Compare commits

..

7 Commits

Author SHA1 Message Date
Mohammad Dashti
fe293225d5 Fixed agg validation 2025-12-10 10:28:49 -08:00
Philippe Noël
794ff1ffc9 chore: Make Language hashable (#79) (#2763)
Co-authored-by: Ming <ming.ying.nyc@gmail.com>
2025-12-10 15:38:43 +01:00
PSeitz-dd
c6912ce89a Handle JSON fields and columnar in space_usage (#2761)
return field names in space_usage instead of `Field`
more detailed info for columns
2025-12-10 20:33:33 +08:00
PSeitz
618e3bd11b Term and IndexingTerm cleanup (#2750)
* refactor term

* add deprecated functions

---------

Co-authored-by: Pascal Seitz <pascal.seitz@datadoghq.com>
2025-12-05 09:48:40 +08:00
PSeitz
b2f99c6217 add term->histogram benchmark (#2758)
* add term->histogram benchmark

* add more term aggs

---------

Co-authored-by: Pascal Seitz <pascal.seitz@datadoghq.com>
2025-12-04 02:29:37 +01:00
PSeitz
76de5bab6f fix unsafe warnings (#2757) 2025-12-03 20:15:21 +08:00
rustmailer
b7eb31162b docs: add usage example to README (#2743) 2025-12-02 21:56:57 +01:00
60 changed files with 663 additions and 3602 deletions

View File

@@ -56,7 +56,6 @@ itertools = "0.14.0"
measure_time = "0.9.0"
arc-swap = "1.5.0"
bon = "3.3.1"
i_triangle = "0.38.0"
columnar = { version = "0.6", path = "./columnar", package = "tantivy-columnar" }
sstable = { version = "0.6", path = "./sstable", package = "tantivy-sstable", optional = true }
@@ -71,7 +70,6 @@ futures-util = { version = "0.3.28", optional = true }
futures-channel = { version = "0.3.28", optional = true }
fnv = "1.0.7"
typetag = "0.2.21"
geo-types = "0.7.17"
[target.'cfg(windows)'.dependencies]
winapi = "0.3.9"

View File

@@ -123,6 +123,7 @@ You can also find other bindings on [GitHub](https://github.com/search?q=tantivy
- [seshat](https://github.com/matrix-org/seshat/): A matrix message database/indexer
- [tantiny](https://github.com/baygeldin/tantiny): Tiny full-text search for Ruby
- [lnx](https://github.com/lnx-search/lnx): adaptable, typo tolerant search engine with a REST API
- [Bichon](https://github.com/rustmailer/bichon): A lightweight, high-performance Rust email archiver with WebUI
- and [more](https://github.com/search?q=tantivy)!
### On average, how much faster is Tantivy compared to Lucene?

View File

@@ -1,5 +1,6 @@
use binggan::plugins::PeakMemAllocPlugin;
use binggan::{black_box, InputGroup, PeakMemAlloc, INSTRUMENTED_SYSTEM};
use rand::distributions::WeightedIndex;
use rand::prelude::SliceRandom;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
@@ -54,12 +55,18 @@ fn bench_agg(mut group: InputGroup<Index>) {
register!(group, extendedstats_f64);
register!(group, percentiles_f64);
register!(group, terms_few);
register!(group, terms_all_unique);
register!(group, terms_many);
register!(group, terms_many_top_1000);
register!(group, terms_many_order_by_term);
register!(group, terms_many_with_top_hits);
register!(group, terms_all_unique_with_avg_sub_agg);
register!(group, terms_many_with_avg_sub_agg);
register!(group, terms_few_with_avg_sub_agg);
register!(group, terms_status_with_avg_sub_agg);
register!(group, terms_status);
register!(group, terms_few_with_histogram);
register!(group, terms_status_with_histogram);
register!(group, terms_many_json_mixed_type_with_avg_sub_agg);
@@ -132,12 +139,12 @@ fn extendedstats_f64(index: &Index) {
}
fn percentiles_f64(index: &Index) {
let agg_req = json!({
"mypercentiles": {
"percentiles": {
"field": "score_f64",
"percents": [ 95, 99, 99.9 ]
"mypercentiles": {
"percentiles": {
"field": "score_f64",
"percents": [ 95, 99, 99.9 ]
}
}
}
});
execute_agg(index, agg_req);
}
@@ -174,6 +181,19 @@ fn terms_few(index: &Index) {
});
execute_agg(index, agg_req);
}
fn terms_status(index: &Index) {
let agg_req = json!({
"my_texts": { "terms": { "field": "text_few_terms_status" } },
});
execute_agg(index, agg_req);
}
fn terms_all_unique(index: &Index) {
let agg_req = json!({
"my_texts": { "terms": { "field": "text_all_unique_terms" } },
});
execute_agg(index, agg_req);
}
fn terms_many(index: &Index) {
let agg_req = json!({
"my_texts": { "terms": { "field": "text_many_terms" } },
@@ -222,6 +242,39 @@ fn terms_many_with_avg_sub_agg(index: &Index) {
});
execute_agg(index, agg_req);
}
fn terms_all_unique_with_avg_sub_agg(index: &Index) {
let agg_req = json!({
"my_texts": {
"terms": { "field": "text_all_unique_terms" },
"aggs": {
"average_f64": { "avg": { "field": "score_f64" } }
}
},
});
execute_agg(index, agg_req);
}
fn terms_few_with_histogram(index: &Index) {
let agg_req = json!({
"my_texts": {
"terms": { "field": "text_few_terms" },
"aggs": {
"histo": {"histogram": { "field": "score_f64", "interval": 10 }}
}
}
});
execute_agg(index, agg_req);
}
fn terms_status_with_histogram(index: &Index) {
let agg_req = json!({
"my_texts": {
"terms": { "field": "text_few_terms_status" },
"aggs": {
"histo": {"histogram": { "field": "score_f64", "interval": 10 }}
}
}
});
execute_agg(index, agg_req);
}
fn terms_few_with_avg_sub_agg(index: &Index) {
let agg_req = json!({
@@ -234,6 +287,17 @@ fn terms_few_with_avg_sub_agg(index: &Index) {
});
execute_agg(index, agg_req);
}
fn terms_status_with_avg_sub_agg(index: &Index) {
let agg_req = json!({
"my_texts": {
"terms": { "field": "text_few_terms_status" },
"aggs": {
"average_f64": { "avg": { "field": "score_f64" } }
}
},
});
execute_agg(index, agg_req);
}
fn terms_many_json_mixed_type_with_avg_sub_agg(index: &Index) {
let agg_req = json!({
@@ -419,14 +483,21 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
.set_stored();
let text_field = schema_builder.add_text_field("text", text_fieldtype);
let json_field = schema_builder.add_json_field("json", FAST);
let text_field_all_unique_terms =
schema_builder.add_text_field("text_all_unique_terms", STRING | FAST);
let text_field_many_terms = schema_builder.add_text_field("text_many_terms", STRING | FAST);
let text_field_many_terms = schema_builder.add_text_field("text_many_terms", STRING | FAST);
let text_field_few_terms = schema_builder.add_text_field("text_few_terms", STRING | FAST);
let text_field_few_terms_status =
schema_builder.add_text_field("text_few_terms_status", STRING | FAST);
let score_fieldtype = tantivy::schema::NumericOptions::default().set_fast();
let score_field = schema_builder.add_u64_field("score", score_fieldtype.clone());
let score_field_f64 = schema_builder.add_f64_field("score_f64", score_fieldtype.clone());
let score_field_i64 = schema_builder.add_i64_field("score_i64", score_fieldtype);
let index = Index::create_from_tempdir(schema_builder.build())?;
let few_terms_data = ["INFO", "ERROR", "WARN", "DEBUG"];
// Approximate production log proportions: INFO dominant, WARN and DEBUG occasional, ERROR rare.
let log_level_distribution = WeightedIndex::new([80u32, 3, 12, 5]).unwrap();
let lg_norm = rand_distr::LogNormal::new(2.996f64, 0.979f64).unwrap();
@@ -442,15 +513,21 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
index_writer.add_document(doc!())?;
}
if cardinality == Cardinality::Multivalued {
let log_level_sample_a = few_terms_data[log_level_distribution.sample(&mut rng)];
let log_level_sample_b = few_terms_data[log_level_distribution.sample(&mut rng)];
index_writer.add_document(doc!(
json_field => json!({"mixed_type": 10.0}),
json_field => json!({"mixed_type": 10.0}),
text_field => "cool",
text_field => "cool",
text_field_all_unique_terms => "cool",
text_field_all_unique_terms => "coolo",
text_field_many_terms => "cool",
text_field_many_terms => "cool",
text_field_few_terms => "cool",
text_field_few_terms => "cool",
text_field_few_terms_status => log_level_sample_a,
text_field_few_terms_status => log_level_sample_b,
score_field => 1u64,
score_field => 1u64,
score_field_f64 => lg_norm.sample(&mut rng),
@@ -475,8 +552,10 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
index_writer.add_document(doc!(
text_field => "cool",
json_field => json,
text_field_all_unique_terms => format!("unique_term_{}", rng.gen::<u64>()),
text_field_many_terms => many_terms_data.choose(&mut rng).unwrap().to_string(),
text_field_few_terms => few_terms_data.choose(&mut rng).unwrap().to_string(),
text_field_few_terms_status => few_terms_data[log_level_distribution.sample(&mut rng)],
score_field => val as u64,
score_field_f64 => lg_norm.sample(&mut rng),
score_field_i64 => val as i64,

View File

@@ -19,7 +19,7 @@ fn u32_to_i32(val: u32) -> i32 {
#[inline]
unsafe fn u32_to_i32_avx2(vals_u32x8s: DataType) -> DataType {
const HIGHEST_BIT_MASK: DataType = from_u32x8([HIGHEST_BIT; NUM_LANES]);
op_xor(vals_u32x8s, HIGHEST_BIT_MASK)
unsafe { op_xor(vals_u32x8s, HIGHEST_BIT_MASK) }
}
pub fn filter_vec_in_place(range: RangeInclusive<u32>, offset: u32, output: &mut Vec<u32>) {
@@ -66,17 +66,19 @@ unsafe fn filter_vec_avx2_aux(
]);
const SHIFT: __m256i = from_u32x8([NUM_LANES as u32; NUM_LANES]);
for _ in 0..num_words {
let word = load_unaligned(input);
let word = u32_to_i32_avx2(word);
let keeper_bitset = compute_filter_bitset(word, range_simd.clone());
let added_len = keeper_bitset.count_ones();
let filtered_doc_ids = compact(ids, keeper_bitset);
store_unaligned(output_tail as *mut __m256i, filtered_doc_ids);
output_tail = output_tail.offset(added_len as isize);
ids = op_add(ids, SHIFT);
input = input.offset(1);
unsafe {
let word = load_unaligned(input);
let word = u32_to_i32_avx2(word);
let keeper_bitset = compute_filter_bitset(word, range_simd.clone());
let added_len = keeper_bitset.count_ones();
let filtered_doc_ids = compact(ids, keeper_bitset);
store_unaligned(output_tail as *mut __m256i, filtered_doc_ids);
output_tail = output_tail.offset(added_len as isize);
ids = op_add(ids, SHIFT);
input = input.offset(1);
}
}
output_tail.offset_from(output) as usize
unsafe { output_tail.offset_from(output) as usize }
}
#[inline]
@@ -92,8 +94,7 @@ unsafe fn compute_filter_bitset(val: __m256i, range: std::ops::RangeInclusive<__
let too_low = op_greater(*range.start(), val);
let too_high = op_greater(val, *range.end());
let inside = op_or(too_low, too_high);
255 - std::arch::x86_64::_mm256_movemask_ps(std::mem::transmute::<DataType, __m256>(inside))
as u8
255 - std::arch::x86_64::_mm256_movemask_ps(_mm256_castsi256_ps(inside)) as u8
}
union U8x32 {

View File

@@ -3,7 +3,8 @@ use std::sync::Arc;
use std::{fmt, io};
use common::file_slice::FileSlice;
use common::{ByteCount, DateTime, HasLen, OwnedBytes};
use common::{ByteCount, DateTime, OwnedBytes};
use serde::{Deserialize, Serialize};
use crate::column::{BytesColumn, Column, StrColumn};
use crate::column_values::{StrictlyMonotonicFn, monotonic_map_column};
@@ -317,10 +318,89 @@ impl DynamicColumnHandle {
}
pub fn num_bytes(&self) -> ByteCount {
self.file_slice.len().into()
self.file_slice.num_bytes()
}
/// Legacy helper returning the column space usage.
pub fn column_and_dictionary_num_bytes(&self) -> io::Result<ColumnSpaceUsage> {
self.space_usage()
}
/// Return the space usage of the column, optionally broken down by dictionary and column
/// values.
///
/// For dictionary encoded columns (strings and bytes), this splits the total footprint into
/// the dictionary and the remaining column data (including index and values).
/// For all other column types, the dictionary size is `None` and the column size
/// equals the total bytes.
pub fn space_usage(&self) -> io::Result<ColumnSpaceUsage> {
let total_num_bytes = self.num_bytes();
let dynamic_column = self.open()?;
let dictionary_num_bytes = match &dynamic_column {
DynamicColumn::Bytes(bytes_column) => bytes_column.dictionary().num_bytes(),
DynamicColumn::Str(str_column) => str_column.dictionary().num_bytes(),
_ => {
return Ok(ColumnSpaceUsage::new(self.num_bytes(), None));
}
};
assert!(dictionary_num_bytes <= total_num_bytes);
let column_num_bytes =
ByteCount::from(total_num_bytes.get_bytes() - dictionary_num_bytes.get_bytes());
Ok(ColumnSpaceUsage::new(
column_num_bytes,
Some(dictionary_num_bytes),
))
}
pub fn column_type(&self) -> ColumnType {
self.column_type
}
}
/// Represents space usage of a column.
///
/// `column_num_bytes` tracks the column payload (index, values and footer).
/// For dictionary encoded columns, `dictionary_num_bytes` captures the dictionary footprint.
/// [`ColumnSpaceUsage::total_num_bytes`] returns the sum of both parts.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct ColumnSpaceUsage {
column_num_bytes: ByteCount,
dictionary_num_bytes: Option<ByteCount>,
}
impl ColumnSpaceUsage {
pub(crate) fn new(
column_num_bytes: ByteCount,
dictionary_num_bytes: Option<ByteCount>,
) -> Self {
ColumnSpaceUsage {
column_num_bytes,
dictionary_num_bytes,
}
}
pub fn column_num_bytes(&self) -> ByteCount {
self.column_num_bytes
}
pub fn dictionary_num_bytes(&self) -> Option<ByteCount> {
self.dictionary_num_bytes
}
pub fn total_num_bytes(&self) -> ByteCount {
self.column_num_bytes + self.dictionary_num_bytes.unwrap_or_default()
}
/// Merge two space usage values by summing their components.
pub fn merge(&self, other: &ColumnSpaceUsage) -> ColumnSpaceUsage {
let dictionary_num_bytes = match (self.dictionary_num_bytes, other.dictionary_num_bytes) {
(Some(lhs), Some(rhs)) => Some(lhs + rhs),
(Some(val), None) | (None, Some(val)) => Some(val),
(None, None) => None,
};
ColumnSpaceUsage {
column_num_bytes: self.column_num_bytes + other.column_num_bytes,
dictionary_num_bytes,
}
}
}

View File

@@ -48,7 +48,7 @@ pub use columnar::{
use sstable::VoidSSTable;
pub use value::{NumericalType, NumericalValue};
pub use self::dynamic_column::{DynamicColumn, DynamicColumnHandle};
pub use self::dynamic_column::{ColumnSpaceUsage, DynamicColumn, DynamicColumnHandle};
pub type RowId = u32;
pub type DocId = u32;

View File

@@ -1,66 +0,0 @@
use geo_types::Point;
use tantivy::collector::TopDocs;
use tantivy::query::SpatialQuery;
use tantivy::schema::{Schema, Value, SPATIAL, STORED, TEXT};
use tantivy::spatial::point::GeoPoint;
use tantivy::{Index, IndexWriter, TantivyDocument};
fn main() -> tantivy::Result<()> {
let mut schema_builder = Schema::builder();
schema_builder.add_json_field("properties", STORED | TEXT);
schema_builder.add_spatial_field("geometry", STORED | SPATIAL);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
let doc = TantivyDocument::parse_json(
&schema,
r#"{
"type":"Feature",
"geometry":{
"type":"Polygon",
"coordinates":[[[-99.483911,45.577697],[-99.483869,45.571457],[-99.481739,45.571461],[-99.474881,45.571584],[-99.473167,45.571615],[-99.463394,45.57168],[-99.463391,45.57883],[-99.463368,45.586076],[-99.48177,45.585926],[-99.48384,45.585953],[-99.483885,45.57873],[-99.483911,45.577697]]]
},
"properties":{
"admin_level":"8",
"border_type":"city",
"boundary":"administrative",
"gnis:feature_id":"1267426",
"name":"Hosmer",
"place":"city",
"source":"TIGER/Line® 2008 Place Shapefiles (http://www.census.gov/geo/www/tiger/)",
"wikidata":"Q2442118",
"wikipedia":"en:Hosmer, South Dakota"
}
}"#,
)?;
index_writer.add_document(doc)?;
index_writer.commit()?;
let reader = index.reader()?;
let searcher = reader.searcher();
let field = schema.get_field("geometry").unwrap();
let query = SpatialQuery::new(
field,
[
GeoPoint {
lon: -99.49,
lat: 45.56,
},
GeoPoint {
lon: -99.45,
lat: 45.59,
},
],
tantivy::query::SpatialQueryType::Intersects,
);
let hits = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
for (_score, doc_address) in &hits {
let retrieved_doc: TantivyDocument = searcher.doc(*doc_address)?;
if let Some(field_value) = retrieved_doc.get_first(field) {
if let Some(geometry_box) = field_value.as_value().into_geometry() {
println!("Retrieved geometry: {:?}", geometry_box);
}
}
}
assert_eq!(hits.len(), 1);
Ok(())
}

View File

@@ -55,22 +55,44 @@ pub(crate) fn get_numeric_or_date_column_types() -> &'static [ColumnType] {
]
}
/// Get fast field reader or empty as default.
/// Get fast field reader or return an error if the field doesn't exist.
pub(crate) fn get_ff_reader(
reader: &SegmentReader,
field_name: &str,
allowed_column_types: Option<&[ColumnType]>,
) -> crate::Result<(columnar::Column<u64>, ColumnType)> {
let ff_fields = reader.fast_fields();
let ff_field_with_type = ff_fields
.u64_lenient_for_type(allowed_column_types, field_name)?
.unwrap_or_else(|| {
(
let ff_field_with_type = ff_fields.u64_lenient_for_type(allowed_column_types, field_name)?;
match ff_field_with_type {
Some(field) => Ok(field),
None => {
// Check if the field exists in the schema but is not a fast field
let schema = reader.schema();
if let Some((field, _path)) = schema.find_field(field_name) {
let field_type = schema.get_field_entry(field).field_type();
if !field_type.is_fast() {
return Err(crate::TantivyError::SchemaError(format!(
"Field '{}' is not a fast field. Aggregations require fast fields.",
field_name
)));
}
}
// Field doesn't exist at all or has no values in this segment
// Check if it exists in schema to provide a better error message
if schema.find_field(field_name).is_none() {
return Err(crate::TantivyError::FieldNotFound(field_name.to_string()));
}
// Field exists in schema and is a fast field, but has no values in this segment
// This is acceptable - return an empty column
Ok((
Column::build_empty_column(reader.num_docs()),
ColumnType::U64,
)
});
Ok(ff_field_with_type)
))
}
}
}
pub(crate) fn get_dynamic_columns(
@@ -89,6 +111,7 @@ pub(crate) fn get_dynamic_columns(
/// Get all fast field reader or empty as default.
///
/// Is guaranteed to return at least one column.
/// Returns an error if the field doesn't exist in the schema or is not a fast field.
pub(crate) fn get_all_ff_reader_or_empty(
reader: &SegmentReader,
field_name: &str,
@@ -98,7 +121,25 @@ pub(crate) fn get_all_ff_reader_or_empty(
let ff_fields = reader.fast_fields();
let mut ff_field_with_type =
ff_fields.u64_lenient_for_type_all(allowed_column_types, field_name)?;
if ff_field_with_type.is_empty() {
// Check if the field exists in the schema but is not a fast field
let schema = reader.schema();
if let Some((field, _path)) = schema.find_field(field_name) {
let field_type = schema.get_field_entry(field).field_type();
if !field_type.is_fast() {
return Err(crate::TantivyError::SchemaError(format!(
"Field '{}' is not a fast field. Aggregations require fast fields.",
field_name
)));
}
} else {
// Field doesn't exist in the schema at all
return Err(crate::TantivyError::FieldNotFound(field_name.to_string()));
}
// Field exists in schema and is a fast field, but has no values in this segment
// This is acceptable - return an empty column
ff_field_with_type.push((Column::build_empty_column(reader.num_docs()), fallback_type));
}
Ok(ff_field_with_type)

View File

@@ -1057,7 +1057,7 @@ mod tests {
"avg": {"field": "score"}
}));
let terms_string_with_child = agg_from_json(json!({
"terms": {"field": "string_id"},
"terms": {"field": "text"},
"aggs": {
"histo": {"histogram": {"field": "score", "interval": 10.0}}
}

View File

@@ -1005,3 +1005,123 @@ fn test_aggregation_on_json_object_mixed_numerical_segments() {
)
);
}
#[test]
fn test_aggregation_invalid_field_returns_error() {
// Test that aggregations return an error when given an invalid field name
let index = get_test_index_2_segments(false).unwrap();
let reader = index.reader().unwrap();
let searcher = reader.searcher();
// Test with a field that doesn't exist at all
let agg_req_str = r#"
{
"date_histogram_test": {
"date_histogram": {
"field": "not_valid_field",
"fixed_interval": "30d"
}
}
}"#;
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
let collector = get_collector(agg);
let result = searcher.search(&AllQuery, &collector);
assert!(result.is_err());
match result {
Err(crate::TantivyError::FieldNotFound(field_name)) => {
assert_eq!(field_name, "not_valid_field");
}
_ => panic!("Expected FieldNotFound error, got: {:?}", result),
}
// Test with histogram aggregation on invalid field
let agg_req_str = r#"
{
"histogram_test": {
"histogram": {
"field": "invalid_histogram_field",
"interval": 10.0
}
}
}"#;
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
let collector = get_collector(agg);
let result = searcher.search(&AllQuery, &collector);
assert!(result.is_err());
match result {
Err(crate::TantivyError::FieldNotFound(field_name)) => {
assert_eq!(field_name, "invalid_histogram_field");
}
_ => panic!("Expected FieldNotFound error, got: {:?}", result),
}
// Test with terms aggregation on invalid field
let agg_req_str = r#"
{
"terms_test": {
"terms": {
"field": "invalid_terms_field"
}
}
}"#;
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
let collector = get_collector(agg);
let result = searcher.search(&AllQuery, &collector);
assert!(result.is_err());
match result {
Err(crate::TantivyError::FieldNotFound(field_name)) => {
assert_eq!(field_name, "invalid_terms_field");
}
_ => panic!("Expected FieldNotFound error, got: {:?}", result),
}
// Test with avg metric aggregation on invalid field
let agg_req_str = r#"
{
"avg_test": {
"avg": {
"field": "invalid_avg_field"
}
}
}"#;
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
let collector = get_collector(agg);
let result = searcher.search(&AllQuery, &collector);
assert!(result.is_err());
match result {
Err(crate::TantivyError::FieldNotFound(field_name)) => {
assert_eq!(field_name, "invalid_avg_field");
}
_ => panic!("Expected FieldNotFound error, got: {:?}", result),
}
// Test with range aggregation on invalid field
let agg_req_str = r#"
{
"range_test": {
"range": {
"field": "invalid_range_field",
"ranges": [
{ "to": 10.0 },
{ "from": 10.0, "to": 20.0 },
{ "from": 20.0 }
]
}
}
}"#;
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
let collector = get_collector(agg);
let result = searcher.search(&AllQuery, &collector);
assert!(result.is_err());
match result {
Err(crate::TantivyError::FieldNotFound(field_name)) => {
assert_eq!(field_name, "invalid_range_field");
}
_ => panic!("Expected FieldNotFound error, got: {:?}", result),
}
}

View File

@@ -255,6 +255,7 @@ mod tests {
fn terms_aggregation_missing_mult_seg_empty() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let score = schema_builder.add_f64_field("score", FAST);
schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
@@ -302,6 +303,7 @@ mod tests {
fn terms_aggregation_missing_single_seg_empty() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let score = schema_builder.add_f64_field("score", FAST);
schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();

