mirror of
https://github.com/quickwit-oss/tantivy.git
synced 2026-01-14 04:52:54 +00:00
Compare commits
1 Commits
main
...
trinity.po
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5ad731aaf0 |
@@ -27,7 +27,7 @@ regex = { version = "1.5.5", default-features = false, features = [
|
||||
aho-corasick = "1.0"
|
||||
tantivy-fst = "0.5"
|
||||
memmap2 = { version = "0.9.0", optional = true }
|
||||
lz4_flex = { version = "0.11", default-features = false, optional = true }
|
||||
lz4_flex = { version = "0.12", default-features = false, optional = true }
|
||||
zstd = { version = "0.13", optional = true, default-features = false }
|
||||
tempfile = { version = "3.12.0", optional = true }
|
||||
log = "0.4.16"
|
||||
@@ -76,7 +76,7 @@ winapi = "0.3.9"
|
||||
|
||||
[dev-dependencies]
|
||||
binggan = "0.14.2"
|
||||
rand = "0.8.5"
|
||||
rand = "0.9"
|
||||
maplit = "1.0.2"
|
||||
matches = "0.1.9"
|
||||
pretty_assertions = "1.2.1"
|
||||
@@ -85,7 +85,7 @@ test-log = "0.2.10"
|
||||
futures = "0.3.21"
|
||||
paste = "1.0.11"
|
||||
more-asserts = "0.3.1"
|
||||
rand_distr = "0.4.3"
|
||||
rand_distr = "0.5"
|
||||
time = { version = "0.3.10", features = ["serde-well-known", "macros"] }
|
||||
postcard = { version = "1.0.4", features = [
|
||||
"use-std",
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
use binggan::plugins::PeakMemAllocPlugin;
|
||||
use binggan::{black_box, InputGroup, PeakMemAlloc, INSTRUMENTED_SYSTEM};
|
||||
use rand::distributions::WeightedIndex;
|
||||
use rand::prelude::SliceRandom;
|
||||
use rand::distr::weighted::WeightedIndex;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::seq::IndexedRandom;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use rand_distr::Distribution;
|
||||
use serde_json::json;
|
||||
@@ -532,7 +532,7 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
// Prepare 1000 unique terms sampled using a Zipf distribution.
|
||||
// Exponent ~1.1 approximates top-20 terms covering around ~20%.
|
||||
let terms_1000: Vec<String> = (1..=1000).map(|i| format!("term_{i}")).collect();
|
||||
let zipf_1000 = rand_distr::Zipf::new(1000, 1.1f64).unwrap();
|
||||
let zipf_1000 = rand_distr::Zipf::new(1000.0, 1.1f64).unwrap();
|
||||
|
||||
{
|
||||
let mut rng = StdRng::from_seed([1u8; 32]);
|
||||
@@ -576,8 +576,8 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
}
|
||||
let _val_max = 1_000_000.0;
|
||||
for _ in 0..doc_with_value {
|
||||
let val: f64 = rng.gen_range(0.0..1_000_000.0);
|
||||
let json = if rng.gen_bool(0.1) {
|
||||
let val: f64 = rng.random_range(0.0..1_000_000.0);
|
||||
let json = if rng.random_bool(0.1) {
|
||||
// 10% are numeric values
|
||||
json!({ "mixed_type": val })
|
||||
} else {
|
||||
@@ -586,7 +586,7 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
json_field => json,
|
||||
text_field_all_unique_terms => format!("unique_term_{}", rng.gen::<u64>()),
|
||||
text_field_all_unique_terms => format!("unique_term_{}", rng.random::<u64>()),
|
||||
