mirror of
https://github.com/quickwit-oss/tantivy.git
synced 2025-12-28 13:02:55 +00:00
Compare commits
1 Commits
range
...
truncation
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
437084fea4 |
@@ -107,7 +107,7 @@ unstable = [] # useful for benches.
|
||||
quickwit = ["sstable"]
|
||||
|
||||
[workspace]
|
||||
members = ["query-grammar", "bitpacker", "common", "fastfield_codecs", "ownedbytes", "stacker", "sstable", "tokenizer-api"]
|
||||
members = ["query-grammar", "bitpacker", "common", "fastfield_codecs", "ownedbytes", "stacker", "sstable", "columnar", "tokenizer-api"]
|
||||
|
||||
# Following the "fail" crate best practises, we isolate
|
||||
# tests that define specific behavior in fail check points
|
||||
|
||||
45
README.md
45
README.md
@@ -41,7 +41,7 @@ Your mileage WILL vary depending on the nature of queries and their load.
|
||||
- SIMD integer compression when the platform/CPU includes the SSE2 instruction set
|
||||
- Single valued and multivalued u64, i64, and f64 fast fields (equivalent of doc values in Lucene)
|
||||
- `&[u8]` fast fields
|
||||
- Text, i64, u64, f64, dates, ip, bool, and hierarchical facet fields
|
||||
- Text, i64, u64, f64, dates, and hierarchical facet fields
|
||||
- Compressed document store (LZ4, Zstd, None, Brotli, Snap)
|
||||
- Range queries
|
||||
- Faceted search
|
||||
@@ -80,21 +80,56 @@ There are many ways to support this project.
|
||||
# Contributing code
|
||||
|
||||
We use the GitHub Pull Request workflow: reference a GitHub ticket and/or include a comprehensive commit message when opening a PR.
|
||||
Feel free to update CHANGELOG.md with your contribution.
|
||||
|
||||
## Tokenizer
|
||||
|
||||
When implementing a tokenizer for tantivy depend on the `tantivy-tokenizer-api` crate.
|
||||
|
||||
## Minimum supported Rust version
|
||||
|
||||
Tantivy currently requires at least Rust 1.62 or later to compile.
|
||||
|
||||
## Clone and build locally
|
||||
|
||||
Tantivy compiles on stable Rust.
|
||||
To check out and run tests, you can simply run:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/quickwit-oss/tantivy.git
|
||||
cd tantivy
|
||||
cargo test
|
||||
git clone https://github.com/quickwit-oss/tantivy.git
|
||||
cd tantivy
|
||||
cargo build
|
||||
```
|
||||
|
||||
## Run tests
|
||||
|
||||
Some tests will not run with just `cargo test` because of `fail-rs`.
|
||||
To run the tests exhaustively, run `./run-tests.sh`.
|
||||
|
||||
## Debug
|
||||
|
||||
You might find it useful to step through the programme with a debugger.
|
||||
|
||||
### A failing test
|
||||
|
||||
Make sure you haven't run `cargo clean` after the most recent `cargo test` or `cargo build` to guarantee that the `target/` directory exists. Use this bash script to find the name of the most recent debug build of Tantivy and run it under `rust-gdb`:
|
||||
|
||||
```bash
|
||||
find target/debug/ -maxdepth 1 -executable -type f -name "tantivy*" -printf '%TY-%Tm-%Td %TT %p\n' | sort -r | cut -d " " -f 3 | xargs -I RECENT_DBG_TANTIVY rust-gdb RECENT_DBG_TANTIVY
|
||||
```
|
||||
|
||||
Now that you are in `rust-gdb`, you can set breakpoints on lines and methods that match your source code and run the debug executable with flags that you normally pass to `cargo test` like this:
|
||||
|
||||
```bash
|
||||
$gdb run --test-threads 1 --test $NAME_OF_TEST
|
||||
```
|
||||
|
||||
### An example
|
||||
|
||||
By default, `rustc` compiles everything in the `examples/` directory in debug mode. This makes it easy for you to make examples to reproduce bugs:
|
||||
|
||||
```bash
|
||||
rust-gdb target/debug/examples/$EXAMPLE_NAME
|
||||
$ gdb run
|
||||
```
|
||||
|
||||
# Companies Using Tantivy
|
||||
|
||||
@@ -34,7 +34,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
for doc_json in HDFS_LOGS.trim().split("\n") {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
@@ -46,7 +46,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
for doc_json in HDFS_LOGS.trim().split("\n") {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
@@ -59,7 +59,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
let index = Index::create_in_ram(schema_with_store.clone());
|
||||
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
for doc_json in HDFS_LOGS.trim().split("\n") {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
@@ -71,7 +71,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
let index = Index::create_in_ram(schema_with_store.clone());
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
for doc_json in HDFS_LOGS.trim().split("\n") {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
@@ -85,7 +85,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
let json_field = dynamic_schema.get_field("json").unwrap();
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
for doc_json in HDFS_LOGS.trim().split("\n") {
|
||||
let json_val: serde_json::Map<String, serde_json::Value> =
|
||||
serde_json::from_str(doc_json).unwrap();
|
||||
let doc = tantivy::doc!(json_field=>json_val);
|
||||
@@ -101,7 +101,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
let json_field = dynamic_schema.get_field("json").unwrap();
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
for doc_json in HDFS_LOGS.trim().split("\n") {
|
||||
let json_val: serde_json::Map<String, serde_json::Value> =
|
||||
serde_json::from_str(doc_json).unwrap();
|
||||
let doc = tantivy::doc!(json_field=>json_val);
|
||||
|
||||
@@ -15,7 +15,3 @@ homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
|
||||
[dev-dependencies]
|
||||
rand = "0.8"
|
||||
proptest = "1"
|
||||
|
||||
@@ -4,39 +4,9 @@ extern crate test;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use rand::seq::IteratorRandom;
|
||||
use rand::thread_rng;
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker, BlockedBitpacker};
|
||||
use tantivy_bitpacker::BlockedBitpacker;
|
||||
use test::Bencher;
|
||||
|
||||
#[inline(never)]
|
||||
fn create_bitpacked_data(bit_width: u8, num_els: u32) -> Vec<u8> {
|
||||
let mut bitpacker = BitPacker::new();
|
||||
let mut buffer = Vec::new();
|
||||
for _ in 0..num_els {
|
||||
// the values do not matter.
|
||||
bitpacker.write(0u64, bit_width, &mut buffer).unwrap();
|
||||
bitpacker.flush(&mut buffer).unwrap();
|
||||
}
|
||||
buffer
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_bitpacking_read(b: &mut Bencher) {
|
||||
let bit_width = 3;
|
||||
let num_els = 1_000_000u32;
|
||||
let bit_unpacker = BitUnpacker::new(bit_width);
|
||||
let data = create_bitpacked_data(bit_width, num_els);
|
||||
let idxs: Vec<u32> = (0..num_els).choose_multiple(&mut thread_rng(), 100_000);
|
||||
b.iter(|| {
|
||||
let mut out = 0u64;
|
||||
for &idx in &idxs {
|
||||
out = out.wrapping_add(bit_unpacker.get(idx, &data[..]));
|
||||
}
|
||||
out
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_blockedbitp_read(b: &mut Bencher) {
|
||||
let mut blocked_bitpacker = BlockedBitpacker::new();
|
||||
@@ -44,9 +14,9 @@ mod tests {
|
||||
blocked_bitpacker.add(val * val);
|
||||
}
|
||||
b.iter(|| {
|
||||
let mut out = 0u64;
|
||||
let mut out = 0;
|
||||
for val in 0..=21500 {
|
||||
out = out.wrapping_add(blocked_bitpacker.get(val));
|
||||
out = blocked_bitpacker.get(val);
|
||||
}
|
||||
out
|
||||
});
|
||||
|
||||
@@ -56,31 +56,27 @@ impl BitPacker {
|
||||
|
||||
pub fn close<TWrite: io::Write>(&mut self, output: &mut TWrite) -> io::Result<()> {
|
||||
self.flush(output)?;
|
||||
// Padding the write file to simplify reads.
|
||||
output.write_all(&[0u8; 7])?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Default, Copy)]
|
||||
#[derive(Clone, Debug, Default)]
|
||||
pub struct BitUnpacker {
|
||||
num_bits: u32,
|
||||
num_bits: u64,
|
||||
mask: u64,
|
||||
}
|
||||
|
||||
impl BitUnpacker {
|
||||
/// Creates a bit unpacker, that assumes the same bitwidth for all values.
|
||||
///
|
||||
/// The bitunpacker works by doing an unaligned read of 8 bytes.
|
||||
/// For this reason, values of `num_bits` between
|
||||
/// [57..63] are forbidden.
|
||||
pub fn new(num_bits: u8) -> BitUnpacker {
|
||||
assert!(num_bits <= 7 * 8 || num_bits == 64);
|
||||
let mask: u64 = if num_bits == 64 {
|
||||
!0u64
|
||||
} else {
|
||||
(1u64 << num_bits) - 1u64
|
||||
};
|
||||
BitUnpacker {
|
||||
num_bits: u32::from(num_bits),
|
||||
num_bits: u64::from(num_bits),
|
||||
mask,
|
||||
}
|
||||
}
|
||||
@@ -91,40 +87,28 @@ impl BitUnpacker {
|
||||
|
||||
#[inline]
|
||||
pub fn get(&self, idx: u32, data: &[u8]) -> u64 {
|
||||
let addr_in_bits = idx * self.num_bits;
|
||||
let addr = (addr_in_bits >> 3) as usize;
|
||||
if addr + 8 > data.len() {
|
||||
if self.num_bits == 0 {
|
||||
return 0;
|
||||
}
|
||||
let bit_shift = addr_in_bits & 7;
|
||||
return self.get_slow_path(addr, bit_shift, data);
|
||||
if self.num_bits == 0 {
|
||||
return 0u64;
|
||||
}
|
||||
let addr_in_bits = idx * self.num_bits as u32;
|
||||
let addr = (addr_in_bits >> 3) as usize;
|
||||
let bit_shift = addr_in_bits & 7;
|
||||
debug_assert!(
|
||||
addr + 8 <= data.len(),
|
||||
"The fast field field should have been padded with 7 bytes."
|
||||
);
|
||||
let bytes: [u8; 8] = (&data[addr..addr + 8]).try_into().unwrap();
|
||||
let val_unshifted_unmasked: u64 = u64::from_le_bytes(bytes);
|
||||
let val_shifted = val_unshifted_unmasked >> bit_shift;
|
||||
val_shifted & self.mask
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn get_slow_path(&self, addr: usize, bit_shift: u32, data: &[u8]) -> u64 {
|
||||
let mut bytes: [u8; 8] = [0u8; 8];
|
||||
let available_bytes = data.len() - addr;
|
||||
// This function is meant to only be called if we did not have 8 bytes to load.