View File

@@ -227,9 +227,6 @@ pub(crate) fn index_json_value<'a, V: Value<'a>>(
ReferenceValueLeaf::IpAddr(_) => {
unimplemented!("IP address support in dynamic fields is not yet implemented")
}
ReferenceValueLeaf::Geometry(_) => {
unimplemented!("Geometry support in dynamic fields is not implemented")
}
},
ReferenceValue::Array(elements) => {
for val in elements {
@@ -409,7 +406,7 @@ mod tests {
let mut term = Term::from_field_json_path(field, "color", false);
term.append_type_and_str("red");
assert_eq!(term.serialized_term(), b"\x00\x00\x00\x01jcolor\x00sred")
assert_eq!(term.serialized_value_bytes(), b"color\x00sred".to_vec())
}
#[test]
@@ -419,8 +416,8 @@ mod tests {
term.append_type_and_fast_value(-4i64);
assert_eq!(
term.serialized_term(),
b"\x00\x00\x00\x01jcolor\x00i\x7f\xff\xff\xff\xff\xff\xff\xfc"
term.serialized_value_bytes(),
b"color\x00i\x7f\xff\xff\xff\xff\xff\xff\xfc".to_vec()
)
}
@@ -431,8 +428,8 @@ mod tests {
term.append_type_and_fast_value(4u64);
assert_eq!(
term.serialized_term(),
b"\x00\x00\x00\x01jcolor\x00u\x00\x00\x00\x00\x00\x00\x00\x04"
term.serialized_value_bytes(),
b"color\x00u\x00\x00\x00\x00\x00\x00\x00\x04".to_vec()
)
}
@@ -442,8 +439,8 @@ mod tests {
let mut term = Term::from_field_json_path(field, "color", false);
term.append_type_and_fast_value(4.0f64);
assert_eq!(
term.serialized_term(),
b"\x00\x00\x00\x01jcolor\x00f\xc0\x10\x00\x00\x00\x00\x00\x00"
term.serialized_value_bytes(),
b"color\x00f\xc0\x10\x00\x00\x00\x00\x00\x00".to_vec()
)
}
@@ -453,8 +450,8 @@ mod tests {
let mut term = Term::from_field_json_path(field, "color", false);
term.append_type_and_fast_value(true);
assert_eq!(
term.serialized_term(),
b"\x00\x00\x00\x01jcolor\x00o\x00\x00\x00\x00\x00\x00\x00\x01"
term.serialized_value_bytes(),
b"color\x00o\x00\x00\x00\x00\x00\x00\x00\x01".to_vec()
)
}

View File

@@ -5,7 +5,7 @@ use std::ops::Range;
use common::{BinarySerializable, CountingWriter, HasLen, VInt};
use crate::directory::{FileSlice, TerminatingWrite, WritePtr};
use crate::schema::Field;
use crate::schema::{Field, Schema};
use crate::space_usage::{FieldUsage, PerFieldSpaceUsage};
#[derive(Eq, PartialEq, Hash, Copy, Ord, PartialOrd, Clone, Debug)]
@@ -167,10 +167,11 @@ impl CompositeFile {
.map(|byte_range| self.data.slice(byte_range.clone()))
}
pub fn space_usage(&self) -> PerFieldSpaceUsage {
pub fn space_usage(&self, schema: &Schema) -> PerFieldSpaceUsage {
let mut fields = Vec::new();
for (&field_addr, byte_range) in &self.offsets_index {
let mut field_usage = FieldUsage::empty(field_addr.field);
let field_name = schema.get_field_name(field_addr.field).to_string();
let mut field_usage = FieldUsage::empty(field_name);
field_usage.add_field_idx(field_addr.idx, byte_range.len().into());
fields.push(field_usage);
}

View File

@@ -683,7 +683,7 @@ mod tests {
}
#[test]
fn test_datefastfield() {
fn test_datefastfield() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let date_field = schema_builder.add_date_field(
"date",
@@ -697,28 +697,22 @@ mod tests {
);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests()?;
index_writer.set_merge_policy(Box::new(NoMergePolicy));
index_writer
.add_document(doc!(
date_field => DateTime::from_u64(1i64.to_u64()),
multi_date_field => DateTime::from_u64(2i64.to_u64()),
multi_date_field => DateTime::from_u64(3i64.to_u64())
))
.unwrap();
index_writer
.add_document(doc!(
date_field => DateTime::from_u64(4i64.to_u64())
))
.unwrap();
index_writer
.add_document(doc!(
multi_date_field => DateTime::from_u64(5i64.to_u64()),
multi_date_field => DateTime::from_u64(6i64.to_u64())
))
.unwrap();
index_writer.commit().unwrap();
let reader = index.reader().unwrap();
index_writer.add_document(doc!(
date_field => DateTime::from_u64(1i64.to_u64()),
multi_date_field => DateTime::from_u64(2i64.to_u64()),
multi_date_field => DateTime::from_u64(3i64.to_u64())
))?;
index_writer.add_document(doc!(
date_field => DateTime::from_u64(4i64.to_u64())
))?;
index_writer.add_document(doc!(
multi_date_field => DateTime::from_u64(5i64.to_u64()),
multi_date_field => DateTime::from_u64(6i64.to_u64())
))?;
index_writer.commit()?;
let reader = index.reader()?;
let searcher = reader.searcher();
assert_eq!(searcher.segment_readers().len(), 1);
let segment_reader = searcher.segment_reader(0);
@@ -752,6 +746,7 @@ mod tests {
assert_eq!(dates[0].into_timestamp_nanos(), 5i64);
assert_eq!(dates[1].into_timestamp_nanos(), 6i64);
}
Ok(())
}
#[test]

View File

@@ -8,7 +8,7 @@ use columnar::{
};
use common::ByteCount;
use crate::core::json_utils::encode_column_name;
use crate::core::json_utils::{encode_column_name, json_path_sep_to_dot};
use crate::directory::FileSlice;
use crate::schema::{Field, FieldEntry, FieldType, Schema};
use crate::space_usage::{FieldUsage, PerFieldSpaceUsage};
@@ -39,19 +39,15 @@ impl FastFieldReaders {
self.resolve_column_name_given_default_field(column_name, default_field_opt)
}
pub(crate) fn space_usage(&self, schema: &Schema) -> io::Result<PerFieldSpaceUsage> {
pub(crate) fn space_usage(&self) -> io::Result<PerFieldSpaceUsage> {
let mut per_field_usages: Vec<FieldUsage> = Default::default();
for (field, field_entry) in schema.fields() {
let column_handles = self.columnar.read_columns(field_entry.name())?;
let num_bytes: ByteCount = column_handles
.iter()
.map(|column_handle| column_handle.num_bytes())
.sum();
let mut field_usage = FieldUsage::empty(field);
field_usage.add_field_idx(0, num_bytes);
for (mut field_name, column_handle) in self.columnar.iter_columns()? {
json_path_sep_to_dot(&mut field_name);
let space_usage = column_handle.space_usage()?;
let mut field_usage = FieldUsage::empty(field_name);
field_usage.set_column_usage(space_usage);
per_field_usages.push(field_usage);
}
// TODO fix space usage for JSON fields.
Ok(PerFieldSpaceUsage::new(per_field_usages))
}

View File

@@ -189,9 +189,6 @@ impl FastFieldsWriter {
.record_str(doc_id, field_name, &token.text);
}
}
ReferenceValueLeaf::Geometry(_) => {
panic!("Geometry fields should not be routed to fast field writer")
}
},
ReferenceValue::Array(val) => {
// TODO: Check this is the correct behaviour we want.
@@ -323,9 +320,6 @@ fn record_json_value_to_columnar_writer<'a, V: Value<'a>>(
"Pre-tokenized string support in dynamic fields is not yet implemented"
)
}
ReferenceValueLeaf::Geometry(_) => {
unimplemented!("Geometry support in dynamic fields is not yet implemented")
}
},
ReferenceValue::Array(elements) => {
for el in elements {

View File

@@ -2,7 +2,7 @@ use std::sync::Arc;
use super::{fieldnorm_to_id, id_to_fieldnorm};
use crate::directory::{CompositeFile, FileSlice, OwnedBytes};
use crate::schema::Field;
use crate::schema::{Field, Schema};
use crate::space_usage::PerFieldSpaceUsage;
use crate::DocId;
@@ -37,8 +37,8 @@ impl FieldNormReaders {
}
/// Return a break down of the space usage per field.
pub fn space_usage(&self) -> PerFieldSpaceUsage {
self.data.space_usage()
pub fn space_usage(&self, schema: &Schema) -> PerFieldSpaceUsage {
self.data.space_usage(schema)
}
/// Returns a handle to inner file

View File

@@ -142,7 +142,6 @@ impl SegmentMeta {
SegmentComponent::FastFields => ".fast".to_string(),
SegmentComponent::FieldNorms => ".fieldnorm".to_string(),
SegmentComponent::Delete => format!(".{}.del", self.delete_opstamp().unwrap_or(0)),
SegmentComponent::Spatial => ".spatial".to_string(),
});
PathBuf::from(path)
}

View File

@@ -28,14 +28,12 @@ pub enum SegmentComponent {
/// Bitset describing which document of the segment is alive.
/// (It was representing deleted docs but changed to represent alive docs from v0.17)
Delete,
/// HUSH
Spatial,
}
impl SegmentComponent {
/// Iterates through the components.
pub fn iterator() -> slice::Iter<'static, SegmentComponent> {
static SEGMENT_COMPONENTS: [SegmentComponent; 9] = [
static SEGMENT_COMPONENTS: [SegmentComponent; 8] = [
SegmentComponent::Postings,
SegmentComponent::Positions,
SegmentComponent::FastFields,
@@ -44,7 +42,6 @@ impl SegmentComponent {
SegmentComponent::Store,
SegmentComponent::TempStore,
SegmentComponent::Delete,
SegmentComponent::Spatial,
];
SEGMENT_COMPONENTS.iter()
}

View File

@@ -14,7 +14,6 @@ use crate::index::{InvertedIndexReader, Segment, SegmentComponent, SegmentId};
use crate::json_utils::json_path_sep_to_dot;
use crate::schema::{Field, IndexRecordOption, Schema, Type};
use crate::space_usage::SegmentSpaceUsage;
use crate::spatial::reader::SpatialReaders;
use crate::store::StoreReader;
use crate::termdict::TermDictionary;
use crate::{DocId, Opstamp};
@@ -44,7 +43,6 @@ pub struct SegmentReader {
positions_composite: CompositeFile,
fast_fields_readers: FastFieldReaders,
fieldnorm_readers: FieldNormReaders,
spatial_readers: SpatialReaders,
store_file: FileSlice,
alive_bitset_opt: Option<AliveBitSet>,
@@ -94,11 +92,6 @@ impl SegmentReader {
&self.fast_fields_readers
}
/// HUSH
pub fn spatial_fields(&self) -> &SpatialReaders {
&self.spatial_readers
}
/// Accessor to the `FacetReader` associated with a given `Field`.
pub fn facet_reader(&self, field_name: &str) -> crate::Result<FacetReader> {
let schema = self.schema();
@@ -180,12 +173,6 @@ impl SegmentReader {
let fast_fields_readers = FastFieldReaders::open(fast_fields_data, schema.clone())?;
let fieldnorm_data = segment.open_read(SegmentComponent::FieldNorms)?;
let fieldnorm_readers = FieldNormReaders::open(fieldnorm_data)?;
let spatial_readers = if schema.contains_spatial_field() {
let spatial_data = segment.open_read(SegmentComponent::Spatial)?;
SpatialReaders::open(spatial_data)?
} else {
SpatialReaders::empty()
};
let original_bitset = if segment.meta().has_deletes() {
let alive_doc_file_slice = segment.open_read(SegmentComponent::Delete)?;
@@ -211,7 +198,6 @@ impl SegmentReader {
postings_composite,
fast_fields_readers,
fieldnorm_readers,
spatial_readers,
segment_id: segment.id(),
delete_opstamp: segment.meta().delete_opstamp(),
store_file,
@@ -469,12 +455,11 @@ impl SegmentReader {
pub fn space_usage(&self) -> io::Result<SegmentSpaceUsage> {
Ok(SegmentSpaceUsage::new(
self.num_docs(),
self.termdict_composite.space_usage(),
self.postings_composite.space_usage(),
self.positions_composite.space_usage(),
self.fast_fields_readers.space_usage(self.schema())?,
self.fieldnorm_readers.space_usage(),
self.spatial_readers.space_usage(),
self.termdict_composite.space_usage(self.schema()),
self.postings_composite.space_usage(self.schema()),
self.positions_composite.space_usage(self.schema()),
self.fast_fields_readers.space_usage()?,
self.fieldnorm_readers.space_usage(self.schema()),
self.get_store_reader(0)?.space_usage(),
self.alive_bitset_opt
.as_ref()

View File

@@ -3,21 +3,21 @@ use std::net::Ipv6Addr;
use columnar::MonotonicallyMappableToU128;
use crate::fastfield::FastValue;
use crate::schema::{Field, Type};
use crate::schema::Field;
/// Term represents the value that the token can take.
/// It's a serialized representation over different types.
/// IndexingTerm is used to represent a term during indexing.
/// It's a serialized representation over field and value.
///
/// It actually wraps a `Vec<u8>`. The first 5 bytes are metadata.
/// 4 bytes are the field id, and the last byte is the type.
/// It actually wraps a `Vec<u8>`. The first 4 bytes are the field.
///
/// The serialized value `ValueBytes` is considered everything after the 4 first bytes (term id).
/// We serialize the field, because we index everything in a single
/// global term dictionary during indexing.
#[derive(Clone)]
pub(crate) struct IndexingTerm<B = Vec<u8>>(B)
where B: AsRef<[u8]>;
/// The number of bytes used as metadata by `Term`.
const TERM_METADATA_LENGTH: usize = 5;
const TERM_METADATA_LENGTH: usize = 4;
impl IndexingTerm {
/// Create a new Term with a buffer with a given capacity.
@@ -31,10 +31,9 @@ impl IndexingTerm {
/// Use `clear_with_field_and_type` in that case.
///
/// Sets field and the type.
pub(crate) fn set_field_and_type(&mut self, field: Field, typ: Type) {
pub(crate) fn set_field(&mut self, field: Field) {
assert!(self.is_empty());
self.0[0..4].clone_from_slice(field.field_id().to_be_bytes().as_ref());
self.0[4] = typ.to_code();
}
/// Is empty if there are no value bytes.
@@ -42,10 +41,10 @@ impl IndexingTerm {
self.0.len() == TERM_METADATA_LENGTH
}
/// Removes the value_bytes and set the field and type code.
pub(crate) fn clear_with_field_and_type(&mut self, typ: Type, field: Field) {
/// Removes the value_bytes and set the field
pub(crate) fn clear_with_field(&mut self, field: Field) {
self.truncate_value_bytes(0);
self.set_field_and_type(field, typ);
self.set_field(field);
}
/// Sets a u64 value in the term.
@@ -122,6 +121,23 @@ impl IndexingTerm {
impl<B> IndexingTerm<B>
where B: AsRef<[u8]>
{
/// Wraps serialized term bytes.
///
/// The input buffer is expected to be the concatenation of the big endian encoded field id
/// followed by the serialized value bytes (type tag + payload).
#[inline]
pub fn wrap(serialized_term: B) -> IndexingTerm<B> {
debug_assert!(serialized_term.as_ref().len() >= TERM_METADATA_LENGTH);
IndexingTerm(serialized_term)
}
/// Returns the field this term belongs to.
#[inline]
pub fn field(&self) -> Field {
let field_id_bytes: [u8; 4] = self.0.as_ref()[..4].try_into().unwrap();
Field::from_field_id(u32::from_be_bytes(field_id_bytes))
}
/// Returns the serialized representation of Term.
/// This includes field_id, value type and value.
///
@@ -136,6 +152,7 @@ where B: AsRef<[u8]>
#[cfg(test)]
mod tests {
use super::IndexingTerm;
use crate::schema::*;
#[test]
@@ -143,42 +160,55 @@ mod tests {
let mut schema_builder = Schema::builder();
schema_builder.add_text_field("text", STRING);
let title_field = schema_builder.add_text_field("title", STRING);
let term = Term::from_field_text(title_field, "test");
let mut term = IndexingTerm::with_capacity(0);
term.set_field(title_field);
term.set_bytes(b"test");
assert_eq!(term.field(), title_field);
assert_eq!(term.typ(), Type::Str);
assert_eq!(term.value().as_str(), Some("test"))
assert_eq!(term.serialized_term(), b"\x00\x00\x00\x01test".to_vec())
}
/// Size (in bytes) of the buffer of a fast value (u64, i64, f64, or date) term.
/// <field> + <type byte> + <value len>
///
/// - <field> is a big endian encoded u32 field id
/// - <type_byte>'s most significant bit expresses whether the term is a json term or not The
/// remaining 7 bits are used to encode the type of the value. If this is a JSON term, the
/// type is the type of the leaf of the json.
/// - <value> is, if this is not the json term, a binary representation specific to the type.
/// If it is a JSON Term, then it is prepended with the path that leads to this leaf value.
const FAST_VALUE_TERM_LEN: usize = 4 + 1 + 8;
const FAST_VALUE_TERM_LEN: usize = 4 + 8;
#[test]
pub fn test_term_u64() {
let mut schema_builder = Schema::builder();
let count_field = schema_builder.add_u64_field("count", INDEXED);
let term = Term::from_field_u64(count_field, 983u64);
let mut term = IndexingTerm::with_capacity(0);
term.set_field(count_field);
term.set_u64(983u64);
assert_eq!(term.field(), count_field);
assert_eq!(term.typ(), Type::U64);
assert_eq!(term.serialized_term().len(), FAST_VALUE_TERM_LEN);
assert_eq!(term.value().as_u64(), Some(983u64))
}
#[test]
pub fn test_term_bool() {
let mut schema_builder = Schema::builder();
let bool_field = schema_builder.add_bool_field("bool", INDEXED);
let term = Term::from_field_bool(bool_field, true);
let term = {
let mut term = IndexingTerm::with_capacity(0);
term.set_field(bool_field);
term.set_bool(true);
term
};
assert_eq!(term.field(), bool_field);
assert_eq!(term.typ(), Type::Bool);
assert_eq!(term.serialized_term().len(), FAST_VALUE_TERM_LEN);
assert_eq!(term.value().as_bool(), Some(true))
}
#[test]
pub fn indexing_term_wrap_extracts_field() {
let field = Field::from_field_id(7u32);
let mut term = IndexingTerm::with_capacity(0);
term.set_field(field);
term.append_bytes(b"abc");
let wrapped = IndexingTerm::wrap(term.serialized_term());
assert_eq!(wrapped.field(), field);
assert_eq!(wrapped.serialized_term(), term.serialized_term());
}
}

View File

@@ -1,5 +1,3 @@
use std::collections::HashMap;
use std::io::{BufWriter, Write};
use std::sync::Arc;
use columnar::{
@@ -8,7 +6,6 @@ use columnar::{
use common::ReadOnlyBitSet;
use itertools::Itertools;
use measure_time::debug_time;
use tempfile::NamedTempFile;
use crate::directory::WritePtr;
use crate::docset::{DocSet, TERMINATED};
@@ -20,8 +17,6 @@ use crate::indexer::doc_id_mapping::{MappingType, SegmentDocIdMapping};
use crate::indexer::SegmentSerializer;
use crate::postings::{InvertedIndexSerializer, Postings, SegmentPostings};
use crate::schema::{value_type_to_column_type, Field, FieldType, Schema};
use crate::spatial::bkd::LeafPageIterator;
use crate::spatial::triangle::Triangle;
use crate::store::StoreWriter;
use crate::termdict::{TermMerger, TermOrdinal};
use crate::{DocAddress, DocId, InvertedIndexReader};
@@ -175,7 +170,6 @@ impl IndexMerger {
let mut readers = vec![];
for (segment, new_alive_bitset_opt) in segments.iter().zip(alive_bitset_opt) {
if segment.meta().num_docs() > 0 {
dbg!("segment");
let reader =
SegmentReader::open_with_custom_alive_set(segment, new_alive_bitset_opt)?;
readers.push(reader);
@@ -526,89 +520,6 @@ impl IndexMerger {
Ok(())
}
fn write_spatial_fields(
&self,
serializer: &mut SegmentSerializer,
doc_id_mapping: &SegmentDocIdMapping,
) -> crate::Result<()> {
/// We need to rebuild a BKD-tree based off the list of triangles.
///
/// Because the data can be large, we do this by writing the sequence of triangles to
/// disk, and mmapping it as mutable slice, and calling the same code as what
/// is done for the segment serialization.
///
/// The OS is in charge of deciding how to handle its page cache.
/// This is the same as what would have happened with swapping,
/// except by explicitly mapping the file, the OS is more likely to
/// swap, the memory will not be accounted as anonymous memory,
/// swap space is reserved etc.
use crate::spatial::bkd::Segment;
let Some(mut spatial_serializer) = serializer.extract_spatial_serializer() else {
// The schema does not contain any spatial field.
return Ok(());
};
let mut segment_mappings: Vec<Vec<Option<DocId>>> = Vec::new();
for reader in &self.readers {
let max_doc = reader.max_doc();
segment_mappings.push(vec![None; max_doc as usize]);
}
for (new_doc_id, old_doc_addr) in doc_id_mapping.iter_old_doc_addrs().enumerate() {
segment_mappings[old_doc_addr.segment_ord as usize][old_doc_addr.doc_id as usize] =
Some(new_doc_id as DocId);
}
let mut temp_files: HashMap<Field, NamedTempFile> = HashMap::new();
for (field, field_entry) in self.schema.fields() {
if matches!(field_entry.field_type(), FieldType::Spatial(_)) {
temp_files.insert(field, NamedTempFile::new()?);
}
}
for (segment_ord, reader) in self.readers.iter().enumerate() {
for (field, temp_file) in &mut temp_files {
let mut buf_temp_file = BufWriter::new(temp_file);
let spatial_readers = reader.spatial_fields();
let Some(spatial_reader) = spatial_readers.get_field(*field)? else {
continue;
};
let segment = Segment::new(spatial_reader.get_bytes());
for triangle_result in LeafPageIterator::new(&segment) {
let triangles = triangle_result?;
for triangle in triangles {
if let Some(new_doc_id) =
segment_mappings[segment_ord][triangle.doc_id as usize]
{
// This is really just a temporary file, not meant to be portable, so we
// use native endianness here.
for &word in &triangle.words {
buf_temp_file.write_all(&word.to_ne_bytes())?;
}
buf_temp_file.write_all(&new_doc_id.to_ne_bytes())?;
}
}
}
buf_temp_file.flush()?;
// No need to fsync here. This file is not here for persistency.
}
}
for (field, temp_file) in temp_files {
// Memory map the triangle file.
use memmap2::MmapOptions;
let mmap = unsafe { MmapOptions::new().map_mut(temp_file.as_file())? };
// Cast to &[Triangle] slice
let triangle_count = mmap.len() / std::mem::size_of::<Triangle>();
let triangles = unsafe {
std::slice::from_raw_parts_mut(mmap.as_ptr() as *mut Triangle, triangle_count)
};
// Get spatial writer and rebuild block kd-tree.
spatial_serializer.serialize_field(field, triangles)?;
}
spatial_serializer.close()?;
Ok(())
}
/// Writes the merged segment by pushing information
/// to the `SegmentSerializer`.
///
@@ -633,10 +544,9 @@ impl IndexMerger {
debug!("write-storagefields");
self.write_storable_fields(serializer.get_store_writer())?;
debug!("write-spatialfields");
self.write_spatial_fields(&mut serializer, &doc_id_mapping)?;
debug!("write-fastfields");
self.write_fast_fields(serializer.get_fast_field_write(), doc_id_mapping)?;
debug!("close-serializer");
serializer.close()?;
Ok(self.max_doc)

View File

@@ -4,7 +4,6 @@ use crate::directory::WritePtr;
use crate::fieldnorm::FieldNormsSerializer;
use crate::index::{Segment, SegmentComponent};
use crate::postings::InvertedIndexSerializer;
use crate::spatial::serializer::SpatialSerializer;
use crate::store::StoreWriter;
/// Segment serializer is in charge of laying out on disk
@@ -13,7 +12,6 @@ pub struct SegmentSerializer {
segment: Segment,
pub(crate) store_writer: StoreWriter,
fast_field_write: WritePtr,
spatial_serializer: Option<SpatialSerializer>,
fieldnorms_serializer: Option<FieldNormsSerializer>,
postings_serializer: InvertedIndexSerializer,
}
@@ -37,20 +35,11 @@ impl SegmentSerializer {
let fieldnorms_write = segment.open_write(SegmentComponent::FieldNorms)?;
let fieldnorms_serializer = FieldNormsSerializer::from_write(fieldnorms_write)?;
let spatial_serializer: Option<SpatialSerializer> =
if segment.schema().contains_spatial_field() {
let spatial_write = segment.open_write(SegmentComponent::Spatial)?;
Some(SpatialSerializer::from_write(spatial_write)?)
} else {
None
};
let postings_serializer = InvertedIndexSerializer::open(&mut segment)?;
Ok(SegmentSerializer {
segment,
store_writer,
fast_field_write,
spatial_serializer,
fieldnorms_serializer: Some(fieldnorms_serializer),
postings_serializer,
})
@@ -75,11 +64,6 @@ impl SegmentSerializer {
&mut self.fast_field_write
}
/// Accessor to the `SpatialSerializer`
pub fn extract_spatial_serializer(&mut self) -> Option<SpatialSerializer> {
self.spatial_serializer.take()
}
/// Extract the field norm serializer.
///
/// Note the fieldnorms serializer can only be extracted once.
@@ -97,9 +81,6 @@ impl SegmentSerializer {
if let Some(fieldnorms_serializer) = self.extract_fieldnorms_serializer() {
fieldnorms_serializer.close()?;
}
if let Some(spatial_serializer) = self.extract_spatial_serializer() {
spatial_serializer.close()?;
}
self.fast_field_write.terminate()?;
self.postings_serializer.close()?;
self.store_writer.close()?;

