Compare commits

..

20 Commits

Author SHA1 Message Date
Paul Masurel
77505c3d03 Making stemming optional. (#2791)
Fixed code and CI to run on no default features.

Co-authored-by: Paul Masurel <paul.masurel@datadoghq.com>
2026-01-02 12:40:42 +01:00
PSeitz
735c588f4f fix union performance regression (#2790)
* add inlines

* fix union performance regression

Remove unwrap from hotpath generates better assembly.

closes #2788
2026-01-02 12:06:51 +01:00
PSeitz
242a1531bf fix flaky test (#2784)
Signed-off-by: Pascal Seitz <pascal.seitz@gmail.com>
2026-01-02 11:30:51 +01:00
trinity-1686a
6443b63177 document 1bit hole and some queries supporting running with just fastfield (#2779)
* add small doc on some queries using fast field when not indexed

* document 1 unused bit in skiplist
2026-01-02 10:32:37 +01:00
Stu Hood
4987495ee4 Add an erased SortKeyComputer to sort on types which are not known until runtime (#2770)
* Remove PartialOrd bound on compared values.

* Fix declared `SortKey` type of `impl<..> SortKeyComputer for (HeadSortKeyComputer, TailSortKeyComputer)`

* Add a SortByOwnedValue implementation to provide a type-erased column.

* Add support for comparing mismatched `OwnedValue` types.

* Support JSON columns.

* Refer to https://github.com/quickwit-oss/tantivy/issues/2776

* Rename to `SortByErasedType`.

* Comment on transitivity.

Co-authored-by: Paul Masurel <paul@quickwit.io>

* Fix clippy warnings in new code.

---------

Co-authored-by: Paul Masurel <paul@quickwit.io>
2026-01-02 10:28:47 +01:00
Paul Masurel
b11605f045 Addressing clippy comments (#2789)
Co-authored-by: Paul Masurel <paul.masurel@datadoghq.com>
2025-12-31 18:02:00 +01:00
ChangRui-Ryan
75d7989cc6 add benchmark for boolean query with range sub query (#2787) 2025-12-31 12:00:53 +01:00
PSeitz
923f0508f2 seek_exact + cost based intersection (#2538)
* seek_exact + cost based intersection

Adds `seek_exact` and `cost` to `DocSet` for a more efficient intersection.
Unlike `seek`, `seek_exact` does not require the DocSet to advance to the next hit, if the target does not exist.

`cost` allows to address the different DocSet types and their cost
model and is used to determine the DocSet that drives the intersection.
E.g. fast field range queries may do a full scan. Phrase queries load the positions to check if a we have a hit.
They both have a higher cost than their size_hint would suggest.

Improves `size_hint` estimation for intersection and union, by having a
estimation based on random distribution with a co-location factor.

Refactor range query benchmark.

Closes #2531

*Future Work*

Implement `seek_exact` for BufferedUnionScorer and RangeDocSet (fast field range queries)
Evaluate replacing `seek` with `seek_exact` to reduce code complexity

* Apply suggestions from code review

Co-authored-by: Paul Masurel <paul@quickwit.io>

* add API contract verfication

* impl seek_exact on union

* rename seek_exact

* add mixed AND OR test, fix buffered_union

* Add a proptest of BooleanQuery. (#2690)

* fix build

* Increase the document count.

* fix merge conflict

* fix debug assert

* Fix compilation errors after rebase

- Remove duplicate proptest_boolean_query module
- Remove duplicate cost() method implementations
- Fix TopDocs API usage (add .order_by_score())
- Remove duplicate imports
- Remove unused variable assignments

---------

Co-authored-by: Paul Masurel <paul@quickwit.io>
Co-authored-by: Pascal Seitz <pascal.seitz@datadoghq.com>
Co-authored-by: Stu Hood <stuhood@gmail.com>
2025-12-30 14:43:25 +01:00
ChangRui-Ryan
e0b62e00ac optimize RangeDocSet for non-overlapping query ranges (#2783) 2025-12-29 16:55:28 +01:00
Stu Hood
ce97beb86f Add support for natural-order-with-none-highest in TopDocs::order_by (#2780)
* Add `ComparatorEnum::NaturalNoneHigher`.

* Fix comments.
2025-12-23 09:22:20 +01:00
Stu Hood
c0f21a45ae Use a strict comparison in TopNComputer (#2777)
* Remove `(Partial)Ord` from `ComparableDoc`, and unify comparison between `TopNComputer` and `Comparator`.

* Doc cleanups.

* Require Ord for `ComparableDoc`.

* Semantics are actually _ascending_ DocId order.

* Adjust docs again for ascending DocId order.

* minor change

---------

Co-authored-by: Paul Masurel <paul.masurel@datadoghq.com>
2025-12-18 12:13:23 +01:00
Moe
73657dff77 fix: fixed integer overflow in ExpUnrolledLinkedList for large datasets (#2735)
* Fixed the overflow issue.

* Fixed lint issues.

* Applied PR fixes.

* Fixed a lint issue.
2025-12-16 22:57:12 +01:00
Moe
e3c9be1f92 fix: boolean query incorrectly dropping documents when AllScorer is present (#2760)
* Fixed the range issue.

* Fixed the second all scorer issue

* Improved docs + tests

* Improved code.

* Fixed lint issues.

* Improved tests + logic based on PR comments.

* Fixed lint issues.

* Increase the document count.

* Improved the prop-tests

* Expand the index size, and remove unused parameter.

---------

Co-authored-by: Stu Hood <stuhood@gmail.com>
2025-12-16 22:52:02 +01:00
Ming
ba61ed6ef3 fix: vint buffer can overflow (#2778)
* fix vint overflow

* comment
2025-12-16 22:50:41 +01:00
trinity-1686a
d0e1600135 fix bug with minimum_should_match and AllScorer (#2774) 2025-12-14 10:10:45 +01:00
PSeitz-dd
e9020d17d4 fix coverage (#2769) 2025-12-11 11:35:58 +01:00
PSeitz-dd
5ba0031f7d move rand_distr to dev_dep (#2772) 2025-12-11 18:23:50 +08:00
Philippe Noël
22dde8f9ae chore: Make some delete-related functions public (#46) (#2766)
Co-authored-by: Ming <ming.ying.nyc@gmail.com>
2025-12-11 01:22:15 +01:00
Philippe Noël
14cc24614e Make DeleteMeta pub (#2765)
Co-authored-by: Ming Ying <ming.ying.nyc@gmail.com>
2025-12-11 00:11:03 +01:00
Philippe Noël
8a1079b2dc expose AddOperation and with_max_doc (#7) (#2762)
Co-authored-by: Ming <ming.ying.nyc@gmail.com>
2025-12-11 00:10:42 +01:00
67 changed files with 3142 additions and 983 deletions

View File

@@ -15,11 +15,11 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Install Rust
run: rustup toolchain install nightly-2024-07-01 --profile minimal --component llvm-tools-preview
run: rustup toolchain install nightly-2025-12-01 --profile minimal --component llvm-tools-preview
- uses: Swatinem/rust-cache@v2
- uses: taiki-e/install-action@cargo-llvm-cov
- name: Generate code coverage
run: cargo +nightly-2024-07-01 llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
run: cargo +nightly-2025-12-01 llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
continue-on-error: true

View File

@@ -39,11 +39,11 @@ jobs:
- name: Check Formatting
run: cargo +nightly fmt --all -- --check
- name: Check Stable Compilation
run: cargo build --all-features
- name: Check Bench Compilation
run: cargo +nightly bench --no-run --profile=dev --all-features
@@ -59,10 +59,10 @@ jobs:
strategy:
matrix:
features: [
{ label: "all", flags: "mmap,stopwords,lz4-compression,zstd-compression,failpoints" },
{ label: "quickwit", flags: "mmap,quickwit,failpoints" }
]
features:
- { label: "all", flags: "mmap,stopwords,lz4-compression,zstd-compression,failpoints,stemmer" }
- { label: "quickwit", flags: "mmap,quickwit,failpoints" }
- { label: "none", flags: "" }
name: test-${{ matrix.features.label}}
@@ -80,7 +80,21 @@ jobs:
- uses: Swatinem/rust-cache@v2
- name: Run tests
run: cargo +stable nextest run --features ${{ matrix.features.flags }} --verbose --workspace
run: |
# if matrix.feature.flags is empty then run on --lib to avoid compiling examples
# (as most of them rely on mmap) otherwise run all
if [ -z "${{ matrix.features.flags }}" ]; then
cargo +stable nextest run --lib --no-default-features --verbose --workspace
else
cargo +stable nextest run --features ${{ matrix.features.flags }} --no-default-features --verbose --workspace
fi
- name: Run doctests
run: cargo +stable test --doc --features ${{ matrix.features.flags }} --verbose --workspace
run: |
# if matrix.feature.flags is empty then run on --lib to avoid compiling examples
# (as most of them rely on mmap) otherwise run all
if [ -z "${{ matrix.features.flags }}" ]; then
echo "no doctest for no feature flag"
else
cargo +stable test --doc --features ${{ matrix.features.flags }} --verbose --workspace
fi

View File

@@ -37,7 +37,7 @@ fs4 = { version = "0.13.1", optional = true }
levenshtein_automata = "0.2.1"
uuid = { version = "1.0.0", features = ["v4", "serde"] }
crossbeam-channel = "0.5.4"
rust-stemmers = "1.2.0"
rust-stemmers = { version = "1.2.0", optional = true }
downcast-rs = "2.0.1"
bitpacking = { version = "0.9.2", default-features = false, features = [
"bitpacker4x",
@@ -75,12 +75,12 @@ typetag = "0.2.21"
winapi = "0.3.9"
[dev-dependencies]
binggan = "0.14.0"
binggan = "0.14.2"
rand = "0.8.5"
maplit = "1.0.2"
matches = "0.1.9"
pretty_assertions = "1.2.1"
proptest = "1.0.0"
proptest = "1.7.0"
test-log = "0.2.10"
futures = "0.3.21"
paste = "1.0.11"
@@ -113,7 +113,8 @@ debug-assertions = true
overflow-checks = true
[features]
default = ["mmap", "stopwords", "lz4-compression", "columnar-zstd-compression"]
default = ["mmap", "stopwords", "lz4-compression", "columnar-zstd-compression", "stemmer"]
stemmer = ["rust-stemmers"]
mmap = ["fs4", "tempfile", "memmap2"]
stopwords = []
@@ -173,6 +174,18 @@ harness = false
name = "exists_json"
harness = false
[[bench]]
name = "range_query"
harness = false
[[bench]]
name = "and_or_queries"
harness = false
[[bench]]
name = "range_queries"
harness = false
[[bench]]
name = "bool_queries_with_range"
harness = false

View File

@@ -0,0 +1,288 @@
use binggan::{black_box, BenchGroup, BenchRunner};
use rand::prelude::*;
use rand::rngs::StdRng;
use rand::SeedableRng;
use tantivy::collector::{Collector, Count, DocSetCollector, TopDocs};
use tantivy::query::{Query, QueryParser};
use tantivy::schema::{Schema, FAST, INDEXED, TEXT};
use tantivy::{doc, Index, Order, ReloadPolicy, Searcher};
#[derive(Clone)]
struct BenchIndex {
#[allow(dead_code)]
index: Index,
searcher: Searcher,
query_parser: QueryParser,
}
fn build_shared_indices(num_docs: usize, p_title_a: f32, distribution: &str) -> BenchIndex {
// Unified schema
let mut schema_builder = Schema::builder();
let f_title = schema_builder.add_text_field("title", TEXT);
let f_num_rand = schema_builder.add_u64_field("num_rand", INDEXED);
let f_num_asc = schema_builder.add_u64_field("num_asc", INDEXED);
let f_num_rand_fast = schema_builder.add_u64_field("num_rand_fast", INDEXED | FAST);
let f_num_asc_fast = schema_builder.add_u64_field("num_asc_fast", INDEXED | FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
// Populate index with stable RNG for reproducibility.
let mut rng = StdRng::from_seed([7u8; 32]);
{
let mut writer = index.writer_with_num_threads(1, 4_000_000_000).unwrap();
match distribution {
"dense" => {
for doc_id in 0..num_docs {
// Always add title to avoid empty documents
let title_token = if rng.gen_bool(p_title_a as f64) {
"a"
} else {
"b"
};
let num_rand = rng.gen_range(0u64..1000u64);
let num_asc = (doc_id / 10000) as u64;
writer
.add_document(doc!(
f_title=>title_token,
f_num_rand=>num_rand,
f_num_asc=>num_asc,
f_num_rand_fast=>num_rand,
f_num_asc_fast=>num_asc,
))
.unwrap();
}
}
"sparse" => {
for doc_id in 0..num_docs {
// Always add title to avoid empty documents
let title_token = if rng.gen_bool(p_title_a as f64) {
"a"
} else {
"b"
};
let num_rand = rng.gen_range(0u64..10000000u64);
let num_asc = doc_id as u64;
writer
.add_document(doc!(
f_title=>title_token,
f_num_rand=>num_rand,
f_num_asc=>num_asc,
f_num_rand_fast=>num_rand,
f_num_asc_fast=>num_asc,
))
.unwrap();
}
}
_ => {
panic!("Unsupported distribution type");
}
}
writer.commit().unwrap();
}
// Prepare reader/searcher once.
let reader = index
.reader_builder()
.reload_policy(ReloadPolicy::Manual)
.try_into()
.unwrap();
let searcher = reader.searcher();
// Build query parser for title field
let qp_title = QueryParser::for_index(&index, vec![f_title]);
BenchIndex {
index,
searcher,
query_parser: qp_title,
}
}
fn main() {
// Prepare corpora with varying scenarios
let scenarios = vec![
(
"dense and 99% a".to_string(),
10_000_000,
0.99,
"dense",
0,
9,
),
(
"dense and 99% a".to_string(),
10_000_000,
0.99,
"dense",
990,
999,
),
(
"sparse and 99% a".to_string(),
10_000_000,
0.99,
"sparse",
0,
9,
),
(
"sparse and 99% a".to_string(),
10_000_000,
0.99,
"sparse",
9_999_990,
9_999_999,
),
];
let mut runner = BenchRunner::new();
for (scenario_id, n, p_title_a, num_rand_distribution, range_low, range_high) in scenarios {
// Build index for this scenario
let bench_index = build_shared_indices(n, p_title_a, num_rand_distribution);
// Create benchmark group
let mut group = runner.new_group();
// Now set the name (this moves scenario_id)
group.set_name(scenario_id);
// Define all four field types
let field_names = ["num_rand", "num_asc", "num_rand_fast", "num_asc_fast"];
// Define the three terms we want to test with
let terms = ["a", "b", "z"];
// Generate all combinations of terms and field names
let mut queries = Vec::new();
for &term in &terms {
for &field_name in &field_names {
let query_str = format!(
"{} AND {}:[{} TO {}]",
term, field_name, range_low, range_high
);
queries.push((query_str, field_name.to_string()));
}
}
let query_str = format!(
"{}:[{} TO {}] AND {}:[{} TO {}]",
"num_rand_fast", range_low, range_high, "num_asc_fast", range_low, range_high
);
queries.push((query_str, "num_asc_fast".to_string()));
// Run all benchmark tasks for each query and its corresponding field name
for (query_str, field_name) in queries {
run_benchmark_tasks(&mut group, &bench_index, &query_str, &field_name);
}
group.run();
}
}
/// Run all benchmark tasks for a given query string and field name
fn run_benchmark_tasks(
bench_group: &mut BenchGroup,
bench_index: &BenchIndex,
query_str: &str,
field_name: &str,
) {
// Test count
add_bench_task(bench_group, bench_index, query_str, Count, "count");
// Test all results
add_bench_task(
bench_group,
bench_index,
query_str,
DocSetCollector,
"all results",
);
// Test top 100 by the field (if it's a FAST field)
if field_name.ends_with("_fast") {
// Ascending order
{
let collector_name = format!("top100_by_{}_asc", field_name);
let field_name_owned = field_name.to_string();
add_bench_task(
bench_group,
bench_index,
query_str,
TopDocs::with_limit(100).order_by_fast_field::<u64>(field_name_owned, Order::Asc),
&collector_name,
);
}
// Descending order
{
let collector_name = format!("top100_by_{}_desc", field_name);
let field_name_owned = field_name.to_string();
add_bench_task(
bench_group,
bench_index,
query_str,
TopDocs::with_limit(100).order_by_fast_field::<u64>(field_name_owned, Order::Desc),
&collector_name,
);
}
}
}
fn add_bench_task<C: Collector + 'static>(
bench_group: &mut BenchGroup,
bench_index: &BenchIndex,
query_str: &str,
collector: C,
collector_name: &str,
) {
let task_name = format!("{}_{}", query_str.replace(" ", "_"), collector_name);
let query = bench_index.query_parser.parse_query(query_str).unwrap();
let search_task = SearchTask {
searcher: bench_index.searcher.clone(),
collector,
query,
};
bench_group.register(task_name, move |_| black_box(search_task.run()));
}
struct SearchTask<C: Collector> {
searcher: Searcher,
collector: C,
query: Box<dyn Query>,
}
impl<C: Collector> SearchTask<C> {
#[inline(never)]
pub fn run(&self) -> usize {
let result = self.searcher.search(&self.query, &self.collector).unwrap();
if let Some(count) = (&result as &dyn std::any::Any).downcast_ref::<usize>() {
*count
} else if let Some(top_docs) = (&result as &dyn std::any::Any)
.downcast_ref::<Vec<(Option<u64>, tantivy::DocAddress)>>()
{
top_docs.len()
} else if let Some(top_docs) =
(&result as &dyn std::any::Any).downcast_ref::<Vec<(u64, tantivy::DocAddress)>>()
{
top_docs.len()
} else if let Some(doc_set) = (&result as &dyn std::any::Any)
.downcast_ref::<std::collections::HashSet<tantivy::DocAddress>>()
{
doc_set.len()
} else {
eprintln!(
"Unknown collector result type: {:?}",
std::any::type_name::<C::Fruit>()
);
0
}
}
}

365
benches/range_queries.rs Normal file
View File

@@ -0,0 +1,365 @@
use std::ops::Bound;
use binggan::{black_box, BenchGroup, BenchRunner};
use rand::prelude::*;
use rand::rngs::StdRng;
use rand::SeedableRng;
use tantivy::collector::{Count, DocSetCollector, TopDocs};
use tantivy::query::RangeQuery;
use tantivy::schema::{Schema, FAST, INDEXED};
use tantivy::{doc, Index, Order, ReloadPolicy, Searcher, Term};
#[derive(Clone)]
struct BenchIndex {
#[allow(dead_code)]
index: Index,
searcher: Searcher,
}
fn build_shared_indices(num_docs: usize, distribution: &str) -> BenchIndex {
// Schema with fast fields only
let mut schema_builder = Schema::builder();
let f_num_rand_fast = schema_builder.add_u64_field("num_rand_fast", INDEXED | FAST);
let f_num_asc_fast = schema_builder.add_u64_field("num_asc_fast", INDEXED | FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
// Populate index with stable RNG for reproducibility.
let mut rng = StdRng::from_seed([7u8; 32]);
{
let mut writer = index.writer_with_num_threads(1, 4_000_000_000).unwrap();
match distribution {
"dense" => {
for doc_id in 0..num_docs {
let num_rand = rng.gen_range(0u64..1000u64);
let num_asc = (doc_id / 10000) as u64;
writer
.add_document(doc!(
f_num_rand_fast=>num_rand,
f_num_asc_fast=>num_asc,
))
.unwrap();
}
}
"sparse" => {
for doc_id in 0..num_docs {
let num_rand = rng.gen_range(0u64..10000000u64);
let num_asc = doc_id as u64;
writer
.add_document(doc!(
f_num_rand_fast=>num_rand,
f_num_asc_fast=>num_asc,
))
.unwrap();
}
}
_ => {
panic!("Unsupported distribution type");
}
}
writer.commit().unwrap();
}
// Prepare reader/searcher once.
let reader = index
.reader_builder()
.reload_policy(ReloadPolicy::Manual)
.try_into()
.unwrap();
let searcher = reader.searcher();
BenchIndex { index, searcher }
}
fn main() {
// Prepare corpora with varying scenarios
let scenarios = vec![
// Dense distribution - random values in small range (0-999)
(
"dense_values_search_low_value_range".to_string(),
10_000_000,
"dense",
0,
9,
),
(
"dense_values_search_high_value_range".to_string(),
10_000_000,
"dense",
990,
999,
),
(
"dense_values_search_out_of_range".to_string(),
10_000_000,
"dense",
1000,
1002,
),
(
"sparse_values_search_low_value_range".to_string(),
10_000_000,
"sparse",
0,
9,
),
(
"sparse_values_search_high_value_range".to_string(),
10_000_000,
"sparse",
9_999_990,
9_999_999,
),
(
"sparse_values_search_out_of_range".to_string(),
10_000_000,
"sparse",
10_000_000,
10_000_002,
),
];
let mut runner = BenchRunner::new();
for (scenario_id, n, num_rand_distribution, range_low, range_high) in scenarios {
// Build index for this scenario
let bench_index = build_shared_indices(n, num_rand_distribution);
// Create benchmark group
let mut group = runner.new_group();
// Now set the name (this moves scenario_id)
group.set_name(scenario_id);
// Define fast field types
let field_names = ["num_rand_fast", "num_asc_fast"];
// Generate range queries for fast fields
for &field_name in &field_names {
// Create the range query
let field = bench_index.searcher.schema().get_field(field_name).unwrap();
let lower_term = Term::from_field_u64(field, range_low);
let upper_term = Term::from_field_u64(field, range_high);
let query = RangeQuery::new(Bound::Included(lower_term), Bound::Included(upper_term));
run_benchmark_tasks(
&mut group,
&bench_index,
query,
field_name,
range_low,
range_high,
);
}
group.run();
}
}
/// Run all benchmark tasks for a given range query and field name
fn run_benchmark_tasks(
bench_group: &mut BenchGroup,
bench_index: &BenchIndex,
query: RangeQuery,
field_name: &str,
range_low: u64,
range_high: u64,
) {
// Test count
add_bench_task_count(
bench_group,
bench_index,
query.clone(),
"count",
field_name,
range_low,
range_high,
);
// Test top 100 by the field (ascending order)
{
let collector_name = format!("top100_by_{}_asc", field_name);
let field_name_owned = field_name.to_string();
add_bench_task_top100_asc(
bench_group,
bench_index,
query.clone(),
&collector_name,
field_name,
range_low,
range_high,
field_name_owned,
);
}
// Test top 100 by the field (descending order)
{
let collector_name = format!("top100_by_{}_desc", field_name);
let field_name_owned = field_name.to_string();
add_bench_task_top100_desc(
bench_group,
bench_index,
query,
&collector_name,
field_name,
range_low,
range_high,
field_name_owned,
);
}
}
fn add_bench_task_count(
bench_group: &mut BenchGroup,
bench_index: &BenchIndex,
query: RangeQuery,
collector_name: &str,
field_name: &str,
range_low: u64,
range_high: u64,
) {
let task_name = format!(
"range_{}_[{} TO {}]_{}",
field_name, range_low, range_high, collector_name
);
let search_task = CountSearchTask {
searcher: bench_index.searcher.clone(),
query,
};
bench_group.register(task_name, move |_| black_box(search_task.run()));
}
fn add_bench_task_docset(
bench_group: &mut BenchGroup,
bench_index: &BenchIndex,
query: RangeQuery,
collector_name: &str,
field_name: &str,
range_low: u64,
range_high: u64,
) {
let task_name = format!(
"range_{}_[{} TO {}]_{}",
field_name, range_low, range_high, collector_name
);
let search_task = DocSetSearchTask {
searcher: bench_index.searcher.clone(),
query,
};
bench_group.register(task_name, move |_| black_box(search_task.run()));
}
fn add_bench_task_top100_asc(
bench_group: &mut BenchGroup,
bench_index: &BenchIndex,
query: RangeQuery,
collector_name: &str,
field_name: &str,
range_low: u64,
range_high: u64,
field_name_owned: String,
) {
let task_name = format!(
"range_{}_[{} TO {}]_{}",
field_name, range_low, range_high, collector_name
);
let search_task = Top100AscSearchTask {
searcher: bench_index.searcher.clone(),
query,
field_name: field_name_owned,
};
bench_group.register(task_name, move |_| black_box(search_task.run()));
}
fn add_bench_task_top100_desc(
bench_group: &mut BenchGroup,
bench_index: &BenchIndex,
query: RangeQuery,
collector_name: &str,
field_name: &str,
range_low: u64,
range_high: u64,
field_name_owned: String,
) {
let task_name = format!(
"range_{}_[{} TO {}]_{}",
field_name, range_low, range_high, collector_name
);
let search_task = Top100DescSearchTask {
searcher: bench_index.searcher.clone(),
query,
field_name: field_name_owned,
};
bench_group.register(task_name, move |_| black_box(search_task.run()));
}
struct CountSearchTask {
searcher: Searcher,
query: RangeQuery,
}
impl CountSearchTask {
#[inline(never)]
pub fn run(&self) -> usize {
self.searcher.search(&self.query, &Count).unwrap()
}
}
struct DocSetSearchTask {
searcher: Searcher,
query: RangeQuery,
}
impl DocSetSearchTask {
#[inline(never)]
pub fn run(&self) -> usize {
let result = self.searcher.search(&self.query, &DocSetCollector).unwrap();
result.len()
}
}
struct Top100AscSearchTask {
searcher: Searcher,
query: RangeQuery,
field_name: String,
}
impl Top100AscSearchTask {
#[inline(never)]
pub fn run(&self) -> usize {
let collector =
TopDocs::with_limit(100).order_by_fast_field::<u64>(&self.field_name, Order::Asc);
let result = self.searcher.search(&self.query, &collector).unwrap();
for (_score, doc_address) in &result {
let _doc: tantivy::TantivyDocument = self.searcher.doc(*doc_address).unwrap();
}
result.len()
}
}
struct Top100DescSearchTask {
searcher: Searcher,
query: RangeQuery,
field_name: String,
}
impl Top100DescSearchTask {
#[inline(never)]
pub fn run(&self) -> usize {
let collector =
TopDocs::with_limit(100).order_by_fast_field::<u64>(&self.field_name, Order::Desc);
let result = self.searcher.search(&self.query, &collector).unwrap();
for (_score, doc_address) in &result {
let _doc: tantivy::TantivyDocument = self.searcher.doc(*doc_address).unwrap();
}
result.len()
}
}