text_field_many_terms => many_terms_data.choose(&mut rng).unwrap().to_string(),
|
||||
text_field_few_terms_status => status_field_data[log_level_distribution.sample(&mut rng)].0,
|
||||
text_field_1000_terms_zipf => terms_1000[zipf_1000.sample(&mut rng) as usize - 1].as_str(),
|
||||
|
||||
@@ -55,29 +55,29 @@ fn build_shared_indices(num_docs: usize, p_a: f32, p_b: f32, p_c: f32) -> (Bench
|
||||
{
|
||||
let mut writer = index.writer_with_num_threads(1, 500_000_000).unwrap();
|
||||
for _ in 0..num_docs {
|
||||
let has_a = rng.gen_bool(p_a as f64);
|
||||
let has_b = rng.gen_bool(p_b as f64);
|
||||
let has_c = rng.gen_bool(p_c as f64);
|
||||
let score = rng.gen_range(0u64..100u64);
|
||||
let score2 = rng.gen_range(0u64..100_000u64);
|
||||
let has_a = rng.random_bool(p_a as f64);
|
||||
let has_b = rng.random_bool(p_b as f64);
|
||||
let has_c = rng.random_bool(p_c as f64);
|
||||
let score = rng.random_range(0u64..100u64);
|
||||
let score2 = rng.random_range(0u64..100_000u64);
|
||||
let mut title_tokens: Vec<&str> = Vec::new();
|
||||
let mut body_tokens: Vec<&str> = Vec::new();
|
||||
if has_a {
|
||||
if rng.gen_bool(0.1) {
|
||||
if rng.random_bool(0.1) {
|
||||
title_tokens.push("a");
|
||||
} else {
|
||||
body_tokens.push("a");
|
||||
}
|
||||
}
|
||||
if has_b {
|
||||
if rng.gen_bool(0.1) {
|
||||
if rng.random_bool(0.1) {
|
||||
title_tokens.push("b");
|
||||
} else {
|
||||
body_tokens.push("b");
|
||||
}
|
||||
}
|
||||
if has_c {
|
||||
if rng.gen_bool(0.1) {
|
||||
if rng.random_bool(0.1) {
|
||||
title_tokens.push("c");
|
||||
} else {
|
||||
body_tokens.push("c");
|
||||
|
||||
@@ -36,13 +36,13 @@ fn build_shared_indices(num_docs: usize, p_title_a: f32, distribution: &str) ->
|
||||
"dense" => {
|
||||
for doc_id in 0..num_docs {
|
||||
// Always add title to avoid empty documents
|
||||
let title_token = if rng.gen_bool(p_title_a as f64) {
|
||||
let title_token = if rng.random_bool(p_title_a as f64) {
|
||||
"a"
|
||||
} else {
|
||||
"b"
|
||||
};
|
||||
|
||||
let num_rand = rng.gen_range(0u64..1000u64);
|
||||
let num_rand = rng.random_range(0u64..1000u64);
|
||||
|
||||
let num_asc = (doc_id / 10000) as u64;
|
||||
|
||||
@@ -60,13 +60,13 @@ fn build_shared_indices(num_docs: usize, p_title_a: f32, distribution: &str) ->
|
||||
"sparse" => {
|
||||
for doc_id in 0..num_docs {
|
||||
// Always add title to avoid empty documents
|
||||
let title_token = if rng.gen_bool(p_title_a as f64) {
|
||||
let title_token = if rng.random_bool(p_title_a as f64) {
|
||||
"a"
|
||||
} else {
|
||||
"b"
|
||||
};
|
||||
|
||||
let num_rand = rng.gen_range(0u64..10000000u64);
|
||||
let num_rand = rng.random_range(0u64..10000000u64);
|
||||
|
||||
let num_asc = doc_id as u64;
|
||||
|
||||
|
||||
@@ -33,7 +33,7 @@ fn build_shared_indices(num_docs: usize, distribution: &str) -> BenchIndex {
|
||||
match distribution {
|
||||
"dense" => {
|
||||
for doc_id in 0..num_docs {
|
||||
let num_rand = rng.gen_range(0u64..1000u64);
|
||||
let num_rand = rng.random_range(0u64..1000u64);