View File

@@ -16,7 +16,6 @@ use crate::postings::{
};
use crate::schema::document::{Document, Value};
use crate::schema::{FieldEntry, FieldType, Schema, DATE_TIME_PRECISION_INDEXED};
use crate::spatial::writer::SpatialWriter;
use crate::tokenizer::{FacetTokenizer, PreTokenizedStream, TextAnalyzer, Tokenizer};
use crate::{DocId, Opstamp, TantivyError};
@@ -53,7 +52,6 @@ pub struct SegmentWriter {
pub(crate) segment_serializer: SegmentSerializer,
pub(crate) fast_field_writers: FastFieldsWriter,
pub(crate) fieldnorms_writer: FieldNormsWriter,
pub(crate) spatial_writer: SpatialWriter,
pub(crate) json_path_writer: JsonPathWriter,
pub(crate) json_positions_per_path: IndexingPositionsPerPath,
pub(crate) doc_opstamps: Vec<Opstamp>,
@@ -106,7 +104,6 @@ impl SegmentWriter {
ctx: IndexingContext::new(table_size),
per_field_postings_writers,
fieldnorms_writer: FieldNormsWriter::for_schema(&schema),
spatial_writer: SpatialWriter::default(),
json_path_writer: JsonPathWriter::default(),
json_positions_per_path: IndexingPositionsPerPath::default(),
segment_serializer,
@@ -133,7 +130,6 @@ impl SegmentWriter {
self.ctx,
self.fast_field_writers,
&self.fieldnorms_writer,
&mut self.spatial_writer,
self.segment_serializer,
)?;
Ok(self.doc_opstamps)
@@ -146,7 +142,6 @@ impl SegmentWriter {
+ self.fieldnorms_writer.mem_usage()
+ self.fast_field_writers.mem_usage()
+ self.segment_serializer.mem_usage()
+ self.spatial_writer.mem_usage()
}
fn index_document<D: Document>(&mut self, doc: &D) -> crate::Result<()> {
@@ -176,7 +171,7 @@ impl SegmentWriter {
let (term_buffer, ctx) = (&mut self.term_buffer, &mut self.ctx);
let postings_writer: &mut dyn PostingsWriter =
self.per_field_postings_writers.get_for_field_mut(field);
term_buffer.clear_with_field_and_type(field_entry.field_type().value_type(), field);
term_buffer.clear_with_field(field);
match field_entry.field_type() {
FieldType::Facet(_) => {
@@ -343,13 +338,6 @@ impl SegmentWriter {
self.fieldnorms_writer.record(doc_id, field, num_vals);
}
}
FieldType::Spatial(_) => {
for value in values {
if let Some(geometry) = value.as_geometry() {
self.spatial_writer.add_geometry(doc_id, field, *geometry);
}
}
}
}
}
Ok(())
@@ -404,16 +392,12 @@ fn remap_and_write(
ctx: IndexingContext,
fast_field_writers: FastFieldsWriter,
fieldnorms_writer: &FieldNormsWriter,
spatial_writer: &mut SpatialWriter,
mut serializer: SegmentSerializer,
) -> crate::Result<()> {
debug!("remap-and-write");
if let Some(fieldnorms_serializer) = serializer.extract_fieldnorms_serializer() {
fieldnorms_writer.serialize(fieldnorms_serializer)?;
}
if let Some(spatial_serializer) = serializer.extract_spatial_serializer() {
spatial_writer.serialize(spatial_serializer)?;
}
let fieldnorm_data = serializer
.segment()
.open_read(SegmentComponent::FieldNorms)?;

View File

@@ -191,7 +191,6 @@ pub mod fieldnorm;
pub mod index;
pub mod positions;
pub mod postings;
pub mod spatial;
/// Module containing the different query implementations.
pub mod query;
@@ -217,9 +216,7 @@ use once_cell::sync::Lazy;
use serde::{Deserialize, Serialize};
pub use self::docset::{DocSet, COLLECT_BLOCK_BUFFER_LEN, TERMINATED};
#[doc(hidden)]
pub use crate::core::json_utils;
pub use crate::core::{Executor, Searcher, SearcherGeneration};
pub use crate::core::{json_utils, Executor, Searcher, SearcherGeneration};
pub use crate::directory::Directory;
pub use crate::index::{
Index, IndexBuilder, IndexMeta, IndexSettings, InvertedIndexReader, Order, Segment,

View File

@@ -8,7 +8,7 @@ use crate::indexer::path_to_unordered_id::OrderedPathId;
use crate::postings::postings_writer::SpecializedPostingsWriter;
use crate::postings::recorder::{BufferLender, DocIdRecorder, Recorder};
use crate::postings::{FieldSerializer, IndexingContext, IndexingPosition, PostingsWriter};
use crate::schema::{Field, Type, ValueBytes};
use crate::schema::{Field, Type};
use crate::tokenizer::TokenStream;
use crate::DocId;
@@ -79,8 +79,7 @@ impl<Rec: Recorder> PostingsWriter for JsonPostingsWriter<Rec> {
term_buffer.truncate(term_path_len);
term_buffer.append_bytes(term);
let json_value = ValueBytes::wrap(term);
let typ = json_value.typ();
let typ = Type::from_code(term[0]).expect("Invalid type code in JSON term");
if typ == Type::Str {
SpecializedPostingsWriter::<Rec>::serialize_one_term(
term_buffer.as_bytes(),
@@ -107,6 +106,8 @@ impl<Rec: Recorder> PostingsWriter for JsonPostingsWriter<Rec> {
}
}
/// Helper to build the JSON term bytes that land in the term dictionary.
/// Format: `[json path utf8][JSON_END_OF_PATH][type tag][payload]`
struct JsonTermSerializer(Vec<u8>);
impl JsonTermSerializer {
/// Appends a JSON path to the Term.

View File

@@ -51,7 +51,6 @@ fn posting_writer_from_field_entry(field_entry: &FieldEntry) -> Box<dyn Postings
| FieldType::Date(_)
| FieldType::Bytes(_)
| FieldType::IpAddr(_)
| FieldType::Spatial(_)
| FieldType::Facet(_) => Box::<SpecializedPostingsWriter<DocIdRecorder>>::default(),
FieldType::JsonObject(ref json_object_options) => {
if let Some(text_indexing_option) = json_object_options.get_text_indexing_options() {

View File

@@ -11,7 +11,7 @@ use crate::postings::recorder::{BufferLender, Recorder};
use crate::postings::{
FieldSerializer, IndexingContext, InvertedIndexSerializer, PerFieldPostingsWriter,
};
use crate::schema::{Field, Schema, Term, Type};
use crate::schema::{Field, Schema, Type};
use crate::tokenizer::{Token, TokenStream, MAX_TOKEN_LEN};
use crate::DocId;
@@ -59,14 +59,14 @@ pub(crate) fn serialize_postings(
let mut term_offsets: Vec<(Field, OrderedPathId, &[u8], Addr)> =
Vec::with_capacity(ctx.term_index.len());
term_offsets.extend(ctx.term_index.iter().map(|(key, addr)| {
let field = Term::wrap(key).field();
let field = IndexingTerm::wrap(key).field();
if schema.get_field_entry(field).field_type().value_type() == Type::Json {
let byte_range_path = 5..5 + 4;
let byte_range_path = 4..4 + 4;
let unordered_id = u32::from_be_bytes(key[byte_range_path.clone()].try_into().unwrap());
let path_id = unordered_id_to_ordered_id[unordered_id as usize];
(field, path_id, &key[byte_range_path.end..], addr)
} else {
(field, 0.into(), &key[5..], addr)
(field, 0.into(), &key[4..], addr)
}
}));
// Sort by field, path, and term

View File

@@ -24,7 +24,6 @@ mod reqopt_scorer;
mod scorer;
mod set_query;
mod size_hint;
mod spatial_query;
mod term_query;
mod union;
mod weight;
@@ -63,7 +62,6 @@ pub use self::reqopt_scorer::RequiredOptionalScorer;
pub use self::score_combiner::{DisjunctionMaxCombiner, ScoreCombiner, SumCombiner};
pub use self::scorer::Scorer;
pub use self::set_query::TermSetQuery;
pub use self::spatial_query::{SpatialQuery, SpatialQueryType};
pub use self::term_query::TermQuery;
pub use self::union::BufferedUnionScorer;
#[cfg(test)]

View File

@@ -524,9 +524,6 @@ impl QueryParser {
let ip_v6 = IpAddr::from_str(phrase)?.into_ipv6_addr();
Ok(Term::from_field_ip_addr(field, ip_v6))
}
FieldType::Spatial(_) => Err(QueryParserError::UnsupportedQuery(
"Spatial queries are not yet supported in text query parser".to_string(),
)),
}
}
@@ -627,10 +624,6 @@ impl QueryParser {
let term = Term::from_field_ip_addr(field, ip_v6);
Ok(vec![LogicalLiteral::Term(term)])
}
FieldType::Spatial(_) => Err(QueryParserError::UnsupportedQuery(format!(
"Spatial queries are not yet supported for field '{}'",
field_name
))),
}
}

View File

@@ -20,6 +20,6 @@ pub(crate) fn is_type_valid_for_fastfield_range_query(typ: Type) -> bool {
| Type::Date
| Type::Json
| Type::IpAddr => true,
Type::Facet | Type::Bytes | Type::Spatial => false,
Type::Facet | Type::Bytes => false,
}
}

View File

@@ -128,15 +128,12 @@ impl Weight for FastFieldRangeWeight {
BoundsRange::new(bounds.lower_bound, bounds.upper_bound),
)
}
Type::Bool
| Type::Facet
| Type::Bytes
| Type::Json
| Type::IpAddr
| Type::Spatial => Err(crate::TantivyError::InvalidArgument(format!(
"unsupported value bytes type in json term value_bytes {:?}",
term_value.typ()
))),
Type::Bool | Type::Facet | Type::Bytes | Type::Json | Type::IpAddr => {
Err(crate::TantivyError::InvalidArgument(format!(
"unsupported value bytes type in json term value_bytes {:?}",
term_value.typ()
)))
}
}
} else if field_type.is_ip_addr() {
let parse_ip_from_bytes = |term: &Term| {
@@ -438,7 +435,7 @@ pub(crate) fn maps_to_u64_fastfield(typ: Type) -> bool {
match typ {
Type::U64 | Type::I64 | Type::F64 | Type::Bool | Type::Date => true,
Type::IpAddr => false,
Type::Str | Type::Facet | Type::Bytes | Type::Json | Type::Spatial => false,
Type::Str | Type::Facet | Type::Bytes | Type::Json => false,
}
}

View File

@@ -1,186 +0,0 @@
//! HUSH
use common::BitSet;
use crate::query::explanation::does_not_match;
use crate::query::{BitSetDocSet, Explanation, Query, Scorer, Weight};
use crate::schema::Field;
use crate::spatial::bkd::{search_intersects, Segment};
use crate::spatial::point::GeoPoint;
use crate::spatial::writer::as_point_i32;
use crate::{DocId, DocSet, Score, TantivyError, TERMINATED};
#[derive(Clone, Copy, Debug)]
/// HUSH
pub enum SpatialQueryType {
/// HUSH
Intersects,
// Within,
// Contains,
}
#[derive(Clone, Copy, Debug)]
/// HUSH
pub struct SpatialQuery {
field: Field,
bounds: [(i32, i32); 2],
query_type: SpatialQueryType,
}
impl SpatialQuery {
/// HUSH
pub fn new(field: Field, bounds: [GeoPoint; 2], query_type: SpatialQueryType) -> Self {
SpatialQuery {
field,
bounds: [as_point_i32(bounds[0]), as_point_i32(bounds[1])],
query_type,
}
}
}
impl Query for SpatialQuery {
fn weight(
&self,
_enable_scoring: super::EnableScoring<'_>,
) -> crate::Result<Box<dyn super::Weight>> {
Ok(Box::new(SpatialWeight::new(
self.field,
self.bounds,
self.query_type,
)))
}
}
pub struct SpatialWeight {
field: Field,
bounds: [(i32, i32); 2],
query_type: SpatialQueryType,
}
impl SpatialWeight {
fn new(field: Field, bounds: [(i32, i32); 2], query_type: SpatialQueryType) -> Self {
SpatialWeight {
field,
bounds,
query_type,
}
}
}
impl Weight for SpatialWeight {
fn scorer(
&self,
reader: &crate::SegmentReader,
boost: crate::Score,
) -> crate::Result<Box<dyn super::Scorer>> {
let spatial_reader = reader
.spatial_fields()
.get_field(self.field)?
.ok_or_else(|| TantivyError::SchemaError(format!("No spatial data for field")))?;
let block_kd_tree = Segment::new(spatial_reader.get_bytes());
match self.query_type {
SpatialQueryType::Intersects => {
let mut include = BitSet::with_max_value(reader.max_doc());
search_intersects(
&block_kd_tree,
block_kd_tree.root_offset,
&[
self.bounds[0].1,
self.bounds[0].0,
self.bounds[1].1,
self.bounds[1].0,
],
&mut include,
)?;
Ok(Box::new(SpatialScorer::new(boost, include, None)))
}
}
}
fn explain(
&self,
reader: &crate::SegmentReader,
doc: DocId,
) -> crate::Result<super::Explanation> {
let mut scorer = self.scorer(reader, 1.0)?;
if scorer.seek(doc) != doc {
return Err(does_not_match(doc));
}
let query_type_desc = match self.query_type {
SpatialQueryType::Intersects => "SpatialQuery::Intersects",
};
let score = scorer.score();
let mut explanation = Explanation::new(query_type_desc, score);
explanation.add_context(format!(
"bounds: [({}, {}), ({}, {})]",
self.bounds[0].0, self.bounds[0].1, self.bounds[1].0, self.bounds[1].1,
));
explanation.add_context(format!("field: {:?}", self.field));
Ok(explanation)
}
}
struct SpatialScorer {
include: BitSetDocSet,
exclude: Option<BitSet>,
doc_id: DocId,
score: Score,
}
impl SpatialScorer {
pub fn new(score: Score, include: BitSet, exclude: Option<BitSet>) -> Self {
let mut scorer = SpatialScorer {
include: BitSetDocSet::from(include),
exclude,
doc_id: 0,
score,
};
scorer.prime();
scorer
}
fn prime(&mut self) {
self.doc_id = self.include.doc();
while self.exclude() {
self.doc_id = self.include.advance();
}
}
fn exclude(&self) -> bool {
if self.doc_id == TERMINATED {
return false;
}
match &self.exclude {
Some(exclude) => exclude.contains(self.doc_id),
None => false,
}
}
}
impl Scorer for SpatialScorer {
fn score(&mut self) -> Score {
self.score
}
}
impl DocSet for SpatialScorer {
fn advance(&mut self) -> DocId {
if self.doc_id == TERMINATED {
return TERMINATED;
}
self.doc_id = self.include.advance();
while self.exclude() {
self.doc_id = self.include.advance();
}
self.doc_id
}
fn size_hint(&self) -> u32 {
match &self.exclude {
Some(exclude) => self.include.size_hint() - exclude.len() as u32,
None => self.include.size_hint(),
}
}
fn doc(&self) -> DocId {
self.doc_id
}
}

View File

@@ -22,7 +22,6 @@ use super::se::BinaryObjectSerializer;
use super::{OwnedValue, Value};
use crate::schema::document::type_codes;
use crate::schema::{Facet, Field};
use crate::spatial::geometry::Geometry;
use crate::store::DocStoreVersion;
use crate::tokenizer::PreTokenizedString;
@@ -130,9 +129,6 @@ pub trait ValueDeserializer<'de> {
/// Attempts to deserialize a pre-tokenized string value from the deserializer.
fn deserialize_pre_tokenized_string(self) -> Result<PreTokenizedString, DeserializeError>;
/// HUSH
fn deserialize_geometry(self) -> Result<Geometry, DeserializeError>;
/// Attempts to deserialize the value using a given visitor.
fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, DeserializeError>
where V: ValueVisitor;
@@ -170,8 +166,6 @@ pub enum ValueType {
/// A JSON object value. Deprecated.
#[deprecated(note = "We keep this for backwards compatibility, use Object instead")]
JSONObject,
/// HUSH
Geometry,
}
/// A value visitor for deserializing a document value.
@@ -252,12 +246,6 @@ pub trait ValueVisitor {
Err(DeserializeError::UnsupportedType(ValueType::PreTokStr))
}
#[inline]
/// Called when the deserializer visits a geometry value.
fn visit_geometry(&self, _val: Geometry) -> Result<Self::Value, DeserializeError> {
Err(DeserializeError::UnsupportedType(ValueType::Geometry))
}
#[inline]
/// Called when the deserializer visits an array.
fn visit_array<'de, A>(&self, _access: A) -> Result<Self::Value, DeserializeError>
@@ -392,7 +380,6 @@ where R: Read
match ext_type_code {
type_codes::TOK_STR_EXT_CODE => ValueType::PreTokStr,
type_codes::GEO_EXT_CODE => ValueType::Geometry,
_ => {
return Err(DeserializeError::from(io::Error::new(
io::ErrorKind::InvalidData,
@@ -508,11 +495,6 @@ where R: Read
.map_err(DeserializeError::from)
}
fn deserialize_geometry(self) -> Result<Geometry, DeserializeError> {
self.validate_type(ValueType::Geometry)?;
<Geometry as BinarySerializable>::deserialize(self.reader).map_err(DeserializeError::from)
}
fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, DeserializeError>
where V: ValueVisitor {
match self.value_type {
@@ -557,10 +539,6 @@ where R: Read
let val = self.deserialize_pre_tokenized_string()?;
visitor.visit_pre_tokenized_string(val)
}
ValueType::Geometry => {
let val = self.deserialize_geometry()?;
visitor.visit_geometry(val)
}
ValueType::Array => {
let access =
BinaryArrayDeserializer::from_reader(self.reader, self.doc_store_version)?;

View File

@@ -13,7 +13,6 @@ use crate::schema::document::{
};
use crate::schema::field_type::ValueParsingError;
use crate::schema::{Facet, Field, NamedFieldDocument, OwnedValue, Schema};
use crate::spatial::geometry::Geometry;
use crate::tokenizer::PreTokenizedString;
#[repr(C, packed)]
@@ -255,7 +254,6 @@ impl CompactDoc {
}
ReferenceValueLeaf::IpAddr(num) => write_into(&mut self.node_data, num.to_u128()),
ReferenceValueLeaf::PreTokStr(pre_tok) => write_into(&mut self.node_data, *pre_tok),
ReferenceValueLeaf::Geometry(geometry) => write_into(&mut self.node_data, *geometry),
};
ValueAddr { type_id, val_addr }
}
@@ -466,12 +464,6 @@ impl<'a> CompactDocValue<'a> {
.map(Into::into)
.map(ReferenceValueLeaf::PreTokStr)
.map(Into::into),
ValueType::Geometry => self
.container
.read_from::<Geometry>(addr)
.map(Into::into)
.map(ReferenceValueLeaf::Geometry)
.map(Into::into),
ValueType::Object => Ok(ReferenceValue::Object(CompactDocObjectIter::new(
self.container,
addr,
@@ -550,8 +542,6 @@ pub enum ValueType {
Object = 11,
/// Pre-tokenized str type,
Array = 12,
/// HUSH
Geometry = 13,
}
impl BinarySerializable for ValueType {
@@ -597,7 +587,6 @@ impl<'a> From<&ReferenceValueLeaf<'a>> for ValueType {
ReferenceValueLeaf::PreTokStr(_) => ValueType::PreTokStr,
ReferenceValueLeaf::Facet(_) => ValueType::Facet,
ReferenceValueLeaf::Bytes(_) => ValueType::Bytes,
ReferenceValueLeaf::Geometry(_) => ValueType::Geometry,
}
}
}

View File

@@ -273,5 +273,4 @@ pub(crate) mod type_codes {
// Extended type codes
pub const TOK_STR_EXT_CODE: u8 = 0;
pub const GEO_EXT_CODE: u8 = 1;
}

View File

@@ -15,7 +15,6 @@ use crate::schema::document::{
ValueDeserializer, ValueVisitor,
};
use crate::schema::Facet;
use crate::spatial::geometry::Geometry;
use crate::tokenizer::PreTokenizedString;
use crate::DateTime;
@@ -50,8 +49,6 @@ pub enum OwnedValue {
Object(Vec<(String, Self)>),
/// IpV6 Address. Internally there is no IpV4, it needs to be converted to `Ipv6Addr`.
IpAddr(Ipv6Addr),
/// A GeoRust multi-polygon.
Geometry(Geometry),
}
impl AsRef<OwnedValue> for OwnedValue {
@@ -80,9 +77,6 @@ impl<'a> Value<'a> for &'a OwnedValue {
OwnedValue::IpAddr(val) => ReferenceValueLeaf::IpAddr(*val).into(),
OwnedValue::Array(array) => ReferenceValue::Array(array.iter()),
OwnedValue::Object(object) => ReferenceValue::Object(ObjectMapIter(object.iter())),
OwnedValue::Geometry(geometry) => {
ReferenceValueLeaf::Geometry(Box::new(geometry.clone())).into()
}
}
}
}
@@ -142,10 +136,6 @@ impl ValueDeserialize for OwnedValue {
Ok(OwnedValue::PreTokStr(val))
}
fn visit_geometry(&self, val: Geometry) -> Result<Self::Value, DeserializeError> {
Ok(OwnedValue::Geometry(val))
}
fn visit_array<'de, A>(&self, mut access: A) -> Result<Self::Value, DeserializeError>
where A: ArrayAccess<'de> {
let mut elements = Vec::with_capacity(access.size_hint());
@@ -208,7 +198,6 @@ impl serde::Serialize for OwnedValue {
}
}
OwnedValue::Array(ref array) => array.serialize(serializer),
OwnedValue::Geometry(ref geometry) => geometry.to_geojson().serialize(serializer),
}
}
}
@@ -296,7 +285,6 @@ impl<'a, V: Value<'a>> From<ReferenceValue<'a, V>> for OwnedValue {
ReferenceValueLeaf::IpAddr(val) => OwnedValue::IpAddr(val),
ReferenceValueLeaf::Bool(val) => OwnedValue::Bool(val),
ReferenceValueLeaf::PreTokStr(val) => OwnedValue::PreTokStr(*val.clone()),
ReferenceValueLeaf::Geometry(val) => OwnedValue::Geometry(*val.clone()),
},
ReferenceValue::Array(val) => {
OwnedValue::Array(val.map(|v| v.as_value().into()).collect())

View File

@@ -133,10 +133,6 @@ where W: Write
self.write_type_code(type_codes::EXT_CODE)?;
self.serialize_with_type_code(type_codes::TOK_STR_EXT_CODE, &*val)
}
ReferenceValueLeaf::Geometry(val) => {
self.write_type_code(type_codes::EXT_CODE)?;
self.serialize_with_type_code(type_codes::GEO_EXT_CODE, &*val)
}
},
ReferenceValue::Array(elements) => {
self.write_type_code(type_codes::ARRAY_CODE)?;

View File

@@ -3,7 +3,6 @@ use std::net::Ipv6Addr;
use common::DateTime;
use crate::spatial::geometry::Geometry;
use crate::tokenizer::PreTokenizedString;
/// A single field value.
@@ -109,12 +108,6 @@ pub trait Value<'a>: Send + Sync + Debug {
None
}
}
#[inline]
/// HUSH
fn as_geometry(&self) -> Option<Box<Geometry>> {
self.as_leaf().and_then(|leaf| leaf.into_geometry())
}
}
/// A enum representing a leaf value for tantivy to index.
@@ -143,8 +136,6 @@ pub enum ReferenceValueLeaf<'a> {
Bool(bool),
/// Pre-tokenized str type,
PreTokStr(Box<PreTokenizedString>),
/// HUSH
Geometry(Box<Geometry>),
}
impl From<u64> for ReferenceValueLeaf<'_> {
@@ -229,9 +220,6 @@ impl<'a, T: Value<'a> + ?Sized> From<ReferenceValueLeaf<'a>> for ReferenceValue<
ReferenceValueLeaf::PreTokStr(val) => {
ReferenceValue::Leaf(ReferenceValueLeaf::PreTokStr(val))
}
ReferenceValueLeaf::Geometry(val) => {
ReferenceValue::Leaf(ReferenceValueLeaf::Geometry(val))
}
}
}
}
@@ -343,16 +331,6 @@ impl<'a> ReferenceValueLeaf<'a> {
None
}
}
#[inline]
/// HUSH
pub fn into_geometry(self) -> Option<Box<Geometry>> {
if let Self::Geometry(val) = self {
Some(val)
} else {
None
}
}
}
/// A enum representing a value for tantivy to index.
@@ -470,10 +448,4 @@ where V: Value<'a>
pub fn is_object(&self) -> bool {
matches!(self, Self::Object(_))
}
#[inline]
/// HUSH
pub fn into_geometry(self) -> Option<Box<Geometry>> {
self.into_leaf().and_then(|leaf| leaf.into_geometry())
}
}

View File

@@ -1,7 +1,6 @@
use serde::{Deserialize, Serialize};
use super::ip_options::IpAddrOptions;
use super::spatial_options::SpatialOptions;
use crate::schema::bytes_options::BytesOptions;
use crate::schema::{
is_valid_field_name, DateOptions, FacetOptions, FieldType, JsonObjectOptions, NumericOptions,
@@ -81,11 +80,6 @@ impl FieldEntry {
Self::new(field_name, FieldType::JsonObject(json_object_options))
}
/// Creates a field entry for a spatial field
pub fn new_spatial(field_name: String, spatial_options: SpatialOptions) -> FieldEntry {
Self::new(field_name, FieldType::Spatial(spatial_options))
}
/// Returns the name of the field
pub fn name(&self) -> &str {
&self.name
@@ -135,7 +129,6 @@ impl FieldEntry {
FieldType::Bytes(ref options) => options.is_stored(),
FieldType::JsonObject(ref options) => options.is_stored(),
FieldType::IpAddr(ref options) => options.is_stored(),
FieldType::Spatial(ref options) => options.is_stored(),
}
}
}