260
benches/range_query.rs Normal file
View File

@@ -0,0 +1,260 @@
use std::fmt::Display;
use std::net::Ipv6Addr;
use std::ops::RangeInclusive;
use binggan::plugins::PeakMemAllocPlugin;
use binggan::{black_box, BenchRunner, OutputValue, PeakMemAlloc, INSTRUMENTED_SYSTEM};
use columnar::MonotonicallyMappableToU128;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use tantivy::collector::{Count, TopDocs};
use tantivy::query::QueryParser;
use tantivy::schema::*;
use tantivy::{doc, Index};
#[global_allocator]
pub static GLOBAL: &PeakMemAlloc<std::alloc::System> = &INSTRUMENTED_SYSTEM;
fn main() {
bench_range_query();
}
fn bench_range_query() {
let index = get_index_0_to_100();
let mut runner = BenchRunner::new();
runner.add_plugin(PeakMemAllocPlugin::new(GLOBAL));
runner.set_name("range_query on u64");
let field_name_and_descr: Vec<_> = vec![
("id", "Single Valued Range Field"),
("ids", "Multi Valued Range Field"),
];
let range_num_hits = vec![
("90_percent", get_90_percent()),
("10_percent", get_10_percent()),
("1_percent", get_1_percent()),
];
test_range(&mut runner, &index, &field_name_and_descr, range_num_hits);
runner.set_name("range_query on ip");
let field_name_and_descr: Vec<_> = vec![
("ip", "Single Valued Range Field"),
("ips", "Multi Valued Range Field"),
];
let range_num_hits = vec![
("90_percent", get_90_percent_ip()),
("10_percent", get_10_percent_ip()),
("1_percent", get_1_percent_ip()),
];
test_range(&mut runner, &index, &field_name_and_descr, range_num_hits);
}
fn test_range<T: Display>(
runner: &mut BenchRunner,
index: &Index,
field_name_and_descr: &[(&str, &str)],
range_num_hits: Vec<(&str, RangeInclusive<T>)>,
) {
for (field, suffix) in field_name_and_descr {
let term_num_hits = vec![
("", ""),
("1_percent", "veryfew"),
("10_percent", "few"),
("90_percent", "most"),
];
let mut group = runner.new_group();
group.set_name(suffix);
// all intersect combinations
for (range_name, range) in &range_num_hits {
for (term_name, term) in &term_num_hits {
let index = &index;
let test_name = if term_name.is_empty() {
format!("id_range_hit_{}", range_name)
} else {
format!(
"id_range_hit_{}_intersect_with_term_{}",
range_name, term_name
)
};
group.register(test_name, move |_| {
let query = if term_name.is_empty() {
"".to_string()
} else {
format!("AND id_name:{}", term)
};
black_box(execute_query(field, range, &query, index));
});
}
}
group.run();
}
}
fn get_index_0_to_100() -> Index {
let mut rng = StdRng::from_seed([1u8; 32]);
let num_vals = 100_000;
let docs: Vec<_> = (0..num_vals)
.map(|_i| {
let id_name = if rng.gen_bool(0.01) {
"veryfew".to_string() // 1%
} else if rng.gen_bool(0.1) {
"few".to_string() // 9%
} else {
"most".to_string() // 90%
};
Doc {
id_name,
id: rng.gen_range(0..100),
// Multiply by 1000, so that we create most buckets in the compact space
// The benches depend on this range to select n-percent of elements with the
// methods below.
ip: Ipv6Addr::from_u128(rng.gen_range(0..100) * 1000),
}
})
.collect();
create_index_from_docs(&docs)
}
#[derive(Clone, Debug)]
pub struct Doc {
pub id_name: String,
pub id: u64,
pub ip: Ipv6Addr,
}
pub fn create_index_from_docs(docs: &[Doc]) -> Index {
let mut schema_builder = Schema::builder();
let id_u64_field = schema_builder.add_u64_field("id", INDEXED | STORED | FAST);
let ids_u64_field =
schema_builder.add_u64_field("ids", NumericOptions::default().set_fast().set_indexed());
let id_f64_field = schema_builder.add_f64_field("id_f64", INDEXED | STORED | FAST);
let ids_f64_field = schema_builder.add_f64_field(
"ids_f64",
NumericOptions::default().set_fast().set_indexed(),
);
let id_i64_field = schema_builder.add_i64_field("id_i64", INDEXED | STORED | FAST);
let ids_i64_field = schema_builder.add_i64_field(
"ids_i64",
NumericOptions::default().set_fast().set_indexed(),
);
let text_field = schema_builder.add_text_field("id_name", STRING | STORED);
let text_field2 = schema_builder.add_text_field("id_name_fast", STRING | STORED | FAST);
let ip_field = schema_builder.add_ip_addr_field("ip", FAST);
let ips_field = schema_builder.add_ip_addr_field("ips", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
{
let mut index_writer = index.writer_with_num_threads(1, 50_000_000).unwrap();
for doc in docs.iter() {
index_writer
.add_document(doc!(
ids_i64_field => doc.id as i64,
ids_i64_field => doc.id as i64,
ids_f64_field => doc.id as f64,
ids_f64_field => doc.id as f64,
ids_u64_field => doc.id,
ids_u64_field => doc.id,
id_u64_field => doc.id,
id_f64_field => doc.id as f64,
id_i64_field => doc.id as i64,
text_field => doc.id_name.to_string(),
text_field2 => doc.id_name.to_string(),
ips_field => doc.ip,
ips_field => doc.ip,
ip_field => doc.ip,
))
.unwrap();
}
index_writer.commit().unwrap();
}
index
}
fn get_90_percent() -> RangeInclusive<u64> {
0..=90
}
fn get_10_percent() -> RangeInclusive<u64> {
0..=10
}
fn get_1_percent() -> RangeInclusive<u64> {
10..=10
}
fn get_90_percent_ip() -> RangeInclusive<Ipv6Addr> {
let start = Ipv6Addr::from_u128(0);
let end = Ipv6Addr::from_u128(90 * 1000);
start..=end
}
fn get_10_percent_ip() -> RangeInclusive<Ipv6Addr> {
let start = Ipv6Addr::from_u128(0);
let end = Ipv6Addr::from_u128(10 * 1000);
start..=end
}
fn get_1_percent_ip() -> RangeInclusive<Ipv6Addr> {
let start = Ipv6Addr::from_u128(10 * 1000);
let end = Ipv6Addr::from_u128(10 * 1000);
start..=end
}
struct NumHits {
count: usize,
}
impl OutputValue for NumHits {
fn column_title() -> &'static str {
"NumHits"
}
fn format(&self) -> Option<String> {
Some(self.count.to_string())
}
}
fn execute_query<T: Display>(
field: &str,
id_range: &RangeInclusive<T>,
suffix: &str,
index: &Index,
) -> NumHits {
let gen_query_inclusive = |from: &T, to: &T| {
format!(
"{}:[{} TO {}] {}",
field,
&from.to_string(),
&to.to_string(),
suffix
)
};
let query = gen_query_inclusive(id_range.start(), id_range.end());
execute_query_(&query, index)
}
fn execute_query_(query: &str, index: &Index) -> NumHits {
let query_from_text = |text: &str| {
QueryParser::for_index(index, vec![])
.parse_query(text)
.unwrap()
};
let query = query_from_text(query);
let reader = index.reader().unwrap();
let searcher = reader.searcher();
let num_hits = searcher
.search(&query, &(TopDocs::with_limit(10).order_by_score(), Count))
.unwrap()
.1;
NumHits { count: num_hits }
}

View File

@@ -41,12 +41,6 @@ fn transform_range_before_linear_transformation(
if range.is_empty() {
return None;
}
if stats.min_value > *range.end() {
return None;
}
if stats.max_value < *range.start() {
return None;
}
let shifted_range =
range.start().saturating_sub(stats.min_value)..=range.end().saturating_sub(stats.min_value);
let start_before_gcd_multiplication: u64 = div_ceil(*shifted_range.start(), stats.gcd);

View File

@@ -55,44 +55,22 @@ pub(crate) fn get_numeric_or_date_column_types() -> &'static [ColumnType] {
]
}
/// Get fast field reader or return an error if the field doesn't exist.
/// Get fast field reader or empty as default.
pub(crate) fn get_ff_reader(
reader: &SegmentReader,
field_name: &str,
allowed_column_types: Option<&[ColumnType]>,
) -> crate::Result<(columnar::Column<u64>, ColumnType)> {
let ff_fields = reader.fast_fields();
let ff_field_with_type = ff_fields.u64_lenient_for_type(allowed_column_types, field_name)?;
match ff_field_with_type {
Some(field) => Ok(field),
None => {
// Check if the field exists in the schema but is not a fast field
let schema = reader.schema();
if let Some((field, _path)) = schema.find_field(field_name) {
let field_type = schema.get_field_entry(field).field_type();
if !field_type.is_fast() {
return Err(crate::TantivyError::SchemaError(format!(
"Field '{}' is not a fast field. Aggregations require fast fields.",
field_name
)));
}
}
// Field doesn't exist at all or has no values in this segment
// Check if it exists in schema to provide a better error message
if schema.find_field(field_name).is_none() {
return Err(crate::TantivyError::FieldNotFound(field_name.to_string()));
}
// Field exists in schema and is a fast field, but has no values in this segment
// This is acceptable - return an empty column
Ok((
let ff_field_with_type = ff_fields
.u64_lenient_for_type(allowed_column_types, field_name)?
.unwrap_or_else(|| {
(
Column::build_empty_column(reader.num_docs()),
ColumnType::U64,
))
}
}
)
});
Ok(ff_field_with_type)
}
pub(crate) fn get_dynamic_columns(
@@ -111,7 +89,6 @@ pub(crate) fn get_dynamic_columns(
/// Get all fast field reader or empty as default.
///
/// Is guaranteed to return at least one column.
/// Returns an error if the field doesn't exist in the schema or is not a fast field.
pub(crate) fn get_all_ff_reader_or_empty(
reader: &SegmentReader,
field_name: &str,
@@ -121,25 +98,7 @@ pub(crate) fn get_all_ff_reader_or_empty(
let ff_fields = reader.fast_fields();
let mut ff_field_with_type =
ff_fields.u64_lenient_for_type_all(allowed_column_types, field_name)?;
if ff_field_with_type.is_empty() {
// Check if the field exists in the schema but is not a fast field
let schema = reader.schema();
if let Some((field, _path)) = schema.find_field(field_name) {
let field_type = schema.get_field_entry(field).field_type();
if !field_type.is_fast() {
return Err(crate::TantivyError::SchemaError(format!(
"Field '{}' is not a fast field. Aggregations require fast fields.",
field_name
)));
}
} else {
// Field doesn't exist in the schema at all
return Err(crate::TantivyError::FieldNotFound(field_name.to_string()));
}
// Field exists in schema and is a fast field, but has no values in this segment
// This is acceptable - return an empty column
ff_field_with_type.push((Column::build_empty_column(reader.num_docs()), fallback_type));
}
Ok(ff_field_with_type)

View File

@@ -1057,7 +1057,7 @@ mod tests {
"avg": {"field": "score"}
}));
let terms_string_with_child = agg_from_json(json!({
"terms": {"field": "text"},
"terms": {"field": "string_id"},
"aggs": {
"histo": {"histogram": {"field": "score", "interval": 10.0}}
}

View File

@@ -1005,123 +1005,3 @@ fn test_aggregation_on_json_object_mixed_numerical_segments() {
)
);
}
#[test]
fn test_aggregation_invalid_field_returns_error() {
// Test that aggregations return an error when given an invalid field name
let index = get_test_index_2_segments(false).unwrap();
let reader = index.reader().unwrap();
let searcher = reader.searcher();
// Test with a field that doesn't exist at all
let agg_req_str = r#"
{
"date_histogram_test": {
"date_histogram": {
"field": "not_valid_field",
"fixed_interval": "30d"
}
}
}"#;
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
let collector = get_collector(agg);
let result = searcher.search(&AllQuery, &collector);
assert!(result.is_err());
match result {
Err(crate::TantivyError::FieldNotFound(field_name)) => {
assert_eq!(field_name, "not_valid_field");
}
_ => panic!("Expected FieldNotFound error, got: {:?}", result),
}
// Test with histogram aggregation on invalid field
let agg_req_str = r#"
{
"histogram_test": {
"histogram": {
"field": "invalid_histogram_field",
"interval": 10.0
}
}
}"#;
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
let collector = get_collector(agg);
let result = searcher.search(&AllQuery, &collector);
assert!(result.is_err());
match result {
Err(crate::TantivyError::FieldNotFound(field_name)) => {
assert_eq!(field_name, "invalid_histogram_field");
}
_ => panic!("Expected FieldNotFound error, got: {:?}", result),
}
// Test with terms aggregation on invalid field
let agg_req_str = r#"
{
"terms_test": {
"terms": {
"field": "invalid_terms_field"
}
}
}"#;
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
let collector = get_collector(agg);
let result = searcher.search(&AllQuery, &collector);
assert!(result.is_err());
match result {
Err(crate::TantivyError::FieldNotFound(field_name)) => {
assert_eq!(field_name, "invalid_terms_field");
}
_ => panic!("Expected FieldNotFound error, got: {:?}", result),
}
// Test with avg metric aggregation on invalid field
let agg_req_str = r#"
{
"avg_test": {
"avg": {
"field": "invalid_avg_field"
}
}
}"#;
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
let collector = get_collector(agg);
let result = searcher.search(&AllQuery, &collector);
assert!(result.is_err());
match result {
Err(crate::TantivyError::FieldNotFound(field_name)) => {
assert_eq!(field_name, "invalid_avg_field");
}
_ => panic!("Expected FieldNotFound error, got: {:?}", result),
}
// Test with range aggregation on invalid field
let agg_req_str = r#"
{
"range_test": {
"range": {
"field": "invalid_range_field",
"ranges": [
{ "to": 10.0 },
{ "from": 10.0, "to": 20.0 },
{ "from": 20.0 }
]
}
}
}"#;
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
let collector = get_collector(agg);
let result = searcher.search(&AllQuery, &collector);
assert!(result.is_err());
match result {
Err(crate::TantivyError::FieldNotFound(field_name)) => {
assert_eq!(field_name, "invalid_range_field");
}
_ => panic!("Expected FieldNotFound error, got: {:?}", result),
}
}

View File

@@ -255,7 +255,6 @@ mod tests {
fn terms_aggregation_missing_mult_seg_empty() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let score = schema_builder.add_f64_field("score", FAST);
schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
@@ -303,7 +302,6 @@ mod tests {
fn terms_aggregation_missing_single_seg_empty() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let score = schema_builder.add_f64_field("score", FAST);
schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();

View File

@@ -1,25 +1,48 @@
mod order;
mod sort_by_erased_type;
mod sort_by_score;
mod sort_by_static_fast_value;
mod sort_by_string;
mod sort_key_computer;
pub use order::*;
pub use sort_by_erased_type::SortByErasedType;
pub use sort_by_score::SortBySimilarityScore;
pub use sort_by_static_fast_value::SortByStaticFastValue;
pub use sort_by_string::SortByString;
pub use sort_key_computer::{SegmentSortKeyComputer, SortKeyComputer};
#[cfg(test)]
mod tests {
pub(crate) mod tests {
// By spec, regardless of whether ascending or descending order was requested, in presence of a
// tie, we sort by ascending doc id/doc address.
pub(crate) fn sort_hits<TSortKey: Ord, D: Ord>(
hits: &mut [ComparableDoc<TSortKey, D>],
order: Order,
) {
if order.is_asc() {
hits.sort_by(|l, r| l.sort_key.cmp(&r.sort_key).then(l.doc.cmp(&r.doc)));
} else {
hits.sort_by(|l, r| {
l.sort_key
.cmp(&r.sort_key)
.reverse() // This is descending
.then(l.doc.cmp(&r.doc))
});
}
}
use std::collections::HashMap;
use std::ops::Range;
use crate::collector::sort_key::{SortBySimilarityScore, SortByStaticFastValue, SortByString};
use crate::collector::sort_key::{
SortByErasedType, SortBySimilarityScore, SortByStaticFastValue, SortByString,
};
use crate::collector::{ComparableDoc, DocSetCollector, TopDocs};
use crate::indexer::NoMergePolicy;
use crate::query::{AllQuery, QueryParser};
use crate::schema::{Schema, FAST, TEXT};
use crate::schema::{OwnedValue, Schema, FAST, TEXT};
use crate::{DocAddress, Document, Index, Order, Score, Searcher};
fn make_index() -> crate::Result<Index> {
@@ -294,11 +317,9 @@ mod tests {
(SortBySimilarityScore, score_order),
(SortByString::for_field("city"), city_order),
));
Ok(searcher
.search(&AllQuery, &top_collector)?
.into_iter()
.map(|(f, doc)| (f, ids[&doc]))
.collect())
let results: Vec<((Score, Option<String>), DocAddress)> =
searcher.search(&AllQuery, &top_collector)?;
Ok(results.into_iter().map(|(f, doc)| (f, ids[&doc])).collect())
}
assert_eq!(
@@ -323,6 +344,51 @@ mod tests {
Ok(())
}
#[test]
fn test_order_by_score_then_owned_value() -> crate::Result<()> {
let index = make_index()?;
type SortKey = (Score, OwnedValue);
fn query(
index: &Index,
score_order: Order,
city_order: Order,
) -> crate::Result<Vec<(SortKey, u64)>> {
let searcher = index.reader()?.searcher();
let ids = id_mapping(&searcher);
let top_collector = TopDocs::with_limit(4).order_by::<(Score, OwnedValue)>((
(SortBySimilarityScore, score_order),
(SortByErasedType::for_field("city"), city_order),
));
let results: Vec<((Score, OwnedValue), DocAddress)> =
searcher.search(&AllQuery, &top_collector)?;
Ok(results.into_iter().map(|(f, doc)| (f, ids[&doc])).collect())
}
assert_eq!(
&query(&index, Order::Asc, Order::Asc)?,
&[
((1.0, OwnedValue::Str("austin".to_owned())), 0),
((1.0, OwnedValue::Str("greenville".to_owned())), 1),
((1.0, OwnedValue::Str("tokyo".to_owned())), 2),
((1.0, OwnedValue::Null), 3),
]
);
assert_eq!(
&query(&index, Order::Asc, Order::Desc)?,
&[
((1.0, OwnedValue::Str("tokyo".to_owned())), 2),
((1.0, OwnedValue::Str("greenville".to_owned())), 1),
((1.0, OwnedValue::Str("austin".to_owned())), 0),
((1.0, OwnedValue::Null), 3),
]
);
Ok(())
}
use proptest::prelude::*;
proptest! {
@@ -372,15 +438,10 @@ mod tests {
// Using the TopDocs collector should always be equivalent to sorting, skipping the
// offset, and then taking the limit.
let sorted_docs: Vec<_> = if order.is_desc() {
let mut comparable_docs: Vec<ComparableDoc<_, _, true>> =
let sorted_docs: Vec<_> = {
let mut comparable_docs: Vec<ComparableDoc<_, _>> =
all_results.into_iter().map(|(sort_key, doc)| ComparableDoc { sort_key, doc}).collect();
comparable_docs.sort();
comparable_docs.into_iter().map(|cd| (cd.sort_key, cd.doc)).collect()
} else {
let mut comparable_docs: Vec<ComparableDoc<_, _, false>> =
all_results.into_iter().map(|(sort_key, doc)| ComparableDoc { sort_key, doc}).collect();
comparable_docs.sort();
sort_hits(&mut comparable_docs, order);
comparable_docs.into_iter().map(|cd| (cd.sort_key, cd.doc)).collect()
};
let expected_docs = sorted_docs.into_iter().skip(offset).take(limit).collect::<Vec<_>>();

