mirror of
https://github.com/quickwit-oss/tantivy.git
synced 2025-12-28 04:52:55 +00:00
Compare commits
112 Commits
columnar-c
...
remove-byt
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
72925c2bba | ||
|
|
ed5a3b3172 | ||
|
|
ca20bfa776 | ||
|
|
faa706d804 | ||
|
|
850a0d7ae2 | ||
|
|
7fae4d98d7 | ||
|
|
bc36458334 | ||
|
|
8a71e00da3 | ||
|
|
e510f699c8 | ||
|
|
d25fc155b2 | ||
|
|
8ea97e7d6b | ||
|
|
0a726a0897 | ||
|
|
66ff53b0f4 | ||
|
|
d002698008 | ||
|
|
c838aa808b | ||
|
|
06850719dc | ||
|
|
5f23bb7e65 | ||
|
|
533ad99cd5 | ||
|
|
c7278b3258 | ||
|
|
6b403e3281 | ||
|
|
789cc8703e | ||
|
|
e5098d9fe8 | ||
|
|
f537334e4f | ||
|
|
e2aa5af075 | ||
|
|
02bebf4ff5 | ||
|
|
0274c982d5 | ||
|
|
74bf60b4f7 | ||
|
|
bf1449b22d | ||
|
|
111f25a8f7 | ||
|
|
019db10e8e | ||
|
|
7423f99719 | ||
|
|
f2f38c43ce | ||
|
|
71f43ace1d | ||
|
|
347614c841 | ||
|
|
097fd6138d | ||
|
|
01e5a22759 | ||
|
|
b60b7d2afe | ||
|
|
dfe4e95fde | ||
|
|
60cc2644d6 | ||
|
|
10bccac61b | ||
|
|
1cfb9ce59a | ||
|
|
539ff08a79 | ||
|
|
dab93df94e | ||
|
|
3120147a76 | ||
|
|
cbcafae04c | ||
|
|
36c6138e7f | ||
|
|
7a9befd18d | ||
|
|
62c811df2b | ||
|
|
03345f0aa2 | ||
|
|
b7bfa20e38 | ||
|
|
db8583db75 | ||
|
|
1390834ae8 | ||
|
|
3ac973bea4 | ||
|
|
405e2cf4d9 | ||
|
|
b63c6c27bc | ||
|
|
bd5eea9852 | ||
|
|
0f20787917 | ||
|
|
2874554ee4 | ||
|
|
cbc70a9eae | ||
|
|
226d0f88bc | ||
|
|
9548570e88 | ||
|
|
9a296b29b7 | ||
|
|
b31fd389d8 | ||
|
|
89cec79813 | ||
|
|
d09d91a856 | ||
|
|
50d8a8bc32 | ||
|
|
08919a2900 | ||
|
|
8ba333f1b4 | ||
|
|
a2ca12995e | ||
|
|
e3d504d833 | ||
|
|
5a42c5aae9 | ||
|
|
a86b104a40 | ||
|
|
f9abd256b7 | ||
|
|
9f42b6440a | ||
|
|
c723ed3f0b | ||
|
|
d72ea7d353 | ||
|
|
5180b612ef | ||
|
|
f687b3a5aa | ||
|
|
c4af63e588 | ||
|
|
4b343b3189 | ||
|
|
c51d9f9f83 | ||
|
|
c9cb3d04bf | ||
|
|
0caaf13a90 | ||
|
|
a59bd965cc | ||
|
|
f2dad194ea | ||
|
|
25bad784ad | ||
|
|
4bac945709 | ||
|
|
16b704e190 | ||
|
|
6ca9a477f3 | ||
|
|
2650111b76 | ||
|
|
1176555eff | ||
|
|
f8d111a75e | ||
|
|
e17996f2fd | ||
|
|
f3621c0487 | ||
|
|
14222a47a3 | ||
|
|
8312c882a5 | ||
|
|
7a8fce0ae7 | ||
|
|
196e42f33e | ||
|
|
82a183bc2d | ||
|
|
3090d49615 | ||
|
|
7c6cc818ae | ||
|
|
514d23a20c | ||
|
|
4f9efe654c | ||
|
|
1afa5bf3db | ||
|
|
07a51eb7c8 | ||
|
|
2080c370c2 | ||
|
|
b22f96624e | ||
|
|
b78dc5e313 | ||
|
|
3f915925af | ||
|
|
9c5fef5af7 | ||
|
|
9948a84ebe | ||
|
|
45156fd869 |
6
.github/workflows/coverage.yml
vendored
6
.github/workflows/coverage.yml
vendored
@@ -2,9 +2,9 @@ name: Coverage
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
branches: [main]
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
branches: [main]
|
||||
|
||||
jobs:
|
||||
coverage:
|
||||
@@ -16,7 +16,7 @@ jobs:
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- uses: taiki-e/install-action@cargo-llvm-cov
|
||||
- name: Generate code coverage
|
||||
run: cargo +nightly llvm-cov --all-features --workspace --lcov --output-path lcov.info
|
||||
run: cargo +nightly llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v3
|
||||
continue-on-error: true
|
||||
|
||||
21
Cargo.toml
21
Cargo.toml
@@ -15,15 +15,14 @@ rust-version = "1.62"
|
||||
|
||||
[dependencies]
|
||||
oneshot = "0.1.5"
|
||||
base64 = "0.20.0"
|
||||
byteorder = "1.4.3"
|
||||
base64 = "0.21.0"
|
||||
crc32fast = "1.3.2"
|
||||
once_cell = "1.10.0"
|
||||
regex = { version = "1.5.5", default-features = false, features = ["std", "unicode"] }
|
||||
aho-corasick = "0.7"
|
||||
tantivy-fst = "0.4.0"
|
||||
memmap2 = { version = "0.5.3", optional = true }
|
||||
lz4_flex = { version = "0.9.2", default-features = false, features = ["checked-decode"], optional = true }
|
||||
lz4_flex = { version = "0.10", default-features = false, features = ["checked-decode"], optional = true }
|
||||
brotli = { version = "3.3.4", optional = true }
|
||||
zstd = { version = "0.12", optional = true, default-features = false }
|
||||
snap = { version = "1.0.5", optional = true }
|
||||
@@ -44,23 +43,24 @@ rustc-hash = "1.1.0"
|
||||
thiserror = "1.0.30"
|
||||
htmlescape = "0.3.1"
|
||||
fail = "0.5.0"
|
||||
murmurhash32 = "0.2.0"
|
||||
murmurhash32 = "0.3.0"
|
||||
time = { version = "0.3.10", features = ["serde-well-known"] }
|
||||
smallvec = "1.8.0"
|
||||
rayon = "1.5.2"
|
||||
lru = "0.7.5"
|
||||
lru = "0.9.0"
|
||||
fastdivide = "0.4.0"
|
||||
itertools = "0.10.3"
|
||||
measure_time = "0.8.2"
|
||||
async-trait = "0.1.53"
|
||||
arc-swap = "1.5.0"
|
||||
|
||||
columnar = { version="0.1", path="./columnar", package ="tantivy-columnar" }
|
||||
sstable = { version="0.1", path="./sstable", package ="tantivy-sstable", optional = true }
|
||||
stacker = { version="0.1", path="./stacker", package ="tantivy-stacker" }
|
||||
tantivy-query-grammar = { version= "0.19.0", path="./query-grammar" }
|
||||
tantivy-bitpacker = { version= "0.3", path="./bitpacker" }
|
||||
common = { version= "0.5", path = "./common/", package = "tantivy-common" }
|
||||
fastfield_codecs = { version= "0.3", path="./fastfield_codecs", default-features = false }
|
||||
query-grammar = { version= "0.19.0", path="./query-grammar", package = "tantivy-query-grammar" }
|
||||
tantivy-bitpacker = { version= "0.3", path="./bitpacker" }
|
||||
common = { version= "0.5", path = "./common/", package = "tantivy-common" }
|
||||
tokenizer-api = { version="0.1", path="./tokenizer-api", package="tantivy-tokenizer-api" }
|
||||
|
||||
[target.'cfg(windows)'.dependencies]
|
||||
winapi = "0.3.9"
|
||||
@@ -76,6 +76,7 @@ test-log = "0.2.10"
|
||||
env_logger = "0.10.0"
|
||||
pprof = { version = "0.11.0", features = ["flamegraph", "criterion"] }
|
||||
futures = "0.3.21"
|
||||
paste = "1.0.11"
|
||||
|
||||
[dev-dependencies.fail]
|
||||
version = "0.5.0"
|
||||
@@ -106,7 +107,7 @@ unstable = [] # useful for benches.
|
||||
quickwit = ["sstable"]
|
||||
|
||||
[workspace]
|
||||
members = ["query-grammar", "bitpacker", "common", "fastfield_codecs", "ownedbytes", "stacker", "sstable"]
|
||||
members = ["query-grammar", "bitpacker", "common", "ownedbytes", "stacker", "sstable", "tokenizer-api", "columnar"]
|
||||
|
||||
# Following the "fail" crate best practises, we isolate
|
||||
# tests that define specific behavior in fail check points
|
||||
|
||||
51
README.md
51
README.md
@@ -29,7 +29,7 @@ Your mileage WILL vary depending on the nature of queries and their load.
|
||||
# Features
|
||||
|
||||
- Full-text search
|
||||
- Configurable tokenizer (stemming available for 17 Latin languages with third party support for Chinese ([tantivy-jieba](https://crates.io/crates/tantivy-jieba) and [cang-jie](https://crates.io/crates/cang-jie)), Japanese ([lindera](https://github.com/lindera-morphology/lindera-tantivy), [Vaporetto](https://crates.io/crates/vaporetto_tantivy), and [tantivy-tokenizer-tiny-segmenter](https://crates.io/crates/tantivy-tokenizer-tiny-segmenter)) and Korean ([lindera](https://github.com/lindera-morphology/lindera-tantivy) + [lindera-ko-dic-builder](https://github.com/lindera-morphology/lindera-ko-dic-builder))
|
||||
- Configurable tokenizer (stemming available for 17 Latin languages) with third party support for Chinese ([tantivy-jieba](https://crates.io/crates/tantivy-jieba) and [cang-jie](https://crates.io/crates/cang-jie)), Japanese ([lindera](https://github.com/lindera-morphology/lindera-tantivy), [Vaporetto](https://crates.io/crates/vaporetto_tantivy), and [tantivy-tokenizer-tiny-segmenter](https://crates.io/crates/tantivy-tokenizer-tiny-segmenter)) and Korean ([lindera](https://github.com/lindera-morphology/lindera-tantivy) + [lindera-ko-dic-builder](https://github.com/lindera-morphology/lindera-ko-dic-builder))
|
||||
- Fast (check out the :racehorse: :sparkles: [benchmark](https://tantivy-search.github.io/bench/) :sparkles: :racehorse:)
|
||||
- Tiny startup time (<10ms), perfect for command-line tools
|
||||
- BM25 scoring (the same as Lucene)
|
||||
@@ -41,13 +41,13 @@ Your mileage WILL vary depending on the nature of queries and their load.
|
||||
- SIMD integer compression when the platform/CPU includes the SSE2 instruction set
|
||||
- Single valued and multivalued u64, i64, and f64 fast fields (equivalent of doc values in Lucene)
|
||||
- `&[u8]` fast fields
|
||||
- Text, i64, u64, f64, dates, and hierarchical facet fields
|
||||
- LZ4 compressed document store
|
||||
- Text, i64, u64, f64, dates, ip, bool, and hierarchical facet fields
|
||||
- Compressed document store (LZ4, Zstd, None, Brotli, Snap)
|
||||
- Range queries
|
||||
- Faceted search
|
||||
- Configurable indexing (optional term frequency and position indexing)
|
||||
- JSON Field
|
||||
- Aggregation Collector: range buckets, average, and stats metrics
|
||||
- Aggregation Collector: histogram, range buckets, average, and stats metrics
|
||||
- LogMergePolicy with deletes
|
||||
- Searcher Warmer API
|
||||
- Cheesy logo with a horse
|
||||
@@ -80,10 +80,11 @@ There are many ways to support this project.
|
||||
# Contributing code
|
||||
|
||||
We use the GitHub Pull Request workflow: reference a GitHub ticket and/or include a comprehensive commit message when opening a PR.
|
||||
Feel free to update CHANGELOG.md with your contribution.
|
||||
|
||||
## Minimum supported Rust version
|
||||
## Tokenizer
|
||||
|
||||
Tantivy currently requires at least Rust 1.62 or later to compile.
|
||||
When implementing a tokenizer for tantivy depend on the `tantivy-tokenizer-api` crate.
|
||||
|
||||
## Clone and build locally
|
||||
|
||||
@@ -91,41 +92,9 @@ Tantivy compiles on stable Rust.
|
||||
To check out and run tests, you can simply run:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/quickwit-oss/tantivy.git
|
||||
cd tantivy
|
||||
cargo build
|
||||
```
|
||||
|
||||
## Run tests
|
||||
|
||||
Some tests will not run with just `cargo test` because of `fail-rs`.
|
||||
To run the tests exhaustively, run `./run-tests.sh`.
|
||||
|
||||
## Debug
|
||||
|
||||
You might find it useful to step through the programme with a debugger.
|
||||
|
||||
### A failing test
|
||||
|
||||
Make sure you haven't run `cargo clean` after the most recent `cargo test` or `cargo build` to guarantee that the `target/` directory exists. Use this bash script to find the name of the most recent debug build of Tantivy and run it under `rust-gdb`:
|
||||
|
||||
```bash
|
||||
find target/debug/ -maxdepth 1 -executable -type f -name "tantivy*" -printf '%TY-%Tm-%Td %TT %p\n' | sort -r | cut -d " " -f 3 | xargs -I RECENT_DBG_TANTIVY rust-gdb RECENT_DBG_TANTIVY
|
||||
```
|
||||
|
||||
Now that you are in `rust-gdb`, you can set breakpoints on lines and methods that match your source code and run the debug executable with flags that you normally pass to `cargo test` like this:
|
||||
|
||||
```bash
|
||||
$gdb run --test-threads 1 --test $NAME_OF_TEST
|
||||
```
|
||||
|
||||
### An example
|
||||
|
||||
By default, `rustc` compiles everything in the `examples/` directory in debug mode. This makes it easy for you to make examples to reproduce bugs:
|
||||
|
||||
```bash
|
||||
rust-gdb target/debug/examples/$EXAMPLE_NAME
|
||||
$ gdb run
|
||||
git clone https://github.com/quickwit-oss/tantivy.git
|
||||
cd tantivy
|
||||
cargo test
|
||||
```
|
||||
|
||||
# Companies Using Tantivy
|
||||
|
||||
18
TODO.txt
Normal file
18
TODO.txt
Normal file
@@ -0,0 +1,18 @@
|
||||
Make schema_builder API fluent.
|
||||
fix doc serialization and prevent compression problems
|
||||
|
||||
u64 , etc. shoudl return Resutl<Option> now that we support optional missing a column is really not an error
|
||||
remove fastfield codecs
|
||||
ditch the first_or_default trick. if it is still useful, improve its implementation.
|
||||
rename FastFieldReaders::open to load
|
||||
|
||||
|
||||
remove fast field reader
|
||||
|
||||
find a way to unify the two DateTime.
|
||||
readd type check in the filter wrapper
|
||||
|
||||
add unit test on columnar list columns.
|
||||
|
||||
make sure sort works
|
||||
|
||||
@@ -34,7 +34,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split("\n") {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
@@ -46,7 +46,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split("\n") {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
@@ -59,7 +59,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
let index = Index::create_in_ram(schema_with_store.clone());
|
||||
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split("\n") {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
@@ -71,7 +71,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
let index = Index::create_in_ram(schema_with_store.clone());
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split("\n") {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
@@ -85,7 +85,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
let json_field = dynamic_schema.get_field("json").unwrap();
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split("\n") {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
let json_val: serde_json::Map<String, serde_json::Value> =
|
||||
serde_json::from_str(doc_json).unwrap();
|
||||
let doc = tantivy::doc!(json_field=>json_val);
|
||||
@@ -101,7 +101,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
let json_field = dynamic_schema.get_field("json").unwrap();
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split("\n") {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
let json_val: serde_json::Map<String, serde_json::Value> =
|
||||
serde_json::from_str(doc_json).unwrap();
|
||||
let doc = tantivy::doc!(json_field=>json_val);
|
||||
|
||||
@@ -15,3 +15,7 @@ homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
|
||||
[dev-dependencies]
|
||||
rand = "0.8"
|
||||
proptest = "1"
|
||||
|
||||
@@ -4,9 +4,39 @@ extern crate test;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use tantivy_bitpacker::BlockedBitpacker;
|
||||
use rand::seq::IteratorRandom;
|
||||
use rand::thread_rng;
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker, BlockedBitpacker};
|
||||
use test::Bencher;
|
||||
|
||||
#[inline(never)]
|
||||
fn create_bitpacked_data(bit_width: u8, num_els: u32) -> Vec<u8> {
|
||||
let mut bitpacker = BitPacker::new();
|
||||
let mut buffer = Vec::new();
|
||||
for _ in 0..num_els {
|
||||
// the values do not matter.
|
||||
bitpacker.write(0u64, bit_width, &mut buffer).unwrap();
|
||||
bitpacker.flush(&mut buffer).unwrap();
|
||||
}
|
||||
buffer
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_bitpacking_read(b: &mut Bencher) {
|
||||
let bit_width = 3;
|
||||
let num_els = 1_000_000u32;
|
||||
let bit_unpacker = BitUnpacker::new(bit_width);
|
||||
let data = create_bitpacked_data(bit_width, num_els);
|
||||
let idxs: Vec<u32> = (0..num_els).choose_multiple(&mut thread_rng(), 100_000);
|
||||
b.iter(|| {
|
||||
let mut out = 0u64;
|
||||
for &idx in &idxs {
|
||||
out = out.wrapping_add(bit_unpacker.get(idx, &data[..]));
|
||||
}
|
||||
out
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_blockedbitp_read(b: &mut Bencher) {
|
||||
let mut blocked_bitpacker = BlockedBitpacker::new();
|
||||
@@ -14,9 +44,9 @@ mod tests {
|
||||
blocked_bitpacker.add(val * val);
|
||||
}
|
||||
b.iter(|| {
|
||||
let mut out = 0;
|
||||
let mut out = 0u64;
|
||||
for val in 0..=21500 {
|
||||
out = blocked_bitpacker.get(val);
|
||||
out = out.wrapping_add(blocked_bitpacker.get(val));
|
||||
}
|
||||
out
|
||||
});
|
||||
|
||||
@@ -19,7 +19,7 @@ impl BitPacker {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn write<TWrite: io::Write>(
|
||||
pub fn write<TWrite: io::Write + ?Sized>(
|
||||
&mut self,
|
||||
val: u64,
|
||||
num_bits: u8,
|
||||
@@ -43,7 +43,7 @@ impl BitPacker {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn flush<TWrite: io::Write>(&mut self, output: &mut TWrite) -> io::Result<()> {
|
||||
pub fn flush<TWrite: io::Write + ?Sized>(&mut self, output: &mut TWrite) -> io::Result<()> {
|
||||
if self.mini_buffer_written > 0 {
|
||||
let num_bytes = (self.mini_buffer_written + 7) / 8;
|
||||
let bytes = self.mini_buffer.to_le_bytes();
|
||||
@@ -54,29 +54,33 @@ impl BitPacker {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn close<TWrite: io::Write>(&mut self, output: &mut TWrite) -> io::Result<()> {
|
||||
pub fn close<TWrite: io::Write + ?Sized>(&mut self, output: &mut TWrite) -> io::Result<()> {
|
||||
self.flush(output)?;
|
||||
// Padding the write file to simplify reads.
|
||||
output.write_all(&[0u8; 7])?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Default)]
|
||||
#[derive(Clone, Debug, Default, Copy)]
|
||||
pub struct BitUnpacker {
|
||||
num_bits: u64,
|
||||
num_bits: u32,
|
||||
mask: u64,
|
||||
}
|
||||
|
||||
impl BitUnpacker {
|
||||
/// Creates a bit unpacker, that assumes the same bitwidth for all values.
|
||||
///
|
||||
/// The bitunpacker works by doing an unaligned read of 8 bytes.
|
||||
/// For this reason, values of `num_bits` between
|
||||
/// [57..63] are forbidden.
|
||||
pub fn new(num_bits: u8) -> BitUnpacker {
|
||||
assert!(num_bits <= 7 * 8 || num_bits == 64);
|
||||
let mask: u64 = if num_bits == 64 {
|
||||
!0u64
|
||||
} else {
|
||||
(1u64 << num_bits) - 1u64
|
||||
};
|
||||
BitUnpacker {
|
||||
num_bits: u64::from(num_bits),
|
||||
num_bits: u32::from(num_bits),
|
||||
mask,
|
||||
}
|
||||
}
|
||||
@@ -87,28 +91,40 @@ impl BitUnpacker {
|
||||
|
||||
#[inline]
|
||||
pub fn get(&self, idx: u32, data: &[u8]) -> u64 {
|
||||
if self.num_bits == 0 {
|
||||
return 0u64;
|
||||
}
|
||||
let addr_in_bits = idx * self.num_bits as u32;
|
||||
let addr_in_bits = idx * self.num_bits;
|
||||
let addr = (addr_in_bits >> 3) as usize;
|
||||
if addr + 8 > data.len() {
|
||||
if self.num_bits == 0 {
|
||||
return 0;
|
||||
}
|
||||
let bit_shift = addr_in_bits & 7;
|
||||
return self.get_slow_path(addr, bit_shift, data);
|
||||
}
|
||||
let bit_shift = addr_in_bits & 7;
|
||||
debug_assert!(
|
||||
addr + 8 <= data.len(),
|
||||
"The fast field field should have been padded with 7 bytes."
|
||||
);
|
||||
let bytes: [u8; 8] = (&data[addr..addr + 8]).try_into().unwrap();
|
||||
let val_unshifted_unmasked: u64 = u64::from_le_bytes(bytes);
|
||||
let val_shifted = val_unshifted_unmasked >> bit_shift;
|
||||
val_shifted & self.mask
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn get_slow_path(&self, addr: usize, bit_shift: u32, data: &[u8]) -> u64 {
|
||||
let mut bytes: [u8; 8] = [0u8; 8];
|
||||
let available_bytes = data.len() - addr;
|
||||
// This function is meant to only be called if we did not have 8 bytes to load.
|
||||
debug_assert!(available_bytes < 8);
|
||||
bytes[..available_bytes].copy_from_slice(&data[addr..]);
|
||||
let val_unshifted_unmasked: u64 = u64::from_le_bytes(bytes);
|
||||
let val_shifted = val_unshifted_unmasked >> bit_shift;
|
||||
val_shifted & self.mask
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::{BitPacker, BitUnpacker};
|
||||
|
||||
fn create_fastfield_bitpacker(len: usize, num_bits: u8) -> (BitUnpacker, Vec<u64>, Vec<u8>) {
|
||||
fn create_bitpacker(len: usize, num_bits: u8) -> (BitUnpacker, Vec<u64>, Vec<u8>) {
|
||||
let mut data = Vec::new();
|
||||
let mut bitpacker = BitPacker::new();
|
||||
let max_val: u64 = (1u64 << num_bits as u64) - 1u64;
|
||||
@@ -119,13 +135,13 @@ mod test {
|
||||
bitpacker.write(val, num_bits, &mut data).unwrap();
|
||||
}
|
||||
bitpacker.close(&mut data).unwrap();
|
||||
assert_eq!(data.len(), ((num_bits as usize) * len + 7) / 8 + 7);
|
||||
assert_eq!(data.len(), ((num_bits as usize) * len + 7) / 8);
|
||||
let bitunpacker = BitUnpacker::new(num_bits);
|
||||
(bitunpacker, vals, data)
|
||||
}
|
||||
|
||||
fn test_bitpacker_util(len: usize, num_bits: u8) {
|
||||
let (bitunpacker, vals, data) = create_fastfield_bitpacker(len, num_bits);
|
||||
let (bitunpacker, vals, data) = create_bitpacker(len, num_bits);
|
||||
for (i, val) in vals.iter().enumerate() {
|
||||
assert_eq!(bitunpacker.get(i as u32, &data), *val);
|
||||
}
|
||||
@@ -139,4 +155,49 @@ mod test {
|
||||
test_bitpacker_util(6, 14);
|
||||
test_bitpacker_util(1000, 14);
|
||||
}
|
||||
|
||||
use proptest::prelude::*;
|
||||
|
||||
fn num_bits_strategy() -> impl Strategy<Value = u8> {
|
||||
prop_oneof!(Just(0), Just(1), 2u8..56u8, Just(56), Just(64),)
|
||||
}
|
||||
|
||||
fn vals_strategy() -> impl Strategy<Value = (u8, Vec<u64>)> {
|
||||
(num_bits_strategy(), 0usize..100usize).prop_flat_map(|(num_bits, len)| {
|
||||
let max_val = if num_bits == 64 {
|
||||
u64::MAX
|
||||
} else {
|
||||
(1u64 << num_bits as u32) - 1
|
||||
};
|
||||
let vals = proptest::collection::vec(0..=max_val, len);
|
||||
vals.prop_map(move |vals| (num_bits, vals))
|
||||
})
|
||||
}
|
||||
|
||||
fn test_bitpacker_aux(num_bits: u8, vals: &[u64]) {
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
let mut bitpacker = BitPacker::new();
|
||||
for &val in vals {
|
||||
bitpacker.write(val, num_bits, &mut buffer).unwrap();
|
||||
}
|
||||
bitpacker.flush(&mut buffer).unwrap();
|
||||
assert_eq!(buffer.len(), (vals.len() * num_bits as usize + 7) / 8);
|
||||
let bitunpacker = BitUnpacker::new(num_bits);
|
||||
let max_val = if num_bits == 64 {
|
||||
u64::MAX
|
||||
} else {
|
||||
(1u64 << num_bits) - 1
|
||||
};
|
||||
for (i, val) in vals.iter().copied().enumerate() {
|
||||
assert!(val <= max_val);
|
||||
assert_eq!(bitunpacker.get(i as u32, &buffer), val);
|
||||
}
|
||||
}
|
||||
|
||||
proptest::proptest! {
|
||||
#[test]
|
||||
fn test_bitpacker_proptest((num_bits, vals) in vals_strategy()) {
|
||||
test_bitpacker_aux(num_bits, &vals);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,23 +0,0 @@
|
||||
# This script takes care of packaging the build artifacts that will go in the
|
||||
# release zipfile
|
||||
|
||||
$SRC_DIR = $PWD.Path
|
||||
$STAGE = [System.Guid]::NewGuid().ToString()
|
||||
|
||||
Set-Location $ENV:Temp
|
||||
New-Item -Type Directory -Name $STAGE
|
||||
Set-Location $STAGE
|
||||
|
||||
$ZIP = "$SRC_DIR\$($Env:CRATE_NAME)-$($Env:APPVEYOR_REPO_TAG_NAME)-$($Env:TARGET).zip"
|
||||
|
||||
# TODO Update this to package the right artifacts
|
||||
Copy-Item "$SRC_DIR\target\$($Env:TARGET)\release\hello.exe" '.\'
|
||||
|
||||
7z a "$ZIP" *
|
||||
|
||||
Push-AppveyorArtifact "$ZIP"
|
||||
|
||||
Remove-Item *.* -Force
|
||||
Set-Location ..
|
||||
Remove-Item $STAGE
|
||||
Set-Location $SRC_DIR
|
||||
@@ -1,33 +0,0 @@
|
||||
# This script takes care of building your crate and packaging it for release
|
||||
|
||||
set -ex
|
||||
|
||||
main() {
|
||||
local src=$(pwd) \
|
||||
stage=
|
||||
|
||||
case $TRAVIS_OS_NAME in
|
||||
linux)
|
||||
stage=$(mktemp -d)
|
||||
;;
|
||||
osx)
|
||||
stage=$(mktemp -d -t tmp)
|
||||
;;
|
||||
esac
|
||||
|
||||
test -f Cargo.lock || cargo generate-lockfile
|
||||
|
||||
# TODO Update this to build the artifacts that matter to you
|
||||
cross rustc --bin hello --target $TARGET --release -- -C lto
|
||||
|
||||
# TODO Update this to package the right artifacts
|
||||
cp target/$TARGET/release/hello $stage/
|
||||
|
||||
cd $stage
|
||||
tar czf $src/$CRATE_NAME-$TRAVIS_TAG-$TARGET.tar.gz *
|
||||
cd $src
|
||||
|
||||
rm -rf $stage
|
||||
}
|
||||
|
||||
main
|
||||
@@ -1,47 +0,0 @@
|
||||
set -ex
|
||||
|
||||
main() {
|
||||
local target=
|
||||
if [ $TRAVIS_OS_NAME = linux ]; then
|
||||
target=x86_64-unknown-linux-musl
|
||||
sort=sort
|
||||
else
|
||||
target=x86_64-apple-darwin
|
||||
sort=gsort # for `sort --sort-version`, from brew's coreutils.
|
||||
fi
|
||||
|
||||
# Builds for iOS are done on OSX, but require the specific target to be
|
||||
# installed.
|
||||
case $TARGET in
|
||||
aarch64-apple-ios)
|
||||
rustup target install aarch64-apple-ios
|
||||
;;
|
||||
armv7-apple-ios)
|
||||
rustup target install armv7-apple-ios
|
||||
;;
|
||||
armv7s-apple-ios)
|
||||
rustup target install armv7s-apple-ios
|
||||
;;
|
||||
i386-apple-ios)
|
||||
rustup target install i386-apple-ios
|
||||
;;
|
||||
x86_64-apple-ios)
|
||||
rustup target install x86_64-apple-ios
|
||||
;;
|
||||
esac
|
||||
|
||||
# This fetches latest stable release
|
||||
local tag=$(git ls-remote --tags --refs --exit-code https://github.com/japaric/cross \
|
||||
| cut -d/ -f3 \
|
||||
| grep -E '^v[0.1.0-9.]+$' \
|
||||
| $sort --version-sort \
|
||||
| tail -n1)
|
||||
curl -LSfs https://japaric.github.io/trust/install.sh | \
|
||||
sh -s -- \
|
||||
--force \
|
||||
--git japaric/cross \
|
||||
--tag $tag \
|
||||
--target $target
|
||||
}
|
||||
|
||||
main
|
||||
30
ci/script.sh
30
ci/script.sh
@@ -1,30 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# This script takes care of testing your crate
|
||||
|
||||
set -ex
|
||||
|
||||
main() {
|
||||
if [ ! -z $CODECOV ]; then
|
||||
echo "Codecov"
|
||||
cargo build --verbose && cargo coverage --verbose --all && bash <(curl -s https://codecov.io/bash) -s target/kcov
|
||||
else
|
||||
echo "Build"
|
||||
cross build --target $TARGET
|
||||
if [ ! -z $DISABLE_TESTS ]; then
|
||||
return
|
||||
fi
|
||||
echo "Test"
|
||||
cross test --target $TARGET --no-default-features --features mmap
|
||||
cross test --target $TARGET --no-default-features --features mmap query-grammar
|
||||
fi
|
||||
for example in $(ls examples/*.rs)
|
||||
do
|
||||
cargo run --example $(basename $example .rs)
|
||||
done
|
||||
}
|
||||
|
||||
# we don't run the "test phase" when doing deploys
|
||||
if [ -z $TRAVIS_TAG ]; then
|
||||
main
|
||||
fi
|
||||
28
columnar/Cargo.toml
Normal file
28
columnar/Cargo.toml
Normal file
@@ -0,0 +1,28 @@
|
||||
[package]
|
||||
name = "tantivy-columnar"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
license = "MIT"
|
||||
|
||||
[dependencies]
|
||||
itertools = "0.10.5"
|
||||
log = "0.4.17"
|
||||
fnv = "1.0.7"
|
||||
fastdivide = "0.4.0"
|
||||
rand = { version = "0.8.5", optional = true }
|
||||
measure_time = { version = "0.8.2", optional = true }
|
||||
prettytable-rs = { version = "0.10.0", optional = true }
|
||||
|
||||
stacker = { path = "../stacker", package="tantivy-stacker"}
|
||||
sstable = { path = "../sstable", package = "tantivy-sstable" }
|
||||
common = { path = "../common", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.3", path = "../bitpacker/" }
|
||||
serde = "1.0.152"
|
||||
|
||||
[dev-dependencies]
|
||||
proptest = "1"
|
||||
more-asserts = "0.3.1"
|
||||
rand = "0.8.5"
|
||||
|
||||
[features]
|
||||
unstable = []
|
||||
109
columnar/README.md
Normal file
109
columnar/README.md
Normal file
@@ -0,0 +1,109 @@
|
||||
# Columnar format
|
||||
|
||||
This crate describes columnar format used in tantivy.
|
||||
|
||||
## Goals
|
||||
|
||||
This format is special in the following way.
|
||||
- it needs to be compact
|
||||
- accessing a specific column does not require to load the entire columnar. It can be done in 2 to 3 random access.
|
||||
- columns of several types can be associated with the same column name.
|
||||
- it needs to support columns with different types `(str, u64, i64, f64)`
|
||||
and different cardinality `(required, optional, multivalued)`.
|
||||
- columns, once loaded, offer cheap random access.
|
||||
- it is designed to allow range queries.
|
||||
|
||||
# Coercion rules
|
||||
|
||||
Users can create a columnar by inserting rows to a `ColumnarWriter`,
|
||||
and serializing it into a `Write` object.
|
||||
Nothing prevents a user from recording values with different type to the same `column_name`.
|
||||
|
||||
In that case, `tantivy-columnar`'s behavior is as follows:
|
||||
- JsonValues are grouped into 3 types (String, Number, bool).
|
||||
Values that corresponds to different groups are mapped to different columns. For instance, String values are treated independently
|
||||
from Number or boolean values. `tantivy-columnar` will simply emit several columns associated to a given column_name.
|
||||
- Only one column for a given json value type is emitted. If number values with different number types are recorded (e.g. u64, i64, f64),
|
||||
`tantivy-columnar` will pick the first type that can represents the set of appended value, with the following prioriy order (`i64`, `u64`, `f64`).
|
||||
`i64` is picked over `u64` as it is likely to yield less change of types. Most use cases strictly requiring `u64` show the
|
||||
restriction on 50% of the values (e.g. a 64-bit hash). On the other hand, a lot of use cases can show rare negative value.
|
||||
|
||||
# Columnar format
|
||||
|
||||
This columnar format may have more than one column (with different types) associated to the same `column_name` (see [Coercion rules](#coercion-rules) above).
|
||||
The `(column_name, columne_type)` couple however uniquely identifies a column.
|
||||
That couple is serialized as a column `column_key`. The format of that key is:
|
||||
`[column_name][ZERO_BYTE][column_type_header: u8]`
|
||||
|
||||
```
|
||||
COLUMNAR:=
|
||||
[COLUMNAR_DATA]
|
||||
[COLUMNAR_KEY_TO_DATA_INDEX]
|
||||
[COLUMNAR_FOOTER];
|
||||
|
||||
|
||||
# Columns are sorted by their column key.
|
||||
COLUMNAR_DATA:=
|
||||
[COLUMN_DATA]+;
|
||||
|
||||
COLUMNAR_FOOTER := [RANGE_SSTABLE_BYTES_LEN: 8 bytes little endian]
|
||||
|
||||
```
|
||||
|
||||
The columnar file starts by the actual column data, concatenated one after the other,
|
||||
sorted by column key.
|
||||
|
||||
A sstable associates
|
||||
`(column name, column_cardinality, column_type) to range of bytes.
|
||||
|
||||
Column name may not contain the zero byte `\0`.
|
||||
|
||||
Listing all columns associated to `column_name` can therefore
|
||||
be done by listing all keys prefixed by
|
||||
`[column_name][ZERO_BYTE]`
|
||||
|
||||
The associated range of bytes refer to a range of bytes
|
||||
|
||||
This crate exposes a columnar format for tantivy.
|
||||
This format is described in README.md
|
||||
|
||||
|
||||
The crate introduces the following concepts.
|
||||
|
||||
`Columnar` is an equivalent of a dataframe.
|
||||
It maps `column_key` to `Column`.
|
||||
|
||||
A `Column<T>` asssociates a `RowId` (u32) to any
|
||||
number of values.
|
||||
|
||||
This is made possible by wrapping a `ColumnIndex` and a `ColumnValue` object.
|
||||
The `ColumnValue<T>` represents a mapping that associates each `RowId` to
|
||||
exactly one single value.
|
||||
|
||||
The `ColumnIndex` then maps each RowId to a set of `RowId` in the
|
||||
`ColumnValue`.
|
||||
|
||||
For optimization, and compression purposes, the `ColumnIndex` has three
|
||||
possible representation, each for different cardinalities.
|
||||
|
||||
- Full
|
||||
|
||||
All RowId have exactly one value. The ColumnIndex is the trivial mapping.
|
||||
|
||||
- Optional
|
||||
|
||||
All RowIds can have at most one value. The ColumnIndex is the trivial mapping `ColumnRowId -> Option<ColumnValueRowId>`.
|
||||
|
||||
- Multivalued
|
||||
|
||||
All RowIds can have any number of values.
|
||||
The column index is mapping values to a range.
|
||||
|
||||
|
||||
All these objects are implemented an unit tested independently
|
||||
in their own module:
|
||||
|
||||
- columnar
|
||||
- column_index
|
||||
- column_values
|
||||
- column
|
||||
124
columnar/benches/bench_u128.rs
Normal file
124
columnar/benches/bench_u128.rs
Normal file
@@ -0,0 +1,124 @@
|
||||
#![feature(test)]
|
||||
|
||||
use std::ops::RangeInclusive;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::{random, Rng, SeedableRng};
|
||||
use tantivy_columnar::ColumnValues;
|
||||
use test::Bencher;
|
||||
extern crate test;
|
||||
|
||||
// TODO does this make sense for IPv6 ?
|
||||
fn generate_random() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (0u64..100_000u64)
|
||||
.map(|el| el + random::<u16>() as u64)
|
||||
.collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
fn get_u128_column_random() -> Arc<dyn ColumnValues<u128>> {
|
||||
let permutation = generate_random();
|
||||
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
get_u128_column_from_data(&permutation)
|
||||
}
|
||||
|
||||
fn get_u128_column_from_data(data: &[u128]) -> Arc<dyn ColumnValues<u128>> {
|
||||
let mut out = vec![];
|
||||
tantivy_columnar::column_values::serialize_column_values_u128(&data, &mut out).unwrap();
|
||||
let out = OwnedBytes::new(out);
|
||||
tantivy_columnar::column_values::open_u128_mapped::<u128>(out).unwrap()
|
||||
}
|
||||
|
||||
const FIFTY_PERCENT_RANGE: RangeInclusive<u64> = 1..=50;
|
||||
const SINGLE_ITEM: u64 = 90;
|
||||
const SINGLE_ITEM_RANGE: RangeInclusive<u64> = 90..=90;
|
||||
|
||||
fn get_data_50percent_item() -> Vec<u128> {
|
||||
let mut rng = StdRng::from_seed([1u8; 32]);
|
||||
|
||||
let mut data = vec![];
|
||||
for _ in 0..300_000 {
|
||||
let val = rng.gen_range(1..=100);
|
||||
data.push(val);
|
||||
}
|
||||
data.push(SINGLE_ITEM);
|
||||
data.shuffle(&mut rng);
|
||||
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
data
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(
|
||||
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(
|
||||
*SINGLE_ITEM_RANGE.start() as u128..=*SINGLE_ITEM_RANGE.end() as u128,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
// U128 RANGE END
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
let mut a = 0u128;
|
||||
for i in 0u64..column.num_vals() as u64 {
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_stride5_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
let n = column.num_vals();
|
||||
let mut a = 0u128;
|
||||
for i in (0..n / 5).map(|val| val * 5) {
|
||||
a += column.get_val(i);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
211
columnar/benches/bench_u64.rs
Normal file
211
columnar/benches/bench_u64.rs
Normal file
@@ -0,0 +1,211 @@
|
||||
#![feature(test)]
|
||||
extern crate test;
|
||||
|
||||
use std::ops::RangeInclusive;
|
||||
use std::sync::Arc;
|
||||
|
||||
use rand::prelude::*;
|
||||
use tantivy_columnar::column_values::{serialize_and_load_u64_based_column_values, CodecType};
|
||||
use tantivy_columnar::*;
|
||||
use test::Bencher;
|
||||
|
||||
// Warning: this generates the same permutation at each call
|
||||
fn generate_permutation() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (0u64..100_000u64).collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
fn generate_random() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (0u64..100_000u64)
|
||||
.map(|el| el + random::<u16>() as u64)
|
||||
.collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
// Warning: this generates the same permutation at each call
|
||||
fn generate_permutation_gcd() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (1u64..100_000u64).map(|el| el * 1000).collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
pub fn serialize_and_load(column: &[u64], codec_type: CodecType) -> Arc<dyn ColumnValues<u64>> {
|
||||
serialize_and_load_u64_based_column_values(&column, &[codec_type])
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_veclookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = permutation[a as usize];
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_fflookup_bitpacked(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = column.get_val(a as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
const FIFTY_PERCENT_RANGE: RangeInclusive<u64> = 1..=50;
|
||||
const SINGLE_ITEM: u64 = 90;
|
||||
const SINGLE_ITEM_RANGE: RangeInclusive<u64> = 90..=90;
|
||||
const ONE_PERCENT_ITEM_RANGE: RangeInclusive<u64> = 49..=49;
|
||||
fn get_data_50percent_item() -> Vec<u128> {
|
||||
let mut rng = StdRng::from_seed([1u8; 32]);
|
||||
|
||||
let mut data = vec![];
|
||||
for _ in 0..300_000 {
|
||||
let val = rng.gen_range(1..=100);
|
||||
data.push(val);
|
||||
}
|
||||
data.push(SINGLE_ITEM);
|
||||
|
||||
data.shuffle(&mut rng);
|
||||
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
data
|
||||
}
|
||||
|
||||
// U64 RANGE START
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_50percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(
|
||||
FIFTY_PERCENT_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_1percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(
|
||||
ONE_PERCENT_ITEM_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_single_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(SINGLE_ITEM_RANGE, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_hit_all(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(0..=u64::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
// U64 RANGE END
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_vec(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += permutation[i as usize];
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut a = 0;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
let column_ref = column.as_ref();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0u32..n as u32 {
|
||||
a += column_ref.get_val(i);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_gcd(b: &mut Bencher) {
|
||||
let permutation = generate_permutation_gcd();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..n {
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_vec(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..permutation.len() {
|
||||
a += permutation[i as usize] as u64;
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
17
columnar/columnar-cli/Cargo.toml
Normal file
17
columnar/columnar-cli/Cargo.toml
Normal file
@@ -0,0 +1,17 @@
|
||||
[package]
|
||||
name = "tantivy-columnar-cli"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
license = "MIT"
|
||||
|
||||
[dependencies]
|
||||
columnar = {path="../", package="tantivy-columnar"}
|
||||
serde_json = "1"
|
||||
serde_json_borrow = {git="https://github.com/PSeitz/serde_json_borrow/"}
|
||||
serde = "1"
|
||||
|
||||
[workspace]
|
||||
members = []
|
||||
|
||||
[profile.release]
|
||||
debug = true
|
||||
134
columnar/columnar-cli/src/main.rs
Normal file
134
columnar/columnar-cli/src/main.rs
Normal file
@@ -0,0 +1,134 @@
|
||||
use columnar::ColumnarWriter;
|
||||
use columnar::NumericalValue;
|
||||
use serde_json_borrow;
|
||||
use std::fs::File;
|
||||
use std::io;
|
||||
use std::io::BufRead;
|
||||
use std::io::BufReader;
|
||||
use std::time::Instant;
|
||||
|
||||
#[derive(Default)]
|
||||
struct JsonStack {
|
||||
path: String,
|
||||
stack: Vec<usize>,
|
||||
}
|
||||
|
||||
impl JsonStack {
|
||||
fn push(&mut self, seg: &str) {
|
||||
let len = self.path.len();
|
||||
self.stack.push(len);
|
||||
self.path.push('.');
|
||||
self.path.push_str(seg);
|
||||
}
|
||||
|
||||
fn pop(&mut self) {
|
||||
if let Some(len) = self.stack.pop() {
|
||||
self.path.truncate(len);
|
||||
}
|
||||
}
|
||||
|
||||
fn path(&self) -> &str {
|
||||
&self.path[1..]
|
||||
}
|
||||
}
|
||||
|
||||
fn append_json_to_columnar(
|
||||
doc: u32,
|
||||
json_value: &serde_json_borrow::Value,
|
||||
columnar: &mut ColumnarWriter,
|
||||
stack: &mut JsonStack,
|
||||
) -> usize {
|
||||
let mut count = 0;
|
||||
match json_value {
|
||||
serde_json_borrow::Value::Null => {}
|
||||
serde_json_borrow::Value::Bool(val) => {
|
||||
columnar.record_numerical(
|
||||
doc,
|
||||
stack.path(),
|
||||
NumericalValue::from(if *val { 1u64 } else { 0u64 }),
|
||||
);
|
||||
count += 1;
|
||||
}
|
||||
serde_json_borrow::Value::Number(num) => {
|
||||
let numerical_value: NumericalValue = if let Some(num_i64) = num.as_i64() {
|
||||
num_i64.into()
|
||||
} else if let Some(num_u64) = num.as_u64() {
|
||||
num_u64.into()
|
||||
} else if let Some(num_f64) = num.as_f64() {
|
||||
num_f64.into()
|
||||
} else {
|
||||
panic!();
|
||||
};
|
||||
count += 1;
|
||||
columnar.record_numerical(
|
||||
doc,
|
||||
stack.path(),
|
||||
numerical_value,
|
||||
);
|
||||
}
|
||||
serde_json_borrow::Value::Str(msg) => {
|
||||
columnar.record_str(
|
||||
doc,
|
||||
stack.path(),
|
||||
msg,
|
||||
);
|
||||
count += 1;
|
||||
},
|
||||
serde_json_borrow::Value::Array(vals) => {
|
||||
for val in vals {
|
||||
count += append_json_to_columnar(doc, val, columnar, stack);
|
||||
}
|
||||
},
|
||||
serde_json_borrow::Value::Object(json_map) => {
|
||||
for (child_key, child_val) in json_map {
|
||||
stack.push(child_key);
|
||||
count += append_json_to_columnar(doc, child_val, columnar, stack);
|
||||
stack.pop();
|
||||
}
|
||||
},
|
||||
}
|
||||
count
|
||||
}
|
||||
|
||||
fn main() -> io::Result<()> {
|
||||
let file = File::open("gh_small.json")?;
|
||||
let mut reader = BufReader::new(file);
|
||||
let mut line = String::with_capacity(100);
|
||||
let mut columnar = columnar::ColumnarWriter::default();
|
||||
let mut doc = 0;
|
||||
let start = Instant::now();
|
||||
let mut stack = JsonStack::default();
|
||||
let mut total_count = 0;
|
||||
|
||||
let start_build = Instant::now();
|
||||
loop {
|
||||
line.clear();
|
||||
let len = reader.read_line(&mut line)?;
|
||||
if len == 0 {
|
||||
break;
|
||||
}
|
||||
let Ok(json_value) = serde_json::from_str::<serde_json_borrow::Value>(&line) else { continue; };
|
||||
total_count += append_json_to_columnar(doc, &json_value, &mut columnar, &mut stack);
|
||||
doc += 1;
|
||||
}
|
||||
println!("Build in {:?}", start_build.elapsed());
|
||||
|
||||
println!("value count {total_count}");
|
||||
|
||||
let mut buffer = Vec::new();
|
||||
let start_serialize = Instant::now();
|
||||
columnar.serialize(doc, None, &mut buffer)?;
|
||||
println!("Serialized in {:?}", start_serialize.elapsed());
|
||||
println!("num docs: {doc}, {:?}", start.elapsed());
|
||||
println!("buffer len {} MB", buffer.len() / 1_000_000);
|
||||
let columnar = columnar::ColumnarReader::open(buffer)?;
|
||||
for (column_name, dynamic_column) in columnar.list_columns()? {
|
||||
let num_bytes = dynamic_column.num_bytes();
|
||||
let typ = dynamic_column.column_type();
|
||||
if num_bytes > 1_000_000 {
|
||||
println!("{column_name} {typ:?} {} KB", num_bytes / 1_000);
|
||||
}
|
||||
}
|
||||
println!("{} columns", columnar.num_columns());
|
||||
Ok(())
|
||||
}
|
||||
47
columnar/src/TODO.md
Normal file
47
columnar/src/TODO.md
Normal file
@@ -0,0 +1,47 @@
|
||||
# zero to one
|
||||
|
||||
* revisit line codec
|
||||
* add columns from schema on merge
|
||||
* Plugging JSON
|
||||
* replug examples
|
||||
* move datetime to quickwit common
|
||||
* switch to nanos
|
||||
* reintroduce the gcd map.
|
||||
|
||||
# Perf and Size
|
||||
* remove alloc in `ord_to_term`
|
||||
+ multivaued range queries restrat frm the beginning all of the time.
|
||||
* re-add ZSTD compression for dictionaries
|
||||
no systematic monotonic mapping
|
||||
consider removing multilinear
|
||||
f32?
|
||||
adhoc solution for bool?
|
||||
add metrics helper for aggregate. sum(row_id)
|
||||
review inline absence/presence
|
||||
improv perf of select using PDEP
|
||||
compare with roaring bitmap/elias fano etc etc.
|
||||
SIMD range? (see blog post)
|
||||
Add alignment?
|
||||
Consider another codec to bridge the gap between few and 5k elements
|
||||
|
||||
# Cleanup and rationalization
|
||||
in benchmark, unify percent vs ratio, f32 vs f64.
|
||||
investigate if should have better errors? io::Error is overused at the moment.
|
||||
rename rank/select in unit tests
|
||||
Review the public API via cargo doc
|
||||
go through TODOs
|
||||
remove all doc_id occurences -> row_id
|
||||
use the rank & select naming in unit tests branch.
|
||||
multi-linear -> blockwise
|
||||
linear codec -> simply a multiplication for the index column
|
||||
rename columnar to something more explicit, like column_dictionary or columnar_table
|
||||
rename fastfield -> column
|
||||
document changes
|
||||
rationalization FastFieldValue, HasColumnType
|
||||
isolate u128_based and uniform naming
|
||||
|
||||
# Other
|
||||
fix enhance column-cli
|
||||
|
||||
# Santa claus
|
||||
autodetect datetime ipaddr, plug customizable tokenizer.
|
||||
100
columnar/src/column/dictionary_encoded.rs
Normal file
100
columnar/src/column/dictionary_encoded.rs
Normal file
@@ -0,0 +1,100 @@
|
||||
use std::io;
|
||||
use std::ops::Deref;
|
||||
use std::sync::Arc;
|
||||
|
||||
use sstable::{Dictionary, VoidSSTable};
|
||||
|
||||
use crate::column::Column;
|
||||
use crate::RowId;
|
||||
|
||||
/// Dictionary encoded column.
|
||||
///
|
||||
/// The column simply gives access to a regular u64-column that, in
|
||||
/// which the values are term-ordinals.
|
||||
///
|
||||
/// These ordinals are ids uniquely identify the bytes that are stored in
|
||||
/// the column. These ordinals are small, and sorted in the same order
|
||||
/// as the term_ord_column.
|
||||
#[derive(Clone)]
|
||||
pub struct BytesColumn {
|
||||
pub(crate) dictionary: Arc<Dictionary<VoidSSTable>>,
|
||||
pub(crate) term_ord_column: Column<u64>,
|
||||
}
|
||||
|
||||
impl BytesColumn {
|
||||
/// Fills the given `output` buffer with the term associated to the ordinal `ord`.
|
||||
///
|
||||
/// Returns `false` if the term does not exist (e.g. `term_ord` is greater or equal to the
|
||||
/// overll number of terms).
|
||||
pub fn ord_to_bytes(&self, ord: u64, output: &mut Vec<u8>) -> io::Result<bool> {
|
||||
self.dictionary.ord_to_term(ord, output)
|
||||
}
|
||||
|
||||
/// Returns the number of rows in the column.
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
self.term_ord_column.num_docs()
|
||||
}
|
||||
|
||||
pub fn term_ords(&self, row_id: RowId) -> impl Iterator<Item = u64> + '_ {
|
||||
self.term_ord_column.values_for_doc(row_id)
|
||||
}
|
||||
|
||||
/// Returns the column of ordinals
|
||||
pub fn ords(&self) -> &Column<u64> {
|
||||
&self.term_ord_column
|
||||
}
|
||||
|
||||
pub fn num_terms(&self) -> usize {
|
||||
self.dictionary.num_terms()
|
||||
}
|
||||
|
||||
pub fn dictionary(&self) -> &Dictionary<VoidSSTable> {
|
||||
self.dictionary.as_ref()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct StrColumn(BytesColumn);
|
||||
|
||||
impl From<StrColumn> for BytesColumn {
|
||||
fn from(str_column: StrColumn) -> BytesColumn {
|
||||
str_column.0
|
||||
}
|
||||
}
|
||||
|
||||
impl StrColumn {
|
||||
pub(crate) fn wrap(bytes_column: BytesColumn) -> StrColumn {
|
||||
StrColumn(bytes_column)
|
||||
}
|
||||
|
||||
pub fn dictionary(&self) -> &Dictionary<VoidSSTable> {
|
||||
self.0.dictionary.as_ref()
|
||||
}
|
||||
|
||||
/// Fills the buffer
|
||||
pub fn ord_to_str(&self, term_ord: u64, output: &mut String) -> io::Result<bool> {
|
||||
unsafe {
|
||||
let buf = output.as_mut_vec();
|
||||
if !self.0.dictionary.ord_to_term(term_ord, buf)? {
|
||||
return Ok(false);
|
||||
}
|
||||
// TODO consider remove checks if it hurts performance.
|
||||
if std::str::from_utf8(buf.as_slice()).is_err() {
|
||||
buf.clear();
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
"Not valid utf-8",
|
||||
));
|
||||
}
|
||||
}
|
||||
Ok(true)
|
||||
}
|
||||
}
|
||||
|
||||
impl Deref for StrColumn {
|
||||
type Target = BytesColumn;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
161
columnar/src/column/mod.rs
Normal file
161
columnar/src/column/mod.rs
Normal file
@@ -0,0 +1,161 @@
|
||||
mod dictionary_encoded;
|
||||
mod serialize;
|
||||
|
||||
use std::fmt::Debug;
|
||||
use std::io::Write;
|
||||
use std::ops::{Deref, Range, RangeInclusive};
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::BinarySerializable;
|
||||
pub use dictionary_encoded::{BytesColumn, StrColumn};
|
||||
pub use serialize::{
|
||||
open_column_bytes, open_column_str, open_column_u128, open_column_u64,
|
||||
serialize_column_mappable_to_u128, serialize_column_mappable_to_u64,
|
||||
};
|
||||
|
||||
use crate::column_index::ColumnIndex;
|
||||
use crate::column_values::monotonic_mapping::StrictlyMonotonicMappingToInternal;
|
||||
use crate::column_values::{monotonic_map_column, ColumnValues};
|
||||
use crate::{Cardinality, MonotonicallyMappableToU64, RowId};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Column<T = u64> {
|
||||
pub idx: ColumnIndex,
|
||||
pub values: Arc<dyn ColumnValues<T>>,
|
||||
}
|
||||
|
||||
impl<T: MonotonicallyMappableToU64> Column<T> {
|
||||
pub fn to_u64_monotonic(self) -> Column<u64> {
|
||||
let values = Arc::new(monotonic_map_column(
|
||||
self.values,
|
||||
StrictlyMonotonicMappingToInternal::<T>::new(),
|
||||
));
|
||||
Column {
|
||||
idx: self.idx,
|
||||
values,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
#[inline]
|
||||
pub fn get_cardinality(&self) -> Cardinality {
|
||||
self.idx.get_cardinality()
|
||||
}
|
||||
|
||||
pub fn num_docs(&self) -> RowId {
|
||||
match &self.idx {
|
||||
ColumnIndex::Empty { num_docs } => *num_docs,
|
||||
ColumnIndex::Full => self.values.num_vals(),
|
||||
ColumnIndex::Optional(optional_index) => optional_index.num_docs(),
|
||||
ColumnIndex::Multivalued(col_index) => {
|
||||
// The multivalued index contains all value start row_id,
|
||||
// and one extra value at the end with the overall number of rows.
|
||||
col_index.num_docs()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn min_value(&self) -> T {
|
||||
self.values.min_value()
|
||||
}
|
||||
|
||||
pub fn max_value(&self) -> T {
|
||||
self.values.max_value()
|
||||
}
|
||||
|
||||
pub fn first(&self, row_id: RowId) -> Option<T> {
|
||||
self.values_for_doc(row_id).next()
|
||||
}
|
||||
|
||||
pub fn values_for_doc(&self, row_id: RowId) -> impl Iterator<Item = T> + '_ {
|
||||
self.value_row_ids(row_id)
|
||||
.map(|value_row_id: RowId| self.values.get_val(value_row_id))
|
||||
}
|
||||
|
||||
/// Get the docids of values which are in the provided value range.
|
||||
#[inline]
|
||||
pub fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<T>,
|
||||
selected_docid_range: Range<u32>,
|
||||
doc_ids: &mut Vec<u32>,
|
||||
) {
|
||||
// convert passed docid range to row id range
|
||||
let rowid_range = self.idx.docid_range_to_rowids(selected_docid_range.clone());
|
||||
|
||||
// Load rows
|
||||
self.values
|
||||
.get_row_ids_for_value_range(value_range, rowid_range, doc_ids);
|
||||
// Convert rows to docids
|
||||
self.idx
|
||||
.select_batch_in_place(selected_docid_range.start, doc_ids);
|
||||
}
|
||||
|
||||
/// Fils the output vector with the (possibly multiple values that are associated_with
|
||||
/// `row_id`.
|
||||
///
|
||||
/// This method clears the `output` vector.
|
||||
pub fn fill_vals(&self, row_id: RowId, output: &mut Vec<T>) {
|
||||
output.clear();
|
||||
output.extend(self.values_for_doc(row_id));
|
||||
}
|
||||
|
||||
pub fn first_or_default_col(self, default_value: T) -> Arc<dyn ColumnValues<T>> {
|
||||
Arc::new(FirstValueWithDefault {
|
||||
column: self,
|
||||
default_value,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Deref for Column<T> {
|
||||
type Target = ColumnIndex;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.idx
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for Cardinality {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> std::io::Result<()> {
|
||||
self.to_code().serialize(writer)
|
||||
}
|
||||
|
||||
fn deserialize<R: std::io::Read>(reader: &mut R) -> std::io::Result<Self> {
|
||||
let cardinality_code = u8::deserialize(reader)?;
|
||||
let cardinality = Cardinality::try_from_code(cardinality_code)?;
|
||||
Ok(cardinality)
|
||||
}
|
||||
}
|
||||
|
||||
// TODO simplify or optimize
|
||||
struct FirstValueWithDefault<T: Copy> {
|
||||
column: Column<T>,
|
||||
default_value: T,
|
||||
}
|
||||
|
||||
impl<T: PartialOrd + Debug + Send + Sync + Copy + 'static> ColumnValues<T>
|
||||
for FirstValueWithDefault<T>
|
||||
{
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
self.column.first(idx).unwrap_or(self.default_value)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
self.column.values.min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
self.column.values.max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
match &self.column.idx {
|
||||
ColumnIndex::Empty { .. } => 0u32,
|
||||
ColumnIndex::Full => self.column.values.num_vals(),
|
||||
ColumnIndex::Optional(optional_idx) => optional_idx.num_docs(),
|
||||
ColumnIndex::Multivalued(multivalue_idx) => multivalue_idx.num_docs(),
|
||||
}
|
||||
}
|
||||
}
|
||||
94
columnar/src/column/serialize.rs
Normal file
94
columnar/src/column/serialize.rs
Normal file
@@ -0,0 +1,94 @@
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use sstable::Dictionary;
|
||||
|
||||
use crate::column::{BytesColumn, Column};
|
||||
use crate::column_index::{serialize_column_index, SerializableColumnIndex};
|
||||
use crate::column_values::{
|
||||
load_u64_based_column_values, serialize_column_values_u128, serialize_u64_based_column_values,
|
||||
CodecType, MonotonicallyMappableToU128, MonotonicallyMappableToU64,
|
||||
};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::StrColumn;
|
||||
|
||||
pub fn serialize_column_mappable_to_u128<T: MonotonicallyMappableToU128>(
|
||||
column_index: SerializableColumnIndex<'_>,
|
||||
iterable: &dyn Iterable<T>,
|
||||
output: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
let column_index_num_bytes = serialize_column_index(column_index, output)?;
|
||||
serialize_column_values_u128(iterable, output)?;
|
||||
output.write_all(&column_index_num_bytes.to_le_bytes())?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn serialize_column_mappable_to_u64<T: MonotonicallyMappableToU64>(
|
||||
column_index: SerializableColumnIndex<'_>,
|
||||
column_values: &impl Iterable<T>,
|
||||
output: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
let column_index_num_bytes = serialize_column_index(column_index, output)?;
|
||||
serialize_u64_based_column_values(
|
||||
column_values,
|
||||
&[CodecType::Bitpacked, CodecType::BlockwiseLinear],
|
||||
output,
|
||||
)?;
|
||||
output.write_all(&column_index_num_bytes.to_le_bytes())?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn open_column_u64<T: MonotonicallyMappableToU64>(bytes: OwnedBytes) -> io::Result<Column<T>> {
|
||||
let (body, column_index_num_bytes_payload) = bytes.rsplit(4);
|
||||
let column_index_num_bytes = u32::from_le_bytes(
|
||||
column_index_num_bytes_payload
|
||||
.as_slice()
|
||||
.try_into()
|
||||
.unwrap(),
|
||||
);
|
||||
let (column_index_data, column_values_data) = body.split(column_index_num_bytes as usize);
|
||||
let column_index = crate::column_index::open_column_index(column_index_data)?;
|
||||
let column_values = load_u64_based_column_values(column_values_data)?;
|
||||
Ok(Column {
|
||||
idx: column_index,
|
||||
values: column_values,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn open_column_u128<T: MonotonicallyMappableToU128>(
|
||||
bytes: OwnedBytes,
|
||||
) -> io::Result<Column<T>> {
|
||||
let (body, column_index_num_bytes_payload) = bytes.rsplit(4);
|
||||
let column_index_num_bytes = u32::from_le_bytes(
|
||||
column_index_num_bytes_payload
|
||||
.as_slice()
|
||||
.try_into()
|
||||
.unwrap(),
|
||||
);
|
||||
let (column_index_data, column_values_data) = body.split(column_index_num_bytes as usize);
|
||||
let column_index = crate::column_index::open_column_index(column_index_data)?;
|
||||
let column_values = crate::column_values::open_u128_mapped(column_values_data)?;
|
||||
Ok(Column {
|
||||
idx: column_index,
|
||||
values: column_values,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn open_column_bytes(data: OwnedBytes) -> io::Result<BytesColumn> {
|
||||
let (body, dictionary_len_bytes) = data.rsplit(4);
|
||||
let dictionary_len = u32::from_le_bytes(dictionary_len_bytes.as_slice().try_into().unwrap());
|
||||
let (dictionary_bytes, column_bytes) = body.split(dictionary_len as usize);
|
||||
let dictionary = Arc::new(Dictionary::from_bytes(dictionary_bytes)?);
|
||||
let term_ord_column = crate::column::open_column_u64::<u64>(column_bytes)?;
|
||||
Ok(BytesColumn {
|
||||
dictionary,
|
||||
term_ord_column,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn open_column_str(data: OwnedBytes) -> io::Result<StrColumn> {
|
||||
let bytes_column = open_column_bytes(data)?;
|
||||
Ok(StrColumn::wrap(bytes_column))
|
||||
}
|
||||
136
columnar/src/column_index/merge/mod.rs
Normal file
136
columnar/src/column_index/merge/mod.rs
Normal file
@@ -0,0 +1,136 @@
|
||||
mod shuffled;
|
||||
mod stacked;
|
||||
|
||||
use shuffled::merge_column_index_shuffled;
|
||||
use stacked::merge_column_index_stacked;
|
||||
|
||||
use crate::column_index::SerializableColumnIndex;
|
||||
use crate::{Cardinality, ColumnIndex, MergeRowOrder};
|
||||
|
||||
// For simplification, we never have cardinality go down due to deletes.
|
||||
fn detect_cardinality(columns: &[Option<ColumnIndex>]) -> Cardinality {
|
||||
columns
|
||||
.iter()
|
||||
.flatten()
|
||||
.map(ColumnIndex::get_cardinality)
|
||||
.max()
|
||||
.unwrap_or(Cardinality::Full)
|
||||
}
|
||||
|
||||
pub fn merge_column_index<'a>(
|
||||
columns: &'a [Option<ColumnIndex>],
|
||||
merge_row_order: &'a MergeRowOrder,
|
||||
) -> SerializableColumnIndex<'a> {
|
||||
// For simplification, we do not try to detect whether the cardinality could be
|
||||
// downgraded thanks to deletes.
|
||||
let cardinality_after_merge = detect_cardinality(columns);
|
||||
match merge_row_order {
|
||||
MergeRowOrder::Stack(stack_merge_order) => {
|
||||
merge_column_index_stacked(columns, cardinality_after_merge, stack_merge_order)
|
||||
}
|
||||
MergeRowOrder::Shuffled(complex_merge_order) => {
|
||||
merge_column_index_shuffled(columns, cardinality_after_merge, complex_merge_order)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO actually, the shuffled code path is a bit too general.
|
||||
// In practise, we do not really shuffle everything.
|
||||
// The merge order restricted to a specific column keeps the original row order.
|
||||
//
|
||||
// This may offer some optimization that we have not explored yet.
