Column, sample_positions: &[u64]) -> Self {
|
||||
Self::train_from(ys, sample_positions.iter().cloned())
|
||||
}
|
||||
|
||||
// Intercept is only computed from provided positions
|
||||
fn train_from(ys: &dyn Column, positions: impl Iterator<Item = u64>) -> Self {
|
||||
let last_idx = if let Some(last_idx) = NonZeroU64::new(ys.num_vals() - 1) {
|
||||
last_idx
|
||||
} else {
|
||||
return Line::default();
|
||||
};
|
||||
|
||||
let mut ys_reader = ys.reader();
|
||||
let y0 = ys_reader.seek(0);
|
||||
let y1 = ys_reader.seek(last_idx.get());
|
||||
|
||||
// We first independently pick our slope.
|
||||
let slope = compute_slope(y0, y1, last_idx);
|
||||
|
||||
// We picked our slope. Note that it does not have to be perfect.
|
||||
// Now we need to compute the best intercept.
|
||||
//
|
||||
// Intuitively, the best intercept is such that line passes through one of the
|
||||
// `(i, ys[])`.
|
||||
//
|
||||
// The best intercept therefore has the form
|
||||
// `y[i] - line.eval(i)` (using wrapping arithmetics).
|
||||
// In other words, the best intercept is one of the `y - Line::eval(ys[i])`
|
||||
// and our task is just to pick the one that minimizes our error.
|
||||
//
|
||||
// Without sorting our values, this is a difficult problem.
|
||||
// We however rely on the following trick...
|
||||
//
|
||||
// We only focus on the case where the interpolation is half decent.
|
||||
// If the line interpolation is doing its job on a dataset suited for it,
|
||||
// we can hope that the maximum error won't be larger than `u64::MAX / 2`.
|
||||
//
|
||||
// In other words, even without the intercept the values `y - Line::eval(ys[i])` will all be
|
||||
// within an interval that takes less than half of the modulo space of `u64`.
|
||||
//
|
||||
// Our task is therefore to identify this interval.
|
||||
// Here we simply translate all of our values by `y0 - 2^63` and pick the min.
|
||||
let mut line = Line {
|
||||
slope,
|
||||
intercept: 0,
|
||||
};
|
||||
let heuristic_shift = y0.wrapping_sub(MID_POINT);
|
||||
let mut ys_reader = ys.reader();
|
||||
line.intercept = positions
|
||||
.map(|pos| {
|
||||
let y = ys_reader.seek(pos);
|
||||
y.wrapping_sub(line.eval(pos))
|
||||
})
|
||||
.min_by_key(|&val| val.wrapping_sub(heuristic_shift))
|
||||
.unwrap_or(0u64); //< Never happens.
|
||||
line
|
||||
}
|
||||
|
||||
/// Returns a line that attemps to approximate a function
|
||||
/// f: i in 0..[ys.num_vals()) -> ys[i].
|
||||
///
|
||||
/// - The approximation is always lower than the actual value.
|
||||
/// Or more rigorously, formally `f(i).wrapping_sub(ys[i])` is small
|
||||
/// for any i in [0..ys.len()).
|
||||
/// - It computes without panicking for any value of it.
|
||||
///
|
||||
/// This function is only invariable by translation if all of the
|
||||
/// `ys` are packaged into half of the space. (See heuristic below)
|
||||
pub fn train(ys: &dyn Column) -> Self {
|
||||
Self::train_from(ys, 0..ys.num_vals())
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for Line {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.slope).serialize(writer)?;
|
||||
VInt(self.intercept).serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let slope = VInt::deserialize(reader)?.0;
|
||||
let intercept = VInt::deserialize(reader)?.0;
|
||||
Ok(Line { slope, intercept })
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::VecColumn;
|
||||
|
||||
/// Test training a line and ensuring that the maximum difference between
|
||||
/// the data points and the line is `expected`.
|
||||
///
|
||||
/// This function operates translation over the data for better coverage.
|
||||
#[track_caller]
|
||||
fn test_line_interpol_with_translation(ys: &[u64], expected: Option<u64>) {
|
||||
let mut translations = vec![0, 100, u64::MAX / 2, u64::MAX, u64::MAX - 1];
|
||||
translations.extend_from_slice(ys);
|
||||
for translation in translations {
|
||||
let translated_ys: Vec<u64> = ys
|
||||
.iter()
|
||||
.copied()
|
||||
.map(|y| y.wrapping_add(translation))
|
||||
.collect();
|
||||
let largest_err = test_eval_max_err(&translated_ys);
|
||||
assert_eq!(largest_err, expected);
|
||||
}
|
||||
}
|
||||
|
||||
fn test_eval_max_err(ys: &[u64]) -> Option<u64> {
|
||||
let line = Line::train(&VecColumn::from(&ys));
|
||||
ys.iter()
|
||||
.enumerate()
|
||||
.map(|(x, y)| y.wrapping_sub(line.eval(x as u64)))
|
||||
.max()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_train() {
|
||||
test_line_interpol_with_translation(&[11, 11, 11, 12, 12, 13], Some(1));
|
||||
test_line_interpol_with_translation(&[13, 12, 12, 11, 11, 11], Some(1));
|
||||
test_line_interpol_with_translation(&[13, 13, 12, 11, 11, 11], Some(1));
|
||||
test_line_interpol_with_translation(&[13, 13, 12, 11, 11, 11], Some(1));
|
||||
test_line_interpol_with_translation(&[u64::MAX - 1, 0, 0, 1], Some(1));
|
||||
test_line_interpol_with_translation(&[u64::MAX - 1, u64::MAX, 0, 1], Some(0));
|
||||
test_line_interpol_with_translation(&[0, 1, 2, 3, 5], Some(0));
|
||||
test_line_interpol_with_translation(&[1, 2, 3, 4], Some(0));
|
||||
|
||||
let data: Vec<u64> = (0..255).collect();
|
||||
test_line_interpol_with_translation(&data, Some(0));
|
||||
let data: Vec<u64> = (0..255).map(|el| el * 2).collect();
|
||||
test_line_interpol_with_translation(&data, Some(0));
|
||||
}
|
||||
}
|
||||
@@ -1,44 +1,80 @@
|
||||
use std::io::{self, Write};
|
||||
use std::io::{self, Read, Write};
|
||||
use std::ops::Sub;
|
||||
|
||||
use common::BinarySerializable;
|
||||
use common::{BinarySerializable, FixedSize};
|
||||
use ownedbytes::OwnedBytes;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::line::Line;
|
||||
use crate::serialize::NormalizedHeader;
|
||||
use crate::{Column, FastFieldCodec, FastFieldCodecType};
|
||||
use crate::{FastFieldCodec, FastFieldCodecType, FastFieldDataAccess};
|
||||
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct LinearReader {
|
||||
data: OwnedBytes,
|
||||
linear_params: LinearParams,
|
||||
header: NormalizedHeader,
|
||||
bit_unpacker: BitUnpacker,
|
||||
pub footer: LinearFooter,
|
||||
pub slope: f32,
|
||||
}
|
||||
|
||||
impl Column for LinearReader {
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct LinearFooter {
|
||||
pub relative_max_value: u64,
|
||||
pub offset: u64,
|
||||
pub first_val: u64,
|
||||
pub last_val: u64,
|
||||
pub num_vals: u64,
|
||||
pub min_value: u64,
|
||||
pub max_value: u64,
|
||||
}
|
||||
|
||||
impl BinarySerializable for LinearFooter {
|
||||
fn serialize<W: Write>(&self, write: &mut W) -> io::Result<()> {
|
||||
self.relative_max_value.serialize(write)?;
|
||||
self.offset.serialize(write)?;
|
||||
self.first_val.serialize(write)?;
|
||||
self.last_val.serialize(write)?;
|
||||
self.num_vals.serialize(write)?;
|
||||
self.min_value.serialize(write)?;
|
||||
self.max_value.serialize(write)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<LinearFooter> {
|
||||
Ok(LinearFooter {
|
||||
relative_max_value: u64::deserialize(reader)?,
|
||||
offset: u64::deserialize(reader)?,
|
||||
first_val: u64::deserialize(reader)?,
|
||||
last_val: u64::deserialize(reader)?,
|
||||
num_vals: u64::deserialize(reader)?,
|
||||
min_value: u64::deserialize(reader)?,
|
||||
max_value: u64::deserialize(reader)?,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl FixedSize for LinearFooter {
|
||||
const SIZE_IN_BYTES: usize = 56;
|
||||
}
|
||||
|
||||
impl FastFieldDataAccess for LinearReader {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u64) -> u64 {
|
||||
let interpoled_val: u64 = self.linear_params.line.eval(doc);
|
||||
let bitpacked_diff = self.linear_params.bit_unpacker.get(doc, &self.data);
|
||||
interpoled_val.wrapping_add(bitpacked_diff)
|
||||
let calculated_value = get_calculated_value(self.footer.first_val, doc, self.slope);
|
||||
(calculated_value + self.bit_unpacker.get(doc, &self.data)) - self.footer.offset
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The LinearReader assumes a normalized vector.
|
||||
0u64
|
||||
self.footer.min_value
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.header.max_value
|
||||
self.footer.max_value
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.header.num_vals
|
||||
self.footer.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
@@ -46,26 +82,42 @@ impl Column for LinearReader {
|
||||
/// and stores the difference bitpacked.
|
||||
pub struct LinearCodec;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct LinearParams {
|
||||
line: Line,
|
||||
bit_unpacker: BitUnpacker,
|
||||
#[inline]
|
||||
pub(crate) fn get_slope(first_val: u64, last_val: u64, num_vals: u64) -> f32 {
|
||||
if num_vals <= 1 {
|
||||
return 0.0;
|
||||
}
|
||||
// We calculate the slope with f64 high precision and use the result in lower precision f32
|
||||
// This is done in order to handle estimations for very large values like i64::MAX
|
||||
let diff = diff(last_val, first_val);
|
||||
(diff / (num_vals - 1) as f64) as f32
|
||||
}
|
||||
|
||||
impl BinarySerializable for LinearParams {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.line.serialize(writer)?;
|
||||
self.bit_unpacker.bit_width().serialize(writer)?;
|
||||
Ok(())
|
||||
/// Delay the cast, to improve precision for very large u64 values.
|
||||
///
|
||||
/// Since i64 is mapped monotonically to u64 space, 0i64 is after the mapping i64::MAX.
|
||||
/// So very large values are not uncommon.
|
||||
///
|
||||
/// ```rust
|
||||
/// let val1 = i64::MAX;
|
||||
/// let val2 = i64::MAX - 100;
|
||||
/// assert_eq!(val1 - val2, 100);
|
||||
/// assert_eq!(val1 as f64 - val2 as f64, 0.0);
|
||||
/// ```
|
||||
fn diff(val1: u64, val2: u64) -> f64 {
|
||||
if val1 >= val2 {
|
||||
(val1 - val2) as f64
|
||||
} else {
|
||||
(val2 - val1) as f64 * -1.0
|
||||
}
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let line = Line::deserialize(reader)?;
|
||||
let bit_width = u8::deserialize(reader)?;
|
||||
Ok(Self {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
})
|
||||
#[inline]
|
||||
pub fn get_calculated_value(first_val: u64, pos: u64, slope: f32) -> u64 {
|
||||
if slope < 0.0 {
|
||||
first_val - (pos as f32 * -slope) as u64
|
||||
} else {
|
||||
first_val + (pos as f32 * slope) as u64
|
||||
}
|
||||
}
|
||||
|
||||
@@ -75,112 +127,180 @@ impl FastFieldCodec for LinearCodec {
|
||||
type Reader = LinearReader;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn open_from_bytes(mut data: OwnedBytes, header: NormalizedHeader) -> io::Result<Self::Reader> {
|
||||
let linear_params = LinearParams::deserialize(&mut data)?;
|
||||
fn open_from_bytes(bytes: OwnedBytes) -> io::Result<Self::Reader> {
|
||||
let footer_offset = bytes.len() - LinearFooter::SIZE_IN_BYTES;
|
||||
let (data, mut footer) = bytes.split(footer_offset);
|
||||
let footer = LinearFooter::deserialize(&mut footer)?;
|
||||
let slope = get_slope(footer.first_val, footer.last_val, footer.num_vals);
|
||||
let num_bits = compute_num_bits(footer.relative_max_value);
|
||||
let bit_unpacker = BitUnpacker::new(num_bits);
|
||||
Ok(LinearReader {
|
||||
data,
|
||||
linear_params,
|
||||
header,
|
||||
bit_unpacker,
|
||||
footer,
|
||||
slope,
|
||||
})
|
||||
}
|
||||
|
||||
/// Creates a new fast field serializer.
|
||||
fn serialize(column: &dyn Column, write: &mut impl Write) -> io::Result<()> {
|
||||
assert_eq!(column.min_value(), 0);
|
||||
let line = Line::train(column);
|
||||
fn serialize(
|
||||
write: &mut impl Write,
|
||||
fastfield_accessor: &dyn FastFieldDataAccess,
|
||||
) -> io::Result<()> {
|
||||
assert!(fastfield_accessor.min_value() <= fastfield_accessor.max_value());
|
||||
|
||||
let max_offset_from_line = crate::iter_from_reader(column.reader())
|
||||
.enumerate()
|
||||
.map(|(pos, actual_value)| {
|
||||
let calculated_value = line.eval(pos as u64);
|
||||
actual_value.wrapping_sub(calculated_value)
|
||||
})
|
||||
.max()
|
||||
.unwrap();
|
||||
|
||||
let num_bits = compute_num_bits(max_offset_from_line);
|
||||
let linear_params = LinearParams {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
};
|
||||
linear_params.serialize(write)?;
|
||||
|
||||
let mut bit_packer = BitPacker::new();
|
||||
let mut col_reader = column.reader();
|
||||
for pos in 0.. {
|
||||
if !col_reader.advance() {
|
||||
break;
|
||||
let first_val = fastfield_accessor.get_val(0);
|
||||
let last_val = fastfield_accessor.get_val(fastfield_accessor.num_vals() as u64 - 1);
|
||||
let slope = get_slope(first_val, last_val, fastfield_accessor.num_vals());
|
||||
// calculate offset to ensure all values are positive
|
||||
let mut offset = 0;
|
||||
let mut rel_positive_max = 0;
|
||||
for (pos, actual_value) in fastfield_accessor.iter().enumerate() {
|
||||
let calculated_value = get_calculated_value(first_val, pos as u64, slope);
|
||||
if calculated_value > actual_value {
|
||||
// negative value we need to apply an offset
|
||||
// we ignore negative values in the max value calculation, because negative values
|
||||
// will be offset to 0
|
||||
offset = offset.max(calculated_value - actual_value);
|
||||
} else {
|
||||
// positive value no offset reuqired
|
||||
rel_positive_max = rel_positive_max.max(actual_value - calculated_value);
|
||||
}
|
||||
let actual_value = col_reader.get();
|
||||
let calculated_value = line.eval(pos as u64);
|
||||
let offset = actual_value.wrapping_sub(calculated_value);
|
||||
bit_packer.write(offset, num_bits, write)?;
|
||||
}
|
||||
|
||||
// rel_positive_max will be adjusted by offset
|
||||
let relative_max_value = rel_positive_max + offset;
|
||||
|
||||
let num_bits = compute_num_bits(relative_max_value);
|
||||
let mut bit_packer = BitPacker::new();
|
||||
for (pos, val) in fastfield_accessor.iter().enumerate() {
|
||||
let calculated_value = get_calculated_value(first_val, pos as u64, slope);
|
||||
let diff = (val + offset) - calculated_value;
|
||||
bit_packer.write(diff, num_bits, write)?;
|
||||
}
|
||||
bit_packer.close(write)?;
|
||||
|
||||
let footer = LinearFooter {
|
||||
relative_max_value,
|
||||
offset,
|
||||
first_val,
|
||||
last_val,
|
||||
num_vals: fastfield_accessor.num_vals(),
|
||||
min_value: fastfield_accessor.min_value(),
|
||||
max_value: fastfield_accessor.max_value(),
|
||||
};
|
||||
footer.serialize(write)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn is_applicable(fastfield_accessor: &impl FastFieldDataAccess) -> bool {
|
||||
if fastfield_accessor.num_vals() < 3 {
|
||||
return false; // disable compressor for this case
|
||||
}
|
||||
// On serialisation the offset is added to the actual value.
|
||||
// We need to make sure this won't run into overflow calculation issues.
|
||||
// For this we take the maximum theroretical offset and add this to the max value.
|
||||
// If this doesn't overflow the algorithm should be fine
|
||||
let theorethical_maximum_offset =
|
||||
fastfield_accessor.max_value() - fastfield_accessor.min_value();
|
||||
if fastfield_accessor
|
||||
.max_value()
|
||||
.checked_add(theorethical_maximum_offset)
|
||||
.is_none()
|
||||
{
|
||||
return false;
|
||||
}
|
||||
true
|
||||
}
|
||||
/// estimation for linear interpolation is hard because, you don't know
|
||||
/// where the local maxima for the deviation of the calculated value are and
|
||||
/// the offset to shift all values to >=0 is also unknown.
|
||||
#[allow(clippy::question_mark)]
|
||||
fn estimate(column: &impl Column) -> Option<f32> {
|
||||
if column.num_vals() < 3 {
|
||||
return None; // disable compressor for this case
|
||||
}
|
||||
fn estimate(fastfield_accessor: &impl FastFieldDataAccess) -> f32 {
|
||||
let first_val = fastfield_accessor.get_val(0);
|
||||
let last_val = fastfield_accessor.get_val(fastfield_accessor.num_vals() as u64 - 1);
|
||||
let slope = get_slope(first_val, last_val, fastfield_accessor.num_vals());
|
||||
|
||||
// let's sample at 0%, 5%, 10% .. 95%, 100%
|
||||
let num_vals = column.num_vals() as f32 / 100.0;
|
||||
let num_vals = fastfield_accessor.num_vals() as f32 / 100.0;
|
||||
let sample_positions = (0..20)
|
||||
.map(|pos| (num_vals * pos as f32 * 5.0) as u64)
|
||||
.map(|pos| (num_vals * pos as f32 * 5.0) as usize)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let line = Line::estimate(column, &sample_positions);
|
||||
|
||||
let mut column_reader = column.reader();
|
||||
let estimated_bit_width = sample_positions
|
||||
.into_iter()
|
||||
let max_distance = sample_positions
|
||||
.iter()
|
||||
.map(|pos| {
|
||||
let actual_value = column_reader.seek(pos);
|
||||
let interpolated_val = line.eval(pos as u64);
|
||||
actual_value.wrapping_sub(interpolated_val)
|
||||
let calculated_value = get_calculated_value(first_val, *pos as u64, slope);
|
||||
let actual_value = fastfield_accessor.get_val(*pos as u64);
|
||||
distance(calculated_value, actual_value)
|
||||
})
|
||||
.map(|diff| ((diff as f32 * 1.5) * 2.0) as u64)
|
||||
.map(compute_num_bits)
|
||||
.max()
|
||||
.unwrap_or(0);
|
||||
|
||||
let num_bits = (estimated_bit_width as u64 * column.num_vals() as u64) + 64;
|
||||
let num_bits_uncompressed = 64 * column.num_vals();
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
// the theory would be that we don't have the actual max_distance, but we are close within
|
||||
// 50% threshold.
|
||||
// It is multiplied by 2 because in a log case scenario the line would be as much above as
|
||||
// below. So the offset would = max_distance
|
||||
//
|
||||
let relative_max_value = (max_distance as f32 * 1.5) * 2.0;
|
||||
|
||||
let num_bits = compute_num_bits(relative_max_value as u64) as u64
|
||||
* fastfield_accessor.num_vals()
|
||||
+ LinearFooter::SIZE_IN_BYTES as u64;
|
||||
let num_bits_uncompressed = 64 * fastfield_accessor.num_vals();
|
||||
num_bits as f32 / num_bits_uncompressed as f32
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn distance<T: Sub<Output = T> + Ord>(x: T, y: T) -> T {
|
||||
if x < y {
|
||||
y - x
|
||||
} else {
|
||||
x - y
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use rand::RngCore;
|
||||
|
||||
use super::*;
|
||||
use crate::tests::get_codec_test_datasets;
|
||||
use crate::tests::get_codec_test_data_sets;
|
||||
|
||||
fn create_and_validate(data: &[u64], name: &str) -> Option<(f32, f32)> {
|
||||
crate::tests::create_and_validate::<LinearCodec>(data, name)
|
||||
fn create_and_validate(data: &[u64], name: &str) -> (f32, f32) {
|
||||
crate::tests::create_and_validate::<LinearCodec, LinearReader>(data, name)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn get_calculated_value_test() {
|
||||
// pos slope
|
||||
assert_eq!(get_calculated_value(100, 10, 5.0), 150);
|
||||
|
||||
// neg slope
|
||||
assert_eq!(get_calculated_value(100, 10, -5.0), 50);
|
||||
|
||||
// pos slope, very high values
|
||||
assert_eq!(
|
||||
get_calculated_value(i64::MAX as u64, 10, 5.0),
|
||||
i64::MAX as u64 + 50
|
||||
);
|
||||
// neg slope, very high values
|
||||
assert_eq!(
|
||||
get_calculated_value(i64::MAX as u64, 10, -5.0),
|
||||
i64::MAX as u64 - 50
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compression() {
|
||||
let data = (10..=6_000_u64).collect::<Vec<_>>();
|
||||
let (estimate, actual_compression) =
|
||||
create_and_validate(&data, "simple monotonically large").unwrap();
|
||||
create_and_validate(&data, "simple monotonically large");
|
||||
|
||||
assert_le!(actual_compression, 0.001);
|
||||
assert_le!(estimate, 0.02);
|
||||
assert!(actual_compression < 0.01);
|
||||
assert!(estimate < 0.01);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_datasets() {
|
||||
let data_sets = get_codec_test_datasets();
|
||||
fn test_with_codec_data_sets() {
|
||||
let data_sets = get_codec_test_data_sets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate(&data, name);
|
||||
data.reverse();
|
||||
@@ -197,13 +317,6 @@ mod tests {
|
||||
|
||||
create_and_validate(&data, "large amplitude");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn overflow_error_test() {
|
||||
let data = vec![1572656989877777, 1170935903116329, 720575940379279, 0];
|
||||
create_and_validate(&data, "overflow test");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_interpol_fast_concave_data() {
|
||||
let data = vec![0, 1, 2, 5, 8, 10, 20, 50];
|
||||
@@ -217,15 +330,16 @@ mod tests {
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_test_simple() {
|
||||
let data = (10..=20_u64).collect::<Vec<_>>();
|
||||
|
||||
create_and_validate(&data, "simple monotonically");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_rand() {
|
||||
let mut rng = rand::thread_rng();
|
||||
for _ in 0..50 {
|
||||
let mut data = (0..10_000).map(|_| rng.next_u64()).collect::<Vec<_>>();
|
||||
for _ in 0..5000 {
|
||||
let mut data = (0..50).map(|_| rand::random::<u64>()).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "random");
|
||||
|
||||
data.reverse();
|
||||
create_and_validate(&data, "random");
|
||||
}
|
||||
|
||||
@@ -1,159 +1,48 @@
|
||||
#[macro_use]
|
||||
extern crate prettytable;
|
||||
use std::collections::HashSet;
|
||||
use std::env;
|
||||
use std::io::BufRead;
|
||||
use std::net::{IpAddr, Ipv6Addr};
|
||||
use std::str::FromStr;
|
||||
|
||||
use fastfield_codecs::{open_u128, serialize_u128, Column, FastFieldCodecType, VecColumn};
|
||||
use itertools::Itertools;
|
||||
use measure_time::print_time;
|
||||
use ownedbytes::OwnedBytes;
|
||||
use fastfield_codecs::blockwise_linear::BlockwiseLinearCodec;
|
||||
use fastfield_codecs::linear::LinearCodec;
|
||||
use fastfield_codecs::{FastFieldCodec, FastFieldCodecType, FastFieldStats};
|
||||
use prettytable::{Cell, Row, Table};
|
||||
|
||||
fn print_set_stats(ip_addrs: &[u128]) {
|
||||
println!("NumIps\t{}", ip_addrs.len());
|
||||
let ip_addr_set: HashSet<u128> = ip_addrs.iter().cloned().collect();
|
||||
println!("NumUniqueIps\t{}", ip_addr_set.len());
|
||||
let ratio_unique = ip_addr_set.len() as f64 / ip_addrs.len() as f64;
|
||||
println!("RatioUniqueOverTotal\t{ratio_unique:.4}");
|
||||
|
||||
// histogram
|
||||
let mut ip_addrs = ip_addrs.to_vec();
|
||||
ip_addrs.sort();
|
||||
let mut cnts: Vec<usize> = ip_addrs
|
||||
.into_iter()
|
||||
.dedup_with_count()
|
||||
.map(|(cnt, _)| cnt)
|
||||
.collect();
|
||||
cnts.sort();
|
||||
|
||||
let top_256_cnt: usize = cnts.iter().rev().take(256).sum();
|
||||
let top_128_cnt: usize = cnts.iter().rev().take(128).sum();
|
||||
let top_64_cnt: usize = cnts.iter().rev().take(64).sum();
|
||||
let top_8_cnt: usize = cnts.iter().rev().take(8).sum();
|
||||
let total: usize = cnts.iter().sum();
|
||||
|
||||
println!("{}", total);
|
||||
println!("{}", top_256_cnt);
|
||||
println!("{}", top_128_cnt);
|
||||
println!("Percentage Top8 {:02}", top_8_cnt as f32 / total as f32);
|
||||
println!("Percentage Top64 {:02}", top_64_cnt as f32 / total as f32);
|
||||
println!("Percentage Top128 {:02}", top_128_cnt as f32 / total as f32);
|
||||
println!("Percentage Top256 {:02}", top_256_cnt as f32 / total as f32);
|
||||
|
||||
let mut cnts: Vec<(usize, usize)> = cnts.into_iter().dedup_with_count().collect();
|
||||
cnts.sort_by(|a, b| {
|
||||
if a.1 == b.1 {
|
||||
a.0.cmp(&b.0)
|
||||
} else {
|
||||
b.1.cmp(&a.1)
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
fn ip_dataset() -> Vec<u128> {
|
||||
let mut ip_addr_v4 = 0;
|
||||
|
||||
let stdin = std::io::stdin();
|
||||
let ip_addrs: Vec<u128> = stdin
|
||||
.lock()
|
||||
.lines()
|
||||
.flat_map(|line| {
|
||||
let line = line.unwrap();
|
||||
let line = line.trim();
|
||||
let ip_addr = IpAddr::from_str(line.trim()).ok()?;
|
||||
if ip_addr.is_ipv4() {
|
||||
ip_addr_v4 += 1;
|
||||
}
|
||||
let ip_addr_v6: Ipv6Addr = match ip_addr {
|
||||
IpAddr::V4(v4) => v4.to_ipv6_mapped(),
|
||||
IpAddr::V6(v6) => v6,
|
||||
};
|
||||
Some(ip_addr_v6)
|
||||
})
|
||||
.map(|ip_v6| u128::from_be_bytes(ip_v6.octets()))
|
||||
.collect();
|
||||
|
||||
println!("IpAddrsAny\t{}", ip_addrs.len());
|
||||
println!("IpAddrsV4\t{}", ip_addr_v4);
|
||||
|
||||
ip_addrs
|
||||
}
|
||||
|
||||
fn bench_ip() {
|
||||
let dataset = ip_dataset();
|
||||
print_set_stats(&dataset);
|
||||
|
||||
// Chunks
|
||||
{
|
||||
let mut data = vec![];
|
||||
for dataset in dataset.chunks(500_000) {
|
||||
serialize_u128(VecColumn::from(dataset), &mut data).unwrap();
|
||||
}
|
||||
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
|
||||
println!("Compression 50_000 chunks {:.4}", compression);
|
||||
println!(
|
||||
"Num Bits per elem {:.2}",
|
||||
(data.len() * 8) as f32 / dataset.len() as f32
|
||||
);
|
||||
}
|
||||
|
||||
let mut data = vec![];
|
||||
serialize_u128(VecColumn::from(&dataset), &mut data).unwrap();
|
||||
|
||||
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
|
||||
println!("Compression {:.2}", compression);
|
||||
println!(
|
||||
"Num Bits per elem {:.2}",
|
||||
(data.len() * 8) as f32 / dataset.len() as f32
|
||||
);
|
||||
|
||||
let decompressor = open_u128(OwnedBytes::new(data)).unwrap();
|
||||
// Sample some ranges
|
||||
for value in dataset.iter().take(1110).skip(1100).cloned() {
|
||||
print_time!("get range");
|
||||
let doc_values = decompressor.get_between_vals(value..=value);
|
||||
println!("{:?}", doc_values.len());
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
if env::args().nth(1).unwrap() == "bench_ip" {
|
||||
bench_ip();
|
||||
return;
|
||||
}
|
||||
|
||||
let mut table = Table::new();
|
||||
|
||||
// Add a row per time
|
||||
table.add_row(row!["", "Compression Ratio", "Compression Estimation"]);
|
||||
|
||||
for (data, data_set_name) in get_codec_test_data_sets() {
|
||||
let results: Vec<(f32, f32, FastFieldCodecType)> = [
|
||||
serialize_with_codec(&data, FastFieldCodecType::Bitpacked),
|
||||
serialize_with_codec(&data, FastFieldCodecType::Linear),
|
||||
serialize_with_codec(&data, FastFieldCodecType::BlockwiseLinear),
|
||||
]
|
||||
.into_iter()
|
||||
.flatten()
|
||||
.collect();
|
||||
let mut results = vec![];
|
||||
let res = serialize_with_codec::<LinearCodec>(&data);
|
||||
results.push(res);
|
||||
let res = serialize_with_codec::<BlockwiseLinearCodec>(&data);
|
||||
results.push(res);
|
||||
let res = serialize_with_codec::<fastfield_codecs::bitpacked::BitpackedCodec>(&data);
|
||||
results.push(res);
|
||||
|
||||
// let best_estimation_codec = results
|
||||
//.iter()
|
||||
//.min_by(|res1, res2| res1.partial_cmp(&res2).unwrap())
|
||||
//.unwrap();
|
||||
let best_compression_ratio_codec = results
|
||||
.iter()
|
||||
.min_by(|&res1, &res2| res1.partial_cmp(res2).unwrap())
|
||||
.min_by(|res1, res2| res1.partial_cmp(res2).unwrap())
|
||||
.cloned()
|
||||
.unwrap();
|
||||
|
||||
table.add_row(Row::new(vec![Cell::new(data_set_name).style_spec("Bbb")]));
|
||||
for (est, comp, codec_type) in results {
|
||||
let est_cell = est.to_string();
|
||||
let ratio_cell = comp.to_string();
|
||||
for (is_applicable, est, comp, codec_type) in results {
|
||||
let (est_cell, ratio_cell) = if !is_applicable {
|
||||
("Codec Disabled".to_string(), "".to_string())
|
||||
} else {
|
||||
(est.to_string(), comp.to_string())
|
||||
};
|
||||
let style = if comp == best_compression_ratio_codec.1 {
|
||||
"Fb"
|
||||
} else {
|
||||
""
|
||||
};
|
||||
|
||||
table.add_row(Row::new(vec![
|
||||
Cell::new(&format!("{codec_type:?}")).style_spec("bFg"),
|
||||
Cell::new(&ratio_cell).style_spec(style),
|
||||
@@ -200,14 +89,27 @@ pub fn get_codec_test_data_sets() -> Vec<(Vec<u64>, &'static str)> {
|
||||
data_and_names
|
||||
}
|
||||
|
||||
pub fn serialize_with_codec(
|
||||
pub fn serialize_with_codec<C: FastFieldCodec>(
|
||||
data: &[u64],
|
||||
codec_type: FastFieldCodecType,
|
||||
) -> Option<(f32, f32, FastFieldCodecType)> {
|
||||
let col = VecColumn::from(data);
|
||||
let estimation = fastfield_codecs::estimate(&col, codec_type)?;
|
||||
let mut out = Vec::new();
|
||||
fastfield_codecs::serialize(&col, &mut out, &[codec_type]).ok()?;
|
||||
let actual_compression = out.len() as f32 / (col.num_vals() * 8) as f32;
|
||||
Some((estimation, actual_compression, codec_type))
|
||||
) -> (bool, f32, f32, FastFieldCodecType) {
|
||||
let is_applicable = C::is_applicable(&data);
|
||||
if !is_applicable {
|
||||
return (false, 0.0, 0.0, C::CODEC_TYPE);
|
||||
}
|
||||
let estimation = C::estimate(&data);
|
||||
let mut out = vec![];
|
||||
C::serialize(&mut out, &data).unwrap();
|
||||
|
||||
let actual_compression = out.len() as f32 / (data.len() * 8) as f32;
|
||||
(true, estimation, actual_compression, C::CODEC_TYPE)
|
||||
}
|
||||
|
||||
pub fn stats_from_vec(data: &[u64]) -> FastFieldStats {
|
||||
let min_value = data.iter().cloned().min().unwrap_or(0);
|
||||
let max_value = data.iter().cloned().max().unwrap_or(0);
|
||||
FastFieldStats {
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: data.len() as u64,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,60 +0,0 @@
|
||||
pub trait MonotonicallyMappableToU64: 'static + PartialOrd + Copy + Send + Sync {
|
||||
/// Converts a value to u64.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
fn to_u64(self) -> u64;
|
||||
|
||||
/// Converts a value from u64
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
/// **Note: To be used for converting encoded Term, Posting values.**
|
||||
fn from_u64(val: u64) -> Self;
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for u64 {
|
||||
fn to_u64(self) -> u64 {
|
||||
self
|
||||
}
|
||||
|
||||
fn from_u64(val: u64) -> Self {
|
||||
val
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for i64 {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
common::i64_to_u64(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
common::u64_to_i64(val)
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for bool {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
if self {
|
||||
1
|
||||
} else {
|
||||
0
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
val > 0
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for f64 {
|
||||
fn to_u64(self) -> u64 {
|
||||
common::f64_to_u64(self)
|
||||
}
|
||||
|
||||
fn from_u64(val: u64) -> Self {
|
||||
common::u64_to_f64(val)
|
||||
}
|
||||
}
|
||||
@@ -1,276 +0,0 @@
|
||||
// Copyright (C) 2022 Quickwit, Inc.
|
||||
//
|
||||
// Quickwit is offered under the AGPL v3.0 and as commercial software.
|
||||
// For commercial licensing, contact us at hello@quickwit.io.
|
||||
//
|
||||
// AGPL:
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Affero General Public License as
|
||||
// published by the Free Software Foundation, either version 3 of the
|
||||
// License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Affero General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Affero General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
use std::io;
|
||||
use std::num::NonZeroU64;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::{BinarySerializable, VInt};
|
||||
use fastdivide::DividerU64;
|
||||
use log::warn;
|
||||
use ownedbytes::OwnedBytes;
|
||||
|
||||
use crate::bitpacked::BitpackedCodec;
|
||||
use crate::blockwise_linear::BlockwiseLinearCodec;
|
||||
use crate::compact_space::CompactSpaceCompressor;
|
||||
use crate::linear::LinearCodec;
|
||||
use crate::{
|
||||
iter_from_reader, monotonic_map_column, Column, FastFieldCodec, FastFieldCodecType,
|
||||
MonotonicallyMappableToU64, VecColumn, ALL_CODEC_TYPES,
|
||||
};
|
||||
|
||||
/// The normalized header gives some parameters after applying the following
|
||||
/// normalization of the vector:
|
||||
/// val -> (val - min_value) / gcd
|
||||
///
|
||||
/// By design, after normalization, `min_value = 0` and `gcd = 1`.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct NormalizedHeader {
|
||||
pub num_vals: u64,
|
||||
pub max_value: u64,
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub(crate) struct Header {
|
||||
pub num_vals: u64,
|
||||
pub min_value: u64,
|
||||
pub max_value: u64,
|
||||
pub gcd: Option<NonZeroU64>,
|
||||
pub codec_type: FastFieldCodecType,
|
||||
}
|
||||
|
||||
impl Header {
|
||||
pub fn normalized(self) -> NormalizedHeader {
|
||||
let max_value =
|
||||
(self.max_value - self.min_value) / self.gcd.map(|gcd| gcd.get()).unwrap_or(1);
|
||||
NormalizedHeader {
|
||||
num_vals: self.num_vals,
|
||||
max_value,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn normalize_column<C: Column>(&self, from_column: C) -> impl Column {
|
||||
let min_value = self.min_value;
|
||||
let gcd = self.gcd.map(|gcd| gcd.get()).unwrap_or(1);
|
||||
let divider = DividerU64::divide_by(gcd);
|
||||
monotonic_map_column(from_column, move |val| divider.divide(val - min_value))
|
||||
}
|
||||
|
||||
pub fn compute_header(
|
||||
column: impl Column<u64>,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> Option<Header> {
|
||||
let num_vals = column.num_vals();
|
||||
let min_value = column.min_value();
|
||||
let max_value = column.max_value();
|
||||
let gcd =
|
||||
crate::gcd::find_gcd(iter_from_reader(column.reader()).map(|val| val - min_value))
|
||||
.filter(|gcd| gcd.get() > 1u64);
|
||||
let divider = DividerU64::divide_by(gcd.map(|gcd| gcd.get()).unwrap_or(1u64));
|
||||
let shifted_column = monotonic_map_column(&column, |val| divider.divide(val - min_value));
|
||||
let codec_type = detect_codec(shifted_column, codecs)?;
|
||||
Some(Header {
|
||||
num_vals,
|
||||
min_value,
|
||||
max_value,
|
||||
gcd,
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for Header {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.num_vals).serialize(writer)?;
|
||||
VInt(self.min_value).serialize(writer)?;
|
||||
VInt(self.max_value - self.min_value).serialize(writer)?;
|
||||
if let Some(gcd) = self.gcd {
|
||||
VInt(gcd.get()).serialize(writer)?;
|
||||
} else {
|
||||
VInt(0u64).serialize(writer)?;
|
||||
}
|
||||
self.codec_type.serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_vals = VInt::deserialize(reader)?.0;
|
||||
let min_value = VInt::deserialize(reader)?.0;
|
||||
let amplitude = VInt::deserialize(reader)?.0;
|
||||
let max_value = min_value + amplitude;
|
||||
let gcd_u64 = VInt::deserialize(reader)?.0;
|
||||
let codec_type = FastFieldCodecType::deserialize(reader)?;
|
||||
Ok(Header {
|
||||
num_vals,
|
||||
min_value,
|
||||
max_value,
|
||||
gcd: NonZeroU64::new(gcd_u64),
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub fn estimate<T: MonotonicallyMappableToU64>(
|
||||
typed_column: impl Column<T>,
|
||||
codec_type: FastFieldCodecType,
|
||||
) -> Option<f32> {
|
||||
let column = monotonic_map_column(typed_column, T::to_u64);
|
||||
let min_value = column.min_value();
|
||||
let gcd = crate::gcd::find_gcd(iter_from_reader(column.reader()).map(|val| val - min_value))
|
||||
.filter(|gcd| gcd.get() > 1u64);
|
||||
let divider = DividerU64::divide_by(gcd.map(|gcd| gcd.get()).unwrap_or(1u64));
|
||||
let normalized_column = monotonic_map_column(&column, |val| divider.divide(val - min_value));
|
||||
match codec_type {
|
||||
FastFieldCodecType::Bitpacked => BitpackedCodec::estimate(&normalized_column),
|
||||
FastFieldCodecType::Linear => LinearCodec::estimate(&normalized_column),
|
||||
FastFieldCodecType::BlockwiseLinear => BlockwiseLinearCodec::estimate(&normalized_column),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn serialize_u128(
|
||||
typed_column: impl Column<u128>,
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
// TODO write header, to later support more codecs
|
||||
let compressor = CompactSpaceCompressor::train_from(&typed_column);
|
||||
compressor
|
||||
.compress_into(typed_column.reader(), output)
|
||||
.unwrap();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn serialize<T: MonotonicallyMappableToU64>(
|
||||
typed_column: impl Column<T>,
|
||||
output: &mut impl io::Write,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> io::Result<()> {
|
||||
let column = monotonic_map_column(typed_column, T::to_u64);
|
||||
let header = Header::compute_header(&column, codecs).ok_or_else(|| {
|
||||
io::Error::new(
|
||||
io::ErrorKind::InvalidInput,
|
||||
format!(
|
||||
"Data cannot be serialized with this list of codec. {:?}",
|
||||
codecs
|
||||
),
|
||||
)
|
||||
})?;
|
||||
header.serialize(output)?;
|
||||
let normalized_column = header.normalize_column(column);
|
||||
assert_eq!(normalized_column.min_value(), 0u64);
|
||||
serialize_given_codec(normalized_column, header.codec_type, output)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn detect_codec(
|
||||
column: impl Column<u64>,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> Option<FastFieldCodecType> {
|
||||
let mut estimations = Vec::new();
|
||||
for &codec in codecs {
|
||||
let estimation_opt = match codec {
|
||||
FastFieldCodecType::Bitpacked => BitpackedCodec::estimate(&column),
|
||||
FastFieldCodecType::Linear => LinearCodec::estimate(&column),
|
||||
FastFieldCodecType::BlockwiseLinear => BlockwiseLinearCodec::estimate(&column),
|
||||
};
|
||||
if let Some(estimation) = estimation_opt {
|
||||
estimations.push((estimation, codec));
|
||||
}
|
||||
}
|
||||
if let Some(broken_estimation) = estimations.iter().find(|estimation| estimation.0.is_nan()) {
|
||||
warn!(
|
||||
"broken estimation for fast field codec {:?}",
|
||||
broken_estimation.1
|
||||
);
|
||||
}
|
||||
// removing nan values for codecs with broken calculations, and max values which disables
|
||||
// codecs
|
||||
estimations.retain(|estimation| !estimation.0.is_nan() && estimation.0 != f32::MAX);
|
||||
estimations.sort_by(|(score_left, _), (score_right, _)| score_left.total_cmp(score_right));
|
||||
Some(estimations.first()?.1)
|
||||
}
|
||||
|
||||
fn serialize_given_codec(
|
||||
column: impl Column<u64>,
|
||||
codec_type: FastFieldCodecType,
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
match codec_type {
|
||||
FastFieldCodecType::Bitpacked => {
|
||||
BitpackedCodec::serialize(&column, output)?;
|
||||
}
|
||||
FastFieldCodecType::Linear => {
|
||||
LinearCodec::serialize(&column, output)?;
|
||||
}
|
||||
FastFieldCodecType::BlockwiseLinear => {
|
||||
BlockwiseLinearCodec::serialize(&column, output)?;
|
||||
}
|
||||
}
|
||||
output.flush()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default>(
|
||||
column: &[T],
|
||||
) -> Arc<dyn Column<T>> {
|
||||
let mut buffer = Vec::new();
|
||||
super::serialize(VecColumn::from(&column), &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
super::open(OwnedBytes::new(buffer)).unwrap()
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_serialize_deserialize() {
|
||||
let original = [1u64, 5u64, 10u64];
|
||||
let restored: Vec<u64> =
|
||||
crate::iter_from_reader(serialize_and_load(&original[..]).reader()).collect();
|
||||
assert_eq!(&restored, &original[..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_bool_size_bitwidth_1() {
|
||||
let mut buffer = Vec::new();
|
||||
let col = VecColumn::from(&[false, true][..]);
|
||||
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
// 5 bytes of header, 1 byte of value, 7 bytes of padding.
|
||||
assert_eq!(buffer.len(), 5 + 8);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_bool_bit_size_bitwidth_0() {
|
||||
let mut buffer = Vec::new();
|
||||
let col = VecColumn::from(&[true][..]);
|
||||
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
// 5 bytes of header, 0 bytes of value, 7 bytes of padding.
|
||||
assert_eq!(buffer.len(), 5 + 7);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd() {
|
||||
let mut buffer = Vec::new();
|
||||
let vals: Vec<u64> = (0..80).map(|val| (val % 7) * 1_000u64).collect();
|
||||
let col = VecColumn::from(&vals[..]);
|
||||
serialize(col, &mut buffer, &[FastFieldCodecType::Bitpacked]).unwrap();
|
||||
// Values are stored over 3 bits.
|
||||
assert_eq!(buffer.len(), 7 + (3 * 80 / 8) + 7);
|
||||
}
|
||||
}
|
||||
@@ -6,7 +6,7 @@ use std::{fmt, io, mem};
|
||||
use stable_deref_trait::StableDeref;
|
||||
|
||||
/// An OwnedBytes simply wraps an object that owns a slice of data and exposes
|
||||
/// this data as a slice.
|
||||
/// this data as a static slice.
|
||||
///
|
||||
/// The backing object is required to be `StableDeref`.
|
||||
#[derive(Clone)]
|
||||
|
||||
@@ -23,7 +23,7 @@ const ESCAPED_SPECIAL_CHARS_PATTERN: &str = r#"\\(\+|\^|`|:|\{|\}|"|\[|\]|\(|\)|
|
||||
/// Parses a field_name
|
||||
/// A field name must have at least one character and be followed by a colon.
|
||||
/// All characters are allowed including special characters `SPECIAL_CHARS`, but these
|
||||
/// need to be escaped with a backslash character '\'.
|
||||
/// need to be escaped with a backslack character '\'.
|
||||
fn field_name<'a>() -> impl Parser<&'a str, Output = String> {
|
||||
static ESCAPED_SPECIAL_CHARS_RE: Lazy<Regex> =
|
||||
Lazy::new(|| Regex::new(ESCAPED_SPECIAL_CHARS_PATTERN).unwrap());
|
||||
@@ -68,7 +68,7 @@ fn word<'a>() -> impl Parser<&'a str, Output = String> {
|
||||
///
|
||||
/// NOTE: also accepts 999999-99-99T99:99:99.266051969+99:99
|
||||
/// We delegate rejecting such invalid dates to the logical AST computation code
|
||||
/// which invokes `time::OffsetDateTime::parse(..., &Rfc3339)` on the value to actually parse
|
||||
/// which invokes time::OffsetDateTime::parse(..., &Rfc3339) on the value to actually parse
|
||||
/// it (instead of merely extracting the datetime value as string as done here).
|
||||
fn date_time<'a>() -> impl Parser<&'a str, Output = String> {
|
||||
let two_digits = || recognize::<String, _, _>((digit(), digit()));
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
//! Contains the aggregation request tree. Used to build an
|
||||
//! [`AggregationCollector`](super::AggregationCollector).
|
||||
//! [AggregationCollector](super::AggregationCollector).
|
||||
//!
|
||||
//! [`Aggregations`] is the top level entry point to create a request, which is a `HashMap<String,
|
||||
//! [Aggregations] is the top level entry point to create a request, which is a `HashMap<String,
|
||||
//! Aggregation>`.
|
||||
//!
|
||||
//! Requests are compatible with the json format of elasticsearch.
|
||||
@@ -54,8 +54,8 @@ use super::bucket::{HistogramAggregation, TermsAggregation};
|
||||
use super::metric::{AverageAggregation, StatsAggregation};
|
||||
use super::VecWithNames;
|
||||
|
||||
/// The top-level aggregation request structure, which contains [`Aggregation`] and their user
|
||||
/// defined names. It is also used in [buckets](BucketAggregation) to define sub-aggregations.
|
||||
/// The top-level aggregation request structure, which contains [Aggregation] and their user defined
|
||||
/// names. It is also used in [buckets](BucketAggregation) to define sub-aggregations.
|
||||
///
|
||||
/// The key is the user defined name of the aggregation.
|
||||
pub type Aggregations = HashMap<String, Aggregation>;
|
||||
@@ -139,15 +139,15 @@ pub fn get_fast_field_names(aggs: &Aggregations) -> HashSet<String> {
|
||||
fast_field_names
|
||||
}
|
||||
|
||||
/// Aggregation request of [`BucketAggregation`] or [`MetricAggregation`].
|
||||
/// Aggregation request of [BucketAggregation] or [MetricAggregation].
|
||||
///
|
||||
/// An aggregation is either a bucket or a metric.