View File

@@ -1,36 +1,116 @@
use std::cmp::Ordering;
use columnar::MonotonicallyMappableToU64;
use serde::{Deserialize, Serialize};
use crate::collector::{SegmentSortKeyComputer, SortKeyComputer};
use crate::schema::Schema;
use crate::schema::{OwnedValue, Schema};
use crate::{DocId, Order, Score};
fn compare_owned_value<const NULLS_FIRST: bool>(lhs: &OwnedValue, rhs: &OwnedValue) -> Ordering {
match (lhs, rhs) {
(OwnedValue::Null, OwnedValue::Null) => Ordering::Equal,
(OwnedValue::Null, _) => {
if NULLS_FIRST {
Ordering::Less
} else {
Ordering::Greater
}
}
(_, OwnedValue::Null) => {
if NULLS_FIRST {
Ordering::Greater
} else {
Ordering::Less
}
}
(OwnedValue::Str(a), OwnedValue::Str(b)) => a.cmp(b),
(OwnedValue::PreTokStr(a), OwnedValue::PreTokStr(b)) => a.cmp(b),
(OwnedValue::U64(a), OwnedValue::U64(b)) => a.cmp(b),
(OwnedValue::I64(a), OwnedValue::I64(b)) => a.cmp(b),
(OwnedValue::F64(a), OwnedValue::F64(b)) => a.to_u64().cmp(&b.to_u64()),
(OwnedValue::Bool(a), OwnedValue::Bool(b)) => a.cmp(b),
(OwnedValue::Date(a), OwnedValue::Date(b)) => a.cmp(b),
(OwnedValue::Facet(a), OwnedValue::Facet(b)) => a.cmp(b),
(OwnedValue::Bytes(a), OwnedValue::Bytes(b)) => a.cmp(b),
(OwnedValue::IpAddr(a), OwnedValue::IpAddr(b)) => a.cmp(b),
(OwnedValue::U64(a), OwnedValue::I64(b)) => {
if *b < 0 {
Ordering::Greater
} else {
a.cmp(&(*b as u64))
}
}
(OwnedValue::I64(a), OwnedValue::U64(b)) => {
if *a < 0 {
Ordering::Less
} else {
(*a as u64).cmp(b)
}
}
(OwnedValue::U64(a), OwnedValue::F64(b)) => (*a as f64).to_u64().cmp(&b.to_u64()),
(OwnedValue::F64(a), OwnedValue::U64(b)) => a.to_u64().cmp(&(*b as f64).to_u64()),
(OwnedValue::I64(a), OwnedValue::F64(b)) => (*a as f64).to_u64().cmp(&b.to_u64()),
(OwnedValue::F64(a), OwnedValue::I64(b)) => a.to_u64().cmp(&(*b as f64).to_u64()),
(a, b) => {
let ord = a.discriminant_value().cmp(&b.discriminant_value());
// If the discriminant is equal, it's because a new type was added, but hasn't been
// included in this `match` statement.
assert!(
ord != Ordering::Equal,
"Unimplemented comparison for type of {a:?}, {b:?}"
);
ord
}
}
}
/// Comparator trait defining the order in which documents should be ordered.
pub trait Comparator<T>: Send + Sync + std::fmt::Debug + Default {
/// Return the order between two values.
fn compare(&self, lhs: &T, rhs: &T) -> Ordering;
}
/// With the natural comparator, the top k collector will return
/// the top documents in decreasing order.
/// Compare values naturally (e.g. 1 < 2).
///
/// When used with `TopDocs`, which reverses the order, this results in a
/// "Descending" sort (Greatest values first).
///
/// `None` (or Null for `OwnedValue`) values are considered to be smaller than any other value,
/// and will therefore appear last in a descending sort (e.g. `[Some(20), Some(10), None]`).
#[derive(Debug, Copy, Clone, Default, Serialize, Deserialize)]
pub struct NaturalComparator;
impl<T: PartialOrd> Comparator<T> for NaturalComparator {
#[inline(always)]
fn compare(&self, lhs: &T, rhs: &T) -> Ordering {
lhs.partial_cmp(rhs).unwrap()
lhs.partial_cmp(rhs).unwrap_or(Ordering::Equal)
}
}
/// Sorts document in reverse order.
/// A (partial) implementation of comparison for OwnedValue.
///
/// If the sort key is None, it will considered as the lowest value, and will therefore appear
/// first.
/// Intended for use within columns of homogenous types, and so will panic for OwnedValues with
/// mismatched types. The one exception is Null, for which we do define all comparisons.
impl Comparator<OwnedValue> for NaturalComparator {
#[inline(always)]
fn compare(&self, lhs: &OwnedValue, rhs: &OwnedValue) -> Ordering {
compare_owned_value::</* NULLS_FIRST= */ true>(lhs, rhs)
}
}
/// Compare values in reverse (e.g. 2 < 1).
///
/// When used with `TopDocs`, which reverses the order, this results in an
/// "Ascending" sort (Smallest values first).
///
/// `None` is considered smaller than `Some` in the underlying comparator, but because the
/// comparison is reversed, `None` is effectively treated as the lowest value in the resulting
/// Ascending sort (e.g. `[None, Some(10), Some(20)]`).
///
/// The ReverseComparator does not necessarily imply that the sort order is reversed compared
/// to the NaturalComparator. In presence of a tie, both version will retain the higher doc ids.
/// to the NaturalComparator. In presence of a tie on the sort key, documents will always be
/// sorted by ascending `DocId`/`DocAddress` in TopN results, regardless of the sort key's order.
#[derive(Debug, Copy, Clone, Default, Serialize, Deserialize)]
pub struct ReverseComparator;
@@ -43,11 +123,15 @@ where NaturalComparator: Comparator<T>
}
}
/// Sorts document in reverse order, but considers None as having the lowest value.
/// Compare values in reverse, but treating `None` as lower than `Some`.
///
/// When used with `TopDocs`, which reverses the order, this results in an
/// "Ascending" sort (Smallest values first), but with `None` values appearing last
/// (e.g. `[Some(10), Some(20), None]`).
///
/// This is usually what is wanted when sorting by a field in an ascending order.
/// For instance, in a e-commerce website, if I sort by price ascending, I most likely want the
/// cheapest items first, and the items without a price at last.
/// For instance, in an e-commerce website, if sorting by price ascending,
/// the cheapest items would appear first, and items without a price would appear last.
#[derive(Debug, Copy, Clone, Default)]
pub struct ReverseNoneIsLowerComparator;
@@ -107,6 +191,84 @@ impl Comparator<String> for ReverseNoneIsLowerComparator {
}
}
impl Comparator<OwnedValue> for ReverseNoneIsLowerComparator {
#[inline(always)]
fn compare(&self, lhs: &OwnedValue, rhs: &OwnedValue) -> Ordering {
compare_owned_value::</* NULLS_FIRST= */ false>(rhs, lhs)
}
}
/// Compare values naturally, but treating `None` as higher than `Some`.
///
/// When used with `TopDocs`, which reverses the order, this results in a
/// "Descending" sort (Greatest values first), but with `None` values appearing first
/// (e.g. `[None, Some(20), Some(10)]`).
#[derive(Debug, Copy, Clone, Default, Serialize, Deserialize)]
pub struct NaturalNoneIsHigherComparator;
impl<T> Comparator<Option<T>> for NaturalNoneIsHigherComparator
where NaturalComparator: Comparator<T>
{
#[inline(always)]
fn compare(&self, lhs_opt: &Option<T>, rhs_opt: &Option<T>) -> Ordering {
match (lhs_opt, rhs_opt) {
(None, None) => Ordering::Equal,
(None, Some(_)) => Ordering::Greater,
(Some(_), None) => Ordering::Less,
(Some(lhs), Some(rhs)) => NaturalComparator.compare(lhs, rhs),
}
}
}
impl Comparator<u32> for NaturalNoneIsHigherComparator {
#[inline(always)]
fn compare(&self, lhs: &u32, rhs: &u32) -> Ordering {
NaturalComparator.compare(lhs, rhs)
}
}
impl Comparator<u64> for NaturalNoneIsHigherComparator {
#[inline(always)]
fn compare(&self, lhs: &u64, rhs: &u64) -> Ordering {
NaturalComparator.compare(lhs, rhs)
}
}
impl Comparator<f64> for NaturalNoneIsHigherComparator {
#[inline(always)]
fn compare(&self, lhs: &f64, rhs: &f64) -> Ordering {
NaturalComparator.compare(lhs, rhs)
}
}
impl Comparator<f32> for NaturalNoneIsHigherComparator {
#[inline(always)]
fn compare(&self, lhs: &f32, rhs: &f32) -> Ordering {
NaturalComparator.compare(lhs, rhs)
}
}
impl Comparator<i64> for NaturalNoneIsHigherComparator {
#[inline(always)]
fn compare(&self, lhs: &i64, rhs: &i64) -> Ordering {
NaturalComparator.compare(lhs, rhs)
}
}
impl Comparator<String> for NaturalNoneIsHigherComparator {
#[inline(always)]
fn compare(&self, lhs: &String, rhs: &String) -> Ordering {
NaturalComparator.compare(lhs, rhs)
}
}
impl Comparator<OwnedValue> for NaturalNoneIsHigherComparator {
#[inline(always)]
fn compare(&self, lhs: &OwnedValue, rhs: &OwnedValue) -> Ordering {
compare_owned_value::</* NULLS_FIRST= */ false>(lhs, rhs)
}
}
/// An enum representing the different sort orders.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Default)]
pub enum ComparatorEnum {
@@ -115,8 +277,10 @@ pub enum ComparatorEnum {
Natural,
/// Reverse order (See [ReverseComparator])
Reverse,
/// Reverse order by treating None as the lowest value.(See [ReverseNoneLowerComparator])
/// Reverse order by treating None as the lowest value. (See [ReverseNoneLowerComparator])
ReverseNoneLower,
/// Natural order but treating None as the highest value. (See [NaturalNoneIsHigherComparator])
NaturalNoneHigher,
}
impl From<Order> for ComparatorEnum {
@@ -133,6 +297,7 @@ where
ReverseNoneIsLowerComparator: Comparator<T>,
NaturalComparator: Comparator<T>,
ReverseComparator: Comparator<T>,
NaturalNoneIsHigherComparator: Comparator<T>,
{
#[inline(always)]
fn compare(&self, lhs: &T, rhs: &T) -> Ordering {
@@ -140,6 +305,7 @@ where
ComparatorEnum::Natural => NaturalComparator.compare(lhs, rhs),
ComparatorEnum::Reverse => ReverseComparator.compare(lhs, rhs),
ComparatorEnum::ReverseNoneLower => ReverseNoneIsLowerComparator.compare(lhs, rhs),
ComparatorEnum::NaturalNoneHigher => NaturalNoneIsHigherComparator.compare(lhs, rhs),
}
}
}
@@ -322,11 +488,12 @@ impl<TSegmentSortKeyComputer, TSegmentSortKey, TComparator> SegmentSortKeyComput
for SegmentSortKeyComputerWithComparator<TSegmentSortKeyComputer, TComparator>
where
TSegmentSortKeyComputer: SegmentSortKeyComputer<SegmentSortKey = TSegmentSortKey>,
TSegmentSortKey: PartialOrd + Clone + 'static + Sync + Send,
TSegmentSortKey: Clone + 'static + Sync + Send,
TComparator: Comparator<TSegmentSortKey> + 'static + Sync + Send,
{
type SortKey = TSegmentSortKeyComputer::SortKey;
type SegmentSortKey = TSegmentSortKey;
type SegmentComparator = TComparator;
fn segment_sort_key(&mut self, doc: DocId, score: Score) -> Self::SegmentSortKey {
self.segment_sort_key_computer.segment_sort_key(doc, score)
@@ -346,3 +513,55 @@ where
.convert_segment_sort_key(sort_key)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::schema::OwnedValue;
#[test]
fn test_natural_none_is_higher() {
let comp = NaturalNoneIsHigherComparator;
let null = None;
let v1 = Some(1_u64);
let v2 = Some(2_u64);
// NaturalNoneIsGreaterComparator logic:
// 1. Delegates to NaturalComparator for non-nulls.
// NaturalComparator compare(2, 1) -> 2.cmp(1) -> Greater.
assert_eq!(comp.compare(&v2, &v1), Ordering::Greater);
// 2. Treats None (Null) as Greater than any value.
// compare(None, Some(2)) should be Greater.
assert_eq!(comp.compare(&null, &v2), Ordering::Greater);
// compare(Some(1), None) should be Less.
assert_eq!(comp.compare(&v1, &null), Ordering::Less);
// compare(None, None) should be Equal.
assert_eq!(comp.compare(&null, &null), Ordering::Equal);
}
#[test]
fn test_mixed_ownedvalue_compare() {
let u = OwnedValue::U64(10);
let i = OwnedValue::I64(10);
let f = OwnedValue::F64(10.0);
let nc = NaturalComparator;
assert_eq!(nc.compare(&u, &i), Ordering::Equal);
assert_eq!(nc.compare(&u, &f), Ordering::Equal);
assert_eq!(nc.compare(&i, &f), Ordering::Equal);
let u2 = OwnedValue::U64(11);
assert_eq!(nc.compare(&u2, &f), Ordering::Greater);
let s = OwnedValue::Str("a".to_string());
// Str < U64
assert_eq!(nc.compare(&s, &u), Ordering::Less);
// Str < I64
assert_eq!(nc.compare(&s, &i), Ordering::Less);
// Str < F64
assert_eq!(nc.compare(&s, &f), Ordering::Less);
}
}

View File

@@ -0,0 +1,361 @@
use columnar::{ColumnType, MonotonicallyMappableToU64};
use crate::collector::sort_key::{
NaturalComparator, SortBySimilarityScore, SortByStaticFastValue, SortByString,
};
use crate::collector::{SegmentSortKeyComputer, SortKeyComputer};
use crate::fastfield::FastFieldNotAvailableError;
use crate::schema::OwnedValue;
use crate::{DateTime, DocId, Score};
/// Sort by the boxed / OwnedValue representation of either a fast field, or of the score.
///
/// Using the OwnedValue representation allows for type erasure, and can be useful when sort orders
/// are not known until runtime. But it comes with a performance cost: wherever possible, prefer to
/// use a SortKeyComputer implementation with a known-type at compile time.
#[derive(Debug, Clone)]
pub enum SortByErasedType {
/// Sort by a fast field
Field(String),
/// Sort by score
Score,
}
impl SortByErasedType {
/// Creates a new sort key computer which will sort by the given fast field column, with type
/// erasure.
pub fn for_field(column_name: impl ToString) -> Self {
Self::Field(column_name.to_string())
}
/// Creates a new sort key computer which will sort by score, with type erasure.
pub fn for_score() -> Self {
Self::Score
}
}
trait ErasedSegmentSortKeyComputer: Send + Sync {
fn segment_sort_key(&mut self, doc: DocId, score: Score) -> Option<u64>;
fn convert_segment_sort_key(&self, sort_key: Option<u64>) -> OwnedValue;
}
struct ErasedSegmentSortKeyComputerWrapper<C, F> {
inner: C,
converter: F,
}
impl<C, F> ErasedSegmentSortKeyComputer for ErasedSegmentSortKeyComputerWrapper<C, F>
where
C: SegmentSortKeyComputer<SegmentSortKey = Option<u64>> + Send + Sync,
F: Fn(C::SortKey) -> OwnedValue + Send + Sync + 'static,
{
fn segment_sort_key(&mut self, doc: DocId, score: Score) -> Option<u64> {
self.inner.segment_sort_key(doc, score)
}
fn convert_segment_sort_key(&self, sort_key: Option<u64>) -> OwnedValue {
let val = self.inner.convert_segment_sort_key(sort_key);
(self.converter)(val)
}
}
struct ScoreSegmentSortKeyComputer {
segment_computer: SortBySimilarityScore,
}
impl ErasedSegmentSortKeyComputer for ScoreSegmentSortKeyComputer {
fn segment_sort_key(&mut self, doc: DocId, score: Score) -> Option<u64> {
let score_value: f64 = self.segment_computer.segment_sort_key(doc, score).into();
Some(score_value.to_u64())
}
fn convert_segment_sort_key(&self, sort_key: Option<u64>) -> OwnedValue {
let score_value: u64 = sort_key.expect("This implementation always produces a score.");
OwnedValue::F64(f64::from_u64(score_value))
}
}
impl SortKeyComputer for SortByErasedType {
type SortKey = OwnedValue;
type Child = ErasedColumnSegmentSortKeyComputer;
type Comparator = NaturalComparator;
fn requires_scoring(&self) -> bool {
matches!(self, Self::Score)
}
fn segment_sort_key_computer(
&self,
segment_reader: &crate::SegmentReader,
) -> crate::Result<Self::Child> {
let inner: Box<dyn ErasedSegmentSortKeyComputer> = match self {
Self::Field(column_name) => {
let fast_fields = segment_reader.fast_fields();
// TODO: We currently double-open the column to avoid relying on the implementation
// details of `SortByString` or `SortByStaticFastValue`. Once
// https://github.com/quickwit-oss/tantivy/issues/2776 is resolved, we should
// consider directly constructing the appropriate `SegmentSortKeyComputer` type for
// the column that we open here.
let (_column, column_type) =
fast_fields.u64_lenient(column_name)?.ok_or_else(|| {
FastFieldNotAvailableError {
field_name: column_name.to_owned(),
}
})?;
match column_type {
ColumnType::Str => {
let computer = SortByString::for_field(column_name);
let inner = computer.segment_sort_key_computer(segment_reader)?;
Box::new(ErasedSegmentSortKeyComputerWrapper {
inner,
converter: |val: Option<String>| {
val.map(OwnedValue::Str).unwrap_or(OwnedValue::Null)
},
})
}
ColumnType::U64 => {
let computer = SortByStaticFastValue::<u64>::for_field(column_name);
let inner = computer.segment_sort_key_computer(segment_reader)?;
Box::new(ErasedSegmentSortKeyComputerWrapper {
inner,
converter: |val: Option<u64>| {
val.map(OwnedValue::U64).unwrap_or(OwnedValue::Null)
},
})
}
ColumnType::I64 => {
let computer = SortByStaticFastValue::<i64>::for_field(column_name);
let inner = computer.segment_sort_key_computer(segment_reader)?;
Box::new(ErasedSegmentSortKeyComputerWrapper {
inner,
converter: |val: Option<i64>| {
val.map(OwnedValue::I64).unwrap_or(OwnedValue::Null)
},
})
}
ColumnType::F64 => {
let computer = SortByStaticFastValue::<f64>::for_field(column_name);
let inner = computer.segment_sort_key_computer(segment_reader)?;
Box::new(ErasedSegmentSortKeyComputerWrapper {
inner,
converter: |val: Option<f64>| {
val.map(OwnedValue::F64).unwrap_or(OwnedValue::Null)
},
})
}
ColumnType::Bool => {
let computer = SortByStaticFastValue::<bool>::for_field(column_name);
let inner = computer.segment_sort_key_computer(segment_reader)?;
Box::new(ErasedSegmentSortKeyComputerWrapper {
inner,
converter: |val: Option<bool>| {
val.map(OwnedValue::Bool).unwrap_or(OwnedValue::Null)
},
})
}
ColumnType::DateTime => {
let computer = SortByStaticFastValue::<DateTime>::for_field(column_name);
let inner = computer.segment_sort_key_computer(segment_reader)?;
Box::new(ErasedSegmentSortKeyComputerWrapper {
inner,
converter: |val: Option<DateTime>| {
val.map(OwnedValue::Date).unwrap_or(OwnedValue::Null)
},
})
}
column_type => {
return Err(crate::TantivyError::SchemaError(format!(
"Field `{}` is of type {column_type:?}, which is not supported for \
sorting by owned value yet.",
column_name
)))
}
}
}
Self::Score => Box::new(ScoreSegmentSortKeyComputer {
segment_computer: SortBySimilarityScore,
}),
};
Ok(ErasedColumnSegmentSortKeyComputer { inner })
}
}
pub struct ErasedColumnSegmentSortKeyComputer {
inner: Box<dyn ErasedSegmentSortKeyComputer>,
}
impl SegmentSortKeyComputer for ErasedColumnSegmentSortKeyComputer {
type SortKey = OwnedValue;
type SegmentSortKey = Option<u64>;
type SegmentComparator = NaturalComparator;
#[inline(always)]
fn segment_sort_key(&mut self, doc: DocId, score: Score) -> Option<u64> {
self.inner.segment_sort_key(doc, score)
}
fn convert_segment_sort_key(&self, segment_sort_key: Self::SegmentSortKey) -> OwnedValue {
self.inner.convert_segment_sort_key(segment_sort_key)
}
}
#[cfg(test)]
mod tests {
use crate::collector::sort_key::{ComparatorEnum, SortByErasedType};
use crate::collector::TopDocs;
use crate::query::AllQuery;
use crate::schema::{OwnedValue, Schema, FAST, TEXT};
use crate::Index;
#[test]
fn test_sort_by_owned_u64() {
let mut schema_builder = Schema::builder();
let id_field = schema_builder.add_u64_field("id", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut writer = index.writer_for_tests().unwrap();
writer.add_document(doc!(id_field => 10u64)).unwrap();
writer.add_document(doc!(id_field => 2u64)).unwrap();
writer.add_document(doc!()).unwrap();
writer.commit().unwrap();
let reader = index.reader().unwrap();
let searcher = reader.searcher();
let collector = TopDocs::with_limit(10)
.order_by((SortByErasedType::for_field("id"), ComparatorEnum::Natural));
let top_docs = searcher.search(&AllQuery, &collector).unwrap();
let values: Vec<OwnedValue> = top_docs.into_iter().map(|(key, _)| key).collect();
assert_eq!(
values,
vec![OwnedValue::U64(10), OwnedValue::U64(2), OwnedValue::Null]
);
let collector = TopDocs::with_limit(10).order_by((
SortByErasedType::for_field("id"),
ComparatorEnum::ReverseNoneLower,
));
let top_docs = searcher.search(&AllQuery, &collector).unwrap();
let values: Vec<OwnedValue> = top_docs.into_iter().map(|(key, _)| key).collect();
assert_eq!(
values,
vec![OwnedValue::U64(2), OwnedValue::U64(10), OwnedValue::Null]
);
}
#[test]
fn test_sort_by_owned_string() {
let mut schema_builder = Schema::builder();
let city_field = schema_builder.add_text_field("city", FAST | TEXT);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut writer = index.writer_for_tests().unwrap();
writer.add_document(doc!(city_field => "tokyo")).unwrap();
writer.add_document(doc!(city_field => "austin")).unwrap();
writer.add_document(doc!()).unwrap();
writer.commit().unwrap();
let reader = index.reader().unwrap();
let searcher = reader.searcher();
let collector = TopDocs::with_limit(10).order_by((
SortByErasedType::for_field("city"),
ComparatorEnum::ReverseNoneLower,
));
let top_docs = searcher.search(&AllQuery, &collector).unwrap();
let values: Vec<OwnedValue> = top_docs.into_iter().map(|(key, _)| key).collect();
assert_eq!(
values,
vec![
OwnedValue::Str("austin".to_string()),
OwnedValue::Str("tokyo".to_string()),
OwnedValue::Null
]
);
}
#[test]
fn test_sort_by_owned_reverse() {
let mut schema_builder = Schema::builder();
let id_field = schema_builder.add_u64_field("id", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut writer = index.writer_for_tests().unwrap();
writer.add_document(doc!(id_field => 10u64)).unwrap();
writer.add_document(doc!(id_field => 2u64)).unwrap();
writer.add_document(doc!()).unwrap();
writer.commit().unwrap();
let reader = index.reader().unwrap();
let searcher = reader.searcher();
let collector = TopDocs::with_limit(10)
.order_by((SortByErasedType::for_field("id"), ComparatorEnum::Reverse));
let top_docs = searcher.search(&AllQuery, &collector).unwrap();
let values: Vec<OwnedValue> = top_docs.into_iter().map(|(key, _)| key).collect();
assert_eq!(
values,
vec![OwnedValue::Null, OwnedValue::U64(2), OwnedValue::U64(10)]
);
}
#[test]
fn test_sort_by_owned_score() {
let mut schema_builder = Schema::builder();
let body_field = schema_builder.add_text_field("body", TEXT);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut writer = index.writer_for_tests().unwrap();
writer.add_document(doc!(body_field => "a a")).unwrap();
writer.add_document(doc!(body_field => "a")).unwrap();
writer.commit().unwrap();
let reader = index.reader().unwrap();
let searcher = reader.searcher();
let query_parser = crate::query::QueryParser::for_index(&index, vec![body_field]);
let query = query_parser.parse_query("a").unwrap();
// Sort by score descending (Natural)
let collector = TopDocs::with_limit(10)
.order_by((SortByErasedType::for_score(), ComparatorEnum::Natural));
let top_docs = searcher.search(&query, &collector).unwrap();
let values: Vec<f64> = top_docs
.into_iter()
.map(|(key, _)| match key {
OwnedValue::F64(val) => val,
_ => panic!("Wrong type {key:?}"),
})
.collect();
assert_eq!(values.len(), 2);
assert!(values[0] > values[1]);
// Sort by score ascending (ReverseNoneLower)
let collector = TopDocs::with_limit(10).order_by((
SortByErasedType::for_score(),
ComparatorEnum::ReverseNoneLower,
));
let top_docs = searcher.search(&query, &collector).unwrap();
let values: Vec<f64> = top_docs
.into_iter()
.map(|(key, _)| match key {
OwnedValue::F64(val) => val,
_ => panic!("Wrong type {key:?}"),
})
.collect();
assert_eq!(values.len(), 2);
assert!(values[0] < values[1]);
}
}