View File

@@ -9,7 +9,6 @@ use serde_json::Value as JsonValue;
use thiserror::Error;
use super::ip_options::IpAddrOptions;
use super::spatial_options::SpatialOptions;
use super::IntoIpv6Addr;
use crate::schema::bytes_options::BytesOptions;
use crate::schema::facet_options::FacetOptions;
@@ -17,7 +16,6 @@ use crate::schema::{
DateOptions, Facet, IndexRecordOption, JsonObjectOptions, NumericOptions, OwnedValue,
TextFieldIndexing, TextOptions,
};
use crate::spatial::geometry::Geometry;
use crate::time::format_description::well_known::Rfc3339;
use crate::time::OffsetDateTime;
use crate::tokenizer::PreTokenizedString;
@@ -73,8 +71,6 @@ pub enum Type {
Json = b'j',
/// IpAddr
IpAddr = b'p',
/// Spatial
Spatial = b't',
}
impl From<ColumnType> for Type {
@@ -143,7 +139,6 @@ impl Type {
Type::Bytes => "Bytes",
Type::Json => "Json",
Type::IpAddr => "IpAddr",
Type::Spatial => "Spatial",
}
}
@@ -194,8 +189,6 @@ pub enum FieldType {
JsonObject(JsonObjectOptions),
/// IpAddr field
IpAddr(IpAddrOptions),
/// Spatial field
Spatial(SpatialOptions),
}
impl FieldType {
@@ -212,7 +205,6 @@ impl FieldType {
FieldType::Bytes(_) => Type::Bytes,
FieldType::JsonObject(_) => Type::Json,
FieldType::IpAddr(_) => Type::IpAddr,
FieldType::Spatial(_) => Type::Spatial,
}
}
@@ -249,7 +241,6 @@ impl FieldType {
FieldType::Bytes(ref bytes_options) => bytes_options.is_indexed(),
FieldType::JsonObject(ref json_object_options) => json_object_options.is_indexed(),
FieldType::IpAddr(ref ip_addr_options) => ip_addr_options.is_indexed(),
FieldType::Spatial(ref _spatial_options) => true,
}
}
@@ -287,7 +278,6 @@ impl FieldType {
FieldType::IpAddr(ref ip_addr_options) => ip_addr_options.is_fast(),
FieldType::Facet(_) => true,
FieldType::JsonObject(ref json_object_options) => json_object_options.is_fast(),
FieldType::Spatial(_) => false,
}
}
@@ -307,7 +297,6 @@ impl FieldType {
FieldType::Bytes(ref bytes_options) => bytes_options.fieldnorms(),
FieldType::JsonObject(ref _json_object_options) => false,
FieldType::IpAddr(ref ip_addr_options) => ip_addr_options.fieldnorms(),
FieldType::Spatial(_) => false,
}
}
@@ -359,8 +348,6 @@ impl FieldType {
None
}
}
FieldType::Spatial(_) => None, /* Geometry types cannot be indexed in the inverted
* index. */
}
}
@@ -462,10 +449,6 @@ impl FieldType {
Ok(OwnedValue::IpAddr(ip_addr.into_ipv6_addr()))
}
FieldType::Spatial(_) => Err(ValueParsingError::TypeError {
expected: "spatial field parsing not implemented",
json: JsonValue::String(field_text),
}),
}
}
JsonValue::Number(field_val_num) => match self {
@@ -525,10 +508,6 @@ impl FieldType {
expected: "a string with an ip addr",
json: JsonValue::Number(field_val_num),
}),
FieldType::Spatial(_) => Err(ValueParsingError::TypeError {
expected: "spatial field parsing not implemented",
json: JsonValue::Number(field_val_num),
}),
},
JsonValue::Object(json_map) => match self {
FieldType::Str(_) => {
@@ -544,14 +523,6 @@ impl FieldType {
}
}
FieldType::JsonObject(_) => Ok(OwnedValue::from(json_map)),
FieldType::Spatial(_) => Ok(OwnedValue::Geometry(
Geometry::from_geojson(&json_map).map_err(|e| {
ValueParsingError::ParseError {
error: format!("{:?}", e),
json: JsonValue::Object(json_map),
}
})?,
)),
_ => Err(ValueParsingError::TypeError {
expected: self.value_type().name(),
json: JsonValue::Object(json_map),

View File

@@ -1,6 +1,6 @@
use std::ops::BitOr;
use crate::schema::{DateOptions, NumericOptions, SpatialOptions, TextOptions};
use crate::schema::{DateOptions, NumericOptions, TextOptions};
#[derive(Clone)]
pub struct StoredFlag;
@@ -95,14 +95,6 @@ impl<T: Clone + Into<TextOptions>> BitOr<TextOptions> for SchemaFlagList<T, ()>
}
}
impl<T: Clone + Into<SpatialOptions>> BitOr<SpatialOptions> for SchemaFlagList<T, ()> {
type Output = SpatialOptions;
fn bitor(self, rhs: SpatialOptions) -> Self::Output {
self.head.into() | rhs
}
}
#[derive(Clone)]
pub struct SchemaFlagList<Head: Clone, Tail: Clone> {
pub head: Head,

View File

@@ -124,7 +124,6 @@ mod ip_options;
mod json_object_options;
mod named_field_document;
mod numeric_options;
mod spatial_options;
mod text_options;
use columnar::ColumnType;
@@ -145,7 +144,6 @@ pub use self::json_object_options::JsonObjectOptions;
pub use self::named_field_document::NamedFieldDocument;
pub use self::numeric_options::NumericOptions;
pub use self::schema::{Schema, SchemaBuilder};
pub use self::spatial_options::{SpatialOptions, SPATIAL};
pub use self::term::{Term, ValueBytes};
pub use self::text_options::{TextFieldIndexing, TextOptions, STRING, TEXT};
@@ -170,7 +168,6 @@ pub(crate) fn value_type_to_column_type(typ: Type) -> Option<ColumnType> {
Type::Bytes => Some(ColumnType::Bytes),
Type::IpAddr => Some(ColumnType::IpAddr),
Type::Json => None,
Type::Spatial => None,
}
}

View File

@@ -194,16 +194,6 @@ impl SchemaBuilder {
self.add_field(field_entry)
}
/// Adds a spatial entry to the schema in build.
pub fn add_spatial_field<T: Into<SpatialOptions>>(
&mut self,
field_name: &str,
field_options: T,
) -> Field {
let field_entry = FieldEntry::new_spatial(field_name.to_string(), field_options.into());
self.add_field(field_entry)
}
/// Adds a field entry to the schema in build.
pub fn add_field(&mut self, field_entry: FieldEntry) -> Field {
let field = Field::from_field_id(self.fields.len() as u32);
@@ -218,14 +208,9 @@ impl SchemaBuilder {
/// Finalize the creation of a `Schema`
/// This will consume your `SchemaBuilder`
pub fn build(self) -> Schema {
let contains_spatial_field = self
.fields
.iter()
.any(|field_entry| field_entry.field_type().value_type() == Type::Spatial);
Schema(Arc::new(InnerSchema {
fields: self.fields,
fields_map: self.fields_map,
contains_spatial_field,
}))
}
}
@@ -233,7 +218,6 @@ impl SchemaBuilder {
struct InnerSchema {
fields: Vec<FieldEntry>,
fields_map: HashMap<String, Field>, // transient
contains_spatial_field: bool,
}
impl PartialEq for InnerSchema {
@@ -384,11 +368,6 @@ impl Schema {
}
Some((field, json_path))
}
/// Returns true if the schema contains a spatial field.
pub(crate) fn contains_spatial_field(&self) -> bool {
self.0.contains_spatial_field
}
}
impl Serialize for Schema {
@@ -416,16 +395,16 @@ impl<'de> Deserialize<'de> for Schema {
fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
where A: SeqAccess<'de> {
let mut schema_builder = SchemaBuilder {
let mut schema = SchemaBuilder {
fields: Vec::with_capacity(seq.size_hint().unwrap_or(0)),
fields_map: HashMap::with_capacity(seq.size_hint().unwrap_or(0)),
};
while let Some(value) = seq.next_element()? {
schema_builder.add_field(value);
schema.add_field(value);
}
Ok(schema_builder.build())
Ok(schema.build())
}
}
@@ -1041,33 +1020,4 @@ mod tests {
Some((default, "foobar"))
);
}
#[test]
fn test_contains_spatial_field() {
// No spatial field
{
let mut schema_builder = Schema::builder();
schema_builder.add_text_field("title", TEXT);
let schema = schema_builder.build();
assert!(!schema.contains_spatial_field());
// Serialization check
let schema_json = serde_json::to_string(&schema).unwrap();
let schema_deserialized: Schema = serde_json::from_str(&schema_json).unwrap();
assert!(!schema_deserialized.contains_spatial_field());
}
// With spatial field
{
let mut schema_builder = Schema::builder();
schema_builder.add_text_field("title", TEXT);
schema_builder.add_spatial_field("location", SPATIAL);
let schema = schema_builder.build();
assert!(schema.contains_spatial_field());
// Serialization check
let schema_json = serde_json::to_string(&schema).unwrap();
let schema_deserialized: Schema = serde_json::from_str(&schema_json).unwrap();
assert!(schema_deserialized.contains_spatial_field());
}
}
}

View File

@@ -1,53 +0,0 @@
use std::ops::BitOr;
use serde::{Deserialize, Serialize};
use crate::schema::flags::StoredFlag;
/// Define how a spatial field should be handled by tantivy.
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, Default)]
pub struct SpatialOptions {
#[serde(default)]
stored: bool,
}
/// The field will be untokenized and indexed.
pub const SPATIAL: SpatialOptions = SpatialOptions { stored: false };
impl SpatialOptions {
/// Returns true if the geometry is to be stored.
#[inline]
pub fn is_stored(&self) -> bool {
self.stored
}
}
impl<T: Into<SpatialOptions>> BitOr<T> for SpatialOptions {
type Output = SpatialOptions;
fn bitor(self, other: T) -> SpatialOptions {
let other = other.into();
SpatialOptions {
stored: self.stored | other.stored,
}
}
}
impl From<StoredFlag> for SpatialOptions {
fn from(_: StoredFlag) -> SpatialOptions {
SpatialOptions { stored: true }
}
}
// #[cfg(test)]
// mod tests {
// use crate::schema::*;
//
// #[test]
// fn test_field_options() {
// let field_options = STORED | SPATIAL;
// assert!(field_options.is_stored());
// let mut schema_builder = Schema::builder();
// schema_builder.add_spatial_index("where", SPATIAL | STORED);
// }
// }

View File

@@ -1,10 +1,11 @@
use std::hash::{Hash, Hasher};
use std::hash::Hash;
use std::net::Ipv6Addr;
use std::{fmt, str};
use columnar::MonotonicallyMappableToU128;
use common::json_path_writer::{JSON_END_OF_PATH, JSON_PATH_SEGMENT_SEP_STR};
use common::JsonPathWriter;
use serde::{Deserialize, Serialize};
use super::date_time_options::DATE_TIME_PRECISION_INDEXED;
use super::{Field, Schema};
@@ -16,23 +17,54 @@ use crate::DateTime;
/// Term represents the value that the token can take.
/// It's a serialized representation over different types.
///
/// It actually wraps a `Vec<u8>`. The first 5 bytes are metadata.
/// 4 bytes are the field id, and the last byte is the type.
///
/// The serialized value `ValueBytes` is considered everything after the 4 first bytes (term id).
#[derive(Clone)]
pub struct Term<B = Vec<u8>>(B)
where B: AsRef<[u8]>;
/// A term is composed of Field and the serialized value bytes.
/// The serialized value bytes themselves start with a one byte type tag followed by the payload.
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Serialize, Deserialize)]
pub struct Term {
field: Field,
serialized_value_bytes: Vec<u8>,
}
/// The number of bytes used as metadata by `Term`.
const TERM_METADATA_LENGTH: usize = 5;
/// The number of bytes used as metadata when serializing a term.
const TERM_TYPE_TAG_LEN: usize = 1;
impl Term {
/// Takes a serialized term and wraps it as a Term.
/// First 4 bytes are the field id
#[deprecated(
note = "we want to avoid working on the serialized representation directly, replace with \
typed API calls (add more if needed) or use serde to serialize/deserialize"
)]
pub fn wrap(serialized: &[u8]) -> Term {
let field_id_bytes: [u8; 4] = serialized[0..4].try_into().unwrap();
let field_id = u32::from_be_bytes(field_id_bytes);
Term {
field: Field::from_field_id(field_id),
serialized_value_bytes: serialized[4..].to_vec(),
}
}
/// Returns the serialized representation of the term.
/// First 4 bytes are the field id
#[deprecated(
note = "we want to avoid working on the serialized representation directly, replace with \
typed API calls (add more if needed) or use serde to serialize/deserialize"
)]
pub fn serialized_term(&self) -> Vec<u8> {
let mut serialized = Vec::with_capacity(4 + self.serialized_value_bytes.len());
serialized.extend(self.field.field_id().to_be_bytes().as_ref());
serialized.extend_from_slice(&self.serialized_value_bytes);
serialized
}
/// Create a new Term with a buffer with a given capacity.
pub fn with_capacity(capacity: usize) -> Term {
let mut data = Vec::with_capacity(TERM_METADATA_LENGTH + capacity);
data.resize(TERM_METADATA_LENGTH, 0u8);
Term(data)
let mut data = Vec::with_capacity(TERM_TYPE_TAG_LEN + capacity);
data.resize(TERM_TYPE_TAG_LEN, 0u8);
Term {
field: Field::from_field_id(0u32),
serialized_value_bytes: data,
}
}
/// Creates a term from a json path.
@@ -89,7 +121,7 @@ impl Term {
fn with_bytes_and_field_and_payload(typ: Type, field: Field, bytes: &[u8]) -> Term {
let mut term = Self::with_capacity(bytes.len());
term.set_field_and_type(field, typ);
term.0.extend_from_slice(bytes);
term.serialized_value_bytes.extend_from_slice(bytes);
term
}
@@ -105,13 +137,13 @@ impl Term {
/// Sets field and the type.
pub(crate) fn set_field_and_type(&mut self, field: Field, typ: Type) {
assert!(self.is_empty());
self.0[0..4].clone_from_slice(field.field_id().to_be_bytes().as_ref());
self.0[4] = typ.to_code();
self.field = field;
self.serialized_value_bytes[0] = typ.to_code();
}
/// Is empty if there are no value bytes.
pub fn is_empty(&self) -> bool {
self.0.len() == TERM_METADATA_LENGTH
self.serialized_value_bytes.len() == TERM_TYPE_TAG_LEN
}
/// Builds a term given a field, and a `Ipv6Addr`-value
@@ -177,7 +209,7 @@ impl Term {
/// Removes the value_bytes and set the type code.
pub fn clear_with_type(&mut self, typ: Type) {
self.truncate_value_bytes(0);
self.0[4] = typ.to_code();
self.serialized_value_bytes[0] = typ.to_code();
}
/// Append a type marker + fast value to a term.
@@ -185,9 +217,10 @@ impl Term {
///
/// It will not clear existing bytes.
pub fn append_type_and_fast_value<T: FastValue>(&mut self, val: T) {
self.0.push(T::to_type().to_code());
self.serialized_value_bytes.push(T::to_type().to_code());
let value = val.to_u64();
self.0.extend(value.to_be_bytes().as_ref());
self.serialized_value_bytes
.extend(value.to_be_bytes().as_ref());
}
/// Append a string type marker + string to a term.
@@ -195,24 +228,25 @@ impl Term {
///
/// It will not clear existing bytes.
pub fn append_type_and_str(&mut self, val: &str) {
self.0.push(Type::Str.to_code());
self.0.extend(val.as_bytes().as_ref());
self.serialized_value_bytes.push(Type::Str.to_code());
self.serialized_value_bytes.extend(val.as_bytes().as_ref());
}
/// Sets the value of a `Bytes` field.
pub fn set_bytes(&mut self, bytes: &[u8]) {
self.truncate_value_bytes(0);
self.0.extend(bytes);
self.serialized_value_bytes.extend(bytes);
}
/// Truncates the value bytes of the term. Value and field type stays the same.
pub fn truncate_value_bytes(&mut self, len: usize) {
self.0.truncate(len + TERM_METADATA_LENGTH);
self.serialized_value_bytes
.truncate(len + TERM_TYPE_TAG_LEN);
}
/// The length of the bytes.
pub fn len_bytes(&self) -> usize {
self.0.len() - TERM_METADATA_LENGTH
self.serialized_value_bytes.len() - TERM_TYPE_TAG_LEN
}
/// Appends value bytes to the Term.
@@ -220,18 +254,9 @@ impl Term {
/// This function returns the segment that has just been added.
#[inline]
pub fn append_bytes(&mut self, bytes: &[u8]) -> &mut [u8] {
let len_before = self.0.len();
self.0.extend_from_slice(bytes);
&mut self.0[len_before..]
}
}
impl<B> Term<B>
where B: AsRef<[u8]>
{
/// Wraps a object holding bytes
pub fn wrap(data: B) -> Term<B> {
Term(data)
let len_before = self.serialized_value_bytes.len();
self.serialized_value_bytes.extend_from_slice(bytes);
&mut self.serialized_value_bytes[len_before..]
}
/// Return the type of the term.
@@ -241,8 +266,7 @@ where B: AsRef<[u8]>
/// Returns the field.
pub fn field(&self) -> Field {
let field_id_bytes: [u8; 4] = (&self.0.as_ref()[..4]).try_into().unwrap();
Field::from_field_id(u32::from_be_bytes(field_id_bytes))
self.field
}
/// Returns the serialized representation of the value.
@@ -252,23 +276,13 @@ where B: AsRef<[u8]>
/// If the term is a u64, its value is encoded according
/// to `byteorder::BigEndian`.
pub fn serialized_value_bytes(&self) -> &[u8] {
&self.0.as_ref()[TERM_METADATA_LENGTH..]
&self.serialized_value_bytes[TERM_TYPE_TAG_LEN..]
}
/// Returns the value of the term.
/// address or JSON path + value. (this does not include the field.)
pub fn value(&self) -> ValueBytes<&[u8]> {
ValueBytes::wrap(&self.0.as_ref()[4..])
}
/// Returns the serialized representation of Term.
/// This includes field_id, value type and value.
///
/// Do NOT rely on this byte representation in the index.
/// This value is likely to change in the future.
#[inline]
pub fn serialized_term(&self) -> &[u8] {
self.0.as_ref()
ValueBytes::wrap(self.serialized_value_bytes.as_ref())
}
}
@@ -452,10 +466,7 @@ where B: AsRef<[u8]>
}
}
/// Returns the serialized representation of Term.
///
/// Do NOT rely on this byte representation in the index.
/// This value is likely to change in the future.
/// Returns the serialized representation of the value bytes including the type tag.
pub fn as_serialized(&self) -> &[u8] {
self.0.as_ref()
}
@@ -503,48 +514,11 @@ where B: AsRef<[u8]>
Type::IpAddr => {
write_opt(f, self.as_ip_addr())?;
}
Type::Spatial => {
write!(f, "<spatial term formatting not yet implemented>")?;
}
}
Ok(())
}
}
impl<B> Ord for Term<B>
where B: AsRef<[u8]>
{
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.serialized_term().cmp(other.serialized_term())
}
}
impl<B> PartialOrd for Term<B>
where B: AsRef<[u8]>
{
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl<B> PartialEq for Term<B>
where B: AsRef<[u8]>
{
fn eq(&self, other: &Self) -> bool {
self.serialized_term() == other.serialized_term()
}
}
impl<B> Eq for Term<B> where B: AsRef<[u8]> {}
impl<B> Hash for Term<B>
where B: AsRef<[u8]>
{
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.as_ref().hash(state)
}
}
fn write_opt<T: std::fmt::Debug>(f: &mut fmt::Formatter, val_opt: Option<T>) -> fmt::Result {
if let Some(val) = val_opt {
write!(f, "{val:?}")?;
@@ -552,13 +526,11 @@ fn write_opt<T: std::fmt::Debug>(f: &mut fmt::Formatter, val_opt: Option<T>) ->
Ok(())
}
impl<B> fmt::Debug for Term<B>
where B: AsRef<[u8]>
{
impl fmt::Debug for Term {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let field_id = self.field().field_id();
let field_id = self.field.field_id();
write!(f, "Term(field={field_id}, ")?;
let value_bytes = ValueBytes::wrap(&self.0.as_ref()[4..]);
let value_bytes = ValueBytes::wrap(&self.serialized_value_bytes);
value_bytes.debug_value_bytes(f)?;
write!(f, ")",)?;
Ok(())
@@ -581,17 +553,6 @@ mod tests {
assert_eq!(term.value().as_str(), Some("test"))
}
/// Size (in bytes) of the buffer of a fast value (u64, i64, f64, or date) term.
/// <field> + <type byte> + <value len>
///
/// - <field> is a big endian encoded u32 field id
/// - <type_byte>'s most significant bit expresses whether the term is a json term or not The
/// remaining 7 bits are used to encode the type of the value. If this is a JSON term, the
/// type is the type of the leaf of the json.
/// - <value> is, if this is not the json term, a binary representation specific to the type.
/// If it is a JSON Term, then it is prepended with the path that leads to this leaf value.
const FAST_VALUE_TERM_LEN: usize = 4 + 1 + 8;
#[test]
pub fn test_term_u64() {
let mut schema_builder = Schema::builder();
@@ -599,7 +560,7 @@ mod tests {
let term = Term::from_field_u64(count_field, 983u64);
assert_eq!(term.field(), count_field);
assert_eq!(term.typ(), Type::U64);
assert_eq!(term.serialized_term().len(), FAST_VALUE_TERM_LEN);
assert_eq!(term.serialized_value_bytes().len(), 8);
assert_eq!(term.value().as_u64(), Some(983u64))
}
@@ -610,7 +571,7 @@ mod tests {
let term = Term::from_field_bool(bool_field, true);
assert_eq!(term.field(), bool_field);
assert_eq!(term.typ(), Type::Bool);
assert_eq!(term.serialized_term().len(), FAST_VALUE_TERM_LEN);
assert_eq!(term.serialized_value_bytes().len(), 8);
assert_eq!(term.value().as_bool(), Some(true))
}
}