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
#[serde(untagged)]
|
||||
pub enum Aggregation {
|
||||
/// Bucket aggregation, see [`BucketAggregation`] for details.
|
||||
/// Bucket aggregation, see [BucketAggregation] for details.
|
||||
Bucket(BucketAggregation),
|
||||
/// Metric aggregation, see [`MetricAggregation`] for details.
|
||||
/// Metric aggregation, see [MetricAggregation] for details.
|
||||
Metric(MetricAggregation),
|
||||
}
|
||||
|
||||
|
||||
@@ -4,14 +4,14 @@ use std::rc::Rc;
|
||||
use std::sync::atomic::AtomicU32;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use super::agg_req::{Aggregation, Aggregations, BucketAggregationType, MetricAggregation};
|
||||
use super::bucket::{HistogramAggregation, RangeAggregation, TermsAggregation};
|
||||
use super::metric::{AverageAggregation, StatsAggregation};
|
||||
use super::segment_agg_result::BucketCount;
|
||||
use super::VecWithNames;
|
||||
use crate::fastfield::{type_and_cardinality, FastType, MultiValuedFastFieldReader};
|
||||
use crate::fastfield::{
|
||||
type_and_cardinality, DynamicFastFieldReader, FastType, MultiValuedFastFieldReader,
|
||||
};
|
||||
use crate::schema::{Cardinality, Type};
|
||||
use crate::{InvertedIndexReader, SegmentReader, TantivyError};
|
||||
|
||||
@@ -37,16 +37,10 @@ impl AggregationsWithAccessor {
|
||||
#[derive(Clone)]
|
||||
pub(crate) enum FastFieldAccessor {
|
||||
Multi(MultiValuedFastFieldReader<u64>),
|
||||
Single(Arc<dyn Column<u64>>),
|
||||
Single(DynamicFastFieldReader<u64>),
|
||||
}
|
||||
impl FastFieldAccessor {
|
||||
pub fn as_single(&self) -> Option<&dyn Column<u64>> {
|
||||
match self {
|
||||
FastFieldAccessor::Multi(_) => None,
|
||||
FastFieldAccessor::Single(reader) => Some(&**reader),
|
||||
}
|
||||
}
|
||||
pub fn into_single(self) -> Option<Arc<dyn Column<u64>>> {
|
||||
pub fn as_single(&self) -> Option<&DynamicFastFieldReader<u64>> {
|
||||
match self {
|
||||
FastFieldAccessor::Multi(_) => None,
|
||||
FastFieldAccessor::Single(reader) => Some(reader),
|
||||
@@ -124,7 +118,7 @@ impl BucketAggregationWithAccessor {
|
||||
pub struct MetricAggregationWithAccessor {
|
||||
pub metric: MetricAggregation,
|
||||
pub field_type: Type,
|
||||
pub accessor: Arc<dyn Column>,
|
||||
pub accessor: DynamicFastFieldReader<u64>,
|
||||
}
|
||||
|
||||
impl MetricAggregationWithAccessor {
|
||||
@@ -140,8 +134,9 @@ impl MetricAggregationWithAccessor {
|
||||
|
||||
Ok(MetricAggregationWithAccessor {
|
||||
accessor: accessor
|
||||
.into_single()
|
||||
.expect("unexpected fast field cardinality"),
|
||||
.as_single()
|
||||
.expect("unexpected fast field cardinality")
|
||||
.clone(),
|
||||
field_type,
|
||||
metric: metric.clone(),
|
||||
})
|
||||
|
||||
@@ -113,14 +113,14 @@ pub enum BucketResult {
|
||||
///
|
||||
/// If there are holes depends on the request, if min_doc_count is 0, then there are no
|
||||
/// holes between the first and last bucket.
|
||||
/// See [`HistogramAggregation`](super::bucket::HistogramAggregation)
|
||||
/// See [HistogramAggregation](super::bucket::HistogramAggregation)
|
||||
buckets: BucketEntries<BucketEntry>,
|
||||
},
|
||||
/// This is the term result
|
||||
Terms {
|
||||
/// The buckets.
|
||||
///
|
||||
/// See [`TermsAggregation`](super::bucket::TermsAggregation)
|
||||
/// See [TermsAggregation](super::bucket::TermsAggregation)
|
||||
buckets: Vec<BucketEntry>,
|
||||
/// The number of documents that didn’t make it into to TOP N due to shard_size or size
|
||||
sum_other_doc_count: u64,
|
||||
@@ -234,10 +234,10 @@ pub struct RangeBucketEntry {
|
||||
#[serde(flatten)]
|
||||
/// sub-aggregations in this bucket.
|
||||
pub sub_aggregation: AggregationResults,
|
||||
/// The from range of the bucket. Equals `f64::MIN` when `None`.
|
||||
/// The from range of the bucket. Equals f64::MIN when None.
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub from: Option<f64>,
|
||||
/// The to range of the bucket. Equals `f64::MAX` when `None`.
|
||||
/// The to range of the bucket. Equals f64::MAX when None.
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub to: Option<f64>,
|
||||
}
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
use std::cmp::Ordering;
|
||||
use std::fmt::Display;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
use itertools::Itertools;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
@@ -15,6 +14,7 @@ use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResults, IntermediateBucketResult, IntermediateHistogramBucketEntry,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationResultsCollector;
|
||||
use crate::fastfield::{DynamicFastFieldReader, FastFieldReader};
|
||||
use crate::schema::Type;
|
||||
use crate::{DocId, TantivyError};
|
||||
|
||||
@@ -37,14 +37,14 @@ use crate::{DocId, TantivyError};
|
||||
/// [hard_bounds](HistogramAggregation::hard_bounds).
|
||||
///
|
||||
/// # Result
|
||||
/// Result type is [`BucketResult`](crate::aggregation::agg_result::BucketResult) with
|
||||
/// [`BucketEntry`](crate::aggregation::agg_result::BucketEntry) on the
|
||||
/// `AggregationCollector`.
|
||||
/// Result type is [BucketResult](crate::aggregation::agg_result::BucketResult) with
|
||||
/// [BucketEntry](crate::aggregation::agg_result::BucketEntry) on the
|
||||
/// AggregationCollector.
|
||||
///
|
||||
/// Result type is
|
||||
/// [`IntermediateBucketResult`](crate::aggregation::intermediate_agg_result::IntermediateBucketResult) with
|
||||
/// [`IntermediateHistogramBucketEntry`](crate::aggregation::intermediate_agg_result::IntermediateHistogramBucketEntry) on the
|
||||
/// `DistributedAggregationCollector`.
|
||||
/// [crate::aggregation::intermediate_agg_result::IntermediateBucketResult] with
|
||||
/// [crate::aggregation::intermediate_agg_result::IntermediateHistogramBucketEntry] on the
|
||||
/// DistributedAggregationCollector.
|
||||
///
|
||||
/// # Limitations/Compatibility
|
||||
///
|
||||
@@ -61,7 +61,7 @@ use crate::{DocId, TantivyError};
|
||||
/// ```
|
||||
///
|
||||
/// Response
|
||||
/// See [`BucketEntry`](crate::aggregation::agg_result::BucketEntry)
|
||||
/// See [BucketEntry](crate::aggregation::agg_result::BucketEntry)
|
||||
|
||||
#[derive(Clone, Debug, Default, PartialEq, Serialize, Deserialize)]
|
||||
pub struct HistogramAggregation {
|
||||
@@ -263,7 +263,7 @@ impl SegmentHistogramCollector {
|
||||
req: &HistogramAggregation,
|
||||
sub_aggregation: &AggregationsWithAccessor,
|
||||
field_type: Type,
|
||||
accessor: &dyn Column<u64>,
|
||||
accessor: &DynamicFastFieldReader<u64>,
|
||||
) -> crate::Result<Self> {
|
||||
req.validate()?;
|
||||
let min = f64_from_fastfield_u64(accessor.min_value(), &field_type);
|
||||
@@ -331,10 +331,10 @@ impl SegmentHistogramCollector {
|
||||
.expect("unexpected fast field cardinatility");
|
||||
let mut iter = doc.chunks_exact(4);
|
||||
for docs in iter.by_ref() {
|
||||
let val0 = self.f64_from_fastfield_u64(accessor.get_val(docs[0] as u64));
|
||||
let val1 = self.f64_from_fastfield_u64(accessor.get_val(docs[1] as u64));
|
||||
let val2 = self.f64_from_fastfield_u64(accessor.get_val(docs[2] as u64));
|
||||
let val3 = self.f64_from_fastfield_u64(accessor.get_val(docs[3] as u64));
|
||||
let val0 = self.f64_from_fastfield_u64(accessor.get(docs[0]));
|
||||
let val1 = self.f64_from_fastfield_u64(accessor.get(docs[1]));
|
||||
let val2 = self.f64_from_fastfield_u64(accessor.get(docs[2]));
|
||||
let val3 = self.f64_from_fastfield_u64(accessor.get(docs[3]));
|
||||
|
||||
let bucket_pos0 = get_bucket_num(val0);
|
||||
let bucket_pos1 = get_bucket_num(val1);
|
||||
@@ -370,8 +370,8 @@ impl SegmentHistogramCollector {
|
||||
&bucket_with_accessor.sub_aggregation,
|
||||
)?;
|
||||
}
|
||||
for &doc in iter.remainder() {
|
||||
let val = f64_from_fastfield_u64(accessor.get_val(doc as u64), &self.field_type);
|
||||
for doc in iter.remainder() {
|
||||
let val = f64_from_fastfield_u64(accessor.get(*doc), &self.field_type);
|
||||
if !bounds.contains(val) {
|
||||
continue;
|
||||
}
|
||||
@@ -382,7 +382,7 @@ impl SegmentHistogramCollector {
|
||||
self.buckets[bucket_pos].key,
|
||||
get_bucket_val(val, self.interval, self.offset) as f64
|
||||
);
|
||||
self.increment_bucket(bucket_pos, doc, &bucket_with_accessor.sub_aggregation)?;
|
||||
self.increment_bucket(bucket_pos, *doc, &bucket_with_accessor.sub_aggregation)?;
|
||||
}
|
||||
if force_flush {
|
||||
if let Some(sub_aggregations) = self.sub_aggregations.as_mut() {
|
||||
@@ -518,7 +518,7 @@ pub(crate) fn intermediate_histogram_buckets_to_final_buckets(
|
||||
|
||||
/// Applies req extended_bounds/hard_bounds on the min_max value
|
||||
///
|
||||
/// May return `(f64::MAX, f64::MIN)`, if there is no range.
|
||||
/// May return (f64::MAX, f64::MIN), if there is no range.
|
||||
fn get_req_min_max(req: &HistogramAggregation, min_max: Option<(f64, f64)>) -> (f64, f64) {
|
||||
let (mut min, mut max) = min_max.unwrap_or((f64::MAX, f64::MIN));
|
||||
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
//! Module for all bucket aggregations.
|
||||
//!
|
||||
//! BucketAggregations create buckets of documents
|
||||
//! [`BucketAggregation`](super::agg_req::BucketAggregation).
|
||||
//! [BucketAggregation](super::agg_req::BucketAggregation).
|
||||
//!
|
||||
//! Results of final buckets are [`BucketResult`](super::agg_result::BucketResult).
|
||||
//! Results of final buckets are [BucketResult](super::agg_result::BucketResult).
|
||||
//! Results of intermediate buckets are
|
||||
//! [`IntermediateBucketResult`](super::intermediate_agg_result::IntermediateBucketResult)
|
||||
//! [IntermediateBucketResult](super::intermediate_agg_result::IntermediateBucketResult)
|
||||
|
||||
mod histogram;
|
||||
mod range;
|
||||
|
||||
@@ -12,6 +12,7 @@ use crate::aggregation::intermediate_agg_result::{
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::{BucketCount, SegmentAggregationResultsCollector};
|
||||
use crate::aggregation::{f64_from_fastfield_u64, f64_to_fastfield_u64, Key, SerializedKey};
|
||||
use crate::fastfield::FastFieldReader;
|
||||
use crate::schema::Type;
|
||||
use crate::{DocId, TantivyError};
|
||||
|
||||
@@ -22,14 +23,14 @@ use crate::{DocId, TantivyError};
|
||||
/// against each bucket range. Note that this aggregation includes the from value and excludes the
|
||||
/// to value for each range.
|
||||
///
|
||||
/// Result type is [`BucketResult`](crate::aggregation::agg_result::BucketResult) with
|
||||
/// [`RangeBucketEntry`](crate::aggregation::agg_result::RangeBucketEntry) on the
|
||||
/// `AggregationCollector`.
|
||||
/// Result type is [BucketResult](crate::aggregation::agg_result::BucketResult) with
|
||||
/// [RangeBucketEntry](crate::aggregation::agg_result::RangeBucketEntry) on the
|
||||
/// AggregationCollector.
|
||||
///
|
||||
/// Result type is
|
||||
/// [`IntermediateBucketResult`](crate::aggregation::intermediate_agg_result::IntermediateBucketResult) with
|
||||
/// [`IntermediateRangeBucketEntry`](crate::aggregation::intermediate_agg_result::IntermediateRangeBucketEntry) on the
|
||||
/// `DistributedAggregationCollector`.
|
||||
/// [crate::aggregation::intermediate_agg_result::IntermediateBucketResult] with
|
||||
/// [crate::aggregation::intermediate_agg_result::IntermediateRangeBucketEntry] on the
|
||||
/// DistributedAggregationCollector.
|
||||
///
|
||||
/// # Limitations/Compatibility
|
||||
/// Overlapping ranges are not yet supported.
|
||||
@@ -67,11 +68,11 @@ pub struct RangeAggregationRange {
|
||||
#[serde(skip_serializing_if = "Option::is_none", default)]
|
||||
pub key: Option<String>,
|
||||
/// The from range value, which is inclusive in the range.
|
||||
/// `None` equals to an open ended interval.
|
||||
/// None equals to an open ended interval.
|
||||
#[serde(skip_serializing_if = "Option::is_none", default)]
|
||||
pub from: Option<f64>,
|
||||
/// The to range value, which is not inclusive in the range.
|
||||
/// `None` equals to an open ended interval.
|
||||
/// None equals to an open ended interval.
|
||||
#[serde(skip_serializing_if = "Option::is_none", default)]
|
||||
pub to: Option<f64>,
|
||||
}
|
||||
@@ -101,7 +102,7 @@ impl From<Range<f64>> for RangeAggregationRange {
|
||||
pub(crate) struct InternalRangeAggregationRange {
|
||||
/// Custom key for the range bucket
|
||||
key: Option<String>,
|
||||
/// `u64` range value
|
||||
/// u64 range value
|
||||
range: Range<u64>,
|
||||
}
|
||||
|
||||
@@ -131,9 +132,9 @@ pub(crate) struct SegmentRangeBucketEntry {
|
||||
pub key: Key,
|
||||
pub doc_count: u64,
|
||||
pub sub_aggregation: Option<SegmentAggregationResultsCollector>,
|
||||
/// The from range of the bucket. Equals `f64::MIN` when `None`.
|
||||
/// The from range of the bucket. Equals f64::MIN when None.
|
||||
pub from: Option<f64>,
|
||||
/// The to range of the bucket. Equals `f64::MAX` when `None`. Open interval, `to` is not
|
||||
/// The to range of the bucket. Equals f64::MAX when None. Open interval, `to` is not
|
||||
/// inclusive.
|
||||
pub to: Option<f64>,
|
||||
}
|
||||
@@ -261,12 +262,12 @@ impl SegmentRangeCollector {
|
||||
let accessor = bucket_with_accessor
|
||||
.accessor
|
||||
.as_single()
|
||||
.expect("unexpected fast field cardinality");
|
||||
.expect("unexpected fast field cardinatility");
|
||||
for docs in iter.by_ref() {
|
||||
let val1 = accessor.get_val(docs[0] as u64);
|
||||
let val2 = accessor.get_val(docs[1] as u64);
|
||||
let val3 = accessor.get_val(docs[2] as u64);
|
||||
let val4 = accessor.get_val(docs[3] as u64);
|
||||
let val1 = accessor.get(docs[0]);
|
||||
let val2 = accessor.get(docs[1]);
|
||||
let val3 = accessor.get(docs[2]);
|
||||
let val4 = accessor.get(docs[3]);
|
||||
let bucket_pos1 = self.get_bucket_pos(val1);
|
||||
let bucket_pos2 = self.get_bucket_pos(val2);
|
||||
let bucket_pos3 = self.get_bucket_pos(val3);
|
||||
@@ -277,10 +278,10 @@ impl SegmentRangeCollector {
|
||||
self.increment_bucket(bucket_pos3, docs[2], &bucket_with_accessor.sub_aggregation)?;
|
||||
self.increment_bucket(bucket_pos4, docs[3], &bucket_with_accessor.sub_aggregation)?;
|
||||
}
|
||||
for &doc in iter.remainder() {
|
||||
let val = accessor.get_val(doc as u64);
|
||||
for doc in iter.remainder() {
|
||||
let val = accessor.get(*doc);
|
||||
let bucket_pos = self.get_bucket_pos(val);
|
||||
self.increment_bucket(bucket_pos, doc, &bucket_with_accessor.sub_aggregation)?;
|
||||
self.increment_bucket(bucket_pos, *doc, &bucket_with_accessor.sub_aggregation)?;
|
||||
}
|
||||
if force_flush {
|
||||
for bucket in &mut self.buckets {
|
||||
@@ -423,13 +424,12 @@ pub(crate) fn range_to_key(range: &Range<u64>, field_type: &Type) -> Key {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use fastfield_codecs::MonotonicallyMappableToU64;
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::agg_req::{
|
||||
Aggregation, Aggregations, BucketAggregation, BucketAggregationType,
|
||||
};
|
||||
use crate::aggregation::tests::{exec_request_with_query, get_test_index_with_num_docs};
|
||||
use crate::fastfield::FastValue;
|
||||
|
||||
pub fn get_collector_from_ranges(
|
||||
ranges: Vec<RangeAggregationRange>,
|
||||
|
||||
@@ -31,7 +31,7 @@ use crate::{DocId, TantivyError};
|
||||
///
|
||||
/// Even with a larger `segment_size` value, doc_count values for a terms aggregation may be
|
||||
/// approximate. As a result, any sub-aggregations on the terms aggregation may also be approximate.
|
||||
/// `sum_other_doc_count` is the number of documents that didn’t make it into the top size
|
||||
/// `sum_other_doc_count` is the number of documents that didn’t make it into the the top size
|
||||
/// terms. If this is greater than 0, you can be sure that the terms agg had to throw away some
|
||||
/// buckets, either because they didn’t fit into size on the root node or they didn’t fit into
|
||||
/// `segment_size` on the segment node.
|
||||
@@ -42,14 +42,14 @@ use crate::{DocId, TantivyError};
|
||||
/// each segment. It’s the sum of the size of the largest bucket on each segment that didn’t fit
|
||||
/// into segment_size.
|
||||
///
|
||||
/// Result type is [`BucketResult`](crate::aggregation::agg_result::BucketResult) with
|
||||
/// [`TermBucketEntry`](crate::aggregation::agg_result::BucketEntry) on the
|
||||
/// `AggregationCollector`.
|
||||
/// Result type is [BucketResult](crate::aggregation::agg_result::BucketResult) with
|
||||
/// [TermBucketEntry](crate::aggregation::agg_result::BucketEntry) on the
|
||||
/// AggregationCollector.
|
||||
///
|
||||
/// Result type is
|
||||
/// [`IntermediateBucketResult`](crate::aggregation::intermediate_agg_result::IntermediateBucketResult) with
|
||||
/// [`IntermediateTermBucketEntry`](crate::aggregation::intermediate_agg_result::IntermediateTermBucketEntry) on the
|
||||
/// `DistributedAggregationCollector`.
|
||||
/// [crate::aggregation::intermediate_agg_result::IntermediateBucketResult] with
|
||||
/// [crate::aggregation::intermediate_agg_result::IntermediateTermBucketEntry] on the
|
||||
/// DistributedAggregationCollector.
|
||||
///
|
||||
/// # Limitations/Compatibility
|
||||
///
|
||||
|
||||
@@ -131,7 +131,7 @@ fn merge_fruits(
|
||||
}
|
||||
}
|
||||
|
||||
/// `AggregationSegmentCollector` does the aggregation collection on a segment.
|
||||
/// AggregationSegmentCollector does the aggregation collection on a segment.
|
||||
pub struct AggregationSegmentCollector {
|
||||
aggs_with_accessor: AggregationsWithAccessor,
|
||||
result: SegmentAggregationResultsCollector,
|
||||
@@ -139,8 +139,8 @@ pub struct AggregationSegmentCollector {
|
||||
}
|
||||
|
||||
impl AggregationSegmentCollector {
|
||||
/// Creates an `AggregationSegmentCollector from` an [`Aggregations`] request and a segment
|
||||
/// reader. Also includes validation, e.g. checking field types and existence.
|
||||
/// Creates an AggregationSegmentCollector from an [Aggregations] request and a segment reader.
|
||||
/// Also includes validation, e.g. checking field types and existence.
|
||||
pub fn from_agg_req_and_reader(
|
||||
agg: &Aggregations,
|
||||
reader: &SegmentReader,
|
||||
|
||||
@@ -108,10 +108,10 @@ impl IntermediateAggregationResults {
|
||||
Self { metrics, buckets }
|
||||
}
|
||||
|
||||
/// Merge another intermediate aggregation result into this result.
|
||||
/// Merge an other intermediate aggregation result into this result.
|
||||
///
|
||||
/// The order of the values need to be the same on both results. This is ensured when the same
|
||||
/// (key values) are present on the underlying `VecWithNames` struct.
|
||||
/// (key values) are present on the underlying VecWithNames struct.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateAggregationResults) {
|
||||
if let (Some(buckets_left), Some(buckets_right)) = (&mut self.buckets, other.buckets) {
|
||||
for (bucket_left, bucket_right) in
|
||||
@@ -560,10 +560,10 @@ pub struct IntermediateRangeBucketEntry {
|
||||
pub doc_count: u64,
|
||||
/// The sub_aggregation in this bucket.
|
||||
pub sub_aggregation: IntermediateAggregationResults,
|
||||
/// The from range of the bucket. Equals `f64::MIN` when `None`.
|
||||
/// The from range of the bucket. Equals f64::MIN when None.
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub from: Option<f64>,
|
||||
/// The to range of the bucket. Equals `f64::MAX` when `None`.
|
||||
/// The to range of the bucket. Equals f64::MAX when None.
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub to: Option<f64>,
|
||||
}
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
use std::fmt::Debug;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::aggregation::f64_from_fastfield_u64;
|
||||
use crate::fastfield::{DynamicFastFieldReader, FastFieldReader};
|
||||
use crate::schema::Type;
|
||||
use crate::DocId;
|
||||
|
||||
@@ -57,13 +57,13 @@ impl SegmentAverageCollector {
|
||||
data: Default::default(),
|
||||
}
|
||||
}
|
||||
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &dyn Column<u64>) {
|
||||
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &DynamicFastFieldReader<u64>) {
|
||||
let mut iter = doc.chunks_exact(4);
|
||||
for docs in iter.by_ref() {
|
||||
let val1 = field.get_val(docs[0] as u64);
|
||||
let val2 = field.get_val(docs[1] as u64);
|
||||
let val3 = field.get_val(docs[2] as u64);
|
||||
let val4 = field.get_val(docs[3] as u64);
|
||||
let val1 = field.get(docs[0]);
|
||||
let val2 = field.get(docs[1]);
|
||||
let val3 = field.get(docs[2]);
|
||||
let val4 = field.get(docs[3]);
|
||||
let val1 = f64_from_fastfield_u64(val1, &self.field_type);
|
||||
let val2 = f64_from_fastfield_u64(val2, &self.field_type);
|
||||
let val3 = f64_from_fastfield_u64(val3, &self.field_type);
|
||||
@@ -73,8 +73,8 @@ impl SegmentAverageCollector {
|
||||
self.data.collect(val3);
|
||||
self.data.collect(val4);
|
||||
}
|
||||
for &doc in iter.remainder() {
|
||||
let val = field.get_val(doc as u64);
|
||||
for doc in iter.remainder() {
|
||||
let val = field.get(*doc);
|
||||
let val = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.data.collect(val);
|
||||
}
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
use fastfield_codecs::Column;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::aggregation::f64_from_fastfield_u64;
|
||||
use crate::fastfield::{DynamicFastFieldReader, FastFieldReader};
|
||||
use crate::schema::Type;
|
||||
use crate::{DocId, TantivyError};
|
||||
|
||||
/// A multi-value metric aggregation that computes stats of numeric values that are
|
||||
/// extracted from the aggregated documents.
|
||||
/// Supported field types are `u64`, `i64`, and `f64`.
|
||||
/// See [`Stats`] for returned statistics.
|
||||
/// Supported field types are u64, i64, and f64.
|
||||
/// See [Stats] for returned statistics.
|
||||
///
|
||||
/// # JSON Format
|
||||
/// ```json
|
||||
@@ -43,13 +43,13 @@ pub struct Stats {
|
||||
pub count: usize,
|
||||
/// The sum of the fast field values.
|
||||
pub sum: f64,
|
||||
/// The standard deviation of the fast field values. `None` for count == 0.
|
||||
/// The standard deviation of the fast field values. None for count == 0.
|
||||
pub standard_deviation: Option<f64>,
|
||||
/// The min value of the fast field values.
|
||||
pub min: Option<f64>,
|
||||
/// The max value of the fast field values.
|
||||
pub max: Option<f64>,
|
||||
/// The average of the values. `None` for count == 0.
|
||||
/// The average of the values. None for count == 0.
|
||||
pub avg: Option<f64>,
|
||||
}
|
||||
|
||||
@@ -70,7 +70,7 @@ impl Stats {
|
||||
}
|
||||
}
|
||||
|
||||
/// `IntermediateStats` contains the mergeable version for stats.
|
||||
/// IntermediateStats contains the mergeable version for stats.
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct IntermediateStats {
|
||||
count: usize,
|
||||
@@ -163,13 +163,13 @@ impl SegmentStatsCollector {
|
||||
stats: IntermediateStats::default(),
|
||||
}
|
||||
}
|
||||
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &dyn Column<u64>) {
|
||||
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &DynamicFastFieldReader<u64>) {
|
||||
let mut iter = doc.chunks_exact(4);
|
||||
for docs in iter.by_ref() {
|
||||
let val1 = field.get_val(docs[0] as u64);
|
||||
let val2 = field.get_val(docs[1] as u64);
|
||||
let val3 = field.get_val(docs[2] as u64);
|
||||
let val4 = field.get_val(docs[3] as u64);
|
||||
let val1 = field.get(docs[0]);
|
||||
let val2 = field.get(docs[1]);
|
||||
let val3 = field.get(docs[2]);
|
||||
let val4 = field.get(docs[3]);
|
||||
let val1 = f64_from_fastfield_u64(val1, &self.field_type);
|
||||
let val2 = f64_from_fastfield_u64(val2, &self.field_type);
|
||||
let val3 = f64_from_fastfield_u64(val3, &self.field_type);
|
||||
@@ -179,8 +179,8 @@ impl SegmentStatsCollector {
|
||||
self.stats.collect(val3);
|
||||
self.stats.collect(val4);
|
||||
}
|
||||
for &doc in iter.remainder() {
|
||||
let val = field.get_val(doc as u64);
|
||||
for doc in iter.remainder() {
|
||||
let val = field.get(*doc);
|
||||
let val = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.stats.collect(val);
|
||||
}
|
||||
|
||||
@@ -14,14 +14,13 @@
|
||||
//!
|
||||
//!
|
||||
//! To use aggregations, build an aggregation request by constructing
|
||||
//! [`Aggregations`](agg_req::Aggregations).
|
||||
//! Create an [`AggregationCollector`] from this request. `AggregationCollector` implements the
|
||||
//! [`Collector`](crate::collector::Collector) trait and can be passed as collector into
|
||||
//! [`Searcher::search()`](crate::Searcher::search).
|
||||
//! [Aggregations](agg_req::Aggregations).
|
||||
//! Create an [AggregationCollector] from this request. AggregationCollector implements the
|
||||
//! `Collector` trait and can be passed as collector into `searcher.search()`.
|
||||
//!
|
||||
//! #### Limitations
|
||||
//!
|
||||
//! Currently aggregations work only on single value fast fields of type `u64`, `f64`, `i64` and
|
||||
//! Currently aggregations work only on single value fast fields of type u64, f64, i64 and
|
||||
//! fast fields on text fields.
|
||||
//!
|
||||
//! # JSON Format
|
||||
@@ -45,8 +44,8 @@
|
||||
//! - [Stats](metric::StatsAggregation)
|
||||
//!
|
||||
//! # Example
|
||||
//! Compute the average metric, by building [`agg_req::Aggregations`], which is built from an
|
||||
//! `(String, agg_req::Aggregation)` iterator.
|
||||
//! Compute the average metric, by building [agg_req::Aggregations], which is built from an (String,
|
||||
//! [agg_req::Aggregation]) iterator.
|
||||
//!
|
||||
//! ```
|
||||
//! use tantivy::aggregation::agg_req::{Aggregations, Aggregation, MetricAggregation};
|
||||
@@ -144,15 +143,15 @@
|
||||
//! ```
|
||||
//!
|
||||
//! # Distributed Aggregation
|
||||
//! When the data is distributed on different [`Index`](crate::Index) instances, the
|
||||
//! [`DistributedAggregationCollector`] provides functionality to merge data between independent
|
||||
//! When the data is distributed on different [crate::Index] instances, the
|
||||
//! [DistributedAggregationCollector] provides functionality to merge data between independent
|
||||
//! search calls by returning
|
||||
//! [`IntermediateAggregationResults`](intermediate_agg_result::IntermediateAggregationResults).
|
||||
//! `IntermediateAggregationResults` provides the
|
||||
//! [`merge_fruits`](intermediate_agg_result::IntermediateAggregationResults::merge_fruits) method
|
||||
//! to merge multiple results. The merged result can then be converted into
|
||||
//! [`AggregationResults`](agg_result::AggregationResults) via the
|
||||
//! [`into_final_bucket_result`](intermediate_agg_result::IntermediateAggregationResults::into_final_bucket_result) method.
|
||||
//! [IntermediateAggregationResults](intermediate_agg_result::IntermediateAggregationResults).
|
||||
//! IntermediateAggregationResults provides the
|
||||
//! [merge_fruits](intermediate_agg_result::IntermediateAggregationResults::merge_fruits) method to
|
||||
//! merge multiple results. The merged result can then be converted into
|
||||
//! [agg_result::AggregationResults] via the
|
||||
//! [agg_result::AggregationResults::from_intermediate_and_req] method.
|
||||
|
||||
pub mod agg_req;
|
||||
mod agg_req_with_accessor;
|
||||
@@ -162,6 +161,7 @@ mod collector;
|
||||
pub mod intermediate_agg_result;
|
||||
pub mod metric;
|
||||
mod segment_agg_result;
|
||||
|
||||
use std::collections::HashMap;
|
||||
use std::fmt::Display;
|
||||
|
||||
@@ -169,10 +169,10 @@ pub use collector::{
|
||||
AggregationCollector, AggregationSegmentCollector, DistributedAggregationCollector,
|
||||
MAX_BUCKET_COUNT,
|
||||
};
|
||||
use fastfield_codecs::MonotonicallyMappableToU64;
|
||||
use itertools::Itertools;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::fastfield::FastValue;
|
||||
use crate::schema::Type;
|
||||
|
||||
/// Represents an associative array `(key => values)` in a very efficient manner.
|
||||
@@ -260,7 +260,7 @@ impl<T: Clone> VecWithNames<T> {
|
||||
}
|
||||
}
|
||||
|
||||
/// The serialized key is used in a `HashMap`.
|
||||
/// The serialized key is used in a HashMap.
|
||||
pub type SerializedKey = String;
|
||||
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, PartialOrd)]
|
||||
@@ -269,7 +269,7 @@ pub type SerializedKey = String;
|
||||
pub enum Key {
|
||||
/// String key
|
||||
Str(String),
|
||||
/// `f64` key
|
||||
/// f64 key
|
||||
F64(f64),
|
||||
}
|
||||
|
||||
@@ -282,10 +282,10 @@ impl Display for Key {
|
||||
}
|
||||
}
|
||||
|
||||
/// Inverse of `to_fastfield_u64`. Used to convert to `f64` for metrics.
|
||||
/// Invert of to_fastfield_u64. Used to convert to f64 for metrics.
|
||||
///
|
||||
/// # Panics
|
||||
/// Only `u64`, `f64`, and `i64` are supported.
|
||||
/// Only u64, f64, i64 is supported
|
||||
pub(crate) fn f64_from_fastfield_u64(val: u64, field_type: &Type) -> f64 {
|
||||
match field_type {
|
||||
Type::U64 => val as f64,
|
||||
@@ -297,15 +297,15 @@ pub(crate) fn f64_from_fastfield_u64(val: u64, field_type: &Type) -> f64 {
|
||||
}
|
||||
}
|
||||
|
||||
/// Converts the `f64` value to fast field value space.
|
||||
/// Converts the f64 value to fast field value space.
|
||||
///
|
||||
/// If the fast field has `u64`, values are stored as `u64` in the fast field.
|
||||
/// A `f64` value of e.g. `2.0` therefore needs to be converted to `1u64`.
|
||||
/// If the fast field has u64, values are stored as u64 in the fast field.
|
||||
/// A f64 value of e.g. 2.0 therefore needs to be converted to 1u64
|
||||
///
|
||||
/// If the fast field has `f64` values are converted and stored to `u64` using a
|
||||
/// If the fast field has f64 values are converted and stored to u64 using a
|
||||
/// monotonic mapping.
|
||||
/// A `f64` value of e.g. `2.0` needs to be converted using the same monotonic
|
||||
/// conversion function, so that the value matches the `u64` value stored in the fast
|
||||
/// A f64 value of e.g. 2.0 needs to be converted using the same monotonic
|
||||
/// conversion function, so that the value matches the u64 value stored in the fast
|
||||
/// field.
|
||||
pub(crate) fn f64_to_fastfield_u64(val: f64, field_type: &Type) -> Option<u64> {
|
||||
match field_type {
|
||||
|
||||
@@ -185,10 +185,10 @@ impl SegmentMetricResultCollector {
|
||||
pub(crate) fn collect_block(&mut self, doc: &[DocId], metric: &MetricAggregationWithAccessor) {
|
||||
match self {
|
||||
SegmentMetricResultCollector::Average(avg_collector) => {
|
||||
avg_collector.collect_block(doc, &*metric.accessor);
|
||||
avg_collector.collect_block(doc, &metric.accessor);
|
||||
}
|
||||
SegmentMetricResultCollector::Stats(stats_collector) => {
|
||||
stats_collector.collect_block(doc, &*metric.accessor);
|
||||
stats_collector.collect_block(doc, &metric.accessor);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -24,7 +24,7 @@ where TScore: Clone + PartialOrd
|
||||
/// A custom segment scorer makes it possible to define any kind of score
|
||||
/// for a given document belonging to a specific segment.
|
||||
///
|
||||
/// It is the segment local version of the [`CustomScorer`].
|
||||
/// It is the segment local version of the [`CustomScorer`](./trait.CustomScorer.html).
|
||||
pub trait CustomSegmentScorer<TScore>: 'static {
|
||||
/// Computes the score of a specific `doc`.
|
||||
fn score(&mut self, doc: DocId) -> TScore;
|
||||
@@ -36,7 +36,7 @@ pub trait CustomSegmentScorer<TScore>: 'static {
|
||||
/// Instead, it helps constructing `Self::Child` instances that will compute
|
||||
/// the score at a segment scale.
|
||||
pub trait CustomScorer<TScore>: Sync {
|
||||
/// Type of the associated [`CustomSegmentScorer`].
|
||||
/// Type of the associated [`CustomSegmentScorer`](./trait.CustomSegmentScorer.html).
|
||||
type Child: CustomSegmentScorer<TScore>;
|
||||
/// Builds a child scorer for a specific segment. The child scorer is associated to
|
||||
/// a specific segment.
|
||||
|
||||
@@ -67,10 +67,10 @@ fn facet_depth(facet_bytes: &[u8]) -> usize {
|
||||
/// (e.g. `/category/fiction`, `/category/biography`, `/category/personal_development`).
|
||||
///
|
||||
/// Once collection is finished, you can harvest its results in the form
|
||||
/// of a [`FacetCounts`] object, and extract your facet counts from it.
|
||||
/// of a `FacetCounts` object, and extract your face t counts from it.
|
||||
///
|
||||
/// This implementation assumes you are working with a number of facets that
|
||||
/// is many hundreds of times smaller than your number of documents.
|
||||
/// is much hundreds of time lower than your number of documents.
|
||||
///
|
||||
///
|
||||
/// ```rust
|
||||
@@ -231,7 +231,7 @@ impl FacetCollector {
|
||||
///
|
||||
/// Adding two facets within which one is the prefix of the other is forbidden.
|
||||
/// If you need the correct number of unique documents for two such facets,
|
||||
/// just add them in a separate `FacetCollector`.
|
||||
/// just add them in separate `FacetCollector`.
|
||||
pub fn add_facet<T>(&mut self, facet_from: T)
|
||||
where Facet: From<T> {
|
||||
let facet = Facet::from(facet_from);
|
||||
@@ -391,7 +391,7 @@ impl<'a> Iterator for FacetChildIterator<'a> {
|
||||
|
||||
impl FacetCounts {
|
||||
/// Returns an iterator over all of the facet count pairs inside this result.
|
||||
/// See the documentation for [`FacetCollector`] for a usage example.
|
||||
/// See the documentation for [FacetCollector] for a usage example.
|
||||
pub fn get<T>(&self, facet_from: T) -> FacetChildIterator<'_>
|
||||
where Facet: From<T> {
|
||||
let facet = Facet::from(facet_from);
|
||||
@@ -410,7 +410,7 @@ impl FacetCounts {
|
||||
}
|
||||
|
||||
/// Returns a vector of top `k` facets with their counts, sorted highest-to-lowest by counts.
|
||||
/// See the documentation for [`FacetCollector`] for a usage example.
|
||||
/// See the documentation for [FacetCollector] for a usage example.
|
||||
pub fn top_k<T>(&self, facet: T, k: usize) -> Vec<(&Facet, u64)>
|
||||
where Facet: From<T> {
|
||||
let mut heap = BinaryHeap::with_capacity(k);
|
||||
|
||||
@@ -10,12 +10,9 @@
|
||||
// ---
|
||||
// Importing tantivy...