View File

@@ -63,8 +63,8 @@ impl SortKeyComputer for SortBySimilarityScore {
impl SegmentSortKeyComputer for SortBySimilarityScore {
type SortKey = Score;
type SegmentSortKey = Score;
type SegmentComparator = NaturalComparator;
#[inline(always)]
fn segment_sort_key(&mut self, _doc: DocId, score: Score) -> Score {

View File

@@ -34,9 +34,7 @@ impl<T: FastValue> SortByStaticFastValue<T> {
impl<T: FastValue> SortKeyComputer for SortByStaticFastValue<T> {
type Child = SortByFastValueSegmentSortKeyComputer<T>;
type SortKey = Option<T>;
type Comparator = NaturalComparator;
fn check_schema(&self, schema: &crate::schema::Schema) -> crate::Result<()> {
@@ -84,8 +82,8 @@ pub struct SortByFastValueSegmentSortKeyComputer<T> {
impl<T: FastValue> SegmentSortKeyComputer for SortByFastValueSegmentSortKeyComputer<T> {
type SortKey = Option<T>;
type SegmentSortKey = Option<u64>;
type SegmentComparator = NaturalComparator;
#[inline(always)]
fn segment_sort_key(&mut self, doc: DocId, _score: Score) -> Self::SegmentSortKey {

View File

@@ -30,9 +30,7 @@ impl SortByString {
impl SortKeyComputer for SortByString {
type SortKey = Option<String>;
type Child = ByStringColumnSegmentSortKeyComputer;
type Comparator = NaturalComparator;
fn segment_sort_key_computer(
@@ -50,8 +48,8 @@ pub struct ByStringColumnSegmentSortKeyComputer {
impl SegmentSortKeyComputer for ByStringColumnSegmentSortKeyComputer {
type SortKey = Option<String>;
type SegmentSortKey = Option<TermOrdinal>;
type SegmentComparator = NaturalComparator;
#[inline(always)]
fn segment_sort_key(&mut self, doc: DocId, _score: Score) -> Option<TermOrdinal> {
@@ -60,6 +58,8 @@ impl SegmentSortKeyComputer for ByStringColumnSegmentSortKeyComputer {
}
fn convert_segment_sort_key(&self, term_ord_opt: Option<TermOrdinal>) -> Option<String> {
// TODO: Individual lookups to the dictionary like this are very likely to repeatedly
// decompress the same blocks. See https://github.com/quickwit-oss/tantivy/issues/2776
let term_ord = term_ord_opt?;
let str_column = self.str_column_opt.as_ref()?;
let mut bytes = Vec::new();

View File

@@ -12,13 +12,21 @@ use crate::{DocAddress, DocId, Result, Score, SegmentReader};
/// It is the segment local version of the [`SortKeyComputer`].
pub trait SegmentSortKeyComputer: 'static {
/// The final score being emitted.
type SortKey: 'static + PartialOrd + Send + Sync + Clone;
type SortKey: 'static + Send + Sync + Clone;
/// Sort key used by at the segment level by the `SegmentSortKeyComputer`.
///
/// It is typically small like a `u64`, and is meant to be converted
/// to the final score at the end of the collection of the segment.
type SegmentSortKey: 'static + PartialOrd + Clone + Send + Sync + Clone;
type SegmentSortKey: 'static + Clone + Send + Sync + Clone;
/// Comparator type.
type SegmentComparator: Comparator<Self::SegmentSortKey> + 'static;
/// Returns the segment sort key comparator.
fn segment_comparator(&self) -> Self::SegmentComparator {
Self::SegmentComparator::default()
}
/// Computes the sort key for the given document and score.
fn segment_sort_key(&mut self, doc: DocId, score: Score) -> Self::SegmentSortKey;
@@ -47,7 +55,7 @@ pub trait SegmentSortKeyComputer: 'static {
left: &Self::SegmentSortKey,
right: &Self::SegmentSortKey,
) -> Ordering {
NaturalComparator.compare(left, right)
self.segment_comparator().compare(left, right)
}
/// Implementing this method makes it possible to avoid computing
@@ -81,7 +89,7 @@ pub trait SegmentSortKeyComputer: 'static {
/// the sort key at a segment scale.
pub trait SortKeyComputer: Sync {
/// The sort key type.
type SortKey: 'static + Send + Sync + PartialOrd + Clone + std::fmt::Debug;
type SortKey: 'static + Send + Sync + Clone + std::fmt::Debug;
/// Type of the associated [`SegmentSortKeyComputer`].
type Child: SegmentSortKeyComputer<SortKey = Self::SortKey>;
/// Comparator type.
@@ -136,10 +144,7 @@ where
HeadSortKeyComputer: SortKeyComputer,
TailSortKeyComputer: SortKeyComputer,
{
type SortKey = (
<HeadSortKeyComputer::Child as SegmentSortKeyComputer>::SortKey,
<TailSortKeyComputer::Child as SegmentSortKeyComputer>::SortKey,
);
type SortKey = (HeadSortKeyComputer::SortKey, TailSortKeyComputer::SortKey);
type Child = (HeadSortKeyComputer::Child, TailSortKeyComputer::Child);
type Comparator = (
@@ -188,6 +193,11 @@ where
TailSegmentSortKeyComputer::SegmentSortKey,
);
type SegmentComparator = (
HeadSegmentSortKeyComputer::SegmentComparator,
TailSegmentSortKeyComputer::SegmentComparator,
);
/// A SegmentSortKeyComputer maps to a SegmentSortKey, but it can also decide on
/// its ordering.
///
@@ -269,11 +279,12 @@ impl<T, PreviousScore, NewScore> SegmentSortKeyComputer
for MappedSegmentSortKeyComputer<T, PreviousScore, NewScore>
where
T: SegmentSortKeyComputer<SortKey = PreviousScore>,
PreviousScore: 'static + Clone + Send + Sync + PartialOrd,
NewScore: 'static + Clone + Send + Sync + PartialOrd,
PreviousScore: 'static + Clone + Send + Sync,
NewScore: 'static + Clone + Send + Sync,
{
type SortKey = NewScore;
type SegmentSortKey = T::SegmentSortKey;
type SegmentComparator = T::SegmentComparator;
fn segment_sort_key(&mut self, doc: DocId, score: Score) -> Self::SegmentSortKey {
self.sort_key_computer.segment_sort_key(doc, score)
@@ -463,6 +474,7 @@ where
{
type SortKey = TSortKey;
type SegmentSortKey = TSortKey;
type SegmentComparator = NaturalComparator;
fn segment_sort_key(&mut self, doc: DocId, _score: Score) -> TSortKey {
(self)(doc)

View File

@@ -1,64 +1,22 @@
use std::cmp::Ordering;
use serde::{Deserialize, Serialize};
/// Contains a feature (field, score, etc.) of a document along with the document address.
///
/// It guarantees stable sorting: in case of a tie on the feature, the document
/// address is used.
///
/// The REVERSE_ORDER generic parameter controls whether the by-feature order
/// should be reversed, which is useful for achieving for example largest-first
/// semantics without having to wrap the feature in a `Reverse`.
#[derive(Clone, Default, Serialize, Deserialize)]
pub struct ComparableDoc<T, D, const REVERSE_ORDER: bool = false> {
/// Used only by TopNComputer, which implements the actual comparison via a `Comparator`.
#[derive(Clone, Default, Eq, PartialEq, Serialize, Deserialize)]
pub struct ComparableDoc<T, D> {
/// The feature of the document. In practice, this is
/// is any type that implements `PartialOrd`.
/// is a type which can be compared with a `Comparator<T>`.
pub sort_key: T,
/// The document address. In practice, this is any
/// type that implements `PartialOrd`, and is guaranteed
/// to be unique for each document.
/// The document address. In practice, this is either a `DocId` or `DocAddress`.
pub doc: D,
}
impl<T: std::fmt::Debug, D: std::fmt::Debug, const R: bool> std::fmt::Debug
for ComparableDoc<T, D, R>
{
impl<T: std::fmt::Debug, D: std::fmt::Debug> std::fmt::Debug for ComparableDoc<T, D> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.debug_struct(format!("ComparableDoc<_, _ {R}").as_str())
f.debug_struct("ComparableDoc")
.field("feature", &self.sort_key)
.field("doc", &self.doc)
.finish()
}
}
impl<T: PartialOrd, D: PartialOrd, const R: bool> PartialOrd for ComparableDoc<T, D, R> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<T: PartialOrd, D: PartialOrd, const R: bool> Ord for ComparableDoc<T, D, R> {
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
let by_feature = self
.sort_key
.partial_cmp(&other.sort_key)
.map(|ord| if R { ord.reverse() } else { ord })
.unwrap_or(Ordering::Equal);
let lazy_by_doc_address = || self.doc.partial_cmp(&other.doc).unwrap_or(Ordering::Equal);
// In case of a tie on the feature, we sort by ascending
// `DocAddress` in order to ensure a stable sorting of the
// documents.
by_feature.then_with(lazy_by_doc_address)
}
}
impl<T: PartialOrd, D: PartialOrd, const R: bool> PartialEq for ComparableDoc<T, D, R> {
fn eq(&self, other: &Self) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl<T: PartialOrd, D: PartialOrd, const R: bool> Eq for ComparableDoc<T, D, R> {}

View File

@@ -23,10 +23,9 @@ use crate::{DocAddress, DocId, Order, Score, SegmentReader};
/// The theoretical complexity for collecting the top `K` out of `N` documents
/// is `O(N + K)`.
///
/// This collector does not guarantee a stable sorting in case of a tie on the
/// document score, for stable sorting `PartialOrd` needs to resolve on other fields
/// like docid in case of score equality.
/// Only then, it is suitable for pagination.
/// This collector guarantees a stable sorting in case of a tie on the
/// document score/sort key: The document address (`DocAddress`) is used as a tie breaker.
/// In case of a tie on the sort key, documents are always sorted by ascending `DocAddress`.
///
/// ```rust
/// use tantivy::collector::TopDocs;
@@ -325,7 +324,7 @@ impl TopDocs {
sort_key_computer: impl SortKeyComputer<SortKey = TSortKey> + Send + 'static,
) -> impl Collector<Fruit = Vec<(TSortKey, DocAddress)>>
where
TSortKey: 'static + Clone + Send + Sync + PartialOrd + std::fmt::Debug,
TSortKey: 'static + Clone + Send + Sync + std::fmt::Debug,
{
TopBySortKeyCollector::new(sort_key_computer, self.doc_range())
}
@@ -446,7 +445,7 @@ where
F: 'static + Send + Sync + Fn(&SegmentReader) -> TTweakScoreSortKeyFn,
TTweakScoreSortKeyFn: 'static + Fn(DocId, Score) -> TSortKey,
TweakScoreSegmentSortKeyComputer<TTweakScoreSortKeyFn>:
SegmentSortKeyComputer<SortKey = TSortKey>,
SegmentSortKeyComputer<SortKey = TSortKey, SegmentSortKey = TSortKey>,
TSortKey: 'static + PartialOrd + Clone + Send + Sync + std::fmt::Debug,
{
type SortKey = TSortKey;
@@ -481,6 +480,7 @@ where
{
type SortKey = TSortKey;
type SegmentSortKey = TSortKey;
type SegmentComparator = NaturalComparator;
fn segment_sort_key(&mut self, doc: DocId, score: Score) -> TSortKey {
(self.sort_key_fn)(doc, score)
@@ -500,8 +500,13 @@ where
///
/// For TopN == 0, it will be relative expensive.
///
/// When using the natural comparator, the top N computer returns the top N elements in
/// descending order, as expected for a top N.
/// The TopNComputer will tiebreak by using ascending `D` (DocId or DocAddress):
/// i.e., in case of a tie on the sort key, the `DocId|DocAddress` are always sorted in
/// ascending order, regardless of the `Comparator` used for the `Score` type.
///
/// NOTE: Items must be `push`ed to the TopNComputer in ascending `DocId|DocAddress` order, as the
/// threshold used to eliminate docs does not include the `DocId` or `DocAddress`: this provides
/// the ascending `DocId|DocAddress` tie-breaking behavior without additional comparisons.
#[derive(Serialize, Deserialize)]
#[serde(from = "TopNComputerDeser<Score, D, C>")]
pub struct TopNComputer<Score, D, C> {
@@ -580,6 +585,18 @@ where
}
}
#[inline(always)]
fn compare_for_top_k<TSortKey, D: Ord, C: Comparator<TSortKey>>(
c: &C,
lhs: &ComparableDoc<TSortKey, D>,
rhs: &ComparableDoc<TSortKey, D>,
) -> std::cmp::Ordering {
c.compare(&lhs.sort_key, &rhs.sort_key)
.reverse() // Reverse here because we want top K.
.then_with(|| lhs.doc.cmp(&rhs.doc)) // Regardless of asc/desc, in presence of a tie, we
// sort by doc id
}
impl<TSortKey, D, C> TopNComputer<TSortKey, D, C>
where
D: Ord,
@@ -600,10 +617,13 @@ where
/// Push a new document to the top n.
/// If the document is below the current threshold, it will be ignored.
///
/// NOTE: `push` must be called in ascending `DocId`/`DocAddress` order.
#[inline]
pub fn push(&mut self, sort_key: TSortKey, doc: D) {
if let Some(last_median) = &self.threshold {
if self.comparator.compare(&sort_key, last_median) == Ordering::Less {
// See the struct docs for an explanation of why this comparison is strict.
if self.comparator.compare(&sort_key, last_median) != Ordering::Greater {
return;
}
}
@@ -629,9 +649,7 @@ where
fn truncate_top_n(&mut self) -> TSortKey {
// Use select_nth_unstable to find the top nth score
let (_, median_el, _) = self.buffer.select_nth_unstable_by(self.top_n, |lhs, rhs| {
self.comparator
.compare(&rhs.sort_key, &lhs.sort_key)
.then_with(|| lhs.doc.cmp(&rhs.doc))
compare_for_top_k(&self.comparator, lhs, rhs)
});
let median_score = median_el.sort_key.clone();
@@ -646,11 +664,8 @@ where
if self.buffer.len() > self.top_n {
self.truncate_top_n();
}
self.buffer.sort_unstable_by(|left, right| {
self.comparator
.compare(&right.sort_key, &left.sort_key)
.then_with(|| left.doc.cmp(&right.doc))
});
self.buffer
.sort_unstable_by(|lhs, rhs| compare_for_top_k(&self.comparator, lhs, rhs));
self.buffer
}
@@ -755,6 +770,33 @@ mod tests {
);
}
#[test]
fn test_topn_computer_duplicates() {
let mut computer: TopNComputer<u32, u32, NaturalComparator> =
TopNComputer::new_with_comparator(2, NaturalComparator);
computer.push(1u32, 1u32);
computer.push(1u32, 2u32);
computer.push(1u32, 3u32);
computer.push(1u32, 4u32);
computer.push(1u32, 5u32);
// In the presence of duplicates, DocIds are always ascending order.
assert_eq!(
computer.into_sorted_vec(),
&[
ComparableDoc {
sort_key: 1u32,
doc: 1u32,
},
ComparableDoc {
sort_key: 1u32,
doc: 2u32,
}
]
);
}
#[test]
fn test_topn_computer_no_panic() {
for top_n in 0..10 {
@@ -772,14 +814,17 @@ mod tests {
#[test]
fn test_topn_computer_asc_prop(
limit in 0..10_usize,
docs in proptest::collection::vec((0..100_u64, 0..100_u64), 0..100_usize),
mut docs in proptest::collection::vec((0..100_u64, 0..100_u64), 0..100_usize),
) {
// NB: TopNComputer must receive inputs in ascending DocId order.
docs.sort_by_key(|(_, doc_id)| *doc_id);
let mut computer: TopNComputer<_, _, ReverseComparator> = TopNComputer::new_with_comparator(limit, ReverseComparator);
for (feature, doc) in &docs {
computer.push(*feature, *doc);
}
let mut comparable_docs: Vec<ComparableDoc<u64, u64>> = docs.into_iter().map(|(sort_key, doc)| ComparableDoc { sort_key, doc }).collect::<Vec<_>>();
comparable_docs.sort();
let mut comparable_docs: Vec<ComparableDoc<u64, u64>> =
docs.into_iter().map(|(sort_key, doc)| ComparableDoc { sort_key, doc }).collect();
crate::collector::sort_key::tests::sort_hits(&mut comparable_docs, Order::Asc);
comparable_docs.truncate(limit);
prop_assert_eq!(
computer.into_sorted_vec(),
@@ -1406,15 +1451,10 @@ mod tests {
// Using the TopDocs collector should always be equivalent to sorting, skipping the
// offset, and then taking the limit.
let sorted_docs: Vec<_> = if order.is_desc() {
let mut comparable_docs: Vec<ComparableDoc<_, _, true>> =
let sorted_docs: Vec<_> = {
let mut comparable_docs: Vec<ComparableDoc<_, _>> =
all_results.into_iter().map(|(sort_key, doc)| ComparableDoc { sort_key, doc}).collect();
comparable_docs.sort();
comparable_docs.into_iter().map(|cd| (cd.sort_key, cd.doc)).collect()
} else {
let mut comparable_docs: Vec<ComparableDoc<_, _, false>> =
all_results.into_iter().map(|(sort_key, doc)| ComparableDoc { sort_key, doc}).collect();
comparable_docs.sort();
crate::collector::sort_key::tests::sort_hits(&mut comparable_docs, order);
comparable_docs.into_iter().map(|cd| (cd.sort_key, cd.doc)).collect()
};
let expected_docs = sorted_docs.into_iter().skip(offset).take(limit).collect::<Vec<_>>();

View File

@@ -1,3 +1,5 @@
mod file_watcher;
use std::collections::HashMap;
use std::fmt;
use std::fs::{self, File, OpenOptions};
@@ -7,6 +9,7 @@ use std::path::{Path, PathBuf};
use std::sync::{Arc, RwLock, Weak};
use common::StableDeref;
use file_watcher::FileWatcher;
use fs4::fs_std::FileExt;
#[cfg(all(feature = "mmap", unix))]
pub use memmap2::Advice;
@@ -18,7 +21,6 @@ use crate::core::META_FILEPATH;
use crate::directory::error::{
DeleteError, LockError, OpenDirectoryError, OpenReadError, OpenWriteError,
};
use crate::directory::file_watcher::FileWatcher;
use crate::directory::{
AntiCallToken, Directory, DirectoryLock, FileHandle, Lock, OwnedBytes, TerminatingWrite,
WatchCallback, WatchHandle, WritePtr,

View File

@@ -5,7 +5,6 @@ mod mmap_directory;
mod directory;
mod directory_lock;
mod file_watcher;
pub mod footer;
mod managed_directory;
mod ram_directory;

View File

@@ -40,6 +40,8 @@ pub trait DocSet: Send {
/// of `DocSet` should support it.
///
/// Calling `seek(TERMINATED)` is also legal and is the normal way to consume a `DocSet`.
///
/// `target` has to be larger or equal to `.doc()` when calling `seek`.
fn seek(&mut self, target: DocId) -> DocId {
let mut doc = self.doc();
debug_assert!(doc <= target);
@@ -49,6 +51,33 @@ pub trait DocSet: Send {
doc
}
/// Seeks to the target if possible and returns true if the target is in the DocSet.
///
/// DocSets that already have an efficient `seek` method don't need to implement
/// `seek_into_the_danger_zone`. All wrapper DocSets should forward
/// `seek_into_the_danger_zone` to the underlying DocSet.
///
/// ## API Behaviour
/// If `seek_into_the_danger_zone` is returning true, a call to `doc()` has to return target.
/// If `seek_into_the_danger_zone` is returning false, a call to `doc()` may return any doc
/// between the last doc that matched and target or a doc that is a valid next hit after
/// target. The DocSet is considered to be in an invalid state until
/// `seek_into_the_danger_zone` returns true again.
///
/// `target` needs to be equal or larger than `doc` when in a valid state.
///
/// Consecutive calls are not allowed to have decreasing `target` values.
///
/// # Warning
/// This is an advanced API used by intersection. The API contract is tricky, avoid using it.
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
let current_doc = self.doc();
if current_doc < target {
self.seek(target);
}
self.doc() == target
}
/// Fills a given mutable buffer with the next doc ids from the
/// `DocSet`
///
@@ -94,6 +123,15 @@ pub trait DocSet: Send {
/// which would be the number of documents in the DocSet.
///
/// By default this returns `size_hint()`.
///
/// DocSets may have vastly different cost depending on their type,
/// e.g. an intersection with 10 hits is much cheaper than
/// a phrase search with 10 hits, since it needs to load positions.
///
/// ### Future Work
/// We may want to differentiate `DocSet` costs more more granular, e.g.
/// creation_cost, advance_cost, seek_cost on to get a good estimation
/// what query types to choose.
fn cost(&self) -> u64 {
self.size_hint() as u64
}
@@ -137,6 +175,10 @@ impl DocSet for &mut dyn DocSet {
(**self).seek(target)
}
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
(**self).seek_into_the_danger_zone(target)
}
fn doc(&self) -> u32 {
(**self).doc()
}
@@ -169,6 +211,11 @@ impl<TDocSet: DocSet + ?Sized> DocSet for Box<TDocSet> {
unboxed.seek(target)
}
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
let unboxed: &mut TDocSet = self.borrow_mut();
unboxed.seek_into_the_danger_zone(target)
}
fn fill_buffer(&mut self, buffer: &mut [DocId; COLLECT_BLOCK_BUFFER_LEN]) -> usize {
let unboxed: &mut TDocSet = self.borrow_mut();
unboxed.fill_buffer(buffer)

