Compare commits

..

193 Commits

Author SHA1 Message Date
Paul Masurel
c1022e23d2 Switching to stable rust in AppVeyor. 2018-06-22 14:33:42 +09:00
Paul Masurel
8ccbfdea5d Preparing for release 2018-06-22 14:27:46 +09:00
Paul Masurel
badfce3a23 Preparing for release. 2018-06-22 14:09:14 +09:00
Dru Sellers
e301e0bc87 Add some simple doc tests (#320)
* Add TopCollector doc test

* Add CountCollector Doc Test

* Add Doc Test for MultiCollector

* Add ChainedCollector Doc Test

* Expose Fuzzy Query where it should be

* Add FuzzyTermQuery Doc Test

* Expose RegexQuery

* Regex Query Doc Test

* Add TermQuery Doc Test

* Add doc comments

* fix test 🤦

* Added explanation about the complexity variables

* Fixing unit tests

* Single threads if you check docids
2018-06-19 10:45:20 +09:00
Dru Sellers
317baf4e75 Add in simple regex query support (#319)
* Add fst_regex crate in

* Reduce API surface area

This doesn't need to be public

* better test name

* Pull Automaton weight out so it can be shared

* Implement Regex Query
2018-06-16 14:08:30 +09:00
Paul Masurel
24398d94e4 Exposing the 2018-06-15 21:40:57 +09:00
Dru Sellers
360f4132eb Standardizes the Index::open_* APIs (#318)
* Relocate `from_directory` closer to its usage

* Specific methods come before the generic method

* Rename open methods to follow the lead of the create methods
2018-06-15 12:16:41 +09:00
Dru Sellers
2b8f02764b Standardizes the Index::create_* APIs (#317)
* Pull all creation methods next to each other

The goal here is to make it clear which methods are performing the
same function, and to assist with standardizing the API calls.

* Make `from_directory` private

This seems to be an internal function, so lets make it internal.

* Rename `create` to `create_in_dir`

This lets the name match the `create_in_ram` pattern and opens up
`create` for the generic implementation.

* Implement the generic create function

All of the create methods now delegate to the common create function
and future `create_in_*` functions now have a clear pattern
to follow as well
2018-06-14 11:08:42 +09:00
Paul Masurel
0465876854 Issue/257 (#310)
* Replaced lz4 by a pure rust implementation of snappy.

Closes #257

* snappy is the default compression. One can use lz4 by enabling the lz4 feature flag.

* Removed Compression trait
2018-06-12 19:02:57 +09:00
Dru Sellers
6f7b099370 Add AutomatonWeight to a fuzzy_search module and FuzzyQuery (#300)
* Add AutomatonWeight to a fuzzy_search module

* Hacking around ownership issues

* Working through lifetime issues

* Working through tests

* fix test by lower casing the words (reducing distance)

* code review changes

* Suggestion on how to solve the borrow problem

* clean up
2018-06-11 22:23:03 +09:00
Paul Masurel
84f5cc4388 Added an AUTHORS file. Closes #315 (#316) 2018-06-11 22:21:58 +09:00
Paul Masurel
75aae0d2c2 Update README 2018-06-08 13:05:57 +09:00
Paul Masurel
009a3559be atomicwrites 2.2.0 for ARM compilation 2018-06-06 07:13:09 +09:00
Paul Masurel
7a31669e9d Disabling ARM targets 2018-06-05 12:22:00 +09:00
Paul Masurel
5185eb790b Reduced heap usage in unit test 2018-06-05 10:02:10 +09:00
Paul Masurel
a3dffbf1c6 Added more ARM target. 2018-06-05 09:06:33 +09:00
Paul Masurel
857a5794d8 Updated nix version 2018-06-05 09:02:40 +09:00
Paul Masurel
b0a6fc1448 Reduce RAM usage 2018-06-04 11:20:24 +09:00
Paul Masurel
989d52bea4 Updated atomicwrites version. 2018-06-04 10:00:21 +09:00
Paul Masurel
09661ea7ec Added cross testing on different platforms 2018-06-04 09:47:53 +09:00
Paul Masurel
b59132966f Better heap (#311)
* Changed the heap to a paged memory arena.
* Trying to simplify the indexing term hashmap
* Exploding datastruct
* Removed some complexity in bitpacker
2018-06-04 09:39:18 +09:00
Paul Masurel
863d3411bc Update Cargo.toml 2018-05-31 15:54:34 +09:00
Paul Masurel
8a55d133ab Showing Appveyor CI badge for the master branch
.. before the last build was shown.
2018-05-28 13:44:53 +09:00
Jason Wolfe
432d49d814 Expose parameters of RangeQuery for external usage (#309) 2018-05-19 14:29:25 +09:00
Jason Wolfe
0cea706f10 Add docs to new Query methods (#307) 2018-05-18 13:53:29 +09:00
Paul Masurel
71d41ca209 Added Google to the license 2018-05-18 10:13:23 +09:00
Paul Masurel
bc69dab822 cargo fmt 2018-05-18 10:08:05 +09:00
Jason Wolfe
72acad0921 Add box_clone() and downcast::Any to Query (#303) 2018-05-18 09:53:11 +09:00
Paul Masurel
c9459f74e8 Update docs about TermDict. 2018-05-18 09:20:39 +09:00
Dru Sellers
08d2cc6c7b Make it possible to stream the terms matching an Automaton (#297)
* rustfmt and some English grammar

* sort cargo.toml crates

* WIP: something to show

* Remove example for now

* Implement desired method

* Resolving Generic Type Arguments

* Resolve Generic Types

* Banging around on the tests

* DANGER! Change unsafe usage based on compiler warnings

* Unscrew up my rebase

* Clean Up Type Spam

Default Types FTW

* typo

* better variable names

* Remove Duplicate Levenshtein crate
2018-05-11 12:41:14 -07:00
Dru Sellers
82d87416c2 Implement StopWords Filter (#292)
* Implement StopWords Filter

- added example doctest for alphanum_only.rs so that I could
drive my own test of the stopword filter

* Style Cop

* Switch HashSet Hasher to FNV for speed

* Update Change Log

* fix missed location renaming
2018-05-09 18:40:41 -07:00
Paul Masurel
96b2c2971e Testing actual doc ids in unit test 2018-05-09 09:14:22 -07:00
Dru Sellers
162afd73f6 Alive docs iterator (#293)
* Add non-deleted DocId iterator to SegmentReader

Closes #287

* Add Todo

* Add Unit Test

* Improving test based on feedback

- found bug and fixed it. :)

* Reestablish changes post rebase for clean merge
2018-05-09 09:03:27 -07:00
Paul Masurel
ddfd87fa59 Merge branch 'master' of github.com:tantivy-search/tantivy 2018-05-08 00:08:17 -07:00
Paul Masurel
24050d0eb5 Remove some unsafe stuff, justified some of it. 2018-05-07 23:57:53 -07:00
Jason Wolfe
89eb209ece #294: Make fieldnorm module public, add documentation (#295) 2018-05-07 20:20:38 -07:00
Paul Masurel
9a0b7f9855 Rustfmt 2018-05-07 19:50:35 -07:00
Jason Wolfe
8e343b1ca3 Add fast field for associating arbitrary bytes to a document (#275)
* Add fast field for associating arbitrary bytes to a document

* Fix unused macro_use warning

* Improvements from code review

* Make BytesFastFieldWriter public

* Fix json parsing validation failure

* Add bytes fast field to CHANGELOG.md

* Fix compile errors from merge

* Support merging

* Address misc code review comments

* Fix comments from CR
2018-05-07 19:30:31 -07:00
Paul Masurel
99c0b84036 Integrating #274, #280, #289 into master (#290)
* Integrating bugfixes into master

Closes #274
Closes #280
Closes #289

* Next version will be 0.6
2018-05-06 09:48:25 -07:00
Dru Sellers
ca74c14647 Simple Implementation of NGram Tokenizer (#278)
* Simple Implementation of NGram Tokenizer

It does not yet support edges
It could probably be better in many "rusty" ways
But the test is passing, so I'll call this a good stopping point for
the day.

* Remove Ngram from manager. Too many variations

* Basic configuration model

Should the extensive tests exist here?

* Add Sample to provide an End to End testing

* Basic Edgegram support

* cleanup

* code feedback

* More code review feedback processed
2018-05-06 09:47:49 -07:00
Dru Sellers
68ee18e4e8 Add Index::open_directory function (#285)
* Add Index::open_directory function

* dry
2018-05-03 00:07:46 -07:00
Paul Masurel
5637657c2f Removed ptr dereference for explicit ptr::read_unaligned 2018-04-25 19:15:32 +09:00
Paul Masurel
2e3c9a8878 Bugfix in murmurhash. 2018-04-25 19:06:31 +09:00
Paul Masurel
78673172d0 Cargo fmt 2018-04-21 20:05:36 +09:00
Paul Masurel
175b76f119 Removed streamdict
Closes #271
2018-04-21 19:55:41 +09:00
Paul Masurel
9b79e21bd7 Returning error when schema is not valid for a given query. 2018-04-19 13:02:30 +09:00
Paul Masurel
5e38ae336f Bump tantivy version and readded win deps 2018-04-17 18:27:57 +09:00
Paul Masurel
8604351f59 Hide some of the API
Added some doc.
2018-04-17 13:31:22 +09:00
Paul Masurel
6a48953d8a Closes #266 (#268)
PhraseQuery panics with a nice error message when the underlying field does not have any positions.
The `QueryParser` fails as well with a dedicated error.
2018-04-17 10:03:15 +09:00
pmasurel
0804b42afa Checking the type of range queries 2018-04-16 14:01:10 +09:00
Paul Masurel
8083bc6eef bench working 2018-04-15 12:25:38 +09:00
Paul Masurel
0156f88265 Compiles in stable rust 2018-04-15 11:03:44 +09:00
Paul Masurel
a1c07bf457 Added iterator for facet collector 2018-04-14 20:22:02 +09:00
Paul Masurel
9de74b68d1 Remove range argument 2018-04-13 18:34:23 +09:00
Paul Masurel
57c7073867 Removed 2018-04-13 09:43:36 +09:00
Paul Masurel
121374b89b Removed the need for AtomicU64 2018-04-12 22:08:15 +09:00
Paul Masurel
e44782bf14 No more 2018-04-12 13:01:11 +09:00
Paul Masurel
dfafb24fa6 Bumped bitpacker's version 2018-04-10 21:21:47 +09:00
jason-wolfe
4c6f9541e9 #263: Make MultiValueIntFastFieldWriter public, expose via FastFieldsWriter (#264) 2018-04-10 12:27:34 +09:00
Paul Masurel
743ae102f1 Using bitpacker@3 2018-04-10 10:05:42 +09:00
Paul Masurel
0107fe886b Removed timer 2018-03-31 15:40:16 +09:00
Paul Masurel
1d9566e73c Making mmap a feature 2018-03-31 13:23:43 +09:00
Paul Masurel
8006f1df11 Added comments 2018-03-28 08:28:49 +09:00
Paul Masurel
ffa03bad71 TermScorer does not handle deletes 2018-03-27 17:35:20 +09:00
Paul Masurel
98cf4ba63a Small refactor of postings's skip method 2018-03-27 16:14:28 +09:00
Paul Masurel
4d65771e04 field norm reader is not an option anymore. 2018-03-26 13:25:29 +09:00
Paul Masurel
9712a75399 Added unit test for intersection score 2018-03-25 12:58:24 +09:00
Paul Masurel
3ae03b91ae PhraseScorer's score aligned with that of Lucene.) 2018-03-25 12:44:16 +09:00
Paul Masurel
238b02ce7d Bugfixed 2018-03-23 18:50:57 +09:00
Paul Masurel
3091459777 Fixed main bug. Unit test still not passing because of altered scoring 2018-03-23 13:52:10 +09:00
Paul Masurel
b7f8884246 Closes #245 = BM25. (#260)
* Closes #245 = BM25.

Scores are the same as Lucene.

* Fixing travis conf
2018-03-22 15:06:56 +09:00
Paul Masurel
e22f767fda Backmerge 2018-03-21 21:18:46 +09:00
Paul Masurel
3ecfc36e53 Total field norm fixed. 2018-03-21 20:43:02 +09:00
Paul Masurel
1c9450174e Fieldnorm reader working except merge 2018-03-21 17:36:16 +09:00
Paul Masurel
cde4c391cd Added fieldnorm module 2018-03-21 15:41:46 +09:00
Paul Masurel
6d47634616 Added unit tests 2018-03-20 12:11:28 +09:00
Paul Masurel
39b182c24b Simplified phrase queries. Reading several time is ok. 2018-03-20 11:47:48 +09:00
Paul Masurel
baaae3f4ec Making it possible to read positions twice 2018-03-20 11:36:22 +09:00
Paul Masurel
63064601a7 Readded test for reading positions twice 2018-03-20 10:04:36 +09:00
Paul Masurel
07a8023a3a Added 2018-03-19 14:36:43 +09:00
Paul Masurel
59639cd311 In sync with master. Fixed merging 2018-03-19 12:58:42 +09:00
Paul Masurel
b0e5e1f61d Back merged master 2018-03-19 12:19:08 +09:00
Paul Masurel
234a902470 Removed cc from Cargo.toml 2018-03-19 12:09:25 +09:00
Paul Masurel
75d130f1ce Edited CHANGELOG 2018-03-19 12:01:48 +09:00
Paul Masurel
410187dd24 Removed .vimrc 2018-03-19 11:54:10 +09:00
Paul Masurel
88303d4833 Removed script directory 2018-03-19 11:53:15 +09:00
Paul Masurel
a26b0ff4a2 Removed exclude cpp from travis configuration 2018-03-19 11:51:41 +09:00
Paul Masurel
d4ed86f13a Issue/255 (#256)
* Remove cpp compression.

* Pointing to publish bitpacking

* Edited README
2018-03-19 11:48:40 +09:00
Paul Masurel
fc8902353c fieldnrom encoding. test broken 2018-03-10 18:35:16 +09:00
Paul Masurel
a2ee988304 Small change in pop_lowest. 2018-03-10 15:32:30 +09:00
Paul Masurel
97b7984200 Updated CHANGELOG 2018-03-10 14:08:11 +09:00
Paul Masurel
8683718159 Version bump 2018-03-10 14:01:30 +09:00
Paul Masurel
0cf274135b Clippy 2018-03-10 13:07:18 +09:00
Paul Masurel
a3b44773bb Bugfix and rustfmt 2018-03-10 12:21:50 +09:00
Paul Masurel
ec7c582109 NOBUG no-simd compression fix 2018-03-09 14:19:58 +09:00
Ewan Higgs
ee7ab72fb1 Support trailing commas using ',+ ,' trick from Blandy 2017. (#250) 2018-02-27 10:33:39 +09:00
Paul Masurel
2c20759829 removed unsafecell for position computer 2018-02-24 12:07:55 +09:00
Paul Masurel
23387b0ed0 Positions writes to an external Vec 2018-02-24 11:14:45 +09:00
Dylan DPC
e82859f2e6 Update Cargo.toml (#249) 2018-02-24 09:17:33 +09:00
Paul Masurel
be830b03c5 Bugfix in intersection.advance and impl skip_next 2018-02-23 11:55:23 +09:00
Paul Masurel
1b94a3e382 Phrase query optimisation 2018-02-23 00:00:22 +09:00
Paul Masurel
c3fbc4c8fa Simplified a notch TinySet::pop_lowest() 2018-02-22 10:43:06 +09:00
Paul Masurel
4ee2db25a0 Generic on Postings rather than deletes in TermScorer 2018-02-22 08:26:45 +09:00
Paul Masurel
e423784fd0 Added specialized SegmentPostings when there are no DeleteSet 2018-02-21 23:49:20 +09:00
Paul Masurel
fdb9c3c516 Tantivy version 0.5.0 2018-02-21 11:38:26 +09:00
Paul Masurel
6fb114224a Added unit test 2018-02-21 00:13:04 +09:00
Paul Masurel
2c3e33895a Added unit tests 2018-02-21 00:03:41 +09:00
Paul Masurel
d512b53688 Added handling of parenthesis in query parser 2018-02-20 23:18:02 +09:00
Paul Masurel
c8afd2b55d Added unit tests 2018-02-20 17:05:33 +09:00
Paul Masurel
3fd6d7125b Added unit test 2018-02-20 13:12:05 +09:00
Paul Masurel
de6a3987a9 Ignoring functional test 2018-02-20 12:58:06 +09:00
Paul Masurel
3dedc465fa Merge branch 'feature/multivalued-i64-u64' 2018-02-20 12:54:18 +09:00
Paul Masurel
f16cc6367e Refactoring of fastfields 2018-02-20 12:52:30 +09:00
Paul Masurel
4026fc5fb1 Removed redundant compressed_block_size function 2018-02-20 08:28:28 +09:00
Paul Masurel
43742a93ef Multivalue u64 field / i64 field. 2018-02-20 00:16:20 +09:00
Paul Masurel
2a843d86cb Code cleaning 2018-02-19 21:51:39 +09:00
Paul Masurel
9a706c296a Larger union horizon 2018-02-19 21:50:33 +09:00
Paul Masurel
5ff8123b7a Code cleaning 2018-02-19 15:41:19 +09:00
Paul Masurel
6061158506 Added long running test to travis conf 2018-02-19 13:23:04 +09:00
Paul Masurel
4e8b0e89d9 Added unit test 2018-02-19 13:19:18 +09:00
Paul Masurel
0540ebb49e Cargo clippy 2018-02-19 12:36:24 +09:00
Paul Masurel
ef94582203 Rustfmt 2018-02-19 12:12:10 +09:00
Paul Masurel
2f242d5f52 Moving docset around 2018-02-19 12:07:05 +09:00
Paul Masurel
da3d372e6e Faster union counts 2018-02-19 10:17:16 +09:00
Paul Masurel
42fd3fe5c7 Bugfix on TermWeight::count() 2018-02-18 10:59:18 +09:00
Paul Masurel
5dae6e6bbc Downcast TermScorer for intersection when all legs are TermScorers 2018-02-18 10:28:43 +09:00
Paul Masurel
e608e0a1df Removed half baked usage of Any 2018-02-18 10:01:14 +09:00
Paul Masurel
6c8c90d348 Removed lifetime from scorer 2018-02-18 09:12:40 +09:00
Paul Masurel
eb50e92ec4 Removed specialized postings on SegmentPostings 2018-02-18 00:09:15 +09:00
Paul Masurel
20bede9462 Bugfix when requesting no termfreq. 2018-02-17 22:41:12 +09:00
Paul Masurel
4640ab4e65 Merge branch 'master' into issue/query-perf 2018-02-17 17:31:51 +09:00
Paul Masurel
cd51ed0f9f Added comments 2018-02-17 16:59:28 +09:00
Paul Masurel
6676fe5717 Added a count method 2018-02-17 15:02:51 +09:00
Paul Masurel
292bb17346 Disable scoring
- Disabling scoring is an argument of the `.weight()` method
- Collectors declare whether they need scoring
2018-02-17 12:43:16 +09:00
Paul Masurel
0300e7272b Scoring for union. 2018-02-17 11:56:21 +09:00
Paul Masurel
8760899fa2 Stupid implementaiton of Box<Scorer>::collect 2018-02-16 19:30:50 +09:00
Paul Masurel
c89d570a79 rustfmt 2018-02-16 17:50:05 +09:00
Paul Masurel
1da06d867b Using the same logic when score is enabled. 2018-02-16 17:36:33 +09:00
Paul Masurel
76e8db6ed3 blop 2018-02-16 14:57:08 +09:00
Paul Masurel
31e5580bfa Renaming intersection / exclude 2018-02-16 11:55:56 +09:00
Paul Masurel
930d3db2f7 Integrated reqopt_scorer 2018-02-16 11:43:27 +09:00
Paul Masurel
1593e1dc6f Added reqopt 2018-02-16 11:22:39 +09:00
Paul Masurel
e0189fc9e6 Added exclude query 2018-02-14 18:06:51 +09:00
Paul Masurel
ffdb4ef0a7 Added unit test 2018-02-14 11:58:40 +09:00
Paul Masurel
58845344c2 Unit test + bugfix in union 2018-02-13 14:54:20 +09:00
Paul Masurel
548ec9ecca Added ok unit test 2018-02-12 17:48:41 +09:00
Paul Masurel
86b700fa93 Updated travis.yml 2018-02-12 12:13:36 +09:00
Paul Masurel
e95c49e749 Added unit test to show bug in intersection 2018-02-12 12:06:19 +09:00
Paul Masurel
f3033a8469 Added sudo required to travis conf because of https://github.com/travis-ci/travis-ci/issues/9061 2018-02-12 11:19:12 +09:00
Paul Masurel
c4125bda59 Backmerging master 2018-02-12 11:08:57 +09:00
Paul Masurel
a7ffc0e610 Rustfmt 2018-02-12 10:31:29 +09:00
Paul Masurel
9370427ae2 Terminfo blocks (#244)
* Using u64 key in the store
* Using Option<> for the next element, as opposed to u64
* Code simplification.
* Added TermInfoStoreWriter.
* Added a TermInfoStore
* Added FixedSized for BinarySerialized.
2018-02-12 10:24:58 +09:00
Paul Masurel
1fc7afa90a Issue/range query (#242)
BitSet and RangeQuery
2018-02-05 09:33:25 +09:00
Paul Masurel
6a104e4f69 Cargo fmt 2018-02-03 11:59:34 +09:00
Paul Masurel
920f086e1d Clippy 2018-02-03 11:46:01 +09:00
Paul Masurel
13aaca7e11 Merge branch 'master' into merge-facets 2018-02-03 11:13:02 +09:00
Paul Masurel
df53dc4ceb Format 2018-02-03 00:21:05 +09:00
Paul Masurel
dd028841e8 Added documentation / test and change the contract of .add_facet() 2018-02-03 00:17:51 +09:00
Paul Masurel
eb84b8a60d bugfix 2018-02-02 18:52:07 +09:00
Paul Masurel
c05f46ad0e skip for intersection 2018-02-02 17:22:58 +09:00
Paul Masurel
435ff9d524 Make constructor of RangeQuery public 2018-02-02 16:50:22 +09:00
Paul Masurel
fdd5dd8496 Merge branch 'master' into issue/query-perf 2018-02-02 16:39:28 +09:00
Paul Masurel
fb5476d5de Query optimization: phrase query + union 2018-02-02 16:39:17 +09:00
Paul Masurel
dd8332c327 Added disabling scoring 2018-02-02 12:11:56 +09:00
Paul Masurel
63d201150b issue/range-query Added range query 2018-02-02 00:41:12 +09:00
Paul Masurel
b78efdc59f NOBUG Use the skipping logic of segment postings in 2018-02-01 18:36:55 +09:00
Paul Masurel
5cb08f7996 Method to create bitset from DocSet directly. 2018-02-01 18:25:43 +09:00
Paul Masurel
1947a19700 Added bitse 2018-01-31 23:56:54 +09:00
Paul Masurel
271b019420 added cargo doc 2018-01-30 15:18:19 +09:00
Paul Masurel
340693184f Added comment 2018-01-30 15:15:55 +09:00
Paul Masurel
97782a9511 updated travis-cargo 2018-01-30 13:18:51 +09:00
Paul Masurel
930010aa88 Unit test passing 2018-01-28 00:03:51 +09:00
Paul Masurel
7f5b07d4e7 Fixing unit tests 2018-01-25 14:55:29 +09:00
Paul Masurel
3edb3dce6a Test not passing 2018-01-25 12:46:32 +09:00
Paul Masurel
1edaf7a312 Closes #236. Removes dependency to version. 2018-01-20 12:12:43 +09:00
Paul Masurel
137906ff29 Fixing PhraseQuery, broken due to the reordering of the intersection clauses.
Closes #234
2018-01-12 21:01:28 +09:00
Paul Masurel
143a143cde issue/232 added unit test. (#233) 2018-01-11 23:37:45 +09:00
Paul Masurel
4f5ce12a77 NOBUG removed cpp from patterns 2018-01-05 12:09:42 +09:00
Paul Masurel
813efa4ab3 NOBUG coveralls 2018-01-05 11:03:27 +09:00
Paul Masurel
c3b6c1dc0b NOBUG coveralls 2018-01-05 00:31:57 +09:00
Paul Masurel
6f5e0ef6f4 NOBUG Simplify travis 2018-01-04 20:51:00 +09:00
Paul Masurel
7224f58895 Merge branch 'issue/218'
Conflicts:
	src/directory/mmap_directory.rs
	src/lib.rs
2018-01-04 18:47:10 +09:00
Paul Masurel
49519c3f61 added comments 2018-01-04 12:53:20 +09:00
Paul Masurel
cb11b92505 Added comments 2018-01-04 12:27:14 +09:00
Paul Masurel
7b2dcfbd91 Merge branch 'issue/227' 2018-01-04 12:12:00 +09:00
Paul Masurel
d2e30e6681 Merge branch 'master' of github.com:tantivy-search/tantivy 2018-01-04 12:09:44 +09:00
Paul Masurel
ef109927b3 rustfmt 2018-01-04 12:08:34 +09:00
Paul Masurel
44e5c4dfd3 Added alphanum only token filter 2017-12-31 13:43:10 +09:00
Paul Masurel
6f223253ea Made load_metas public 2017-12-31 08:57:19 +09:00
Paul Masurel
f7b0392bd5 issue/230 Add an optional commit message. (#231)
Closes #230
2017-12-27 12:27:02 +09:00
Paul Masurel
442bc9a1b8 Fixes the computation of the memory size of a hashtable with a key of n bits. (#229)
Closes #228
2017-12-25 13:04:10 +09:00
Paul Masurel
db7d784573 Issue 227 Faster merge when there are no deletes 2017-12-21 22:04:05 +09:00
Paul Masurel
74d32e522a Stopped using mmap in tantivy. Caching MmapReadOnly.
Closes #218
2017-10-08 17:07:19 +09:00
238 changed files with 14091 additions and 103444 deletions

3
.gitignore vendored
View File

@@ -1,3 +1,4 @@
*.swp
target
target/debug
.vscode
@@ -8,4 +9,4 @@ benchmark
cpp/simdcomp/bitpackingbenchmark
*.bk
.idea
trace.dat
trace.dat

View File

@@ -1,35 +1,127 @@
# Based on the "trust" template v0.1.2
# https://github.com/japaric/trust/tree/v0.1.2
dist: trusty
language: rust
rust:
- nightly
services: docker
sudo: required
env:
global:
- CC=gcc-4.8
- CXX=g++-4.8
- TRAVIS_CARGO_NIGHTLY_FEATURE=""
- secure: eC8HjTi1wgRVCsMAeXEXt8Ckr0YBSGOEnQkkW4/Nde/OZ9jJjz2nmP1ELQlDE7+czHub2QvYtDMG0parcHZDx/Kus0yvyn08y3g2rhGIiE7y8OCvQm1Mybu2D/p7enm6shXquQ6Z5KRfRq+18mHy80wy9ABMA/ukEZdvnfQ76/Een8/Lb0eHaDoXDXn3PqLVtByvSfQQ7OhS60dEScu8PWZ6/l1057P5NpdWbMExBE7Ro4zYXNhkJeGZx0nP/Bd4Jjdt1XfPzMEybV6NZ5xsTILUBFTmOOt603IsqKGov089NExqxYu5bD3K+S4MzF1Nd6VhomNPJqLDCfhlymJCUj5n5Ku4yidlhQbM4Ej9nGrBalJnhcjBjPua5tmMF2WCxP9muKn/2tIOu1/+wc0vMf9Yd3wKIkf5+FtUxCgs2O+NslWvmOMAMI/yD25m7hb4t1IwE/4Bk+GVcWJRWXbo0/m6ZUHzRzdjUY2a1qvw7C9udzdhg7gcnXwsKrSWi2NjMiIVw86l+Zim0nLpKIN41sxZHLaFRG63Ki8zQ/481LGn32awJ6i3sizKS0WD+N1DfR2qYMrwYHaMN0uR0OFXYTJkFvTFttAeUY3EKmRKAuMhmO2YRdSr4/j/G5E9HMc1gSGJj6PxgpQU7EpvxRsmoVAEJr0mszmOj9icGHep/FM=
addons:
apt:
sources:
- ubuntu-toolchain-r-test
packages:
- gcc-4.8
- g++-4.8
- libcurl4-openssl-dev
- libelf-dev
- libdw-dev
- binutils-dev
before_script:
- |
pip install 'travis-cargo<0.2' --user &&
export PATH=$HOME/.local/bin:$PATH
- CRATE_NAME=tantivy
matrix:
include:
# Android
- env: TARGET=aarch64-linux-android DISABLE_TESTS=1
- env: TARGET=arm-linux-androideabi DISABLE_TESTS=1
- env: TARGET=armv7-linux-androideabi DISABLE_TESTS=1
- env: TARGET=i686-linux-android DISABLE_TESTS=1
- env: TARGET=x86_64-linux-android DISABLE_TESTS=1
# iOS
#- env: TARGET=aarch64-apple-ios DISABLE_TESTS=1
# os: osx
#- env: TARGET=armv7-apple-ios DISABLE_TESTS=1
# os: osx
#- env: TARGET=armv7s-apple-ios DISABLE_TESTS=1
# os: osx
#- env: TARGET=i386-apple-ios DISABLE_TESTS=1
# os: osx
- env: TARGET=x86_64-apple-ios DISABLE_TESTS=1
os: osx
# Linux
- env: TARGET=aarch64-unknown-linux-gnu
# - env: TARGET=arm-unknown-linux-gnueabi
# - env: TARGET=armv7-unknown-linux-gnueabihf
- env: TARGET=i686-unknown-linux-gnu
#- env: TARGET=i686-unknown-linux-musl
#- env: TARGET=mips-unknown-linux-gnu
#- env: TARGET=mips64-unknown-linux-gnuabi64
#- env: TARGET=mips64el-unknown-linux-gnuabi64
#- env: TARGET=mipsel-unknown-linux-gnu
#- env: TARGET=powerpc-unknown-linux-gnu
#- env: TARGET=powerpc64-unknown-linux-gnu
#- env: TARGET=powerpc64le-unknown-linux-gnu
#- env: TARGET=s390x-unknown-linux-gnu DISABLE_TESTS=1
- env: TARGET=x86_64-unknown-linux-gnu
- env: TARGET=x86_64-unknown-linux-musl
# OSX
#- env: TARGET=i686-apple-darwin
# os: osx
- env: TARGET=x86_64-apple-darwin
os: osx
# *BSD
#- env: TARGET=i686-unknown-freebsd DISABLE_TESTS=1
#- env: TARGET=x86_64-unknown-freebsd DISABLE_TESTS=1
#- env: TARGET=x86_64-unknown-netbsd DISABLE_TESTS=1
# Windows
#- env: TARGET=x86_64-pc-windows-gnu
# Bare metal
# These targets don't support std and as such are likely not suitable for
# most crates.
# - env: TARGET=thumbv6m-none-eabi
# - env: TARGET=thumbv7em-none-eabi
# - env: TARGET=thumbv7em-none-eabihf
# - env: TARGET=thumbv7m-none-eabi
# Testing other channels
#- env: TARGET=x86_64-unknown-linux-gnu
# rust: nightly
#- env: TARGET=x86_64-apple-darwin
# os: osx
# rust: nightly
before_install:
- set -e
- rustup self update
install:
- sh ci/install.sh
- source ~/.cargo/env || true
script:
- |
travis-cargo build &&
travis-cargo test &&
travis-cargo bench
- cargo run --example simple_search
after_success:
- bash ./script/build-doc.sh
- travis-cargo doc-upload
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then travis-cargo coveralls --no-sudo --verify; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then ./kcov/build/src/kcov --verify --coveralls-id=$TRAVIS_JOB_ID --include-path=`pwd`/src --exclude-path=`pwd`/cpp --exclude-pattern=/.cargo target/kcov target/debug/tantivy-*; fi
- bash ci/script.sh
after_script: set +e
before_deploy:
- sh ci/before_deploy.sh
#
#deploy:
# # - Create a `public_repo` GitHub token. Go to: https://github.com/settings/tokens/new
# # - Encrypt it: `travis encrypt 0123456789012345678901234567890123456789
# # - Paste the output down here
# api_key:
# secure: eC8HjTi1wgRVCsMAeXEXt8Ckr0YBSGOEnQkkW4/Nde/OZ9jJjz2nmP1ELQlDE7+czHub2QvYtDMG0parcHZDx/Kus0yvyn08y3g2rhGIiE7y8OCvQm1Mybu2D/p7enm6shXquQ6Z5KRfRq+18mHy80wy9ABMA/ukEZdvnfQ76/Een8/Lb0eHaDoXDXn3PqLVtByvSfQQ7OhS60dEScu8PWZ6/l1057P5NpdWbMExBE7Ro4zYXNhkJeGZx0nP/Bd4Jjdt1XfPzMEybV6NZ5xsTILUBFTmOOt603IsqKGov089NExqxYu5bD3K+S4MzF1Nd6VhomNPJqLDCfhlymJCUj5n5Ku4yidlhQbM4Ej9nGrBalJnhcjBjPua5tmMF2WCxP9muKn/2tIOu1/+wc0vMf9Yd3wKIkf5+FtUxCgs2O+NslWvmOMAMI/yD25m7hb4t1IwE/4Bk+GVcWJRWXbo0/m6ZUHzRzdjUY2a1qvw7C9udzdhg7gcnXwsKrSWi2NjMiIVw86l+Zim0nLpKIN41sxZHLaFRG63Ki8zQ/481LGn32awJ6i3sizKS0WD+N1DfR2qYMrwYHaMN0uR0OFXYTJkFvTFttAeUY3EKmRKAuMhmO2YRdSr4/j/G5E9HMc1gSGJj6PxgpQU7EpvxRsmoVAEJr0mszmOj9icGHep/FM=
# file_glob: true
# file: $CRATE_NAME-$TRAVIS_TAG-$TARGET.*
# on:
# # TODO Here you can pick which targets will generate binary releases
# # In this example, there are some targets that are tested using the stable
# # and nightly channels. This condition makes sure there is only one release
# # for such targets and that's generated using the stable channel
# condition: $TRAVIS_RUST_VERSION = stable
# tags: true
# provider: releases
# skip_cleanup: true
cache: cargo
before_cache:
# Travis can't cache files that are not readable by "others"
- chmod -R a+r $HOME/.cargo
#branches:
# only:
# # release tags
# - /^v\d+\.\d+\.\d+.*$/
# - master
notifications:
email:
on_success: never

11
AUTHORS Normal file
View File

@@ -0,0 +1,11 @@
# This is the list of authors of tantivy for copyright purposes.
Paul Masurel
Laurentiu Nicola
Dru Sellers
Ashley Mannix
Michael J. Curry
Jason Wolfe
# As an employee of Google I am required to add Google LLC
# in the list of authors, but this project is not affiliated to Google
# in any other way.
Google LLC

View File

@@ -1,3 +1,48 @@
Tantivy 0.6
==========================
Special thanks to @drusellers and @jason-wolfe for their contributions
to this release!
- Removed C code. Tantivy is now pure Rust. (@pmasurel)
- BM25 (@pmasurel)
- Approximate field norms encoded over 1 byte. (@pmasurel)
- Compiles on stable rust (@pmasurel)
- Add &[u8] fastfield for associating arbitrary bytes to each document (@jason-wolfe) (#270)
- Completely uncompressed
- Internally: One u64 fast field for indexes, one fast field for the bytes themselves.
- Add NGram token support (@drusellers)
- Add Stopword Filter support (@drusellers)
- Add a FuzzyTermQuery (@drusellers)
- Add a RegexQuery (@drusellers)
- Various performance improvements (@pmasurel)_
Tantivy 0.5.2
===========================
- bugfix #274
- bugfix #280
- bugfix #289
Tantivy 0.5.1
==========================
- bugfix #254 : tantivy failed if no documents in a segment contained a specific field.
Tantivy 0.5
==========================
- Faceting
- RangeQuery
- Configurable tokenization pipeline
- Bugfix in PhraseQuery
- Various query optimisation
- Allowing very large indexes
- 64 bits file address
- Smarter encoding of the `TermInfo` objects
Tantivy 0.4.3
==========================
@@ -57,7 +102,7 @@ Tantivy 0.3
Special thanks to @Kodraus @lnicola @Ameobea @manuel-woelker @celaus
for their contribution to this release.
Thanks also to everyone in tantivy gitter chat
Thanks also to everyone in tantivy gitter chat
for their advise and company :)
https://gitter.im/tantivy-search/tantivy
@@ -65,9 +110,9 @@ https://gitter.im/tantivy-search/tantivy
Warning:
Tantivy 0.3 is NOT backward compatible with tantivy 0.2
Tantivy 0.3 is NOT backward compatible with tantivy 0.2
code and index format.
You should not expect backward compatibility before
You should not expect backward compatibility before
tantivy 1.0.
@@ -93,7 +138,7 @@ Thanks to @KodrAus ! (#108)
the natural ordering.
- Building binary targets for tantivy-cli (Thanks to @KodrAus)
- Misc invisible bug fixes, and code cleanup.
- Use
- Use

View File

@@ -1,25 +1,27 @@
[package]
name = "tantivy"
version = "0.5.0-dev"
version = "0.6.0"
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
build = "build.rs"
license = "MIT"
categories = ["database-implementations", "data-structures"]
description = """Tantivy is a search engine library."""
description = """Search engine library"""
documentation = "https://tantivy-search.github.io/tantivy/tantivy/index.html"
homepage = "https://github.com/tantivy-search/tantivy"
repository = "https://github.com/tantivy-search/tantivy"
readme = "README.md"
keywords = ["search", "information", "retrieval"]
keywords = ["search", "search engine", "information", "retrieval"]
[dependencies]
base64 = "0.9.1"
byteorder = "1.0"
memmap = "0.4"
lazy_static = "0.2.1"
tinysegmenter = "0.1.0"
regex = "0.2"
fst = "0.1.37"
atomicwrites = "0.1.3"
fst = {version="0.3", default-features=false}
fst-regex = { version="0.2" }
lz4 = {version="1.20", optional=true}
snap = {version="0.2"}
atomicwrites = {version="0.2.2", optional=true}
tempfile = "2.1"
log = "0.3.6"
combine = "2.2"
@@ -27,16 +29,12 @@ tempdir = "0.3"
serde = "1.0"
serde_derive = "1.0"
serde_json = "1.0"
bincode = "0.8"
libc = {version = "0.2.20", optional=true}
num_cpus = "1.2"
itertools = "0.5.9"
lz4 = "1.20"
levenshtein_automata = {version="0.1", features=["fst_automaton"]}
bit-set = "0.4.0"
time = "0.1"
uuid = { version = "0.5", features = ["v4", "serde"] }
uuid = { version = "0.6", features = ["v4", "serde"] }
chan = "0.1"
version = "2"
crossbeam = "0.3"
futures = "0.1"
futures-cpupool = "0.1"
@@ -44,6 +42,10 @@ error-chain = "0.8"
owning_ref = "0.3"
stable_deref_trait = "1.0.0"
rust-stemmers = "0.1.0"
downcast = { version="0.9" }
matches = "0.1"
bitpacking = "0.5"
fnv = "1.0.6"
[target.'cfg(windows)'.dependencies]
winapi = "0.2"
@@ -52,21 +54,23 @@ winapi = "0.2"
rand = "0.3"
env_logger = "0.4"
[build-dependencies]
cc = {version = "1.0.0", optional=true}
[profile.release]
opt-level = 3
debug = false
lto = true
debug-assertions = false
[features]
default = ["simdcompression"]
simdcompression = ["libc", "cc"]
streamdict = []
default = ["mmap"]
mmap = ["fst/mmap", "atomicwrites"]
lz4-compression = ["lz4"]
[badges]
travis-ci = { repository = "tantivy-search/tantivy" }
[[example]]
name = "simple_search"
required-features = ["mmap"]
[[example]]
name = "custom_tokenizer"

View File

@@ -1,4 +1,4 @@
Copyright (c) 2016 Paul Masurel
Copyright (c) 2018 by the project authors, as listed in the AUTHORS file.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

View File

@@ -4,35 +4,50 @@
[![Coverage Status](https://coveralls.io/repos/github/tantivy-search/tantivy/badge.svg?branch=master&refresh1)](https://coveralls.io/github/tantivy-search/tantivy?branch=master)
[![Join the chat at https://gitter.im/tantivy-search/tantivy](https://badges.gitter.im/tantivy-search/tantivy.svg)](https://gitter.im/tantivy-search/tantivy?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Build status](https://ci.appveyor.com/api/projects/status/r7nb13kj23u8m9pj?svg=true)](https://ci.appveyor.com/project/fulmicoton/tantivy)
![beacon for google analytics](https://ga-beacon.appspot.com/UA-88834340-1/tantivy/README)
[![Build status](https://ci.appveyor.com/api/projects/status/r7nb13kj23u8m9pj/branch/master?svg=true)](https://ci.appveyor.com/project/fulmicoton/tantivy/branch/master)
**Tantivy** is a **full text search engine library** written in rust.
It is strongly inspired by Lucene's design.
It is closer to Lucene than to Elastic Search and Solr in the sense it is not
an off-the-shelf search engine server, but rather a crate that can be used
to build such a search engine.
Tantivy is, in fact, strongly inspired by Lucene's design.
# Features
- configurable indexing (optional term frequency and position indexing)
- tf-idf scoring
- Basic query language
- Phrase queries
- Full-text search
- Tiny startup time (<10ms), perfect for command line tools
- BM25 scoring (the same as lucene)
- Basic query language (`+michael +jackson`)
- Phrase queries search (\"michael jackson\"`)
- Incremental indexing
- Multithreaded indexing (indexing English Wikipedia takes < 3 minutes on my desktop)
- mmap based
- optional SIMD integer compression
- u64 and i64 fast fields (equivalent of doc values in Lucene)
- Mmap directory
- SIMD integer compression when the platform/CPU includes the SSE2 instruction set.
- Single valued and multivalued u64 and i64 fast fields (equivalent of doc values in Lucene)
- `&[u8]` fast fields
- LZ4 compressed document store
- Range queries
- Faceted search
- Configurable indexing (optional term frequency and position indexing
- Cheesy logo with a horse
Tantivy supports Linux, MacOS and Windows.
# Non-features
- Distributed search and will not be in the scope of tantivy.
# Supported OS and compiler
Tantivy works on stable rust (>= 1.27) and supports Linux, MacOS and Windows.
# Getting started
- [tantivy's usage example](http://fulmicoton.com/tantivy-examples/simple_search.html)
- [tantivy's simple search example](http://fulmicoton.com/tantivy-examples/simple_search.html)
- [tantivy-cli and its tutorial](https://github.com/tantivy-search/tantivy-cli).
`tantivy-cli` is an actual command line interface that makes it easy for you to create a search engine,
index documents and search via the CLI or a small server with a REST API.
It will walk you through getting a wikipedia search engine up and running in a few minutes.
- [reference doc]
- [For the last released version](https://docs.rs/tantivy/)
@@ -40,21 +55,16 @@ It will walk you through getting a wikipedia search engine up and running in a f
# Compiling
Tantivy requires Rust Nightly because it uses requires the features [`box_syntax`](https://doc.rust-lang.org/stable/book/box-syntax-and-patterns.html), [`optin_builtin_traits`](https://github.com/rust-lang/rfcs/blob/master/text/0019-opt-in-builtin-traits.md), and [`conservative_impl_trait`](https://github.com/rust-lang/rfcs/blob/master/text/1522-conservative-impl-trait.md).
The project can then be built using `cargo`.
## Development
Tantivy compiles on stable rust but requires `Rust >= 1.27`.
To check out and run tests, you can simply run :
git clone git@github.com:tantivy-search/tantivy.git
cd tantivy
cargo build
Alternatively, if you are trying to compile `tantivy` without simd compression,
you can disable this functionality. In this case, this submodule is not required
and you can compile tantivy by using the `--no-default-features` flag.
cargo build --no-default-features
# Contribute
Send me an email (paul.masurel at gmail.com) if you want to contribute to tantivy.