|
||||
debug_assert!(available_bytes < 8);
|
||||
bytes[..available_bytes].copy_from_slice(&data[addr..]);
|
||||
let val_unshifted_unmasked: u64 = u64::from_le_bytes(bytes);
|
||||
let val_shifted = val_unshifted_unmasked >> bit_shift;
|
||||
val_shifted & self.mask
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::{BitPacker, BitUnpacker};
|
||||
|
||||
fn create_bitpacker(len: usize, num_bits: u8) -> (BitUnpacker, Vec<u64>, Vec<u8>) {
|
||||
fn create_fastfield_bitpacker(len: usize, num_bits: u8) -> (BitUnpacker, Vec<u64>, Vec<u8>) {
|
||||
let mut data = Vec::new();
|
||||
let mut bitpacker = BitPacker::new();
|
||||
let max_val: u64 = (1u64 << num_bits as u64) - 1u64;
|
||||
@@ -135,13 +119,13 @@ mod test {
|
||||
bitpacker.write(val, num_bits, &mut data).unwrap();
|
||||
}
|
||||
bitpacker.close(&mut data).unwrap();
|
||||
assert_eq!(data.len(), ((num_bits as usize) * len + 7) / 8);
|
||||
assert_eq!(data.len(), ((num_bits as usize) * len + 7) / 8 + 7);
|
||||
let bitunpacker = BitUnpacker::new(num_bits);
|
||||
(bitunpacker, vals, data)
|
||||
}
|
||||
|
||||
fn test_bitpacker_util(len: usize, num_bits: u8) {
|
||||
let (bitunpacker, vals, data) = create_bitpacker(len, num_bits);
|
||||
let (bitunpacker, vals, data) = create_fastfield_bitpacker(len, num_bits);
|
||||
for (i, val) in vals.iter().enumerate() {
|
||||
assert_eq!(bitunpacker.get(i as u32, &data), *val);
|
||||
}
|
||||
@@ -155,49 +139,4 @@ mod test {
|
||||
test_bitpacker_util(6, 14);
|
||||
test_bitpacker_util(1000, 14);
|
||||
}
|
||||
|
||||
use proptest::prelude::*;
|
||||
|
||||
fn num_bits_strategy() -> impl Strategy<Value = u8> {
|
||||
prop_oneof!(Just(0), Just(1), 2u8..56u8, Just(56), Just(64),)
|
||||
}
|
||||
|
||||
fn vals_strategy() -> impl Strategy<Value = (u8, Vec<u64>)> {
|
||||
(num_bits_strategy(), 0usize..100usize).prop_flat_map(|(num_bits, len)| {
|
||||
let max_val = if num_bits == 64 {
|
||||
u64::MAX
|
||||
} else {
|
||||
(1u64 << num_bits as u32) - 1
|
||||
};
|
||||
let vals = proptest::collection::vec(0..=max_val, len);
|
||||
vals.prop_map(move |vals| (num_bits, vals))
|
||||
})
|
||||
}
|
||||
|
||||
fn test_bitpacker_aux(num_bits: u8, vals: &[u64]) {
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
let mut bitpacker = BitPacker::new();
|
||||
for &val in vals {
|
||||
bitpacker.write(val, num_bits, &mut buffer).unwrap();
|
||||
}
|
||||
bitpacker.flush(&mut buffer).unwrap();
|
||||
assert_eq!(buffer.len(), (vals.len() * num_bits as usize + 7) / 8);
|
||||
let bitunpacker = BitUnpacker::new(num_bits);
|
||||
let max_val = if num_bits == 64 {
|
||||
u64::MAX
|
||||
} else {
|
||||
(1u64 << num_bits) - 1
|
||||
};
|
||||
for (i, val) in vals.iter().copied().enumerate() {
|
||||
assert!(val <= max_val);
|
||||
assert_eq!(bitunpacker.get(i as u32, &buffer), val);
|
||||
}
|
||||
}
|
||||
|
||||
proptest::proptest! {
|
||||
#[test]
|
||||
fn test_bitpacker_proptest((num_bits, vals) in vals_strategy()) {
|
||||
test_bitpacker_aux(num_bits, &vals);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -11,22 +11,8 @@ thiserror = "1"
|
||||
fnv = "1"
|
||||
sstable = { path = "../sstable", package = "tantivy-sstable" }
|
||||
common = { path = "../common", package = "tantivy-common" }
|
||||
fastfield_codecs = { path = "../fastfield_codecs"}
|
||||
itertools = "0.10"
|
||||
log = "0.4"
|
||||
tantivy-bitpacker = { version= "0.3", path = "../bitpacker/" }
|
||||
prettytable-rs = {version="0.10.0", optional= true}
|
||||
rand = {version="0.8.3", optional= true}
|
||||
fastdivide = "0.4"
|
||||
measure_time = { version="0.8.2", optional=true}
|
||||
|
||||
[dev-dependencies]
|
||||
proptest = "1"
|
||||
more-asserts = "0.3.0"
|
||||
rand = "0.8.3"
|
||||
|
||||
# temporary
|
||||
[workspace]
|
||||
members = []
|
||||
|
||||
[features]
|
||||
unstable = []
|
||||
|
||||
@@ -6,12 +6,13 @@ This crate describes columnar format used in tantivy.
|
||||
|
||||
This format is special in the following way.
|
||||
- it needs to be compact
|
||||
- accessing a specific column does not require to load the entire columnar. It can be done in 2 to 3 random access.
|
||||
- it does not required to be loaded in memory.
|
||||
- it is designed to fit well with quickwit's strange constraint:
|
||||
we need to be able to load columns rapidly.
|
||||
- columns of several types can be associated with the same column name.
|
||||
- it needs to support columns with different types `(str, u64, i64, f64)`
|
||||
and different cardinality `(required, optional, multivalued)`.
|
||||
- columns, once loaded, offer cheap random access.
|
||||
- it is designed to allow range queries.
|
||||
|
||||
# Coercion rules
|
||||
|
||||
@@ -64,46 +65,3 @@ be done by listing all keys prefixed by
|
||||
|
||||
The associated range of bytes refer to a range of bytes
|
||||
|
||||
This crate exposes a columnar format for tantivy.
|
||||
This format is described in README.md
|
||||
|
||||
|
||||
The crate introduces the following concepts.
|
||||
|
||||
`Columnar` is an equivalent of a dataframe.
|
||||
It maps `column_key` to `Column`.
|
||||
|
||||
A `Column<T>` asssociates a `RowId` (u32) to any
|
||||
number of values.
|
||||
|
||||
This is made possible by wrapping a `ColumnIndex` and a `ColumnValue` object.
|
||||
The `ColumnValue<T>` represents a mapping that associates each `RowId` to
|
||||
exactly one single value.
|
||||
|
||||
The `ColumnIndex` then maps each RowId to a set of `RowId` in the
|
||||
`ColumnValue`.
|
||||
|
||||
For optimization, and compression purposes, the `ColumnIndex` has three
|
||||
possible representation, each for different cardinalities.
|
||||
|
||||
- Full
|
||||
|
||||
All RowId have exactly one value. The ColumnIndex is the trivial mapping.
|
||||
|
||||
- Optional
|
||||
|
||||
All RowIds can have at most one value. The ColumnIndex is the trivial mapping `ColumnRowId -> Option<ColumnValueRowId>`.
|
||||
|
||||
- Multivalued
|
||||
|
||||
All RowIds can have any number of values.
|
||||
The column index is mapping values to a range.
|
||||
|
||||
|
||||
All these objects are implemented an unit tested independently
|
||||
in their own module:
|
||||
|
||||
- columnar
|
||||
- column_index
|
||||
- column_values
|
||||
- column
|
||||
|
||||
@@ -1,46 +0,0 @@
|
||||
# zero to one
|
||||
* merges
|
||||
* full still needs a num_values
|
||||
* replug u128
|
||||
* add dictionary encoded stuff
|
||||
* fix multivalued
|
||||
* find a way to make columnar work with strict types
|
||||
* plug to tantivy
|
||||
- indexing
|
||||
- aggregations
|
||||
- merge
|
||||
|
||||
# Perf and Size
|
||||
* re-add ZSTD compression for dictionaries
|
||||
no systematic monotonic mapping
|
||||
consider removing multilinear
|
||||
f32?
|
||||
adhoc solution for bool?
|
||||
|
||||
add metrics helper for aggregate. sum(row_id)
|
||||
review inline absence/presence
|
||||
improv perf of select using PDEP
|
||||
compare with roaring bitmap/elias fano etc etc.
|
||||
SIMD range? (see blog post)
|
||||
Add alignment?
|
||||
Consider another codec to bridge the gap between few and 5k elements
|
||||
|
||||
# Cleanup and rationalization
|
||||
in benchmark, unify percent vs ratio, f32 vs f64.
|
||||
investigate if should have better errors? io::Error is overused at the moment.
|
||||
rename rank/select in unit tests
|
||||
Review the public API via cargo doc
|
||||
go through TODOs
|
||||
remove all doc_id occurences -> row_id
|
||||
use the rank & select naming in unit tests branch.
|
||||
multi-linear -> blockwise
|
||||
linear codec -> simply a multiplication for the index column
|
||||
rename columnar to something more explicit, like column_dictionary or columnar_table
|
||||
|
||||
# Other
|
||||
fix enhance column-cli
|
||||
|
||||
# Santa claus
|
||||
|
||||
autodetect datetime ipaddr, plug customizable tokenizer.
|
||||
|
||||
@@ -1,78 +0,0 @@
|
||||
use std::io;
|
||||
use std::ops::Deref;
|
||||
use std::sync::Arc;
|
||||
|
||||
use sstable::{Dictionary, VoidSSTable};
|
||||
|
||||
use crate::column::Column;
|
||||
use crate::RowId;
|
||||
|
||||
/// Dictionary encoded column.
|
||||
///
|
||||
/// The column simply gives access to a regular u64-column that, in
|
||||
/// which the values are term-ordinals.
|
||||
///
|
||||
/// These ordinals are ids uniquely identify the bytes that are stored in
|
||||
/// the column. These ordinals are small, and sorted in the same order
|
||||
/// as the term_ord_column.
|
||||
#[derive(Clone)]
|
||||
pub struct BytesColumn {
|
||||
pub(crate) dictionary: Arc<Dictionary<VoidSSTable>>,
|
||||
pub(crate) term_ord_column: Column<u64>,
|
||||
}
|
||||
|
||||
impl BytesColumn {
|
||||
/// Fills the given `output` buffer with the term associated to the ordinal `ord`.
|
||||
///
|
||||
/// Returns `false` if the term does not exist (e.g. `term_ord` is greater or equal to the
|
||||
/// overll number of terms).
|
||||
pub fn ord_to_bytes(&self, ord: u64, output: &mut Vec<u8>) -> io::Result<bool> {
|
||||
self.dictionary.ord_to_term(ord, output)
|
||||
}
|
||||
|
||||
/// Returns the number of rows in the column.
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
self.term_ord_column.num_rows()
|
||||
}
|
||||
|
||||
/// Returns the column of ordinals
|
||||
pub fn ords(&self) -> &Column<u64> {
|
||||
&self.term_ord_column
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct StrColumn(BytesColumn);
|
||||
|
||||
impl From<BytesColumn> for StrColumn {
|
||||
fn from(bytes_col: BytesColumn) -> Self {
|
||||
StrColumn(bytes_col)
|
||||
}
|
||||
}
|
||||
|
||||
impl StrColumn {
|
||||
/// Fills the buffer
|
||||
pub fn ord_to_str(&self, term_ord: u64, output: &mut String) -> io::Result<bool> {
|
||||
unsafe {
|
||||
let buf = output.as_mut_vec();
|
||||
self.0.dictionary.ord_to_term(term_ord, buf)?;
|
||||
// TODO consider remove checks if it hurts performance.
|
||||
if std::str::from_utf8(buf.as_slice()).is_err() {
|
||||
buf.clear();
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
"Not valid utf-8",
|
||||
));
|
||||
}
|
||||
}
|
||||
Ok(true)
|
||||
}
|
||||
}
|
||||
|
||||
impl Deref for StrColumn {
|
||||
type Target = BytesColumn;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
@@ -1,109 +0,0 @@
|
||||
mod dictionary_encoded;
|
||||
mod serialize;
|
||||
|
||||
use std::ops::Deref;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::BinarySerializable;
|
||||
pub use dictionary_encoded::{BytesColumn, StrColumn};
|
||||
pub use serialize::{
|
||||
open_column_bytes, open_column_u128, open_column_u64, serialize_column_mappable_to_u128,
|
||||
serialize_column_mappable_to_u64,
|
||||
};
|
||||
|
||||
use crate::column_index::ColumnIndex;
|
||||
use crate::column_values::ColumnValues;
|
||||
use crate::{Cardinality, RowId};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Column<T> {
|
||||
pub idx: ColumnIndex<'static>,
|
||||
pub values: Arc<dyn ColumnValues<T>>,
|
||||
}
|
||||
|
||||
impl<T: PartialOrd> Column<T> {
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
match &self.idx {
|
||||
ColumnIndex::Full => self.values.num_vals() as u32,
|
||||
ColumnIndex::Optional(optional_index) => optional_index.num_rows(),
|
||||
ColumnIndex::Multivalued(col_index) => {
|
||||
// The multivalued index contains all value start row_id,
|
||||
// and one extra value at the end with the overall number of rows.