View File

@@ -7,13 +7,14 @@
//! storage-level details into consideration. For example, if your file system block size is 4096
//! bytes, we can under-count actual resultant space usage by up to 4095 bytes per file.
use std::collections::HashMap;
use std::collections::btree_map::Entry;
use std::collections::BTreeMap;
use columnar::ColumnSpaceUsage;
use common::ByteCount;
use serde::{Deserialize, Serialize};
use crate::index::SegmentComponent;
use crate::schema::Field;
/// Enum containing any of the possible space usage results for segment components.
pub enum ComponentSpaceUsage {
@@ -69,7 +70,6 @@ pub struct SegmentSpaceUsage {
positions: PerFieldSpaceUsage,
fast_fields: PerFieldSpaceUsage,
fieldnorms: PerFieldSpaceUsage,
spatial: PerFieldSpaceUsage,
store: StoreSpaceUsage,
@@ -87,7 +87,6 @@ impl SegmentSpaceUsage {
positions: PerFieldSpaceUsage,
fast_fields: PerFieldSpaceUsage,
fieldnorms: PerFieldSpaceUsage,
spatial: PerFieldSpaceUsage,
store: StoreSpaceUsage,
deletes: ByteCount,
) -> SegmentSpaceUsage {
@@ -96,7 +95,6 @@ impl SegmentSpaceUsage {
+ positions.total()
+ fast_fields.total()
+ fieldnorms.total()
+ spatial.total()
+ store.total()
+ deletes;
SegmentSpaceUsage {
@@ -106,7 +104,6 @@ impl SegmentSpaceUsage {
positions,
fast_fields,
fieldnorms,
spatial,
store,
deletes,
total,
@@ -125,7 +122,6 @@ impl SegmentSpaceUsage {
Positions => PerField(self.positions().clone()),
FastFields => PerField(self.fast_fields().clone()),
FieldNorms => PerField(self.fieldnorms().clone()),
Spatial => PerField(self.spatial().clone()),
Terms => PerField(self.termdict().clone()),
SegmentComponent::Store => ComponentSpaceUsage::Store(self.store().clone()),
SegmentComponent::TempStore => ComponentSpaceUsage::Store(self.store().clone()),
@@ -163,11 +159,6 @@ impl SegmentSpaceUsage {
&self.fieldnorms
}
/// Space usage for field norms
pub fn spatial(&self) -> &PerFieldSpaceUsage {
&self.spatial
}
/// Space usage for stored documents
pub fn store(&self) -> &StoreSpaceUsage {
&self.store
@@ -222,17 +213,26 @@ impl StoreSpaceUsage {
/// Multiple indexes are used to handle variable length things, where
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct PerFieldSpaceUsage {
fields: HashMap<Field, FieldUsage>,
fields: BTreeMap<String, FieldUsage>,
total: ByteCount,
}
impl PerFieldSpaceUsage {
pub(crate) fn new(fields: Vec<FieldUsage>) -> PerFieldSpaceUsage {
let total = fields.iter().map(FieldUsage::total).sum();
let field_usage_map: HashMap<Field, FieldUsage> = fields
.into_iter()
.map(|field_usage| (field_usage.field(), field_usage))
.collect();
let mut total = ByteCount::default();
let mut field_usage_map: BTreeMap<String, FieldUsage> = BTreeMap::new();
for field_usage in fields {
total += field_usage.total();
let field_name = field_usage.field_name().to_string();
match field_usage_map.entry(field_name) {
Entry::Vacant(entry) => {
entry.insert(field_usage);
}
Entry::Occupied(mut entry) => {
entry.get_mut().merge(field_usage);
}
}
}
PerFieldSpaceUsage {
fields: field_usage_map,
total,
@@ -240,8 +240,8 @@ impl PerFieldSpaceUsage {
}
/// Per field space usage
pub fn fields(&self) -> impl Iterator<Item = (&Field, &FieldUsage)> {
self.fields.iter()
pub fn fields(&self) -> impl Iterator<Item = &FieldUsage> {
self.fields.values()
}
/// Bytes used by the represented file
@@ -256,20 +256,23 @@ impl PerFieldSpaceUsage {
/// See documentation for [`PerFieldSpaceUsage`] for slightly more information.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct FieldUsage {
field: Field,
field_name: String,
num_bytes: ByteCount,
/// A field can be composed of more than one piece.
/// These pieces are indexed by arbitrary numbers starting at zero.
/// `self.num_bytes` includes all of `self.sub_num_bytes`.
sub_num_bytes: Vec<Option<ByteCount>>,
/// Space usage of the column for fast fields, if relevant.
column_space_usage: Option<ColumnSpaceUsage>,
}
impl FieldUsage {
pub(crate) fn empty(field: Field) -> FieldUsage {
pub(crate) fn empty(field_name: impl Into<String>) -> FieldUsage {
FieldUsage {
field,
field_name: field_name.into(),
num_bytes: Default::default(),
sub_num_bytes: Vec::new(),
column_space_usage: None,
}
}
@@ -282,9 +285,14 @@ impl FieldUsage {
self.num_bytes += size
}
pub(crate) fn set_column_usage(&mut self, column_space_usage: ColumnSpaceUsage) {
self.num_bytes += column_space_usage.total_num_bytes();
self.column_space_usage = Some(column_space_usage);
}
/// Field
pub fn field(&self) -> Field {
self.field
pub fn field_name(&self) -> &str {
&self.field_name
}
/// Space usage for each index
@@ -292,16 +300,64 @@ impl FieldUsage {
&self.sub_num_bytes[..]
}
/// Returns the number of bytes used by the column payload, if the field is columnar.
pub fn column_num_bytes(&self) -> Option<ByteCount> {
self.column_space_usage
.as_ref()
.map(ColumnSpaceUsage::column_num_bytes)
}
/// Returns the number of bytes used by the dictionary for dictionary-encoded columns.
pub fn dictionary_num_bytes(&self) -> Option<ByteCount> {
self.column_space_usage
.as_ref()
.and_then(ColumnSpaceUsage::dictionary_num_bytes)
}
/// Returns the space usage of the column, if any.
pub fn column_space_usage(&self) -> Option<&ColumnSpaceUsage> {
self.column_space_usage.as_ref()
}
/// Total bytes used for this field in this context
pub fn total(&self) -> ByteCount {
self.num_bytes
}
fn merge(&mut self, other: FieldUsage) {
assert_eq!(self.field_name, other.field_name);
self.num_bytes += other.num_bytes;
if other.sub_num_bytes.len() > self.sub_num_bytes.len() {
self.sub_num_bytes.resize(other.sub_num_bytes.len(), None);
}
for (idx, num_bytes_opt) in other.sub_num_bytes.into_iter().enumerate() {
if let Some(num_bytes) = num_bytes_opt {
match self.sub_num_bytes[idx] {
Some(existing) => self.sub_num_bytes[idx] = Some(existing + num_bytes),
None => self.sub_num_bytes[idx] = Some(num_bytes),
}
}
}
self.column_space_usage =
merge_column_space_usage(self.column_space_usage.take(), other.column_space_usage);
}
}
fn merge_column_space_usage(
left: Option<ColumnSpaceUsage>,
right: Option<ColumnSpaceUsage>,
) -> Option<ColumnSpaceUsage> {
match (left, right) {
(Some(lhs), Some(rhs)) => Some(lhs.merge(&rhs)),
(Some(space), None) | (None, Some(space)) => Some(space),
(None, None) => None,
}
}
#[cfg(test)]
mod test {
use crate::index::Index;
use crate::schema::{Field, Schema, FAST, INDEXED, STORED, TEXT};
use crate::schema::{Schema, FAST, INDEXED, STORED, TEXT};
use crate::space_usage::PerFieldSpaceUsage;
use crate::{IndexWriter, Term};
@@ -317,17 +373,17 @@ mod test {
fn expect_single_field(
field_space: &PerFieldSpaceUsage,
field: &Field,
field: &str,
min_size: u64,
max_size: u64,
) {
assert!(field_space.total() >= min_size);
assert!(field_space.total() <= max_size);
assert_eq!(
vec![(field, field_space.total())],
vec![(field.to_string(), field_space.total())],
field_space
.fields()
.map(|(x, y)| (x, y.total()))
.map(|usage| (usage.field_name().to_string(), usage.total()))
.collect::<Vec<_>>()
);
}
@@ -337,6 +393,7 @@ mod test {
let mut schema_builder = Schema::builder();
let name = schema_builder.add_u64_field("name", FAST | INDEXED);
let schema = schema_builder.build();
let field_name = schema.get_field_name(name).to_string();
let index = Index::create_in_ram(schema);
{
@@ -359,11 +416,11 @@ mod test {
assert_eq!(4, segment.num_docs());
expect_single_field(segment.termdict(), &name, 1, 512);
expect_single_field(segment.postings(), &name, 1, 512);
expect_single_field(segment.termdict(), &field_name, 1, 512);
expect_single_field(segment.postings(), &field_name, 1, 512);
assert_eq!(segment.positions().total(), 0);
expect_single_field(segment.fast_fields(), &name, 1, 512);
expect_single_field(segment.fieldnorms(), &name, 1, 512);
expect_single_field(segment.fast_fields(), &field_name, 1, 512);
expect_single_field(segment.fieldnorms(), &field_name, 1, 512);
// TODO: understand why the following fails
// assert_eq!(0, segment.store().total());
assert_eq!(segment.deletes(), 0);
@@ -375,6 +432,7 @@ mod test {
let mut schema_builder = Schema::builder();
let name = schema_builder.add_text_field("name", TEXT);
let schema = schema_builder.build();
let field_name = schema.get_field_name(name).to_string();
let index = Index::create_in_ram(schema);
{
@@ -399,11 +457,11 @@ mod test {
assert_eq!(4, segment.num_docs());
expect_single_field(segment.termdict(), &name, 1, 512);
expect_single_field(segment.postings(), &name, 1, 512);
expect_single_field(segment.positions(), &name, 1, 512);
expect_single_field(segment.termdict(), &field_name, 1, 512);
expect_single_field(segment.postings(), &field_name, 1, 512);
expect_single_field(segment.positions(), &field_name, 1, 512);
assert_eq!(segment.fast_fields().total(), 0);
expect_single_field(segment.fieldnorms(), &name, 1, 512);
expect_single_field(segment.fieldnorms(), &field_name, 1, 512);
// TODO: understand why the following fails
// assert_eq!(0, segment.store().total());
assert_eq!(segment.deletes(), 0);
@@ -439,10 +497,15 @@ mod test {
assert_eq!(4, segment.num_docs());
assert_eq!(segment.termdict().total(), 0);
assert!(segment.termdict().fields().next().is_none());
assert_eq!(segment.postings().total(), 0);
assert!(segment.postings().fields().next().is_none());
assert_eq!(segment.positions().total(), 0);
assert!(segment.positions().fields().next().is_none());
assert_eq!(segment.fast_fields().total(), 0);
assert!(segment.fast_fields().fields().next().is_none());
assert_eq!(segment.fieldnorms().total(), 0);
assert!(segment.fieldnorms().fields().next().is_none());
assert!(segment.store().total() > 0);
assert!(segment.store().total() < 512);
assert_eq!(segment.deletes(), 0);
@@ -454,6 +517,7 @@ mod test {
let mut schema_builder = Schema::builder();
let name = schema_builder.add_u64_field("name", INDEXED);
let schema = schema_builder.build();
let field_name = schema.get_field_name(name).to_string();
let index = Index::create_in_ram(schema);
{
@@ -484,11 +548,11 @@ mod test {
assert_eq!(2, segment_space_usage.num_docs());
expect_single_field(segment_space_usage.termdict(), &name, 1, 512);
expect_single_field(segment_space_usage.postings(), &name, 1, 512);
expect_single_field(segment_space_usage.termdict(), &field_name, 1, 512);
expect_single_field(segment_space_usage.postings(), &field_name, 1, 512);
assert_eq!(segment_space_usage.positions().total(), 0u64);
assert_eq!(segment_space_usage.fast_fields().total(), 0u64);
expect_single_field(segment_space_usage.fieldnorms(), &name, 1, 512);
expect_single_field(segment_space_usage.fieldnorms(), &field_name, 1, 512);
assert!(segment_space_usage.deletes() > 0);
Ok(())
}

View File

@@ -1,853 +0,0 @@
//! Block kd-tree spatial indexing for triangulated polygons.
//!
//! Implements an immutable bulk-loaded spatial index using recursive median partitioning on
//! bounding box dimensions. Each leaf stores up to 512 triangles with delta-compressed coordinates
//! and doc IDs. The tree provides three query types (intersects, within, contains) that use exact
//! integer arithmetic for geometric predicates and accumulate results in bit sets for efficient
//! deduplication across leaves.
//!
//! The serialized format stores compressed leaf pages followed by the tree structure (leaf and
//! branch nodes), enabling zero-copy access through memory-mapped segments without upfront
//! decompression.
use std::io;
use std::io::Write;
use common::{BitSet, CountingWriter};
use crate::directory::WritePtr;
use crate::spatial::delta::{compress, decompress, Compressible};
use crate::spatial::triangle::Triangle;
#[derive(Clone, Copy)]
struct SpreadSurvey {
min: i32,
max: i32,
}
impl SpreadSurvey {
fn survey(&mut self, value: i32) {
self.min = self.min.min(value);
self.max = self.max.max(value);
}
fn spread(&self) -> i32 {
self.max - self.min
}
}
impl Default for SpreadSurvey {
fn default() -> Self {
SpreadSurvey {
min: i32::MAX,
max: i32::MIN,
}
}
}
#[derive(Clone, Copy)]
struct BoundingBoxSurvey {
bbox: [i32; 4],
}
impl BoundingBoxSurvey {
fn survey(&mut self, triangle: &Triangle) {
self.bbox[0] = triangle.words[0].min(self.bbox[0]);
self.bbox[1] = triangle.words[1].min(self.bbox[1]);
self.bbox[2] = triangle.words[2].max(self.bbox[2]);
self.bbox[3] = triangle.words[3].max(self.bbox[3]);
}
fn bbox(&self) -> [i32; 4] {
self.bbox.clone()
}
}
impl Default for BoundingBoxSurvey {
fn default() -> Self {
BoundingBoxSurvey {
bbox: [i32::MAX, i32::MAX, i32::MIN, i32::MIN],
}
}
}
enum BuildNode {
Branch {
bbox: [i32; 4],
left: Box<BuildNode>,
right: Box<BuildNode>,
},
Leaf {
bbox: [i32; 4],
pos: u64,
len: u16,
},
}
struct CompressibleTriangleI32<'a> {
triangles: &'a [Triangle],
dimension: usize,
}
impl<'a> CompressibleTriangleI32<'a> {
fn new(triangles: &'a [Triangle], dimension: usize) -> Self {
CompressibleTriangleI32 {
triangles,
dimension,
}
}
}
impl<'a> Compressible for CompressibleTriangleI32<'a> {
type Value = i32;
fn len(&self) -> usize {
self.triangles.len()
}
fn get(&self, i: usize) -> i32 {
self.triangles[i].words[self.dimension]
}
}
struct CompressibleTriangleDocID<'a> {
triangles: &'a [Triangle],
}
impl<'a> CompressibleTriangleDocID<'a> {
fn new(triangles: &'a [Triangle]) -> Self {
CompressibleTriangleDocID { triangles }
}
}
impl<'a> Compressible for CompressibleTriangleDocID<'a> {
type Value = u32;
fn len(&self) -> usize {
self.triangles.len()
}
fn get(&self, i: usize) -> u32 {
self.triangles[i].doc_id
}
}
// Leaf pages are first the count of triangles, followed by delta encoded doc_ids, followed by
// the delta encoded words in order. We will then have the length of the page. We build a tree
// after the pages with leaf nodes and branch nodes. Leaf nodes will contain the bounding box
// of the leaf followed position and length of the page. The leaf node is a level of direction
// to store the position and length of the page in a format that is easy to read directly from
// the mapping.
// We do not compress the tree nodes. We read them directly from the mapping.
//
fn write_leaf_pages(
triangles: &mut [Triangle],
write: &mut CountingWriter<WritePtr>,
) -> io::Result<BuildNode> {
// If less than 512 triangles we are at a leaf, otherwise we still in the inner nodes.
if triangles.len() <= 512 {
let pos = write.written_bytes();
let mut spreads = [SpreadSurvey::default(); 4];
let mut bounding_box = BoundingBoxSurvey::default();
for triangle in triangles.iter() {
for i in 0..4 {
spreads[i].survey(triangle.words[i]);
}
bounding_box.survey(triangle);
}
let mut max_spread = spreads[0].spread();
let mut dimension = 0;
for i in 1..4 {
let current_spread = spreads[i].spread();
if current_spread > max_spread {
dimension = i;
max_spread = current_spread;
}
}
write.write_all(&(triangles.len() as u16).to_le_bytes())?;
triangles.sort_by_key(|t| t.words[dimension]);
compress(&CompressibleTriangleDocID::new(triangles), write)?;
let compressible = [
CompressibleTriangleI32::new(triangles, 0),
CompressibleTriangleI32::new(triangles, 1),
CompressibleTriangleI32::new(triangles, 2),
CompressibleTriangleI32::new(triangles, 3),
CompressibleTriangleI32::new(triangles, 4),
CompressibleTriangleI32::new(triangles, 5),
CompressibleTriangleI32::new(triangles, 6),
];
for i in 0..7 {
compress(&compressible[i], write)?;
}
let len = write.written_bytes() - pos;
Ok(BuildNode::Leaf {
bbox: bounding_box.bbox(),
pos,
len: len as u16,
})
} else {
let mut spreads = [SpreadSurvey::default(); 4];
let mut bounding_box = BoundingBoxSurvey::default();
for triangle in triangles.iter() {
for i in 0..4 {
spreads[i].survey(triangle.words[i]);
}
bounding_box.survey(triangle);
}
let mut max_spread = spreads[0].spread();
let mut dimension = 0;
for i in 0..4 {
let current_spread = spreads[i].spread();
if current_spread > max_spread {
dimension = i;
max_spread = current_spread;
}
}
// Partition the triangles.
let mid = triangles.len() / 2;
triangles.select_nth_unstable_by_key(mid, |t| t.words[dimension]);
let partition = triangles[mid].words[dimension];
let mut split_point = mid + 1;
while split_point < triangles.len() && triangles[split_point].words[dimension] == partition
{
split_point += 1;
}
// If we reached the end of triangles then all of the triangles share the partition value
// for the dimension. We handle this degeneracy by splitting at the midpoint so that we
// won't have a leaf with zero triangles.
if split_point == triangles.len() {
split_point = mid; // Force split at midpoint index
} else {
// Our partition does not sort the triangles, it only partitions. We have scan our right
// partition to find all the midpoint values and move them to the left partition.
let mut reverse = triangles.len() - 1;
loop {
// Scan backwards looking for the partition value.
while triangles[reverse].words[dimension] != partition {
reverse -= 1;
}
// If we have reached the split point then we are done.
if reverse <= split_point {
break;
}
// Swap the midpoint value with our current split point.
triangles.swap(split_point, reverse);
// Move the split point up one.
split_point += 1;
// We know that what was at the split point was not the midpoint value.
reverse -= 1;
}
}
// Split into left and write partitions and create child nodes.
let (left, right) = triangles.split_at_mut(split_point);
let left_node = write_leaf_pages(left, write)?;
let right_node = write_leaf_pages(right, write)?;
// Return an inner node.
Ok(BuildNode::Branch {
bbox: bounding_box.bbox(),
left: Box::new(left_node),
right: Box::new(right_node),
})
}
}
fn write_leaf_nodes(node: &BuildNode, write: &mut CountingWriter<WritePtr>) -> io::Result<()> {
match node {
BuildNode::Branch {
bbox: _,
left,
right,
} => {
write_leaf_nodes(right, write)?;
write_leaf_nodes(left, write)?;
}
BuildNode::Leaf { bbox, pos, len } => {
for &dimension in bbox.iter() {
write.write_all(&dimension.to_le_bytes())?;
}
write.write_all(&pos.to_le_bytes())?;
write.write_all(&len.to_le_bytes())?;
write.write_all(&[0u8; 6])?;
}
}
Ok(())
}
fn write_branch_nodes(
node: &BuildNode,
branch_offset: &mut i32,
leaf_offset: &mut i32,
write: &mut CountingWriter<WritePtr>,
) -> io::Result<i32> {
match node {
BuildNode::Leaf { .. } => {
let pos = *leaf_offset;
*leaf_offset -= 1;
Ok(pos * size_of::<LeafNode>() as i32)
}
BuildNode::Branch { bbox, left, right } => {
let left = write_branch_nodes(left, branch_offset, leaf_offset, write)?;
let right = write_branch_nodes(right, branch_offset, leaf_offset, write)?;
for &val in bbox {
write.write_all(&val.to_le_bytes())?;
}
write.write_all(&left.to_le_bytes())?;
write.write_all(&right.to_le_bytes())?;
write.write_all(&[0u8; 8])?;
let pos = *branch_offset;
*branch_offset += 1;
Ok(pos * size_of::<BranchNode>() as i32)
}
}
}
const VERSION: u16 = 1u16;
/// Builds and serializes a block kd-tree for spatial indexing of triangles.
///
/// Takes a collection of triangles and constructs a complete block kd-tree, writing both the
/// compressed leaf pages and tree structure to the output. The tree uses recursive median
/// partitioning on the dimension with maximum spread, storing up to 512 triangles per leaf.
///
/// The output format consists of:
/// - Version header (u16)
/// - Compressed leaf pages (delta-encoded doc_ids and triangle coordinates)
/// - 32-byte aligned tree structure (leaf nodes, then branch nodes)
/// - Footer with triangle count, root offset, and branch position
///
/// The `triangles` slice will be reordered during tree construction as partitioning sorts by the
/// selected dimension at each level.
pub fn write_block_kd_tree(
triangles: &mut [Triangle],
write: &mut CountingWriter<WritePtr>,
) -> io::Result<()> {
write.write_all(&VERSION.to_le_bytes())?;
let tree = write_leaf_pages(triangles, write)?;
let current = write.written_bytes();
let aligned = current.next_multiple_of(32);
let padding = aligned - current;
write.write_all(&vec![0u8; padding as usize])?;
write_leaf_nodes(&tree, write)?;
let branch_position = write.written_bytes();
let mut branch_offset: i32 = 0;
let mut leaf_offset: i32 = -1;
let root = write_branch_nodes(&tree, &mut branch_offset, &mut leaf_offset, write)?;
write.write_all(&[0u8; 12])?;
write.write_all(&triangles.len().to_le_bytes())?;
write.write_all(&root.to_le_bytes())?;
write.write_all(&branch_position.to_le_bytes())?;
Ok(())
}
fn decompress_leaf(mut data: &[u8]) -> io::Result<Vec<Triangle>> {
use common::BinarySerializable;
let triangle_count: usize = u16::deserialize(&mut data)? as usize;
let mut offset: usize = 0;
let mut triangles: Vec<Triangle> = Vec::with_capacity(triangle_count);
offset += decompress::<u32, _>(&data[offset..], triangle_count, |_, doc_id| {
triangles.push(Triangle::skeleton(doc_id))
})?;
for i in 0..7 {
offset += decompress::<i32, _>(&data[offset..], triangle_count, |j, word| {
triangles[j].words[i] = word
})?;
}
Ok(triangles)
}
#[repr(C)]
struct BranchNode {
bbox: [i32; 4],
left: i32,
right: i32,
pad: [u8; 8],
}
#[repr(C)]
struct LeafNode {
bbox: [i32; 4],
pos: u64,
len: u16,
pad: [u8; 6],
}
/// A read-only view into a serialized block kd-tree segment.
///
/// Provides access to the tree structure and compressed leaf data through memory-mapped or
/// buffered byte slices. The segment contains compressed leaf pages followed by the tree structure
/// (leaf nodes and branch nodes), with a footer containing metadata for locating the root and
/// interpreting offsets.
pub struct Segment<'a> {
data: &'a [u8],
branch_position: u64,
/// Offset to the root of the tree, used as the starting point for traversal.
pub root_offset: i32,
}
impl<'a> Segment<'a> {
/// Creates a new segment from serialized block kd-tree data.
///
/// Reads the footer metadata from the last 12 bytes to locate the tree structure and root
/// node.
pub fn new(data: &'a [u8]) -> Self {
Segment {
data,
branch_position: u64::from_le_bytes(data[data.len() - 8..].try_into().unwrap()),
root_offset: i32::from_le_bytes(
data[data.len() - 12..data.len() - 8].try_into().unwrap(),
),
}
}
#[inline(always)]
fn bounding_box(&self, offset: i32) -> [i32; 4] {
let byte_offset = (self.branch_position as i64 + offset as i64) as usize;
let bytes = &self.data[byte_offset..byte_offset + 16];
[
i32::from_le_bytes(bytes[0..4].try_into().unwrap()),
i32::from_le_bytes(bytes[4..8].try_into().unwrap()),
i32::from_le_bytes(bytes[8..12].try_into().unwrap()),
i32::from_le_bytes(bytes[12..16].try_into().unwrap()),
]
}
#[inline(always)]
fn branch_node(&self, offset: i32) -> BranchNode {
let byte_offset = (self.branch_position as i64 + offset as i64) as usize;
let bytes = &self.data[byte_offset..byte_offset + 32];
BranchNode {
bbox: [
i32::from_le_bytes(bytes[0..4].try_into().unwrap()),
i32::from_le_bytes(bytes[4..8].try_into().unwrap()),
i32::from_le_bytes(bytes[8..12].try_into().unwrap()),
i32::from_le_bytes(bytes[12..16].try_into().unwrap()),
],
left: i32::from_le_bytes(bytes[16..20].try_into().unwrap()),
right: i32::from_le_bytes(bytes[20..24].try_into().unwrap()),
pad: [0u8; 8],
}
}
#[inline(always)]
fn leaf_node(&self, offset: i32) -> LeafNode {
let byte_offset = (self.branch_position as i64 + offset as i64) as usize;
let bytes = &self.data[byte_offset..byte_offset + 32];
LeafNode {
bbox: [
i32::from_le_bytes(bytes[0..4].try_into().unwrap()),
i32::from_le_bytes(bytes[4..8].try_into().unwrap()),
i32::from_le_bytes(bytes[8..12].try_into().unwrap()),
i32::from_le_bytes(bytes[12..16].try_into().unwrap()),
],
pos: u64::from_le_bytes(bytes[16..24].try_into().unwrap()),
len: u16::from_le_bytes(bytes[24..26].try_into().unwrap()),
pad: [0u8; 6],
}
}
fn leaf_page(&self, leaf_node: &LeafNode) -> &[u8] {
&self.data[(leaf_node.pos as usize)..(leaf_node.pos as usize + leaf_node.len as usize)]
}
}
fn collect_all_docs(segment: &Segment, offset: i32, result: &mut BitSet) -> io::Result<()> {
if offset < 0 {
let leaf_node = segment.leaf_node(offset);
let data = segment.leaf_page(&leaf_node);
let count = u16::from_le_bytes([data[0], data[1]]) as usize;
decompress::<u32, _>(&data[2..], count, |_, doc_id| result.insert(doc_id))?;
} else {
let branch_node = segment.branch_node(offset);
collect_all_docs(segment, branch_node.left, result)?;
collect_all_docs(segment, branch_node.right, result)?;
}
Ok(())
}
fn bbox_within(bbox: &[i32; 4], query: &[i32; 4]) -> bool {
bbox[0] >= query[0] && // min_y >= query_min_y
bbox[1] >= query[1] && // min_x >= query_min_x
bbox[2] <= query[2] && // max_y <= query_max_y
bbox[3] <= query[3] // max_x <= query_max_x
}
fn bbox_intersects(bbox: &[i32; 4], query: &[i32; 4]) -> bool {
!(bbox[2] < query[0] || bbox[0] > query[2] || bbox[3] < query[1] || bbox[1] > query[3])
}
/// Finds documents with triangles that intersect the query bounding box.
///
/// Traverses the tree starting at `offset` (typically `segment.root_offset`), pruning subtrees
/// whose bounding boxes don't intersect the query. When a node's bbox is entirely within the
/// query, all its documents are bulk-collected. Otherwise, individual triangles are tested using
/// exact geometric predicates.
///
/// The query is `[min_y, min_x, max_y, max_x]` in integer coordinates. Documents are inserted into
/// the `result` BitSet, which automatically deduplicates when the same document appears in
/// multiple leaves.
pub fn search_intersects(
segment: &Segment,
offset: i32,
query: &[i32; 4],
result: &mut BitSet,
) -> io::Result<()> {
let bbox = segment.bounding_box(offset);
// bbox doesn't intersect query → skip entire subtree
if !bbox_intersects(&bbox, query) {
}
// bbox entirely within query → all triangles intersect
else if bbox_within(&bbox, query) {
collect_all_docs(segment, offset, result)?;
} else if offset < 0 {
// bbox crosses query → test each triangle
let leaf_node = segment.leaf_node(offset);
let triangles = decompress_leaf(segment.leaf_page(&leaf_node))?;
for triangle in &triangles {
if triangle_intersects(triangle, query) {
result.insert(triangle.doc_id); // BitSet deduplicates
}
}
} else {
let branch_node = segment.branch_node(offset);
// bbox crosses query → must check children
search_intersects(segment, branch_node.left, query, result)?;
search_intersects(segment, branch_node.right, query, result)?;
}
Ok(())
}
#[expect(clippy::too_many_arguments)]
fn line_intersects_line(
x1: i32,
y1: i32,
x2: i32,
y2: i32,
x3: i32,
y3: i32,
x4: i32,
y4: i32,
) -> bool {
// Cast to i128 to prevent overflow in coordinate arithmetic
let x1 = x1 as i128;
let y1 = y1 as i128;
let x2 = x2 as i128;
let y2 = y2 as i128;
let x3 = x3 as i128;
let y3 = y3 as i128;
let x4 = x4 as i128;
let y4 = y4 as i128;
// Proper segment-segment intersection test
let d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
if d == 0 {
// parallel
return false;
}
let t = (x1 - x3) * (y3 - y4) - (y1 - y3) * (x3 - x4);
let u = -((x1 - x2) * (y1 - y3) - (y1 - y2) * (x1 - x3));
if d > 0 {
t >= 0 && t <= d && u >= 0 && u <= d
} else {
t <= 0 && t >= d && u <= 0 && u >= d
}
}
fn edge_intersects_bbox(x1: i32, y1: i32, x2: i32, y2: i32, bbox: &[i32; 4]) -> bool {
// Test against all 4 rectangle edges, bottom, right, top, left.
line_intersects_line(x1, y1, x2, y2, bbox[1], bbox[0], bbox[3], bbox[0])
|| line_intersects_line(x1, y1, x2, y2, bbox[3], bbox[0], bbox[3], bbox[2])
|| line_intersects_line(x1, y1, x2, y2, bbox[3], bbox[2], bbox[1], bbox[2])
|| line_intersects_line(x1, y1, x2, y2, bbox[1], bbox[2], bbox[1], bbox[0])
}
fn edge_crosses_bbox(x1: i32, y1: i32, x2: i32, y2: i32, bbox: &[i32; 4]) -> bool {
// Edge has endpoint outside while other is inside (crosses boundary)
let p1_inside = y1 >= bbox[0] && x1 >= bbox[1] && y1 <= bbox[2] && x1 <= bbox[3];
let p2_inside = y2 >= bbox[0] && x2 >= bbox[1] && y2 <= bbox[2] && x2 <= bbox[3];
p1_inside != p2_inside
}
fn triangle_within(triangle: &Triangle, query: &[i32; 4]) -> bool {
let tri_bbox = &triangle.words[0..4];
// Triangle bbox entirely within query → WITHIN
if tri_bbox[0] >= query[0]
&& tri_bbox[1] >= query[1]
&& tri_bbox[2] <= query[2]
&& tri_bbox[3] <= query[3]
{
return true;
}
// Triangle bbox entirely outside → NOT WITHIN
if tri_bbox[2] < query[0]
|| tri_bbox[3] < query[1]
|| tri_bbox[0] > query[2]
|| tri_bbox[1] > query[3]
{
return false;
}
// Decode vertices.
let ([ay, ax, by, bx, cy, cx], [ab, bc, ca]) = triangle.decode();
// Check each edge - if boundary edge crosses query bbox, NOT WITHIN
if ab && edge_crosses_bbox(ax, ay, bx, by, query) {
return false;
}
if bc && edge_crosses_bbox(bx, by, cx, cy, query) {
return false;
}
if ca && edge_crosses_bbox(cx, cy, ax, ay, query) {
return false;
}
// No boundary edges cross out
true
}
#[expect(clippy::too_many_arguments)]
fn point_in_triangle(
px: i32,
py: i32,
ax: i32,
ay: i32,
bx: i32,
by: i32,
cx: i32,
cy: i32,
) -> bool {
let v0x = (cx - ax) as i128;
let v0y = (cy - ay) as i128;
let v1x = (bx - ax) as i128;
let v1y = (by - ay) as i128;
let v2x = (px - ax) as i128;
let v2y = (py - ay) as i128;
let dot00 = v0x * v0x + v0y * v0y;
let dot01 = v0x * v1x + v0y * v1y;
let dot02 = v0x * v2x + v0y * v2y;
let dot11 = v1x * v1x + v1y * v1y;
let dot12 = v1x * v2x + v1y * v2y;
let denom = dot00 * dot11 - dot01 * dot01;
if denom == 0 {
return false;
}
let u = dot11 * dot02 - dot01 * dot12;
let v = dot00 * dot12 - dot01 * dot02;
u >= 0 && v >= 0 && u + v <= denom
}
fn triangle_intersects(triangle: &Triangle, query: &[i32; 4]) -> bool {
let tri_bbox = &triangle.words[0..4];
// Quick reject: bboxes don't overlap
if tri_bbox[2] < query[0]
|| tri_bbox[3] < query[1]
|| tri_bbox[0] > query[2]
|| tri_bbox[1] > query[3]
{
return false;
}
let ([ay, ax, by, bx, cy, cx], _) = triangle.decode();
// Any triangle vertex inside rectangle?
if (ax >= query[1] && ax <= query[3] && ay >= query[0] && ay <= query[2])
|| (bx >= query[1] && bx <= query[3] && by >= query[0] && by <= query[2])
|| (cx >= query[1] && cx <= query[3] && cy >= query[0] && cy <= query[2])
{
return true;
}
// Any rectangle corner inside triangle?
let corners = [
(query[1], query[0]), // min_x, min_y
(query[3], query[0]), // max_x, min_y
(query[3], query[2]), // max_x, max_y
(query[1], query[2]), // min_x, max_y
];
for (x, y) in corners {
if point_in_triangle(x, y, ax, ay, bx, by, cx, cy) {
return true;
}
}
// Any triangle edge intersect rectangle edges?
edge_intersects_bbox(ax, ay, bx, by, query)
|| edge_intersects_bbox(bx, by, cx, cy, query)
|| edge_intersects_bbox(cx, cy, ax, ay, query)
}
/// Finds documents where all triangles are within the query bounding box.
///
/// Traverses the tree starting at `offset` (typically `segment.root_offset`), testing each
/// triangle to determine if it lies entirely within the query bounds. Uses two `BitSet` instances
/// to track state: `result` accumulates candidate documents, while `excluded` marks documents that
/// have at least one triangle extending outside the query.
///
/// The query is `[min_y, min_x, max_y, max_x]` in integer coordinates. The final result is
/// documents in `result` that are NOT in `excluded` - the caller must compute this difference.
pub fn search_within(
segment: &Segment,
offset: i32,
query: &[i32; 4], // [min_y, min_x, max_y, max_x]
result: &mut BitSet,
excluded: &mut BitSet,
) -> io::Result<()> {
let bbox = segment.bounding_box(offset);
if !bbox_intersects(&bbox, query) {
} else if offset < 0 {
let leaf_node = segment.leaf_node(offset);
// bbox crosses query → test each triangle
let triangles = decompress_leaf(segment.leaf_page(&leaf_node))?;
for triangle in &triangles {
if triangle_intersects(triangle, query) {
if excluded.contains(triangle.doc_id) {
continue; // Already excluded
}
if triangle_within(triangle, query) {
result.insert(triangle.doc_id);
} else {
excluded.insert(triangle.doc_id);
}
}
}
} else {
let branch_node = segment.branch_node(offset);
search_within(segment, branch_node.left, query, result, excluded)?;
search_within(segment, branch_node.right, query, result, excluded)?;
}
Ok(())
}
enum ContainsRelation {
CANDIDATE, // Query might be contained
NOTWITHIN, // Query definitely not contained
DISJOINT, // Triangle doesn't overlap query
}
fn triangle_contains_relation(triangle: &Triangle, query: &[i32; 4]) -> ContainsRelation {
let tri_bbox = &triangle.words[0..4];
if query[2] < tri_bbox[0]
|| query[3] < tri_bbox[1]
|| query[0] > tri_bbox[2]
|| query[1] > tri_bbox[3]
{
return ContainsRelation::DISJOINT;
}
let ([ay, ax, by, bx, cy, cx], [ab, bc, ca]) = triangle.decode();
let corners = [
(query[1], query[0]),
(query[3], query[0]),
(query[3], query[2]),
(query[1], query[2]),
];
let mut any_corner_inside = false;
for &(qx, qy) in &corners {
if point_in_triangle(qx, qy, ax, ay, bx, by, cx, cy) {
any_corner_inside = true;
break;
}
}
let ab_intersects = edge_intersects_bbox(ax, ay, bx, by, query);
let bc_intersects = edge_intersects_bbox(bx, by, cx, cy, query);
let ca_intersects = edge_intersects_bbox(cx, cy, ax, ay, query);
if (ab && edge_crosses_bbox(ax, ay, bx, by, query))
|| (bc && edge_crosses_bbox(bx, by, cx, cy, query))
|| (ca && edge_crosses_bbox(cx, cy, ax, ay, query))
{
return ContainsRelation::NOTWITHIN;
}
if any_corner_inside || ab_intersects || bc_intersects || ca_intersects {
return ContainsRelation::CANDIDATE;
}
ContainsRelation::DISJOINT
}
/// Finds documents whose polygons contain the query bounding box.
///
/// Traverses the tree starting at `offset` (typically `segment.root_offset`), testing each
/// triangle using three-state logic: `CANDIDATE` (query might be contained), `NOTWITHIN` (boundary
/// edge crosses query), or `DISJOINT` (no overlap). Only boundary edges are tested for crossing -
/// internal tessellation edges are ignored.
///
/// The query is `[min_y, min_x, max_y, max_x]` in integer coordinates. Uses two `BitSet`
/// instances: `result` accumulates candidates, `excluded` marks documents with disqualifying
/// boundary crossings. The final result is documents in `result` that are NOT in `excluded`.
pub fn search_contains(
segment: &Segment,
offset: i32,
query: &[i32; 4],
result: &mut BitSet,
excluded: &mut BitSet,
) -> io::Result<()> {
let bbox = segment.bounding_box(offset);
if !bbox_intersects(&bbox, query) {
} else if offset < 0 {
let leaf_node = segment.leaf_node(offset);
// bbox crosses query → test each triangle
let triangles = decompress_leaf(segment.leaf_page(&leaf_node))?;
for triangle in &triangles {
if triangle_intersects(triangle, query) {
let doc_id = triangle.doc_id;
if excluded.contains(doc_id) {
continue;
}
match triangle_contains_relation(triangle, query) {
ContainsRelation::CANDIDATE => result.insert(doc_id),
ContainsRelation::NOTWITHIN => excluded.insert(doc_id),
ContainsRelation::DISJOINT => {}
}
}
}
} else {
let branch_node = segment.branch_node(offset);
search_contains(segment, branch_node.left, query, result, excluded)?;
search_contains(segment, branch_node.right, query, result, excluded)?;
}
Ok(())
}
/// HUSH
pub struct LeafPageIterator<'a> {
segment: &'a Segment<'a>,
descent_stack: Vec<i32>,
}
impl<'a> LeafPageIterator<'a> {
/// HUSH
pub fn new(segment: &'a Segment<'a>) -> Self {
Self {
segment,
descent_stack: vec![segment.root_offset],
}
}
}
impl<'a> Iterator for LeafPageIterator<'a> {
type Item = io::Result<Vec<Triangle>>;
fn next(&mut self) -> Option<Self::Item> {
let offset = self.descent_stack.pop()?;
if offset < 0 {
let leaf_node = self.segment.leaf_node(offset);
let leaf_page = self.segment.leaf_page(&leaf_node);
match decompress_leaf(&leaf_page) {
Ok(triangles) => Some(Ok(triangles)),
Err(e) => Some(Err(e)),
}
} else {
let branch_node = self.segment.branch_node(offset);
self.descent_stack.push(branch_node.right);
self.descent_stack.push(branch_node.left);
self.next()
}
}
}

