mirror of
https://github.com/quickwit-oss/tantivy.git
synced 2025-12-27 20:42:54 +00:00
Compare commits
242 Commits
fix_estima
...
columnar-m
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
937485321a | ||
|
|
e3be14e7d8 | ||
|
|
c9cb3d04bf | ||
|
|
0caaf13a90 | ||
|
|
a59bd965cc | ||
|
|
f2dad194ea | ||
|
|
25bad784ad | ||
|
|
4bac945709 | ||
|
|
16b704e190 | ||
|
|
6ca9a477f3 | ||
|
|
2650111b76 | ||
|
|
1176555eff | ||
|
|
f8d111a75e | ||
|
|
e17996f2fd | ||
|
|
f3621c0487 | ||
|
|
14222a47a3 | ||
|
|
8312c882a5 | ||
|
|
7a8fce0ae7 | ||
|
|
196e42f33e | ||
|
|
82a183bc2d | ||
|
|
3090d49615 | ||
|
|
7c6cc818ae | ||
|
|
514d23a20c | ||
|
|
4f9efe654c | ||
|
|
1afa5bf3db | ||
|
|
07a51eb7c8 | ||
|
|
2080c370c2 | ||
|
|
b22f96624e | ||
|
|
b78dc5e313 | ||
|
|
3f915925af | ||
|
|
9c5fef5af7 | ||
|
|
9948a84ebe | ||
|
|
45156fd869 | ||
|
|
bc959006fa | ||
|
|
7385a8f80c | ||
|
|
13b89cba17 | ||
|
|
f4804ce2f5 | ||
|
|
2a6d1eaf78 | ||
|
|
540a9972bd | ||
|
|
bb48c3e488 | ||
|
|
3339a3ec05 | ||
|
|
f39165e1e7 | ||
|
|
32cb1d22da | ||
|
|
4a6bf50e78 | ||
|
|
2ac1cc2fc0 | ||
|
|
f9171a3981 | ||
|
|
a2cf6a79b4 | ||
|
|
f6e87a5319 | ||
|
|
f9971e15fe | ||
|
|
3cdc8e7472 | ||
|
|
fbb0f8b55d | ||
|
|
136a8f4124 | ||
|
|
5d4535de83 | ||
|
|
2c50b02eb3 | ||
|
|
509adab79d | ||
|
|
96c93a6ba3 | ||
|
|
495824361a | ||
|
|
485a8f507e | ||
|
|
1119e59eae | ||
|
|
ee1f2c1f28 | ||
|
|
600548fd26 | ||
|
|
9929c0c221 | ||
|
|
f53e65648b | ||
|
|
0281b22b77 | ||
|
|
a05c184830 | ||
|
|
0b40a7fe43 | ||
|
|
e758080465 | ||
|
|
2a39289a1b | ||
|
|
ca6231170e | ||
|
|
eda6e5a10a | ||
|
|
8641155cbb | ||
|
|
9a090ed994 | ||
|
|
b7d0dd154a | ||
|
|
ce10fab20f | ||
|
|
e034328a8b | ||
|
|
f811d1616b | ||
|
|
c665b16ff0 | ||
|
|
3b5f810051 | ||
|
|
5765c261aa | ||
|
|
fb9f03118d | ||
|
|
55a9d808d4 | ||
|
|
32166682b3 | ||
|
|
e6acf8f76d | ||
|
|
9e8a0c2cca | ||
|
|
3edf0a2724 | ||
|
|
8ca12a5683 | ||
|
|
a4b759d2fe | ||
|
|
3e9c806890 | ||
|
|
c69a873dd3 | ||
|
|
666afcf641 | ||
|
|
38ad46e580 | ||
|
|
e948889f4c | ||
|
|
6e636c9cea | ||
|
|
5a610efbc1 | ||
|
|
500a0d5e48 | ||
|
|
509a265659 | ||
|
|
5b2cea1b97 | ||
|
|
a5a80ffaea | ||
|
|
0f98d91a39 | ||
|
|
2af6b01c17 | ||
|
|
c32ab66bbd | ||
|
|
3f3a6f9990 | ||
|
|
83325d8f3f | ||
|
|
4e46f4f8c4 | ||
|
|
43df356010 | ||
|
|
6647362464 | ||
|
|
279b1b28d3 | ||
|
|
7a80851e36 | ||
|
|
cd952429d2 | ||
|
|
d777c964da | ||
|
|
bbb058d976 | ||
|
|
5f7d027a52 | ||
|
|
dfab201191 | ||
|
|
0c2bd36fe3 | ||
|
|
af839753e0 | ||
|
|
fec2b63571 | ||
|
|
6213ea476a | ||
|
|
5e159c26bf | ||
|
|
a5e59ab598 | ||
|
|
e772d3170d | ||
|
|
8c2ba7bd55 | ||
|
|
02328b0151 | ||
|
|
7cc775256c | ||
|
|
07b40f8b8b | ||
|
|
9b6b6be5b9 | ||
|
|
6bb73a527f | ||
|
|
03885d0f3c | ||
|
|
f2e5135870 | ||
|
|
c24157f28b | ||
|
|
873382cdcb | ||
|
|
791350091c | ||
|
|
483b1d13d4 | ||
|
|
8de7fa9d95 | ||
|
|
94313b62f8 | ||
|
|
f2b2628feb | ||
|
|
449f595832 | ||
|
|
c9235df059 | ||
|
|
a4485f7611 | ||
|
|
1082ff60f9 | ||
|
|
491854155c | ||
|
|
96c3d54ac7 | ||
|
|
6800fdec9d | ||
|
|
c9cf9c952a | ||
|
|
024e53a99c | ||
|
|
8d75e451bd | ||
|
|
fcfd76ec55 | ||
|
|
6b7b1cc4fa | ||
|
|
129f7422f5 | ||
|
|
f39cce2c8b | ||
|
|
d2478fac8a | ||
|
|
952b048341 | ||
|
|
80f9596ec8 | ||
|
|
84f9e77e1d | ||
|
|
a602c248fb | ||
|
|
4b9d1fe828 | ||
|
|
63bc390b02 | ||
|
|
07393c2fa0 | ||
|
|
77a415cbe4 | ||
|
|
4b4c231bba | ||
|
|
11d3409286 | ||
|
|
9cb8cfbea8 | ||
|
|
8b69aab0fc | ||
|
|
3650d1f36a | ||
|
|
2efebdb1bb | ||
|
|
e443ca63aa | ||
|
|
5c9cbee29d | ||
|
|
b2ca83a93c | ||
|
|
3b189080d4 | ||
|
|
00a6586efe | ||
|
|
b9b913510e | ||
|
|
534b1d33c3 | ||
|
|
f465173872 | ||
|
|
96315df20d | ||
|
|
9a1609d364 | ||
|
|
39f4e58450 | ||
|
|
a8a36b62cd | ||
|
|
226a49338f | ||
|
|
2864bf7123 | ||
|
|
5171ff611b | ||
|
|
e50e74acf8 | ||
|
|
0b86658389 | ||
|
|
5d6602a8d9 | ||
|
|
4d29ff4d01 | ||
|
|
cdc8e3a8be | ||
|
|
67f453b534 | ||
|
|
787a37bacf | ||
|
|
f5039f1846 | ||
|
|
eeb1f19093 | ||
|
|
087beaf328 | ||
|
|
309449dba3 | ||
|
|
5a76e6c5d3 | ||
|
|
c8713a01ed | ||
|
|
6113e0408c | ||
|
|
400a20b7af | ||
|
|
5f565e77de | ||
|
|
516e60900d | ||
|
|
36e1c79f37 | ||
|
|
c2f1c250f9 | ||
|
|
c694bc039a | ||
|
|
2063f1717f | ||
|
|
d742275048 | ||
|
|
b9f06bc287 | ||
|
|
8b42c4c126 | ||
|
|
7905965800 | ||
|
|
f60a551890 | ||
|
|
7baa6e3ec5 | ||
|
|
2100ec5d26 | ||
|
|
b3bf9a5716 | ||
|
|
0dc8c458e0 | ||
|
|
e5043d78d2 | ||
|
|
6d0bb82bd2 | ||
|
|
5945dbf0bd | ||
|
|
4cf911d56a | ||
|
|
0f5cff762f | ||
|
|
6d9a123cf2 | ||
|
|
0f4a47816a | ||
|
|
b062ab2196 | ||
|
|
a9d2f3db23 | ||
|
|
44e03791f9 | ||
|
|
2d23763e9f | ||
|
|
a24ae8d924 | ||
|
|
927dff5262 | ||
|
|
a695edcc95 | ||
|
|
b4b4f3fa73 | ||
|
|
b50e4b7c20 | ||
|
|
f8686ab1ec | ||
|
|
2fe42719d8 | ||
|
|
fadd784a25 | ||
|
|
0e94213af0 | ||
|
|
0da2a2e70d | ||
|
|
0bcdf3cbbf | ||
|
|
8f647b817f | ||
|
|
a86b0df6f4 | ||
|
|
f842da758c | ||
|
|
97ccd6d712 | ||
|
|
cb252a42af | ||
|
|
d9609dd6b6 | ||
|
|
f03667d967 | ||
|
|
10f10a322f | ||
|
|
f757471077 | ||
|
|
21e0adefda | ||
|
|
ea8e6d7b1d |
1
.gitattributes
vendored
1
.gitattributes
vendored
@@ -1 +0,0 @@
|
||||
cpp/* linguist-vendored
|
||||
2
.github/workflows/test.yml
vendored
2
.github/workflows/test.yml
vendored
@@ -48,7 +48,7 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
features: [
|
||||
{ label: "all", flags: "mmap,brotli-compression,lz4-compression,snappy-compression,zstd-compression,failpoints" },
|
||||
{ label: "all", flags: "mmap,stopwords,brotli-compression,lz4-compression,snappy-compression,zstd-compression,failpoints" },
|
||||
{ label: "quickwit", flags: "mmap,quickwit,failpoints" }
|
||||
]
|
||||
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -9,7 +9,6 @@ target/release
|
||||
Cargo.lock
|
||||
benchmark
|
||||
.DS_Store
|
||||
cpp/simdcomp/bitpackingbenchmark
|
||||
*.bk
|
||||
.idea
|
||||
trace.dat
|
||||
|
||||
39
CHANGELOG.md
39
CHANGELOG.md
@@ -1,10 +1,37 @@
|
||||
Tantivy 0.19
|
||||
================================
|
||||
#### Bugfixes
|
||||
- Fix missing fieldnorms for u64, i64, f64, bool, bytes and date [#1620](https://github.com/quickwit-oss/tantivy/pull/1620) (@PSeitz)
|
||||
- Fix interpolation overflow in linear interpolation fastfield codec [#1480](https://github.com/quickwit-oss/tantivy/pull/1480) (@PSeitz @fulmicoton)
|
||||
|
||||
- Updated [Date Field Type](https://github.com/quickwit-oss/tantivy/pull/1396)
|
||||
The `DateTime` type has been updated to hold timestamps with microseconds precision.
|
||||
`DateOptions` and `DatePrecision` have been added to configure Date fields. The precision is used to hint on fast values compression. Otherwise, seconds precision is used everywhere else (i.e terms, indexing).
|
||||
- Remove Searcher pool and make `Searcher` cloneable.
|
||||
#### Features/Improvements
|
||||
- Add support for `IN` in queryparser , e.g. `field: IN [val1 val2 val3]` [#1683](https://github.com/quickwit-oss/tantivy/pull/1683) (@trinity-1686a)
|
||||
- Skip score calculation, when no scoring is required [#1646](https://github.com/quickwit-oss/tantivy/pull/1646) (@PSeitz)
|
||||
- Limit fast fields to u32 (`get_val(u32)`) [#1644](https://github.com/quickwit-oss/tantivy/pull/1644) (@PSeitz)
|
||||
- The `DateTime` type has been updated to hold timestamps with microseconds precision.
|
||||
`DateOptions` and `DatePrecision` have been added to configure Date fields. The precision is used to hint on fast values compression. Otherwise, seconds precision is used everywhere else (i.e terms, indexing) [#1396](https://github.com/quickwit-oss/tantivy/pull/1396) (@evanxg852000)
|
||||
- Add IP address field type [#1553](https://github.com/quickwit-oss/tantivy/pull/1553) (@PSeitz)
|
||||
- Add boolean field type [#1382](https://github.com/quickwit-oss/tantivy/pull/1382) (@boraarslan)
|
||||
- Remove Searcher pool and make `Searcher` cloneable. (@PSeitz)
|
||||
- Validate settings on create [#1570](https://github.com/quickwit-oss/tantivy/pull/1570) (@PSeitz)
|
||||
- Detect and apply gcd on fastfield codecs [#1418](https://github.com/quickwit-oss/tantivy/pull/1418) (@PSeitz)
|
||||
- Doc store
|
||||
- use separate thread to compress block store [#1389](https://github.com/quickwit-oss/tantivy/pull/1389) [#1510](https://github.com/quickwit-oss/tantivy/pull/1510) (@PSeitz @fulmicoton)
|
||||
- Expose doc store cache size [#1403](https://github.com/quickwit-oss/tantivy/pull/1403) (@PSeitz)
|
||||
- Enable compression levels for doc store [#1378](https://github.com/quickwit-oss/tantivy/pull/1378) (@PSeitz)
|
||||
- Make block size configurable [#1374](https://github.com/quickwit-oss/tantivy/pull/1374) (@kryesh)
|
||||
- Make `tantivy::TantivyError` cloneable [#1402](https://github.com/quickwit-oss/tantivy/pull/1402) (@PSeitz)
|
||||
- Add support for phrase slop in query language [#1393](https://github.com/quickwit-oss/tantivy/pull/1393) (@saroh)
|
||||
- Aggregation
|
||||
- Add aggregation support for date type [#1693](https://github.com/quickwit-oss/tantivy/pull/1693)(@PSeitz)
|
||||
- Add support for keyed parameter in range and histgram aggregations [#1424](https://github.com/quickwit-oss/tantivy/pull/1424) (@k-yomo)
|
||||
- Add aggregation bucket limit [#1363](https://github.com/quickwit-oss/tantivy/pull/1363) (@PSeitz)
|
||||
- Faster indexing
|
||||
- [#1610](https://github.com/quickwit-oss/tantivy/pull/1610) (@PSeitz)
|
||||
- [#1594](https://github.com/quickwit-oss/tantivy/pull/1594) (@PSeitz)
|
||||
- [#1582](https://github.com/quickwit-oss/tantivy/pull/1582) (@PSeitz)
|
||||
- [#1611](https://github.com/quickwit-oss/tantivy/pull/1611) (@PSeitz)
|
||||
- Added a pre-configured stop word filter for various language [#1666](https://github.com/quickwit-oss/tantivy/pull/1666) (@adamreichold)
|
||||
|
||||
Tantivy 0.18
|
||||
================================
|
||||
@@ -22,6 +49,10 @@ Tantivy 0.18
|
||||
- Add terms aggregation (@PSeitz)
|
||||
- Add support for zstd compression (@kryesh)
|
||||
|
||||
Tantivy 0.18.1
|
||||
================================
|
||||
- Hotfix: positions computation. #1629 (@fmassot, @fulmicoton, @PSeitz)
|
||||
|
||||
Tantivy 0.17
|
||||
================================
|
||||
|
||||
|
||||
44
Cargo.toml
44
Cargo.toml
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy"
|
||||
version = "0.18.0"
|
||||
version = "0.19.0"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = ["database-implementations", "data-structures"]
|
||||
@@ -11,19 +11,21 @@ repository = "https://github.com/quickwit-oss/tantivy"
|
||||
readme = "README.md"
|
||||
keywords = ["search", "information", "retrieval"]
|
||||
edition = "2021"
|
||||
rust-version = "1.62"
|
||||
|
||||
[dependencies]
|
||||
oneshot = "0.1.3"
|
||||
base64 = "0.13.0"
|
||||
oneshot = "0.1.5"
|
||||
base64 = "0.21.0"
|
||||
byteorder = "1.4.3"
|
||||
crc32fast = "1.3.2"
|
||||
once_cell = "1.10.0"
|
||||
regex = { version = "1.5.5", default-features = false, features = ["std", "unicode"] }
|
||||
tantivy-fst = "0.3.0"
|
||||
aho-corasick = "0.7"
|
||||
tantivy-fst = "0.4.0"
|
||||
memmap2 = { version = "0.5.3", optional = true }
|
||||
lz4_flex = { version = "0.9.2", default-features = false, features = ["checked-decode"], optional = true }
|
||||
brotli = { version = "3.3.4", optional = true }
|
||||
zstd = { version = "0.11", optional = true }
|
||||
zstd = { version = "0.12", optional = true, default-features = false }
|
||||
snap = { version = "1.0.5", optional = true }
|
||||
tempfile = { version = "3.3.0", optional = true }
|
||||
log = "0.4.16"
|
||||
@@ -34,17 +36,11 @@ fs2 = { version = "0.4.3", optional = true }
|
||||
levenshtein_automata = "0.2.1"
|
||||
uuid = { version = "1.0.0", features = ["v4", "serde"] }
|
||||
crossbeam-channel = "0.5.4"
|
||||
tantivy-query-grammar = { version="0.18.0", path="./query-grammar" }
|
||||
tantivy-bitpacker = { version="0.2", path="./bitpacker" }
|
||||
common = { version = "0.3", path = "./common/", package = "tantivy-common" }
|
||||
fastfield_codecs = { version="0.2", path="./fastfield_codecs", default-features = false }
|
||||
ownedbytes = { version="0.3", path="./ownedbytes" }
|
||||
stable_deref_trait = "1.2.0"
|
||||
rust-stemmers = "1.2.0"
|
||||
downcast-rs = "1.2.0"
|
||||
bitpacking = { version = "0.8.4", default-features = false, features = ["bitpacker4x"] }
|
||||
census = "0.4.0"
|
||||
fnv = "1.0.7"
|
||||
rustc-hash = "1.1.0"
|
||||
thiserror = "1.0.30"
|
||||
htmlescape = "0.3.1"
|
||||
fail = "0.5.0"
|
||||
@@ -52,14 +48,21 @@ murmurhash32 = "0.2.0"
|
||||
time = { version = "0.3.10", features = ["serde-well-known"] }
|
||||
smallvec = "1.8.0"
|
||||
rayon = "1.5.2"
|
||||
lru = "0.7.5"
|
||||
lru = "0.9.0"
|
||||
fastdivide = "0.4.0"
|
||||
itertools = "0.10.3"
|
||||
measure_time = "0.8.2"
|
||||
serde_cbor = { version = "0.11.2", optional = true }
|
||||
async-trait = "0.1.53"
|
||||
arc-swap = "1.5.0"
|
||||
|
||||
sstable = { version="0.1", path="./sstable", package ="tantivy-sstable", optional = true }
|
||||
stacker = { version="0.1", path="./stacker", package ="tantivy-stacker" }
|
||||
tantivy-query-grammar = { version= "0.19.0", path="./query-grammar" }
|
||||
tantivy-bitpacker = { version= "0.3", path="./bitpacker" }
|
||||
common = { version= "0.5", path = "./common/", package = "tantivy-common" }
|
||||
fastfield_codecs = { version= "0.3", path="./fastfield_codecs", default-features = false }
|
||||
tokenizer-api = { version="0.1", path="./tokenizer-api", package="tantivy-tokenizer-api" }
|
||||
|
||||
[target.'cfg(windows)'.dependencies]
|
||||
winapi = "0.3.9"
|
||||
|
||||
@@ -69,10 +72,10 @@ maplit = "1.0.2"
|
||||
matches = "0.1.9"
|
||||
pretty_assertions = "1.2.1"
|
||||
proptest = "1.0.0"
|
||||
criterion = "0.3.5"
|
||||
criterion = "0.4"
|
||||
test-log = "0.2.10"
|
||||
env_logger = "0.9.0"
|
||||
pprof = { version = "0.10.0", features = ["flamegraph", "criterion"] }
|
||||
env_logger = "0.10.0"
|
||||
pprof = { version = "0.11.0", features = ["flamegraph", "criterion"] }
|
||||
futures = "0.3.21"
|
||||
|
||||
[dev-dependencies.fail]
|
||||
@@ -89,8 +92,9 @@ debug-assertions = true
|
||||
overflow-checks = true
|
||||
|
||||
[features]
|
||||
default = ["mmap", "lz4-compression" ]
|
||||
default = ["mmap", "stopwords", "lz4-compression"]
|
||||
mmap = ["fs2", "tempfile", "memmap2"]
|
||||
stopwords = []
|
||||
|
||||
brotli-compression = ["brotli"]
|
||||
lz4-compression = ["lz4_flex"]
|
||||
@@ -100,10 +104,10 @@ zstd-compression = ["zstd"]
|
||||
failpoints = ["fail/failpoints"]
|
||||
unstable = [] # useful for benches.
|
||||
|
||||
quickwit = ["serde_cbor"]
|
||||
quickwit = ["sstable"]
|
||||
|
||||
[workspace]
|
||||
members = ["query-grammar", "bitpacker", "common", "fastfield_codecs", "ownedbytes"]
|
||||
members = ["query-grammar", "bitpacker", "common", "fastfield_codecs", "ownedbytes", "stacker", "sstable", "tokenizer-api"]
|
||||
|
||||
# Following the "fail" crate best practises, we isolate
|
||||
# tests that define specific behavior in fail check points
|
||||
|
||||
18
README.md
18
README.md
@@ -29,7 +29,7 @@ Your mileage WILL vary depending on the nature of queries and their load.
|
||||
# Features
|
||||
|
||||
- Full-text search
|
||||
- Configurable tokenizer (stemming available for 17 Latin languages with third party support for Chinese ([tantivy-jieba](https://crates.io/crates/tantivy-jieba) and [cang-jie](https://crates.io/crates/cang-jie)), Japanese ([lindera](https://github.com/lindera-morphology/lindera-tantivy), [Vaporetto](https://crates.io/crates/vaporetto_tantivy), and [tantivy-tokenizer-tiny-segmenter](https://crates.io/crates/tantivy-tokenizer-tiny-segmenter)) and Korean ([lindera](https://github.com/lindera-morphology/lindera-tantivy) + [lindera-ko-dic-builder](https://github.com/lindera-morphology/lindera-ko-dic-builder))
|
||||
- Configurable tokenizer (stemming available for 17 Latin languages) with third party support for Chinese ([tantivy-jieba](https://crates.io/crates/tantivy-jieba) and [cang-jie](https://crates.io/crates/cang-jie)), Japanese ([lindera](https://github.com/lindera-morphology/lindera-tantivy), [Vaporetto](https://crates.io/crates/vaporetto_tantivy), and [tantivy-tokenizer-tiny-segmenter](https://crates.io/crates/tantivy-tokenizer-tiny-segmenter)) and Korean ([lindera](https://github.com/lindera-morphology/lindera-tantivy) + [lindera-ko-dic-builder](https://github.com/lindera-morphology/lindera-ko-dic-builder))
|
||||
- Fast (check out the :racehorse: :sparkles: [benchmark](https://tantivy-search.github.io/bench/) :sparkles: :racehorse:)
|
||||
- Tiny startup time (<10ms), perfect for command-line tools
|
||||
- BM25 scoring (the same as Lucene)
|
||||
@@ -42,12 +42,12 @@ Your mileage WILL vary depending on the nature of queries and their load.
|
||||
- Single valued and multivalued u64, i64, and f64 fast fields (equivalent of doc values in Lucene)
|
||||
- `&[u8]` fast fields
|
||||
- Text, i64, u64, f64, dates, and hierarchical facet fields
|
||||
- LZ4 compressed document store
|
||||
- Compressed document store (LZ4, Zstd, None, Brotli, Snap)
|
||||
- Range queries
|
||||
- Faceted search
|
||||
- Configurable indexing (optional term frequency and position indexing)
|
||||
- JSON Field
|
||||
- Aggregation Collector: range buckets, average, and stats metrics
|
||||
- Aggregation Collector: histogram, range buckets, average, and stats metrics
|
||||
- LogMergePolicy with deletes
|
||||
- Searcher Warmer API
|
||||
- Cheesy logo with a horse
|
||||
@@ -58,7 +58,7 @@ Distributed search is out of the scope of Tantivy, but if you are looking for th
|
||||
|
||||
# Getting started
|
||||
|
||||
Tantivy works on stable Rust (>= 1.27) and supports Linux, macOS, and Windows.
|
||||
Tantivy works on stable Rust and supports Linux, macOS, and Windows.
|
||||
|
||||
- [Tantivy's simple search example](https://tantivy-search.github.io/examples/basic_search.html)
|
||||
- [tantivy-cli and its tutorial](https://github.com/quickwit-oss/tantivy-cli) - `tantivy-cli` is an actual command-line interface that makes it easy for you to create a search engine,
|
||||
@@ -81,9 +81,17 @@ There are many ways to support this project.
|
||||
|
||||
We use the GitHub Pull Request workflow: reference a GitHub ticket and/or include a comprehensive commit message when opening a PR.
|
||||
|
||||
## Tokenizer
|
||||
|
||||
When implementing a tokenizer for tantivy depend on the `tantivy-tokenizer-api` crate.
|
||||
|
||||
## Minimum supported Rust version
|
||||
|
||||
Tantivy currently requires at least Rust 1.62 or later to compile.
|
||||
|
||||
## Clone and build locally
|
||||
|
||||
Tantivy compiles on stable Rust but requires `Rust >= 1.27`.
|
||||
Tantivy compiles on stable Rust.
|
||||
To check out and run tests, you can simply run:
|
||||
|
||||
```bash
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-bitpacker"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
edition = "2021"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
@@ -8,6 +8,8 @@ categories = []
|
||||
description = """Tantivy-sub crate: bitpacking"""
|
||||
repository = "https://github.com/quickwit-oss/tantivy"
|
||||
keywords = []
|
||||
documentation = "https://docs.rs/tantivy-bitpacker/latest/tantivy_bitpacker"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
@@ -25,15 +25,14 @@ impl BitPacker {
|
||||
num_bits: u8,
|
||||
output: &mut TWrite,
|
||||
) -> io::Result<()> {
|
||||
let val_u64 = val as u64;
|
||||
let num_bits = num_bits as usize;
|
||||
if self.mini_buffer_written + num_bits > 64 {
|
||||
self.mini_buffer |= val_u64.wrapping_shl(self.mini_buffer_written as u32);
|
||||
self.mini_buffer |= val.wrapping_shl(self.mini_buffer_written as u32);
|
||||
output.write_all(self.mini_buffer.to_le_bytes().as_ref())?;
|
||||
self.mini_buffer = val_u64.wrapping_shr((64 - self.mini_buffer_written) as u32);
|
||||
self.mini_buffer = val.wrapping_shr((64 - self.mini_buffer_written) as u32);
|
||||
self.mini_buffer_written = self.mini_buffer_written + num_bits - 64;
|
||||
} else {
|
||||
self.mini_buffer |= val_u64 << self.mini_buffer_written;
|
||||
self.mini_buffer |= val << self.mini_buffer_written;
|
||||
self.mini_buffer_written += num_bits;
|
||||
if self.mini_buffer_written == 64 {
|
||||
output.write_all(self.mini_buffer.to_le_bytes().as_ref())?;
|
||||
@@ -87,22 +86,20 @@ impl BitUnpacker {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn get(&self, idx: u64, data: &[u8]) -> u64 {
|
||||
pub fn get(&self, idx: u32, data: &[u8]) -> u64 {
|
||||
if self.num_bits == 0 {
|
||||
return 0u64;
|
||||
}
|
||||
let addr_in_bits = idx * self.num_bits;
|
||||
let addr = addr_in_bits >> 3;
|
||||
let addr_in_bits = idx * self.num_bits as u32;
|
||||
let addr = (addr_in_bits >> 3) as usize;
|
||||
let bit_shift = addr_in_bits & 7;
|
||||
debug_assert!(
|
||||
addr + 8 <= data.len() as u64,
|
||||
addr + 8 <= data.len(),
|
||||
"The fast field field should have been padded with 7 bytes."
|
||||
);
|
||||
let bytes: [u8; 8] = (&data[(addr as usize)..(addr as usize) + 8])
|
||||
.try_into()
|
||||
.unwrap();
|
||||
let bytes: [u8; 8] = (&data[addr..addr + 8]).try_into().unwrap();
|
||||
let val_unshifted_unmasked: u64 = u64::from_le_bytes(bytes);
|
||||
let val_shifted = (val_unshifted_unmasked >> bit_shift) as u64;
|
||||
let val_shifted = val_unshifted_unmasked >> bit_shift;
|
||||
val_shifted & self.mask
|
||||
}
|
||||
}
|
||||
@@ -130,7 +127,7 @@ mod test {
|
||||
fn test_bitpacker_util(len: usize, num_bits: u8) {
|
||||
let (bitunpacker, vals, data) = create_fastfield_bitpacker(len, num_bits);
|
||||
for (i, val) in vals.iter().enumerate() {
|
||||
assert_eq!(bitunpacker.get(i as u64, &data), *val);
|
||||
assert_eq!(bitunpacker.get(i as u32, &data), *val);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -84,7 +84,7 @@ impl BlockedBitpacker {
|
||||
#[inline]
|
||||
pub fn add(&mut self, val: u64) {
|
||||
self.buffer.push(val);
|
||||
if self.buffer.len() == BLOCK_SIZE as usize {
|
||||
if self.buffer.len() == BLOCK_SIZE {
|
||||
self.flush();
|
||||
}
|
||||
}
|
||||
@@ -126,11 +126,11 @@ impl BlockedBitpacker {
|
||||
}
|
||||
#[inline]
|
||||
pub fn get(&self, idx: usize) -> u64 {
|
||||
let metadata_pos = idx / BLOCK_SIZE as usize;
|
||||
let pos_in_block = idx % BLOCK_SIZE as usize;
|
||||
let metadata_pos = idx / BLOCK_SIZE;
|
||||
let pos_in_block = idx % BLOCK_SIZE;
|
||||
if let Some(metadata) = self.offset_and_bits.get(metadata_pos) {
|
||||
let unpacked = BitUnpacker::new(metadata.num_bits()).get(
|
||||
pos_in_block as u64,
|
||||
pos_in_block as u32,
|
||||
&self.compressed_blocks[metadata.offset() as usize..],
|
||||
);
|
||||
unpacked + metadata.base_value()
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
mod bitpacker;
|
||||
mod blocked_bitpacker;
|
||||
|
||||
use std::cmp::Ordering;
|
||||
|
||||
pub use crate::bitpacker::{BitPacker, BitUnpacker};
|
||||
pub use crate::blocked_bitpacker::BlockedBitpacker;
|
||||
|
||||
@@ -37,44 +39,104 @@ pub fn compute_num_bits(n: u64) -> u8 {
|
||||
}
|
||||
}
|
||||
|
||||
/// Computes the (min, max) of an iterator of `PartialOrd` values.
|
||||
///
|
||||
/// For values implementing `Ord` (in a way consistent to their `PartialOrd` impl),
|
||||
/// this function behaves as expected.
|
||||
///
|
||||
/// For values with partial ordering, the behavior is non-trivial and may
|
||||
/// depends on the order of the values.
|
||||
/// For floats however, it simply returns the same results as if NaN were
|
||||
/// skipped.
|
||||
pub fn minmax<I, T>(mut vals: I) -> Option<(T, T)>
|
||||
where
|
||||
I: Iterator<Item = T>,
|
||||
T: Copy + Ord,
|
||||
T: Copy + PartialOrd,
|
||||
{
|
||||
if let Some(first_el) = vals.next() {
|
||||
return Some(vals.fold((first_el, first_el), |(min_val, max_val), el| {
|
||||
(min_val.min(el), max_val.max(el))
|
||||
}));
|
||||
let first_el = vals.find(|val| {
|
||||
// We use this to make sure we skip all NaN values when
|
||||
// working with a float type.
|
||||
val.partial_cmp(val) == Some(Ordering::Equal)
|
||||
})?;
|
||||
let mut min_so_far: T = first_el;
|
||||
let mut max_so_far: T = first_el;
|
||||
for val in vals {
|
||||
if val.partial_cmp(&min_so_far) == Some(Ordering::Less) {
|
||||
min_so_far = val;
|
||||
}
|
||||
if val.partial_cmp(&max_so_far) == Some(Ordering::Greater) {
|
||||
max_so_far = val;
|
||||
}
|
||||
}
|
||||
None
|
||||
Some((min_so_far, max_so_far))
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compute_num_bits() {
|
||||
assert_eq!(compute_num_bits(1), 1u8);
|
||||
assert_eq!(compute_num_bits(0), 0u8);
|
||||
assert_eq!(compute_num_bits(2), 2u8);
|
||||
assert_eq!(compute_num_bits(3), 2u8);
|
||||
assert_eq!(compute_num_bits(4), 3u8);
|
||||
assert_eq!(compute_num_bits(255), 8u8);
|
||||
assert_eq!(compute_num_bits(256), 9u8);
|
||||
assert_eq!(compute_num_bits(5_000_000_000), 33u8);
|
||||
}
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_minmax_empty() {
|
||||
let vals: Vec<u32> = vec![];
|
||||
assert_eq!(minmax(vals.into_iter()), None);
|
||||
}
|
||||
#[test]
|
||||
fn test_compute_num_bits() {
|
||||
assert_eq!(compute_num_bits(1), 1u8);
|
||||
assert_eq!(compute_num_bits(0), 0u8);
|
||||
assert_eq!(compute_num_bits(2), 2u8);
|
||||
assert_eq!(compute_num_bits(3), 2u8);
|
||||
assert_eq!(compute_num_bits(4), 3u8);
|
||||
assert_eq!(compute_num_bits(255), 8u8);
|
||||
assert_eq!(compute_num_bits(256), 9u8);
|
||||
assert_eq!(compute_num_bits(5_000_000_000), 33u8);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_minmax_one() {
|
||||
assert_eq!(minmax(vec![1].into_iter()), Some((1, 1)));
|
||||
}
|
||||
#[test]
|
||||
fn test_minmax_empty() {
|
||||
let vals: Vec<u32> = vec![];
|
||||
assert_eq!(minmax(vals.into_iter()), None);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_minmax_two() {
|
||||
assert_eq!(minmax(vec![1, 2].into_iter()), Some((1, 2)));
|
||||
assert_eq!(minmax(vec![2, 1].into_iter()), Some((1, 2)));
|
||||
#[test]
|
||||
fn test_minmax_one() {
|
||||
assert_eq!(minmax(vec![1].into_iter()), Some((1, 1)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_minmax_two() {
|
||||
assert_eq!(minmax(vec![1, 2].into_iter()), Some((1, 2)));
|
||||
assert_eq!(minmax(vec![2, 1].into_iter()), Some((1, 2)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_minmax_nan() {
|
||||
assert_eq!(
|
||||
minmax(vec![f64::NAN, 1f64, 2f64].into_iter()),
|
||||
Some((1f64, 2f64))
|
||||
);
|
||||
assert_eq!(
|
||||
minmax(vec![2f64, f64::NAN, 1f64].into_iter()),
|
||||
Some((1f64, 2f64))
|
||||
);
|
||||
assert_eq!(
|
||||
minmax(vec![2f64, 1f64, f64::NAN].into_iter()),
|
||||
Some((1f64, 2f64))
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_minmax_inf() {
|
||||
assert_eq!(
|
||||
minmax(vec![f64::INFINITY, 1f64, 2f64].into_iter()),
|
||||
Some((1f64, f64::INFINITY))
|
||||
);
|
||||
assert_eq!(
|
||||
minmax(vec![-f64::INFINITY, 1f64, 2f64].into_iter()),
|
||||
Some((-f64::INFINITY, 2f64))
|
||||
);
|
||||
assert_eq!(
|
||||
minmax(vec![2f64, f64::INFINITY, 1f64].into_iter()),
|
||||
Some((1f64, f64::INFINITY))
|
||||
);
|
||||
assert_eq!(
|
||||
minmax(vec![2f64, 1f64, -f64::INFINITY].into_iter()),
|
||||
Some((-f64::INFINITY, 2f64))
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
32
columnar/Cargo.toml
Normal file
32
columnar/Cargo.toml
Normal file
@@ -0,0 +1,32 @@
|
||||
[package]
|
||||
name = "tantivy-columnar"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
license = "MIT"
|
||||
|
||||
[dependencies]
|
||||
stacker = { path = "../stacker", package="tantivy-stacker"}
|
||||
serde_json = "1"
|
||||
thiserror = "1"
|
||||
fnv = "1"
|
||||
sstable = { path = "../sstable", package = "tantivy-sstable" }
|
||||
common = { path = "../common", package = "tantivy-common" }
|
||||
itertools = "0.10"
|
||||
log = "0.4"
|
||||
tantivy-bitpacker = { version= "0.3", path = "../bitpacker/" }
|
||||
prettytable-rs = {version="0.10.0", optional= true}
|
||||
rand = {version="0.8.3", optional= true}
|
||||
fastdivide = "0.4"
|
||||
measure_time = { version="0.8.2", optional=true}
|
||||
|
||||
[dev-dependencies]
|
||||
proptest = "1"
|
||||
more-asserts = "0.3.0"
|
||||
rand = "0.8.3"
|
||||
|
||||
# temporary
|
||||
[workspace]
|
||||
members = []
|
||||
|
||||
[features]
|
||||
unstable = []
|
||||
109
columnar/README.md
Normal file
109
columnar/README.md
Normal file
@@ -0,0 +1,109 @@
|
||||
# Columnar format
|
||||
|
||||
This crate describes columnar format used in tantivy.
|
||||
|
||||
## Goals
|
||||
|
||||
This format is special in the following way.
|
||||
- it needs to be compact
|
||||
- accessing a specific column does not require to load the entire columnar. It can be done in 2 to 3 random access.
|
||||
- columns of several types can be associated with the same column name.
|
||||
- it needs to support columns with different types `(str, u64, i64, f64)`
|
||||
and different cardinality `(required, optional, multivalued)`.
|
||||
- columns, once loaded, offer cheap random access.
|
||||
- it is designed to allow range queries.
|
||||
|
||||
# Coercion rules
|
||||
|
||||
Users can create a columnar by inserting rows to a `ColumnarWriter`,
|
||||
and serializing it into a `Write` object.
|
||||
Nothing prevents a user from recording values with different type to the same `column_name`.
|
||||
|
||||
In that case, `tantivy-columnar`'s behavior is as follows:
|
||||
- JsonValues are grouped into 3 types (String, Number, bool).
|
||||
Values that corresponds to different groups are mapped to different columns. For instance, String values are treated independently
|
||||
from Number or boolean values. `tantivy-columnar` will simply emit several columns associated to a given column_name.
|
||||
- Only one column for a given json value type is emitted. If number values with different number types are recorded (e.g. u64, i64, f64),
|
||||
`tantivy-columnar` will pick the first type that can represents the set of appended value, with the following prioriy order (`i64`, `u64`, `f64`).
|
||||
`i64` is picked over `u64` as it is likely to yield less change of types. Most use cases strictly requiring `u64` show the
|
||||
restriction on 50% of the values (e.g. a 64-bit hash). On the other hand, a lot of use cases can show rare negative value.
|
||||
|
||||
# Columnar format
|
||||
|
||||
This columnar format may have more than one column (with different types) associated to the same `column_name` (see [Coercion rules](#coercion-rules) above).
|
||||
The `(column_name, columne_type)` couple however uniquely identifies a column.
|
||||
That couple is serialized as a column `column_key`. The format of that key is:
|
||||
`[column_name][ZERO_BYTE][column_type_header: u8]`
|
||||
|
||||
```
|
||||
COLUMNAR:=
|
||||
[COLUMNAR_DATA]
|
||||
[COLUMNAR_KEY_TO_DATA_INDEX]
|
||||
[COLUMNAR_FOOTER];
|
||||
|
||||
|
||||
# Columns are sorted by their column key.
|
||||
COLUMNAR_DATA:=
|
||||
[COLUMN_DATA]+;
|
||||
|
||||
COLUMNAR_FOOTER := [RANGE_SSTABLE_BYTES_LEN: 8 bytes little endian]
|
||||
|
||||
```
|
||||
|
||||
The columnar file starts by the actual column data, concatenated one after the other,
|
||||
sorted by column key.
|
||||
|
||||
A sstable associates
|
||||
`(column name, column_cardinality, column_type) to range of bytes.
|
||||
|
||||
Column name may not contain the zero byte `\0`.
|
||||
|
||||
Listing all columns associated to `column_name` can therefore
|
||||
be done by listing all keys prefixed by
|
||||
`[column_name][ZERO_BYTE]`
|
||||
|
||||
The associated range of bytes refer to a range of bytes
|
||||
|
||||
This crate exposes a columnar format for tantivy.
|
||||
This format is described in README.md
|
||||
|
||||
|
||||
The crate introduces the following concepts.
|
||||
|
||||
`Columnar` is an equivalent of a dataframe.
|
||||
It maps `column_key` to `Column`.
|
||||
|
||||
A `Column<T>` asssociates a `RowId` (u32) to any
|
||||
number of values.
|
||||
|
||||
This is made possible by wrapping a `ColumnIndex` and a `ColumnValue` object.
|
||||
The `ColumnValue<T>` represents a mapping that associates each `RowId` to
|
||||
exactly one single value.
|
||||
|
||||
The `ColumnIndex` then maps each RowId to a set of `RowId` in the
|
||||
`ColumnValue`.
|
||||
|
||||
For optimization, and compression purposes, the `ColumnIndex` has three
|
||||
possible representation, each for different cardinalities.
|
||||
|
||||
- Full
|
||||
|
||||
All RowId have exactly one value. The ColumnIndex is the trivial mapping.
|
||||
|
||||
- Optional
|
||||
|
||||
All RowIds can have at most one value. The ColumnIndex is the trivial mapping `ColumnRowId -> Option<ColumnValueRowId>`.
|
||||
|
||||
- Multivalued
|
||||
|
||||
All RowIds can have any number of values.
|
||||
The column index is mapping values to a range.
|
||||
|
||||
|
||||
All these objects are implemented an unit tested independently
|
||||
in their own module:
|
||||
|
||||
- columnar
|
||||
- column_index
|
||||
- column_values
|
||||
- column
|
||||
45
columnar/src/TODO.md
Normal file
45
columnar/src/TODO.md
Normal file
@@ -0,0 +1,45 @@
|
||||
# zero to one
|
||||
* merges
|
||||
* full still needs a num_values
|
||||
* replug u128
|
||||
* add dictionary encoded stuff
|
||||
* fix multivalued
|
||||
* find a way to make columnar work with strict types
|
||||
* plug to tantivy
|
||||
- indexing
|
||||
- aggregations
|
||||
- merge
|
||||
|
||||
# Perf and Size
|
||||
* re-add ZSTD compression for dictionaries
|
||||
no systematic monotonic mapping
|
||||
consider removing multilinear
|
||||
f32?
|
||||
adhoc solution for bool?
|
||||
|
||||
add metrics helper for aggregate. sum(row_id)
|
||||
review inline absence/presence
|
||||
improv perf of select using PDEP
|
||||
compare with roaring bitmap/elias fano etc etc.
|
||||
SIMD range? (see blog post)
|
||||
Add alignment?
|
||||
Consider another codec to bridge the gap between few and 5k elements
|
||||
|
||||
# Cleanup and rationalization
|
||||
in benchmark, unify percent vs ratio, f32 vs f64.
|
||||
investigate if should have better errors? io::Error is overused at the moment.
|
||||
rename rank/select in unit tests
|
||||
Review the public API via cargo doc
|
||||
go through TODOs
|
||||
remove all doc_id occurences -> row_id
|
||||
use the rank & select naming in unit tests branch.
|
||||
multi-linear -> blockwise
|
||||
linear codec -> simply a multiplication for the index column
|
||||
|
||||
# Other
|
||||
fix enhance column-cli
|
||||
|
||||
# Santa claus
|
||||
|
||||
autodetect datetime ipaddr, plug customizable tokenizer.
|
||||
|
||||
40
columnar/src/column/dictionary_encoded.rs
Normal file
40
columnar/src/column/dictionary_encoded.rs
Normal file
@@ -0,0 +1,40 @@
|
||||
use std::io;
|
||||
use std::ops::Deref;
|
||||
use std::sync::Arc;
|
||||
|
||||
use sstable::{Dictionary, VoidSSTable};
|
||||
|
||||
use crate::column::Column;
|
||||
use crate::column_index::ColumnIndex;
|
||||
|
||||
/// Dictionary encoded column.
|
||||
#[derive(Clone)]
|
||||
pub struct BytesColumn {
|
||||
pub(crate) dictionary: Arc<Dictionary<VoidSSTable>>,
|
||||
pub(crate) term_ord_column: Column<u64>,
|
||||
}
|
||||
|
||||
impl BytesColumn {
|
||||
/// Returns `false` if the term does not exist (e.g. `term_ord` is greater or equal to the
|
||||
/// overll number of terms).
|
||||
pub fn term_ord_to_str(&self, term_ord: u64, output: &mut Vec<u8>) -> io::Result<bool> {
|
||||
self.dictionary.ord_to_term(term_ord, output)
|
||||
}
|
||||
|
||||
pub fn term_ords(&self) -> &Column<u64> {
|
||||
&self.term_ord_column
|
||||
}
|
||||
}
|
||||
|
||||
impl Deref for BytesColumn {
|
||||
type Target = ColumnIndex<'static>;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&**self.term_ords()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::{ColumnarReader, ColumnarWriter};
|
||||
}
|
||||
56
columnar/src/column/mod.rs
Normal file
56
columnar/src/column/mod.rs
Normal file
@@ -0,0 +1,56 @@
|
||||
mod dictionary_encoded;
|
||||
mod serialize;
|
||||
|
||||
use std::ops::Deref;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::BinarySerializable;
|
||||
pub use dictionary_encoded::BytesColumn;
|
||||
pub use serialize::{open_column_bytes, open_column_u64, serialize_column_u64};
|
||||
|
||||
use crate::column_index::ColumnIndex;
|
||||
use crate::column_values::ColumnValues;
|
||||
use crate::{Cardinality, RowId};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Column<T> {
|
||||
pub idx: ColumnIndex<'static>,
|
||||
pub values: Arc<dyn ColumnValues<T>>,
|
||||
}
|
||||
|
||||
use crate::column_index::Set;
|
||||
|
||||
impl<T: PartialOrd> Column<T> {
|
||||
pub fn first(&self, row_id: RowId) -> Option<T> {
|
||||
match &self.idx {
|
||||
ColumnIndex::Full => Some(self.values.get_val(row_id)),
|
||||
ColumnIndex::Optional(opt_idx) => {
|
||||
let value_row_idx = opt_idx.rank_if_exists(row_id)?;
|
||||
Some(self.values.get_val(value_row_idx))
|
||||
}
|
||||
ColumnIndex::Multivalued(_multivalued_index) => {
|
||||
todo!();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Deref for Column<T> {
|
||||
type Target = ColumnIndex<'static>;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.idx
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for Cardinality {
|
||||
fn serialize<W: std::io::Write>(&self, writer: &mut W) -> std::io::Result<()> {
|
||||
self.to_code().serialize(writer)
|
||||
}
|
||||
|
||||
fn deserialize<R: std::io::Read>(reader: &mut R) -> std::io::Result<Self> {
|
||||
let cardinality_code = u8::deserialize(reader)?;
|
||||
let cardinality = Cardinality::try_from_code(cardinality_code)?;
|
||||
Ok(cardinality)
|
||||
}
|
||||
}
|
||||
54
columnar/src/column/serialize.rs
Normal file
54
columnar/src/column/serialize.rs
Normal file
@@ -0,0 +1,54 @@
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::{CountingWriter, OwnedBytes};
|
||||
use sstable::Dictionary;
|
||||
|
||||
use crate::column::{BytesColumn, Column};
|
||||
use crate::column_index::{serialize_column_index, SerializableColumnIndex};
|
||||
use crate::column_values::{
|
||||
serialize_column_values, ColumnValues, MonotonicallyMappableToU64, ALL_CODEC_TYPES,
|
||||
};
|
||||
pub fn serialize_column_u64<T: MonotonicallyMappableToU64>(
|
||||
column_index: SerializableColumnIndex<'_>,
|
||||
column_values: &impl ColumnValues<T>,
|
||||
output: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
let mut counting_writer = CountingWriter::wrap(output);
|
||||
serialize_column_index(column_index, &mut counting_writer)?;
|
||||
let column_index_num_bytes = counting_writer.written_bytes() as u32;
|
||||
let output = counting_writer.finish();
|
||||
serialize_column_values(column_values, &ALL_CODEC_TYPES[..], output)?;
|
||||
output.write_all(&column_index_num_bytes.to_le_bytes())?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn open_column_u64<T: MonotonicallyMappableToU64>(bytes: OwnedBytes) -> io::Result<Column<T>> {
|
||||
let (body, column_index_num_bytes_payload) = bytes.rsplit(4);
|
||||
let column_index_num_bytes = u32::from_le_bytes(
|
||||
column_index_num_bytes_payload
|
||||
.as_slice()
|
||||
.try_into()
|
||||
.unwrap(),
|
||||
);
|
||||
let (column_index_data, column_values_data) = body.split(column_index_num_bytes as usize);
|
||||
let column_index = crate::column_index::open_column_index(column_index_data)?;
|
||||
let column_values = crate::column_values::open_u64_mapped(column_values_data)?;
|
||||
Ok(Column {
|
||||
idx: column_index,
|
||||
values: column_values,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn open_column_bytes(data: OwnedBytes) -> io::Result<BytesColumn> {
|
||||
let (body, dictionary_len_bytes) = data.rsplit(4);
|
||||
let dictionary_len = u32::from_le_bytes(dictionary_len_bytes.as_slice().try_into().unwrap());
|
||||
let (dictionary_bytes, column_bytes) = body.split(dictionary_len as usize);
|
||||
let dictionary = Arc::new(Dictionary::from_bytes(dictionary_bytes)?);
|
||||
let term_ord_column = crate::column::open_column_u64::<u64>(column_bytes)?;
|
||||
Ok(BytesColumn {
|
||||
dictionary,
|
||||
term_ord_column,
|
||||
})
|
||||
}
|
||||
40
columnar/src/column_index/mod.rs
Normal file
40
columnar/src/column_index/mod.rs
Normal file
@@ -0,0 +1,40 @@
|
||||
mod multivalued_index;
|
||||
mod optional_index;
|
||||
mod serialize;
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
pub use optional_index::{OptionalIndex, SerializableOptionalIndex, Set};
|
||||
pub use serialize::{open_column_index, serialize_column_index, SerializableColumnIndex};
|
||||
|
||||
use crate::column_values::ColumnValues;
|
||||
use crate::{Cardinality, RowId};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub enum ColumnIndex<'a> {
|
||||
Full,
|
||||
Optional(OptionalIndex),
|
||||
// TODO remove the Arc<dyn> apart from serialization this is not
|
||||
// dynamic at all.
|
||||
Multivalued(Arc<dyn ColumnValues<RowId> + 'a>),
|
||||
}
|
||||
|
||||
impl<'a> ColumnIndex<'a> {
|
||||
pub fn get_cardinality(&self) -> Cardinality {
|
||||
match self {
|
||||
ColumnIndex::Full => Cardinality::Full,
|
||||
ColumnIndex::Optional(_) => Cardinality::Optional,
|
||||
ColumnIndex::Multivalued(_) => Cardinality::Multivalued,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
match self {
|
||||
ColumnIndex::Full => {
|
||||
todo!()
|
||||
}
|
||||
ColumnIndex::Optional(optional_index) => optional_index.num_rows(),
|
||||
ColumnIndex::Multivalued(multivalued_index) => multivalued_index.num_vals() - 1,
|
||||
}
|
||||
}
|
||||
}
|
||||
27
columnar/src/column_index/multivalued_index.rs
Normal file
27
columnar/src/column_index/multivalued_index.rs
Normal file
@@ -0,0 +1,27 @@
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
|
||||
use crate::column_values::{ColumnValues, FastFieldCodecType};
|
||||
use crate::RowId;
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct MultivaluedIndex(Arc<dyn ColumnValues<RowId>>);
|
||||
|
||||
pub fn serialize_multivalued_index(
|
||||
multivalued_index: MultivaluedIndex,
|
||||
output: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
crate::column_values::serialize_column_values(
|
||||
&*multivalued_index.0,
|
||||
&[FastFieldCodecType::Bitpacked, FastFieldCodecType::Linear],
|
||||
output,
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn open_multivalued_index(bytes: OwnedBytes) -> io::Result<Arc<dyn ColumnValues<RowId>>> {
|
||||
todo!();
|
||||
}
|
||||
453
columnar/src/column_index/optional_index/mod.rs
Normal file
453
columnar/src/column_index/optional_index/mod.rs
Normal file
@@ -0,0 +1,453 @@
|
||||
use std::io::{self, Write};
|
||||
use std::ops::Range;
|
||||
use std::sync::Arc;
|
||||
|
||||
mod set;
|
||||
mod set_block;
|
||||
|
||||
use common::{BinarySerializable, GroupByIteratorExtended, OwnedBytes, VInt};
|
||||
pub use set::{Set, SetCodec};
|
||||
use set_block::{
|
||||
DenseBlock, DenseBlockCodec, SparseBlock, SparseBlockCodec, DENSE_BLOCK_NUM_BYTES,
|
||||
};
|
||||
|
||||
use crate::{InvalidData, RowId};
|
||||
|
||||
/// The threshold for for number of elements after which we switch to dense block encoding.
|
||||
///
|
||||
/// We simply pick the value that minimize the size of the blocks.
|
||||
const DENSE_BLOCK_THRESHOLD: u32 =
|
||||
set_block::DENSE_BLOCK_NUM_BYTES / std::mem::size_of::<u16>() as u32; //< 5_120
|
||||
|
||||
const ELEMENTS_PER_BLOCK: u32 = u16::MAX as u32 + 1;
|
||||
|
||||
const BLOCK_SIZE: RowId = 1 << 16;
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
struct BlockMeta {
|
||||
non_null_rows_before_block: u32,
|
||||
start_byte_offset: u32,
|
||||
block_variant: BlockVariant,
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
enum BlockVariant {
|
||||
Dense,
|
||||
Sparse { num_vals: u16 },
|
||||
}
|
||||
|
||||
impl BlockVariant {
|
||||
pub fn empty() -> Self {
|
||||
Self::Sparse { num_vals: 0 }
|
||||
}
|
||||
pub fn num_bytes_in_block(&self) -> u32 {
|
||||
match *self {
|
||||
BlockVariant::Dense => set_block::DENSE_BLOCK_NUM_BYTES,
|
||||
BlockVariant::Sparse { num_vals } => num_vals as u32 * 2,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// This codec is inspired by roaring bitmaps.
|
||||
/// In the dense blocks, however, in order to accelerate `select`
|
||||
/// we interleave an offset over two bytes. (more on this lower)
|
||||
///
|
||||
/// The lower 16 bits of doc ids are stored as u16 while the upper 16 bits are given by the block
|
||||
/// id. Each block contains 1<<16 docids.
|
||||
///
|
||||
/// # Serialized Data Layout
|
||||
/// The data starts with the block data. Each block is either dense or sparse encoded, depending on
|
||||
/// the number of values in the block. A block is sparse when it contains less than
|
||||
/// DENSE_BLOCK_THRESHOLD (6144) values.
|
||||
/// [Sparse data block | dense data block, .. #repeat*; Desc: Either a sparse or dense encoded
|
||||
/// block]
|
||||
/// ### Sparse block data
|
||||
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block]
|
||||
/// ### Dense block data
|
||||
/// [Dense codec for the whole block; Desc: Similar to a bitvec(0..ELEMENTS_PER_BLOCK) + Metadata
|
||||
/// for faster lookups. See dense.rs]
|
||||
///
|
||||
/// The data is followed by block metadata, to know which area of the raw block data belongs to
|
||||
/// which block. Only metadata for blocks with elements is recorded to
|
||||
/// keep the overhead low for scenarios with many very sparse columns. The block metadata consists
|
||||
/// of the block index and the number of values in the block. Since we don't store empty blocks
|
||||
/// num_vals is incremented by 1, e.g. 0 means 1 value.
|
||||
///
|
||||
/// The last u16 is storing the number of metadata blocks.
|
||||
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block][(u16 LE, u16 LE), .. #repeat*;
|
||||
/// Desc: (Block Id u16, Num Elements u16)][u16 LE; Desc: num blocks with values u16]
|
||||
///
|
||||
/// # Opening
|
||||
/// When opening the data layout, the data is expanded to `Vec<SparseCodecBlockVariant>`, where the
|
||||
/// index is the block index. For each block `byte_start` and `offset` is computed.
|
||||
#[derive(Clone)]
|
||||
pub struct OptionalIndex {
|
||||
num_rows: RowId,
|
||||
num_non_null_rows: RowId,
|
||||
block_data: OwnedBytes,
|
||||
block_metas: Arc<[BlockMeta]>,
|
||||
}
|
||||
|
||||
impl OptionalIndex {
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
self.num_rows
|
||||
}
|
||||
|
||||
pub fn num_non_nulls(&self) -> RowId {
|
||||
self.num_non_null_rows
|
||||
}
|
||||
}
|
||||
|
||||
/// Splits a value address into lower and upper 16bits.
|
||||
/// The lower 16 bits are the value in the block
|
||||
/// The upper 16 bits are the block index
|
||||
#[derive(Copy, Debug, Clone)]
|
||||
struct RowAddr {
|
||||
block_id: u16,
|
||||
in_block_row_id: u16,
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn row_addr_from_row_id(row_id: RowId) -> RowAddr {
|
||||
RowAddr {
|
||||
block_id: (row_id / BLOCK_SIZE) as u16,
|
||||
in_block_row_id: (row_id % BLOCK_SIZE) as u16,
|
||||
}
|
||||
}
|
||||
|
||||
impl Set<RowId> for OptionalIndex {
|
||||
// Check if value at position is not null.
|
||||
#[inline]
|
||||
fn contains(&self, row_id: RowId) -> bool {
|
||||
let RowAddr {
|
||||
block_id,
|
||||
in_block_row_id,
|
||||
} = row_addr_from_row_id(row_id);
|
||||
let block_meta = self.block_metas[block_id as usize];
|
||||
match self.block(block_meta) {
|
||||
Block::Dense(dense_block) => dense_block.contains(in_block_row_id),
|
||||
Block::Sparse(sparse_block) => sparse_block.contains(in_block_row_id),
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn rank_if_exists(&self, row_id: RowId) -> Option<RowId> {
|
||||
let RowAddr {
|
||||
block_id,
|
||||
in_block_row_id,
|
||||
} = row_addr_from_row_id(row_id);
|
||||
let block_meta = self.block_metas[block_id as usize];
|
||||
let block = self.block(block_meta);
|
||||
let block_offset_row_id = match block {
|
||||
Block::Dense(dense_block) => dense_block.rank_if_exists(in_block_row_id),
|
||||
Block::Sparse(sparse_block) => sparse_block.rank_if_exists(in_block_row_id),
|
||||
}? as u32;
|
||||
Some(block_meta.non_null_rows_before_block + block_offset_row_id)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn select(&self, rank: RowId) -> RowId {
|
||||
let block_pos = self.find_block(rank, 0);
|
||||
let block_doc_idx_start = block_pos * ELEMENTS_PER_BLOCK;
|
||||
let block_meta = self.block_metas[block_pos as usize];
|
||||
let block: Block<'_> = self.block(block_meta);
|
||||
let index_in_block = (rank - block_meta.non_null_rows_before_block) as u16;
|
||||
let in_block_rank = match block {
|
||||
Block::Dense(dense_block) => dense_block.select(index_in_block),
|
||||
Block::Sparse(sparse_block) => sparse_block.select(index_in_block),
|
||||
};
|
||||
block_doc_idx_start + in_block_rank as u32
|
||||
}
|
||||
|
||||
fn select_batch(&self, ranks: &[u32], output_idxs: &mut [u32]) {
|
||||
let mut block_pos = 0u32;
|
||||
let mut start = 0;
|
||||
let group_by_it = ranks.iter().copied().group_by(move |codec_idx| {
|
||||
block_pos = self.find_block(*codec_idx, block_pos);
|
||||
block_pos
|
||||
});
|
||||
for (block_pos, block_iter) in group_by_it {
|
||||
let block_doc_idx_start = block_pos * ELEMENTS_PER_BLOCK;
|
||||
let block_meta = self.block_metas[block_pos as usize];
|
||||
let block: Block<'_> = self.block(block_meta);
|
||||
let offset = block_meta.non_null_rows_before_block;
|
||||
let indexes_in_block_iter =
|
||||
block_iter.map(move |codec_idx| (codec_idx - offset) as u16);
|
||||
match block {
|
||||
Block::Dense(dense_block) => {
|
||||
for in_offset in dense_block.select_iter(indexes_in_block_iter) {
|
||||
output_idxs[start] = in_offset as u32 + block_doc_idx_start;
|
||||
start += 1;
|
||||
}
|
||||
}
|
||||
Block::Sparse(sparse_block) => {
|
||||
for in_offset in sparse_block.select_iter(indexes_in_block_iter) {
|
||||
output_idxs[start] = in_offset as u32 + block_doc_idx_start;
|
||||
start += 1;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl OptionalIndex {
|
||||
#[inline]
|
||||
fn block<'a>(&'a self, block_meta: BlockMeta) -> Block<'a> {
|
||||
let BlockMeta {
|
||||
start_byte_offset,
|
||||
block_variant,
|
||||
..
|
||||
} = block_meta;
|
||||
let start_byte_offset = start_byte_offset as usize;
|
||||
let bytes = self.block_data.as_slice();
|
||||
match block_variant {
|
||||
BlockVariant::Dense => Block::Dense(DenseBlockCodec::open(
|
||||
&bytes[start_byte_offset..start_byte_offset + DENSE_BLOCK_NUM_BYTES as usize],
|
||||
)),
|
||||
BlockVariant::Sparse { num_vals } => {
|
||||
let end_byte_offset = start_byte_offset + num_vals as usize * 2;
|
||||
let sparse_bytes = &bytes[start_byte_offset..end_byte_offset];
|
||||
Block::Sparse(SparseBlockCodec::open(sparse_bytes))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn find_block(&self, dense_idx: u32, start_block_pos: u32) -> u32 {
|
||||
for block_pos in start_block_pos..self.block_metas.len() as u32 {
|
||||
let offset = self.block_metas[block_pos as usize].non_null_rows_before_block;
|
||||
if offset > dense_idx {
|
||||
return block_pos - 1;
|
||||
}
|
||||
}
|
||||
self.block_metas.len() as u32 - 1u32
|
||||
}
|
||||
|
||||
// TODO Add a good API for the codec_idx to original_idx translation.
|
||||
// The Iterator API is a probably a bad idea
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
enum Block<'a> {
|
||||
Dense(DenseBlock<'a>),
|
||||
Sparse(SparseBlock<'a>),
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
enum OptionalIndexCodec {
|
||||
Dense = 0,
|
||||
Sparse = 1,
|
||||
}
|
||||
|
||||
impl OptionalIndexCodec {
|
||||
fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
fn try_from_code(code: u8) -> Result<Self, InvalidData> {
|
||||
match code {
|
||||
0 => Ok(Self::Dense),
|
||||
1 => Ok(Self::Sparse),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for OptionalIndexCodec {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(&[self.to_code()])
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let optional_codec_code = u8::deserialize(reader)?;
|
||||
let optional_codec = Self::try_from_code(optional_codec_code)?;
|
||||
Ok(optional_codec)
|
||||
}
|
||||
}
|
||||
|
||||
fn serialize_optional_index_block(block_els: &[u16], out: &mut impl io::Write) -> io::Result<()> {
|
||||
let is_sparse = is_sparse(block_els.len() as u32);
|
||||
if is_sparse {
|
||||
SparseBlockCodec::serialize(block_els.iter().copied(), out)?;
|
||||
} else {
|
||||
DenseBlockCodec::serialize(block_els.iter().copied(), out)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn serialize_optional_index<'a, W: io::Write>(
|
||||
serializable_optional_index: &dyn SerializableOptionalIndex<'a>,
|
||||
output: &mut W,
|
||||
) -> io::Result<()> {
|
||||
VInt(serializable_optional_index.num_rows() as u64).serialize(output)?;
|
||||
|
||||
let mut rows_it = serializable_optional_index.non_null_rows();
|
||||
let mut block_metadata: Vec<SerializedBlockMeta> = Vec::new();
|
||||
let mut current_block = Vec::new();
|
||||
|
||||
// This if-statement for the first element ensures that
|
||||
// `block_metadata` is not empty in the loop below.