|
||||
let num_asc = (doc_id / 10000) as u64;
|
||||
|
||||
writer
|
||||
@@ -46,7 +46,7 @@ fn build_shared_indices(num_docs: usize, distribution: &str) -> BenchIndex {
|
||||
}
|
||||
"sparse" => {
|
||||
for doc_id in 0..num_docs {
|
||||
let num_rand = rng.gen_range(0u64..10000000u64);
|
||||
let num_rand = rng.random_range(0u64..10000000u64);
|
||||
let num_asc = doc_id as u64;
|
||||
|
||||
writer
|
||||
|
||||
@@ -97,20 +97,20 @@ fn get_index_0_to_100() -> Index {
|
||||
let num_vals = 100_000;
|
||||
let docs: Vec<_> = (0..num_vals)
|
||||
.map(|_i| {
|
||||
let id_name = if rng.gen_bool(0.01) {
|
||||
let id_name = if rng.random_bool(0.01) {
|
||||
"veryfew".to_string() // 1%
|
||||
} else if rng.gen_bool(0.1) {
|
||||
} else if rng.random_bool(0.1) {
|
||||
"few".to_string() // 9%
|
||||
} else {
|
||||
"most".to_string() // 90%
|
||||
};
|
||||
Doc {
|
||||
id_name,
|
||||
id: rng.gen_range(0..100),
|
||||
id: rng.random_range(0..100),
|
||||
// Multiply by 1000, so that we create most buckets in the compact space
|
||||
// The benches depend on this range to select n-percent of elements with the
|
||||
// methods below.
|
||||
ip: Ipv6Addr::from_u128(rng.gen_range(0..100) * 1000),
|
||||
ip: Ipv6Addr::from_u128(rng.random_range(0..100) * 1000),
|
||||
}
|
||||
})
|
||||
.collect();
|
||||
|
||||
@@ -18,5 +18,5 @@ homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
bitpacking = { version = "0.9.2", default-features = false, features = ["bitpacker1x"] }
|
||||
|
||||
[dev-dependencies]
|
||||
rand = "0.8"
|
||||
rand = "0.9"
|
||||
proptest = "1"
|
||||
|
||||
@@ -4,8 +4,8 @@ extern crate test;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use rand::rng;
|
||||
use rand::seq::IteratorRandom;
|
||||
use rand::thread_rng;
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker, BlockedBitpacker};
|
||||
use test::Bencher;
|
||||
|
||||
@@ -27,7 +27,7 @@ mod tests {
|
||||
let num_els = 1_000_000u32;
|
||||
let bit_unpacker = BitUnpacker::new(bit_width);
|
||||
let data = create_bitpacked_data(bit_width, num_els);
|
||||
let idxs: Vec<u32> = (0..num_els).choose_multiple(&mut thread_rng(), 100_000);
|
||||
let idxs: Vec<u32> = (0..num_els).choose_multiple(&mut rng(), 100_000);
|
||||
b.iter(|| {
|
||||
let mut out = 0u64;
|
||||
for &idx in &idxs {
|
||||
|
||||
@@ -22,7 +22,7 @@ downcast-rs = "2.0.1"
|
||||
[dev-dependencies]
|
||||
proptest = "1"
|
||||
more-asserts = "0.3.1"
|
||||
rand = "0.8"
|
||||
rand = "0.9"
|
||||
binggan = "0.14.0"
|
||||
|
||||
[[bench]]
|
||||
|
||||
@@ -9,7 +9,7 @@ use tantivy_columnar::column_values::{CodecType, serialize_and_load_u64_based_co
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55_000_u64)
|
||||
.map(|num| num + rng.r#gen::<u8>() as u64)
|
||||
.map(|num| num + rng.random::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
|
||||
@@ -6,7 +6,7 @@ use tantivy_columnar::column_values::{CodecType, serialize_u64_based_column_valu
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55_000_u64)