View File

@@ -6,9 +6,6 @@ environment:
matrix:
- channel: nightly
target: x86_64-pc-windows-msvc
- channel: nightly
target: x86_64-pc-windows-gnu
msys_bits: 64
install:
- appveyor DownloadFile https://win.rustup.rs/ -FileName rustup-init.exe

View File

@@ -1,61 +0,0 @@
#[cfg(feature = "simdcompression")]
mod build {
extern crate cc;
pub fn build() {
let mut config = cc::Build::new();
config
.include("./cpp/simdcomp/include")
.file("cpp/simdcomp/src/avxbitpacking.c")
.file("cpp/simdcomp/src/simdintegratedbitpacking.c")
.file("cpp/simdcomp/src/simdbitpacking.c")
.file("cpp/simdcomp/src/simdpackedsearch.c")
.file("cpp/simdcomp/src/simdcomputil.c")
.file("cpp/simdcomp/src/simdpackedselect.c")
.file("cpp/simdcomp/src/simdfor.c")
.file("cpp/simdcomp_wrapper.c");
if !cfg!(debug_assertions) {
config.opt_level(3);
if cfg!(target_env = "msvc") {
config
.define("NDEBUG", None)
.flag("/Gm-")
.flag("/GS-")
.flag("/Gy")
.flag("/Oi")
.flag("/GL");
}
}
if !cfg!(target_env = "msvc") {
config
.include("./cpp/streamvbyte/include")
.file("cpp/streamvbyte/src/streamvbyte.c")
.file("cpp/streamvbyte/src/streamvbytedelta.c")
.flag("-msse4.1")
.flag("-march=native")
.flag("-std=c99");
}
config.compile("libsimdcomp.a");
// Workaround for linking static libraries built with /GL
// https://github.com/rust-lang/rust/issues/26003
if !cfg!(debug_assertions) && cfg!(target_env = "msvc") {
println!("cargo:rustc-link-lib=dylib=simdcomp");
}
println!("cargo:rerun-if-changed=cpp");
}
}
#[cfg(not(feature = "simdcompression"))]
mod build {
pub fn build() {}
}
fn main() {
build::build();
}

23
ci/before_deploy.ps1 Normal file
View File

@@ -0,0 +1,23 @@
# This script takes care of packaging the build artifacts that will go in the
# release zipfile
$SRC_DIR = $PWD.Path
$STAGE = [System.Guid]::NewGuid().ToString()
Set-Location $ENV:Temp
New-Item -Type Directory -Name $STAGE
Set-Location $STAGE
$ZIP = "$SRC_DIR\$($Env:CRATE_NAME)-$($Env:APPVEYOR_REPO_TAG_NAME)-$($Env:TARGET).zip"
# TODO Update this to package the right artifacts
Copy-Item "$SRC_DIR\target\$($Env:TARGET)\release\hello.exe" '.\'
7z a "$ZIP" *
Push-AppveyorArtifact "$ZIP"
Remove-Item *.* -Force
Set-Location ..
Remove-Item $STAGE
Set-Location $SRC_DIR

33
ci/before_deploy.sh Normal file
View File

@@ -0,0 +1,33 @@
# This script takes care of building your crate and packaging it for release
set -ex
main() {
local src=$(pwd) \
stage=
case $TRAVIS_OS_NAME in
linux)
stage=$(mktemp -d)
;;
osx)
stage=$(mktemp -d -t tmp)
;;
esac
test -f Cargo.lock || cargo generate-lockfile
# TODO Update this to build the artifacts that matter to you
cross rustc --bin hello --target $TARGET --release -- -C lto
# TODO Update this to package the right artifacts
cp target/$TARGET/release/hello $stage/
cd $stage
tar czf $src/$CRATE_NAME-$TRAVIS_TAG-$TARGET.tar.gz *
cd $src
rm -rf $stage
}
main

47
ci/install.sh Normal file
View File

@@ -0,0 +1,47 @@
set -ex
main() {
local target=
if [ $TRAVIS_OS_NAME = linux ]; then
target=x86_64-unknown-linux-musl
sort=sort
else
target=x86_64-apple-darwin
sort=gsort # for `sort --sort-version`, from brew's coreutils.
fi
# Builds for iOS are done on OSX, but require the specific target to be
# installed.
case $TARGET in
aarch64-apple-ios)
rustup target install aarch64-apple-ios
;;
armv7-apple-ios)
rustup target install armv7-apple-ios
;;
armv7s-apple-ios)
rustup target install armv7s-apple-ios
;;
i386-apple-ios)
rustup target install i386-apple-ios
;;
x86_64-apple-ios)
rustup target install x86_64-apple-ios
;;
esac
# This fetches latest stable release
local tag=$(git ls-remote --tags --refs --exit-code https://github.com/japaric/cross \
| cut -d/ -f3 \
| grep -E '^v[0.1.0-9.]+$' \
| $sort --version-sort \
| tail -n1)
curl -LSfs https://japaric.github.io/trust/install.sh | \
sh -s -- \
--force \
--git japaric/cross \
--tag $tag \
--target $target
}
main

23
ci/script.sh Normal file
View File

@@ -0,0 +1,23 @@
# This script takes care of testing your crate
set -ex
main() {
cross build --target $TARGET
cross build --target $TARGET --release
if [ ! -z $DISABLE_TESTS ]; then
return
fi
cross test --target $TARGET
# cross test --target $TARGET --release
# cross run --target $TARGET
# cross run --target $TARGET --release
}
# we don't run the "test phase" when doing deploys
if [ -z $TRAVIS_TAG ]; then
main
fi

View File

@@ -1,9 +0,0 @@
Makefile.in
lib*
unit*
*.o
src/*.lo
src/*.o
src/.deps
src/.dirstamp
src/.libs

View File

@@ -1,11 +0,0 @@
language: c
sudo: false
compiler:
- gcc
- clang
branches:
only:
- master
script: make && ./unit

View File

@@ -1,9 +0,0 @@
Upcoming
- added missing include
- improved portability (MSVC)
- implemented C89 compatibility
Version 0.0.3 (19 May 2014)
- improved documentation
Version 0.0.2 (6 February 2014)
- added go demo
Version 0.0.1 (5 February 2014)

View File

@@ -1,27 +0,0 @@
Copyright (c) 2014--, The authors
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.
* Neither the name of the {organization} nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@@ -1,137 +0,0 @@
The SIMDComp library
====================
[![Build Status](https://travis-ci.org/lemire/simdcomp.png)](https://travis-ci.org/lemire/simdcomp)
A simple C library for compressing lists of integers using binary packing and SIMD instructions.
The assumption is either that you have a list of 32-bit integers where most of them are small, or a list of 32-bit integers where differences between successive integers are small. No software is able to reliably compress an array of 32-bit random numbers.
This library can decode at least 4 billions of compressed integers per second on most
desktop or laptop processors. That is, it can decompress data at a rate of 15 GB/s.
This is significantly faster than generic codecs like gzip, LZO, Snappy or LZ4.
On a Skylake Intel processor, it can decode integers at a rate 0.3 cycles per integer,
which can easily translate into more than 8 decoded billions integers per second.
Contributors: Daniel Lemire, Nathan Kurz, Christoph Rupp, Anatol Belski, Nick White and others
What is it for?
-------------
This is a low-level library for fast integer compression. By design it does not define a compressed
format. It is up to the (sophisticated) user to create a compressed format.
Requirements
-------------
- Your processor should support SSE4.1 (It is supported by most Intel and AMD processors released since 2008.)
- It is possible to build the core part of the code if your processor support SSE2 (Pentium4 or better)
- C99 compliant compiler (GCC is assumed)
- A Linux-like distribution is assumed by the makefile
For a plain C version that does not use SIMD instructions, see https://github.com/lemire/LittleIntPacker
Usage
-------
Compression works over blocks of 128 integers.
For a complete working example, see example.c (you can build it and
run it with "make example; ./example").
1) Lists of integers in random order.
```C
const uint32_t b = maxbits(datain);// computes bit width
simdpackwithoutmask(datain, buffer, b);//compressed to buffer, compressing 128 32-bit integers down to b*32 bytes
simdunpack(buffer, backbuffer, b);//uncompressed to backbuffer
```
While 128 32-bit integers are read, only b 128-bit words are written. Thus, the compression ratio is 32/b.
2) Sorted lists of integers.
We used differential coding: we store the difference between successive integers. For this purpose, we need an initial value (called offset).
```C
uint32_t offset = 0;
uint32_t b1 = simdmaxbitsd1(offset,datain); // bit width
simdpackwithoutmaskd1(offset, datain, buffer, b1);//compressing 128 32-bit integers down to b1*32 bytes
simdunpackd1(offset, buffer, backbuffer, b1);//uncompressed
```
General example for arrays of arbitrary length:
```C
int compress_decompress_demo() {
size_t k, N = 9999;
__m128i * endofbuf;
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint8_t * buffer;
uint32_t * backbuffer = malloc(N * sizeof(uint32_t));
uint32_t b;
for (k = 0; k < N; ++k){ /* start with k=0, not k=1! */
datain[k] = k;
}
b = maxbits_length(datain, N);
buffer = malloc(simdpack_compressedbytes(N,b)); // allocate just enough memory
endofbuf = simdpack_length(datain, N, (__m128i *)buffer, b);
/* compressed data is stored between buffer and endofbuf using (endofbuf-buffer)*sizeof(__m128i) bytes */
/* would be safe to do : buffer = realloc(buffer,(endofbuf-(__m128i *)buffer)*sizeof(__m128i)); */
simdunpack_length((const __m128i *)buffer, N, backbuffer, b);
for (k = 0; k < N; ++k){
if(datain[k] != backbuffer[k]) {
printf("bug\n");
return -1;
}
}
return 0;
}
```
3) Frame-of-Reference
We also have frame-of-reference (FOR) functions (see simdfor.h header). They work like the bit packing
routines, but do not use differential coding so they allow faster search in some cases, at the expense
of compression.
Setup
---------
make
make test
and if you are daring:
make install
Go
--------
If you are a go user, there is a "go" folder where you will find a simple demo.
Other libraries
----------------
* Fast decoder for VByte-compressed integers https://github.com/lemire/MaskedVByte
* Fast integer compression in C using StreamVByte https://github.com/lemire/streamvbyte
* FastPFOR is a C++ research library well suited to compress unsorted arrays: https://github.com/lemire/FastPFor
* SIMDCompressionAndIntersection is a C++ research library well suited for sorted arrays (differential coding)
and computing intersections: https://github.com/lemire/SIMDCompressionAndIntersection
* TurboPFor is a C library that offers lots of interesting optimizations. Well worth checking! (GPL license) https://github.com/powturbo/TurboPFor
* Oroch is a C++ library that offers a usable API (MIT license) https://github.com/ademakov/Oroch
References
------------
* Daniel Lemire, Leonid Boytsov, Nathan Kurz, SIMD Compression and the Intersection of Sorted Integers, Software Practice & Experience 46 (6) 2016. http://arxiv.org/abs/1401.6399
* Daniel Lemire and Leonid Boytsov, Decoding billions of integers per second through vectorization, Software Practice & Experience 45 (1), 2015. http://arxiv.org/abs/1209.2137 http://onlinelibrary.wiley.com/doi/10.1002/spe.2203/abstract
* Jeff Plaisance, Nathan Kurz, Daniel Lemire, Vectorized VByte Decoding, International Symposium on Web Algorithms 2015, 2015. http://arxiv.org/abs/1503.07387
* Wayne Xin Zhao, Xudong Zhang, Daniel Lemire, Dongdong Shan, Jian-Yun Nie, Hongfei Yan, Ji-Rong Wen, A General SIMD-based Approach to Accelerating Compression Algorithms, ACM Transactions on Information Systems 33 (3), 2015. http://arxiv.org/abs/1502.01916
* T. D. Wu, Bitpacking techniques for indexing genomes: I. Hash tables, Algorithms for Molecular Biology 11 (5), 2016. http://almob.biomedcentral.com/articles/10.1186/s13015-016-0069-5

View File

@@ -1,235 +0,0 @@
/**
* This code is released under a BSD License.
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "simdcomp.h"
#ifdef _MSC_VER
# include <windows.h>
__int64 freq;
typedef __int64 time_snap_t;
static time_snap_t time_snap(void)
{
__int64 now;
QueryPerformanceCounter((LARGE_INTEGER *)&now);
return (__int64)((now*1000000)/freq);
}
# define TIME_SNAP_FMT "%I64d"
#else
# define time_snap clock
# define TIME_SNAP_FMT "%lu"
typedef clock_t time_snap_t;
#endif
void benchmarkSelect() {
uint32_t buffer[128];
uint32_t backbuffer[128];
uint32_t initial = 33;
uint32_t b;
time_snap_t S1, S2, S3;
int i;
printf("benchmarking select \n");
/* this test creates delta encoded buffers with different bits, then
* performs lower bound searches for each key */
for (b = 0; b <= 32; b++) {
uint32_t prev = initial;
uint32_t out[128];
/* initialize the buffer */
for (i = 0; i < 128; i++) {
buffer[i] = ((uint32_t)(1655765 * i )) ;
if(b < 32) buffer[i] %= (1<<b);
}
for (i = 0; i < 128; i++) {
buffer[i] = buffer[i] + prev;
prev = buffer[i];
}
for (i = 1; i < 128; i++) {
if(buffer[i] < buffer[i-1] )
buffer[i] = buffer[i-1];
}
assert(simdmaxbitsd1(initial, buffer)<=b);
for (i = 0; i < 128; i++) {
out[i] = 0; /* memset would do too */
}
/* delta-encode to 'i' bits */
simdpackwithoutmaskd1(initial, buffer, (__m128i *)out, b);
S1 = time_snap();
for (i = 0; i < 128 * 10; i++) {
uint32_t valretrieved = simdselectd1(initial, (__m128i *)out, b, (uint32_t)i % 128);
assert(valretrieved == buffer[i%128]);
}
S2 = time_snap();
for (i = 0; i < 128 * 10; i++) {
simdunpackd1(initial, (__m128i *)out, backbuffer, b);
assert(backbuffer[i % 128] == buffer[i % 128]);
}
S3 = time_snap();
printf("bit width = %d, fast select function time = " TIME_SNAP_FMT ", naive time = " TIME_SNAP_FMT " \n", b, (S2-S1), (S3-S2));
}
}
int uint32_cmp(const void *a, const void *b)
{
const uint32_t *ia = (const uint32_t *)a;
const uint32_t *ib = (const uint32_t *)b;
if(*ia < *ib)
return -1;
else if (*ia > *ib)
return 1;
return 0;
}
/* adapted from wikipedia */
int binary_search(uint32_t * A, uint32_t key, int imin, int imax)
{
int imid;
imax --;
while(imin + 1 < imax) {
imid = imin + ((imax - imin) / 2);
if (A[imid] > key) {
imax = imid;
} else if (A[imid] < key) {
imin = imid;
} else {
return imid;
}
}
return imax;
}
/* adapted from wikipedia */
int lower_bound(uint32_t * A, uint32_t key, int imin, int imax)
{
int imid;
imax --;
while(imin + 1 < imax) {
imid = imin + ((imax - imin) / 2);
if (A[imid] >= key) {
imax = imid;
} else if (A[imid] < key) {
imin = imid;
}
}
if(A[imin] >= key) return imin;
return imax;
}
void benchmarkSearch() {
uint32_t buffer[128];
uint32_t backbuffer[128];
uint32_t out[128];
uint32_t result, initial = 0;
uint32_t b, i;
time_snap_t S1, S2, S3, S4;
printf("benchmarking search \n");
/* this test creates delta encoded buffers with different bits, then
* performs lower bound searches for each key */
for (b = 0; b <= 32; b++) {
uint32_t prev = initial;
/* initialize the buffer */
for (i = 0; i < 128; i++) {
buffer[i] = ((uint32_t)rand()) ;
if(b < 32) buffer[i] %= (1<<b);
}
qsort(buffer,128, sizeof(uint32_t), uint32_cmp);
for (i = 0; i < 128; i++) {
buffer[i] = buffer[i] + prev;
prev = buffer[i];
}
for (i = 1; i < 128; i++) {
if(buffer[i] < buffer[i-1] )
buffer[i] = buffer[i-1];
}
assert(simdmaxbitsd1(initial, buffer)<=b);
for (i = 0; i < 128; i++) {
out[i] = 0; /* memset would do too */
}
/* delta-encode to 'i' bits */
simdpackwithoutmaskd1(initial, buffer, (__m128i *)out, b);
simdunpackd1(initial, (__m128i *)out, backbuffer, b);
for (i = 0; i < 128; i++) {
assert(buffer[i] == backbuffer[i]);
}
S1 = time_snap();
for (i = 0; i < 128 * 10; i++) {
int pos;
uint32_t pseudorandomkey = buffer[i%128];
__m128i vecinitial = _mm_set1_epi32(initial);
pos = simdsearchd1(&vecinitial, (__m128i *)out, b,
pseudorandomkey, &result);
if((result < pseudorandomkey) || (buffer[pos] != result)) {
printf("bug A.\n");
} else if (pos > 0) {
if(buffer[pos-1] >= pseudorandomkey)
printf("bug B.\n");
}
}
S2 = time_snap();
for (i = 0; i < 128 * 10; i++) {
int pos;
uint32_t pseudorandomkey = buffer[i%128];
simdunpackd1(initial, (__m128i *)out, backbuffer, b);
pos = lower_bound(backbuffer, pseudorandomkey, 0, 128);
result = backbuffer[pos];
if((result < pseudorandomkey) || (buffer[pos] != result)) {
printf("bug C.\n");
} else if (pos > 0) {
if(buffer[pos-1] >= pseudorandomkey)
printf("bug D.\n");
}
}
S3 = time_snap();
for (i = 0; i < 128 * 10; i++) {
int pos;
uint32_t pseudorandomkey = buffer[i%128];
pos = simdsearchwithlengthd1(initial, (__m128i *)out, b, 128,
pseudorandomkey, &result);
if((result < pseudorandomkey) || (buffer[pos] != result)) {
printf("bug A.\n");
} else if (pos > 0) {
if(buffer[pos-1] >= pseudorandomkey)
printf("bug B.\n");
}
}
S4 = time_snap();
printf("bit width = %d, fast search function time = " TIME_SNAP_FMT ", naive time = " TIME_SNAP_FMT " , fast with length time = " TIME_SNAP_FMT " \n", b, (S2-S1), (S3-S2), (S4-S3) );
}
}
int main() {
#ifdef _MSC_VER
QueryPerformanceFrequency((LARGE_INTEGER *)&freq);
#endif
benchmarkSearch();
benchmarkSelect();
return 0;
}

View File

@@ -1,205 +0,0 @@
#include <stdio.h>
#include "simdcomp.h"
#define RDTSC_START(cycles) \
do { \
register unsigned cyc_high, cyc_low; \
__asm volatile( \
"cpuid\n\t" \
"rdtsc\n\t" \
"mov %%edx, %0\n\t" \
"mov %%eax, %1\n\t" \
: "=r"(cyc_high), "=r"(cyc_low)::"%rax", "%rbx", "%rcx", "%rdx"); \
(cycles) = ((uint64_t)cyc_high << 32) | cyc_low; \
} while (0)
#define RDTSC_FINAL(cycles) \
do { \
register unsigned cyc_high, cyc_low; \
__asm volatile( \
"rdtscp\n\t" \
"mov %%edx, %0\n\t" \
"mov %%eax, %1\n\t" \
"cpuid\n\t" \
: "=r"(cyc_high), "=r"(cyc_low)::"%rax", "%rbx", "%rcx", "%rdx"); \
(cycles) = ((uint64_t)cyc_high << 32) | cyc_low; \
} while (0)
uint32_t * get_random_array_from_bit_width(uint32_t length, uint32_t bit) {
uint32_t * answer = malloc(sizeof(uint32_t) * length);
uint32_t mask = (uint32_t) ((UINT64_C(1) << bit) - 1);
uint32_t i;
for(i = 0; i < length; ++i) {
answer[i] = rand() & mask;
}
return answer;
}
uint32_t * get_random_array_from_bit_width_d1(uint32_t length, uint32_t bit) {
uint32_t * answer = malloc(sizeof(uint32_t) * length);
uint32_t mask = (uint32_t) ((UINT64_C(1) << bit) - 1);
uint32_t i;
answer[0] = rand() & mask;
for(i = 1; i < length; ++i) {
answer[i] = answer[i-1] + (rand() & mask);
}
return answer;
}
void demo128() {
const uint32_t length = 128;
uint32_t bit;
printf("# --- %s\n", __func__);
printf("# compressing %d integers\n",length);
printf("# format: bit width, pack in cycles per int, unpack in cycles per int\n");
for(bit = 1; bit <= 32; ++bit) {
uint32_t i;
uint32_t * data = get_random_array_from_bit_width(length, bit);
__m128i * buffer = malloc(length * sizeof(uint32_t));
uint32_t * backdata = malloc(length * sizeof(uint32_t));
uint32_t repeat = 500;
uint64_t min_diff;
printf("%d\t",bit);
min_diff = (uint64_t)-1;
for (i = 0; i < repeat; i++) {
uint64_t cycles_start, cycles_final, cycles_diff;
__asm volatile("" ::: /* pretend to clobber */ "memory");
RDTSC_START(cycles_start);
simdpackwithoutmask(data,buffer, bit);
RDTSC_FINAL(cycles_final);
cycles_diff = (cycles_final - cycles_start);
if (cycles_diff < min_diff) min_diff = cycles_diff;
}
printf("%.2f\t",min_diff*1.0/length);
min_diff = (uint64_t)-1;
for (i = 0; i < repeat; i++) {
uint64_t cycles_start, cycles_final, cycles_diff;
__asm volatile("" ::: /* pretend to clobber */ "memory");
RDTSC_START(cycles_start);
simdunpack(buffer, backdata,bit);
RDTSC_FINAL(cycles_final);
cycles_diff = (cycles_final - cycles_start);
if (cycles_diff < min_diff) min_diff = cycles_diff;
}
printf("%.2f\t",min_diff*1.0/length);
free(data);
free(buffer);
free(backdata);
printf("\n");
}
printf("\n\n"); /* two blank lines are required by gnuplot */
}
void demo128_d1() {
const uint32_t length = 128;
uint32_t bit;
printf("# --- %s\n", __func__);
printf("# compressing %d integers\n",length);
printf("# format: bit width, pack in cycles per int, unpack in cycles per int\n");
for(bit = 1; bit <= 32; ++bit) {
uint32_t i;
uint32_t * data = get_random_array_from_bit_width_d1(length, bit);
__m128i * buffer = malloc(length * sizeof(uint32_t));
uint32_t * backdata = malloc(length * sizeof(uint32_t));
uint32_t repeat = 500;
uint64_t min_diff;
printf("%d\t",bit);
min_diff = (uint64_t)-1;
for (i = 0; i < repeat; i++) {
uint64_t cycles_start, cycles_final, cycles_diff;
__asm volatile("" ::: /* pretend to clobber */ "memory");
RDTSC_START(cycles_start);
simdpackwithoutmaskd1(0,data,buffer, bit);
RDTSC_FINAL(cycles_final);
cycles_diff = (cycles_final - cycles_start);
if (cycles_diff < min_diff) min_diff = cycles_diff;
}
printf("%.2f\t",min_diff*1.0/length);
min_diff = (uint64_t)-1;
for (i = 0; i < repeat; i++) {
uint64_t cycles_start, cycles_final, cycles_diff;
__asm volatile("" ::: /* pretend to clobber */ "memory");
RDTSC_START(cycles_start);
simdunpackd1(0,buffer, backdata,bit);
RDTSC_FINAL(cycles_final);
cycles_diff = (cycles_final - cycles_start);
if (cycles_diff < min_diff) min_diff = cycles_diff;
}
printf("%.2f\t",min_diff*1.0/length);
free(data);
free(buffer);
free(backdata);
printf("\n");
}
printf("\n\n"); /* two blank lines are required by gnuplot */
}
#ifdef __AVX2__
void demo256() {
const uint32_t length = 256;
uint32_t bit;
printf("# --- %s\n", __func__);
printf("# compressing %d integers\n",length);
printf("# format: bit width, pack in cycles per int, unpack in cycles per int\n");
for(bit = 1; bit <= 32; ++bit) {
uint32_t i;
uint32_t * data = get_random_array_from_bit_width(length, bit);
__m256i * buffer = malloc(length * sizeof(uint32_t));
uint32_t * backdata = malloc(length * sizeof(uint32_t));
uint32_t repeat = 500;
uint64_t min_diff;
printf("%d\t",bit);
min_diff = (uint64_t)-1;
for (i = 0; i < repeat; i++) {
uint64_t cycles_start, cycles_final, cycles_diff;
__asm volatile("" ::: /* pretend to clobber */ "memory");
RDTSC_START(cycles_start);
avxpackwithoutmask(data,buffer, bit);
RDTSC_FINAL(cycles_final);
cycles_diff = (cycles_final - cycles_start);
if (cycles_diff < min_diff) min_diff = cycles_diff;
}
printf("%.2f\t",min_diff*1.0/length);
min_diff = (uint64_t)-1;
for (i = 0; i < repeat; i++) {
uint64_t cycles_start, cycles_final, cycles_diff;
__asm volatile("" ::: /* pretend to clobber */ "memory");
RDTSC_START(cycles_start);
avxunpack(buffer, backdata,bit);
RDTSC_FINAL(cycles_final);
cycles_diff = (cycles_final - cycles_start);
if (cycles_diff < min_diff) min_diff = cycles_diff;
}
printf("%.2f\t",min_diff*1.0/length);
free(data);
free(buffer);
free(backdata);
printf("\n");
}
printf("\n\n"); /* two blank lines are required by gnuplot */
}
#endif /* avx 2 */
int main() {
demo128();
demo128_d1();
#ifdef __AVX2__
demo256();
#endif
return 0;
}

View File

@@ -1,195 +0,0 @@
/* Type "make example" to build this example program. */
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include "simdcomp.h"
/**
We provide several different code examples.
**/
/* very simple test to illustrate a simple application */
int compress_decompress_demo() {
size_t k, N = 9999;
__m128i * endofbuf;
int howmanybytes;
float compratio;
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint8_t * buffer;
uint32_t * backbuffer = malloc(N * sizeof(uint32_t));
uint32_t b;
printf("== simple test\n");
for (k = 0; k < N; ++k) { /* start with k=0, not k=1! */
datain[k] = k;
}
b = maxbits_length(datain, N);
buffer = malloc(simdpack_compressedbytes(N,b));
endofbuf = simdpack_length(datain, N, (__m128i *)buffer, b);
howmanybytes = (endofbuf-(__m128i *)buffer)*sizeof(__m128i); /* number of compressed bytes */
compratio = N*sizeof(uint32_t) * 1.0 / howmanybytes;
/* endofbuf points to the end of the compressed data */
buffer = realloc(buffer,(endofbuf-(__m128i *)buffer)*sizeof(__m128i)); /* optional but safe. */
printf("Compressed %d integers down to %d bytes (comp. ratio = %f).\n",(int)N,howmanybytes,compratio);
/* in actual applications b must be stored and retrieved: caller is responsible for that. */
simdunpack_length((const __m128i *)buffer, N, backbuffer, b); /* will return a pointer to endofbuf */
for (k = 0; k < N; ++k) {
if(datain[k] != backbuffer[k]) {
printf("bug at %lu \n",(unsigned long)k);
return -1;
}
}
printf("Code works!\n");
free(datain);
free(buffer);
free(backbuffer);
return 0;
}
/* compresses data from datain to buffer, returns how many bytes written
used below in simple_demo */
size_t compress(uint32_t * datain, size_t length, uint8_t * buffer) {
uint32_t offset;
uint8_t * initout;
size_t k;
if(length/SIMDBlockSize*SIMDBlockSize != length) {
printf("Data length should be a multiple of %i \n",SIMDBlockSize);
}
offset = 0;
initout = buffer;
for(k = 0; k < length / SIMDBlockSize; ++k) {
uint32_t b = simdmaxbitsd1(offset,
datain + k * SIMDBlockSize);
*buffer++ = b;
simdpackwithoutmaskd1(offset, datain + k * SIMDBlockSize, (__m128i *) buffer,
b);
offset = datain[k * SIMDBlockSize + SIMDBlockSize - 1];
buffer += b * sizeof(__m128i);
}
return buffer - initout;
}
/* Another illustration ... */
void simple_demo() {
size_t REPEAT = 10, gap;
size_t N = 1000 * SIMDBlockSize;/* SIMDBlockSize is 128 */
uint32_t * datain = malloc(N * sizeof(uint32_t));
size_t compsize;
clock_t start, end;
uint8_t * buffer = malloc(N * sizeof(uint32_t) + N / SIMDBlockSize); /* output buffer */
uint32_t * backbuffer = malloc(SIMDBlockSize * sizeof(uint32_t));
printf("== simple demo\n");
for (gap = 1; gap <= 243; gap *= 3) {
size_t k, repeat;
uint32_t offset = 0;
uint32_t bogus = 0;
double numberofseconds;
printf("\n");
printf(" gap = %lu \n", (unsigned long) gap);
datain[0] = 0;
for (k = 1; k < N; ++k)
datain[k] = datain[k-1] + ( rand() % (gap + 1) );
compsize = compress(datain,N,buffer);
printf("compression ratio = %f \n", (N * sizeof(uint32_t))/ (compsize * 1.0 ));
start = clock();
for(repeat = 0; repeat < REPEAT; ++repeat) {
uint8_t * decbuffer = buffer;
for (k = 0; k * SIMDBlockSize < N; ++k) {
uint8_t b = *decbuffer++;
simdunpackd1(offset, (__m128i *) decbuffer, backbuffer, b);
/* do something here with backbuffer */
bogus += backbuffer[3];
decbuffer += b * sizeof(__m128i);
offset = backbuffer[SIMDBlockSize - 1];
}
}
end = clock();
numberofseconds = (end-start)/(double)CLOCKS_PER_SEC;
printf("decoding speed in million of integers per second %f \n",N*REPEAT/(numberofseconds*1000.0*1000.0));
start = clock();
for(repeat = 0; repeat < REPEAT; ++repeat) {
uint8_t * decbuffer = buffer;
for (k = 0; k * SIMDBlockSize < N; ++k) {
memcpy(backbuffer,decbuffer+k*SIMDBlockSize,SIMDBlockSize*sizeof(uint32_t));
bogus += backbuffer[3] - backbuffer[100];
}
}
end = clock();
numberofseconds = (end-start)/(double)CLOCKS_PER_SEC;
printf("memcpy speed in million of integers per second %f \n",N*REPEAT/(numberofseconds*1000.0*1000.0));
printf("ignore me %i \n",bogus);
printf("All tests are in CPU cache. Avoid out-of-cache decoding in applications.\n");
}
free(buffer);
free(datain);
free(backbuffer);
}
/* Used below in more_sophisticated_demo ... */
size_t varying_bit_width_compress(uint32_t * datain, size_t length, uint8_t * buffer) {
uint8_t * initout;
size_t k;
if(length/SIMDBlockSize*SIMDBlockSize != length) {
printf("Data length should be a multiple of %i \n",SIMDBlockSize);
}
initout = buffer;
for(k = 0; k < length / SIMDBlockSize; ++k) {
uint32_t b = maxbits(datain);
*buffer++ = b;
simdpackwithoutmask(datain, (__m128i *)buffer, b);
datain += SIMDBlockSize;
buffer += b * sizeof(__m128i);
}
return buffer - initout;
}
/* Here we compress the data in blocks of 128 integers with varying bit width */
int varying_bit_width_demo() {
size_t nn = 128 * 2;
uint32_t * datainn = malloc(nn * sizeof(uint32_t));
uint8_t * buffern = malloc(nn * sizeof(uint32_t) + nn / SIMDBlockSize);
uint8_t * initbuffern = buffern;
uint32_t * backbuffern = malloc(nn * sizeof(uint32_t));
size_t k, compsize;
printf("== varying bit-width demo\n");
for(k=0; k<nn; ++k) {
datainn[k] = rand() % (k + 1);
}
compsize = varying_bit_width_compress(datainn,nn,buffern);
printf("encoded size: %u (original size: %u)\n", (unsigned)compsize,
(unsigned)(nn * sizeof(uint32_t)));
for (k = 0; k * SIMDBlockSize < nn; ++k) {
uint32_t b = *buffern;
buffern++;
simdunpack((const __m128i *)buffern, backbuffern + k * SIMDBlockSize, b);
buffern += b * sizeof(__m128i);
}
for (k = 0; k < nn; ++k) {
if(backbuffern[k] != datainn[k]) {
printf("bug\n");
return -1;
}
}
printf("Code works!\n");
free(datainn);
free(initbuffern);
free(backbuffern);
return 0;
}
int main() {
if(compress_decompress_demo() != 0) return -1;
if(varying_bit_width_demo() != 0) return -1;
simple_demo();
return 0;
}

View File

@@ -1,13 +0,0 @@
Simple Go demo
==============
Setup
======
Start by installing the simdcomp library (make && make install).
Then type:
go run test.go

View File

@@ -1,71 +0,0 @@
/////////
// This particular file is in the public domain.
// Author: Daniel Lemire
////////
package main
/*
#cgo LDFLAGS: -lsimdcomp
#include <simdcomp.h>
*/
import "C"
import "fmt"
//////////
// For this demo, we pack and unpack blocks of 128 integers
/////////
func main() {
// I am going to use C types. Alternative might be to use unsafe.Pointer calls, see http://bit.ly/1ndw3W3
// this is our original data
var data [128]C.uint32_t
for i := C.uint32_t(0); i < C.uint32_t(128); i++ {
data[i] = i
}
////////////
// We first pack without differential coding
///////////
// computing how many bits per int. is needed
b := C.maxbits(&data[0])
ratio := 32.0/float64(b)
fmt.Println("Bit width ", b)
fmt.Println(fmt.Sprintf("Compression ratio %f ", ratio))
// we are now going to create a buffer to receive the packed data (each __m128i uses 128 bits)
out := make([] C.__m128i,b)
C.simdpackwithoutmask( &data[0],&out[0],b);
var recovereddata [128]C.uint32_t
C.simdunpack(&out[0],&recovereddata[0],b)
for i := 0; i < 128; i++ {
if data[i] != recovereddata[i] {
fmt.Println("Bug ")
return
}
}
///////////
// Next, we use differential coding
//////////
offset := C.uint32_t(0) // if you pack data from K to K + 128, offset should be the value at K-1. When K = 0, choose a default
b1 := C.simdmaxbitsd1(offset,&data[0])
ratio1 := 32.0/float64(b1)
fmt.Println("Bit width ", b1)
fmt.Println(fmt.Sprintf("Compression ratio %f ", ratio1))
// we are now going to create a buffer to receive the packed data (each __m128i uses 128 bits)
out = make([] C.__m128i,b1)
C.simdpackwithoutmaskd1(offset, &data[0],&out[0],b1);
C.simdunpackd1(offset,&out[0],&recovereddata[0],b1)
for i := 0; i < 128; i++ {
if data[i] != recovereddata[i] {
fmt.Println("Bug ")
return
}
}
fmt.Println("test succesful.")
}

View File

@@ -1,40 +0,0 @@
/**
* This code is released under a BSD License.
*/
#ifndef INCLUDE_AVXBITPACKING_H_
#define INCLUDE_AVXBITPACKING_H_
#ifdef __AVX2__
#include "portability.h"
/* AVX2 is required */
#include <immintrin.h>
/* for memset */
#include <string.h>
#include "simdcomputil.h"
enum{ AVXBlockSize = 256};
/* max integer logarithm over a range of AVXBlockSize integers (256 integer) */
uint32_t avxmaxbits(const uint32_t * begin);
/* reads 256 values from "in", writes "bit" 256-bit vectors to "out" */
void avxpack(const uint32_t * in,__m256i * out, const uint32_t bit);
/* reads 256 values from "in", writes "bit" 256-bit vectors to "out" */
void avxpackwithoutmask(const uint32_t * in,__m256i * out, const uint32_t bit);
/* reads "bit" 256-bit vectors from "in", writes 256 values to "out" */
void avxunpack(const __m256i * in,uint32_t * out, const uint32_t bit);
#endif /* __AVX2__ */
#endif /* INCLUDE_AVXBITPACKING_H_ */

View File

@@ -1,81 +0,0 @@
/**
* This code is released under a BSD License.
*/
#ifndef SIMDBITCOMPAT_H_
#define SIMDBITCOMPAT_H_
#include <iso646.h> /* mostly for Microsoft compilers */
#include <string.h>
#if SIMDCOMP_DEBUG
# define SIMDCOMP_ALWAYS_INLINE inline
# define SIMDCOMP_NEVER_INLINE
# define SIMDCOMP_PURE
#else
# if defined(__GNUC__)
# if __GNUC__ >= 3
# define SIMDCOMP_ALWAYS_INLINE inline __attribute__((always_inline))
# define SIMDCOMP_NEVER_INLINE __attribute__((noinline))
# define SIMDCOMP_PURE __attribute__((pure))
# else
# define SIMDCOMP_ALWAYS_INLINE inline
# define SIMDCOMP_NEVER_INLINE
# define SIMDCOMP_PURE
# endif
# elif defined(_MSC_VER)
# define SIMDCOMP_ALWAYS_INLINE __forceinline
# define SIMDCOMP_NEVER_INLINE
# define SIMDCOMP_PURE
# else
# if __has_attribute(always_inline)
# define SIMDCOMP_ALWAYS_INLINE inline __attribute__((always_inline))
# else
# define SIMDCOMP_ALWAYS_INLINE inline
# endif
# if __has_attribute(noinline)
# define SIMDCOMP_NEVER_INLINE __attribute__((noinline))
# else
# define SIMDCOMP_NEVER_INLINE
# endif
# if __has_attribute(pure)
# define SIMDCOMP_PURE __attribute__((pure))
# else
# define SIMDCOMP_PURE
# endif
# endif
#endif
#if defined(_MSC_VER) && _MSC_VER < 1600
typedef unsigned int uint32_t;
typedef unsigned char uint8_t;
typedef signed char int8_t;
#else
#include <stdint.h> /* part of Visual Studio 2010 and better, others likely anyway */
#endif
#if defined(_MSC_VER)
#define SIMDCOMP_ALIGNED(x) __declspec(align(x))
#else
#if defined(__GNUC__)
#define SIMDCOMP_ALIGNED(x) __attribute__ ((aligned(x)))
#endif
#endif
#if defined(_MSC_VER)
# include <intrin.h>
/* 64-bit needs extending */
# define SIMDCOMP_CTZ(result, mask) do { \
unsigned long index; \
if (!_BitScanForward(&(index), (mask))) { \
(result) = 32U; \
} else { \
(result) = (uint32_t)(index); \
} \
} while (0)
#else
# define SIMDCOMP_CTZ(result, mask) \
result = __builtin_ctz(mask)
#endif
#endif /* SIMDBITCOMPAT_H_ */

View File

@@ -1,72 +0,0 @@
/**
* This code is released under a BSD License.
*/
#ifndef SIMDBITPACKING_H_
#define SIMDBITPACKING_H_
#include "portability.h"
/* SSE2 is required */
#include <emmintrin.h>
/* for memset */
#include <string.h>
#include "simdcomputil.h"
/***
* Please see example.c for various examples on how to make good use
* of these functions.
*/
/* reads 128 values from "in", writes "bit" 128-bit vectors to "out".
* The input values are masked so that only the least significant "bit" bits are used. */
void simdpack(const uint32_t * in,__m128i * out, const uint32_t bit);
/* reads 128 values from "in", writes "bit" 128-bit vectors to "out".
* The input values are assumed to be less than 1<<bit. */
void simdpackwithoutmask(const uint32_t * in,__m128i * out, const uint32_t bit);
/* reads "bit" 128-bit vectors from "in", writes 128 values to "out" */
void simdunpack(const __m128i * in,uint32_t * out, const uint32_t bit);
/* how many compressed bytes are needed to compressed length integers using a bit width of bit with
the simdpackFOR_length function. */
int simdpack_compressedbytes(int length, const uint32_t bit);
/* like simdpack, but supports an undetermined number of inputs.
* This is useful if you need to unpack an array of integers that is not divisible by 128 integers.
* Returns a pointer to the (advanced) compressed array. Compressed data is stored in the memory location between
the provided (out) pointer and the returned pointer. */
__m128i * simdpack_length(const uint32_t * in, size_t length, __m128i * out, const uint32_t bit);
/* like simdunpack, but supports an undetermined number of inputs.
* This is useful if you need to unpack an array of integers that is not divisible by 128 integers.
* Returns a pointer to the (advanced) compressed array. The read compressed data is between the provided
(in) pointer and the returned pointer. */
const __m128i * simdunpack_length(const __m128i * in, size_t length, uint32_t * out, const uint32_t bit);
/* like simdpack, but supports an undetermined small number of inputs. This is useful if you need to pack less
than 128 integers.
* Note that this function is much slower.
* Returns a pointer to the (advanced) compressed array. Compressed data is stored in the memory location
between the provided (out) pointer and the returned pointer. */
__m128i * simdpack_shortlength(const uint32_t * in, int length, __m128i * out, const uint32_t bit);
/* like simdunpack, but supports an undetermined small number of inputs. This is useful if you need to unpack less
than 128 integers.
* Note that this function is much slower.
* Returns a pointer to the (advanced) compressed array. The read compressed data is between the provided (in)
pointer and the returned pointer. */
const __m128i * simdunpack_shortlength(const __m128i * in, int length, uint32_t * out, const uint32_t bit);
/* given a block of 128 packed values, this function sets the value at index "index" to "value" */
void simdfastset(__m128i * in128, uint32_t b, uint32_t value, size_t index);
#endif /* SIMDBITPACKING_H_ */

View File

@@ -1,22 +0,0 @@
/**
* This code is released under a BSD License.
*/
#ifndef SIMDCOMP_H_
#define SIMDCOMP_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "simdbitpacking.h"
#include "simdcomputil.h"
#include "simdfor.h"
#include "simdintegratedbitpacking.h"
#include "avxbitpacking.h"
#ifdef __cplusplus
} // extern "C"
#endif
#endif

View File

@@ -1,54 +0,0 @@
/**
* This code is released under a BSD License.
*/
#ifndef SIMDCOMPUTIL_H_
#define SIMDCOMPUTIL_H_
#include "portability.h"
/* SSE2 is required */
#include <emmintrin.h>
/* returns the integer logarithm of v (bit width) */
uint32_t bits(const uint32_t v);
/* max integer logarithm over a range of SIMDBlockSize integers (128 integer) */
uint32_t maxbits(const uint32_t * begin);
/* same as maxbits, but we specify the number of integers */
uint32_t maxbits_length(const uint32_t * in,uint32_t length);
enum{ SIMDBlockSize = 128};
/* computes (quickly) the minimal value of 128 values */
uint32_t simdmin(const uint32_t * in);
/* computes (quickly) the minimal value of the specified number of values */
uint32_t simdmin_length(const uint32_t * in, uint32_t length);
#ifdef __SSE4_1__
/* computes (quickly) the minimal and maximal value of the specified number of values */
void simdmaxmin_length(const uint32_t * in, uint32_t length, uint32_t * getmin, uint32_t * getmax);
/* computes (quickly) the minimal and maximal value of the 128 values */
void simdmaxmin(const uint32_t * in, uint32_t * getmin, uint32_t * getmax);
#endif
/* like maxbit over 128 integers (SIMDBlockSize) with provided initial value
and using differential coding */
uint32_t simdmaxbitsd1(uint32_t initvalue, const uint32_t * in);
/* like simdmaxbitsd1, but calculates maxbits over |length| integers
with provided initial value. |length| can be any arbitrary value. */
uint32_t simdmaxbitsd1_length(uint32_t initvalue, const uint32_t * in,
uint32_t length);
#endif /* SIMDCOMPUTIL_H_ */

View File

@@ -1,72 +0,0 @@
/**
* This code is released under a BSD License.
*/
#ifndef INCLUDE_SIMDFOR_H_
#define INCLUDE_SIMDFOR_H_
#include "portability.h"
/* SSE2 is required */
#include <emmintrin.h>
#include "simdcomputil.h"
#include "simdbitpacking.h"
#ifdef __cplusplus
extern "C" {
#endif
/* reads 128 values from "in", writes "bit" 128-bit vectors to "out" */
void simdpackFOR(uint32_t initvalue, const uint32_t * in,__m128i * out, const uint32_t bit);
/* reads "bit" 128-bit vectors from "in", writes 128 values to "out" */
void simdunpackFOR(uint32_t initvalue, const __m128i * in,uint32_t * out, const uint32_t bit);
/* how many compressed bytes are needed to compressed length integers using a bit width of bit with
the simdpackFOR_length function. */
int simdpackFOR_compressedbytes(int length, const uint32_t bit);
/* like simdpackFOR, but supports an undetermined number of inputs.
This is useful if you need to pack less than 128 integers. Note that this function is much slower.
Compressed data is stored in the memory location between
the provided (out) pointer and the returned pointer. */
__m128i * simdpackFOR_length(uint32_t initvalue, const uint32_t * in, int length, __m128i * out, const uint32_t bit);
/* like simdunpackFOR, but supports an undetermined number of inputs.
This is useful if you need to unpack less than 128 integers. Note that this function is much slower.
The read compressed data is between the provided
(in) pointer and the returned pointer. */
const __m128i * simdunpackFOR_length(uint32_t initvalue, const __m128i * in, int length, uint32_t * out, const uint32_t bit);
/* returns the value stored at the specified "slot".
* */
uint32_t simdselectFOR(uint32_t initvalue, const __m128i *in, uint32_t bit,
int slot);
/* given a block of 128 packed values, this function sets the value at index "index" to "value" */
void simdfastsetFOR(uint32_t initvalue, __m128i * in, uint32_t bit, uint32_t value, size_t index);
/* searches "bit" 128-bit vectors from "in" (= length<=128 encoded integers) for the first encoded uint32 value
* which is >= |key|, and returns its position. It is assumed that the values
* stored are in sorted order.
* The encoded key is stored in "*presult".
* The first length decoded integers, ignoring others. If no value is larger or equal to the key,
* length is returned. Length should be no larger than 128.
*
* If no value is larger or equal to the key,
* length is returned */
int simdsearchwithlengthFOR(uint32_t initvalue, const __m128i *in, uint32_t bit,
int length, uint32_t key, uint32_t *presult);
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* INCLUDE_SIMDFOR_H_ */

View File

@@ -1,98 +0,0 @@
/**
* This code is released under a BSD License.
*/
#ifndef SIMD_INTEGRATED_BITPACKING_H
#define SIMD_INTEGRATED_BITPACKING_H
#include "portability.h"
/* SSE2 is required */
#include <emmintrin.h>
#include "simdcomputil.h"
#include "simdbitpacking.h"
#ifdef __cplusplus
extern "C" {
#endif
/* reads 128 values from "in", writes "bit" 128-bit vectors to "out"
integer values should be in sorted order (for best results).
The differences are masked so that only the least significant "bit" bits are used. */
void simdpackd1(uint32_t initvalue, const uint32_t * in,__m128i * out, const uint32_t bit);
/* reads 128 values from "in", writes "bit" 128-bit vectors to "out"
integer values should be in sorted order (for best results).
The difference values are assumed to be less than 1<<bit. */
void simdpackwithoutmaskd1(uint32_t initvalue, const uint32_t * in,__m128i * out, const uint32_t bit);
/* reads "bit" 128-bit vectors from "in", writes 128 values to "out" */
void simdunpackd1(uint32_t initvalue, const __m128i * in,uint32_t * out, const uint32_t bit);
/* searches "bit" 128-bit vectors from "in" (= 128 encoded integers) for the first encoded uint32 value
* which is >= |key|, and returns its position. It is assumed that the values
* stored are in sorted order.
* The encoded key is stored in "*presult". If no value is larger or equal to the key,
* 128 is returned. The pointer initOffset is a pointer to the last four value decoded
* (when starting out, this can be a zero vector or initialized with _mm_set1_epi32(init)),
* and the vector gets updated.
**/
int
simdsearchd1(__m128i * initOffset, const __m128i *in, uint32_t bit,
uint32_t key, uint32_t *presult);
/* searches "bit" 128-bit vectors from "in" (= length<=128 encoded integers) for the first encoded uint32 value
* which is >= |key|, and returns its position. It is assumed that the values
* stored are in sorted order.
* The encoded key is stored in "*presult".
* The first length decoded integers, ignoring others. If no value is larger or equal to the key,
* length is returned. Length should be no larger than 128.
*
* If no value is larger or equal to the key,
* length is returned */
int simdsearchwithlengthd1(uint32_t initvalue, const __m128i *in, uint32_t bit,
int length, uint32_t key, uint32_t *presult);
/* returns the value stored at the specified "slot".
* */
uint32_t simdselectd1(uint32_t initvalue, const __m128i *in, uint32_t bit,
int slot);
/* given a block of 128 packed values, this function sets the value at index "index" to "value",
* you must somehow know the previous value.
* Because of differential coding, all following values are incremented by the offset between this new
* value and the old value...
* This functions is useful if you want to modify the last value.
*/
void simdfastsetd1fromprevious( __m128i * in, uint32_t bit, uint32_t previousvalue, uint32_t value, size_t index);
/* given a block of 128 packed values, this function sets the value at index "index" to "value",
* This function computes the previous value if needed.
* Because of differential coding, all following values are incremented by the offset between this new
* value and the old value...
* This functions is useful if you want to modify the last value.
*/
void simdfastsetd1(uint32_t initvalue, __m128i * in, uint32_t bit, uint32_t value, size_t index);
/*Simply scan the data
* The pointer initOffset is a pointer to the last four value decoded
* (when starting out, this can be a zero vector or initialized with _mm_set1_epi32(init);),
* and the vector gets updated.
* */
void
simdscand1(__m128i * initOffset, const __m128i *in, uint32_t bit);
#ifdef __cplusplus
} // extern "C"
#endif
#endif

