mirror of
https://github.com/quickwit-oss/tantivy.git
synced 2026-01-07 09:32:54 +00:00
Compare commits
1 Commits
main
...
trinity.po
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
dedd1aa83a |
4
.github/workflows/coverage.yml
vendored
4
.github/workflows/coverage.yml
vendored
@@ -15,11 +15,11 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Install Rust
|
||||
run: rustup toolchain install nightly-2025-12-01 --profile minimal --component llvm-tools-preview
|
||||
run: rustup toolchain install nightly-2024-07-01 --profile minimal --component llvm-tools-preview
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- uses: taiki-e/install-action@cargo-llvm-cov
|
||||
- name: Generate code coverage
|
||||
run: cargo +nightly-2025-12-01 llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
|
||||
run: cargo +nightly-2024-07-01 llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v3
|
||||
continue-on-error: true
|
||||
|
||||
30
.github/workflows/test.yml
vendored
30
.github/workflows/test.yml
vendored
@@ -39,11 +39,11 @@ jobs:
|
||||
|
||||
- name: Check Formatting
|
||||
run: cargo +nightly fmt --all -- --check
|
||||
|
||||
|
||||
- name: Check Stable Compilation
|
||||
run: cargo build --all-features
|
||||
|
||||
|
||||
|
||||
- name: Check Bench Compilation
|
||||
run: cargo +nightly bench --no-run --profile=dev --all-features
|
||||
|
||||
@@ -59,10 +59,10 @@ jobs:
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
features:
|
||||
- { label: "all", flags: "mmap,stopwords,lz4-compression,zstd-compression,failpoints,stemmer" }
|
||||
- { label: "quickwit", flags: "mmap,quickwit,failpoints" }
|
||||
- { label: "none", flags: "" }
|
||||
features: [
|
||||
{ label: "all", flags: "mmap,stopwords,lz4-compression,zstd-compression,failpoints" },
|
||||
{ label: "quickwit", flags: "mmap,quickwit,failpoints" }
|
||||
]
|
||||
|
||||
name: test-${{ matrix.features.label}}
|
||||
|
||||
@@ -80,21 +80,7 @@ jobs:
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
|
||||
- name: Run tests
|
||||
run: |
|
||||
# if matrix.feature.flags is empty then run on --lib to avoid compiling examples
|
||||
# (as most of them rely on mmap) otherwise run all
|
||||
if [ -z "${{ matrix.features.flags }}" ]; then
|
||||
cargo +stable nextest run --lib --no-default-features --verbose --workspace
|
||||
else
|
||||
cargo +stable nextest run --features ${{ matrix.features.flags }} --no-default-features --verbose --workspace
|
||||
fi
|
||||
run: cargo +stable nextest run --features ${{ matrix.features.flags }} --verbose --workspace
|
||||
|
||||
- name: Run doctests
|
||||
run: |
|
||||
# if matrix.feature.flags is empty then run on --lib to avoid compiling examples
|
||||
# (as most of them rely on mmap) otherwise run all
|
||||
if [ -z "${{ matrix.features.flags }}" ]; then
|
||||
echo "no doctest for no feature flag"
|
||||
else
|
||||
cargo +stable test --doc --features ${{ matrix.features.flags }} --verbose --workspace
|
||||
fi
|
||||
run: cargo +stable test --doc --features ${{ matrix.features.flags }} --verbose --workspace
|
||||
|
||||
38
CHANGELOG.md
38
CHANGELOG.md
@@ -1,31 +1,3 @@
|
||||
Tantivy 0.25
|
||||
================================
|
||||
|
||||
## Bugfixes
|
||||
- fix union performance regression in tantivy 0.24 [#2663](https://github.com/quickwit-oss/tantivy/pull/2663)(@PSeitz)
|
||||
- make zstd optional in sstable [#2633](https://github.com/quickwit-oss/tantivy/pull/2633)(@Parth)
|
||||
- Fix TopDocs::order_by_string_fast_field for asc order [#2672](https://github.com/quickwit-oss/tantivy/pull/2672)(@stuhood @PSeitz)
|
||||
|
||||
## Features/Improvements
|
||||
- add docs/example and Vec<u32> values to sstable [#2660](https://github.com/quickwit-oss/tantivy/pull/2660)(@PSeitz)
|
||||
- Add string fast field support to `TopDocs`. [#2642](https://github.com/quickwit-oss/tantivy/pull/2642)(@stuhood)
|
||||
- update edition to 2024 [#2620](https://github.com/quickwit-oss/tantivy/pull/2620)(@PSeitz)
|
||||
- Allow optional spaces between the field name and the value in the query parser [#2678](https://github.com/quickwit-oss/tantivy/pull/2678)(@Darkheir)
|
||||
- Support mixed field types in query parser [#2676](https://github.com/quickwit-oss/tantivy/pull/2676)(@trinity-1686a)
|
||||
- Add per-field size details [#2679](https://github.com/quickwit-oss/tantivy/pull/2679)(@fulmicoton)
|
||||
|
||||
Tantivy 0.24.2
|
||||
================================
|
||||
- Fix TopNComputer for reverse order. [#2672](https://github.com/quickwit-oss/tantivy/pull/2672)(@stuhood @PSeitz)
|
||||
|
||||
Affected queries are [order_by_fast_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_fast_field) and
|
||||
[order_by_u64_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_u64_field)
|
||||
for `Order::Asc`
|
||||
|
||||
Tantivy 0.24.1
|
||||
================================
|
||||
- Fix: bump required rust version to 1.81
|
||||
|
||||
Tantivy 0.24
|
||||
================================
|
||||
Tantivy 0.24 will be backwards compatible with indices created with v0.22 and v0.21. The new minimum rust version will be 1.75. Tantivy 0.23 will be skipped.
|
||||
@@ -78,7 +50,7 @@ This will slightly increase space and access time. [#2439](https://github.com/qu
|
||||
|
||||
- **Store DateTime as nanoseconds in doc store** DateTime in the doc store was truncated to microseconds previously. This removes this truncation, while still keeping backwards compatibility. [#2486](https://github.com/quickwit-oss/tantivy/pull/2486)(@PSeitz)
|
||||
|
||||
- **Performance/Memory**
|
||||
- **Performace/Memory**
|
||||
- lift clauses in LogicalAst for optimized ast during execution [#2449](https://github.com/quickwit-oss/tantivy/pull/2449)(@PSeitz)
|
||||
- Use Vec instead of BTreeMap to back OwnedValue object [#2364](https://github.com/quickwit-oss/tantivy/pull/2364)(@fulmicoton)
|
||||
- Replace TantivyDocument with CompactDoc. CompactDoc is much smaller and provides similar performance. [#2402](https://github.com/quickwit-oss/tantivy/pull/2402)(@PSeitz)
|
||||
@@ -108,14 +80,6 @@ This will slightly increase space and access time. [#2439](https://github.com/qu
|
||||
- Fix trait bound of StoreReader::iter [#2360](https://github.com/quickwit-oss/tantivy/pull/2360)(@adamreichold)
|
||||
- remove read_postings_no_deletes [#2526](https://github.com/quickwit-oss/tantivy/pull/2526)(@PSeitz)
|
||||
|
||||
Tantivy 0.22.1
|
||||
================================
|
||||
- Fix TopNComputer for reverse order. [#2672](https://github.com/quickwit-oss/tantivy/pull/2672)(@stuhood @PSeitz)
|
||||
|
||||
Affected queries are [order_by_fast_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_fast_field) and
|
||||
[order_by_u64_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_u64_field)
|
||||
for `Order::Asc`
|
||||
|
||||
Tantivy 0.22
|
||||
================================
|
||||
|
||||
|
||||
50
Cargo.toml
50
Cargo.toml
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy"
|
||||
version = "0.26.0"
|
||||
version = "0.24.0"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = ["database-implementations", "data-structures"]
|
||||
@@ -33,11 +33,11 @@ tempfile = { version = "3.12.0", optional = true }
|
||||
log = "0.4.16"
|
||||
serde = { version = "1.0.219", features = ["derive"] }
|
||||
serde_json = "1.0.140"
|
||||
fs4 = { version = "0.13.1", optional = true }
|
||||
fs4 = { version = "0.8.0", optional = true }
|
||||
levenshtein_automata = "0.2.1"
|
||||
uuid = { version = "1.0.0", features = ["v4", "serde"] }
|
||||
crossbeam-channel = "0.5.4"
|
||||
rust-stemmers = { version = "1.2.0", optional = true }
|
||||
rust-stemmers = "1.2.0"
|
||||
downcast-rs = "2.0.1"
|
||||
bitpacking = { version = "0.9.2", default-features = false, features = [
|
||||
"bitpacker4x",
|
||||
@@ -57,30 +57,29 @@ measure_time = "0.9.0"
|
||||
arc-swap = "1.5.0"
|
||||
bon = "3.3.1"
|
||||
|
||||
columnar = { version = "0.6", path = "./columnar", package = "tantivy-columnar" }
|
||||
sstable = { version = "0.6", path = "./sstable", package = "tantivy-sstable", optional = true }
|
||||
stacker = { version = "0.6", path = "./stacker", package = "tantivy-stacker" }
|
||||
query-grammar = { version = "0.25.0", path = "./query-grammar", package = "tantivy-query-grammar" }
|
||||
tantivy-bitpacker = { version = "0.9", path = "./bitpacker" }
|
||||
common = { version = "0.10", path = "./common/", package = "tantivy-common" }
|
||||
tokenizer-api = { version = "0.6", path = "./tokenizer-api", package = "tantivy-tokenizer-api" }
|
||||
columnar = { version = "0.5", path = "./columnar", package = "tantivy-columnar" }
|
||||
sstable = { version = "0.5", path = "./sstable", package = "tantivy-sstable", optional = true }
|
||||
stacker = { version = "0.5", path = "./stacker", package = "tantivy-stacker" }
|
||||
query-grammar = { version = "0.24.0", path = "./query-grammar", package = "tantivy-query-grammar" }
|
||||
tantivy-bitpacker = { version = "0.8", path = "./bitpacker" }
|
||||
common = { version = "0.9", path = "./common/", package = "tantivy-common" }
|
||||
tokenizer-api = { version = "0.5", path = "./tokenizer-api", package = "tantivy-tokenizer-api" }
|
||||
sketches-ddsketch = { version = "0.3.0", features = ["use_serde"] }
|
||||
hyperloglogplus = { version = "0.4.1", features = ["const-loop"] }
|
||||
futures-util = { version = "0.3.28", optional = true }
|
||||
futures-channel = { version = "0.3.28", optional = true }
|
||||
fnv = "1.0.7"
|
||||
typetag = "0.2.21"
|
||||
|
||||
[target.'cfg(windows)'.dependencies]
|
||||
winapi = "0.3.9"
|
||||
|
||||
[dev-dependencies]
|
||||
binggan = "0.14.2"
|
||||
binggan = "0.14.0"
|
||||
rand = "0.8.5"
|
||||
maplit = "1.0.2"
|
||||
matches = "0.1.9"
|
||||
pretty_assertions = "1.2.1"
|
||||
proptest = "1.7.0"
|
||||
proptest = "1.0.0"
|
||||
test-log = "0.2.10"
|
||||
futures = "0.3.21"
|
||||
paste = "1.0.11"
|
||||
@@ -88,7 +87,7 @@ more-asserts = "0.3.1"
|
||||
rand_distr = "0.4.3"
|
||||
time = { version = "0.3.10", features = ["serde-well-known", "macros"] }
|
||||
postcard = { version = "1.0.4", features = [
|
||||
"use-std",
|
||||
"use-std",
|
||||
], default-features = false }
|
||||
|
||||
[target.'cfg(not(windows))'.dev-dependencies]
|
||||
@@ -113,8 +112,7 @@ debug-assertions = true
|
||||
overflow-checks = true
|
||||
|
||||
[features]
|
||||
default = ["mmap", "stopwords", "lz4-compression", "columnar-zstd-compression", "stemmer"]
|
||||
stemmer = ["rust-stemmers"]
|
||||
default = ["mmap", "stopwords", "lz4-compression", "columnar-zstd-compression"]
|
||||
mmap = ["fs4", "tempfile", "memmap2"]
|
||||
stopwords = []
|
||||
|
||||
@@ -169,23 +167,3 @@ harness = false
|
||||
[[bench]]
|
||||
name = "agg_bench"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "exists_json"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "range_query"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "and_or_queries"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "range_queries"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bool_queries_with_range"
|
||||
harness = false
|
||||
|
||||
@@ -23,6 +23,8 @@ performance for different types of queries/collections.
|
||||
|
||||
Your mileage WILL vary depending on the nature of queries and their load.
|
||||
|
||||
<img src="doc/assets/images/searchbenchmark.png">
|
||||
|
||||
Details about the benchmark can be found at this [repository](https://github.com/quickwit-oss/search-benchmark-game).
|
||||
|
||||
## Features
|
||||
@@ -123,7 +125,6 @@ You can also find other bindings on [GitHub](https://github.com/search?q=tantivy
|
||||
- [seshat](https://github.com/matrix-org/seshat/): A matrix message database/indexer
|
||||
- [tantiny](https://github.com/baygeldin/tantiny): Tiny full-text search for Ruby
|
||||
- [lnx](https://github.com/lnx-search/lnx): adaptable, typo tolerant search engine with a REST API
|
||||
- [Bichon](https://github.com/rustmailer/bichon): A lightweight, high-performance Rust email archiver with WebUI
|
||||
- and [more](https://github.com/search?q=tantivy)!
|
||||
|
||||
### On average, how much faster is Tantivy compared to Lucene?
|
||||
|
||||
27
RELEASE.md
27
RELEASE.md
@@ -1,4 +1,4 @@
|
||||
# Releasing a new Tantivy Version
|
||||
# Release a new Tantivy Version
|
||||
|
||||
## Steps
|
||||
|
||||
@@ -10,29 +10,12 @@
|
||||
6. Set git tag with new version
|
||||
|
||||
|
||||
[`cargo-release`](https://github.com/crate-ci/cargo-release) will help us with steps 1-5:
|
||||
In conjucation with `cargo-release` Steps 1-4 (I'm not sure if the change detection works):
|
||||
Set new packages to version 0.0.0
|
||||
|
||||
Replace prev-tag-name
|
||||
```bash
|
||||
cargo release --workspace --no-publish -v --prev-tag-name 0.24 --push-remote origin minor --no-tag
|
||||
cargo release --workspace --no-publish -v --prev-tag-name 0.19 --push-remote origin minor --no-tag --execute
|
||||
```
|
||||
|
||||
`no-tag` or it will create tags for all the subpackages
|
||||
|
||||
cargo release will _not_ ignore unchanged packages, but it will print warnings for them.
|
||||
e.g. "warning: updating ownedbytes to 0.10.0 despite no changes made since tag 0.24"
|
||||
|
||||
We need to manually ignore these unchanged packages
|
||||
```bash
|
||||
cargo release --workspace --no-publish -v --prev-tag-name 0.24 --push-remote origin minor --no-tag --exclude tokenizer-api
|
||||
```
|
||||
|
||||
Add `--execute` to actually publish the packages, otherwise it will only print the commands that would be run.
|
||||
|
||||
### Tag Version
|
||||
```bash
|
||||
git tag 0.25.0
|
||||
git push upstream tag 0.25.0
|
||||
```
|
||||
|
||||
|
||||
no-tag or it will create tags for all the subpackages
|
||||
|
||||
2
TODO.txt
2
TODO.txt
@@ -10,7 +10,7 @@ rename FastFieldReaders::open to load
|
||||
remove fast field reader
|
||||
|
||||
find a way to unify the two DateTime.
|
||||
re-add type check in the filter wrapper
|
||||
readd type check in the filter wrapper
|
||||
|
||||
add unit test on columnar list columns.
|
||||
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
use binggan::plugins::PeakMemAllocPlugin;
|
||||
use binggan::{black_box, InputGroup, PeakMemAlloc, INSTRUMENTED_SYSTEM};
|
||||
use rand::distributions::WeightedIndex;
|
||||
use rand::prelude::SliceRandom;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
@@ -54,41 +53,26 @@ fn bench_agg(mut group: InputGroup<Index>) {
|
||||
register!(group, stats_f64);
|
||||
register!(group, extendedstats_f64);
|
||||
register!(group, percentiles_f64);
|
||||
register!(group, terms_7);
|
||||
register!(group, terms_all_unique);
|
||||
register!(group, terms_150_000);
|
||||
register!(group, terms_few);
|
||||
register!(group, terms_many);
|
||||
register!(group, terms_many_top_1000);
|
||||
register!(group, terms_many_order_by_term);
|
||||
register!(group, terms_many_with_top_hits);
|
||||
register!(group, terms_all_unique_with_avg_sub_agg);
|
||||
register!(group, terms_many_with_avg_sub_agg);
|
||||
register!(group, terms_status_with_avg_sub_agg);
|
||||
register!(group, terms_status_with_histogram);
|
||||
register!(group, terms_zipf_1000);
|
||||
register!(group, terms_zipf_1000_with_histogram);
|
||||
register!(group, terms_zipf_1000_with_avg_sub_agg);
|
||||
|
||||
register!(group, terms_many_json_mixed_type_with_avg_sub_agg);
|
||||
|
||||
register!(group, cardinality_agg);
|
||||
register!(group, terms_status_with_cardinality_agg);
|
||||
register!(group, terms_few_with_cardinality_agg);
|
||||
|
||||
register!(group, range_agg);
|
||||
register!(group, range_agg_with_avg_sub_agg);
|
||||
register!(group, range_agg_with_term_agg_status);
|
||||
register!(group, range_agg_with_term_agg_few);
|
||||
register!(group, range_agg_with_term_agg_many);
|
||||
register!(group, histogram);
|
||||
register!(group, histogram_hard_bounds);
|
||||
register!(group, histogram_with_avg_sub_agg);
|
||||
register!(group, histogram_with_term_agg_status);
|
||||
register!(group, avg_and_range_with_avg_sub_agg);
|
||||
|
||||
// Filter aggregation benchmarks
|
||||
register!(group, filter_agg_all_query_count_agg);
|
||||
register!(group, filter_agg_term_query_count_agg);
|
||||
register!(group, filter_agg_all_query_with_sub_aggs);
|
||||
register!(group, filter_agg_term_query_with_sub_aggs);
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
@@ -139,12 +123,12 @@ fn extendedstats_f64(index: &Index) {
|
||||
}
|
||||
fn percentiles_f64(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"mypercentiles": {
|
||||
"percentiles": {
|
||||
"field": "score_f64",
|
||||
"percents": [ 95, 99, 99.9 ]
|
||||
}
|
||||
"mypercentiles": {
|
||||
"percentiles": {
|
||||
"field": "score_f64",
|
||||
"percents": [ 95, 99, 99.9 ]
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
@@ -159,10 +143,10 @@ fn cardinality_agg(index: &Index) {
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_status_with_cardinality_agg(index: &Index) {
|
||||
fn terms_few_with_cardinality_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_few_terms_status" },
|
||||
"terms": { "field": "text_few_terms" },
|
||||
"aggs": {
|
||||
"cardinality": {
|
||||
"cardinality": {
|
||||
@@ -175,20 +159,13 @@ fn terms_status_with_cardinality_agg(index: &Index) {
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn terms_7(index: &Index) {
|
||||
fn terms_few(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": { "terms": { "field": "text_few_terms_status" } },
|
||||
"my_texts": { "terms": { "field": "text_few_terms" } },
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_all_unique(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": { "terms": { "field": "text_all_unique_terms" } },
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn terms_150_000(index: &Index) {
|
||||
fn terms_many(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": { "terms": { "field": "text_many_terms" } },
|
||||
});
|
||||
@@ -236,72 +213,6 @@ fn terms_many_with_avg_sub_agg(index: &Index) {
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_all_unique_with_avg_sub_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_all_unique_terms" },
|
||||
"aggs": {
|
||||
"average_f64": { "avg": { "field": "score_f64" } }
|
||||
}
|
||||
},
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_status_with_histogram(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_few_terms_status" },
|
||||
"aggs": {
|
||||
"histo": {"histogram": { "field": "score_f64", "interval": 10 }}
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn terms_zipf_1000_with_histogram(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_1000_terms_zipf" },
|
||||
"aggs": {
|
||||
"histo": {"histogram": { "field": "score_f64", "interval": 10 }}
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn terms_status_with_avg_sub_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_few_terms_status" },
|
||||
"aggs": {
|
||||
"average_f64": { "avg": { "field": "score_f64" } }
|
||||
}
|
||||
},
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn terms_zipf_1000_with_avg_sub_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_1000_terms_zipf" },
|
||||
"aggs": {
|
||||
"average_f64": { "avg": { "field": "score_f64" } }
|
||||
}
|
||||
},
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn terms_zipf_1000(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": { "terms": { "field": "text_1000_terms_zipf" } },
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn terms_many_json_mixed_type_with_avg_sub_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
@@ -357,7 +268,7 @@ fn range_agg_with_avg_sub_agg(index: &Index) {
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn range_agg_with_term_agg_status(index: &Index) {
|
||||
fn range_agg_with_term_agg_few(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"rangef64": {
|
||||
"range": {
|
||||
@@ -372,7 +283,7 @@ fn range_agg_with_term_agg_status(index: &Index) {
|
||||
]
|
||||
},
|
||||
"aggs": {
|
||||
"my_texts": { "terms": { "field": "text_few_terms_status" } },
|
||||
"my_texts": { "terms": { "field": "text_few_terms" } },
|
||||
}
|
||||
},
|
||||
});
|
||||
@@ -428,17 +339,6 @@ fn histogram_with_avg_sub_agg(index: &Index) {
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn histogram_with_term_agg_status(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"rangef64": {
|
||||
"histogram": { "field": "score_f64", "interval": 10 },
|
||||
"aggs": {
|
||||
"my_texts": { "terms": { "field": "text_few_terms_status" } }
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn avg_and_range_with_avg_sub_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"rangef64": {
|
||||
@@ -478,13 +378,6 @@ fn get_collector(agg_req: Aggregations) -> AggregationCollector {
|
||||
}
|
||||
|
||||
fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
// Flag to use existing index
|
||||
let reuse_index = std::env::var("REUSE_AGG_BENCH_INDEX").is_ok();
|
||||
if reuse_index && std::path::Path::new("agg_bench").exists() {
|
||||
return Index::open_in_dir("agg_bench");
|
||||
}
|
||||
// crreate dir
|
||||
std::fs::create_dir_all("agg_bench")?;
|
||||
let mut schema_builder = Schema::builder();
|
||||
let text_fieldtype = tantivy::schema::TextOptions::default()
|
||||
.set_indexing_options(
|
||||
@@ -493,47 +386,20 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
.set_stored();
|
||||
let text_field = schema_builder.add_text_field("text", text_fieldtype);
|
||||
let json_field = schema_builder.add_json_field("json", FAST);
|
||||
let text_field_all_unique_terms =
|
||||
schema_builder.add_text_field("text_all_unique_terms", STRING | FAST);
|
||||
let text_field_many_terms = schema_builder.add_text_field("text_many_terms", STRING | FAST);
|
||||
let text_field_few_terms_status =
|
||||
schema_builder.add_text_field("text_few_terms_status", STRING | FAST);
|
||||
let text_field_1000_terms_zipf =
|
||||
schema_builder.add_text_field("text_1000_terms_zipf", STRING | FAST);
|
||||
let text_field_few_terms = schema_builder.add_text_field("text_few_terms", STRING | FAST);
|
||||
let score_fieldtype = tantivy::schema::NumericOptions::default().set_fast();
|
||||
let score_field = schema_builder.add_u64_field("score", score_fieldtype.clone());
|
||||
let score_field_f64 = schema_builder.add_f64_field("score_f64", score_fieldtype.clone());
|
||||
let score_field_i64 = schema_builder.add_i64_field("score_i64", score_fieldtype);
|
||||
// use tmp dir
|
||||
let index = if reuse_index {
|
||||
Index::create_in_dir("agg_bench", schema_builder.build())?
|
||||
} else {
|
||||
Index::create_from_tempdir(schema_builder.build())?
|
||||
};
|
||||
// Approximate log proportions
|
||||
let status_field_data = [
|
||||
("INFO", 8000),
|
||||
("ERROR", 300),
|
||||
("WARN", 1200),
|
||||
("DEBUG", 500),
|
||||
("OK", 500),
|
||||
("CRITICAL", 20),
|
||||
("EMERGENCY", 1),
|
||||
];
|
||||
let log_level_distribution =
|
||||
WeightedIndex::new(status_field_data.iter().map(|item| item.1)).unwrap();
|
||||
let index = Index::create_from_tempdir(schema_builder.build())?;
|
||||
let few_terms_data = ["INFO", "ERROR", "WARN", "DEBUG"];
|
||||
|
||||
let lg_norm = rand_distr::LogNormal::new(2.996f64, 0.979f64).unwrap();
|
||||
|
||||
let many_terms_data = (0..150_000)
|
||||
.map(|num| format!("author{num}"))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// Prepare 1000 unique terms sampled using a Zipf distribution.
|
||||
// Exponent ~1.1 approximates top-20 terms covering around ~20%.
|
||||
let terms_1000: Vec<String> = (1..=1000).map(|i| format!("term_{i}")).collect();
|
||||
let zipf_1000 = rand_distr::Zipf::new(1000, 1.1f64).unwrap();
|
||||
|
||||
{
|
||||
let mut rng = StdRng::from_seed([1u8; 32]);
|
||||
let mut index_writer = index.writer_with_num_threads(1, 200_000_000)?;
|
||||
@@ -543,25 +409,15 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
index_writer.add_document(doc!())?;
|
||||
}
|
||||
if cardinality == Cardinality::Multivalued {
|
||||
let log_level_sample_a = status_field_data[log_level_distribution.sample(&mut rng)].0;
|
||||
let log_level_sample_b = status_field_data[log_level_distribution.sample(&mut rng)].0;
|
||||
let idx_a = zipf_1000.sample(&mut rng) as usize - 1;
|
||||
let idx_b = zipf_1000.sample(&mut rng) as usize - 1;
|
||||
let term_1000_a = &terms_1000[idx_a];
|
||||
let term_1000_b = &terms_1000[idx_b];
|
||||
index_writer.add_document(doc!(
|
||||
json_field => json!({"mixed_type": 10.0}),
|
||||
json_field => json!({"mixed_type": 10.0}),
|
||||
text_field => "cool",
|
||||
text_field => "cool",
|
||||
text_field_all_unique_terms => "cool",
|
||||
text_field_all_unique_terms => "coolo",
|
||||
text_field_many_terms => "cool",
|
||||
text_field_many_terms => "cool",
|
||||
text_field_few_terms_status => log_level_sample_a,
|
||||
text_field_few_terms_status => log_level_sample_b,
|
||||
text_field_1000_terms_zipf => term_1000_a.as_str(),
|
||||
text_field_1000_terms_zipf => term_1000_b.as_str(),
|
||||
text_field_few_terms => "cool",
|
||||
text_field_few_terms => "cool",
|
||||
score_field => 1u64,
|
||||
score_field => 1u64,
|
||||
score_field_f64 => lg_norm.sample(&mut rng),
|
||||
@@ -586,10 +442,8 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
json_field => json,
|
||||
text_field_all_unique_terms => format!("unique_term_{}", rng.gen::<u64>()),
|
||||
text_field_many_terms => many_terms_data.choose(&mut rng).unwrap().to_string(),
|
||||
text_field_few_terms_status => status_field_data[log_level_distribution.sample(&mut rng)].0,
|
||||
text_field_1000_terms_zipf => terms_1000[zipf_1000.sample(&mut rng) as usize - 1].as_str(),
|
||||
text_field_few_terms => few_terms_data.choose(&mut rng).unwrap().to_string(),
|
||||
score_field => val as u64,
|
||||
score_field_f64 => lg_norm.sample(&mut rng),
|
||||
score_field_i64 => val as i64,
|
||||
@@ -606,61 +460,3 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
|
||||
Ok(index)
|
||||
}
|
||||
|
||||
// Filter aggregation benchmarks
|
||||
|
||||
fn filter_agg_all_query_count_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"filtered": {
|
||||
"filter": "*",
|
||||
"aggs": {
|
||||
"count": { "value_count": { "field": "score" } }
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn filter_agg_term_query_count_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"filtered": {
|
||||
"filter": "text:cool",
|
||||
"aggs": {
|
||||
"count": { "value_count": { "field": "score" } }
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn filter_agg_all_query_with_sub_aggs(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"filtered": {
|
||||
"filter": "*",
|
||||
"aggs": {
|
||||
"avg_score": { "avg": { "field": "score" } },
|
||||
"stats_score": { "stats": { "field": "score_f64" } },
|
||||
"terms_text": {
|
||||
"terms": { "field": "text_few_terms_status" }
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn filter_agg_term_query_with_sub_aggs(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"filtered": {
|
||||
"filter": "text:cool",
|
||||
"aggs": {
|
||||
"avg_score": { "avg": { "field": "score" } },
|
||||
"stats_score": { "stats": { "field": "score_f64" } },
|
||||
"terms_text": {
|
||||
"terms": { "field": "text_few_terms_status" }
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
@@ -1,218 +0,0 @@
|
||||
// Benchmarks boolean conjunction queries using binggan.
|
||||
//
|
||||
// What’s measured:
|
||||
// - Or and And queries with varying selectivity (only `Term` queries for now on leafs)
|
||||
// - Nested AND/OR combinations (on multiple fields)
|
||||
// - No-scoring path using the Count collector (focus on iterator/skip performance)
|
||||
// - Top-K retrieval (k=10) using the TopDocs collector
|
||||
//
|
||||
// Corpus model:
|
||||
// - Synthetic docs; each token a/b/c is independently included per doc
|
||||
// - If none of a/b/c are included, emit a neutral filler token to keep doc length similar
|
||||
//
|
||||
// Notes:
|
||||
// - After optimization, when scoring is disabled Tantivy reads doc-only postings
|
||||
// (IndexRecordOption::Basic), avoiding frequency decoding overhead.
|
||||
// - This bench isolates boolean iteration speed and intersection/union cost.
|
||||
// - Use `cargo bench --bench boolean_conjunction` to run.
|
||||
|
||||
use binggan::{black_box, BenchGroup, BenchRunner};
|
||||
use rand::prelude::*;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::SeedableRng;
|
||||
use tantivy::collector::sort_key::SortByStaticFastValue;
|
||||
use tantivy::collector::{Collector, Count, TopDocs};
|
||||
use tantivy::query::{Query, QueryParser};
|
||||
use tantivy::schema::{Schema, FAST, TEXT};
|
||||
use tantivy::{doc, Index, Order, ReloadPolicy, Searcher};
|
||||
|
||||
#[derive(Clone)]
|
||||
struct BenchIndex {
|
||||
#[allow(dead_code)]
|
||||
index: Index,
|
||||
searcher: Searcher,
|
||||
query_parser: QueryParser,
|
||||
}
|
||||
|
||||
/// Build a single index containing both fields (title, body) and
|
||||
/// return two BenchIndex views:
|
||||
/// - single_field: QueryParser defaults to only "body"
|
||||
/// - multi_field: QueryParser defaults to ["title", "body"]
|
||||
fn build_shared_indices(num_docs: usize, p_a: f32, p_b: f32, p_c: f32) -> (BenchIndex, BenchIndex) {
|
||||
// Unified schema (two text fields)
|
||||
let mut schema_builder = Schema::builder();
|
||||
let f_title = schema_builder.add_text_field("title", TEXT);
|
||||
let f_body = schema_builder.add_text_field("body", TEXT);
|
||||
let f_score = schema_builder.add_u64_field("score", FAST);
|
||||
let f_score2 = schema_builder.add_u64_field("score2", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
// Populate index with stable RNG for reproducibility.
|
||||
let mut rng = StdRng::from_seed([7u8; 32]);
|
||||
|
||||
// Populate: spread each present token 90/10 to body/title
|
||||
{
|
||||
let mut writer = index.writer_with_num_threads(1, 500_000_000).unwrap();
|
||||
for _ in 0..num_docs {
|
||||
let has_a = rng.gen_bool(p_a as f64);
|
||||
let has_b = rng.gen_bool(p_b as f64);
|
||||
let has_c = rng.gen_bool(p_c as f64);
|
||||
let score = rng.gen_range(0u64..100u64);
|
||||
let score2 = rng.gen_range(0u64..100_000u64);
|
||||
let mut title_tokens: Vec<&str> = Vec::new();
|
||||
let mut body_tokens: Vec<&str> = Vec::new();
|
||||
if has_a {
|
||||
if rng.gen_bool(0.1) {
|
||||
title_tokens.push("a");
|
||||
} else {
|
||||
body_tokens.push("a");
|
||||
}
|
||||
}
|
||||
if has_b {
|
||||
if rng.gen_bool(0.1) {
|
||||
title_tokens.push("b");
|
||||
} else {
|
||||
body_tokens.push("b");
|
||||
}
|
||||
}
|
||||
if has_c {
|
||||
if rng.gen_bool(0.1) {
|
||||
title_tokens.push("c");
|
||||
} else {
|
||||
body_tokens.push("c");
|
||||
}
|
||||
}
|
||||
if title_tokens.is_empty() && body_tokens.is_empty() {
|
||||
body_tokens.push("z");
|
||||
}
|
||||
writer
|
||||
.add_document(doc!(
|
||||
f_title=>title_tokens.join(" "),
|
||||
f_body=>body_tokens.join(" "),
|
||||
f_score=>score,
|
||||
f_score2=>score2,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
writer.commit().unwrap();
|
||||
}
|
||||
|
||||
// Prepare reader/searcher once.
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::Manual)
|
||||
.try_into()
|
||||
.unwrap();
|
||||
let searcher = reader.searcher();
|
||||
|
||||
// Build two query parsers with different default fields.
|
||||
let qp_single = QueryParser::for_index(&index, vec![f_body]);
|
||||
let qp_multi = QueryParser::for_index(&index, vec![f_title, f_body]);
|
||||
|
||||
let single_view = BenchIndex {
|
||||
index: index.clone(),
|
||||
searcher: searcher.clone(),
|
||||
query_parser: qp_single,
|
||||
};
|
||||
let multi_view = BenchIndex {
|
||||
index,
|
||||
searcher,
|
||||
query_parser: qp_multi,
|
||||
};
|
||||
(single_view, multi_view)
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// Prepare corpora with varying selectivity. Build one index per corpus
|
||||
// and derive two views (single-field vs multi-field) from it.
|
||||
let scenarios = vec![
|
||||
(
|
||||
"N=1M, p(a)=5%, p(b)=1%, p(c)=15%".to_string(),
|
||||
1_000_000,
|
||||
0.05,
|
||||
0.01,
|
||||
0.15,
|
||||
),
|
||||
(
|
||||
"N=1M, p(a)=1%, p(b)=1%, p(c)=15%".to_string(),
|
||||
1_000_000,
|
||||
0.01,
|
||||
0.01,
|
||||
0.15,
|
||||
),
|
||||
];
|
||||
|
||||
let queries = &["a", "+a +b", "+a +b +c", "a OR b", "a OR b OR c"];
|
||||
|
||||
let mut runner = BenchRunner::new();
|
||||
for (label, n, pa, pb, pc) in scenarios {
|
||||
let (single_view, multi_view) = build_shared_indices(n, pa, pb, pc);
|
||||
|
||||
for (view_name, bench_index) in [("single_field", single_view), ("multi_field", multi_view)]
|
||||
{
|
||||
// Single-field group: default field is body only
|
||||
let mut group = runner.new_group();
|
||||
group.set_name(format!("{} — {}", view_name, label));
|
||||
for query_str in queries {
|
||||
add_bench_task(&mut group, &bench_index, query_str, Count, "count");
|
||||
add_bench_task(
|
||||
&mut group,
|
||||
&bench_index,
|
||||
query_str,
|
||||
TopDocs::with_limit(10).order_by_score(),
|
||||
"top10",
|
||||
);
|
||||
add_bench_task(
|
||||
&mut group,
|
||||
&bench_index,
|
||||
query_str,
|
||||
TopDocs::with_limit(10).order_by_fast_field::<u64>("score", Order::Asc),
|
||||
"top10_by_ff",
|
||||
);
|
||||
add_bench_task(
|
||||
&mut group,
|
||||
&bench_index,
|
||||
query_str,
|
||||
TopDocs::with_limit(10).order_by((
|
||||
SortByStaticFastValue::<u64>::for_field("score"),
|
||||
SortByStaticFastValue::<u64>::for_field("score2"),
|
||||
)),
|
||||
"top10_by_2ff",
|
||||
);
|
||||
}
|
||||
group.run();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn add_bench_task<C: Collector + 'static>(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query_str: &str,
|
||||
collector: C,
|
||||
collector_name: &str,
|
||||
) {
|
||||
let task_name = format!("{}_{}", query_str.replace(" ", "_"), collector_name);
|
||||
let query = bench_index.query_parser.parse_query(query_str).unwrap();
|
||||
let search_task = SearchTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
collector,
|
||||
query,
|
||||
};
|
||||
bench_group.register(task_name, move |_| black_box(search_task.run()));
|
||||
}
|
||||
|
||||
struct SearchTask<C: Collector> {
|
||||
searcher: Searcher,
|
||||
collector: C,
|
||||
query: Box<dyn Query>,
|
||||
}
|
||||
|
||||
impl<C: Collector> SearchTask<C> {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> usize {
|
||||
self.searcher.search(&self.query, &self.collector).unwrap();
|
||||
1
|
||||
}
|
||||
}
|
||||
@@ -1,288 +0,0 @@
|
||||
use binggan::{black_box, BenchGroup, BenchRunner};
|
||||
use rand::prelude::*;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::SeedableRng;
|
||||
use tantivy::collector::{Collector, Count, DocSetCollector, TopDocs};
|
||||
use tantivy::query::{Query, QueryParser};
|
||||
use tantivy::schema::{Schema, FAST, INDEXED, TEXT};
|
||||
use tantivy::{doc, Index, Order, ReloadPolicy, Searcher};
|
||||
|
||||
#[derive(Clone)]
|
||||
struct BenchIndex {
|
||||
#[allow(dead_code)]
|
||||
index: Index,
|
||||
searcher: Searcher,
|
||||
query_parser: QueryParser,
|
||||
}
|
||||
|
||||
fn build_shared_indices(num_docs: usize, p_title_a: f32, distribution: &str) -> BenchIndex {
|
||||
// Unified schema
|
||||
let mut schema_builder = Schema::builder();
|
||||
let f_title = schema_builder.add_text_field("title", TEXT);
|
||||
let f_num_rand = schema_builder.add_u64_field("num_rand", INDEXED);
|
||||
let f_num_asc = schema_builder.add_u64_field("num_asc", INDEXED);
|
||||
let f_num_rand_fast = schema_builder.add_u64_field("num_rand_fast", INDEXED | FAST);
|
||||
let f_num_asc_fast = schema_builder.add_u64_field("num_asc_fast", INDEXED | FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
// Populate index with stable RNG for reproducibility.
|
||||
let mut rng = StdRng::from_seed([7u8; 32]);
|
||||
|
||||
{
|
||||
let mut writer = index.writer_with_num_threads(1, 4_000_000_000).unwrap();
|
||||
|
||||
match distribution {
|
||||
"dense" => {
|
||||
for doc_id in 0..num_docs {
|
||||
// Always add title to avoid empty documents
|
||||
let title_token = if rng.gen_bool(p_title_a as f64) {
|
||||
"a"
|
||||
} else {
|
||||
"b"
|
||||
};
|
||||
|
||||
let num_rand = rng.gen_range(0u64..1000u64);
|
||||
|
||||
let num_asc = (doc_id / 10000) as u64;
|
||||
|
||||
writer
|
||||
.add_document(doc!(
|
||||
f_title=>title_token,
|
||||
f_num_rand=>num_rand,
|
||||
f_num_asc=>num_asc,
|
||||
f_num_rand_fast=>num_rand,
|
||||
f_num_asc_fast=>num_asc,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
"sparse" => {
|
||||
for doc_id in 0..num_docs {
|
||||
// Always add title to avoid empty documents
|
||||
let title_token = if rng.gen_bool(p_title_a as f64) {
|
||||
"a"
|
||||
} else {
|
||||
"b"
|
||||
};
|
||||
|
||||
let num_rand = rng.gen_range(0u64..10000000u64);
|
||||
|
||||
let num_asc = doc_id as u64;
|
||||
|
||||
writer
|
||||
.add_document(doc!(
|
||||
f_title=>title_token,
|
||||
f_num_rand=>num_rand,
|
||||
f_num_asc=>num_asc,
|
||||
f_num_rand_fast=>num_rand,
|
||||
f_num_asc_fast=>num_asc,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
panic!("Unsupported distribution type");
|
||||
}
|
||||
}
|
||||
writer.commit().unwrap();
|
||||
}
|
||||
|
||||
// Prepare reader/searcher once.