|
||||
let Some(idx) = rows_it.next() else {
|
||||
output.write_all(&0u16.to_le_bytes())?;
|
||||
return Ok(());
|
||||
};
|
||||
|
||||
let row_addr = row_addr_from_row_id(idx);
|
||||
|
||||
let mut current_block_id = row_addr.block_id;
|
||||
current_block.push(row_addr.in_block_row_id);
|
||||
|
||||
for idx in rows_it {
|
||||
let value_addr = row_addr_from_row_id(idx);
|
||||
if current_block_id != value_addr.block_id {
|
||||
serialize_optional_index_block(¤t_block[..], output)?;
|
||||
block_metadata.push(SerializedBlockMeta {
|
||||
block_id: current_block_id,
|
||||
num_non_null_rows: current_block.len() as u32,
|
||||
});
|
||||
current_block.clear();
|
||||
current_block_id = value_addr.block_id;
|
||||
}
|
||||
current_block.push(value_addr.in_block_row_id);
|
||||
}
|
||||
|
||||
// handle last block
|
||||
serialize_optional_index_block(¤t_block[..], output)?;
|
||||
|
||||
block_metadata.push(SerializedBlockMeta {
|
||||
block_id: current_block_id,
|
||||
num_non_null_rows: current_block.len() as u32,
|
||||
});
|
||||
|
||||
for block in &block_metadata {
|
||||
output.write_all(&block.to_bytes())?;
|
||||
}
|
||||
|
||||
output.write_all((block_metadata.len() as u16).to_le_bytes().as_ref())?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
const SERIALIZED_BLOCK_META_NUM_BYTES: usize = 4;
|
||||
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
struct SerializedBlockMeta {
|
||||
block_id: u16,
|
||||
num_non_null_rows: u32, //< takes values in 1..=u16::MAX
|
||||
}
|
||||
|
||||
// TODO unit tests
|
||||
impl SerializedBlockMeta {
|
||||
#[inline]
|
||||
fn from_bytes(bytes: [u8; SERIALIZED_BLOCK_META_NUM_BYTES]) -> SerializedBlockMeta {
|
||||
let block_id = u16::from_le_bytes(bytes[0..2].try_into().unwrap());
|
||||
let num_non_null_rows: u32 =
|
||||
u16::from_le_bytes(bytes[2..4].try_into().unwrap()) as u32 + 1u32;
|
||||
SerializedBlockMeta {
|
||||
block_id,
|
||||
num_non_null_rows,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn to_bytes(&self) -> [u8; SERIALIZED_BLOCK_META_NUM_BYTES] {
|
||||
assert!(self.num_non_null_rows > 0);
|
||||
let mut bytes = [0u8; SERIALIZED_BLOCK_META_NUM_BYTES];
|
||||
bytes[0..2].copy_from_slice(&self.block_id.to_le_bytes());
|
||||
// We don't store empty blocks, therefore we can subtract 1.
|
||||
// This way we will be able to use u16 when the number of elements is 1 << 16 or u16::MAX+1
|
||||
bytes[2..4].copy_from_slice(&((self.num_non_null_rows - 1u32) as u16).to_le_bytes());
|
||||
bytes
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn is_sparse(num_rows_in_block: u32) -> bool {
|
||||
num_rows_in_block < DENSE_BLOCK_THRESHOLD as u32
|
||||
}
|
||||
|
||||
fn deserialize_optional_index_block_metadatas(
|
||||
data: &[u8],
|
||||
num_rows: u32,
|
||||
) -> (Box<[BlockMeta]>, u32) {
|
||||
let num_blocks = data.len() / SERIALIZED_BLOCK_META_NUM_BYTES;
|
||||
let mut block_metas = Vec::with_capacity(num_blocks as usize + 1);
|
||||
let mut start_byte_offset = 0;
|
||||
let mut non_null_rows_before_block = 0;
|
||||
for block_meta_bytes in data.chunks_exact(SERIALIZED_BLOCK_META_NUM_BYTES) {
|
||||
let block_meta_bytes: [u8; SERIALIZED_BLOCK_META_NUM_BYTES] =
|
||||
block_meta_bytes.try_into().unwrap();
|
||||
let SerializedBlockMeta {
|
||||
block_id,
|
||||
num_non_null_rows,
|
||||
} = SerializedBlockMeta::from_bytes(block_meta_bytes);
|
||||
block_metas.resize(
|
||||
block_id as usize,
|
||||
BlockMeta {
|
||||
non_null_rows_before_block,
|
||||
start_byte_offset,
|
||||
block_variant: BlockVariant::empty(),
|
||||
},
|
||||
);
|
||||
let block_variant = if is_sparse(num_non_null_rows) {
|
||||
BlockVariant::Sparse {
|
||||
num_vals: num_non_null_rows as u16,
|
||||
}
|
||||
} else {
|
||||
BlockVariant::Dense
|
||||
};
|
||||
block_metas.push(BlockMeta {
|
||||
non_null_rows_before_block,
|
||||
start_byte_offset,
|
||||
block_variant,
|
||||
});
|
||||
start_byte_offset += block_variant.num_bytes_in_block();
|
||||
non_null_rows_before_block += num_non_null_rows as u32;
|
||||
}
|
||||
block_metas.resize(
|
||||
((num_rows + BLOCK_SIZE - 1) / BLOCK_SIZE) as usize,
|
||||
BlockMeta {
|
||||
non_null_rows_before_block,
|
||||
start_byte_offset,
|
||||
block_variant: BlockVariant::empty(),
|
||||
},
|
||||
);
|
||||
(block_metas.into_boxed_slice(), non_null_rows_before_block)
|
||||
}
|
||||
|
||||
pub fn open_optional_index(bytes: OwnedBytes) -> io::Result<OptionalIndex> {
|
||||
let (mut bytes, num_non_empty_blocks_bytes) = bytes.rsplit(2);
|
||||
let num_non_empty_block_bytes =
|
||||
u16::from_le_bytes(num_non_empty_blocks_bytes.as_slice().try_into().unwrap());
|
||||
let num_rows = VInt::deserialize_u64(&mut bytes)? as u32;
|
||||
let block_metas_num_bytes =
|
||||
num_non_empty_block_bytes as usize * SERIALIZED_BLOCK_META_NUM_BYTES;
|
||||
let (block_data, block_metas) = bytes.rsplit(block_metas_num_bytes);
|
||||
let (block_metas, num_non_null_rows) =
|
||||
deserialize_optional_index_block_metadatas(block_metas.as_slice(), num_rows).into();
|
||||
let optional_index = OptionalIndex {
|
||||
num_rows,
|
||||
num_non_null_rows,
|
||||
block_data,
|
||||
block_metas: block_metas.into(),
|
||||
};
|
||||
Ok(optional_index)
|
||||
}
|
||||
|
||||
pub trait SerializableOptionalIndex<'a> {
|
||||
fn num_rows(&self) -> RowId;
|
||||
fn non_null_rows(&self) -> Box<dyn Iterator<Item = RowId> + 'a>;
|
||||
}
|
||||
|
||||
impl SerializableOptionalIndex<'static> for Range<u32> {
|
||||
fn num_rows(&self) -> RowId {
|
||||
self.end
|
||||
}
|
||||
fn non_null_rows(&self) -> Box<dyn Iterator<Item = RowId> + 'static> {
|
||||
Box::new(self.clone())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
38
columnar/src/column_index/optional_index/set.rs
Normal file
38
columnar/src/column_index/optional_index/set.rs
Normal file
@@ -0,0 +1,38 @@
|
||||
use std::io;
|
||||
|
||||
/// A codec makes it possible to serialize a set of
|
||||
/// elements, and open the resulting Set representation.
|
||||
pub trait SetCodec {
|
||||
type Item: Copy + TryFrom<usize> + Eq + std::hash::Hash + std::fmt::Debug;
|
||||
type Reader<'a>: Set<Self::Item>;
|
||||
|
||||
/// Serializes a set of unique sorted u16 elements.
|
||||
///
|
||||
/// May panic if the elements are not sorted.
|
||||
fn serialize(els: impl Iterator<Item = Self::Item>, wrt: impl io::Write) -> io::Result<()>;
|
||||
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a>;
|
||||
}
|
||||
|
||||
pub trait Set<T> {
|
||||
/// Returns true if the elements is contained in the Set
|
||||
fn contains(&self, el: T) -> bool;
|
||||
|
||||
/// If the set contains `el` returns its position in the sortd set of elements.
|
||||
/// If the set does not contain the element, it returns `None`.
|
||||
fn rank_if_exists(&self, el: T) -> Option<T>;
|
||||
|
||||
/// Return the rank-th value stored in this bitmap.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if rank is greater than the number of elements in the Set.
|
||||
fn select(&self, rank: T) -> T;
|
||||
|
||||
/// Batch version of select.
|
||||
/// `ranks` is assumed to be sorted.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if rank is greater than the number of elements in the Set.
|
||||
fn select_batch(&self, ranks: &[T], outputs: &mut [T]);
|
||||
}
|
||||
@@ -0,0 +1,8 @@
|
||||
mod set_block;
|
||||
mod sparse;
|
||||
|
||||
pub use set_block::{DenseBlock, DenseBlockCodec, DENSE_BLOCK_NUM_BYTES};
|
||||
pub use sparse::{SparseBlock, SparseBlockCodec};
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
271
columnar/src/column_index/optional_index/set_block/set_block.rs
Normal file
271
columnar/src/column_index/optional_index/set_block/set_block.rs
Normal file
@@ -0,0 +1,271 @@
|
||||
use std::convert::TryInto;
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::BinarySerializable;
|
||||
|
||||
use crate::column_index::optional_index::{Set, SetCodec, ELEMENTS_PER_BLOCK};
|
||||
|
||||
#[inline(always)]
|
||||
fn get_bit_at(input: u64, n: u16) -> bool {
|
||||
input & (1 << n) != 0
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_bit_at(input: &mut u64, n: u16) {
|
||||
*input |= 1 << n;
|
||||
}
|
||||
|
||||
/// For the `DenseCodec`, `data` which contains the encoded blocks.
|
||||
/// Each block consists of [u8; 12]. The first 8 bytes is a bitvec for 64 elements.
|
||||
/// The last 4 bytes are the offset, the number of set bits so far.
|
||||
///
|
||||
/// When translating the original index to a dense index, the correct block can be computed
|
||||
/// directly `orig_idx/64`. Inside the block the position is `orig_idx%64`.
|
||||
///
|
||||
/// When translating a dense index to the original index, we can use the offset to find the correct
|
||||
/// block. Direct computation is not possible, but we can employ a linear or binary search.
|
||||
|
||||
const ELEMENTS_PER_MINI_BLOCK: u16 = 64;
|
||||
const MINI_BLOCK_BITVEC_NUM_BYTES: usize = 8;
|
||||
const MINI_BLOCK_OFFSET_NUM_BYTES: usize = 2;
|
||||
pub const MINI_BLOCK_NUM_BYTES: usize = MINI_BLOCK_BITVEC_NUM_BYTES + MINI_BLOCK_OFFSET_NUM_BYTES;
|
||||
|
||||
/// Number of bytes in a dense block.
|
||||
pub const DENSE_BLOCK_NUM_BYTES: u32 =
|
||||
(ELEMENTS_PER_BLOCK as u32 / ELEMENTS_PER_MINI_BLOCK as u32) * MINI_BLOCK_NUM_BYTES as u32;
|
||||
|
||||
pub struct DenseBlockCodec;
|
||||
|
||||
impl SetCodec for DenseBlockCodec {
|
||||
type Item = u16;
|
||||
type Reader<'a> = DenseBlock<'a>;
|
||||
|
||||
fn serialize(els: impl Iterator<Item = u16>, wrt: impl io::Write) -> io::Result<()> {
|
||||
serialize_dense_codec(els, wrt)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a> {
|
||||
assert_eq!(data.len(), DENSE_BLOCK_NUM_BYTES as usize);
|
||||
DenseBlock(data)
|
||||
}
|
||||
}
|
||||
|
||||
/// Interpreting the bitvec as a set of integer within 0..=63
|
||||
/// and given an element, returns the number of elements in the
|
||||
/// set lesser than the element.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic or return a wrong result if el <= 64.
|
||||
#[inline(always)]
|
||||
fn rank_u64(bitvec: u64, el: u16) -> u16 {
|
||||
debug_assert!(el < 64);
|
||||
let mask = (1u64 << el) - 1;
|
||||
let masked_bitvec = bitvec & mask;
|
||||
masked_bitvec.count_ones() as u16
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn select_u64(mut bitvec: u64, rank: u16) -> u16 {
|
||||
for _ in 0..rank {
|
||||
bitvec &= bitvec - 1;
|
||||
}
|
||||
bitvec.trailing_zeros() as u16
|
||||
}
|
||||
|
||||
// TODO test the following solution on Intel... on Ryzen Zen <3 it is a catastrophy.
|
||||
// #[target_feature(enable = "bmi2")]
|
||||
// unsafe fn select_bitvec_unsafe(bitvec: u64, rank: u16) -> u16 {
|
||||
// let pdep = _pdep_u64(1u64 << rank, bitvec);
|
||||
// pdep.trailing_zeros() as u16
|
||||
// }
|
||||
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
struct DenseMiniBlock {
|
||||
bitvec: u64,
|
||||
rank: u16,
|
||||
}
|
||||
|
||||
impl DenseMiniBlock {
|
||||
fn from_bytes(data: [u8; MINI_BLOCK_NUM_BYTES]) -> Self {
|
||||
let bitvec = u64::from_le_bytes(data[..MINI_BLOCK_BITVEC_NUM_BYTES].try_into().unwrap());
|
||||
let rank = u16::from_le_bytes(data[MINI_BLOCK_BITVEC_NUM_BYTES..].try_into().unwrap());
|
||||
Self { bitvec, rank }
|
||||
}
|
||||
|
||||
fn to_bytes(&self) -> [u8; MINI_BLOCK_NUM_BYTES] {
|
||||
let mut bytes = [0u8; MINI_BLOCK_NUM_BYTES];
|
||||
bytes[..MINI_BLOCK_BITVEC_NUM_BYTES].copy_from_slice(&self.bitvec.to_le_bytes());
|
||||
bytes[MINI_BLOCK_BITVEC_NUM_BYTES..].copy_from_slice(&self.rank.to_le_bytes());
|
||||
bytes
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct DenseBlock<'a>(&'a [u8]);
|
||||
|
||||
impl<'a> Set<u16> for DenseBlock<'a> {
|
||||
#[inline(always)]
|
||||
fn contains(&self, el: u16) -> bool {
|
||||
let mini_block_id = el / ELEMENTS_PER_MINI_BLOCK;
|
||||
let bitvec = self.mini_block(mini_block_id).bitvec;
|
||||
let pos_in_bitvec = el % ELEMENTS_PER_MINI_BLOCK;
|
||||
get_bit_at(bitvec, pos_in_bitvec)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn rank_if_exists(&self, el: u16) -> Option<u16> {
|
||||
let block_pos = el / ELEMENTS_PER_MINI_BLOCK;
|
||||
let index_block = self.mini_block(block_pos);
|
||||
let pos_in_block_bit_vec = el % ELEMENTS_PER_MINI_BLOCK;
|
||||
let ones_in_block = rank_u64(index_block.bitvec, pos_in_block_bit_vec);
|
||||
let rank = index_block.rank + ones_in_block;
|
||||
if get_bit_at(index_block.bitvec, pos_in_block_bit_vec) {
|
||||
Some(rank)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn select(&self, rank: u16) -> u16 {
|
||||
let block_id = self.find_miniblock_containing_rank(rank, 0).unwrap();
|
||||
let index_block = self.mini_block(block_id);
|
||||
let in_block_rank = rank - index_block.rank;
|
||||
block_id * ELEMENTS_PER_MINI_BLOCK + select_u64(index_block.bitvec, in_block_rank)
|
||||
}
|
||||
|
||||
fn select_batch(&self, ranks: &[u16], outputs: &mut [u16]) {
|
||||
let orig_ids = self.select_iter(ranks.iter().copied());
|
||||
for (output, original_id) in outputs.iter_mut().zip(orig_ids) {
|
||||
*output = original_id;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> DenseBlock<'a> {
|
||||
/// Iterator verison of select.
|
||||
///
|
||||
/// # Panics
|
||||
/// Panics if one of the rank is higher than the number of elements in the set.
|
||||
pub fn select_iter<'b>(
|
||||
&self,
|
||||
rank_it: impl Iterator<Item = u16> + 'b,
|
||||
) -> impl Iterator<Item = u16> + 'b
|
||||
where
|
||||
Self: 'b,
|
||||
{
|
||||
let mut block_id = 0u16;
|
||||
let me = *self;
|
||||
rank_it.map(move |rank| {
|
||||
block_id = me.find_miniblock_containing_rank(rank, block_id).unwrap();
|
||||
let index_block = me.mini_block(block_id);
|
||||
let in_block_rank = rank - index_block.rank;
|
||||
block_id * ELEMENTS_PER_MINI_BLOCK + select_u64(index_block.bitvec, in_block_rank)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> DenseBlock<'a> {
|
||||
#[inline]
|
||||
fn mini_block(&self, mini_block_id: u16) -> DenseMiniBlock {
|
||||
let data_start_pos = mini_block_id as usize * MINI_BLOCK_NUM_BYTES;
|
||||
DenseMiniBlock::from_bytes(
|
||||
self.0[data_start_pos..data_start_pos + MINI_BLOCK_NUM_BYTES]
|
||||
.try_into()
|
||||
.unwrap(),
|
||||
)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter_miniblocks(
|
||||
&self,
|
||||
from_block_id: u16,
|
||||
) -> impl Iterator<Item = (u16, DenseMiniBlock)> + '_ {
|
||||
self.0
|
||||
.chunks_exact(MINI_BLOCK_NUM_BYTES)
|
||||
.enumerate()
|
||||
.skip(from_block_id as usize)
|
||||
.map(|(block_id, bytes)| {
|
||||
let mini_block = DenseMiniBlock::from_bytes(bytes.try_into().unwrap());
|
||||
(block_id as u16, mini_block)
|
||||
})
|
||||
}
|
||||
|
||||
/// Finds the block position containing the dense_idx.
|
||||
///
|
||||
/// # Correctness
|
||||
/// dense_idx needs to be smaller than the number of values in the index
|
||||
///
|
||||
/// The last offset number is equal to the number of values in the index.
|
||||
#[inline]
|
||||
fn find_miniblock_containing_rank(&self, rank: u16, from_block_id: u16) -> Option<u16> {
|
||||
self.iter_miniblocks(from_block_id)
|
||||
.take_while(|(_, block)| block.rank <= rank)
|
||||
.map(|(block_id, _)| block_id)
|
||||
.last()
|
||||
}
|
||||
}
|
||||
|
||||
/// Iterator over all values, true if set, otherwise false
|
||||
pub fn serialize_dense_codec(
|
||||
els: impl Iterator<Item = u16>,
|
||||
mut output: impl Write,
|
||||
) -> io::Result<()> {
|
||||
let mut non_null_rows_before: u16 = 0u16;
|
||||
let mut block = 0u64;
|
||||
let mut current_block_id = 0u16;
|
||||
for el in els {
|
||||
let block_id = el / ELEMENTS_PER_MINI_BLOCK;
|
||||
let in_offset = el % ELEMENTS_PER_MINI_BLOCK;
|
||||
while block_id > current_block_id {
|
||||
let dense_mini_block = DenseMiniBlock {
|
||||
bitvec: block,
|
||||
rank: non_null_rows_before as u16,
|
||||
};
|
||||
output.write_all(&dense_mini_block.to_bytes())?;
|
||||
non_null_rows_before += block.count_ones() as u16;
|
||||
block = 0u64;
|
||||
current_block_id += 1u16;
|
||||
}
|
||||
set_bit_at(&mut block, in_offset);
|
||||
}
|
||||
while current_block_id <= u16::MAX / ELEMENTS_PER_MINI_BLOCK {
|
||||
block.serialize(&mut output)?;
|
||||
non_null_rows_before.serialize(&mut output)?;
|
||||
// This will overflow to 0 exactly if all bits are set.
|
||||
// This is however not problem as we won't use this last value.
|
||||
non_null_rows_before = non_null_rows_before.wrapping_add(block.count_ones() as u16);
|
||||
block = 0u64;
|
||||
current_block_id += 1u16;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_select_bitvec() {
|
||||
assert_eq!(select_u64(1u64, 0), 0);
|
||||
assert_eq!(select_u64(2u64, 0), 1);
|
||||
assert_eq!(select_u64(4u64, 0), 2);
|
||||
assert_eq!(select_u64(8u64, 0), 3);
|
||||
assert_eq!(select_u64(1 | 8u64, 0), 0);
|
||||
assert_eq!(select_u64(1 | 8u64, 1), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_count_ones() {
|
||||
for i in 0..=63 {
|
||||
assert_eq!(rank_u64(u64::MAX, i), i);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dense() {
|
||||
assert_eq!(DENSE_BLOCK_NUM_BYTES, 10_240);
|
||||
}
|
||||
}
|
||||
112
columnar/src/column_index/optional_index/set_block/sparse.rs
Normal file
112
columnar/src/column_index/optional_index/set_block/sparse.rs
Normal file
@@ -0,0 +1,112 @@
|
||||
use crate::column_index::optional_index::{Set, SetCodec};
|
||||
|
||||
pub struct SparseBlockCodec;
|
||||
|
||||
impl SetCodec for SparseBlockCodec {
|
||||
type Item = u16;
|
||||
type Reader<'a> = SparseBlock<'a>;
|
||||
|
||||
fn serialize(
|
||||
els: impl Iterator<Item = u16>,
|
||||
mut wrt: impl std::io::Write,
|
||||
) -> std::io::Result<()> {
|
||||
for el in els {
|
||||
wrt.write_all(&el.to_le_bytes())?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a> {
|
||||
SparseBlock(data)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct SparseBlock<'a>(&'a [u8]);
|
||||
|
||||
impl<'a> Set<u16> for SparseBlock<'a> {
|
||||
#[inline(always)]
|
||||
fn contains(&self, el: u16) -> bool {
|
||||
self.binary_search(el).is_ok()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn rank_if_exists(&self, el: u16) -> Option<u16> {
|
||||
self.binary_search(el).ok()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn select(&self, rank: u16) -> u16 {
|
||||
let offset = rank as usize * 2;
|
||||
u16::from_le_bytes(self.0[offset..offset + 2].try_into().unwrap())
|
||||
}
|
||||
|
||||
fn select_batch(&self, ranks: &[u16], outputs: &mut [u16]) {
|
||||
let orig_ids = self.select_iter(ranks.iter().copied());
|
||||
for (output, original_id) in outputs.iter_mut().zip(orig_ids) {
|
||||
*output = original_id;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_u16(data: &[u8], byte_position: usize) -> u16 {
|
||||
let bytes: [u8; 2] = data[byte_position..byte_position + 2].try_into().unwrap();
|
||||
u16::from_le_bytes(bytes)
|
||||
}
|
||||
|
||||
impl<'a> SparseBlock<'a> {
|
||||
#[inline(always)]
|
||||
fn value_at_idx(&self, data: &[u8], idx: u16) -> u16 {
|
||||
let start_offset: usize = idx as usize * 2;
|
||||
get_u16(data, start_offset)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u16 {
|
||||
(self.0.len() / 2) as u16
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[allow(clippy::comparison_chain)]
|
||||
// Looks for the element in the block. Returns the positions if found.
|
||||
fn binary_search(&self, target: u16) -> Result<u16, u16> {
|
||||
let data = &self.0;
|
||||
let mut size = self.num_vals();
|
||||
let mut left = 0;
|
||||
let mut right = size;
|
||||
// TODO try different implem.
|
||||
// e.g. exponential search into binary search
|
||||
while left < right {
|
||||
let mid = left + size / 2;
|
||||
|
||||
// TODO do boundary check only once, and then use an
|
||||
// unsafe `value_at_idx`
|
||||
let mid_val = self.value_at_idx(data, mid);
|
||||
|
||||
if target > mid_val {
|
||||
left = mid + 1;
|
||||
} else if target < mid_val {
|
||||
right = mid;
|
||||
} else {
|
||||
return Ok(mid);
|
||||
}
|
||||
|
||||
size = right - left;
|
||||
}
|
||||
Err(left)
|
||||
}
|
||||
|
||||
pub fn select_iter<'b>(
|
||||
&self,
|
||||
iter: impl Iterator<Item = u16> + 'b,
|
||||
) -> impl Iterator<Item = u16> + 'b
|
||||
where
|
||||
Self: 'b,
|
||||
{
|
||||
iter.map(|codec_id| {
|
||||
let offset = codec_id as usize * 2;
|
||||
u16::from_le_bytes(self.0[offset..offset + 2].try_into().unwrap())
|
||||
})
|
||||
}
|
||||
}
|
||||
110
columnar/src/column_index/optional_index/set_block/tests.rs
Normal file
110
columnar/src/column_index/optional_index/set_block/tests.rs
Normal file
@@ -0,0 +1,110 @@
|
||||
use std::collections::HashMap;
|
||||
|
||||
use crate::column_index::optional_index::set_block::set_block::DENSE_BLOCK_NUM_BYTES;
|
||||
use crate::column_index::optional_index::set_block::{DenseBlockCodec, SparseBlockCodec};
|
||||
use crate::column_index::optional_index::{Set, SetCodec};
|
||||
|
||||
fn test_set_helper<C: SetCodec<Item = u16>>(vals: &[u16]) -> usize {
|
||||
let mut buffer = Vec::new();
|
||||
C::serialize(vals.iter().copied(), &mut buffer).unwrap();
|
||||
let tested_set = C::open(buffer.as_slice());
|
||||
let hash_set: HashMap<C::Item, C::Item> = vals
|
||||
.iter()
|
||||
.copied()
|
||||
.enumerate()
|
||||
.map(|(ord, val)| (val, C::Item::try_from(ord).ok().unwrap()))
|
||||
.collect();
|
||||
for val in 0u16..=u16::MAX {
|
||||
assert_eq!(tested_set.contains(val), hash_set.contains_key(&val));
|
||||
assert_eq!(tested_set.rank_if_exists(val), hash_set.get(&val).copied());
|
||||
}
|
||||
for rank in 0..vals.len() {
|
||||
assert_eq!(tested_set.select(rank as u16), vals[rank]);
|
||||
}
|
||||
buffer.len()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dense_block_set_u16_empty() {
|
||||
let buffer_len = test_set_helper::<DenseBlockCodec>(&[]);
|
||||
assert_eq!(buffer_len, DENSE_BLOCK_NUM_BYTES as usize);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dense_block_set_u16_max() {
|
||||
let buffer_len = test_set_helper::<DenseBlockCodec>(&[u16::MAX]);
|
||||
assert_eq!(buffer_len, DENSE_BLOCK_NUM_BYTES as usize);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sparse_block_set_u16_empty() {
|
||||
let buffer_len = test_set_helper::<SparseBlockCodec>(&[]);
|
||||
assert_eq!(buffer_len, 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sparse_block_set_u16_max() {
|
||||
let buffer_len = test_set_helper::<SparseBlockCodec>(&[u16::MAX]);
|
||||
assert_eq!(buffer_len, 2);
|
||||
}
|
||||
|
||||
use proptest::prelude::*;
|
||||
|
||||
proptest! {
|
||||
#[test]
|
||||
fn test_prop_test_dense(els in proptest::collection::btree_set(0..=u16::MAX, 0..=u16::MAX as usize)) {
|
||||
let vals: Vec<u16> = els.into_iter().collect();
|
||||
let buffer_len = test_set_helper::<DenseBlockCodec>(&vals);
|
||||
assert_eq!(buffer_len, DENSE_BLOCK_NUM_BYTES as usize);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_prop_test_sparse(els in proptest::collection::btree_set(0..=u16::MAX, 0..=u16::MAX as usize)) {
|
||||
let vals: Vec<u16> = els.into_iter().collect();
|
||||
let buffer_len = test_set_helper::<SparseBlockCodec>(&vals);
|
||||
assert_eq!(buffer_len, vals.len() * 2);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_simple_translate_codec_codec_idx_to_original_idx_dense() {
|
||||
let mut buffer = Vec::new();
|
||||
DenseBlockCodec::serialize([1, 3, 17, 32, 30_000, 30_001].iter().copied(), &mut buffer)
|
||||
.unwrap();
|
||||
let tested_set = DenseBlockCodec::open(buffer.as_slice());
|
||||
assert!(tested_set.contains(1));
|
||||
assert_eq!(
|
||||
&tested_set
|
||||
.select_iter([0, 1, 2, 5].iter().copied())
|
||||
.collect::<Vec<u16>>(),
|
||||
&[1, 3, 17, 30_001]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_simple_translate_codec_idx_to_original_idx_sparse() {
|
||||
let mut buffer = Vec::new();
|
||||
SparseBlockCodec::serialize([1, 3, 17].iter().copied(), &mut buffer).unwrap();
|
||||
let tested_set = SparseBlockCodec::open(buffer.as_slice());
|
||||
assert!(tested_set.contains(1));
|
||||
assert_eq!(
|
||||
&tested_set
|
||||
.select_iter([0, 1, 2].iter().copied())
|
||||
.collect::<Vec<u16>>(),
|
||||
&[1, 3, 17]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_simple_translate_codec_idx_to_original_idx_dense() {
|
||||
let mut buffer = Vec::new();
|
||||
DenseBlockCodec::serialize(0u16..150u16, &mut buffer).unwrap();
|
||||
let tested_set = DenseBlockCodec::open(buffer.as_slice());
|
||||
assert!(tested_set.contains(1));
|
||||
let rg = 0u16..150u16;
|
||||
let els: Vec<u16> = rg.clone().collect();
|
||||
assert_eq!(
|
||||
&tested_set.select_iter(rg.clone()).collect::<Vec<u16>>(),
|
||||
&els
|
||||
);
|
||||
}
|
||||
327
columnar/src/column_index/optional_index/tests.rs
Normal file
327
columnar/src/column_index/optional_index/tests.rs
Normal file
@@ -0,0 +1,327 @@
|
||||
use proptest::prelude::{any, prop, *};
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_dense_block_threshold() {
|
||||
assert_eq!(super::DENSE_BLOCK_THRESHOLD, 5_120);
|
||||
}
|
||||
|
||||
fn random_bitvec() -> BoxedStrategy<Vec<bool>> {
|
||||
prop_oneof![
|
||||
1 => prop::collection::vec(proptest::bool::weighted(1.0), 0..100),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.00), 0..(ELEMENTS_PER_BLOCK as usize * 3)), // empty blocks
|
||||
1 => prop::collection::vec(proptest::bool::weighted(1.00), 0..(ELEMENTS_PER_BLOCK as usize + 10)), // full block
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..100),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..u16::MAX as usize),
|
||||
8 => vec![any::<bool>()],
|
||||
]
|
||||
.boxed()
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(50))]
|
||||
#[test]
|
||||
fn test_with_random_bitvecs(bitvec1 in random_bitvec(), bitvec2 in random_bitvec(), bitvec3 in random_bitvec()) {
|
||||
let mut bitvec = Vec::new();
|
||||
bitvec.extend_from_slice(&bitvec1);
|
||||
bitvec.extend_from_slice(&bitvec2);
|
||||
bitvec.extend_from_slice(&bitvec3);
|
||||
test_null_index(&bitvec[..]);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_random_sets_simple() {
|
||||
let vals = 10..BLOCK_SIZE * 2;
|
||||
let mut out: Vec<u8> = Vec::new();
|
||||
serialize_optional_index(&vals.clone(), &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
let ranks: Vec<u32> = (65_472u32..65_473u32).collect();
|
||||
let els: Vec<u32> = ranks.iter().copied().map(|rank| rank + 10).collect();
|
||||
let mut output = vec![0u32; ranks.len()];
|
||||
null_index.select_batch(&ranks[..], &mut output[..]);
|
||||
assert_eq!(&output, &els);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_trailing_empty_blocks() {
|
||||
test_null_index(&[false]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_one_block_false() {
|
||||
let mut iter = vec![false; ELEMENTS_PER_BLOCK as usize];
|
||||
iter.push(true);
|
||||
test_null_index(&iter[..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_one_block_true() {
|
||||
let mut iter = vec![true; ELEMENTS_PER_BLOCK as usize];
|
||||
iter.push(true);
|
||||
test_null_index(&iter[..]);
|
||||
}
|
||||
|
||||
impl<'a> SerializableOptionalIndex<'a> for &'a [bool] {
|
||||
fn num_rows(&self) -> RowId {
|
||||
self.len() as u32
|
||||
}
|
||||
|
||||
fn non_null_rows(&self) -> Box<dyn Iterator<Item = RowId> + 'a> {
|
||||
Box::new(
|
||||
self.iter()
|
||||
.cloned()
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _val)| pos as u32),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn test_null_index(data: &[bool]) {
|
||||
let mut out: Vec<u8> = Vec::new();
|
||||
serialize_optional_index(&data, &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
let orig_idx_with_value: Vec<u32> = data
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| **val)
|
||||
.map(|(pos, _val)| pos as u32)
|
||||
.collect();
|
||||
let ids: Vec<u32> = (0..orig_idx_with_value.len() as u32).collect();
|
||||
let mut output = vec![0u32; ids.len()];
|
||||
null_index.select_batch(&ids[..], &mut output);
|
||||
// assert_eq!(&output[0..100], &orig_idx_with_value[0..100]);
|
||||
assert_eq!(output, orig_idx_with_value);
|
||||
|
||||
let step_size = (orig_idx_with_value.len() / 100).max(1);
|
||||
for (dense_idx, orig_idx) in orig_idx_with_value.iter().enumerate().step_by(step_size) {
|
||||
assert_eq!(null_index.rank_if_exists(*orig_idx), Some(dense_idx as u32));
|
||||
}
|
||||
|
||||
// 100 samples
|
||||
let step_size = (data.len() / 100).max(1);
|
||||
for (pos, value) in data.iter().enumerate().step_by(step_size) {
|
||||
assert_eq!(null_index.contains(pos as u32), *value);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_test_translation() {
|
||||
let mut out = vec![];
|
||||
let iter = &[true, false, true, false];
|
||||
serialize_optional_index(&&iter[..], &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
let mut output = vec![0u32; 2];
|
||||
null_index.select_batch(&[0, 1], &mut output);
|
||||
assert_eq!(output, &[0, 2]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_translate() {
|
||||
let mut out = vec![];
|
||||
let iter = &[true, false, true, false];
|
||||
serialize_optional_index(&&iter[..], &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
assert_eq!(null_index.rank_if_exists(0), Some(0));
|
||||
assert_eq!(null_index.rank_if_exists(2), Some(1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_small() {
|
||||
let mut out = vec![];
|
||||
let iter = &[true, false, true, false];
|
||||
serialize_optional_index(&&iter[..], &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
assert!(null_index.contains(0));
|
||||
assert!(!null_index.contains(1));
|
||||
assert!(null_index.contains(2));
|
||||
assert!(!null_index.contains(3));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_large() {
|
||||
let mut docs = vec![];
|
||||
docs.extend((0..ELEMENTS_PER_BLOCK).map(|_idx| false));
|
||||
docs.extend((0..=1).map(|_idx| true));
|
||||
|
||||
let mut out = vec![];
|
||||
serialize_optional_index(&&docs[..], &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
assert!(!null_index.contains(0));
|
||||
assert!(!null_index.contains(100));
|
||||
assert!(!null_index.contains(ELEMENTS_PER_BLOCK - 1));
|
||||
assert!(null_index.contains(ELEMENTS_PER_BLOCK));
|
||||
assert!(null_index.contains(ELEMENTS_PER_BLOCK + 1));
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::Bencher;
|
||||
|
||||
use super::*;
|
||||
|
||||
const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
fn gen_bools(fill_ratio: f64) -> OptionalIndex {
|
||||
let mut out = Vec::new();
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let vals: Vec<bool> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.collect();
|
||||
serialize_optional_index(&&vals[..], &mut out).unwrap();
|
||||
|
||||
let codec = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
codec
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
start: u32,
|
||||
end: u32,
|
||||
avg_step_size: u32,
|
||||
avg_deviation: u32,
|
||||
) -> impl Iterator<Item = u32> {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end {
|
||||
None
|
||||
} else {
|
||||
Some(current)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent as f32 / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
}
|
||||
|
||||
fn walk_over_data(codec: &OptionalIndex, avg_step_size: u32) -> Option<u32> {
|
||||
walk_over_data_from_positions(
|
||||
codec,
|
||||
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
|
||||
)
|
||||
}
|
||||
|
||||
fn walk_over_data_from_positions(
|
||||
codec: &OptionalIndex,
|
||||
positions: impl Iterator<Item = u32>,
|
||||
) -> Option<u32> {
|
||||
let mut dense_idx: Option<u32> = None;
|
||||
for idx in positions {
|
||||
dense_idx = dense_idx.or(codec.rank_if_exists(idx));
|
||||
}
|
||||
dense_idx
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 1000));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.5f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 0.005f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_10percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.1f64, 0.005f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 10f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 100f32, bench);
|
||||
}
|
||||
|
||||
fn bench_translate_codec_to_orig_util(
|
||||
percent_filled: f64,
|
||||
percent_hit: f32,
|
||||
bench: &mut Bencher,
|
||||
) {
|
||||
let codec = gen_bools(percent_filled);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
let idxs: Vec<u32> = if percent_hit == 100.0f32 {
|
||||
(0..num_non_nulls).collect()
|
||||
} else {
|
||||
n_percent_step_iterator(percent_hit, num_non_nulls).collect()
|
||||
};
|
||||
let mut output = vec![0u32; idxs.len()];
|
||||
bench.iter(|| {
|
||||
codec.select_batch(&idxs[..], &mut output);
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.9f64, 0.005, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.9f64, 100.0f32, bench);
|
||||
}
|
||||
}
|
||||
70
columnar/src/column_index/serialize.rs
Normal file
70
columnar/src/column_index/serialize.rs
Normal file
@@ -0,0 +1,70 @@
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
|
||||
use common::OwnedBytes;
|
||||
|
||||
use crate::column_index::multivalued_index::{serialize_multivalued_index, MultivaluedIndex};
|
||||
use crate::column_index::optional_index::serialize_optional_index;
|
||||
use crate::column_index::{ColumnIndex, SerializableOptionalIndex};
|
||||
use crate::Cardinality;
|
||||
|
||||
pub enum SerializableColumnIndex<'a> {
|
||||
Full,
|
||||
Optional(Box<dyn SerializableOptionalIndex<'a> + 'a>),
|
||||
// TODO remove the Arc<dyn> apart from serialization this is not
|
||||
// dynamic at all.
|
||||
Multivalued(MultivaluedIndex),
|
||||
}
|
||||
|
||||
impl<'a> SerializableColumnIndex<'a> {
|
||||
pub fn get_cardinality(&self) -> Cardinality {
|
||||
match self {
|
||||
SerializableColumnIndex::Full => Cardinality::Full,
|
||||
SerializableColumnIndex::Optional(_) => Cardinality::Optional,
|
||||
SerializableColumnIndex::Multivalued(_) => Cardinality::Multivalued,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn serialize_column_index(
|
||||
column_index: SerializableColumnIndex,
|
||||
output: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
let cardinality = column_index.get_cardinality().to_code();
|
||||
output.write_all(&[cardinality])?;
|
||||
match column_index {
|
||||
SerializableColumnIndex::Full => {}
|
||||
SerializableColumnIndex::Optional(optional_index) => {
|
||||
serialize_optional_index(&*optional_index, output)?
|
||||
}
|
||||
SerializableColumnIndex::Multivalued(multivalued_index) => {
|
||||
serialize_multivalued_index(multivalued_index, output)?
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn open_column_index(mut bytes: OwnedBytes) -> io::Result<ColumnIndex<'static>> {
|
||||
if bytes.is_empty() {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::UnexpectedEof,
|
||||
"Failed to deserialize column index. Empty buffer.",
|
||||
));
|
||||
}
|
||||
let cardinality_code = bytes[0];
|
||||
let cardinality = Cardinality::try_from_code(cardinality_code)?;
|
||||
bytes.advance(1);
|
||||
match cardinality {
|
||||
Cardinality::Full => Ok(ColumnIndex::Full),
|
||||
Cardinality::Optional => {
|
||||
let optional_index = super::optional_index::open_optional_index(bytes)?;
|
||||
Ok(ColumnIndex::Optional(optional_index))
|
||||
}
|
||||
Cardinality::Multivalued => {
|
||||
let multivalued_index = super::multivalued_index::open_multivalued_index(bytes)?;
|
||||
Ok(ColumnIndex::Multivalued(multivalued_index))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO unit tests
|
||||
115
columnar/src/column_values/bitpacked.rs
Normal file
115
columnar/src/column_values/bitpacked.rs
Normal file
@@ -0,0 +1,115 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::OwnedBytes;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use super::serialize::NormalizedHeader;
|
||||
use super::{ColumnValues, FastFieldCodec, FastFieldCodecType};
|
||||
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct BitpackedReader {
|
||||
data: OwnedBytes,
|
||||
bit_unpacker: BitUnpacker,
|
||||
normalized_header: NormalizedHeader,
|
||||
}
|
||||
|
||||
impl ColumnValues for BitpackedReader {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
self.bit_unpacker.get(doc, &self.data)
|
||||
}
|
||||
#[inline]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The BitpackedReader assumes a normalized vector.
|
||||
0
|
||||
}
|
||||
#[inline]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.normalized_header.max_value
|
||||
}
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.normalized_header.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
pub struct BitpackedCodec;
|
||||
|
||||
impl FastFieldCodec for BitpackedCodec {
|
||||
/// The CODEC_TYPE is an enum value used for serialization.
|
||||
const CODEC_TYPE: FastFieldCodecType = FastFieldCodecType::Bitpacked;
|
||||
|
||||
type Reader = BitpackedReader;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn open_from_bytes(
|
||||
data: OwnedBytes,
|
||||
normalized_header: NormalizedHeader,
|
||||
) -> io::Result<Self::Reader> {
|
||||
let num_bits = compute_num_bits(normalized_header.max_value);
|
||||
let bit_unpacker = BitUnpacker::new(num_bits);
|
||||
Ok(BitpackedReader {
|
||||
data,
|
||||
bit_unpacker,
|
||||
normalized_header,
|
||||
})
|
||||
}
|
||||
|
||||
/// Serializes data with the BitpackedFastFieldSerializer.
|
||||
///
|
||||
/// The bitpacker assumes that the column has been normalized.
|
||||
/// i.e. It has already been shifted by its minimum value, so that its
|
||||
/// current minimum value is 0.
|
||||
///
|
||||
/// Ideally, we made a shift upstream on the column so that `col.min_value() == 0`.
|
||||
fn serialize(column: &dyn ColumnValues, write: &mut impl Write) -> io::Result<()> {
|
||||
assert_eq!(column.min_value(), 0u64);
|
||||
let num_bits = compute_num_bits(column.max_value());
|
||||
let mut bit_packer = BitPacker::new();
|
||||
for val in column.iter() {
|
||||
bit_packer.write(val, num_bits, write)?;
|
||||
}
|
||||
bit_packer.close(write)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn estimate(column: &dyn ColumnValues) -> Option<f32> {
|
||||
let num_bits = compute_num_bits(column.max_value());
|
||||
let num_bits_uncompressed = 64;
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::tests::create_and_validate;
|
||||
|
||||
fn create_and_validate_bitpacked_codec(data: &[u64], name: &str) {
|
||||
create_and_validate::<BitpackedCodec>(data, name);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_data_sets() {
|
||||
let data_sets = crate::column_values::tests::get_codec_test_datasets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate_bitpacked_codec(&data, name);
|
||||
data.reverse();
|
||||
create_and_validate::<BitpackedCodec>(&data, name);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bitpacked_fast_field_rand() {
|
||||
for _ in 0..500 {
|
||||
let mut data = (0..1 + rand::random::<u8>() as usize)
|
||||
.map(|_| rand::random::<i64>() as u64 / 2)
|
||||
.collect::<Vec<_>>();
|
||||
create_and_validate_bitpacked_codec(&data, "rand");
|
||||
data.reverse();
|
||||
create_and_validate::<BitpackedCodec>(&data, "rand");
|
||||
}
|
||||
}
|
||||
}
|
||||
188
columnar/src/column_values/blockwise_linear.rs
Normal file
188
columnar/src/column_values/blockwise_linear.rs
Normal file
@@ -0,0 +1,188 @@
|
||||
use std::sync::Arc;
|
||||
use std::{io, iter};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, DeserializeFrom, OwnedBytes};
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::column_values::line::Line;
|
||||
use crate::column_values::serialize::NormalizedHeader;
|
||||
use crate::column_values::{ColumnValues, FastFieldCodec, FastFieldCodecType, VecColumn};
|
||||
|
||||
const CHUNK_SIZE: usize = 512;
|
||||
|
||||
#[derive(Debug, Default)]
|
||||
struct Block {
|
||||
line: Line,
|
||||
bit_unpacker: BitUnpacker,
|
||||
data_start_offset: usize,
|
||||
}
|
||||
|
||||
impl BinarySerializable for Block {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.line.serialize(writer)?;
|
||||
self.bit_unpacker.bit_width().serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let line = Line::deserialize(reader)?;
|
||||
let bit_width = u8::deserialize(reader)?;
|
||||
Ok(Block {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
data_start_offset: 0,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_num_blocks(num_vals: u32) -> usize {
|
||||
(num_vals as usize + CHUNK_SIZE - 1) / CHUNK_SIZE
|
||||
}
|
||||
|
||||
pub struct BlockwiseLinearCodec;
|
||||
|
||||
impl FastFieldCodec for BlockwiseLinearCodec {
|
||||
const CODEC_TYPE: FastFieldCodecType = FastFieldCodecType::BlockwiseLinear;
|
||||
type Reader = BlockwiseLinearReader;
|
||||
|
||||
fn open_from_bytes(
|
||||
bytes: common::OwnedBytes,
|
||||
normalized_header: NormalizedHeader,
|
||||
) -> io::Result<Self::Reader> {
|
||||
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
|
||||
let footer_offset = bytes.len() - 4 - footer_len as usize;
|
||||
let (data, mut footer) = bytes.split(footer_offset);
|
||||
let num_blocks = compute_num_blocks(normalized_header.num_vals);
|
||||
let mut blocks: Vec<Block> = iter::repeat_with(|| Block::deserialize(&mut footer))
|
||||
.take(num_blocks)
|
||||
.collect::<io::Result<_>>()?;
|
||||
|
||||
let mut start_offset = 0;
|
||||
for block in &mut blocks {
|
||||
block.data_start_offset = start_offset;
|
||||
start_offset += (block.bit_unpacker.bit_width() as usize) * CHUNK_SIZE / 8;
|
||||
}
|
||||
Ok(BlockwiseLinearReader {
|
||||
blocks: Arc::new(blocks),
|
||||
data,
|
||||
normalized_header,
|
||||
})
|
||||
}
|
||||
|
||||
// Estimate first_chunk and extrapolate
|
||||
fn estimate(column: &dyn ColumnValues) -> Option<f32> {
|
||||
if column.num_vals() < 10 * CHUNK_SIZE as u32 {
|
||||
return None;
|
||||
}
|
||||
let mut first_chunk: Vec<u64> = column.iter().take(CHUNK_SIZE).collect();
|
||||
let line = Line::train(&VecColumn::from(&first_chunk));
|
||||
for (i, buffer_val) in first_chunk.iter_mut().enumerate() {
|
||||
let interpolated_val = line.eval(i as u32);
|
||||
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
|
||||
}
|
||||
let estimated_bit_width = first_chunk
|
||||
.iter()
|
||||
.map(|el| ((el + 1) as f32 * 3.0) as u64)
|
||||
.map(compute_num_bits)
|
||||
.max()
|
||||
.unwrap();
|
||||
|
||||
let metadata_per_block = {
|
||||
let mut out = vec![];
|
||||
Block::default().serialize(&mut out).unwrap();
|
||||
out.len()
|
||||
};
|
||||
let num_bits = estimated_bit_width as u64 * column.num_vals() as u64
|
||||
// function metadata per block
|
||||
+ metadata_per_block as u64 * (column.num_vals() as u64 / CHUNK_SIZE as u64);
|
||||
let num_bits_uncompressed = 64 * column.num_vals();
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
}
|
||||
|
||||
fn serialize(column: &dyn ColumnValues, wrt: &mut impl io::Write) -> io::Result<()> {
|
||||
// The BitpackedReader assumes a normalized vector.
|
||||
assert_eq!(column.min_value(), 0);
|
||||
let mut buffer = Vec::with_capacity(CHUNK_SIZE);
|
||||
let num_vals = column.num_vals();
|
||||
|
||||
let num_blocks = compute_num_blocks(num_vals);
|
||||
let mut blocks = Vec::with_capacity(num_blocks);
|
||||
|
||||
let mut vals = column.iter();
|
||||
|
||||
let mut bit_packer = BitPacker::new();
|
||||
|
||||
for _ in 0..num_blocks {
|
||||
buffer.clear();
|
||||
buffer.extend((&mut vals).take(CHUNK_SIZE));
|
||||
let line = Line::train(&VecColumn::from(&buffer));
|
||||
|
||||
assert!(!buffer.is_empty());
|
||||
|
||||
for (i, buffer_val) in buffer.iter_mut().enumerate() {
|
||||
let interpolated_val = line.eval(i as u32);
|
||||
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
|
||||
}
|
||||
let bit_width = buffer.iter().copied().map(compute_num_bits).max().unwrap();
|
||||
|
||||
for &buffer_val in &buffer {
|
||||
bit_packer.write(buffer_val, bit_width, wrt)?;
|
||||
}
|
||||
|
||||
blocks.push(Block {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
data_start_offset: 0,
|
||||
});
|
||||
}
|
||||
|
||||
bit_packer.close(wrt)?;
|
||||
|
||||
assert_eq!(blocks.len(), compute_num_blocks(num_vals));
|
||||
|
||||
let mut counting_wrt = CountingWriter::wrap(wrt);
|
||||
for block in &blocks {
|
||||
block.serialize(&mut counting_wrt)?;
|
||||
}
|
||||
let footer_len = counting_wrt.written_bytes();
|
||||
(footer_len as u32).serialize(&mut counting_wrt)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct BlockwiseLinearReader {
|
||||
blocks: Arc<Vec<Block>>,
|
||||
normalized_header: NormalizedHeader,
|
||||
data: OwnedBytes,
|
||||
}
|
||||
|
||||
impl ColumnValues for BlockwiseLinearReader {
|
||||
#[inline(always)]
|
||||
fn get_val(&self, idx: u32) -> u64 {
|
||||
let block_id = (idx / CHUNK_SIZE as u32) as usize;
|
||||
let idx_within_block = idx % (CHUNK_SIZE as u32);
|
||||
let block = &self.blocks[block_id];
|
||||
let interpoled_val: u64 = block.line.eval(idx_within_block);
|
||||
let block_bytes = &self.data[block.data_start_offset..];
|
||||
let bitpacked_diff = block.bit_unpacker.get(idx_within_block, block_bytes);
|
||||
interpoled_val.wrapping_add(bitpacked_diff)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The BlockwiseLinearReader assumes a normalized vector.
|
||||
0u64
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.normalized_header.max_value
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.normalized_header.num_vals
|
||||
}
|
||||
}
|
||||
350
columnar/src/column_values/column.rs
Normal file
350
columnar/src/column_values/column.rs
Normal file
@@ -0,0 +1,350 @@
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
|
||||
use tantivy_bitpacker::minmax;
|
||||
|
||||
use crate::column_values::monotonic_mapping::StrictlyMonotonicFn;
|
||||
|
||||
/// `ColumnValues` provides access to a dense field column.
|
||||
///
|
||||
/// `Column` are just a wrapper over `ColumnValues` and a `ColumnIndex`.
|
||||
pub trait ColumnValues<T: PartialOrd = u64>: Send + Sync {
|
||||
/// Return the value associated with the given idx.
|
||||
///
|
||||
/// This accessor should return as fast as possible.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `idx` is greater than the column length.
|
||||
fn get_val(&self, idx: u32) -> T;
|
||||
|
||||
/// Fills an output buffer with the fast field values
|
||||
/// associated with the `DocId` going from
|
||||
/// `start` to `start + output.len()`.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Must panic if `start + output.len()` is greater than
|
||||
/// the segment's `maxdoc`.
|
||||
#[inline]
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
for (out, idx) in output.iter_mut().zip(start..) {
|
||||
*out = self.get_val(idx as u32);
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the positions of values which are in the provided value range.
|
||||
///
|
||||
/// Note that position == docid for single value fast fields
|
||||
#[inline]
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<T>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
let doc_id_range = doc_id_range.start..doc_id_range.end.min(self.num_vals());
|
||||
|
||||
for idx in doc_id_range.start..doc_id_range.end {
|
||||
let val = self.get_val(idx);
|
||||
if value_range.contains(&val) {
|
||||
positions.push(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the minimum value for this fast field.
|
||||
///
|
||||
/// This min_value may not be exact.
|
||||
/// For instance, the min value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.min_value()`.
|
||||
fn min_value(&self) -> T;
|
||||
|
||||
/// Returns the maximum value for this fast field.
|
||||
///
|
||||
/// This max_value may not be exact.
|
||||
/// For instance, the max value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.max_value()`.
|
||||
fn max_value(&self) -> T;
|
||||
|
||||
/// The number of values in the column.
|
||||
fn num_vals(&self) -> u32;
|
||||
|
||||
/// Returns a iterator over the data
|
||||
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = T> + 'a> {
|
||||
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, C: ColumnValues<T> + ?Sized, T: Copy + PartialOrd> ColumnValues<T> for &'a C {
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
(*self).get_val(idx)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
(*self).min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
(*self).max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
(*self).num_vals()
|
||||
}
|
||||
|
||||
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
|
||||
(*self).iter()
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
(*self).get_range(start, output)
|
||||
}
|
||||
}
|
||||
|
||||
/// VecColumn provides `Column` over a slice.
|
||||
pub struct VecColumn<'a, T = u64> {
|
||||
pub(crate) values: &'a [T],
|
||||
pub(crate) min_value: T,
|
||||
pub(crate) max_value: T,
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Send + Sync> ColumnValues<T> for VecColumn<'a, T> {
|
||||
fn get_val(&self, position: u32) -> T {
|
||||
self.values[position as usize]
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
|
||||
Box::new(self.values.iter().copied())
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
self.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.values.len() as u32
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
output.copy_from_slice(&self.values[start as usize..][..output.len()])
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Default, V> From<&'a V> for VecColumn<'a, T>
|
||||
where V: AsRef<[T]> + ?Sized
|
||||
{
|
||||
fn from(values: &'a V) -> Self {
|
||||
let values = values.as_ref();
|
||||
let (min_value, max_value) = minmax(values.iter().copied()).unwrap_or_default();
|
||||
Self {
|
||||
values,
|
||||
min_value,
|
||||
max_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct MonotonicMappingColumn<C, T, Input> {
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
_phantom: PhantomData<Input>,
|
||||
}
|
||||
|
||||
/// Creates a view of a column transformed by a strictly monotonic mapping. See
|
||||
/// [`StrictlyMonotonicFn`].
|
||||
///
|
||||
/// E.g. apply a gcd monotonic_mapping([100, 200, 300]) == [1, 2, 3]
|
||||
/// monotonic_mapping.mapping() is expected to be injective, and we should always have
|
||||
/// monotonic_mapping.inverse(monotonic_mapping.mapping(el)) == el
|
||||
///
|
||||
/// The inverse of the mapping is required for:
|
||||
/// `fn get_positions_for_value_range(&self, range: RangeInclusive<T>) -> Vec<u64> `
|
||||
/// The user provides the original value range and we need to monotonic map them in the same way the
|
||||
/// serialization does before calling the underlying column.
|
||||
///
|
||||
/// Note that when opening a codec, the monotonic_mapping should be the inverse of the mapping
|
||||
/// during serialization. And therefore the monotonic_mapping_inv when opening is the same as
|
||||
/// monotonic_mapping during serialization.
|
||||
pub fn monotonic_map_column<C, T, Input, Output>(
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
) -> impl ColumnValues<Output>
|
||||
where
|
||||
C: ColumnValues<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Sync + Clone,
|
||||
Output: PartialOrd + Send + Sync + Clone,
|
||||
{
|
||||
MonotonicMappingColumn {
|
||||
from_column,
|
||||
monotonic_mapping,
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
impl<C, T, Input, Output> ColumnValues<Output> for MonotonicMappingColumn<C, T, Input>
|
||||
where
|
||||
C: ColumnValues<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Sync + Clone,
|
||||
Output: PartialOrd + Send + Sync + Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn get_val(&self, idx: u32) -> Output {
|
||||
let from_val = self.from_column.get_val(idx);
|
||||
self.monotonic_mapping.mapping(from_val)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> Output {
|
||||
let from_min_value = self.from_column.min_value();
|
||||
self.monotonic_mapping.mapping(from_min_value)
|
||||
}
|
||||
|
||||
fn max_value(&self) -> Output {
|
||||
let from_max_value = self.from_column.max_value();
|
||||
self.monotonic_mapping.mapping(from_max_value)
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.from_column.num_vals()
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = Output> + '_> {
|
||||
Box::new(
|
||||
self.from_column
|
||||
.iter()
|
||||
.map(|el| self.monotonic_mapping.mapping(el)),
|
||||
)
|
||||
}
|
||||
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<Output>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.from_column.get_docids_for_value_range(
|
||||
self.monotonic_mapping.inverse(range.start().clone())
|
||||
..=self.monotonic_mapping.inverse(range.end().clone()),
|
||||
doc_id_range,
|
||||
positions,
|
||||
)
|
||||
}
|
||||
|
||||
// We voluntarily do not implement get_range as it yields a regression,
|
||||
// and we do not have any specialized implementation anyway.
|
||||
}
|
||||
|
||||
/// Wraps an iterator into a `Column`.
|
||||
pub struct IterColumn<T>(T);
|
||||
|
||||
impl<T> From<T> for IterColumn<T>
|
||||
where T: Iterator + Clone + ExactSizeIterator
|
||||
{
|
||||
fn from(iter: T) -> Self {
|
||||
IterColumn(iter)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> ColumnValues<T::Item> for IterColumn<T>
|
||||
where
|
||||
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
|
||||
T::Item: PartialOrd,
|
||||
{
|
||||
fn get_val(&self, idx: u32) -> T::Item {
|
||||
self.0.clone().nth(idx as usize).unwrap()
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T::Item {
|
||||
self.0.clone().next().unwrap()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T::Item {
|
||||
self.0.clone().last().unwrap()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.0.len() as u32
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T::Item> + '_> {
|
||||
Box::new(self.0.clone())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternalBaseval,
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping() {
|
||||
let vals = &[3u64, 5u64][..];
|
||||
let col = VecColumn::from(vals);
|
||||
let mapped = monotonic_map_column(col, StrictlyMonotonicMappingToInternalBaseval::new(2));
|
||||
assert_eq!(mapped.min_value(), 1u64);
|
||||
assert_eq!(mapped.max_value(), 3u64);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.get_val(0), 1);
|
||||
assert_eq!(mapped.get_val(1), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_as_col() {
|
||||
let col = IterColumn::from(10..100);
|
||||
assert_eq!(col.num_vals(), 90);
|
||||
assert_eq!(col.max_value(), 99);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_iter() {
|
||||
let vals: Vec<u64> = (10..110u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100),
|
||||
),
|
||||
);
|
||||
let val_i64s: Vec<u64> = mapped.iter().collect();
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_get_range() {
|
||||
let vals: Vec<u64> = (0..100u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 0),
|
||||
),
|
||||
);
|
||||
|
||||
assert_eq!(mapped.min_value(), 0u64);
|
||||
assert_eq!(mapped.max_value(), 9900u64);
|
||||
assert_eq!(mapped.num_vals(), 100);
|
||||
let val_u64s: Vec<u64> = mapped.iter().collect();
|
||||
assert_eq!(val_u64s.len(), 100);
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_u64s[i as usize], mapped.get_val(i));
|
||||
assert_eq!(val_u64s[i as usize], vals[i as usize] * 10);
|
||||
}
|
||||
let mut buf = [0u64; 20];
|
||||
mapped.get_range(7, &mut buf[..]);
|
||||
assert_eq!(&val_u64s[7..][..20], &buf);
|
||||
}
|
||||
}
|
||||
19
columnar/src/column_values/column_with_cardinality.rs
Normal file
19
columnar/src/column_values/column_with_cardinality.rs
Normal file
@@ -0,0 +1,19 @@
|
||||
// Copyright (C) 2022 Quickwit, Inc.
|
||||
//
|
||||
// Quickwit is offered under the AGPL v3.0 and as commercial software.
|
||||
// For commercial licensing, contact us at hello@quickwit.io.
|
||||
//
|
||||
// AGPL:
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Affero General Public License as
|
||||
// published by the Free Software Foundation, either version 3 of the
|
||||
// License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Affero General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Affero General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
//
|
||||
43
columnar/src/column_values/compact_space/blank_range.rs
Normal file
43
columnar/src/column_values/compact_space/blank_range.rs
Normal file
@@ -0,0 +1,43 @@
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
/// The range of a blank in value space.
|
||||
///
|
||||
/// A blank is an unoccupied space in the data.
|
||||
/// Use try_into() to construct.
|
||||
/// A range has to have at least length of 3. Invalid ranges will be rejected.
|
||||
///
|
||||
/// Ordered by range length.
|
||||
#[derive(Debug, Eq, PartialEq, Clone)]
|
||||
pub(crate) struct BlankRange {
|
||||
blank_range: RangeInclusive<u128>,
|
||||
}
|
||||
impl TryFrom<RangeInclusive<u128>> for BlankRange {
|
||||
type Error = &'static str;
|
||||
fn try_from(range: RangeInclusive<u128>) -> Result<Self, Self::Error> {
|
||||
let blank_size = range.end().saturating_sub(*range.start());
|
||||
if blank_size < 2 {
|
||||
Err("invalid range")
|
||||
} else {
|
||||
Ok(BlankRange { blank_range: range })
|
||||
}
|
||||
}
|
||||
}
|
||||
impl BlankRange {
|
||||
pub(crate) fn blank_size(&self) -> u128 {
|
||||
self.blank_range.end() - self.blank_range.start() + 1
|
||||
}
|
||||
pub(crate) fn blank_range(&self) -> RangeInclusive<u128> {
|
||||
self.blank_range.clone()
|
||||
}
|
||||
}
|
||||
|
||||
impl Ord for BlankRange {
|
||||
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
|
||||
self.blank_size().cmp(&other.blank_size())
|
||||
}
|
||||
}
|
||||
impl PartialOrd for BlankRange {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
|
||||
Some(self.blank_size().cmp(&other.blank_size()))
|
||||
}
|
||||
}
|
||||
231
columnar/src/column_values/compact_space/build_compact_space.rs
Normal file
231
columnar/src/column_values/compact_space/build_compact_space.rs
Normal file
@@ -0,0 +1,231 @@
|
||||
use std::collections::{BTreeSet, BinaryHeap};
|
||||
use std::iter;
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::blank_range::BlankRange;
|
||||
use super::{CompactSpace, RangeMapping};
|
||||
|
||||
/// Put the blanks for the sorted values into a binary heap
|
||||
fn get_blanks(values_sorted: &BTreeSet<u128>) -> BinaryHeap<BlankRange> {
|
||||
let mut blanks: BinaryHeap<BlankRange> = BinaryHeap::new();
|
||||
for (first, second) in values_sorted.iter().tuple_windows() {
|
||||
// Correctness Overflow: the values are deduped and sorted (BTreeSet property), that means
|
||||
// there's always space between two values.