View File

@@ -1,79 +0,0 @@
# minimalist makefile
.SUFFIXES:
#
.SUFFIXES: .cpp .o .c .h
ifeq ($(DEBUG),1)
CFLAGS = -fPIC -std=c89 -ggdb -msse4.1 -march=native -Wall -Wextra -Wshadow -fsanitize=undefined -fno-omit-frame-pointer -fsanitize=address
else
CFLAGS = -fPIC -std=c89 -O3 -msse4.1 -march=native -Wall -Wextra -Wshadow
endif # debug
LDFLAGS = -shared
LIBNAME=libsimdcomp.so.0.0.3
all: unit unit_chars bitpackingbenchmark $(LIBNAME)
test:
./unit
./unit_chars
install: $(OBJECTS)
cp $(LIBNAME) /usr/local/lib
ln -s /usr/local/lib/$(LIBNAME) /usr/local/lib/libsimdcomp.so
ldconfig
cp $(HEADERS) /usr/local/include
HEADERS=./include/simdbitpacking.h ./include/simdcomputil.h ./include/simdintegratedbitpacking.h ./include/simdcomp.h ./include/simdfor.h ./include/avxbitpacking.h
uninstall:
for h in $(HEADERS) ; do rm /usr/local/$$h; done
rm /usr/local/lib/$(LIBNAME)
rm /usr/local/lib/libsimdcomp.so
ldconfig
OBJECTS= simdbitpacking.o simdintegratedbitpacking.o simdcomputil.o \
simdpackedsearch.o simdpackedselect.o simdfor.o avxbitpacking.o
$(LIBNAME): $(OBJECTS)
$(CC) $(CFLAGS) -o $(LIBNAME) $(OBJECTS) $(LDFLAGS)
avxbitpacking.o: ./src/avxbitpacking.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/avxbitpacking.c -Iinclude
simdfor.o: ./src/simdfor.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/simdfor.c -Iinclude
simdcomputil.o: ./src/simdcomputil.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/simdcomputil.c -Iinclude
simdbitpacking.o: ./src/simdbitpacking.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/simdbitpacking.c -Iinclude
simdintegratedbitpacking.o: ./src/simdintegratedbitpacking.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/simdintegratedbitpacking.c -Iinclude
simdpackedsearch.o: ./src/simdpackedsearch.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/simdpackedsearch.c -Iinclude
simdpackedselect.o: ./src/simdpackedselect.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/simdpackedselect.c -Iinclude
example: ./example.c $(HEADERS) $(OBJECTS)
$(CC) $(CFLAGS) -o example ./example.c -Iinclude $(OBJECTS)
unit: ./tests/unit.c $(HEADERS) $(OBJECTS)
$(CC) $(CFLAGS) -o unit ./tests/unit.c -Iinclude $(OBJECTS)
bitpackingbenchmark: ./benchmarks/bitpackingbenchmark.c $(HEADERS) $(OBJECTS)
$(CC) $(CFLAGS) -o bitpackingbenchmark ./benchmarks/bitpackingbenchmark.c -Iinclude $(OBJECTS)
benchmark: ./benchmarks/benchmark.c $(HEADERS) $(OBJECTS)
$(CC) $(CFLAGS) -o benchmark ./benchmarks/benchmark.c -Iinclude $(OBJECTS)
dynunit: ./tests/unit.c $(HEADERS) $(LIBNAME)
$(CC) $(CFLAGS) -o dynunit ./tests/unit.c -Iinclude -lsimdcomp
unit_chars: ./tests/unit_chars.c $(HEADERS) $(OBJECTS)
$(CC) $(CFLAGS) -o unit_chars ./tests/unit_chars.c -Iinclude $(OBJECTS)
clean:
rm -f unit *.o $(LIBNAME) example benchmark bitpackingbenchmark dynunit unit_chars

View File

@@ -1,104 +0,0 @@
!IFNDEF MACHINE
!IF "$(PROCESSOR_ARCHITECTURE)"=="AMD64"
MACHINE=x64
!ELSE
MACHINE=x86
!ENDIF
!ENDIF
!IFNDEF DEBUG
DEBUG=no
!ENDIF
!IFNDEF CC
CC=cl.exe
!ENDIF
!IFNDEF AR
AR=lib.exe
!ENDIF
!IFNDEF LINK
LINK=link.exe
!ENDIF
!IFNDEF PGO
PGO=no
!ENDIF
!IFNDEF PGI
PGI=no
!ENDIF
INC = /Iinclude
!IF "$(DEBUG)"=="yes"
CFLAGS = /nologo /MDd /LDd /Od /Zi /D_DEBUG /RTC1 /W3 /GS /Gm
ARFLAGS = /nologo
LDFLAGS = /nologo /debug /nodefaultlib:msvcrt
!ELSE
CFLAGS = /nologo /MD /O2 /Zi /DNDEBUG /W3 /Gm- /GS /Gy /Oi /GL /MP
ARFLAGS = /nologo /LTCG
LDFLAGS = /nologo /LTCG /DYNAMICBASE /incremental:no /debug /opt:ref,icf
!ENDIF
!IF "$(PGI)"=="yes"
LDFLAGS = $(LDFLAGS) /ltcg:pgi
!ENDIF
!IF "$(PGO)"=="yes"
LDFLAGS = $(LDFLAGS) /ltcg:pgo
!ENDIF
LIB_OBJS = simdbitpacking.obj simdintegratedbitpacking.obj simdcomputil.obj \
simdpackedsearch.obj simdpackedselect.obj simdfor.obj
all: lib dll dynunit unit_chars example benchmark
# need some good use case scenario to train the instrumented build
@if "$(PGI)"=="yes" echo Running PGO training
@if "$(PGI)"=="yes" benchmark.exe >nul 2>&1
@if "$(PGI)"=="yes" example.exe >nul 2>&1
$(LIB_OBJS):
$(CC) $(INC) $(CFLAGS) /c src/simdbitpacking.c src/simdintegratedbitpacking.c src/simdcomputil.c \
src/simdpackedsearch.c src/simdpackedselect.c src/simdfor.c
lib: $(LIB_OBJS)
$(AR) $(ARFLAGS) /OUT:simdcomp_a.lib $(LIB_OBJS)
dll: $(LIB_OBJS)
$(LINK) /DLL $(LDFLAGS) /OUT:simdcomp.dll /IMPLIB:simdcomp.lib /DEF:simdcomp.def $(LIB_OBJS)
unit: lib
$(CC) $(INC) $(CFLAGS) /c src/unit.c
$(LINK) $(LDFLAGS) /OUT:unit.exe unit.obj simdcomp_a.lib
dynunit: dll
$(CC) $(INC) $(CFLAGS) /c src/unit.c
$(LINK) $(LDFLAGS) /OUT:unit.exe unit.obj simdcomp.lib
unit_chars: lib
$(CC) $(INC) $(CFLAGS) /c src/unit_chars.c
$(LINK) $(LDFLAGS) /OUT:unit_chars.exe unit_chars.obj simdcomp.lib
example: lib
$(CC) $(INC) $(CFLAGS) /c example.c
$(LINK) $(LDFLAGS) /OUT:example.exe example.obj simdcomp.lib
benchmark: lib
$(CC) $(INC) $(CFLAGS) /c src/benchmark.c
$(LINK) $(LDFLAGS) /OUT:benchmark.exe benchmark.obj simdcomp.lib
clean:
del /Q *.obj
del /Q *.lib
del /Q *.exe
del /Q *.dll
del /Q *.pgc
del /Q *.pgd
del /Q *.pdb

View File

@@ -1,16 +0,0 @@
{
"name": "simdcomp",
"version": "0.0.3",
"repo": "lemire/simdcomp",
"description": "A simple C library for compressing lists of integers",
"license": "BSD-3-Clause",
"src": [
"src/simdbitpacking.c",
"src/simdcomputil.c",
"src/simdintegratedbitpacking.c",
"include/simdbitpacking.h",
"include/simdcomp.h",
"include/simdcomputil.h",
"include/simdintegratedbitpacking.h"
]
}

View File

@@ -1,182 +0,0 @@
#!/usr/bin/env python
import sys
def howmany(bit):
""" how many values are we going to pack? """
return 256
def howmanywords(bit):
return (howmany(bit) * bit + 255)/256
def howmanybytes(bit):
return howmanywords(bit) * 16
print("""
/** code generated by avxpacking.py starts here **/
""")
print("""typedef void (*avxpackblockfnc)(const uint32_t * pin, __m256i * compressed);""")
print("""typedef void (*avxunpackblockfnc)(const __m256i * compressed, uint32_t * pout);""")
def plurial(number):
if(number <> 1):
return "s"
else :
return ""
print("")
print("static void avxpackblock0(const uint32_t * pin, __m256i * compressed) {");
print(" (void)compressed;");
print(" (void) pin; /* we consumed {0} 32-bit integer{1} */ ".format(howmany(0),plurial(howmany(0))));
print("}");
print("")
for bit in range(1,33):
print("")
print("/* we are going to pack {0} {1}-bit values, touching {2} 256-bit words, using {3} bytes */ ".format(howmany(bit),bit,howmanywords(bit),howmanybytes(bit)))
print("static void avxpackblock{0}(const uint32_t * pin, __m256i * compressed) {{".format(bit));
print(" const __m256i * in = (const __m256i *) pin;");
print(" /* we are going to touch {0} 256-bit word{1} */ ".format(howmanywords(bit),plurial(howmanywords(bit))));
if(howmanywords(bit) == 1):
print(" __m256i w0;")
else:
print(" __m256i w0, w1;")
if( (bit & (bit-1)) <> 0) : print(" __m256i tmp; /* used to store inputs at word boundary */")
oldword = 0
for j in range(howmany(bit)/8):
firstword = j * bit / 32
if(firstword > oldword):
print(" _mm256_storeu_si256(compressed + {0}, w{1});".format(oldword,oldword%2))
oldword = firstword
secondword = (j * bit + bit - 1)/32
firstshift = (j*bit) % 32
if( firstword == secondword):
if(firstshift == 0):
print(" w{0} = _mm256_lddqu_si256 (in + {1});".format(firstword%2,j))
else:
print(" w{0} = _mm256_or_si256(w{0},_mm256_slli_epi32(_mm256_lddqu_si256 (in + {1}) , {2}));".format(firstword%2,j,firstshift))
else:
print(" tmp = _mm256_lddqu_si256 (in + {0});".format(j))
print(" w{0} = _mm256_or_si256(w{0},_mm256_slli_epi32(tmp , {2}));".format(firstword%2,j,firstshift))
secondshift = 32-firstshift
print(" w{0} = _mm256_srli_epi32(tmp,{2});".format(secondword%2,j,secondshift))
print(" _mm256_storeu_si256(compressed + {0}, w{1});".format(secondword,secondword%2))
print("}");
print("")
print("")
print("static void avxpackblockmask0(const uint32_t * pin, __m256i * compressed) {");
print(" (void)compressed;");
print(" (void) pin; /* we consumed {0} 32-bit integer{1} */ ".format(howmany(0),plurial(howmany(0))));
print("}");
print("")
for bit in range(1,33):
print("")
print("/* we are going to pack {0} {1}-bit values, touching {2} 256-bit words, using {3} bytes */ ".format(howmany(bit),bit,howmanywords(bit),howmanybytes(bit)))
print("static void avxpackblockmask{0}(const uint32_t * pin, __m256i * compressed) {{".format(bit));
print(" /* we are going to touch {0} 256-bit word{1} */ ".format(howmanywords(bit),plurial(howmanywords(bit))));
if(howmanywords(bit) == 1):
print(" __m256i w0;")
else:
print(" __m256i w0, w1;")
print(" const __m256i * in = (const __m256i *) pin;");
if(bit < 32): print(" const __m256i mask = _mm256_set1_epi32({0});".format((1<<bit)-1));
def maskfnc(x):
if(bit == 32): return x
return " _mm256_and_si256 ( mask, {0}) ".format(x)
if( (bit & (bit-1)) <> 0) : print(" __m256i tmp; /* used to store inputs at word boundary */")
oldword = 0
for j in range(howmany(bit)/8):
firstword = j * bit / 32
if(firstword > oldword):
print(" _mm256_storeu_si256(compressed + {0}, w{1});".format(oldword,oldword%2))
oldword = firstword
secondword = (j * bit + bit - 1)/32
firstshift = (j*bit) % 32
loadstr = maskfnc(" _mm256_lddqu_si256 (in + {0}) ".format(j))
if( firstword == secondword):
if(firstshift == 0):
print(" w{0} = {1};".format(firstword%2,loadstr))
else:
print(" w{0} = _mm256_or_si256(w{0},_mm256_slli_epi32({1} , {2}));".format(firstword%2,loadstr,firstshift))
else:
print(" tmp = {0};".format(loadstr))
print(" w{0} = _mm256_or_si256(w{0},_mm256_slli_epi32(tmp , {2}));".format(firstword%2,j,firstshift))
secondshift = 32-firstshift
print(" w{0} = _mm256_srli_epi32(tmp,{2});".format(secondword%2,j,secondshift))
print(" _mm256_storeu_si256(compressed + {0}, w{1});".format(secondword,secondword%2))
print("}");
print("")
print("static void avxunpackblock0(const __m256i * compressed, uint32_t * pout) {");
print(" (void) compressed;");
print(" memset(pout,0,{0});".format(howmany(0)));
print("}");
print("")
for bit in range(1,33):
print("")
print("/* we packed {0} {1}-bit values, touching {2} 256-bit words, using {3} bytes */ ".format(howmany(bit),bit,howmanywords(bit),howmanybytes(bit)))
print("static void avxunpackblock{0}(const __m256i * compressed, uint32_t * pout) {{".format(bit));
print(" /* we are going to access {0} 256-bit word{1} */ ".format(howmanywords(bit),plurial(howmanywords(bit))));
if(howmanywords(bit) == 1):
print(" __m256i w0;")
else:
print(" __m256i w0, w1;")
print(" __m256i * out = (__m256i *) pout;");
if(bit < 32): print(" const __m256i mask = _mm256_set1_epi32({0});".format((1<<bit)-1));
maskstr = " _mm256_and_si256 ( mask, {0}) "
if (bit == 32) : maskstr = " {0} " # no need
oldword = 0
print(" w0 = _mm256_lddqu_si256 (compressed);")
for j in range(howmany(bit)/8):
firstword = j * bit / 32
secondword = (j * bit + bit - 1)/32
if(secondword > oldword):
print(" w{0} = _mm256_lddqu_si256 (compressed + {1});".format(secondword%2,secondword))
oldword = secondword
firstshift = (j*bit) % 32
firstshiftstr = "_mm256_srli_epi32( w{0} , "+str(firstshift)+") "
if(firstshift == 0):
firstshiftstr =" w{0} " # no need
wfirst = firstshiftstr.format(firstword%2)
if( firstword == secondword):
if(firstshift + bit <> 32):
wfirst = maskstr.format(wfirst)
print(" _mm256_storeu_si256(out + {0}, {1});".format(j,wfirst))
else:
secondshift = (32-firstshift)
wsecond = "_mm256_slli_epi32( w{0} , {1} ) ".format((firstword+1)%2,secondshift)
wfirstorsecond = " _mm256_or_si256 ({0},{1}) ".format(wfirst,wsecond)
wfirstorsecond = maskstr.format(wfirstorsecond)
print(" _mm256_storeu_si256(out + {0},\n {1});".format(j,wfirstorsecond))
print("}");
print("")
print("static avxpackblockfnc avxfuncPackArr[] = {")
for bit in range(0,32):
print("&avxpackblock{0},".format(bit))
print("&avxpackblock32")
print("};")
print("static avxpackblockfnc avxfuncPackMaskArr[] = {")
for bit in range(0,32):
print("&avxpackblockmask{0},".format(bit))
print("&avxpackblockmask32")
print("};")
print("static avxunpackblockfnc avxfuncUnpackArr[] = {")
for bit in range(0,32):
print("&avxunpackblock{0},".format(bit))
print("&avxunpackblock32")
print("};")
print("/** code generated by avxpacking.py ends here **/")

View File

@@ -1,152 +0,0 @@
#!/usr/bin/env python3
from math import ceil
print("""
/**
* Blablabla
*
*/
""");
def mask(bit):
return str((1 << bit) - 1)
for length in [32]:
print("""
static __m128i iunpackFOR0(__m128i initOffset, const __m128i * _in , uint32_t * _out) {
__m128i *out = (__m128i*)(_out);
int i;
(void) _in;
for (i = 0; i < 8; ++i) {
_mm_store_si128(out++, initOffset);
_mm_store_si128(out++, initOffset);
_mm_store_si128(out++, initOffset);
_mm_store_si128(out++, initOffset);
}
return initOffset;
}
""")
print("""
static void ipackFOR0(__m128i initOffset , const uint32_t * _in , __m128i * out ) {
(void) initOffset;
(void) _in;
(void) out;
}
""")
for bit in range(1,33):
offsetVar = " initOffset";
print("""
static void ipackFOR"""+str(bit)+"""(__m128i """+offsetVar+""", const uint32_t * _in, __m128i * out) {
const __m128i *in = (const __m128i*)(_in);
__m128i OutReg;
""");
if (bit != 32):
print(" __m128i CurrIn = _mm_load_si128(in);");
print(" __m128i InReg = _mm_sub_epi32(CurrIn, initOffset);");
else:
print(" __m128i InReg = _mm_load_si128(in);");
print(" (void) initOffset;");
inwordpointer = 0
valuecounter = 0
for k in range(ceil((length * bit) / 32)):
if(valuecounter == length): break
for x in range(inwordpointer,32,bit):
if(x!=0) :
print(" OutReg = _mm_or_si128(OutReg, _mm_slli_epi32(InReg, " + str(x) + "));");
else:
print(" OutReg = InReg; ");
if((x+bit>=32) ):
while(inwordpointer<32):
inwordpointer += bit
print(" _mm_store_si128(out, OutReg);");
print("");
if(valuecounter + 1 < length):
print(" ++out;")
inwordpointer -= 32;
if(inwordpointer>0):
print(" OutReg = _mm_srli_epi32(InReg, " + str(bit) + " - " + str(inwordpointer) + ");");
if(valuecounter + 1 < length):
print(" ++in;")
if (bit != 32):
print(" CurrIn = _mm_load_si128(in);");
print(" InReg = _mm_sub_epi32(CurrIn, initOffset);");
else:
print(" InReg = _mm_load_si128(in);");
print("");
valuecounter = valuecounter + 1
if(valuecounter == length): break
assert(valuecounter == length)
print("\n}\n\n""")
for bit in range(1,32):
offsetVar = " initOffset";
print("""\n
static __m128i iunpackFOR"""+str(bit)+"""(__m128i """+offsetVar+""", const __m128i* in, uint32_t * _out) {
""");
print(""" __m128i* out = (__m128i*)(_out);
__m128i InReg = _mm_load_si128(in);
__m128i OutReg;
__m128i tmp;
const __m128i mask = _mm_set1_epi32((1U<<"""+str(bit)+""")-1);
""");
MainText = "";
MainText += "\n";
inwordpointer = 0
valuecounter = 0
for k in range(ceil((length * bit) / 32)):
for x in range(inwordpointer,32,bit):
if(valuecounter == length): break
if (x > 0):
MainText += " tmp = _mm_srli_epi32(InReg," + str(x) +");\n";
else:
MainText += " tmp = InReg;\n";
if(x+bit<32):
MainText += " OutReg = _mm_and_si128(tmp, mask);\n";
else:
MainText += " OutReg = tmp;\n";
if((x+bit>=32) ):
while(inwordpointer<32):
inwordpointer += bit
if(valuecounter + 1 < length):
MainText += " ++in;"
MainText += " InReg = _mm_load_si128(in);\n";
inwordpointer -= 32;
if(inwordpointer>0):
MainText += " OutReg = _mm_or_si128(OutReg, _mm_and_si128(_mm_slli_epi32(InReg, " + str(bit) + "-" + str(inwordpointer) + "), mask));\n\n";
if (bit != 32):
MainText += " OutReg = _mm_add_epi32(OutReg, initOffset);\n";
MainText += " _mm_store_si128(out++, OutReg);\n\n";
MainText += "";
valuecounter = valuecounter + 1
if(valuecounter == length): break
assert(valuecounter == length)
print(MainText)
print(" return initOffset;");
print("\n}\n\n")
print("""
static __m128i iunpackFOR32(__m128i initvalue , const __m128i* in, uint32_t * _out) {
__m128i * mout = (__m128i *)_out;
__m128i invec;
size_t k;
for(k = 0; k < 128/4; ++k) {
invec = _mm_load_si128(in++);
_mm_store_si128(mout++, invec);
}
return invec;
}
""")

View File

@@ -1,40 +0,0 @@
EXPORTS
simdpack
simdpackwithoutmask
simdunpack
bits
maxbits
maxbits_length
simdmin
simdmin_length
simdmaxmin
simdmaxmin_length
simdmaxbitsd1
simdmaxbitsd1_length
simdpackd1
simdpackwithoutmaskd1
simdunpackd1
simdsearchd1
simdsearchwithlengthd1
simdselectd1
simdpackFOR
simdselectFOR
simdsearchwithlengthFOR
simdunpackFOR
simdmin_length
simdmaxmin
simdmaxmin_length
simdpack_length
simdpackFOR_length
simdunpackFOR_length
simdpack_shortlength
simdfastsetFOR
simdfastset
simdfastsetd1
simdunpack_length
simdunpack_shortlength
simdsearchwithlengthFOR
simdscand1
simdfastsetd1fromprevious
simdfastsetd1

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,234 +0,0 @@
/**
* This code is released under a BSD License.
*/
#include "simdcomputil.h"
#ifdef __SSE4_1__
#include <smmintrin.h>
#endif
#include <assert.h>
#define Delta(curr, prev) \
_mm_sub_epi32(curr, \
_mm_or_si128(_mm_slli_si128(curr, 4), _mm_srli_si128(prev, 12)))
/* returns the integer logarithm of v (bit width) */
uint32_t bits(const uint32_t v) {
#ifdef _MSC_VER
unsigned long answer;
if (v == 0) {
return 0;
}
_BitScanReverse(&answer, v);
return answer + 1;
#else
return v == 0 ? 0 : 32 - __builtin_clz(v); /* assume GCC-like compiler if not microsoft */
#endif
}
static uint32_t maxbitas32int(const __m128i accumulator) {
const __m128i _tmp1 = _mm_or_si128(_mm_srli_si128(accumulator, 8), accumulator); /* (A,B,C,D) xor (0,0,A,B) = (A,B,C xor A,D xor B)*/
const __m128i _tmp2 = _mm_or_si128(_mm_srli_si128(_tmp1, 4), _tmp1); /* (A,B,C xor A,D xor B) xor (0,0,0,C xor A)*/
uint32_t ans = _mm_cvtsi128_si32(_tmp2);
return bits(ans);
}
SIMDCOMP_PURE uint32_t maxbits(const uint32_t * begin) {
const __m128i* pin = (const __m128i*)(begin);
__m128i accumulator = _mm_loadu_si128(pin);
uint32_t k = 1;
for(; 4*k < SIMDBlockSize; ++k) {
__m128i newvec = _mm_loadu_si128(pin+k);
accumulator = _mm_or_si128(accumulator,newvec);
}
return maxbitas32int(accumulator);
}
static uint32_t orasint(const __m128i accumulator) {
const __m128i _tmp1 = _mm_or_si128(_mm_srli_si128(accumulator, 8), accumulator); /* (A,B,C,D) xor (0,0,A,B) = (A,B,C xor A,D xor B)*/
const __m128i _tmp2 = _mm_or_si128(_mm_srli_si128(_tmp1, 4), _tmp1); /* (A,B,C xor A,D xor B) xor (0,0,0,C xor A)*/
return _mm_cvtsi128_si32(_tmp2);
}
#ifdef __SSE4_1__
static uint32_t minasint(const __m128i accumulator) {
const __m128i _tmp1 = _mm_min_epu32(_mm_srli_si128(accumulator, 8), accumulator); /* (A,B,C,D) xor (0,0,A,B) = (A,B,C xor A,D xor B)*/
const __m128i _tmp2 = _mm_min_epu32(_mm_srli_si128(_tmp1, 4), _tmp1); /* (A,B,C xor A,D xor B) xor (0,0,0,C xor A)*/
return _mm_cvtsi128_si32(_tmp2);
}
static uint32_t maxasint(const __m128i accumulator) {
const __m128i _tmp1 = _mm_max_epu32(_mm_srli_si128(accumulator, 8), accumulator); /* (A,B,C,D) xor (0,0,A,B) = (A,B,C xor A,D xor B)*/
const __m128i _tmp2 = _mm_max_epu32(_mm_srli_si128(_tmp1, 4), _tmp1); /* (A,B,C xor A,D xor B) xor (0,0,0,C xor A)*/
return _mm_cvtsi128_si32(_tmp2);
}
uint32_t simdmin(const uint32_t * in) {
const __m128i* pin = (const __m128i*)(in);
__m128i accumulator = _mm_loadu_si128(pin);
uint32_t k = 1;
for(; 4*k < SIMDBlockSize; ++k) {
__m128i newvec = _mm_loadu_si128(pin+k);
accumulator = _mm_min_epu32(accumulator,newvec);
}
return minasint(accumulator);
}
void simdmaxmin(const uint32_t * in, uint32_t * getmin, uint32_t * getmax) {
const __m128i* pin = (const __m128i*)(in);
__m128i minaccumulator = _mm_loadu_si128(pin);
__m128i maxaccumulator = minaccumulator;
uint32_t k = 1;
for(; 4*k < SIMDBlockSize; ++k) {
__m128i newvec = _mm_loadu_si128(pin+k);
minaccumulator = _mm_min_epu32(minaccumulator,newvec);
maxaccumulator = _mm_max_epu32(maxaccumulator,newvec);
}
*getmin = minasint(minaccumulator);
*getmax = maxasint(maxaccumulator);
}
uint32_t simdmin_length(const uint32_t * in, uint32_t length) {
uint32_t currentmin = 0xFFFFFFFF;
uint32_t lengthdividedby4 = length / 4;
uint32_t offset = lengthdividedby4 * 4;
uint32_t k;
if (lengthdividedby4 > 0) {
const __m128i* pin = (const __m128i*)(in);
__m128i accumulator = _mm_loadu_si128(pin);
k = 1;
for(; 4*k < lengthdividedby4 * 4; ++k) {
__m128i newvec = _mm_loadu_si128(pin+k);
accumulator = _mm_min_epu32(accumulator,newvec);
}
currentmin = minasint(accumulator);
}
for (k = offset; k < length; ++k)
if (in[k] < currentmin)
currentmin = in[k];
return currentmin;
}
void simdmaxmin_length(const uint32_t * in, uint32_t length, uint32_t * getmin, uint32_t * getmax) {
uint32_t lengthdividedby4 = length / 4;
uint32_t offset = lengthdividedby4 * 4;
uint32_t k;
*getmin = 0xFFFFFFFF;
*getmax = 0;
if (lengthdividedby4 > 0) {
const __m128i* pin = (const __m128i*)(in);
__m128i minaccumulator = _mm_loadu_si128(pin);
__m128i maxaccumulator = minaccumulator;
k = 1;
for(; 4*k < lengthdividedby4 * 4; ++k) {
__m128i newvec = _mm_loadu_si128(pin+k);
minaccumulator = _mm_min_epu32(minaccumulator,newvec);
maxaccumulator = _mm_max_epu32(maxaccumulator,newvec);
}
*getmin = minasint(minaccumulator);
*getmax = maxasint(maxaccumulator);
}
for (k = offset; k < length; ++k) {
if (in[k] < *getmin)
*getmin = in[k];
if (in[k] > *getmax)
*getmax = in[k];
}
}
#endif
SIMDCOMP_PURE uint32_t maxbits_length(const uint32_t * in,uint32_t length) {
uint32_t k;
uint32_t lengthdividedby4 = length / 4;
uint32_t offset = lengthdividedby4 * 4;
uint32_t bigxor = 0;
if(lengthdividedby4 > 0) {
const __m128i* pin = (const __m128i*)(in);
__m128i accumulator = _mm_loadu_si128(pin);
k = 1;
for(; 4*k < 4*lengthdividedby4; ++k) {
__m128i newvec = _mm_loadu_si128(pin+k);
accumulator = _mm_or_si128(accumulator,newvec);
}
bigxor = orasint(accumulator);
}
for(k = offset; k < length; ++k)
bigxor |= in[k];
return bits(bigxor);
}
/* maxbit over 128 integers (SIMDBlockSize) with provided initial value */
uint32_t simdmaxbitsd1(uint32_t initvalue, const uint32_t * in) {
__m128i initoffset = _mm_set1_epi32 (initvalue);
const __m128i* pin = (const __m128i*)(in);
__m128i newvec = _mm_loadu_si128(pin);
__m128i accumulator = Delta(newvec , initoffset);
__m128i oldvec = newvec;
uint32_t k = 1;
for(; 4*k < SIMDBlockSize; ++k) {
newvec = _mm_loadu_si128(pin+k);
accumulator = _mm_or_si128(accumulator,Delta(newvec , oldvec));
oldvec = newvec;
}
initoffset = oldvec;
return maxbitas32int(accumulator);
}
/* maxbit over |length| integers with provided initial value */
uint32_t simdmaxbitsd1_length(uint32_t initvalue, const uint32_t * in,
uint32_t length) {
__m128i newvec;
__m128i oldvec;
__m128i initoffset;
__m128i accumulator;
const __m128i *pin;
uint32_t tmparray[4];
uint32_t k = 1;
uint32_t acc;
assert(length > 0);
pin = (const __m128i *)(in);
initoffset = _mm_set1_epi32(initvalue);
switch (length) {
case 1:
newvec = _mm_set1_epi32(in[0]);
break;
case 2:
newvec = _mm_setr_epi32(in[0], in[1], in[1], in[1]);
break;
case 3:
newvec = _mm_setr_epi32(in[0], in[1], in[2], in[2]);
break;
default:
newvec = _mm_loadu_si128(pin);
break;
}
accumulator = Delta(newvec, initoffset);
oldvec = newvec;
/* process 4 integers and build an accumulator */
while (k * 4 + 4 <= length) {
newvec = _mm_loadu_si128(pin + k);
accumulator = _mm_or_si128(accumulator, Delta(newvec, oldvec));
oldvec = newvec;
k++;
}
/* extract the accumulator as an integer */
_mm_storeu_si128((__m128i *)(tmparray), accumulator);
acc = tmparray[0] | tmparray[1] | tmparray[2] | tmparray[3];
/* now process the remaining integers */
for (k *= 4; k < length; k++)
acc |= in[k] - (k == 0 ? initvalue : in[k - 1]);
/* return the number of bits */
return bits(acc);
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,900 +0,0 @@
/**
* This code is released under a BSD License.
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include "simdcomp.h"
int testshortpack() {
int bit;
size_t i;
size_t length;
__m128i * bb;
srand(0);
printf("testshortpack\n");
for (bit = 0; bit < 32; ++bit) {
const size_t N = 128;
uint32_t * data = malloc(N * sizeof(uint32_t));
uint32_t * backdata = malloc(N * sizeof(uint32_t));
uint32_t * buffer = malloc((2 * N + 1024) * sizeof(uint32_t));
for (i = 0; i < N; ++i) {
data[i] = rand() & ((1 << bit) - 1);
}
for (length = 0; length <= N; ++length) {
for (i = 0; i < N; ++i) {
backdata[i] = 0;
}
bb = simdpack_shortlength(data, length, (__m128i *) buffer,
bit);
if((bb - (__m128i *) buffer) * sizeof(__m128i) != (unsigned) simdpack_compressedbytes(length,bit)) {
printf("bug\n");
return -1;
}
simdunpack_shortlength((__m128i *) buffer, length,
backdata, bit);
for (i = 0; i < length; ++i) {
if (data[i] != backdata[i]) {
printf("bug\n");
return -1;
}
}
}
free(data);
free(backdata);
free(buffer);
}
return 0;
}
int testlongpack() {
int bit;
size_t i;
size_t length;
__m128i * bb;
srand(0);
printf("testlongpack\n");
for (bit = 0; bit < 32; ++bit) {
const size_t N = 2048;
uint32_t * data = malloc(N * sizeof(uint32_t));
uint32_t * backdata = malloc(N * sizeof(uint32_t));
uint32_t * buffer = malloc((2 * N + 1024) * sizeof(uint32_t));
for (i = 0; i < N; ++i) {
data[i] = rand() & ((1 << bit) - 1);
}
for (length = 0; length <= N; ++length) {
for (i = 0; i < N; ++i) {
backdata[i] = 0;
}
bb = simdpack_length(data, length, (__m128i *) buffer,
bit);
if((bb - (__m128i *) buffer) * sizeof(__m128i) != (unsigned) simdpack_compressedbytes(length,bit)) {
printf("bug\n");
return -1;
}
simdunpack_length((__m128i *) buffer, length,
backdata, bit);
for (i = 0; i < length; ++i) {
if (data[i] != backdata[i]) {
printf("bug\n");
return -1;
}
}
}
free(data);
free(backdata);
free(buffer);
}
return 0;
}
int testset() {
int bit;
size_t i;
const size_t N = 128;
uint32_t * data = malloc(N * sizeof(uint32_t));
uint32_t * backdata = malloc(N * sizeof(uint32_t));
uint32_t * buffer = malloc((2 * N + 1024) * sizeof(uint32_t));
srand(0);
for (bit = 0; bit < 32; ++bit) {
printf("simple set %d \n",bit);
for (i = 0; i < N; ++i) {
data[i] = rand() & ((1 << bit) - 1);
}
for (i = 0; i < N; ++i) {
backdata[i] = 0;
}
simdpack(data, (__m128i *) buffer, bit);
simdunpack((__m128i *) buffer, backdata, bit);
for (i = 0; i < N; ++i) {
if (data[i] != backdata[i]) {
printf("bug\n");
return -1;
}
}
for(i = N ; i > 0; i--) {
simdfastset((__m128i *) buffer, bit, data[N - i], i - 1);
}
simdunpack((__m128i *) buffer, backdata, bit);
for (i = 0; i < N; ++i) {
if (data[i] != backdata[N - i - 1]) {
printf("bug\n");
return -1;
}
}
simdpack(data, (__m128i *) buffer, bit);
for(i = 1 ; i <= N; i++) {
simdfastset((__m128i *) buffer, bit, data[i - 1], i - 1);
}
simdunpack((__m128i *) buffer, backdata, bit);
for (i = 0; i < N; ++i) {
if (data[i] != backdata[i]) {
printf("bug\n");
return -1;
}
}
}
free(data);
free(backdata);
free(buffer);
return 0;
}
#ifdef __SSE4_1__
int testsetd1() {
int bit;
size_t i;
uint32_t newvalue;
const size_t N = 128;
uint32_t * data = malloc(N * sizeof(uint32_t));
uint32_t * datazeroes = malloc(N * sizeof(uint32_t));
uint32_t * backdata = malloc(N * sizeof(uint32_t));
uint32_t * buffer = malloc((2 * N + 1024) * sizeof(uint32_t));
srand(0);
for (bit = 0; bit < 32; ++bit) {
printf("simple set d1 %d \n",bit);
data[0] = rand() & ((1 << bit) - 1);
datazeroes[0] = 0;
for (i = 1; i < N; ++i) {
data[i] = data[i - 1] + (rand() & ((1 << bit) - 1));
datazeroes[i] = 0;
}
for (i = 0; i < N; ++i) {
backdata[i] = 0;
}
simdpackd1(0,datazeroes, (__m128i *) buffer, bit);
for(i = 1 ; i <= N; i++) {
simdfastsetd1(0,(__m128i *) buffer, bit, data[i - 1], i - 1);
newvalue = simdselectd1(0, (const __m128i *) buffer, bit,i - 1);
if( newvalue != data[i-1] ) {
printf("bad set-select\n");
return -1;
}
}
simdunpackd1(0,(__m128i *) buffer, backdata, bit);
for (i = 0; i < N; ++i) {
if (data[i] != backdata[i])
return -1;
}
}
free(data);
free(backdata);
free(buffer);
free(datazeroes);
return 0;
}
#endif
int testsetFOR() {
int bit;
size_t i;
uint32_t newvalue;
const size_t N = 128;
uint32_t * data = malloc(N * sizeof(uint32_t));
uint32_t * datazeroes = malloc(N * sizeof(uint32_t));
uint32_t * backdata = malloc(N * sizeof(uint32_t));
uint32_t * buffer = malloc((2 * N + 1024) * sizeof(uint32_t));
srand(0);
for (bit = 0; bit < 32; ++bit) {
printf("simple set FOR %d \n",bit);
for (i = 0; i < N; ++i) {
data[i] = (rand() & ((1 << bit) - 1));
datazeroes[i] = 0;
}
for (i = 0; i < N; ++i) {
backdata[i] = 0;
}
simdpackFOR(0,datazeroes, (__m128i *) buffer, bit);
for(i = 1 ; i <= N; i++) {
simdfastsetFOR(0,(__m128i *) buffer, bit, data[i - 1], i - 1);
newvalue = simdselectFOR(0, (const __m128i *) buffer, bit,i - 1);
if( newvalue != data[i-1] ) {
printf("bad set-select\n");
return -1;
}
}
simdunpackFOR(0,(__m128i *) buffer, backdata, bit);
for (i = 0; i < N; ++i) {
if (data[i] != backdata[i])
return -1;
}
}
free(data);
free(backdata);
free(buffer);
free(datazeroes);
return 0;
}
int testshortFORpack() {
int bit;
size_t i;
__m128i * rb;
size_t length;
uint32_t offset = 7;
srand(0);
for (bit = 0; bit < 32; ++bit) {
const size_t N = 128;
uint32_t * data = malloc(N * sizeof(uint32_t));
uint32_t * backdata = malloc(N * sizeof(uint32_t));
uint32_t * buffer = malloc((2 * N + 1024) * sizeof(uint32_t));
for (i = 0; i < N; ++i) {
data[i] = (rand() & ((1 << bit) - 1)) + offset;
}
for (length = 0; length <= N; ++length) {
for (i = 0; i < N; ++i) {
backdata[i] = 0;
}
rb = simdpackFOR_length(offset,data, length, (__m128i *) buffer,
bit);
if(((rb - (__m128i *) buffer)*sizeof(__m128i)) != (unsigned) simdpackFOR_compressedbytes(length,bit)) {
return -1;
}
simdunpackFOR_length(offset,(__m128i *) buffer, length,
backdata, bit);
for (i = 0; i < length; ++i) {
if (data[i] != backdata[i])
return -1;
}
}
free(data);
free(backdata);
free(buffer);
}
return 0;
}
#ifdef __AVX2__
int testbabyavx() {
int bit;
int trial;
unsigned int i,j;
const size_t N = AVXBlockSize;
srand(0);
printf("testbabyavx\n");
printf("bit = ");
for (bit = 0; bit < 32; ++bit) {
printf(" %d ",bit);
fflush(stdout);
for(trial = 0; trial < 100; ++trial) {
uint32_t * data = malloc(N * sizeof(uint32_t)+ 64 * sizeof(uint32_t));
uint32_t * backdata = malloc(N * sizeof(uint32_t) + 64 * sizeof(uint32_t) );
__m256i * buffer = malloc((2 * N + 1024) * sizeof(uint32_t) + 32);
for (i = 0; i < N; ++i) {
data[i] = rand() & ((uint32_t)(1 << bit) - 1);
}
for (i = 0; i < N; ++i) {
backdata[i] = 0;
}
if(avxmaxbits(data) != maxbits_length(data,N)) {
printf("avxmaxbits is buggy\n");
return -1;
}
avxpackwithoutmask(data, buffer, bit);
avxunpack(buffer, backdata, bit);
for (i = 0; i < AVXBlockSize; ++i) {
if (data[i] != backdata[i]) {
printf("bug\n");
for (j = 0; j < N; ++j) {
if (data[j] != backdata[j]) {
printf("data[%d]=%d v.s. backdata[%d]=%d\n",j,data[j],j,backdata[j]);
} else {
printf("data[%d]=%d\n",j,data[j]);
}
}
return -1;
}
}
free(data);
free(backdata);
free(buffer);
}
}
printf("\n");
return 0;
}
int testavx2() {
int N = 5000 * AVXBlockSize, gap;
__m256i * buffer = malloc(AVXBlockSize * sizeof(uint32_t));
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint32_t * backbuffer = malloc(AVXBlockSize * sizeof(uint32_t));
for (gap = 1; gap <= 387420489; gap *= 3) {
int k;
printf(" gap = %u \n", gap);
for (k = 0; k < N; ++k)
datain[k] = k * gap;
for (k = 0; k * AVXBlockSize < N; ++k) {
/*
First part works for general arrays (sorted or unsorted)
*/
int j;
/* we compute the bit width */
const uint32_t b = avxmaxbits(datain + k * AVXBlockSize);
if(avxmaxbits(datain + k * AVXBlockSize) != maxbits_length(datain + k * AVXBlockSize,AVXBlockSize)) {
printf("avxmaxbits is buggy %d %d \n",
avxmaxbits(datain + k * AVXBlockSize),
maxbits_length(datain + k * AVXBlockSize,AVXBlockSize));
return -1;
}
printf("bit width = %d\n",b);
/* we read 256 integers at "datain + k * AVXBlockSize" and
write b 256-bit vectors at "buffer" */
avxpackwithoutmask(datain + k * AVXBlockSize, buffer, b);
/* we read back b1 128-bit vectors at "buffer" and write 128 integers at backbuffer */
avxunpack(buffer, backbuffer, b);/* uncompressed */
for (j = 0; j < AVXBlockSize; ++j) {
if (backbuffer[j] != datain[k * AVXBlockSize + j]) {
int i;
printf("bug in avxpack\n");
for(i = 0; i < AVXBlockSize; ++i) {
printf("data[%d]=%d got back %d %s\n",i,
datain[k * AVXBlockSize + i],backbuffer[i],
datain[k * AVXBlockSize + i]!=backbuffer[i]?"bug":"");
}
return -2;
}
}
}
}
free(buffer);
free(datain);
free(backbuffer);
printf("Code looks good.\n");
return 0;
}
#endif /* avx2 */
int test() {
int N = 5000 * SIMDBlockSize, gap;
__m128i * buffer = malloc(SIMDBlockSize * sizeof(uint32_t));
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint32_t * backbuffer = malloc(SIMDBlockSize * sizeof(uint32_t));
for (gap = 1; gap <= 387420489; gap *= 3) {
int k;
printf(" gap = %u \n", gap);
for (k = 0; k < N; ++k)
datain[k] = k * gap;
for (k = 0; k * SIMDBlockSize < N; ++k) {
/*
First part works for general arrays (sorted or unsorted)
*/
int j;
/* we compute the bit width */
const uint32_t b = maxbits(datain + k * SIMDBlockSize);
/* we read 128 integers at "datain + k * SIMDBlockSize" and
write b 128-bit vectors at "buffer" */
simdpackwithoutmask(datain + k * SIMDBlockSize, buffer, b);
/* we read back b1 128-bit vectors at "buffer" and write 128 integers at backbuffer */
simdunpack(buffer, backbuffer, b);/* uncompressed */
for (j = 0; j < SIMDBlockSize; ++j) {
if (backbuffer[j] != datain[k * SIMDBlockSize + j]) {
printf("bug in simdpack\n");
return -2;
}
}
{
/*
next part assumes that the data is sorted (uses differential coding)
*/
uint32_t offset = 0;
/* we compute the bit width */
const uint32_t b1 = simdmaxbitsd1(offset,
datain + k * SIMDBlockSize);
/* we read 128 integers at "datain + k * SIMDBlockSize" and
write b1 128-bit vectors at "buffer" */
simdpackwithoutmaskd1(offset, datain + k * SIMDBlockSize, buffer,
b1);
/* we read back b1 128-bit vectors at "buffer" and write 128 integers at backbuffer */
simdunpackd1(offset, buffer, backbuffer, b1);
for (j = 0; j < SIMDBlockSize; ++j) {
if (backbuffer[j] != datain[k * SIMDBlockSize + j]) {
printf("bug in simdpack d1\n");
return -3;
}
}
offset = datain[k * SIMDBlockSize + SIMDBlockSize - 1];
}
}
}
free(buffer);
free(datain);
free(backbuffer);
printf("Code looks good.\n");
return 0;
}
#ifdef __SSE4_1__
int testFOR() {
int N = 5000 * SIMDBlockSize, gap;
__m128i * buffer = malloc(SIMDBlockSize * sizeof(uint32_t));
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint32_t * backbuffer = malloc(SIMDBlockSize * sizeof(uint32_t));
uint32_t tmax, tmin, tb;
for (gap = 1; gap <= 387420489; gap *= 2) {
int k;
printf(" gap = %u \n", gap);
for (k = 0; k < N; ++k)
datain[k] = k * gap;
for (k = 0; k * SIMDBlockSize < N; ++k) {
int j;
simdmaxmin_length(datain + k * SIMDBlockSize,SIMDBlockSize,&tmin,&tmax);
/* we compute the bit width */
tb = bits(tmax - tmin);
/* we read 128 integers at "datain + k * SIMDBlockSize" and
write b 128-bit vectors at "buffer" */
simdpackFOR(tmin,datain + k * SIMDBlockSize, buffer, tb);
for (j = 0; j < SIMDBlockSize; ++j) {
uint32_t selectedvalue = simdselectFOR(tmin,buffer,tb,j);
if (selectedvalue != datain[k * SIMDBlockSize + j]) {
printf("bug in simdselectFOR\n");
return -3;
}
}
/* we read back b1 128-bit vectors at "buffer" and write 128 integers at backbuffer */
simdunpackFOR(tmin,buffer, backbuffer, tb);/* uncompressed */
for (j = 0; j < SIMDBlockSize; ++j) {
if (backbuffer[j] != datain[k * SIMDBlockSize + j]) {
printf("bug in simdpackFOR\n");
return -2;
}
}
}
}
free(buffer);
free(datain);
free(backbuffer);
printf("Code looks good.\n");
return 0;
}
#endif
#define MAX 300
int test_simdmaxbitsd1_length() {
uint32_t result, buffer[MAX + 1];
int i, j;
memset(&buffer[0], 0xff, sizeof(buffer));
/* this test creates buffers of different length; each buffer is
* initialized to result in the following deltas:
* length 1: 2
* length 2: 1 2
* length 3: 1 1 2
* length 4: 1 1 1 2
* length 5: 1 1 1 1 2
* etc. Each sequence's "maxbits" is 2. */
for (i = 0; i < MAX; i++) {
for (j = 0; j < i; j++)
buffer[j] = j + 1;
buffer[i] = i + 2;
result = simdmaxbitsd1_length(0, &buffer[0], i + 1);
if (result != 2) {
printf("simdmaxbitsd1_length: unexpected result %u in loop %d\n",
result, i);
return -1;
}
}
printf("simdmaxbitsd1_length: ok\n");
return 0;
}
int uint32_cmp(const void *a, const void *b)
{
const uint32_t *ia = (const uint32_t *)a;
const uint32_t *ib = (const uint32_t *)b;
if(*ia < *ib)
return -1;
else if (*ia > *ib)
return 1;
return 0;
}
#ifdef __SSE4_1__
int test_simdpackedsearch() {
uint32_t buffer[128];
uint32_t result = 0;
int b, i;
uint32_t init = 0;
__m128i initial = _mm_set1_epi32(init);
/* initialize the buffer */
for (i = 0; i < 128; i++)
buffer[i] = (uint32_t)(i + 1);
/* this test creates delta encoded buffers with different bits, then
* performs lower bound searches for each key */
for (b = 1; b <= 32; b++) {
uint32_t out[128];
/* delta-encode to 'i' bits */
simdpackwithoutmaskd1(init, buffer, (__m128i *)out, b);
initial = _mm_setzero_si128();
printf("simdsearchd1: %d bits\n", b);
/* now perform the searches */
initial = _mm_set1_epi32(init);
assert(simdsearchd1(&initial, (__m128i *)out, b, 0, &result) == 0);
assert(result > 0);
for (i = 1; i <= 128; i++) {
initial = _mm_set1_epi32(init);
assert(simdsearchd1(&initial, (__m128i *)out, b,
(uint32_t)i, &result) == i - 1);
assert(result == (unsigned)i);
}
initial = _mm_set1_epi32(init);
assert(simdsearchd1(&initial, (__m128i *)out, b, 200, &result)
== 128);
assert(result > 200);
}
printf("simdsearchd1: ok\n");
return 0;
}
int test_simdpackedsearchFOR() {
uint32_t buffer[128];
uint32_t result = 0;
int b;
uint32_t i;
uint32_t maxv, tmin, tmax, tb;
uint32_t out[128];
/* this test creates delta encoded buffers with different bits, then
* performs lower bound searches for each key */
for (b = 1; b <= 32; b++) {
/* initialize the buffer */
maxv = (b == 32)
? 0xFFFFFFFF
: ((1U<<b) - 1);
for (i = 0; i < 128; i++)
buffer[i] = maxv * (i + 1) / 128;
simdmaxmin_length(buffer,SIMDBlockSize,&tmin,&tmax);
/* we compute the bit width */
tb = bits(tmax - tmin);
/* delta-encode to 'i' bits */
simdpackFOR(tmin, buffer, (__m128i *)out, tb);
printf("simdsearchd1: %d bits\n", b);
/* now perform the searches */
for (i = 0; i < 128; i++) {
assert(buffer[i] == simdselectFOR(tmin, (__m128i *)out, tb,i));
}
for (i = 0; i < 128; i++) {
int x = simdsearchwithlengthFOR(tmin, (__m128i *)out, tb,
128,buffer[i], &result) ;
assert(simdselectFOR(tmin, (__m128i *)out, tb,x) == buffer[x]);
assert(simdselectFOR(tmin, (__m128i *)out, tb,x) == result);
assert(buffer[x] == result);
assert(result == buffer[i]);
assert(buffer[x] == buffer[i]);
}
}
printf("simdsearchFOR: ok\n");
return 0;
}
int test_simdpackedsearch_advanced() {
uint32_t buffer[128];
uint32_t backbuffer[128];
uint32_t out[128];
uint32_t result = 0;
uint32_t b, i;
uint32_t init = 0;
__m128i initial = _mm_set1_epi32(init);
/* this test creates delta encoded buffers with different bits, then
* performs lower bound searches for each key */
for (b = 0; b <= 32; b++) {
uint32_t prev = init;
/* initialize the buffer */
for (i = 0; i < 128; i++) {
buffer[i] = ((uint32_t)(1431655765 * i + 0xFFFFFFFF)) ;
if(b < 32) buffer[i] %= (1<<b);
}
qsort(buffer,128, sizeof(uint32_t), uint32_cmp);
for (i = 0; i < 128; i++) {
buffer[i] = buffer[i] + prev;
prev = buffer[i];
}
for (i = 1; i < 128; i++) {
if(buffer[i] < buffer[i-1] )
buffer[i] = buffer[i-1];
}
assert(simdmaxbitsd1(init, buffer)<=b);
for (i = 0; i < 128; i++) {
out[i] = 0; /* memset would do too */
}
/* delta-encode to 'i' bits */
simdpackwithoutmaskd1(init, buffer, (__m128i *)out, b);
simdunpackd1(init, (__m128i *)out, backbuffer, b);
for (i = 0; i < 128; i++) {
assert(buffer[i] == backbuffer[i]);
}
printf("advanced simdsearchd1: %d bits\n", b);
for (i = 0; i < 128; i++) {
int pos;
initial = _mm_set1_epi32(init);
pos = simdsearchd1(&initial, (__m128i *)out, b,
buffer[i], &result);
assert(pos == simdsearchwithlengthd1(init, (__m128i *)out, b, 128,
buffer[i], &result));
assert(buffer[pos] == buffer[i]);
if(pos > 0)
assert(buffer[pos - 1] < buffer[i]);
assert(result == buffer[i]);
}
for (i = 0; i < 128; i++) {
int pos;
if(buffer[i] == 0) continue;
initial = _mm_set1_epi32(init);
pos = simdsearchd1(&initial, (__m128i *)out, b,
buffer[i] - 1, &result);
assert(pos == simdsearchwithlengthd1(init, (__m128i *)out, b, 128,
buffer[i] - 1, &result));
assert(buffer[pos] >= buffer[i] - 1);
if(pos > 0)
assert(buffer[pos - 1] < buffer[i] - 1);
assert(result == buffer[pos]);
}
for (i = 0; i < 128; i++) {
int pos;
if (buffer[i] + 1 == 0)
continue;
initial = _mm_set1_epi32(init);
pos = simdsearchd1(&initial, (__m128i *) out, b,
buffer[i] + 1, &result);
assert(pos == simdsearchwithlengthd1(init, (__m128i *)out, b, 128,
buffer[i] + 1, &result));
if(pos == 128) {
assert(buffer[i] == buffer[127]);
} else {
assert(buffer[pos] >= buffer[i] + 1);
if (pos > 0)
assert(buffer[pos - 1] < buffer[i] + 1);
assert(result == buffer[pos]);
}
}
}
printf("advanced simdsearchd1: ok\n");
return 0;
}
int test_simdpackedselect() {
uint32_t buffer[128];
uint32_t initial = 33;
int b, i;
/* initialize the buffer */
for (i = 0; i < 128; i++)
buffer[i] = (uint32_t)(initial + i);
/* this test creates delta encoded buffers with different bits, then
* performs lower bound searches for each key */
for (b = 1; b <= 32; b++) {
uint32_t out[128];
/* delta-encode to 'i' bits */
simdpackwithoutmaskd1(initial, buffer, (__m128i *)out, b);
printf("simdselectd1: %d bits\n", b);
/* now perform the searches */
for (i = 0; i < 128; i++) {
assert(simdselectd1(initial, (__m128i *)out, b, (uint32_t)i)
== initial + i);
}
}
printf("simdselectd1: ok\n");
return 0;
}
int test_simdpackedselect_advanced() {
uint32_t buffer[128];
uint32_t initial = 33;
uint32_t b;
int i;
/* this test creates delta encoded buffers with different bits, then
* performs lower bound searches for each key */
for (b = 0; b <= 32; b++) {
uint32_t prev = initial;
uint32_t out[128];
/* initialize the buffer */
for (i = 0; i < 128; i++) {
buffer[i] = ((uint32_t)(165576 * i)) ;
if(b < 32) buffer[i] %= (1<<b);
}
for (i = 0; i < 128; i++) {
buffer[i] = buffer[i] + prev;
prev = buffer[i];
}
for (i = 1; i < 128; i++) {
if(buffer[i] < buffer[i-1] )
buffer[i] = buffer[i-1];
}
assert(simdmaxbitsd1(initial, buffer)<=b);
for (i = 0; i < 128; i++) {
out[i] = 0; /* memset would do too */
}
/* delta-encode to 'i' bits */
simdpackwithoutmaskd1(initial, buffer, (__m128i *)out, b);
printf("simdselectd1: %d bits\n", b);
/* now perform the searches */
for (i = 0; i < 128; i++) {
uint32_t valretrieved = simdselectd1(initial, (__m128i *)out, b, (uint32_t)i);
assert(valretrieved == buffer[i]);
}
}
printf("advanced simdselectd1: ok\n");
return 0;
}
#endif
int main() {
int r;
r = testsetFOR();
if (r) {
printf("test failure 1\n");
return r;
}
#ifdef __SSE4_1__
r = testsetd1();
if (r) {
printf("test failure 2\n");
return r;
}
#endif
r = testset();
if (r) {
printf("test failure 3\n");
return r;
}
r = testshortFORpack();
if (r) {
printf("test failure 4\n");
return r;
}
r = testshortpack();
if (r) {
printf("test failure 5\n");
return r;
}
r = testlongpack();
if (r) {
printf("test failure 6\n");
return r;
}
#ifdef __SSE4_1__
r = test_simdpackedsearchFOR();
if (r) {
printf("test failure 7\n");
return r;
}
r = testFOR();
if (r) {
printf("test failure 8\n");
return r;
}
#endif
#ifdef __AVX2__
r= testbabyavx();
if (r) {
printf("test failure baby avx\n");
return r;
}
r = testavx2();
if (r) {
printf("test failure 9 avx\n");
return r;
}
#endif
r = test();
if (r) {
printf("test failure 9\n");
return r;
}
r = test_simdmaxbitsd1_length();
if (r) {
printf("test failure 10\n");
return r;
}
#ifdef __SSE4_1__
r = test_simdpackedsearch();
if (r) {
printf("test failure 11\n");
return r;
}
r = test_simdpackedsearch_advanced();
if (r) {
printf("test failure 12\n");
return r;
}
r = test_simdpackedselect();
if (r) {
printf("test failure 13\n");
return r;
}
r = test_simdpackedselect_advanced();
if (r) {
printf("test failure 14\n");
return r;
}
#endif
printf("All tests OK!\n");
return 0;
}