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::Manual)
|
||||
.try_into()
|
||||
.unwrap();
|
||||
let searcher = reader.searcher();
|
||||
|
||||
// Build query parser for title field
|
||||
let qp_title = QueryParser::for_index(&index, vec![f_title]);
|
||||
|
||||
BenchIndex {
|
||||
index,
|
||||
searcher,
|
||||
query_parser: qp_title,
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// Prepare corpora with varying scenarios
|
||||
let scenarios = vec![
|
||||
(
|
||||
"dense and 99% a".to_string(),
|
||||
10_000_000,
|
||||
0.99,
|
||||
"dense",
|
||||
0,
|
||||
9,
|
||||
),
|
||||
(
|
||||
"dense and 99% a".to_string(),
|
||||
10_000_000,
|
||||
0.99,
|
||||
"dense",
|
||||
990,
|
||||
999,
|
||||
),
|
||||
(
|
||||
"sparse and 99% a".to_string(),
|
||||
10_000_000,
|
||||
0.99,
|
||||
"sparse",
|
||||
0,
|
||||
9,
|
||||
),
|
||||
(
|
||||
"sparse and 99% a".to_string(),
|
||||
10_000_000,
|
||||
0.99,
|
||||
"sparse",
|
||||
9_999_990,
|
||||
9_999_999,
|
||||
),
|
||||
];
|
||||
|
||||
let mut runner = BenchRunner::new();
|
||||
for (scenario_id, n, p_title_a, num_rand_distribution, range_low, range_high) in scenarios {
|
||||
// Build index for this scenario
|
||||
let bench_index = build_shared_indices(n, p_title_a, num_rand_distribution);
|
||||
|
||||
// Create benchmark group
|
||||
let mut group = runner.new_group();
|
||||
|
||||
// Now set the name (this moves scenario_id)
|
||||
group.set_name(scenario_id);
|
||||
|
||||
// Define all four field types
|
||||
let field_names = ["num_rand", "num_asc", "num_rand_fast", "num_asc_fast"];
|
||||
|
||||
// Define the three terms we want to test with
|
||||
let terms = ["a", "b", "z"];
|
||||
|
||||
// Generate all combinations of terms and field names
|
||||
let mut queries = Vec::new();
|
||||
for &term in &terms {
|
||||
for &field_name in &field_names {
|
||||
let query_str = format!(
|
||||
"{} AND {}:[{} TO {}]",
|
||||
term, field_name, range_low, range_high
|
||||
);
|
||||
queries.push((query_str, field_name.to_string()));
|
||||
}
|
||||
}
|
||||
|
||||
let query_str = format!(
|
||||
"{}:[{} TO {}] AND {}:[{} TO {}]",
|
||||
"num_rand_fast", range_low, range_high, "num_asc_fast", range_low, range_high
|
||||
);
|
||||
queries.push((query_str, "num_asc_fast".to_string()));
|
||||
|
||||
// Run all benchmark tasks for each query and its corresponding field name
|
||||
for (query_str, field_name) in queries {
|
||||
run_benchmark_tasks(&mut group, &bench_index, &query_str, &field_name);
|
||||
}
|
||||
|
||||
group.run();
|
||||
}
|
||||
}
|
||||
|
||||
/// Run all benchmark tasks for a given query string and field name
|
||||
fn run_benchmark_tasks(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query_str: &str,
|
||||
field_name: &str,
|
||||
) {
|
||||
// Test count
|
||||
add_bench_task(bench_group, bench_index, query_str, Count, "count");
|
||||
|
||||
// Test all results
|
||||
add_bench_task(
|
||||
bench_group,
|
||||
bench_index,
|
||||
query_str,
|
||||
DocSetCollector,
|
||||
"all results",
|
||||
);
|
||||
|
||||
// Test top 100 by the field (if it's a FAST field)
|
||||
if field_name.ends_with("_fast") {
|
||||
// Ascending order
|
||||
{
|
||||
let collector_name = format!("top100_by_{}_asc", field_name);
|
||||
let field_name_owned = field_name.to_string();
|
||||
add_bench_task(
|
||||
bench_group,
|
||||
bench_index,
|
||||
query_str,
|
||||
TopDocs::with_limit(100).order_by_fast_field::<u64>(field_name_owned, Order::Asc),
|
||||
&collector_name,
|
||||
);
|
||||
}
|
||||
|
||||
// Descending order
|
||||
{
|
||||
let collector_name = format!("top100_by_{}_desc", field_name);
|
||||
let field_name_owned = field_name.to_string();
|
||||
add_bench_task(
|
||||
bench_group,
|
||||
bench_index,
|
||||
query_str,
|
||||
TopDocs::with_limit(100).order_by_fast_field::<u64>(field_name_owned, Order::Desc),
|
||||
&collector_name,
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn add_bench_task<C: Collector + 'static>(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query_str: &str,
|
||||
collector: C,
|
||||
collector_name: &str,
|
||||
) {
|
||||
let task_name = format!("{}_{}", query_str.replace(" ", "_"), collector_name);
|
||||
let query = bench_index.query_parser.parse_query(query_str).unwrap();
|
||||
let search_task = SearchTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
collector,
|
||||
query,
|
||||
};
|
||||
bench_group.register(task_name, move |_| black_box(search_task.run()));
|
||||
}
|
||||
|
||||
struct SearchTask<C: Collector> {
|
||||
searcher: Searcher,
|
||||
collector: C,
|
||||
query: Box<dyn Query>,
|
||||
}
|
||||
|
||||
impl<C: Collector> SearchTask<C> {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> usize {
|
||||
let result = self.searcher.search(&self.query, &self.collector).unwrap();
|
||||
if let Some(count) = (&result as &dyn std::any::Any).downcast_ref::<usize>() {
|
||||
*count
|
||||
} else if let Some(top_docs) = (&result as &dyn std::any::Any)
|
||||
.downcast_ref::<Vec<(Option<u64>, tantivy::DocAddress)>>()
|
||||
{
|
||||
top_docs.len()
|
||||
} else if let Some(top_docs) =
|
||||
(&result as &dyn std::any::Any).downcast_ref::<Vec<(u64, tantivy::DocAddress)>>()
|
||||
{
|
||||
top_docs.len()
|
||||
} else if let Some(doc_set) = (&result as &dyn std::any::Any)
|
||||
.downcast_ref::<std::collections::HashSet<tantivy::DocAddress>>()
|
||||
{
|
||||
doc_set.len()
|
||||
} else {
|
||||
eprintln!(
|
||||
"Unknown collector result type: {:?}",
|
||||
std::any::type_name::<C::Fruit>()
|
||||
);
|
||||
0
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,69 +0,0 @@
|
||||
use binggan::plugins::PeakMemAllocPlugin;
|
||||
use binggan::{black_box, InputGroup, PeakMemAlloc, INSTRUMENTED_SYSTEM};
|
||||
use serde_json::json;
|
||||
use tantivy::collector::Count;
|
||||
use tantivy::query::ExistsQuery;
|
||||
use tantivy::schema::{Schema, FAST, TEXT};
|
||||
use tantivy::{doc, Index};
|
||||
|
||||
#[global_allocator]
|
||||
pub static GLOBAL: &PeakMemAlloc<std::alloc::System> = &INSTRUMENTED_SYSTEM;
|
||||
|
||||
fn main() {
|
||||
let doc_count: usize = 500_000;
|
||||
let subfield_counts: &[usize] = &[1, 2, 3, 4, 5, 6, 7, 8, 16, 256, 4096, 65536, 262144];
|
||||
|
||||
let indices: Vec<(String, Index)> = subfield_counts
|
||||
.iter()
|
||||
.map(|&sub_fields| {
|
||||
(
|
||||
format!("subfields={sub_fields}"),
|
||||
build_index_with_json_subfields(doc_count, sub_fields),
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
|
||||
let mut group = InputGroup::new_with_inputs(indices);
|
||||
group.add_plugin(PeakMemAllocPlugin::new(GLOBAL));
|
||||
|
||||
group.config().num_iter_group = Some(1);
|
||||
group.config().num_iter_bench = Some(1);
|
||||
group.register("exists_json", exists_json_union);
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
fn exists_json_union(index: &Index) {
|
||||
let reader = index.reader().expect("reader");
|
||||
let searcher = reader.searcher();
|
||||
let query = ExistsQuery::new("json".to_string(), true);
|
||||
let count = searcher.search(&query, &Count).expect("exists search");
|
||||
// Prevents optimizer from eliding the search
|
||||
black_box(count);
|
||||
}
|
||||
|
||||
fn build_index_with_json_subfields(num_docs: usize, num_subfields: usize) -> Index {
|
||||
// Schema: single JSON field stored as FAST to support ExistsQuery.
|
||||
let mut schema_builder = Schema::builder();
|
||||
let json_field = schema_builder.add_json_field("json", TEXT | FAST);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
let index = Index::create_from_tempdir(schema).expect("create index");
|
||||
{
|
||||
let mut index_writer = index
|
||||
.writer_with_num_threads(1, 200_000_000)
|
||||
.expect("writer");
|
||||
for i in 0..num_docs {
|
||||
let sub = i % num_subfields;
|
||||
// Only one subpath set per document; rotate subpaths so that
|
||||
// no single subpath is full, but the union covers all docs.
|
||||
let v = json!({ format!("field_{sub}"): i as u64 });
|
||||
index_writer
|
||||
.add_document(doc!(json_field => v))
|
||||
.expect("add_document");
|
||||
}
|
||||
index_writer.commit().expect("commit");
|
||||
}
|
||||
|
||||
index
|
||||
}
|
||||
@@ -1,365 +0,0 @@
|
||||
use std::ops::Bound;
|
||||
|
||||
use binggan::{black_box, BenchGroup, BenchRunner};
|
||||
use rand::prelude::*;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::SeedableRng;
|
||||
use tantivy::collector::{Count, DocSetCollector, TopDocs};
|
||||
use tantivy::query::RangeQuery;
|
||||
use tantivy::schema::{Schema, FAST, INDEXED};
|
||||
use tantivy::{doc, Index, Order, ReloadPolicy, Searcher, Term};
|
||||
|
||||
#[derive(Clone)]
|
||||
struct BenchIndex {
|
||||
#[allow(dead_code)]
|
||||
index: Index,
|
||||
searcher: Searcher,
|
||||
}
|
||||
|
||||
fn build_shared_indices(num_docs: usize, distribution: &str) -> BenchIndex {
|
||||
// Schema with fast fields only
|
||||
let mut schema_builder = Schema::builder();
|
||||
let f_num_rand_fast = schema_builder.add_u64_field("num_rand_fast", INDEXED | FAST);
|
||||
let f_num_asc_fast = schema_builder.add_u64_field("num_asc_fast", INDEXED | FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
// Populate index with stable RNG for reproducibility.
|
||||
let mut rng = StdRng::from_seed([7u8; 32]);
|
||||
|
||||
{
|
||||
let mut writer = index.writer_with_num_threads(1, 4_000_000_000).unwrap();
|
||||
|
||||
match distribution {
|
||||
"dense" => {
|
||||
for doc_id in 0..num_docs {
|
||||
let num_rand = rng.gen_range(0u64..1000u64);
|
||||
let num_asc = (doc_id / 10000) as u64;
|
||||
|
||||
writer
|
||||
.add_document(doc!(
|
||||
f_num_rand_fast=>num_rand,
|
||||
f_num_asc_fast=>num_asc,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
"sparse" => {
|
||||
for doc_id in 0..num_docs {
|
||||
let num_rand = rng.gen_range(0u64..10000000u64);
|
||||
let num_asc = doc_id as u64;
|
||||
|
||||
writer
|
||||
.add_document(doc!(
|
||||
f_num_rand_fast=>num_rand,
|
||||
f_num_asc_fast=>num_asc,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
panic!("Unsupported distribution type");
|
||||
}
|
||||
}
|
||||
writer.commit().unwrap();
|
||||
}
|
||||
|
||||
// Prepare reader/searcher once.
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::Manual)
|
||||
.try_into()
|
||||
.unwrap();
|
||||
let searcher = reader.searcher();
|
||||
|
||||
BenchIndex { index, searcher }
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// Prepare corpora with varying scenarios
|
||||
let scenarios = vec![
|
||||
// Dense distribution - random values in small range (0-999)
|
||||
(
|
||||
"dense_values_search_low_value_range".to_string(),
|
||||
10_000_000,
|
||||
"dense",
|
||||
0,
|
||||
9,
|
||||
),
|
||||
(
|
||||
"dense_values_search_high_value_range".to_string(),
|
||||
10_000_000,
|
||||
"dense",
|
||||
990,
|
||||
999,
|
||||
),
|
||||
(
|
||||
"dense_values_search_out_of_range".to_string(),
|
||||
10_000_000,
|
||||
"dense",
|
||||
1000,
|
||||
1002,
|
||||
),
|
||||
(
|
||||
"sparse_values_search_low_value_range".to_string(),
|
||||
10_000_000,
|
||||
"sparse",
|
||||
0,
|
||||
9,
|
||||
),
|
||||
(
|
||||
"sparse_values_search_high_value_range".to_string(),
|
||||
10_000_000,
|
||||
"sparse",
|
||||
9_999_990,
|
||||
9_999_999,
|
||||
),
|
||||
(
|
||||
"sparse_values_search_out_of_range".to_string(),
|
||||
10_000_000,
|
||||
"sparse",
|
||||
10_000_000,
|
||||
10_000_002,
|
||||
),
|
||||
];
|
||||
|
||||
let mut runner = BenchRunner::new();
|
||||
for (scenario_id, n, num_rand_distribution, range_low, range_high) in scenarios {
|
||||
// Build index for this scenario
|
||||
let bench_index = build_shared_indices(n, num_rand_distribution);
|
||||
|
||||
// Create benchmark group
|
||||
let mut group = runner.new_group();
|
||||
|
||||
// Now set the name (this moves scenario_id)
|
||||
group.set_name(scenario_id);
|
||||
|
||||
// Define fast field types
|
||||
let field_names = ["num_rand_fast", "num_asc_fast"];
|
||||
|
||||
// Generate range queries for fast fields
|
||||
for &field_name in &field_names {
|
||||
// Create the range query
|
||||
let field = bench_index.searcher.schema().get_field(field_name).unwrap();
|
||||
let lower_term = Term::from_field_u64(field, range_low);
|
||||
let upper_term = Term::from_field_u64(field, range_high);
|
||||
|
||||
let query = RangeQuery::new(Bound::Included(lower_term), Bound::Included(upper_term));
|
||||
|
||||
run_benchmark_tasks(
|
||||
&mut group,
|
||||
&bench_index,
|
||||
query,
|
||||
field_name,
|
||||
range_low,
|
||||
range_high,
|
||||
);
|
||||
}
|
||||
|
||||
group.run();
|
||||
}
|
||||
}
|
||||
|
||||
/// Run all benchmark tasks for a given range query and field name
|
||||
fn run_benchmark_tasks(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query: RangeQuery,
|
||||
field_name: &str,
|
||||
range_low: u64,
|
||||
range_high: u64,
|
||||
) {
|
||||
// Test count
|
||||
add_bench_task_count(
|
||||
bench_group,
|
||||
bench_index,
|
||||
query.clone(),
|
||||
"count",
|
||||
field_name,
|
||||
range_low,
|
||||
range_high,
|
||||
);
|
||||
|
||||
// Test top 100 by the field (ascending order)
|
||||
{
|
||||
let collector_name = format!("top100_by_{}_asc", field_name);
|
||||
let field_name_owned = field_name.to_string();
|
||||
add_bench_task_top100_asc(
|
||||
bench_group,
|
||||
bench_index,
|
||||
query.clone(),
|
||||
&collector_name,
|
||||
field_name,
|
||||
range_low,
|
||||
range_high,
|
||||
field_name_owned,
|
||||
);
|
||||
}
|
||||
|
||||
// Test top 100 by the field (descending order)
|
||||
{
|
||||
let collector_name = format!("top100_by_{}_desc", field_name);
|
||||
let field_name_owned = field_name.to_string();
|
||||
add_bench_task_top100_desc(
|
||||
bench_group,
|
||||
bench_index,
|
||||
query,
|
||||
&collector_name,
|
||||
field_name,
|
||||
range_low,
|
||||
range_high,
|
||||
field_name_owned,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn add_bench_task_count(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query: RangeQuery,
|
||||
collector_name: &str,
|
||||
field_name: &str,
|
||||
range_low: u64,
|
||||
range_high: u64,
|
||||
) {
|
||||
let task_name = format!(
|
||||
"range_{}_[{} TO {}]_{}",
|
||||
field_name, range_low, range_high, collector_name
|
||||
);
|
||||
|
||||
let search_task = CountSearchTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
query,
|
||||
};
|
||||
bench_group.register(task_name, move |_| black_box(search_task.run()));
|
||||
}
|
||||
|
||||
fn add_bench_task_docset(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query: RangeQuery,
|
||||
collector_name: &str,
|
||||
field_name: &str,
|
||||
range_low: u64,
|
||||
range_high: u64,
|
||||
) {
|
||||
let task_name = format!(
|
||||
"range_{}_[{} TO {}]_{}",
|
||||
field_name, range_low, range_high, collector_name
|
||||
);
|
||||
|
||||
let search_task = DocSetSearchTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
query,
|
||||
};
|
||||
bench_group.register(task_name, move |_| black_box(search_task.run()));
|
||||
}
|
||||
|
||||
fn add_bench_task_top100_asc(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query: RangeQuery,
|
||||
collector_name: &str,
|
||||
field_name: &str,
|
||||
range_low: u64,
|
||||
range_high: u64,
|
||||
field_name_owned: String,
|
||||
) {
|
||||
let task_name = format!(
|
||||
"range_{}_[{} TO {}]_{}",
|
||||
field_name, range_low, range_high, collector_name
|
||||
);
|
||||
|
||||
let search_task = Top100AscSearchTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
query,
|
||||
field_name: field_name_owned,
|
||||
};
|
||||
bench_group.register(task_name, move |_| black_box(search_task.run()));
|
||||
}
|
||||
|
||||
fn add_bench_task_top100_desc(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query: RangeQuery,
|
||||
collector_name: &str,
|
||||
field_name: &str,
|
||||
range_low: u64,
|
||||
range_high: u64,
|
||||
field_name_owned: String,
|
||||
) {
|
||||
let task_name = format!(
|
||||
"range_{}_[{} TO {}]_{}",
|
||||
field_name, range_low, range_high, collector_name
|
||||
);
|
||||
|
||||
let search_task = Top100DescSearchTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
query,
|
||||
field_name: field_name_owned,
|
||||
};
|
||||
bench_group.register(task_name, move |_| black_box(search_task.run()));
|
||||
}
|
||||
|
||||
struct CountSearchTask {
|
||||
searcher: Searcher,
|
||||
query: RangeQuery,
|
||||
}
|
||||
|
||||
impl CountSearchTask {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> usize {
|
||||
self.searcher.search(&self.query, &Count).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
struct DocSetSearchTask {
|
||||
searcher: Searcher,
|
||||
query: RangeQuery,
|
||||
}
|
||||
|
||||
impl DocSetSearchTask {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> usize {
|
||||
let result = self.searcher.search(&self.query, &DocSetCollector).unwrap();
|
||||
result.len()
|
||||
}
|
||||
}
|
||||
|
||||
struct Top100AscSearchTask {
|
||||
searcher: Searcher,
|
||||
query: RangeQuery,
|
||||
field_name: String,
|
||||
}
|
||||
|
||||
impl Top100AscSearchTask {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> usize {
|
||||
let collector =
|
||||
TopDocs::with_limit(100).order_by_fast_field::<u64>(&self.field_name, Order::Asc);
|
||||
let result = self.searcher.search(&self.query, &collector).unwrap();
|
||||
for (_score, doc_address) in &result {
|
||||
let _doc: tantivy::TantivyDocument = self.searcher.doc(*doc_address).unwrap();
|
||||
}
|
||||
result.len()
|
||||
}
|
||||
}
|
||||
|
||||
struct Top100DescSearchTask {
|
||||
searcher: Searcher,
|
||||
query: RangeQuery,
|
||||
field_name: String,
|
||||
}
|
||||
|
||||
impl Top100DescSearchTask {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> usize {
|
||||
let collector =
|
||||
TopDocs::with_limit(100).order_by_fast_field::<u64>(&self.field_name, Order::Desc);
|
||||
let result = self.searcher.search(&self.query, &collector).unwrap();
|
||||
for (_score, doc_address) in &result {
|
||||
let _doc: tantivy::TantivyDocument = self.searcher.doc(*doc_address).unwrap();
|
||||
}
|
||||
result.len()
|
||||
}
|
||||
}
|
||||
@@ -1,260 +0,0 @@
|
||||
use std::fmt::Display;
|
||||
use std::net::Ipv6Addr;
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
use binggan::plugins::PeakMemAllocPlugin;
|
||||
use binggan::{black_box, BenchRunner, OutputValue, PeakMemAlloc, INSTRUMENTED_SYSTEM};
|
||||
use columnar::MonotonicallyMappableToU128;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use tantivy::collector::{Count, TopDocs};
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::*;
|
||||
use tantivy::{doc, Index};
|
||||
|
||||
#[global_allocator]
|
||||
pub static GLOBAL: &PeakMemAlloc<std::alloc::System> = &INSTRUMENTED_SYSTEM;
|
||||
|
||||
fn main() {
|
||||
bench_range_query();
|
||||
}
|
||||
|
||||
fn bench_range_query() {
|
||||
let index = get_index_0_to_100();
|
||||
let mut runner = BenchRunner::new();
|
||||
runner.add_plugin(PeakMemAllocPlugin::new(GLOBAL));
|
||||
|
||||
runner.set_name("range_query on u64");
|
||||
let field_name_and_descr: Vec<_> = vec![
|
||||
("id", "Single Valued Range Field"),
|
||||
("ids", "Multi Valued Range Field"),
|
||||
];
|
||||
let range_num_hits = vec![
|
||||
("90_percent", get_90_percent()),
|
||||
("10_percent", get_10_percent()),
|
||||
("1_percent", get_1_percent()),
|
||||
];
|
||||
|
||||
test_range(&mut runner, &index, &field_name_and_descr, range_num_hits);
|
||||
|
||||
runner.set_name("range_query on ip");
|
||||
let field_name_and_descr: Vec<_> = vec![
|
||||
("ip", "Single Valued Range Field"),
|
||||
("ips", "Multi Valued Range Field"),
|
||||
];
|
||||
let range_num_hits = vec![
|
||||
("90_percent", get_90_percent_ip()),
|
||||
("10_percent", get_10_percent_ip()),
|
||||
("1_percent", get_1_percent_ip()),
|
||||
];
|
||||
|
||||
test_range(&mut runner, &index, &field_name_and_descr, range_num_hits);
|
||||
}
|
||||
|
||||
fn test_range<T: Display>(
|
||||
runner: &mut BenchRunner,
|
||||
index: &Index,
|
||||
field_name_and_descr: &[(&str, &str)],
|
||||
range_num_hits: Vec<(&str, RangeInclusive<T>)>,
|
||||
) {
|
||||
for (field, suffix) in field_name_and_descr {
|
||||
let term_num_hits = vec![
|
||||
("", ""),
|
||||
("1_percent", "veryfew"),
|
||||
("10_percent", "few"),
|
||||
("90_percent", "most"),
|
||||
];
|
||||
let mut group = runner.new_group();
|
||||
group.set_name(suffix);
|
||||
// all intersect combinations
|
||||
for (range_name, range) in &range_num_hits {
|
||||
for (term_name, term) in &term_num_hits {
|
||||
let index = &index;
|
||||
let test_name = if term_name.is_empty() {
|
||||
format!("id_range_hit_{}", range_name)
|
||||
} else {
|
||||
format!(
|
||||
"id_range_hit_{}_intersect_with_term_{}",
|
||||
range_name, term_name
|
||||
)
|
||||
};
|
||||
group.register(test_name, move |_| {
|
||||
let query = if term_name.is_empty() {
|
||||
"".to_string()
|
||||
} else {
|
||||
format!("AND id_name:{}", term)
|
||||
};
|
||||
black_box(execute_query(field, range, &query, index));
|
||||
});
|
||||
}
|
||||
}
|
||||
group.run();
|
||||
}
|
||||
}
|
||||
|
||||
fn get_index_0_to_100() -> Index {
|
||||
let mut rng = StdRng::from_seed([1u8; 32]);
|
||||
let num_vals = 100_000;
|
||||
let docs: Vec<_> = (0..num_vals)
|
||||
.map(|_i| {
|
||||
let id_name = if rng.gen_bool(0.01) {
|
||||
"veryfew".to_string() // 1%
|
||||
} else if rng.gen_bool(0.1) {
|
||||
"few".to_string() // 9%
|
||||
} else {
|
||||
"most".to_string() // 90%
|
||||
};
|
||||
Doc {
|
||||
id_name,
|
||||
id: rng.gen_range(0..100),
|
||||
// Multiply by 1000, so that we create most buckets in the compact space
|
||||
// The benches depend on this range to select n-percent of elements with the
|
||||
// methods below.
|
||||
ip: Ipv6Addr::from_u128(rng.gen_range(0..100) * 1000),
|
||||
}
|
||||
})
|
||||
.collect();
|
||||
|
||||
create_index_from_docs(&docs)
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Doc {
|
||||
pub id_name: String,
|
||||
pub id: u64,
|
||||
pub ip: Ipv6Addr,
|
||||
}
|
||||
|
||||
pub fn create_index_from_docs(docs: &[Doc]) -> Index {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let id_u64_field = schema_builder.add_u64_field("id", INDEXED | STORED | FAST);
|
||||
let ids_u64_field =
|
||||
schema_builder.add_u64_field("ids", NumericOptions::default().set_fast().set_indexed());
|
||||
|
||||
let id_f64_field = schema_builder.add_f64_field("id_f64", INDEXED | STORED | FAST);
|
||||
let ids_f64_field = schema_builder.add_f64_field(
|
||||
"ids_f64",
|
||||
NumericOptions::default().set_fast().set_indexed(),
|
||||
);
|
||||
|
||||
let id_i64_field = schema_builder.add_i64_field("id_i64", INDEXED | STORED | FAST);
|
||||
let ids_i64_field = schema_builder.add_i64_field(
|
||||
"ids_i64",
|
||||
NumericOptions::default().set_fast().set_indexed(),
|
||||
);
|
||||
|
||||
let text_field = schema_builder.add_text_field("id_name", STRING | STORED);
|
||||
let text_field2 = schema_builder.add_text_field("id_name_fast", STRING | STORED | FAST);
|
||||
|
||||
let ip_field = schema_builder.add_ip_addr_field("ip", FAST);
|
||||
let ips_field = schema_builder.add_ip_addr_field("ips", FAST);
|
||||
|
||||
let schema = schema_builder.build();
|
||||
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
{
|
||||
let mut index_writer = index.writer_with_num_threads(1, 50_000_000).unwrap();
|
||||
for doc in docs.iter() {
|
||||
index_writer
|
||||
.add_document(doc!(
|
||||
ids_i64_field => doc.id as i64,
|
||||
ids_i64_field => doc.id as i64,
|
||||
ids_f64_field => doc.id as f64,
|
||||
ids_f64_field => doc.id as f64,
|
||||
ids_u64_field => doc.id,
|
||||
ids_u64_field => doc.id,
|
||||
id_u64_field => doc.id,
|
||||
id_f64_field => doc.id as f64,
|
||||
id_i64_field => doc.id as i64,
|
||||
text_field => doc.id_name.to_string(),
|
||||
text_field2 => doc.id_name.to_string(),
|
||||
ips_field => doc.ip,
|
||||
ips_field => doc.ip,
|
||||
ip_field => doc.ip,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
index_writer.commit().unwrap();
|
||||
}
|
||||
index
|
||||
}
|
||||
|
||||
fn get_90_percent() -> RangeInclusive<u64> {
|
||||
0..=90
|
||||
}
|
||||
|
||||
fn get_10_percent() -> RangeInclusive<u64> {
|
||||
0..=10
|
||||
}
|
||||
|
||||
fn get_1_percent() -> RangeInclusive<u64> {
|
||||
10..=10
|
||||
}
|
||||
|
||||
fn get_90_percent_ip() -> RangeInclusive<Ipv6Addr> {
|
||||
let start = Ipv6Addr::from_u128(0);
|
||||
let end = Ipv6Addr::from_u128(90 * 1000);
|
||||
start..=end
|
||||
}
|
||||
|
||||
fn get_10_percent_ip() -> RangeInclusive<Ipv6Addr> {
|
||||
let start = Ipv6Addr::from_u128(0);
|
||||
let end = Ipv6Addr::from_u128(10 * 1000);
|
||||
start..=end
|
||||
}
|
||||
|
||||
fn get_1_percent_ip() -> RangeInclusive<Ipv6Addr> {
|
||||
let start = Ipv6Addr::from_u128(10 * 1000);
|
||||
let end = Ipv6Addr::from_u128(10 * 1000);
|
||||
start..=end
|
||||
}
|
||||
|
||||
struct NumHits {
|
||||
count: usize,
|
||||
}
|
||||
impl OutputValue for NumHits {
|
||||
fn column_title() -> &'static str {
|
||||
"NumHits"
|
||||
}
|
||||
fn format(&self) -> Option<String> {
|
||||
Some(self.count.to_string())
|
||||
}
|
||||
}
|
||||
|
||||
fn execute_query<T: Display>(
|
||||
field: &str,
|
||||
id_range: &RangeInclusive<T>,
|
||||
suffix: &str,
|
||||
index: &Index,
|
||||
) -> NumHits {
|
||||
let gen_query_inclusive = |from: &T, to: &T| {
|
||||
format!(
|
||||
"{}:[{} TO {}] {}",
|
||||
field,
|
||||
&from.to_string(),
|
||||
&to.to_string(),
|
||||
suffix
|
||||
)
|
||||
};
|
||||
|
||||
let query = gen_query_inclusive(id_range.start(), id_range.end());
|
||||
execute_query_(&query, index)
|
||||
}
|
||||
|
||||
fn execute_query_(query: &str, index: &Index) -> NumHits {
|
||||
let query_from_text = |text: &str| {
|
||||
QueryParser::for_index(index, vec![])
|
||||
.parse_query(text)
|
||||
.unwrap()
|
||||
};
|
||||
let query = query_from_text(query);
|
||||
let reader = index.reader().unwrap();
|
||||
let searcher = reader.searcher();
|
||||
let num_hits = searcher
|
||||
.search(&query, &(TopDocs::with_limit(10).order_by_score(), Count))
|
||||
.unwrap()
|
||||
.1;
|
||||
NumHits { count: num_hits }
|
||||
}
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-bitpacker"
|
||||
version = "0.9.0"
|
||||
version = "0.8.0"
|
||||
edition = "2024"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
|
||||
@@ -48,7 +48,7 @@ impl BitPacker {
|
||||
|
||||
pub fn flush<TWrite: io::Write + ?Sized>(&mut self, output: &mut TWrite) -> io::Result<()> {
|
||||
if self.mini_buffer_written > 0 {
|
||||
let num_bytes = self.mini_buffer_written.div_ceil(8);
|
||||
let num_bytes = (self.mini_buffer_written + 7) / 8;
|
||||
let bytes = self.mini_buffer.to_le_bytes();
|
||||
output.write_all(&bytes[..num_bytes])?;
|
||||
self.mini_buffer_written = 0;
|
||||
@@ -138,7 +138,7 @@ impl BitUnpacker {
|
||||
|
||||
// We use `usize` here to avoid overflow issues.
|
||||
let end_bit_read = (end_idx as usize) * self.num_bits;
|
||||
let end_byte_read = end_bit_read.div_ceil(8);
|
||||
let end_byte_read = (end_bit_read + 7) / 8;
|
||||
assert!(
|
||||
end_byte_read <= data.len(),
|
||||
"Requested index is out of bounds."
|
||||
@@ -258,7 +258,7 @@ mod test {
|
||||
bitpacker.write(val, num_bits, &mut data).unwrap();
|
||||
}
|
||||
bitpacker.close(&mut data).unwrap();
|
||||
assert_eq!(data.len(), ((num_bits as usize) * len).div_ceil(8));
|
||||
assert_eq!(data.len(), ((num_bits as usize) * len + 7) / 8);
|
||||
let bitunpacker = BitUnpacker::new(num_bits);
|
||||
(bitunpacker, vals, data)
|
||||
}
|
||||
@@ -304,7 +304,7 @@ mod test {
|
||||
bitpacker.write(val, num_bits, &mut buffer).unwrap();
|
||||
}
|
||||
bitpacker.flush(&mut buffer).unwrap();
|
||||
assert_eq!(buffer.len(), (vals.len() * num_bits as usize).div_ceil(8));
|
||||
assert_eq!(buffer.len(), (vals.len() * num_bits as usize + 7) / 8);
|
||||
let bitunpacker = BitUnpacker::new(num_bits);
|
||||
let max_val = if num_bits == 64 {
|
||||
u64::MAX
|
||||
|
||||
@@ -140,10 +140,10 @@ impl BlockedBitpacker {
|
||||
pub fn iter(&self) -> impl Iterator<Item = u64> + '_ {
|
||||
// todo performance: we could decompress a whole block and cache it instead
|
||||
let bitpacked_elems = self.offset_and_bits.len() * BLOCK_SIZE;
|
||||
|
||||
(0..bitpacked_elems)
|
||||
let iter = (0..bitpacked_elems)
|
||||
.map(move |idx| self.get(idx))
|
||||
.chain(self.buffer.iter().cloned())
|
||||
.chain(self.buffer.iter().cloned());
|
||||
iter
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -19,7 +19,7 @@ fn u32_to_i32(val: u32) -> i32 {
|
||||
#[inline]
|
||||
unsafe fn u32_to_i32_avx2(vals_u32x8s: DataType) -> DataType {
|
||||
const HIGHEST_BIT_MASK: DataType = from_u32x8([HIGHEST_BIT; NUM_LANES]);
|
||||
unsafe { op_xor(vals_u32x8s, HIGHEST_BIT_MASK) }
|
||||
op_xor(vals_u32x8s, HIGHEST_BIT_MASK)
|
||||
}
|
||||
|
||||
pub fn filter_vec_in_place(range: RangeInclusive<u32>, offset: u32, output: &mut Vec<u32>) {
|
||||
@@ -66,19 +66,17 @@ unsafe fn filter_vec_avx2_aux(
|
||||
]);
|
||||
const SHIFT: __m256i = from_u32x8([NUM_LANES as u32; NUM_LANES]);
|
||||
for _ in 0..num_words {
|
||||
unsafe {
|
||||
let word = load_unaligned(input);
|
||||
let word = u32_to_i32_avx2(word);
|
||||
let keeper_bitset = compute_filter_bitset(word, range_simd.clone());
|
||||
let added_len = keeper_bitset.count_ones();
|
||||
let filtered_doc_ids = compact(ids, keeper_bitset);
|
||||
store_unaligned(output_tail as *mut __m256i, filtered_doc_ids);
|
||||
output_tail = output_tail.offset(added_len as isize);
|
||||
ids = op_add(ids, SHIFT);
|
||||
input = input.offset(1);
|
||||
}
|
||||
let word = load_unaligned(input);
|
||||
let word = u32_to_i32_avx2(word);
|
||||
let keeper_bitset = compute_filter_bitset(word, range_simd.clone());
|
||||
let added_len = keeper_bitset.count_ones();
|
||||
let filtered_doc_ids = compact(ids, keeper_bitset);
|
||||
store_unaligned(output_tail as *mut __m256i, filtered_doc_ids);
|
||||
output_tail = output_tail.offset(added_len as isize);
|
||||
ids = op_add(ids, SHIFT);
|
||||
input = input.offset(1);
|
||||
}
|
||||
unsafe { output_tail.offset_from(output) as usize }
|
||||
output_tail.offset_from(output) as usize
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@@ -94,7 +92,8 @@ unsafe fn compute_filter_bitset(val: __m256i, range: std::ops::RangeInclusive<__
|
||||
let too_low = op_greater(*range.start(), val);
|
||||
let too_high = op_greater(val, *range.end());
|
||||
let inside = op_or(too_low, too_high);
|
||||
255 - std::arch::x86_64::_mm256_movemask_ps(_mm256_castsi256_ps(inside)) as u8
|
||||
255 - std::arch::x86_64::_mm256_movemask_ps(std::mem::transmute::<DataType, __m256>(inside))
|
||||
as u8
|
||||
}
|
||||
|
||||
union U8x32 {
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-columnar"
|
||||
version = "0.6.0"
|
||||
version = "0.5.0"
|
||||
edition = "2024"
|
||||
license = "MIT"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
@@ -12,10 +12,10 @@ categories = ["database-implementations", "data-structures", "compression"]
|
||||
itertools = "0.14.0"
|
||||
fastdivide = "0.4.0"
|
||||
|
||||
stacker = { version= "0.6", path = "../stacker", package="tantivy-stacker"}
|
||||
sstable = { version= "0.6", path = "../sstable", package = "tantivy-sstable" }
|
||||
common = { version= "0.10", path = "../common", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.9", path = "../bitpacker/" }
|
||||
stacker = { version= "0.5", path = "../stacker", package="tantivy-stacker"}
|
||||
sstable = { version= "0.5", path = "../sstable", package = "tantivy-sstable" }
|
||||
common = { version= "0.9", path = "../common", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.8", path = "../bitpacker/" }
|
||||
serde = "1.0.152"
|
||||
downcast-rs = "2.0.1"
|
||||
|
||||
@@ -33,29 +33,6 @@ harness = false
|
||||
name = "bench_access"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_first_vals"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_values_u64"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_values_u128"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_create_column_values"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_column_values_get"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "bench_optional_index"
|
||||
harness = false
|
||||
|
||||
[features]
|
||||
unstable = []
|
||||
zstd-compression = ["sstable/zstd-compression"]
|
||||
|
||||
@@ -73,7 +73,7 @@ The crate introduces the following concepts.
|
||||
`Columnar` is an equivalent of a dataframe.
|
||||
It maps `column_key` to `Column`.
|
||||
|
||||
A `Column<T>` associates a `RowId` (u32) to any
|
||||
A `Column<T>` asssociates a `RowId` (u32) to any
|
||||
number of values.
|
||||
|
||||
This is made possible by wrapping a `ColumnIndex` and a `ColumnValue` object.
|
||||
|
||||
@@ -19,7 +19,7 @@ fn main() {
|
||||
|
||||
let mut add_card = |card1: Card| {
|
||||
inputs.push((
|
||||
card1.to_string(),
|
||||
format!("{card1}"),
|
||||
generate_columnar_and_open(card1, NUM_DOCS),
|
||||
));
|
||||
};
|
||||
@@ -50,7 +50,6 @@ fn bench_group(mut runner: InputGroup<Column>) {
|
||||
let mut buffer = vec![None; BLOCK_SIZE];
|
||||
for i in (0..NUM_DOCS).step_by(BLOCK_SIZE) {
|
||||
// fill docs
|
||||
#[allow(clippy::needless_range_loop)]
|
||||
for idx in 0..BLOCK_SIZE {
|
||||
docs[idx] = idx as u32 + i;
|
||||
}
|
||||
|
||||
@@ -1,61 +0,0 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use binggan::{InputGroup, black_box};
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use tantivy_columnar::ColumnValues;
|
||||
use tantivy_columnar::column_values::{CodecType, serialize_and_load_u64_based_column_values};
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55_000_u64)
|
||||
.map(|num| num + rng.r#gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
|
||||
type Col = Arc<dyn ColumnValues<u64>>;
|
||||
|
||||
fn main() {
|
||||
let data = get_data();
|
||||
let inputs: Vec<(String, Col)> = vec![
|
||||
(
|
||||
"bitpacked".to_string(),
|
||||
serialize_and_load_u64_based_column_values(&data.as_slice(), &[CodecType::Bitpacked]),
|
||||
),
|
||||
(
|
||||
"linear".to_string(),
|
||||
serialize_and_load_u64_based_column_values(&data.as_slice(), &[CodecType::Linear]),
|
||||
),
|
||||
(
|
||||
"blockwise_linear".to_string(),
|
||||
serialize_and_load_u64_based_column_values(
|
||||
&data.as_slice(),
|
||||
&[CodecType::BlockwiseLinear],
|
||||
),
|
||||
),
|
||||
];
|
||||
|
||||
let mut group: InputGroup<Col> = InputGroup::new_with_inputs(inputs);
|
||||
|
||||
group.register("fastfield_get", |col: &Col| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
sum = sum.wrapping_add(col.get_val(pos as u32));
|
||||
}
|
||||
black_box(sum);
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
@@ -1,44 +0,0 @@
|
||||
use binggan::{InputGroup, black_box};
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use tantivy_columnar::column_values::{CodecType, serialize_u64_based_column_values};
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55_000_u64)
|
||||
.map(|num| num + rng.r#gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let data = get_data();
|
||||
let mut group: InputGroup<(CodecType, Vec<u64>)> = InputGroup::new_with_inputs(vec![
|
||||
(
|
||||
"bitpacked codec".to_string(),
|
||||
(CodecType::Bitpacked, data.clone()),
|
||||
),
|
||||
(
|
||||
"linear codec".to_string(),
|
||||
(CodecType::Linear, data.clone()),
|
||||
),
|
||||
(
|
||||
"blockwise linear codec".to_string(),
|
||||
(CodecType::BlockwiseLinear, data.clone()),
|
||||
),
|
||||
]);
|
||||
|
||||
group.register("serialize column_values", |data| {
|
||||
let mut buffer = Vec::new();
|
||||
serialize_u64_based_column_values(&data.1.as_slice(), &[data.0], &mut buffer).unwrap();
|
||||
black_box(buffer.len());
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
@@ -1,9 +1,12 @@
|
||||
#![feature(test)]
|
||||
extern crate test;
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use binggan::{InputGroup, black_box};
|
||||
use rand::prelude::*;
|
||||
use tantivy_columnar::column_values::{CodecType, serialize_and_load_u64_based_column_values};
|
||||
use tantivy_columnar::*;
|
||||
use test::{Bencher, black_box};
|
||||
|
||||
struct Columns {
|
||||
pub optional: Column,
|
||||
@@ -65,38 +68,88 @@ pub fn serialize_and_load(column: &[u64], codec_type: CodecType) -> Arc<dyn Colu
|
||||
serialize_and_load_u64_based_column_values(&column, &[codec_type])
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let Columns {
|
||||
optional,
|
||||
full,
|
||||
multi,
|
||||
} = get_test_columns();
|
||||
|
||||
let inputs = vec![
|
||||
("full".to_string(), full),
|
||||
("optional".to_string(), optional),
|
||||
("multi".to_string(), multi),
|
||||
];
|
||||
|
||||
let mut group = InputGroup::new_with_inputs(inputs);
|
||||
|
||||
group.register("first_full_scan", |column| {
|
||||
fn run_bench_on_column_full_scan(b: &mut Bencher, column: Column) {
|
||||
let num_iter = black_box(NUM_VALUES);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for i in 0..NUM_VALUES as u32 {
|
||||
for i in 0..num_iter as u32 {
|
||||
let val = column.first(i);
|
||||
sum += val.unwrap_or(0);
|
||||
}
|
||||
black_box(sum);
|
||||
sum
|
||||
});
|
||||
|
||||
group.register("first_block_single_calls", |column| {
|
||||
let mut block: Vec<Option<u64>> = vec![None; 64];
|
||||
let fetch_docids = (0..64).collect::<Vec<_>>();
|
||||
}
|
||||
fn run_bench_on_column_block_fetch(b: &mut Bencher, column: Column) {
|
||||
let mut block: Vec<Option<u64>> = vec![None; 64];
|
||||
let fetch_docids = (0..64).collect::<Vec<_>>();
|
||||
b.iter(move || {
|
||||
column.first_vals(&fetch_docids, &mut block);
|
||||
block[0]
|
||||
});
|
||||
}
|
||||
fn run_bench_on_column_block_single_calls(b: &mut Bencher, column: Column) {
|
||||
let mut block: Vec<Option<u64>> = vec![None; 64];
|
||||
let fetch_docids = (0..64).collect::<Vec<_>>();
|
||||
b.iter(move || {
|
||||
for i in 0..fetch_docids.len() {
|
||||
block[i] = column.first(fetch_docids[i]);
|
||||
}
|
||||
black_box(block[0]);
|
||||
block[0]
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
/// Column first method
|
||||
#[bench]
|
||||
fn bench_get_first_on_full_column_full_scan(b: &mut Bencher) {
|
||||
let column = get_test_columns().full;
|
||||
run_bench_on_column_full_scan(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_first_on_optional_column_full_scan(b: &mut Bencher) {
|
||||
let column = get_test_columns().optional;
|
||||
run_bench_on_column_full_scan(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_first_on_multi_column_full_scan(b: &mut Bencher) {
|
||||
let column = get_test_columns().multi;
|
||||
run_bench_on_column_full_scan(b, column);
|
||||
}
|
||||
|
||||
/// Block fetch column accessor
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_optional_column(b: &mut Bencher) {
|
||||
let column = get_test_columns().optional;
|
||||
run_bench_on_column_block_fetch(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_multi_column(b: &mut Bencher) {
|
||||
let column = get_test_columns().multi;
|
||||
run_bench_on_column_block_fetch(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_full_column(b: &mut Bencher) {
|
||||
let column = get_test_columns().full;
|
||||
run_bench_on_column_block_fetch(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_optional_column_single_calls(b: &mut Bencher) {
|
||||
let column = get_test_columns().optional;
|
||||
run_bench_on_column_block_single_calls(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_multi_column_single_calls(b: &mut Bencher) {
|
||||
let column = get_test_columns().multi;
|
||||
run_bench_on_column_block_single_calls(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_full_column_single_calls(b: &mut Bencher) {
|
||||
let column = get_test_columns().full;
|
||||
run_bench_on_column_block_single_calls(b, column);
|
||||
}
|
||||
|
||||
@@ -1,106 +0,0 @@
|
||||
use binggan::{InputGroup, black_box};
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use tantivy_columnar::column_index::{OptionalIndex, Set};
|
||||
|
||||
const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
|
||||
fn gen_optional_index(fill_ratio: f64) -> OptionalIndex {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let vals: Vec<u32> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _)| pos as u32)
|
||||
.collect();
|
||||
OptionalIndex::for_test(TOTAL_NUM_VALUES, &vals)
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
start: u32,
|
||||
end: u32,
|
||||
avg_step_size: u32,
|
||||
avg_deviation: u32,
|
||||
) -> impl Iterator<Item = u32> {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end { None } else { Some(current) }
|
||||
})
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
}
|
||||
|
||||
fn walk_over_data(codec: &OptionalIndex, avg_step_size: u32) -> Option<u32> {
|
||||
walk_over_data_from_positions(
|
||||
codec,
|
||||
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
|
||||
)
|
||||
}
|
||||
|
||||
fn walk_over_data_from_positions(
|
||||
codec: &OptionalIndex,
|
||||
positions: impl Iterator<Item = u32>,
|
||||
) -> Option<u32> {
|
||||
let mut dense_idx: Option<u32> = None;
|
||||
for idx in positions {
|
||||
dense_idx = dense_idx.or(codec.rank_if_exists(idx));
|
||||
}
|
||||
dense_idx
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// Build separate inputs for each fill ratio.
|
||||
let inputs: Vec<(String, OptionalIndex)> = vec![
|
||||
("fill=1%".to_string(), gen_optional_index(0.01)),
|
||||
("fill=5%".to_string(), gen_optional_index(0.05)),
|
||||
("fill=10%".to_string(), gen_optional_index(0.10)),
|
||||
("fill=50%".to_string(), gen_optional_index(0.50)),
|
||||
("fill=90%".to_string(), gen_optional_index(0.90)),
|
||||
];
|
||||
|
||||
let mut group: InputGroup<OptionalIndex> = InputGroup::new_with_inputs(inputs);
|
||||
|
||||
// Translate orig->codec (rank_if_exists) with sampling
|
||||
group.register("orig_to_codec_10pct_hit", |codec: &OptionalIndex| {
|
||||
black_box(walk_over_data(codec, 100));
|
||||
});
|
||||
group.register("orig_to_codec_1pct_hit", |codec: &OptionalIndex| {
|
||||
black_box(walk_over_data(codec, 1000));
|
||||
});
|
||||
group.register("orig_to_codec_full_scan", |codec: &OptionalIndex| {
|
||||
black_box(walk_over_data_from_positions(codec, 0..TOTAL_NUM_VALUES));
|
||||
});
|
||||
|
||||
// Translate codec->orig (select/select_batch) on sampled ranks
|
||||
fn bench_translate_codec_to_orig_util(codec: &OptionalIndex, percent_hit: f32) {
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
let idxs: Vec<u32> = if percent_hit == 100.0f32 {
|
||||
(0..num_non_nulls).collect()
|
||||
} else {
|
||||
n_percent_step_iterator(percent_hit, num_non_nulls).collect()
|
||||
};
|
||||
let mut output = vec![0u32; idxs.len()];
|
||||
output.copy_from_slice(&idxs[..]);
|
||||
codec.select_batch(&mut output);
|
||||
black_box(output);
|
||||
}
|
||||
|
||||
group.register("codec_to_orig_0.005pct_hit", |codec: &OptionalIndex| {
|
||||
bench_translate_codec_to_orig_util(codec, 0.005);
|
||||
});
|
||||
group.register("codec_to_orig_10pct_hit", |codec: &OptionalIndex| {
|
||||
bench_translate_codec_to_orig_util(codec, 10.0);
|
||||
});
|
||||
group.register("codec_to_orig_full_scan", |codec: &OptionalIndex| {
|
||||
bench_translate_codec_to_orig_util(codec, 100.0);
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
@@ -1,12 +1,15 @@
|
||||
#![feature(test)]
|
||||
|
||||
use std::ops::RangeInclusive;
|
||||
use std::sync::Arc;
|
||||
|
||||
use binggan::{InputGroup, black_box};
|
||||
use common::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::{Rng, SeedableRng, random};
|
||||
use tantivy_columnar::ColumnValues;
|
||||
use test::Bencher;
|
||||
extern crate test;
|
||||
|
||||
// TODO does this make sense for IPv6 ?