|
||||
let blank_range = first + 1..=second - 1;
|
||||
let blank_range: Result<BlankRange, _> = blank_range.try_into();
|
||||
if let Ok(blank_range) = blank_range {
|
||||
blanks.push(blank_range);
|
||||
}
|
||||
}
|
||||
|
||||
blanks
|
||||
}
|
||||
|
||||
struct BlankCollector {
|
||||
blanks: Vec<BlankRange>,
|
||||
staged_blanks_sum: u128,
|
||||
}
|
||||
impl BlankCollector {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
blanks: vec![],
|
||||
staged_blanks_sum: 0,
|
||||
}
|
||||
}
|
||||
fn stage_blank(&mut self, blank: BlankRange) {
|
||||
self.staged_blanks_sum += blank.blank_size();
|
||||
self.blanks.push(blank);
|
||||
}
|
||||
fn drain(&mut self) -> impl Iterator<Item = BlankRange> + '_ {
|
||||
self.staged_blanks_sum = 0;
|
||||
self.blanks.drain(..)
|
||||
}
|
||||
fn staged_blanks_sum(&self) -> u128 {
|
||||
self.staged_blanks_sum
|
||||
}
|
||||
fn num_staged_blanks(&self) -> usize {
|
||||
self.blanks.len()
|
||||
}
|
||||
}
|
||||
fn num_bits(val: u128) -> u8 {
|
||||
(128u32 - val.leading_zeros()) as u8
|
||||
}
|
||||
|
||||
/// Will collect blanks and add them to compact space if more bits are saved than cost from
|
||||
/// metadata.
|
||||
pub fn get_compact_space(
|
||||
values_deduped_sorted: &BTreeSet<u128>,
|
||||
total_num_values: u32,
|
||||
cost_per_blank: usize,
|
||||
) -> CompactSpace {
|
||||
let mut compact_space_builder = CompactSpaceBuilder::new();
|
||||
if values_deduped_sorted.is_empty() {
|
||||
return compact_space_builder.finish();
|
||||
}
|
||||
|
||||
let mut blanks: BinaryHeap<BlankRange> = get_blanks(values_deduped_sorted);
|
||||
// Replace after stabilization of https://github.com/rust-lang/rust/issues/62924
|
||||
|
||||
// We start by space that's limited to min_value..=max_value
|
||||
let min_value = *values_deduped_sorted.iter().next().unwrap_or(&0);
|
||||
let max_value = *values_deduped_sorted.iter().last().unwrap_or(&0);
|
||||
|
||||
// +1 for null, in case min and max covers the whole space, we are off by one.
|
||||
let mut amplitude_compact_space = (max_value - min_value).saturating_add(1);
|
||||
if min_value != 0 {
|
||||
compact_space_builder.add_blanks(iter::once(0..=min_value - 1));
|
||||
}
|
||||
if max_value != u128::MAX {
|
||||
compact_space_builder.add_blanks(iter::once(max_value + 1..=u128::MAX));
|
||||
}
|
||||
|
||||
let mut amplitude_bits: u8 = num_bits(amplitude_compact_space);
|
||||
|
||||
let mut blank_collector = BlankCollector::new();
|
||||
// We will stage blanks until they reduce the compact space by at least 1 bit and then flush
|
||||
// them if the metadata cost is lower than the total number of saved bits.
|
||||
// Binary heap to process the gaps by their size
|
||||
while let Some(blank_range) = blanks.pop() {
|
||||
blank_collector.stage_blank(blank_range);
|
||||
|
||||
let staged_spaces_sum: u128 = blank_collector.staged_blanks_sum();
|
||||
let amplitude_new_compact_space = amplitude_compact_space - staged_spaces_sum;
|
||||
let amplitude_new_bits = num_bits(amplitude_new_compact_space);
|
||||
if amplitude_bits == amplitude_new_bits {
|
||||
continue;
|
||||
}
|
||||
let saved_bits = (amplitude_bits - amplitude_new_bits) as usize * total_num_values as usize;
|
||||
// TODO: Maybe calculate exact cost of blanks and run this more expensive computation only,
|
||||
// when amplitude_new_bits changes
|
||||
let cost = blank_collector.num_staged_blanks() * cost_per_blank;
|
||||
if cost >= saved_bits {
|
||||
// Continue here, since although we walk over the blanks by size,
|
||||
// we can potentially save a lot at the last bits, which are smaller blanks
|
||||
//
|
||||
// E.g. if the first range reduces the compact space by 1000 from 2000 to 1000, which
|
||||
// saves 11-10=1 bit and the next range reduces the compact space by 950 to
|
||||
// 50, which saves 10-6=4 bit
|
||||
continue;
|
||||
}
|
||||
|
||||
amplitude_compact_space = amplitude_new_compact_space;
|
||||
amplitude_bits = amplitude_new_bits;
|
||||
compact_space_builder.add_blanks(blank_collector.drain().map(|blank| blank.blank_range()));
|
||||
}
|
||||
|
||||
// special case, when we don't collected any blanks because:
|
||||
// * the data is empty (early exit)
|
||||
// * the algorithm did decide it's not worth the cost, which can be the case for single values
|
||||
//
|
||||
// We drain one collected blank unconditionally, so the empty case is reserved for empty
|
||||
// data, and therefore empty compact_space means the data is empty and no data is covered
|
||||
// (conversely to all data) and we can assign null to it.
|
||||
if compact_space_builder.is_empty() {
|
||||
compact_space_builder.add_blanks(
|
||||
blank_collector
|
||||
.drain()
|
||||
.map(|blank| blank.blank_range())
|
||||
.take(1),
|
||||
);
|
||||
}
|
||||
|
||||
let compact_space = compact_space_builder.finish();
|
||||
if max_value - min_value != u128::MAX {
|
||||
debug_assert_eq!(
|
||||
compact_space.amplitude_compact_space(),
|
||||
amplitude_compact_space
|
||||
);
|
||||
}
|
||||
compact_space
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
struct CompactSpaceBuilder {
|
||||
blanks: Vec<RangeInclusive<u128>>,
|
||||
}
|
||||
|
||||
impl CompactSpaceBuilder {
|
||||
/// Creates a new compact space builder which will initially cover the whole space.
|
||||
fn new() -> Self {
|
||||
Self { blanks: Vec::new() }
|
||||
}
|
||||
|
||||
/// Assumes that repeated add_blank calls don't overlap and are not adjacent,
|
||||
/// e.g. [3..=5, 5..=10] is not allowed
|
||||
///
|
||||
/// Both of those assumptions are true when blanks are produced from sorted values.
|
||||
fn add_blanks(&mut self, blank: impl Iterator<Item = RangeInclusive<u128>>) {
|
||||
self.blanks.extend(blank);
|
||||
}
|
||||
|
||||
fn is_empty(&self) -> bool {
|
||||
self.blanks.is_empty()
|
||||
}
|
||||
|
||||
/// Convert blanks to covered space and assign null value
|
||||
fn finish(mut self) -> CompactSpace {
|
||||
// sort by start. ranges are not allowed to overlap
|
||||
self.blanks.sort_unstable_by_key(|blank| *blank.start());
|
||||
|
||||
let mut covered_space = Vec::with_capacity(self.blanks.len());
|
||||
|
||||
// begining of the blanks
|
||||
if let Some(first_blank_start) = self.blanks.first().map(RangeInclusive::start) {
|
||||
if *first_blank_start != 0 {
|
||||
covered_space.push(0..=first_blank_start - 1);
|
||||
}
|
||||
}
|
||||
|
||||
// Between the blanks
|
||||
let between_blanks = self.blanks.iter().tuple_windows().map(|(left, right)| {
|
||||
assert!(
|
||||
left.end() < right.start(),
|
||||
"overlapping or adjacent ranges detected"
|
||||
);
|
||||
*left.end() + 1..=*right.start() - 1
|
||||
});
|
||||
covered_space.extend(between_blanks);
|
||||
|
||||
// end of the blanks
|
||||
if let Some(last_blank_end) = self.blanks.last().map(RangeInclusive::end) {
|
||||
if *last_blank_end != u128::MAX {
|
||||
covered_space.push(last_blank_end + 1..=u128::MAX);
|
||||
}
|
||||
}
|
||||
|
||||
if covered_space.is_empty() {
|
||||
covered_space.push(0..=0); // empty data case
|
||||
};
|
||||
|
||||
let mut compact_start: u64 = 1; // 0 is reserved for `null`
|
||||
let mut ranges_mapping: Vec<RangeMapping> = Vec::with_capacity(covered_space.len());
|
||||
for cov in covered_space {
|
||||
let range_mapping = super::RangeMapping {
|
||||
value_range: cov,
|
||||
compact_start,
|
||||
};
|
||||
let covered_range_len = range_mapping.range_length();
|
||||
ranges_mapping.push(range_mapping);
|
||||
compact_start += covered_range_len;
|
||||
}
|
||||
// println!("num ranges {}", ranges_mapping.len());
|
||||
CompactSpace { ranges_mapping }
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_binary_heap_pop_order() {
|
||||
let mut blanks: BinaryHeap<BlankRange> = BinaryHeap::new();
|
||||
blanks.push((0..=10).try_into().unwrap());
|
||||
blanks.push((100..=200).try_into().unwrap());
|
||||
blanks.push((100..=110).try_into().unwrap());
|
||||
assert_eq!(blanks.pop().unwrap().blank_size(), 101);
|
||||
assert_eq!(blanks.pop().unwrap().blank_size(), 11);
|
||||
}
|
||||
}
|
||||
813
columnar/src/column_values/compact_space/mod.rs
Normal file
813
columnar/src/column_values/compact_space/mod.rs
Normal file
@@ -0,0 +1,813 @@
|
||||
/// This codec takes a large number space (u128) and reduces it to a compact number space.
|
||||
///
|
||||
/// It will find spaces in the number range. For example:
|
||||
///
|
||||
/// 100, 101, 102, 103, 104, 50000, 50001
|
||||
/// could be mapped to
|
||||
/// 100..104 -> 0..4
|
||||
/// 50000..50001 -> 5..6
|
||||
///
|
||||
/// Compact space 0..=6 requires much less bits than 100..=50001
|
||||
///
|
||||
/// The codec is created to compress ip addresses, but may be employed in other use cases.
|
||||
use std::{
|
||||
cmp::Ordering,
|
||||
collections::BTreeSet,
|
||||
io::{self, Write},
|
||||
ops::{Range, RangeInclusive},
|
||||
};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt, VIntU128};
|
||||
use tantivy_bitpacker::{self, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::column_values::compact_space::build_compact_space::get_compact_space;
|
||||
use crate::column_values::ColumnValues;
|
||||
|
||||
mod blank_range;
|
||||
mod build_compact_space;
|
||||
|
||||
/// The cost per blank is quite hard actually, since blanks are delta encoded, the actual cost of
|
||||
/// blanks depends on the number of blanks.
|
||||
///
|
||||
/// The number is taken by looking at a real dataset. It is optimized for larger datasets.
|
||||
const COST_PER_BLANK_IN_BITS: usize = 36;
|
||||
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub struct CompactSpace {
|
||||
ranges_mapping: Vec<RangeMapping>,
|
||||
}
|
||||
|
||||
/// Maps the range from the original space to compact_start + range.len()
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
struct RangeMapping {
|
||||
value_range: RangeInclusive<u128>,
|
||||
compact_start: u64,
|
||||
}
|
||||
impl RangeMapping {
|
||||
fn range_length(&self) -> u64 {
|
||||
(self.value_range.end() - self.value_range.start()) as u64 + 1
|
||||
}
|
||||
|
||||
// The last value of the compact space in this range
|
||||
fn compact_end(&self) -> u64 {
|
||||
self.compact_start + self.range_length() - 1
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for CompactSpace {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.ranges_mapping.len() as u64).serialize(writer)?;
|
||||
|
||||
let mut prev_value = 0;
|
||||
for value_range in self
|
||||
.ranges_mapping
|
||||
.iter()
|
||||
.map(|range_mapping| &range_mapping.value_range)
|
||||
{
|
||||
let blank_delta_start = value_range.start() - prev_value;
|
||||
VIntU128(blank_delta_start).serialize(writer)?;
|
||||
prev_value = *value_range.start();
|
||||
|
||||
let blank_delta_end = value_range.end() - prev_value;
|
||||
VIntU128(blank_delta_end).serialize(writer)?;
|
||||
prev_value = *value_range.end();
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_ranges = VInt::deserialize(reader)?.0;
|
||||
let mut ranges_mapping: Vec<RangeMapping> = vec![];
|
||||
let mut value = 0u128;
|
||||
let mut compact_start = 1u64; // 0 is reserved for `null`
|
||||
for _ in 0..num_ranges {
|
||||
let blank_delta_start = VIntU128::deserialize(reader)?.0;
|
||||
value += blank_delta_start;
|
||||
let blank_start = value;
|
||||
|
||||
let blank_delta_end = VIntU128::deserialize(reader)?.0;
|
||||
value += blank_delta_end;
|
||||
let blank_end = value;
|
||||
|
||||
let range_mapping = RangeMapping {
|
||||
value_range: blank_start..=blank_end,
|
||||
compact_start,
|
||||
};
|
||||
let range_length = range_mapping.range_length();
|
||||
ranges_mapping.push(range_mapping);
|
||||
compact_start += range_length;
|
||||
}
|
||||
|
||||
Ok(Self { ranges_mapping })
|
||||
}
|
||||
}
|
||||
|
||||
impl CompactSpace {
|
||||
/// Amplitude is the value range of the compact space including the sentinel value used to
|
||||
/// identify null values. The compact space is 0..=amplitude .
|
||||
///
|
||||
/// It's only used to verify we don't exceed u64 number space, which would indicate a bug.
|
||||
fn amplitude_compact_space(&self) -> u128 {
|
||||
self.ranges_mapping
|
||||
.last()
|
||||
.map(|last_range| last_range.compact_end() as u128)
|
||||
.unwrap_or(1) // compact space starts at 1, 0 == null
|
||||
}
|
||||
|
||||
fn get_range_mapping(&self, pos: usize) -> &RangeMapping {
|
||||
&self.ranges_mapping[pos]
|
||||
}
|
||||
|
||||
/// Returns either Ok(the value in the compact space) or if it is outside the compact space the
|
||||
/// Err(position where it would be inserted)
|
||||
fn u128_to_compact(&self, value: u128) -> Result<u64, usize> {
|
||||
self.ranges_mapping
|
||||
.binary_search_by(|probe| {
|
||||
let value_range = &probe.value_range;
|
||||
if value < *value_range.start() {
|
||||
Ordering::Greater
|
||||
} else if value > *value_range.end() {
|
||||
Ordering::Less
|
||||
} else {
|
||||
Ordering::Equal
|
||||
}
|
||||
})
|
||||
.map(|pos| {
|
||||
let range_mapping = &self.ranges_mapping[pos];
|
||||
let pos_in_range = (value - range_mapping.value_range.start()) as u64;
|
||||
range_mapping.compact_start + pos_in_range
|
||||
})
|
||||
}
|
||||
|
||||
/// Unpacks a value from compact space u64 to u128 space
|
||||
fn compact_to_u128(&self, compact: u64) -> u128 {
|
||||
let pos = self
|
||||
.ranges_mapping
|
||||
.binary_search_by_key(&compact, |range_mapping| range_mapping.compact_start)
|
||||
// Correctness: Overflow. The first range starts at compact space 0, the error from
|
||||
// binary search can never be 0
|
||||
.map_or_else(|e| e - 1, |v| v);
|
||||
|
||||
let range_mapping = &self.ranges_mapping[pos];
|
||||
let diff = compact - range_mapping.compact_start;
|
||||
range_mapping.value_range.start() + diff as u128
|
||||
}
|
||||
}
|
||||
|
||||
pub struct CompactSpaceCompressor {
|
||||
params: IPCodecParams,
|
||||
}
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct IPCodecParams {
|
||||
compact_space: CompactSpace,
|
||||
bit_unpacker: BitUnpacker,
|
||||
min_value: u128,
|
||||
max_value: u128,
|
||||
num_vals: u32,
|
||||
num_bits: u8,
|
||||
}
|
||||
|
||||
impl CompactSpaceCompressor {
|
||||
/// Taking the vals as Vec may cost a lot of memory. It is used to sort the vals.
|
||||
pub fn train_from(iter: impl Iterator<Item = u128>, num_vals: u32) -> Self {
|
||||
let mut values_sorted = BTreeSet::new();
|
||||
values_sorted.extend(iter);
|
||||
let total_num_values = num_vals;
|
||||
|
||||
let compact_space =
|
||||
get_compact_space(&values_sorted, total_num_values, COST_PER_BLANK_IN_BITS);
|
||||
let amplitude_compact_space = compact_space.amplitude_compact_space();
|
||||
|
||||
assert!(
|
||||
amplitude_compact_space <= u64::MAX as u128,
|
||||
"case unsupported."
|
||||
);
|
||||
|
||||
let num_bits = tantivy_bitpacker::compute_num_bits(amplitude_compact_space as u64);
|
||||
let min_value = *values_sorted.iter().next().unwrap_or(&0);
|
||||
let max_value = *values_sorted.iter().last().unwrap_or(&0);
|
||||
assert_eq!(
|
||||
compact_space
|
||||
.u128_to_compact(max_value)
|
||||
.expect("could not convert max value to compact space"),
|
||||
amplitude_compact_space as u64
|
||||
);
|
||||
CompactSpaceCompressor {
|
||||
params: IPCodecParams {
|
||||
compact_space,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: total_num_values,
|
||||
num_bits,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
fn write_footer(self, writer: &mut impl Write) -> io::Result<()> {
|
||||
let writer = &mut CountingWriter::wrap(writer);
|
||||
self.params.serialize(writer)?;
|
||||
|
||||
let footer_len = writer.written_bytes() as u32;
|
||||
footer_len.serialize(writer)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn compress_into(
|
||||
self,
|
||||
vals: impl Iterator<Item = u128>,
|
||||
write: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
let mut bitpacker = BitPacker::default();
|
||||
for val in vals {
|
||||
let compact = self
|
||||
.params
|
||||
.compact_space
|
||||
.u128_to_compact(val)
|
||||
.map_err(|_| {
|
||||
io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
"Could not convert value to compact_space. This is a bug.",
|
||||
)
|
||||
})?;
|
||||
bitpacker.write(compact, self.params.num_bits, write)?;
|
||||
}
|
||||
bitpacker.close(write)?;
|
||||
self.write_footer(write)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct CompactSpaceDecompressor {
|
||||
data: OwnedBytes,
|
||||
params: IPCodecParams,
|
||||
}
|
||||
|
||||
impl BinarySerializable for IPCodecParams {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
// header flags for future optional dictionary encoding
|
||||
let footer_flags = 0u64;
|
||||
footer_flags.serialize(writer)?;
|
||||
|
||||
VIntU128(self.min_value).serialize(writer)?;
|
||||
VIntU128(self.max_value).serialize(writer)?;
|
||||
VIntU128(self.num_vals as u128).serialize(writer)?;
|
||||
self.num_bits.serialize(writer)?;
|
||||
|
||||
self.compact_space.serialize(writer)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let _header_flags = u64::deserialize(reader)?;
|
||||
let min_value = VIntU128::deserialize(reader)?.0;
|
||||
let max_value = VIntU128::deserialize(reader)?.0;
|
||||
let num_vals = VIntU128::deserialize(reader)?.0 as u32;
|
||||
let num_bits = u8::deserialize(reader)?;
|
||||
let compact_space = CompactSpace::deserialize(reader)?;
|
||||
|
||||
Ok(Self {
|
||||
compact_space,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals,
|
||||
num_bits,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl ColumnValues<u128> for CompactSpaceDecompressor {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u128 {
|
||||
self.get(doc)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u128 {
|
||||
self.min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u128 {
|
||||
self.max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.params.num_vals
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u128> + '_> {
|
||||
Box::new(self.iter())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u128>,
|
||||
positions_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.get_positions_for_value_range(value_range, positions_range, positions)
|
||||
}
|
||||
}
|
||||
|
||||
impl CompactSpaceDecompressor {
|
||||
pub fn open(data: OwnedBytes) -> io::Result<CompactSpaceDecompressor> {
|
||||
let (data_slice, footer_len_bytes) = data.split_at(data.len() - 4);
|
||||
let footer_len = u32::deserialize(&mut &footer_len_bytes[..])?;
|
||||
|
||||
let data_footer = &data_slice[data_slice.len() - footer_len as usize..];
|
||||
let params = IPCodecParams::deserialize(&mut &data_footer[..])?;
|
||||
let decompressor = CompactSpaceDecompressor { data, params };
|
||||
|
||||
Ok(decompressor)
|
||||
}
|
||||
|
||||
/// Converting to compact space for the decompressor is more complex, since we may get values
|
||||
/// which are outside the compact space. e.g. if we map
|
||||
/// 1000 => 5
|
||||
/// 2000 => 6
|
||||
///
|
||||
/// and we want a mapping for 1005, there is no equivalent compact space. We instead return an
|
||||
/// error with the index of the next range.
|
||||
fn u128_to_compact(&self, value: u128) -> Result<u64, usize> {
|
||||
self.params.compact_space.u128_to_compact(value)
|
||||
}
|
||||
|
||||
fn compact_to_u128(&self, compact: u64) -> u128 {
|
||||
self.params.compact_space.compact_to_u128(compact)
|
||||
}
|
||||
|
||||
/// Comparing on compact space: Random dataset 0,24 (50% random hit) - 1.05 GElements/s
|
||||
/// Comparing on compact space: Real dataset 1.08 GElements/s
|
||||
///
|
||||
/// Comparing on original space: Real dataset .06 GElements/s (not completely optimized)
|
||||
#[inline]
|
||||
pub fn get_positions_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u128>,
|
||||
position_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
if value_range.start() > value_range.end() {
|
||||
return;
|
||||
}
|
||||
let position_range = position_range.start..position_range.end.min(self.num_vals());
|
||||
let from_value = *value_range.start();
|
||||
let to_value = *value_range.end();
|
||||
assert!(to_value >= from_value);
|
||||
let compact_from = self.u128_to_compact(from_value);
|
||||
let compact_to = self.u128_to_compact(to_value);
|
||||
|
||||
// Quick return, if both ranges fall into the same non-mapped space, the range can't cover
|
||||
// any values, so we can early exit
|
||||
match (compact_to, compact_from) {
|
||||
(Err(pos1), Err(pos2)) if pos1 == pos2 => return,
|
||||
_ => {}
|
||||
}
|
||||
|
||||
let compact_from = compact_from.unwrap_or_else(|pos| {
|
||||
// Correctness: Out of bounds, if this value is Err(last_index + 1), we early exit,
|
||||
// since the to_value also mapps into the same non-mapped space
|
||||
let range_mapping = self.params.compact_space.get_range_mapping(pos);
|
||||
range_mapping.compact_start
|
||||
});
|
||||
// If there is no compact space, we go to the closest upperbound compact space
|
||||
let compact_to = compact_to.unwrap_or_else(|pos| {
|
||||
// Correctness: Overflow, if this value is Err(0), we early exit,
|
||||
// since the from_value also mapps into the same non-mapped space
|
||||
|
||||
// Get end of previous range
|
||||
let pos = pos - 1;
|
||||
let range_mapping = self.params.compact_space.get_range_mapping(pos);
|
||||
range_mapping.compact_end()
|
||||
});
|
||||
|
||||
let range = compact_from..=compact_to;
|
||||
|
||||
let scan_num_docs = position_range.end - position_range.start;
|
||||
|
||||
let step_size = 4;
|
||||
let cutoff = position_range.start + scan_num_docs - scan_num_docs % step_size;
|
||||
|
||||
let mut push_if_in_range = |idx, val| {
|
||||
if range.contains(&val) {
|
||||
positions.push(idx);
|
||||
}
|
||||
};
|
||||
let get_val = |idx| self.params.bit_unpacker.get(idx, &self.data);
|
||||
// unrolled loop
|
||||
for idx in (position_range.start..cutoff).step_by(step_size as usize) {
|
||||
let idx1 = idx;
|
||||
let idx2 = idx + 1;
|
||||
let idx3 = idx + 2;
|
||||
let idx4 = idx + 3;
|
||||
let val1 = get_val(idx1);
|
||||
let val2 = get_val(idx2);
|
||||
let val3 = get_val(idx3);
|
||||
let val4 = get_val(idx4);
|
||||
push_if_in_range(idx1, val1);
|
||||
push_if_in_range(idx2, val2);
|
||||
push_if_in_range(idx3, val3);
|
||||
push_if_in_range(idx4, val4);
|
||||
}
|
||||
|
||||
// handle rest
|
||||
for idx in cutoff..position_range.end {
|
||||
push_if_in_range(idx, get_val(idx));
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter_compact(&self) -> impl Iterator<Item = u64> + '_ {
|
||||
(0..self.params.num_vals).map(move |idx| self.params.bit_unpacker.get(idx, &self.data))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter(&self) -> impl Iterator<Item = u128> + '_ {
|
||||
// TODO: Performance. It would be better to iterate on the ranges and check existence via
|
||||
// the bit_unpacker.
|
||||
self.iter_compact()
|
||||
.map(|compact| self.compact_to_u128(compact))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn get(&self, idx: u32) -> u128 {
|
||||
let compact = self.params.bit_unpacker.get(idx, &self.data);
|
||||
self.compact_to_u128(compact)
|
||||
}
|
||||
|
||||
pub fn min_value(&self) -> u128 {
|
||||
self.params.min_value
|
||||
}
|
||||
|
||||
pub fn max_value(&self) -> u128 {
|
||||
self.params.max_value
|
||||
}
|
||||
}
|
||||
|
||||
// TODO reenable what can be reenabled.
|
||||
// #[cfg(test)]
|
||||
// mod tests {
|
||||
//
|
||||
// use super::*;
|
||||
// use crate::column::format_version::read_format_version;
|
||||
// use crate::column::column_footer::read_null_index_footer;
|
||||
// use crate::column::serialize::U128Header;
|
||||
// use crate::column::{open_u128, serialize_u128};
|
||||
//
|
||||
// #[test]
|
||||
// fn compact_space_test() {
|
||||
// let ips = &[
|
||||
// 2u128, 4u128, 1000, 1001, 1002, 1003, 1004, 1005, 1008, 1010, 1012, 1260,
|
||||
// ]
|
||||
// .into_iter()
|
||||
// .collect();
|
||||
// let compact_space = get_compact_space(ips, ips.len() as u32, 11);
|
||||
// let amplitude = compact_space.amplitude_compact_space();
|
||||
// assert_eq!(amplitude, 17);
|
||||
// assert_eq!(1, compact_space.u128_to_compact(2).unwrap());
|
||||
// assert_eq!(2, compact_space.u128_to_compact(3).unwrap());
|
||||
// assert_eq!(compact_space.u128_to_compact(100).unwrap_err(), 1);
|
||||
//
|
||||
// for (num1, num2) in (0..3).tuple_windows() {
|
||||
// assert_eq!(
|
||||
// compact_space.get_range_mapping(num1).compact_end() + 1,
|
||||
// compact_space.get_range_mapping(num2).compact_start
|
||||
// );
|
||||
// }
|
||||
//
|
||||
// let mut output: Vec<u8> = Vec::new();
|
||||
// compact_space.serialize(&mut output).unwrap();
|
||||
//
|
||||
// assert_eq!(
|
||||
// compact_space,
|
||||
// CompactSpace::deserialize(&mut &output[..]).unwrap()
|
||||
// );
|
||||
//
|
||||
// for ip in ips {
|
||||
// let compact = compact_space.u128_to_compact(*ip).unwrap();
|
||||
// assert_eq!(compact_space.compact_to_u128(compact), *ip);
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn compact_space_amplitude_test() {
|
||||
// let ips = &[100000u128, 1000000].into_iter().collect();
|
||||
// let compact_space = get_compact_space(ips, ips.len() as u32, 1);
|
||||
// let amplitude = compact_space.amplitude_compact_space();
|
||||
// assert_eq!(amplitude, 2);
|
||||
// }
|
||||
//
|
||||
// fn test_all(mut data: OwnedBytes, expected: &[u128]) {
|
||||
// let _header = U128Header::deserialize(&mut data);
|
||||
// let decompressor = CompactSpaceDecompressor::open(data).unwrap();
|
||||
// for (idx, expected_val) in expected.iter().cloned().enumerate() {
|
||||
// let val = decompressor.get(idx as u32);
|
||||
// assert_eq!(val, expected_val);
|
||||
//
|
||||
// let test_range = |range: RangeInclusive<u128>| {
|
||||
// let expected_positions = expected
|
||||
// .iter()
|
||||
// .positions(|val| range.contains(val))
|
||||
// .map(|pos| pos as u32)
|
||||
// .collect::<Vec<_>>();
|
||||
// let mut positions = Vec::new();
|
||||
// decompressor.get_positions_for_value_range(
|
||||
// range,
|
||||
// 0..decompressor.num_vals(),
|
||||
// &mut positions,
|
||||
// );
|
||||
// assert_eq!(positions, expected_positions);
|
||||
// };
|
||||
//
|
||||
// test_range(expected_val.saturating_sub(1)..=expected_val);
|
||||
// test_range(expected_val..=expected_val);
|
||||
// test_range(expected_val..=expected_val.saturating_add(1));
|
||||
// test_range(expected_val.saturating_sub(1)..=expected_val.saturating_add(1));
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// fn test_aux_vals(u128_vals: &[u128]) -> OwnedBytes {
|
||||
// let mut out = Vec::new();
|
||||
// serialize_u128(
|
||||
// || u128_vals.iter().cloned(),
|
||||
// u128_vals.len() as u32,
|
||||
// &mut out,
|
||||
// )
|
||||
// .unwrap();
|
||||
//
|
||||
// let data = OwnedBytes::new(out);
|
||||
// let (data, _format_version) = read_format_version(data).unwrap();
|
||||
// let (data, _null_index_footer) = read_null_index_footer(data).unwrap();
|
||||
// test_all(data.clone(), u128_vals);
|
||||
//
|
||||
// data
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_range_1() {
|
||||
// let vals = &[
|
||||
// 1u128,
|
||||
// 100u128,
|
||||
// 3u128,
|
||||
// 99999u128,
|
||||
// 100000u128,
|
||||
// 100001u128,
|
||||
// 4_000_211_221u128,
|
||||
// 4_000_211_222u128,
|
||||
// 333u128,
|
||||
// ];
|
||||
// let mut data = test_aux_vals(vals);
|
||||
//
|
||||
// let _header = U128Header::deserialize(&mut data);
|
||||
// let decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
// let complete_range = 0..vals.len() as u32;
|
||||
// for (pos, val) in vals.iter().enumerate() {
|
||||
// let val = *val;
|
||||
// let pos = pos as u32;
|
||||
// let mut positions = Vec::new();
|
||||
// decomp.get_positions_for_value_range(val..=val, pos..pos + 1, &mut positions);
|
||||
// assert_eq!(positions, vec![pos]);
|
||||
// }
|
||||
//
|
||||
// handle docid range out of bounds
|
||||
// let positions: Vec<u32> = get_positions_for_value_range_helper(&decomp, 0..=1, 1..u32::MAX);
|
||||
// assert!(positions.is_empty());
|
||||
//
|
||||
// let positions =
|
||||
// get_positions_for_value_range_helper(&decomp, 0..=1, complete_range.clone());
|
||||
// assert_eq!(positions, vec![0]);
|
||||
// let positions =
|
||||
// get_positions_for_value_range_helper(&decomp, 0..=2, complete_range.clone());
|
||||
// assert_eq!(positions, vec![0]);
|
||||
// let positions =
|
||||
// get_positions_for_value_range_helper(&decomp, 0..=3, complete_range.clone());
|
||||
// assert_eq!(positions, vec![0, 2]);
|
||||
// assert_eq!(
|
||||
// get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 99999u128..=99999u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// vec![3]
|
||||
// );
|
||||
// assert_eq!(
|
||||
// get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 99999u128..=100000u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// vec![3, 4]
|
||||
// );
|
||||
// assert_eq!(
|
||||
// get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 99998u128..=100000u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// vec![3, 4]
|
||||
// );
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 99998u128..=99999u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// &[3]
|
||||
// );
|
||||
// assert!(get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 99998u128..=99998u128,
|
||||
// complete_range.clone()
|
||||
// )
|
||||
// .is_empty());
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 333u128..=333u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// &[8]
|
||||
// );
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 332u128..=333u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// &[8]
|
||||
// );
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 332u128..=334u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// &[8]
|
||||
// );
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 333u128..=334u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// &[8]
|
||||
// );
|
||||
//
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 4_000_211_221u128..=5_000_000_000u128,
|
||||
// complete_range
|
||||
// ),
|
||||
// &[6, 7]
|
||||
// );
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_empty() {
|
||||
// let vals = &[];
|
||||
// let data = test_aux_vals(vals);
|
||||
// let _decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_range_2() {
|
||||
// let vals = &[
|
||||
// 100u128,
|
||||
// 99999u128,
|
||||
// 100000u128,
|
||||
// 100001u128,
|
||||
// 4_000_211_221u128,
|
||||
// 4_000_211_222u128,
|
||||
// 333u128,
|
||||
// ];
|
||||
// let mut data = test_aux_vals(vals);
|
||||
// let _header = U128Header::deserialize(&mut data);
|
||||
// let decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
// let complete_range = 0..vals.len() as u32;
|
||||
// assert!(
|
||||
// &get_positions_for_value_range_helper(&decomp, 0..=5, complete_range.clone())
|
||||
// .is_empty(),
|
||||
// );
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(&decomp, 0..=100, complete_range.clone()),
|
||||
// &[0]
|
||||
// );
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(&decomp, 0..=105, complete_range),
|
||||
// &[0]
|
||||
// );
|
||||
// }
|
||||
//
|
||||
// fn get_positions_for_value_range_helper<C: Column<T> + ?Sized, T: PartialOrd>(
|
||||
// column: &C,
|
||||
// value_range: RangeInclusive<T>,
|
||||
// doc_id_range: Range<u32>,
|
||||
// ) -> Vec<u32> {
|
||||
// let mut positions = Vec::new();
|
||||
// column.get_docids_for_value_range(value_range, doc_id_range, &mut positions);
|
||||
// positions
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_range_3() {
|
||||
// let vals = &[
|
||||
// 200u128,
|
||||
// 201,
|
||||
// 202,
|
||||
// 203,
|
||||
// 204,
|
||||
// 204,
|
||||
// 206,
|
||||
// 207,
|
||||
// 208,
|
||||
// 209,
|
||||
// 210,
|
||||
// 1_000_000,
|
||||
// 5_000_000_000,
|
||||
// ];
|
||||
// let mut out = Vec::new();
|
||||
// serialize_u128(|| vals.iter().cloned(), vals.len() as u32, &mut out).unwrap();
|
||||
// let decomp = open_u128::<u128>(OwnedBytes::new(out)).unwrap();
|
||||
// let complete_range = 0..vals.len() as u32;
|
||||
//
|
||||
// assert_eq!(
|
||||
// get_positions_for_value_range_helper(&*decomp, 199..=200, complete_range.clone()),
|
||||
// vec![0]
|
||||
// );
|
||||
//
|
||||
// assert_eq!(
|
||||
// get_positions_for_value_range_helper(&*decomp, 199..=201, complete_range.clone()),
|
||||
// vec![0, 1]
|
||||
// );
|
||||
//
|
||||
// assert_eq!(
|
||||
// get_positions_for_value_range_helper(&*decomp, 200..=200, complete_range.clone()),
|
||||
// vec![0]
|
||||
// );
|
||||
//
|
||||
// assert_eq!(
|
||||
// get_positions_for_value_range_helper(&*decomp, 1_000_000..=1_000_000, complete_range),
|
||||
// vec![11]
|
||||
// );
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_bug1() {
|
||||
// let vals = &[9223372036854775806];
|
||||
// let _data = test_aux_vals(vals);
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_bug2() {
|
||||
// let vals = &[340282366920938463463374607431768211455u128];
|
||||
// let _data = test_aux_vals(vals);
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_bug3() {
|
||||
// let vals = &[340282366920938463463374607431768211454];
|
||||
// let _data = test_aux_vals(vals);
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_bug4() {
|
||||
// let vals = &[340282366920938463463374607431768211455, 0];
|
||||
// let _data = test_aux_vals(vals);
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_first_large_gaps() {
|
||||
// let vals = &[1_000_000_000u128; 100];
|
||||
// let _data = test_aux_vals(vals);
|
||||
// }
|
||||
// use itertools::Itertools;
|
||||
// use proptest::prelude::*;
|
||||
//
|
||||
// fn num_strategy() -> impl Strategy<Value = u128> {
|
||||
// prop_oneof![
|
||||
// 1 => prop::num::u128::ANY.prop_map(|num| u128::MAX - (num % 10) ),
|
||||
// 1 => prop::num::u128::ANY.prop_map(|num| i64::MAX as u128 + 5 - (num % 10) ),
|
||||
// 1 => prop::num::u128::ANY.prop_map(|num| i128::MAX as u128 + 5 - (num % 10) ),
|
||||
// 1 => prop::num::u128::ANY.prop_map(|num| num % 10 ),
|
||||
// 20 => prop::num::u128::ANY,
|
||||
// ]
|
||||
// }
|
||||
//
|
||||
// proptest! {
|
||||
// #![proptest_config(ProptestConfig::with_cases(10))]
|
||||
//
|
||||
// #[test]
|
||||
// fn compress_decompress_random(vals in proptest::collection::vec(num_strategy()
|
||||
// , 1..1000)) {
|
||||
// let _data = test_aux_vals(&vals);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//
|
||||
75
columnar/src/column_values/gcd.rs
Normal file
75
columnar/src/column_values/gcd.rs
Normal file
@@ -0,0 +1,75 @@
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
|
||||
/// Compute the gcd of two non null numbers.
|
||||
///
|
||||
/// It is recommended, but not required, to feed values such that `large >= small`.
|
||||
fn compute_gcd(mut large: NonZeroU64, mut small: NonZeroU64) -> NonZeroU64 {
|
||||
loop {
|
||||
let rem: u64 = large.get() % small;
|
||||
if let Some(new_small) = NonZeroU64::new(rem) {
|
||||
(large, small) = (small, new_small);
|
||||
} else {
|
||||
return small;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find GCD for iterator of numbers
|
||||
pub fn find_gcd(numbers: impl Iterator<Item = u64>) -> Option<NonZeroU64> {
|
||||
let mut numbers = numbers.flat_map(NonZeroU64::new);
|
||||
let mut gcd: NonZeroU64 = numbers.next()?;
|
||||
if gcd.get() == 1 {
|
||||
return Some(gcd);
|
||||
}
|
||||
|
||||
let mut gcd_divider = DividerU64::divide_by(gcd.get());
|
||||
for val in numbers {
|
||||
let remainder = val.get() - (gcd_divider.divide(val.get())) * gcd.get();
|
||||
if remainder == 0 {
|
||||
continue;
|
||||
}
|
||||
gcd = compute_gcd(val, gcd);
|
||||
if gcd.get() == 1 {
|
||||
return Some(gcd);
|
||||
}
|
||||
|
||||
gcd_divider = DividerU64::divide_by(gcd.get());
|
||||
}
|
||||
Some(gcd)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use crate::column_values::gcd::{compute_gcd, find_gcd};
|
||||
|
||||
#[test]
|
||||
fn test_compute_gcd() {
|
||||
let test_compute_gcd_aux = |large, small, expected| {
|
||||
let large = NonZeroU64::new(large).unwrap();
|
||||
let small = NonZeroU64::new(small).unwrap();
|
||||
let expected = NonZeroU64::new(expected).unwrap();
|
||||
assert_eq!(compute_gcd(small, large), expected);
|
||||
assert_eq!(compute_gcd(large, small), expected);
|
||||
};
|
||||
test_compute_gcd_aux(1, 4, 1);
|
||||
test_compute_gcd_aux(2, 4, 2);
|
||||
test_compute_gcd_aux(10, 25, 5);
|
||||
test_compute_gcd_aux(25, 25, 25);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn find_gcd_test() {
|
||||
assert_eq!(find_gcd([0].into_iter()), None);
|
||||
assert_eq!(find_gcd([0, 10].into_iter()), NonZeroU64::new(10));
|
||||
assert_eq!(find_gcd([10, 0].into_iter()), NonZeroU64::new(10));
|
||||
assert_eq!(find_gcd([].into_iter()), None);
|
||||
assert_eq!(find_gcd([15, 30, 5, 10].into_iter()), NonZeroU64::new(5));
|
||||
assert_eq!(find_gcd([15, 16, 10].into_iter()), NonZeroU64::new(1));
|
||||
assert_eq!(find_gcd([0, 5, 5, 5].into_iter()), NonZeroU64::new(5));
|
||||
assert_eq!(find_gcd([0, 0].into_iter()), None);
|
||||
}
|
||||
}
|
||||
222
columnar/src/column_values/line.rs
Normal file
222
columnar/src/column_values/line.rs
Normal file
@@ -0,0 +1,222 @@
|
||||
use std::io;
|
||||
use std::num::NonZeroU32;
|
||||
|
||||
use common::{BinarySerializable, VInt};
|
||||
|
||||
use crate::column_values::ColumnValues;
|
||||
|
||||
const MID_POINT: u64 = (1u64 << 32) - 1u64;
|
||||
|
||||
/// `Line` describes a line function `y: ax + b` using integer
|
||||
/// arithmetics.
|
||||
///
|
||||
/// The slope is in fact a decimal split into a 32 bit integer value,
|
||||
/// and a 32-bit decimal value.
|
||||
///
|
||||
/// The multiplication then becomes.
|
||||
/// `y = m * x >> 32 + b`
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Line {
|
||||
slope: u64,
|
||||
intercept: u64,
|
||||
}
|
||||
|
||||
/// Compute the line slope.
|
||||
///
|
||||
/// This function has the nice property of being
|
||||
/// invariant by translation.
|
||||
/// `
|
||||
/// compute_slope(y0, y1)
|
||||
/// = compute_slope(y0 + X % 2^64, y1 + X % 2^64)
|
||||
/// `
|
||||
fn compute_slope(y0: u64, y1: u64, num_vals: NonZeroU32) -> u64 {
|
||||
let dy = y1.wrapping_sub(y0);
|
||||
let sign = dy <= (1 << 63);
|
||||
let abs_dy = if sign {
|
||||
y1.wrapping_sub(y0)
|
||||
} else {
|
||||
y0.wrapping_sub(y1)
|
||||
};
|
||||
if abs_dy >= 1 << 32 {
|
||||
// This is outside of realm we handle.
|
||||
// Let's just bail.
|
||||
return 0u64;
|
||||
}
|
||||
|
||||
let abs_slope = (abs_dy << 32) / num_vals.get() as u64;
|
||||
if sign {
|
||||
abs_slope
|
||||
} else {
|
||||
// The complement does indeed create the
|
||||
// opposite decreasing slope...
|
||||
//
|
||||
// Intuitively (without the bitshifts and % u64::MAX)
|
||||
// ```
|
||||
// (x + shift)*(u64::MAX - abs_slope)
|
||||
// - (x * (u64::MAX - abs_slope))
|
||||
// = - shift * abs_slope
|
||||
// ```
|
||||
u64::MAX - abs_slope
|
||||
}
|
||||
}
|
||||
|
||||
impl Line {
|
||||
#[inline(always)]
|
||||
pub fn eval(&self, x: u32) -> u64 {
|
||||
let linear_part = ((x as u64).wrapping_mul(self.slope) >> 32) as i32 as u64;
|
||||
self.intercept.wrapping_add(linear_part)
|
||||
}
|
||||
|
||||
// Same as train, but the intercept is only estimated from provided sample positions
|
||||
pub fn estimate(sample_positions_and_values: &[(u64, u64)]) -> Self {
|
||||
let first_val = sample_positions_and_values[0].1;
|
||||
let last_val = sample_positions_and_values[sample_positions_and_values.len() - 1].1;
|
||||
let num_vals = sample_positions_and_values[sample_positions_and_values.len() - 1].0 + 1;
|
||||
Self::train_from(
|
||||
first_val,
|
||||
last_val,
|
||||
num_vals as u32,
|
||||
sample_positions_and_values.iter().cloned(),
|
||||
)
|
||||
}
|
||||
|
||||
// Intercept is only computed from provided positions
|
||||
fn train_from(
|
||||
first_val: u64,
|
||||
last_val: u64,
|
||||
num_vals: u32,
|
||||
positions_and_values: impl Iterator<Item = (u64, u64)>,
|
||||
) -> Self {
|
||||
// TODO replace with let else
|
||||
let idx_last_val = if let Some(idx_last_val) = NonZeroU32::new(num_vals - 1) {
|
||||
idx_last_val
|
||||
} else {
|
||||
return Line::default();
|
||||
};
|
||||
|
||||
let y0 = first_val;
|
||||
let y1 = last_val;
|
||||
|
||||
// We first independently pick our slope.
|
||||
let slope = compute_slope(y0, y1, idx_last_val);
|
||||
|
||||
// We picked our slope. Note that it does not have to be perfect.
|
||||
// Now we need to compute the best intercept.
|
||||
//
|
||||
// Intuitively, the best intercept is such that line passes through one of the
|
||||
// `(i, ys[])`.
|
||||
//
|
||||
// The best intercept therefore has the form
|
||||
// `y[i] - line.eval(i)` (using wrapping arithmetics).
|
||||
// In other words, the best intercept is one of the `y - Line::eval(ys[i])`
|
||||
// and our task is just to pick the one that minimizes our error.
|
||||
//
|
||||
// Without sorting our values, this is a difficult problem.
|
||||
// We however rely on the following trick...
|
||||
//
|
||||
// We only focus on the case where the interpolation is half decent.
|
||||
// If the line interpolation is doing its job on a dataset suited for it,
|
||||
// we can hope that the maximum error won't be larger than `u64::MAX / 2`.
|
||||
//
|
||||
// In other words, even without the intercept the values `y - Line::eval(ys[i])` will all be
|
||||
// within an interval that takes less than half of the modulo space of `u64`.
|
||||
//
|
||||
// Our task is therefore to identify this interval.
|
||||
// Here we simply translate all of our values by `y0 - 2^63` and pick the min.
|
||||
let mut line = Line {
|
||||
slope,
|
||||
intercept: 0,
|
||||
};
|
||||
let heuristic_shift = y0.wrapping_sub(MID_POINT);
|
||||
line.intercept = positions_and_values
|
||||
.map(|(pos, y)| y.wrapping_sub(line.eval(pos as u32)))
|
||||
.min_by_key(|&val| val.wrapping_sub(heuristic_shift))
|
||||
.unwrap_or(0u64); //< Never happens.
|
||||
line
|
||||
}
|
||||
|
||||
/// Returns a line that attemps to approximate a function
|
||||
/// f: i in 0..[ys.num_vals()) -> ys[i].
|
||||
///
|
||||
/// - The approximation is always lower than the actual value.
|
||||
/// Or more rigorously, formally `f(i).wrapping_sub(ys[i])` is small
|
||||
/// for any i in [0..ys.len()).
|
||||
/// - It computes without panicking for any value of it.
|
||||
///
|
||||
/// This function is only invariable by translation if all of the
|
||||
/// `ys` are packaged into half of the space. (See heuristic below)
|
||||
pub fn train(ys: &dyn ColumnValues) -> Self {
|
||||
let first_val = ys.iter().next().unwrap();
|
||||
let last_val = ys.iter().nth(ys.num_vals() as usize - 1).unwrap();
|
||||
Self::train_from(
|
||||
first_val,
|
||||
last_val,
|
||||
ys.num_vals(),
|
||||
ys.iter().enumerate().map(|(pos, val)| (pos as u64, val)),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for Line {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.slope).serialize(writer)?;
|
||||
VInt(self.intercept).serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let slope = VInt::deserialize(reader)?.0;
|
||||
let intercept = VInt::deserialize(reader)?.0;
|
||||
Ok(Line { slope, intercept })
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::VecColumn;
|
||||
|
||||
/// Test training a line and ensuring that the maximum difference between
|
||||
/// the data points and the line is `expected`.
|
||||
///
|
||||
/// This function operates translation over the data for better coverage.
|
||||
#[track_caller]
|
||||
fn test_line_interpol_with_translation(ys: &[u64], expected: Option<u64>) {
|
||||
let mut translations = vec![0, 100, u64::MAX / 2, u64::MAX, u64::MAX - 1];
|
||||
translations.extend_from_slice(ys);
|
||||
for translation in translations {
|
||||
let translated_ys: Vec<u64> = ys
|
||||
.iter()
|
||||
.copied()
|
||||
.map(|y| y.wrapping_add(translation))
|
||||
.collect();
|
||||
let largest_err = test_eval_max_err(&translated_ys);
|
||||
assert_eq!(largest_err, expected);
|
||||
}
|
||||
}
|
||||
|
||||
fn test_eval_max_err(ys: &[u64]) -> Option<u64> {
|
||||
let line = Line::train(&VecColumn::from(&ys));
|
||||
ys.iter()
|
||||
.enumerate()
|
||||
.map(|(x, y)| y.wrapping_sub(line.eval(x as u32)))
|
||||
.max()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_train() {
|
||||
test_line_interpol_with_translation(&[11, 11, 11, 12, 12, 13], Some(1));
|
||||
test_line_interpol_with_translation(&[13, 12, 12, 11, 11, 11], Some(1));
|
||||
test_line_interpol_with_translation(&[13, 13, 12, 11, 11, 11], Some(1));
|
||||
test_line_interpol_with_translation(&[13, 13, 12, 11, 11, 11], Some(1));
|
||||
test_line_interpol_with_translation(&[u64::MAX - 1, 0, 0, 1], Some(1));
|
||||
test_line_interpol_with_translation(&[u64::MAX - 1, u64::MAX, 0, 1], Some(0));
|
||||
test_line_interpol_with_translation(&[0, 1, 2, 3, 5], Some(0));
|
||||
test_line_interpol_with_translation(&[1, 2, 3, 4], Some(0));
|
||||
|
||||
let data: Vec<u64> = (0..255).collect();
|
||||
test_line_interpol_with_translation(&data, Some(0));
|
||||
let data: Vec<u64> = (0..255).map(|el| el * 2).collect();
|
||||
test_line_interpol_with_translation(&data, Some(0));
|
||||
}
|
||||
}
|
||||
230
columnar/src/column_values/linear.rs
Normal file
230
columnar/src/column_values/linear.rs
Normal file
@@ -0,0 +1,230 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use super::line::Line;
|
||||
use super::serialize::NormalizedHeader;
|
||||
use super::{ColumnValues, FastFieldCodec, FastFieldCodecType};
|
||||
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct LinearReader {
|
||||
data: OwnedBytes,
|
||||
linear_params: LinearParams,
|
||||
header: NormalizedHeader,
|
||||
}
|
||||
|
||||
impl ColumnValues for LinearReader {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
let interpoled_val: u64 = self.linear_params.line.eval(doc);
|
||||
let bitpacked_diff = self.linear_params.bit_unpacker.get(doc, &self.data);
|
||||
interpoled_val.wrapping_add(bitpacked_diff)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The LinearReader assumes a normalized vector.
|
||||
0u64
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.header.max_value
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.header.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
/// Fastfield serializer, which tries to guess values by linear interpolation
|
||||
/// and stores the difference bitpacked.
|
||||
pub struct LinearCodec;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct LinearParams {
|
||||
line: Line,
|
||||
bit_unpacker: BitUnpacker,
|
||||
}
|
||||
|
||||
impl BinarySerializable for LinearParams {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.line.serialize(writer)?;
|
||||
self.bit_unpacker.bit_width().serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let line = Line::deserialize(reader)?;
|
||||
let bit_width = u8::deserialize(reader)?;
|
||||
Ok(Self {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl FastFieldCodec for LinearCodec {
|
||||
const CODEC_TYPE: FastFieldCodecType = FastFieldCodecType::Linear;
|
||||
|
||||
type Reader = LinearReader;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn open_from_bytes(mut data: OwnedBytes, header: NormalizedHeader) -> io::Result<Self::Reader> {
|
||||
let linear_params = LinearParams::deserialize(&mut data)?;
|
||||
Ok(LinearReader {
|
||||
data,
|
||||
linear_params,
|
||||
header,
|
||||
})
|
||||
}
|
||||
|
||||
/// Creates a new fast field serializer.
|
||||
fn serialize(column: &dyn ColumnValues, write: &mut impl Write) -> io::Result<()> {
|
||||
assert_eq!(column.min_value(), 0);
|
||||
let line = Line::train(column);
|
||||
|
||||
let max_offset_from_line = column
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(pos, actual_value)| {
|
||||
let calculated_value = line.eval(pos as u32);
|
||||
actual_value.wrapping_sub(calculated_value)
|
||||
})
|
||||
.max()
|
||||
.unwrap();
|
||||
|
||||
let num_bits = compute_num_bits(max_offset_from_line);
|
||||
let linear_params = LinearParams {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
};
|
||||
linear_params.serialize(write)?;
|
||||
|
||||
let mut bit_packer = BitPacker::new();
|
||||
for (pos, actual_value) in column.iter().enumerate() {
|
||||
let calculated_value = line.eval(pos as u32);
|
||||
let offset = actual_value.wrapping_sub(calculated_value);
|
||||
bit_packer.write(offset, num_bits, write)?;
|
||||
}
|
||||
bit_packer.close(write)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// estimation for linear interpolation is hard because, you don't know
|
||||
/// where the local maxima for the deviation of the calculated value are and
|
||||
/// the offset to shift all values to >=0 is also unknown.
|
||||
#[allow(clippy::question_mark)]
|
||||
fn estimate(column: &dyn ColumnValues) -> Option<f32> {
|
||||
if column.num_vals() < 3 {
|
||||
return None; // disable compressor for this case
|
||||
}
|
||||
|
||||
let limit_num_vals = column.num_vals().min(100_000);
|
||||
|
||||
let num_samples = 100;
|
||||
let step_size = (limit_num_vals / num_samples).max(1); // 20 samples
|
||||
let mut sample_positions_and_values: Vec<_> = Vec::new();
|
||||
for (pos, val) in column.iter().enumerate().step_by(step_size as usize) {
|
||||
sample_positions_and_values.push((pos as u64, val));
|
||||
}
|
||||
|
||||
let line = Line::estimate(&sample_positions_and_values);
|
||||
|
||||
let estimated_bit_width = sample_positions_and_values
|
||||
.into_iter()
|
||||
.map(|(pos, actual_value)| {
|
||||
let interpolated_val = line.eval(pos as u32);
|
||||
actual_value.wrapping_sub(interpolated_val)
|
||||
})
|
||||
.map(|diff| ((diff as f32 * 1.5) * 2.0) as u64)
|
||||
.map(compute_num_bits)
|
||||
.max()
|
||||
.unwrap_or(0);
|
||||
|
||||
// Extrapolate to whole column
|
||||
let num_bits = (estimated_bit_width as u64 * column.num_vals() as u64) + 64;
|
||||
let num_bits_uncompressed = 64 * column.num_vals();
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use rand::RngCore;
|
||||
|
||||
use super::*;
|
||||
use crate::column_values::tests;
|
||||
|
||||
fn create_and_validate(data: &[u64], name: &str) -> Option<(f32, f32)> {
|
||||
tests::create_and_validate::<LinearCodec>(data, name)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compression() {
|
||||
let data = (10..=6_000_u64).collect::<Vec<_>>();
|
||||
let (estimate, actual_compression) =
|
||||
create_and_validate(&data, "simple monotonically large").unwrap();
|
||||
|
||||
assert_le!(actual_compression, 0.001);
|
||||
assert_le!(estimate, 0.02);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_datasets() {
|
||||
let data_sets = tests::get_codec_test_datasets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate(&data, name);
|
||||
data.reverse();
|
||||
create_and_validate(&data, name);
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_test_large_amplitude() {
|
||||
let data = vec![
|
||||
i64::MAX as u64 / 2,
|
||||
i64::MAX as u64 / 3,
|
||||
i64::MAX as u64 / 2,
|
||||
];
|
||||
|
||||
create_and_validate(&data, "large amplitude");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn overflow_error_test() {
|
||||
let data = vec![1572656989877777, 1170935903116329, 720575940379279, 0];
|
||||
create_and_validate(&data, "overflow test");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_interpol_fast_concave_data() {
|
||||
let data = vec![0, 1, 2, 5, 8, 10, 20, 50];
|
||||
create_and_validate(&data, "concave data");
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_convex_data() {
|
||||
let data = vec![0, 40, 60, 70, 75, 77];
|
||||
create_and_validate(&data, "convex data");
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_test_simple() {
|
||||
let data = (10..=20_u64).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "simple monotonically");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_rand() {
|
||||
let mut rng = rand::thread_rng();
|
||||
for _ in 0..50 {
|
||||
let mut data = (0..10_000).map(|_| rng.next_u64()).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "random");
|
||||
data.reverse();
|
||||
create_and_validate(&data, "random");
|
||||
}
|
||||
}
|
||||
}
|
||||
222
columnar/src/column_values/main.rs
Normal file
222
columnar/src/column_values/main.rs
Normal file
@@ -0,0 +1,222 @@
|
||||
#[macro_use]
|
||||
extern crate prettytable;
|
||||
use std::collections::HashSet;
|
||||
use std::env;
|
||||
use std::io::BufRead;
|
||||
use std::net::{IpAddr, Ipv6Addr};
|
||||
use std::str::FromStr;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use fastfield_codecs::{open_u128, serialize_u128, Column, FastFieldCodecType, VecColumn};
|
||||
use itertools::Itertools;
|
||||
use measure_time::print_time;
|
||||
use prettytable::{Cell, Row, Table};
|
||||
|
||||
fn print_set_stats(ip_addrs: &[u128]) {
|
||||
println!("NumIps\t{}", ip_addrs.len());
|
||||
let ip_addr_set: HashSet<u128> = ip_addrs.iter().cloned().collect();
|
||||
println!("NumUniqueIps\t{}", ip_addr_set.len());
|
||||
let ratio_unique = ip_addr_set.len() as f64 / ip_addrs.len() as f64;
|
||||
println!("RatioUniqueOverTotal\t{ratio_unique:.4}");
|
||||
|
||||
// histogram
|
||||
let mut ip_addrs = ip_addrs.to_vec();
|
||||
ip_addrs.sort();
|
||||
let mut cnts: Vec<usize> = ip_addrs
|
||||
.into_iter()
|
||||
.dedup_with_count()
|
||||
.map(|(cnt, _)| cnt)
|
||||
.collect();
|
||||
cnts.sort();
|
||||
|
||||
let top_256_cnt: usize = cnts.iter().rev().take(256).sum();
|
||||
let top_128_cnt: usize = cnts.iter().rev().take(128).sum();
|
||||
let top_64_cnt: usize = cnts.iter().rev().take(64).sum();
|
||||
let top_8_cnt: usize = cnts.iter().rev().take(8).sum();
|
||||
let total: usize = cnts.iter().sum();
|
||||
|
||||
println!("{}", total);
|
||||
println!("{}", top_256_cnt);
|
||||
println!("{}", top_128_cnt);
|
||||
println!("Percentage Top8 {:02}", top_8_cnt as f32 / total as f32);
|
||||
println!("Percentage Top64 {:02}", top_64_cnt as f32 / total as f32);
|
||||
println!("Percentage Top128 {:02}", top_128_cnt as f32 / total as f32);
|
||||
println!("Percentage Top256 {:02}", top_256_cnt as f32 / total as f32);
|
||||
|
||||
let mut cnts: Vec<(usize, usize)> = cnts.into_iter().dedup_with_count().collect();
|
||||
cnts.sort_by(|a, b| {
|
||||
if a.1 == b.1 {
|
||||
a.0.cmp(&b.0)
|
||||
} else {
|
||||
b.1.cmp(&a.1)
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
fn ip_dataset() -> Vec<u128> {
|
||||
let mut ip_addr_v4 = 0;
|
||||
|
||||
let stdin = std::io::stdin();
|
||||
let ip_addrs: Vec<u128> = stdin
|
||||
.lock()
|
||||
.lines()
|
||||
.flat_map(|line| {
|
||||
let line = line.unwrap();
|
||||
let line = line.trim();
|
||||
let ip_addr = IpAddr::from_str(line.trim()).ok()?;
|
||||
if ip_addr.is_ipv4() {
|
||||
ip_addr_v4 += 1;
|
||||
}
|
||||
let ip_addr_v6: Ipv6Addr = match ip_addr {
|
||||
IpAddr::V4(v4) => v4.to_ipv6_mapped(),
|
||||
IpAddr::V6(v6) => v6,
|
||||
};
|
||||
Some(ip_addr_v6)
|
||||
})
|
||||
.map(|ip_v6| u128::from_be_bytes(ip_v6.octets()))
|
||||
.collect();
|
||||
|
||||
println!("IpAddrsAny\t{}", ip_addrs.len());
|
||||
println!("IpAddrsV4\t{}", ip_addr_v4);
|
||||
|
||||
ip_addrs
|
||||
}
|
||||
|
||||
fn bench_ip() {
|
||||
let dataset = ip_dataset();
|
||||
print_set_stats(&dataset);
|
||||
|
||||
// Chunks
|
||||
{
|
||||
let mut data = vec![];
|
||||
for dataset in dataset.chunks(500_000) {
|
||||
serialize_u128(|| dataset.iter().cloned(), dataset.len() as u32, &mut data).unwrap();
|
||||
}
|
||||
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
|
||||
println!("Compression 50_000 chunks {:.4}", compression);
|
||||
println!(
|
||||
"Num Bits per elem {:.2}",
|
||||
(data.len() * 8) as f32 / dataset.len() as f32
|
||||
);
|
||||
}
|
||||
|
||||
let mut data = vec![];
|
||||
{
|
||||
print_time!("creation");
|
||||
serialize_u128(|| dataset.iter().cloned(), dataset.len() as u32, &mut data).unwrap();
|
||||
}
|
||||
|
||||
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
|
||||
println!("Compression {:.2}", compression);
|
||||
println!(
|
||||
"Num Bits per elem {:.2}",
|
||||
(data.len() * 8) as f32 / dataset.len() as f32
|
||||
);
|
||||
|
||||
let decompressor = open_u128::<u128>(OwnedBytes::new(data)).unwrap();
|
||||
// Sample some ranges
|
||||
let mut doc_values = Vec::new();
|
||||
for value in dataset.iter().take(1110).skip(1100).cloned() {
|
||||
doc_values.clear();
|
||||
print_time!("get range");
|
||||
decompressor.get_docids_for_value_range(
|
||||
value..=value,
|
||||
0..decompressor.num_vals(),
|
||||
&mut doc_values,
|
||||
);
|
||||
println!("{:?}", doc_values.len());
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
if env::args().nth(1).unwrap() == "bench_ip" {
|
||||
bench_ip();
|
||||
return;
|
||||
}
|
||||
|
||||
let mut table = Table::new();
|
||||
|
||||
// Add a row per time
|
||||
table.add_row(row!["", "Compression Ratio", "Compression Estimation"]);
|
||||
|
||||
for (data, data_set_name) in get_codec_test_data_sets() {
|
||||
let results: Vec<(f32, f32, FastFieldCodecType)> = [
|
||||
serialize_with_codec(&data, FastFieldCodecType::Bitpacked),
|
||||
serialize_with_codec(&data, FastFieldCodecType::Linear),
|
||||
serialize_with_codec(&data, FastFieldCodecType::BlockwiseLinear),
|
||||
]
|
||||
.into_iter()
|
||||
.flatten()
|
||||
.collect();
|
||||
let best_compression_ratio_codec = results
|
||||
.iter()
|
||||
.min_by(|&res1, &res2| res1.partial_cmp(res2).unwrap())
|
||||
.cloned()
|
||||
.unwrap();
|
||||
|
||||
table.add_row(Row::new(vec![Cell::new(data_set_name).style_spec("Bbb")]));
|
||||
for (est, comp, codec_type) in results {
|
||||
let est_cell = est.to_string();
|
||||
let ratio_cell = comp.to_string();
|
||||
let style = if comp == best_compression_ratio_codec.1 {
|
||||
"Fb"
|
||||
} else {
|
||||
""
|
||||
};
|
||||
table.add_row(Row::new(vec![
|
||||
Cell::new(&format!("{codec_type:?}")).style_spec("bFg"),
|
||||
Cell::new(&ratio_cell).style_spec(style),
|
||||
Cell::new(&est_cell).style_spec(""),
|
||||
]));
|
||||
}
|
||||
}
|
||||
|
||||
table.printstd();
|
||||
}
|
||||
|
||||
pub fn get_codec_test_data_sets() -> Vec<(Vec<u64>, &'static str)> {
|
||||
let mut data_and_names = vec![];
|
||||
|
||||
let data = (1000..=200_000_u64).collect::<Vec<_>>();
|
||||
data_and_names.push((data, "Autoincrement"));
|
||||
|
||||
let mut current_cumulative = 0;
|
||||
let data = (1..=200_000_u64)
|
||||
.map(|num| {
|
||||
let num = (num as f32 + num as f32).log10() as u64;
|
||||
current_cumulative += num;
|
||||
current_cumulative
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
// let data = (1..=200000_u64).map(|num| num + num).collect::<Vec<_>>();
|
||||
data_and_names.push((data, "Monotonically increasing concave"));
|
||||
|
||||
let mut current_cumulative = 0;
|
||||
let data = (1..=200_000_u64)
|
||||
.map(|num| {
|
||||
let num = (200_000.0 - num as f32).log10() as u64;
|
||||
current_cumulative += num;
|
||||
current_cumulative
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
data_and_names.push((data, "Monotonically increasing convex"));
|
||||
|
||||
let data = (1000..=200_000_u64)
|
||||
.map(|num| num + rand::random::<u8>() as u64)
|
||||
.collect::<Vec<_>>();
|
||||
data_and_names.push((data, "Almost monotonically increasing"));
|
||||
|
||||
data_and_names
|
||||
}
|
||||
|
||||
pub fn serialize_with_codec(
|
||||
data: &[u64],
|
||||
codec_type: FastFieldCodecType,
|
||||
) -> Option<(f32, f32, FastFieldCodecType)> {
|
||||
let col = VecColumn::from(data);
|
||||
let estimation = fastfield_codecs::estimate(&col, codec_type)?;
|
||||
let mut out = Vec::new();
|
||||
fastfield_codecs::serialize(&col, &mut out, &[codec_type]).ok()?;
|
||||
let actual_compression = out.len() as f32 / (col.num_vals() * 8) as f32;
|
||||
Some((estimation, actual_compression, codec_type))
|
||||
}
|
||||
333
columnar/src/column_values/mod.rs
Normal file
333
columnar/src/column_values/mod.rs
Normal file
@@ -0,0 +1,333 @@
|
||||
#![warn(missing_docs)]
|
||||
#![cfg_attr(all(feature = "unstable", test), feature(test))]
|
||||
|
||||
//! # `fastfield_codecs`
|
||||
//!