View File

@@ -13,9 +13,9 @@ use crate::store::Compressor;
use crate::{Inventory, Opstamp, TrackedObject};
#[derive(Clone, Debug, Serialize, Deserialize)]
struct DeleteMeta {
pub struct DeleteMeta {
num_deleted_docs: u32,
opstamp: Opstamp,
pub opstamp: Opstamp,
}
#[derive(Clone, Default)]
@@ -213,7 +213,7 @@ impl SegmentMeta {
struct InnerSegmentMeta {
segment_id: SegmentId,
max_doc: u32,
deletes: Option<DeleteMeta>,
pub deletes: Option<DeleteMeta>,
/// If you want to avoid the SegmentComponent::TempStore file to be covered by
/// garbage collection and deleted, set this to true. This is used during merge.
#[serde(skip)]
@@ -404,7 +404,10 @@ mod tests {
schema_builder.build()
};
let index_metas = IndexMeta {
index_settings: IndexSettings::default(),
index_settings: IndexSettings {
docstore_compression: Compressor::None,
..Default::default()
},
segments: Vec::new(),
schema,
opstamp: 0u64,
@@ -413,7 +416,7 @@ mod tests {
let json = serde_json::ser::to_string(&index_metas).expect("serialization failed");
assert_eq!(
json,
r#"{"index_settings":{"docstore_compression":"lz4","docstore_blocksize":16384},"segments":[],"schema":[{"name":"text","type":"text","options":{"indexing":{"record":"position","fieldnorms":true,"tokenizer":"default"},"stored":false,"fast":false}}],"opstamp":0}"#
r#"{"index_settings":{"docstore_compression":"none","docstore_blocksize":16384},"segments":[],"schema":[{"name":"text","type":"text","options":{"indexing":{"record":"position","fieldnorms":true,"tokenizer":"default"},"stored":false,"fast":false}}],"opstamp":0}"#
);
let deser_meta: UntrackedIndexMeta = serde_json::from_str(&json).unwrap();
@@ -494,6 +497,8 @@ mod tests {
#[test]
#[cfg(feature = "lz4-compression")]
fn test_index_settings_default() {
use crate::store::Compressor;
let mut index_settings = IndexSettings::default();
assert_eq!(
index_settings,

View File

@@ -46,7 +46,7 @@ impl Segment {
///
/// This method is only used when updating `max_doc` from 0
/// as we finalize a fresh new segment.
pub(crate) fn with_max_doc(self, max_doc: u32) -> Segment {
pub fn with_max_doc(self, max_doc: u32) -> Segment {
Segment {
index: self.index,
meta: self.meta.with_max_doc(max_doc),

View File

@@ -4,38 +4,37 @@ use std::sync::{Arc, RwLock, Weak};
use super::operation::DeleteOperation;
use crate::Opstamp;
// The DeleteQueue is similar in conceptually to a multiple
// consumer single producer broadcast channel.
//
// All consumer will receive all messages.
//
// Consumer of the delete queue are holding a `DeleteCursor`,
// which points to a specific place of the `DeleteQueue`.
//
// New consumer can be created in two ways
// - calling `delete_queue.cursor()` returns a cursor, that will include all future delete operation
// (and some or none of the past operations... The client is in charge of checking the opstamps.).
// - cloning an existing cursor returns a new cursor, that is at the exact same position, and can
// now advance independently from the original cursor.
/// The DeleteQueue is similar in conceptually to a multiple
/// consumer single producer broadcast channel.
///
/// All consumer will receive all messages.
///
/// Consumer of the delete queue are holding a `DeleteCursor`,
/// which points to a specific place of the `DeleteQueue`.
///
/// New consumer can be created in two ways
/// - calling `delete_queue.cursor()` returns a cursor, that will include all future delete
/// operation (and some or none of the past operations... The client is in charge of checking the
/// opstamps.).
/// - cloning an existing cursor returns a new cursor, that is at the exact same position, and can
/// now advance independently from the original cursor.
#[derive(Default)]
struct InnerDeleteQueue {
writer: Vec<DeleteOperation>,
last_block: Weak<Block>,
}
#[derive(Clone)]
/// The delete queue is a linked list storing delete operations.
///
/// Several consumers can hold a reference to it. Delete operations
/// get dropped/gc'ed when no more consumers are holding a reference
/// to them.
#[derive(Clone, Default)]
pub struct DeleteQueue {
inner: Arc<RwLock<InnerDeleteQueue>>,
}
impl DeleteQueue {
// Creates a new delete queue.
pub fn new() -> DeleteQueue {
DeleteQueue {
inner: Arc::default(),
}
}
fn get_last_block(&self) -> Arc<Block> {
{
// try get the last block with simply acquiring the read lock.
@@ -58,10 +57,10 @@ impl DeleteQueue {
block
}
// Creates a new cursor that makes it possible to
// consume future delete operations.
//
// Past delete operations are not accessible.
/// Creates a new cursor that makes it possible to
/// consume future delete operations.
///
/// Past delete operations are not accessible.
pub fn cursor(&self) -> DeleteCursor {
let last_block = self.get_last_block();
let operations_len = last_block.operations.len();
@@ -71,7 +70,7 @@ impl DeleteQueue {
}
}
// Appends a new delete operations.
/// Appends a new delete operations.
pub fn push(&self, delete_operation: DeleteOperation) {
self.inner
.write()
@@ -169,6 +168,7 @@ struct Block {
next: NextBlock,
}
/// As we process delete operations, keeps track of our position.
#[derive(Clone)]
pub struct DeleteCursor {
block: Arc<Block>,
@@ -261,7 +261,7 @@ mod tests {
#[test]
fn test_deletequeue() {
let delete_queue = DeleteQueue::new();
let delete_queue = DeleteQueue::default();
let make_op = |i: usize| DeleteOperation {
opstamp: i as u64,

View File

@@ -128,7 +128,7 @@ fn compute_deleted_bitset(
/// is `==` target_opstamp.
/// For instance, there was no delete operation between the state of the `segment_entry` and
/// the `target_opstamp`, `segment_entry` is not updated.
pub(crate) fn advance_deletes(
pub fn advance_deletes(
mut segment: Segment,
segment_entry: &mut SegmentEntry,
target_opstamp: Opstamp,
@@ -303,7 +303,7 @@ impl<D: Document> IndexWriter<D> {
let (document_sender, document_receiver) =
crossbeam_channel::bounded(PIPELINE_MAX_SIZE_IN_DOCS);
let delete_queue = DeleteQueue::new();
let delete_queue = DeleteQueue::default();
let current_opstamp = index.load_metas()?.opstamp;

View File

@@ -4,6 +4,7 @@
//! `IndexWriter` is the main entry point for that, which created from
//! [`Index::writer`](crate::Index::writer).
/// Delete queue implementation for broadcasting delete operations to consumers.
pub(crate) mod delete_queue;
pub(crate) mod path_to_unordered_id;
@@ -32,12 +33,11 @@ mod stamper;
use crossbeam_channel as channel;
use smallvec::SmallVec;
pub use self::index_writer::{IndexWriter, IndexWriterOptions};
pub use self::index_writer::{advance_deletes, IndexWriter, IndexWriterOptions};
pub use self::log_merge_policy::LogMergePolicy;
pub use self::merge_operation::MergeOperation;
pub use self::merge_policy::{MergeCandidate, MergePolicy, NoMergePolicy};
use self::operation::AddOperation;
pub use self::operation::UserOperation;
pub use self::operation::{AddOperation, DeleteOperation, UserOperation};
pub use self::prepared_commit::PreparedCommit;
pub use self::segment_entry::SegmentEntry;
pub(crate) use self::segment_serializer::SegmentSerializer;

View File

@@ -5,14 +5,20 @@ use crate::Opstamp;
/// Timestamped Delete operation.
pub struct DeleteOperation {
/// Operation stamp.
/// It is used to check whether the delete operation
/// applies to an added document operation.
pub opstamp: Opstamp,
/// Weight is used to define the set of documents to be deleted.
pub target: Box<dyn Weight>,
}
/// Timestamped Add operation.
#[derive(Eq, PartialEq, Debug)]
pub struct AddOperation<D: Document = TantivyDocument> {
/// Operation stamp.
pub opstamp: Opstamp,
/// Document to be added.
pub document: D,
}

View File

@@ -117,7 +117,7 @@ mod tests {
#[test]
fn test_segment_register() {
let inventory = SegmentMetaInventory::default();
let delete_queue = DeleteQueue::new();
let delete_queue = DeleteQueue::default();
let mut segment_register = SegmentRegister::default();
let segment_id_a = SegmentId::generate_random();

View File

@@ -421,10 +421,9 @@ fn remap_and_write(
#[cfg(test)]
mod tests {
use std::collections::BTreeMap;
use std::path::{Path, PathBuf};
use std::path::Path;
use columnar::ColumnType;
use tempfile::TempDir;
use crate::collector::{Count, TopDocs};
use crate::directory::RamDirectory;
@@ -1067,10 +1066,7 @@ mod tests {
let mut schema_builder = Schema::builder();
schema_builder.add_text_field("title", text_options);
let schema = schema_builder.build();
let tempdir = TempDir::new().unwrap();
let tempdir_path = PathBuf::from(tempdir.path());
Index::create_in_dir(&tempdir_path, schema).unwrap();
let index = Index::open_in_dir(tempdir_path).unwrap();
let index = Index::create_in_ram(schema);
let schema = index.schema();
let mut index_writer = index.writer(50_000_000).unwrap();
let title = schema.get_field("title").unwrap();

View File

@@ -17,6 +17,7 @@
//!
//! ```rust
//! # use std::path::Path;
//! # use std::fs;
//! # use tempfile::TempDir;
//! # use tantivy::collector::TopDocs;
//! # use tantivy::query::QueryParser;
@@ -27,8 +28,11 @@
//! # // Let's create a temporary directory for the
//! # // sake of this example
//! # if let Ok(dir) = TempDir::new() {
//! # run_example(dir.path()).unwrap();
//! # dir.close().unwrap();
//! # let index_path = dir.path().join("index");
//! # // In case the directory already exists, we remove it
//! # let _ = fs::remove_dir_all(&index_path);
//! # fs::create_dir_all(&index_path).unwrap();
//! # run_example(&index_path).unwrap();
//! # }
//! # }
//! #
@@ -203,6 +207,7 @@ mod docset;
mod reader;
#[cfg(test)]
#[cfg(feature = "mmap")]
mod compat_tests;
pub use self::reader::{IndexReader, IndexReaderBuilder, ReloadPolicy, Warmer};
@@ -1170,12 +1175,11 @@ pub mod tests {
#[test]
fn test_validate_checksum() -> crate::Result<()> {
let index_path = tempfile::tempdir().expect("dir");
let mut builder = Schema::builder();
let body = builder.add_text_field("body", TEXT | STORED);
let schema = builder.build();
let index = Index::create_in_dir(&index_path, schema)?;
let mut writer: IndexWriter = index.writer(50_000_000)?;
let index = Index::create_in_ram(schema);
let mut writer: IndexWriter = index.writer_for_tests()?;
writer.set_merge_policy(Box::new(NoMergePolicy));
for _ in 0..5000 {
writer.add_document(doc!(body => "foo"))?;

View File

@@ -1,12 +1,15 @@
use bitpacking::{BitPacker, BitPacker4x};
use common::FixedSize;
pub const COMPRESSION_BLOCK_SIZE: usize = BitPacker4x::BLOCK_LEN;
const COMPRESSED_BLOCK_MAX_SIZE: usize = COMPRESSION_BLOCK_SIZE * u32::SIZE_IN_BYTES;
// in vint encoding, each byte stores 7 bits of data, so we need at most 32 / 7 = 4.57 bytes to
// store a u32 in the worst case, rounding up to 5 bytes total
const MAX_VINT_SIZE: usize = 5;
const COMPRESSED_BLOCK_MAX_SIZE: usize = COMPRESSION_BLOCK_SIZE * MAX_VINT_SIZE;
mod vint;
/// Returns the size in bytes of a compressed block, given `num_bits`.
#[inline]
pub fn compressed_block_size(num_bits: u8) -> usize {
(num_bits as usize) * COMPRESSION_BLOCK_SIZE / 8
}
@@ -267,7 +270,6 @@ impl VIntDecoder for BlockDecoder {
#[cfg(test)]
pub(crate) mod tests {
use super::*;
use crate::TERMINATED;
@@ -372,6 +374,13 @@ pub(crate) mod tests {
}
}
}
#[test]
fn test_compress_vint_unsorted_does_not_overflow() {
let mut encoder = BlockEncoder::new();
let input: Vec<u32> = vec![u32::MAX; COMPRESSION_BLOCK_SIZE];
encoder.compress_vint_unsorted(&input);
}
}
#[cfg(all(test, feature = "unstable"))]

View File

@@ -527,6 +527,7 @@ pub(crate) mod tests {
}
impl<TScorer: Scorer> Scorer for UnoptimizedDocSet<TScorer> {
#[inline]
fn score(&mut self) -> Score {
self.0.score()
}

View File

@@ -6,17 +6,21 @@ use crate::{DocId, Score, TERMINATED};
// doc num bits uses the following encoding:
// given 0b a b cdefgh
// |1|2| 3 |
// |1|2|3| 4 |
// - 1: unused
// - 2: is delta-1 encoded. 0 if not, 1, if yes
// - 3: a 6 bit number in 0..=32, the actual bitwidth
// - 3: unused
// - 4: a 5 bit number in 0..32, the actual bitwidth. Bitpacking could in theory say this is 32
// (requiring a 6th bit), but the biggest doc_id we can want to encode is TERMINATED-1, which can
// be represented on 31b without delta encoding.
fn encode_bitwidth(bitwidth: u8, delta_1: bool) -> u8 {
assert!(bitwidth < 32);
bitwidth | ((delta_1 as u8) << 6)
}
fn decode_bitwidth(raw_bitwidth: u8) -> (u8, bool) {
let delta_1 = ((raw_bitwidth >> 6) & 1) != 0;
let bitwidth = raw_bitwidth & 0x3f;
let bitwidth = raw_bitwidth & 0x1f;
(bitwidth, delta_1)
}
@@ -430,7 +434,7 @@ mod tests {
#[test]
fn test_encode_decode_bitwidth() {
for bitwidth in 0..=32 {
for bitwidth in 0..32 {
for delta_1 in [false, true] {
assert_eq!(
(bitwidth, delta_1),

View File

@@ -23,7 +23,11 @@ pub struct AllWeight;
impl Weight for AllWeight {
fn scorer(&self, reader: &SegmentReader, boost: Score) -> crate::Result<Box<dyn Scorer>> {
let all_scorer = AllScorer::new(reader.max_doc());
Ok(Box::new(BoostScorer::new(all_scorer, boost)))
if boost != 1.0 {
Ok(Box::new(BoostScorer::new(all_scorer, boost)))
} else {
Ok(Box::new(all_scorer))
}
}
fn explain(&self, reader: &SegmentReader, doc: DocId) -> crate::Result<Explanation> {
@@ -58,6 +62,15 @@ impl DocSet for AllScorer {
self.doc
}
fn seek(&mut self, target: DocId) -> DocId {
debug_assert!(target >= self.doc);
self.doc = target;
if self.doc >= self.max_doc {
self.doc = TERMINATED;
}
self.doc
}
fn fill_buffer(&mut self, buffer: &mut [DocId; COLLECT_BLOCK_BUFFER_LEN]) -> usize {
if self.doc() == TERMINATED {
return 0;
@@ -92,6 +105,7 @@ impl DocSet for AllScorer {
}
impl Scorer for AllScorer {
#[inline]
fn score(&mut self) -> Score {
1.0
}

View File

@@ -483,7 +483,7 @@ mod tests {
let checkpoints_for_each_pruning =
compute_checkpoints_for_each_pruning(term_scorers.clone(), top_k);
let checkpoints_manual =
compute_checkpoints_manual(term_scorers.clone(), top_k, 100_000);
compute_checkpoints_manual(term_scorers.clone(), top_k, max_doc as u32);
assert_eq!(checkpoints_for_each_pruning.len(), checkpoints_manual.len());
for (&(left_doc, left_score), &(right_doc, right_score)) in checkpoints_for_each_pruning
.iter()

View File

@@ -97,6 +97,65 @@ fn into_box_scorer<TScoreCombiner: ScoreCombiner>(
}
}
/// Returns the effective MUST scorer, accounting for removed AllScorers.
///
/// When AllScorer instances are removed from must_scorers as an optimization,
/// we must restore the "match all" semantics if the list becomes empty.
fn effective_must_scorer(
must_scorers: Vec<Box<dyn Scorer>>,
removed_all_scorer_count: usize,
max_doc: DocId,
num_docs: u32,
) -> Option<Box<dyn Scorer>> {
if must_scorers.is_empty() {
if removed_all_scorer_count > 0 {
// Had AllScorer(s) only - all docs match
Some(Box::new(AllScorer::new(max_doc)))
} else {
// No MUST constraint at all
None
}
} else {
Some(intersect_scorers(must_scorers, num_docs))
}
}
/// Returns a SHOULD scorer with AllScorer union if any were removed.
///
/// For union semantics (OR): if any SHOULD clause was an AllScorer, the result
/// should include all documents. We restore this by unioning with AllScorer.
///
/// When `scoring_enabled` is false, we can just return AllScorer alone since
/// we don't need score contributions from the should_scorer.
fn effective_should_scorer_for_union<TScoreCombiner: ScoreCombiner>(
should_scorer: SpecializedScorer,
removed_all_scorer_count: usize,
max_doc: DocId,
num_docs: u32,
score_combiner_fn: impl Fn() -> TScoreCombiner,
scoring_enabled: bool,
) -> SpecializedScorer {
if removed_all_scorer_count > 0 {
if scoring_enabled {
// Need to union to get score contributions from both
let all_scorers: Vec<Box<dyn Scorer>> = vec![
into_box_scorer(should_scorer, &score_combiner_fn, num_docs),
Box::new(AllScorer::new(max_doc)),
];
SpecializedScorer::Other(Box::new(BufferedUnionScorer::build(
all_scorers,
score_combiner_fn,
num_docs,
)))
} else {
// Scoring disabled - AllScorer alone is sufficient
SpecializedScorer::Other(Box::new(AllScorer::new(max_doc)))
}
} else {
should_scorer
}
}
enum ShouldScorersCombinationMethod {
// Should scorers are irrelevant.
Ignored,
@@ -193,18 +252,18 @@ impl<TScoreCombiner: ScoreCombiner> BooleanWeight<TScoreCombiner> {
return Ok(SpecializedScorer::Other(Box::new(EmptyScorer)));
}
let minimum_number_should_match = self
let effective_minimum_number_should_match = self
.minimum_number_should_match
.saturating_sub(should_special_scorer_counts.num_all_scorers);
let should_scorers: ShouldScorersCombinationMethod = {
let num_of_should_scorers = should_scorers.len();
if minimum_number_should_match > num_of_should_scorers {
if effective_minimum_number_should_match > num_of_should_scorers {
// We don't have enough scorers to satisfy the minimum number of should matches.
// The request will match no documents.
return Ok(SpecializedScorer::Other(Box::new(EmptyScorer)));
}
match minimum_number_should_match {
match effective_minimum_number_should_match {
0 if num_of_should_scorers == 0 => ShouldScorersCombinationMethod::Ignored,
0 => ShouldScorersCombinationMethod::Optional(scorer_union(
should_scorers,
@@ -226,7 +285,7 @@ impl<TScoreCombiner: ScoreCombiner> BooleanWeight<TScoreCombiner> {
scorer_disjunction(
should_scorers,
score_combiner_fn(),
self.minimum_number_should_match,
effective_minimum_number_should_match,
),
)),
}
@@ -246,53 +305,78 @@ impl<TScoreCombiner: ScoreCombiner> BooleanWeight<TScoreCombiner> {
let include_scorer = match (should_scorers, must_scorers) {
(ShouldScorersCombinationMethod::Ignored, must_scorers) => {
let boxed_scorer: Box<dyn Scorer> = if must_scorers.is_empty() {
// We do not have any should scorers, nor all scorers.
// There are still two cases here.
//
// If this follows the removal of some AllScorers in the should/must clauses,
// then we match all documents.
//
// Otherwise, it is really just an EmptyScorer.
if must_special_scorer_counts.num_all_scorers
+ should_special_scorer_counts.num_all_scorers
> 0
{
Box::new(AllScorer::new(reader.max_doc()))
} else {
Box::new(EmptyScorer)
}
} else {
intersect_scorers(must_scorers, num_docs)
};
// No SHOULD clauses (or they were absorbed into MUST).
// Result depends entirely on MUST + any removed AllScorers.
let combined_all_scorer_count = must_special_scorer_counts.num_all_scorers
+ should_special_scorer_counts.num_all_scorers;
let boxed_scorer: Box<dyn Scorer> = effective_must_scorer(
must_scorers,
combined_all_scorer_count,
reader.max_doc(),
num_docs,
)
.unwrap_or_else(|| Box::new(EmptyScorer));
SpecializedScorer::Other(boxed_scorer)
}
(ShouldScorersCombinationMethod::Optional(should_scorer), must_scorers) => {
if must_scorers.is_empty() && must_special_scorer_counts.num_all_scorers == 0 {
// Optional options are promoted to required if no must scorers exists.
should_scorer
} else {
let must_scorer = intersect_scorers(must_scorers, num_docs);
if self.scoring_enabled {
SpecializedScorer::Other(Box::new(RequiredOptionalScorer::<
_,
_,
TScoreCombiner,
>::new(
must_scorer,
into_box_scorer(should_scorer, &score_combiner_fn, num_docs),
)))
} else {
SpecializedScorer::Other(must_scorer)
// Optional SHOULD: contributes to scoring but not required for matching.
match effective_must_scorer(
must_scorers,
must_special_scorer_counts.num_all_scorers,
reader.max_doc(),
num_docs,
) {
None => {
// No MUST constraint: promote SHOULD to required.
// Must preserve any removed AllScorers from SHOULD via union.
effective_should_scorer_for_union(
should_scorer,
should_special_scorer_counts.num_all_scorers,
reader.max_doc(),
num_docs,
&score_combiner_fn,
self.scoring_enabled,
)
}
Some(must_scorer) => {
// Has MUST constraint: SHOULD only affects scoring.
if self.scoring_enabled {
SpecializedScorer::Other(Box::new(RequiredOptionalScorer::<
_,
_,
TScoreCombiner,
>::new(
must_scorer,
into_box_scorer(should_scorer, &score_combiner_fn, num_docs),
)))
} else {
SpecializedScorer::Other(must_scorer)
}
}
}
}
(ShouldScorersCombinationMethod::Required(should_scorer), mut must_scorers) => {
if must_scorers.is_empty() {
should_scorer
} else {
must_scorers.push(into_box_scorer(should_scorer, &score_combiner_fn, num_docs));
SpecializedScorer::Other(intersect_scorers(must_scorers, num_docs))
(ShouldScorersCombinationMethod::Required(should_scorer), must_scorers) => {
// Required SHOULD: at least `minimum_number_should_match` must match.
// Semantics: (MUST constraint) AND (SHOULD constraint)
match effective_must_scorer(
must_scorers,
must_special_scorer_counts.num_all_scorers,
reader.max_doc(),
num_docs,
) {
None => {
// No MUST constraint: SHOULD alone determines matching.
should_scorer
}
Some(must_scorer) => {
// Has MUST constraint: intersect MUST with SHOULD.
let should_boxed =
into_box_scorer(should_scorer, &score_combiner_fn, num_docs);
SpecializedScorer::Other(intersect_scorers(
vec![must_scorer, should_boxed],
num_docs,
))
}
}
}
};

