mirror of
https://github.com/quickwit-oss/tantivy.git
synced 2026-02-12 02:50:37 +00:00
Compare commits
28 Commits
postings-w
...
congxie/re
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
698f073f88 | ||
|
|
cdd24b7ee5 | ||
|
|
5562ce6037 | ||
|
|
09b6ececa7 | ||
|
|
8018016e46 | ||
|
|
6bf185dc3f | ||
|
|
bb141abe22 | ||
|
|
f1c29ba972 | ||
|
|
ae0554a6a5 | ||
|
|
0d7abe5d23 | ||
|
|
28db952131 | ||
|
|
98ebbf922d | ||
|
|
4a89e74597 | ||
|
|
4d99e51e50 | ||
|
|
a55e4069e4 | ||
|
|
1fd30c62be | ||
|
|
9b619998bd | ||
|
|
765c448945 | ||
|
|
943594ebaa | ||
|
|
df17daae0d | ||
|
|
0ae94baef5 | ||
|
|
3f448ecf79 | ||
|
|
b86caeefe2 | ||
|
|
abf1e64f4d | ||
|
|
12977bc7c4 | ||
|
|
0c94eb94c3 | ||
|
|
c92e831dde | ||
|
|
947c0d5f40 |
125
.claude/skills/rationalize-deps/SKILL.md
Normal file
125
.claude/skills/rationalize-deps/SKILL.md
Normal file
@@ -0,0 +1,125 @@
|
||||
---
|
||||
name: rationalize-deps
|
||||
description: Analyze Cargo.toml dependencies and attempt to remove unused features to reduce compile times and binary size
|
||||
---
|
||||
|
||||
# Rationalize Dependencies
|
||||
|
||||
This skill analyzes Cargo.toml dependencies to identify and remove unused features.
|
||||
|
||||
## Overview
|
||||
|
||||
Many crates enable features by default that may not be needed. This skill:
|
||||
1. Identifies dependencies with default features enabled
|
||||
2. Tests if `default-features = false` works
|
||||
3. Identifies which specific features are actually needed
|
||||
4. Verifies compilation after changes
|
||||
|
||||
## Step 1: Identify the target
|
||||
|
||||
Ask the user which crate(s) to analyze:
|
||||
- A specific crate name (e.g., "tokio", "serde")
|
||||
- A specific workspace member (e.g., "quickwit-search")
|
||||
- "all" to scan the entire workspace
|
||||
|
||||
## Step 2: Analyze current dependencies
|
||||
|
||||
For the workspace Cargo.toml (`quickwit/Cargo.toml`), list dependencies that:
|
||||
- Do NOT have `default-features = false`
|
||||
- Have default features that might be unnecessary
|
||||
|
||||
Run: `cargo tree -p <crate> -f "{p} {f}" --edges features` to see what features are actually used.
|
||||
|
||||
## Step 3: For each candidate dependency
|
||||
|
||||
### 3a: Check the crate's default features
|
||||
|
||||
Look up the crate on crates.io or check its Cargo.toml to understand:
|
||||
- What features are enabled by default
|
||||
- What each feature provides
|
||||
|
||||
Use: `cargo metadata --format-version=1 | jq '.packages[] | select(.name == "<crate>") | .features'`
|
||||
|
||||
### 3b: Try disabling default features
|
||||
|
||||
Modify the dependency in `quickwit/Cargo.toml`:
|
||||
|
||||
From:
|
||||
```toml
|
||||
some-crate = { version = "1.0" }
|
||||
```
|
||||
|
||||
To:
|
||||
```toml
|
||||
some-crate = { version = "1.0", default-features = false }
|
||||
```
|
||||
|
||||
### 3c: Run cargo check
|
||||
|
||||
Run: `cargo check --workspace` (or target specific packages for faster feedback)
|
||||
|
||||
If compilation fails:
|
||||
1. Read the error messages to identify which features are needed
|
||||
2. Add only the required features explicitly:
|
||||
```toml
|
||||
some-crate = { version = "1.0", default-features = false, features = ["needed-feature"] }
|
||||
```
|
||||
3. Re-run cargo check
|
||||
|
||||
### 3d: Binary search for minimal features
|
||||
|
||||
If there are many default features, use binary search:
|
||||
1. Start with no features
|
||||
2. If it fails, add half the default features
|
||||
3. Continue until you find the minimal set
|
||||
|
||||
## Step 4: Document findings
|
||||
|
||||
For each dependency analyzed, report:
|
||||
- Original configuration
|
||||
- New configuration (if changed)
|
||||
- Features that were removed
|
||||
- Any features that are required
|
||||
|
||||
## Step 5: Verify full build
|
||||
|
||||
After all changes, run:
|
||||
```bash
|
||||
cargo check --workspace --all-targets
|
||||
cargo test --workspace --no-run
|
||||
```
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### Serde
|
||||
Often only needs `derive`:
|
||||
```toml
|
||||
serde = { version = "1.0", default-features = false, features = ["derive", "std"] }
|
||||
```
|
||||
|
||||
### Tokio
|
||||
Identify which runtime features are actually used:
|
||||
```toml
|
||||
tokio = { version = "1.0", default-features = false, features = ["rt-multi-thread", "macros", "sync"] }
|
||||
```
|
||||
|
||||
### Reqwest
|
||||
Often doesn't need all TLS backends:
|
||||
```toml
|
||||
reqwest = { version = "0.11", default-features = false, features = ["rustls-tls", "json"] }
|
||||
```
|
||||
|
||||
## Rollback
|
||||
|
||||
If changes cause issues:
|
||||
```bash
|
||||
git checkout quickwit/Cargo.toml
|
||||
cargo check --workspace
|
||||
```
|
||||
|
||||
## Tips
|
||||
|
||||
- Start with large crates that have many default features (tokio, reqwest, hyper)
|
||||
- Use `cargo bloat --crates` to identify large dependencies
|
||||
- Check `cargo tree -d` for duplicate dependencies that might indicate feature conflicts
|
||||
- Some features are needed only for tests - consider using `[dev-dependencies]` features
|
||||
60
.claude/skills/simple-pr/SKILL.md
Normal file
60
.claude/skills/simple-pr/SKILL.md
Normal file
@@ -0,0 +1,60 @@
|
||||
---
|
||||
name: simple-pr
|
||||
description: Create a simple PR from staged changes with an auto-generated commit message
|
||||
disable-model-invocation: true
|
||||
---
|
||||
|
||||
# Simple PR
|
||||
|
||||
Follow these steps to create a simple PR from staged changes:
|
||||
|
||||
## Step 1: Check workspace state
|
||||
|
||||
Run: `git status`
|
||||
|
||||
Verify that all changes have been staged (no unstaged changes). If there are unstaged changes, abort and ask the user to stage their changes first with `git add`.
|
||||
|
||||
Also verify that we are on the `main` branch. If not, abort and ask the user to switch to main first.
|
||||
|
||||
## Step 2: Ensure main is up to date
|
||||
|
||||
Run: `git pull origin main`
|
||||
|
||||
This ensures we're working from the latest code.
|
||||
|
||||
## Step 3: Review staged changes
|
||||
|
||||
Run: `git diff --cached`
|
||||
|
||||
Review the staged changes to understand what the PR will contain.
|
||||
|
||||
## Step 4: Generate commit message
|
||||
|
||||
Based on the staged changes, generate a concise commit message (1-2 sentences) that describes the "why" rather than the "what".
|
||||
|
||||
Display the proposed commit message to the user and ask for confirmation before proceeding.
|
||||
|
||||
## Step 5: Create a new branch
|
||||
|
||||
Get the git username: `git config user.name | tr ' ' '-' | tr '[:upper:]' '[:lower:]'`
|
||||
|
||||
Create a short, descriptive branch name based on the changes (e.g., `fix-typo-in-readme`, `add-retry-logic`, `update-deps`).
|
||||
|
||||
Create and checkout the branch: `git checkout -b {username}/{short-descriptive-name}`
|
||||
|
||||
## Step 6: Commit changes
|
||||
|
||||
Commit with the message from step 3:
|
||||
```
|
||||
git commit -m "{commit-message}"
|
||||
```
|
||||
|
||||
## Step 7: Push and open a PR
|
||||
|
||||
Push the branch and open a PR:
|
||||
```
|
||||
git push -u origin {branch-name}
|
||||
gh pr create --title "{commit-message-title}" --body "{longer-description-if-needed}"
|
||||
```
|
||||
|
||||
Report the PR URL to the user when complete.
|
||||
25
Cargo.toml
25
Cargo.toml
@@ -15,7 +15,7 @@ rust-version = "1.85"
|
||||
exclude = ["benches/*.json", "benches/*.txt"]
|
||||
|
||||
[dependencies]
|
||||
oneshot = "0.1.7"
|
||||
oneshot = "0.1.13"
|
||||
base64 = "0.22.0"
|
||||
byteorder = "1.4.3"
|
||||
crc32fast = "1.3.2"
|
||||
@@ -27,7 +27,7 @@ regex = { version = "1.5.5", default-features = false, features = [
|
||||
aho-corasick = "1.0"
|
||||
tantivy-fst = "0.5"
|
||||
memmap2 = { version = "0.9.0", optional = true }
|
||||
lz4_flex = { version = "0.11", default-features = false, optional = true }
|
||||
lz4_flex = { version = "0.12", default-features = false, optional = true }
|
||||
zstd = { version = "0.13", optional = true, default-features = false }
|
||||
tempfile = { version = "3.12.0", optional = true }
|
||||
log = "0.4.16"
|
||||
@@ -50,7 +50,7 @@ fail = { version = "0.5.0", optional = true }
|
||||
time = { version = "0.3.35", features = ["serde-well-known"] }
|
||||
smallvec = "1.8.0"
|
||||
rayon = "1.5.2"
|
||||
lru = "0.12.0"
|
||||
lru = "0.16.3"
|
||||
fastdivide = "0.4.0"
|
||||
itertools = "0.14.0"
|
||||
measure_time = "0.9.0"
|
||||
@@ -65,7 +65,7 @@ tantivy-bitpacker = { version = "0.9", path = "./bitpacker" }
|
||||
common = { version = "0.10", path = "./common/", package = "tantivy-common" }
|
||||
tokenizer-api = { version = "0.6", path = "./tokenizer-api", package = "tantivy-tokenizer-api" }
|
||||
sketches-ddsketch = { version = "0.3.0", features = ["use_serde"] }
|
||||
hyperloglogplus = { version = "0.4.1", features = ["const-loop"] }
|
||||
datasketches = "0.2.0"
|
||||
futures-util = { version = "0.3.28", optional = true }
|
||||
futures-channel = { version = "0.3.28", optional = true }
|
||||
fnv = "1.0.7"
|
||||
@@ -76,7 +76,7 @@ winapi = "0.3.9"
|
||||
|
||||
[dev-dependencies]
|
||||
binggan = "0.14.2"
|
||||
rand = "0.8.5"
|
||||
rand = "0.9"
|
||||
maplit = "1.0.2"
|
||||
matches = "0.1.9"
|
||||
pretty_assertions = "1.2.1"
|
||||
@@ -85,7 +85,7 @@ test-log = "0.2.10"
|
||||
futures = "0.3.21"
|
||||
paste = "1.0.11"
|
||||
more-asserts = "0.3.1"
|
||||
rand_distr = "0.4.3"
|
||||
rand_distr = "0.5"
|
||||
time = { version = "0.3.10", features = ["serde-well-known", "macros"] }
|
||||
postcard = { version = "1.0.4", features = [
|
||||
"use-std",
|
||||
@@ -189,3 +189,16 @@ harness = false
|
||||
[[bench]]
|
||||
name = "bool_queries_with_range"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "str_search_and_get"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "merge_segments"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "regex_all_terms"
|
||||
harness = false
|
||||
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
use binggan::plugins::PeakMemAllocPlugin;
|
||||
use binggan::{black_box, InputGroup, PeakMemAlloc, INSTRUMENTED_SYSTEM};
|
||||
use rand::distributions::WeightedIndex;
|
||||
use rand::prelude::SliceRandom;
|
||||
use rand::distr::weighted::WeightedIndex;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::seq::IndexedRandom;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use rand_distr::Distribution;
|
||||
use serde_json::json;
|
||||
@@ -532,7 +532,7 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
// Prepare 1000 unique terms sampled using a Zipf distribution.
|
||||
// Exponent ~1.1 approximates top-20 terms covering around ~20%.
|
||||
let terms_1000: Vec<String> = (1..=1000).map(|i| format!("term_{i}")).collect();
|
||||
let zipf_1000 = rand_distr::Zipf::new(1000, 1.1f64).unwrap();
|
||||
let zipf_1000 = rand_distr::Zipf::new(1000.0, 1.1f64).unwrap();
|
||||
|
||||
{
|
||||
let mut rng = StdRng::from_seed([1u8; 32]);
|
||||
@@ -576,8 +576,8 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
}
|
||||
let _val_max = 1_000_000.0;
|
||||
for _ in 0..doc_with_value {
|
||||
let val: f64 = rng.gen_range(0.0..1_000_000.0);
|
||||
let json = if rng.gen_bool(0.1) {
|
||||
let val: f64 = rng.random_range(0.0..1_000_000.0);
|
||||
let json = if rng.random_bool(0.1) {
|
||||
// 10% are numeric values
|
||||
json!({ "mixed_type": val })
|
||||
} else {
|
||||
@@ -586,7 +586,7 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
json_field => json,
|
||||
text_field_all_unique_terms => format!("unique_term_{}", rng.gen::<u64>()),
|
||||
text_field_all_unique_terms => format!("unique_term_{}", rng.random::<u64>()),
|
||||
text_field_many_terms => many_terms_data.choose(&mut rng).unwrap().to_string(),
|
||||
text_field_few_terms_status => status_field_data[log_level_distribution.sample(&mut rng)].0,
|
||||
text_field_1000_terms_zipf => terms_1000[zipf_1000.sample(&mut rng) as usize - 1].as_str(),
|
||||
|
||||
@@ -55,29 +55,29 @@ fn build_shared_indices(num_docs: usize, p_a: f32, p_b: f32, p_c: f32) -> (Bench
|
||||
{
|
||||
let mut writer = index.writer_with_num_threads(1, 500_000_000).unwrap();
|
||||
for _ in 0..num_docs {
|
||||
let has_a = rng.gen_bool(p_a as f64);
|
||||
let has_b = rng.gen_bool(p_b as f64);
|
||||
let has_c = rng.gen_bool(p_c as f64);
|
||||
let score = rng.gen_range(0u64..100u64);
|
||||
let score2 = rng.gen_range(0u64..100_000u64);
|
||||
let has_a = rng.random_bool(p_a as f64);
|
||||
let has_b = rng.random_bool(p_b as f64);
|
||||
let has_c = rng.random_bool(p_c as f64);
|
||||
let score = rng.random_range(0u64..100u64);
|
||||
let score2 = rng.random_range(0u64..100_000u64);
|
||||
let mut title_tokens: Vec<&str> = Vec::new();
|
||||
let mut body_tokens: Vec<&str> = Vec::new();
|
||||
if has_a {
|
||||
if rng.gen_bool(0.1) {
|
||||
if rng.random_bool(0.1) {
|
||||
title_tokens.push("a");
|
||||
} else {
|
||||
body_tokens.push("a");
|
||||
}
|
||||
}
|
||||
if has_b {
|
||||
if rng.gen_bool(0.1) {
|
||||
if rng.random_bool(0.1) {
|
||||
title_tokens.push("b");
|
||||
} else {
|
||||
body_tokens.push("b");
|
||||
}
|
||||
}
|
||||
if has_c {
|
||||
if rng.gen_bool(0.1) {
|
||||
if rng.random_bool(0.1) {
|
||||
title_tokens.push("c");
|
||||
} else {
|
||||
body_tokens.push("c");
|
||||
|
||||
@@ -36,13 +36,13 @@ fn build_shared_indices(num_docs: usize, p_title_a: f32, distribution: &str) ->
|
||||
"dense" => {
|
||||
for doc_id in 0..num_docs {
|
||||
// Always add title to avoid empty documents
|
||||
let title_token = if rng.gen_bool(p_title_a as f64) {
|
||||
let title_token = if rng.random_bool(p_title_a as f64) {
|
||||
"a"
|
||||
} else {
|
||||
"b"
|
||||
};
|
||||
|
||||
let num_rand = rng.gen_range(0u64..1000u64);
|
||||
let num_rand = rng.random_range(0u64..1000u64);
|
||||
|
||||
let num_asc = (doc_id / 10000) as u64;
|
||||
|
||||
@@ -60,13 +60,13 @@ fn build_shared_indices(num_docs: usize, p_title_a: f32, distribution: &str) ->
|
||||
"sparse" => {
|
||||
for doc_id in 0..num_docs {
|
||||
// Always add title to avoid empty documents
|
||||
let title_token = if rng.gen_bool(p_title_a as f64) {
|
||||
let title_token = if rng.random_bool(p_title_a as f64) {
|
||||
"a"
|
||||
} else {
|
||||
"b"
|
||||
};
|
||||
|
||||
let num_rand = rng.gen_range(0u64..10000000u64);
|
||||
let num_rand = rng.random_range(0u64..10000000u64);
|
||||
|
||||
let num_asc = doc_id as u64;
|
||||
|
||||
|
||||
224
benches/merge_segments.rs
Normal file
224
benches/merge_segments.rs
Normal file
@@ -0,0 +1,224 @@
|
||||
// Benchmarks segment merging
|
||||
//
|
||||
// Notes:
|
||||
// - Input segments are kept intact (no deletes / no IndexWriter merge).
|
||||
// - Output is written to a `NullDirectory` that discards all files except
|
||||
// fieldnorms (needed for merging).