View File

@@ -1,102 +0,0 @@
/**
* This code is released under a BSD License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "simdcomp.h"
#define get_random_char() (uint8_t)(rand() % 256);
int main() {
int N = 5000 * SIMDBlockSize, gap;
__m128i * buffer = malloc(SIMDBlockSize * sizeof(uint32_t));
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint32_t * backbuffer = malloc(SIMDBlockSize * sizeof(uint32_t));
srand(time(NULL));
for (gap = 1; gap <= 387420489; gap *= 3) {
int k;
printf(" gap = %u \n", gap);
/* simulate some random character string, don't care about endiannes */
for (k = 0; k < N; ++k) {
uint8_t _tmp[4];
_tmp[0] = get_random_char();
_tmp[1] = get_random_char();
_tmp[2] = get_random_char();
_tmp[3] = get_random_char();
memmove(&datain[k], _tmp, 4);
}
for (k = 0; k * SIMDBlockSize < N; ++k) {
/*
First part works for general arrays (sorted or unsorted)
*/
int j;
/* we compute the bit width */
const uint32_t b = maxbits(datain + k * SIMDBlockSize);
/* we read 128 integers at "datain + k * SIMDBlockSize" and
write b 128-bit vectors at "buffer" */
simdpackwithoutmask(datain + k * SIMDBlockSize, buffer, b);
/* we read back b1 128-bit vectors at "buffer" and write 128 integers at backbuffer */
simdunpack(buffer, backbuffer, b);/* uncompressed */
for (j = 0; j < SIMDBlockSize; ++j) {
uint8_t chars_back[4];
uint8_t chars_in[4];
memmove(chars_back, &backbuffer[j], 4);
memmove(chars_in, &datain[k * SIMDBlockSize + j], 4);
if (chars_in[0] != chars_back[0]
|| chars_in[1] != chars_back[1]
|| chars_in[2] != chars_back[2]
|| chars_in[3] != chars_back[3]) {
printf("bug in simdpack\n");
return -2;
}
}
{
/*
next part assumes that the data is sorted (uses differential coding)
*/
uint32_t offset = 0;
/* we compute the bit width */
const uint32_t b1 = simdmaxbitsd1(offset,
datain + k * SIMDBlockSize);
/* we read 128 integers at "datain + k * SIMDBlockSize" and
write b1 128-bit vectors at "buffer" */
simdpackwithoutmaskd1(offset, datain + k * SIMDBlockSize, buffer,
b1);
/* we read back b1 128-bit vectors at "buffer" and write 128 integers at backbuffer */
simdunpackd1(offset, buffer, backbuffer, b1);
for (j = 0; j < SIMDBlockSize; ++j) {
uint8_t chars_back[4];
uint8_t chars_in[4];
memmove(chars_back, &backbuffer[j], 4);
memmove(chars_in, &datain[k * SIMDBlockSize + j], 4);
if (chars_in[0] != chars_back[0]
|| chars_in[1] != chars_back[1]
|| chars_in[2] != chars_back[2]
|| chars_in[3] != chars_back[3]) {
printf("bug in simdpack\n");
return -3;
}
}
offset = datain[k * SIMDBlockSize + SIMDBlockSize - 1];
}
}
}
free(buffer);
free(datain);
free(backbuffer);
printf("Code looks good.\n");
return 0;
}

View File

@@ -1,42 +0,0 @@
#include "simdcomp.h"
#include "simdcomputil.h"
// assumes datain has a size of 128 uint32
// and that buffer is large enough to host the data.
size_t compress_sorted(
const uint32_t* datain,
uint8_t* output,
const uint32_t offset) {
const uint32_t b = simdmaxbitsd1(offset, datain);
*output++ = b;
simdpackwithoutmaskd1(offset, datain, (__m128i *) output, b);
return 1 + b * sizeof(__m128i);
}
// assumes datain has a size of 128 uint32
// and that buffer is large enough to host the data.
size_t uncompress_sorted(
const uint8_t* compressed_data,
uint32_t* output,
uint32_t offset) {
const uint32_t b = *compressed_data++;
simdunpackd1(offset, (__m128i *)compressed_data, output, b);
return 1 + b * sizeof(__m128i);
}
size_t compress_unsorted(
const uint32_t* datain,
uint8_t* output) {
const uint32_t b = maxbits(datain);
*output++ = b;
simdpackwithoutmask(datain, (__m128i *) output, b);
return 1 + b * sizeof(__m128i);
}
size_t uncompress_unsorted(
const uint8_t* compressed_data,
uint32_t* output) {
const uint32_t b = *compressed_data++;
simdunpack((__m128i *)compressed_data, output, b);
return 1 + b * sizeof(__m128i);
}

View File

@@ -1,32 +0,0 @@
# Object files
*.o
*.ko
*.obj
*.elf
# Precompiled Headers
*.gch
*.pch
# Libraries
*.lib
*.a
*.la
*.lo
# Shared objects (inc. Windows DLLs)
*.dll
*.so
*.so.*
*.dylib
# Executables
*.exe
*.out
*.app
*.i*86
*.x86_64
*.hex
# Debug files
*.dSYM/

View File

@@ -1,7 +0,0 @@
language: c
sudo: false
compiler:
- gcc
- clang
script: make && ./unit

View File

@@ -1,202 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@@ -1,60 +0,0 @@
streamvbyte
===========
[![Build Status](https://travis-ci.org/lemire/streamvbyte.png)](https://travis-ci.org/lemire/streamvbyte)
StreamVByte is a new integer compression technique that applies SIMD instructions (vectorization) to
Google's Group Varint approach. The net result is faster than other byte-oriented compression
techniques.
The approach is patent-free, the code is available under the Apache License.
It includes fast differential coding.
It assumes a recent Intel processor (e.g., haswell or better) .
The code should build using most standard-compliant C99 compilers. The provided makefile
expects a Linux-like system.
Usage:
make
./unit
See example.c for an example.
Short code sample:
```C
// suppose that datain is an array of uint32_t integers
size_t compsize = streamvbyte_encode(datain, N, compressedbuffer); // encoding
// here the result is stored in compressedbuffer using compsize bytes
streamvbyte_decode(compressedbuffer, recovdata, N); // decoding (fast)
```
If the values are sorted, then it might be preferable to use differential coding:
```C
// suppose that datain is an array of uint32_t integers
size_t compsize = streamvbyte_delta_encode(datain, N, compressedbuffer,0); // encoding
// here the result is stored in compressedbuffer using compsize bytes
streamvbyte_delta_decode(compressedbuffer, recovdata, N,0); // decoding (fast)
```
You have to know how many integers were coded when you decompress. You can store this
information along with the compressed stream.
See also
--------
* SIMDCompressionAndIntersection: A C++ library to compress and intersect sorted lists of integers using SIMD instructions https://github.com/lemire/SIMDCompressionAndIntersect
* The FastPFOR C++ library : Fast integer compression https://github.com/lemire/FastPFor
* High-performance dictionary coding https://github.com/lemire/dictionary
* LittleIntPacker: C library to pack and unpack short arrays of integers as fast as possible https://github.com/lemire/LittleIntPacker
* The SIMDComp library: A simple C library for compressing lists of integers using binary packing https://github.com/lemire/simdcomp
* MaskedVByte: Fast decoder for VByte-compressed integers https://github.com/lemire/MaskedVByte
* CSharpFastPFOR: A C# integer compression library https://github.com/Genbox/CSharpFastPFOR
* JavaFastPFOR: A java integer compression library https://github.com/lemire/JavaFastPFOR
* Encoding: Integer Compression Libraries for Go https://github.com/zhenjl/encoding
* FrameOfReference is a C++ library dedicated to frame-of-reference (FOR) compression: https://github.com/lemire/FrameOfReference
* libvbyte: A fast implementation for varbyte 32bit/64bit integer compression https://github.com/cruppstahl/libvbyte
* TurboPFor is a C library that offers lots of interesting optimizations. Well worth checking! (GPL license) https://github.com/powturbo/TurboPFor
* Oroch is a C++ library that offers a usable API (MIT license) https://github.com/ademakov/Oroch

View File

@@ -1,24 +0,0 @@
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "streamvbyte.h"
int main() {
int N = 5000;
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint8_t * compressedbuffer = malloc(N * sizeof(uint32_t));
uint32_t * recovdata = malloc(N * sizeof(uint32_t));
for (int k = 0; k < N; ++k)
datain[k] = 120;
size_t compsize = streamvbyte_encode(datain, N, compressedbuffer); // encoding
// here the result is stored in compressedbuffer using compsize bytes
size_t compsize2 = streamvbyte_decode(compressedbuffer, recovdata,
N); // decoding (fast)
assert(compsize == compsize2);
free(datain);
free(compressedbuffer);
free(recovdata);
printf("Compressed %d integers down to %d bytes.\n",N,(int) compsize);
return 0;
}

View File

@@ -1,19 +0,0 @@
#ifndef VARINTDECODE_H_
#define VARINTDECODE_H_
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <stdint.h>// please use a C99-compatible compiler
#include <stddef.h>
// Encode an array of a given length read from in to bout in varint format.
// Returns the number of bytes written.
size_t streamvbyte_encode(const uint32_t *in, uint32_t length, uint8_t *out);
// Read "length" 32-bit integers in varint format from in, storing the result in out.
// Returns the number of bytes read.
size_t streamvbyte_decode(const uint8_t* in, uint32_t* out, uint32_t length);
#endif /* VARINTDECODE_H_ */

View File

@@ -1,24 +0,0 @@
/*
* streamvbytedelta.h
*
* Created on: Apr 14, 2016
* Author: lemire
*/
#ifndef INCLUDE_STREAMVBYTEDELTA_H_
#define INCLUDE_STREAMVBYTEDELTA_H_
// Encode an array of a given length read from in to bout in StreamVByte format.
// Returns the number of bytes written.
// this version uses differential coding (coding differences between values) starting at prev (you can often set prev to zero)
size_t streamvbyte_delta_encode(const uint32_t *in, uint32_t length, uint8_t *out, uint32_t prev);
// Read "length" 32-bit integers in StreamVByte format from in, storing the result in out.
// Returns the number of bytes read.
// this version uses differential coding (coding differences between values) starting at prev (you can often set prev to zero)
size_t streamvbyte_delta_decode(const uint8_t* in, uint32_t* out, uint32_t length, uint32_t prev);
#endif /* INCLUDE_STREAMVBYTEDELTA_H_ */

View File

@@ -1,58 +0,0 @@
# minimalist makefile
.SUFFIXES:
#
.SUFFIXES: .cpp .o .c .h
CFLAGS = -fPIC -march=native -std=c99 -O3 -Wall -Wextra -pedantic -Wshadow
LDFLAGS = -shared
LIBNAME=libstreamvbyte.so.0.0.1
all: unit $(LIBNAME)
test:
./unit
install: $(OBJECTS)
cp $(LIBNAME) /usr/local/lib
ln -s /usr/local/lib/$(LIBNAME) /usr/local/lib/libstreamvbyte.so
ldconfig
cp $(HEADERS) /usr/local/include
HEADERS=./include/streamvbyte.h ./include/streamvbytedelta.h
uninstall:
for h in $(HEADERS) ; do rm /usr/local/$$h; done
rm /usr/local/lib/$(LIBNAME)
rm /usr/local/lib/libstreamvbyte.so
ldconfig
OBJECTS= streamvbyte.o streamvbytedelta.o
streamvbytedelta.o: ./src/streamvbytedelta.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/streamvbytedelta.c -Iinclude
streamvbyte.o: ./src/streamvbyte.c $(HEADERS)
$(CC) $(CFLAGS) -c ./src/streamvbyte.c -Iinclude
$(LIBNAME): $(OBJECTS)
$(CC) $(CFLAGS) -o $(LIBNAME) $(OBJECTS) $(LDFLAGS)
example: ./example.c $(HEADERS) $(OBJECTS)
$(CC) $(CFLAGS) -o example ./example.c -Iinclude $(OBJECTS)
unit: ./tests/unit.c $(HEADERS) $(OBJECTS)
$(CC) $(CFLAGS) -o unit ./tests/unit.c -Iinclude $(OBJECTS)
dynunit: ./tests/unit.c $(HEADERS) $(LIBNAME)
$(CC) $(CFLAGS) -o dynunit ./tests/unit.c -Iinclude -lstreamvbyte
clean:
rm -f unit *.o $(LIBNAME) example

View File

@@ -1,495 +0,0 @@
#include "streamvbyte.h"
#if defined(_MSC_VER)
/* Microsoft C/C++-compatible compiler */
#include <intrin.h>
#elif defined(__GNUC__) && (defined(__x86_64__) || defined(__i386__))
/* GCC-compatible compiler, targeting x86/x86-64 */
#include <x86intrin.h>
#elif defined(__GNUC__) && defined(__ARM_NEON__)
/* GCC-compatible compiler, targeting ARM with NEON */
#include <arm_neon.h>
#elif defined(__GNUC__) && defined(__IWMMXT__)
/* GCC-compatible compiler, targeting ARM with WMMX */
#include <mmintrin.h>
#elif (defined(__GNUC__) || defined(__xlC__)) && (defined(__VEC__) || defined(__ALTIVEC__))
/* XLC or GCC-compatible compiler, targeting PowerPC with VMX/VSX */
#include <altivec.h>
#elif defined(__GNUC__) && defined(__SPE__)
/* GCC-compatible compiler, targeting PowerPC with SPE */
#include <spe.h>
#endif
static uint8_t lengthTable[256] = { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9,
10, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 6, 7, 8, 9, 7, 8,
9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10,
11, 12, 10, 11, 12, 13, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10,
11, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 7, 8, 9, 10,
8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 8, 9, 10, 11, 9, 10, 11,
12, 10, 11, 12, 13, 11, 12, 13, 14, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10,
11, 9, 10, 11, 12, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12,
13, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14, 9, 10,
11, 12, 10, 11, 12, 13, 11, 12, 13, 14, 12, 13, 14, 15, 7, 8, 9, 10, 8,
9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 8, 9, 10, 11, 9, 10, 11, 12,
10, 11, 12, 13, 11, 12, 13, 14, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12,
13, 14, 12, 13, 14, 15, 10, 11, 12, 13, 11, 12, 13, 14, 12, 13, 14, 15,
13, 14, 15, 16 };
static uint8_t shuffleTable[256][16] = { { 0, -1, -1, -1, 1, -1, -1, -1, 2, -1,
-1, -1, 3, -1, -1, -1 }, // 1111
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, -1, -1, -1 }, // 2111
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, -1, -1, -1 }, // 3111
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, -1, -1, -1 }, // 4111
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, -1, -1, -1 }, // 1211
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, -1, -1, -1 }, // 2211
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, -1, -1, -1 }, // 3211
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, -1, -1, -1 }, // 4211
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, -1, -1, -1 }, // 1311
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, -1, -1, -1 }, // 2311
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, -1, -1, -1 }, // 3311
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, -1, -1, -1 }, // 4311
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, -1, -1, -1 }, // 1411
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, -1, -1, -1 }, // 2411
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, -1, -1, -1 }, // 3411
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, -1, -1, -1 }, // 4411
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1 }, // 1121
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, -1, -1, -1 }, // 2121
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, -1, -1, -1 }, // 3121
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, -1, -1, -1 }, // 4121
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, -1, -1, -1 }, // 1221
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, -1, -1, -1 }, // 2221
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, -1, -1, -1 }, // 3221
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, -1, -1, -1 }, // 4221
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, -1, -1, -1 }, // 1321
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, -1, -1, -1 }, // 2321
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, -1, -1, -1 }, // 3321
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, -1, -1, -1 }, // 4321
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, -1, -1, -1 }, // 1421
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, -1, -1, -1 }, // 2421
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, -1, -1, -1 }, // 3421
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, -1, -1, -1 }, // 4421
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1 }, // 1131
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, -1, -1, -1 }, // 2131
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, -1, -1, -1 }, // 3131
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, -1, -1, -1 }, // 4131
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, -1, -1, -1 }, // 1231
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, -1, -1, -1 }, // 2231
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, -1, -1, -1 }, // 3231
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, -1, -1, -1 }, // 4231
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, -1, -1, -1 }, // 1331
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, -1, -1, -1 }, // 2331
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, -1, -1, -1 }, // 3331
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, -1, -1, -1 }, // 4331
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, -1, -1, -1 }, // 1431
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, -1, -1, -1 }, // 2431
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, -1, -1, -1 }, // 3431
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, -1, -1, -1 }, // 4431
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1 }, // 1141
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, -1, -1, -1 }, // 2141
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, -1, -1, -1 }, // 3141
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, -1, -1, -1 }, // 4141
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, -1, -1, -1 }, // 1241
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, -1, -1, -1 }, // 2241
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, -1, -1, -1 }, // 3241
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, -1, -1, -1 }, // 4241
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, -1, -1, -1 }, // 1341
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, -1, -1, -1 }, // 2341
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, -1, -1, -1 }, // 3341
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, -1, -1, -1 }, // 4341
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1 }, // 1441
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, -1, -1 }, // 2441
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, -1, -1, -1 }, // 3441
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1, -1 }, // 4441
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1 }, // 1112
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, 5, -1, -1 }, // 2112
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, 6, -1, -1 }, // 3112
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, 7, -1, -1 }, // 4112
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, 5, -1, -1 }, // 1212
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, 6, -1, -1 }, // 2212
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, 7, -1, -1 }, // 3212
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, 8, -1, -1 }, // 4212
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, 6, -1, -1 }, // 1312
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, 7, -1, -1 }, // 2312
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, 8, -1, -1 }, // 3312
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, 9, -1, -1 }, // 4312
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, 7, -1, -1 }, // 1412
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, 8, -1, -1 }, // 2412
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, 9, -1, -1 }, // 3412
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, -1, -1 }, // 4412
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1 }, // 1122
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, 6, -1, -1 }, // 2122
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, 7, -1, -1 }, // 3122
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, 8, -1, -1 }, // 4122
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, 6, -1, -1 }, // 1222
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, 7, -1, -1 }, // 2222
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8, -1, -1 }, // 3222
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, 9, -1, -1 }, // 4222
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, 7, -1, -1 }, // 1322
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, 8, -1, -1 }, // 2322
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, 9, -1, -1 }, // 3322
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, 10, -1, -1 }, // 4322
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, 8, -1, -1 }, // 1422
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, 9, -1, -1 }, // 2422
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, 10, -1, -1 }, // 3422
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, 11, -1, -1 }, // 4422
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1 }, // 1132
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, 7, -1, -1 }, // 2132
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, 8, -1, -1 }, // 3132
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, 9, -1, -1 }, // 4132
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, 7, -1, -1 }, // 1232
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, 8, -1, -1 }, // 2232
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, 9, -1, -1 }, // 3232
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, 10, -1, -1 }, // 4232
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, 8, -1, -1 }, // 1332
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, 9, -1, -1 }, // 2332
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, 10, -1, -1 }, // 3332
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, 11, -1, -1 }, // 4332
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, 9, -1, -1 }, // 1432
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, 10, -1, -1 }, // 2432
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, 11, -1, -1 }, // 3432
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, 12, -1, -1 }, // 4432
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1 }, // 1142
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, 8, -1, -1 }, // 2142
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, 9, -1, -1 }, // 3142
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, 10, -1, -1 }, // 4142
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, 8, -1, -1 }, // 1242
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, 9, -1, -1 }, // 2242
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, 10, -1, -1 }, // 3242
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1 }, // 4242
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, 9, -1, -1 }, // 1342
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, 10, -1, -1 }, // 2342
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, 11, -1, -1 }, // 3342
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, 12, -1, -1 }, // 4342
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, -1 }, // 1442
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, -1, -1 }, // 2442
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1 }, // 3442
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, -1, -1 }, // 4442
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1 }, // 1113
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, 5, 6, -1 }, // 2113
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, 6, 7, -1 }, // 3113
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, 7, 8, -1 }, // 4113
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, 5, 6, -1 }, // 1213
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, 6, 7, -1 }, // 2213
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, 7, 8, -1 }, // 3213
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, 8, 9, -1 }, // 4213
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, 6, 7, -1 }, // 1313
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, 7, 8, -1 }, // 2313
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, 8, 9, -1 }, // 3313
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, 9, 10, -1 }, // 4313
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, 7, 8, -1 }, // 1413
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, 8, 9, -1 }, // 2413
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, 9, 10, -1 }, // 3413
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, 11, -1 }, // 4413
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1 }, // 1123
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, 6, 7, -1 }, // 2123
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, 7, 8, -1 }, // 3123
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, 8, 9, -1 }, // 4123
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, 6, 7, -1 }, // 1223
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, 7, 8, -1 }, // 2223
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8, 9, -1 }, // 3223
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, 9, 10, -1 }, // 4223
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, 7, 8, -1 }, // 1323
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, 8, 9, -1 }, // 2323
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, 9, 10, -1 }, // 3323
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, 10, 11, -1 }, // 4323
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, 8, 9, -1 }, // 1423
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, 9, 10, -1 }, // 2423
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, 10, 11, -1 }, // 3423
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, 11, 12, -1 }, // 4423
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1 }, // 1133
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, 7, 8, -1 }, // 2133
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, 8, 9, -1 }, // 3133
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, 9, 10, -1 }, // 4133
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, 7, 8, -1 }, // 1233
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, 8, 9, -1 }, // 2233
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, 9, 10, -1 }, // 3233
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, 10, 11, -1 }, // 4233
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, 8, 9, -1 }, // 1333
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, 9, 10, -1 }, // 2333
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, 10, 11, -1 }, // 3333
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, 11, 12, -1 }, // 4333
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, 9, 10, -1 }, // 1433
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, 10, 11, -1 }, // 2433
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, 11, 12, -1 }, // 3433
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, 12, 13, -1 }, // 4433
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1 }, // 1143
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, 8, 9, -1 }, // 2143
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, 9, 10, -1 }, // 3143
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, 10, 11, -1 }, // 4143
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, 8, 9, -1 }, // 1243
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, 9, 10, -1 }, // 2243
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, 10, 11, -1 }, // 3243
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, 12, -1 }, // 4243
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, 9, 10, -1 }, // 1343
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, 10, 11, -1 }, // 2343
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, 11, 12, -1 }, // 3343
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, 12, 13, -1 }, // 4343
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, -1 }, // 1443
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1 }, // 2443
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, -1 }, // 3443
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -1 }, // 4443
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6 }, // 1114
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, 5, 6, 7 }, // 2114
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, 6, 7, 8 }, // 3114
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, 7, 8, 9 }, // 4114
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, 5, 6, 7 }, // 1214
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, 6, 7, 8 }, // 2214
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, 7, 8, 9 }, // 3214
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, 8, 9, 10 }, // 4214
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, 6, 7, 8 }, // 1314
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, 7, 8, 9 }, // 2314
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, 8, 9, 10 }, // 3314
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, 9, 10, 11 }, // 4314
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, 7, 8, 9 }, // 1414
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, 8, 9, 10 }, // 2414
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, 9, 10, 11 }, // 3414
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, 11, 12 }, // 4414
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7 }, // 1124
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, 6, 7, 8 }, // 2124
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, 7, 8, 9 }, // 3124
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, 8, 9, 10 }, // 4124
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, 6, 7, 8 }, // 1224
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, 7, 8, 9 }, // 2224
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8, 9, 10 }, // 3224
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, 9, 10, 11 }, // 4224
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, 7, 8, 9 }, // 1324
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, 8, 9, 10 }, // 2324
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, 9, 10, 11 }, // 3324
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, 10, 11, 12 }, // 4324
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, 8, 9, 10 }, // 1424
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, 9, 10, 11 }, // 2424
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, 10, 11, 12 }, // 3424
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, 11, 12, 13 }, // 4424
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8 }, // 1134
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, 7, 8, 9 }, // 2134
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, 8, 9, 10 }, // 3134
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, 9, 10, 11 }, // 4134
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, 7, 8, 9 }, // 1234
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, 8, 9, 10 }, // 2234
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, 9, 10, 11 }, // 3234
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, 10, 11, 12 }, // 4234
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, 8, 9, 10 }, // 1334
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, 9, 10, 11 }, // 2334
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, 10, 11, 12 }, // 3334
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, 11, 12, 13 }, // 4334
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, 9, 10, 11 }, // 1434
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, 10, 11, 12 }, // 2434
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, 11, 12, 13 }, // 3434
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, 12, 13, 14 }, // 4434
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9 }, // 1144
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, 8, 9, 10 }, // 2144
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, 9, 10, 11 }, // 3144
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, 10, 11, 12 }, // 4144
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, 8, 9, 10 }, // 1244
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, 9, 10, 11 }, // 2244
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, 10, 11, 12 }, // 3244
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, 12, 13 }, // 4244
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, 9, 10, 11 }, // 1344
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, 10, 11, 12 }, // 2344
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, 11, 12, 13 }, // 3344
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, 12, 13, 14 }, // 4344
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }, // 1444
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, // 2444
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }, // 3444
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } // 4444
};
static uint8_t _encode_data(uint32_t val, uint8_t *__restrict__ *dataPtrPtr) {
uint8_t *dataPtr = *dataPtrPtr;
uint8_t code;
if (val < (1 << 8)) { // 1 byte
*dataPtr = (uint8_t)(val);
*dataPtrPtr += 1;
code = 0;
} else if (val < (1 << 16)) { // 2 bytes
*(uint16_t *) dataPtr = (uint16_t)(val);
*dataPtrPtr += 2;
code = 1;
} else if (val < (1 << 24)) { // 3 bytes
*(uint16_t *) dataPtr = (uint16_t)(val);
*(dataPtr + 2) = (uint8_t)(val >> 16);
*dataPtrPtr += 3;
code = 2;
} else { // 4 bytes
*(uint32_t *) dataPtr = val;
*dataPtrPtr += 4;
code = 3;
}
return code;
}
static uint8_t *svb_encode_scalar(const uint32_t *in,
uint8_t *__restrict__ keyPtr, uint8_t *__restrict__ dataPtr,
uint32_t count) {
if (count == 0)
return dataPtr; // exit immediately if no data
uint8_t shift = 0; // cycles 0, 2, 4, 6, 0, 2, 4, 6, ...
uint8_t key = 0;
for (uint32_t c = 0; c < count; c++) {
if (shift == 8) {
shift = 0;
*keyPtr++ = key;
key = 0;
}
uint32_t val = in[c];
uint8_t code = _encode_data(val, &dataPtr);
key |= code << shift;
shift += 2;
}
*keyPtr = key; // write last key (no increment needed)
return dataPtr; // pointer to first unused data byte
}
// Encode an array of a given length read from in to bout in streamvbyte format.
// Returns the number of bytes written.
size_t streamvbyte_encode(const uint32_t *in, uint32_t count, uint8_t *out) {
uint8_t *keyPtr = out;
uint32_t keyLen = (count + 3) / 4; // 2-bits rounded to full byte
uint8_t *dataPtr = keyPtr + keyLen; // variable byte data after all keys
return svb_encode_scalar(in, keyPtr, dataPtr, count) - out;
}
static inline __m128i _decode_avx(uint32_t key,
const uint8_t *__restrict__ *dataPtrPtr) {
uint8_t len = lengthTable[key];
__m128i Data = _mm_loadu_si128((__m128i *) *dataPtrPtr);
__m128i Shuf = *(__m128i *) &shuffleTable[key];
Data = _mm_shuffle_epi8(Data, Shuf);
*dataPtrPtr += len;
return Data;
}
static inline void _write_avx(uint32_t *out, __m128i Vec) {
_mm_storeu_si128((__m128i *) out, Vec);
}
static inline uint32_t _decode_data(const uint8_t **dataPtrPtr, uint8_t code) {
const uint8_t *dataPtr = *dataPtrPtr;
uint32_t val;
if (code == 0) { // 1 byte
val = (uint32_t) * dataPtr;
dataPtr += 1;
} else if (code == 1) { // 2 bytes
val = (uint32_t) * (uint16_t *) dataPtr;
dataPtr += 2;
} else if (code == 2) { // 3 bytes
val = (uint32_t) * (uint16_t *) dataPtr;
val |= *(dataPtr + 2) << 16;
dataPtr += 3;
} else { // code == 3
val = *(uint32_t *) dataPtr; // 4 bytes
dataPtr += 4;
}
*dataPtrPtr = dataPtr;
return val;
}
static const uint8_t *svb_decode_scalar(uint32_t *outPtr, const uint8_t *keyPtr,
const uint8_t *dataPtr, uint32_t count) {
if (count == 0)
return dataPtr; // no reads or writes if no data
uint8_t shift = 0;
uint32_t key = *keyPtr++;
for (uint32_t c = 0; c < count; c++) {
if (shift == 8) {
shift = 0;
key = *keyPtr++;
}
uint32_t val = _decode_data(&dataPtr, (key >> shift) & 0x3);
*outPtr++ = val;
shift += 2;
}
return dataPtr; // pointer to first unused byte after end
}
const uint8_t *svb_decode_avx_simple(uint32_t *out,
const uint8_t *__restrict__ keyPtr, const uint8_t *__restrict__ dataPtr,
uint64_t count) {
uint64_t keybytes = count / 4; // number of key bytes
__m128i Data;
if (keybytes >= 8) {
int64_t Offset = -(int64_t) keybytes / 8 + 1;
const uint64_t *keyPtr64 = (const uint64_t *) keyPtr - Offset;
uint64_t nextkeys = keyPtr64[Offset];
for (; Offset != 0; ++Offset) {
uint64_t keys = nextkeys;
nextkeys = keyPtr64[Offset + 1];
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 4, Data);
keys >>= 16;
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out + 8, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 12, Data);
keys >>= 16;
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out + 16, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 20, Data);
keys >>= 16;
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out + 24, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 28, Data);
out += 32;
}
{
uint64_t keys = nextkeys;
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 4, Data);
keys >>= 16;
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out + 8, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 12, Data);
keys >>= 16;
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out + 16, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 20, Data);
keys >>= 16;
Data = _decode_avx((keys & 0xFF), &dataPtr);
_write_avx(out + 24, Data);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
_write_avx(out + 28, Data);
out += 32;
}
}
uint64_t consumedkeys = keybytes - (keybytes & 7);
return svb_decode_scalar(out, keyPtr + consumedkeys, dataPtr, count & 31);
}
// Read count 32-bit integers in maskedvbyte format from in, storing the result in out. Returns the number of bytes read.
size_t streamvbyte_decode(const uint8_t* in, uint32_t* out, uint32_t count) {
if (count == 0)
return 0;
const uint8_t *keyPtr = in; // full list of keys is next
uint32_t keyLen = ((count + 3) / 4); // 2-bits per key (rounded up)
const uint8_t *dataPtr = keyPtr + keyLen; // data starts at end of keys
return svb_decode_avx_simple(out, keyPtr, dataPtr, count) - in;
}