View File

@@ -9,12 +9,14 @@ pub use self::boolean_weight::BooleanWeight;
#[cfg(test)]
mod tests {
use std::ops::Bound;
use super::*;
use crate::collector::tests::TEST_COLLECTOR_WITH_SCORE;
use crate::collector::TopDocs;
use crate::collector::{Count, TopDocs};
use crate::query::term_query::TermScorer;
use crate::query::{
AllScorer, EmptyScorer, EnableScoring, Intersection, Occur, Query, QueryParser,
AllScorer, EmptyScorer, EnableScoring, Intersection, Occur, Query, QueryParser, RangeQuery,
RequiredOptionalScorer, Scorer, SumCombiner, TermQuery,
};
use crate::schema::*;
@@ -374,4 +376,466 @@ mod tests {
}
Ok(())
}
#[test]
pub fn test_min_should_match_with_all_query() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let text_field = schema_builder.add_text_field("text", TEXT);
let num_field =
schema_builder.add_i64_field("num", NumericOptions::default().set_fast().set_indexed());
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests()?;
index_writer.add_document(doc!(text_field => "apple", num_field => 10i64))?;
index_writer.add_document(doc!(text_field => "banana", num_field => 20i64))?;
index_writer.commit()?;
let searcher = index.reader()?.searcher();
let effective_all_match_query: Box<dyn Query> = Box::new(RangeQuery::new(
Bound::Excluded(Term::from_field_i64(num_field, 0)),
Bound::Unbounded,
));
let term_query: Box<dyn Query> = Box::new(TermQuery::new(
Term::from_field_text(text_field, "apple"),
IndexRecordOption::Basic,
));
// in some previous version, we would remove the 2 all_match, but then say we need *4*
// matches out of the 3 term queries, which matches nothing.
let mut bool_query = BooleanQuery::new(vec![
(Occur::Should, effective_all_match_query.box_clone()),
(Occur::Should, effective_all_match_query.box_clone()),
(Occur::Should, term_query.box_clone()),
(Occur::Should, term_query.box_clone()),
(Occur::Should, term_query.box_clone()),
]);
bool_query.set_minimum_number_should_match(4);
let count = searcher.search(&bool_query, &Count)?;
assert_eq!(count, 1);
Ok(())
}
// =========================================================================
// AllScorer Preservation Regression Tests
// =========================================================================
//
// These tests verify the fix for a bug where AllScorer instances (produced by
// queries matching all documents, such as range queries covering all values)
// were incorrectly removed from Boolean query processing, causing documents
// to be unexpectedly excluded from results.
//
// The bug manifested in several scenarios:
// 1. SHOULD + SHOULD where one clause is AllScorer
// 2. MUST (AllScorer) + SHOULD
// 3. Range queries in Boolean clauses when all documents match the range
/// Regression test: SHOULD clause with AllScorer combined with other SHOULD clauses.
///
/// When a SHOULD clause produces an AllScorer (e.g., from a range query matching
/// all documents), the Boolean query should still match all documents.
///
/// Bug before fix: AllScorer was removed during optimization, leaving only the
/// other SHOULD clauses, which incorrectly excluded documents.
#[test]
pub fn test_should_with_all_scorer_regression() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let text_field = schema_builder.add_text_field("text", TEXT);
let num_field =
schema_builder.add_i64_field("num", NumericOptions::default().set_fast().set_indexed());
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests()?;
// All docs have num > 0, so range query will return AllScorer
index_writer.add_document(doc!(text_field => "hello", num_field => 10i64))?;
index_writer.add_document(doc!(text_field => "world", num_field => 20i64))?;
index_writer.add_document(doc!(text_field => "hello world", num_field => 30i64))?;
index_writer.add_document(doc!(text_field => "foo", num_field => 40i64))?;
index_writer.add_document(doc!(text_field => "bar", num_field => 50i64))?;
index_writer.add_document(doc!(text_field => "baz", num_field => 60i64))?;
index_writer.commit()?;
let searcher = index.reader()?.searcher();
// Range query matching all docs (returns AllScorer)
let all_match_query: Box<dyn Query> = Box::new(RangeQuery::new(
Bound::Excluded(Term::from_field_i64(num_field, 0)),
Bound::Unbounded,
));
let term_query: Box<dyn Query> = Box::new(TermQuery::new(
Term::from_field_text(text_field, "hello"),
IndexRecordOption::Basic,
));
// Verify range matches all 6 docs
assert_eq!(searcher.search(all_match_query.as_ref(), &Count)?, 6);
// RangeQuery(all) OR TermQuery should match all 6 docs
let bool_query = BooleanQuery::new(vec![
(Occur::Should, all_match_query.box_clone()),
(Occur::Should, term_query.box_clone()),
]);
let count = searcher.search(&bool_query, &Count)?;
assert_eq!(count, 6, "SHOULD with AllScorer should match all docs");
// Order should not matter
let bool_query_reversed = BooleanQuery::new(vec![
(Occur::Should, term_query.box_clone()),
(Occur::Should, all_match_query.box_clone()),
]);
let count_reversed = searcher.search(&bool_query_reversed, &Count)?;
assert_eq!(
count_reversed, 6,
"Order of SHOULD clauses should not matter"
);
Ok(())
}
/// Regression test: MUST clause with AllScorer combined with SHOULD clause.
///
/// When MUST contains an AllScorer, all documents satisfy the MUST constraint.
/// The SHOULD clause should only affect scoring, not filtering.
///
/// Bug before fix: AllScorer was removed, leaving an empty must_scorers vector.
/// intersect_scorers([]) incorrectly returned EmptyScorer, matching 0 documents.
#[test]
pub fn test_must_all_with_should_regression() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let text_field = schema_builder.add_text_field("text", TEXT);
let num_field =
schema_builder.add_i64_field("num", NumericOptions::default().set_fast().set_indexed());
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests()?;
// All docs have num > 0, so range query will return AllScorer
index_writer.add_document(doc!(text_field => "apple", num_field => 10i64))?;
index_writer.add_document(doc!(text_field => "banana", num_field => 20i64))?;
index_writer.add_document(doc!(text_field => "cherry", num_field => 30i64))?;
index_writer.add_document(doc!(text_field => "date", num_field => 40i64))?;
index_writer.commit()?;
let searcher = index.reader()?.searcher();
// Range query matching all docs (returns AllScorer)
let all_match_query: Box<dyn Query> = Box::new(RangeQuery::new(
Bound::Excluded(Term::from_field_i64(num_field, 0)),
Bound::Unbounded,
));
let term_query: Box<dyn Query> = Box::new(TermQuery::new(
Term::from_field_text(text_field, "apple"),
IndexRecordOption::Basic,
));
// Verify range matches all 4 docs
assert_eq!(searcher.search(all_match_query.as_ref(), &Count)?, 4);
// MUST(range matching all) AND SHOULD(term) should match all 4 docs
let bool_query = BooleanQuery::new(vec![
(Occur::Must, all_match_query.box_clone()),
(Occur::Should, term_query.box_clone()),
]);
let count = searcher.search(&bool_query, &Count)?;
assert_eq!(count, 4, "MUST AllScorer + SHOULD should match all docs");
Ok(())
}
/// Regression test: Range queries in Boolean clauses when all documents match.
///
/// Range queries can return AllScorer as an optimization when all indexed values
/// fall within the range. This test ensures such queries work correctly in
/// Boolean combinations.
///
/// This is the most common real-world manifestation of the bug, occurring in
/// queries like: (age > 50 OR name = 'Alice') AND status = 'active'
/// when all documents have age > 50.
#[test]
pub fn test_range_query_all_match_in_boolean() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let name_field = schema_builder.add_text_field("name", TEXT);
let age_field =
schema_builder.add_i64_field("age", NumericOptions::default().set_fast().set_indexed());
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests()?;
// All documents have age > 50, so range query will return AllScorer
index_writer.add_document(doc!(name_field => "alice", age_field => 55_i64))?;
index_writer.add_document(doc!(name_field => "bob", age_field => 60_i64))?;
index_writer.add_document(doc!(name_field => "charlie", age_field => 70_i64))?;
index_writer.add_document(doc!(name_field => "diana", age_field => 80_i64))?;
index_writer.commit()?;
let searcher = index.reader()?.searcher();
let range_query: Box<dyn Query> = Box::new(RangeQuery::new(
Bound::Excluded(Term::from_field_i64(age_field, 50)),
Bound::Unbounded,
));
let term_query: Box<dyn Query> = Box::new(TermQuery::new(
Term::from_field_text(name_field, "alice"),
IndexRecordOption::Basic,
));
// Verify preconditions
assert_eq!(searcher.search(range_query.as_ref(), &Count)?, 4);
assert_eq!(searcher.search(term_query.as_ref(), &Count)?, 1);
// SHOULD(range) OR SHOULD(term): range matches all, so result is 4
let should_query = BooleanQuery::new(vec![
(Occur::Should, range_query.box_clone()),
(Occur::Should, term_query.box_clone()),
]);
assert_eq!(
searcher.search(&should_query, &Count)?,
4,
"SHOULD range OR term should match all"
);
// MUST(range) AND SHOULD(term): range matches all, term is optional
let must_should_query = BooleanQuery::new(vec![
(Occur::Must, range_query.box_clone()),
(Occur::Should, term_query.box_clone()),
]);
assert_eq!(
searcher.search(&must_should_query, &Count)?,
4,
"MUST range + SHOULD term should match all"
);
Ok(())
}
/// Test multiple AllScorer instances in different clause types.
///
/// Verifies correct behavior when AllScorers appear in multiple positions.
#[test]
pub fn test_multiple_all_scorers() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let text_field = schema_builder.add_text_field("text", TEXT);
let num_field =
schema_builder.add_i64_field("num", NumericOptions::default().set_fast().set_indexed());
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests()?;
// All docs have num > 0, so range queries will return AllScorer
index_writer.add_document(doc!(text_field => "doc1", num_field => 10i64))?;
index_writer.add_document(doc!(text_field => "doc2", num_field => 20i64))?;
index_writer.add_document(doc!(text_field => "doc3", num_field => 30i64))?;
index_writer.commit()?;
let searcher = index.reader()?.searcher();
// Two different range queries that both match all docs (return AllScorer)
let all_query1: Box<dyn Query> = Box::new(RangeQuery::new(
Bound::Excluded(Term::from_field_i64(num_field, 0)),
Bound::Unbounded,
));
let all_query2: Box<dyn Query> = Box::new(RangeQuery::new(
Bound::Excluded(Term::from_field_i64(num_field, 5)),
Bound::Unbounded,
));
let term_query: Box<dyn Query> = Box::new(TermQuery::new(
Term::from_field_text(text_field, "doc1"),
IndexRecordOption::Basic,
));
// Multiple AllScorers in SHOULD
let multi_all_should = BooleanQuery::new(vec![
(Occur::Should, all_query1.box_clone()),
(Occur::Should, all_query2.box_clone()),
(Occur::Should, term_query.box_clone()),
]);
assert_eq!(
searcher.search(&multi_all_should, &Count)?,
3,
"Multiple AllScorers in SHOULD"
);
// AllScorer in both MUST and SHOULD
let all_must_and_should = BooleanQuery::new(vec![
(Occur::Must, all_query1.box_clone()),
(Occur::Should, all_query2.box_clone()),
]);
assert_eq!(
searcher.search(&all_must_and_should, &Count)?,
3,
"AllScorer in both MUST and SHOULD"
);
Ok(())
}
}
/// A proptest which generates arbitrary permutations of a simple boolean AST, and then matches
/// the result against an index which contains all permutations of documents with N fields.
#[cfg(test)]
mod proptest_boolean_query {
use std::collections::{BTreeMap, HashSet};
use std::ops::{Bound, Range};
use proptest::collection::vec;
use proptest::prelude::*;
use crate::collector::DocSetCollector;
use crate::query::{AllQuery, BooleanQuery, Occur, Query, RangeQuery, TermQuery};
use crate::schema::{Field, NumericOptions, OwnedValue, Schema, TEXT};
use crate::{DocId, Index, Term};
#[derive(Debug, Clone)]
enum BooleanQueryAST {
/// Matches all documents via AllQuery (wraps AllScorer in BoostScorer)
All,
/// Matches all documents via RangeQuery (returns bare AllScorer)
/// This is the actual trigger for the AllScorer preservation bug
RangeAll,
/// Matches documents where the field has value "true"
Leaf {
field_idx: usize,
},
Union(Vec<BooleanQueryAST>),
Intersection(Vec<BooleanQueryAST>),
}
impl BooleanQueryAST {
fn matches(&self, doc_id: DocId) -> bool {
match self {
BooleanQueryAST::All => true,
BooleanQueryAST::RangeAll => true,
BooleanQueryAST::Leaf { field_idx } => Self::matches_field(doc_id, *field_idx),
BooleanQueryAST::Union(children) => {
children.iter().any(|child| child.matches(doc_id))
}
BooleanQueryAST::Intersection(children) => {
children.iter().all(|child| child.matches(doc_id))
}
}
}
fn matches_field(doc_id: DocId, field_idx: usize) -> bool {
((doc_id as usize) >> field_idx) & 1 == 1
}
fn to_query(&self, fields: &[Field], range_field: Field) -> Box<dyn Query> {
match self {
BooleanQueryAST::All => Box::new(AllQuery),
BooleanQueryAST::RangeAll => {
// Range query that matches all docs (all have value >= 0)
// This returns bare AllScorer, triggering the bug we fixed
Box::new(RangeQuery::new(
Bound::Included(Term::from_field_i64(range_field, 0)),
Bound::Unbounded,
))
}
BooleanQueryAST::Leaf { field_idx } => Box::new(TermQuery::new(
Term::from_field_text(fields[*field_idx], "true"),
crate::schema::IndexRecordOption::Basic,
)),
BooleanQueryAST::Union(children) => {
let sub_queries = children
.iter()
.map(|child| (Occur::Should, child.to_query(fields, range_field)))
.collect();
Box::new(BooleanQuery::new(sub_queries))
}
BooleanQueryAST::Intersection(children) => {
let sub_queries = children
.iter()
.map(|child| (Occur::Must, child.to_query(fields, range_field)))
.collect();
Box::new(BooleanQuery::new(sub_queries))
}
}
}
}
fn doc_ids(num_docs: usize, num_fields: usize) -> Range<DocId> {
let permutations = 1 << num_fields;
let copies = (num_docs as f32 / permutations as f32).ceil() as u32;
0..(permutations * copies)
}
fn create_index_with_boolean_permutations(
num_docs: usize,
num_fields: usize,
) -> (Index, Vec<Field>, Field) {
let mut schema_builder = Schema::builder();
let fields: Vec<Field> = (0..num_fields)
.map(|i| schema_builder.add_text_field(&format!("field_{}", i), TEXT))
.collect();
// Add a numeric field for RangeQuery tests - all docs have value = doc_id
let range_field = schema_builder.add_i64_field(
"range_field",
NumericOptions::default().set_fast().set_indexed(),
);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut writer = index.writer_for_tests().unwrap();
for doc_id in doc_ids(num_docs, num_fields) {
let mut doc: BTreeMap<_, OwnedValue> = BTreeMap::default();
for (field_idx, &field) in fields.iter().enumerate() {
if (doc_id >> field_idx) & 1 == 1 {
doc.insert(field, "true".into());
}
}
// All docs have non-negative values, so RangeQuery(>=0) matches all
doc.insert(range_field, (doc_id as i64).into());
writer.add_document(doc).unwrap();
}
writer.commit().unwrap();
(index, fields, range_field)
}
fn arb_boolean_query_ast(num_fields: usize) -> impl Strategy<Value = BooleanQueryAST> {
// Leaf strategies: term queries, AllQuery, and RangeQuery matching all docs
let leaf = prop_oneof![
(0..num_fields).prop_map(|field_idx| BooleanQueryAST::Leaf { field_idx }),
Just(BooleanQueryAST::All),
Just(BooleanQueryAST::RangeAll),
];
leaf.prop_recursive(
8, // 8 levels of recursion
256, // 256 nodes max
10, // 10 items per collection
|inner| {
prop_oneof![
vec(inner.clone(), 1..10).prop_map(BooleanQueryAST::Union),
vec(inner, 1..10).prop_map(BooleanQueryAST::Intersection),
]
},
)
}
#[test]
fn proptest_boolean_query() {
// In the presence of optimizations around buffering, it can take large numbers of
// documents to uncover some issues.
let num_fields = 8;
let num_docs = 1 << num_fields;
let (index, fields, range_field) =
create_index_with_boolean_permutations(num_docs, num_fields);
let searcher = index.reader().unwrap().searcher();
proptest!(|(ast in arb_boolean_query_ast(num_fields))| {
let query = ast.to_query(&fields, range_field);
let mut matching_docs = HashSet::new();
for doc_id in doc_ids(num_docs, num_fields) {
if ast.matches(doc_id as DocId) {
matching_docs.insert(doc_id as DocId);
}
}
let doc_addresses = searcher.search(&*query, &DocSetCollector).unwrap();
let result_docs: HashSet<DocId> =
doc_addresses.into_iter().map(|doc_address| doc_address.doc_id).collect();
prop_assert_eq!(result_docs, matching_docs);
});
}
}

View File

@@ -104,6 +104,9 @@ impl<S: Scorer> DocSet for BoostScorer<S> {
fn seek(&mut self, target: DocId) -> DocId {
self.underlying.seek(target)
}
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
self.underlying.seek_into_the_danger_zone(target)
}
fn fill_buffer(&mut self, buffer: &mut [DocId; COLLECT_BLOCK_BUFFER_LEN]) -> usize {
self.underlying.fill_buffer(buffer)
@@ -131,6 +134,7 @@ impl<S: Scorer> DocSet for BoostScorer<S> {
}
impl<S: Scorer> Scorer for BoostScorer<S> {
#[inline]
fn score(&mut self) -> Score {
self.underlying.score() * self.boost
}

View File

@@ -137,6 +137,7 @@ impl<TDocSet: DocSet> DocSet for ConstScorer<TDocSet> {
}
impl<TDocSet: DocSet + 'static> Scorer for ConstScorer<TDocSet> {
#[inline]
fn score(&mut self) -> Score {
self.score
}

View File

@@ -62,6 +62,16 @@ impl<T: Scorer> DocSet for ScorerWrapper<T> {
self.current_doc = doc_id;
doc_id
}
fn seek(&mut self, target: DocId) -> DocId {
let doc_id = self.scorer.seek(target);
self.current_doc = doc_id;
doc_id
}
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
let found = self.scorer.seek_into_the_danger_zone(target);
self.current_doc = self.scorer.doc();
found
}
fn doc(&self) -> DocId {
self.current_doc
@@ -163,6 +173,7 @@ impl<TScorer: Scorer, TScoreCombiner: ScoreCombiner> DocSet
impl<TScorer: Scorer, TScoreCombiner: ScoreCombiner> Scorer
for Disjunction<TScorer, TScoreCombiner>
{
#[inline]
fn score(&mut self) -> Score {
self.current_score
}
@@ -297,6 +308,7 @@ mod tests {
}
impl Scorer for DummyScorer {
#[inline]
fn score(&mut self) -> Score {
self.foo.get(self.cursor).map(|x| x.1).unwrap_or(0.0)
}

View File

@@ -55,6 +55,7 @@ impl DocSet for EmptyScorer {
}
impl Scorer for EmptyScorer {
#[inline]
fn score(&mut self) -> Score {
0.0
}

View File

@@ -84,6 +84,7 @@ where
TScorer: Scorer,
TDocSetExclude: DocSet + 'static,
{
#[inline]
fn score(&mut self) -> Score {
self.underlying_docset.score()
}

View File

@@ -1,5 +1,5 @@
use super::size_hint::estimate_intersection;
use crate::docset::{DocSet, TERMINATED};
use crate::query::size_hint::estimate_intersection;
use crate::query::term_query::TermScorer;
use crate::query::{EmptyScorer, Scorer};
use crate::{DocId, Score};
@@ -12,6 +12,9 @@ use crate::{DocId, Score};
/// For better performance, the function uses a
/// specialized implementation if the two
/// shortest scorers are `TermScorer`s.
///
/// num_docs_segment is the number of documents in the segment. It is used for estimating the
/// `size_hint` of the intersection.
pub fn intersect_scorers(
mut scorers: Vec<Box<dyn Scorer>>,
num_docs_segment: u32,
@@ -102,35 +105,48 @@ impl<TDocSet: DocSet> Intersection<TDocSet, TDocSet> {
}
impl<TDocSet: DocSet, TOtherDocSet: DocSet> DocSet for Intersection<TDocSet, TOtherDocSet> {
#[inline]
fn advance(&mut self) -> DocId {
let (left, right) = (&mut self.left, &mut self.right);
let mut candidate = left.advance();
if candidate == TERMINATED {
return TERMINATED;
}
'outer: loop {
loop {
// In the first part we look for a document in the intersection
// of the two rarest `DocSet` in the intersection.
loop {
let right_doc = right.seek(candidate);
candidate = left.seek(right_doc);
if candidate == right_doc {
if right.seek_into_the_danger_zone(candidate) {
break;
}
let right_doc = right.doc();
// TODO: Think about which value would make sense here
// It depends on the DocSet implementation, when a seek would outweigh an advance.
if right_doc > candidate.wrapping_add(100) {
candidate = left.seek(right_doc);
} else {
candidate = left.advance();
}
if candidate == TERMINATED {
return TERMINATED;
}
}
debug_assert_eq!(left.doc(), right.doc());
// test the remaining scorers;
for docset in self.others.iter_mut() {
let seek_doc = docset.seek(candidate);
if seek_doc > candidate {
candidate = left.seek(seek_doc);
continue 'outer;
}
// test the remaining scorers
if self
.others
.iter_mut()
.all(|docset| docset.seek_into_the_danger_zone(candidate))
{
debug_assert_eq!(candidate, self.left.doc());
debug_assert_eq!(candidate, self.right.doc());
debug_assert!(self.others.iter().all(|docset| docset.doc() == candidate));
return candidate;
}
debug_assert_eq!(candidate, self.left.doc());
debug_assert_eq!(candidate, self.right.doc());
debug_assert!(self.others.iter().all(|docset| docset.doc() == candidate));
return candidate;
candidate = left.advance();
}
}
@@ -146,6 +162,20 @@ impl<TDocSet: DocSet, TOtherDocSet: DocSet> DocSet for Intersection<TDocSet, TOt
doc
}
/// Seeks to the target if necessary and checks if the target is an exact match.
///
/// Some implementations may choose to advance past the target if beneficial for performance.
/// The return value is `true` if the target is in the docset, and `false` otherwise.
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
self.left.seek_into_the_danger_zone(target)
&& self.right.seek_into_the_danger_zone(target)
&& self
.others
.iter_mut()
.all(|docset| docset.seek_into_the_danger_zone(target))
}
#[inline]
fn doc(&self) -> DocId {
self.left.doc()
}
@@ -172,6 +202,7 @@ where
TScorer: Scorer,
TOtherScorer: Scorer,
{
#[inline]
fn score(&mut self) -> Score {
self.left.score()
+ self.right.score()
@@ -181,6 +212,8 @@ where
#[cfg(test)]
mod tests {
use proptest::prelude::*;
use super::Intersection;
use crate::docset::{DocSet, TERMINATED};
use crate::postings::tests::test_skip_against_unoptimized;
@@ -270,4 +303,38 @@ mod tests {
let intersection = Intersection::new(vec![a, b, c], 10);
assert_eq!(intersection.doc(), TERMINATED);
}
// Strategy to generate sorted and deduplicated vectors of u32 document IDs
fn sorted_deduped_vec(max_val: u32, max_size: usize) -> impl Strategy<Value = Vec<u32>> {
prop::collection::vec(0..max_val, 0..max_size).prop_map(|mut vec| {
vec.sort();
vec.dedup();
vec
})
}
proptest! {
#[test]
fn prop_test_intersection_consistency(
a in sorted_deduped_vec(100, 10),
b in sorted_deduped_vec(100, 10),
num_docs in 100u32..500u32
) {
let left = VecDocSet::from(a.clone());
let right = VecDocSet::from(b.clone());
let mut intersection = Intersection::new(vec![left, right], num_docs);
let expected: Vec<u32> = a.iter()
.cloned()
.filter(|doc| b.contains(doc))
.collect();
for expected_doc in expected {
assert_eq!(intersection.doc(), expected_doc);
intersection.advance();
}
assert_eq!(intersection.doc(), TERMINATED);
}
}
}