|
||||
col_index.num_vals() - 1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn min_value(&self) -> T {
|
||||
self.values.min_value()
|
||||
}
|
||||
pub fn max_value(&self) -> T {
|
||||
self.values.max_value()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: PartialOrd + Copy + Send + Sync + 'static> Column<T> {
|
||||
pub fn first(&self, row_id: RowId) -> Option<T> {
|
||||
self.values(row_id).next()
|
||||
}
|
||||
|
||||
pub fn values(&self, row_id: RowId) -> impl Iterator<Item = T> + '_ {
|
||||
self.value_row_ids(row_id)
|
||||
.map(|value_row_id: RowId| self.values.get_val(value_row_id))
|
||||
}
|
||||
|
||||
pub fn first_or_default_col(self, default_value: T) -> Arc<dyn ColumnValues<T>> {
|
||||
Arc::new(FirstValueWithDefault {
|
||||
column: self,
|
||||
default_value,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Deref for Column<T> {
|
||||
type Target = ColumnIndex<'static>;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.idx
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for Cardinality {
|
||||
fn serialize<W: std::io::Write>(&self, writer: &mut W) -> std::io::Result<()> {
|
||||
self.to_code().serialize(writer)
|
||||
}
|
||||
|
||||
fn deserialize<R: std::io::Read>(reader: &mut R) -> std::io::Result<Self> {
|
||||
let cardinality_code = u8::deserialize(reader)?;
|
||||
let cardinality = Cardinality::try_from_code(cardinality_code)?;
|
||||
Ok(cardinality)
|
||||
}
|
||||
}
|
||||
|
||||
// TODO simplify or optimize
|
||||
struct FirstValueWithDefault<T: Copy> {
|
||||
column: Column<T>,
|
||||
default_value: T,
|
||||
}
|
||||
|
||||
impl<T: PartialOrd + Send + Sync + Copy + 'static> ColumnValues<T> for FirstValueWithDefault<T> {
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
self.column.first(idx).unwrap_or(self.default_value)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
self.column.values.min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
self.column.values.max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
match &self.column.idx {
|
||||
ColumnIndex::Full => self.column.values.num_vals(),
|
||||
ColumnIndex::Optional(optional_idx) => optional_idx.num_rows(),
|
||||
ColumnIndex::Multivalued(_) => todo!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,101 +0,0 @@
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use sstable::Dictionary;
|
||||
|
||||
use crate::column::{BytesColumn, Column};
|
||||
use crate::column_index::{serialize_column_index, SerializableColumnIndex};
|
||||
use crate::column_values::serialize::serialize_column_values_u128;
|
||||
use crate::column_values::{
|
||||
serialize_column_values, ColumnValues, FastFieldCodecType, MonotonicallyMappableToU128,
|
||||
MonotonicallyMappableToU64,
|
||||
};
|
||||
|
||||
pub fn serialize_column_mappable_to_u128<
|
||||
F: Fn() -> I,
|
||||
I: Iterator<Item = T>,
|
||||
T: MonotonicallyMappableToU128,
|
||||
>(
|
||||
column_index: SerializableColumnIndex<'_>,
|
||||
column_values: F,
|
||||
num_vals: u32,
|
||||
output: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
let column_index_num_bytes = serialize_column_index(column_index, output)?;
|
||||
serialize_column_values_u128(
|
||||
|| column_values().map(|val| val.to_u128()),
|
||||
num_vals,
|
||||
output,
|
||||
)?;
|
||||
output.write_all(&column_index_num_bytes.to_le_bytes())?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn serialize_column_mappable_to_u64<T: MonotonicallyMappableToU64>(
|
||||
column_index: SerializableColumnIndex<'_>,
|
||||
column_values: &impl ColumnValues<T>,
|
||||
output: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
let column_index_num_bytes = serialize_column_index(column_index, output)?;
|
||||
serialize_column_values(
|
||||
column_values,
|
||||
&[
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
],
|
||||
output,
|
||||
)?;
|
||||
output.write_all(&column_index_num_bytes.to_le_bytes())?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn open_column_u64<T: MonotonicallyMappableToU64>(bytes: OwnedBytes) -> io::Result<Column<T>> {
|
||||
let (body, column_index_num_bytes_payload) = bytes.rsplit(4);
|
||||
let column_index_num_bytes = u32::from_le_bytes(
|
||||
column_index_num_bytes_payload
|
||||
.as_slice()
|
||||
.try_into()
|
||||
.unwrap(),
|
||||
);
|
||||
let (column_index_data, column_values_data) = body.split(column_index_num_bytes as usize);
|
||||
let column_index = crate::column_index::open_column_index(column_index_data)?;
|
||||
let column_values = crate::column_values::open_u64_mapped(column_values_data)?;
|
||||
Ok(Column {
|
||||
idx: column_index,
|
||||
values: column_values,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn open_column_u128<T: MonotonicallyMappableToU128>(
|
||||
bytes: OwnedBytes,
|
||||
) -> io::Result<Column<T>> {
|
||||
let (body, column_index_num_bytes_payload) = bytes.rsplit(4);
|
||||
let column_index_num_bytes = u32::from_le_bytes(
|
||||
column_index_num_bytes_payload
|
||||
.as_slice()
|
||||
.try_into()
|
||||
.unwrap(),
|
||||
);
|
||||
let (column_index_data, column_values_data) = body.split(column_index_num_bytes as usize);
|
||||
let column_index = crate::column_index::open_column_index(column_index_data)?;
|
||||
let column_values = crate::column_values::open_u128_mapped(column_values_data)?;
|
||||
Ok(Column {
|
||||
idx: column_index,
|
||||
values: column_values,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn open_column_bytes<T: From<BytesColumn>>(data: OwnedBytes) -> io::Result<T> {
|
||||
let (body, dictionary_len_bytes) = data.rsplit(4);
|
||||
let dictionary_len = u32::from_le_bytes(dictionary_len_bytes.as_slice().try_into().unwrap());
|
||||
let (dictionary_bytes, column_bytes) = body.split(dictionary_len as usize);
|
||||
let dictionary = Arc::new(Dictionary::from_bytes(dictionary_bytes)?);
|
||||
let term_ord_column = crate::column::open_column_u64::<u64>(column_bytes)?;
|
||||
let bytes_column = BytesColumn {
|
||||
dictionary,
|
||||
term_ord_column,
|
||||
};
|
||||
Ok(bytes_column.into())
|
||||
}
|
||||
@@ -1,54 +0,0 @@
|
||||
mod multivalued_index;
|
||||
mod optional_index;
|
||||
mod serialize;
|
||||
|
||||
use std::ops::Range;
|
||||
use std::sync::Arc;
|
||||
|
||||
pub use optional_index::{OptionalIndex, SerializableOptionalIndex, Set};
|
||||
pub use serialize::{open_column_index, serialize_column_index, SerializableColumnIndex};
|
||||
|
||||
use crate::column_values::ColumnValues;
|
||||
use crate::{Cardinality, RowId};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub enum ColumnIndex<'a> {
|
||||
Full,
|
||||
Optional(OptionalIndex),
|
||||
// TODO Remove the static by fixing the codec if possible.
|
||||
/// The column values enclosed contains for all row_id,
|
||||
/// the value start_index.
|
||||
///
|
||||
/// In addition, at index num_rows, an extra value is added
|
||||
/// containing the overal number of values.
|
||||
Multivalued(Arc<dyn ColumnValues<RowId> + 'a>),
|
||||
}
|
||||
|
||||
impl<'a> ColumnIndex<'a> {
|
||||
pub fn get_cardinality(&self) -> Cardinality {
|
||||
match self {
|
||||
ColumnIndex::Full => Cardinality::Full,
|
||||
ColumnIndex::Optional(_) => Cardinality::Optional,
|
||||
ColumnIndex::Multivalued(_) => Cardinality::Multivalued,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn value_row_ids(&self, row_id: RowId) -> Range<RowId> {
|
||||
match self {
|
||||
ColumnIndex::Full => row_id..row_id + 1,
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
if let Some(val) = optional_index.rank_if_exists(row_id) {
|
||||
val..val + 1
|
||||
} else {
|
||||
0..0
|
||||
}
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => {
|
||||
let multivalued_index_ref = &**multivalued_index;
|
||||
let start: u32 = multivalued_index_ref.get_val(row_id);
|
||||
let end: u32 = multivalued_index_ref.get_val(row_id + 1);
|
||||
start..end
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,29 +0,0 @@
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
|
||||
use crate::column_values::{ColumnValues, FastFieldCodecType};
|
||||
use crate::RowId;
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct MultivaluedIndex(Arc<dyn ColumnValues<RowId>>);
|
||||
|
||||
pub fn serialize_multivalued_index(
|
||||
multivalued_index: &dyn ColumnValues<RowId>,
|
||||
output: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
crate::column_values::serialize_column_values(
|
||||
&*multivalued_index,
|
||||
&[FastFieldCodecType::Bitpacked, FastFieldCodecType::Linear],
|
||||
output,
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn open_multivalued_index(bytes: OwnedBytes) -> io::Result<Arc<dyn ColumnValues<RowId>>> {
|
||||
let start_index_column: Arc<dyn ColumnValues<RowId>> =
|
||||
crate::column_values::open_u64_mapped(bytes)?;
|
||||
Ok(start_index_column)
|
||||
}
|
||||
@@ -1,493 +0,0 @@
|
||||
use std::io::{self, Write};
|
||||
use std::ops::Range;
|
||||
use std::sync::Arc;
|
||||
|
||||
mod set;
|
||||
mod set_block;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes, VInt};
|
||||
pub use set::{Set, SetCodec, SelectCursor};
|
||||
use set_block::{
|
||||
DenseBlock, DenseBlockCodec, SparseBlock, SparseBlockCodec, DENSE_BLOCK_NUM_BYTES,
|
||||
};
|
||||
|
||||
use crate::{InvalidData, RowId};
|
||||
|
||||
/// The threshold for for number of elements after which we switch to dense block encoding.
|
||||
///
|
||||
/// We simply pick the value that minimize the size of the blocks.
|
||||
const DENSE_BLOCK_THRESHOLD: u32 =
|
||||
set_block::DENSE_BLOCK_NUM_BYTES / std::mem::size_of::<u16>() as u32; //< 5_120
|
||||
|
||||
const ELEMENTS_PER_BLOCK: u32 = u16::MAX as u32 + 1;
|
||||
|
||||
const BLOCK_SIZE: RowId = 1 << 16;
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
struct BlockMeta {
|
||||
non_null_rows_before_block: u32,
|
||||
start_byte_offset: u32,
|
||||
block_variant: BlockVariant,
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
enum BlockVariant {
|
||||
Dense,
|
||||
Sparse { num_vals: u16 },
|
||||
}
|
||||
|
||||
impl BlockVariant {
|
||||
pub fn empty() -> Self {
|
||||
Self::Sparse { num_vals: 0 }
|
||||
}
|
||||
pub fn num_bytes_in_block(&self) -> u32 {
|
||||
match *self {
|
||||
BlockVariant::Dense => set_block::DENSE_BLOCK_NUM_BYTES,
|
||||
BlockVariant::Sparse { num_vals } => num_vals as u32 * 2,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// This codec is inspired by roaring bitmaps.
|
||||
/// In the dense blocks, however, in order to accelerate `select`
|
||||
/// we interleave an offset over two bytes. (more on this lower)
|
||||
///
|
||||
/// The lower 16 bits of doc ids are stored as u16 while the upper 16 bits are given by the block
|
||||
/// id. Each block contains 1<<16 docids.
|
||||
///
|
||||
/// # Serialized Data Layout
|
||||
/// The data starts with the block data. Each block is either dense or sparse encoded, depending on
|
||||
/// the number of values in the block. A block is sparse when it contains less than
|
||||
/// DENSE_BLOCK_THRESHOLD (6144) values.
|
||||
/// [Sparse data block | dense data block, .. #repeat*; Desc: Either a sparse or dense encoded
|
||||
/// block]
|
||||
/// ### Sparse block data
|
||||
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block]
|
||||
/// ### Dense block data
|
||||
/// [Dense codec for the whole block; Desc: Similar to a bitvec(0..ELEMENTS_PER_BLOCK) + Metadata
|
||||
/// for faster lookups. See dense.rs]
|
||||
///
|
||||
/// The data is followed by block metadata, to know which area of the raw block data belongs to
|
||||
/// which block. Only metadata for blocks with elements is recorded to
|
||||
/// keep the overhead low for scenarios with many very sparse columns. The block metadata consists
|
||||
/// of the block index and the number of values in the block. Since we don't store empty blocks
|
||||
/// num_vals is incremented by 1, e.g. 0 means 1 value.
|
||||
///
|
||||
/// The last u16 is storing the number of metadata blocks.
|
||||
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block][(u16 LE, u16 LE), .. #repeat*;
|
||||
/// Desc: (Block Id u16, Num Elements u16)][u16 LE; Desc: num blocks with values u16]
|
||||
///
|
||||
/// # Opening
|
||||
/// When opening the data layout, the data is expanded to `Vec<SparseCodecBlockVariant>`, where the
|
||||
/// index is the block index. For each block `byte_start` and `offset` is computed.
|
||||
#[derive(Clone)]
|
||||
pub struct OptionalIndex {
|
||||
num_rows: RowId,
|
||||
num_non_null_rows: RowId,
|
||||
block_data: OwnedBytes,
|
||||
block_metas: Arc<[BlockMeta]>,
|
||||
}
|
||||
|
||||
impl OptionalIndex {
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
self.num_rows
|
||||
}
|
||||
|
||||
pub fn num_non_nulls(&self) -> RowId {
|
||||
self.num_non_null_rows
|
||||
}
|
||||
}
|
||||
|
||||
/// Splits a value address into lower and upper 16bits.