|
||||
use std::marker::PhantomData;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use crate::collector::{Collector, SegmentCollector};
|
||||
use crate::fastfield::FastValue;
|
||||
use crate::fastfield::{DynamicFastFieldReader, FastFieldReader, FastValue};
|
||||
use crate::schema::Field;
|
||||
use crate::{Score, SegmentReader, TantivyError};
|
||||
|
||||
@@ -161,7 +158,7 @@ where
|
||||
TPredicate: 'static,
|
||||
TPredicateValue: FastValue,
|
||||
{
|
||||
fast_field_reader: Arc<dyn Column<TPredicateValue>>,
|
||||
fast_field_reader: DynamicFastFieldReader<TPredicateValue>,
|
||||
segment_collector: TSegmentCollector,
|
||||
predicate: TPredicate,
|
||||
t_predicate_value: PhantomData<TPredicateValue>,
|
||||
@@ -177,7 +174,7 @@ where
|
||||
type Fruit = TSegmentCollector::Fruit;
|
||||
|
||||
fn collect(&mut self, doc: u32, score: Score) {
|
||||
let value = self.fast_field_reader.get_val(doc as u64);
|
||||
let value = self.fast_field_reader.get(doc);
|
||||
if (self.predicate)(value) {
|
||||
self.segment_collector.collect(doc, score)
|
||||
}
|
||||
|
||||
@@ -1,10 +1,7 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use crate::collector::{Collector, SegmentCollector};
|
||||
use crate::fastfield::FastValue;
|
||||
use crate::fastfield::{DynamicFastFieldReader, FastFieldReader, FastValue};
|
||||
use crate::schema::{Field, Type};
|
||||
use crate::{DocId, Score};
|
||||
|
||||
@@ -87,14 +84,14 @@ impl HistogramComputer {
|
||||
}
|
||||
pub struct SegmentHistogramCollector {
|
||||
histogram_computer: HistogramComputer,
|
||||
ff_reader: Arc<dyn Column<u64>>,
|
||||
ff_reader: DynamicFastFieldReader<u64>,
|
||||
}
|
||||
|
||||
impl SegmentCollector for SegmentHistogramCollector {
|
||||
type Fruit = Vec<u64>;
|
||||
|
||||
fn collect(&mut self, doc: DocId, _score: Score) {
|
||||
let value = self.ff_reader.get_val(doc as u64);
|
||||
let value = self.ff_reader.get(doc);
|
||||
self.histogram_computer.add_value(value);
|
||||
}
|
||||
|
||||
|
||||
@@ -4,13 +4,13 @@
|
||||
//! In tantivy jargon, we call this information your search "fruit".
|
||||
//!
|
||||
//! Your fruit could for instance be :
|
||||
//! - [the count of matching documents](crate::collector::Count)
|
||||
//! - [the top 10 documents, by relevancy or by a fast field](crate::collector::TopDocs)
|
||||
//! - [facet counts](FacetCollector)
|
||||
//! - [the count of matching documents](./struct.Count.html)
|
||||
//! - [the top 10 documents, by relevancy or by a fast field](./struct.TopDocs.html)
|
||||
//! - [facet counts](./struct.FacetCollector.html)
|
||||
//!
|
||||
//! At some point in your code, you will trigger the actual search operation by calling
|
||||
//! [`Searcher::search()`](crate::Searcher::search).
|
||||
//! This call will look like this:
|
||||
//! At one point in your code, you will trigger the actual search operation by calling
|
||||
//! [the `search(...)` method of your `Searcher` object](../struct.Searcher.html#method.search).
|
||||
//! This call will look like this.
|
||||
//!
|
||||
//! ```verbatim
|
||||
//! let fruit = searcher.search(&query, &collector)?;
|
||||
@@ -64,7 +64,7 @@
|
||||
//!
|
||||
//! The `Collector` trait is implemented for up to 4 collectors.
|
||||
//! If you have more than 4 collectors, you can either group them into
|
||||
//! tuples of tuples `(a,(b,(c,d)))`, or rely on [`MultiCollector`].
|
||||
//! tuples of tuples `(a,(b,(c,d)))`, or rely on [`MultiCollector`](./struct.MultiCollector.html).
|
||||
//!
|
||||
//! # Combining several collectors dynamically
|
||||
//!
|
||||
@@ -74,7 +74,7 @@
|
||||
//!
|
||||
//! Unfortunately it requires you to know at compile time your collector types.
|
||||
//! If on the other hand, the collectors depend on some query parameter,
|
||||
//! you can rely on [`MultiCollector`]'s.
|
||||
//! you can rely on `MultiCollector`'s.
|
||||
//!
|
||||
//!
|
||||
//! # Implementing your own collectors.
|
||||
|
||||
@@ -1,11 +1,7 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use super::*;
|
||||
use crate::collector::{Count, FilterCollector, TopDocs};
|
||||
use crate::core::SegmentReader;
|
||||
use crate::fastfield::BytesFastFieldReader;
|
||||
use crate::fastfield::{BytesFastFieldReader, DynamicFastFieldReader, FastFieldReader};
|
||||
use crate::query::{AllQuery, QueryParser};
|
||||
use crate::schema::{Field, Schema, FAST, TEXT};
|
||||
use crate::time::format_description::well_known::Rfc3339;
|
||||
@@ -160,7 +156,7 @@ pub struct FastFieldTestCollector {
|
||||
|
||||
pub struct FastFieldSegmentCollector {
|
||||
vals: Vec<u64>,
|
||||
reader: Arc<dyn Column<u64>>,
|
||||
reader: DynamicFastFieldReader<u64>,
|
||||
}
|
||||
|
||||
impl FastFieldTestCollector {
|
||||
@@ -201,7 +197,7 @@ impl SegmentCollector for FastFieldSegmentCollector {
|
||||
type Fruit = Vec<u64>;
|
||||
|
||||
fn collect(&mut self, doc: DocId, _score: Score) {
|
||||
let val = self.reader.get_val(doc as u64);
|
||||
let val = self.reader.get(doc);
|
||||
self.vals.push(val);
|
||||
}
|
||||
|
||||
|
||||
@@ -1,9 +1,6 @@
|
||||
use std::collections::BinaryHeap;
|
||||
use std::fmt;
|
||||
use std::marker::PhantomData;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use super::Collector;
|
||||
use crate::collector::custom_score_top_collector::CustomScoreTopCollector;
|
||||
@@ -12,7 +9,7 @@ use crate::collector::tweak_score_top_collector::TweakedScoreTopCollector;
|
||||
use crate::collector::{
|
||||
CustomScorer, CustomSegmentScorer, ScoreSegmentTweaker, ScoreTweaker, SegmentCollector,
|
||||
};
|
||||
use crate::fastfield::FastValue;
|
||||
use crate::fastfield::{DynamicFastFieldReader, FastFieldReader, FastValue};
|
||||
use crate::query::Weight;
|
||||
use crate::schema::Field;
|
||||
use crate::{DocAddress, DocId, Score, SegmentOrdinal, SegmentReader, TantivyError};
|
||||
@@ -132,12 +129,12 @@ impl fmt::Debug for TopDocs {
|
||||
}
|
||||
|
||||
struct ScorerByFastFieldReader {
|
||||
ff_reader: Arc<dyn Column<u64>>,
|
||||
ff_reader: DynamicFastFieldReader<u64>,
|
||||
}
|
||||
|
||||
impl CustomSegmentScorer<u64> for ScorerByFastFieldReader {
|
||||
fn score(&mut self, doc: DocId) -> u64 {
|
||||
self.ff_reader.get_val(doc as u64)
|
||||
self.ff_reader.get(doc)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -287,7 +284,7 @@ impl TopDocs {
|
||||
/// # See also
|
||||
///
|
||||
/// To comfortably work with `u64`s, `i64`s, `f64`s, or `date`s, please refer to
|
||||
/// the [.order_by_fast_field(...)](TopDocs::order_by_fast_field) method.
|
||||
/// [.order_by_fast_field(...)](#method.order_by_fast_field) method.
|
||||
pub fn order_by_u64_field(
|
||||
self,
|
||||
field: Field,
|
||||
@@ -384,7 +381,7 @@ impl TopDocs {
|
||||
///
|
||||
/// This method offers a convenient way to tweak or replace
|
||||
/// the documents score. As suggested by the prototype you can
|
||||
/// manually define your own [`ScoreTweaker`]
|
||||
/// manually define your own [`ScoreTweaker`](./trait.ScoreTweaker.html)
|
||||
/// and pass it as an argument, but there is a much simpler way to
|
||||
/// tweak your score: you can use a closure as in the following
|
||||
/// example.
|
||||
@@ -401,7 +398,7 @@ impl TopDocs {
|
||||
/// In the following example will will tweak our ranking a bit by
|
||||
/// boosting popular products a notch.
|
||||
///
|
||||
/// In more serious application, this tweaking could involve running a
|
||||
/// In more serious application, this tweaking could involved running a
|
||||
/// learning-to-rank model over various features
|
||||
///
|
||||
/// ```rust
|
||||
@@ -410,6 +407,7 @@ impl TopDocs {
|
||||
/// # use tantivy::query::QueryParser;
|
||||
/// use tantivy::SegmentReader;
|
||||
/// use tantivy::collector::TopDocs;
|
||||
/// use tantivy::fastfield::FastFieldReader;
|
||||
/// use tantivy::schema::Field;
|
||||
///
|
||||
/// fn create_schema() -> Schema {
|
||||
@@ -458,7 +456,7 @@ impl TopDocs {
|
||||
///
|
||||
/// // We can now define our actual scoring function
|
||||
/// move |doc: DocId, original_score: Score| {
|
||||
/// let popularity: u64 = popularity_reader.get_val(doc as u64);
|
||||
/// let popularity: u64 = popularity_reader.get(doc);
|
||||
/// // Well.. For the sake of the example we use a simple logarithm
|
||||
/// // function.
|
||||
/// let popularity_boost_score = ((2u64 + popularity) as Score).log2();
|
||||
@@ -474,7 +472,7 @@ impl TopDocs {
|
||||
/// ```
|
||||
///
|
||||
/// # See also
|
||||
/// - [custom_score(...)](TopDocs::custom_score)
|
||||
/// [custom_score(...)](#method.custom_score).
|
||||
pub fn tweak_score<TScore, TScoreSegmentTweaker, TScoreTweaker>(
|
||||
self,
|
||||
score_tweaker: TScoreTweaker,
|
||||
@@ -491,7 +489,8 @@ impl TopDocs {
|
||||
///
|
||||
/// This method offers a convenient way to use a different score.
|
||||
///
|
||||
/// As suggested by the prototype you can manually define your own [`CustomScorer`]
|
||||
/// As suggested by the prototype you can manually define your
|
||||
/// own [`CustomScorer`](./trait.CustomScorer.html)
|
||||
/// and pass it as an argument, but there is a much simpler way to
|
||||
/// tweak your score: you can use a closure as in the following
|
||||
/// example.
|
||||
@@ -516,6 +515,7 @@ impl TopDocs {
|
||||
/// use tantivy::SegmentReader;
|
||||
/// use tantivy::collector::TopDocs;
|
||||
/// use tantivy::schema::Field;
|
||||
/// use tantivy::fastfield::FastFieldReader;
|
||||
///
|
||||
/// # fn create_schema() -> Schema {
|
||||
/// # let mut schema_builder = Schema::builder();
|
||||
@@ -567,8 +567,8 @@ impl TopDocs {
|
||||
///
|
||||
/// // We can now define our actual scoring function
|
||||
/// move |doc: DocId| {
|
||||
/// let popularity: u64 = popularity_reader.get_val(doc as u64);
|
||||
/// let boosted: u64 = boosted_reader.get_val(doc as u64);
|
||||
/// let popularity: u64 = popularity_reader.get(doc);
|
||||
/// let boosted: u64 = boosted_reader.get(doc);
|
||||
/// // Score do not have to be `f64` in tantivy.
|
||||
/// // Here we return a couple to get lexicographical order
|
||||
/// // for free.
|
||||
@@ -587,7 +587,7 @@ impl TopDocs {
|
||||
/// ```
|
||||
///
|
||||
/// # See also
|
||||
/// - [tweak_score(...)](TopDocs::tweak_score)
|
||||
/// [tweak_score(...)](#method.tweak_score).
|
||||
pub fn custom_score<TScore, TCustomSegmentScorer, TCustomScorer>(
|
||||
self,
|
||||
custom_score: TCustomScorer,
|
||||
|
||||
@@ -24,7 +24,7 @@ where TScore: Clone + PartialOrd
|
||||
/// A `ScoreSegmentTweaker` makes it possible to modify the default score
|
||||
/// for a given document belonging to a specific segment.
|
||||
///
|
||||
/// It is the segment local version of the [`ScoreTweaker`].
|
||||
/// It is the segment local version of the [`ScoreTweaker`](./trait.ScoreTweaker.html).
|
||||
pub trait ScoreSegmentTweaker<TScore>: 'static {
|
||||
/// Tweak the given `score` for the document `doc`.
|
||||
fn score(&mut self, doc: DocId, score: Score) -> TScore;
|
||||
@@ -37,7 +37,7 @@ pub trait ScoreSegmentTweaker<TScore>: 'static {
|
||||
/// Instead, it helps constructing `Self::Child` instances that will compute
|
||||
/// the score at a segment scale.
|
||||
pub trait ScoreTweaker<TScore>: Sync {
|
||||
/// Type of the associated [`ScoreSegmentTweaker`].
|
||||
/// Type of the associated [`ScoreSegmentTweaker`](./trait.ScoreSegmentTweaker.html).
|
||||
type Child: ScoreSegmentTweaker<TScore>;
|
||||
|
||||
/// Builds a child tweaker for a specific segment. The child scorer is associated to
|
||||
|
||||
@@ -7,7 +7,6 @@ use std::sync::Arc;
|
||||
|
||||
use super::segment::Segment;
|
||||
use super::IndexSettings;
|
||||
use crate::core::single_segment_index_writer::SingleSegmentIndexWriter;
|
||||
use crate::core::{
|
||||
Executor, IndexMeta, SegmentId, SegmentMeta, SegmentMetaInventory, META_FILEPATH,
|
||||
};
|
||||
@@ -17,7 +16,7 @@ use crate::directory::MmapDirectory;
|
||||
use crate::directory::{Directory, ManagedDirectory, RamDirectory, INDEX_WRITER_LOCK};
|
||||
use crate::error::{DataCorruption, TantivyError};
|
||||
use crate::indexer::index_writer::{MAX_NUM_THREAD, MEMORY_ARENA_NUM_BYTES_MIN};
|
||||
use crate::indexer::segment_updater::save_metas;
|
||||
use crate::indexer::segment_updater::save_new_metas;
|
||||
use crate::reader::{IndexReader, IndexReaderBuilder};
|
||||
use crate::schema::{Field, FieldType, Schema};
|
||||
use crate::tokenizer::{TextAnalyzer, TokenizerManager};
|
||||
@@ -48,38 +47,10 @@ fn load_metas(
|
||||
.map_err(From::from)
|
||||
}
|
||||
|
||||
/// Save the index meta file.
|
||||
/// This operation is atomic :
|
||||
/// Either
|
||||
/// - it fails, in which case an error is returned,
|
||||
/// and the `meta.json` remains untouched,
|
||||
/// - it succeeds, and `meta.json` is written
|
||||
/// and flushed.
|
||||
///
|
||||
/// This method is not part of tantivy's public API
|
||||
fn save_new_metas(
|
||||
schema: Schema,
|
||||
index_settings: IndexSettings,
|
||||
directory: &dyn Directory,
|
||||
) -> crate::Result<()> {
|
||||
save_metas(
|
||||
&IndexMeta {
|
||||
index_settings,
|
||||
segments: Vec::new(),
|
||||
schema,
|
||||
opstamp: 0u64,
|
||||
payload: None,
|
||||
},
|
||||
directory,
|
||||
)?;
|
||||
directory.sync_directory()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// IndexBuilder can be used to create an index.
|
||||
///
|
||||
/// Use in conjunction with [`SchemaBuilder`][crate::schema::SchemaBuilder].
|
||||
/// Global index settings can be configured with [`IndexSettings`].
|
||||
/// Use in conjunction with `SchemaBuilder`. Global index settings
|
||||
/// can be configured with `IndexSettings`
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
@@ -97,13 +68,7 @@ fn save_new_metas(
|
||||
/// );
|
||||
///
|
||||
/// let schema = schema_builder.build();
|
||||
/// let settings = IndexSettings{
|
||||
/// sort_by_field: Some(IndexSortByField{
|
||||
/// field: "number".to_string(),
|
||||
/// order: Order::Asc
|
||||
/// }),
|
||||
/// ..Default::default()
|
||||
/// };
|
||||
/// let settings = IndexSettings{sort_by_field: Some(IndexSortByField{field:"number".to_string(), order:Order::Asc}), ..Default::default()};
|
||||
/// let index = Index::builder().schema(schema).settings(settings).create_in_ram();
|
||||
/// ```
|
||||
pub struct IndexBuilder {
|
||||
@@ -146,7 +111,7 @@ impl IndexBuilder {
|
||||
self
|
||||
}
|
||||
|
||||
/// Creates a new index using the [`RamDirectory`].
|
||||
/// Creates a new index using the `RAMDirectory`.
|
||||
///
|
||||
/// The index will be allocated in anonymous memory.
|
||||
/// This should only be used for unit tests.
|
||||
@@ -154,14 +119,13 @@ impl IndexBuilder {
|
||||
let ram_directory = RamDirectory::create();
|
||||
Ok(self
|
||||
.create(ram_directory)
|
||||
.expect("Creating a RamDirectory should never fail"))
|
||||
.expect("Creating a RAMDirectory should never fail"))
|
||||
}
|
||||
|
||||
/// Creates a new index in a given filepath.
|
||||
/// The index will use the [`MmapDirectory`].
|
||||
/// The index will use the `MMapDirectory`.
|
||||
///
|
||||
/// If a previous index was in this directory, it returns an
|
||||
/// [`TantivyError::IndexAlreadyExists`] error.
|
||||
/// If a previous index was in this directory, it returns an `IndexAlreadyExists` error.
|
||||
#[cfg(feature = "mmap")]
|
||||
pub fn create_in_dir<P: AsRef<Path>>(self, directory_path: P) -> crate::Result<Index> {
|
||||
let mmap_directory: Box<dyn Directory> = Box::new(MmapDirectory::open(directory_path)?);
|
||||
@@ -171,34 +135,14 @@ impl IndexBuilder {
|
||||
self.create(mmap_directory)
|
||||
}
|
||||
|
||||
/// Dragons ahead!!!
|
||||
///
|
||||
/// The point of this API is to let users create a simple index with a single segment
|
||||
/// and without starting any thread.
|
||||
///
|
||||
/// Do not use this method if you are not sure what you are doing.
|
||||
///
|
||||
/// It expects an originally empty directory, and will not run any GC operation.
|
||||
#[doc(hidden)]
|
||||
pub fn single_segment_index_writer(
|
||||
self,
|
||||
dir: impl Into<Box<dyn Directory>>,
|
||||
mem_budget: usize,
|
||||
) -> crate::Result<SingleSegmentIndexWriter> {
|
||||
let index = self.create(dir)?;
|
||||
let index_simple_writer = SingleSegmentIndexWriter::new(index, mem_budget)?;
|
||||
Ok(index_simple_writer)
|
||||
}
|
||||
|
||||
/// Creates a new index in a temp directory.
|
||||
///
|
||||
/// The index will use the [`MmapDirectory`] in a newly created directory.
|
||||
/// The temp directory will be destroyed automatically when the [`Index`] object
|
||||
/// The index will use the `MMapDirectory` in a newly created directory.
|
||||
/// The temp directory will be destroyed automatically when the `Index` object
|
||||
/// is destroyed.
|
||||
///
|
||||
/// The temp directory is only used for testing the [`MmapDirectory`].
|
||||
/// For other unit tests, prefer the [`RamDirectory`], see:
|
||||
/// [`IndexBuilder::create_in_ram()`].
|
||||
/// The temp directory is only used for testing the `MmapDirectory`.
|
||||
/// For other unit tests, prefer the `RAMDirectory`, see: `create_in_ram`.
|
||||
#[cfg(feature = "mmap")]
|
||||
pub fn create_from_tempdir(self) -> crate::Result<Index> {
|
||||
let mmap_directory: Box<dyn Directory> = Box::new(MmapDirectory::create_from_tempdir()?);
|
||||
@@ -294,7 +238,7 @@ impl Index {
|
||||
self.set_multithread_executor(default_num_threads)
|
||||
}
|
||||
|
||||
/// Creates a new index using the [`RamDirectory`].
|
||||
/// Creates a new index using the `RamDirectory`.
|
||||
///
|
||||
/// The index will be allocated in anonymous memory.
|
||||
/// This is useful for indexing small set of documents
|
||||
@@ -304,10 +248,9 @@ impl Index {
|
||||
}
|
||||
|
||||
/// Creates a new index in a given filepath.
|
||||
/// The index will use the [`MmapDirectory`].
|
||||
/// The index will use the `MMapDirectory`.
|
||||
///
|
||||
/// If a previous index was in this directory, then it returns
|
||||
/// a [`TantivyError::IndexAlreadyExists`] error.
|
||||
/// If a previous index was in this directory, then it returns an `IndexAlreadyExists` error.
|
||||
#[cfg(feature = "mmap")]
|
||||
pub fn create_in_dir<P: AsRef<Path>>(
|
||||
directory_path: P,
|
||||
@@ -329,13 +272,12 @@ impl Index {
|
||||
|
||||
/// Creates a new index in a temp directory.
|
||||
///
|
||||
/// The index will use the [`MmapDirectory`] in a newly created directory.
|
||||
/// The temp directory will be destroyed automatically when the [`Index`] object
|
||||
/// The index will use the `MMapDirectory` in a newly created directory.
|
||||
/// The temp directory will be destroyed automatically when the `Index` object
|
||||
/// is destroyed.
|
||||
///
|
||||
/// The temp directory is only used for testing the [`MmapDirectory`].
|
||||
/// For other unit tests, prefer the [`RamDirectory`],
|
||||
/// see: [`IndexBuilder::create_in_ram()`].
|
||||
/// The temp directory is only used for testing the `MmapDirectory`.
|
||||
/// For other unit tests, prefer the `RamDirectory`, see: `create_in_ram`.
|
||||
#[cfg(feature = "mmap")]
|
||||
pub fn create_from_tempdir(schema: Schema) -> crate::Result<Index> {
|
||||
IndexBuilder::new().schema(schema).create_from_tempdir()
|
||||
@@ -355,7 +297,7 @@ impl Index {
|
||||
builder.create(dir)
|
||||
}
|
||||
|
||||
/// Creates a new index given a directory and an [`IndexMeta`].
|
||||
/// Creates a new index given a directory and an `IndexMeta`.
|
||||
fn open_from_metas(
|
||||
directory: ManagedDirectory,
|
||||
metas: &IndexMeta,
|
||||
@@ -382,7 +324,7 @@ impl Index {
|
||||
&self.tokenizers
|
||||
}
|
||||
|
||||
/// Get the tokenizer associated with a specific field.
|
||||
/// Helper to access the tokenizer associated to a specific field.
|
||||
pub fn tokenizer_for_field(&self, field: Field) -> crate::Result<TextAnalyzer> {
|
||||
let field_entry = self.schema.get_field_entry(field);
|
||||
let field_type = field_entry.field_type();
|
||||
@@ -414,14 +356,14 @@ impl Index {
|
||||
})
|
||||
}
|
||||
|
||||
/// Create a default [`IndexReader`] for the given index.
|
||||
/// Create a default `IndexReader` for the given index.
|
||||
///
|
||||
/// See [`Index.reader_builder()`].
|
||||
/// See [`Index.reader_builder()`](#method.reader_builder).
|
||||
pub fn reader(&self) -> crate::Result<IndexReader> {
|
||||
self.reader_builder().try_into()
|
||||
}
|
||||
|
||||
/// Create a [`IndexReader`] for the given index.
|
||||
/// Create a `IndexReader` for the given index.
|
||||
///
|
||||
/// Most project should create at most one reader for a given index.
|
||||
/// This method is typically called only once per `Index` instance.
|
||||
@@ -638,12 +580,10 @@ impl fmt::Debug for Index {
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::collector::Count;
|
||||
use crate::directory::{RamDirectory, WatchCallback};
|
||||
use crate::query::TermQuery;
|
||||
use crate::schema::{Field, IndexRecordOption, Schema, INDEXED, TEXT};
|
||||
use crate::schema::{Field, Schema, INDEXED, TEXT};
|
||||
use crate::tokenizer::TokenizerManager;
|
||||
use crate::{Directory, Index, IndexBuilder, IndexReader, IndexSettings, ReloadPolicy, Term};
|
||||
use crate::{Directory, Index, IndexBuilder, IndexReader, IndexSettings, ReloadPolicy};
|
||||
|
||||
#[test]
|
||||
fn test_indexer_for_field() {
|
||||
@@ -909,28 +849,4 @@ mod tests {
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_single_segment_index_writer() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let text_field = schema_builder.add_text_field("text", TEXT);
|
||||
let schema = schema_builder.build();
|
||||
let directory = RamDirectory::default();
|
||||
let mut single_segment_index_writer = Index::builder()
|
||||
.schema(schema)
|
||||
.single_segment_index_writer(directory, 10_000_000)?;
|
||||
for _ in 0..10 {
|
||||
let doc = doc!(text_field=>"hello");
|
||||
single_segment_index_writer.add_document(doc)?;
|
||||
}
|
||||
let index = single_segment_index_writer.finalize()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let term_query = TermQuery::new(
|
||||
Term::from_field_text(text_field, "hello"),
|
||||
IndexRecordOption::Basic,
|
||||
);
|
||||
let count = searcher.search(&term_query, &Count)?;
|
||||
assert_eq!(count, 10);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -235,14 +235,6 @@ impl InnerSegmentMeta {
|
||||
}
|
||||
}
|
||||
|
||||
fn return_true() -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
fn is_true(val: &bool) -> bool {
|
||||
*val
|
||||
}
|
||||
|
||||
/// Search Index Settings.
|
||||
///
|
||||
/// Contains settings which are applied on the whole
|
||||
@@ -256,12 +248,6 @@ pub struct IndexSettings {
|
||||
/// The `Compressor` used to compress the doc store.
|
||||
#[serde(default)]
|
||||
pub docstore_compression: Compressor,
|
||||
/// If set to true, docstore compression will happen on a dedicated thread.
|
||||
/// (defaults: true)
|
||||
#[doc(hidden)]
|
||||
#[serde(default = "return_true")]
|
||||
#[serde(skip_serializing_if = "is_true")]
|
||||
pub docstore_compress_dedicated_thread: bool,
|
||||
#[serde(default = "default_docstore_blocksize")]
|
||||
/// The size of each block that will be compressed and written to disk
|
||||
pub docstore_blocksize: usize,
|
||||
@@ -278,7 +264,6 @@ impl Default for IndexSettings {
|
||||
sort_by_field: None,
|
||||
docstore_compression: Compressor::default(),
|
||||
docstore_blocksize: default_docstore_blocksize(),
|
||||
docstore_compress_dedicated_thread: true,
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -410,7 +395,7 @@ mod tests {
|
||||
use super::IndexMeta;
|
||||
use crate::core::index_meta::UntrackedIndexMeta;
|
||||
use crate::schema::{Schema, TEXT};
|
||||
use crate::store::{Compressor, ZstdCompressor};
|
||||
use crate::store::ZstdCompressor;
|
||||
use crate::{IndexSettings, IndexSortByField, Order};
|
||||
|
||||
#[test]
|
||||
@@ -462,7 +447,6 @@ mod tests {
|
||||
compression_level: Some(4),
|
||||
}),
|
||||
docstore_blocksize: 1_000_000,
|
||||
docstore_compress_dedicated_thread: true,
|
||||
},
|
||||
segments: Vec::new(),
|
||||
schema,
|
||||
@@ -501,47 +485,4 @@ mod tests {
|
||||
"unknown zstd option \"bla\" at line 1 column 103".to_string()
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(feature = "lz4-compression")]
|
||||
fn test_index_settings_default() {
|
||||
let mut index_settings = IndexSettings::default();
|
||||
assert_eq!(
|
||||
index_settings,
|
||||
IndexSettings {
|
||||
sort_by_field: None,
|
||||
docstore_compression: Compressor::default(),
|
||||
docstore_compress_dedicated_thread: true,
|
||||
docstore_blocksize: 16_384
|
||||
}
|
||||
);
|
||||
{
|
||||
let index_settings_json = serde_json::to_value(&index_settings).unwrap();
|
||||
assert_eq!(
|
||||
index_settings_json,
|
||||
serde_json::json!({
|
||||
"docstore_compression": "lz4",
|
||||
"docstore_blocksize": 16384
|
||||
})
|
||||
);
|
||||
let index_settings_deser: IndexSettings =
|
||||
serde_json::from_value(index_settings_json).unwrap();
|
||||
assert_eq!(index_settings_deser, index_settings);
|
||||
}
|
||||
{
|
||||
index_settings.docstore_compress_dedicated_thread = false;
|
||||
let index_settings_json = serde_json::to_value(&index_settings).unwrap();
|
||||
assert_eq!(
|
||||
index_settings_json,
|
||||
serde_json::json!({
|
||||
"docstore_compression": "lz4",
|
||||
"docstore_blocksize": 16384,
|
||||
"docstore_compress_dedicated_thread": false,
|
||||
})
|
||||
);
|
||||
let index_settings_deser: IndexSettings =
|
||||
serde_json::from_value(index_settings_json).unwrap();
|
||||
assert_eq!(index_settings_deser, index_settings);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -7,7 +7,6 @@ mod segment;
|
||||
mod segment_component;
|
||||
mod segment_id;
|
||||
mod segment_reader;
|
||||
mod single_segment_index_writer;
|
||||
|
||||
use std::path::Path;
|
||||
|
||||
@@ -24,7 +23,6 @@ pub use self::segment::Segment;
|
||||
pub use self::segment_component::SegmentComponent;
|
||||
pub use self::segment_id::SegmentId;
|
||||
pub use self::segment_reader::SegmentReader;
|
||||
pub use self::single_segment_index_writer::SingleSegmentIndexWriter;
|
||||
|
||||
/// The meta file contains all the information about the list of segments and the schema
|
||||
/// of the index.
|
||||
|
||||
@@ -10,12 +10,12 @@ use crate::space_usage::SearcherSpaceUsage;
|
||||
use crate::store::{CacheStats, StoreReader};
|
||||
use crate::{DocAddress, Index, Opstamp, SegmentId, TrackedObject};
|
||||
|
||||
/// Identifies the searcher generation accessed by a [`Searcher`].
|
||||
/// Identifies the searcher generation accessed by a [Searcher].
|
||||
///
|
||||
/// While this might seem redundant, a [`SearcherGeneration`] contains
|
||||
/// While this might seem redundant, a [SearcherGeneration] contains
|
||||
/// both a `generation_id` AND a list of `(SegmentId, DeleteOpstamp)`.
|
||||
///
|
||||
/// This is on purpose. This object is used by the [`Warmer`](crate::reader::Warmer) API.
|
||||
/// This is on purpose. This object is used by the `Warmer` API.
|
||||
/// Having both information makes it possible to identify which
|
||||
/// artifact should be refreshed or garbage collected.
|
||||
///
|
||||
@@ -74,15 +74,15 @@ impl Searcher {
|
||||
&self.inner.index
|
||||
}
|
||||
|
||||
/// [`SearcherGeneration`] which identifies the version of the snapshot held by this `Searcher`.
|
||||
/// [SearcherGeneration] which identifies the version of the snapshot held by this `Searcher`.
|
||||
pub fn generation(&self) -> &SearcherGeneration {
|
||||
self.inner.generation.as_ref()
|
||||
}
|
||||
|
||||
/// Fetches a document from tantivy's store given a [`DocAddress`].
|
||||
/// Fetches a document from tantivy's store given a `DocAddress`.
|
||||
///
|
||||
/// The searcher uses the segment ordinal to route the
|
||||
/// request to the right `Segment`.
|
||||
/// the request to the right `Segment`.
|
||||
pub fn doc(&self, doc_address: DocAddress) -> crate::Result<Document> {
|
||||
let store_reader = &self.inner.store_readers[doc_address.segment_ord as usize];
|
||||
store_reader.get(doc_address.doc_id)
|
||||
@@ -180,7 +180,7 @@ impl Searcher {
|
||||
self.search_with_executor(query, collector, executor)
|
||||
}
|
||||
|
||||
/// Same as [`search(...)`](Searcher::search) but multithreaded.
|
||||
/// Same as [`search(...)`](#method.search) but multithreaded.
|
||||
///
|
||||
/// The current implementation is rather naive :
|
||||
/// multithreading is by splitting search into as many task
|
||||
|
||||
@@ -1,51 +0,0 @@
|
||||
use crate::indexer::operation::AddOperation;
|
||||
use crate::indexer::segment_updater::save_metas;
|
||||
use crate::indexer::SegmentWriter;
|
||||
use crate::{Directory, Document, Index, IndexMeta, Opstamp, Segment};
|
||||
|
||||
#[doc(hidden)]
|
||||
pub struct SingleSegmentIndexWriter {
|
||||
segment_writer: SegmentWriter,
|
||||
segment: Segment,
|
||||
opstamp: Opstamp,
|
||||
}
|
||||
|
||||
impl SingleSegmentIndexWriter {
|
||||
pub fn new(index: Index, mem_budget: usize) -> crate::Result<Self> {
|
||||
let segment = index.new_segment();
|
||||
let segment_writer = SegmentWriter::for_segment(mem_budget, segment.clone())?;
|
||||
Ok(Self {
|
||||
segment_writer,
|
||||
segment,
|
||||
opstamp: 0,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn mem_usage(&self) -> usize {
|
||||
self.segment_writer.mem_usage()
|
||||
}
|
||||
|
||||
pub fn add_document(&mut self, document: Document) -> crate::Result<()> {
|
||||
let opstamp = self.opstamp;
|
||||
self.opstamp += 1;
|
||||
self.segment_writer
|
||||
.add_document(AddOperation { opstamp, document })
|
||||
}
|
||||
|
||||
pub fn finalize(self) -> crate::Result<Index> {
|
||||
let max_doc = self.segment_writer.max_doc();
|
||||
self.segment_writer.finalize()?;
|
||||
let segment: Segment = self.segment.with_max_doc(max_doc);
|
||||
let index = segment.index();
|
||||
let index_meta = IndexMeta {
|
||||
index_settings: index.settings().clone(),
|
||||
segments: vec![segment.meta().clone()],
|
||||
schema: index.schema(),
|
||||
opstamp: 0,
|
||||
payload: None,
|
||||
};
|
||||
save_metas(&index_meta, index.directory())?;
|
||||
index.directory().sync_directory()?;
|
||||
Ok(segment.index().clone())
|
||||
}
|
||||
}
|
||||
@@ -117,9 +117,9 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
|
||||
/// change.
|
||||
///
|
||||
/// Specifically, subsequent writes or flushes should
|
||||
/// have no effect on the returned [`FileSlice`] object.
|
||||
/// have no effect on the returned `FileSlice` object.
|
||||
///
|
||||
/// You should only use this to read files create with [`Directory::open_write()`].
|
||||
/// You should only use this to read files create with [Directory::open_write].
|
||||
fn open_read(&self, path: &Path) -> Result<FileSlice, OpenReadError> {
|
||||
let file_handle = self.get_file_handle(path)?;
|
||||
Ok(FileSlice::new(file_handle))
|
||||
@@ -128,28 +128,27 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
|
||||
/// Removes a file
|
||||
///
|
||||
/// Removing a file will not affect an eventual
|
||||
/// existing [`FileSlice`] pointing to it.
|
||||
/// existing FileSlice pointing to it.
|
||||
///
|
||||
/// Removing a nonexistent file, returns a
|
||||
/// [`DeleteError::FileDoesNotExist`].
|
||||
/// Removing a nonexistent file, yields a
|
||||
/// `DeleteError::DoesNotExist`.
|
||||
fn delete(&self, path: &Path) -> Result<(), DeleteError>;
|
||||
|
||||
/// Returns true if and only if the file exists
|
||||
fn exists(&self, path: &Path) -> Result<bool, OpenReadError>;
|
||||
|
||||
/// Opens a writer for the *virtual file* associated with
|
||||
/// a [`Path`].
|
||||
/// a Path.
|
||||
///
|
||||
/// Right after this call, for the span of the execution of the program
|
||||
/// the file should be created and any subsequent call to
|
||||
/// [`Directory::open_read()`] for the same path should return
|
||||
/// a [`FileSlice`].
|
||||
/// the file should be created and any subsequent call to `open_read` for the
|
||||
/// same path should return a `FileSlice`.
|
||||
///
|
||||
/// However, depending on the directory implementation,
|
||||
/// it might be required to call [`Directory::sync_directory()`] to ensure
|
||||
/// it might be required to call `sync_directory` to ensure
|
||||
/// that the file is durably created.
|
||||
/// (The semantics here are the same when dealing with
|
||||
/// a POSIX filesystem.)
|
||||
/// a posix filesystem.)
|
||||
///
|
||||
/// Write operations may be aggressively buffered.
|
||||
/// The client of this trait is responsible for calling flush
|
||||
@@ -158,19 +157,19 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
|
||||
///
|
||||
/// Flush operation should also be persistent.
|
||||
///
|
||||
/// The user shall not rely on [`Drop`] triggering `flush`.
|
||||
/// Note that [`RamDirectory`][crate::directory::RamDirectory] will
|
||||
/// panic! if `flush` was not called.
|
||||
/// The user shall not rely on `Drop` triggering `flush`.
|
||||
/// Note that `RamDirectory` will panic! if `flush`
|
||||
/// was not called.
|
||||
///
|
||||
/// The file may not previously exist.
|
||||
fn open_write(&self, path: &Path) -> Result<WritePtr, OpenWriteError>;
|
||||
|
||||
/// Reads the full content file that has been written using
|
||||
/// [`Directory::atomic_write()`].
|
||||
/// atomic_write.
|
||||
///
|
||||
/// This should only be used for small files.
|
||||
///
|
||||
/// You should only use this to read files create with [`Directory::atomic_write()`].
|
||||
/// You should only use this to read files create with [Directory::atomic_write].
|
||||
fn atomic_read(&self, path: &Path) -> Result<Vec<u8>, OpenReadError>;
|
||||
|
||||
/// Atomically replace the content of a file with data.
|
||||
@@ -187,9 +186,9 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
|
||||
/// effectively stored durably.
|
||||
fn sync_directory(&self) -> io::Result<()>;
|
||||
|
||||
/// Acquire a lock in the directory given in the [`Lock`].
|
||||
/// Acquire a lock in the given directory.
|
||||
///
|
||||
/// The method is blocking or not depending on the [`Lock`] object.
|
||||
/// The method is blocking or not depending on the `Lock` object.
|
||||
fn acquire_lock(&self, lock: &Lock) -> Result<DirectoryLock, LockError> {
|
||||
let mut box_directory = self.box_clone();
|
||||
let mut retry_policy = retry_policy(lock.is_blocking);
|
||||
@@ -211,15 +210,15 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
|
||||
}
|
||||
|
||||
/// Registers a callback that will be called whenever a change on the `meta.json`
|
||||
/// using the [`Directory::atomic_write()`] API is detected.
|
||||
/// using the `atomic_write` API is detected.
|
||||
///
|
||||
/// The behavior when using `.watch()` on a file using [`Directory::open_write()`] is, on the
|
||||
/// other hand, undefined.
|
||||
/// The behavior when using `.watch()` on a file using [Directory::open_write] is, on the other
|
||||
/// hand, undefined.
|
||||
///
|
||||
/// The file will be watched for the lifetime of the returned `WatchHandle`. The caller is
|
||||
/// required to keep it.
|
||||
/// It does not override previous callbacks. When the file is modified, all callback that are
|
||||
/// registered (and whose [`WatchHandle`] is still alive) are triggered.
|
||||
/// registered (and whose `WatchHandle` is still alive) are triggered.
|
||||
///
|
||||
/// Internally, tantivy only uses this API to detect new commits to implement the
|
||||
/// `OnCommit` `ReloadPolicy`. Not implementing watch in a `Directory` only prevents the
|
||||
|
||||
@@ -4,14 +4,12 @@ use once_cell::sync::Lazy;
|
||||
|
||||
/// A directory lock.
|
||||
///
|
||||
/// A lock is associated with a specific path.
|
||||
///
|
||||
/// The lock will be passed to [`Directory::acquire_lock`](crate::Directory::acquire_lock).
|
||||
///
|
||||
/// A lock is associated to a specific path and some
|
||||
/// [`LockParams`](./enum.LockParams.html).
|
||||
/// Tantivy itself uses only two locks but client application
|
||||
/// can use the directory facility to define their own locks.
|
||||
/// - [`INDEX_WRITER_LOCK`]
|
||||
/// - [`META_LOCK`]
|
||||
/// - [INDEX_WRITER_LOCK]
|
||||
/// - [META_LOCK]
|
||||
///
|
||||
/// Check out these locks documentation for more information.
|
||||
#[derive(Debug)]
|
||||
@@ -20,21 +18,19 @@ pub struct Lock {
|
||||
/// Depending on the platform, the lock might rely on the creation
|
||||
/// and deletion of this filepath.
|
||||
pub filepath: PathBuf,
|
||||
/// `is_blocking` describes whether acquiring the lock is meant
|
||||
/// `lock_params` describes whether acquiring the lock is meant
|
||||
/// to be a blocking operation or a non-blocking.
|
||||
///
|
||||
/// Acquiring a blocking lock blocks until the lock is
|
||||
/// available.
|
||||
///
|
||||
/// Acquiring a non-blocking lock returns rapidly, either successfully
|
||||
/// Acquiring a blocking lock returns rapidly, either successfully
|
||||
/// or with an error signifying that someone is already holding
|
||||
/// the lock.
|
||||
pub is_blocking: bool,
|
||||
}
|
||||
|
||||
/// Only one process should be able to write tantivy's index at a time.
|
||||
/// This lock file, when present, is in charge of preventing other processes to open an
|
||||
/// `IndexWriter`.
|
||||
/// This lock file, when present, is in charge of preventing other processes to open an IndexWriter.
|
||||
///
|
||||
/// If the process is killed and this file remains, it is safe to remove it manually.
|
||||
///
|
||||
|
||||
@@ -4,9 +4,7 @@ use std::{fmt, io};
|
||||
|
||||
use crate::Version;
|
||||
|
||||
/// Error while trying to acquire a directory [lock](crate::directory::Lock).
|
||||
///
|
||||
/// This is returned from [`Directory::acquire_lock`](crate::Directory::acquire_lock).
|
||||
/// Error while trying to acquire a directory lock.