View File

@@ -1,300 +0,0 @@
//! Delta compression for block kd-tree leaves.
//!
//! Delta compression with dimension-major bit-packing for block kd-tree leaves. Each leaf contains
//! ≤512 triangles sorted by the split dimension (the dimension with maximum spread chosen during
//! tree construction). We store all 512 values for dimension 0, then all for dimension 1, etc.,
//! enabling tight bit-packing per dimension and better cache locality during decode.
//!
//! The split dimension is already optimal for compression. Since triangles in a leaf are spatially
//! clustered, sorting by the max-spread dimension naturally orders them by proximity in all
//! dimensions. Testing multiple sort orders would be wasted effort.
//!
//! Our encoding uses ~214 units/meter for latitude, ~107 units/meter for longitude (millimeter
//! precision). A quarter-acre lot (32m × 32m) spans ~6,850 units across 512 sorted triangles = avg
//! delta ~13 units = 4 bits. A baseball field (100m × 100m) is ~42 unit deltas = 6 bits. Even
//! Russia-sized polygons (1000 km) average ~418,000 unit deltas = 19 bits. Time will tell if these
//! numbers are anything to go by in practice.
//!
//! Our format for use with leaf-page triangles: First a count of triangles in the page, then the
//! delta encoded doc_ids followed by delta encoding of each series of the triangle dimensions,
//! followed by delta encoding of the flags. Creates eight parallel arrays from which triangles can
//! be reconstructed.
//!
//! Note: Tantivy also has delta encoding in `sstable/src/delta.rs`, but that's for string
//! dictionary compression (prefix sharing + vint deltas). This module uses bit-packing with zigzag
//! encoding, which is optimal for our signed i32 spatial coordinates with small deltas. It uses
//! the same basic algorithm to compress u32 doc_ids.
use std::io::{self, Write};
fn zigzag_encode(x: i32) -> u32 {
((x << 1) ^ (x >> 31)) as u32
}
fn zigzag_decode(x: u32) -> i32 {
((x >> 1) ^ (0u32.wrapping_sub(x & 1))) as i32
}
/// Trait for reading values by index during compression.
///
/// The `Compressible` trait allows `compress()` to work with two different data sources,
/// `Vec<Triangle>` when indexing and memory mapped `Triangle` when merging. The compress function
/// reads values on-demand via `get()`, computing deltas and bit-packing without intermediate
/// allocations.
pub trait Compressible {
/// The type of the values being compressed.
type Value: Copy;
/// Returns the number of values in this source.
fn len(&self) -> usize;
/// Returns the value at the given index.
fn get(&self, i: usize) -> Self::Value;
}
/// Operations for types that can be delta-encoded and bit-packed into four-byte words.
pub trait DeltaEncoder: Copy {
/// Computes a zigzag-encoded delta between two values.
fn compute_delta(current: Self, previous: Self) -> u32;
/// Converts a value to little-endian bytes for storage.
fn to_le_bytes(value: Self) -> [u8; 4];
}
impl DeltaEncoder for i32 {
fn compute_delta(current: Self, previous: Self) -> u32 {
zigzag_encode(current.wrapping_sub(previous))
}
fn to_le_bytes(value: Self) -> [u8; 4] {
value.to_le_bytes()
}
}
// Delta encoding for u32 values using wrapping arithmetic and zigzag encoding.
//
// This handles arbitrary u32 document IDs that may be non-sequential or widely spaced. The
// strategy uses wrapping subtraction followed by zigzag encoding:
//
// 1. wrapping_sub computes the difference modulo 2^32, producing a u32 result
// 2. Cast to i32 reinterprets the bit pattern as signed (two's complement)
// 3. zigzag_encode maps signed values to unsigned for efficient bit-packing:
// - Positive deltas (0, 1, 2...) encode to even numbers (0, 2, 4...)
// - Negative deltas (-1, -2, -3...) encode to odd numbers (1, 3, 5...)
//
// Example with large jump (doc_id 0 → 4,000,000,000):
// delta = 4_000_000_000u32.wrapping_sub(0) = 4_000_000_000u32
// as i32 = -294,967,296 (bit pattern preserved via two's complement)
// zigzag_encode(-294,967,296) = some u32 value
//
// During decompression, zigzag_decode returns the signed i32 delta, which is cast back to u32 and
// added with wrapping_add. The bit pattern round-trips correctly because wrapping_add and
// wrapping_sub are mathematical inverses modulo 2^32, making this encoding symmetric for the full
// u32 range.
impl DeltaEncoder for u32 {
fn compute_delta(current: Self, previous: Self) -> u32 {
zigzag_encode(current.wrapping_sub(previous) as i32)
}
fn to_le_bytes(value: Self) -> [u8; 4] {
value.to_le_bytes()
}
}
/// Compresses values from a `Compressible` source using delta encoding and bit-packing.
///
/// Computes signed deltas between consecutive values, zigzag encodes them, and determines the
/// minimum bit width needed to represent all deltas. Writes a header (1 byte for bit width +
/// 4 bytes for first value in little-endian), then bit-packs the remaining deltas.
pub fn compress<T, W>(compressible: &T, write: &mut W) -> io::Result<()>
where
T: Compressible,
T::Value: DeltaEncoder,
W: Write,
{
let mut max_delta = 0u32;
for i in 1..compressible.len() {
let delta = T::Value::compute_delta(compressible.get(i), compressible.get(i - 1));
max_delta = max_delta.max(delta);
}
let bits = if max_delta == 0 {
0u32
} else {
32 - max_delta.leading_zeros() as u32
};
let mask = if bits == 32 {
u32::MAX
} else {
(1u32 << bits) - 1
};
write.write_all(&[bits as u8])?;
write.write_all(&T::Value::to_le_bytes(compressible.get(0)))?;
let mut buffer = 0u64;
let mut buffer_bits = 0u32;
for i in 1..compressible.len() {
let delta = T::Value::compute_delta(compressible.get(i), compressible.get(i - 1));
let value = delta & mask;
buffer = (buffer << bits) | (value as u64);
buffer_bits += bits;
while buffer_bits >= 8 {
buffer_bits -= 8;
write.write_all(&[(buffer >> buffer_bits) as u8])?;
}
}
if buffer_bits > 0 {
write.write_all(&[(buffer << (8 - buffer_bits)) as u8])?;
}
Ok(())
}
/// Operations needed to decompress delta-encoded values back to their original form.
pub trait DeltaDecoder: Copy + Sized {
/// Converts from little-endian bytes to a value.
fn from_le_bytes(bytes: [u8; 4]) -> Self;
/// Applies a zigzag-decoded delta to reconstruct the next value.
fn apply_delta(value: Self, delta: u32) -> Self;
}
impl DeltaDecoder for i32 {
fn from_le_bytes(bytes: [u8; 4]) -> Self {
i32::from_le_bytes(bytes)
}
fn apply_delta(value: Self, delta: u32) -> Self {
value.wrapping_add(zigzag_decode(delta))
}
}
impl DeltaDecoder for u32 {
fn from_le_bytes(bytes: [u8; 4]) -> Self {
u32::from_le_bytes(bytes)
}
fn apply_delta(value: Self, delta: u32) -> Self {
value.wrapping_add(zigzag_decode(delta) as u32)
}
}
/// Decompresses bit-packed delta-encoded values from a byte slice.
///
/// Reads the header to get bit width and first value, then unpacks the bit-packed deltas, applies
/// zigzag decoding, and reconstructs the original values by accumulating deltas.
///
/// Returns the count of bytes read from `data`.
pub fn decompress<T: DeltaDecoder, F>(
data: &[u8],
count: usize,
mut process: F,
) -> io::Result<usize>
where
F: FnMut(usize, T),
{
if data.len() < 5 {
return Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
"truncated header",
));
}
let bits = data[0] as u32;
let first = T::from_le_bytes([data[1], data[2], data[3], data[4]]);
process(0, first);
let mut offset = 5;
if bits == 0 {
// All deltas are zero - all values same as first
for i in 1..count {
process(i, first);
}
return Ok(offset);
}
let mut buffer = 0u64;
let mut buffer_bits = 0u32;
let mut prev = first;
for i in 1..count {
// Refill buffer with bytes
while buffer_bits < bits {
if offset >= data.len() {
return Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
format!("expected {} values but only decoded {}", count, i - 1),
));
}
buffer = (buffer << 8) | (data[offset] as u64);
offset += 1;
buffer_bits += 8;
}
if buffer_bits >= bits {
// Extract packed value
buffer_bits -= bits;
let encoded = ((buffer >> buffer_bits) & ((1u64 << bits) - 1)) as u32;
let value = T::apply_delta(prev, encoded);
process(i, value);
prev = value;
} else {
break;
}
}
Ok(offset)
}
#[cfg(test)]
mod test {
use super::*;
pub struct CompressibleI32Vec {
vec: Vec<i32>,
}
impl CompressibleI32Vec {
fn new(vec: Vec<i32>) -> Self {
CompressibleI32Vec { vec }
}
}
impl Compressible for CompressibleI32Vec {
type Value = i32;
fn len(&self) -> usize {
return self.vec.len();
}
fn get(&self, i: usize) -> i32 {
return self.vec[i];
}
}
#[test]
fn test_spatial_delta_compress_decompress() {
let values = vec![
100000, 99975, 100050, 99980, 100100, 100025, 99950, 100150, 100075, 99925, 100200,
100100,
];
let compressible = CompressibleI32Vec::new(values.clone());
let mut buffer = Vec::new();
compress(&compressible, &mut buffer).unwrap();
let mut vec = Vec::new();
decompress::<i32, _>(&buffer, values.len(), |_, value| vec.push(value)).unwrap();
assert_eq!(vec, values);
}
#[test]
fn test_spatial_delta_bad_header() {
let mut vec = Vec::new();
let result = decompress::<i32, _>(&[1, 2], 1, |_, value| vec.push(value));
assert!(result.is_err());
}
#[test]
fn test_spatial_delta_insufficient_data() {
let mut vec = Vec::new();
let result = decompress::<i32, _>(&[5, 0, 0, 0, 1], 12, |_, value| vec.push(value));
assert!(result.is_err());
}
#[test]
fn test_spatial_delta_single_item() {
let mut vec = Vec::new();
decompress::<i32, _>(&[5, 1, 0, 0, 0], 1, |_, value| vec.push(value)).unwrap();
assert_eq!(vec[0], 1);
}
#[test]
fn test_spatial_delta_zero_length_delta() {
let values = vec![1, 1, 1];
let compressible = CompressibleI32Vec::new(values.clone());
let mut buffer = Vec::new();
compress(&compressible, &mut buffer).unwrap();
let mut vec = Vec::new();
decompress::<i32, _>(&buffer, values.len(), |_, value| vec.push(value)).unwrap();
assert_eq!(vec, values);
}
}