|
||||
.map(|num| num + rng.r#gen::<u8>() as u64)
|
||||
.map(|num| num + rng.random::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
|
||||
@@ -8,7 +8,7 @@ const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
fn gen_optional_index(fill_ratio: f64) -> OptionalIndex {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let vals: Vec<u32> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.map(|_| rng.random_bool(fill_ratio))
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _)| pos as u32)
|
||||
@@ -25,7 +25,7 @@ fn random_range_iterator(
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
current += rng.random_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end { None } else { Some(current) }
|
||||
})
|
||||
}
|
||||
|
||||
@@ -39,7 +39,7 @@ fn get_data_50percent_item() -> Vec<u128> {
|
||||
|
||||
let mut data = vec![];
|
||||
for _ in 0..300_000 {
|
||||
let val = rng.gen_range(1..=100);
|
||||
let val = rng.random_range(1..=100);
|
||||
data.push(val);
|
||||
}
|
||||
data.push(SINGLE_ITEM);
|
||||
|
||||
@@ -34,7 +34,7 @@ fn get_data_50percent_item() -> Vec<u128> {
|
||||
|
||||
let mut data = vec![];
|
||||
for _ in 0..300_000 {
|
||||
let val = rng.gen_range(1..=100);
|
||||
let val = rng.random_range(1..=100);
|
||||
data.push(val);
|
||||
}
|
||||
data.push(SINGLE_ITEM);
|
||||
|
||||
@@ -268,7 +268,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_rand() {
|
||||
let mut rng = rand::thread_rng();
|
||||
let mut rng = rand::rng();
|
||||
for _ in 0..50 {
|
||||
let mut data = (0..10_000).map(|_| rng.next_u64()).collect::<Vec<_>>();
|
||||
create_and_validate::<LinearCodec>(&data, "random");
|
||||
|
||||
@@ -122,7 +122,7 @@ pub(crate) fn create_and_validate<TColumnCodec: ColumnCodec>(
|
||||
assert_eq!(vals, buffer);
|
||||
|
||||
if !vals.is_empty() {
|
||||
let test_rand_idx = rand::thread_rng().gen_range(0..=vals.len() - 1);
|
||||
let test_rand_idx = rand::rng().random_range(0..=vals.len() - 1);
|
||||
let expected_positions: Vec<u32> = vals
|
||||
.iter()
|
||||
.enumerate()
|
||||
|
||||
@@ -21,5 +21,5 @@ serde = { version = "1.0.136", features = ["derive"] }
|
||||
[dev-dependencies]
|
||||
binggan = "0.14.0"
|
||||
proptest = "1.0.0"
|
||||
rand = "0.8.4"
|
||||
rand = "0.9"
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use binggan::{BenchRunner, black_box};
|
||||
use rand::rng;
|
||||
use rand::seq::IteratorRandom;
|
||||
use rand::thread_rng;
|
||||
use tantivy_common::{BitSet, TinySet, serialize_vint_u32};
|
||||
|
||||
fn bench_vint() {
|
||||
@@ -17,7 +17,7 @@ fn bench_vint() {
|
||||
black_box(out);
|
||||
});
|
||||
|
||||
let vals: Vec<u32> = (0..20_000).choose_multiple(&mut thread_rng(), 100_000);
|
||||
let vals: Vec<u32> = (0..20_000).choose_multiple(&mut rng(), 100_000);
|
||||
runner.bench_function("bench_vint_rand", move |_| {
|
||||
let mut out = 0u64;
|
||||
for val in vals.iter().cloned() {
|
||||
|
||||
@@ -416,7 +416,7 @@ mod tests {
|
||||
use std::collections::HashSet;
|
||||
|
||||