|
||||
/// The lower 16 bits are the value in the block
|
||||
/// The upper 16 bits are the block index
|
||||
#[derive(Copy, Debug, Clone)]
|
||||
struct RowAddr {
|
||||
block_id: u16,
|
||||
in_block_row_id: u16,
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn row_addr_from_row_id(row_id: RowId) -> RowAddr {
|
||||
RowAddr {
|
||||
block_id: (row_id / BLOCK_SIZE) as u16,
|
||||
in_block_row_id: (row_id % BLOCK_SIZE) as u16,
|
||||
}
|
||||
}
|
||||
|
||||
enum BlockSelectCursor<'a> {
|
||||
Dense(<DenseBlock<'a> as Set<u16>>::SelectCursor<'a>),
|
||||
Sparse(<SparseBlock<'a> as Set<u16>>::SelectCursor<'a>),
|
||||
}
|
||||
|
||||
impl<'a> BlockSelectCursor<'a> {
|
||||
fn select(&mut self, rank: u16) -> u16 {
|
||||
match self {
|
||||
BlockSelectCursor::Dense(dense_select_cursor) => dense_select_cursor.select(rank),
|
||||
BlockSelectCursor::Sparse(sparse_select_cursor) => sparse_select_cursor.select(rank),
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
pub struct OptionalIndexSelectCursor<'a> {
|
||||
current_block_cursor: BlockSelectCursor<'a>,
|
||||
current_block_id: u16,
|
||||
// The current block is guaranteed to contain ranks < end_rank.
|
||||
current_block_end_rank: RowId,
|
||||
optional_index: &'a OptionalIndex,
|
||||
block_doc_idx_start: RowId,
|
||||
num_null_rows_before_block: RowId,
|
||||
}
|
||||
|
||||
impl<'a> OptionalIndexSelectCursor<'a> {
|
||||
fn search_and_load_block(&mut self, rank: RowId) {
|
||||
if rank < self.current_block_end_rank {
|
||||
// we are already in the right block
|
||||
return;
|
||||
}
|
||||
self.current_block_id = self.optional_index.find_block(rank, self.current_block_id);
|
||||
self.current_block_end_rank = self.optional_index.block_metas.get(self.current_block_id as usize + 1).map(|block_meta| block_meta.non_null_rows_before_block).unwrap_or(u32::MAX);
|
||||
self.block_doc_idx_start = (self.current_block_id as u32) * ELEMENTS_PER_BLOCK;
|
||||
let block_meta = self.optional_index.block_metas[self.current_block_id as usize];
|
||||
self.num_null_rows_before_block = block_meta.non_null_rows_before_block;
|
||||
let block: Block<'_> = self.optional_index.block(block_meta);
|
||||
self.current_block_cursor = match block {
|
||||
Block::Dense(dense_block) => BlockSelectCursor::Dense(dense_block.select_cursor()),
|
||||
Block::Sparse(sparse_block) => BlockSelectCursor::Sparse(sparse_block.select_cursor()),
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> SelectCursor<RowId> for OptionalIndexSelectCursor<'a> {
|
||||
fn select(&mut self, rank: RowId) -> RowId {
|
||||
self.search_and_load_block(rank);
|
||||
let index_in_block = (rank - self.num_null_rows_before_block) as u16;
|
||||
self.current_block_cursor.select(index_in_block) as RowId + self.block_doc_idx_start
|
||||
}
|
||||
}
|
||||
|
||||
impl Set<RowId> for OptionalIndex {
|
||||
type SelectCursor<'b> = OptionalIndexSelectCursor<'b> where Self: 'b;
|
||||
// Check if value at position is not null.
|
||||
#[inline]
|
||||
fn contains(&self, row_id: RowId) -> bool {
|
||||
let RowAddr {
|
||||
block_id,
|
||||
in_block_row_id,
|
||||
} = row_addr_from_row_id(row_id);
|
||||
let block_meta = self.block_metas[block_id as usize];
|
||||
match self.block(block_meta) {
|
||||
Block::Dense(dense_block) => dense_block.contains(in_block_row_id),
|
||||
Block::Sparse(sparse_block) => sparse_block.contains(in_block_row_id),
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn rank_if_exists(&self, row_id: RowId) -> Option<RowId> {
|
||||
let RowAddr {
|
||||
block_id,
|
||||
in_block_row_id,
|
||||
} = row_addr_from_row_id(row_id);
|
||||
let block_meta = self.block_metas[block_id as usize];
|
||||
let block = self.block(block_meta);
|
||||
let block_offset_row_id = match block {
|
||||
Block::Dense(dense_block) => dense_block.rank_if_exists(in_block_row_id),
|
||||
Block::Sparse(sparse_block) => sparse_block.rank_if_exists(in_block_row_id),
|
||||
}? as u32;
|
||||
Some(block_meta.non_null_rows_before_block + block_offset_row_id)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn select(&self, rank: RowId) -> RowId {
|
||||
let block_pos = self.find_block(rank, 0);
|
||||
let block_doc_idx_start = (block_pos as u32) * ELEMENTS_PER_BLOCK;
|
||||
let block_meta = self.block_metas[block_pos as usize];
|
||||
let block: Block<'_> = self.block(block_meta);
|
||||
let index_in_block = (rank - block_meta.non_null_rows_before_block) as u16;
|
||||
let in_block_rank = match block {
|
||||
Block::Dense(dense_block) => dense_block.select(index_in_block),
|
||||
Block::Sparse(sparse_block) => sparse_block.select(index_in_block),
|
||||
};
|
||||
block_doc_idx_start + in_block_rank as u32
|
||||
}
|
||||
|
||||
fn select_cursor<'b>(&'b self) -> OptionalIndexSelectCursor<'b> {
|
||||
OptionalIndexSelectCursor {
|
||||
current_block_cursor: BlockSelectCursor::Sparse(SparseBlockCodec::open(b"").select_cursor()),
|
||||
current_block_id: 0u16,
|
||||
current_block_end_rank: 0u32, //< this is sufficient to force the first load
|
||||
optional_index: self,
|
||||
block_doc_idx_start: 0u32,
|
||||
num_null_rows_before_block: 0u32,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl OptionalIndex {
|
||||
|
||||
pub fn select_batch(&self, ranks: &mut [RowId]) {
|
||||
let mut select_cursor = self.select_cursor();
|
||||
for rank in ranks.iter_mut() {
|
||||
*rank = select_cursor.select(*rank);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn block<'a>(&'a self, block_meta: BlockMeta) -> Block<'a> {
|
||||
let BlockMeta {
|
||||
start_byte_offset,
|
||||
block_variant,
|
||||
..
|
||||
} = block_meta;
|
||||
let start_byte_offset = start_byte_offset as usize;
|
||||
let bytes = self.block_data.as_slice();
|
||||
match block_variant {
|
||||
BlockVariant::Dense => Block::Dense(DenseBlockCodec::open(
|
||||
&bytes[start_byte_offset..start_byte_offset + DENSE_BLOCK_NUM_BYTES as usize],
|
||||
)),
|
||||
BlockVariant::Sparse { num_vals } => {
|
||||
let end_byte_offset = start_byte_offset + num_vals as usize * 2;
|
||||
let sparse_bytes = &bytes[start_byte_offset..end_byte_offset];
|
||||
Block::Sparse(SparseBlockCodec::open(sparse_bytes))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn find_block(&self, dense_idx: u32, start_block_pos: u16) -> u16 {
|
||||
for block_pos in start_block_pos..self.block_metas.len() as u16 {
|
||||
let offset = self.block_metas[block_pos as usize].non_null_rows_before_block;
|
||||
if offset > dense_idx {
|
||||
return block_pos - 1u16;
|
||||
}
|
||||
}
|
||||
self.block_metas.len() as u16 - 1u16
|
||||
}
|
||||
|
||||
// TODO Add a good API for the codec_idx to original_idx translation.
|
||||
// The Iterator API is a probably a bad idea
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
enum Block<'a> {
|
||||
Dense(DenseBlock<'a>),
|
||||
Sparse(SparseBlock<'a>),
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
enum OptionalIndexCodec {
|
||||
Dense = 0,
|
||||
Sparse = 1,
|
||||
}
|
||||
|
||||
impl OptionalIndexCodec {
|
||||
fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
fn try_from_code(code: u8) -> Result<Self, InvalidData> {
|
||||
match code {
|
||||
0 => Ok(Self::Dense),
|
||||
1 => Ok(Self::Sparse),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for OptionalIndexCodec {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(&[self.to_code()])
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let optional_codec_code = u8::deserialize(reader)?;
|
||||
let optional_codec = Self::try_from_code(optional_codec_code)?;
|
||||
Ok(optional_codec)
|
||||
}
|
||||
}
|
||||
|
||||
fn serialize_optional_index_block(block_els: &[u16], out: &mut impl io::Write) -> io::Result<()> {
|
||||
let is_sparse = is_sparse(block_els.len() as u32);
|
||||
if is_sparse {
|
||||
SparseBlockCodec::serialize(block_els.iter().copied(), out)?;
|
||||
} else {
|
||||
DenseBlockCodec::serialize(block_els.iter().copied(), out)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn serialize_optional_index<'a, W: io::Write>(
|
||||
serializable_optional_index: &dyn SerializableOptionalIndex<'a>,
|
||||
output: &mut W,
|
||||
) -> io::Result<()> {
|
||||
VInt(serializable_optional_index.num_rows() as u64).serialize(output)?;
|
||||
|
||||
let mut rows_it = serializable_optional_index.non_null_rows();
|
||||
let mut block_metadata: Vec<SerializedBlockMeta> = Vec::new();
|
||||
let mut current_block = Vec::new();
|
||||
|
||||
// This if-statement for the first element ensures that
|
||||
// `block_metadata` is not empty in the loop below.
|
||||
let Some(idx) = rows_it.next() else {
|
||||
output.write_all(&0u16.to_le_bytes())?;
|
||||
return Ok(());
|
||||
};
|
||||
|
||||
let row_addr = row_addr_from_row_id(idx);
|
||||
|
||||
let mut current_block_id = row_addr.block_id;
|
||||
current_block.push(row_addr.in_block_row_id);
|
||||
|
||||
for idx in rows_it {
|
||||
let value_addr = row_addr_from_row_id(idx);
|
||||
if current_block_id != value_addr.block_id {
|
||||
serialize_optional_index_block(¤t_block[..], output)?;
|
||||
block_metadata.push(SerializedBlockMeta {
|
||||
block_id: current_block_id,
|
||||
num_non_null_rows: current_block.len() as u32,
|
||||
});
|
||||
current_block.clear();
|
||||
current_block_id = value_addr.block_id;
|
||||
}
|
||||
current_block.push(value_addr.in_block_row_id);
|
||||
}
|
||||
|
||||
// handle last block
|
||||
serialize_optional_index_block(¤t_block[..], output)?;
|
||||
|
||||
block_metadata.push(SerializedBlockMeta {
|
||||
block_id: current_block_id,
|
||||
num_non_null_rows: current_block.len() as u32,
|
||||
});
|
||||
|
||||
for block in &block_metadata {
|
||||
output.write_all(&block.to_bytes())?;
|
||||
}
|
||||
|
||||
output.write_all((block_metadata.len() as u16).to_le_bytes().as_ref())?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
const SERIALIZED_BLOCK_META_NUM_BYTES: usize = 4;
|
||||
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
struct SerializedBlockMeta {
|
||||
block_id: u16,
|
||||
num_non_null_rows: u32, //< takes values in 1..=u16::MAX
|
||||
}
|
||||
|
||||
// TODO unit tests
|
||||
impl SerializedBlockMeta {
|
||||
#[inline]
|
||||
fn from_bytes(bytes: [u8; SERIALIZED_BLOCK_META_NUM_BYTES]) -> SerializedBlockMeta {
|
||||
let block_id = u16::from_le_bytes(bytes[0..2].try_into().unwrap());
|
||||
let num_non_null_rows: u32 =
|
||||
u16::from_le_bytes(bytes[2..4].try_into().unwrap()) as u32 + 1u32;
|
||||
SerializedBlockMeta {
|
||||
block_id,
|
||||
num_non_null_rows,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn to_bytes(&self) -> [u8; SERIALIZED_BLOCK_META_NUM_BYTES] {
|
||||
assert!(self.num_non_null_rows > 0);
|
||||
let mut bytes = [0u8; SERIALIZED_BLOCK_META_NUM_BYTES];
|
||||
bytes[0..2].copy_from_slice(&self.block_id.to_le_bytes());
|
||||
// We don't store empty blocks, therefore we can subtract 1.