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::column_index::merge::detect_cardinality;
|
||||
use crate::column_index::multivalued_index::MultiValueIndex;
|
||||
use crate::column_index::{merge_column_index, OptionalIndex, SerializableColumnIndex};
|
||||
use crate::{Cardinality, ColumnIndex, MergeRowOrder, RowAddr, RowId, ShuffleMergeOrder};
|
||||
|
||||
#[test]
|
||||
fn test_detect_cardinality() {
|
||||
assert_eq!(detect_cardinality(&[]), Cardinality::Full);
|
||||
let optional_index: ColumnIndex = OptionalIndex::for_test(1, &[]).into();
|
||||
let multivalued_index: ColumnIndex = MultiValueIndex::for_test(&[0, 1]).into();
|
||||
assert_eq!(
|
||||
detect_cardinality(&[Some(optional_index.clone()), None]),
|
||||
Cardinality::Optional
|
||||
);
|
||||
assert_eq!(
|
||||
detect_cardinality(&[Some(optional_index.clone()), Some(ColumnIndex::Full)]),
|
||||
Cardinality::Optional
|
||||
);
|
||||
assert_eq!(
|
||||
detect_cardinality(&[Some(multivalued_index.clone()), None]),
|
||||
Cardinality::Multivalued
|
||||
);
|
||||
assert_eq!(
|
||||
detect_cardinality(&[
|
||||
Some(multivalued_index.clone()),
|
||||
Some(optional_index.clone())
|
||||
]),
|
||||
Cardinality::Multivalued
|
||||
);
|
||||
assert_eq!(
|
||||
detect_cardinality(&[Some(optional_index), Some(multivalued_index)]),
|
||||
Cardinality::Multivalued
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_merge_index_multivalued_sorted() {
|
||||
let column_indexes: Vec<Option<ColumnIndex>> =
|
||||
vec![Some(MultiValueIndex::for_test(&[0, 2, 5]).into())];
|
||||
let merge_row_order: MergeRowOrder = ShuffleMergeOrder::for_test(
|
||||
&[2],
|
||||
vec![
|
||||
RowAddr {
|
||||
segment_ord: 0u32,
|
||||
row_id: 1u32,
|
||||
},
|
||||
RowAddr {
|
||||
segment_ord: 0u32,
|
||||
row_id: 0u32,
|
||||
},
|
||||
],
|
||||
)
|
||||
.into();
|
||||
let merged_column_index = merge_column_index(&column_indexes[..], &merge_row_order);
|
||||
let SerializableColumnIndex::Multivalued(start_index_iterable) = merged_column_index
|
||||
else { panic!("Excpected a multivalued index") };
|
||||
let start_indexes: Vec<RowId> = start_index_iterable.boxed_iter().collect();
|
||||
assert_eq!(&start_indexes, &[0, 3, 5]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_merge_index_multivalued_sorted_several_segment() {
|
||||
let column_indexes: Vec<Option<ColumnIndex>> = vec![
|
||||
Some(MultiValueIndex::for_test(&[0, 2, 5]).into()),
|
||||
None,
|
||||
Some(MultiValueIndex::for_test(&[0, 1, 4]).into()),
|
||||
];
|
||||
let merge_row_order: MergeRowOrder = ShuffleMergeOrder::for_test(
|
||||
&[2, 0, 2],
|
||||
vec![
|
||||
RowAddr {
|
||||
segment_ord: 2u32,
|
||||
row_id: 1u32,
|
||||
},
|
||||
RowAddr {
|
||||
segment_ord: 0u32,
|
||||
row_id: 0u32,
|
||||
},
|
||||
RowAddr {
|
||||
segment_ord: 2u32,
|
||||
row_id: 0u32,
|
||||
},
|
||||
],
|
||||
)
|
||||
.into();
|
||||
let merged_column_index = merge_column_index(&column_indexes[..], &merge_row_order);
|
||||
let SerializableColumnIndex::Multivalued(start_index_iterable) = merged_column_index
|
||||
else { panic!("Excpected a multivalued index") };
|
||||
let start_indexes: Vec<RowId> = start_index_iterable.boxed_iter().collect();
|
||||
assert_eq!(&start_indexes, &[0, 3, 5, 6]);
|
||||
}
|
||||
}
|
||||
168
columnar/src/column_index/merge/shuffled.rs
Normal file
168
columnar/src/column_index/merge/shuffled.rs
Normal file
@@ -0,0 +1,168 @@
|
||||
use std::iter;
|
||||
|
||||
use crate::column_index::{SerializableColumnIndex, Set};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{Cardinality, ColumnIndex, RowId, ShuffleMergeOrder};
|
||||
|
||||
pub fn merge_column_index_shuffled<'a>(
|
||||
column_indexes: &'a [Option<ColumnIndex>],
|
||||
cardinality_after_merge: Cardinality,
|
||||
shuffle_merge_order: &'a ShuffleMergeOrder,
|
||||
) -> SerializableColumnIndex<'a> {
|
||||
match cardinality_after_merge {
|
||||
Cardinality::Full => SerializableColumnIndex::Full,
|
||||
Cardinality::Optional => {
|
||||
let non_null_row_ids =
|
||||
merge_column_index_shuffled_optional(column_indexes, shuffle_merge_order);
|
||||
SerializableColumnIndex::Optional {
|
||||
non_null_row_ids,
|
||||
num_rows: shuffle_merge_order.num_rows(),
|
||||
}
|
||||
}
|
||||
Cardinality::Multivalued => {
|
||||
let multivalue_start_index =
|
||||
merge_column_index_shuffled_multivalued(column_indexes, shuffle_merge_order);
|
||||
SerializableColumnIndex::Multivalued(multivalue_start_index)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Merge several column indexes into one, ordering rows according to the merge_order passed as
|
||||
/// argument. While it is true that the `merge_order` may imply deletes and hence could in theory a
|
||||
/// multivalued index into an optional one, this is not supported today for simplification.
|
||||
///
|
||||
/// In other words the column_indexes passed as argument may NOT be multivalued.
|
||||
fn merge_column_index_shuffled_optional<'a>(
|
||||
column_indexes: &'a [Option<ColumnIndex>],
|
||||
merge_order: &'a ShuffleMergeOrder,
|
||||
) -> Box<dyn Iterable<RowId> + 'a> {
|
||||
Box::new(ShuffledOptionalIndex {
|
||||
column_indexes,
|
||||
merge_order,
|
||||
})
|
||||
}
|
||||
|
||||
struct ShuffledOptionalIndex<'a> {
|
||||
column_indexes: &'a [Option<ColumnIndex>],
|
||||
merge_order: &'a ShuffleMergeOrder,
|
||||
}
|
||||
|
||||
impl<'a> Iterable<u32> for ShuffledOptionalIndex<'a> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
|
||||
Box::new(self.merge_order
|
||||
.iter_new_to_old_row_addrs()
|
||||
.enumerate()
|
||||
.filter_map(|(new_row_id, old_row_addr)| {
|
||||
let Some(column_index) = &self.column_indexes[old_row_addr.segment_ord as usize] else {
|
||||
return None;
|
||||
};
|
||||
let row_id = new_row_id as u32;
|
||||
if column_index.has_value(old_row_addr.row_id) {
|
||||
Some(row_id)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}))
|
||||
}
|
||||
}
|
||||
|
||||
fn merge_column_index_shuffled_multivalued<'a>(
|
||||
column_indexes: &'a [Option<ColumnIndex>],
|
||||
merge_order: &'a ShuffleMergeOrder,
|
||||
) -> Box<dyn Iterable<RowId> + 'a> {
|
||||
Box::new(ShuffledMultivaluedIndex {
|
||||
column_indexes,
|
||||
merge_order,
|
||||
})
|
||||
}
|
||||
|
||||
struct ShuffledMultivaluedIndex<'a> {
|
||||
column_indexes: &'a [Option<ColumnIndex>],
|
||||
merge_order: &'a ShuffleMergeOrder,
|
||||
}
|
||||
|
||||
fn iter_num_values<'a>(
|
||||
column_indexes: &'a [Option<ColumnIndex>],
|
||||
merge_order: &'a ShuffleMergeOrder,
|
||||
) -> impl Iterator<Item = u32> + 'a {
|
||||
merge_order.iter_new_to_old_row_addrs().map(|row_addr| {
|
||||
let Some(column_index) = &column_indexes[row_addr.segment_ord as usize] else {
|
||||
// No values in the entire column. It surely means there are 0 values associated to this row.
|
||||
return 0u32;
|
||||
};
|
||||
match column_index {
|
||||
ColumnIndex::Empty { .. } => 0u32,
|
||||
ColumnIndex::Full => 1,
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
u32::from(optional_index.contains(row_addr.row_id))
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => {
|
||||
multivalued_index.range(row_addr.row_id).len() as u32
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
/// Transforms an iterator containing the number of vals per row (with `num_rows` elements)
|
||||
/// into a `start_offset` iterator starting at 0 and (with `num_rows + 1` element)
|
||||
fn integrate_num_vals(num_vals: impl Iterator<Item = u32>) -> impl Iterator<Item = RowId> {
|
||||
iter::once(0u32).chain(num_vals.scan(0, |state, num_vals| {
|
||||
*state += num_vals;
|
||||
Some(*state)
|
||||
}))
|
||||
}
|
||||
|
||||
impl<'a> Iterable<u32> for ShuffledMultivaluedIndex<'a> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
|
||||
let num_vals_per_row = iter_num_values(self.column_indexes, self.merge_order);
|
||||
Box::new(integrate_num_vals(num_vals_per_row))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_index::OptionalIndex;
|
||||
use crate::RowAddr;
|
||||
|
||||
#[test]
|
||||
fn test_integrate_num_vals_empty() {
|
||||
assert!(integrate_num_vals(iter::empty()).eq(iter::once(0)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_integrate_num_vals_one_el() {
|
||||
assert!(integrate_num_vals(iter::once(10)).eq([0, 10].into_iter()));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_integrate_num_vals_several() {
|
||||
assert!(integrate_num_vals([3, 0, 10, 20].into_iter()).eq([0, 3, 3, 13, 33].into_iter()));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_merge_column_index_optional_shuffle() {
|
||||
let optional_index: ColumnIndex = OptionalIndex::for_test(2, &[0]).into();
|
||||
let column_indexes = vec![Some(optional_index), Some(ColumnIndex::Full)];
|
||||
let row_addrs = vec![
|
||||
RowAddr {
|
||||
segment_ord: 0u32,
|
||||
row_id: 1u32,
|
||||
},
|
||||
RowAddr {
|
||||
segment_ord: 1u32,
|
||||
row_id: 0u32,
|
||||
},
|
||||
];
|
||||
let shuffle_merge_order = ShuffleMergeOrder::for_test(&[2, 1], row_addrs);
|
||||
let serializable_index = merge_column_index_shuffled(
|
||||
&column_indexes[..],
|
||||
Cardinality::Optional,
|
||||
&shuffle_merge_order,
|
||||
);
|
||||
let SerializableColumnIndex::Optional { non_null_row_ids, num_rows } = serializable_index else { panic!() };
|
||||
assert_eq!(num_rows, 2);
|
||||
let non_null_rows: Vec<RowId> = non_null_row_ids.boxed_iter().collect();
|
||||
assert_eq!(&non_null_rows, &[1]);
|
||||
}
|
||||
}
|
||||
156
columnar/src/column_index/merge/stacked.rs
Normal file
156
columnar/src/column_index/merge/stacked.rs
Normal file
@@ -0,0 +1,156 @@
|
||||
use std::iter;
|
||||
|
||||
use crate::column_index::{SerializableColumnIndex, Set};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{Cardinality, ColumnIndex, RowId, StackMergeOrder};
|
||||
|
||||
/// Simple case:
|
||||
/// The new mapping just consists in stacking the different column indexes.
|
||||
///
|
||||
/// There are no sort nor deletes involved.
|
||||
pub fn merge_column_index_stacked<'a>(
|
||||
columns: &'a [Option<ColumnIndex>],
|
||||
cardinality_after_merge: Cardinality,
|
||||
stack_merge_order: &'a StackMergeOrder,
|
||||
) -> SerializableColumnIndex<'a> {
|
||||
match cardinality_after_merge {
|
||||
Cardinality::Full => SerializableColumnIndex::Full,
|
||||
Cardinality::Optional => SerializableColumnIndex::Optional {
|
||||
non_null_row_ids: Box::new(StackedOptionalIndex {
|
||||
columns,
|
||||
stack_merge_order,
|
||||
}),
|
||||
num_rows: stack_merge_order.num_rows(),
|
||||
},
|
||||
Cardinality::Multivalued => {
|
||||
let stacked_multivalued_index = StackedMultivaluedIndex {
|
||||
columns,
|
||||
stack_merge_order,
|
||||
};
|
||||
SerializableColumnIndex::Multivalued(Box::new(stacked_multivalued_index))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct StackedOptionalIndex<'a> {
|
||||
columns: &'a [Option<ColumnIndex>],
|
||||
stack_merge_order: &'a StackMergeOrder,
|
||||
}
|
||||
|
||||
impl<'a> Iterable<RowId> for StackedOptionalIndex<'a> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = RowId> + 'a> {
|
||||
Box::new(
|
||||
self.columns
|
||||
.iter()
|
||||
.enumerate()
|
||||
.flat_map(|(columnar_id, column_index_opt)| {
|
||||
let columnar_row_range = self.stack_merge_order.columnar_range(columnar_id);
|
||||
let rows_it: Box<dyn Iterator<Item = RowId>> = match column_index_opt {
|
||||
Some(ColumnIndex::Full) => Box::new(columnar_row_range),
|
||||
Some(ColumnIndex::Optional(optional_index)) => Box::new(
|
||||
optional_index
|
||||
.iter_rows()
|
||||
.map(move |row_id: RowId| columnar_row_range.start + row_id),
|
||||
),
|
||||
Some(ColumnIndex::Multivalued(_)) => {
|
||||
panic!("No multivalued index is allowed when stacking column index");
|
||||
}
|
||||
None | Some(ColumnIndex::Empty { .. }) => Box::new(std::iter::empty()),
|
||||
};
|
||||
rows_it
|
||||
}),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
struct StackedMultivaluedIndex<'a> {
|
||||
columns: &'a [Option<ColumnIndex>],
|
||||
stack_merge_order: &'a StackMergeOrder,
|
||||
}
|
||||
|
||||
fn convert_column_opt_to_multivalued_index<'a>(
|
||||
column_index_opt: Option<&'a ColumnIndex>,
|
||||
num_rows: RowId,
|
||||
) -> Box<dyn Iterator<Item = RowId> + 'a> {
|
||||
match column_index_opt {
|
||||
None | Some(ColumnIndex::Empty { .. }) => {
|
||||
Box::new(iter::repeat(0u32).take(num_rows as usize + 1))
|
||||
}
|
||||
Some(ColumnIndex::Full) => Box::new(0..num_rows + 1),
|
||||
Some(ColumnIndex::Optional(optional_index)) => {
|
||||
Box::new(
|
||||
(0..num_rows)
|
||||
// TODO optimize
|
||||
.map(|row_id| optional_index.rank(row_id))
|
||||
.chain(std::iter::once(optional_index.num_non_nulls())),
|
||||
)
|
||||
}
|
||||
Some(ColumnIndex::Multivalued(multivalued_index)) => {
|
||||
multivalued_index.start_index_column.iter()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Iterable<RowId> for StackedMultivaluedIndex<'a> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = RowId> + '_> {
|
||||
let multivalued_indexes =
|
||||
self.columns
|
||||
.iter()
|
||||
.map(Option::as_ref)
|
||||
.enumerate()
|
||||
.map(|(columnar_id, column_opt)| {
|
||||
let num_rows =
|
||||
self.stack_merge_order.columnar_range(columnar_id).len() as RowId;
|
||||
convert_column_opt_to_multivalued_index(column_opt, num_rows)
|
||||
});
|
||||
stack_multivalued_indexes(multivalued_indexes)
|
||||
}
|
||||
}
|
||||
|
||||
// Refactor me
|
||||
fn stack_multivalued_indexes<'a>(
|
||||
mut multivalued_indexes: impl Iterator<Item = Box<dyn Iterator<Item = RowId> + 'a>> + 'a,
|
||||
) -> Box<dyn Iterator<Item = RowId> + 'a> {
|
||||
let mut offset = 0;
|
||||
let mut last_row_id = 0;
|
||||
let mut current_it = multivalued_indexes.next();
|
||||
Box::new(std::iter::from_fn(move || loop {
|
||||
let Some(multivalued_index) = current_it.as_mut() else {
|
||||
return None;
|
||||
};
|
||||
if let Some(row_id) = multivalued_index.next() {
|
||||
last_row_id = offset + row_id;
|
||||
return Some(last_row_id);
|
||||
}
|
||||
offset = last_row_id;
|
||||
loop {
|
||||
current_it = multivalued_indexes.next();
|
||||
if current_it.as_mut()?.next().is_some() {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::RowId;
|
||||
|
||||
fn it<'a>(row_ids: &'a [RowId]) -> Box<dyn Iterator<Item = RowId> + 'a> {
|
||||
Box::new(row_ids.iter().copied())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_stack() {
|
||||
let columns = [
|
||||
it(&[0u32, 0u32]),
|
||||
it(&[0u32, 1u32, 1u32, 4u32]),
|
||||
it(&[0u32, 3u32, 5u32]),
|
||||
it(&[0u32, 4u32]),
|
||||
]
|
||||
.into_iter();
|
||||
let start_offsets: Vec<RowId> = super::stack_multivalued_indexes(columns).collect();
|
||||
assert_eq!(start_offsets, &[0, 0, 1, 1, 4, 7, 9, 13]);
|
||||
}
|
||||
}
|
||||
115
columnar/src/column_index/mod.rs
Normal file
115
columnar/src/column_index/mod.rs
Normal file
@@ -0,0 +1,115 @@
|
||||
mod merge;
|
||||
mod multivalued_index;
|
||||
mod optional_index;
|
||||
mod serialize;
|
||||
|
||||
use std::ops::Range;
|
||||
|
||||
pub use merge::merge_column_index;
|
||||
pub use optional_index::{OptionalIndex, Set};
|
||||
pub use serialize::{open_column_index, serialize_column_index, SerializableColumnIndex};
|
||||
|
||||
use crate::column_index::multivalued_index::MultiValueIndex;
|
||||
use crate::{Cardinality, DocId, RowId};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub enum ColumnIndex {
|
||||
Empty {
|
||||
num_docs: u32,
|
||||
},
|
||||
Full,
|
||||
Optional(OptionalIndex),
|
||||
/// In addition, at index num_rows, an extra value is added
|
||||
/// containing the overal number of values.
|
||||
Multivalued(MultiValueIndex),
|
||||
}
|
||||
|
||||
impl From<OptionalIndex> for ColumnIndex {
|
||||
fn from(optional_index: OptionalIndex) -> ColumnIndex {
|
||||
ColumnIndex::Optional(optional_index)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<MultiValueIndex> for ColumnIndex {
|
||||
fn from(multi_value_index: MultiValueIndex) -> ColumnIndex {
|
||||
ColumnIndex::Multivalued(multi_value_index)
|
||||
}
|
||||
}
|
||||
|
||||
impl ColumnIndex {
|
||||
#[inline]
|
||||
pub fn get_cardinality(&self) -> Cardinality {
|
||||
match self {
|
||||
ColumnIndex::Empty { .. } => Cardinality::Optional,
|
||||
ColumnIndex::Full => Cardinality::Full,
|
||||
ColumnIndex::Optional(_) => Cardinality::Optional,
|
||||
ColumnIndex::Multivalued(_) => Cardinality::Multivalued,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns true if and only if there are at least one value associated to the row.
|
||||
pub fn has_value(&self, doc_id: DocId) -> bool {
|
||||
match self {
|
||||
ColumnIndex::Empty { .. } => false,
|
||||
ColumnIndex::Full => true,
|
||||
ColumnIndex::Optional(optional_index) => optional_index.contains(doc_id),
|
||||
ColumnIndex::Multivalued(multivalued_index) => {
|
||||
!multivalued_index.range(doc_id).is_empty()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn value_row_ids(&self, doc_id: DocId) -> Range<RowId> {
|
||||
match self {
|
||||
ColumnIndex::Empty { .. } => 0..0,
|
||||
ColumnIndex::Full => doc_id..doc_id + 1,
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
if let Some(val) = optional_index.rank_if_exists(doc_id) {
|
||||
val..val + 1
|
||||
} else {
|
||||
0..0
|
||||
}
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => multivalued_index.range(doc_id),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn docid_range_to_rowids(&self, doc_id: Range<DocId>) -> Range<RowId> {
|
||||
match self {
|
||||
ColumnIndex::Empty { .. } => 0..0,
|
||||
ColumnIndex::Full => doc_id,
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
let row_start = optional_index.rank(doc_id.start);
|
||||
let row_end = optional_index.rank(doc_id.end);
|
||||
row_start..row_end
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => {
|
||||
let end_docid = doc_id.end.min(multivalued_index.num_docs() - 1) + 1;
|
||||
let start_docid = doc_id.start.min(end_docid);
|
||||
|
||||
let row_start = multivalued_index.start_index_column.get_val(start_docid);
|
||||
let row_end = multivalued_index.start_index_column.get_val(end_docid);
|
||||
|
||||
row_start..row_end
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn select_batch_in_place(&self, doc_id_start: DocId, rank_ids: &mut Vec<RowId>) {
|
||||
match self {
|
||||
ColumnIndex::Empty { .. } => {
|
||||
rank_ids.clear();
|
||||
}
|
||||
ColumnIndex::Full => {
|
||||
// No need to do anything:
|
||||
// value_idx and row_idx are the same.
|
||||
}
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
optional_index.select_batch(&mut rank_ids[..]);
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => {
|
||||
multivalued_index.select_batch_in_place(doc_id_start, rank_ids)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
141
columnar/src/column_index/multivalued_index.rs
Normal file
141
columnar/src/column_index/multivalued_index.rs
Normal file
@@ -0,0 +1,141 @@
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::ops::Range;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
|
||||
use crate::column_values::{
|
||||
load_u64_based_column_values, serialize_u64_based_column_values, CodecType, ColumnValues,
|
||||
};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{DocId, RowId};
|
||||
|
||||
pub fn serialize_multivalued_index(
|
||||
multivalued_index: &dyn Iterable<RowId>,
|
||||
output: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
serialize_u64_based_column_values(
|
||||
multivalued_index,
|
||||
&[CodecType::Bitpacked, CodecType::Linear],
|
||||
output,
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn open_multivalued_index(bytes: OwnedBytes) -> io::Result<MultiValueIndex> {
|
||||
let start_index_column: Arc<dyn ColumnValues<RowId>> = load_u64_based_column_values(bytes)?;
|
||||
Ok(MultiValueIndex { start_index_column })
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
/// Index to resolve value range for given doc_id.
|
||||
/// Starts at 0.
|
||||
pub struct MultiValueIndex {
|
||||
pub start_index_column: Arc<dyn crate::ColumnValues<RowId>>,
|
||||
}
|
||||
|
||||
impl From<Arc<dyn ColumnValues<RowId>>> for MultiValueIndex {
|
||||
fn from(start_index_column: Arc<dyn ColumnValues<RowId>>) -> Self {
|
||||
MultiValueIndex { start_index_column }
|
||||
}
|
||||
}
|
||||
|
||||
impl MultiValueIndex {
|
||||
pub fn for_test(start_offsets: &[RowId]) -> MultiValueIndex {
|
||||
let mut buffer = Vec::new();
|
||||
serialize_multivalued_index(&start_offsets, &mut buffer).unwrap();
|
||||
let bytes = OwnedBytes::new(buffer);
|
||||
open_multivalued_index(bytes).unwrap()
|
||||
}
|
||||
|
||||
/// Returns `[start, end)`, such that the values associated with
|
||||
/// the given document are `start..end`.
|
||||
#[inline]
|
||||
pub(crate) fn range(&self, doc_id: DocId) -> Range<RowId> {
|
||||
let start = self.start_index_column.get_val(doc_id);
|
||||
let end = self.start_index_column.get_val(doc_id + 1);
|
||||
start..end
|
||||
}
|
||||
|
||||
/// Returns the number of documents in the index.
|
||||
#[inline]
|
||||
pub fn num_docs(&self) -> u32 {
|
||||
self.start_index_column.num_vals() - 1
|
||||
}
|
||||
|
||||
/// Converts a list of ranks (row ids of values) in a 1:n index to the corresponding list of
|
||||
/// docids. Positions are converted inplace to docids.
|
||||
///
|
||||
/// Since there is no index for value pos -> docid, but docid -> value pos range, we scan the
|
||||
/// index.
|
||||
///
|
||||
/// Correctness: positions needs to be sorted. idx_reader needs to contain monotonically
|
||||
/// increasing positions.
|
||||
///
|
||||
/// TODO: Instead of a linear scan we can employ a exponential search into binary search to
|
||||
/// match a docid to its value position.
|
||||
#[allow(clippy::bool_to_int_with_if)]
|
||||
pub(crate) fn select_batch_in_place(&self, docid_start: DocId, ranks: &mut Vec<u32>) {
|
||||
if ranks.is_empty() {
|
||||
return;
|
||||
}
|
||||
let mut cur_doc = docid_start;
|
||||
let mut last_doc = None;
|
||||
|
||||
assert!(self.start_index_column.get_val(docid_start) <= ranks[0]);
|
||||
|
||||
let mut write_doc_pos = 0;
|
||||
for i in 0..ranks.len() {
|
||||
let pos = ranks[i];
|
||||
loop {
|
||||
let end = self.start_index_column.get_val(cur_doc + 1);
|
||||
if end > pos {
|
||||
ranks[write_doc_pos] = cur_doc;
|
||||
write_doc_pos += if last_doc == Some(cur_doc) { 0 } else { 1 };
|
||||
last_doc = Some(cur_doc);
|
||||
break;
|
||||
}
|
||||
cur_doc += 1;
|
||||
}
|
||||
}
|
||||
ranks.truncate(write_doc_pos);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::ops::Range;
|
||||
use std::sync::Arc;
|
||||
|
||||
use super::MultiValueIndex;
|
||||
use crate::column_values::IterColumn;
|
||||
use crate::{ColumnValues, RowId};
|
||||
|
||||
fn index_to_pos_helper(
|
||||
index: &MultiValueIndex,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &[u32],
|
||||
) -> Vec<u32> {
|
||||
let mut positions = positions.to_vec();
|
||||
index.select_batch_in_place(doc_id_range.start, &mut positions);
|
||||
positions
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_positions_to_docid() {
|
||||
let offsets: Vec<RowId> = vec![0, 10, 12, 15, 22, 23]; // docid values are [0..10, 10..12, 12..15, etc.]
|
||||
let column: Arc<dyn ColumnValues<RowId>> = Arc::new(IterColumn::from(offsets.into_iter()));
|
||||
let index = MultiValueIndex::from(column);
|
||||
assert_eq!(index.num_docs(), 5);
|
||||
let positions = &[10u32, 11, 15, 20, 21, 22];
|
||||
assert_eq!(index_to_pos_helper(&index, 0..5, positions), vec![1, 3, 4]);
|
||||
assert_eq!(index_to_pos_helper(&index, 1..5, positions), vec![1, 3, 4]);
|
||||
assert_eq!(index_to_pos_helper(&index, 0..5, &[9]), vec![0]);
|
||||
assert_eq!(index_to_pos_helper(&index, 1..5, &[10]), vec![1]);
|
||||
assert_eq!(index_to_pos_helper(&index, 1..5, &[11]), vec![1]);
|
||||
assert_eq!(index_to_pos_helper(&index, 2..5, &[12]), vec![2]);
|
||||
assert_eq!(index_to_pos_helper(&index, 2..5, &[12, 14]), vec![2]);
|
||||
assert_eq!(index_to_pos_helper(&index, 2..5, &[12, 14, 15]), vec![2, 3]);
|
||||
}
|
||||
}
|
||||
515
columnar/src/column_index/optional_index/mod.rs
Normal file
515
columnar/src/column_index/optional_index/mod.rs
Normal file
@@ -0,0 +1,515 @@
|
||||
use std::io::{self, Write};
|
||||
use std::sync::Arc;
|
||||
|
||||
mod set;
|
||||
mod set_block;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes, VInt};
|
||||
pub use set::{SelectCursor, Set, SetCodec};
|
||||
use set_block::{
|
||||
DenseBlock, DenseBlockCodec, SparseBlock, SparseBlockCodec, DENSE_BLOCK_NUM_BYTES,
|
||||
};
|
||||
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{DocId, InvalidData, RowId};
|
||||
|
||||
/// The threshold for for number of elements after which we switch to dense block encoding.
|
||||
///
|
||||
/// We simply pick the value that minimize the size of the blocks.
|
||||
const DENSE_BLOCK_THRESHOLD: u32 =
|
||||
set_block::DENSE_BLOCK_NUM_BYTES / std::mem::size_of::<u16>() as u32; //< 5_120
|
||||
|
||||
const ELEMENTS_PER_BLOCK: u32 = u16::MAX as u32 + 1;
|
||||
|
||||
const BLOCK_SIZE: RowId = 1 << 16;
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
struct BlockMeta {
|
||||
non_null_rows_before_block: u32,
|
||||
start_byte_offset: u32,
|
||||
block_variant: BlockVariant,
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
enum BlockVariant {
|
||||
Dense,
|
||||
Sparse { num_vals: u16 },
|
||||
}
|
||||
|
||||
impl BlockVariant {
|
||||
pub fn empty() -> Self {
|
||||
Self::Sparse { num_vals: 0 }
|
||||
}
|
||||
pub fn num_bytes_in_block(&self) -> u32 {
|
||||
match *self {
|
||||
BlockVariant::Dense => set_block::DENSE_BLOCK_NUM_BYTES,
|
||||
BlockVariant::Sparse { num_vals } => num_vals as u32 * 2,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// This codec is inspired by roaring bitmaps.
|
||||
/// In the dense blocks, however, in order to accelerate `select`
|
||||
/// we interleave an offset over two bytes. (more on this lower)
|
||||
///
|
||||
/// The lower 16 bits of doc ids are stored as u16 while the upper 16 bits are given by the block
|
||||
/// id. Each block contains 1<<16 docids.
|
||||
///
|
||||
/// # Serialized Data Layout
|
||||
/// The data starts with the block data. Each block is either dense or sparse encoded, depending on
|
||||
/// the number of values in the block. A block is sparse when it contains less than
|
||||
/// DENSE_BLOCK_THRESHOLD (6144) values.
|
||||
/// [Sparse data block | dense data block, .. #repeat*; Desc: Either a sparse or dense encoded
|
||||
/// block]
|
||||
/// ### Sparse block data
|
||||
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block]
|
||||
/// ### Dense block data
|
||||
/// [Dense codec for the whole block; Desc: Similar to a bitvec(0..ELEMENTS_PER_BLOCK) + Metadata
|
||||
/// for faster lookups. See dense.rs]
|
||||
///
|
||||
/// The data is followed by block metadata, to know which area of the raw block data belongs to
|
||||
/// which block. Only metadata for blocks with elements is recorded to
|
||||
/// keep the overhead low for scenarios with many very sparse columns. The block metadata consists
|
||||
/// of the block index and the number of values in the block. Since we don't store empty blocks
|
||||
/// num_vals is incremented by 1, e.g. 0 means 1 value.
|
||||
///
|
||||
/// The last u16 is storing the number of metadata blocks.
|
||||
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block][(u16 LE, u16 LE), .. #repeat*;
|
||||
/// Desc: (Block Id u16, Num Elements u16)][u16 LE; Desc: num blocks with values u16]
|
||||
///
|
||||
/// # Opening
|
||||
/// When opening the data layout, the data is expanded to `Vec<SparseCodecBlockVariant>`, where the
|
||||
/// index is the block index. For each block `byte_start` and `offset` is computed.
|
||||
#[derive(Clone)]
|
||||
pub struct OptionalIndex {
|
||||
num_rows: RowId,
|
||||
num_non_null_rows: RowId,
|
||||
block_data: OwnedBytes,
|
||||
block_metas: Arc<[BlockMeta]>,
|
||||
}
|
||||
|
||||
/// Splits a value address into lower and upper 16bits.
|
||||
/// The lower 16 bits are the value in the block
|
||||
/// The upper 16 bits are the block index
|
||||
#[derive(Copy, Debug, Clone)]
|
||||
struct RowAddr {
|
||||
block_id: u16,
|
||||
in_block_row_id: u16,
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn row_addr_from_row_id(row_id: RowId) -> RowAddr {
|
||||
RowAddr {
|
||||
block_id: (row_id / BLOCK_SIZE) as u16,
|
||||
in_block_row_id: (row_id % BLOCK_SIZE) as u16,
|
||||
}
|
||||
}
|
||||
|
||||
enum BlockSelectCursor<'a> {
|
||||
Dense(<DenseBlock<'a> as Set<u16>>::SelectCursor<'a>),
|
||||
Sparse(<SparseBlock<'a> as Set<u16>>::SelectCursor<'a>),
|
||||
}
|
||||
|
||||
impl<'a> BlockSelectCursor<'a> {
|
||||
fn select(&mut self, rank: u16) -> u16 {
|
||||
match self {
|
||||
BlockSelectCursor::Dense(dense_select_cursor) => dense_select_cursor.select(rank),
|
||||
BlockSelectCursor::Sparse(sparse_select_cursor) => sparse_select_cursor.select(rank),
|
||||
}
|
||||
}
|
||||
}
|
||||
pub struct OptionalIndexSelectCursor<'a> {
|
||||
current_block_cursor: BlockSelectCursor<'a>,
|
||||
current_block_id: u16,
|
||||
// The current block is guaranteed to contain ranks < end_rank.
|
||||
current_block_end_rank: RowId,
|
||||
optional_index: &'a OptionalIndex,
|
||||
block_doc_idx_start: RowId,
|
||||
num_null_rows_before_block: RowId,
|
||||
}
|
||||
|
||||
impl<'a> OptionalIndexSelectCursor<'a> {
|
||||
fn search_and_load_block(&mut self, rank: RowId) {
|
||||
if rank < self.current_block_end_rank {
|
||||
// we are already in the right block
|
||||
return;
|
||||
}
|
||||
self.current_block_id = self.optional_index.find_block(rank, self.current_block_id);
|
||||
self.current_block_end_rank = self
|
||||
.optional_index
|
||||
.block_metas
|
||||
.get(self.current_block_id as usize + 1)
|
||||
.map(|block_meta| block_meta.non_null_rows_before_block)
|
||||
.unwrap_or(u32::MAX);
|
||||
self.block_doc_idx_start = (self.current_block_id as u32) * ELEMENTS_PER_BLOCK;
|
||||
let block_meta = self.optional_index.block_metas[self.current_block_id as usize];
|
||||
self.num_null_rows_before_block = block_meta.non_null_rows_before_block;
|
||||
let block: Block<'_> = self.optional_index.block(block_meta);
|
||||
self.current_block_cursor = match block {
|
||||
Block::Dense(dense_block) => BlockSelectCursor::Dense(dense_block.select_cursor()),
|
||||
Block::Sparse(sparse_block) => BlockSelectCursor::Sparse(sparse_block.select_cursor()),
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> SelectCursor<RowId> for OptionalIndexSelectCursor<'a> {
|
||||
fn select(&mut self, rank: RowId) -> RowId {
|
||||
self.search_and_load_block(rank);
|
||||
let index_in_block = (rank - self.num_null_rows_before_block) as u16;
|
||||
self.current_block_cursor.select(index_in_block) as RowId + self.block_doc_idx_start
|
||||
}
|
||||
}
|
||||
|
||||
impl Set<RowId> for OptionalIndex {
|
||||
type SelectCursor<'b> = OptionalIndexSelectCursor<'b> where Self: 'b;
|
||||
// Check if value at position is not null.
|
||||
#[inline]
|
||||
fn contains(&self, row_id: RowId) -> bool {
|
||||
let RowAddr {
|
||||
block_id,
|
||||
in_block_row_id,
|
||||
} = row_addr_from_row_id(row_id);
|
||||
let block_meta = self.block_metas[block_id as usize];
|
||||
match self.block(block_meta) {
|
||||
Block::Dense(dense_block) => dense_block.contains(in_block_row_id),
|
||||
Block::Sparse(sparse_block) => sparse_block.contains(in_block_row_id),
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn rank(&self, doc_id: DocId) -> RowId {
|
||||
let RowAddr {
|
||||
block_id,
|
||||
in_block_row_id,
|
||||
} = row_addr_from_row_id(doc_id);
|
||||
let block_meta = self.block_metas[block_id as usize];
|
||||
let block = self.block(block_meta);
|
||||
let block_offset_row_id = match block {
|
||||
Block::Dense(dense_block) => dense_block.rank(in_block_row_id),
|
||||
Block::Sparse(sparse_block) => sparse_block.rank(in_block_row_id),
|
||||
} as u32;
|
||||
block_meta.non_null_rows_before_block + block_offset_row_id
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn rank_if_exists(&self, doc_id: DocId) -> Option<RowId> {
|
||||
let RowAddr {
|
||||
block_id,
|
||||
in_block_row_id,
|
||||
} = row_addr_from_row_id(doc_id);
|
||||
let block_meta = self.block_metas[block_id as usize];
|
||||
let block = self.block(block_meta);
|
||||
let block_offset_row_id = match block {
|
||||
Block::Dense(dense_block) => dense_block.rank_if_exists(in_block_row_id),
|
||||
Block::Sparse(sparse_block) => sparse_block.rank_if_exists(in_block_row_id),
|
||||
}? as u32;
|
||||
Some(block_meta.non_null_rows_before_block + block_offset_row_id)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn select(&self, rank: RowId) -> RowId {
|
||||
let block_pos = self.find_block(rank, 0);
|
||||
let block_doc_idx_start = (block_pos as u32) * ELEMENTS_PER_BLOCK;
|
||||
let block_meta = self.block_metas[block_pos as usize];
|
||||
let block: Block<'_> = self.block(block_meta);
|
||||
let index_in_block = (rank - block_meta.non_null_rows_before_block) as u16;
|
||||
let in_block_rank = match block {
|
||||
Block::Dense(dense_block) => dense_block.select(index_in_block),
|
||||
Block::Sparse(sparse_block) => sparse_block.select(index_in_block),
|
||||
};
|
||||
block_doc_idx_start + in_block_rank as u32
|
||||
}
|
||||
|
||||
fn select_cursor(&self) -> OptionalIndexSelectCursor<'_> {
|
||||
OptionalIndexSelectCursor {
|
||||
current_block_cursor: BlockSelectCursor::Sparse(
|
||||
SparseBlockCodec::open(b"").select_cursor(),
|
||||
),
|
||||
current_block_id: 0u16,
|
||||
current_block_end_rank: 0u32, //< this is sufficient to force the first load
|
||||
optional_index: self,
|
||||
block_doc_idx_start: 0u32,
|
||||
num_null_rows_before_block: 0u32,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl OptionalIndex {
|
||||
pub fn for_test(num_rows: RowId, row_ids: &[RowId]) -> OptionalIndex {
|
||||
assert!(row_ids
|
||||
.last()
|
||||
.copied()
|
||||
.map(|last_row_id| last_row_id < num_rows)
|
||||
.unwrap_or(true));
|
||||
let mut buffer = Vec::new();
|
||||
serialize_optional_index(&row_ids, num_rows, &mut buffer).unwrap();
|
||||
let bytes = OwnedBytes::new(buffer);
|
||||
open_optional_index(bytes).unwrap()
|
||||
}
|
||||
|
||||
pub fn num_docs(&self) -> RowId {
|
||||
self.num_rows
|
||||
}
|
||||
|
||||
pub fn num_non_nulls(&self) -> RowId {
|
||||
self.num_non_null_rows
|
||||
}
|
||||
|
||||
pub fn iter_rows(&self) -> impl Iterator<Item = RowId> + '_ {
|
||||
// TODO optimize
|
||||
let mut select_batch = self.select_cursor();
|
||||
(0..self.num_non_null_rows).map(move |rank| select_batch.select(rank))
|
||||
}
|
||||
pub fn select_batch(&self, ranks: &mut [RowId]) {
|
||||
let mut select_cursor = self.select_cursor();
|
||||
for rank in ranks.iter_mut() {
|
||||
*rank = select_cursor.select(*rank);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn block(&self, block_meta: BlockMeta) -> Block<'_> {
|
||||
let BlockMeta {
|
||||
start_byte_offset,
|
||||
block_variant,
|
||||
..
|
||||
} = block_meta;
|
||||
let start_byte_offset = start_byte_offset as usize;
|
||||
let bytes = self.block_data.as_slice();
|
||||
match block_variant {
|
||||
BlockVariant::Dense => Block::Dense(DenseBlockCodec::open(
|
||||
&bytes[start_byte_offset..start_byte_offset + DENSE_BLOCK_NUM_BYTES as usize],
|
||||
)),
|
||||
BlockVariant::Sparse { num_vals } => {
|
||||
let end_byte_offset = start_byte_offset + num_vals as usize * 2;
|
||||
let sparse_bytes = &bytes[start_byte_offset..end_byte_offset];
|
||||
Block::Sparse(SparseBlockCodec::open(sparse_bytes))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn find_block(&self, dense_idx: u32, start_block_pos: u16) -> u16 {
|
||||
for block_pos in start_block_pos..self.block_metas.len() as u16 {
|
||||
let offset = self.block_metas[block_pos as usize].non_null_rows_before_block;
|
||||
if offset > dense_idx {
|
||||
return block_pos - 1u16;
|
||||
}
|
||||
}
|
||||
self.block_metas.len() as u16 - 1u16
|
||||
}
|
||||
|
||||
// TODO Add a good API for the codec_idx to original_idx translation.
|
||||
// The Iterator API is a probably a bad idea
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
enum Block<'a> {
|
||||
Dense(DenseBlock<'a>),
|
||||
Sparse(SparseBlock<'a>),
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
enum OptionalIndexCodec {
|
||||
Dense = 0,
|
||||
Sparse = 1,
|
||||
}
|
||||
|
||||
impl OptionalIndexCodec {
|
||||
fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
fn try_from_code(code: u8) -> Result<Self, InvalidData> {
|
||||
match code {
|
||||
0 => Ok(Self::Dense),
|
||||
1 => Ok(Self::Sparse),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for OptionalIndexCodec {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(&[self.to_code()])
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let optional_codec_code = u8::deserialize(reader)?;
|
||||
let optional_codec = Self::try_from_code(optional_codec_code)?;
|
||||
Ok(optional_codec)
|
||||
}
|
||||
}
|
||||
|
||||
fn serialize_optional_index_block(block_els: &[u16], out: &mut impl io::Write) -> io::Result<()> {
|
||||
let is_sparse = is_sparse(block_els.len() as u32);
|
||||
if is_sparse {
|
||||
SparseBlockCodec::serialize(block_els.iter().copied(), out)?;
|
||||
} else {
|
||||
DenseBlockCodec::serialize(block_els.iter().copied(), out)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn serialize_optional_index<W: io::Write>(
|
||||
non_null_rows: &dyn Iterable<RowId>,
|
||||
num_rows: RowId,
|
||||
output: &mut W,
|
||||
) -> io::Result<()> {
|
||||
VInt(num_rows as u64).serialize(output)?;
|
||||
|
||||
let mut rows_it = non_null_rows.boxed_iter();
|
||||
let mut block_metadata: Vec<SerializedBlockMeta> = Vec::new();
|
||||
let mut current_block = Vec::new();
|
||||
|
||||
// This if-statement for the first element ensures that
|
||||
// `block_metadata` is not empty in the loop below.
|
||||
let Some(idx) = rows_it.next() else {
|
||||
output.write_all(&0u16.to_le_bytes())?;
|
||||
return Ok(());
|
||||
};
|
||||
|
||||
let row_addr = row_addr_from_row_id(idx);
|
||||
|
||||
let mut current_block_id = row_addr.block_id;
|
||||
current_block.push(row_addr.in_block_row_id);
|
||||
|
||||
for idx in rows_it {
|
||||
let value_addr = row_addr_from_row_id(idx);
|
||||
if current_block_id != value_addr.block_id {
|
||||
serialize_optional_index_block(¤t_block[..], output)?;
|
||||
block_metadata.push(SerializedBlockMeta {
|
||||
block_id: current_block_id,
|
||||
num_non_null_rows: current_block.len() as u32,
|
||||
});
|
||||
current_block.clear();
|
||||
current_block_id = value_addr.block_id;
|
||||
}
|
||||
current_block.push(value_addr.in_block_row_id);
|
||||
}
|
||||
|
||||
// handle last block
|
||||
serialize_optional_index_block(¤t_block[..], output)?;
|
||||
|
||||
block_metadata.push(SerializedBlockMeta {
|
||||
block_id: current_block_id,
|
||||
num_non_null_rows: current_block.len() as u32,
|
||||
});
|
||||
|
||||
for block in &block_metadata {
|
||||
output.write_all(&block.to_bytes())?;
|
||||
}
|
||||
|
||||
output.write_all((block_metadata.len() as u16).to_le_bytes().as_ref())?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
const SERIALIZED_BLOCK_META_NUM_BYTES: usize = 4;
|
||||
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
struct SerializedBlockMeta {
|
||||
block_id: u16,
|
||||
num_non_null_rows: u32, //< takes values in 1..=u16::MAX
|
||||
}
|
||||
|
||||
// TODO unit tests
|
||||
impl SerializedBlockMeta {
|
||||
#[inline]
|
||||
fn from_bytes(bytes: [u8; SERIALIZED_BLOCK_META_NUM_BYTES]) -> SerializedBlockMeta {
|
||||
let block_id = u16::from_le_bytes(bytes[0..2].try_into().unwrap());
|
||||
let num_non_null_rows: u32 =
|
||||
u16::from_le_bytes(bytes[2..4].try_into().unwrap()) as u32 + 1u32;
|
||||
SerializedBlockMeta {
|
||||
block_id,
|
||||
num_non_null_rows,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn to_bytes(self) -> [u8; SERIALIZED_BLOCK_META_NUM_BYTES] {
|
||||
assert!(self.num_non_null_rows > 0);
|
||||
let mut bytes = [0u8; SERIALIZED_BLOCK_META_NUM_BYTES];
|
||||
bytes[0..2].copy_from_slice(&self.block_id.to_le_bytes());
|
||||
// We don't store empty blocks, therefore we can subtract 1.
|
||||
// This way we will be able to use u16 when the number of elements is 1 << 16 or u16::MAX+1
|
||||
bytes[2..4].copy_from_slice(&((self.num_non_null_rows - 1u32) as u16).to_le_bytes());
|
||||
bytes
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn is_sparse(num_rows_in_block: u32) -> bool {
|
||||
num_rows_in_block < DENSE_BLOCK_THRESHOLD
|
||||
}
|
||||
|
||||
fn deserialize_optional_index_block_metadatas(
|
||||
data: &[u8],
|
||||
num_rows: u32,
|
||||
) -> (Box<[BlockMeta]>, u32) {
|
||||
let num_blocks = data.len() / SERIALIZED_BLOCK_META_NUM_BYTES;
|
||||
let mut block_metas = Vec::with_capacity(num_blocks + 1);
|
||||
let mut start_byte_offset = 0;
|
||||
let mut non_null_rows_before_block = 0;
|
||||
for block_meta_bytes in data.chunks_exact(SERIALIZED_BLOCK_META_NUM_BYTES) {
|
||||
let block_meta_bytes: [u8; SERIALIZED_BLOCK_META_NUM_BYTES] =
|
||||
block_meta_bytes.try_into().unwrap();
|
||||
let SerializedBlockMeta {
|
||||
block_id,
|
||||
num_non_null_rows,
|
||||
} = SerializedBlockMeta::from_bytes(block_meta_bytes);
|
||||
block_metas.resize(
|
||||
block_id as usize,
|
||||
BlockMeta {
|
||||
non_null_rows_before_block,
|
||||
start_byte_offset,
|
||||
block_variant: BlockVariant::empty(),
|
||||
},
|
||||
);
|
||||
let block_variant = if is_sparse(num_non_null_rows) {
|
||||
BlockVariant::Sparse {
|
||||
num_vals: num_non_null_rows as u16,
|
||||
}
|
||||
} else {
|
||||
BlockVariant::Dense
|
||||
};
|
||||
block_metas.push(BlockMeta {
|
||||
non_null_rows_before_block,
|
||||
start_byte_offset,
|
||||
block_variant,
|
||||
});
|
||||
start_byte_offset += block_variant.num_bytes_in_block();
|
||||
non_null_rows_before_block += num_non_null_rows;
|
||||
}
|
||||
block_metas.resize(
|
||||
((num_rows + BLOCK_SIZE - 1) / BLOCK_SIZE) as usize,
|
||||
BlockMeta {
|
||||
non_null_rows_before_block,
|
||||
start_byte_offset,
|
||||
block_variant: BlockVariant::empty(),
|
||||
},
|
||||
);
|
||||
(block_metas.into_boxed_slice(), non_null_rows_before_block)
|
||||
}
|
||||
|
||||
pub fn open_optional_index(bytes: OwnedBytes) -> io::Result<OptionalIndex> {
|
||||
let (mut bytes, num_non_empty_blocks_bytes) = bytes.rsplit(2);
|
||||
let num_non_empty_block_bytes =
|
||||
u16::from_le_bytes(num_non_empty_blocks_bytes.as_slice().try_into().unwrap());
|
||||
let num_rows = VInt::deserialize_u64(&mut bytes)? as u32;
|
||||
let block_metas_num_bytes =
|
||||
num_non_empty_block_bytes as usize * SERIALIZED_BLOCK_META_NUM_BYTES;
|
||||
let (block_data, block_metas) = bytes.rsplit(block_metas_num_bytes);
|
||||
let (block_metas, num_non_null_rows) =
|
||||
deserialize_optional_index_block_metadatas(block_metas.as_slice(), num_rows);
|
||||
let optional_index = OptionalIndex {
|
||||
num_rows,
|
||||
num_non_null_rows,
|
||||
block_data,
|
||||
block_metas: block_metas.into(),
|
||||
};
|
||||
Ok(optional_index)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
47
columnar/src/column_index/optional_index/set.rs
Normal file
47
columnar/src/column_index/optional_index/set.rs
Normal file
@@ -0,0 +1,47 @@
|
||||
use std::io;
|
||||
|
||||
/// A codec makes it possible to serialize a set of
|
||||
/// elements, and open the resulting Set representation.
|
||||
pub trait SetCodec {
|
||||
type Item: Copy + TryFrom<usize> + Eq + std::hash::Hash + std::fmt::Debug;
|
||||
type Reader<'a>: Set<Self::Item>;
|
||||
|
||||
/// Serializes a set of unique sorted u16 elements.
|
||||
///
|
||||
/// May panic if the elements are not sorted.
|
||||
fn serialize(els: impl Iterator<Item = Self::Item>, wrt: impl io::Write) -> io::Result<()>;
|
||||
fn open(data: &[u8]) -> Self::Reader<'_>;
|
||||
}
|
||||
|
||||
/// Stateful object that makes it possible to compute several select in a row,
|
||||
/// provided the rank passed as argument are increasing.
|
||||
pub trait SelectCursor<T> {
|
||||
// May panic if rank is greater than the number of elements in the Set,
|
||||
// or if rank is < than value provided in the previous call.
|
||||
fn select(&mut self, rank: T) -> T;
|
||||
}
|
||||
|
||||
pub trait Set<T> {
|
||||
type SelectCursor<'b>: SelectCursor<T>
|
||||
where Self: 'b;
|
||||
|
||||
/// Returns true if the elements is contained in the Set
|
||||
fn contains(&self, el: T) -> bool;
|
||||
|
||||
/// Returns the number of rows in the set that are < `el`
|
||||
fn rank(&self, el: T) -> T;
|
||||
|
||||
/// If the set contains `el` returns the element rank.
|
||||
/// If the set does not contain the element, it returns `None`.
|
||||
fn rank_if_exists(&self, el: T) -> Option<T>;
|
||||
|
||||
/// Return the rank-th value stored in this bitmap.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if rank is greater than the number of elements in the Set.
|
||||
fn select(&self, rank: T) -> T;
|
||||
|
||||
/// Creates a brand new select cursor.
|
||||
fn select_cursor(&self) -> Self::SelectCursor<'_>;
|
||||
}
|
||||
278
columnar/src/column_index/optional_index/set_block/dense.rs
Normal file
278
columnar/src/column_index/optional_index/set_block/dense.rs
Normal file
@@ -0,0 +1,278 @@
|
||||
use std::convert::TryInto;
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::BinarySerializable;
|
||||
|
||||
use crate::column_index::optional_index::{SelectCursor, Set, SetCodec, ELEMENTS_PER_BLOCK};
|
||||
|
||||
#[inline(always)]
|
||||
fn get_bit_at(input: u64, n: u16) -> bool {
|
||||
input & (1 << n) != 0
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_bit_at(input: &mut u64, n: u16) {
|
||||
*input |= 1 << n;
|
||||
}
|
||||
|
||||
/// For the `DenseCodec`, `data` which contains the encoded blocks.
|
||||
/// Each block consists of [u8; 12]. The first 8 bytes is a bitvec for 64 elements.
|
||||
/// The last 4 bytes are the offset, the number of set bits so far.
|
||||
///
|
||||
/// When translating the original index to a dense index, the correct block can be computed
|
||||
/// directly `orig_idx/64`. Inside the block the position is `orig_idx%64`.
|
||||
///
|
||||
/// When translating a dense index to the original index, we can use the offset to find the correct
|
||||
/// block. Direct computation is not possible, but we can employ a linear or binary search.
|
||||
|
||||
const ELEMENTS_PER_MINI_BLOCK: u16 = 64;
|
||||
const MINI_BLOCK_BITVEC_NUM_BYTES: usize = 8;
|
||||
const MINI_BLOCK_OFFSET_NUM_BYTES: usize = 2;
|
||||
pub const MINI_BLOCK_NUM_BYTES: usize = MINI_BLOCK_BITVEC_NUM_BYTES + MINI_BLOCK_OFFSET_NUM_BYTES;
|
||||
|
||||
/// Number of bytes in a dense block.
|
||||
pub const DENSE_BLOCK_NUM_BYTES: u32 =
|
||||
(ELEMENTS_PER_BLOCK / ELEMENTS_PER_MINI_BLOCK as u32) * MINI_BLOCK_NUM_BYTES as u32;
|
||||
|
||||
pub struct DenseBlockCodec;
|
||||
|
||||
impl SetCodec for DenseBlockCodec {
|
||||
type Item = u16;
|
||||
type Reader<'a> = DenseBlock<'a>;
|
||||
|
||||
fn serialize(els: impl Iterator<Item = u16>, wrt: impl io::Write) -> io::Result<()> {
|
||||
serialize_dense_codec(els, wrt)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn open(data: &[u8]) -> Self::Reader<'_> {
|
||||
assert_eq!(data.len(), DENSE_BLOCK_NUM_BYTES as usize);
|
||||
DenseBlock(data)
|
||||
}
|
||||
}
|
||||
|
||||
/// Interpreting the bitvec as a set of integer within 0..=63
|
||||
/// and given an element, returns the number of elements in the
|
||||
/// set lesser than the element.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic or return a wrong result if el <= 64.
|
||||
#[inline(always)]
|
||||
fn rank_u64(bitvec: u64, el: u16) -> u16 {
|
||||
debug_assert!(el < 64);
|
||||
let mask = (1u64 << el) - 1;
|
||||
let masked_bitvec = bitvec & mask;
|
||||
masked_bitvec.count_ones() as u16
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn select_u64(mut bitvec: u64, rank: u16) -> u16 {
|
||||
for _ in 0..rank {
|
||||
bitvec &= bitvec - 1;
|
||||
}
|
||||
bitvec.trailing_zeros() as u16
|
||||
}
|
||||
|
||||
// TODO test the following solution on Intel... on Ryzen Zen <3 it is a catastrophy.
|
||||
// #[target_feature(enable = "bmi2")]
|
||||
// unsafe fn select_bitvec_unsafe(bitvec: u64, rank: u16) -> u16 {
|
||||
// let pdep = _pdep_u64(1u64 << rank, bitvec);
|
||||
// pdep.trailing_zeros() as u16
|
||||
// }
|
||||
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
struct DenseMiniBlock {
|
||||
bitvec: u64,
|
||||
rank: u16,
|
||||
}
|
||||
|
||||
impl DenseMiniBlock {
|
||||
fn from_bytes(data: [u8; MINI_BLOCK_NUM_BYTES]) -> Self {
|
||||
let bitvec = u64::from_le_bytes(data[..MINI_BLOCK_BITVEC_NUM_BYTES].try_into().unwrap());
|
||||
let rank = u16::from_le_bytes(data[MINI_BLOCK_BITVEC_NUM_BYTES..].try_into().unwrap());
|
||||
Self { bitvec, rank }
|
||||
}
|
||||
|
||||
fn to_bytes(self) -> [u8; MINI_BLOCK_NUM_BYTES] {
|
||||
let mut bytes = [0u8; MINI_BLOCK_NUM_BYTES];
|
||||
bytes[..MINI_BLOCK_BITVEC_NUM_BYTES].copy_from_slice(&self.bitvec.to_le_bytes());
|
||||
bytes[MINI_BLOCK_BITVEC_NUM_BYTES..].copy_from_slice(&self.rank.to_le_bytes());
|
||||
bytes
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct DenseBlock<'a>(&'a [u8]);
|
||||
|
||||
pub struct DenseBlockSelectCursor<'a> {
|
||||
block_id: u16,
|
||||
dense_block: DenseBlock<'a>,
|
||||
}
|
||||
|
||||
impl<'a> SelectCursor<u16> for DenseBlockSelectCursor<'a> {
|
||||
#[inline]
|
||||
fn select(&mut self, rank: u16) -> u16 {
|
||||
self.block_id = self
|
||||
.dense_block
|
||||
.find_miniblock_containing_rank(rank, self.block_id)
|
||||
.unwrap();
|
||||
let index_block = self.dense_block.mini_block(self.block_id);
|
||||
let in_block_rank = rank - index_block.rank;
|
||||
self.block_id * ELEMENTS_PER_MINI_BLOCK + select_u64(index_block.bitvec, in_block_rank)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Set<u16> for DenseBlock<'a> {
|
||||
type SelectCursor<'b> = DenseBlockSelectCursor<'a> where Self: 'b;
|
||||
|
||||
#[inline(always)]
|
||||
fn contains(&self, el: u16) -> bool {
|
||||
let mini_block_id = el / ELEMENTS_PER_MINI_BLOCK;
|
||||
let bitvec = self.mini_block(mini_block_id).bitvec;
|
||||
let pos_in_bitvec = el % ELEMENTS_PER_MINI_BLOCK;
|
||||
get_bit_at(bitvec, pos_in_bitvec)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn rank_if_exists(&self, el: u16) -> Option<u16> {
|
||||
let block_pos = el / ELEMENTS_PER_MINI_BLOCK;
|
||||
let index_block = self.mini_block(block_pos);
|
||||
let pos_in_block_bit_vec = el % ELEMENTS_PER_MINI_BLOCK;
|
||||
let ones_in_block = rank_u64(index_block.bitvec, pos_in_block_bit_vec);
|
||||
let rank = index_block.rank + ones_in_block;
|
||||
if get_bit_at(index_block.bitvec, pos_in_block_bit_vec) {
|
||||
Some(rank)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn rank(&self, el: u16) -> u16 {
|
||||
let block_pos = el / ELEMENTS_PER_MINI_BLOCK;
|
||||
let index_block = self.mini_block(block_pos);
|
||||
let pos_in_block_bit_vec = el % ELEMENTS_PER_MINI_BLOCK;
|
||||
let ones_in_block = rank_u64(index_block.bitvec, pos_in_block_bit_vec);
|
||||
index_block.rank + ones_in_block
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn select(&self, rank: u16) -> u16 {
|
||||
let block_id = self.find_miniblock_containing_rank(rank, 0).unwrap();
|
||||
let index_block = self.mini_block(block_id);
|
||||
let in_block_rank = rank - index_block.rank;
|
||||
block_id * ELEMENTS_PER_MINI_BLOCK + select_u64(index_block.bitvec, in_block_rank)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn select_cursor(&self) -> Self::SelectCursor<'_> {
|
||||
DenseBlockSelectCursor {
|
||||
block_id: 0,
|
||||
dense_block: *self,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> DenseBlock<'a> {
|
||||
#[inline]
|
||||
fn mini_block(&self, mini_block_id: u16) -> DenseMiniBlock {
|
||||
let data_start_pos = mini_block_id as usize * MINI_BLOCK_NUM_BYTES;
|
||||
DenseMiniBlock::from_bytes(
|
||||
self.0[data_start_pos..data_start_pos + MINI_BLOCK_NUM_BYTES]
|
||||
.try_into()
|
||||
.unwrap(),
|
||||
)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter_miniblocks(
|
||||
&self,
|
||||
from_block_id: u16,
|
||||
) -> impl Iterator<Item = (u16, DenseMiniBlock)> + '_ {
|
||||
self.0
|
||||
.chunks_exact(MINI_BLOCK_NUM_BYTES)
|
||||
.enumerate()
|
||||
.skip(from_block_id as usize)
|
||||
.map(|(block_id, bytes)| {
|
||||
let mini_block = DenseMiniBlock::from_bytes(bytes.try_into().unwrap());
|
||||
(block_id as u16, mini_block)
|
||||
})
|
||||
}
|
||||
|
||||
/// Finds the block position containing the dense_idx.