View File

@@ -1,575 +0,0 @@
#include "streamvbyte.h"
#if defined(_MSC_VER)
/* Microsoft C/C++-compatible compiler */
#include <intrin.h>
#elif defined(__GNUC__) && (defined(__x86_64__) || defined(__i386__))
/* GCC-compatible compiler, targeting x86/x86-64 */
#include <x86intrin.h>
#elif defined(__GNUC__) && defined(__ARM_NEON__)
/* GCC-compatible compiler, targeting ARM with NEON */
#include <arm_neon.h>
#elif defined(__GNUC__) && defined(__IWMMXT__)
/* GCC-compatible compiler, targeting ARM with WMMX */
#include <mmintrin.h>
#elif (defined(__GNUC__) || defined(__xlC__)) && (defined(__VEC__) || defined(__ALTIVEC__))
/* XLC or GCC-compatible compiler, targeting PowerPC with VMX/VSX */
#include <altivec.h>
#elif defined(__GNUC__) && defined(__SPE__)
/* GCC-compatible compiler, targeting PowerPC with SPE */
#include <spe.h>
#endif
static uint8_t lengthTable[256] = { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9,
10, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 6, 7, 8, 9, 7, 8,
9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10,
11, 12, 10, 11, 12, 13, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10,
11, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 7, 8, 9, 10,
8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 8, 9, 10, 11, 9, 10, 11,
12, 10, 11, 12, 13, 11, 12, 13, 14, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10,
11, 9, 10, 11, 12, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12,
13, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14, 9, 10,
11, 12, 10, 11, 12, 13, 11, 12, 13, 14, 12, 13, 14, 15, 7, 8, 9, 10, 8,
9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 8, 9, 10, 11, 9, 10, 11, 12,
10, 11, 12, 13, 11, 12, 13, 14, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12,
13, 14, 12, 13, 14, 15, 10, 11, 12, 13, 11, 12, 13, 14, 12, 13, 14, 15,
13, 14, 15, 16 };
static uint8_t shuffleTable[256][16] = { { 0, -1, -1, -1, 1, -1, -1, -1, 2, -1,
-1, -1, 3, -1, -1, -1 }, // 1111
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, -1, -1, -1 }, // 2111
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, -1, -1, -1 }, // 3111
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, -1, -1, -1 }, // 4111
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, -1, -1, -1 }, // 1211
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, -1, -1, -1 }, // 2211
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, -1, -1, -1 }, // 3211
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, -1, -1, -1 }, // 4211
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, -1, -1, -1 }, // 1311
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, -1, -1, -1 }, // 2311
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, -1, -1, -1 }, // 3311
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, -1, -1, -1 }, // 4311
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, -1, -1, -1 }, // 1411
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, -1, -1, -1 }, // 2411
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, -1, -1, -1 }, // 3411
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, -1, -1, -1 }, // 4411
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1 }, // 1121
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, -1, -1, -1 }, // 2121
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, -1, -1, -1 }, // 3121
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, -1, -1, -1 }, // 4121
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, -1, -1, -1 }, // 1221
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, -1, -1, -1 }, // 2221
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, -1, -1, -1 }, // 3221
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, -1, -1, -1 }, // 4221
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, -1, -1, -1 }, // 1321
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, -1, -1, -1 }, // 2321
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, -1, -1, -1 }, // 3321
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, -1, -1, -1 }, // 4321
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, -1, -1, -1 }, // 1421
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, -1, -1, -1 }, // 2421
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, -1, -1, -1 }, // 3421
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, -1, -1, -1 }, // 4421
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1 }, // 1131
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, -1, -1, -1 }, // 2131
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, -1, -1, -1 }, // 3131
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, -1, -1, -1 }, // 4131
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, -1, -1, -1 }, // 1231
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, -1, -1, -1 }, // 2231
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, -1, -1, -1 }, // 3231
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, -1, -1, -1 }, // 4231
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, -1, -1, -1 }, // 1331
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, -1, -1, -1 }, // 2331
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, -1, -1, -1 }, // 3331
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, -1, -1, -1 }, // 4331
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, -1, -1, -1 }, // 1431
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, -1, -1, -1 }, // 2431
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, -1, -1, -1 }, // 3431
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, -1, -1, -1 }, // 4431
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1 }, // 1141
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, -1, -1, -1 }, // 2141
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, -1, -1, -1 }, // 3141
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, -1, -1, -1 }, // 4141
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, -1, -1, -1 }, // 1241
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, -1, -1, -1 }, // 2241
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, -1, -1, -1 }, // 3241
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, -1, -1, -1 }, // 4241
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, -1, -1, -1 }, // 1341
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, -1, -1, -1 }, // 2341
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, -1, -1, -1 }, // 3341
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, -1, -1, -1 }, // 4341
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1 }, // 1441
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, -1, -1 }, // 2441
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, -1, -1, -1 }, // 3441
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1, -1 }, // 4441
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1 }, // 1112
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, 5, -1, -1 }, // 2112
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, 6, -1, -1 }, // 3112
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, 7, -1, -1 }, // 4112
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, 5, -1, -1 }, // 1212
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, 6, -1, -1 }, // 2212
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, 7, -1, -1 }, // 3212
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, 8, -1, -1 }, // 4212
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, 6, -1, -1 }, // 1312
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, 7, -1, -1 }, // 2312
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, 8, -1, -1 }, // 3312
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, 9, -1, -1 }, // 4312
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, 7, -1, -1 }, // 1412
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, 8, -1, -1 }, // 2412
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, 9, -1, -1 }, // 3412
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, -1, -1 }, // 4412
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1 }, // 1122
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, 6, -1, -1 }, // 2122
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, 7, -1, -1 }, // 3122
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, 8, -1, -1 }, // 4122
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, 6, -1, -1 }, // 1222
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, 7, -1, -1 }, // 2222
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8, -1, -1 }, // 3222
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, 9, -1, -1 }, // 4222
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, 7, -1, -1 }, // 1322
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, 8, -1, -1 }, // 2322
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, 9, -1, -1 }, // 3322
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, 10, -1, -1 }, // 4322
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, 8, -1, -1 }, // 1422
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, 9, -1, -1 }, // 2422
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, 10, -1, -1 }, // 3422
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, 11, -1, -1 }, // 4422
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1 }, // 1132
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, 7, -1, -1 }, // 2132
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, 8, -1, -1 }, // 3132
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, 9, -1, -1 }, // 4132
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, 7, -1, -1 }, // 1232
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, 8, -1, -1 }, // 2232
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, 9, -1, -1 }, // 3232
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, 10, -1, -1 }, // 4232
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, 8, -1, -1 }, // 1332
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, 9, -1, -1 }, // 2332
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, 10, -1, -1 }, // 3332
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, 11, -1, -1 }, // 4332
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, 9, -1, -1 }, // 1432
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, 10, -1, -1 }, // 2432
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, 11, -1, -1 }, // 3432
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, 12, -1, -1 }, // 4432
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1 }, // 1142
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, 8, -1, -1 }, // 2142
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, 9, -1, -1 }, // 3142
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, 10, -1, -1 }, // 4142
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, 8, -1, -1 }, // 1242
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, 9, -1, -1 }, // 2242
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, 10, -1, -1 }, // 3242
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1 }, // 4242
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, 9, -1, -1 }, // 1342
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, 10, -1, -1 }, // 2342
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, 11, -1, -1 }, // 3342
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, 12, -1, -1 }, // 4342
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, -1 }, // 1442
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, -1, -1 }, // 2442
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1 }, // 3442
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, -1, -1 }, // 4442
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1 }, // 1113
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, 5, 6, -1 }, // 2113
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, 6, 7, -1 }, // 3113
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, 7, 8, -1 }, // 4113
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, 5, 6, -1 }, // 1213
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, 6, 7, -1 }, // 2213
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, 7, 8, -1 }, // 3213
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, 8, 9, -1 }, // 4213
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, 6, 7, -1 }, // 1313
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, 7, 8, -1 }, // 2313
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, 8, 9, -1 }, // 3313
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, 9, 10, -1 }, // 4313
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, 7, 8, -1 }, // 1413
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, 8, 9, -1 }, // 2413
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, 9, 10, -1 }, // 3413
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, 11, -1 }, // 4413
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1 }, // 1123
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, 6, 7, -1 }, // 2123
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, 7, 8, -1 }, // 3123
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, 8, 9, -1 }, // 4123
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, 6, 7, -1 }, // 1223
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, 7, 8, -1 }, // 2223
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8, 9, -1 }, // 3223
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, 9, 10, -1 }, // 4223
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, 7, 8, -1 }, // 1323
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, 8, 9, -1 }, // 2323
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, 9, 10, -1 }, // 3323
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, 10, 11, -1 }, // 4323
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, 8, 9, -1 }, // 1423
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, 9, 10, -1 }, // 2423
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, 10, 11, -1 }, // 3423
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, 11, 12, -1 }, // 4423
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1 }, // 1133
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, 7, 8, -1 }, // 2133
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, 8, 9, -1 }, // 3133
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, 9, 10, -1 }, // 4133
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, 7, 8, -1 }, // 1233
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, 8, 9, -1 }, // 2233
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, 9, 10, -1 }, // 3233
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, 10, 11, -1 }, // 4233
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, 8, 9, -1 }, // 1333
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, 9, 10, -1 }, // 2333
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, 10, 11, -1 }, // 3333
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, 11, 12, -1 }, // 4333
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, 9, 10, -1 }, // 1433
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, 10, 11, -1 }, // 2433
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, 11, 12, -1 }, // 3433
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, 12, 13, -1 }, // 4433
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1 }, // 1143
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, 8, 9, -1 }, // 2143
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, 9, 10, -1 }, // 3143
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, 10, 11, -1 }, // 4143
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, 8, 9, -1 }, // 1243
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, 9, 10, -1 }, // 2243
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, 10, 11, -1 }, // 3243
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, 12, -1 }, // 4243
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, 9, 10, -1 }, // 1343
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, 10, 11, -1 }, // 2343
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, 11, 12, -1 }, // 3343
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, 12, 13, -1 }, // 4343
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, -1 }, // 1443
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1 }, // 2443
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, -1 }, // 3443
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -1 }, // 4443
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6 }, // 1114
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, 4, 5, 6, 7 }, // 2114
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, -1, -1, -1, 5, 6, 7, 8 }, // 3114
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, -1, -1, -1, 6, 7, 8, 9 }, // 4114
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, -1, -1, -1, 4, 5, 6, 7 }, // 1214
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, -1, -1, -1, 5, 6, 7, 8 }, // 2214
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, -1, -1, -1, 6, 7, 8, 9 }, // 3214
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, -1, -1, -1, 7, 8, 9, 10 }, // 4214
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, -1, -1, -1, 5, 6, 7, 8 }, // 1314
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, -1, -1, -1, 6, 7, 8, 9 }, // 2314
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, -1, -1, -1, 7, 8, 9, 10 }, // 3314
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, -1, -1, -1, 8, 9, 10, 11 }, // 4314
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, -1, -1, 6, 7, 8, 9 }, // 1414
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, -1, -1, -1, 7, 8, 9, 10 }, // 2414
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, -1, -1, -1, 8, 9, 10, 11 }, // 3414
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, 11, 12 }, // 4414
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7 }, // 1124
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, -1, -1, 5, 6, 7, 8 }, // 2124
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, -1, -1, 6, 7, 8, 9 }, // 3124
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, -1, -1, 7, 8, 9, 10 }, // 4124
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, -1, -1, 5, 6, 7, 8 }, // 1224
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, -1, -1, 6, 7, 8, 9 }, // 2224
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8, 9, 10 }, // 3224
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, -1, -1, 8, 9, 10, 11 }, // 4224
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, -1, -1, 6, 7, 8, 9 }, // 1324
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, -1, -1, 7, 8, 9, 10 }, // 2324
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, -1, -1, 8, 9, 10, 11 }, // 3324
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, -1, -1, 9, 10, 11, 12 }, // 4324
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, -1, -1, 7, 8, 9, 10 }, // 1424
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, -1, -1, 8, 9, 10, 11 }, // 2424
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, -1, -1, 9, 10, 11, 12 }, // 3424
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, 10, 11, 12, 13 }, // 4424
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8 }, // 1134
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, -1, 6, 7, 8, 9 }, // 2134
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, -1, 7, 8, 9, 10 }, // 3134
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, -1, 8, 9, 10, 11 }, // 4134
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, -1, 6, 7, 8, 9 }, // 1234
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, -1, 7, 8, 9, 10 }, // 2234
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, -1, 8, 9, 10, 11 }, // 3234
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, -1, 9, 10, 11, 12 }, // 4234
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, -1, 7, 8, 9, 10 }, // 1334
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, -1, 8, 9, 10, 11 }, // 2334
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, 10, 11, 12 }, // 3334
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, -1, 10, 11, 12, 13 }, // 4334
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, -1, 8, 9, 10, 11 }, // 1434
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, -1, 9, 10, 11, 12 }, // 2434
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, -1, 10, 11, 12, 13 }, // 3434
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -1, 11, 12, 13, 14 }, // 4434
{ 0, -1, -1, -1, 1, -1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9 }, // 1144
{ 0, 1, -1, -1, 2, -1, -1, -1, 3, 4, 5, 6, 7, 8, 9, 10 }, // 2144
{ 0, 1, 2, -1, 3, -1, -1, -1, 4, 5, 6, 7, 8, 9, 10, 11 }, // 3144
{ 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, 10, 11, 12 }, // 4144
{ 0, -1, -1, -1, 1, 2, -1, -1, 3, 4, 5, 6, 7, 8, 9, 10 }, // 1244
{ 0, 1, -1, -1, 2, 3, -1, -1, 4, 5, 6, 7, 8, 9, 10, 11 }, // 2244
{ 0, 1, 2, -1, 3, 4, -1, -1, 5, 6, 7, 8, 9, 10, 11, 12 }, // 3244
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, 12, 13 }, // 4244
{ 0, -1, -1, -1, 1, 2, 3, -1, 4, 5, 6, 7, 8, 9, 10, 11 }, // 1344
{ 0, 1, -1, -1, 2, 3, 4, -1, 5, 6, 7, 8, 9, 10, 11, 12 }, // 2344
{ 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, 9, 10, 11, 12, 13 }, // 3344
{ 0, 1, 2, 3, 4, 5, 6, -1, 7, 8, 9, 10, 11, 12, 13, 14 }, // 4344
{ 0, -1, -1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }, // 1444
{ 0, 1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, // 2444
{ 0, 1, 2, -1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }, // 3444
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } // 4444
};
static uint8_t _encode_data(uint32_t val, uint8_t *__restrict__ *dataPtrPtr) {
uint8_t *dataPtr = *dataPtrPtr;
uint8_t code;
if (val < (1 << 8)) { // 1 byte
*dataPtr = (uint8_t)(val);
*dataPtrPtr += 1;
code = 0;
} else if (val < (1 << 16)) { // 2 bytes
*(uint16_t *) dataPtr = (uint16_t)(val);
*dataPtrPtr += 2;
code = 1;
} else if (val < (1 << 24)) { // 3 bytes
*(uint16_t *) dataPtr = (uint16_t)(val);
*(dataPtr + 2) = (uint8_t)(val >> 16);
*dataPtrPtr += 3;
code = 2;
} else { // 4 bytes
*(uint32_t *) dataPtr = val;
*dataPtrPtr += 4;
code = 3;
}
return code;
}
static uint8_t *svb_encode_scalar_d1_init(const uint32_t *in,
uint8_t *__restrict__ keyPtr, uint8_t *__restrict__ dataPtr,
uint32_t count, uint32_t prev) {
if (count == 0)
return dataPtr; // exit immediately if no data
uint8_t shift = 0; // cycles 0, 2, 4, 6, 0, 2, 4, 6, ...
uint8_t key = 0;
for (uint32_t c = 0; c < count; c++) {
if (shift == 8) {
shift = 0;
*keyPtr++ = key;
key = 0;
}
uint32_t val = in[c] - prev;
prev = in[c];
uint8_t code = _encode_data(val, &dataPtr);
key |= code << shift;
shift += 2;
}
*keyPtr = key; // write last key (no increment needed)
return dataPtr; // pointer to first unused data byte
}
size_t streamvbyte_delta_encode(const uint32_t *in, uint32_t count, uint8_t *out,
uint32_t prev) {
uint8_t *keyPtr = out; // keys come immediately after 32-bit count
uint32_t keyLen = (count + 3) / 4; // 2-bits rounded to full byte
uint8_t *dataPtr = keyPtr + keyLen; // variable byte data after all keys
return svb_encode_scalar_d1_init(in, keyPtr, dataPtr, count, prev) - out;
}
static inline __m128i _decode_avx(uint32_t key, const uint8_t *__restrict__ *dataPtrPtr) {
uint8_t len = lengthTable[key];
__m128i Data = _mm_loadu_si128((__m128i *) *dataPtrPtr);
__m128i Shuf = *(__m128i *) &shuffleTable[key];
Data = _mm_shuffle_epi8(Data, Shuf);
*dataPtrPtr += len;
return Data;
}
#define BroadcastLastXMM 0xFF // bits 0-7 all set to choose highest element
static inline void _write_avx(uint32_t *out, __m128i Vec) {
_mm_storeu_si128((__m128i *) out, Vec);
}
static __m128i _write_avx_d1(uint32_t *out, __m128i Vec, __m128i Prev) {
__m128i Add = _mm_slli_si128(Vec, 4); // Cycle 1: [- A B C] (already done)
Prev = _mm_shuffle_epi32(Prev, BroadcastLastXMM); // Cycle 2: [P P P P]
Vec = _mm_add_epi32(Vec, Add); // Cycle 2: [A AB BC CD]
Add = _mm_slli_si128(Vec, 8); // Cycle 3: [- - A AB]
Vec = _mm_add_epi32(Vec, Prev); // Cycle 3: [PA PAB PBC PCD]
Vec = _mm_add_epi32(Vec, Add); // Cycle 4: [PA PAB PABC PABCD]
_write_avx(out, Vec);
return Vec;
}
#ifndef _MSC_VER
static __m128i High16To32 = {0xFFFF0B0AFFFF0908, 0xFFFF0F0EFFFF0D0C};
#else
static __m128i High16To32 = {8, 9, -1, -1, 10, 11, -1, -1,
12, 13, -1, -1, 14, 15, -1, -1};
#endif
static inline __m128i _write_16bit_avx_d1(uint32_t *out, __m128i Vec, __m128i Prev) {
// vec == [A B C D E F G H] (16 bit values)
__m128i Add = _mm_slli_si128(Vec, 2); // [- A B C D E F G]
Prev = _mm_shuffle_epi32(Prev, BroadcastLastXMM); // [P P P P] (32-bit)
Vec = _mm_add_epi32(Vec, Add); // [A AB BC CD DE FG GH]
Add = _mm_slli_si128(Vec, 4); // [- - A AB BC CD DE EF]
Vec = _mm_add_epi32(Vec, Add); // [A AB ABC ABCD BCDE CDEF DEFG EFGH]
__m128i V1 = _mm_cvtepu16_epi32(Vec); // [A AB ABC ABCD] (32-bit)
V1 = _mm_add_epi32(V1, Prev); // [PA PAB PABC PABCD] (32-bit)
__m128i V2 =
_mm_shuffle_epi8(Vec, High16To32); // [BCDE CDEF DEFG EFGH] (32-bit)
V2 = _mm_add_epi32(V1, V2); // [PABCDE PABCDEF PABCDEFG PABCDEFGH] (32-bit)
_write_avx(out, V1);
_write_avx(out + 4, V2);
return V2;
}
static inline uint32_t _decode_data(const uint8_t **dataPtrPtr, uint8_t code) {
const uint8_t *dataPtr = *dataPtrPtr;
uint32_t val;
if (code == 0) { // 1 byte
val = (uint32_t) * dataPtr;
dataPtr += 1;
} else if (code == 1) { // 2 bytes
val = (uint32_t) * (uint16_t *) dataPtr;
dataPtr += 2;
} else if (code == 2) { // 3 bytes
val = (uint32_t) * (uint16_t *) dataPtr;
val |= *(dataPtr + 2) << 16;
dataPtr += 3;
} else { // code == 3
val = *(uint32_t *) dataPtr; // 4 bytes
dataPtr += 4;
}
*dataPtrPtr = dataPtr;
return val;
}
const uint8_t *svb_decode_scalar_d1_init(uint32_t *outPtr, const uint8_t *keyPtr,
const uint8_t *dataPtr, uint32_t count,
uint32_t prev) {
if (count == 0)
return dataPtr; // no reads or writes if no data
uint8_t shift = 0;
uint32_t key = *keyPtr++;
for (uint32_t c = 0; c < count; c++) {
if (shift == 8) {
shift = 0;
key = *keyPtr++;
}
uint32_t val = _decode_data(&dataPtr, (key >> shift) & 0x3);
val += prev;
*outPtr++ = val;
prev = val;
shift += 2;
}
return dataPtr; // pointer to first unused byte after end
}
const uint8_t *svb_decode_avx_d1_init(uint32_t *out, const uint8_t *__restrict__ keyPtr,
const uint8_t *__restrict__ dataPtr, uint64_t count, uint32_t prev) {
uint64_t keybytes = count / 4; // number of key bytes
if (keybytes >= 8) {
__m128i Prev = _mm_set1_epi32(prev);
__m128i Data;
int64_t Offset = -(int64_t) keybytes / 8 + 1;
const uint64_t *keyPtr64 = (const uint64_t *) keyPtr - Offset;
uint64_t nextkeys = keyPtr64[Offset];
for (; Offset != 0; ++Offset) {
uint64_t keys = nextkeys;
nextkeys = keyPtr64[Offset + 1];
// faster 16-bit delta since we only have 8-bit values
if (!keys) { // 32 1-byte ints in a row
Data = _mm_cvtepu8_epi16(_mm_lddqu_si128((__m128i *) (dataPtr)));
Prev = _write_16bit_avx_d1(out, Data, Prev);
Data = _mm_cvtepu8_epi16(
_mm_lddqu_si128((__m128i *) (dataPtr + 8)));
Prev = _write_16bit_avx_d1(out + 8, Data, Prev);
Data = _mm_cvtepu8_epi16(
_mm_lddqu_si128((__m128i *) (dataPtr + 16)));
Prev = _write_16bit_avx_d1(out + 16, Data, Prev);
Data = _mm_cvtepu8_epi16(
_mm_lddqu_si128((__m128i *) (dataPtr + 24)));
Prev = _write_16bit_avx_d1(out + 24, Data, Prev);
out += 32;
dataPtr += 32;
continue;
}
Data = _decode_avx(keys & 0x00FF, &dataPtr);
Prev = _write_avx_d1(out, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 4, Data, Prev);
keys >>= 16;
Data = _decode_avx((keys & 0x00FF), &dataPtr);
Prev = _write_avx_d1(out + 8, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 12, Data, Prev);
keys >>= 16;
Data = _decode_avx((keys & 0x00FF), &dataPtr);
Prev = _write_avx_d1(out + 16, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 20, Data, Prev);
keys >>= 16;
Data = _decode_avx((keys & 0x00FF), &dataPtr);
Prev = _write_avx_d1(out + 24, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 28, Data, Prev);
out += 32;
}
{
uint64_t keys = nextkeys;
// faster 16-bit delta since we only have 8-bit values
if (!keys) { // 32 1-byte ints in a row
Data = _mm_cvtepu8_epi16(_mm_lddqu_si128((__m128i *) (dataPtr)));
Prev = _write_16bit_avx_d1(out, Data, Prev);
Data = _mm_cvtepu8_epi16(
_mm_lddqu_si128((__m128i *) (dataPtr + 8)));
Prev = _write_16bit_avx_d1(out + 8, Data, Prev);
Data = _mm_cvtepu8_epi16(
_mm_lddqu_si128((__m128i *) (dataPtr + 16)));
Prev = _write_16bit_avx_d1(out + 16, Data, Prev);
Data = _mm_cvtepu8_epi16(
_mm_loadl_epi64((__m128i *) (dataPtr + 24)));
Prev = _write_16bit_avx_d1(out + 24, Data, Prev);
out += 32;
dataPtr += 32;
} else {
Data = _decode_avx(keys & 0x00FF, &dataPtr);
Prev = _write_avx_d1(out, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 4, Data, Prev);
keys >>= 16;
Data = _decode_avx((keys & 0x00FF), &dataPtr);
Prev = _write_avx_d1(out + 8, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 12, Data, Prev);
keys >>= 16;
Data = _decode_avx((keys & 0x00FF), &dataPtr);
Prev = _write_avx_d1(out + 16, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 20, Data, Prev);
keys >>= 16;
Data = _decode_avx((keys & 0x00FF), &dataPtr);
Prev = _write_avx_d1(out + 24, Data, Prev);
Data = _decode_avx((keys & 0xFF00) >> 8, &dataPtr);
Prev = _write_avx_d1(out + 28, Data, Prev);
out += 32;
}
}
prev = out[-1];
}
uint64_t consumedkeys = keybytes - (keybytes & 7);
return svb_decode_scalar_d1_init(out, keyPtr + consumedkeys, dataPtr,
count & 31, prev);
}
size_t streamvbyte_delta_decode(const uint8_t* in, uint32_t* out,
uint32_t count, uint32_t prev) {
uint32_t keyLen = ((count + 3) / 4); // 2-bits per key (rounded up)
const uint8_t *keyPtr = in;
const uint8_t *dataPtr = keyPtr + keyLen; // data starts at end of keys
return svb_decode_avx_d1_init(out, keyPtr, dataPtr, count, prev) - in;
}

View File

@@ -1,73 +0,0 @@
#include <stdio.h>
#include <stdlib.h>
#include "streamvbyte.h"
#include "streamvbytedelta.h"
int main() {
int N = 4096;
uint32_t * datain = malloc(N * sizeof(uint32_t));
uint8_t * compressedbuffer = malloc(2 * N * sizeof(uint32_t));
uint32_t * recovdata = malloc(N * sizeof(uint32_t));
for (int length = 0; length <= N;) {
printf("length = %d \n", length);
for (uint32_t gap = 1; gap <= 387420489; gap *= 3) {
for (int k = 0; k < length; ++k)
datain[k] = gap;
size_t compsize = streamvbyte_encode(datain, length,
compressedbuffer);
size_t usedbytes = streamvbyte_decode(compressedbuffer, recovdata,
length);
if (compsize != usedbytes) {
printf(
"[streamvbyte_decode] code is buggy gap = %d, size mismatch %d %d \n",
(int) gap, (int) compsize, (int) usedbytes);
return -1;
}
for (int k = 0; k < length; ++k) {
if (recovdata[k] != datain[k]) {
printf("[streamvbyte_decode] code is buggy gap = %d\n",
(int) gap);
return -1;
}
}
}
printf("Delta \n");
for (size_t gap = 1; gap <= 531441; gap *= 3) {
for (int k = 0; k < length; ++k)
datain[k] = gap * k;
size_t compsize = streamvbyte_delta_encode(datain, length,
compressedbuffer, 0);
size_t usedbytes = streamvbyte_delta_decode(compressedbuffer,
recovdata, length, 0);
if (compsize != usedbytes) {
printf(
"[streamvbyte_delta_decode] code is buggy gap = %d, size mismatch %d %d \n",
(int) gap, (int) compsize, (int) usedbytes);
return -1;
}
for (int k = 0; k < length; ++k) {
if (recovdata[k] != datain[k]) {
printf(
"[streamvbyte_delta_decode] code is buggy gap = %d\n",
(int) gap);
return -1;
}
}
}
if (length < 128)
++length;
else {
length *= 2;
}
}
free(datain);
free(compressedbuffer);
free(recovdata);
printf("Code looks good.\n");
return 0;
}

View File

@@ -0,0 +1,226 @@
extern crate tantivy;
extern crate tempdir;
#[macro_use]
extern crate serde_json;
use std::path::Path;
use tantivy::collector::TopCollector;
use tantivy::query::QueryParser;
use tantivy::schema::*;
use tantivy::tokenizer::NgramTokenizer;
use tantivy::Index;
use tempdir::TempDir;
fn main() {
// Let's create a temporary directory for the
// sake of this example
if let Ok(dir) = TempDir::new("tantivy_token_example_dir") {
run_example(dir.path()).unwrap();
dir.close().unwrap();
}
}
fn run_example(index_path: &Path) -> tantivy::Result<()> {
// # Defining the schema
//
// The Tantivy index requires a very strict schema.
// The schema declares which fields are in the index,
// and for each field, its type and "the way it should
// be indexed".
// first we need to define a schema ...
let mut schema_builder = SchemaBuilder::default();
// Our first field is title.
// In this example we want to use NGram searching
// we will set that to 3 characters, so any three
// char in the title should be findable.
let text_field_indexing = TextFieldIndexing::default()
.set_tokenizer("ngram3")
.set_index_option(IndexRecordOption::WithFreqsAndPositions);
let text_options = TextOptions::default()
.set_indexing_options(text_field_indexing)
.set_stored();
schema_builder.add_text_field("title", text_options);
// Our second field is body.
// We want full-text search for it, but we do not
// need to be able to be able to retrieve it
// for our application.
//
// We can make our index lighter and
// by omitting `STORED` flag.
schema_builder.add_text_field("body", TEXT);
let schema = schema_builder.build();
// # Indexing documents
//
// Let's create a brand new index.
//
// This will actually just save a meta.json
// with our schema in the directory.
let index = Index::create_in_dir(index_path, schema.clone())?;
// here we are registering our custome tokenizer
// this will store tokens of 3 characters each
index
.tokenizers()
.register("ngram3", NgramTokenizer::new(3, 3, false));
// To insert document we need an index writer.
// There must be only one writer at a time.
// This single `IndexWriter` is already
// multithreaded.
//
// Here we use a buffer of 50MB per thread. Using a bigger
// heap for the indexer can increase its throughput.
let mut index_writer = index.writer(50_000_000)?;
// Let's index our documents!
// We first need a handle on the title and the body field.
// ### Create a document "manually".
//
// We can create a document manually, by setting the fields
// one by one in a Document object.
let title = schema.get_field("title").unwrap();
let body = schema.get_field("body").unwrap();
let mut old_man_doc = Document::default();
old_man_doc.add_text(title, "The Old Man and the Sea");
old_man_doc.add_text(
body,
"He was an old man who fished alone in a skiff in the Gulf Stream and \
he had gone eighty-four days now without taking a fish.",
);
// ... and add it to the `IndexWriter`.
index_writer.add_document(old_man_doc);
// ### Create a document directly from json.
//
// Alternatively, we can use our schema to parse a
// document object directly from json.
// The document is a string, but we use the `json` macro
// from `serde_json` for the convenience of multi-line support.
let json = json!({
"title": "Of Mice and Men",
"body": "A few miles south of Soledad, the Salinas River drops in close to the hillside \
bank and runs deep and green. The water is warm too, for it has slipped twinkling \
over the yellow sands in the sunlight before reaching the narrow pool. On one \
side of the river the golden foothill slopes curve up to the strong and rocky \
Gabilan Mountains, but on the valley side the water is lined with trees—willows \
fresh and green with every spring, carrying in their lower leaf junctures the \
debris of the winters flooding; and sycamores with mottled, white, recumbent \
limbs and branches that arch over the pool"
});
let mice_and_men_doc = schema.parse_document(&json.to_string())?;
index_writer.add_document(mice_and_men_doc);
// Multi-valued field are allowed, they are
// expressed in JSON by an array.
// The following document has two titles.
let json = json!({
"title": ["Frankenstein", "The Modern Prometheus"],
"body": "You will rejoice to hear that no disaster has accompanied the commencement of an \
enterprise which you have regarded with such evil forebodings. I arrived here \
yesterday, and my first task is to assure my dear sister of my welfare and \
increasing confidence in the success of my undertaking."
});
let frankenstein_doc = schema.parse_document(&json.to_string())?;
index_writer.add_document(frankenstein_doc);
// This is an example, so we will only index 3 documents
// here. You can check out tantivy's tutorial to index
// the English wikipedia. Tantivy's indexing is rather fast.
// Indexing 5 million articles of the English wikipedia takes
// around 4 minutes on my computer!
// ### Committing
//
// At this point our documents are not searchable.
//
//
// We need to call .commit() explicitly to force the
// index_writer to finish processing the documents in the queue,
// flush the current index to the disk, and advertise
// the existence of new documents.
//
// This call is blocking.
index_writer.commit()?;
// If `.commit()` returns correctly, then all of the
// documents that have been added are guaranteed to be
// persistently indexed.
//
// In the scenario of a crash or a power failure,
// tantivy behaves as if has rolled back to its last
// commit.
// # Searching
//
// Let's search our index. Start by reloading
// searchers in the index. This should be done
// after every commit().
index.load_searchers()?;
// Afterwards create one (or more) searchers.
//
// You should create a searcher
// every time you start a "search query".
let searcher = index.searcher();
// The query parser can interpret human queries.
// Here, if the user does not specify which
// field they want to search, tantivy will search
// in both title and body.
let query_parser = QueryParser::for_index(&index, vec![title, body]);
// here we want to get a hit on the 'ken' in Frankenstein
let query = query_parser.parse_query("ken")?;
// A query defines a set of documents, as
// well as the way they should be scored.
//
// A query created by the query parser is scored according
// to a metric called Tf-Idf, and will consider
// any document matching at least one of our terms.
// ### Collectors
//
// We are not interested in all of the documents but
// only in the top 10. Keeping track of our top 10 best documents
// is the role of the TopCollector.
let mut top_collector = TopCollector::with_limit(10);
// We can now perform our query.
searcher.search(&*query, &mut top_collector)?;
// Our top collector now contains the 10
// most relevant doc ids...
let doc_addresses = top_collector.docs();
// The actual documents still need to be
// retrieved from Tantivy's store.
//
// Since the body field was not configured as stored,
// the document returned will only contain
// a title.
for doc_address in doc_addresses {
let retrieved_doc = searcher.doc(&doc_address)?;
println!("{}", schema.to_json(&retrieved_doc));
}
// Wait for indexing and merging threads to shut down.
// Usually this isn't needed, but in `main` we try to
// delete the temporary directory and that fails on
// Windows if the files are still open.
index_writer.wait_merging_threads()?;
Ok(())
}

View File

@@ -5,11 +5,11 @@ extern crate tempdir;
extern crate serde_json;
use std::path::Path;
use tempdir::TempDir;
use tantivy::Index;
use tantivy::schema::*;
use tantivy::collector::TopCollector;
use tantivy::query::QueryParser;
use tantivy::schema::*;
use tantivy::Index;
use tempdir::TempDir;
fn main() {
// Let's create a temporary directory for the
@@ -20,10 +20,7 @@ fn main() {
}
}
fn run_example(index_path: &Path) -> tantivy::Result<()> {
// # Defining the schema
//
// The Tantivy index requires a very strict schema.
@@ -31,7 +28,6 @@ fn run_example(index_path: &Path) -> tantivy::Result<()> {
// and for each field, its type and "the way it should
// be indexed".
// first we need to define a schema ...
let mut schema_builder = SchemaBuilder::default();
@@ -62,16 +58,13 @@ fn run_example(index_path: &Path) -> tantivy::Result<()> {
let schema = schema_builder.build();
// # Indexing documents
//
// Let's create a brand new index.
//
// This will actually just save a meta.json
// with our schema in the directory.
let index = Index::create(index_path, schema.clone())?;
let index = Index::create_in_dir(index_path, schema.clone())?;
// To insert document we need an index writer.
// There must be only one writer at a time.
@@ -85,7 +78,6 @@ fn run_example(index_path: &Path) -> tantivy::Result<()> {
// Let's index our documents!
// We first need a handle on the title and the body field.
// ### Create a document "manually".
//
// We can create a document manually, by setting the fields
@@ -98,7 +90,7 @@ fn run_example(index_path: &Path) -> tantivy::Result<()> {
old_man_doc.add_text(
body,
"He was an old man who fished alone in a skiff in the Gulf Stream and \
he had gone eighty-four days now without taking a fish.",
he had gone eighty-four days now without taking a fish.",
);
// ... and add it to the `IndexWriter`.
@@ -145,7 +137,6 @@ fn run_example(index_path: &Path) -> tantivy::Result<()> {
// Indexing 5 million articles of the English wikipedia takes
// around 4 minutes on my computer!
// ### Committing
//
// At this point our documents are not searchable.
@@ -167,7 +158,6 @@ fn run_example(index_path: &Path) -> tantivy::Result<()> {
// tantivy behaves as if has rolled back to its last
// commit.
// # Searching
//
// Let's search our index. Start by reloading
@@ -192,7 +182,6 @@ fn run_example(index_path: &Path) -> tantivy::Result<()> {
// A ticket has been opened regarding this problem.
let query = query_parser.parse_query("sea whale")?;
// A query defines a set of documents, as
// well as the way they should be scored.
//

1
rustfmt.toml Normal file
View File

@@ -0,0 +1 @@
use_try_shorthand = true

View File

@@ -1,10 +0,0 @@
#!/bin/bash
DEST=target/doc/tantivy/docs/
mkdir -p $DEST
for f in $(ls docs/*.md)
do
rustdoc $f -o $DEST --markdown-css ../../rustdoc.css --markdown-css style.css
done
cp docs/*.css $DEST

View File

@@ -1,5 +0,0 @@
#/bin/bash
valgrind --tool=cachegrind target/release/tantivy-bench -i /data/wiki-index -q ./queries.txt -n 3
valgrind --tool=callgrind target/release/tantivy-bench -i /data/wiki-index -q ./queries.txt -n 3

View File

@@ -1,9 +1,9 @@
use Result;
use collector::Collector;
use DocId;
use Result;
use Score;
use SegmentLocalId;
use SegmentReader;
use DocId;
use Score;
/// Collector that does nothing.
/// This is used in the chain Collector and will hopefully
@@ -16,11 +16,66 @@ impl Collector for DoNothingCollector {
}
#[inline]
fn collect(&mut self, _doc: DocId, _score: Score) {}
#[inline]
fn requires_scoring(&self) -> bool {
false
}
}
/// Zero-cost abstraction used to collect on multiple collectors.
/// This contraption is only usable if the type of your collectors
/// are known at compile time.
///
/// ```rust
/// #[macro_use]
/// extern crate tantivy;
/// use tantivy::schema::{SchemaBuilder, TEXT};
/// use tantivy::{Index, Result};
/// use tantivy::collector::{CountCollector, TopCollector, chain};
/// use tantivy::query::QueryParser;
///
/// # fn main() { example().unwrap(); }
/// fn example() -> Result<()> {
/// let mut schema_builder = SchemaBuilder::new();
/// let title = schema_builder.add_text_field("title", TEXT);
/// let schema = schema_builder.build();
/// let index = Index::create_in_ram(schema);
/// {
/// let mut index_writer = index.writer(3_000_000)?;
/// index_writer.add_document(doc!(
/// title => "The Name of the Wind",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of Muadib",
/// ));
/// index_writer.add_document(doc!(
/// title => "A Dairy Cow",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of a Young Girl",
/// ));
/// index_writer.commit().unwrap();
/// }
///
/// index.load_searchers()?;
/// let searcher = index.searcher();
///
/// {
/// let mut top_collector = TopCollector::with_limit(2);
/// let mut count_collector = CountCollector::default();
/// {
/// let mut collectors = chain().push(&mut top_collector).push(&mut count_collector);
/// let query_parser = QueryParser::for_index(&index, vec![title]);
/// let query = query_parser.parse_query("diary")?;
/// searcher.search(&*query, &mut collectors).unwrap();
/// }
/// assert_eq!(count_collector.count(), 2);
/// assert!(top_collector.at_capacity());
/// }
///
/// Ok(())
/// }
/// ```
pub struct ChainedCollector<Left: Collector, Right: Collector> {
left: Left,
right: Right,
@@ -42,8 +97,8 @@ impl<Left: Collector, Right: Collector> Collector for ChainedCollector<Left, Rig
segment_local_id: SegmentLocalId,
segment: &SegmentReader,
) -> Result<()> {
try!(self.left.set_segment(segment_local_id, segment));
try!(self.right.set_segment(segment_local_id, segment));
self.left.set_segment(segment_local_id, segment)?;
self.right.set_segment(segment_local_id, segment)?;
Ok(())
}
@@ -51,6 +106,10 @@ impl<Left: Collector, Right: Collector> Collector for ChainedCollector<Left, Rig
self.left.collect(doc, score);
self.right.collect(doc, score);
}
fn requires_scoring(&self) -> bool {
self.left.requires_scoring() || self.right.requires_scoring()
}
}
/// Creates a `ChainedCollector`

View File

@@ -1,12 +1,60 @@
use super::Collector;
use DocId;
use Score;
use Result;
use SegmentReader;
use Score;
use SegmentLocalId;
use SegmentReader;
/// `CountCollector` collector only counts how many
/// documents match the query.
///
/// ```rust
/// #[macro_use]
/// extern crate tantivy;
/// use tantivy::schema::{SchemaBuilder, TEXT};
/// use tantivy::{Index, Result};
/// use tantivy::collector::CountCollector;
/// use tantivy::query::QueryParser;
///
/// # fn main() { example().unwrap(); }
/// fn example() -> Result<()> {
/// let mut schema_builder = SchemaBuilder::new();
/// let title = schema_builder.add_text_field("title", TEXT);
/// let schema = schema_builder.build();
/// let index = Index::create_in_ram(schema);
/// {
/// let mut index_writer = index.writer(3_000_000)?;
/// index_writer.add_document(doc!(
/// title => "The Name of the Wind",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of Muadib",
/// ));
/// index_writer.add_document(doc!(
/// title => "A Dairy Cow",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of a Young Girl",
/// ));
/// index_writer.commit().unwrap();
/// }
///
/// index.load_searchers()?;
/// let searcher = index.searcher();
///
/// {
/// let mut count_collector = CountCollector::default();
/// let query_parser = QueryParser::for_index(&index, vec![title]);
/// let query = query_parser.parse_query("diary")?;
/// searcher.search(&*query, &mut count_collector).unwrap();
///
/// assert_eq!(count_collector.count(), 2);
/// }
///
/// Ok(())
/// }
/// ```
#[derive(Default)]
pub struct CountCollector {
count: usize,
}
@@ -19,12 +67,6 @@ impl CountCollector {
}
}
impl Default for CountCollector {
fn default() -> CountCollector {
CountCollector { count: 0 }
}
}
impl Collector for CountCollector {
fn set_segment(&mut self, _: SegmentLocalId, _: &SegmentReader) -> Result<()> {
Ok(())
@@ -33,23 +75,27 @@ impl Collector for CountCollector {
fn collect(&mut self, _: DocId, _: Score) {
self.count += 1;
}
fn requires_scoring(&self) -> bool {
false
}
}
#[cfg(test)]
mod tests {
use super::*;
use test::Bencher;
use collector::Collector;
use collector::{Collector, CountCollector};
#[bench]
fn build_collector(b: &mut Bencher) {
b.iter(|| {
let mut count_collector = CountCollector::default();
for doc in 0..1_000_000 {
count_collector.collect(doc, 1f32);
}
count_collector.count()
});
#[test]
fn test_count_collector() {
let mut count_collector = CountCollector::default();
assert_eq!(count_collector.count(), 0);
count_collector.collect(0u32, 1f32);
assert_eq!(count_collector.count(), 1);
assert_eq!(count_collector.count(), 1);
count_collector.collect(1u32, 1f32);
assert_eq!(count_collector.count(), 2);
assert!(!count_collector.requires_scoring());
}
}

View File

@@ -1,113 +1,664 @@
use std::cmp::Eq;
use std::collections::HashMap;
use std::hash::Hash;
use collector::Collector;
use fastfield::FastFieldReader;
use docset::SkipResult;
use fastfield::FacetReader;
use schema::Facet;
use schema::Field;
use std::cell::UnsafeCell;
use std::collections::btree_map;
use std::collections::BTreeMap;
use std::collections::BTreeSet;
use std::collections::BinaryHeap;
use std::collections::Bound;
use std::iter::Peekable;
use std::mem;
use std::{u64, usize};
use termdict::TermMerger;
use std::cmp::Ordering;
use DocId;
use Result;
use Score;
use SegmentReader;
use SegmentLocalId;
use SegmentReader;
/// Facet collector for i64/u64 fast field
pub struct FacetCollector<T>
where
T: FastFieldReader,
T::ValueType: Eq + Hash,
{
counters: HashMap<T::ValueType, u64>,
field: Field,
ff_reader: Option<T>,
struct Hit<'a> {
count: u64,
facet: &'a Facet,
}
impl<T> FacetCollector<T>
where
T: FastFieldReader,
T::ValueType: Eq + Hash,
{
/// Creates a new facet collector for aggregating a given field.
pub fn new(field: Field) -> FacetCollector<T> {
FacetCollector {
counters: HashMap::new(),
field: field,
ff_reader: None,
}
impl<'a> Eq for Hit<'a> {}
impl<'a> PartialEq<Hit<'a>> for Hit<'a> {
fn eq(&self, other: &Hit) -> bool {
self.count == other.count
}
}
impl<T> Collector for FacetCollector<T>
where
T: FastFieldReader,
T::ValueType: Eq + Hash,
{
impl<'a> PartialOrd<Hit<'a>> for Hit<'a> {
fn partial_cmp(&self, other: &Hit) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<'a> Ord for Hit<'a> {
fn cmp(&self, other: &Self) -> Ordering {
other.count.cmp(&self.count)
}
}
struct SegmentFacetCounter {
pub facet_reader: FacetReader,
pub facet_ords: Vec<u64>,
pub facet_counts: Vec<u64>,
}
fn facet_depth(facet_bytes: &[u8]) -> usize {
if facet_bytes.is_empty() {
0
} else {
facet_bytes.iter().cloned().filter(|b| *b == 0u8).count() + 1
}
}
/// Collector for faceting
///
/// The collector collects all facets. You need to configure it
/// beforehand with the facet you want to extract.
///
/// This is done by calling `.add_facet(...)` with the root of the
/// facet you want to extract as argument.
///
/// Facet counts will only be computed for the facet that are direct children
/// of such a root facet.
///
/// For instance, if your index represents books, your hierarchy of facets
/// may contain `category`, `language`.
///
/// The category facet may include `subcategories`. For instance, a book
/// could belong to `/category/fiction/fantasy`.
///
/// If you request the facet counts for `/category`, the result will be
/// the breakdown of counts for the direct children of `/category`
/// (e.g. `/category/fiction`, `/category/biography`, `/category/personal_development`).
///
/// Once collection is finished, you can harvest its results in the form
/// of a `FacetCounts` object, and extract your face t counts from it.
///
/// This implementation assumes you are working with a number of facets that
/// is much hundreds of time lower than your number of documents.
///
///
/// ```rust
/// #[macro_use]
/// extern crate tantivy;
/// use tantivy::schema::{Facet, SchemaBuilder, TEXT};
/// use tantivy::{Index, Result};
/// use tantivy::collector::FacetCollector;
/// use tantivy::query::AllQuery;
///
/// # fn main() { example().unwrap(); }
/// fn example() -> Result<()> {
/// let mut schema_builder = SchemaBuilder::new();
///
/// // Facet have their own specific type.
/// // It is not a bad practise to put all of your
/// // facet information in the same field.
/// let facet = schema_builder.add_facet_field("facet");
/// let title = schema_builder.add_text_field("title", TEXT);
/// let schema = schema_builder.build();
/// let index = Index::create_in_ram(schema);
/// {
/// let mut index_writer = index.writer(3_000_000)?;
/// // a document can be associated to any number of facets
/// index_writer.add_document(doc!(
/// title => "The Name of the Wind",
/// facet => Facet::from("/lang/en"),
/// facet => Facet::from("/category/fiction/fantasy")
/// ));
/// index_writer.add_document(doc!(
/// title => "Dune",
/// facet => Facet::from("/lang/en"),
/// facet => Facet::from("/category/fiction/sci-fi")
/// ));
/// index_writer.add_document(doc!(
/// title => "La Vénus d'Ille",
/// facet => Facet::from("/lang/fr"),
/// facet => Facet::from("/category/fiction/fantasy"),
/// facet => Facet::from("/category/fiction/horror")
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of a Young Girl",
/// facet => Facet::from("/lang/en"),
/// facet => Facet::from("/category/biography")
/// ));
/// index_writer.commit().unwrap();
/// }
///
/// index.load_searchers()?;
/// let searcher = index.searcher();
///
/// {
/// let mut facet_collector = FacetCollector::for_field(facet);
/// facet_collector.add_facet("/lang");
/// facet_collector.add_facet("/category");
/// searcher.search(&AllQuery, &mut facet_collector).unwrap();
///
/// // this object contains count aggregate for all of the facets.
/// let counts = facet_collector.harvest();
///
/// // This lists all of the facet counts
/// let facets: Vec<(&Facet, u64)> = counts
/// .get("/category")
/// .collect();
/// assert_eq!(facets, vec![
/// (&Facet::from("/category/biography"), 1),
/// (&Facet::from("/category/fiction"), 3)
/// ]);
/// }
///
/// {
/// let mut facet_collector = FacetCollector::for_field(facet);
/// facet_collector.add_facet("/category/fiction");
/// searcher.search(&AllQuery, &mut facet_collector).unwrap();
///
/// // this object contains count aggregate for all of the facets.
/// let counts = facet_collector.harvest();
///
/// // This lists all of the facet counts
/// let facets: Vec<(&Facet, u64)> = counts
/// .get("/category/fiction")
/// .collect();
/// assert_eq!(facets, vec![
/// (&Facet::from("/category/fiction/fantasy"), 2),
/// (&Facet::from("/category/fiction/horror"), 1),
/// (&Facet::from("/category/fiction/sci-fi"), 1)
/// ]);
/// }
///
/// {
/// let mut facet_collector = FacetCollector::for_field(facet);
/// facet_collector.add_facet("/category/fiction");
/// searcher.search(&AllQuery, &mut facet_collector).unwrap();
///
/// // this object contains count aggregate for all of the facets.
/// let counts = facet_collector.harvest();
///
/// // This lists all of the facet counts
/// let facets: Vec<(&Facet, u64)> = counts.top_k("/category/fiction", 1);
/// assert_eq!(facets, vec![
/// (&Facet::from("/category/fiction/fantasy"), 2)
/// ]);
/// }
///
/// Ok(())
/// }
/// ```
pub struct FacetCollector {
facet_ords: Vec<u64>,
field: Field,
ff_reader: Option<UnsafeCell<FacetReader>>,
segment_counters: Vec<SegmentFacetCounter>,
// facet_ord -> collapse facet_id
current_segment_collapse_mapping: Vec<usize>,
// collapse facet_id -> count
current_segment_counts: Vec<u64>,
// collapse facet_id -> facet_ord
current_collapse_facet_ords: Vec<u64>,
facets: BTreeSet<Facet>,
}
fn skip<'a, I: Iterator<Item = &'a Facet>>(
target: &[u8],
collapse_it: &mut Peekable<I>,
) -> SkipResult {
loop {
match collapse_it.peek() {
Some(facet_bytes) => match facet_bytes.encoded_bytes().cmp(target) {
Ordering::Less => {}
Ordering::Greater => {
return SkipResult::OverStep;
}
Ordering::Equal => {
return SkipResult::Reached;
}
},
None => {
return SkipResult::End;
}
}
collapse_it.next();
}
}
impl FacetCollector {
/// Create a facet collector to collect the facets
/// from a specific facet `Field`.
///
/// This function does not check whether the field
/// is of the proper type.
pub fn for_field(field: Field) -> FacetCollector {
FacetCollector {
facet_ords: Vec::with_capacity(255),
segment_counters: Vec::new(),
field,
ff_reader: None,
facets: BTreeSet::new(),
current_segment_collapse_mapping: Vec::new(),
current_collapse_facet_ords: Vec::new(),
current_segment_counts: Vec::new(),
}
}
/// Adds a facet that we want to record counts
///
/// Adding facet `Facet::from("/country")` for instance,
/// will record the counts of all of the direct children of the facet country
/// (e.g. `/country/FR`, `/country/UK`).
///
/// Adding two facets within which one is the prefix of the other is forbidden.
/// If you need the correct number of unique documents for two such facets,
/// just add them in separate `FacetCollector`.
pub fn add_facet<T>(&mut self, facet_from: T)
where
Facet: From<T>,
{
let facet = Facet::from(facet_from);
for old_facet in &self.facets {
assert!(
!old_facet.is_prefix_of(&facet),
"Tried to add a facet which is a descendant of an already added facet."
);
assert!(
!facet.is_prefix_of(old_facet),
"Tried to add a facet which is an ancestor of an already added facet."
);
}
self.facets.insert(facet);
}
fn set_collapse_mapping(&mut self, facet_reader: &FacetReader) {
self.current_segment_collapse_mapping.clear();
self.current_collapse_facet_ords.clear();
self.current_segment_counts.clear();
let mut collapse_facet_it = self.facets.iter().peekable();
self.current_collapse_facet_ords.push(0);
let mut facet_streamer = facet_reader.facet_dict().range().into_stream();
if !facet_streamer.advance() {
return;
}
'outer: loop {
// at the begining of this loop, facet_streamer
// is positionned on a term that has not been processed yet.
let skip_result = skip(facet_streamer.key(), &mut collapse_facet_it);
match skip_result {
SkipResult::Reached => {
// we reach a facet we decided to collapse.
let collapse_depth = facet_depth(facet_streamer.key());
let mut collapsed_id = 0;
self.current_segment_collapse_mapping.push(0);
while facet_streamer.advance() {
let depth = facet_depth(facet_streamer.key());
if depth <= collapse_depth {
continue 'outer;
}
if depth == collapse_depth + 1 {
collapsed_id = self.current_collapse_facet_ords.len();
self.current_collapse_facet_ords
.push(facet_streamer.term_ord());
self.current_segment_collapse_mapping.push(collapsed_id);
} else {
self.current_segment_collapse_mapping.push(collapsed_id);
}
}
break;
}
SkipResult::End | SkipResult::OverStep => {
self.current_segment_collapse_mapping.push(0);
if !facet_streamer.advance() {
break;
}
}
}
}
}
fn finalize_segment(&mut self) {
if self.ff_reader.is_some() {
self.segment_counters.push(SegmentFacetCounter {
facet_reader: self.ff_reader.take().unwrap().into_inner(),
facet_ords: mem::replace(&mut self.current_collapse_facet_ords, Vec::new()),
facet_counts: mem::replace(&mut self.current_segment_counts, Vec::new()),
});
}
}
/// Returns the results of the collection.
///
/// This method does not just return the counters,
/// it also translates the facet ordinals of the last segment.
pub fn harvest(mut self) -> FacetCounts {
self.finalize_segment();
let collapsed_facet_ords: Vec<&[u64]> = self
.segment_counters
.iter()
.map(|segment_counter| &segment_counter.facet_ords[..])
.collect();
let collapsed_facet_counts: Vec<&[u64]> = self
.segment_counters
.iter()
.map(|segment_counter| &segment_counter.facet_counts[..])
.collect();
let facet_streams = self
.segment_counters
.iter()
.map(|seg_counts| seg_counts.facet_reader.facet_dict().range().into_stream())
.collect::<Vec<_>>();
let mut facet_merger = TermMerger::new(facet_streams);
let mut facet_counts = BTreeMap::new();
while facet_merger.advance() {
let count = facet_merger
.current_kvs()
.iter()
.map(|it| {
let seg_ord = it.segment_ord;
let term_ord = it.streamer.term_ord();
collapsed_facet_ords[seg_ord]
.binary_search(&term_ord)
.map(|collapsed_term_id| {
if collapsed_term_id == 0 {
0
} else {
collapsed_facet_counts[seg_ord][collapsed_term_id]
}
})
.unwrap_or(0)
})
.sum();
if count > 0u64 {
let bytes: Vec<u8> = facet_merger.key().to_owned();
// may create an corrupted facet if the term dicitonary is corrupted
let facet = unsafe { Facet::from_encoded(bytes) };
facet_counts.insert(facet, count);
}
}
FacetCounts { facet_counts }
}
}
impl Collector for FacetCollector {
fn set_segment(&mut self, _: SegmentLocalId, reader: &SegmentReader) -> Result<()> {
self.ff_reader = Some(reader.get_fast_field_reader(self.field)?);
self.finalize_segment();
let facet_reader = reader.facet_reader(self.field)?;
self.set_collapse_mapping(&facet_reader);
self.current_segment_counts
.resize(self.current_collapse_facet_ords.len(), 0);
self.ff_reader = Some(UnsafeCell::new(facet_reader));
Ok(())
}
fn collect(&mut self, doc: DocId, _: Score) {
let val = self.ff_reader
.as_ref()
.expect("collect() was called before set_segment. This should never happen.")
.get(doc);
*(self.counters.entry(val).or_insert(0)) += 1;
let facet_reader: &mut FacetReader = unsafe {
&mut *self
.ff_reader
.as_ref()
.expect("collect() was called before set_segment. This should never happen.")
.get()
};
facet_reader.facet_ords(doc, &mut self.facet_ords);
let mut previous_collapsed_ord: usize = usize::MAX;
for &facet_ord in &self.facet_ords {
let collapsed_ord = self.current_segment_collapse_mapping[facet_ord as usize];
self.current_segment_counts[collapsed_ord] += if collapsed_ord == previous_collapsed_ord
{
0
} else {
1
};
previous_collapsed_ord = collapsed_ord;
}
}
fn requires_scoring(&self) -> bool {
false
}
}
/// Intermediary result of the `FacetCollector` that stores
/// the facet counts for all the segments.
pub struct FacetCounts {
facet_counts: BTreeMap<Facet, u64>,
}
pub struct FacetChildIterator<'a> {
underlying: btree_map::Range<'a, Facet, u64>,
}
impl<'a> Iterator for FacetChildIterator<'a> {
type Item = (&'a Facet, u64);
fn next(&mut self) -> Option<Self::Item> {
self.underlying.next().map(|(facet, count)| (facet, *count))
}
}
impl FacetCounts {
pub fn get<T>(&self, facet_from: T) -> FacetChildIterator
where
Facet: From<T>,
{
let facet = Facet::from(facet_from);
let left_bound = Bound::Excluded(facet.clone());
let right_bound = if facet.is_root() {
Bound::Unbounded
} else {
let mut facet_after_bytes: Vec<u8> = facet.encoded_bytes().to_owned();
facet_after_bytes.push(1u8);
let facet_after = unsafe { Facet::from_encoded(facet_after_bytes) }; // ok logic
Bound::Excluded(facet_after)
};
let underlying: btree_map::Range<_, _> = self.facet_counts.range((left_bound, right_bound));
FacetChildIterator { underlying }
}
pub fn top_k<T>(&self, facet: T, k: usize) -> Vec<(&Facet, u64)>
where
Facet: From<T>,
{
let mut heap = BinaryHeap::with_capacity(k);
let mut it = self.get(facet);
for (facet, count) in (&mut it).take(k) {
heap.push(Hit { count, facet });
}
let mut lowest_count: u64 = heap.peek().map(|hit| hit.count).unwrap_or(u64::MIN);
for (facet, count) in it {
if count > lowest_count {
lowest_count = count;
if let Some(mut head) = heap.peek_mut() {
*head = Hit { count, facet };
}
}
}
heap.into_sorted_vec()
.into_iter()
.map(|hit| (hit.facet, hit.count))
.collect::<Vec<_>>()
}
}
#[cfg(test)]
mod tests {
use collector::{chain, FacetCollector};
use query::QueryParser;
use fastfield::{I64FastFieldReader, U64FastFieldReader};
use schema::{self, FAST, STRING};
use Index;
use super::{FacetCollector, FacetCounts};
use core::Index;
use query::AllQuery;
use rand::{thread_rng, Rng};
use schema::Field;
use schema::{Document, Facet, SchemaBuilder};
use std::iter;
#[test]
// create 10 documents, set num field value to 0 or 1 for even/odd ones
// make sure we have facet counters correctly filled
fn test_facet_collector_results() {
let mut schema_builder = schema::SchemaBuilder::new();
let num_field_i64 = schema_builder.add_i64_field("num_i64", FAST);
let num_field_u64 = schema_builder.add_u64_field("num_u64", FAST);
let text_field = schema_builder.add_text_field("text", STRING);
fn test_facet_collector_drilldown() {
let mut schema_builder = SchemaBuilder::new();
let facet_field = schema_builder.add_facet_field("facet");
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let index = Index::create_in_ram(schema.clone());
{
let mut index_writer = index.writer_with_num_threads(1, 40_000_000).unwrap();
{
for i in 0u64..10u64 {
index_writer.add_document(doc!(
num_field_i64 => ((i as i64) % 3i64) as i64,
num_field_u64 => (i % 2u64) as u64,
text_field => "text"
));
}
}
assert_eq!(index_writer.commit().unwrap(), 10u64);
let mut index_writer = index.writer_with_num_threads(1, 3_000_000).unwrap();
let num_facets: usize = 3 * 4 * 5;
let facets: Vec<Facet> = (0..num_facets)
.map(|mut n| {
let top = n % 3;
n /= 3;
let mid = n % 4;
n /= 4;
let leaf = n % 5;
Facet::from(&format!("/top{}/mid{}/leaf{}", top, mid, leaf))
})
.collect();
for i in 0..num_facets * 10 {
let mut doc = Document::new();
doc.add_facet(facet_field, facets[i % num_facets].clone());
index_writer.add_document(doc);
}
index_writer.commit().unwrap();
index.load_searchers().unwrap();
let searcher = index.searcher();
let mut ffvf_i64: FacetCollector<I64FastFieldReader> = FacetCollector::new(num_field_i64);
let mut ffvf_u64: FacetCollector<U64FastFieldReader> = FacetCollector::new(num_field_u64);
let mut facet_collector = FacetCollector::for_field(facet_field);
facet_collector.add_facet(Facet::from("/top1"));
searcher.search(&AllQuery, &mut facet_collector).unwrap();
let counts: FacetCounts = facet_collector.harvest();
{
// perform the query
let mut facet_collectors = chain().push(&mut ffvf_i64).push(&mut ffvf_u64);
let query_parser = QueryParser::for_index(&index, vec![text_field]);
let query = query_parser.parse_query("text:text").unwrap();
query.search(&searcher, &mut facet_collectors).unwrap();
let facets: Vec<(String, u64)> = counts
.get("/top1")
.map(|(facet, count)| (facet.to_string(), count))
.collect();
assert_eq!(
facets,
[
("/top1/mid0", 50),
("/top1/mid1", 50),
("/top1/mid2", 50),
("/top1/mid3", 50),
].iter()
.map(|&(facet_str, count)| (String::from(facet_str), count))
.collect::<Vec<_>>()
);
}
}
assert_eq!(ffvf_u64.counters[&0], 5);
assert_eq!(ffvf_u64.counters[&1], 5);
assert_eq!(ffvf_i64.counters[&0], 4);
assert_eq!(ffvf_i64.counters[&1], 3);
#[test]
#[should_panic(
expected = "Tried to add a facet which is a descendant of \
an already added facet."
)]
fn test_misused_facet_collector() {
let mut facet_collector = FacetCollector::for_field(Field(0));
facet_collector.add_facet(Facet::from("/country"));
facet_collector.add_facet(Facet::from("/country/europe"));
}
#[test]
fn test_non_used_facet_collector() {
let mut facet_collector = FacetCollector::for_field(Field(0));
facet_collector.add_facet(Facet::from("/country"));
facet_collector.add_facet(Facet::from("/countryeurope"));
}
#[test]
fn test_facet_collector_topk() {
let mut schema_builder = SchemaBuilder::new();
let facet_field = schema_builder.add_facet_field("facet");
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut docs: Vec<Document> = vec![("a", 10), ("b", 100), ("c", 7), ("d", 12), ("e", 21)]
.into_iter()
.flat_map(|(c, count)| {
let facet = Facet::from(&format!("/facet_{}", c));
let doc = doc!(facet_field => facet);
iter::repeat(doc).take(count)
})
.collect();
thread_rng().shuffle(&mut docs[..]);
let mut index_writer = index.writer_with_num_threads(1, 3_000_000).unwrap();
for doc in docs {
index_writer.add_document(doc);
}
index_writer.commit().unwrap();
index.load_searchers().unwrap();
let searcher = index.searcher();
let mut facet_collector = FacetCollector::for_field(facet_field);
facet_collector.add_facet("/");
searcher.search(&AllQuery, &mut facet_collector).unwrap();
let counts: FacetCounts = facet_collector.harvest();
{
let facets: Vec<(&Facet, u64)> = counts.top_k("/", 3);
assert_eq!(
facets,
vec![
(&Facet::from("/facet_b"), 100),
(&Facet::from("/facet_e"), 21),
(&Facet::from("/facet_d"), 12),
]
);
}
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use collector::FacetCollector;
use query::AllQuery;
use rand::{thread_rng, Rng};
use schema::Facet;
use schema::SchemaBuilder;
use test::Bencher;
use Index;
#[bench]
fn bench_facet_collector(b: &mut Bencher) {
let mut schema_builder = SchemaBuilder::new();
let facet_field = schema_builder.add_facet_field("facet");
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut docs = vec![];
for val in 0..50 {
let facet = Facet::from(&format!("/facet_{}", val));
for _ in 0..val * val {
docs.push(doc!(facet_field=>facet.clone()));
}
}
// 40425 docs
thread_rng().shuffle(&mut docs[..]);
let mut index_writer = index.writer_with_num_threads(1, 3_000_000).unwrap();
for doc in docs {
index_writer.add_document(doc);
}
index_writer.commit().unwrap();
index.load_searchers().unwrap();
b.iter(|| {
let searcher = index.searcher();
let mut facet_collector = FacetCollector::for_field(facet_field);
searcher.search(&AllQuery, &mut facet_collector).unwrap();
});
}
}