|
||||
// This way we will be able to use u16 when the number of elements is 1 << 16 or u16::MAX+1
|
||||
bytes[2..4].copy_from_slice(&((self.num_non_null_rows - 1u32) as u16).to_le_bytes());
|
||||
bytes
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn is_sparse(num_rows_in_block: u32) -> bool {
|
||||
num_rows_in_block < DENSE_BLOCK_THRESHOLD as u32
|
||||
}
|
||||
|
||||
fn deserialize_optional_index_block_metadatas(
|
||||
data: &[u8],
|
||||
num_rows: u32,
|
||||
) -> (Box<[BlockMeta]>, u32) {
|
||||
let num_blocks = data.len() / SERIALIZED_BLOCK_META_NUM_BYTES;
|
||||
let mut block_metas = Vec::with_capacity(num_blocks as usize + 1);
|
||||
let mut start_byte_offset = 0;
|
||||
let mut non_null_rows_before_block = 0;
|
||||
for block_meta_bytes in data.chunks_exact(SERIALIZED_BLOCK_META_NUM_BYTES) {
|
||||
let block_meta_bytes: [u8; SERIALIZED_BLOCK_META_NUM_BYTES] =
|
||||
block_meta_bytes.try_into().unwrap();
|
||||
let SerializedBlockMeta {
|
||||
block_id,
|
||||
num_non_null_rows,
|
||||
} = SerializedBlockMeta::from_bytes(block_meta_bytes);
|
||||
block_metas.resize(
|
||||
block_id as usize,
|
||||
BlockMeta {
|
||||
non_null_rows_before_block,
|
||||
start_byte_offset,
|
||||
block_variant: BlockVariant::empty(),
|
||||
},
|
||||
);
|
||||
let block_variant = if is_sparse(num_non_null_rows) {
|
||||
BlockVariant::Sparse {
|
||||
num_vals: num_non_null_rows as u16,
|
||||
}
|
||||
} else {
|
||||
BlockVariant::Dense
|
||||
};
|
||||
block_metas.push(BlockMeta {
|
||||
non_null_rows_before_block,
|
||||
start_byte_offset,
|
||||
block_variant,
|
||||
});
|
||||
start_byte_offset += block_variant.num_bytes_in_block();
|
||||
non_null_rows_before_block += num_non_null_rows as u32;
|
||||
}
|
||||
block_metas.resize(
|
||||
((num_rows + BLOCK_SIZE - 1) / BLOCK_SIZE) as usize,
|
||||
BlockMeta {
|
||||
non_null_rows_before_block,
|
||||
start_byte_offset,
|
||||
block_variant: BlockVariant::empty(),
|
||||
},
|
||||
);
|
||||
(block_metas.into_boxed_slice(), non_null_rows_before_block)
|
||||
}
|
||||
|
||||
pub fn open_optional_index(bytes: OwnedBytes) -> io::Result<OptionalIndex> {
|
||||
let (mut bytes, num_non_empty_blocks_bytes) = bytes.rsplit(2);
|
||||
let num_non_empty_block_bytes =
|
||||
u16::from_le_bytes(num_non_empty_blocks_bytes.as_slice().try_into().unwrap());
|
||||
let num_rows = VInt::deserialize_u64(&mut bytes)? as u32;
|
||||
let block_metas_num_bytes =
|
||||
num_non_empty_block_bytes as usize * SERIALIZED_BLOCK_META_NUM_BYTES;
|
||||
let (block_data, block_metas) = bytes.rsplit(block_metas_num_bytes);
|
||||
let (block_metas, num_non_null_rows) =
|
||||
deserialize_optional_index_block_metadatas(block_metas.as_slice(), num_rows).into();
|
||||
let optional_index = OptionalIndex {
|
||||
num_rows,
|
||||
num_non_null_rows,
|
||||
block_data,
|
||||
block_metas: block_metas.into(),
|
||||
};
|
||||
Ok(optional_index)
|
||||
}
|
||||
|
||||
pub trait SerializableOptionalIndex<'a> {
|
||||
fn num_rows(&self) -> RowId;
|
||||
fn non_null_rows(&self) -> Box<dyn Iterator<Item = RowId> + 'a>;
|
||||
}
|
||||
|
||||
impl SerializableOptionalIndex<'static> for Range<u32> {
|
||||
fn num_rows(&self) -> RowId {
|
||||
self.end
|
||||
}
|
||||
fn non_null_rows(&self) -> Box<dyn Iterator<Item = RowId> + 'static> {
|
||||
Box::new(self.clone())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
@@ -1,45 +0,0 @@
|
||||
use std::io;
|
||||
|
||||
/// A codec makes it possible to serialize a set of
|
||||
/// elements, and open the resulting Set representation.
|
||||
pub trait SetCodec {
|
||||
type Item: Copy + TryFrom<usize> + Eq + std::hash::Hash + std::fmt::Debug;
|
||||
type Reader<'a>: Set<Self::Item>;
|
||||
|
||||
/// Serializes a set of unique sorted u16 elements.
|
||||
///
|
||||
/// May panic if the elements are not sorted.
|
||||
fn serialize(els: impl Iterator<Item = Self::Item>, wrt: impl io::Write) -> io::Result<()>;
|
||||
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a>;
|
||||
}
|
||||
|
||||
|
||||
/// Stateful object that makes it possible to compute several select in a row,
|
||||
/// provided the rank passed as argument are increasing.
|
||||
pub trait SelectCursor<T> {
|
||||
// May panic if rank is greater than the number of elements in the Set,
|
||||
// or if rank is < than value provided in the previous call.
|
||||
fn select(&mut self, rank: T) -> T;
|
||||
}
|
||||
|
||||
pub trait Set<T> {
|
||||
type SelectCursor<'b>: SelectCursor<T> where Self: 'b;
|
||||
|
||||
|
||||
/// Returns true if the elements is contained in the Set
|
||||
fn contains(&self, el: T) -> bool;
|
||||
|
||||
/// If the set contains `el` returns its position in the sortd set of elements.
|
||||
/// If the set does not contain the element, it returns `None`.
|
||||
fn rank_if_exists(&self, el: T) -> Option<T>;
|
||||
|
||||
/// Return the rank-th value stored in this bitmap.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if rank is greater than the number of elements in the Set.
|
||||
fn select(&self, rank: T) -> T;
|
||||
|
||||
/// Creates a brand new select cursor.
|
||||
fn select_cursor<'b>(&'b self,) -> Self::SelectCursor<'b>;
|
||||
}
|
||||
@@ -1,266 +0,0 @@
|
||||
use std::convert::TryInto;
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::BinarySerializable;
|
||||
|
||||
use crate::column_index::optional_index::{Set, SetCodec, SelectCursor, ELEMENTS_PER_BLOCK};
|
||||
|
||||
#[inline(always)]
|
||||
fn get_bit_at(input: u64, n: u16) -> bool {
|
||||
input & (1 << n) != 0
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_bit_at(input: &mut u64, n: u16) {
|
||||
*input |= 1 << n;
|
||||
}
|
||||
|
||||
/// For the `DenseCodec`, `data` which contains the encoded blocks.
|
||||
/// Each block consists of [u8; 12]. The first 8 bytes is a bitvec for 64 elements.
|
||||
/// The last 4 bytes are the offset, the number of set bits so far.
|
||||
///
|
||||
/// When translating the original index to a dense index, the correct block can be computed
|
||||
/// directly `orig_idx/64`. Inside the block the position is `orig_idx%64`.
|
||||
///
|
||||
/// When translating a dense index to the original index, we can use the offset to find the correct
|
||||
/// block. Direct computation is not possible, but we can employ a linear or binary search.
|
||||
|
||||
const ELEMENTS_PER_MINI_BLOCK: u16 = 64;
|
||||
const MINI_BLOCK_BITVEC_NUM_BYTES: usize = 8;
|
||||
const MINI_BLOCK_OFFSET_NUM_BYTES: usize = 2;
|
||||
pub const MINI_BLOCK_NUM_BYTES: usize = MINI_BLOCK_BITVEC_NUM_BYTES + MINI_BLOCK_OFFSET_NUM_BYTES;
|
||||
|
||||
/// Number of bytes in a dense block.
|
||||
pub const DENSE_BLOCK_NUM_BYTES: u32 =
|
||||
(ELEMENTS_PER_BLOCK as u32 / ELEMENTS_PER_MINI_BLOCK as u32) * MINI_BLOCK_NUM_BYTES as u32;
|
||||
|
||||
pub struct DenseBlockCodec;
|
||||
|
||||
impl SetCodec for DenseBlockCodec {
|
||||
type Item = u16;
|
||||
type Reader<'a> = DenseBlock<'a>;
|
||||
|
||||
fn serialize(els: impl Iterator<Item = u16>, wrt: impl io::Write) -> io::Result<()> {
|
||||
serialize_dense_codec(els, wrt)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a> {
|
||||
assert_eq!(data.len(), DENSE_BLOCK_NUM_BYTES as usize);
|
||||
DenseBlock(data)
|
||||
}
|
||||
}
|
||||
|
||||
/// Interpreting the bitvec as a set of integer within 0..=63
|
||||
/// and given an element, returns the number of elements in the
|
||||
/// set lesser than the element.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic or return a wrong result if el <= 64.
|
||||
#[inline(always)]
|
||||
fn rank_u64(bitvec: u64, el: u16) -> u16 {
|
||||
debug_assert!(el < 64);
|
||||
let mask = (1u64 << el) - 1;
|
||||
let masked_bitvec = bitvec & mask;
|
||||
masked_bitvec.count_ones() as u16
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn select_u64(mut bitvec: u64, rank: u16) -> u16 {
|
||||
for _ in 0..rank {
|
||||
bitvec &= bitvec - 1;
|
||||
}
|
||||
bitvec.trailing_zeros() as u16
|
||||
}
|
||||
|
||||
// TODO test the following solution on Intel... on Ryzen Zen <3 it is a catastrophy.
|
||||
// #[target_feature(enable = "bmi2")]
|
||||
// unsafe fn select_bitvec_unsafe(bitvec: u64, rank: u16) -> u16 {
|
||||
// let pdep = _pdep_u64(1u64 << rank, bitvec);
|
||||
// pdep.trailing_zeros() as u16
|
||||
// }
|
||||
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
struct DenseMiniBlock {
|
||||
bitvec: u64,
|
||||
rank: u16,
|
||||
}
|
||||
|
||||
impl DenseMiniBlock {
|
||||
fn from_bytes(data: [u8; MINI_BLOCK_NUM_BYTES]) -> Self {
|
||||
let bitvec = u64::from_le_bytes(data[..MINI_BLOCK_BITVEC_NUM_BYTES].try_into().unwrap());
|
||||
let rank = u16::from_le_bytes(data[MINI_BLOCK_BITVEC_NUM_BYTES..].try_into().unwrap());
|
||||
Self { bitvec, rank }
|
||||
}
|
||||
|
||||
fn to_bytes(&self) -> [u8; MINI_BLOCK_NUM_BYTES] {
|
||||
let mut bytes = [0u8; MINI_BLOCK_NUM_BYTES];
|
||||
bytes[..MINI_BLOCK_BITVEC_NUM_BYTES].copy_from_slice(&self.bitvec.to_le_bytes());
|
||||
bytes[MINI_BLOCK_BITVEC_NUM_BYTES..].copy_from_slice(&self.rank.to_le_bytes());
|
||||
bytes
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct DenseBlock<'a>(&'a [u8]);
|
||||
|
||||
pub struct DenseBlockSelectCursor<'a> {
|
||||
block_id: u16,
|
||||
dense_block: DenseBlock<'a>,
|
||||
}
|
||||
|
||||
impl<'a> SelectCursor<u16> for DenseBlockSelectCursor<'a> {
|
||||
#[inline]
|
||||
fn select(&mut self, rank: u16) -> u16 {
|
||||
self.block_id = self.dense_block.find_miniblock_containing_rank(rank, self.block_id).unwrap();
|
||||
let index_block = self.dense_block.mini_block(self.block_id);
|
||||
let in_block_rank = rank - index_block.rank;
|
||||
self.block_id * ELEMENTS_PER_MINI_BLOCK + select_u64(index_block.bitvec, in_block_rank)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Set<u16> for DenseBlock<'a> {
|
||||
type SelectCursor<'b> = DenseBlockSelectCursor<'a> where Self: 'b;
|
||||
|
||||
#[inline(always)]
|
||||
fn contains(&self, el: u16) -> bool {
|
||||
let mini_block_id = el / ELEMENTS_PER_MINI_BLOCK;
|
||||
let bitvec = self.mini_block(mini_block_id).bitvec;
|
||||
let pos_in_bitvec = el % ELEMENTS_PER_MINI_BLOCK;
|
||||
get_bit_at(bitvec, pos_in_bitvec)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn rank_if_exists(&self, el: u16) -> Option<u16> {
|
||||
let block_pos = el / ELEMENTS_PER_MINI_BLOCK;
|
||||
let index_block = self.mini_block(block_pos);
|
||||
let pos_in_block_bit_vec = el % ELEMENTS_PER_MINI_BLOCK;
|
||||
let ones_in_block = rank_u64(index_block.bitvec, pos_in_block_bit_vec);
|
||||
let rank = index_block.rank + ones_in_block;
|
||||
if get_bit_at(index_block.bitvec, pos_in_block_bit_vec) {
|
||||
Some(rank)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn select(&self, rank: u16) -> u16 {
|
||||
let block_id = self.find_miniblock_containing_rank(rank, 0).unwrap();
|
||||
let index_block = self.mini_block(block_id);
|
||||
let in_block_rank = rank - index_block.rank;
|
||||
block_id * ELEMENTS_PER_MINI_BLOCK + select_u64(index_block.bitvec, in_block_rank)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn select_cursor<'b>(&'b self,) -> Self::SelectCursor<'b> {
|
||||
DenseBlockSelectCursor {
|
||||
block_id: 0,
|
||||
dense_block: *self,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> DenseBlock<'a> {
|
||||
#[inline]
|
||||
fn mini_block(&self, mini_block_id: u16) -> DenseMiniBlock {
|
||||
let data_start_pos = mini_block_id as usize * MINI_BLOCK_NUM_BYTES;
|
||||
DenseMiniBlock::from_bytes(
|
||||
self.0[data_start_pos..data_start_pos + MINI_BLOCK_NUM_BYTES]
|
||||
.try_into()
|
||||
.unwrap(),
|
||||
)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter_miniblocks(
|
||||
&self,
|
||||
from_block_id: u16,
|
||||
) -> impl Iterator<Item = (u16, DenseMiniBlock)> + '_ {
|
||||
self.0
|
||||
.chunks_exact(MINI_BLOCK_NUM_BYTES)
|
||||
.enumerate()
|
||||
.skip(from_block_id as usize)
|
||||
.map(|(block_id, bytes)| {
|
||||
let mini_block = DenseMiniBlock::from_bytes(bytes.try_into().unwrap());
|
||||
(block_id as u16, mini_block)
|
||||
})
|
||||
}
|
||||
|
||||
/// Finds the block position containing the dense_idx.