|
||||
///
|
||||
/// # Correctness
|
||||
/// dense_idx needs to be smaller than the number of values in the index
|
||||
///
|
||||
/// The last offset number is equal to the number of values in the index.
|
||||
#[inline]
|
||||
fn find_miniblock_containing_rank(&self, rank: u16, from_block_id: u16) -> Option<u16> {
|
||||
self.iter_miniblocks(from_block_id)
|
||||
.take_while(|(_, block)| block.rank <= rank)
|
||||
.map(|(block_id, _)| block_id)
|
||||
.last()
|
||||
}
|
||||
}
|
||||
|
||||
/// Iterator over all values, true if set, otherwise false
|
||||
pub fn serialize_dense_codec(
|
||||
els: impl Iterator<Item = u16>,
|
||||
mut output: impl Write,
|
||||
) -> io::Result<()> {
|
||||
let mut non_null_rows_before: u16 = 0u16;
|
||||
let mut block = 0u64;
|
||||
let mut current_block_id = 0u16;
|
||||
for el in els {
|
||||
let block_id = el / ELEMENTS_PER_MINI_BLOCK;
|
||||
let in_offset = el % ELEMENTS_PER_MINI_BLOCK;
|
||||
while block_id > current_block_id {
|
||||
let dense_mini_block = DenseMiniBlock {
|
||||
bitvec: block,
|
||||
rank: non_null_rows_before,
|
||||
};
|
||||
output.write_all(&dense_mini_block.to_bytes())?;
|
||||
non_null_rows_before += block.count_ones() as u16;
|
||||
block = 0u64;
|
||||
current_block_id += 1u16;
|
||||
}
|
||||
set_bit_at(&mut block, in_offset);
|
||||
}
|
||||
while current_block_id <= u16::MAX / ELEMENTS_PER_MINI_BLOCK {
|
||||
block.serialize(&mut output)?;
|
||||
non_null_rows_before.serialize(&mut output)?;
|
||||
// This will overflow to 0 exactly if all bits are set.
|
||||
// This is however not problem as we won't use this last value.
|
||||
non_null_rows_before = non_null_rows_before.wrapping_add(block.count_ones() as u16);
|
||||
block = 0u64;
|
||||
current_block_id += 1u16;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_select_bitvec() {
|
||||
assert_eq!(select_u64(1u64, 0), 0);
|
||||
assert_eq!(select_u64(2u64, 0), 1);
|
||||
assert_eq!(select_u64(4u64, 0), 2);
|
||||
assert_eq!(select_u64(8u64, 0), 3);
|
||||
assert_eq!(select_u64(1 | 8u64, 0), 0);
|
||||
assert_eq!(select_u64(1 | 8u64, 1), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_count_ones() {
|
||||
for i in 0..=63 {
|
||||
assert_eq!(rank_u64(u64::MAX, i), i);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dense() {
|
||||
assert_eq!(DENSE_BLOCK_NUM_BYTES, 10_240);
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,8 @@
|
||||
mod dense;
|
||||
mod sparse;
|
||||
|
||||
pub use dense::{DenseBlock, DenseBlockCodec, DENSE_BLOCK_NUM_BYTES};
|
||||
pub use sparse::{SparseBlock, SparseBlockCodec};
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
111
columnar/src/column_index/optional_index/set_block/sparse.rs
Normal file
111
columnar/src/column_index/optional_index/set_block/sparse.rs
Normal file
@@ -0,0 +1,111 @@
|
||||
use crate::column_index::optional_index::{SelectCursor, Set, SetCodec};
|
||||
|
||||
pub struct SparseBlockCodec;
|
||||
|
||||
impl SetCodec for SparseBlockCodec {
|
||||
type Item = u16;
|
||||
type Reader<'a> = SparseBlock<'a>;
|
||||
|
||||
fn serialize(
|
||||
els: impl Iterator<Item = u16>,
|
||||
mut wrt: impl std::io::Write,
|
||||
) -> std::io::Result<()> {
|
||||
for el in els {
|
||||
wrt.write_all(&el.to_le_bytes())?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn open(data: &[u8]) -> Self::Reader<'_> {
|
||||
SparseBlock(data)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct SparseBlock<'a>(&'a [u8]);
|
||||
|
||||
impl<'a> SelectCursor<u16> for SparseBlock<'a> {
|
||||
#[inline]
|
||||
fn select(&mut self, rank: u16) -> u16 {
|
||||
<SparseBlock<'a> as Set<u16>>::select(self, rank)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Set<u16> for SparseBlock<'a> {
|
||||
type SelectCursor<'b> = Self where Self: 'b;
|
||||
|
||||
#[inline(always)]
|
||||
fn contains(&self, el: u16) -> bool {
|
||||
self.binary_search(el).is_ok()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn rank_if_exists(&self, el: u16) -> Option<u16> {
|
||||
self.binary_search(el).ok()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn rank(&self, el: u16) -> u16 {
|
||||
self.binary_search(el).unwrap_or_else(|el| el)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn select(&self, rank: u16) -> u16 {
|
||||
let offset = rank as usize * 2;
|
||||
u16::from_le_bytes(self.0[offset..offset + 2].try_into().unwrap())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn select_cursor(&self) -> Self::SelectCursor<'_> {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_u16(data: &[u8], byte_position: usize) -> u16 {
|
||||
let bytes: [u8; 2] = data[byte_position..byte_position + 2].try_into().unwrap();
|
||||
u16::from_le_bytes(bytes)
|
||||
}
|
||||
|
||||
impl<'a> SparseBlock<'a> {
|
||||
#[inline(always)]
|
||||
fn value_at_idx(&self, data: &[u8], idx: u16) -> u16 {
|
||||
let start_offset: usize = idx as usize * 2;
|
||||
get_u16(data, start_offset)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u16 {
|
||||
(self.0.len() / 2) as u16
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[allow(clippy::comparison_chain)]
|
||||
// Looks for the element in the block. Returns the positions if found.
|
||||
fn binary_search(&self, target: u16) -> Result<u16, u16> {
|
||||
let data = &self.0;
|
||||
let mut size = self.num_vals();
|
||||
let mut left = 0;
|
||||
let mut right = size;
|
||||
// TODO try different implem.
|
||||
// e.g. exponential search into binary search
|
||||
while left < right {
|
||||
let mid = left + size / 2;
|
||||
|
||||
// TODO do boundary check only once, and then use an
|
||||
// unsafe `value_at_idx`
|
||||
let mid_val = self.value_at_idx(data, mid);
|
||||
|
||||
if target > mid_val {
|
||||
left = mid + 1;
|
||||
} else if target < mid_val {
|
||||
right = mid;
|
||||
} else {
|
||||
return Ok(mid);
|
||||
}
|
||||
|
||||
size = right - left;
|
||||
}
|
||||
Err(left)
|
||||
}
|
||||
}
|
||||
109
columnar/src/column_index/optional_index/set_block/tests.rs
Normal file
109
columnar/src/column_index/optional_index/set_block/tests.rs
Normal file
@@ -0,0 +1,109 @@
|
||||
use std::collections::HashMap;
|
||||
|
||||
use crate::column_index::optional_index::set_block::dense::DENSE_BLOCK_NUM_BYTES;
|
||||
use crate::column_index::optional_index::set_block::{DenseBlockCodec, SparseBlockCodec};
|
||||
use crate::column_index::optional_index::{SelectCursor, Set, SetCodec};
|
||||
|
||||
fn test_set_helper<C: SetCodec<Item = u16>>(vals: &[u16]) -> usize {
|
||||
let mut buffer = Vec::new();
|
||||
C::serialize(vals.iter().copied(), &mut buffer).unwrap();
|
||||
let tested_set = C::open(buffer.as_slice());
|
||||
let hash_set: HashMap<C::Item, C::Item> = vals
|
||||
.iter()
|
||||
.copied()
|
||||
.enumerate()
|
||||
.map(|(ord, val)| (val, C::Item::try_from(ord).ok().unwrap()))
|
||||
.collect();
|
||||
for val in 0u16..=u16::MAX {
|
||||
assert_eq!(tested_set.contains(val), hash_set.contains_key(&val));
|
||||
assert_eq!(tested_set.rank_if_exists(val), hash_set.get(&val).copied());
|
||||
assert_eq!(
|
||||
tested_set.rank(val),
|
||||
vals.iter().cloned().take_while(|v| *v < val).count() as u16
|
||||
);
|
||||
}
|
||||
for rank in 0..vals.len() {
|
||||
assert_eq!(tested_set.select(rank as u16), vals[rank]);
|
||||
}
|
||||
buffer.len()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dense_block_set_u16_empty() {
|
||||
let buffer_len = test_set_helper::<DenseBlockCodec>(&[]);
|
||||
assert_eq!(buffer_len, DENSE_BLOCK_NUM_BYTES as usize);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dense_block_set_u16_max() {
|
||||
let buffer_len = test_set_helper::<DenseBlockCodec>(&[u16::MAX]);
|
||||
assert_eq!(buffer_len, DENSE_BLOCK_NUM_BYTES as usize);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sparse_block_set_u16_empty() {
|
||||
let buffer_len = test_set_helper::<SparseBlockCodec>(&[]);
|
||||
assert_eq!(buffer_len, 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sparse_block_set_u16_max() {
|
||||
let buffer_len = test_set_helper::<SparseBlockCodec>(&[u16::MAX]);
|
||||
assert_eq!(buffer_len, 2);
|
||||
}
|
||||
|
||||
use proptest::prelude::*;
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(1))]
|
||||
#[test]
|
||||
fn test_prop_test_dense(els in proptest::collection::btree_set(0..=u16::MAX, 0..=u16::MAX as usize)) {
|
||||
let vals: Vec<u16> = els.into_iter().collect();
|
||||
let buffer_len = test_set_helper::<DenseBlockCodec>(&vals);
|
||||
assert_eq!(buffer_len, DENSE_BLOCK_NUM_BYTES as usize);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_prop_test_sparse(els in proptest::collection::btree_set(0..=u16::MAX, 0..=u16::MAX as usize)) {
|
||||
let vals: Vec<u16> = els.into_iter().collect();
|
||||
let buffer_len = test_set_helper::<SparseBlockCodec>(&vals);
|
||||
assert_eq!(buffer_len, vals.len() * 2);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_simple_translate_codec_codec_idx_to_original_idx_dense() {
|
||||
let mut buffer = Vec::new();
|
||||
DenseBlockCodec::serialize([1, 3, 17, 32, 30_000, 30_001].iter().copied(), &mut buffer)
|
||||
.unwrap();
|
||||
let tested_set = DenseBlockCodec::open(buffer.as_slice());
|
||||
assert!(tested_set.contains(1));
|
||||
let mut select_cursor = tested_set.select_cursor();
|
||||
assert_eq!(select_cursor.select(0), 1);
|
||||
assert_eq!(select_cursor.select(1), 3);
|
||||
assert_eq!(select_cursor.select(2), 17);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_simple_translate_codec_idx_to_original_idx_sparse() {
|
||||
let mut buffer = Vec::new();
|
||||
SparseBlockCodec::serialize([1, 3, 17].iter().copied(), &mut buffer).unwrap();
|
||||
let tested_set = SparseBlockCodec::open(buffer.as_slice());
|
||||
assert!(tested_set.contains(1));
|
||||
let mut select_cursor = tested_set.select_cursor();
|
||||
assert_eq!(SelectCursor::select(&mut select_cursor, 0), 1);
|
||||
assert_eq!(SelectCursor::select(&mut select_cursor, 1), 3);
|
||||
assert_eq!(SelectCursor::select(&mut select_cursor, 2), 17);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_simple_translate_codec_idx_to_original_idx_dense() {
|
||||
let mut buffer = Vec::new();
|
||||
DenseBlockCodec::serialize(0u16..150u16, &mut buffer).unwrap();
|
||||
let tested_set = DenseBlockCodec::open(buffer.as_slice());
|
||||
assert!(tested_set.contains(1));
|
||||
let mut select_cursor = tested_set.select_cursor();
|
||||
for i in 0..150 {
|
||||
assert_eq!(i, select_cursor.select(i));
|
||||
}
|
||||
}
|
||||
371
columnar/src/column_index/optional_index/tests.rs
Normal file
371
columnar/src/column_index/optional_index/tests.rs
Normal file
@@ -0,0 +1,371 @@
|
||||
use proptest::prelude::{any, prop, *};
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_dense_block_threshold() {
|
||||
assert_eq!(super::DENSE_BLOCK_THRESHOLD, 5_120);
|
||||
}
|
||||
|
||||
fn random_bitvec() -> BoxedStrategy<Vec<bool>> {
|
||||
prop_oneof![
|
||||
1 => prop::collection::vec(proptest::bool::weighted(1.0), 0..100),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.00), 0..(ELEMENTS_PER_BLOCK as usize * 3)), // empty blocks
|
||||
1 => prop::collection::vec(proptest::bool::weighted(1.00), 0..(ELEMENTS_PER_BLOCK as usize + 10)), // full block
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..100),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..u16::MAX as usize),
|
||||
8 => vec![any::<bool>()],
|
||||
]
|
||||
.boxed()
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(50))]
|
||||
#[test]
|
||||
fn test_with_random_bitvecs(bitvec1 in random_bitvec(), bitvec2 in random_bitvec(), bitvec3 in random_bitvec()) {
|
||||
let mut bitvec = Vec::new();
|
||||
bitvec.extend_from_slice(&bitvec1);
|
||||
bitvec.extend_from_slice(&bitvec2);
|
||||
bitvec.extend_from_slice(&bitvec3);
|
||||
test_null_index(&bitvec[..]);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_random_sets_simple() {
|
||||
let vals = 10..BLOCK_SIZE * 2;
|
||||
let mut out: Vec<u8> = Vec::new();
|
||||
serialize_optional_index(&vals, 100, &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
let ranks: Vec<u32> = (65_472u32..65_473u32).collect();
|
||||
let els: Vec<u32> = ranks.iter().copied().map(|rank| rank + 10).collect();
|
||||
let mut select_cursor = null_index.select_cursor();
|
||||
for (rank, el) in ranks.iter().copied().zip(els.iter().copied()) {
|
||||
assert_eq!(select_cursor.select(rank), el);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_trailing_empty_blocks() {
|
||||
test_null_index(&[false]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_one_block_false() {
|
||||
let mut iter = vec![false; ELEMENTS_PER_BLOCK as usize];
|
||||
iter.push(true);
|
||||
test_null_index(&iter[..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_one_block_true() {
|
||||
let mut iter = vec![true; ELEMENTS_PER_BLOCK as usize];
|
||||
iter.push(true);
|
||||
test_null_index(&iter[..]);
|
||||
}
|
||||
|
||||
impl<'a> Iterable<RowId> for &'a [bool] {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = RowId> + 'a> {
|
||||
Box::new(
|
||||
self.iter()
|
||||
.cloned()
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _val)| pos as u32),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn test_null_index(data: &[bool]) {
|
||||
let mut out: Vec<u8> = Vec::new();
|
||||
serialize_optional_index(&data, data.len() as RowId, &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
let orig_idx_with_value: Vec<u32> = data
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| **val)
|
||||
.map(|(pos, _val)| pos as u32)
|
||||
.collect();
|
||||
let mut select_iter = null_index.select_cursor();
|
||||
for i in 0..orig_idx_with_value.len() {
|
||||
assert_eq!(select_iter.select(i as u32), orig_idx_with_value[i]);
|
||||
}
|
||||
|
||||
let step_size = (orig_idx_with_value.len() / 100).max(1);
|
||||
for (dense_idx, orig_idx) in orig_idx_with_value.iter().enumerate().step_by(step_size) {
|
||||
assert_eq!(null_index.rank_if_exists(*orig_idx), Some(dense_idx as u32));
|
||||
}
|
||||
|
||||
// 100 samples
|
||||
let step_size = (data.len() / 100).max(1);
|
||||
for (pos, value) in data.iter().enumerate().step_by(step_size) {
|
||||
assert_eq!(null_index.contains(pos as u32), *value);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_test_translation() {
|
||||
let optional_index = OptionalIndex::for_test(4, &[0, 2]);
|
||||
let mut select_cursor = optional_index.select_cursor();
|
||||
assert_eq!(select_cursor.select(0), 0);
|
||||
assert_eq!(select_cursor.select(1), 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_translate() {
|
||||
let optional_index = OptionalIndex::for_test(4, &[0, 2]);
|
||||
assert_eq!(optional_index.rank_if_exists(0), Some(0));
|
||||
assert_eq!(optional_index.rank_if_exists(2), Some(1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_small() {
|
||||
let optional_index = OptionalIndex::for_test(4, &[0, 2]);
|
||||
assert!(optional_index.contains(0));
|
||||
assert!(!optional_index.contains(1));
|
||||
assert!(optional_index.contains(2));
|
||||
assert!(!optional_index.contains(3));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_large() {
|
||||
let row_ids = &[ELEMENTS_PER_BLOCK, ELEMENTS_PER_BLOCK + 1];
|
||||
let optional_index = OptionalIndex::for_test(ELEMENTS_PER_BLOCK + 2, row_ids);
|
||||
assert!(!optional_index.contains(0));
|
||||
assert!(!optional_index.contains(100));
|
||||
assert!(!optional_index.contains(ELEMENTS_PER_BLOCK - 1));
|
||||
assert!(optional_index.contains(ELEMENTS_PER_BLOCK));
|
||||
assert!(optional_index.contains(ELEMENTS_PER_BLOCK + 1));
|
||||
}
|
||||
|
||||
fn test_optional_index_iter_aux(row_ids: &[RowId], num_rows: RowId) {
|
||||
let optional_index = OptionalIndex::for_test(num_rows, row_ids);
|
||||
assert_eq!(optional_index.num_docs(), num_rows);
|
||||
assert!(optional_index.iter_rows().eq(row_ids.iter().copied()));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_iter_empty() {
|
||||
test_optional_index_iter_aux(&[], 0u32);
|
||||
}
|
||||
|
||||
fn test_optional_index_rank_aux(row_ids: &[RowId]) {
|
||||
let num_rows = row_ids.last().copied().unwrap_or(0u32) + 1;
|
||||
let null_index = OptionalIndex::for_test(num_rows, row_ids);
|
||||
assert_eq!(null_index.num_docs(), num_rows);
|
||||
for (row_id, row_val) in row_ids.iter().copied().enumerate() {
|
||||
assert_eq!(null_index.rank(row_val), row_id as u32);
|
||||
assert_eq!(null_index.rank_if_exists(row_val), Some(row_id as u32));
|
||||
if row_val > 0 && !null_index.contains(&row_val - 1) {
|
||||
assert_eq!(null_index.rank(row_val - 1), row_id as u32);
|
||||
}
|
||||
assert_eq!(null_index.rank(row_val + 1), row_id as u32 + 1);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_rank() {
|
||||
test_optional_index_rank_aux(&[1u32]);
|
||||
test_optional_index_rank_aux(&[0u32, 1u32]);
|
||||
let mut block = Vec::new();
|
||||
block.push(3u32);
|
||||
block.extend((0..BLOCK_SIZE).map(|i| i + BLOCK_SIZE + 1));
|
||||
test_optional_index_rank_aux(&block);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_iter_empty_one() {
|
||||
test_optional_index_iter_aux(&[1], 2u32);
|
||||
test_optional_index_iter_aux(&[100_000], 200_000u32);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_iter_dense_block() {
|
||||
let mut block = Vec::new();
|
||||
block.push(3u32);
|
||||
block.extend((0..BLOCK_SIZE).map(|i| i + BLOCK_SIZE + 1));
|
||||
test_optional_index_iter_aux(&block, 3 * BLOCK_SIZE);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_for_tests() {
|
||||
let optional_index = OptionalIndex::for_test(4, &[1, 2]);
|
||||
assert!(!optional_index.contains(0));
|
||||
assert!(optional_index.contains(1));
|
||||
assert!(optional_index.contains(2));
|
||||
assert!(!optional_index.contains(3));
|
||||
assert_eq!(optional_index.num_docs(), 4);
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::Bencher;
|
||||
|
||||
use super::*;
|
||||
|
||||
const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
fn gen_bools(fill_ratio: f64) -> OptionalIndex {
|
||||
let mut out = Vec::new();
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let vals: Vec<RowId> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.enumerate()
|
||||
.filter(|(pos, val)| *val)
|
||||
.map(|(pos, _)| pos as RowId)
|
||||
.collect();
|
||||
serialize_optional_index(&&vals[..], TOTAL_NUM_VALUES, &mut out).unwrap();
|
||||
let codec = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
codec
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
start: u32,
|
||||
end: u32,
|
||||
avg_step_size: u32,
|
||||
avg_deviation: u32,
|
||||
) -> impl Iterator<Item = u32> {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end {
|
||||
None
|
||||
} else {
|
||||
Some(current)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent as f32 / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
}
|
||||
|
||||
fn walk_over_data(codec: &OptionalIndex, avg_step_size: u32) -> Option<u32> {
|
||||
walk_over_data_from_positions(
|
||||
codec,
|
||||
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
|
||||
)
|
||||
}
|
||||
|
||||
fn walk_over_data_from_positions(
|
||||
codec: &OptionalIndex,
|
||||
positions: impl Iterator<Item = u32>,
|
||||
) -> Option<u32> {
|
||||
let mut dense_idx: Option<u32> = None;
|
||||
for idx in positions {
|
||||
dense_idx = dense_idx.or(codec.rank_if_exists(idx));
|
||||
}
|
||||
dense_idx
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 1000));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.5f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 0.005f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_10percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.1f64, 0.005f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 10f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 100f32, bench);
|
||||
}
|
||||
|
||||
fn bench_translate_codec_to_orig_util(
|
||||
percent_filled: f64,
|
||||
percent_hit: f32,
|
||||
bench: &mut Bencher,
|
||||
) {
|
||||
let codec = gen_bools(percent_filled);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
let idxs: Vec<u32> = if percent_hit == 100.0f32 {
|
||||
(0..num_non_nulls).collect()
|
||||
} else {
|
||||
n_percent_step_iterator(percent_hit, num_non_nulls).collect()
|
||||
};
|
||||
let mut output = vec![0u32; idxs.len()];
|
||||
bench.iter(|| {
|
||||
output.copy_from_slice(&idxs[..]);
|
||||
codec.select_batch(&mut output);
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.9f64, 0.005, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.9f64, 100.0f32, bench);
|
||||
}
|
||||
}
|
||||
77
columnar/src/column_index/serialize.rs
Normal file
77
columnar/src/column_index/serialize.rs
Normal file
@@ -0,0 +1,77 @@
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
|
||||
use common::{CountingWriter, OwnedBytes};
|
||||
|
||||
use crate::column_index::multivalued_index::serialize_multivalued_index;
|
||||
use crate::column_index::optional_index::serialize_optional_index;
|
||||
use crate::column_index::ColumnIndex;
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{Cardinality, RowId};
|
||||
|
||||
pub enum SerializableColumnIndex<'a> {
|
||||
Full,
|
||||
Optional {
|
||||
non_null_row_ids: Box<dyn Iterable<RowId> + 'a>,
|
||||
num_rows: RowId,
|
||||
},
|
||||
// TODO remove the Arc<dyn> apart from serialization this is not
|
||||
// dynamic at all.
|
||||
Multivalued(Box<dyn Iterable<RowId> + 'a>),
|
||||
}
|
||||
|
||||
impl<'a> SerializableColumnIndex<'a> {
|
||||
pub fn get_cardinality(&self) -> Cardinality {
|
||||
match self {
|
||||
SerializableColumnIndex::Full => Cardinality::Full,
|
||||
SerializableColumnIndex::Optional { .. } => Cardinality::Optional,
|
||||
SerializableColumnIndex::Multivalued(_) => Cardinality::Multivalued,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn serialize_column_index(
|
||||
column_index: SerializableColumnIndex,
|
||||
output: &mut impl Write,
|
||||
) -> io::Result<u32> {
|
||||
let mut output = CountingWriter::wrap(output);
|
||||
let cardinality = column_index.get_cardinality().to_code();
|
||||
output.write_all(&[cardinality])?;
|
||||
match column_index {
|
||||
SerializableColumnIndex::Full => {}
|
||||
SerializableColumnIndex::Optional {
|
||||
non_null_row_ids,
|
||||
num_rows,
|
||||
} => serialize_optional_index(non_null_row_ids.as_ref(), num_rows, &mut output)?,
|
||||
SerializableColumnIndex::Multivalued(multivalued_index) => {
|
||||
serialize_multivalued_index(&*multivalued_index, &mut output)?
|
||||
}
|
||||
}
|
||||
let column_index_num_bytes = output.written_bytes() as u32;
|
||||
Ok(column_index_num_bytes)
|
||||
}
|
||||
|
||||
pub fn open_column_index(mut bytes: OwnedBytes) -> io::Result<ColumnIndex> {
|
||||
if bytes.is_empty() {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::UnexpectedEof,
|
||||
"Failed to deserialize column index. Empty buffer.",
|
||||
));
|
||||
}
|
||||
let cardinality_code = bytes[0];
|
||||
let cardinality = Cardinality::try_from_code(cardinality_code)?;
|
||||
bytes.advance(1);
|
||||
match cardinality {
|
||||
Cardinality::Full => Ok(ColumnIndex::Full),
|
||||
Cardinality::Optional => {
|
||||
let optional_index = super::optional_index::open_optional_index(bytes)?;
|
||||
Ok(ColumnIndex::Optional(optional_index))
|
||||
}
|
||||
Cardinality::Multivalued => {
|
||||
let multivalue_index = super::multivalued_index::open_multivalued_index(bytes)?;
|
||||
Ok(ColumnIndex::Multivalued(multivalue_index))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO unit tests
|
||||
135
columnar/src/column_values/bench.rs
Normal file
135
columnar/src/column_values/bench.rs
Normal file
@@ -0,0 +1,135 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::*;
|
||||
use crate::column_values::u64_based::*;
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55000_u64)
|
||||
.map(|num| num + rng.gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
fn compute_stats(vals: impl Iterator<Item = u64>) -> ColumnStats {
|
||||
let mut stats_collector = StatsCollector::default();
|
||||
for val in vals {
|
||||
stats_collector.collect(val);
|
||||
}
|
||||
stats_collector.stats()
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
fn get_reader_for_bench<Codec: ColumnCodec>(data: &[u64]) -> Codec::ColumnValues {
|
||||
let mut bytes = Vec::new();
|
||||
let stats = compute_stats(data.iter().cloned());
|
||||
let mut codec_serializer = Codec::estimator();
|
||||
for val in data {
|
||||
codec_serializer.collect(*val);
|
||||
}
|
||||
codec_serializer.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes);
|
||||
|
||||
Codec::load(OwnedBytes::new(bytes)).unwrap()
|
||||
}
|
||||
fn bench_get<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = get_reader_for_bench::<Codec>(data);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn ColumnValues>) {
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
fn bench_get_dynamic<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = Arc::new(get_reader_for_bench::<Codec>(data));
|
||||
bench_get_dynamic_helper(b, col);
|
||||
}
|
||||
fn bench_create<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let stats = compute_stats(data.iter().cloned());
|
||||
|
||||
let mut bytes = Vec::new();
|
||||
b.iter(|| {
|
||||
bytes.clear();
|
||||
let mut codec_serializer = Codec::estimator();
|
||||
for val in data.iter().take(1024) {
|
||||
codec_serializer.collect(*val);
|
||||
}
|
||||
|
||||
codec_serializer.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes)
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
41
columnar/src/column_values/merge.rs
Normal file
41
columnar/src/column_values/merge.rs
Normal file
@@ -0,0 +1,41 @@
|
||||
use std::fmt::Debug;
|
||||
use std::sync::Arc;
|
||||
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{ColumnIndex, ColumnValues, MergeRowOrder};
|
||||
|
||||
pub(crate) struct MergedColumnValues<'a, T> {
|
||||
pub(crate) column_indexes: &'a [Option<ColumnIndex>],
|
||||
pub(crate) column_values: &'a [Option<Arc<dyn ColumnValues<T>>>],
|
||||
pub(crate) merge_row_order: &'a MergeRowOrder,
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Debug> Iterable<T> for MergedColumnValues<'a, T> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
|
||||
match self.merge_row_order {
|
||||
MergeRowOrder::Stack(_) => Box::new(
|
||||
self.column_values
|
||||
.iter()
|
||||
.flatten()
|
||||
.flat_map(|column_value| column_value.iter()),
|
||||
),
|
||||
MergeRowOrder::Shuffled(shuffle_merge_order) => Box::new(
|
||||
shuffle_merge_order
|
||||
.iter_new_to_old_row_addrs()
|
||||
.flat_map(|row_addr| {
|
||||
let column_index =
|
||||
self.column_indexes[row_addr.segment_ord as usize].as_ref()?;
|
||||
let column_values =
|
||||
self.column_values[row_addr.segment_ord as usize].as_ref()?;
|
||||
let value_range = column_index.value_row_ids(row_addr.row_id);
|
||||
Some((value_range, column_values))
|
||||
})
|
||||
.flat_map(|(value_range, column_values)| {
|
||||
value_range
|
||||
.into_iter()
|
||||
.map(|val| column_values.get_val(val))
|
||||
}),
|
||||
),
|
||||
}
|
||||
}
|
||||
}
|
||||
220
columnar/src/column_values/mod.rs
Normal file
220
columnar/src/column_values/mod.rs
Normal file
@@ -0,0 +1,220 @@
|
||||
#![warn(missing_docs)]
|
||||
|
||||
//! # `fastfield_codecs`
|
||||
//!
|
||||
//! - Columnar storage of data for tantivy [`Column`].
|
||||
//! - Encode data in different codecs.
|
||||
//! - Monotonically map values to u64/u128
|
||||
|
||||
use std::fmt::Debug;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
use std::sync::Arc;
|
||||
|
||||
pub use monotonic_mapping::{MonotonicallyMappableToU64, StrictlyMonotonicFn};
|
||||
pub use monotonic_mapping_u128::MonotonicallyMappableToU128;
|
||||
|
||||
mod merge;
|
||||
pub(crate) mod monotonic_mapping;
|
||||
pub(crate) mod monotonic_mapping_u128;
|
||||
mod stats;
|
||||
mod u128_based;
|
||||
mod u64_based;
|
||||
mod vec_column;
|
||||
|
||||
mod monotonic_column;
|
||||
|
||||
pub(crate) use merge::MergedColumnValues;
|
||||
pub use stats::ColumnStats;
|
||||
pub use u128_based::{open_u128_mapped, serialize_column_values_u128};
|
||||
pub use u64_based::{
|
||||
load_u64_based_column_values, serialize_and_load_u64_based_column_values,
|
||||
serialize_u64_based_column_values, CodecType, ALL_U64_CODEC_TYPES,
|
||||
};
|
||||
pub use vec_column::VecColumn;
|
||||
|
||||
pub use self::monotonic_column::monotonic_map_column;
|
||||
use crate::RowId;
|
||||
|
||||
/// `ColumnValues` provides access to a dense field column.
|
||||
///
|
||||
/// `Column` are just a wrapper over `ColumnValues` and a `ColumnIndex`.
|
||||
///
|
||||
/// Any methods with a default and specialized implementation need to be called in the
|
||||
/// wrappers that implement the trait: Arc and MonotonicMappingColumn
|
||||
pub trait ColumnValues<T: PartialOrd = u64>: Send + Sync {
|
||||
/// Return the value associated with the given idx.
|
||||
///
|
||||
/// This accessor should return as fast as possible.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `idx` is greater than the column length.
|
||||
fn get_val(&self, idx: u32) -> T;
|
||||
|
||||
/// Allows to push down multiple fetch calls, to avoid dynamic dispatch overhead.
|
||||
///
|
||||
/// idx and output should have the same length
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `idx` is greater than the column length.
|
||||
fn get_vals(&self, idx: &[u32], output: &mut [T]) {
|
||||
assert!(idx.len() == output.len());
|
||||
for (out, idx) in output.iter_mut().zip(idx.iter()) {
|
||||
*out = self.get_val(*idx as u32);
|
||||
}
|
||||
}
|
||||
|
||||
/// Fills an output buffer with the fast field values
|
||||
/// associated with the `DocId` going from
|
||||
/// `start` to `start + output.len()`.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Must panic if `start + output.len()` is greater than
|
||||
/// the segment's `maxdoc`.
|
||||
#[inline(always)]
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
for (out, idx) in output.iter_mut().zip(start..) {
|
||||
*out = self.get_val(idx as u32);
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the row ids of values which are in the provided value range.
|
||||
///
|
||||
/// Note that position == docid for single value fast fields
|
||||
#[inline(always)]
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<T>,
|
||||
row_id_range: Range<RowId>,
|
||||
row_id_hits: &mut Vec<RowId>,
|
||||
) {
|
||||
let row_id_range = row_id_range.start..row_id_range.end.min(self.num_vals());
|
||||
for idx in row_id_range.start..row_id_range.end {
|
||||
let val = self.get_val(idx);
|
||||
if value_range.contains(&val) {
|
||||
row_id_hits.push(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the minimum value for this fast field.
|
||||
///
|
||||
/// This min_value may not be exact.
|
||||
/// For instance, the min value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.min_value()`.
|
||||
fn min_value(&self) -> T;
|
||||
|
||||
/// Returns the maximum value for this fast field.
|
||||
///
|
||||
/// This max_value may not be exact.
|
||||
/// For instance, the max value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.max_value()`.
|
||||
fn max_value(&self) -> T;
|
||||
|
||||
/// The number of values in the column.
|
||||
fn num_vals(&self) -> u32;
|
||||
|
||||
/// Returns a iterator over the data
|
||||
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = T> + 'a> {
|
||||
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Copy + PartialOrd + Debug> ColumnValues<T> for Arc<dyn ColumnValues<T>> {
|
||||
#[inline(always)]
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
self.as_ref().get_val(idx)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn min_value(&self) -> T {
|
||||
self.as_ref().min_value()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn max_value(&self) -> T {
|
||||
self.as_ref().max_value()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.as_ref().num_vals()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
|
||||
self.as_ref().iter()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
self.as_ref().get_range(start, output)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<T>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.as_ref()
|
||||
.get_row_ids_for_value_range(range, doc_id_range, positions)
|
||||
}
|
||||
}
|
||||
|
||||
/// Wraps an cloneable iterator into a `Column`.
|
||||
pub struct IterColumn<T>(T);
|
||||
|
||||
impl<T> From<T> for IterColumn<T>
|
||||
where T: Iterator + Clone + ExactSizeIterator
|
||||
{
|
||||
fn from(iter: T) -> Self {
|
||||
IterColumn(iter)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> ColumnValues<T::Item> for IterColumn<T>
|
||||
where
|
||||
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
|
||||
T::Item: PartialOrd + Debug,
|
||||
{
|
||||
fn get_val(&self, idx: u32) -> T::Item {
|
||||
self.0.clone().nth(idx as usize).unwrap()
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T::Item {
|
||||
self.0.clone().next().unwrap()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T::Item {
|
||||
self.0.clone().last().unwrap()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.0.len() as u32
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T::Item> + '_> {
|
||||
Box::new(self.0.clone())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_range_as_col() {
|
||||
let col = IterColumn::from(10..100);
|
||||
assert_eq!(col.num_vals(), 90);
|
||||
assert_eq!(col.max_value(), 99);
|
||||
}
|
||||
}
|
||||
120
columnar/src/column_values/monotonic_column.rs
Normal file
120
columnar/src/column_values/monotonic_column.rs
Normal file
@@ -0,0 +1,120 @@
|
||||
use std::fmt::Debug;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
|
||||
use crate::column_values::monotonic_mapping::StrictlyMonotonicFn;
|
||||
use crate::ColumnValues;
|
||||
|
||||
struct MonotonicMappingColumn<C, T, Input> {
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
_phantom: PhantomData<Input>,
|
||||
}
|
||||
|
||||
/// Creates a view of a column transformed by a strictly monotonic mapping. See
|
||||
/// [`StrictlyMonotonicFn`].
|
||||
///
|
||||
/// E.g. apply a gcd monotonic_mapping([100, 200, 300]) == [1, 2, 3]
|
||||
/// monotonic_mapping.mapping() is expected to be injective, and we should always have
|
||||
/// monotonic_mapping.inverse(monotonic_mapping.mapping(el)) == el
|
||||
///
|
||||
/// The inverse of the mapping is required for:
|
||||
/// `fn get_positions_for_value_range(&self, range: RangeInclusive<T>) -> Vec<u64> `
|
||||
/// The user provides the original value range and we need to monotonic map them in the same way the
|
||||
/// serialization does before calling the underlying column.
|
||||
///
|
||||
/// Note that when opening a codec, the monotonic_mapping should be the inverse of the mapping
|
||||
/// during serialization. And therefore the monotonic_mapping_inv when opening is the same as
|
||||
/// monotonic_mapping during serialization.
|
||||
pub fn monotonic_map_column<C, T, Input, Output>(
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
) -> impl ColumnValues<Output>
|
||||
where
|
||||
C: ColumnValues<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Debug + Send + Sync + Clone,
|
||||
Output: PartialOrd + Debug + Send + Sync + Clone,
|
||||
{
|
||||
MonotonicMappingColumn {
|
||||
from_column,
|
||||
monotonic_mapping,
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
impl<C, T, Input, Output> ColumnValues<Output> for MonotonicMappingColumn<C, T, Input>
|
||||
where
|
||||
C: ColumnValues<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Debug + Sync + Clone,
|
||||
Output: PartialOrd + Send + Debug + Sync + Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn get_val(&self, idx: u32) -> Output {
|
||||
let from_val = self.from_column.get_val(idx);
|
||||
self.monotonic_mapping.mapping(from_val)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> Output {
|
||||
let from_min_value = self.from_column.min_value();
|
||||
self.monotonic_mapping.mapping(from_min_value)
|
||||
}
|
||||
|
||||
fn max_value(&self) -> Output {
|
||||
let from_max_value = self.from_column.max_value();
|
||||
self.monotonic_mapping.mapping(from_max_value)
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.from_column.num_vals()
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = Output> + '_> {
|
||||
Box::new(
|
||||
self.from_column
|
||||
.iter()
|
||||
.map(|el| self.monotonic_mapping.mapping(el)),
|
||||
)
|
||||
}
|
||||
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<Output>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.from_column.get_row_ids_for_value_range(
|
||||
self.monotonic_mapping.inverse(range.start().clone())
|
||||
..=self.monotonic_mapping.inverse(range.end().clone()),
|
||||
doc_id_range,
|
||||
positions,
|
||||
)
|
||||
}
|
||||
|
||||
// We voluntarily do not implement get_range as it yields a regression,
|
||||
// and we do not have any specialized implementation anyway.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
|
||||
};
|
||||
use crate::column_values::VecColumn;
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_iter() {
|
||||
let vals: Vec<u64> = (0..100u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(StrictlyMonotonicMappingToInternal::<i64>::new()),
|
||||
);
|
||||
let val_i64s: Vec<u64> = mapped.iter().collect();
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,12 +1,14 @@
|
||||
use std::fmt::Debug;
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
use common::DateTime;
|
||||
|
||||
use crate::MonotonicallyMappableToU128;
|
||||
use super::MonotonicallyMappableToU128;
|
||||
use crate::RowId;
|
||||
|
||||
/// Monotonic maps a value to u64 value space.
|
||||
/// Monotonic mapping enables `PartialOrd` on u64 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU64: 'static + PartialOrd + Copy + Send + Sync {
|
||||
pub trait MonotonicallyMappableToU64: 'static + PartialOrd + Debug + Copy + Send + Sync {
|
||||
/// Converts a value to u64.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
@@ -110,65 +112,6 @@ where T: MonotonicallyMappableToU64
|
||||
}
|
||||
}
|
||||
|
||||
/// Mapping dividing by gcd and a base value.
|
||||
///
|
||||
/// The function is assumed to be only called on values divided by passed
|
||||
/// gcd value. (It is necessary for the function to be monotonic.)
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternalGCDBaseval {
|
||||
gcd_divider: DividerU64,
|
||||
gcd: u64,
|
||||
min_value: u64,
|
||||
}
|
||||
impl StrictlyMonotonicMappingToInternalGCDBaseval {
|
||||
pub(crate) fn new(gcd: u64, min_value: u64) -> Self {
|
||||
let gcd_divider = DividerU64::divide_by(gcd);
|
||||
Self {
|
||||
gcd_divider,
|
||||
gcd,
|
||||
min_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
|
||||
for StrictlyMonotonicMappingToInternalGCDBaseval
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: External) -> u64 {
|
||||
self.gcd_divider
|
||||
.divide(External::to_u64(inp) - self.min_value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: u64) -> External {
|
||||
External::from_u64(self.min_value + out * self.gcd)
|
||||
}
|
||||
}
|
||||
|
||||
/// Strictly monotonic mapping with a base value.
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternalBaseval {
|
||||
min_value: u64,
|
||||
}
|
||||
impl StrictlyMonotonicMappingToInternalBaseval {
|
||||
#[inline(always)]
|
||||
pub(crate) fn new(min_value: u64) -> Self {
|
||||
Self { min_value }
|
||||
}
|
||||
}
|
||||
|
||||
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
|
||||
for StrictlyMonotonicMappingToInternalBaseval
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, val: External) -> u64 {
|
||||
External::to_u64(val) - self.min_value
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, val: u64) -> External {
|
||||
External::from_u64(self.min_value + val)
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for u64 {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
@@ -193,6 +136,18 @@ impl MonotonicallyMappableToU64 for i64 {
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for DateTime {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
common::i64_to_u64(self.into_timestamp_micros())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
DateTime::from_timestamp_micros(common::u64_to_i64(val))
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for bool {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
@@ -205,6 +160,18 @@ impl MonotonicallyMappableToU64 for bool {
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for RowId {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
u64::from(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> RowId {
|
||||
val as RowId
|
||||
}
|
||||
}
|
||||
|
||||
// TODO remove me.
|
||||
// Tantivy should refuse NaN values and work with NotNaN internally.
|
||||
impl MonotonicallyMappableToU64 for f64 {
|
||||
@@ -230,15 +197,9 @@ mod tests {
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<u64>::new(), 100u64);
|
||||
// round trip to i64
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<i64>::new(), 100u64);
|
||||
// TODO
|
||||
// identity mapping
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<u128>::new(), 100u128);
|
||||
|
||||
// base value to i64 round trip
|
||||
let mapping = StrictlyMonotonicMappingToInternalBaseval::new(100);
|
||||
test_round_trip::<_, _, u64>(&mapping, 100i64);
|
||||
// base value and gcd to u64 round trip
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100);
|
||||
test_round_trip::<_, _, u64>(&mapping, 100u64);
|
||||
// test_round_trip(&StrictlyMonotonicMappingToInternal::<u128>::new(), 100u128);
|
||||
}
|
||||
|
||||
fn test_round_trip<T: StrictlyMonotonicFn<K, L>, K: std::fmt::Debug + Eq + Copy, L>(
|
||||
@@ -1,8 +1,9 @@
|
||||
use std::fmt::Debug;
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
/// Montonic maps a value to u128 value space
|
||||
/// Monotonic mapping enables `PartialOrd` on u128 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU128: 'static + PartialOrd + Copy + Send + Sync {
|
||||
pub trait MonotonicallyMappableToU128: 'static + PartialOrd + Copy + Debug + Send + Sync {
|
||||
/// Converts a value to u128.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
103
columnar/src/column_values/stats.rs
Normal file
103
columnar/src/column_values/stats.rs
Normal file
@@ -0,0 +1,103 @@
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use common::{BinarySerializable, VInt};
|
||||
|
||||
use crate::RowId;
|
||||
|
||||
/// Column statistics.
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub struct ColumnStats {
|
||||
/// GCD of the elements `el - min(column)`.
|
||||
pub gcd: NonZeroU64,
|
||||
/// Minimum value of the column.
|
||||
pub min_value: u64,
|
||||
/// Maximum value of the column.
|
||||
pub max_value: u64,
|
||||
/// Number of rows in the column.
|
||||
pub num_rows: RowId,
|
||||
}
|
||||
|
||||
impl ColumnStats {
|
||||
/// Amplitude of value.
|
||||
/// Difference between the maximum and the minimum value.
|
||||
pub fn amplitude(&self) -> u64 {
|
||||
self.max_value - self.min_value
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for ColumnStats {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.min_value).serialize(writer)?;
|
||||
VInt(self.gcd.get()).serialize(writer)?;
|
||||
VInt(self.amplitude() / self.gcd).serialize(writer)?;
|
||||
VInt(self.num_rows as u64).serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let min_value = VInt::deserialize(reader)?.0;
|
||||
let gcd = VInt::deserialize(reader)?.0;
|
||||
let gcd = NonZeroU64::new(gcd)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "GCD of 0 is forbidden"))?;
|
||||
let amplitude = VInt::deserialize(reader)?.0 * gcd.get();
|
||||
let max_value = min_value + amplitude;
|
||||
let num_rows = VInt::deserialize(reader)?.0 as RowId;
|
||||
Ok(ColumnStats {
|
||||
min_value,
|
||||
max_value,
|
||||
num_rows,
|
||||
gcd,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use common::BinarySerializable;
|
||||
|
||||
use crate::column_values::ColumnStats;
|
||||
|
||||
#[track_caller]
|
||||
fn test_stats_ser_deser_aux(stats: &ColumnStats, num_bytes: usize) {
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
stats.serialize(&mut buffer).unwrap();
|
||||
assert_eq!(buffer.len(), num_bytes);
|
||||
let deser_stats = ColumnStats::deserialize(&mut &buffer[..]).unwrap();
|
||||
assert_eq!(stats, &deser_stats);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_stats_serialization() {
|
||||
test_stats_ser_deser_aux(
|
||||
&(ColumnStats {
|
||||
gcd: NonZeroU64::new(3).unwrap(),
|
||||
min_value: 1,
|
||||
max_value: 3001,
|
||||
num_rows: 10,
|
||||
}),
|
||||
5,
|
||||
);
|
||||
test_stats_ser_deser_aux(
|
||||
&(ColumnStats {
|
||||
gcd: NonZeroU64::new(1_000).unwrap(),
|
||||
min_value: 1,
|
||||
max_value: 3001,
|
||||
num_rows: 10,
|
||||
}),
|
||||
5,
|
||||
);
|
||||
test_stats_ser_deser_aux(
|
||||
&(ColumnStats {
|
||||
gcd: NonZeroU64::new(1).unwrap(),
|
||||
min_value: 0,
|
||||
max_value: 0,
|
||||
num_rows: 0,
|
||||
}),
|
||||
4,
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -17,14 +17,15 @@ use std::{
|
||||
ops::{Range, RangeInclusive},
|
||||
};
|
||||
|
||||
mod blank_range;
|
||||
mod build_compact_space;
|
||||
|
||||
use build_compact_space::get_compact_space;
|
||||
use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt, VIntU128};
|
||||
use tantivy_bitpacker::{self, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::compact_space::build_compact_space::get_compact_space;
|
||||
use crate::Column;
|
||||
|
||||
mod blank_range;
|
||||
mod build_compact_space;
|
||||
use crate::column_values::ColumnValues;
|
||||
use crate::RowId;
|
||||
|
||||
/// The cost per blank is quite hard actually, since blanks are delta encoded, the actual cost of
|
||||
/// blanks depends on the number of blanks.
|
||||
@@ -55,7 +56,7 @@ impl RangeMapping {
|
||||
}
|
||||
|
||||
impl BinarySerializable for CompactSpace {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
fn serialize<W: io::Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.ranges_mapping.len() as u64).serialize(writer)?;
|
||||
|
||||
let mut prev_value = 0;
|
||||
@@ -158,23 +159,30 @@ impl CompactSpace {
|
||||
pub struct CompactSpaceCompressor {
|
||||
params: IPCodecParams,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct IPCodecParams {
|
||||
compact_space: CompactSpace,
|
||||
bit_unpacker: BitUnpacker,
|
||||
min_value: u128,
|
||||
max_value: u128,
|
||||
num_vals: u32,
|
||||
num_vals: RowId,
|
||||
num_bits: u8,
|
||||
}
|
||||
|
||||
impl CompactSpaceCompressor {
|
||||
/// Taking the vals as Vec may cost a lot of memory. It is used to sort the vals.
|
||||
pub fn train_from(iter: impl Iterator<Item = u128>, num_vals: u32) -> Self {
|
||||
let mut values_sorted = BTreeSet::new();
|
||||
values_sorted.extend(iter);
|
||||
let total_num_values = num_vals;
|
||||
pub fn num_vals(&self) -> RowId {
|
||||
self.params.num_vals
|
||||
}
|
||||
|
||||
/// Taking the vals as Vec may cost a lot of memory. It is used to sort the vals.
|
||||
pub fn train_from(iter: impl Iterator<Item = u128>) -> Self {
|
||||
let mut values_sorted = BTreeSet::new();
|
||||
let mut total_num_values = 0u32;
|
||||
for val in iter {
|
||||
total_num_values += 1u32;
|
||||
values_sorted.insert(val);
|
||||
}
|
||||
let compact_space =
|
||||
get_compact_space(&values_sorted, total_num_values, COST_PER_BLANK_IN_BITS);
|
||||
let amplitude_compact_space = compact_space.amplitude_compact_space();
|
||||
@@ -247,7 +255,7 @@ pub struct CompactSpaceDecompressor {
|
||||
}
|
||||
|
||||
impl BinarySerializable for IPCodecParams {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
fn serialize<W: io::Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
// header flags for future optional dictionary encoding
|
||||
let footer_flags = 0u64;
|
||||
footer_flags.serialize(writer)?;
|
||||
@@ -281,7 +289,7 @@ impl BinarySerializable for IPCodecParams {
|
||||
}
|
||||
}
|
||||
|
||||
impl Column<u128> for CompactSpaceDecompressor {
|
||||
impl ColumnValues<u128> for CompactSpaceDecompressor {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u128 {
|
||||
self.get(doc)
|
||||
@@ -305,7 +313,7 @@ impl Column<u128> for CompactSpaceDecompressor {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_docids_for_value_range(
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u128>,
|
||||
positions_range: Range<u32>,
|
||||
@@ -453,11 +461,11 @@ impl CompactSpaceDecompressor {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::*;
|
||||
use crate::format_version::read_format_version;
|
||||
use crate::null_index_footer::read_null_index_footer;
|
||||
use crate::serialize::U128Header;
|
||||
use crate::{open_u128, serialize_u128};
|
||||
use crate::column_values::u128_based::U128Header;
|
||||
use crate::column_values::{open_u128_mapped, serialize_column_values_u128};
|
||||
|
||||
#[test]
|
||||
fn compact_space_test() {
|
||||
@@ -533,18 +541,9 @@ mod tests {
|
||||
|
||||
fn test_aux_vals(u128_vals: &[u128]) -> OwnedBytes {
|
||||
let mut out = Vec::new();
|
||||
serialize_u128(
|
||||
|| u128_vals.iter().cloned(),
|
||||
u128_vals.len() as u32,
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
serialize_column_values_u128(&u128_vals, &mut out).unwrap();
|
||||
let data = OwnedBytes::new(out);
|
||||
let (data, _format_version) = read_format_version(data).unwrap();
|
||||
let (data, _null_index_footer) = read_null_index_footer(data).unwrap();
|
||||
test_all(data.clone(), u128_vals);
|
||||
|
||||
data
|
||||
}
|
||||
|
||||
@@ -575,8 +574,8 @@ mod tests {
|
||||
}
|
||||
|
||||
// handle docid range out of bounds
|
||||
let positions = get_positions_for_value_range_helper(&decomp, 0..=1, 1..u32::MAX);
|
||||
assert_eq!(positions, vec![]);
|
||||
let positions: Vec<u32> = get_positions_for_value_range_helper(&decomp, 0..=1, 1..u32::MAX);
|
||||
assert!(positions.is_empty());
|
||||
|
||||
let positions =
|
||||
get_positions_for_value_range_helper(&decomp, 0..=1, complete_range.clone());
|
||||
@@ -612,61 +611,59 @@ mod tests {
|
||||
vec![3, 4]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=99999u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![3]
|
||||
&[3]
|
||||
);
|
||||
assert!(get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=99998u128,
|
||||
complete_range.clone()
|
||||
)
|
||||
.is_empty());
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=99998u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
333u128..=333u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
&[8]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
332u128..=333u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
&[8]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
332u128..=334u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
&[8]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
333u128..=334u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
&[8]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
4_000_211_221u128..=5_000_000_000u128,
|
||||
complete_range
|
||||
),
|
||||
vec![6, 7]
|
||||
&[6, 7]
|
||||
);
|
||||
}
|
||||
|
||||
@@ -692,27 +689,27 @@ mod tests {
|
||||
let _header = U128Header::deserialize(&mut data);
|
||||
let decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
let complete_range = 0..vals.len() as u32;
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&decomp, 0..=5, complete_range.clone()),
|
||||
vec![]
|
||||
assert!(
|
||||
&get_positions_for_value_range_helper(&decomp, 0..=5, complete_range.clone())
|
||||
.is_empty(),
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&decomp, 0..=100, complete_range.clone()),
|
||||
vec![0]
|
||||
&get_positions_for_value_range_helper(&decomp, 0..=100, complete_range.clone()),
|
||||
&[0]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&decomp, 0..=105, complete_range),
|
||||
vec![0]
|
||||
&get_positions_for_value_range_helper(&decomp, 0..=105, complete_range),
|
||||
&[0]
|
||||
);
|
||||
}
|
||||
|
||||
fn get_positions_for_value_range_helper<C: Column<T> + ?Sized, T: PartialOrd>(
|
||||
fn get_positions_for_value_range_helper<C: ColumnValues<T> + ?Sized, T: PartialOrd>(
|
||||
column: &C,
|
||||
value_range: RangeInclusive<T>,
|
||||
doc_id_range: Range<u32>,
|
||||
) -> Vec<u32> {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(value_range, doc_id_range, &mut positions);
|
||||
column.get_row_ids_for_value_range(value_range, doc_id_range, &mut positions);
|
||||
positions
|
||||
}
|
||||
|
||||
@@ -734,8 +731,8 @@ mod tests {
|
||||
5_000_000_000,
|
||||
];
|
||||
let mut out = Vec::new();
|
||||
serialize_u128(|| vals.iter().cloned(), vals.len() as u32, &mut out).unwrap();
|
||||
let decomp = open_u128::<u128>(OwnedBytes::new(out)).unwrap();
|
||||
serialize_column_values_u128(&&vals[..], &mut out).unwrap();
|
||||
let decomp = open_u128_mapped(OwnedBytes::new(out)).unwrap();
|
||||
let complete_range = 0..vals.len() as u32;
|
||||
|
||||
assert_eq!(
|
||||
@@ -788,7 +785,7 @@ mod tests {
|
||||
let vals = &[1_000_000_000u128; 100];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
use itertools::Itertools;
|
||||
|
||||
use proptest::prelude::*;
|
||||
|
||||
fn num_strategy() -> impl Strategy<Value = u128> {
|
||||
@@ -804,10 +801,9 @@ mod tests {
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(10))]
|
||||
|
||||
#[test]
|
||||
fn compress_decompress_random(vals in proptest::collection::vec(num_strategy()
|
||||
, 1..1000)) {
|
||||
let _data = test_aux_vals(&vals);
|
||||
}
|
||||
#[test]
|
||||
fn compress_decompress_random(vals in proptest::collection::vec(num_strategy() , 1..1000)) {
|
||||
let _data = test_aux_vals(&vals);
|
||||
}
|
||||
}
|
||||
}
|
||||
178
columnar/src/column_values/u128_based/mod.rs
Normal file
178
columnar/src/column_values/u128_based/mod.rs
Normal file
@@ -0,0 +1,178 @@
|
||||
use std::fmt::Debug;
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
|
||||
mod compact_space;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes, VInt};
|
||||
use compact_space::{CompactSpaceCompressor, CompactSpaceDecompressor};
|
||||
|
||||
use crate::column_values::monotonic_map_column;
|
||||
use crate::column_values::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
|
||||
};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{ColumnValues, MonotonicallyMappableToU128};
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
pub(crate) struct U128Header {
|
||||
pub num_vals: u32,
|
||||
pub codec_type: U128FastFieldCodecType,
|
||||
}
|
||||
|
||||
impl BinarySerializable for U128Header {
|
||||
fn serialize<W: io::Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.num_vals as u64).serialize(writer)?;
|
||||
self.codec_type.serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_vals = VInt::deserialize(reader)?.0 as u32;
|
||||
let codec_type = U128FastFieldCodecType::deserialize(reader)?;
|
||||
Ok(U128Header {
|
||||
num_vals,
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Serializes u128 values with the compact space codec.
|
||||
pub fn serialize_column_values_u128<T: MonotonicallyMappableToU128>(
|
||||
iterable: &dyn Iterable<T>,
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let compressor = CompactSpaceCompressor::train_from(
|
||||
iterable
|
||||
.boxed_iter()
|
||||
.map(MonotonicallyMappableToU128::to_u128),
|
||||
);
|
||||
let header = U128Header {
|
||||
num_vals: compressor.num_vals(),
|
||||
codec_type: U128FastFieldCodecType::CompactSpace,
|
||||
};
|
||||
header.serialize(output)?;
|
||||
compressor.compress_into(
|
||||
iterable
|
||||
.boxed_iter()
|
||||
.map(MonotonicallyMappableToU128::to_u128),
|
||||
output,
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
/// Available codecs to use to encode the u128 (via [`MonotonicallyMappableToU128`]) converted data.
|
||||
pub(crate) enum U128FastFieldCodecType {
|
||||
/// This codec takes a large number space (u128) and reduces it to a compact number space, by
|
||||
/// removing the holes.
|
||||
CompactSpace = 1,
|
||||
}
|
||||
|
||||
impl BinarySerializable for U128FastFieldCodecType {
|
||||
fn serialize<W: Write + ?Sized>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl U128FastFieldCodecType {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::CompactSpace),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open_u128_mapped<T: MonotonicallyMappableToU128 + Debug>(
|
||||
mut bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
let header = U128Header::deserialize(&mut bytes)?;
|
||||
assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
|
||||
let reader = CompactSpaceDecompressor::open(bytes)?;
|
||||
let inverted: StrictlyMonotonicMappingInverter<StrictlyMonotonicMappingToInternal<T>> =
|
||||
StrictlyMonotonicMappingToInternal::<T>::new().into();
|
||||
Ok(Arc::new(monotonic_map_column(reader, inverted)))
|
||||
}
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::u64_based::{
|
||||
serialize_and_load_u64_based_column_values, serialize_u64_based_column_values,
|
||||
ALL_U64_CODEC_TYPES,
|
||||
};
|
||||
use crate::column_values::CodecType;
|
||||
|
||||
#[test]
|
||||
fn test_serialize_deserialize_u128_header() {
|
||||
let original = U128Header {
|
||||
num_vals: 11,
|
||||
codec_type: U128FastFieldCodecType::CompactSpace,
|
||||
};
|
||||
let mut out = Vec::new();
|
||||
original.serialize(&mut out).unwrap();
|
||||
let restored = U128Header::deserialize(&mut &out[..]).unwrap();
|
||||
assert_eq!(restored, original);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_serialize_deserialize() {
|
||||
let original = [1u64, 5u64, 10u64];
|
||||
let restored: Vec<u64> =
|
||||
serialize_and_load_u64_based_column_values(&&original[..], &ALL_U64_CODEC_TYPES)
|
||||
.iter()
|
||||
.collect();
|
||||
assert_eq!(&restored, &original[..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_bool_size_bitwidth_1() {
|
||||
let mut buffer = Vec::new();
|
||||
serialize_u64_based_column_values::<bool>(
|
||||
&&[false, true][..],
|
||||
&ALL_U64_CODEC_TYPES,
|
||||
&mut buffer,
|
||||
)
|
||||
.unwrap();
|
||||
// TODO put the header as a footer so that it serves as a padding.
|
||||
// 5 bytes of header, 1 byte of value, 7 bytes of padding.
|
||||
assert_eq!(buffer.len(), 5 + 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_bool_bit_size_bitwidth_0() {
|
||||
let mut buffer = Vec::new();
|
||||
serialize_u64_based_column_values::<bool>(
|
||||
&&[false, true][..],
|
||||
&ALL_U64_CODEC_TYPES,
|
||||
&mut buffer,
|
||||
)
|
||||
.unwrap();
|
||||
// 6 bytes of header, 0 bytes of value, 7 bytes of padding.
|
||||
assert_eq!(buffer.len(), 6);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd() {
|
||||
let mut buffer = Vec::new();
|
||||
let vals: Vec<u64> = (0..80).map(|val| (val % 7) * 1_000u64).collect();
|
||||
serialize_u64_based_column_values(&&vals[..], &[CodecType::Bitpacked], &mut buffer)
|
||||
.unwrap();
|
||||
// Values are stored over 3 bits.