use ownedbytes::OwnedBytes;
|
||||
use rand::distributions::Bernoulli;
|
||||
use rand::distr::Bernoulli;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
|
||||
|
||||
@@ -486,9 +486,9 @@ mod tests {
|
||||
use std::collections::BTreeSet;
|
||||
|
||||
use columnar::Dictionary;
|
||||
use rand::distributions::Uniform;
|
||||
use rand::distr::Uniform;
|
||||
use rand::prelude::SliceRandom;
|
||||
use rand::{thread_rng, Rng};
|
||||
use rand::{rng, Rng};
|
||||
|
||||
use super::{FacetCollector, FacetCounts};
|
||||
use crate::collector::facet_collector::compress_mapping;
|
||||
@@ -731,7 +731,7 @@ mod tests {
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
let uniform = Uniform::new_inclusive(1, 100_000);
|
||||
let uniform = Uniform::new_inclusive(1, 100_000).unwrap();
|
||||
let mut docs: Vec<TantivyDocument> =
|
||||
vec![("a", 10), ("b", 100), ("c", 7), ("d", 12), ("e", 21)]
|
||||
.into_iter()
|
||||
@@ -741,14 +741,11 @@ mod tests {
|
||||
std::iter::repeat_n(doc, count)
|
||||
})
|
||||
.map(|mut doc| {
|
||||
doc.add_facet(
|
||||
facet_field,
|
||||
&format!("/facet/{}", thread_rng().sample(uniform)),
|
||||
);
|
||||
doc.add_facet(facet_field, &format!("/facet/{}", rng().sample(uniform)));
|
||||
doc
|
||||
})
|
||||
.collect();
|
||||
docs[..].shuffle(&mut thread_rng());
|
||||
docs[..].shuffle(&mut rng());
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
for doc in docs {
|
||||
@@ -822,8 +819,8 @@ mod tests {
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use rand::rng;
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::thread_rng;
|
||||
use test::Bencher;
|
||||
|
||||
use crate::collector::FacetCollector;
|
||||
@@ -846,7 +843,7 @@ mod bench {
|
||||
}
|
||||
}
|
||||
// 40425 docs
|
||||
docs[..].shuffle(&mut thread_rng());
|
||||
docs[..].shuffle(&mut rng());
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
for doc in docs {
|
||||
|
||||
@@ -160,7 +160,7 @@ mod tests {
|
||||
expected: &[(crate::Score, usize)],
|
||||
) {
|
||||
let mut vals: Vec<(crate::Score, usize)> = (0..10).map(|val| (val as f32, val)).collect();
|
||||
vals.shuffle(&mut rand::thread_rng());
|
||||
vals.shuffle(&mut rand::rng());
|
||||
let vals_merged = merge_top_k(vals.into_iter(), doc_range, ComparatorEnum::from(order));
|
||||
assert_eq!(&vals_merged, expected);
|
||||
}
|
||||
|
||||
@@ -162,7 +162,7 @@ mod tests {
|
||||
mod bench {
|
||||
|
||||
use rand::prelude::IteratorRandom;
|
||||
use rand::thread_rng;
|
||||
use rand::rng;
|
||||
use test::Bencher;
|
||||
|
||||
use super::AliveBitSet;
|
||||
@@ -176,7 +176,7 @@ mod bench {
|
||||
}
|
||||
|
||||
fn remove_rand(raw: &mut Vec<u32>) {
|
||||
let i = (0..raw.len()).choose(&mut thread_rng()).unwrap();
|
||||
let i = (0..raw.len()).choose(&mut rng()).unwrap();
|
||||
raw.remove(i);
|
||||
}
|
||||
|
||||
|
||||
@@ -879,7 +879,7 @@ mod tests {
|
||||
const ONE_HOUR_IN_MICROSECS: i64 = 3_600 * 1_000_000;
|
||||
let times: Vec<DateTime> = std::iter::repeat_with(|| {
|
||||
// +- One hour.