|
||||
#[derive(Debug, Clone, Error)]
|
||||
pub enum LockError {
|
||||
/// Failed to acquired a lock as it is already held by another
|
||||
|
||||
@@ -27,7 +27,7 @@ pub(crate) fn make_io_err(msg: String) -> io::Error {
|
||||
io::Error::new(io::ErrorKind::Other, msg)
|
||||
}
|
||||
|
||||
/// Returns `None` iff the file exists, can be read, but is empty (and hence
|
||||
/// Returns None iff the file exists, can be read, but is empty (and hence
|
||||
/// cannot be mmapped)
|
||||
fn open_mmap(full_path: &Path) -> result::Result<Option<Mmap>, OpenReadError> {
|
||||
let file = File::open(full_path).map_err(|io_err| {
|
||||
@@ -56,10 +56,10 @@ fn open_mmap(full_path: &Path) -> result::Result<Option<Mmap>, OpenReadError> {
|
||||
|
||||
#[derive(Default, Clone, Debug, Serialize, Deserialize)]
|
||||
pub struct CacheCounters {
|
||||
/// Number of time the cache prevents to call `mmap`
|
||||
// Number of time the cache prevents to call `mmap`
|
||||
pub hit: usize,
|
||||
/// Number of time tantivy had to call `mmap`
|
||||
/// as no entry was in the cache.
|
||||
// Number of time tantivy had to call `mmap`
|
||||
// as no entry was in the cache.
|
||||
pub miss: usize,
|
||||
}
|
||||
|
||||
|
||||
@@ -15,7 +15,7 @@ use crate::directory::{
|
||||
WatchHandle, WritePtr,
|
||||
};
|
||||
|
||||
/// Writer associated with the [`RamDirectory`].
|
||||
/// Writer associated with the `RamDirectory`
|
||||
///
|
||||
/// The Writer just writes a buffer.
|
||||
struct VecWriter {
|
||||
@@ -137,17 +137,17 @@ impl RamDirectory {
|
||||
}
|
||||
|
||||
/// Returns the sum of the size of the different files
|
||||
/// in the [`RamDirectory`].
|
||||
/// in the RamDirectory.
|
||||
pub fn total_mem_usage(&self) -> usize {
|
||||
self.fs.read().unwrap().total_mem_usage()
|
||||
}
|
||||
|
||||
/// Write a copy of all of the files saved in the [`RamDirectory`] in the target [`Directory`].
|
||||
/// Write a copy of all of the files saved in the RamDirectory in the target `Directory`.
|
||||
///
|
||||
/// Files are all written using the [`Directory::open_write()`] meaning, even if they were
|
||||
/// written using the [`Directory::atomic_write()`] api.
|
||||
/// Files are all written using the `Directory::write` meaning, even if they were
|
||||
/// written using the `atomic_write` api.
|
||||
///
|
||||
/// If an error is encountered, files may be persisted partially.
|
||||
/// If an error is encounterred, files may be persisted partially.
|
||||
pub fn persist(&self, dest: &dyn Directory) -> crate::Result<()> {
|
||||
let wlock = self.fs.write().unwrap();
|
||||
for (path, file) in wlock.fs.iter() {
|
||||
|
||||
@@ -3,10 +3,10 @@ use std::borrow::{Borrow, BorrowMut};
|
||||
use crate::fastfield::AliveBitSet;
|
||||
use crate::DocId;
|
||||
|
||||
/// Sentinel value returned when a [`DocSet`] has been entirely consumed.
|
||||
/// Sentinel value returned when a DocSet has been entirely consumed.
|
||||
///
|
||||
/// This is not `u32::MAX` as one would have expected, due to the lack of SSE2 instructions
|
||||
/// to compare `[u32; 4]`.
|
||||
/// This is not u32::MAX as one would have expected, due to the lack of SSE2 instructions
|
||||
/// to compare [u32; 4].
|
||||
pub const TERMINATED: DocId = i32::MAX as u32;
|
||||
|
||||
/// Represents an iterable set of sorted doc ids.
|
||||
@@ -20,21 +20,21 @@ pub trait DocSet: Send {
|
||||
/// assert_eq!(doc, docset.doc());
|
||||
/// ```
|
||||
///
|
||||
/// If we reached the end of the `DocSet`, [`TERMINATED`] should be returned.
|
||||
/// If we reached the end of the DocSet, TERMINATED should be returned.
|
||||
///
|
||||
/// Calling `.advance()` on a terminated `DocSet` should be supported, and [`TERMINATED`] should
|
||||
/// Calling `.advance()` on a terminated DocSet should be supported, and TERMINATED should
|
||||
/// be returned.
|
||||
fn advance(&mut self) -> DocId;
|
||||
|
||||
/// Advances the `DocSet` forward until reaching the target, or going to the
|
||||
/// lowest [`DocId`] greater than the target.
|
||||
/// Advances the DocSet forward until reaching the target, or going to the
|
||||
/// lowest DocId greater than the target.
|
||||
///
|
||||
/// If the end of the `DocSet` is reached, [`TERMINATED`] is returned.
|
||||
/// If the end of the DocSet is reached, TERMINATED is returned.
|
||||
///
|
||||
/// Calling `.seek(target)` on a terminated `DocSet` is legal. Implementation
|
||||
/// of `DocSet` should support it.
|
||||
/// Calling `.seek(target)` on a terminated DocSet is legal. Implementation
|
||||
/// of DocSet should support it.
|
||||
///
|
||||
/// Calling `seek(TERMINATED)` is also legal and is the normal way to consume a `DocSet`.
|
||||
/// Calling `seek(TERMINATED)` is also legal and is the normal way to consume a DocSet.
|
||||
fn seek(&mut self, target: DocId) -> DocId {
|
||||
let mut doc = self.doc();
|
||||
debug_assert!(doc <= target);
|
||||
@@ -73,9 +73,9 @@ pub trait DocSet: Send {
|
||||
}
|
||||
|
||||
/// Returns the current document
|
||||
/// Right after creating a new `DocSet`, the docset points to the first document.
|
||||
/// Right after creating a new DocSet, the docset points to the first document.
|
||||
///
|
||||
/// If the `DocSet` is empty, `.doc()` should return [`TERMINATED`].
|
||||
/// If the DocSet is empty, .doc() should return `TERMINATED`.
|
||||
fn doc(&self) -> DocId;
|
||||
|
||||
/// Returns a best-effort hint of the
|
||||
|
||||
@@ -1,9 +1,5 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use crate::directory::{FileSlice, OwnedBytes};
|
||||
use crate::fastfield::MultiValueLength;
|
||||
use crate::fastfield::{DynamicFastFieldReader, FastFieldReader, MultiValueLength};
|
||||
use crate::DocId;
|
||||
|
||||
/// Reader for byte array fast fields
|
||||
@@ -18,13 +14,13 @@ use crate::DocId;
|
||||
/// and the start index for the next document, and keeping the bytes in between.
|
||||
#[derive(Clone)]
|
||||
pub struct BytesFastFieldReader {
|
||||
idx_reader: Arc<dyn Column<u64>>,
|
||||
idx_reader: DynamicFastFieldReader<u64>,
|
||||
values: OwnedBytes,
|
||||
}
|
||||
|
||||
impl BytesFastFieldReader {
|
||||
pub(crate) fn open(
|
||||
idx_reader: Arc<dyn Column<u64>>,
|
||||
idx_reader: DynamicFastFieldReader<u64>,
|
||||
values_file: FileSlice,
|
||||
) -> crate::Result<BytesFastFieldReader> {
|
||||
let values = values_file.read_bytes()?;
|
||||
@@ -32,9 +28,8 @@ impl BytesFastFieldReader {
|
||||
}
|
||||
|
||||
fn range(&self, doc: DocId) -> (usize, usize) {
|
||||
let idx = doc as u64;
|
||||
let start = self.idx_reader.get_val(idx) as usize;
|
||||
let stop = self.idx_reader.get_val(idx + 1) as usize;
|
||||
let start = self.idx_reader.get(doc) as usize;
|
||||
let stop = self.idx_reader.get(doc + 1) as usize;
|
||||
(start, stop)
|
||||
}
|
||||
|
||||
|
||||
@@ -1,9 +1,6 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use fastfield_codecs::VecColumn;
|
||||
use std::io;
|
||||
|
||||
use crate::fastfield::serializer::CompositeFastFieldSerializer;
|
||||
use crate::fastfield::MultivalueStartIndex;
|
||||
use crate::indexer::doc_id_mapping::DocIdMapping;
|
||||
use crate::schema::{Document, Field, Value};
|
||||
use crate::DocId;
|
||||
@@ -13,17 +10,15 @@ use crate::DocId;
|
||||
/// This `BytesFastFieldWriter` is only useful for advanced users.
|
||||
/// The normal way to get your associated bytes in your index
|
||||
/// is to
|
||||
/// - declare your field with fast set to
|
||||
/// [`Cardinality::SingleValue`](crate::schema::Cardinality::SingleValue)
|
||||
/// - declare your field with fast set to `Cardinality::SingleValue`
|
||||
/// in your schema
|
||||
/// - add your document simply by calling `.add_document(...)` with associating bytes to the field.
|
||||
///
|
||||
/// The `BytesFastFieldWriter` can be acquired from the
|
||||
/// fast field writer by calling
|
||||
/// [`.get_bytes_writer_mut(...)`](crate::fastfield::FastFieldsWriter::get_bytes_writer_mut).
|
||||
/// [`.get_bytes_writer(...)`](./struct.FastFieldsWriter.html#method.get_bytes_writer).
|
||||
///
|
||||
/// Once acquired, writing is done by calling
|
||||
/// [`.add_document_val(&[u8])`](BytesFastFieldWriter::add_document_val)
|
||||
/// Once acquired, writing is done by calling `.add_document_val(&[u8])`
|
||||
/// once per document, even if there are no bytes associated to it.
|
||||
pub struct BytesFastFieldWriter {
|
||||
field: Field,
|
||||
@@ -109,27 +104,22 @@ impl BytesFastFieldWriter {
|
||||
|
||||
/// Serializes the fast field values by pushing them to the `FastFieldSerializer`.
|
||||
pub fn serialize(
|
||||
mut self,
|
||||
&self,
|
||||
serializer: &mut CompositeFastFieldSerializer,
|
||||
doc_id_map: Option<&DocIdMapping>,
|
||||
) -> io::Result<()> {
|
||||
// writing the offset index
|
||||
{
|
||||
self.doc_index.push(self.vals.len() as u64);
|
||||
let col = VecColumn::from(&self.doc_index[..]);
|
||||
if let Some(doc_id_map) = doc_id_map {
|
||||
let multi_value_start_index = MultivalueStartIndex::new(&col, doc_id_map);
|
||||
serializer.create_auto_detect_u64_fast_field_with_idx(
|
||||
self.field,
|
||||
multi_value_start_index,
|
||||
0,
|
||||
)?;
|
||||
} else {
|
||||
serializer.create_auto_detect_u64_fast_field_with_idx(self.field, col, 0)?;
|
||||
}
|
||||
let mut doc_index_serializer =
|
||||
serializer.new_u64_fast_field_with_idx(self.field, 0, self.vals.len() as u64, 0)?;
|
||||
let mut offset = 0;
|
||||
for vals in self.get_ordered_values(doc_id_map) {
|
||||
doc_index_serializer.add_val(offset)?;
|
||||
offset += vals.len() as u64;
|
||||
}
|
||||
doc_index_serializer.add_val(self.vals.len() as u64)?;
|
||||
doc_index_serializer.close_field()?;
|
||||
// writing the values themselves
|
||||
let mut value_serializer = serializer.new_bytes_fast_field(self.field);
|
||||
let mut value_serializer = serializer.new_bytes_fast_field_with_idx(self.field, 1);
|
||||
// the else could be removed, but this is faster (difference not benchmarked)
|
||||
if let Some(doc_id_map) = doc_id_map {
|
||||
for vals in self.get_ordered_values(Some(doc_id_map)) {
|
||||
|
||||
360
src/fastfield/gcd.rs
Normal file
360
src/fastfield/gcd.rs
Normal file
@@ -0,0 +1,360 @@
|
||||
use std::io::{self, Write};
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use common::BinarySerializable;
|
||||
use fastdivide::DividerU64;
|
||||
use fastfield_codecs::{FastFieldCodec, FastFieldDataAccess};
|
||||
use ownedbytes::OwnedBytes;
|
||||
|
||||
pub const GCD_DEFAULT: u64 = 1;
|
||||
|
||||
/// Wrapper for accessing a fastfield.
|
||||
///
|
||||
/// Holds the data and the codec to the read the data.
|
||||
#[derive(Clone)]
|
||||
pub struct GCDReader<CodecReader: FastFieldDataAccess> {
|
||||
gcd_params: GCDParams,
|
||||
reader: CodecReader,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct GCDParams {
|
||||
gcd: u64,
|
||||
min_value: u64,
|
||||
num_vals: u64,
|
||||
}
|
||||
|
||||
impl GCDParams {
|
||||
pub fn eval(&self, val: u64) -> u64 {
|
||||
self.min_value + self.gcd * val
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for GCDParams {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.gcd.serialize(writer)?;
|
||||
self.min_value.serialize(writer)?;
|
||||
self.num_vals.serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let gcd: u64 = u64::deserialize(reader)?;
|
||||
let min_value: u64 = u64::deserialize(reader)?;
|
||||
let num_vals: u64 = u64::deserialize(reader)?;
|
||||
Ok(Self {
|
||||
gcd,
|
||||
min_value,
|
||||
num_vals,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub fn open_gcd_from_bytes<WrappedCodec: FastFieldCodec>(
|
||||
bytes: OwnedBytes,
|
||||
) -> io::Result<GCDReader<WrappedCodec::Reader>> {
|
||||
let footer_offset = bytes.len() - 24;
|
||||
let (body, mut footer) = bytes.split(footer_offset);
|
||||
let gcd_params = GCDParams::deserialize(&mut footer)?;
|
||||
let reader: WrappedCodec::Reader = WrappedCodec::open_from_bytes(body)?;
|
||||
Ok(GCDReader { gcd_params, reader })
|
||||
}
|
||||
|
||||
impl<C: FastFieldDataAccess + Clone> FastFieldDataAccess for GCDReader<C> {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u64) -> u64 {
|
||||
let val = self.reader.get_val(doc);
|
||||
self.gcd_params.eval(val)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u64 {
|
||||
self.gcd_params.eval(self.reader.min_value())
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.gcd_params.eval(self.reader.max_value())
|
||||
}
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.gcd_params.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
pub fn write_gcd_header<W: Write>(
|
||||
field_write: &mut W,
|
||||
min_value: u64,
|
||||
gcd: u64,
|
||||
num_vals: u64,
|
||||
) -> io::Result<()> {
|
||||
gcd.serialize(field_write)?;
|
||||
min_value.serialize(field_write)?;
|
||||
num_vals.serialize(field_write)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Compute the gcd of two non null numbers.
|
||||
///
|
||||
/// It is recommended, but not required, to feed values such that `large >= small`.
|
||||
fn compute_gcd(mut large: NonZeroU64, mut small: NonZeroU64) -> NonZeroU64 {
|
||||
loop {
|
||||
let rem: u64 = large.get() % small;
|
||||
if let Some(new_small) = NonZeroU64::new(rem) {
|
||||
(large, small) = (small, new_small);
|
||||
} else {
|
||||
return small;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find GCD for iterator of numbers
|
||||
pub fn find_gcd(numbers: impl Iterator<Item = u64>) -> Option<NonZeroU64> {
|
||||
let mut numbers = numbers.flat_map(NonZeroU64::new);
|
||||
let mut gcd: NonZeroU64 = numbers.next()?;
|
||||
if gcd.get() == 1 {
|
||||
return Some(gcd);
|
||||
}
|
||||
|
||||
let mut gcd_divider = DividerU64::divide_by(gcd.get());
|
||||
for val in numbers {
|
||||
let remainder = val.get() - (gcd_divider.divide(val.get())) * gcd.get();
|
||||
if remainder == 0 {
|
||||
continue;
|
||||
}
|
||||
gcd = compute_gcd(val, gcd);
|
||||
if gcd.get() == 1 {
|
||||
return Some(gcd);
|
||||
}
|
||||
|
||||
gcd_divider = DividerU64::divide_by(gcd.get());
|
||||
}
|
||||
Some(gcd)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::collections::HashMap;
|
||||
use std::num::NonZeroU64;
|
||||
use std::path::Path;
|
||||
use std::time::{Duration, SystemTime};
|
||||
|
||||
use common::HasLen;
|
||||
|
||||
use crate::directory::{CompositeFile, RamDirectory, WritePtr};
|
||||
use crate::fastfield::gcd::compute_gcd;
|
||||
use crate::fastfield::serializer::FastFieldCodecEnableCheck;
|
||||
use crate::fastfield::tests::{FIELD, FIELDI64, SCHEMA, SCHEMAI64};
|
||||
use crate::fastfield::{
|
||||
find_gcd, CompositeFastFieldSerializer, DynamicFastFieldReader, FastFieldCodecType,
|
||||
FastFieldReader, FastFieldsWriter, ALL_CODECS,
|
||||
};
|
||||
use crate::schema::{Cardinality, Schema};
|
||||
use crate::{DateOptions, DatePrecision, DateTime, Directory};
|
||||
|
||||
fn get_index(
|
||||
docs: &[crate::Document],
|
||||
schema: &Schema,
|
||||
codec_enable_checker: FastFieldCodecEnableCheck,
|
||||
) -> crate::Result<RamDirectory> {
|
||||
let directory: RamDirectory = RamDirectory::create();
|
||||
{
|
||||
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
|
||||
let mut serializer =
|
||||
CompositeFastFieldSerializer::from_write_with_codec(write, codec_enable_checker)
|
||||
.unwrap();
|
||||
let mut fast_field_writers = FastFieldsWriter::from_schema(schema);
|
||||
for doc in docs {
|
||||
fast_field_writers.add_document(doc);
|
||||
}
|
||||
fast_field_writers
|
||||
.serialize(&mut serializer, &HashMap::new(), None)
|
||||
.unwrap();
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
Ok(directory)
|
||||
}
|
||||
|
||||
fn test_fastfield_gcd_i64_with_codec(
|
||||
code_type: FastFieldCodecType,
|
||||
num_vals: usize,
|
||||
) -> crate::Result<()> {
|
||||
let path = Path::new("test");
|
||||
let mut docs = vec![];
|
||||
for i in 1..=num_vals {
|
||||
let val = (i as i64 - 5) * 1000i64;
|
||||
docs.push(doc!(*FIELDI64=>val));
|
||||
}
|
||||
let directory = get_index(&docs, &SCHEMAI64, code_type.into())?;
|
||||
let file = directory.open_read(path).unwrap();
|
||||
let composite_file = CompositeFile::open(&file)?;
|
||||
let file = composite_file.open_read(*FIELD).unwrap();
|
||||
let fast_field_reader = DynamicFastFieldReader::<i64>::open(file)?;
|
||||
|
||||
assert_eq!(fast_field_reader.get(0), -4000i64);
|
||||
assert_eq!(fast_field_reader.get(1), -3000i64);
|
||||
assert_eq!(fast_field_reader.get(2), -2000i64);
|
||||
assert_eq!(fast_field_reader.max_value(), (num_vals as i64 - 5) * 1000);
|
||||
assert_eq!(fast_field_reader.min_value(), -4000i64);
|
||||
let file = directory.open_read(path).unwrap();
|
||||
|
||||
// Can't apply gcd
|
||||
let path = Path::new("test");
|
||||
docs.pop();
|
||||
docs.push(doc!(*FIELDI64=>2001i64));
|
||||
let directory = get_index(&docs, &SCHEMAI64, code_type.into())?;
|
||||
let file2 = directory.open_read(path).unwrap();
|
||||
assert!(file2.len() > file.len());
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd_i64() -> crate::Result<()> {
|
||||
for &code_type in ALL_CODECS {
|
||||
test_fastfield_gcd_i64_with_codec(code_type, 5005)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn test_fastfield_gcd_u64_with_codec(
|
||||
code_type: FastFieldCodecType,
|
||||
num_vals: usize,
|
||||
) -> crate::Result<()> {
|
||||
let path = Path::new("test");
|
||||
let mut docs = vec![];
|
||||
for i in 1..=num_vals {
|
||||
let val = i as u64 * 1000u64;
|
||||
docs.push(doc!(*FIELD=>val));
|
||||
}
|
||||
let directory = get_index(&docs, &SCHEMA, code_type.into())?;
|
||||
let file = directory.open_read(path).unwrap();
|
||||
let composite_file = CompositeFile::open(&file)?;
|
||||
let file = composite_file.open_read(*FIELD).unwrap();
|
||||
let fast_field_reader = DynamicFastFieldReader::<u64>::open(file)?;
|
||||
assert_eq!(fast_field_reader.get(0), 1000u64);
|
||||
assert_eq!(fast_field_reader.get(1), 2000u64);
|
||||
assert_eq!(fast_field_reader.get(2), 3000u64);
|
||||
assert_eq!(fast_field_reader.max_value(), num_vals as u64 * 1000);
|
||||
assert_eq!(fast_field_reader.min_value(), 1000u64);
|
||||
let file = directory.open_read(path).unwrap();
|
||||
|
||||
// Can't apply gcd
|
||||
let path = Path::new("test");
|
||||
docs.pop();
|
||||
docs.push(doc!(*FIELDI64=>2001u64));
|
||||
let directory = get_index(&docs, &SCHEMA, code_type.into())?;
|
||||
let file2 = directory.open_read(path).unwrap();
|
||||
assert!(file2.len() > file.len());
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd_u64() -> crate::Result<()> {
|
||||
for &code_type in ALL_CODECS {
|
||||
test_fastfield_gcd_u64_with_codec(code_type, 5005)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn test_fastfield2() {
|
||||
let test_fastfield = DynamicFastFieldReader::<u64>::from(vec![100, 200, 300]);
|
||||
assert_eq!(test_fastfield.get(0), 100);
|
||||
assert_eq!(test_fastfield.get(1), 200);
|
||||
assert_eq!(test_fastfield.get(2), 300);
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn test_gcd_date() -> crate::Result<()> {
|
||||
let size_prec_sec =
|
||||
test_gcd_date_with_codec(FastFieldCodecType::Bitpacked, DatePrecision::Seconds)?;
|
||||
let size_prec_micro =
|
||||
test_gcd_date_with_codec(FastFieldCodecType::Bitpacked, DatePrecision::Microseconds)?;
|
||||
assert!(size_prec_sec < size_prec_micro);
|
||||
|
||||
let size_prec_sec =
|
||||
test_gcd_date_with_codec(FastFieldCodecType::Linear, DatePrecision::Seconds)?;
|
||||
let size_prec_micro =
|
||||
test_gcd_date_with_codec(FastFieldCodecType::Linear, DatePrecision::Microseconds)?;
|
||||
assert!(size_prec_sec < size_prec_micro);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn test_gcd_date_with_codec(
|
||||
codec_type: FastFieldCodecType,
|
||||
precision: DatePrecision,
|
||||
) -> crate::Result<usize> {
|
||||
let time1 = DateTime::from_timestamp_micros(
|
||||
SystemTime::now()
|
||||
.duration_since(SystemTime::UNIX_EPOCH)
|
||||
.unwrap()
|
||||
.as_secs() as i64,
|
||||
);
|
||||
let time2 = DateTime::from_timestamp_micros(
|
||||
SystemTime::now()
|
||||
.checked_sub(Duration::from_micros(4111))
|
||||
.unwrap()
|
||||
.duration_since(SystemTime::UNIX_EPOCH)
|
||||
.unwrap()
|
||||
.as_secs() as i64,
|
||||
);
|
||||
|
||||
let time3 = DateTime::from_timestamp_micros(
|
||||
SystemTime::now()
|
||||
.checked_sub(Duration::from_millis(2000))
|
||||
.unwrap()
|
||||
.duration_since(SystemTime::UNIX_EPOCH)
|
||||
.unwrap()
|
||||
.as_secs() as i64,
|
||||
);
|
||||
|
||||
let mut schema_builder = Schema::builder();
|
||||
let date_options = DateOptions::default()
|
||||
.set_fast(Cardinality::SingleValue)
|
||||
.set_precision(precision);
|
||||
let field = schema_builder.add_date_field("field", date_options);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
let docs = vec![doc!(field=>time1), doc!(field=>time2), doc!(field=>time3)];
|
||||
|
||||
let directory = get_index(&docs, &schema, codec_type.into())?;
|
||||
let path = Path::new("test");
|
||||
let file = directory.open_read(path).unwrap();
|
||||
let composite_file = CompositeFile::open(&file)?;
|
||||
let file = composite_file.open_read(*FIELD).unwrap();
|
||||
let len = file.len();
|
||||
let test_fastfield = DynamicFastFieldReader::<DateTime>::open(file)?;
|
||||
|
||||
assert_eq!(test_fastfield.get(0), time1.truncate(precision));
|
||||
assert_eq!(test_fastfield.get(1), time2.truncate(precision));
|
||||
assert_eq!(test_fastfield.get(2), time3.truncate(precision));
|
||||
Ok(len)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compute_gcd() {
|
||||
let test_compute_gcd_aux = |large, small, expected| {
|
||||
let large = NonZeroU64::new(large).unwrap();
|
||||
let small = NonZeroU64::new(small).unwrap();
|
||||
let expected = NonZeroU64::new(expected).unwrap();
|
||||
assert_eq!(compute_gcd(small, large), expected);
|
||||
assert_eq!(compute_gcd(large, small), expected);
|
||||
};
|
||||
test_compute_gcd_aux(1, 4, 1);
|
||||
test_compute_gcd_aux(2, 4, 2);
|
||||
test_compute_gcd_aux(10, 25, 5);
|
||||
test_compute_gcd_aux(25, 25, 25);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn find_gcd_test() {
|
||||
assert_eq!(find_gcd([0].into_iter()), None);
|
||||
assert_eq!(find_gcd([0, 10].into_iter()), NonZeroU64::new(10));
|
||||
assert_eq!(find_gcd([10, 0].into_iter()), NonZeroU64::new(10));
|
||||
assert_eq!(find_gcd([].into_iter()), None);
|
||||
assert_eq!(find_gcd([15, 30, 5, 10].into_iter()), NonZeroU64::new(5));
|
||||
assert_eq!(find_gcd([15, 16, 10].into_iter()), NonZeroU64::new(1));
|
||||
assert_eq!(find_gcd([0, 5, 5, 5].into_iter()), NonZeroU64::new(5));
|
||||
assert_eq!(find_gcd([0, 0].into_iter()), None);
|
||||
}
|
||||
}
|
||||
@@ -20,31 +20,39 @@
|
||||
//!
|
||||
//! Read access performance is comparable to that of an array lookup.
|
||||
|
||||
use fastfield_codecs::MonotonicallyMappableToU64;
|
||||
use fastfield_codecs::FastFieldCodecType;
|
||||
|
||||
pub use self::alive_bitset::{intersect_alive_bitsets, write_alive_bitset, AliveBitSet};
|
||||
pub use self::bytes::{BytesFastFieldReader, BytesFastFieldWriter};
|
||||
pub use self::error::{FastFieldNotAvailableError, Result};
|
||||
pub use self::facet_reader::FacetReader;
|
||||
pub(crate) use self::multivalued::MultivalueStartIndex;
|
||||
pub(crate) use self::gcd::{find_gcd, GCDReader, GCD_DEFAULT};
|
||||
pub use self::multivalued::{MultiValuedFastFieldReader, MultiValuedFastFieldWriter};
|
||||
pub use self::reader::{DynamicFastFieldReader, FastFieldReader};
|
||||
pub use self::readers::FastFieldReaders;
|
||||
pub(crate) use self::readers::{type_and_cardinality, FastType};
|
||||
pub use self::serializer::{Column, CompositeFastFieldSerializer};
|
||||
pub use self::serializer::{CompositeFastFieldSerializer, FastFieldDataAccess, FastFieldStats};
|
||||
pub use self::writer::{FastFieldsWriter, IntFastFieldWriter};
|
||||
use crate::schema::{Type, Value};
|
||||
use crate::schema::{Cardinality, FieldType, Type, Value};
|
||||
use crate::{DateTime, DocId};
|
||||
|
||||
mod alive_bitset;
|
||||
mod bytes;
|
||||
mod error;
|
||||
mod facet_reader;
|
||||
mod gcd;
|
||||
mod multivalued;
|
||||
mod reader;
|
||||
mod readers;
|
||||
mod remapped_column;
|
||||
mod serializer;
|
||||
mod writer;
|
||||
|
||||
pub(crate) const ALL_CODECS: &[FastFieldCodecType; 3] = &[
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::Linear,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
];
|
||||
|
||||
/// Trait for `BytesFastFieldReader` and `MultiValuedFastFieldReader` to return the length of data
|
||||
/// for a doc_id
|
||||
pub trait MultiValueLength {
|
||||
@@ -56,64 +64,169 @@ pub trait MultiValueLength {
|
||||
|
||||
/// Trait for types that are allowed for fast fields:
|
||||
/// (u64, i64 and f64, bool, DateTime).
|
||||
pub trait FastValue:
|
||||
MonotonicallyMappableToU64 + Copy + Send + Sync + PartialOrd + 'static
|
||||
{
|
||||
/// Returns the `schema::Type` for this FastValue.
|
||||
fn to_type() -> Type;
|
||||
pub trait FastValue: Clone + Copy + Send + Sync + PartialOrd + 'static {
|
||||
/// Converts a value from u64
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
/// **Note: To be used for converting encoded Term, Posting values.**
|
||||
fn from_u64(val: u64) -> Self;
|
||||
|
||||
/// Converts a value to u64.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
fn to_u64(&self) -> u64;
|
||||
|
||||
/// Returns the fast field cardinality that can be extracted from the given
|
||||
/// `FieldType`.
|
||||
///
|
||||
/// If the type is not a fast field, `None` is returned.
|
||||
fn fast_field_cardinality(field_type: &FieldType) -> Option<Cardinality>;
|
||||
|
||||
/// Cast value to `u64`.
|
||||
/// The value is just reinterpreted in memory.
|
||||
fn as_u64(&self) -> u64;
|
||||
|
||||
/// Build a default value. This default value is never used, so the value does not
|
||||
/// really matter.
|
||||
fn make_zero() -> Self {
|
||||
Self::from_u64(0u64)
|
||||
Self::from_u64(0i64.to_u64())
|
||||
}
|
||||
|
||||
/// Returns the `schema::Type` for this FastValue.
|
||||
fn to_type() -> Type;
|
||||
}
|
||||
|
||||
impl FastValue for u64 {
|
||||
fn from_u64(val: u64) -> Self {
|
||||
val
|
||||
}
|
||||
|
||||
fn to_u64(&self) -> u64 {
|
||||
*self
|
||||
}
|
||||
|
||||
fn fast_field_cardinality(field_type: &FieldType) -> Option<Cardinality> {
|
||||
match *field_type {
|
||||
FieldType::U64(ref integer_options) => integer_options.get_fastfield_cardinality(),
|
||||
FieldType::Facet(_) => Some(Cardinality::MultiValues),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
fn as_u64(&self) -> u64 {
|
||||
*self
|
||||
}
|
||||
|
||||
fn to_type() -> Type {
|
||||
Type::U64
|
||||
}
|
||||
}
|
||||
|
||||
impl FastValue for i64 {
|
||||
fn from_u64(val: u64) -> Self {
|
||||
common::u64_to_i64(val)
|
||||
}
|
||||
|
||||
fn to_u64(&self) -> u64 {
|
||||
common::i64_to_u64(*self)
|
||||
}
|
||||
|
||||
fn fast_field_cardinality(field_type: &FieldType) -> Option<Cardinality> {
|
||||
match *field_type {
|
||||
FieldType::I64(ref integer_options) => integer_options.get_fastfield_cardinality(),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
fn as_u64(&self) -> u64 {
|
||||
*self as u64
|
||||
}
|
||||
|
||||
fn to_type() -> Type {
|
||||
Type::I64
|
||||
}
|
||||
}
|
||||
|
||||
impl FastValue for f64 {
|
||||
fn from_u64(val: u64) -> Self {
|
||||
common::u64_to_f64(val)
|
||||
}
|
||||
|
||||
fn to_u64(&self) -> u64 {
|
||||
common::f64_to_u64(*self)
|
||||
}
|
||||
|
||||
fn fast_field_cardinality(field_type: &FieldType) -> Option<Cardinality> {
|
||||
match *field_type {
|
||||
FieldType::F64(ref integer_options) => integer_options.get_fastfield_cardinality(),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
fn as_u64(&self) -> u64 {
|
||||
self.to_bits()
|
||||
}
|
||||
|
||||
fn to_type() -> Type {
|
||||
Type::F64
|
||||
}
|
||||
}
|
||||
|
||||
impl FastValue for bool {
|
||||
fn from_u64(val: u64) -> Self {
|
||||
val != 0u64
|
||||
}
|
||||
|
||||
fn to_u64(&self) -> u64 {
|
||||
match self {
|
||||
false => 0,
|
||||
true => 1,
|
||||
}
|
||||
}
|
||||
|
||||
fn fast_field_cardinality(field_type: &FieldType) -> Option<Cardinality> {
|
||||
match *field_type {
|
||||
FieldType::Bool(ref integer_options) => integer_options.get_fastfield_cardinality(),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
fn as_u64(&self) -> u64 {
|
||||
*self as u64
|
||||
}
|
||||
|
||||
fn to_type() -> Type {
|
||||
Type::Bool
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for DateTime {
|
||||
fn to_u64(self) -> u64 {
|
||||
self.timestamp_micros.to_u64()
|
||||
}
|
||||
|
||||
fn from_u64(val: u64) -> Self {
|
||||
let timestamp_micros = i64::from_u64(val);
|
||||
DateTime { timestamp_micros }
|
||||
}
|
||||
}
|
||||
|
||||
impl FastValue for DateTime {
|
||||
/// Converts a timestamp microseconds into DateTime.