View File

@@ -0,0 +1,123 @@
use std::cmp::Eq;
use std::collections::HashMap;
use std::hash::Hash;
use collector::Collector;
use fastfield::FastFieldReader;
use schema::Field;
use DocId;
use Result;
use Score;
use SegmentReader;
use SegmentLocalId;
/// Facet collector for i64/u64 fast field
pub struct IntFacetCollector<T>
where
T: FastFieldReader,
T::ValueType: Eq + Hash,
{
counters: HashMap<T::ValueType, u64>,
field: Field,
ff_reader: Option<T>,
}
impl<T> IntFacetCollector<T>
where
T: FastFieldReader,
T::ValueType: Eq + Hash,
{
/// Creates a new facet collector for aggregating a given field.
pub fn new(field: Field) -> IntFacetCollector<T> {
IntFacetCollector {
counters: HashMap::new(),
field: field,
ff_reader: None,
}
}
}
impl<T> Collector for IntFacetCollector<T>
where
T: FastFieldReader,
T::ValueType: Eq + Hash,
{
fn set_segment(&mut self, _: SegmentLocalId, reader: &SegmentReader) -> Result<()> {
self.ff_reader = Some(reader.get_fast_field_reader(self.field)?);
Ok(())
}
fn collect(&mut self, doc: DocId, _: Score) {
let val = self.ff_reader
.as_ref()
.expect(
"collect() was called before set_segment. \
This should never happen.",
)
.get(doc);
*(self.counters.entry(val).or_insert(0)) += 1;
}
}
#[cfg(test)]
mod tests {
use collector::{chain, IntFacetCollector};
use query::QueryParser;
use fastfield::{I64FastFieldReader, U64FastFieldReader};
use schema::{self, FAST, STRING};
use Index;
#[test]
// create 10 documents, set num field value to 0 or 1 for even/odd ones
// make sure we have facet counters correctly filled
fn test_facet_collector_results() {
let mut schema_builder = schema::SchemaBuilder::new();
let num_field_i64 = schema_builder.add_i64_field("num_i64", FAST);
let num_field_u64 = schema_builder.add_u64_field("num_u64", FAST);
let text_field = schema_builder.add_text_field("text", STRING);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
{
let mut index_writer = index.writer_with_num_threads(1, 40_000_000).unwrap();
{
for i in 0u64..10u64 {
index_writer.add_document(doc!(
num_field_i64 => ((i as i64) % 3i64) as i64,
num_field_u64 => (i % 2u64) as u64,
text_field => "text"
));
}
}
assert_eq!(index_writer.commit().unwrap(), 10u64);
}
index.load_searchers().unwrap();
let searcher = index.searcher();
let mut ffvf_i64: IntFacetCollector<I64FastFieldReader> = IntFacetCollector::new(num_field_i64);
let mut ffvf_u64: IntFacetCollector<U64FastFieldReader> = IntFacetCollector::new(num_field_u64);
{
// perform the query
let mut facet_collectors = chain().push(&mut ffvf_i64).push(&mut ffvf_u64);
let mut query_parser = QueryParser::for_index(index, vec![text_field]);
let query = query_parser.parse_query("text:text").unwrap();
query.search(&searcher, &mut facet_collectors).unwrap();
}
assert_eq!(ffvf_u64.counters[&0], 5);
assert_eq!(ffvf_u64.counters[&1], 5);
assert_eq!(ffvf_i64.counters[&0], 4);
assert_eq!(ffvf_i64.counters[&1], 3);
}
}

View File

@@ -2,11 +2,11 @@
Defines how the documents matching a search query should be processed.
*/
use SegmentReader;
use SegmentLocalId;
use DocId;
use Score;
use Result;
use Score;
use SegmentLocalId;
use SegmentReader;
mod count_collector;
pub use self::count_collector::CountCollector;
@@ -21,7 +21,7 @@ mod facet_collector;
pub use self::facet_collector::FacetCollector;
mod chained_collector;
pub use self::chained_collector::chain;
pub use self::chained_collector::{chain, ChainedCollector};
/// Collectors are in charge of collecting and retaining relevant
/// information from the document found and scored by the query.
@@ -62,6 +62,9 @@ pub trait Collector {
) -> Result<()>;
/// The query pushes the scored document to the collector via this method.
fn collect(&mut self, doc: DocId, score: Score);
/// Returns true iff the collector requires to compute scores for documents.
fn requires_scoring(&self) -> bool;
}
impl<'a, C: Collector> Collector for &'a mut C {
@@ -74,7 +77,11 @@ impl<'a, C: Collector> Collector for &'a mut C {
}
/// The query pushes the scored document to the collector via this method.
fn collect(&mut self, doc: DocId, score: Score) {
(*self).collect(doc, score);
C::collect(self, doc, score)
}
fn requires_scoring(&self) -> bool {
C::requires_scoring(self)
}
}
@@ -82,14 +89,13 @@ impl<'a, C: Collector> Collector for &'a mut C {
pub mod tests {
use super::*;
use test::Bencher;
use DocId;
use Score;
use core::SegmentReader;
use SegmentLocalId;
use fastfield::U64FastFieldReader;
use fastfield::BytesFastFieldReader;
use fastfield::FastFieldReader;
use schema::Field;
use DocId;
use Score;
use SegmentLocalId;
/// Stores all of the doc ids.
/// This collector is only used for tests.
@@ -99,6 +105,7 @@ pub mod tests {
offset: DocId,
segment_max_doc: DocId,
docs: Vec<DocId>,
scores: Vec<Score>,
}
impl TestCollector {
@@ -106,14 +113,19 @@ pub mod tests {
pub fn docs(self) -> Vec<DocId> {
self.docs
}
pub fn scores(self) -> Vec<Score> {
self.scores
}
}
impl Default for TestCollector {
fn default() -> TestCollector {
TestCollector {
docs: Vec::new(),
offset: 0,
segment_max_doc: 0,
docs: Vec::new(),
scores: Vec::new(),
}
}
}
@@ -125,8 +137,13 @@ pub mod tests {
Ok(())
}
fn collect(&mut self, doc: DocId, _score: Score) {
fn collect(&mut self, doc: DocId, score: Score) {
self.docs.push(doc + self.offset);
self.scores.push(score);
}
fn requires_scoring(&self) -> bool {
true
}
}
@@ -137,14 +154,14 @@ pub mod tests {
pub struct FastFieldTestCollector {
vals: Vec<u64>,
field: Field,
ff_reader: Option<U64FastFieldReader>,
ff_reader: Option<FastFieldReader<u64>>,
}
impl FastFieldTestCollector {
pub fn for_field(field: Field) -> FastFieldTestCollector {
FastFieldTestCollector {
vals: Vec::new(),
field: field,
field,
ff_reader: None,
}
}
@@ -156,7 +173,7 @@ pub mod tests {
impl Collector for FastFieldTestCollector {
fn set_segment(&mut self, _: SegmentLocalId, reader: &SegmentReader) -> Result<()> {
self.ff_reader = Some(reader.get_fast_field_reader(self.field)?);
self.ff_reader = Some(reader.fast_field_reader(self.field)?);
Ok(())
}
@@ -164,8 +181,57 @@ pub mod tests {
let val = self.ff_reader.as_ref().unwrap().get(doc);
self.vals.push(val);
}
fn requires_scoring(&self) -> bool {
false
}
}
/// Collects in order all of the fast field bytes for all of the
/// docs in the `DocSet`
///
/// This collector is mainly useful for tests.
pub struct BytesFastFieldTestCollector {
vals: Vec<u8>,
field: Field,
ff_reader: Option<BytesFastFieldReader>,
}
impl BytesFastFieldTestCollector {
pub fn for_field(field: Field) -> BytesFastFieldTestCollector {
BytesFastFieldTestCollector {
vals: Vec::new(),
field,
ff_reader: None,
}
}
pub fn vals(self) -> Vec<u8> {
self.vals
}
}
impl Collector for BytesFastFieldTestCollector {
fn set_segment(&mut self, _segment_local_id: u32, segment: &SegmentReader) -> Result<()> {
self.ff_reader = Some(segment.bytes_fast_field_reader(self.field)?);
Ok(())
}
fn collect(&mut self, doc: u32, _score: f32) {
let val = self.ff_reader.as_ref().unwrap().get_val(doc);
self.vals.extend(val);
}
fn requires_scoring(&self) -> bool {
false
}
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use collector::{Collector, CountCollector};
use test::Bencher;
#[bench]
fn build_collector(b: &mut Bencher) {
b.iter(|| {

View File

@@ -1,14 +1,66 @@
use super::Collector;
use DocId;
use Score;
use Result;
use SegmentReader;
use Score;
use SegmentLocalId;
use SegmentReader;
/// Multicollector makes it possible to collect on more than one collector.
/// It should only be used for use cases where the Collector types is unknown
/// at compile time.
/// If the type of the collectors is known, you should prefer to use `ChainedCollector`.
///
/// ```rust
/// #[macro_use]
/// extern crate tantivy;
/// use tantivy::schema::{SchemaBuilder, TEXT};
/// use tantivy::{Index, Result};
/// use tantivy::collector::{CountCollector, TopCollector, MultiCollector};
/// use tantivy::query::QueryParser;
///
/// # fn main() { example().unwrap(); }
/// fn example() -> Result<()> {
/// let mut schema_builder = SchemaBuilder::new();
/// let title = schema_builder.add_text_field("title", TEXT);
/// let schema = schema_builder.build();
/// let index = Index::create_in_ram(schema);
/// {
/// let mut index_writer = index.writer(3_000_000)?;
/// index_writer.add_document(doc!(
/// title => "The Name of the Wind",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of Muadib",
/// ));
/// index_writer.add_document(doc!(
/// title => "A Dairy Cow",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of a Young Girl",
/// ));
/// index_writer.commit().unwrap();
/// }
///
/// index.load_searchers()?;
/// let searcher = index.searcher();
///
/// {
/// let mut top_collector = TopCollector::with_limit(2);
/// let mut count_collector = CountCollector::default();
/// {
/// let mut collectors =
/// MultiCollector::from(vec![&mut top_collector, &mut count_collector]);
/// let query_parser = QueryParser::for_index(&index, vec![title]);
/// let query = query_parser.parse_query("diary")?;
/// searcher.search(&*query, &mut collectors).unwrap();
/// }
/// assert_eq!(count_collector.count(), 2);
/// assert!(top_collector.at_capacity());
/// }
///
/// Ok(())
/// }
/// ```
pub struct MultiCollector<'a> {
collectors: Vec<&'a mut Collector>,
}
@@ -16,9 +68,7 @@ pub struct MultiCollector<'a> {
impl<'a> MultiCollector<'a> {
/// Constructor
pub fn from(collectors: Vec<&'a mut Collector>) -> MultiCollector {
MultiCollector {
collectors: collectors,
}
MultiCollector { collectors }
}
}
@@ -29,7 +79,7 @@ impl<'a> Collector for MultiCollector<'a> {
segment: &SegmentReader,
) -> Result<()> {
for collector in &mut self.collectors {
try!(collector.set_segment(segment_local_id, segment));
collector.set_segment(segment_local_id, segment)?;
}
Ok(())
}
@@ -39,6 +89,11 @@ impl<'a> Collector for MultiCollector<'a> {
collector.collect(doc, score);
}
}
fn requires_scoring(&self) -> bool {
self.collectors
.iter()
.any(|collector| collector.requires_scoring())
}
}
#[cfg(test)]

View File

@@ -1,12 +1,12 @@
use super::Collector;
use SegmentReader;
use SegmentLocalId;
use DocAddress;
use Result;
use std::collections::BinaryHeap;
use std::cmp::Ordering;
use std::collections::BinaryHeap;
use DocAddress;
use DocId;
use Result;
use Score;
use SegmentLocalId;
use SegmentReader;
// Rust heap is a max-heap and we need a min heap.
#[derive(Clone, Copy)]
@@ -43,7 +43,61 @@ impl Eq for GlobalScoredDoc {}
/// with the best scores.
///
/// The implementation is based on a `BinaryHeap`.
/// The theorical complexity is `O(n log K)`.
/// The theorical complexity for collecting the top `K` out of `n` documents
/// is `O(n log K)`.
///
/// ```rust
/// #[macro_use]
/// extern crate tantivy;
/// use tantivy::schema::{SchemaBuilder, TEXT};
/// use tantivy::{Index, Result, DocId, Score};
/// use tantivy::collector::TopCollector;
/// use tantivy::query::QueryParser;
///
/// # fn main() { example().unwrap(); }
/// fn example() -> Result<()> {
/// let mut schema_builder = SchemaBuilder::new();
/// let title = schema_builder.add_text_field("title", TEXT);
/// let schema = schema_builder.build();
/// let index = Index::create_in_ram(schema);
/// {
/// let mut index_writer = index.writer_with_num_threads(1, 3_000_000)?;
/// index_writer.add_document(doc!(
/// title => "The Name of the Wind",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of Muadib",
/// ));
/// index_writer.add_document(doc!(
/// title => "A Dairy Cow",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of a Young Girl",
/// ));
/// index_writer.commit().unwrap();
/// }
///
/// index.load_searchers()?;
/// let searcher = index.searcher();
///
/// {
/// let mut top_collector = TopCollector::with_limit(2);
/// let query_parser = QueryParser::for_index(&index, vec![title]);
/// let query = query_parser.parse_query("diary")?;
/// searcher.search(&*query, &mut top_collector).unwrap();
///
/// let score_docs: Vec<(Score, DocId)> = top_collector
/// .score_docs()
/// .into_iter()
/// .map(|(score, doc_address)| (score, doc_address.doc()))
/// .collect();
///
/// assert_eq!(score_docs, vec![(0.7261542, 1), (0.6099695, 3)]);
/// }
///
/// Ok(())
/// }
/// ```
pub struct TopCollector {
limit: usize,
heap: BinaryHeap<GlobalScoredDoc>,
@@ -60,7 +114,7 @@ impl TopCollector {
panic!("Limit must be strictly greater than 0.");
}
TopCollector {
limit: limit,
limit,
heap: BinaryHeap::with_capacity(limit),
segment_id: 0,
}
@@ -107,11 +161,13 @@ impl Collector for TopCollector {
fn collect(&mut self, doc: DocId, score: Score) {
if self.at_capacity() {
// It's ok to unwrap as long as a limit of 0 is forbidden.
let limit_doc: GlobalScoredDoc = *self.heap
let limit_doc: GlobalScoredDoc = *self
.heap
.peek()
.expect("Top collector with size 0 is forbidden");
if limit_doc.score < score {
let mut mut_head = self.heap
let mut mut_head = self
.heap
.peek_mut()
.expect("Top collector with size 0 is forbidden");
mut_head.score = score;
@@ -119,21 +175,25 @@ impl Collector for TopCollector {
}
} else {
let wrapped_doc = GlobalScoredDoc {
score: score,
score,
doc_address: DocAddress(self.segment_id, doc),
};
self.heap.push(wrapped_doc);
}
}
fn requires_scoring(&self) -> bool {
true
}
}
#[cfg(test)]
mod tests {
use super::*;
use collector::Collector;
use DocId;
use Score;
use collector::Collector;
#[test]
fn test_top_collector_not_at_capacity() {
@@ -182,4 +242,5 @@ mod tests {
fn test_top_0() {
TopCollector::with_limit(0);
}
}

View File

@@ -1,67 +1,39 @@
use std::io::Write;
use std::io;
use common::serialize::BinarySerializable;
use std::io;
use std::io::Write;
use std::mem;
use std::ops::Deref;
use std::ptr;
/// Computes the number of bits that will be used for bitpacking.
///
/// In general the target is the minimum number of bits
/// required to express the amplitude given in argument.
///
/// e.g. If the amplitude is 10, we can store all ints on simply 4bits.
///
/// The logic is slightly more convoluted here as for optimization
/// reasons, we want to ensure that a value spawns over at most 8 bytes
/// of aligns bytes.
///
/// Spanning over 9 bytes is possible for instance, if we do
/// bitpacking with an amplitude of 63 bits.
/// In this case, the second int will start on bit
/// 63 (which belongs to byte 7) and ends at byte 15;
/// Hence 9 bytes (from byte 7 to byte 15 included).
///
/// To avoid this, we force the number of bits to 64bits
/// when the result is greater than `64-8 = 56 bits`.
///
/// Note that this only affects rare use cases spawning over
/// a very large range of values. Even in this case, it results
/// in an extra cost of at most 12% compared to the optimal
/// number of bits.
pub fn compute_num_bits(amplitude: u64) -> u8 {
let amplitude = (64u32 - amplitude.leading_zeros()) as u8;
if amplitude <= 64 - 8 {
amplitude
} else {
64
}
}
pub struct BitPacker {
pub(crate) struct BitPacker {
mini_buffer: u64,
mini_buffer_written: usize,
num_bits: usize,
}
impl BitPacker {
pub fn new(num_bits: usize) -> BitPacker {
pub fn new() -> BitPacker {
BitPacker {
mini_buffer: 0u64,
mini_buffer_written: 0,
num_bits,
}
}
pub fn write<TWrite: Write>(&mut self, val: u64, output: &mut TWrite) -> io::Result<()> {
pub fn write<TWrite: Write>(
&mut self,
val: u64,
num_bits: u8,
output: &mut TWrite,
) -> io::Result<()> {
let val_u64 = val as u64;
if self.mini_buffer_written + self.num_bits > 64 {
let num_bits = num_bits as usize;
if self.mini_buffer_written + num_bits > 64 {
self.mini_buffer |= val_u64.wrapping_shl(self.mini_buffer_written as u32);
self.mini_buffer.serialize(output)?;
self.mini_buffer = val_u64.wrapping_shr((64 - self.mini_buffer_written) as u32);
self.mini_buffer_written = self.mini_buffer_written + (self.num_bits as usize) - 64;
self.mini_buffer_written = self.mini_buffer_written + num_bits - 64;
} else {
self.mini_buffer |= val_u64 << self.mini_buffer_written;
self.mini_buffer_written += self.num_bits;
self.mini_buffer_written += num_bits;
if self.mini_buffer_written == 64 {
self.mini_buffer.serialize(output)?;
self.mini_buffer_written = 0;
@@ -71,10 +43,10 @@ impl BitPacker {
Ok(())
}
pub(crate) fn flush<TWrite: Write>(&mut self, output: &mut TWrite) -> io::Result<()> {
pub fn flush<TWrite: Write>(&mut self, output: &mut TWrite) -> io::Result<()> {
if self.mini_buffer_written > 0 {
let num_bytes = (self.mini_buffer_written + 7) / 8;
let arr: [u8; 8] = unsafe { mem::transmute::<u64, [u8; 8]>(self.mini_buffer) };
let arr: [u8; 8] = unsafe { mem::transmute::<u64, [u8; 8]>(self.mini_buffer.to_le()) };
output.write_all(&arr[..num_bytes])?;
self.mini_buffer_written = 0;
}
@@ -89,6 +61,7 @@ impl BitPacker {
}
}
#[derive(Clone)]
pub struct BitUnpacker<Data>
where
Data: Deref<Target = [u8]>,
@@ -102,14 +75,14 @@ impl<Data> BitUnpacker<Data>
where
Data: Deref<Target = [u8]>,
{
pub fn new(data: Data, num_bits: usize) -> BitUnpacker<Data> {
pub fn new(data: Data, num_bits: u8) -> BitUnpacker<Data> {
let mask: u64 = if num_bits == 64 {
!0u64
} else {
(1u64 << num_bits) - 1u64
};
BitUnpacker {
num_bits,
num_bits: num_bits as usize,
mask,
data,
}
@@ -117,7 +90,7 @@ where
pub fn get(&self, idx: usize) -> u64 {
if self.num_bits == 0 {
return 0;
return 0u64;
}
let data: &[u8] = &*self.data;
let num_bits = self.num_bits;
@@ -125,37 +98,24 @@ where
let addr_in_bits = idx * num_bits;
let addr = addr_in_bits >> 3;
let bit_shift = addr_in_bits & 7;
if cfg!(feature = "simdcompression") {
// for simdcompression,
// the bitpacker is only used for fastfields,
// and we expect them to be always padded.
debug_assert!(
addr + 8 <= data.len(),
"The fast field field should have been padded with 7 bytes."
);
let val_unshifted_unmasked: u64 =
unsafe { *(data[addr..].as_ptr() as *const u64) };
let val_shifted = (val_unshifted_unmasked >> bit_shift) as u64;
(val_shifted & mask)
} else {
let val_unshifted_unmasked: u64 = if addr + 8 <= data.len() {
unsafe { *(data[addr..].as_ptr() as *const u64) }
} else {
let mut buffer = [0u8; 8];
for i in addr..data.len() {
buffer[i - addr] += data[i];
}
unsafe { *(buffer[..].as_ptr() as *const u64) }
};
let val_shifted = (val_unshifted_unmasked >> bit_shift) as u64;
(val_shifted & mask)
}
debug_assert!(
addr + 8 <= data.len(),
"The fast field field should have been padded with 7 bytes."
);
let val_unshifted_unmasked: u64 =
u64::from_le(unsafe { ptr::read_unaligned(data[addr..].as_ptr() as *const u64) });
let val_shifted = (val_unshifted_unmasked >> bit_shift) as u64;
val_shifted & mask
}
/// Reads a range of values from the fast field.
///
/// The range of values read is from
/// `[start..start + output.len()[`
pub fn get_range(&self, start: u32, output: &mut [u64]) {
if self.num_bits == 0 {
for val in output.iter_mut() {
*val = 0;
*val = 0u64;
}
} else {
let data: &[u8] = &*self.data;
@@ -166,7 +126,7 @@ where
let addr = addr_in_bits >> 3;
let bit_shift = addr_in_bits & 7;
let val_unshifted_unmasked: u64 =
unsafe { *(data[addr..].as_ptr() as *const u64) };
unsafe { ptr::read_unaligned(data[addr..].as_ptr() as *const u64) };
let val_shifted = (val_unshifted_unmasked >> bit_shift) as u64;
*output_val = val_shifted & mask;
addr_in_bits += num_bits;
@@ -177,37 +137,25 @@ where
#[cfg(test)]
mod test {
use super::{compute_num_bits, BitPacker, BitUnpacker};
use super::{BitPacker, BitUnpacker};
#[test]
fn test_compute_num_bits() {
assert_eq!(compute_num_bits(1), 1u8);
assert_eq!(compute_num_bits(0), 0u8);
assert_eq!(compute_num_bits(2), 2u8);
assert_eq!(compute_num_bits(3), 2u8);
assert_eq!(compute_num_bits(4), 3u8);
assert_eq!(compute_num_bits(255), 8u8);
assert_eq!(compute_num_bits(256), 9u8);
assert_eq!(compute_num_bits(5_000_000_000), 33u8);
}
fn create_fastfield_bitpacker(len: usize, num_bits: usize) -> (BitUnpacker<Vec<u8>>, Vec<u64>) {
fn create_fastfield_bitpacker(len: usize, num_bits: u8) -> (BitUnpacker<Vec<u8>>, Vec<u64>) {
let mut data = Vec::new();
let mut bitpacker = BitPacker::new(num_bits);
let max_val: u64 = (1 << num_bits) - 1;
let mut bitpacker = BitPacker::new();
let max_val: u64 = (1u64 << num_bits as u64) - 1u64;
let vals: Vec<u64> = (0u64..len as u64)
.map(|i| if max_val == 0 { 0 } else { i % max_val })
.collect();
for &val in &vals {
bitpacker.write(val, &mut data).unwrap();
bitpacker.write(val, num_bits, &mut data).unwrap();
}
bitpacker.close(&mut data).unwrap();
assert_eq!(data.len(), (num_bits * len + 7) / 8 + 7);
assert_eq!(data.len(), ((num_bits as usize) * len + 7) / 8 + 7);
let bitunpacker = BitUnpacker::new(data, num_bits);
(bitunpacker, vals)
}
fn test_bitpacker_util(len: usize, num_bits: usize) {
fn test_bitpacker_util(len: usize, num_bits: u8) {
let (bitunpacker, vals) = create_fastfield_bitpacker(len, num_bits);
for (i, val) in vals.iter().enumerate() {
assert_eq!(bitunpacker.get(i), *val);

395
src/common/bitset.rs Normal file
View File

@@ -0,0 +1,395 @@
use std::fmt;
use std::u64;
#[derive(Clone, Copy, Eq, PartialEq)]
pub(crate) struct TinySet(u64);
impl fmt::Debug for TinySet {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.into_iter().collect::<Vec<u32>>().fmt(f)
}
}
pub struct TinySetIterator(TinySet);
impl Iterator for TinySetIterator {
type Item = u32;
fn next(&mut self) -> Option<Self::Item> {
self.0.pop_lowest()
}
}
impl IntoIterator for TinySet {
type Item = u32;
type IntoIter = TinySetIterator;
fn into_iter(self) -> Self::IntoIter {
TinySetIterator(self)
}
}
impl TinySet {
/// Returns an empty `TinySet`.
pub fn empty() -> TinySet {
TinySet(0u64)
}
/// Returns the complement of the set in `[0, 64[`.
fn complement(&self) -> TinySet {
TinySet(!self.0)
}
/// Returns true iff the `TinySet` contains the element `el`.
pub fn contains(&self, el: u32) -> bool {
!self.intersect(TinySet::singleton(el)).is_empty()
}
/// Returns the intersection of `self` and `other`
pub fn intersect(&self, other: TinySet) -> TinySet {
TinySet(self.0 & other.0)
}
/// Creates a new `TinySet` containing only one element
/// within `[0; 64[`
#[inline(always)]
pub fn singleton(el: u32) -> TinySet {
TinySet(1u64 << u64::from(el))
}
/// Insert a new element within [0..64[
#[inline(always)]
pub fn insert(self, el: u32) -> TinySet {
self.union(TinySet::singleton(el))
}
/// Insert a new element within [0..64[
#[inline(always)]
pub fn insert_mut(&mut self, el: u32) -> bool {
let old = *self;
*self = old.insert(el);
old != *self
}
/// Returns the union of two tinysets
#[inline(always)]
pub fn union(self, other: TinySet) -> TinySet {
TinySet(self.0 | other.0)
}
/// Returns true iff the `TinySet` is empty.
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.0 == 0u64
}
/// Returns the lowest element in the `TinySet`
/// and removes it.
#[inline(always)]
pub fn pop_lowest(&mut self) -> Option<u32> {
if self.is_empty() {
None
} else {
let lowest = self.0.trailing_zeros() as u32;
self.0 ^= TinySet::singleton(lowest).0;
Some(lowest)
}
}
/// Returns a `TinySet` than contains all values up
/// to limit excluded.
///
/// The limit is assumed to be strictly lower than 64.
pub fn range_lower(upper_bound: u32) -> TinySet {
TinySet((1u64 << u64::from(upper_bound % 64u32)) - 1u64)
}
/// Returns a `TinySet` that contains all values greater
/// or equal to the given limit, included. (and up to 63)
///
/// The limit is assumed to be strictly lower than 64.
pub fn range_greater_or_equal(from_included: u32) -> TinySet {
TinySet::range_lower(from_included).complement()
}
pub fn clear(&mut self) {
self.0 = 0u64;
}
pub fn len(&self) -> u32 {
self.0.count_ones()
}
}
#[derive(Clone)]
pub struct BitSet {
tinysets: Box<[TinySet]>,
len: usize, //< Technically it should be u32, but we
// count multiple inserts.
// `usize` guards us from overflow.
max_value: u32,
}
fn num_buckets(max_val: u32) -> u32 {
(max_val + 63u32) / 64u32
}
impl BitSet {
/// Create a new `BitSet` that may contain elements
/// within `[0, max_val[`.
pub fn with_max_value(max_value: u32) -> BitSet {
let num_buckets = num_buckets(max_value);
let tinybisets = vec![TinySet::empty(); num_buckets as usize].into_boxed_slice();
BitSet {
tinysets: tinybisets,
len: 0,
max_value,
}
}
/// Removes all elements from the `BitSet`.
pub fn clear(&mut self) {
for tinyset in self.tinysets.iter_mut() {
*tinyset = TinySet::empty();
}
}
/// Returns the number of elements in the `BitSet`.
pub fn len(&self) -> usize {
self.len
}
/// Inserts an element in the `BitSet`
pub fn insert(&mut self, el: u32) {
// we do not check saturated els.
let higher = el / 64u32;
let lower = el % 64u32;
self.len += if self.tinysets[higher as usize].insert_mut(lower) {
1
} else {
0
};
}
/// Returns true iff the elements is in the `BitSet`.
pub fn contains(&self, el: u32) -> bool {
self.tinyset(el / 64u32).contains(el % 64)
}
/// Returns the first non-empty `TinySet` associated to a bucket lower
/// or greater than bucket.
///
/// Reminder: the tiny set with the bucket `bucket`, represents the
/// elements from `bucket * 64` to `(bucket+1) * 64`.
pub(crate) fn first_non_empty_bucket(&self, bucket: u32) -> Option<u32> {
self.tinysets[bucket as usize..]
.iter()
.cloned()
.position(|tinyset| !tinyset.is_empty())
.map(|delta_bucket| bucket + delta_bucket as u32)
}
pub fn max_value(&self) -> u32 {
self.max_value
}
/// Returns the tiny bitset representing the
/// the set restricted to the number range from
/// `bucket * 64` to `(bucket + 1) * 64`.
pub(crate) fn tinyset(&self, bucket: u32) -> TinySet {
self.tinysets[bucket as usize]
}
}
#[cfg(test)]
mod tests {
use super::BitSet;
use super::TinySet;
use docset::DocSet;
use query::BitSetDocSet;
use std::collections::BTreeSet;
use std::collections::HashSet;
use tests;
use tests::generate_nonunique_unsorted;
#[test]
fn test_tiny_set() {
assert!(TinySet::empty().is_empty());
{
let mut u = TinySet::empty().insert(1u32);
assert_eq!(u.pop_lowest(), Some(1u32));
assert!(u.pop_lowest().is_none())
}
{
let mut u = TinySet::empty().insert(1u32).insert(1u32);
assert_eq!(u.pop_lowest(), Some(1u32));
assert!(u.pop_lowest().is_none())
}
{
let mut u = TinySet::empty().insert(2u32);
assert_eq!(u.pop_lowest(), Some(2u32));
u.insert_mut(1u32);
assert_eq!(u.pop_lowest(), Some(1u32));
assert!(u.pop_lowest().is_none());
}
{
let mut u = TinySet::empty().insert(63u32);
assert_eq!(u.pop_lowest(), Some(63u32));
assert!(u.pop_lowest().is_none());
}
}
#[test]
fn test_bitset() {
let test_against_hashset = |els: &[u32], max_value: u32| {
let mut hashset: HashSet<u32> = HashSet::new();
let mut bitset = BitSet::with_max_value(max_value);
for &el in els {
assert!(el < max_value);
hashset.insert(el);
bitset.insert(el);
}
for el in 0..max_value {
assert_eq!(hashset.contains(&el), bitset.contains(el));
}
assert_eq!(bitset.max_value(), max_value);
};
test_against_hashset(&[], 0);
test_against_hashset(&[], 1);
test_against_hashset(&[0u32], 1);
test_against_hashset(&[0u32], 100);
test_against_hashset(&[1u32, 2u32], 4);
test_against_hashset(&[99u32], 100);
test_against_hashset(&[63u32], 64);
test_against_hashset(&[62u32, 63u32], 64);
}
#[test]
fn test_bitset_large() {
let arr = generate_nonunique_unsorted(1_000_000, 50_000);
let mut btreeset: BTreeSet<u32> = BTreeSet::new();
let mut bitset = BitSet::with_max_value(1_000_000);
for el in arr {
btreeset.insert(el);
bitset.insert(el);
}
for i in 0..1_000_000 {
assert_eq!(btreeset.contains(&i), bitset.contains(i));
}
assert_eq!(btreeset.len(), bitset.len());
let mut bitset_docset = BitSetDocSet::from(bitset);
for el in btreeset.into_iter() {
bitset_docset.advance();
assert_eq!(bitset_docset.doc(), el);
}
assert!(!bitset_docset.advance());
}
#[test]
fn test_bitset_num_buckets() {
use super::num_buckets;
assert_eq!(num_buckets(0u32), 0);
assert_eq!(num_buckets(1u32), 1);
assert_eq!(num_buckets(64u32), 1);
assert_eq!(num_buckets(65u32), 2);
assert_eq!(num_buckets(128u32), 2);
assert_eq!(num_buckets(129u32), 3);
}
#[test]
fn test_tinyset_range() {
assert_eq!(
TinySet::range_lower(3).into_iter().collect::<Vec<u32>>(),
[0, 1, 2]
);
assert!(TinySet::range_lower(0).is_empty());
assert_eq!(
TinySet::range_lower(63).into_iter().collect::<Vec<u32>>(),
(0u32..63u32).collect::<Vec<_>>()
);
assert_eq!(
TinySet::range_lower(1).into_iter().collect::<Vec<u32>>(),
[0]
);
assert_eq!(
TinySet::range_lower(2).into_iter().collect::<Vec<u32>>(),
[0, 1]
);
assert_eq!(
TinySet::range_greater_or_equal(3)
.into_iter()
.collect::<Vec<u32>>(),
(3u32..64u32).collect::<Vec<_>>()
);
}
#[test]
fn test_bitset_len() {
let mut bitset = BitSet::with_max_value(1_000);
assert_eq!(bitset.len(), 0);
bitset.insert(3u32);
assert_eq!(bitset.len(), 1);
bitset.insert(103u32);
assert_eq!(bitset.len(), 2);
bitset.insert(3u32);
assert_eq!(bitset.len(), 2);
bitset.insert(103u32);
assert_eq!(bitset.len(), 2);
bitset.insert(104u32);
assert_eq!(bitset.len(), 3);
}
#[test]
fn test_bitset_clear() {
let mut bitset = BitSet::with_max_value(1_000);
let els = tests::sample(1_000, 0.01f32);
for &el in &els {
bitset.insert(el);
}
assert!(els.iter().all(|el| bitset.contains(*el)));
bitset.clear();
for el in 0u32..1000u32 {
assert!(!bitset.contains(el));
}
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use super::BitSet;
use super::TinySet;
use test;
#[bench]
fn bench_tinyset_pop(b: &mut test::Bencher) {
b.iter(|| {
let mut tinyset = TinySet::singleton(test::black_box(31u32));
tinyset.pop_lowest();
tinyset.pop_lowest();
tinyset.pop_lowest();
tinyset.pop_lowest();
tinyset.pop_lowest();
tinyset.pop_lowest();
});
}
#[bench]
fn bench_tinyset_sum(b: &mut test::Bencher) {
let tiny_set = TinySet::empty().insert(10u32).insert(14u32).insert(21u32);
b.iter(|| {
assert_eq!(test::black_box(tiny_set).into_iter().sum::<u32>(), 45u32);
});
}
#[bench]
fn bench_tinyarr_sum(b: &mut test::Bencher) {
let v = [10u32, 14u32, 21u32];
b.iter(|| test::black_box(v).iter().cloned().sum::<u32>());
}
#[bench]
fn bench_bitset_initialize(b: &mut test::Bencher) {
b.iter(|| BitSet::with_max_value(1_000_000));
}
}

View File

@@ -1,17 +1,43 @@
use std::io::Write;
use common::CountingWriter;
use std::collections::HashMap;
use schema::Field;
use common::VInt;
use directory::WritePtr;
use std::io;
use directory::ReadOnlySource;
use common::BinarySerializable;
use common::CountingWriter;
use common::VInt;
use directory::ReadOnlySource;
use directory::WritePtr;
use schema::Field;
use std::collections::HashMap;
use std::io::Write;
use std::io::{self, Read};
#[derive(Eq, PartialEq, Hash, Copy, Ord, PartialOrd, Clone, Debug)]
pub struct FileAddr {
field: Field,
idx: usize,
}
impl FileAddr {
fn new(field: Field, idx: usize) -> FileAddr {
FileAddr { field, idx }
}
}
impl BinarySerializable for FileAddr {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
self.field.serialize(writer)?;
VInt(self.idx as u64).serialize(writer)?;
Ok(())
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
let field = Field::deserialize(reader)?;
let idx = VInt::deserialize(reader)?.0 as usize;
Ok(FileAddr { field, idx })
}
}
/// A `CompositeWrite` is used to write a `CompositeFile`.
pub struct CompositeWrite<W = WritePtr> {
write: CountingWriter<W>,
offsets: HashMap<Field, usize>,
offsets: HashMap<FileAddr, usize>,
}
impl<W: Write> CompositeWrite<W> {
@@ -26,9 +52,15 @@ impl<W: Write> CompositeWrite<W> {
/// Start writing a new field.
pub fn for_field(&mut self, field: Field) -> &mut CountingWriter<W> {
self.for_field_with_idx(field, 0)
}
/// Start writing a new field.
pub fn for_field_with_idx(&mut self, field: Field, idx: usize) -> &mut CountingWriter<W> {
let offset = self.write.written_bytes();
assert!(!self.offsets.contains_key(&field));
self.offsets.insert(field, offset);
let file_addr = FileAddr::new(field, idx);
assert!(!self.offsets.contains_key(&file_addr));
self.offsets.insert(file_addr, offset);
&mut self.write
}
@@ -40,18 +72,19 @@ impl<W: Write> CompositeWrite<W> {
let footer_offset = self.write.written_bytes();
VInt(self.offsets.len() as u64).serialize(&mut self.write)?;
let mut offset_fields: Vec<_> = self.offsets
let mut offset_fields: Vec<_> = self
.offsets
.iter()
.map(|(field, offset)| (offset, field))
.map(|(file_addr, offset)| (*offset, *file_addr))
.collect();
offset_fields.sort();
let mut prev_offset = 0;
for (offset, field) in offset_fields {
for (offset, file_addr) in offset_fields {
VInt((offset - prev_offset) as u64).serialize(&mut self.write)?;
field.serialize(&mut self.write)?;
prev_offset = *offset;
file_addr.serialize(&mut self.write)?;
prev_offset = offset;
}
let footer_len = (self.write.written_bytes() - footer_offset) as u32;
@@ -70,7 +103,7 @@ impl<W: Write> CompositeWrite<W> {
#[derive(Clone)]
pub struct CompositeFile {
data: ReadOnlySource,
offsets_index: HashMap<Field, (usize, usize)>,
offsets_index: HashMap<FileAddr, (usize, usize)>,
}
impl CompositeFile {
@@ -86,7 +119,7 @@ impl CompositeFile {
let mut footer_buffer = footer_data.as_slice();
let num_fields = VInt::deserialize(&mut footer_buffer)?.0 as usize;
let mut fields = vec![];
let mut file_addrs = vec![];
let mut offsets = vec![];
let mut field_index = HashMap::new();
@@ -94,16 +127,16 @@ impl CompositeFile {
let mut offset = 0;
for _ in 0..num_fields {
offset += VInt::deserialize(&mut footer_buffer)?.0 as usize;
let field = Field::deserialize(&mut footer_buffer)?;
let file_addr = FileAddr::deserialize(&mut footer_buffer)?;
offsets.push(offset);
fields.push(field);
file_addrs.push(file_addr);
}
offsets.push(footer_start);
for i in 0..num_fields {
let field = fields[i];
let file_addr = file_addrs[i];
let start_offset = offsets[i];
let end_offset = offsets[i + 1];
field_index.insert(field, (start_offset, end_offset));
field_index.insert(file_addr, (start_offset, end_offset));
}
Ok(CompositeFile {
@@ -124,8 +157,14 @@ impl CompositeFile {
/// Returns the `ReadOnlySource` associated
/// to a given `Field` and stored in a `CompositeFile`.
pub fn open_read(&self, field: Field) -> Option<ReadOnlySource> {
self.open_read_with_idx(field, 0)
}
/// Returns the `ReadOnlySource` associated
/// to a given `Field` and stored in a `CompositeFile`.
pub fn open_read_with_idx(&self, field: Field, idx: usize) -> Option<ReadOnlySource> {
self.offsets_index
.get(&field)
.get(&FileAddr { field, idx })
.map(|&(from, to)| self.data.slice(from, to))
}
}
@@ -133,12 +172,12 @@ impl CompositeFile {
#[cfg(test)]
mod test {
use std::io::Write;
use super::{CompositeFile, CompositeWrite};
use common::BinarySerializable;
use common::VInt;
use directory::{Directory, RAMDirectory};
use schema::Field;
use common::VInt;
use common::BinarySerializable;
use std::io::Write;
use std::path::Path;
#[test]