|
||||
//! - Columnar storage of data for tantivy [`Column`].
|
||||
//! - Encode data in different codecs.
|
||||
//! - Monotonically map values to u64/u128
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use compact_space::CompactSpaceDecompressor;
|
||||
use monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
|
||||
StrictlyMonotonicMappingToInternalBaseval, StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
use serialize::{Header, U128Header};
|
||||
|
||||
mod bitpacked;
|
||||
mod blockwise_linear;
|
||||
mod compact_space;
|
||||
mod line;
|
||||
mod linear;
|
||||
pub(crate) mod monotonic_mapping;
|
||||
// mod monotonic_mapping_u128;
|
||||
|
||||
mod column;
|
||||
mod column_with_cardinality;
|
||||
mod gcd;
|
||||
pub mod serialize;
|
||||
|
||||
pub use self::column::{monotonic_map_column, ColumnValues, IterColumn, VecColumn};
|
||||
pub use self::monotonic_mapping::{MonotonicallyMappableToU64, StrictlyMonotonicFn};
|
||||
// pub use self::monotonic_mapping_u128::MonotonicallyMappableToU128;
|
||||
pub use self::serialize::{serialize_and_load, serialize_column_values, NormalizedHeader};
|
||||
use crate::column_values::bitpacked::BitpackedCodec;
|
||||
use crate::column_values::blockwise_linear::BlockwiseLinearCodec;
|
||||
use crate::column_values::linear::LinearCodec;
|
||||
|
||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
/// Available codecs to use to encode the u64 (via [`MonotonicallyMappableToU64`]) converted data.
|
||||
pub enum FastFieldCodecType {
|
||||
/// Bitpack all values in the value range. The number of bits is defined by the amplitude
|
||||
/// `column.max_value() - column.min_value()`
|
||||
Bitpacked = 1,
|
||||
/// Linear interpolation puts a line between the first and last value and then bitpacks the
|
||||
/// values by the offset from the line. The number of bits is defined by the max deviation from
|
||||
/// the line.
|
||||
Linear = 2,
|
||||
/// Same as [`FastFieldCodecType::Linear`], but encodes in blocks of 512 elements.
|
||||
BlockwiseLinear = 3,
|
||||
}
|
||||
|
||||
impl BinarySerializable for FastFieldCodecType {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl FastFieldCodecType {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::Bitpacked),
|
||||
2 => Some(Self::Linear),
|
||||
3 => Some(Self::BlockwiseLinear),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
/// Available codecs to use to encode the u128 (via [`MonotonicallyMappableToU128`]) converted data.
|
||||
pub enum U128FastFieldCodecType {
|
||||
/// This codec takes a large number space (u128) and reduces it to a compact number space, by
|
||||
/// removing the holes.
|
||||
CompactSpace = 1,
|
||||
}
|
||||
|
||||
impl BinarySerializable for U128FastFieldCodecType {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl U128FastFieldCodecType {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::CompactSpace),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
// pub fn open_u128<Item: MonotonicallyMappableToU128>(
|
||||
// bytes: OwnedBytes,
|
||||
// ) -> io::Result<Arc<dyn Column<Item>>> {
|
||||
// todo!();
|
||||
// // let (bytes, _format_version) = read_format_version(bytes)?;
|
||||
// // let (mut bytes, _null_index_footer) = read_null_index_footer(bytes)?;
|
||||
// // let header = U128Header::deserialize(&mut bytes)?;
|
||||
// // assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
|
||||
// // let reader = CompactSpaceDecompressor::open(bytes)?;
|
||||
// // let inverted: StrictlyMonotonicMappingInverter<StrictlyMonotonicMappingToInternal<Item>> =
|
||||
// // StrictlyMonotonicMappingToInternal::<Item>::new().into();
|
||||
// // Ok(Arc::new(monotonic_map_column(reader, inverted)))
|
||||
// }
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open_u64_mapped<T: MonotonicallyMappableToU64>(
|
||||
mut bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
let header = Header::deserialize(&mut bytes)?;
|
||||
match header.codec_type {
|
||||
FastFieldCodecType::Bitpacked => open_specific_codec::<BitpackedCodec, _>(bytes, &header),
|
||||
FastFieldCodecType::Linear => open_specific_codec::<LinearCodec, _>(bytes, &header),
|
||||
FastFieldCodecType::BlockwiseLinear => {
|
||||
open_specific_codec::<BlockwiseLinearCodec, _>(bytes, &header)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64>(
|
||||
bytes: OwnedBytes,
|
||||
header: &Header,
|
||||
) -> io::Result<Arc<dyn ColumnValues<Item>>> {
|
||||
let normalized_header = header.normalized();
|
||||
let reader = C::open_from_bytes(bytes, normalized_header)?;
|
||||
let min_value = header.min_value;
|
||||
if let Some(gcd) = header.gcd {
|
||||
let mapping = StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd.get(), min_value),
|
||||
);
|
||||
Ok(Arc::new(monotonic_map_column(reader, mapping)))
|
||||
} else {
|
||||
let mapping = StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalBaseval::new(min_value),
|
||||
);
|
||||
Ok(Arc::new(monotonic_map_column(reader, mapping)))
|
||||
}
|
||||
}
|
||||
|
||||
/// The FastFieldSerializerEstimate trait is required on all variants
|
||||
/// of fast field compressions, to decide which one to choose.
|
||||
pub(crate) trait FastFieldCodec: 'static {
|
||||
/// A codex needs to provide a unique name and id, which is
|
||||
/// used for debugging and de/serialization.
|
||||
const CODEC_TYPE: FastFieldCodecType;
|
||||
|
||||
type Reader: ColumnValues<u64> + 'static;
|
||||
|
||||
/// Reads the metadata and returns the CodecReader
|
||||
fn open_from_bytes(bytes: OwnedBytes, header: NormalizedHeader) -> io::Result<Self::Reader>;
|
||||
|
||||
/// Serializes the data using the serializer into write.
|
||||
///
|
||||
/// The column iterator should be preferred over using column `get_val` method for
|
||||
/// performance reasons.
|
||||
fn serialize(column: &dyn ColumnValues, write: &mut impl Write) -> io::Result<()>;
|
||||
|
||||
/// Returns an estimate of the compression ratio.
|
||||
/// If the codec is not applicable, returns `None`.
|
||||
///
|
||||
/// The baseline is uncompressed 64bit data.
|
||||
///
|
||||
/// It could make sense to also return a value representing
|
||||
/// computational complexity.
|
||||
fn estimate(column: &dyn ColumnValues) -> Option<f32>;
|
||||
}
|
||||
|
||||
/// The list of all available codecs for u64 convertible data.
|
||||
pub const ALL_CODEC_TYPES: [FastFieldCodecType; 3] = [
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
FastFieldCodecType::Linear,
|
||||
];
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::*;
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55000_u64)
|
||||
.map(|num| num + rng.gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
fn get_reader_for_bench<Codec: FastFieldCodec>(data: &[u64]) -> Codec::Reader {
|
||||
let mut bytes = Vec::new();
|
||||
let min_value = *data.iter().min().unwrap();
|
||||
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
|
||||
let col = VecColumn::from(&data);
|
||||
let normalized_header = NormalizedHeader {
|
||||
num_vals: col.num_vals(),
|
||||
max_value: col.max_value(),
|
||||
};
|
||||
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
|
||||
Codec::open_from_bytes(OwnedBytes::new(bytes), normalized_header).unwrap()
|
||||
}
|
||||
fn bench_get<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = get_reader_for_bench::<Codec>(data);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn ColumnValues>) {
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
fn bench_get_dynamic<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = Arc::new(get_reader_for_bench::<Codec>(data));
|
||||
bench_get_dynamic_helper(b, col);
|
||||
}
|
||||
fn bench_create<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let min_value = *data.iter().min().unwrap();
|
||||
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
|
||||
|
||||
let mut bytes = Vec::new();
|
||||
b.iter(|| {
|
||||
bytes.clear();
|
||||
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
}
|
||||
264
columnar/src/column_values/monotonic_mapping.rs
Normal file
264
columnar/src/column_values/monotonic_mapping.rs
Normal file
@@ -0,0 +1,264 @@
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
|
||||
use crate::RowId;
|
||||
|
||||
/// Monotonic maps a value to u64 value space.
|
||||
/// Monotonic mapping enables `PartialOrd` on u64 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU64: 'static + PartialOrd + Copy + Send + Sync {
|
||||
/// Converts a value to u64.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
fn to_u64(self) -> u64;
|
||||
|
||||
/// Converts a value from u64
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
/// **Note: To be used for converting encoded Term, Posting values.**
|
||||
fn from_u64(val: u64) -> Self;
|
||||
}
|
||||
|
||||
/// Values need to be strictly monotonic mapped to a `Internal` value (u64 or u128) that can be
|
||||
/// used in fast field codecs.
|
||||
///
|
||||
/// The monotonic mapping is required so that `PartialOrd` can be used on `Internal` without
|
||||
/// converting to `External`.
|
||||
///
|
||||
/// All strictly monotonic functions are invertible because they are guaranteed to have a one-to-one
|
||||
/// mapping from their range to their domain. The `inverse` method is required when opening a codec,
|
||||
/// so a value can be converted back to its original domain (e.g. ip address or f64) from its
|
||||
/// internal representation.
|
||||
pub trait StrictlyMonotonicFn<External, Internal> {
|
||||
/// Strictly monotonically maps the value from External to Internal.
|
||||
fn mapping(&self, inp: External) -> Internal;
|
||||
/// Inverse of `mapping`. Maps the value from Internal to External.
|
||||
fn inverse(&self, out: Internal) -> External;
|
||||
}
|
||||
|
||||
/// Inverts a strictly monotonic mapping from `StrictlyMonotonicFn<A, B>` to
|
||||
/// `StrictlyMonotonicFn<B, A>`.
|
||||
///
|
||||
/// # Warning
|
||||
///
|
||||
/// This type comes with a footgun. A type being strictly monotonic does not impose that the inverse
|
||||
/// mapping is strictly monotonic over the entire space External. e.g. a -> a * 2. Use at your own
|
||||
/// risks.
|
||||
pub(crate) struct StrictlyMonotonicMappingInverter<T> {
|
||||
orig_mapping: T,
|
||||
}
|
||||
impl<T> From<T> for StrictlyMonotonicMappingInverter<T> {
|
||||
fn from(orig_mapping: T) -> Self {
|
||||
Self { orig_mapping }
|
||||
}
|
||||
}
|
||||
|
||||
impl<From, To, T> StrictlyMonotonicFn<To, From> for StrictlyMonotonicMappingInverter<T>
|
||||
where T: StrictlyMonotonicFn<From, To>
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, val: To) -> From {
|
||||
self.orig_mapping.inverse(val)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, val: From) -> To {
|
||||
self.orig_mapping.mapping(val)
|
||||
}
|
||||
}
|
||||
|
||||
/// Applies the strictly monotonic mapping from `T` without any additional changes.
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternal<T> {
|
||||
_phantom: PhantomData<T>,
|
||||
}
|
||||
|
||||
impl<T> StrictlyMonotonicMappingToInternal<T> {
|
||||
pub(crate) fn new() -> StrictlyMonotonicMappingToInternal<T> {
|
||||
Self {
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO
|
||||
// impl<External: MonotonicallyMappableToU128, T: MonotonicallyMappableToU128>
|
||||
// StrictlyMonotonicFn<External, u128> for StrictlyMonotonicMappingToInternal<T>
|
||||
// where T: MonotonicallyMappableToU128
|
||||
// {
|
||||
// #[inline(always)]
|
||||
// fn mapping(&self, inp: External) -> u128 {
|
||||
// External::to_u128(inp)
|
||||
// }
|
||||
|
||||
// #[inline(always)]
|
||||
// fn inverse(&self, out: u128) -> External {
|
||||
// External::from_u128(out)
|
||||
// }
|
||||
// }
|
||||
|
||||
impl<External: MonotonicallyMappableToU64, T: MonotonicallyMappableToU64>
|
||||
StrictlyMonotonicFn<External, u64> for StrictlyMonotonicMappingToInternal<T>
|
||||
where T: MonotonicallyMappableToU64
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: External) -> u64 {
|
||||
External::to_u64(inp)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: u64) -> External {
|
||||
External::from_u64(out)
|
||||
}
|
||||
}
|
||||
|
||||
/// Mapping dividing by gcd and a base value.
|
||||
///
|
||||
/// The function is assumed to be only called on values divided by passed
|
||||
/// gcd value. (It is necessary for the function to be monotonic.)
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternalGCDBaseval {
|
||||
gcd_divider: DividerU64,
|
||||
gcd: u64,
|
||||
min_value: u64,
|
||||
}
|
||||
impl StrictlyMonotonicMappingToInternalGCDBaseval {
|
||||
pub(crate) fn new(gcd: u64, min_value: u64) -> Self {
|
||||
let gcd_divider = DividerU64::divide_by(gcd);
|
||||
Self {
|
||||
gcd_divider,
|
||||
gcd,
|
||||
min_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
|
||||
for StrictlyMonotonicMappingToInternalGCDBaseval
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: External) -> u64 {
|
||||
self.gcd_divider
|
||||
.divide(External::to_u64(inp) - self.min_value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: u64) -> External {
|
||||
External::from_u64(self.min_value + out * self.gcd)
|
||||
}
|
||||
}
|
||||
|
||||
/// Strictly monotonic mapping with a base value.
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternalBaseval {
|
||||
min_value: u64,
|
||||
}
|
||||
impl StrictlyMonotonicMappingToInternalBaseval {
|
||||
#[inline(always)]
|
||||
pub(crate) fn new(min_value: u64) -> Self {
|
||||
Self { min_value }
|
||||
}
|
||||
}
|
||||
|
||||
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
|
||||
for StrictlyMonotonicMappingToInternalBaseval
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, val: External) -> u64 {
|
||||
External::to_u64(val) - self.min_value
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, val: u64) -> External {
|
||||
External::from_u64(self.min_value + val)
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for u64 {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
self
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
val
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for i64 {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
common::i64_to_u64(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
common::u64_to_i64(val)
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for bool {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
u64::from(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
val > 0
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for RowId {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
u64::from(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> RowId {
|
||||
val as RowId
|
||||
}
|
||||
}
|
||||
|
||||
// TODO remove me.
|
||||
// Tantivy should refuse NaN values and work with NotNaN internally.
|
||||
impl MonotonicallyMappableToU64 for f64 {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
common::f64_to_u64(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
common::u64_to_f64(val)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn strictly_monotonic_test() {
|
||||
// identity mapping
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<u64>::new(), 100u64);
|
||||
// round trip to i64
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<i64>::new(), 100u64);
|
||||
// TODO
|
||||
// identity mapping
|
||||
// test_round_trip(&StrictlyMonotonicMappingToInternal::<u128>::new(), 100u128);
|
||||
|
||||
// base value to i64 round trip
|
||||
let mapping = StrictlyMonotonicMappingToInternalBaseval::new(100);
|
||||
test_round_trip::<_, _, u64>(&mapping, 100i64);
|
||||
// base value and gcd to u64 round trip
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100);
|
||||
test_round_trip::<_, _, u64>(&mapping, 100u64);
|
||||
}
|
||||
|
||||
fn test_round_trip<T: StrictlyMonotonicFn<K, L>, K: std::fmt::Debug + Eq + Copy, L>(
|
||||
mapping: &T,
|
||||
test_val: K,
|
||||
) {
|
||||
assert_eq!(mapping.inverse(mapping.mapping(test_val)), test_val);
|
||||
}
|
||||
}
|
||||
40
columnar/src/column_values/monotonic_mapping_u128.rs
Normal file
40
columnar/src/column_values/monotonic_mapping_u128.rs
Normal file
@@ -0,0 +1,40 @@
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
/// Montonic maps a value to u128 value space
|
||||
/// Monotonic mapping enables `PartialOrd` on u128 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU128: 'static + PartialOrd + Copy + Send + Sync {
|
||||
/// Converts a value to u128.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
fn to_u128(self) -> u128;
|
||||
|
||||
/// Converts a value from u128
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
/// **Note: To be used for converting encoded Term, Posting values.**
|
||||
fn from_u128(val: u128) -> Self;
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU128 for u128 {
|
||||
fn to_u128(self) -> u128 {
|
||||
self
|
||||
}
|
||||
|
||||
fn from_u128(val: u128) -> Self {
|
||||
val
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU128 for Ipv6Addr {
|
||||
fn to_u128(self) -> u128 {
|
||||
ip_to_u128(self)
|
||||
}
|
||||
|
||||
fn from_u128(val: u128) -> Self {
|
||||
Ipv6Addr::from(val.to_be_bytes())
|
||||
}
|
||||
}
|
||||
|
||||
fn ip_to_u128(ip_addr: Ipv6Addr) -> u128 {
|
||||
u128::from_be_bytes(ip_addr.octets())
|
||||
}
|
||||
343
columnar/src/column_values/serialize.rs
Normal file
343
columnar/src/column_values/serialize.rs
Normal file
@@ -0,0 +1,343 @@
|
||||
// Copyright (C) 2022 Quickwit, Inc.
|
||||
//
|
||||
// Quickwit is offered under the AGPL v3.0 and as commercial software.
|
||||
// For commercial licensing, contact us at hello@quickwit.io.
|
||||
//
|
||||
// AGPL:
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Affero General Public License as
|
||||
// published by the Free Software Foundation, either version 3 of the
|
||||
// License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Affero General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Affero General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
use std::io;
|
||||
use std::num::NonZeroU64;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes, VInt};
|
||||
use log::warn;
|
||||
|
||||
use super::bitpacked::BitpackedCodec;
|
||||
use super::blockwise_linear::BlockwiseLinearCodec;
|
||||
use super::linear::LinearCodec;
|
||||
use super::monotonic_mapping::{
|
||||
StrictlyMonotonicFn, StrictlyMonotonicMappingToInternal,
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
use super::{
|
||||
monotonic_map_column, ColumnValues, FastFieldCodec, FastFieldCodecType,
|
||||
MonotonicallyMappableToU64, U128FastFieldCodecType, VecColumn, ALL_CODEC_TYPES,
|
||||
};
|
||||
|
||||
/// The normalized header gives some parameters after applying the following
|
||||
/// normalization of the vector:
|
||||
/// `val -> (val - min_value) / gcd`
|
||||
///
|
||||
/// By design, after normalization, `min_value = 0` and `gcd = 1`.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct NormalizedHeader {
|
||||
/// The number of values in the underlying column.
|
||||
pub num_vals: u32,
|
||||
/// The max value of the underlying column.
|
||||
pub max_value: u64,
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub(crate) struct Header {
|
||||
pub num_vals: u32,
|
||||
pub min_value: u64,
|
||||
pub max_value: u64,
|
||||
pub gcd: Option<NonZeroU64>,
|
||||
pub codec_type: FastFieldCodecType,
|
||||
}
|
||||
|
||||
impl Header {
|
||||
pub fn normalized(self) -> NormalizedHeader {
|
||||
let gcd = self.gcd.map(|gcd| gcd.get()).unwrap_or(1);
|
||||
let gcd_min_val_mapping =
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd, self.min_value);
|
||||
|
||||
let max_value = gcd_min_val_mapping.mapping(self.max_value);
|
||||
NormalizedHeader {
|
||||
num_vals: self.num_vals,
|
||||
max_value,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn normalize_column<C: ColumnValues>(&self, from_column: C) -> impl ColumnValues {
|
||||
normalize_column(from_column, self.min_value, self.gcd)
|
||||
}
|
||||
|
||||
pub fn compute_header(
|
||||
column: impl ColumnValues<u64>,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> Option<Header> {
|
||||
let num_vals = column.num_vals();
|
||||
let min_value = column.min_value();
|
||||
let max_value = column.max_value();
|
||||
let gcd = super::gcd::find_gcd(column.iter().map(|val| val - min_value))
|
||||
.filter(|gcd| gcd.get() > 1u64);
|
||||
let normalized_column = normalize_column(column, min_value, gcd);
|
||||
let codec_type = detect_codec(normalized_column, codecs)?;
|
||||
Some(Header {
|
||||
num_vals,
|
||||
min_value,
|
||||
max_value,
|
||||
gcd,
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
pub(crate) struct U128Header {
|
||||
pub num_vals: u32,
|
||||
pub codec_type: U128FastFieldCodecType,
|
||||
}
|
||||
|
||||
impl BinarySerializable for U128Header {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.num_vals as u64).serialize(writer)?;
|
||||
self.codec_type.serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_vals = VInt::deserialize(reader)?.0 as u32;
|
||||
let codec_type = U128FastFieldCodecType::deserialize(reader)?;
|
||||
Ok(U128Header {
|
||||
num_vals,
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn normalize_column<C: ColumnValues>(
|
||||
from_column: C,
|
||||
min_value: u64,
|
||||
gcd: Option<NonZeroU64>,
|
||||
) -> impl ColumnValues {
|
||||
let gcd = gcd.map(|gcd| gcd.get()).unwrap_or(1);
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd, min_value);
|
||||
monotonic_map_column(from_column, mapping)
|
||||
}
|
||||
|
||||
impl BinarySerializable for Header {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.num_vals as u64).serialize(writer)?;
|
||||
VInt(self.min_value).serialize(writer)?;
|
||||
VInt(self.max_value - self.min_value).serialize(writer)?;
|
||||
if let Some(gcd) = self.gcd {
|
||||
VInt(gcd.get()).serialize(writer)?;
|
||||
} else {
|
||||
VInt(0u64).serialize(writer)?;
|
||||
}
|
||||
self.codec_type.serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_vals = VInt::deserialize(reader)?.0 as u32;
|
||||
let min_value = VInt::deserialize(reader)?.0;
|
||||
let amplitude = VInt::deserialize(reader)?.0;
|
||||
let max_value = min_value + amplitude;
|
||||
let gcd_u64 = VInt::deserialize(reader)?.0;
|
||||
let codec_type = FastFieldCodecType::deserialize(reader)?;
|
||||
Ok(Header {
|
||||
num_vals,
|
||||
min_value,
|
||||
max_value,
|
||||
gcd: NonZeroU64::new(gcd_u64),
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Return estimated compression for given codec in the value range [0.0..1.0], where 1.0 means no
|
||||
/// compression.
|
||||
pub(crate) fn estimate<T: MonotonicallyMappableToU64>(
|
||||
typed_column: impl ColumnValues<T>,
|
||||
codec_type: FastFieldCodecType,
|
||||
) -> Option<f32> {
|
||||
let column = monotonic_map_column(typed_column, StrictlyMonotonicMappingToInternal::<T>::new());
|
||||
let min_value = column.min_value();
|
||||
let gcd = super::gcd::find_gcd(column.iter().map(|val| val - min_value))
|
||||
.filter(|gcd| gcd.get() > 1u64);
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(
|
||||
gcd.map(|gcd| gcd.get()).unwrap_or(1u64),
|
||||
min_value,
|
||||
);
|
||||
let normalized_column = monotonic_map_column(&column, mapping);
|
||||
match codec_type {
|
||||
FastFieldCodecType::Bitpacked => BitpackedCodec::estimate(&normalized_column),
|
||||
FastFieldCodecType::Linear => LinearCodec::estimate(&normalized_column),
|
||||
FastFieldCodecType::BlockwiseLinear => BlockwiseLinearCodec::estimate(&normalized_column),
|
||||
}
|
||||
}
|
||||
|
||||
// TODO
|
||||
/// Serializes u128 values with the compact space codec.
|
||||
// pub fn serialize_u128_new<F: Fn() -> I, I: Iterator<Item = u128>>(
|
||||
// value_index: ColumnIndex,
|
||||
// iter_gen: F,
|
||||
// num_vals: u32,
|
||||
// output: &mut impl io::Write,
|
||||
// ) -> io::Result<()> {
|
||||
// let header = U128Header {
|
||||
// num_vals,
|
||||
// codec_type: U128FastFieldCodecType::CompactSpace,
|
||||
// };
|
||||
// header.serialize(output)?;
|
||||
// let compressor = CompactSpaceCompressor::train_from(iter_gen(), num_vals);
|
||||
// compressor.compress_into(iter_gen(), output).unwrap();
|
||||
|
||||
// let null_index_footer = ColumnFooter {
|
||||
// cardinality: value_index.get_cardinality(),
|
||||
// null_index_codec: NullIndexCodec::Full,
|
||||
// null_index_byte_range: 0..0,
|
||||
// };
|
||||
// append_null_index_footer(output, null_index_footer)?;
|
||||
// append_format_version(output)?;
|
||||
|
||||
// Ok(())
|
||||
// }
|
||||
|
||||
/// Serializes the column with the codec with the best estimate on the data.
|
||||
pub fn serialize_column_values<T: MonotonicallyMappableToU64>(
|
||||
typed_column: impl ColumnValues<T>,
|
||||
codecs: &[FastFieldCodecType],
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let column = monotonic_map_column(typed_column, StrictlyMonotonicMappingToInternal::<T>::new());
|
||||
let header = Header::compute_header(&column, codecs).ok_or_else(|| {
|
||||
io::Error::new(
|
||||
io::ErrorKind::InvalidInput,
|
||||
format!(
|
||||
"Data cannot be serialized with this list of codec. {:?}",
|
||||
codecs
|
||||
),
|
||||
)
|
||||
})?;
|
||||
header.serialize(output)?;
|
||||
let normalized_column = header.normalize_column(column);
|
||||
assert_eq!(normalized_column.min_value(), 0u64);
|
||||
serialize_given_codec(normalized_column, header.codec_type, output)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn detect_codec(
|
||||
column: impl ColumnValues<u64>,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> Option<FastFieldCodecType> {
|
||||
let mut estimations = Vec::new();
|
||||
for &codec in codecs {
|
||||
let estimation_opt = match codec {
|
||||
FastFieldCodecType::Bitpacked => BitpackedCodec::estimate(&column),
|
||||
FastFieldCodecType::Linear => LinearCodec::estimate(&column),
|
||||
FastFieldCodecType::BlockwiseLinear => BlockwiseLinearCodec::estimate(&column),
|
||||
};
|
||||
if let Some(estimation) = estimation_opt {
|
||||
estimations.push((estimation, codec));
|
||||
}
|
||||
}
|
||||
if let Some(broken_estimation) = estimations.iter().find(|estimation| estimation.0.is_nan()) {
|
||||
warn!(
|
||||
"broken estimation for fast field codec {:?}",
|
||||
broken_estimation.1
|
||||
);
|
||||
}
|
||||
// removing nan values for codecs with broken calculations, and max values which disables
|
||||
// codecs
|
||||
estimations.retain(|estimation| !estimation.0.is_nan() && estimation.0 != f32::MAX);
|
||||
estimations.sort_by(|(score_left, _), (score_right, _)| score_left.total_cmp(score_right));
|
||||
Some(estimations.first()?.1)
|
||||
}
|
||||
|
||||
pub(crate) fn serialize_given_codec(
|
||||
column: impl ColumnValues<u64>,
|
||||
codec_type: FastFieldCodecType,
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
match codec_type {
|
||||
FastFieldCodecType::Bitpacked => {
|
||||
BitpackedCodec::serialize(&column, output)?;
|
||||
}
|
||||
FastFieldCodecType::Linear => {
|
||||
LinearCodec::serialize(&column, output)?;
|
||||
}
|
||||
FastFieldCodecType::BlockwiseLinear => {
|
||||
BlockwiseLinearCodec::serialize(&column, output)?;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Helper function to serialize a column (autodetect from all codecs) and then open it
|
||||
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default>(
|
||||
column: &[T],
|
||||
) -> Arc<dyn ColumnValues<T>> {
|
||||
let mut buffer = Vec::new();
|
||||
super::serialize_column_values(&VecColumn::from(&column), &ALL_CODEC_TYPES, &mut buffer)
|
||||
.unwrap();
|
||||
super::open_u64_mapped(OwnedBytes::new(buffer)).unwrap()
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_serialize_deserialize_u128_header() {
|
||||
let original = U128Header {
|
||||
num_vals: 11,
|
||||
codec_type: U128FastFieldCodecType::CompactSpace,
|
||||
};
|
||||
let mut out = Vec::new();
|
||||
original.serialize(&mut out).unwrap();
|
||||
let restored = U128Header::deserialize(&mut &out[..]).unwrap();
|
||||
assert_eq!(restored, original);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_serialize_deserialize() {
|
||||
let original = [1u64, 5u64, 10u64];
|
||||
let restored: Vec<u64> = serialize_and_load(&original[..]).iter().collect();
|
||||
assert_eq!(&restored, &original[..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_bool_size_bitwidth_1() {
|
||||
let mut buffer = Vec::new();
|
||||
let col = VecColumn::from(&[false, true][..]);
|
||||
serialize_column_values(&col, &ALL_CODEC_TYPES, &mut buffer).unwrap();
|
||||
// TODO put the header as a footer so that it serves as a padding.
|
||||
// 5 bytes of header, 1 byte of value, 7 bytes of padding.
|
||||
assert_eq!(buffer.len(), 5 + 1 + 7);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_bool_bit_size_bitwidth_0() {
|
||||
let mut buffer = Vec::new();
|
||||
let col = VecColumn::from(&[true][..]);
|
||||
serialize_column_values(&col, &ALL_CODEC_TYPES, &mut buffer).unwrap();
|
||||
// 5 bytes of header, 0 bytes of value, 7 bytes of padding.
|
||||
assert_eq!(buffer.len(), 5 + 7);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd() {
|
||||
let mut buffer = Vec::new();
|
||||
let vals: Vec<u64> = (0..80).map(|val| (val % 7) * 1_000u64).collect();
|
||||
let col = VecColumn::from(&vals[..]);
|
||||
serialize_column_values(&col, &[FastFieldCodecType::Bitpacked], &mut buffer).unwrap();
|
||||
// Values are stored over 3 bits.
|
||||
assert_eq!(buffer.len(), 7 + (3 * 80 / 8) + 7);
|
||||
}
|
||||
}
|
||||
309
columnar/src/column_values/tests.rs
Normal file
309
columnar/src/column_values/tests.rs
Normal file
@@ -0,0 +1,309 @@
|
||||
use proptest::prelude::*;
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
|
||||
use super::bitpacked::BitpackedCodec;
|
||||
use super::blockwise_linear::BlockwiseLinearCodec;
|
||||
use super::linear::LinearCodec;
|
||||
use super::serialize::Header;
|
||||
|
||||
pub(crate) fn create_and_validate<Codec: FastFieldCodec>(
|
||||
data: &[u64],
|
||||
name: &str,
|
||||
) -> Option<(f32, f32)> {
|
||||
let col = &VecColumn::from(data);
|
||||
let header = Header::compute_header(col, &[Codec::CODEC_TYPE])?;
|
||||
let normalized_col = header.normalize_column(col);
|
||||
let estimation = Codec::estimate(&normalized_col)?;
|
||||
|
||||
let mut out = Vec::new();
|
||||
let col = VecColumn::from(data);
|
||||
serialize_column_values(&col, &[Codec::CODEC_TYPE], &mut out).unwrap();
|
||||
|
||||
let actual_compression = out.len() as f32 / (data.len() as f32 * 8.0);
|
||||
|
||||
let reader = super::open_u64_mapped::<u64>(OwnedBytes::new(out)).unwrap();
|
||||
assert_eq!(reader.num_vals(), data.len() as u32);
|
||||
for (doc, orig_val) in data.iter().copied().enumerate() {
|
||||
let val = reader.get_val(doc as u32);
|
||||
assert_eq!(
|
||||
val, orig_val,
|
||||
"val `{val}` does not match orig_val {orig_val:?}, in data set {name}, data `{data:?}`",
|
||||
);
|
||||
}
|
||||
|
||||
if !data.is_empty() {
|
||||
let test_rand_idx = rand::thread_rng().gen_range(0..=data.len() - 1);
|
||||
let expected_positions: Vec<u32> = data
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_, el)| **el == data[test_rand_idx])
|
||||
.map(|(pos, _)| pos as u32)
|
||||
.collect();
|
||||
let mut positions = Vec::new();
|
||||
reader.get_docids_for_value_range(
|
||||
data[test_rand_idx]..=data[test_rand_idx],
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
assert_eq!(expected_positions, positions);
|
||||
}
|
||||
Some((estimation, actual_compression))
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(100))]
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_bitpacked(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
|
||||
}
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(10))]
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_bitpacked(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
|
||||
}
|
||||
}
|
||||
|
||||
fn num_strategy() -> impl Strategy<Value = u64> {
|
||||
prop_oneof![
|
||||
1 => prop::num::u64::ANY.prop_map(|num| u64::MAX - (num % 10) ),
|
||||
1 => prop::num::u64::ANY.prop_map(|num| num % 10 ),
|
||||
20 => prop::num::u64::ANY,
|
||||
]
|
||||
}
|
||||
|
||||
pub fn get_codec_test_datasets() -> Vec<(Vec<u64>, &'static str)> {
|
||||
let mut data_and_names = vec![];
|
||||
|
||||
let data = (10..=10_000_u64).collect::<Vec<_>>();
|
||||
data_and_names.push((data, "simple monotonically increasing"));
|
||||
|
||||
data_and_names.push((
|
||||
vec![5, 6, 7, 8, 9, 10, 99, 100],
|
||||
"offset in linear interpol",
|
||||
));
|
||||
data_and_names.push((vec![5, 50, 3, 13, 1, 1000, 35], "rand small"));
|
||||
data_and_names.push((vec![10], "single value"));
|
||||
|
||||
data_and_names.push((
|
||||
vec![1572656989877777, 1170935903116329, 720575940379279, 0],
|
||||
"overflow error",
|
||||
));
|
||||
|
||||
data_and_names
|
||||
}
|
||||
|
||||
fn test_codec<C: FastFieldCodec>() {
|
||||
let codec_name = format!("{:?}", C::CODEC_TYPE);
|
||||
for (data, dataset_name) in get_codec_test_datasets() {
|
||||
let estimate_actual_opt: Option<(f32, f32)> =
|
||||
tests::create_and_validate::<C>(&data, dataset_name);
|
||||
let result = if let Some((estimate, actual)) = estimate_actual_opt {
|
||||
format!("Estimate `{estimate}` Actual `{actual}`")
|
||||
} else {
|
||||
"Disabled".to_string()
|
||||
};
|
||||
println!("Codec {codec_name}, DataSet {dataset_name}, {result}");
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn test_codec_bitpacking() {
|
||||
test_codec::<BitpackedCodec>();
|
||||
}
|
||||
#[test]
|
||||
fn test_codec_interpolation() {
|
||||
test_codec::<LinearCodec>();
|
||||
}
|
||||
#[test]
|
||||
fn test_codec_multi_interpolation() {
|
||||
test_codec::<BlockwiseLinearCodec>();
|
||||
}
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn estimation_good_interpolation_case() {
|
||||
let data = (10..=20000_u64).collect::<Vec<_>>();
|
||||
let data: VecColumn = data.as_slice().into();
|
||||
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
assert_le!(linear_interpol_estimation, 0.01);
|
||||
|
||||
let multi_linear_interpol_estimation = BlockwiseLinearCodec::estimate(&data).unwrap();
|
||||
assert_le!(multi_linear_interpol_estimation, 0.2);
|
||||
assert_lt!(linear_interpol_estimation, multi_linear_interpol_estimation);
|
||||
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_lt!(linear_interpol_estimation, bitpacked_estimation);
|
||||
}
|
||||
#[test]
|
||||
fn estimation_test_bad_interpolation_case() {
|
||||
let data: &[u64] = &[200, 10, 10, 10, 10, 1000, 20];
|
||||
|
||||
let data: VecColumn = data.into();
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
assert_le!(linear_interpol_estimation, 0.34);
|
||||
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn estimation_prefer_bitpacked() {
|
||||
let data = VecColumn::from(&[10, 10, 10, 10]);
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn estimation_test_bad_interpolation_case_monotonically_increasing() {
|
||||
let mut data: Vec<u64> = (201..=20000_u64).collect();
|
||||
data.push(1_000_000);
|
||||
let data: VecColumn = data.as_slice().into();
|
||||
|
||||
// in this case the linear interpolation can't in fact not be worse than bitpacking,
|
||||
// but the estimator adds some threshold, which leads to estimated worse behavior
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
assert_le!(linear_interpol_estimation, 0.35);
|
||||
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_le!(bitpacked_estimation, 0.32);
|
||||
assert_le!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fast_field_codec_type_to_code() {
|
||||
let mut count_codec = 0;
|
||||
for code in 0..=255 {
|
||||
if let Some(codec_type) = FastFieldCodecType::from_code(code) {
|
||||
assert_eq!(codec_type.to_code(), code);
|
||||
count_codec += 1;
|
||||
}
|
||||
}
|
||||
assert_eq!(count_codec, 3);
|
||||
}
|
||||
|
||||
fn test_fastfield_gcd_i64_with_codec(
|
||||
codec_type: FastFieldCodecType,
|
||||
num_vals: usize,
|
||||
) -> io::Result<()> {
|
||||
let mut vals: Vec<i64> = (-4..=(num_vals as i64) - 5).map(|val| val * 1000).collect();
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
crate::column_values::serialize_column_values(
|
||||
&VecColumn::from(&vals),
|
||||
&[codec_type],
|
||||
&mut buffer,
|
||||
)?;
|
||||
let buffer = OwnedBytes::new(buffer);
|
||||
let column = crate::column_values::open_u64_mapped::<i64>(buffer.clone())?;
|
||||
assert_eq!(column.get_val(0), -4000i64);
|
||||
assert_eq!(column.get_val(1), -3000i64);
|
||||
assert_eq!(column.get_val(2), -2000i64);
|
||||
assert_eq!(column.max_value(), (num_vals as i64 - 5) * 1000);
|
||||
assert_eq!(column.min_value(), -4000i64);
|
||||
|
||||
// Can't apply gcd
|
||||
let mut buffer_without_gcd = Vec::new();
|
||||
vals.pop();
|
||||
vals.push(1001i64);
|
||||
crate::column_values::serialize_column_values(
|
||||
&VecColumn::from(&vals),
|
||||
&[codec_type],
|
||||
&mut buffer_without_gcd,
|
||||
)?;
|
||||
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
|
||||
assert!(buffer_without_gcd.len() > buffer.len());
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd_i64() -> io::Result<()> {
|
||||
for &codec_type in &[
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
FastFieldCodecType::Linear,
|
||||
] {
|
||||
test_fastfield_gcd_i64_with_codec(codec_type, 5500)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn test_fastfield_gcd_u64_with_codec(
|
||||
codec_type: FastFieldCodecType,
|
||||
num_vals: usize,
|
||||
) -> io::Result<()> {
|
||||
let mut vals: Vec<u64> = (1..=num_vals).map(|i| i as u64 * 1000u64).collect();
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
crate::column_values::serialize_column_values(
|
||||
&VecColumn::from(&vals),
|
||||
&[codec_type],
|
||||
&mut buffer,
|
||||
)?;
|
||||
let buffer = OwnedBytes::new(buffer);
|
||||
let column = crate::column_values::open_u64_mapped::<u64>(buffer.clone())?;
|
||||
assert_eq!(column.get_val(0), 1000u64);
|
||||
assert_eq!(column.get_val(1), 2000u64);
|
||||
assert_eq!(column.get_val(2), 3000u64);
|
||||
assert_eq!(column.max_value(), num_vals as u64 * 1000);
|
||||
assert_eq!(column.min_value(), 1000u64);
|
||||
|
||||
// Can't apply gcd
|
||||
let mut buffer_without_gcd = Vec::new();
|
||||
vals.pop();
|
||||
vals.push(1001u64);
|
||||
crate::column_values::serialize_column_values(
|
||||
&VecColumn::from(&vals),
|
||||
&[codec_type],
|
||||
&mut buffer_without_gcd,
|
||||
)?;
|
||||
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
|
||||
assert!(buffer_without_gcd.len() > buffer.len());
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd_u64() -> io::Result<()> {
|
||||
for &codec_type in &[
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
FastFieldCodecType::Linear,
|
||||
] {
|
||||
test_fastfield_gcd_u64_with_codec(codec_type, 5500)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn test_fastfield2() {
|
||||
let test_fastfield = crate::column_values::serialize_and_load(&[100u64, 200u64, 300u64]);
|
||||
assert_eq!(test_fastfield.get_val(0), 100);
|
||||
assert_eq!(test_fastfield.get_val(1), 200);
|
||||
assert_eq!(test_fastfield.get_val(2), 300);
|
||||
}
|
||||
126
columnar/src/columnar/column_type.rs
Normal file
126
columnar/src/columnar/column_type.rs
Normal file
@@ -0,0 +1,126 @@
|
||||
use crate::utils::{place_bits, select_bits};
|
||||
use crate::value::NumericalType;
|
||||
use crate::InvalidData;
|
||||
|
||||
/// The column type represents the column type and can fit on 6-bits.
|
||||
///
|
||||
/// - bits[0..3]: Column category type.
|
||||
/// - bits[3..6]: Numerical type if necessary.
|
||||
#[derive(Hash, Eq, PartialEq, Debug, Clone, Copy)]
|
||||
pub enum ColumnType {
|
||||
Bytes,
|
||||
Numerical(NumericalType),
|
||||
Bool,
|
||||
}
|
||||
|
||||
impl ColumnType {
|
||||
/// Encoded over 6 bits.
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
let column_type_category;
|
||||
let numerical_type_code: u8;
|
||||
match self {
|
||||
ColumnType::Bytes => {
|
||||
column_type_category = ColumnTypeCategory::Str;
|
||||
numerical_type_code = 0u8;
|
||||
}
|
||||
ColumnType::Numerical(numerical_type) => {
|
||||
column_type_category = ColumnTypeCategory::Numerical;
|
||||
numerical_type_code = numerical_type.to_code();
|
||||
}
|
||||
ColumnType::Bool => {
|
||||
column_type_category = ColumnTypeCategory::Bool;
|
||||
numerical_type_code = 0u8;
|
||||
}
|
||||
}
|
||||
place_bits::<0, 3>(column_type_category.to_code()) | place_bits::<3, 6>(numerical_type_code)
|
||||
}
|
||||
|
||||
pub(crate) fn try_from_code(code: u8) -> Result<ColumnType, InvalidData> {
|
||||
if select_bits::<6, 8>(code) != 0u8 {
|
||||
return Err(InvalidData);
|
||||
}
|
||||
let column_type_category_code = select_bits::<0, 3>(code);
|
||||
let numerical_type_code = select_bits::<3, 6>(code);
|
||||
let column_type_category = ColumnTypeCategory::try_from_code(column_type_category_code)?;
|
||||
match column_type_category {
|
||||
ColumnTypeCategory::Bool => {
|
||||
if numerical_type_code != 0u8 {
|
||||
return Err(InvalidData);
|
||||
}
|
||||
Ok(ColumnType::Bool)
|
||||
}
|
||||
ColumnTypeCategory::Str => {
|
||||
if numerical_type_code != 0u8 {
|
||||
return Err(InvalidData);
|
||||
}
|
||||
Ok(ColumnType::Bytes)
|
||||
}
|
||||
ColumnTypeCategory::Numerical => {
|
||||
let numerical_type = NumericalType::try_from_code(numerical_type_code)?;
|
||||
Ok(ColumnType::Numerical(numerical_type))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Column types are grouped into different categories that
|
||||
/// corresponds to the different types of `JsonValue` types.
|
||||
///
|
||||
/// The columnar writer will apply coercion rules to make sure that
|
||||
/// at most one column exist per `ColumnTypeCategory`.
|
||||
///
|
||||
/// See also [README.md].
|
||||
#[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq, Debug)]
|
||||
#[repr(u8)]
|
||||
pub(crate) enum ColumnTypeCategory {
|
||||
Bool = 0u8,
|
||||
Str = 1u8,
|
||||
Numerical = 2u8,
|
||||
}
|
||||
|
||||
impl ColumnTypeCategory {
|
||||
pub fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub fn try_from_code(code: u8) -> Result<Self, InvalidData> {
|
||||
match code {
|
||||
0u8 => Ok(Self::Bool),
|
||||
1u8 => Ok(Self::Str),
|
||||
2u8 => Ok(Self::Numerical),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::collections::HashSet;
|
||||
|
||||
use super::*;
|
||||
use crate::Cardinality;
|
||||
|
||||
#[test]
|
||||
fn test_column_type_to_code() {
|
||||
let mut column_type_set: HashSet<ColumnType> = HashSet::new();
|
||||
for code in u8::MIN..=u8::MAX {
|
||||
if let Ok(column_type) = ColumnType::try_from_code(code) {
|
||||
assert_eq!(column_type.to_code(), code);
|
||||
assert!(column_type_set.insert(column_type));
|
||||
}
|
||||
}
|
||||
assert_eq!(column_type_set.len(), 2 + 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cardinality_to_code() {
|
||||
let mut num_cardinality = 0;
|
||||
for code in u8::MIN..=u8::MAX {
|
||||
if let Ok(cardinality) = Cardinality::try_from_code(code) {
|
||||
assert_eq!(cardinality.to_code(), code);
|
||||
num_cardinality += 1;
|
||||
}
|
||||
}
|
||||
assert_eq!(num_cardinality, 3);
|
||||
}
|
||||
}
|
||||
73
columnar/src/columnar/format_version.rs
Normal file
73
columnar/src/columnar/format_version.rs
Normal file
@@ -0,0 +1,73 @@
|
||||
use crate::InvalidData;
|
||||
|
||||
pub const VERSION_FOOTER_NUM_BYTES: usize = MAGIC_BYTES.len() + std::mem::size_of::<u32>();
|
||||
|
||||
/// We end the file by these 4 bytes just to somewhat identify that
|
||||
/// this is indeed a columnar file.
|
||||
const MAGIC_BYTES: [u8; 4] = [2, 113, 119, 066];
|
||||
|
||||
pub fn footer() -> [u8; VERSION_FOOTER_NUM_BYTES] {
|
||||
let mut footer_bytes = [0u8; VERSION_FOOTER_NUM_BYTES];
|
||||
footer_bytes[0..4].copy_from_slice(&Version::V1.to_bytes());
|
||||
footer_bytes[4..8].copy_from_slice(&MAGIC_BYTES[..]);
|
||||
footer_bytes
|
||||
}
|
||||
|
||||
pub fn parse_footer(footer_bytes: [u8; VERSION_FOOTER_NUM_BYTES]) -> Result<Version, InvalidData> {
|
||||
if footer_bytes[4..8] != MAGIC_BYTES {
|
||||
return Err(InvalidData);
|
||||
}
|
||||
Version::try_from_bytes(footer_bytes[0..4].try_into().unwrap())
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
|
||||
#[repr(u32)]
|
||||
pub enum Version {
|
||||
V1 = 1u32,
|
||||
}
|
||||
|
||||
impl Version {
|
||||
fn to_bytes(&self) -> [u8; 4] {
|
||||
(*self as u32).to_le_bytes()
|
||||
}
|
||||
|
||||
fn try_from_bytes(bytes: [u8; 4]) -> Result<Version, InvalidData> {
|
||||
let code = u32::from_le_bytes(bytes);
|
||||
match code {
|
||||
1u32 => Ok(Version::V1),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::collections::HashSet;
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_footer_dserialization() {
|
||||
let parsed_version: Version = parse_footer(footer()).unwrap();
|
||||
assert_eq!(Version::V1, parsed_version);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_version_serialization() {
|
||||
let version_to_tests: Vec<u32> = [0, 1 << 8, 1 << 16, 1 << 24]
|
||||
.iter()
|
||||
.copied()
|
||||
.flat_map(|offset| (0..255).map(move |el| el + offset))
|
||||
.collect();
|
||||
let mut valid_versions: HashSet<u32> = HashSet::default();
|
||||
for &i in &version_to_tests {
|
||||
let version_res = Version::try_from_bytes(i.to_le_bytes());
|
||||
if let Ok(version) = version_res {
|
||||
assert_eq!(version, Version::V1);
|
||||
assert_eq!(version.to_bytes(), i.to_le_bytes());
|
||||
valid_versions.insert(i);
|
||||
}
|
||||
}
|
||||
assert_eq!(valid_versions.len(), 1);
|
||||
}
|
||||
}
|
||||
28
columnar/src/columnar/mod.rs
Normal file
28
columnar/src/columnar/mod.rs
Normal file
@@ -0,0 +1,28 @@
|
||||
// Copyright (C) 2022 Quickwit, Inc.
|
||||
//
|
||||
// Quickwit is offered under the AGPL v3.0 and as commercial software.
|
||||
// For commercial licensing, contact us at hello@quickwit.io.
|
||||
//
|
||||
// AGPL:
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Affero General Public License as
|
||||
// published by the Free Software Foundation, either version 3 of the
|
||||
// License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Affero General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Affero General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
//
|
||||
|
||||
mod column_type;
|
||||
mod format_version;
|
||||
mod reader;
|
||||
mod writer;
|
||||
|
||||
pub use column_type::ColumnType;
|
||||
pub use reader::ColumnarReader;
|
||||
pub use writer::ColumnarWriter;
|
||||
121
columnar/src/columnar/reader/mod.rs
Normal file
121
columnar/src/columnar/reader/mod.rs
Normal file
@@ -0,0 +1,121 @@
|
||||
use std::{io, mem};
|
||||
|
||||
use common::file_slice::FileSlice;
|
||||
use common::BinarySerializable;
|
||||
use sstable::{Dictionary, RangeSSTable};
|
||||
|
||||
use crate::columnar::{format_version, ColumnType};
|
||||
use crate::dynamic_column::DynamicColumnHandle;
|
||||
|
||||
fn io_invalid_data(msg: String) -> io::Error {
|
||||
io::Error::new(io::ErrorKind::InvalidData, msg)
|
||||
}
|
||||
|
||||
/// The ColumnarReader makes it possible to access a set of columns
|
||||
/// associated to field names.
|
||||
pub struct ColumnarReader {
|
||||
column_dictionary: Dictionary<RangeSSTable>,
|
||||
column_data: FileSlice,
|
||||
}
|
||||
|
||||
impl ColumnarReader {
|
||||
/// Opens a new Columnar file.
|
||||
pub fn open<F>(file_slice: F) -> io::Result<ColumnarReader>
|
||||
where FileSlice: From<F> {
|
||||
Self::open_inner(file_slice.into())
|
||||
}
|
||||
|
||||
fn open_inner(file_slice: FileSlice) -> io::Result<ColumnarReader> {
|
||||
let (file_slice_without_sstable_len, footer_slice) = file_slice
|
||||
.split_from_end(mem::size_of::<u64>() + format_version::VERSION_FOOTER_NUM_BYTES);
|
||||
let footer_bytes = footer_slice.read_bytes()?;
|
||||
let (mut sstable_len_bytes, version_footer_bytes) =
|
||||
footer_bytes.rsplit(format_version::VERSION_FOOTER_NUM_BYTES);
|
||||
let version_footer_bytes: [u8; format_version::VERSION_FOOTER_NUM_BYTES] =
|
||||
version_footer_bytes.as_slice().try_into().unwrap();
|
||||
let _version = format_version::parse_footer(version_footer_bytes)?;
|
||||
let sstable_len = u64::deserialize(&mut sstable_len_bytes)?;
|
||||
let (column_data, sstable) =
|
||||
file_slice_without_sstable_len.split_from_end(sstable_len as usize);
|
||||
let column_dictionary = Dictionary::open(sstable)?;
|
||||
Ok(ColumnarReader {
|
||||
column_dictionary,
|
||||
column_data,
|
||||
})
|
||||
}
|
||||
|
||||
// TODO fix ugly API
|
||||
pub fn list_columns(&self) -> io::Result<Vec<(String, DynamicColumnHandle)>> {
|
||||
let mut stream = self.column_dictionary.stream()?;
|
||||
let mut results = Vec::new();
|
||||
while stream.advance() {
|
||||
let key_bytes: &[u8] = stream.key();
|
||||
let column_code: u8 = key_bytes.last().cloned().unwrap();
|
||||
let column_type: ColumnType = ColumnType::try_from_code(column_code)
|
||||
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
|
||||
let range = stream.value().clone();
|
||||
let column_name =
|
||||
String::from_utf8_lossy(&key_bytes[..key_bytes.len() - 1]).to_string();
|
||||
let file_slice = self
|
||||
.column_data
|
||||
.slice(range.start as usize..range.end as usize);
|
||||
let column_handle = DynamicColumnHandle {
|
||||
file_slice,
|
||||
column_type,
|
||||
};
|
||||
results.push((column_name, column_handle));
|
||||
}
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
/// Get all columns for the given column name.
|
||||
///
|
||||
/// There can be more than one column associated to a given column name, provided they have
|
||||
/// different types.
|
||||
// TODO fix ugly API
|
||||
pub fn read_columns(&self, column_name: &str) -> io::Result<Vec<DynamicColumnHandle>> {
|
||||
// Each column is a associated to a given `column_key`,
|
||||
// that starts by `column_name\0column_header`.
|
||||
//
|
||||
// Listing the columns associated to the given column name is therefore equivalent to
|
||||
// listing `column_key` with the prefix `column_name\0`.
|
||||
//
|
||||
// This is in turn equivalent to searching for the range
|
||||
// `[column_name,\0`..column_name\1)`.
|
||||
|
||||
// TODO can we get some more generic `prefix(..)` logic in the dictioanry.
|
||||
let mut start_key = column_name.to_string();
|
||||
start_key.push('\0');
|
||||
let mut end_key = column_name.to_string();
|
||||
end_key.push(1u8 as char);
|
||||
let mut stream = self
|
||||
.column_dictionary
|
||||
.range()
|
||||
.ge(start_key.as_bytes())
|
||||
.lt(end_key.as_bytes())
|
||||
.into_stream()?;
|
||||
let mut results = Vec::new();
|
||||
while stream.advance() {
|
||||
let key_bytes: &[u8] = stream.key();
|
||||
assert!(key_bytes.starts_with(start_key.as_bytes()));
|
||||
let column_code: u8 = key_bytes.last().cloned().unwrap();
|
||||
let column_type = ColumnType::try_from_code(column_code)
|
||||
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
|
||||
let range = stream.value().clone();
|
||||
let file_slice = self
|
||||
.column_data
|
||||
.slice(range.start as usize..range.end as usize);
|
||||
let dynamic_column_handle = DynamicColumnHandle {
|
||||
file_slice,
|
||||
column_type,
|
||||
};
|
||||
results.push(dynamic_column_handle);
|
||||
}
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
/// Return the number of columns in the columnar.
|
||||
pub fn num_columns(&self) -> usize {
|
||||
self.column_dictionary.num_terms()
|
||||
}
|
||||
}
|
||||
346
columnar/src/columnar/writer/column_operation.rs
Normal file
346
columnar/src/columnar/writer/column_operation.rs
Normal file
@@ -0,0 +1,346 @@
|
||||
use crate::dictionary::UnorderedId;
|
||||
use crate::utils::{place_bits, pop_first_byte, select_bits};
|
||||
use crate::value::NumericalValue;
|
||||
use crate::{InvalidData, NumericalType, RowId};
|
||||
|
||||
/// When we build a columnar dataframe, we first just group
|
||||
/// all mutations per column, and appends them in append-only buffer
|
||||
/// in the stacker.
|
||||
///
|
||||
/// These ColumnOperation<T> are therefore serialize/deserialized
|
||||
/// in memory.
|
||||
///
|
||||
/// We represents all of these operations as `ColumnOperation`.
|
||||
#[derive(Eq, PartialEq, Debug, Clone, Copy)]
|
||||
pub(super) enum ColumnOperation<T> {
|
||||
NewDoc(RowId),
|
||||
Value(T),
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
|
||||
struct ColumnOperationMetadata {
|
||||
op_type: ColumnOperationType,
|
||||
len: u8,
|
||||
}
|
||||
|
||||
impl ColumnOperationMetadata {
|
||||
fn to_code(self) -> u8 {
|
||||
place_bits::<0, 4>(self.len) | place_bits::<4, 8>(self.op_type.to_code())
|
||||
}
|
||||
|
||||
fn try_from_code(code: u8) -> Result<Self, InvalidData> {
|
||||
let len = select_bits::<0, 4>(code);
|
||||
let typ_code = select_bits::<4, 8>(code);
|
||||
let column_type = ColumnOperationType::try_from_code(typ_code)?;
|
||||
Ok(ColumnOperationMetadata {
|
||||
op_type: column_type,
|
||||
len,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
|
||||
#[repr(u8)]
|
||||
enum ColumnOperationType {
|
||||
NewDoc = 0u8,
|
||||
AddValue = 1u8,
|
||||
}
|
||||
|
||||
impl ColumnOperationType {
|
||||
pub fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub fn try_from_code(code: u8) -> Result<Self, InvalidData> {
|
||||
match code {
|
||||
0 => Ok(Self::NewDoc),
|
||||
1 => Ok(Self::AddValue),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<V: SymbolValue> ColumnOperation<V> {
|
||||
pub(super) fn serialize(self) -> impl AsRef<[u8]> {
|
||||
let mut minibuf = MiniBuffer::default();
|
||||
let column_op_metadata = match self {
|
||||
ColumnOperation::NewDoc(new_doc) => {
|
||||
let symbol_len = new_doc.serialize(&mut minibuf.bytes[1..]);
|
||||
ColumnOperationMetadata {
|
||||
op_type: ColumnOperationType::NewDoc,
|
||||
len: symbol_len,
|
||||
}
|
||||
}
|
||||
ColumnOperation::Value(val) => {
|
||||
let symbol_len = val.serialize(&mut minibuf.bytes[1..]);
|
||||
ColumnOperationMetadata {
|
||||
op_type: ColumnOperationType::AddValue,
|
||||
len: symbol_len,
|
||||
}
|
||||
}
|
||||
};
|
||||
minibuf.bytes[0] = column_op_metadata.to_code();
|
||||
// +1 for the metadata
|
||||
minibuf.len = 1 + column_op_metadata.len;
|
||||
minibuf
|
||||
}
|
||||
|
||||
/// Deserialize a colummn operation.
|
||||
/// Returns None if the buffer is empty.
|
||||
///
|
||||
/// Panics if the payload is invalid:
|
||||
/// this deserialize method is meant to target in memory.
|
||||
pub(super) fn deserialize(bytes: &mut &[u8]) -> Option<Self> {
|
||||
let column_op_metadata_byte = pop_first_byte(bytes)?;
|
||||
let column_op_metadata = ColumnOperationMetadata::try_from_code(column_op_metadata_byte)
|
||||
.expect("Invalid op metadata byte");
|
||||
let symbol_bytes: &[u8];
|
||||
(symbol_bytes, *bytes) = bytes.split_at(column_op_metadata.len as usize);
|
||||
match column_op_metadata.op_type {
|
||||
ColumnOperationType::NewDoc => {
|
||||
let new_doc = u32::deserialize(symbol_bytes);
|
||||
Some(ColumnOperation::NewDoc(new_doc))
|
||||
}
|
||||
ColumnOperationType::AddValue => {
|
||||
let value = V::deserialize(symbol_bytes);
|
||||
Some(ColumnOperation::Value(value))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> From<T> for ColumnOperation<T> {
|
||||
fn from(value: T) -> Self {
|
||||
ColumnOperation::Value(value)
|
||||
}
|
||||
}
|
||||
|
||||
// Serialization trait very local to the writer.
|
||||
// As we write fast fields, we accumulate them in "in memory".
|
||||
// In order to limit memory usage, and in order
|
||||
// to benefit from the stacker, we do this by serialization our data
|
||||
// as "Symbols".
|
||||
#[allow(clippy::from_over_into)]
|
||||
pub(super) trait SymbolValue: Clone + Copy {
|
||||
// Serializes the symbol into the given buffer.
|
||||
// Returns the number of bytes written into the buffer.