|
||||
///
|
||||
/// # Correctness
|
||||
/// dense_idx needs to be smaller than the number of values in the index
|
||||
///
|
||||
/// The last offset number is equal to the number of values in the index.
|
||||
#[inline]
|
||||
fn find_miniblock_containing_rank(&self, rank: u16, from_block_id: u16) -> Option<u16> {
|
||||
self.iter_miniblocks(from_block_id)
|
||||
.take_while(|(_, block)| block.rank <= rank)
|
||||
.map(|(block_id, _)| block_id)
|
||||
.last()
|
||||
}
|
||||
}
|
||||
|
||||
/// Iterator over all values, true if set, otherwise false
|
||||
pub fn serialize_dense_codec(
|
||||
els: impl Iterator<Item = u16>,
|
||||
mut output: impl Write,
|
||||
) -> io::Result<()> {
|
||||
let mut non_null_rows_before: u16 = 0u16;
|
||||
let mut block = 0u64;
|
||||
let mut current_block_id = 0u16;
|
||||
for el in els {
|
||||
let block_id = el / ELEMENTS_PER_MINI_BLOCK;
|
||||
let in_offset = el % ELEMENTS_PER_MINI_BLOCK;
|
||||
while block_id > current_block_id {
|
||||
let dense_mini_block = DenseMiniBlock {
|
||||
bitvec: block,
|
||||
rank: non_null_rows_before as u16,
|
||||
};
|
||||
output.write_all(&dense_mini_block.to_bytes())?;
|
||||
non_null_rows_before += block.count_ones() as u16;
|
||||
block = 0u64;
|
||||
current_block_id += 1u16;
|
||||
}
|
||||
set_bit_at(&mut block, in_offset);
|
||||
}
|
||||
while current_block_id <= u16::MAX / ELEMENTS_PER_MINI_BLOCK {
|
||||
block.serialize(&mut output)?;
|
||||
non_null_rows_before.serialize(&mut output)?;
|
||||
// This will overflow to 0 exactly if all bits are set.
|
||||
// This is however not problem as we won't use this last value.
|
||||
non_null_rows_before = non_null_rows_before.wrapping_add(block.count_ones() as u16);
|
||||
block = 0u64;
|
||||
current_block_id += 1u16;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_select_bitvec() {
|
||||
assert_eq!(select_u64(1u64, 0), 0);
|
||||
assert_eq!(select_u64(2u64, 0), 1);
|
||||
assert_eq!(select_u64(4u64, 0), 2);
|
||||
assert_eq!(select_u64(8u64, 0), 3);
|
||||
assert_eq!(select_u64(1 | 8u64, 0), 0);
|
||||
assert_eq!(select_u64(1 | 8u64, 1), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_count_ones() {
|
||||
for i in 0..=63 {
|
||||
assert_eq!(rank_u64(u64::MAX, i), i);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dense() {
|
||||
assert_eq!(DENSE_BLOCK_NUM_BYTES, 10_240);
|
||||
}
|
||||
}
|
||||
@@ -1,8 +0,0 @@
|
||||
mod dense;
|
||||
mod sparse;
|
||||
|
||||
pub use dense::{DenseBlock, DenseBlockCodec, DENSE_BLOCK_NUM_BYTES};
|
||||
pub use sparse::{SparseBlock, SparseBlockCodec};
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
@@ -1,108 +0,0 @@
|
||||
use crate::column_index::optional_index::{Set, SetCodec, SelectCursor};
|
||||
|
||||
pub struct SparseBlockCodec;
|
||||
|
||||
impl SetCodec for SparseBlockCodec {
|
||||
type Item = u16;
|
||||
type Reader<'a> = SparseBlock<'a>;
|
||||
|
||||
fn serialize(
|
||||
els: impl Iterator<Item = u16>,
|
||||
mut wrt: impl std::io::Write,
|
||||
) -> std::io::Result<()> {
|
||||
for el in els {
|
||||
wrt.write_all(&el.to_le_bytes())?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a> {
|
||||
SparseBlock(data)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct SparseBlock<'a>(&'a [u8]);
|
||||
|
||||
impl<'a> SelectCursor<u16> for SparseBlock<'a> {
|
||||
#[inline]
|
||||
fn select(&mut self, rank: u16) -> u16 {
|
||||
<SparseBlock<'a> as Set<u16>>::select(self, rank)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Set<u16> for SparseBlock<'a> {
|
||||
|
||||
type SelectCursor<'b> = Self where Self: 'b;
|
||||
|
||||
#[inline(always)]
|
||||
fn contains(&self, el: u16) -> bool {
|
||||
self.binary_search(el).is_ok()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn rank_if_exists(&self, el: u16) -> Option<u16> {
|
||||
self.binary_search(el).ok()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn select(&self, rank: u16) -> u16 {
|
||||
let offset = rank as usize * 2;
|
||||
u16::from_le_bytes(self.0[offset..offset + 2].try_into().unwrap())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn select_cursor<'b>(&'b self,) -> Self::SelectCursor<'b> {
|
||||
*self
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_u16(data: &[u8], byte_position: usize) -> u16 {
|
||||
let bytes: [u8; 2] = data[byte_position..byte_position + 2].try_into().unwrap();
|
||||
u16::from_le_bytes(bytes)
|
||||
}
|
||||
|
||||
impl<'a> SparseBlock<'a> {
|
||||
#[inline(always)]
|
||||
fn value_at_idx(&self, data: &[u8], idx: u16) -> u16 {
|
||||
let start_offset: usize = idx as usize * 2;
|
||||
get_u16(data, start_offset)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u16 {
|
||||
(self.0.len() / 2) as u16
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[allow(clippy::comparison_chain)]
|
||||
// Looks for the element in the block. Returns the positions if found.
|
||||
fn binary_search(&self, target: u16) -> Result<u16, u16> {
|
||||
let data = &self.0;
|
||||
let mut size = self.num_vals();
|
||||
let mut left = 0;
|
||||
let mut right = size;
|
||||
// TODO try different implem.
|
||||
// e.g. exponential search into binary search
|
||||
while left < right {
|
||||
let mid = left + size / 2;
|
||||
|
||||
// TODO do boundary check only once, and then use an
|
||||
// unsafe `value_at_idx`
|
||||
let mid_val = self.value_at_idx(data, mid);
|
||||
|
||||
if target > mid_val {
|
||||
left = mid + 1;
|
||||
} else if target < mid_val {
|
||||
right = mid;
|
||||
} else {
|
||||
return Ok(mid);
|
||||
}
|
||||
|
||||
size = right - left;
|
||||
}
|
||||
Err(left)
|
||||
}
|
||||
}
|
||||
@@ -1,105 +0,0 @@
|
||||
use std::collections::HashMap;
|
||||
|
||||
use crate::column_index::optional_index::set_block::dense::DENSE_BLOCK_NUM_BYTES;
|
||||
use crate::column_index::optional_index::set_block::{DenseBlockCodec, SparseBlockCodec};
|
||||
use crate::column_index::optional_index::{Set, SetCodec, SelectCursor};
|
||||
|
||||
fn test_set_helper<C: SetCodec<Item = u16>>(vals: &[u16]) -> usize {
|
||||
let mut buffer = Vec::new();
|
||||
C::serialize(vals.iter().copied(), &mut buffer).unwrap();
|
||||
let tested_set = C::open(buffer.as_slice());
|
||||
let hash_set: HashMap<C::Item, C::Item> = vals
|
||||
.iter()
|
||||
.copied()
|
||||
.enumerate()
|
||||
.map(|(ord, val)| (val, C::Item::try_from(ord).ok().unwrap()))
|
||||
.collect();
|
||||
for val in 0u16..=u16::MAX {
|
||||
assert_eq!(tested_set.contains(val), hash_set.contains_key(&val));
|
||||
assert_eq!(tested_set.rank_if_exists(val), hash_set.get(&val).copied());
|
||||
}
|
||||
for rank in 0..vals.len() {
|
||||
assert_eq!(tested_set.select(rank as u16), vals[rank]);
|
||||
}
|
||||
buffer.len()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dense_block_set_u16_empty() {
|
||||
let buffer_len = test_set_helper::<DenseBlockCodec>(&[]);
|
||||
assert_eq!(buffer_len, DENSE_BLOCK_NUM_BYTES as usize);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dense_block_set_u16_max() {
|
||||
let buffer_len = test_set_helper::<DenseBlockCodec>(&[u16::MAX]);
|
||||
assert_eq!(buffer_len, DENSE_BLOCK_NUM_BYTES as usize);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sparse_block_set_u16_empty() {
|
||||
let buffer_len = test_set_helper::<SparseBlockCodec>(&[]);
|
||||
assert_eq!(buffer_len, 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sparse_block_set_u16_max() {
|
||||
let buffer_len = test_set_helper::<SparseBlockCodec>(&[u16::MAX]);
|
||||
assert_eq!(buffer_len, 2);
|
||||
}
|
||||
|
||||
use proptest::prelude::*;
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(1))]
|
||||
#[test]
|
||||
fn test_prop_test_dense(els in proptest::collection::btree_set(0..=u16::MAX, 0..=u16::MAX as usize)) {
|
||||
let vals: Vec<u16> = els.into_iter().collect();
|
||||
let buffer_len = test_set_helper::<DenseBlockCodec>(&vals);
|
||||
assert_eq!(buffer_len, DENSE_BLOCK_NUM_BYTES as usize);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_prop_test_sparse(els in proptest::collection::btree_set(0..=u16::MAX, 0..=u16::MAX as usize)) {
|
||||
let vals: Vec<u16> = els.into_iter().collect();
|
||||
let buffer_len = test_set_helper::<SparseBlockCodec>(&vals);
|
||||
assert_eq!(buffer_len, vals.len() * 2);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_simple_translate_codec_codec_idx_to_original_idx_dense() {
|
||||
let mut buffer = Vec::new();
|
||||
DenseBlockCodec::serialize([1, 3, 17, 32, 30_000, 30_001].iter().copied(), &mut buffer)
|
||||
.unwrap();
|
||||
let tested_set = DenseBlockCodec::open(buffer.as_slice());
|
||||
assert!(tested_set.contains(1));
|
||||
let mut select_cursor = tested_set.select_cursor();
|
||||
assert_eq!(select_cursor.select(0), 1);
|
||||
assert_eq!(select_cursor.select(1), 3);
|
||||
assert_eq!(select_cursor.select(2), 17);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_simple_translate_codec_idx_to_original_idx_sparse() {
|
||||
let mut buffer = Vec::new();
|
||||
SparseBlockCodec::serialize([1, 3, 17].iter().copied(), &mut buffer).unwrap();
|
||||
let tested_set = SparseBlockCodec::open(buffer.as_slice());
|
||||
assert!(tested_set.contains(1));
|
||||
let mut select_cursor = tested_set.select_cursor();
|
||||
assert_eq!(SelectCursor::select(&mut select_cursor, 0), 1);
|
||||
assert_eq!(SelectCursor::select(&mut select_cursor, 1), 3);
|
||||
assert_eq!(SelectCursor::select(&mut select_cursor, 2), 17);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_simple_translate_codec_idx_to_original_idx_dense() {
|
||||
let mut buffer = Vec::new();
|
||||
DenseBlockCodec::serialize(0u16..150u16, &mut buffer).unwrap();
|
||||
let tested_set = DenseBlockCodec::open(buffer.as_slice());
|
||||
assert!(tested_set.contains(1));
|
||||
let mut select_cursor = tested_set.select_cursor();
|
||||
for i in 0..150 {
|
||||
assert_eq!(i, select_cursor.select(i));
|
||||
}
|
||||
}
|
||||
@@ -1,327 +0,0 @@
|
||||
use proptest::prelude::{any, prop, *};
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_dense_block_threshold() {
|
||||
assert_eq!(super::DENSE_BLOCK_THRESHOLD, 5_120);
|
||||
}
|
||||
|
||||
fn random_bitvec() -> BoxedStrategy<Vec<bool>> {
|
||||
prop_oneof![
|
||||
1 => prop::collection::vec(proptest::bool::weighted(1.0), 0..100),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.00), 0..(ELEMENTS_PER_BLOCK as usize * 3)), // empty blocks
|
||||
1 => prop::collection::vec(proptest::bool::weighted(1.00), 0..(ELEMENTS_PER_BLOCK as usize + 10)), // full block
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..100),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..u16::MAX as usize),
|
||||
8 => vec![any::<bool>()],
|
||||
]
|
||||
.boxed()
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(50))]
|
||||
#[test]
|
||||
fn test_with_random_bitvecs(bitvec1 in random_bitvec(), bitvec2 in random_bitvec(), bitvec3 in random_bitvec()) {
|
||||
let mut bitvec = Vec::new();
|
||||
bitvec.extend_from_slice(&bitvec1);
|
||||
bitvec.extend_from_slice(&bitvec2);
|
||||
bitvec.extend_from_slice(&bitvec3);
|
||||
test_null_index(&bitvec[..]);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_random_sets_simple() {
|
||||
let vals = 10..BLOCK_SIZE * 2;
|
||||