View File

@@ -1,5 +1,5 @@
use std::io::Write;
use std::io;
use std::io::Write;
pub struct CountingWriter<W> {
underlying: W,

View File

@@ -1,22 +1,59 @@
mod serialize;
mod timer;
mod vint;
mod counting_writer;
mod composite_file;
pub mod bitpacker;
mod bitset;
mod composite_file;
mod counting_writer;
mod serialize;
mod vint;
pub use self::bitset::BitSet;
pub(crate) use self::bitset::TinySet;
pub(crate) use self::composite_file::{CompositeFile, CompositeWrite};
pub use self::serialize::BinarySerializable;
pub use self::timer::Timing;
pub use self::timer::TimerTree;
pub use self::timer::OpenTimer;
pub use self::vint::VInt;
pub use self::counting_writer::CountingWriter;
pub use self::serialize::{BinarySerializable, FixedSize};
pub use self::vint::VInt;
pub use byteorder::LittleEndian as Endianness;
use std::io;
/// Computes the number of bits that will be used for bitpacking.
///
/// In general the target is the minimum number of bits
/// required to express the amplitude given in argument.
///
/// e.g. If the amplitude is 10, we can store all ints on simply 4bits.
///
/// The logic is slightly more convoluted here as for optimization
/// reasons, we want to ensure that a value spawns over at most 8 bytes
/// of aligns bytes.
///
/// Spanning over 9 bytes is possible for instance, if we do
/// bitpacking with an amplitude of 63 bits.
/// In this case, the second int will start on bit
/// 63 (which belongs to byte 7) and ends at byte 15;
/// Hence 9 bytes (from byte 7 to byte 15 included).
///
/// To avoid this, we force the number of bits to 64bits
/// when the result is greater than `64-8 = 56 bits`.
///
/// Note that this only affects rare use cases spawning over
/// a very large range of values. Even in this case, it results
/// in an extra cost of at most 12% compared to the optimal
/// number of bits.
pub(crate) fn compute_num_bits(n: u64) -> u8 {
let amplitude = (64u32 - n.leading_zeros()) as u8;
if amplitude <= 64 - 8 {
amplitude
} else {
64
}
}
pub(crate) fn is_power_of_2(n: usize) -> bool {
(n > 0) && (n & (n - 1) == 0)
}
/// Create a default io error given a string.
pub fn make_io_err(msg: String) -> io::Error {
pub(crate) fn make_io_err(msg: String) -> io::Error {
io::Error::new(io::ErrorKind::Other, msg)
}
@@ -65,9 +102,10 @@ pub fn u64_to_i64(val: u64) -> i64 {
}
#[cfg(test)]
mod test {
pub(crate) mod test {
use super::{i64_to_u64, u64_to_i64};
pub use super::serialize::test::fixed_size_test;
use super::{compute_num_bits, i64_to_u64, u64_to_i64};
fn test_i64_converter_helper(val: i64) {
assert_eq!(u64_to_i64(i64_to_u64(val)), val);
@@ -84,4 +122,16 @@ mod test {
test_i64_converter_helper(i);
}
}
#[test]
fn test_compute_num_bits() {
assert_eq!(compute_num_bits(1), 1u8);
assert_eq!(compute_num_bits(0), 0u8);
assert_eq!(compute_num_bits(2), 2u8);
assert_eq!(compute_num_bits(3), 2u8);
assert_eq!(compute_num_bits(4), 3u8);
assert_eq!(compute_num_bits(255), 8u8);
assert_eq!(compute_num_bits(256), 9u8);
assert_eq!(compute_num_bits(5_000_000_000), 33u8);
}
}

View File

@@ -1,16 +1,25 @@
use byteorder::{ReadBytesExt, WriteBytesExt};
use byteorder::LittleEndian as Endianness;
use std::fmt;
use std::io::Write;
use std::io::Read;
use std::io;
use common::Endianness;
use common::VInt;
use std::fmt;
use std::io;
use std::io::Read;
use std::io::Write;
/// Trait for a simple binary serialization.
pub trait BinarySerializable: fmt::Debug + Sized {
/// Serialize
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()>;
/// Deserialize
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self>;
}
/// `FixedSize` marks a `BinarySerializable` as
/// always serializing to the same size.
pub trait FixedSize: BinarySerializable {
const SIZE_IN_BYTES: usize;
}
impl BinarySerializable for () {
fn serialize<W: Write>(&self, _: &mut W) -> io::Result<()> {
Ok(())
@@ -20,6 +29,10 @@ impl BinarySerializable for () {
}
}
impl FixedSize for () {
const SIZE_IN_BYTES: usize = 0;
}
impl<T: BinarySerializable> BinarySerializable for Vec<T> {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
VInt(self.len() as u64).serialize(writer)?;
@@ -59,6 +72,10 @@ impl BinarySerializable for u32 {
}
}
impl FixedSize for u32 {
const SIZE_IN_BYTES: usize = 4;
}
impl BinarySerializable for u64 {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u64::<Endianness>(*self)
@@ -68,6 +85,10 @@ impl BinarySerializable for u64 {
}
}
impl FixedSize for u64 {
const SIZE_IN_BYTES: usize = 8;
}
impl BinarySerializable for i64 {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_i64::<Endianness>(*self)
@@ -77,6 +98,10 @@ impl BinarySerializable for i64 {
}
}
impl FixedSize for i64 {
const SIZE_IN_BYTES: usize = 8;
}
impl BinarySerializable for u8 {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u8(*self)
@@ -86,6 +111,10 @@ impl BinarySerializable for u8 {
}
}
impl FixedSize for u8 {
const SIZE_IN_BYTES: usize = 1;
}
impl BinarySerializable for String {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
let data: &[u8] = self.as_bytes();
@@ -104,63 +133,78 @@ impl BinarySerializable for String {
}
#[cfg(test)]
mod test {
pub mod test {
use common::VInt;
use super::*;
use common::VInt;
fn serialize_test<T: BinarySerializable + Eq>(v: T, num_bytes: usize) {
pub fn fixed_size_test<O: BinarySerializable + FixedSize + Default>() {
let mut buffer = Vec::new();
O::default().serialize(&mut buffer).unwrap();
assert_eq!(buffer.len(), O::SIZE_IN_BYTES);
}
fn serialize_test<T: BinarySerializable + Eq>(v: T) -> usize {
let mut buffer: Vec<u8> = Vec::new();
if num_bytes != 0 {
v.serialize(&mut buffer).unwrap();
assert_eq!(buffer.len(), num_bytes);
} else {
v.serialize(&mut buffer).unwrap();
}
v.serialize(&mut buffer).unwrap();
let num_bytes = buffer.len();
let mut cursor = &buffer[..];
let deser = T::deserialize(&mut cursor).unwrap();
assert_eq!(deser, v);
num_bytes
}
#[test]
fn test_serialize_u8() {
serialize_test(3u8, 1);
serialize_test(5u8, 1);
fixed_size_test::<u8>();
}
#[test]
fn test_serialize_u32() {
serialize_test(3u32, 4);
serialize_test(5u32, 4);
serialize_test(u32::max_value(), 4);
fixed_size_test::<u32>();
assert_eq!(4, serialize_test(3u32));
assert_eq!(4, serialize_test(5u32));
assert_eq!(4, serialize_test(u32::max_value()));
}
#[test]
fn test_serialize_i64() {
fixed_size_test::<i64>();
}
#[test]
fn test_serialize_u64() {
fixed_size_test::<u64>();
}
#[test]
fn test_serialize_string() {
serialize_test(String::from(""), 1);
serialize_test(String::from("ぽよぽよ"), 1 + 3 * 4);
serialize_test(String::from("富士さん見える。"), 1 + 3 * 8);
assert_eq!(serialize_test(String::from("")), 1);
assert_eq!(serialize_test(String::from("ぽよぽよ")), 1 + 3 * 4);
assert_eq!(
serialize_test(String::from("富士さん見える。")),
1 + 3 * 8
);
}
#[test]
fn test_serialize_vec() {
let v: Vec<u8> = Vec::new();
serialize_test(v, 1);
serialize_test(vec![1u32, 3u32], 1 + 4 * 2);
assert_eq!(serialize_test(Vec::<u8>::new()), 1);
assert_eq!(serialize_test(vec![1u32, 3u32]), 1 + 4 * 2);
}
#[test]
fn test_serialize_vint() {
for i in 0..10_000 {
serialize_test(VInt(i as u64), 0);
serialize_test(VInt(i as u64));
}
serialize_test(VInt(7u64), 1);
serialize_test(VInt(127u64), 1);
serialize_test(VInt(128u64), 2);
serialize_test(VInt(129u64), 2);
serialize_test(VInt(1234u64), 2);
serialize_test(VInt(16_383), 2);
serialize_test(VInt(16_384), 3);
serialize_test(VInt(u64::max_value()), 10);
assert_eq!(serialize_test(VInt(7u64)), 1);
assert_eq!(serialize_test(VInt(127u64)), 1);
assert_eq!(serialize_test(VInt(128u64)), 2);
assert_eq!(serialize_test(VInt(129u64)), 2);
assert_eq!(serialize_test(VInt(1234u64)), 2);
assert_eq!(serialize_test(VInt(16_383u64)), 2);
assert_eq!(serialize_test(VInt(16_384u64)), 3);
assert_eq!(serialize_test(VInt(u64::max_value())), 10);
}
}

View File

@@ -1,99 +0,0 @@
use time::PreciseTime;
pub struct OpenTimer<'a> {
name: &'static str,
timer_tree: &'a mut TimerTree,
start: PreciseTime,
depth: u32,
}
impl<'a> OpenTimer<'a> {
/// Starts timing a new named subtask
///
/// The timer is stopped automatically
/// when the `OpenTimer` is dropped.
pub fn open(&mut self, name: &'static str) -> OpenTimer {
OpenTimer {
name: name,
timer_tree: self.timer_tree,
start: PreciseTime::now(),
depth: self.depth + 1,
}
}
}
impl<'a> Drop for OpenTimer<'a> {
fn drop(&mut self) {
self.timer_tree.timings.push(Timing {
name: self.name,
duration: self.start
.to(PreciseTime::now())
.num_microseconds()
.unwrap(),
depth: self.depth,
});
}
}
/// Timing recording
#[derive(Debug, Serialize)]
pub struct Timing {
name: &'static str,
duration: i64,
depth: u32,
}
/// Timer tree
#[derive(Debug, Serialize)]
pub struct TimerTree {
timings: Vec<Timing>,
}
impl TimerTree {
/// Returns the total time elapsed in microseconds
pub fn total_time(&self) -> i64 {
self.timings.last().unwrap().duration
}
/// Open a new named subtask
pub fn open(&mut self, name: &'static str) -> OpenTimer {
OpenTimer {
name: name,
timer_tree: self,
start: PreciseTime::now(),
depth: 0,
}
}
}
impl Default for TimerTree {
fn default() -> TimerTree {
TimerTree {
timings: Vec::new(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_timer() {
let mut timer_tree = TimerTree::default();
{
let mut a = timer_tree.open("a");
{
let mut ab = a.open("b");
{
let _abc = ab.open("c");
}
{
let _abd = ab.open("d");
}
}
}
assert_eq!(timer_tree.timings.len(), 4);
}
}

View File

@@ -1,7 +1,7 @@
use super::BinarySerializable;
use std::io;
use std::io::Write;
use std::io::Read;
use std::io::Write;
/// Wrapper over a `u64` that serializes as a variable int.
#[derive(Debug, Eq, PartialEq)]
@@ -11,6 +11,10 @@ impl VInt {
pub fn val(&self) -> u64 {
self.0
}
pub fn deserialize_u64<R: Read>(reader: &mut R) -> io::Result<u64> {
VInt::deserialize(reader).map(|vint| vint.0)
}
}
impl BinarySerializable for VInt {

View File

@@ -3,39 +3,106 @@
mod stream;
pub const COMPRESSION_BLOCK_SIZE: usize = 128;
const COMPRESSED_BLOCK_MAX_SIZE: usize = COMPRESSION_BLOCK_SIZE * 4 + 1;
pub use self::stream::CompressedIntStream;
#[cfg(not(feature = "simdcompression"))]
mod pack {
mod compression_pack_nosimd;
pub use self::compression_pack_nosimd::{BlockDecoder, BlockEncoder};
}
#[cfg(feature = "simdcompression")]
mod pack {
mod compression_pack_simd;
pub use self::compression_pack_simd::{BlockDecoder, BlockEncoder};
}
pub use self::pack::{BlockDecoder, BlockEncoder};
#[cfg(any(not(feature = "simdcompression"), target_env = "msvc"))]
mod vint {
mod compression_vint_nosimd;
pub(crate) use self::compression_vint_nosimd::*;
}
#[cfg(all(feature = "simdcompression", not(target_env = "msvc")))]
mod vint {
mod compression_vint_simd;
pub(crate) use self::compression_vint_simd::*;
}
use bitpacking::{BitPacker, BitPacker4x};
/// Returns the size in bytes of a compressed block, given `num_bits`.
pub fn compressed_block_size(num_bits: u8) -> usize {
1 + (num_bits as usize) * 16
1 + (num_bits as usize) * COMPRESSION_BLOCK_SIZE / 8
}
pub struct BlockEncoder {
bitpacker: BitPacker4x,
pub output: [u8; COMPRESSED_BLOCK_MAX_SIZE],
pub output_len: usize,
}
impl BlockEncoder {
pub fn new() -> BlockEncoder {
BlockEncoder {
bitpacker: BitPacker4x::new(),
output: [0u8; COMPRESSED_BLOCK_MAX_SIZE],
output_len: 0,
}
}
pub fn compress_block_sorted(&mut self, block: &[u32], offset: u32) -> &[u8] {
let num_bits = self.bitpacker.num_bits_sorted(offset, block);
self.output[0] = num_bits;
let written_size =
1 + self
.bitpacker
.compress_sorted(offset, block, &mut self.output[1..], num_bits);
&self.output[..written_size]
}
pub fn compress_block_unsorted(&mut self, block: &[u32]) -> &[u8] {
let num_bits = self.bitpacker.num_bits(block);
self.output[0] = num_bits;
let written_size = 1 + self
.bitpacker
.compress(block, &mut self.output[1..], num_bits);
&self.output[..written_size]
}
}
pub struct BlockDecoder {
bitpacker: BitPacker4x,
pub output: [u32; COMPRESSION_BLOCK_SIZE + 1],
pub output_len: usize,
}
impl BlockDecoder {
pub fn new() -> BlockDecoder {
BlockDecoder::with_val(0u32)
}
pub fn with_val(val: u32) -> BlockDecoder {
let mut output = [val; COMPRESSION_BLOCK_SIZE + 1];
output[COMPRESSION_BLOCK_SIZE] = 0u32;
BlockDecoder {
bitpacker: BitPacker4x::new(),
output,
output_len: 0,
}
}
pub fn uncompress_block_sorted(&mut self, compressed_data: &[u8], offset: u32) -> usize {
let num_bits = compressed_data[0];
self.output_len = COMPRESSION_BLOCK_SIZE;
1 + self.bitpacker.decompress_sorted(
offset,
&compressed_data[1..],
&mut self.output,
num_bits,
)
}
pub fn uncompress_block_unsorted<'a>(&mut self, compressed_data: &'a [u8]) -> usize {
let num_bits = compressed_data[0];
self.output_len = COMPRESSION_BLOCK_SIZE;
1 + self
.bitpacker
.decompress(&compressed_data[1..], &mut self.output, num_bits)
}
#[inline]
pub fn output_array(&self) -> &[u32] {
&self.output[..self.output_len]
}
#[inline]
pub fn output(&self, idx: usize) -> u32 {
self.output[idx]
}
}
mod vint;
pub trait VIntEncoder {
/// Compresses an array of `u32` integers,
/// using [delta-encoding](https://en.wikipedia.org/wiki/Delta_encoding)
@@ -112,14 +179,10 @@ impl VIntDecoder for BlockDecoder {
}
}
pub const COMPRESSION_BLOCK_SIZE: usize = 128;
#[cfg(test)]
pub mod tests {
use super::*;
use tests;
use test::Bencher;
#[test]
fn test_encode_sorted_block() {
@@ -208,11 +271,34 @@ pub mod tests {
}
}
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use super::*;
use rand::Rng;
use rand::SeedableRng;
use rand::XorShiftRng;
use test::Bencher;
fn generate_array_with_seed(n: usize, ratio: f32, seed_val: u32) -> Vec<u32> {
let seed: &[u32; 4] = &[1, 2, 3, seed_val];
let mut rng: XorShiftRng = XorShiftRng::from_seed(*seed);
(0..u32::max_value())
.filter(|_| rng.next_f32() < ratio)
.take(n)
.collect()
}
pub fn generate_array(n: usize, ratio: f32) -> Vec<u32> {
generate_array_with_seed(n, ratio, 4)
}
#[bench]
fn bench_compress(b: &mut Bencher) {
let mut encoder = BlockEncoder::new();
let data = tests::generate_array(COMPRESSION_BLOCK_SIZE, 0.1);
let data = generate_array(COMPRESSION_BLOCK_SIZE, 0.1);
b.iter(|| {
encoder.compress_block_sorted(&data, 0u32);
});
@@ -221,7 +307,7 @@ pub mod tests {
#[bench]
fn bench_uncompress(b: &mut Bencher) {
let mut encoder = BlockEncoder::new();
let data = tests::generate_array(COMPRESSION_BLOCK_SIZE, 0.1);
let data = generate_array(COMPRESSION_BLOCK_SIZE, 0.1);
let compressed = encoder.compress_block_sorted(&data, 0u32);
let mut decoder = BlockDecoder::new();
b.iter(|| {
@@ -248,7 +334,7 @@ pub mod tests {
#[bench]
fn bench_compress_vint(b: &mut Bencher) {
let mut encoder = BlockEncoder::new();
let data = tests::generate_array(NUM_INTS_BENCH_VINT, 0.001);
let data = generate_array(NUM_INTS_BENCH_VINT, 0.001);
b.iter(|| {
encoder.compress_vint_sorted(&data, 0u32);
});
@@ -257,12 +343,11 @@ pub mod tests {
#[bench]
fn bench_uncompress_vint(b: &mut Bencher) {
let mut encoder = BlockEncoder::new();
let data = tests::generate_array(NUM_INTS_BENCH_VINT, 0.001);
let data = generate_array(NUM_INTS_BENCH_VINT, 0.001);
let compressed = encoder.compress_vint_sorted(&data, 0u32);
let mut decoder = BlockDecoder::new();
b.iter(|| {
decoder.uncompress_vint_sorted(compressed, 0u32, NUM_INTS_BENCH_VINT);
});
}
}

View File

@@ -1,142 +0,0 @@
use common::bitpacker::compute_num_bits;
use common::bitpacker::{BitPacker, BitUnpacker};
use common::CountingWriter;
use std::cmp;
use std::io::Write;
use super::super::COMPRESSION_BLOCK_SIZE;
const COMPRESSED_BLOCK_MAX_SIZE: usize = COMPRESSION_BLOCK_SIZE * 4 + 1;
pub fn compress_sorted(vals: &mut [u32], output: &mut [u8], offset: u32) -> usize {
let mut max_delta = 0;
{
let mut local_offset = offset;
for i in 0..COMPRESSION_BLOCK_SIZE {
let val = vals[i];
let delta = val - local_offset;
max_delta = cmp::max(max_delta, delta);
vals[i] = delta;
local_offset = val;
}
}
let mut counting_writer = CountingWriter::wrap(output);
let num_bits = compute_num_bits(max_delta as u64);
counting_writer.write_all(&[num_bits]).unwrap();
let mut bit_packer = BitPacker::new(num_bits as usize);
for val in vals {
bit_packer.write(*val as u64, &mut counting_writer).unwrap();
}
counting_writer.written_bytes()
}
pub struct BlockEncoder {
pub output: [u8; COMPRESSED_BLOCK_MAX_SIZE],
pub output_len: usize,
input_buffer: [u32; COMPRESSION_BLOCK_SIZE],
}
impl BlockEncoder {
pub fn new() -> BlockEncoder {
BlockEncoder {
output: [0u8; COMPRESSED_BLOCK_MAX_SIZE],
output_len: 0,
input_buffer: [0u32; COMPRESSION_BLOCK_SIZE],
}
}
pub fn compress_block_sorted(&mut self, vals: &[u32], offset: u32) -> &[u8] {
self.input_buffer.clone_from_slice(vals);
let compressed_size = compress_sorted(&mut self.input_buffer, &mut self.output, offset);
&self.output[..compressed_size]
}
pub fn compress_block_unsorted(&mut self, vals: &[u32]) -> &[u8] {
let compressed_size = {
let output: &mut [u8] = &mut self.output;
let max = vals.iter()
.cloned()
.max()
.expect("compress unsorted called with an empty array");
let num_bits = compute_num_bits(max as u64);
let mut counting_writer = CountingWriter::wrap(output);
counting_writer.write_all(&[num_bits]).unwrap();
let mut bit_packer = BitPacker::new(num_bits as usize);
for val in vals {
bit_packer.write(*val as u64, &mut counting_writer).unwrap();
}
for _ in vals.len()..COMPRESSION_BLOCK_SIZE {
bit_packer
.write(vals[0] as u64, &mut counting_writer)
.unwrap();
}
bit_packer.flush(&mut counting_writer).expect(
"Flushing the bitpacking \
in an in RAM buffer should never fail",
);
// we avoid writing "closing", because we
// do not want 7 bytes of padding here.
counting_writer.written_bytes()
};
&self.output[..compressed_size]
}
}
pub struct BlockDecoder {
pub output: [u32; COMPRESSED_BLOCK_MAX_SIZE],
pub output_len: usize,
}
impl BlockDecoder {
pub fn new() -> BlockDecoder {
BlockDecoder::with_val(0u32)
}
pub fn with_val(val: u32) -> BlockDecoder {
BlockDecoder {
output: [val; COMPRESSED_BLOCK_MAX_SIZE],
output_len: 0,
}
}
pub fn uncompress_block_sorted<'a>(
&mut self,
compressed_data: &'a [u8],
mut offset: u32,
) -> usize {
let consumed_size = {
let num_bits = compressed_data[0];
let bit_unpacker = BitUnpacker::new(&compressed_data[1..], num_bits as usize);
for i in 0..COMPRESSION_BLOCK_SIZE {
let delta = bit_unpacker.get(i);
let val = offset + delta as u32;
self.output[i] = val;
offset = val;
}
1 + (num_bits as usize * COMPRESSION_BLOCK_SIZE + 7) / 8
};
self.output_len = COMPRESSION_BLOCK_SIZE;
consumed_size
}
pub fn uncompress_block_unsorted<'a>(&mut self, compressed_data: &'a [u8]) -> usize {
let num_bits = compressed_data[0];
let bit_unpacker = BitUnpacker::new(&compressed_data[1..], num_bits as usize);
for i in 0..COMPRESSION_BLOCK_SIZE {
self.output[i] = bit_unpacker.get(i) as u32;
}
let consumed_size = 1 + (num_bits as usize * COMPRESSION_BLOCK_SIZE + 7) / 8;
self.output_len = COMPRESSION_BLOCK_SIZE;
consumed_size
}
#[inline]
pub fn output_array(&self) -> &[u32] {
&self.output[..self.output_len]
}
#[inline]
pub fn output(&self, idx: usize) -> u32 {
self.output[idx]
}
}

View File

@@ -1,118 +0,0 @@
use super::super::COMPRESSION_BLOCK_SIZE;
const COMPRESSED_BLOCK_MAX_SIZE: usize = COMPRESSION_BLOCK_SIZE * 4 + 1;
mod simdcomp {
use libc::size_t;
extern "C" {
pub fn compress_sorted(data: *const u32, output: *mut u8, offset: u32) -> size_t;
pub fn uncompress_sorted(
compressed_data: *const u8,
output: *mut u32,
offset: u32,
) -> size_t;
pub fn compress_unsorted(data: *const u32, output: *mut u8) -> size_t;
pub fn uncompress_unsorted(compressed_data: *const u8, output: *mut u32) -> size_t;
}
}
fn compress_sorted(vals: &[u32], output: &mut [u8], offset: u32) -> usize {
unsafe { simdcomp::compress_sorted(vals.as_ptr(), output.as_mut_ptr(), offset) }
}
fn uncompress_sorted(compressed_data: &[u8], output: &mut [u32], offset: u32) -> usize {
unsafe {
simdcomp::uncompress_sorted(compressed_data.as_ptr(), output.as_mut_ptr(), offset)
}
}
fn compress_unsorted(vals: &[u32], output: &mut [u8]) -> usize {
unsafe { simdcomp::compress_unsorted(vals.as_ptr(), output.as_mut_ptr()) }
}
fn uncompress_unsorted(compressed_data: &[u8], output: &mut [u32]) -> usize {
unsafe { simdcomp::uncompress_unsorted(compressed_data.as_ptr(), output.as_mut_ptr()) }
}
pub struct BlockEncoder {
pub output: [u8; COMPRESSED_BLOCK_MAX_SIZE],
pub output_len: usize,
}
impl BlockEncoder {
pub fn new() -> BlockEncoder {
BlockEncoder {
output: [0u8; COMPRESSED_BLOCK_MAX_SIZE],
output_len: 0,
}
}
pub fn compress_block_sorted(&mut self, vals: &[u32], offset: u32) -> &[u8] {
let compressed_size = compress_sorted(vals, &mut self.output, offset);
&self.output[..compressed_size]
}
pub fn compress_block_unsorted(&mut self, vals: &[u32]) -> &[u8] {
let compressed_size = compress_unsorted(vals, &mut self.output);
&self.output[..compressed_size]
}
}
pub struct BlockDecoder {
pub output: [u32; COMPRESSED_BLOCK_MAX_SIZE],
pub output_len: usize,
}
impl BlockDecoder {
pub fn new() -> BlockDecoder {
BlockDecoder::with_val(0u32)
}
pub fn with_val(val: u32) -> BlockDecoder {
BlockDecoder {
output: [val; COMPRESSED_BLOCK_MAX_SIZE],
output_len: 0,
}
}
pub fn uncompress_block_sorted(&mut self, compressed_data: &[u8], offset: u32) -> usize {
let consumed_size = uncompress_sorted(compressed_data, &mut self.output, offset);
self.output_len = COMPRESSION_BLOCK_SIZE;
consumed_size
}
pub fn uncompress_block_unsorted<'a>(&mut self, compressed_data: &'a [u8]) -> usize {
let consumed_size = uncompress_unsorted(compressed_data, &mut self.output);
self.output_len = COMPRESSION_BLOCK_SIZE;
consumed_size
}
#[inline]
pub fn output_array(&self) -> &[u32] {
&self.output[..self.output_len]
}
#[inline]
pub fn output(&self, idx: usize) -> u32 {
self.output[idx]
}
}
#[cfg(test)]
mod tests {
use super::BlockEncoder;
#[test]
fn test_all_docs_compression_len() {
let data: Vec<u32> = (0u32..128u32).collect();
let mut encoder = BlockEncoder::new();
let compressed = encoder.compress_block_sorted(&data, 0u32);
assert_eq!(compressed.len(), 17);
}
}

View File

@@ -1,6 +1,6 @@
use compression::compressed_block_size;
use compression::BlockDecoder;
use compression::COMPRESSION_BLOCK_SIZE;
use compression::compressed_block_size;
use directory::{ReadOnlySource, SourceRead};
/// Reads a stream of compressed ints.
@@ -11,7 +11,12 @@ use directory::{ReadOnlySource, SourceRead};
/// decompressing blocks that are not required.
pub struct CompressedIntStream {
buffer: SourceRead,
block_decoder: BlockDecoder,
cached_addr: usize, // address of the currently decoded block
cached_next_addr: usize, // address following the currently decoded block
addr: usize, // address of the block associated to the current position
inner_offset: usize,
}
@@ -21,34 +26,49 @@ impl CompressedIntStream {
CompressedIntStream {
buffer: SourceRead::from(source),
block_decoder: BlockDecoder::new(),
inner_offset: COMPRESSION_BLOCK_SIZE,
cached_addr: usize::max_value(),
cached_next_addr: usize::max_value(),
addr: 0,
inner_offset: 0,
}
}
/// Fills a buffer with the next `output.len()` integers,
/// and advance the stream by that many els.
/// Loads the block at the given address and return the address of the
/// following block
pub fn read_block(&mut self, addr: usize) -> usize {
if self.cached_addr == addr {
// we are already on this block.
// no need to read.
self.cached_next_addr
} else {
let next_addr = addr + self
.block_decoder
.uncompress_block_unsorted(self.buffer.slice_from(addr));
self.cached_addr = addr;
self.cached_next_addr = next_addr;
next_addr
}
}
/// Fills a buffer with the next `output.len()` integers.
/// This does not consume / advance the stream.
pub fn read(&mut self, output: &mut [u32]) {
let mut cursor = self.addr;
let mut inner_offset = self.inner_offset;
let mut num_els: usize = output.len();
let mut start: usize = 0;
let mut start = 0;
loop {
let available = COMPRESSION_BLOCK_SIZE - self.inner_offset;
if num_els >= available {
if available > 0 {
let uncompressed_block =
&self.block_decoder.output_array()[self.inner_offset..];
output[start..][..available].clone_from_slice(uncompressed_block);
}
num_els -= available;
start += available;
let num_consumed_bytes = self.block_decoder
.uncompress_block_unsorted(self.buffer.as_ref());
self.buffer.advance(num_consumed_bytes);
self.inner_offset = 0;
cursor = self.read_block(cursor);
let block = &self.block_decoder.output_array()[inner_offset..];
let block_len = block.len();
if num_els >= block_len {
output[start..start + block_len].clone_from_slice(&block);
start += block_len;
num_els -= block_len;
inner_offset = 0;
} else {
let uncompressed_block = &self.block_decoder.output_array()
[self.inner_offset..self.inner_offset + num_els];
output[start..][..num_els].clone_from_slice(uncompressed_block);
self.inner_offset += num_els;
output[start..].clone_from_slice(&block[..num_els]);
break;
}
}
@@ -58,23 +78,22 @@ impl CompressedIntStream {
///
/// If a full block is skipped, calling
/// `.skip(...)` will avoid decompressing it.
///
/// May panic if the end of the stream is reached.
pub fn skip(&mut self, mut skip_len: usize) {
let available = COMPRESSION_BLOCK_SIZE - self.inner_offset;
if available >= skip_len {
self.inner_offset += skip_len;
} else {
skip_len -= available;
// entirely skip decompressing some blocks.
while skip_len >= COMPRESSION_BLOCK_SIZE {
skip_len -= COMPRESSION_BLOCK_SIZE;
let num_bits: u8 = self.buffer.as_ref()[0];
loop {
let available = COMPRESSION_BLOCK_SIZE - self.inner_offset;
if available >= skip_len {
self.inner_offset += skip_len;
break;
} else {
skip_len -= available;
// entirely skip decompressing some blocks.
let num_bits: u8 = self.buffer.get(self.addr);
let block_len = compressed_block_size(num_bits);
self.buffer.advance(block_len);
self.addr += block_len;
self.inner_offset = 0;
}
let num_consumed_bytes = self.block_decoder
.uncompress_block_unsorted(self.buffer.as_ref());
self.buffer.advance(num_consumed_bytes);
self.inner_offset = skip_len;
}
}
}
@@ -84,14 +103,14 @@ pub mod tests {
use super::CompressedIntStream;
use compression::compressed_block_size;
use compression::COMPRESSION_BLOCK_SIZE;
use compression::BlockEncoder;
use compression::COMPRESSION_BLOCK_SIZE;
use directory::ReadOnlySource;
fn create_stream_buffer() -> ReadOnlySource {
let mut buffer: Vec<u8> = vec![];
let mut encoder = BlockEncoder::new();
let vals: Vec<u32> = (0u32..1_025u32).collect();
let vals: Vec<u32> = (0u32..1152u32).collect();
for chunk in vals.chunks(COMPRESSION_BLOCK_SIZE) {
let compressed_block = encoder.compress_block_unsorted(chunk);
let num_bits = compressed_block[0];
@@ -113,13 +132,24 @@ pub mod tests {
stream.read(&mut block[0..2]);
assert_eq!(block[0], 0);
assert_eq!(block[1], 1);
// reading does not consume the stream
stream.read(&mut block[0..2]);
assert_eq!(block[0], 0);
assert_eq!(block[1], 1);
stream.skip(2);
stream.skip(5);
stream.read(&mut block[0..3]);
stream.skip(3);
assert_eq!(block[0], 7);
assert_eq!(block[1], 8);
assert_eq!(block[2], 9);
stream.skip(500);
stream.read(&mut block[0..3]);
stream.skip(3);
assert_eq!(block[0], 510);
assert_eq!(block[1], 511);
assert_eq!(block[2], 512);

View File

@@ -1,72 +0,0 @@
mod streamvbyte {
use libc::size_t;
extern "C" {
pub fn streamvbyte_delta_encode(
data: *const u32,
num_els: u32,
output: *mut u8,
offset: u32,
) -> size_t;
pub fn streamvbyte_delta_decode(
compressed_data: *const u8,
output: *mut u32,
num_els: u32,
offset: u32,
) -> size_t;
pub fn streamvbyte_encode(data: *const u32, num_els: u32, output: *mut u8) -> size_t;
pub fn streamvbyte_decode(
compressed_data: *const u8,
output: *mut u32,
num_els: usize,
) -> size_t;
}
}
#[inline(always)]
pub(crate) fn compress_sorted<'a>(input: &[u32], output: &'a mut [u8], offset: u32) -> &'a [u8] {
let compress_length = unsafe {
streamvbyte::streamvbyte_delta_encode(
input.as_ptr(),
input.len() as u32,
output.as_mut_ptr(),
offset,
)
};
&output[..compress_length]
}
#[inline(always)]
pub(crate) fn compress_unsorted<'a>(input: &[u32], output: &'a mut [u8]) -> &'a [u8] {
let compress_length = unsafe {
streamvbyte::streamvbyte_encode(input.as_ptr(), input.len() as u32, output.as_mut_ptr())
};
&output[..compress_length]
}
#[inline(always)]
pub(crate) fn uncompress_sorted<'a>(
compressed_data: &'a [u8],
output: &mut [u32],
offset: u32,
) -> usize {
unsafe {
streamvbyte::streamvbyte_delta_decode(
compressed_data.as_ptr(),
output.as_mut_ptr(),
output.len() as u32,
offset,
)
}
}
#[inline(always)]
pub(crate) fn uncompress_unsorted<'a>(compressed_data: &'a [u8], output: &mut [u32]) -> usize {
unsafe {
streamvbyte::streamvbyte_decode(compressed_data.as_ptr(), output.as_mut_ptr(), output.len())
}
}

View File

@@ -1,29 +1,33 @@
use Result;
use core::SegmentId;
use error::{ErrorKind, ResultExt};
use serde_json;
use schema::Schema;
use std::sync::Arc;
use serde_json;
use std::borrow::BorrowMut;
use std::fmt;
use core::SegmentId;
use directory::{Directory, MmapDirectory, RAMDirectory};
use indexer::index_writer::open_index_writer;
use core::searcher::Searcher;
use std::convert::From;
use num_cpus;
use super::segment::Segment;
use core::SegmentReader;
use super::pool::Pool;
use core::SegmentMeta;
use std::sync::Arc;
use Result;
use super::pool::LeasedItem;
use std::path::Path;
use core::IndexMeta;
use IndexWriter;
use directory::ManagedDirectory;
use core::META_FILEPATH;
use super::pool::Pool;
use super::segment::create_segment;
use super::segment::Segment;
use core::searcher::Searcher;
use core::IndexMeta;
use core::SegmentMeta;
use core::SegmentReader;
use core::META_FILEPATH;
use directory::ManagedDirectory;
#[cfg(feature = "mmap")]
use directory::MmapDirectory;
use directory::{Directory, RAMDirectory};
use indexer::index_writer::open_index_writer;
use indexer::index_writer::HEAP_SIZE_MIN;
use indexer::segment_updater::save_new_metas;
use indexer::DirectoryLock;
use num_cpus;
use std::path::Path;
use tokenizer::TokenizerManager;
use IndexWriter;
const NUM_SEARCHERS: usize = 12;
@@ -48,27 +52,17 @@ impl Index {
/// This should only be used for unit tests.
pub fn create_in_ram(schema: Schema) -> Index {
let ram_directory = RAMDirectory::create();
// unwrap is ok here
let directory = ManagedDirectory::new(ram_directory).expect(
"Creating a managed directory from a brand new RAM directory \
should never fail.",
);
Index::from_directory(directory, schema).expect("Creating a RAMDirectory should never fail")
Index::create(ram_directory, schema).expect("Creating a RAMDirectory should never fail")
}
/// Creates a new index in a given filepath.
/// The index will use the `MMapDirectory`.
///
/// If a previous index was in this directory, then its meta file will be destroyed.
pub fn create<P: AsRef<Path>>(directory_path: P, schema: Schema) -> Result<Index> {
#[cfg(feature = "mmap")]
pub fn create_in_dir<P: AsRef<Path>>(directory_path: P, schema: Schema) -> Result<Index> {
let mmap_directory = MmapDirectory::open(directory_path)?;
let directory = ManagedDirectory::new(mmap_directory)?;
Index::from_directory(directory, schema)
}
/// Accessor for the tokenizer manager.
pub fn tokenizers(&self) -> &TokenizerManager {
&self.tokenizers
Index::create(mmap_directory, schema)
}
/// Creates a new index in a temp directory.
@@ -79,12 +73,25 @@ impl Index {
///
/// The temp directory is only used for testing the `MmapDirectory`.
/// For other unit tests, prefer the `RAMDirectory`, see: `create_in_ram`.
#[cfg(feature = "mmap")]
pub fn create_from_tempdir(schema: Schema) -> Result<Index> {
let mmap_directory = MmapDirectory::create_from_tempdir()?;
let directory = ManagedDirectory::new(mmap_directory)?;
Index::create(mmap_directory, schema)
}
/// Creates a new index given an implementation of the trait `Directory`
pub fn create<Dir: Directory>(dir: Dir, schema: Schema) -> Result<Index> {
let directory = ManagedDirectory::new(dir)?;
Index::from_directory(directory, schema)
}
/// Create a new index from a directory.
fn from_directory(mut directory: ManagedDirectory, schema: Schema) -> Result<Index> {
save_new_metas(schema.clone(), 0, directory.borrow_mut())?;
let metas = IndexMeta::with_schema(schema);
Index::create_from_metas(directory, &metas)
}
/// Creates a new index given a directory and an `IndexMeta`.
fn create_from_metas(directory: ManagedDirectory, metas: &IndexMeta) -> Result<Index> {
let schema = metas.schema.clone();
@@ -98,27 +105,28 @@ impl Index {
Ok(index)
}
/// Create a new index from a directory.
pub fn from_directory(mut directory: ManagedDirectory, schema: Schema) -> Result<Index> {
save_new_metas(schema.clone(), 0, directory.borrow_mut())?;
let metas = IndexMeta::with_schema(schema);
Index::create_from_metas(directory, &metas)
/// Accessor for the tokenizer manager.
pub fn tokenizers(&self) -> &TokenizerManager {
&self.tokenizers
}
/// Opens a new directory from an index path.
pub fn open<P: AsRef<Path>>(directory_path: P) -> Result<Index> {
#[cfg(feature = "mmap")]
pub fn open_in_dir<P: AsRef<Path>>(directory_path: P) -> Result<Index> {
let mmap_directory = MmapDirectory::open(directory_path)?;
let directory = ManagedDirectory::new(mmap_directory)?;
Index::open(mmap_directory)
}
/// Open the index using the provided directory
pub fn open<D: Directory>(directory: D) -> Result<Index> {
let directory = ManagedDirectory::new(directory)?;
let metas = load_metas(&directory)?;
Index::create_from_metas(directory, &metas)
}
/// Returns the index opstamp.
///
/// The opstamp is the number of documents that have been added
/// from the beginning of time, and until the moment of the last commit.
pub fn opstamp(&self) -> u64 {
load_metas(self.directory()).unwrap().opstamp
/// Reads the index meta file from the directory.
pub fn load_metas(&self) -> Result<IndexMeta> {
load_metas(self.directory())
}
/// Open a new index writer. Attempts to acquire a lockfile.
@@ -129,9 +137,13 @@ impl Index {
/// `IndexWriter` on the system is accessing the index directory,
/// it is safe to manually delete the lockfile.
///
/// num_threads specifies the number of indexing workers that
/// - `num_threads` defines the number of indexing workers that
/// should work at the same time.
///
/// - `overall_heap_size_in_bytes` sets the amount of memory
/// allocated for all indexing thread.
/// Each thread will receive a budget of `overall_heap_size_in_bytes / num_threads`.
///
/// # Errors
/// If the lockfile already exists, returns `Error::FileAlreadyExists`.
/// # Panics
@@ -139,20 +151,35 @@ impl Index {
pub fn writer_with_num_threads(
&self,
num_threads: usize,
heap_size_in_bytes: usize,
overall_heap_size_in_bytes: usize,
) -> Result<IndexWriter> {
open_index_writer(self, num_threads, heap_size_in_bytes)
let directory_lock = DirectoryLock::lock(self.directory().box_clone())?;
let heap_size_in_bytes_per_thread = overall_heap_size_in_bytes / num_threads;
open_index_writer(
self,
num_threads,
heap_size_in_bytes_per_thread,
directory_lock,
)
}
/// Creates a multithreaded writer
/// It just calls `writer_with_num_threads` with the number of cores as `num_threads`
///
/// Tantivy will automatically define the number of threads to use.
/// `overall_heap_size_in_bytes` is the total target memory usage that will be split
/// between a given number of threads.
///
/// # Errors
/// If the lockfile already exists, returns `Error::FileAlreadyExists`.
/// # Panics
/// If the heap size per thread is too small, panics.
pub fn writer(&self, heap_size_in_bytes: usize) -> Result<IndexWriter> {
self.writer_with_num_threads(num_cpus::get(), heap_size_in_bytes)
pub fn writer(&self, overall_heap_size_in_bytes: usize) -> Result<IndexWriter> {
let mut num_threads = num_cpus::get();
let heap_size_in_bytes_per_thread = overall_heap_size_in_bytes / num_threads;
if heap_size_in_bytes_per_thread < HEAP_SIZE_MIN {
num_threads = (overall_heap_size_in_bytes / HEAP_SIZE_MIN).max(1);
}
self.writer_with_num_threads(num_threads, overall_heap_size_in_bytes)
}
/// Accessor to the index schema
@@ -164,7 +191,8 @@ impl Index {
/// Returns the list of segments that are searchable
pub fn searchable_segments(&self) -> Result<Vec<Segment>> {
Ok(self.searchable_segment_metas()?
Ok(self
.searchable_segment_metas()?
.into_iter()
.map(|segment_meta| self.segment(segment_meta))
.collect())
@@ -194,12 +222,13 @@ impl Index {
/// Reads the meta.json and returns the list of
/// `SegmentMeta` from the last commit.
pub fn searchable_segment_metas(&self) -> Result<Vec<SegmentMeta>> {
Ok(load_metas(self.directory())?.segments)
Ok(self.load_metas()?.segments)
}
/// Returns the list of segment ids that are searchable.
pub fn searchable_segment_ids(&self) -> Result<Vec<SegmentId>> {
Ok(self.searchable_segment_metas()?
Ok(self
.searchable_segment_metas()?
.iter()
.map(|segment_meta| segment_meta.id())
.collect())
@@ -217,8 +246,9 @@ impl Index {
.iter()
.map(SegmentReader::open)
.collect::<Result<_>>()?;
let schema = self.schema();
let searchers = (0..NUM_SEARCHERS)
.map(|_| Searcher::from(segment_readers.clone()))
.map(|_| Searcher::new(schema.clone(), segment_readers.clone()))
.collect();
self.searcher_pool.publish_new_generation(searchers);
Ok(())

View File

@@ -1,5 +1,7 @@
use schema::Schema;
use core::SegmentMeta;
use schema::Schema;
use serde_json;
use std::fmt;
/// Meta information about the `Index`.
///
@@ -9,11 +11,13 @@ use core::SegmentMeta;
/// * the index `docstamp`
/// * the schema
///
#[derive(Clone, Debug, Serialize, Deserialize)]
#[derive(Clone, Serialize, Deserialize)]
pub struct IndexMeta {
pub segments: Vec<SegmentMeta>,
pub schema: Schema,
pub opstamp: u64,
#[serde(skip_serializing_if = "Option::is_none")]
pub payload: Option<String>,
}
impl IndexMeta {
@@ -22,6 +26,43 @@ impl IndexMeta {
segments: vec![],
schema,
opstamp: 0u64,
payload: None,
}
}
}
impl fmt::Debug for IndexMeta {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"{}",
serde_json::ser::to_string(self)
.expect("JSON serialization for IndexMeta should never fail.")
)
}
}
#[cfg(test)]
mod tests {
use super::IndexMeta;
use schema::{SchemaBuilder, TEXT};
use serde_json;
#[test]
fn test_serialize_metas() {
let schema = {
let mut schema_builder = SchemaBuilder::new();
schema_builder.add_text_field("text", TEXT);
schema_builder.build()
};
let index_metas = IndexMeta {
segments: Vec::new(),
schema: schema,
opstamp: 0u64,
payload: None,
};
let json = serde_json::ser::to_string(&index_metas).expect("serialization failed");
assert_eq!(json, r#"{"segments":[],"schema":[{"name":"text","type":"text","options":{"indexing":{"record":"position","tokenizer":"default"},"stored":false}}],"opstamp":0}"#);
}
}