|
||||
/// # Panics
|
||||
/// May not exceed 9bytes
|
||||
fn serialize(self, buffer: &mut [u8]) -> u8;
|
||||
// Panics if invalid
|
||||
fn deserialize(bytes: &[u8]) -> Self;
|
||||
}
|
||||
|
||||
impl SymbolValue for bool {
|
||||
fn serialize(self, buffer: &mut [u8]) -> u8 {
|
||||
buffer[0] = u8::from(self);
|
||||
1u8
|
||||
}
|
||||
|
||||
fn deserialize(bytes: &[u8]) -> Self {
|
||||
bytes[0] == 1u8
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
struct MiniBuffer {
|
||||
pub bytes: [u8; 10],
|
||||
pub len: u8,
|
||||
}
|
||||
|
||||
impl AsRef<[u8]> for MiniBuffer {
|
||||
fn as_ref(&self) -> &[u8] {
|
||||
&self.bytes[..self.len as usize]
|
||||
}
|
||||
}
|
||||
|
||||
impl SymbolValue for NumericalValue {
|
||||
fn deserialize(mut bytes: &[u8]) -> Self {
|
||||
let type_code = pop_first_byte(&mut bytes).unwrap();
|
||||
let symbol_type = NumericalType::try_from_code(type_code).unwrap();
|
||||
let mut octet: [u8; 8] = [0u8; 8];
|
||||
octet[..bytes.len()].copy_from_slice(bytes);
|
||||
match symbol_type {
|
||||
NumericalType::U64 => {
|
||||
let val: u64 = u64::from_le_bytes(octet);
|
||||
NumericalValue::U64(val)
|
||||
}
|
||||
NumericalType::I64 => {
|
||||
let encoded: u64 = u64::from_le_bytes(octet);
|
||||
let val: i64 = decode_zig_zag(encoded);
|
||||
NumericalValue::I64(val)
|
||||
}
|
||||
NumericalType::F64 => {
|
||||
debug_assert_eq!(bytes.len(), 8);
|
||||
let val: f64 = f64::from_le_bytes(octet);
|
||||
NumericalValue::F64(val)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// F64: Serialize with a fixed size of 9 bytes
|
||||
/// U64: Serialize without leading zeroes
|
||||
/// I64: ZigZag encoded and serialize without leading zeroes
|
||||
fn serialize(self, output: &mut [u8]) -> u8 {
|
||||
match self {
|
||||
NumericalValue::F64(val) => {
|
||||
output[0] = NumericalType::F64 as u8;
|
||||
output[1..9].copy_from_slice(&val.to_le_bytes());
|
||||
9u8
|
||||
}
|
||||
NumericalValue::U64(val) => {
|
||||
let len = compute_num_bytes_for_u64(val) as u8;
|
||||
output[0] = NumericalType::U64 as u8;
|
||||
output[1..9].copy_from_slice(&val.to_le_bytes());
|
||||
len + 1u8
|
||||
}
|
||||
NumericalValue::I64(val) => {
|
||||
let zig_zag_encoded = encode_zig_zag(val);
|
||||
let len = compute_num_bytes_for_u64(zig_zag_encoded) as u8;
|
||||
output[0] = NumericalType::I64 as u8;
|
||||
output[1..9].copy_from_slice(&zig_zag_encoded.to_le_bytes());
|
||||
len + 1u8
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl SymbolValue for u32 {
|
||||
fn serialize(self, output: &mut [u8]) -> u8 {
|
||||
let len = compute_num_bytes_for_u64(self as u64);
|
||||
output[0..4].copy_from_slice(&self.to_le_bytes());
|
||||
len as u8
|
||||
}
|
||||
|
||||
fn deserialize(bytes: &[u8]) -> Self {
|
||||
let mut quartet: [u8; 4] = [0u8; 4];
|
||||
quartet[..bytes.len()].copy_from_slice(bytes);
|
||||
u32::from_le_bytes(quartet)
|
||||
}
|
||||
}
|
||||
|
||||
impl SymbolValue for UnorderedId {
|
||||
fn serialize(self, output: &mut [u8]) -> u8 {
|
||||
self.0.serialize(output)
|
||||
}
|
||||
|
||||
fn deserialize(bytes: &[u8]) -> Self {
|
||||
UnorderedId(u32::deserialize(bytes))
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_num_bytes_for_u64(val: u64) -> usize {
|
||||
let msb = (64u32 - val.leading_zeros()) as usize;
|
||||
(msb + 7) / 8
|
||||
}
|
||||
|
||||
fn encode_zig_zag(n: i64) -> u64 {
|
||||
((n << 1) ^ (n >> 63)) as u64
|
||||
}
|
||||
|
||||
fn decode_zig_zag(n: u64) -> i64 {
|
||||
((n >> 1) as i64) ^ (-((n & 1) as i64))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[track_caller]
|
||||
fn test_zig_zag_aux(val: i64) {
|
||||
let encoded = super::encode_zig_zag(val);
|
||||
assert_eq!(decode_zig_zag(encoded), val);
|
||||
if let Some(abs_val) = val.checked_abs() {
|
||||
let abs_val = abs_val as u64;
|
||||
assert!(encoded <= abs_val * 2);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_zig_zag() {
|
||||
assert_eq!(encode_zig_zag(0i64), 0u64);
|
||||
assert_eq!(encode_zig_zag(-1i64), 1u64);
|
||||
assert_eq!(encode_zig_zag(1i64), 2u64);
|
||||
test_zig_zag_aux(0i64);
|
||||
test_zig_zag_aux(i64::MIN);
|
||||
test_zig_zag_aux(i64::MAX);
|
||||
}
|
||||
|
||||
use proptest::prelude::any;
|
||||
use proptest::proptest;
|
||||
|
||||
proptest! {
|
||||
#[test]
|
||||
fn test_proptest_zig_zag(val in any::<i64>()) {
|
||||
test_zig_zag_aux(val);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_op_metadata_byte_serialization() {
|
||||
for len in 0..=15 {
|
||||
for op_type in [ColumnOperationType::AddValue, ColumnOperationType::NewDoc] {
|
||||
let column_op_metadata = ColumnOperationMetadata { op_type, len };
|
||||
let column_op_metadata_code = column_op_metadata.to_code();
|
||||
let serdeser_metadata =
|
||||
ColumnOperationMetadata::try_from_code(column_op_metadata_code).unwrap();
|
||||
assert_eq!(column_op_metadata, serdeser_metadata);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[track_caller]
|
||||
fn ser_deser_symbol(column_op: ColumnOperation<NumericalValue>) {
|
||||
let buf = column_op.serialize();
|
||||
let mut buffer = buf.as_ref().to_vec();
|
||||
buffer.extend_from_slice(b"234234");
|
||||
let mut bytes = &buffer[..];
|
||||
let serdeser_symbol = ColumnOperation::deserialize(&mut bytes).unwrap();
|
||||
assert_eq!(bytes.len() + buf.as_ref().len() as usize, buffer.len());
|
||||
assert_eq!(column_op, serdeser_symbol);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compute_num_bytes_for_u64() {
|
||||
assert_eq!(compute_num_bytes_for_u64(0), 0);
|
||||
assert_eq!(compute_num_bytes_for_u64(1), 1);
|
||||
assert_eq!(compute_num_bytes_for_u64(255), 1);
|
||||
assert_eq!(compute_num_bytes_for_u64(256), 2);
|
||||
assert_eq!(compute_num_bytes_for_u64((1 << 16) - 1), 2);
|
||||
assert_eq!(compute_num_bytes_for_u64(1 << 16), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_symbol_serialization() {
|
||||
ser_deser_symbol(ColumnOperation::NewDoc(0));
|
||||
ser_deser_symbol(ColumnOperation::NewDoc(3));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(0i64)));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(1i64)));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(257u64)));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(-257i64)));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(i64::MIN)));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(0u64)));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(u64::MIN)));
|
||||
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(u64::MAX)));
|
||||
}
|
||||
|
||||
fn test_column_operation_unordered_aux(val: u32, expected_len: usize) {
|
||||
let column_op = ColumnOperation::Value(UnorderedId(val));
|
||||
let minibuf = column_op.serialize();
|
||||
assert_eq!(minibuf.as_ref().len() as usize, expected_len);
|
||||
let mut buf = minibuf.as_ref().to_vec();
|
||||
buf.extend_from_slice(&[2, 2, 2, 2, 2, 2]);
|
||||
let mut cursor = &buf[..];
|
||||
let column_op_serdeser: ColumnOperation<UnorderedId> =
|
||||
ColumnOperation::deserialize(&mut cursor).unwrap();
|
||||
assert_eq!(column_op_serdeser, ColumnOperation::Value(UnorderedId(val)));
|
||||
assert_eq!(cursor.len() + expected_len, buf.len());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_operation_unordered() {
|
||||
test_column_operation_unordered_aux(300u32, 3);
|
||||
test_column_operation_unordered_aux(1u32, 2);
|
||||
test_column_operation_unordered_aux(0u32, 1);
|
||||
}
|
||||
}
|
||||
265
columnar/src/columnar/writer/column_writers.rs
Normal file
265
columnar/src/columnar/writer/column_writers.rs
Normal file
@@ -0,0 +1,265 @@
|
||||
use std::cmp::Ordering;
|
||||
|
||||
use stacker::{ExpUnrolledLinkedList, MemoryArena};
|
||||
|
||||
use crate::columnar::writer::column_operation::{ColumnOperation, SymbolValue};
|
||||
use crate::dictionary::{DictionaryBuilder, UnorderedId};
|
||||
use crate::{Cardinality, NumericalType, NumericalValue, RowId};
|
||||
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[repr(u8)]
|
||||
enum DocumentStep {
|
||||
Same = 0,
|
||||
Next = 1,
|
||||
Skipped = 2,
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn delta_with_last_doc(last_doc_opt: Option<u32>, doc: u32) -> DocumentStep {
|
||||
let expected_next_doc = last_doc_opt.map(|last_doc| last_doc + 1).unwrap_or(0u32);
|
||||
match doc.cmp(&expected_next_doc) {
|
||||
Ordering::Less => DocumentStep::Same,
|
||||
Ordering::Equal => DocumentStep::Next,
|
||||
Ordering::Greater => DocumentStep::Skipped,
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Default)]
|
||||
pub struct ColumnWriter {
|
||||
// Detected cardinality of the column so far.
|
||||
cardinality: Cardinality,
|
||||
// Last document inserted.
|
||||
// None if no doc has been added yet.
|
||||
last_doc_opt: Option<u32>,
|
||||
// Buffer containing the serialized values.
|
||||
values: ExpUnrolledLinkedList,
|
||||
}
|
||||
|
||||
impl ColumnWriter {
|
||||
/// Returns an iterator over the Symbol that have been recorded
|
||||
/// for the given column.
|
||||
pub(super) fn operation_iterator<'a, V: SymbolValue>(
|
||||
&self,
|
||||
arena: &MemoryArena,
|
||||
buffer: &'a mut Vec<u8>,
|
||||
) -> impl Iterator<Item = ColumnOperation<V>> + 'a {
|
||||
buffer.clear();
|
||||
self.values.read_to_end(arena, buffer);
|
||||
let mut cursor: &[u8] = &buffer[..];
|
||||
std::iter::from_fn(move || ColumnOperation::deserialize(&mut cursor))
|
||||
}
|
||||
|
||||
/// Records a change of the document being recorded.
|
||||
///
|
||||
/// This function will also update the cardinality of the column
|
||||
/// if necessary.
|
||||
pub(super) fn record<S: SymbolValue>(&mut self, doc: RowId, value: S, arena: &mut MemoryArena) {
|
||||
// Difference between `doc` and the last doc.
|
||||
match delta_with_last_doc(self.last_doc_opt, doc) {
|
||||
DocumentStep::Same => {
|
||||
// This is the last encounterred document.
|
||||
self.cardinality = Cardinality::Multivalued;
|
||||
}
|
||||
DocumentStep::Next => {
|
||||
self.last_doc_opt = Some(doc);
|
||||
self.write_symbol::<S>(ColumnOperation::NewDoc(doc), arena);
|
||||
}
|
||||
DocumentStep::Skipped => {
|
||||
self.cardinality = self.cardinality.max(Cardinality::Optional);
|
||||
self.last_doc_opt = Some(doc);
|
||||
self.write_symbol::<S>(ColumnOperation::NewDoc(doc), arena);
|
||||
}
|
||||
}
|
||||
self.write_symbol(ColumnOperation::Value(value), arena);
|
||||
}
|
||||
|
||||
// Get the cardinality.
|
||||
// The overall number of docs in the column is necessary to
|
||||
// deal with the case where the all docs contain 1 value, except some documents
|
||||
// at the end of the column.
|
||||
pub(crate) fn get_cardinality(&self, num_docs: RowId) -> Cardinality {
|
||||
match delta_with_last_doc(self.last_doc_opt, num_docs) {
|
||||
DocumentStep::Same | DocumentStep::Next => self.cardinality,
|
||||
DocumentStep::Skipped => self.cardinality.max(Cardinality::Optional),
|
||||
}
|
||||
}
|
||||
|
||||
/// Appends a new symbol to the `ColumnWriter`.
|
||||
fn write_symbol<V: SymbolValue>(
|
||||
&mut self,
|
||||
column_operation: ColumnOperation<V>,
|
||||
arena: &mut MemoryArena,
|
||||
) {
|
||||
self.values
|
||||
.writer(arena)
|
||||
.extend_from_slice(column_operation.serialize().as_ref());
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Default)]
|
||||
pub(crate) struct NumericalColumnWriter {
|
||||
compatible_numerical_types: CompatibleNumericalTypes,
|
||||
column_writer: ColumnWriter,
|
||||
}
|
||||
|
||||
/// State used to store what types are still acceptable
|
||||
/// after having seen a set of numerical values.
|
||||
#[derive(Clone, Copy)]
|
||||
struct CompatibleNumericalTypes {
|
||||
all_values_within_i64_range: bool,
|
||||
all_values_within_u64_range: bool,
|
||||
// f64 is always acceptable.
|
||||
}
|
||||
|
||||
impl Default for CompatibleNumericalTypes {
|
||||
fn default() -> CompatibleNumericalTypes {
|
||||
CompatibleNumericalTypes {
|
||||
all_values_within_i64_range: true,
|
||||
all_values_within_u64_range: true,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl CompatibleNumericalTypes {
|
||||
fn accept_value(&mut self, numerical_value: NumericalValue) {
|
||||
match numerical_value {
|
||||
NumericalValue::I64(val_i64) => {
|
||||
let value_within_u64_range = val_i64 >= 0i64;
|
||||
self.all_values_within_u64_range &= value_within_u64_range;
|
||||
}
|
||||
NumericalValue::U64(val_u64) => {
|
||||
let value_within_i64_range = val_u64 < i64::MAX as u64;
|
||||
self.all_values_within_i64_range &= value_within_i64_range;
|
||||
}
|
||||
NumericalValue::F64(_) => {
|
||||
self.all_values_within_i64_range = false;
|
||||
self.all_values_within_u64_range = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn to_numerical_type(self) -> NumericalType {
|
||||
if self.all_values_within_i64_range {
|
||||
NumericalType::I64
|
||||
} else if self.all_values_within_u64_range {
|
||||
NumericalType::U64
|
||||
} else {
|
||||
NumericalType::F64
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl NumericalColumnWriter {
|
||||
pub fn column_type_and_cardinality(&self, num_docs: RowId) -> (NumericalType, Cardinality) {
|
||||
let numerical_type = self.compatible_numerical_types.to_numerical_type();
|
||||
let cardinality = self.column_writer.get_cardinality(num_docs);
|
||||
(numerical_type, cardinality)
|
||||
}
|
||||
|
||||
pub fn record_numerical_value(
|
||||
&mut self,
|
||||
doc: RowId,
|
||||
value: NumericalValue,
|
||||
arena: &mut MemoryArena,
|
||||
) {
|
||||
self.compatible_numerical_types.accept_value(value);
|
||||
self.column_writer.record(doc, value, arena);
|
||||
}
|
||||
|
||||
pub(super) fn operation_iterator<'a>(
|
||||
self,
|
||||
arena: &MemoryArena,
|
||||
buffer: &'a mut Vec<u8>,
|
||||
) -> impl Iterator<Item = ColumnOperation<NumericalValue>> + 'a {
|
||||
self.column_writer.operation_iterator(arena, buffer)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Default)]
|
||||
pub(crate) struct StrColumnWriter {
|
||||
pub(crate) dictionary_id: u32,
|
||||
pub(crate) column_writer: ColumnWriter,
|
||||
}
|
||||
|
||||
impl StrColumnWriter {
|
||||
pub(crate) fn with_dictionary_id(dictionary_id: u32) -> StrColumnWriter {
|
||||
StrColumnWriter {
|
||||
dictionary_id,
|
||||
column_writer: Default::default(),
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn record_bytes(
|
||||
&mut self,
|
||||
doc: RowId,
|
||||
bytes: &[u8],
|
||||
dictionaries: &mut [DictionaryBuilder],
|
||||
arena: &mut MemoryArena,
|
||||
) {
|
||||
let unordered_id = dictionaries[self.dictionary_id as usize].get_or_allocate_id(bytes);
|
||||
self.column_writer.record(doc, unordered_id, arena);
|
||||
}
|
||||
|
||||
pub(super) fn operation_iterator<'a>(
|
||||
&self,
|
||||
arena: &MemoryArena,
|
||||
byte_buffer: &'a mut Vec<u8>,
|
||||
) -> impl Iterator<Item = ColumnOperation<UnorderedId>> + 'a {
|
||||
self.column_writer.operation_iterator(arena, byte_buffer)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_delta_with_last_doc() {
|
||||
assert_eq!(delta_with_last_doc(None, 0u32), DocumentStep::Next);
|
||||
assert_eq!(delta_with_last_doc(None, 1u32), DocumentStep::Skipped);
|
||||
assert_eq!(delta_with_last_doc(None, 2u32), DocumentStep::Skipped);
|
||||
assert_eq!(delta_with_last_doc(Some(0u32), 0u32), DocumentStep::Same);
|
||||
assert_eq!(delta_with_last_doc(Some(1u32), 1u32), DocumentStep::Same);
|
||||
assert_eq!(delta_with_last_doc(Some(1u32), 2u32), DocumentStep::Next);
|
||||
assert_eq!(delta_with_last_doc(Some(1u32), 3u32), DocumentStep::Skipped);
|
||||
assert_eq!(delta_with_last_doc(Some(1u32), 4u32), DocumentStep::Skipped);
|
||||
}
|
||||
|
||||
#[track_caller]
|
||||
fn test_column_writer_coercion_iter_aux(
|
||||
values: impl Iterator<Item = NumericalValue>,
|
||||
expected_numerical_type: NumericalType,
|
||||
) {
|
||||
let mut compatible_numerical_types = CompatibleNumericalTypes::default();
|
||||
for value in values {
|
||||
compatible_numerical_types.accept_value(value);
|
||||
}
|
||||
assert_eq!(
|
||||
compatible_numerical_types.to_numerical_type(),
|
||||
expected_numerical_type
|
||||
);
|
||||
}
|
||||
|
||||
#[track_caller]
|
||||
fn test_column_writer_coercion_aux(
|
||||
values: &[NumericalValue],
|
||||
expected_numerical_type: NumericalType,
|
||||
) {
|
||||
test_column_writer_coercion_iter_aux(values.iter().copied(), expected_numerical_type);
|
||||
test_column_writer_coercion_iter_aux(values.iter().rev().copied(), expected_numerical_type);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_writer_coercion() {
|
||||
test_column_writer_coercion_aux(&[], NumericalType::I64);
|
||||
test_column_writer_coercion_aux(&[1i64.into()], NumericalType::I64);
|
||||
test_column_writer_coercion_aux(&[1u64.into()], NumericalType::I64);
|
||||
// We don't detect exact integer at the moment. We could!
|
||||
test_column_writer_coercion_aux(&[1f64.into()], NumericalType::F64);
|
||||
test_column_writer_coercion_aux(&[u64::MAX.into()], NumericalType::U64);
|
||||
test_column_writer_coercion_aux(&[(i64::MAX as u64).into()], NumericalType::U64);
|
||||
test_column_writer_coercion_aux(&[(1u64 << 63).into()], NumericalType::U64);
|
||||
test_column_writer_coercion_aux(&[1i64.into(), 1u64.into()], NumericalType::I64);
|
||||
test_column_writer_coercion_aux(&[u64::MAX.into(), (-1i64).into()], NumericalType::F64);
|
||||
}
|
||||
}
|
||||
543
columnar/src/columnar/writer/mod.rs
Normal file
543
columnar/src/columnar/writer/mod.rs
Normal file
@@ -0,0 +1,543 @@
|
||||
mod column_operation;
|
||||
mod column_writers;
|
||||
mod serializer;
|
||||
mod value_index;
|
||||
|
||||
use std::io;
|
||||
|
||||
use column_operation::ColumnOperation;
|
||||
use common::CountingWriter;
|
||||
use serializer::ColumnarSerializer;
|
||||
use stacker::{Addr, ArenaHashMap, MemoryArena};
|
||||
|
||||
use crate::column_index::SerializableColumnIndex;
|
||||
use crate::column_values::{ColumnValues, MonotonicallyMappableToU64, VecColumn};
|
||||
use crate::columnar::column_type::{ColumnType, ColumnTypeCategory};
|
||||
use crate::columnar::writer::column_writers::{
|
||||
ColumnWriter, NumericalColumnWriter, StrColumnWriter,
|
||||
};
|
||||
use crate::columnar::writer::value_index::{IndexBuilder, PreallocatedIndexBuilders};
|
||||
use crate::dictionary::{DictionaryBuilder, TermIdMapping, UnorderedId};
|
||||
use crate::value::{Coerce, NumericalType, NumericalValue};
|
||||
use crate::{Cardinality, RowId};
|
||||
|
||||
/// This is a set of buffers that are used to temporarily write the values into before passing them
|
||||
/// to the fast field codecs.
|
||||
#[derive(Default)]
|
||||
struct SpareBuffers {
|
||||
value_index_builders: PreallocatedIndexBuilders,
|
||||
i64_values: Vec<i64>,
|
||||
u64_values: Vec<u64>,
|
||||
f64_values: Vec<f64>,
|
||||
bool_values: Vec<bool>,
|
||||
}
|
||||
|
||||
/// Makes it possible to create a new columnar.
|
||||
///
|
||||
/// ```rust
|
||||
/// use tantivy_columnar::ColumnarWriter;
|
||||
///
|
||||
/// let mut columnar_writer = ColumnarWriter::default();
|
||||
/// columnar_writer.record_str(0u32 /* doc id */, "product_name", "Red backpack");
|
||||
/// columnar_writer.record_numerical(0u32 /* doc id */, "price", 10u64);
|
||||
/// columnar_writer.record_str(1u32 /* doc id */, "product_name", "Apple");
|
||||
/// columnar_writer.record_numerical(0u32 /* doc id */, "price", 10.5f64); //< uh oh we ended up mixing integer and floats.
|
||||
/// let mut wrt: Vec<u8> = Vec::new();
|
||||
/// columnar_writer.serialize(2u32, &mut wrt).unwrap();
|
||||
/// ```
|
||||
pub struct ColumnarWriter {
|
||||
numerical_field_hash_map: ArenaHashMap,
|
||||
bool_field_hash_map: ArenaHashMap,
|
||||
bytes_field_hash_map: ArenaHashMap,
|
||||
arena: MemoryArena,
|
||||
// Dictionaries used to store dictionary-encoded values.
|
||||
dictionaries: Vec<DictionaryBuilder>,
|
||||
buffers: SpareBuffers,
|
||||
}
|
||||
|
||||
impl Default for ColumnarWriter {
|
||||
fn default() -> Self {
|
||||
ColumnarWriter {
|
||||
numerical_field_hash_map: ArenaHashMap::new(10_000),
|
||||
bool_field_hash_map: ArenaHashMap::new(10_000),
|
||||
bytes_field_hash_map: ArenaHashMap::new(10_000),
|
||||
dictionaries: Vec::new(),
|
||||
arena: MemoryArena::default(),
|
||||
buffers: SpareBuffers::default(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ColumnarWriter {
|
||||
pub fn record_numerical<T: Into<NumericalValue> + Copy>(
|
||||
&mut self,
|
||||
doc: RowId,
|
||||
column_name: &str,
|
||||
numerical_value: T,
|
||||
) {
|
||||
assert!(
|
||||
!column_name.as_bytes().contains(&0u8),
|
||||
"key may not contain the 0 byte"
|
||||
);
|
||||
let (hash_map, arena) = (&mut self.numerical_field_hash_map, &mut self.arena);
|
||||
hash_map.mutate_or_create(
|
||||
column_name.as_bytes(),
|
||||
|column_opt: Option<NumericalColumnWriter>| {
|
||||
let mut column: NumericalColumnWriter = column_opt.unwrap_or_default();
|
||||
column.record_numerical_value(doc, numerical_value.into(), arena);
|
||||
column
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
pub fn record_bool(&mut self, doc: RowId, column_name: &str, val: bool) {
|
||||
assert!(
|
||||
!column_name.as_bytes().contains(&0u8),
|
||||
"key may not contain the 0 byte"
|
||||
);
|
||||
let (hash_map, arena) = (&mut self.bool_field_hash_map, &mut self.arena);
|
||||
hash_map.mutate_or_create(
|
||||
column_name.as_bytes(),
|
||||
|column_opt: Option<ColumnWriter>| {
|
||||
let mut column: ColumnWriter = column_opt.unwrap_or_default();
|
||||
column.record(doc, val, arena);
|
||||
column
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
pub fn record_str(&mut self, doc: RowId, column_name: &str, value: &str) {
|
||||
assert!(
|
||||
!column_name.as_bytes().contains(&0u8),
|
||||
"key may not contain the 0 byte"
|
||||
);
|
||||
let (hash_map, arena, dictionaries) = (
|
||||
&mut self.bytes_field_hash_map,
|
||||
&mut self.arena,
|
||||
&mut self.dictionaries,
|
||||
);
|
||||
hash_map.mutate_or_create(
|
||||
column_name.as_bytes(),
|
||||
|column_opt: Option<StrColumnWriter>| {
|
||||
let mut column: StrColumnWriter = column_opt.unwrap_or_else(|| {
|
||||
// Each column has its own dictionary
|
||||
let dictionary_id = dictionaries.len() as u32;
|
||||
dictionaries.push(DictionaryBuilder::default());
|
||||
StrColumnWriter::with_dictionary_id(dictionary_id)
|
||||
});
|
||||
column.record_bytes(doc, value.as_bytes(), dictionaries, arena);
|
||||
column
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
pub fn serialize(&mut self, num_docs: RowId, wrt: &mut dyn io::Write) -> io::Result<()> {
|
||||
let mut serializer = ColumnarSerializer::new(wrt);
|
||||
let mut field_columns: Vec<(&[u8], ColumnTypeCategory, Addr)> = self
|
||||
.numerical_field_hash_map
|
||||
.iter()
|
||||
.map(|(term, addr, _)| (term, ColumnTypeCategory::Numerical, addr))
|
||||
.collect();
|
||||
field_columns.extend(
|
||||
self.bytes_field_hash_map
|
||||
.iter()
|
||||
.map(|(term, addr, _)| (term, ColumnTypeCategory::Str, addr)),
|
||||
);
|
||||
field_columns.extend(
|
||||
self.bool_field_hash_map
|
||||
.iter()
|
||||
.map(|(term, addr, _)| (term, ColumnTypeCategory::Bool, addr)),
|
||||
);
|
||||
field_columns.sort_unstable_by_key(|(column_name, col_type, _)| (*column_name, *col_type));
|
||||
let (arena, buffers, dictionaries) = (&self.arena, &mut self.buffers, &self.dictionaries);
|
||||
let mut symbol_byte_buffer: Vec<u8> = Vec::new();
|
||||
for (column_name, bytes_or_numerical, addr) in field_columns {
|
||||
match bytes_or_numerical {
|
||||
ColumnTypeCategory::Bool => {
|
||||
let column_writer: ColumnWriter = self.bool_field_hash_map.read(addr);
|
||||
let cardinality = column_writer.get_cardinality(num_docs);
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, ColumnType::Bool);
|
||||
serialize_bool_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
column_writer.operation_iterator(arena, &mut symbol_byte_buffer),
|
||||
buffers,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
}
|
||||
ColumnTypeCategory::Str => {
|
||||
let str_column_writer: StrColumnWriter = self.bytes_field_hash_map.read(addr);
|
||||
let dictionary_builder =
|
||||
&dictionaries[str_column_writer.dictionary_id as usize];
|
||||
let cardinality = str_column_writer.column_writer.get_cardinality(num_docs);
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, ColumnType::Bytes);
|
||||
serialize_bytes_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
dictionary_builder,
|
||||
str_column_writer.operation_iterator(arena, &mut symbol_byte_buffer),
|
||||
buffers,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
}
|
||||
ColumnTypeCategory::Numerical => {
|
||||
let numerical_column_writer: NumericalColumnWriter =
|
||||
self.numerical_field_hash_map.read(addr);
|
||||
let (numerical_type, cardinality) =
|
||||
numerical_column_writer.column_type_and_cardinality(num_docs);
|
||||
let mut column_serializer = serializer
|
||||
.serialize_column(column_name, ColumnType::Numerical(numerical_type));
|
||||
serialize_numerical_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
numerical_type,
|
||||
numerical_column_writer.operation_iterator(arena, &mut symbol_byte_buffer),
|
||||
buffers,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
}
|
||||
};
|
||||
}
|
||||
serializer.finalize()?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
fn serialize_bytes_column(
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
dictionary_builder: &DictionaryBuilder,
|
||||
operation_it: impl Iterator<Item = ColumnOperation<UnorderedId>>,
|
||||
buffers: &mut SpareBuffers,
|
||||
wrt: impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let SpareBuffers {
|
||||
value_index_builders,
|
||||
u64_values,
|
||||
..
|
||||
} = buffers;
|
||||
let mut counting_writer = CountingWriter::wrap(wrt);
|
||||
let term_id_mapping: TermIdMapping = dictionary_builder.serialize(&mut counting_writer)?;
|
||||
let dictionary_num_bytes: u32 = counting_writer.written_bytes() as u32;
|
||||
let mut wrt = counting_writer.finish();
|
||||
let operation_iterator = operation_it.map(|symbol: ColumnOperation<UnorderedId>| {
|
||||
// We map unordered ids to ordered ids.
|
||||
match symbol {
|
||||
ColumnOperation::Value(unordered_id) => {
|
||||
let ordered_id = term_id_mapping.to_ord(unordered_id);
|
||||
ColumnOperation::Value(ordered_id.0 as u64)
|
||||
}
|
||||
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
|
||||
}
|
||||
});
|
||||
serialize_column(
|
||||
operation_iterator,
|
||||
cardinality,
|
||||
num_docs,
|
||||
value_index_builders,
|
||||
u64_values,
|
||||
&mut wrt,
|
||||
)?;
|
||||
wrt.write_all(&dictionary_num_bytes.to_le_bytes()[..])?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn serialize_numerical_column(
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
numerical_type: NumericalType,
|
||||
op_iterator: impl Iterator<Item = ColumnOperation<NumericalValue>>,
|
||||
buffers: &mut SpareBuffers,
|
||||
wrt: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let SpareBuffers {
|
||||
value_index_builders,
|
||||
u64_values,
|
||||
i64_values,
|
||||
f64_values,
|
||||
..
|
||||
} = buffers;
|
||||
match numerical_type {
|
||||
NumericalType::I64 => {
|
||||
serialize_column(
|
||||
coerce_numerical_symbol::<i64>(op_iterator),
|
||||
cardinality,
|
||||
num_docs,
|
||||
value_index_builders,
|
||||
i64_values,
|
||||
wrt,
|
||||
)?;
|
||||
}
|
||||
NumericalType::U64 => {
|
||||
serialize_column(
|
||||
coerce_numerical_symbol::<u64>(op_iterator),
|
||||
cardinality,
|
||||
num_docs,
|
||||
value_index_builders,
|
||||
u64_values,
|
||||
wrt,
|
||||
)?;
|
||||
}
|
||||
NumericalType::F64 => {
|
||||
serialize_column(
|
||||
coerce_numerical_symbol::<f64>(op_iterator),
|
||||
cardinality,
|
||||
num_docs,
|
||||
value_index_builders,
|
||||
f64_values,
|
||||
wrt,
|
||||
)?;
|
||||
}
|
||||
};
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn serialize_bool_column(
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
column_operations_it: impl Iterator<Item = ColumnOperation<bool>>,
|
||||
buffers: &mut SpareBuffers,
|
||||
wrt: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let SpareBuffers {
|
||||
value_index_builders,
|
||||
bool_values,
|
||||
..
|
||||
} = buffers;
|
||||
serialize_column(
|
||||
column_operations_it,
|
||||
cardinality,
|
||||
num_docs,
|
||||
value_index_builders,
|
||||
bool_values,
|
||||
wrt,
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn serialize_column<
|
||||
T: Copy + Default + std::fmt::Debug + Send + Sync + MonotonicallyMappableToU64 + PartialOrd,
|
||||
>(
|
||||
op_iterator: impl Iterator<Item = ColumnOperation<T>>,
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
value_index_builders: &mut PreallocatedIndexBuilders,
|
||||
values: &mut Vec<T>,
|
||||
mut wrt: impl io::Write,
|
||||
) -> io::Result<()>
|
||||
where
|
||||
for<'a> VecColumn<'a, T>: ColumnValues<T>,
|
||||
{
|
||||
values.clear();
|
||||
let serializable_column_index = match cardinality {
|
||||
Cardinality::Full => {
|
||||
consume_operation_iterator(
|
||||
op_iterator,
|
||||
value_index_builders.borrow_required_index_builder(),
|
||||
values,
|
||||
);
|
||||
SerializableColumnIndex::Full
|
||||
}
|
||||
Cardinality::Optional => {
|
||||
let optional_index_builder = value_index_builders.borrow_optional_index_builder();
|
||||
consume_operation_iterator(op_iterator, optional_index_builder, values);
|
||||
let optional_index = optional_index_builder.finish(num_docs);
|
||||
SerializableColumnIndex::Optional(Box::new(optional_index))
|
||||
}
|
||||
Cardinality::Multivalued => {
|
||||
let multivalued_index_builder = value_index_builders.borrow_multivalued_index_builder();
|
||||
consume_operation_iterator(op_iterator, multivalued_index_builder, values);
|
||||
let multivalued_index = multivalued_index_builder.finish(num_docs);
|
||||
todo!();
|
||||
// SerializableColumnIndex::Multivalued(Box::new(multivalued_index))
|
||||
}
|
||||
};
|
||||
crate::column::serialize_column_u64(
|
||||
serializable_column_index,
|
||||
&VecColumn::from(&values[..]),
|
||||
&mut wrt,
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn coerce_numerical_symbol<T>(
|
||||
operation_iterator: impl Iterator<Item = ColumnOperation<NumericalValue>>,
|
||||
) -> impl Iterator<Item = ColumnOperation<T>>
|
||||
where T: Coerce {
|
||||
operation_iterator.map(|symbol| match symbol {
|
||||
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
|
||||
ColumnOperation::Value(numerical_value) => {
|
||||
ColumnOperation::Value(Coerce::coerce(numerical_value))
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn consume_operation_iterator<T: std::fmt::Debug, TIndexBuilder: IndexBuilder>(
|
||||
operation_iterator: impl Iterator<Item = ColumnOperation<T>>,
|
||||
index_builder: &mut TIndexBuilder,
|
||||
values: &mut Vec<T>,
|
||||
) {
|
||||
for symbol in operation_iterator {
|
||||
match symbol {
|
||||
ColumnOperation::NewDoc(doc) => {
|
||||
index_builder.record_row(doc);
|
||||
}
|
||||
ColumnOperation::Value(value) => {
|
||||
index_builder.record_value();
|
||||
values.push(value);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// /// Serializes the column with the codec with the best estimate on the data.
|
||||
// fn serialize_numerical<T: MonotonicallyMappableToU64>(
|
||||
// value_index: ValueIndexInfo,
|
||||
// typed_column: impl Column<T>,
|
||||
// output: &mut impl io::Write,
|
||||
// codecs: &[FastFieldCodecType],
|
||||
// ) -> io::Result<()> {
|
||||
|
||||
// let counting_writer = CountingWriter::wrap(output);
|
||||
// serialize_value_index(value_index, output)?;
|
||||
// let value_index_len = counting_writer.written_bytes();
|
||||
// let output = counting_writer.finish();
|
||||
|
||||
// serialize_column(value_index, output)?;
|
||||
// let column = monotonic_map_column(
|
||||
// typed_column,
|
||||
// crate::column::monotonic_mapping::StrictlyMonotonicMappingToInternal::<T>::new(),
|
||||
// );
|
||||
// let header = Header::compute_header(&column, codecs).ok_or_else(|| {
|
||||
// io::Error::new(
|
||||
// io::ErrorKind::InvalidInput,
|
||||
// format!(
|
||||
// "Data cannot be serialized with this list of codec. {:?}",
|
||||
// codecs
|
||||
// ),
|
||||
// )
|
||||
// })?;
|
||||
// header.serialize(output)?;
|
||||
// let normalized_column = header.normalize_column(column);
|
||||
// assert_eq!(normalized_column.min_value(), 0u64);
|
||||
// serialize_given_codec(normalized_column, header.codec_type, output)?;
|
||||
|
||||
// let column_header = ColumnFooter {
|
||||
// value_index_len: todo!(),
|
||||
// cardinality: todo!(),
|
||||
// };
|
||||
|
||||
// let null_index_footer = NullIndexFooter {
|
||||
// cardinality: value_index.get_cardinality(),
|
||||
// null_index_codec: NullIndexCodec::Full,
|
||||
// null_index_byte_range: 0..0,
|
||||
// };
|
||||
// append_null_index_footer(output, null_index_footer)?;
|
||||
// Ok(())
|
||||
// }
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use column_operation::ColumnOperation;
|
||||
use stacker::MemoryArena;
|
||||
|
||||
use super::*;
|
||||
use crate::value::NumericalValue;
|
||||
|
||||
#[test]
|
||||
fn test_column_writer_required_simple() {
|
||||
let mut arena = MemoryArena::default();
|
||||
let mut column_writer = super::ColumnWriter::default();
|
||||
column_writer.record(0u32, NumericalValue::from(14i64), &mut arena);
|
||||
column_writer.record(1u32, NumericalValue::from(15i64), &mut arena);
|
||||
column_writer.record(2u32, NumericalValue::from(-16i64), &mut arena);
|
||||
assert_eq!(column_writer.get_cardinality(3), Cardinality::Full);
|
||||
let mut buffer = Vec::new();
|
||||
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
|
||||
.operation_iterator(&mut arena, &mut buffer)
|
||||
.collect();
|
||||
assert_eq!(symbols.len(), 6);
|
||||
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
|
||||
assert!(matches!(
|
||||
symbols[1],
|
||||
ColumnOperation::Value(NumericalValue::I64(14i64))
|
||||
));
|
||||
assert!(matches!(symbols[2], ColumnOperation::NewDoc(1u32)));
|
||||
assert!(matches!(
|
||||
symbols[3],
|
||||
ColumnOperation::Value(NumericalValue::I64(15i64))
|
||||
));
|
||||
assert!(matches!(symbols[4], ColumnOperation::NewDoc(2u32)));
|
||||
assert!(matches!(
|
||||
symbols[5],
|
||||
ColumnOperation::Value(NumericalValue::I64(-16i64))
|
||||
));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_writer_optional_cardinality_missing_first() {
|
||||
let mut arena = MemoryArena::default();
|
||||
let mut column_writer = super::ColumnWriter::default();
|
||||
column_writer.record(1u32, NumericalValue::from(15i64), &mut arena);
|
||||
column_writer.record(2u32, NumericalValue::from(-16i64), &mut arena);
|
||||
assert_eq!(column_writer.get_cardinality(3), Cardinality::Optional);
|
||||
let mut buffer = Vec::new();
|
||||
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
|
||||
.operation_iterator(&mut arena, &mut buffer)
|
||||
.collect();
|
||||
assert_eq!(symbols.len(), 4);
|
||||
assert!(matches!(symbols[0], ColumnOperation::NewDoc(1u32)));
|
||||
assert!(matches!(
|
||||
symbols[1],
|
||||
ColumnOperation::Value(NumericalValue::I64(15i64))
|
||||
));
|
||||
assert!(matches!(symbols[2], ColumnOperation::NewDoc(2u32)));
|
||||
assert!(matches!(
|
||||
symbols[3],
|
||||
ColumnOperation::Value(NumericalValue::I64(-16i64))
|
||||
));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_writer_optional_cardinality_missing_last() {
|
||||
let mut arena = MemoryArena::default();
|
||||
let mut column_writer = super::ColumnWriter::default();
|
||||
column_writer.record(0u32, NumericalValue::from(15i64), &mut arena);
|
||||
assert_eq!(column_writer.get_cardinality(2), Cardinality::Optional);
|
||||
let mut buffer = Vec::new();
|
||||
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
|
||||
.operation_iterator(&mut arena, &mut buffer)
|
||||
.collect();
|
||||
assert_eq!(symbols.len(), 2);
|
||||
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
|
||||
assert!(matches!(
|
||||
symbols[1],
|
||||
ColumnOperation::Value(NumericalValue::I64(15i64))
|
||||
));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_writer_multivalued() {
|
||||
let mut arena = MemoryArena::default();
|
||||
let mut column_writer = super::ColumnWriter::default();
|
||||
column_writer.record(0u32, NumericalValue::from(16i64), &mut arena);
|
||||
column_writer.record(0u32, NumericalValue::from(17i64), &mut arena);
|
||||
assert_eq!(column_writer.get_cardinality(1), Cardinality::Multivalued);
|
||||
let mut buffer = Vec::new();
|
||||
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
|
||||
.operation_iterator(&mut arena, &mut buffer)
|
||||
.collect();
|
||||
assert_eq!(symbols.len(), 3);
|
||||
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
|
||||
assert!(matches!(
|
||||
symbols[1],
|
||||
ColumnOperation::Value(NumericalValue::I64(16i64))
|
||||
));
|
||||
assert!(matches!(
|
||||
symbols[2],
|
||||
ColumnOperation::Value(NumericalValue::I64(17i64))
|
||||
));
|
||||
}
|
||||
}
|
||||
106
columnar/src/columnar/writer/serializer.rs
Normal file
106
columnar/src/columnar/writer/serializer.rs
Normal file
@@ -0,0 +1,106 @@
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
|
||||
use common::CountingWriter;
|
||||
use sstable::value::RangeValueWriter;
|
||||
use sstable::RangeSSTable;
|
||||
|
||||
use crate::columnar::ColumnType;
|
||||
|
||||
pub struct ColumnarSerializer<W: io::Write> {
|
||||
wrt: CountingWriter<W>,
|
||||
sstable_range: sstable::Writer<Vec<u8>, RangeValueWriter>,
|
||||
prepare_key_buffer: Vec<u8>,
|
||||
}
|
||||
|
||||
/// Returns a key consisting of the concatenation of the key and the column_type_and_cardinality
|
||||
/// code.
|
||||
fn prepare_key(key: &[u8], column_type: ColumnType, buffer: &mut Vec<u8>) {
|
||||
buffer.clear();
|
||||
buffer.extend_from_slice(key);
|
||||
buffer.push(0u8);
|
||||
buffer.push(column_type.to_code());
|
||||
}
|
||||
|
||||
impl<W: io::Write> ColumnarSerializer<W> {
|
||||
pub(crate) fn new(wrt: W) -> ColumnarSerializer<W> {
|
||||
let sstable_range: sstable::Writer<Vec<u8>, RangeValueWriter> =
|
||||
sstable::Dictionary::<RangeSSTable>::builder(Vec::with_capacity(100_000)).unwrap();
|
||||
ColumnarSerializer {
|
||||
wrt: CountingWriter::wrap(wrt),
|
||||
sstable_range,
|
||||
prepare_key_buffer: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn serialize_column<'a>(
|
||||
&'a mut self,
|
||||
column_name: &[u8],
|
||||
column_type: ColumnType,
|
||||
) -> impl io::Write + 'a {
|
||||
let start_offset = self.wrt.written_bytes();
|
||||
prepare_key(column_name, column_type, &mut self.prepare_key_buffer);
|
||||
ColumnSerializer {
|
||||
columnar_serializer: self,
|
||||
start_offset,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn finalize(mut self) -> io::Result<()> {
|
||||
let sstable_bytes: Vec<u8> = self.sstable_range.finish()?;
|
||||
let sstable_num_bytes: u64 = sstable_bytes.len() as u64;
|
||||
self.wrt.write_all(&sstable_bytes)?;
|
||||
self.wrt.write_all(&sstable_num_bytes.to_le_bytes()[..])?;
|
||||
self.wrt
|
||||
.write_all(&super::super::format_version::footer())?;
|
||||
self.wrt.flush()?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
struct ColumnSerializer<'a, W: io::Write> {
|
||||
columnar_serializer: &'a mut ColumnarSerializer<W>,
|
||||
start_offset: u64,
|
||||
}
|
||||
|
||||
impl<'a, W: io::Write> Drop for ColumnSerializer<'a, W> {
|
||||
fn drop(&mut self) {
|
||||
let end_offset: u64 = self.columnar_serializer.wrt.written_bytes();
|
||||
let byte_range = self.start_offset..end_offset;
|
||||
self.columnar_serializer.sstable_range.insert_cannot_fail(
|
||||
&self.columnar_serializer.prepare_key_buffer[..],
|
||||
&byte_range,
|
||||
);
|
||||
self.columnar_serializer.prepare_key_buffer.clear();
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, W: io::Write> io::Write for ColumnSerializer<'a, W> {
|
||||
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
|
||||
self.columnar_serializer.wrt.write(buf)
|
||||
}
|
||||
|
||||
fn flush(&mut self) -> io::Result<()> {
|
||||
self.columnar_serializer.wrt.flush()
|
||||
}
|
||||
|
||||
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
|
||||
self.columnar_serializer.wrt.write_all(buf)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::columnar::column_type::ColumnType;
|
||||
|
||||
#[test]
|
||||
fn test_prepare_key_bytes() {
|
||||
let mut buffer: Vec<u8> = b"somegarbage".to_vec();
|
||||
prepare_key(b"root\0child", ColumnType::Bytes, &mut buffer);
|
||||
assert_eq!(buffer.len(), 12);
|
||||
assert_eq!(&buffer[..10], b"root\0child");
|
||||
assert_eq!(buffer[10], 0u8);
|
||||
assert_eq!(buffer[11], ColumnType::Bytes.to_code());
|
||||
}
|
||||
}
|
||||
205
columnar/src/columnar/writer/value_index.rs
Normal file
205
columnar/src/columnar/writer/value_index.rs
Normal file
@@ -0,0 +1,205 @@
|
||||
use crate::column_index::SerializableOptionalIndex;
|
||||
use crate::column_values::{ColumnValues, VecColumn};
|
||||
use crate::RowId;
|
||||
|
||||
/// The `IndexBuilder` interprets a sequence of
|
||||
/// calls of the form:
|
||||
/// (record_doc,record_value+)*
|
||||
/// and can then serialize the results into an index to associate docids with their value[s].
|
||||
///
|
||||
/// It has different implementation depending on whether the
|
||||
/// cardinality is required, optional, or multivalued.
|
||||
pub(crate) trait IndexBuilder {
|
||||
fn record_row(&mut self, doc: RowId);
|
||||
#[inline]
|
||||
fn record_value(&mut self) {}
|
||||
}
|
||||
|
||||
/// The FullIndexBuilder does nothing.
|
||||
#[derive(Default)]
|
||||
pub struct FullIndexBuilder;
|
||||
|
||||
impl IndexBuilder for FullIndexBuilder {
|
||||
#[inline(always)]
|
||||
fn record_row(&mut self, _doc: RowId) {}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct OptionalIndexBuilder {
|
||||
docs: Vec<RowId>,
|
||||
}
|
||||
|
||||
struct SingleValueArrayIndex<'a> {
|
||||
// RowIds with a value, in a strictly increasing order
|
||||
row_ids: &'a [RowId],
|
||||
num_rows: RowId,
|
||||
}
|
||||
|
||||
impl<'a> SerializableOptionalIndex<'a> for SingleValueArrayIndex<'a> {
|
||||
fn num_rows(&self) -> RowId {
|
||||
self.num_rows
|
||||
}
|
||||
|
||||
fn non_null_rows(&self) -> Box<dyn Iterator<Item = RowId> + 'a> {
|
||||
Box::new(self.row_ids.iter().copied())
|
||||
}
|
||||
}
|
||||
|
||||
impl OptionalIndexBuilder {
|
||||
fn num_non_nulls(&self) -> u32 {
|
||||
self.docs.len() as u32
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
|
||||
Box::new(self.docs.iter().copied())
|
||||
}
|
||||
}
|
||||
|
||||
impl OptionalIndexBuilder {
|
||||
pub fn finish<'a>(&'a mut self, num_rows: RowId) -> impl SerializableOptionalIndex + 'a {
|
||||
debug_assert!(self
|
||||
.docs
|
||||
.last()
|
||||
.copied()
|
||||
.map(|last_doc| last_doc < num_rows)
|
||||
.unwrap_or(true));
|
||||
SingleValueArrayIndex {
|
||||
row_ids: &self.docs[..],
|
||||
num_rows,
|
||||
}
|
||||
}
|
||||
|
||||
fn reset(&mut self) {
|
||||
self.docs.clear();
|
||||
}
|
||||
}
|
||||
|
||||
impl IndexBuilder for OptionalIndexBuilder {
|
||||
#[inline(always)]
|
||||
fn record_row(&mut self, doc: RowId) {
|
||||
debug_assert!(self
|
||||
.docs
|
||||
.last()
|
||||
.copied()
|
||||
.map(|prev_doc| doc > prev_doc)
|
||||
.unwrap_or(true));
|
||||
self.docs.push(doc);
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct MultivaluedIndexBuilder {
|
||||
start_offsets: Vec<RowId>,
|
||||
total_num_vals_seen: u32,
|
||||
}
|
||||
|
||||
impl MultivaluedIndexBuilder {
|
||||
pub fn finish(&mut self, num_docs: RowId) -> impl ColumnValues<u32> + '_ {
|
||||
self.start_offsets
|
||||
.resize(num_docs as usize, self.total_num_vals_seen);
|
||||
VecColumn {
|
||||
values: &&self.start_offsets[..],
|
||||
min_value: 0,
|
||||
max_value: self.start_offsets.last().copied().unwrap_or(0),
|
||||
}
|
||||
}
|
||||
|
||||
fn reset(&mut self) {
|
||||
self.start_offsets.clear();
|
||||
self.start_offsets.push(0u32);
|
||||
self.total_num_vals_seen = 0;
|
||||
}
|
||||
}
|
||||
|
||||
impl IndexBuilder for MultivaluedIndexBuilder {
|
||||
fn record_row(&mut self, row_id: RowId) {
|
||||
self.start_offsets
|
||||
.resize(row_id as usize + 1, self.total_num_vals_seen);
|
||||
}
|
||||
|
||||
fn record_value(&mut self) {
|
||||
self.total_num_vals_seen += 1;
|
||||
}
|
||||
}
|
||||
|
||||
/// The `SpareIndexBuilders` is there to avoid allocating a
|
||||
/// new index builder for every single column.
|
||||
#[derive(Default)]
|
||||
pub struct PreallocatedIndexBuilders {
|
||||
required_index_builder: FullIndexBuilder,
|
||||
optional_index_builder: OptionalIndexBuilder,
|
||||
multivalued_index_builder: MultivaluedIndexBuilder,
|
||||
}
|
||||
|
||||
impl PreallocatedIndexBuilders {
|
||||
pub fn borrow_required_index_builder(&mut self) -> &mut FullIndexBuilder {
|
||||
&mut self.required_index_builder
|
||||
}
|
||||
|
||||
pub fn borrow_optional_index_builder(&mut self) -> &mut OptionalIndexBuilder {
|
||||
self.optional_index_builder.reset();
|
||||
&mut self.optional_index_builder
|
||||
}
|
||||
|
||||
pub fn borrow_multivalued_index_builder(&mut self) -> &mut MultivaluedIndexBuilder {
|
||||
self.multivalued_index_builder.reset();
|
||||
&mut self.multivalued_index_builder
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_optional_value_index_builder() {
|
||||
let mut opt_value_index_builder = OptionalIndexBuilder::default();
|
||||
opt_value_index_builder.record_row(0u32);
|
||||
opt_value_index_builder.record_value();
|
||||
assert_eq!(
|
||||
&opt_value_index_builder
|
||||
.finish(1u32)
|
||||
.non_null_rows()
|
||||
.collect::<Vec<u32>>(),
|
||||
&[0]
|
||||
);
|
||||
opt_value_index_builder.reset();
|
||||
opt_value_index_builder.record_row(1u32);
|
||||
opt_value_index_builder.record_value();
|
||||
assert_eq!(
|
||||
&opt_value_index_builder
|
||||
.finish(2u32)
|
||||
.non_null_rows()
|
||||
.collect::<Vec<u32>>(),
|
||||
&[1]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multivalued_value_index_builder() {
|
||||
let mut multivalued_value_index_builder = MultivaluedIndexBuilder::default();
|
||||
multivalued_value_index_builder.record_row(1u32);
|
||||
multivalued_value_index_builder.record_value();
|
||||
multivalued_value_index_builder.record_value();
|
||||
multivalued_value_index_builder.record_row(2u32);
|
||||
multivalued_value_index_builder.record_value();
|
||||
assert_eq!(
|
||||
multivalued_value_index_builder
|
||||
.finish(4u32)
|
||||
.iter()
|
||||
.collect::<Vec<u32>>(),
|
||||
vec![0, 0, 2, 3]
|
||||
);
|
||||
multivalued_value_index_builder.reset();
|
||||
multivalued_value_index_builder.record_row(2u32);
|
||||
multivalued_value_index_builder.record_value();
|
||||
multivalued_value_index_builder.record_value();
|
||||
assert_eq!(
|
||||
multivalued_value_index_builder
|
||||
.finish(4u32)
|
||||
.iter()
|
||||
.collect::<Vec<u32>>(),
|
||||
vec![0, 0, 0, 2]
|
||||
);
|
||||
}
|
||||
}
|
||||
84
columnar/src/dictionary.rs
Normal file
84
columnar/src/dictionary.rs
Normal file
@@ -0,0 +1,84 @@
|
||||
use std::io;
|
||||
|
||||
use fnv::FnvHashMap;
|
||||
use sstable::SSTable;
|
||||
|
||||
pub(crate) struct TermIdMapping {
|
||||
unordered_to_ord: Vec<OrderedId>,
|
||||
}
|
||||
|
||||
impl TermIdMapping {
|
||||
pub fn to_ord(&self, unordered: UnorderedId) -> OrderedId {
|
||||
self.unordered_to_ord[unordered.0 as usize]
|
||||
}
|
||||
}
|
||||
|
||||
/// When we add values, we cannot know their ordered id yet.
|
||||
/// For this reason, we temporarily assign them a `UnorderedId`
|
||||
/// that will be mapped to an `OrderedId` upon serialization.
|
||||
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
|
||||
pub struct UnorderedId(pub u32);
|
||||
|
||||
#[derive(Clone, Copy, Hash, PartialEq, Eq, Debug)]
|
||||
pub struct OrderedId(pub u32);
|
||||
|
||||
/// `DictionaryBuilder` for dictionary encoding.
|
||||
///
|
||||
/// It stores the different terms encounterred and assigns them a temporary value
|
||||
/// we call unordered id.
|
||||
///
|
||||
/// Upon serialization, we will sort the ids and hence build a `UnorderedId -> Term ordinal`
|
||||
/// mapping.
|
||||
#[derive(Default)]
|
||||
pub(crate) struct DictionaryBuilder {
|
||||
dict: FnvHashMap<Vec<u8>, UnorderedId>,
|
||||
}
|
||||
|
||||
impl DictionaryBuilder {
|
||||
/// Get or allocate an unordered id.
|
||||
/// (This ID is simply an auto-incremented id.)
|
||||
pub fn get_or_allocate_id(&mut self, term: &[u8]) -> UnorderedId {
|
||||
if let Some(term_id) = self.dict.get(term) {
|
||||
return *term_id;
|
||||
}
|
||||
let new_id = UnorderedId(self.dict.len() as u32);
|
||||
self.dict.insert(term.to_vec(), new_id);
|
||||
new_id
|
||||
}
|
||||
|
||||
/// Serialize the dictionary into an fst, and returns the
|
||||
/// `UnorderedId -> TermOrdinal` map.
|
||||
pub fn serialize<'a, W: io::Write + 'a>(&self, wrt: &mut W) -> io::Result<TermIdMapping> {
|
||||
let mut terms: Vec<(&[u8], UnorderedId)> =
|
||||
self.dict.iter().map(|(k, v)| (k.as_slice(), *v)).collect();
|
||||
terms.sort_unstable_by_key(|(key, _)| *key);
|
||||
// TODO Remove the allocation.
|
||||
let mut unordered_to_ord: Vec<OrderedId> = vec![OrderedId(0u32); terms.len()];
|
||||
let mut sstable_builder = sstable::VoidSSTable::writer(wrt);
|
||||
for (ord, (key, unordered_id)) in terms.into_iter().enumerate() {
|
||||
let ordered_id = OrderedId(ord as u32);
|
||||
sstable_builder.insert(key, &())?;
|
||||
unordered_to_ord[unordered_id.0 as usize] = ordered_id;
|
||||
}
|
||||
sstable_builder.finish()?;
|
||||
Ok(TermIdMapping { unordered_to_ord })
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_dictionary_builder() {
|
||||
let mut dictionary_builder = DictionaryBuilder::default();
|
||||
let hello_uid = dictionary_builder.get_or_allocate_id(b"hello");
|
||||
let happy_uid = dictionary_builder.get_or_allocate_id(b"happy");
|
||||
let tax_uid = dictionary_builder.get_or_allocate_id(b"tax");
|
||||
let mut buffer = Vec::new();
|
||||
let id_mapping = dictionary_builder.serialize(&mut buffer).unwrap();
|
||||
assert_eq!(id_mapping.to_ord(hello_uid), OrderedId(1));
|
||||
assert_eq!(id_mapping.to_ord(happy_uid), OrderedId(0));
|
||||
assert_eq!(id_mapping.to_ord(tax_uid), OrderedId(2));
|
||||
}
|
||||
}
|
||||
95
columnar/src/dynamic_column.rs
Normal file
95
columnar/src/dynamic_column.rs
Normal file
@@ -0,0 +1,95 @@
|
||||
use std::io;
|
||||
use std::net::IpAddr;
|
||||
|
||||
use common::file_slice::FileSlice;
|
||||
use common::{HasLen, OwnedBytes};
|
||||
|
||||
use crate::column::{BytesColumn, Column};
|
||||
use crate::columnar::ColumnType;
|
||||
use crate::DateTime;
|
||||
|
||||
#[derive(Clone)]
|
||||
pub enum DynamicColumn {
|
||||
Bool(Column<bool>),
|
||||
I64(Column<i64>),
|
||||
U64(Column<u64>),
|
||||
F64(Column<f64>),
|
||||
IpAddr(Column<IpAddr>),
|
||||
DateTime(Column<DateTime>),
|
||||
Str(BytesColumn),
|
||||
}
|
||||
|
||||
impl From<Column<i64>> for DynamicColumn {
|
||||
fn from(column_i64: Column<i64>) -> Self {
|
||||
DynamicColumn::I64(column_i64)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Column<u64>> for DynamicColumn {
|
||||
fn from(column_u64: Column<u64>) -> Self {
|
||||
DynamicColumn::U64(column_u64)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Column<f64>> for DynamicColumn {
|
||||
fn from(column_f64: Column<f64>) -> Self {
|
||||
DynamicColumn::F64(column_f64)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Column<bool>> for DynamicColumn {
|
||||
fn from(bool_column: Column<bool>) -> Self {
|
||||
DynamicColumn::Bool(bool_column)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<BytesColumn> for DynamicColumn {
|
||||
fn from(dictionary_encoded_col: BytesColumn) -> Self {
|
||||
DynamicColumn::Str(dictionary_encoded_col)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct DynamicColumnHandle {
|
||||
pub(crate) file_slice: FileSlice,
|
||||
pub(crate) column_type: ColumnType,
|
||||
}
|
||||
|
||||
impl DynamicColumnHandle {
|
||||
pub fn open(&self) -> io::Result<DynamicColumn> {
|
||||
let column_bytes: OwnedBytes = self.file_slice.read_bytes()?;
|
||||
self.open_internal(column_bytes)
|
||||
}
|
||||
|
||||
pub async fn open_async(&self) -> io::Result<DynamicColumn> {
|
||||
let column_bytes: OwnedBytes = self.file_slice.read_bytes_async().await?;
|
||||
self.open_internal(column_bytes)
|
||||
}
|
||||
|
||||
fn open_internal(&self, column_bytes: OwnedBytes) -> io::Result<DynamicColumn> {
|
||||
let dynamic_column: DynamicColumn = match self.column_type {
|
||||
ColumnType::Bytes => crate::column::open_column_bytes(column_bytes)?.into(),
|
||||
ColumnType::Numerical(numerical_type) => match numerical_type {
|
||||
crate::NumericalType::I64 => {
|
||||
crate::column::open_column_u64::<i64>(column_bytes)?.into()
|
||||
}
|
||||
crate::NumericalType::U64 => {
|
||||
crate::column::open_column_u64::<u64>(column_bytes)?.into()
|
||||
}
|
||||
crate::NumericalType::F64 => {
|
||||
crate::column::open_column_u64::<f64>(column_bytes)?.into()
|
||||
}
|
||||
},
|
||||
ColumnType::Bool => crate::column::open_column_u64::<bool>(column_bytes)?.into(),
|
||||
};
|
||||
Ok(dynamic_column)
|
||||
}
|
||||
|
||||
pub fn num_bytes(&self) -> usize {
|
||||
self.file_slice.len()
|
||||
}
|
||||
|
||||
pub fn column_type(&self) -> ColumnType {
|
||||
self.column_type
|
||||
}
|
||||
}
|
||||
75
columnar/src/lib.rs
Normal file
75
columnar/src/lib.rs
Normal file
@@ -0,0 +1,75 @@
|
||||
#![cfg_attr(all(feature = "unstable", test), feature(test))]
|
||||
|
||||
#[cfg(test)]
|
||||
#[macro_use]
|
||||
extern crate more_asserts;
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
extern crate test;
|
||||
|
||||
use std::io;
|
||||
|
||||
mod column;
|
||||
mod column_index;
|
||||
mod column_values;
|
||||
mod columnar;
|
||||
mod dictionary;
|
||||
mod dynamic_column;
|
||||
pub(crate) mod utils;
|
||||
mod value;
|
||||
|
||||
pub use columnar::{ColumnarReader, ColumnarWriter};
|
||||
pub use value::{NumericalType, NumericalValue};
|
||||
|
||||
// pub use self::dynamic_column::DynamicColumnHandle;
|
||||
|
||||
pub type RowId = u32;
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct DateTime {
|
||||
timestamp_micros: i64,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct InvalidData;
|
||||
|
||||
impl From<InvalidData> for io::Error {
|
||||
fn from(_: InvalidData) -> Self {
|
||||
io::Error::new(io::ErrorKind::InvalidData, "Invalid data")
|
||||
}
|
||||
}
|
||||
|
||||
/// Enum describing the number of values that can exist per document
|
||||
/// (or per row if you will).
|
||||
///
|
||||
/// The cardinality must fit on 2 bits.
|
||||
#[derive(Clone, Copy, Hash, Default, Debug, PartialEq, Eq, PartialOrd, Ord)]
|
||||
#[repr(u8)]
|
||||
pub enum Cardinality {
|
||||
/// All documents contain exactly one value.
|
||||
/// `Full` is the default for auto-detecting the Cardinality, since it is the most strict.
|
||||
#[default]
|
||||
Full = 0,
|
||||
/// All documents contain at most one value.
|
||||
Optional = 1,
|
||||
/// All documents may contain any number of values.
|
||||
Multivalued = 2,
|
||||
}
|
||||
|
||||
impl Cardinality {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn try_from_code(code: u8) -> Result<Cardinality, InvalidData> {
|
||||
match code {
|
||||
0 => Ok(Cardinality::Full),
|
||||
1 => Ok(Cardinality::Optional),
|
||||
2 => Ok(Cardinality::Multivalued),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
84
columnar/src/tests.rs
Normal file
84
columnar/src/tests.rs
Normal file
@@ -0,0 +1,84 @@
|
||||
use crate::columnar::ColumnType;
|
||||
use crate::dynamic_column::{DynamicColumn, DynamicColumnHandle};
|
||||
use crate::value::NumericalValue;
|
||||
use crate::{Cardinality, ColumnarReader, ColumnarWriter};
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_bytes() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_str(1u32, "my_string", "hello");
|
||||
dataframe_writer.record_str(3u32, "my_string", "helloeee");
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(5, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("my_string").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 165);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_bool() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_bool(1u32, "bool.value", false);
|
||||
dataframe_writer.record_bool(3u32, "bool.value", true);
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(5, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("bool.value").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 29);
|
||||
assert_eq!(cols[0].column_type(), ColumnType::Bool);
|
||||
let dyn_bool_col = cols[0].open().unwrap();
|
||||
let DynamicColumn::Bool(bool_col) = dyn_bool_col else { panic!(); };
|
||||
let vals: Vec<Option<bool>> = (0..5).map(|row_id| bool_col.first(row_id)).collect();
|
||||
assert_eq!(&vals, &[None, Some(false), None, Some(true), None,]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_numerical() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_numerical(1u32, "srical.value", NumericalValue::U64(12u64));
|
||||
dataframe_writer.record_numerical(2u32, "srical.value", NumericalValue::U64(13u64));
|
||||
dataframe_writer.record_numerical(4u32, "srical.value", NumericalValue::U64(15u64));
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(6, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("srical.value").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
// Right now this 31 bytes are spent as follows
|
||||
//
|
||||
// - header 14 bytes
|
||||
// - vals 8 //< due to padding? could have been 1byte?.
|
||||
// - null footer 6 bytes
|
||||
assert_eq!(cols[0].num_bytes(), 40);
|
||||
let column = cols[0].open().unwrap();
|
||||
let DynamicColumn::I64(column_i64) = column else { panic!(); };
|
||||
assert_eq!(column_i64.idx.get_cardinality(), Cardinality::Optional);
|
||||
assert_eq!(column_i64.first(0), None);
|
||||
assert_eq!(column_i64.first(1), Some(12i64));
|
||||
assert_eq!(column_i64.first(2), Some(13i64));
|
||||
assert_eq!(column_i64.first(3), None);
|
||||
assert_eq!(column_i64.first(4), Some(15i64));
|
||||
assert_eq!(column_i64.first(5), None);
|
||||
assert_eq!(column_i64.first(6), None); //< we can change the spec for that one.