let mut out: Vec<u8> = Vec::new();
|
||||
serialize_optional_index(&vals.clone(), &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
let ranks: Vec<u32> = (65_472u32..65_473u32).collect();
|
||||
let els: Vec<u32> = ranks.iter().copied().map(|rank| rank + 10).collect();
|
||||
let mut select_cursor = null_index.select_cursor();
|
||||
for (rank, el) in ranks.iter().copied().zip(els.iter().copied()) {
|
||||
assert_eq!(select_cursor.select(rank), el);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_trailing_empty_blocks() {
|
||||
test_null_index(&[false]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_one_block_false() {
|
||||
let mut iter = vec![false; ELEMENTS_PER_BLOCK as usize];
|
||||
iter.push(true);
|
||||
test_null_index(&iter[..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_one_block_true() {
|
||||
let mut iter = vec![true; ELEMENTS_PER_BLOCK as usize];
|
||||
iter.push(true);
|
||||
test_null_index(&iter[..]);
|
||||
}
|
||||
|
||||
impl<'a> SerializableOptionalIndex<'a> for &'a [bool] {
|
||||
fn num_rows(&self) -> RowId {
|
||||
self.len() as u32
|
||||
}
|
||||
|
||||
fn non_null_rows(&self) -> Box<dyn Iterator<Item = RowId> + 'a> {
|
||||
Box::new(
|
||||
self.iter()
|
||||
.cloned()
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _val)| pos as u32),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn test_null_index(data: &[bool]) {
|
||||
let mut out: Vec<u8> = Vec::new();
|
||||
serialize_optional_index(&data, &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
let orig_idx_with_value: Vec<u32> = data
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| **val)
|
||||
.map(|(pos, _val)| pos as u32)
|
||||
.collect();
|
||||
let mut select_iter = null_index.select_cursor();
|
||||
for i in 0..orig_idx_with_value.len() {
|
||||
assert_eq!(select_iter.select(i as u32), orig_idx_with_value[i]);
|
||||
}
|
||||
|
||||
let step_size = (orig_idx_with_value.len() / 100).max(1);
|
||||
for (dense_idx, orig_idx) in orig_idx_with_value.iter().enumerate().step_by(step_size) {
|
||||
assert_eq!(null_index.rank_if_exists(*orig_idx), Some(dense_idx as u32));
|
||||
}
|
||||
|
||||
// 100 samples
|
||||
let step_size = (data.len() / 100).max(1);
|
||||
for (pos, value) in data.iter().enumerate().step_by(step_size) {
|
||||
assert_eq!(null_index.contains(pos as u32), *value);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_test_translation() {
|
||||
let mut out = vec![];
|
||||
let iter = &[true, false, true, false];
|
||||
serialize_optional_index(&&iter[..], &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
let mut select_cursor = null_index.select_cursor();
|
||||
assert_eq!(select_cursor.select(0), 0);
|
||||
assert_eq!(select_cursor.select(1), 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_translate() {
|
||||
let mut out = vec![];
|
||||
let iter = &[true, false, true, false];
|
||||
serialize_optional_index(&&iter[..], &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
assert_eq!(null_index.rank_if_exists(0), Some(0));
|
||||
assert_eq!(null_index.rank_if_exists(2), Some(1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_small() {
|
||||
let mut out = vec![];
|
||||
let iter = &[true, false, true, false];
|
||||
serialize_optional_index(&&iter[..], &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
assert!(null_index.contains(0));
|
||||
assert!(!null_index.contains(1));
|
||||
assert!(null_index.contains(2));
|
||||
assert!(!null_index.contains(3));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_large() {
|
||||
let mut docs = vec![];
|
||||
docs.extend((0..ELEMENTS_PER_BLOCK).map(|_idx| false));
|
||||
docs.extend((0..=1).map(|_idx| true));
|
||||
|
||||
let mut out = vec![];
|
||||
serialize_optional_index(&&docs[..], &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
assert!(!null_index.contains(0));
|
||||
assert!(!null_index.contains(100));
|
||||
assert!(!null_index.contains(ELEMENTS_PER_BLOCK - 1));
|
||||
assert!(null_index.contains(ELEMENTS_PER_BLOCK));
|
||||
assert!(null_index.contains(ELEMENTS_PER_BLOCK + 1));
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::Bencher;
|
||||
|
||||
use super::*;
|
||||
|
||||
const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
fn gen_bools(fill_ratio: f64) -> OptionalIndex {
|
||||
let mut out = Vec::new();
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let vals: Vec<bool> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.collect();
|
||||
serialize_optional_index(&&vals[..], &mut out).unwrap();
|
||||
let codec = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
codec
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
start: u32,
|
||||
end: u32,
|
||||
avg_step_size: u32,
|
||||
avg_deviation: u32,
|
||||
) -> impl Iterator<Item = u32> {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end {
|
||||
None
|
||||
} else {
|
||||
Some(current)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent as f32 / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
}
|
||||
|
||||
fn walk_over_data(codec: &OptionalIndex, avg_step_size: u32) -> Option<u32> {
|
||||
walk_over_data_from_positions(
|
||||
codec,
|
||||
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
|
||||
)
|
||||
}
|
||||
|
||||
fn walk_over_data_from_positions(
|
||||
codec: &OptionalIndex,
|
||||
positions: impl Iterator<Item = u32>,
|
||||
) -> Option<u32> {
|
||||
let mut dense_idx: Option<u32> = None;
|
||||
for idx in positions {
|
||||
dense_idx = dense_idx.or(codec.rank_if_exists(idx));
|
||||
}
|
||||
dense_idx
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 1000));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.5f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 0.005f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_10percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.1f64, 0.005f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 10f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 100f32, bench);
|
||||
}
|
||||
|
||||
fn bench_translate_codec_to_orig_util(
|
||||
percent_filled: f64,
|
||||
percent_hit: f32,
|
||||
bench: &mut Bencher,
|
||||
) {
|
||||
let codec = gen_bools(percent_filled);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
let idxs: Vec<u32> = if percent_hit == 100.0f32 {
|
||||
(0..num_non_nulls).collect()
|
||||
} else {
|
||||
n_percent_step_iterator(percent_hit, num_non_nulls).collect()
|
||||
};
|
||||
let mut output = vec![0u32; idxs.len()];
|
||||
bench.iter(|| {
|
||||
output.copy_from_slice(&idxs[..]);
|
||||
codec.select_batch(&mut output);
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.9f64, 0.005, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.9f64, 100.0f32, bench);
|
||||
}
|
||||
}
|
||||
@@ -1,73 +0,0 @@
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
|
||||
use common::{CountingWriter, OwnedBytes};
|
||||
|
||||
use crate::column_index::multivalued_index::serialize_multivalued_index;
|
||||
use crate::column_index::optional_index::serialize_optional_index;
|
||||
use crate::column_index::{ColumnIndex, SerializableOptionalIndex};
|
||||
use crate::column_values::ColumnValues;
|
||||
use crate::{Cardinality, RowId};
|
||||
|
||||
pub enum SerializableColumnIndex<'a> {
|
||||
Full,
|
||||
Optional(Box<dyn SerializableOptionalIndex<'a> + 'a>),
|
||||
// TODO remove the Arc<dyn> apart from serialization this is not
|
||||
// dynamic at all.
|
||||
Multivalued(Box<dyn ColumnValues<RowId> + 'a>),
|
||||
}
|
||||
|
||||
impl<'a> SerializableColumnIndex<'a> {
|
||||
pub fn get_cardinality(&self) -> Cardinality {
|
||||
match self {
|
||||
SerializableColumnIndex::Full => Cardinality::Full,
|
||||
SerializableColumnIndex::Optional(_) => Cardinality::Optional,
|
||||
SerializableColumnIndex::Multivalued(_) => Cardinality::Multivalued,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn serialize_column_index(
|
||||
column_index: SerializableColumnIndex,
|
||||
output: &mut impl Write,
|
||||
) -> io::Result<u32> {
|
||||
let mut output = CountingWriter::wrap(output);
|
||||
let cardinality = column_index.get_cardinality().to_code();
|
||||
output.write_all(&[cardinality])?;
|
||||
match column_index {
|
||||
SerializableColumnIndex::Full => {}
|
||||
SerializableColumnIndex::Optional(optional_index) => {
|
||||
serialize_optional_index(&*optional_index, &mut output)?
|
||||
}
|
||||
SerializableColumnIndex::Multivalued(multivalued_index) => {
|
||||
serialize_multivalued_index(&*multivalued_index, &mut output)?
|
||||
}
|
||||
}
|
||||
let column_index_num_bytes = output.written_bytes() as u32;
|
||||
Ok(column_index_num_bytes)
|
||||
}
|
||||
|
||||
pub fn open_column_index(mut bytes: OwnedBytes) -> io::Result<ColumnIndex<'static>> {
|
||||
if bytes.is_empty() {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::UnexpectedEof,
|
||||
"Failed to deserialize column index. Empty buffer.",
|
||||
));
|
||||
}
|
||||
let cardinality_code = bytes[0];
|
||||
let cardinality = Cardinality::try_from_code(cardinality_code)?;
|
||||
bytes.advance(1);
|
||||
match cardinality {
|
||||
Cardinality::Full => Ok(ColumnIndex::Full),
|
||||
Cardinality::Optional => {
|
||||
let optional_index = super::optional_index::open_optional_index(bytes)?;
|
||||
Ok(ColumnIndex::Optional(optional_index))
|
||||
}
|
||||
Cardinality::Multivalued => {
|
||||
let multivalued_index = super::multivalued_index::open_multivalued_index(bytes)?;
|
||||
Ok(ColumnIndex::Multivalued(multivalued_index))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO unit tests
|
||||
201
columnar/src/column_type_header.rs
Normal file
201
columnar/src/column_type_header.rs
Normal file
@@ -0,0 +1,201 @@
|
||||
use crate::utils::{place_bits, select_bits};
|
||||
use crate::value::NumericalType;
|
||||
use crate::InvalidData;
|
||||
|
||||
/// Enum describing the number of values that can exist per document
|
||||
/// (or per row if you will).
|
||||
///
|
||||
/// The cardinality must fit on 2 bits.
|
||||
#[derive(Clone, Copy, Hash, Default, Debug, PartialEq, Eq, PartialOrd, Ord)]
|
||||
#[repr(u8)]
|
||||
pub enum Cardinality {
|
||||
/// All documents contain exactly one value.
|
||||
/// Required is the default for auto-detecting the Cardinality, since it is the most strict.
|
||||
#[default]
|
||||
Required = 0,
|
||||
/// All documents contain at most one value.
|
||||
Optional = 1,
|
||||
/// All documents may contain any number of values.
|
||||
Multivalued = 2,
|
||||
}
|
||||
|
||||
impl Cardinality {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn try_from_code(code: u8) -> Result<Cardinality, InvalidData> {
|
||||
match code {
|
||||
0 => Ok(Cardinality::Required),
|
||||
1 => Ok(Cardinality::Optional),
|
||||
2 => Ok(Cardinality::Multivalued),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// The column type represents the column type and can fit on 6-bits.
|
||||
///
|
||||
/// - bits[0..3]: Column category type.
|
||||
/// - bits[3..6]: Numerical type if necessary.
|
||||
#[derive(Hash, Eq, PartialEq, Debug, Clone, Copy)]
|
||||
pub enum ColumnType {
|
||||
Bytes,
|
||||
Numerical(NumericalType),
|
||||
Bool,
|
||||
}
|
||||
|
||||
impl ColumnType {
|
||||
/// Encoded over 6 bits.