|
||||
|
||||
use std::collections::HashMap;
|
||||
use std::io::{self, Write};
|
||||
use std::path::{Path, PathBuf};
|
||||
use std::sync::{Arc, RwLock};
|
||||
|
||||
use binggan::{black_box, BenchRunner};
|
||||
use rand::prelude::*;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::SeedableRng;
|
||||
use tantivy::directory::error::{DeleteError, OpenReadError, OpenWriteError};
|
||||
use tantivy::directory::{
|
||||
AntiCallToken, Directory, FileHandle, OwnedBytes, TerminatingWrite, WatchCallback, WatchHandle,
|
||||
WritePtr,
|
||||
};
|
||||
use tantivy::indexer::{merge_filtered_segments, NoMergePolicy};
|
||||
use tantivy::schema::{Schema, TEXT};
|
||||
use tantivy::{doc, HasLen, Index, IndexSettings, Segment};
|
||||
|
||||
#[derive(Clone, Default, Debug)]
|
||||
struct NullDirectory {
|
||||
blobs: Arc<RwLock<HashMap<PathBuf, OwnedBytes>>>,
|
||||
}
|
||||
|
||||
struct NullWriter;
|
||||
|
||||
impl Write for NullWriter {
|
||||
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
|
||||
Ok(buf.len())
|
||||
}
|
||||
|
||||
fn flush(&mut self) -> io::Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl TerminatingWrite for NullWriter {
|
||||
fn terminate_ref(&mut self, _token: AntiCallToken) -> io::Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
struct InMemoryWriter {
|
||||
path: PathBuf,
|
||||
buffer: Vec<u8>,
|
||||
blobs: Arc<RwLock<HashMap<PathBuf, OwnedBytes>>>,
|
||||
}
|
||||
|
||||
impl Write for InMemoryWriter {
|
||||
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
|
||||
self.buffer.extend_from_slice(buf);
|
||||
Ok(buf.len())
|
||||
}
|
||||
|
||||
fn flush(&mut self) -> io::Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl TerminatingWrite for InMemoryWriter {
|
||||
fn terminate_ref(&mut self, _token: AntiCallToken) -> io::Result<()> {
|
||||
let bytes = OwnedBytes::new(std::mem::take(&mut self.buffer));
|
||||
self.blobs.write().unwrap().insert(self.path.clone(), bytes);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Default)]
|
||||
struct NullFileHandle;
|
||||
impl HasLen for NullFileHandle {
|
||||
fn len(&self) -> usize {
|
||||
0
|
||||
}
|
||||
}
|
||||
impl FileHandle for NullFileHandle {
|
||||
fn read_bytes(&self, _range: std::ops::Range<usize>) -> io::Result<OwnedBytes> {
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
|
||||
impl Directory for NullDirectory {
|
||||
fn get_file_handle(&self, path: &Path) -> Result<Arc<dyn FileHandle>, OpenReadError> {
|
||||
if let Some(bytes) = self.blobs.read().unwrap().get(path) {
|
||||
return Ok(Arc::new(bytes.clone()));
|
||||
}
|
||||
Ok(Arc::new(NullFileHandle))
|
||||
}
|
||||
|
||||
fn delete(&self, _path: &Path) -> Result<(), DeleteError> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn exists(&self, _path: &Path) -> Result<bool, OpenReadError> {
|
||||
Ok(true)
|
||||
}
|
||||
|
||||
fn open_write(&self, path: &Path) -> Result<WritePtr, OpenWriteError> {
|
||||
let path_buf = path.to_path_buf();
|
||||
if path.to_string_lossy().ends_with(".fieldnorm") {
|
||||
let writer = InMemoryWriter {
|
||||
path: path_buf,
|
||||
buffer: Vec::new(),
|
||||
blobs: Arc::clone(&self.blobs),
|
||||
};
|
||||
Ok(io::BufWriter::new(Box::new(writer)))
|
||||
} else {
|
||||
Ok(io::BufWriter::new(Box::new(NullWriter)))
|
||||
}
|
||||
}
|
||||
|
||||
fn atomic_read(&self, path: &Path) -> Result<Vec<u8>, OpenReadError> {
|
||||
if let Some(bytes) = self.blobs.read().unwrap().get(path) {
|
||||
return Ok(bytes.as_slice().to_vec());
|
||||
}
|
||||
Err(OpenReadError::FileDoesNotExist(path.to_path_buf()))
|
||||
}
|
||||
|
||||
fn atomic_write(&self, _path: &Path, _data: &[u8]) -> io::Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn sync_directory(&self) -> io::Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn watch(&self, _watch_callback: WatchCallback) -> tantivy::Result<WatchHandle> {
|
||||
Ok(WatchHandle::empty())
|
||||
}
|
||||
}
|
||||
|
||||
struct MergeScenario {
|
||||
#[allow(dead_code)]
|
||||
index: Index,
|
||||
segments: Vec<Segment>,
|
||||
settings: IndexSettings,
|
||||
label: String,
|
||||
}
|
||||
|
||||
fn build_index(
|
||||
num_segments: usize,
|
||||
docs_per_segment: usize,
|
||||
tokens_per_doc: usize,
|
||||
vocab_size: usize,
|
||||
) -> MergeScenario {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let body = schema_builder.add_text_field("body", TEXT);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
assert!(vocab_size > 0);
|
||||
let total_tokens = num_segments * docs_per_segment * tokens_per_doc;
|
||||
let use_unique_terms = vocab_size >= total_tokens;
|
||||
let mut rng = StdRng::from_seed([7u8; 32]);
|
||||
let mut next_token_id: u64 = 0;
|
||||
|
||||
{
|
||||
let mut writer = index.writer_with_num_threads(1, 256_000_000).unwrap();
|
||||
writer.set_merge_policy(Box::new(NoMergePolicy));
|
||||
for _ in 0..num_segments {
|
||||
for _ in 0..docs_per_segment {
|
||||
let mut tokens = Vec::with_capacity(tokens_per_doc);
|
||||
for _ in 0..tokens_per_doc {
|
||||
let token_id = if use_unique_terms {
|
||||
let id = next_token_id;
|
||||
next_token_id += 1;
|
||||
id
|
||||
} else {
|
||||
rng.random_range(0..vocab_size as u64)
|
||||
};
|
||||
tokens.push(format!("term_{token_id}"));
|
||||
}
|
||||
writer.add_document(doc!(body => tokens.join(" "))).unwrap();
|
||||
}
|
||||
writer.commit().unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
let segments = index.searchable_segments().unwrap();
|
||||
let settings = index.settings().clone();
|
||||
let label = format!(
|
||||
"segments={}, docs/seg={}, tokens/doc={}, vocab={}",
|
||||
num_segments, docs_per_segment, tokens_per_doc, vocab_size
|
||||
);
|
||||
|
||||
MergeScenario {
|
||||
index,
|
||||
segments,
|
||||
settings,
|
||||
label,
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let scenarios = vec![
|
||||
build_index(8, 50_000, 12, 8),
|
||||
build_index(16, 50_000, 12, 8),
|
||||
build_index(16, 100_000, 12, 8),
|
||||
build_index(8, 50_000, 8, 8 * 50_000 * 8),
|
||||
];
|
||||
|
||||
let mut runner = BenchRunner::new();
|
||||
for scenario in scenarios {
|
||||
let mut group = runner.new_group();
|
||||
group.set_name(format!("merge_segments inv_index — {}", scenario.label));
|
||||
let segments = scenario.segments.clone();
|
||||
let settings = scenario.settings.clone();
|
||||
group.register("merge", move |_| {
|
||||
let output_dir = NullDirectory::default();
|
||||
let filter_doc_ids = vec![None; segments.len()];
|
||||
let merged_index =
|
||||
merge_filtered_segments(&segments, settings.clone(), filter_doc_ids, output_dir)
|
||||
.unwrap();
|
||||
black_box(merged_index);
|
||||
});
|
||||
|
||||
group.run();
|
||||
}
|
||||
}
|
||||
@@ -33,7 +33,7 @@ fn build_shared_indices(num_docs: usize, distribution: &str) -> BenchIndex {
|
||||
match distribution {
|
||||
"dense" => {
|
||||
for doc_id in 0..num_docs {
|
||||
let num_rand = rng.gen_range(0u64..1000u64);
|
||||
let num_rand = rng.random_range(0u64..1000u64);
|
||||
let num_asc = (doc_id / 10000) as u64;
|
||||
|
||||
writer
|
||||
@@ -46,7 +46,7 @@ fn build_shared_indices(num_docs: usize, distribution: &str) -> BenchIndex {
|
||||
}
|
||||
"sparse" => {
|
||||
for doc_id in 0..num_docs {
|
||||
let num_rand = rng.gen_range(0u64..10000000u64);
|
||||
let num_rand = rng.random_range(0u64..10000000u64);
|
||||
let num_asc = doc_id as u64;
|
||||
|
||||
writer
|
||||
|
||||
@@ -97,20 +97,20 @@ fn get_index_0_to_100() -> Index {
|
||||
let num_vals = 100_000;
|
||||
let docs: Vec<_> = (0..num_vals)
|
||||
.map(|_i| {
|
||||
let id_name = if rng.gen_bool(0.01) {
|
||||
let id_name = if rng.random_bool(0.01) {
|
||||
"veryfew".to_string() // 1%
|
||||
} else if rng.gen_bool(0.1) {
|
||||
} else if rng.random_bool(0.1) {
|
||||
"few".to_string() // 9%
|
||||
} else {
|
||||
"most".to_string() // 90%
|
||||
};
|
||||
Doc {
|
||||
id_name,
|
||||
id: rng.gen_range(0..100),
|
||||
id: rng.random_range(0..100),
|
||||
// Multiply by 1000, so that we create most buckets in the compact space
|
||||
// The benches depend on this range to select n-percent of elements with the
|
||||
// methods below.
|
||||
ip: Ipv6Addr::from_u128(rng.gen_range(0..100) * 1000),
|
||||
ip: Ipv6Addr::from_u128(rng.random_range(0..100) * 1000),
|
||||
}
|
||||
})
|
||||
.collect();
|
||||
|
||||
113
benches/regex_all_terms.rs
Normal file
113
benches/regex_all_terms.rs
Normal file
@@ -0,0 +1,113 @@
|
||||
// Benchmarks regex query that matches all terms in a synthetic index.
|
||||
//
|
||||
// Corpus model:
|
||||
// - N unique terms: t000000, t000001, ...
|
||||
// - M docs
|
||||
// - K tokens per doc: doc i gets terms derived from (i, token_index)
|
||||
//
|
||||
// Query:
|
||||
// - Regex "t.*" to match all terms
|
||||
//
|
||||
// Run with:
|
||||
// - cargo bench --bench regex_all_terms
|
||||
//
|
||||
|
||||
use std::fmt::Write;
|
||||
|
||||
use binggan::{black_box, BenchRunner};
|
||||
use tantivy::collector::Count;
|
||||
use tantivy::query::RegexQuery;
|
||||
use tantivy::schema::{Schema, TEXT};
|
||||
use tantivy::{doc, Index, ReloadPolicy};
|
||||
|
||||
const HEAP_SIZE_BYTES: usize = 200_000_000;
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
struct BenchConfig {
|
||||
num_terms: usize,
|
||||
num_docs: usize,
|
||||
tokens_per_doc: usize,
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let configs = default_configs();
|
||||
|
||||
let mut runner = BenchRunner::new();
|
||||
for config in configs {
|
||||
let (index, text_field) = build_index(config, HEAP_SIZE_BYTES);
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::Manual)
|
||||
.try_into()
|
||||
.expect("reader");
|
||||
let searcher = reader.searcher();
|
||||
let query = RegexQuery::from_pattern("t.*", text_field).expect("regex query");
|
||||
|
||||
let mut group = runner.new_group();
|
||||
group.set_name(format!(
|
||||
"regex_all_terms_t{}_d{}_k{}",
|
||||
config.num_terms, config.num_docs, config.tokens_per_doc
|
||||
));
|
||||
group.register("regex_count", move |_| {
|
||||
let count = searcher.search(&query, &Count).expect("search");
|
||||
black_box(count);
|
||||
});
|
||||
group.run();
|
||||
}
|
||||
}
|
||||
|
||||
fn default_configs() -> Vec<BenchConfig> {
|
||||
vec![
|
||||
BenchConfig {
|
||||
num_terms: 10_000,
|
||||
num_docs: 100_000,
|
||||
tokens_per_doc: 1,
|
||||
},
|
||||
BenchConfig {
|
||||
num_terms: 10_000,
|
||||
num_docs: 100_000,
|
||||
tokens_per_doc: 8,
|
||||
},
|
||||
BenchConfig {
|
||||
num_terms: 100_000,
|
||||
num_docs: 100_000,
|
||||
tokens_per_doc: 1,
|
||||
},
|
||||
BenchConfig {
|
||||
num_terms: 100_000,
|
||||
num_docs: 100_000,
|
||||
tokens_per_doc: 8,
|
||||
},
|
||||
]
|
||||
}
|
||||
|
||||
fn build_index(config: BenchConfig, heap_size_bytes: usize) -> (Index, tantivy::schema::Field) {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let text_field = schema_builder.add_text_field("text", TEXT);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
let term_width = config.num_terms.to_string().len();
|
||||
{
|
||||
let mut writer = index
|
||||
.writer_with_num_threads(1, heap_size_bytes)
|
||||
.expect("writer");
|
||||
let mut buffer = String::new();
|
||||
for doc_id in 0..config.num_docs {
|
||||
buffer.clear();
|
||||
for token_idx in 0..config.tokens_per_doc {
|
||||
if token_idx > 0 {
|
||||
buffer.push(' ');
|
||||
}
|
||||
let term_id = (doc_id * config.tokens_per_doc + token_idx) % config.num_terms;
|
||||
write!(&mut buffer, "t{term_id:0term_width$}").expect("write token");
|
||||
}
|
||||
writer
|
||||
.add_document(doc!(text_field => buffer.as_str()))
|
||||
.expect("add_document");
|
||||
}
|
||||
writer.commit().expect("commit");
|
||||
}
|
||||
|
||||
(index, text_field)
|
||||
}
|
||||
421
benches/str_search_and_get.rs
Normal file
421
benches/str_search_and_get.rs
Normal file
@@ -0,0 +1,421 @@
|
||||
// This benchmark compares different approaches for retrieving string values:
|
||||
//
|
||||
// 1. Fast Field Approach: retrieves string values via term_ords() and ord_to_str()
|
||||
//
|
||||
// 2. Doc Store Approach: retrieves string values via searcher.doc() and field extraction
|
||||
//
|
||||
// The benchmark includes various data distributions:
|
||||
// - Dense Sequential: Sequential document IDs with dense data
|
||||
// - Dense Random: Random document IDs with dense data
|
||||
// - Sparse Sequential: Sequential document IDs with sparse data
|
||||
// - Sparse Random: Random document IDs with sparse data
|
||||
use std::ops::Bound;
|
||||
|
||||
use binggan::{black_box, BenchGroup, BenchRunner};
|
||||
use rand::prelude::*;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::SeedableRng;
|
||||
use tantivy::collector::{Count, DocSetCollector};
|
||||
use tantivy::query::RangeQuery;
|
||||
use tantivy::schema::document::TantivyDocument;
|
||||
use tantivy::schema::{Schema, Value, FAST, STORED, STRING};
|
||||
use tantivy::{doc, Index, ReloadPolicy, Searcher, Term};
|
||||
|
||||
#[derive(Clone)]
|
||||
struct BenchIndex {
|
||||
#[allow(dead_code)]
|
||||
index: Index,
|
||||
searcher: Searcher,
|
||||
}
|
||||
|
||||
fn build_shared_indices(num_docs: usize, distribution: &str) -> BenchIndex {
|
||||
// Schema with string fast field and stored field for doc access
|
||||
let mut schema_builder = Schema::builder();
|
||||
let f_str_fast = schema_builder.add_text_field("str_fast", STRING | STORED | FAST);
|
||||
let f_str_stored = schema_builder.add_text_field("str_stored", STRING | STORED);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
// Populate index with stable RNG for reproducibility.
|
||||
let mut rng = StdRng::from_seed([7u8; 32]);
|
||||
|
||||
{
|
||||
let mut writer = index.writer_with_num_threads(1, 4_000_000_000).unwrap();
|
||||
|
||||
match distribution {
|
||||
"dense_random" => {
|
||||
for _doc_id in 0..num_docs {
|
||||
let suffix = rng.gen_range(0u64..1000u64);
|
||||
let str_val = format!("str_{:03}", suffix);
|
||||
|
||||
writer
|
||||
.add_document(doc!(
|
||||
f_str_fast=>str_val.clone(),
|
||||
f_str_stored=>str_val,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
"dense_sequential" => {
|
||||
for doc_id in 0..num_docs {
|
||||
let suffix = doc_id as u64 % 1000;
|
||||
let str_val = format!("str_{:03}", suffix);
|
||||
|
||||
writer
|
||||
.add_document(doc!(
|
||||
f_str_fast=>str_val.clone(),
|
||||
f_str_stored=>str_val,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
"sparse_random" => {
|
||||
for _doc_id in 0..num_docs {
|
||||
let suffix = rng.gen_range(0u64..1000000u64);
|
||||
let str_val = format!("str_{:07}", suffix);
|
||||
|
||||
writer
|
||||
.add_document(doc!(
|
||||
f_str_fast=>str_val.clone(),
|
||||
f_str_stored=>str_val,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
"sparse_sequential" => {
|
||||
for doc_id in 0..num_docs {
|
||||
let suffix = doc_id as u64;
|
||||
let str_val = format!("str_{:07}", suffix);
|
||||
|
||||
writer
|
||||
.add_document(doc!(
|
||||
f_str_fast=>str_val.clone(),
|
||||
f_str_stored=>str_val,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
panic!("Unsupported distribution type");
|
||||
}
|
||||
}
|
||||
writer.commit().unwrap();
|
||||
}
|
||||
|
||||
// Prepare reader/searcher once.