|
||||
fn generate_random() -> Vec<u64> {
|
||||
@@ -44,77 +47,78 @@ fn get_data_50percent_item() -> Vec<u128> {
|
||||
}
|
||||
data.push(SINGLE_ITEM);
|
||||
data.shuffle(&mut rng);
|
||||
data.iter().map(|el| *el as u128).collect::<Vec<_>>()
|
||||
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
data
|
||||
}
|
||||
|
||||
fn main() {
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let column_range = get_u128_column_from_data(&data);
|
||||
let column_random = get_u128_column_random();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
struct Inputs {
|
||||
data: Vec<u128>,
|
||||
column_range: Arc<dyn ColumnValues<u128>>,
|
||||
column_random: Arc<dyn ColumnValues<u128>>,
|
||||
}
|
||||
|
||||
let inputs = Inputs {
|
||||
data,
|
||||
column_range,
|
||||
column_random,
|
||||
};
|
||||
let mut group: InputGroup<Inputs> =
|
||||
InputGroup::new_with_inputs(vec![("u128 benches".to_string(), inputs)]);
|
||||
|
||||
group.register(
|
||||
"intfastfield_getrange_u128_50percent_hit",
|
||||
|inp: &Inputs| {
|
||||
let mut positions = Vec::new();
|
||||
inp.column_range.get_row_ids_for_value_range(
|
||||
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
|
||||
0..inp.data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
black_box(positions.len());
|
||||
},
|
||||
);
|
||||
|
||||
group.register("intfastfield_getrange_u128_single_hit", |inp: &Inputs| {
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
inp.column_range.get_row_ids_for_value_range(
|
||||
column.get_row_ids_for_value_range(
|
||||
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(
|
||||
*SINGLE_ITEM_RANGE.start() as u128..=*SINGLE_ITEM_RANGE.end() as u128,
|
||||
0..inp.data.len() as u32,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
black_box(positions.len());
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
group.register("intfastfield_getrange_u128_hit_all", |inp: &Inputs| {
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
inp.column_range.get_row_ids_for_value_range(
|
||||
0..=u128::MAX,
|
||||
0..inp.data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
black_box(positions.len());
|
||||
column.get_row_ids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
// U128 RANGE END
|
||||
|
||||
group.register("intfastfield_scan_all_fflookup_u128", |inp: &Inputs| {
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
let mut a = 0u128;
|
||||
for i in 0u64..inp.column_random.num_vals() as u64 {
|
||||
a += inp.column_random.get_val(i as u32);
|
||||
for i in 0u64..column.num_vals() as u64 {
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
black_box(a);
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
group.register("intfastfield_jumpy_stride5_u128", |inp: &Inputs| {
|
||||
let n = inp.column_random.num_vals();
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_stride5_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
let n = column.num_vals();
|
||||
let mut a = 0u128;
|
||||
for i in (0..n / 5).map(|val| val * 5) {
|
||||
a += inp.column_random.get_val(i);
|
||||
a += column.get_val(i);
|
||||
}
|
||||
black_box(a);
|
||||
a
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
@@ -1,10 +1,13 @@
|
||||
#![feature(test)]
|
||||
extern crate test;
|
||||
|
||||
use std::ops::RangeInclusive;
|
||||
use std::sync::Arc;
|
||||
|
||||
use binggan::{InputGroup, black_box};
|
||||
use rand::prelude::*;
|
||||
use tantivy_columnar::column_values::{CodecType, serialize_and_load_u64_based_column_values};
|
||||
use tantivy_columnar::*;
|
||||
use test::Bencher;
|
||||
|
||||
// Warning: this generates the same permutation at each call
|
||||
fn generate_permutation() -> Vec<u64> {
|
||||
@@ -24,11 +27,37 @@ pub fn serialize_and_load(column: &[u64], codec_type: CodecType) -> Arc<dyn Colu
|
||||
serialize_and_load_u64_based_column_values(&column, &[codec_type])
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_veclookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = permutation[a as usize];
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_fflookup_bitpacked(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = column.get_val(a as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
const FIFTY_PERCENT_RANGE: RangeInclusive<u64> = 1..=50;
|
||||
const SINGLE_ITEM: u64 = 90;
|
||||
const SINGLE_ITEM_RANGE: RangeInclusive<u64> = 90..=90;
|
||||
const ONE_PERCENT_ITEM_RANGE: RangeInclusive<u64> = 49..=49;
|
||||
|
||||
fn get_data_50percent_item() -> Vec<u128> {
|
||||
let mut rng = StdRng::from_seed([1u8; 32]);
|
||||
|
||||
@@ -40,122 +69,135 @@ fn get_data_50percent_item() -> Vec<u128> {
|
||||
data.push(SINGLE_ITEM);
|
||||
|
||||
data.shuffle(&mut rng);
|
||||
data.iter().map(|el| *el as u128).collect::<Vec<_>>()
|
||||
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
data
|
||||
}
|
||||
|
||||
type VecCol = (Vec<u64>, Arc<dyn ColumnValues<u64>>);
|
||||
// U64 RANGE START
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_50percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(
|
||||
FIFTY_PERCENT_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
fn bench_access() {
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_1percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(
|
||||
ONE_PERCENT_ITEM_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_single_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(SINGLE_ITEM_RANGE, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_hit_all(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(0..=u64::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
// U64 RANGE END
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_vec(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let column_perm: Arc<dyn ColumnValues<u64>> =
|
||||
serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
|
||||
let permutation_gcd = generate_permutation_gcd();
|
||||
let column_perm_gcd: Arc<dyn ColumnValues<u64>> =
|
||||
serialize_and_load(&permutation_gcd, CodecType::Bitpacked);
|
||||
|
||||
let mut group: InputGroup<VecCol> = InputGroup::new_with_inputs(vec![
|
||||
(
|
||||
"access".to_string(),
|
||||
(permutation.clone(), column_perm.clone()),
|
||||
),
|
||||
(
|
||||
"access_gcd".to_string(),
|
||||
(permutation_gcd.clone(), column_perm_gcd.clone()),
|
||||
),
|
||||
]);
|
||||
|
||||
group.register("stride7_vec", |inp: &VecCol| {
|
||||
let n = inp.0.len();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += inp.0[i];
|
||||
a += permutation[i as usize];
|
||||
}
|
||||
black_box(a);
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
group.register("fullscan_vec", |inp: &VecCol| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..inp.0.len() {
|
||||
a += inp.0[i];
|
||||
}
|
||||
black_box(a);
|
||||
});
|
||||
|
||||
group.register("stride7_column_values", |inp: &VecCol| {
|
||||
let n = inp.1.num_vals() as usize;
|
||||
let mut a = 0u64;
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut a = 0;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += inp.1.get_val(i as u32);
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
black_box(a);
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
group.register("fullscan_column_values", |inp: &VecCol| {
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
let column_ref = column.as_ref();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0u32..n as u32 {
|
||||
a += column_ref.get_val(i);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_gcd(b: &mut Bencher) {
|
||||
let permutation = generate_permutation_gcd();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&permutation, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
let n = inp.1.num_vals() as usize;
|
||||
for i in 0..n {
|
||||
a += inp.1.get_val(i as u32);
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
black_box(a);
|
||||
a
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
fn bench_range() {
|
||||
let data_50 = get_data_50percent_item();
|
||||
let data_u64 = data_50.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column_data: Arc<dyn ColumnValues<u64>> =
|
||||
serialize_and_load(&data_u64, CodecType::Bitpacked);
|
||||
|
||||
let mut group: InputGroup<Arc<dyn ColumnValues<u64>>> =
|
||||
InputGroup::new_with_inputs(vec![("dist_50pct_item".to_string(), column_data.clone())]);
|
||||
|
||||
group.register(
|
||||
"fastfield_getrange_u64_50percent_hit",
|
||||
|col: &Arc<dyn ColumnValues<u64>>| {
|
||||
let mut positions = Vec::new();
|
||||
col.get_row_ids_for_value_range(FIFTY_PERCENT_RANGE, 0..col.num_vals(), &mut positions);
|
||||
black_box(positions.len());
|
||||
},
|
||||
);
|
||||
|
||||
group.register(
|
||||
"fastfield_getrange_u64_1percent_hit",
|
||||
|col: &Arc<dyn ColumnValues<u64>>| {
|
||||
let mut positions = Vec::new();
|
||||
col.get_row_ids_for_value_range(
|
||||
ONE_PERCENT_ITEM_RANGE,
|
||||
0..col.num_vals(),
|
||||
&mut positions,
|
||||
);
|
||||
black_box(positions.len());
|
||||
},
|
||||
);
|
||||
|
||||
group.register(
|
||||
"fastfield_getrange_u64_single_hit",
|
||||
|col: &Arc<dyn ColumnValues<u64>>| {
|
||||
let mut positions = Vec::new();
|
||||
col.get_row_ids_for_value_range(SINGLE_ITEM_RANGE, 0..col.num_vals(), &mut positions);
|
||||
black_box(positions.len());
|
||||
},
|
||||
);
|
||||
|
||||
group.register(
|
||||
"fastfield_getrange_u64_hit_all",
|
||||
|col: &Arc<dyn ColumnValues<u64>>| {
|
||||
let mut positions = Vec::new();
|
||||
col.get_row_ids_for_value_range(0..=u64::MAX, 0..col.num_vals(), &mut positions);
|
||||
black_box(positions.len());
|
||||
},
|
||||
);
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
fn main() {
|
||||
bench_access();
|
||||
bench_range();
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_vec(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..permutation.len() {
|
||||
a += permutation[i as usize] as u64;
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
@@ -29,20 +29,12 @@ impl<T: PartialOrd + Copy + std::fmt::Debug + Send + Sync + 'static + Default>
|
||||
}
|
||||
}
|
||||
#[inline]
|
||||
pub fn fetch_block_with_missing(
|
||||
&mut self,
|
||||
docs: &[u32],
|
||||
accessor: &Column<T>,
|
||||
missing: Option<T>,
|
||||
) {
|
||||
pub fn fetch_block_with_missing(&mut self, docs: &[u32], accessor: &Column<T>, missing: T) {
|
||||
self.fetch_block(docs, accessor);
|
||||
// no missing values
|
||||
if accessor.index.get_cardinality().is_full() {
|
||||
return;
|
||||
}
|
||||
let Some(missing) = missing else {
|
||||
return;
|
||||
};
|
||||
|
||||
// We can compare docid_cache length with docs to find missing docs
|
||||
// For multi value columns we can't rely on the length and always need to scan
|
||||
|
||||
@@ -85,8 +85,8 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn first(&self, doc_id: DocId) -> Option<T> {
|
||||
self.values_for_doc(doc_id).next()
|
||||
pub fn first(&self, row_id: RowId) -> Option<T> {
|
||||
self.values_for_doc(row_id).next()
|
||||
}
|
||||
|
||||
/// Load the first value for each docid in the provided slice.
|
||||
@@ -114,7 +114,7 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Translates a block of docids to row_ids.
|
||||
/// Translates a block of docis to row_ids.
|
||||
///
|
||||
/// returns the row_ids and the matching docids on the same index
|
||||
/// e.g.
|
||||
@@ -131,8 +131,6 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
self.index.docids_to_rowids(doc_ids, doc_ids_out, row_ids)
|
||||
}
|
||||
|
||||
/// Get an iterator over the values for the provided docid.
|
||||
#[inline]
|
||||
pub fn values_for_doc(&self, doc_id: DocId) -> impl Iterator<Item = T> + '_ {
|
||||
self.index
|
||||
.value_row_ids(doc_id)
|
||||
@@ -160,6 +158,15 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
.select_batch_in_place(selected_docid_range.start, doc_ids);
|
||||
}
|
||||
|
||||
/// Fills the output vector with the (possibly multiple values that are associated_with
|
||||
/// `row_id`.
|
||||
///
|
||||
/// This method clears the `output` vector.
|
||||
pub fn fill_vals(&self, row_id: RowId, output: &mut Vec<T>) {
|
||||
output.clear();
|
||||
output.extend(self.values_for_doc(row_id));
|
||||
}
|
||||
|
||||
pub fn first_or_default_col(self, default_value: T) -> Arc<dyn ColumnValues<T>> {
|
||||
Arc::new(FirstValueWithDefault {
|
||||
column: self,
|
||||
|
||||
@@ -56,7 +56,7 @@ fn get_doc_ids_with_values<'a>(
|
||||
ColumnIndex::Full => Box::new(doc_range),
|
||||
ColumnIndex::Optional(optional_index) => Box::new(
|
||||
optional_index
|
||||
.iter_non_null_docs()
|
||||
.iter_docs()
|
||||
.map(move |row| row + doc_range.start),
|
||||
),
|
||||
ColumnIndex::Multivalued(multivalued_index) => match multivalued_index {
|
||||
@@ -73,7 +73,7 @@ fn get_doc_ids_with_values<'a>(
|
||||
MultiValueIndex::MultiValueIndexV2(multivalued_index) => Box::new(
|
||||
multivalued_index
|
||||
.optional_index
|
||||
.iter_non_null_docs()
|
||||
.iter_docs()
|
||||
.map(move |row| row + doc_range.start),
|
||||
),
|
||||
},
|
||||
@@ -105,11 +105,10 @@ fn get_num_values_iterator<'a>(
|
||||
) -> Box<dyn Iterator<Item = u32> + 'a> {
|
||||
match column_index {
|
||||
ColumnIndex::Empty { .. } => Box::new(std::iter::empty()),
|
||||
ColumnIndex::Full => Box::new(std::iter::repeat_n(1u32, num_docs as usize)),
|
||||
ColumnIndex::Optional(optional_index) => Box::new(std::iter::repeat_n(
|
||||
1u32,
|
||||
optional_index.num_non_nulls() as usize,
|
||||
)),
|
||||
ColumnIndex::Full => Box::new(std::iter::repeat(1u32).take(num_docs as usize)),
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
Box::new(std::iter::repeat(1u32).take(optional_index.num_non_nulls() as usize))
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => Box::new(
|
||||
multivalued_index
|
||||
.get_start_index_column()
|
||||
@@ -178,7 +177,7 @@ impl<'a> Iterable<RowId> for StackedOptionalIndex<'a> {
|
||||
ColumnIndex::Full => Box::new(columnar_row_range),
|
||||
ColumnIndex::Optional(optional_index) => Box::new(
|
||||
optional_index
|
||||
.iter_non_null_docs()
|
||||
.iter_docs()
|
||||
.map(move |row_id: RowId| columnar_row_range.start + row_id),
|
||||
),
|
||||
ColumnIndex::Multivalued(_) => {
|
||||
|
||||
@@ -215,32 +215,6 @@ impl MultiValueIndex {
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns an iterator over document ids that have at least one value.
|
||||
pub fn iter_non_null_docs(&self) -> Box<dyn Iterator<Item = DocId> + '_> {
|
||||
match self {
|
||||
MultiValueIndex::MultiValueIndexV1(idx) => {
|
||||
let mut doc: DocId = 0u32;
|
||||
let num_docs = idx.num_docs();
|
||||
Box::new(std::iter::from_fn(move || {
|
||||
// This is not the most efficient way to do this, but it's legacy code.
|
||||
while doc < num_docs {
|
||||
let cur = doc;
|
||||
doc += 1;
|
||||
let start = idx.start_index_column.get_val(cur);
|
||||
let end = idx.start_index_column.get_val(cur + 1);
|
||||
if end > start {
|
||||
return Some(cur);
|
||||
}
|
||||
}
|
||||
None
|
||||
}))
|
||||
}
|
||||
MultiValueIndex::MultiValueIndexV2(idx) => {
|
||||
Box::new(idx.optional_index.iter_non_null_docs())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Converts a list of ranks (row ids of values) in a 1:n index to the corresponding list of
|
||||
/// docids. Positions are converted inplace to docids.
|
||||
///
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
use std::io;
|
||||
use std::io::{self, Write};
|
||||
use std::sync::Arc;
|
||||
|
||||
mod set;
|
||||
@@ -11,7 +11,7 @@ use set_block::{
|
||||
};
|
||||
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{DocId, RowId};
|
||||
use crate::{DocId, InvalidData, RowId};
|
||||
|
||||
/// The threshold for for number of elements after which we switch to dense block encoding.
|
||||
///
|
||||
@@ -88,7 +88,7 @@ pub struct OptionalIndex {
|
||||
|
||||
impl Iterable<u32> for &OptionalIndex {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
|
||||
Box::new(self.iter_non_null_docs())
|
||||
Box::new(self.iter_docs())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -280,9 +280,8 @@ impl OptionalIndex {
|
||||
self.num_non_null_docs
|
||||
}
|
||||
|
||||
pub fn iter_non_null_docs(&self) -> impl Iterator<Item = RowId> + '_ {
|
||||
// TODO optimize. We could iterate over the blocks directly.
|
||||
// We use the dense value ids and retrieve the doc ids via select.
|
||||
pub fn iter_docs(&self) -> impl Iterator<Item = RowId> + '_ {
|
||||
// TODO optimize
|
||||
let mut select_batch = self.select_cursor();
|
||||
(0..self.num_non_null_docs).map(move |rank| select_batch.select(rank))
|
||||
}
|
||||
@@ -335,6 +334,38 @@ enum Block<'a> {
|
||||
Sparse(SparseBlock<'a>),
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
enum OptionalIndexCodec {
|
||||
Dense = 0,
|
||||
Sparse = 1,
|
||||
}
|
||||
|
||||
impl OptionalIndexCodec {
|
||||
fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
fn try_from_code(code: u8) -> Result<Self, InvalidData> {
|
||||
match code {
|
||||
0 => Ok(Self::Dense),
|
||||
1 => Ok(Self::Sparse),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for OptionalIndexCodec {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(&[self.to_code()])
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let optional_codec_code = u8::deserialize(reader)?;
|
||||
let optional_codec = Self::try_from_code(optional_codec_code)?;
|
||||
Ok(optional_codec)
|
||||
}
|
||||
}
|
||||
|
||||
fn serialize_optional_index_block(block_els: &[u16], out: &mut impl io::Write) -> io::Result<()> {
|
||||
let is_sparse = is_sparse(block_els.len() as u32);
|
||||
if is_sparse {
|
||||
|
||||
@@ -164,11 +164,7 @@ fn test_optional_index_large() {
|
||||
fn test_optional_index_iter_aux(row_ids: &[RowId], num_rows: RowId) {
|
||||
let optional_index = OptionalIndex::for_test(num_rows, row_ids);
|
||||
assert_eq!(optional_index.num_docs(), num_rows);
|
||||
assert!(
|
||||
optional_index
|
||||
.iter_non_null_docs()
|
||||
.eq(row_ids.iter().copied())
|
||||
);
|
||||
assert!(optional_index.iter_docs().eq(row_ids.iter().copied()));
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -223,3 +219,170 @@ fn test_optional_index_for_tests() {
|
||||
assert!(!optional_index.contains(3));
|
||||
assert_eq!(optional_index.num_docs(), 4);
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::Bencher;
|
||||
|
||||
use super::*;
|
||||
|
||||
const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
fn gen_bools(fill_ratio: f64) -> OptionalIndex {
|
||||
let mut out = Vec::new();
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let vals: Vec<RowId> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _)| pos as RowId)
|
||||
.collect();
|
||||
serialize_optional_index(&&vals[..], TOTAL_NUM_VALUES, &mut out).unwrap();
|
||||
|
||||
open_optional_index(OwnedBytes::new(out)).unwrap()
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
start: u32,
|
||||
end: u32,
|
||||
avg_step_size: u32,
|
||||
avg_deviation: u32,
|
||||
) -> impl Iterator<Item = u32> {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end { None } else { Some(current) }
|
||||
})
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
}
|
||||
|
||||
fn walk_over_data(codec: &OptionalIndex, avg_step_size: u32) -> Option<u32> {
|
||||
walk_over_data_from_positions(
|
||||
codec,
|
||||
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
|
||||
)
|
||||
}
|
||||
|
||||
fn walk_over_data_from_positions(
|
||||
codec: &OptionalIndex,
|
||||
positions: impl Iterator<Item = u32>,
|
||||
) -> Option<u32> {
|
||||
let mut dense_idx: Option<u32> = None;
|
||||
for idx in positions {
|
||||
dense_idx = dense_idx.or(codec.rank_if_exists(idx));
|
||||
}
|
||||
dense_idx
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 1000));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.5f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 0.005f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_10percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.1f64, 0.005f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 10f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 100f32, bench);
|
||||
}
|
||||
|
||||
fn bench_translate_codec_to_orig_util(
|
||||
percent_filled: f64,
|
||||
percent_hit: f32,
|
||||
bench: &mut Bencher,
|
||||
) {
|
||||
let codec = gen_bools(percent_filled);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
let idxs: Vec<u32> = if percent_hit == 100.0f32 {
|
||||
(0..num_non_nulls).collect()
|
||||
} else {
|
||||
n_percent_step_iterator(percent_hit, num_non_nulls).collect()
|
||||
};
|
||||
let mut output = vec![0u32; idxs.len()];
|
||||
bench.iter(|| {
|
||||
output.copy_from_slice(&idxs[..]);
|
||||
codec.select_batch(&mut output);
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.9f64, 0.005, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.9f64, 100.0f32, bench);
|
||||
}
|
||||
}
|
||||
|
||||
139
columnar/src/column_values/bench.rs
Normal file
139
columnar/src/column_values/bench.rs
Normal file
@@ -0,0 +1,139 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::*;
|
||||
use crate::column_values::u64_based::*;
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55000_u64)
|
||||
.map(|num| num + rng.r#gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
fn compute_stats(vals: impl Iterator<Item = u64>) -> ColumnStats {
|
||||
let mut stats_collector = StatsCollector::default();
|
||||
for val in vals {
|
||||
stats_collector.collect(val);
|
||||
}
|
||||
stats_collector.stats()
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
|
||||
fn get_reader_for_bench<Codec: ColumnCodec>(data: &[u64]) -> Codec::ColumnValues {
|
||||
let mut bytes = Vec::new();
|
||||
let stats = compute_stats(data.iter().cloned());
|
||||
let mut codec_serializer = Codec::estimator();
|
||||
for val in data {
|
||||
codec_serializer.collect(*val);
|
||||
}
|
||||
codec_serializer
|
||||
.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes)
|
||||
.unwrap();
|
||||
|
||||
Codec::load(OwnedBytes::new(bytes)).unwrap()
|
||||
}
|
||||
|
||||
fn bench_get<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = get_reader_for_bench::<Codec>(data);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn ColumnValues>) {
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
fn bench_get_dynamic<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = Arc::new(get_reader_for_bench::<Codec>(data));
|
||||
bench_get_dynamic_helper(b, col);
|
||||
}
|
||||
fn bench_create<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let stats = compute_stats(data.iter().cloned());
|
||||
|
||||
let mut bytes = Vec::new();
|
||||
b.iter(|| {
|
||||
bytes.clear();
|
||||
let mut codec_serializer = Codec::estimator();
|
||||
for val in data.iter().take(1024) {
|
||||
codec_serializer.collect(*val);
|
||||
}
|
||||
|
||||
codec_serializer.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes)
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
@@ -242,3 +242,6 @@ impl<T: Copy + PartialOrd + Debug + 'static> ColumnValues<T> for Arc<dyn ColumnV
|
||||
.get_row_ids_for_value_range(range, doc_id_range, positions)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench;
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
use std::fmt::Debug;
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
/// Monotonic maps a value to u128 value space
|
||||
/// Montonic maps a value to u128 value space
|
||||
/// Monotonic mapping enables `PartialOrd` on u128 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU128: 'static + PartialOrd + Copy + Debug + Send + Sync {
|
||||
/// Converts a value to u128.
|
||||
|
||||
@@ -185,10 +185,10 @@ impl CompactSpaceBuilder {
|
||||
let mut covered_space = Vec::with_capacity(self.blanks.len());
|
||||
|
||||
// beginning of the blanks
|
||||
if let Some(first_blank_start) = self.blanks.first().map(RangeInclusive::start)
|
||||
&& *first_blank_start != 0
|
||||
{
|
||||
covered_space.push(0..=first_blank_start - 1);
|
||||
if let Some(first_blank_start) = self.blanks.first().map(RangeInclusive::start) {
|
||||
if *first_blank_start != 0 {
|
||||
covered_space.push(0..=first_blank_start - 1);
|
||||
}
|
||||
}
|
||||
|
||||
// Between the blanks
|
||||
@@ -202,10 +202,10 @@ impl CompactSpaceBuilder {
|
||||
covered_space.extend(between_blanks);
|
||||
|
||||
// end of the blanks
|
||||
if let Some(last_blank_end) = self.blanks.last().map(RangeInclusive::end)
|
||||
&& *last_blank_end != u128::MAX
|
||||
{
|
||||
covered_space.push(last_blank_end + 1..=u128::MAX);
|
||||
if let Some(last_blank_end) = self.blanks.last().map(RangeInclusive::end) {
|
||||
if *last_blank_end != u128::MAX {
|
||||
covered_space.push(last_blank_end + 1..=u128::MAX);
|
||||
}
|
||||
}
|
||||
|
||||
if covered_space.is_empty() {
|
||||
|
||||
@@ -41,6 +41,12 @@ fn transform_range_before_linear_transformation(
|
||||
if range.is_empty() {
|
||||
return None;
|
||||
}
|
||||
if stats.min_value > *range.end() {
|
||||
return None;
|
||||
}
|
||||
if stats.max_value < *range.start() {
|
||||
return None;
|
||||
}
|
||||
let shifted_range =
|
||||
range.start().saturating_sub(stats.min_value)..=range.end().saturating_sub(stats.min_value);
|
||||
let start_before_gcd_multiplication: u64 = div_ceil(*shifted_range.start(), stats.gcd);
|
||||
@@ -99,7 +105,7 @@ impl ColumnCodecEstimator for BitpackedCodecEstimator {
|
||||
|
||||
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
|
||||
let num_bits_per_value = num_bits(stats);
|
||||
Some(stats.num_bytes() + (stats.num_rows as u64 * (num_bits_per_value as u64)).div_ceil(8))
|
||||
Some(stats.num_bytes() + (stats.num_rows as u64 * (num_bits_per_value as u64) + 7) / 8)
|
||||
}
|
||||
|
||||
fn serialize(
|
||||
|
||||
@@ -8,7 +8,7 @@ use crate::column_values::ColumnValues;
|
||||
const MID_POINT: u64 = (1u64 << 32) - 1u64;
|
||||
|
||||
/// `Line` describes a line function `y: ax + b` using integer
|
||||
/// arithmetic.
|
||||
/// arithmetics.
|
||||
///
|
||||
/// The slope is in fact a decimal split into a 32 bit integer value,
|
||||
/// and a 32-bit decimal value.
|
||||
@@ -94,7 +94,7 @@ impl Line {
|
||||
// `(i, ys[])`.
|
||||
//
|
||||
// The best intercept therefore has the form
|
||||
// `y[i] - line.eval(i)` (using wrapping arithmetic).
|
||||
// `y[i] - line.eval(i)` (using wrapping arithmetics).
|
||||
// In other words, the best intercept is one of the `y - Line::eval(ys[i])`
|
||||
// and our task is just to pick the one that minimizes our error.
|
||||
//
|
||||
|
||||
@@ -117,7 +117,7 @@ impl ColumnCodecEstimator for LinearCodecEstimator {
|
||||
Some(
|
||||
stats.num_bytes()
|
||||
+ linear_params.num_bytes()
|
||||
+ (num_bits as u64 * stats.num_rows as u64).div_ceil(8),
|
||||
+ (num_bits as u64 * stats.num_rows as u64 + 7) / 8,
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
@@ -52,7 +52,7 @@ pub trait ColumnCodecEstimator<T = u64>: 'static {
|
||||
) -> io::Result<()>;
|
||||
}
|
||||
|
||||
/// A column codec describes a column serialization format.
|
||||
/// A column codec describes a colunm serialization format.
|
||||
pub trait ColumnCodec<T: PartialOrd = u64> {
|
||||
/// Specialized `ColumnValues` type.
|
||||
type ColumnValues: ColumnValues<T> + 'static;
|
||||
|
||||
@@ -367,7 +367,7 @@ fn is_empty_after_merge(
|
||||
ColumnIndex::Empty { .. } => true,
|
||||
ColumnIndex::Full => alive_bitset.len() == 0,
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
for doc in optional_index.iter_non_null_docs() {
|
||||
for doc in optional_index.iter_docs() {
|
||||
if alive_bitset.contains(doc) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -244,7 +244,7 @@ impl SymbolValue for UnorderedId {
|
||||
|
||||
fn compute_num_bytes_for_u64(val: u64) -> usize {
|
||||
let msb = (64u32 - val.leading_zeros()) as usize;
|
||||
msb.div_ceil(8)
|
||||
(msb + 7) / 8
|
||||
}
|
||||
|
||||
fn encode_zig_zag(n: i64) -> u64 {
|
||||
|
||||
@@ -3,8 +3,7 @@ use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
|
||||
use common::file_slice::FileSlice;
|
||||
use common::{ByteCount, DateTime, OwnedBytes};
|
||||
use serde::{Deserialize, Serialize};
|
||||
use common::{ByteCount, DateTime, HasLen, OwnedBytes};
|
||||
|
||||
use crate::column::{BytesColumn, Column, StrColumn};
|
||||
use crate::column_values::{StrictlyMonotonicFn, monotonic_map_column};
|
||||
@@ -318,89 +317,10 @@ impl DynamicColumnHandle {
|
||||
}
|
||||
|
||||
pub fn num_bytes(&self) -> ByteCount {
|
||||
self.file_slice.num_bytes()
|
||||
}
|
||||
|
||||
/// Legacy helper returning the column space usage.
|
||||
pub fn column_and_dictionary_num_bytes(&self) -> io::Result<ColumnSpaceUsage> {
|
||||
self.space_usage()
|
||||
}
|
||||
|
||||
/// Return the space usage of the column, optionally broken down by dictionary and column
|
||||
/// values.
|
||||
///
|
||||
/// For dictionary encoded columns (strings and bytes), this splits the total footprint into
|
||||
/// the dictionary and the remaining column data (including index and values).
|
||||
/// For all other column types, the dictionary size is `None` and the column size
|
||||
/// equals the total bytes.
|
||||
pub fn space_usage(&self) -> io::Result<ColumnSpaceUsage> {
|
||||
let total_num_bytes = self.num_bytes();
|
||||
let dynamic_column = self.open()?;
|
||||
let dictionary_num_bytes = match &dynamic_column {
|
||||
DynamicColumn::Bytes(bytes_column) => bytes_column.dictionary().num_bytes(),
|
||||
DynamicColumn::Str(str_column) => str_column.dictionary().num_bytes(),
|
||||
_ => {
|
||||
return Ok(ColumnSpaceUsage::new(self.num_bytes(), None));
|
||||
}
|
||||
};
|
||||
assert!(dictionary_num_bytes <= total_num_bytes);
|
||||
let column_num_bytes =
|
||||
ByteCount::from(total_num_bytes.get_bytes() - dictionary_num_bytes.get_bytes());
|
||||
Ok(ColumnSpaceUsage::new(
|
||||
column_num_bytes,
|
||||
Some(dictionary_num_bytes),
|
||||
))
|
||||
self.file_slice.len().into()
|
||||
}
|
||||
|
||||
pub fn column_type(&self) -> ColumnType {
|
||||
self.column_type
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents space usage of a column.
|
||||
///
|
||||
/// `column_num_bytes` tracks the column payload (index, values and footer).
|
||||
/// For dictionary encoded columns, `dictionary_num_bytes` captures the dictionary footprint.
|
||||
/// [`ColumnSpaceUsage::total_num_bytes`] returns the sum of both parts.
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub struct ColumnSpaceUsage {
|
||||
column_num_bytes: ByteCount,
|
||||
dictionary_num_bytes: Option<ByteCount>,
|
||||
}
|
||||
|
||||
impl ColumnSpaceUsage {
|
||||
pub(crate) fn new(
|
||||
column_num_bytes: ByteCount,
|
||||
dictionary_num_bytes: Option<ByteCount>,
|
||||
) -> Self {
|
||||
ColumnSpaceUsage {
|
||||
column_num_bytes,
|
||||
dictionary_num_bytes,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn column_num_bytes(&self) -> ByteCount {
|
||||
self.column_num_bytes
|
||||
}
|
||||
|
||||
pub fn dictionary_num_bytes(&self) -> Option<ByteCount> {
|
||||
self.dictionary_num_bytes
|
||||
}
|
||||
|
||||
pub fn total_num_bytes(&self) -> ByteCount {
|
||||
self.column_num_bytes + self.dictionary_num_bytes.unwrap_or_default()
|
||||
}
|
||||
|
||||
/// Merge two space usage values by summing their components.
|
||||
pub fn merge(&self, other: &ColumnSpaceUsage) -> ColumnSpaceUsage {
|
||||
let dictionary_num_bytes = match (self.dictionary_num_bytes, other.dictionary_num_bytes) {
|
||||
(Some(lhs), Some(rhs)) => Some(lhs + rhs),
|
||||
(Some(val), None) | (None, Some(val)) => Some(val),
|
||||
(None, None) => None,
|
||||
};
|
||||
ColumnSpaceUsage {
|
||||
column_num_bytes: self.column_num_bytes + other.column_num_bytes,
|
||||
dictionary_num_bytes,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -17,10 +17,15 @@
|
||||
//! column.
|
||||
//! - [column_values]: Stores the values of a column in a dense format.
|
||||
|
||||
#![cfg_attr(all(feature = "unstable", test), feature(test))]
|
||||
|
||||
#[cfg(test)]
|
||||
#[macro_use]
|
||||
extern crate more_asserts;
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
extern crate test;
|
||||
|
||||
use std::fmt::Display;
|
||||
use std::io;
|
||||
|
||||
@@ -48,7 +53,7 @@ pub use columnar::{
|
||||
use sstable::VoidSSTable;
|
||||
pub use value::{NumericalType, NumericalValue};
|
||||
|
||||
pub use self::dynamic_column::{ColumnSpaceUsage, DynamicColumn, DynamicColumnHandle};
|
||||
pub use self::dynamic_column::{DynamicColumn, DynamicColumnHandle};
|
||||
|
||||
pub type RowId = u32;
|
||||
pub type DocId = u32;
|
||||
|
||||
@@ -60,7 +60,7 @@ fn test_dataframe_writer_bool() {
|
||||
let DynamicColumn::Bool(bool_col) = dyn_bool_col else {
|
||||
panic!();
|
||||
};
|
||||
let vals: Vec<Option<bool>> = (0..5).map(|doc_id| bool_col.first(doc_id)).collect();
|
||||
let vals: Vec<Option<bool>> = (0..5).map(|row_id| bool_col.first(row_id)).collect();
|
||||
assert_eq!(&vals, &[None, Some(false), None, Some(true), None,]);
|
||||
}
|
||||
|
||||
@@ -108,7 +108,7 @@ fn test_dataframe_writer_ip_addr() {
|
||||
let DynamicColumn::IpAddr(ip_col) = dyn_bool_col else {
|
||||
panic!();
|
||||
};
|
||||
let vals: Vec<Option<Ipv6Addr>> = (0..5).map(|doc_id| ip_col.first(doc_id)).collect();
|
||||
let vals: Vec<Option<Ipv6Addr>> = (0..5).map(|row_id| ip_col.first(row_id)).collect();
|
||||
assert_eq!(
|
||||
&vals,
|
||||
&[
|
||||
@@ -169,7 +169,7 @@ fn test_dictionary_encoded_str() {
|
||||
let DynamicColumn::Str(str_col) = col_handles[0].open().unwrap() else {
|
||||
panic!();
|
||||
};
|
||||
let index: Vec<Option<u64>> = (0..5).map(|doc_id| str_col.ords().first(doc_id)).collect();
|
||||
let index: Vec<Option<u64>> = (0..5).map(|row_id| str_col.ords().first(row_id)).collect();
|
||||
assert_eq!(index, &[None, Some(0), None, Some(2), Some(1)]);
|
||||
assert_eq!(str_col.num_rows(), 5);
|
||||
let mut term_buffer = String::new();
|
||||
@@ -204,7 +204,7 @@ fn test_dictionary_encoded_bytes() {
|
||||
panic!();
|
||||
};
|
||||
let index: Vec<Option<u64>> = (0..5)
|
||||
.map(|doc_id| bytes_col.ords().first(doc_id))
|
||||
.map(|row_id| bytes_col.ords().first(row_id))
|
||||
.collect();
|
||||
assert_eq!(index, &[None, Some(0), None, Some(2), Some(1)]);
|
||||
assert_eq!(bytes_col.num_rows(), 5);
|
||||
|
||||
@@ -1,5 +1,3 @@
|
||||
use std::str::FromStr;
|
||||
|
||||
use common::DateTime;
|
||||
|
||||
use crate::InvalidData;
|
||||
@@ -11,23 +9,6 @@ pub enum NumericalValue {
|
||||
F64(f64),
|
||||
}
|
||||
|
||||
impl FromStr for NumericalValue {
|
||||
type Err = ();
|
||||
|
||||
fn from_str(s: &str) -> Result<Self, ()> {
|
||||
if let Ok(val_i64) = s.parse::<i64>() {
|
||||
return Ok(val_i64.into());
|
||||
}
|
||||
if let Ok(val_u64) = s.parse::<u64>() {
|
||||
return Ok(val_u64.into());
|
||||
}
|
||||
if let Ok(val_f64) = s.parse::<f64>() {
|
||||
return Ok(NumericalValue::from(val_f64).normalize());
|
||||
}
|
||||
Err(())
|
||||
}
|
||||
}
|
||||
|
||||
impl NumericalValue {
|
||||
pub fn numerical_type(&self) -> NumericalType {
|
||||
match self {
|
||||
@@ -45,7 +26,7 @@ impl NumericalValue {
|
||||
if val <= i64::MAX as u64 {
|
||||
NumericalValue::I64(val as i64)
|
||||
} else {
|
||||
NumericalValue::U64(val)
|
||||
NumericalValue::F64(val as f64)
|
||||
}
|
||||
}
|
||||
NumericalValue::I64(val) => NumericalValue::I64(val),
|
||||
@@ -160,7 +141,6 @@ impl Coerce for DateTime {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::NumericalType;
|
||||
use crate::NumericalValue;
|
||||
|
||||
#[test]
|
||||
fn test_numerical_type_code() {
|
||||
@@ -173,58 +153,4 @@ mod tests {
|
||||
}
|
||||
assert_eq!(num_numerical_type, 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_numerical() {
|
||||
assert_eq!(
|
||||
"123".parse::<NumericalValue>().unwrap(),
|
||||
NumericalValue::I64(123)
|
||||
);
|
||||
assert_eq!(
|
||||
"18446744073709551615".parse::<NumericalValue>().unwrap(),
|
||||
NumericalValue::U64(18446744073709551615u64)
|
||||
);
|
||||
assert_eq!(
|
||||
"1.0".parse::<NumericalValue>().unwrap(),
|
||||
NumericalValue::I64(1i64)
|
||||
);
|
||||
assert_eq!(
|
||||
"1.1".parse::<NumericalValue>().unwrap(),
|
||||
NumericalValue::F64(1.1f64)
|
||||
);
|
||||
assert_eq!(
|
||||
"-1.0".parse::<NumericalValue>().unwrap(),
|
||||
NumericalValue::I64(-1i64)
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_normalize_numerical() {
|
||||
assert_eq!(
|
||||
NumericalValue::from(1u64).normalize(),
|
||||
NumericalValue::I64(1i64),
|
||||
);
|
||||
let limit_val = i64::MAX as u64 + 1u64;
|
||||
assert_eq!(
|
||||
NumericalValue::from(limit_val).normalize(),
|
||||
NumericalValue::U64(limit_val),
|
||||
);
|
||||
assert_eq!(
|
||||
NumericalValue::from(-1i64).normalize(),
|
||||
NumericalValue::I64(-1i64),
|
||||
);
|
||||
assert_eq!(
|
||||
NumericalValue::from(-2.0f64).normalize(),
|
||||
NumericalValue::I64(-2i64),
|
||||
);
|
||||
assert_eq!(
|
||||
NumericalValue::from(-2.1f64).normalize(),
|
||||
NumericalValue::F64(-2.1f64),
|
||||
);
|
||||
let large_float = 2.0f64.powf(70.0f64);
|
||||
assert_eq!(
|
||||
NumericalValue::from(large_float).normalize(),
|
||||
NumericalValue::F64(large_float),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-common"
|
||||
version = "0.10.0"
|
||||
version = "0.9.0"
|
||||
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
|
||||
license = "MIT"
|
||||
edition = "2024"
|
||||
|
||||
@@ -181,17 +181,9 @@ pub struct BitSet {
|
||||
len: u64,
|
||||
max_value: u32,
|
||||
}
|
||||
impl std::fmt::Debug for BitSet {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.debug_struct("BitSet")
|
||||
.field("len", &self.len)
|
||||
.field("max_value", &self.max_value)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
fn num_buckets(max_val: u32) -> u32 {
|
||||
max_val.div_ceil(64u32)
|
||||
(max_val + 63u32) / 64u32
|
||||
}
|
||||
|
||||
impl BitSet {
|
||||
|
||||
@@ -28,9 +28,7 @@ impl BinarySerializable for VIntU128 {
|
||||
writer.write_all(&buffer)
|
||||
}
|
||||
|
||||
#[allow(clippy::unbuffered_bytes)]
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
#[allow(clippy::unbuffered_bytes)]
|
||||
let mut bytes = reader.bytes();
|
||||
let mut result = 0u128;
|
||||
let mut shift = 0u64;
|
||||
@@ -197,9 +195,7 @@ impl BinarySerializable for VInt {
|
||||
writer.write_all(&buffer[0..num_bytes])
|
||||
}
|
||||
|
||||
#[allow(clippy::unbuffered_bytes)]
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
#[allow(clippy::unbuffered_bytes)]
|
||||
let mut bytes = reader.bytes();
|
||||
let mut result = 0u64;
|
||||
let mut shift = 0u64;
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 7.4 KiB After Width: | Height: | Size: 30 KiB |
BIN
doc/assets/images/searchbenchmark.png
Normal file
BIN
doc/assets/images/searchbenchmark.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 653 KiB |
@@ -51,7 +51,7 @@ fn main() -> tantivy::Result<()> {
|
||||
|
||||
// Our second field is body.
|
||||
// We want full-text search for it, but we do not
|
||||
// need to be able to retrieve it
|
||||
// need to be able to be able to retrieve it
|
||||
// for our application.
|
||||
//
|
||||
// We can make our index lighter by omitting the `STORED` flag.
|
||||
@@ -208,7 +208,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// is the role of the `TopDocs` collector.
|
||||
|
||||
// We can now perform our query.