|
||||
assert_eq!(buffer.len(), 6 + (3 * 80 / 8));
|
||||
}
|
||||
}
|
||||
127
columnar/src/column_values/u64_based/bitpacked.rs
Normal file
127
columnar/src/column_values/u64_based/bitpacked.rs
Normal file
@@ -0,0 +1,127 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use fastdivide::DividerU64;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
|
||||
use crate::{ColumnValues, RowId};
|
||||
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct BitpackedReader {
|
||||
data: OwnedBytes,
|
||||
bit_unpacker: BitUnpacker,
|
||||
stats: ColumnStats,
|
||||
}
|
||||
|
||||
impl ColumnValues for BitpackedReader {
|
||||
#[inline(always)]
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
self.stats.min_value + self.stats.gcd.get() * self.bit_unpacker.get(doc, &self.data)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn min_value(&self) -> u64 {
|
||||
self.stats.min_value
|
||||
}
|
||||
#[inline]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.stats.max_value
|
||||
}
|
||||
#[inline]
|
||||
fn num_vals(&self) -> RowId {
|
||||
self.stats.num_rows
|
||||
}
|
||||
}
|
||||
|
||||
fn num_bits(stats: &ColumnStats) -> u8 {
|
||||
compute_num_bits(stats.amplitude() / stats.gcd)
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct BitpackedCodecEstimator;
|
||||
|
||||
impl ColumnCodecEstimator for BitpackedCodecEstimator {
|
||||
fn collect(&mut self, _value: u64) {}
|
||||
|
||||
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
|
||||
let num_bits_per_value = num_bits(stats);
|
||||
Some(stats.num_bytes() + (stats.num_rows as u64 * (num_bits_per_value as u64) + 7) / 8)
|
||||
}
|
||||
|
||||
fn serialize(
|
||||
&self,
|
||||
stats: &ColumnStats,
|
||||
vals: &mut dyn Iterator<Item = u64>,
|
||||
wrt: &mut dyn Write,
|
||||
) -> io::Result<()> {
|
||||
stats.serialize(wrt)?;
|
||||
let num_bits = num_bits(stats);
|
||||
let mut bit_packer = BitPacker::new();
|
||||
let divider = DividerU64::divide_by(stats.gcd.get());
|
||||
for val in vals {
|
||||
bit_packer.write(divider.divide(val - stats.min_value), num_bits, wrt)?;
|
||||
}
|
||||
bit_packer.close(wrt)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
pub struct BitpackedCodec;
|
||||
|
||||
impl ColumnCodec for BitpackedCodec {
|
||||
type ColumnValues = BitpackedReader;
|
||||
type Estimator = BitpackedCodecEstimator;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn load(mut data: OwnedBytes) -> io::Result<Self::ColumnValues> {
|
||||
let stats = ColumnStats::deserialize(&mut data)?;
|
||||
let num_bits = num_bits(&stats);
|
||||
let bit_unpacker = BitUnpacker::new(num_bits);
|
||||
Ok(BitpackedReader {
|
||||
data,
|
||||
bit_unpacker,
|
||||
stats,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::u64_based::tests::create_and_validate;
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_data_sets_simple() {
|
||||
create_and_validate::<BitpackedCodec>(&[4, 3, 12], "name");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_data_sets_simple_gcd() {
|
||||
create_and_validate::<BitpackedCodec>(&[1000, 2000, 3000], "name");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_data_sets() {
|
||||
let data_sets = crate::column_values::u64_based::tests::get_codec_test_datasets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate::<BitpackedCodec>(&data, name);
|
||||
data.reverse();
|
||||
create_and_validate::<BitpackedCodec>(&data, name);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bitpacked_fast_field_rand() {
|
||||
for _ in 0..500 {
|
||||
let mut data = (0..1 + rand::random::<u8>() as usize)
|
||||
.map(|_| rand::random::<i64>() as u64 / 2)
|
||||
.collect::<Vec<_>>();
|
||||
create_and_validate::<BitpackedCodec>(&data, "rand");
|
||||
data.reverse();
|
||||
create_and_validate::<BitpackedCodec>(&data, "rand");
|
||||
}
|
||||
}
|
||||
}
|
||||
281
columnar/src/column_values/u64_based/blockwise_linear.rs
Normal file
281
columnar/src/column_values/u64_based/blockwise_linear.rs
Normal file
@@ -0,0 +1,281 @@
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
use std::{io, iter};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, DeserializeFrom, OwnedBytes};
|
||||
use fastdivide::DividerU64;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::column_values::u64_based::line::Line;
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
|
||||
use crate::column_values::{ColumnValues, VecColumn};
|
||||
use crate::MonotonicallyMappableToU64;
|
||||
|
||||
const BLOCK_SIZE: u32 = 512u32;
|
||||
|
||||
#[derive(Debug, Default)]
|
||||
struct Block {
|
||||
line: Line,
|
||||
bit_unpacker: BitUnpacker,
|
||||
data_start_offset: usize,
|
||||
}
|
||||
|
||||
impl BinarySerializable for Block {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.line.serialize(writer)?;
|
||||
self.bit_unpacker.bit_width().serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let line = Line::deserialize(reader)?;
|
||||
let bit_width = u8::deserialize(reader)?;
|
||||
Ok(Block {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
data_start_offset: 0,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_num_blocks(num_vals: u32) -> u32 {
|
||||
(num_vals + BLOCK_SIZE - 1) / BLOCK_SIZE
|
||||
}
|
||||
|
||||
pub struct BlockwiseLinearEstimator {
|
||||
block: Vec<u64>,
|
||||
values_num_bytes: u64,
|
||||
meta_num_bytes: u64,
|
||||
}
|
||||
|
||||
impl Default for BlockwiseLinearEstimator {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
block: Vec::with_capacity(BLOCK_SIZE as usize),
|
||||
values_num_bytes: 0u64,
|
||||
meta_num_bytes: 0u64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl BlockwiseLinearEstimator {
|
||||
fn flush_block_estimate(&mut self) {
|
||||
if self.block.is_empty() {
|
||||
return;
|
||||
}
|
||||
let line = Line::train(&VecColumn::from(&self.block));
|
||||
let mut max_value = 0u64;
|
||||
for (i, buffer_val) in self.block.iter().enumerate() {
|
||||
let interpolated_val = line.eval(i as u32);
|
||||
let val = buffer_val.wrapping_sub(interpolated_val);
|
||||
max_value = val.max(max_value);
|
||||
}
|
||||
let bit_width = compute_num_bits(max_value) as usize;
|
||||
self.values_num_bytes += (bit_width * self.block.len() + 7) as u64 / 8;
|
||||
self.meta_num_bytes += 1 + line.num_bytes();
|
||||
}
|
||||
}
|
||||
|
||||
impl ColumnCodecEstimator for BlockwiseLinearEstimator {
|
||||
fn collect(&mut self, value: u64) {
|
||||
self.block.push(value);
|
||||
if self.block.len() == BLOCK_SIZE as usize {
|
||||
self.flush_block_estimate();
|
||||
self.block.clear();
|
||||
}
|
||||
}
|
||||
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
|
||||
let mut estimate = 4 + stats.num_bytes() + self.meta_num_bytes + self.values_num_bytes;
|
||||
if stats.gcd.get() > 1 {
|
||||
let estimate_gain_from_gcd =
|
||||
(stats.gcd.get() as f32).log2().floor() * stats.num_rows as f32 / 8.0f32;
|
||||
estimate = estimate.saturating_sub(estimate_gain_from_gcd as u64);
|
||||
}
|
||||
Some(estimate)
|
||||
}
|
||||
|
||||
fn finalize(&mut self) {
|
||||
self.flush_block_estimate();
|
||||
}
|
||||
|
||||
fn serialize(
|
||||
&self,
|
||||
stats: &ColumnStats,
|
||||
mut vals: &mut dyn Iterator<Item = u64>,
|
||||
wrt: &mut dyn Write,
|
||||
) -> io::Result<()> {
|
||||
stats.serialize(wrt)?;
|
||||
let mut buffer = Vec::with_capacity(BLOCK_SIZE as usize);
|
||||
let num_blocks = compute_num_blocks(stats.num_rows) as usize;
|
||||
let mut blocks = Vec::with_capacity(num_blocks);
|
||||
|
||||
let mut bit_packer = BitPacker::new();
|
||||
|
||||
let gcd_divider = DividerU64::divide_by(stats.gcd.get());
|
||||
|
||||
for _ in 0..num_blocks {
|
||||
buffer.clear();
|
||||
buffer.extend(
|
||||
(&mut vals)
|
||||
.map(MonotonicallyMappableToU64::to_u64)
|
||||
.take(BLOCK_SIZE as usize),
|
||||
);
|
||||
|
||||
for buffer_val in buffer.iter_mut() {
|
||||
*buffer_val = gcd_divider.divide(*buffer_val - stats.min_value);
|
||||
}
|
||||
|
||||
let line = Line::train(&VecColumn::from(&buffer));
|
||||
|
||||
assert!(!buffer.is_empty());
|
||||
|
||||
for (i, buffer_val) in buffer.iter_mut().enumerate() {
|
||||
let interpolated_val = line.eval(i as u32);
|
||||
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
|
||||
}
|
||||
|
||||
let bit_width = buffer.iter().copied().map(compute_num_bits).max().unwrap();
|
||||
|
||||
for &buffer_val in &buffer {
|
||||
bit_packer.write(buffer_val, bit_width, wrt)?;
|
||||
}
|
||||
|
||||
blocks.push(Block {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
data_start_offset: 0,
|
||||
});
|
||||
}
|
||||
|
||||
bit_packer.close(wrt)?;
|
||||
|
||||
assert_eq!(blocks.len(), num_blocks);
|
||||
|
||||
let mut counting_wrt = CountingWriter::wrap(wrt);
|
||||
for block in &blocks {
|
||||
block.serialize(&mut counting_wrt)?;
|
||||
}
|
||||
let footer_len = counting_wrt.written_bytes();
|
||||
(footer_len as u32).serialize(&mut counting_wrt)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
pub struct BlockwiseLinearCodec;
|
||||
|
||||
impl ColumnCodec<u64> for BlockwiseLinearCodec {
|
||||
type ColumnValues = BlockwiseLinearReader;
|
||||
|
||||
type Estimator = BlockwiseLinearEstimator;
|
||||
|
||||
fn load(mut bytes: OwnedBytes) -> io::Result<Self::ColumnValues> {
|
||||
let stats = ColumnStats::deserialize(&mut bytes)?;
|
||||
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
|
||||
let footer_offset = bytes.len() - 4 - footer_len as usize;
|
||||
let (data, mut footer) = bytes.split(footer_offset);
|
||||
let num_blocks = compute_num_blocks(stats.num_rows);
|
||||
let mut blocks: Vec<Block> = iter::repeat_with(|| Block::deserialize(&mut footer))
|
||||
.take(num_blocks as usize)
|
||||
.collect::<io::Result<_>>()?;
|
||||
let mut start_offset = 0;
|
||||
for block in &mut blocks {
|
||||
block.data_start_offset = start_offset;
|
||||
start_offset += (block.bit_unpacker.bit_width() as usize) * BLOCK_SIZE as usize / 8;
|
||||
}
|
||||
Ok(BlockwiseLinearReader {
|
||||
blocks: blocks.into_boxed_slice().into(),
|
||||
data,
|
||||
stats,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct BlockwiseLinearReader {
|
||||
blocks: Arc<[Block]>,
|
||||
data: OwnedBytes,
|
||||
stats: ColumnStats,
|
||||
}
|
||||
|
||||
impl ColumnValues for BlockwiseLinearReader {
|
||||
#[inline(always)]
|
||||
fn get_val(&self, idx: u32) -> u64 {
|
||||
let block_id = (idx / BLOCK_SIZE) as usize;
|
||||
let idx_within_block = idx % BLOCK_SIZE;
|
||||
let block = &self.blocks[block_id];
|
||||
let interpoled_val: u64 = block.line.eval(idx_within_block);
|
||||
let block_bytes = &self.data[block.data_start_offset..];
|
||||
let bitpacked_diff = block.bit_unpacker.get(idx_within_block, block_bytes);
|
||||
// TODO optimize me! the line parameters could be tweaked to include the multiplication and
|
||||
// remove the dependency.
|
||||
self.stats.min_value
|
||||
+ self
|
||||
.stats
|
||||
.gcd
|
||||
.get()
|
||||
.wrapping_mul(interpoled_val.wrapping_add(bitpacked_diff))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn min_value(&self) -> u64 {
|
||||
self.stats.min_value
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.stats.max_value
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.stats.num_rows
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::u64_based::tests::create_and_validate;
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_data_sets_simple() {
|
||||
create_and_validate::<BlockwiseLinearCodec>(
|
||||
&[11, 20, 40, 20, 10, 10, 10, 10, 10, 10],
|
||||
"simple test",
|
||||
)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_data_sets_simple_gcd() {
|
||||
let (_, actual_compression_rate) = create_and_validate::<BlockwiseLinearCodec>(
|
||||
&[10, 20, 40, 20, 10, 10, 10, 10, 10, 10],
|
||||
"name",
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(actual_compression_rate, 0.175);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_data_sets() {
|
||||
let data_sets = crate::column_values::u64_based::tests::get_codec_test_datasets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, name);
|
||||
data.reverse();
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, name);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_blockwise_linear_fast_field_rand() {
|
||||
for _ in 0..500 {
|
||||
let mut data = (0..1 + rand::random::<u8>() as usize)
|
||||
.map(|_| rand::random::<i64>() as u64 / 2)
|
||||
.collect::<Vec<_>>();
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, "rand");
|
||||
data.reverse();
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, "rand");
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -3,7 +3,7 @@ use std::num::NonZeroU32;
|
||||
|
||||
use common::{BinarySerializable, VInt};
|
||||
|
||||
use crate::Column;
|
||||
use crate::column_values::ColumnValues;
|
||||
|
||||
const MID_POINT: u64 = (1u64 << 32) - 1u64;
|
||||
|
||||
@@ -17,8 +17,8 @@ const MID_POINT: u64 = (1u64 << 32) - 1u64;
|
||||
/// `y = m * x >> 32 + b`
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Line {
|
||||
slope: u64,
|
||||
intercept: u64,
|
||||
pub(crate) slope: u64,
|
||||
pub(crate) intercept: u64,
|
||||
}
|
||||
|
||||
/// Compute the line slope.
|
||||
@@ -67,21 +67,8 @@ impl Line {
|
||||
self.intercept.wrapping_add(linear_part)
|
||||
}
|
||||
|
||||
// Same as train, but the intercept is only estimated from provided sample positions
|
||||
pub fn estimate(sample_positions_and_values: &[(u64, u64)]) -> Self {
|
||||
let first_val = sample_positions_and_values[0].1;
|
||||
let last_val = sample_positions_and_values[sample_positions_and_values.len() - 1].1;
|
||||
let num_vals = sample_positions_and_values[sample_positions_and_values.len() - 1].0 + 1;
|
||||
Self::train_from(
|
||||
first_val,
|
||||
last_val,
|
||||
num_vals as u32,
|
||||
sample_positions_and_values.iter().cloned(),
|
||||
)
|
||||
}
|
||||
|
||||
// Intercept is only computed from provided positions
|
||||
fn train_from(
|
||||
pub fn train_from(
|
||||
first_val: u64,
|
||||
last_val: u64,
|
||||
num_vals: u32,
|
||||
@@ -145,7 +132,8 @@ impl Line {
|
||||
///
|
||||
/// This function is only invariable by translation if all of the
|
||||
/// `ys` are packaged into half of the space. (See heuristic below)
|
||||
pub fn train(ys: &dyn Column) -> Self {
|
||||
/// TODO USE array
|
||||
pub fn train(ys: &dyn ColumnValues) -> Self {
|
||||
let first_val = ys.iter().next().unwrap();
|
||||
let last_val = ys.iter().nth(ys.num_vals() as usize - 1).unwrap();
|
||||
Self::train_from(
|
||||
@@ -158,7 +146,7 @@ impl Line {
|
||||
}
|
||||
|
||||
impl BinarySerializable for Line {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
fn serialize<W: io::Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.slope).serialize(writer)?;
|
||||
VInt(self.intercept).serialize(writer)?;
|
||||
Ok(())
|
||||
@@ -174,7 +162,7 @@ impl BinarySerializable for Line {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::VecColumn;
|
||||
use crate::column_values::VecColumn;
|
||||
|
||||
/// Test training a line and ensuring that the maximum difference between
|
||||
/// the data points and the line is `expected`.
|
||||
277
columnar/src/column_values/u64_based/linear.rs
Normal file
277
columnar/src/column_values/u64_based/linear.rs
Normal file
@@ -0,0 +1,277 @@
|
||||
use std::io;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use super::line::Line;
|
||||
use super::ColumnValues;
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
|
||||
use crate::column_values::VecColumn;
|
||||
use crate::RowId;
|
||||
|
||||
const HALF_SPACE: u64 = u64::MAX / 2;
|
||||
const LINE_ESTIMATION_BLOCK_LEN: usize = 512;
|
||||
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct LinearReader {
|
||||
data: OwnedBytes,
|
||||
linear_params: LinearParams,
|
||||
stats: ColumnStats,
|
||||
}
|
||||
|
||||
impl ColumnValues for LinearReader {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
let interpoled_val: u64 = self.linear_params.line.eval(doc);
|
||||
let bitpacked_diff = self.linear_params.bit_unpacker.get(doc, &self.data);
|
||||
interpoled_val.wrapping_add(bitpacked_diff)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn min_value(&self) -> u64 {
|
||||
self.stats.min_value
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.stats.max_value
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.stats.num_rows
|
||||
}
|
||||
}
|
||||
|
||||
/// Fastfield serializer, which tries to guess values by linear interpolation
|
||||
/// and stores the difference bitpacked.
|
||||
pub struct LinearCodec;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct LinearParams {
|
||||
line: Line,
|
||||
bit_unpacker: BitUnpacker,
|
||||
}
|
||||
|
||||
impl BinarySerializable for LinearParams {
|
||||
fn serialize<W: io::Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.line.serialize(writer)?;
|
||||
self.bit_unpacker.bit_width().serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let line = Line::deserialize(reader)?;
|
||||
let bit_width = u8::deserialize(reader)?;
|
||||
Ok(Self {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub struct LinearCodecEstimator {
|
||||
block: Vec<u64>,
|
||||
line: Option<Line>,
|
||||
row_id: RowId,
|
||||
min_deviation: u64,
|
||||
max_deviation: u64,
|
||||
first_val: u64,
|
||||
last_val: u64,
|
||||
}
|
||||
|
||||
impl Default for LinearCodecEstimator {
|
||||
fn default() -> LinearCodecEstimator {
|
||||
LinearCodecEstimator {
|
||||
block: Vec::with_capacity(LINE_ESTIMATION_BLOCK_LEN),
|
||||
line: None,
|
||||
row_id: 0,
|
||||
min_deviation: u64::MAX,
|
||||
max_deviation: u64::MIN,
|
||||
first_val: 0u64,
|
||||
last_val: 0u64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ColumnCodecEstimator for LinearCodecEstimator {
|
||||
fn finalize(&mut self) {
|
||||
if let Some(line) = self.line.as_mut() {
|
||||
line.intercept = line
|
||||
.intercept
|
||||
.wrapping_add(self.min_deviation)
|
||||
.wrapping_sub(HALF_SPACE);
|
||||
}
|
||||
}
|
||||
|
||||
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
|
||||
let line = self.line?;
|
||||
let amplitude = self.max_deviation - self.min_deviation;
|
||||
let num_bits = compute_num_bits(amplitude);
|
||||
let linear_params = LinearParams {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
};
|
||||
Some(
|
||||
stats.num_bytes()
|
||||
+ linear_params.num_bytes()
|
||||
+ (num_bits as u64 * stats.num_rows as u64 + 7) / 8,
|
||||
)
|
||||
}
|
||||
|
||||
fn serialize(
|
||||
&self,
|
||||
stats: &ColumnStats,
|
||||
vals: &mut dyn Iterator<Item = u64>,
|
||||
wrt: &mut dyn io::Write,
|
||||
) -> io::Result<()> {
|
||||
stats.serialize(wrt)?;
|
||||
let line = self.line.unwrap();
|
||||
let amplitude = self.max_deviation - self.min_deviation;
|
||||
let num_bits = compute_num_bits(amplitude);
|
||||
let linear_params = LinearParams {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
};
|
||||
linear_params.serialize(wrt)?;
|
||||
let mut bit_packer = BitPacker::new();
|
||||
for (pos, value) in vals.enumerate() {
|
||||
let calculated_value = line.eval(pos as u32);
|
||||
let offset = value.wrapping_sub(calculated_value);
|
||||
bit_packer.write(offset, num_bits, wrt)?;
|
||||
}
|
||||
bit_packer.close(wrt)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn collect(&mut self, value: u64) {
|
||||
if let Some(line) = self.line {
|
||||
self.collect_after_line_estimation(&line, value);
|
||||
} else {
|
||||
self.collect_before_line_estimation(value);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl LinearCodecEstimator {
|
||||
#[inline]
|
||||
fn collect_after_line_estimation(&mut self, line: &Line, value: u64) {
|
||||
let interpoled_val: u64 = line.eval(self.row_id);
|
||||
let deviation = value.wrapping_add(HALF_SPACE).wrapping_sub(interpoled_val);
|
||||
self.min_deviation = self.min_deviation.min(deviation);
|
||||
self.max_deviation = self.max_deviation.max(deviation);
|
||||
if self.row_id == 0 {
|
||||
self.first_val = value;
|
||||
}
|
||||
self.last_val = value;
|
||||
self.row_id += 1u32;
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn collect_before_line_estimation(&mut self, value: u64) {
|
||||
self.block.push(value);
|
||||
if self.block.len() == LINE_ESTIMATION_BLOCK_LEN {
|
||||
let line = Line::train(&VecColumn::from(&self.block));
|
||||
let block = std::mem::take(&mut self.block);
|
||||
for val in block {
|
||||
self.collect_after_line_estimation(&line, val);
|
||||
}
|
||||
self.line = Some(line);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ColumnCodec for LinearCodec {
|
||||
type ColumnValues = LinearReader;
|
||||
|
||||
type Estimator = LinearCodecEstimator;
|
||||
|
||||
fn load(mut data: OwnedBytes) -> io::Result<Self::ColumnValues> {
|
||||
let stats = ColumnStats::deserialize(&mut data)?;
|
||||
let linear_params = LinearParams::deserialize(&mut data)?;
|
||||
Ok(LinearReader {
|
||||
stats,
|
||||
linear_params,
|
||||
data,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use rand::RngCore;
|
||||
|
||||
use super::*;
|
||||
use crate::column_values::u64_based::tests::{create_and_validate, get_codec_test_datasets};
|
||||
|
||||
#[test]
|
||||
fn test_compression_simple() {
|
||||
let vals = (100u64..)
|
||||
.take(super::LINE_ESTIMATION_BLOCK_LEN)
|
||||
.collect::<Vec<_>>();
|
||||
create_and_validate::<LinearCodec>(&vals, "simple monotonically large").unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compression() {
|
||||
let data = (10..=6_000_u64).collect::<Vec<_>>();
|
||||
let (estimate, actual_compression) =
|
||||
create_and_validate::<LinearCodec>(&data, "simple monotonically large").unwrap();
|
||||
assert_le!(actual_compression, 0.001);
|
||||
assert_le!(estimate, 0.02);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_datasets() {
|
||||
let data_sets = get_codec_test_datasets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate::<LinearCodec>(&data, name);
|
||||
data.reverse();
|
||||
create_and_validate::<LinearCodec>(&data, name);
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_test_large_amplitude() {
|
||||
let data = vec![
|
||||
i64::MAX as u64 / 2,
|
||||
i64::MAX as u64 / 3,
|
||||
i64::MAX as u64 / 2,
|
||||
];
|
||||
create_and_validate::<LinearCodec>(&data, "large amplitude");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn overflow_error_test() {
|
||||
let data = vec![1572656989877777, 1170935903116329, 720575940379279, 0];
|
||||
create_and_validate::<LinearCodec>(&data, "overflow test");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_interpol_fast_concave_data() {
|
||||
let data = vec![0, 1, 2, 5, 8, 10, 20, 50];
|
||||
create_and_validate::<LinearCodec>(&data, "concave data");
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_convex_data() {
|
||||
let data = vec![0, 40, 60, 70, 75, 77];
|
||||
create_and_validate::<LinearCodec>(&data, "convex data");
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_test_simple() {
|
||||
let data = (10..=20_u64).collect::<Vec<_>>();
|
||||
create_and_validate::<LinearCodec>(&data, "simple monotonically");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_rand() {
|
||||
let mut rng = rand::thread_rng();
|
||||
for _ in 0..50 {
|
||||
let mut data = (0..10_000).map(|_| rng.next_u64()).collect::<Vec<_>>();
|
||||
create_and_validate::<LinearCodec>(&data, "random");
|
||||
data.reverse();
|
||||
create_and_validate::<LinearCodec>(&data, "random");
|
||||
}
|
||||
}
|
||||
}
|
||||
214
columnar/src/column_values/u64_based/mod.rs
Normal file
214
columnar/src/column_values/u64_based/mod.rs
Normal file
@@ -0,0 +1,214 @@
|
||||
mod bitpacked;
|
||||
mod blockwise_linear;
|
||||
mod line;
|
||||
mod linear;
|
||||
mod stats_collector;
|
||||
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
|
||||
use crate::column_values::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
|
||||
};
|
||||
pub use crate::column_values::u64_based::bitpacked::BitpackedCodec;
|
||||
pub use crate::column_values::u64_based::blockwise_linear::BlockwiseLinearCodec;
|
||||
pub use crate::column_values::u64_based::linear::LinearCodec;
|
||||
pub use crate::column_values::u64_based::stats_collector::StatsCollector;
|
||||
use crate::column_values::{monotonic_map_column, ColumnStats};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{ColumnValues, MonotonicallyMappableToU64};
|
||||
|
||||
/// A `ColumnCodecEstimator` is in charge of gathering all
|
||||
/// data required to serialize a column.
|
||||
///
|
||||
/// This happens during a first pass on data of the column elements.
|
||||
/// During that pass, all column estimators receive a call to their
|
||||
/// `.collect(el)`.
|
||||
///
|
||||
/// After this first pass, finalize is called.
|
||||
/// `.estimate(..)` then should return an accurate estimation of the
|
||||
/// size of the serialized column (were we to pick this codec.).
|
||||
/// `.serialize(..)` then serializes the column using this codec.
|
||||
pub trait ColumnCodecEstimator<T = u64>: 'static {
|
||||
/// Records a new value for estimation.
|
||||
/// This method will be called for each element of the column during
|
||||
/// `estimation`.
|
||||
fn collect(&mut self, value: u64);
|
||||
/// Finalizes the first pass phase.
|
||||
fn finalize(&mut self) {}
|
||||
/// Returns an accurate estimation of the number of bytes that will
|
||||
/// be used to represent this column.
|
||||
fn estimate(&self, stats: &ColumnStats) -> Option<u64>;
|
||||
/// Serializes the column using the given codec.
|
||||
/// This constitutes a second pass over the columns values.
|
||||
fn serialize(
|
||||
&self,
|
||||
stats: &ColumnStats,
|
||||
vals: &mut dyn Iterator<Item = T>,
|
||||
wrt: &mut dyn io::Write,
|
||||
) -> io::Result<()>;
|
||||
}
|
||||
|
||||
/// A column codec describes a colunm serialization format.
|
||||
pub trait ColumnCodec<T: PartialOrd = u64> {
|
||||
/// Specialized `ColumnValues` type.
|
||||
type ColumnValues: ColumnValues<T> + 'static;
|
||||
/// `Estimator` for the given codec.
|
||||
type Estimator: ColumnCodecEstimator + Default;
|
||||
|
||||
/// Loads a column that has been serialized using this codec.
|
||||
fn load(bytes: OwnedBytes) -> io::Result<Self::ColumnValues>;
|
||||
|
||||
/// Returns an estimator.
|
||||
fn estimator() -> Self::Estimator {
|
||||
Self::Estimator::default()
|
||||
}
|
||||
|
||||
/// Returns a boxed estimator.
|
||||
fn boxed_estimator() -> Box<dyn ColumnCodecEstimator> {
|
||||
Box::new(Self::estimator())
|
||||
}
|
||||
}
|
||||
|
||||
/// Available codecs to use to encode the u64 (via [`MonotonicallyMappableToU64`]) converted data.
|
||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
pub enum CodecType {
|
||||
/// Bitpack all values in the value range. The number of bits is defined by the amplitude
|
||||
/// `column.max_value() - column.min_value()`
|
||||
Bitpacked = 0u8,
|
||||
/// Linear interpolation puts a line between the first and last value and then bitpacks the
|
||||
/// values by the offset from the line. The number of bits is defined by the max deviation from
|
||||
/// the line.
|
||||
Linear = 1u8,
|
||||
/// Same as [`CodecType::Linear`], but encodes in blocks of 512 elements.
|
||||
BlockwiseLinear = 2u8,
|
||||
}
|
||||
|
||||
/// List of all available u64-base codecs.
|
||||
pub const ALL_U64_CODEC_TYPES: [CodecType; 3] = [
|
||||
CodecType::Bitpacked,
|
||||
CodecType::Linear,
|
||||
CodecType::BlockwiseLinear,
|
||||
];
|
||||
|
||||
impl CodecType {
|
||||
fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
fn try_from_code(code: u8) -> Option<CodecType> {
|
||||
match code {
|
||||
0u8 => Some(CodecType::Bitpacked),
|
||||
1u8 => Some(CodecType::Linear),
|
||||
2u8 => Some(CodecType::BlockwiseLinear),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
fn load<T: MonotonicallyMappableToU64>(
|
||||
&self,
|
||||
bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
match self {
|
||||
CodecType::Bitpacked => load_specific_codec::<BitpackedCodec, T>(bytes),
|
||||
CodecType::Linear => load_specific_codec::<LinearCodec, T>(bytes),
|
||||
CodecType::BlockwiseLinear => load_specific_codec::<BlockwiseLinearCodec, T>(bytes),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn load_specific_codec<C: ColumnCodec, T: MonotonicallyMappableToU64>(
|
||||
bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
let reader = C::load(bytes)?;
|
||||
let reader_typed = monotonic_map_column(
|
||||
reader,
|
||||
StrictlyMonotonicMappingInverter::from(StrictlyMonotonicMappingToInternal::<T>::new()),
|
||||
);
|
||||
Ok(Arc::new(reader_typed))
|
||||
}
|
||||
|
||||
impl CodecType {
|
||||
/// Returns a boxed codec estimator associated to a given `CodecType`.
|
||||
pub fn estimator(&self) -> Box<dyn ColumnCodecEstimator> {
|
||||
match self {
|
||||
CodecType::Bitpacked => BitpackedCodec::boxed_estimator(),
|
||||
CodecType::Linear => LinearCodec::boxed_estimator(),
|
||||
CodecType::BlockwiseLinear => BlockwiseLinearCodec::boxed_estimator(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Serializes a given column of u64-mapped values.
|
||||
pub fn serialize_u64_based_column_values<T: MonotonicallyMappableToU64>(
|
||||
vals: &dyn Iterable<T>,
|
||||
codec_types: &[CodecType],
|
||||
wrt: &mut dyn Write,
|
||||
) -> io::Result<()> {
|
||||
let mut stats_collector = StatsCollector::default();
|
||||
let mut estimators: Vec<(CodecType, Box<dyn ColumnCodecEstimator>)> =
|
||||
Vec::with_capacity(codec_types.len());
|
||||
for &codec_type in codec_types {
|
||||
estimators.push((codec_type, codec_type.estimator()));
|
||||
}
|
||||
for val in vals.boxed_iter() {
|
||||
let val_u64 = val.to_u64();
|
||||
stats_collector.collect(val_u64);
|
||||
for (_, estimator) in &mut estimators {
|
||||
estimator.collect(val_u64);
|
||||
}
|
||||
}
|
||||
for (_, estimator) in &mut estimators {
|
||||
estimator.finalize();
|
||||
}
|
||||
let stats = stats_collector.stats();
|
||||
let (_, best_codec, best_codec_estimator) = estimators
|
||||
.into_iter()
|
||||
.flat_map(|(codec_type, estimator)| {
|
||||
let num_bytes = estimator.estimate(&stats)?;
|
||||
Some((num_bytes, codec_type, estimator))
|
||||
})
|
||||
.min_by_key(|(num_bytes, _, _)| *num_bytes)
|
||||
.ok_or_else(|| {
|
||||
io::Error::new(io::ErrorKind::InvalidData, "No available applicable codec.")
|
||||
})?;
|
||||
best_codec.to_code().serialize(wrt)?;
|
||||
best_codec_estimator.serialize(
|
||||
&stats,
|
||||
&mut vals.boxed_iter().map(MonotonicallyMappableToU64::to_u64),
|
||||
wrt,
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Load u64-based column values.
|
||||
///
|
||||
/// This method first identifies the codec off the first byte.
|
||||
pub fn load_u64_based_column_values<T: MonotonicallyMappableToU64>(
|
||||
mut bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
let codec_type: CodecType = bytes
|
||||
.first()
|
||||
.copied()
|
||||
.and_then(CodecType::try_from_code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Failed to read codec type"))?;
|
||||
bytes.advance(1);
|
||||
codec_type.load(bytes)
|
||||
}
|
||||
|
||||
/// Helper function to serialize a column (autodetect from all codecs) and then open it
|
||||
pub fn serialize_and_load_u64_based_column_values<T: MonotonicallyMappableToU64>(
|
||||
vals: &dyn Iterable,
|
||||
codec_types: &[CodecType],
|
||||
) -> Arc<dyn ColumnValues<T>> {
|
||||
let mut buffer = Vec::new();
|
||||
serialize_u64_based_column_values(vals, codec_types, &mut buffer).unwrap();
|
||||
load_u64_based_column_values::<T>(OwnedBytes::new(buffer)).unwrap()
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
200
columnar/src/column_values/u64_based/stats_collector.rs
Normal file
200
columnar/src/column_values/u64_based/stats_collector.rs
Normal file
@@ -0,0 +1,200 @@
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
|
||||
use crate::column_values::ColumnStats;
|
||||
use crate::RowId;
|
||||
|
||||
/// Compute the gcd of two non null numbers.
|
||||
///
|
||||
/// It is recommended, but not required, to feed values such that `large >= small`.
|
||||
fn compute_gcd(mut large: NonZeroU64, mut small: NonZeroU64) -> NonZeroU64 {
|
||||
loop {
|
||||
let rem: u64 = large.get() % small;
|
||||
if let Some(new_small) = NonZeroU64::new(rem) {
|
||||
(large, small) = (small, new_small);
|
||||
} else {
|
||||
return small;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct StatsCollector {
|
||||
min_max_opt: Option<(u64, u64)>,
|
||||
num_rows: RowId,
|
||||
// We measure the GCD of the difference between the values and the minimal value.
|
||||
// This is the same as computing the difference between the values and the first value.
|
||||
//
|
||||
// This way, we can compress i64-converted-to-u64 (e.g. timestamp that were supplied in
|
||||
// seconds, only to be converted in microseconds).
|
||||
increment_gcd_opt: Option<(NonZeroU64, DividerU64)>,
|
||||
first_value_opt: Option<u64>,
|
||||
}
|
||||
|
||||
impl StatsCollector {
|
||||
pub fn stats(&self) -> ColumnStats {
|
||||
let (min_value, max_value) = self.min_max_opt.unwrap_or((0u64, 0u64));
|
||||
let increment_gcd = if let Some((increment_gcd, _)) = self.increment_gcd_opt {
|
||||
increment_gcd
|
||||
} else {
|
||||
NonZeroU64::new(1u64).unwrap()
|
||||
};
|
||||
ColumnStats {
|
||||
min_value,
|
||||
max_value,
|
||||
num_rows: self.num_rows,
|
||||
gcd: increment_gcd,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn update_increment_gcd(&mut self, value: u64) {
|
||||
let Some(first_value) = self.first_value_opt else {
|
||||
// We set the first value and just quit.
|
||||
self.first_value_opt = Some(value);
|
||||
return;
|
||||
};
|
||||
let Some(non_zero_value) = NonZeroU64::new(value.abs_diff(first_value)) else {
|
||||
// We can simply skip 0 values.
|
||||
return;
|
||||
};
|
||||
let Some((gcd, gcd_divider)) = self.increment_gcd_opt else {
|
||||
self.set_increment_gcd(non_zero_value);
|
||||
return;
|
||||
};
|
||||
if gcd.get() == 1 {
|
||||
// It won't see any update now.
|
||||
return;
|
||||
}
|
||||
let remainder =
|
||||
non_zero_value.get() - (gcd_divider.divide(non_zero_value.get())) * gcd.get();
|
||||
if remainder == 0 {
|
||||
return;
|
||||
}
|
||||
let new_gcd = compute_gcd(non_zero_value, gcd);
|
||||
self.set_increment_gcd(new_gcd);
|
||||
}
|
||||
|
||||
fn set_increment_gcd(&mut self, gcd: NonZeroU64) {
|
||||
let new_divider = DividerU64::divide_by(gcd.get());
|
||||
self.increment_gcd_opt = Some((gcd, new_divider));
|
||||
}
|
||||
|
||||
pub fn collect(&mut self, value: u64) {
|
||||
self.min_max_opt = Some(if let Some((min, max)) = self.min_max_opt {
|
||||
(min.min(value), max.max(value))
|
||||
} else {
|
||||
(value, value)
|
||||
});
|
||||
self.num_rows += 1;
|
||||
self.update_increment_gcd(value);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use crate::column_values::u64_based::stats_collector::{compute_gcd, StatsCollector};
|
||||
use crate::column_values::u64_based::ColumnStats;
|
||||
|
||||
fn compute_stats(vals: impl Iterator<Item = u64>) -> ColumnStats {
|
||||
let mut stats_collector = StatsCollector::default();
|
||||
for val in vals {
|
||||
stats_collector.collect(val);
|
||||
}
|
||||
stats_collector.stats()
|
||||
}
|
||||
|
||||
fn find_gcd(vals: impl Iterator<Item = u64>) -> u64 {
|
||||
compute_stats(vals).gcd.get()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compute_gcd() {
|
||||
let test_compute_gcd_aux = |large, small, expected| {
|
||||
let large = NonZeroU64::new(large).unwrap();
|
||||
let small = NonZeroU64::new(small).unwrap();
|
||||
let expected = NonZeroU64::new(expected).unwrap();
|
||||
assert_eq!(compute_gcd(small, large), expected);
|
||||
assert_eq!(compute_gcd(large, small), expected);
|
||||
};
|
||||
test_compute_gcd_aux(1, 4, 1);
|
||||
test_compute_gcd_aux(2, 4, 2);
|
||||
test_compute_gcd_aux(10, 25, 5);
|
||||
test_compute_gcd_aux(25, 25, 25);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_gcd() {
|
||||
assert_eq!(find_gcd([0].into_iter()), 1);
|
||||
assert_eq!(find_gcd([0, 10].into_iter()), 10);
|
||||
assert_eq!(find_gcd([10, 0].into_iter()), 10);
|
||||
assert_eq!(find_gcd([].into_iter()), 1);
|
||||
assert_eq!(find_gcd([15, 30, 5, 10].into_iter()), 5);
|
||||
assert_eq!(find_gcd([15, 16, 10].into_iter()), 1);
|
||||
assert_eq!(find_gcd([0, 5, 5, 5].into_iter()), 5);
|
||||
assert_eq!(find_gcd([0, 0].into_iter()), 1);
|
||||
assert_eq!(find_gcd([1, 10, 4, 1, 7, 10].into_iter()), 3);
|
||||
assert_eq!(find_gcd([1, 10, 0, 4, 1, 7, 10].into_iter()), 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_stats() {
|
||||
assert_eq!(
|
||||
compute_stats([].into_iter()),
|
||||
ColumnStats {
|
||||
gcd: NonZeroU64::new(1).unwrap(),
|
||||
min_value: 0,
|
||||
max_value: 0,
|
||||
num_rows: 0
|
||||
}
|
||||
);
|
||||
assert_eq!(
|
||||
compute_stats([0, 1].into_iter()),
|
||||
ColumnStats {
|
||||
gcd: NonZeroU64::new(1).unwrap(),
|
||||
min_value: 0,
|
||||
max_value: 1,
|
||||
num_rows: 2
|
||||
}
|
||||
);
|
||||
assert_eq!(
|
||||
compute_stats([0, 1].into_iter()),
|
||||
ColumnStats {
|
||||
gcd: NonZeroU64::new(1).unwrap(),
|
||||
min_value: 0,
|
||||
max_value: 1,
|
||||
num_rows: 2
|
||||
}
|
||||
);
|
||||
assert_eq!(
|
||||
compute_stats([10, 20, 30].into_iter()),
|
||||
ColumnStats {
|
||||
gcd: NonZeroU64::new(10).unwrap(),
|
||||
min_value: 10,
|
||||
max_value: 30,
|
||||
num_rows: 3
|
||||
}
|
||||
);
|
||||
assert_eq!(
|
||||
compute_stats([10, 50, 10, 30].into_iter()),
|
||||
ColumnStats {
|
||||
gcd: NonZeroU64::new(20).unwrap(),
|
||||
min_value: 10,
|
||||
max_value: 50,
|
||||
num_rows: 4
|
||||
}
|
||||
);
|
||||
assert_eq!(
|
||||
compute_stats([10, 0, 30].into_iter()),
|
||||
ColumnStats {
|
||||
gcd: NonZeroU64::new(10).unwrap(),
|
||||
min_value: 0,
|
||||
max_value: 30,
|
||||
num_rows: 3
|
||||
}
|
||||
);
|
||||
}
|
||||
}
|
||||
401
columnar/src/column_values/u64_based/tests.rs
Normal file
401
columnar/src/column_values/u64_based/tests.rs
Normal file
@@ -0,0 +1,401 @@
|
||||
use proptest::prelude::*;
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{num, prop_oneof, proptest};
|
||||
|
||||
#[test]
|
||||
fn test_serialize_and_load_simple() {
|
||||
let mut buffer = Vec::new();
|
||||
let vals = &[1u64, 2u64, 5u64];
|
||||
serialize_u64_based_column_values(
|
||||
&&vals[..],
|
||||
&[CodecType::Bitpacked, CodecType::BlockwiseLinear],
|
||||
&mut buffer,
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(buffer.len(), 7);
|
||||
let col = load_u64_based_column_values::<u64>(OwnedBytes::new(buffer)).unwrap();
|
||||
assert_eq!(col.num_vals(), 3);
|
||||
assert_eq!(col.get_val(0), 1);
|
||||
assert_eq!(col.get_val(1), 2);
|
||||
assert_eq!(col.get_val(2), 5);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_empty_column_i64() {
|
||||
let vals: [i64; 0] = [];
|
||||
let mut num_acceptable_codecs = 0;
|
||||
for codec in ALL_U64_CODEC_TYPES {
|
||||
let mut buffer = Vec::new();
|
||||
if serialize_u64_based_column_values(&&vals[..], &[codec], &mut buffer).is_err() {
|
||||
continue;
|
||||
}
|
||||
num_acceptable_codecs += 1;
|
||||
let col = load_u64_based_column_values::<i64>(OwnedBytes::new(buffer)).unwrap();
|
||||
assert_eq!(col.num_vals(), 0);
|
||||
assert_eq!(col.min_value(), i64::MIN);
|
||||
assert_eq!(col.max_value(), i64::MIN);
|
||||
}
|
||||
assert!(num_acceptable_codecs > 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_empty_column_u64() {
|
||||
let vals: [u64; 0] = [];
|
||||
let mut num_acceptable_codecs = 0;
|
||||
for codec in ALL_U64_CODEC_TYPES {
|
||||
let mut buffer = Vec::new();
|
||||
if serialize_u64_based_column_values(&&vals[..], &[codec], &mut buffer).is_err() {
|
||||
continue;
|
||||
}
|
||||
num_acceptable_codecs += 1;
|
||||
let col = load_u64_based_column_values::<u64>(OwnedBytes::new(buffer)).unwrap();
|
||||
assert_eq!(col.num_vals(), 0);
|
||||
assert_eq!(col.min_value(), u64::MIN);
|
||||
assert_eq!(col.max_value(), u64::MIN);
|
||||
}
|
||||
assert!(num_acceptable_codecs > 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_empty_column_f64() {
|
||||
let vals: [f64; 0] = [];
|
||||
let mut num_acceptable_codecs = 0;
|
||||
for codec in ALL_U64_CODEC_TYPES {
|
||||
let mut buffer = Vec::new();
|
||||
if serialize_u64_based_column_values(&&vals[..], &[codec], &mut buffer).is_err() {
|
||||
continue;
|
||||
}
|
||||
num_acceptable_codecs += 1;
|
||||
let col = load_u64_based_column_values::<f64>(OwnedBytes::new(buffer)).unwrap();
|
||||
assert_eq!(col.num_vals(), 0);
|
||||
// FIXME. f64::MIN would be better!
|
||||
assert!(col.min_value().is_nan());
|
||||
assert!(col.max_value().is_nan());
|
||||
}
|
||||
assert!(num_acceptable_codecs > 0);
|
||||
}
|
||||
|
||||
pub(crate) fn create_and_validate<TColumnCodec: ColumnCodec>(
|
||||
vals: &[u64],
|
||||
name: &str,
|
||||
) -> Option<(f32, f32)> {
|
||||
let mut stats_collector = StatsCollector::default();
|
||||
let mut codec_estimator: TColumnCodec::Estimator = Default::default();
|
||||
|
||||
for val in vals.boxed_iter() {
|
||||
stats_collector.collect(val);
|
||||
codec_estimator.collect(val);
|
||||
}
|
||||
codec_estimator.finalize();
|
||||
let stats = stats_collector.stats();
|
||||
let estimation = codec_estimator.estimate(&stats)?;
|
||||
|
||||
let mut buffer = Vec::new();
|
||||
codec_estimator
|
||||
.serialize(&stats, vals.boxed_iter().as_mut(), &mut buffer)
|
||||
.unwrap();
|
||||
|
||||
let actual_compression = buffer.len() as u64;
|
||||
|
||||
let reader = TColumnCodec::load(OwnedBytes::new(buffer)).unwrap();
|
||||
assert_eq!(reader.num_vals(), vals.len() as u32);
|
||||
for (doc, orig_val) in vals.iter().copied().enumerate() {
|
||||
let val = reader.get_val(doc as u32);
|
||||
assert_eq!(
|
||||
val, orig_val,
|
||||
"val `{val}` does not match orig_val {orig_val:?}, in data set {name}, data `{vals:?}`",
|
||||
);
|
||||
}
|
||||
|
||||
if !vals.is_empty() {
|
||||
let test_rand_idx = rand::thread_rng().gen_range(0..=vals.len() - 1);
|
||||
let expected_positions: Vec<u32> = vals
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_, el)| **el == vals[test_rand_idx])
|
||||
.map(|(pos, _)| pos as u32)
|
||||
.collect();
|
||||
let mut positions = Vec::new();
|
||||
reader.get_row_ids_for_value_range(
|
||||
vals[test_rand_idx]..=vals[test_rand_idx],
|
||||
0..vals.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
assert_eq!(expected_positions, positions);
|
||||
}
|
||||
if actual_compression > 1000 {
|
||||
assert!(relative_difference(estimation, actual_compression) < 0.10f32);
|
||||
}
|
||||
Some((
|
||||
compression_rate(estimation, stats.num_rows),
|
||||
compression_rate(actual_compression, stats.num_rows),
|
||||
))
|
||||
}
|
||||
|
||||
fn compression_rate(num_bytes: u64, num_values: u32) -> f32 {
|
||||
num_bytes as f32 / (num_values as f32 * 8.0)
|
||||
}
|
||||
|
||||
fn relative_difference(left: u64, right: u64) -> f32 {
|
||||
let left = left as f32;
|
||||
let right = right as f32;
|
||||
2.0f32 * (left - right).abs() / (left + right)
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(100))]
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_bitpacked(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_small_blockwise_linear_example() {
|
||||
create_and_validate::<BlockwiseLinearCodec>(
|
||||
&[9223372036854775808, 9223370937344622593],
|
||||
"proptest multilinearinterpol",
|
||||
);
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(10))]
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_bitpacked(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
|
||||
}
|
||||
}
|
||||
|
||||
fn num_strategy() -> impl Strategy<Value = u64> {
|
||||
prop_oneof![
|
||||
1 => prop::num::u64::ANY.prop_map(|num| u64::MAX - (num % 10) ),
|
||||
1 => prop::num::u64::ANY.prop_map(|num| num % 10 ),
|
||||
20 => prop::num::u64::ANY,
|
||||
]
|
||||
}
|
||||
|
||||
pub fn get_codec_test_datasets() -> Vec<(Vec<u64>, &'static str)> {
|
||||
let mut data_and_names = vec![];
|
||||
|
||||
let data = (10..=10_000_u64).collect::<Vec<_>>();
|
||||
data_and_names.push((data, "simple monotonically increasing"));
|
||||
|
||||
data_and_names.push((
|
||||
vec![5, 6, 7, 8, 9, 10, 99, 100],
|
||||
"offset in linear interpol",
|
||||
));
|
||||
data_and_names.push((vec![5, 50, 3, 13, 1, 1000, 35], "rand small"));
|
||||
data_and_names.push((vec![10], "single value"));
|
||||
|
||||
data_and_names.push((
|
||||
vec![1572656989877777, 1170935903116329, 720575940379279, 0],
|
||||
"overflow error",
|
||||
));
|
||||
|
||||
data_and_names
|
||||
}
|
||||
|
||||
fn test_codec<C: ColumnCodec>() {
|
||||
let codec_name = std::any::type_name::<C>();
|
||||
for (data, dataset_name) in get_codec_test_datasets() {
|
||||
let estimate_actual_opt: Option<(f32, f32)> =
|
||||
tests::create_and_validate::<C>(&data, dataset_name);
|
||||
let result = if let Some((estimate, actual)) = estimate_actual_opt {
|
||||
format!("Estimate `{estimate}` Actual `{actual}`")
|
||||
} else {
|
||||
"Disabled".to_string()
|
||||
};
|
||||
println!("Codec {codec_name}, DataSet {dataset_name}, {result}");
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn test_codec_bitpacking() {
|
||||
test_codec::<BitpackedCodec>();
|
||||
}
|
||||
#[test]
|
||||
fn test_codec_interpolation() {
|
||||
test_codec::<LinearCodec>();
|
||||
}
|
||||
#[test]
|
||||
fn test_codec_multi_interpolation() {
|
||||
test_codec::<BlockwiseLinearCodec>();
|
||||
}
|
||||
|
||||
use super::*;
|
||||
|
||||
fn estimate<C: ColumnCodec>(vals: &[u64]) -> Option<f32> {
|
||||
let mut stats_collector = StatsCollector::default();
|
||||
let mut estimator = C::Estimator::default();
|
||||
for &val in vals {
|
||||
stats_collector.collect(val);
|
||||
estimator.collect(val);
|
||||
}
|
||||
estimator.finalize();
|
||||
let stats = stats_collector.stats();
|
||||
let num_bytes = estimator.estimate(&stats)?;
|
||||
if stats.num_rows == 0 {
|
||||
return None;
|
||||
}
|
||||
Some(num_bytes as f32 / (8.0 * stats.num_rows as f32))
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn estimation_good_interpolation_case() {
|
||||
let data = (10..=20000_u64).collect::<Vec<_>>();
|
||||
|
||||
let linear_interpol_estimation = estimate::<LinearCodec>(&data).unwrap();
|
||||
assert_le!(linear_interpol_estimation, 0.01);
|
||||
|
||||
let multi_linear_interpol_estimation = estimate::<BlockwiseLinearCodec>(&data).unwrap();
|
||||
assert_le!(multi_linear_interpol_estimation, 0.2);
|
||||
assert_lt!(linear_interpol_estimation, multi_linear_interpol_estimation);
|
||||
|
||||
let bitpacked_estimation = estimate::<BitpackedCodec>(&data).unwrap();
|
||||
assert_lt!(linear_interpol_estimation, bitpacked_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn estimation_test_bad_interpolation_case_monotonically_increasing() {
|
||||
let mut data: Vec<u64> = (201..=20000_u64).collect();
|
||||
data.push(1_000_000);
|
||||
|
||||
// in this case the linear interpolation can't in fact not be worse than bitpacking,
|
||||
// but the estimator adds some threshold, which leads to estimated worse behavior
|
||||
let linear_interpol_estimation = estimate::<LinearCodec>(&data[..]).unwrap();
|
||||
assert_le!(linear_interpol_estimation, 0.35);
|
||||
|
||||
let bitpacked_estimation = estimate::<BitpackedCodec>(&data).unwrap();
|
||||
assert_le!(bitpacked_estimation, 0.32);
|
||||
assert_le!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fast_field_codec_type_to_code() {
|
||||
let mut count_codec = 0;
|
||||
for code in 0..=255 {
|
||||
if let Some(codec_type) = CodecType::try_from_code(code) {
|
||||
assert_eq!(codec_type.to_code(), code);
|
||||
count_codec += 1;
|
||||
}
|
||||
}
|
||||
assert_eq!(count_codec, 3);
|
||||
}
|
||||
|
||||
fn test_fastfield_gcd_i64_with_codec(codec_type: CodecType, num_vals: usize) -> io::Result<()> {
|
||||
let mut vals: Vec<i64> = (-4..=(num_vals as i64) - 5).map(|val| val * 1000).collect();
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
crate::column_values::serialize_u64_based_column_values(
|
||||
&&vals[..],
|
||||
&[codec_type],
|
||||
&mut buffer,
|
||||
)?;
|
||||
let buffer = OwnedBytes::new(buffer);
|
||||
let column = crate::column_values::load_u64_based_column_values::<i64>(buffer.clone())?;
|
||||
assert_eq!(column.get_val(0), -4000i64);
|
||||
assert_eq!(column.get_val(1), -3000i64);
|
||||
assert_eq!(column.get_val(2), -2000i64);
|
||||
assert_eq!(column.max_value(), (num_vals as i64 - 5) * 1000);
|
||||
assert_eq!(column.min_value(), -4000i64);
|
||||
|
||||
// Can't apply gcd
|
||||
let mut buffer_without_gcd = Vec::new();
|
||||
vals.pop();
|
||||
vals.push(1001i64);
|
||||
crate::column_values::serialize_u64_based_column_values(
|
||||
&&vals[..],
|
||||
&[codec_type],
|
||||
&mut buffer_without_gcd,
|
||||
)?;
|
||||
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
|
||||
assert!(buffer_without_gcd.len() > buffer.len());
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd_i64() -> io::Result<()> {
|
||||
for &codec_type in &[
|
||||
CodecType::Bitpacked,
|
||||
CodecType::BlockwiseLinear,
|
||||
CodecType::Linear,
|
||||
] {
|
||||
test_fastfield_gcd_i64_with_codec(codec_type, 5500)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn test_fastfield_gcd_u64_with_codec(codec_type: CodecType, num_vals: usize) -> io::Result<()> {
|
||||
let mut vals: Vec<u64> = (1..=num_vals).map(|i| i as u64 * 1000u64).collect();
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
crate::column_values::serialize_u64_based_column_values(
|
||||
&&vals[..],
|
||||
&[codec_type],
|
||||
&mut buffer,
|
||||
)?;
|
||||
let buffer = OwnedBytes::new(buffer);
|
||||
let column = crate::column_values::load_u64_based_column_values::<u64>(buffer.clone())?;
|
||||
assert_eq!(column.get_val(0), 1000u64);
|
||||
assert_eq!(column.get_val(1), 2000u64);
|
||||
assert_eq!(column.get_val(2), 3000u64);
|
||||
assert_eq!(column.max_value(), num_vals as u64 * 1000);
|
||||
assert_eq!(column.min_value(), 1000u64);
|
||||
|
||||
// Can't apply gcd
|
||||
let mut buffer_without_gcd = Vec::new();
|
||||
vals.pop();
|
||||
vals.push(1001u64);
|
||||
crate::column_values::serialize_u64_based_column_values(
|
||||
&&vals[..],
|
||||
&[codec_type],
|
||||
&mut buffer_without_gcd,
|
||||
)?;
|
||||
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
|
||||
assert!(buffer_without_gcd.len() > buffer.len());
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd_u64() -> io::Result<()> {
|
||||
for &codec_type in &[
|
||||
CodecType::Bitpacked,
|
||||
CodecType::BlockwiseLinear,
|
||||
CodecType::Linear,
|
||||
] {
|
||||
test_fastfield_gcd_u64_with_codec(codec_type, 5500)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn test_fastfield2() {
|
||||
let test_fastfield = crate::column_values::serialize_and_load_u64_based_column_values::<u64>(
|
||||
&&[100u64, 200u64, 300u64][..],
|
||||
&ALL_U64_CODEC_TYPES,
|
||||
);
|
||||
assert_eq!(test_fastfield.get_val(0), 100);
|
||||
assert_eq!(test_fastfield.get_val(1), 200);
|
||||
assert_eq!(test_fastfield.get_val(2), 300);
|
||||
}
|
||||
52
columnar/src/column_values/vec_column.rs
Normal file
52
columnar/src/column_values/vec_column.rs
Normal file
@@ -0,0 +1,52 @@
|
||||
use std::fmt::Debug;
|
||||
|
||||
use tantivy_bitpacker::minmax;
|
||||
|
||||
use crate::ColumnValues;
|
||||
|
||||
/// VecColumn provides `Column` over a slice.
|
||||
pub struct VecColumn<'a, T = u64> {
|
||||
pub(crate) values: &'a [T],
|
||||
pub(crate) min_value: T,
|
||||
pub(crate) max_value: T,
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Send + Sync + Debug> ColumnValues<T> for VecColumn<'a, T> {
|
||||
fn get_val(&self, position: u32) -> T {
|
||||
self.values[position as usize]
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
|
||||
Box::new(self.values.iter().copied())
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
self.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.values.len() as u32
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
output.copy_from_slice(&self.values[start as usize..][..output.len()])
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Default, V> From<&'a V> for VecColumn<'a, T>
|
||||
where V: AsRef<[T]> + ?Sized
|
||||
{
|
||||
fn from(values: &'a V) -> Self {
|
||||
let values = values.as_ref();
|
||||
let (min_value, max_value) = minmax(values.iter().copied()).unwrap_or_default();
|
||||
Self {
|
||||
values,
|
||||
min_value,
|
||||
max_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
163
columnar/src/columnar/column_type.rs
Normal file
163
columnar/src/columnar/column_type.rs
Normal file
@@ -0,0 +1,163 @@
|
||||
use std::fmt::Debug;
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::value::NumericalType;
|
||||
use crate::InvalidData;
|
||||
|
||||
/// The column type represents the column type.
|
||||
/// Any changes need to be propagated to `COLUMN_TYPES`.
|
||||
#[derive(Hash, Eq, PartialEq, Debug, Clone, Copy, Ord, PartialOrd, Serialize, Deserialize)]
|
||||
#[repr(u8)]
|
||||
pub enum ColumnType {
|
||||
I64 = 0u8,
|
||||
U64 = 1u8,
|
||||
F64 = 2u8,
|
||||
Bytes = 3u8,
|
||||
Str = 4u8,
|
||||
Bool = 5u8,
|
||||
IpAddr = 6u8,
|
||||
DateTime = 7u8,
|
||||
}
|
||||
|
||||
// The order needs to match _exactly_ the order in the enum
|
||||
const COLUMN_TYPES: [ColumnType; 8] = [
|
||||
ColumnType::I64,
|
||||
ColumnType::U64,
|
||||
ColumnType::F64,
|
||||
ColumnType::Bytes,
|
||||
ColumnType::Str,
|
||||
ColumnType::Bool,
|
||||
ColumnType::IpAddr,
|
||||
ColumnType::DateTime,
|
||||
];
|
||||
|
||||
impl ColumnType {
|
||||
pub fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn try_from_code(code: u8) -> Result<ColumnType, InvalidData> {
|
||||
COLUMN_TYPES.get(code as usize).copied().ok_or(InvalidData)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<NumericalType> for ColumnType {
|
||||
fn from(numerical_type: NumericalType) -> Self {
|
||||
match numerical_type {
|
||||
NumericalType::I64 => ColumnType::I64,
|
||||
NumericalType::U64 => ColumnType::U64,
|
||||
NumericalType::F64 => ColumnType::F64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ColumnType {
|
||||
pub fn numerical_type(&self) -> Option<NumericalType> {
|
||||
match self {
|
||||
ColumnType::I64 => Some(NumericalType::I64),
|
||||
ColumnType::U64 => Some(NumericalType::U64),
|
||||
ColumnType::F64 => Some(NumericalType::F64),
|
||||
ColumnType::Bytes
|
||||
| ColumnType::Str
|
||||
| ColumnType::Bool
|
||||
| ColumnType::IpAddr
|
||||
| ColumnType::DateTime => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO remove if possible
|
||||
pub trait HasAssociatedColumnType: 'static + Debug + Send + Sync + Copy + PartialOrd {
|
||||
fn column_type() -> ColumnType;
|
||||
fn default_value() -> Self;
|
||||
}
|
||||
|
||||
impl HasAssociatedColumnType for u64 {
|
||||
fn column_type() -> ColumnType {
|
||||
ColumnType::U64
|
||||
}
|
||||
|
||||
fn default_value() -> Self {
|
||||
0u64
|
||||
}
|
||||
}
|
||||
|
||||
impl HasAssociatedColumnType for i64 {
|
||||
fn column_type() -> ColumnType {
|
||||
ColumnType::I64
|
||||
}
|
||||
|
||||
fn default_value() -> Self {
|
||||
0i64
|
||||
}
|
||||
}
|
||||
|
||||
impl HasAssociatedColumnType for f64 {
|
||||
fn column_type() -> ColumnType {
|
||||
ColumnType::F64
|
||||
}
|
||||
|
||||
fn default_value() -> Self {
|
||||
Default::default()
|
||||
}
|
||||
}
|
||||
|
||||
impl HasAssociatedColumnType for bool {
|
||||
fn column_type() -> ColumnType {
|
||||
ColumnType::Bool
|
||||
}
|
||||
fn default_value() -> Self {
|
||||
Default::default()
|
||||
}
|
||||
}
|
||||
|
||||
impl HasAssociatedColumnType for common::DateTime {
|
||||
fn column_type() -> ColumnType {
|
||||
ColumnType::DateTime
|
||||
}
|
||||
fn default_value() -> Self {
|
||||
Default::default()
|
||||
}
|
||||
}
|
||||
|
||||
impl HasAssociatedColumnType for Ipv6Addr {
|
||||
fn column_type() -> ColumnType {
|
||||
ColumnType::IpAddr
|
||||
}
|
||||
|
||||
fn default_value() -> Self {
|
||||
Ipv6Addr::from([0u8; 16])
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::Cardinality;
|
||||
|
||||
#[test]
|
||||
fn test_column_type_to_code() {
|
||||
for (code, expected_column_type) in super::COLUMN_TYPES.iter().copied().enumerate() {
|
||||
if let Ok(column_type) = ColumnType::try_from_code(code as u8) {
|
||||
assert_eq!(column_type, expected_column_type);
|
||||
}
|
||||
}
|
||||
for code in COLUMN_TYPES.len() as u8..=u8::MAX {
|
||||
assert!(ColumnType::try_from_code(code).is_err());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cardinality_to_code() {
|
||||
let mut num_cardinality = 0;
|
||||
for code in u8::MIN..=u8::MAX {
|
||||
if let Ok(cardinality) = Cardinality::try_from_code(code) {
|
||||
assert_eq!(cardinality.to_code(), code);
|
||||
num_cardinality += 1;
|
||||
}
|
||||
}
|
||||
assert_eq!(num_cardinality, 3);
|
||||
}
|
||||
}
|
||||
73
columnar/src/columnar/format_version.rs
Normal file
73
columnar/src/columnar/format_version.rs
Normal file
@@ -0,0 +1,73 @@
|
||||
use crate::InvalidData;
|
||||
|
||||
pub const VERSION_FOOTER_NUM_BYTES: usize = MAGIC_BYTES.len() + std::mem::size_of::<u32>();
|
||||
|
||||
/// We end the file by these 4 bytes just to somewhat identify that
|
||||
/// this is indeed a columnar file.