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::Manual)
|
||||
.try_into()
|
||||
.unwrap();
|
||||
let searcher = reader.searcher();
|
||||
|
||||
BenchIndex { index, searcher }
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// Prepare corpora with varying scenarios
|
||||
let scenarios = vec![
|
||||
(
|
||||
"dense_random_search_low_range".to_string(),
|
||||
1_000_000,
|
||||
"dense_random",
|
||||
0,
|
||||
9,
|
||||
),
|
||||
(
|
||||
"dense_random_search_high_range".to_string(),
|
||||
1_000_000,
|
||||
"dense_random",
|
||||
990,
|
||||
999,
|
||||
),
|
||||
(
|
||||
"dense_sequential_search_low_range".to_string(),
|
||||
1_000_000,
|
||||
"dense_sequential",
|
||||
0,
|
||||
9,
|
||||
),
|
||||
(
|
||||
"dense_sequential_search_high_range".to_string(),
|
||||
1_000_000,
|
||||
"dense_sequential",
|
||||
990,
|
||||
999,
|
||||
),
|
||||
(
|
||||
"sparse_random_search_low_range".to_string(),
|
||||
1_000_000,
|
||||
"sparse_random",
|
||||
0,
|
||||
9999,
|
||||
),
|
||||
(
|
||||
"sparse_random_search_high_range".to_string(),
|
||||
1_000_000,
|
||||
"sparse_random",
|
||||
990_000,
|
||||
999_999,
|
||||
),
|
||||
(
|
||||
"sparse_sequential_search_low_range".to_string(),
|
||||
1_000_000,
|
||||
"sparse_sequential",
|
||||
0,
|
||||
9999,
|
||||
),
|
||||
(
|
||||
"sparse_sequential_search_high_range".to_string(),
|
||||
1_000_000,
|
||||
"sparse_sequential",
|
||||
990_000,
|
||||
999_999,
|
||||
),
|
||||
];
|
||||
|
||||
let mut runner = BenchRunner::new();
|
||||
for (scenario_id, n, distribution, range_low, range_high) in scenarios {
|
||||
let bench_index = build_shared_indices(n, distribution);
|
||||
let mut group = runner.new_group();
|
||||
group.set_name(scenario_id);
|
||||
|
||||
let field = bench_index.searcher.schema().get_field("str_fast").unwrap();
|
||||
|
||||
let (lower_str, upper_str) =
|
||||
if distribution == "dense_sequential" || distribution == "dense_random" {
|
||||
(
|
||||
format!("str_{:03}", range_low),
|
||||
format!("str_{:03}", range_high),
|
||||
)
|
||||
} else {
|
||||
(
|
||||
format!("str_{:07}", range_low),
|
||||
format!("str_{:07}", range_high),
|
||||
)
|
||||
};
|
||||
|
||||
let lower_term = Term::from_field_text(field, &lower_str);
|
||||
let upper_term = Term::from_field_text(field, &upper_str);
|
||||
|
||||
let query = RangeQuery::new(Bound::Included(lower_term), Bound::Included(upper_term));
|
||||
|
||||
run_benchmark_tasks(&mut group, &bench_index, query, range_low, range_high);
|
||||
|
||||
group.run();
|
||||
}
|
||||
}
|
||||
|
||||
/// Run all benchmark tasks for a given range query
|
||||
fn run_benchmark_tasks(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query: RangeQuery,
|
||||
range_low: u64,
|
||||
range_high: u64,
|
||||
) {
|
||||
// Test count of matching documents
|
||||
add_bench_task_count(
|
||||
bench_group,
|
||||
bench_index,
|
||||
query.clone(),
|
||||
range_low,
|
||||
range_high,
|
||||
);
|
||||
|
||||
// Test fetching all DocIds of matching documents
|
||||
add_bench_task_docset(
|
||||
bench_group,
|
||||
bench_index,
|
||||
query.clone(),
|
||||
range_low,
|
||||
range_high,
|
||||
);
|
||||
|
||||
// Test fetching all string fast field values of matching documents
|
||||
add_bench_task_fetch_all_strings(
|
||||
bench_group,
|
||||
bench_index,
|
||||
query.clone(),
|
||||
range_low,
|
||||
range_high,
|
||||
);
|
||||
|
||||
// Test fetching all string values of matching documents through doc() method
|
||||
add_bench_task_fetch_all_strings_from_doc(
|
||||
bench_group,
|
||||
bench_index,
|
||||
query,
|
||||
range_low,
|
||||
range_high,
|
||||
);
|
||||
}
|
||||
|
||||
fn add_bench_task_count(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query: RangeQuery,
|
||||
range_low: u64,
|
||||
range_high: u64,
|
||||
) {
|
||||
let task_name = format!("string_search_count_[{}-{}]", range_low, range_high);
|
||||
|
||||
let search_task = CountSearchTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
query,
|
||||
};
|
||||
bench_group.register(task_name, move |_| black_box(search_task.run()));
|
||||
}
|
||||
|
||||
fn add_bench_task_docset(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query: RangeQuery,
|
||||
range_low: u64,
|
||||
range_high: u64,
|
||||
) {
|
||||
let task_name = format!("string_fetch_all_docset_[{}-{}]", range_low, range_high);
|
||||
|
||||
let search_task = DocSetSearchTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
query,
|
||||
};
|
||||
bench_group.register(task_name, move |_| black_box(search_task.run()));
|
||||
}
|
||||
|
||||
fn add_bench_task_fetch_all_strings(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query: RangeQuery,
|
||||
range_low: u64,
|
||||
range_high: u64,
|
||||
) {
|
||||
let task_name = format!(
|
||||
"string_fastfield_fetch_all_strings_[{}-{}]",
|
||||
range_low, range_high
|
||||
);
|
||||
|
||||
let search_task = FetchAllStringsSearchTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
query,
|
||||
};
|
||||
|
||||
bench_group.register(task_name, move |_| {
|
||||
let result = black_box(search_task.run());
|
||||
result.len()
|
||||
});
|
||||
}
|
||||
|
||||
fn add_bench_task_fetch_all_strings_from_doc(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query: RangeQuery,
|
||||
range_low: u64,
|
||||
range_high: u64,
|
||||
) {
|
||||
let task_name = format!(
|
||||
"string_doc_fetch_all_strings_[{}-{}]",
|
||||
range_low, range_high
|
||||
);
|
||||
|
||||
let search_task = FetchAllStringsFromDocTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
query,
|
||||
};
|
||||
|
||||
bench_group.register(task_name, move |_| {
|
||||
let result = black_box(search_task.run());
|
||||
result.len()
|
||||
});
|
||||
}
|
||||
|
||||
struct CountSearchTask {
|
||||
searcher: Searcher,
|
||||
query: RangeQuery,
|
||||
}
|
||||
|
||||
impl CountSearchTask {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> usize {
|
||||
self.searcher.search(&self.query, &Count).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
struct DocSetSearchTask {
|
||||
searcher: Searcher,
|
||||
query: RangeQuery,
|
||||
}
|
||||
|
||||
impl DocSetSearchTask {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> usize {
|
||||
let result = self.searcher.search(&self.query, &DocSetCollector).unwrap();
|
||||
result.len()
|
||||
}
|
||||
}
|
||||
|
||||
struct FetchAllStringsSearchTask {
|
||||
searcher: Searcher,
|
||||
query: RangeQuery,
|
||||
}
|
||||
|
||||
impl FetchAllStringsSearchTask {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> Vec<String> {
|
||||
let doc_addresses = self.searcher.search(&self.query, &DocSetCollector).unwrap();
|
||||
let mut docs = doc_addresses.into_iter().collect::<Vec<_>>();
|
||||
docs.sort();
|
||||
let mut strings = Vec::with_capacity(docs.len());
|
||||
|
||||
for doc_address in docs {
|
||||
let segment_reader = &self.searcher.segment_readers()[doc_address.segment_ord as usize];
|
||||
let str_column_opt = segment_reader.fast_fields().str("str_fast");
|
||||
|
||||
if let Ok(Some(str_column)) = str_column_opt {
|
||||
let doc_id = doc_address.doc_id;
|
||||
let term_ord = str_column.term_ords(doc_id).next().unwrap();
|
||||
let mut str_buffer = String::new();
|
||||
if str_column.ord_to_str(term_ord, &mut str_buffer).is_ok() {
|
||||
strings.push(str_buffer);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
strings
|
||||
}
|
||||
}
|
||||
|
||||
struct FetchAllStringsFromDocTask {
|
||||
searcher: Searcher,
|
||||
query: RangeQuery,
|
||||
}
|
||||
|
||||
impl FetchAllStringsFromDocTask {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> Vec<String> {
|
||||
let doc_addresses = self.searcher.search(&self.query, &DocSetCollector).unwrap();
|
||||
let mut docs = doc_addresses.into_iter().collect::<Vec<_>>();
|
||||
docs.sort();
|
||||
let mut strings = Vec::with_capacity(docs.len());
|
||||
|
||||
let str_stored_field = self
|
||||
.searcher
|
||||
.schema()
|
||||
.get_field("str_stored")
|
||||
.expect("str_stored field should exist");
|
||||
|
||||
for doc_address in docs {
|
||||
// Get the document from the doc store (row store access)
|
||||
if let Ok(doc) = self.searcher.doc::<TantivyDocument>(doc_address) {
|
||||
// Extract string values from the stored field
|
||||
if let Some(field_value) = doc.get_first(str_stored_field) {
|
||||
if let Some(text) = field_value.as_value().as_str() {
|
||||
strings.push(text.to_string());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
strings
|
||||
}
|
||||
}
|
||||
@@ -18,5 +18,5 @@ homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
bitpacking = { version = "0.9.2", default-features = false, features = ["bitpacker1x"] }
|
||||
|
||||
[dev-dependencies]
|
||||
rand = "0.8"
|
||||
rand = "0.9"
|
||||
proptest = "1"
|
||||
|
||||
@@ -4,8 +4,8 @@ extern crate test;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use rand::rng;
|
||||
use rand::seq::IteratorRandom;
|
||||
use rand::thread_rng;
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker, BlockedBitpacker};
|
||||
use test::Bencher;
|
||||
|
||||
@@ -27,7 +27,7 @@ mod tests {
|
||||
let num_els = 1_000_000u32;
|
||||
let bit_unpacker = BitUnpacker::new(bit_width);
|
||||
let data = create_bitpacked_data(bit_width, num_els);
|
||||
let idxs: Vec<u32> = (0..num_els).choose_multiple(&mut thread_rng(), 100_000);
|
||||
let idxs: Vec<u32> = (0..num_els).choose_multiple(&mut rng(), 100_000);
|
||||
b.iter(|| {
|
||||
let mut out = 0u64;
|
||||
for &idx in &idxs {
|
||||
|
||||
@@ -22,7 +22,7 @@ downcast-rs = "2.0.1"
|
||||
[dev-dependencies]
|
||||
proptest = "1"
|
||||
more-asserts = "0.3.1"
|
||||
rand = "0.8"
|
||||
rand = "0.9"
|
||||
binggan = "0.14.0"
|
||||
|
||||
[[bench]]
|
||||
|
||||
@@ -9,7 +9,7 @@ use tantivy_columnar::column_values::{CodecType, serialize_and_load_u64_based_co
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55_000_u64)
|
||||
.map(|num| num + rng.r#gen::<u8>() as u64)
|
||||
.map(|num| num + rng.random::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
|
||||
@@ -6,7 +6,7 @@ use tantivy_columnar::column_values::{CodecType, serialize_u64_based_column_valu
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55_000_u64)
|
||||
.map(|num| num + rng.r#gen::<u8>() as u64)
|
||||
.map(|num| num + rng.random::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
|
||||
@@ -8,7 +8,7 @@ const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
fn gen_optional_index(fill_ratio: f64) -> OptionalIndex {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let vals: Vec<u32> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.map(|_| rng.random_bool(fill_ratio))
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _)| pos as u32)
|
||||
@@ -25,7 +25,7 @@ fn random_range_iterator(
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
current += rng.random_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end { None } else { Some(current) }
|
||||
})
|
||||
}
|
||||
|
||||
@@ -39,7 +39,7 @@ fn get_data_50percent_item() -> Vec<u128> {
|
||||
|
||||
let mut data = vec![];
|
||||
for _ in 0..300_000 {
|
||||
let val = rng.gen_range(1..=100);
|
||||
let val = rng.random_range(1..=100);
|
||||
data.push(val);
|
||||
}
|
||||
data.push(SINGLE_ITEM);
|
||||
|
||||
@@ -34,7 +34,7 @@ fn get_data_50percent_item() -> Vec<u128> {
|
||||
|
||||
let mut data = vec![];
|
||||
for _ in 0..300_000 {
|
||||
let val = rng.gen_range(1..=100);
|
||||
let val = rng.random_range(1..=100);
|
||||
data.push(val);
|
||||
}
|
||||
data.push(SINGLE_ITEM);
|
||||
|
||||
@@ -268,7 +268,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_rand() {
|
||||
let mut rng = rand::thread_rng();
|
||||
let mut rng = rand::rng();
|
||||
for _ in 0..50 {
|
||||
let mut data = (0..10_000).map(|_| rng.next_u64()).collect::<Vec<_>>();
|
||||
create_and_validate::<LinearCodec>(&data, "random");
|
||||
|
||||
@@ -122,7 +122,7 @@ pub(crate) fn create_and_validate<TColumnCodec: ColumnCodec>(
|
||||
assert_eq!(vals, buffer);
|
||||
|
||||
if !vals.is_empty() {
|
||||
let test_rand_idx = rand::thread_rng().gen_range(0..=vals.len() - 1);
|
||||
let test_rand_idx = rand::rng().random_range(0..=vals.len() - 1);
|
||||
let expected_positions: Vec<u32> = vals
|
||||
.iter()
|
||||
.enumerate()
|
||||
|
||||
@@ -21,5 +21,5 @@ serde = { version = "1.0.136", features = ["derive"] }
|
||||
[dev-dependencies]
|
||||
binggan = "0.14.0"
|
||||
proptest = "1.0.0"
|
||||
rand = "0.8.4"
|
||||
rand = "0.9"
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use binggan::{BenchRunner, black_box};
|
||||
use rand::rng;
|
||||
use rand::seq::IteratorRandom;
|
||||
use rand::thread_rng;
|
||||
use tantivy_common::{BitSet, TinySet, serialize_vint_u32};
|
||||
|
||||
fn bench_vint() {
|
||||
@@ -17,7 +17,7 @@ fn bench_vint() {
|
||||
black_box(out);
|
||||
});
|
||||
|
||||
let vals: Vec<u32> = (0..20_000).choose_multiple(&mut thread_rng(), 100_000);
|
||||
let vals: Vec<u32> = (0..20_000).choose_multiple(&mut rng(), 100_000);
|
||||
runner.bench_function("bench_vint_rand", move |_| {
|
||||
let mut out = 0u64;
|
||||
for val in vals.iter().cloned() {
|
||||
|
||||
@@ -416,7 +416,7 @@ mod tests {
|
||||
use std::collections::HashSet;
|
||||
|
||||
use ownedbytes::OwnedBytes;
|
||||
use rand::distributions::Bernoulli;
|
||||
use rand::distr::Bernoulli;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
|
||||
|
||||
@@ -60,7 +60,7 @@ At indexing, tantivy will try to interpret number and strings as different type
|
||||
priority order.
|
||||
|
||||
Numbers will be interpreted as u64, i64 and f64 in that order.
|
||||
Strings will be interpreted as rfc3999 dates or simple strings.
|
||||
Strings will be interpreted as rfc3339 dates or simple strings.
|
||||
|
||||
The first working type is picked and is the only term that is emitted for indexing.
|
||||
Note this interpretation happens on a per-document basis, and there is no effort to try to sniff
|
||||
@@ -81,7 +81,7 @@ Will be interpreted as
|
||||
(my_path.my_segment, String, 233) or (my_path.my_segment, u64, 233)
|
||||
```
|
||||
|
||||
Likewise, we need to emit two tokens if the query contains an rfc3999 date.
|
||||
Likewise, we need to emit two tokens if the query contains an rfc3339 date.
|
||||
Indeed the date could have been actually a single token inside the text of a document at ingestion time. Generally speaking, we will always at least emit a string token in query parsing, and sometimes more.
|
||||
|
||||
If one more json field is defined, things get even more complicated.
|
||||
|
||||
@@ -560,7 +560,7 @@ fn range_infallible(inp: &str) -> JResult<&str, UserInputLeaf> {
|
||||
(
|
||||
(
|
||||
value((), tag(">=")),
|
||||
map(word_infallible("", false), |(bound, err)| {
|
||||
map(word_infallible(")", false), |(bound, err)| {
|
||||
(
|
||||
(
|
||||
bound
|
||||
@@ -574,7 +574,7 @@ fn range_infallible(inp: &str) -> JResult<&str, UserInputLeaf> {
|
||||
),
|
||||
(
|
||||
value((), tag("<=")),
|
||||
map(word_infallible("", false), |(bound, err)| {
|
||||
map(word_infallible(")", false), |(bound, err)| {
|
||||
(
|
||||
(
|
||||
UserInputBound::Unbounded,
|
||||
@@ -588,7 +588,7 @@ fn range_infallible(inp: &str) -> JResult<&str, UserInputLeaf> {
|
||||
),
|
||||
(
|
||||
value((), tag(">")),
|
||||
map(word_infallible("", false), |(bound, err)| {
|
||||
map(word_infallible(")", false), |(bound, err)| {
|
||||
(
|
||||
(
|
||||
bound
|
||||
@@ -602,7 +602,7 @@ fn range_infallible(inp: &str) -> JResult<&str, UserInputLeaf> {
|
||||
),
|
||||
(
|
||||
value((), tag("<")),
|
||||
map(word_infallible("", false), |(bound, err)| {
|
||||
map(word_infallible(")", false), |(bound, err)| {
|
||||
(
|
||||
(
|
||||
UserInputBound::Unbounded,
|
||||
@@ -704,7 +704,11 @@ fn regex(inp: &str) -> IResult<&str, UserInputLeaf> {
|
||||
many1(alt((preceded(char('\\'), char('/')), none_of("/")))),
|
||||
char('/'),
|
||||
),
|
||||
peek(alt((multispace1, eof))),
|
||||
peek(alt((
|
||||
value((), multispace1),
|
||||
value((), char(')')),
|
||||
value((), eof),
|
||||
))),
|
||||
),
|
||||
|elements| UserInputLeaf::Regex {
|
||||
field: None,
|
||||
@@ -721,8 +725,12 @@ fn regex_infallible(inp: &str) -> JResult<&str, UserInputLeaf> {
|
||||
opt_i_err(char('/'), "missing delimiter /"),
|
||||
),
|
||||
opt_i_err(
|
||||
peek(alt((multispace1, eof))),
|
||||
"expected whitespace or end of input",
|
||||
peek(alt((
|
||||
value((), multispace1),
|
||||
value((), char(')')),
|
||||
value((), eof),
|
||||
))),
|
||||
"expected whitespace, closing parenthesis, or end of input",
|
||||
),
|
||||
)(inp)
|
||||
{
|
||||
@@ -1323,6 +1331,14 @@ mod test {
|
||||
test_parse_query_to_ast_helper("<a", "{\"*\" TO \"a\"}");
|
||||
test_parse_query_to_ast_helper("<=a", "{\"*\" TO \"a\"]");
|
||||
test_parse_query_to_ast_helper("<=bsd", "{\"*\" TO \"bsd\"]");
|
||||
|
||||
test_parse_query_to_ast_helper("(<=42)", "{\"*\" TO \"42\"]");
|
||||
test_parse_query_to_ast_helper("(<=42 )", "{\"*\" TO \"42\"]");
|
||||
test_parse_query_to_ast_helper("(age:>5)", "\"age\":{\"5\" TO \"*\"}");
|
||||
test_parse_query_to_ast_helper(
|
||||
"(title:bar AND age:>12)",
|
||||
"(+\"title\":bar +\"age\":{\"12\" TO \"*\"})",
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -1699,6 +1715,10 @@ mod test {
|
||||
test_parse_query_to_ast_helper("foo:(A OR B)", "(?\"foo\":A ?\"foo\":B)");
|
||||
test_parse_query_to_ast_helper("foo:(A* OR B*)", "(?\"foo\":A* ?\"foo\":B*)");
|
||||
test_parse_query_to_ast_helper("foo:(*A OR *B)", "(?\"foo\":*A ?\"foo\":*B)");
|
||||
|
||||
// Regexes between parentheses
|
||||
test_parse_query_to_ast_helper("foo:(/A.*/)", "\"foo\":/A.*/");
|
||||
test_parse_query_to_ast_helper("foo:(/A.*/ OR /B.*/)", "(?\"foo\":/A.*/ ?\"foo\":/B.*/)");
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
||||
@@ -66,6 +66,7 @@ impl UserInputLeaf {
|
||||
}
|
||||
UserInputLeaf::Range { field, .. } if field.is_none() => *field = Some(default_field),
|
||||
UserInputLeaf::Set { field, .. } if field.is_none() => *field = Some(default_field),
|
||||
UserInputLeaf::Regex { field, .. } if field.is_none() => *field = Some(default_field),
|
||||
_ => (), // field was already set, do nothing
|
||||
}
|
||||
}
|
||||
|
||||
@@ -90,6 +90,19 @@ impl From<IntermediateKey> for Key {
|
||||
|
||||
impl Eq for IntermediateKey {}
|
||||
|
||||
impl std::fmt::Display for IntermediateKey {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
match self {
|
||||
IntermediateKey::Str(val) => f.write_str(val),
|
||||
IntermediateKey::F64(val) => f.write_str(&val.to_string()),
|
||||
IntermediateKey::U64(val) => f.write_str(&val.to_string()),
|
||||
IntermediateKey::I64(val) => f.write_str(&val.to_string()),
|
||||
IntermediateKey::Bool(val) => f.write_str(&val.to_string()),
|
||||
IntermediateKey::IpAddr(val) => f.write_str(&val.to_string()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl std::hash::Hash for IntermediateKey {
|
||||
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
|
||||
core::mem::discriminant(self).hash(state);
|
||||
@@ -105,6 +118,21 @@ impl std::hash::Hash for IntermediateKey {
|
||||
}
|
||||
|
||||
impl IntermediateAggregationResults {
|
||||
/// Returns a reference to the intermediate aggregation result for the given key.
|
||||
pub fn get(&self, key: &str) -> Option<&IntermediateAggregationResult> {
|
||||
self.aggs_res.get(key)
|
||||
}
|
||||
|
||||
/// Removes and returns the intermediate aggregation result for the given key.
|
||||
pub fn remove(&mut self, key: &str) -> Option<IntermediateAggregationResult> {
|
||||
self.aggs_res.remove(key)
|
||||
}
|
||||
|
||||
/// Returns an iterator over the keys in the intermediate aggregation results.
|
||||
pub fn keys(&self) -> impl Iterator<Item = &String> {
|
||||
self.aggs_res.keys()
|
||||
}
|
||||
|
||||
/// Add a result
|
||||
pub fn push(&mut self, key: String, value: IntermediateAggregationResult) -> crate::Result<()> {
|
||||
let entry = self.aggs_res.entry(key);
|
||||
@@ -639,6 +667,21 @@ pub struct IntermediateTermBucketResult {
|
||||
}
|
||||
|
||||
impl IntermediateTermBucketResult {
|
||||
/// Returns a reference to the map of bucket entries keyed by [`IntermediateKey`].
|
||||
pub fn entries(&self) -> &FxHashMap<IntermediateKey, IntermediateTermBucketEntry> {
|
||||
&self.entries
|
||||
}
|
||||
|
||||
/// Returns the count of documents not included in the returned buckets.
|
||||
pub fn sum_other_doc_count(&self) -> u64 {
|
||||
self.sum_other_doc_count
|
||||
}
|
||||
|
||||
/// Returns the upper bound of the error on document counts in the returned buckets.
|
||||
pub fn doc_count_error_upper_bound(&self) -> u64 {
|
||||
self.doc_count_error_upper_bound
|
||||
}
|
||||
|
||||
pub(crate) fn into_final_result(
|
||||
self,
|
||||
req: &TermsAggregation,
|
||||
@@ -820,7 +863,7 @@ impl IntermediateRangeBucketEntry {
|
||||
};
|
||||
|
||||
// If we have a date type on the histogram buckets, we add the `key_as_string` field as
|
||||
// rfc339
|
||||
// rfc3339
|
||||
if column_type == Some(ColumnType::DateTime) {
|
||||
if let Some(val) = range_bucket_entry.to {
|
||||
let key_as_string = format_date(val as i64)?;
|
||||
|
||||
@@ -55,6 +55,12 @@ impl IntermediateAverage {
|
||||
pub(crate) fn from_stats(stats: IntermediateStats) -> Self {
|
||||
Self { stats }
|
||||
}
|
||||
|
||||
/// Returns a reference to the underlying [`IntermediateStats`].