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
|
||||
// The actual documents still need to be
|
||||
// retrieved from Tantivy's store.
|
||||
@@ -226,7 +226,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let query = query_parser.parse_query("title:sea^20 body:whale^70")?;
|
||||
|
||||
let (_score, doc_address) = searcher
|
||||
.search(&query, &TopDocs::with_limit(1).order_by_score())?
|
||||
.search(&query, &TopDocs::with_limit(1))?
|
||||
.into_iter()
|
||||
.next()
|
||||
.unwrap();
|
||||
|
||||
@@ -100,7 +100,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// here we want to get a hit on the 'ken' in Frankenstein
|
||||
let query = query_parser.parse_query("ken")?;
|
||||
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
|
||||
for (_, doc_address) in top_docs {
|
||||
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
|
||||
|
||||
@@ -50,14 +50,14 @@ fn main() -> tantivy::Result<()> {
|
||||
{
|
||||
// Simple exact search on the date
|
||||
let query = query_parser.parse_query("occurred_at:\"2022-06-22T12:53:50.53Z\"")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5).order_by_score())?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5))?;
|
||||
assert_eq!(count_docs.len(), 1);
|
||||
}
|
||||
{
|
||||
// Range query on the date field
|
||||
let query = query_parser
|
||||
.parse_query(r#"occurred_at:[2022-06-22T12:58:00Z TO 2022-06-23T00:00:00Z}"#)?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(4).order_by_score())?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(4))?;
|
||||
assert_eq!(count_docs.len(), 1);
|
||||
for (_score, doc_address) in count_docs {
|
||||
let retrieved_doc = searcher.doc::<TantivyDocument>(doc_address)?;
|
||||
|
||||
@@ -28,7 +28,7 @@ fn extract_doc_given_isbn(
|
||||
// The second argument is here to tell we don't care about decoding positions,
|
||||
// or term frequencies.
|
||||
let term_query = TermQuery::new(isbn_term.clone(), IndexRecordOption::Basic);
|
||||
let top_docs = searcher.search(&term_query, &TopDocs::with_limit(1).order_by_score())?;
|
||||
let top_docs = searcher.search(&term_query, &TopDocs::with_limit(1))?;
|
||||
|
||||
if let Some((_score, doc_address)) = top_docs.first() {
|
||||
let doc = searcher.doc(*doc_address)?;
|
||||
|
||||
@@ -1,212 +0,0 @@
|
||||
// # Filter Aggregation Example
|
||||
//
|
||||
// This example demonstrates filter aggregations - creating buckets of documents
|
||||
// matching specific queries, with nested aggregations computed on each bucket.
|
||||
//
|
||||
// Filter aggregations are useful for computing metrics on different subsets of
|
||||
// your data in a single query, like "average price overall + average price for
|
||||
// electronics + count of in-stock items".
|
||||
|
||||
use serde_json::json;
|
||||
use tantivy::aggregation::agg_req::Aggregations;
|
||||
use tantivy::aggregation::AggregationCollector;
|
||||
use tantivy::query::AllQuery;
|
||||
use tantivy::schema::{Schema, FAST, INDEXED, TEXT};
|
||||
use tantivy::{doc, Index};
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// Create a simple product schema
|
||||
let mut schema_builder = Schema::builder();
|
||||
schema_builder.add_text_field("category", TEXT | FAST);
|
||||
schema_builder.add_text_field("brand", TEXT | FAST);
|
||||
schema_builder.add_u64_field("price", FAST);
|
||||
schema_builder.add_f64_field("rating", FAST);
|
||||
schema_builder.add_bool_field("in_stock", FAST | INDEXED);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
// Create index and add sample products
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
let mut writer = index.writer(50_000_000)?;
|
||||
|
||||
writer.add_document(doc!(
|
||||
schema.get_field("category")? => "electronics",
|
||||
schema.get_field("brand")? => "apple",
|
||||
schema.get_field("price")? => 999u64,
|
||||
schema.get_field("rating")? => 4.5f64,
|
||||
schema.get_field("in_stock")? => true
|
||||
))?;
|
||||
writer.add_document(doc!(
|
||||
schema.get_field("category")? => "electronics",
|
||||
schema.get_field("brand")? => "samsung",
|
||||
schema.get_field("price")? => 799u64,
|
||||
schema.get_field("rating")? => 4.2f64,
|
||||
schema.get_field("in_stock")? => true
|
||||
))?;
|
||||
writer.add_document(doc!(
|
||||
schema.get_field("category")? => "clothing",
|
||||
schema.get_field("brand")? => "nike",
|
||||
schema.get_field("price")? => 120u64,
|
||||
schema.get_field("rating")? => 4.1f64,
|
||||
schema.get_field("in_stock")? => false
|
||||
))?;
|
||||
writer.add_document(doc!(
|
||||
schema.get_field("category")? => "books",
|
||||
schema.get_field("brand")? => "penguin",
|
||||
schema.get_field("price")? => 25u64,
|
||||
schema.get_field("rating")? => 4.8f64,
|
||||
schema.get_field("in_stock")? => true
|
||||
))?;
|
||||
|
||||
writer.commit()?;
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
|
||||
// Example 1: Basic filter with metric aggregation
|
||||
println!("=== Example 1: Electronics average price ===");
|
||||
let agg_req = json!({
|
||||
"electronics": {
|
||||
"filter": "category:electronics",
|
||||
"aggs": {
|
||||
"avg_price": { "avg": { "field": "price" } }
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
let agg: Aggregations = serde_json::from_value(agg_req)?;
|
||||
let collector = AggregationCollector::from_aggs(agg, Default::default());
|
||||
let result = searcher.search(&AllQuery, &collector)?;
|
||||
|
||||
let expected = json!({
|
||||
"electronics": {
|
||||
"doc_count": 2,
|
||||
"avg_price": { "value": 899.0 }
|
||||
}
|
||||
});
|
||||
assert_eq!(serde_json::to_value(&result)?, expected);
|
||||
println!("{}\n", serde_json::to_string_pretty(&result)?);
|
||||
|
||||
// Example 2: Multiple independent filters
|
||||
println!("=== Example 2: Multiple filters in one query ===");
|
||||
let agg_req = json!({
|
||||
"electronics": {
|
||||
"filter": "category:electronics",
|
||||
"aggs": { "avg_price": { "avg": { "field": "price" } } }
|
||||
},
|
||||
"in_stock": {
|
||||
"filter": "in_stock:true",
|
||||
"aggs": { "count": { "value_count": { "field": "brand" } } }
|
||||
},
|
||||
"high_rated": {
|
||||
"filter": "rating:[4.5 TO *]",
|
||||
"aggs": { "count": { "value_count": { "field": "brand" } } }
|
||||
}
|
||||
});
|
||||
|
||||
let agg: Aggregations = serde_json::from_value(agg_req)?;
|
||||
let collector = AggregationCollector::from_aggs(agg, Default::default());
|
||||
let result = searcher.search(&AllQuery, &collector)?;
|
||||
|
||||
let expected = json!({
|
||||
"electronics": {
|
||||
"doc_count": 2,
|
||||
"avg_price": { "value": 899.0 }
|
||||
},
|
||||
"in_stock": {
|
||||
"doc_count": 3,
|
||||
"count": { "value": 3.0 }
|
||||
},
|
||||
"high_rated": {
|
||||
"doc_count": 2,
|
||||
"count": { "value": 2.0 }
|
||||
}
|
||||
});
|
||||
assert_eq!(serde_json::to_value(&result)?, expected);
|
||||
println!("{}\n", serde_json::to_string_pretty(&result)?);
|
||||
|
||||
// Example 3: Nested filters - progressive refinement
|
||||
println!("=== Example 3: Nested filters ===");
|
||||
let agg_req = json!({
|
||||
"in_stock": {
|
||||
"filter": "in_stock:true",
|
||||
"aggs": {
|
||||
"electronics": {
|
||||
"filter": "category:electronics",
|
||||
"aggs": {
|
||||
"expensive": {
|
||||
"filter": "price:[800 TO *]",
|
||||
"aggs": {
|
||||
"avg_rating": { "avg": { "field": "rating" } }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
let agg: Aggregations = serde_json::from_value(agg_req)?;
|
||||
let collector = AggregationCollector::from_aggs(agg, Default::default());
|
||||
let result = searcher.search(&AllQuery, &collector)?;
|
||||
|
||||
let expected = json!({
|
||||
"in_stock": {
|
||||
"doc_count": 3, // apple, samsung, penguin
|
||||
"electronics": {
|
||||
"doc_count": 2, // apple, samsung
|
||||
"expensive": {
|
||||
"doc_count": 1, // only apple (999)
|
||||
"avg_rating": { "value": 4.5 }
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
assert_eq!(serde_json::to_value(&result)?, expected);
|
||||
println!("{}\n", serde_json::to_string_pretty(&result)?);
|
||||
|
||||
// Example 4: Filter with sub-aggregation (terms)
|
||||
println!("=== Example 4: Filter with terms sub-aggregation ===");
|
||||
let agg_req = json!({
|
||||
"electronics": {
|
||||
"filter": "category:electronics",
|
||||
"aggs": {
|
||||
"by_brand": {
|
||||
"terms": { "field": "brand" },
|
||||
"aggs": {
|
||||
"avg_price": { "avg": { "field": "price" } }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
let agg: Aggregations = serde_json::from_value(agg_req)?;
|
||||
let collector = AggregationCollector::from_aggs(agg, Default::default());
|
||||
let result = searcher.search(&AllQuery, &collector)?;
|
||||
|
||||
let expected = json!({
|
||||
"electronics": {
|
||||
"doc_count": 2,
|
||||
"by_brand": {
|
||||
"buckets": [
|
||||
{
|
||||
"key": "samsung",
|
||||
"doc_count": 1,
|
||||
"avg_price": { "value": 799.0 }
|
||||
},
|
||||
{
|
||||
"key": "apple",
|
||||
"doc_count": 1,
|
||||
"avg_price": { "value": 999.0 }
|
||||
}
|
||||
],
|
||||
"sum_other_doc_count": 0,
|
||||
"doc_count_error_upper_bound": 0
|
||||
}
|
||||
}
|
||||
});
|
||||
assert_eq!(serde_json::to_value(&result)?, expected);
|
||||
println!("{}", serde_json::to_string_pretty(&result)?);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -85,6 +85,7 @@ fn main() -> tantivy::Result<()> {
|
||||
index_writer.add_document(doc!(
|
||||
title => "The Diary of a Young Girl",
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
|
||||
// ### Committing
|
||||
//
|
||||
@@ -145,7 +146,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let query = FuzzyTermQuery::new(term, 2, true);
|
||||
|
||||
let (top_docs, count) = searcher
|
||||
.search(&query, &(TopDocs::with_limit(5).order_by_score(), Count))
|
||||
.search(&query, &(TopDocs::with_limit(5), Count))
|
||||
.unwrap();
|
||||
assert_eq!(count, 3);
|
||||
assert_eq!(top_docs.len(), 3);
|
||||
|
||||
@@ -69,25 +69,25 @@ fn main() -> tantivy::Result<()> {
|
||||
{
|
||||
// Inclusive range queries
|
||||
let query = query_parser.parse_query("ip:[192.168.0.80 TO 192.168.0.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5).order_by_score())?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5))?;
|
||||
assert_eq!(count_docs.len(), 1);
|
||||
}
|
||||
{
|
||||
// Exclusive range queries
|
||||
let query = query_parser.parse_query("ip:{192.168.0.80 TO 192.168.1.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(count_docs.len(), 0);
|
||||
}
|
||||
{
|
||||
// Find docs with IP addresses smaller equal 192.168.1.100
|
||||
let query = query_parser.parse_query("ip:[* TO 192.168.1.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
{
|
||||
// Find docs with IP addresses smaller than 192.168.1.100
|
||||
let query = query_parser.parse_query("ip:[* TO 192.168.1.100}")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
|
||||
|
||||
@@ -59,12 +59,12 @@ fn main() -> tantivy::Result<()> {
|
||||
let query_parser = QueryParser::for_index(&index, vec![event_type, attributes]);
|
||||
{
|
||||
let query = query_parser.parse_query("target:submit-button")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
{
|
||||
let query = query_parser.parse_query("target:submit")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
{
|
||||
@@ -74,33 +74,33 @@ fn main() -> tantivy::Result<()> {
|
||||
}
|
||||
{
|
||||
let query = query_parser.parse_query("click AND cart.product_id:133")?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(hits.len(), 1);
|
||||
}
|
||||
{
|
||||
// The sub-fields in the json field marked as default field still need to be explicitly
|
||||
// addressed
|
||||
let query = query_parser.parse_query("click AND 133")?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(hits.len(), 0);
|
||||
}
|
||||
{
|
||||
// Default json fields are ignored if they collide with the schema
|
||||
let query = query_parser.parse_query("event_type:holiday-sale")?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(hits.len(), 0);
|
||||
}
|
||||
// # Query via full attribute path
|
||||
{
|
||||
// This only searches in our schema's `event_type` field
|
||||
let query = query_parser.parse_query("event_type:click")?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(hits.len(), 2);
|
||||
}
|
||||
{
|
||||
// Default json fields can still be accessed by full path
|
||||
let query = query_parser.parse_query("attributes.event_type:holiday-sale")?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(hits.len(), 1);
|
||||
}
|
||||
Ok(())
|
||||
|
||||
@@ -63,7 +63,7 @@ fn main() -> Result<()> {
|
||||
// but not "in the Gulf Stream".
|
||||
let query = query_parser.parse_query("\"in the su\"*")?;
|
||||
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
let mut titles = top_docs
|
||||
.into_iter()
|
||||
.map(|(_score, doc_address)| {
|
||||
|
||||
@@ -107,8 +107,7 @@ fn main() -> tantivy::Result<()> {
|
||||
IndexRecordOption::Basic,
|
||||
);
|
||||
|
||||
let (top_docs, count) =
|
||||
searcher.search(&query, &(TopDocs::with_limit(2).order_by_score(), Count))?;
|
||||
let (top_docs, count) = searcher.search(&query, &(TopDocs::with_limit(2), Count))?;
|
||||
|
||||
assert_eq!(count, 2);
|
||||
|
||||
@@ -129,8 +128,7 @@ fn main() -> tantivy::Result<()> {
|
||||
IndexRecordOption::Basic,
|
||||
);
|
||||
|
||||
let (_top_docs, count) =
|
||||
searcher.search(&query, &(TopDocs::with_limit(2).order_by_score(), Count))?;
|
||||
let (_top_docs, count) = searcher.search(&query, &(TopDocs::with_limit(2), Count))?;
|
||||
|
||||
assert_eq!(count, 0);
|
||||
|
||||
|
||||
@@ -50,7 +50,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let query_parser = QueryParser::for_index(&index, vec![title, body]);
|
||||
let query = query_parser.parse_query("sycamore spring")?;
|
||||
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
|
||||
let snippet_generator = SnippetGenerator::create(&searcher, &*query, body)?;
|
||||
|
||||
|
||||
@@ -102,7 +102,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// stop words are applied on the query as well.
|
||||
// The following will be equivalent to `title:frankenstein`
|
||||
let query = query_parser.parse_query("title:\"the Frankenstein\"")?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
|
||||
for (score, doc_address) in top_docs {
|
||||
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
|
||||
|
||||
@@ -164,7 +164,7 @@ fn main() -> tantivy::Result<()> {
|
||||
move |doc_id: DocId| Reverse(price[doc_id as usize])
|
||||
};
|
||||
|
||||
let most_expensive_first = TopDocs::with_limit(10).order_by(score_by_price);
|
||||
let most_expensive_first = TopDocs::with_limit(10).custom_score(score_by_price);
|
||||
|
||||
let hits = searcher.search(&query, &most_expensive_first)?;
|
||||
assert_eq!(
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-query-grammar"
|
||||
version = "0.25.0"
|
||||
version = "0.24.0"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = ["database-implementations", "data-structures"]
|
||||
@@ -15,5 +15,3 @@ edition = "2024"
|
||||
nom = "7"
|
||||
serde = { version = "1.0.219", features = ["derive"] }
|
||||
serde_json = "1.0.140"
|
||||
ordered-float = "5.0.0"
|
||||
fnv = "1.0.7"
|
||||
|
||||
@@ -117,22 +117,6 @@ where F: nom::Parser<I, (O, ErrorList), Infallible> {
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn terminated_infallible<I, O1, O2, F, G>(
|
||||
mut first: F,
|
||||
mut second: G,
|
||||
) -> impl FnMut(I) -> JResult<I, O1>
|
||||
where
|
||||
F: nom::Parser<I, (O1, ErrorList), Infallible>,
|
||||
G: nom::Parser<I, (O2, ErrorList), Infallible>,
|
||||
{
|
||||
move |input: I| {
|
||||
let (input, (o1, mut err)) = first.parse(input)?;
|
||||
let (input, (_, mut err2)) = second.parse(input)?;
|
||||
err.append(&mut err2);
|
||||
Ok((input, (o1, err)))
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn delimited_infallible<I, O1, O2, O3, F, G, H>(
|
||||
mut first: F,
|
||||
mut second: G,
|
||||
|
||||
@@ -31,17 +31,7 @@ pub fn parse_query_lenient(query: &str) -> (UserInputAst, Vec<LenientError>) {
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::{UserInputAst, parse_query, parse_query_lenient};
|
||||
|
||||
#[test]
|
||||
fn test_deduplication() {
|
||||
let ast: UserInputAst = parse_query("a a").unwrap();
|
||||
let json = serde_json::to_string(&ast).unwrap();
|
||||
assert_eq!(
|
||||
json,
|
||||
r#"{"type":"bool","clauses":[[null,{"type":"literal","field_name":null,"phrase":"a","delimiter":"none","slop":0,"prefix":false}]]}"#
|
||||
);
|
||||
}
|
||||
use crate::{parse_query, parse_query_lenient};
|
||||
|
||||
#[test]
|
||||
fn test_parse_query_serialization() {
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
use std::borrow::Cow;
|
||||
use std::iter::once;
|
||||
|
||||
use fnv::FnvHashSet;
|
||||
use nom::IResult;
|
||||
use nom::branch::alt;
|
||||
use nom::bytes::complete::tag;
|
||||
@@ -37,7 +36,7 @@ fn field_name(inp: &str) -> IResult<&str, String> {
|
||||
alt((first_char, escape_sequence())),
|
||||
many0(alt((simple_char, escape_sequence(), char('\\')))),
|
||||
)),
|
||||
tuple((multispace0, char(':'), multispace0)),
|
||||
char(':'),
|
||||
),
|
||||
|(first_char, next)| once(first_char).chain(next).collect(),
|
||||
)(inp)
|
||||
@@ -69,7 +68,7 @@ fn interpret_escape(source: &str) -> String {
|
||||
|
||||
/// Consume a word outside of any context.
|
||||
// TODO should support escape sequences
|
||||
fn word(inp: &str) -> IResult<&str, Cow<'_, str>> {
|
||||
fn word(inp: &str) -> IResult<&str, Cow<str>> {
|
||||
map_res(
|
||||
recognize(tuple((
|
||||
alt((
|
||||
@@ -306,14 +305,15 @@ fn term_group_infallible(inp: &str) -> JResult<&str, UserInputAst> {
|
||||
let (inp, (field_name, _, _, _)) =
|
||||
tuple((field_name, multispace0, char('('), multispace0))(inp).expect("precondition failed");
|
||||
|
||||
delimited_infallible(
|
||||
let res = delimited_infallible(
|
||||
nothing,
|
||||
map(ast_infallible, |(mut ast, errors)| {
|
||||
ast.set_default_field(field_name.to_string());
|
||||
(ast, errors)
|
||||
}),
|
||||
opt_i_err(char(')'), "expected ')'"),
|
||||
)(inp)
|
||||
)(inp);
|
||||
res
|
||||
}
|
||||
|
||||
fn exists(inp: &str) -> IResult<&str, UserInputLeaf> {
|
||||
@@ -367,10 +367,7 @@ fn literal(inp: &str) -> IResult<&str, UserInputAst> {
|
||||
// something (a field name) got parsed before
|
||||
alt((
|
||||
map(
|
||||
tuple((
|
||||
opt(field_name),
|
||||
alt((range, set, exists, regex, term_or_phrase)),
|
||||
)),
|
||||
tuple((opt(field_name), alt((range, set, exists, term_or_phrase)))),
|
||||
|(field_name, leaf): (Option<String>, UserInputLeaf)| leaf.set_field(field_name).into(),
|
||||
),
|
||||
term_group,
|
||||
@@ -392,10 +389,6 @@ fn literal_no_group_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>>
|
||||
value((), peek(one_of("{[><"))),
|
||||
map(range_infallible, |(range, errs)| (Some(range), errs)),
|
||||
),
|
||||
(
|
||||
value((), peek(one_of("/"))),
|
||||
map(regex_infallible, |(regex, errs)| (Some(regex), errs)),
|
||||
),
|
||||
),
|
||||
delimited_infallible(space0_infallible, term_or_phrase_infallible, nothing),
|
||||
),
|
||||
@@ -696,61 +689,6 @@ fn set_infallible(mut inp: &str) -> JResult<&str, UserInputLeaf> {
|
||||
}
|
||||
}
|
||||
|
||||
fn regex(inp: &str) -> IResult<&str, UserInputLeaf> {
|
||||
map(
|
||||
terminated(
|
||||
delimited(
|
||||
char('/'),
|
||||
many1(alt((preceded(char('\\'), char('/')), none_of("/")))),
|
||||
char('/'),
|
||||
),
|
||||
peek(alt((multispace1, eof))),
|
||||
),
|
||||
|elements| UserInputLeaf::Regex {
|
||||
field: None,
|
||||
pattern: elements.into_iter().collect::<String>(),
|
||||
},
|
||||
)(inp)
|
||||
}
|
||||
|
||||
fn regex_infallible(inp: &str) -> JResult<&str, UserInputLeaf> {
|
||||
match terminated_infallible(
|
||||
delimited_infallible(
|
||||
opt_i_err(char('/'), "missing delimiter /"),
|
||||
opt_i(many1(alt((preceded(char('\\'), char('/')), none_of("/"))))),
|
||||
opt_i_err(char('/'), "missing delimiter /"),
|
||||
),
|
||||
opt_i_err(
|
||||
peek(alt((multispace1, eof))),
|
||||
"expected whitespace or end of input",
|
||||
),
|
||||
)(inp)
|
||||
{
|
||||
Ok((rest, (elements_part, errors))) => {
|
||||
let pattern = match elements_part {
|
||||
Some(elements_part) => elements_part.into_iter().collect(),
|
||||
None => String::new(),
|
||||
};
|
||||
let res = UserInputLeaf::Regex {
|
||||
field: None,
|
||||
pattern,
|
||||
};
|
||||
Ok((rest, (res, errors)))
|
||||
}
|
||||
Err(e) => {
|
||||
let errs = vec![LenientErrorInternal {
|
||||
pos: inp.len(),
|
||||
message: e.to_string(),
|
||||
}];
|
||||
let res = UserInputLeaf::Regex {
|
||||
field: None,
|
||||
pattern: String::new(),
|
||||
};
|
||||
Ok((inp, (res, errs)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn negate(expr: UserInputAst) -> UserInputAst {
|
||||
expr.unary(Occur::MustNot)
|
||||
}
|
||||
@@ -758,17 +696,7 @@ fn negate(expr: UserInputAst) -> UserInputAst {
|
||||
fn leaf(inp: &str) -> IResult<&str, UserInputAst> {
|
||||
alt((
|
||||
delimited(char('('), ast, char(')')),
|
||||
map(
|
||||
terminated(
|
||||
char('*'),
|
||||
peek(alt((
|
||||
value((), multispace1),
|
||||
value((), char(')')),
|
||||
value((), eof),
|
||||
))),
|
||||
),
|
||||
|_| UserInputAst::from(UserInputLeaf::All),
|
||||
),
|
||||
map(char('*'), |_| UserInputAst::from(UserInputLeaf::All)),
|
||||
map(preceded(tuple((tag("NOT"), multispace1)), leaf), negate),
|
||||
literal,
|
||||
))(inp)
|
||||
@@ -789,17 +717,7 @@ fn leaf_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>> {
|
||||
),
|
||||
),
|
||||
(
|
||||
value(
|
||||
(),
|
||||
terminated(
|
||||
char('*'),
|
||||
peek(alt((
|
||||
value((), multispace1),
|
||||
value((), char(')')),
|
||||
value((), eof),
|
||||
))),
|
||||
),
|
||||
),
|
||||
value((), char('*')),
|
||||
map(nothing, |_| {
|
||||
(Some(UserInputAst::from(UserInputLeaf::All)), Vec::new())
|
||||
}),
|
||||
@@ -835,7 +753,7 @@ fn boosted_leaf(inp: &str) -> IResult<&str, UserInputAst> {
|
||||
tuple((leaf, fallible(boost))),
|
||||
|(leaf, boost_opt)| match boost_opt {
|
||||
Some(boost) if (boost - 1.0).abs() > f64::EPSILON => {
|
||||
UserInputAst::Boost(Box::new(leaf), boost.into())
|
||||
UserInputAst::Boost(Box::new(leaf), boost)
|
||||
}
|
||||
_ => leaf,
|
||||
},
|
||||
@@ -847,7 +765,7 @@ fn boosted_leaf_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>> {
|
||||
tuple_infallible((leaf_infallible, boost)),
|
||||
|((leaf, boost_opt), error)| match boost_opt {
|
||||
Some(boost) if (boost - 1.0).abs() > f64::EPSILON => (
|
||||
leaf.map(|leaf| UserInputAst::Boost(Box::new(leaf), boost.into())),
|
||||
leaf.map(|leaf| UserInputAst::Boost(Box::new(leaf), boost)),
|
||||
error,
|
||||
),
|
||||
_ => (leaf, error),
|
||||
@@ -1098,25 +1016,12 @@ pub fn parse_to_ast_lenient(query_str: &str) -> (UserInputAst, Vec<LenientError>
|
||||
(rewrite_ast(res), errors)
|
||||
}
|
||||
|
||||
/// Removes unnecessary children clauses in AST
|
||||
///
|
||||
/// Motivated by [issue #1433](https://github.com/quickwit-oss/tantivy/issues/1433)
|
||||
fn rewrite_ast(mut input: UserInputAst) -> UserInputAst {
|
||||
if let UserInputAst::Clause(sub_clauses) = &mut input {
|
||||
// call rewrite_ast recursively on children clauses if applicable
|
||||
let mut new_clauses = Vec::with_capacity(sub_clauses.len());
|
||||
for (occur, clause) in sub_clauses.drain(..) {
|
||||
let rewritten_clause = rewrite_ast(clause);
|
||||
new_clauses.push((occur, rewritten_clause));
|
||||
}
|
||||
*sub_clauses = new_clauses;
|
||||
|
||||
// remove duplicate child clauses
|
||||
// e.g. (+a +b) OR (+c +d) OR (+a +b) => (+a +b) OR (+c +d)
|
||||
let mut seen = FnvHashSet::default();
|
||||
sub_clauses.retain(|term| seen.insert(term.clone()));
|
||||
|
||||
// Removes unnecessary children clauses in AST
|
||||
//
|
||||
// Motivated by [issue #1433](https://github.com/quickwit-oss/tantivy/issues/1433)
|
||||
for term in sub_clauses {
|
||||
if let UserInputAst::Clause(terms) = &mut input {
|
||||
for term in terms {
|
||||
rewrite_ast_clause(term);
|
||||
}
|
||||
}
|
||||
@@ -1378,10 +1283,6 @@ mod test {
|
||||
super::field_name("~my~field:a"),
|
||||
Ok(("a", "~my~field".to_string()))
|
||||
);
|
||||
assert_eq!(
|
||||
super::field_name(".my.field.name : a"),
|
||||
Ok(("a", ".my.field.name".to_string()))
|
||||
);
|
||||
for special_char in SPECIAL_CHARS.iter() {
|
||||
let query = &format!("\\{special_char}my\\{special_char}field:a");
|
||||
assert_eq!(
|
||||
@@ -1691,21 +1592,6 @@ mod test {
|
||||
test_parse_query_to_ast_helper("abc:a b", "(*\"abc\":a *b)");
|
||||
test_parse_query_to_ast_helper("abc:\"a b\"", "\"abc\":\"a b\"");
|
||||
test_parse_query_to_ast_helper("foo:[1 TO 5]", "\"foo\":[\"1\" TO \"5\"]");
|
||||
|
||||
// Phrase prefixed with *
|
||||
test_parse_query_to_ast_helper("foo:(*A)", "\"foo\":*A");
|
||||
test_parse_query_to_ast_helper("*A", "*A");
|
||||
test_parse_query_to_ast_helper("(*A)", "*A");
|
||||
test_parse_query_to_ast_helper("foo:(A OR B)", "(?\"foo\":A ?\"foo\":B)");
|
||||
test_parse_query_to_ast_helper("foo:(A* OR B*)", "(?\"foo\":A* ?\"foo\":B*)");
|
||||
test_parse_query_to_ast_helper("foo:(*A OR *B)", "(?\"foo\":*A ?\"foo\":*B)");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_query_all() {
|
||||
test_parse_query_to_ast_helper("*", "*");
|
||||
test_parse_query_to_ast_helper("(*)", "*");
|
||||
test_parse_query_to_ast_helper("(* )", "*");
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -1803,72 +1689,4 @@ mod test {
|
||||
fn test_invalid_field() {
|
||||
test_is_parse_err(r#"!bc:def"#, "!bc:def");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_regex_parser() {
|
||||
let r = parse_to_ast(r#"a:/joh?n(ath[oa]n)/"#);
|
||||
assert!(r.is_ok(), "Failed to parse custom query: {r:?}");
|
||||
let (_, input) = r.unwrap();
|
||||
match input {
|
||||
UserInputAst::Leaf(leaf) => match leaf.as_ref() {
|
||||
UserInputLeaf::Regex { field, pattern } => {
|
||||
assert_eq!(field, &Some("a".to_string()));
|
||||
assert_eq!(pattern, "joh?n(ath[oa]n)");
|
||||
}
|
||||
_ => panic!("Expected a regex leaf, got {leaf:?}"),
|
||||
},
|
||||
_ => panic!("Expected a leaf"),
|
||||
}
|
||||
let r = parse_to_ast(r#"a:/\\/cgi-bin\\/luci.*/"#);
|
||||
assert!(r.is_ok(), "Failed to parse custom query: {r:?}");
|
||||
let (_, input) = r.unwrap();
|
||||
match input {
|
||||
UserInputAst::Leaf(leaf) => match leaf.as_ref() {
|
||||
UserInputLeaf::Regex { field, pattern } => {
|
||||
assert_eq!(field, &Some("a".to_string()));
|
||||
assert_eq!(pattern, "\\/cgi-bin\\/luci.*");
|
||||
}
|
||||
_ => panic!("Expected a regex leaf, got {leaf:?}"),
|
||||
},
|
||||
_ => panic!("Expected a leaf"),
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_regex_parser_lenient() {
|
||||
let literal = |query| literal_infallible(query).unwrap().1;
|
||||
|
||||
let (res, errs) = literal(r#"a:/joh?n(ath[oa]n)/"#);
|
||||
let expected = UserInputLeaf::Regex {
|
||||
field: Some("a".to_string()),
|
||||
pattern: "joh?n(ath[oa]n)".to_string(),
|
||||
}
|
||||
.into();
|
||||
assert_eq!(res.unwrap(), expected);
|
||||
assert!(errs.is_empty(), "Expected no errors, got: {errs:?}");
|
||||
|
||||
let (res, errs) = literal("title:/joh?n(ath[oa]n)");
|
||||
let expected = UserInputLeaf::Regex {
|
||||
field: Some("title".to_string()),
|
||||
pattern: "joh?n(ath[oa]n)".to_string(),
|
||||
}
|
||||
.into();
|
||||
assert_eq!(res.unwrap(), expected);
|
||||
assert_eq!(errs.len(), 1, "Expected 1 error, got: {errs:?}");
|
||||
assert_eq!(
|
||||
errs[0].message, "missing delimiter /",
|
||||
"Unexpected error message",
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_space_before_value() {
|
||||
test_parse_query_to_ast_helper("field : a", r#""field":a"#);
|
||||
test_parse_query_to_ast_helper("field: a", r#""field":a"#);
|
||||
test_parse_query_to_ast_helper("field :a", r#""field":a"#);
|
||||
test_parse_query_to_ast_helper(
|
||||
"field : 'happy tax payer' AND other_field : 1",
|
||||
r#"(+"field":'happy tax payer' +"other_field":1)"#,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -5,7 +5,7 @@ use serde::Serialize;
|
||||
|
||||
use crate::Occur;
|
||||
|
||||
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
|
||||
#[derive(PartialEq, Clone, Serialize)]
|
||||
#[serde(tag = "type")]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub enum UserInputLeaf {
|
||||
@@ -23,10 +23,6 @@ pub enum UserInputLeaf {
|
||||
Exists {
|
||||
field: String,
|
||||
},
|
||||
Regex {
|
||||
field: Option<String>,
|
||||
pattern: String,
|
||||
},
|
||||
}
|
||||
|
||||
impl UserInputLeaf {
|
||||
@@ -50,7 +46,6 @@ impl UserInputLeaf {
|
||||
UserInputLeaf::Exists { field: _ } => UserInputLeaf::Exists {
|
||||
field: field.expect("Exist query without a field isn't allowed"),
|
||||
},
|
||||
UserInputLeaf::Regex { field: _, pattern } => UserInputLeaf::Regex { field, pattern },
|
||||
}
|
||||
}
|
||||
|
||||
@@ -108,19 +103,11 @@ impl Debug for UserInputLeaf {
|
||||
UserInputLeaf::Exists { field } => {
|
||||
write!(formatter, "$exists(\"{field}\")")
|
||||
}
|
||||
UserInputLeaf::Regex { field, pattern } => {
|
||||
if let Some(field) = field {
|
||||
// TODO properly escape field (in case of \")
|
||||
write!(formatter, "\"{field}\":")?;
|
||||
}
|
||||
// TODO properly escape pattern (in case of \")
|
||||
write!(formatter, "/{pattern}/")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug, Serialize)]
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Debug, Serialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub enum Delimiter {
|
||||
SingleQuotes,
|
||||
@@ -128,7 +115,7 @@ pub enum Delimiter {
|
||||
None,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
|
||||
#[derive(PartialEq, Clone, Serialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub struct UserInputLiteral {
|
||||
pub field_name: Option<String>,
|
||||
@@ -167,7 +154,7 @@ impl fmt::Debug for UserInputLiteral {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Hash, Debug, Clone, Serialize)]
|
||||
#[derive(PartialEq, Debug, Clone, Serialize)]
|
||||
#[serde(tag = "type", content = "value")]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub enum UserInputBound {
|
||||
@@ -204,11 +191,11 @@ impl UserInputBound {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
|
||||
#[derive(PartialEq, Clone, Serialize)]
|
||||
#[serde(into = "UserInputAstSerde")]
|
||||
pub enum UserInputAst {
|
||||
Clause(Vec<(Option<Occur>, UserInputAst)>),
|
||||
Boost(Box<UserInputAst>, ordered_float::OrderedFloat<f64>),
|
||||
Boost(Box<UserInputAst>, f64),
|
||||
Leaf(Box<UserInputLeaf>),
|
||||
}
|
||||
|
||||
@@ -230,10 +217,9 @@ impl From<UserInputAst> for UserInputAstSerde {
|
||||
fn from(ast: UserInputAst) -> Self {
|
||||
match ast {
|
||||
UserInputAst::Clause(clause) => UserInputAstSerde::Bool { clauses: clause },
|
||||
UserInputAst::Boost(underlying, boost) => UserInputAstSerde::Boost {
|
||||
underlying,
|
||||
boost: boost.into_inner(),
|
||||
},
|
||||
UserInputAst::Boost(underlying, boost) => {
|
||||
UserInputAstSerde::Boost { underlying, boost }
|
||||
}
|
||||
UserInputAst::Leaf(leaf) => UserInputAstSerde::Leaf(leaf),
|
||||
}
|
||||
}
|
||||
@@ -392,7 +378,7 @@ mod tests {
|
||||
#[test]
|
||||
fn test_boost_serialization() {
|
||||
let inner_ast = UserInputAst::Leaf(Box::new(UserInputLeaf::All));
|
||||
let boost_ast = UserInputAst::Boost(Box::new(inner_ast), 2.5.into());
|
||||
let boost_ast = UserInputAst::Boost(Box::new(inner_ast), 2.5);
|
||||
let json = serde_json::to_string(&boost_ast).unwrap();
|
||||
assert_eq!(
|
||||
json,
|
||||
@@ -419,7 +405,7 @@ mod tests {
|
||||
}))),
|
||||
),
|
||||
])),
|
||||
2.5.into(),
|
||||
2.5,
|
||||
);
|
||||
let json = serde_json::to_string(&boost_ast).unwrap();
|
||||
assert_eq!(
|
||||
|
||||
@@ -20,16 +20,17 @@ Contains all metric aggregations, like average aggregation. Metric aggregations
|
||||
#### agg_req
|
||||
agg_req contains the users aggregation request. Deserialization from json is compatible with elasticsearch aggregation requests.
|
||||
|
||||
#### agg_data
|
||||
agg_data contains the users aggregation request enriched with fast field accessors etc, which are
|
||||
#### agg_req_with_accessor
|
||||
agg_req_with_accessor contains the users aggregation request enriched with fast field accessors etc, which are
|
||||
used during collection.
|
||||
|
||||
#### segment_agg_result
|
||||
segment_agg_result contains the aggregation result tree, which is used for collection of a segment.
|
||||
agg_data is passed during collection.
|
||||
The tree from agg_req_with_accessor is passed during collection.
|
||||
|
||||
#### intermediate_agg_result
|
||||
intermediate_agg_result contains the aggregation tree for merging with other trees.
|
||||
|
||||
#### agg_result
|
||||
agg_result contains the final aggregation tree.
|
||||
|
||||
|
||||
@@ -1,105 +0,0 @@
|
||||
//! This will enhance the request tree with access to the fastfield and metadata.
|
||||
|
||||
use std::io;
|
||||
|
||||
use columnar::{Column, ColumnType};
|
||||
|
||||
use crate::aggregation::{f64_to_fastfield_u64, Key};
|
||||
use crate::index::SegmentReader;
|
||||
|
||||
/// Get the missing value as internal u64 representation
|
||||
///
|
||||
/// For terms we use u64::MAX as sentinel value
|
||||
/// For numerical data we convert the value into the representation
|
||||
/// we would get from the fast field, when we open it as u64_lenient_for_type.
|
||||
///
|
||||
/// That way we can use it the same way as if it would come from the fastfield.
|
||||
pub(crate) fn get_missing_val_as_u64_lenient(
|
||||
column_type: ColumnType,
|
||||
column_max_value: u64,
|
||||
missing: &Key,
|
||||
field_name: &str,
|
||||
) -> crate::Result<Option<u64>> {
|
||||
let missing_val = match missing {
|
||||
Key::Str(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
|
||||
// Allow fallback to number on text fields
|
||||
Key::F64(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
|
||||
Key::U64(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
|
||||
Key::I64(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
|
||||
Key::F64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val, &column_type)
|
||||
}
|
||||
// NOTE: We may loose precision of the passed missing value by casting i64 and u64 to f64.
|
||||
Key::I64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val as f64, &column_type)
|
||||
}
|
||||
Key::U64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val as f64, &column_type)
|
||||
}
|
||||
_ => {
|
||||
return Err(crate::TantivyError::InvalidArgument(format!(
|
||||
"Missing value {missing:?} for field {field_name} is not supported for column \
|
||||
type {column_type:?}"
|
||||
)));
|
||||
}
|
||||
};
|
||||
Ok(missing_val)
|
||||
}
|
||||
|
||||
pub(crate) fn get_numeric_or_date_column_types() -> &'static [ColumnType] {
|
||||
&[
|
||||
ColumnType::F64,
|
||||
ColumnType::U64,
|
||||
ColumnType::I64,
|
||||
ColumnType::DateTime,
|
||||
]
|
||||
}
|
||||
|
||||
/// Get fast field reader or empty as default.
|
||||
pub(crate) fn get_ff_reader(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
allowed_column_types: Option<&[ColumnType]>,
|
||||
) -> crate::Result<(columnar::Column<u64>, ColumnType)> {
|
||||
let ff_fields = reader.fast_fields();
|
||||
let ff_field_with_type = ff_fields
|
||||
.u64_lenient_for_type(allowed_column_types, field_name)?
|
||||
.unwrap_or_else(|| {
|
||||
(
|
||||
Column::build_empty_column(reader.num_docs()),
|
||||
ColumnType::U64,
|
||||
)
|
||||
});
|
||||
Ok(ff_field_with_type)
|
||||
}
|
||||
|
||||
pub(crate) fn get_dynamic_columns(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
) -> crate::Result<Vec<columnar::DynamicColumn>> {
|
||||
let ff_fields = reader.fast_fields().dynamic_column_handles(field_name)?;
|
||||
let cols = ff_fields
|
||||
.iter()
|
||||
.map(|h| h.open())
|
||||
.collect::<io::Result<_>>()?;
|
||||
assert!(!ff_fields.is_empty(), "field {field_name} not found");
|
||||
Ok(cols)
|
||||
}
|
||||
|
||||
/// Get all fast field reader or empty as default.
|
||||
///
|
||||
/// Is guaranteed to return at least one column.
|
||||
pub(crate) fn get_all_ff_reader_or_empty(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
allowed_column_types: Option<&[ColumnType]>,
|
||||
fallback_type: ColumnType,
|
||||
) -> crate::Result<Vec<(columnar::Column<u64>, ColumnType)>> {
|
||||
let ff_fields = reader.fast_fields();
|
||||
let mut ff_field_with_type =
|
||||
ff_fields.u64_lenient_for_type_all(allowed_column_types, field_name)?;
|
||||
if ff_field_with_type.is_empty() {
|
||||
ff_field_with_type.push((Column::build_empty_column(reader.num_docs()), fallback_type));
|
||||
}
|
||||
Ok(ff_field_with_type)
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -35,7 +35,6 @@ pub struct AggregationLimitsGuard {
|
||||
/// Allocated memory with this guard.
|
||||
allocated_with_the_guard: u64,
|
||||
}
|
||||
|
||||
impl Clone for AggregationLimitsGuard {
|
||||
fn clone(&self) -> Self {
|
||||
Self {
|
||||
@@ -71,7 +70,7 @@ impl AggregationLimitsGuard {
|
||||
/// *memory_limit*
|
||||
/// memory_limit is defined in bytes.
|
||||
/// Aggregation fails when the estimated memory consumption of the aggregation is higher than
|
||||
/// memory_limit.
|
||||
/// memory_limit.
|
||||
/// memory_limit will default to `DEFAULT_MEMORY_LIMIT` (500MB)
|
||||
///
|
||||
/// *bucket_limit*
|
||||
|
||||
@@ -26,14 +26,12 @@
|
||||
//! let _agg_req: Aggregations = serde_json::from_str(elasticsearch_compatible_json_req).unwrap();
|
||||
//! ```
|
||||
|
||||
use std::collections::HashSet;
|
||||
use std::collections::{HashMap, HashSet};
|
||||
|
||||
use rustc_hash::FxHashMap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::bucket::{
|
||||
DateHistogramAggregationReq, FilterAggregation, HistogramAggregation, RangeAggregation,
|
||||
TermsAggregation,
|
||||
DateHistogramAggregationReq, HistogramAggregation, RangeAggregation, TermsAggregation,
|
||||
};
|
||||
use super::metric::{
|
||||
AverageAggregation, CardinalityAggregationReq, CountAggregation, ExtendedStatsAggregation,
|
||||
@@ -45,7 +43,7 @@ use super::metric::{
|
||||
/// defined names. It is also used in buckets aggregations to define sub-aggregations.
|
||||
///
|
||||
/// The key is the user defined name of the aggregation.
|
||||
pub type Aggregations = FxHashMap<String, Aggregation>;
|
||||
pub type Aggregations = HashMap<String, Aggregation>;
|
||||
|
||||
/// Aggregation request.
|
||||
///
|
||||
@@ -131,9 +129,6 @@ pub enum AggregationVariants {
|
||||
/// Put data into buckets of terms.
|
||||
#[serde(rename = "terms")]
|
||||
Terms(TermsAggregation),
|
||||
/// Filter documents into a single bucket.
|
||||
#[serde(rename = "filter")]
|
||||
Filter(FilterAggregation),
|
||||
|
||||
// Metric aggregation types
|
||||
/// Computes the average of the extracted values.
|
||||
@@ -179,7 +174,6 @@ impl AggregationVariants {
|
||||
AggregationVariants::Range(range) => vec![range.field.as_str()],
|
||||
AggregationVariants::Histogram(histogram) => vec![histogram.field.as_str()],
|
||||
AggregationVariants::DateHistogram(histogram) => vec![histogram.field.as_str()],
|
||||
AggregationVariants::Filter(filter) => filter.get_fast_field_names(),
|
||||
AggregationVariants::Average(avg) => vec![avg.field_name()],
|
||||
AggregationVariants::Count(count) => vec![count.field_name()],
|
||||
AggregationVariants::Max(max) => vec![max.field_name()],
|
||||
@@ -214,6 +208,13 @@ impl AggregationVariants {
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
pub(crate) fn as_top_hits(&self) -> Option<&TopHitsAggregationReq> {
|
||||
match &self {
|
||||
AggregationVariants::TopHits(top_hits) => Some(top_hits),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn as_percentile(&self) -> Option<&PercentilesAggregationReq> {
|
||||
match &self {
|
||||
AggregationVariants::Percentiles(percentile_req) => Some(percentile_req),
|
||||
|
||||
471
src/aggregation/agg_req_with_accessor.rs
Normal file
471
src/aggregation/agg_req_with_accessor.rs
Normal file
@@ -0,0 +1,471 @@
|
||||
//! This will enhance the request tree with access to the fastfield and metadata.
|
||||
|
||||
use std::collections::HashMap;
|
||||
use std::io;
|
||||
|
||||
use columnar::{Column, ColumnBlockAccessor, ColumnType, DynamicColumn, StrColumn};
|
||||
|
||||
use super::agg_req::{Aggregation, AggregationVariants, Aggregations};
|
||||
use super::bucket::{
|
||||
DateHistogramAggregationReq, HistogramAggregation, RangeAggregation, TermsAggregation,
|
||||
};
|
||||
use super::metric::{
|
||||
AverageAggregation, CardinalityAggregationReq, CountAggregation, ExtendedStatsAggregation,
|
||||
MaxAggregation, MinAggregation, StatsAggregation, SumAggregation,
|
||||
};
|
||||
use super::segment_agg_result::AggregationLimitsGuard;
|
||||
use super::VecWithNames;
|
||||
use crate::aggregation::{f64_to_fastfield_u64, Key};
|
||||
use crate::index::SegmentReader;
|
||||
use crate::SegmentOrdinal;
|
||||
|
||||
#[derive(Default)]
|
||||
pub(crate) struct AggregationsWithAccessor {
|
||||
pub aggs: VecWithNames<AggregationWithAccessor>,
|
||||
}
|
||||
|
||||
impl AggregationsWithAccessor {
|
||||
fn from_data(aggs: VecWithNames<AggregationWithAccessor>) -> Self {
|
||||
Self { aggs }
|
||||
}
|
||||
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.aggs.is_empty()
|
||||
}
|
||||
}
|
||||
|
||||
pub struct AggregationWithAccessor {
|
||||
pub(crate) segment_ordinal: SegmentOrdinal,
|
||||
/// In general there can be buckets without fast field access, e.g. buckets that are created
|
||||
/// based on search terms. That is not that case currently, but eventually this needs to be
|
||||
/// Option or moved.
|
||||
pub(crate) accessor: Column<u64>,
|
||||
/// Load insert u64 for missing use case
|
||||
pub(crate) missing_value_for_accessor: Option<u64>,
|
||||
pub(crate) str_dict_column: Option<StrColumn>,
|
||||
pub(crate) field_type: ColumnType,
|
||||
pub(crate) sub_aggregation: AggregationsWithAccessor,
|
||||
pub(crate) limits: AggregationLimitsGuard,
|
||||
pub(crate) column_block_accessor: ColumnBlockAccessor<u64>,
|
||||
/// Used for missing term aggregation, which checks all columns for existence.
|
||||
/// And also for `top_hits` aggregation, which may sort on multiple fields.
|
||||
/// By convention the missing aggregation is chosen, when this property is set
|
||||
/// (instead bein set in `agg`).
|
||||
/// If this needs to used by other aggregations, we need to refactor this.
|
||||
// NOTE: we can make all other aggregations use this instead of the `accessor` and `field_type`
|
||||
// (making them obsolete) But will it have a performance impact?
|
||||
pub(crate) accessors: Vec<(Column<u64>, ColumnType)>,
|
||||
/// Map field names to all associated column accessors.
|
||||
/// This field is used for `docvalue_fields`, which is currently only supported for `top_hits`.
|
||||
pub(crate) value_accessors: HashMap<String, Vec<DynamicColumn>>,
|
||||
pub(crate) agg: Aggregation,
|
||||
}
|
||||
|
||||
impl AggregationWithAccessor {
|
||||
/// May return multiple accessors if the aggregation is e.g. on mixed field types.
|
||||
fn try_from_agg(
|
||||
agg: &Aggregation,
|
||||
sub_aggregation: &Aggregations,
|
||||
reader: &SegmentReader,
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
limits: AggregationLimitsGuard,
|
||||
) -> crate::Result<Vec<AggregationWithAccessor>> {
|
||||
let mut agg = agg.clone();
|
||||
|
||||
let add_agg_with_accessor = |agg: &Aggregation,
|
||||
accessor: Column<u64>,
|
||||
column_type: ColumnType,
|
||||
aggs: &mut Vec<AggregationWithAccessor>|
|
||||
-> crate::Result<()> {
|
||||
let res = AggregationWithAccessor {
|
||||
segment_ordinal,
|
||||
accessor,
|
||||
accessors: Default::default(),
|
||||
value_accessors: Default::default(),
|
||||
field_type: column_type,
|
||||
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
|
||||
sub_aggregation,
|
||||
reader,
|
||||
segment_ordinal,
|
||||
&limits,
|
||||
)?,
|
||||
agg: agg.clone(),
|
||||
limits: limits.clone(),
|
||||
missing_value_for_accessor: None,
|
||||
str_dict_column: None,
|
||||
column_block_accessor: Default::default(),
|
||||
};
|
||||
aggs.push(res);
|
||||
Ok(())
|
||||
};
|
||||
|
||||
let add_agg_with_accessors = |agg: &Aggregation,
|
||||
accessors: Vec<(Column<u64>, ColumnType)>,
|
||||
aggs: &mut Vec<AggregationWithAccessor>,
|
||||
value_accessors: HashMap<String, Vec<DynamicColumn>>|
|
||||
-> crate::Result<()> {
|
||||
let (accessor, field_type) = accessors.first().expect("at least one accessor");
|
||||
let limits = limits.clone();
|
||||
let res = AggregationWithAccessor {
|
||||
segment_ordinal,
|
||||
// TODO: We should do away with the `accessor` field altogether
|
||||
accessor: accessor.clone(),
|
||||
value_accessors,
|
||||
field_type: *field_type,
|
||||
accessors,
|
||||
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
|
||||
sub_aggregation,
|
||||
reader,
|
||||
segment_ordinal,
|
||||
&limits,
|
||||
)?,
|
||||
agg: agg.clone(),
|
||||
limits,
|
||||
missing_value_for_accessor: None,
|
||||
str_dict_column: None,
|
||||
column_block_accessor: Default::default(),
|
||||
};
|
||||
aggs.push(res);
|
||||
Ok(())
|
||||
};
|
||||
|
||||
let mut res: Vec<AggregationWithAccessor> = Vec::new();
|
||||
use AggregationVariants::*;
|
||||
|
||||
match agg.agg {
|
||||
Range(RangeAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
}) => {
|
||||
let (accessor, column_type) =
|
||||
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
Histogram(HistogramAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
}) => {
|
||||
let (accessor, column_type) =
|
||||
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
DateHistogram(DateHistogramAggregationReq {
|
||||
field: ref field_name,
|
||||
..
|
||||
}) => {
|
||||
let (accessor, column_type) =
|
||||
// Only DateTime is supported for DateHistogram
|
||||
get_ff_reader(reader, field_name, Some(&[ColumnType::DateTime]))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
Terms(TermsAggregation {
|
||||
field: ref field_name,
|
||||
ref missing,
|
||||
..
|
||||
})
|
||||
| Cardinality(CardinalityAggregationReq {
|
||||
field: ref field_name,
|
||||
ref missing,
|
||||
..
|
||||
}) => {
|
||||
let str_dict_column = reader.fast_fields().str(field_name)?;
|
||||
let allowed_column_types = [
|
||||
ColumnType::I64,
|
||||
ColumnType::U64,
|
||||
ColumnType::F64,
|
||||
ColumnType::Str,
|
||||
ColumnType::DateTime,
|
||||
ColumnType::Bool,
|
||||
ColumnType::IpAddr,
|
||||
// ColumnType::Bytes Unsupported
|
||||
];
|
||||
|
||||
// In case the column is empty we want the shim column to match the missing type
|
||||
let fallback_type = missing
|
||||
.as_ref()
|
||||
.map(|missing| match missing {
|
||||
Key::Str(_) => ColumnType::Str,
|
||||
Key::F64(_) => ColumnType::F64,
|
||||
Key::I64(_) => ColumnType::I64,
|
||||
Key::U64(_) => ColumnType::U64,
|
||||
})
|
||||
.unwrap_or(ColumnType::U64);
|
||||
let column_and_types = get_all_ff_reader_or_empty(
|
||||
reader,
|
||||
field_name,
|
||||
Some(&allowed_column_types),
|
||||
fallback_type,
|
||||
)?;
|
||||
let missing_and_more_than_one_col = column_and_types.len() > 1 && missing.is_some();
|
||||
let text_on_non_text_col = column_and_types.len() == 1
|
||||
&& column_and_types[0].1.numerical_type().is_some()
|
||||
&& missing
|
||||
.as_ref()
|
||||
.map(|m| matches!(m, Key::Str(_)))
|
||||
.unwrap_or(false);
|
||||
|
||||
// Actually we could convert the text to a number and have the fast path, if it is
|
||||
// provided in Rfc3339 format. But this use case is probably common
|
||||
// enough to justify the effort.
|
||||
let text_on_date_col = column_and_types.len() == 1
|
||||
&& column_and_types[0].1 == ColumnType::DateTime
|
||||
&& missing
|
||||
.as_ref()
|
||||
.map(|m| matches!(m, Key::Str(_)))
|
||||
.unwrap_or(false);
|
||||
|
||||
let use_special_missing_agg =
|
||||
missing_and_more_than_one_col || text_on_non_text_col || text_on_date_col;
|
||||
if use_special_missing_agg {
|
||||
let column_and_types =
|
||||
get_all_ff_reader_or_empty(reader, field_name, None, fallback_type)?;
|
||||
|
||||
let accessors = column_and_types
|
||||
.iter()
|
||||
.map(|c_t| (c_t.0.clone(), c_t.1))
|
||||
.collect();
|
||||
add_agg_with_accessors(&agg, accessors, &mut res, Default::default())?;
|
||||
}
|
||||
|
||||
for (accessor, column_type) in column_and_types {
|
||||
let missing_value_term_agg = if use_special_missing_agg {
|
||||
None
|
||||
} else {
|
||||
missing.clone()
|
||||
};
|
||||
|
||||
let missing_value_for_accessor =
|
||||
if let Some(missing) = missing_value_term_agg.as_ref() {
|
||||
get_missing_val_as_u64_lenient(
|
||||
column_type,
|
||||
missing,
|
||||
agg.agg.get_fast_field_names()[0],
|
||||
)?