|
||||
///
|
||||
/// **Note the timestamps is expected to be in microseconds.**
|
||||
fn from_u64(timestamp_micros_u64: u64) -> Self {
|
||||
let timestamp_micros = i64::from_u64(timestamp_micros_u64);
|
||||
Self::from_timestamp_micros(timestamp_micros)
|
||||
}
|
||||
|
||||
fn to_u64(&self) -> u64 {
|
||||
common::i64_to_u64(self.into_timestamp_micros())
|
||||
}
|
||||
|
||||
fn fast_field_cardinality(field_type: &FieldType) -> Option<Cardinality> {
|
||||
match *field_type {
|
||||
FieldType::Date(ref options) => options.get_fastfield_cardinality(),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
fn as_u64(&self) -> u64 {
|
||||
self.into_timestamp_micros().as_u64()
|
||||
}
|
||||
|
||||
fn to_type() -> Type {
|
||||
Type::Date
|
||||
}
|
||||
|
||||
fn make_zero() -> Self {
|
||||
DateTime {
|
||||
timestamp_micros: 0,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn value_to_u64(value: &Value) -> u64 {
|
||||
@@ -153,19 +266,17 @@ mod tests {
|
||||
use std::collections::HashMap;
|
||||
use std::ops::Range;
|
||||
use std::path::Path;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::HasLen;
|
||||
use fastfield_codecs::{open, FastFieldCodecType};
|
||||
use once_cell::sync::Lazy;
|
||||
use rand::prelude::SliceRandom;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use rand::SeedableRng;
|
||||
|
||||
use super::*;
|
||||
use crate::directory::{CompositeFile, Directory, RamDirectory, WritePtr};
|
||||
use crate::merge_policy::NoMergePolicy;
|
||||
use crate::schema::{Cardinality, Document, Field, Schema, SchemaBuilder, FAST, STRING, TEXT};
|
||||
use crate::schema::{Document, Field, Schema, FAST, STRING, TEXT};
|
||||
use crate::time::OffsetDateTime;
|
||||
use crate::{DateOptions, DatePrecision, Index, SegmentId, SegmentReader};
|
||||
|
||||
@@ -174,14 +285,22 @@ mod tests {
|
||||
schema_builder.add_u64_field("field", FAST);
|
||||
schema_builder.build()
|
||||
});
|
||||
|
||||
pub static SCHEMAI64: Lazy<Schema> = Lazy::new(|| {
|
||||
let mut schema_builder = Schema::builder();
|
||||
schema_builder.add_i64_field("field", FAST);
|
||||
schema_builder.build()
|
||||
});
|
||||
|
||||
pub static FIELD: Lazy<Field> = Lazy::new(|| SCHEMA.get_field("field").unwrap());
|
||||
pub static FIELDI64: Lazy<Field> = Lazy::new(|| SCHEMAI64.get_field("field").unwrap());
|
||||
|
||||
#[test]
|
||||
pub fn test_fastfield() {
|
||||
let test_fastfield = fastfield_codecs::serialize_and_load(&[100u64, 200u64, 300u64][..]);
|
||||
assert_eq!(test_fastfield.get_val(0u64), 100);
|
||||
assert_eq!(test_fastfield.get_val(1u64), 200);
|
||||
assert_eq!(test_fastfield.get_val(2u64), 300);
|
||||
let test_fastfield = DynamicFastFieldReader::<u64>::from(vec![100, 200, 300]);
|
||||
assert_eq!(test_fastfield.get(0), 100);
|
||||
assert_eq!(test_fastfield.get(1), 200);
|
||||
assert_eq!(test_fastfield.get(2), 300);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -207,13 +326,13 @@ mod tests {
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
let file = directory.open_read(path).unwrap();
|
||||
assert_eq!(file.len(), 25);
|
||||
assert_eq!(file.len(), 45);
|
||||
let composite_file = CompositeFile::open(&file)?;
|
||||
let fast_field_bytes = composite_file.open_read(*FIELD).unwrap().read_bytes()?;
|
||||
let fast_field_reader = open::<u64>(fast_field_bytes)?;
|
||||
assert_eq!(fast_field_reader.get_val(0), 13u64);
|
||||
assert_eq!(fast_field_reader.get_val(1), 14u64);
|
||||
assert_eq!(fast_field_reader.get_val(2), 2u64);
|
||||
let file = composite_file.open_read(*FIELD).unwrap();
|
||||
let fast_field_reader = DynamicFastFieldReader::<u64>::open(file)?;
|
||||
assert_eq!(fast_field_reader.get(0), 13u64);
|
||||
assert_eq!(fast_field_reader.get(1), 14u64);
|
||||
assert_eq!(fast_field_reader.get(2), 2u64);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -238,23 +357,20 @@ mod tests {
|
||||
serializer.close()?;
|
||||
}
|
||||
let file = directory.open_read(path)?;
|
||||
assert_eq!(file.len(), 53);
|
||||
assert_eq!(file.len(), 70);
|
||||
{
|
||||
let fast_fields_composite = CompositeFile::open(&file)?;
|
||||
let data = fast_fields_composite
|
||||
.open_read(*FIELD)
|
||||
.unwrap()
|
||||
.read_bytes()?;
|
||||
let fast_field_reader = open::<u64>(data)?;
|
||||
assert_eq!(fast_field_reader.get_val(0), 4u64);
|
||||
assert_eq!(fast_field_reader.get_val(1), 14_082_001u64);
|
||||
assert_eq!(fast_field_reader.get_val(2), 3_052u64);
|
||||
assert_eq!(fast_field_reader.get_val(3), 9002u64);
|
||||
assert_eq!(fast_field_reader.get_val(4), 15_001u64);
|
||||
assert_eq!(fast_field_reader.get_val(5), 777u64);
|
||||
assert_eq!(fast_field_reader.get_val(6), 1_002u64);
|
||||
assert_eq!(fast_field_reader.get_val(7), 1_501u64);
|
||||
assert_eq!(fast_field_reader.get_val(8), 215u64);
|
||||
let data = fast_fields_composite.open_read(*FIELD).unwrap();
|
||||
let fast_field_reader = DynamicFastFieldReader::<u64>::open(data)?;
|
||||
assert_eq!(fast_field_reader.get(0), 4u64);
|
||||
assert_eq!(fast_field_reader.get(1), 14_082_001u64);
|
||||
assert_eq!(fast_field_reader.get(2), 3_052u64);
|
||||
assert_eq!(fast_field_reader.get(3), 9002u64);
|
||||
assert_eq!(fast_field_reader.get(4), 15_001u64);
|
||||
assert_eq!(fast_field_reader.get(5), 777u64);
|
||||
assert_eq!(fast_field_reader.get(6), 1_002u64);
|
||||
assert_eq!(fast_field_reader.get(7), 1_501u64);
|
||||
assert_eq!(fast_field_reader.get(8), 215u64);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
@@ -277,16 +393,13 @@ mod tests {
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
let file = directory.open_read(path).unwrap();
|
||||
assert_eq!(file.len(), 26);
|
||||
assert_eq!(file.len(), 43);
|
||||
{
|
||||
let fast_fields_composite = CompositeFile::open(&file).unwrap();
|
||||
let data = fast_fields_composite
|
||||
.open_read(*FIELD)
|
||||
.unwrap()
|
||||
.read_bytes()?;
|
||||
let fast_field_reader = open::<u64>(data)?;
|
||||
let data = fast_fields_composite.open_read(*FIELD).unwrap();
|
||||
let fast_field_reader = DynamicFastFieldReader::<u64>::open(data)?;
|
||||
for doc in 0..10_000 {
|
||||
assert_eq!(fast_field_reader.get_val(doc), 100_000u64);
|
||||
assert_eq!(fast_field_reader.get(doc), 100_000u64);
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
@@ -312,18 +425,15 @@ mod tests {
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
let file = directory.open_read(path).unwrap();
|
||||
assert_eq!(file.len(), 80040);
|
||||
assert_eq!(file.len(), 80051);
|
||||
{
|
||||
let fast_fields_composite = CompositeFile::open(&file)?;
|
||||
let data = fast_fields_composite
|
||||
.open_read(*FIELD)
|
||||
.unwrap()
|
||||
.read_bytes()?;
|
||||
let fast_field_reader = open::<u64>(data)?;
|
||||
assert_eq!(fast_field_reader.get_val(0), 0u64);
|
||||
let data = fast_fields_composite.open_read(*FIELD).unwrap();
|
||||
let fast_field_reader = DynamicFastFieldReader::<u64>::open(data)?;
|
||||
assert_eq!(fast_field_reader.get(0), 0u64);
|
||||
for doc in 1..10_001 {
|
||||
assert_eq!(
|
||||
fast_field_reader.get_val(doc),
|
||||
fast_field_reader.get(doc),
|
||||
5_000_000_000_000_000_000u64 + doc as u64 - 1u64
|
||||
);
|
||||
}
|
||||
@@ -354,20 +464,18 @@ mod tests {
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
let file = directory.open_read(path).unwrap();
|
||||
assert_eq!(file.len(), 40_usize);
|
||||
|
||||
// assert_eq!(file.len(), 17710 as usize); //bitpacked size
|
||||
// assert_eq!(file.len(), 10175_usize); // linear interpol size
|
||||
assert_eq!(file.len(), 75_usize); // linear interpol size after calc improvement
|
||||
{
|
||||
let fast_fields_composite = CompositeFile::open(&file)?;
|
||||
let data = fast_fields_composite
|
||||
.open_read(i64_field)
|
||||
.unwrap()
|
||||
.read_bytes()?;
|
||||
let fast_field_reader = open::<i64>(data)?;
|
||||
let data = fast_fields_composite.open_read(i64_field).unwrap();
|
||||
let fast_field_reader = DynamicFastFieldReader::<i64>::open(data)?;
|
||||
|
||||
assert_eq!(fast_field_reader.min_value(), -100i64);
|
||||
assert_eq!(fast_field_reader.max_value(), 9_999i64);
|
||||
for (doc, i) in (-100i64..10_000i64).enumerate() {
|
||||
assert_eq!(fast_field_reader.get_val(doc as u64), i);
|
||||
assert_eq!(fast_field_reader.get(doc as u32), i);
|
||||
}
|
||||
let mut buffer = vec![0i64; 100];
|
||||
fast_field_reader.get_range(53, &mut buffer[..]);
|
||||
@@ -401,12 +509,9 @@ mod tests {
|
||||
let file = directory.open_read(path).unwrap();
|
||||
{
|
||||
let fast_fields_composite = CompositeFile::open(&file).unwrap();
|
||||
let data = fast_fields_composite
|
||||
.open_read(i64_field)
|
||||
.unwrap()
|
||||
.read_bytes()?;
|
||||
let fast_field_reader = open::<i64>(data)?;
|
||||
assert_eq!(fast_field_reader.get_val(0), 0i64);
|
||||
let data = fast_fields_composite.open_read(i64_field).unwrap();
|
||||
let fast_field_reader = DynamicFastFieldReader::<i64>::open(data)?;
|
||||
assert_eq!(fast_field_reader.get(0u32), 0i64);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
@@ -425,7 +530,7 @@ mod tests {
|
||||
permutation
|
||||
}
|
||||
|
||||
fn test_intfastfield_permutation_with_data(permutation: &[u64]) -> crate::Result<()> {
|
||||
fn test_intfastfield_permutation_with_data(permutation: Vec<u64>) -> crate::Result<()> {
|
||||
let path = Path::new("test");
|
||||
let n = permutation.len();
|
||||
let directory = RamDirectory::create();
|
||||
@@ -433,7 +538,7 @@ mod tests {
|
||||
let write: WritePtr = directory.open_write(Path::new("test"))?;
|
||||
let mut serializer = CompositeFastFieldSerializer::from_write(write)?;
|
||||
let mut fast_field_writers = FastFieldsWriter::from_schema(&SCHEMA);
|
||||
for &x in permutation {
|
||||
for &x in &permutation {
|
||||
fast_field_writers.add_document(&doc!(*FIELD=>x));
|
||||
}
|
||||
fast_field_writers.serialize(&mut serializer, &HashMap::new(), None)?;
|
||||
@@ -442,36 +547,27 @@ mod tests {
|
||||
let file = directory.open_read(path)?;
|
||||
{
|
||||
let fast_fields_composite = CompositeFile::open(&file)?;
|
||||
let data = fast_fields_composite
|
||||
.open_read(*FIELD)
|
||||
.unwrap()
|
||||
.read_bytes()?;
|
||||
let fast_field_reader = open::<u64>(data)?;
|
||||
let data = fast_fields_composite.open_read(*FIELD).unwrap();
|
||||
let fast_field_reader = DynamicFastFieldReader::<u64>::open(data)?;
|
||||
|
||||
for a in 0..n {
|
||||
assert_eq!(fast_field_reader.get_val(a as u64), permutation[a as usize]);
|
||||
assert_eq!(fast_field_reader.get(a as u32), permutation[a as usize]);
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_intfastfield_simple() -> crate::Result<()> {
|
||||
let permutation = &[1, 2, 3];
|
||||
test_intfastfield_permutation_with_data(&permutation[..])?;
|
||||
fn test_intfastfield_permutation_gcd() -> crate::Result<()> {
|
||||
let permutation = generate_permutation_gcd();
|
||||
test_intfastfield_permutation_with_data(permutation)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_intfastfield_permutation() -> crate::Result<()> {
|
||||
let permutation = generate_permutation();
|
||||
test_intfastfield_permutation_with_data(&permutation)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_intfastfield_permutation_gcd() -> crate::Result<()> {
|
||||
let permutation = generate_permutation_gcd();
|
||||
test_intfastfield_permutation_with_data(&permutation)?;
|
||||
test_intfastfield_permutation_with_data(permutation)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -511,7 +607,7 @@ mod tests {
|
||||
let mut all = vec![];
|
||||
|
||||
for doc in docs {
|
||||
let mut out: Vec<u64> = vec![];
|
||||
let mut out = vec![];
|
||||
ff.get_vals(doc, &mut out);
|
||||
all.extend(out);
|
||||
}
|
||||
@@ -708,6 +804,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_datefastfield() -> crate::Result<()> {
|
||||
use crate::fastfield::FastValue;
|
||||
let mut schema_builder = Schema::builder();
|
||||
let date_field = schema_builder.add_date_field(
|
||||
"date",
|
||||
@@ -745,19 +842,19 @@ mod tests {
|
||||
let dates_fast_field = fast_fields.dates(multi_date_field).unwrap();
|
||||
let mut dates = vec![];
|
||||
{
|
||||
assert_eq!(date_fast_field.get_val(0).into_timestamp_micros(), 1i64);
|
||||
assert_eq!(date_fast_field.get(0u32).into_timestamp_micros(), 1i64);
|
||||
dates_fast_field.get_vals(0u32, &mut dates);
|
||||
assert_eq!(dates.len(), 2);
|
||||
assert_eq!(dates[0].into_timestamp_micros(), 2i64);
|
||||
assert_eq!(dates[1].into_timestamp_micros(), 3i64);
|
||||
}
|
||||
{
|
||||
assert_eq!(date_fast_field.get_val(1).into_timestamp_micros(), 4i64);
|
||||
assert_eq!(date_fast_field.get(1u32).into_timestamp_micros(), 4i64);
|
||||
dates_fast_field.get_vals(1u32, &mut dates);
|
||||
assert!(dates.is_empty());
|
||||
}
|
||||
{
|
||||
assert_eq!(date_fast_field.get_val(2).into_timestamp_micros(), 0i64);
|
||||
assert_eq!(date_fast_field.get(2u32).into_timestamp_micros(), 0i64);
|
||||
dates_fast_field.get_vals(2u32, &mut dates);
|
||||
assert_eq!(dates.len(), 2);
|
||||
assert_eq!(dates[0].into_timestamp_micros(), 5i64);
|
||||
@@ -768,12 +865,11 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
pub fn test_fastfield_bool() {
|
||||
let test_fastfield: Arc<dyn Column<bool>> =
|
||||
fastfield_codecs::serialize_and_load::<bool>(&[true, false, true, false]);
|
||||
assert_eq!(test_fastfield.get_val(0), true);
|
||||
assert_eq!(test_fastfield.get_val(1), false);
|
||||
assert_eq!(test_fastfield.get_val(2), true);
|
||||
assert_eq!(test_fastfield.get_val(3), false);
|
||||
let test_fastfield = DynamicFastFieldReader::<bool>::from(vec![true, false, true, false]);
|
||||
assert_eq!(test_fastfield.get(0), true);
|
||||
assert_eq!(test_fastfield.get(1), false);
|
||||
assert_eq!(test_fastfield.get(2), true);
|
||||
assert_eq!(test_fastfield.get(3), false);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -800,14 +896,14 @@ mod tests {
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
let file = directory.open_read(path).unwrap();
|
||||
assert_eq!(file.len(), 24);
|
||||
assert_eq!(file.len(), 44);
|
||||
let composite_file = CompositeFile::open(&file)?;
|
||||
let data = composite_file.open_read(field).unwrap().read_bytes()?;
|
||||
let fast_field_reader = open::<bool>(data)?;
|
||||
assert_eq!(fast_field_reader.get_val(0), true);
|
||||
assert_eq!(fast_field_reader.get_val(1), false);
|
||||
assert_eq!(fast_field_reader.get_val(2), true);
|
||||
assert_eq!(fast_field_reader.get_val(3), false);
|
||||
let file = composite_file.open_read(field).unwrap();
|
||||
let fast_field_reader = DynamicFastFieldReader::<bool>::open(file)?;
|
||||
assert_eq!(fast_field_reader.get(0), true);
|
||||
assert_eq!(fast_field_reader.get(1), false);
|
||||
assert_eq!(fast_field_reader.get(2), true);
|
||||
assert_eq!(fast_field_reader.get(3), false);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -836,13 +932,13 @@ mod tests {
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
let file = directory.open_read(path).unwrap();
|
||||
assert_eq!(file.len(), 36);
|
||||
assert_eq!(file.len(), 56);
|
||||
let composite_file = CompositeFile::open(&file)?;
|
||||
let data = composite_file.open_read(field).unwrap().read_bytes()?;
|
||||
let fast_field_reader = open::<bool>(data)?;
|
||||
let file = composite_file.open_read(field).unwrap();
|
||||
let fast_field_reader = DynamicFastFieldReader::<bool>::open(file)?;
|
||||
for i in 0..25 {
|
||||
assert_eq!(fast_field_reader.get_val(i * 2), true);
|
||||
assert_eq!(fast_field_reader.get_val(i * 2 + 1), false);
|
||||
assert_eq!(fast_field_reader.get(i * 2), true);
|
||||
assert_eq!(fast_field_reader.get(i * 2 + 1), false);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
@@ -854,95 +950,168 @@ mod tests {
|
||||
let directory: RamDirectory = RamDirectory::create();
|
||||
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field = schema_builder.add_bool_field("field_bool", FAST);
|
||||
schema_builder.add_bool_field("field_bool", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let field = schema.get_field("field_bool").unwrap();
|
||||
|
||||
{
|
||||
let write: WritePtr = directory.open_write(path).unwrap();
|
||||
let mut serializer = CompositeFastFieldSerializer::from_write(write)?;
|
||||
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
|
||||
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema);
|
||||
let doc = Document::default();
|
||||
fast_field_writers.add_document(&doc);
|
||||
fast_field_writers.serialize(&mut serializer, &HashMap::new(), None)?;
|
||||
serializer.close()?;
|
||||
fast_field_writers
|
||||
.serialize(&mut serializer, &HashMap::new(), None)
|
||||
.unwrap();
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
let file = directory.open_read(path).unwrap();
|
||||
assert_eq!(file.len(), 43);
|
||||
let composite_file = CompositeFile::open(&file)?;
|
||||
assert_eq!(file.len(), 23);
|
||||
let data = composite_file.open_read(field).unwrap().read_bytes()?;
|
||||
let fast_field_reader = open::<bool>(data)?;
|
||||
assert_eq!(fast_field_reader.get_val(0), false);
|
||||
let file = composite_file.open_read(field).unwrap();
|
||||
let fast_field_reader = DynamicFastFieldReader::<bool>::open(file)?;
|
||||
assert_eq!(fast_field_reader.get(0), false);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
fn get_index(
|
||||
docs: &[crate::Document],
|
||||
schema: &Schema,
|
||||
codec_types: &[FastFieldCodecType],
|
||||
) -> crate::Result<RamDirectory> {
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
use std::collections::HashMap;
|
||||
use std::path::Path;
|
||||
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::tests::{generate_permutation, FIELD, SCHEMA};
|
||||
use super::*;
|
||||
use crate::directory::{CompositeFile, Directory, RamDirectory, WritePtr};
|
||||
use crate::fastfield::tests::generate_permutation_gcd;
|
||||
use crate::fastfield::FastFieldReader;
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_linear_veclookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
b.iter(|| {
|
||||
let n = test::black_box(7000u32);
|
||||
let mut a = 0u64;
|
||||
for i in (0u32..n / 7).map(|v| v * 7) {
|
||||
a ^= permutation[i as usize];
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_veclookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
b.iter(|| {
|
||||
let n = test::black_box(1000u32);
|
||||
let mut a = 0u64;
|
||||
for _ in 0u32..n {
|
||||
a = permutation[a as usize];
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_linear_fflookup(b: &mut Bencher) {
|
||||
let path = Path::new("test");
|
||||
let permutation = generate_permutation();
|
||||
let directory: RamDirectory = RamDirectory::create();
|
||||
{
|
||||
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
|
||||
let mut serializer =
|
||||
CompositeFastFieldSerializer::from_write_with_codec(write, codec_types).unwrap();
|
||||
let mut fast_field_writers = FastFieldsWriter::from_schema(schema);
|
||||
for doc in docs {
|
||||
fast_field_writers.add_document(doc);
|
||||
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
|
||||
let mut fast_field_writers = FastFieldsWriter::from_schema(&SCHEMA);
|
||||
for &x in &permutation {
|
||||
fast_field_writers.add_document(&doc!(*FIELD=>x));
|
||||
}
|
||||
fast_field_writers
|
||||
.serialize(&mut serializer, &HashMap::new(), None)
|
||||
.unwrap();
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
Ok(directory)
|
||||
}
|
||||
let file = directory.open_read(&path).unwrap();
|
||||
{
|
||||
let fast_fields_composite = CompositeFile::open(&file).unwrap();
|
||||
let data = fast_fields_composite.open_read(*FIELD).unwrap();
|
||||
let fast_field_reader = DynamicFastFieldReader::<u64>::open(data).unwrap();
|
||||
|
||||
#[test]
|
||||
pub fn test_gcd_date() -> crate::Result<()> {
|
||||
let size_prec_sec =
|
||||
test_gcd_date_with_codec(FastFieldCodecType::Bitpacked, DatePrecision::Seconds)?;
|
||||
assert_eq!(size_prec_sec, 28 + (1_000 * 13) / 8); // 13 bits per val = ceil(log_2(number of seconds in 2hours);
|
||||
let size_prec_micro =
|
||||
test_gcd_date_with_codec(FastFieldCodecType::Bitpacked, DatePrecision::Microseconds)?;
|
||||
assert_eq!(size_prec_micro, 26 + (1_000 * 33) / 8); // 33 bits per val = ceil(log_2(number of microsecsseconds in 2hours);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn test_gcd_date_with_codec(
|
||||
codec_type: FastFieldCodecType,
|
||||
precision: DatePrecision,
|
||||
) -> crate::Result<usize> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
const T0: i64 = 1_662_345_825_012_529i64;
|
||||
const ONE_HOUR_IN_MICROSECS: i64 = 3_600 * 1_000_000;
|
||||
let times: Vec<DateTime> = std::iter::repeat_with(|| {
|
||||
// +- One hour.
|
||||
let t = T0 + rng.gen_range(-ONE_HOUR_IN_MICROSECS..ONE_HOUR_IN_MICROSECS);
|
||||
DateTime::from_timestamp_micros(t)
|
||||
})
|
||||
.take(1_000)
|
||||
.collect();
|
||||
let date_options = DateOptions::default()
|
||||
.set_fast(Cardinality::SingleValue)
|
||||
.set_precision(precision);
|
||||
let mut schema_builder = SchemaBuilder::default();
|
||||
let field = schema_builder.add_date_field("field", date_options);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
let docs: Vec<Document> = times.iter().map(|time| doc!(field=>*time)).collect();
|
||||
|
||||
let directory = get_index(&docs[..], &schema, &[codec_type])?;
|
||||
let path = Path::new("test");
|
||||
let file = directory.open_read(path).unwrap();
|
||||
let composite_file = CompositeFile::open(&file)?;
|
||||
let file = composite_file.open_read(*FIELD).unwrap();
|
||||
let len = file.len();
|
||||
let test_fastfield = open::<DateTime>(file.read_bytes()?)?;
|
||||
|
||||
for (i, time) in times.iter().enumerate() {
|
||||
assert_eq!(test_fastfield.get_val(i as u64), time.truncate(precision));
|
||||
b.iter(|| {
|
||||
let n = test::black_box(7000u32);
|
||||
let mut a = 0u64;
|
||||
for i in (0u32..n / 7).map(|val| val * 7) {
|
||||
a ^= fast_field_reader.get(i);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_fflookup(b: &mut Bencher) {
|
||||
let path = Path::new("test");
|
||||
let permutation = generate_permutation();
|
||||
let directory: RamDirectory = RamDirectory::create();
|
||||
{
|
||||
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
|
||||
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
|
||||
let mut fast_field_writers = FastFieldsWriter::from_schema(&SCHEMA);
|
||||
for &x in &permutation {
|
||||
fast_field_writers.add_document(&doc!(*FIELD=>x));
|
||||
}
|
||||
fast_field_writers
|
||||
.serialize(&mut serializer, &HashMap::new(), None)
|
||||
.unwrap();
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
let file = directory.open_read(&path).unwrap();
|
||||
{
|
||||
let fast_fields_composite = CompositeFile::open(&file).unwrap();
|
||||
let data = fast_fields_composite.open_read(*FIELD).unwrap();
|
||||
let fast_field_reader = DynamicFastFieldReader::<u64>::open(data).unwrap();
|
||||
|
||||
b.iter(|| {
|
||||
let mut a = 0u32;
|
||||
for i in 0u32..permutation.len() as u32 {
|
||||
a = fast_field_reader.get(i) as u32;
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_fflookup_gcd(b: &mut Bencher) {
|
||||
let path = Path::new("test");
|
||||
let permutation = generate_permutation_gcd();
|
||||
let directory: RamDirectory = RamDirectory::create();
|
||||
{
|
||||
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
|
||||
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
|
||||
let mut fast_field_writers = FastFieldsWriter::from_schema(&SCHEMA);
|
||||
for &x in &permutation {
|
||||
fast_field_writers.add_document(&doc!(*FIELD=>x));
|
||||
}
|
||||
fast_field_writers
|
||||
.serialize(&mut serializer, &HashMap::new(), None)
|
||||
.unwrap();
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
let file = directory.open_read(&path).unwrap();
|
||||
{
|
||||
let fast_fields_composite = CompositeFile::open(&file).unwrap();
|
||||
let data = fast_fields_composite.open_read(*FIELD).unwrap();
|
||||
let fast_field_reader = DynamicFastFieldReader::<u64>::open(data).unwrap();
|
||||
|
||||
b.iter(|| {
|
||||
let mut a = 0u32;
|
||||
for i in 0u32..permutation.len() as u32 {
|
||||
a = fast_field_reader.get(i) as u32;
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
Ok(len)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
mod multivalue_start_index;
|
||||
mod reader;
|
||||
mod writer;
|
||||
|
||||
pub(crate) use self::multivalue_start_index::MultivalueStartIndex;
|
||||
pub use self::reader::MultiValuedFastFieldReader;
|
||||
pub use self::writer::MultiValuedFastFieldWriter;
|
||||
|
||||
@@ -343,13 +341,11 @@ mod tests {
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(proptest::prelude::ProptestConfig::with_cases(5))]
|
||||
#[test]
|
||||
fn test_multivalued_proptest(ops in proptest::collection::vec(operation_strategy(), 1..10)) {
|
||||
assert!(test_multivalued_no_panic(&ops[..]).is_ok());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multivalued_proptest_gcd() {
|
||||
use IndexingOp::*;
|
||||
@@ -388,151 +384,3 @@ mod tests {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
use std::collections::HashMap;
|
||||
use std::path::Path;
|
||||
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::*;
|
||||
use crate::directory::{CompositeFile, Directory, RamDirectory, WritePtr};
|
||||
use crate::fastfield::{CompositeFastFieldSerializer, FastFieldsWriter};
|
||||
use crate::indexer::doc_id_mapping::DocIdMapping;
|
||||
use crate::schema::{Cardinality, NumericOptions, Schema};
|
||||
use crate::Document;
|
||||
|
||||
fn multi_values(num_docs: usize, vals_per_doc: usize) -> Vec<Vec<u64>> {
|
||||
let mut vals = vec![];
|
||||
for _i in 0..num_docs {
|
||||
let mut block = vec![];
|
||||
for j in 0..vals_per_doc {
|
||||
block.push(j as u64);
|
||||
}
|
||||
vals.push(block);
|
||||
}
|
||||
|
||||
vals
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_multi_value_fflookup(b: &mut Bencher) {
|
||||
let num_docs = 100_000;
|
||||
|
||||
let path = Path::new("test");
|
||||
let directory: RamDirectory = RamDirectory::create();
|
||||
let field = {
|
||||
let options = NumericOptions::default().set_fast(Cardinality::MultiValues);
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field = schema_builder.add_u64_field("field", options);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
|
||||
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
|
||||
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema);
|
||||
for block in &multi_values(num_docs, 3) {
|
||||
let mut doc = Document::new();
|
||||
for val in block {
|
||||
doc.add_u64(field, *val);
|
||||
}
|
||||
fast_field_writers.add_document(&doc);
|
||||
}
|
||||
fast_field_writers
|
||||
.serialize(&mut serializer, &HashMap::new(), None)
|
||||
.unwrap();
|
||||
serializer.close().unwrap();
|
||||
field
|
||||
};
|
||||
let file = directory.open_read(&path).unwrap();
|
||||
{
|
||||
let fast_fields_composite = CompositeFile::open(&file).unwrap();
|
||||
let data_idx = fast_fields_composite
|
||||
.open_read_with_idx(field, 0)
|
||||
.unwrap()
|
||||
.read_bytes()
|
||||
.unwrap();
|
||||
let idx_reader = fastfield_codecs::open(data_idx).unwrap();
|
||||
|
||||
let data_vals = fast_fields_composite
|
||||
.open_read_with_idx(field, 1)
|
||||
.unwrap()
|
||||
.read_bytes()
|
||||
.unwrap();
|
||||
let vals_reader = fastfield_codecs::open(data_vals).unwrap();
|
||||
let fast_field_reader = MultiValuedFastFieldReader::open(idx_reader, vals_reader);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
let mut data = Vec::with_capacity(10);
|
||||
for i in 0u32..num_docs as u32 {
|
||||
fast_field_reader.get_vals(i, &mut data);
|
||||
sum += data.iter().sum::<u64>();
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_multi_value_ff_creation(b: &mut Bencher) {
|
||||
// 3 million ff entries
|
||||
let num_docs = 1_000_000;
|
||||
let multi_values = multi_values(num_docs, 3);
|
||||
|
||||
b.iter(|| {
|
||||
let directory: RamDirectory = RamDirectory::create();
|
||||
let options = NumericOptions::default().set_fast(Cardinality::MultiValues);
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field = schema_builder.add_u64_field("field", options);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
|
||||
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
|
||||
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema);
|
||||
for block in &multi_values {
|
||||
let mut doc = Document::new();
|
||||
for val in block {
|
||||
doc.add_u64(field, *val);
|
||||
}
|
||||
fast_field_writers.add_document(&doc);
|
||||
}
|
||||
fast_field_writers
|
||||
.serialize(&mut serializer, &HashMap::new(), None)
|
||||
.unwrap();
|
||||
serializer.close().unwrap();
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_multi_value_ff_creation_with_sorting(b: &mut Bencher) {
|
||||
// 3 million ff entries
|
||||
let num_docs = 1_000_000;
|
||||
let multi_values = multi_values(num_docs, 3);
|
||||
|
||||
let doc_id_mapping =
|
||||
DocIdMapping::from_new_id_to_old_id((0..1_000_000).collect::<Vec<_>>());
|
||||
|
||||
b.iter(|| {
|
||||
let directory: RamDirectory = RamDirectory::create();
|
||||
let options = NumericOptions::default().set_fast(Cardinality::MultiValues);
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field = schema_builder.add_u64_field("field", options);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
|
||||
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
|
||||
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema);
|
||||
for block in &multi_values {
|
||||
let mut doc = Document::new();
|
||||
for val in block {
|
||||
doc.add_u64(field, *val);
|
||||
}
|
||||
fast_field_writers.add_document(&doc);
|
||||
}
|
||||
fast_field_writers
|
||||
.serialize(&mut serializer, &HashMap::new(), Some(&doc_id_mapping))
|
||||
.unwrap();
|
||||
serializer.close().unwrap();
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,195 +0,0 @@
|
||||
use fastfield_codecs::{Column, ColumnReader};
|
||||
|
||||
use crate::indexer::doc_id_mapping::DocIdMapping;
|
||||
use crate::DocId;
|
||||
|
||||
pub(crate) struct MultivalueStartIndex<'a, C: Column> {
|
||||
column: &'a C,
|
||||
doc_id_map: &'a DocIdMapping,
|
||||
min_value: u64,
|
||||
max_value: u64,
|
||||
}
|
||||
|
||||
struct MultivalueStartIndexReader<'a, C: Column> {
|
||||
column: &'a C,
|
||||
doc_id_map: &'a DocIdMapping,
|
||||
idx: u64,
|
||||
val: u64,
|
||||
len: u64,
|
||||
}
|
||||
|
||||
impl<'a, C: Column> MultivalueStartIndexReader<'a, C> {
|
||||
fn new(column: &'a C, doc_id_map: &'a DocIdMapping) -> Self {
|
||||
Self {
|
||||
column,
|
||||
doc_id_map,
|
||||
idx: u64::MAX,
|
||||
val: 0,
|
||||
len: doc_id_map.num_new_doc_ids() as u64 + 1,
|
||||
}
|
||||
}
|
||||
|
||||
fn reset(&mut self) {
|
||||
self.idx = u64::MAX;
|
||||
self.val = 0;
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, C: Column> ColumnReader for MultivalueStartIndexReader<'a, C> {
|
||||
fn seek(&mut self, idx: u64) -> u64 {
|
||||
if self.idx > idx {
|
||||
self.reset();
|
||||
self.advance();
|
||||
}
|
||||
for _ in self.idx..idx {
|
||||
self.advance();
|
||||
}
|
||||
self.get()
|
||||
}
|
||||
|
||||
fn advance(&mut self) -> bool {
|
||||
if self.idx == u64::MAX {
|
||||
self.idx = 0;
|
||||
self.val = 0;
|
||||
return true;
|
||||
}
|
||||
let new_doc_id: DocId = self.idx as DocId;
|
||||
self.idx += 1;
|
||||
if self.idx >= self.len {
|
||||
self.idx = self.len;
|
||||
return false;
|
||||
}
|
||||
let old_doc: DocId = self.doc_id_map.get_old_doc_id(new_doc_id);
|
||||
let num_vals_for_doc =
|
||||
self.column.get_val(old_doc as u64 + 1) - self.column.get_val(old_doc as u64);
|
||||
self.val += num_vals_for_doc;
|
||||
true
|
||||
}
|
||||
|
||||
fn get(&self) -> u64 {
|
||||
self.val
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, C: Column> MultivalueStartIndex<'a, C> {
|
||||
pub fn new(column: &'a C, doc_id_map: &'a DocIdMapping) -> Self {
|
||||
assert_eq!(column.num_vals(), doc_id_map.num_old_doc_ids() as u64 + 1);
|
||||
let iter = MultivalueStartIndexIter::new(column, doc_id_map);
|
||||
let (min_value, max_value) = tantivy_bitpacker::minmax(iter).unwrap_or((0, 0));
|
||||
MultivalueStartIndex {
|
||||
column,
|
||||
doc_id_map,
|
||||
min_value,
|
||||
max_value,
|
||||
}
|
||||
}
|
||||
|
||||
fn specialized_reader(&self) -> MultivalueStartIndexReader<'a, C> {
|
||||
MultivalueStartIndexReader::new(self.column, self.doc_id_map)
|
||||
}
|
||||
}
|
||||
impl<'a, C: Column> Column for MultivalueStartIndex<'a, C> {
|
||||
fn reader(&self) -> Box<dyn ColumnReader + '_> {
|
||||
Box::new(self.specialized_reader())
|
||||
}
|
||||
|
||||
fn get_val(&self, idx: u64) -> u64 {
|
||||
let mut reader = self.specialized_reader();
|
||||
reader.seek(idx)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u64 {
|
||||
self.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
(self.doc_id_map.num_new_doc_ids() + 1) as u64
|
||||
}
|
||||
}
|
||||
|
||||
struct MultivalueStartIndexIter<'a, C: Column> {
|
||||
column: &'a C,
|
||||
doc_id_map: &'a DocIdMapping,
|
||||
new_doc_id: usize,
|
||||
offset: u64,
|
||||
}
|
||||
|
||||
impl<'a, C: Column> MultivalueStartIndexIter<'a, C> {
|
||||
fn new(column: &'a C, doc_id_map: &'a DocIdMapping) -> Self {
|
||||
Self {
|
||||
column,
|
||||
doc_id_map,
|
||||
new_doc_id: 0,
|
||||
offset: 0,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, C: Column> Iterator for MultivalueStartIndexIter<'a, C> {
|
||||
type Item = u64;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
if self.new_doc_id > self.doc_id_map.num_new_doc_ids() {
|
||||
return None;
|
||||
}
|
||||
let new_doc_id = self.new_doc_id;
|
||||
self.new_doc_id += 1;
|
||||
let start_offset = self.offset;
|
||||
if new_doc_id < self.doc_id_map.num_new_doc_ids() {
|
||||
let old_doc = self.doc_id_map.get_old_doc_id(new_doc_id as u32) as u64;
|
||||
let num_vals_for_doc = self.column.get_val(old_doc + 1) - self.column.get_val(old_doc);
|
||||
self.offset += num_vals_for_doc;
|
||||
}
|
||||
Some(start_offset)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use fastfield_codecs::VecColumn;
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_multivalue_start_index() {
|
||||
let doc_id_mapping = DocIdMapping::from_new_id_to_old_id(vec![4, 1, 2]);
|
||||
assert_eq!(doc_id_mapping.num_old_doc_ids(), 5);
|
||||
let col = VecColumn::from(&[0u64, 3, 5, 10, 12, 16][..]);
|
||||
let multivalue_start_index = MultivalueStartIndex::new(
|
||||
&col, // 3, 2, 5, 2, 4
|
||||
&doc_id_mapping,
|
||||
);
|
||||
assert_eq!(multivalue_start_index.num_vals(), 4);
|
||||
assert_eq!(
|
||||
fastfield_codecs::iter_from_reader(multivalue_start_index.reader())
|
||||
.collect::<Vec<u64>>(),
|
||||
vec![0, 4, 6, 11]
|
||||
); // 4, 2, 5
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multivalue_get_vals() {
|
||||
let doc_id_mapping =
|
||||
DocIdMapping::from_new_id_to_old_id(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
|
||||
assert_eq!(doc_id_mapping.num_old_doc_ids(), 10);
|
||||
let col = VecColumn::from(&[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55][..]);
|
||||
let multivalue_start_index = MultivalueStartIndex::new(&col, &doc_id_mapping);
|
||||
assert_eq!(
|
||||
fastfield_codecs::iter_from_reader(multivalue_start_index.reader())
|
||||
.collect::<Vec<u64>>(),
|
||||
vec![0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
|
||||
);
|
||||
assert_eq!(multivalue_start_index.num_vals(), 11);
|
||||
let mut multivalue_start_index_reader = multivalue_start_index.reader();
|
||||
assert_eq!(multivalue_start_index_reader.seek(3), 2);
|
||||
assert_eq!(multivalue_start_index_reader.seek(5), 5);
|
||||
assert_eq!(multivalue_start_index_reader.seek(8), 21);
|
||||
assert_eq!(multivalue_start_index_reader.seek(4), 3);
|
||||
assert_eq!(multivalue_start_index_reader.seek(0), 0);
|
||||
assert_eq!(multivalue_start_index_reader.seek(10), 55);
|
||||
}
|
||||
}
|
||||
@@ -1,9 +1,6 @@
|
||||
use std::ops::Range;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use crate::fastfield::{FastValue, MultiValueLength};
|
||||
use crate::fastfield::{DynamicFastFieldReader, FastFieldReader, FastValue, MultiValueLength};
|
||||
use crate::DocId;
|
||||
|
||||
/// Reader for a multivalued `u64` fast field.
|
||||
@@ -15,14 +12,14 @@ use crate::DocId;
|
||||
/// The `idx_reader` associated, for each document, the index of its first value.
|
||||
#[derive(Clone)]
|
||||
pub struct MultiValuedFastFieldReader<Item: FastValue> {
|
||||
idx_reader: Arc<dyn Column<u64>>,
|
||||
vals_reader: Arc<dyn Column<Item>>,
|
||||
idx_reader: DynamicFastFieldReader<u64>,
|
||||
vals_reader: DynamicFastFieldReader<Item>,
|
||||
}
|
||||
|
||||
impl<Item: FastValue> MultiValuedFastFieldReader<Item> {
|
||||
pub(crate) fn open(
|
||||
idx_reader: Arc<dyn Column<u64>>,
|
||||
vals_reader: Arc<dyn Column<Item>>,
|
||||
idx_reader: DynamicFastFieldReader<u64>,
|
||||
vals_reader: DynamicFastFieldReader<Item>,
|
||||
) -> MultiValuedFastFieldReader<Item> {
|
||||
MultiValuedFastFieldReader {
|
||||
idx_reader,
|
||||
@@ -34,9 +31,8 @@ impl<Item: FastValue> MultiValuedFastFieldReader<Item> {
|
||||
/// to the given document are `start..end`.
|
||||
#[inline]
|
||||
fn range(&self, doc: DocId) -> Range<u64> {
|
||||
let idx = doc as u64;
|
||||
let start = self.idx_reader.get_val(idx);
|
||||
let end = self.idx_reader.get_val(idx + 1);
|
||||
let start = self.idx_reader.get(doc);
|
||||
let end = self.idx_reader.get(doc + 1);
|
||||
start..end
|
||||
}
|
||||
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
use std::io;
|
||||
|
||||
use fastfield_codecs::{MonotonicallyMappableToU64, VecColumn};
|
||||
use fnv::FnvHashMap;
|
||||
use tantivy_bitpacker::minmax;
|
||||
|
||||
use crate::fastfield::{
|
||||
value_to_u64, CompositeFastFieldSerializer, FastFieldType, MultivalueStartIndex,
|
||||
};
|
||||
use crate::fastfield::serializer::BitpackedSerializerLegacy;
|
||||
use crate::fastfield::{value_to_u64, CompositeFastFieldSerializer, FastFieldType, FastValue};
|
||||
use crate::indexer::doc_id_mapping::DocIdMapping;
|
||||
use crate::postings::UnorderedTermId;
|
||||
use crate::schema::{Document, Field, Value};
|
||||
@@ -18,15 +17,17 @@ use crate::{DatePrecision, DocId};
|
||||
/// This `Writer` is only useful for advanced users.
|
||||
/// The normal way to get your multivalued int in your index
|
||||
/// is to
|
||||
/// - declare your field with fast set to
|
||||
/// [`Cardinality::MultiValues`](crate::schema::Cardinality::MultiValues) in your schema
|
||||
/// - declare your field with fast set to `Cardinality::MultiValues`
|
||||
/// in your schema
|
||||
/// - add your document simply by calling `.add_document(...)`.
|
||||
///
|
||||
/// The `MultiValuedFastFieldWriter` can be acquired from the fastfield writer, by calling
|
||||
/// [`FastFieldWriter::get_multivalue_writer_mut()`](crate::fastfield::FastFieldsWriter::get_multivalue_writer_mut).
|
||||
/// The `MultiValuedFastFieldWriter` can be acquired from the
|
||||
/// fastfield writer, by calling
|
||||
/// [`.get_multivalue_writer_mut(...)`](./struct.FastFieldsWriter.html#method.
|
||||
/// get_multivalue_writer_mut).
|
||||
///
|
||||
/// Once acquired, writing is done by calling
|
||||
/// [`.add_document(&Document)`](MultiValuedFastFieldWriter::add_document) once per value.
|
||||
/// [`.add_document_vals(&[u64])`](MultiValuedFastFieldWriter::add_document_vals) once per document.
|
||||
///
|
||||
/// The serializer makes it possible to remap all of the values
|
||||
/// that were pushed to the writer using a mapping.
|
||||
@@ -100,6 +101,16 @@ impl MultiValuedFastFieldWriter {
|
||||
}
|
||||
}
|
||||
|
||||
/// Register all of the values associated to a document.
|
||||
///
|
||||
/// The method returns the `DocId` of the document that was
|
||||
/// just written.
|
||||
pub fn add_document_vals(&mut self, vals: &[UnorderedTermId]) -> DocId {
|
||||
let doc = self.doc_index.len() as DocId;
|
||||
self.next_doc();
|
||||
self.vals.extend_from_slice(vals);
|
||||
doc
|
||||
}
|
||||
/// Returns an iterator over values per doc_id in ascending doc_id order.
|
||||
///
|
||||
/// Normally the order is simply iterating self.doc_id_index.
|
||||
@@ -139,64 +150,72 @@ impl MultiValuedFastFieldWriter {
|
||||
/// `tantivy` builds a mapping to convert this `UnorderedTermId` into
|
||||
/// term ordinals.
|
||||
pub fn serialize(
|
||||
mut self,
|
||||
&self,
|
||||
serializer: &mut CompositeFastFieldSerializer,
|
||||
term_mapping_opt: Option<&FnvHashMap<UnorderedTermId, TermOrdinal>>,
|
||||
mapping_opt: Option<&FnvHashMap<UnorderedTermId, TermOrdinal>>,
|
||||
doc_id_map: Option<&DocIdMapping>,
|
||||
) -> io::Result<()> {
|
||||
{
|
||||
self.doc_index.push(self.vals.len() as u64);
|
||||
let col = VecColumn::from(&self.doc_index[..]);
|
||||
if let Some(doc_id_map) = doc_id_map {
|
||||
let multi_value_start_index = MultivalueStartIndex::new(&col, doc_id_map);
|
||||
serializer.create_auto_detect_u64_fast_field_with_idx(
|
||||
self.field,
|
||||
multi_value_start_index,
|
||||
0,
|
||||
)?;
|
||||
} else {
|
||||
serializer.create_auto_detect_u64_fast_field_with_idx(self.field, col, 0)?;
|
||||
// writing the offset index
|
||||
let mut doc_index_serializer =
|
||||
serializer.new_u64_fast_field_with_idx(self.field, 0, self.vals.len() as u64, 0)?;
|
||||
|
||||
let mut offset = 0;
|
||||
for vals in self.get_ordered_values(doc_id_map) {
|
||||
doc_index_serializer.add_val(offset)?;
|
||||
offset += vals.len() as u64;
|
||||
}
|
||||
doc_index_serializer.add_val(self.vals.len() as u64)?;
|
||||
|
||||
doc_index_serializer.close_field()?;
|
||||
}
|
||||
{
|
||||
// Writing the values themselves.
|
||||
// TODO FIXME: Use less memory.
|
||||
let mut values: Vec<u64> = Vec::new();
|
||||
if let Some(term_mapping) = term_mapping_opt {
|
||||
// writing the values themselves.
|
||||
let mut value_serializer: BitpackedSerializerLegacy<'_, _>;
|
||||
if let Some(mapping) = mapping_opt {
|
||||
value_serializer = serializer.new_u64_fast_field_with_idx(
|
||||
self.field,
|
||||
0u64,
|
||||
mapping.len() as u64,
|
||||
1,
|
||||
)?;
|
||||
|
||||
if self.fast_field_type.is_facet() {
|
||||
let mut doc_vals: Vec<u64> = Vec::with_capacity(100);
|
||||
for vals in self.get_ordered_values(doc_id_map) {
|
||||
// In the case of facets, we want a vec of facet ord that is sorted.
|
||||
doc_vals.clear();
|
||||
let remapped_vals = vals
|
||||
.iter()
|
||||
.map(|val| *term_mapping.get(val).expect("Missing term ordinal"));
|
||||
.map(|val| *mapping.get(val).expect("Missing term ordinal"));
|
||||
doc_vals.extend(remapped_vals);
|
||||
doc_vals.sort_unstable();
|
||||
for &val in &doc_vals {
|
||||
values.push(val);
|
||||
value_serializer.add_val(val)?;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for vals in self.get_ordered_values(doc_id_map) {
|
||||
let remapped_vals = vals
|
||||
.iter()
|
||||
.map(|val| *term_mapping.get(val).expect("Missing term ordinal"));
|
||||
.map(|val| *mapping.get(val).expect("Missing term ordinal"));
|
||||
for val in remapped_vals {
|
||||
values.push(val);
|
||||
value_serializer.add_val(val)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
let val_min_max = minmax(self.vals.iter().cloned());
|
||||
let (val_min, val_max) = val_min_max.unwrap_or((0u64, 0u64));
|
||||
value_serializer =
|
||||
serializer.new_u64_fast_field_with_idx(self.field, val_min, val_max, 1)?;
|
||||
for vals in self.get_ordered_values(doc_id_map) {
|
||||
// sort values in case of remapped doc_ids?
|
||||
for &val in vals {
|
||||
values.push(val);
|
||||
value_serializer.add_val(val)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
let col = VecColumn::from(&values[..]);
|
||||
serializer.create_auto_detect_u64_fast_field_with_idx(self.field, col, 1)?;
|
||||
value_serializer.close_field()?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
307
src/fastfield/reader.rs
Normal file
307
src/fastfield/reader.rs
Normal file
@@ -0,0 +1,307 @@
|
||||
use std::collections::HashMap;
|
||||
use std::marker::PhantomData;
|
||||
use std::path::Path;
|
||||
|
||||
use common::BinarySerializable;
|
||||
use fastfield_codecs::bitpacked::{BitpackedCodec, BitpackedReader};
|
||||
use fastfield_codecs::blockwise_linear::{BlockwiseLinearCodec, BlockwiseLinearReader};
|
||||
use fastfield_codecs::linear::{LinearCodec, LinearReader};
|
||||
use fastfield_codecs::{FastFieldCodec, FastFieldCodecType, FastFieldDataAccess};
|
||||
|
||||
use super::gcd::open_gcd_from_bytes;
|
||||
use super::FastValue;
|
||||
use crate::directory::{CompositeFile, Directory, FileSlice, OwnedBytes, RamDirectory, WritePtr};
|
||||
use crate::error::DataCorruption;
|
||||
use crate::fastfield::{CompositeFastFieldSerializer, FastFieldsWriter, GCDReader};
|
||||
use crate::schema::{Schema, FAST};
|
||||
use crate::DocId;
|
||||
|
||||
/// FastFieldReader is the trait to access fast field data.
|
||||
pub trait FastFieldReader<Item: FastValue>: Clone {
|
||||
/// Return the value associated to the given document.
|
||||
///
|
||||
/// This accessor should return as fast as possible.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `doc` is greater than the segment
|
||||
fn get(&self, doc: DocId) -> Item;
|
||||
|
||||
/// Fills an output buffer with the fast field values
|
||||
/// associated with the `DocId` going from
|
||||
/// `start` to `start + output.len()`.
|
||||
///
|
||||
/// Regardless of the type of `Item`, this method works
|
||||
/// - transmuting the output array
|
||||
/// - extracting the `Item`s as if they were `u64`
|
||||
/// - possibly converting the `u64` value to the right type.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `start + output.len()` is greater than
|
||||
/// the segment's `maxdoc`.
|
||||
fn get_range(&self, start: u64, output: &mut [Item]);
|
||||
|
||||
/// Returns the minimum value for this fast field.
|
||||
///
|
||||
/// The min value does not take in account of possible
|
||||
/// deleted document, and should be considered as a lower bound
|
||||
/// of the actual minimum value.
|
||||
fn min_value(&self) -> Item;
|
||||
|
||||
/// Returns the maximum value for this fast field.
|
||||
///
|
||||
/// The max value does not take in account of possible
|
||||
/// deleted document, and should be considered as an upper bound
|
||||
/// of the actual maximum value.
|
||||
fn max_value(&self) -> Item;
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
/// DynamicFastFieldReader wraps different readers to access
|
||||
/// the various encoded fastfield data
|
||||
pub enum DynamicFastFieldReader<Item: FastValue> {
|
||||
/// Bitpacked compressed fastfield data.