|
||||
pub fn stats(&self) -> &IntermediateStats {
|
||||
&self.stats
|
||||
}
|
||||
|
||||
/// Merges the other intermediate result into self.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateAverage) {
|
||||
self.stats.merge_fruits(other.stats);
|
||||
|
||||
@@ -1,12 +1,11 @@
|
||||
use std::collections::hash_map::DefaultHasher;
|
||||
use std::hash::{BuildHasher, Hasher};
|
||||
use std::hash::Hash;
|
||||
|
||||
use columnar::column_values::CompactSpaceU64Accessor;
|
||||
use columnar::{Column, ColumnType, Dictionary, StrColumn};
|
||||
use common::f64_to_u64;
|
||||
use hyperloglogplus::{HyperLogLog, HyperLogLogPlus};
|
||||
use datasketches::hll::{HllSketch, HllType, HllUnion};
|
||||
use rustc_hash::FxHashSet;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
||||
|
||||
use crate::aggregation::agg_data::AggregationsSegmentCtx;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
@@ -16,29 +15,17 @@ use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::*;
|
||||
use crate::TantivyError;
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
struct BuildSaltedHasher {
|
||||
salt: u8,
|
||||
}
|
||||
|
||||
impl BuildHasher for BuildSaltedHasher {
|
||||
type Hasher = DefaultHasher;
|
||||
|
||||
fn build_hasher(&self) -> Self::Hasher {
|
||||
let mut hasher = DefaultHasher::new();
|
||||
hasher.write_u8(self.salt);
|
||||
|
||||
hasher
|
||||
}
|
||||
}
|
||||
/// Log2 of the number of registers. Must match the Java `Union(LOG2M)` where LOG2M=11.
|
||||
/// 2^11 = 2048 registers.
|
||||
const LG_K: u8 = 11;
|
||||
|
||||
/// # Cardinality
|
||||
///
|
||||
/// The cardinality aggregation allows for computing an estimate
|
||||
/// of the number of different values in a data set based on the
|
||||
/// HyperLogLog++ algorithm. This is particularly useful for understanding the
|
||||
/// uniqueness of values in a large dataset where counting each unique value
|
||||
/// individually would be computationally expensive.
|
||||
/// Apache DataSketches HyperLogLog algorithm. This is particularly useful for
|
||||
/// understanding the uniqueness of values in a large dataset where counting
|
||||
/// each unique value individually would be computationally expensive.
|
||||
///
|
||||
/// For example, you might use a cardinality aggregation to estimate the number
|
||||
/// of unique visitors to a website by aggregating on a field that contains
|
||||
@@ -184,7 +171,7 @@ impl SegmentCardinalityCollectorBucket {
|
||||
|
||||
term_ids.sort_unstable();
|
||||
dict.sorted_ords_to_term_cb(term_ids.iter().map(|term| *term as u64), |term| {
|
||||
self.cardinality.sketch.insert_any(&term);
|
||||
self.cardinality.insert(term);
|
||||
Ok(())
|
||||
})?;
|
||||
if has_missing {
|
||||
@@ -195,17 +182,17 @@ impl SegmentCardinalityCollectorBucket {
|
||||
);
|
||||
match missing_key {
|
||||
Key::Str(missing) => {
|
||||
self.cardinality.sketch.insert_any(&missing);
|
||||
self.cardinality.insert(missing.as_str());
|
||||
}
|
||||
Key::F64(val) => {
|
||||
let val = f64_to_u64(*val);
|
||||
self.cardinality.sketch.insert_any(&val);
|
||||
self.cardinality.insert(val);
|
||||
}
|
||||
Key::U64(val) => {
|
||||
self.cardinality.sketch.insert_any(&val);
|
||||
self.cardinality.insert(*val);
|
||||
}
|
||||
Key::I64(val) => {
|
||||
self.cardinality.sketch.insert_any(&val);
|
||||
self.cardinality.insert(*val);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -296,11 +283,11 @@ impl SegmentAggregationCollector for SegmentCardinalityCollector {
|
||||
})?;
|
||||
for val in col_block_accessor.iter_vals() {
|
||||
let val: u128 = compact_space_accessor.compact_to_u128(val as u32);
|
||||
bucket.cardinality.sketch.insert_any(&val);
|
||||
bucket.cardinality.insert(val);
|
||||
}
|
||||
} else {
|
||||
for val in col_block_accessor.iter_vals() {
|
||||
bucket.cardinality.sketch.insert_any(&val);
|
||||
bucket.cardinality.insert(val);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -321,11 +308,17 @@ impl SegmentAggregationCollector for SegmentCardinalityCollector {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
/// The percentiles collector used during segment collection and for merging results.
|
||||
#[derive(Clone, Debug)]
|
||||
/// The cardinality collector used during segment collection and for merging results.
|
||||
/// Uses Apache DataSketches HLL (lg_k=11) for compatibility with Datadog's event query.
|
||||
pub struct CardinalityCollector {
|
||||
sketch: HyperLogLogPlus<u64, BuildSaltedHasher>,
|
||||
sketch: HllSketch,
|
||||
/// Salt derived from `ColumnType`, used to differentiate values of different column types
|
||||
/// that map to the same u64 (e.g. bool `false` = 0 vs i64 `0`).
|
||||
/// Not serialized — only needed during insertion, not after sketch registers are populated.
|
||||
salt: u8,
|
||||
}
|
||||
|
||||
impl Default for CardinalityCollector {
|
||||
fn default() -> Self {
|
||||
Self::new(0)
|
||||
@@ -338,25 +331,52 @@ impl PartialEq for CardinalityCollector {
|
||||
}
|
||||
}
|
||||
|
||||
impl CardinalityCollector {
|
||||
/// Compute the final cardinality estimate.
|
||||
pub fn finalize(self) -> Option<f64> {
|
||||
Some(self.sketch.clone().count().trunc())
|
||||
impl Serialize for CardinalityCollector {
|
||||
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
|
||||
let bytes = self.sketch.serialize();
|
||||
serializer.serialize_bytes(&bytes)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'de> Deserialize<'de> for CardinalityCollector {
|
||||
fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
|
||||
let bytes: Vec<u8> = Deserialize::deserialize(deserializer)?;
|
||||
let sketch = HllSketch::deserialize(&bytes).map_err(serde::de::Error::custom)?;
|
||||
Ok(Self { sketch, salt: 0 })
|
||||
}
|
||||
}
|
||||
|
||||
impl CardinalityCollector {
|
||||
fn new(salt: u8) -> Self {
|
||||
Self {
|
||||
sketch: HyperLogLogPlus::new(16, BuildSaltedHasher { salt }).unwrap(),
|
||||
sketch: HllSketch::new(LG_K, HllType::Hll4),
|
||||
salt,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn merge_fruits(&mut self, right: CardinalityCollector) -> crate::Result<()> {
|
||||
self.sketch.merge(&right.sketch).map_err(|err| {
|
||||
TantivyError::AggregationError(AggregationError::InternalError(format!(
|
||||
"Error while merging cardinality {err:?}"
|
||||
)))
|
||||
})?;
|
||||
/// Insert a value into the HLL sketch, salted by the column type.
|
||||
/// The salt ensures that identical u64 values from different column types
|
||||
/// (e.g. bool `false` vs i64 `0`) are counted as distinct.
|
||||
pub(crate) fn insert<T: Hash>(&mut self, value: T) {
|
||||
self.sketch.update((self.salt, value));
|
||||
}
|
||||
|
||||
/// Compute the final cardinality estimate.
|
||||
pub fn finalize(self) -> Option<f64> {
|
||||
Some(self.sketch.estimate().trunc())
|
||||
}
|
||||
|
||||
/// Serialize the HLL sketch to its compact binary representation.
|
||||
/// This format is compatible with Apache DataSketches Java (`HllSketch.heapify()`).
|
||||
pub fn to_sketch_bytes(&self) -> Vec<u8> {
|
||||
self.sketch.serialize()
|
||||
}
|
||||
|
||||
pub(crate) fn merge_fruits(&mut self, right: CardinalityCollector) -> crate::Result<()> {
|
||||
let mut union = HllUnion::new(LG_K);
|
||||
union.update(&self.sketch);
|
||||
union.update(&right.sketch);
|
||||
self.sketch = union.get_result(HllType::Hll4);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -518,4 +538,75 @@ mod tests {
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cardinality_collector_serde_roundtrip() {
|
||||
use super::CardinalityCollector;
|
||||
|
||||
let mut collector = CardinalityCollector::default();
|
||||
collector.insert("hello");
|
||||
collector.insert("world");
|
||||
collector.insert("hello"); // duplicate
|
||||
|
||||
let serialized = serde_json::to_vec(&collector).unwrap();
|
||||
let deserialized: CardinalityCollector = serde_json::from_slice(&serialized).unwrap();
|
||||
|
||||
let original_estimate = collector.finalize().unwrap();
|
||||
let roundtrip_estimate = deserialized.finalize().unwrap();
|
||||
assert_eq!(original_estimate, roundtrip_estimate);
|
||||
assert_eq!(original_estimate, 2.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cardinality_collector_merge() {
|
||||
use super::CardinalityCollector;
|
||||
|
||||
let mut left = CardinalityCollector::default();
|
||||
left.insert("a");
|
||||
left.insert("b");
|
||||
|
||||
let mut right = CardinalityCollector::default();
|
||||
right.insert("b");
|
||||
right.insert("c");
|
||||
|
||||
left.merge_fruits(right).unwrap();
|
||||
let estimate = left.finalize().unwrap();
|
||||
assert_eq!(estimate, 3.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cardinality_collector_serialize_deserialize_binary() {
|
||||
use datasketches::hll::HllSketch;
|
||||
|
||||
use super::CardinalityCollector;
|
||||
|
||||
let mut collector = CardinalityCollector::default();
|
||||
collector.insert("apple");
|
||||
collector.insert("banana");
|
||||
collector.insert("cherry");
|
||||
|
||||
let bytes = collector.to_sketch_bytes();
|
||||
let deserialized = HllSketch::deserialize(&bytes).unwrap();
|
||||
assert!((deserialized.estimate() - 3.0).abs() < 0.01);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cardinality_collector_salt_differentiates_types() {
|
||||
use super::CardinalityCollector;
|
||||
|
||||
// Without salt, same u64 value from different column types would collide
|
||||
let mut collector_bool = CardinalityCollector::new(5); // e.g. ColumnType::Bool
|
||||
collector_bool.insert(0u64); // false
|
||||
collector_bool.insert(1u64); // true
|
||||
|
||||
let mut collector_i64 = CardinalityCollector::new(2); // e.g. ColumnType::I64
|
||||
collector_i64.insert(0u64);
|
||||
collector_i64.insert(1u64);
|
||||
|
||||
// Merge them
|
||||
collector_bool.merge_fruits(collector_i64).unwrap();
|
||||
let estimate = collector_bool.finalize().unwrap();
|
||||
// Should be 4 because salt makes (5, 0) != (2, 0) and (5, 1) != (2, 1)
|
||||
assert_eq!(estimate, 4.0);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -107,8 +107,11 @@ pub enum PercentileValues {
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
/// The entry when requesting percentiles with keyed: false
|
||||
pub struct PercentileValuesVecEntry {
|
||||
key: f64,
|
||||
value: f64,
|
||||
/// Percentile
|
||||
pub key: f64,
|
||||
|
||||
/// Value at the percentile
|
||||
pub value: f64,
|
||||
}
|
||||
|
||||
/// Single-metric aggregations use this common result structure.
|
||||
|
||||
@@ -110,6 +110,16 @@ impl Default for IntermediateStats {
|
||||
}
|
||||
|
||||
impl IntermediateStats {
|
||||
/// Returns the number of values collected.
|
||||
pub fn count(&self) -> u64 {
|
||||
self.count
|
||||
}
|
||||
|
||||
/// Returns the sum of all values collected.
|
||||
pub fn sum(&self) -> f64 {
|
||||
self.sum
|
||||
}
|
||||
|
||||
/// Merges the other stats intermediate result into self.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateStats) {
|
||||
self.count += other.count;
|
||||
|
||||
@@ -486,9 +486,9 @@ mod tests {
|
||||
use std::collections::BTreeSet;
|
||||
|
||||
use columnar::Dictionary;
|
||||
use rand::distributions::Uniform;
|
||||
use rand::distr::Uniform;
|
||||
use rand::prelude::SliceRandom;
|
||||
use rand::{thread_rng, Rng};
|
||||
use rand::{rng, Rng};
|
||||
|
||||
use super::{FacetCollector, FacetCounts};
|
||||
use crate::collector::facet_collector::compress_mapping;
|
||||
@@ -731,7 +731,7 @@ mod tests {
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
let uniform = Uniform::new_inclusive(1, 100_000);
|
||||
let uniform = Uniform::new_inclusive(1, 100_000).unwrap();
|
||||
let mut docs: Vec<TantivyDocument> =
|
||||
vec![("a", 10), ("b", 100), ("c", 7), ("d", 12), ("e", 21)]
|
||||
.into_iter()
|
||||
@@ -741,14 +741,11 @@ mod tests {
|
||||
std::iter::repeat_n(doc, count)
|
||||
})
|
||||
.map(|mut doc| {
|
||||
doc.add_facet(
|
||||
facet_field,
|
||||
&format!("/facet/{}", thread_rng().sample(uniform)),
|
||||
);
|
||||
doc.add_facet(facet_field, &format!("/facet/{}", rng().sample(uniform)));
|
||||
doc
|
||||
})
|
||||
.collect();
|
||||
docs[..].shuffle(&mut thread_rng());
|
||||
docs[..].shuffle(&mut rng());
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
for doc in docs {
|
||||
@@ -822,8 +819,8 @@ mod tests {
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use rand::rng;
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::thread_rng;
|
||||
use test::Bencher;
|
||||
|
||||
use crate::collector::FacetCollector;
|
||||
@@ -846,7 +843,7 @@ mod bench {
|
||||
}
|
||||
}
|
||||
// 40425 docs
|
||||
docs[..].shuffle(&mut thread_rng());
|
||||
docs[..].shuffle(&mut rng());
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
for doc in docs {
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
mod order;
|
||||
mod sort_by_bytes;
|
||||
mod sort_by_erased_type;
|
||||
mod sort_by_score;
|
||||
mod sort_by_static_fast_value;
|
||||
@@ -6,6 +7,7 @@ mod sort_by_string;
|
||||
mod sort_key_computer;
|
||||
|
||||
pub use order::*;
|
||||
pub use sort_by_bytes::SortByBytes;
|
||||
pub use sort_by_erased_type::SortByErasedType;
|
||||
pub use sort_by_score::SortBySimilarityScore;
|
||||
pub use sort_by_static_fast_value::SortByStaticFastValue;
|
||||
|
||||
168
src/collector/sort_key/sort_by_bytes.rs
Normal file
168
src/collector/sort_key/sort_by_bytes.rs
Normal file
@@ -0,0 +1,168 @@
|
||||
use columnar::BytesColumn;
|
||||
|
||||
use crate::collector::sort_key::NaturalComparator;
|
||||
use crate::collector::{SegmentSortKeyComputer, SortKeyComputer};
|
||||
use crate::termdict::TermOrdinal;
|
||||
use crate::{DocId, Score};
|
||||
|
||||
/// Sort by the first value of a bytes column.
|
||||
///
|
||||
/// If the field is multivalued, only the first value is considered.
|
||||
///
|
||||
/// Documents that do not have this value are still considered.
|
||||
/// Their sort key will simply be `None`.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct SortByBytes {
|
||||
column_name: String,
|
||||
}
|
||||
|
||||
impl SortByBytes {
|
||||
/// Creates a new sort by bytes sort key computer.
|
||||
pub fn for_field(column_name: impl ToString) -> Self {
|
||||
SortByBytes {
|
||||
column_name: column_name.to_string(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl SortKeyComputer for SortByBytes {
|
||||
type SortKey = Option<Vec<u8>>;
|
||||
type Child = ByBytesColumnSegmentSortKeyComputer;
|
||||
type Comparator = NaturalComparator;
|
||||
|
||||
fn segment_sort_key_computer(
|
||||
&self,
|
||||
segment_reader: &crate::SegmentReader,
|
||||
) -> crate::Result<Self::Child> {
|
||||
let bytes_column_opt = segment_reader.fast_fields().bytes(&self.column_name)?;
|
||||
Ok(ByBytesColumnSegmentSortKeyComputer { bytes_column_opt })
|
||||
}
|
||||
}
|
||||
|
||||
/// Segment-level sort key computer for bytes columns.