|
||||
let t = T0 + rng.gen_range(-ONE_HOUR_IN_MICROSECS..ONE_HOUR_IN_MICROSECS);
|
||||
let t = T0 + rng.random_range(-ONE_HOUR_IN_MICROSECS..ONE_HOUR_IN_MICROSECS);
|
||||
DateTime::from_timestamp_micros(t)
|
||||
})
|
||||
.take(1_000)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use std::collections::HashSet;
|
||||
|
||||
use rand::{thread_rng, Rng};
|
||||
use rand::{rng, Rng};
|
||||
|
||||
use crate::indexer::index_writer::MEMORY_BUDGET_NUM_BYTES_MIN;
|
||||
use crate::schema::*;
|
||||
@@ -29,7 +29,7 @@ fn test_functional_store() -> crate::Result<()> {
|
||||
let index = Index::create_in_ram(schema);
|
||||
let reader = index.reader()?;
|
||||
|
||||
let mut rng = thread_rng();
|
||||
let mut rng = rng();
|
||||
|
||||
let mut index_writer: IndexWriter =
|
||||
index.writer_with_num_threads(3, 3 * MEMORY_BUDGET_NUM_BYTES_MIN)?;
|
||||
@@ -38,9 +38,9 @@ fn test_functional_store() -> crate::Result<()> {
|
||||
|
||||
let mut doc_id = 0u64;
|
||||
for _iteration in 0..get_num_iterations() {
|
||||
let num_docs: usize = rng.gen_range(0..4);
|
||||
let num_docs: usize = rng.random_range(0..4);
|
||||
if !doc_set.is_empty() {
|
||||
let doc_to_remove_id = rng.gen_range(0..doc_set.len());
|
||||
let doc_to_remove_id = rng.random_range(0..doc_set.len());
|
||||
let removed_doc_id = doc_set.swap_remove(doc_to_remove_id);
|
||||
index_writer.delete_term(Term::from_field_u64(id_field, removed_doc_id));
|
||||
}
|
||||
@@ -70,10 +70,10 @@ const LOREM: &str = "Doc Lorem ipsum dolor sit amet, consectetur adipiscing elit
|
||||
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat \
|
||||
non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.";
|
||||
fn get_text() -> String {
|
||||
use rand::seq::SliceRandom;
|
||||
let mut rng = thread_rng();
|
||||
use rand::seq::IndexedRandom;
|
||||
let mut rng = rng();
|
||||
let tokens: Vec<_> = LOREM.split(' ').collect();
|
||||
let random_val = rng.gen_range(0..20);
|
||||
let random_val = rng.random_range(0..20);
|
||||
|
||||
(0..random_val)
|
||||
.map(|_| tokens.choose(&mut rng).unwrap())
|
||||
@@ -101,7 +101,7 @@ fn test_functional_indexing_unsorted() -> crate::Result<()> {
|
||||
let index = Index::create_from_tempdir(schema)?;
|
||||
let reader = index.reader()?;
|
||||
|
||||
let mut rng = thread_rng();
|
||||
let mut rng = rng();
|
||||
|
||||
let mut index_writer: IndexWriter =
|
||||
index.writer_with_num_threads(3, 3 * MEMORY_BUDGET_NUM_BYTES_MIN)?;
|
||||
@@ -110,7 +110,7 @@ fn test_functional_indexing_unsorted() -> crate::Result<()> {
|
||||
let mut uncommitted_docs: HashSet<u64> = HashSet::new();
|
||||
|
||||
for _ in 0..get_num_iterations() {
|
||||
let random_val = rng.gen_range(0..20);
|
||||
let random_val = rng.random_range(0..20);
|
||||
if random_val == 0 {
|
||||
index_writer.commit()?;
|
||||
committed_docs.extend(&uncommitted_docs);
|
||||
|
||||
@@ -377,7 +377,7 @@ pub mod tests {
|
||||
|
||||
use common::{BinarySerializable, FixedSize};
|
||||
use query_grammar::{UserInputAst, UserInputLeaf, UserInputLiteral};
|
||||
use rand::distributions::{Bernoulli, Uniform};
|
||||
use rand::distr::{Bernoulli, Uniform};
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use time::OffsetDateTime;
|
||||
@@ -428,7 +428,7 @@ pub mod tests {
|
||||
pub fn generate_nonunique_unsorted(max_value: u32, n_elems: usize) -> Vec<u32> {
|
||||
let seed: [u8; 32] = [1; 32];
|
||||
StdRng::from_seed(seed)
|
||||
.sample_iter(&Uniform::new(0u32, max_value))
|
||||
.sample_iter(&Uniform::new(0u32, max_value).unwrap())
|
||||
.take(n_elems)
|
||||
.collect::<Vec<u32>>()
|
||||
}
|
||||
|
||||
@@ -397,7 +397,10 @@ mod bench {
|
||||
let mut seed: [u8; 32] = [0; 32];
|
||||
seed[31] = seed_val;
|
||||
let mut rng = StdRng::from_seed(seed);
|
||||
(0u32..).filter(|_| rng.gen_bool(ratio)).take(n).collect()
|
||||
(0u32..)