|
||||
const MAGIC_BYTES: [u8; 4] = [2, 113, 119, 66];
|
||||
|
||||
pub fn footer() -> [u8; VERSION_FOOTER_NUM_BYTES] {
|
||||
let mut footer_bytes = [0u8; VERSION_FOOTER_NUM_BYTES];
|
||||
footer_bytes[0..4].copy_from_slice(&Version::V1.to_bytes());
|
||||
footer_bytes[4..8].copy_from_slice(&MAGIC_BYTES[..]);
|
||||
footer_bytes
|
||||
}
|
||||
|
||||
pub fn parse_footer(footer_bytes: [u8; VERSION_FOOTER_NUM_BYTES]) -> Result<Version, InvalidData> {
|
||||
if footer_bytes[4..8] != MAGIC_BYTES {
|
||||
return Err(InvalidData);
|
||||
}
|
||||
Version::try_from_bytes(footer_bytes[0..4].try_into().unwrap())
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
|
||||
#[repr(u32)]
|
||||
pub enum Version {
|
||||
V1 = 1u32,
|
||||
}
|
||||
|
||||
impl Version {
|
||||
fn to_bytes(self) -> [u8; 4] {
|
||||
(self as u32).to_le_bytes()
|
||||
}
|
||||
|
||||
fn try_from_bytes(bytes: [u8; 4]) -> Result<Version, InvalidData> {
|
||||
let code = u32::from_le_bytes(bytes);
|
||||
match code {
|
||||
1u32 => Ok(Version::V1),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::collections::HashSet;
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_footer_dserialization() {
|
||||
let parsed_version: Version = parse_footer(footer()).unwrap();
|
||||
assert_eq!(Version::V1, parsed_version);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_version_serialization() {
|
||||
let version_to_tests: Vec<u32> = [0, 1 << 8, 1 << 16, 1 << 24]
|
||||
.iter()
|
||||
.copied()
|
||||
.flat_map(|offset| (0..255).map(move |el| el + offset))
|
||||
.collect();
|
||||
let mut valid_versions: HashSet<u32> = HashSet::default();
|
||||
for &i in &version_to_tests {
|
||||
let version_res = Version::try_from_bytes(i.to_le_bytes());
|
||||
if let Ok(version) = version_res {
|
||||
assert_eq!(version, Version::V1);
|
||||
assert_eq!(version.to_bytes(), i.to_le_bytes());
|
||||
valid_versions.insert(i);
|
||||
}
|
||||
}
|
||||
assert_eq!(valid_versions.len(), 1);
|
||||
}
|
||||
}
|
||||
204
columnar/src/columnar/merge/merge_dict_column.rs
Normal file
204
columnar/src/columnar/merge/merge_dict_column.rs
Normal file
@@ -0,0 +1,204 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::{BitSet, CountingWriter, ReadOnlyBitSet};
|
||||
use sstable::{SSTable, TermOrdinal};
|
||||
|
||||
use super::term_merger::TermMerger;
|
||||
use crate::column::serialize_column_mappable_to_u64;
|
||||
use crate::column_index::SerializableColumnIndex;
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{BytesColumn, MergeRowOrder, ShuffleMergeOrder};
|
||||
|
||||
// Serialize [Dictionary, Column, dictionary num bytes U32::LE]
|
||||
// Column: [Column Index, Column Values, column index num bytes U32::LE]
|
||||
pub fn merge_bytes_or_str_column(
|
||||
column_index: SerializableColumnIndex<'_>,
|
||||
bytes_columns: &[Option<BytesColumn>],
|
||||
merge_row_order: &MergeRowOrder,
|
||||
output: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
// Serialize dict and generate mapping for values
|
||||
let mut output = CountingWriter::wrap(output);
|
||||
// TODO !!! Remove useless terms.
|
||||
let term_ord_mapping = serialize_merged_dict(bytes_columns, merge_row_order, &mut output)?;
|
||||
let dictionary_num_bytes: u32 = output.written_bytes() as u32;
|
||||
let output = output.finish();
|
||||
let remapped_term_ordinals_values = RemappedTermOrdinalsValues {
|
||||
bytes_columns,
|
||||
term_ord_mapping: &term_ord_mapping,
|
||||
merge_row_order,
|
||||
};
|
||||
serialize_column_mappable_to_u64(column_index, &remapped_term_ordinals_values, output)?;
|
||||
output.write_all(&dictionary_num_bytes.to_le_bytes())?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
struct RemappedTermOrdinalsValues<'a> {
|
||||
bytes_columns: &'a [Option<BytesColumn>],
|
||||
term_ord_mapping: &'a TermOrdinalMapping,
|
||||
merge_row_order: &'a MergeRowOrder,
|
||||
}
|
||||
|
||||
impl<'a> Iterable for RemappedTermOrdinalsValues<'a> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
match self.merge_row_order {
|
||||
MergeRowOrder::Stack(_) => self.boxed_iter_stacked(),
|
||||
MergeRowOrder::Shuffled(shuffle_merge_order) => {
|
||||
self.boxed_iter_shuffled(shuffle_merge_order)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> RemappedTermOrdinalsValues<'a> {
|
||||
fn boxed_iter_stacked(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
let iter = self
|
||||
.bytes_columns
|
||||
.iter()
|
||||
.enumerate()
|
||||
.flat_map(|(segment_ord, byte_column)| {
|
||||
let segment_ord = self.term_ord_mapping.get_segment(segment_ord as u32);
|
||||
byte_column.iter().flat_map(move |bytes_column| {
|
||||
bytes_column
|
||||
.ords()
|
||||
.values
|
||||
.iter()
|
||||
.map(move |term_ord| segment_ord[term_ord as usize])
|
||||
})
|
||||
});
|
||||
// TODO see if we can better decompose the mapping / and the stacking
|
||||
Box::new(iter)
|
||||
}
|
||||
|
||||
fn boxed_iter_shuffled<'b>(
|
||||
&'b self,
|
||||
shuffle_merge_order: &'b ShuffleMergeOrder,
|
||||
) -> Box<dyn Iterator<Item = u64> + 'b> {
|
||||
Box::new(
|
||||
shuffle_merge_order
|
||||
.iter_new_to_old_row_addrs()
|
||||
.flat_map(move |old_addr| {
|
||||
let segment_ord = self.term_ord_mapping.get_segment(old_addr.segment_ord);
|
||||
self.bytes_columns[old_addr.segment_ord as usize]
|
||||
.as_ref()
|
||||
.into_iter()
|
||||
.flat_map(move |bytes_column| {
|
||||
bytes_column
|
||||
.term_ords(old_addr.row_id)
|
||||
.map(|old_term_ord: u64| segment_ord[old_term_ord as usize])
|
||||
})
|
||||
}),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_term_bitset(column: &BytesColumn, row_bitset: &ReadOnlyBitSet) -> BitSet {
|
||||
let num_terms = column.dictionary().num_terms();
|
||||
let mut term_bitset = BitSet::with_max_value(num_terms as u32);
|
||||
for row_id in row_bitset.iter() {
|
||||
for term_ord in column.term_ord_column.values_for_doc(row_id) {
|
||||
term_bitset.insert(term_ord as u32);
|
||||
}
|
||||
}
|
||||
term_bitset
|
||||
}
|
||||
|
||||
fn is_term_present(bitsets: &[Option<BitSet>], term_merger: &TermMerger) -> bool {
|
||||
for (segment_ord, from_term_ord) in term_merger.matching_segments() {
|
||||
if let Some(bitset) = bitsets[segment_ord].as_ref() {
|
||||
if bitset.contains(from_term_ord as u32) {
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
false
|
||||
}
|
||||
|
||||
fn serialize_merged_dict(
|
||||
bytes_columns: &[Option<BytesColumn>],
|
||||
merge_row_order: &MergeRowOrder,
|
||||
output: &mut impl Write,
|
||||
) -> io::Result<TermOrdinalMapping> {
|
||||
let mut term_ord_mapping = TermOrdinalMapping::default();
|
||||
|
||||
let mut field_term_streams = Vec::new();
|
||||
for column in bytes_columns.iter().flatten() {
|
||||
term_ord_mapping.add_segment(column.dictionary.num_terms());
|
||||
let terms = column.dictionary.stream()?;
|
||||
field_term_streams.push(terms);
|
||||
}
|
||||
|
||||
let mut merged_terms = TermMerger::new(field_term_streams);
|
||||
let mut sstable_builder = sstable::VoidSSTable::writer(output);
|
||||
|
||||
// TODO support complex `merge_row_order`.
|
||||
match merge_row_order {
|
||||
MergeRowOrder::Stack(_) => {
|
||||
let mut current_term_ord = 0;
|
||||
while merged_terms.advance() {
|
||||
let term_bytes: &[u8] = merged_terms.key();
|
||||
sstable_builder.insert(term_bytes, &())?;
|
||||
for (segment_ord, from_term_ord) in merged_terms.matching_segments() {
|
||||
term_ord_mapping.register_from_to(segment_ord, from_term_ord, current_term_ord);
|
||||
}
|
||||
current_term_ord += 1;
|
||||
}
|
||||
sstable_builder.finish()?;
|
||||
}
|
||||
MergeRowOrder::Shuffled(shuffle_merge_order) => {
|
||||
assert_eq!(shuffle_merge_order.alive_bitsets.len(), bytes_columns.len());
|
||||
let mut term_bitsets: Vec<Option<BitSet>> = Vec::with_capacity(bytes_columns.len());
|
||||
for (alive_bitset_opt, bytes_column_opt) in shuffle_merge_order
|
||||
.alive_bitsets
|
||||
.iter()
|
||||
.zip(bytes_columns.iter())
|
||||
{
|
||||
match (alive_bitset_opt, bytes_column_opt) {
|
||||
(Some(alive_bitset), Some(bytes_column)) => {
|
||||
let term_bitset = compute_term_bitset(bytes_column, alive_bitset);
|
||||
term_bitsets.push(Some(term_bitset));
|
||||
}
|
||||
_ => {
|
||||
term_bitsets.push(None);
|
||||
}
|
||||
}
|
||||
}
|
||||
let mut current_term_ord = 0;
|
||||
while merged_terms.advance() {
|
||||
let term_bytes: &[u8] = merged_terms.key();
|
||||
if !is_term_present(&term_bitsets[..], &merged_terms) {
|
||||
continue;
|
||||
}
|
||||
sstable_builder.insert(term_bytes, &())?;
|
||||
for (segment_ord, from_term_ord) in merged_terms.matching_segments() {
|
||||
term_ord_mapping.register_from_to(segment_ord, from_term_ord, current_term_ord);
|
||||
}
|
||||
current_term_ord += 1;
|
||||
}
|
||||
sstable_builder.finish()?;
|
||||
}
|
||||
}
|
||||
Ok(term_ord_mapping)
|
||||
}
|
||||
|
||||
#[derive(Default, Debug)]
|
||||
struct TermOrdinalMapping {
|
||||
per_segment_new_term_ordinals: Vec<Vec<TermOrdinal>>,
|
||||
}
|
||||
|
||||
impl TermOrdinalMapping {
|
||||
fn add_segment(&mut self, max_term_ord: usize) {
|
||||
self.per_segment_new_term_ordinals
|
||||
.push(vec![TermOrdinal::default(); max_term_ord]);
|
||||
}
|
||||
|
||||
fn register_from_to(&mut self, segment_ord: usize, from_ord: TermOrdinal, to_ord: TermOrdinal) {
|
||||
self.per_segment_new_term_ordinals[segment_ord][from_ord as usize] = to_ord;
|
||||
}
|
||||
|
||||
fn get_segment(&self, segment_ord: u32) -> &[TermOrdinal] {
|
||||
&(self.per_segment_new_term_ordinals[segment_ord as usize])[..]
|
||||
}
|
||||
}
|
||||
118
columnar/src/columnar/merge/merge_mapping.rs
Normal file
118
columnar/src/columnar/merge/merge_mapping.rs
Normal file
@@ -0,0 +1,118 @@
|
||||
use std::ops::Range;
|
||||
|
||||
use common::{BitSet, OwnedBytes, ReadOnlyBitSet};
|
||||
|
||||
use crate::{ColumnarReader, RowAddr, RowId};
|
||||
|
||||
pub struct StackMergeOrder {
|
||||
// This does not start at 0. The first row is the number of
|
||||
// rows in the first columnar.
|
||||
cumulated_row_ids: Vec<RowId>,
|
||||
}
|
||||
|
||||
impl StackMergeOrder {
|
||||
pub fn stack(columnars: &[&ColumnarReader]) -> StackMergeOrder {
|
||||
let mut cumulated_row_ids: Vec<RowId> = Vec::with_capacity(columnars.len());
|
||||
let mut cumulated_row_id = 0;
|
||||
for columnar in columnars {
|
||||
cumulated_row_id += columnar.num_rows();
|
||||
cumulated_row_ids.push(cumulated_row_id);
|
||||
}
|
||||
StackMergeOrder { cumulated_row_ids }
|
||||
}
|
||||
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
self.cumulated_row_ids.last().copied().unwrap_or(0)
|
||||
}
|
||||
|
||||
pub fn offset(&self, columnar_id: usize) -> RowId {
|
||||
if columnar_id == 0 {
|
||||
return 0;
|
||||
}
|
||||
self.cumulated_row_ids[columnar_id - 1]
|
||||
}
|
||||
|
||||
pub fn columnar_range(&self, columnar_id: usize) -> Range<RowId> {
|
||||
self.offset(columnar_id)..self.offset(columnar_id + 1)
|
||||
}
|
||||
}
|
||||
|
||||
pub enum MergeRowOrder {
|
||||
/// Columnar tables are simply stacked one above the other.
|
||||
/// If the i-th columnar_readers has n_rows_i rows, then
|
||||
/// in the resulting columnar,
|
||||
/// rows [r0..n_row_0) contains the row of columnar_readers[0], in ordder
|
||||
/// rows [n_row_0..n_row_0 + n_row_1 contains the row of columnar_readers[1], in order.
|
||||
/// ..
|
||||
/// No documents is deleted.
|
||||
Stack(StackMergeOrder),
|
||||
/// Some more complex mapping, that may interleaves rows from the different readers and
|
||||
/// drop rows, or do both.
|
||||
Shuffled(ShuffleMergeOrder),
|
||||
}
|
||||
|
||||
impl From<StackMergeOrder> for MergeRowOrder {
|
||||
fn from(stack_merge_order: StackMergeOrder) -> MergeRowOrder {
|
||||
MergeRowOrder::Stack(stack_merge_order)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<ShuffleMergeOrder> for MergeRowOrder {
|
||||
fn from(shuffle_merge_order: ShuffleMergeOrder) -> MergeRowOrder {
|
||||
MergeRowOrder::Shuffled(shuffle_merge_order)
|
||||
}
|
||||
}
|
||||
|
||||
impl MergeRowOrder {
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
match self {
|
||||
MergeRowOrder::Stack(stack_row_order) => stack_row_order.num_rows(),
|
||||
MergeRowOrder::Shuffled(complex_mapping) => complex_mapping.num_rows(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct ShuffleMergeOrder {
|
||||
pub new_row_id_to_old_row_id: Vec<RowAddr>,
|
||||
pub alive_bitsets: Vec<Option<ReadOnlyBitSet>>,
|
||||
}
|
||||
|
||||
impl ShuffleMergeOrder {
|
||||
pub fn for_test(
|
||||
segment_num_rows: &[RowId],
|
||||
new_row_id_to_old_row_id: Vec<RowAddr>,
|
||||
) -> ShuffleMergeOrder {
|
||||
let mut alive_bitsets: Vec<BitSet> = segment_num_rows
|
||||
.iter()
|
||||
.map(|&num_rows| BitSet::with_max_value(num_rows))
|
||||
.collect();
|
||||
for &RowAddr {
|
||||
segment_ord,
|
||||
row_id,
|
||||
} in &new_row_id_to_old_row_id
|
||||
{
|
||||
alive_bitsets[segment_ord as usize].insert(row_id);
|
||||
}
|
||||
let alive_bitsets: Vec<Option<ReadOnlyBitSet>> = alive_bitsets
|
||||
.into_iter()
|
||||
.map(|alive_bitset| {
|
||||
let mut buffer = Vec::new();
|
||||
alive_bitset.serialize(&mut buffer).unwrap();
|
||||
let data = OwnedBytes::new(buffer);
|
||||
Some(ReadOnlyBitSet::open(data))
|
||||
})
|
||||
.collect();
|
||||
ShuffleMergeOrder {
|
||||
new_row_id_to_old_row_id,
|
||||
alive_bitsets,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
self.new_row_id_to_old_row_id.len() as RowId
|
||||
}
|
||||
|
||||
pub fn iter_new_to_old_row_addrs(&self) -> impl Iterator<Item = RowAddr> + '_ {
|
||||
self.new_row_id_to_old_row_id.iter().copied()
|
||||
}
|
||||
}
|
||||
375
columnar/src/columnar/merge/mod.rs
Normal file
375
columnar/src/columnar/merge/mod.rs
Normal file
@@ -0,0 +1,375 @@
|
||||
mod merge_dict_column;
|
||||
mod merge_mapping;
|
||||
mod term_merger;
|
||||
|
||||
use std::collections::{BTreeMap, HashMap, HashSet};
|
||||
use std::io;
|
||||
use std::net::Ipv6Addr;
|
||||
use std::sync::Arc;
|
||||
|
||||
pub use merge_mapping::{MergeRowOrder, ShuffleMergeOrder, StackMergeOrder};
|
||||
|
||||
use super::writer::ColumnarSerializer;
|
||||
use crate::column::{serialize_column_mappable_to_u128, serialize_column_mappable_to_u64};
|
||||
use crate::column_values::MergedColumnValues;
|
||||
use crate::columnar::merge::merge_dict_column::merge_bytes_or_str_column;
|
||||
use crate::columnar::writer::CompatibleNumericalTypes;
|
||||
use crate::columnar::ColumnarReader;
|
||||
use crate::dynamic_column::DynamicColumn;
|
||||
use crate::{
|
||||
BytesColumn, Column, ColumnIndex, ColumnType, ColumnValues, NumericalType, NumericalValue,
|
||||
};
|
||||
|
||||
/// Column types are grouped into different categories.
|
||||
/// After merge, all columns belonging to the same category are coerced to
|
||||
/// the same column type.
|
||||
///
|
||||
/// In practise, today, only Numerical colummns are coerced into one type today.
|
||||
///
|
||||
/// See also [README.md].
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
|
||||
enum ColumnTypeCategory {
|
||||
Bool,
|
||||
Str,
|
||||
Numerical,
|
||||
DateTime,
|
||||
Bytes,
|
||||
IpAddr,
|
||||
}
|
||||
|
||||
impl From<ColumnType> for ColumnTypeCategory {
|
||||
fn from(column_type: ColumnType) -> Self {
|
||||
match column_type {
|
||||
ColumnType::I64 => ColumnTypeCategory::Numerical,
|
||||
ColumnType::U64 => ColumnTypeCategory::Numerical,
|
||||
ColumnType::F64 => ColumnTypeCategory::Numerical,
|
||||
ColumnType::Bytes => ColumnTypeCategory::Bytes,
|
||||
ColumnType::Str => ColumnTypeCategory::Str,
|
||||
ColumnType::Bool => ColumnTypeCategory::Bool,
|
||||
ColumnType::IpAddr => ColumnTypeCategory::IpAddr,
|
||||
ColumnType::DateTime => ColumnTypeCategory::DateTime,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Merge several columnar table together.
|
||||
///
|
||||
/// If several columns with the same name are conflicting with the numerical types in the
|
||||
/// input columnars, the first type compatible out of i64, u64, f64 in that order will be used.
|
||||
///
|
||||
/// `require_columns` makes it possible to ensure that some columns will be present in the
|
||||
/// resulting columnar. When a required column is a numerical column type, one of two things can
|
||||
/// happen:
|
||||
/// - If the required column type is compatible with all of the input columnar, the resulsting
|
||||
/// merged
|
||||
/// columnar will simply coerce the input column and use the required column type.
|
||||
/// - If the required column type is incompatible with one of the input columnar, the merged
|
||||
/// will fail with an InvalidData error.
|
||||
///
|
||||
/// `merge_row_order` makes it possible to remove or reorder row in the resulting
|
||||
/// `Columnar` table.
|
||||
///
|
||||
/// Reminder: a string and a numerical column may bare the same column name. This is not
|
||||
/// considered a conflict.
|
||||
pub fn merge_columnar(
|
||||
columnar_readers: &[&ColumnarReader],
|
||||
required_columns: &[(String, ColumnType)],
|
||||
merge_row_order: MergeRowOrder,
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let mut serializer = ColumnarSerializer::new(output);
|
||||
|
||||
let columns_to_merge = group_columns_for_merge(columnar_readers, required_columns)?;
|
||||
for ((column_name, column_type), columns) in columns_to_merge {
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name.as_bytes(), column_type);
|
||||
merge_column(
|
||||
column_type,
|
||||
columns,
|
||||
&merge_row_order,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
}
|
||||
serializer.finalize(merge_row_order.num_rows())?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn dynamic_column_to_u64_monotonic(dynamic_column: DynamicColumn) -> Option<Column<u64>> {
|
||||
match dynamic_column {
|
||||
DynamicColumn::Bool(column) => Some(column.to_u64_monotonic()),
|
||||
DynamicColumn::I64(column) => Some(column.to_u64_monotonic()),
|
||||
DynamicColumn::U64(column) => Some(column.to_u64_monotonic()),
|
||||
DynamicColumn::F64(column) => Some(column.to_u64_monotonic()),
|
||||
DynamicColumn::DateTime(column) => Some(column.to_u64_monotonic()),
|
||||
DynamicColumn::IpAddr(_) | DynamicColumn::Bytes(_) | DynamicColumn::Str(_) => None,
|
||||
}
|
||||
}
|
||||
|
||||
fn merge_column(
|
||||
column_type: ColumnType,
|
||||
columns: Vec<Option<DynamicColumn>>,
|
||||
merge_row_order: &MergeRowOrder,
|
||||
wrt: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
match column_type {
|
||||
ColumnType::I64
|
||||
| ColumnType::U64
|
||||
| ColumnType::F64
|
||||
| ColumnType::DateTime
|
||||
| ColumnType::Bool => {
|
||||
let mut column_indexes: Vec<Option<ColumnIndex>> = Vec::with_capacity(columns.len());
|
||||
let mut column_values: Vec<Option<Arc<dyn ColumnValues>>> =
|
||||
Vec::with_capacity(columns.len());
|
||||
for dynamic_column_opt in columns {
|
||||
if let Some(Column { idx, values }) =
|
||||
dynamic_column_opt.and_then(dynamic_column_to_u64_monotonic)
|
||||
{
|
||||
column_indexes.push(Some(idx));
|
||||
column_values.push(Some(values));
|
||||
} else {
|
||||
column_indexes.push(None);
|
||||
column_values.push(None);
|
||||
}
|
||||
}
|
||||
let merged_column_index =
|
||||
crate::column_index::merge_column_index(&column_indexes[..], merge_row_order);
|
||||
let merge_column_values = MergedColumnValues {
|
||||
column_indexes: &column_indexes[..],
|
||||
column_values: &column_values[..],
|
||||
merge_row_order,
|
||||
};
|
||||
serialize_column_mappable_to_u64(merged_column_index, &merge_column_values, wrt)?;
|
||||
}
|
||||
ColumnType::IpAddr => {
|
||||
let mut column_indexes: Vec<Option<ColumnIndex>> = Vec::with_capacity(columns.len());
|
||||
let mut column_values: Vec<Option<Arc<dyn ColumnValues<Ipv6Addr>>>> =
|
||||
Vec::with_capacity(columns.len());
|
||||
for dynamic_column_opt in columns {
|
||||
if let Some(DynamicColumn::IpAddr(Column { idx, values })) = dynamic_column_opt {
|
||||
column_indexes.push(Some(idx));
|
||||
column_values.push(Some(values));
|
||||
} else {
|
||||
column_indexes.push(None);
|
||||
column_values.push(None);
|
||||
}
|
||||
}
|
||||
|
||||
let merged_column_index =
|
||||
crate::column_index::merge_column_index(&column_indexes[..], merge_row_order);
|
||||
let merge_column_values = MergedColumnValues {
|
||||
column_indexes: &column_indexes[..],
|
||||
column_values: &column_values,
|
||||
merge_row_order,
|
||||
};
|
||||
|
||||
serialize_column_mappable_to_u128(merged_column_index, &merge_column_values, wrt)?;
|
||||
}
|
||||
ColumnType::Bytes | ColumnType::Str => {
|
||||
let mut column_indexes: Vec<Option<ColumnIndex>> = Vec::with_capacity(columns.len());
|
||||
let mut bytes_columns: Vec<Option<BytesColumn>> = Vec::with_capacity(columns.len());
|
||||
for dynamic_column_opt in columns {
|
||||
match dynamic_column_opt {
|
||||
Some(DynamicColumn::Str(str_column)) => {
|
||||
column_indexes.push(Some(str_column.term_ord_column.idx.clone()));
|
||||
bytes_columns.push(Some(str_column.into()));
|
||||
}
|
||||
Some(DynamicColumn::Bytes(bytes_column)) => {
|
||||
column_indexes.push(Some(bytes_column.term_ord_column.idx.clone()));
|
||||
bytes_columns.push(Some(bytes_column));
|
||||
}
|
||||
_ => {
|
||||
column_indexes.push(None);
|
||||
bytes_columns.push(None);
|
||||
}
|
||||
}
|
||||
}
|
||||
let merged_column_index =
|
||||
crate::column_index::merge_column_index(&column_indexes[..], merge_row_order);
|
||||
merge_bytes_or_str_column(merged_column_index, &bytes_columns, merge_row_order, wrt)?;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
struct GroupedColumns {
|
||||
required_column_type: Option<ColumnType>,
|
||||
columns: Vec<Option<DynamicColumn>>,
|
||||
column_category: ColumnTypeCategory,
|
||||
}
|
||||
|
||||
impl GroupedColumns {
|
||||
fn for_category(column_category: ColumnTypeCategory, num_columnars: usize) -> Self {
|
||||
GroupedColumns {
|
||||
required_column_type: None,
|
||||
columns: vec![None; num_columnars],
|
||||
column_category,
|
||||
}
|
||||
}
|
||||
|
||||
/// Set the dynamic column for a given columnar.
|
||||
fn set_column(&mut self, columnar_id: usize, column: DynamicColumn) {
|
||||
self.columns[columnar_id] = Some(column);
|
||||
}
|
||||
|
||||
/// Force the existence of a column, as well as its type.
|
||||
fn require_type(&mut self, required_type: ColumnType) -> io::Result<()> {
|
||||
if let Some(existing_required_type) = self.required_column_type {
|
||||
if existing_required_type == required_type {
|
||||
// This was just a duplicate in the `required_columns`.
|
||||
// Nothing to do.
|
||||
return Ok(());
|
||||
} else {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidInput,
|
||||
"Required column conflicts with another required column of the same type \
|
||||
category.",
|
||||
));
|
||||
}
|
||||
}
|
||||
self.required_column_type = Some(required_type);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Returns the column type after merge.
|
||||
///
|
||||
/// This method does not check if the column types can actually be coerced to
|
||||
/// this type.
|
||||
fn column_type_after_merge(&self) -> ColumnType {
|
||||
if let Some(required_type) = self.required_column_type {
|
||||
return required_type;
|
||||
}
|
||||
let column_type: HashSet<ColumnType> = self
|
||||
.columns
|
||||
.iter()
|
||||
.flatten()
|
||||
.map(|column| column.column_type())
|
||||
.collect();
|
||||
if column_type.len() == 1 {
|
||||
return column_type.into_iter().next().unwrap();
|
||||
}
|
||||
// At the moment, only the numerical categorical column type has more than one possible
|
||||
// column type.
|
||||
assert_eq!(self.column_category, ColumnTypeCategory::Numerical);
|
||||
merged_numerical_columns_type(self.columns.iter().flatten()).into()
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the type of the merged numerical column.
|
||||
///
|
||||
/// This function picks the first numerical type out of i64, u64, f64 (order matters
|
||||
/// here), that is compatible with all the `columns`.
|
||||
///
|
||||
/// # Panics
|
||||
/// Panics if one of the column is not numerical.
|
||||
fn merged_numerical_columns_type<'a>(
|
||||
columns: impl Iterator<Item = &'a DynamicColumn>,
|
||||
) -> NumericalType {
|
||||
let mut compatible_numerical_types = CompatibleNumericalTypes::default();
|
||||
for column in columns {
|
||||
let (min_value, max_value) =
|
||||
min_max_if_numerical(column).expect("All columns re required to be numerical");
|
||||
compatible_numerical_types.accept_value(min_value);
|
||||
compatible_numerical_types.accept_value(max_value);
|
||||
}
|
||||
compatible_numerical_types.to_numerical_type()
|
||||
}
|
||||
|
||||
#[allow(clippy::type_complexity)]
|
||||
fn group_columns_for_merge(
|
||||
columnar_readers: &[&ColumnarReader],
|
||||
required_columns: &[(String, ColumnType)],
|
||||
) -> io::Result<BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>>> {
|
||||
// Each column name may have multiple types of column associated.
|
||||
// For merging we are interested in the same column type category since they can be merged.
|
||||
let mut columns_grouped: HashMap<(String, ColumnTypeCategory), GroupedColumns> = HashMap::new();
|
||||
|
||||
for &(ref column_name, column_type) in required_columns {
|
||||
columns_grouped
|
||||
.entry((column_name.clone(), column_type.into()))
|
||||
.or_insert_with(|| {
|
||||
GroupedColumns::for_category(column_type.into(), columnar_readers.len())
|
||||
})
|
||||
.require_type(column_type)?;
|
||||
}
|
||||
|
||||
for (columnar_id, columnar_reader) in columnar_readers.iter().enumerate() {
|
||||
let column_name_and_handle = columnar_reader.list_columns()?;
|
||||
for (column_name, handle) in column_name_and_handle {
|
||||
let column_category: ColumnTypeCategory = handle.column_type().into();
|
||||
let column = handle.open()?;
|
||||
columns_grouped
|
||||
.entry((column_name, column_category))
|
||||
.or_insert_with(|| {
|
||||
GroupedColumns::for_category(column_category, columnar_readers.len())
|
||||
})
|
||||
.set_column(columnar_id, column);
|
||||
}
|
||||
}
|
||||
|
||||
let mut merge_columns: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
Default::default();
|
||||
|
||||
for ((column_name, _), mut grouped_columns) in columns_grouped {
|
||||
let column_type = grouped_columns.column_type_after_merge();
|
||||
coerce_columns(column_type, &mut grouped_columns.columns)?;
|
||||
merge_columns.insert((column_name, column_type), grouped_columns.columns);
|
||||
}
|
||||
|
||||
Ok(merge_columns)
|
||||
}
|
||||
|
||||
fn coerce_columns(
|
||||
column_type: ColumnType,
|
||||
columns: &mut [Option<DynamicColumn>],
|
||||
) -> io::Result<()> {
|
||||
for column_opt in columns.iter_mut() {
|
||||
if let Some(column) = column_opt.take() {
|
||||
*column_opt = Some(coerce_column(column_type, column)?);
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn coerce_column(column_type: ColumnType, column: DynamicColumn) -> io::Result<DynamicColumn> {
|
||||
if let Some(numerical_type) = column_type.numerical_type() {
|
||||
column
|
||||
.coerce_numerical(numerical_type)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidInput, ""))
|
||||
} else {
|
||||
if column.column_type() != column_type {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidInput,
|
||||
format!(
|
||||
"Cannot coerce column of type `{:?}` to `{column_type:?}`",
|
||||
column.column_type()
|
||||
),
|
||||
));
|
||||
}
|
||||
Ok(column)
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the (min, max) of a column provided it is numerical (i64, u64. f64).
|
||||
///
|
||||
/// The min and the max are simply the numerical value as defined by `ColumnValue::min_value()`,
|
||||
/// and `ColumnValue::max_value()`.
|
||||
///
|
||||
/// It is important to note that these values are only guaranteed to be lower/upper bound
|
||||
/// (as opposed to min/max value).
|
||||
/// If a column is empty, the min and max values are currently set to 0.
|
||||
fn min_max_if_numerical(column: &DynamicColumn) -> Option<(NumericalValue, NumericalValue)> {
|
||||
match column {
|
||||
DynamicColumn::I64(column) => Some((column.min_value().into(), column.max_value().into())),
|
||||
DynamicColumn::U64(column) => Some((column.min_value().into(), column.min_value().into())),
|
||||
DynamicColumn::F64(column) => Some((column.min_value().into(), column.min_value().into())),
|
||||
DynamicColumn::Bool(_)
|
||||
| DynamicColumn::IpAddr(_)
|
||||
| DynamicColumn::DateTime(_)
|
||||
| DynamicColumn::Bytes(_)
|
||||
| DynamicColumn::Str(_) => None,
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
107
columnar/src/columnar/merge/term_merger.rs
Normal file
107
columnar/src/columnar/merge/term_merger.rs
Normal file
@@ -0,0 +1,107 @@
|
||||
use std::cmp::Ordering;
|
||||
use std::collections::BinaryHeap;
|
||||
|
||||
use sstable::TermOrdinal;
|
||||
|
||||
use crate::Streamer;
|
||||
|
||||
pub struct HeapItem<'a> {
|
||||
pub streamer: Streamer<'a>,
|
||||
pub segment_ord: usize,
|
||||
}
|
||||
|
||||
impl<'a> PartialEq for HeapItem<'a> {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.segment_ord == other.segment_ord
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Eq for HeapItem<'a> {}
|
||||
|
||||
impl<'a> PartialOrd for HeapItem<'a> {
|
||||
fn partial_cmp(&self, other: &HeapItem<'a>) -> Option<Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Ord for HeapItem<'a> {
|
||||
fn cmp(&self, other: &HeapItem<'a>) -> Ordering {
|
||||
(&other.streamer.key(), &other.segment_ord).cmp(&(&self.streamer.key(), &self.segment_ord))
|
||||
}
|
||||
}
|
||||
|
||||
/// Given a list of sorted term streams,
|
||||
/// returns an iterator over sorted unique terms.
|
||||
///
|
||||
/// The item yield is actually a pair with
|
||||
/// - the term
|
||||
/// - a slice with the ordinal of the segments containing
|
||||
/// the terms.
|
||||
pub struct TermMerger<'a> {
|
||||
heap: BinaryHeap<HeapItem<'a>>,
|
||||
current_streamers: Vec<HeapItem<'a>>,
|
||||
}
|
||||
|
||||
impl<'a> TermMerger<'a> {
|
||||
/// Stream of merged term dictionary
|
||||
pub fn new(streams: Vec<Streamer<'a>>) -> TermMerger<'a> {
|
||||
TermMerger {
|
||||
heap: BinaryHeap::new(),
|
||||
current_streamers: streams
|
||||
.into_iter()
|
||||
.enumerate()
|
||||
.map(|(ord, streamer)| HeapItem {
|
||||
streamer,
|
||||
segment_ord: ord,
|
||||
})
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn matching_segments<'b: 'a>(
|
||||
&'b self,
|
||||
) -> impl 'b + Iterator<Item = (usize, TermOrdinal)> {
|
||||
self.current_streamers
|
||||
.iter()
|
||||
.map(|heap_item| (heap_item.segment_ord, heap_item.streamer.term_ord()))
|
||||
}
|
||||
|
||||
fn advance_segments(&mut self) {
|
||||
let streamers = &mut self.current_streamers;
|
||||
let heap = &mut self.heap;
|
||||
for mut heap_item in streamers.drain(..) {
|
||||
if heap_item.streamer.advance() {
|
||||
heap.push(heap_item);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Advance the term iterator to the next term.
|
||||
/// Returns true if there is indeed another term
|
||||
/// False if there is none.
|
||||
pub fn advance(&mut self) -> bool {
|
||||
self.advance_segments();
|
||||
if let Some(head) = self.heap.pop() {
|
||||
self.current_streamers.push(head);
|
||||
while let Some(next_streamer) = self.heap.peek() {
|
||||
if self.current_streamers[0].streamer.key() != next_streamer.streamer.key() {
|
||||
break;
|
||||
}
|
||||
let next_heap_it = self.heap.pop().unwrap(); // safe : we peeked beforehand
|
||||
self.current_streamers.push(next_heap_it);
|
||||
}
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the current term.
|
||||
///
|
||||
/// This method may be called
|
||||
/// if and only if advance() has been called before
|
||||
/// and "true" was returned.
|
||||
pub fn key(&self) -> &[u8] {
|
||||
self.current_streamers[0].streamer.key()
|
||||
}
|
||||
}
|
||||
318
columnar/src/columnar/merge/tests.rs
Normal file
318
columnar/src/columnar/merge/tests.rs
Normal file
@@ -0,0 +1,318 @@
|
||||
use super::*;
|
||||
use crate::{Cardinality, ColumnarWriter, HasAssociatedColumnType, RowId};
|
||||
|
||||
fn make_columnar<T: Into<NumericalValue> + HasAssociatedColumnType + Copy>(
|
||||
column_name: &str,
|
||||
vals: &[T],
|
||||
) -> ColumnarReader {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_column_type(column_name, T::column_type(), false);
|
||||
for (row_id, val) in vals.iter().copied().enumerate() {
|
||||
dataframe_writer.record_numerical(row_id as RowId, column_name, val.into());
|
||||
}
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer
|
||||
.serialize(vals.len() as RowId, None, &mut buffer)
|
||||
.unwrap();
|
||||
ColumnarReader::open(buffer).unwrap()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_coercion_to_u64() {
|
||||
// i64 type
|
||||
let columnar1 = make_columnar("numbers", &[1i64]);
|
||||
// u64 type
|
||||
let columnar2 = make_columnar("numbers", &[u64::MAX]);
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(&[&columnar1, &columnar2], &[]).unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::U64)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_no_coercion_if_all_the_same() {
|
||||
let columnar1 = make_columnar("numbers", &[1u64]);
|
||||
let columnar2 = make_columnar("numbers", &[2u64]);
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(&[&columnar1, &columnar2], &[]).unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::U64)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_coercion_to_i64() {
|
||||
let columnar1 = make_columnar("numbers", &[-1i64]);
|
||||
let columnar2 = make_columnar("numbers", &[2u64]);
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(&[&columnar1, &columnar2], &[]).unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::I64)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_impossible_coercion_returns_an_error() {
|
||||
let columnar1 = make_columnar("numbers", &[u64::MAX]);
|
||||
let group_error =
|
||||
group_columns_for_merge(&[&columnar1], &[("numbers".to_string(), ColumnType::I64)])
|
||||
.map(|_| ())
|
||||
.unwrap_err();
|
||||
assert_eq!(group_error.kind(), io::ErrorKind::InvalidInput);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_group_columns_with_required_column() {
|
||||
let columnar1 = make_columnar("numbers", &[1i64]);
|
||||
let columnar2 = make_columnar("numbers", &[2u64]);
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(
|
||||
&[&columnar1, &columnar2],
|
||||
&[("numbers".to_string(), ColumnType::U64)],
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::U64)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_group_columns_required_column_with_no_existing_columns() {
|
||||
let columnar1 = make_columnar("numbers", &[2u64]);
|
||||
let columnar2 = make_columnar("numbers", &[2u64]);
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(
|
||||
&[&columnar1, &columnar2],
|
||||
&[("required_col".to_string(), ColumnType::Str)],
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(column_map.len(), 2);
|
||||
let columns = column_map
|
||||
.get(&("required_col".to_string(), ColumnType::Str))
|
||||
.unwrap();
|
||||
assert_eq!(columns.len(), 2);
|
||||
assert!(columns[0].is_none());
|
||||
assert!(columns[1].is_none());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_group_columns_required_column_is_above_all_columns_have_the_same_type_rule() {
|
||||
let columnar1 = make_columnar("numbers", &[2i64]);
|
||||
let columnar2 = make_columnar("numbers", &[2i64]);
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(
|
||||
&[&columnar1, &columnar2],
|
||||
&[("numbers".to_string(), ColumnType::U64)],
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::U64)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_missing_column() {
|
||||
let columnar1 = make_columnar("numbers", &[-1i64]);
|
||||
let columnar2 = make_columnar("numbers2", &[2u64]);
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(&[&columnar1, &columnar2], &[]).unwrap();
|
||||
assert_eq!(column_map.len(), 2);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::I64)));
|
||||
{
|
||||
let columns = column_map
|
||||
.get(&("numbers".to_string(), ColumnType::I64))
|
||||
.unwrap();
|
||||
assert!(columns[0].is_some());
|
||||
assert!(columns[1].is_none());
|
||||
}
|
||||
{
|
||||
let columns = column_map
|
||||
.get(&("numbers2".to_string(), ColumnType::U64))
|
||||
.unwrap();
|
||||
assert!(columns[0].is_none());
|
||||
assert!(columns[1].is_some());
|
||||
}
|
||||
}
|
||||
|
||||
fn make_numerical_columnar_multiple_columns(
|
||||
columns: &[(&str, &[&[NumericalValue]])],
|
||||
) -> ColumnarReader {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
for (column_name, column_values) in columns {
|
||||
for (row_id, vals) in column_values.iter().enumerate() {
|
||||
for val in vals.iter() {
|
||||
dataframe_writer.record_numerical(row_id as u32, column_name, *val);
|
||||
}
|
||||
}
|
||||
}
|
||||
let num_rows = columns
|
||||
.iter()
|
||||
.map(|(_, val_rows)| val_rows.len() as RowId)
|
||||
.max()
|
||||
.unwrap_or(0u32);
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer
|
||||
.serialize(num_rows, None, &mut buffer)
|
||||
.unwrap();
|
||||
ColumnarReader::open(buffer).unwrap()
|
||||
}
|
||||
|
||||
fn make_byte_columnar_multiple_columns(columns: &[(&str, &[&[&[u8]]])]) -> ColumnarReader {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
for (column_name, column_values) in columns {
|
||||
for (row_id, vals) in column_values.iter().enumerate() {
|
||||
for val in vals.iter() {
|
||||
dataframe_writer.record_bytes(row_id as u32, column_name, val);
|
||||
}
|
||||
}
|
||||
}
|
||||
let num_rows = columns
|
||||
.iter()
|
||||
.map(|(_, val_rows)| val_rows.len() as RowId)
|
||||
.max()
|
||||
.unwrap_or(0u32);
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer
|
||||
.serialize(num_rows, None, &mut buffer)
|
||||
.unwrap();
|
||||
ColumnarReader::open(buffer).unwrap()
|
||||
}
|
||||
|
||||
fn make_text_columnar_multiple_columns(columns: &[(&str, &[&[&str]])]) -> ColumnarReader {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
for (column_name, column_values) in columns {
|
||||
for (row_id, vals) in column_values.iter().enumerate() {
|
||||
for val in vals.iter() {
|
||||
dataframe_writer.record_str(row_id as u32, column_name, val);
|
||||
}
|
||||
}
|
||||
}
|
||||
let num_rows = columns
|
||||
.iter()
|
||||
.map(|(_, val_rows)| val_rows.len() as RowId)
|
||||
.max()
|
||||
.unwrap_or(0u32);
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer
|
||||
.serialize(num_rows, None, &mut buffer)
|
||||
.unwrap();
|
||||
ColumnarReader::open(buffer).unwrap()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_merge_columnar_numbers() {
|
||||
let columnar1 =
|
||||
make_numerical_columnar_multiple_columns(&[("numbers", &[&[NumericalValue::from(-1f64)]])]);
|
||||
let columnar2 = make_numerical_columnar_multiple_columns(&[(
|
||||
"numbers",
|
||||
&[&[], &[NumericalValue::from(-3f64)]],
|
||||
)]);
|
||||
let mut buffer = Vec::new();
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let stack_merge_order = StackMergeOrder::stack(columnars);
|
||||
crate::columnar::merge_columnar(
|
||||
columnars,
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut buffer,
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_rows(), 3);
|
||||
assert_eq!(columnar_reader.num_columns(), 1);
|
||||
let cols = columnar_reader.read_columns("numbers").unwrap();
|
||||
let dynamic_column = cols[0].open().unwrap();
|
||||
let DynamicColumn::F64(vals) = dynamic_column else { panic!() };
|
||||
assert_eq!(vals.get_cardinality(), Cardinality::Optional);
|
||||
assert_eq!(vals.first(0u32), Some(-1f64));
|
||||
assert_eq!(vals.first(1u32), None);
|
||||
assert_eq!(vals.first(2u32), Some(-3f64));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_merge_columnar_texts() {
|
||||
let columnar1 = make_text_columnar_multiple_columns(&[("texts", &[&["a"]])]);
|
||||
let columnar2 = make_text_columnar_multiple_columns(&[("texts", &[&[], &["b"]])]);
|
||||
let mut buffer = Vec::new();
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let stack_merge_order = StackMergeOrder::stack(columnars);
|
||||
crate::columnar::merge_columnar(
|
||||
columnars,
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut buffer,
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_rows(), 3);
|
||||
assert_eq!(columnar_reader.num_columns(), 1);
|
||||
let cols = columnar_reader.read_columns("texts").unwrap();
|
||||
let dynamic_column = cols[0].open().unwrap();
|
||||
let DynamicColumn::Str(vals) = dynamic_column else { panic!() };
|
||||
let get_str_for_ord = |ord| {
|
||||
let mut out = String::new();
|
||||
vals.ord_to_str(ord, &mut out).unwrap();
|
||||
out
|
||||
};
|
||||
|
||||
assert_eq!(vals.dictionary.num_terms(), 2);
|
||||
assert_eq!(get_str_for_ord(0), "a");
|
||||
assert_eq!(get_str_for_ord(1), "b");
|
||||
|
||||
let get_str_for_row = |row_id| {
|
||||
let term_ords: Vec<u64> = vals.term_ords(row_id).collect();
|
||||
assert!(term_ords.len() <= 1);
|
||||
let mut out = String::new();
|
||||
if term_ords.len() == 1 {
|
||||
vals.ord_to_str(term_ords[0], &mut out).unwrap();
|
||||
}
|
||||
out
|
||||
};
|
||||
|
||||
assert_eq!(get_str_for_row(0), "a");
|
||||
assert_eq!(get_str_for_row(1), "");
|
||||
assert_eq!(get_str_for_row(2), "b");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_merge_columnar_byte() {
|
||||
let columnar1 = make_byte_columnar_multiple_columns(&[("bytes", &[&[b"bbbb"], &[b"baaa"]])]);
|
||||
let columnar2 = make_byte_columnar_multiple_columns(&[("bytes", &[&[], &[b"a"]])]);
|
||||
let mut buffer = Vec::new();
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let stack_merge_order = StackMergeOrder::stack(columnars);
|
||||
crate::columnar::merge_columnar(
|
||||
columnars,
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut buffer,
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_rows(), 4);
|
||||
assert_eq!(columnar_reader.num_columns(), 1);
|
||||
let cols = columnar_reader.read_columns("bytes").unwrap();
|
||||
let dynamic_column = cols[0].open().unwrap();
|
||||
let DynamicColumn::Bytes(vals) = dynamic_column else { panic!() };
|
||||
let get_bytes_for_ord = |ord| {
|
||||
let mut out = Vec::new();
|
||||
vals.ord_to_bytes(ord, &mut out).unwrap();
|
||||
out
|
||||
};
|
||||
|
||||
assert_eq!(vals.dictionary.num_terms(), 3);
|
||||
assert_eq!(get_bytes_for_ord(0), b"a");
|
||||
assert_eq!(get_bytes_for_ord(1), b"baaa");
|
||||
assert_eq!(get_bytes_for_ord(2), b"bbbb");
|
||||
|
||||
let get_bytes_for_row = |row_id| {
|
||||
let term_ords: Vec<u64> = vals.term_ords(row_id).collect();
|
||||
assert!(term_ords.len() <= 1);
|
||||
let mut out = Vec::new();
|
||||
if term_ords.len() == 1 {
|
||||
vals.ord_to_bytes(term_ords[0], &mut out).unwrap();
|
||||
}
|
||||
out
|
||||
};
|
||||
|
||||
assert_eq!(get_bytes_for_row(0), b"bbbb");
|
||||
assert_eq!(get_bytes_for_row(1), b"baaa");
|
||||
assert_eq!(get_bytes_for_row(2), b"");
|
||||
assert_eq!(get_bytes_for_row(3), b"a");
|
||||
}
|
||||
10
columnar/src/columnar/mod.rs
Normal file
10
columnar/src/columnar/mod.rs
Normal file
@@ -0,0 +1,10 @@
|
||||
mod column_type;
|
||||
mod format_version;
|
||||
mod merge;
|
||||
mod reader;
|
||||
mod writer;
|
||||
|
||||
pub use column_type::{ColumnType, HasAssociatedColumnType};
|
||||
pub use merge::{merge_columnar, MergeRowOrder, ShuffleMergeOrder, StackMergeOrder};
|
||||
pub use reader::ColumnarReader;
|
||||
pub use writer::ColumnarWriter;
|
||||
192
columnar/src/columnar/reader/mod.rs
Normal file
192
columnar/src/columnar/reader/mod.rs
Normal file
@@ -0,0 +1,192 @@
|
||||
use std::{io, mem};
|
||||
|
||||
use common::file_slice::FileSlice;
|
||||
use common::BinarySerializable;
|
||||
use sstable::{Dictionary, RangeSSTable};
|
||||
|
||||
use crate::columnar::{format_version, ColumnType};
|
||||
use crate::dynamic_column::DynamicColumnHandle;
|
||||
use crate::RowId;
|
||||
|
||||
fn io_invalid_data(msg: String) -> io::Error {
|
||||
io::Error::new(io::ErrorKind::InvalidData, msg)
|
||||
}
|
||||
|
||||
/// The ColumnarReader makes it possible to access a set of columns
|
||||
/// associated to field names.
|
||||
#[derive(Clone)]
|
||||
pub struct ColumnarReader {
|
||||
column_dictionary: Dictionary<RangeSSTable>,
|
||||
column_data: FileSlice,
|
||||
num_rows: RowId,
|
||||
}
|
||||
|
||||
/// Functions by both the async/sync code listing columns.
|
||||
/// It takes a stream from the column sstable and return the list of
|
||||
/// `DynamicColumn` available in it.
|
||||
fn read_all_columns_in_stream(
|
||||
mut stream: sstable::Streamer<'_, RangeSSTable>,
|
||||
column_data: &FileSlice,
|
||||
) -> io::Result<Vec<DynamicColumnHandle>> {
|
||||
let mut results = Vec::new();
|
||||
while stream.advance() {
|
||||
let key_bytes: &[u8] = stream.key();
|
||||
let Some(column_code) = key_bytes.last().copied() else {
|
||||
return Err(io_invalid_data("Empty column name.".to_string()));
|
||||
};
|
||||
let column_type = ColumnType::try_from_code(column_code)
|
||||
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
|
||||
let range = stream.value();
|
||||
let file_slice = column_data.slice(range.start as usize..range.end as usize);
|
||||
let dynamic_column_handle = DynamicColumnHandle {
|
||||
file_slice,
|
||||
column_type,
|
||||
};
|
||||
results.push(dynamic_column_handle);
|
||||
}
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
impl ColumnarReader {
|
||||
/// Opens a new Columnar file.
|
||||
pub fn open<F>(file_slice: F) -> io::Result<ColumnarReader>
|
||||
where FileSlice: From<F> {
|
||||
Self::open_inner(file_slice.into())
|
||||
}
|
||||
|
||||
fn open_inner(file_slice: FileSlice) -> io::Result<ColumnarReader> {
|
||||
let (file_slice_without_sstable_len, footer_slice) = file_slice
|
||||
.split_from_end(mem::size_of::<u64>() + 4 + format_version::VERSION_FOOTER_NUM_BYTES);
|
||||
let footer_bytes = footer_slice.read_bytes()?;
|
||||
let sstable_len = u64::deserialize(&mut &footer_bytes[0..8])?;
|
||||
let num_rows = u32::deserialize(&mut &footer_bytes[8..12])?;
|
||||
let version_footer_bytes: [u8; format_version::VERSION_FOOTER_NUM_BYTES] =
|
||||
footer_bytes[12..].try_into().unwrap();
|
||||
let _version = format_version::parse_footer(version_footer_bytes)?;
|
||||
let (column_data, sstable) =
|
||||
file_slice_without_sstable_len.split_from_end(sstable_len as usize);
|
||||
let column_dictionary = Dictionary::open(sstable)?;
|
||||
Ok(ColumnarReader {
|
||||
column_dictionary,
|
||||
column_data,
|
||||
num_rows,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
self.num_rows
|
||||
}
|
||||
|
||||
// TODO Add unit tests
|
||||
pub fn list_columns(&self) -> io::Result<Vec<(String, DynamicColumnHandle)>> {
|
||||
let mut stream = self.column_dictionary.stream()?;
|
||||
let mut results = Vec::new();
|
||||
while stream.advance() {
|
||||
let key_bytes: &[u8] = stream.key();
|
||||
let column_code: u8 = key_bytes.last().cloned().unwrap();
|
||||
let column_type: ColumnType = ColumnType::try_from_code(column_code)
|
||||
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
|
||||
let range = stream.value().clone();
|
||||
let column_name =
|
||||
// The last two bytes are respectively the 0u8 separator and the column_type.
|
||||
String::from_utf8_lossy(&key_bytes[..key_bytes.len() - 2]).to_string();
|
||||
let file_slice = self
|
||||
.column_data
|
||||
.slice(range.start as usize..range.end as usize);
|
||||
let column_handle = DynamicColumnHandle {
|
||||
file_slice,
|
||||
column_type,
|
||||
};
|
||||
results.push((column_name, column_handle));
|
||||
}
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
fn stream_for_column_range(&self, column_name: &str) -> sstable::StreamerBuilder<RangeSSTable> {
|
||||
// Each column is a associated to a given `column_key`,
|
||||
// that starts by `column_name\0column_header`.
|
||||
//
|
||||
// Listing the columns associated to the given column name is therefore equivalent to
|
||||
// listing `column_key` with the prefix `column_name\0`.
|
||||
//
|
||||
// This is in turn equivalent to searching for the range
|
||||
// `[column_name,\0`..column_name\1)`.
|
||||
// TODO can we get some more generic `prefix(..)` logic in the dictionary.
|
||||
let mut start_key = column_name.to_string();
|
||||
start_key.push('\0');
|
||||
let mut end_key = column_name.to_string();
|
||||
end_key.push(1u8 as char);
|
||||
self.column_dictionary
|
||||
.range()
|
||||
.ge(start_key.as_bytes())
|
||||
.lt(end_key.as_bytes())
|
||||
}
|
||||
|
||||
pub async fn read_columns_async(
|
||||
&self,
|
||||
column_name: &str,
|
||||
) -> io::Result<Vec<DynamicColumnHandle>> {
|
||||
let stream = self
|
||||
.stream_for_column_range(column_name)
|
||||
.into_stream_async()
|
||||
.await?;
|
||||
read_all_columns_in_stream(stream, &self.column_data)
|
||||
}
|
||||
|
||||
/// Get all columns for the given column name.
|
||||
///
|
||||
/// There can be more than one column associated to a given column name, provided they have
|
||||
/// different types.
|
||||
pub fn read_columns(&self, column_name: &str) -> io::Result<Vec<DynamicColumnHandle>> {
|
||||
let stream = self.stream_for_column_range(column_name).into_stream()?;
|
||||
read_all_columns_in_stream(stream, &self.column_data)
|
||||
}
|
||||
|
||||
/// Return the number of columns in the columnar.
|
||||
pub fn num_columns(&self) -> usize {
|
||||
self.column_dictionary.num_terms()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::{ColumnType, ColumnarReader, ColumnarWriter};
|
||||
|
||||
#[test]
|
||||
fn test_list_columns() {
|
||||
let mut columnar_writer = ColumnarWriter::default();
|
||||
columnar_writer.record_column_type("col1", ColumnType::Str, false);
|
||||
columnar_writer.record_column_type("col2", ColumnType::U64, false);
|
||||
let mut buffer = Vec::new();
|
||||
columnar_writer.serialize(1, None, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
let columns = columnar.list_columns().unwrap();
|
||||
assert_eq!(columns.len(), 2);
|
||||
assert_eq!(&columns[0].0, "col1");
|
||||
assert_eq!(columns[0].1.column_type(), ColumnType::Str);
|
||||
assert_eq!(&columns[1].0, "col2");
|
||||
assert_eq!(columns[1].1.column_type(), ColumnType::U64);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_list_columns_strict_typing_prevents_coercion() {
|
||||
let mut columnar_writer = ColumnarWriter::default();
|
||||
columnar_writer.record_column_type("count", ColumnType::U64, false);
|
||||
columnar_writer.record_numerical(1, "count", 1u64);
|
||||
let mut buffer = Vec::new();
|
||||
columnar_writer.serialize(2, None, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
let columns = columnar.list_columns().unwrap();
|
||||
assert_eq!(columns.len(), 1);
|
||||
assert_eq!(&columns[0].0, "count");
|
||||
assert_eq!(columns[0].1.column_type(), ColumnType::U64);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic(expected = "Input type forbidden")]
|
||||
fn test_list_columns_strict_typing_panics_on_wrong_types() {
|
||||
let mut columnar_writer = ColumnarWriter::default();
|
||||
columnar_writer.record_column_type("count", ColumnType::U64, false);
|
||||
columnar_writer.record_numerical(1, "count", 1i64);
|
||||
}
|
||||
}
|
||||
360
columnar/src/columnar/writer/column_operation.rs
Normal file
360
columnar/src/columnar/writer/column_operation.rs
Normal file
@@ -0,0 +1,360 @@
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
use crate::dictionary::UnorderedId;
|
||||
use crate::utils::{place_bits, pop_first_byte, select_bits};
|
||||
use crate::value::NumericalValue;
|
||||
use crate::{InvalidData, NumericalType, RowId};
|
||||
|
||||
/// When we build a columnar dataframe, we first just group
|
||||
/// all mutations per column, and appends them in append-only buffer
|
||||
/// in the stacker.
|
||||
///
|
||||
/// These ColumnOperation<T> are therefore serialize/deserialized
|
||||
/// in memory.
|
||||
///
|
||||
/// We represents all of these operations as `ColumnOperation`.
|
||||
#[derive(Eq, PartialEq, Debug, Clone, Copy)]
|
||||
pub(super) enum ColumnOperation<T> {
|
||||
NewDoc(RowId),
|
||||
Value(T),
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
|
||||
struct ColumnOperationMetadata {
|
||||
op_type: ColumnOperationType,
|
||||
len: u8,
|
||||
}
|
||||
|
||||
impl ColumnOperationMetadata {
|
||||
fn to_code(self) -> u8 {
|
||||
place_bits::<0, 6>(self.len) | place_bits::<6, 8>(self.op_type.to_code())
|
||||
}
|
||||
|
||||
fn try_from_code(code: u8) -> Result<Self, InvalidData> {
|
||||
let len = select_bits::<0, 6>(code);
|
||||
let typ_code = select_bits::<6, 8>(code);
|
||||
let column_type = ColumnOperationType::try_from_code(typ_code)?;
|
||||
Ok(ColumnOperationMetadata {
|
||||
op_type: column_type,
|
||||
len,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
|
||||
#[repr(u8)]
|
||||
enum ColumnOperationType {
|
||||
NewDoc = 0u8,
|
||||
AddValue = 1u8,
|
||||
}
|
||||
|
||||
impl ColumnOperationType {
|
||||
pub fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub fn try_from_code(code: u8) -> Result<Self, InvalidData> {
|
||||
match code {
|
||||
0 => Ok(Self::NewDoc),
|
||||
1 => Ok(Self::AddValue),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<V: SymbolValue> ColumnOperation<V> {
|
||||
pub(super) fn serialize(self) -> impl AsRef<[u8]> {
|
||||
let mut minibuf = MiniBuffer::default();
|
||||
let column_op_metadata = match self {
|
||||
ColumnOperation::NewDoc(new_doc) => {
|
||||
let symbol_len = new_doc.serialize(&mut minibuf.bytes[1..]);
|
||||
ColumnOperationMetadata {
|
||||
op_type: ColumnOperationType::NewDoc,
|
||||
len: symbol_len,
|
||||
}
|
||||
}
|
||||
ColumnOperation::Value(val) => {
|
||||
let symbol_len = val.serialize(&mut minibuf.bytes[1..]);
|
||||
ColumnOperationMetadata {
|
||||
op_type: ColumnOperationType::AddValue,
|
||||
len: symbol_len,
|
||||
}
|
||||
}
|
||||
};
|
||||
minibuf.bytes[0] = column_op_metadata.to_code();
|
||||
// +1 for the metadata
|
||||
minibuf.len = 1 + column_op_metadata.len;
|
||||
minibuf
|
||||
}
|
||||
|
||||
/// Deserialize a colummn operation.
|
||||
/// Returns None if the buffer is empty.
|
||||
///
|
||||
/// Panics if the payload is invalid:
|
||||
/// this deserialize method is meant to target in memory.
|
||||
pub(super) fn deserialize(bytes: &mut &[u8]) -> Option<Self> {
|
||||
let column_op_metadata_byte = pop_first_byte(bytes)?;
|
||||
let column_op_metadata = ColumnOperationMetadata::try_from_code(column_op_metadata_byte)
|
||||
.expect("Invalid op metadata byte");
|
||||
let symbol_bytes: &[u8];
|
||||
(symbol_bytes, *bytes) = bytes.split_at(column_op_metadata.len as usize);
|
||||
match column_op_metadata.op_type {
|
||||
ColumnOperationType::NewDoc => {
|
||||
let new_doc = u32::deserialize(symbol_bytes);
|
||||
Some(ColumnOperation::NewDoc(new_doc))
|
||||
}
|
||||
ColumnOperationType::AddValue => {
|
||||
let value = V::deserialize(symbol_bytes);
|
||||
Some(ColumnOperation::Value(value))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> From<T> for ColumnOperation<T> {
|
||||
fn from(value: T) -> Self {
|
||||
ColumnOperation::Value(value)
|
||||
}
|
||||
}
|
||||
|
||||
// Serialization trait very local to the writer.
|
||||
// As we write fast fields, we accumulate them in "in memory".
|
||||
// In order to limit memory usage, and in order
|
||||
// to benefit from the stacker, we do this by serialization our data
|
||||
// as "Symbols".
|
||||
#[allow(clippy::from_over_into)]
|
||||
pub(super) trait SymbolValue: Clone + Copy {
|
||||
// Serializes the symbol into the given buffer.
|
||||
// Returns the number of bytes written into the buffer.