|
||||
pub struct ByBytesColumnSegmentSortKeyComputer {
|
||||
bytes_column_opt: Option<BytesColumn>,
|
||||
}
|
||||
|
||||
impl SegmentSortKeyComputer for ByBytesColumnSegmentSortKeyComputer {
|
||||
type SortKey = Option<Vec<u8>>;
|
||||
type SegmentSortKey = Option<TermOrdinal>;
|
||||
type SegmentComparator = NaturalComparator;
|
||||
|
||||
#[inline(always)]
|
||||
fn segment_sort_key(&mut self, doc: DocId, _score: Score) -> Option<TermOrdinal> {
|
||||
let bytes_column = self.bytes_column_opt.as_ref()?;
|
||||
bytes_column.ords().first(doc)
|
||||
}
|
||||
|
||||
fn convert_segment_sort_key(&self, term_ord_opt: Option<TermOrdinal>) -> Option<Vec<u8>> {
|
||||
// TODO: Individual lookups to the dictionary like this are very likely to repeatedly
|
||||
// decompress the same blocks. See https://github.com/quickwit-oss/tantivy/issues/2776
|
||||
let term_ord = term_ord_opt?;
|
||||
let bytes_column = self.bytes_column_opt.as_ref()?;
|
||||
let mut bytes = Vec::new();
|
||||
bytes_column
|
||||
.dictionary()
|
||||
.ord_to_term(term_ord, &mut bytes)
|
||||
.ok()?;
|
||||
Some(bytes)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::SortByBytes;
|
||||
use crate::collector::TopDocs;
|
||||
use crate::query::AllQuery;
|
||||
use crate::schema::{BytesOptions, Schema, FAST, INDEXED};
|
||||
use crate::{Index, IndexWriter, Order, TantivyDocument};
|
||||
|
||||
#[test]
|
||||
fn test_sort_by_bytes_asc() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let bytes_field = schema_builder
|
||||
.add_bytes_field("data", BytesOptions::default().set_fast().set_indexed());
|
||||
let id_field = schema_builder.add_u64_field("id", FAST | INDEXED);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests()?;
|
||||
|
||||
// Insert documents with byte values in non-sorted order
|
||||
let test_data: Vec<(u64, Vec<u8>)> = vec![
|
||||
(1, vec![0x02, 0x00]),
|
||||
(2, vec![0x00, 0x10]),
|
||||
(3, vec![0x01, 0x00]),
|
||||
(4, vec![0x00, 0x20]),
|
||||
];
|
||||
|
||||
for (id, bytes) in &test_data {
|
||||
let mut doc = TantivyDocument::new();
|
||||
doc.add_u64(id_field, *id);
|
||||
doc.add_bytes(bytes_field, bytes);
|
||||
index_writer.add_document(doc)?;
|
||||
}
|
||||
index_writer.commit()?;
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
|
||||
// Sort ascending by bytes
|
||||
let top_docs =
|
||||
TopDocs::with_limit(10).order_by((SortByBytes::for_field("data"), Order::Asc));
|
||||
let results: Vec<(Option<Vec<u8>>, _)> = searcher.search(&AllQuery, &top_docs)?;
|
||||
|
||||
// Expected order: [0x00,0x10], [0x00,0x20], [0x01,0x00], [0x02,0x00]
|
||||
let sorted_bytes: Vec<Option<Vec<u8>>> = results.into_iter().map(|(b, _)| b).collect();
|
||||
assert_eq!(
|
||||
sorted_bytes,
|
||||
vec![
|
||||
Some(vec![0x00, 0x10]),
|
||||
Some(vec![0x00, 0x20]),
|
||||
Some(vec![0x01, 0x00]),
|
||||
Some(vec![0x02, 0x00]),
|
||||
]
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sort_by_bytes_desc() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let bytes_field = schema_builder
|
||||
.add_bytes_field("data", BytesOptions::default().set_fast().set_indexed());
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests()?;
|
||||
|
||||
let test_data: Vec<Vec<u8>> = vec![vec![0x00, 0x10], vec![0x02, 0x00], vec![0x01, 0x00]];
|
||||
|
||||
for bytes in &test_data {
|
||||
let mut doc = TantivyDocument::new();
|
||||
doc.add_bytes(bytes_field, bytes);
|
||||
index_writer.add_document(doc)?;
|
||||
}
|
||||
index_writer.commit()?;
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
|
||||
// Sort descending by bytes
|
||||
let top_docs =
|
||||
TopDocs::with_limit(10).order_by((SortByBytes::for_field("data"), Order::Desc));
|
||||
let results: Vec<(Option<Vec<u8>>, _)> = searcher.search(&AllQuery, &top_docs)?;
|
||||
|
||||
// Expected order (descending): [0x02,0x00], [0x01,0x00], [0x00,0x10]
|
||||
let sorted_bytes: Vec<Option<Vec<u8>>> = results.into_iter().map(|(b, _)| b).collect();
|
||||
assert_eq!(
|
||||
sorted_bytes,
|
||||
vec![
|
||||
Some(vec![0x02, 0x00]),
|
||||
Some(vec![0x01, 0x00]),
|
||||
Some(vec![0x00, 0x10]),
|
||||
]
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -1,7 +1,7 @@
|
||||
use columnar::{ColumnType, MonotonicallyMappableToU64};
|
||||
|
||||
use crate::collector::sort_key::{
|
||||
NaturalComparator, SortBySimilarityScore, SortByStaticFastValue, SortByString,
|
||||
NaturalComparator, SortByBytes, SortBySimilarityScore, SortByStaticFastValue, SortByString,
|
||||
};
|
||||
use crate::collector::{SegmentSortKeyComputer, SortKeyComputer};
|
||||
use crate::fastfield::FastFieldNotAvailableError;
|
||||
@@ -114,6 +114,16 @@ impl SortKeyComputer for SortByErasedType {
|
||||
},
|
||||
})
|
||||
}
|
||||
ColumnType::Bytes => {
|
||||
let computer = SortByBytes::for_field(column_name);
|
||||
let inner = computer.segment_sort_key_computer(segment_reader)?;
|
||||
Box::new(ErasedSegmentSortKeyComputerWrapper {
|
||||
inner,
|
||||
converter: |val: Option<Vec<u8>>| {
|
||||
val.map(OwnedValue::Bytes).unwrap_or(OwnedValue::Null)
|
||||
},
|
||||
})
|
||||
}
|
||||
ColumnType::U64 => {
|
||||
let computer = SortByStaticFastValue::<u64>::for_field(column_name);
|
||||
let inner = computer.segment_sort_key_computer(segment_reader)?;
|
||||
@@ -281,6 +291,65 @@ mod tests {
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sort_by_owned_bytes() {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let data_field = schema_builder.add_bytes_field("data", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut writer = index.writer_for_tests().unwrap();
|
||||
writer
|
||||
.add_document(doc!(data_field => vec![0x03u8, 0x00]))
|
||||
.unwrap();
|
||||
writer
|
||||
.add_document(doc!(data_field => vec![0x01u8, 0x00]))
|
||||
.unwrap();
|
||||
writer
|
||||
.add_document(doc!(data_field => vec![0x02u8, 0x00]))
|
||||
.unwrap();
|
||||
writer.add_document(doc!()).unwrap();
|
||||
writer.commit().unwrap();
|
||||
|
||||
let reader = index.reader().unwrap();
|
||||
let searcher = reader.searcher();
|
||||
|
||||
// Sort descending (Natural - highest first)
|
||||
let collector = TopDocs::with_limit(10)
|
||||
.order_by((SortByErasedType::for_field("data"), ComparatorEnum::Natural));
|
||||
let top_docs = searcher.search(&AllQuery, &collector).unwrap();
|
||||
|
||||
let values: Vec<OwnedValue> = top_docs.into_iter().map(|(key, _)| key).collect();
|
||||
|
||||
assert_eq!(
|
||||
values,
|
||||
vec![
|
||||
OwnedValue::Bytes(vec![0x03, 0x00]),
|
||||
OwnedValue::Bytes(vec![0x02, 0x00]),
|
||||
OwnedValue::Bytes(vec![0x01, 0x00]),
|
||||
OwnedValue::Null
|
||||
]
|
||||
);
|
||||
|
||||
// Sort ascending (ReverseNoneLower - lowest first, nulls last)
|
||||
let collector = TopDocs::with_limit(10).order_by((
|
||||
SortByErasedType::for_field("data"),
|
||||
ComparatorEnum::ReverseNoneLower,
|
||||
));
|
||||
let top_docs = searcher.search(&AllQuery, &collector).unwrap();
|
||||
|
||||
let values: Vec<OwnedValue> = top_docs.into_iter().map(|(key, _)| key).collect();
|
||||
|
||||
assert_eq!(
|
||||
values,
|
||||
vec![
|
||||
OwnedValue::Bytes(vec![0x01, 0x00]),
|
||||
OwnedValue::Bytes(vec![0x02, 0x00]),
|
||||
OwnedValue::Bytes(vec![0x03, 0x00]),
|
||||
OwnedValue::Null
|
||||
]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sort_by_owned_reverse() {
|
||||
let mut schema_builder = Schema::builder();
|
||||
|
||||
@@ -160,7 +160,7 @@ mod tests {
|
||||
expected: &[(crate::Score, usize)],
|
||||
) {
|
||||
let mut vals: Vec<(crate::Score, usize)> = (0..10).map(|val| (val as f32, val)).collect();
|
||||
vals.shuffle(&mut rand::thread_rng());
|
||||
vals.shuffle(&mut rand::rng());
|
||||
let vals_merged = merge_top_k(vals.into_iter(), doc_range, ComparatorEnum::from(order));
|
||||
assert_eq!(&vals_merged, expected);
|
||||
}
|
||||
|
||||
@@ -676,7 +676,7 @@ mod tests {
|
||||
let num_segments = reader.searcher().segment_readers().len();
|
||||
assert!(num_segments <= 4);
|
||||
let num_components_except_deletes_and_tempstore =
|
||||
crate::index::SegmentComponent::iterator().len() - 2;
|
||||
crate::index::SegmentComponent::iterator().len() - 1;
|
||||
let max_num_mmapped = num_components_except_deletes_and_tempstore * num_segments;
|
||||
assert_eventually(|| {
|
||||
let num_mmapped = mmap_directory.get_cache_info().mmapped.len();
|
||||
|
||||
@@ -51,31 +51,55 @@ pub trait DocSet: Send {
|
||||
doc
|
||||
}
|
||||
|
||||
/// Seeks to the target if possible and returns true if the target is in the DocSet.
|
||||
/// !!!Dragons ahead!!!
|
||||
/// In spirit, this is an approximate and dangerous version of `seek`.
|
||||
///
|
||||
/// It can leave the DocSet in an `invalid` state and might return a
|
||||
/// lower bound of what the result of Seek would have been.
|
||||
///
|
||||
///
|
||||
/// More accurately it returns either:
|
||||
/// - Found if the target is in the docset. In that case, the DocSet is left in a valid state.
|
||||
/// - SeekLowerBound(seek_lower_bound) if the target is not in the docset. In that case, The
|
||||
/// DocSet can be the left in a invalid state. The DocSet should then only receives call to
|
||||
/// `seek_danger(..)` until it returns `Found`, and get back to a valid state.
|
||||
///
|
||||
/// `seek_lower_bound` can be any `DocId` (in the docset or not) as long as it is in
|
||||
/// `(target .. seek_result] U {TERMINATED}` where `seek_result` is the first document in the
|
||||
/// docset greater than to `target`.
|
||||
///
|
||||
/// `seek_danger` may return `SeekLowerBound(TERMINATED)`.
|
||||
///
|
||||
/// Calling `seek_danger` with TERMINATED as a target is allowed,
|
||||
/// and should always return NewTarget(TERMINATED) or anything larger as TERMINATED is NOT in
|
||||
/// the DocSet.
|
||||
///
|
||||
/// DocSets that already have an efficient `seek` method don't need to implement
|
||||
/// `seek_into_the_danger_zone`. All wrapper DocSets should forward
|
||||
/// `seek_into_the_danger_zone` to the underlying DocSet.
|
||||
/// `seek_danger`.
|
||||
///
|
||||
/// ## API Behaviour
|
||||
/// If `seek_into_the_danger_zone` is returning true, a call to `doc()` has to return target.
|
||||
/// If `seek_into_the_danger_zone` is returning false, a call to `doc()` may return any doc
|
||||
/// between the last doc that matched and target or a doc that is a valid next hit after
|
||||
/// target. The DocSet is considered to be in an invalid state until
|
||||
/// `seek_into_the_danger_zone` returns true again.
|
||||
///
|
||||
/// `target` needs to be equal or larger than `doc` when in a valid state.
|
||||
///
|
||||
/// Consecutive calls are not allowed to have decreasing `target` values.
|
||||
///
|
||||
/// # Warning
|
||||
/// This is an advanced API used by intersection. The API contract is tricky, avoid using it.
|
||||
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
|
||||
let current_doc = self.doc();
|
||||
if current_doc < target {
|
||||
self.seek(target);
|
||||
/// Consecutive calls to seek_danger are guaranteed to have strictly increasing `target`
|
||||
/// values.
|
||||
fn seek_danger(&mut self, target: DocId) -> SeekDangerResult {
|
||||
if target >= TERMINATED {
|
||||
debug_assert!(target == TERMINATED);
|
||||
// No need to advance.
|
||||
return SeekDangerResult::SeekLowerBound(target);
|
||||
}
|
||||
|
||||
// The default implementation does not include any
|
||||
// `danger zone` behavior.
|
||||
//
|
||||
// It does not leave the scorer in an invalid state.
|
||||
// For this reason, we can safely call `self.doc()`.
|
||||
let mut doc = self.doc();
|
||||
if doc < target {
|
||||
doc = self.seek(target);
|
||||
}
|
||||
if doc == target {
|
||||
SeekDangerResult::Found
|
||||
} else {
|
||||
SeekDangerResult::SeekLowerBound(doc)
|
||||
}
|
||||
self.doc() == target
|
||||
}
|
||||
|
||||
/// Fills a given mutable buffer with the next doc ids from the
|
||||
@@ -166,6 +190,17 @@ pub trait DocSet: Send {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
||||
pub enum SeekDangerResult {
|
||||
/// The target was found in the DocSet.
|
||||
Found,
|
||||
/// The target was not found in the DocSet.
|
||||
/// We return a range in which the value could be.
|
||||
/// The given target can be any DocId, that is <= than the first document
|
||||
/// in the docset after the target.
|
||||
SeekLowerBound(DocId),
|
||||
}
|
||||
|
||||
impl DocSet for &mut dyn DocSet {
|
||||
fn advance(&mut self) -> u32 {
|
||||
(**self).advance()
|
||||
@@ -175,8 +210,8 @@ impl DocSet for &mut dyn DocSet {
|
||||
(**self).seek(target)
|
||||
}
|
||||
|
||||
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
|
||||
(**self).seek_into_the_danger_zone(target)
|
||||
fn seek_danger(&mut self, target: DocId) -> SeekDangerResult {
|
||||
(**self).seek_danger(target)
|
||||
}
|
||||
|
||||
fn doc(&self) -> u32 {
|
||||
@@ -211,9 +246,9 @@ impl<TDocSet: DocSet + ?Sized> DocSet for Box<TDocSet> {
|
||||
unboxed.seek(target)
|
||||
}
|
||||
|
||||
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
|
||||
fn seek_danger(&mut self, target: DocId) -> SeekDangerResult {
|
||||
let unboxed: &mut TDocSet = self.borrow_mut();
|
||||
unboxed.seek_into_the_danger_zone(target)
|
||||
unboxed.seek_danger(target)
|
||||
}
|
||||
|
||||
fn fill_buffer(&mut self, buffer: &mut [DocId; COLLECT_BLOCK_BUFFER_LEN]) -> usize {
|
||||
|
||||
@@ -162,7 +162,7 @@ mod tests {
|
||||
mod bench {
|
||||
|
||||
use rand::prelude::IteratorRandom;
|
||||
use rand::thread_rng;
|
||||
use rand::rng;
|
||||
use test::Bencher;
|
||||
|
||||
use super::AliveBitSet;
|
||||
@@ -176,7 +176,7 @@ mod bench {
|
||||
}
|
||||
|
||||
fn remove_rand(raw: &mut Vec<u32>) {
|
||||
let i = (0..raw.len()).choose(&mut thread_rng()).unwrap();
|
||||
let i = (0..raw.len()).choose(&mut rng()).unwrap();
|
||||
raw.remove(i);
|
||||
}
|
||||
|
||||
|
||||
@@ -879,7 +879,7 @@ mod tests {
|
||||
const ONE_HOUR_IN_MICROSECS: i64 = 3_600 * 1_000_000;
|
||||
let times: Vec<DateTime> = std::iter::repeat_with(|| {
|
||||
// +- One hour.
|
||||
let t = T0 + rng.gen_range(-ONE_HOUR_IN_MICROSECS..ONE_HOUR_IN_MICROSECS);
|
||||
let t = T0 + rng.random_range(-ONE_HOUR_IN_MICROSECS..ONE_HOUR_IN_MICROSECS);
|
||||
DateTime::from_timestamp_micros(t)
|
||||
})
|
||||
.take(1_000)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use std::collections::HashSet;
|
||||
|
||||
use rand::{thread_rng, Rng};
|
||||
use rand::{rng, Rng};
|
||||
|
||||
use crate::indexer::index_writer::MEMORY_BUDGET_NUM_BYTES_MIN;
|
||||
use crate::schema::*;
|
||||
@@ -29,7 +29,7 @@ fn test_functional_store() -> crate::Result<()> {
|
||||
let index = Index::create_in_ram(schema);
|
||||
let reader = index.reader()?;
|
||||
|
||||
let mut rng = thread_rng();
|
||||
let mut rng = rng();
|
||||
|
||||
let mut index_writer: IndexWriter =
|
||||
index.writer_with_num_threads(3, 3 * MEMORY_BUDGET_NUM_BYTES_MIN)?;
|
||||
@@ -38,9 +38,9 @@ fn test_functional_store() -> crate::Result<()> {
|
||||
|
||||
let mut doc_id = 0u64;
|
||||
for _iteration in 0..get_num_iterations() {
|
||||
let num_docs: usize = rng.gen_range(0..4);
|
||||
let num_docs: usize = rng.random_range(0..4);
|
||||
if !doc_set.is_empty() {
|
||||
let doc_to_remove_id = rng.gen_range(0..doc_set.len());
|
||||
let doc_to_remove_id = rng.random_range(0..doc_set.len());
|
||||
let removed_doc_id = doc_set.swap_remove(doc_to_remove_id);
|
||||
index_writer.delete_term(Term::from_field_u64(id_field, removed_doc_id));
|
||||
}
|
||||
@@ -70,10 +70,10 @@ const LOREM: &str = "Doc Lorem ipsum dolor sit amet, consectetur adipiscing elit
|
||||
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat \
|
||||
non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.";
|
||||
fn get_text() -> String {
|
||||
use rand::seq::SliceRandom;
|
||||
let mut rng = thread_rng();
|
||||
use rand::seq::IndexedRandom;
|
||||
let mut rng = rng();
|
||||
let tokens: Vec<_> = LOREM.split(' ').collect();
|
||||
let random_val = rng.gen_range(0..20);
|
||||
let random_val = rng.random_range(0..20);
|
||||
|
||||
(0..random_val)
|
||||
.map(|_| tokens.choose(&mut rng).unwrap())
|
||||
@@ -101,7 +101,7 @@ fn test_functional_indexing_unsorted() -> crate::Result<()> {
|
||||
let index = Index::create_from_tempdir(schema)?;
|
||||
let reader = index.reader()?;
|
||||
|
||||
let mut rng = thread_rng();
|
||||
let mut rng = rng();
|
||||
|
||||
let mut index_writer: IndexWriter =
|
||||
index.writer_with_num_threads(3, 3 * MEMORY_BUDGET_NUM_BYTES_MIN)?;
|
||||
@@ -110,7 +110,7 @@ fn test_functional_indexing_unsorted() -> crate::Result<()> {
|
||||
let mut uncommitted_docs: HashSet<u64> = HashSet::new();
|
||||
|
||||
for _ in 0..get_num_iterations() {
|
||||
let random_val = rng.gen_range(0..20);
|
||||
let random_val = rng.random_range(0..20);
|
||||
if random_val == 0 {
|
||||
index_writer.commit()?;
|
||||
committed_docs.extend(&uncommitted_docs);
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
use std::collections::HashSet;
|
||||
use std::fmt;
|
||||
use std::path::PathBuf;
|
||||
use std::sync::atomic::AtomicBool;
|
||||
use std::sync::Arc;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
@@ -37,7 +35,6 @@ impl SegmentMetaInventory {
|
||||
let inner = InnerSegmentMeta {
|
||||
segment_id,
|
||||
max_doc,
|
||||
include_temp_doc_store: Arc::new(AtomicBool::new(true)),
|
||||
deletes: None,
|
||||
};
|
||||
SegmentMeta::from(self.inventory.track(inner))
|
||||
@@ -85,15 +82,6 @@ impl SegmentMeta {
|
||||
self.tracked.segment_id
|
||||
}
|
||||
|
||||
/// Removes the Component::TempStore from the alive list and
|
||||
/// therefore marks the temp docstore file to be deleted by
|
||||
/// the garbage collection.
|
||||
pub fn untrack_temp_docstore(&self) {
|
||||
self.tracked
|
||||
.include_temp_doc_store
|
||||
.store(false, std::sync::atomic::Ordering::Relaxed);
|
||||
}
|
||||
|
||||
/// Returns the number of deleted documents.
|
||||
pub fn num_deleted_docs(&self) -> u32 {
|
||||
self.tracked
|
||||
@@ -111,20 +99,9 @@ impl SegmentMeta {
|
||||
/// is by removing all files that have been created by tantivy
|
||||
/// and are not used by any segment anymore.
|
||||
pub fn list_files(&self) -> HashSet<PathBuf> {
|
||||
if self
|
||||
.tracked
|
||||
.include_temp_doc_store
|
||||
.load(std::sync::atomic::Ordering::Relaxed)
|
||||
{
|
||||
SegmentComponent::iterator()
|
||||
.map(|component| self.relative_path(*component))
|
||||
.collect::<HashSet<PathBuf>>()
|
||||
} else {
|
||||
SegmentComponent::iterator()
|
||||
.filter(|comp| *comp != &SegmentComponent::TempStore)
|
||||
.map(|component| self.relative_path(*component))
|
||||
.collect::<HashSet<PathBuf>>()
|
||||
}
|
||||
SegmentComponent::iterator()
|
||||
.map(|component| self.relative_path(*component))
|
||||
.collect::<HashSet<PathBuf>>()
|
||||
}
|
||||
|
||||
/// Returns the relative path of a component of our segment.