|
||||
Bitpacked(FastFieldReaderCodecWrapper<Item, BitpackedReader>),
|
||||
/// Linear interpolated values + bitpacked
|
||||
Linear(FastFieldReaderCodecWrapper<Item, LinearReader>),
|
||||
/// Blockwise linear interpolated values + bitpacked
|
||||
BlockwiseLinear(FastFieldReaderCodecWrapper<Item, BlockwiseLinearReader>),
|
||||
|
||||
/// GCD and Bitpacked compressed fastfield data.
|
||||
BitpackedGCD(FastFieldReaderCodecWrapper<Item, GCDReader<BitpackedReader>>),
|
||||
/// GCD and Linear interpolated values + bitpacked
|
||||
LinearGCD(FastFieldReaderCodecWrapper<Item, GCDReader<LinearReader>>),
|
||||
/// GCD and Blockwise linear interpolated values + bitpacked
|
||||
BlockwiseLinearGCD(FastFieldReaderCodecWrapper<Item, GCDReader<BlockwiseLinearReader>>),
|
||||
}
|
||||
|
||||
impl<Item: FastValue> DynamicFastFieldReader<Item> {
|
||||
/// Returns correct the reader wrapped in the `DynamicFastFieldReader` enum for the data.
|
||||
pub fn open_from_id(
|
||||
mut bytes: OwnedBytes,
|
||||
codec_type: FastFieldCodecType,
|
||||
) -> crate::Result<DynamicFastFieldReader<Item>> {
|
||||
let reader = match codec_type {
|
||||
FastFieldCodecType::Bitpacked => {
|
||||
DynamicFastFieldReader::Bitpacked(BitpackedCodec::open_from_bytes(bytes)?.into())
|
||||
}
|
||||
FastFieldCodecType::Linear => {
|
||||
DynamicFastFieldReader::Linear(LinearCodec::open_from_bytes(bytes)?.into())
|
||||
}
|
||||
FastFieldCodecType::BlockwiseLinear => DynamicFastFieldReader::BlockwiseLinear(
|
||||
BlockwiseLinearCodec::open_from_bytes(bytes)?.into(),
|
||||
),
|
||||
FastFieldCodecType::Gcd => {
|
||||
let codec_type = FastFieldCodecType::deserialize(&mut bytes)?;
|
||||
match codec_type {
|
||||
FastFieldCodecType::Bitpacked => DynamicFastFieldReader::BitpackedGCD(
|
||||
open_gcd_from_bytes::<BitpackedCodec>(bytes)?.into(),
|
||||
),
|
||||
FastFieldCodecType::Linear => DynamicFastFieldReader::LinearGCD(
|
||||
open_gcd_from_bytes::<LinearCodec>(bytes)?.into(),
|
||||
),
|
||||
FastFieldCodecType::BlockwiseLinear => {
|
||||
DynamicFastFieldReader::BlockwiseLinearGCD(
|
||||
open_gcd_from_bytes::<BlockwiseLinearCodec>(bytes)?.into(),
|
||||
)
|
||||
}
|
||||
FastFieldCodecType::Gcd => {
|
||||
return Err(DataCorruption::comment_only(
|
||||
"Gcd codec wrapped into another gcd codec. This combination is not \
|
||||
allowed.",
|
||||
)
|
||||
.into())
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
Ok(reader)
|
||||
}
|
||||
|
||||
/// Returns correct the reader wrapped in the `DynamicFastFieldReader` enum for the data.
|
||||
pub fn open(file: FileSlice) -> crate::Result<DynamicFastFieldReader<Item>> {
|
||||
let mut bytes = file.read_bytes()?;
|
||||
let codec_type = FastFieldCodecType::deserialize(&mut bytes)?;
|
||||
Self::open_from_id(bytes, codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl<Item: FastValue> FastFieldReader<Item> for DynamicFastFieldReader<Item> {
|
||||
#[inline]
|
||||
fn get(&self, doc: DocId) -> Item {
|
||||
match self {
|
||||
Self::Bitpacked(reader) => reader.get(doc),
|
||||
Self::Linear(reader) => reader.get(doc),
|
||||
Self::BlockwiseLinear(reader) => reader.get(doc),
|
||||
Self::BitpackedGCD(reader) => reader.get(doc),
|
||||
Self::LinearGCD(reader) => reader.get(doc),
|
||||
Self::BlockwiseLinearGCD(reader) => reader.get(doc),
|
||||
}
|
||||
}
|
||||
#[inline]
|
||||
fn get_range(&self, start: u64, output: &mut [Item]) {
|
||||
match self {
|
||||
Self::Bitpacked(reader) => reader.get_range(start, output),
|
||||
Self::Linear(reader) => reader.get_range(start, output),
|
||||
Self::BlockwiseLinear(reader) => reader.get_range(start, output),
|
||||
Self::BitpackedGCD(reader) => reader.get_range(start, output),
|
||||
Self::LinearGCD(reader) => reader.get_range(start, output),
|
||||
Self::BlockwiseLinearGCD(reader) => reader.get_range(start, output),
|
||||
}
|
||||
}
|
||||
fn min_value(&self) -> Item {
|
||||
match self {
|
||||
Self::Bitpacked(reader) => reader.min_value(),
|
||||
Self::Linear(reader) => reader.min_value(),
|
||||
Self::BlockwiseLinear(reader) => reader.min_value(),
|
||||
Self::BitpackedGCD(reader) => reader.min_value(),
|
||||
Self::LinearGCD(reader) => reader.min_value(),
|
||||
Self::BlockwiseLinearGCD(reader) => reader.min_value(),
|
||||
}
|
||||
}
|
||||
fn max_value(&self) -> Item {
|
||||
match self {
|
||||
Self::Bitpacked(reader) => reader.max_value(),
|
||||
Self::Linear(reader) => reader.max_value(),
|
||||
Self::BlockwiseLinear(reader) => reader.max_value(),
|
||||
Self::BitpackedGCD(reader) => reader.max_value(),
|
||||
Self::LinearGCD(reader) => reader.max_value(),
|
||||
Self::BlockwiseLinearGCD(reader) => reader.max_value(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Wrapper for accessing a fastfield.
|
||||
///
|
||||
/// Holds the data and the codec to the read the data.
|
||||
#[derive(Clone)]
|
||||
pub struct FastFieldReaderCodecWrapper<Item: FastValue, CodecReader> {
|
||||
reader: CodecReader,
|
||||
_phantom: PhantomData<Item>,
|
||||
}
|
||||
|
||||
impl<Item: FastValue, CodecReader> From<CodecReader>
|
||||
for FastFieldReaderCodecWrapper<Item, CodecReader>
|
||||
{
|
||||
fn from(reader: CodecReader) -> Self {
|
||||
FastFieldReaderCodecWrapper {
|
||||
reader,
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<Item: FastValue, D: FastFieldDataAccess> FastFieldReaderCodecWrapper<Item, D> {
|
||||
#[inline]
|
||||
pub(crate) fn get_u64(&self, doc: u64) -> Item {
|
||||
let data = self.reader.get_val(doc);
|
||||
Item::from_u64(data)
|
||||
}
|
||||
|
||||
/// Internally `multivalued` also use SingleValue Fast fields.
|
||||
/// It works as follows... A first column contains the list of start index
|
||||
/// for each document, a second column contains the actual values.
|
||||
///
|
||||
/// The values associated to a given doc, are then
|
||||
/// `second_column[first_column.get(doc)..first_column.get(doc+1)]`.
|
||||
///
|
||||
/// Which means single value fast field reader can be indexed internally with
|
||||
/// something different from a `DocId`. For this use case, we want to use `u64`
|
||||
/// values.
|
||||
///
|
||||
/// See `get_range` for an actual documentation about this method.
|
||||
pub(crate) fn get_range_u64(&self, start: u64, output: &mut [Item]) {
|
||||
for (i, out) in output.iter_mut().enumerate() {
|
||||
*out = self.get_u64(start + (i as u64));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<Item: FastValue, C: FastFieldDataAccess + Clone> FastFieldReader<Item>
|
||||
for FastFieldReaderCodecWrapper<Item, C>
|
||||
{
|
||||
/// Return the value associated to the given document.
|
||||
///
|
||||
/// This accessor should return as fast as possible.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `doc` is greater than the segment
|
||||
// `maxdoc`.
|
||||
fn get(&self, doc: DocId) -> Item {
|
||||
self.get_u64(u64::from(doc))
|
||||
}
|
||||
|
||||
/// Fills an output buffer with the fast field values
|
||||
/// associated with the `DocId` going from
|
||||
/// `start` to `start + output.len()`.
|
||||
///
|
||||
/// Regardless of the type of `Item`, this method works
|
||||
/// - transmuting the output array
|
||||
/// - extracting the `Item`s as if they were `u64`
|
||||
/// - possibly converting the `u64` value to the right type.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `start + output.len()` is greater than
|
||||
/// the segment's `maxdoc`.
|
||||
fn get_range(&self, start: u64, output: &mut [Item]) {
|
||||
self.get_range_u64(start, output);
|
||||
}
|
||||
|
||||
/// Returns the minimum value for this fast field.
|
||||
///
|
||||
/// The max value does not take in account of possible
|
||||
/// deleted document, and should be considered as an upper bound
|
||||
/// of the actual maximum value.
|
||||
fn min_value(&self) -> Item {
|
||||
Item::from_u64(self.reader.min_value())
|
||||
}
|
||||
|
||||
/// Returns the maximum value for this fast field.
|
||||
///
|
||||
/// The max value does not take in account of possible
|
||||
/// deleted document, and should be considered as an upper bound
|
||||
/// of the actual maximum value.
|
||||
fn max_value(&self) -> Item {
|
||||
Item::from_u64(self.reader.max_value())
|
||||
}
|
||||
}
|
||||
|
||||
impl<Item: FastValue> From<Vec<Item>> for DynamicFastFieldReader<Item> {
|
||||
fn from(vals: Vec<Item>) -> DynamicFastFieldReader<Item> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field = schema_builder.add_u64_field("field", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let path = Path::new("__dummy__");
|
||||
let directory: RamDirectory = RamDirectory::create();
|
||||
{
|
||||
let write: WritePtr = directory
|
||||
.open_write(path)
|
||||
.expect("With a RamDirectory, this should never fail.");
|
||||
let mut serializer = CompositeFastFieldSerializer::from_write(write)
|
||||
.expect("With a RamDirectory, this should never fail.");
|
||||
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema);
|
||||
{
|
||||
let fast_field_writer = fast_field_writers
|
||||
.get_field_writer_mut(field)
|
||||
.expect("With a RamDirectory, this should never fail.");
|
||||
for val in vals {
|
||||
fast_field_writer.add_val(val.to_u64());
|
||||
}
|
||||
}
|
||||
fast_field_writers
|
||||
.serialize(&mut serializer, &HashMap::new(), None)
|
||||
.unwrap();
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
|
||||
let file = directory.open_read(path).expect("Failed to open the file");
|
||||
let composite_file = CompositeFile::open(&file).expect("Failed to read the composite file");
|
||||
let field_file = composite_file
|
||||
.open_read(field)
|
||||
.expect("File component not found");
|
||||
DynamicFastFieldReader::open(field_file).unwrap()
|
||||
}
|
||||
}
|
||||
@@ -1,7 +1,4 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::{open, Column};
|
||||
|
||||
use super::reader::DynamicFastFieldReader;
|
||||
use crate::directory::{CompositeFile, FileSlice};
|
||||
use crate::fastfield::{
|
||||
BytesFastFieldReader, FastFieldNotAvailableError, FastValue, MultiValuedFastFieldReader,
|
||||
@@ -112,17 +109,14 @@ impl FastFieldReaders {
|
||||
&self,
|
||||
field: Field,
|
||||
index: usize,
|
||||
) -> crate::Result<Arc<dyn Column<TFastValue>>> {
|
||||
) -> crate::Result<DynamicFastFieldReader<TFastValue>> {
|
||||
let fast_field_slice = self.fast_field_data(field, index)?;
|
||||
let bytes = fast_field_slice.read_bytes()?;
|
||||
let column = fastfield_codecs::open(bytes)?;
|
||||
Ok(column)
|
||||
DynamicFastFieldReader::open(fast_field_slice)
|
||||
}
|
||||
|
||||
pub(crate) fn typed_fast_field_reader<TFastValue: FastValue>(
|
||||
&self,
|
||||
field: Field,
|
||||
) -> crate::Result<Arc<dyn Column<TFastValue>>> {
|
||||
) -> crate::Result<DynamicFastFieldReader<TFastValue>> {
|
||||
self.typed_fast_field_reader_with_idx(field, 0)
|
||||
}
|
||||
|
||||
@@ -138,7 +132,7 @@ impl FastFieldReaders {
|
||||
/// Returns the `u64` fast field reader reader associated to `field`.
|
||||
///
|
||||
/// If `field` is not a u64 fast field, this method returns an Error.
|
||||
pub fn u64(&self, field: Field) -> crate::Result<Arc<dyn Column<u64>>> {
|
||||
pub fn u64(&self, field: Field) -> crate::Result<DynamicFastFieldReader<u64>> {
|
||||
self.check_type(field, FastType::U64, Cardinality::SingleValue)?;
|
||||
self.typed_fast_field_reader(field)
|
||||
}
|
||||
@@ -148,14 +142,14 @@ impl FastFieldReaders {
|
||||
///
|
||||
/// If not, the fastfield reader will returns the u64-value associated to the original
|
||||
/// FastValue.
|
||||
pub fn u64_lenient(&self, field: Field) -> crate::Result<Arc<dyn Column<u64>>> {
|
||||
pub fn u64_lenient(&self, field: Field) -> crate::Result<DynamicFastFieldReader<u64>> {
|
||||
self.typed_fast_field_reader(field)
|
||||
}
|
||||
|
||||
/// Returns the `i64` fast field reader reader associated to `field`.
|
||||
///
|
||||
/// If `field` is not a i64 fast field, this method returns an Error.
|
||||
pub fn i64(&self, field: Field) -> crate::Result<Arc<dyn Column<i64>>> {
|
||||
pub fn i64(&self, field: Field) -> crate::Result<DynamicFastFieldReader<i64>> {
|
||||
self.check_type(field, FastType::I64, Cardinality::SingleValue)?;
|
||||
self.typed_fast_field_reader(field)
|
||||
}
|
||||
@@ -163,7 +157,7 @@ impl FastFieldReaders {
|
||||
/// Returns the `date` fast field reader reader associated to `field`.
|
||||
///
|
||||
/// If `field` is not a date fast field, this method returns an Error.
|
||||
pub fn date(&self, field: Field) -> crate::Result<Arc<dyn Column<DateTime>>> {
|
||||
pub fn date(&self, field: Field) -> crate::Result<DynamicFastFieldReader<DateTime>> {
|
||||
self.check_type(field, FastType::Date, Cardinality::SingleValue)?;
|
||||
self.typed_fast_field_reader(field)
|
||||
}
|
||||
@@ -171,7 +165,7 @@ impl FastFieldReaders {
|
||||
/// Returns the `f64` fast field reader reader associated to `field`.
|
||||
///
|
||||
/// If `field` is not a f64 fast field, this method returns an Error.
|
||||
pub fn f64(&self, field: Field) -> crate::Result<Arc<dyn Column<f64>>> {
|
||||
pub fn f64(&self, field: Field) -> crate::Result<DynamicFastFieldReader<f64>> {
|
||||
self.check_type(field, FastType::F64, Cardinality::SingleValue)?;
|
||||
self.typed_fast_field_reader(field)
|
||||
}
|
||||
@@ -179,7 +173,7 @@ impl FastFieldReaders {
|
||||
/// Returns the `bool` fast field reader reader associated to `field`.
|
||||
///
|
||||
/// If `field` is not a bool fast field, this method returns an Error.
|
||||
pub fn bool(&self, field: Field) -> crate::Result<Arc<dyn Column<bool>>> {
|
||||
pub fn bool(&self, field: Field) -> crate::Result<DynamicFastFieldReader<bool>> {
|
||||
self.check_type(field, FastType::Bool, Cardinality::SingleValue)?;
|
||||
self.typed_fast_field_reader(field)
|
||||
}
|
||||
@@ -247,8 +241,7 @@ impl FastFieldReaders {
|
||||
)));
|
||||
}
|
||||
let fast_field_idx_file = self.fast_field_data(field, 0)?;
|
||||
let fast_field_idx_bytes = fast_field_idx_file.read_bytes()?;
|
||||
let idx_reader = open(fast_field_idx_bytes)?;
|
||||
let idx_reader = DynamicFastFieldReader::open(fast_field_idx_file)?;
|
||||
let data = self.fast_field_data(field, 1)?;
|
||||
BytesFastFieldReader::open(idx_reader, data)
|
||||
} else {
|
||||
|
||||
@@ -1,112 +0,0 @@
|
||||
use fastfield_codecs::{Column, ColumnReader};
|
||||
use tantivy_bitpacker::BlockedBitpacker;
|
||||
|
||||
use crate::indexer::doc_id_mapping::DocIdMapping;
|
||||
use crate::DocId;
|
||||
|
||||
#[derive(Clone)]
|
||||
pub(crate) struct WriterFastFieldColumn<'map, 'bitp> {
|
||||
pub(crate) doc_id_mapping_opt: Option<&'map DocIdMapping>,
|
||||
pub(crate) vals: &'bitp BlockedBitpacker,
|
||||
pub(crate) min_value: u64,
|
||||
pub(crate) max_value: u64,
|
||||
pub(crate) num_vals: u64,
|
||||
}
|
||||
|
||||
impl<'map, 'bitp> Column for WriterFastFieldColumn<'map, 'bitp> {
|
||||
/// Return the value associated to the given doc.
|
||||
///
|
||||
/// Whenever possible use the Iterator passed to the fastfield creation instead, for performance
|
||||
/// reasons.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `doc` is greater than the index.
|
||||
fn get_val(&self, doc: u64) -> u64 {
|
||||
if let Some(doc_id_map) = self.doc_id_mapping_opt {
|
||||
self.vals
|
||||
.get(doc_id_map.get_old_doc_id(doc as u32) as usize) // consider extra
|
||||
// FastFieldReader wrapper for
|
||||
// non doc_id_map
|
||||
} else {
|
||||
self.vals.get(doc as usize)
|
||||
}
|
||||
}
|
||||
|
||||
fn reader(&self) -> Box<dyn ColumnReader + '_> {
|
||||
if let Some(doc_id_mapping) = self.doc_id_mapping_opt {
|
||||
Box::new(RemappedColumnReader {
|
||||
doc_id_mapping,
|
||||
vals: self.vals,
|
||||
idx: u64::MAX,
|
||||
len: doc_id_mapping.num_new_doc_ids() as u64,
|
||||
})
|
||||
} else {
|
||||
Box::new(BitpackedColumnReader {
|
||||
vals: self.vals,
|
||||
idx: u64::MAX,
|
||||
len: self.num_vals,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u64 {
|
||||
self.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
struct RemappedColumnReader<'a> {
|
||||
doc_id_mapping: &'a DocIdMapping,
|
||||
vals: &'a BlockedBitpacker,
|
||||
idx: u64,
|
||||
len: u64,
|
||||
}
|
||||
|
||||
impl<'a> ColumnReader for RemappedColumnReader<'a> {
|
||||
fn seek(&mut self, target_idx: u64) -> u64 {
|
||||
assert!(target_idx < self.len);
|
||||
self.idx = target_idx;
|
||||
self.get()
|
||||
}
|
||||
|
||||
fn advance(&mut self) -> bool {
|
||||
self.idx = self.idx.wrapping_add(1);
|
||||
self.idx < self.len
|
||||
}
|
||||
|
||||
fn get(&self) -> u64 {
|
||||
let old_doc_id: DocId = self.doc_id_mapping.get_old_doc_id(self.idx as DocId);
|
||||
self.vals.get(old_doc_id as usize)
|
||||
}
|
||||
}
|
||||
|
||||
struct BitpackedColumnReader<'a> {
|
||||
vals: &'a BlockedBitpacker,
|
||||
idx: u64,
|
||||
len: u64,
|
||||
}
|
||||
|
||||
impl<'a> ColumnReader for BitpackedColumnReader<'a> {
|
||||
fn seek(&mut self, target_idx: u64) -> u64 {
|
||||
assert!(target_idx < self.len);
|
||||
self.idx = target_idx;
|
||||
self.get()
|
||||
}
|
||||
|
||||
fn advance(&mut self) -> bool {
|
||||
self.idx = self.idx.wrapping_add(1);
|
||||
self.idx < self.len
|
||||
}
|
||||
|
||||
fn get(&self) -> u64 {
|
||||
self.vals.get(self.idx as usize)
|
||||
}
|
||||
}
|
||||
@@ -1,9 +1,17 @@
|
||||
use std::io::{self, Write};
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
pub use fastfield_codecs::Column;
|
||||
use fastfield_codecs::{FastFieldCodecType, MonotonicallyMappableToU64, ALL_CODEC_TYPES};
|
||||
use common::{BinarySerializable, CountingWriter};
|
||||
use fastdivide::DividerU64;
|
||||
pub use fastfield_codecs::bitpacked::{BitpackedCodec, BitpackedSerializerLegacy};
|
||||
use fastfield_codecs::blockwise_linear::BlockwiseLinearCodec;
|
||||
use fastfield_codecs::linear::LinearCodec;
|
||||
use fastfield_codecs::FastFieldCodecType;
|
||||
pub use fastfield_codecs::{FastFieldCodec, FastFieldDataAccess, FastFieldStats};
|
||||
|
||||
use super::{find_gcd, ALL_CODECS, GCD_DEFAULT};
|
||||
use crate::directory::{CompositeWrite, WritePtr};
|
||||
use crate::fastfield::gcd::write_gcd_header;
|
||||
use crate::schema::Field;
|
||||
|
||||
/// `CompositeFastFieldSerializer` is in charge of serializing
|
||||
@@ -15,68 +23,274 @@ use crate::schema::Field;
|
||||
/// the serializer.
|
||||
/// The serializer expects to receive the following calls.
|
||||
///
|
||||
/// * `create_auto_detect_u64_fast_field(...)`
|
||||
/// * `create_auto_detect_u64_fast_field(...)`
|
||||
/// * `new_u64_fast_field(...)`
|
||||
/// * `add_val(...)`
|
||||
/// * `add_val(...)`
|
||||
/// * `add_val(...)`
|
||||
/// * ...
|
||||
/// * `let bytes_fastfield = new_bytes_fast_field(...)`
|
||||
/// * `bytes_fastfield.write_all(...)`
|
||||
/// * `bytes_fastfield.write_all(...)`
|
||||
/// * `bytes_fastfield.flush()`
|
||||
/// * `close_field()`
|
||||
/// * `new_u64_fast_field(...)`
|
||||
/// * `add_val(...)`
|
||||
/// * ...
|
||||
/// * `close_field()`
|
||||
/// * `close()`
|
||||
pub struct CompositeFastFieldSerializer {
|
||||
composite_write: CompositeWrite<WritePtr>,
|
||||
codec_types: Vec<FastFieldCodecType>,
|
||||
codec_enable_checker: FastFieldCodecEnableCheck,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct FastFieldCodecEnableCheck {
|
||||
enabled_codecs: Vec<FastFieldCodecType>,
|
||||
}
|
||||
impl FastFieldCodecEnableCheck {
|
||||
fn allow_all() -> Self {
|
||||
FastFieldCodecEnableCheck {
|
||||
enabled_codecs: ALL_CODECS.to_vec(),
|
||||
}
|
||||
}
|
||||
fn is_enabled(&self, code_type: FastFieldCodecType) -> bool {
|
||||
self.enabled_codecs.contains(&code_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<FastFieldCodecType> for FastFieldCodecEnableCheck {
|
||||
fn from(code_type: FastFieldCodecType) -> Self {
|
||||
FastFieldCodecEnableCheck {
|
||||
enabled_codecs: vec![code_type],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// use this, when this is merged and stabilized explicit_generic_args_with_impl_trait
|
||||
// https://github.com/rust-lang/rust/pull/86176
|
||||
fn codec_estimation<C: FastFieldCodec, A: FastFieldDataAccess>(
|
||||
fastfield_accessor: &A,
|
||||
estimations: &mut Vec<(f32, FastFieldCodecType)>,
|
||||
) {
|
||||
if !C::is_applicable(fastfield_accessor) {
|
||||
return;
|
||||
}
|
||||
let ratio = C::estimate(fastfield_accessor);
|
||||
estimations.push((ratio, C::CODEC_TYPE));
|
||||
}
|
||||
|
||||
impl CompositeFastFieldSerializer {
|
||||
/// New fast field serializer with all codec types
|
||||
/// Constructor
|
||||
pub fn from_write(write: WritePtr) -> io::Result<CompositeFastFieldSerializer> {
|
||||
Self::from_write_with_codec(write, &ALL_CODEC_TYPES)
|
||||
Self::from_write_with_codec(write, FastFieldCodecEnableCheck::allow_all())
|
||||
}
|
||||
|
||||
/// New fast field serializer with allowed codec types
|
||||
/// Constructor
|
||||
pub fn from_write_with_codec(
|
||||
write: WritePtr,
|
||||
codec_types: &[FastFieldCodecType],
|
||||
codec_enable_checker: FastFieldCodecEnableCheck,
|
||||
) -> io::Result<CompositeFastFieldSerializer> {
|
||||
// just making room for the pointer to header.
|
||||
let composite_write = CompositeWrite::wrap(write);
|
||||
Ok(CompositeFastFieldSerializer {
|
||||
composite_write,
|
||||
codec_types: codec_types.to_vec(),
|
||||
codec_enable_checker,
|
||||
})
|
||||
}
|
||||
|
||||
/// Serialize data into a new u64 fast field. The best compression codec will be chosen
|
||||
/// automatically.
|
||||
pub fn create_auto_detect_u64_fast_field<T: MonotonicallyMappableToU64>(
|
||||
pub fn create_auto_detect_u64_fast_field(
|
||||
&mut self,
|
||||
field: Field,
|
||||
fastfield_accessor: impl Column<T>,
|
||||
fastfield_accessor: impl FastFieldDataAccess,
|
||||
) -> io::Result<()> {
|
||||
self.create_auto_detect_u64_fast_field_with_idx(field, fastfield_accessor, 0)
|
||||
}
|
||||
|
||||
/// Serialize data into a new u64 fast field. The best compression codec will be chosen
|
||||
/// automatically.
|
||||
pub fn create_auto_detect_u64_fast_field_with_idx<T: MonotonicallyMappableToU64>(
|
||||
&mut self,
|
||||
field: Field,
|
||||
fastfield_accessor: impl Column<T>,
|
||||
idx: usize,
|
||||
pub fn write_header<W: Write>(
|
||||
field_write: &mut W,
|
||||
codec_type: FastFieldCodecType,
|
||||
) -> io::Result<()> {
|
||||
let field_write = self.composite_write.for_field_with_idx(field, idx);
|
||||
fastfield_codecs::serialize(fastfield_accessor, field_write, &self.codec_types)?;
|
||||
codec_type.to_code().serialize(field_write)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Start serializing a new [u8] fast field. Use the returned writer to write data into the
|
||||
/// bytes field. To associate the bytes with documents a seperate index must be created on
|
||||
/// index 0. See bytes/writer.rs::serialize for an example.
|
||||
///
|
||||
/// The bytes will be stored as is, no compression will be applied.
|
||||
pub fn new_bytes_fast_field(&mut self, field: Field) -> impl Write + '_ {
|
||||
self.composite_write.for_field_with_idx(field, 1)
|
||||
/// Serialize data into a new u64 fast field. The best compression codec will be chosen
|
||||
/// automatically.
|
||||
pub fn create_auto_detect_u64_fast_field_with_idx(
|
||||
&mut self,
|
||||
field: Field,
|
||||
fastfield_accessor: impl FastFieldDataAccess,
|
||||
idx: usize,
|
||||
) -> io::Result<()> {
|
||||
let min_value = fastfield_accessor.min_value();
|
||||
let field_write = self.composite_write.for_field_with_idx(field, idx);
|
||||
let gcd = find_gcd(fastfield_accessor.iter().map(|val| val - min_value))
|
||||
.map(NonZeroU64::get)
|
||||
.unwrap_or(GCD_DEFAULT);
|
||||
|
||||
if gcd == 1 {
|
||||
return Self::create_auto_detect_u64_fast_field_with_idx_gcd(
|
||||
self.codec_enable_checker.clone(),
|
||||
field,
|
||||
field_write,
|
||||
fastfield_accessor,
|
||||
);
|
||||
}
|
||||
|
||||
Self::write_header(field_write, FastFieldCodecType::Gcd)?;
|
||||
struct GCDWrappedFFAccess<T: FastFieldDataAccess> {
|
||||
fastfield_accessor: T,
|
||||
base_value: u64,
|
||||
max_value: u64,
|
||||
num_vals: u64,
|
||||
gcd: DividerU64,
|
||||
}
|
||||
|
||||
impl<T: FastFieldDataAccess> FastFieldDataAccess for GCDWrappedFFAccess<T> {
|
||||
fn get_val(&self, position: u64) -> u64 {
|
||||
self.gcd
|
||||
.divide(self.fastfield_accessor.get_val(position) - self.base_value)
|
||||
}
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
Box::new(
|
||||
self.fastfield_accessor
|
||||
.iter()
|
||||
.map(|val| self.gcd.divide(val - self.base_value)),
|
||||
)
|
||||
}
|
||||
fn min_value(&self) -> u64 {
|
||||
0
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
let num_vals = fastfield_accessor.num_vals();
|
||||
let base_value = fastfield_accessor.min_value();
|
||||
let max_value = (fastfield_accessor.max_value() - fastfield_accessor.min_value()) / gcd;
|
||||
|
||||
let fastfield_accessor = GCDWrappedFFAccess {
|
||||
fastfield_accessor,
|
||||
base_value,
|
||||
max_value,
|
||||
num_vals,
|
||||
gcd: DividerU64::divide_by(gcd),
|
||||
};
|
||||
|
||||
Self::create_auto_detect_u64_fast_field_with_idx_gcd(
|
||||
self.codec_enable_checker.clone(),
|
||||
field,
|
||||
field_write,
|
||||
fastfield_accessor,
|
||||
)?;
|
||||
write_gcd_header(field_write, base_value, gcd, num_vals)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Serialize data into a new u64 fast field. The best compression codec will be chosen
|
||||
/// automatically.
|
||||
pub fn create_auto_detect_u64_fast_field_with_idx_gcd<W: Write>(
|
||||
codec_enable_checker: FastFieldCodecEnableCheck,
|
||||
field: Field,
|
||||
field_write: &mut CountingWriter<W>,
|
||||
fastfield_accessor: impl FastFieldDataAccess,
|
||||
) -> io::Result<()> {
|
||||
let mut estimations = vec![];
|
||||
|
||||
if codec_enable_checker.is_enabled(FastFieldCodecType::Bitpacked) {
|
||||
codec_estimation::<BitpackedCodec, _>(&fastfield_accessor, &mut estimations);
|
||||
}
|
||||
if codec_enable_checker.is_enabled(FastFieldCodecType::Linear) {
|
||||
codec_estimation::<LinearCodec, _>(&fastfield_accessor, &mut estimations);
|
||||
}
|
||||
if codec_enable_checker.is_enabled(FastFieldCodecType::BlockwiseLinear) {
|
||||
codec_estimation::<BlockwiseLinearCodec, _>(&fastfield_accessor, &mut estimations);
|
||||
}
|
||||
if let Some(broken_estimation) = estimations.iter().find(|estimation| estimation.0.is_nan())
|
||||
{
|
||||
warn!(
|
||||
"broken estimation for fast field codec {:?}",
|
||||
broken_estimation.1
|
||||
);
|
||||
}
|
||||
// removing nan values for codecs with broken calculations, and max values which disables
|
||||
// codecs
|
||||
estimations.retain(|estimation| !estimation.0.is_nan() && estimation.0 != f32::MAX);
|
||||
estimations.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap());
|
||||
let (_ratio, codec_type) = estimations[0];
|
||||
debug!("choosing fast field codec {codec_type:?} for field_id {field:?}"); // todo print actual field name
|
||||
|
||||
Self::write_header(field_write, codec_type)?;
|
||||
match codec_type {
|
||||
FastFieldCodecType::Bitpacked => {
|
||||
BitpackedCodec::serialize(field_write, &fastfield_accessor)?;
|
||||
}
|
||||
FastFieldCodecType::Linear => {
|
||||
LinearCodec::serialize(field_write, &fastfield_accessor)?;
|
||||
}
|
||||
FastFieldCodecType::BlockwiseLinear => {
|
||||
BlockwiseLinearCodec::serialize(field_write, &fastfield_accessor)?;
|
||||
}
|
||||
FastFieldCodecType::Gcd => {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
"GCD codec not supported.",
|
||||
));
|
||||
}
|
||||
}
|
||||
field_write.flush()?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Start serializing a new u64 fast field
|
||||
pub fn serialize_into(
|
||||
&mut self,
|
||||
field: Field,
|
||||
min_value: u64,
|
||||
max_value: u64,
|
||||
) -> io::Result<BitpackedSerializerLegacy<'_, CountingWriter<WritePtr>>> {
|
||||
self.new_u64_fast_field_with_idx(field, min_value, max_value, 0)
|
||||
}
|
||||
|
||||
/// Start serializing a new u64 fast field
|
||||
pub fn new_u64_fast_field(
|
||||
&mut self,
|
||||
field: Field,
|
||||
min_value: u64,
|
||||
max_value: u64,
|
||||
) -> io::Result<BitpackedSerializerLegacy<'_, CountingWriter<WritePtr>>> {
|
||||
self.new_u64_fast_field_with_idx(field, min_value, max_value, 0)
|
||||
}
|
||||
|
||||
/// Start serializing a new u64 fast field
|
||||
pub fn new_u64_fast_field_with_idx(
|
||||
&mut self,
|
||||
field: Field,
|
||||
min_value: u64,
|
||||
max_value: u64,
|
||||
idx: usize,
|
||||
) -> io::Result<BitpackedSerializerLegacy<'_, CountingWriter<WritePtr>>> {
|
||||
let field_write = self.composite_write.for_field_with_idx(field, idx);
|
||||
// Prepend codec id to field data for compatibility with DynamicFastFieldReader.
|
||||
FastFieldCodecType::Bitpacked.serialize(field_write)?;
|
||||
BitpackedSerializerLegacy::open(field_write, min_value, max_value)
|
||||
}
|
||||
|
||||
/// Start serializing a new [u8] fast field
|
||||
pub fn new_bytes_fast_field_with_idx(
|
||||
&mut self,
|
||||
field: Field,
|
||||
idx: usize,
|
||||
) -> FastBytesFieldSerializer<'_, CountingWriter<WritePtr>> {
|
||||
let field_write = self.composite_write.for_field_with_idx(field, idx);
|
||||
FastBytesFieldSerializer { write: field_write }
|
||||
}
|
||||
|
||||
/// Closes the serializer
|
||||
@@ -86,3 +300,17 @@ impl CompositeFastFieldSerializer {
|
||||
self.composite_write.close()
|
||||
}
|
||||
}
|
||||
|
||||
pub struct FastBytesFieldSerializer<'a, W: Write> {
|
||||
write: &'a mut W,
|
||||
}
|
||||
|
||||
impl<'a, W: Write> FastBytesFieldSerializer<'a, W> {
|
||||
pub fn write_all(&mut self, vals: &[u8]) -> io::Result<()> {
|
||||
self.write.write_all(vals)
|
||||
}
|
||||
|
||||
pub fn flush(&mut self) -> io::Result<()> {
|
||||
self.write.flush()
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,13 +2,13 @@ use std::collections::HashMap;
|
||||
use std::io;
|
||||
|
||||
use common;
|
||||
use fastfield_codecs::MonotonicallyMappableToU64;
|
||||
use fastfield_codecs::FastFieldDataAccess;
|
||||
use fnv::FnvHashMap;
|
||||
use tantivy_bitpacker::BlockedBitpacker;
|
||||
|
||||
use super::multivalued::MultiValuedFastFieldWriter;
|
||||
use super::FastFieldType;
|
||||
use crate::fastfield::remapped_column::WriterFastFieldColumn;
|
||||
use super::serializer::FastFieldStats;
|
||||
use super::{FastFieldType, FastValue};
|
||||
use crate::fastfield::{BytesFastFieldWriter, CompositeFastFieldSerializer};
|
||||
use crate::indexer::doc_id_mapping::DocIdMapping;
|
||||
use crate::postings::UnorderedTermId;
|
||||
@@ -169,7 +169,7 @@ impl FastFieldsWriter {
|
||||
|
||||
/// Returns the fast field multi-value writer for the given field.
|
||||
///
|
||||
/// Returns `None` if the field does not exist, or is not
|
||||
/// Returns None if the field does not exist, or is not
|
||||
/// configured as a multivalued fastfield in the schema.
|
||||
pub fn get_multivalue_writer_mut(
|
||||
&mut self,
|
||||
@@ -183,7 +183,7 @@ impl FastFieldsWriter {
|
||||
|
||||
/// Returns the bytes fast field writer for the given field.
|
||||
///
|
||||
/// Returns `None` if the field does not exist, or is not
|
||||
/// Returns None if the field does not exist, or is not
|
||||
/// configured as a bytes fastfield in the schema.
|
||||
pub fn get_bytes_writer_mut(&mut self, field: Field) -> Option<&mut BytesFastFieldWriter> {
|
||||
// TODO optimize
|
||||
@@ -211,12 +211,12 @@ impl FastFieldsWriter {
|
||||
/// Serializes all of the `FastFieldWriter`s by pushing them in
|
||||
/// order to the fast field serializer.
|
||||
pub fn serialize(
|
||||
self,
|
||||
&self,
|
||||
serializer: &mut CompositeFastFieldSerializer,
|
||||
mapping: &HashMap<Field, FnvHashMap<UnorderedTermId, TermOrdinal>>,
|
||||
doc_id_map: Option<&DocIdMapping>,
|
||||
) -> io::Result<()> {
|
||||
for field_writer in self.term_id_writers {
|
||||
for field_writer in &self.term_id_writers {
|
||||
let field = field_writer.field();
|
||||
field_writer.serialize(serializer, mapping.get(&field), doc_id_map)?;
|
||||
}
|
||||
@@ -224,11 +224,11 @@ impl FastFieldsWriter {
|
||||
field_writer.serialize(serializer, doc_id_map)?;
|
||||
}
|
||||
|
||||
for field_writer in self.multi_values_writers {
|
||||
for field_writer in &self.multi_values_writers {
|
||||
let field = field_writer.field();
|
||||
field_writer.serialize(serializer, mapping.get(&field), doc_id_map)?;
|
||||
}
|
||||
for field_writer in self.bytes_value_writers {
|
||||
for field_writer in &self.bytes_value_writers {
|
||||
field_writer.serialize(serializer, doc_id_map)?;
|
||||
}
|
||||
Ok(())
|
||||
@@ -352,7 +352,7 @@ impl IntFastFieldWriter {
|
||||
pub fn serialize(
|
||||
&self,
|
||||
serializer: &mut CompositeFastFieldSerializer,
|
||||
doc_id_mapping_opt: Option<&DocIdMapping>,
|
||||
doc_id_map: Option<&DocIdMapping>,
|
||||
) -> io::Result<()> {
|
||||
let (min, max) = if self.val_min > self.val_max {
|
||||
(0, 0)
|
||||
@@ -360,16 +360,71 @@ impl IntFastFieldWriter {
|
||||
(self.val_min, self.val_max)
|
||||
};
|
||||
|
||||
let fastfield_accessor = WriterFastFieldColumn {
|
||||
doc_id_mapping_opt,
|
||||
vals: &self.vals,
|
||||
let stats = FastFieldStats {
|
||||
min_value: min,
|
||||
max_value: max,
|
||||
num_vals: self.val_count as u64,
|
||||
};
|
||||
|
||||
let fastfield_accessor = WriterFastFieldAccessProvider {
|
||||
doc_id_map,
|
||||
vals: &self.vals,
|
||||
stats,
|
||||
};
|
||||
|
||||
serializer.create_auto_detect_u64_fast_field(self.field, fastfield_accessor)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct WriterFastFieldAccessProvider<'map, 'bitp> {
|
||||
doc_id_map: Option<&'map DocIdMapping>,
|
||||
vals: &'bitp BlockedBitpacker,
|
||||
stats: FastFieldStats,
|
||||
}
|
||||
impl<'map, 'bitp> FastFieldDataAccess for WriterFastFieldAccessProvider<'map, 'bitp> {
|
||||
/// Return the value associated to the given doc.
|
||||
///
|
||||
/// Whenever possible use the Iterator passed to the fastfield creation instead, for performance
|
||||
/// reasons.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `doc` is greater than the index.
|
||||
fn get_val(&self, doc: u64) -> u64 {
|
||||
if let Some(doc_id_map) = self.doc_id_map {
|
||||
self.vals
|
||||
.get(doc_id_map.get_old_doc_id(doc as u32) as usize) // consider extra
|
||||
// FastFieldReader wrapper for
|
||||
// non doc_id_map
|
||||
} else {
|
||||
self.vals.get(doc as usize)
|
||||
}
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
if let Some(doc_id_map) = self.doc_id_map {
|
||||
Box::new(
|
||||
doc_id_map
|
||||
.iter_old_doc_ids()
|
||||
.map(|doc_id| self.vals.get(doc_id as usize)),
|
||||
)
|
||||
} else {
|
||||
Box::new(self.vals.iter())
|
||||
}
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u64 {
|
||||
self.stats.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.stats.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.stats.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
@@ -178,7 +178,7 @@ pub struct DeleteCursor {
|
||||
impl DeleteCursor {
|
||||
/// Skips operations and position it so that
|
||||
/// - either all of the delete operation currently in the queue are consume and the next get
|
||||
/// will return `None`.
|
||||
/// will return None.
|
||||
/// - the next get will return the first operation with an
|
||||
/// `opstamp >= target_opstamp`.
|
||||
pub fn skip_to(&mut self, target_opstamp: Opstamp) {
|
||||
|
||||
@@ -91,12 +91,6 @@ impl DocIdMapping {
|
||||
.map(|old_doc| els[*old_doc as usize])
|
||||
.collect()
|
||||
}
|
||||
pub fn num_new_doc_ids(&self) -> usize {
|
||||
self.new_doc_id_to_old.len()
|
||||
}
|
||||
pub fn num_old_doc_ids(&self) -> usize {
|
||||
self.old_doc_id_to_new.len()
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn expect_field_id_for_sort_field(
|
||||
@@ -150,6 +144,7 @@ pub(crate) fn get_doc_id_mapping_from_field(
|
||||
#[cfg(test)]
|
||||
mod tests_indexsorting {
|
||||
use crate::collector::TopDocs;
|
||||
use crate::fastfield::FastFieldReader;
|
||||
use crate::indexer::doc_id_mapping::DocIdMapping;
|
||||
use crate::query::QueryParser;
|
||||
use crate::schema::{Schema, *};
|
||||
@@ -469,9 +464,9 @@ mod tests_indexsorting {
|
||||
let my_number = index.schema().get_field("my_number").unwrap();
|
||||
|
||||
let fast_field = fast_fields.u64(my_number).unwrap();
|
||||
assert_eq!(fast_field.get_val(0), 10u64);
|
||||
assert_eq!(fast_field.get_val(1), 20u64);
|
||||
assert_eq!(fast_field.get_val(2), 30u64);
|
||||
assert_eq!(fast_field.get(0u32), 10u64);
|
||||
assert_eq!(fast_field.get(1u32), 20u64);
|
||||
assert_eq!(fast_field.get(2u32), 30u64);
|
||||
|
||||
let multi_numbers = index.schema().get_field("multi_numbers").unwrap();
|
||||
let multifield = fast_fields.u64s(multi_numbers).unwrap();
|
||||
|
||||
@@ -31,7 +31,7 @@ pub const MARGIN_IN_BYTES: usize = 1_000_000;
|
||||
pub const MEMORY_ARENA_NUM_BYTES_MIN: usize = ((MARGIN_IN_BYTES as u32) * 3u32) as usize;
|
||||
pub const MEMORY_ARENA_NUM_BYTES_MAX: usize = u32::MAX as usize - MARGIN_IN_BYTES;
|
||||
|
||||
// We impose the number of index writer threads to be at most this.