View File

@@ -70,9 +70,83 @@ pub use self::weight::Weight;
#[cfg(test)]
mod tests {
use crate::collector::TopDocs;
use crate::query::phrase_query::tests::create_index;
use crate::query::QueryParser;
use crate::schema::{Schema, TEXT};
use crate::{Index, Term};
use crate::{DocAddress, Index, Term};
#[test]
pub fn test_mixed_intersection_and_union() -> crate::Result<()> {
let index = create_index(&["a b", "a c", "a b c", "b"])?;
let schema = index.schema();
let text_field = schema.get_field("text").unwrap();
let searcher = index.reader()?.searcher();
let do_search = |term: &str| {
let query = QueryParser::for_index(&index, vec![text_field])
.parse_query(term)
.unwrap();
let top_docs: Vec<(f32, DocAddress)> = searcher
.search(&query, &TopDocs::with_limit(10).order_by_score())
.unwrap();
top_docs.iter().map(|el| el.1.doc_id).collect::<Vec<_>>()
};
assert_eq!(do_search("a AND b"), vec![0, 2]);
assert_eq!(do_search("(a OR b) AND C"), vec![2, 1]);
// The intersection code has special code for more than 2 intersections
// left, right + others
// The will place the union in the "others" insersection to that seek_into_the_danger_zone
// is called
assert_eq!(
do_search("(a OR b) AND (c OR a) AND (b OR c)"),
vec![2, 1, 0]
);
Ok(())
}
#[test]
pub fn test_mixed_intersection_and_union_with_skip() -> crate::Result<()> {
// Test 4096 skip in BufferedUnionScorer
let mut data: Vec<&str> = Vec::new();
data.push("a b");
let zz_data = vec!["z z"; 5000];
data.extend_from_slice(&zz_data);
data.extend_from_slice(&["a c"]);
data.extend_from_slice(&zz_data);
data.extend_from_slice(&["a b c", "b"]);
let index = create_index(&data)?;
let schema = index.schema();
let text_field = schema.get_field("text").unwrap();
let searcher = index.reader()?.searcher();
let do_search = |term: &str| {
let query = QueryParser::for_index(&index, vec![text_field])
.parse_query(term)
.unwrap();
let top_docs: Vec<(f32, DocAddress)> = searcher
.search(&query, &TopDocs::with_limit(10).order_by_score())
.unwrap();
top_docs.iter().map(|el| el.1.doc_id).collect::<Vec<_>>()
};
assert_eq!(do_search("a AND b"), vec![0, 10002]);
assert_eq!(do_search("(a OR b) AND C"), vec![10002, 5001]);
// The intersection code has special code for more than 2 intersections
// left, right + others
// The will place the union in the "others" insersection to that seek_into_the_danger_zone
// is called
assert_eq!(
do_search("(a OR b) AND (c OR a) AND (b OR c)"),
vec![10002, 5001, 0]
);
Ok(())
}
#[test]
fn test_query_terms() {

View File

@@ -81,6 +81,7 @@ impl<TPostings: Postings> DocSet for PhraseKind<TPostings> {
}
impl<TPostings: Postings> Scorer for PhraseKind<TPostings> {
#[inline]
fn score(&mut self) -> Score {
match self {
PhraseKind::SinglePrefix { positions, .. } => {
@@ -193,6 +194,14 @@ impl<TPostings: Postings> DocSet for PhrasePrefixScorer<TPostings> {
self.advance()
}
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
if self.phrase_scorer.seek_into_the_danger_zone(target) {
self.matches_prefix()
} else {
false
}
}
fn doc(&self) -> DocId {
self.phrase_scorer.doc()
}
@@ -207,6 +216,7 @@ impl<TPostings: Postings> DocSet for PhrasePrefixScorer<TPostings> {
}
impl<TPostings: Postings> Scorer for PhrasePrefixScorer<TPostings> {
#[inline]
fn score(&mut self) -> Score {
// TODO modify score??
self.phrase_scorer.score()

View File

@@ -382,8 +382,9 @@ impl<TPostings: Postings> PhraseScorer<TPostings> {
PostingsWithOffset::new(postings, (max_offset - offset) as u32)
})
.collect::<Vec<_>>();
let intersection_docset = Intersection::new(postings_with_offsets, num_docs);
let mut scorer = PhraseScorer {
intersection_docset: Intersection::new(postings_with_offsets, num_docs),
intersection_docset,
num_terms: num_docsets,
left_positions: Vec::with_capacity(100),
right_positions: Vec::with_capacity(100),
@@ -529,25 +530,40 @@ impl<TPostings: Postings> DocSet for PhraseScorer<TPostings> {
self.advance()
}
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
debug_assert!(target >= self.doc());
if self.intersection_docset.seek_into_the_danger_zone(target) && self.phrase_match() {
return true;
}
false
}
fn doc(&self) -> DocId {
self.intersection_docset.doc()
}
fn size_hint(&self) -> u32 {
self.intersection_docset.size_hint()
// We adjust the intersection estimate, since actual phrase hits are much lower than where
// the all appear.
// The estimate should depend on average field length, e.g. if the field is really short
// a phrase hit is more likely
self.intersection_docset.size_hint() / (10 * self.num_terms as u32)
}
/// Returns a best-effort hint of the
/// cost to drive the docset.
fn cost(&self) -> u64 {
// Evaluating phrase matches is generally more expensive than simple term matches,
// as it requires loading and comparing positions. Use a conservative multiplier
// based on the number of terms.
// While determing a potential hit is cheap for phrases, evaluating an actual hit is
// expensive since it requires to load positions for a doc and check if they are next to
// each other.
// So the cost estimation would be the number of times we need to check if a doc is a hit *
// 10 * self.num_terms.
self.intersection_docset.size_hint() as u64 * 10 * self.num_terms as u64
}
}
impl<TPostings: Postings> Scorer for PhraseScorer<TPostings> {
#[inline]
fn score(&mut self) -> Score {
let doc = self.doc();
let fieldnorm_id = self.fieldnorm_reader.fieldnorm_id(doc);

View File

@@ -62,6 +62,17 @@ pub(crate) struct RangeDocSet<T> {
const DEFAULT_FETCH_HORIZON: u32 = 128;
impl<T: Send + Sync + PartialOrd + Copy + Debug + 'static> RangeDocSet<T> {
pub(crate) fn new(value_range: RangeInclusive<T>, column: Column<T>) -> Self {
if *value_range.start() > column.max_value() || *value_range.end() < column.min_value() {
return Self {
value_range,
column,
loaded_docs: VecCursor::new(),
next_fetch_start: TERMINATED,
fetch_horizon: DEFAULT_FETCH_HORIZON,
last_seek_pos_opt: None,
};
}
let mut range_docset = Self {
value_range,
column,
@@ -81,6 +92,9 @@ impl<T: Send + Sync + PartialOrd + Copy + Debug + 'static> RangeDocSet<T> {
/// Returns true if more data could be fetched
fn fetch_block(&mut self) {
if self.next_fetch_start >= self.column.num_docs() {
return;
}
const MAX_HORIZON: u32 = 100_000;
while self.loaded_docs.is_empty() {
let finished_to_end = self.fetch_horizon(self.fetch_horizon);
@@ -105,10 +119,10 @@ impl<T: Send + Sync + PartialOrd + Copy + Debug + 'static> RangeDocSet<T> {
fn fetch_horizon(&mut self, horizon: u32) -> bool {
let mut finished_to_end = false;
let limit = self.column.num_docs();
let mut end = self.next_fetch_start + horizon;
if end >= limit {
end = limit;
let num_docs = self.column.num_docs();
let mut fetch_end = self.next_fetch_start + horizon;
if fetch_end >= num_docs {
fetch_end = num_docs;
finished_to_end = true;
}
@@ -116,7 +130,7 @@ impl<T: Send + Sync + PartialOrd + Copy + Debug + 'static> RangeDocSet<T> {
let doc_buffer: &mut Vec<DocId> = self.loaded_docs.get_cleared_data();
self.column.get_docids_for_value_range(
self.value_range.clone(),
self.next_fetch_start..end,
self.next_fetch_start..fetch_end,
doc_buffer,
);
if let Some(last_doc) = last_doc {
@@ -124,7 +138,7 @@ impl<T: Send + Sync + PartialOrd + Copy + Debug + 'static> RangeDocSet<T> {
self.loaded_docs.next();
}
}
self.next_fetch_start = end;
self.next_fetch_start = fetch_end;
finished_to_end
}
@@ -136,9 +150,6 @@ impl<T: Send + Sync + PartialOrd + Copy + Debug + 'static> DocSet for RangeDocSe
if let Some(docid) = self.loaded_docs.next() {
return docid;
}
if self.next_fetch_start >= self.column.num_docs() {
return TERMINATED;
}
self.fetch_block();
self.loaded_docs.current().unwrap_or(TERMINATED)
}
@@ -174,15 +185,25 @@ impl<T: Send + Sync + PartialOrd + Copy + Debug + 'static> DocSet for RangeDocSe
}
fn size_hint(&self) -> u32 {
self.column.num_docs()
// TODO: Implement a better size hint
self.column.num_docs() / 10
}
/// Returns a best-effort hint of the
/// cost to drive the docset.
fn cost(&self) -> u64 {
// Advancing the docset is relatively expensive since it scans the column.
// Keep cost relative to a term query driver; use num_docs as baseline.
self.column.num_docs() as u64
// Advancing the docset is pretty expensive since it scans the whole column, there is no
// index currently (will change with an kd-tree)
// Since we use SIMD to scan the fast field range query we lower the cost a little bit,
// assuming that we hit 10% of the docs like in size_hint.
//
// If we would return a cost higher than num_docs, we would never choose ff range query as
// the driver in a DocSet, when intersecting a term query with a fast field. But
// it's the faster choice when the term query has a lot of docids and the range
// query has not.
//
// Ideally this would take the fast field codec into account
(self.column.num_docs() as f64 * 0.8) as u64
}
}
@@ -236,4 +257,52 @@ mod tests {
let count = searcher.search(&query, &Count).unwrap();
assert_eq!(count, 500);
}
#[test]
fn range_query_no_overlap_optimization() {
let mut schema_builder = schema::SchemaBuilder::new();
let id_field = schema_builder.add_text_field("id", schema::STRING);
let value_field = schema_builder.add_u64_field("value", schema::FAST | schema::INDEXED);
let dir = RamDirectory::default();
let index = IndexBuilder::new()
.schema(schema_builder.build())
.open_or_create(dir)
.unwrap();
{
let mut writer = index.writer(15_000_000).unwrap();
// Add documents with values in the range [10, 20]
for i in 0..100 {
let mut doc = TantivyDocument::new();
doc.add_text(id_field, format!("doc{i}"));
doc.add_u64(value_field, 10 + (i % 11) as u64); // values in range 10-20
writer.add_document(doc).unwrap();
}
writer.commit().unwrap();
}
let reader = index.reader().unwrap();
let searcher = reader.searcher();
// Test a range query [100, 200] that has no overlap with data range [10, 20]
let query = RangeQuery::new(
Bound::Included(Term::from_field_u64(value_field, 100)),
Bound::Included(Term::from_field_u64(value_field, 200)),
);
let count = searcher.search(&query, &Count).unwrap();
assert_eq!(count, 0); // should return 0 results since there's no overlap
// Test another non-overlapping range: [0, 5] while data range is [10, 20]
let query2 = RangeQuery::new(
Bound::Included(Term::from_field_u64(value_field, 0)),
Bound::Included(Term::from_field_u64(value_field, 5)),
);
let count2 = searcher.search(&query2, &Count).unwrap();
assert_eq!(count2, 0); // should return 0 results since there's no overlap
}
}

View File

@@ -1598,449 +1598,3 @@ pub(crate) mod ip_range_tests {
Ok(())
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use test::Bencher;
use super::tests::*;
use super::*;
use crate::collector::Count;
use crate::query::QueryParser;
use crate::Index;
fn get_index_0_to_100() -> Index {
let mut rng = StdRng::from_seed([1u8; 32]);
let num_vals = 100_000;
let docs: Vec<_> = (0..num_vals)
.map(|_i| {
let id_name = if rng.gen_bool(0.01) {
"veryfew".to_string() // 1%
} else if rng.gen_bool(0.1) {
"few".to_string() // 9%
} else {
"many".to_string() // 90%
};
Doc {
id_name,
id: rng.gen_range(0..100),
}
})
.collect();
create_index_from_docs(&docs, false)
}
fn get_90_percent() -> RangeInclusive<u64> {
0..=90
}
fn get_10_percent() -> RangeInclusive<u64> {
0..=10
}
fn get_1_percent() -> RangeInclusive<u64> {
10..=10
}
fn execute_query(
field: &str,
id_range: RangeInclusive<u64>,
suffix: &str,
index: &Index,
) -> usize {
let gen_query_inclusive = |from: &u64, to: &u64| {
format!(
"{}:[{} TO {}] {}",
field,
&from.to_string(),
&to.to_string(),
suffix
)
};
let query = gen_query_inclusive(id_range.start(), id_range.end());
let query_from_text = |text: &str| {
QueryParser::for_index(index, vec![])
.parse_query(text)
.unwrap()
};
let query = query_from_text(&query);
let reader = index.reader().unwrap();
let searcher = reader.searcher();
searcher.search(&query, &(Count)).unwrap()
}
#[bench]
fn bench_id_range_hit_90_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("id", get_90_percent(), "", &index));
}
#[bench]
fn bench_id_range_hit_10_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("id", get_10_percent(), "", &index));
}
#[bench]
fn bench_id_range_hit_1_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("id", get_1_percent(), "", &index));
}
#[bench]
fn bench_id_range_hit_10_percent_intersect_with_10_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("id", get_10_percent(), "AND id_name:few", &index));
}
#[bench]
fn bench_id_range_hit_1_percent_intersect_with_10_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("id", get_1_percent(), "AND id_name:few", &index));
}
#[bench]
fn bench_id_range_hit_1_percent_intersect_with_90_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("id", get_1_percent(), "AND id_name:many", &index));
}
#[bench]
fn bench_id_range_hit_1_percent_intersect_with_1_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("id", get_1_percent(), "AND id_name:veryfew", &index));
}
#[bench]
fn bench_id_range_hit_10_percent_intersect_with_90_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("id", get_10_percent(), "AND id_name:many", &index));
}
#[bench]
fn bench_id_range_hit_90_percent_intersect_with_90_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("id", get_90_percent(), "AND id_name:many", &index));
}
#[bench]
fn bench_id_range_hit_90_percent_intersect_with_10_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("id", get_90_percent(), "AND id_name:few", &index));
}
#[bench]
fn bench_id_range_hit_90_percent_intersect_with_1_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("id", get_90_percent(), "AND id_name:veryfew", &index));
}
#[bench]
fn bench_id_range_hit_90_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ids", get_90_percent(), "", &index));
}
#[bench]
fn bench_id_range_hit_10_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ids", get_10_percent(), "", &index));
}
#[bench]
fn bench_id_range_hit_1_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ids", get_1_percent(), "", &index));
}
#[bench]
fn bench_id_range_hit_10_percent_intersect_with_10_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ids", get_10_percent(), "AND id_name:few", &index));
}
#[bench]
fn bench_id_range_hit_1_percent_intersect_with_10_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ids", get_1_percent(), "AND id_name:few", &index));
}
#[bench]
fn bench_id_range_hit_1_percent_intersect_with_90_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ids", get_1_percent(), "AND id_name:many", &index));
}
#[bench]
fn bench_id_range_hit_1_percent_intersect_with_1_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ids", get_1_percent(), "AND id_name:veryfew", &index));
}
#[bench]
fn bench_id_range_hit_10_percent_intersect_with_90_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ids", get_10_percent(), "AND id_name:many", &index));
}
#[bench]
fn bench_id_range_hit_90_percent_intersect_with_90_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ids", get_90_percent(), "AND id_name:many", &index));
}
#[bench]
fn bench_id_range_hit_90_percent_intersect_with_10_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ids", get_90_percent(), "AND id_name:few", &index));
}
#[bench]
fn bench_id_range_hit_90_percent_intersect_with_1_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ids", get_90_percent(), "AND id_name:veryfew", &index));
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench_ip {
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use test::Bencher;
use super::ip_range_tests::*;
use super::*;
use crate::collector::Count;
use crate::query::QueryParser;
use crate::Index;
fn get_index_0_to_100() -> Index {
let mut rng = StdRng::from_seed([1u8; 32]);
let num_vals = 100_000;
let docs: Vec<_> = (0..num_vals)
.map(|_i| {
let id = if rng.gen_bool(0.01) {
"veryfew".to_string() // 1%
} else if rng.gen_bool(0.1) {
"few".to_string() // 9%
} else {
"many".to_string() // 90%
};
Doc {
id,
// Multiply by 1000, so that we create many buckets in the compact space
// The benches depend on this range to select n-percent of elements with the
// methods below.
ip: Ipv6Addr::from_u128(rng.gen_range(0..100) * 1000),
}
})
.collect();
create_index_from_ip_docs(&docs)
}
fn get_90_percent() -> RangeInclusive<Ipv6Addr> {
let start = Ipv6Addr::from_u128(0);
let end = Ipv6Addr::from_u128(90 * 1000);
start..=end
}
fn get_10_percent() -> RangeInclusive<Ipv6Addr> {
let start = Ipv6Addr::from_u128(0);
let end = Ipv6Addr::from_u128(10 * 1000);
start..=end
}
fn get_1_percent() -> RangeInclusive<Ipv6Addr> {
let start = Ipv6Addr::from_u128(10 * 1000);
let end = Ipv6Addr::from_u128(10 * 1000);
start..=end
}
fn execute_query(
field: &str,
ip_range: RangeInclusive<Ipv6Addr>,
suffix: &str,
index: &Index,
) -> usize {
let gen_query_inclusive = |from: &Ipv6Addr, to: &Ipv6Addr| {
format!(
"{}:[{} TO {}] {}",
field,
&from.to_string(),
&to.to_string(),
suffix
)
};
let query = gen_query_inclusive(ip_range.start(), ip_range.end());
let query_from_text = |text: &str| {
QueryParser::for_index(index, vec![])
.parse_query(text)
.unwrap()
};
let query = query_from_text(&query);
let reader = index.reader().unwrap();
let searcher = reader.searcher();
searcher.search(&query, &(Count)).unwrap()
}
#[bench]
fn bench_ip_range_hit_90_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ip", get_90_percent(), "", &index));
}
#[bench]
fn bench_ip_range_hit_10_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ip", get_10_percent(), "", &index));
}
#[bench]
fn bench_ip_range_hit_1_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ip", get_1_percent(), "", &index));
}
#[bench]
fn bench_ip_range_hit_10_percent_intersect_with_10_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ip", get_10_percent(), "AND id:few", &index));
}
#[bench]
fn bench_ip_range_hit_1_percent_intersect_with_10_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ip", get_1_percent(), "AND id:few", &index));
}
#[bench]
fn bench_ip_range_hit_1_percent_intersect_with_90_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ip", get_1_percent(), "AND id:many", &index));
}
#[bench]
fn bench_ip_range_hit_1_percent_intersect_with_1_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ip", get_1_percent(), "AND id:veryfew", &index));
}
#[bench]
fn bench_ip_range_hit_10_percent_intersect_with_90_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ip", get_10_percent(), "AND id:many", &index));
}
#[bench]
fn bench_ip_range_hit_90_percent_intersect_with_90_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ip", get_90_percent(), "AND id:many", &index));
}
#[bench]
fn bench_ip_range_hit_90_percent_intersect_with_10_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ip", get_90_percent(), "AND id:few", &index));
}
#[bench]
fn bench_ip_range_hit_90_percent_intersect_with_1_percent(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ip", get_90_percent(), "AND id:veryfew", &index));
}
#[bench]
fn bench_ip_range_hit_90_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ips", get_90_percent(), "", &index));
}
#[bench]
fn bench_ip_range_hit_10_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ips", get_10_percent(), "", &index));
}
#[bench]
fn bench_ip_range_hit_1_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ips", get_1_percent(), "", &index));
}
#[bench]
fn bench_ip_range_hit_10_percent_intersect_with_10_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ips", get_10_percent(), "AND id:few", &index));
}
#[bench]
fn bench_ip_range_hit_1_percent_intersect_with_10_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ips", get_1_percent(), "AND id:few", &index));
}
#[bench]
fn bench_ip_range_hit_1_percent_intersect_with_90_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ips", get_1_percent(), "AND id:many", &index));
}
#[bench]
fn bench_ip_range_hit_1_percent_intersect_with_1_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ips", get_1_percent(), "AND id:veryfew", &index));
}
#[bench]
fn bench_ip_range_hit_10_percent_intersect_with_90_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ips", get_10_percent(), "AND id:many", &index));
}
#[bench]
fn bench_ip_range_hit_90_percent_intersect_with_90_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ips", get_90_percent(), "AND id:many", &index));
}
#[bench]
fn bench_ip_range_hit_90_percent_intersect_with_10_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ips", get_90_percent(), "AND id:few", &index));
}
#[bench]
fn bench_ip_range_hit_90_percent_intersect_with_1_percent_multi(bench: &mut Bencher) {
let index = get_index_0_to_100();
bench.iter(|| execute_query("ips", get_90_percent(), "AND id:veryfew", &index));
}
}

View File

@@ -56,6 +56,11 @@ where
self.req_scorer.seek(target)
}
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
self.score_cache = None;
self.req_scorer.seek_into_the_danger_zone(target)
}
fn doc(&self) -> DocId {
self.req_scorer.doc()
}
@@ -76,6 +81,7 @@ where
TOptScorer: Scorer,
TScoreCombiner: ScoreCombiner,
{
#[inline]
fn score(&mut self) -> Score {
if let Some(score) = self.score_cache {
return score;

View File

@@ -29,6 +29,7 @@ impl ScoreCombiner for DoNothingCombiner {
fn clear(&mut self) {}
#[inline]
fn score(&self) -> Score {
1.0
}
@@ -49,6 +50,7 @@ impl ScoreCombiner for SumCombiner {
self.score = 0.0;
}
#[inline]
fn score(&self) -> Score {
self.score
}
@@ -86,6 +88,7 @@ impl ScoreCombiner for DisjunctionMaxCombiner {
self.sum = 0.0;
}
#[inline]
fn score(&self) -> Score {
self.max + (self.sum - self.max) * self.tie_breaker
}

View File

@@ -18,6 +18,7 @@ pub trait Scorer: downcast_rs::Downcast + DocSet + 'static {
impl_downcast!(Scorer);
impl Scorer for Box<dyn Scorer> {
#[inline]
fn score(&mut self) -> Score {
self.deref_mut().score()
}

View File

@@ -98,14 +98,17 @@ impl TermScorer {
}
impl DocSet for TermScorer {
#[inline]
fn advance(&mut self) -> DocId {
self.postings.advance()
}
#[inline]
fn seek(&mut self, target: DocId) -> DocId {
self.postings.seek(target)
}
#[inline]
fn doc(&self) -> DocId {
self.postings.doc()
}
@@ -116,6 +119,7 @@ impl DocSet for TermScorer {
}
impl Scorer for TermScorer {
#[inline]
fn score(&mut self) -> Score {
let fieldnorm_id = self.fieldnorm_id();
let term_freq = self.term_freq();