|
||||
@@ -138,7 +115,6 @@ impl SegmentMeta {
|
||||
SegmentComponent::Positions => ".pos".to_string(),
|
||||
SegmentComponent::Terms => ".term".to_string(),
|
||||
SegmentComponent::Store => ".store".to_string(),
|
||||
SegmentComponent::TempStore => ".store.temp".to_string(),
|
||||
SegmentComponent::FastFields => ".fast".to_string(),
|
||||
SegmentComponent::FieldNorms => ".fieldnorm".to_string(),
|
||||
SegmentComponent::Delete => format!(".{}.del", self.delete_opstamp().unwrap_or(0)),
|
||||
@@ -183,7 +159,6 @@ impl SegmentMeta {
|
||||
segment_id: inner_meta.segment_id,
|
||||
max_doc,
|
||||
deletes: None,
|
||||
include_temp_doc_store: Arc::new(AtomicBool::new(true)),
|
||||
});
|
||||
SegmentMeta { tracked }
|
||||
}
|
||||
@@ -202,7 +177,6 @@ impl SegmentMeta {
|
||||
let tracked = self.tracked.map(move |inner_meta| InnerSegmentMeta {
|
||||
segment_id: inner_meta.segment_id,
|
||||
max_doc: inner_meta.max_doc,
|
||||
include_temp_doc_store: Arc::new(AtomicBool::new(true)),
|
||||
deletes: Some(delete_meta),
|
||||
});
|
||||
SegmentMeta { tracked }
|
||||
@@ -214,14 +188,6 @@ struct InnerSegmentMeta {
|
||||
segment_id: SegmentId,
|
||||
max_doc: u32,
|
||||
pub deletes: Option<DeleteMeta>,
|
||||
/// If you want to avoid the SegmentComponent::TempStore file to be covered by
|
||||
/// garbage collection and deleted, set this to true. This is used during merge.
|
||||
#[serde(skip)]
|
||||
#[serde(default = "default_temp_store")]
|
||||
pub(crate) include_temp_doc_store: Arc<AtomicBool>,
|
||||
}
|
||||
fn default_temp_store() -> Arc<AtomicBool> {
|
||||
Arc::new(AtomicBool::new(false))
|
||||
}
|
||||
|
||||
impl InnerSegmentMeta {
|
||||
|
||||
@@ -23,8 +23,6 @@ pub enum SegmentComponent {
|
||||
/// Accessing a document from the store is relatively slow, as it
|
||||
/// requires to decompress the entire block it belongs to.
|
||||
Store,
|
||||
/// Temporary storage of the documents, before streamed to `Store`.
|
||||
TempStore,
|
||||
/// Bitset describing which document of the segment is alive.
|
||||
/// (It was representing deleted docs but changed to represent alive docs from v0.17)
|
||||
Delete,
|
||||
@@ -33,14 +31,13 @@ pub enum SegmentComponent {
|
||||
impl SegmentComponent {
|
||||
/// Iterates through the components.
|
||||
pub fn iterator() -> slice::Iter<'static, SegmentComponent> {
|
||||
static SEGMENT_COMPONENTS: [SegmentComponent; 8] = [
|
||||
static SEGMENT_COMPONENTS: [SegmentComponent; 7] = [
|
||||
SegmentComponent::Postings,
|
||||
SegmentComponent::Positions,
|
||||
SegmentComponent::FastFields,
|
||||
SegmentComponent::FieldNorms,
|
||||
SegmentComponent::Terms,
|
||||
SegmentComponent::Store,
|
||||
SegmentComponent::TempStore,
|
||||
SegmentComponent::Delete,
|
||||
];
|
||||
SEGMENT_COMPONENTS.iter()
|
||||
|
||||
@@ -218,7 +218,7 @@ fn index_documents<D: Document>(
|
||||
let alive_bitset_opt = apply_deletes(&segment_with_max_doc, &mut delete_cursor, &doc_opstamps)?;
|
||||
|
||||
let meta = segment_with_max_doc.meta().clone();
|
||||
meta.untrack_temp_docstore();
|
||||
|
||||
// update segment_updater inventory to remove tempstore
|
||||
let segment_entry = SegmentEntry::new(meta, delete_cursor, alive_bitset_opt);
|
||||
segment_updater.schedule_add_segment(segment_entry).wait()?;
|
||||
|
||||
@@ -377,7 +377,7 @@ pub mod tests {
|
||||
|
||||
use common::{BinarySerializable, FixedSize};
|
||||
use query_grammar::{UserInputAst, UserInputLeaf, UserInputLiteral};
|
||||
use rand::distributions::{Bernoulli, Uniform};
|
||||
use rand::distr::{Bernoulli, Uniform};
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use time::OffsetDateTime;
|
||||
@@ -428,7 +428,7 @@ pub mod tests {
|
||||
pub fn generate_nonunique_unsorted(max_value: u32, n_elems: usize) -> Vec<u32> {
|
||||
let seed: [u8; 32] = [1; 32];
|
||||
StdRng::from_seed(seed)
|
||||
.sample_iter(&Uniform::new(0u32, max_value))
|
||||
.sample_iter(&Uniform::new(0u32, max_value).unwrap())
|
||||
.take(n_elems)
|
||||
.collect::<Vec<u32>>()
|
||||
}
|
||||
|
||||
@@ -303,10 +303,10 @@ impl BlockSegmentPostings {
|
||||
}
|
||||
|
||||
pub(crate) fn load_block(&mut self) {
|
||||
let offset = self.skip_reader.byte_offset();
|
||||
if self.block_is_loaded() {
|
||||
return;
|
||||
}
|
||||
let offset = self.skip_reader.byte_offset();
|
||||
match self.skip_reader.block_info() {
|
||||
BlockInfo::BitPacked {
|
||||
doc_num_bits,
|
||||
|
||||
@@ -397,7 +397,10 @@ mod bench {
|
||||
let mut seed: [u8; 32] = [0; 32];
|
||||
seed[31] = seed_val;
|
||||
let mut rng = StdRng::from_seed(seed);
|
||||
(0u32..).filter(|_| rng.gen_bool(ratio)).take(n).collect()
|
||||
(0u32..)
|
||||
.filter(|_| rng.random_bool(ratio))
|
||||
.take(n)
|
||||
.collect()
|
||||
}
|
||||
|
||||
pub fn generate_array(n: usize, ratio: f64) -> Vec<u32> {
|
||||
|
||||
@@ -604,13 +604,13 @@ mod bench {
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
for _ in 0..posting_list_size {
|
||||
let mut doc = TantivyDocument::default();
|
||||
if rng.gen_bool(1f64 / 15f64) {
|
||||
if rng.random_bool(1f64 / 15f64) {
|
||||
doc.add_text(text_field, "a");
|
||||
}
|
||||
if rng.gen_bool(1f64 / 10f64) {
|
||||
if rng.random_bool(1f64 / 10f64) {
|
||||
doc.add_text(text_field, "b");
|
||||
}
|
||||
if rng.gen_bool(1f64 / 5f64) {
|
||||
if rng.random_bool(1f64 / 5f64) {
|
||||
doc.add_text(text_field, "c");
|
||||
}
|
||||
doc.add_text(text_field, "d");
|
||||
|
||||
@@ -70,13 +70,13 @@ impl SegmentPostings {
|
||||
let mut buffer = Vec::new();
|
||||
{
|
||||
let mut postings_serializer =
|
||||
PostingsSerializer::new(&mut buffer, 0.0, IndexRecordOption::Basic, None);
|
||||
PostingsSerializer::new(0.0, IndexRecordOption::Basic, None);
|
||||
postings_serializer.new_term(docs.len() as u32, false);
|
||||
for &doc in docs {
|
||||
postings_serializer.write_doc(doc, 1u32);
|
||||
}
|
||||
postings_serializer
|
||||
.close_term(docs.len() as u32)
|
||||
.close_term(docs.len() as u32, &mut buffer)
|
||||
.expect("In memory Serialization should never fail.");
|
||||
}
|
||||
let block_segment_postings = BlockSegmentPostings::open(
|
||||
@@ -115,7 +115,6 @@ impl SegmentPostings {
|
||||
})
|
||||
.unwrap_or(0.0);
|
||||
let mut postings_serializer = PostingsSerializer::new(
|
||||
&mut buffer,
|
||||
average_field_norm,
|
||||
IndexRecordOption::WithFreqs,
|
||||
fieldnorm_reader,
|
||||
@@ -125,7 +124,7 @@ impl SegmentPostings {
|
||||
postings_serializer.write_doc(doc, tf);
|
||||
}
|
||||
postings_serializer
|
||||
.close_term(doc_and_tfs.len() as u32)
|
||||
.close_term(doc_and_tfs.len() as u32, &mut buffer)
|
||||
.unwrap();
|
||||
let block_segment_postings = BlockSegmentPostings::open(
|
||||
doc_and_tfs.len() as u32,
|
||||
@@ -169,12 +168,20 @@ impl DocSet for SegmentPostings {
|
||||
self.doc()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn seek(&mut self, target: DocId) -> DocId {
|
||||
debug_assert!(self.doc() <= target);
|
||||
if self.doc() >= target {
|
||||
return self.doc();
|
||||
}
|
||||
|
||||
// As an optimization, if the block is already loaded, we can
|
||||
// cheaply check the next doc.
|
||||
self.cur = (self.cur + 1).min(COMPRESSION_BLOCK_SIZE - 1);
|
||||
if self.doc() >= target {
|
||||
return self.doc();
|
||||
}
|
||||
|
||||
// Delegate block-local search to BlockSegmentPostings::seek, which returns
|
||||
// the in-block index of the first doc >= target.
|
||||
self.cur = self.block_cursor.seek(target);
|
||||
|
||||
@@ -104,10 +104,12 @@ impl InvertedIndexSerializer {
|
||||
/// the serialization of a specific field.
|
||||
pub struct FieldSerializer<'a> {
|
||||
term_dictionary_builder: TermDictionaryBuilder<&'a mut CountingWriter<WritePtr>>,
|
||||
postings_serializer: PostingsSerializer<&'a mut CountingWriter<WritePtr>>,
|
||||
postings_serializer: PostingsSerializer,
|
||||
positions_serializer_opt: Option<PositionSerializer<&'a mut CountingWriter<WritePtr>>>,
|
||||
current_term_info: TermInfo,
|
||||
term_open: bool,
|
||||
postings_write: &'a mut CountingWriter<WritePtr>,
|
||||
postings_start_offset: u64,
|
||||
}
|
||||
|
||||
impl<'a> FieldSerializer<'a> {
|
||||
@@ -128,27 +130,30 @@ impl<'a> FieldSerializer<'a> {
|
||||
.as_ref()
|
||||
.map(|ff_reader| total_num_tokens as Score / ff_reader.num_docs() as Score)
|
||||
.unwrap_or(0.0);
|
||||
let postings_serializer = PostingsSerializer::new(
|
||||
postings_write,
|
||||
average_fieldnorm,
|
||||
index_record_option,
|
||||
fieldnorm_reader,
|
||||
);
|
||||
let postings_serializer =
|
||||
PostingsSerializer::new(average_fieldnorm, index_record_option, fieldnorm_reader);
|
||||
let positions_serializer_opt = if index_record_option.has_positions() {
|
||||
Some(PositionSerializer::new(positions_write))
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let postings_start_offset = postings_write.written_bytes();
|
||||
Ok(FieldSerializer {
|
||||
term_dictionary_builder,
|
||||
postings_serializer,
|
||||
positions_serializer_opt,
|
||||
current_term_info: TermInfo::default(),
|
||||
term_open: false,
|
||||
postings_write,
|
||||
postings_start_offset,
|
||||
})
|
||||
}
|
||||
|
||||
fn postings_offset(&self) -> usize {
|
||||
(self.postings_write.written_bytes() - self.postings_start_offset) as usize
|
||||
}
|
||||
|
||||
fn current_term_info(&self) -> TermInfo {
|
||||
let positions_start =
|
||||
if let Some(positions_serializer) = self.positions_serializer_opt.as_ref() {
|
||||
@@ -156,7 +161,7 @@ impl<'a> FieldSerializer<'a> {
|
||||
} else {
|
||||
0u64
|
||||
} as usize;
|
||||
let addr = self.postings_serializer.written_bytes() as usize;
|
||||
let addr = self.postings_offset();
|
||||
TermInfo {
|
||||
doc_freq: 0,
|
||||
postings_range: addr..addr,
|
||||
@@ -213,21 +218,22 @@ impl<'a> FieldSerializer<'a> {
|
||||
crate::fail_point!("FieldSerializer::close_term", |msg: Option<String>| {
|
||||
Err(io::Error::new(io::ErrorKind::Other, format!("{msg:?}")))
|
||||
});
|
||||
if self.term_open {
|
||||
self.postings_serializer
|
||||
.close_term(self.current_term_info.doc_freq)?;
|
||||
self.current_term_info.postings_range.end =
|
||||
self.postings_serializer.written_bytes() as usize;
|
||||
|
||||
if let Some(positions_serializer) = self.positions_serializer_opt.as_mut() {
|
||||
positions_serializer.close_term()?;
|
||||
self.current_term_info.positions_range.end =
|
||||
positions_serializer.written_bytes() as usize;
|
||||
}
|
||||
self.term_dictionary_builder
|
||||
.insert_value(&self.current_term_info)?;
|
||||
self.term_open = false;
|
||||
if !self.term_open {
|
||||
return Ok(());
|
||||
};
|
||||
|
||||
self.postings_serializer
|
||||
.close_term(self.current_term_info.doc_freq, self.postings_write)?;
|
||||
self.current_term_info.postings_range.end = self.postings_offset();
|
||||
if let Some(positions_serializer) = self.positions_serializer_opt.as_mut() {
|
||||
positions_serializer.close_term()?;
|
||||
self.current_term_info.positions_range.end =
|
||||
positions_serializer.written_bytes() as usize;
|
||||
}
|
||||
self.term_dictionary_builder
|
||||
.insert_value(&self.current_term_info)?;
|
||||
self.term_open = false;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -237,7 +243,7 @@ impl<'a> FieldSerializer<'a> {
|
||||
if let Some(positions_serializer) = self.positions_serializer_opt {
|
||||
positions_serializer.close()?;
|
||||
}
|
||||
self.postings_serializer.close()?;
|
||||
self.postings_write.flush()?;
|
||||
self.term_dictionary_builder.finish()?;
|
||||
Ok(())
|
||||
}
|
||||
@@ -291,8 +297,7 @@ impl Block {
|
||||
}
|
||||
}
|
||||
|
||||
pub struct PostingsSerializer<W: Write> {
|
||||
output_write: CountingWriter<W>,
|
||||
pub struct PostingsSerializer {
|
||||
last_doc_id_encoded: u32,
|
||||
|
||||
block_encoder: BlockEncoder,
|
||||
@@ -310,16 +315,13 @@ pub struct PostingsSerializer<W: Write> {
|
||||
term_has_freq: bool,
|
||||
}
|
||||
|
||||
impl<W: Write> PostingsSerializer<W> {
|
||||
impl PostingsSerializer {
|
||||
pub fn new(
|
||||
write: W,
|
||||
avg_fieldnorm: Score,
|
||||
mode: IndexRecordOption,
|
||||
fieldnorm_reader: Option<FieldNormReader>,
|
||||
) -> PostingsSerializer<W> {
|
||||
) -> PostingsSerializer {
|
||||
PostingsSerializer {
|
||||
output_write: CountingWriter::wrap(write),
|
||||
|
||||
block_encoder: BlockEncoder::new(),
|
||||
block: Box::new(Block::new()),
|
||||
|
||||
@@ -422,11 +424,11 @@ impl<W: Write> PostingsSerializer<W> {
|
||||
}
|
||||
}
|
||||
|
||||
fn close(mut self) -> io::Result<()> {
|
||||
self.postings_write.flush()
|
||||
}
|
||||
|
||||
pub fn close_term(&mut self, doc_freq: u32) -> io::Result<()> {
|
||||
pub fn close_term(
|
||||
&mut self,
|
||||
doc_freq: u32,
|
||||
output_write: &mut impl std::io::Write,
|
||||
) -> io::Result<()> {
|
||||
if !self.block.is_empty() {
|
||||
// we have doc ids waiting to be written
|
||||
// this happens when the number of doc ids is
|
||||
@@ -451,26 +453,16 @@ impl<W: Write> PostingsSerializer<W> {
|
||||
}
|
||||
if doc_freq >= COMPRESSION_BLOCK_SIZE as u32 {
|
||||
let skip_data = self.skip_write.data();
|
||||
VInt(skip_data.len() as u64).serialize(&mut self.output_write)?;
|
||||
self.output_write.write_all(skip_data)?;
|
||||
VInt(skip_data.len() as u64).serialize(output_write)?;
|
||||
output_write.write_all(skip_data)?;
|
||||
}
|
||||
self.output_write.write_all(&self.postings_write[..])?;
|
||||
output_write.write_all(&self.postings_write[..])?;
|
||||
self.skip_write.clear();
|
||||
self.postings_write.clear();
|
||||
self.bm25_weight = None;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Returns the number of bytes written in the postings write object
|
||||
/// at this point.
|
||||
/// When called before writing the postings of a term, this value is used as
|
||||
/// start offset.
|
||||
/// When called after writing the postings of a term, this value is used as a
|
||||
/// end offset.
|
||||
fn written_bytes(&self) -> u64 {
|
||||
self.output_write.written_bytes()
|
||||
}
|
||||
|
||||
fn clear(&mut self) {
|
||||
self.block.clear();
|
||||
self.last_doc_id_encoded = 0;
|
||||
|
||||
@@ -291,18 +291,6 @@ impl<TScoreCombiner: ScoreCombiner> BooleanWeight<TScoreCombiner> {
|
||||
}
|
||||
};
|
||||
|
||||
let exclude_scorer_opt: Option<Box<dyn Scorer>> = if exclude_scorers.is_empty() {
|
||||
None
|
||||
} else {
|
||||
let exclude_specialized_scorer: SpecializedScorer =
|
||||
scorer_union(exclude_scorers, DoNothingCombiner::default, num_docs);
|
||||
Some(into_box_scorer(
|
||||
exclude_specialized_scorer,
|
||||
DoNothingCombiner::default,
|
||||
num_docs,
|
||||
))
|
||||
};
|
||||
|
||||
let include_scorer = match (should_scorers, must_scorers) {
|
||||
(ShouldScorersCombinationMethod::Ignored, must_scorers) => {
|
||||
// No SHOULD clauses (or they were absorbed into MUST).
|
||||
@@ -380,16 +368,23 @@ impl<TScoreCombiner: ScoreCombiner> BooleanWeight<TScoreCombiner> {
|
||||
}
|
||||
}
|
||||
};
|
||||
if let Some(exclude_scorer) = exclude_scorer_opt {
|
||||
let include_scorer_boxed =
|
||||
into_box_scorer(include_scorer, &score_combiner_fn, num_docs);
|
||||
Ok(SpecializedScorer::Other(Box::new(Exclude::new(
|
||||
include_scorer_boxed,
|
||||
exclude_scorer,
|
||||
))))
|
||||
} else {
|
||||
Ok(include_scorer)
|
||||
if exclude_scorers.is_empty() {
|
||||
return Ok(include_scorer);
|
||||
}
|
||||
|
||||
let include_scorer_boxed = into_box_scorer(include_scorer, &score_combiner_fn, num_docs);
|
||||
let scorer: Box<dyn Scorer> = if exclude_scorers.len() == 1 {
|
||||
let exclude_scorer = exclude_scorers.pop().unwrap();
|
||||
match exclude_scorer.downcast::<TermScorer>() {
|
||||
// Cast to TermScorer succeeded
|
||||
Ok(exclude_scorer) => Box::new(Exclude::new(include_scorer_boxed, *exclude_scorer)),
|
||||
// We get back the original Box<dyn Scorer>
|
||||
Err(exclude_scorer) => Box::new(Exclude::new(include_scorer_boxed, exclude_scorer)),
|
||||
}
|
||||
} else {
|
||||
Box::new(Exclude::new(include_scorer_boxed, exclude_scorers))
|
||||
};
|
||||
Ok(SpecializedScorer::Other(scorer))
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use std::fmt;
|
||||
|
||||
use crate::docset::COLLECT_BLOCK_BUFFER_LEN;
|
||||
use crate::docset::{SeekDangerResult, COLLECT_BLOCK_BUFFER_LEN};
|
||||
use crate::fastfield::AliveBitSet;
|
||||
use crate::query::{EnableScoring, Explanation, Query, Scorer, Weight};
|
||||
use crate::{DocId, DocSet, Score, SegmentReader, Term};
|
||||
@@ -104,8 +104,8 @@ impl<S: Scorer> DocSet for BoostScorer<S> {
|
||||
fn seek(&mut self, target: DocId) -> DocId {
|
||||
self.underlying.seek(target)
|
||||
}
|
||||
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
|
||||
self.underlying.seek_into_the_danger_zone(target)
|
||||
fn seek_danger(&mut self, target: DocId) -> SeekDangerResult {
|
||||
self.underlying.seek_danger(target)
|
||||
}
|
||||
|
||||
fn fill_buffer(&mut self, buffer: &mut [DocId; COLLECT_BLOCK_BUFFER_LEN]) -> usize {
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
use std::cmp::Ordering;
|
||||
use std::collections::BinaryHeap;
|
||||
|
||||
use crate::docset::SeekDangerResult;
|
||||
use crate::query::score_combiner::DoNothingCombiner;
|
||||
use crate::query::{ScoreCombiner, Scorer};
|
||||
use crate::{DocId, DocSet, Score, TERMINATED};
|
||||
@@ -67,10 +68,12 @@ impl<T: Scorer> DocSet for ScorerWrapper<T> {
|
||||
self.current_doc = doc_id;
|
||||
doc_id
|
||||
}
|
||||
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
|
||||
let found = self.scorer.seek_into_the_danger_zone(target);
|
||||
self.current_doc = self.scorer.doc();
|
||||
found
|
||||
fn seek_danger(&mut self, target: DocId) -> SeekDangerResult {
|
||||
let result = self.scorer.seek_danger(target);
|
||||
if result == SeekDangerResult::Found {
|
||||
self.current_doc = target;
|
||||
}
|
||||
result
|
||||
}
|
||||
|
||||
fn doc(&self) -> DocId {
|
||||
|
||||
@@ -1,48 +1,71 @@
|
||||
use crate::docset::{DocSet, TERMINATED};
|
||||
use crate::docset::{DocSet, SeekDangerResult, TERMINATED};
|
||||
use crate::query::Scorer;
|
||||
use crate::{DocId, Score};
|
||||
|
||||
#[inline]
|
||||
fn is_within<TDocSetExclude: DocSet>(docset: &mut TDocSetExclude, doc: DocId) -> bool {
|
||||
docset.doc() <= doc && docset.seek(doc) == doc
|
||||
}
|
||||
|
||||
/// Filters a given `DocSet` by removing the docs from a given `DocSet`.