|
||||
/// # Panics
|
||||
/// May not exceed 9bytes
|
||||
fn serialize(self, buffer: &mut [u8]) -> u8;
|
||||
// Panics if invalid
|
||||
fn deserialize(bytes: &[u8]) -> Self;
|
||||
}
|
||||
|
||||
impl SymbolValue for bool {
|
||||
fn serialize(self, buffer: &mut [u8]) -> u8 {
|
||||
buffer[0] = u8::from(self);
|
||||
1u8
|
||||
}
|
||||
|
||||
fn deserialize(bytes: &[u8]) -> Self {
|
||||
bytes[0] == 1u8
|
||||
}
|
||||
}
|
||||
|
||||
impl SymbolValue for Ipv6Addr {
|
||||
fn serialize(self, buffer: &mut [u8]) -> u8 {
|
||||
buffer[0..16].copy_from_slice(&self.octets());
|
||||
16
|
||||
}
|
||||
|
||||
fn deserialize(bytes: &[u8]) -> Self {
|
||||
let octets: [u8; 16] = bytes[0..16].try_into().unwrap();
|
||||
Ipv6Addr::from(octets)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
struct MiniBuffer {
|
||||
pub bytes: [u8; 17],
|
||||
pub len: u8,
|
||||
}
|
||||
|
||||
impl AsRef<[u8]> for MiniBuffer {
|
||||
fn as_ref(&self) -> &[u8] {
|
||||
&self.bytes[..self.len as usize]
|
||||
}
|
||||
}
|
||||
|
||||
impl SymbolValue for NumericalValue {
|
||||
fn deserialize(mut bytes: &[u8]) -> Self {
|
||||
let type_code = pop_first_byte(&mut bytes).unwrap();
|
||||
let symbol_type = NumericalType::try_from_code(type_code).unwrap();
|
||||
let mut octet: [u8; 8] = [0u8; 8];
|
||||
octet[..bytes.len()].copy_from_slice(bytes);
|
||||
match symbol_type {
|
||||
NumericalType::U64 => {
|
||||
let val: u64 = u64::from_le_bytes(octet);
|
||||
NumericalValue::U64(val)
|
||||
}
|
||||
NumericalType::I64 => {
|
||||
let encoded: u64 = u64::from_le_bytes(octet);
|
||||
let val: i64 = decode_zig_zag(encoded);
|
||||
NumericalValue::I64(val)
|
||||
}
|
||||
NumericalType::F64 => {
|
||||
debug_assert_eq!(bytes.len(), 8);
|
||||
let val: f64 = f64::from_le_bytes(octet);
|
||||
NumericalValue::F64(val)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// F64: Serialize with a fixed size of 9 bytes
|
||||
/// U64: Serialize without leading zeroes
|
||||
/// I64: ZigZag encoded and serialize without leading zeroes
|
||||
fn serialize(self, output: &mut [u8]) -> u8 {
|
||||
match self {
|
||||
NumericalValue::F64(val) => {
|
||||
output[0] = NumericalType::F64 as u8;
|
||||
output[1..9].copy_from_slice(&val.to_le_bytes());
|
||||
9u8
|
||||
}
|
||||
NumericalValue::U64(val) => {
|
||||
let len = compute_num_bytes_for_u64(val) as u8;
|
||||
output[0] = NumericalType::U64 as u8;
|
||||
output[1..9].copy_from_slice(&val.to_le_bytes());
|
||||
len + 1u8
|
||||
}
|
||||
NumericalValue::I64(val) => {
|
||||
let zig_zag_encoded = encode_zig_zag(val);
|
||||
let len = compute_num_bytes_for_u64(zig_zag_encoded) as u8;
|
||||
output[0] = NumericalType::I64 as u8;
|
||||
output[1..9].copy_from_slice(&zig_zag_encoded.to_le_bytes());
|
||||
len + 1u8
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl SymbolValue for u32 {
|
||||
fn serialize(self, output: &mut [u8]) -> u8 {
|
||||
let len = compute_num_bytes_for_u64(self as u64);
|
||||
output[0..4].copy_from_slice(&self.to_le_bytes());
|
||||
len as u8
|
||||
}
|
||||
|
||||
fn deserialize(bytes: &[u8]) -> Self {
|
||||
let mut quartet: [u8; 4] = [0u8; 4];
|
||||
quartet[..bytes.len()].copy_from_slice(bytes);
|
||||
u32::from_le_bytes(quartet)
|
||||
}
|
||||
}
|
||||
|
||||
impl SymbolValue for UnorderedId {
|
||||
fn serialize(self, output: &mut [u8]) -> u8 {
|
||||
self.0.serialize(output)
|
||||
}
|
||||
|
||||
fn deserialize(bytes: &[u8]) -> Self {
|
||||
UnorderedId(u32::deserialize(bytes))
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_num_bytes_for_u64(val: u64) -> usize {
|
||||
let msb = (64u32 - val.leading_zeros()) as usize;
|
||||
(msb + 7) / 8
|
||||
}
|
||||
|
||||
fn encode_zig_zag(n: i64) -> u64 {
|
||||
((n << 1) ^ (n >> 63)) as u64
|
||||
}
|
||||
|
||||
fn decode_zig_zag(n: u64) -> i64 {
|
||||
((n >> 1) as i64) ^ (-((n & 1) as i64))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[track_caller]
|
||||
fn test_zig_zag_aux(val: i64) {
|
||||
let encoded = super::encode_zig_zag(val);
|
||||
assert_eq!(decode_zig_zag(encoded), val);
|
||||
if let Some(abs_val) = val.checked_abs() {
|
||||
let abs_val = abs_val as u64;
|
||||
assert!(encoded <= abs_val * 2);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_zig_zag() {
|
||||
assert_eq!(encode_zig_zag(0i64), 0u64);
|
||||
assert_eq!(encode_zig_zag(-1i64), 1u64);
|
||||
assert_eq!(encode_zig_zag(1i64), 2u64);
|
||||
test_zig_zag_aux(0i64);
|
||||
test_zig_zag_aux(i64::MIN);
|
||||
test_zig_zag_aux(i64::MAX);
|
||||
}
|
||||
|
||||
use proptest::prelude::any;
|
||||
use proptest::proptest;
|
||||
|
||||
proptest! {
|
||||
#[test]
|
||||
fn test_proptest_zig_zag(val in any::<i64>()) {
|
||||
test_zig_zag_aux(val);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_op_metadata_byte_serialization() {
|
||||
for len in 0..=15 {
|
||||
for op_type in [ColumnOperationType::AddValue, ColumnOperationType::NewDoc] {
|
||||
let column_op_metadata = ColumnOperationMetadata { op_type, len };
|
||||
let column_op_metadata_code = column_op_metadata.to_code();
|
||||
let serdeser_metadata =
|
||||
ColumnOperationMetadata::try_from_code(column_op_metadata_code).unwrap();
|
||||
assert_eq!(column_op_metadata, serdeser_metadata);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[track_caller]
|
||||
fn ser_deser_symbol(column_op: ColumnOperation<NumericalValue>) {
|
||||
let buf = column_op.serialize();
|
||||
let mut buffer = buf.as_ref().to_vec();
|
||||
buffer.extend_from_slice(b"234234");
|
||||
let mut bytes = &buffer[..];
|
||||
let serdeser_symbol = ColumnOperation::deserialize(&mut bytes).unwrap();
|
||||
assert_eq!(bytes.len() + buf.as_ref().len(), buffer.len());
|
||||
assert_eq!(column_op, serdeser_symbol);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compute_num_bytes_for_u64() {
|
||||
assert_eq!(compute_num_bytes_for_u64(0), 0);
|
||||
assert_eq!(compute_num_bytes_for_u64(1), 1);
|
||||
assert_eq!(compute_num_bytes_for_u64(255), 1);
|
||||
assert_eq!(compute_num_bytes_for_u64(256), 2);
|
||||
assert_eq!(compute_num_bytes_for_u64((1 << 16) - 1), 2);
|
||||
assert_eq!(compute_num_bytes_for_u64(1 << 16), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_symbol_serialization() {
|
||||
ser_deser_symbol(ColumnOperation::NewDoc(0));
|
||||
ser_deser_symbol(ColumnOperation::NewDoc(3));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(0i64)));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(1i64)));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(257u64)));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(-257i64)));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(i64::MIN)));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(0u64)));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(u64::MIN)));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(u64::MAX)));
|
||||
}
|
||||
|
||||
fn test_column_operation_unordered_aux(val: u32, expected_len: usize) {
|
||||
let column_op = ColumnOperation::Value(UnorderedId(val));
|
||||
let minibuf = column_op.serialize();
|
||||
assert_eq!({ minibuf.as_ref().len() }, expected_len);
|
||||
let mut buf = minibuf.as_ref().to_vec();
|
||||
buf.extend_from_slice(&[2, 2, 2, 2, 2, 2]);
|
||||
let mut cursor = &buf[..];
|
||||
let column_op_serdeser: ColumnOperation<UnorderedId> =
|
||||
ColumnOperation::deserialize(&mut cursor).unwrap();
|
||||
assert_eq!(column_op_serdeser, ColumnOperation::Value(UnorderedId(val)));
|
||||
assert_eq!(cursor.len() + expected_len, buf.len());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_operation_unordered() {
|
||||
test_column_operation_unordered_aux(300u32, 3);
|
||||
test_column_operation_unordered_aux(1u32, 2);
|
||||
test_column_operation_unordered_aux(0u32, 1);
|
||||
}
|
||||
}
|
||||
363
columnar/src/columnar/writer/column_writers.rs
Normal file
363
columnar/src/columnar/writer/column_writers.rs
Normal file
@@ -0,0 +1,363 @@
|
||||
use std::cmp::Ordering;
|
||||
|
||||
use stacker::{ExpUnrolledLinkedList, MemoryArena};
|
||||
|
||||
use crate::columnar::writer::column_operation::{ColumnOperation, SymbolValue};
|
||||
use crate::dictionary::{DictionaryBuilder, UnorderedId};
|
||||
use crate::{Cardinality, NumericalType, NumericalValue, RowId};
|
||||
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[repr(u8)]
|
||||
enum DocumentStep {
|
||||
Same = 0,
|
||||
Next = 1,
|
||||
Skipped = 2,
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn delta_with_last_doc(last_doc_opt: Option<u32>, doc: u32) -> DocumentStep {
|
||||
let expected_next_doc = last_doc_opt.map(|last_doc| last_doc + 1).unwrap_or(0u32);
|
||||
match doc.cmp(&expected_next_doc) {
|
||||
Ordering::Less => DocumentStep::Same,
|
||||
Ordering::Equal => DocumentStep::Next,
|
||||
Ordering::Greater => DocumentStep::Skipped,
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Default)]
|
||||
pub struct ColumnWriter {
|
||||
// Detected cardinality of the column so far.
|
||||
cardinality: Cardinality,
|
||||
// Last document inserted.
|
||||
// None if no doc has been added yet.
|
||||
last_doc_opt: Option<u32>,
|
||||
// Buffer containing the serialized values.
|
||||
values: ExpUnrolledLinkedList,
|
||||
}
|
||||
|
||||
impl ColumnWriter {
|
||||
/// Returns an iterator over the Symbol that have been recorded
|
||||
/// for the given column.
|
||||
pub(super) fn operation_iterator<'a, V: SymbolValue>(
|
||||
&self,
|
||||
arena: &MemoryArena,
|
||||
old_to_new_ids_opt: Option<&[RowId]>,
|
||||
buffer: &'a mut Vec<u8>,
|
||||
) -> impl Iterator<Item = ColumnOperation<V>> + 'a {
|
||||
buffer.clear();
|
||||
self.values.read_to_end(arena, buffer);
|
||||
if let Some(old_to_new_ids) = old_to_new_ids_opt {
|
||||
// TODO avoid the extra deserialization / serialization.
|
||||
let mut sorted_ops: Vec<(RowId, ColumnOperation<V>)> = Vec::new();
|
||||
let mut new_doc = 0u32;
|
||||
let mut cursor = &buffer[..];
|
||||
for op in std::iter::from_fn(|| ColumnOperation::<V>::deserialize(&mut cursor)) {
|
||||
if let ColumnOperation::NewDoc(doc) = &op {
|
||||
new_doc = old_to_new_ids[*doc as usize];
|
||||
sorted_ops.push((new_doc, ColumnOperation::NewDoc(new_doc)));
|
||||
} else {
|
||||
sorted_ops.push((new_doc, op));
|
||||
}
|
||||
}
|
||||
// stable sort is crucial here.
|
||||
sorted_ops.sort_by_key(|(new_doc_id, _)| *new_doc_id);
|
||||
buffer.clear();
|
||||
for (_, op) in sorted_ops {
|
||||
buffer.extend_from_slice(op.serialize().as_ref());
|
||||
}
|
||||
}
|
||||
let mut cursor: &[u8] = &buffer[..];
|
||||
std::iter::from_fn(move || ColumnOperation::deserialize(&mut cursor))
|
||||
}
|
||||
|
||||
/// Records a change of the document being recorded.
|
||||
///
|
||||
/// This function will also update the cardinality of the column
|
||||
/// if necessary.
|
||||
pub(super) fn record<S: SymbolValue>(&mut self, doc: RowId, value: S, arena: &mut MemoryArena) {
|
||||
// Difference between `doc` and the last doc.
|
||||
match delta_with_last_doc(self.last_doc_opt, doc) {
|
||||
DocumentStep::Same => {
|
||||
// This is the last encounterred document.
|
||||
self.cardinality = Cardinality::Multivalued;
|
||||
}
|
||||
DocumentStep::Next => {
|
||||
self.last_doc_opt = Some(doc);
|
||||
self.write_symbol::<S>(ColumnOperation::NewDoc(doc), arena);
|
||||
}
|
||||
DocumentStep::Skipped => {
|
||||
self.cardinality = self.cardinality.max(Cardinality::Optional);
|
||||
self.last_doc_opt = Some(doc);
|
||||
self.write_symbol::<S>(ColumnOperation::NewDoc(doc), arena);
|
||||
}
|
||||
}
|
||||
self.write_symbol(ColumnOperation::Value(value), arena);
|
||||
}
|
||||
|
||||
// Get the cardinality.
|
||||
// The overall number of docs in the column is necessary to
|
||||
// deal with the case where the all docs contain 1 value, except some documents
|
||||
// at the end of the column.
|
||||
pub(crate) fn get_cardinality(&self, num_docs: RowId) -> Cardinality {
|
||||
match delta_with_last_doc(self.last_doc_opt, num_docs) {
|
||||
DocumentStep::Same | DocumentStep::Next => self.cardinality,
|
||||
DocumentStep::Skipped => self.cardinality.max(Cardinality::Optional),
|
||||
}
|
||||
}
|
||||
|
||||
/// Appends a new symbol to the `ColumnWriter`.
|
||||
fn write_symbol<V: SymbolValue>(
|
||||
&mut self,
|
||||
column_operation: ColumnOperation<V>,
|
||||
arena: &mut MemoryArena,
|
||||
) {
|
||||
self.values
|
||||
.writer(arena)
|
||||
.extend_from_slice(column_operation.serialize().as_ref());
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Default)]
|
||||
pub(crate) struct NumericalColumnWriter {
|
||||
compatible_numerical_types: CompatibleNumericalTypes,
|
||||
column_writer: ColumnWriter,
|
||||
}
|
||||
|
||||
impl NumericalColumnWriter {
|
||||
pub fn force_numerical_type(&mut self, numerical_type: NumericalType) {
|
||||
assert!(self
|
||||
.compatible_numerical_types
|
||||
.is_type_accepted(numerical_type));
|
||||
self.compatible_numerical_types = CompatibleNumericalTypes::StaticType(numerical_type);
|
||||
}
|
||||
}
|
||||
|
||||
/// State used to store what types are still acceptable
|
||||
/// after having seen a set of numerical values.
|
||||
#[derive(Clone, Copy)]
|
||||
pub(crate) enum CompatibleNumericalTypes {
|
||||
Dynamic {
|
||||
all_values_within_i64_range: bool,
|
||||
all_values_within_u64_range: bool,
|
||||
},
|
||||
StaticType(NumericalType),
|
||||
}
|
||||
|
||||
impl Default for CompatibleNumericalTypes {
|
||||
fn default() -> CompatibleNumericalTypes {
|
||||
CompatibleNumericalTypes::Dynamic {
|
||||
all_values_within_i64_range: true,
|
||||
all_values_within_u64_range: true,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl CompatibleNumericalTypes {
|
||||
pub fn is_type_accepted(&self, numerical_type: NumericalType) -> bool {
|
||||
match self {
|
||||
CompatibleNumericalTypes::Dynamic {
|
||||
all_values_within_i64_range,
|
||||
all_values_within_u64_range,
|
||||
} => match numerical_type {
|
||||
NumericalType::I64 => *all_values_within_i64_range,
|
||||
NumericalType::U64 => *all_values_within_u64_range,
|
||||
NumericalType::F64 => true,
|
||||
},
|
||||
CompatibleNumericalTypes::StaticType(static_numerical_type) => {
|
||||
*static_numerical_type == numerical_type
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn accept_value(&mut self, numerical_value: NumericalValue) {
|
||||
match self {
|
||||
CompatibleNumericalTypes::Dynamic {
|
||||
all_values_within_i64_range,
|
||||
all_values_within_u64_range,
|
||||
} => match numerical_value {
|
||||
NumericalValue::I64(val_i64) => {
|
||||
let value_within_u64_range = val_i64 >= 0i64;
|
||||
*all_values_within_u64_range &= value_within_u64_range;
|
||||
}
|
||||
NumericalValue::U64(val_u64) => {
|
||||
let value_within_i64_range = val_u64 < i64::MAX as u64;
|
||||
*all_values_within_i64_range &= value_within_i64_range;
|
||||
}
|
||||
NumericalValue::F64(_) => {
|
||||
*all_values_within_i64_range = false;
|
||||
*all_values_within_u64_range = false;
|
||||
}
|
||||
},
|
||||
CompatibleNumericalTypes::StaticType(typ) => {
|
||||
assert_eq!(
|
||||
numerical_value.numerical_type(),
|
||||
*typ,
|
||||
"Input type forbidden. This column has been forced to type {typ:?}, received \
|
||||
{numerical_value:?}"
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn to_numerical_type(self) -> NumericalType {
|
||||
for numerical_type in [NumericalType::I64, NumericalType::U64] {
|
||||
if self.is_type_accepted(numerical_type) {
|
||||
return numerical_type;
|
||||
}
|
||||
}
|
||||
NumericalType::F64
|
||||
}
|
||||
}
|
||||
|
||||
impl NumericalColumnWriter {
|
||||
pub fn numerical_type(&self) -> NumericalType {
|
||||
self.compatible_numerical_types.to_numerical_type()
|
||||
}
|
||||
|
||||
pub fn cardinality(&self, num_docs: RowId) -> Cardinality {
|
||||
self.column_writer.get_cardinality(num_docs)
|
||||
}
|
||||
|
||||
pub fn record_numerical_value(
|
||||
&mut self,
|
||||
doc: RowId,
|
||||
value: NumericalValue,
|
||||
arena: &mut MemoryArena,
|
||||
) {
|
||||
self.compatible_numerical_types.accept_value(value);
|
||||
self.column_writer.record(doc, value, arena);
|
||||
}
|
||||
|
||||
pub(super) fn operation_iterator<'a>(
|
||||
self,
|
||||
arena: &MemoryArena,
|
||||
old_to_new_ids: Option<&[RowId]>,
|
||||
buffer: &'a mut Vec<u8>,
|
||||
) -> impl Iterator<Item = ColumnOperation<NumericalValue>> + 'a {
|
||||
self.column_writer
|
||||
.operation_iterator(arena, old_to_new_ids, buffer)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub(crate) struct StrOrBytesColumnWriter {
|
||||
pub(crate) dictionary_id: u32,
|
||||
pub(crate) column_writer: ColumnWriter,
|
||||
// If true, when facing a multivalued cardinality,
|
||||
// values associated to a given document will be sorted.
|
||||
//
|
||||
// This is useful for facets.
|
||||
//
|
||||
// If false, the order of appearance in the document will be
|
||||
// observed.
|
||||
pub(crate) sort_values_within_row: bool,
|
||||
}
|
||||
|
||||
impl StrOrBytesColumnWriter {
|
||||
pub(crate) fn with_dictionary_id(dictionary_id: u32) -> StrOrBytesColumnWriter {
|
||||
StrOrBytesColumnWriter {
|
||||
dictionary_id,
|
||||
column_writer: Default::default(),
|
||||
sort_values_within_row: false,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn record_bytes(
|
||||
&mut self,
|
||||
doc: RowId,
|
||||
bytes: &[u8],
|
||||
dictionaries: &mut [DictionaryBuilder],
|
||||
arena: &mut MemoryArena,
|
||||
) {
|
||||
let unordered_id = dictionaries[self.dictionary_id as usize].get_or_allocate_id(bytes);
|
||||
self.column_writer.record(doc, unordered_id, arena);
|
||||
}
|
||||
|
||||
pub(super) fn operation_iterator<'a>(
|
||||
&self,
|
||||
arena: &MemoryArena,
|
||||
old_to_new_ids: Option<&[RowId]>,
|
||||
byte_buffer: &'a mut Vec<u8>,
|
||||
) -> impl Iterator<Item = ColumnOperation<UnorderedId>> + 'a {
|
||||
self.column_writer
|
||||
.operation_iterator(arena, old_to_new_ids, byte_buffer)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_delta_with_last_doc() {
|
||||
assert_eq!(delta_with_last_doc(None, 0u32), DocumentStep::Next);
|
||||
assert_eq!(delta_with_last_doc(None, 1u32), DocumentStep::Skipped);
|
||||
assert_eq!(delta_with_last_doc(None, 2u32), DocumentStep::Skipped);
|
||||
assert_eq!(delta_with_last_doc(Some(0u32), 0u32), DocumentStep::Same);
|
||||
assert_eq!(delta_with_last_doc(Some(1u32), 1u32), DocumentStep::Same);
|
||||
assert_eq!(delta_with_last_doc(Some(1u32), 2u32), DocumentStep::Next);
|
||||
assert_eq!(delta_with_last_doc(Some(1u32), 3u32), DocumentStep::Skipped);
|
||||
assert_eq!(delta_with_last_doc(Some(1u32), 4u32), DocumentStep::Skipped);
|
||||
}
|
||||
|
||||
#[track_caller]
|
||||
fn test_column_writer_coercion_iter_aux(
|
||||
values: impl Iterator<Item = NumericalValue>,
|
||||
expected_numerical_type: NumericalType,
|
||||
) {
|
||||
let mut compatible_numerical_types = CompatibleNumericalTypes::default();
|
||||
for value in values {
|
||||
compatible_numerical_types.accept_value(value);
|
||||
}
|
||||
assert_eq!(
|
||||
compatible_numerical_types.to_numerical_type(),
|
||||
expected_numerical_type
|
||||
);
|
||||
}
|
||||
|
||||
#[track_caller]
|
||||
fn test_column_writer_coercion_aux(
|
||||
values: &[NumericalValue],
|
||||
expected_numerical_type: NumericalType,
|
||||
) {
|
||||
test_column_writer_coercion_iter_aux(values.iter().copied(), expected_numerical_type);
|
||||
test_column_writer_coercion_iter_aux(values.iter().rev().copied(), expected_numerical_type);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_writer_coercion() {
|
||||
test_column_writer_coercion_aux(&[], NumericalType::I64);
|
||||
test_column_writer_coercion_aux(&[1i64.into()], NumericalType::I64);
|
||||
test_column_writer_coercion_aux(&[1u64.into()], NumericalType::I64);
|
||||
// We don't detect exact integer at the moment. We could!
|
||||
test_column_writer_coercion_aux(&[1f64.into()], NumericalType::F64);
|
||||
test_column_writer_coercion_aux(&[u64::MAX.into()], NumericalType::U64);
|
||||
test_column_writer_coercion_aux(&[(i64::MAX as u64).into()], NumericalType::U64);
|
||||
test_column_writer_coercion_aux(&[(1u64 << 63).into()], NumericalType::U64);
|
||||
test_column_writer_coercion_aux(&[1i64.into(), 1u64.into()], NumericalType::I64);
|
||||
test_column_writer_coercion_aux(&[u64::MAX.into(), (-1i64).into()], NumericalType::F64);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic]
|
||||
fn test_compatible_numerical_types_static_incompatible_type() {
|
||||
let mut compatible_numerical_types =
|
||||
CompatibleNumericalTypes::StaticType(NumericalType::U64);
|
||||
compatible_numerical_types.accept_value(NumericalValue::I64(1i64));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compatible_numerical_types_static_different_type_forbidden() {
|
||||
let mut compatible_numerical_types =
|
||||
CompatibleNumericalTypes::StaticType(NumericalType::U64);
|
||||
compatible_numerical_types.accept_value(NumericalValue::U64(u64::MAX));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compatible_numerical_types_static() {
|
||||
for typ in [NumericalType::I64, NumericalType::I64, NumericalType::F64] {
|
||||
let compatible_numerical_types = CompatibleNumericalTypes::StaticType(typ);
|
||||
assert_eq!(compatible_numerical_types.to_numerical_type(), typ);
|
||||
}
|
||||
}
|
||||
}
|
||||
848
columnar/src/columnar/writer/mod.rs
Normal file
848
columnar/src/columnar/writer/mod.rs
Normal file
@@ -0,0 +1,848 @@
|
||||
mod column_operation;
|
||||
mod column_writers;
|
||||
mod serializer;
|
||||
mod value_index;
|
||||
|
||||
use std::io;
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
use column_operation::ColumnOperation;
|
||||
pub(crate) use column_writers::CompatibleNumericalTypes;
|
||||
use common::CountingWriter;
|
||||
pub(crate) use serializer::ColumnarSerializer;
|
||||
use stacker::{Addr, ArenaHashMap, MemoryArena};
|
||||
|
||||
use crate::column_index::SerializableColumnIndex;
|
||||
use crate::column_values::{
|
||||
ColumnValues, MonotonicallyMappableToU128, MonotonicallyMappableToU64, VecColumn,
|
||||
};
|
||||
use crate::columnar::column_type::ColumnType;
|
||||
use crate::columnar::writer::column_writers::{
|
||||
ColumnWriter, NumericalColumnWriter, StrOrBytesColumnWriter,
|
||||
};
|
||||
use crate::columnar::writer::value_index::{IndexBuilder, PreallocatedIndexBuilders};
|
||||
use crate::dictionary::{DictionaryBuilder, TermIdMapping, UnorderedId};
|
||||
use crate::value::{Coerce, NumericalType, NumericalValue};
|
||||
use crate::{Cardinality, RowId};
|
||||
|
||||
/// This is a set of buffers that are used to temporarily write the values into before passing them
|
||||
/// to the fast field codecs.
|
||||
#[derive(Default)]
|
||||
struct SpareBuffers {
|
||||
value_index_builders: PreallocatedIndexBuilders,
|
||||
u64_values: Vec<u64>,
|
||||
ip_addr_values: Vec<Ipv6Addr>,
|
||||
}
|
||||
|
||||
/// Makes it possible to create a new columnar.
|
||||
///
|
||||
/// ```rust
|
||||
/// use tantivy_columnar::ColumnarWriter;
|
||||
///
|
||||
/// let mut columnar_writer = ColumnarWriter::default();
|
||||
/// columnar_writer.record_str(0u32 /* doc id */, "product_name", "Red backpack");
|
||||
/// columnar_writer.record_numerical(0u32 /* doc id */, "price", 10u64);
|
||||
/// columnar_writer.record_str(1u32 /* doc id */, "product_name", "Apple");
|
||||
/// columnar_writer.record_numerical(0u32 /* doc id */, "price", 10.5f64); //< uh oh we ended up mixing integer and floats.
|
||||
/// let mut wrt: Vec<u8> = Vec::new();
|
||||
/// columnar_writer.serialize(2u32, None, &mut wrt).unwrap();
|
||||
/// ```
|
||||
#[derive(Default)]
|
||||
pub struct ColumnarWriter {
|
||||
numerical_field_hash_map: ArenaHashMap,
|
||||
datetime_field_hash_map: ArenaHashMap,
|
||||
bool_field_hash_map: ArenaHashMap,
|
||||
ip_addr_field_hash_map: ArenaHashMap,
|
||||
bytes_field_hash_map: ArenaHashMap,
|
||||
str_field_hash_map: ArenaHashMap,
|
||||
arena: MemoryArena,
|
||||
// Dictionaries used to store dictionary-encoded values.
|
||||
dictionaries: Vec<DictionaryBuilder>,
|
||||
buffers: SpareBuffers,
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn mutate_or_create_column<V, TMutator>(
|
||||
arena_hash_map: &mut ArenaHashMap,
|
||||
column_name: &str,
|
||||
updater: TMutator,
|
||||
) where
|
||||
V: Copy + 'static,
|
||||
TMutator: FnMut(Option<V>) -> V,
|
||||
{
|
||||
assert!(
|
||||
!column_name.as_bytes().contains(&0u8),
|
||||
"key may not contain the 0 byte"
|
||||
);
|
||||
arena_hash_map.mutate_or_create(column_name.as_bytes(), updater);
|
||||
}
|
||||
|
||||
impl ColumnarWriter {
|
||||
pub fn mem_usage(&self) -> usize {
|
||||
// TODO add dictionary builders.
|
||||
self.arena.mem_usage()
|
||||
+ self.numerical_field_hash_map.mem_usage()
|
||||
+ self.bool_field_hash_map.mem_usage()
|
||||
+ self.bytes_field_hash_map.mem_usage()
|
||||
+ self.str_field_hash_map.mem_usage()
|
||||
+ self.ip_addr_field_hash_map.mem_usage()
|
||||
+ self.datetime_field_hash_map.mem_usage()
|
||||
}
|
||||
|
||||
/// Returns the list of doc ids from 0..num_docs sorted by the `sort_field`
|
||||
/// column.
|
||||
///
|
||||
/// If the column is multivalued, use the first value for scoring.
|
||||
/// If no value is associated to a specific row, the document is assigned
|
||||
/// the lowest possible score.
|
||||
///
|
||||
/// The sort applied is stable.
|
||||
pub fn sort_order(&self, sort_field: &str, num_docs: RowId, reversed: bool) -> Vec<u32> {
|
||||
let Some(numerical_col_writer) =
|
||||
self.numerical_field_hash_map.get::<NumericalColumnWriter>(sort_field.as_bytes()) else {
|
||||
return Vec::new();
|
||||
};
|
||||
let mut symbols_buffer = Vec::new();
|
||||
let mut values = Vec::new();
|
||||
let mut last_doc_opt: Option<RowId> = None;
|
||||
for op in numerical_col_writer.operation_iterator(&self.arena, None, &mut symbols_buffer) {
|
||||
match op {
|
||||
ColumnOperation::NewDoc(doc) => {
|
||||
last_doc_opt = Some(doc);
|
||||
}
|
||||
ColumnOperation::Value(numerical_value) => {
|
||||
if let Some(last_doc) = last_doc_opt {
|
||||
let score: f32 = f64::coerce(numerical_value) as f32;
|
||||
values.push((score, last_doc));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for doc in values.len() as u32..num_docs {
|
||||
values.push((0.0f32, doc));
|
||||
}
|
||||
values.sort_by(|(left_score, _), (right_score, _)| {
|
||||
if reversed {
|
||||
right_score.partial_cmp(left_score).unwrap()
|
||||
} else {
|
||||
left_score.partial_cmp(right_score).unwrap()
|
||||
}
|
||||
});
|
||||
values.into_iter().map(|(_score, doc)| doc).collect()
|
||||
}
|
||||
|
||||
/// Records a column type. This is useful to bypass the coercion process,
|
||||
/// makes sure the empty is present in the resulting columnar, or set
|
||||
/// the `sort_values_within_row`.
|
||||
///
|
||||
/// `sort_values_within_row` is only allowed for `Bytes` or `Str` columns.
|
||||
pub fn record_column_type(
|
||||
&mut self,
|
||||
column_name: &str,
|
||||
column_type: ColumnType,
|
||||
sort_values_within_row: bool,
|
||||
) {
|
||||
if sort_values_within_row {
|
||||
assert!(
|
||||
column_type == ColumnType::Bytes || column_type == ColumnType::Str,
|
||||
"sort_values_within_row is only allowed for Bytes and Str columns",
|
||||
);
|
||||
}
|
||||
match column_type {
|
||||
ColumnType::Str | ColumnType::Bytes => {
|
||||
let (hash_map, dictionaries) = (
|
||||
if column_type == ColumnType::Str {
|
||||
&mut self.str_field_hash_map
|
||||
} else {
|
||||
&mut self.bytes_field_hash_map
|
||||
},
|
||||
&mut self.dictionaries,
|
||||
);
|
||||
mutate_or_create_column(
|
||||
hash_map,
|
||||
column_name,
|
||||
|column_opt: Option<StrOrBytesColumnWriter>| {
|
||||
let mut column_writer = if let Some(column_writer) = column_opt {
|
||||
column_writer
|
||||
} else {
|
||||
let dictionary_id = dictionaries.len() as u32;
|
||||
dictionaries.push(DictionaryBuilder::default());
|
||||
StrOrBytesColumnWriter::with_dictionary_id(dictionary_id)
|
||||
};
|
||||
column_writer.sort_values_within_row = sort_values_within_row;
|
||||
column_writer
|
||||
},
|
||||
);
|
||||
}
|
||||
ColumnType::Bool => {
|
||||
mutate_or_create_column(
|
||||
&mut self.bool_field_hash_map,
|
||||
column_name,
|
||||
|column_opt: Option<ColumnWriter>| column_opt.unwrap_or_default(),
|
||||
);
|
||||
}
|
||||
ColumnType::DateTime => {
|
||||
mutate_or_create_column(
|
||||
&mut self.datetime_field_hash_map,
|
||||
column_name,
|
||||
|column_opt: Option<ColumnWriter>| column_opt.unwrap_or_default(),
|
||||
);
|
||||
}
|
||||
ColumnType::I64 | ColumnType::F64 | ColumnType::U64 => {
|
||||
let numerical_type = column_type.numerical_type().unwrap();
|
||||
mutate_or_create_column(
|
||||
&mut self.numerical_field_hash_map,
|
||||
column_name,
|
||||
|column_opt: Option<NumericalColumnWriter>| {
|
||||
let mut column: NumericalColumnWriter = column_opt.unwrap_or_default();
|
||||
column.force_numerical_type(numerical_type);
|
||||
column
|
||||
},
|
||||
);
|
||||
}
|
||||
ColumnType::IpAddr => mutate_or_create_column(
|
||||
&mut self.ip_addr_field_hash_map,
|
||||
column_name,
|
||||
|column_opt: Option<ColumnWriter>| column_opt.unwrap_or_default(),
|
||||
),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn record_numerical<T: Into<NumericalValue> + Copy>(
|
||||
&mut self,
|
||||
doc: RowId,
|
||||
column_name: &str,
|
||||
numerical_value: T,
|
||||
) {
|
||||
let (hash_map, arena) = (&mut self.numerical_field_hash_map, &mut self.arena);
|
||||
mutate_or_create_column(
|
||||
hash_map,
|
||||
column_name,
|
||||
|column_opt: Option<NumericalColumnWriter>| {
|
||||
let mut column: NumericalColumnWriter = column_opt.unwrap_or_default();
|
||||
column.record_numerical_value(doc, numerical_value.into(), arena);
|
||||
column
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
pub fn record_ip_addr(&mut self, doc: RowId, column_name: &str, ip_addr: Ipv6Addr) {
|
||||
assert!(
|
||||
!column_name.as_bytes().contains(&0u8),
|
||||
"key may not contain the 0 byte"
|
||||
);
|
||||
let (hash_map, arena) = (&mut self.ip_addr_field_hash_map, &mut self.arena);
|
||||
hash_map.mutate_or_create(
|
||||
column_name.as_bytes(),
|
||||
|column_opt: Option<ColumnWriter>| {
|
||||
let mut column: ColumnWriter = column_opt.unwrap_or_default();
|
||||
column.record(doc, ip_addr, arena);
|
||||
column
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
pub fn record_bool(&mut self, doc: RowId, column_name: &str, val: bool) {
|
||||
let (hash_map, arena) = (&mut self.bool_field_hash_map, &mut self.arena);
|
||||
mutate_or_create_column(hash_map, column_name, |column_opt: Option<ColumnWriter>| {
|
||||
let mut column: ColumnWriter = column_opt.unwrap_or_default();
|
||||
column.record(doc, val, arena);
|
||||
column
|
||||
});
|
||||
}
|
||||
|
||||
pub fn record_datetime(&mut self, doc: RowId, column_name: &str, datetime: common::DateTime) {
|
||||
let (hash_map, arena) = (&mut self.datetime_field_hash_map, &mut self.arena);
|
||||
mutate_or_create_column(hash_map, column_name, |column_opt: Option<ColumnWriter>| {
|
||||
let mut column: ColumnWriter = column_opt.unwrap_or_default();
|
||||
column.record(
|
||||
doc,
|
||||
NumericalValue::I64(datetime.into_timestamp_micros()),
|
||||
arena,
|
||||
);
|
||||
column
|
||||
});
|
||||
}
|
||||
|
||||
pub fn record_str(&mut self, doc: RowId, column_name: &str, value: &str) {
|
||||
let (hash_map, arena, dictionaries) = (
|
||||
&mut self.str_field_hash_map,
|
||||
&mut self.arena,
|
||||
&mut self.dictionaries,
|
||||
);
|
||||
hash_map.mutate_or_create(
|
||||
column_name.as_bytes(),
|
||||
|column_opt: Option<StrOrBytesColumnWriter>| {
|
||||
let mut column: StrOrBytesColumnWriter = column_opt.unwrap_or_else(|| {
|
||||
// Each column has its own dictionary
|
||||
let dictionary_id = dictionaries.len() as u32;
|
||||
dictionaries.push(DictionaryBuilder::default());
|
||||
StrOrBytesColumnWriter::with_dictionary_id(dictionary_id)
|
||||
});
|
||||
column.record_bytes(doc, value.as_bytes(), dictionaries, arena);
|
||||
column
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
pub fn record_bytes(&mut self, doc: RowId, column_name: &str, value: &[u8]) {
|
||||
assert!(
|
||||
!column_name.as_bytes().contains(&0u8),
|
||||
"key may not contain the 0 byte"
|
||||
);
|
||||
let (hash_map, arena, dictionaries) = (
|
||||
&mut self.bytes_field_hash_map,
|
||||
&mut self.arena,
|
||||
&mut self.dictionaries,
|
||||
);
|
||||
hash_map.mutate_or_create(
|
||||
column_name.as_bytes(),
|
||||
|column_opt: Option<StrOrBytesColumnWriter>| {
|
||||
let mut column: StrOrBytesColumnWriter = column_opt.unwrap_or_else(|| {
|
||||
// Each column has its own dictionary
|
||||
let dictionary_id = dictionaries.len() as u32;
|
||||
dictionaries.push(DictionaryBuilder::default());
|
||||
StrOrBytesColumnWriter::with_dictionary_id(dictionary_id)
|
||||
});
|
||||
column.record_bytes(doc, value, dictionaries, arena);
|
||||
column
|
||||
},
|
||||
);
|
||||
}
|
||||
pub fn serialize(
|
||||
&mut self,
|
||||
num_docs: RowId,
|
||||
old_to_new_row_ids: Option<&[RowId]>,
|
||||
wrt: &mut dyn io::Write,
|
||||
) -> io::Result<()> {
|
||||
let mut serializer = ColumnarSerializer::new(wrt);
|
||||
let mut columns: Vec<(&[u8], ColumnType, Addr)> = self
|
||||
.numerical_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr, _)| {
|
||||
let numerical_column_writer: NumericalColumnWriter =
|
||||
self.numerical_field_hash_map.read(addr);
|
||||
let column_type = numerical_column_writer.numerical_type().into();
|
||||
(column_name, column_type, addr)
|
||||
})
|
||||
.collect();
|
||||
columns.extend(
|
||||
self.bytes_field_hash_map
|
||||
.iter()
|
||||
.map(|(term, addr, _)| (term, ColumnType::Bytes, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
self.str_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnType::Str, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
self.bool_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnType::Bool, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
self.ip_addr_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnType::IpAddr, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
self.datetime_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnType::DateTime, addr)),
|
||||
);
|
||||
columns.sort_unstable_by_key(|(column_name, col_type, _)| (*column_name, *col_type));
|
||||
|
||||
let (arena, buffers, dictionaries) = (&self.arena, &mut self.buffers, &self.dictionaries);
|
||||
let mut symbol_byte_buffer: Vec<u8> = Vec::new();
|
||||
for (column_name, column_type, addr) in columns {
|
||||
match column_type {
|
||||
ColumnType::Bool => {
|
||||
let column_writer: ColumnWriter = self.bool_field_hash_map.read(addr);
|
||||
let cardinality = column_writer.get_cardinality(num_docs);
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, column_type);
|
||||
serialize_bool_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
column_writer.operation_iterator(
|
||||
arena,
|
||||
old_to_new_row_ids,
|
||||
&mut symbol_byte_buffer,
|
||||
),
|
||||
buffers,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
}
|
||||
ColumnType::IpAddr => {
|
||||
let column_writer: ColumnWriter = self.ip_addr_field_hash_map.read(addr);
|
||||
let cardinality = column_writer.get_cardinality(num_docs);
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, ColumnType::IpAddr);
|
||||
serialize_ip_addr_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
column_writer.operation_iterator(
|
||||
arena,
|
||||
old_to_new_row_ids,
|
||||
&mut symbol_byte_buffer,
|
||||
),
|
||||
buffers,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
}
|
||||
ColumnType::Bytes | ColumnType::Str => {
|
||||
let str_or_bytes_column_writer: StrOrBytesColumnWriter =
|
||||
if column_type == ColumnType::Bytes {
|
||||
self.bytes_field_hash_map.read(addr)
|
||||
} else {
|
||||
self.str_field_hash_map.read(addr)
|
||||
};
|
||||
let dictionary_builder =
|
||||
&dictionaries[str_or_bytes_column_writer.dictionary_id as usize];
|
||||
let cardinality = str_or_bytes_column_writer
|
||||
.column_writer
|
||||
.get_cardinality(num_docs);
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, column_type);
|
||||
serialize_bytes_or_str_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
str_or_bytes_column_writer.sort_values_within_row,
|
||||
dictionary_builder,
|
||||
str_or_bytes_column_writer.operation_iterator(
|
||||
arena,
|
||||
old_to_new_row_ids,
|
||||
&mut symbol_byte_buffer,
|
||||
),
|
||||
buffers,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
}
|
||||
ColumnType::F64 | ColumnType::I64 | ColumnType::U64 => {
|
||||
let numerical_column_writer: NumericalColumnWriter =
|
||||
self.numerical_field_hash_map.read(addr);
|
||||
let cardinality = numerical_column_writer.cardinality(num_docs);
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, column_type);
|
||||
let numerical_type = column_type.numerical_type().unwrap();
|
||||
serialize_numerical_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
numerical_type,
|
||||
numerical_column_writer.operation_iterator(
|
||||
arena,
|
||||
old_to_new_row_ids,
|
||||
&mut symbol_byte_buffer,
|
||||
),
|
||||
buffers,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
}
|
||||
ColumnType::DateTime => {
|
||||
let column_writer: ColumnWriter = self.datetime_field_hash_map.read(addr);
|
||||
let cardinality = column_writer.get_cardinality(num_docs);
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, ColumnType::DateTime);
|
||||
serialize_numerical_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
NumericalType::I64,
|
||||
column_writer.operation_iterator(
|
||||
arena,
|
||||
old_to_new_row_ids,
|
||||
&mut symbol_byte_buffer,
|
||||
),
|
||||
buffers,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
}
|
||||
};
|
||||
}
|
||||
serializer.finalize(num_docs)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
// Serialize [Dictionary, Column, dictionary num bytes U32::LE]
|
||||
// Column: [Column Index, Column Values, column index num bytes U32::LE]
|
||||
fn serialize_bytes_or_str_column(
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
sort_values_within_row: bool,
|
||||
dictionary_builder: &DictionaryBuilder,
|
||||
operation_it: impl Iterator<Item = ColumnOperation<UnorderedId>>,
|
||||
buffers: &mut SpareBuffers,
|
||||
wrt: impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let SpareBuffers {
|
||||
value_index_builders,
|
||||
u64_values,
|
||||
..
|
||||
} = buffers;
|
||||
let mut counting_writer = CountingWriter::wrap(wrt);
|
||||
let term_id_mapping: TermIdMapping = dictionary_builder.serialize(&mut counting_writer)?;
|
||||
let dictionary_num_bytes: u32 = counting_writer.written_bytes() as u32;
|
||||
let mut wrt = counting_writer.finish();
|
||||
let operation_iterator = operation_it.map(|symbol: ColumnOperation<UnorderedId>| {
|
||||
// We map unordered ids to ordered ids.
|
||||
match symbol {
|
||||
ColumnOperation::Value(unordered_id) => {
|
||||
let ordered_id = term_id_mapping.to_ord(unordered_id);
|
||||
ColumnOperation::Value(ordered_id.0 as u64)
|
||||
}
|
||||
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
|
||||
}
|
||||
});
|
||||
send_to_serialize_column_mappable_to_u64(
|
||||
operation_iterator,
|
||||
cardinality,
|
||||
num_docs,
|
||||
sort_values_within_row,
|
||||
value_index_builders,
|
||||
u64_values,
|
||||
&mut wrt,
|
||||
)?;
|
||||
wrt.write_all(&dictionary_num_bytes.to_le_bytes()[..])?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn serialize_numerical_column(
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
numerical_type: NumericalType,
|
||||
op_iterator: impl Iterator<Item = ColumnOperation<NumericalValue>>,
|
||||
buffers: &mut SpareBuffers,
|
||||
wrt: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let SpareBuffers {
|
||||
value_index_builders,
|
||||
u64_values,
|
||||
..
|
||||
} = buffers;
|
||||
match numerical_type {
|
||||
NumericalType::I64 => {
|
||||
send_to_serialize_column_mappable_to_u64(
|
||||
coerce_numerical_symbol::<i64>(op_iterator),
|
||||
cardinality,
|
||||
num_docs,
|
||||
false,
|
||||
value_index_builders,
|
||||
u64_values,
|
||||
wrt,
|
||||
)?;
|
||||
}
|
||||
NumericalType::U64 => {
|
||||
send_to_serialize_column_mappable_to_u64(
|
||||
coerce_numerical_symbol::<u64>(op_iterator),
|
||||
cardinality,
|
||||
num_docs,
|
||||
false,
|
||||
value_index_builders,
|
||||
u64_values,
|
||||
wrt,
|
||||
)?;
|
||||
}
|
||||
NumericalType::F64 => {
|
||||
send_to_serialize_column_mappable_to_u64(
|
||||
coerce_numerical_symbol::<f64>(op_iterator),
|
||||
cardinality,
|
||||
num_docs,
|
||||
false,
|
||||
value_index_builders,
|
||||
u64_values,
|
||||
wrt,
|
||||
)?;
|
||||
}
|
||||
};
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn serialize_bool_column(
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
column_operations_it: impl Iterator<Item = ColumnOperation<bool>>,
|
||||
buffers: &mut SpareBuffers,
|
||||
wrt: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let SpareBuffers {
|
||||
value_index_builders,
|
||||
u64_values,
|
||||
..
|
||||
} = buffers;
|
||||
send_to_serialize_column_mappable_to_u64(
|
||||
column_operations_it.map(|bool_column_operation| match bool_column_operation {
|
||||
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
|
||||
ColumnOperation::Value(bool_val) => ColumnOperation::Value(bool_val.to_u64()),
|
||||
}),
|
||||
cardinality,
|
||||
num_docs,
|
||||
false,
|
||||
value_index_builders,
|
||||
u64_values,
|
||||
wrt,
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn serialize_ip_addr_column(
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
column_operations_it: impl Iterator<Item = ColumnOperation<Ipv6Addr>>,
|
||||
buffers: &mut SpareBuffers,
|
||||
wrt: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let SpareBuffers {
|
||||
value_index_builders,
|
||||
ip_addr_values,
|
||||
..
|
||||
} = buffers;
|
||||
send_to_serialize_column_mappable_to_u128(
|
||||
column_operations_it,
|
||||
cardinality,
|
||||
num_docs,
|
||||
value_index_builders,
|
||||
ip_addr_values,
|
||||
wrt,
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn send_to_serialize_column_mappable_to_u128<
|
||||
T: Copy + Ord + std::fmt::Debug + Send + Sync + MonotonicallyMappableToU128 + PartialOrd,
|
||||
>(
|
||||
op_iterator: impl Iterator<Item = ColumnOperation<T>>,
|
||||
cardinality: Cardinality,
|
||||
num_rows: RowId,
|
||||
value_index_builders: &mut PreallocatedIndexBuilders,
|
||||
values: &mut Vec<T>,
|
||||
mut wrt: impl io::Write,
|
||||
) -> io::Result<()>
|
||||
where
|
||||
for<'a> VecColumn<'a, T>: ColumnValues<T>,
|
||||
{
|
||||
values.clear();
|
||||
// TODO: split index and values
|
||||
let serializable_column_index = match cardinality {
|
||||
Cardinality::Full => {
|
||||
consume_operation_iterator(
|
||||
op_iterator,
|
||||
value_index_builders.borrow_required_index_builder(),
|
||||
values,
|
||||
);
|
||||
SerializableColumnIndex::Full
|
||||
}
|
||||
Cardinality::Optional => {
|
||||
let optional_index_builder = value_index_builders.borrow_optional_index_builder();
|
||||
consume_operation_iterator(op_iterator, optional_index_builder, values);
|
||||
let optional_index = optional_index_builder.finish(num_rows);
|
||||
SerializableColumnIndex::Optional {
|
||||
num_rows,
|
||||
non_null_row_ids: Box::new(optional_index),
|
||||
}
|
||||
}
|
||||
Cardinality::Multivalued => {
|
||||
let multivalued_index_builder = value_index_builders.borrow_multivalued_index_builder();
|
||||
consume_operation_iterator(op_iterator, multivalued_index_builder, values);
|
||||
let multivalued_index = multivalued_index_builder.finish(num_rows);
|
||||
SerializableColumnIndex::Multivalued(Box::new(multivalued_index))
|
||||
}
|
||||
};
|
||||
crate::column::serialize_column_mappable_to_u128(
|
||||
serializable_column_index,
|
||||
&&values[..],
|
||||
&mut wrt,
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn sort_values_within_row_in_place(multivalued_index: &[RowId], values: &mut [u64]) {
|
||||
let mut start_index: usize = 0;
|
||||
for end_index in multivalued_index.iter().copied() {
|
||||
let end_index = end_index as usize;
|
||||
values[start_index..end_index].sort_unstable();
|
||||
start_index = end_index;
|
||||
}
|
||||
}
|
||||
|
||||
fn send_to_serialize_column_mappable_to_u64(
|
||||
op_iterator: impl Iterator<Item = ColumnOperation<u64>>,
|
||||
cardinality: Cardinality,
|
||||
num_rows: RowId,
|
||||
sort_values_within_row: bool,
|
||||
value_index_builders: &mut PreallocatedIndexBuilders,
|
||||
values: &mut Vec<u64>,
|
||||
mut wrt: impl io::Write,
|
||||
) -> io::Result<()>
|
||||
where
|
||||
for<'a> VecColumn<'a, u64>: ColumnValues<u64>,
|
||||
{
|
||||
values.clear();
|
||||
let serializable_column_index = match cardinality {
|
||||
Cardinality::Full => {
|
||||
consume_operation_iterator(
|
||||
op_iterator,
|
||||
value_index_builders.borrow_required_index_builder(),
|
||||
values,
|
||||
);
|
||||
SerializableColumnIndex::Full
|
||||
}
|
||||
Cardinality::Optional => {
|
||||
let optional_index_builder = value_index_builders.borrow_optional_index_builder();
|
||||
consume_operation_iterator(op_iterator, optional_index_builder, values);
|
||||
let optional_index = optional_index_builder.finish(num_rows);
|
||||
SerializableColumnIndex::Optional {
|
||||
non_null_row_ids: Box::new(optional_index),
|
||||
num_rows,
|
||||
}
|
||||
}
|
||||
Cardinality::Multivalued => {
|
||||
let multivalued_index_builder = value_index_builders.borrow_multivalued_index_builder();
|
||||
consume_operation_iterator(op_iterator, multivalued_index_builder, values);
|
||||
let multivalued_index = multivalued_index_builder.finish(num_rows);
|
||||
if sort_values_within_row {
|
||||
sort_values_within_row_in_place(multivalued_index, values);
|
||||
}
|
||||
SerializableColumnIndex::Multivalued(Box::new(multivalued_index))
|
||||
}
|
||||
};
|
||||
crate::column::serialize_column_mappable_to_u64(
|
||||
serializable_column_index,
|
||||
&&values[..],
|
||||
&mut wrt,
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn coerce_numerical_symbol<T>(
|
||||
operation_iterator: impl Iterator<Item = ColumnOperation<NumericalValue>>,
|
||||
) -> impl Iterator<Item = ColumnOperation<u64>>
|
||||
where T: Coerce + MonotonicallyMappableToU64 {
|
||||
operation_iterator.map(|symbol| match symbol {
|
||||
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
|
||||
ColumnOperation::Value(numerical_value) => {
|
||||
ColumnOperation::Value(T::coerce(numerical_value).to_u64())
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn consume_operation_iterator<T: Ord, TIndexBuilder: IndexBuilder>(
|
||||
operation_iterator: impl Iterator<Item = ColumnOperation<T>>,
|
||||
index_builder: &mut TIndexBuilder,
|
||||
values: &mut Vec<T>,
|
||||
) {
|
||||
for symbol in operation_iterator {
|
||||
match symbol {
|
||||
ColumnOperation::NewDoc(doc) => {
|
||||
index_builder.record_row(doc);
|
||||
}
|
||||
ColumnOperation::Value(value) => {
|
||||
index_builder.record_value();
|
||||
values.push(value);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use stacker::MemoryArena;
|
||||
|
||||
use crate::columnar::writer::column_operation::ColumnOperation;
|
||||
use crate::{Cardinality, NumericalValue};
|
||||
|
||||
#[test]
|
||||
fn test_column_writer_required_simple() {
|
||||
let mut arena = MemoryArena::default();
|
||||
let mut column_writer = super::ColumnWriter::default();
|
||||
column_writer.record(0u32, NumericalValue::from(14i64), &mut arena);
|
||||
column_writer.record(1u32, NumericalValue::from(15i64), &mut arena);
|
||||
column_writer.record(2u32, NumericalValue::from(-16i64), &mut arena);
|
||||
assert_eq!(column_writer.get_cardinality(3), Cardinality::Full);
|
||||
let mut buffer = Vec::new();
|
||||
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
|
||||
.operation_iterator(&arena, None, &mut buffer)
|
||||
.collect();
|
||||
assert_eq!(symbols.len(), 6);
|
||||
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
|
||||
assert!(matches!(
|
||||
symbols[1],
|
||||
ColumnOperation::Value(NumericalValue::I64(14i64))
|
||||
));
|
||||
assert!(matches!(symbols[2], ColumnOperation::NewDoc(1u32)));
|
||||
assert!(matches!(
|
||||
symbols[3],
|
||||
ColumnOperation::Value(NumericalValue::I64(15i64))
|
||||
));
|
||||
assert!(matches!(symbols[4], ColumnOperation::NewDoc(2u32)));
|
||||
assert!(matches!(
|
||||
symbols[5],
|
||||
ColumnOperation::Value(NumericalValue::I64(-16i64))
|
||||
));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_writer_optional_cardinality_missing_first() {
|
||||
let mut arena = MemoryArena::default();
|
||||
let mut column_writer = super::ColumnWriter::default();
|
||||
column_writer.record(1u32, NumericalValue::from(15i64), &mut arena);
|
||||
column_writer.record(2u32, NumericalValue::from(-16i64), &mut arena);
|
||||
assert_eq!(column_writer.get_cardinality(3), Cardinality::Optional);
|
||||
let mut buffer = Vec::new();
|
||||
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
|
||||
.operation_iterator(&arena, None, &mut buffer)
|
||||
.collect();
|
||||
assert_eq!(symbols.len(), 4);
|
||||
assert!(matches!(symbols[0], ColumnOperation::NewDoc(1u32)));
|
||||
assert!(matches!(
|
||||
symbols[1],
|
||||
ColumnOperation::Value(NumericalValue::I64(15i64))
|
||||
));
|
||||
assert!(matches!(symbols[2], ColumnOperation::NewDoc(2u32)));
|
||||
assert!(matches!(
|
||||
symbols[3],
|
||||
ColumnOperation::Value(NumericalValue::I64(-16i64))
|
||||
));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_writer_optional_cardinality_missing_last() {
|
||||
let mut arena = MemoryArena::default();
|
||||
let mut column_writer = super::ColumnWriter::default();
|
||||
column_writer.record(0u32, NumericalValue::from(15i64), &mut arena);
|
||||
assert_eq!(column_writer.get_cardinality(2), Cardinality::Optional);
|
||||
let mut buffer = Vec::new();
|
||||
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
|
||||
.operation_iterator(&arena, None, &mut buffer)
|
||||
.collect();
|
||||
assert_eq!(symbols.len(), 2);
|
||||
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
|
||||
assert!(matches!(
|
||||
symbols[1],
|
||||
ColumnOperation::Value(NumericalValue::I64(15i64))
|
||||
));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_writer_multivalued() {
|
||||
let mut arena = MemoryArena::default();
|
||||
let mut column_writer = super::ColumnWriter::default();
|
||||
column_writer.record(0u32, NumericalValue::from(16i64), &mut arena);
|
||||
column_writer.record(0u32, NumericalValue::from(17i64), &mut arena);
|
||||
assert_eq!(column_writer.get_cardinality(1), Cardinality::Multivalued);
|
||||
let mut buffer = Vec::new();
|
||||
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
|
||||
.operation_iterator(&arena, None, &mut buffer)
|
||||
.collect();
|
||||
assert_eq!(symbols.len(), 3);
|
||||
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
|
||||
assert!(matches!(
|
||||
symbols[1],
|
||||
ColumnOperation::Value(NumericalValue::I64(16i64))
|
||||
));
|
||||
assert!(matches!(
|
||||
symbols[2],
|
||||
ColumnOperation::Value(NumericalValue::I64(17i64))
|
||||
));
|
||||
}
|
||||
}
|
||||
108
columnar/src/columnar/writer/serializer.rs
Normal file
108
columnar/src/columnar/writer/serializer.rs
Normal file
@@ -0,0 +1,108 @@
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
|
||||
use common::{BinarySerializable, CountingWriter};
|
||||
use sstable::value::RangeValueWriter;
|
||||
use sstable::RangeSSTable;
|
||||
|
||||
use crate::columnar::ColumnType;
|
||||
use crate::RowId;
|
||||
|
||||
pub struct ColumnarSerializer<W: io::Write> {
|
||||
wrt: CountingWriter<W>,
|
||||
sstable_range: sstable::Writer<Vec<u8>, RangeValueWriter>,
|
||||
prepare_key_buffer: Vec<u8>,
|
||||
}
|
||||
|
||||
/// Returns a key consisting of the concatenation of the key and the column_type_and_cardinality
|
||||
/// code.
|
||||
fn prepare_key(key: &[u8], column_type: ColumnType, buffer: &mut Vec<u8>) {
|
||||
buffer.clear();
|
||||
buffer.extend_from_slice(key);
|
||||
buffer.push(0u8);
|
||||
buffer.push(column_type.to_code());
|
||||
}
|
||||
|
||||
impl<W: io::Write> ColumnarSerializer<W> {
|
||||
pub(crate) fn new(wrt: W) -> ColumnarSerializer<W> {
|
||||
let sstable_range: sstable::Writer<Vec<u8>, RangeValueWriter> =
|
||||
sstable::Dictionary::<RangeSSTable>::builder(Vec::with_capacity(100_000)).unwrap();
|
||||
ColumnarSerializer {
|
||||
wrt: CountingWriter::wrap(wrt),
|
||||
sstable_range,
|
||||
prepare_key_buffer: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn serialize_column<'a>(
|
||||
&'a mut self,
|
||||
column_name: &[u8],
|
||||
column_type: ColumnType,
|
||||
) -> impl io::Write + 'a {
|
||||
let start_offset = self.wrt.written_bytes();
|
||||
prepare_key(column_name, column_type, &mut self.prepare_key_buffer);
|
||||
ColumnSerializer {
|
||||
columnar_serializer: self,
|
||||
start_offset,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn finalize(mut self, num_rows: RowId) -> io::Result<()> {
|
||||
let sstable_bytes: Vec<u8> = self.sstable_range.finish()?;
|
||||
let sstable_num_bytes: u64 = sstable_bytes.len() as u64;
|
||||
self.wrt.write_all(&sstable_bytes)?;
|
||||
self.wrt.write_all(&sstable_num_bytes.to_le_bytes()[..])?;
|
||||
num_rows.serialize(&mut self.wrt)?;
|
||||
self.wrt
|
||||
.write_all(&super::super::format_version::footer())?;
|
||||
self.wrt.flush()?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
struct ColumnSerializer<'a, W: io::Write> {
|
||||
columnar_serializer: &'a mut ColumnarSerializer<W>,
|
||||
start_offset: u64,
|
||||
}
|
||||
|
||||
impl<'a, W: io::Write> Drop for ColumnSerializer<'a, W> {
|
||||
fn drop(&mut self) {
|
||||
let end_offset: u64 = self.columnar_serializer.wrt.written_bytes();
|
||||
let byte_range = self.start_offset..end_offset;
|
||||
self.columnar_serializer.sstable_range.insert_cannot_fail(
|
||||
&self.columnar_serializer.prepare_key_buffer[..],
|
||||
&byte_range,
|
||||
);
|
||||
self.columnar_serializer.prepare_key_buffer.clear();
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, W: io::Write> io::Write for ColumnSerializer<'a, W> {
|
||||
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
|
||||
self.columnar_serializer.wrt.write(buf)
|
||||
}
|
||||
|
||||
fn flush(&mut self) -> io::Result<()> {
|
||||
self.columnar_serializer.wrt.flush()
|
||||
}
|
||||
|
||||
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
|
||||
self.columnar_serializer.wrt.write_all(buf)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::columnar::column_type::ColumnType;
|
||||
|
||||
#[test]
|
||||
fn test_prepare_key_bytes() {
|
||||
let mut buffer: Vec<u8> = b"somegarbage".to_vec();
|
||||
prepare_key(b"root\0child", ColumnType::Str, &mut buffer);
|
||||
assert_eq!(buffer.len(), 12);
|
||||
assert_eq!(&buffer[..10], b"root\0child");
|
||||
assert_eq!(buffer[10], 0u8);
|
||||
assert_eq!(buffer[11], ColumnType::Str.to_code());
|
||||
}
|
||||
}
|
||||
165
columnar/src/columnar/writer/value_index.rs
Normal file
165
columnar/src/columnar/writer/value_index.rs
Normal file
@@ -0,0 +1,165 @@
|
||||
use crate::iterable::Iterable;
|
||||
use crate::RowId;
|
||||
|
||||
/// The `IndexBuilder` interprets a sequence of
|
||||
/// calls of the form:
|
||||
/// (record_doc,record_value+)*
|
||||
/// and can then serialize the results into an index to associate docids with their value[s].
|
||||
///
|
||||
/// It has different implementation depending on whether the
|
||||
/// cardinality is required, optional, or multivalued.
|
||||
pub(crate) trait IndexBuilder {
|
||||
fn record_row(&mut self, doc: RowId);
|
||||
#[inline]
|
||||
fn record_value(&mut self) {}
|
||||
}
|
||||
|
||||
/// The FullIndexBuilder does nothing.
|
||||
#[derive(Default)]
|
||||
pub struct FullIndexBuilder;
|
||||
|
||||
impl IndexBuilder for FullIndexBuilder {
|
||||
#[inline(always)]
|
||||
fn record_row(&mut self, _doc: RowId) {}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct OptionalIndexBuilder {
|
||||
docs: Vec<RowId>,
|
||||
}
|
||||
|
||||
impl OptionalIndexBuilder {
|
||||
pub fn finish(&mut self, num_rows: RowId) -> impl Iterable<RowId> + '_ {
|
||||
debug_assert!(self
|
||||
.docs
|
||||
.last()
|
||||
.copied()
|
||||
.map(|last_doc| last_doc < num_rows)
|
||||
.unwrap_or(true));
|
||||
&self.docs[..]