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let limits = limits.clone();
|
||||
let agg = AggregationWithAccessor {
|
||||
segment_ordinal,
|
||||
missing_value_for_accessor,
|
||||
accessor,
|
||||
accessors: Default::default(),
|
||||
value_accessors: Default::default(),
|
||||
field_type: column_type,
|
||||
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
|
||||
sub_aggregation,
|
||||
reader,
|
||||
segment_ordinal,
|
||||
&limits,
|
||||
)?,
|
||||
agg: agg.clone(),
|
||||
str_dict_column: str_dict_column.clone(),
|
||||
limits,
|
||||
column_block_accessor: Default::default(),
|
||||
};
|
||||
res.push(agg);
|
||||
}
|
||||
}
|
||||
Average(AverageAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| Max(MaxAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| Min(MinAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| Stats(StatsAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| ExtendedStats(ExtendedStatsAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| Sum(SumAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
}) => {
|
||||
let (accessor, column_type) =
|
||||
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
Count(CountAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
}) => {
|
||||
let allowed_column_types = [
|
||||
ColumnType::I64,
|
||||
ColumnType::U64,
|
||||
ColumnType::F64,
|
||||
ColumnType::Str,
|
||||
ColumnType::DateTime,
|
||||
ColumnType::Bool,
|
||||
ColumnType::IpAddr,
|
||||
// ColumnType::Bytes Unsupported
|
||||
];
|
||||
let (accessor, column_type) =
|
||||
get_ff_reader(reader, field_name, Some(&allowed_column_types))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
Percentiles(ref percentiles) => {
|
||||
let (accessor, column_type) = get_ff_reader(
|
||||
reader,
|
||||
percentiles.field_name(),
|
||||
Some(get_numeric_or_date_column_types()),
|
||||
)?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
TopHits(ref mut top_hits) => {
|
||||
top_hits.validate_and_resolve_field_names(reader.fast_fields().columnar())?;
|
||||
let accessors: Vec<(Column<u64>, ColumnType)> = top_hits
|
||||
.field_names()
|
||||
.iter()
|
||||
.map(|field| {
|
||||
get_ff_reader(reader, field, Some(get_numeric_or_date_column_types()))
|
||||
})
|
||||
.collect::<crate::Result<_>>()?;
|
||||
|
||||
let value_accessors = top_hits
|
||||
.value_field_names()
|
||||
.iter()
|
||||
.map(|field_name| {
|
||||
Ok((
|
||||
field_name.to_string(),
|
||||
get_dynamic_columns(reader, field_name)?,
|
||||
))
|
||||
})
|
||||
.collect::<crate::Result<_>>()?;
|
||||
|
||||
add_agg_with_accessors(&agg, accessors, &mut res, value_accessors)?;
|
||||
}
|
||||
};
|
||||
|
||||
Ok(res)
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the missing value as internal u64 representation
|
||||
///
|
||||
/// For terms we use u64::MAX as sentinel value
|
||||
/// For numerical data we convert the value into the representation
|
||||
/// we would get from the fast field, when we open it as u64_lenient_for_type.
|
||||
///
|
||||
/// That way we can use it the same way as if it would come from the fastfield.
|
||||
fn get_missing_val_as_u64_lenient(
|
||||
column_type: ColumnType,
|
||||
missing: &Key,
|
||||
field_name: &str,
|
||||
) -> crate::Result<Option<u64>> {
|
||||
let missing_val = match missing {
|
||||
Key::Str(_) if column_type == ColumnType::Str => Some(u64::MAX),
|
||||
// Allow fallback to number on text fields
|
||||
Key::F64(_) if column_type == ColumnType::Str => Some(u64::MAX),
|
||||
Key::U64(_) if column_type == ColumnType::Str => Some(u64::MAX),
|
||||
Key::I64(_) if column_type == ColumnType::Str => Some(u64::MAX),
|
||||
Key::F64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val, &column_type)
|
||||
}
|
||||
// NOTE: We may loose precision of the passed missing value by casting i64 and u64 to f64.
|
||||
Key::I64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val as f64, &column_type)
|
||||
}
|
||||
Key::U64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val as f64, &column_type)
|
||||
}
|
||||
_ => {
|
||||
return Err(crate::TantivyError::InvalidArgument(format!(
|
||||
"Missing value {missing:?} for field {field_name} is not supported for column \
|
||||
type {column_type:?}"
|
||||
)));
|
||||
}
|
||||
};
|
||||
Ok(missing_val)
|
||||
}
|
||||
|
||||
fn get_numeric_or_date_column_types() -> &'static [ColumnType] {
|
||||
&[
|
||||
ColumnType::F64,
|
||||
ColumnType::U64,
|
||||
ColumnType::I64,
|
||||
ColumnType::DateTime,
|
||||
]
|
||||
}
|
||||
|
||||
pub(crate) fn get_aggs_with_segment_accessor_and_validate(
|
||||
aggs: &Aggregations,
|
||||
reader: &SegmentReader,
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
limits: &AggregationLimitsGuard,
|
||||
) -> crate::Result<AggregationsWithAccessor> {
|
||||
let mut aggss = Vec::new();
|
||||
for (key, agg) in aggs.iter() {
|
||||
let aggs = AggregationWithAccessor::try_from_agg(
|
||||
agg,
|
||||
agg.sub_aggregation(),
|
||||
reader,
|
||||
segment_ordinal,
|
||||
limits.clone(),
|
||||
)?;
|
||||
for agg in aggs {
|
||||
aggss.push((key.to_string(), agg));
|
||||
}
|
||||
}
|
||||
Ok(AggregationsWithAccessor::from_data(
|
||||
VecWithNames::from_entries(aggss),
|
||||
))
|
||||
}
|
||||
|
||||
/// Get fast field reader or empty as default.
|
||||
fn get_ff_reader(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
allowed_column_types: Option<&[ColumnType]>,
|
||||
) -> crate::Result<(columnar::Column<u64>, ColumnType)> {
|
||||
let ff_fields = reader.fast_fields();
|
||||
let ff_field_with_type = ff_fields
|
||||
.u64_lenient_for_type(allowed_column_types, field_name)?
|
||||
.unwrap_or_else(|| {
|
||||
(
|
||||
Column::build_empty_column(reader.num_docs()),
|
||||
ColumnType::U64,
|
||||
)
|
||||
});
|
||||
Ok(ff_field_with_type)
|
||||
}
|
||||
|
||||
fn get_dynamic_columns(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
) -> crate::Result<Vec<columnar::DynamicColumn>> {
|
||||
let ff_fields = reader.fast_fields().dynamic_column_handles(field_name)?;
|
||||
let cols = ff_fields
|
||||
.iter()
|
||||
.map(|h| h.open())
|
||||
.collect::<io::Result<_>>()?;
|
||||
assert!(!ff_fields.is_empty(), "field {field_name} not found");
|
||||
Ok(cols)
|
||||
}
|
||||
|
||||
/// Get all fast field reader or empty as default.
|
||||
///
|
||||
/// Is guaranteed to return at least one column.
|
||||
fn get_all_ff_reader_or_empty(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
allowed_column_types: Option<&[ColumnType]>,
|
||||
fallback_type: ColumnType,
|
||||
) -> crate::Result<Vec<(columnar::Column<u64>, ColumnType)>> {
|
||||
let ff_fields = reader.fast_fields();
|
||||
let mut ff_field_with_type =
|
||||
ff_fields.u64_lenient_for_type_all(allowed_column_types, field_name)?;
|
||||
if ff_field_with_type.is_empty() {
|
||||
ff_field_with_type.push((Column::build_empty_column(reader.num_docs()), fallback_type));
|
||||
}
|
||||
Ok(ff_field_with_type)
|
||||
}
|
||||
@@ -16,7 +16,7 @@ use super::{AggregationError, Key};
|
||||
use crate::TantivyError;
|
||||
|
||||
#[derive(Clone, Default, Debug, PartialEq, Serialize, Deserialize)]
|
||||
/// The final aggregation result.
|
||||
/// The final aggegation result.
|
||||
pub struct AggregationResults(pub FxHashMap<String, AggregationResult>);
|
||||
|
||||
impl AggregationResults {
|
||||
@@ -156,8 +156,6 @@ pub enum BucketResult {
|
||||
/// The upper bound error for the doc count of each term.
|
||||
doc_count_error_upper_bound: Option<u64>,
|
||||
},
|
||||
/// This is the filter result - a single bucket with sub-aggregations
|
||||
Filter(FilterBucketResult),
|
||||
}
|
||||
|
||||
impl BucketResult {
|
||||
@@ -174,11 +172,6 @@ impl BucketResult {
|
||||
sum_other_doc_count: _,
|
||||
doc_count_error_upper_bound: _,
|
||||
} => buckets.iter().map(|bucket| bucket.get_bucket_count()).sum(),
|
||||
BucketResult::Filter(filter_result) => {
|
||||
// Filter doesn't add to bucket count - it's not a user-facing bucket
|
||||
// Only count sub-aggregation buckets
|
||||
filter_result.sub_aggregations.get_bucket_count()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -315,25 +308,3 @@ impl RangeBucketEntry {
|
||||
1 + self.sub_aggregation.get_bucket_count()
|
||||
}
|
||||
}
|
||||
|
||||
/// This is the filter bucket result, which contains the document count and sub-aggregations.
|
||||
///
|
||||
/// # JSON Format
|
||||
/// ```json
|
||||
/// {
|
||||
/// "electronics_only": {
|
||||
/// "doc_count": 2,
|
||||
/// "avg_price": {
|
||||
/// "value": 150.0
|
||||
/// }
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct FilterBucketResult {
|
||||
/// Number of documents in the filter bucket
|
||||
pub doc_count: u64,
|
||||
/// Sub-aggregation results
|
||||
#[serde(flatten)]
|
||||
pub sub_aggregations: AggregationResults,
|
||||
}
|
||||
|
||||
@@ -2,441 +2,16 @@ use serde_json::Value;
|
||||
|
||||
use crate::aggregation::agg_req::{Aggregation, Aggregations};
|
||||
use crate::aggregation::agg_result::AggregationResults;
|
||||
use crate::aggregation::buf_collector::DOC_BLOCK_SIZE;
|
||||
use crate::aggregation::collector::AggregationCollector;
|
||||
use crate::aggregation::intermediate_agg_result::IntermediateAggregationResults;
|
||||
use crate::aggregation::segment_agg_result::AggregationLimitsGuard;
|
||||
use crate::aggregation::tests::{get_test_index_2_segments, get_test_index_from_values_and_terms};
|
||||
use crate::aggregation::DistributedAggregationCollector;
|
||||
use crate::docset::COLLECT_BLOCK_BUFFER_LEN;
|
||||
use crate::query::{AllQuery, TermQuery};
|
||||
use crate::schema::{IndexRecordOption, Schema, FAST};
|
||||
use crate::{Index, IndexWriter, Term};
|
||||
|
||||
// The following tests ensure that each bucket aggregation type correctly functions as a
|
||||
// sub-aggregation of another bucket aggregation in two scenarios:
|
||||
// 1) The parent has more buckets than the child sub-aggregation
|
||||
// 2) The child sub-aggregation has more buckets than the parent
|
||||
//
|
||||
// These scenarios exercise the bucket id mapping and sub-aggregation routing logic.
|
||||
|
||||
#[test]
|
||||
fn test_terms_as_subagg_parent_more_vs_child_more() -> crate::Result<()> {
|
||||
let index = get_test_index_2_segments(false)?;
|
||||
|
||||
// Case A: parent has more buckets than child
|
||||
// Parent: range with 4 buckets
|
||||
// Child: terms on text -> 2 buckets
|
||||
let agg_parent_more: Aggregations = serde_json::from_value(json!({
|
||||
"parent_range": {
|
||||
"range": {
|
||||
"field": "score",
|
||||
"ranges": [
|
||||
{"to": 3.0},
|
||||
{"from": 3.0, "to": 7.0},
|
||||
{"from": 7.0, "to": 20.0},
|
||||
{"from": 20.0}
|
||||
]
|
||||
},
|
||||
"aggs": {
|
||||
"child_terms": {"terms": {"field": "text", "order": {"_key": "asc"}}}
|
||||
}
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = crate::aggregation::tests::exec_request(agg_parent_more, &index)?;
|
||||
// Exact expected structure and counts
|
||||
assert_eq!(
|
||||
res["parent_range"]["buckets"],
|
||||
json!([
|
||||
{
|
||||
"key": "*-3",
|
||||
"doc_count": 1,
|
||||
"to": 3.0,
|
||||
"child_terms": {
|
||||
"buckets": [
|
||||
{"doc_count": 1, "key": "cool"}
|
||||
],
|
||||
"sum_other_doc_count": 0
|
||||
}
|
||||
},
|
||||
{
|
||||
"key": "3-7",
|
||||
"doc_count": 3,
|
||||
"from": 3.0,
|
||||
"to": 7.0,
|
||||
"child_terms": {
|
||||
"buckets": [
|
||||
{"doc_count": 2, "key": "cool"},
|
||||
{"doc_count": 1, "key": "nohit"}
|
||||
],
|
||||
"sum_other_doc_count": 0
|
||||
}
|
||||
},
|
||||
{
|
||||
"key": "7-20",
|
||||
"doc_count": 3,
|
||||
"from": 7.0,
|
||||
"to": 20.0,
|
||||
"child_terms": {
|
||||
"buckets": [
|
||||
{"doc_count": 3, "key": "cool"}
|
||||
],
|
||||
"sum_other_doc_count": 0
|
||||
}
|
||||
},
|
||||
{
|
||||
"key": "20-*",
|
||||
"doc_count": 2,
|
||||
"from": 20.0,
|
||||
"child_terms": {
|
||||
"buckets": [
|
||||
{"doc_count": 1, "key": "cool"},
|
||||
{"doc_count": 1, "key": "nohit"}
|
||||
],
|
||||
"sum_other_doc_count": 0
|
||||
}
|
||||
}
|
||||
])
|
||||
);
|
||||
|
||||
// Case B: child has more buckets than parent
|
||||
// Parent: histogram on score with large interval -> 1 bucket
|
||||
// Child: terms on text -> 2 buckets (cool/nohit)
|
||||
let agg_child_more: Aggregations = serde_json::from_value(json!({
|
||||
"parent_hist": {
|
||||
"histogram": {"field": "score", "interval": 100.0},
|
||||
"aggs": {
|
||||
"child_terms": {"terms": {"field": "text", "order": {"_key": "asc"}}}
|
||||
}
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = crate::aggregation::tests::exec_request(agg_child_more, &index)?;
|
||||
assert_eq!(
|
||||
res["parent_hist"],
|
||||
json!({
|
||||
"buckets": [
|
||||
{
|
||||
"key": 0.0,
|
||||
"doc_count": 9,
|
||||
"child_terms": {
|
||||
"buckets": [
|
||||
{"doc_count": 7, "key": "cool"},
|
||||
{"doc_count": 2, "key": "nohit"}
|
||||
],
|
||||
"sum_other_doc_count": 0
|
||||
}
|
||||
}
|
||||
]
|
||||
})
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_as_subagg_parent_more_vs_child_more() -> crate::Result<()> {
|
||||
let index = get_test_index_2_segments(false)?;
|
||||
|
||||
// Case A: parent has more buckets than child
|
||||
// Parent: range with 5 buckets
|
||||
// Child: coarse range with 3 buckets
|
||||
let agg_parent_more: Aggregations = serde_json::from_value(json!({
|
||||
"parent_range": {
|
||||
"range": {
|
||||
"field": "score",
|
||||
"ranges": [
|
||||
{"to": 3.0},
|
||||
{"from": 3.0, "to": 7.0},
|
||||
{"from": 7.0, "to": 11.0},
|
||||
{"from": 11.0, "to": 20.0},
|
||||
{"from": 20.0}
|
||||
]
|
||||
},
|
||||
"aggs": {
|
||||
"child_range": {
|
||||
"range": {
|
||||
"field": "score",
|
||||
"ranges": [
|
||||
{"to": 3.0},
|
||||
{"from": 3.0, "to": 20.0}
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
let res = crate::aggregation::tests::exec_request(agg_parent_more, &index)?;
|
||||
assert_eq!(
|
||||
res["parent_range"]["buckets"],
|
||||
json!([
|
||||
{"key": "*-3", "doc_count": 1, "to": 3.0,
|
||||
"child_range": {"buckets": [
|
||||
{"key": "*-3", "doc_count": 1, "to": 3.0},
|
||||
{"key": "3-20", "doc_count": 0, "from": 3.0, "to": 20.0},
|
||||
{"key": "20-*", "doc_count": 0, "from": 20.0}
|
||||
]}
|
||||
},
|
||||
{"key": "3-7", "doc_count": 3, "from": 3.0, "to": 7.0,
|
||||
"child_range": {"buckets": [
|
||||
{"key": "*-3", "doc_count": 0, "to": 3.0},
|
||||
{"key": "3-20", "doc_count": 3, "from": 3.0, "to": 20.0},
|
||||
{"key": "20-*", "doc_count": 0, "from": 20.0}
|
||||
]}
|
||||
},
|
||||
{"key": "7-11", "doc_count": 1, "from": 7.0, "to": 11.0,
|
||||
"child_range": {"buckets": [
|
||||
{"key": "*-3", "doc_count": 0, "to": 3.0},
|
||||
{"key": "3-20", "doc_count": 1, "from": 3.0, "to": 20.0},
|
||||
{"key": "20-*", "doc_count": 0, "from": 20.0}
|
||||
]}
|
||||
},
|
||||
{"key": "11-20", "doc_count": 2, "from": 11.0, "to": 20.0,
|
||||
"child_range": {"buckets": [
|
||||
{"key": "*-3", "doc_count": 0, "to": 3.0},
|
||||
{"key": "3-20", "doc_count": 2, "from": 3.0, "to": 20.0},
|
||||
{"key": "20-*", "doc_count": 0, "from": 20.0}
|
||||
]}
|
||||
},
|
||||
{"key": "20-*", "doc_count": 2, "from": 20.0,
|
||||
"child_range": {"buckets": [
|
||||
{"key": "*-3", "doc_count": 0, "to": 3.0},
|
||||
{"key": "3-20", "doc_count": 0, "from": 3.0, "to": 20.0},
|
||||
{"key": "20-*", "doc_count": 2, "from": 20.0}
|
||||
]}
|
||||
}
|
||||
])
|
||||
);
|
||||
|
||||
// Case B: child has more buckets than parent
|
||||
// Parent: terms on text (2 buckets)
|
||||
// Child: range with 4 buckets
|
||||
let agg_child_more: Aggregations = serde_json::from_value(json!({
|
||||
"parent_terms": {
|
||||
"terms": {"field": "text"},
|
||||
"aggs": {
|
||||
"child_range": {
|
||||
"range": {
|
||||
"field": "score",
|
||||
"ranges": [
|
||||
{"to": 3.0},
|
||||
{"from": 3.0, "to": 7.0},
|
||||
{"from": 7.0, "to": 20.0}
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
let res = crate::aggregation::tests::exec_request(agg_child_more, &index)?;
|
||||
|
||||
assert_eq!(
|
||||
res["parent_terms"],
|
||||
json!({
|
||||
"buckets": [
|
||||
{
|
||||
"key": "cool",
|
||||
"doc_count": 7,
|
||||
"child_range": {
|
||||
"buckets": [
|
||||
{"key": "*-3", "doc_count": 1, "to": 3.0},
|
||||
{"key": "3-7", "doc_count": 2, "from": 3.0, "to": 7.0},
|
||||
{"key": "7-20", "doc_count": 3, "from": 7.0, "to": 20.0},
|
||||
{"key": "20-*", "doc_count": 1, "from": 20.0}
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"key": "nohit",
|
||||
"doc_count": 2,
|
||||
"child_range": {
|
||||
"buckets": [
|
||||
{"key": "*-3", "doc_count": 0, "to": 3.0},
|
||||
{"key": "3-7", "doc_count": 1, "from": 3.0, "to": 7.0},
|
||||
{"key": "7-20", "doc_count": 0, "from": 7.0, "to": 20.0},
|
||||
{"key": "20-*", "doc_count": 1, "from": 20.0}
|
||||
]
|
||||
}
|
||||
}
|
||||
],
|
||||
"doc_count_error_upper_bound": 0,
|
||||
"sum_other_doc_count": 0
|
||||
})
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_histogram_as_subagg_parent_more_vs_child_more() -> crate::Result<()> {
|
||||
let index = get_test_index_2_segments(false)?;
|
||||
|
||||
// Case A: parent has more buckets than child
|
||||
// Parent: range with several ranges
|
||||
// Child: histogram with large interval (single bucket per parent)
|
||||
let agg_parent_more: Aggregations = serde_json::from_value(json!({
|
||||
"parent_range": {
|
||||
"range": {
|
||||
"field": "score",
|
||||
"ranges": [
|
||||
{"to": 3.0},
|
||||
{"from": 3.0, "to": 7.0},
|
||||
{"from": 7.0, "to": 11.0},
|
||||
{"from": 11.0, "to": 20.0},
|
||||
{"from": 20.0}
|
||||
]
|
||||
},
|
||||
"aggs": {
|
||||
"child_hist": {"histogram": {"field": "score", "interval": 100.0}}
|
||||
}
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
let res = crate::aggregation::tests::exec_request(agg_parent_more, &index)?;
|
||||
assert_eq!(
|
||||
res["parent_range"]["buckets"],
|
||||
json!([
|
||||
{"key": "*-3", "doc_count": 1, "to": 3.0,
|
||||
"child_hist": {"buckets": [ {"key": 0.0, "doc_count": 1} ]}
|
||||
},
|
||||
{"key": "3-7", "doc_count": 3, "from": 3.0, "to": 7.0,
|
||||
"child_hist": {"buckets": [ {"key": 0.0, "doc_count": 3} ]}
|
||||
},
|
||||
{"key": "7-11", "doc_count": 1, "from": 7.0, "to": 11.0,
|
||||
"child_hist": {"buckets": [ {"key": 0.0, "doc_count": 1} ]}
|
||||
},
|
||||
{"key": "11-20", "doc_count": 2, "from": 11.0, "to": 20.0,
|
||||
"child_hist": {"buckets": [ {"key": 0.0, "doc_count": 2} ]}
|
||||
},
|
||||
{"key": "20-*", "doc_count": 2, "from": 20.0,
|
||||
"child_hist": {"buckets": [ {"key": 0.0, "doc_count": 2} ]}
|
||||
}
|
||||
])
|
||||
);
|
||||
|
||||
// Case B: child has more buckets than parent
|
||||
// Parent: terms on text -> 2 buckets
|
||||
// Child: histogram with small interval -> multiple buckets including empties
|
||||
let agg_child_more: Aggregations = serde_json::from_value(json!({
|
||||
"parent_terms": {
|
||||
"terms": {"field": "text"},
|
||||
"aggs": {
|
||||
"child_hist": {"histogram": {"field": "score", "interval": 10.0}}
|
||||
}
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
let res = crate::aggregation::tests::exec_request(agg_child_more, &index)?;
|
||||
assert_eq!(
|
||||
res["parent_terms"],
|
||||
json!({
|
||||
"buckets": [
|
||||
{
|
||||
"key": "cool",
|
||||
"doc_count": 7,
|
||||
"child_hist": {
|
||||
"buckets": [
|
||||
{"key": 0.0, "doc_count": 4},
|
||||
{"key": 10.0, "doc_count": 2},
|
||||
{"key": 20.0, "doc_count": 0},
|
||||
{"key": 30.0, "doc_count": 0},
|
||||
{"key": 40.0, "doc_count": 1}
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"key": "nohit",
|
||||
"doc_count": 2,
|
||||
"child_hist": {
|
||||
"buckets": [
|
||||
{"key": 0.0, "doc_count": 1},
|
||||
{"key": 10.0, "doc_count": 0},
|
||||
{"key": 20.0, "doc_count": 0},
|
||||
{"key": 30.0, "doc_count": 0},
|
||||
{"key": 40.0, "doc_count": 1}
|
||||
]
|
||||
}
|
||||
}
|
||||
],
|
||||
"doc_count_error_upper_bound": 0,
|
||||
"sum_other_doc_count": 0
|
||||
})
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_date_histogram_as_subagg_parent_more_vs_child_more() -> crate::Result<()> {
|
||||
let index = get_test_index_2_segments(false)?;
|
||||
|
||||
// Case A: parent has more buckets than child
|
||||
// Parent: range with several buckets
|
||||
// Child: date_histogram with 30d -> single bucket per parent
|
||||
let agg_parent_more: Aggregations = serde_json::from_value(json!({
|
||||
"parent_range": {
|
||||
"range": {
|
||||
"field": "score",
|
||||
"ranges": [
|
||||
{"to": 3.0},
|
||||
{"from": 3.0, "to": 7.0},
|
||||
{"from": 7.0, "to": 11.0},
|
||||
{"from": 11.0, "to": 20.0},
|
||||
{"from": 20.0}
|
||||
]
|
||||
},
|
||||
"aggs": {
|
||||
"child_date_hist": {"date_histogram": {"field": "date", "fixed_interval": "30d"}}
|
||||
}
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
let res = crate::aggregation::tests::exec_request(agg_parent_more, &index)?;
|
||||
let buckets = res["parent_range"]["buckets"].as_array().unwrap();
|
||||
// Verify each parent bucket has exactly one child date bucket with matching doc_count
|
||||
for bucket in buckets {
|
||||
let parent_count = bucket["doc_count"].as_u64().unwrap();
|
||||
let child_buckets = bucket["child_date_hist"]["buckets"].as_array().unwrap();
|
||||
assert_eq!(child_buckets.len(), 1);
|
||||
assert_eq!(child_buckets[0]["doc_count"], parent_count);
|
||||
}
|
||||
|
||||
// Case B: child has more buckets than parent
|
||||
// Parent: terms on text (2 buckets)
|
||||
// Child: date_histogram with 1d -> multiple buckets
|
||||
let agg_child_more: Aggregations = serde_json::from_value(json!({
|
||||
"parent_terms": {
|
||||
"terms": {"field": "text"},
|
||||
"aggs": {
|
||||
"child_date_hist": {"date_histogram": {"field": "date", "fixed_interval": "1d"}}
|
||||
}
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
let res = crate::aggregation::tests::exec_request(agg_child_more, &index)?;
|
||||
let buckets = res["parent_terms"]["buckets"].as_array().unwrap();
|
||||
|
||||
// cool bucket
|
||||
assert_eq!(buckets[0]["key"], "cool");
|
||||
let cool_buckets = buckets[0]["child_date_hist"]["buckets"].as_array().unwrap();
|
||||
assert_eq!(cool_buckets.len(), 3);
|
||||
assert_eq!(cool_buckets[0]["doc_count"], 1); // day 0
|
||||
assert_eq!(cool_buckets[1]["doc_count"], 4); // day 1
|
||||
assert_eq!(cool_buckets[2]["doc_count"], 2); // day 2
|
||||
|
||||
// nohit bucket
|
||||
assert_eq!(buckets[1]["key"], "nohit");
|
||||
let nohit_buckets = buckets[1]["child_date_hist"]["buckets"].as_array().unwrap();
|
||||
assert_eq!(nohit_buckets.len(), 2);
|
||||
assert_eq!(nohit_buckets[0]["doc_count"], 1); // day 1
|
||||
assert_eq!(nohit_buckets[1]["doc_count"], 1); // day 2
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn get_avg_req(field_name: &str) -> Aggregation {
|
||||
serde_json::from_value(json!({
|
||||
"avg": {
|
||||
@@ -451,10 +26,6 @@ fn get_collector(agg_req: Aggregations) -> AggregationCollector {
|
||||
}
|
||||
|
||||
// *** EVERY BUCKET-TYPE SHOULD BE TESTED HERE ***
|
||||
// Note: The flushng part of these tests are outdated, since the buffering change after converting
|
||||
// the collection into one collector per request instead of per bucket.
|
||||
//
|
||||
// However they are useful as they test a complex aggregation requests.
|
||||
fn test_aggregation_flushing(
|
||||
merge_segments: bool,
|
||||
use_distributed_collector: bool,
|
||||
@@ -467,9 +38,8 @@ fn test_aggregation_flushing(
|
||||
|
||||
let reader = index.reader()?;
|
||||
|
||||
assert_eq!(COLLECT_BLOCK_BUFFER_LEN, 64);
|
||||
// In the tree we cache documents of COLLECT_BLOCK_BUFFER_LEN before passing them down as one
|
||||
// block.
|
||||
assert_eq!(DOC_BLOCK_SIZE, 64);
|
||||
// In the tree we cache Documents of DOC_BLOCK_SIZE, before passing them down as one block.
|
||||
//
|
||||
// Build a request so that on the first level we have one full cache, which is then flushed.
|
||||
// The same cache should have some residue docs at the end, which are flushed (Range 0-70)
|
||||
@@ -558,8 +128,10 @@ fn test_aggregation_flushing(
|
||||
.unwrap();
|
||||
|
||||
let agg_res: AggregationResults = if use_distributed_collector {
|
||||
let collector =
|
||||
DistributedAggregationCollector::from_aggs(agg_req.clone(), Default::default());
|
||||
let collector = DistributedAggregationCollector::from_aggs(
|
||||
agg_req.clone(),
|
||||
AggregationLimitsGuard::default(),
|
||||
);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let intermediate_agg_result = searcher.search(&AllQuery, &collector).unwrap();
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,49 +1,25 @@
|
||||
use std::cmp::Ordering;
|
||||
|
||||
use columnar::{Column, ColumnType};
|
||||
use rustc_hash::FxHashMap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use tantivy_bitpacker::minmax;
|
||||
|
||||
use crate::aggregation::agg_data::{
|
||||
build_segment_agg_collectors, AggRefNode, AggregationsSegmentCtx,
|
||||
};
|
||||
use crate::aggregation::agg_limits::MemoryConsumption;
|
||||
use crate::aggregation::agg_req::Aggregations;
|
||||
use crate::aggregation::agg_req_with_accessor::{
|
||||
AggregationWithAccessor, AggregationsWithAccessor,
|
||||
};
|
||||
use crate::aggregation::agg_result::BucketEntry;
|
||||
use crate::aggregation::cached_sub_aggs::{CachedSubAggs, HighCardCachedSubAggs};
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateBucketResult,
|
||||
IntermediateHistogramBucketEntry,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::{BucketIdProvider, SegmentAggregationCollector};
|
||||
use crate::aggregation::segment_agg_result::{
|
||||
build_segment_agg_collector, SegmentAggregationCollector,
|
||||
};
|
||||
use crate::aggregation::*;
|
||||
use crate::TantivyError;
|
||||
|
||||
/// Contains all information required by the SegmentHistogramCollector to perform the
|
||||
/// histogram or date_histogram aggregation on a segment.
|
||||
pub struct HistogramAggReqData {
|
||||
/// The column accessor to access the fast field values.
|
||||
pub accessor: Column<u64>,
|
||||
/// The field type of the fast field.
|
||||
pub field_type: ColumnType,
|
||||
/// The name of the aggregation.
|
||||
pub name: String,
|
||||
/// The histogram aggregation request.
|
||||
pub req: HistogramAggregation,
|
||||
/// True if this is a date_histogram aggregation.
|
||||
pub is_date_histogram: bool,
|
||||
/// The bounds to limit the buckets to.
|
||||
pub bounds: HistogramBounds,
|
||||
/// The offset used to calculate the bucket position.
|
||||
pub offset: f64,
|
||||
}
|
||||
impl HistogramAggReqData {
|
||||
/// Estimate the memory consumption of this struct in bytes.
|
||||
pub fn get_memory_consumption(&self) -> usize {
|
||||
std::mem::size_of::<Self>()
|
||||
}
|
||||
}
|
||||
|
||||
/// Histogram is a bucket aggregation, where buckets are created dynamically for given `interval`.
|
||||
/// Each document value is rounded down to its bucket.
|
||||
///
|
||||
@@ -252,24 +228,18 @@ impl HistogramBounds {
|
||||
pub(crate) struct SegmentHistogramBucketEntry {
|
||||
pub key: f64,
|
||||
pub doc_count: u64,
|
||||
pub bucket_id: BucketId,
|
||||
}
|
||||
|
||||
impl SegmentHistogramBucketEntry {
|
||||
pub(crate) fn into_intermediate_bucket_entry(
|
||||
self,
|
||||
sub_aggregation: &mut Option<HighCardCachedSubAggs>,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
sub_aggregation: Option<Box<dyn SegmentAggregationCollector>>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
) -> crate::Result<IntermediateHistogramBucketEntry> {
|
||||
let mut sub_aggregation_res = IntermediateAggregationResults::default();
|
||||
if let Some(sub_aggregation) = sub_aggregation {
|
||||
sub_aggregation
|
||||
.get_sub_agg_collector()
|
||||
.add_intermediate_aggregation_result(
|
||||
agg_data,
|
||||
&mut sub_aggregation_res,
|
||||
self.bucket_id,
|
||||
)?;
|
||||
.add_intermediate_aggregation_result(agg_with_accessor, &mut sub_aggregation_res)?;
|
||||
}
|
||||
Ok(IntermediateHistogramBucketEntry {
|
||||
key: self.key,
|
||||
@@ -279,38 +249,31 @@ impl SegmentHistogramBucketEntry {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Default)]
|
||||
struct HistogramBuckets {
|
||||
pub buckets: FxHashMap<i64, SegmentHistogramBucketEntry>,
|
||||
}
|
||||
|
||||
/// The collector puts values from the fast field into the correct buckets and does a conversion to
|
||||
/// the correct datatype.
|
||||
#[derive(Debug)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SegmentHistogramCollector {
|
||||
/// The buckets containing the aggregation data.
|
||||
/// One Histogram bucket per parent bucket id.
|
||||
parent_buckets: Vec<HistogramBuckets>,
|
||||
sub_agg: Option<HighCardCachedSubAggs>,
|
||||
buckets: FxHashMap<i64, SegmentHistogramBucketEntry>,
|
||||
sub_aggregations: FxHashMap<i64, Box<dyn SegmentAggregationCollector>>,
|
||||
sub_aggregation_blueprint: Option<Box<dyn SegmentAggregationCollector>>,
|
||||
column_type: ColumnType,
|
||||
interval: f64,
|
||||
offset: f64,
|
||||
bounds: HistogramBounds,
|
||||
accessor_idx: usize,
|
||||
bucket_id_provider: BucketIdProvider,
|
||||
}
|
||||
|
||||
impl SegmentAggregationCollector for SegmentHistogramCollector {
|
||||
fn add_intermediate_aggregation_result(
|
||||
&mut self,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
parent_bucket_id: BucketId,
|
||||
) -> crate::Result<()> {
|
||||
let name = agg_data
|
||||
.get_histogram_req_data(self.accessor_idx)
|
||||
.name
|
||||
.clone();
|
||||
// TODO: avoid prepare_max_bucket here and handle empty buckets.
|
||||
self.prepare_max_bucket(parent_bucket_id, agg_data)?;
|
||||
let histogram = std::mem::take(&mut self.parent_buckets[parent_bucket_id as usize]);
|
||||
let bucket = self.add_intermediate_bucket_result(agg_data, histogram)?;
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let agg_with_accessor = &agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
|
||||
let bucket = self.into_intermediate_bucket_result(agg_with_accessor)?;
|
||||
results.push(name, IntermediateAggregationResult::Bucket(bucket))?;
|
||||
|
||||
Ok(())
|
||||
@@ -319,77 +282,72 @@ impl SegmentAggregationCollector for SegmentHistogramCollector {
|
||||
#[inline]
|
||||
fn collect(
|
||||
&mut self,
|
||||
parent_bucket_id: BucketId,
|
||||
docs: &[crate::DocId],
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
let req = agg_data.take_histogram_req_data(self.accessor_idx);
|
||||
self.collect_block(&[doc], agg_with_accessor)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
let bucket_agg_accessor = &mut agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
|
||||
let mem_pre = self.get_memory_consumption();
|
||||
let buckets = &mut self.parent_buckets[parent_bucket_id as usize].buckets;
|
||||
|
||||
let bounds = req.bounds;
|
||||
let interval = req.req.interval;
|
||||
let offset = req.offset;
|
||||
let get_bucket_pos = |val| get_bucket_pos_f64(val, interval, offset) as i64;
|
||||
let bounds = self.bounds;
|
||||
let interval = self.interval;
|
||||
let offset = self.offset;
|
||||
let get_bucket_pos = |val| (get_bucket_pos_f64(val, interval, offset) as i64);
|
||||
|
||||
agg_data
|
||||
bucket_agg_accessor
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &req.accessor);
|
||||
for (doc, val) in agg_data
|
||||
.fetch_block(docs, &bucket_agg_accessor.accessor);
|
||||
|
||||
for (doc, val) in bucket_agg_accessor
|
||||
.column_block_accessor
|
||||
.iter_docid_vals(docs, &req.accessor)
|
||||
.iter_docid_vals(docs, &bucket_agg_accessor.accessor)
|
||||
{
|
||||
let val = f64_from_fastfield_u64(val, req.field_type);
|
||||
let val = self.f64_from_fastfield_u64(val);
|
||||
|
||||
let bucket_pos = get_bucket_pos(val);
|
||||
|
||||
if bounds.contains(val) {
|
||||
let bucket = buckets.entry(bucket_pos).or_insert_with(|| {
|
||||
let bucket = self.buckets.entry(bucket_pos).or_insert_with(|| {
|
||||
let key = get_bucket_key_from_pos(bucket_pos as f64, interval, offset);
|
||||
SegmentHistogramBucketEntry {
|
||||
key,
|
||||
doc_count: 0,
|
||||
bucket_id: self.bucket_id_provider.next_bucket_id(),
|
||||
}
|
||||
SegmentHistogramBucketEntry { key, doc_count: 0 }
|
||||
});
|
||||
bucket.doc_count += 1;
|
||||
if let Some(sub_agg) = &mut self.sub_agg {
|
||||
sub_agg.push(bucket.bucket_id, doc);
|
||||
if let Some(sub_aggregation_blueprint) = self.sub_aggregation_blueprint.as_mut() {
|
||||
self.sub_aggregations
|
||||
.entry(bucket_pos)
|
||||
.or_insert_with(|| sub_aggregation_blueprint.clone())
|
||||
.collect(doc, &mut bucket_agg_accessor.sub_aggregation)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
agg_data.put_back_histogram_req_data(self.accessor_idx, req);
|
||||
|
||||
let mem_delta = self.get_memory_consumption() - mem_pre;
|
||||
if mem_delta > 0 {
|
||||
agg_data
|
||||
.context
|
||||
bucket_agg_accessor
|
||||
.limits
|
||||
.add_memory_consumed(mem_delta as u64)?;
|
||||
}
|
||||
|
||||
if let Some(sub_agg) = &mut self.sub_agg {
|
||||
sub_agg.check_flush_local(agg_data)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn flush(&mut self, agg_data: &mut AggregationsSegmentCtx) -> crate::Result<()> {
|
||||
if let Some(sub_aggregation) = &mut self.sub_agg {
|
||||
sub_aggregation.flush(agg_data)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
fn flush(&mut self, agg_with_accessor: &mut AggregationsWithAccessor) -> crate::Result<()> {
|
||||
let sub_aggregation_accessor =
|
||||
&mut agg_with_accessor.aggs.values[self.accessor_idx].sub_aggregation;
|
||||
|
||||
fn prepare_max_bucket(
|
||||
&mut self,
|
||||
max_bucket: BucketId,
|
||||
_agg_data: &AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
while self.parent_buckets.len() <= max_bucket as usize {
|
||||
self.parent_buckets.push(HistogramBuckets {
|
||||
buckets: FxHashMap::default(),
|
||||
});
|
||||
for sub_aggregation in self.sub_aggregations.values_mut() {
|
||||
sub_aggregation.flush(sub_aggregation_accessor)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -397,62 +355,72 @@ impl SegmentAggregationCollector for SegmentHistogramCollector {
|
||||
impl SegmentHistogramCollector {
|
||||
fn get_memory_consumption(&self) -> usize {
|
||||
let self_mem = std::mem::size_of::<Self>();
|
||||
let buckets_mem = self.parent_buckets.len() * std::mem::size_of::<HistogramBuckets>();
|
||||
self_mem + buckets_mem
|
||||
let sub_aggs_mem = self.sub_aggregations.memory_consumption();
|
||||
let buckets_mem = self.buckets.memory_consumption();
|
||||
self_mem + sub_aggs_mem + buckets_mem
|
||||
}
|
||||
/// Converts the collector result into a intermediate bucket result.