|
||||
// We impose the number of index writer thread to be at most this.
|
||||
pub const MAX_NUM_THREAD: usize = 8;
|
||||
|
||||
// Add document will block if the number of docs waiting in the queue to be indexed
|
||||
@@ -40,7 +40,7 @@ const PIPELINE_MAX_SIZE_IN_DOCS: usize = 10_000;
|
||||
|
||||
fn error_in_index_worker_thread(context: &str) -> TantivyError {
|
||||
TantivyError::ErrorInThread(format!(
|
||||
"{}. A worker thread encountered an error (io::Error most likely) or panicked.",
|
||||
"{}. A worker thread encounterred an error (io::Error most likely) or panicked.",
|
||||
context
|
||||
))
|
||||
}
|
||||
@@ -49,7 +49,7 @@ fn error_in_index_worker_thread(context: &str) -> TantivyError {
|
||||
///
|
||||
/// It manages a small number of indexing thread, as well as a shared
|
||||
/// indexing queue.
|
||||
/// Each indexing thread builds its own independent [`Segment`], via
|
||||
/// Each indexing thread builds its own independent `Segment`, via
|
||||
/// a `SegmentWriter` object.
|
||||
pub struct IndexWriter {
|
||||
// the lock is just used to bind the
|
||||
@@ -174,7 +174,9 @@ fn index_documents(
|
||||
segment_updater: &mut SegmentUpdater,
|
||||
mut delete_cursor: DeleteCursor,
|
||||
) -> crate::Result<()> {
|
||||
let mut segment_writer = SegmentWriter::for_segment(memory_budget, segment.clone())?;
|
||||
let schema = segment.schema();
|
||||
|
||||
let mut segment_writer = SegmentWriter::for_segment(memory_budget, segment.clone(), schema)?;
|
||||
for document_group in grouped_document_iterator {
|
||||
for doc in document_group {
|
||||
segment_writer.add_document(doc)?;
|
||||
@@ -385,8 +387,8 @@ impl IndexWriter {
|
||||
.operation_receiver()
|
||||
.ok_or_else(|| {
|
||||
crate::TantivyError::ErrorInThread(
|
||||
"The index writer was killed. It can happen if an indexing worker encountered \
|
||||
an Io error for instance."
|
||||
"The index writer was killed. It can happen if an indexing worker \
|
||||
encounterred an Io error for instance."
|
||||
.to_string(),
|
||||
)
|
||||
})
|
||||
@@ -510,12 +512,10 @@ impl IndexWriter {
|
||||
Ok(self.committed_opstamp)
|
||||
}
|
||||
|
||||
/// Merges a given list of segments.
|
||||
///
|
||||
/// If all segments are empty no new segment will be created.
|
||||
/// Merges a given list of segments
|
||||
///
|
||||
/// `segment_ids` is required to be non-empty.
|
||||
pub fn merge(&mut self, segment_ids: &[SegmentId]) -> FutureResult<Option<SegmentMeta>> {
|
||||
pub fn merge(&mut self, segment_ids: &[SegmentId]) -> FutureResult<SegmentMeta> {
|
||||
let merge_operation = self.segment_updater.make_merge_operation(segment_ids);
|
||||
let segment_updater = self.segment_updater.clone();
|
||||
segment_updater.start_merge(merge_operation)
|
||||
@@ -595,14 +595,14 @@ impl IndexWriter {
|
||||
/// * `.commit()`: to accept this commit
|
||||
/// * `.abort()`: to cancel this commit.
|
||||
///
|
||||
/// In the current implementation, [`PreparedCommit`] borrows
|
||||
/// the [`IndexWriter`] mutably so we are guaranteed that no new
|
||||
/// In the current implementation, `PreparedCommit` borrows
|
||||
/// the `IndexWriter` mutably so we are guaranteed that no new
|
||||
/// document can be added as long as it is committed or is
|
||||
/// dropped.
|
||||
///
|
||||
/// It is also possible to add a payload to the `commit`
|
||||
/// using this API.
|
||||
/// See [`PreparedCommit::set_payload()`].
|
||||
/// See [`PreparedCommit::set_payload()`](PreparedCommit.html)
|
||||
pub fn prepare_commit(&mut self) -> crate::Result<PreparedCommit> {
|
||||
// Here, because we join all of the worker threads,
|
||||
// all of the segment update for this commit have been
|
||||
@@ -785,6 +785,7 @@ mod tests {
|
||||
use crate::collector::TopDocs;
|
||||
use crate::directory::error::LockError;
|
||||
use crate::error::*;
|
||||
use crate::fastfield::FastFieldReader;
|
||||
use crate::indexer::NoMergePolicy;
|
||||
use crate::query::{QueryParser, TermQuery};
|
||||
use crate::schema::{
|
||||
@@ -1013,92 +1014,6 @@ mod tests {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_merge_on_empty_segments_single_segment() -> crate::Result<()> {
|
||||
let mut schema_builder = schema::Schema::builder();
|
||||
let text_field = schema_builder.add_text_field("text", schema::TEXT);
|
||||
let index = Index::create_in_ram(schema_builder.build());
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::Manual)
|
||||
.try_into()?;
|
||||
let num_docs_containing = |s: &str| {
|
||||
let term_a = Term::from_field_text(text_field, s);
|
||||
reader.searcher().doc_freq(&term_a).unwrap()
|
||||
};
|
||||
// writing the segment
|
||||
let mut index_writer = index.writer(12_000_000).unwrap();
|
||||
index_writer.add_document(doc!(text_field=>"a"))?;
|
||||
index_writer.commit()?;
|
||||
// this should create 1 segment
|
||||
|
||||
let segments = index.searchable_segment_ids().unwrap();
|
||||
assert_eq!(segments.len(), 1);
|
||||
|
||||
reader.reload().unwrap();
|
||||
assert_eq!(num_docs_containing("a"), 1);
|
||||
|
||||
index_writer.delete_term(Term::from_field_text(text_field, "a"));
|
||||
index_writer.commit()?;
|
||||
|
||||
reader.reload().unwrap();
|
||||
assert_eq!(num_docs_containing("a"), 0);
|
||||
|
||||
index_writer.merge(&segments);
|
||||
index_writer.wait_merging_threads().unwrap();
|
||||
|
||||
let segments = index.searchable_segment_ids().unwrap();
|
||||
assert_eq!(segments.len(), 0);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_merge_on_empty_segments() -> crate::Result<()> {
|
||||
let mut schema_builder = schema::Schema::builder();
|
||||
let text_field = schema_builder.add_text_field("text", schema::TEXT);
|
||||
let index = Index::create_in_ram(schema_builder.build());
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::Manual)
|
||||
.try_into()?;
|
||||
let num_docs_containing = |s: &str| {
|
||||
let term_a = Term::from_field_text(text_field, s);
|
||||
reader.searcher().doc_freq(&term_a).unwrap()
|
||||
};
|
||||
// writing the segment
|
||||
let mut index_writer = index.writer(12_000_000).unwrap();
|
||||
index_writer.add_document(doc!(text_field=>"a"))?;
|
||||
index_writer.commit()?;
|
||||
index_writer.add_document(doc!(text_field=>"a"))?;
|
||||
index_writer.commit()?;
|
||||
index_writer.add_document(doc!(text_field=>"a"))?;
|
||||
index_writer.commit()?;
|
||||
index_writer.add_document(doc!(text_field=>"a"))?;
|
||||
index_writer.commit()?;
|
||||
// this should create 4 segments
|
||||
|
||||
let segments = index.searchable_segment_ids().unwrap();
|
||||
assert_eq!(segments.len(), 4);
|
||||
|
||||
reader.reload().unwrap();
|
||||
assert_eq!(num_docs_containing("a"), 4);
|
||||
|
||||
index_writer.delete_term(Term::from_field_text(text_field, "a"));
|
||||
index_writer.commit()?;
|
||||
|
||||
reader.reload().unwrap();
|
||||
assert_eq!(num_docs_containing("a"), 0);
|
||||
|
||||
index_writer.merge(&segments);
|
||||
index_writer.wait_merging_threads().unwrap();
|
||||
|
||||
let segments = index.searchable_segment_ids().unwrap();
|
||||
assert_eq!(segments.len(), 0);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_merges() -> crate::Result<()> {
|
||||
let mut schema_builder = schema::Schema::builder();
|
||||
@@ -1412,7 +1327,7 @@ mod tests {
|
||||
let fast_field_reader = segment_reader.fast_fields().u64(id_field)?;
|
||||
let in_order_alive_ids: Vec<u64> = segment_reader
|
||||
.doc_ids_alive()
|
||||
.map(|doc| fast_field_reader.get_val(doc as u64))
|
||||
.map(|doc| fast_field_reader.get(doc))
|
||||
.collect();
|
||||
assert_eq!(&in_order_alive_ids[..], &[9, 8, 7, 6, 5, 4, 1, 0]);
|
||||
Ok(())
|
||||
@@ -1578,7 +1493,7 @@ mod tests {
|
||||
let ff_reader = segment_reader.fast_fields().u64(id_field).unwrap();
|
||||
segment_reader
|
||||
.doc_ids_alive()
|
||||
.map(move |doc| ff_reader.get_val(doc as u64))
|
||||
.map(move |doc| ff_reader.get(doc))
|
||||
})
|
||||
.collect();
|
||||
|
||||
@@ -1589,7 +1504,7 @@ mod tests {
|
||||
let ff_reader = segment_reader.fast_fields().u64(id_field).unwrap();
|
||||
segment_reader
|
||||
.doc_ids_alive()
|
||||
.map(move |doc| ff_reader.get_val(doc as u64))
|
||||
.map(move |doc| ff_reader.get(doc))
|
||||
})
|
||||
.collect();
|
||||
|
||||
@@ -1617,7 +1532,6 @@ mod tests {
|
||||
|
||||
// multivalue fast field tests
|
||||
for segment_reader in searcher.segment_readers().iter() {
|
||||
let id_reader = segment_reader.fast_fields().u64(id_field).unwrap();
|
||||
let ff_reader = segment_reader.fast_fields().u64s(multi_numbers).unwrap();
|
||||
let bool_ff_reader = segment_reader.fast_fields().bools(multi_bools).unwrap();
|
||||
for doc in segment_reader.doc_ids_alive() {
|
||||
@@ -1625,7 +1539,6 @@ mod tests {
|
||||
ff_reader.get_vals(doc, &mut vals);
|
||||
assert_eq!(vals.len(), 2);
|
||||
assert_eq!(vals[0], vals[1]);
|
||||
assert_eq!(id_reader.get_val(doc as u64), vals[0]);
|
||||
|
||||
let mut bool_vals = vec![];
|
||||
bool_ff_reader.get_vals(doc, &mut bool_vals);
|
||||
@@ -1709,7 +1622,7 @@ mod tests {
|
||||
facet_reader
|
||||
.facet_from_ord(facet_ords[0], &mut facet)
|
||||
.unwrap();
|
||||
let id = ff_reader.get_val(doc_id as u64);
|
||||
let id = ff_reader.get(doc_id);
|
||||
let facet_expected = Facet::from(&("/cola/".to_string() + &id.to_string()));
|
||||
|
||||
assert_eq!(facet, facet_expected);
|
||||
|
||||
@@ -15,7 +15,7 @@ impl IndexWriterStatus {
|
||||
}
|
||||
|
||||
/// Returns a copy of the operation receiver.
|
||||
/// If the index writer was killed, returns `None`.
|
||||
/// If the index writer was killed, returns None.
|
||||
pub fn operation_receiver(&self) -> Option<AddBatchReceiver> {
|
||||
let rlock = self
|
||||
.inner
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
use fastfield_codecs::MonotonicallyMappableToU64;
|
||||
use fnv::FnvHashMap;
|
||||
use murmurhash32::murmurhash2;
|
||||
|
||||
|
||||
@@ -1,21 +1,20 @@
|
||||
use std::cmp;
|
||||
use std::collections::HashMap;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::VecColumn;
|
||||
use itertools::Itertools;
|
||||
use measure_time::debug_time;
|
||||
use tantivy_bitpacker::minmax;
|
||||
|
||||
use crate::core::{Segment, SegmentReader};
|
||||
use crate::docset::{DocSet, TERMINATED};
|
||||
use crate::error::DataCorruption;
|
||||
use crate::fastfield::{
|
||||
AliveBitSet, Column, CompositeFastFieldSerializer, MultiValueLength, MultiValuedFastFieldReader,
|
||||
AliveBitSet, CompositeFastFieldSerializer, DynamicFastFieldReader, FastFieldDataAccess,
|
||||
FastFieldReader, FastFieldStats, MultiValueLength, MultiValuedFastFieldReader,
|
||||
};
|
||||
use crate::fieldnorm::{FieldNormReader, FieldNormReaders, FieldNormsSerializer, FieldNormsWriter};
|
||||
use crate::indexer::doc_id_mapping::{expect_field_id_for_sort_field, SegmentDocIdMapping};
|
||||
use crate::indexer::sorted_doc_id_column::SortedDocIdColumn;
|
||||
use crate::indexer::sorted_doc_id_multivalue_column::SortedDocIdMultiValueColumn;
|
||||
use crate::indexer::SegmentSerializer;
|
||||
use crate::postings::{InvertedIndexSerializer, Postings, SegmentPostings};
|
||||
use crate::schema::{Cardinality, Field, FieldType, Schema};
|
||||
@@ -88,6 +87,28 @@ pub struct IndexMerger {
|
||||
max_doc: u32,
|
||||
}
|
||||
|
||||
fn compute_min_max_val(
|
||||
u64_reader: &impl FastFieldReader<u64>,
|
||||
segment_reader: &SegmentReader,
|
||||
) -> Option<(u64, u64)> {
|
||||
if segment_reader.max_doc() == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
if segment_reader.alive_bitset().is_none() {
|
||||
// no deleted documents,
|
||||
// we can use the previous min_val, max_val.
|
||||
return Some((u64_reader.min_value(), u64_reader.max_value()));
|
||||
}
|
||||
// some deleted documents,
|
||||
// we need to recompute the max / min
|
||||
minmax(
|
||||
segment_reader
|
||||
.doc_ids_alive()
|
||||
.map(|doc_id| u64_reader.get(doc_id)),
|
||||
)
|
||||
}
|
||||
|
||||
struct TermOrdinalMapping {
|
||||
per_segment_new_term_ordinals: Vec<Vec<TermOrdinal>>,
|
||||
}
|
||||
@@ -109,6 +130,14 @@ impl TermOrdinalMapping {
|
||||
fn get_segment(&self, segment_ord: usize) -> &[TermOrdinal] {
|
||||
&(self.per_segment_new_term_ordinals[segment_ord])[..]
|
||||
}
|
||||
|
||||
fn max_term_ord(&self) -> TermOrdinal {
|
||||
self.per_segment_new_term_ordinals
|
||||
.iter()
|
||||
.flat_map(|term_ordinals| term_ordinals.iter().max())
|
||||
.max()
|
||||
.unwrap_or_default()
|
||||
}
|
||||
}
|
||||
|
||||
struct DeltaComputer {
|
||||
@@ -171,7 +200,6 @@ impl IndexMerger {
|
||||
readers.push(reader);
|
||||
}
|
||||
}
|
||||
|
||||
let max_doc = readers.iter().map(|reader| reader.num_docs()).sum();
|
||||
if let Some(sort_by_field) = index_settings.sort_by_field.as_ref() {
|
||||
readers = Self::sort_readers_by_min_sort_field(readers, sort_by_field)?;
|
||||
@@ -310,8 +338,82 @@ impl IndexMerger {
|
||||
fast_field_serializer: &mut CompositeFastFieldSerializer,
|
||||
doc_id_mapping: &SegmentDocIdMapping,
|
||||
) -> crate::Result<()> {
|
||||
let fast_field_accessor = SortedDocIdColumn::new(&self.readers, doc_id_mapping, field);
|
||||
fast_field_serializer.create_auto_detect_u64_fast_field(field, fast_field_accessor)?;
|
||||
let (min_value, max_value) = self
|
||||
.readers
|
||||
.iter()
|
||||
.filter_map(|reader| {
|
||||
let u64_reader: DynamicFastFieldReader<u64> =
|
||||
reader.fast_fields().typed_fast_field_reader(field).expect(
|
||||
"Failed to find a reader for single fast field. This is a tantivy bug and \
|
||||
it should never happen.",
|
||||
);
|
||||
compute_min_max_val(&u64_reader, reader)
|
||||
})
|
||||
.reduce(|a, b| (a.0.min(b.0), a.1.max(b.1)))
|
||||
.expect("Unexpected error, empty readers in IndexMerger");
|
||||
|
||||
let fast_field_readers = self
|
||||
.readers
|
||||
.iter()
|
||||
.map(|reader| {
|
||||
let u64_reader: DynamicFastFieldReader<u64> =
|
||||
reader.fast_fields().typed_fast_field_reader(field).expect(
|
||||
"Failed to find a reader for single fast field. This is a tantivy bug and \
|
||||
it should never happen.",
|
||||
);
|
||||
u64_reader
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let stats = FastFieldStats {
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: doc_id_mapping.len() as u64,
|
||||
};
|
||||
#[derive(Clone)]
|
||||
struct SortedDocIdFieldAccessProvider<'a> {
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
fast_field_readers: &'a Vec<DynamicFastFieldReader<u64>>,
|
||||
stats: FastFieldStats,
|
||||
}
|
||||
impl<'a> FastFieldDataAccess for SortedDocIdFieldAccessProvider<'a> {
|
||||
fn get_val(&self, doc: u64) -> u64 {
|
||||
let DocAddress {
|
||||
doc_id,
|
||||
segment_ord,
|
||||
} = self.doc_id_mapping.get_old_doc_addr(doc as u32);
|
||||
self.fast_field_readers[segment_ord as usize].get(doc_id)
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
Box::new(
|
||||
self.doc_id_mapping
|
||||
.iter_old_doc_addrs()
|
||||
.map(|old_doc_addr| {
|
||||
let fast_field_reader =
|
||||
&self.fast_field_readers[old_doc_addr.segment_ord as usize];
|
||||
fast_field_reader.get(old_doc_addr.doc_id)
|
||||
}),
|
||||
)
|
||||
}
|
||||
fn min_value(&self) -> u64 {
|
||||
self.stats.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.stats.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.stats.num_vals
|
||||
}
|
||||
}
|
||||
let fastfield_accessor = SortedDocIdFieldAccessProvider {
|
||||
doc_id_mapping,
|
||||
fast_field_readers: &fast_field_readers,
|
||||
stats,
|
||||
};
|
||||
fast_field_serializer.create_auto_detect_u64_fast_field(field, fastfield_accessor)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -327,7 +429,7 @@ impl IndexMerger {
|
||||
|
||||
let everything_is_in_order = reader_ordinal_and_field_accessors
|
||||
.into_iter()
|
||||
.map(|(_, col)| Arc::new(col))
|
||||
.map(|reader| reader.1)
|
||||
.tuple_windows()
|
||||
.all(|(field_accessor1, field_accessor2)| {
|
||||
if sort_by_field.order.is_asc() {
|
||||
@@ -342,7 +444,7 @@ impl IndexMerger {
|
||||
pub(crate) fn get_sort_field_accessor(
|
||||
reader: &SegmentReader,
|
||||
sort_by_field: &IndexSortByField,
|
||||
) -> crate::Result<Arc<dyn Column>> {
|
||||
) -> crate::Result<impl FastFieldReader<u64>> {
|
||||
let field_id = expect_field_id_for_sort_field(reader.schema(), sort_by_field)?; // for now expect fastfield, but not strictly required
|
||||
let value_accessor = reader.fast_fields().u64_lenient(field_id)?;
|
||||
Ok(value_accessor)
|
||||
@@ -351,7 +453,7 @@ impl IndexMerger {
|
||||
pub(crate) fn get_reader_with_sort_field_accessor(
|
||||
&self,
|
||||
sort_by_field: &IndexSortByField,
|
||||
) -> crate::Result<Vec<(SegmentOrdinal, Arc<dyn Column>)>> {
|
||||
) -> crate::Result<Vec<(SegmentOrdinal, impl FastFieldReader<u64> + Clone)>> {
|
||||
let reader_ordinal_and_field_accessors = self
|
||||
.readers
|
||||
.iter()
|
||||
@@ -404,8 +506,8 @@ impl IndexMerger {
|
||||
doc_id_reader_pair
|
||||
.into_iter()
|
||||
.kmerge_by(|a, b| {
|
||||
let val1 = a.2.get_val(a.0 as u64);
|
||||
let val2 = b.2.get_val(b.0 as u64);
|
||||
let val1 = a.2.get(a.0);
|
||||
let val2 = b.2.get(b.0);
|
||||
if sort_by_field.order == Order::Asc {
|
||||
val1 < val2
|
||||
} else {
|
||||
@@ -429,6 +531,31 @@ impl IndexMerger {
|
||||
doc_id_mapping: &SegmentDocIdMapping,
|
||||
reader_and_field_accessors: &[(&SegmentReader, T)],
|
||||
) -> crate::Result<Vec<u64>> {
|
||||
let mut total_num_vals = 0u64;
|
||||
// In the first pass, we compute the total number of vals.
|
||||
//
|
||||
// This is required by the bitpacker, as it needs to know
|
||||
// what should be the bit length use for bitpacking.
|
||||
let mut num_docs = 0;
|
||||
for (reader, u64s_reader) in reader_and_field_accessors.iter() {
|
||||
if let Some(alive_bitset) = reader.alive_bitset() {
|
||||
num_docs += alive_bitset.num_alive_docs() as u64;
|
||||
for doc in reader.doc_ids_alive() {
|
||||
let num_vals = u64s_reader.get_len(doc) as u64;
|
||||
total_num_vals += num_vals;
|
||||
}
|
||||
} else {
|
||||
num_docs += reader.max_doc() as u64;
|
||||
total_num_vals += u64s_reader.get_total_len();
|
||||
}
|
||||
}
|
||||
|
||||
let stats = FastFieldStats {
|
||||
max_value: total_num_vals,
|
||||
// The fastfield offset index contains (num_docs + 1) values.
|
||||
num_vals: num_docs + 1,
|
||||
min_value: 0,
|
||||
};
|
||||
// We can now create our `idx` serializer, and in a second pass,
|
||||
// can effectively push the different indexes.
|
||||
|
||||
@@ -446,7 +573,35 @@ impl IndexMerger {
|
||||
}
|
||||
offsets.push(offset);
|
||||
|
||||
let fastfield_accessor = VecColumn::from(&offsets[..]);
|
||||
#[derive(Clone)]
|
||||
struct FieldIndexAccessProvider<'a> {
|
||||
offsets: &'a [u64],
|
||||
stats: FastFieldStats,
|
||||
}
|
||||
impl<'a> FastFieldDataAccess for FieldIndexAccessProvider<'a> {
|
||||
fn get_val(&self, doc: u64) -> u64 {
|
||||
self.offsets[doc as usize]
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
Box::new(self.offsets.iter().cloned())
|
||||
}
|
||||
fn min_value(&self) -> u64 {
|
||||
self.stats.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.stats.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.stats.num_vals
|
||||
}
|
||||
}
|
||||
let fastfield_accessor = FieldIndexAccessProvider {
|
||||
offsets: &offsets,
|
||||
stats,
|
||||
};
|
||||
|
||||
fast_field_serializer.create_auto_detect_u64_fast_field(field, fastfield_accessor)?;
|
||||
Ok(offsets)
|
||||
@@ -464,7 +619,7 @@ impl IndexMerger {
|
||||
.map(|reader| {
|
||||
let u64s_reader: MultiValuedFastFieldReader<u64> = reader
|
||||
.fast_fields()
|
||||
.typed_fast_field_multi_reader::<u64>(field)
|
||||
.typed_fast_field_multi_reader(field)
|
||||
.expect(
|
||||
"Failed to find index for multivalued field. This is a bug in tantivy, \
|
||||
please report.",
|
||||
@@ -510,23 +665,25 @@ impl IndexMerger {
|
||||
.collect::<Vec<_>>();
|
||||
// We can now write the actual fast field values.
|
||||
// In the case of hierarchical facets, they are actually term ordinals.
|
||||
let max_term_ord = term_ordinal_mappings.max_term_ord();
|
||||
{
|
||||
let mut vals = Vec::new();
|
||||
let mut buffer = Vec::new();
|
||||
let mut serialize_vals =
|
||||
fast_field_serializer.new_u64_fast_field_with_idx(field, 0u64, max_term_ord, 1)?;
|
||||
let mut vals = Vec::with_capacity(100);
|
||||
|
||||
for old_doc_addr in doc_id_mapping.iter_old_doc_addrs() {
|
||||
let term_ordinal_mapping: &[TermOrdinal] =
|
||||
term_ordinal_mappings.get_segment(old_doc_addr.segment_ord as usize);
|
||||
|
||||
let ff_reader = &fast_field_reader[old_doc_addr.segment_ord as usize];
|
||||
ff_reader.get_vals(old_doc_addr.doc_id, &mut buffer);
|
||||
for &prev_term_ord in &buffer {
|
||||
ff_reader.get_vals(old_doc_addr.doc_id, &mut vals);
|
||||
for &prev_term_ord in &vals {
|
||||
let new_term_ord = term_ordinal_mapping[prev_term_ord as usize];
|
||||
vals.push(new_term_ord);
|
||||
serialize_vals.add_val(new_term_ord)?;
|
||||
}
|
||||
}
|
||||
|
||||
let col = VecColumn::from(&vals[..]);
|
||||
fast_field_serializer.create_auto_detect_u64_fast_field_with_idx(field, col, 1)?;
|
||||
serialize_vals.close_field()?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
@@ -569,8 +726,115 @@ impl IndexMerger {
|
||||
let offsets =
|
||||
self.write_multi_value_fast_field_idx(field, fast_field_serializer, doc_id_mapping)?;
|
||||
|
||||
let fastfield_accessor =
|
||||
SortedDocIdMultiValueColumn::new(&self.readers, doc_id_mapping, &offsets, field);
|
||||
let mut min_value = u64::MAX;
|
||||
let mut max_value = u64::MIN;
|
||||
let mut num_vals = 0;
|
||||
|
||||
let mut vals = Vec::with_capacity(100);
|
||||
|
||||
let mut ff_readers = Vec::new();
|
||||
|
||||
// Our values are bitpacked and we need to know what should be
|
||||
// our bitwidth and our minimum value before serializing any values.
|
||||
//
|
||||
// Computing those is non-trivial if some documents are deleted.
|
||||
// We go through a complete first pass to compute the minimum and the
|
||||
// maximum value and initialize our Serializer.
|
||||
for reader in &self.readers {
|
||||
let ff_reader: MultiValuedFastFieldReader<u64> = reader
|
||||
.fast_fields()
|
||||
.typed_fast_field_multi_reader(field)
|
||||
.expect(
|
||||
"Failed to find multivalued fast field reader. This is a bug in tantivy. \
|
||||
Please report.",
|
||||
);
|
||||
for doc in reader.doc_ids_alive() {
|
||||
ff_reader.get_vals(doc, &mut vals);
|
||||
for &val in &vals {
|
||||
min_value = cmp::min(val, min_value);
|
||||
max_value = cmp::max(val, max_value);
|
||||
}
|
||||
num_vals += vals.len();
|
||||
}
|
||||
ff_readers.push(ff_reader);
|
||||
// TODO optimize when no deletes
|
||||
}
|
||||
|
||||
if min_value > max_value {
|
||||
min_value = 0;
|
||||
max_value = 0;
|
||||
}
|
||||
|
||||
// We can now initialize our serializer, and push it the different values
|
||||
let stats = FastFieldStats {
|
||||
max_value,
|
||||
num_vals: num_vals as u64,
|
||||
min_value,
|
||||
};
|
||||
|
||||
struct SortedDocIdMultiValueAccessProvider<'a> {
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
fast_field_readers: &'a Vec<MultiValuedFastFieldReader<u64>>,
|
||||
offsets: Vec<u64>,
|
||||
stats: FastFieldStats,
|
||||
}
|
||||
impl<'a> FastFieldDataAccess for SortedDocIdMultiValueAccessProvider<'a> {
|
||||
fn get_val(&self, pos: u64) -> u64 {
|
||||
// use the offsets index to find the doc_id which will contain the position.
|
||||
// the offsets are strictly increasing so we can do a simple search on it.
|
||||
let new_doc_id: DocId =
|
||||
self.offsets
|
||||
.iter()
|
||||
.position(|offset| offset > pos)
|
||||
.expect("pos is out of bounds") as DocId
|
||||
- 1u32;
|
||||
|
||||
// now we need to find the position of `pos` in the multivalued bucket
|
||||
let num_pos_covered_until_now = self.offsets[new_doc_id as usize];
|
||||
let pos_in_values = pos - num_pos_covered_until_now;
|
||||
|
||||
let old_doc_addr = self.doc_id_mapping.get_old_doc_addr(new_doc_id);
|
||||
let num_vals = self.fast_field_readers[old_doc_addr.segment_ord as usize]
|
||||
.get_len(old_doc_addr.doc_id);
|
||||
assert!(num_vals >= pos_in_values);
|
||||
let mut vals = Vec::new();
|
||||
self.fast_field_readers[old_doc_addr.segment_ord as usize]
|
||||
.get_vals(old_doc_addr.doc_id, &mut vals);
|
||||
|
||||
vals[pos_in_values as usize]
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
Box::new(
|
||||
self.doc_id_mapping
|
||||
.iter_old_doc_addrs()
|
||||
.flat_map(|old_doc_addr| {
|
||||
let ff_reader =
|
||||
&self.fast_field_readers[old_doc_addr.segment_ord as usize];
|
||||
let mut vals = Vec::new();
|
||||
ff_reader.get_vals(old_doc_addr.doc_id, &mut vals);
|
||||
vals.into_iter()
|
||||
}),
|
||||
)
|
||||
}
|
||||
fn min_value(&self) -> u64 {
|
||||
self.stats.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.stats.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.stats.num_vals
|
||||
}
|
||||
}
|
||||
let fastfield_accessor = SortedDocIdMultiValueAccessProvider {
|
||||
doc_id_mapping,
|
||||
fast_field_readers: &ff_readers,
|
||||
offsets,
|
||||
stats,
|
||||
};
|
||||
fast_field_serializer.create_auto_detect_u64_fast_field_with_idx(
|
||||
field,
|
||||
fastfield_accessor,
|
||||
@@ -604,7 +868,7 @@ impl IndexMerger {
|
||||
doc_id_mapping,
|
||||
&reader_and_field_accessors,
|
||||
)?;
|
||||
let mut serialize_vals = fast_field_serializer.new_bytes_fast_field(field);
|
||||
let mut serialize_vals = fast_field_serializer.new_bytes_fast_field_with_idx(field, 1);
|
||||
|
||||
for old_doc_addr in doc_id_mapping.iter_old_doc_addrs() {
|
||||
let bytes_reader = &reader_and_field_accessors[old_doc_addr.segment_ord as usize].1;
|
||||
@@ -943,6 +1207,7 @@ mod tests {
|
||||
};
|
||||
use crate::collector::{Count, FacetCollector};
|
||||
use crate::core::Index;
|
||||
use crate::fastfield::FastFieldReader;
|
||||
use crate::query::{AllQuery, BooleanQuery, Scorer, TermQuery};
|
||||
use crate::schema::{
|
||||
Cardinality, Document, Facet, FacetOptions, IndexRecordOption, NumericOptions, Term,
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
mod tests {
|
||||
use crate::collector::TopDocs;
|
||||
use crate::core::Index;
|
||||
use crate::fastfield::{AliveBitSet, MultiValuedFastFieldReader};
|
||||
use crate::fastfield::{AliveBitSet, FastFieldReader, MultiValuedFastFieldReader};
|
||||
use crate::query::QueryParser;
|
||||
use crate::schema::{
|
||||
self, BytesOptions, Cardinality, Facet, FacetOptions, IndexRecordOption, NumericOptions,
|
||||
@@ -186,17 +186,17 @@ mod tests {
|
||||
|
||||
let fast_fields = segment_reader.fast_fields();
|
||||
let fast_field = fast_fields.u64(int_field).unwrap();
|
||||
assert_eq!(fast_field.get_val(5), 1u64);
|
||||
assert_eq!(fast_field.get_val(4), 2u64);
|
||||
assert_eq!(fast_field.get_val(3), 3u64);
|
||||
assert_eq!(fast_field.get(5u32), 1u64);
|
||||
assert_eq!(fast_field.get(4u32), 2u64);
|
||||
assert_eq!(fast_field.get(3u32), 3u64);
|
||||
if force_disjunct_segment_sort_values {
|
||||
assert_eq!(fast_field.get_val(2u64), 20u64);
|
||||
assert_eq!(fast_field.get_val(1u64), 100u64);
|
||||
assert_eq!(fast_field.get(2u32), 20u64);
|
||||
assert_eq!(fast_field.get(1u32), 100u64);
|
||||
} else {
|
||||
assert_eq!(fast_field.get_val(2u64), 10u64);
|
||||
assert_eq!(fast_field.get_val(1u64), 20u64);
|
||||
assert_eq!(fast_field.get(2u32), 10u64);
|
||||
assert_eq!(fast_field.get(1u32), 20u64);
|
||||
}
|
||||
assert_eq!(fast_field.get_val(0u64), 1_000u64);
|
||||
assert_eq!(fast_field.get(0u32), 1_000u64);
|
||||
|
||||
// test new field norm mapping
|
||||
{
|
||||
@@ -373,12 +373,12 @@ mod tests {
|
||||
|
||||
let fast_fields = segment_reader.fast_fields();
|
||||
let fast_field = fast_fields.u64(int_field).unwrap();
|
||||
assert_eq!(fast_field.get_val(0), 1u64);
|
||||
assert_eq!(fast_field.get_val(1), 2u64);
|
||||
assert_eq!(fast_field.get_val(2), 3u64);
|
||||
assert_eq!(fast_field.get_val(3), 10u64);
|
||||
assert_eq!(fast_field.get_val(4), 20u64);
|
||||
assert_eq!(fast_field.get_val(5), 1_000u64);
|
||||
assert_eq!(fast_field.get(0u32), 1u64);
|
||||
assert_eq!(fast_field.get(1u32), 2u64);
|
||||
assert_eq!(fast_field.get(2u32), 3u64);
|
||||
assert_eq!(fast_field.get(3u32), 10u64);
|
||||
assert_eq!(fast_field.get(4u32), 20u64);
|
||||
assert_eq!(fast_field.get(5u32), 1_000u64);
|
||||
|
||||
let get_vals = |fast_field: &MultiValuedFastFieldReader<u64>, doc_id: u32| -> Vec<u64> {
|
||||
let mut vals = vec![];
|
||||
@@ -478,12 +478,11 @@ mod tests {
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench_sorted_index_merge {
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
use test::{self, Bencher};
|
||||
|
||||
use crate::core::Index;
|
||||
// use cratedoc_id, readerdoc_id_mappinglet vals = reader.fate::schema;
|
||||
use crate::fastfield::{DynamicFastFieldReader, FastFieldReader};
|
||||
use crate::indexer::merger::IndexMerger;
|
||||
use crate::schema::{Cardinality, NumericOptions, Schema};
|
||||
use crate::{IndexSettings, IndexSortByField, IndexWriter, Order};
|
||||
@@ -535,7 +534,7 @@ mod bench_sorted_index_merge {
|
||||
b.iter(|| {
|
||||
let sorted_doc_ids = doc_id_mapping.iter_old_doc_addrs().map(|doc_addr| {
|
||||
let reader = &merger.readers[doc_addr.segment_ord as usize];
|
||||
let u64_reader: Arc<dyn Column<u64>> =
|
||||
let u64_reader: DynamicFastFieldReader<u64> =
|
||||
reader.fast_fields().typed_fast_field_reader(field).expect(
|
||||
"Failed to find a reader for single fast field. This is a tantivy bug and \
|
||||
it should never happen.",
|
||||
@@ -545,7 +544,7 @@ mod bench_sorted_index_merge {
|
||||
// add values in order of the new doc_ids
|
||||
let mut val = 0;
|
||||
for (doc_id, _reader, field_reader) in sorted_doc_ids {
|
||||
val = field_reader.get_val(doc_id as u64);
|
||||
val = field_reader.get(doc_id);
|
||||
}
|
||||
|
||||
val
|
||||
|
||||
@@ -19,8 +19,6 @@ mod segment_register;
|
||||
pub mod segment_serializer;
|
||||
pub mod segment_updater;
|
||||
mod segment_writer;
|
||||
mod sorted_doc_id_column;
|
||||
mod sorted_doc_id_multivalue_column;
|
||||
mod stamper;
|
||||
|
||||
use crossbeam_channel as channel;
|
||||
|
||||
@@ -173,7 +173,6 @@ impl SegmentManager {
|
||||
.to_string();
|
||||
return Err(TantivyError::InvalidArgument(error_msg));
|
||||
}
|
||||
|
||||
Ok(segment_entries)
|
||||
}
|
||||
|
||||
@@ -187,7 +186,7 @@ impl SegmentManager {
|
||||
pub(crate) fn end_merge(
|
||||
&self,
|
||||
before_merge_segment_ids: &[SegmentId],
|
||||
after_merge_segment_entry: Option<SegmentEntry>,
|
||||
after_merge_segment_entry: SegmentEntry,
|
||||
) -> crate::Result<SegmentsStatus> {
|
||||
let mut registers_lock = self.write();
|
||||
let segments_status = registers_lock
|
||||
@@ -208,9 +207,7 @@ impl SegmentManager {
|
||||
for segment_id in before_merge_segment_ids {
|
||||
target_register.remove_segment(segment_id);
|
||||
}
|
||||
if let Some(entry) = after_merge_segment_entry {
|
||||
target_register.add_segment_entry(entry);
|
||||
}
|
||||
target_register.add_segment_entry(after_merge_segment_entry);
|
||||
Ok(segments_status)
|
||||
}
|
||||
|
||||
|
||||
@@ -38,16 +38,11 @@ impl SegmentSerializer {
|
||||
let fieldnorms_serializer = FieldNormsSerializer::from_write(fieldnorms_write)?;
|
||||
|
||||
let postings_serializer = InvertedIndexSerializer::open(&mut segment)?;
|
||||
let settings = segment.index().settings();
|
||||
let store_writer = StoreWriter::new(
|
||||
store_write,
|
||||
settings.docstore_compression,
|
||||
settings.docstore_blocksize,
|
||||
settings.docstore_compress_dedicated_thread,
|
||||
)?;
|
||||
let compressor = segment.index().settings().docstore_compression;
|
||||
let blocksize = segment.index().settings().docstore_blocksize;
|
||||
Ok(SegmentSerializer {
|
||||
segment,
|
||||
store_writer,
|
||||
store_writer: StoreWriter::new(store_write, compressor, blocksize)?,
|
||||
fast_field_serializer,
|
||||
fieldnorms_serializer: Some(fieldnorms_serializer),
|
||||
postings_serializer,
|
||||
|
||||
@@ -25,10 +25,39 @@ use crate::indexer::{
|
||||
DefaultMergePolicy, MergeCandidate, MergeOperation, MergePolicy, SegmentEntry,
|
||||
SegmentSerializer,
|
||||
};
|
||||
use crate::schema::Schema;
|
||||
use crate::{FutureResult, Opstamp};
|
||||
|
||||
const NUM_MERGE_THREADS: usize = 4;
|
||||
|
||||
/// Save the index meta file.
|
||||
/// This operation is atomic :
|
||||
/// Either
|
||||
/// - it fails, in which case an error is returned,
|
||||
/// and the `meta.json` remains untouched,
|
||||
/// - it succeeds, and `meta.json` is written
|
||||
/// and flushed.
|
||||
///
|
||||
/// This method is not part of tantivy's public API
|
||||
pub fn save_new_metas(
|
||||
schema: Schema,
|
||||
index_settings: IndexSettings,
|
||||
directory: &dyn Directory,
|
||||
) -> crate::Result<()> {
|
||||
save_metas(
|
||||
&IndexMeta {
|
||||
index_settings,
|
||||
segments: Vec::new(),
|
||||
schema,
|
||||
opstamp: 0u64,
|
||||
payload: None,
|
||||
},
|
||||
directory,
|
||||
)?;
|
||||
directory.sync_directory()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Save the index meta file.
|
||||
/// This operation is atomic:
|
||||
/// Either
|
||||
@@ -38,7 +67,7 @@ const NUM_MERGE_THREADS: usize = 4;
|
||||
/// and flushed.
|
||||
///
|
||||
/// This method is not part of tantivy's public API
|
||||
pub(crate) fn save_metas(metas: &IndexMeta, directory: &dyn Directory) -> crate::Result<()> {
|
||||
fn save_metas(metas: &IndexMeta, directory: &dyn Directory) -> crate::Result<()> {
|
||||
info!("save metas");
|
||||
let mut buffer = serde_json::to_vec_pretty(metas)?;
|
||||
// Just adding a new line at the end of the buffer.
|
||||
@@ -91,15 +120,7 @@ fn merge(
|
||||
index: &Index,
|
||||
mut segment_entries: Vec<SegmentEntry>,
|
||||
target_opstamp: Opstamp,
|
||||
) -> crate::Result<Option<SegmentEntry>> {
|
||||
let num_docs = segment_entries
|
||||
.iter()
|
||||
.map(|segment| segment.meta().num_docs() as u64)
|
||||
.sum::<u64>();
|
||||
if num_docs == 0 {
|
||||
return Ok(None);
|
||||
}
|
||||
|
||||
) -> crate::Result<SegmentEntry> {
|
||||
// first we need to apply deletes to our segment.
|
||||
let merged_segment = index.new_segment();
|
||||
|
||||
@@ -128,7 +149,7 @@ fn merge(
|
||||
let merged_segment_id = merged_segment.id();
|
||||
|
||||
let segment_meta = index.new_segment_meta(merged_segment_id, num_docs);
|
||||
Ok(Some(SegmentEntry::new(segment_meta, delete_cursor, None)))
|
||||
Ok(SegmentEntry::new(segment_meta, delete_cursor, None))
|
||||
}
|
||||
|
||||
/// Advanced: Merges a list of segments from different indices in a new index.
|
||||
@@ -483,10 +504,7 @@ impl SegmentUpdater {
|
||||
// suggested and the moment when it ended up being executed.)
|
||||
//
|
||||
// `segment_ids` is required to be non-empty.