View File

@@ -1,490 +0,0 @@
//! HUSH
use std::io::{self, Read, Write};
use common::{BinarySerializable, VInt};
use serde_json::{json, Map, Value};
use crate::spatial::point::GeoPoint;
use crate::spatial::xor::{compress_f64, decompress_f64};
/// HUSH
#[derive(Debug)]
pub enum GeometryError {
/// HUSH
MissingType,
/// HUSH
MissingField(String), // "expected array", "wrong nesting depth", etc
/// HUSH
UnsupportedType(String),
/// HUSH
InvalidCoordinate(String), // Can report the actual bad value
/// HUSH
InvalidStructure(String), // "expected array", "wrong nesting depth", etc
}
/// HUSH
#[derive(Debug, Clone, PartialEq)]
pub enum Geometry {
/// HUSH
Point(GeoPoint),
/// HUSH
MultiPoint(Vec<GeoPoint>),
/// HUSH
LineString(Vec<GeoPoint>),
/// HUSH
MultiLineString(Vec<Vec<GeoPoint>>),
/// HUSH
Polygon(Vec<Vec<GeoPoint>>),
/// HUSH
MultiPolygon(Vec<Vec<Vec<GeoPoint>>>),
/// HUSH
GeometryCollection(Vec<Self>),
}
impl Geometry {
/// HUSH
pub fn from_geojson(object: &Map<String, Value>) -> Result<Self, GeometryError> {
let geometry_type = object
.get("type")
.and_then(|v| v.as_str())
.ok_or(GeometryError::MissingType)?;
match geometry_type {
"Point" => {
let coordinates = get_coordinates(object)?;
let point = to_point(coordinates)?;
Ok(Geometry::Point(point))
}
"MultiPoint" => {
let coordinates = get_coordinates(object)?;
let multi_point = to_line_string(coordinates)?;
Ok(Geometry::MultiPoint(multi_point))
}
"LineString" => {
let coordinates = get_coordinates(object)?;
let line_string = to_line_string(coordinates)?;
if line_string.len() < 2 {
return Err(GeometryError::InvalidStructure(
"a line string contains at least 2 points".to_string(),
));
}
Ok(Geometry::LineString(line_string))
}
"MultiLineString" => {
let coordinates = get_coordinates(object)?;
let multi_line_string = to_multi_line_string(coordinates)?;
for line_string in &multi_line_string {
if line_string.len() < 2 {
return Err(GeometryError::InvalidStructure(
"a line string contains at least 2 points".to_string(),
));
}
}
Ok(Geometry::MultiLineString(multi_line_string))
}
"Polygon" => {
let coordinates = get_coordinates(object)?;
let polygon = to_multi_line_string(coordinates)?;
for ring in &polygon {
if ring.len() < 3 {
return Err(GeometryError::InvalidStructure(
"a polygon ring contains at least 3 points".to_string(),
));
}
}
Ok(Geometry::Polygon(polygon))
}
"MultiPolygon" => {
let mut result = Vec::new();
let multi_polygons = get_coordinates(object)?;
let multi_polygons =
multi_polygons
.as_array()
.ok_or(GeometryError::InvalidStructure(
"expected an array of polygons".to_string(),
))?;
for polygon in multi_polygons {
let polygon = to_multi_line_string(polygon)?;
for ring in &polygon {
if ring.len() < 3 {
return Err(GeometryError::InvalidStructure(
"a polygon ring contains at least 3 points".to_string(),
));
}
}
result.push(polygon);
}
Ok(Geometry::MultiPolygon(result))
}
"GeometriesCollection" => {
let geometries = object
.get("geometries")
.ok_or(GeometryError::MissingField("geometries".to_string()))?;
let geometries = geometries
.as_array()
.ok_or(GeometryError::InvalidStructure(
"geometries is not an array".to_string(),
))?;
let mut result = Vec::new();
for geometry in geometries {
let object = geometry.as_object().ok_or(GeometryError::InvalidStructure(
"geometry is not an object".to_string(),
))?;
result.push(Geometry::from_geojson(object)?);
}
Ok(Geometry::GeometryCollection(result))
}
_ => Err(GeometryError::UnsupportedType(geometry_type.to_string())),
}
}
/// Serialize the geometry to GeoJSON format.
/// https://fr.wikipedia.org/wiki/GeoJSON
pub fn to_geojson(&self) -> Map<String, Value> {
let mut map = Map::new();
match self {
Geometry::Point(point) => {
map.insert("type".to_string(), Value::String("Point".to_string()));
let coords = json!([point.lon, point.lat]);
map.insert("coordinates".to_string(), coords);
}
Geometry::MultiPoint(points) => {
map.insert("type".to_string(), Value::String("MultiPoint".to_string()));
let coords: Vec<Value> = points.iter().map(|p| json!([p.lon, p.lat])).collect();
map.insert("coordinates".to_string(), Value::Array(coords));
}
Geometry::LineString(line) => {
map.insert("type".to_string(), Value::String("LineString".to_string()));
let coords: Vec<Value> = line.iter().map(|p| json!([p.lon, p.lat])).collect();
map.insert("coordinates".to_string(), Value::Array(coords));
}
Geometry::MultiLineString(lines) => {
map.insert(
"type".to_string(),
Value::String("MultiLineString".to_string()),
);
let coords: Vec<Value> = lines
.iter()
.map(|line| Value::Array(line.iter().map(|p| json!([p.lon, p.lat])).collect()))
.collect();
map.insert("coordinates".to_string(), Value::Array(coords));
}
Geometry::Polygon(rings) => {
map.insert("type".to_string(), Value::String("Polygon".to_string()));
let coords: Vec<Value> = rings
.iter()
.map(|ring| Value::Array(ring.iter().map(|p| json!([p.lon, p.lat])).collect()))
.collect();
map.insert("coordinates".to_string(), Value::Array(coords));
}
Geometry::MultiPolygon(polygons) => {
map.insert(
"type".to_string(),
Value::String("MultiPolygon".to_string()),
);
let coords: Vec<Value> = polygons
.iter()
.map(|polygon| {
Value::Array(
polygon
.iter()
.map(|ring| {
Value::Array(
ring.iter().map(|p| json!([p.lon, p.lat])).collect(),
)
})
.collect(),
)
})
.collect();
map.insert("coordinates".to_string(), Value::Array(coords));
}
Geometry::GeometryCollection(geometries) => {
map.insert(
"type".to_string(),
Value::String("GeometryCollection".to_string()),
);
let geoms: Vec<Value> = geometries
.iter()
.map(|g| Value::Object(g.to_geojson()))
.collect();
map.insert("geometries".to_string(), Value::Array(geoms));
}
}
map
}
}
fn get_coordinates(object: &Map<String, Value>) -> Result<&Value, GeometryError> {
let coordinates = object
.get("coordinates")
.ok_or(GeometryError::MissingField("coordinates".to_string()))?;
Ok(coordinates)
}
fn to_point(value: &Value) -> Result<GeoPoint, GeometryError> {
let lonlat = value.as_array().ok_or(GeometryError::InvalidStructure(
"expected 2 element array pair of lon/lat".to_string(),
))?;
if lonlat.len() != 2 {
return Err(GeometryError::InvalidStructure(
"expected 2 element array pair of lon/lat".to_string(),
));
}
let lon = lonlat[0].as_f64().ok_or(GeometryError::InvalidCoordinate(
"longitude must be f64".to_string(),
))?;
if !lon.is_finite() || !(-180.0..=180.0).contains(&lon) {
return Err(GeometryError::InvalidCoordinate(format!(
"invalid longitude: {}",
lon
)));
}
let lat = lonlat[1].as_f64().ok_or(GeometryError::InvalidCoordinate(
"latitude must be f64".to_string(),
))?;
if !lat.is_finite() || !(-90.0..=90.0).contains(&lat) {
return Err(GeometryError::InvalidCoordinate(format!(
"invalid latitude: {}",
lat
)));
}
Ok(GeoPoint { lon, lat })
}
fn to_line_string(value: &Value) -> Result<Vec<GeoPoint>, GeometryError> {
let mut result = Vec::new();
let coordinates = value.as_array().ok_or(GeometryError::InvalidStructure(
"expected an array of lon/lat arrays".to_string(),
))?;
for coordinate in coordinates {
result.push(to_point(coordinate)?);
}
Ok(result)
}
fn to_multi_line_string(value: &Value) -> Result<Vec<Vec<GeoPoint>>, GeometryError> {
let mut result = Vec::new();
let coordinates = value.as_array().ok_or(GeometryError::InvalidStructure(
"expected an array of an array of lon/lat arrays".to_string(),
))?;
for coordinate in coordinates {
result.push(to_line_string(coordinate)?);
}
Ok(result)
}
impl BinarySerializable for Geometry {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
match self {
Geometry::Point(point) => {
0u8.serialize(writer)?;
point.lon.serialize(writer)?;
point.lat.serialize(writer)?;
Ok(())
}
Geometry::MultiPoint(points) => {
1u8.serialize(writer)?;
serialize_line_string(points, writer)
}
Geometry::LineString(line_string) => {
2u8.serialize(writer)?;
serialize_line_string(line_string, writer)
}
Geometry::MultiLineString(multi_line_string) => {
3u8.serialize(writer)?;
serialize_polygon(&multi_line_string[..], writer)
}
Geometry::Polygon(polygon) => {
4u8.serialize(writer)?;
serialize_polygon(polygon, writer)
}
Geometry::MultiPolygon(multi_polygon) => {
5u8.serialize(writer)?;
BinarySerializable::serialize(&VInt(multi_polygon.len() as u64), writer)?;
for polygon in multi_polygon {
BinarySerializable::serialize(&VInt(polygon.len() as u64), writer)?;
for ring in polygon {
BinarySerializable::serialize(&VInt(ring.len() as u64), writer)?;
}
}
let mut lon = Vec::new();
let mut lat = Vec::new();
for polygon in multi_polygon {
for ring in polygon {
for point in ring {
lon.push(point.lon);
lat.push(point.lat);
}
}
}
let lon = compress_f64(&lon);
let lat = compress_f64(&lat);
VInt(lon.len() as u64).serialize(writer)?;
writer.write_all(&lon)?;
VInt(lat.len() as u64).serialize(writer)?;
writer.write_all(&lat)?;
Ok(())
}
Geometry::GeometryCollection(geometries) => {
6u8.serialize(writer)?;
BinarySerializable::serialize(&VInt(geometries.len() as u64), writer)?;
for geometry in geometries {
geometry.serialize(writer)?;
}
Ok(())
}
}
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
let discriminant: u8 = BinarySerializable::deserialize(reader)?;
match discriminant {
0 => {
let lon = BinarySerializable::deserialize(reader)?;
let lat = BinarySerializable::deserialize(reader)?;
Ok(Geometry::Point(GeoPoint { lon, lat }))
}
1 => Ok(Geometry::MultiPoint(deserialize_line_string(reader)?)),
2 => Ok(Geometry::LineString(deserialize_line_string(reader)?)),
3 => Ok(Geometry::MultiLineString(deserialize_polygon(reader)?)),
4 => Ok(Geometry::Polygon(deserialize_polygon(reader)?)),
5 => {
let polygon_count = VInt::deserialize(reader)?.0 as usize;
let mut polygons = Vec::new();
let mut count = 0;
for _ in 0..polygon_count {
let ring_count = VInt::deserialize(reader)?.0 as usize;
let mut rings = Vec::new();
for _ in 0..ring_count {
let point_count = VInt::deserialize(reader)?.0 as usize;
rings.push(point_count);
count += point_count;
}
polygons.push(rings);
}
let lon_bytes: Vec<u8> = BinarySerializable::deserialize(reader)?;
let lat_bytes: Vec<u8> = BinarySerializable::deserialize(reader)?;
let lon = decompress_f64(&lon_bytes, count);
let lat = decompress_f64(&lat_bytes, count);
let mut multi_polygon = Vec::new();
let mut offset = 0;
for rings in polygons {
let mut polygon = Vec::new();
for point_count in rings {
let mut ring = Vec::new();
for _ in 0..point_count {
ring.push(GeoPoint {
lon: lon[offset],
lat: lat[offset],
});
offset += 1;
}
polygon.push(ring);
}
multi_polygon.push(polygon);
}
Ok(Geometry::MultiPolygon(multi_polygon))
}
6 => {
let geometry_count = VInt::deserialize(reader)?.0 as usize;
let mut geometries = Vec::new();
for _ in 0..geometry_count {
geometries.push(Geometry::deserialize(reader)?);
}
Ok(Geometry::GeometryCollection(geometries))
}
_ => Err(io::Error::new(
io::ErrorKind::InvalidData,
"invalid geometry type",
)),
}
}
}
fn serialize_line_string<W: Write + ?Sized>(line: &[GeoPoint], writer: &mut W) -> io::Result<()> {
BinarySerializable::serialize(&VInt(line.len() as u64), writer)?;
let mut lon = Vec::new();
let mut lat = Vec::new();
for point in line {
lon.push(point.lon);
lat.push(point.lat);
}
let lon = compress_f64(&lon);
let lat = compress_f64(&lat);
VInt(lon.len() as u64).serialize(writer)?;
writer.write_all(&lon)?;
VInt(lat.len() as u64).serialize(writer)?;
writer.write_all(&lat)?;
Ok(())
}
fn serialize_polygon<W: Write + ?Sized>(
line_string: &[Vec<GeoPoint>],
writer: &mut W,
) -> io::Result<()> {
BinarySerializable::serialize(&VInt(line_string.len() as u64), writer)?;
for ring in line_string {
BinarySerializable::serialize(&VInt(ring.len() as u64), writer)?;
}
let mut lon: Vec<f64> = Vec::new();
let mut lat: Vec<f64> = Vec::new();
for ring in line_string {
for point in ring {
lon.push(point.lon);
lat.push(point.lat);
}
}
let lon: Vec<u8> = compress_f64(&lon);
let lat: Vec<u8> = compress_f64(&lat);
VInt(lon.len() as u64).serialize(writer)?;
writer.write_all(&lon)?;
VInt(lat.len() as u64).serialize(writer)?;
writer.write_all(&lat)?;
Ok(())
}
fn deserialize_line_string<R: Read>(reader: &mut R) -> io::Result<Vec<GeoPoint>> {
let point_count = VInt::deserialize(reader)?.0 as usize;
let lon_bytes: Vec<u8> = BinarySerializable::deserialize(reader)?;
let lat_bytes: Vec<u8> = BinarySerializable::deserialize(reader)?;
let lon: Vec<f64> = decompress_f64(&lon_bytes, point_count);
let lat: Vec<f64> = decompress_f64(&lat_bytes, point_count);
let mut line_string: Vec<GeoPoint> = Vec::new();
for offset in 0..point_count {
line_string.push(GeoPoint {
lon: lon[offset],
lat: lat[offset],
});
}
Ok(line_string)
}
fn deserialize_polygon<R: Read>(reader: &mut R) -> io::Result<Vec<Vec<GeoPoint>>> {
let ring_count = VInt::deserialize(reader)?.0 as usize;
let mut rings = Vec::new();
let mut count = 0;
for _ in 0..ring_count {
let point_count = VInt::deserialize(reader)?.0 as usize;
rings.push(point_count);
count += point_count;
}
let lon_bytes: Vec<u8> = BinarySerializable::deserialize(reader)?;
let lat_bytes: Vec<u8> = BinarySerializable::deserialize(reader)?;
let lon: Vec<f64> = decompress_f64(&lon_bytes, count);
let lat: Vec<f64> = decompress_f64(&lat_bytes, count);
let mut polygon: Vec<Vec<GeoPoint>> = Vec::new();
let mut offset = 0;
for point_count in rings {
let mut ring = Vec::new();
for _ in 0..point_count {
ring.push(GeoPoint {
lon: lon[offset],
lat: lat[offset],
});
offset += 1;
}
polygon.push(ring);
}
Ok(polygon)
}

View File

@@ -1,12 +0,0 @@
//! Spatial module (implements a block kd-tree)
pub mod bkd;
pub mod delta;
pub mod geometry;
pub mod point;
pub mod radix_select;
pub mod reader;
pub mod serializer;
pub mod triangle;
pub mod writer;
pub mod xor;

View File

@@ -1,8 +0,0 @@
/// A point in the geographical coordinate system.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct GeoPoint {
/// Longitude
pub lon: f64,
/// Latitude
pub lat: f64,
}

View File

@@ -1,122 +0,0 @@
//! Radix selection for block kd-tree tree partitioning.
//!
//! Implements byte-wise histogram selection to find median values without comparisons, enabling
//! efficient partitioning of spatial data during block kd-tree construction. Processes values
//! through multiple passes, building histograms for each byte position after a common prefix,
//! avoiding the need to sort or compare elements directly.
/// Performs radix selection to find the median value without comparisons by building byte-wise
/// histograms.
pub struct RadixSelect {
histogram: [usize; 256],
prefix: Vec<u8>,
offset: usize,
nth: usize,
}
impl RadixSelect {
/// Creates a new radix selector for finding the nth element among values with a common prefix.
///
/// The offset specifies how many matching elements appeared in previous buckets (from earlier
/// passes). The nth parameter is 0-indexed, so pass 31 to find the 32nd element (median of
/// 64).
pub fn new(prefix: Vec<u8>, offset: usize, nth: usize) -> Self {
RadixSelect {
histogram: [0; 256],
prefix,
offset,
nth,
}
}
/// Updates the histogram with a value if it matches the current prefix.
///
/// Values that don't start with the prefix are ignored. For matching values, increments the
/// count for the byte at position `prefix.len()`.
pub fn update(&mut self, value: i32) {
let bytes = value.to_be_bytes();
if !bytes.starts_with(&self.prefix) {
return;
}
let byte = bytes[self.prefix.len()];
self.histogram[byte as usize] += 1;
}
/// Finds which bucket contains the nth element and returns the bucket value and offset.
///
/// Returns a tuple of `(bucket_byte, count_before)` where bucket_byte is the value of the byte
/// that contains the nth element, and count_before is the number of elements in earlier
/// buckets (becomes the offset for the next pass).
pub fn nth(&self) -> (u8, usize) {
let mut count = self.offset;
for (bucket, &frequency) in self.histogram.iter().enumerate() {
if count + frequency > self.nth as usize {
return (bucket as u8, count);
}
count += frequency;
}
panic!("nth element {} not found in histogram", self.nth);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn radix_selection() {
let dimensions = [
(
vec![
0x10101010, 0x10101011, 0x10101012, 0x10101013, 0x10101014, 0x10101015,
0x10101016, 0x10101017, 0x10101018, 0x10101019, 0x1010101A, 0x1010101B,
0x1010101C, 0x1010101D, 0x1010101E, 0x1010101F, 0x10101020, 0x10101021,
0x10101022, 0x10101023, 0x10101024, 0x10101025, 0x10101026, 0x10101027,
0x10101028, 0x10101029, 0x1010102A, 0x1010102B, 0x1010102C, 0x1010102D,
0x1010102E, 0x1010102F, 0x10101030, 0x10101031, 0x10101032, 0x10101033,
0x10101034, 0x10101035, 0x10101036, 0x10101037, 0x10101038, 0x10101039,
0x1010103A, 0x1010103B, 0x1010103C, 0x1010103D, 0x1010103E, 0x1010103F,
0x10101040, 0x10101041, 0x10101042, 0x10101043, 0x10101044, 0x10101045,
0x10101046, 0x10101047, 0x10101048, 0x10101049, 0x1010104A, 0x1010104B,
0x1010104C, 0x1010104D, 0x1010104E, 0x1010104F,
],
[(0x10, 0), (0x10, 0), (0x10, 0), (0x2F, 31)],
),
(
vec![
0x10101010, 0x10101011, 0x10101012, 0x10101013, 0x10101014, 0x10101015,
0x10101016, 0x10101017, 0x10101018, 0x10101019, 0x1010101A, 0x1010101B,
0x1010101C, 0x1010101D, 0x1010101E, 0x1010101F, 0x10101020, 0x10101021,
0x10101022, 0x10101023, 0x10101024, 0x20101025, 0x20201026, 0x20301027,
0x20401028, 0x20501029, 0x2060102A, 0x2070102B, 0x2080102C, 0x2090102D,
0x20A0102E, 0x20B0102F, 0x20C01030, 0x20D01031, 0x20E01032, 0x20F01033,
0x20F11034, 0x20F21035, 0x20F31036, 0x20F41037, 0x20F51038, 0x20F61039,
0x3010103A, 0x3010103B, 0x3010103C, 0x3010103D, 0x3010103E, 0x3010103F,
0x30101040, 0x30101041, 0x30101042, 0x30101043, 0x30101044, 0x30101045,
0x30101046, 0x30101047, 0x30101048, 0x30101049, 0x3010104A, 0x3010104B,
0x3010104C, 0x3010104D, 0x3010104E, 0x3010104F,
],
[(0x20, 21), (0xB0, 31), (0x10, 31), (0x2F, 31)],
),
];
for (numbers, expected) in dimensions {
let mut offset = 0;
let mut prefix = Vec::new();
for i in 0..4 {
let mut radix_select = RadixSelect::new(prefix.clone(), offset, 31);
for &number in &numbers {
radix_select.update(number);
}
let (byte, count) = radix_select.nth();
if i != 3 {
assert_eq!(expected[i].0, byte);
assert_eq!(expected[i].1, count);
}
prefix.push(byte);
offset = count;
}
let mut sorted = numbers.clone();
sorted.sort();
let radix_result = i32::from_be_bytes(prefix.as_slice().try_into().unwrap());
assert_eq!(radix_result, sorted[31]);
}
}
}

View File

@@ -1,70 +0,0 @@
//! HUSH
use std::io;
use std::sync::Arc;
use common::file_slice::FileSlice;
use common::OwnedBytes;
use crate::directory::CompositeFile;
use crate::schema::Field;
use crate::space_usage::PerFieldSpaceUsage;
#[derive(Clone)]
pub struct SpatialReaders {
data: Arc<CompositeFile>,
}
impl SpatialReaders {
pub fn empty() -> SpatialReaders {
SpatialReaders {
data: Arc::new(CompositeFile::empty()),
}
}
/// Creates a field norm reader.
pub fn open(file: FileSlice) -> crate::Result<SpatialReaders> {
let data = CompositeFile::open(&file)?;
Ok(SpatialReaders {
data: Arc::new(data),
})
}
/// Returns the FieldNormReader for a specific field.
pub fn get_field(&self, field: Field) -> crate::Result<Option<SpatialReader>> {
if let Some(file) = self.data.open_read(field) {
let spatial_reader = SpatialReader::open(file)?;
Ok(Some(spatial_reader))
} else {
Ok(None)
}
}
/// Return a break down of the space usage per field.
pub fn space_usage(&self) -> PerFieldSpaceUsage {
self.data.space_usage()
}
/// Returns a handle to inner file
pub fn get_inner_file(&self) -> Arc<CompositeFile> {
self.data.clone()
}
}
/// HUSH
#[derive(Clone)]
pub struct SpatialReader {
data: OwnedBytes,
}
impl SpatialReader {
/// Opens the spatial reader from a `FileSlice`. Returns `None` if the file is empty (no
/// spatial fields indexed.)
pub fn open(spatial_file: FileSlice) -> io::Result<SpatialReader> {
let data = spatial_file.read_bytes()?;
Ok(SpatialReader { data })
}
/// HUSH
pub fn get_bytes(&self) -> &[u8] {
self.data.as_ref()
}
}

View File

@@ -1,37 +0,0 @@
//! HUSH
use std::io;
use std::io::Write;
use crate::directory::{CompositeWrite, WritePtr};
use crate::schema::Field;
use crate::spatial::bkd::write_block_kd_tree;
use crate::spatial::triangle::Triangle;
/// The fieldnorms serializer is in charge of
/// the serialization of field norms for all fields.
pub struct SpatialSerializer {
composite_write: CompositeWrite,
}
impl SpatialSerializer {
/// Create a composite file from the write pointer.
pub fn from_write(write: WritePtr) -> io::Result<SpatialSerializer> {
// just making room for the pointer to header.
let composite_write = CompositeWrite::wrap(write);
Ok(SpatialSerializer { composite_write })
}
/// Serialize the given field
pub fn serialize_field(&mut self, field: Field, triangles: &mut [Triangle]) -> io::Result<()> {
let write = self.composite_write.for_field(field);
write_block_kd_tree(triangles, write)?;
write.flush()?;
Ok(())
}
/// Clean up, flush, and close.
pub fn close(self) -> io::Result<()> {
self.composite_write.close()?;
Ok(())
}
}