|
||||
fn add_intermediate_bucket_result(
|
||||
&mut self,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
histogram: HistogramBuckets,
|
||||
pub fn into_intermediate_bucket_result(
|
||||
self,
|
||||
agg_with_accessor: &AggregationWithAccessor,
|
||||
) -> crate::Result<IntermediateBucketResult> {
|
||||
let mut buckets = Vec::with_capacity(histogram.buckets.len());
|
||||
let mut buckets = Vec::with_capacity(self.buckets.len());
|
||||
|
||||
for bucket in histogram.buckets.into_values() {
|
||||
let bucket_res = bucket.into_intermediate_bucket_entry(&mut self.sub_agg, agg_data);
|
||||
for (bucket_pos, bucket) in self.buckets {
|
||||
let bucket_res = bucket.into_intermediate_bucket_entry(
|
||||
self.sub_aggregations.get(&bucket_pos).cloned(),
|
||||
&agg_with_accessor.sub_aggregation,
|
||||
);
|
||||
|
||||
buckets.push(bucket_res?);
|
||||
}
|
||||
buckets.sort_unstable_by(|b1, b2| b1.key.total_cmp(&b2.key));
|
||||
|
||||
let is_date_agg = agg_data
|
||||
.get_histogram_req_data(self.accessor_idx)
|
||||
.field_type
|
||||
== ColumnType::DateTime;
|
||||
Ok(IntermediateBucketResult::Histogram {
|
||||
buckets,
|
||||
is_date_agg,
|
||||
is_date_agg: self.column_type == ColumnType::DateTime,
|
||||
})
|
||||
}
|
||||
|
||||
pub(crate) fn from_req_and_validate(
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
node: &AggRefNode,
|
||||
mut req: HistogramAggregation,
|
||||
sub_aggregation: &mut AggregationsWithAccessor,
|
||||
field_type: ColumnType,
|
||||
accessor_idx: usize,
|
||||
) -> crate::Result<Self> {
|
||||
let sub_agg = if !node.children.is_empty() {
|
||||
Some(build_segment_agg_collectors(agg_data, &node.children)?)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
let req_data = agg_data.get_histogram_req_data_mut(node.idx_in_req_data);
|
||||
req_data.req.validate()?;
|
||||
if req_data.field_type == ColumnType::DateTime && !req_data.is_date_histogram {
|
||||
req_data.req.normalize_date_time();
|
||||
req.validate()?;
|
||||
if field_type == ColumnType::DateTime {
|
||||
req.normalize_date_time();
|
||||
}
|
||||
req_data.bounds = req_data.req.hard_bounds.unwrap_or(HistogramBounds {
|
||||
|
||||
let sub_aggregation_blueprint = if sub_aggregation.is_empty() {
|
||||
None
|
||||
} else {
|
||||
let sub_aggregation = build_segment_agg_collector(sub_aggregation)?;
|
||||
Some(sub_aggregation)
|
||||
};
|
||||
|
||||
let bounds = req.hard_bounds.unwrap_or(HistogramBounds {
|
||||
min: f64::MIN,
|
||||
max: f64::MAX,
|
||||
});
|
||||
req_data.offset = req_data.req.offset.unwrap_or(0.0);
|
||||
let sub_agg = sub_agg.map(CachedSubAggs::new);
|
||||
|
||||
Ok(Self {
|
||||
parent_buckets: Default::default(),
|
||||
sub_agg,
|
||||
accessor_idx: node.idx_in_req_data,
|
||||
bucket_id_provider: BucketIdProvider::default(),
|
||||
buckets: Default::default(),
|
||||
column_type: field_type,
|
||||
interval: req.interval,
|
||||
offset: req.offset.unwrap_or(0.0),
|
||||
bounds,
|
||||
sub_aggregations: Default::default(),
|
||||
sub_aggregation_blueprint,
|
||||
accessor_idx,
|
||||
})
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn f64_from_fastfield_u64(&self, val: u64) -> f64 {
|
||||
f64_from_fastfield_u64(val, &self.column_type)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
||||
@@ -22,7 +22,6 @@
|
||||
//! - [Range](RangeAggregation)
|
||||
//! - [Terms](TermsAggregation)
|
||||
|
||||
mod filter;
|
||||
mod histogram;
|
||||
mod range;
|
||||
mod term_agg;
|
||||
@@ -31,7 +30,6 @@ mod term_missing_agg;
|
||||
use std::collections::HashMap;
|
||||
use std::fmt;
|
||||
|
||||
pub use filter::*;
|
||||
pub use histogram::*;
|
||||
pub use range::*;
|
||||
use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
|
||||
|
||||
@@ -1,47 +1,20 @@
|
||||
use std::fmt::Debug;
|
||||
use std::ops::Range;
|
||||
|
||||
use columnar::{Column, ColumnType};
|
||||
use rustc_hash::FxHashMap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::aggregation::agg_data::{
|
||||
build_segment_agg_collectors, AggRefNode, AggregationsSegmentCtx,
|
||||
};
|
||||
use crate::aggregation::agg_limits::AggregationLimitsGuard;
|
||||
use crate::aggregation::cached_sub_aggs::{
|
||||
CachedSubAggs, HighCardSubAggCache, LowCardCachedSubAggs, LowCardSubAggCache, SubAggCache,
|
||||
};
|
||||
use crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateBucketResult,
|
||||
IntermediateRangeBucketEntry, IntermediateRangeBucketResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::{BucketIdProvider, SegmentAggregationCollector};
|
||||
use crate::aggregation::segment_agg_result::{
|
||||
build_segment_agg_collector, SegmentAggregationCollector,
|
||||
};
|
||||
use crate::aggregation::*;
|
||||
use crate::TantivyError;
|
||||
|
||||
/// Contains all information required by the SegmentRangeCollector to perform the
|
||||
/// range aggregation on a segment.
|
||||
pub struct RangeAggReqData {
|
||||
/// The column accessor to access the fast field values.
|
||||
pub accessor: Column<u64>,
|
||||
/// The type of the fast field.
|
||||
pub field_type: ColumnType,
|
||||
/// The range aggregation request.
|
||||
pub req: RangeAggregation,
|
||||
/// The name of the aggregation.
|
||||
pub name: String,
|
||||
/// Whether this is a top-level aggregation.
|
||||
pub is_top_level: bool,
|
||||
}
|
||||
|
||||
impl RangeAggReqData {
|
||||
/// Estimate the memory consumption of this struct in bytes.
|
||||
pub fn get_memory_consumption(&self) -> usize {
|
||||
std::mem::size_of::<Self>()
|
||||
}
|
||||
}
|
||||
|
||||
/// Provide user-defined buckets to aggregate on.
|
||||
///
|
||||
/// Two special buckets will automatically be created to cover the whole range of values.
|
||||
@@ -155,47 +128,19 @@ pub(crate) struct SegmentRangeAndBucketEntry {
|
||||
|
||||
/// The collector puts values from the fast field into the correct buckets and does a conversion to
|
||||
/// the correct datatype.
|
||||
pub struct SegmentRangeCollector<C: SubAggCache> {
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SegmentRangeCollector {
|
||||
/// The buckets containing the aggregation data.
|
||||
/// One for each ParentBucketId
|
||||
parent_buckets: Vec<Vec<SegmentRangeAndBucketEntry>>,
|
||||
buckets: Vec<SegmentRangeAndBucketEntry>,
|
||||
column_type: ColumnType,
|
||||
pub(crate) accessor_idx: usize,
|
||||
sub_agg: Option<CachedSubAggs<C>>,
|
||||
/// Here things get a bit weird. We need to assign unique bucket ids across all
|
||||
/// parent buckets. So we keep track of the next available bucket id here.
|
||||
/// This allows a kind of flattening of the bucket ids across all parent buckets.
|
||||
/// E.g. in nested aggregations:
|
||||
/// Term Agg -> Range aggregation -> Stats aggregation
|
||||
/// E.g. the Term Agg creates 3 buckets ["INFO", "ERROR", "WARN"], each of these has a Range
|
||||
/// aggregation with 4 buckets. The Range aggregation will create buckets with ids:
|
||||
/// - INFO: 0,1,2,3
|
||||
/// - ERROR: 4,5,6,7
|
||||
/// - WARN: 8,9,10,11
|
||||
///
|
||||
/// This allows the Stats aggregation to have unique bucket ids to refer to.
|
||||
bucket_id_provider: BucketIdProvider,
|
||||
limits: AggregationLimitsGuard,
|
||||
}
|
||||
|
||||
impl<C: SubAggCache> Debug for SegmentRangeCollector<C> {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("SegmentRangeCollector")
|
||||
.field("parent_buckets_len", &self.parent_buckets.len())
|
||||
.field("column_type", &self.column_type)
|
||||
.field("accessor_idx", &self.accessor_idx)
|
||||
.field("has_sub_agg", &self.sub_agg.is_some())
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
/// TODO: Bad naming, there's also SegmentRangeAndBucketEntry
|
||||
#[derive(Clone)]
|
||||
pub(crate) struct SegmentRangeBucketEntry {
|
||||
pub key: Key,
|
||||
pub doc_count: u64,
|
||||
// pub sub_aggregation: Option<Box<dyn SegmentAggregationCollector>>,
|
||||
pub bucket_id: BucketId,
|
||||
pub sub_aggregation: Option<Box<dyn SegmentAggregationCollector>>,
|
||||
/// The from range of the bucket. Equals `f64::MIN` when `None`.
|
||||
pub from: Option<f64>,
|
||||
/// The to range of the bucket. Equals `f64::MAX` when `None`. Open interval, `to` is not
|
||||
@@ -216,50 +161,46 @@ impl Debug for SegmentRangeBucketEntry {
|
||||
impl SegmentRangeBucketEntry {
|
||||
pub(crate) fn into_intermediate_bucket_entry(
|
||||
self,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
) -> crate::Result<IntermediateRangeBucketEntry> {
|
||||
let sub_aggregation = IntermediateAggregationResults::default();
|
||||
let mut sub_aggregation_res = IntermediateAggregationResults::default();
|
||||
if let Some(sub_aggregation) = self.sub_aggregation {
|
||||
sub_aggregation
|
||||
.add_intermediate_aggregation_result(agg_with_accessor, &mut sub_aggregation_res)?
|
||||
} else {
|
||||
Default::default()
|
||||
};
|
||||
|
||||
Ok(IntermediateRangeBucketEntry {
|
||||
key: self.key.into(),
|
||||
doc_count: self.doc_count,
|
||||
sub_aggregation_res: sub_aggregation,
|
||||
sub_aggregation: sub_aggregation_res,
|
||||
from: self.from,
|
||||
to: self.to,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<C: SubAggCache> SegmentAggregationCollector for SegmentRangeCollector<C> {
|
||||
impl SegmentAggregationCollector for SegmentRangeCollector {
|
||||
fn add_intermediate_aggregation_result(
|
||||
&mut self,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
parent_bucket_id: BucketId,
|
||||
) -> crate::Result<()> {
|
||||
self.prepare_max_bucket(parent_bucket_id, agg_data)?;
|
||||
let field_type = self.column_type;
|
||||
let name = agg_data
|
||||
.get_range_req_data(self.accessor_idx)
|
||||
.name
|
||||
.to_string();
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let sub_agg = &agg_with_accessor.aggs.values[self.accessor_idx].sub_aggregation;
|
||||
|
||||
let buckets = std::mem::take(&mut self.parent_buckets[parent_bucket_id as usize]);
|
||||
|
||||
let buckets: FxHashMap<SerializedKey, IntermediateRangeBucketEntry> = buckets
|
||||
let buckets: FxHashMap<SerializedKey, IntermediateRangeBucketEntry> = self
|
||||
.buckets
|
||||
.into_iter()
|
||||
.map(|range_bucket| {
|
||||
let bucket_id = range_bucket.bucket.bucket_id;
|
||||
let mut agg = range_bucket.bucket.into_intermediate_bucket_entry()?;
|
||||
if let Some(sub_aggregation) = &mut self.sub_agg {
|
||||
sub_aggregation
|
||||
.get_sub_agg_collector()
|
||||
.add_intermediate_aggregation_result(
|
||||
agg_data,
|
||||
&mut agg.sub_aggregation_res,
|
||||
bucket_id,
|
||||
)?;
|
||||
}
|
||||
Ok((range_to_string(&range_bucket.range, &field_type)?, agg))
|
||||
.map(move |range_bucket| {
|
||||
Ok((
|
||||
range_to_string(&range_bucket.range, &field_type)?,
|
||||
range_bucket
|
||||
.bucket
|
||||
.into_intermediate_bucket_entry(sub_agg)?,
|
||||
))
|
||||
})
|
||||
.collect::<crate::Result<_>>()?;
|
||||
|
||||
@@ -276,114 +217,69 @@ impl<C: SubAggCache> SegmentAggregationCollector for SegmentRangeCollector<C> {
|
||||
#[inline]
|
||||
fn collect(
|
||||
&mut self,
|
||||
parent_bucket_id: BucketId,
|
||||
docs: &[crate::DocId],
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
let req = agg_data.take_range_req_data(self.accessor_idx);
|
||||
self.collect_block(&[doc], agg_with_accessor)
|
||||
}
|
||||
|
||||
agg_data
|
||||
#[inline]
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
let bucket_agg_accessor = &mut agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
|
||||
bucket_agg_accessor
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &req.accessor);
|
||||
.fetch_block(docs, &bucket_agg_accessor.accessor);
|
||||
|
||||
let buckets = &mut self.parent_buckets[parent_bucket_id as usize];
|
||||
|
||||
for (doc, val) in agg_data
|
||||
for (doc, val) in bucket_agg_accessor
|
||||
.column_block_accessor
|
||||
.iter_docid_vals(docs, &req.accessor)
|
||||
.iter_docid_vals(docs, &bucket_agg_accessor.accessor)
|
||||
{
|
||||
let bucket_pos = get_bucket_pos(val, buckets);
|
||||
let bucket = &mut buckets[bucket_pos];
|
||||
let bucket_pos = self.get_bucket_pos(val);
|
||||
|
||||
let bucket = &mut self.buckets[bucket_pos];
|
||||
|
||||
bucket.bucket.doc_count += 1;
|
||||
if let Some(sub_agg) = self.sub_agg.as_mut() {
|
||||
sub_agg.push(bucket.bucket.bucket_id, doc);
|
||||
if let Some(sub_aggregation) = &mut bucket.bucket.sub_aggregation {
|
||||
sub_aggregation.collect(doc, &mut bucket_agg_accessor.sub_aggregation)?;
|
||||
}
|
||||
}
|
||||
|
||||
agg_data.put_back_range_req_data(self.accessor_idx, req);
|
||||
if let Some(sub_agg) = self.sub_agg.as_mut() {
|
||||
sub_agg.check_flush_local(agg_data)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn flush(&mut self, agg_data: &mut AggregationsSegmentCtx) -> crate::Result<()> {
|
||||
if let Some(sub_agg) = self.sub_agg.as_mut() {
|
||||
sub_agg.flush(agg_data)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
fn flush(&mut self, agg_with_accessor: &mut AggregationsWithAccessor) -> crate::Result<()> {
|
||||
let sub_aggregation_accessor =
|
||||
&mut agg_with_accessor.aggs.values[self.accessor_idx].sub_aggregation;
|
||||
|
||||
fn prepare_max_bucket(
|
||||
&mut self,
|
||||
max_bucket: BucketId,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
while self.parent_buckets.len() <= max_bucket as usize {
|
||||
let new_buckets = self.create_new_buckets(agg_data)?;
|
||||
self.parent_buckets.push(new_buckets);
|
||||
for bucket in self.buckets.iter_mut() {
|
||||
if let Some(sub_agg) = bucket.bucket.sub_aggregation.as_mut() {
|
||||
sub_agg.flush(sub_aggregation_accessor)?;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
/// Build a concrete `SegmentRangeCollector` with either a Vec- or HashMap-backed
|
||||
/// bucket storage, depending on the column type and aggregation level.
|
||||
pub(crate) fn build_segment_range_collector(
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
node: &AggRefNode,
|
||||
) -> crate::Result<Box<dyn SegmentAggregationCollector>> {
|
||||
let accessor_idx = node.idx_in_req_data;
|
||||
let req_data = agg_data.get_range_req_data(node.idx_in_req_data);
|
||||
let field_type = req_data.field_type;
|
||||
|
||||
// TODO: A better metric instead of is_top_level would be the number of buckets expected.
|
||||
// E.g. If range agg is not top level, but the parent is a bucket agg with less than 10 buckets,
|
||||
// we can are still in low cardinality territory.
|
||||
let is_low_card = req_data.is_top_level && req_data.req.ranges.len() <= 64;
|
||||
|
||||
let sub_agg = if !node.children.is_empty() {
|
||||
Some(build_segment_agg_collectors(agg_data, &node.children)?)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
if is_low_card {
|
||||
Ok(Box::new(SegmentRangeCollector::<LowCardSubAggCache> {
|
||||
sub_agg: sub_agg.map(LowCardCachedSubAggs::new),
|
||||
column_type: field_type,
|
||||
accessor_idx,
|
||||
parent_buckets: Vec::new(),
|
||||
bucket_id_provider: BucketIdProvider::default(),
|
||||
limits: agg_data.context.limits.clone(),
|
||||
}))
|
||||
} else {
|
||||
Ok(Box::new(SegmentRangeCollector::<HighCardSubAggCache> {
|
||||
sub_agg: sub_agg.map(CachedSubAggs::new),
|
||||
column_type: field_type,
|
||||
accessor_idx,
|
||||
parent_buckets: Vec::new(),
|
||||
bucket_id_provider: BucketIdProvider::default(),
|
||||
limits: agg_data.context.limits.clone(),
|
||||
}))
|
||||
}
|
||||
}
|
||||
|
||||
impl<C: SubAggCache> SegmentRangeCollector<C> {
|
||||
pub(crate) fn create_new_buckets(
|
||||
&mut self,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
) -> crate::Result<Vec<SegmentRangeAndBucketEntry>> {
|
||||
let field_type = self.column_type;
|
||||
let req_data = agg_data.get_range_req_data(self.accessor_idx);
|
||||
impl SegmentRangeCollector {
|
||||
pub(crate) fn from_req_and_validate(
|
||||
req: &RangeAggregation,
|
||||
sub_aggregation: &mut AggregationsWithAccessor,
|
||||
limits: &mut AggregationLimitsGuard,
|
||||
field_type: ColumnType,
|
||||
accessor_idx: usize,
|
||||
) -> crate::Result<Self> {
|
||||
// The range input on the request is f64.
|
||||
// We need to convert to u64 ranges, because we read the values as u64.
|
||||
// The mapping from the conversion is monotonic so ordering is preserved.
|
||||
let buckets: Vec<_> = extend_validate_ranges(&req_data.req.ranges, &field_type)?
|
||||
let buckets: Vec<_> = extend_validate_ranges(&req.ranges, &field_type)?
|
||||
.iter()
|
||||
.map(|range| {
|
||||
let bucket_id = self.bucket_id_provider.next_bucket_id();
|
||||
let key = range
|
||||
.key
|
||||
.clone()
|
||||
@@ -392,20 +288,24 @@ impl<C: SubAggCache> SegmentRangeCollector<C> {
|
||||
let to = if range.range.end == u64::MAX {
|
||||
None
|
||||
} else {
|
||||
Some(f64_from_fastfield_u64(range.range.end, field_type))
|
||||
Some(f64_from_fastfield_u64(range.range.end, &field_type))
|
||||
};
|
||||
let from = if range.range.start == u64::MIN {
|
||||
None
|
||||
} else {
|
||||
Some(f64_from_fastfield_u64(range.range.start, field_type))
|
||||
Some(f64_from_fastfield_u64(range.range.start, &field_type))
|
||||
};
|
||||
let sub_aggregation = if sub_aggregation.is_empty() {
|
||||
None
|
||||
} else {
|
||||
Some(build_segment_agg_collector(sub_aggregation)?)
|
||||
};
|
||||
// let sub_aggregation = sub_agg_prototype.clone();
|
||||
|
||||
Ok(SegmentRangeAndBucketEntry {
|
||||
range: range.range.clone(),
|
||||
bucket: SegmentRangeBucketEntry {
|
||||
doc_count: 0,
|
||||
bucket_id,
|
||||
sub_aggregation,
|
||||
key,
|
||||
from,
|
||||
to,
|
||||
@@ -414,19 +314,26 @@ impl<C: SubAggCache> SegmentRangeCollector<C> {
|
||||
})
|
||||
.collect::<crate::Result<_>>()?;
|
||||
|
||||
self.limits.add_memory_consumed(
|
||||
limits.add_memory_consumed(
|
||||
buckets.len() as u64 * std::mem::size_of::<SegmentRangeAndBucketEntry>() as u64,
|
||||
)?;
|
||||
Ok(buckets)
|
||||
|
||||
Ok(SegmentRangeCollector {
|
||||
buckets,
|
||||
column_type: field_type,
|
||||
accessor_idx,
|
||||
})
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_bucket_pos(&self, val: u64) -> usize {
|
||||
let pos = self
|
||||
.buckets
|
||||
.binary_search_by_key(&val, |probe| probe.range.start)
|
||||
.unwrap_or_else(|pos| pos - 1);
|
||||
debug_assert!(self.buckets[pos].range.contains(&val));
|
||||
pos
|
||||
}
|
||||
}
|
||||
#[inline]
|
||||
fn get_bucket_pos(val: u64, buckets: &[SegmentRangeAndBucketEntry]) -> usize {
|
||||
let pos = buckets
|
||||
.binary_search_by_key(&val, |probe| probe.range.start)
|
||||
.unwrap_or_else(|pos| pos - 1);
|
||||
debug_assert!(buckets[pos].range.contains(&val));
|
||||
pos
|
||||
}
|
||||
|
||||
/// Converts the user provided f64 range value to fast field value space.
|
||||
@@ -524,7 +431,7 @@ pub(crate) fn range_to_string(
|
||||
let val = i64::from_u64(val);
|
||||
format_date(val)
|
||||
} else {
|
||||
Ok(f64_from_fastfield_u64(val, *field_type).to_string())
|
||||
Ok(f64_from_fastfield_u64(val, field_type).to_string())
|
||||
}
|
||||
};
|
||||
|
||||
@@ -554,54 +461,21 @@ mod tests {
|
||||
pub fn get_collector_from_ranges(
|
||||
ranges: Vec<RangeAggregationRange>,
|
||||
field_type: ColumnType,
|
||||
) -> SegmentRangeCollector<HighCardSubAggCache> {
|
||||
) -> SegmentRangeCollector {
|
||||
let req = RangeAggregation {
|
||||
field: "dummy".to_string(),
|
||||
ranges,
|
||||
..Default::default()
|
||||
};
|
||||
// Build buckets directly as in from_req_and_validate without AggregationsData
|
||||
let buckets: Vec<_> = extend_validate_ranges(&req.ranges, &field_type)
|
||||
.expect("unexpected error in extend_validate_ranges")
|
||||
.iter()
|
||||
.map(|range| {
|
||||
let key = range
|
||||
.key
|
||||
.clone()
|
||||
.map(|key| Ok(Key::Str(key)))
|
||||
.unwrap_or_else(|| range_to_key(&range.range, &field_type))
|
||||
.expect("unexpected error in range_to_key");
|
||||
let to = if range.range.end == u64::MAX {
|
||||
None
|
||||
} else {
|
||||
Some(f64_from_fastfield_u64(range.range.end, field_type))
|
||||
};
|
||||
let from = if range.range.start == u64::MIN {
|
||||
None
|
||||
} else {
|
||||
Some(f64_from_fastfield_u64(range.range.start, field_type))
|
||||
};
|
||||
SegmentRangeAndBucketEntry {
|
||||
range: range.range.clone(),
|
||||
bucket: SegmentRangeBucketEntry {
|
||||
doc_count: 0,
|
||||
key,
|
||||
from,
|
||||
to,
|
||||
bucket_id: 0,
|
||||
},
|
||||
}
|
||||
})
|
||||
.collect();
|
||||
|
||||
SegmentRangeCollector {
|
||||
parent_buckets: vec![buckets],
|
||||
column_type: field_type,
|
||||
accessor_idx: 0,
|
||||
sub_agg: None,
|
||||
bucket_id_provider: Default::default(),
|
||||
limits: AggregationLimitsGuard::default(),
|
||||
}
|
||||
SegmentRangeCollector::from_req_and_validate(
|
||||
&req,
|
||||
&mut Default::default(),
|
||||
&mut AggregationLimitsGuard::default(),
|
||||
field_type,
|
||||
0,
|
||||
)
|
||||
.expect("unexpected error")
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -847,7 +721,7 @@ mod tests {
|
||||
let buckets = vec![(10f64..20f64).into(), (30f64..40f64).into()];
|
||||
let collector = get_collector_from_ranges(buckets, ColumnType::F64);
|
||||
|
||||
let buckets = collector.parent_buckets[0].clone();
|
||||
let buckets = collector.buckets;
|
||||
assert_eq!(buckets[0].range.start, u64::MIN);
|
||||
assert_eq!(buckets[0].range.end, 10f64.to_u64());
|
||||
assert_eq!(buckets[1].range.start, 10f64.to_u64());
|
||||
@@ -870,7 +744,7 @@ mod tests {
|
||||
];
|
||||
let collector = get_collector_from_ranges(buckets, ColumnType::F64);
|
||||
|
||||
let buckets = collector.parent_buckets[0].clone();
|
||||
let buckets = collector.buckets;
|
||||
assert_eq!(buckets[0].range.start, u64::MIN);
|
||||
assert_eq!(buckets[0].range.end, 10f64.to_u64());
|
||||
assert_eq!(buckets[1].range.start, 10f64.to_u64());
|
||||
@@ -885,7 +759,7 @@ mod tests {
|
||||
let buckets = vec![(-10f64..-1f64).into()];
|
||||
let collector = get_collector_from_ranges(buckets, ColumnType::F64);
|
||||
|
||||
let buckets = collector.parent_buckets[0].clone();
|
||||
let buckets = collector.buckets;
|
||||
assert_eq!(&buckets[0].bucket.key.to_string(), "*--10");
|
||||
assert_eq!(&buckets[buckets.len() - 1].bucket.key.to_string(), "-1-*");
|
||||
}
|
||||
@@ -894,7 +768,7 @@ mod tests {
|
||||
let buckets = vec![(0f64..10f64).into()];
|
||||
let collector = get_collector_from_ranges(buckets, ColumnType::F64);
|
||||
|
||||
let buckets = collector.parent_buckets[0].clone();
|
||||
let buckets = collector.buckets;
|
||||
assert_eq!(&buckets[0].bucket.key.to_string(), "*-0");
|
||||
assert_eq!(&buckets[buckets.len() - 1].bucket.key.to_string(), "10-*");
|
||||
}
|
||||
@@ -903,7 +777,7 @@ mod tests {
|
||||
fn range_binary_search_test_u64() {
|
||||
let check_ranges = |ranges: Vec<RangeAggregationRange>| {
|
||||
let collector = get_collector_from_ranges(ranges, ColumnType::U64);
|
||||
let search = |val: u64| get_bucket_pos(val, &collector.parent_buckets[0]);
|
||||
let search = |val: u64| collector.get_bucket_pos(val);
|
||||
|
||||
assert_eq!(search(u64::MIN), 0);
|
||||
assert_eq!(search(9), 0);
|
||||
@@ -949,7 +823,7 @@ mod tests {
|
||||
let ranges = vec![(10.0..100.0).into()];
|
||||
|
||||
let collector = get_collector_from_ranges(ranges, ColumnType::F64);
|
||||
let search = |val: u64| get_bucket_pos(val, &collector.parent_buckets[0]);
|
||||
let search = |val: u64| collector.get_bucket_pos(val);
|
||||
|
||||
assert_eq!(search(u64::MIN), 0);
|
||||
assert_eq!(search(9f64.to_u64()), 0);
|
||||
@@ -961,3 +835,63 @@ mod tests {
|
||||
// the max value
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use itertools::Itertools;
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::thread_rng;
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::bucket::range::tests::get_collector_from_ranges;
|
||||
|
||||
const TOTAL_DOCS: u64 = 1_000_000u64;
|
||||
const NUM_DOCS: u64 = 50_000u64;
|
||||
|
||||
fn get_collector_with_buckets(num_buckets: u64, num_docs: u64) -> SegmentRangeCollector {
|
||||
let bucket_size = num_docs / num_buckets;
|
||||
let mut buckets: Vec<RangeAggregationRange> = vec![];
|
||||
for i in 0..num_buckets {
|
||||
let bucket_start = (i * bucket_size) as f64;
|
||||
buckets.push((bucket_start..bucket_start + bucket_size as f64).into())
|
||||
}
|
||||
|
||||
get_collector_from_ranges(buckets, ColumnType::U64)
|
||||
}
|
||||
|
||||
fn get_rand_docs(total_docs: u64, num_docs_returned: u64) -> Vec<u64> {
|
||||
let mut rng = thread_rng();
|
||||
|
||||
let all_docs = (0..total_docs - 1).collect_vec();
|
||||
let mut vals = all_docs
|
||||
.as_slice()
|
||||
.choose_multiple(&mut rng, num_docs_returned as usize)
|
||||
.cloned()
|
||||
.collect_vec();
|
||||
vals.sort();
|
||||
vals
|
||||
}
|
||||
|
||||
fn bench_range_binary_search(b: &mut test::Bencher, num_buckets: u64) {
|
||||
let collector = get_collector_with_buckets(num_buckets, TOTAL_DOCS);
|
||||
let vals = get_rand_docs(TOTAL_DOCS, NUM_DOCS);
|
||||
b.iter(|| {
|
||||
let mut bucket_pos = 0;
|
||||
for val in &vals {
|
||||
bucket_pos = collector.get_bucket_pos(*val);
|
||||
}
|
||||
bucket_pos
|
||||
})
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_range_100_buckets(b: &mut test::Bencher) {
|
||||
bench_range_binary_search(b, 100)
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_range_10_buckets(b: &mut test::Bencher) {
|
||||
bench_range_binary_search(b, 10)
|
||||
}
|
||||
}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,93 +1,55 @@
|
||||
use columnar::{Column, ColumnType};
|
||||
use rustc_hash::FxHashMap;
|
||||
|
||||
use crate::aggregation::agg_data::{
|
||||
build_segment_agg_collectors, AggRefNode, AggregationsSegmentCtx,
|
||||
};
|
||||
use crate::aggregation::bucket::term_agg::TermsAggregation;
|
||||
use crate::aggregation::cached_sub_aggs::{CachedSubAggs, HighCardCachedSubAggs};
|
||||
use crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateBucketResult,
|
||||
IntermediateKey, IntermediateTermBucketEntry, IntermediateTermBucketResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::{BucketIdProvider, SegmentAggregationCollector};
|
||||
use crate::aggregation::BucketId;
|
||||
|
||||
/// Special aggregation to handle missing values for term aggregations.
|
||||
/// This missing aggregation will check multiple columns for existence.
|
||||
///
|
||||
/// This is needed when:
|
||||
/// - The field is multi-valued and we therefore have multiple columns
|
||||
/// - The field is not text and missing is provided as string (we cannot use the numeric missing
|
||||
/// value optimization)
|
||||
#[derive(Default)]
|
||||
pub struct MissingTermAggReqData {
|
||||
/// The accessors to check for existence of a value.
|
||||
pub accessors: Vec<(Column<u64>, ColumnType)>,
|
||||
/// The name of the aggregation.
|
||||
pub name: String,
|
||||
/// The original terms aggregation request.
|
||||
pub req: TermsAggregation,
|
||||
}
|
||||
|
||||
impl MissingTermAggReqData {
|
||||
/// Estimate the memory consumption of this struct in bytes.
|
||||
pub fn get_memory_consumption(&self) -> usize {
|
||||
std::mem::size_of::<Self>()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default, Debug, Clone)]
|
||||
struct MissingCount {
|
||||
missing_count: u32,
|
||||
bucket_id: BucketId,
|
||||
}
|
||||
use crate::aggregation::segment_agg_result::{
|
||||
build_segment_agg_collector, SegmentAggregationCollector,
|
||||
};
|
||||
|
||||
/// The specialized missing term aggregation.
|
||||
#[derive(Default, Debug)]
|
||||
#[derive(Default, Debug, Clone)]
|
||||
pub struct TermMissingAgg {
|
||||
missing_count: u32,
|
||||
accessor_idx: usize,
|
||||
sub_agg: Option<HighCardCachedSubAggs>,
|
||||
/// Idx = parent bucket id, Value = missing count for that bucket
|
||||
missing_count_per_bucket: Vec<MissingCount>,
|
||||
bucket_id_provider: BucketIdProvider,
|
||||
sub_agg: Option<Box<dyn SegmentAggregationCollector>>,
|
||||
}
|
||||
impl TermMissingAgg {
|
||||
pub(crate) fn new(
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
node: &AggRefNode,
|
||||
accessor_idx: usize,
|
||||
sub_aggregations: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<Self> {
|
||||
let has_sub_aggregations = !node.children.is_empty();
|
||||
let accessor_idx = node.idx_in_req_data;
|
||||
let has_sub_aggregations = !sub_aggregations.is_empty();
|
||||
let sub_agg = if has_sub_aggregations {
|
||||
let sub_aggregation = build_segment_agg_collectors(agg_data, &node.children)?;
|
||||
let sub_aggregation = build_segment_agg_collector(sub_aggregations)?;
|
||||
Some(sub_aggregation)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let sub_agg = sub_agg.map(CachedSubAggs::new);
|
||||
let bucket_id_provider = BucketIdProvider::default();
|
||||
|
||||
Ok(Self {
|
||||
accessor_idx,
|
||||
sub_agg,
|
||||
missing_count_per_bucket: Vec::new(),
|
||||
bucket_id_provider,
|
||||
..Default::default()
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl SegmentAggregationCollector for TermMissingAgg {
|
||||
fn add_intermediate_aggregation_result(
|
||||
&mut self,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
parent_bucket_id: BucketId,
|
||||
) -> crate::Result<()> {
|
||||
self.prepare_max_bucket(parent_bucket_id, agg_data)?;
|
||||
let req_data = agg_data.get_missing_term_req_data(self.accessor_idx);
|
||||
let term_agg = &req_data.req;
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let agg_with_accessor = &agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
let term_agg = agg_with_accessor
|
||||
.agg
|
||||
.agg
|
||||
.as_term()
|
||||
.expect("TermMissingAgg collector must be term agg req");
|
||||
let missing = term_agg
|
||||
.missing
|
||||
.as_ref()
|
||||
@@ -96,16 +58,16 @@ impl SegmentAggregationCollector for TermMissingAgg {
|
||||
let mut entries: FxHashMap<IntermediateKey, IntermediateTermBucketEntry> =
|
||||
Default::default();
|
||||
|
||||
let missing_count = &self.missing_count_per_bucket[parent_bucket_id as usize];
|
||||
let mut missing_entry = IntermediateTermBucketEntry {
|
||||
doc_count: missing_count.missing_count,
|
||||
doc_count: self.missing_count,
|
||||
sub_aggregation: Default::default(),
|
||||
};
|
||||
if let Some(sub_agg) = &mut self.sub_agg {
|
||||
if let Some(sub_agg) = self.sub_agg {
|
||||
let mut res = IntermediateAggregationResults::default();
|
||||
sub_agg
|
||||
.get_sub_agg_collector()
|
||||
.add_intermediate_aggregation_result(agg_data, &mut res, missing_count.bucket_id)?;
|
||||
sub_agg.add_intermediate_aggregation_result(
|
||||
&agg_with_accessor.sub_aggregation,
|
||||
&mut res,
|
||||
)?;
|
||||
missing_entry.sub_aggregation = res;
|
||||
}
|
||||
entries.insert(missing.into(), missing_entry);
|
||||
@@ -118,62 +80,37 @@ impl SegmentAggregationCollector for TermMissingAgg {
|
||||
},
|
||||
};
|
||||
|
||||
results.push(
|
||||
req_data.name.to_string(),
|
||||
IntermediateAggregationResult::Bucket(bucket),
|
||||
)?;
|
||||
results.push(name, IntermediateAggregationResult::Bucket(bucket))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn collect(
|
||||
&mut self,
|
||||
parent_bucket_id: BucketId,
|
||||
docs: &[crate::DocId],
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
let bucket = &mut self.missing_count_per_bucket[parent_bucket_id as usize];
|
||||
let req_data = agg_data.get_missing_term_req_data(self.accessor_idx);
|
||||
|
||||
for doc in docs {
|
||||
let doc = *doc;
|
||||
let has_value = req_data
|
||||
.accessors
|
||||
.iter()
|
||||
.any(|(acc, _)| acc.index.has_value(doc));
|
||||
if !has_value {
|
||||
bucket.missing_count += 1;
|
||||
|
||||
if let Some(sub_agg) = self.sub_agg.as_mut() {
|
||||
sub_agg.push(bucket.bucket_id, doc);
|
||||
}
|
||||
let agg = &mut agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
let has_value = agg
|
||||
.accessors
|
||||
.iter()
|
||||
.any(|(acc, _)| acc.index.has_value(doc));
|
||||
if !has_value {
|
||||
self.missing_count += 1;
|
||||
if let Some(sub_agg) = self.sub_agg.as_mut() {
|
||||
sub_agg.collect(doc, &mut agg.sub_aggregation)?;
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(sub_agg) = self.sub_agg.as_mut() {
|
||||
sub_agg.check_flush_local(agg_data)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn prepare_max_bucket(
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
max_bucket: BucketId,
|
||||
_agg_data: &AggregationsSegmentCtx,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
while self.missing_count_per_bucket.len() <= max_bucket as usize {
|
||||
let bucket_id = self.bucket_id_provider.next_bucket_id();
|
||||
self.missing_count_per_bucket.push(MissingCount {
|
||||
missing_count: 0,
|
||||
bucket_id,
|
||||
});
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn flush(&mut self, agg_data: &mut AggregationsSegmentCtx) -> crate::Result<()> {
|
||||
if let Some(sub_agg) = self.sub_agg.as_mut() {
|
||||
sub_agg.flush(agg_data)?;
|
||||
for doc in docs {
|
||||
self.collect(*doc, agg_with_accessor)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
83
src/aggregation/buf_collector.rs
Normal file
83
src/aggregation/buf_collector.rs
Normal file
@@ -0,0 +1,83 @@
|
||||
use super::agg_req_with_accessor::AggregationsWithAccessor;
|
||||
use super::intermediate_agg_result::IntermediateAggregationResults;
|
||||
use super::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::DocId;
|
||||
|
||||
pub(crate) const DOC_BLOCK_SIZE: usize = 64;
|
||||
pub(crate) type DocBlock = [DocId; DOC_BLOCK_SIZE];
|
||||
|
||||
/// BufAggregationCollector buffers documents before calling collect_block().
|
||||
#[derive(Clone)]
|
||||
pub(crate) struct BufAggregationCollector {
|
||||
pub(crate) collector: Box<dyn SegmentAggregationCollector>,
|
||||
staged_docs: DocBlock,
|
||||
num_staged_docs: usize,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for BufAggregationCollector {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("SegmentAggregationResultsCollector")
|
||||
.field("staged_docs", &&self.staged_docs[..self.num_staged_docs])
|
||||
.field("num_staged_docs", &self.num_staged_docs)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl BufAggregationCollector {
|
||||
pub fn new(collector: Box<dyn SegmentAggregationCollector>) -> Self {
|
||||
Self {
|
||||
collector,
|
||||
num_staged_docs: 0,
|
||||
staged_docs: [0; DOC_BLOCK_SIZE],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl SegmentAggregationCollector for BufAggregationCollector {
|
||||
#[inline]
|
||||
fn add_intermediate_aggregation_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
) -> crate::Result<()> {
|
||||
Box::new(self.collector).add_intermediate_aggregation_result(agg_with_accessor, results)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
self.staged_docs[self.num_staged_docs] = doc;
|
||||
self.num_staged_docs += 1;
|
||||
if self.num_staged_docs == self.staged_docs.len() {
|
||||
self.collector
|
||||
.collect_block(&self.staged_docs[..self.num_staged_docs], agg_with_accessor)?;
|
||||
self.num_staged_docs = 0;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
self.collector.collect_block(docs, agg_with_accessor)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn flush(&mut self, agg_with_accessor: &mut AggregationsWithAccessor) -> crate::Result<()> {
|
||||
self.collector
|
||||
.collect_block(&self.staged_docs[..self.num_staged_docs], agg_with_accessor)?;
|
||||
self.num_staged_docs = 0;
|
||||
|
||||
self.collector.flush(agg_with_accessor)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -1,245 +0,0 @@
|
||||
use std::fmt::Debug;
|
||||
|
||||
use super::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::agg_data::AggregationsSegmentCtx;
|
||||
use crate::aggregation::bucket::MAX_NUM_TERMS_FOR_VEC;
|
||||
use crate::aggregation::BucketId;
|
||||
use crate::DocId;
|
||||
|
||||
/// A cache for sub-aggregations, storing doc ids per bucket id.
|
||||
/// Depending on the cardinality of the parent aggregation, we use different
|
||||
/// storage strategies.
|
||||
///
|
||||
/// ## Low Cardinality
|
||||
/// Cardinality here refers to the number of unique flattened buckets that can be created
|
||||
/// by the parent aggregation.
|
||||
/// Flattened buckets are the result of combining all buckets per collector
|
||||
/// into a single list of buckets, where each bucket is identified by its BucketId.
|
||||
///
|
||||
/// ## Usage
|
||||
/// Since this is caching for sub-aggregations, it is only used by bucket
|
||||
/// aggregations.
|
||||
///
|
||||
/// TODO: consider using a more advanced data structure for high cardinality
|
||||
/// aggregations.
|
||||
/// What this datastructure does in general is to group docs by bucket id.