|
||||
/// An exclusion set is a set of documents
|
||||
/// that should be excluded from a given DocSet.
|
||||
///
|
||||
/// The excluding docset has no impact on scoring.
|
||||
pub struct Exclude<TDocSet, TDocSetExclude> {
|
||||
underlying_docset: TDocSet,
|
||||
excluding_docset: TDocSetExclude,
|
||||
/// It can be a single DocSet, or a Vec of DocSets.
|
||||
pub trait ExclusionSet: Send {
|
||||
/// Returns `true` if the given `doc` is in the exclusion set.
|
||||
fn contains(&mut self, doc: DocId) -> bool;
|
||||
}
|
||||
|
||||
impl<TDocSet, TDocSetExclude> Exclude<TDocSet, TDocSetExclude>
|
||||
impl<TDocSet: DocSet> ExclusionSet for TDocSet {
|
||||
#[inline]
|
||||
fn contains(&mut self, doc: DocId) -> bool {
|
||||
self.seek_danger(doc) == SeekDangerResult::Found
|
||||
}
|
||||
}
|
||||
|
||||
impl<TDocSet: DocSet> ExclusionSet for Vec<TDocSet> {
|
||||
#[inline]
|
||||
fn contains(&mut self, doc: DocId) -> bool {
|
||||
for docset in self.iter_mut() {
|
||||
if docset.seek_danger(doc) == SeekDangerResult::Found {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
/// Filters a given `DocSet` by removing the docs from an exclusion set.
|
||||
///
|
||||
/// The excluding docsets have no impact on scoring.
|
||||
pub struct Exclude<TDocSet, TExclusionSet> {
|
||||
underlying_docset: TDocSet,
|
||||
exclusion_set: TExclusionSet,
|
||||
}
|
||||
|
||||
impl<TDocSet, TExclusionSet> Exclude<TDocSet, TExclusionSet>
|
||||
where
|
||||
TDocSet: DocSet,
|
||||
TDocSetExclude: DocSet,
|
||||
TExclusionSet: ExclusionSet,
|
||||
{
|
||||
/// Creates a new `ExcludeScorer`
|
||||
pub fn new(
|
||||
mut underlying_docset: TDocSet,
|
||||
mut excluding_docset: TDocSetExclude,
|
||||
) -> Exclude<TDocSet, TDocSetExclude> {
|
||||
mut exclusion_set: TExclusionSet,
|
||||
) -> Exclude<TDocSet, TExclusionSet> {
|
||||
while underlying_docset.doc() != TERMINATED {
|
||||
let target = underlying_docset.doc();
|
||||
if !is_within(&mut excluding_docset, target) {
|
||||
if !exclusion_set.contains(target) {
|
||||
break;
|
||||
}
|
||||
underlying_docset.advance();
|
||||
}
|
||||
Exclude {
|
||||
underlying_docset,
|
||||
excluding_docset,
|
||||
exclusion_set,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<TDocSet, TDocSetExclude> DocSet for Exclude<TDocSet, TDocSetExclude>
|
||||
impl<TDocSet, TExclusionSet> DocSet for Exclude<TDocSet, TExclusionSet>
|
||||
where
|
||||
TDocSet: DocSet,
|
||||
TDocSetExclude: DocSet,
|
||||
TExclusionSet: ExclusionSet,
|
||||
{
|
||||
fn advance(&mut self) -> DocId {
|
||||
loop {
|
||||
@@ -50,7 +73,7 @@ where
|
||||
if candidate == TERMINATED {
|
||||
return TERMINATED;
|
||||
}
|
||||
if !is_within(&mut self.excluding_docset, candidate) {
|
||||
if !self.exclusion_set.contains(candidate) {
|
||||
return candidate;
|
||||
}
|
||||
}
|
||||
@@ -61,7 +84,7 @@ where
|
||||
if candidate == TERMINATED {
|
||||
return TERMINATED;
|
||||
}
|
||||
if !is_within(&mut self.excluding_docset, candidate) {
|
||||
if !self.exclusion_set.contains(candidate) {
|
||||
return candidate;
|
||||
}
|
||||
self.advance()
|
||||
@@ -79,10 +102,10 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<TScorer, TDocSetExclude> Scorer for Exclude<TScorer, TDocSetExclude>
|
||||
impl<TScorer, TExclusionSet> Scorer for Exclude<TScorer, TExclusionSet>
|
||||
where
|
||||
TScorer: Scorer,
|
||||
TDocSetExclude: DocSet + 'static,
|
||||
TExclusionSet: ExclusionSet + 'static,
|
||||
{
|
||||
#[inline]
|
||||
fn score(&mut self) -> Score {
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
use super::size_hint::estimate_intersection;
|
||||
use crate::docset::{DocSet, TERMINATED};
|
||||
use crate::docset::{DocSet, SeekDangerResult, TERMINATED};
|
||||
use crate::query::term_query::TermScorer;
|
||||
use crate::query::{EmptyScorer, Scorer};
|
||||
use crate::{DocId, Score};
|
||||
@@ -84,6 +84,14 @@ impl<TDocSet: DocSet> Intersection<TDocSet, TDocSet> {
|
||||
docsets.sort_by_key(|docset| docset.cost());
|
||||
go_to_first_doc(&mut docsets);
|
||||
let left = docsets.remove(0);
|
||||
debug_assert!({
|
||||
let doc = left.doc();
|
||||
if doc == TERMINATED {
|
||||
true
|
||||
} else {
|
||||
docsets.iter().all(|docset| docset.doc() == doc)
|
||||
}
|
||||
});
|
||||
let right = docsets.remove(0);
|
||||
Intersection {
|
||||
left,
|
||||
@@ -108,46 +116,61 @@ impl<TDocSet: DocSet, TOtherDocSet: DocSet> DocSet for Intersection<TDocSet, TOt
|
||||
#[inline]
|
||||
fn advance(&mut self) -> DocId {
|
||||
let (left, right) = (&mut self.left, &mut self.right);
|
||||
let mut candidate = left.advance();
|
||||
if candidate == TERMINATED {
|
||||
return TERMINATED;
|
||||
}
|
||||
|
||||
loop {
|
||||
// In the first part we look for a document in the intersection
|
||||
// of the two rarest `DocSet` in the intersection.
|
||||
// Invariant:
|
||||
// - candidate is always <= to the next document in the intersection.
|
||||
// - candidate strictly increases at every occurence of the loop.
|
||||
let mut candidate = left.doc() + 1;
|
||||
|
||||
loop {
|
||||
if right.seek_into_the_danger_zone(candidate) {
|
||||
break;
|
||||
}
|
||||
let right_doc = right.doc();
|
||||
// TODO: Think about which value would make sense here
|
||||
// It depends on the DocSet implementation, when a seek would outweigh an advance.
|
||||
if right_doc > candidate.wrapping_add(100) {
|
||||
candidate = left.seek(right_doc);
|
||||
} else {
|
||||
candidate = left.advance();
|
||||
}
|
||||
if candidate == TERMINATED {
|
||||
return TERMINATED;
|
||||
}
|
||||
}
|
||||
// Termination: candidate strictly increases.
|
||||
'outer: while candidate < TERMINATED {
|
||||
// As we enter the loop, we should always have candidate < next_doc.
|
||||
|
||||
debug_assert_eq!(left.doc(), right.doc());
|
||||
// test the remaining scorers
|
||||
if self
|
||||
.others
|
||||
.iter_mut()
|
||||
.all(|docset| docset.seek_into_the_danger_zone(candidate))
|
||||
candidate = left.seek(candidate);
|
||||
|
||||
// Left is positionned on `candidate`.
|
||||
debug_assert_eq!(left.doc(), candidate);
|
||||
|
||||
if let SeekDangerResult::SeekLowerBound(seek_lower_bound) = right.seek_danger(candidate)
|
||||
{
|
||||
debug_assert_eq!(candidate, self.left.doc());
|
||||
debug_assert_eq!(candidate, self.right.doc());
|
||||
debug_assert!(self.others.iter().all(|docset| docset.doc() == candidate));
|
||||
return candidate;
|
||||
debug_assert!(
|
||||
seek_lower_bound == TERMINATED || seek_lower_bound > candidate,
|
||||
"seek_lower_bound {seek_lower_bound} must be greater than candidate \
|
||||
{candidate}"
|
||||
);
|
||||
candidate = seek_lower_bound;
|
||||
continue;
|
||||
}
|
||||
candidate = left.advance();
|
||||
|
||||
// Left and right are positionned on `candidate`.
|
||||
debug_assert_eq!(right.doc(), candidate);
|
||||
|
||||
for other in &mut self.others {
|
||||
if let SeekDangerResult::SeekLowerBound(seek_lower_bound) =
|
||||
other.seek_danger(candidate)
|
||||
{
|
||||
// One of the scorer does not match, let's restart at the top of the loop.
|
||||
debug_assert!(
|
||||
seek_lower_bound == TERMINATED || seek_lower_bound > candidate,
|
||||
"seek_lower_bound {seek_lower_bound} must be greater than candidate \
|
||||
{candidate}"
|
||||
);
|
||||
candidate = seek_lower_bound;
|
||||
continue 'outer;
|
||||
}
|
||||
}
|
||||
|
||||
// At this point all scorers are in a valid state, aligned on the next document in the
|
||||
// intersection.
|
||||
debug_assert!(self.others.iter().all(|docset| docset.doc() == candidate));
|
||||
return candidate;
|
||||
}
|
||||
|
||||
// We make sure our docset is in a valid state.
|
||||
// In particular, we want .doc() to return TERMINATED.
|
||||
left.seek(TERMINATED);
|
||||
|
||||
TERMINATED
|
||||
}
|
||||
|
||||
fn seek(&mut self, target: DocId) -> DocId {
|
||||
@@ -166,13 +189,19 @@ impl<TDocSet: DocSet, TOtherDocSet: DocSet> DocSet for Intersection<TDocSet, TOt
|
||||
///
|
||||
/// Some implementations may choose to advance past the target if beneficial for performance.
|
||||
/// The return value is `true` if the target is in the docset, and `false` otherwise.
|
||||
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
|
||||
self.left.seek_into_the_danger_zone(target)
|
||||
&& self.right.seek_into_the_danger_zone(target)
|
||||
&& self
|
||||
.others
|
||||
.iter_mut()
|
||||
.all(|docset| docset.seek_into_the_danger_zone(target))
|
||||
fn seek_danger(&mut self, target: DocId) -> SeekDangerResult {
|
||||
if let SeekDangerResult::SeekLowerBound(new_target) = self.left.seek_danger(target) {
|
||||
return SeekDangerResult::SeekLowerBound(new_target);
|
||||
}
|
||||
if let SeekDangerResult::SeekLowerBound(new_target) = self.right.seek_danger(target) {
|
||||
return SeekDangerResult::SeekLowerBound(new_target);
|
||||
}
|
||||
for docset in &mut self.others {
|
||||
if let SeekDangerResult::SeekLowerBound(new_target) = docset.seek_danger(target) {
|
||||
return SeekDangerResult::SeekLowerBound(new_target);
|
||||
}
|
||||
}
|
||||
SeekDangerResult::Found
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@@ -215,9 +244,12 @@ mod tests {
|
||||
use proptest::prelude::*;
|
||||
|
||||
use super::Intersection;
|
||||
use crate::collector::Count;
|
||||
use crate::docset::{DocSet, TERMINATED};
|
||||
use crate::postings::tests::test_skip_against_unoptimized;
|
||||
use crate::query::VecDocSet;
|
||||
use crate::query::{QueryParser, VecDocSet};
|
||||
use crate::schema::{Schema, TEXT};
|
||||
use crate::Index;
|
||||
|
||||
#[test]
|
||||
fn test_intersection() {
|
||||
@@ -304,6 +336,58 @@ mod tests {
|
||||
assert_eq!(intersection.doc(), TERMINATED);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_intersection_abc() {
|
||||
let a = VecDocSet::from(vec![2, 3, 6]);
|
||||
let b = VecDocSet::from(vec![1, 3, 5]);
|
||||
let c = VecDocSet::from(vec![1, 3, 5]);
|
||||
let mut intersection = Intersection::new(vec![c, b, a], 10);
|
||||
let mut docs = Vec::new();
|
||||
use crate::DocSet;
|
||||
while intersection.doc() != TERMINATED {
|
||||
docs.push(intersection.doc());
|
||||
intersection.advance();
|
||||
}
|
||||
assert_eq!(&docs, &[3]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_intersection_termination() {
|
||||
use crate::query::score_combiner::DoNothingCombiner;
|
||||
use crate::query::{BufferedUnionScorer, ConstScorer, VecDocSet};
|
||||
|
||||
let a1 = ConstScorer::new(VecDocSet::from(vec![0u32, 10000]), 1.0);
|
||||
let a2 = ConstScorer::new(VecDocSet::from(vec![0u32, 10000]), 1.0);
|
||||
|
||||
let mut b_scorers = vec![];
|
||||
for _ in 0..2 {
|
||||
// Union matches 0 and 10000.
|
||||
b_scorers.push(ConstScorer::new(VecDocSet::from(vec![0, 10000]), 1.0));
|
||||
}
|
||||
// That's the union of two scores matching 0, and 10_000.
|
||||
let union = BufferedUnionScorer::build(b_scorers, DoNothingCombiner::default, 30000);
|
||||
|
||||
// Mismatching scorer: matches 0 and 20000. We then append more docs at the end to ensure it
|
||||
// is last.
|
||||
let mut m_docs = vec![0, 20000];
|
||||
for i in 30000..30100 {
|
||||
m_docs.push(i);
|
||||
}
|
||||
let m = ConstScorer::new(VecDocSet::from(m_docs), 1.0);
|
||||
|
||||
// Costs: A1=2, A2=2, Union=4, M=102.
|
||||
// Sorted: A1, A2, Union, M.
|
||||
// Left=A1, Right=A2, Others=[Union, M].
|
||||
let mut intersection = crate::query::intersect_scorers(
|
||||
vec![Box::new(a1), Box::new(a2), Box::new(union), Box::new(m)],
|
||||
40000,
|
||||
);
|
||||
|
||||
while intersection.doc() != TERMINATED {
|
||||
intersection.advance();
|
||||
}
|
||||
}
|
||||
|
||||
// Strategy to generate sorted and deduplicated vectors of u32 document IDs
|
||||
fn sorted_deduped_vec(max_val: u32, max_size: usize) -> impl Strategy<Value = Vec<u32>> {
|
||||
prop::collection::vec(0..max_val, 0..max_size).prop_map(|mut vec| {
|
||||
@@ -335,6 +419,30 @@ mod tests {
|
||||
}
|
||||
assert_eq!(intersection.doc(), TERMINATED);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bug_2811_intersection_candidate_should_increase() {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let text_field = schema_builder.add_text_field("text", TEXT);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut writer = index.writer_for_tests().unwrap();
|
||||
writer
|
||||
.add_document(doc!(text_field=>"hello happy tax"))
|
||||
.unwrap();
|
||||
writer.add_document(doc!(text_field=>"hello")).unwrap();
|
||||
writer.add_document(doc!(text_field=>"hello")).unwrap();
|
||||
writer.add_document(doc!(text_field=>"happy tax")).unwrap();
|
||||
|
||||
writer.commit().unwrap();
|
||||
let query_parser = QueryParser::for_index(&index, Vec::new());
|
||||
let query = query_parser
|
||||
.parse_query(r#"+text:hello +text:"happy tax""#)
|
||||
.unwrap();
|
||||
let searcher = index.reader().unwrap().searcher();
|
||||
let c = searcher.search(&*query, &Count).unwrap();
|
||||
assert_eq!(c, 1);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -43,7 +43,7 @@ pub use self::boost_query::{BoostQuery, BoostWeight};
|
||||
pub use self::const_score_query::{ConstScoreQuery, ConstScorer};
|
||||
pub use self::disjunction_max_query::DisjunctionMaxQuery;
|
||||
pub use self::empty_query::{EmptyQuery, EmptyScorer, EmptyWeight};
|
||||
pub use self::exclude::Exclude;
|
||||
pub use self::exclude::{Exclude, ExclusionSet};
|
||||
pub use self::exist_query::ExistsQuery;
|
||||
pub use self::explanation::Explanation;
|
||||
#[cfg(test)]
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
use crate::docset::{DocSet, TERMINATED};
|
||||
use crate::docset::{DocSet, SeekDangerResult, TERMINATED};
|
||||
use crate::fieldnorm::FieldNormReader;
|
||||
use crate::postings::Postings;
|
||||
use crate::query::bm25::Bm25Weight;
|
||||
@@ -194,11 +194,16 @@ impl<TPostings: Postings> DocSet for PhrasePrefixScorer<TPostings> {
|
||||
self.advance()
|
||||
}
|
||||
|
||||
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
|
||||
if self.phrase_scorer.seek_into_the_danger_zone(target) {
|
||||
self.matches_prefix()
|
||||
fn seek_danger(&mut self, target: DocId) -> SeekDangerResult {
|
||||
let seek_res = self.phrase_scorer.seek_danger(target);
|
||||
if seek_res != SeekDangerResult::Found {
|
||||
return seek_res;
|
||||
}
|
||||
// The intersection matched. Now let's see if we match the prefix.
|
||||
if self.matches_prefix() {
|
||||
SeekDangerResult::Found
|
||||
} else {
|
||||
false
|
||||
SeekDangerResult::SeekLowerBound(target + 1)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use std::cmp::Ordering;
|
||||
|
||||
use crate::docset::{DocSet, TERMINATED};
|
||||
use crate::docset::{DocSet, SeekDangerResult, TERMINATED};
|
||||
use crate::fieldnorm::FieldNormReader;
|
||||
use crate::postings::Postings;
|
||||
use crate::query::bm25::Bm25Weight;
|
||||
@@ -530,12 +530,23 @@ impl<TPostings: Postings> DocSet for PhraseScorer<TPostings> {
|
||||
self.advance()
|
||||
}
|
||||
|
||||
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
|
||||
debug_assert!(target >= self.doc());
|
||||
if self.intersection_docset.seek_into_the_danger_zone(target) && self.phrase_match() {
|
||||
return true;
|
||||
fn seek_danger(&mut self, target: DocId) -> SeekDangerResult {
|
||||
debug_assert!(
|
||||
target >= self.doc(),
|
||||
"target ({}) should be greater than or equal to doc ({})",
|
||||
target,
|
||||
self.doc()
|
||||
);
|
||||
let seek_res = self.intersection_docset.seek_danger(target);
|
||||
if seek_res != SeekDangerResult::Found {
|
||||
return seek_res;
|
||||
}
|
||||
// The intersection matched. Now let's see if we match the phrase.