|
||||
}
|
||||
|
||||
fn reset(&mut self) {
|
||||
self.docs.clear();
|
||||
}
|
||||
}
|
||||
|
||||
impl IndexBuilder for OptionalIndexBuilder {
|
||||
#[inline(always)]
|
||||
fn record_row(&mut self, doc: RowId) {
|
||||
debug_assert!(self
|
||||
.docs
|
||||
.last()
|
||||
.copied()
|
||||
.map(|prev_doc| doc > prev_doc)
|
||||
.unwrap_or(true));
|
||||
self.docs.push(doc);
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct MultivaluedIndexBuilder {
|
||||
start_offsets: Vec<RowId>,
|
||||
total_num_vals_seen: u32,
|
||||
}
|
||||
|
||||
impl MultivaluedIndexBuilder {
|
||||
pub fn finish(&mut self, num_docs: RowId) -> &[u32] {
|
||||
self.start_offsets
|
||||
.resize(num_docs as usize + 1, self.total_num_vals_seen);
|
||||
&self.start_offsets[..]
|
||||
}
|
||||
|
||||
fn reset(&mut self) {
|
||||
self.start_offsets.clear();
|
||||
self.start_offsets.push(0u32);
|
||||
self.total_num_vals_seen = 0;
|
||||
}
|
||||
}
|
||||
|
||||
impl IndexBuilder for MultivaluedIndexBuilder {
|
||||
fn record_row(&mut self, row_id: RowId) {
|
||||
self.start_offsets
|
||||
.resize(row_id as usize + 1, self.total_num_vals_seen);
|
||||
}
|
||||
|
||||
fn record_value(&mut self) {
|
||||
self.total_num_vals_seen += 1;
|
||||
}
|
||||
}
|
||||
|
||||
/// The `SpareIndexBuilders` is there to avoid allocating a
|
||||
/// new index builder for every single column.
|
||||
#[derive(Default)]
|
||||
pub struct PreallocatedIndexBuilders {
|
||||
required_index_builder: FullIndexBuilder,
|
||||
optional_index_builder: OptionalIndexBuilder,
|
||||
multivalued_index_builder: MultivaluedIndexBuilder,
|
||||
}
|
||||
|
||||
impl PreallocatedIndexBuilders {
|
||||
pub fn borrow_required_index_builder(&mut self) -> &mut FullIndexBuilder {
|
||||
&mut self.required_index_builder
|
||||
}
|
||||
|
||||
pub fn borrow_optional_index_builder(&mut self) -> &mut OptionalIndexBuilder {
|
||||
self.optional_index_builder.reset();
|
||||
&mut self.optional_index_builder
|
||||
}
|
||||
|
||||
pub fn borrow_multivalued_index_builder(&mut self) -> &mut MultivaluedIndexBuilder {
|
||||
self.multivalued_index_builder.reset();
|
||||
&mut self.multivalued_index_builder
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_optional_value_index_builder() {
|
||||
let mut opt_value_index_builder = OptionalIndexBuilder::default();
|
||||
opt_value_index_builder.record_row(0u32);
|
||||
opt_value_index_builder.record_value();
|
||||
assert_eq!(
|
||||
&opt_value_index_builder
|
||||
.finish(1u32)
|
||||
.boxed_iter()
|
||||
.collect::<Vec<u32>>(),
|
||||
&[0]
|
||||
);
|
||||
opt_value_index_builder.reset();
|
||||
opt_value_index_builder.record_row(1u32);
|
||||
opt_value_index_builder.record_value();
|
||||
assert_eq!(
|
||||
&opt_value_index_builder
|
||||
.finish(2u32)
|
||||
.boxed_iter()
|
||||
.collect::<Vec<u32>>(),
|
||||
&[1]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multivalued_value_index_builder() {
|
||||
let mut multivalued_value_index_builder = MultivaluedIndexBuilder::default();
|
||||
multivalued_value_index_builder.record_row(1u32);
|
||||
multivalued_value_index_builder.record_value();
|
||||
multivalued_value_index_builder.record_value();
|
||||
multivalued_value_index_builder.record_row(2u32);
|
||||
multivalued_value_index_builder.record_value();
|
||||
assert_eq!(
|
||||
multivalued_value_index_builder.finish(4u32).to_vec(),
|
||||
vec![0, 0, 2, 3, 3]
|
||||
);
|
||||
multivalued_value_index_builder.reset();
|
||||
multivalued_value_index_builder.record_row(2u32);
|
||||
multivalued_value_index_builder.record_value();
|
||||
multivalued_value_index_builder.record_value();
|
||||
assert_eq!(
|
||||
multivalued_value_index_builder.finish(4u32).to_vec(),
|
||||
vec![0, 0, 0, 2, 2]
|
||||
);
|
||||
}
|
||||
}
|
||||
84
columnar/src/dictionary.rs
Normal file
84
columnar/src/dictionary.rs
Normal file
@@ -0,0 +1,84 @@
|
||||
use std::io;
|
||||
|
||||
use fnv::FnvHashMap;
|
||||
use sstable::SSTable;
|
||||
|
||||
pub(crate) struct TermIdMapping {
|
||||
unordered_to_ord: Vec<OrderedId>,
|
||||
}
|
||||
|
||||
impl TermIdMapping {
|
||||
pub fn to_ord(&self, unordered: UnorderedId) -> OrderedId {
|
||||
self.unordered_to_ord[unordered.0 as usize]
|
||||
}
|
||||
}
|
||||
|
||||
/// When we add values, we cannot know their ordered id yet.
|
||||
/// For this reason, we temporarily assign them a `UnorderedId`
|
||||
/// that will be mapped to an `OrderedId` upon serialization.
|
||||
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
|
||||
pub struct UnorderedId(pub u32);
|
||||
|
||||
#[derive(Clone, Copy, Hash, PartialEq, Eq, Debug)]
|
||||
pub struct OrderedId(pub u32);
|
||||
|
||||
/// `DictionaryBuilder` for dictionary encoding.
|
||||
///
|
||||
/// It stores the different terms encounterred and assigns them a temporary value
|
||||
/// we call unordered id.
|
||||
///
|
||||
/// Upon serialization, we will sort the ids and hence build a `UnorderedId -> Term ordinal`
|
||||
/// mapping.
|
||||
#[derive(Default)]
|
||||
pub(crate) struct DictionaryBuilder {
|
||||
dict: FnvHashMap<Vec<u8>, UnorderedId>,
|
||||
}
|
||||
|
||||
impl DictionaryBuilder {
|
||||
/// Get or allocate an unordered id.
|
||||
/// (This ID is simply an auto-incremented id.)
|
||||
pub fn get_or_allocate_id(&mut self, term: &[u8]) -> UnorderedId {
|
||||
if let Some(term_id) = self.dict.get(term) {
|
||||
return *term_id;
|
||||
}
|
||||
let new_id = UnorderedId(self.dict.len() as u32);
|
||||
self.dict.insert(term.to_vec(), new_id);
|
||||
new_id
|
||||
}
|
||||
|
||||
/// Serialize the dictionary into an fst, and returns the
|
||||
/// `UnorderedId -> TermOrdinal` map.
|
||||
pub fn serialize<'a, W: io::Write + 'a>(&self, wrt: &mut W) -> io::Result<TermIdMapping> {
|
||||
let mut terms: Vec<(&[u8], UnorderedId)> =
|
||||
self.dict.iter().map(|(k, v)| (k.as_slice(), *v)).collect();
|
||||
terms.sort_unstable_by_key(|(key, _)| *key);
|
||||
// TODO Remove the allocation.
|
||||
let mut unordered_to_ord: Vec<OrderedId> = vec![OrderedId(0u32); terms.len()];
|
||||
let mut sstable_builder = sstable::VoidSSTable::writer(wrt);
|
||||
for (ord, (key, unordered_id)) in terms.into_iter().enumerate() {
|
||||
let ordered_id = OrderedId(ord as u32);
|
||||
sstable_builder.insert(key, &())?;
|
||||
unordered_to_ord[unordered_id.0 as usize] = ordered_id;
|
||||
}
|
||||
sstable_builder.finish()?;
|
||||
Ok(TermIdMapping { unordered_to_ord })
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_dictionary_builder() {
|
||||
let mut dictionary_builder = DictionaryBuilder::default();
|
||||
let hello_uid = dictionary_builder.get_or_allocate_id(b"hello");
|
||||
let happy_uid = dictionary_builder.get_or_allocate_id(b"happy");
|
||||
let tax_uid = dictionary_builder.get_or_allocate_id(b"tax");
|
||||
let mut buffer = Vec::new();
|
||||
let id_mapping = dictionary_builder.serialize(&mut buffer).unwrap();
|
||||
assert_eq!(id_mapping.to_ord(hello_uid), OrderedId(1));
|
||||
assert_eq!(id_mapping.to_ord(happy_uid), OrderedId(0));
|
||||
assert_eq!(id_mapping.to_ord(tax_uid), OrderedId(2));
|
||||
}
|
||||
}
|
||||
258
columnar/src/dynamic_column.rs
Normal file
258
columnar/src/dynamic_column.rs
Normal file
@@ -0,0 +1,258 @@
|
||||
use std::io;
|
||||
use std::net::Ipv6Addr;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::file_slice::FileSlice;
|
||||
use common::{DateTime, HasLen, OwnedBytes};
|
||||
|
||||
use crate::column::{BytesColumn, Column, StrColumn};
|
||||
use crate::column_values::{monotonic_map_column, StrictlyMonotonicFn};
|
||||
use crate::columnar::ColumnType;
|
||||
use crate::{Cardinality, NumericalType};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub enum DynamicColumn {
|
||||
Bool(Column<bool>),
|
||||
I64(Column<i64>),
|
||||
U64(Column<u64>),
|
||||
F64(Column<f64>),
|
||||
IpAddr(Column<Ipv6Addr>),
|
||||
DateTime(Column<DateTime>),
|
||||
Bytes(BytesColumn),
|
||||
Str(StrColumn),
|
||||
}
|
||||
|
||||
impl DynamicColumn {
|
||||
pub fn get_cardinality(&self) -> Cardinality {
|
||||
match self {
|
||||
DynamicColumn::Bool(c) => c.get_cardinality(),
|
||||
DynamicColumn::I64(c) => c.get_cardinality(),
|
||||
DynamicColumn::U64(c) => c.get_cardinality(),
|
||||
DynamicColumn::F64(c) => c.get_cardinality(),
|
||||
DynamicColumn::IpAddr(c) => c.get_cardinality(),
|
||||
DynamicColumn::DateTime(c) => c.get_cardinality(),
|
||||
DynamicColumn::Bytes(c) => c.ords().get_cardinality(),
|
||||
DynamicColumn::Str(c) => c.ords().get_cardinality(),
|
||||
}
|
||||
}
|
||||
pub fn column_type(&self) -> ColumnType {
|
||||
match self {
|
||||
DynamicColumn::Bool(_) => ColumnType::Bool,
|
||||
DynamicColumn::I64(_) => ColumnType::I64,
|
||||
DynamicColumn::U64(_) => ColumnType::U64,
|
||||
DynamicColumn::F64(_) => ColumnType::F64,
|
||||
DynamicColumn::IpAddr(_) => ColumnType::IpAddr,
|
||||
DynamicColumn::DateTime(_) => ColumnType::DateTime,
|
||||
DynamicColumn::Bytes(_) => ColumnType::Bytes,
|
||||
DynamicColumn::Str(_) => ColumnType::Str,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn coerce_numerical(self, target_numerical_type: NumericalType) -> Option<Self> {
|
||||
match target_numerical_type {
|
||||
NumericalType::I64 => self.coerce_to_i64(),
|
||||
NumericalType::U64 => self.coerce_to_u64(),
|
||||
NumericalType::F64 => self.coerce_to_f64(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn is_numerical(&self) -> bool {
|
||||
self.column_type().numerical_type().is_some()
|
||||
}
|
||||
|
||||
pub fn is_f64(&self) -> bool {
|
||||
self.column_type().numerical_type() == Some(NumericalType::F64)
|
||||
}
|
||||
pub fn is_i64(&self) -> bool {
|
||||
self.column_type().numerical_type() == Some(NumericalType::I64)
|
||||
}
|
||||
pub fn is_u64(&self) -> bool {
|
||||
self.column_type().numerical_type() == Some(NumericalType::U64)
|
||||
}
|
||||
|
||||
fn coerce_to_f64(self) -> Option<DynamicColumn> {
|
||||
match self {
|
||||
DynamicColumn::I64(column) => Some(DynamicColumn::F64(Column {
|
||||
idx: column.idx,
|
||||
values: Arc::new(monotonic_map_column(column.values, MapI64ToF64)),
|
||||
})),
|
||||
DynamicColumn::U64(column) => Some(DynamicColumn::F64(Column {
|
||||
idx: column.idx,
|
||||
values: Arc::new(monotonic_map_column(column.values, MapU64ToF64)),
|
||||
})),
|
||||
DynamicColumn::F64(_) => Some(self),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
fn coerce_to_i64(self) -> Option<DynamicColumn> {
|
||||
match self {
|
||||
DynamicColumn::U64(column) => {
|
||||
if column.max_value() > i64::MAX as u64 {
|
||||
return None;
|
||||
}
|
||||
Some(DynamicColumn::I64(Column {
|
||||
idx: column.idx,
|
||||
values: Arc::new(monotonic_map_column(column.values, MapU64ToI64)),
|
||||
}))
|
||||
}
|
||||
DynamicColumn::I64(_) => Some(self),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
fn coerce_to_u64(self) -> Option<DynamicColumn> {
|
||||
match self {
|
||||
DynamicColumn::I64(column) => {
|
||||
if column.min_value() < 0 {
|
||||
return None;
|
||||
}
|
||||
Some(DynamicColumn::U64(Column {
|
||||
idx: column.idx,
|
||||
values: Arc::new(monotonic_map_column(column.values, MapI64ToU64)),
|
||||
}))
|
||||
}
|
||||
DynamicColumn::U64(_) => Some(self),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct MapI64ToF64;
|
||||
impl StrictlyMonotonicFn<i64, f64> for MapI64ToF64 {
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: i64) -> f64 {
|
||||
inp as f64
|
||||
}
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: f64) -> i64 {
|
||||
out as i64
|
||||
}
|
||||
}
|
||||
|
||||
struct MapU64ToF64;
|
||||
impl StrictlyMonotonicFn<u64, f64> for MapU64ToF64 {
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: u64) -> f64 {
|
||||
inp as f64
|
||||
}
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: f64) -> u64 {
|
||||
out as u64
|
||||
}
|
||||
}
|
||||
|
||||
struct MapU64ToI64;
|
||||
impl StrictlyMonotonicFn<u64, i64> for MapU64ToI64 {
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: u64) -> i64 {
|
||||
inp as i64
|
||||
}
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: i64) -> u64 {
|
||||
out as u64
|
||||
}
|
||||
}
|
||||
|
||||
struct MapI64ToU64;
|
||||
impl StrictlyMonotonicFn<i64, u64> for MapI64ToU64 {
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: i64) -> u64 {
|
||||
inp as u64
|
||||
}
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: u64) -> i64 {
|
||||
out as i64
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! static_dynamic_conversions {
|
||||
($typ:ty, $enum_name:ident) => {
|
||||
impl From<DynamicColumn> for Option<$typ> {
|
||||
fn from(dynamic_column: DynamicColumn) -> Option<$typ> {
|
||||
if let DynamicColumn::$enum_name(col) = dynamic_column {
|
||||
Some(col)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<$typ> for DynamicColumn {
|
||||
fn from(typed_column: $typ) -> Self {
|
||||
DynamicColumn::$enum_name(typed_column)
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
static_dynamic_conversions!(Column<bool>, Bool);
|
||||
static_dynamic_conversions!(Column<u64>, U64);
|
||||
static_dynamic_conversions!(Column<i64>, I64);
|
||||
static_dynamic_conversions!(Column<f64>, F64);
|
||||
static_dynamic_conversions!(Column<DateTime>, DateTime);
|
||||
static_dynamic_conversions!(StrColumn, Str);
|
||||
static_dynamic_conversions!(BytesColumn, Bytes);
|
||||
static_dynamic_conversions!(Column<Ipv6Addr>, IpAddr);
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct DynamicColumnHandle {
|
||||
pub(crate) file_slice: FileSlice,
|
||||
pub(crate) column_type: ColumnType,
|
||||
}
|
||||
|
||||
impl DynamicColumnHandle {
|
||||
// TODO rename load
|
||||
pub fn open(&self) -> io::Result<DynamicColumn> {
|
||||
let column_bytes: OwnedBytes = self.file_slice.read_bytes()?;
|
||||
self.open_internal(column_bytes)
|
||||
}
|
||||
|
||||
#[doc(hidden)]
|
||||
pub fn file_slice(&self) -> &FileSlice {
|
||||
&self.file_slice
|
||||
}
|
||||
|
||||
/// Returns the `u64` fast field reader reader associated with `fields` of types
|
||||
/// Str, u64, i64, f64, or datetime.
|
||||
///
|
||||
/// If not, the fastfield reader will returns the u64-value associated with the original
|
||||
/// FastValue.
|
||||
pub fn open_u64_lenient(&self) -> io::Result<Option<Column<u64>>> {
|
||||
let column_bytes = self.file_slice.read_bytes()?;
|
||||
match self.column_type {
|
||||
ColumnType::Str | ColumnType::Bytes => {
|
||||
let column: BytesColumn = crate::column::open_column_bytes(column_bytes)?;
|
||||
Ok(Some(column.term_ord_column))
|
||||
}
|
||||
ColumnType::Bool => Ok(None),
|
||||
ColumnType::IpAddr => Ok(None),
|
||||
ColumnType::I64 | ColumnType::U64 | ColumnType::F64 | ColumnType::DateTime => {
|
||||
let column = crate::column::open_column_u64::<u64>(column_bytes)?;
|
||||
Ok(Some(column))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn open_internal(&self, column_bytes: OwnedBytes) -> io::Result<DynamicColumn> {
|
||||
let dynamic_column: DynamicColumn = match self.column_type {
|
||||
ColumnType::Bytes => crate::column::open_column_bytes(column_bytes)?.into(),
|
||||
ColumnType::Str => crate::column::open_column_str(column_bytes)?.into(),
|
||||
ColumnType::I64 => crate::column::open_column_u64::<i64>(column_bytes)?.into(),
|
||||
ColumnType::U64 => crate::column::open_column_u64::<u64>(column_bytes)?.into(),
|
||||
ColumnType::F64 => crate::column::open_column_u64::<f64>(column_bytes)?.into(),
|
||||
ColumnType::Bool => crate::column::open_column_u64::<bool>(column_bytes)?.into(),
|
||||
ColumnType::IpAddr => crate::column::open_column_u128::<Ipv6Addr>(column_bytes)?.into(),
|
||||
ColumnType::DateTime => {
|
||||
crate::column::open_column_u64::<DateTime>(column_bytes)?.into()
|
||||
}
|
||||
};
|
||||
Ok(dynamic_column)
|
||||
}
|
||||
|
||||
pub fn num_bytes(&self) -> usize {
|
||||
self.file_slice.len()
|
||||
}
|
||||
|
||||
pub fn column_type(&self) -> ColumnType {
|
||||
self.column_type
|
||||
}
|
||||
}
|
||||
19
columnar/src/iterable.rs
Normal file
19
columnar/src/iterable.rs
Normal file
@@ -0,0 +1,19 @@
|
||||
use std::ops::Range;
|
||||
|
||||
pub trait Iterable<T = u64> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = T> + '_>;
|
||||
}
|
||||
|
||||
impl<'a, T: Copy> Iterable<T> for &'a [T] {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
|
||||
Box::new(self.iter().copied())
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Copy> Iterable<T> for Range<T>
|
||||
where Range<T>: Iterator<Item = T>
|
||||
{
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
|
||||
Box::new(self.clone())
|
||||
}
|
||||
}
|
||||
96
columnar/src/lib.rs
Normal file
96
columnar/src/lib.rs
Normal file
@@ -0,0 +1,96 @@
|
||||
#![cfg_attr(all(feature = "unstable", test), feature(test))]
|
||||
|
||||
#[cfg(test)]
|
||||
#[macro_use]
|
||||
extern crate more_asserts;
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
extern crate test;
|
||||
|
||||
use std::io;
|
||||
|
||||
mod column;
|
||||
mod column_index;
|
||||
pub mod column_values;
|
||||
mod columnar;
|
||||
mod dictionary;
|
||||
mod dynamic_column;
|
||||
mod iterable;
|
||||
pub(crate) mod utils;
|
||||
mod value;
|
||||
|
||||
pub use column::{BytesColumn, Column, StrColumn};
|
||||
pub use column_index::ColumnIndex;
|
||||
pub use column_values::{ColumnValues, MonotonicallyMappableToU128, MonotonicallyMappableToU64};
|
||||
pub use columnar::{
|
||||
merge_columnar, ColumnType, ColumnarReader, ColumnarWriter, HasAssociatedColumnType,
|
||||
MergeRowOrder, ShuffleMergeOrder, StackMergeOrder,
|
||||
};
|
||||
use sstable::VoidSSTable;
|
||||
pub use value::{NumericalType, NumericalValue};
|
||||
|
||||
pub use self::dynamic_column::{DynamicColumn, DynamicColumnHandle};
|
||||
|
||||
pub type RowId = u32;
|
||||
pub type DocId = u32;
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct RowAddr {
|
||||
pub segment_ord: u32,
|
||||
pub row_id: RowId,
|
||||
}
|
||||
|
||||
pub use sstable::Dictionary;
|
||||
pub type Streamer<'a> = sstable::Streamer<'a, VoidSSTable>;
|
||||
|
||||
pub use common::DateTime;
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct InvalidData;
|
||||
|
||||
impl From<InvalidData> for io::Error {
|
||||
fn from(_: InvalidData) -> Self {
|
||||
io::Error::new(io::ErrorKind::InvalidData, "Invalid data")
|
||||
}
|
||||
}
|
||||
|
||||
/// Enum describing the number of values that can exist per document
|
||||
/// (or per row if you will).
|
||||
///
|
||||
/// The cardinality must fit on 2 bits.
|
||||
#[derive(Clone, Copy, Hash, Default, Debug, PartialEq, Eq, PartialOrd, Ord)]
|
||||
#[repr(u8)]
|
||||
pub enum Cardinality {
|
||||
/// All documents contain exactly one value.
|
||||
/// `Full` is the default for auto-detecting the Cardinality, since it is the most strict.
|
||||
#[default]
|
||||
Full = 0,
|
||||
/// All documents contain at most one value.
|
||||
Optional = 1,
|
||||
/// All documents may contain any number of values.
|
||||
Multivalued = 2,
|
||||
}
|
||||
|
||||
impl Cardinality {
|
||||
pub fn is_optional(&self) -> bool {
|
||||
matches!(self, Cardinality::Optional)
|
||||
}
|
||||
pub fn is_multivalue(&self) -> bool {
|
||||
matches!(self, Cardinality::Multivalued)
|
||||
}
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn try_from_code(code: u8) -> Result<Cardinality, InvalidData> {
|
||||
match code {
|
||||
0 => Ok(Cardinality::Full),
|
||||
1 => Ok(Cardinality::Optional),
|
||||
2 => Ok(Cardinality::Multivalued),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
212
columnar/src/tests.rs
Normal file
212
columnar/src/tests.rs
Normal file
@@ -0,0 +1,212 @@
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
use crate::column_values::MonotonicallyMappableToU128;
|
||||
use crate::columnar::ColumnType;
|
||||
use crate::dynamic_column::{DynamicColumn, DynamicColumnHandle};
|
||||
use crate::value::NumericalValue;
|
||||
use crate::{Cardinality, ColumnarReader, ColumnarWriter};
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_str() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_str(1u32, "my_string", "hello");
|
||||
dataframe_writer.record_str(3u32, "my_string", "helloeee");
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(5, None, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("my_string").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 158);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_bytes() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_bytes(1u32, "my_string", b"hello");
|
||||
dataframe_writer.record_bytes(3u32, "my_string", b"helloeee");
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(5, None, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("my_string").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 158);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_bool() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_bool(1u32, "bool.value", false);
|
||||
dataframe_writer.record_bool(3u32, "bool.value", true);
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(5, None, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("bool.value").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 22);
|
||||
assert_eq!(cols[0].column_type(), ColumnType::Bool);
|
||||
let dyn_bool_col = cols[0].open().unwrap();
|
||||
let DynamicColumn::Bool(bool_col) = dyn_bool_col else { panic!(); };
|
||||
let vals: Vec<Option<bool>> = (0..5).map(|row_id| bool_col.first(row_id)).collect();
|
||||
assert_eq!(&vals, &[None, Some(false), None, Some(true), None,]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_u64_multivalued() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_numerical(2u32, "divisor", 2u64);
|
||||
dataframe_writer.record_numerical(3u32, "divisor", 3u64);
|
||||
dataframe_writer.record_numerical(4u32, "divisor", 2u64);
|
||||
dataframe_writer.record_numerical(5u32, "divisor", 5u64);
|
||||
dataframe_writer.record_numerical(6u32, "divisor", 2u64);
|
||||
dataframe_writer.record_numerical(6u32, "divisor", 3u64);
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(7, None, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("divisor").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 29);
|
||||
let dyn_i64_col = cols[0].open().unwrap();
|
||||
let DynamicColumn::I64(divisor_col) = dyn_i64_col else { panic!(); };
|
||||
assert_eq!(
|
||||
divisor_col.get_cardinality(),
|
||||
crate::Cardinality::Multivalued
|
||||
);
|
||||
assert_eq!(divisor_col.num_docs(), 7);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_ip_addr() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_ip_addr(1, "ip_addr", Ipv6Addr::from_u128(1001));
|
||||
dataframe_writer.record_ip_addr(3, "ip_addr", Ipv6Addr::from_u128(1050));
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(5, None, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("ip_addr").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 42);
|
||||
assert_eq!(cols[0].column_type(), ColumnType::IpAddr);
|
||||
let dyn_bool_col = cols[0].open().unwrap();
|
||||
let DynamicColumn::IpAddr(ip_col) = dyn_bool_col else { panic!(); };
|
||||
let vals: Vec<Option<Ipv6Addr>> = (0..5).map(|row_id| ip_col.first(row_id)).collect();
|
||||
assert_eq!(
|
||||
&vals,
|
||||
&[
|
||||
None,
|
||||
Some(Ipv6Addr::from_u128(1001)),
|
||||
None,
|
||||
Some(Ipv6Addr::from_u128(1050)),
|
||||
None,
|
||||
]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_numerical() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_numerical(1u32, "srical.value", NumericalValue::U64(12u64));
|
||||
dataframe_writer.record_numerical(2u32, "srical.value", NumericalValue::U64(13u64));
|
||||
dataframe_writer.record_numerical(4u32, "srical.value", NumericalValue::U64(15u64));
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(6, None, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("srical.value").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
// Right now this 31 bytes are spent as follows
|
||||
//
|
||||
// - header 14 bytes
|
||||
// - vals 8 //< due to padding? could have been 1byte?.
|
||||
// - null footer 6 bytes
|
||||
assert_eq!(cols[0].num_bytes(), 33);
|
||||
let column = cols[0].open().unwrap();
|
||||
let DynamicColumn::I64(column_i64) = column else { panic!(); };
|
||||
assert_eq!(column_i64.idx.get_cardinality(), Cardinality::Optional);
|
||||
assert_eq!(column_i64.first(0), None);
|
||||
assert_eq!(column_i64.first(1), Some(12i64));
|
||||
assert_eq!(column_i64.first(2), Some(13i64));
|
||||
assert_eq!(column_i64.first(3), None);
|
||||
assert_eq!(column_i64.first(4), Some(15i64));
|
||||
assert_eq!(column_i64.first(5), None);
|
||||
assert_eq!(column_i64.first(6), None); //< we can change the spec for that one.
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dictionary_encoded_str() {
|
||||
let mut buffer = Vec::new();
|
||||
let mut columnar_writer = ColumnarWriter::default();
|
||||
columnar_writer.record_str(1, "my.column", "a");
|
||||
columnar_writer.record_str(3, "my.column", "c");
|
||||
columnar_writer.record_str(3, "my.column2", "different_column!");
|
||||
columnar_writer.record_str(4, "my.column", "b");
|
||||
columnar_writer.serialize(5, None, &mut buffer).unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_columns(), 2);
|
||||
let col_handles = columnar_reader.read_columns("my.column").unwrap();
|
||||
assert_eq!(col_handles.len(), 1);
|
||||
let DynamicColumn::Str(str_col) = col_handles[0].open().unwrap() else { panic!(); };
|
||||
let index: Vec<Option<u64>> = (0..5).map(|row_id| str_col.ords().first(row_id)).collect();
|
||||
assert_eq!(index, &[None, Some(0), None, Some(2), Some(1)]);
|
||||
assert_eq!(str_col.num_rows(), 5);
|
||||
let mut term_buffer = String::new();
|
||||
let term_ords = str_col.ords();
|
||||
assert_eq!(term_ords.first(0), None);
|
||||
assert_eq!(term_ords.first(1), Some(0));
|
||||
str_col.ord_to_str(0u64, &mut term_buffer).unwrap();
|
||||
assert_eq!(term_buffer, "a");
|
||||
assert_eq!(term_ords.first(2), None);
|
||||
assert_eq!(term_ords.first(3), Some(2));
|
||||
str_col.ord_to_str(2u64, &mut term_buffer).unwrap();
|
||||
assert_eq!(term_buffer, "c");
|
||||
assert_eq!(term_ords.first(4), Some(1));
|
||||
str_col.ord_to_str(1u64, &mut term_buffer).unwrap();
|
||||
assert_eq!(term_buffer, "b");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dictionary_encoded_bytes() {
|
||||
let mut buffer = Vec::new();
|
||||
let mut columnar_writer = ColumnarWriter::default();
|
||||
columnar_writer.record_bytes(1, "my.column", b"a");
|
||||
columnar_writer.record_bytes(3, "my.column", b"c");
|
||||
columnar_writer.record_bytes(3, "my.column2", b"different_column!");
|
||||
columnar_writer.record_bytes(4, "my.column", b"b");
|
||||
columnar_writer.serialize(5, None, &mut buffer).unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_columns(), 2);
|
||||
let col_handles = columnar_reader.read_columns("my.column").unwrap();
|
||||
assert_eq!(col_handles.len(), 1);
|
||||
let DynamicColumn::Bytes(bytes_col) = col_handles[0].open().unwrap() else { panic!(); };
|
||||
let index: Vec<Option<u64>> = (0..5)
|
||||
.map(|row_id| bytes_col.ords().first(row_id))
|
||||
.collect();
|
||||
assert_eq!(index, &[None, Some(0), None, Some(2), Some(1)]);
|
||||
assert_eq!(bytes_col.num_rows(), 5);
|
||||
let mut term_buffer = Vec::new();
|
||||
let term_ords = bytes_col.ords();
|
||||
assert_eq!(term_ords.first(0), None);
|
||||
assert_eq!(term_ords.first(1), Some(0));
|
||||
bytes_col
|
||||
.dictionary
|
||||
.ord_to_term(0u64, &mut term_buffer)
|
||||
.unwrap();
|
||||
assert_eq!(term_buffer, b"a");
|
||||
assert_eq!(term_ords.first(2), None);
|
||||
assert_eq!(term_ords.first(3), Some(2));
|
||||
bytes_col
|
||||
.dictionary
|
||||
.ord_to_term(2u64, &mut term_buffer)
|
||||
.unwrap();
|
||||
assert_eq!(term_buffer, b"c");
|
||||
assert_eq!(term_ords.first(4), Some(1));
|
||||
bytes_col
|
||||
.dictionary
|
||||
.ord_to_term(1u64, &mut term_buffer)
|
||||
.unwrap();
|
||||
assert_eq!(term_buffer, b"b");
|
||||
}
|
||||
76
columnar/src/utils.rs
Normal file
76
columnar/src/utils.rs
Normal file
@@ -0,0 +1,76 @@
|
||||
const fn compute_mask(num_bits: u8) -> u8 {
|
||||
if num_bits == 8 {
|
||||
u8::MAX
|
||||
} else {
|
||||
(1u8 << num_bits) - 1
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
#[must_use]
|
||||
pub(crate) fn select_bits<const START: u8, const END: u8>(code: u8) -> u8 {
|
||||
assert!(START <= END);
|
||||
assert!(END <= 8);
|
||||
let num_bits: u8 = END - START;
|
||||
let mask: u8 = compute_mask(num_bits);
|
||||
(code >> START) & mask
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
#[must_use]
|
||||
pub(crate) fn place_bits<const START: u8, const END: u8>(code: u8) -> u8 {
|
||||
assert!(START <= END);
|
||||
assert!(END <= 8);
|
||||
let num_bits: u8 = END - START;
|
||||
let mask: u8 = compute_mask(num_bits);
|
||||
assert!(code <= mask);
|
||||
code << START
|
||||
}
|
||||
|
||||
/// Pop-front one bytes from a slice of bytes.
|
||||
#[inline(always)]
|
||||
pub fn pop_first_byte(bytes: &mut &[u8]) -> Option<u8> {
|
||||
if bytes.is_empty() {
|
||||
return None;
|
||||
}
|
||||
let first_byte = bytes[0];
|
||||
*bytes = &bytes[1..];
|
||||
Some(first_byte)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_select_bits() {
|
||||
assert_eq!(255u8, select_bits::<0, 8>(255u8));
|
||||
assert_eq!(0u8, select_bits::<0, 0>(255u8));
|
||||
assert_eq!(8u8, select_bits::<0, 4>(8u8));
|
||||
assert_eq!(4u8, select_bits::<1, 4>(8u8));
|
||||
assert_eq!(0u8, select_bits::<1, 3>(8u8));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_place_bits() {
|
||||
assert_eq!(255u8, place_bits::<0, 8>(255u8));
|
||||
assert_eq!(4u8, place_bits::<2, 3>(1u8));
|
||||
assert_eq!(0u8, place_bits::<2, 2>(0u8));
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic]
|
||||
fn test_place_bits_overflows() {
|
||||
let _ = place_bits::<1, 4>(8u8);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_pop_first_byte() {
|
||||
let mut cursor: &[u8] = &b"abcd"[..];
|
||||
assert_eq!(pop_first_byte(&mut cursor), Some(b'a'));
|
||||
assert_eq!(pop_first_byte(&mut cursor), Some(b'b'));
|
||||
assert_eq!(pop_first_byte(&mut cursor), Some(b'c'));
|
||||
assert_eq!(pop_first_byte(&mut cursor), Some(b'd'));
|
||||
assert_eq!(pop_first_byte(&mut cursor), None);
|
||||
}
|
||||
}
|
||||
131
columnar/src/value.rs
Normal file
131
columnar/src/value.rs
Normal file
@@ -0,0 +1,131 @@
|
||||
use common::DateTime;
|
||||
|
||||
use crate::InvalidData;
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, Debug)]
|
||||
pub enum NumericalValue {
|
||||
I64(i64),
|
||||
U64(u64),
|
||||
F64(f64),
|
||||
}
|
||||
|
||||
impl NumericalValue {
|
||||
pub fn numerical_type(&self) -> NumericalType {
|
||||
match self {
|
||||
NumericalValue::I64(_) => NumericalType::I64,
|
||||
NumericalValue::U64(_) => NumericalType::U64,
|
||||
NumericalValue::F64(_) => NumericalType::F64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<u64> for NumericalValue {
|
||||
fn from(val: u64) -> NumericalValue {
|
||||
NumericalValue::U64(val)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<i64> for NumericalValue {
|
||||
fn from(val: i64) -> Self {
|
||||
NumericalValue::I64(val)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<f64> for NumericalValue {
|
||||
fn from(val: f64) -> Self {
|
||||
NumericalValue::F64(val)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, Default, Hash, Eq, PartialEq)]
|
||||
#[repr(u8)]
|
||||
pub enum NumericalType {
|
||||
#[default]
|
||||
I64 = 0,
|
||||
U64 = 1,
|
||||
F64 = 2,
|
||||
}
|
||||
|
||||
impl NumericalType {
|
||||
pub fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub fn try_from_code(code: u8) -> Result<NumericalType, InvalidData> {
|
||||
match code {
|
||||
0 => Ok(NumericalType::I64),
|
||||
1 => Ok(NumericalType::U64),
|
||||
2 => Ok(NumericalType::F64),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// We voluntarily avoid using `Into` here to keep this
|
||||
/// implementation quirk as private as possible.
|
||||
///
|
||||
/// # Panics
|
||||
/// This coercion trait actually panics if it is used
|
||||
/// to convert a loose types to a stricter type.
|
||||
///
|
||||
/// The level is strictness is somewhat arbitrary.
|
||||
/// - i64
|
||||
/// - u64
|
||||
/// - f64.
|
||||
pub(crate) trait Coerce {
|
||||
fn coerce(numerical_value: NumericalValue) -> Self;
|
||||
}
|
||||
|
||||
impl Coerce for i64 {
|
||||
fn coerce(value: NumericalValue) -> Self {
|
||||
match value {
|
||||
NumericalValue::I64(val) => val,
|
||||
NumericalValue::U64(val) => val as i64,
|
||||
NumericalValue::F64(_) => unreachable!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Coerce for u64 {
|
||||
fn coerce(value: NumericalValue) -> Self {
|
||||
match value {
|
||||
NumericalValue::I64(val) => val as u64,
|
||||
NumericalValue::U64(val) => val,
|
||||
NumericalValue::F64(_) => unreachable!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Coerce for f64 {
|
||||
fn coerce(value: NumericalValue) -> Self {
|
||||
match value {
|
||||
NumericalValue::I64(val) => val as f64,
|
||||
NumericalValue::U64(val) => val as f64,
|
||||
NumericalValue::F64(val) => val,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Coerce for DateTime {
|
||||
fn coerce(value: NumericalValue) -> Self {
|
||||
let timestamp_micros = i64::coerce(value);
|
||||
DateTime::from_timestamp_micros(timestamp_micros)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::NumericalType;
|
||||
|
||||
#[test]
|
||||
fn test_numerical_type_code() {
|
||||
let mut num_numerical_type = 0;
|
||||
for code in u8::MIN..=u8::MAX {
|
||||
if let Ok(numerical_type) = NumericalType::try_from_code(code) {
|
||||
assert_eq!(numerical_type.to_code(), code);
|
||||
num_numerical_type += 1;
|
||||
}
|
||||
}
|
||||
assert_eq!(num_numerical_type, 3);
|
||||
}
|
||||
}
|
||||
@@ -13,9 +13,10 @@ repository = "https://github.com/quickwit-oss/tantivy"
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
byteorder = "1.4.3"
|
||||
ownedbytes = { version= "0.5", path="../ownedbytes" }
|
||||
async-trait = "0.1"
|
||||
time = { version = "0.3.10", features = ["serde-well-known"] }
|
||||
serde = { version = "1.0.136", features = ["derive"] }
|
||||
|
||||
[dev-dependencies]
|
||||
proptest = "1.0.0"
|
||||
|
||||
136
common/src/datetime.rs
Normal file
136
common/src/datetime.rs
Normal file
@@ -0,0 +1,136 @@
|
||||
use std::fmt;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
use time::format_description::well_known::Rfc3339;
|
||||
use time::{OffsetDateTime, PrimitiveDateTime, UtcOffset};
|
||||
|
||||
/// DateTime Precision
|
||||
#[derive(
|
||||
Clone, Copy, Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize, Default,
|
||||
)]
|
||||
#[serde(rename_all = "lowercase")]
|
||||
pub enum DatePrecision {
|
||||
/// Seconds precision
|
||||
#[default]
|
||||
Seconds,
|
||||
/// Milli-seconds precision.
|
||||
Milliseconds,
|
||||
/// Micro-seconds precision.
|
||||
Microseconds,
|
||||
}
|
||||
|
||||
/// A date/time value with microsecond precision.
|
||||
///
|
||||
/// This timestamp does not carry any explicit time zone information.
|
||||
/// Users are responsible for applying the provided conversion
|
||||
/// functions consistently. Internally the time zone is assumed
|
||||
/// to be UTC, which is also used implicitly for JSON serialization.
|
||||
///
|
||||
/// All constructors and conversions are provided as explicit
|
||||
/// functions and not by implementing any `From`/`Into` traits
|
||||
/// to prevent unintended usage.
|
||||
#[derive(Clone, Default, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
|
||||
pub struct DateTime {
|
||||
// Timestamp in microseconds.
|
||||
pub(crate) timestamp_micros: i64,
|
||||
}
|
||||
|
||||
impl DateTime {
|
||||
/// Create new from UNIX timestamp in seconds
|
||||
pub const fn from_timestamp_secs(seconds: i64) -> Self {
|
||||
Self {
|
||||
timestamp_micros: seconds * 1_000_000,
|
||||
}
|
||||
}
|
||||
|
||||
/// Create new from UNIX timestamp in milliseconds
|
||||
pub const fn from_timestamp_millis(milliseconds: i64) -> Self {
|
||||
Self {
|
||||
timestamp_micros: milliseconds * 1_000,
|
||||
}
|
||||
}
|
||||
|
||||
/// Create new from UNIX timestamp in microseconds.
|
||||
pub const fn from_timestamp_micros(microseconds: i64) -> Self {
|
||||
Self {
|
||||
timestamp_micros: microseconds,
|
||||
}
|
||||
}
|
||||
|
||||
/// Create new from `OffsetDateTime`
|
||||
///
|
||||
/// The given date/time is converted to UTC and the actual
|
||||
/// time zone is discarded.
|
||||
pub const fn from_utc(dt: OffsetDateTime) -> Self {
|
||||
let timestamp_micros = dt.unix_timestamp() * 1_000_000 + dt.microsecond() as i64;
|
||||
Self { timestamp_micros }
|
||||
}
|
||||
|
||||
/// Create new from `PrimitiveDateTime`
|
||||
///
|
||||
/// Implicitly assumes that the given date/time is in UTC!
|
||||
/// Otherwise the original value must only be reobtained with
|
||||
/// [`Self::into_primitive()`].
|
||||
pub fn from_primitive(dt: PrimitiveDateTime) -> Self {
|
||||
Self::from_utc(dt.assume_utc())
|
||||
}
|
||||
|
||||
/// Convert to UNIX timestamp in seconds.
|
||||
pub const fn into_timestamp_secs(self) -> i64 {
|
||||
self.timestamp_micros / 1_000_000
|
||||
}
|
||||
|
||||
/// Convert to UNIX timestamp in milliseconds.
|
||||
pub const fn into_timestamp_millis(self) -> i64 {
|
||||
self.timestamp_micros / 1_000
|
||||
}
|
||||
|
||||
/// Convert to UNIX timestamp in microseconds.
|
||||
pub const fn into_timestamp_micros(self) -> i64 {
|
||||
self.timestamp_micros
|
||||
}
|
||||
|
||||
/// Convert to UTC `OffsetDateTime`
|
||||
pub fn into_utc(self) -> OffsetDateTime {
|
||||
let timestamp_nanos = self.timestamp_micros as i128 * 1000;
|
||||
let utc_datetime = OffsetDateTime::from_unix_timestamp_nanos(timestamp_nanos)
|
||||
.expect("valid UNIX timestamp");
|
||||
debug_assert_eq!(UtcOffset::UTC, utc_datetime.offset());
|
||||
utc_datetime
|
||||
}
|
||||
|
||||
/// Convert to `OffsetDateTime` with the given time zone
|
||||
pub fn into_offset(self, offset: UtcOffset) -> OffsetDateTime {
|
||||
self.into_utc().to_offset(offset)
|
||||
}
|
||||
|
||||
/// Convert to `PrimitiveDateTime` without any time zone
|
||||
///
|
||||
/// The value should have been constructed with [`Self::from_primitive()`].
|
||||
/// Otherwise the time zone is implicitly assumed to be UTC.
|
||||
pub fn into_primitive(self) -> PrimitiveDateTime {
|
||||
let utc_datetime = self.into_utc();
|
||||
// Discard the UTC time zone offset
|
||||
debug_assert_eq!(UtcOffset::UTC, utc_datetime.offset());
|
||||
PrimitiveDateTime::new(utc_datetime.date(), utc_datetime.time())
|
||||
}
|
||||
|
||||
/// Truncates the microseconds value to the corresponding precision.
|
||||
pub fn truncate(self, precision: DatePrecision) -> Self {
|
||||
let truncated_timestamp_micros = match precision {
|
||||
DatePrecision::Seconds => (self.timestamp_micros / 1_000_000) * 1_000_000,
|
||||
DatePrecision::Milliseconds => (self.timestamp_micros / 1_000) * 1_000,
|
||||
DatePrecision::Microseconds => self.timestamp_micros,
|
||||
};
|
||||
Self {
|
||||
timestamp_micros: truncated_timestamp_micros,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for DateTime {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
let utc_rfc3339 = self.into_utc().format(&Rfc3339).map_err(|_| fmt::Error)?;
|
||||
f.write_str(&utc_rfc3339)
|
||||
}
|
||||
}
|
||||
166
common/src/group_by.rs
Normal file
166
common/src/group_by.rs
Normal file
@@ -0,0 +1,166 @@
|
||||
use std::cell::RefCell;
|
||||
use std::iter::Peekable;
|
||||
use std::rc::Rc;
|
||||
|
||||
pub trait GroupByIteratorExtended: Iterator {
|
||||
/// Return an `Iterator` that groups iterator elements. Consecutive elements that map to the
|
||||
/// same key are assigned to the same group.
|
||||
///
|
||||
/// The returned Iterator item is `(K, impl Iterator)`, where Iterator are the items of the
|
||||
/// group.
|
||||
///
|
||||
/// ```
|
||||
/// use tantivy_common::GroupByIteratorExtended;
|
||||
///
|
||||
/// // group data into blocks of larger than zero or not.
|
||||
/// let data: Vec<i32> = vec![1, 3, -2, -2, 1, 0, 1, 2];
|
||||
/// // groups: |---->|------>|--------->|
|
||||
///
|
||||
/// let mut data_grouped = Vec::new();
|
||||
/// // Note: group is an iterator
|
||||
/// for (key, group) in data.into_iter().group_by(|val| *val >= 0) {
|
||||
/// data_grouped.push((key, group.collect()));
|
||||
/// }
|
||||
/// assert_eq!(data_grouped, vec![(true, vec![1, 3]), (false, vec![-2, -2]), (true, vec![1, 0, 1, 2])]);
|
||||
/// ```
|
||||
fn group_by<K, F>(self, key: F) -> GroupByIterator<Self, F, K>
|
||||
where
|
||||
Self: Sized,
|
||||
F: FnMut(&Self::Item) -> K,
|
||||
K: PartialEq + Copy,
|
||||
Self::Item: Copy,
|
||||
{
|
||||
GroupByIterator::new(self, key)
|
||||
}
|
||||
}
|
||||
impl<I: Iterator> GroupByIteratorExtended for I {}
|
||||
|
||||
pub struct GroupByIterator<I, F, K: Copy>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
{
|
||||
// I really would like to avoid the Rc<RefCell>, but the Iterator is shared between
|
||||
// `GroupByIterator` and `GroupIter`. In practice they are used consecutive and
|
||||
// `GroupByIter` is finished before calling next on `GroupByIterator`. I'm not sure there
|
||||
// is a solution with lifetimes for that, because we would need to enforce it in the usage
|
||||
// somehow.
|
||||
//
|
||||
// One potential solution would be to replace the iterator approach with something similar.
|
||||
inner: Rc<RefCell<GroupByShared<I, F, K>>>,
|
||||
}
|
||||
|
||||
struct GroupByShared<I, F, K: Copy>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
{
|
||||
iter: Peekable<I>,
|
||||
group_by_fn: F,
|
||||
}
|
||||
|
||||
impl<I, F, K> GroupByIterator<I, F, K>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
K: Copy,
|
||||
{
|
||||
fn new(inner: I, group_by_fn: F) -> Self {
|
||||
let inner = GroupByShared {
|
||||
iter: inner.peekable(),
|
||||
group_by_fn,
|
||||
};
|
||||
|
||||
Self {
|
||||
inner: Rc::new(RefCell::new(inner)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<I, F, K> Iterator for GroupByIterator<I, F, K>
|
||||
where
|
||||
I: Iterator,
|
||||
I::Item: Copy,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
K: Copy,
|
||||
{
|
||||
type Item = (K, GroupIterator<I, F, K>);
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let mut inner = self.inner.borrow_mut();
|
||||
let value = *inner.iter.peek()?;
|
||||
let key = (inner.group_by_fn)(&value);
|
||||
|
||||
let inner = self.inner.clone();
|
||||
|
||||
let group_iter = GroupIterator {
|
||||
inner,
|
||||
group_key: key,
|
||||
};
|
||||
Some((key, group_iter))
|
||||
}
|
||||
}
|
||||
|
||||
pub struct GroupIterator<I, F, K: Copy>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
{
|
||||
inner: Rc<RefCell<GroupByShared<I, F, K>>>,
|
||||
group_key: K,
|
||||
}
|
||||
|
||||
impl<I, F, K: PartialEq + Copy> Iterator for GroupIterator<I, F, K>
|
||||
where
|
||||
I: Iterator,
|
||||
I::Item: Copy,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
{
|
||||
type Item = I::Item;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let mut inner = self.inner.borrow_mut();
|
||||
// peek if next value is in group
|
||||
let peek_val = *inner.iter.peek()?;
|
||||
if (inner.group_by_fn)(&peek_val) == self.group_key {
|
||||
inner.iter.next()
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
fn group_by_collect<I: Iterator<Item = u32>>(iter: I) -> Vec<(I::Item, Vec<I::Item>)> {
|
||||
iter.group_by(|val| val / 10)
|
||||
.map(|(el, iter)| (el, iter.collect::<Vec<_>>()))
|
||||
.collect::<Vec<_>>()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn group_by_two_groups() {
|
||||
let vals = vec![1u32, 4, 15];
|
||||
let grouped_vals = group_by_collect(vals.into_iter());
|
||||
assert_eq!(grouped_vals, vec![(0, vec![1, 4]), (1, vec![15])]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn group_by_test_empty() {
|
||||
let vals = vec![];
|
||||
let grouped_vals = group_by_collect(vals.into_iter());
|
||||
assert_eq!(grouped_vals, vec![]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn group_by_three_groups() {
|
||||
let vals = vec![1u32, 4, 15, 1];
|
||||
let grouped_vals = group_by_collect(vals.into_iter());
|
||||
assert_eq!(
|
||||
grouped_vals,
|
||||
vec![(0, vec![1, 4]), (1, vec![15]), (0, vec![1])]
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -2,14 +2,16 @@
|
||||
|
||||
use std::ops::Deref;
|
||||
|
||||
pub use byteorder::LittleEndian as Endianness;
|
||||
|
||||
mod bitset;
|
||||
mod datetime;
|
||||
pub mod file_slice;
|
||||
mod group_by;
|
||||
mod serialize;
|
||||
mod vint;
|
||||
mod writer;
|
||||
pub use bitset::*;
|
||||
pub use datetime::{DatePrecision, DateTime};
|
||||
pub use group_by::GroupByIteratorExtended;
|
||||
pub use ownedbytes::{OwnedBytes, StableDeref};
|
||||
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
|
||||
pub use vint::{
|
||||
@@ -105,6 +107,21 @@ pub fn u64_to_f64(val: u64) -> f64 {
|
||||
})
|
||||
}
|
||||
|
||||
/// Replaces a given byte in the `bytes` slice of bytes.
|
||||
///
|
||||
/// This function assumes that the needle is rarely contained in the bytes string
|
||||
/// and offers a fast path if the needle is not present.
|
||||
pub fn replace_in_place(needle: u8, replacement: u8, bytes: &mut [u8]) {
|
||||
if !bytes.contains(&needle) {
|
||||
return;
|
||||
}
|
||||
for b in bytes {
|
||||
if *b == needle {
|
||||
*b = replacement;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod test {
|
||||
|
||||
@@ -169,4 +186,20 @@ pub mod test {
|
||||
assert!(f64_to_u64(-2.0) < f64_to_u64(1.0));
|
||||
assert!(f64_to_u64(-2.0) < f64_to_u64(-1.5));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_replace_in_place() {
|
||||
let test_aux = |before_replacement: &[u8], expected: &[u8]| {
|
||||
let mut bytes: Vec<u8> = before_replacement.to_vec();
|
||||
super::replace_in_place(b'b', b'c', &mut bytes);
|
||||
assert_eq!(&bytes[..], expected);
|
||||
};
|
||||
test_aux(b"", b"");
|
||||
test_aux(b"b", b"c");
|
||||
test_aux(b"baaa", b"caaa");
|
||||
test_aux(b"aaab", b"aaac");
|
||||
test_aux(b"aaabaa", b"aaacaa");
|
||||
test_aux(b"aaaaaa", b"aaaaaa");
|
||||
test_aux(b"bbbb", b"cccc");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,16 +1,39 @@
|
||||
use std::io::{Read, Write};
|
||||
use std::{fmt, io};
|
||||
|
||||
use byteorder::{ReadBytesExt, WriteBytesExt};
|
||||
use crate::VInt;
|
||||
|
||||
use crate::{Endianness, VInt};
|
||||
#[derive(Default)]
|
||||
struct Counter(u64);
|
||||
|
||||
impl io::Write for Counter {
|
||||
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
|
||||
self.0 += buf.len() as u64;
|
||||
Ok(buf.len())
|
||||
}
|
||||
|
||||
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
|
||||
self.0 += buf.len() as u64;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn flush(&mut self) -> io::Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// Trait for a simple binary serialization.
|
||||
pub trait BinarySerializable: fmt::Debug + Sized {
|
||||
/// Serialize
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()>;
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()>;
|
||||
/// Deserialize
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self>;
|
||||
|
||||
fn num_bytes(&self) -> u64 {
|
||||
let mut counter = Counter::default();
|
||||
self.serialize(&mut counter).unwrap();
|
||||
counter.0
|
||||
}
|
||||
}
|
||||
|
||||
pub trait DeserializeFrom<T: BinarySerializable> {
|
||||
@@ -34,7 +57,7 @@ pub trait FixedSize: BinarySerializable {
|
||||
}
|
||||
|
||||
impl BinarySerializable for () {
|
||||
fn serialize<W: Write>(&self, _: &mut W) -> io::Result<()> {
|
||||
fn serialize<W: Write + ?Sized>(&self, _: &mut W) -> io::Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
fn deserialize<R: Read>(_: &mut R) -> io::Result<Self> {
|
||||
@@ -47,7 +70,7 @@ impl FixedSize for () {
|
||||
}
|
||||
|
||||
impl<T: BinarySerializable> BinarySerializable for Vec<T> {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.len() as u64).serialize(writer)?;
|
||||
for it in self {
|
||||
it.serialize(writer)?;
|
||||
@@ -66,7 +89,7 @@ impl<T: BinarySerializable> BinarySerializable for Vec<T> {
|
||||
}
|
||||
|
||||
impl<Left: BinarySerializable, Right: BinarySerializable> BinarySerializable for (Left, Right) {
|
||||
fn serialize<W: Write>(&self, write: &mut W) -> io::Result<()> {
|
||||
fn serialize<W: Write + ?Sized>(&self, write: &mut W) -> io::Result<()> {
|
||||
self.0.serialize(write)?;
|
||||
self.1.serialize(write)
|
||||
}
|
||||
@@ -81,12 +104,14 @@ impl<Left: BinarySerializable + FixedSize, Right: BinarySerializable + FixedSize
|
||||
}
|
||||
|
||||
impl BinarySerializable for u32 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_u32::<Endianness>(*self)
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(&self.to_le_bytes())
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<u32> {
|
||||
reader.read_u32::<Endianness>()
|
||||
let mut buf = [0u8; 4];
|
||||
reader.read_exact(&mut buf)?;
|
||||
Ok(u32::from_le_bytes(buf))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -95,12 +120,14 @@ impl FixedSize for u32 {
|
||||
}
|
||||
|
||||
impl BinarySerializable for u16 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_u16::<Endianness>(*self)
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(&self.to_le_bytes())
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<u16> {
|
||||
reader.read_u16::<Endianness>()
|
||||
let mut buf = [0u8; 2];
|
||||
reader.read_exact(&mut buf)?;
|
||||
Ok(Self::from_le_bytes(buf))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -109,11 +136,13 @@ impl FixedSize for u16 {
|
||||
}
|
||||
|
||||
impl BinarySerializable for u64 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_u64::<Endianness>(*self)
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(&self.to_le_bytes())
|
||||
}
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
reader.read_u64::<Endianness>()
|
||||
let mut buf = [0u8; 8];
|
||||
reader.read_exact(&mut buf)?;
|
||||
Ok(Self::from_le_bytes(buf))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -122,11 +151,13 @@ impl FixedSize for u64 {
|
||||
}
|
||||
|
||||
impl BinarySerializable for u128 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_u128::<Endianness>(*self)
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(&self.to_le_bytes())
|
||||
}
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
reader.read_u128::<Endianness>()
|
||||
let mut buf = [0u8; 16];
|
||||
reader.read_exact(&mut buf)?;
|
||||
Ok(Self::from_le_bytes(buf))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -135,11 +166,13 @@ impl FixedSize for u128 {
|
||||
}
|
||||
|
||||
impl BinarySerializable for f32 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_f32::<Endianness>(*self)
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(&self.to_le_bytes())
|
||||
}
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
reader.read_f32::<Endianness>()
|
||||
let mut buf = [0u8; 4];
|
||||
reader.read_exact(&mut buf)?;
|
||||
Ok(Self::from_le_bytes(buf))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -148,11 +181,13 @@ impl FixedSize for f32 {
|
||||
}
|
||||
|
||||
impl BinarySerializable for i64 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_i64::<Endianness>(*self)
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(&self.to_le_bytes())
|
||||
}
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
reader.read_i64::<Endianness>()
|
||||
let mut buf = [0u8; Self::SIZE_IN_BYTES];
|
||||
reader.read_exact(&mut buf)?;
|
||||
Ok(Self::from_le_bytes(buf))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -161,11 +196,13 @@ impl FixedSize for i64 {
|
||||
}
|
||||
|
||||
impl BinarySerializable for f64 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_f64::<Endianness>(*self)
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(&self.to_le_bytes())
|
||||
}
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
reader.read_f64::<Endianness>()
|
||||
let mut buf = [0u8; Self::SIZE_IN_BYTES];
|
||||
reader.read_exact(&mut buf)?;
|
||||
Ok(Self::from_le_bytes(buf))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -174,11 +211,13 @@ impl FixedSize for f64 {
|
||||
}
|
||||
|
||||
impl BinarySerializable for u8 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_u8(*self)
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(&self.to_le_bytes())
|
||||
}
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<u8> {
|
||||
reader.read_u8()
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let mut buf = [0u8; Self::SIZE_IN_BYTES];
|
||||
reader.read_exact(&mut buf)?;
|
||||
Ok(Self::from_le_bytes(buf))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -187,11 +226,11 @@ impl FixedSize for u8 {
|
||||
}
|
||||
|
||||
impl BinarySerializable for bool {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_u8(u8::from(*self))
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
(*self as u8).serialize(writer)
|
||||
}
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<bool> {
|
||||
let val = reader.read_u8()?;
|
||||
let val = u8::deserialize(reader)?;
|
||||
match val {
|
||||
0 => Ok(false),
|
||||
1 => Ok(true),
|
||||
@@ -208,7 +247,7 @@ impl FixedSize for bool {
|
||||
}
|
||||
|
||||
impl BinarySerializable for String {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
let data: &[u8] = self.as_bytes();
|
||||
VInt(data.len() as u64).serialize(writer)?;
|
||||
writer.write_all(data)
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
use std::io;
|
||||
use std::io::{Read, Write};
|
||||
|
||||
use byteorder::{ByteOrder, LittleEndian};
|
||||
|
||||
use super::BinarySerializable;
|
||||
|
||||
/// Variable int serializes a u128 number
|
||||
@@ -44,7 +42,7 @@ pub fn deserialize_vint_u128(data: &[u8]) -> io::Result<(u128, &[u8])> {
|
||||
pub struct VIntU128(pub u128);
|
||||
|
||||
impl BinarySerializable for VIntU128 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
let mut buffer = vec![];
|
||||
serialize_vint_u128(self.0, &mut buffer);
|
||||
writer.write_all(&buffer)
|
||||
@@ -127,7 +125,7 @@ pub fn serialize_vint_u32(val: u32, buf: &mut [u8; 8]) -> &[u8] {
|
||||
5,
|
||||
),
|
||||
};
|
||||
LittleEndian::write_u64(&mut buf[..], res);
|
||||
buf.copy_from_slice(&res.to_le_bytes());
|
||||
&buf[0..num_bytes]
|
||||
}
|
||||
|
||||
@@ -211,7 +209,7 @@ impl VInt {
|
||||
}
|
||||
|
||||
impl BinarySerializable for VInt {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
let mut buffer = [0u8; 10];
|
||||
let num_bytes = self.serialize_into(&mut buffer);
|
||||
writer.write_all(&buffer[0..num_bytes])
|
||||
|
||||
@@ -1,130 +1,319 @@
|
||||
// # Aggregation example
|
||||
//
|
||||
// This example shows how you can use built-in aggregations.
|
||||
// We will use range buckets and compute the average in each bucket.
|
||||
//
|
||||
// We will use nested aggregations with buckets and metrics:
|
||||
// - Range buckets and compute the average in each bucket.
|
||||
// - Term aggregation and compute the min price in each bucket
|
||||
// ---
|
||||
|
||||
use serde_json::Value;
|
||||
use serde_json::{Deserializer, Value};
|
||||
use tantivy::aggregation::agg_req::{
|
||||
Aggregation, Aggregations, BucketAggregation, BucketAggregationType, MetricAggregation,
|
||||
RangeAggregation,
|
||||
};
|
||||
use tantivy::aggregation::agg_result::AggregationResults;
|
||||
use tantivy::aggregation::bucket::RangeAggregationRange;
|
||||
use tantivy::aggregation::metric::AverageAggregation;
|
||||
use tantivy::aggregation::AggregationCollector;
|
||||
use tantivy::query::TermQuery;
|
||||
use tantivy::schema::{self, Cardinality, IndexRecordOption, Schema, TextFieldIndexing};
|
||||
use tantivy::{doc, Index, Term};
|
||||
use tantivy::query::AllQuery;
|
||||
use tantivy::schema::{self, IndexRecordOption, Schema, TextFieldIndexing, FAST};
|
||||
use tantivy::Index;
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// # Create Schema
|
||||
//
|
||||
// Lets create a schema for a footwear shop, with 4 fields: name, category, stock and price.
|
||||
// category, stock and price will be fast fields as that's the requirement
|
||||
// for aggregation queries.
|
||||
//
|
||||
|
||||
let mut schema_builder = Schema::builder();
|
||||
// In preparation of the `TermsAggregation`, the category field is configured with:
|
||||
// - `set_fast`
|
||||
// - `raw` tokenizer
|
||||
//
|
||||
// The tokenizer is set to "raw", because the fast field uses the same dictionary as the
|
||||
// inverted index. (This behaviour will change in tantivy 0.20, where the fast field will
|
||||
// always be raw tokenized independent from the regular tokenizing)
|
||||
//
|
||||
let text_fieldtype = schema::TextOptions::default()
|
||||
.set_indexing_options(
|
||||
TextFieldIndexing::default().set_index_option(IndexRecordOption::WithFreqs),
|
||||
TextFieldIndexing::default()
|
||||
.set_index_option(IndexRecordOption::WithFreqs)
|
||||
.set_tokenizer("raw"),
|
||||
)
|
||||
.set_fast()
|
||||
.set_stored();
|
||||
let text_field = schema_builder.add_text_field("text", text_fieldtype);
|
||||
let score_fieldtype =
|
||||
crate::schema::NumericOptions::default().set_fast(Cardinality::SingleValue);
|
||||
let highscore_field = schema_builder.add_f64_field("highscore", score_fieldtype.clone());
|
||||
let price_field = schema_builder.add_f64_field("price", score_fieldtype.clone());
|
||||
schema_builder.add_text_field("category", text_fieldtype);
|
||||
schema_builder.add_f64_field("stock", FAST);
|
||||
schema_builder.add_f64_field("price", FAST);
|
||||
|
||||
let schema = schema_builder.build();
|
||||
|
||||
// # Indexing documents
|
||||
//
|
||||
// Lets index a bunch of documents for this example.