View File

@@ -1,515 +0,0 @@
//! A triangle encoding with bounding box in the first four words for efficient spatial pruning.
//!
//! Encodes triangles with the bounding box in the first four words, enabling efficient spatial
//! pruning during tree traversal without reconstructing the full triangle. The remaining words
//! contain an additional vertex and packed reconstruction metadata, allowing exact triangle
//! recovery when needed.
use i_triangle::advanced::delaunay::IntDelaunay;
use i_triangle::i_overlay::i_float::int::point::IntPoint;
use crate::DocId;
const MINY_MINX_MAXY_MAXX_Y_X: i32 = 0;
const MINY_MINX_Y_X_MAXY_MAXX: i32 = 1;
const MAXY_MINX_Y_X_MINY_MAXX: i32 = 2;
const MAXY_MINX_MINY_MAXX_Y_X: i32 = 3;
const Y_MINX_MINY_X_MAXY_MAXX: i32 = 4;
const Y_MINX_MINY_MAXX_MAXY_X: i32 = 5;
const MAXY_MINX_MINY_X_Y_MAXX: i32 = 6;
const MINY_MINX_Y_MAXX_MAXY_X: i32 = 7;
/// Converts geographic coordinates (WGS84 lat/lon) to integer spatial coordinates.
///
/// Maps the full globe to the i32 range using linear scaling:
/// - Latitude: -90° to +90° → -2³¹ to +2³¹-1
/// - Longitude: -180° to +180° → -2³¹ to +2³¹-1
///
/// Provides approximately 214 units/meter for latitude and 107 units/meter for longitude, giving
/// millimeter-level precision. Uses `floor()` to ensure consistent quantization.
///
/// Returns `(y, x)` where y=latitude coordinate, x=longitude coordinate.
pub fn latlon_to_point(lat: f64, lon: f64) -> (i32, i32) {
let y = (lat / (180.0 / (1i64 << 32) as f64)).floor() as i32;
let x = (lon / (360.0 / (1i64 << 32) as f64)).floor() as i32;
(y, x)
}
/// Creates a bounding box from two lat/lon corner coordinates.
///
/// Takes two arbitrary corner points and produces a normalized bounding box in the internal
/// coordinate system. Automatically computes min/max for each dimension.
///
/// Returns `[min_y, min_x, max_y, max_x]` matching the internal storage format used throughout the
/// block kd-tree and triangle encoding.
pub fn latlon_to_bbox(lat1: f64, lon1: f64, lat2: f64, lon2: f64) -> [i32; 4] {
let (y1, x1) = latlon_to_point(lat1, lon1);
let (y2, x2) = latlon_to_point(lat2, lon2);
[y1.min(y2), x1.min(x2), y1.max(y2), x1.max(x2)]
}
/// A triangle encoded with bounding box in the first four words for efficient spatial pruning.
///
/// Encodes the bounding box, one vertex, boundary edge flags, and a reconstruction code that
/// together allow exact triangle recovery while optimizing for spatial query performance. Finally,
/// it contains the document id.
#[repr(C)]
#[derive(Debug)]
pub struct Triangle {
/// The bounding box, one vertex, followed by a packed integer containing boundary edge flags
/// and a reconstruction code.
pub words: [i32; 7],
/// The id of the document associated with this triangle.
pub doc_id: DocId,
}
impl Triangle {
/// Encodes a triangle with the bounding box in the first four words for efficient spatial
/// pruning.
///
/// Takes three vertices as `[y0, x0, y1, x1, y2, x2]` and edge boundary flags `[ab, bc, ca]`
/// indicating which edges are polygon boundaries. Returns a triangle struct with the bounding
/// box in the first four words as `[min_y, min_x, max_y, max_x]`. When decoded, the vertex
/// order may differ from the original input to `new()` due to normalized rotation.
///
/// The edge boundary flags are here to express whether an edge is part of the boundaries
/// in the tesselation of the larger polygon it belongs to.
pub fn new(doc_id: u32, triangle: [i32; 6], boundaries: [bool; 3]) -> Self {
let mut ay = triangle[0];
let mut ax = triangle[1];
let mut by = triangle[2];
let mut bx = triangle[3];
let mut cy = triangle[4];
let mut cx = triangle[5];
let mut ab = boundaries[0];
let mut bc = boundaries[1];
let mut ca = boundaries[2];
// rotate edges and place minX at the beginning
if bx < ax || cx < ax {
let temp_x = ax;
let temp_y = ay;
let temp_boundary = ab;
if bx < cx {
ax = bx;
ay = by;
ab = bc;
bx = cx;
by = cy;
bc = ca;
cx = temp_x;
cy = temp_y;
ca = temp_boundary;
} else {
ax = cx;
ay = cy;
ab = ca;
cx = bx;
cy = by;
ca = bc;
bx = temp_x;
by = temp_y;
bc = temp_boundary;
}
} else if ax == bx && ax == cx {
// degenerated case, all points with same longitude
// we need to prevent that ax is in the middle (not part of the MBS)
if by < ay || cy < ay {
let temp_x = ax;
let temp_y = ay;
let temp_boundary = ab;
if by < cy {
ax = bx;
ay = by;
ab = bc;
bx = cx;
by = cy;
bc = ca;
cx = temp_x;
cy = temp_y;
ca = temp_boundary;
} else {
ax = cx;
ay = cy;
ab = ca;
cx = bx;
cy = by;
ca = bc;
bx = temp_x;
by = temp_y;
bc = temp_boundary;
}
}
}
// change orientation if clockwise (CW)
if !is_counter_clockwise(
IntPoint { y: ay, x: ax },
IntPoint { y: by, x: bx },
IntPoint { y: cy, x: cx },
) {
// To change the orientation, we simply swap B and C.
let temp_x = bx;
let temp_y = by;
let temp_boundary = ab;
// ax and ay do not change, ab becomes bc
ab = ca;
bx = cx;
by = cy;
// bc does not change, ca becomes ab
cx = temp_x;
cy = temp_y;
ca = temp_boundary;
}
let min_x = ax;
let min_y = ay.min(by).min(cy);
let max_x = ax.max(bx).max(cx);
let max_y = ay.max(by).max(cy);
let (y, x, code) = if min_y == ay {
if max_y == by && max_x == bx {
(cy, cx, MINY_MINX_MAXY_MAXX_Y_X)
} else if max_y == cy && max_x == cx {
(by, bx, MINY_MINX_Y_X_MAXY_MAXX)
} else {
(by, cx, MINY_MINX_Y_MAXX_MAXY_X)
}
} else if max_y == ay {
if min_y == by && max_x == bx {
(cy, cx, MAXY_MINX_MINY_MAXX_Y_X)
} else if min_y == cy && max_x == cx {
(by, bx, MAXY_MINX_Y_X_MINY_MAXX)
} else {
(cy, bx, MAXY_MINX_MINY_X_Y_MAXX)
}
} else if max_x == bx && min_y == by {
(ay, cx, Y_MINX_MINY_MAXX_MAXY_X)
} else if max_x == cx && max_y == cy {
(ay, bx, Y_MINX_MINY_X_MAXY_MAXX)
} else {
panic!("Could not encode the provided triangle");
};
let boundaries_bits = (ab as i32) | ((bc as i32) << 1) | ((ca as i32) << 2);
let packed = code | (boundaries_bits << 3);
Triangle {
words: [min_y, min_x, max_y, max_x, y, x, packed],
doc_id: doc_id,
}
}
/// Builds a degenerated triangle degenerating for a single point.
/// All vertices are that point, and all vertices are boundaries.
pub fn from_point(doc_id: DocId, point_x: i32, point_y: i32) -> Triangle {
Triangle::new(
doc_id,
[point_y, point_x, point_y, point_x, point_y, point_x],
[true, true, true],
)
}
/// Builds a degenerated triangle for a segment.
/// Line segment AB is represented as the triangle ABA.
pub fn from_line_segment(doc_id: DocId, a_x: i32, a_y: i32, b_x: i32, b_y: i32) -> Triangle {
Triangle::new(doc_id, [a_y, a_x, b_y, b_x, a_y, a_x], [true, true, true])
}
/// Create a triangle with only the doc_id and the words initialized to zero.
///
/// The doc_id and words in the field are delta-compressed as a series with the doc_id
/// serialized first. When we reconstruct the triangle we can first reconstruct skeleton
/// triangles with the doc_id series, then populate the words directly from the decompression
/// as we decompress each series.
///
/// An immutable constructor would require that we decompress first into parallel `Vec`
/// instances, then loop through the count of triangles building triangles using a constructor
/// that takes all eight field values at once. This saves a copy, the triangle is the
/// decompression destination.
pub fn skeleton(doc_id: u32) -> Self {
Triangle {
doc_id: doc_id,
words: [0i32; 7],
}
}
/// Decodes the triangle back to vertex coordinates and boundary flags.
///
/// Returns vertices as `[y0, x0, y1, x1, y2, x2]` in CCW order and boundary flags `[ab, bc,
/// ca]`. The vertex order may differ from the original input to `new()` due to normalized CCW
/// rotation.
pub fn decode(&self) -> ([i32; 6], [bool; 3]) {
let packed = self.words[6];
let code = packed & 7; // Lower 3 bits
let boundaries = [
(packed & (1 << 3)) != 0, // bit 3 = ab
(packed & (1 << 4)) != 0, // bit 4 = bc
(packed & (1 << 5)) != 0, // bit 5 = ca
];
let (ay, ax, by, bx, cy, cx) = match code {
MINY_MINX_MAXY_MAXX_Y_X => (
self.words[0],
self.words[1],
self.words[2],
self.words[3],
self.words[4],
self.words[5],
),
MINY_MINX_Y_X_MAXY_MAXX => (
self.words[0],
self.words[1],
self.words[4],
self.words[5],
self.words[2],
self.words[3],
),
MAXY_MINX_Y_X_MINY_MAXX => (
self.words[2],
self.words[1],
self.words[4],
self.words[5],
self.words[0],
self.words[3],
),
MAXY_MINX_MINY_MAXX_Y_X => (
self.words[2],
self.words[1],
self.words[0],
self.words[3],
self.words[4],
self.words[5],
),
Y_MINX_MINY_X_MAXY_MAXX => (
self.words[4],
self.words[1],
self.words[0],
self.words[5],
self.words[2],
self.words[3],
),
Y_MINX_MINY_MAXX_MAXY_X => (
self.words[4],
self.words[1],
self.words[0],
self.words[3],
self.words[2],
self.words[5],
),
MAXY_MINX_MINY_X_Y_MAXX => (
self.words[2],
self.words[1],
self.words[0],
self.words[5],
self.words[4],
self.words[3],
),
MINY_MINX_Y_MAXX_MAXY_X => (
self.words[0],
self.words[1],
self.words[4],
self.words[3],
self.words[2],
self.words[5],
),
_ => panic!("Could not decode the provided triangle"),
};
([ay, ax, by, bx, cy, cx], boundaries)
}
/// Returns the bounding box coordinates of the encoded triangle.
///
/// Provides access to the bounding box `[min_y, min_x, max_y, max_x]` stored in the first four
/// words of the structure. The bounding box is stored first for efficient spatial pruning,
/// determining whether it is necessary to decode the triangle for precise intersection or
/// containment tests.
pub fn bbox(&self) -> &[i32] {
&self.words[..4]
}
}
/// Encodes the triangles of a Delaunay triangulation into block kd-tree triangles.
///
/// Takes the output of a Delaunay triangulation from `i_triangle` and encodes each triangle into
/// the normalized triangle used by the block kd-tree. Each triangle includes its bounding box,
/// vertex coordinates, and boundary edge flags that distinguish original polygon edges from
/// internal tessellation edges.
///
/// The boundary edge information provided by the `i_triangle` Delaunay triangulation is essential
/// for CONTAINS and WITHIN queries to work correctly.
pub fn delaunay_to_triangles(doc_id: u32, delaunay: &IntDelaunay, triangles: &mut Vec<Triangle>) {
for triangle in delaunay.triangles.iter() {
let bounds = [
triangle.neighbors[0] == usize::MAX,
triangle.neighbors[1] == usize::MAX,
triangle.neighbors[2] == usize::MAX,
];
let v0 = &delaunay.points[triangle.vertices[0].index];
let v1 = &delaunay.points[triangle.vertices[1].index];
let v2 = &delaunay.points[triangle.vertices[2].index];
triangles.push(Triangle::new(
doc_id,
[v0.y, v0.x, v1.y, v1.x, v2.y, v2.x],
bounds,
))
}
}
/// Returns true if the path A -> B -> C is Counter-Clockwise (CCW) or collinear.
/// Returns false if it is Clockwise (CW).
#[inline(always)]
fn is_counter_clockwise(a: IntPoint, b: IntPoint, c: IntPoint) -> bool {
// We calculate the 2D cross product (determinant) of vectors AB and AC.
// Formula: (bx - ax)(cy - ay) - (by - ay)(cx - ax)
// We cast to i64 to prevent overflow, as multiplying two i32s can exceed i32::MAX.
let val = (b.x as i64 - a.x as i64) * (c.y as i64 - a.y as i64)
- (b.y as i64 - a.y as i64) * (c.x as i64 - a.x as i64);
// If the result is positive, the triangle is CCW.
// If negative, it is CW.
// If zero, the points are collinear (we return true in that case).
val >= 0
}
#[cfg(test)]
mod tests {
use i_triangle::i_overlay::i_float::int::point::IntPoint;
use i_triangle::int::triangulatable::IntTriangulatable;
use super::*;
#[test]
fn encode_triangle() {
let test_cases = [
([1, 1, 3, 2, 2, 4], [true, false, false]),
([1, 1, 2, 4, 3, 2], [false, false, true]),
([2, 4, 1, 1, 3, 2], [false, true, false]),
([2, 4, 3, 2, 1, 1], [false, true, false]),
([3, 2, 1, 1, 2, 4], [true, false, false]),
([3, 2, 2, 4, 1, 1], [false, false, true]),
];
let ccw_coords = [1, 1, 2, 4, 3, 2];
let ccw_bounds = [false, false, true];
for (coords, bounds) in test_cases {
let triangle = Triangle::new(1, coords, bounds);
let (decoded_coords, decoded_bounds) = triangle.decode();
assert_eq!(decoded_coords, ccw_coords);
assert_eq!(decoded_bounds, ccw_bounds);
}
}
#[test]
fn test_cw_triangle_boundary_and_coord_flip() {
// 1. Define distinct coordinates for a Clockwise triangle
// Visual layout:
// A(50,40): Top Center-ish
// B(10,60): Bottom Right
// C(20,10): Bottom Left (Has the Minimum X=10)
// Path A->B->C is Clockwise.
let input_coords = [
50, 40, // A (y, x)
10, 60, // B
20, 10, // C
];
// 2. Define Boundaries [ab, bc, ca]
// We set BC=true and CA=false.
// The bug (ab=bc) would erroneously put 'true' into the first slot.
// The fix (ab=ca) should put 'false' into the first slot.
let input_bounds = [false, true, false];
// 3. Encode
let triangle = Triangle::new(1, input_coords, input_bounds);
let (decoded_coords, decoded_bounds) = triangle.decode();
// 4. Expected Coordinates
// The internal logic detects CW, swaps B/C to make it CCW:
// A(50,40) -> C(20,10) -> B(10,60)
// Then it rotates to put Min-X first.
// Min X is 10 (Vertex C).
// Final Sequence: C -> B -> A
let expected_coords = [
20, 10, // C
10, 60, // B
50, 40, // A
];
// 5. Expected Boundaries
// After Flip (A->C->B):
// Edge AC (was CA) = false
// Edge CB (was BC) = true
// Edge BA (was AB) = false
// Unrotated: [false, true, false]
// After Rotation (shifting to start at C):
// Shift left by 1: [true, false, false]
let expected_bounds = [true, false, false];
assert_eq!(
decoded_coords, expected_coords,
"Coordinates did not decode as expected"
);
assert_eq!(
decoded_bounds, expected_bounds,
"Boundary flags were incorrect (likely swap bug)"
);
}
#[test]
fn degenerate_triangle() {
let test_cases = [
(
[1, 1, 2, 1, 3, 1],
[true, false, false],
[1, 1, 2, 1, 3, 1],
[true, false, false],
),
(
[2, 1, 1, 1, 3, 1],
[true, false, false],
[1, 1, 3, 1, 2, 1],
[false, false, true],
),
(
[2, 1, 3, 1, 1, 1],
[false, false, true],
[1, 1, 2, 1, 3, 1],
[true, false, false],
),
];
for (coords, bounds, ccw_coords, ccw_bounds) in test_cases {
let triangle = Triangle::new(1, coords, bounds);
let (decoded_coords, decoded_bounds) = triangle.decode();
assert_eq!(decoded_coords, ccw_coords);
assert_eq!(decoded_bounds, ccw_bounds);
}
}
#[test]
fn decode_triangle() {
// distinct values for each coordinate to catch transposition
let test_cases = [
[11, 10, 60, 80, 41, 40],
[1, 0, 11, 20, 31, 30],
[30, 0, 11, 10, 1, 20],
[30, 0, 1, 20, 21, 11],
[20, 0, 1, 30, 41, 40],
[20, 0, 1, 30, 31, 10],
[30, 0, 1, 10, 11, 20],
[1, 0, 10, 20, 21, 11],
];
for coords in test_cases {
let triangle = Triangle::new(1, coords, [true, true, true]);
let (decoded_coords, _) = triangle.decode();
assert_eq!(decoded_coords, coords);
}
}
#[test]
fn triangulate_box() {
let i_polygon = vec![vec![
IntPoint::new(0, 0),
IntPoint::new(10, 0),
IntPoint::new(10, 10),
IntPoint::new(0, 10),
]];
let mut triangles = Vec::new();
let delaunay = i_polygon.triangulate().into_delaunay();
delaunay_to_triangles(1, &delaunay, &mut triangles);
assert_eq!(triangles.len(), 2);
}
}

View File

@@ -1,125 +0,0 @@
//! HUSH
use std::collections::HashMap;
use std::io;
use i_triangle::i_overlay::i_float::int::point::IntPoint;
use i_triangle::int::triangulatable::IntTriangulatable;
use crate::schema::Field;
use crate::spatial::geometry::Geometry;
use crate::spatial::point::GeoPoint;
use crate::spatial::serializer::SpatialSerializer;
use crate::spatial::triangle::{delaunay_to_triangles, Triangle};
use crate::DocId;
/// HUSH
pub struct SpatialWriter {
/// Map from field to its triangles buffer
triangles_by_field: HashMap<Field, Vec<Triangle>>,
}
impl SpatialWriter {
/// HUST
pub fn add_geometry(&mut self, doc_id: DocId, field: Field, geometry: Geometry) {
let triangles = &mut self.triangles_by_field.entry(field).or_default();
match geometry {
Geometry::Point(point) => {
append_point(triangles, doc_id, point);
}
Geometry::MultiPoint(multi_point) => {
for point in multi_point {
append_point(triangles, doc_id, point);
}
}
Geometry::LineString(line_string) => {
append_line_string(triangles, doc_id, line_string);
}
Geometry::MultiLineString(multi_line_string) => {
for line_string in multi_line_string {
append_line_string(triangles, doc_id, line_string);
}
}
Geometry::Polygon(polygon) => {
append_polygon(triangles, doc_id, &polygon);
}
Geometry::MultiPolygon(multi_polygon) => {
for polygon in multi_polygon {
append_polygon(triangles, doc_id, &polygon);
}
}
Geometry::GeometryCollection(geometries) => {
for geometry in geometries {
self.add_geometry(doc_id, field, geometry);
}
}
}
}
/// Memory usage estimate
pub fn mem_usage(&self) -> usize {
self.triangles_by_field
.values()
.map(|triangles| triangles.len() * std::mem::size_of::<Triangle>())
.sum()
}
/// Serializing our field.
pub fn serialize(&mut self, mut serializer: SpatialSerializer) -> io::Result<()> {
for (field, triangles) in &mut self.triangles_by_field {
serializer.serialize_field(*field, triangles)?;
}
serializer.close()?;
Ok(())
}
}
impl Default for SpatialWriter {
/// HUSH
fn default() -> Self {
SpatialWriter {
triangles_by_field: HashMap::new(),
}
}
}
/// Convert a point of `(longitude, latitude)` to a integer point.
pub fn as_point_i32(point: GeoPoint) -> (i32, i32) {
(
(point.lon / (360.0 / (1i64 << 32) as f64)).floor() as i32,
(point.lat / (180.0 / (1i64 << 32) as f64)).floor() as i32,
)
}
fn append_point(triangles: &mut Vec<Triangle>, doc_id: DocId, point: GeoPoint) {
let point = as_point_i32(point);
triangles.push(Triangle::from_point(doc_id, point.0, point.1));
}
fn append_line_string(triangles: &mut Vec<Triangle>, doc_id: DocId, line_string: Vec<GeoPoint>) {
let mut previous = as_point_i32(line_string[0]);
for point in line_string.into_iter().skip(1) {
let point = as_point_i32(point);
triangles.push(Triangle::from_line_segment(
doc_id, previous.0, previous.1, point.0, point.1,
));
previous = point
}
}
fn append_ring(i_polygon: &mut Vec<Vec<IntPoint>>, ring: &[GeoPoint]) {
let mut i_ring = Vec::with_capacity(ring.len() + 1);
for &point in ring {
let point = as_point_i32(point);
i_ring.push(IntPoint::new(point.0, point.1));
}
i_polygon.push(i_ring);
}
fn append_polygon(triangles: &mut Vec<Triangle>, doc_id: DocId, polygon: &[Vec<GeoPoint>]) {
let mut i_polygon: Vec<Vec<IntPoint>> = Vec::new();
for ring in polygon {
append_ring(&mut i_polygon, ring);
}
let delaunay = i_polygon.triangulate().into_delaunay();
delaunay_to_triangles(doc_id, &delaunay, triangles);
}

View File

@@ -1,136 +0,0 @@
//! XOR delta compression for f64 polygon coordinates.
//!
//! Lossless compression for floating-point lat/lon coordinates using XOR delta encoding on IEEE
//! 754 bit patterns with variable-length integer encoding. Designed for per-polygon random access
//! in the document store, where each polygon compresses independently without requiring sequential
//! decompression.
//!
//! Spatially local coordinates share most high-order bits. A municipal boundary spanning 1km has
//! consecutive vertices typically within 100-500 meters, meaning their f64 bit patterns share
//! 30-40 bits. XOR reveals these common bits as zeros, which varint encoding then compresses
//! efficiently.
//!
//! The format stores the first coordinate as raw 8 bytes, then XOR deltas between consecutive
//! coordinates encoded as variable-length integers. When compression produces larger output than
//! the raw input (random data, compression-hostile patterns), the function automatically falls
//! back to storing coordinates as uncompressed 8-byte values.
//!
//! Unlike delta.rs which uses arithmetic deltas for i32 spatial coordinates in the block kd-tree,
//! this module operates on f64 bit patterns directly to preserve exact floating-point values for
//! returning to users.
use std::io::Read;
use common::VInt;
/// Compresses f64 coordinates using XOR delta encoding with automatic raw fallback.
///
/// Stores the first coordinate as raw bits, then computes XOR between consecutive coordinate bit
/// patterns and encodes as variable-length integers. If the compressed output would be larger than
/// raw storage (8 bytes per coordinate), automatically falls back to raw encoding.
///
/// Returns a byte vector that can be decompressed with `decompress_f64()` to recover exact
/// original values.
pub fn compress_f64(values: &[f64]) -> Vec<u8> {
if values.is_empty() {
return Vec::new();
}
let mut output: Vec<u8> = Vec::new();
let mut previous: u64 = f64_to_le(values[0]);
output.extend_from_slice(&previous.to_le_bytes());
for &value in &values[1..] {
let bits = value.to_bits();
let xor = bits ^ previous;
VInt(xor).serialize_into_vec(&mut output);
previous = bits
}
if output.len() >= values.len() * 8 {
let mut output = Vec::with_capacity(values.len() * 8);
for &value in values {
output.extend_from_slice(&f64_to_le(value).to_le_bytes());
}
return output;
}
output
}
fn f64_to_le(value: f64) -> u64 {
u64::from_le_bytes(value.to_le_bytes())
}
fn f64_from_le(value: u64) -> f64 {
f64::from_le_bytes(value.to_le_bytes())
}
/// Decompresses f64 coordinates from XOR delta or raw encoding.
///
/// Detects compression format by byte length - if `bytes.len() == count * 8`, data is raw and
/// copied directly. Otherwise, reads first coordinate from 8 bytes, then XOR deltas as varints,
/// reconstructing the original sequence.
///
/// Returns exact f64 values that were passed to `compress_f64()`.
pub fn decompress_f64(mut bytes: &[u8], count: usize) -> Vec<f64> {
let mut values = Vec::with_capacity(count);
if bytes.len() == count * 8 {
for i in 0..count {
let bits = u64::from_le_bytes(bytes[i * 8..(i + 1) * 8].try_into().unwrap());
values.push(f64_from_le(bits));
}
return values;
}
let mut cursor: &mut &[u8] = &mut bytes;
// Read first value (raw 8 bytes)
let mut first_bytes = [0u8; 8];
cursor.read_exact(&mut first_bytes).unwrap();
let mut previous = u64::from_le_bytes(first_bytes);
values.push(f64::from_bits(previous));
// Read remaining values as VInt XORs
while values.len() < count {
let xor = VInt::deserialize_u64(&mut cursor).unwrap();
let bits = previous ^ xor;
values.push(f64::from_bits(bits));
previous = bits;
}
values
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_compress_spatial_locality() {
// Small town polygon - longitude only.
let longitudes = vec![
40.7580, 40.7581, 40.7582, 40.7583, 40.7584, 40.7585, 40.7586, 40.7587,
];
let bytes = compress_f64(&longitudes);
// Should compress well - XOR deltas will be small
assert_eq!(bytes.len(), 46);
// Should decompress to exact original values
let decompressed = decompress_f64(&bytes, longitudes.len());
assert_eq!(longitudes, decompressed);
}
#[test]
fn test_fallback_to_raw() {
// Random, widely scattered values - poor compression
let values = vec![
12345.6789,
-98765.4321,
0.00001,
999999.999,
-0.0,
std::f64::consts::PI,
std::f64::consts::E,
42.0,
];
let bytes = compress_f64(&values);
// Should fall back to raw storage
assert_eq!(bytes.len(), values.len() * 8);
// Should still decompress correctly
let decompressed = decompress_f64(&bytes, values.len());
assert_eq!(values, decompressed);
}
}

View File

@@ -7,7 +7,7 @@ use serde::{Deserialize, Serialize};
use super::{Token, TokenFilter, TokenStream, Tokenizer};
/// Available stemmer languages.
#[derive(Debug, Serialize, Deserialize, Eq, PartialEq, Copy, Clone)]
#[derive(Debug, Serialize, Deserialize, Eq, PartialEq, Copy, Clone, Hash)]
#[allow(missing_docs)]
pub enum Language {
Arabic,

View File

@@ -8,7 +8,7 @@ use std::sync::Arc;
use common::bounds::{TransformBound, transform_bound_inner_res};
use common::file_slice::FileSlice;
use common::{BinarySerializable, OwnedBytes};
use common::{BinarySerializable, ByteCount, OwnedBytes};
use futures_util::{StreamExt, TryStreamExt, stream};
use itertools::Itertools;
use tantivy_fst::Automaton;
@@ -43,6 +43,7 @@ use crate::{
pub struct Dictionary<TSSTable: SSTable = VoidSSTable> {
pub sstable_slice: FileSlice,
pub sstable_index: SSTableIndex,
num_bytes: ByteCount,
num_terms: u64,
phantom_data: PhantomData<TSSTable>,
}
@@ -278,6 +279,7 @@ impl<TSSTable: SSTable> Dictionary<TSSTable> {
/// Opens a `TermDictionary`.
pub fn open(term_dictionary_file: FileSlice) -> io::Result<Self> {
let num_bytes = term_dictionary_file.num_bytes();
let (main_slice, footer_len_slice) = term_dictionary_file.split_from_end(20);
let mut footer_len_bytes: OwnedBytes = footer_len_slice.read_bytes()?;
let index_offset = u64::deserialize(&mut footer_len_bytes)?;
@@ -317,6 +319,7 @@ impl<TSSTable: SSTable> Dictionary<TSSTable> {
Ok(Dictionary {
sstable_slice,
sstable_index,
num_bytes,
num_terms,
phantom_data: PhantomData,
})
@@ -343,6 +346,11 @@ impl<TSSTable: SSTable> Dictionary<TSSTable> {
self.num_terms as usize
}
/// Returns the total number of bytes used by the dictionary on disk.
pub fn num_bytes(&self) -> ByteCount {
self.num_bytes
}
/// Decode a DeltaReader up to key, returning the number of terms traversed
///
/// If the key was not found, returns Ok(None).