|
||||
if self.phrase_match() {
|
||||
SeekDangerResult::Found
|
||||
} else {
|
||||
SeekDangerResult::SeekLowerBound(target + 1)
|
||||
}
|
||||
false
|
||||
}
|
||||
|
||||
fn doc(&self) -> DocId {
|
||||
|
||||
@@ -311,7 +311,7 @@ mod tests {
|
||||
#![proptest_config(ProptestConfig::with_cases(50))]
|
||||
#[test]
|
||||
fn test_phrase_regex_with_random_strings(mut random_strings in proptest::collection::vec("[c-z ]{0,10}", 1..100), num_occurrences in 1..150_usize) {
|
||||
let mut rng = rand::thread_rng();
|
||||
let mut rng = rand::rng();
|
||||
|
||||
// Insert "aaa ccc" the specified number of times into the list
|
||||
for _ in 0..num_occurrences {
|
||||
|
||||
@@ -2068,6 +2068,16 @@ mod test {
|
||||
format!("Regex(Field(0), {:#?})", expected_regex).as_str(),
|
||||
false,
|
||||
);
|
||||
let expected_regex2 = tantivy_fst::Regex::new(r".*a").unwrap();
|
||||
test_parse_query_to_logical_ast_helper(
|
||||
"title:(/.*b/ OR /.*a/)",
|
||||
format!(
|
||||
"(Regex(Field(0), {:#?}) Regex(Field(0), {:#?}))",
|
||||
expected_regex, expected_regex2
|
||||
)
|
||||
.as_str(),
|
||||
false,
|
||||
);
|
||||
|
||||
// Invalid field
|
||||
let err = parse_query_to_logical_ast("float:/.*b/", false).unwrap_err();
|
||||
|
||||
@@ -19,7 +19,8 @@ pub(crate) fn is_type_valid_for_fastfield_range_query(typ: Type) -> bool {
|
||||
| Type::Bool
|
||||
| Type::Date
|
||||
| Type::Json
|
||||
| Type::IpAddr => true,
|
||||
Type::Facet | Type::Bytes => false,
|
||||
| Type::IpAddr
|
||||
| Type::Bytes => true,
|
||||
Type::Facet => false,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -429,7 +429,7 @@ mod tests {
|
||||
docs.push(doc);
|
||||
}
|
||||
|
||||
docs.shuffle(&mut rand::thread_rng());
|
||||
docs.shuffle(&mut rand::rng());
|
||||
let mut docs_it = docs.into_iter();
|
||||
for doc in (&mut docs_it).take(50) {
|
||||
index_writer.add_document(doc)?;
|
||||
|
||||
@@ -6,8 +6,8 @@ use std::net::Ipv6Addr;
|
||||
use std::ops::{Bound, RangeInclusive};
|
||||
|
||||
use columnar::{
|
||||
Cardinality, Column, ColumnType, MonotonicallyMappableToU128, MonotonicallyMappableToU64,
|
||||
NumericalType, StrColumn,
|
||||
BytesColumn, Cardinality, Column, ColumnType, MonotonicallyMappableToU128,
|
||||
MonotonicallyMappableToU64, NumericalType, StrColumn,
|
||||
};
|
||||
use common::bounds::{BoundsRange, TransformBound};
|
||||
|
||||
@@ -163,6 +163,25 @@ impl Weight for FastFieldRangeWeight {
|
||||
};
|
||||
let dict = str_dict_column.dictionary();
|
||||
|
||||
let bounds = self.bounds.map_bound(get_value_bytes);
|
||||
// Get term ids for terms
|
||||
let (lower_bound, upper_bound) =
|
||||
dict.term_bounds_to_ord(bounds.lower_bound, bounds.upper_bound)?;
|
||||
let fast_field_reader = reader.fast_fields();
|
||||
let Some((column, _col_type)) =
|
||||
fast_field_reader.u64_lenient_for_type(None, &field_name)?
|
||||
else {
|
||||
return Ok(Box::new(EmptyScorer));
|
||||
};
|
||||
search_on_u64_ff(column, boost, BoundsRange::new(lower_bound, upper_bound))
|
||||
} else if field_type.is_bytes() {
|
||||
let Some(bytes_column): Option<BytesColumn> =
|
||||
reader.fast_fields().bytes(&field_name)?
|
||||
else {
|
||||
return Ok(Box::new(EmptyScorer));
|
||||
};
|
||||
let dict = bytes_column.dictionary();
|
||||
|
||||
let bounds = self.bounds.map_bound(get_value_bytes);
|
||||
// Get term ids for terms
|
||||
let (lower_bound, upper_bound) =
|
||||
@@ -491,7 +510,7 @@ mod tests {
|
||||
use common::DateTime;
|
||||
use proptest::prelude::*;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::seq::IndexedRandom;
|
||||
use rand::SeedableRng;
|
||||
use time::format_description::well_known::Rfc3339;
|
||||
use time::OffsetDateTime;
|
||||
@@ -1402,6 +1421,66 @@ mod tests {
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bytes_field_ff_range_query() -> crate::Result<()> {
|
||||
use crate::schema::BytesOptions;
|
||||
|
||||
let mut schema_builder = Schema::builder();
|
||||
let bytes_field = schema_builder
|
||||
.add_bytes_field("data", BytesOptions::default().set_fast().set_indexed());
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests()?;
|
||||
|
||||
// Insert documents with lexicographically sortable byte values
|
||||
// Using simple byte sequences that have clear ordering
|
||||
let values: Vec<Vec<u8>> = vec![
|
||||
vec![0x00, 0x10],
|
||||
vec![0x00, 0x20],
|
||||
vec![0x00, 0x30],
|
||||
vec![0x01, 0x00],
|
||||
vec![0x01, 0x10],
|
||||
vec![0x02, 0x00],
|
||||
];
|
||||
|
||||
for value in &values {
|
||||
let mut doc = TantivyDocument::new();
|
||||
doc.add_bytes(bytes_field, value);
|
||||
index_writer.add_document(doc)?;
|
||||
}
|
||||
index_writer.commit()?;
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
|
||||
// Test: Range query [0x00, 0x20] to [0x01, 0x00] (inclusive)
|
||||
// Should match: [0x00, 0x20], [0x00, 0x30], [0x01, 0x00]
|
||||
let lower = Term::from_field_bytes(bytes_field, &[0x00, 0x20]);
|
||||
let upper = Term::from_field_bytes(bytes_field, &[0x01, 0x00]);
|
||||
let range_query = RangeQuery::new(Bound::Included(lower), Bound::Included(upper));
|
||||
let count = searcher.search(&range_query, &Count)?;
|
||||
assert_eq!(
|
||||
count, 3,
|
||||
"Expected 3 documents in range [0x00,0x20] to [0x01,0x00]"
|
||||
);
|
||||
|
||||
// Test: Range query > [0x01, 0x00] (exclusive lower bound)
|
||||
// Should match: [0x01, 0x10], [0x02, 0x00]
|
||||
let lower = Term::from_field_bytes(bytes_field, &[0x01, 0x00]);
|
||||
let range_query = RangeQuery::new(Bound::Excluded(lower), Bound::Unbounded);
|
||||
let count = searcher.search(&range_query, &Count)?;
|
||||
assert_eq!(count, 2, "Expected 2 documents > [0x01,0x00]");
|
||||
|
||||
// Test: Range query < [0x00, 0x30] (exclusive upper bound)
|
||||
// Should match: [0x00, 0x10], [0x00, 0x20]
|
||||
let upper = Term::from_field_bytes(bytes_field, &[0x00, 0x30]);
|
||||
let range_query = RangeQuery::new(Bound::Unbounded, Bound::Excluded(upper));
|
||||
let count = searcher.search(&range_query, &Count)?;
|
||||
assert_eq!(count, 2, "Expected 2 documents < [0x00,0x30]");
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use crate::docset::DocSet;
|
||||
use crate::docset::{DocSet, SeekDangerResult};
|
||||
use crate::query::score_combiner::ScoreCombiner;
|
||||
use crate::query::Scorer;
|
||||
use crate::{DocId, Score};
|
||||
@@ -56,9 +56,9 @@ where
|
||||
self.req_scorer.seek(target)
|
||||
}
|
||||
|
||||
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
|
||||
fn seek_danger(&mut self, target: DocId) -> SeekDangerResult {
|
||||
self.score_cache = None;
|
||||
self.req_scorer.seek_into_the_danger_zone(target)
|
||||
self.req_scorer.seek_danger(target)
|
||||
}
|
||||
|
||||
fn doc(&self) -> DocId {
|
||||
|
||||
@@ -105,6 +105,7 @@ impl DocSet for TermScorer {
|
||||
|
||||
#[inline]
|
||||
fn seek(&mut self, target: DocId) -> DocId {
|
||||
debug_assert!(target >= self.doc());
|
||||
self.postings.seek(target)
|
||||
}
|
||||
|
||||
@@ -304,10 +305,10 @@ mod tests {
|
||||
let mut writer: IndexWriter =
|
||||
index.writer_with_num_threads(3, 3 * MEMORY_BUDGET_NUM_BYTES_MIN)?;
|
||||
use rand::Rng;
|
||||
let mut rng = rand::thread_rng();
|
||||
let mut rng = rand::rng();
|
||||
writer.set_merge_policy(Box::new(NoMergePolicy));
|
||||
for _ in 0..3_000 {
|
||||
let term_freq = rng.gen_range(1..10000);
|
||||
let term_freq = rng.random_range(1..10000);
|
||||
let words: Vec<&str> = std::iter::repeat_n("bbbb", term_freq).collect();
|
||||
let text = words.join(" ");
|
||||
writer.add_document(doc!(text_field=>text))?;
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use common::TinySet;
|
||||
|
||||
use crate::docset::{DocSet, TERMINATED};
|
||||
use crate::docset::{DocSet, SeekDangerResult, TERMINATED};
|
||||
use crate::query::score_combiner::{DoNothingCombiner, ScoreCombiner};
|
||||
use crate::query::size_hint::estimate_union;
|
||||
use crate::query::Scorer;
|
||||
@@ -225,25 +225,47 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
fn seek_into_the_danger_zone(&mut self, target: DocId) -> bool {
|
||||
fn seek_danger(&mut self, target: DocId) -> SeekDangerResult {
|
||||
if target >= TERMINATED {
|
||||
return SeekDangerResult::SeekLowerBound(TERMINATED);
|
||||
}
|
||||
if self.is_in_horizon(target) {
|
||||
// Our value is within the buffered horizon and the docset may already have been
|
||||
// processed and removed, so we need to use seek, which uses the regular advance.
|
||||
self.seek(target) == target
|
||||
} else {
|
||||
// The docsets are not in the buffered range, so we can use seek_into_the_danger_zone
|
||||
// of the underlying docsets
|
||||
let is_hit = self
|
||||
.docsets
|
||||
.iter_mut()
|
||||
.any(|docset| docset.seek_into_the_danger_zone(target));
|
||||
let seek_doc = self.seek(target);
|
||||
if seek_doc == target {
|
||||
return SeekDangerResult::Found;
|
||||
} else {
|
||||
return SeekDangerResult::SeekLowerBound(seek_doc);
|
||||
};
|
||||
}
|
||||
|
||||
// The API requires the DocSet to be in a valid state when `seek_into_the_danger_zone`
|
||||
// returns true.
|
||||
if is_hit {
|
||||
self.seek(target);
|
||||
// The docsets are not in the buffered range, so we can use seek_into_the_danger_zone
|
||||
// of the underlying docsets
|
||||
let mut is_hit = false;
|
||||
let mut min_new_target = TERMINATED;
|
||||
|
||||
for docset in self.docsets.iter_mut() {
|
||||
match docset.seek_danger(target) {
|
||||
SeekDangerResult::Found => {
|
||||
is_hit = true;
|
||||
break;
|
||||
}
|
||||
SeekDangerResult::SeekLowerBound(new_target) => {
|
||||
min_new_target = min_new_target.min(new_target);
|
||||
}
|
||||
}
|
||||
is_hit
|
||||
}
|
||||
|
||||
// The API requires the DocSet to be in a valid state when `seek_into_the_danger_zone`
|
||||
// returns Found.
|
||||
if is_hit {
|
||||
// The doc is found. Let's make sure we position the union on the target
|
||||
// to bring it back to a valid state.
|
||||
self.seek(target);
|
||||
SeekDangerResult::Found
|
||||
} else {
|
||||
SeekDangerResult::SeekLowerBound(min_new_target)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -14,7 +14,7 @@ mod tests {
|
||||
use common::BitSet;
|
||||
|
||||
use super::{SimpleUnion, *};
|
||||
use crate::docset::{DocSet, TERMINATED};
|
||||
use crate::docset::{DocSet, SeekDangerResult, TERMINATED};
|
||||
use crate::postings::tests::test_skip_against_unoptimized;
|
||||
use crate::query::score_combiner::DoNothingCombiner;
|
||||
use crate::query::union::bitset_union::BitSetPostingUnion;
|
||||
@@ -254,6 +254,27 @@ mod tests {
|
||||
vec![1, 2, 3, 7, 8, 9, 99, 100, 101, 500, 20000],
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_buffered_union_seek_into_danger_zone_terminated() {
|
||||
let scorer1 = ConstScorer::new(VecDocSet::from(vec![1, 2]), 1.0);
|
||||
let scorer2 = ConstScorer::new(VecDocSet::from(vec![2, 3]), 1.0);
|
||||
|
||||
let mut union_scorer =
|
||||
BufferedUnionScorer::build(vec![scorer1, scorer2], DoNothingCombiner::default, 100);
|
||||
|
||||
// Advance to end
|
||||
while union_scorer.doc() != TERMINATED {
|
||||
union_scorer.advance();
|
||||
}
|
||||
|
||||
assert_eq!(union_scorer.doc(), TERMINATED);
|
||||
|
||||
assert_eq!(
|
||||
union_scorer.seek_danger(TERMINATED),
|
||||
SeekDangerResult::SeekLowerBound(TERMINATED)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
|
||||
@@ -17,6 +17,9 @@ pub struct VecDocSet {
|
||||
|
||||
impl From<Vec<DocId>> for VecDocSet {
|
||||
fn from(doc_ids: Vec<DocId>) -> VecDocSet {
|
||||
// We do not use `slice::is_sorted`, as we want to check for doc ids to be strictly
|
||||
// sorted.
|
||||
assert!(doc_ids.windows(2).all(|w| w[0] < w[1]));
|
||||
VecDocSet { doc_ids, cursor: 0 }
|
||||
}
|
||||
}
|
||||
|
||||
@@ -223,6 +223,11 @@ impl FieldType {
|
||||
matches!(self, FieldType::Str(_))
|
||||
}
|
||||
|
||||
/// returns true if this is a bytes field
|
||||
pub fn is_bytes(&self) -> bool {
|
||||
matches!(self, FieldType::Bytes(_))
|
||||
}
|
||||
|
||||
/// returns true if this is an date field
|
||||
pub fn is_date(&self) -> bool {
|
||||
matches!(self, FieldType::Date(_))
|
||||
|
||||
@@ -124,7 +124,6 @@ impl SegmentSpaceUsage {
|
||||
FieldNorms => PerField(self.fieldnorms().clone()),
|
||||
Terms => PerField(self.termdict().clone()),
|
||||
SegmentComponent::Store => ComponentSpaceUsage::Store(self.store().clone()),
|
||||
SegmentComponent::TempStore => ComponentSpaceUsage::Store(self.store().clone()),
|
||||
Delete => Basic(self.deletes()),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -95,7 +95,7 @@ impl<'a> TermMerger<'a> {
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
use rand::distributions::Alphanumeric;
|
||||
use rand::{thread_rng, Rng};
|
||||
use rand::{rng, Rng};
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::TermMerger;
|
||||
@@ -117,9 +117,9 @@ mod bench {
|
||||
let buffer: Vec<u8> = {
|
||||
let mut terms = vec![];
|
||||
for _i in 0..num_terms {
|
||||
let rand_string: String = thread_rng()
|
||||
let rand_string: String = rng()
|
||||
.sample_iter(&Alphanumeric)
|
||||
.take(thread_rng().gen_range(30..42))
|
||||
.take(rng().random_range(30..42))
|
||||
.map(char::from)
|
||||
.collect();
|
||||
terms.push(rand_string);
|
||||
|
||||
@@ -25,7 +25,7 @@ zstd-compression = ["zstd"]
|
||||
proptest = "1"
|
||||
criterion = { version = "0.5", default-features = false }
|
||||
names = "0.14"
|
||||
rand = "0.8"
|
||||
rand = "0.9"
|
||||
|
||||
[[bench]]
|
||||
name = "stream_bench"
|
||||
|
||||
@@ -10,9 +10,9 @@ use tantivy_sstable::{Dictionary, MonotonicU64SSTable};
|
||||
const CHARSET: &[u8] = b"abcdefghij";
|
||||
|
||||
fn generate_key(rng: &mut impl Rng) -> String {
|
||||
let len = rng.gen_range(3..12);
|
||||
let len = rng.random_range(3..12);
|
||||
std::iter::from_fn(|| {
|
||||
let idx = rng.gen_range(0..CHARSET.len());
|
||||
let idx = rng.random_range(0..CHARSET.len());
|
||||
Some(CHARSET[idx] as char)
|
||||
})
|
||||
.take(len)
|
||||
|
||||
@@ -23,12 +23,12 @@ name = "hashmap"
|
||||
path = "example/hashmap.rs"
|
||||
|
||||
[dev-dependencies]
|
||||
rand = "0.8.5"
|
||||
rand = "0.9"
|
||||
zipf = "7.0.0"
|
||||
rustc-hash = "2.1.0"
|
||||
proptest = "1.2.0"
|
||||
binggan = { version = "0.14.0" }
|
||||
rand_distr = "0.4.3"
|
||||
rand_distr = "0.5"
|
||||
|
||||
[features]
|
||||
compare_hash_only = ["ahash"] # Compare hash only, not the key in the Hashmap
|
||||
|
||||
@@ -90,10 +90,10 @@ fn bench_vint() {
|
||||
}
|
||||
// benchmark zipfs distribution numbers
|
||||
{
|
||||
use rand::distributions::Distribution;
|
||||
use rand::distr::Distribution;
|
||||
use rand::rngs::StdRng;
|
||||
let mut rng = StdRng::from_seed([3u8; 32]);
|
||||
let zipf = zipf::ZipfDistribution::new(10_000, 1.03).unwrap();
|
||||
let zipf = rand_distr::Zipf::new(10_000.0f64, 1.03).unwrap();
|
||||
let numbers: Vec<[u8; 8]> = (0..num_numbers)
|
||||
.map(|_| zipf.sample(&mut rng).to_le_bytes())
|
||||
.collect();
|
||||
|
||||
@@ -7,8 +7,8 @@ edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
ahash = "0.8.7"
|
||||
rand = "0.8.5"
|
||||
rand_distr = "0.4.3"
|
||||
rand = "0.9"
|
||||
rand_distr = "0.5"
|
||||
tantivy-stacker = { version = "0.2.0", path = ".." }
|
||||
|
||||
[workspace]
|
||||
|
||||
@@ -14,7 +14,7 @@ fn test_with_seed(seed: u64) {
|
||||
let mut hash_map = AHashMap::new();
|
||||
let mut arena_hashmap = ArenaHashMap::default();
|
||||
let mut rng = StdRng::seed_from_u64(seed);
|
||||
let key_count = rng.gen_range(1_000..=1_000_000);
|
||||
let key_count = rng.random_range(1_000..=1_000_000);
|
||||
let exp = Exp::new(0.05).unwrap();
|
||||
|
||||
for _ in 0..key_count {
|
||||
|
||||
Reference in New Issue
Block a user