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dictionary_encoded() {
|
||||
let mut buffer = Vec::new();
|
||||
let mut columnar_writer = ColumnarWriter::default();
|
||||
columnar_writer.record_str(1, "my.column", "my.key");
|
||||
columnar_writer.record_str(3, "my.column", "my.key2");
|
||||
columnar_writer.record_str(3, "my.column2", "different_column!");
|
||||
columnar_writer.serialize(5, &mut buffer).unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_columns(), 2);
|
||||
let col_handles = columnar_reader.read_columns("my.column").unwrap();
|
||||
assert_eq!(col_handles.len(), 1);
|
||||
let DynamicColumn::Str(str_col) = col_handles[0].open().unwrap() else { panic!(); };
|
||||
assert_eq!(str_col.num_rows(), 5);
|
||||
// let term_ords = (0..)
|
||||
}
|
||||
76
columnar/src/utils.rs
Normal file
76
columnar/src/utils.rs
Normal file
@@ -0,0 +1,76 @@
|
||||
const fn compute_mask(num_bits: u8) -> u8 {
|
||||
if num_bits == 8 {
|
||||
u8::MAX
|
||||
} else {
|
||||
(1u8 << num_bits) - 1
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
#[must_use]
|
||||
pub(crate) fn select_bits<const START: u8, const END: u8>(code: u8) -> u8 {
|
||||
assert!(START <= END);
|
||||
assert!(END <= 8);
|
||||
let num_bits: u8 = END - START;
|
||||
let mask: u8 = compute_mask(num_bits);
|
||||
(code >> START) & mask
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
#[must_use]
|
||||
pub(crate) fn place_bits<const START: u8, const END: u8>(code: u8) -> u8 {
|
||||
assert!(START <= END);
|
||||
assert!(END <= 8);
|
||||
let num_bits: u8 = END - START;
|
||||
let mask: u8 = compute_mask(num_bits);
|
||||
assert!(code <= mask);
|
||||
code << START
|
||||
}
|
||||
|
||||
/// Pop-front one bytes from a slice of bytes.
|
||||
#[inline(always)]
|
||||
pub fn pop_first_byte(bytes: &mut &[u8]) -> Option<u8> {
|
||||
if bytes.is_empty() {
|
||||
return None;
|
||||
}
|
||||
let first_byte = bytes[0];
|
||||
*bytes = &bytes[1..];
|
||||
Some(first_byte)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_select_bits() {
|
||||
assert_eq!(255u8, select_bits::<0, 8>(255u8));
|
||||
assert_eq!(0u8, select_bits::<0, 0>(255u8));
|
||||
assert_eq!(8u8, select_bits::<0, 4>(8u8));
|
||||
assert_eq!(4u8, select_bits::<1, 4>(8u8));
|
||||
assert_eq!(0u8, select_bits::<1, 3>(8u8));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_place_bits() {
|
||||
assert_eq!(255u8, place_bits::<0, 8>(255u8));
|
||||
assert_eq!(4u8, place_bits::<2, 3>(1u8));
|
||||
assert_eq!(0u8, place_bits::<2, 2>(0u8));
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic]
|
||||
fn test_place_bits_overflows() {
|
||||
let _ = place_bits::<1, 4>(8u8);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_pop_first_byte() {
|
||||
let mut cursor: &[u8] = &b"abcd"[..];
|
||||
assert_eq!(pop_first_byte(&mut cursor), Some(b'a'));
|
||||
assert_eq!(pop_first_byte(&mut cursor), Some(b'b'));
|
||||
assert_eq!(pop_first_byte(&mut cursor), Some(b'c'));
|
||||
assert_eq!(pop_first_byte(&mut cursor), Some(b'd'));
|
||||
assert_eq!(pop_first_byte(&mut cursor), None);
|
||||
}
|
||||
}
|
||||
124
columnar/src/value.rs
Normal file
124
columnar/src/value.rs
Normal file
@@ -0,0 +1,124 @@
|
||||
use crate::InvalidData;
|
||||
|
||||
#[derive(Copy, Clone, Debug, PartialEq)]
|
||||
pub enum NumericalValue {
|
||||
I64(i64),
|
||||
U64(u64),
|
||||
F64(f64),
|
||||
}
|
||||
|
||||
impl From<u64> for NumericalValue {
|
||||
fn from(val: u64) -> NumericalValue {
|
||||
NumericalValue::U64(val)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<i64> for NumericalValue {
|
||||
fn from(val: i64) -> Self {
|
||||
NumericalValue::I64(val)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<f64> for NumericalValue {
|
||||
fn from(val: f64) -> Self {
|
||||
NumericalValue::F64(val)
|
||||
}
|
||||
}
|
||||
|
||||
impl NumericalValue {
|
||||
pub fn numerical_type(&self) -> NumericalType {
|
||||
match self {
|
||||
NumericalValue::F64(_) => NumericalType::F64,
|
||||
NumericalValue::I64(_) => NumericalType::I64,
|
||||
NumericalValue::U64(_) => NumericalType::U64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Eq for NumericalValue {}
|
||||
|
||||
#[derive(Clone, Copy, Debug, Default, Hash, Eq, PartialEq)]
|
||||
#[repr(u8)]
|
||||
pub enum NumericalType {
|
||||
#[default]
|
||||
I64 = 0,
|
||||
U64 = 1,
|
||||
F64 = 2,
|
||||
}
|
||||
|
||||
impl NumericalType {
|
||||
pub fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub fn try_from_code(code: u8) -> Result<NumericalType, InvalidData> {
|
||||
match code {
|
||||
0 => Ok(NumericalType::I64),
|
||||
1 => Ok(NumericalType::U64),
|
||||
2 => Ok(NumericalType::F64),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// We voluntarily avoid using `Into` here to keep this
|
||||
/// implementation quirk as private as possible.
|
||||
///
|
||||
/// # Panics
|
||||
/// This coercion trait actually panics if it is used
|
||||
/// to convert a loose types to a stricter type.
|
||||
///
|
||||
/// The level is strictness is somewhat arbitrary.
|
||||
/// - i64
|
||||
/// - u64
|
||||
/// - f64.
|
||||
pub(crate) trait Coerce {
|
||||
fn coerce(numerical_value: NumericalValue) -> Self;
|
||||
}
|
||||
|
||||
impl Coerce for i64 {
|
||||
fn coerce(value: NumericalValue) -> Self {
|
||||
match value {
|
||||
NumericalValue::I64(val) => val,
|
||||
NumericalValue::U64(val) => val as i64,
|
||||
NumericalValue::F64(_) => unreachable!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Coerce for u64 {
|
||||
fn coerce(value: NumericalValue) -> Self {
|
||||
match value {
|
||||
NumericalValue::I64(val) => val as u64,
|
||||
NumericalValue::U64(val) => val,
|
||||
NumericalValue::F64(_) => unreachable!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Coerce for f64 {
|
||||
fn coerce(value: NumericalValue) -> Self {
|
||||
match value {
|
||||
NumericalValue::I64(val) => val as f64,
|
||||
NumericalValue::U64(val) => val as f64,
|
||||
NumericalValue::F64(val) => val,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::NumericalType;
|
||||
|
||||
#[test]
|
||||
fn test_numerical_type_code() {
|
||||
let mut num_numerical_type = 0;
|
||||
for code in u8::MIN..=u8::MAX {
|
||||
if let Ok(numerical_type) = NumericalType::try_from_code(code) {
|
||||
assert_eq!(numerical_type.to_code(), code);
|
||||
num_numerical_type += 1;
|
||||
}
|
||||
}
|
||||
assert_eq!(num_numerical_type, 3);
|
||||
}
|
||||
}
|
||||
@@ -1,16 +1,21 @@
|
||||
[package]
|
||||
name = "tantivy-common"
|
||||
version = "0.3.0"
|
||||
version = "0.5.0"
|
||||
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
|
||||
license = "MIT"
|
||||
edition = "2021"
|
||||
description = "common traits and utility functions used by multiple tantivy subcrates"
|
||||
documentation = "https://docs.rs/tantivy_common/"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
repository = "https://github.com/quickwit-oss/tantivy"
|
||||
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
byteorder = "1.4.3"
|
||||
ownedbytes = { version="0.3", path="../ownedbytes" }
|
||||
ownedbytes = { version= "0.5", path="../ownedbytes" }
|
||||
async-trait = "0.1"
|
||||
|
||||
[dev-dependencies]
|
||||
proptest = "1.0.0"
|
||||
|
||||
@@ -151,7 +151,7 @@ impl TinySet {
|
||||
if self.is_empty() {
|
||||
None
|
||||
} else {
|
||||
let lowest = self.0.trailing_zeros() as u32;
|
||||
let lowest = self.0.trailing_zeros();
|
||||
self.0 ^= TinySet::singleton(lowest).0;
|
||||
Some(lowest)
|
||||
}
|
||||
@@ -277,7 +277,7 @@ impl BitSet {
|
||||
self.tinyset(el / 64u32).contains(el % 64)
|
||||
}
|
||||
|
||||
/// Returns the first non-empty `TinySet` associated to a bucket lower
|
||||
/// Returns the first non-empty `TinySet` associated with a bucket lower
|
||||
/// or greater than bucket.
|
||||
///
|
||||
/// Reminder: the tiny set with the bucket `bucket`, represents the
|
||||
@@ -421,7 +421,7 @@ mod tests {
|
||||
bitset.serialize(&mut out).unwrap();
|
||||
|
||||
let bitset = ReadOnlyBitSet::open(OwnedBytes::new(out));
|
||||
assert_eq!(bitset.len() as usize, i as usize);
|
||||
assert_eq!(bitset.len(), i as usize);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -432,7 +432,7 @@ mod tests {
|
||||
bitset.serialize(&mut out).unwrap();
|
||||
|
||||
let bitset = ReadOnlyBitSet::open(OwnedBytes::new(out));
|
||||
assert_eq!(bitset.len() as usize, 64);
|
||||
assert_eq!(bitset.len(), 64);
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
||||
@@ -1,23 +1,19 @@
|
||||
use std::ops::{Deref, Range};
|
||||
use std::sync::{Arc, Weak};
|
||||
use std::ops::{Deref, Range, RangeBounds};
|
||||
use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
|
||||
use async_trait::async_trait;
|
||||
use common::HasLen;
|
||||
use stable_deref_trait::StableDeref;
|
||||
use ownedbytes::{OwnedBytes, StableDeref};
|
||||
|
||||
use crate::directory::OwnedBytes;
|
||||
|
||||
pub type ArcBytes = Arc<dyn Deref<Target = [u8]> + Send + Sync + 'static>;
|
||||
pub type WeakArcBytes = Weak<dyn Deref<Target = [u8]> + Send + Sync + 'static>;
|
||||
use crate::HasLen;
|
||||
|
||||
/// Objects that represents files sections in tantivy.
|
||||
///
|
||||
/// By contract, whatever happens to the directory file, as long as a FileHandle
|
||||
/// is alive, the data associated with it cannot be altered or destroyed.
|
||||
///
|
||||
/// The underlying behavior is therefore specific to the `Directory` that created it.
|
||||
/// Despite its name, a `FileSlice` may or may not directly map to an actual file
|
||||
/// The underlying behavior is therefore specific to the `Directory` that
|
||||
/// created it. Despite its name, a [`FileSlice`] may or may not directly map to an actual file
|
||||
/// on the filesystem.
|
||||
|
||||
#[async_trait]
|
||||
@@ -27,13 +23,12 @@ pub trait FileHandle: 'static + Send + Sync + HasLen + fmt::Debug {
|
||||
/// This method may panic if the range requested is invalid.
|
||||
fn read_bytes(&self, range: Range<usize>) -> io::Result<OwnedBytes>;
|
||||
|
||||
#[cfg(feature = "quickwit")]
|
||||
#[doc(hidden)]
|
||||
async fn read_bytes_async(
|
||||
&self,
|
||||
_byte_range: Range<usize>,
|
||||
) -> crate::AsyncIoResult<OwnedBytes> {
|
||||
Err(crate::error::AsyncIoError::AsyncUnsupported)
|
||||
async fn read_bytes_async(&self, _byte_range: Range<usize>) -> io::Result<OwnedBytes> {
|
||||
Err(io::Error::new(
|
||||
io::ErrorKind::Unsupported,
|
||||
"Async read is not supported.",
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -44,8 +39,7 @@ impl FileHandle for &'static [u8] {
|
||||
Ok(OwnedBytes::new(bytes))
|
||||
}
|
||||
|
||||
#[cfg(feature = "quickwit")]
|
||||
async fn read_bytes_async(&self, byte_range: Range<usize>) -> crate::AsyncIoResult<OwnedBytes> {
|
||||
async fn read_bytes_async(&self, byte_range: Range<usize>) -> io::Result<OwnedBytes> {
|
||||
Ok(self.read_bytes(byte_range)?)
|
||||
}
|
||||
}
|
||||
@@ -73,6 +67,34 @@ impl fmt::Debug for FileSlice {
|
||||
}
|
||||
}
|
||||
|
||||
/// Takes a range, a `RangeBounds` object, and returns
|
||||
/// a `Range` that corresponds to the relative application of the
|
||||
/// `RangeBounds` object to the original `Range`.
|
||||
///
|
||||
/// For instance, combine_ranges(`[2..11)`, `[5..7]`) returns `[7..10]`
|
||||
/// as it reads, what is the sub-range that starts at the 5 element of
|
||||
/// `[2..11)` and ends at the 9th element included.
|
||||
///
|
||||
/// This function panics, if the result would suggest something outside
|
||||
/// of the bounds of the original range.
|
||||
fn combine_ranges<R: RangeBounds<usize>>(orig_range: Range<usize>, rel_range: R) -> Range<usize> {
|
||||
let start: usize = orig_range.start
|
||||
+ match rel_range.start_bound().cloned() {
|
||||
std::ops::Bound::Included(rel_start) => rel_start,
|
||||
std::ops::Bound::Excluded(rel_start) => rel_start + 1,
|
||||
std::ops::Bound::Unbounded => 0,
|
||||
};
|
||||
assert!(start <= orig_range.end);
|
||||
let end: usize = match rel_range.end_bound().cloned() {
|
||||
std::ops::Bound::Included(rel_end) => orig_range.start + rel_end + 1,
|
||||
std::ops::Bound::Excluded(rel_end) => orig_range.start + rel_end,
|
||||
std::ops::Bound::Unbounded => orig_range.end,
|
||||
};
|
||||
assert!(end >= start);
|
||||
assert!(end <= orig_range.end);
|
||||
start..end
|
||||
}
|
||||
|
||||
impl FileSlice {
|
||||
/// Wraps a FileHandle.
|
||||
pub fn new(file_handle: Arc<dyn FileHandle>) -> Self {
|
||||
@@ -96,11 +118,11 @@ impl FileSlice {
|
||||
///
|
||||
/// Panics if `byte_range.end` exceeds the filesize.
|
||||
#[must_use]
|
||||
pub fn slice(&self, byte_range: Range<usize>) -> FileSlice {
|
||||
assert!(byte_range.end <= self.len());
|
||||
#[inline]
|
||||
pub fn slice<R: RangeBounds<usize>>(&self, byte_range: R) -> FileSlice {
|
||||
FileSlice {
|
||||
data: self.data.clone(),
|
||||
range: self.range.start + byte_range.start..self.range.start + byte_range.end,
|
||||
range: combine_ranges(self.range.clone(), byte_range),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -120,9 +142,8 @@ impl FileSlice {
|
||||
self.data.read_bytes(self.range.clone())
|
||||
}
|
||||
|
||||
#[cfg(feature = "quickwit")]
|
||||
#[doc(hidden)]
|
||||
pub async fn read_bytes_async(&self) -> crate::AsyncIoResult<OwnedBytes> {
|
||||
pub async fn read_bytes_async(&self) -> io::Result<OwnedBytes> {
|
||||
self.data.read_bytes_async(self.range.clone()).await
|
||||
}
|
||||
|
||||
@@ -140,12 +161,8 @@ impl FileSlice {
|
||||
.read_bytes(self.range.start + range.start..self.range.start + range.end)
|
||||
}
|
||||
|
||||
#[cfg(feature = "quickwit")]
|
||||
#[doc(hidden)]
|
||||
pub async fn read_bytes_slice_async(
|
||||
&self,
|
||||
byte_range: Range<usize>,
|
||||
) -> crate::AsyncIoResult<OwnedBytes> {
|
||||
pub async fn read_bytes_slice_async(&self, byte_range: Range<usize>) -> io::Result<OwnedBytes> {
|
||||
assert!(
|
||||
self.range.start + byte_range.end <= self.range.end,
|
||||
"`to` exceeds the fileslice length"
|
||||
@@ -207,8 +224,7 @@ impl FileHandle for FileSlice {
|
||||
self.read_bytes_slice(range)
|
||||
}
|
||||
|
||||
#[cfg(feature = "quickwit")]
|
||||
async fn read_bytes_async(&self, byte_range: Range<usize>) -> crate::AsyncIoResult<OwnedBytes> {
|
||||
async fn read_bytes_async(&self, byte_range: Range<usize>) -> io::Result<OwnedBytes> {
|
||||
self.read_bytes_slice_async(byte_range).await
|
||||
}
|
||||
}
|
||||
@@ -225,21 +241,20 @@ impl FileHandle for OwnedBytes {
|
||||
Ok(self.slice(range))
|
||||
}
|
||||
|
||||
#[cfg(feature = "quickwit")]
|
||||
async fn read_bytes_async(&self, range: Range<usize>) -> crate::AsyncIoResult<OwnedBytes> {
|
||||
let bytes = self.read_bytes(range)?;
|
||||
Ok(bytes)
|
||||
async fn read_bytes_async(&self, range: Range<usize>) -> io::Result<OwnedBytes> {
|
||||
self.read_bytes(range)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::io;
|
||||
use std::ops::Bound;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::HasLen;
|
||||
|
||||
use super::{FileHandle, FileSlice};
|
||||
use crate::file_slice::combine_ranges;
|
||||
use crate::HasLen;
|
||||
|
||||
#[test]
|
||||
fn test_file_slice() -> io::Result<()> {
|
||||
@@ -310,4 +325,23 @@ mod tests {
|
||||
b"bcd"
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_combine_range() {
|
||||
assert_eq!(combine_ranges(1..3, 0..1), 1..2);
|
||||
assert_eq!(combine_ranges(1..3, 1..), 2..3);
|
||||
assert_eq!(combine_ranges(1..4, ..2), 1..3);
|
||||
assert_eq!(combine_ranges(3..10, 2..5), 5..8);
|
||||
assert_eq!(combine_ranges(2..11, 5..=7), 7..10);
|
||||
assert_eq!(
|
||||
combine_ranges(2..11, (Bound::Excluded(5), Bound::Unbounded)),
|
||||
8..11
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic]
|
||||
fn test_combine_range_panics() {
|
||||
let _ = combine_ranges(3..5, 1..4);
|
||||
}
|
||||
}
|
||||
166
common/src/group_by.rs
Normal file
166
common/src/group_by.rs
Normal file
@@ -0,0 +1,166 @@
|
||||
use std::cell::RefCell;
|
||||
use std::iter::Peekable;
|
||||
use std::rc::Rc;
|
||||
|
||||
pub trait GroupByIteratorExtended: Iterator {
|
||||
/// Return an `Iterator` that groups iterator elements. Consecutive elements that map to the
|
||||
/// same key are assigned to the same group.
|
||||
///
|
||||
/// The returned Iterator item is `(K, impl Iterator)`, where Iterator are the items of the
|
||||
/// group.
|
||||
///
|
||||
/// ```
|
||||
/// use tantivy_common::GroupByIteratorExtended;
|
||||
///
|
||||
/// // group data into blocks of larger than zero or not.
|
||||
/// let data: Vec<i32> = vec![1, 3, -2, -2, 1, 0, 1, 2];
|
||||
/// // groups: |---->|------>|--------->|
|
||||
///
|
||||
/// let mut data_grouped = Vec::new();
|
||||
/// // Note: group is an iterator
|
||||
/// for (key, group) in data.into_iter().group_by(|val| *val >= 0) {
|
||||
/// data_grouped.push((key, group.collect()));
|
||||
/// }
|
||||
/// assert_eq!(data_grouped, vec![(true, vec![1, 3]), (false, vec![-2, -2]), (true, vec![1, 0, 1, 2])]);
|
||||
/// ```
|
||||
fn group_by<K, F>(self, key: F) -> GroupByIterator<Self, F, K>
|
||||
where
|
||||
Self: Sized,
|
||||
F: FnMut(&Self::Item) -> K,
|
||||
K: PartialEq + Copy,
|
||||
Self::Item: Copy,
|
||||
{
|
||||
GroupByIterator::new(self, key)
|
||||
}
|
||||
}
|
||||
impl<I: Iterator> GroupByIteratorExtended for I {}
|
||||
|
||||
pub struct GroupByIterator<I, F, K: Copy>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
{
|
||||
// I really would like to avoid the Rc<RefCell>, but the Iterator is shared between
|
||||
// `GroupByIterator` and `GroupIter`. In practice they are used consecutive and
|
||||
// `GroupByIter` is finished before calling next on `GroupByIterator`. I'm not sure there
|
||||
// is a solution with lifetimes for that, because we would need to enforce it in the usage
|
||||
// somehow.
|
||||
//
|
||||
// One potential solution would be to replace the iterator approach with something similar.
|
||||
inner: Rc<RefCell<GroupByShared<I, F, K>>>,
|
||||
}
|
||||
|
||||
struct GroupByShared<I, F, K: Copy>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
{
|
||||
iter: Peekable<I>,
|
||||
group_by_fn: F,
|
||||
}
|
||||
|
||||
impl<I, F, K> GroupByIterator<I, F, K>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
K: Copy,
|
||||
{
|
||||
fn new(inner: I, group_by_fn: F) -> Self {
|
||||
let inner = GroupByShared {
|
||||
iter: inner.peekable(),
|
||||
group_by_fn,
|
||||
};
|
||||
|
||||
Self {
|
||||
inner: Rc::new(RefCell::new(inner)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<I, F, K> Iterator for GroupByIterator<I, F, K>
|
||||
where
|
||||
I: Iterator,
|
||||
I::Item: Copy,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
K: Copy,
|
||||
{
|
||||
type Item = (K, GroupIterator<I, F, K>);
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let mut inner = self.inner.borrow_mut();
|
||||
let value = *inner.iter.peek()?;
|
||||
let key = (inner.group_by_fn)(&value);
|
||||
|
||||
let inner = self.inner.clone();
|
||||
|
||||
let group_iter = GroupIterator {
|
||||
inner,
|
||||
group_key: key,
|
||||
};
|
||||
Some((key, group_iter))
|
||||
}
|
||||
}
|
||||
|
||||
pub struct GroupIterator<I, F, K: Copy>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
{
|
||||
inner: Rc<RefCell<GroupByShared<I, F, K>>>,
|
||||
group_key: K,
|
||||
}
|
||||
|
||||
impl<I, F, K: PartialEq + Copy> Iterator for GroupIterator<I, F, K>
|
||||
where
|
||||
I: Iterator,
|
||||
I::Item: Copy,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
{
|
||||
type Item = I::Item;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let mut inner = self.inner.borrow_mut();
|
||||
// peek if next value is in group
|
||||
let peek_val = *inner.iter.peek()?;
|
||||
if (inner.group_by_fn)(&peek_val) == self.group_key {
|
||||
inner.iter.next()
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
fn group_by_collect<I: Iterator<Item = u32>>(iter: I) -> Vec<(I::Item, Vec<I::Item>)> {
|
||||
iter.group_by(|val| val / 10)
|
||||
.map(|(el, iter)| (el, iter.collect::<Vec<_>>()))
|
||||
.collect::<Vec<_>>()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn group_by_two_groups() {
|
||||
let vals = vec![1u32, 4, 15];
|
||||
let grouped_vals = group_by_collect(vals.into_iter());
|
||||
assert_eq!(grouped_vals, vec![(0, vec![1, 4]), (1, vec![15])]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn group_by_test_empty() {
|
||||
let vals = vec![];
|
||||
let grouped_vals = group_by_collect(vals.into_iter());
|
||||
assert_eq!(grouped_vals, vec![]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn group_by_three_groups() {
|
||||
let vals = vec![1u32, 4, 15, 1];
|
||||
let grouped_vals = group_by_collect(vals.into_iter());
|
||||
assert_eq!(
|
||||
grouped_vals,
|
||||
vec![(0, vec![1, 4]), (1, vec![15]), (0, vec![1])]
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -5,11 +5,14 @@ use std::ops::Deref;
|
||||
pub use byteorder::LittleEndian as Endianness;
|
||||
|
||||
mod bitset;
|
||||
pub mod file_slice;
|
||||
mod group_by;
|
||||
mod serialize;
|
||||
mod vint;
|
||||
mod writer;
|
||||
|
||||
pub use bitset::*;
|
||||
pub use group_by::GroupByIteratorExtended;
|
||||
pub use ownedbytes::{OwnedBytes, StableDeref};
|
||||
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
|
||||
pub use vint::{
|
||||
deserialize_vint_u128, read_u32_vint, read_u32_vint_no_advance, serialize_vint_u128,
|
||||
|
||||
@@ -94,6 +94,20 @@ impl FixedSize for u32 {
|
||||
const SIZE_IN_BYTES: usize = 4;
|
||||
}
|
||||
|
||||
impl BinarySerializable for u16 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_u16::<Endianness>(*self)
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<u16> {
|
||||
reader.read_u16::<Endianness>()
|
||||
}
|
||||
}
|
||||
|
||||
impl FixedSize for u16 {
|
||||
const SIZE_IN_BYTES: usize = 2;
|
||||
}
|
||||
|
||||
impl BinarySerializable for u64 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_u64::<Endianness>(*self)
|
||||
@@ -107,6 +121,19 @@ impl FixedSize for u64 {
|
||||
const SIZE_IN_BYTES: usize = 8;
|
||||
}
|
||||
|
||||
impl BinarySerializable for u128 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_u128::<Endianness>(*self)
|
||||
}
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
reader.read_u128::<Endianness>()
|
||||
}
|
||||
}
|
||||
|
||||
impl FixedSize for u128 {
|
||||
const SIZE_IN_BYTES: usize = 16;
|
||||
}
|
||||
|
||||
impl BinarySerializable for f32 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_f32::<Endianness>(*self)
|
||||
|
||||
@@ -157,7 +157,7 @@ fn vint_len(data: &[u8]) -> usize {
|
||||
/// If the buffer does not start by a valid
|
||||
/// vint payload
|
||||
pub fn read_u32_vint(data: &mut &[u8]) -> u32 {
|
||||
let (result, vlen) = read_u32_vint_no_advance(*data);
|
||||
let (result, vlen) = read_u32_vint_no_advance(data);
|
||||
*data = &data[vlen..];
|
||||
result
|
||||
}
|
||||
|
||||
@@ -50,7 +50,7 @@ to get tantivy to fit your use case:
|
||||
|
||||
*Example 1* You could for instance use hadoop to build a very large search index in a timely manner, copy all of the resulting segment files in the same directory and edit the `meta.json` to get a functional index.[^2]
|
||||
|
||||
*Example 2* You could also disable your merge policy and enforce daily segments. Removing data after one week can then be done very efficiently by just editing the `meta.json` and deleting the files associated to segment `D-7`.
|
||||
*Example 2* You could also disable your merge policy and enforce daily segments. Removing data after one week can then be done very efficiently by just editing the `meta.json` and deleting the files associated with segment `D-7`.
|
||||
|
||||
## Merging
|
||||
|
||||
|
||||
@@ -118,7 +118,7 @@ fn main() -> tantivy::Result<()> {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None);
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();
|
||||
|
||||
@@ -14,7 +14,7 @@ use fastfield_codecs::Column;
|
||||
// Importing tantivy...
|
||||
use tantivy::collector::{Collector, SegmentCollector};
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Field, Schema, FAST, INDEXED, TEXT};
|
||||
use tantivy::schema::{Schema, FAST, INDEXED, TEXT};
|
||||
use tantivy::{doc, Index, Score, SegmentReader};
|
||||
|
||||
#[derive(Default)]
|
||||
@@ -52,11 +52,11 @@ impl Stats {
|
||||
}
|
||||
|
||||
struct StatsCollector {
|
||||
field: Field,
|
||||
field: String,
|
||||
}
|
||||
|
||||
impl StatsCollector {
|
||||
fn with_field(field: Field) -> StatsCollector {
|
||||
fn with_field(field: String) -> StatsCollector {
|
||||
StatsCollector { field }
|
||||
}
|
||||
}
|
||||
@@ -73,7 +73,7 @@ impl Collector for StatsCollector {
|
||||
_segment_local_id: u32,
|
||||
segment_reader: &SegmentReader,
|
||||
) -> tantivy::Result<StatsSegmentCollector> {
|
||||
let fast_field_reader = segment_reader.fast_fields().u64(self.field)?;
|
||||
let fast_field_reader = segment_reader.fast_fields().u64(&self.field)?;
|
||||
Ok(StatsSegmentCollector {
|
||||
fast_field_reader,
|
||||
stats: Stats::default(),
|
||||
@@ -105,7 +105,7 @@ impl SegmentCollector for StatsSegmentCollector {
|
||||
type Fruit = Option<Stats>;
|
||||
|
||||
fn collect(&mut self, doc: u32, _score: Score) {
|
||||
let value = self.fast_field_reader.get_val(doc as u64) as f64;
|
||||
let value = self.fast_field_reader.get_val(doc) as f64;
|
||||
self.stats.count += 1;
|
||||
self.stats.sum += value;
|
||||
self.stats.squared_sum += value * value;
|
||||
@@ -171,7 +171,9 @@ fn main() -> tantivy::Result<()> {
|
||||
|
||||
// here we want to get a hit on the 'ken' in Frankenstein
|
||||
let query = query_parser.parse_query("broom")?;
|
||||
if let Some(stats) = searcher.search(&query, &StatsCollector::with_field(price))? {
|
||||
if let Some(stats) =
|
||||
searcher.search(&query, &StatsCollector::with_field("price".to_string()))?
|
||||
{
|
||||
println!("count: {}", stats.count());
|
||||
println!("mean: {}", stats.mean());
|
||||
println!("standard deviation: {}", stats.standard_deviation());
|
||||
|
||||
@@ -113,7 +113,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// on its id.
|
||||
//
|
||||
// Note that `tantivy` does nothing to enforce the idea that
|
||||
// there is only one document associated to this id.
|
||||
// there is only one document associated with this id.
|
||||
//
|
||||
// Also you might have noticed that we apply the delete before
|
||||
// having committed. This does not matter really...
|
||||
|
||||
@@ -1,15 +1,17 @@
|
||||
// # Basic Example
|
||||
// # Faceted Search
|
||||
//
|
||||
// This example covers the basic functionalities of
|
||||
// This example covers the faceted search functionalities of
|
||||
// tantivy.
|
||||
//
|
||||
// We will :
|
||||
// - define our schema
|
||||
// = create an index in a directory
|
||||
// - index few documents in our index
|
||||
// - search for the best document matchings "sea whale"
|
||||
// - retrieve the best document original content.
|
||||
|
||||
// - define a text field "name" in our schema
|
||||
// - define a facet field "classification" in our schema
|
||||
// - create an index in memory
|
||||
// - index few documents with respective facets in our index
|
||||
// - search and count the number of documents that the classifications start the facet "/Felidae"
|
||||
// - Search the facet "/Felidae/Pantherinae" and count the number of documents that the
|
||||
// classifications include the facet.
|
||||
//
|
||||
// ---
|
||||
// Importing tantivy...
|
||||
use tantivy::collector::FacetCollector;
|
||||
@@ -21,7 +23,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// Let's create a temporary directory for the sake of this example
|
||||
let mut schema_builder = Schema::builder();
|
||||
|
||||
let name = schema_builder.add_text_field("felin_name", TEXT | STORED);
|
||||
let name = schema_builder.add_text_field("name", TEXT | STORED);
|
||||
// this is our faceted field: its scientific classification
|
||||
let classification = schema_builder.add_facet_field("classification", FacetOptions::default());
|
||||
|
||||
|
||||
@@ -27,7 +27,7 @@ fn main() -> Result<()> {
|
||||
reader.reload()?;
|
||||
let searcher = reader.searcher();
|
||||
// The end is excluded i.e. here we are searching up to 1969
|
||||
let docs_in_the_sixties = RangeQuery::new_u64(year_field, 1960..1970);
|
||||
let docs_in_the_sixties = RangeQuery::new_u64("year".to_string(), 1960..1970);
|
||||
// Uses a Count collector to sum the total number of docs in the range
|
||||
let num_60s_books = searcher.search(&docs_in_the_sixties, &Count)?;
|
||||
assert_eq!(num_60s_books, 10);
|
||||
|
||||
73
examples/ip_field.rs
Normal file
73
examples/ip_field.rs
Normal file
@@ -0,0 +1,73 @@
|
||||
// # IP Address example
|
||||
//
|
||||
// This example shows how the ip field can be used
|
||||
// with IpV6 and IpV4.
|
||||
|
||||
use tantivy::collector::{Count, TopDocs};
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Schema, FAST, INDEXED, STORED, STRING};
|
||||
use tantivy::Index;
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// # Defining the schema
|
||||
let mut schema_builder = Schema::builder();
|
||||
let event_type = schema_builder.add_text_field("event_type", STRING | STORED);
|
||||
let ip = schema_builder.add_ip_addr_field("ip", STORED | INDEXED | FAST);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
// # Indexing documents
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"ip": "192.168.0.33",
|
||||
"event_type": "login"
|
||||
}"#,
|
||||
)?;
|
||||
index_writer.add_document(doc)?;
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"ip": "192.168.0.80",
|
||||
"event_type": "checkout"
|
||||
}"#,
|
||||
)?;
|
||||
index_writer.add_document(doc)?;
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"ip": "2001:0db8:85a3:0000:0000:8a2e:0370:7334",
|
||||
"event_type": "checkout"
|
||||
}"#,
|
||||
)?;
|
||||
|
||||
index_writer.add_document(doc)?;
|
||||
index_writer.commit()?;
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
|
||||
let query_parser = QueryParser::for_index(&index, vec![event_type, ip]);
|
||||
{
|
||||
let query = query_parser.parse_query("ip:[192.168.0.0 TO 192.168.0.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5))?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
{
|
||||
let query = query_parser.parse_query("ip:[192.168.1.0 TO 192.168.1.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(count_docs.len(), 0);
|
||||
}
|
||||
{
|
||||
let query = query_parser.parse_query("ip:192.168.0.80")?;
|
||||
let count_docs = searcher.search(&*query, &Count)?;
|
||||
assert_eq!(count_docs, 1);
|
||||
}
|
||||
{
|
||||
// IpV6 needs to be escaped because it contains `:`
|
||||
let query = query_parser.parse_query("ip:\"2001:0db8:85a3:0000:0000:8a2e:0370:7334\"")?;
|
||||
let count_docs = searcher.search(&*query, &Count)?;
|
||||
assert_eq!(count_docs, 1);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -44,7 +44,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// A segment contains different data structure.
|
||||
// Inverted index stands for the combination of
|
||||
// - the term dictionary
|
||||
// - the inverted lists associated to each terms and their positions
|
||||
// - the inverted lists associated with each terms and their positions
|
||||
let inverted_index = segment_reader.inverted_index(title)?;
|
||||
|
||||
// A `Term` is a text token associated with a field.
|
||||
@@ -105,7 +105,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// A segment contains different data structure.
|
||||
// Inverted index stands for the combination of
|
||||
// - the term dictionary
|
||||
// - the inverted lists associated to each terms and their positions
|
||||
// - the inverted lists associated with each terms and their positions
|
||||
let inverted_index = segment_reader.inverted_index(title)?;
|
||||
|
||||
// This segment posting object is like a cursor over the documents matching the term.
|
||||
|
||||
@@ -4,7 +4,7 @@ use std::sync::{Arc, RwLock, Weak};
|
||||
|
||||
use tantivy::collector::TopDocs;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Field, Schema, FAST, TEXT};
|
||||
use tantivy::schema::{Schema, FAST, TEXT};
|
||||
use tantivy::{
|
||||
doc, DocAddress, DocId, Index, IndexReader, Opstamp, Searcher, SearcherGeneration, SegmentId,
|
||||
SegmentReader, Warmer,
|
||||
@@ -25,13 +25,13 @@ pub trait PriceFetcher: Send + Sync + 'static {
|
||||
}
|
||||
|
||||
struct DynamicPriceColumn {
|
||||
field: Field,
|
||||
field: String,
|
||||
price_cache: RwLock<HashMap<(SegmentId, Option<Opstamp>), Arc<Vec<Price>>>>,
|
||||
price_fetcher: Box<dyn PriceFetcher>,
|
||||
}
|
||||
|
||||
impl DynamicPriceColumn {
|
||||
pub fn with_product_id_field<T: PriceFetcher>(field: Field, price_fetcher: T) -> Self {
|
||||
pub fn with_product_id_field<T: PriceFetcher>(field: String, price_fetcher: T) -> Self {
|
||||
DynamicPriceColumn {
|
||||
field,
|
||||
price_cache: Default::default(),
|
||||
@@ -48,10 +48,10 @@ impl Warmer for DynamicPriceColumn {
|
||||
fn warm(&self, searcher: &Searcher) -> tantivy::Result<()> {
|
||||
for segment in searcher.segment_readers() {
|
||||
let key = (segment.segment_id(), segment.delete_opstamp());
|
||||
let product_id_reader = segment.fast_fields().u64(self.field)?;
|
||||
let product_id_reader = segment.fast_fields().u64(&self.field)?;
|
||||
let product_ids: Vec<ProductId> = segment
|
||||
.doc_ids_alive()
|
||||
.map(|doc| product_id_reader.get_val(doc as u64))
|
||||
.map(|doc| product_id_reader.get_val(doc))
|
||||
.collect();
|
||||
let mut prices_it = self.price_fetcher.fetch_prices(&product_ids).into_iter();
|
||||
let mut price_vals: Vec<Price> = Vec::new();
|
||||
@@ -123,7 +123,7 @@ fn main() -> tantivy::Result<()> {
|
||||
|
||||
let price_table = ExternalPriceTable::default();
|
||||
let price_dynamic_column = Arc::new(DynamicPriceColumn::with_product_id_field(
|
||||
product_id,
|
||||
"product_id".to_string(),
|
||||
price_table.clone(),
|
||||
));
|
||||
price_table.update_price(OLIVE_OIL, 12);
|
||||
|
||||
@@ -1,18 +1,20 @@
|
||||
[package]
|
||||
name = "fastfield_codecs"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = ["Pascal Seitz <pascal@quickwit.io>"]
|
||||
license = "MIT"
|
||||
edition = "2021"
|
||||
description = "Fast field codecs used by tantivy"
|
||||
documentation = "https://docs.rs/fastfield_codecs/"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
repository = "https://github.com/quickwit-oss/tantivy"
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
common = { version = "0.3", path = "../common/", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version="0.2", path = "../bitpacker/" }
|
||||
ownedbytes = { version = "0.3.0", path = "../ownedbytes" }
|
||||
prettytable-rs = {version="0.9.0", optional= true}
|
||||
common = { version = "0.5", path = "../common/", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.3", path = "../bitpacker/" }
|
||||
prettytable-rs = {version="0.10.0", optional= true}
|
||||
rand = {version="0.8.3", optional= true}
|
||||
fastdivide = "0.4"
|
||||
log = "0.4"
|
||||
|
||||
@@ -4,11 +4,11 @@ extern crate test;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::iter;
|
||||
use std::ops::RangeInclusive;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use fastfield_codecs::*;
|
||||
use ownedbytes::OwnedBytes;
|
||||
use rand::prelude::*;
|
||||
use test::Bencher;
|
||||
|
||||
@@ -65,33 +65,30 @@ mod tests {
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = column.get_val(a as u64);
|
||||
a = column.get_val(a as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
fn get_exp_data() -> Vec<u64> {
|
||||
const FIFTY_PERCENT_RANGE: RangeInclusive<u64> = 1..=50;
|
||||
const SINGLE_ITEM: u64 = 90;
|
||||
const SINGLE_ITEM_RANGE: RangeInclusive<u64> = 90..=90;
|
||||
const ONE_PERCENT_ITEM_RANGE: RangeInclusive<u64> = 49..=49;
|
||||
fn get_data_50percent_item() -> Vec<u128> {
|
||||
let mut rng = StdRng::from_seed([1u8; 32]);
|
||||
|
||||
let mut data = vec![];
|
||||
for i in 0..100 {
|
||||
let num = i * i;
|
||||
data.extend(iter::repeat(i as u64).take(num));
|
||||
for _ in 0..300_000 {
|
||||
let val = rng.gen_range(1..=100);
|
||||
data.push(val);
|
||||
}
|
||||
data.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
data.push(SINGLE_ITEM);
|
||||
|
||||
// lengt = 328350
|
||||
data.shuffle(&mut rng);
|
||||
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
data
|
||||
}
|
||||
|
||||
fn get_data_50percent_item() -> (u128, u128, Vec<u128>) {
|
||||
let mut permutation = get_exp_data();
|
||||
let major_item = 20;
|
||||
let minor_item = 10;
|
||||
permutation.extend(iter::repeat(major_item).take(permutation.len()));
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
(major_item as u128, minor_item as u128, permutation)
|
||||
}
|
||||
fn get_u128_column_random() -> Arc<dyn Column<u128>> {
|
||||
let permutation = generate_random();
|
||||
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
@@ -100,34 +97,123 @@ mod tests {
|
||||
|
||||
fn get_u128_column_from_data(data: &[u128]) -> Arc<dyn Column<u128>> {
|
||||
let mut out = vec![];
|
||||
serialize_u128(VecColumn::from(&data), &mut out).unwrap();
|
||||
let iter_gen = || data.iter().cloned();
|
||||
serialize_u128(iter_gen, data.len() as u32, &mut out).unwrap();
|
||||
let out = OwnedBytes::new(out);
|
||||
open_u128(out).unwrap()
|
||||
open_u128::<u128>(out).unwrap()
|
||||
}
|
||||
|
||||
// U64 RANGE START
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_50percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
FIFTY_PERCENT_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_1percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
ONE_PERCENT_ITEM_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_single_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
SINGLE_ITEM_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_hit_all(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(0..=u64::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
// U64 RANGE END
|
||||
|
||||
// U128 RANGE START
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
|
||||
let (major_item, _minor_item, data) = get_data_50percent_item();
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| column.get_between_vals(major_item..=major_item));
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
|
||||
let (_major_item, minor_item, data) = get_data_50percent_item();
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| column.get_between_vals(minor_item..=minor_item));
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
*SINGLE_ITEM_RANGE.start() as u128..=*SINGLE_ITEM_RANGE.end() as u128,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
|
||||
let (_major_item, _minor_item, data) = get_data_50percent_item();
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| column.get_between_vals(0..=u128::MAX));
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
// U128 RANGE END
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_u128(b: &mut Bencher) {
|
||||
@@ -136,7 +222,7 @@ mod tests {
|
||||
b.iter(|| {
|
||||
let mut a = 0u128;
|
||||
for i in 0u64..column.num_vals() as u64 {
|
||||
a += column.get_val(i);
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
@@ -150,7 +236,7 @@ mod tests {
|
||||
let n = column.num_vals();
|
||||
let mut a = 0u128;
|
||||
for i in (0..n / 5).map(|val| val * 5) {
|
||||
a += column.get_val(i as u64);
|
||||
a += column.get_val(i);
|
||||
}
|
||||
a
|
||||
});
|
||||
@@ -175,9 +261,9 @@ mod tests {
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
let mut a = 0;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += column.get_val(i as u64);
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
@@ -190,7 +276,7 @@ mod tests {
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0u64..n as u64 {
|
||||
for i in 0u32..n as u32 {
|
||||
a += column.get_val(i);
|
||||
}
|
||||
a
|
||||
@@ -204,8 +290,8 @@ mod tests {
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..n as u64 {
|
||||
a += column.get_val(i);
|
||||
for i in 0..n {
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use ownedbytes::OwnedBytes;
|
||||
use common::OwnedBytes;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::serialize::NormalizedHeader;
|
||||
@@ -17,7 +17,7 @@ pub struct BitpackedReader {
|
||||
|
||||
impl Column for BitpackedReader {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u64) -> u64 {
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
self.bit_unpacker.get(doc, &self.data)
|
||||
}
|
||||
#[inline]
|
||||
@@ -30,7 +30,7 @@ impl Column for BitpackedReader {
|
||||
self.normalized_header.max_value
|
||||
}
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u64 {
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.normalized_header.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
use std::sync::Arc;
|
||||
use std::{io, iter};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, DeserializeFrom};
|
||||
use ownedbytes::OwnedBytes;
|
||||
use common::{BinarySerializable, CountingWriter, DeserializeFrom, OwnedBytes};
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::line::Line;
|
||||
@@ -36,7 +35,7 @@ impl BinarySerializable for Block {
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_num_blocks(num_vals: u64) -> usize {
|
||||
fn compute_num_blocks(num_vals: u32) -> usize {
|
||||
(num_vals as usize + CHUNK_SIZE - 1) / CHUNK_SIZE
|
||||
}
|
||||
|
||||
@@ -47,7 +46,7 @@ impl FastFieldCodec for BlockwiseLinearCodec {
|
||||
type Reader = BlockwiseLinearReader;
|
||||
|
||||
fn open_from_bytes(
|
||||
bytes: ownedbytes::OwnedBytes,
|
||||
bytes: common::OwnedBytes,
|
||||
normalized_header: NormalizedHeader,
|
||||
) -> io::Result<Self::Reader> {
|
||||
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
|
||||
@@ -72,13 +71,13 @@ impl FastFieldCodec for BlockwiseLinearCodec {
|
||||
|
||||
// Estimate first_chunk and extrapolate
|
||||
fn estimate(column: &dyn crate::Column) -> Option<f32> {
|
||||
if column.num_vals() < 10 * CHUNK_SIZE as u64 {
|
||||
if column.num_vals() < 10 * CHUNK_SIZE as u32 {
|
||||
return None;
|
||||
}
|
||||
let mut first_chunk: Vec<u64> = column.iter().take(CHUNK_SIZE as usize).collect();
|
||||
let mut first_chunk: Vec<u64> = column.iter().take(CHUNK_SIZE).collect();
|
||||
let line = Line::train(&VecColumn::from(&first_chunk));
|
||||
for (i, buffer_val) in first_chunk.iter_mut().enumerate() {
|
||||
let interpolated_val = line.eval(i as u64);
|
||||
let interpolated_val = line.eval(i as u32);
|
||||
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
|
||||
}
|
||||
let estimated_bit_width = first_chunk
|
||||
@@ -95,7 +94,7 @@ impl FastFieldCodec for BlockwiseLinearCodec {
|
||||
};
|
||||
let num_bits = estimated_bit_width as u64 * column.num_vals() as u64
|
||||
// function metadata per block
|
||||
+ metadata_per_block as u64 * (column.num_vals() / CHUNK_SIZE as u64);
|
||||
+ metadata_per_block as u64 * (column.num_vals() as u64 / CHUNK_SIZE as u64);
|
||||
let num_bits_uncompressed = 64 * column.num_vals();
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
}
|
||||
@@ -121,7 +120,7 @@ impl FastFieldCodec for BlockwiseLinearCodec {
|
||||
assert!(!buffer.is_empty());
|
||||
|
||||
for (i, buffer_val) in buffer.iter_mut().enumerate() {
|
||||
let interpolated_val = line.eval(i as u64);
|
||||
let interpolated_val = line.eval(i as u32);
|
||||
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
|
||||
}
|
||||
let bit_width = buffer.iter().copied().map(compute_num_bits).max().unwrap();
|
||||
@@ -161,9 +160,9 @@ pub struct BlockwiseLinearReader {
|
||||
|
||||
impl Column for BlockwiseLinearReader {
|
||||
#[inline(always)]
|
||||
fn get_val(&self, idx: u64) -> u64 {
|
||||
let block_id = (idx / CHUNK_SIZE as u64) as usize;
|
||||
let idx_within_block = idx % (CHUNK_SIZE as u64);
|
||||
fn get_val(&self, idx: u32) -> u64 {
|
||||
let block_id = (idx / CHUNK_SIZE as u32) as usize;
|
||||
let idx_within_block = idx % (CHUNK_SIZE as u32);
|
||||
let block = &self.blocks[block_id];
|
||||
let interpoled_val: u64 = block.line.eval(idx_within_block);
|
||||
let block_bytes = &self.data[block.data_start_offset..];
|
||||
@@ -171,16 +170,19 @@ impl Column for BlockwiseLinearReader {
|
||||
interpoled_val.wrapping_add(bitpacked_diff)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The BlockwiseLinearReader assumes a normalized vector.
|
||||
0u64
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.normalized_header.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
#[inline(always)]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.normalized_header.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,17 +1,21 @@
|
||||
use std::fmt::{self, Debug};
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::RangeInclusive;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
|
||||
use tantivy_bitpacker::minmax;
|
||||
|
||||
pub trait Column<T: PartialOrd = u64>: Send + Sync {
|
||||
/// Return the value associated to the given idx.
|
||||
use crate::monotonic_mapping::StrictlyMonotonicFn;
|
||||
|
||||
/// `Column` provides columnar access on a field.
|
||||
pub trait Column<T: PartialOrd + Debug = u64>: Send + Sync {
|
||||
/// Return the value associated with the given idx.
|
||||
///
|
||||
/// This accessor should return as fast as possible.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `idx` is greater than the column length.
|
||||
fn get_val(&self, idx: u64) -> T;
|
||||
fn get_val(&self, idx: u32) -> T;
|
||||
|
||||
/// Fills an output buffer with the fast field values
|
||||
/// associated with the `DocId` going from
|
||||
@@ -24,21 +28,28 @@ pub trait Column<T: PartialOrd = u64>: Send + Sync {
|
||||
#[inline]
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
for (out, idx) in output.iter_mut().zip(start..) {
|
||||
*out = self.get_val(idx);
|
||||
*out = self.get_val(idx as u32);
|
||||
}
|
||||
}
|
||||
|
||||
/// Return the positions of values which are in the provided range.
|
||||
/// Get the positions of values which are in the provided value range.
|
||||
///
|
||||
/// Note that position == docid for single value fast fields
|
||||
#[inline]
|
||||
fn get_between_vals(&self, range: RangeInclusive<T>) -> Vec<u64> {
|
||||
let mut vals = Vec::new();
|
||||
for idx in 0..self.num_vals() {
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<T>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
let doc_id_range = doc_id_range.start..doc_id_range.end.min(self.num_vals());
|
||||
|
||||
for idx in doc_id_range.start..doc_id_range.end {
|
||||
let val = self.get_val(idx);
|
||||
if range.contains(&val) {
|
||||
vals.push(idx);
|
||||
if value_range.contains(&val) {
|
||||
positions.push(idx);
|
||||
}
|
||||
}
|
||||
vals
|
||||
}
|
||||
|
||||
/// Returns the minimum value for this fast field.
|
||||
@@ -57,7 +68,8 @@ pub trait Column<T: PartialOrd = u64>: Send + Sync {
|
||||
/// `.max_value()`.
|
||||
fn max_value(&self) -> T;
|
||||
|
||||
fn num_vals(&self) -> u64;
|
||||
/// The number of values in the column.
|
||||
fn num_vals(&self) -> u32;
|
||||
|
||||
/// Returns a iterator over the data
|
||||
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = T> + 'a> {
|
||||
@@ -65,14 +77,15 @@ pub trait Column<T: PartialOrd = u64>: Send + Sync {
|
||||
}
|
||||
}
|
||||
|
||||
/// VecColumn provides `Column` over a slice.
|
||||
pub struct VecColumn<'a, T = u64> {
|
||||
values: &'a [T],
|
||||
min_value: T,
|
||||
max_value: T,
|
||||
}
|
||||
|
||||
impl<'a, C: Column<T>, T: Copy + PartialOrd> Column<T> for &'a C {
|
||||
fn get_val(&self, idx: u64) -> T {
|
||||
impl<'a, C: Column<T>, T: Copy + PartialOrd + fmt::Debug> Column<T> for &'a C {
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
(*self).get_val(idx)
|
||||
}
|
||||
|
||||
@@ -84,7 +97,7 @@ impl<'a, C: Column<T>, T: Copy + PartialOrd> Column<T> for &'a C {
|
||||
(*self).max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
fn num_vals(&self) -> u32 {
|
||||
(*self).num_vals()
|
||||
}
|
||||
|
||||
@@ -97,8 +110,8 @@ impl<'a, C: Column<T>, T: Copy + PartialOrd> Column<T> for &'a C {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Send + Sync> Column<T> for VecColumn<'a, T> {
|
||||
fn get_val(&self, position: u64) -> T {
|
||||
impl<'a, T: Copy + PartialOrd + Send + Sync + Debug> Column<T> for VecColumn<'a, T> {
|
||||
fn get_val(&self, position: u32) -> T {
|
||||
self.values[position as usize]
|
||||
}
|
||||
|
||||
@@ -114,8 +127,8 @@ impl<'a, T: Copy + PartialOrd + Send + Sync> Column<T> for VecColumn<'a, T> {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.values.len() as u64
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.values.len() as u32
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
@@ -123,7 +136,7 @@ impl<'a, T: Copy + PartialOrd + Send + Sync> Column<T> for VecColumn<'a, T> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + Ord + Default, V> From<&'a V> for VecColumn<'a, T>
|
||||
impl<'a, T: Copy + PartialOrd + Default, V> From<&'a V> for VecColumn<'a, T>
|
||||
where V: AsRef<[T]> + ?Sized
|
||||
{
|
||||
fn from(values: &'a V) -> Self {
|
||||
@@ -143,16 +156,30 @@ struct MonotonicMappingColumn<C, T, Input> {
|
||||
_phantom: PhantomData<Input>,
|
||||
}
|
||||
|
||||
/// Creates a view of a column transformed by a monotonic mapping.
|
||||
pub fn monotonic_map_column<C, T, Input: PartialOrd, Output: PartialOrd>(
|
||||
/// Creates a view of a column transformed by a strictly monotonic mapping. See
|
||||
/// [`StrictlyMonotonicFn`].
|
||||
///
|
||||
/// E.g. apply a gcd monotonic_mapping([100, 200, 300]) == [1, 2, 3]
|
||||
/// monotonic_mapping.mapping() is expected to be injective, and we should always have
|
||||
/// monotonic_mapping.inverse(monotonic_mapping.mapping(el)) == el
|
||||
///
|
||||
/// The inverse of the mapping is required for:
|
||||
/// `fn get_positions_for_value_range(&self, range: RangeInclusive<T>) -> Vec<u64> `
|
||||
/// The user provides the original value range and we need to monotonic map them in the same way the
|
||||
/// serialization does before calling the underlying column.
|
||||
///
|
||||
/// Note that when opening a codec, the monotonic_mapping should be the inverse of the mapping
|
||||
/// during serialization. And therefore the monotonic_mapping_inv when opening is the same as
|
||||
/// monotonic_mapping during serialization.
|
||||
pub fn monotonic_map_column<C, T, Input, Output>(
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
) -> impl Column<Output>
|
||||
where
|
||||
C: Column<Input>,
|
||||
T: Fn(Input) -> Output + Send + Sync,
|
||||
Input: Send + Sync,
|
||||
Output: Send + Sync,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Sync + Copy + Debug,
|
||||
Output: PartialOrd + Send + Sync + Copy + Debug,
|
||||
{
|
||||
MonotonicMappingColumn {
|
||||
from_column,
|
||||
@@ -161,42 +188,63 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<C, T, Input: PartialOrd, Output: PartialOrd> Column<Output>
|
||||
for MonotonicMappingColumn<C, T, Input>
|
||||
impl<C, T, Input, Output> Column<Output> for MonotonicMappingColumn<C, T, Input>
|
||||
where
|
||||
C: Column<Input>,
|
||||
T: Fn(Input) -> Output + Send + Sync,
|
||||
Input: Send + Sync,
|
||||
Output: Send + Sync,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Sync + Copy + Debug,
|
||||
Output: PartialOrd + Send + Sync + Copy + Debug,
|
||||
{
|
||||
#[inline]
|
||||
fn get_val(&self, idx: u64) -> Output {
|
||||
fn get_val(&self, idx: u32) -> Output {
|
||||
let from_val = self.from_column.get_val(idx);
|
||||
(self.monotonic_mapping)(from_val)
|
||||
self.monotonic_mapping.mapping(from_val)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> Output {
|
||||
let from_min_value = self.from_column.min_value();
|
||||
(self.monotonic_mapping)(from_min_value)
|
||||
self.monotonic_mapping.mapping(from_min_value)
|
||||
}
|
||||
|
||||
fn max_value(&self) -> Output {
|
||||
let from_max_value = self.from_column.max_value();
|
||||
(self.monotonic_mapping)(from_max_value)
|
||||
self.monotonic_mapping.mapping(from_max_value)
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.from_column.num_vals()
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = Output> + '_> {
|
||||
Box::new(self.from_column.iter().map(&self.monotonic_mapping))
|
||||
Box::new(
|
||||
self.from_column
|
||||
.iter()
|
||||
.map(|el| self.monotonic_mapping.mapping(el)),
|
||||
)
|
||||
}
|
||||
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<Output>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
if range.start() > &self.max_value() || range.end() < &self.min_value() {
|
||||
return;
|
||||
}
|
||||
let range = self.monotonic_mapping.inverse_coerce(range);
|
||||
if range.start() > range.end() {
|
||||
return;
|
||||
}
|
||||
self.from_column
|
||||
.get_docids_for_value_range(range, doc_id_range, positions)
|
||||
}
|
||||
|
||||
// We voluntarily do not implement get_range as it yields a regression,
|
||||
// and we do not have any specialized implementation anyway.
|
||||
}
|
||||
|
||||
/// Wraps an iterator into a `Column`.
|
||||
pub struct IterColumn<T>(T);
|
||||
|
||||
impl<T> From<T> for IterColumn<T>
|
||||
@@ -210,9 +258,9 @@ where T: Iterator + Clone + ExactSizeIterator
|
||||
impl<T> Column<T::Item> for IterColumn<T>
|
||||
where
|
||||
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
|
||||
T::Item: PartialOrd,
|
||||
T::Item: PartialOrd + fmt::Debug,
|
||||
{
|
||||
fn get_val(&self, idx: u64) -> T::Item {
|
||||
fn get_val(&self, idx: u32) -> T::Item {
|
||||
self.0.clone().nth(idx as usize).unwrap()
|
||||
}
|
||||
|
||||
@@ -224,8 +272,8 @@ where
|
||||
self.0.clone().last().unwrap()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
self.0.len() as u64
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.0.len() as u32
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T::Item> + '_> {
|
||||
@@ -236,19 +284,22 @@ where
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::MonotonicallyMappableToU64;
|
||||
use crate::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternalBaseval,
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping() {
|
||||
let vals = &[1u64, 3u64][..];
|
||||
let vals = &[3u64, 5u64][..];
|
||||
let col = VecColumn::from(vals);
|
||||
let mapped = monotonic_map_column(col, |el| el + 4);
|
||||
assert_eq!(mapped.min_value(), 5u64);
|
||||
assert_eq!(mapped.max_value(), 7u64);
|
||||
let mapped = monotonic_map_column(col, StrictlyMonotonicMappingToInternalBaseval::new(2));
|
||||
assert_eq!(mapped.min_value(), 1u64);
|
||||
assert_eq!(mapped.max_value(), 3u64);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.get_val(0), 5);
|
||||
assert_eq!(mapped.get_val(1), 7);
|
||||
assert_eq!(mapped.get_val(0), 1);
|
||||
assert_eq!(mapped.get_val(1), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -260,10 +311,15 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_iter() {
|
||||
let vals: Vec<u64> = (-1..99).map(i64::to_u64).collect();
|
||||
let vals: Vec<u64> = (10..110u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(col, |el| i64::from_u64(el) * 10i64);
|
||||
let val_i64s: Vec<i64> = mapped.iter().collect();
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100),
|
||||
),
|
||||
);
|
||||
let val_i64s: Vec<u64> = mapped.iter().collect();
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
|
||||
}
|
||||
@@ -271,20 +327,26 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_get_range() {
|
||||
let vals: Vec<u64> = (-1..99).map(i64::to_u64).collect();
|
||||
let vals: Vec<u64> = (0..100u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(col, |el| i64::from_u64(el) * 10i64);
|
||||
assert_eq!(mapped.min_value(), -10i64);
|
||||
assert_eq!(mapped.max_value(), 980i64);
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 0),
|
||||
),
|
||||
);
|
||||
|
||||
assert_eq!(mapped.min_value(), 0u64);
|
||||
assert_eq!(mapped.max_value(), 9900u64);
|
||||
assert_eq!(mapped.num_vals(), 100);
|
||||
let val_i64s: Vec<i64> = mapped.iter().collect();
|
||||
assert_eq!(val_i64s.len(), 100);
|
||||
let val_u64s: Vec<u64> = mapped.iter().collect();
|
||||
assert_eq!(val_u64s.len(), 100);
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
|
||||
assert_eq!(val_i64s[i as usize], i64::from_u64(vals[i as usize]) * 10);
|
||||
assert_eq!(val_u64s[i as usize], mapped.get_val(i));
|
||||
assert_eq!(val_u64s[i as usize], vals[i as usize] * 10);
|
||||
}
|
||||
let mut buf = [0i64; 20];
|
||||
let mut buf = [0u64; 20];
|
||||
mapped.get_range(7, &mut buf[..]);
|
||||
assert_eq!(&val_i64s[7..][..20], &buf);
|
||||
assert_eq!(&val_u64s[7..][..20], &buf);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -57,7 +57,7 @@ fn num_bits(val: u128) -> u8 {
|
||||
/// metadata.