View File

@@ -1,13 +1,13 @@
use common::BinarySerializable;
use compression::CompressedIntStream;
use directory::{ReadOnlySource, SourceRead};
use termdict::{TermDictionary, TermDictionaryImpl};
use postings::{BlockSegmentPostings, SegmentPostings};
use postings::FreqReadingOption;
use postings::TermInfo;
use postings::{BlockSegmentPostings, SegmentPostings};
use schema::FieldType;
use schema::IndexRecordOption;
use schema::Term;
use std::cmp;
use fastfield::DeleteBitSet;
use schema::Schema;
use compression::CompressedIntStream;
use termdict::TermDictionary;
/// The inverted index reader is in charge of accessing
/// the inverted index associated to a specific field.
@@ -23,37 +23,54 @@ use compression::CompressedIntStream;
/// `InvertedIndexReader` are created by calling
/// the `SegmentReader`'s [`.inverted_index(...)`] method
pub struct InvertedIndexReader {
termdict: TermDictionaryImpl,
termdict: TermDictionary,
postings_source: ReadOnlySource,
positions_source: ReadOnlySource,
delete_bitset: DeleteBitSet,
schema: Schema,
record_option: IndexRecordOption,
total_num_tokens: u64,
}
impl InvertedIndexReader {
pub(crate) fn new(
termdict_source: ReadOnlySource,
termdict: TermDictionary,
postings_source: ReadOnlySource,
positions_source: ReadOnlySource,
delete_bitset: DeleteBitSet,
schema: Schema,
record_option: IndexRecordOption,
) -> InvertedIndexReader {
let total_num_tokens_data = postings_source.slice(0, 8);
let mut total_num_tokens_cursor = total_num_tokens_data.as_slice();
let total_num_tokens = u64::deserialize(&mut total_num_tokens_cursor).unwrap_or(0u64);
InvertedIndexReader {
termdict: TermDictionaryImpl::from_source(termdict_source),
postings_source,
termdict,
postings_source: postings_source.slice_from(8),
positions_source,
delete_bitset,
schema,
record_option,
total_num_tokens,
}
}
/// Creates an empty `InvertedIndexReader` object, which
/// contains no terms at all.
pub fn empty(field_type: FieldType) -> InvertedIndexReader {
let record_option = field_type
.get_index_record_option()
.unwrap_or(IndexRecordOption::Basic);
InvertedIndexReader {
termdict: TermDictionary::empty(field_type),
postings_source: ReadOnlySource::empty(),
positions_source: ReadOnlySource::empty(),
record_option,
total_num_tokens: 0u64,
}
}
/// Returns the term info associated with the term.
pub fn get_term_info(&self, term: &Term) -> Option<TermInfo> {
self.termdict.get(term.as_slice())
self.termdict.get(term.value_bytes())
}
/// Return the term dictionary datastructure.
pub fn terms(&self) -> &TermDictionaryImpl {
pub fn terms(&self) -> &TermDictionary {
&self.termdict
}
@@ -86,15 +103,19 @@ impl InvertedIndexReader {
pub fn read_block_postings_from_terminfo(
&self,
term_info: &TermInfo,
option: IndexRecordOption,
requested_option: IndexRecordOption,
) -> BlockSegmentPostings {
let offset = term_info.postings_offset as usize;
let postings_data = self.postings_source.slice_from(offset);
let has_freq = option.has_freq();
let freq_reading_option = match (self.record_option, requested_option) {
(IndexRecordOption::Basic, _) => FreqReadingOption::NoFreq,
(_, IndexRecordOption::Basic) => FreqReadingOption::SkipFreq,
(_, _) => FreqReadingOption::ReadFreq,
};
BlockSegmentPostings::from_data(
term_info.doc_freq as usize,
SourceRead::from(postings_data),
has_freq,
freq_reading_option,
)
}
@@ -108,7 +129,6 @@ impl InvertedIndexReader {
option: IndexRecordOption,
) -> SegmentPostings {
let block_postings = self.read_block_postings_from_terminfo(term_info, option);
let delete_bitset = self.delete_bitset.clone();
let position_stream = {
if option.has_positions() {
let position_offset = term_info.positions_offset;
@@ -120,7 +140,13 @@ impl InvertedIndexReader {
None
}
};
SegmentPostings::from_block_postings(block_postings, delete_bitset, position_stream)
SegmentPostings::from_block_postings(block_postings, position_stream)
}
/// Returns the total number of tokens recorded for all documents
/// (including deleted documents).
pub fn total_num_tokens(&self) -> u64 {
self.total_num_tokens
}
/// Returns the segment postings associated with the term, and with the given option,
@@ -134,19 +160,23 @@ impl InvertedIndexReader {
/// `TextIndexingOptions` that does not index position will return a `SegmentPostings`
/// with `DocId`s and frequencies.
pub fn read_postings(&self, term: &Term, option: IndexRecordOption) -> Option<SegmentPostings> {
let field = term.field();
let field_entry = self.schema.get_field_entry(field);
let term_info = get!(self.get_term_info(term));
let maximum_option = get!(field_entry.field_type().get_index_record_option());
let best_effort_option = cmp::min(maximum_option, option);
Some(self.read_postings_from_terminfo(&term_info, best_effort_option))
Some(self.read_postings_from_terminfo(&term_info, option))
}
pub(crate) fn read_postings_no_deletes(
&self,
term: &Term,
option: IndexRecordOption,
) -> Option<SegmentPostings> {
let term_info = get!(self.get_term_info(term));
Some(self.read_postings_from_terminfo(&term_info, option))
}
/// Returns the number of documents containing the term.
pub fn doc_freq(&self, term: &Term) -> u32 {
match self.get_term_info(term) {
Some(term_info) => term_info.doc_freq,
None => 0,
}
self.get_term_info(term)
.map(|term_info| term_info.doc_freq)
.unwrap_or(0u32)
}
}

View File

@@ -1,24 +1,24 @@
pub mod searcher;
pub mod index;
mod segment_reader;
mod segment_id;
mod segment_component;
mod segment;
mod index_meta;
mod pool;
mod segment_meta;
mod inverted_index_reader;
mod pool;
pub mod searcher;
mod segment;
mod segment_component;
mod segment_id;
mod segment_meta;
mod segment_reader;
pub use self::index::Index;
pub use self::index_meta::IndexMeta;
pub use self::inverted_index_reader::InvertedIndexReader;
pub use self::searcher::Searcher;
pub use self::segment_component::SegmentComponent;
pub use self::segment_id::SegmentId;
pub use self::segment_reader::SegmentReader;
pub use self::segment::Segment;
pub use self::segment::SerializableSegment;
pub use self::index::Index;
pub use self::segment_component::SegmentComponent;
pub use self::segment_id::SegmentId;
pub use self::segment_meta::SegmentMeta;
pub use self::index_meta::IndexMeta;
pub use self::segment_reader::SegmentReader;
use std::path::PathBuf;

View File

@@ -1,8 +1,8 @@
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering;
use crossbeam::sync::MsQueue;
use std::mem;
use std::ops::{Deref, DerefMut};
use crossbeam::sync::MsQueue;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering;
use std::sync::Arc;
pub struct GenerationItem<T> {
@@ -87,7 +87,8 @@ impl<T> Deref for LeasedItem<T> {
type Target = T;
fn deref(&self) -> &T {
&self.gen_item
&self
.gen_item
.as_ref()
.expect("Unwrapping a leased item should never fail")
.item // unwrap is safe here
@@ -96,7 +97,8 @@ impl<T> Deref for LeasedItem<T> {
impl<T> DerefMut for LeasedItem<T> {
fn deref_mut(&mut self) -> &mut T {
&mut self.gen_item
&mut self
.gen_item
.as_mut()
.expect("Unwrapping a mut leased item should never fail")
.item // unwrap is safe here
@@ -114,8 +116,8 @@ impl<T> Drop for LeasedItem<T> {
#[cfg(test)]
mod tests {
use std::iter;
use super::Pool;
use std::iter;
#[test]
fn test_pool() {

View File

@@ -1,16 +1,15 @@
use Result;
use core::SegmentReader;
use schema::Document;
use collector::Collector;
use common::TimerTree;
use query::Query;
use DocId;
use DocAddress;
use schema::{Field, Term};
use termdict::{TermDictionary, TermMerger};
use std::sync::Arc;
use std::fmt;
use core::InvertedIndexReader;
use core::SegmentReader;
use query::Query;
use schema::Document;
use schema::Schema;
use schema::{Field, Term};
use std::fmt;
use std::sync::Arc;
use termdict::TermMerger;
use DocAddress;
use Result;
/// Holds a list of `SegmentReader`s ready for search.
///
@@ -18,10 +17,18 @@ use core::InvertedIndexReader;
/// the destruction of the `Searcher`.
///
pub struct Searcher {
schema: Schema,
segment_readers: Vec<SegmentReader>,
}
impl Searcher {
/// Creates a new `Searcher`
pub(crate) fn new(schema: Schema, segment_readers: Vec<SegmentReader>) -> Searcher {
Searcher {
schema,
segment_readers,
}
}
/// Fetches a document from tantivy's store given a `DocAddress`.
///
/// The searcher uses the segment ordinal to route the
@@ -32,21 +39,26 @@ impl Searcher {
segment_reader.doc(doc_id)
}
/// Access the schema associated to the index of this searcher.
pub fn schema(&self) -> &Schema {
&self.schema
}
/// Returns the overall number of documents in the index.
pub fn num_docs(&self) -> DocId {
pub fn num_docs(&self) -> u64 {
self.segment_readers
.iter()
.map(|segment_reader| segment_reader.num_docs())
.fold(0u32, |acc, val| acc + val)
.map(|segment_reader| segment_reader.num_docs() as u64)
.sum::<u64>()
}
/// Return the overall number of documents containing
/// the given term.
pub fn doc_freq(&self, term: &Term) -> u32 {
pub fn doc_freq(&self, term: &Term) -> u64 {
self.segment_readers
.iter()
.map(|segment_reader| segment_reader.inverted_index(term.field()).doc_freq(term))
.fold(0u32, |acc, val| acc + val)
.map(|segment_reader| segment_reader.inverted_index(term.field()).doc_freq(term) as u64)
.sum::<u64>()
}
/// Return the list of segment readers
@@ -60,13 +72,14 @@ impl Searcher {
}
/// Runs a query on the segment readers wrapped by the searcher
pub fn search<C: Collector>(&self, query: &Query, collector: &mut C) -> Result<TimerTree> {
pub fn search<C: Collector>(&self, query: &Query, collector: &mut C) -> Result<()> {
query.search(self, collector)
}
/// Return the field searcher associated to a `Field`.
pub fn field(&self, field: Field) -> FieldSearcher {
let inv_index_readers = self.segment_readers
let inv_index_readers = self
.segment_readers
.iter()
.map(|segment_reader| segment_reader.inverted_index(field))
.collect::<Vec<_>>();
@@ -86,7 +99,8 @@ impl FieldSearcher {
/// Returns a Stream over all of the sorted unique terms of
/// for the given field.
pub fn terms(&self) -> TermMerger {
let term_streamers: Vec<_> = self.inv_index_readers
let term_streamers: Vec<_> = self
.inv_index_readers
.iter()
.map(|inverted_index| inverted_index.terms().stream())
.collect();
@@ -94,15 +108,10 @@ impl FieldSearcher {
}
}
impl From<Vec<SegmentReader>> for Searcher {
fn from(segment_readers: Vec<SegmentReader>) -> Searcher {
Searcher { segment_readers }
}
}
impl fmt::Debug for Searcher {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let segment_ids = self.segment_readers
let segment_ids = self
.segment_readers
.iter()
.map(|segment_reader| segment_reader.segment_id())
.collect::<Vec<_>>();

View File

@@ -1,16 +1,16 @@
use Result;
use std::path::PathBuf;
use schema::Schema;
use std::fmt;
use core::SegmentId;
use directory::{FileProtection, ReadOnlySource, WritePtr};
use indexer::segment_serializer::SegmentSerializer;
use super::SegmentComponent;
use core::Index;
use std::result;
use directory::Directory;
use core::SegmentId;
use core::SegmentMeta;
use directory::error::{OpenReadError, OpenWriteError};
use directory::Directory;
use directory::{FileProtection, ReadOnlySource, WritePtr};
use indexer::segment_serializer::SegmentSerializer;
use schema::Schema;
use std::fmt;
use std::path::PathBuf;
use std::result;
use Result;
/// A segment is a piece of the index.
#[derive(Clone)]
@@ -111,8 +111,8 @@ mod tests {
use core::SegmentComponent;
use directory::Directory;
use std::collections::HashSet;
use schema::SchemaBuilder;
use std::collections::HashSet;
use Index;
#[test]

View File

@@ -1,3 +1,5 @@
use std::slice;
/// Enum describing each component of a tantivy segment.
/// Each component is stored in its own file,
/// using the pattern `segment_uuid`.`component_extension`,
@@ -26,7 +28,7 @@ pub enum SegmentComponent {
impl SegmentComponent {
/// Iterates through the components.
pub fn iterator() -> impl Iterator<Item = &'static SegmentComponent> {
pub fn iterator() -> slice::Iter<'static, SegmentComponent> {
static SEGMENT_COMPONENTS: [SegmentComponent; 7] = [
SegmentComponent::POSTINGS,
SegmentComponent::POSITIONS,

View File

@@ -1,6 +1,6 @@
use uuid::Uuid;
use std::fmt;
use std::cmp::{Ord, Ordering};
use std::fmt;
use uuid::Uuid;
#[cfg(test)]
use std::sync::atomic;

View File

@@ -1,7 +1,7 @@
use core::SegmentId;
use super::SegmentComponent;
use std::path::PathBuf;
use core::SegmentId;
use std::collections::HashSet;
use std::path::PathBuf;
#[derive(Clone, Debug, Serialize, Deserialize)]
struct DeleteMeta {

View File

@@ -1,24 +1,30 @@
use Result;
use core::Segment;
use core::SegmentId;
use core::SegmentComponent;
use std::sync::RwLock;
use common::HasLen;
use core::SegmentMeta;
use fastfield::{self, FastFieldNotAvailableError};
use fastfield::DeleteBitSet;
use store::StoreReader;
use directory::ReadOnlySource;
use schema::Document;
use DocId;
use std::sync::Arc;
use std::collections::HashMap;
use common::CompositeFile;
use std::fmt;
use common::HasLen;
use core::InvertedIndexReader;
use core::Segment;
use core::SegmentComponent;
use core::SegmentId;
use core::SegmentMeta;
use error::ErrorKind;
use fastfield::DeleteBitSet;
use fastfield::FacetReader;
use fastfield::FastFieldReader;
use fastfield::{self, FastFieldNotAvailableError};
use fastfield::{BytesFastFieldReader, FastValue, MultiValueIntFastFieldReader};
use fieldnorm::FieldNormReader;
use schema::Cardinality;
use schema::Document;
use schema::Field;
use fastfield::{FastFieldReader, U64FastFieldReader};
use schema::FieldType;
use schema::Schema;
use std::collections::HashMap;
use std::fmt;
use std::sync::Arc;
use std::sync::RwLock;
use store::StoreReader;
use termdict::TermDictionary;
use DocId;
use Result;
/// Entry point to access all of the datastructures of the `Segment`
///
@@ -31,6 +37,8 @@ use schema::Schema;
/// The segment reader has a very low memory footprint,
/// as close to all of the memory data is mmapped.
///
///
/// TODO fix not decoding docfreq
#[derive(Clone)]
pub struct SegmentReader {
inv_idx_reader_cache: Arc<RwLock<HashMap<Field, Arc<InvertedIndexReader>>>>,
@@ -45,7 +53,7 @@ pub struct SegmentReader {
fieldnorms_composite: CompositeFile,
store_reader: StoreReader,
delete_bitset: DeleteBitSet,
delete_bitset_opt: Option<DeleteBitSet>,
schema: Schema,
}
@@ -67,10 +75,22 @@ impl SegmentReader {
self.segment_meta.num_docs()
}
/// Returns the schema of the index this segment belongs to.
pub fn schema(&self) -> &Schema {
&self.schema
}
/// Return the number of documents that have been
/// deleted in the segment.
pub fn num_deleted_docs(&self) -> DocId {
self.delete_bitset.len() as DocId
self.delete_bitset()
.map(|delete_set| delete_set.len() as DocId)
.unwrap_or(0u32)
}
/// Returns true iff some of the documents of the segment have been deleted.
pub fn has_deletes(&self) -> bool {
self.delete_bitset().is_some()
}
/// Accessor to a segment's fast field reader given a field.
@@ -83,21 +103,95 @@ impl SegmentReader {
///
/// # Panics
/// May panic if the index is corrupted.
pub fn get_fast_field_reader<TFastFieldReader: FastFieldReader>(
pub fn fast_field_reader<Item: FastValue>(
&self,
field: Field,
) -> fastfield::Result<TFastFieldReader> {
) -> fastfield::Result<FastFieldReader<Item>> {
let field_entry = self.schema.get_field_entry(field);
if !TFastFieldReader::is_enabled(field_entry.field_type()) {
Err(FastFieldNotAvailableError::new(field_entry))
} else {
if Item::fast_field_cardinality(field_entry.field_type()) == Some(Cardinality::SingleValue)
{
self.fast_fields_composite
.open_read(field)
.ok_or_else(|| FastFieldNotAvailableError::new(field_entry))
.map(TFastFieldReader::open)
.map(FastFieldReader::open)
} else {
Err(FastFieldNotAvailableError::new(field_entry))
}
}
pub(crate) fn fast_field_reader_with_idx<Item: FastValue>(
&self,
field: Field,
idx: usize,
) -> fastfield::Result<FastFieldReader<Item>> {
if let Some(ff_source) = self.fast_fields_composite.open_read_with_idx(field, idx) {
Ok(FastFieldReader::open(ff_source))
} else {
let field_entry = self.schema.get_field_entry(field);
Err(FastFieldNotAvailableError::new(field_entry))
}
}
/// Accessor to the `MultiValueIntFastFieldReader` associated to a given `Field`.
/// May panick if the field is not a multivalued fastfield of the type `Item`.
pub fn multi_fast_field_reader<Item: FastValue>(
&self,
field: Field,
) -> fastfield::Result<MultiValueIntFastFieldReader<Item>> {
let field_entry = self.schema.get_field_entry(field);
if Item::fast_field_cardinality(field_entry.field_type()) == Some(Cardinality::MultiValues)
{
let idx_reader = self.fast_field_reader_with_idx(field, 0)?;
let vals_reader = self.fast_field_reader_with_idx(field, 1)?;
Ok(MultiValueIntFastFieldReader::open(idx_reader, vals_reader))
} else {
Err(FastFieldNotAvailableError::new(field_entry))
}
}
/// Accessor to the `BytesFastFieldReader` associated to a given `Field`.
pub fn bytes_fast_field_reader(&self, field: Field) -> fastfield::Result<BytesFastFieldReader> {
let field_entry = self.schema.get_field_entry(field);
match field_entry.field_type() {
&FieldType::Bytes => {}
_ => return Err(FastFieldNotAvailableError::new(field_entry)),
}
let idx_reader = self
.fast_fields_composite
.open_read_with_idx(field, 0)
.ok_or_else(|| FastFieldNotAvailableError::new(field_entry))
.map(FastFieldReader::open)?;
let values = self
.fast_fields_composite
.open_read_with_idx(field, 1)
.ok_or_else(|| FastFieldNotAvailableError::new(field_entry))?;
Ok(BytesFastFieldReader::open(idx_reader, values))
}
/// Accessor to the `FacetReader` associated to a given `Field`.
pub fn facet_reader(&self, field: Field) -> Result<FacetReader> {
let field_entry = self.schema.get_field_entry(field);
if field_entry.field_type() != &FieldType::HierarchicalFacet {
return Err(ErrorKind::InvalidArgument(format!(
"The field {:?} is not a \
hierarchical facet.",
field_entry
)).into());
}
let term_ords_reader = self.multi_fast_field_reader(field)?;
let termdict_source = self.termdict_composite.open_read(field).ok_or_else(|| {
ErrorKind::InvalidArgument(format!(
"The field \"{}\" is a hierarchical \
but this segment does not seem to have the field term \
dictionary.",
field_entry.name()
))
})?;
let termdict = TermDictionary::from_source(termdict_source);
let facet_reader = FacetReader::new(term_ords_reader, termdict);
Ok(facet_reader)
}
/// Accessor to the segment's `Field norms`'s reader.
///
/// Field norms are the length (in tokens) of the fields.
@@ -106,10 +200,17 @@ impl SegmentReader {
///
/// They are simply stored as a fast field, serialized in
/// the `.fieldnorm` file of the segment.
pub fn get_fieldnorms_reader(&self, field: Field) -> Option<U64FastFieldReader> {
self.fieldnorms_composite
.open_read(field)
.map(U64FastFieldReader::open)
pub fn get_fieldnorms_reader(&self, field: Field) -> FieldNormReader {
if let Some(fieldnorm_source) = self.fieldnorms_composite.open_read(field) {
FieldNormReader::open(fieldnorm_source)
} else {
let field_name = self.schema.get_field_name(field);
let err_msg = format!(
"Field norm not found for field {:?}. Was it market as indexed during indexing.",
field_name
);
panic!(err_msg);
}
}
/// Accessor to the segment's `StoreReader`.
@@ -142,11 +243,11 @@ impl SegmentReader {
let fieldnorms_data = segment.open_read(SegmentComponent::FIELDNORMS)?;
let fieldnorms_composite = CompositeFile::open(&fieldnorms_data)?;
let delete_bitset = if segment.meta().has_deletes() {
let delete_bitset_opt = if segment.meta().has_deletes() {
let delete_data = segment.open_read(SegmentComponent::DELETE)?;
DeleteBitSet::open(delete_data)
Some(DeleteBitSet::open(delete_data))
} else {
DeleteBitSet::empty()
None
};
let schema = segment.schema();
@@ -159,44 +260,65 @@ impl SegmentReader {
fieldnorms_composite,
segment_id: segment.id(),
store_reader,
delete_bitset,
delete_bitset_opt,
positions_composite,
schema,
})
}
/// Returns a field reader associated to the field given in argument.
/// If the field was not present in the index during indexing time,
/// the InvertedIndexReader is empty.
///
/// The field reader is in charge of iterating through the
/// term dictionary associated to a specific field,
/// and opening the posting list associated to any term.
pub fn inverted_index(&self, field: Field) -> Arc<InvertedIndexReader> {
if let Some(inv_idx_reader) = self.inv_idx_reader_cache
if let Some(inv_idx_reader) = self
.inv_idx_reader_cache
.read()
.expect("Lock poisoned. This should never happen")
.get(&field)
{
Arc::clone(inv_idx_reader);
return Arc::clone(inv_idx_reader);
}
let field_entry = self.schema.get_field_entry(field);
let field_type = field_entry.field_type();
let record_option_opt = field_type.get_index_record_option();
if record_option_opt.is_none() {
panic!("Field {:?} does not seem indexed.", field_entry.name());
}
let termdict_source: ReadOnlySource = self.termdict_composite
.open_read(field)
.expect("Index corrupted. Failed to open field term dictionary in composite file.");
let record_option = record_option_opt.unwrap();
let postings_source = self.postings_composite
.open_read(field)
.expect("Index corrupted. Failed to open field postings in composite file.");
let postings_source_opt = self.postings_composite.open_read(field);
let positions_source = self.positions_composite
if postings_source_opt.is_none() {
// no documents in the segment contained this field.
// As a result, no data is associated to the inverted index.
//
// Returns an empty inverted index.
return Arc::new(InvertedIndexReader::empty(field_type.clone()));
}
let postings_source = postings_source_opt.unwrap();
let termdict_source = self
.termdict_composite
.open_read(field)
.expect("Failed to open field term dictionary in composite file. Is the field indexed");
let positions_source = self
.positions_composite
.open_read(field)
.expect("Index corrupted. Failed to open field positions in composite file.");
let inv_idx_reader = Arc::new(InvertedIndexReader::new(
termdict_source,
TermDictionary::from_source(termdict_source),
postings_source,
positions_source,
self.delete_bitset.clone(),
self.schema.clone(),
record_option,
));
// by releasing the lock in between, we may end up opening the inverting index
@@ -224,14 +346,21 @@ impl SegmentReader {
/// Returns the bitset representing
/// the documents that have been deleted.
pub fn delete_bitset(&self) -> &DeleteBitSet {
&self.delete_bitset
pub fn delete_bitset(&self) -> Option<&DeleteBitSet> {
self.delete_bitset_opt.as_ref()
}
/// Returns true iff the `doc` is marked
/// as deleted.
pub fn is_deleted(&self, doc: DocId) -> bool {
self.delete_bitset.is_deleted(doc)
self.delete_bitset()
.map(|delete_set| delete_set.is_deleted(doc))
.unwrap_or(false)
}
/// Returns an iterator that will iterate over the alive document ids
pub fn doc_ids_alive(&self) -> SegmentReaderAliveDocsIterator {
SegmentReaderAliveDocsIterator::new(&self)
}
}
@@ -240,3 +369,90 @@ impl fmt::Debug for SegmentReader {
write!(f, "SegmentReader({:?})", self.segment_id)
}
}
/// Implements the iterator trait to allow easy iteration
/// over non-deleted ("alive") DocIds in a SegmentReader
pub struct SegmentReaderAliveDocsIterator<'a> {
reader: &'a SegmentReader,
max_doc: DocId,
current: DocId,
}
impl<'a> SegmentReaderAliveDocsIterator<'a> {
pub fn new(reader: &'a SegmentReader) -> SegmentReaderAliveDocsIterator<'a> {
SegmentReaderAliveDocsIterator {
reader: reader,
max_doc: reader.max_doc(),
current: 0,
}
}
}
impl<'a> Iterator for SegmentReaderAliveDocsIterator<'a> {
type Item = DocId;
fn next(&mut self) -> Option<Self::Item> {
// TODO: Use TinySet (like in BitSetDocSet) to speed this process up
if self.current >= self.max_doc {
return None;
}
// find the next alive doc id
while self.reader.is_deleted(self.current) {
self.current += 1;
if self.current >= self.max_doc {
return None;
}
}
// capture the current alive DocId
let result = Some(self.current);
// move down the chain
self.current += 1;
result
}
}
#[cfg(test)]
mod test {
use core::Index;
use schema::{SchemaBuilder, Term, STORED, TEXT};
use DocId;
#[test]
fn test_alive_docs_iterator() {
let mut schema_builder = SchemaBuilder::new();
schema_builder.add_text_field("name", TEXT | STORED);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
let name = schema.get_field("name").unwrap();
{
let mut index_writer = index.writer_with_num_threads(1, 3_000_000).unwrap();
index_writer.add_document(doc!(name => "tantivy"));
index_writer.add_document(doc!(name => "horse"));
index_writer.add_document(doc!(name => "jockey"));
index_writer.add_document(doc!(name => "cap"));
// we should now have one segment with two docs
index_writer.commit().unwrap();
}
{
let mut index_writer2 = index.writer(50_000_000).unwrap();
index_writer2.delete_term(Term::from_field_text(name, "horse"));
index_writer2.delete_term(Term::from_field_text(name, "cap"));
// ok, now we should have a deleted doc
index_writer2.commit().unwrap();
}
index.load_searchers().unwrap();
let searcher = index.searcher();
let docs: Vec<DocId> = searcher.segment_reader(0).doc_ids_alive().collect();
assert_eq!(vec![0u32, 2u32], docs);
}
}

View File

@@ -1,4 +0,0 @@
mod skip;
pub mod stacker;
pub use self::skip::{SkipList, SkipListBuilder};

View File

@@ -1,161 +0,0 @@
use std::mem;
use super::heap::{Heap, HeapAllocable};
#[inline]
pub fn is_power_of_2(val: u32) -> bool {
val & (val - 1) == 0
}
#[inline]
pub fn jump_needed(val: u32) -> bool {
val > 3 && is_power_of_2(val)
}
#[derive(Debug, Clone)]
pub struct ExpUnrolledLinkedList {
len: u32,
end: u32,
val0: u32,
val1: u32,
val2: u32,
next: u32, // inline of the first block
}
impl ExpUnrolledLinkedList {
pub fn iter<'a>(&self, addr: u32, heap: &'a Heap) -> ExpUnrolledLinkedListIterator<'a> {
ExpUnrolledLinkedListIterator {
heap,
addr: addr + 2u32 * (mem::size_of::<u32>() as u32),
len: self.len,
consumed: 0,
}
}
pub fn push(&mut self, val: u32, heap: &Heap) {
self.len += 1;
if jump_needed(self.len) {
// we need to allocate another block.
// ... As we want to grow block exponentially
// the next block as a size of (length so far),
// and we need to add 1u32 to store the pointer
// to the next element.
let new_block_size: usize = (self.len as usize + 1) * mem::size_of::<u32>();
let new_block_addr: u32 = heap.allocate_space(new_block_size);
heap.set(self.end, &new_block_addr);
self.end = new_block_addr;
}
heap.set(self.end, &val);
self.end += mem::size_of::<u32>() as u32;
}
}
impl HeapAllocable for u32 {
fn with_addr(_addr: u32) -> u32 {
0u32
}
}
impl HeapAllocable for ExpUnrolledLinkedList {
fn with_addr(addr: u32) -> ExpUnrolledLinkedList {
let last_addr = addr + mem::size_of::<u32>() as u32 * 2u32;
ExpUnrolledLinkedList {
len: 0u32,
end: last_addr,
val0: 0u32,
val1: 0u32,
val2: 0u32,
next: 0u32,
}
}
}
pub struct ExpUnrolledLinkedListIterator<'a> {
heap: &'a Heap,
addr: u32,
len: u32,
consumed: u32,
}
impl<'a> Iterator for ExpUnrolledLinkedListIterator<'a> {
type Item = u32;
fn next(&mut self) -> Option<u32> {
if self.consumed == self.len {
None
} else {
let addr: u32;
self.consumed += 1;
if jump_needed(self.consumed) {
addr = *self.heap.get_mut_ref(self.addr);
} else {
addr = self.addr;
}
self.addr = addr + mem::size_of::<u32>() as u32;
Some(*self.heap.get_mut_ref(addr))
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use super::super::heap::Heap;
use test::Bencher;
const NUM_STACK: usize = 10_000;
const STACK_SIZE: u32 = 1000;
#[test]
fn test_stack() {
let heap = Heap::with_capacity(1_000_000);
let (addr, stack) = heap.allocate_object::<ExpUnrolledLinkedList>();
stack.push(1u32, &heap);
stack.push(2u32, &heap);
stack.push(4u32, &heap);
stack.push(8u32, &heap);
{
let mut it = stack.iter(addr, &heap);
assert_eq!(it.next().unwrap(), 1u32);
assert_eq!(it.next().unwrap(), 2u32);
assert_eq!(it.next().unwrap(), 4u32);
assert_eq!(it.next().unwrap(), 8u32);
assert!(it.next().is_none());
}
}
#[bench]
fn bench_push_vec(bench: &mut Bencher) {
bench.iter(|| {
let mut vecs = Vec::with_capacity(100);
for _ in 0..NUM_STACK {
vecs.push(Vec::new());
}
for s in 0..NUM_STACK {
for i in 0u32..STACK_SIZE {
let t = s * 392017 % NUM_STACK;
vecs[t].push(i);
}
}
});
}
#[bench]
fn bench_push_stack(bench: &mut Bencher) {
let heap = Heap::with_capacity(64_000_000);
bench.iter(|| {
let mut stacks = Vec::with_capacity(100);
for _ in 0..NUM_STACK {
let (_, stack) = heap.allocate_object::<ExpUnrolledLinkedList>();
stacks.push(stack);
}
for s in 0..NUM_STACK {
for i in 0u32..STACK_SIZE {
let t = s * 392017 % NUM_STACK;
stacks[t].push(i, &heap);
}
}
heap.clear();
});
}
}

View File

@@ -1,300 +0,0 @@
use std::iter;
use std::mem;
use super::heap::{BytesRef, Heap, HeapAllocable};
mod murmurhash2 {
const SEED: u32 = 3_242_157_231u32;
#[inline(always)]
pub fn murmurhash2(key: &[u8]) -> u32 {
let mut key_ptr: *const u32 = key.as_ptr() as *const u32;
let m: u32 = 0x5bd1_e995;
let r = 24;
let len = key.len() as u32;
let mut h: u32 = SEED ^ len;
let num_blocks = len >> 2;
for _ in 0..num_blocks {
let mut k: u32 = unsafe { *key_ptr };
k = k.wrapping_mul(m);
k ^= k >> r;
k = k.wrapping_mul(m);
k = k.wrapping_mul(m);
h ^= k;
key_ptr = key_ptr.wrapping_offset(1);
}
// Handle the last few bytes of the input array
let remaining = len & 3;
let key_ptr_u8: *const u8 = key_ptr as *const u8;
match remaining {
3 => {
h ^= unsafe { u32::from(*key_ptr_u8.wrapping_offset(2)) } << 16;
h ^= unsafe { u32::from(*key_ptr_u8.wrapping_offset(1)) } << 8;
h ^= unsafe { u32::from(*key_ptr_u8) };
h = h.wrapping_mul(m);
}
2 => {
h ^= unsafe { u32::from(*key_ptr_u8.wrapping_offset(1)) } << 8;
h ^= unsafe { u32::from(*key_ptr_u8) };
h = h.wrapping_mul(m);
}
1 => {
h ^= unsafe { u32::from(*key_ptr_u8) };
h = h.wrapping_mul(m);
}
_ => {}
}
h ^= h >> 13;
h = h.wrapping_mul(m);
h ^ (h >> 15)
}
}
/// Split the thread memory budget into
/// - the heap size
/// - the hash table "table" itself.
///
/// Returns (the heap size in bytes, the hash table size in number of bits)
pub(crate) fn split_memory(per_thread_memory_budget: usize) -> (usize, usize) {
let table_size_limit: usize = per_thread_memory_budget / 5;
let compute_table_size = |num_bits: usize| {
(1 << num_bits) * mem::size_of::<KeyValue>()
};
let table_num_bits: usize = (1..)
.into_iter()
.take_while(|num_bits: &usize| compute_table_size(*num_bits) < table_size_limit)
.last()
.expect(&format!(
"Per thread memory is too small: {}",
per_thread_memory_budget
));
let table_size = compute_table_size(table_num_bits);
let heap_size = per_thread_memory_budget - table_size;
(heap_size, table_num_bits)
}
/// `KeyValue` is the item stored in the hash table.
/// The key is actually a `BytesRef` object stored in an external heap.
/// The `value_addr` also points to an address in the heap.
///
/// The key and the value are actually stored contiguously.
/// For this reason, the (start, stop) information is actually redundant
/// and can be simplified in the future
#[derive(Copy, Clone, Default)]
struct KeyValue {
key_value_addr: BytesRef,
hash: u32,
}
impl KeyValue {
fn is_empty(&self) -> bool {
self.key_value_addr.is_null()
}
}
/// Customized `HashMap` with string keys
///
/// This `HashMap` takes String as keys. Keys are
/// stored in a user defined heap.
///
/// The quirky API has the benefit of avoiding
/// the computation of the hash of the key twice,
/// or copying the key as long as there is no insert.
///
pub struct HashMap<'a> {
table: Box<[KeyValue]>,
heap: &'a Heap,
mask: usize,
occupied: Vec<usize>,
}
struct QuadraticProbing {
hash: usize,
i: usize,
mask: usize,
}
impl QuadraticProbing {
fn compute(hash: usize, mask: usize) -> QuadraticProbing {
QuadraticProbing { hash, i: 0, mask }
}
#[inline]
fn next_probe(&mut self) -> usize {
self.i += 1;
(self.hash + self.i * self.i) & self.mask
}
}
impl<'a> HashMap<'a> {
pub fn new(num_bucket_power_of_2: usize, heap: &'a Heap) -> HashMap<'a> {
let table_size = 1 << num_bucket_power_of_2;
let table: Vec<KeyValue> = iter::repeat(KeyValue::default()).take(table_size).collect();
HashMap {
table: table.into_boxed_slice(),
heap,
mask: table_size - 1,
occupied: Vec::with_capacity(table_size / 2),
}
}
fn probe(&self, hash: u32) -> QuadraticProbing {
QuadraticProbing::compute(hash as usize, self.mask)
}
pub fn is_saturated(&self) -> bool {
self.table.len() < self.occupied.len() * 3
}
#[inline(never)]
fn get_key_value(&self, bytes_ref: BytesRef) -> (&[u8], u32) {
let key_bytes: &[u8] = self.heap.get_slice(bytes_ref);
let expull_addr: u32 = bytes_ref.addr() + 2 + key_bytes.len() as u32;
(key_bytes, expull_addr)
}
pub fn set_bucket(&mut self, hash: u32, key_bytes_ref: BytesRef, bucket: usize) {
self.occupied.push(bucket);
self.table[bucket] = KeyValue {
key_value_addr: key_bytes_ref,
hash,
};
}
pub fn iter<'b: 'a>(&'b self) -> impl Iterator<Item = (&'a [u8], u32)> + 'b {
self.occupied.iter().cloned().map(move |bucket: usize| {
let kv = self.table[bucket];
self.get_key_value(kv.key_value_addr)
})
}
pub fn get_or_create<S: AsRef<[u8]>, V: HeapAllocable>(&mut self, key: S) -> &mut V {
let key_bytes: &[u8] = key.as_ref();
let hash = murmurhash2::murmurhash2(key.as_ref());
let mut probe = self.probe(hash);
loop {
let bucket = probe.next_probe();
let kv: KeyValue = self.table[bucket];
if kv.is_empty() {
let key_bytes_ref = self.heap.allocate_and_set(key_bytes);
let (addr, val): (u32, &mut V) = self.heap.allocate_object();
assert_eq!(addr, key_bytes_ref.addr() + 2 + key_bytes.len() as u32);
self.set_bucket(hash, key_bytes_ref, bucket);
return val;
} else if kv.hash == hash {
let (stored_key, expull_addr): (&[u8], u32) = self.get_key_value(kv.key_value_addr);
if stored_key == key_bytes {
return self.heap.get_mut_ref(expull_addr);
}
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use super::super::heap::{Heap, HeapAllocable};
use super::murmurhash2::murmurhash2;
use test::Bencher;
use std::collections::HashSet;
use super::split_memory;
struct TestValue {
val: u32,
_addr: u32,
}
impl HeapAllocable for TestValue {
fn with_addr(addr: u32) -> TestValue {
TestValue {
val: 0u32,
_addr: addr,
}
}
}
#[test]
fn test_hashmap_size() {
assert_eq!(split_memory(100_000), (67232, 9));
assert_eq!(split_memory(1_000_000), (737856, 12));
assert_eq!(split_memory(10_000_000), (7902848, 15));
}
#[test]
fn test_hash_map() {
let heap = Heap::with_capacity(2_000_000);
let mut hash_map: HashMap = HashMap::new(18, &heap);
{
let v: &mut TestValue = hash_map.get_or_create("abc");
assert_eq!(v.val, 0u32);
v.val = 3u32;
}
{
let v: &mut TestValue = hash_map.get_or_create("abcd");
assert_eq!(v.val, 0u32);
v.val = 4u32;
}
{
let v: &mut TestValue = hash_map.get_or_create("abc");
assert_eq!(v.val, 3u32);
}
{
let v: &mut TestValue = hash_map.get_or_create("abcd");
assert_eq!(v.val, 4u32);
}
let mut iter_values = hash_map.iter();
{
let (_, addr) = iter_values.next().unwrap();
let val: &TestValue = heap.get_ref(addr);
assert_eq!(val.val, 3u32);
}
{
let (_, addr) = iter_values.next().unwrap();
let val: &TestValue = heap.get_ref(addr);
assert_eq!(val.val, 4u32);
}
assert!(iter_values.next().is_none());
}
#[test]
fn test_murmur() {
let s1 = "abcdef";
let s2 = "abcdeg";
for i in 0..5 {
assert_eq!(
murmurhash2(&s1[i..5].as_bytes()),
murmurhash2(&s2[i..5].as_bytes())
);
}
}
#[test]
fn test_murmur_collisions() {
let mut set: HashSet<u32> = HashSet::default();
for i in 0..10_000 {
let s = format!("hash{}", i);
let hash = murmurhash2(s.as_bytes());
set.insert(hash);
}
assert_eq!(set.len(), 10_000);
}
#[bench]
fn bench_murmurhash_2(b: &mut Bencher) {
let keys: Vec<&'static str> =
vec!["wer qwe qwe qwe ", "werbq weqweqwe2 ", "weraq weqweqwe3 "];
b.iter(|| {
keys.iter()
.map(|&s| s.as_bytes())
.map(murmurhash2::murmurhash2)
.map(|h| h as u64)
.last()
.unwrap()
});
}
}

View File

@@ -1,233 +0,0 @@
use std::cell::UnsafeCell;
use std::mem;
use std::ptr;
use byteorder::{ByteOrder, NativeEndian};
/// `BytesRef` refers to a slice in tantivy's custom `Heap`.
///
/// The slice will encode the length of the `&[u8]` slice
/// on 16-bits, and then the data is encoded.
#[derive(Copy, Clone)]
pub struct BytesRef(u32);
impl BytesRef {
pub fn is_null(&self) -> bool {
self.0 == u32::max_value()
}
pub fn addr(&self) -> u32 {
self.0
}
}
impl Default for BytesRef {
fn default() -> BytesRef {
BytesRef(u32::max_value())
}
}
/// Object that can be allocated in tantivy's custom `Heap`.
pub trait HeapAllocable {
fn with_addr(addr: u32) -> Self;
}
/// Tantivy's custom `Heap`.
pub struct Heap {
inner: UnsafeCell<InnerHeap>,
}
#[cfg_attr(feature = "cargo-clippy", allow(mut_from_ref))]
impl Heap {
/// Creates a new heap with a given capacity
pub fn with_capacity(num_bytes: usize) -> Heap {
Heap {
inner: UnsafeCell::new(InnerHeap::with_capacity(num_bytes)),
}
}
fn inner(&self) -> &mut InnerHeap {
unsafe { &mut *self.inner.get() }
}
/// Clears the heap. All the underlying data is lost.
///
/// This heap does not support deallocation.
/// This method is the only way to free memory.
pub fn clear(&self) {
self.inner().clear();
}
/// Return amount of free space, in bytes.
pub fn num_free_bytes(&self) -> u32 {
self.inner().num_free_bytes()
}
/// Allocate a given amount of space and returns an address
/// in the Heap.
pub fn allocate_space(&self, num_bytes: usize) -> u32 {
self.inner().allocate_space(num_bytes)
}
/// Allocate an object in the heap
pub fn allocate_object<V: HeapAllocable>(&self) -> (u32, &mut V) {
let addr = self.inner().allocate_space(mem::size_of::<V>());
let v: V = V::with_addr(addr);
self.inner().set(addr, &v);
(addr, self.inner().get_mut_ref(addr))
}
/// Stores a `&[u8]` in the heap and returns the destination BytesRef.
pub fn allocate_and_set(&self, data: &[u8]) -> BytesRef {
self.inner().allocate_and_set(data)
}
/// Fetches the `&[u8]` stored on the slice defined by the `BytesRef`
/// given as argumetn
pub fn get_slice(&self, bytes_ref: BytesRef) -> &[u8] {
self.inner().get_slice(bytes_ref)
}
/// Stores an item's data in the heap, at the given `address`.
pub fn set<Item>(&self, addr: u32, val: &Item) {
self.inner().set(addr, val);
}
/// Returns a mutable reference for an object at a given Item.
pub fn get_mut_ref<Item>(&self, addr: u32) -> &mut Item {
self.inner().get_mut_ref(addr)
}
/// Returns a mutable reference to an `Item` at a given `addr`.
#[cfg(test)]
pub fn get_ref<Item>(&self, addr: u32) -> &mut Item {
self.get_mut_ref(addr)
}
}
struct InnerHeap {
buffer: Vec<u8>,
buffer_len: u32,
used: u32,
next_heap: Option<Box<InnerHeap>>,
}
impl InnerHeap {
pub fn with_capacity(num_bytes: usize) -> InnerHeap {
let buffer: Vec<u8> = vec![0u8; num_bytes];
InnerHeap {
buffer,
buffer_len: num_bytes as u32,
next_heap: None,
used: 0u32,
}
}
pub fn clear(&mut self) {
self.used = 0u32;
self.next_heap = None;
}
// Returns the number of free bytes. If the buffer
// has reached it's capacity and overflowed to another buffer, return 0.
pub fn num_free_bytes(&self) -> u32 {
if self.next_heap.is_some() {
0u32
} else {
self.buffer_len - self.used
}
}
pub fn allocate_space(&mut self, num_bytes: usize) -> u32 {
let addr = self.used;
self.used += num_bytes as u32;
if self.used <= self.buffer_len {
addr
} else {
if self.next_heap.is_none() {
info!(
r#"Exceeded heap size. The segment will be committed right
after indexing this document."#,
);
self.next_heap = Some(Box::new(InnerHeap::with_capacity(self.buffer_len as usize)));
}
self.next_heap.as_mut().unwrap().allocate_space(num_bytes) + self.buffer_len
}
}
fn get_slice(&self, bytes_ref: BytesRef) -> &[u8] {
let start = bytes_ref.0;
if start >= self.buffer_len {
self.next_heap
.as_ref()
.unwrap()
.get_slice(BytesRef(start - self.buffer_len))
} else {
let start = start as usize;
let len = NativeEndian::read_u16(&self.buffer[start..start + 2]) as usize;
&self.buffer[start + 2..start + 2 + len]
}
}
fn get_mut_slice(&mut self, start: u32, stop: u32) -> &mut [u8] {
if start >= self.buffer_len {
self.next_heap
.as_mut()
.unwrap()
.get_mut_slice(start - self.buffer_len, stop - self.buffer_len)
} else {
&mut self.buffer[start as usize..stop as usize]
}
}
fn allocate_and_set(&mut self, data: &[u8]) -> BytesRef {
assert!(data.len() < u16::max_value() as usize);
let total_len = 2 + data.len();
let start = self.allocate_space(total_len);
let total_buff = self.get_mut_slice(start, start + total_len as u32);
NativeEndian::write_u16(&mut total_buff[0..2], data.len() as u16);
total_buff[2..].clone_from_slice(data);
BytesRef(start)
}
fn get_mut(&mut self, addr: u32) -> *mut u8 {
if addr >= self.buffer_len {
self.next_heap
.as_mut()
.unwrap()
.get_mut(addr - self.buffer_len)
} else {
let addr_isize = addr as isize;
unsafe { self.buffer.as_mut_ptr().offset(addr_isize) }
}
}
fn get_mut_ref<Item>(&mut self, addr: u32) -> &mut Item {
if addr >= self.buffer_len {
self.next_heap
.as_mut()
.unwrap()
.get_mut_ref(addr - self.buffer_len)
} else {
let v_ptr_u8 = self.get_mut(addr) as *mut u8;
let v_ptr = v_ptr_u8 as *mut Item;
unsafe { &mut *v_ptr }
}
}
pub fn set<Item>(&mut self, addr: u32, val: &Item) {
if addr >= self.buffer_len {
self.next_heap
.as_mut()
.unwrap()
.set(addr - self.buffer_len, val);
} else {
let v_ptr: *const Item = val as *const Item;
let v_ptr_u8: *const u8 = v_ptr as *const u8;
debug_assert!(addr + mem::size_of::<Item>() as u32 <= self.used);
unsafe {
let dest_ptr: *mut u8 = self.get_mut(addr);
ptr::copy(v_ptr_u8, dest_ptr, mem::size_of::<Item>());
}
}
}
}

View File

@@ -1,43 +0,0 @@
pub(crate) mod hashmap;
mod heap;
mod expull;
pub use self::heap::{Heap, HeapAllocable};
pub use self::expull::ExpUnrolledLinkedList;
pub use self::hashmap::HashMap;
#[test]
fn test_unrolled_linked_list() {
use std::collections;
let heap = Heap::with_capacity(30_000_000);
{
heap.clear();
let mut ks: Vec<usize> = (1..5).map(|k| k * 100).collect();
ks.push(2);
ks.push(3);
for k in (1..5).map(|k| k * 100) {
let mut hashmap: HashMap = HashMap::new(10, &heap);
for j in 0..k {
for i in 0..500 {
let v: &mut ExpUnrolledLinkedList = hashmap.get_or_create(i.to_string());
v.push(i * j, &heap);
}
}
let mut map_addr: collections::HashMap<Vec<u8>, u32> = collections::HashMap::new();
for (key, addr) in hashmap.iter() {
map_addr.insert(Vec::from(key), addr);
}
for i in 0..500 {
let key: String = i.to_string();
let addr: u32 = *map_addr.get(key.as_bytes()).unwrap();
let exp_pull: &ExpUnrolledLinkedList = heap.get_ref(addr);
let mut it = exp_pull.iter(addr, &heap);
for j in 0..k {
assert_eq!(it.next().unwrap(), i * j);
}
assert!(!it.next().is_some());
}
}
}
}

View File

@@ -1,11 +1,11 @@
use std::marker::Send;
use std::fmt;
use std::path::Path;
use directory::error::{DeleteError, OpenReadError, OpenWriteError};
use directory::{ReadOnlySource, WritePtr};
use std::result;
use std::fmt;
use std::io;
use std::marker::Send;
use std::marker::Sync;
use std::path::Path;
use std::result;
/// Write-once read many (WORM) abstraction for where
/// tantivy's data should be stored.

Some files were not shown because too many files have changed in this diff Show More