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct CachedSubAggs<C: SubAggCache> {
|
||||
cache: C,
|
||||
sub_agg_collector: Box<dyn SegmentAggregationCollector>,
|
||||
num_docs: usize,
|
||||
}
|
||||
|
||||
pub type LowCardCachedSubAggs = CachedSubAggs<LowCardSubAggCache>;
|
||||
pub type HighCardCachedSubAggs = CachedSubAggs<HighCardSubAggCache>;
|
||||
|
||||
const FLUSH_THRESHOLD: usize = 2048;
|
||||
|
||||
/// A trait for caching sub-aggregation doc ids per bucket id.
|
||||
/// Different implementations can be used depending on the cardinality
|
||||
/// of the parent aggregation.
|
||||
pub trait SubAggCache: Debug {
|
||||
fn new() -> Self;
|
||||
fn push(&mut self, bucket_id: BucketId, doc_id: DocId);
|
||||
fn flush_local(
|
||||
&mut self,
|
||||
sub_agg: &mut Box<dyn SegmentAggregationCollector>,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
force: bool,
|
||||
) -> crate::Result<()>;
|
||||
}
|
||||
|
||||
impl<Backend: SubAggCache + Debug> CachedSubAggs<Backend> {
|
||||
pub fn new(sub_agg: Box<dyn SegmentAggregationCollector>) -> Self {
|
||||
Self {
|
||||
cache: Backend::new(),
|
||||
sub_agg_collector: sub_agg,
|
||||
num_docs: 0,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_sub_agg_collector(&mut self) -> &mut Box<dyn SegmentAggregationCollector> {
|
||||
&mut self.sub_agg_collector
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn push(&mut self, bucket_id: BucketId, doc_id: DocId) {
|
||||
self.cache.push(bucket_id, doc_id);
|
||||
self.num_docs += 1;
|
||||
}
|
||||
|
||||
/// Check if we need to flush based on the number of documents cached.
|
||||
/// If so, flushes the cache to the provided aggregation collector.
|
||||
pub fn check_flush_local(
|
||||
&mut self,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
if self.num_docs >= FLUSH_THRESHOLD {
|
||||
self.cache
|
||||
.flush_local(&mut self.sub_agg_collector, agg_data, false)?;
|
||||
self.num_docs = 0;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Note: this _does_ flush the sub aggregations.
|
||||
pub fn flush(&mut self, agg_data: &mut AggregationsSegmentCtx) -> crate::Result<()> {
|
||||
if self.num_docs != 0 {
|
||||
self.cache
|
||||
.flush_local(&mut self.sub_agg_collector, agg_data, true)?;
|
||||
self.num_docs = 0;
|
||||
}
|
||||
self.sub_agg_collector.flush(agg_data)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// Number of partitions for high cardinality sub-aggregation cache.
|
||||
const NUM_PARTITIONS: usize = 16;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct HighCardSubAggCache {
|
||||
/// This weird partitioning is used to do some cheap grouping on the bucket ids.
|
||||
/// bucket ids are dense, e.g. when we don't detect the cardinality as low cardinality,
|
||||
/// but there are just 16 bucket ids, each bucket id will go to its own partition.
|
||||
///
|
||||
/// We want to keep this cheap, because high cardinality aggregations can have a lot of
|
||||
/// buckets, and there may be nothing to group.
|
||||
partitions: Box<[PartitionEntry; NUM_PARTITIONS]>,
|
||||
}
|
||||
|
||||
impl HighCardSubAggCache {
|
||||
#[inline]
|
||||
fn clear(&mut self) {
|
||||
for partition in self.partitions.iter_mut() {
|
||||
partition.clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Default)]
|
||||
struct PartitionEntry {
|
||||
bucket_ids: Vec<BucketId>,
|
||||
docs: Vec<DocId>,
|
||||
}
|
||||
|
||||
impl PartitionEntry {
|
||||
#[inline]
|
||||
fn clear(&mut self) {
|
||||
self.bucket_ids.clear();
|
||||
self.docs.clear();
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAggCache for HighCardSubAggCache {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
partitions: Box::new(core::array::from_fn(|_| PartitionEntry::default())),
|
||||
}
|
||||
}
|
||||
|
||||
fn push(&mut self, bucket_id: BucketId, doc_id: DocId) {
|
||||
let idx = bucket_id % NUM_PARTITIONS as u32;
|
||||
let slot = &mut self.partitions[idx as usize];
|
||||
slot.bucket_ids.push(bucket_id);
|
||||
slot.docs.push(doc_id);
|
||||
}
|
||||
|
||||
fn flush_local(
|
||||
&mut self,
|
||||
sub_agg: &mut Box<dyn SegmentAggregationCollector>,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
_force: bool,
|
||||
) -> crate::Result<()> {
|
||||
let mut max_bucket = 0u32;
|
||||
for partition in self.partitions.iter() {
|
||||
if let Some(&local_max) = partition.bucket_ids.iter().max() {
|
||||
max_bucket = max_bucket.max(local_max);
|
||||
}
|
||||
}
|
||||
|
||||
sub_agg.prepare_max_bucket(max_bucket, agg_data)?;
|
||||
|
||||
for slot in self.partitions.iter() {
|
||||
if !slot.bucket_ids.is_empty() {
|
||||
// Reduce dynamic dispatch overhead by collecting a full partition in one call.
|
||||
sub_agg.collect_multiple(&slot.bucket_ids, &slot.docs, agg_data)?;
|
||||
}
|
||||
}
|
||||
|
||||
self.clear();
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct LowCardSubAggCache {
|
||||
/// Cache doc ids per bucket for sub-aggregations.
|
||||
///
|
||||
/// The outer Vec is indexed by BucketId.
|
||||
per_bucket_docs: Vec<Vec<DocId>>,
|
||||
}
|
||||
|
||||
impl LowCardSubAggCache {
|
||||
#[inline]
|
||||
fn clear(&mut self) {
|
||||
for v in &mut self.per_bucket_docs {
|
||||
v.clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAggCache for LowCardSubAggCache {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
per_bucket_docs: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
fn push(&mut self, bucket_id: BucketId, doc_id: DocId) {
|
||||
let idx = bucket_id as usize;
|
||||
if self.per_bucket_docs.len() <= idx {
|
||||
self.per_bucket_docs.resize_with(idx + 1, Vec::new);
|
||||
}
|
||||
self.per_bucket_docs[idx].push(doc_id);
|
||||
}
|
||||
|
||||
fn flush_local(
|
||||
&mut self,
|
||||
sub_agg: &mut Box<dyn SegmentAggregationCollector>,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
force: bool,
|
||||
) -> crate::Result<()> {
|
||||
// Pre-aggregated: call collect per bucket.
|
||||
let max_bucket = (self.per_bucket_docs.len() as BucketId).saturating_sub(1);
|
||||
sub_agg.prepare_max_bucket(max_bucket, agg_data)?;
|
||||
// The threshold above which we flush buckets individually.
|
||||
// Note: We need to make sure that we don't lock ourselves into a situation where we hit
|
||||
// the FLUSH_THRESHOLD, but never flush any buckets. (except the final flush)
|
||||
let mut bucket_treshold = FLUSH_THRESHOLD / (self.per_bucket_docs.len().max(1) * 2);
|
||||
const _: () = {
|
||||
// MAX_NUM_TERMS_FOR_VEC threshold is used for term aggregations
|
||||
// Note: There may be other flexible values, for other aggregations, but we can use the
|
||||
// const value here as a upper bound. (better than nothing)
|
||||
let bucket_treshold_limit = FLUSH_THRESHOLD / (MAX_NUM_TERMS_FOR_VEC as usize * 2);
|
||||
assert!(
|
||||
bucket_treshold_limit > 0,
|
||||
"Bucket threshold must be greater than 0"
|
||||
);
|
||||
};
|
||||
if force {
|
||||
bucket_treshold = 0;
|
||||
}
|
||||
for (bucket_id, docs) in self
|
||||
.per_bucket_docs
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_, docs)| docs.len() > bucket_treshold)
|
||||
{
|
||||
sub_agg.collect(bucket_id as BucketId, docs, agg_data)?;
|
||||
}
|
||||
|
||||
self.clear();
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -1,12 +1,12 @@
|
||||
use super::agg_req::Aggregations;
|
||||
use super::agg_req_with_accessor::AggregationsWithAccessor;
|
||||
use super::agg_result::AggregationResults;
|
||||
use super::cached_sub_aggs::LowCardCachedSubAggs;
|
||||
use super::buf_collector::BufAggregationCollector;
|
||||
use super::intermediate_agg_result::IntermediateAggregationResults;
|
||||
use super::AggContextParams;
|
||||
// group buffering strategy is chosen explicitly by callers; no need to hash-group on the fly.
|
||||
use crate::aggregation::agg_data::{
|
||||
build_aggregations_data_from_req, build_segment_agg_collectors_root, AggregationsSegmentCtx,
|
||||
use super::segment_agg_result::{
|
||||
build_segment_agg_collector, AggregationLimitsGuard, SegmentAggregationCollector,
|
||||
};
|
||||
use crate::aggregation::agg_req_with_accessor::get_aggs_with_segment_accessor_and_validate;
|
||||
use crate::collector::{Collector, SegmentCollector};
|
||||
use crate::index::SegmentReader;
|
||||
use crate::{DocId, SegmentOrdinal, TantivyError};
|
||||
@@ -22,7 +22,7 @@ pub const DEFAULT_MEMORY_LIMIT: u64 = 500_000_000;
|
||||
/// The collector collects all aggregations by the underlying aggregation request.
|
||||
pub struct AggregationCollector {
|
||||
agg: Aggregations,
|
||||
context: AggContextParams,
|
||||
limits: AggregationLimitsGuard,
|
||||
}
|
||||
|
||||
impl AggregationCollector {
|
||||
@@ -30,8 +30,8 @@ impl AggregationCollector {
|
||||
///
|
||||
/// Aggregation fails when the limits in `AggregationLimits` is exceeded. (memory limit and
|
||||
/// bucket limit)
|
||||
pub fn from_aggs(agg: Aggregations, context: AggContextParams) -> Self {
|
||||
Self { agg, context }
|
||||
pub fn from_aggs(agg: Aggregations, limits: AggregationLimitsGuard) -> Self {
|
||||
Self { agg, limits }
|
||||
}
|
||||
}
|
||||
|
||||
@@ -45,7 +45,7 @@ impl AggregationCollector {
|
||||
/// into the final `AggregationResults` via the `into_final_result()` method.
|
||||
pub struct DistributedAggregationCollector {
|
||||
agg: Aggregations,
|
||||
context: AggContextParams,
|
||||
limits: AggregationLimitsGuard,
|
||||
}
|
||||
|
||||
impl DistributedAggregationCollector {
|
||||
@@ -53,8 +53,8 @@ impl DistributedAggregationCollector {
|
||||
///
|
||||
/// Aggregation fails when the limits in `AggregationLimits` is exceeded. (memory limit and
|
||||
/// bucket limit)
|
||||
pub fn from_aggs(agg: Aggregations, context: AggContextParams) -> Self {
|
||||
Self { agg, context }
|
||||
pub fn from_aggs(agg: Aggregations, limits: AggregationLimitsGuard) -> Self {
|
||||
Self { agg, limits }
|
||||
}
|
||||
}
|
||||
|
||||
@@ -72,7 +72,7 @@ impl Collector for DistributedAggregationCollector {
|
||||
&self.agg,
|
||||
reader,
|
||||
segment_local_id,
|
||||
&self.context,
|
||||
&self.limits,
|
||||
)
|
||||
}
|
||||
|
||||
@@ -102,7 +102,7 @@ impl Collector for AggregationCollector {
|
||||
&self.agg,
|
||||
reader,
|
||||
segment_local_id,
|
||||
&self.context,
|
||||
&self.limits,
|
||||
)
|
||||
}
|
||||
|
||||
@@ -115,7 +115,7 @@ impl Collector for AggregationCollector {
|
||||
segment_fruits: Vec<<Self::Child as SegmentCollector>::Fruit>,
|
||||
) -> crate::Result<Self::Fruit> {
|
||||
let res = merge_fruits(segment_fruits)?;
|
||||
res.into_final_result(self.agg.clone(), self.context.limits.clone())
|
||||
res.into_final_result(self.agg.clone(), self.limits.clone())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -135,8 +135,8 @@ fn merge_fruits(
|
||||
|
||||
/// `AggregationSegmentCollector` does the aggregation collection on a segment.
|
||||
pub struct AggregationSegmentCollector {
|
||||
aggs_with_accessor: AggregationsSegmentCtx,
|
||||
agg_collector: LowCardCachedSubAggs,
|
||||
aggs_with_accessor: AggregationsWithAccessor,
|
||||
agg_collector: BufAggregationCollector,
|
||||
error: Option<TantivyError>,
|
||||
}
|
||||
|
||||
@@ -147,18 +147,14 @@ impl AggregationSegmentCollector {
|
||||
agg: &Aggregations,
|
||||
reader: &SegmentReader,
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
context: &AggContextParams,
|
||||
limits: &AggregationLimitsGuard,
|
||||
) -> crate::Result<Self> {
|
||||
let mut agg_data =
|
||||
build_aggregations_data_from_req(agg, reader, segment_ordinal, context.clone())?;
|
||||
let mut result =
|
||||
LowCardCachedSubAggs::new(build_segment_agg_collectors_root(&mut agg_data)?);
|
||||
result
|
||||
.get_sub_agg_collector()
|
||||
.prepare_max_bucket(0, &agg_data)?; // prepare for bucket zero
|
||||
|
||||
let mut aggs_with_accessor =
|
||||
get_aggs_with_segment_accessor_and_validate(agg, reader, segment_ordinal, limits)?;
|
||||
let result =
|
||||
BufAggregationCollector::new(build_segment_agg_collector(&mut aggs_with_accessor)?);
|
||||
Ok(AggregationSegmentCollector {
|
||||
aggs_with_accessor: agg_data,
|
||||
aggs_with_accessor,
|
||||
agg_collector: result,
|
||||
error: None,
|
||||
})
|
||||
@@ -173,31 +169,26 @@ impl SegmentCollector for AggregationSegmentCollector {
|
||||
if self.error.is_some() {
|
||||
return;
|
||||
}
|
||||
self.agg_collector.push(0, doc);
|
||||
match self
|
||||
if let Err(err) = self
|
||||
.agg_collector
|
||||
.check_flush_local(&mut self.aggs_with_accessor)
|
||||
.collect(doc, &mut self.aggs_with_accessor)
|
||||
{
|
||||
Ok(_) => {}
|
||||
Err(e) => {
|
||||
self.error = Some(e);
|
||||
}
|
||||
self.error = Some(err);
|
||||
}
|
||||
}
|
||||
|
||||
/// The query pushes the documents to the collector via this method.
|
||||
///
|
||||
/// Only valid for Collectors that ignore docs
|
||||
fn collect_block(&mut self, docs: &[DocId]) {
|
||||
if self.error.is_some() {
|
||||
return;
|
||||
}
|
||||
|
||||
match self.agg_collector.get_sub_agg_collector().collect(
|
||||
0,
|
||||
docs,
|
||||
&mut self.aggs_with_accessor,
|
||||
) {
|
||||
Ok(_) => {}
|
||||
Err(e) => {
|
||||
self.error = Some(e);
|
||||
}
|
||||
if let Err(err) = self
|
||||
.agg_collector
|
||||
.collect_block(docs, &mut self.aggs_with_accessor)
|
||||
{
|
||||
self.error = Some(err);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -208,13 +199,10 @@ impl SegmentCollector for AggregationSegmentCollector {
|
||||
self.agg_collector.flush(&mut self.aggs_with_accessor)?;
|
||||
|
||||
let mut sub_aggregation_res = IntermediateAggregationResults::default();
|
||||
self.agg_collector
|
||||
.get_sub_agg_collector()
|
||||
.add_intermediate_aggregation_result(
|
||||
&self.aggs_with_accessor,
|
||||
&mut sub_aggregation_res,
|
||||
0,
|
||||
)?;
|
||||
Box::new(self.agg_collector).add_intermediate_aggregation_result(
|
||||
&self.aggs_with_accessor,
|
||||
&mut sub_aggregation_res,
|
||||
)?;
|
||||
|
||||
Ok(sub_aggregation_res)
|
||||
}
|
||||
|
||||
@@ -24,9 +24,7 @@ use super::metric::{
|
||||
};
|
||||
use super::segment_agg_result::AggregationLimitsGuard;
|
||||
use super::{format_date, AggregationError, Key, SerializedKey};
|
||||
use crate::aggregation::agg_result::{
|
||||
AggregationResults, BucketEntries, BucketEntry, FilterBucketResult,
|
||||
};
|
||||
use crate::aggregation::agg_result::{AggregationResults, BucketEntries, BucketEntry};
|
||||
use crate::aggregation::bucket::TermsAggregationInternal;
|
||||
use crate::aggregation::metric::CardinalityCollector;
|
||||
use crate::TantivyError;
|
||||
@@ -181,17 +179,12 @@ impl IntermediateAggregationResults {
|
||||
}
|
||||
|
||||
/// Merge another intermediate aggregation result into this result.
|
||||
pub fn merge_fruits(&mut self, mut other: IntermediateAggregationResults) -> crate::Result<()> {
|
||||
for (key, left) in self.aggs_res.iter_mut() {
|
||||
if let Some(key) = other.aggs_res.remove(key) {
|
||||
left.merge_fruits(key)?;
|
||||
}
|
||||
}
|
||||
// Move remainder of other aggs_res into self.
|
||||
// Note: Currently we don't expect this to happen, as we create empty intermediate results
|
||||
// via [IntermediateAggregationResults::empty_from_req].
|
||||
for (key, value) in other.aggs_res {
|
||||
self.aggs_res.insert(key, value);
|
||||
///
|
||||
/// The order of the values need to be the same on both results. This is ensured when the same
|
||||
/// (key values) are present on the underlying `VecWithNames` struct.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateAggregationResults) -> crate::Result<()> {
|
||||
for (left, right) in self.aggs_res.values_mut().zip(other.aggs_res.into_values()) {
|
||||
left.merge_fruits(right)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
@@ -248,16 +241,11 @@ pub(crate) fn empty_from_req(req: &Aggregation) -> IntermediateAggregationResult
|
||||
Cardinality(_) => IntermediateAggregationResult::Metric(
|
||||
IntermediateMetricResult::Cardinality(CardinalityCollector::default()),
|
||||
),
|
||||
Filter(_) => IntermediateAggregationResult::Bucket(IntermediateBucketResult::Filter {
|
||||
doc_count: 0,
|
||||
sub_aggregations: IntermediateAggregationResults::default(),
|
||||
}),
|
||||
}
|
||||
}
|
||||
|
||||
/// An aggregation is either a bucket or a metric.
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
#[allow(clippy::large_enum_variant)]
|
||||
pub enum IntermediateAggregationResult {
|
||||
/// Bucket variant
|
||||
Bucket(IntermediateBucketResult),
|
||||
@@ -438,13 +426,6 @@ pub enum IntermediateBucketResult {
|
||||
/// The term buckets
|
||||
buckets: IntermediateTermBucketResult,
|
||||
},
|
||||
/// Filter aggregation - a single bucket with sub-aggregations
|
||||
Filter {
|
||||
/// Document count in the filter bucket
|
||||
doc_count: u64,
|
||||
/// Sub-aggregation results
|
||||
sub_aggregations: IntermediateAggregationResults,
|
||||
},
|
||||
}
|
||||
|
||||
impl IntermediateBucketResult {
|
||||
@@ -528,18 +509,6 @@ impl IntermediateBucketResult {
|
||||
req.sub_aggregation(),
|
||||
limits,
|
||||
),
|
||||
IntermediateBucketResult::Filter {
|
||||
doc_count,
|
||||
sub_aggregations,
|
||||
} => {
|
||||
// Convert sub-aggregation results to final format
|
||||
let final_sub_aggregations = sub_aggregations
|
||||
.into_final_result(req.sub_aggregation().clone(), limits.clone())?;
|
||||
Ok(BucketResult::Filter(FilterBucketResult {
|
||||
doc_count,
|
||||
sub_aggregations: final_sub_aggregations,
|
||||
}))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -593,19 +562,6 @@ impl IntermediateBucketResult {
|
||||
|
||||
*buckets_left = buckets?;
|
||||
}
|
||||
(
|
||||
IntermediateBucketResult::Filter {
|
||||
doc_count: doc_count_left,
|
||||
sub_aggregations: sub_aggs_left,
|
||||
},
|
||||
IntermediateBucketResult::Filter {
|
||||
doc_count: doc_count_right,
|
||||
sub_aggregations: sub_aggs_right,
|
||||
},
|
||||
) => {
|
||||
*doc_count_left += doc_count_right;
|
||||
sub_aggs_left.merge_fruits(sub_aggs_right)?;
|
||||
}
|
||||
(IntermediateBucketResult::Range(_), _) => {
|
||||
panic!("try merge on different types")
|
||||
}
|
||||
@@ -615,9 +571,6 @@ impl IntermediateBucketResult {
|
||||
(IntermediateBucketResult::Terms { .. }, _) => {
|
||||
panic!("try merge on different types")
|
||||
}
|
||||
(IntermediateBucketResult::Filter { .. }, _) => {
|
||||
panic!("try merge on different types")
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
@@ -792,7 +745,7 @@ pub struct IntermediateRangeBucketEntry {
|
||||
/// The number of documents in the bucket.
|
||||
pub doc_count: u64,
|
||||
/// The sub_aggregation in this bucket.
|
||||
pub sub_aggregation_res: IntermediateAggregationResults,
|
||||
pub sub_aggregation: IntermediateAggregationResults,
|
||||
/// The from range of the bucket. Equals `f64::MIN` when `None`.
|
||||
pub from: Option<f64>,
|
||||
/// The to range of the bucket. Equals `f64::MAX` when `None`.
|
||||
@@ -811,7 +764,7 @@ impl IntermediateRangeBucketEntry {
|
||||
key: self.key.into(),
|
||||
doc_count: self.doc_count,
|
||||
sub_aggregation: self
|
||||
.sub_aggregation_res
|
||||
.sub_aggregation
|
||||
.into_final_result_internal(req, limits)?,
|
||||
to: self.to,
|
||||
from: self.from,
|
||||
@@ -857,8 +810,7 @@ impl MergeFruits for IntermediateTermBucketEntry {
|
||||
impl MergeFruits for IntermediateRangeBucketEntry {
|
||||
fn merge_fruits(&mut self, other: IntermediateRangeBucketEntry) -> crate::Result<()> {
|
||||
self.doc_count += other.doc_count;
|
||||
self.sub_aggregation_res
|
||||
.merge_fruits(other.sub_aggregation_res)?;
|
||||
self.sub_aggregation.merge_fruits(other.sub_aggregation)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -888,7 +840,7 @@ mod tests {
|
||||
IntermediateRangeBucketEntry {
|
||||
key: IntermediateKey::Str(key.to_string()),
|
||||
doc_count: *doc_count,
|
||||
sub_aggregation_res: Default::default(),
|
||||
sub_aggregation: Default::default(),
|
||||
from: None,
|
||||
to: None,
|
||||
},
|
||||
@@ -921,7 +873,7 @@ mod tests {
|
||||
doc_count: *doc_count,
|
||||
from: None,
|
||||
to: None,
|
||||
sub_aggregation_res: get_sub_test_tree(&[(
|
||||
sub_aggregation: get_sub_test_tree(&[(
|
||||
sub_aggregation_key.to_string(),
|
||||
*sub_aggregation_count,
|
||||
)]),
|
||||
|
||||
@@ -52,8 +52,10 @@ pub struct IntermediateAverage {
|
||||
|
||||
impl IntermediateAverage {
|
||||
/// Creates a new [`IntermediateAverage`] instance from a [`SegmentStatsCollector`].
|
||||
pub(crate) fn from_stats(stats: IntermediateStats) -> Self {
|
||||
Self { stats }
|
||||
pub(crate) fn from_collector(collector: SegmentStatsCollector) -> Self {
|
||||
Self {
|
||||
stats: collector.stats,
|
||||
}
|
||||
}
|
||||
/// Merges the other intermediate result into self.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateAverage) {
|
||||
|
||||
@@ -2,13 +2,15 @@ use std::collections::hash_map::DefaultHasher;
|
||||
use std::hash::{BuildHasher, Hasher};
|
||||
|
||||
use columnar::column_values::CompactSpaceU64Accessor;
|
||||
use columnar::{Column, ColumnType, Dictionary, StrColumn};
|
||||
use columnar::Dictionary;
|
||||
use common::f64_to_u64;
|
||||
use hyperloglogplus::{HyperLogLog, HyperLogLogPlus};
|
||||
use rustc_hash::FxHashSet;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::aggregation::agg_data::AggregationsSegmentCtx;
|
||||
use crate::aggregation::agg_req_with_accessor::{
|
||||
AggregationWithAccessor, AggregationsWithAccessor,
|
||||
};
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateMetricResult,
|
||||
};
|
||||
@@ -95,30 +97,6 @@ pub struct CardinalityAggregationReq {
|
||||
pub missing: Option<Key>,
|
||||
}
|
||||
|
||||
/// Contains all information required by the SegmentCardinalityCollector to perform the
|
||||
/// cardinality aggregation on a segment.
|
||||
pub struct CardinalityAggReqData {
|
||||
/// The column accessor to access the fast field values.
|
||||
pub accessor: Column<u64>,
|
||||
/// The column_type of the field.
|
||||
pub column_type: ColumnType,
|
||||
/// The string dictionary column if the field is of type string.
|
||||
pub str_dict_column: Option<StrColumn>,
|
||||
/// The missing value normalized to the internal u64 representation of the field type.
|
||||
pub missing_value_for_accessor: Option<u64>,
|
||||
/// The name of the aggregation.
|
||||
pub name: String,
|
||||
/// The aggregation request.
|
||||
pub req: CardinalityAggregationReq,
|
||||
}
|
||||
|
||||
impl CardinalityAggReqData {
|
||||
/// Estimate the memory consumption of this struct in bytes.
|
||||
pub fn get_memory_consumption(&self) -> usize {
|
||||
std::mem::size_of::<Self>()
|
||||
}
|
||||
}
|
||||
|
||||
impl CardinalityAggregationReq {
|
||||
/// Creates a new [`CardinalityAggregationReq`] instance from a field name.
|
||||
pub fn from_field_name(field_name: String) -> Self {
|
||||
@@ -133,37 +111,51 @@ impl CardinalityAggregationReq {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub(crate) struct SegmentCardinalityCollector {
|
||||
buckets: Vec<SegmentCardinalityCollectorBucket>,
|
||||
accessor_idx: usize,
|
||||
/// The column accessor to access the fast field values.
|
||||
accessor: Column<u64>,
|
||||
/// The column_type of the field.
|
||||
column_type: ColumnType,
|
||||
/// The missing value normalized to the internal u64 representation of the field type.
|
||||
missing_value_for_accessor: Option<u64>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, PartialEq, Default)]
|
||||
pub(crate) struct SegmentCardinalityCollectorBucket {
|
||||
cardinality: CardinalityCollector,
|
||||
entries: FxHashSet<u64>,
|
||||
column_type: ColumnType,
|
||||
accessor_idx: usize,
|
||||
missing: Option<Key>,
|
||||
}
|
||||
impl SegmentCardinalityCollectorBucket {
|
||||
pub fn new(column_type: ColumnType) -> Self {
|
||||
|
||||
impl SegmentCardinalityCollector {
|
||||
pub fn from_req(column_type: ColumnType, accessor_idx: usize, missing: &Option<Key>) -> Self {
|
||||
Self {
|
||||
cardinality: CardinalityCollector::new(column_type as u8),
|
||||
entries: FxHashSet::default(),
|
||||
entries: Default::default(),
|
||||
column_type,
|
||||
accessor_idx,
|
||||
missing: missing.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn fetch_block_with_field(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_accessor: &mut AggregationWithAccessor,
|
||||
) {
|
||||
if let Some(missing) = agg_accessor.missing_value_for_accessor {
|
||||
agg_accessor.column_block_accessor.fetch_block_with_missing(
|
||||
docs,
|
||||
&agg_accessor.accessor,
|
||||
missing,
|
||||
);
|
||||
} else {
|
||||
agg_accessor
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &agg_accessor.accessor);
|
||||
}
|
||||
}
|
||||
|
||||
fn into_intermediate_metric_result(
|
||||
mut self,
|
||||
req_data: &CardinalityAggReqData,
|
||||
agg_with_accessor: &AggregationWithAccessor,
|
||||
) -> crate::Result<IntermediateMetricResult> {
|
||||
if req_data.column_type == ColumnType::Str {
|
||||
if self.column_type == ColumnType::Str {
|
||||
let fallback_dict = Dictionary::empty();
|
||||
let dict = req_data
|
||||
let dict = agg_with_accessor
|
||||
.str_dict_column
|
||||
.as_ref()
|
||||
.map(|el| el.dictionary())
|
||||
@@ -181,7 +173,6 @@ impl SegmentCardinalityCollectorBucket {
|
||||
term_ids.push(term_ord as u32);
|
||||
}
|
||||
}
|
||||
|
||||
term_ids.sort_unstable();
|
||||
dict.sorted_ords_to_term_cb(term_ids.iter().map(|term| *term as u64), |term| {
|
||||
self.cardinality.sketch.insert_any(&term);
|
||||
@@ -189,10 +180,10 @@ impl SegmentCardinalityCollectorBucket {
|
||||
})?;
|
||||
if has_missing {
|
||||
// Replace missing with the actual value provided
|
||||
let missing_key =
|
||||
req_data.req.missing.as_ref().expect(
|
||||
"Found sentinel value u64::MAX for term_ord but `missing` is not set",
|
||||
);
|
||||
let missing_key = self
|
||||
.missing
|
||||
.as_ref()
|
||||
.expect("Found sentinel value u64::MAX for term_ord but `missing` is not set");
|
||||
match missing_key {
|
||||
Key::Str(missing) => {
|
||||
self.cardinality.sketch.insert_any(&missing);
|
||||
@@ -215,49 +206,16 @@ impl SegmentCardinalityCollectorBucket {
|
||||
}
|
||||
}
|
||||
|
||||
impl SegmentCardinalityCollector {
|
||||
pub fn from_req(
|
||||
column_type: ColumnType,
|
||||
accessor_idx: usize,
|
||||
accessor: Column<u64>,
|
||||
missing_value_for_accessor: Option<u64>,
|
||||
) -> Self {
|
||||
Self {
|
||||
buckets: vec![SegmentCardinalityCollectorBucket::new(column_type); 1],
|
||||
column_type,
|
||||
accessor_idx,
|
||||
accessor,
|
||||
missing_value_for_accessor,
|
||||
}
|
||||
}
|
||||
|
||||
fn fetch_block_with_field(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) {
|
||||
agg_data.column_block_accessor.fetch_block_with_missing(
|
||||
docs,
|
||||
&self.accessor,
|
||||
self.missing_value_for_accessor,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
impl SegmentAggregationCollector for SegmentCardinalityCollector {
|
||||
fn add_intermediate_aggregation_result(
|
||||
&mut self,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
parent_bucket_id: BucketId,
|
||||
) -> crate::Result<()> {
|
||||
self.prepare_max_bucket(parent_bucket_id, agg_data)?;
|
||||
let req_data = &agg_data.get_cardinality_req_data(self.accessor_idx);
|
||||
let name = req_data.name.to_string();
|
||||
// take the bucket in buckets and replace it with a new empty one
|
||||
let bucket = std::mem::take(&mut self.buckets[parent_bucket_id as usize]);
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let agg_with_accessor = &agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
|
||||
let intermediate_result = bucket.into_intermediate_metric_result(req_data)?;
|
||||
let intermediate_result = self.into_intermediate_metric_result(agg_with_accessor)?;
|
||||
results.push(
|
||||
name,
|
||||
IntermediateAggregationResult::Metric(intermediate_result),
|
||||
@@ -268,20 +226,27 @@ impl SegmentAggregationCollector for SegmentCardinalityCollector {
|
||||
|
||||
fn collect(
|
||||
&mut self,
|
||||
parent_bucket_id: BucketId,
|
||||
docs: &[crate::DocId],
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
self.fetch_block_with_field(docs, agg_data);
|
||||
let bucket = &mut self.buckets[parent_bucket_id as usize];
|
||||
self.collect_block(&[doc], agg_with_accessor)
|
||||
}
|
||||
|
||||
let col_block_accessor = &agg_data.column_block_accessor;
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
let bucket_agg_accessor = &mut agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
self.fetch_block_with_field(docs, bucket_agg_accessor);
|
||||
|
||||
let col_block_accessor = &bucket_agg_accessor.column_block_accessor;
|
||||
if self.column_type == ColumnType::Str {
|
||||
for term_ord in col_block_accessor.iter_vals() {
|
||||
bucket.entries.insert(term_ord);
|
||||
self.entries.insert(term_ord);
|
||||
}
|
||||
} else if self.column_type == ColumnType::IpAddr {
|
||||
let compact_space_accessor = self
|
||||
let compact_space_accessor = bucket_agg_accessor
|
||||
.accessor
|
||||
.values
|
||||
.clone()
|
||||
@@ -296,29 +261,16 @@ impl SegmentAggregationCollector for SegmentCardinalityCollector {
|
||||
})?;
|
||||
for val in col_block_accessor.iter_vals() {
|
||||
let val: u128 = compact_space_accessor.compact_to_u128(val as u32);
|
||||
bucket.cardinality.sketch.insert_any(&val);
|
||||
self.cardinality.sketch.insert_any(&val);
|
||||
}
|
||||
} else {
|
||||
for val in col_block_accessor.iter_vals() {
|
||||
bucket.cardinality.sketch.insert_any(&val);
|
||||
self.cardinality.sketch.insert_any(&val);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn prepare_max_bucket(
|
||||
&mut self,
|
||||
max_bucket: BucketId,
|
||||
_agg_data: &AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
if max_bucket as usize >= self.buckets.len() {
|
||||
self.buckets.resize_with(max_bucket as usize + 1, || {
|
||||
SegmentCardinalityCollectorBucket::new(self.column_type)
|
||||
});
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
|
||||
@@ -52,8 +52,10 @@ pub struct IntermediateCount {
|
||||
|
||||
impl IntermediateCount {
|
||||
/// Creates a new [`IntermediateCount`] instance from a [`SegmentStatsCollector`].
|
||||
pub(crate) fn from_stats(stats: IntermediateStats) -> Self {
|
||||
Self { stats }
|
||||
pub(crate) fn from_collector(collector: SegmentStatsCollector) -> Self {
|
||||
Self {
|
||||
stats: collector.stats,
|
||||
}
|
||||
}
|
||||
/// Merges the other intermediate result into self.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateCount) {
|
||||
|
||||
@@ -4,13 +4,15 @@ use std::mem;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::agg_data::AggregationsSegmentCtx;
|
||||
use crate::aggregation::agg_req_with_accessor::{
|
||||
AggregationWithAccessor, AggregationsWithAccessor,
|
||||
};
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateMetricResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::*;
|
||||
use crate::TantivyError;
|
||||
use crate::{DocId, TantivyError};
|
||||
|
||||
/// A multi-value metric aggregation that computes a collection of extended statistics
|
||||
/// on numeric values that are extracted
|
||||
@@ -61,7 +63,7 @@ impl ExtendedStatsAggregation {
|
||||
|
||||
/// Extended stats contains a collection of statistics
|
||||
/// they extends stats adding variance, standard deviation
|
||||
/// and bound information
|
||||
/// and bound informations
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct ExtendedStats {
|
||||
/// The number of documents.
|
||||
@@ -317,28 +319,51 @@ impl IntermediateExtendedStats {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub(crate) struct SegmentExtendedStatsCollector {
|
||||
name: String,
|
||||
missing: Option<u64>,
|
||||
field_type: ColumnType,
|
||||
accessor: columnar::Column<u64>,
|
||||
buckets: Vec<IntermediateExtendedStats>,
|
||||
sigma: Option<f64>,
|
||||
pub(crate) extended_stats: IntermediateExtendedStats,
|
||||
pub(crate) accessor_idx: usize,
|
||||
val_cache: Vec<u64>,
|
||||
}
|
||||
|
||||
impl SegmentExtendedStatsCollector {
|
||||
pub fn from_req(req: &MetricAggReqData, sigma: Option<f64>) -> Self {
|
||||
let missing = req
|
||||
.missing
|
||||
.and_then(|val| f64_to_fastfield_u64(val, &req.field_type));
|
||||
pub fn from_req(
|
||||
field_type: ColumnType,
|
||||
sigma: Option<f64>,
|
||||
accessor_idx: usize,
|
||||
missing: Option<f64>,
|
||||
) -> Self {
|
||||
let missing = missing.and_then(|val| f64_to_fastfield_u64(val, &field_type));
|
||||
Self {
|
||||
name: req.name.clone(),
|
||||
field_type: req.field_type,
|
||||
accessor: req.accessor.clone(),
|
||||
field_type,
|
||||
extended_stats: IntermediateExtendedStats::with_sigma(sigma),
|
||||
accessor_idx,
|
||||
missing,
|
||||
buckets: vec![IntermediateExtendedStats::with_sigma(sigma); 16],
|
||||
sigma,
|
||||
val_cache: Default::default(),
|
||||
}
|
||||
}
|
||||
#[inline]
|
||||
pub(crate) fn collect_block_with_field(
|
||||
&mut self,
|
||||
docs: &[DocId],
|
||||
agg_accessor: &mut AggregationWithAccessor,
|
||||
) {
|
||||
if let Some(missing) = self.missing.as_ref() {
|
||||
agg_accessor.column_block_accessor.fetch_block_with_missing(
|
||||
docs,
|
||||
&agg_accessor.accessor,
|
||||
*missing,
|
||||
);
|
||||
} else {
|
||||
agg_accessor
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &agg_accessor.accessor);
|
||||
}
|
||||
for val in agg_accessor.column_block_accessor.iter_vals() {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.extended_stats.collect(val1);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -346,18 +371,15 @@ impl SegmentExtendedStatsCollector {
|
||||
impl SegmentAggregationCollector for SegmentExtendedStatsCollector {
|
||||
#[inline]
|
||||
fn add_intermediate_aggregation_result(
|
||||
&mut self,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
parent_bucket_id: BucketId,
|
||||
) -> crate::Result<()> {
|
||||
let name = self.name.clone();
|
||||
self.prepare_max_bucket(parent_bucket_id, agg_data)?;
|
||||
let extended_stats = std::mem::take(&mut self.buckets[parent_bucket_id as usize]);
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
results.push(
|
||||
name,
|
||||
IntermediateAggregationResult::Metric(IntermediateMetricResult::ExtendedStats(
|
||||
extended_stats,
|
||||
self.extended_stats,
|
||||
)),
|
||||
)?;
|
||||
|
||||
@@ -367,36 +389,39 @@ impl SegmentAggregationCollector for SegmentExtendedStatsCollector {
|
||||
#[inline]
|
||||
fn collect(
|
||||
&mut self,
|
||||
parent_bucket_id: BucketId,
|
||||
docs: &[crate::DocId],
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
let mut extended_stats = self.buckets[parent_bucket_id as usize].clone();
|
||||
|
||||
agg_data
|
||||
.column_block_accessor
|
||||
.fetch_block_with_missing(docs, &self.accessor, self.missing);
|
||||
for val in agg_data.column_block_accessor.iter_vals() {
|
||||
let val1 = f64_from_fastfield_u64(val, self.field_type);
|
||||
extended_stats.collect(val1);
|
||||
let field = &agg_with_accessor.aggs.values[self.accessor_idx].accessor;
|
||||
if let Some(missing) = self.missing {
|
||||
let mut has_val = false;
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.extended_stats.collect(val1);
|
||||
has_val = true;
|
||||
}
|
||||
if !has_val {
|
||||
self.extended_stats
|
||||
.collect(f64_from_fastfield_u64(missing, &self.field_type));
|
||||
}
|
||||
} else {
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.extended_stats.collect(val1);
|
||||
}
|
||||
}
|
||||
|
||||
// store back
|
||||
self.buckets[parent_bucket_id as usize] = extended_stats;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn prepare_max_bucket(
|
||||
#[inline]
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
max_bucket: BucketId,
|
||||
_agg_data: &AggregationsSegmentCtx,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
if self.buckets.len() <= max_bucket as usize {
|
||||
self.buckets.resize_with(max_bucket as usize + 1, || {
|
||||
IntermediateExtendedStats::with_sigma(self.sigma)
|
||||
});
|
||||
}
|
||||
let field = &mut agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
self.collect_block_with_field(docs, field);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -52,8 +52,10 @@ pub struct IntermediateMax {
|
||||
|
||||
impl IntermediateMax {
|
||||
/// Creates a new [`IntermediateMax`] instance from a [`SegmentStatsCollector`].
|
||||
pub(crate) fn from_stats(stats: IntermediateStats) -> Self {
|
||||
Self { stats }
|
||||
pub(crate) fn from_collector(collector: SegmentStatsCollector) -> Self {
|
||||
Self {
|
||||
stats: collector.stats,
|
||||
}
|
||||
}
|
||||
/// Merges the other intermediate result into self.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateMax) {
|
||||
|
||||
@@ -52,8 +52,10 @@ pub struct IntermediateMin {
|
||||
|
||||
impl IntermediateMin {
|
||||
/// Creates a new [`IntermediateMin`] instance from a [`SegmentStatsCollector`].
|
||||
pub(crate) fn from_stats(stats: IntermediateStats) -> Self {
|
||||
Self { stats }
|
||||
pub(crate) fn from_collector(collector: SegmentStatsCollector) -> Self {
|
||||
Self {
|
||||
stats: collector.stats,
|
||||
}
|
||||
}
|
||||
/// Merges the other intermediate result into self.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateMin) {
|
||||
|
||||
@@ -31,7 +31,6 @@ use std::collections::HashMap;
|
||||
|
||||
pub use average::*;
|
||||
pub use cardinality::*;
|
||||
use columnar::{Column, ColumnType};
|
||||
pub use count::*;
|
||||
pub use extended_stats::*;
|
||||
pub use max::*;
|
||||
@@ -45,33 +44,6 @@ pub use top_hits::*;
|
||||
|
||||
use crate::schema::OwnedValue;
|
||||
|
||||
/// Contains all information required by metric aggregations like avg, min, max, sum, stats,
|
||||
/// extended_stats, count, percentiles.
|
||||
#[repr(C)]
|
||||
pub struct MetricAggReqData {
|
||||
/// True if the field is of number or date type.
|
||||
pub is_number_or_date_type: bool,
|
||||
/// The type of the field.
|
||||
pub field_type: ColumnType,
|
||||
/// The missing value normalized to the internal u64 representation of the field type.
|
||||
pub missing_u64: Option<u64>,
|
||||
/// The column accessor to access the fast field values.
|
||||
pub accessor: Column<u64>,
|
||||
/// Used when converting to intermediate result
|
||||
pub collecting_for: StatsType,
|
||||
/// The missing value
|
||||
pub missing: Option<f64>,
|
||||
/// The name of the aggregation.
|
||||
pub name: String,
|
||||
}
|
||||
|
||||
impl MetricAggReqData {
|
||||
/// Estimate the memory consumption of this struct in bytes.
|
||||
pub fn get_memory_consumption(&self) -> usize {
|
||||
std::mem::size_of::<Self>()
|
||||
}
|
||||
}
|
||||
|
||||
/// Single-metric aggregations use this common result structure.
|
||||
///
|
||||
/// Main reason to wrap it in value is to match elasticsearch output structure.
|
||||
|
||||
@@ -3,13 +3,15 @@ use std::fmt::Debug;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::agg_data::AggregationsSegmentCtx;
|
||||
use crate::aggregation::agg_req_with_accessor::{
|
||||
AggregationWithAccessor, AggregationsWithAccessor,
|
||||
};
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateMetricResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::*;
|
||||
use crate::TantivyError;
|
||||
use crate::{DocId, TantivyError};
|
||||
|
||||
/// # Percentiles
|
||||
///
|
||||
@@ -110,8 +112,7 @@ impl PercentilesAggregationReq {
|
||||
&self.field
|
||||
}
|
||||
|
||||
/// Validates the request parameters.
|
||||
pub fn validate(&self) -> crate::Result<()> {
|
||||
fn validate(&self) -> crate::Result<()> {
|
||||
if let Some(percents) = self.percents.as_ref() {
|
||||
let all_in_range = percents
|
||||
.iter()
|
||||
@@ -130,16 +131,12 @@ impl PercentilesAggregationReq {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub(crate) struct SegmentPercentilesCollector {
|
||||
pub(crate) buckets: Vec<PercentilesCollector>,
|
||||
field_type: ColumnType,
|
||||
pub(crate) percentiles: PercentilesCollector,
|
||||
pub(crate) accessor_idx: usize,
|
||||
/// The type of the field.
|
||||
pub field_type: ColumnType,
|
||||
/// The missing value normalized to the internal u64 representation of the field type.
|
||||
pub missing_u64: Option<u64>,
|
||||
/// The column accessor to access the fast field values.
|
||||
pub accessor: Column<u64>,
|
||||
missing: Option<u64>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Serialize, Deserialize)]
|
||||
@@ -235,17 +232,43 @@ impl PercentilesCollector {
|
||||
|
||||
impl SegmentPercentilesCollector {
|
||||
pub fn from_req_and_validate(
|
||||
req: &PercentilesAggregationReq,
|
||||
field_type: ColumnType,
|
||||
missing_u64: Option<u64>,
|
||||
accessor: Column<u64>,
|
||||
accessor_idx: usize,
|
||||
) -> Self {
|
||||
Self {
|
||||
buckets: Vec::with_capacity(64),
|
||||
) -> crate::Result<Self> {
|
||||
req.validate()?;
|
||||
let missing = req
|
||||
.missing
|
||||
.and_then(|val| f64_to_fastfield_u64(val, &field_type));
|
||||
|
||||
Ok(Self {
|
||||
field_type,
|
||||
missing_u64,
|
||||
accessor,
|
||||
percentiles: PercentilesCollector::new(),
|
||||
accessor_idx,
|
||||
missing,
|
||||
})
|
||||
}
|
||||
#[inline]
|
||||
pub(crate) fn collect_block_with_field(
|
||||
&mut self,
|
||||
docs: &[DocId],
|
||||
agg_accessor: &mut AggregationWithAccessor,
|
||||
) {
|
||||
if let Some(missing) = self.missing.as_ref() {
|
||||
agg_accessor.column_block_accessor.fetch_block_with_missing(
|
||||
docs,
|
||||
&agg_accessor.accessor,
|
||||
*missing,
|
||||
);
|
||||
} else {
|
||||
agg_accessor
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &agg_accessor.accessor);
|
||||
}
|
||||
|
||||
for val in agg_accessor.column_block_accessor.iter_vals() {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.percentiles.collect(val1);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -253,18 +276,12 @@ impl SegmentPercentilesCollector {
|
||||
impl SegmentAggregationCollector for SegmentPercentilesCollector {
|
||||
#[inline]
|
||||
fn add_intermediate_aggregation_result(
|
||||
&mut self,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
parent_bucket_id: BucketId,
|
||||
) -> crate::Result<()> {
|
||||
let name = agg_data.get_metric_req_data(self.accessor_idx).name.clone();
|
||||
self.prepare_max_bucket(parent_bucket_id, agg_data)?;
|
||||
// Swap collector with an empty one to avoid cloning
|
||||
let percentiles_collector = std::mem::take(&mut self.buckets[parent_bucket_id as usize]);
|
||||
|
||||
let intermediate_metric_result =
|
||||
IntermediateMetricResult::Percentiles(percentiles_collector);
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let intermediate_metric_result = IntermediateMetricResult::Percentiles(self.percentiles);
|
||||
|
||||
results.push(
|
||||
name,
|
||||
@@ -277,33 +294,40 @@ impl SegmentAggregationCollector for SegmentPercentilesCollector {
|
||||
#[inline]
|
||||
fn collect(
|
||||
&mut self,
|
||||
parent_bucket_id: BucketId,
|
||||
docs: &[crate::DocId],
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
let percentiles = &mut self.buckets[parent_bucket_id as usize];
|
||||
agg_data.column_block_accessor.fetch_block_with_missing(
|
||||
docs,
|
||||
&self.accessor,
|
||||
self.missing_u64,
|
||||
);
|
||||
let field = &agg_with_accessor.aggs.values[self.accessor_idx].accessor;
|
||||
|
||||
for val in agg_data.column_block_accessor.iter_vals() {
|
||||
let val1 = f64_from_fastfield_u64(val, self.field_type);
|
||||
percentiles.collect(val1);
|
||||
if let Some(missing) = self.missing {
|
||||
let mut has_val = false;
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.percentiles.collect(val1);
|
||||
has_val = true;
|
||||
}
|
||||
if !has_val {
|
||||
self.percentiles
|
||||
.collect(f64_from_fastfield_u64(missing, &self.field_type));
|
||||
}
|
||||
} else {
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.percentiles.collect(val1);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn prepare_max_bucket(
|
||||
#[inline]
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
max_bucket: BucketId,
|
||||
_agg_data: &AggregationsSegmentCtx,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
while self.buckets.len() <= max_bucket as usize {
|
||||
self.buckets.push(PercentilesCollector::new());
|
||||
}
|
||||
let field = &mut agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
self.collect_block_with_field(docs, field);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,16 +1,17 @@
|
||||
use std::fmt::Debug;
|
||||
|
||||
use columnar::{Column, ColumnType};
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::agg_data::AggregationsSegmentCtx;
|
||||
use crate::aggregation::agg_req_with_accessor::{
|
||||
AggregationWithAccessor, AggregationsWithAccessor,
|
||||
};
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateMetricResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::*;
|
||||
use crate::TantivyError;
|
||||
use crate::{DocId, TantivyError};
|
||||
|
||||
/// A multi-value metric aggregation that computes a collection of statistics on numeric values that
|
||||
/// are extracted from the aggregated documents.
|
||||
@@ -83,7 +84,7 @@ impl Stats {
|
||||
|
||||
/// Intermediate result of the stats aggregation that can be combined with other intermediate
|
||||
/// results.
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Serialize, Deserialize)]
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct IntermediateStats {
|
||||
/// The number of extracted values.
|
||||
pub(crate) count: u64,
|
||||
@@ -165,98 +166,106 @@ impl IntermediateStats {
|
||||
}
|
||||
}
|
||||
|
||||
/// The type of stats aggregation to perform.
|
||||
/// Note that not all stats types are supported in the stats aggregation.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub enum StatsType {
|
||||
/// The average of the values.