|
||||
pub fn get_compact_space(
|
||||
values_deduped_sorted: &BTreeSet<u128>,
|
||||
total_num_values: u64,
|
||||
total_num_values: u32,
|
||||
cost_per_blank: usize,
|
||||
) -> CompactSpace {
|
||||
let mut compact_space_builder = CompactSpaceBuilder::new();
|
||||
@@ -208,7 +208,7 @@ impl CompactSpaceBuilder {
|
||||
};
|
||||
let covered_range_len = range_mapping.range_length();
|
||||
ranges_mapping.push(range_mapping);
|
||||
compact_start += covered_range_len as u64;
|
||||
compact_start += covered_range_len;
|
||||
}
|
||||
// println!("num ranges {}", ranges_mapping.len());
|
||||
CompactSpace { ranges_mapping }
|
||||
|
||||
@@ -14,11 +14,10 @@ use std::{
|
||||
cmp::Ordering,
|
||||
collections::BTreeSet,
|
||||
io::{self, Write},
|
||||
ops::RangeInclusive,
|
||||
ops::{Range, RangeInclusive},
|
||||
};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, VInt, VIntU128};
|
||||
use ownedbytes::OwnedBytes;
|
||||
use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt, VIntU128};
|
||||
use tantivy_bitpacker::{self, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::compact_space::build_compact_space::get_compact_space;
|
||||
@@ -97,7 +96,7 @@ impl BinarySerializable for CompactSpace {
|
||||
};
|
||||
let range_length = range_mapping.range_length();
|
||||
ranges_mapping.push(range_mapping);
|
||||
compact_start += range_length as u64;
|
||||
compact_start += range_length;
|
||||
}
|
||||
|
||||
Ok(Self { ranges_mapping })
|
||||
@@ -165,16 +164,16 @@ pub struct IPCodecParams {
|
||||
bit_unpacker: BitUnpacker,
|
||||
min_value: u128,
|
||||
max_value: u128,
|
||||
num_vals: u64,
|
||||
num_vals: u32,
|
||||
num_bits: u8,
|
||||
}
|
||||
|
||||
impl CompactSpaceCompressor {
|
||||
/// Taking the vals as Vec may cost a lot of memory. It is used to sort the vals.
|
||||
pub fn train_from(column: &impl Column<u128>) -> Self {
|
||||
pub fn train_from(iter: impl Iterator<Item = u128>, num_vals: u32) -> Self {
|
||||
let mut values_sorted = BTreeSet::new();
|
||||
values_sorted.extend(column.iter());
|
||||
let total_num_values = column.num_vals();
|
||||
values_sorted.extend(iter);
|
||||
let total_num_values = num_vals;
|
||||
|
||||
let compact_space =
|
||||
get_compact_space(&values_sorted, total_num_values, COST_PER_BLANK_IN_BITS);
|
||||
@@ -200,7 +199,7 @@ impl CompactSpaceCompressor {
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: total_num_values as u64,
|
||||
num_vals: total_num_values,
|
||||
num_bits,
|
||||
},
|
||||
}
|
||||
@@ -267,7 +266,7 @@ impl BinarySerializable for IPCodecParams {
|
||||
let _header_flags = u64::deserialize(reader)?;
|
||||
let min_value = VIntU128::deserialize(reader)?.0;
|
||||
let max_value = VIntU128::deserialize(reader)?.0;
|
||||
let num_vals = VIntU128::deserialize(reader)?.0 as u64;
|
||||
let num_vals = VIntU128::deserialize(reader)?.0 as u32;
|
||||
let num_bits = u8::deserialize(reader)?;
|
||||
let compact_space = CompactSpace::deserialize(reader)?;
|
||||
|
||||
@@ -284,7 +283,7 @@ impl BinarySerializable for IPCodecParams {
|
||||
|
||||
impl Column<u128> for CompactSpaceDecompressor {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u64) -> u128 {
|
||||
fn get_val(&self, doc: u32) -> u128 {
|
||||
self.get(doc)
|
||||
}
|
||||
|
||||
@@ -296,7 +295,7 @@ impl Column<u128> for CompactSpaceDecompressor {
|
||||
self.max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.params.num_vals
|
||||
}
|
||||
|
||||
@@ -304,8 +303,15 @@ impl Column<u128> for CompactSpaceDecompressor {
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u128> + '_> {
|
||||
Box::new(self.iter())
|
||||
}
|
||||
fn get_between_vals(&self, range: RangeInclusive<u128>) -> Vec<u64> {
|
||||
self.get_between_vals(range)
|
||||
|
||||
#[inline]
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u128>,
|
||||
positions_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.get_positions_for_value_range(value_range, positions_range, positions)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -340,12 +346,19 @@ impl CompactSpaceDecompressor {
|
||||
/// Comparing on compact space: Real dataset 1.08 GElements/s
|
||||
///
|
||||
/// Comparing on original space: Real dataset .06 GElements/s (not completely optimized)
|
||||
pub fn get_between_vals(&self, range: RangeInclusive<u128>) -> Vec<u64> {
|
||||
if range.start() > range.end() {
|
||||
return Vec::new();
|
||||
#[inline]
|
||||
pub fn get_positions_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u128>,
|
||||
position_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
if value_range.start() > value_range.end() {
|
||||
return;
|
||||
}
|
||||
let from_value = *range.start();
|
||||
let to_value = *range.end();
|
||||
let position_range = position_range.start..position_range.end.min(self.num_vals());
|
||||
let from_value = *value_range.start();
|
||||
let to_value = *value_range.end();
|
||||
assert!(to_value >= from_value);
|
||||
let compact_from = self.u128_to_compact(from_value);
|
||||
let compact_to = self.u128_to_compact(to_value);
|
||||
@@ -353,7 +366,7 @@ impl CompactSpaceDecompressor {
|
||||
// Quick return, if both ranges fall into the same non-mapped space, the range can't cover
|
||||
// any values, so we can early exit
|
||||
match (compact_to, compact_from) {
|
||||
(Err(pos1), Err(pos2)) if pos1 == pos2 => return Vec::new(),
|
||||
(Err(pos1), Err(pos2)) if pos1 == pos2 => return,
|
||||
_ => {}
|
||||
}
|
||||
|
||||
@@ -375,19 +388,20 @@ impl CompactSpaceDecompressor {
|
||||
});
|
||||
|
||||
let range = compact_from..=compact_to;
|
||||
let mut positions = Vec::new();
|
||||
|
||||
let scan_num_docs = position_range.end - position_range.start;
|
||||
|
||||
let step_size = 4;
|
||||
let cutoff = self.params.num_vals - self.params.num_vals % step_size;
|
||||
let cutoff = position_range.start + scan_num_docs - scan_num_docs % step_size;
|
||||
|
||||
let mut push_if_in_range = |idx, val| {
|
||||
if range.contains(&val) {
|
||||
positions.push(idx);
|
||||
}
|
||||
};
|
||||
let get_val = |idx| self.params.bit_unpacker.get(idx as u64, &self.data);
|
||||
let get_val = |idx| self.params.bit_unpacker.get(idx, &self.data);
|
||||
// unrolled loop
|
||||
for idx in (0..cutoff).step_by(step_size as usize) {
|
||||
for idx in (position_range.start..cutoff).step_by(step_size as usize) {
|
||||
let idx1 = idx;
|
||||
let idx2 = idx + 1;
|
||||
let idx3 = idx + 2;
|
||||
@@ -403,17 +417,14 @@ impl CompactSpaceDecompressor {
|
||||
}
|
||||
|
||||
// handle rest
|
||||
for idx in cutoff..self.params.num_vals {
|
||||
for idx in cutoff..position_range.end {
|
||||
push_if_in_range(idx, get_val(idx));
|
||||
}
|
||||
|
||||
positions
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter_compact(&self) -> impl Iterator<Item = u64> + '_ {
|
||||
(0..self.params.num_vals)
|
||||
.map(move |idx| self.params.bit_unpacker.get(idx as u64, &self.data) as u64)
|
||||
(0..self.params.num_vals).map(move |idx| self.params.bit_unpacker.get(idx, &self.data))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@@ -425,7 +436,7 @@ impl CompactSpaceDecompressor {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn get(&self, idx: u64) -> u128 {
|
||||
pub fn get(&self, idx: u32) -> u128 {
|
||||
let compact = self.params.bit_unpacker.get(idx, &self.data);
|
||||
self.compact_to_u128(compact)
|
||||
}
|
||||
@@ -442,8 +453,13 @@ impl CompactSpaceDecompressor {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use std::fmt;
|
||||
|
||||
use super::*;
|
||||
use crate::{open_u128, serialize_u128, VecColumn};
|
||||
use crate::format_version::read_format_version;
|
||||
use crate::null_index_footer::read_null_index_footer;
|
||||
use crate::serialize::U128Header;
|
||||
use crate::{open_u128, serialize_u128};
|
||||
|
||||
#[test]
|
||||
fn compact_space_test() {
|
||||
@@ -452,7 +468,7 @@ mod tests {
|
||||
]
|
||||
.into_iter()
|
||||
.collect();
|
||||
let compact_space = get_compact_space(ips, ips.len() as u64, 11);
|
||||
let compact_space = get_compact_space(ips, ips.len() as u32, 11);
|
||||
let amplitude = compact_space.amplitude_compact_space();
|
||||
assert_eq!(amplitude, 17);
|
||||
assert_eq!(1, compact_space.u128_to_compact(2).unwrap());
|
||||
@@ -483,24 +499,30 @@ mod tests {
|
||||
#[test]
|
||||
fn compact_space_amplitude_test() {
|
||||
let ips = &[100000u128, 1000000].into_iter().collect();
|
||||
let compact_space = get_compact_space(ips, ips.len() as u64, 1);
|
||||
let compact_space = get_compact_space(ips, ips.len() as u32, 1);
|
||||
let amplitude = compact_space.amplitude_compact_space();
|
||||
assert_eq!(amplitude, 2);
|
||||
}
|
||||
|
||||
fn test_all(data: OwnedBytes, expected: &[u128]) {
|
||||
fn test_all(mut data: OwnedBytes, expected: &[u128]) {
|
||||
let _header = U128Header::deserialize(&mut data);
|
||||
let decompressor = CompactSpaceDecompressor::open(data).unwrap();
|
||||
for (idx, expected_val) in expected.iter().cloned().enumerate() {
|
||||
let val = decompressor.get(idx as u64);
|
||||
let val = decompressor.get(idx as u32);
|
||||
assert_eq!(val, expected_val);
|
||||
|
||||
let test_range = |range: RangeInclusive<u128>| {
|
||||
let expected_positions = expected
|
||||
.iter()
|
||||
.positions(|val| range.contains(val))
|
||||
.map(|pos| pos as u64)
|
||||
.map(|pos| pos as u32)
|
||||
.collect::<Vec<_>>();
|
||||
let positions = decompressor.get_between_vals(range);
|
||||
let mut positions = Vec::new();
|
||||
decompressor.get_positions_for_value_range(
|
||||
range,
|
||||
0..decompressor.num_vals(),
|
||||
&mut positions,
|
||||
);
|
||||
assert_eq!(positions, expected_positions);
|
||||
};
|
||||
|
||||
@@ -513,10 +535,18 @@ mod tests {
|
||||
|
||||
fn test_aux_vals(u128_vals: &[u128]) -> OwnedBytes {
|
||||
let mut out = Vec::new();
|
||||
serialize_u128(VecColumn::from(u128_vals), &mut out).unwrap();
|
||||
serialize_u128(
|
||||
|| u128_vals.iter().cloned(),
|
||||
u128_vals.len() as u32,
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let data = OwnedBytes::new(out);
|
||||
let (data, _format_version) = read_format_version(data).unwrap();
|
||||
let (data, _null_index_footer) = read_null_index_footer(data).unwrap();
|
||||
test_all(data.clone(), u128_vals);
|
||||
|
||||
data
|
||||
}
|
||||
|
||||
@@ -533,26 +563,111 @@ mod tests {
|
||||
4_000_211_222u128,
|
||||
333u128,
|
||||
];
|
||||
let data = test_aux_vals(vals);
|
||||
let mut data = test_aux_vals(vals);
|
||||
|
||||
let _header = U128Header::deserialize(&mut data);
|
||||
let decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
let positions = decomp.get_between_vals(0..=1);
|
||||
let complete_range = 0..vals.len() as u32;
|
||||
for (pos, val) in vals.iter().enumerate() {
|
||||
let val = *val;
|
||||
let pos = pos as u32;
|
||||
let mut positions = Vec::new();
|
||||
decomp.get_positions_for_value_range(val..=val, pos..pos + 1, &mut positions);
|
||||
assert_eq!(positions, vec![pos]);
|
||||
}
|
||||
|
||||
// handle docid range out of bounds
|
||||
let positions = get_positions_for_value_range_helper(&decomp, 0..=1, 1..u32::MAX);
|
||||
assert_eq!(positions, vec![]);
|
||||
|
||||
let positions =
|
||||
get_positions_for_value_range_helper(&decomp, 0..=1, complete_range.clone());
|
||||
assert_eq!(positions, vec![0]);
|
||||
let positions = decomp.get_between_vals(0..=2);
|
||||
let positions =
|
||||
get_positions_for_value_range_helper(&decomp, 0..=2, complete_range.clone());
|
||||
assert_eq!(positions, vec![0]);
|
||||
let positions = decomp.get_between_vals(0..=3);
|
||||
let positions =
|
||||
get_positions_for_value_range_helper(&decomp, 0..=3, complete_range.clone());
|
||||
assert_eq!(positions, vec![0, 2]);
|
||||
assert_eq!(decomp.get_between_vals(99999u128..=99999u128), vec![3]);
|
||||
assert_eq!(decomp.get_between_vals(99999u128..=100000u128), vec![3, 4]);
|
||||
assert_eq!(decomp.get_between_vals(99998u128..=100000u128), vec![3, 4]);
|
||||
assert_eq!(decomp.get_between_vals(99998u128..=99999u128), vec![3]);
|
||||
assert_eq!(decomp.get_between_vals(99998u128..=99998u128), vec![]);
|
||||
assert_eq!(decomp.get_between_vals(333u128..=333u128), vec![8]);
|
||||
assert_eq!(decomp.get_between_vals(332u128..=333u128), vec![8]);
|
||||
assert_eq!(decomp.get_between_vals(332u128..=334u128), vec![8]);
|
||||
assert_eq!(decomp.get_between_vals(333u128..=334u128), vec![8]);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99999u128..=99999u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![3]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99999u128..=100000u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![3, 4]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=100000u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![3, 4]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=99999u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![3]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=99998u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
333u128..=333u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
332u128..=333u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
332u128..=334u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
333u128..=334u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
decomp.get_between_vals(4_000_211_221u128..=5_000_000_000u128),
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
4_000_211_221u128..=5_000_000_000u128,
|
||||
complete_range
|
||||
),
|
||||
vec![6, 7]
|
||||
);
|
||||
}
|
||||
@@ -575,14 +690,32 @@ mod tests {
|
||||
4_000_211_222u128,
|
||||
333u128,
|
||||
];
|
||||
let data = test_aux_vals(vals);
|
||||
let mut data = test_aux_vals(vals);
|
||||
let _header = U128Header::deserialize(&mut data);
|
||||
let decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
let positions = decomp.get_between_vals(0..=5);
|
||||
assert_eq!(positions, vec![]);
|
||||
let positions = decomp.get_between_vals(0..=100);
|
||||
assert_eq!(positions, vec![0]);
|
||||
let positions = decomp.get_between_vals(0..=105);
|
||||
assert_eq!(positions, vec![0]);
|
||||
let complete_range = 0..vals.len() as u32;
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&decomp, 0..=5, complete_range.clone()),
|
||||
vec![]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&decomp, 0..=100, complete_range.clone()),
|
||||
vec![0]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&decomp, 0..=105, complete_range),
|
||||
vec![0]
|
||||
);
|
||||
}
|
||||
|
||||
fn get_positions_for_value_range_helper<C: Column<T> + ?Sized, T: PartialOrd + fmt::Debug>(
|
||||
column: &C,
|
||||
value_range: RangeInclusive<T>,
|
||||
doc_id_range: Range<u32>,
|
||||
) -> Vec<u32> {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(value_range, doc_id_range, &mut positions);
|
||||
positions
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -603,13 +736,29 @@ mod tests {
|
||||
5_000_000_000,
|
||||
];
|
||||
let mut out = Vec::new();
|
||||
serialize_u128(VecColumn::from(vals), &mut out).unwrap();
|
||||
let decomp = open_u128(OwnedBytes::new(out)).unwrap();
|
||||
serialize_u128(|| vals.iter().cloned(), vals.len() as u32, &mut out).unwrap();
|
||||
let decomp = open_u128::<u128>(OwnedBytes::new(out)).unwrap();
|
||||
let complete_range = 0..vals.len() as u32;
|
||||
|
||||
assert_eq!(decomp.get_between_vals(199..=200), vec![0]);
|
||||
assert_eq!(decomp.get_between_vals(199..=201), vec![0, 1]);
|
||||
assert_eq!(decomp.get_between_vals(200..=200), vec![0]);
|
||||
assert_eq!(decomp.get_between_vals(1_000_000..=1_000_000), vec![11]);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&*decomp, 199..=200, complete_range.clone()),
|
||||
vec![0]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&*decomp, 199..=201, complete_range.clone()),
|
||||
vec![0, 1]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&*decomp, 200..=200, complete_range.clone()),
|
||||
vec![0]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&*decomp, 1_000_000..=1_000_000, complete_range),
|
||||
vec![11]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
||||
38
fastfield_codecs/src/format_version.rs
Normal file
38
fastfield_codecs/src/format_version.rs
Normal file
@@ -0,0 +1,38 @@
|
||||
use std::io;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
|
||||
const MAGIC_NUMBER: u16 = 4335u16;
|
||||
const FASTFIELD_FORMAT_VERSION: u8 = 1;
|
||||
|
||||
pub(crate) fn append_format_version(output: &mut impl io::Write) -> io::Result<()> {
|
||||
FASTFIELD_FORMAT_VERSION.serialize(output)?;
|
||||
MAGIC_NUMBER.serialize(output)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn read_format_version(data: OwnedBytes) -> io::Result<(OwnedBytes, u8)> {
|
||||
let (data, magic_number_bytes) = data.rsplit(2);
|
||||
|
||||
let magic_number = u16::deserialize(&mut magic_number_bytes.as_slice())?;
|
||||
if magic_number != MAGIC_NUMBER {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
format!("magic number mismatch {} != {}", magic_number, MAGIC_NUMBER),
|
||||
));
|
||||
}
|
||||
let (data, format_version_bytes) = data.rsplit(1);
|
||||
let format_version = u8::deserialize(&mut format_version_bytes.as_slice())?;
|
||||
if format_version > FASTFIELD_FORMAT_VERSION {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
format!(
|
||||
"Unsupported fastfield format version: {}. Max supported version: {}",
|
||||
format_version, FASTFIELD_FORMAT_VERSION
|
||||
),
|
||||
));
|
||||
}
|
||||
|
||||
Ok((data, format_version))
|
||||
}
|
||||
@@ -45,7 +45,7 @@ mod tests {
|
||||
use std::io;
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use ownedbytes::OwnedBytes;
|
||||
use common::OwnedBytes;
|
||||
|
||||
use crate::gcd::{compute_gcd, find_gcd};
|
||||
use crate::{FastFieldCodecType, VecColumn};
|
||||
|
||||
@@ -1,5 +1,12 @@
|
||||
#![warn(missing_docs)]
|
||||
#![cfg_attr(all(feature = "unstable", test), feature(test))]
|
||||
|
||||
//! # `fastfield_codecs`
|
||||
//!
|
||||
//! - Columnar storage of data for tantivy [`Column`].
|
||||
//! - Encode data in different codecs.
|
||||
//! - Monotonically map values to u64/u128
|
||||
|
||||
#[cfg(test)]
|
||||
#[macro_use]
|
||||
extern crate more_asserts;
|
||||
@@ -7,40 +14,58 @@ extern crate more_asserts;
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
extern crate test;
|
||||
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
|
||||
use common::BinarySerializable;
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use compact_space::CompactSpaceDecompressor;
|
||||
use ownedbytes::OwnedBytes;
|
||||
use serialize::Header;
|
||||
use format_version::read_format_version;
|
||||
use monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
|
||||
StrictlyMonotonicMappingToInternalBaseval, StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
use null_index_footer::read_null_index_footer;
|
||||
use serialize::{Header, U128Header};
|
||||
|
||||
mod bitpacked;
|
||||
mod blockwise_linear;
|
||||
mod compact_space;
|
||||
mod format_version;
|
||||
mod line;
|
||||
mod linear;
|
||||
mod monotonic_mapping;
|
||||
mod monotonic_mapping_u128;
|
||||
#[allow(dead_code)]
|
||||
mod null_index;
|
||||
mod null_index_footer;
|
||||
|
||||
mod column;
|
||||
mod gcd;
|
||||
mod serialize;
|
||||
pub mod serialize;
|
||||
|
||||
use self::bitpacked::BitpackedCodec;
|
||||
use self::blockwise_linear::BlockwiseLinearCodec;
|
||||
pub use self::column::{monotonic_map_column, Column, VecColumn};
|
||||
pub use self::column::{monotonic_map_column, Column, IterColumn, VecColumn};
|
||||
use self::linear::LinearCodec;
|
||||
pub use self::monotonic_mapping::MonotonicallyMappableToU64;
|
||||
pub use self::monotonic_mapping::{MonotonicallyMappableToU64, StrictlyMonotonicFn};
|
||||
pub use self::monotonic_mapping_u128::MonotonicallyMappableToU128;
|
||||
pub use self::serialize::{
|
||||
estimate, serialize, serialize_and_load, serialize_u128, NormalizedHeader,
|
||||
};
|
||||
|
||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
/// Available codecs to use to encode the u64 (via [`MonotonicallyMappableToU64`]) converted data.
|
||||
pub enum FastFieldCodecType {
|
||||
/// Bitpack all values in the value range. The number of bits is defined by the amplitude
|
||||
/// `column.max_value() - column.min_value()`
|
||||
Bitpacked = 1,
|
||||
/// Linear interpolation puts a line between the first and last value and then bitpacks the
|
||||
/// values by the offset from the line. The number of bits is defined by the max deviation from
|
||||
/// the line.
|
||||
Linear = 2,
|
||||
/// Same as [`FastFieldCodecType::Linear`], but encodes in blocks of 512 elements.
|
||||
BlockwiseLinear = 3,
|
||||
}
|
||||
|
||||
@@ -58,11 +83,11 @@ impl BinarySerializable for FastFieldCodecType {
|
||||
}
|
||||
|
||||
impl FastFieldCodecType {
|
||||
pub fn to_code(self) -> u8 {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub fn from_code(code: u8) -> Option<Self> {
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::Bitpacked),
|
||||
2 => Some(Self::Linear),
|
||||
@@ -72,15 +97,61 @@ impl FastFieldCodecType {
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open_u128(bytes: OwnedBytes) -> io::Result<Arc<dyn Column<u128>>> {
|
||||
Ok(Arc::new(CompactSpaceDecompressor::open(bytes)?))
|
||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
/// Available codecs to use to encode the u128 (via [`MonotonicallyMappableToU128`]) converted data.
|
||||
pub enum U128FastFieldCodecType {
|
||||
/// This codec takes a large number space (u128) and reduces it to a compact number space, by
|
||||
/// removing the holes.
|
||||
CompactSpace = 1,
|
||||
}
|
||||
|
||||
impl BinarySerializable for U128FastFieldCodecType {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl U128FastFieldCodecType {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::CompactSpace),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open<T: MonotonicallyMappableToU64>(
|
||||
mut bytes: OwnedBytes,
|
||||
pub fn open_u128<Item: MonotonicallyMappableToU128 + fmt::Debug>(
|
||||
bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn Column<Item>>> {
|
||||
let (bytes, _format_version) = read_format_version(bytes)?;
|
||||
let (mut bytes, _null_index_footer) = read_null_index_footer(bytes)?;
|
||||
let header = U128Header::deserialize(&mut bytes)?;
|
||||
assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
|
||||
let reader = CompactSpaceDecompressor::open(bytes)?;
|
||||
let inverted: StrictlyMonotonicMappingInverter<StrictlyMonotonicMappingToInternal<Item>> =
|
||||
StrictlyMonotonicMappingToInternal::<Item>::new().into();
|
||||
Ok(Arc::new(monotonic_map_column(reader, inverted)))
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open<T: MonotonicallyMappableToU64 + fmt::Debug>(
|
||||
bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn Column<T>>> {
|
||||
let (bytes, _format_version) = read_format_version(bytes)?;
|
||||
let (mut bytes, _null_index_footer) = read_null_index_footer(bytes)?;
|
||||
let header = Header::deserialize(&mut bytes)?;
|
||||
match header.codec_type {
|
||||
FastFieldCodecType::Bitpacked => open_specific_codec::<BitpackedCodec, _>(bytes, &header),
|
||||
@@ -91,7 +162,7 @@ pub fn open<T: MonotonicallyMappableToU64>(
|
||||
}
|
||||
}
|
||||
|
||||
fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64>(
|
||||
fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64 + fmt::Debug>(
|
||||
bytes: OwnedBytes,
|
||||
header: &Header,
|
||||
) -> io::Result<Arc<dyn Column<Item>>> {
|
||||
@@ -99,11 +170,15 @@ fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64>(
|
||||
let reader = C::open_from_bytes(bytes, normalized_header)?;
|
||||
let min_value = header.min_value;
|
||||
if let Some(gcd) = header.gcd {
|
||||
let monotonic_mapping = move |val: u64| Item::from_u64(min_value + val * gcd.get());
|
||||
Ok(Arc::new(monotonic_map_column(reader, monotonic_mapping)))
|
||||
let mapping = StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd.get(), min_value),
|
||||
);
|
||||
Ok(Arc::new(monotonic_map_column(reader, mapping)))
|
||||
} else {
|
||||
let monotonic_mapping = move |val: u64| Item::from_u64(min_value + val);
|
||||
Ok(Arc::new(monotonic_map_column(reader, monotonic_mapping)))
|
||||
let mapping = StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalBaseval::new(min_value),
|
||||
);
|
||||
Ok(Arc::new(monotonic_map_column(reader, mapping)))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -135,6 +210,7 @@ trait FastFieldCodec: 'static {
|
||||
fn estimate(column: &dyn Column) -> Option<f32>;
|
||||
}
|
||||
|
||||
/// The list of all available codecs for u64 convertible data.
|
||||
pub const ALL_CODEC_TYPES: [FastFieldCodecType; 3] = [
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
@@ -143,6 +219,7 @@ pub const ALL_CODEC_TYPES: [FastFieldCodecType; 3] = [
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use proptest::prelude::*;
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
@@ -168,15 +245,32 @@ mod tests {
|
||||
let actual_compression = out.len() as f32 / (data.len() as f32 * 8.0);
|
||||
|
||||
let reader = crate::open::<u64>(OwnedBytes::new(out)).unwrap();
|
||||
assert_eq!(reader.num_vals(), data.len() as u64);
|
||||
assert_eq!(reader.num_vals(), data.len() as u32);
|
||||
for (doc, orig_val) in data.iter().copied().enumerate() {
|
||||
let val = reader.get_val(doc as u64);
|
||||
let val = reader.get_val(doc as u32);
|
||||
assert_eq!(
|
||||
val, orig_val,
|
||||
"val `{val}` does not match orig_val {orig_val:?}, in data set {name}, data \
|
||||
`{data:?}`",
|
||||
);
|
||||
}
|
||||
|
||||
if !data.is_empty() {
|
||||
let test_rand_idx = rand::thread_rng().gen_range(0..=data.len() - 1);
|
||||
let expected_positions: Vec<u32> = data
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_, el)| **el == data[test_rand_idx])
|
||||
.map(|(pos, _)| pos as u32)
|
||||
.collect();
|
||||
let mut positions = Vec::new();
|
||||
reader.get_docids_for_value_range(
|
||||
data[test_rand_idx]..=data[test_rand_idx],
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
assert_eq!(expected_positions, positions);
|
||||
}
|
||||
Some((estimation, actual_compression))
|
||||
}
|
||||
|
||||
@@ -229,6 +323,9 @@ mod tests {
|
||||
pub fn get_codec_test_datasets() -> Vec<(Vec<u64>, &'static str)> {
|
||||
let mut data_and_names = vec![];
|
||||
|
||||
let data = vec![10];
|
||||
data_and_names.push((data, "minimal test"));
|
||||
|
||||
let data = (10..=10_000_u64).collect::<Vec<_>>();
|
||||
data_and_names.push((data, "simple monotonically increasing"));
|
||||
|
||||
@@ -236,6 +333,9 @@ mod tests {
|
||||
vec![5, 6, 7, 8, 9, 10, 99, 100],
|
||||
"offset in linear interpol",
|
||||
));
|
||||
|
||||
data_and_names.push((vec![3, 18446744073709551613, 5], "docid range regression"));
|
||||
|
||||
data_and_names.push((vec![5, 50, 3, 13, 1, 1000, 35], "rand small"));
|
||||
data_and_names.push((vec![10], "single value"));
|
||||
|
||||
@@ -312,7 +412,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn estimation_test_bad_interpolation_case_monotonically_increasing() {
|
||||
let mut data: Vec<u64> = (200..=20000_u64).collect();
|
||||
let mut data: Vec<u64> = (201..=20000_u64).collect();
|
||||
data.push(1_000_000);
|
||||
let data: VecColumn = data.as_slice().into();
|
||||
|
||||
@@ -343,7 +443,7 @@ mod tests {
|
||||
mod bench {
|
||||
use std::sync::Arc;
|
||||
|
||||
use ownedbytes::OwnedBytes;
|
||||
use common::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::{self, Bencher};
|
||||
@@ -386,7 +486,7 @@ mod bench {
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u64);
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
@@ -398,7 +498,7 @@ mod bench {
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u64);
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
use std::io;
|
||||
use std::num::NonZeroU64;
|
||||
use std::num::NonZeroU32;
|
||||
|
||||
use common::{BinarySerializable, VInt};
|
||||
|
||||
@@ -29,7 +29,7 @@ pub struct Line {
|
||||
/// compute_slope(y0, y1)
|
||||
/// = compute_slope(y0 + X % 2^64, y1 + X % 2^64)
|
||||
/// `
|
||||
fn compute_slope(y0: u64, y1: u64, num_vals: NonZeroU64) -> u64 {
|
||||
fn compute_slope(y0: u64, y1: u64, num_vals: NonZeroU32) -> u64 {
|
||||
let dy = y1.wrapping_sub(y0);
|
||||
let sign = dy <= (1 << 63);
|
||||
let abs_dy = if sign {
|
||||
@@ -43,7 +43,7 @@ fn compute_slope(y0: u64, y1: u64, num_vals: NonZeroU64) -> u64 {
|
||||
return 0u64;
|
||||
}
|
||||
|
||||
let abs_slope = (abs_dy << 32) / num_vals.get();
|
||||
let abs_slope = (abs_dy << 32) / num_vals.get() as u64;
|
||||
if sign {
|
||||
abs_slope
|
||||
} else {
|
||||
@@ -62,35 +62,43 @@ fn compute_slope(y0: u64, y1: u64, num_vals: NonZeroU64) -> u64 {
|
||||
|
||||
impl Line {
|
||||
#[inline(always)]
|
||||
pub fn eval(&self, x: u64) -> u64 {
|
||||
let linear_part = (x.wrapping_mul(self.slope) >> 32) as i32 as u64;
|
||||
pub fn eval(&self, x: u32) -> u64 {
|
||||
let linear_part = ((x as u64).wrapping_mul(self.slope) >> 32) as i32 as u64;
|
||||
self.intercept.wrapping_add(linear_part)
|
||||
}
|
||||
|
||||
// Same as train, but the intercept is only estimated from provided sample positions
|
||||
pub fn estimate(ys: &dyn Column, sample_positions: &[u64]) -> Self {
|
||||
pub fn estimate(sample_positions_and_values: &[(u64, u64)]) -> Self {
|
||||
let first_val = sample_positions_and_values[0].1;
|
||||
let last_val = sample_positions_and_values[sample_positions_and_values.len() - 1].1;
|
||||
let num_vals = sample_positions_and_values[sample_positions_and_values.len() - 1].0 + 1;
|
||||
Self::train_from(
|
||||
ys,
|
||||
sample_positions
|
||||
.iter()
|
||||
.cloned()
|
||||
.map(|pos| (pos, ys.get_val(pos))),
|
||||
first_val,
|
||||
last_val,
|
||||
num_vals as u32,
|
||||
sample_positions_and_values.iter().cloned(),
|
||||
)
|
||||
}
|
||||
|
||||
// Intercept is only computed from provided positions
|
||||
fn train_from(ys: &dyn Column, positions_and_values: impl Iterator<Item = (u64, u64)>) -> Self {
|
||||
let num_vals = if let Some(num_vals) = NonZeroU64::new(ys.num_vals() - 1) {
|
||||
num_vals
|
||||
fn train_from(
|
||||
first_val: u64,
|
||||
last_val: u64,
|
||||
num_vals: u32,
|
||||
positions_and_values: impl Iterator<Item = (u64, u64)>,
|
||||
) -> Self {
|
||||
// TODO replace with let else
|
||||
let idx_last_val = if let Some(idx_last_val) = NonZeroU32::new(num_vals - 1) {
|
||||
idx_last_val
|
||||
} else {
|
||||
return Line::default();
|
||||
};
|
||||
|
||||
let y0 = ys.get_val(0);
|
||||
let y1 = ys.get_val(num_vals.get());
|
||||
let y0 = first_val;
|
||||
let y1 = last_val;
|
||||
|
||||
// We first independently pick our slope.
|
||||
let slope = compute_slope(y0, y1, num_vals);
|
||||
let slope = compute_slope(y0, y1, idx_last_val);
|
||||
|
||||
// We picked our slope. Note that it does not have to be perfect.
|
||||
// Now we need to compute the best intercept.
|
||||
@@ -121,7 +129,7 @@ impl Line {
|
||||
};
|
||||
let heuristic_shift = y0.wrapping_sub(MID_POINT);
|
||||
line.intercept = positions_and_values
|
||||
.map(|(pos, y)| y.wrapping_sub(line.eval(pos)))
|
||||
.map(|(pos, y)| y.wrapping_sub(line.eval(pos as u32)))
|
||||
.min_by_key(|&val| val.wrapping_sub(heuristic_shift))
|
||||
.unwrap_or(0u64); //< Never happens.
|
||||
line
|
||||
@@ -138,8 +146,12 @@ impl Line {
|
||||
/// This function is only invariable by translation if all of the
|
||||
/// `ys` are packaged into half of the space. (See heuristic below)
|
||||
pub fn train(ys: &dyn Column) -> Self {
|
||||
let first_val = ys.iter().next().unwrap();
|
||||
let last_val = ys.iter().nth(ys.num_vals() as usize - 1).unwrap();
|
||||
Self::train_from(
|
||||
ys,
|
||||
first_val,
|
||||
last_val,
|
||||
ys.num_vals(),
|
||||
ys.iter().enumerate().map(|(pos, val)| (pos as u64, val)),
|
||||
)
|
||||
}
|
||||
@@ -187,7 +199,7 @@ mod tests {
|
||||
let line = Line::train(&VecColumn::from(&ys));
|
||||
ys.iter()
|
||||
.enumerate()
|
||||
.map(|(x, y)| y.wrapping_sub(line.eval(x as u64)))
|
||||
.map(|(x, y)| y.wrapping_sub(line.eval(x as u32)))
|
||||
.max()
|
||||
}
|
||||
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::BinarySerializable;
|
||||
use ownedbytes::OwnedBytes;
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::line::Line;
|
||||
@@ -19,25 +18,25 @@ pub struct LinearReader {
|
||||
|
||||
impl Column for LinearReader {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u64) -> u64 {
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
let interpoled_val: u64 = self.linear_params.line.eval(doc);
|
||||
let bitpacked_diff = self.linear_params.bit_unpacker.get(doc, &self.data);
|
||||
interpoled_val.wrapping_add(bitpacked_diff)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[inline(always)]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The LinearReader assumes a normalized vector.
|
||||
0u64
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[inline(always)]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.header.max_value
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u64 {
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.header.num_vals
|
||||
}
|
||||
}
|
||||
@@ -93,7 +92,7 @@ impl FastFieldCodec for LinearCodec {
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(pos, actual_value)| {
|
||||
let calculated_value = line.eval(pos as u64);
|
||||
let calculated_value = line.eval(pos as u32);
|
||||
actual_value.wrapping_sub(calculated_value)
|
||||
})
|
||||
.max()
|
||||
@@ -108,7 +107,7 @@ impl FastFieldCodec for LinearCodec {
|
||||
|
||||
let mut bit_packer = BitPacker::new();
|
||||
for (pos, actual_value) in column.iter().enumerate() {
|
||||
let calculated_value = line.eval(pos as u64);
|
||||
let calculated_value = line.eval(pos as u32);
|
||||
let offset = actual_value.wrapping_sub(calculated_value);
|
||||
bit_packer.write(offset, num_bits, write)?;
|
||||
}
|
||||
@@ -126,19 +125,21 @@ impl FastFieldCodec for LinearCodec {
|
||||
return None; // disable compressor for this case
|
||||
}
|
||||
|
||||
// let's sample at 0%, 5%, 10% .. 95%, 100%
|
||||
let num_vals = column.num_vals() as f32 / 100.0;
|
||||
let sample_positions = (0..20)
|
||||
.map(|pos| (num_vals * pos as f32 * 5.0) as u64)
|
||||
.collect::<Vec<_>>();
|
||||
let limit_num_vals = column.num_vals().min(100_000);
|
||||
|
||||
let line = Line::estimate(column, &sample_positions);
|
||||
let num_samples = 100;
|
||||
let step_size = (limit_num_vals / num_samples).max(1); // 20 samples
|
||||
let mut sample_positions_and_values: Vec<_> = Vec::new();
|
||||
for (pos, val) in column.iter().enumerate().step_by(step_size as usize) {
|
||||
sample_positions_and_values.push((pos as u64, val));
|
||||
}
|
||||
|
||||
let estimated_bit_width = sample_positions
|
||||
let line = Line::estimate(&sample_positions_and_values);
|
||||
|
||||
let estimated_bit_width = sample_positions_and_values
|
||||
.into_iter()
|
||||
.map(|pos| {
|
||||
let actual_value = column.get_val(pos);
|
||||
let interpolated_val = line.eval(pos as u64);
|
||||
.map(|(pos, actual_value)| {
|
||||
let interpolated_val = line.eval(pos as u32);
|
||||
actual_value.wrapping_sub(interpolated_val)
|
||||
})
|
||||
.map(|diff| ((diff as f32 * 1.5) * 2.0) as u64)
|
||||
@@ -146,6 +147,7 @@ impl FastFieldCodec for LinearCodec {
|
||||
.max()
|
||||
.unwrap_or(0);
|
||||
|
||||
// Extrapolate to whole column
|
||||
let num_bits = (estimated_bit_width as u64 * column.num_vals() as u64) + 64;
|
||||
let num_bits_uncompressed = 64 * column.num_vals();
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
|
||||
@@ -6,10 +6,10 @@ use std::io::BufRead;
|
||||
use std::net::{IpAddr, Ipv6Addr};
|
||||
use std::str::FromStr;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use fastfield_codecs::{open_u128, serialize_u128, Column, FastFieldCodecType, VecColumn};
|
||||
use itertools::Itertools;
|
||||
use measure_time::print_time;
|
||||
use ownedbytes::OwnedBytes;
|
||||
use prettytable::{Cell, Row, Table};
|
||||
|
||||
fn print_set_stats(ip_addrs: &[u128]) {
|
||||
@@ -90,7 +90,7 @@ fn bench_ip() {
|
||||
{
|
||||
let mut data = vec![];
|
||||
for dataset in dataset.chunks(500_000) {
|
||||
serialize_u128(VecColumn::from(dataset), &mut data).unwrap();
|
||||
serialize_u128(|| dataset.iter().cloned(), dataset.len() as u32, &mut data).unwrap();
|
||||
}
|
||||
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
|
||||
println!("Compression 50_000 chunks {:.4}", compression);
|
||||
@@ -101,7 +101,10 @@ fn bench_ip() {
|
||||
}
|
||||
|
||||
let mut data = vec![];
|
||||
serialize_u128(VecColumn::from(&dataset), &mut data).unwrap();
|
||||
{
|
||||
print_time!("creation");
|
||||
serialize_u128(|| dataset.iter().cloned(), dataset.len() as u32, &mut data).unwrap();
|
||||
}
|
||||
|
||||
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
|
||||
println!("Compression {:.2}", compression);
|
||||
@@ -110,11 +113,17 @@ fn bench_ip() {
|
||||
(data.len() * 8) as f32 / dataset.len() as f32
|
||||
);
|
||||
|
||||
let decompressor = open_u128(OwnedBytes::new(data)).unwrap();
|
||||
let decompressor = open_u128::<u128>(OwnedBytes::new(data)).unwrap();
|
||||
// Sample some ranges
|
||||
let mut doc_values = Vec::new();
|
||||
for value in dataset.iter().take(1110).skip(1100).cloned() {
|
||||
doc_values.clear();
|
||||
print_time!("get range");
|
||||
let doc_values = decompressor.get_between_vals(value..=value);
|
||||
decompressor.get_docids_for_value_range(
|
||||
value..=value,
|
||||
0..decompressor.num_vals(),
|
||||
&mut doc_values,
|
||||
);
|
||||
println!("{:?}", doc_values.len());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,4 +1,16 @@
|
||||
pub trait MonotonicallyMappableToU64: 'static + PartialOrd + Copy + Send + Sync {
|
||||
use std::fmt;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
|
||||
use crate::MonotonicallyMappableToU128;
|
||||
|
||||
/// Monotonic maps a value to u64 value space.
|
||||
/// Monotonic mapping enables `PartialOrd` on u64 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU64:
|
||||
'static + PartialOrd + Copy + Send + Sync + fmt::Debug
|
||||
{
|
||||
/// Converts a value to u64.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
@@ -11,11 +23,229 @@ pub trait MonotonicallyMappableToU64: 'static + PartialOrd + Copy + Send + Sync
|
||||
fn from_u64(val: u64) -> Self;
|
||||
}
|
||||
|
||||
/// Values need to be strictly monotonic mapped to a `Internal` value (u64 or u128) that can be
|
||||
/// used in fast field codecs.
|
||||
///
|
||||
/// The monotonic mapping is required so that `PartialOrd` can be used on `Internal` without
|
||||
/// converting to `External`.
|
||||
///
|
||||
/// All strictly monotonic functions are invertible because they are guaranteed to have a one-to-one
|
||||
/// mapping from their range to their domain. The `inverse` method is required when opening a codec,
|
||||
/// so a value can be converted back to its original domain (e.g. ip address or f64) from its
|
||||
/// internal representation.
|
||||
pub trait StrictlyMonotonicFn<External: Copy, Internal: Copy> {
|
||||
/// Strictly monotonically maps the value from External to Internal.
|
||||
fn mapping(&self, inp: External) -> Internal;
|
||||
/// Inverse of `mapping`. Maps the value from Internal to External.
|
||||
fn inverse(&self, out: Internal) -> External;
|
||||
|
||||
/// Maps a user provded value from External to Internal.
|
||||
/// It may be necessary to coerce the value if it is outside the value space.
|
||||
/// In that case it tries to find the next greater value in the value space.
|
||||
///
|
||||
/// Returns a bool to mark if a value was outside the value space and had to be coerced _up_.
|
||||
/// With that information we can detect if two values in a range both map outside the same value
|
||||
/// space.
|
||||
///
|
||||
/// coerce_up means the next valid upper value in the value space will be chosen if the value
|
||||
/// has to be coerced.
|
||||
fn mapping_coerce(&self, inp: RangeInclusive<External>) -> RangeInclusive<Internal> {
|
||||
self.mapping(*inp.start())..=self.mapping(*inp.end())
|
||||
}
|
||||
/// Inverse of `mapping_coerce`.
|
||||
fn inverse_coerce(&self, out: RangeInclusive<Internal>) -> RangeInclusive<External> {
|
||||
self.inverse(*out.start())..=self.inverse(*out.end())
|
||||
}
|
||||
}
|
||||
|
||||
/// Inverts a strictly monotonic mapping from `StrictlyMonotonicFn<A, B>` to
|
||||
/// `StrictlyMonotonicFn<B, A>`.
|
||||
///
|
||||
/// # Warning
|
||||
///
|
||||
/// This type comes with a footgun. A type being strictly monotonic does not impose that the inverse
|
||||
/// mapping is strictly monotonic over the entire space External. e.g. a -> a * 2. Use at your own
|
||||
/// risks.
|
||||
pub(crate) struct StrictlyMonotonicMappingInverter<T> {
|
||||
orig_mapping: T,
|
||||
}
|
||||
impl<T> From<T> for StrictlyMonotonicMappingInverter<T> {
|
||||
fn from(orig_mapping: T) -> Self {
|
||||
Self { orig_mapping }
|
||||
}
|
||||
}
|
||||
|
||||
impl<From, To, T> StrictlyMonotonicFn<To, From> for StrictlyMonotonicMappingInverter<T>
|
||||
where
|
||||
T: StrictlyMonotonicFn<From, To>,
|
||||
From: Copy,
|
||||
To: Copy,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, val: To) -> From {
|
||||
self.orig_mapping.inverse(val)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, val: From) -> To {
|
||||
self.orig_mapping.mapping(val)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn mapping_coerce(&self, inp: RangeInclusive<To>) -> RangeInclusive<From> {
|
||||
self.orig_mapping.inverse_coerce(inp)
|
||||
}
|
||||
#[inline]
|
||||
fn inverse_coerce(&self, out: RangeInclusive<From>) -> RangeInclusive<To> {
|
||||
self.orig_mapping.mapping_coerce(out)
|
||||
}
|
||||
}
|
||||
|
||||
/// Applies the strictly monotonic mapping from `T` without any additional changes.
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternal<T> {
|
||||
_phantom: PhantomData<T>,
|
||||
}
|
||||
|
||||
impl<T> StrictlyMonotonicMappingToInternal<T> {
|
||||
pub(crate) fn new() -> StrictlyMonotonicMappingToInternal<T> {
|
||||
Self {
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<External: MonotonicallyMappableToU128, T: MonotonicallyMappableToU128>
|
||||
StrictlyMonotonicFn<External, u128> for StrictlyMonotonicMappingToInternal<T>
|
||||
where T: MonotonicallyMappableToU128
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: External) -> u128 {
|
||||
External::to_u128(inp)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: u128) -> External {
|
||||
External::from_u128(out)
|
||||
}
|
||||
}
|
||||
|
||||
impl<External: MonotonicallyMappableToU64, T: MonotonicallyMappableToU64>
|
||||
StrictlyMonotonicFn<External, u64> for StrictlyMonotonicMappingToInternal<T>
|
||||
where T: MonotonicallyMappableToU64
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: External) -> u64 {
|
||||
External::to_u64(inp)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: u64) -> External {
|
||||
External::from_u64(out)
|
||||
}
|
||||
}
|
||||
|
||||
/// Mapping dividing by gcd and a base value.
|
||||
///
|
||||
/// The function is assumed to be only called on values divided by passed
|
||||
/// gcd value. (It is necessary for the function to be monotonic.)
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternalGCDBaseval {
|
||||
gcd_divider: DividerU64,
|
||||
gcd: u64,
|
||||
min_value: u64,
|
||||
}
|
||||
impl StrictlyMonotonicMappingToInternalGCDBaseval {
|
||||
pub(crate) fn new(gcd: u64, min_value: u64) -> Self {
|
||||
let gcd_divider = DividerU64::divide_by(gcd);
|
||||
Self {
|
||||
gcd_divider,
|
||||
gcd,
|
||||
min_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
|
||||
for StrictlyMonotonicMappingToInternalGCDBaseval
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: External) -> u64 {
|
||||
self.gcd_divider
|
||||
.divide(External::to_u64(inp) - self.min_value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: u64) -> External {
|
||||
External::from_u64(self.min_value + out * self.gcd)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[allow(clippy::reversed_empty_ranges)]
|
||||
fn mapping_coerce(&self, inp: RangeInclusive<External>) -> RangeInclusive<u64> {
|
||||
let end = External::to_u64(*inp.end());
|
||||
if end < self.min_value || inp.end() < inp.start() {
|
||||
return 1..=0;
|
||||
}
|
||||
let map_coerce = |mut inp, coerce_up| {
|
||||
let inp_lower_bound = self.inverse(0);
|
||||
if inp < inp_lower_bound {
|
||||
inp = inp_lower_bound;
|
||||
}
|
||||
let val = External::to_u64(inp);
|
||||
let need_coercion = coerce_up && (val - self.min_value) % self.gcd != 0;
|
||||
let mut mapped_val = self.mapping(inp);
|
||||
if need_coercion {
|
||||
mapped_val += 1;
|
||||
}
|
||||
mapped_val
|
||||
};
|
||||
let start = map_coerce(*inp.start(), true);
|
||||
let end = map_coerce(*inp.end(), false);
|
||||
start..=end
|
||||
}
|
||||
}
|
||||
|
||||
/// Strictly monotonic mapping with a base value.
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternalBaseval {
|
||||
min_value: u64,
|
||||
}
|
||||
impl StrictlyMonotonicMappingToInternalBaseval {
|
||||
#[inline(always)]
|
||||
pub(crate) fn new(min_value: u64) -> Self {
|
||||
Self { min_value }
|
||||
}
|
||||
}
|
||||
|
||||
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
|
||||
for StrictlyMonotonicMappingToInternalBaseval
|
||||
{
|
||||
#[inline]
|
||||
#[allow(clippy::reversed_empty_ranges)]
|
||||
fn mapping_coerce(&self, inp: RangeInclusive<External>) -> RangeInclusive<u64> {
|
||||
if External::to_u64(*inp.end()) < self.min_value {
|
||||
return 1..=0;
|
||||
}
|
||||
let start = self.mapping(External::to_u64(*inp.start()).max(self.min_value));
|
||||
let end = self.mapping(External::to_u64(*inp.end()));
|
||||
start..=end
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn mapping(&self, val: External) -> u64 {
|
||||
External::to_u64(val) - self.min_value
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, val: u64) -> External {
|
||||
External::from_u64(self.min_value + val)
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for u64 {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
self
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
val
|
||||
}
|
||||
@@ -45,12 +275,46 @@ impl MonotonicallyMappableToU64 for bool {
|
||||
}
|
||||
}
|
||||
|
||||
// TODO remove me.
|
||||
// Tantivy should refuse NaN values and work with NotNaN internally.
|
||||
impl MonotonicallyMappableToU64 for f64 {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
common::f64_to_u64(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
common::u64_to_f64(val)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn strictly_monotonic_test() {
|
||||
// identity mapping
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<u64>::new(), 100u64);
|
||||
// round trip to i64
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<i64>::new(), 100u64);
|
||||
// identity mapping
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<u128>::new(), 100u128);
|
||||
|
||||
// base value to i64 round trip
|
||||
let mapping = StrictlyMonotonicMappingToInternalBaseval::new(100);
|
||||
test_round_trip::<_, _, u64>(&mapping, 100i64);
|
||||
// base value and gcd to u64 round trip
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100);
|
||||
test_round_trip::<_, _, u64>(&mapping, 100u64);
|
||||
}
|
||||
|
||||
fn test_round_trip<T: StrictlyMonotonicFn<K, L>, K: std::fmt::Debug + Eq + Copy, L: Copy>(
|
||||
mapping: &T,
|
||||
test_val: K,
|
||||
) {
|
||||
assert_eq!(mapping.inverse(mapping.mapping(test_val)), test_val);
|
||||
}
|
||||
}
|
||||
|
||||
43
fastfield_codecs/src/monotonic_mapping_u128.rs
Normal file
43
fastfield_codecs/src/monotonic_mapping_u128.rs
Normal file
@@ -0,0 +1,43 @@
|
||||
use std::fmt;
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
/// Montonic maps a value to u128 value space
|
||||
/// Monotonic mapping enables `PartialOrd` on u128 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU128:
|
||||
'static + PartialOrd + Copy + Send + Sync + fmt::Debug
|
||||
{
|
||||
/// Converts a value to u128.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
fn to_u128(self) -> u128;
|
||||
|
||||
/// Converts a value from u128
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
/// **Note: To be used for converting encoded Term, Posting values.**
|
||||
fn from_u128(val: u128) -> Self;
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU128 for u128 {
|
||||
fn to_u128(self) -> u128 {
|
||||
self
|
||||
}
|
||||
|
||||
fn from_u128(val: u128) -> Self {
|
||||
val
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU128 for Ipv6Addr {
|
||||
fn to_u128(self) -> u128 {
|
||||
ip_to_u128(self)
|
||||
}
|
||||
|
||||
fn from_u128(val: u128) -> Self {
|
||||
Ipv6Addr::from(val.to_be_bytes())
|
||||
}
|
||||
}
|
||||
|
||||
fn ip_to_u128(ip_addr: Ipv6Addr) -> u128 {
|
||||
u128::from_be_bytes(ip_addr.octets())
|
||||
}
|
||||
500
fastfield_codecs/src/null_index/dense.rs
Normal file
500
fastfield_codecs/src/null_index/dense.rs
Normal file
@@ -0,0 +1,500 @@
|
||||
use std::convert::TryInto;
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::{get_bit_at, set_bit_at};
|
||||
|
||||
/// For the `DenseCodec`, `data` which contains the encoded blocks.
|
||||
/// Each block consists of [u8; 12]. The first 8 bytes is a bitvec for 64 elements.
|
||||
/// The last 4 bytes are the offset, the number of set bits so far.
|
||||
///
|
||||
/// When translating the original index to a dense index, the correct block can be computed
|
||||
/// directly `orig_idx/64`. Inside the block the position is `orig_idx%64`.
|
||||
///
|
||||
/// When translating a dense index to the original index, we can use the offset to find the correct
|
||||
/// block. Direct computation is not possible, but we can employ a linear or binary search.
|
||||
#[derive(Clone)]
|
||||
pub struct DenseCodec {
|
||||
// data consists of blocks of 64 bits.
|
||||
//
|
||||
// The format is &[(u64, u32)]
|
||||
// u64 is the bitvec
|
||||
// u32 is the offset of the block, the number of set bits so far.
|
||||
//
|
||||
// At the end one block is appended, to store the number of values in the index in offset.
|
||||
data: OwnedBytes,
|
||||
}
|
||||
const ELEMENTS_PER_BLOCK: u32 = 64;
|
||||
const BLOCK_BITVEC_SIZE: usize = 8;
|
||||
const BLOCK_OFFSET_SIZE: usize = 4;
|
||||
const SERIALIZED_BLOCK_SIZE: usize = BLOCK_BITVEC_SIZE + BLOCK_OFFSET_SIZE;
|
||||
|
||||
/// Interpreting the bitvec as a list of 64 bits from the low weight to the
|
||||
/// high weight.
|
||||
///
|
||||
/// This function returns the number of bits set to 1 within
|
||||
/// `[0..pos_in_vec)`.
|
||||
#[inline]
|
||||
fn count_ones(bitvec: u64, pos_in_bitvec: u32) -> u32 {
|
||||
let mask = (1u64 << pos_in_bitvec) - 1;
|
||||
let masked_bitvec = bitvec & mask;
|
||||
masked_bitvec.count_ones()
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
struct DenseIndexBlock {
|
||||
bitvec: u64,
|
||||
offset: u32,
|
||||
}
|
||||
|
||||
impl From<[u8; SERIALIZED_BLOCK_SIZE]> for DenseIndexBlock {
|
||||
fn from(data: [u8; SERIALIZED_BLOCK_SIZE]) -> Self {
|
||||
let bitvec = u64::from_le_bytes(data[..BLOCK_BITVEC_SIZE].try_into().unwrap());
|
||||
let offset = u32::from_le_bytes(data[BLOCK_BITVEC_SIZE..].try_into().unwrap());
|
||||
Self { bitvec, offset }
|
||||
}
|
||||
}
|
||||
|
||||
impl DenseCodec {
|
||||
/// Open the DenseCodec from OwnedBytes
|
||||
pub fn open(data: OwnedBytes) -> Self {
|
||||
Self { data }
|
||||
}
|
||||
#[inline]
|
||||
/// Check if value at position is not null.
|
||||
pub fn exists(&self, idx: u32) -> bool {
|
||||
let block_pos = idx / ELEMENTS_PER_BLOCK;
|
||||
let bitvec = self.dense_index_block(block_pos).bitvec;
|
||||
let pos_in_bitvec = idx % ELEMENTS_PER_BLOCK;
|
||||
get_bit_at(bitvec, pos_in_bitvec)
|
||||
}
|
||||
#[inline]
|
||||
fn dense_index_block(&self, block_pos: u32) -> DenseIndexBlock {
|
||||
dense_index_block(&self.data, block_pos)
|
||||
}
|
||||
|
||||
/// Return the number of non-null values in an index
|
||||
pub fn num_non_nulls(&self) -> u32 {
|
||||
let last_block = (self.data.len() / SERIALIZED_BLOCK_SIZE) - 1;
|
||||
self.dense_index_block(last_block as u32).offset
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Translate from the original index to the codec index.
|
||||
pub fn translate_to_codec_idx(&self, idx: u32) -> Option<u32> {
|
||||
let block_pos = idx / ELEMENTS_PER_BLOCK;
|
||||
let index_block = self.dense_index_block(block_pos);
|
||||
let pos_in_block_bit_vec = idx % ELEMENTS_PER_BLOCK;
|
||||
let ones_in_block = count_ones(index_block.bitvec, pos_in_block_bit_vec);
|
||||
if get_bit_at(index_block.bitvec, pos_in_block_bit_vec) {
|
||||
Some(index_block.offset + ones_in_block)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// Translate positions from the codec index to the original index.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if any `idx` is greater than the max codec index.
|
||||
pub fn translate_codec_idx_to_original_idx<'a>(
|
||||
&'a self,
|
||||
iter: impl Iterator<Item = u32> + 'a,
|
||||
) -> impl Iterator<Item = u32> + 'a {
|
||||
let mut block_pos = 0u32;
|
||||
iter.map(move |dense_idx| {
|
||||
// update block_pos to limit search scope
|
||||
block_pos = find_block(dense_idx, block_pos, &self.data);
|
||||
let index_block = self.dense_index_block(block_pos);
|
||||
|
||||
// The next offset is higher than dense_idx and therefore:
|
||||
// dense_idx <= offset + num_set_bits in block
|
||||
let mut num_set_bits = 0;
|
||||
for idx_in_bitvec in 0..ELEMENTS_PER_BLOCK {
|
||||
if get_bit_at(index_block.bitvec, idx_in_bitvec) {
|
||||
num_set_bits += 1;
|
||||
}
|
||||
if num_set_bits == (dense_idx - index_block.offset + 1) {
|
||||
let orig_idx = block_pos * ELEMENTS_PER_BLOCK + idx_in_bitvec;
|
||||
return orig_idx;
|
||||
}
|
||||
}
|
||||
panic!("Internal Error: Offset calculation in dense idx seems to be wrong.");
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn dense_index_block(data: &[u8], block_pos: u32) -> DenseIndexBlock {
|
||||
let data_start_pos = block_pos as usize * SERIALIZED_BLOCK_SIZE;
|
||||
let block_data: [u8; SERIALIZED_BLOCK_SIZE] = data[data_start_pos..][..SERIALIZED_BLOCK_SIZE]
|
||||
.try_into()
|
||||
.unwrap();
|
||||
block_data.into()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Finds the block position containing the dense_idx.
|
||||
///
|
||||
/// # Correctness
|
||||
/// dense_idx needs to be smaller than the number of values in the index
|
||||
///
|
||||
/// The last offset number is equal to the number of values in the index.
|
||||
fn find_block(dense_idx: u32, mut block_pos: u32, data: &[u8]) -> u32 {
|
||||
loop {
|
||||
let offset = dense_index_block(data, block_pos).offset;
|
||||
if offset > dense_idx {
|
||||
return block_pos - 1;
|
||||
}
|
||||
block_pos += 1;
|
||||
}
|
||||
}
|
||||
|
||||
/// Iterator over all values, true if set, otherwise false
|
||||
pub fn serialize_dense_codec(
|
||||
iter: impl Iterator<Item = bool>,
|
||||
mut out: impl Write,
|
||||
) -> io::Result<()> {
|
||||
let mut offset: u32 = 0;
|
||||
|
||||
for chunk in &iter.chunks(ELEMENTS_PER_BLOCK as usize) {
|
||||
let mut block: u64 = 0;
|
||||
for (pos, is_bit_set) in chunk.enumerate() {
|
||||
if is_bit_set {
|
||||
set_bit_at(&mut block, pos as u64);
|
||||
}
|
||||
}
|
||||
|
||||
block.serialize(&mut out)?;
|
||||
offset.serialize(&mut out)?;
|
||||
|
||||
offset += block.count_ones();
|
||||
}
|
||||
// Add sentinal block for the offset
|
||||
let block: u64 = 0;
|
||||
block.serialize(&mut out)?;
|
||||
offset.serialize(&mut out)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use proptest::prelude::{any, prop, *};
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
|
||||
use super::*;
|
||||
|
||||
fn random_bitvec() -> BoxedStrategy<Vec<bool>> {
|
||||
prop_oneof![
|
||||
1 => prop::collection::vec(proptest::bool::weighted(1.0), 0..100),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(1.0), 0..64),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.0), 0..100),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.0), 0..64),
|
||||
8 => vec![any::<bool>()],
|
||||
2 => prop::collection::vec(any::<bool>(), 0..50),
|
||||
]
|
||||
.boxed()
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(500))]
|
||||
#[test]
|
||||
fn test_with_random_bitvecs(bitvec1 in random_bitvec(), bitvec2 in random_bitvec(), bitvec3 in random_bitvec()) {
|
||||
let mut bitvec = Vec::new();
|
||||
bitvec.extend_from_slice(&bitvec1);
|
||||
bitvec.extend_from_slice(&bitvec2);
|
||||
bitvec.extend_from_slice(&bitvec3);
|
||||
test_null_index(bitvec);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn dense_codec_test_one_block_false() {
|
||||
let mut iter = vec![false; 64];
|
||||
iter.push(true);
|
||||
test_null_index(iter);
|
||||
}
|
||||
|
||||
fn test_null_index(data: Vec<bool>) {
|
||||
let mut out = vec![];
|
||||
|
||||
serialize_dense_codec(data.iter().cloned(), &mut out).unwrap();
|
||||
let null_index = DenseCodec::open(OwnedBytes::new(out));
|
||||
|
||||
let orig_idx_with_value: Vec<u32> = data
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| **val)
|
||||
.map(|(pos, _val)| pos as u32)
|
||||
.collect();
|
||||
|
||||
assert_eq!(
|
||||
null_index
|
||||
.translate_codec_idx_to_original_idx(0..orig_idx_with_value.len() as u32)
|
||||
.collect_vec(),
|
||||
orig_idx_with_value
|
||||
);
|
||||
|
||||
for (dense_idx, orig_idx) in orig_idx_with_value.iter().enumerate() {
|
||||
assert_eq!(
|
||||
null_index.translate_to_codec_idx(*orig_idx),
|
||||
Some(dense_idx as u32)
|
||||
);
|
||||
}
|
||||
|
||||
for (pos, value) in data.iter().enumerate() {
|
||||
assert_eq!(null_index.exists(pos as u32), *value);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn dense_codec_test_translation() {
|
||||
let mut out = vec![];
|
||||
|
||||
let iter = ([true, false, true, false]).iter().cloned();
|
||||
serialize_dense_codec(iter, &mut out).unwrap();
|
||||
let null_index = DenseCodec::open(OwnedBytes::new(out));
|
||||
|
||||
assert_eq!(
|
||||
null_index
|
||||
.translate_codec_idx_to_original_idx(0..2)
|
||||
.collect_vec(),
|
||||
vec![0, 2]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn dense_codec_translate() {
|
||||
let mut out = vec![];
|
||||
|
||||
let iter = ([true, false, true, false]).iter().cloned();
|
||||
serialize_dense_codec(iter, &mut out).unwrap();
|
||||
let null_index = DenseCodec::open(OwnedBytes::new(out));
|
||||
assert_eq!(null_index.translate_to_codec_idx(0), Some(0));
|
||||
assert_eq!(null_index.translate_to_codec_idx(2), Some(1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn dense_codec_test_small() {
|
||||
let mut out = vec![];
|
||||
|
||||
let iter = ([true, false, true, false]).iter().cloned();
|
||||
serialize_dense_codec(iter, &mut out).unwrap();
|
||||
let null_index = DenseCodec::open(OwnedBytes::new(out));
|
||||
assert!(null_index.exists(0));
|
||||
assert!(!null_index.exists(1));
|
||||
assert!(null_index.exists(2));
|
||||
assert!(!null_index.exists(3));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn dense_codec_test_large() {
|
||||
let mut docs = vec![];
|
||||
docs.extend((0..1000).map(|_idx| false));
|
||||
docs.extend((0..=1000).map(|_idx| true));
|
||||
|
||||
let iter = docs.iter().cloned();
|
||||
let mut out = vec![];
|
||||
serialize_dense_codec(iter, &mut out).unwrap();
|
||||
let null_index = DenseCodec::open(OwnedBytes::new(out));
|
||||
assert!(!null_index.exists(0));
|
||||
assert!(!null_index.exists(100));
|
||||
assert!(!null_index.exists(999));
|
||||
assert!(null_index.exists(1000));
|
||||
assert!(null_index.exists(1999));
|
||||
assert!(null_index.exists(2000));
|
||||
assert!(!null_index.exists(2001));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_count_ones() {
|
||||
let mut block = 0;
|
||||
set_bit_at(&mut block, 0);
|
||||
set_bit_at(&mut block, 2);
|
||||
|
||||
assert_eq!(count_ones(block, 0), 0);
|
||||
assert_eq!(count_ones(block, 1), 1);
|
||||
assert_eq!(count_ones(block, 2), 1);
|
||||
assert_eq!(count_ones(block, 3), 2);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::Bencher;
|
||||
|
||||
use super::*;
|
||||
|
||||
const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
fn gen_bools(fill_ratio: f64) -> DenseCodec {
|
||||
let mut out = Vec::new();
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let bools: Vec<_> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.collect();
|
||||
serialize_dense_codec(bools.into_iter(), &mut out).unwrap();
|
||||
|
||||
let codec = DenseCodec::open(OwnedBytes::new(out));
|
||||
codec
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
start: u32,
|
||||
end: u32,
|
||||
avg_step_size: u32,
|
||||
avg_deviation: u32,
|
||||
) -> impl Iterator<Item = u32> {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end {
|
||||
None
|
||||
} else {
|
||||
Some(current)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent as f32 / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
}
|
||||
|
||||
fn walk_over_data(codec: &DenseCodec, avg_step_size: u32) -> Option<u32> {
|
||||
walk_over_data_from_positions(
|
||||
codec,
|
||||
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
|
||||
)
|
||||
}
|
||||
|
||||
fn walk_over_data_from_positions(
|
||||
codec: &DenseCodec,
|
||||
positions: impl Iterator<Item = u32>,
|
||||
) -> Option<u32> {
|
||||
let mut dense_idx: Option<u32> = None;
|
||||
for idx in positions {
|
||||
dense_idx = dense_idx.or(codec.translate_to_codec_idx(idx));
|
||||
}
|
||||
dense_idx
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 1000));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.5f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(n_percent_step_iterator(0.005, num_non_nulls))
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(n_percent_step_iterator(10.0, num_non_nulls))
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
let num_vals = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(0..num_vals)
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.90f64);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(n_percent_step_iterator(0.005, num_non_nulls))
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
let num_vals = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(0..num_vals)
|
||||
.last()
|
||||
});
|
||||
}
|
||||
}
|
||||
14
fastfield_codecs/src/null_index/mod.rs
Normal file
14
fastfield_codecs/src/null_index/mod.rs
Normal file
@@ -0,0 +1,14 @@
|
||||
pub use dense::{serialize_dense_codec, DenseCodec};
|
||||
|
||||
mod dense;
|
||||
mod sparse;
|
||||
|
||||
#[inline]
|
||||
fn get_bit_at(input: u64, n: u32) -> bool {
|
||||
input & (1 << n) != 0
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_bit_at(input: &mut u64, n: u64) {
|
||||
*input |= 1 << n;
|
||||
}
|
||||
768
fastfield_codecs/src/null_index/sparse.rs
Normal file
768
fastfield_codecs/src/null_index/sparse.rs
Normal file
@@ -0,0 +1,768 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::{BitSet, GroupByIteratorExtended, OwnedBytes};
|
||||
|
||||
use super::{serialize_dense_codec, DenseCodec};
|
||||
|
||||
/// `SparseCodec` is the codec for data, when only few documents have values.