|
||||
.filter(|_| rng.random_bool(ratio))
|
||||
.take(n)
|
||||
.collect()
|
||||
}
|
||||
|
||||
pub fn generate_array(n: usize, ratio: f64) -> Vec<u32> {
|
||||
|
||||
@@ -604,13 +604,13 @@ mod bench {
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
for _ in 0..posting_list_size {
|
||||
let mut doc = TantivyDocument::default();
|
||||
if rng.gen_bool(1f64 / 15f64) {
|
||||
if rng.random_bool(1f64 / 15f64) {
|
||||
doc.add_text(text_field, "a");
|
||||
}
|
||||
if rng.gen_bool(1f64 / 10f64) {
|
||||
if rng.random_bool(1f64 / 10f64) {
|
||||
doc.add_text(text_field, "b");
|
||||
}
|
||||
if rng.gen_bool(1f64 / 5f64) {
|
||||
if rng.random_bool(1f64 / 5f64) {
|
||||
doc.add_text(text_field, "c");
|
||||
}
|
||||
doc.add_text(text_field, "d");
|
||||
|
||||
@@ -311,7 +311,7 @@ mod tests {
|
||||
#![proptest_config(ProptestConfig::with_cases(50))]
|
||||
#[test]
|
||||
fn test_phrase_regex_with_random_strings(mut random_strings in proptest::collection::vec("[c-z ]{0,10}", 1..100), num_occurrences in 1..150_usize) {
|
||||
let mut rng = rand::thread_rng();
|
||||
let mut rng = rand::rng();
|
||||
|
||||
// Insert "aaa ccc" the specified number of times into the list
|
||||
for _ in 0..num_occurrences {
|
||||
|
||||
@@ -429,7 +429,7 @@ mod tests {
|
||||
docs.push(doc);
|
||||
}
|
||||
|
||||
docs.shuffle(&mut rand::thread_rng());
|
||||
docs.shuffle(&mut rand::rng());
|
||||
let mut docs_it = docs.into_iter();
|
||||
for doc in (&mut docs_it).take(50) {
|
||||
index_writer.add_document(doc)?;
|
||||
|
||||
@@ -491,7 +491,7 @@ mod tests {
|
||||
use common::DateTime;
|
||||
use proptest::prelude::*;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::seq::IndexedRandom;
|
||||
use rand::SeedableRng;
|
||||
use time::format_description::well_known::Rfc3339;
|
||||
use time::OffsetDateTime;
|
||||
|
||||
@@ -304,10 +304,10 @@ mod tests {
|
||||
let mut writer: IndexWriter =
|
||||
index.writer_with_num_threads(3, 3 * MEMORY_BUDGET_NUM_BYTES_MIN)?;
|
||||
use rand::Rng;
|
||||
let mut rng = rand::thread_rng();
|
||||
let mut rng = rand::rng();
|
||||
writer.set_merge_policy(Box::new(NoMergePolicy));
|
||||
for _ in 0..3_000 {
|
||||
let term_freq = rng.gen_range(1..10000);
|
||||
let term_freq = rng.random_range(1..10000);
|
||||
let words: Vec<&str> = std::iter::repeat_n("bbbb", term_freq).collect();
|
||||
let text = words.join(" ");
|
||||
writer.add_document(doc!(text_field=>text))?;
|
||||
|
||||
@@ -95,7 +95,7 @@ impl<'a> TermMerger<'a> {
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
use rand::distributions::Alphanumeric;
|
||||
use rand::{thread_rng, Rng};
|
||||
use rand::{rng, Rng};
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::TermMerger;
|
||||
@@ -117,9 +117,9 @@ mod bench {
|
||||
let buffer: Vec<u8> = {
|
||||