|
||||
let index = Index::create_in_ram(schema);
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
let data = r#"{
|
||||
"name": "Almond Toe Court Shoes, Patent Black",
|
||||
"category": "Womens Footwear",
|
||||
"price": 99.00,
|
||||
"stock": 5
|
||||
}
|
||||
{
|
||||
"name": "Suede Shoes, Blue",
|
||||
"category": "Womens Footwear",
|
||||
"price": 42.00,
|
||||
"stock": 4
|
||||
}
|
||||
{
|
||||
"name": "Leather Driver Saddle Loafers, Tan",
|
||||
"category": "Mens Footwear",
|
||||
"price": 34.00,
|
||||
"stock": 12
|
||||
}
|
||||
{
|
||||
"name": "Flip Flops, Red",
|
||||
"category": "Mens Footwear",
|
||||
"price": 19.00,
|
||||
"stock": 6
|
||||
}
|
||||
{
|
||||
"name": "Flip Flops, Blue",
|
||||
"category": "Mens Footwear",
|
||||
"price": 19.00,
|
||||
"stock": 0
|
||||
}
|
||||
{
|
||||
"name": "Gold Button Cardigan, Black",
|
||||
"category": "Womens Casualwear",
|
||||
"price": 167.00,
|
||||
"stock": 6
|
||||
}
|
||||
{
|
||||
"name": "Cotton Shorts, Medium Red",
|
||||
"category": "Womens Casualwear",
|
||||
"price": 30.00,
|
||||
"stock": 5
|
||||
}
|
||||
{
|
||||
"name": "Fine Stripe Short SleeveShirt, Grey",
|
||||
"category": "Mens Casualwear",
|
||||
"price": 49.99,
|
||||
"stock": 9
|
||||
}
|
||||
{
|
||||
"name": "Fine Stripe Short SleeveShirt, Green",
|
||||
"category": "Mens Casualwear",
|
||||
"price": 49.99,
|
||||
"offer": 39.99,
|
||||
"stock": 9
|
||||
}
|
||||
{
|
||||
"name": "Sharkskin Waistcoat, Charcoal",
|
||||
"category": "Mens Formalwear",
|
||||
"price": 75.00,
|
||||
"stock": 2
|
||||
}
|
||||
{
|
||||
"name": "Lightweight Patch PocketBlazer, Deer",
|
||||
"category": "Mens Formalwear",
|
||||
"price": 175.50,
|
||||
"stock": 1
|
||||
}
|
||||
{
|
||||
"name": "Bird Print Dress, Black",
|
||||
"category": "Womens Formalwear",
|
||||
"price": 270.00,
|
||||
"stock": 10
|
||||
}
|
||||
{
|
||||
"name": "Mid Twist Cut-Out Dress, Pink",
|
||||
"category": "Womens Formalwear",
|
||||
"price": 540.00,
|
||||
"stock": 5
|
||||
}"#;
|
||||
|
||||
let stream = Deserializer::from_str(data).into_iter::<Value>();
|
||||
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
// writing the segment
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
highscore_field => 1f64,
|
||||
price_field => 0f64,
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
highscore_field => 3f64,
|
||||
price_field => 1f64,
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
highscore_field => 5f64,
|
||||
price_field => 1f64,
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "nohit",
|
||||
highscore_field => 6f64,
|
||||
price_field => 2f64,
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
highscore_field => 7f64,
|
||||
price_field => 2f64,
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
highscore_field => 11f64,
|
||||
price_field => 10f64,
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
highscore_field => 14f64,
|
||||
price_field => 15f64,
|
||||
))?;
|
||||
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
highscore_field => 15f64,
|
||||
price_field => 20f64,
|
||||
))?;
|
||||
let mut num_indexed = 0;
|
||||
for value in stream {
|
||||
let doc = schema.parse_document(&serde_json::to_string(&value.unwrap())?)?;
|
||||
index_writer.add_document(doc)?;
|
||||
num_indexed += 1;
|
||||
if num_indexed > 4 {
|
||||
// Writing the first segment
|
||||
index_writer.commit()?;
|
||||
}
|
||||
}
|
||||
|
||||
// Writing the second segment
|
||||
index_writer.commit()?;
|
||||
|
||||
// We have two segments now. The `AggregationCollector` will run the aggregation on each
|
||||
// segment and then merge the results into an `IntermediateAggregationResult`.
|
||||
|
||||
let reader = index.reader()?;
|
||||
let text_field = reader.searcher().schema().get_field("text").unwrap();
|
||||
let searcher = reader.searcher();
|
||||
// ---
|
||||
// # Aggregation Query
|
||||
//
|
||||
//
|
||||
// We can construct the query by building the request structure or by deserializing from JSON.
|
||||
// The JSON API is more stable and therefore recommended.
|
||||
//
|
||||
// ## Request 1
|
||||
|
||||
let term_query = TermQuery::new(
|
||||
Term::from_field_text(text_field, "cool"),
|
||||
IndexRecordOption::Basic,
|
||||
);
|
||||
let agg_req_str = r#"
|
||||
{
|
||||
"group_by_stock": {
|
||||
"aggs": {
|
||||
"average_price": { "avg": { "field": "price" } }
|
||||
},
|
||||
"range": {
|
||||
"field": "stock",
|
||||
"ranges": [
|
||||
{ "key": "few", "to": 1.0 },
|
||||
{ "key": "some", "from": 1.0, "to": 10.0 },
|
||||
{ "key": "many", "from": 10.0 }
|
||||
]
|
||||
}
|
||||
}
|
||||
} "#;
|
||||
|
||||
let sub_agg_req_1: Aggregations = vec![(
|
||||
"average_price".to_string(),
|
||||
Aggregation::Metric(MetricAggregation::Average(
|
||||
AverageAggregation::from_field_name("price".to_string()),
|
||||
)),
|
||||
)]
|
||||
.into_iter()
|
||||
.collect();
|
||||
// In this Aggregation we want to get the average price for different groups, depending on how
|
||||
// many items are in stock. We define custom ranges `few`, `some`, `many` via the
|
||||
// range aggregation.
|
||||
// For every bucket we want the average price, so we create a nested metric aggregation on the
|
||||
// range bucket aggregation. Only buckets support nested aggregations.
|
||||
// ### Request JSON API
|
||||
//
|
||||
|
||||
let agg_req_1: Aggregations = vec![(
|
||||
"score_ranges".to_string(),
|
||||
let agg_req: Aggregations = serde_json::from_str(agg_req_str)?;
|
||||
let collector = AggregationCollector::from_aggs(agg_req, None);
|
||||
|
||||
let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
|
||||
let res2: Value = serde_json::to_value(agg_res)?;
|
||||
|
||||
// ### Request Rust API
|
||||
//
|
||||
// This is exactly the same request as above, but via the rust structures.
|
||||
//
|
||||
|
||||
let agg_req: Aggregations = vec![(
|
||||
"group_by_stock".to_string(),
|
||||
Aggregation::Bucket(BucketAggregation {
|
||||
bucket_agg: BucketAggregationType::Range(RangeAggregation {
|
||||
field: "highscore".to_string(),
|
||||
field: "stock".to_string(),
|
||||
ranges: vec![
|
||||
(-1f64..9f64).into(),
|
||||
(9f64..14f64).into(),
|
||||
(14f64..20f64).into(),
|
||||
RangeAggregationRange {
|
||||
key: Some("few".into()),
|
||||
from: None,
|
||||
to: Some(1f64),
|
||||
},
|
||||
RangeAggregationRange {
|
||||
key: Some("some".into()),
|
||||
from: Some(1f64),
|
||||
to: Some(10f64),
|
||||
},
|
||||
RangeAggregationRange {
|
||||
key: Some("many".into()),
|
||||
from: Some(10f64),
|
||||
to: None,
|
||||
},
|
||||
],
|
||||
..Default::default()
|
||||
}),
|
||||
sub_aggregation: sub_agg_req_1.clone(),
|
||||
sub_aggregation: vec![(
|
||||
"average_price".to_string(),
|
||||
Aggregation::Metric(MetricAggregation::Average(
|
||||
AverageAggregation::from_field_name("price".to_string()),
|
||||
)),
|
||||
)]
|
||||
.into_iter()
|
||||
.collect(),
|
||||
}),
|
||||
)]
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req, None);
|
||||
// We use the `AllQuery` which will pass all documents to the AggregationCollector.
|
||||
let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();
|
||||
let res1: Value = serde_json::to_value(agg_res)?;
|
||||
|
||||
let res: Value = serde_json::to_value(&agg_res)?;
|
||||
println!("{}", serde_json::to_string_pretty(&res)?);
|
||||
// ### Aggregation Result
|
||||
//
|
||||
// The resulting structure deserializes in the same JSON format as elastic search.
|
||||
//
|
||||
let expected_res = r#"
|
||||
{
|
||||
"group_by_stock":{
|
||||
"buckets":[
|
||||
{"average_price":{"value":19.0},"doc_count":1,"key":"few","to":1.0},
|
||||
{"average_price":{"value":124.748},"doc_count":10,"from":1.0,"key":"some","to":10.0},
|
||||
{"average_price":{"value":152.0},"doc_count":2,"from":10.0,"key":"many"}
|
||||
]
|
||||
}
|
||||
}
|
||||
"#;
|
||||
let expected_json: Value = serde_json::from_str(expected_res)?;
|
||||
assert_eq!(expected_json, res1);
|
||||
assert_eq!(expected_json, res2);
|
||||
|
||||
// ### Request 2
|
||||
//
|
||||
// Now we are interested in the minimum price per category, so we create a bucket per
|
||||
// category via `TermsAggregation`. We are interested in the highest minimum prices, and set the
|
||||
// order of the buckets `"order": { "min_price": "desc" }` to be sorted by the the metric of
|
||||
// the sub aggregation. (awesome)
|
||||
//
|
||||
let agg_req_str = r#"
|
||||
{
|
||||
"min_price_per_category": {
|
||||
"aggs": {
|
||||
"min_price": { "min": { "field": "price" } }
|
||||
},
|
||||
"terms": {
|
||||
"field": "category",
|
||||
"min_doc_count": 1,
|
||||
"order": { "min_price": "desc" }
|
||||
}
|
||||
}
|
||||
} "#;
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_str(agg_req_str)?;
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req, None);
|
||||
|
||||
let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
|
||||
let res: Value = serde_json::to_value(agg_res)?;
|
||||
|
||||
// Minimum price per category, sorted by minimum price descending
|
||||
//
|
||||
// As you can see, the starting prices for `Formalwear` are higher than `Casualwear`.
|
||||
//
|
||||
let expected_res = r#"
|
||||
{
|
||||
"min_price_per_category": {
|
||||
"buckets": [
|
||||
{ "doc_count": 2, "key": "Womens Formalwear", "min_price": { "value": 270.0 } },
|
||||
{ "doc_count": 2, "key": "Mens Formalwear", "min_price": { "value": 75.0 } },
|
||||
{ "doc_count": 2, "key": "Mens Casualwear", "min_price": { "value": 49.99 } },
|
||||
{ "doc_count": 2, "key": "Womens Footwear", "min_price": { "value": 42.0 } },
|
||||
{ "doc_count": 2, "key": "Womens Casualwear", "min_price": { "value": 30.0 } },
|
||||
{ "doc_count": 3, "key": "Mens Footwear", "min_price": { "value": 19.0 } }
|
||||
],
|
||||
"sum_other_doc_count": 0
|
||||
}
|
||||
}
|
||||
"#;
|
||||
let expected_json: Value = serde_json::from_str(expected_res)?;
|
||||
|
||||
assert_eq!(expected_json, res);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -7,14 +7,12 @@
|
||||
// Of course, you can have a look at the tantivy's built-in collectors
|
||||
// such as the `CountCollector` for more examples.
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
use columnar::Column;
|
||||
// ---
|
||||
// Importing tantivy...
|
||||
use tantivy::collector::{Collector, SegmentCollector};
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Field, Schema, FAST, INDEXED, TEXT};
|
||||
use tantivy::schema::{Schema, FAST, INDEXED, TEXT};
|
||||
use tantivy::{doc, Index, Score, SegmentReader};
|
||||
|
||||
#[derive(Default)]
|
||||
@@ -52,11 +50,11 @@ impl Stats {
|
||||
}
|
||||
|
||||
struct StatsCollector {
|
||||
field: Field,
|
||||
field: String,
|
||||
}
|
||||
|
||||
impl StatsCollector {
|
||||
fn with_field(field: Field) -> StatsCollector {
|
||||
fn with_field(field: String) -> StatsCollector {
|
||||
StatsCollector { field }
|
||||
}
|
||||
}
|
||||
@@ -73,7 +71,7 @@ impl Collector for StatsCollector {
|
||||
_segment_local_id: u32,
|
||||
segment_reader: &SegmentReader,
|
||||
) -> tantivy::Result<StatsSegmentCollector> {
|
||||
let fast_field_reader = segment_reader.fast_fields().u64(self.field)?;
|
||||
let fast_field_reader = segment_reader.fast_fields().u64(&self.field)?;
|
||||
Ok(StatsSegmentCollector {
|
||||
fast_field_reader,
|
||||
stats: Stats::default(),
|
||||
@@ -97,7 +95,7 @@ impl Collector for StatsCollector {
|
||||
}
|
||||
|
||||
struct StatsSegmentCollector {
|
||||
fast_field_reader: Arc<dyn Column<u64>>,
|
||||
fast_field_reader: Column,
|
||||
stats: Stats,
|
||||
}
|
||||
|
||||
@@ -105,10 +103,14 @@ impl SegmentCollector for StatsSegmentCollector {
|
||||
type Fruit = Option<Stats>;
|
||||
|
||||
fn collect(&mut self, doc: u32, _score: Score) {
|
||||
let value = self.fast_field_reader.get_val(doc) as f64;
|
||||
self.stats.count += 1;
|
||||
self.stats.sum += value;
|
||||
self.stats.squared_sum += value * value;
|
||||
// Since we know the values are single value, we could call `first_or_default_col` on the
|
||||
// column and fetch single values.
|
||||
for value in self.fast_field_reader.values_for_doc(doc) {
|
||||
let value = value as f64;
|
||||
self.stats.count += 1;
|
||||
self.stats.sum += value;
|
||||
self.stats.squared_sum += value * value;
|
||||
}
|
||||
}
|
||||
|
||||
fn harvest(self) -> <Self as SegmentCollector>::Fruit {
|
||||
@@ -169,9 +171,11 @@ fn main() -> tantivy::Result<()> {
|
||||
let searcher = reader.searcher();
|
||||
let query_parser = QueryParser::for_index(&index, vec![product_name, product_description]);
|
||||
|
||||
// here we want to get a hit on the 'ken' in Frankenstein
|
||||
// here we want to search for `broom` and use `StatsCollector` on the hits.
|
||||
let query = query_parser.parse_query("broom")?;
|
||||
if let Some(stats) = searcher.search(&query, &StatsCollector::with_field(price))? {
|
||||
if let Some(stats) =
|
||||
searcher.search(&query, &StatsCollector::with_field("price".to_string()))?
|
||||
{
|
||||
println!("count: {}", stats.count());
|
||||
println!("mean: {}", stats.mean());
|
||||
println!("standard deviation: {}", stats.standard_deviation());
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
// # Defining a tokenizer pipeline
|
||||
//
|
||||
// In this example, we'll see how to define a tokenizer pipeline
|
||||
// by aligning a bunch of `TokenFilter`.
|
||||
// In this example, we'll see how to define a tokenizer
|
||||
// by creating a custom `NgramTokenizer`.
|
||||
use tantivy::collector::TopDocs;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::*;
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
|
||||
use tantivy::collector::TopDocs;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Cardinality, DateOptions, Schema, Value, INDEXED, STORED, STRING};
|
||||
use tantivy::schema::{DateOptions, Schema, Value, INDEXED, STORED, STRING};
|
||||
use tantivy::Index;
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
@@ -12,8 +12,9 @@ fn main() -> tantivy::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let opts = DateOptions::from(INDEXED)
|
||||
.set_stored()
|
||||
.set_fast(Cardinality::SingleValue)
|
||||
.set_fast()
|
||||
.set_precision(tantivy::DatePrecision::Seconds);
|
||||
// Add `occurred_at` date field type
|
||||
let occurred_at = schema_builder.add_date_field("occurred_at", opts);
|
||||
let event_type = schema_builder.add_text_field("event", STRING | STORED);
|
||||
let schema = schema_builder.build();
|
||||
@@ -22,6 +23,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
// The dates are passed as string in the RFC3339 format
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"occurred_at": "2022-06-22T12:53:50.53Z",
|
||||
@@ -41,14 +43,16 @@ fn main() -> tantivy::Result<()> {
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
|
||||
// # Default fields: event_type
|
||||
// # Search
|
||||
let query_parser = QueryParser::for_index(&index, vec![event_type]);
|
||||
{
|
||||
let query = query_parser.parse_query("event:comment")?;
|
||||
// Simple exact search on the date
|
||||
let query = query_parser.parse_query("occurred_at:\"2022-06-22T12:53:50.53Z\"")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5))?;
|
||||
assert_eq!(count_docs.len(), 1);
|
||||
}
|
||||
{
|
||||
// Range query on the date field
|
||||
let query = query_parser
|
||||
.parse_query(r#"occurred_at:[2022-06-22T12:58:00Z TO 2022-06-23T00:00:00Z}"#)?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(4))?;
|
||||
|
||||
@@ -1,15 +1,17 @@
|
||||
// # Basic Example
|
||||
// # Faceted Search
|
||||
//
|
||||
// This example covers the basic functionalities of
|
||||
// This example covers the faceted search functionalities of
|
||||
// tantivy.
|
||||
//
|
||||
// We will :
|
||||
// - define our schema
|
||||
// = create an index in a directory
|
||||
// - index few documents in our index
|
||||
// - search for the best document matchings "sea whale"
|
||||
// - retrieve the best document original content.
|
||||
|
||||
// - define a text field "name" in our schema
|
||||
// - define a facet field "classification" in our schema
|
||||
// - create an index in memory
|
||||
// - index few documents with respective facets in our index
|
||||
// - search and count the number of documents that the classifications start the facet "/Felidae"
|
||||
// - Search the facet "/Felidae/Pantherinae" and count the number of documents that the
|
||||
// classifications include the facet.
|
||||
//
|
||||
// ---
|
||||
// Importing tantivy...
|
||||
use tantivy::collector::FacetCollector;
|
||||
@@ -21,7 +23,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// Let's create a temporary directory for the sake of this example
|
||||
let mut schema_builder = Schema::builder();
|
||||
|
||||
let name = schema_builder.add_text_field("felin_name", TEXT | STORED);
|
||||
let name = schema_builder.add_text_field("name", TEXT | STORED);
|
||||
// this is our faceted field: its scientific classification
|
||||
let classification = schema_builder.add_facet_field("classification", FacetOptions::default());
|
||||
|
||||
@@ -69,7 +71,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
{
|
||||
let mut facet_collector = FacetCollector::for_field(classification);
|
||||
let mut facet_collector = FacetCollector::for_field("classification");
|
||||
facet_collector.add_facet("/Felidae");
|
||||
let facet_counts = searcher.search(&AllQuery, &facet_collector)?;
|
||||
// This lists all of the facet counts, right below "/Felidae".
|
||||
@@ -95,7 +97,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let facet = Facet::from("/Felidae/Pantherinae");
|
||||
let facet_term = Term::from_facet(classification, &facet);
|
||||
let facet_term_query = TermQuery::new(facet_term, IndexRecordOption::Basic);
|
||||
let mut facet_collector = FacetCollector::for_field(classification);
|
||||
let mut facet_collector = FacetCollector::for_field("classification");
|
||||
facet_collector.add_facet("/Felidae/Pantherinae");
|
||||
let facet_counts = searcher.search(&facet_term_query, &facet_collector)?;
|
||||
let facets: Vec<(&Facet, u64)> = facet_counts.get("/Felidae/Pantherinae").collect();
|
||||
|
||||
@@ -1,3 +1,12 @@
|
||||
// # Faceted Search With Tweak Score
|
||||
//
|
||||
// This example covers the faceted search functionalities of
|
||||
// tantivy.
|
||||
//
|
||||
// We will :
|
||||
// - define a text field "name" in our schema
|
||||
// - define a facet field "classification" in our schema
|
||||
|
||||
use std::collections::HashSet;
|
||||
|
||||
use tantivy::collector::TopDocs;
|
||||
@@ -55,8 +64,9 @@ fn main() -> tantivy::Result<()> {
|
||||
.collect(),
|
||||
);
|
||||
let top_docs_by_custom_score =
|
||||
// Call TopDocs with a custom tweak score
|
||||
TopDocs::with_limit(2).tweak_score(move |segment_reader: &SegmentReader| {
|
||||
let ingredient_reader = segment_reader.facet_reader(ingredient).unwrap();
|
||||
let ingredient_reader = segment_reader.facet_reader("ingredient").unwrap();
|
||||
let facet_dict = ingredient_reader.facet_dict();
|
||||
|
||||
let query_ords: HashSet<u64> = facets
|
||||
@@ -64,12 +74,10 @@ fn main() -> tantivy::Result<()> {
|
||||
.filter_map(|key| facet_dict.term_ord(key.encoded_str()).unwrap())
|
||||
.collect();
|
||||
|
||||
let mut facet_ords_buffer: Vec<u64> = Vec::with_capacity(20);
|
||||
|
||||
move |doc: DocId, original_score: Score| {
|
||||
ingredient_reader.facet_ords(doc, &mut facet_ords_buffer);
|
||||
let missing_ingredients = facet_ords_buffer
|
||||
.iter()
|
||||
// Update the original score with a tweaked score
|
||||
let missing_ingredients = ingredient_reader
|
||||
.facet_ords(doc)
|
||||
.filter(|ord| !query_ords.contains(ord))
|
||||
.count();
|
||||
let tweak = 1.0 / 4_f32.powi(missing_ingredients as i32);
|
||||
|
||||
167
examples/fuzzy_search.rs
Normal file
167
examples/fuzzy_search.rs
Normal file
@@ -0,0 +1,167 @@
|
||||
// # Basic Example
|
||||
//
|
||||
// This example covers the basic functionalities of
|
||||
// tantivy.
|
||||
//
|
||||
// We will :
|
||||
// - define our schema
|
||||
// - create an index in a directory
|
||||
// - index a few documents into our index
|
||||
// - search for the best document matching a basic query
|
||||
// - retrieve the best document's original content.
|
||||
// ---
|
||||
// Importing tantivy...
|
||||
use tantivy::collector::{Count, TopDocs};
|
||||
use tantivy::query::FuzzyTermQuery;
|
||||
use tantivy::schema::*;
|
||||
use tantivy::{doc, Index, ReloadPolicy};
|
||||
use tempfile::TempDir;
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// Let's create a temporary directory for the
|
||||
// sake of this example
|
||||
let index_path = TempDir::new()?;
|
||||
|
||||
// # Defining the schema
|
||||
//
|
||||
// The Tantivy index requires a very strict schema.
|
||||
// The schema declares which fields are in the index,
|
||||
// and for each field, its type and "the way it should
|
||||
// be indexed".
|
||||
|
||||
// First we need to define a schema ...
|
||||
let mut schema_builder = Schema::builder();
|
||||
|
||||
// Our first field is title.
|
||||
// We want full-text search for it, and we also want
|
||||
// to be able to retrieve the document after the search.
|
||||
//
|
||||
// `TEXT | STORED` is some syntactic sugar to describe
|
||||
// that.
|
||||
//
|
||||
// `TEXT` means the field should be tokenized and indexed,
|
||||
// along with its term frequency and term positions.
|
||||
//
|
||||
// `STORED` means that the field will also be saved
|
||||
// in a compressed, row-oriented key-value store.
|
||||
// This store is useful for reconstructing the
|
||||
// documents that were selected during the search phase.
|
||||
let title = schema_builder.add_text_field("title", TEXT | STORED);
|
||||
|
||||
let schema = schema_builder.build();
|
||||
|
||||
// # Indexing documents
|
||||
//
|
||||
// Let's create a brand new index.
|
||||
//
|
||||
// This will actually just save a meta.json
|
||||
// with our schema in the directory.
|
||||
let index = Index::create_in_dir(&index_path, schema.clone())?;
|
||||
|
||||
// To insert a document we will need an index writer.
|
||||
// There must be only one writer at a time.
|
||||
// This single `IndexWriter` is already
|
||||
// multithreaded.
|
||||
//
|
||||
// Here we give tantivy a budget of `50MB`.
|
||||
// Using a bigger memory_arena for the indexer may increase
|
||||
// throughput, but 50 MB is already plenty.
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
|
||||
// Let's index our documents!
|
||||
// We first need a handle on the title and the body field.
|
||||
|
||||
// ### Adding documents
|
||||
//
|
||||
index_writer.add_document(doc!(
|
||||
title => "The Name of the Wind",
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
title => "The Diary of Muadib",
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
title => "A Dairy Cow",
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
title => "The Diary of a Young Girl",
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
|
||||
// ### Committing
|
||||
//
|
||||
// At this point our documents are not searchable.
|
||||
//
|
||||
//
|
||||
// We need to call `.commit()` explicitly to force the
|
||||
// `index_writer` to finish processing the documents in the queue,
|
||||
// flush the current index to the disk, and advertise
|
||||
// the existence of new documents.
|
||||
//
|
||||
// This call is blocking.
|
||||
index_writer.commit()?;
|
||||
|
||||
// If `.commit()` returns correctly, then all of the
|
||||
// documents that have been added are guaranteed to be
|
||||
// persistently indexed.
|
||||
//
|
||||
// In the scenario of a crash or a power failure,
|
||||
// tantivy behaves as if it has rolled back to its last
|
||||
// commit.
|
||||
|
||||
// # Searching
|
||||
//
|
||||
// ### Searcher
|
||||
//
|
||||
// A reader is required first in order to search an index.
|
||||
// It acts as a `Searcher` pool that reloads itself,
|
||||
// depending on a `ReloadPolicy`.
|
||||
//
|
||||
// For a search server you will typically create one reader for the entire lifetime of your
|
||||
// program, and acquire a new searcher for every single request.
|
||||
//
|
||||
// In the code below, we rely on the 'ON_COMMIT' policy: the reader
|
||||
// will reload the index automatically after each commit.
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::OnCommit)
|
||||
.try_into()?;
|
||||
|
||||
// We now need to acquire a searcher.
|
||||
//
|
||||
// A searcher points to a snapshotted, immutable version of the index.
|
||||
//
|
||||
// Some search experience might require more than
|
||||
// one query. Using the same searcher ensures that all of these queries will run on the
|
||||
// same version of the index.
|
||||
//
|
||||
// Acquiring a `searcher` is very cheap.
|
||||
//
|
||||
// You should acquire a searcher every time you start processing a request and
|
||||
// and release it right after your query is finished.
|
||||
let searcher = reader.searcher();
|
||||
|
||||
// ### FuzzyTermQuery
|
||||
{
|
||||
let term = Term::from_field_text(title, "Diary");
|
||||
let query = FuzzyTermQuery::new(term, 2, true);
|
||||
|
||||
let (top_docs, count) = searcher
|
||||
.search(&query, &(TopDocs::with_limit(5), Count))
|
||||
.unwrap();
|
||||
assert_eq!(count, 3);
|
||||
assert_eq!(top_docs.len(), 3);
|
||||
for (score, doc_address) in top_docs {
|
||||
let retrieved_doc = searcher.doc(doc_address)?;
|
||||
// Note that the score is not lower for the fuzzy hit.
|
||||
// There's an issue open for that: https://github.com/quickwit-oss/tantivy/issues/563
|
||||
println!("score {score:?} doc {}", schema.to_json(&retrieved_doc));
|
||||
// score 1.0 doc {"title":["The Diary of Muadib"]}
|
||||
//
|
||||
// score 1.0 doc {"title":["The Diary of a Young Girl"]}
|
||||
//
|
||||
// score 1.0 doc {"title":["A Dairy Cow"]}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -27,7 +27,7 @@ fn main() -> Result<()> {
|
||||
reader.reload()?;
|
||||
let searcher = reader.searcher();
|
||||
// The end is excluded i.e. here we are searching up to 1969
|
||||
let docs_in_the_sixties = RangeQuery::new_u64(year_field, 1960..1970);
|
||||
let docs_in_the_sixties = RangeQuery::new_u64("year".to_string(), 1960..1970);
|
||||
// Uses a Count collector to sum the total number of docs in the range
|
||||
let num_60s_books = searcher.search(&docs_in_the_sixties, &Count)?;
|
||||
assert_eq!(num_60s_books, 10);
|
||||
|
||||
107
examples/ip_field.rs
Normal file
107
examples/ip_field.rs
Normal file
@@ -0,0 +1,107 @@
|
||||
// # IP Address example
|
||||
//
|
||||
// This example shows how the ip field can be used
|
||||
// with IpV6 and IpV4.
|
||||
|
||||
use tantivy::collector::{Count, TopDocs};
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Schema, FAST, INDEXED, STORED, STRING};
|
||||
use tantivy::Index;
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// # Defining the schema
|
||||
// We set the IP field as `INDEXED`, so it can be searched
|
||||
// `FAST` will create a fast field. The fast field will be used to execute search queries.
|
||||
// `FAST` is not a requirement for range queries, it can also be executed on the inverted index
|
||||
// which is created by `INDEXED`.
|
||||
let mut schema_builder = Schema::builder();
|
||||
let event_type = schema_builder.add_text_field("event_type", STRING | STORED);
|
||||
let ip = schema_builder.add_ip_addr_field("ip", STORED | INDEXED | FAST);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
// # Indexing documents
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
|
||||
// ### IPv4
|
||||
// Adding documents that contain an IPv4 address. Notice that the IP addresses are passed as
|
||||
// `String`. Since the field is of type ip, we parse the IP address from the string and store it
|
||||
// internally as IPv6.
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"ip": "192.168.0.33",
|
||||
"event_type": "login"
|
||||
}"#,
|
||||
)?;
|
||||
index_writer.add_document(doc)?;
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"ip": "192.168.0.80",
|
||||
"event_type": "checkout"
|
||||
}"#,
|
||||
)?;
|
||||
index_writer.add_document(doc)?;
|
||||
// ### IPv6
|
||||
// Adding a document that contains an IPv6 address.
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"ip": "2001:0db8:85a3:0000:0000:8a2e:0370:7334",
|
||||
"event_type": "checkout"
|
||||
}"#,
|
||||
)?;
|
||||
|
||||
index_writer.add_document(doc)?;
|
||||
// Commit will create a segment containing our documents.
|
||||
index_writer.commit()?;
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
|
||||
// # Search
|
||||
// Range queries on IPv4. Since we created a fast field, the fast field will be used to execute
|
||||
// the search.
|
||||
// ### Range Queries
|
||||
let query_parser = QueryParser::for_index(&index, vec![event_type, ip]);
|
||||
{
|
||||
// Inclusive range queries
|
||||
let query = query_parser.parse_query("ip:[192.168.0.80 TO 192.168.0.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5))?;
|
||||
assert_eq!(count_docs.len(), 1);
|
||||
}
|
||||
{
|
||||
// Exclusive range queries
|
||||
let query = query_parser.parse_query("ip:{192.168.0.80 TO 192.168.1.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(count_docs.len(), 0);
|
||||
}
|
||||
{
|
||||
// Find docs with IP addresses smaller equal 192.168.1.100
|
||||
let query = query_parser.parse_query("ip:[* TO 192.168.1.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
{
|
||||
// Find docs with IP addresses smaller than 192.168.1.100
|
||||
let query = query_parser.parse_query("ip:[* TO 192.168.1.100}")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
|
||||
// ### Exact Queries
|
||||
// Exact search on IPv4.
|
||||
{
|
||||
let query = query_parser.parse_query("ip:192.168.0.80")?;
|
||||
let count_docs = searcher.search(&*query, &Count)?;
|
||||
assert_eq!(count_docs, 1);
|
||||
}
|
||||
// Exact search on IPv6.
|
||||
// IpV6 addresses need to be quoted because they contain `:`
|
||||
{
|
||||
let query = query_parser.parse_query("ip:\"2001:0db8:85a3:0000:0000:8a2e:0370:7334\"")?;
|
||||
let count_docs = searcher.search(&*query, &Count)?;
|
||||
assert_eq!(count_docs, 1);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -4,7 +4,7 @@ use std::sync::{Arc, RwLock, Weak};
|
||||
|
||||
use tantivy::collector::TopDocs;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Field, Schema, FAST, TEXT};
|
||||
use tantivy::schema::{Schema, FAST, TEXT};
|
||||
use tantivy::{
|
||||
doc, DocAddress, DocId, Index, IndexReader, Opstamp, Searcher, SearcherGeneration, SegmentId,
|
||||
SegmentReader, Warmer,
|
||||
@@ -17,7 +17,6 @@ use tantivy::{
|
||||
|
||||
type ProductId = u64;
|
||||
|
||||
/// Price
|
||||
type Price = u32;
|
||||
|
||||
pub trait PriceFetcher: Send + Sync + 'static {
|
||||
@@ -25,13 +24,13 @@ pub trait PriceFetcher: Send + Sync + 'static {
|
||||
}
|
||||
|
||||
struct DynamicPriceColumn {
|
||||
field: Field,
|
||||
field: String,
|
||||
price_cache: RwLock<HashMap<(SegmentId, Option<Opstamp>), Arc<Vec<Price>>>>,
|
||||
price_fetcher: Box<dyn PriceFetcher>,
|
||||
}
|
||||
|
||||
impl DynamicPriceColumn {
|
||||
pub fn with_product_id_field<T: PriceFetcher>(field: Field, price_fetcher: T) -> Self {
|
||||
pub fn with_product_id_field<T: PriceFetcher>(field: String, price_fetcher: T) -> Self {
|
||||
DynamicPriceColumn {
|
||||
field,
|
||||
price_cache: Default::default(),
|
||||
@@ -48,7 +47,10 @@ impl Warmer for DynamicPriceColumn {
|
||||
fn warm(&self, searcher: &Searcher) -> tantivy::Result<()> {
|
||||
for segment in searcher.segment_readers() {
|
||||
let key = (segment.segment_id(), segment.delete_opstamp());
|
||||
let product_id_reader = segment.fast_fields().u64(self.field)?;
|
||||
let product_id_reader = segment
|
||||
.fast_fields()
|
||||
.u64(&self.field)?
|
||||
.first_or_default_col(0);
|
||||
let product_ids: Vec<ProductId> = segment
|
||||
.doc_ids_alive()
|
||||
.map(|doc| product_id_reader.get_val(doc))
|
||||
@@ -87,10 +89,10 @@ impl Warmer for DynamicPriceColumn {
|
||||
}
|
||||
}
|
||||
|
||||
/// For the sake of this example, the table is just an editable HashMap behind a RwLock.
|
||||
/// This map represents a map (ProductId -> Price)
|
||||
///
|
||||
/// In practise, it could be fetching things from an external service, like a SQL table.
|
||||
// For the sake of this example, the table is just an editable HashMap behind a RwLock.
|
||||
// This map represents a map (ProductId -> Price)
|
||||
//
|
||||
// In practise, it could be fetching things from an external service, like a SQL table.
|
||||
#[derive(Default, Clone)]
|
||||
pub struct ExternalPriceTable {
|
||||
prices: Arc<RwLock<HashMap<ProductId, Price>>>,
|
||||
@@ -123,7 +125,7 @@ fn main() -> tantivy::Result<()> {
|
||||
|
||||
let price_table = ExternalPriceTable::default();
|
||||
let price_dynamic_column = Arc::new(DynamicPriceColumn::with_product_id_field(
|
||||
product_id,
|
||||
"product_id".to_string(),
|
||||
price_table.clone(),
|
||||
));
|
||||
price_table.update_price(OLIVE_OIL, 12);
|
||||
|
||||
@@ -1,33 +0,0 @@
|
||||
[package]
|
||||
name = "fastfield_codecs"
|
||||
version = "0.3.0"
|
||||
authors = ["Pascal Seitz <pascal@quickwit.io>"]
|
||||
license = "MIT"
|
||||
edition = "2021"
|
||||
description = "Fast field codecs used by tantivy"
|
||||
documentation = "https://docs.rs/fastfield_codecs/"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
repository = "https://github.com/quickwit-oss/tantivy"
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
common = { version = "0.5", path = "../common/", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.3", path = "../bitpacker/" }
|
||||
prettytable-rs = {version="0.9.0", optional= true}
|
||||
rand = {version="0.8.3", optional= true}
|
||||
fastdivide = "0.4"
|
||||
log = "0.4"
|
||||
itertools = { version = "0.10.3" }
|
||||
measure_time = { version="0.8.2", optional=true}
|
||||
|
||||
[dev-dependencies]
|
||||
more-asserts = "0.3.0"
|
||||
proptest = "1.0.0"
|
||||
rand = "0.8.3"
|
||||
|
||||
[features]
|
||||
bin = ["prettytable-rs", "rand", "measure_time"]
|
||||
default = ["bin"]
|
||||
unstable = []
|
||||
|
||||
@@ -1,68 +0,0 @@
|
||||
|
||||
|
||||
# Fast Field Codecs
|
||||
|
||||
This crate contains various fast field codecs, used to compress/decompress fast field data in tantivy.
|
||||
|
||||
## Contributing
|
||||
|
||||
Contributing is pretty straightforward. Since the bitpacking is the simplest compressor, you can check it for reference.
|
||||
|
||||
A codec needs to implement 2 traits:
|
||||
|
||||
- A reader implementing `FastFieldCodecReader` to read the codec.
|
||||
- A serializer implementing `FastFieldCodecSerializer` for compression estimation and codec name + id.
|
||||
|
||||
### Tests
|
||||
|
||||
Once the traits are implemented test and benchmark integration is pretty easy (see `test_with_codec_data_sets` and `bench.rs`).
|
||||
|
||||
Make sure to add the codec to the main.rs, which tests the compression ratio and estimation against different data sets. You can run it with:
|
||||
```
|
||||
cargo run --features bin
|
||||
```
|
||||
|
||||
### TODO
|
||||
- Add real world data sets in comparison
|
||||
- Add codec to cover sparse data sets
|
||||
|
||||
|
||||
### Codec Comparison
|
||||
```
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| | Compression Ratio | Compression Estimation |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| Autoincrement | | |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| LinearInterpol | 0.000039572664 | 0.000004396963 |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| MultiLinearInterpol | 0.1477348 | 0.17275847 |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| Bitpacked | 0.28126493 | 0.28125 |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| Monotonically increasing concave | | |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| LinearInterpol | 0.25003937 | 0.26562938 |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| MultiLinearInterpol | 0.190665 | 0.1883836 |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| Bitpacked | 0.31251436 | 0.3125 |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| Monotonically increasing convex | | |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| LinearInterpol | 0.25003937 | 0.28125438 |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| MultiLinearInterpol | 0.18676 | 0.2040086 |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| Bitpacked | 0.31251436 | 0.3125 |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| Almost monotonically increasing | | |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| LinearInterpol | 0.14066513 | 0.1562544 |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| MultiLinearInterpol | 0.16335973 | 0.17275847 |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
| Bitpacked | 0.28126493 | 0.28125 |
|
||||
+----------------------------------+-------------------+------------------------+
|
||||
|
||||
```
|
||||
@@ -1,246 +0,0 @@
|
||||
#![feature(test)]
|
||||
|
||||
extern crate test;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::iter;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use fastfield_codecs::*;
|
||||
use rand::prelude::*;
|
||||
use test::Bencher;
|
||||
|
||||
use super::*;
|
||||
|
||||
// Warning: this generates the same permutation at each call
|
||||
fn generate_permutation() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (0u64..100_000u64).collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
fn generate_random() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (0u64..100_000u64)
|
||||
.map(|el| el + random::<u16>() as u64)
|
||||
.collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
// Warning: this generates the same permutation at each call
|
||||
fn generate_permutation_gcd() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (1u64..100_000u64).map(|el| el * 1000).collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default>(
|
||||
column: &[T],
|
||||
) -> Arc<dyn Column<T>> {
|
||||
let mut buffer = Vec::new();
|
||||
serialize(VecColumn::from(&column), &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
open(OwnedBytes::new(buffer)).unwrap()
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_veclookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = permutation[a as usize];
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = column.get_val(a as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
fn get_exp_data() -> Vec<u64> {
|
||||
let mut data = vec![];
|
||||
for i in 0..100 {
|
||||
let num = i * i;
|
||||
data.extend(iter::repeat(i as u64).take(num));
|
||||
}
|
||||
data.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
|
||||
// lengt = 328350
|
||||
data
|
||||
}
|
||||
|
||||
fn get_data_50percent_item() -> (u128, u128, Vec<u128>) {
|
||||
let mut permutation = get_exp_data();
|
||||
let major_item = 20;
|
||||
let minor_item = 10;
|
||||
permutation.extend(iter::repeat(major_item).take(permutation.len()));
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
(major_item as u128, minor_item as u128, permutation)
|
||||
}
|
||||
fn get_u128_column_random() -> Arc<dyn Column<u128>> {
|
||||
let permutation = generate_random();
|
||||
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
get_u128_column_from_data(&permutation)
|
||||
}
|
||||
|
||||
fn get_u128_column_from_data(data: &[u128]) -> Arc<dyn Column<u128>> {
|
||||
let mut out = vec![];
|
||||
let iter_gen = || data.iter().cloned();
|
||||
serialize_u128(iter_gen, data.len() as u32, &mut out).unwrap();
|
||||
let out = OwnedBytes::new(out);
|
||||
open_u128::<u128>(out).unwrap()
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
|
||||
let (major_item, _minor_item, data) = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
major_item..=major_item,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
|
||||
let (_major_item, minor_item, data) = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
minor_item..=minor_item,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
|
||||
let (_major_item, _minor_item, data) = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
let mut a = 0u128;
|
||||
for i in 0u64..column.num_vals() as u64 {
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_stride5_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
let n = column.num_vals();
|
||||
let mut a = 0u128;
|
||||
for i in (0..n / 5).map(|val| val * 5) {
|
||||
a += column.get_val(i);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_vec(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += permutation[i as usize];
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0u32..n as u32 {
|
||||
a += column.get_val(i);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_gcd(b: &mut Bencher) {
|
||||
let permutation = generate_permutation_gcd();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..n {
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_vec(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..permutation.len() {
|
||||
a += permutation[i as usize] as u64;
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
}
|
||||
@@ -1,116 +0,0 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::OwnedBytes;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::serialize::NormalizedHeader;
|
||||
use crate::{Column, FastFieldCodec, FastFieldCodecType};
|
||||
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct BitpackedReader {
|
||||
data: OwnedBytes,
|
||||
bit_unpacker: BitUnpacker,
|
||||
normalized_header: NormalizedHeader,
|
||||
}
|
||||
|
||||
impl Column for BitpackedReader {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
self.bit_unpacker.get(doc, &self.data)
|
||||
}
|
||||
#[inline]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The BitpackedReader assumes a normalized vector.
|
||||
0
|
||||
}
|
||||
#[inline]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.normalized_header.max_value
|
||||
}
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.normalized_header.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
pub struct BitpackedCodec;
|
||||
|
||||
impl FastFieldCodec for BitpackedCodec {
|
||||
/// The CODEC_TYPE is an enum value used for serialization.
|
||||
const CODEC_TYPE: FastFieldCodecType = FastFieldCodecType::Bitpacked;
|
||||
|
||||
type Reader = BitpackedReader;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn open_from_bytes(
|
||||
data: OwnedBytes,
|
||||
normalized_header: NormalizedHeader,
|
||||
) -> io::Result<Self::Reader> {
|
||||
let num_bits = compute_num_bits(normalized_header.max_value);
|
||||
let bit_unpacker = BitUnpacker::new(num_bits);
|
||||
Ok(BitpackedReader {
|
||||
data,
|
||||
bit_unpacker,
|
||||
normalized_header,
|
||||
})
|
||||
}
|
||||
|
||||
/// Serializes data with the BitpackedFastFieldSerializer.
|
||||
///
|
||||
/// The bitpacker assumes that the column has been normalized.
|
||||
/// i.e. It has already been shifted by its minimum value, so that its
|
||||
/// current minimum value is 0.
|
||||
///
|
||||
/// Ideally, we made a shift upstream on the column so that `col.min_value() == 0`.
|
||||
fn serialize(column: &dyn Column, write: &mut impl Write) -> io::Result<()> {
|
||||
assert_eq!(column.min_value(), 0u64);
|
||||
let num_bits = compute_num_bits(column.max_value());
|
||||
let mut bit_packer = BitPacker::new();
|
||||
for val in column.iter() {
|
||||
bit_packer.write(val, num_bits, write)?;
|
||||
}
|
||||
bit_packer.close(write)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn estimate(column: &dyn Column) -> Option<f32> {
|
||||
let num_bits = compute_num_bits(column.max_value());
|
||||
let num_bits_uncompressed = 64;
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::tests::get_codec_test_datasets;
|
||||
|
||||
fn create_and_validate(data: &[u64], name: &str) {
|
||||
crate::tests::create_and_validate::<BitpackedCodec>(data, name);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_data_sets() {
|
||||
let data_sets = get_codec_test_datasets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate(&data, name);
|
||||
data.reverse();
|
||||
create_and_validate(&data, name);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bitpacked_fast_field_rand() {
|
||||
for _ in 0..500 {
|
||||
let mut data = (0..1 + rand::random::<u8>() as usize)
|
||||
.map(|_| rand::random::<i64>() as u64 / 2)
|
||||
.collect::<Vec<_>>();
|
||||
create_and_validate(&data, "rand");
|
||||
|
||||
data.reverse();
|
||||
create_and_validate(&data, "rand");
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,188 +0,0 @@
|
||||
use std::sync::Arc;
|
||||
use std::{io, iter};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, DeserializeFrom, OwnedBytes};
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::line::Line;
|
||||
use crate::serialize::NormalizedHeader;
|
||||
use crate::{Column, FastFieldCodec, FastFieldCodecType, VecColumn};
|
||||
|
||||
const CHUNK_SIZE: usize = 512;
|
||||
|
||||
#[derive(Debug, Default)]
|
||||
struct Block {
|
||||
line: Line,
|
||||
bit_unpacker: BitUnpacker,
|
||||
data_start_offset: usize,
|
||||
}
|
||||
|
||||
impl BinarySerializable for Block {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.line.serialize(writer)?;
|
||||
self.bit_unpacker.bit_width().serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let line = Line::deserialize(reader)?;
|
||||
let bit_width = u8::deserialize(reader)?;
|
||||
Ok(Block {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
data_start_offset: 0,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_num_blocks(num_vals: u32) -> usize {
|
||||
(num_vals as usize + CHUNK_SIZE - 1) / CHUNK_SIZE
|
||||
}
|
||||
|
||||
pub struct BlockwiseLinearCodec;
|
||||
|
||||
impl FastFieldCodec for BlockwiseLinearCodec {
|
||||
const CODEC_TYPE: crate::FastFieldCodecType = FastFieldCodecType::BlockwiseLinear;
|
||||
type Reader = BlockwiseLinearReader;
|
||||
|
||||
fn open_from_bytes(
|
||||
bytes: common::OwnedBytes,
|
||||
normalized_header: NormalizedHeader,
|
||||
) -> io::Result<Self::Reader> {
|
||||
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
|
||||
let footer_offset = bytes.len() - 4 - footer_len as usize;
|
||||
let (data, mut footer) = bytes.split(footer_offset);
|
||||
let num_blocks = compute_num_blocks(normalized_header.num_vals);
|
||||
let mut blocks: Vec<Block> = iter::repeat_with(|| Block::deserialize(&mut footer))
|
||||
.take(num_blocks)
|
||||
.collect::<io::Result<_>>()?;
|
||||
|
||||
let mut start_offset = 0;
|
||||
for block in &mut blocks {
|
||||
block.data_start_offset = start_offset;
|
||||
start_offset += (block.bit_unpacker.bit_width() as usize) * CHUNK_SIZE / 8;
|
||||
}
|
||||
Ok(BlockwiseLinearReader {
|
||||
blocks: Arc::new(blocks),
|
||||
data,
|
||||
normalized_header,
|
||||
})
|
||||
}
|
||||
|
||||
// Estimate first_chunk and extrapolate
|
||||
fn estimate(column: &dyn crate::Column) -> Option<f32> {
|
||||
if column.num_vals() < 10 * CHUNK_SIZE as u32 {
|
||||
return None;
|
||||
}
|
||||
let mut first_chunk: Vec<u64> = column.iter().take(CHUNK_SIZE).collect();
|
||||
let line = Line::train(&VecColumn::from(&first_chunk));
|
||||
for (i, buffer_val) in first_chunk.iter_mut().enumerate() {
|
||||
let interpolated_val = line.eval(i as u32);
|
||||
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
|
||||
}
|
||||
let estimated_bit_width = first_chunk
|
||||
.iter()
|
||||
.map(|el| ((el + 1) as f32 * 3.0) as u64)
|
||||
.map(compute_num_bits)
|
||||
.max()
|
||||
.unwrap();
|
||||
|
||||
let metadata_per_block = {
|
||||
let mut out = vec![];
|
||||
Block::default().serialize(&mut out).unwrap();
|
||||
out.len()
|
||||
};
|
||||
let num_bits = estimated_bit_width as u64 * column.num_vals() as u64
|
||||
// function metadata per block
|
||||
+ metadata_per_block as u64 * (column.num_vals() as u64 / CHUNK_SIZE as u64);
|
||||
let num_bits_uncompressed = 64 * column.num_vals();
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
}
|
||||
|
||||
fn serialize(column: &dyn Column, wrt: &mut impl io::Write) -> io::Result<()> {
|
||||
// The BitpackedReader assumes a normalized vector.
|
||||
assert_eq!(column.min_value(), 0);
|
||||
let mut buffer = Vec::with_capacity(CHUNK_SIZE);
|
||||
let num_vals = column.num_vals();
|
||||
|
||||
let num_blocks = compute_num_blocks(num_vals);
|
||||
let mut blocks = Vec::with_capacity(num_blocks);
|
||||
|
||||
let mut vals = column.iter();
|
||||
|
||||
let mut bit_packer = BitPacker::new();
|
||||
|
||||
for _ in 0..num_blocks {
|
||||
buffer.clear();
|
||||
buffer.extend((&mut vals).take(CHUNK_SIZE));
|
||||
let line = Line::train(&VecColumn::from(&buffer));
|
||||
|
||||
assert!(!buffer.is_empty());
|
||||
|
||||
for (i, buffer_val) in buffer.iter_mut().enumerate() {
|
||||
let interpolated_val = line.eval(i as u32);
|
||||
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
|
||||
}
|
||||
let bit_width = buffer.iter().copied().map(compute_num_bits).max().unwrap();
|
||||
|
||||
for &buffer_val in &buffer {
|
||||
bit_packer.write(buffer_val, bit_width, wrt)?;
|
||||
}
|
||||
|
||||
blocks.push(Block {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
data_start_offset: 0,
|
||||
});
|
||||
}
|
||||
|
||||
bit_packer.close(wrt)?;
|
||||
|
||||
assert_eq!(blocks.len(), compute_num_blocks(num_vals));
|
||||
|
||||
let mut counting_wrt = CountingWriter::wrap(wrt);
|
||||
for block in &blocks {
|
||||
block.serialize(&mut counting_wrt)?;
|
||||
}
|
||||
let footer_len = counting_wrt.written_bytes();
|
||||
(footer_len as u32).serialize(&mut counting_wrt)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct BlockwiseLinearReader {
|
||||
blocks: Arc<Vec<Block>>,
|
||||
normalized_header: NormalizedHeader,
|
||||
data: OwnedBytes,
|
||||
}
|
||||
|
||||
impl Column for BlockwiseLinearReader {
|
||||
#[inline(always)]
|
||||
fn get_val(&self, idx: u32) -> u64 {
|
||||
let block_id = (idx / CHUNK_SIZE as u32) as usize;
|
||||
let idx_within_block = idx % (CHUNK_SIZE as u32);
|
||||
let block = &self.blocks[block_id];
|
||||
let interpoled_val: u64 = block.line.eval(idx_within_block);
|
||||
let block_bytes = &self.data[block.data_start_offset..];
|
||||
let bitpacked_diff = block.bit_unpacker.get(idx_within_block, block_bytes);
|
||||
interpoled_val.wrapping_add(bitpacked_diff)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The BlockwiseLinearReader assumes a normalized vector.
|
||||
0u64
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.normalized_header.max_value
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.normalized_header.num_vals
|
||||
}
|
||||
}
|
||||
@@ -1,348 +0,0 @@
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
|
||||
use tantivy_bitpacker::minmax;
|
||||
|
||||
use crate::monotonic_mapping::StrictlyMonotonicFn;
|
||||
|
||||
/// `Column` provides columnar access on a field.
|
||||
pub trait Column<T: PartialOrd = u64>: Send + Sync {
|
||||
/// Return the value associated with the given idx.
|
||||
///
|
||||
/// This accessor should return as fast as possible.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `idx` is greater than the column length.
|
||||
fn get_val(&self, idx: u32) -> T;
|
||||
|
||||
/// Fills an output buffer with the fast field values
|
||||
/// associated with the `DocId` going from
|
||||
/// `start` to `start + output.len()`.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Must panic if `start + output.len()` is greater than
|
||||
/// the segment's `maxdoc`.
|
||||
#[inline]
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
for (out, idx) in output.iter_mut().zip(start..) {
|
||||
*out = self.get_val(idx as u32);
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the positions of values which are in the provided value range.
|
||||
///
|
||||
/// Note that position == docid for single value fast fields
|
||||
#[inline]
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<T>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
let doc_id_range = doc_id_range.start..doc_id_range.end.min(self.num_vals());
|
||||
|
||||
for idx in doc_id_range.start..doc_id_range.end {
|
||||
let val = self.get_val(idx);
|
||||
if value_range.contains(&val) {
|
||||
positions.push(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the minimum value for this fast field.
|
||||
///
|
||||
/// This min_value may not be exact.
|
||||
/// For instance, the min value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.min_value()`.
|
||||
fn min_value(&self) -> T;
|
||||
|
||||
/// Returns the maximum value for this fast field.
|
||||
///
|
||||
/// This max_value may not be exact.
|
||||
/// For instance, the max value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.max_value()`.
|
||||
fn max_value(&self) -> T;
|
||||
|
||||
/// The number of values in the column.
|
||||
fn num_vals(&self) -> u32;
|
||||
|
||||
/// Returns a iterator over the data
|
||||
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = T> + 'a> {
|
||||
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
|
||||
}
|
||||
}
|
||||
|
||||
/// VecColumn provides `Column` over a slice.
|
||||
pub struct VecColumn<'a, T = u64> {
|
||||
values: &'a [T],
|
||||
min_value: T,
|
||||
max_value: T,
|
||||
}
|
||||
|
||||
impl<'a, C: Column<T>, T: Copy + PartialOrd> Column<T> for &'a C {
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
(*self).get_val(idx)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
(*self).min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
(*self).max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
(*self).num_vals()
|
||||
}
|
||||
|
||||
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
|
||||
(*self).iter()
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
(*self).get_range(start, output)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Send + Sync> Column<T> for VecColumn<'a, T> {
|
||||
fn get_val(&self, position: u32) -> T {
|
||||
self.values[position as usize]
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
|
||||
Box::new(self.values.iter().copied())
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
self.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.values.len() as u32
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
output.copy_from_slice(&self.values[start as usize..][..output.len()])
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Default, V> From<&'a V> for VecColumn<'a, T>
|
||||
where V: AsRef<[T]> + ?Sized
|
||||
{
|
||||
fn from(values: &'a V) -> Self {
|
||||
let values = values.as_ref();
|
||||
let (min_value, max_value) = minmax(values.iter().copied()).unwrap_or_default();
|
||||
Self {
|
||||
values,
|
||||
min_value,
|
||||
max_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct MonotonicMappingColumn<C, T, Input> {
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
_phantom: PhantomData<Input>,
|
||||
}
|
||||
|
||||
/// Creates a view of a column transformed by a strictly monotonic mapping. See
|
||||
/// [`StrictlyMonotonicFn`].
|
||||
///
|
||||
/// E.g. apply a gcd monotonic_mapping([100, 200, 300]) == [1, 2, 3]
|
||||
/// monotonic_mapping.mapping() is expected to be injective, and we should always have
|
||||
/// monotonic_mapping.inverse(monotonic_mapping.mapping(el)) == el
|
||||
///
|
||||
/// The inverse of the mapping is required for:
|
||||
/// `fn get_positions_for_value_range(&self, range: RangeInclusive<T>) -> Vec<u64> `
|
||||
/// The user provides the original value range and we need to monotonic map them in the same way the
|
||||
/// serialization does before calling the underlying column.
|
||||
///
|
||||
/// Note that when opening a codec, the monotonic_mapping should be the inverse of the mapping
|
||||
/// during serialization. And therefore the monotonic_mapping_inv when opening is the same as
|
||||
/// monotonic_mapping during serialization.
|
||||
pub fn monotonic_map_column<C, T, Input, Output>(
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
) -> impl Column<Output>
|
||||
where
|
||||
C: Column<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Sync + Clone,
|
||||
Output: PartialOrd + Send + Sync + Clone,
|
||||
{
|
||||
MonotonicMappingColumn {
|
||||
from_column,
|
||||
monotonic_mapping,
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
impl<C, T, Input, Output> Column<Output> for MonotonicMappingColumn<C, T, Input>
|
||||
where
|
||||
C: Column<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Sync + Clone,
|
||||
Output: PartialOrd + Send + Sync + Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn get_val(&self, idx: u32) -> Output {
|
||||
let from_val = self.from_column.get_val(idx);
|
||||
self.monotonic_mapping.mapping(from_val)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> Output {
|
||||
let from_min_value = self.from_column.min_value();
|
||||
self.monotonic_mapping.mapping(from_min_value)
|
||||
}
|
||||
|
||||
fn max_value(&self) -> Output {
|
||||
let from_max_value = self.from_column.max_value();
|
||||
self.monotonic_mapping.mapping(from_max_value)
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.from_column.num_vals()
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = Output> + '_> {
|
||||
Box::new(
|
||||
self.from_column
|
||||
.iter()
|
||||
.map(|el| self.monotonic_mapping.mapping(el)),
|
||||
)
|
||||
}
|
||||
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<Output>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.from_column.get_docids_for_value_range(
|
||||
self.monotonic_mapping.inverse(range.start().clone())
|
||||
..=self.monotonic_mapping.inverse(range.end().clone()),
|
||||
doc_id_range,
|
||||
positions,
|
||||
)
|
||||
}
|
||||
|
||||
// We voluntarily do not implement get_range as it yields a regression,
|
||||
// and we do not have any specialized implementation anyway.
|
||||
}
|
||||
|
||||
/// Wraps an iterator into a `Column`.
|
||||
pub struct IterColumn<T>(T);
|
||||
|
||||
impl<T> From<T> for IterColumn<T>
|
||||
where T: Iterator + Clone + ExactSizeIterator
|
||||
{
|
||||
fn from(iter: T) -> Self {
|
||||
IterColumn(iter)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Column<T::Item> for IterColumn<T>
|
||||
where
|
||||
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
|
||||
T::Item: PartialOrd,
|
||||
{
|
||||
fn get_val(&self, idx: u32) -> T::Item {
|
||||
self.0.clone().nth(idx as usize).unwrap()
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T::Item {
|
||||
self.0.clone().next().unwrap()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T::Item {
|
||||
self.0.clone().last().unwrap()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.0.len() as u32
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T::Item> + '_> {
|
||||
Box::new(self.0.clone())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternalBaseval,
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping() {
|
||||
let vals = &[3u64, 5u64][..];
|
||||
let col = VecColumn::from(vals);
|
||||
let mapped = monotonic_map_column(col, StrictlyMonotonicMappingToInternalBaseval::new(2));
|
||||
assert_eq!(mapped.min_value(), 1u64);
|
||||
assert_eq!(mapped.max_value(), 3u64);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.get_val(0), 1);
|
||||
assert_eq!(mapped.get_val(1), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_as_col() {
|
||||
let col = IterColumn::from(10..100);
|
||||
assert_eq!(col.num_vals(), 90);
|
||||
assert_eq!(col.max_value(), 99);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_iter() {
|
||||
let vals: Vec<u64> = (10..110u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100),
|
||||
),
|
||||
);
|
||||
let val_i64s: Vec<u64> = mapped.iter().collect();
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_get_range() {
|
||||
let vals: Vec<u64> = (0..100u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 0),
|
||||
),
|
||||
);
|
||||
|
||||
assert_eq!(mapped.min_value(), 0u64);
|
||||
assert_eq!(mapped.max_value(), 9900u64);
|
||||
assert_eq!(mapped.num_vals(), 100);
|
||||
let val_u64s: Vec<u64> = mapped.iter().collect();
|
||||
assert_eq!(val_u64s.len(), 100);
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_u64s[i as usize], mapped.get_val(i));
|
||||
assert_eq!(val_u64s[i as usize], vals[i as usize] * 10);
|
||||
}
|
||||
let mut buf = [0u64; 20];
|
||||
mapped.get_range(7, &mut buf[..]);
|
||||
assert_eq!(&val_u64s[7..][..20], &buf);
|
||||
}
|
||||
}
|
||||
@@ -1,38 +0,0 @@
|
||||
use std::io;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
|
||||
const MAGIC_NUMBER: u16 = 4335u16;
|
||||
const FASTFIELD_FORMAT_VERSION: u8 = 1;
|
||||
|
||||
pub(crate) fn append_format_version(output: &mut impl io::Write) -> io::Result<()> {
|
||||
FASTFIELD_FORMAT_VERSION.serialize(output)?;
|
||||
MAGIC_NUMBER.serialize(output)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn read_format_version(data: OwnedBytes) -> io::Result<(OwnedBytes, u8)> {
|
||||
let (data, magic_number_bytes) = data.rsplit(2);
|
||||
|
||||
let magic_number = u16::deserialize(&mut magic_number_bytes.as_slice())?;
|
||||
if magic_number != MAGIC_NUMBER {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
format!("magic number mismatch {} != {}", magic_number, MAGIC_NUMBER),
|
||||
));
|
||||
}
|
||||
let (data, format_version_bytes) = data.rsplit(1);
|
||||
let format_version = u8::deserialize(&mut format_version_bytes.as_slice())?;
|
||||
if format_version > FASTFIELD_FORMAT_VERSION {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
format!(
|
||||
"Unsupported fastfield format version: {}. Max supported version: {}",
|
||||
format_version, FASTFIELD_FORMAT_VERSION
|
||||
),
|
||||
));
|
||||
}
|
||||
|
||||
Ok((data, format_version))
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user