|
||||
pub fn start_merge(
|
||||
&self,
|
||||
merge_operation: MergeOperation,
|
||||
) -> FutureResult<Option<SegmentMeta>> {
|
||||
pub fn start_merge(&self, merge_operation: MergeOperation) -> FutureResult<SegmentMeta> {
|
||||
assert!(
|
||||
!merge_operation.segment_ids().is_empty(),
|
||||
"Segment_ids cannot be empty."
|
||||
@@ -523,8 +541,9 @@ impl SegmentUpdater {
|
||||
merge_operation.target_opstamp(),
|
||||
) {
|
||||
Ok(after_merge_segment_entry) => {
|
||||
let res = segment_updater.end_merge(merge_operation, after_merge_segment_entry);
|
||||
let _send_result = merging_future_send.send(res);
|
||||
let segment_meta_res =
|
||||
segment_updater.end_merge(merge_operation, after_merge_segment_entry);
|
||||
let _send_result = merging_future_send.send(segment_meta_res);
|
||||
}
|
||||
Err(merge_error) => {
|
||||
warn!(
|
||||
@@ -532,10 +551,8 @@ impl SegmentUpdater {
|
||||
merge_operation.segment_ids().to_vec(),
|
||||
merge_error
|
||||
);
|
||||
if cfg!(test) {
|
||||
panic!("{:?}", merge_error);
|
||||
}
|
||||
let _send_result = merging_future_send.send(Err(merge_error));
|
||||
assert!(!cfg!(test), "Merge failed.");
|
||||
}
|
||||
}
|
||||
});
|
||||
@@ -585,42 +602,35 @@ impl SegmentUpdater {
|
||||
fn end_merge(
|
||||
&self,
|
||||
merge_operation: MergeOperation,
|
||||
mut after_merge_segment_entry: Option<SegmentEntry>,
|
||||
) -> crate::Result<Option<SegmentMeta>> {
|
||||
mut after_merge_segment_entry: SegmentEntry,
|
||||
) -> crate::Result<SegmentMeta> {
|
||||
let segment_updater = self.clone();
|
||||
let after_merge_segment_meta = after_merge_segment_entry
|
||||
.as_ref()
|
||||
.map(|after_merge_segment_entry| after_merge_segment_entry.meta().clone());
|
||||
let after_merge_segment_meta = after_merge_segment_entry.meta().clone();
|
||||
self.schedule_task(move || {
|
||||
info!(
|
||||
"End merge {:?}",
|
||||
after_merge_segment_entry.as_ref().map(|entry| entry.meta())
|
||||
);
|
||||
info!("End merge {:?}", after_merge_segment_entry.meta());
|
||||
{
|
||||
if let Some(after_merge_segment_entry) = after_merge_segment_entry.as_mut() {
|
||||
let mut delete_cursor = after_merge_segment_entry.delete_cursor().clone();
|
||||
if let Some(delete_operation) = delete_cursor.get() {
|
||||
let committed_opstamp = segment_updater.load_meta().opstamp;
|
||||
if delete_operation.opstamp < committed_opstamp {
|
||||
let index = &segment_updater.index;
|
||||
let segment = index.segment(after_merge_segment_entry.meta().clone());
|
||||
if let Err(advance_deletes_err) = advance_deletes(
|
||||
segment,
|
||||
after_merge_segment_entry,
|
||||
committed_opstamp,
|
||||
) {
|
||||
error!(
|
||||
"Merge of {:?} was cancelled (advancing deletes failed): {:?}",
|
||||
merge_operation.segment_ids(),
|
||||
advance_deletes_err
|
||||
);
|
||||
assert!(!cfg!(test), "Merge failed.");
|
||||
let mut delete_cursor = after_merge_segment_entry.delete_cursor().clone();
|
||||
if let Some(delete_operation) = delete_cursor.get() {
|
||||
let committed_opstamp = segment_updater.load_meta().opstamp;
|
||||
if delete_operation.opstamp < committed_opstamp {
|
||||
let index = &segment_updater.index;
|
||||
let segment = index.segment(after_merge_segment_entry.meta().clone());
|
||||
if let Err(advance_deletes_err) = advance_deletes(
|
||||
segment,
|
||||
&mut after_merge_segment_entry,
|
||||
committed_opstamp,
|
||||
) {
|
||||
error!(
|
||||
"Merge of {:?} was cancelled (advancing deletes failed): {:?}",
|
||||
merge_operation.segment_ids(),
|
||||
advance_deletes_err
|
||||
);
|
||||
assert!(!cfg!(test), "Merge failed.");
|
||||
|
||||
// ... cancel merge
|
||||
// `merge_operations` are tracked. As it is dropped, the
|
||||
// the segment_ids will be available again for merge.
|
||||
return Err(advance_deletes_err);
|
||||
}
|
||||
// ... cancel merge
|
||||
// `merge_operations` are tracked. As it is dropped, the
|
||||
// the segment_ids will be available again for merge.
|
||||
return Err(advance_deletes_err);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
use fastfield_codecs::MonotonicallyMappableToU64;
|
||||
|
||||
use super::doc_id_mapping::{get_doc_id_mapping_from_field, DocIdMapping};
|
||||
use super::operation::AddOperation;
|
||||
use crate::core::Segment;
|
||||
use crate::fastfield::FastFieldsWriter;
|
||||
use crate::fastfield::{FastFieldsWriter, FastValue as _};
|
||||
use crate::fieldnorm::{FieldNormReaders, FieldNormsWriter};
|
||||
use crate::indexer::json_term_writer::index_json_values;
|
||||
use crate::indexer::segment_serializer::SegmentSerializer;
|
||||
@@ -82,8 +80,8 @@ impl SegmentWriter {
|
||||
pub fn for_segment(
|
||||
memory_budget_in_bytes: usize,
|
||||
segment: Segment,
|
||||
schema: Schema,
|
||||
) -> crate::Result<SegmentWriter> {
|
||||
let schema = segment.schema();
|
||||
let tokenizer_manager = segment.index().tokenizers().clone();
|
||||
let table_size = compute_initial_table_size(memory_budget_in_bytes)?;
|
||||
let segment_serializer = SegmentSerializer::for_segment(segment, false)?;
|
||||
@@ -138,7 +136,7 @@ impl SegmentWriter {
|
||||
remap_and_write(
|
||||
&self.per_field_postings_writers,
|
||||
self.ctx,
|
||||
self.fast_field_writers,
|
||||
&self.fast_field_writers,
|
||||
&self.fieldnorms_writer,
|
||||
&self.schema,
|
||||
self.segment_serializer,
|
||||
@@ -345,7 +343,7 @@ impl SegmentWriter {
|
||||
fn remap_and_write(
|
||||
per_field_postings_writers: &PerFieldPostingsWriter,
|
||||
ctx: IndexingContext,
|
||||
fast_field_writers: FastFieldsWriter,
|
||||
fast_field_writers: &FastFieldsWriter,
|
||||
fieldnorms_writer: &FieldNormsWriter,
|
||||
schema: &Schema,
|
||||
mut serializer: SegmentSerializer,
|
||||
@@ -380,14 +378,12 @@ fn remap_and_write(
|
||||
let store_write = serializer
|
||||
.segment_mut()
|
||||
.open_write(SegmentComponent::Store)?;
|
||||
let settings = serializer.segment().index().settings();
|
||||
let store_writer = StoreWriter::new(
|
||||
store_write,
|
||||
settings.docstore_compression,
|
||||
settings.docstore_blocksize,
|
||||
settings.docstore_compress_dedicated_thread,
|
||||
)?;
|
||||
let old_store_writer = std::mem::replace(&mut serializer.store_writer, store_writer);
|
||||
let compressor = serializer.segment().index().settings().docstore_compression;
|
||||
let block_size = serializer.segment().index().settings().docstore_blocksize;
|
||||
let old_store_writer = std::mem::replace(
|
||||
&mut serializer.store_writer,
|
||||
StoreWriter::new(store_write, compressor, block_size)?,
|
||||
);
|
||||
old_store_writer.close()?;
|
||||
let store_read = StoreReader::open(
|
||||
serializer
|
||||
|
||||
@@ -1,133 +0,0 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::{Column, ColumnReader};
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::indexer::doc_id_mapping::SegmentDocIdMapping;
|
||||
use crate::schema::Field;
|
||||
use crate::{DocAddress, DocId, SegmentReader};
|
||||
|
||||
pub(crate) struct SortedDocIdColumn<'a> {
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
fast_field_readers: Vec<Arc<dyn Column<u64>>>,
|
||||
min_value: u64,
|
||||
max_value: u64,
|
||||
num_vals: u64,
|
||||
}
|
||||
|
||||
fn compute_min_max_val(
|
||||
u64_reader: &dyn Column<u64>,
|
||||
segment_reader: &SegmentReader,
|
||||
) -> Option<(u64, u64)> {
|
||||
if segment_reader.max_doc() == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
if segment_reader.alive_bitset().is_none() {
|
||||
// no deleted documents,
|
||||
// we can use the previous min_val, max_val.
|
||||
return Some((u64_reader.min_value(), u64_reader.max_value()));
|
||||
}
|
||||
// some deleted documents,
|
||||
// we need to recompute the max / min
|
||||
segment_reader
|
||||
.doc_ids_alive()
|
||||
.map(|doc_id| u64_reader.get_val(doc_id as u64))
|
||||
.minmax()
|
||||
.into_option()
|
||||
}
|
||||
|
||||
impl<'a> SortedDocIdColumn<'a> {
|
||||
pub(crate) fn new(
|
||||
readers: &'a [SegmentReader],
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
field: Field,
|
||||
) -> Self {
|
||||
let (min_value, max_value) = readers
|
||||
.iter()
|
||||
.filter_map(|reader| {
|
||||
let u64_reader: Arc<dyn Column<u64>> =
|
||||
reader.fast_fields().typed_fast_field_reader(field).expect(
|
||||
"Failed to find a reader for single fast field. This is a tantivy bug and \
|
||||
it should never happen.",
|
||||
);
|
||||
compute_min_max_val(&*u64_reader, reader)
|
||||
})
|
||||
.reduce(|a, b| (a.0.min(b.0), a.1.max(b.1)))
|
||||
.expect("Unexpected error, empty readers in IndexMerger");
|
||||
|
||||
let fast_field_readers = readers
|
||||
.iter()
|
||||
.map(|reader| {
|
||||
let u64_reader: Arc<dyn Column<u64>> =
|
||||
reader.fast_fields().typed_fast_field_reader(field).expect(
|
||||
"Failed to find a reader for single fast field. This is a tantivy bug and \
|
||||
it should never happen.",
|
||||
);
|
||||
u64_reader
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
SortedDocIdColumn {
|
||||
doc_id_mapping,
|
||||
fast_field_readers,
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: doc_id_mapping.len() as u64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Column for SortedDocIdColumn<'a> {
|
||||
fn get_val(&self, doc: u64) -> u64 {
|
||||
let DocAddress {
|
||||
doc_id,
|
||||
segment_ord,
|
||||
} = self.doc_id_mapping.get_old_doc_addr(doc as u32);
|
||||
self.fast_field_readers[segment_ord as usize].get_val(doc_id as u64)
|
||||
}
|
||||
|
||||
fn reader(&self) -> Box<dyn ColumnReader<u64> + '_> {
|
||||
Box::new(SortedDocIdColumnReader {
|
||||
doc_id_mapping: self.doc_id_mapping,
|
||||
fast_field_readers: &self.fast_field_readers[..],
|
||||
new_doc_id: u32::MAX,
|
||||
})
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u64 {
|
||||
self.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
struct SortedDocIdColumnReader<'a> {
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
fast_field_readers: &'a [Arc<dyn Column>],
|
||||
new_doc_id: DocId,
|
||||
}
|
||||
|
||||
impl<'a> ColumnReader for SortedDocIdColumnReader<'a> {
|
||||
fn seek(&mut self, target_idx: u64) -> u64 {
|
||||
assert!(target_idx < self.doc_id_mapping.len() as u64);
|
||||
self.new_doc_id = target_idx as u32;
|
||||
self.get()
|
||||
}
|
||||
|
||||
fn advance(&mut self) -> bool {
|
||||
self.new_doc_id = self.new_doc_id.wrapping_add(1);
|
||||
self.new_doc_id < self.doc_id_mapping.len() as u32
|
||||
}
|
||||
|
||||
fn get(&self) -> u64 {
|
||||
let old_doc = self.doc_id_mapping.get_old_doc_addr(self.new_doc_id);
|
||||
self.fast_field_readers[old_doc.segment_ord as usize].get_val(old_doc.doc_id as u64)
|
||||
}
|
||||
}
|
||||
@@ -1,185 +0,0 @@
|
||||
use std::cmp;
|
||||
|
||||
use fastfield_codecs::{Column, ColumnReader};
|
||||
|
||||
use crate::fastfield::{MultiValueLength, MultiValuedFastFieldReader};
|
||||
use crate::indexer::doc_id_mapping::SegmentDocIdMapping;
|
||||
use crate::schema::Field;
|
||||
use crate::{DocId, SegmentReader};
|
||||
|
||||
// We can now initialize our serializer, and push it the different values
|
||||
pub(crate) struct SortedDocIdMultiValueColumn<'a> {
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
fast_field_readers: Vec<MultiValuedFastFieldReader<u64>>,
|
||||
offsets: &'a [u64],
|
||||
min_value: u64,
|
||||
max_value: u64,
|
||||
num_vals: u64,
|
||||
}
|
||||
|
||||
impl<'a> SortedDocIdMultiValueColumn<'a> {
|
||||
pub(crate) fn new(
|
||||
readers: &'a [SegmentReader],
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
offsets: &'a [u64],
|
||||
field: Field,
|
||||
) -> Self {
|
||||
// Our values are bitpacked and we need to know what should be
|
||||
// our bitwidth and our minimum value before serializing any values.
|
||||
//
|
||||
// Computing those is non-trivial if some documents are deleted.
|
||||
// We go through a complete first pass to compute the minimum and the
|
||||
// maximum value and initialize our Serializer.
|
||||
let mut num_vals = 0;
|
||||
let mut min_value = u64::MAX;
|
||||
let mut max_value = u64::MIN;
|
||||
let mut vals = Vec::new();
|
||||
let mut fast_field_readers = Vec::with_capacity(readers.len());
|
||||
for reader in readers {
|
||||
let ff_reader: MultiValuedFastFieldReader<u64> = reader
|
||||
.fast_fields()
|
||||
.typed_fast_field_multi_reader::<u64>(field)
|
||||
.expect(
|
||||
"Failed to find multivalued fast field reader. This is a bug in tantivy. \
|
||||
Please report.",
|
||||
);
|
||||
for doc in reader.doc_ids_alive() {
|
||||
ff_reader.get_vals(doc, &mut vals);
|
||||
for &val in &vals {
|
||||
min_value = cmp::min(val, min_value);
|
||||
max_value = cmp::max(val, max_value);
|
||||
}
|
||||
num_vals += vals.len();
|
||||
}
|
||||
fast_field_readers.push(ff_reader);
|
||||
// TODO optimize when no deletes
|
||||
}
|
||||
if min_value > max_value {
|
||||
min_value = 0;
|
||||
max_value = 0;
|
||||
}
|
||||
SortedDocIdMultiValueColumn {
|
||||
doc_id_mapping,
|
||||
fast_field_readers,
|
||||
offsets,
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: num_vals as u64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Column for SortedDocIdMultiValueColumn<'a> {
|
||||
fn get_val(&self, pos: u64) -> u64 {
|
||||
// use the offsets index to find the doc_id which will contain the position.
|
||||
// the offsets are strictly increasing so we can do a simple search on it.
|
||||
let new_doc_id: DocId = self
|
||||
.offsets
|
||||
.iter()
|
||||
.position(|&offset| offset > pos)
|
||||
.expect("pos is out of bounds") as DocId
|
||||
- 1u32;
|
||||
|
||||
// now we need to find the position of `pos` in the multivalued bucket
|
||||
let num_pos_covered_until_now = self.offsets[new_doc_id as usize];
|
||||
let pos_in_values = pos - num_pos_covered_until_now;
|
||||
|
||||
let old_doc_addr = self.doc_id_mapping.get_old_doc_addr(new_doc_id);
|
||||
let num_vals =
|
||||
self.fast_field_readers[old_doc_addr.segment_ord as usize].get_len(old_doc_addr.doc_id);
|
||||
assert!(num_vals >= pos_in_values);
|
||||
let mut vals = Vec::new();
|
||||
self.fast_field_readers[old_doc_addr.segment_ord as usize]
|
||||
.get_vals(old_doc_addr.doc_id, &mut vals);
|
||||
|
||||
vals[pos_in_values as usize]
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u64 {
|
||||
self.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.num_vals
|
||||
}
|
||||
|
||||
fn reader(&self) -> Box<dyn ColumnReader<u64> + '_> {
|
||||
let mut reader = SortedDocMultiValueColumnReader {
|
||||
doc_id_mapping: self.doc_id_mapping,
|
||||
fast_field_readers: &self.fast_field_readers[..],
|
||||
new_doc_id: u32::MAX,
|
||||
in_buffer_idx: 0,
|
||||
buffer: Vec::new(),
|
||||
idx: u64::MAX,
|
||||
};
|
||||
reader.reset();
|
||||
Box::new(reader)
|
||||
}
|
||||
}
|
||||
|
||||
struct SortedDocMultiValueColumnReader<'a> {
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
fast_field_readers: &'a [MultiValuedFastFieldReader<u64>],
|
||||
|
||||
new_doc_id: DocId,
|
||||
in_buffer_idx: usize,
|
||||
buffer: Vec<u64>,
|
||||
idx: u64,
|
||||
}
|
||||
|
||||
impl<'a> SortedDocMultiValueColumnReader<'a> {
|
||||
fn fill(&mut self) {
|
||||
let old_doc = self.doc_id_mapping.get_old_doc_addr(self.new_doc_id);
|
||||
let ff_reader = &self.fast_field_readers[old_doc.segment_ord as usize];
|
||||
ff_reader.get_vals(old_doc.doc_id, &mut self.buffer);
|
||||
self.in_buffer_idx = 0;
|
||||
}
|
||||
|
||||
fn reset(&mut self) {
|
||||
self.buffer.clear();
|
||||
self.idx = u64::MAX;
|
||||
self.in_buffer_idx = 0;
|
||||
self.new_doc_id = u32::MAX;
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> ColumnReader for SortedDocMultiValueColumnReader<'a> {
|
||||
fn seek(&mut self, target_idx: u64) -> u64 {
|
||||
if target_idx < self.idx {
|
||||
self.reset();
|
||||
self.advance();
|
||||
}
|
||||
for _ in self.idx..target_idx {
|
||||
// TODO could be optimized.
|
||||
assert!(self.advance());
|
||||
}
|
||||
self.get()
|
||||
}
|
||||
|
||||
fn advance(&mut self) -> bool {
|
||||
loop {
|
||||
self.in_buffer_idx += 1;
|
||||
if self.in_buffer_idx < self.buffer.len() {
|
||||
self.idx = self.idx.wrapping_add(1);
|
||||
return true;
|
||||
}
|
||||
self.new_doc_id = self.new_doc_id.wrapping_add(1);
|
||||
if self.new_doc_id >= self.doc_id_mapping.len() as u32 {
|
||||
return false;
|
||||
}
|
||||
self.fill();
|
||||
if !self.buffer.is_empty() {
|
||||
self.idx = self.idx.wrapping_add(1);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn get(&self) -> u64 {
|
||||
self.buffer[self.in_buffer_idx]
|
||||
}
|
||||
}
|
||||
@@ -301,7 +301,7 @@ pub use self::docset::{DocSet, TERMINATED};
|
||||
pub use crate::core::{
|
||||
Executor, Index, IndexBuilder, IndexMeta, IndexSettings, IndexSortByField, InvertedIndexReader,
|
||||
Order, Searcher, SearcherGeneration, Segment, SegmentComponent, SegmentId, SegmentMeta,
|
||||
SegmentReader, SingleSegmentIndexWriter,
|
||||
SegmentReader,
|
||||
};
|
||||
pub use crate::directory::Directory;
|
||||
pub use crate::indexer::demuxer::*;
|
||||
@@ -429,6 +429,7 @@ pub mod tests {
|
||||
use crate::collector::tests::TEST_COLLECTOR_WITH_SCORE;
|
||||
use crate::core::SegmentReader;
|
||||
use crate::docset::{DocSet, TERMINATED};
|
||||
use crate::fastfield::FastFieldReader;
|
||||
use crate::merge_policy::NoMergePolicy;
|
||||
use crate::query::BooleanQuery;
|
||||
use crate::schema::*;
|
||||
@@ -1035,21 +1036,21 @@ pub mod tests {
|
||||
let fast_field_reader_opt = segment_reader.fast_fields().u64(fast_field_unsigned);
|
||||
assert!(fast_field_reader_opt.is_ok());
|
||||
let fast_field_reader = fast_field_reader_opt.unwrap();
|
||||
assert_eq!(fast_field_reader.get_val(0), 4u64)
|
||||
assert_eq!(fast_field_reader.get(0), 4u64)
|
||||
}
|
||||
|
||||
{
|
||||
let fast_field_reader_res = segment_reader.fast_fields().i64(fast_field_signed);
|
||||
assert!(fast_field_reader_res.is_ok());
|
||||
let fast_field_reader = fast_field_reader_res.unwrap();
|
||||
assert_eq!(fast_field_reader.get_val(0), 4i64)
|
||||
assert_eq!(fast_field_reader.get(0), 4i64)
|
||||
}
|
||||
|
||||
{
|
||||
let fast_field_reader_res = segment_reader.fast_fields().f64(fast_field_float);
|
||||
assert!(fast_field_reader_res.is_ok());
|
||||
let fast_field_reader = fast_field_reader_res.unwrap();
|
||||
assert_eq!(fast_field_reader.get_val(0), 4f64)
|
||||
assert_eq!(fast_field_reader.get(0), 4f64)
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -1,18 +1,18 @@
|
||||
//! Tantivy can (if instructed to do so in the schema) store the term positions in a given field.
|
||||
//! This position is expressed as token ordinal. For instance,
|
||||
//! In "The beauty and the beast", the term "the" appears in position 0 and position 3.
|
||||
//! In "The beauty and the beast", the term "the" appears in position 0 and position 4.
|
||||
//! This information is useful to run phrase queries.
|
||||
//!
|
||||
//! The [position](crate::SegmentComponent::Positions) file contains all of the
|
||||
//! The [position](../enum.SegmentComponent.html#variant.Positions) file contains all of the
|
||||
//! bitpacked positions delta, for all terms of a given field, one term after the other.
|
||||
//!
|
||||
//! Each term is encoded independently.
|
||||
//! Like for posting lists, tantivy relies on simd bitpacking to encode the positions delta in
|
||||
//! blocks of 128 deltas. Because we rarely have a multiple of 128, the final block encodes
|
||||
//! the remaining values with variable int encoding.
|
||||
//! Like for positing lists, tantivy relies on simd bitpacking to encode the positions delta in
|
||||
//! blocks of 128 deltas. Because we rarely have a multiple of 128, a final block may encode the
|
||||
//! remaining values variable byte encoding.
|
||||
//!
|
||||
//! In order to make reading possible, the term delta positions first encode the number of
|
||||
//! bitpacked blocks, then the bitwidth for each block, then the actual bitpacked blocks and finally
|
||||
//! In order to make reading possible, the term delta positions first encodes the number of
|
||||
//! bitpacked blocks, then the bitwidth for each blocks, then the actual bitpacked block and finally
|
||||
//! the final variable int encoded block.
|
||||
//!
|
||||
//! Contrary to postings list, the reader does not have access on the number of positions that is
|
||||
|
||||
@@ -12,7 +12,7 @@ use crate::postings::compression::COMPRESSION_BLOCK_SIZE;
|
||||
/// ```
|
||||
///
|
||||
/// the `start` argument is just used to hint that the response is
|
||||
/// greater than beyond `start`. The implementation may or may not use
|
||||
/// greater than beyond `start`. the implementation may or may not use
|
||||
/// it for optimization.
|
||||
///
|
||||
/// # Assumption
|
||||
|
||||
@@ -222,12 +222,12 @@ pub mod tests {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let text_field = schema_builder.add_text_field("text", TEXT);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
let segment = index.new_segment();
|
||||
|
||||
{
|
||||
let mut segment_writer =
|
||||
SegmentWriter::for_segment(3_000_000, segment.clone()).unwrap();
|
||||
SegmentWriter::for_segment(3_000_000, segment.clone(), schema).unwrap();
|
||||
{
|
||||
// checking that position works if the field has two values
|
||||
let op = AddOperation {
|
||||
|
||||
@@ -116,7 +116,7 @@ pub(crate) struct IndexingPosition {
|
||||
/// and building a `Segment` in anonymous memory.
|
||||
///
|
||||
/// `PostingsWriter` writes in a `MemoryArena`.
|
||||
pub(crate) trait PostingsWriter: Send + Sync {
|
||||
pub(crate) trait PostingsWriter {
|
||||
/// Record that a document contains a term at a given position.
|
||||
///
|
||||
/// * doc - the document id
|
||||
|
||||
@@ -56,7 +56,7 @@ impl<'a> Iterator for VInt32Reader<'a> {
|
||||
/// * the document id
|
||||
/// * the term frequency
|
||||
/// * the term positions
|
||||
pub(crate) trait Recorder: Copy + Default + Send + Sync + 'static {
|
||||
pub(crate) trait Recorder: Copy + Default + 'static {
|
||||
/// Returns the current document
|
||||
fn current_doc(&self) -> u32;
|
||||
/// Starts recording information about a new document
|
||||
|
||||
@@ -12,7 +12,7 @@ use crate::{DocId, DocSet, Score, TERMINATED};
|
||||
///
|
||||
/// We always have `before_pivot_len` < `pivot_len`.
|
||||
///
|
||||
/// `None` is returned if we establish that no document can exceed the threshold.
|
||||
/// None is returned if we establish that no document can exceed the threshold.
|
||||
fn find_pivot_doc(
|
||||
term_scorers: &[TermScorerWithMaxScore],
|
||||
threshold: Score,
|
||||
|
||||
@@ -72,7 +72,7 @@ impl PhraseQuery {
|
||||
self.slop = value;
|
||||
}
|
||||
|
||||
/// The [`Field`] this `PhraseQuery` is targeting.
|
||||
/// The `Field` this `PhraseQuery` is targeting.
|
||||
pub fn field(&self) -> Field {
|
||||
self.field
|
||||
}
|
||||
@@ -85,10 +85,10 @@ impl PhraseQuery {
|
||||
.collect::<Vec<Term>>()
|
||||
}
|
||||
|
||||
/// Returns the [`PhraseWeight`] for the given phrase query given a specific `searcher`.
|
||||
/// Returns the `PhraseWeight` for the given phrase query given a specific `searcher`.
|
||||
///
|
||||
/// This function is the same as [`Query::weight()`] except it returns
|
||||
/// a specialized type [`PhraseWeight`] instead of a Boxed trait.
|
||||
/// This function is the same as `.weight(...)` except it returns
|
||||
/// a specialized type `PhraseWeight` instead of a Boxed trait.
|
||||
pub(crate) fn phrase_weight(
|
||||
&self,
|
||||
searcher: &Searcher,
|
||||
@@ -121,7 +121,7 @@ impl PhraseQuery {
|
||||
impl Query for PhraseQuery {
|
||||
/// Create the weight associated to a query.
|
||||
///
|
||||
/// See [`Weight`].
|
||||
/// See [`Weight`](./trait.Weight.html).
|
||||
fn weight(&self, searcher: &Searcher, scoring_enabled: bool) -> crate::Result<Box<dyn Weight>> {
|
||||
let phrase_weight = self.phrase_weight(searcher, scoring_enabled)?;
|
||||
Ok(Box::new(phrase_weight))
|
||||
|
||||
@@ -15,39 +15,38 @@ use crate::{DocAddress, Term};
|
||||
/// - a set of documents
|
||||
/// - a way to score these documents
|
||||
///
|
||||
/// When performing a [search](Searcher::search), these documents will then
|
||||
/// be pushed to a [`Collector`](crate::collector::Collector),
|
||||
/// When performing a [search](Searcher::search), these documents will then
|
||||
/// be pushed to a [Collector](../collector/trait.Collector.html),
|
||||
/// which will in turn be in charge of deciding what to do with them.
|
||||
///
|
||||
/// Concretely, this scored docset is represented by the
|
||||
/// [`Scorer`] trait.
|
||||
/// [`Scorer`](./trait.Scorer.html) trait.
|
||||
///
|
||||
/// Because our index is actually split into segments, the
|
||||
/// query does not actually directly creates [`DocSet`](crate::DocSet) object.
|
||||
/// Instead, the query creates a [`Weight`] object for a given searcher.
|
||||
/// query does not actually directly creates `DocSet` object.
|
||||
/// Instead, the query creates a [`Weight`](./trait.Weight.html)
|
||||
/// object for a given searcher.
|
||||
///
|
||||
/// The weight object, in turn, makes it possible to create
|
||||
/// a scorer for a specific [`SegmentReader`].
|
||||
/// a scorer for a specific [`SegmentReader`](../struct.SegmentReader.html).
|
||||
///
|
||||
/// So to sum it up :
|
||||
/// - a `Query` is a recipe to define a set of documents as well the way to score them.
|
||||
/// - a [`Weight`] is this recipe tied to a specific [`Searcher`]. It may for instance
|
||||
/// - a `Query` is recipe to define a set of documents as well the way to score them.
|
||||
/// - a `Weight` is this recipe tied to a specific `Searcher`. It may for instance
|
||||
/// hold statistics about the different term of the query. It is created by the query.
|
||||
/// - a [`Scorer`] is a cursor over the set of matching documents, for a specific
|
||||
/// [`SegmentReader`]. It is created by the [`Weight`].
|
||||
/// - a `Scorer` is a cursor over the set of matching documents, for a specific
|
||||
/// [`SegmentReader`](../struct.SegmentReader.html). It is created by the
|
||||
/// [`Weight`](./trait.Weight.html).
|
||||
///
|
||||
/// When implementing a new type of `Query`, it is normal to implement a
|
||||
/// dedicated `Query`, [`Weight`] and [`Scorer`].
|
||||
///
|
||||
/// [`Scorer`]: crate::query::Scorer
|
||||
/// [`SegmentReader`]: crate::SegmentReader
|
||||
/// dedicated `Query`, `Weight` and `Scorer`.
|
||||
pub trait Query: QueryClone + Send + Sync + downcast_rs::Downcast + fmt::Debug {
|
||||
/// Create the weight associated to a query.
|
||||
///
|
||||
/// If scoring is not required, setting `scoring_enabled` to `false`
|
||||
/// can increase performances.
|
||||
///
|
||||
/// See [`Weight`].
|
||||
/// See [`Weight`](./trait.Weight.html).
|
||||
fn weight(&self, searcher: &Searcher, scoring_enabled: bool) -> crate::Result<Box<dyn Weight>>;
|
||||
|
||||
/// Returns an `Explanation` for the score of the document.
|
||||
|
||||
@@ -113,8 +113,8 @@ fn trim_ast(logical_ast: LogicalAst) -> Option<LogicalAst> {
|
||||
/// The language covered by the current parser is extremely simple.
|
||||
///
|
||||
/// * simple terms: "e.g.: `Barack Obama` are simply tokenized using tantivy's
|
||||
/// [`SimpleTokenizer`](crate::tokenizer::SimpleTokenizer), hence becoming `["barack", "obama"]`.
|
||||
/// The terms are then searched within the default terms of the query parser.
|
||||
/// [`SimpleTokenizer`](../tokenizer/struct.SimpleTokenizer.html), hence becoming `["barack",
|
||||
/// "obama"]`. The terms are then searched within the default terms of the query parser.
|
||||
///
|
||||
/// e.g. If `body` and `title` are default fields, our example terms are
|
||||
/// `["title:barack", "body:barack", "title:obama", "body:obama"]`.
|
||||
@@ -166,8 +166,8 @@ fn trim_ast(logical_ast: LogicalAst) -> Option<LogicalAst> {
|
||||
/// devops. Negative boosts are not allowed.
|
||||
///
|
||||
/// It is also possible to define a boost for a some specific field, at the query parser level.
|
||||
/// (See [`set_field_boost(...)`](QueryParser::set_field_boost)). Typically you may want to boost a
|
||||
/// title field.
|
||||
/// (See [`set_boost(...)`](#method.set_field_boost) ). Typically you may want to boost a title
|
||||
/// field.
|
||||
///
|
||||
/// Phrase terms support the `~` slop operator which allows to set the phrase's matching
|
||||
/// distance in words. `"big wolf"~1` will return documents containing the phrase `"big bad wolf"`.
|
||||
|
||||
@@ -7,7 +7,7 @@ use crate::Score;
|
||||
|
||||
/// Scored set of documents matching a query within a specific segment.
|
||||
///
|
||||
/// See [`Query`](crate::query::Query).
|
||||
/// See [`Query`](./trait.Query.html).
|
||||
pub trait Scorer: downcast_rs::Downcast + DocSet + 'static {
|
||||
/// Returns the score.
|
||||
///
|
||||
|
||||
@@ -19,7 +19,7 @@ pub(crate) fn for_each_scorer<TScorer: Scorer + ?Sized>(
|
||||
/// Calls `callback` with all of the `(doc, score)` for which score
|
||||
/// is exceeding a given threshold.
|
||||
///
|
||||
/// This method is useful for the [`TopDocs`](crate::collector::TopDocs) collector.
|
||||
/// This method is useful for the TopDocs collector.
|
||||
/// For all docsets, the blanket implementation has the benefit
|
||||
/// of prefiltering (doc, score) pairs, avoiding the
|
||||
/// virtual dispatch cost.
|
||||
@@ -41,22 +41,22 @@ pub(crate) fn for_each_pruning_scorer<TScorer: Scorer + ?Sized>(
|
||||
}
|
||||
}
|
||||
|
||||
/// A Weight is the specialization of a `Query`
|
||||
/// A Weight is the specialization of a Query
|
||||
/// for a given set of segments.
|
||||
///
|
||||
/// See [`Query`](crate::query::Query).
|
||||
/// See [`Query`](./trait.Query.html).
|
||||
pub trait Weight: Send + Sync + 'static {
|
||||
/// Returns the scorer for the given segment.
|
||||
///
|
||||
/// `boost` is a multiplier to apply to the score.
|
||||
///
|
||||
/// See [`Query`](crate::query::Query).
|
||||
/// See [`Query`](./trait.Query.html).
|
||||
fn scorer(&self, reader: &SegmentReader, boost: Score) -> crate::Result<Box<dyn Scorer>>;
|
||||
|
||||
/// Returns an [`Explanation`] for the given document.
|
||||
/// Returns an `Explanation` for the given document.
|
||||
fn explain(&self, reader: &SegmentReader, doc: DocId) -> crate::Result<Explanation>;
|
||||
|
||||
/// Returns the number documents within the given [`SegmentReader`].
|
||||
/// Returns the number documents within the given `SegmentReader`.
|
||||
fn count(&self, reader: &SegmentReader) -> crate::Result<u32> {
|
||||
let mut scorer = self.scorer(reader, 1.0)?;
|
||||
if let Some(alive_bitset) = reader.alive_bitset() {
|
||||
@@ -81,7 +81,7 @@ pub trait Weight: Send + Sync + 'static {
|
||||
/// Calls `callback` with all of the `(doc, score)` for which score
|
||||
/// is exceeding a given threshold.
|
||||
///
|
||||
/// This method is useful for the [`TopDocs`](crate::collector::TopDocs) collector.
|
||||
/// This method is useful for the TopDocs collector.
|
||||
/// For all docsets, the blanket implementation has the benefit
|
||||
/// of prefiltering (doc, score) pairs, avoiding the
|
||||
/// virtual dispatch cost.
|
||||
|
||||
@@ -23,7 +23,7 @@ pub enum ReloadPolicy {
|
||||
/// The index is entirely reloaded manually.
|
||||
/// All updates of the index should be manual.
|
||||
///
|
||||
/// No change is reflected automatically. You are required to call [`IndexReader::reload()`]
|
||||
/// No change is reflected automatically. You are required to call `IndexReader::reload()`
|
||||
/// manually.
|
||||
Manual,
|
||||
/// The index is reloaded within milliseconds after a new commit is available.
|
||||
@@ -31,11 +31,11 @@ pub enum ReloadPolicy {
|
||||
OnCommit, // TODO add NEAR_REAL_TIME(target_ms)
|
||||
}
|
||||
|
||||
/// [`IndexReader`] builder
|
||||
/// [IndexReader] builder
|
||||
///
|
||||
/// It makes it possible to configure:
|
||||
/// - [`ReloadPolicy`] defining when new index versions are detected
|
||||
/// - [`Warmer`] implementations
|
||||
/// - [ReloadPolicy] defining when new index versions are detected
|
||||
/// - [Warmer] implementations
|
||||
/// - number of warming threads, for parallelizing warming work
|
||||
/// - The cache size of the underlying doc store readers.
|
||||
#[derive(Clone)]
|
||||
@@ -108,7 +108,7 @@ impl IndexReaderBuilder {
|
||||
|
||||
/// Sets the reload_policy.
|
||||
///
|
||||
/// See [`ReloadPolicy`] for more details.
|
||||
/// See [`ReloadPolicy`](./enum.ReloadPolicy.html) for more details.
|
||||
#[must_use]
|
||||
pub fn reload_policy(mut self, reload_policy: ReloadPolicy) -> IndexReaderBuilder {
|
||||
self.reload_policy = reload_policy;
|
||||
@@ -124,7 +124,7 @@ impl IndexReaderBuilder {
|
||||
self
|
||||
}
|
||||
|
||||
/// Set the [`Warmer`]s that are invoked when reloading searchable segments.
|
||||
/// Set the [Warmer]s that are invoked when reloading searchable segments.
|
||||
#[must_use]
|
||||
pub fn warmers(mut self, warmers: Vec<Weak<dyn Warmer>>) -> IndexReaderBuilder {
|
||||
self.warmers = warmers;
|
||||
@@ -133,8 +133,8 @@ impl IndexReaderBuilder {
|
||||
|
||||
/// Sets the number of warming threads.
|
||||
///
|
||||
/// This allows parallelizing warming work when there are multiple [`Warmer`] registered with
|
||||
/// the [`IndexReader`].
|
||||
/// This allows parallelizing warming work when there are multiple [Warmer] registered with the
|
||||
/// [IndexReader].
|
||||
#[must_use]
|
||||
pub fn num_warming_threads(mut self, num_warming_threads: usize) -> IndexReaderBuilder {
|
||||
self.num_warming_threads = num_warming_threads;
|
||||
@@ -186,7 +186,7 @@ impl InnerIndexReader {
|
||||
searcher_generation_inventory,
|
||||
})
|
||||
}
|
||||
/// Opens the freshest segments [`SegmentReader`].
|
||||
/// Opens the freshest segments `SegmentReader`.
|
||||
///
|
||||
/// This function acquires a lot to prevent GC from removing files
|
||||
/// as we are opening our index.
|
||||
@@ -264,7 +264,7 @@ impl InnerIndexReader {
|
||||
/// you instances of `Searcher` for the last loaded version.
|
||||
///
|
||||
/// `Clone` does not clone the different pool of searcher. `IndexReader`
|
||||
/// just wraps an `Arc`.
|
||||
/// just wraps and `Arc`.
|
||||
#[derive(Clone)]
|
||||
pub struct IndexReader {
|
||||
inner: Arc<InnerIndexReader>,
|
||||
@@ -280,7 +280,7 @@ impl IndexReader {
|
||||
/// Update searchers so that they reflect the state of the last
|
||||
/// `.commit()`.
|
||||
///
|
||||
/// If you set up the [`ReloadPolicy::OnCommit`] (which is the default)
|
||||
/// If you set up the `OnCommit` `ReloadPolicy` (which is the default)
|
||||
/// every commit should be rapidly reflected on your `IndexReader` and you should
|
||||
/// not need to call `reload()` at all.
|
||||
///
|
||||
|
||||
@@ -10,12 +10,12 @@ pub const GC_INTERVAL: Duration = Duration::from_secs(1);
|
||||
|
||||
/// `Warmer` can be used to maintain segment-level state e.g. caches.
|
||||
///
|
||||
/// They must be registered with the [`IndexReaderBuilder`](super::IndexReaderBuilder).
|
||||
/// They must be registered with the [super::IndexReaderBuilder].
|
||||
pub trait Warmer: Sync + Send {
|
||||
/// Perform any warming work using the provided [`Searcher`].
|
||||
/// Perform any warming work using the provided [Searcher].
|
||||
fn warm(&self, searcher: &Searcher) -> crate::Result<()>;
|
||||
|
||||
/// Discards internal state for any [`SearcherGeneration`] not provided.
|
||||
/// Discards internal state for any [SearcherGeneration] not provided.
|
||||
fn garbage_collect(&self, live_generations: &[&SearcherGeneration]);
|
||||
}
|
||||
|
||||
@@ -38,11 +38,11 @@ impl WarmingState {
|
||||
}))))
|
||||
}
|
||||
|
||||
/// Start tracking a new generation of [`Searcher`], and [`Warmer::warm`] it if there are active
|
||||
/// Start tracking a new generation of [Searcher], and [Warmer::warm] it if there are active
|
||||
/// warmers.
|
||||
///
|
||||
/// A background GC thread for [`Warmer::garbage_collect`] calls is uniquely created if there
|
||||
/// are active warmers.
|
||||
/// A background GC thread for [Warmer::garbage_collect] calls is uniquely created if there are
|
||||
/// active warmers.
|
||||
pub fn warm_new_searcher_generation(&self, searcher: &Searcher) -> crate::Result<()> {
|
||||
self.0
|
||||
.lock()
|
||||
@@ -90,7 +90,7 @@ impl WarmingStateInner {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Attempt to upgrade the weak `Warmer` references, pruning those which cannot be upgraded.
|
||||
/// Attempt to upgrade the weak Warmer references, pruning those which cannot be upgraded.
|
||||
/// Return the strong references.
|
||||
fn pruned_warmers(&mut self) -> Vec<Arc<dyn Warmer>> {
|
||||
let strong_warmers = self
|
||||
@@ -102,7 +102,7 @@ impl WarmingStateInner {
|
||||
strong_warmers
|
||||
}
|
||||
|
||||
/// [`Warmer::garbage_collect`] active warmers if some searcher generation is observed to have
|
||||
/// [Warmer::garbage_collect] active warmers if some searcher generation is observed to have
|
||||
/// been dropped.
|
||||
fn gc_maybe(&mut self) -> bool {
|
||||
let live_generations = self.searcher_generation_inventory.list();
|
||||
@@ -144,8 +144,8 @@ impl WarmingStateInner {
|
||||
Ok(true)
|
||||
}
|
||||
|
||||
/// Every [`GC_INTERVAL`] attempt to GC, with panics caught and logged using
|
||||
/// [`std::panic::catch_unwind`].
|
||||
/// Every [GC_INTERVAL] attempt to GC, with panics caught and logged using
|
||||
/// [std::panic::catch_unwind].
|
||||
fn gc_loop(inner: Weak<Mutex<WarmingStateInner>>) {
|
||||
for _ in crossbeam_channel::tick(GC_INTERVAL) {
|
||||
if let Some(inner) = inner.upgrade() {
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user