let mut terms = vec![];
|
||||
for _i in 0..num_terms {
|
||||
let rand_string: String = thread_rng()
|
||||
let rand_string: String = rng()
|
||||
.sample_iter(&Alphanumeric)
|
||||
.take(thread_rng().gen_range(30..42))
|
||||
.take(rng().random_range(30..42))
|
||||
.map(char::from)
|
||||
.collect();
|
||||
terms.push(rand_string);
|
||||
|
||||
@@ -25,7 +25,7 @@ zstd-compression = ["zstd"]
|
||||
proptest = "1"
|
||||
criterion = { version = "0.5", default-features = false }
|
||||
names = "0.14"
|
||||
rand = "0.8"
|
||||
rand = "0.9"
|
||||
|
||||
[[bench]]
|
||||
name = "stream_bench"
|
||||
|
||||
@@ -10,9 +10,9 @@ use tantivy_sstable::{Dictionary, MonotonicU64SSTable};
|
||||
const CHARSET: &[u8] = b"abcdefghij";
|
||||
|
||||
fn generate_key(rng: &mut impl Rng) -> String {
|
||||
let len = rng.gen_range(3..12);
|
||||
let len = rng.random_range(3..12);
|
||||
std::iter::from_fn(|| {
|
||||
let idx = rng.gen_range(0..CHARSET.len());
|
||||
let idx = rng.random_range(0..CHARSET.len());
|
||||
Some(CHARSET[idx] as char)
|
||||
})
|
||||
.take(len)
|
||||
|
||||
@@ -23,12 +23,12 @@ name = "hashmap"
|
||||
path = "example/hashmap.rs"
|
||||
|
||||
[dev-dependencies]
|
||||
rand = "0.8.5"
|
||||
rand = "0.9"
|
||||
zipf = "7.0.0"
|
||||
rustc-hash = "2.1.0"
|
||||
proptest = "1.2.0"
|
||||
binggan = { version = "0.14.0" }
|
||||
rand_distr = "0.4.3"
|
||||
rand_distr = "0.5"
|
||||
|
||||
[features]
|
||||
compare_hash_only = ["ahash"] # Compare hash only, not the key in the Hashmap
|
||||
|
||||
@@ -90,10 +90,10 @@ fn bench_vint() {
|
||||
}
|
||||
// benchmark zipfs distribution numbers
|
||||
{
|
||||
use rand::distributions::Distribution;
|
||||
use rand::distr::Distribution;
|
||||
use rand::rngs::StdRng;
|
||||
let mut rng = StdRng::from_seed([3u8; 32]);
|
||||
let zipf = zipf::ZipfDistribution::new(10_000, 1.03).unwrap();
|
||||
let zipf = rand_distr::Zipf::new(10_000.0f64, 1.03).unwrap();
|
||||
let numbers: Vec<[u8; 8]> = (0..num_numbers)
|
||||
.map(|_| zipf.sample(&mut rng).to_le_bytes())
|
||||
.collect();
|
||||
|
||||
@@ -7,8 +7,8 @@ edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
ahash = "0.8.7"
|
||||
rand = "0.8.5"
|
||||
rand_distr = "0.4.3"
|
||||
rand = "0.9"
|
||||
rand_distr = "0.5"
|
||||
tantivy-stacker = { version = "0.2.0", path = ".." }
|
||||
|
||||
[workspace]
|
||||
|
||||
@@ -14,7 +14,7 @@ fn test_with_seed(seed: u64) {
|
||||
let mut hash_map = AHashMap::new();
|
||||
let mut arena_hashmap = ArenaHashMap::default();
|
||||
let mut rng = StdRng::seed_from_u64(seed);
|
||||
let key_count = rng.gen_range(1_000..=1_000_000);
|
||||
let key_count = rng.random_range(1_000..=1_000_000);
|
||||
let exp = Exp::new(0.05).unwrap();
|
||||
|
||||
for _ in 0..key_count {
|
||||
|
||||
Reference in New Issue
Block a user