View File

@@ -15,7 +15,7 @@ const HORIZON: u32 = 64u32 * 64u32;
// This function is similar except that it does is not unstable, and
// it does not keep the original vector ordering.
//
// Also, it does not "yield" any elements.
// Elements are dropped and not yielded.
fn unordered_drain_filter<T, P>(v: &mut Vec<T>, mut predicate: P)
where P: FnMut(&mut T) -> bool {
let mut i = 0;
@@ -128,6 +128,7 @@ impl<TScorer: Scorer, TScoreCombiner: ScoreCombiner> BufferedUnionScorer<TScorer
}
}
#[inline]
fn advance_buffered(&mut self) -> bool {
while self.bucket_idx < HORIZON_NUM_TINYBITSETS {
if let Some(val) = self.bitsets[self.bucket_idx].pop_lowest() {
@@ -143,6 +144,12 @@ impl<TScorer: Scorer, TScoreCombiner: ScoreCombiner> BufferedUnionScorer<TScorer
}
false
}
fn is_in_horizon(&self, target: DocId) -> bool {
// wrapping_sub, because target may be < window_start_doc
let gap = target.wrapping_sub(self.window_start_doc);
gap < HORIZON
}
}
impl<TScorer, TScoreCombiner> DocSet for BufferedUnionScorer<TScorer, TScoreCombiner>
@@ -150,6 +157,7 @@ where
TScorer: Scorer,
TScoreCombiner: ScoreCombiner,
{
#[inline]
fn advance(&mut self) -> DocId {
if self.advance_buffered() {
return self.doc;
@@ -217,8 +225,29 @@ where
}
}
// TODO Also implement `count` with deletes efficiently.
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
if self.is_in_horizon(target) {
// Our value is within the buffered horizon and the docset may already have been
// processed and removed, so we need to use seek, which uses the regular advance.
self.seek(target) == target
} else {
// The docsets are not in the buffered range, so we can use seek_into_the_danger_zone
// of the underlying docsets
let is_hit = self
.docsets
.iter_mut()
.any(|docset| docset.seek_into_the_danger_zone(target));
// The API requires the DocSet to be in a valid state when `seek_into_the_danger_zone`
// returns true.
if is_hit {
self.seek(target);
}
is_hit
}
}
#[inline]
fn doc(&self) -> DocId {
self.doc
}
@@ -231,6 +260,7 @@ where
self.docsets.iter().map(|docset| docset.cost()).sum()
}
// TODO Also implement `count` with deletes efficiently.
fn count_including_deleted(&mut self) -> u32 {
if self.doc == TERMINATED {
return 0;
@@ -259,6 +289,7 @@ where
TScoreCombiner: ScoreCombiner,
TScorer: Scorer,
{
#[inline]
fn score(&mut self) -> Score {
self.score
}

View File

@@ -92,6 +92,7 @@ impl<TDocSet: DocSet> DocSet for SimpleUnion<TDocSet> {
}
fn size_hint(&self) -> u32 {
// TODO: use estimate_union
self.docsets
.iter()
.map(|docset| docset.size_hint())

View File

@@ -58,6 +58,31 @@ impl AsRef<OwnedValue> for OwnedValue {
}
}
impl OwnedValue {
/// Returns a u8 discriminant value for the `OwnedValue` variant.
///
/// This can be used to sort `OwnedValue` instances by their type.
pub fn discriminant_value(&self) -> u8 {
match self {
OwnedValue::Null => 0,
OwnedValue::Str(_) => 1,
OwnedValue::PreTokStr(_) => 2,
// It is key to make sure U64, I64, F64 are grouped together in there, otherwise we
// might be breaking transivity.
OwnedValue::U64(_) => 3,
OwnedValue::I64(_) => 4,
OwnedValue::F64(_) => 5,
OwnedValue::Bool(_) => 6,
OwnedValue::Date(_) => 7,
OwnedValue::Facet(_) => 8,
OwnedValue::Bytes(_) => 9,
OwnedValue::Array(_) => 10,
OwnedValue::Object(_) => 11,
OwnedValue::IpAddr(_) => 12,
}
}
}
impl<'a> Value<'a> for &'a OwnedValue {
type ArrayIter = std::slice::Iter<'a, OwnedValue>;
type ObjectIter = ObjectMapIter<'a>;

View File

@@ -98,6 +98,10 @@
//! make it possible to access the value given the doc id rapidly. This is useful if the value
//! of the field is required during scoring or collection for instance.
//!
//! Some queries may leverage Fast fields when run on a field that is not indexed. This can be
//! handy if that kind of request is infrequent, however note that searching on a Fast field is
//! generally much slower than searching in an index.
//!
//! ```
//! use tantivy::schema::*;
//! let mut schema_builder = Schema::builder();

View File

@@ -483,7 +483,7 @@ mod tests {
use super::{collapse_overlapped_ranges, search_fragments, select_best_fragment_combination};
use crate::query::QueryParser;
use crate::schema::{IndexRecordOption, Schema, TextFieldIndexing, TextOptions, TEXT};
use crate::schema::{Schema, TEXT};
use crate::snippet::SnippetGenerator;
use crate::tokenizer::{NgramTokenizer, SimpleTokenizer};
use crate::Index;
@@ -727,8 +727,10 @@ Survey in 2016, 2017, and 2018."#;
Ok(())
}
#[cfg(feature = "stemmer")]
#[test]
fn test_snippet_generator() -> crate::Result<()> {
use crate::schema::{IndexRecordOption, TextFieldIndexing, TextOptions};
let mut schema_builder = Schema::builder();
let text_options = TextOptions::default().set_indexing_options(
TextFieldIndexing::default()

View File

@@ -102,6 +102,7 @@ pub(crate) mod tests {
}
const NUM_DOCS: usize = 1_000;
#[test]
fn test_doc_store_iter_with_delete_bug_1077() -> crate::Result<()> {
// this will cover deletion of the first element in a checkpoint
@@ -113,7 +114,7 @@ pub(crate) mod tests {
let directory = RamDirectory::create();
let store_wrt = directory.open_write(path)?;
let schema =
write_lorem_ipsum_store(store_wrt, NUM_DOCS, Compressor::Lz4, BLOCK_SIZE, true);
write_lorem_ipsum_store(store_wrt, NUM_DOCS, Compressor::default(), BLOCK_SIZE, true);
let field_title = schema.get_field("title").unwrap();
let store_file = directory.open_read(path)?;
let store = StoreReader::open(store_file, 10)?;

View File

@@ -465,7 +465,7 @@ mod tests {
let directory = RamDirectory::create();
let path = Path::new("store");
let writer = directory.open_write(path)?;
let schema = write_lorem_ipsum_store(writer, 500, Compressor::default(), BLOCK_SIZE, true);
let schema = write_lorem_ipsum_store(writer, 500, Compressor::None, BLOCK_SIZE, true);
let title = schema.get_field("title").unwrap();
let store_file = directory.open_read(path)?;
let store = StoreReader::open(store_file, DOCSTORE_CACHE_CAPACITY)?;
@@ -499,7 +499,7 @@ mod tests {
assert_eq!(store.cache_stats().cache_hits, 1);
assert_eq!(store.cache_stats().cache_misses, 2);
assert_eq!(store.cache.peek_lru(), Some(11207));
assert_eq!(store.cache.peek_lru(), Some(232206));
Ok(())
}

View File

@@ -132,13 +132,14 @@ mod regex_tokenizer;
mod remove_long;
mod simple_tokenizer;
mod split_compound_words;
mod stemmer;
mod stop_word_filter;
mod tokenized_string;
mod tokenizer;
mod tokenizer_manager;
mod whitespace_tokenizer;
#[cfg(feature = "stemmer")]
mod stemmer;
pub use tokenizer_api::{BoxTokenStream, Token, TokenFilter, TokenStream, Tokenizer};
pub use self::alphanum_only::AlphaNumOnlyFilter;
@@ -151,6 +152,7 @@ pub use self::regex_tokenizer::RegexTokenizer;
pub use self::remove_long::RemoveLongFilter;
pub use self::simple_tokenizer::{SimpleTokenStream, SimpleTokenizer};
pub use self::split_compound_words::SplitCompoundWords;
#[cfg(feature = "stemmer")]
pub use self::stemmer::{Language, Stemmer};
pub use self::stop_word_filter::StopWordFilter;
pub use self::tokenized_string::{PreTokenizedStream, PreTokenizedString};
@@ -167,10 +169,7 @@ pub const MAX_TOKEN_LEN: usize = u16::MAX as usize - 5;
#[cfg(test)]
pub(crate) mod tests {
use super::{
Language, LowerCaser, RemoveLongFilter, SimpleTokenizer, Stemmer, Token, TokenizerManager,
};
use crate::tokenizer::TextAnalyzer;
use super::{Token, TokenizerManager};
/// This is a function that can be used in tests and doc tests
/// to assert a token's correctness.
@@ -205,59 +204,15 @@ pub(crate) mod tests {
}
#[test]
fn test_en_tokenizer() {
fn test_tokenizer_does_not_exist() {
let tokenizer_manager = TokenizerManager::default();
assert!(tokenizer_manager.get("en_doesnotexist").is_none());
let mut en_tokenizer = tokenizer_manager.get("en_stem").unwrap();
let mut tokens: Vec<Token> = vec![];
{
let mut add_token = |token: &Token| {
tokens.push(token.clone());
};
en_tokenizer
.token_stream("Hello, happy tax payer!")
.process(&mut add_token);
}
assert_eq!(tokens.len(), 4);
assert_token(&tokens[0], 0, "hello", 0, 5);
assert_token(&tokens[1], 1, "happi", 7, 12);
assert_token(&tokens[2], 2, "tax", 13, 16);
assert_token(&tokens[3], 3, "payer", 17, 22);
}
#[test]
fn test_non_en_tokenizer() {
let tokenizer_manager = TokenizerManager::default();
tokenizer_manager.register(
"el_stem",
TextAnalyzer::builder(SimpleTokenizer::default())
.filter(RemoveLongFilter::limit(40))
.filter(LowerCaser)
.filter(Stemmer::new(Language::Greek))
.build(),
);
let mut en_tokenizer = tokenizer_manager.get("el_stem").unwrap();
let mut tokens: Vec<Token> = vec![];
{
let mut add_token = |token: &Token| {
tokens.push(token.clone());
};
en_tokenizer
.token_stream("Καλημέρα, χαρούμενε φορολογούμενε!")
.process(&mut add_token);
}
assert_eq!(tokens.len(), 3);
assert_token(&tokens[0], 0, "καλημερ", 0, 16);
assert_token(&tokens[1], 1, "χαρουμεν", 18, 36);
assert_token(&tokens[2], 2, "φορολογουμεν", 37, 63);
}
#[test]
fn test_tokenizer_empty() {
let tokenizer_manager = TokenizerManager::default();
let mut en_tokenizer = tokenizer_manager.get("en_stem").unwrap();
let mut en_tokenizer = tokenizer_manager.get("default").unwrap();
{
let mut tokens: Vec<Token> = vec![];
{

View File

@@ -142,3 +142,60 @@ impl<T: TokenStream> TokenStream for StemmerTokenStream<T> {
self.tail.token_mut()
}
}
#[cfg(test)]
mod tests {
use tokenizer_api::Token;
use super::*;
use crate::tokenizer::tests::assert_token;
use crate::tokenizer::{LowerCaser, SimpleTokenizer, TextAnalyzer, TokenizerManager};
#[test]
fn test_en_stem() {
let tokenizer_manager = TokenizerManager::default();
let mut en_tokenizer = tokenizer_manager.get("en_stem").unwrap();
let mut tokens: Vec<Token> = vec![];
{
let mut add_token = |token: &Token| {
tokens.push(token.clone());
};
en_tokenizer
.token_stream("Dogs are the bests!")
.process(&mut add_token);
}
assert_eq!(tokens.len(), 4);
assert_token(&tokens[0], 0, "dog", 0, 4);
assert_token(&tokens[1], 1, "are", 5, 8);
assert_token(&tokens[2], 2, "the", 9, 12);
assert_token(&tokens[3], 3, "best", 13, 18);
}
#[test]
fn test_non_en_stem() {
let tokenizer_manager = TokenizerManager::default();
tokenizer_manager.register(
"el_stem",
TextAnalyzer::builder(SimpleTokenizer::default())
.filter(LowerCaser)
.filter(Stemmer::new(Language::Greek))
.build(),
);
let mut el_tokenizer = tokenizer_manager.get("el_stem").unwrap();
let mut tokens: Vec<Token> = vec![];
{
let mut add_token = |token: &Token| {
tokens.push(token.clone());
};
el_tokenizer
.token_stream("Καλημέρα, χαρούμενε φορολογούμενε!")
.process(&mut add_token);
}
assert_eq!(tokens.len(), 3);
assert_token(&tokens[0], 0, "καλημερ", 0, 16);
assert_token(&tokens[1], 1, "χαρουμεν", 18, 36);
assert_token(&tokens[2], 2, "φορολογουμεν", 37, 63);
}
}

View File

@@ -1,10 +1,9 @@
use std::collections::HashMap;
use std::sync::{Arc, RwLock};
use crate::tokenizer::stemmer::Language;
use crate::tokenizer::tokenizer::TextAnalyzer;
use crate::tokenizer::{
LowerCaser, RawTokenizer, RemoveLongFilter, SimpleTokenizer, Stemmer, WhitespaceTokenizer,
LowerCaser, RawTokenizer, RemoveLongFilter, SimpleTokenizer, WhitespaceTokenizer,
};
/// The tokenizer manager serves as a store for
@@ -64,14 +63,18 @@ impl Default for TokenizerManager {
.filter(LowerCaser)
.build(),
);
manager.register(
"en_stem",
TextAnalyzer::builder(SimpleTokenizer::default())
.filter(RemoveLongFilter::limit(40))
.filter(LowerCaser)
.filter(Stemmer::new(Language::English))
.build(),
);
#[cfg(feature = "stemmer")]
{
use crate::tokenizer::stemmer::{Language, Stemmer};
manager.register(
"en_stem",
TextAnalyzer::builder(SimpleTokenizer::default())
.filter(RemoveLongFilter::limit(40))
.filter(LowerCaser) // The stemmer does not lowercase
.filter(Stemmer::new(Language::English))
.build(),
);
}
manager.register("whitespace", WhitespaceTokenizer::default());
manager
}

View File

@@ -11,7 +11,6 @@ description = "term hashmap used for indexing"
murmurhash32 = "0.3"
common = { version = "0.10", path = "../common/", package = "tantivy-common" }
ahash = { version = "0.8.11", default-features = false, optional = true }
rand_distr = "0.4.3"
[[bench]]
@@ -29,6 +28,7 @@ zipf = "7.0.0"
rustc-hash = "2.1.0"
proptest = "1.2.0"
binggan = { version = "0.14.0" }
rand_distr = "0.4.3"
[features]
compare_hash_only = ["ahash"] # Compare hash only, not the key in the Hashmap

View File

@@ -5,7 +5,7 @@ use common::serialize_vint_u32;
use crate::fastcpy::fast_short_slice_copy;
use crate::{Addr, MemoryArena};
const FIRST_BLOCK_NUM: u16 = 2;
const FIRST_BLOCK_NUM: u32 = 2;
/// An exponential unrolled link.
///
@@ -33,8 +33,8 @@ pub struct ExpUnrolledLinkedList {
// u16, since the max size of each block is (1<<next_cap_pow_2)
// Limited to 15, so we don't overflow remaining_cap.
remaining_cap: u16,
// To get the current number of blocks: block_num - FIRST_BLOCK_NUM
block_num: u16,
// Tracks the number of blocks allocated: block_num - FIRST_BLOCK_NUM
block_num: u32,
head: Addr,
tail: Addr,
}
@@ -110,16 +110,27 @@ impl ExpUnrolledLinkedListWriter<'_> {
}
}
// The block size is 2^block_num + 2, but max 2^15= 32k
// Initial size is 8, for the first block => block_num == 1
// The block size is 2^block_num, but max 2^15 = 32KB
// Initial size is 8 bytes (2^3), for the first block => block_num == 2
// Block size caps at 32KB (2^15) regardless of how high block_num goes
#[inline]
fn get_block_size(block_num: u16) -> u16 {
1 << block_num.min(15)
fn get_block_size(block_num: u32) -> u16 {
// Cap at 15 to prevent block sizes > 32KB
// block_num can now be much larger than 15, but block size maxes out
let exp: u32 = block_num.min(15u32);
(1u32 << exp) as u16
}
impl ExpUnrolledLinkedList {
#[inline(always)]
pub fn increment_num_blocks(&mut self) {
self.block_num += 1;
// Add overflow check as a safety measure
// With u32, we can handle up to ~4 billion blocks before overflow
// At 32KB per block (max size), that's 128 TB of data
self.block_num = self
.block_num
.checked_add(1)
.expect("ExpUnrolledLinkedList block count overflow - exceeded 4 billion blocks");
}
#[inline]
@@ -132,9 +143,26 @@ impl ExpUnrolledLinkedList {
if addr.is_null() {
return;
}
let last_block_len = get_block_size(self.block_num) as usize - self.remaining_cap as usize;
// Full Blocks
// Calculate last block length with bounds checking to prevent underflow
let block_size = get_block_size(self.block_num) as usize;
let last_block_len = block_size.saturating_sub(self.remaining_cap as usize);
// Safety check: if remaining_cap > block_size, the metadata is corrupted
assert!(
self.remaining_cap as usize <= block_size,
"ExpUnrolledLinkedList metadata corruption detected: remaining_cap ({}) > block_size \
({}). This indicates a serious bug, please report! (block_num={}, head={:?}, \
tail={:?})",
self.remaining_cap,
block_size,
self.block_num,
self.head,
self.tail
);
// Full Blocks (iterate through all blocks except the last one)
// Note: Blocks are numbered starting from FIRST_BLOCK_NUM+1 (=3) after first allocation
for block_num in FIRST_BLOCK_NUM + 1..self.block_num {
let cap = get_block_size(block_num) as usize;
let data = arena.slice(addr, cap);
@@ -259,6 +287,180 @@ mod tests {
assert_eq!(&vec1[..], &res1[..]);
assert_eq!(&vec2[..], &res2[..]);
}
// Tests for u32 block_num fix (issue with large arrays)
#[test]
fn test_block_num_exceeds_u16_max() {
// Test that we can handle more than 65,535 blocks (old u16 limit)
let mut eull = ExpUnrolledLinkedList::default();
// Simulate allocating 70,000 blocks (exceeds u16::MAX of 65,535)
for _ in 0..70_000 {
eull.increment_num_blocks();
}
// Verify block_num is correct
assert_eq!(eull.block_num, FIRST_BLOCK_NUM + 70_000);
// Verify we can still get block size (should be capped at 32KB)
let block_size = get_block_size(eull.block_num);
assert_eq!(block_size, 1 << 15); // 32KB max
}
#[test]
#[allow(clippy::needless_range_loop)]
fn test_large_dataset_simulation() {
// Simulate the scenario: large arrays requiring many blocks
// We write enough data to require thousands of blocks
let mut arena = MemoryArena::default();
let mut eull = ExpUnrolledLinkedList::default();
// Write 100 MB of data (this will require ~3,200 blocks at 32KB each)
// This is enough to validate the system works with large datasets
// but not so much that the test is slow
let bytes_per_write = 10_000;
let num_writes = 10_000; // 10k * 10k = 100 MB
let data: Vec<u8> = (0..bytes_per_write).map(|i| (i % 256) as u8).collect();
for _ in 0..num_writes {
eull.writer(&mut arena).extend_from_slice(&data);
}
// Verify we allocated many blocks (should be in the thousands)
assert!(
eull.block_num > 1000,
"block_num ({}) should be > 1000 for this much data",
eull.block_num
);
// Verify we can read back correctly
let mut buffer = Vec::new();
eull.read_to_end(&arena, &mut buffer);
assert_eq!(buffer.len(), bytes_per_write * num_writes);
// Verify data integrity on a sample
for i in 0..bytes_per_write {
assert_eq!(buffer[i], (i % 256) as u8);
}
}
#[test]
fn test_get_block_size_with_large_block_num() {
// Test that get_block_size handles large u32 values correctly
// Small block numbers (under 15)
assert_eq!(get_block_size(2), 4); // 2^2 = 4
assert_eq!(get_block_size(3), 8); // 2^3 = 8
assert_eq!(get_block_size(10), 1024); // 2^10 = 1KB
// At the cap (15)
assert_eq!(get_block_size(15), 32768); // 2^15 = 32KB
// Beyond the cap (should stay at 32KB)
assert_eq!(get_block_size(16), 32768);
assert_eq!(get_block_size(100), 32768);
assert_eq!(get_block_size(65_536), 32768); // Old u16::MAX + 1
assert_eq!(get_block_size(100_000), 32768);
assert_eq!(get_block_size(1_000_000), 32768);
}
#[test]
fn test_increment_blocks_near_u16_boundary() {
// Test incrementing around the old u16::MAX boundary
let mut eull = ExpUnrolledLinkedList::default();
// Set to just before old limit
for _ in 0..65_533 {
eull.increment_num_blocks();
}
assert_eq!(eull.block_num, FIRST_BLOCK_NUM + 65_533);
// Cross the old u16::MAX boundary (this would have overflowed before)
eull.increment_num_blocks(); // 65,534
eull.increment_num_blocks(); // 65,535 (old max)
eull.increment_num_blocks(); // 65,536 (would overflow u16)
eull.increment_num_blocks(); // 65,537
// Verify we're past the old limit
assert_eq!(eull.block_num, FIRST_BLOCK_NUM + 65_537);
}
#[test]
fn test_write_and_read_with_many_blocks() {
// Test that write/read works correctly with many blocks
let mut arena = MemoryArena::default();
let mut eull = ExpUnrolledLinkedList::default();
// Write data that will span many blocks
let test_data: Vec<u8> = (0..50_000).map(|i| (i % 256) as u8).collect();
eull.writer(&mut arena).extend_from_slice(&test_data);
// Read it back
let mut buffer = Vec::new();
eull.read_to_end(&arena, &mut buffer);
// Verify data integrity
assert_eq!(buffer.len(), test_data.len());
assert_eq!(&buffer[..], &test_data[..]);
}
#[test]
fn test_multiple_eull_with_large_block_counts() {
// Test multiple ExpUnrolledLinkedLists with high block counts
// (simulates parallel columnar writes)
let mut arena = MemoryArena::default();
let mut eull1 = ExpUnrolledLinkedList::default();
let mut eull2 = ExpUnrolledLinkedList::default();
// Write different data to each
for i in 0..10_000u32 {
eull1.writer(&mut arena).write_u32_vint(i);
eull2.writer(&mut arena).write_u32_vint(i * 2);
}
// Read back and verify
let mut buf1 = Vec::new();
let mut buf2 = Vec::new();
eull1.read_to_end(&arena, &mut buf1);
eull2.read_to_end(&arena, &mut buf2);
// Deserialize and check
let mut cursor1 = &buf1[..];
let mut cursor2 = &buf2[..];
for i in 0..10_000u32 {
assert_eq!(read_u32_vint(&mut cursor1), i);
assert_eq!(read_u32_vint(&mut cursor2), i * 2);
}
}
#[test]
fn test_block_size_stays_capped() {
// Verify that even with massive block numbers, size stays at 32KB
let mut eull = ExpUnrolledLinkedList::default();
// Increment to a very large number
for _ in 0..200_000 {
eull.increment_num_blocks();
}
let block_size = get_block_size(eull.block_num);
assert_eq!(block_size, 32768, "Block size should be capped at 32KB");
}
#[test]
#[should_panic(expected = "ExpUnrolledLinkedList block count overflow")]
fn test_increment_overflow_protection() {
// Test that we panic gracefully if we somehow hit u32::MAX
// This is extremely unlikely in practice (would require 128TB of data)
let mut eull = ExpUnrolledLinkedList {
block_num: u32::MAX,
..Default::default()
};
// This should panic with our custom error message
eull.increment_num_blocks();
}
}
#[cfg(all(test, feature = "unstable"))]