|
||||
/// In contrast to `DenseCodec` opening a `SparseCodec` causes runtime data to be produced, for
|
||||
/// faster access.
|
||||
///
|
||||
/// The lower 16 bits of doc ids are stored as u16 while the upper 16 bits are given by the block
|
||||
/// id. Each block contains 1<<16 docids.
|
||||
///
|
||||
/// # Serialized Data Layout
|
||||
/// The data starts with the block data. Each block is either dense or sparse encoded, depending on
|
||||
/// the number of values in the block. A block is sparse when it contains less than
|
||||
/// DENSE_BLOCK_THRESHOLD (6144) values.
|
||||
/// [Sparse data block | dense data block, .. #repeat*; Desc: Either a sparse or dense encoded
|
||||
/// block]
|
||||
/// ### Sparse block data
|
||||
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block]
|
||||
/// ### Dense block data
|
||||
/// [Dense codec for the whole block; Desc: Similar to a bitvec(0..ELEMENTS_PER_BLOCK) + Metadata
|
||||
/// for faster lookups. See dense.rs]
|
||||
///
|
||||
/// The data is followed by block metadata, to know which area of the raw block data belongs to
|
||||
/// which block. Only metadata for blocks with elements is recorded to
|
||||
/// keep the overhead low for scenarios with many very sparse columns. The block metadata consists
|
||||
/// of the block index and the number of values in the block. Since we don't store empty blocks
|
||||
/// num_vals is incremented by 1, e.g. 0 means 1 value.
|
||||
///
|
||||
/// The last u16 is storing the number of metadata blocks.
|
||||
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block][(u16 LE, u16 LE), .. #repeat*;
|
||||
/// Desc: (Block Id u16, Num Elements u16)][u16 LE; Desc: num blocks with values u16]
|
||||
///
|
||||
/// # Opening
|
||||
/// When opening the data layout, the data is expanded to `Vec<SparseCodecBlockVariant>`, where the
|
||||
/// index is the block index. For each block `byte_start` and `offset` is computed.
|
||||
pub struct SparseCodec {
|
||||
data: OwnedBytes,
|
||||
blocks: Vec<SparseCodecBlockVariant>,
|
||||
}
|
||||
|
||||
/// The threshold for for number of elements after which we switch to dense block encoding
|
||||
const DENSE_BLOCK_THRESHOLD: u32 = 6144;
|
||||
|
||||
const ELEMENTS_PER_BLOCK: u32 = u16::MAX as u32 + 1;
|
||||
|
||||
/// 1.5 bit per Element + 12 bytes for the sentinal block
|
||||
const NUM_BYTES_DENSE_BLOCK: u32 = (ELEMENTS_PER_BLOCK + ELEMENTS_PER_BLOCK / 2 + 64 + 32) / 8;
|
||||
|
||||
#[derive(Clone)]
|
||||
enum SparseCodecBlockVariant {
|
||||
Empty { offset: u32 },
|
||||
Dense(DenseBlock),
|
||||
Sparse(SparseBlock),
|
||||
}
|
||||
|
||||
impl SparseCodecBlockVariant {
|
||||
/// The number of non-null values that preceeded that block.
|
||||
#[inline]
|
||||
fn offset(&self) -> u32 {
|
||||
match self {
|
||||
SparseCodecBlockVariant::Empty { offset } => *offset,
|
||||
SparseCodecBlockVariant::Dense(dense) => dense.offset,
|
||||
SparseCodecBlockVariant::Sparse(sparse) => sparse.offset,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A block consists of max u16 values
|
||||
#[derive(Clone)]
|
||||
struct DenseBlock {
|
||||
/// The number of values set before the block
|
||||
offset: u32,
|
||||
/// The data for the dense encoding
|
||||
codec: DenseCodec,
|
||||
}
|
||||
|
||||
impl DenseBlock {
|
||||
#[inline]
|
||||
pub fn exists(&self, idx: u32) -> bool {
|
||||
self.codec.exists(idx)
|
||||
}
|
||||
#[inline]
|
||||
pub fn translate_to_codec_idx(&self, idx: u32) -> Option<u32> {
|
||||
self.codec.translate_to_codec_idx(idx)
|
||||
}
|
||||
#[inline]
|
||||
pub fn translate_codec_idx_to_original_idx_iter<'a>(
|
||||
&'a self,
|
||||
iter: impl Iterator<Item = u32> + 'a,
|
||||
) -> impl Iterator<Item = u32> + 'a {
|
||||
self.codec.translate_codec_idx_to_original_idx(iter)
|
||||
}
|
||||
#[inline]
|
||||
pub fn translate_codec_idx_to_original_idx(&self, idx: u32) -> u32 {
|
||||
self.codec
|
||||
.translate_codec_idx_to_original_idx(idx..=idx)
|
||||
.next()
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
/// A block consists of max u16 values
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
struct SparseBlock {
|
||||
/// The number of values in the block
|
||||
num_vals: u32,
|
||||
/// The number of values set before the block
|
||||
offset: u32,
|
||||
/// The start position of the data for the block
|
||||
byte_start: u32,
|
||||
}
|
||||
|
||||
impl SparseBlock {
|
||||
fn empty_block(offset: u32) -> Self {
|
||||
Self {
|
||||
num_vals: 0,
|
||||
byte_start: 0,
|
||||
offset,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn value_at_idx(&self, data: &[u8], idx: u16) -> u16 {
|
||||
let start_offset: usize = self.byte_start as usize + (idx as u32 as usize * 2);
|
||||
get_u16(data, start_offset)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[allow(clippy::comparison_chain)]
|
||||
// Looks for the element in the block. Returns the positions if found.
|
||||
fn binary_search(&self, data: &[u8], target: u16) -> Option<u16> {
|
||||
let mut size = self.num_vals as u16;
|
||||
let mut left = 0;
|
||||
let mut right = size;
|
||||
// TODO try different implem.
|
||||
// e.g. exponential search into binary search
|
||||
while left < right {
|
||||
let mid = left + size / 2;
|
||||
|
||||
// TODO do boundary check only once, and then use an
|
||||
// unsafe `value_at_idx`
|
||||
let mid_val = self.value_at_idx(data, mid);
|
||||
|
||||
if target > mid_val {
|
||||
left = mid + 1;
|
||||
} else if target < mid_val {
|
||||
right = mid;
|
||||
} else {
|
||||
return Some(mid);
|
||||
}
|
||||
|
||||
size = right - left;
|
||||
}
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_u16(data: &[u8], byte_position: usize) -> u16 {
|
||||
let bytes: [u8; 2] = data[byte_position..byte_position + 2].try_into().unwrap();
|
||||
u16::from_le_bytes(bytes)
|
||||
}
|
||||
|
||||
const SERIALIZED_BLOCK_METADATA_SIZE: usize = 4;
|
||||
|
||||
fn deserialize_sparse_codec_block(data: &OwnedBytes) -> Vec<SparseCodecBlockVariant> {
|
||||
// The number of vals so far
|
||||
let mut offset = 0;
|
||||
let mut sparse_codec_blocks = Vec::new();
|
||||
let num_blocks = get_u16(data, data.len() - 2);
|
||||
let block_data_index_start =
|
||||
data.len() - 2 - num_blocks as usize * SERIALIZED_BLOCK_METADATA_SIZE;
|
||||
let mut byte_start = 0;
|
||||
for block_num in 0..num_blocks as usize {
|
||||
let block_data_index = block_data_index_start + SERIALIZED_BLOCK_METADATA_SIZE * block_num;
|
||||
let block_idx = get_u16(data, block_data_index);
|
||||
let num_vals = get_u16(data, block_data_index + 2) as u32 + 1;
|
||||
sparse_codec_blocks.resize(
|
||||
block_idx as usize,
|
||||
SparseCodecBlockVariant::Empty { offset },
|
||||
);
|
||||
|
||||
if is_sparse(num_vals) {
|
||||
let block = SparseBlock {
|
||||
num_vals,
|
||||
offset,
|
||||
byte_start,
|
||||
};
|
||||
sparse_codec_blocks.push(SparseCodecBlockVariant::Sparse(block));
|
||||
byte_start += 2 * num_vals;
|
||||
} else {
|
||||
let block = DenseBlock {
|
||||
offset,
|
||||
codec: DenseCodec::open(data.slice(byte_start as usize..data.len()).clone()),
|
||||
};
|
||||
sparse_codec_blocks.push(SparseCodecBlockVariant::Dense(block));
|
||||
// Dense blocks have a fixed size spanning ELEMENTS_PER_BLOCK.
|
||||
byte_start += NUM_BYTES_DENSE_BLOCK;
|
||||
}
|
||||
|
||||
offset += num_vals;
|
||||
}
|
||||
sparse_codec_blocks.push(SparseCodecBlockVariant::Empty { offset });
|
||||
sparse_codec_blocks
|
||||
}
|
||||
|
||||
/// Splits a value address into lower and upper 16bits.
|
||||
/// The lower 16 bits are the value in the block
|
||||
/// The upper 16 bits are the block index
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct ValueAddr {
|
||||
block_idx: u16,
|
||||
value_in_block: u16,
|
||||
}
|
||||
|
||||
/// Splits a idx into block index and value in the block
|
||||
#[inline]
|
||||
fn value_addr(idx: u32) -> ValueAddr {
|
||||
/// Static assert number elements per block this method expects
|
||||
#[allow(clippy::assertions_on_constants)]
|
||||
const _: () = assert!(ELEMENTS_PER_BLOCK == (1 << 16));
|
||||
|
||||
let value_in_block = idx as u16;
|
||||
let block_idx = (idx >> 16) as u16;
|
||||
ValueAddr {
|
||||
block_idx,
|
||||
value_in_block,
|
||||
}
|
||||
}
|
||||
|
||||
impl SparseCodec {
|
||||
/// Open the SparseCodec from OwnedBytes
|
||||
pub fn open(data: OwnedBytes) -> Self {
|
||||
let blocks = deserialize_sparse_codec_block(&data);
|
||||
Self { data, blocks }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Check if value at position is not null.
|
||||
pub fn exists(&self, idx: u32) -> bool {
|
||||
let value_addr = value_addr(idx);
|
||||
// There may be trailing nulls without data, those are not stored as blocks. It would be
|
||||
// possible to create empty blocks, but for that we would need to serialize the number of
|
||||
// values or pass them when opening
|
||||
|
||||
if let Some(block) = self.blocks.get(value_addr.block_idx as usize) {
|
||||
match block {
|
||||
SparseCodecBlockVariant::Empty { offset: _ } => false,
|
||||
SparseCodecBlockVariant::Dense(block) => {
|
||||
block.exists(value_addr.value_in_block as u32)
|
||||
}
|
||||
SparseCodecBlockVariant::Sparse(block) => block
|
||||
.binary_search(&self.data, value_addr.value_in_block)
|
||||
.is_some(),
|
||||
}
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
/// Return the number of non-null values in an index
|
||||
pub fn num_non_nulls(&self) -> u32 {
|
||||
self.blocks.last().map(|block| block.offset()).unwrap_or(0)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Translate from the original index to the codec index.
|
||||
pub fn translate_to_codec_idx(&self, idx: u32) -> Option<u32> {
|
||||
let value_addr = value_addr(idx);
|
||||
let block = self.blocks.get(value_addr.block_idx as usize)?;
|
||||
|
||||
match block {
|
||||
SparseCodecBlockVariant::Empty { offset: _ } => None,
|
||||
SparseCodecBlockVariant::Dense(block) => block
|
||||
.translate_to_codec_idx(value_addr.value_in_block as u32)
|
||||
.map(|pos_in_block| pos_in_block + block.offset),
|
||||
SparseCodecBlockVariant::Sparse(block) => {
|
||||
let pos_in_block = block.binary_search(&self.data, value_addr.value_in_block);
|
||||
pos_in_block.map(|pos_in_block: u16| block.offset + pos_in_block as u32)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn find_block(&self, dense_idx: u32, mut block_pos: u32) -> u32 {
|
||||
loop {
|
||||
let offset = self.blocks[block_pos as usize].offset();
|
||||
if offset > dense_idx {
|
||||
return block_pos - 1;
|
||||
}
|
||||
block_pos += 1;
|
||||
}
|
||||
}
|
||||
|
||||
/// Translate positions from the codec index to the original index.
|
||||
/// Correctness: Provided values must be in increasing values
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if any `idx` is greater than the max codec index.
|
||||
pub fn translate_codec_idx_to_original_idx<'a>(
|
||||
&'a self,
|
||||
iter: impl Iterator<Item = u32> + 'a,
|
||||
) -> impl Iterator<Item = u32> + 'a {
|
||||
let mut block_pos = 0u32;
|
||||
iter.group_by(move |codec_idx| {
|
||||
block_pos = self.find_block(*codec_idx, block_pos);
|
||||
block_pos
|
||||
})
|
||||
.flat_map(move |(block_pos, block_iter)| {
|
||||
let block_doc_idx_start = block_pos * ELEMENTS_PER_BLOCK;
|
||||
let block = &self.blocks[block_pos as usize];
|
||||
let offset = block.offset();
|
||||
let indexes_in_block_iter = block_iter.map(move |codec_idx| codec_idx - offset);
|
||||
match block {
|
||||
SparseCodecBlockVariant::Empty { offset: _ } => {
|
||||
panic!(
|
||||
"invalid input, cannot translate to original index. associated empty \
|
||||
block with dense idx. block_pos {}, idx_in_block {:?}",
|
||||
block_pos,
|
||||
indexes_in_block_iter.collect::<Vec<_>>()
|
||||
)
|
||||
}
|
||||
SparseCodecBlockVariant::Dense(dense) => {
|
||||
Box::new(dense.translate_codec_idx_to_original_idx_iter(indexes_in_block_iter))
|
||||
as Box<dyn Iterator<Item = u32>>
|
||||
}
|
||||
SparseCodecBlockVariant::Sparse(block) => {
|
||||
Box::new(indexes_in_block_iter.map(move |idx_in_block| {
|
||||
block.value_at_idx(&self.data, idx_in_block as u16) as u32
|
||||
}))
|
||||
}
|
||||
}
|
||||
.map(move |idx| idx + block_doc_idx_start)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn is_sparse(num_elem_in_block: u32) -> bool {
|
||||
num_elem_in_block < DENSE_BLOCK_THRESHOLD
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
struct BlockDataSerialized {
|
||||
block_idx: u16,
|
||||
num_vals: u32,
|
||||
}
|
||||
|
||||
/// Iterator over positions of set values.
|
||||
pub fn serialize_sparse_codec<W: Write>(
|
||||
mut iter: impl Iterator<Item = u32>,
|
||||
mut out: W,
|
||||
) -> io::Result<()> {
|
||||
let mut block_metadata: Vec<BlockDataSerialized> = Vec::new();
|
||||
let mut current_block = Vec::new();
|
||||
// This if-statement for the first element ensures that
|
||||
// `block_metadata` is not empty in the loop below.
|
||||
if let Some(idx) = iter.next() {
|
||||
let value_addr = value_addr(idx);
|
||||
block_metadata.push(BlockDataSerialized {
|
||||
block_idx: value_addr.block_idx,
|
||||
num_vals: 1,
|
||||
});
|
||||
current_block.push(value_addr.value_in_block);
|
||||
}
|
||||
let flush_block = |current_block: &mut Vec<u16>, out: &mut W| -> io::Result<()> {
|
||||
let is_sparse = is_sparse(current_block.len() as u32);
|
||||
if is_sparse {
|
||||
for val_in_block in current_block.iter() {
|
||||
out.write_all(val_in_block.to_le_bytes().as_ref())?;
|
||||
}
|
||||
} else {
|
||||
let mut bitset = BitSet::with_max_value(ELEMENTS_PER_BLOCK + 1);
|
||||
for val_in_block in current_block.iter() {
|
||||
bitset.insert(*val_in_block as u32);
|
||||
}
|
||||
|
||||
let iter = (0..ELEMENTS_PER_BLOCK).map(|idx| bitset.contains(idx));
|
||||
serialize_dense_codec(iter, out)?;
|
||||
}
|
||||
current_block.clear();
|
||||
Ok(())
|
||||
};
|
||||
for idx in iter {
|
||||
let value_addr = value_addr(idx);
|
||||
if block_metadata[block_metadata.len() - 1].block_idx == value_addr.block_idx {
|
||||
let last_idx_metadata = block_metadata.len() - 1;
|
||||
block_metadata[last_idx_metadata].num_vals += 1;
|
||||
} else {
|
||||
// flush prev block
|
||||
flush_block(&mut current_block, &mut out)?;
|
||||
|
||||
block_metadata.push(BlockDataSerialized {
|
||||
block_idx: value_addr.block_idx,
|
||||
num_vals: 1,
|
||||
});
|
||||
}
|
||||
current_block.push(value_addr.value_in_block);
|
||||
}
|
||||
// handle last block
|
||||
flush_block(&mut current_block, &mut out)?;
|
||||
|
||||
for block in &block_metadata {
|
||||
out.write_all(block.block_idx.to_le_bytes().as_ref())?;
|
||||
// We don't store empty blocks, therefore we can subtract 1.
|
||||
// This way we will be able to use u16 when the number of elements is 1 << 16 or u16::MAX+1
|
||||
out.write_all(((block.num_vals - 1) as u16).to_le_bytes().as_ref())?;
|
||||
}
|
||||
out.write_all((block_metadata.len() as u16).to_le_bytes().as_ref())?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use itertools::Itertools;
|
||||
use proptest::prelude::{any, prop, *};
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
|
||||
use super::*;
|
||||
|
||||
fn random_bitvec() -> BoxedStrategy<Vec<bool>> {
|
||||
prop_oneof![
|
||||
1 => prop::collection::vec(proptest::bool::weighted(1.0), 0..100),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.00), 0..(ELEMENTS_PER_BLOCK as usize * 3)), // empty blocks
|
||||
1 => prop::collection::vec(proptest::bool::weighted(1.00), 0..(ELEMENTS_PER_BLOCK as usize + 10)), // full block
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..100),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..u16::MAX as usize),
|
||||
8 => vec![any::<bool>()],
|
||||
]
|
||||
.boxed()
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(50))]
|
||||
#[test]
|
||||
fn test_with_random_bitvecs(bitvec1 in random_bitvec(), bitvec2 in random_bitvec(), bitvec3 in random_bitvec()) {
|
||||
let mut bitvec = Vec::new();
|
||||
bitvec.extend_from_slice(&bitvec1);
|
||||
bitvec.extend_from_slice(&bitvec2);
|
||||
bitvec.extend_from_slice(&bitvec3);
|
||||
test_null_index(bitvec);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sparse_codec_test_one_block_false() {
|
||||
let mut iter = vec![false; ELEMENTS_PER_BLOCK as usize];
|
||||
iter.push(true);
|
||||
test_null_index(iter);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sparse_codec_test_one_block_true() {
|
||||
let mut iter = vec![true; ELEMENTS_PER_BLOCK as usize];
|
||||
iter.push(true);
|
||||
test_null_index(iter);
|
||||
}
|
||||
|
||||
fn test_null_index(data: Vec<bool>) {
|
||||
let mut out = vec![];
|
||||
|
||||
serialize_sparse_codec(
|
||||
data.iter()
|
||||
.cloned()
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _val)| pos as u32),
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
let null_index = SparseCodec::open(OwnedBytes::new(out));
|
||||
|
||||
let orig_idx_with_value: Vec<u32> = data
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| **val)
|
||||
.map(|(pos, _val)| pos as u32)
|
||||
.collect();
|
||||
|
||||
assert_eq!(
|
||||
null_index
|
||||
.translate_codec_idx_to_original_idx(0..orig_idx_with_value.len() as u32)
|
||||
.collect_vec(),
|
||||
orig_idx_with_value
|
||||
);
|
||||
|
||||
let step_size = (orig_idx_with_value.len() / 100).max(1);
|
||||
for (dense_idx, orig_idx) in orig_idx_with_value.iter().enumerate().step_by(step_size) {
|
||||
assert_eq!(
|
||||
null_index.translate_to_codec_idx(*orig_idx),
|
||||
Some(dense_idx as u32)
|
||||
);
|
||||
}
|
||||
|
||||
// 100 samples
|
||||
let step_size = (data.len() / 100).max(1);
|
||||
for (pos, value) in data.iter().enumerate().step_by(step_size) {
|
||||
assert_eq!(null_index.exists(pos as u32), *value);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sparse_codec_test_translation() {
|
||||
let mut out = vec![];
|
||||
|
||||
let iter = ([true, false, true, false]).iter().cloned();
|
||||
serialize_sparse_codec(
|
||||
iter.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _val)| pos as u32),
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
let null_index = SparseCodec::open(OwnedBytes::new(out));
|
||||
|
||||
assert_eq!(
|
||||
null_index
|
||||
.translate_codec_idx_to_original_idx(0..2)
|
||||
.collect_vec(),
|
||||
vec![0, 2]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sparse_codec_translate() {
|
||||
let mut out = vec![];
|
||||
|
||||
let iter = ([true, false, true, false]).iter().cloned();
|
||||
serialize_sparse_codec(
|
||||
iter.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _val)| pos as u32),
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
let null_index = SparseCodec::open(OwnedBytes::new(out));
|
||||
assert_eq!(null_index.translate_to_codec_idx(0), Some(0));
|
||||
assert_eq!(null_index.translate_to_codec_idx(2), Some(1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sparse_codec_test_small() {
|
||||
let mut out = vec![];
|
||||
|
||||
let iter = ([true, false, true, false]).iter().cloned();
|
||||
serialize_sparse_codec(
|
||||
iter.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _val)| pos as u32),
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
let null_index = SparseCodec::open(OwnedBytes::new(out));
|
||||
assert!(null_index.exists(0));
|
||||
assert!(!null_index.exists(1));
|
||||
assert!(null_index.exists(2));
|
||||
assert!(!null_index.exists(3));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sparse_codec_test_large() {
|
||||
let mut docs = vec![];
|
||||
docs.extend((0..ELEMENTS_PER_BLOCK).map(|_idx| false));
|
||||
docs.extend((0..=1).map(|_idx| true));
|
||||
|
||||
let iter = docs.iter().cloned();
|
||||
let mut out = vec![];
|
||||
serialize_sparse_codec(
|
||||
iter.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _val)| pos as u32),
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
let null_index = SparseCodec::open(OwnedBytes::new(out));
|
||||
assert!(!null_index.exists(0));
|
||||
assert!(!null_index.exists(100));
|
||||
assert!(!null_index.exists(ELEMENTS_PER_BLOCK - 1));
|
||||
assert!(null_index.exists(ELEMENTS_PER_BLOCK));
|
||||
assert!(null_index.exists(ELEMENTS_PER_BLOCK + 1));
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::Bencher;
|
||||
|
||||
use super::*;
|
||||
|
||||
const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
fn gen_bools(fill_ratio: f64) -> SparseCodec {
|
||||
let mut out = Vec::new();
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
serialize_sparse_codec(
|
||||
(0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _val)| pos as u32),
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let codec = SparseCodec::open(OwnedBytes::new(out));
|
||||
codec
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
start: u32,
|
||||
end: u32,
|
||||
avg_step_size: u32,
|
||||
avg_deviation: u32,
|
||||
) -> impl Iterator<Item = u32> {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end {
|
||||
None
|
||||
} else {
|
||||
Some(current)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent as f32 / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
}
|
||||
|
||||
fn walk_over_data(codec: &SparseCodec, avg_step_size: u32) -> Option<u32> {
|
||||
walk_over_data_from_positions(
|
||||
codec,
|
||||
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
|
||||
)
|
||||
}
|
||||
|
||||
fn walk_over_data_from_positions(
|
||||
codec: &SparseCodec,
|
||||
positions: impl Iterator<Item = u32>,
|
||||
) -> Option<u32> {
|
||||
let mut dense_idx: Option<u32> = None;
|
||||
for idx in positions {
|
||||
dense_idx = dense_idx.or(codec.translate_to_codec_idx(idx));
|
||||
}
|
||||
dense_idx
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 1000));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.5f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(n_percent_step_iterator(0.005, num_non_nulls))
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(n_percent_step_iterator(10.0, num_non_nulls))
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
let num_vals = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(0..num_vals)
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.90f64);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(n_percent_step_iterator(0.005, num_non_nulls))
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
let num_vals = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(0..num_vals)
|
||||
.last()
|
||||
});
|
||||
}
|
||||
}
|
||||
145
fastfield_codecs/src/null_index_footer.rs
Normal file
145
fastfield_codecs/src/null_index_footer.rs
Normal file
@@ -0,0 +1,145 @@
|
||||
use std::io::{self, Write};
|
||||
use std::ops::Range;
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt};
|
||||
|
||||
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
|
||||
pub(crate) enum FastFieldCardinality {
|
||||
Single = 1,
|
||||
Multi = 2,
|
||||
}
|
||||
|
||||
impl BinarySerializable for FastFieldCardinality {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl FastFieldCardinality {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::Single),
|
||||
2 => Some(Self::Multi),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub(crate) enum NullIndexCodec {
|
||||
Full = 1,
|
||||
}
|
||||
|
||||
impl BinarySerializable for NullIndexCodec {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl NullIndexCodec {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::Full),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub(crate) struct NullIndexFooter {
|
||||
pub(crate) cardinality: FastFieldCardinality,
|
||||
pub(crate) null_index_codec: NullIndexCodec,
|
||||
// Unused for NullIndexCodec::Full
|
||||
pub(crate) null_index_byte_range: Range<u64>,
|
||||
}
|
||||
|
||||
impl BinarySerializable for NullIndexFooter {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.cardinality.serialize(writer)?;
|
||||
self.null_index_codec.serialize(writer)?;
|
||||
VInt(self.null_index_byte_range.start).serialize(writer)?;
|
||||
VInt(self.null_index_byte_range.end - self.null_index_byte_range.start)
|
||||
.serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let cardinality = FastFieldCardinality::deserialize(reader)?;
|
||||
let null_index_codec = NullIndexCodec::deserialize(reader)?;
|
||||
let null_index_byte_range_start = VInt::deserialize(reader)?.0;
|
||||
let null_index_byte_range_end = VInt::deserialize(reader)?.0 + null_index_byte_range_start;
|
||||
Ok(Self {
|
||||
cardinality,
|
||||
null_index_codec,
|
||||
null_index_byte_range: null_index_byte_range_start..null_index_byte_range_end,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn append_null_index_footer(
|
||||
output: &mut impl io::Write,
|
||||
null_index_footer: NullIndexFooter,
|
||||
) -> io::Result<()> {
|
||||
let mut counting_write = CountingWriter::wrap(output);
|
||||
null_index_footer.serialize(&mut counting_write)?;
|
||||
let footer_payload_len = counting_write.written_bytes();
|
||||
BinarySerializable::serialize(&(footer_payload_len as u16), &mut counting_write)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn read_null_index_footer(
|
||||
data: OwnedBytes,
|
||||
) -> io::Result<(OwnedBytes, NullIndexFooter)> {
|
||||
let (data, null_footer_length_bytes) = data.rsplit(2);
|
||||
|
||||
let footer_length = u16::deserialize(&mut null_footer_length_bytes.as_slice())?;
|
||||
let (data, null_index_footer_bytes) = data.rsplit(footer_length as usize);
|
||||
let null_index_footer = NullIndexFooter::deserialize(&mut null_index_footer_bytes.as_ref())?;
|
||||
|
||||
Ok((data, null_index_footer))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn null_index_footer_deser_test() {
|
||||
let null_index_footer = NullIndexFooter {
|
||||
cardinality: FastFieldCardinality::Single,
|
||||
null_index_codec: NullIndexCodec::Full,
|
||||
null_index_byte_range: 100..120,
|
||||
};
|
||||
|
||||
let mut out = vec![];
|
||||
null_index_footer.serialize(&mut out).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
null_index_footer,
|
||||
NullIndexFooter::deserialize(&mut &out[..]).unwrap()
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -17,38 +17,46 @@
|
||||
// You should have received a copy of the GNU Affero General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
use std::io;
|
||||
use std::num::NonZeroU64;
|
||||
use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
|
||||
use common::{BinarySerializable, VInt};
|
||||
use fastdivide::DividerU64;
|
||||
use common::{BinarySerializable, OwnedBytes, VInt};
|
||||
use log::warn;
|
||||
use ownedbytes::OwnedBytes;
|
||||
|
||||
use crate::bitpacked::BitpackedCodec;
|
||||
use crate::blockwise_linear::BlockwiseLinearCodec;
|
||||
use crate::compact_space::CompactSpaceCompressor;
|
||||
use crate::format_version::append_format_version;
|
||||
use crate::linear::LinearCodec;
|
||||
use crate::monotonic_mapping::{
|
||||
StrictlyMonotonicFn, StrictlyMonotonicMappingToInternal,
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
use crate::null_index_footer::{
|
||||
append_null_index_footer, FastFieldCardinality, NullIndexCodec, NullIndexFooter,
|
||||
};
|
||||
use crate::{
|
||||
monotonic_map_column, Column, FastFieldCodec, FastFieldCodecType, MonotonicallyMappableToU64,
|
||||
VecColumn, ALL_CODEC_TYPES,
|
||||
U128FastFieldCodecType, VecColumn, ALL_CODEC_TYPES,
|
||||
};
|
||||
|
||||
/// The normalized header gives some parameters after applying the following
|
||||
/// normalization of the vector:
|
||||
/// val -> (val - min_value) / gcd
|
||||
/// `val -> (val - min_value) / gcd`
|
||||
///
|
||||
/// By design, after normalization, `min_value = 0` and `gcd = 1`.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct NormalizedHeader {
|
||||
pub num_vals: u64,
|
||||
/// The number of values in the underlying column.
|
||||
pub num_vals: u32,
|
||||
/// The max value of the underlying column.
|
||||
pub max_value: u64,
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub(crate) struct Header {
|
||||
pub num_vals: u64,
|
||||
pub num_vals: u32,
|
||||
pub min_value: u64,
|
||||
pub max_value: u64,
|
||||
pub gcd: Option<NonZeroU64>,
|
||||
@@ -57,8 +65,11 @@ pub(crate) struct Header {
|
||||
|
||||
impl Header {
|
||||
pub fn normalized(self) -> NormalizedHeader {
|
||||
let max_value =
|
||||
(self.max_value - self.min_value) / self.gcd.map(|gcd| gcd.get()).unwrap_or(1);
|
||||
let gcd = self.gcd.map(|gcd| gcd.get()).unwrap_or(1);
|
||||
let gcd_min_val_mapping =
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd, self.min_value);
|
||||
|
||||
let max_value = gcd_min_val_mapping.mapping(self.max_value);
|
||||
NormalizedHeader {
|
||||
num_vals: self.num_vals,
|
||||
max_value,
|
||||
@@ -66,10 +77,7 @@ impl Header {
|
||||
}
|
||||
|
||||
pub fn normalize_column<C: Column>(&self, from_column: C) -> impl Column {
|
||||
let min_value = self.min_value;
|
||||
let gcd = self.gcd.map(|gcd| gcd.get()).unwrap_or(1);
|
||||
let divider = DividerU64::divide_by(gcd);
|
||||
monotonic_map_column(from_column, move |val| divider.divide(val - min_value))
|
||||
normalize_column(from_column, self.min_value, self.gcd)
|
||||
}
|
||||
|
||||
pub fn compute_header(
|
||||
@@ -81,9 +89,8 @@ impl Header {
|
||||
let max_value = column.max_value();
|
||||
let gcd = crate::gcd::find_gcd(column.iter().map(|val| val - min_value))
|
||||
.filter(|gcd| gcd.get() > 1u64);
|
||||
let divider = DividerU64::divide_by(gcd.map(|gcd| gcd.get()).unwrap_or(1u64));
|
||||
let shifted_column = monotonic_map_column(&column, |val| divider.divide(val - min_value));
|
||||
let codec_type = detect_codec(shifted_column, codecs)?;
|
||||
let normalized_column = normalize_column(column, min_value, gcd);
|
||||
let codec_type = detect_codec(normalized_column, codecs)?;
|
||||
Some(Header {
|
||||
num_vals,
|
||||
min_value,
|
||||
@@ -94,9 +101,42 @@ impl Header {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
pub(crate) struct U128Header {
|
||||
pub num_vals: u32,
|
||||
pub codec_type: U128FastFieldCodecType,
|
||||
}
|
||||
|
||||
impl BinarySerializable for U128Header {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.num_vals as u64).serialize(writer)?;
|
||||
self.codec_type.serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_vals = VInt::deserialize(reader)?.0 as u32;
|
||||
let codec_type = U128FastFieldCodecType::deserialize(reader)?;
|
||||
Ok(U128Header {
|
||||
num_vals,
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub fn normalize_column<C: Column>(
|
||||
from_column: C,
|
||||
min_value: u64,
|
||||
gcd: Option<NonZeroU64>,
|
||||
) -> impl Column {
|
||||
let gcd = gcd.map(|gcd| gcd.get()).unwrap_or(1);
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd, min_value);
|
||||
monotonic_map_column(from_column, mapping)
|
||||
}
|
||||
|
||||
impl BinarySerializable for Header {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.num_vals).serialize(writer)?;
|
||||
VInt(self.num_vals as u64).serialize(writer)?;
|
||||
VInt(self.min_value).serialize(writer)?;
|
||||
VInt(self.max_value - self.min_value).serialize(writer)?;
|
||||
if let Some(gcd) = self.gcd {
|
||||
@@ -109,7 +149,7 @@ impl BinarySerializable for Header {
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_vals = VInt::deserialize(reader)?.0;
|
||||
let num_vals = VInt::deserialize(reader)?.0 as u32;
|
||||
let min_value = VInt::deserialize(reader)?.0;
|
||||
let amplitude = VInt::deserialize(reader)?.0;
|
||||
let max_value = min_value + amplitude;
|
||||
@@ -125,16 +165,21 @@ impl BinarySerializable for Header {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn estimate<T: MonotonicallyMappableToU64>(
|
||||
/// Return estimated compression for given codec in the value range [0.0..1.0], where 1.0 means no
|
||||
/// compression.
|
||||
pub fn estimate<T: MonotonicallyMappableToU64 + fmt::Debug>(
|
||||
typed_column: impl Column<T>,
|
||||
codec_type: FastFieldCodecType,
|
||||
) -> Option<f32> {
|
||||
let column = monotonic_map_column(typed_column, T::to_u64);
|
||||
let column = monotonic_map_column(typed_column, StrictlyMonotonicMappingToInternal::<T>::new());
|
||||
let min_value = column.min_value();
|
||||
let gcd = crate::gcd::find_gcd(column.iter().map(|val| val - min_value))
|
||||
.filter(|gcd| gcd.get() > 1u64);
|
||||
let divider = DividerU64::divide_by(gcd.map(|gcd| gcd.get()).unwrap_or(1u64));
|
||||
let normalized_column = monotonic_map_column(&column, |val| divider.divide(val - min_value));
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(
|
||||
gcd.map(|gcd| gcd.get()).unwrap_or(1u64),
|
||||
min_value,
|
||||
);
|
||||
let normalized_column = monotonic_map_column(&column, mapping);
|
||||
match codec_type {
|
||||
FastFieldCodecType::Bitpacked => BitpackedCodec::estimate(&normalized_column),
|
||||
FastFieldCodecType::Linear => LinearCodec::estimate(&normalized_column),
|
||||
@@ -142,25 +187,111 @@ pub fn estimate<T: MonotonicallyMappableToU64>(
|
||||
}
|
||||
}
|
||||
|
||||
pub fn serialize_u128(
|
||||
typed_column: impl Column<u128>,
|
||||
/// Serializes u128 values with the compact space codec.
|
||||
pub fn serialize_u128<F: Fn() -> I, I: Iterator<Item = u128>>(
|
||||
iter_gen: F,
|
||||
num_vals: u32,
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
// TODO write header, to later support more codecs
|
||||
let compressor = CompactSpaceCompressor::train_from(&typed_column);
|
||||
compressor
|
||||
.compress_into(typed_column.iter(), output)
|
||||
.unwrap();
|
||||
serialize_u128_new(ValueIndexInfo::default(), iter_gen, num_vals, output)
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub enum ValueIndexInfo<'a> {
|
||||
MultiValue(Box<dyn MultiValueIndexInfo + 'a>),
|
||||
SingleValue(Box<dyn SingleValueIndexInfo + 'a>),
|
||||
}
|
||||
|
||||
// TODO Remove me
|
||||
impl Default for ValueIndexInfo<'static> {
|
||||
fn default() -> Self {
|
||||
struct Dummy {}
|
||||
impl SingleValueIndexInfo for Dummy {
|
||||
fn num_vals(&self) -> u32 {
|
||||
todo!()
|
||||
}
|
||||
fn num_non_nulls(&self) -> u32 {
|
||||
todo!()
|
||||
}
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u32>> {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
Self::SingleValue(Box::new(Dummy {}))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> ValueIndexInfo<'a> {
|
||||
fn get_cardinality(&self) -> FastFieldCardinality {
|
||||
match self {
|
||||
ValueIndexInfo::MultiValue(_) => FastFieldCardinality::Multi,
|
||||
ValueIndexInfo::SingleValue(_) => FastFieldCardinality::Single,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait MultiValueIndexInfo {
|
||||
/// The number of docs in the column.
|
||||
fn num_docs(&self) -> u32;
|
||||
/// The number of values in the column.
|
||||
fn num_vals(&self) -> u32;
|
||||
/// Return the start index of the values for each doc
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u32> + '_>;
|
||||
}
|
||||
|
||||
pub trait SingleValueIndexInfo {
|
||||
/// The number of values including nulls in the column.
|
||||
fn num_vals(&self) -> u32;
|
||||
/// The number of non-null values in the column.
|
||||
fn num_non_nulls(&self) -> u32;
|
||||
/// Return a iterator of the positions of docs with a value
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u32> + '_>;
|
||||
}
|
||||
|
||||
/// Serializes u128 values with the compact space codec.
|
||||
pub fn serialize_u128_new<F: Fn() -> I, I: Iterator<Item = u128>>(
|
||||
value_index: ValueIndexInfo,
|
||||
iter_gen: F,
|
||||
num_vals: u32,
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let header = U128Header {
|
||||
num_vals,
|
||||
codec_type: U128FastFieldCodecType::CompactSpace,
|
||||
};
|
||||
header.serialize(output)?;
|
||||
let compressor = CompactSpaceCompressor::train_from(iter_gen(), num_vals);
|
||||
compressor.compress_into(iter_gen(), output).unwrap();
|
||||
|
||||
let null_index_footer = NullIndexFooter {
|
||||
cardinality: value_index.get_cardinality(),
|
||||
null_index_codec: NullIndexCodec::Full,
|
||||
null_index_byte_range: 0..0,
|
||||
};
|
||||
append_null_index_footer(output, null_index_footer)?;
|
||||
append_format_version(output)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn serialize<T: MonotonicallyMappableToU64>(
|
||||
/// Serializes the column with the codec with the best estimate on the data.
|
||||
pub fn serialize<T: MonotonicallyMappableToU64 + fmt::Debug>(
|
||||
typed_column: impl Column<T>,
|
||||
output: &mut impl io::Write,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> io::Result<()> {
|
||||
let column = monotonic_map_column(typed_column, T::to_u64);
|
||||
serialize_new(ValueIndexInfo::default(), typed_column, output, codecs)
|
||||
}
|
||||
|
||||
/// Serializes the column with the codec with the best estimate on the data.
|
||||
pub fn serialize_new<T: MonotonicallyMappableToU64 + fmt::Debug>(
|
||||
value_index: ValueIndexInfo,
|
||||
typed_column: impl Column<T>,
|
||||
output: &mut impl io::Write,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> io::Result<()> {
|
||||
let column = monotonic_map_column(typed_column, StrictlyMonotonicMappingToInternal::<T>::new());
|
||||
let header = Header::compute_header(&column, codecs).ok_or_else(|| {
|
||||
io::Error::new(
|
||||
io::ErrorKind::InvalidInput,
|
||||
@@ -174,6 +305,15 @@ pub fn serialize<T: MonotonicallyMappableToU64>(
|
||||
let normalized_column = header.normalize_column(column);
|
||||
assert_eq!(normalized_column.min_value(), 0u64);
|
||||
serialize_given_codec(normalized_column, header.codec_type, output)?;
|
||||
|
||||
let null_index_footer = NullIndexFooter {
|
||||
cardinality: value_index.get_cardinality(),
|
||||
null_index_codec: NullIndexCodec::Full,
|
||||
null_index_byte_range: 0..0,
|
||||
};
|
||||
append_null_index_footer(output, null_index_footer)?;
|
||||
append_format_version(output)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -225,7 +365,8 @@ fn serialize_given_codec(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default>(
|
||||
/// Helper function to serialize a column (autodetect from all codecs) and then open it
|
||||
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default + fmt::Debug>(
|
||||
column: &[T],
|
||||
) -> Arc<dyn Column<T>> {
|
||||
let mut buffer = Vec::new();
|
||||
@@ -237,6 +378,18 @@ pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default>(
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_serialize_deserialize_u128_header() {
|
||||
let original = U128Header {
|
||||
num_vals: 11,
|
||||
codec_type: U128FastFieldCodecType::CompactSpace,
|
||||
};
|
||||
let mut out = Vec::new();
|
||||
original.serialize(&mut out).unwrap();
|
||||
let restored = U128Header::deserialize(&mut &out[..]).unwrap();
|
||||
assert_eq!(restored, original);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_serialize_deserialize() {
|
||||
let original = [1u64, 5u64, 10u64];
|
||||
@@ -250,7 +403,7 @@ mod tests {
|
||||
let col = VecColumn::from(&[false, true][..]);
|
||||
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
// 5 bytes of header, 1 byte of value, 7 bytes of padding.
|
||||
assert_eq!(buffer.len(), 5 + 8);
|
||||
assert_eq!(buffer.len(), 3 + 5 + 8 + 4 + 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -259,7 +412,7 @@ mod tests {
|
||||
let col = VecColumn::from(&[true][..]);
|
||||
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
// 5 bytes of header, 0 bytes of value, 7 bytes of padding.
|
||||
assert_eq!(buffer.len(), 5 + 7);
|
||||
assert_eq!(buffer.len(), 3 + 5 + 7 + 4 + 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -269,6 +422,6 @@ mod tests {
|
||||
let col = VecColumn::from(&vals[..]);
|
||||
serialize(col, &mut buffer, &[FastFieldCodecType::Bitpacked]).unwrap();
|
||||
// Values are stored over 3 bits.
|
||||
assert_eq!(buffer.len(), 7 + (3 * 80 / 8) + 7);
|
||||
assert_eq!(buffer.len(), 3 + 7 + (3 * 80 / 8) + 7 + 4 + 2);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,10 +1,14 @@
|
||||
[package]
|
||||
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
|
||||
name = "ownedbytes"
|
||||
version = "0.3.0"
|
||||
version = "0.5.0"
|
||||
edition = "2021"
|
||||
description = "Expose data as static slice"
|
||||
license = "MIT"
|
||||
documentation = "https://docs.rs/ownedbytes/"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
repository = "https://github.com/quickwit-oss/tantivy"
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
|
||||
@@ -3,7 +3,7 @@ use std::ops::{Deref, Range};
|
||||
use std::sync::Arc;
|
||||
use std::{fmt, io, mem};
|
||||
|
||||
use stable_deref_trait::StableDeref;
|
||||
pub use stable_deref_trait::StableDeref;
|
||||
|
||||
/// An OwnedBytes simply wraps an object that owns a slice of data and exposes
|
||||
/// this data as a slice.
|
||||
@@ -80,6 +80,21 @@ impl OwnedBytes {
|
||||
(left, right)
|
||||
}
|
||||
|
||||
/// Splits the OwnedBytes into two OwnedBytes `(left, right)`.
|
||||
///
|
||||
/// Right will hold `split_len` bytes.
|
||||
///
|
||||
/// This operation is cheap and does not require to copy any memory.
|
||||
/// On the other hand, both `left` and `right` retain a handle over
|
||||
/// the entire slice of memory. In other words, the memory will only
|
||||
/// be released when both left and right are dropped.
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn rsplit(self, split_len: usize) -> (OwnedBytes, OwnedBytes) {
|
||||
let data_len = self.data.len();
|
||||
self.split(data_len - split_len)
|
||||
}
|
||||
|
||||
/// Splits the right part of the `OwnedBytes` at the given offset.
|
||||
///
|
||||
/// `self` is truncated to `split_len`, left with the remaining bytes.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-query-grammar"
|
||||
version = "0.18.0"
|
||||
version = "0.19.0"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = ["database-implementations", "data-structures"]
|
||||
|
||||
@@ -5,7 +5,8 @@ use combine::parser::range::{take_while, take_while1};
|
||||
use combine::parser::repeat::escaped;
|
||||
use combine::parser::Parser;
|
||||
use combine::{
|
||||
attempt, choice, eof, many, many1, one_of, optional, parser, satisfy, skip_many1, value,
|
||||
attempt, between, choice, eof, many, many1, one_of, optional, parser, satisfy, sep_by,
|
||||
skip_many1, value,
|
||||
};
|
||||
use once_cell::sync::Lazy;
|
||||
use regex::Regex;
|
||||
@@ -62,6 +63,20 @@ fn word<'a>() -> impl Parser<&'a str, Output = String> {
|
||||
})
|
||||
}
|
||||
|
||||
// word variant that allows more characters, e.g. for range queries that don't allow field
|
||||
// specifier
|
||||
fn relaxed_word<'a>() -> impl Parser<&'a str, Output = String> {
|
||||
(
|
||||
satisfy(|c: char| {
|
||||
!c.is_whitespace() && !['`', '{', '}', '"', '[', ']', '(', ')'].contains(&c)
|
||||
}),
|
||||
many(satisfy(|c: char| {
|
||||
!c.is_whitespace() && !['{', '}', '"', '[', ']', '(', ')'].contains(&c)
|
||||
})),
|
||||
)
|
||||
.map(|(s1, s2): (char, String)| format!("{}{}", s1, s2))
|
||||
}
|
||||
|
||||
/// Parses a date time according to rfc3339
|
||||
/// 2015-08-02T18:54:42+02
|
||||
/// 2021-04-13T19:46:26.266051969+00:00
|
||||
@@ -181,8 +196,8 @@ fn spaces1<'a>() -> impl Parser<&'a str, Output = ()> {
|
||||
fn range<'a>() -> impl Parser<&'a str, Output = UserInputLeaf> {
|
||||
let range_term_val = || {
|
||||
attempt(date_time())
|
||||
.or(word())
|
||||
.or(negative_number())
|
||||
.or(relaxed_word())
|
||||
.or(char('*').with(value("*".to_string())))
|
||||
};
|
||||
|
||||
@@ -250,6 +265,17 @@ fn range<'a>() -> impl Parser<&'a str, Output = UserInputLeaf> {
|
||||
})
|
||||
}
|
||||
|
||||
/// Function that parses a set out of a Stream
|
||||
/// Supports ranges like: `IN [val1 val2 val3]`
|
||||
fn set<'a>() -> impl Parser<&'a str, Output = UserInputLeaf> {
|
||||
let term_list = between(char('['), char(']'), sep_by(term_val(), spaces()));
|
||||
|
||||
let set_content = ((string("IN"), spaces()), term_list).map(|(_, elements)| elements);
|
||||
|
||||
(optional(attempt(field_name().skip(spaces()))), set_content)
|
||||
.map(|(field, elements)| UserInputLeaf::Set { field, elements })
|
||||
}
|
||||
|
||||
fn negate(expr: UserInputAst) -> UserInputAst {
|
||||
expr.unary(Occur::MustNot)
|
||||
}
|
||||
@@ -264,6 +290,7 @@ fn leaf<'a>() -> impl Parser<&'a str, Output = UserInputAst> {
|
||||
string("NOT").skip(spaces1()).with(leaf()).map(negate),
|
||||
))
|
||||
.or(attempt(range().map(UserInputAst::from)))
|
||||
.or(attempt(set().map(UserInputAst::from)))
|
||||
.or(literal().map(UserInputAst::from))
|
||||
.parse_stream(input)
|
||||
.into_result()
|
||||
@@ -649,6 +676,34 @@ mod test {
|
||||
.expect("Cannot parse date range")
|
||||
.0;
|
||||
assert_eq!(res6, expected_flexible_dates);
|
||||
// IP Range Unbounded
|
||||
let expected_weight = UserInputLeaf::Range {
|
||||
field: Some("ip".to_string()),
|
||||
lower: UserInputBound::Inclusive("::1".to_string()),
|
||||
upper: UserInputBound::Unbounded,
|
||||
};
|
||||
let res1 = range()
|
||||
.parse("ip: >=::1")
|
||||
.expect("Cannot parse ip v6 format")
|
||||
.0;
|
||||
let res2 = range()
|
||||
.parse("ip:[::1 TO *}")
|
||||
.expect("Cannot parse ip v6 format")
|
||||
.0;
|
||||
assert_eq!(res1, expected_weight);
|
||||
assert_eq!(res2, expected_weight);
|
||||
|
||||
// IP Range Bounded
|
||||
let expected_weight = UserInputLeaf::Range {
|
||||
field: Some("ip".to_string()),
|
||||
lower: UserInputBound::Inclusive("::0.0.0.50".to_string()),
|
||||
upper: UserInputBound::Exclusive("::0.0.0.52".to_string()),
|
||||
};
|
||||
let res1 = range()
|
||||
.parse("ip:[::0.0.0.50 TO ::0.0.0.52}")
|
||||
.expect("Cannot parse ip v6 format")
|
||||
.0;
|
||||
assert_eq!(res1, expected_weight);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -705,6 +760,14 @@ mod test {
|
||||
test_parse_query_to_ast_helper("+(a b) +d", "(+(*\"a\" *\"b\") +\"d\")");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_test_query_set() {
|
||||
test_parse_query_to_ast_helper("abc: IN [a b c]", r#""abc": IN ["a" "b" "c"]"#);
|
||||
test_parse_query_to_ast_helper("abc: IN [1]", r#""abc": IN ["1"]"#);
|
||||
test_parse_query_to_ast_helper("abc: IN []", r#""abc": IN []"#);
|
||||
test_parse_query_to_ast_helper("IN [1 2]", r#"IN ["1" "2"]"#);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_test_query_other() {
|
||||
test_parse_query_to_ast_helper("(+a +b) d", "(*(+\"a\" +\"b\") *\"d\")");
|
||||
|
||||
@@ -12,6 +12,10 @@ pub enum UserInputLeaf {
|
||||
lower: UserInputBound,
|
||||
upper: UserInputBound,
|
||||
},
|
||||
Set {
|
||||
field: Option<String>,
|
||||
elements: Vec<String>,
|
||||
},
|
||||
}
|
||||
|
||||
impl Debug for UserInputLeaf {
|
||||
@@ -31,6 +35,19 @@ impl Debug for UserInputLeaf {
|
||||
upper.display_upper(formatter)?;
|
||||
Ok(())
|
||||
}
|
||||
UserInputLeaf::Set { field, elements } => {
|
||||
if let Some(ref field) = field {
|
||||
write!(formatter, "\"{}\": ", field)?;
|
||||
}
|
||||
write!(formatter, "IN [")?;
|
||||
for (i, element) in elements.iter().enumerate() {
|
||||
if i != 0 {
|
||||
write!(formatter, " ")?;
|
||||
}
|
||||
write!(formatter, "\"{}\"", element)?;
|
||||
}
|
||||
write!(formatter, "]")
|
||||
}
|
||||
UserInputLeaf::All => write!(formatter, "*"),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -51,7 +51,10 @@ use serde::{Deserialize, Serialize};
|
||||
|
||||
pub use super::bucket::RangeAggregation;
|
||||
use super::bucket::{HistogramAggregation, TermsAggregation};
|
||||
use super::metric::{AverageAggregation, StatsAggregation};
|
||||
use super::metric::{
|
||||
AverageAggregation, CountAggregation, MaxAggregation, MinAggregation, StatsAggregation,
|
||||
SumAggregation,
|
||||
};
|
||||
use super::VecWithNames;
|
||||
|
||||
/// The top-level aggregation request structure, which contains [`Aggregation`] and their user
|
||||
@@ -237,20 +240,38 @@ impl BucketAggregationType {
|
||||
/// called multi-value numeric metrics aggregation.
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub enum MetricAggregation {
|
||||
/// Calculates the average.
|
||||
/// Computes the average of the extracted values.
|
||||
#[serde(rename = "avg")]
|
||||
Average(AverageAggregation),
|
||||
/// Calculates stats sum, average, min, max, standard_deviation on a field.
|
||||
/// Counts the number of extracted values.
|
||||
#[serde(rename = "value_count")]
|
||||
Count(CountAggregation),
|
||||
/// Finds the maximum value.
|
||||
#[serde(rename = "max")]
|
||||
Max(MaxAggregation),
|
||||
/// Finds the minimum value.
|
||||
#[serde(rename = "min")]
|
||||
Min(MinAggregation),
|
||||
/// Computes a collection of statistics (`min`, `max`, `sum`, `count`, and `avg`) over the
|
||||
/// extracted values.
|
||||
#[serde(rename = "stats")]
|
||||
Stats(StatsAggregation),
|
||||
/// Computes the sum of the extracted values.
|
||||
#[serde(rename = "sum")]
|
||||
Sum(SumAggregation),
|
||||
}
|
||||
|
||||
impl MetricAggregation {
|
||||
fn get_fast_field_names(&self, fast_field_names: &mut HashSet<String>) {
|
||||
match self {
|
||||
MetricAggregation::Average(avg) => fast_field_names.insert(avg.field.to_string()),
|
||||
MetricAggregation::Stats(stats) => fast_field_names.insert(stats.field.to_string()),
|
||||
let fast_field_name = match self {
|
||||
MetricAggregation::Average(avg) => avg.field_name(),
|
||||
MetricAggregation::Count(count) => count.field_name(),
|
||||
MetricAggregation::Max(max) => max.field_name(),
|
||||
MetricAggregation::Min(min) => min.field_name(),
|
||||
MetricAggregation::Stats(stats) => stats.field_name(),
|
||||
MetricAggregation::Sum(sum) => sum.field_name(),
|
||||
};
|
||||
fast_field_names.insert(fast_field_name.to_string());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -258,6 +279,38 @@ impl MetricAggregation {
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_metric_aggregations_deser() {
|
||||
let agg_req_json = r#"{
|
||||
"price_avg": { "avg": { "field": "price" } },
|
||||
"price_count": { "value_count": { "field": "price" } },
|
||||
"price_max": { "max": { "field": "price" } },
|
||||
"price_min": { "min": { "field": "price" } },
|
||||
"price_stats": { "stats": { "field": "price" } },
|
||||
"price_sum": { "sum": { "field": "price" } }
|
||||
}"#;
|
||||
let agg_req: Aggregations = serde_json::from_str(agg_req_json).unwrap();
|
||||
|
||||
assert!(
|
||||
matches!(agg_req.get("price_avg").unwrap(), Aggregation::Metric(MetricAggregation::Average(avg)) if avg.field == "price")
|
||||
);
|
||||
assert!(
|
||||
matches!(agg_req.get("price_count").unwrap(), Aggregation::Metric(MetricAggregation::Count(count)) if count.field == "price")
|
||||
);
|
||||
assert!(
|
||||
matches!(agg_req.get("price_max").unwrap(), Aggregation::Metric(MetricAggregation::Max(max)) if max.field == "price")
|
||||
);
|
||||
assert!(
|
||||
matches!(agg_req.get("price_min").unwrap(), Aggregation::Metric(MetricAggregation::Min(min)) if min.field == "price")
|
||||
);
|
||||
assert!(
|
||||
matches!(agg_req.get("price_stats").unwrap(), Aggregation::Metric(MetricAggregation::Stats(stats)) if stats.field == "price")
|
||||
);
|
||||
assert!(
|
||||
matches!(agg_req.get("price_sum").unwrap(), Aggregation::Metric(MetricAggregation::Sum(sum)) if sum.field == "price")
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn serialize_to_json_test() {
|
||||
let agg_req1: Aggregations = vec![(
|
||||
|
||||
@@ -8,10 +8,13 @@ use fastfield_codecs::Column;
|
||||
|
||||
use super::agg_req::{Aggregation, Aggregations, BucketAggregationType, MetricAggregation};
|
||||
use super::bucket::{HistogramAggregation, RangeAggregation, TermsAggregation};
|
||||
use super::metric::{AverageAggregation, StatsAggregation};
|
||||
use super::metric::{
|
||||
AverageAggregation, CountAggregation, MaxAggregation, MinAggregation, StatsAggregation,
|
||||
SumAggregation,
|
||||
};
|
||||
use super::segment_agg_result::BucketCount;
|
||||
use super::VecWithNames;
|
||||
use crate::fastfield::{type_and_cardinality, FastType, MultiValuedFastFieldReader};
|
||||
use crate::fastfield::{type_and_cardinality, MultiValuedFastFieldReader};
|
||||
use crate::schema::{Cardinality, Type};
|
||||
use crate::{InvertedIndexReader, SegmentReader, TantivyError};
|
||||
|
||||
@@ -91,10 +94,7 @@ impl BucketAggregationWithAccessor {
|
||||
BucketAggregationType::Terms(TermsAggregation {
|
||||
field: field_name, ..
|
||||
}) => {
|
||||
let field = reader
|
||||
.schema()
|
||||
.get_field(field_name)
|
||||
.ok_or_else(|| TantivyError::FieldNotFound(field_name.to_string()))?;
|
||||
let field = reader.schema().get_field(field_name)?;
|
||||
inverted_index = Some(reader.inverted_index(field)?);
|
||||
get_ff_reader_and_validate(reader, field_name, Cardinality::MultiValues)?
|
||||
}
|
||||
@@ -134,7 +134,11 @@ impl MetricAggregationWithAccessor {
|
||||
) -> crate::Result<MetricAggregationWithAccessor> {
|
||||
match &metric {
|
||||
MetricAggregation::Average(AverageAggregation { field: field_name })
|
||||
| MetricAggregation::Stats(StatsAggregation { field: field_name }) => {
|
||||
| MetricAggregation::Count(CountAggregation { field: field_name })
|
||||
| MetricAggregation::Max(MaxAggregation { field: field_name })
|
||||
| MetricAggregation::Min(MinAggregation { field: field_name })
|
||||
| MetricAggregation::Stats(StatsAggregation { field: field_name })
|
||||
| MetricAggregation::Sum(SumAggregation { field: field_name }) => {
|
||||
let (accessor, field_type) =
|
||||
get_ff_reader_and_validate(reader, field_name, Cardinality::SingleValue)?;
|
||||
|
||||
@@ -188,19 +192,10 @@ fn get_ff_reader_and_validate(
|
||||
field_name: &str,
|
||||
cardinality: Cardinality,
|
||||
) -> crate::Result<(FastFieldAccessor, Type)> {
|
||||
let field = reader
|
||||
.schema()
|
||||
.get_field(field_name)
|
||||
.ok_or_else(|| TantivyError::FieldNotFound(field_name.to_string()))?;
|
||||
let field = reader.schema().get_field(field_name)?;
|
||||
let field_type = reader.schema().get_field_entry(field).field_type();
|
||||
|
||||
if let Some((ff_type, field_cardinality)) = type_and_cardinality(field_type) {
|
||||
if ff_type == FastType::Date {
|
||||
return Err(TantivyError::InvalidArgument(
|
||||
"Unsupported field type date in aggregation".to_string(),
|
||||
));
|
||||
}
|
||||
|
||||
if let Some((_ff_type, field_cardinality)) = type_and_cardinality(field_type) {
|
||||
if cardinality != field_cardinality {
|
||||
return Err(TantivyError::InvalidArgument(format!(
|
||||
"Invalid field cardinality on field {} expected {:?}, but got {:?}",
|
||||
@@ -217,10 +212,10 @@ fn get_ff_reader_and_validate(
|
||||
let ff_fields = reader.fast_fields();
|
||||
match cardinality {
|
||||
Cardinality::SingleValue => ff_fields
|
||||
.u64_lenient(field)
|
||||
.u64_lenient(field_name)
|
||||
.map(|field| (FastFieldAccessor::Single(field), field_type.value_type())),
|
||||
Cardinality::MultiValues => ff_fields
|
||||
.u64s_lenient(field)
|
||||
.u64s_lenient(field_name)
|
||||
.map(|field| (FastFieldAccessor::Multi(field), field_type.value_type())),
|
||||
}
|
||||
}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user