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub(crate) enum SegmentStatsType {
|
||||
Average,
|
||||
/// The count of the values.
|
||||
Count,
|
||||
/// The maximum value.
|
||||
Max,
|
||||
/// The minimum value.
|
||||
Min,
|
||||
/// The stats (count, sum, min, max, avg) of the values.
|
||||
Stats,
|
||||
/// The extended stats (count, sum, min, max, avg, sum_of_squares, variance, std_deviation,
|
||||
ExtendedStats(Option<f64>), // sigma
|
||||
/// The sum of the values.
|
||||
Sum,
|
||||
/// The percentiles of the values.
|
||||
Percentiles,
|
||||
}
|
||||
|
||||
fn create_collector<const TYPE_ID: u8>(
|
||||
req: &MetricAggReqData,
|
||||
) -> Box<dyn SegmentAggregationCollector> {
|
||||
Box::new(SegmentStatsCollector::<TYPE_ID> {
|
||||
name: req.name.clone(),
|
||||
collecting_for: req.collecting_for,
|
||||
is_number_or_date_type: req.is_number_or_date_type,
|
||||
missing_u64: req.missing_u64,
|
||||
accessor: req.accessor.clone(),
|
||||
buckets: vec![IntermediateStats::default()],
|
||||
})
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub(crate) struct SegmentStatsCollector {
|
||||
missing: Option<u64>,
|
||||
field_type: ColumnType,
|
||||
pub(crate) collecting_for: SegmentStatsType,
|
||||
pub(crate) stats: IntermediateStats,
|
||||
pub(crate) accessor_idx: usize,
|
||||
val_cache: Vec<u64>,
|
||||
}
|
||||
|
||||
/// Build a concrete `SegmentStatsCollector` depending on the column type.
|
||||
pub(crate) fn build_segment_stats_collector(
|
||||
req: &MetricAggReqData,
|
||||
) -> crate::Result<Box<dyn SegmentAggregationCollector>> {
|
||||
match req.field_type {
|
||||
ColumnType::I64 => Ok(create_collector::<{ ColumnType::I64 as u8 }>(req)),
|
||||
ColumnType::U64 => Ok(create_collector::<{ ColumnType::U64 as u8 }>(req)),
|
||||
ColumnType::F64 => Ok(create_collector::<{ ColumnType::F64 as u8 }>(req)),
|
||||
ColumnType::Bool => Ok(create_collector::<{ ColumnType::Bool as u8 }>(req)),
|
||||
ColumnType::DateTime => Ok(create_collector::<{ ColumnType::DateTime as u8 }>(req)),
|
||||
ColumnType::Bytes => Ok(create_collector::<{ ColumnType::Bytes as u8 }>(req)),
|
||||
ColumnType::Str => Ok(create_collector::<{ ColumnType::Str as u8 }>(req)),
|
||||
ColumnType::IpAddr => Ok(create_collector::<{ ColumnType::IpAddr as u8 }>(req)),
|
||||
impl SegmentStatsCollector {
|
||||
pub fn from_req(
|
||||
field_type: ColumnType,
|
||||
collecting_for: SegmentStatsType,
|
||||
accessor_idx: usize,
|
||||
missing: Option<f64>,
|
||||
) -> Self {
|
||||
let missing = missing.and_then(|val| f64_to_fastfield_u64(val, &field_type));
|
||||
Self {
|
||||
field_type,
|
||||
collecting_for,
|
||||
stats: IntermediateStats::default(),
|
||||
accessor_idx,
|
||||
missing,
|
||||
val_cache: Default::default(),
|
||||
}
|
||||
}
|
||||
#[inline]
|
||||
pub(crate) fn collect_block_with_field(
|
||||
&mut self,
|
||||
docs: &[DocId],
|
||||
agg_accessor: &mut AggregationWithAccessor,
|
||||
) {
|
||||
if let Some(missing) = self.missing.as_ref() {
|
||||
agg_accessor.column_block_accessor.fetch_block_with_missing(
|
||||
docs,
|
||||
&agg_accessor.accessor,
|
||||
*missing,
|
||||
);
|
||||
} else {
|
||||
agg_accessor
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &agg_accessor.accessor);
|
||||
}
|
||||
if [
|
||||
ColumnType::I64,
|
||||
ColumnType::U64,
|
||||
ColumnType::F64,
|
||||
ColumnType::DateTime,
|
||||
]
|
||||
.contains(&self.field_type)
|
||||
{
|
||||
for val in agg_accessor.column_block_accessor.iter_vals() {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.stats.collect(val1);
|
||||
}
|
||||
} else {
|
||||
for _val in agg_accessor.column_block_accessor.iter_vals() {
|
||||
// we ignore the value and simply record that we got something
|
||||
self.stats.collect(0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub(crate) struct SegmentStatsCollector<const COLUMN_TYPE_ID: u8> {
|
||||
pub(crate) missing_u64: Option<u64>,
|
||||
pub(crate) accessor: Column<u64>,
|
||||
pub(crate) is_number_or_date_type: bool,
|
||||
pub(crate) buckets: Vec<IntermediateStats>,
|
||||
pub(crate) name: String,
|
||||
pub(crate) collecting_for: StatsType,
|
||||
}
|
||||
|
||||
impl<const COLUMN_TYPE_ID: u8> SegmentAggregationCollector
|
||||
for SegmentStatsCollector<COLUMN_TYPE_ID>
|
||||
{
|
||||
impl SegmentAggregationCollector for SegmentStatsCollector {
|
||||
#[inline]
|
||||
fn add_intermediate_aggregation_result(
|
||||
&mut self,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
parent_bucket_id: BucketId,
|
||||
) -> crate::Result<()> {
|
||||
let name = self.name.clone();
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
|
||||
self.prepare_max_bucket(parent_bucket_id, agg_data)?;
|
||||
let stats = self.buckets[parent_bucket_id as usize];
|
||||
let intermediate_metric_result = match self.collecting_for {
|
||||
StatsType::Average => {
|
||||
IntermediateMetricResult::Average(IntermediateAverage::from_stats(stats))
|
||||
SegmentStatsType::Average => {
|
||||
IntermediateMetricResult::Average(IntermediateAverage::from_collector(*self))
|
||||
}
|
||||
StatsType::Count => {
|
||||
IntermediateMetricResult::Count(IntermediateCount::from_stats(stats))
|
||||
SegmentStatsType::Count => {
|
||||
IntermediateMetricResult::Count(IntermediateCount::from_collector(*self))
|
||||
}
|
||||
StatsType::Max => IntermediateMetricResult::Max(IntermediateMax::from_stats(stats)),
|
||||
StatsType::Min => IntermediateMetricResult::Min(IntermediateMin::from_stats(stats)),
|
||||
StatsType::Stats => IntermediateMetricResult::Stats(stats),
|
||||
StatsType::Sum => IntermediateMetricResult::Sum(IntermediateSum::from_stats(stats)),
|
||||
_ => {
|
||||
return Err(TantivyError::InvalidArgument(format!(
|
||||
"Unsupported stats type for stats aggregation: {:?}",
|
||||
self.collecting_for
|
||||
)))
|
||||
SegmentStatsType::Max => {
|
||||
IntermediateMetricResult::Max(IntermediateMax::from_collector(*self))
|
||||
}
|
||||
SegmentStatsType::Min => {
|
||||
IntermediateMetricResult::Min(IntermediateMin::from_collector(*self))
|
||||
}
|
||||
SegmentStatsType::Stats => IntermediateMetricResult::Stats(self.stats),
|
||||
SegmentStatsType::Sum => {
|
||||
IntermediateMetricResult::Sum(IntermediateSum::from_collector(*self))
|
||||
}
|
||||
};
|
||||
|
||||
@@ -271,69 +280,43 @@ impl<const COLUMN_TYPE_ID: u8> SegmentAggregationCollector
|
||||
#[inline]
|
||||
fn collect(
|
||||
&mut self,
|
||||
parent_bucket_id: BucketId,
|
||||
docs: &[crate::DocId],
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
// TODO: remove once we fetch all values for all bucket ids in one go
|
||||
if docs.len() == 1 && self.missing_u64.is_none() {
|
||||
collect_stats::<COLUMN_TYPE_ID>(
|
||||
&mut self.buckets[parent_bucket_id as usize],
|
||||
self.accessor.values_for_doc(docs[0]),
|
||||
self.is_number_or_date_type,
|
||||
)?;
|
||||
|
||||
return Ok(());
|
||||
let field = &agg_with_accessor.aggs.values[self.accessor_idx].accessor;
|
||||
if let Some(missing) = self.missing {
|
||||
let mut has_val = false;
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.stats.collect(val1);
|
||||
has_val = true;
|
||||
}
|
||||
if !has_val {
|
||||
self.stats
|
||||
.collect(f64_from_fastfield_u64(missing, &self.field_type));
|
||||
}
|
||||
} else {
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.stats.collect(val1);
|
||||
}
|
||||
}
|
||||
agg_data.column_block_accessor.fetch_block_with_missing(
|
||||
docs,
|
||||
&self.accessor,
|
||||
self.missing_u64,
|
||||
);
|
||||
collect_stats::<COLUMN_TYPE_ID>(
|
||||
&mut self.buckets[parent_bucket_id as usize],
|
||||
agg_data.column_block_accessor.iter_vals(),
|
||||
self.is_number_or_date_type,
|
||||
)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn prepare_max_bucket(
|
||||
#[inline]
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
max_bucket: BucketId,
|
||||
_agg_data: &AggregationsSegmentCtx,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
let required_buckets = (max_bucket as usize) + 1;
|
||||
if self.buckets.len() < required_buckets {
|
||||
self.buckets
|
||||
.resize_with(required_buckets, IntermediateStats::default);
|
||||
}
|
||||
let field = &mut agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
self.collect_block_with_field(docs, field);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn collect_stats<const COLUMN_TYPE_ID: u8>(
|
||||
stats: &mut IntermediateStats,
|
||||
vals: impl Iterator<Item = u64>,
|
||||
is_number_or_date_type: bool,
|
||||
) -> crate::Result<()> {
|
||||
if is_number_or_date_type {
|
||||
for val in vals {
|
||||
let val1 = convert_to_f64::<COLUMN_TYPE_ID>(val);
|
||||
stats.collect(val1);
|
||||
}
|
||||
} else {
|
||||
for _val in vals {
|
||||
// we ignore the value and simply record that we got something
|
||||
stats.collect(0.0);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use serde_json::Value;
|
||||
|
||||
@@ -52,8 +52,10 @@ pub struct IntermediateSum {
|
||||
|
||||
impl IntermediateSum {
|
||||
/// Creates a new [`IntermediateSum`] instance from a [`SegmentStatsCollector`].
|
||||
pub(crate) fn from_stats(stats: IntermediateStats) -> Self {
|
||||
Self { stats }
|
||||
pub(crate) fn from_collector(collector: SegmentStatsCollector) -> Self {
|
||||
Self {
|
||||
stats: collector.stats,
|
||||
}
|
||||
}
|
||||
/// Merges the other intermediate result into self.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateSum) {
|
||||
|
||||
@@ -9,41 +9,16 @@ use serde::ser::SerializeMap;
|
||||
use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
||||
|
||||
use super::{TopHitsMetricResult, TopHitsVecEntry};
|
||||
use crate::aggregation::agg_data::AggregationsSegmentCtx;
|
||||
use crate::aggregation::bucket::Order;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateMetricResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::{AggregationError, BucketId};
|
||||
use crate::collector::sort_key::ReverseComparator;
|
||||
use crate::aggregation::AggregationError;
|
||||
use crate::collector::TopNComputer;
|
||||
use crate::schema::OwnedValue;
|
||||
use crate::{DocAddress, DocId, SegmentOrdinal};
|
||||
|
||||
/// Contains all information required by the TopHitsSegmentCollector to perform the
|
||||
/// top_hits aggregation on a segment.
|
||||
#[derive(Default)]
|
||||
pub struct TopHitsAggReqData {
|
||||
/// The accessors to access the fast field values.
|
||||
pub accessors: Vec<(Column<u64>, ColumnType)>,
|
||||
/// The accessors to access the fast field values for retrieving document fields.
|
||||
pub value_accessors: HashMap<String, Vec<DynamicColumn>>,
|
||||
/// The ordinal of the segment this request data is for.
|
||||
pub segment_ordinal: SegmentOrdinal,
|
||||
/// The name of the aggregation.
|
||||
pub name: String,
|
||||
/// The top_hits aggregation request.
|
||||
pub req: TopHitsAggregationReq,
|
||||
}
|
||||
|
||||
impl TopHitsAggReqData {
|
||||
/// Estimate the memory consumption of this struct in bytes.
|
||||
pub fn get_memory_consumption(&self) -> usize {
|
||||
std::mem::size_of::<Self>()
|
||||
}
|
||||
}
|
||||
|
||||
/// # Top Hits
|
||||
///
|
||||
/// The top hits aggregation is a useful tool to answer questions like:
|
||||
@@ -254,7 +229,6 @@ impl TopHitsAggregationReq {
|
||||
self.sort
|
||||
.iter()
|
||||
.map(|KeyOrder { field, .. }| field.as_str())
|
||||
.chain(self.doc_value_fields.iter().map(|s| s.as_str()))
|
||||
.collect()
|
||||
}
|
||||
|
||||
@@ -458,7 +432,7 @@ impl Eq for DocSortValuesAndFields {}
|
||||
#[derive(Clone, Serialize, Deserialize, Debug)]
|
||||
pub struct TopHitsTopNComputer {
|
||||
req: TopHitsAggregationReq,
|
||||
top_n: TopNComputer<DocSortValuesAndFields, DocAddress, ReverseComparator>,
|
||||
top_n: TopNComputer<DocSortValuesAndFields, DocAddress, false>,
|
||||
}
|
||||
|
||||
impl std::cmp::PartialEq for TopHitsTopNComputer {
|
||||
@@ -471,10 +445,7 @@ impl TopHitsTopNComputer {
|
||||
/// Create a new TopHitsCollector
|
||||
pub fn new(req: &TopHitsAggregationReq) -> Self {
|
||||
Self {
|
||||
top_n: TopNComputer::new_with_comparator(
|
||||
req.size + req.from.unwrap_or(0),
|
||||
ReverseComparator,
|
||||
),
|
||||
top_n: TopNComputer::new(req.size + req.from.unwrap_or(0)),
|
||||
req: req.clone(),
|
||||
}
|
||||
}
|
||||
@@ -485,7 +456,7 @@ impl TopHitsTopNComputer {
|
||||
|
||||
pub(crate) fn merge_fruits(&mut self, other_fruit: Self) -> crate::Result<()> {
|
||||
for doc in other_fruit.top_n.into_vec() {
|
||||
self.collect(doc.sort_key, doc.doc);
|
||||
self.collect(doc.feature, doc.doc);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
@@ -497,9 +468,9 @@ impl TopHitsTopNComputer {
|
||||
.into_sorted_vec()
|
||||
.into_iter()
|
||||
.map(|doc| TopHitsVecEntry {
|
||||
sort: doc.sort_key.sorts.iter().map(|f| f.value).collect(),
|
||||
sort: doc.feature.sorts.iter().map(|f| f.value).collect(),
|
||||
doc_value_fields: doc
|
||||
.sort_key
|
||||
.feature
|
||||
.doc_value_fields
|
||||
.into_iter()
|
||||
.map(|(k, v)| (k, v.into()))
|
||||
@@ -520,8 +491,7 @@ impl TopHitsTopNComputer {
|
||||
pub(crate) struct TopHitsSegmentCollector {
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
accessor_idx: usize,
|
||||
buckets: Vec<TopNComputer<Vec<DocValueAndOrder>, DocAddress, ReverseComparator>>,
|
||||
num_hits: usize,
|
||||
top_n: TopNComputer<Vec<DocValueAndOrder>, DocAddress, false>,
|
||||
}
|
||||
|
||||
impl TopHitsSegmentCollector {
|
||||
@@ -530,35 +500,25 @@ impl TopHitsSegmentCollector {
|
||||
accessor_idx: usize,
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
) -> Self {
|
||||
let num_hits = req.size + req.from.unwrap_or(0);
|
||||
Self {
|
||||
num_hits,
|
||||
top_n: TopNComputer::new(req.size + req.from.unwrap_or(0)),
|
||||
segment_ordinal,
|
||||
accessor_idx,
|
||||
buckets: vec![TopNComputer::new_with_comparator(num_hits, ReverseComparator); 1],
|
||||
}
|
||||
}
|
||||
fn get_top_hits_computer(
|
||||
&mut self,
|
||||
parent_bucket_id: BucketId,
|
||||
fn into_top_hits_collector(
|
||||
self,
|
||||
value_accessors: &HashMap<String, Vec<DynamicColumn>>,
|
||||
req: &TopHitsAggregationReq,
|
||||
) -> TopHitsTopNComputer {
|
||||
if parent_bucket_id as usize >= self.buckets.len() {
|
||||
return TopHitsTopNComputer::new(req);
|
||||
}
|
||||
let top_n = std::mem::replace(
|
||||
&mut self.buckets[parent_bucket_id as usize],
|
||||
TopNComputer::new(0),
|
||||
);
|
||||
let mut top_hits_computer = TopHitsTopNComputer::new(req);
|
||||
let top_results = top_n.into_vec();
|
||||
let top_results = self.top_n.into_vec();
|
||||
|
||||
for res in top_results {
|
||||
let doc_value_fields = req.get_document_field_data(value_accessors, res.doc.doc_id);
|
||||
top_hits_computer.collect(
|
||||
DocSortValuesAndFields {
|
||||
sorts: res.sort_key,
|
||||
sorts: res.feature,
|
||||
doc_value_fields,
|
||||
},
|
||||
res.doc,
|
||||
@@ -567,26 +527,61 @@ impl TopHitsSegmentCollector {
|
||||
|
||||
top_hits_computer
|
||||
}
|
||||
|
||||
/// TODO add a specialized variant for a single sort field
|
||||
fn collect_with(
|
||||
&mut self,
|
||||
doc_id: crate::DocId,
|
||||
req: &TopHitsAggregationReq,
|
||||
accessors: &[(Column<u64>, ColumnType)],
|
||||
) -> crate::Result<()> {
|
||||
let sorts: Vec<DocValueAndOrder> = req
|
||||
.sort
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(idx, KeyOrder { order, .. })| {
|
||||
let order = *order;
|
||||
let value = accessors
|
||||
.get(idx)
|
||||
.expect("could not find field in accessors")
|
||||
.0
|
||||
.values_for_doc(doc_id)
|
||||
.next();
|
||||
DocValueAndOrder { value, order }
|
||||
})
|
||||
.collect();
|
||||
|
||||
self.top_n.push(
|
||||
sorts,
|
||||
DocAddress {
|
||||
segment_ord: self.segment_ordinal,
|
||||
doc_id,
|
||||
},
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl SegmentAggregationCollector for TopHitsSegmentCollector {
|
||||
fn add_intermediate_aggregation_result(
|
||||
&mut self,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor,
|
||||
results: &mut crate::aggregation::intermediate_agg_result::IntermediateAggregationResults,
|
||||
parent_bucket_id: BucketId,
|
||||
) -> crate::Result<()> {
|
||||
let req_data = agg_data.get_top_hits_req_data(self.accessor_idx);
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
|
||||
let value_accessors = &req_data.value_accessors;
|
||||
let value_accessors = &agg_with_accessor.aggs.values[self.accessor_idx].value_accessors;
|
||||
let tophits_req = &agg_with_accessor.aggs.values[self.accessor_idx]
|
||||
.agg
|
||||
.agg
|
||||
.as_top_hits()
|
||||
.expect("aggregation request must be of type top hits");
|
||||
|
||||
let intermediate_result = IntermediateMetricResult::TopHits(self.get_top_hits_computer(
|
||||
parent_bucket_id,
|
||||
value_accessors,
|
||||
&req_data.req,
|
||||
));
|
||||
let intermediate_result = IntermediateMetricResult::TopHits(
|
||||
self.into_top_hits_collector(value_accessors, tophits_req),
|
||||
);
|
||||
results.push(
|
||||
req_data.name.to_string(),
|
||||
name,
|
||||
IntermediateAggregationResult::Metric(intermediate_result),
|
||||
)
|
||||
}
|
||||
@@ -594,54 +589,34 @@ impl SegmentAggregationCollector for TopHitsSegmentCollector {
|
||||
/// TODO: Consider a caching layer to reduce the call overhead
|
||||
fn collect(
|
||||
&mut self,
|
||||
parent_bucket_id: BucketId,
|
||||
docs: &[crate::DocId],
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
doc_id: crate::DocId,
|
||||
agg_with_accessor: &mut crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
let top_n = &mut self.buckets[parent_bucket_id as usize];
|
||||
let req_data = agg_data.get_top_hits_req_data(self.accessor_idx);
|
||||
let req = &req_data.req;
|
||||
let accessors = &req_data.accessors;
|
||||
for &doc_id in docs {
|
||||
// TODO: this is terrible, a new vec is allocated for every doc
|
||||
// We can fetch blocks instead
|
||||
// We don't need to store the order for every value
|
||||
let sorts: Vec<DocValueAndOrder> = req
|
||||
.sort
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(idx, KeyOrder { order, .. })| {
|
||||
let order = *order;
|
||||
let value = accessors
|
||||
.get(idx)
|
||||
.expect("could not find field in accessors")
|
||||
.0
|
||||
.values_for_doc(doc_id)
|
||||
.next();
|
||||
DocValueAndOrder { value, order }
|
||||
})
|
||||
.collect();
|
||||
|
||||
top_n.push(
|
||||
sorts,
|
||||
DocAddress {
|
||||
segment_ord: self.segment_ordinal,
|
||||
doc_id,
|
||||
},
|
||||
);
|
||||
}
|
||||
let tophits_req = &agg_with_accessor.aggs.values[self.accessor_idx]
|
||||
.agg
|
||||
.agg
|
||||
.as_top_hits()
|
||||
.expect("aggregation request must be of type top hits");
|
||||
let accessors = &agg_with_accessor.aggs.values[self.accessor_idx].accessors;
|
||||
self.collect_with(doc_id, tophits_req, accessors)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn prepare_max_bucket(
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
max_bucket: BucketId,
|
||||
_agg_data: &AggregationsSegmentCtx,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
self.buckets.resize(
|
||||
(max_bucket as usize) + 1,
|
||||
TopNComputer::new_with_comparator(self.num_hits, ReverseComparator),
|
||||
);
|
||||
let tophits_req = &agg_with_accessor.aggs.values[self.accessor_idx]
|
||||
.agg
|
||||
.agg
|
||||
.as_top_hits()
|
||||
.expect("aggregation request must be of type top hits");
|
||||
let accessors = &agg_with_accessor.aggs.values[self.accessor_idx].accessors;
|
||||
// TODO: Consider getting fields with the column block accessor.
|
||||
for doc in docs {
|
||||
self.collect_with(*doc, tophits_req, accessors)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -659,7 +634,6 @@ mod tests {
|
||||
use crate::aggregation::bucket::tests::get_test_index_from_docs;
|
||||
use crate::aggregation::tests::get_test_index_from_values;
|
||||
use crate::aggregation::AggregationCollector;
|
||||
use crate::collector::sort_key::ReverseComparator;
|
||||
use crate::collector::ComparableDoc;
|
||||
use crate::query::AllQuery;
|
||||
use crate::schema::OwnedValue;
|
||||
@@ -675,7 +649,7 @@ mod tests {
|
||||
|
||||
fn collector_with_capacity(capacity: usize) -> super::TopHitsTopNComputer {
|
||||
super::TopHitsTopNComputer {
|
||||
top_n: super::TopNComputer::new_with_comparator(capacity, ReverseComparator),
|
||||
top_n: super::TopNComputer::new(capacity),
|
||||
req: Default::default(),
|
||||
}
|
||||
}
|
||||
@@ -759,7 +733,7 @@ mod tests {
|
||||
],
|
||||
"from": 0,
|
||||
}
|
||||
}
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
@@ -789,12 +763,12 @@ mod tests {
|
||||
#[test]
|
||||
fn test_top_hits_collector_single_feature() -> crate::Result<()> {
|
||||
let docs = vec![
|
||||
ComparableDoc::<_, _> {
|
||||
ComparableDoc::<_, _, false> {
|
||||
doc: crate::DocAddress {
|
||||
segment_ord: 0,
|
||||
doc_id: 0,
|
||||
},
|
||||
sort_key: DocSortValuesAndFields {
|
||||
feature: DocSortValuesAndFields {
|
||||
sorts: vec![DocValueAndOrder {
|
||||
value: Some(1),
|
||||
order: Order::Asc,
|
||||
@@ -807,7 +781,7 @@ mod tests {
|
||||
segment_ord: 0,
|
||||
doc_id: 2,
|
||||
},
|
||||
sort_key: DocSortValuesAndFields {
|
||||
feature: DocSortValuesAndFields {
|
||||
sorts: vec![DocValueAndOrder {
|
||||
value: Some(3),
|
||||
order: Order::Asc,
|
||||
@@ -820,7 +794,7 @@ mod tests {
|
||||
segment_ord: 0,
|
||||
doc_id: 1,
|
||||
},
|
||||
sort_key: DocSortValuesAndFields {
|
||||
feature: DocSortValuesAndFields {
|
||||
sorts: vec![DocValueAndOrder {
|
||||
value: Some(5),
|
||||
order: Order::Asc,
|
||||
@@ -832,7 +806,7 @@ mod tests {
|
||||
|
||||
let mut collector = collector_with_capacity(3);
|
||||
for doc in docs.clone() {
|
||||
collector.collect(doc.sort_key, doc.doc);
|
||||
collector.collect(doc.feature, doc.doc);
|
||||
}
|
||||
|
||||
let res = collector.into_final_result();
|
||||
@@ -842,15 +816,15 @@ mod tests {
|
||||
super::TopHitsMetricResult {
|
||||
hits: vec![
|
||||
super::TopHitsVecEntry {
|
||||
sort: vec![docs[0].sort_key.sorts[0].value],
|
||||
sort: vec![docs[0].feature.sorts[0].value],
|
||||
doc_value_fields: Default::default(),
|
||||
},
|
||||
super::TopHitsVecEntry {
|
||||
sort: vec![docs[1].sort_key.sorts[0].value],
|
||||
sort: vec![docs[1].feature.sorts[0].value],
|
||||
doc_value_fields: Default::default(),
|
||||
},
|
||||
super::TopHitsVecEntry {
|
||||
sort: vec![docs[2].sort_key.sorts[0].value],
|
||||
sort: vec![docs[2].feature.sorts[0].value],
|
||||
doc_value_fields: Default::default(),
|
||||
},
|
||||
]
|
||||
@@ -888,7 +862,7 @@ mod tests {
|
||||
"mixed.*",
|
||||
],
|
||||
}
|
||||
}
|
||||
}
|
||||
}))?;
|
||||
|
||||
let collector = AggregationCollector::from_aggs(d, Default::default());
|
||||
|
||||
@@ -127,13 +127,12 @@
|
||||
//! [`AggregationResults`](agg_result::AggregationResults) via the
|
||||
//! [`into_final_result`](intermediate_agg_result::IntermediateAggregationResults::into_final_result) method.
|
||||
|
||||
mod accessor_helpers;
|
||||
mod agg_data;
|
||||
mod agg_limits;
|
||||
pub mod agg_req;
|
||||
mod agg_req_with_accessor;
|
||||
pub mod agg_result;
|
||||
pub mod bucket;
|
||||
pub(crate) mod cached_sub_aggs;
|
||||
mod buf_collector;
|
||||
mod collector;
|
||||
mod date;
|
||||
mod error;
|
||||
@@ -141,6 +140,7 @@ pub mod intermediate_agg_result;
|
||||
pub mod metric;
|
||||
|
||||
mod segment_agg_result;
|
||||
use std::collections::HashMap;
|
||||
use std::fmt::Display;
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -160,41 +160,6 @@ use itertools::Itertools;
|
||||
use serde::de::{self, Visitor};
|
||||
use serde::{Deserialize, Deserializer, Serialize};
|
||||
|
||||
use crate::tokenizer::TokenizerManager;
|
||||
|
||||
/// A bucket id is a dense identifier for a bucket within an aggregation.
|
||||
/// It is used to index into a Vec that hold per-bucket data.
|
||||
///
|
||||
/// For example, in a terms aggregation, each unique term will be assigned a incremental BucketId.
|
||||
/// This BucketId will be forwarded to sub-aggregations to identify the parent bucket.
|
||||
///
|
||||
/// This allows to have a single AggregationCollector instance per aggregation,
|
||||
/// that can handle multiple buckets efficiently.
|
||||
///
|
||||
/// The API to call sub-aggregations is therefore a &[(BucketId, &[DocId])].
|
||||
/// For that we'll need a buffer. One Vec per bucket aggregation is needed.
|
||||
pub type BucketId = u32;
|
||||
|
||||
/// Context parameters for aggregation execution
|
||||
///
|
||||
/// This struct holds shared resources needed during aggregation execution:
|
||||
/// - `limits`: Memory and bucket limits for the aggregation
|
||||
/// - `tokenizers`: TokenizerManager for parsing query strings in filter aggregations
|
||||
#[derive(Clone, Default)]
|
||||
pub struct AggContextParams {
|
||||
/// Aggregation limits (memory and bucket count)
|
||||
pub limits: AggregationLimitsGuard,
|
||||
/// Tokenizer manager for query string parsing
|
||||
pub tokenizers: TokenizerManager,
|
||||
}
|
||||
|
||||
impl AggContextParams {
|
||||
/// Create new aggregation context parameters
|
||||
pub fn new(limits: AggregationLimitsGuard, tokenizers: TokenizerManager) -> Self {
|
||||
Self { limits, tokenizers }
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_str_into_f64<E: de::Error>(value: &str) -> Result<f64, E> {
|
||||
let parsed = value
|
||||
.parse::<f64>()
|
||||
@@ -292,6 +257,80 @@ where D: Deserializer<'de> {
|
||||
deserializer.deserialize_any(StringOrFloatVisitor)
|
||||
}
|
||||
|
||||
/// Represents an associative array `(key => values)` in a very efficient manner.
|
||||
#[derive(PartialEq, Serialize, Deserialize)]
|
||||
pub(crate) struct VecWithNames<T> {
|
||||
pub(crate) values: Vec<T>,
|
||||
keys: Vec<String>,
|
||||
}
|
||||
|
||||
impl<T: Clone> Clone for VecWithNames<T> {
|
||||
fn clone(&self) -> Self {
|
||||
Self {
|
||||
values: self.values.clone(),
|
||||
keys: self.keys.clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Default for VecWithNames<T> {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
values: Default::default(),
|
||||
keys: Default::default(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: std::fmt::Debug> std::fmt::Debug for VecWithNames<T> {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_map().entries(self.iter()).finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> From<HashMap<String, T>> for VecWithNames<T> {
|
||||
fn from(map: HashMap<String, T>) -> Self {
|
||||
VecWithNames::from_entries(map.into_iter().collect_vec())
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> VecWithNames<T> {
|
||||
fn from_entries(mut entries: Vec<(String, T)>) -> Self {
|
||||
// Sort to ensure order of elements match across multiple instances
|
||||
entries.sort_by(|left, right| left.0.cmp(&right.0));
|
||||
let mut data = Vec::with_capacity(entries.len());
|
||||
let mut data_names = Vec::with_capacity(entries.len());
|
||||
for entry in entries {
|
||||
data_names.push(entry.0);
|
||||
data.push(entry.1);
|
||||
}
|
||||
VecWithNames {
|
||||
values: data,
|
||||
keys: data_names,
|
||||
}
|
||||
}
|
||||
fn iter(&self) -> impl Iterator<Item = (&str, &T)> + '_ {
|
||||
self.keys().zip(self.values.iter())
|
||||
}
|
||||
fn keys(&self) -> impl Iterator<Item = &str> + '_ {
|
||||
self.keys.iter().map(|key| key.as_str())
|
||||
}
|
||||
fn values_mut(&mut self) -> impl Iterator<Item = &mut T> + '_ {
|
||||
self.values.iter_mut()
|
||||
}
|
||||
fn is_empty(&self) -> bool {
|
||||
self.keys.is_empty()
|
||||
}
|
||||
fn len(&self) -> usize {
|
||||
self.keys.len()
|
||||
}
|
||||
fn get(&self, name: &str) -> Option<&T> {
|
||||
self.keys()
|
||||
.position(|key| key == name)
|
||||
.map(|pos| &self.values[pos])
|
||||
}
|
||||
}
|
||||
|
||||
/// The serialized key is used in a `HashMap`.
|
||||
pub type SerializedKey = String;
|
||||
|
||||
@@ -348,37 +387,19 @@ impl Display for Key {
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn convert_to_f64<const COLUMN_TYPE_ID: u8>(val: u64) -> f64 {
|
||||
if COLUMN_TYPE_ID == ColumnType::U64 as u8 {
|
||||
val as f64
|
||||
} else if COLUMN_TYPE_ID == ColumnType::I64 as u8
|
||||
|| COLUMN_TYPE_ID == ColumnType::DateTime as u8
|
||||
{
|
||||
i64::from_u64(val) as f64
|
||||
} else if COLUMN_TYPE_ID == ColumnType::F64 as u8 {
|
||||
f64::from_u64(val)
|
||||
} else if COLUMN_TYPE_ID == ColumnType::Bool as u8 {
|
||||
val as f64
|
||||
} else {
|
||||
panic!(
|
||||
"ColumnType ID {} cannot be converted to f64 metric",
|
||||
COLUMN_TYPE_ID
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// Inverse of `to_fastfield_u64`. Used to convert to `f64` for metrics.
|
||||
///
|
||||
/// # Panics
|
||||
/// Only `u64`, `f64`, `date`, and `i64` are supported.
|
||||
pub(crate) fn f64_from_fastfield_u64(val: u64, field_type: ColumnType) -> f64 {
|
||||
pub(crate) fn f64_from_fastfield_u64(val: u64, field_type: &ColumnType) -> f64 {
|
||||
match field_type {
|
||||
ColumnType::U64 => convert_to_f64::<{ ColumnType::U64 as u8 }>(val),
|
||||
ColumnType::I64 => convert_to_f64::<{ ColumnType::I64 as u8 }>(val),
|
||||
ColumnType::F64 => convert_to_f64::<{ ColumnType::F64 as u8 }>(val),
|
||||
ColumnType::Bool => convert_to_f64::<{ ColumnType::Bool as u8 }>(val),
|
||||
ColumnType::DateTime => convert_to_f64::<{ ColumnType::DateTime as u8 }>(val),
|
||||
_ => panic!("unexpected type {field_type:?}. This should not happen"),
|
||||
ColumnType::U64 => val as f64,
|
||||
ColumnType::I64 | ColumnType::DateTime => i64::from_u64(val) as f64,
|
||||
ColumnType::F64 => f64::from_u64(val),
|
||||
ColumnType::Bool => val as f64,
|
||||
_ => {
|
||||
panic!("unexpected type {field_type:?}. This should not happen")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -443,10 +464,7 @@ mod tests {
|
||||
query: Option<(&str, &str)>,
|
||||
limits: AggregationLimitsGuard,
|
||||
) -> crate::Result<Value> {
|
||||
let collector = AggregationCollector::from_aggs(
|
||||
agg_req,
|
||||
AggContextParams::new(limits, index.tokenizers().clone()),
|
||||
);
|
||||
let collector = AggregationCollector::from_aggs(agg_req, limits);
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
|
||||
@@ -6,79 +6,179 @@
|
||||
use std::fmt::Debug;
|
||||
|
||||
pub(crate) use super::agg_limits::AggregationLimitsGuard;
|
||||
use super::agg_req::AggregationVariants;
|
||||
use super::agg_req_with_accessor::{AggregationWithAccessor, AggregationsWithAccessor};
|
||||
use super::bucket::{SegmentHistogramCollector, SegmentRangeCollector, SegmentTermCollector};
|
||||
use super::intermediate_agg_result::IntermediateAggregationResults;
|
||||
use crate::aggregation::agg_data::AggregationsSegmentCtx;
|
||||
use crate::aggregation::BucketId;
|
||||
use super::metric::{
|
||||
AverageAggregation, CountAggregation, ExtendedStatsAggregation, MaxAggregation, MinAggregation,
|
||||
SegmentPercentilesCollector, SegmentStatsCollector, SegmentStatsType, StatsAggregation,
|
||||
SumAggregation,
|
||||
};
|
||||
use crate::aggregation::bucket::TermMissingAgg;
|
||||
use crate::aggregation::metric::{
|
||||
CardinalityAggregationReq, SegmentCardinalityCollector, SegmentExtendedStatsCollector,
|
||||
TopHitsSegmentCollector,
|
||||
};
|
||||
|
||||
/// Monotonically increasing provider of BucketIds.
|
||||
#[derive(Debug, Clone, Default)]
|
||||
pub struct BucketIdProvider(u32);
|
||||
impl BucketIdProvider {
|
||||
/// Get the next BucketId.
|
||||
pub fn next_bucket_id(&mut self) -> BucketId {
|
||||
let bucket_id = self.0;
|
||||
self.0 += 1;
|
||||
bucket_id
|
||||
}
|
||||
}
|
||||
|
||||
/// A SegmentAggregationCollector is used to collect aggregation results.
|
||||
pub trait SegmentAggregationCollector: Debug {
|
||||
pub(crate) trait SegmentAggregationCollector: CollectorClone + Debug {
|
||||
fn add_intermediate_aggregation_result(
|
||||
&mut self,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
parent_bucket_id: BucketId,
|
||||
) -> crate::Result<()>;
|
||||
|
||||
/// Note: The caller needs to call `prepare_max_bucket` before calling `collect`.
|
||||
fn collect(
|
||||
&mut self,
|
||||
parent_bucket_id: BucketId,
|
||||
docs: &[crate::DocId],
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()>;
|
||||
|
||||
/// Collect docs for multiple buckets in one call.
|
||||
/// Minimizes dynamic dispatch overhead when collecting many buckets.
|
||||
///
|
||||
/// Note: The caller needs to call `prepare_max_bucket` before calling `collect`.
|
||||
fn collect_multiple(
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
bucket_ids: &[BucketId],
|
||||
docs: &[crate::DocId],
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
debug_assert_eq!(bucket_ids.len(), docs.len());
|
||||
let mut start = 0;
|
||||
while start < bucket_ids.len() {
|
||||
let bucket_id = bucket_ids[start];
|
||||
let mut end = start + 1;
|
||||
while end < bucket_ids.len() && bucket_ids[end] == bucket_id {
|
||||
end += 1;
|
||||
}
|
||||
self.collect(bucket_id, &docs[start..end], agg_data)?;
|
||||
start = end;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Prepare the collector for collecting up to BucketId `max_bucket`.
|
||||
/// This is useful so we can split allocation ahead of time of collecting.
|
||||
fn prepare_max_bucket(
|
||||
&mut self,
|
||||
max_bucket: BucketId,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()>;
|
||||
|
||||
/// Finalize method. Some Aggregator collect blocks of docs before calling `collect_block`.
|
||||
/// This method ensures those staged docs will be collected.
|
||||
fn flush(&mut self, _agg_data: &mut AggregationsSegmentCtx) -> crate::Result<()> {
|
||||
fn flush(&mut self, _agg_with_accessor: &mut AggregationsWithAccessor) -> crate::Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
pub(crate) trait CollectorClone {
|
||||
fn clone_box(&self) -> Box<dyn SegmentAggregationCollector>;
|
||||
}
|
||||
|
||||
impl<T> CollectorClone for T
|
||||
where T: 'static + SegmentAggregationCollector + Clone
|
||||
{
|
||||
fn clone_box(&self) -> Box<dyn SegmentAggregationCollector> {
|
||||
Box::new(self.clone())
|
||||
}
|
||||
}
|
||||
|
||||
impl Clone for Box<dyn SegmentAggregationCollector> {
|
||||
fn clone(&self) -> Box<dyn SegmentAggregationCollector> {
|
||||
self.clone_box()
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn build_segment_agg_collector(
|
||||
req: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<Box<dyn SegmentAggregationCollector>> {
|
||||
// Single collector special case
|
||||
if req.aggs.len() == 1 {
|
||||
let req = &mut req.aggs.values[0];
|
||||
let accessor_idx = 0;
|
||||
return build_single_agg_segment_collector(req, accessor_idx);
|
||||
}
|
||||
|
||||
let agg = GenericSegmentAggregationResultsCollector::from_req_and_validate(req)?;
|
||||
Ok(Box::new(agg))
|
||||
}
|
||||
|
||||
pub(crate) fn build_single_agg_segment_collector(
|
||||
req: &mut AggregationWithAccessor,
|
||||
accessor_idx: usize,
|
||||
) -> crate::Result<Box<dyn SegmentAggregationCollector>> {
|
||||
use AggregationVariants::*;
|
||||
match &req.agg.agg {
|
||||
Terms(terms_req) => {
|
||||
if req.accessors.is_empty() {
|
||||
Ok(Box::new(SegmentTermCollector::from_req_and_validate(
|
||||
terms_req,
|
||||
&mut req.sub_aggregation,
|
||||
req.field_type,
|
||||
accessor_idx,
|
||||
)?))
|
||||
} else {
|
||||
Ok(Box::new(TermMissingAgg::new(
|
||||
accessor_idx,
|
||||
&mut req.sub_aggregation,
|
||||
)?))
|
||||
}
|
||||
}
|
||||
Range(range_req) => Ok(Box::new(SegmentRangeCollector::from_req_and_validate(
|
||||
range_req,
|
||||
&mut req.sub_aggregation,
|
||||
&mut req.limits,
|
||||
req.field_type,
|
||||
accessor_idx,
|
||||
)?)),
|
||||
Histogram(histogram) => Ok(Box::new(SegmentHistogramCollector::from_req_and_validate(
|
||||
histogram.clone(),
|
||||
&mut req.sub_aggregation,
|
||||
req.field_type,
|
||||
accessor_idx,
|
||||
)?)),
|
||||
DateHistogram(histogram) => Ok(Box::new(SegmentHistogramCollector::from_req_and_validate(
|
||||
histogram.to_histogram_req()?,
|
||||
&mut req.sub_aggregation,
|
||||
req.field_type,
|
||||
accessor_idx,
|
||||
)?)),
|
||||
Average(AverageAggregation { missing, .. }) => {
|
||||
Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
req.field_type,
|
||||
SegmentStatsType::Average,
|
||||
accessor_idx,
|
||||
*missing,
|
||||
)))
|
||||
}
|
||||
Count(CountAggregation { missing, .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
req.field_type,
|
||||
SegmentStatsType::Count,
|
||||
accessor_idx,
|
||||
*missing,
|
||||
))),
|
||||
Max(MaxAggregation { missing, .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
req.field_type,
|
||||
SegmentStatsType::Max,
|
||||
accessor_idx,
|
||||
*missing,
|
||||
))),
|
||||
Min(MinAggregation { missing, .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
req.field_type,
|
||||
SegmentStatsType::Min,
|
||||
accessor_idx,
|
||||
*missing,
|
||||
))),
|
||||
Stats(StatsAggregation { missing, .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
req.field_type,
|
||||
SegmentStatsType::Stats,
|
||||
accessor_idx,
|
||||
*missing,
|
||||
))),
|
||||
ExtendedStats(ExtendedStatsAggregation { missing, sigma, .. }) => Ok(Box::new(
|
||||
SegmentExtendedStatsCollector::from_req(req.field_type, *sigma, accessor_idx, *missing),
|
||||
)),
|
||||
Sum(SumAggregation { missing, .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
req.field_type,
|
||||
SegmentStatsType::Sum,
|
||||
accessor_idx,
|
||||
*missing,
|
||||
))),
|
||||
Percentiles(percentiles_req) => Ok(Box::new(
|
||||
SegmentPercentilesCollector::from_req_and_validate(
|
||||
percentiles_req,
|
||||
req.field_type,
|
||||
accessor_idx,
|
||||
)?,
|
||||
)),
|
||||
TopHits(top_hits_req) => Ok(Box::new(TopHitsSegmentCollector::from_req(
|
||||
top_hits_req,
|
||||
accessor_idx,
|
||||
req.segment_ordinal,
|
||||
))),
|
||||
Cardinality(CardinalityAggregationReq { missing, .. }) => Ok(Box::new(
|
||||
SegmentCardinalityCollector::from_req(req.field_type, accessor_idx, missing),
|
||||
)),
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Default)]
|
||||
/// The GenericSegmentAggregationResultsCollector is the generic version of the collector, which
|
||||
/// can handle arbitrary complexity of sub-aggregations. Ideally we never have to pick this one
|
||||
/// and can provide specialized versions instead, that remove some of its overhead.
|
||||
@@ -96,13 +196,12 @@ impl Debug for GenericSegmentAggregationResultsCollector {
|
||||
|
||||
impl SegmentAggregationCollector for GenericSegmentAggregationResultsCollector {
|
||||
fn add_intermediate_aggregation_result(
|
||||
&mut self,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
parent_bucket_id: BucketId,
|
||||
) -> crate::Result<()> {
|
||||
for agg in &mut self.aggs {
|
||||
agg.add_intermediate_aggregation_result(agg_data, results, parent_bucket_id)?;
|
||||
for agg in self.aggs {
|
||||
agg.add_intermediate_aggregation_result(agg_with_accessor, results)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
@@ -110,31 +209,43 @@ impl SegmentAggregationCollector for GenericSegmentAggregationResultsCollector {
|
||||
|
||||
fn collect(
|
||||
&mut self,
|
||||
parent_bucket_id: BucketId,
|
||||
docs: &[crate::DocId],
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
for collector in &mut self.aggs {
|
||||
collector.collect(parent_bucket_id, docs, agg_data)?;
|
||||
}
|
||||
self.collect_block(&[doc], agg_with_accessor)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn flush(&mut self, agg_data: &mut AggregationsSegmentCtx) -> crate::Result<()> {
|
||||
for collector in &mut self.aggs {
|
||||
collector.flush(agg_data)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn prepare_max_bucket(
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
max_bucket: BucketId,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
for collector in &mut self.aggs {
|
||||
collector.prepare_max_bucket(max_bucket, agg_data)?;
|
||||
collector.collect_block(docs, agg_with_accessor)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn flush(&mut self, agg_with_accessor: &mut AggregationsWithAccessor) -> crate::Result<()> {
|
||||
for collector in &mut self.aggs {
|
||||
collector.flush(agg_with_accessor)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl GenericSegmentAggregationResultsCollector {
|
||||
pub(crate) fn from_req_and_validate(req: &mut AggregationsWithAccessor) -> crate::Result<Self> {
|
||||
let aggs = req
|
||||
.aggs
|
||||
.values_mut()
|
||||
.enumerate()
|
||||
.map(|(accessor_idx, req)| build_single_agg_segment_collector(req, accessor_idx))
|
||||
.collect::<crate::Result<Vec<Box<dyn SegmentAggregationCollector>>>>()?;
|
||||
|
||||
Ok(GenericSegmentAggregationResultsCollector { aggs })
|
||||
}
|
||||
}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user