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
let column_type_category;
|
||||
let numerical_type_code: u8;
|
||||
match self {
|
||||
ColumnType::Bytes => {
|
||||
column_type_category = ColumnTypeCategory::Str;
|
||||
numerical_type_code = 0u8;
|
||||
}
|
||||
ColumnType::Numerical(numerical_type) => {
|
||||
column_type_category = ColumnTypeCategory::Numerical;
|
||||
numerical_type_code = numerical_type.to_code();
|
||||
}
|
||||
ColumnType::Bool => {
|
||||
column_type_category = ColumnTypeCategory::Bool;
|
||||
numerical_type_code = 0u8;
|
||||
}
|
||||
}
|
||||
place_bits::<0, 3>(column_type_category.to_code()) | place_bits::<3, 6>(numerical_type_code)
|
||||
}
|
||||
|
||||
pub(crate) fn try_from_code(code: u8) -> Result<ColumnType, InvalidData> {
|
||||
if select_bits::<6, 8>(code) != 0u8 {
|
||||
return Err(InvalidData);
|
||||
}
|
||||
let column_type_category_code = select_bits::<0, 3>(code);
|
||||
let numerical_type_code = select_bits::<3, 6>(code);
|
||||
let column_type_category = ColumnTypeCategory::try_from_code(column_type_category_code)?;
|
||||
match column_type_category {
|
||||
ColumnTypeCategory::Bool => {
|
||||
if numerical_type_code != 0u8 {
|
||||
return Err(InvalidData);
|
||||
}
|
||||
Ok(ColumnType::Bool)
|
||||
}
|
||||
ColumnTypeCategory::Str => {
|
||||
if numerical_type_code != 0u8 {
|
||||
return Err(InvalidData);
|
||||
}
|
||||
Ok(ColumnType::Bytes)
|
||||
}
|
||||
ColumnTypeCategory::Numerical => {
|
||||
let numerical_type = NumericalType::try_from_code(numerical_type_code)?;
|
||||
Ok(ColumnType::Numerical(numerical_type))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Column types are grouped into different categories that
|
||||
/// corresponds to the different types of `JsonValue` types.
|
||||
///
|
||||
/// The columnar writer will apply coercion rules to make sure that
|
||||
/// at most one column exist per `ColumnTypeCategory`.
|
||||
///
|
||||
/// See also [README.md].
|
||||
#[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq, Debug)]
|
||||
#[repr(u8)]
|
||||
pub(crate) enum ColumnTypeCategory {
|
||||
Bool = 0u8,
|
||||
Str = 1u8,
|
||||
Numerical = 2u8,
|
||||
}
|
||||
|
||||
impl ColumnTypeCategory {
|
||||
pub fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub fn try_from_code(code: u8) -> Result<Self, InvalidData> {
|
||||
match code {
|
||||
0u8 => Ok(Self::Bool),
|
||||
1u8 => Ok(Self::Str),
|
||||
2u8 => Ok(Self::Numerical),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents the type and cardinality of a column.
|
||||
/// This is encoded over one-byte and added to a column key in the
|
||||
/// columnar sstable.
|
||||
///
|
||||
/// - [0..6] bits: encodes the column type
|
||||
/// - [6..8] bits: encodes the cardinality
|
||||
#[derive(Eq, Hash, PartialEq, Debug, Copy, Clone)]
|
||||
pub struct ColumnTypeAndCardinality {
|
||||
pub typ: ColumnType,
|
||||
pub cardinality: Cardinality,
|
||||
}
|
||||
|
||||
impl ColumnTypeAndCardinality {
|
||||
pub fn to_code(self) -> u8 {
|
||||
place_bits::<0, 6>(self.typ.to_code()) | place_bits::<6, 8>(self.cardinality.to_code())
|
||||
}
|
||||
|
||||
pub fn try_from_code(code: u8) -> Result<ColumnTypeAndCardinality, InvalidData> {
|
||||
let typ_code = select_bits::<0, 6>(code);
|
||||
let cardinality_code = select_bits::<6, 8>(code);
|
||||
let cardinality = Cardinality::try_from_code(cardinality_code)?;
|
||||
let typ = ColumnType::try_from_code(typ_code)?;
|
||||
assert_eq!(typ.to_code(), typ_code);
|
||||
Ok(ColumnTypeAndCardinality { cardinality, typ })
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::collections::HashSet;
|
||||
|
||||
use super::ColumnTypeAndCardinality;
|
||||
use crate::column_type_header::{Cardinality, ColumnType};
|
||||
|
||||
#[test]
|
||||
fn test_column_type_header_to_code() {
|
||||
let mut column_type_header_set: HashSet<ColumnTypeAndCardinality> = HashSet::new();
|
||||
for code in u8::MIN..=u8::MAX {
|
||||
if let Ok(column_type_header) = ColumnTypeAndCardinality::try_from_code(code) {
|
||||
assert_eq!(column_type_header.to_code(), code);
|
||||
assert!(column_type_header_set.insert(column_type_header));
|
||||
}
|
||||
}
|
||||
assert_eq!(
|
||||
column_type_header_set.len(),
|
||||
3 /* cardinality */ *
|
||||
(1 + 1 + 3) // column_types (str, bool, numerical x 3)
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_type_to_code() {
|
||||
let mut column_type_set: HashSet<ColumnType> = HashSet::new();
|
||||
for code in u8::MIN..=u8::MAX {
|
||||
if let Ok(column_type) = ColumnType::try_from_code(code) {
|
||||
assert_eq!(column_type.to_code(), code);
|
||||
assert!(column_type_set.insert(column_type));
|
||||
}
|
||||
}
|
||||
assert_eq!(column_type_set.len(), 2 + 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cardinality_to_code() {
|
||||
let mut num_cardinality = 0;
|
||||
for code in u8::MIN..=u8::MAX {
|
||||
if let Ok(cardinality) = Cardinality::try_from_code(code) {
|
||||
assert_eq!(cardinality.to_code(), code);
|
||||
num_cardinality += 1;
|
||||
}
|
||||
}
|
||||
assert_eq!(num_cardinality, 3);
|
||||
}
|
||||
}
|
||||
@@ -1,115 +0,0 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::OwnedBytes;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use super::serialize::NormalizedHeader;
|
||||
use super::{ColumnValues, FastFieldCodec, FastFieldCodecType};
|
||||
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct BitpackedReader {
|
||||
data: OwnedBytes,
|
||||
bit_unpacker: BitUnpacker,
|
||||
normalized_header: NormalizedHeader,
|
||||
}
|
||||
|
||||
impl ColumnValues for BitpackedReader {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
self.bit_unpacker.get(doc, &self.data)
|
||||
}
|
||||
#[inline]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The BitpackedReader assumes a normalized vector.
|
||||
0
|
||||
}
|
||||
#[inline]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.normalized_header.max_value
|
||||
}
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.normalized_header.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
pub struct BitpackedCodec;
|
||||
|
||||
impl FastFieldCodec for BitpackedCodec {
|
||||
/// The CODEC_TYPE is an enum value used for serialization.
|
||||
const CODEC_TYPE: FastFieldCodecType = FastFieldCodecType::Bitpacked;
|
||||
|
||||
type Reader = BitpackedReader;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn open_from_bytes(
|
||||
data: OwnedBytes,
|
||||
normalized_header: NormalizedHeader,
|
||||
) -> io::Result<Self::Reader> {
|
||||
let num_bits = compute_num_bits(normalized_header.max_value);
|
||||
let bit_unpacker = BitUnpacker::new(num_bits);
|
||||
Ok(BitpackedReader {
|
||||
data,
|
||||
bit_unpacker,
|
||||
normalized_header,
|
||||
})
|
||||
}
|
||||
|
||||
/// Serializes data with the BitpackedFastFieldSerializer.
|
||||
///
|
||||
/// The bitpacker assumes that the column has been normalized.
|
||||
/// i.e. It has already been shifted by its minimum value, so that its
|
||||
/// current minimum value is 0.
|
||||
///
|
||||
/// Ideally, we made a shift upstream on the column so that `col.min_value() == 0`.
|
||||
fn serialize(column: &dyn ColumnValues, write: &mut impl Write) -> io::Result<()> {
|
||||
assert_eq!(column.min_value(), 0u64);
|
||||
let num_bits = compute_num_bits(column.max_value());
|
||||
let mut bit_packer = BitPacker::new();
|
||||
for val in column.iter() {
|
||||
bit_packer.write(val, num_bits, write)?;
|
||||
}
|
||||
bit_packer.close(write)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn estimate(column: &dyn ColumnValues) -> Option<f32> {
|
||||
let num_bits = compute_num_bits(column.max_value());
|
||||
let num_bits_uncompressed = 64;
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::tests::create_and_validate;
|
||||
|
||||
fn create_and_validate_bitpacked_codec(data: &[u64], name: &str) {
|
||||
create_and_validate::<BitpackedCodec>(data, name);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_data_sets() {
|
||||
let data_sets = crate::column_values::tests::get_codec_test_datasets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate_bitpacked_codec(&data, name);
|
||||
data.reverse();
|
||||
create_and_validate::<BitpackedCodec>(&data, name);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bitpacked_fast_field_rand() {
|
||||
for _ in 0..500 {
|
||||
let mut data = (0..1 + rand::random::<u8>() as usize)
|
||||
.map(|_| rand::random::<i64>() as u64 / 2)
|
||||
.collect::<Vec<_>>();
|
||||
create_and_validate_bitpacked_codec(&data, "rand");
|
||||
data.reverse();
|
||||
create_and_validate::<BitpackedCodec>(&data, "rand");
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,188 +0,0 @@
|
||||
use std::sync::Arc;
|
||||
use std::{io, iter};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, DeserializeFrom, OwnedBytes};
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::column_values::line::Line;
|
||||
use crate::column_values::serialize::NormalizedHeader;
|
||||
use crate::column_values::{ColumnValues, FastFieldCodec, FastFieldCodecType, VecColumn};
|
||||
|
||||
const CHUNK_SIZE: usize = 512;
|
||||
|
||||
#[derive(Debug, Default)]
|
||||
struct Block {
|
||||
line: Line,
|
||||
bit_unpacker: BitUnpacker,
|
||||
data_start_offset: usize,
|
||||
}
|
||||
|
||||
impl BinarySerializable for Block {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.line.serialize(writer)?;
|
||||
self.bit_unpacker.bit_width().serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let line = Line::deserialize(reader)?;
|
||||
let bit_width = u8::deserialize(reader)?;
|
||||
Ok(Block {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
data_start_offset: 0,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_num_blocks(num_vals: u32) -> usize {
|
||||
(num_vals as usize + CHUNK_SIZE - 1) / CHUNK_SIZE
|
||||
}
|
||||
|
||||
pub struct BlockwiseLinearCodec;
|
||||
|
||||
impl FastFieldCodec for BlockwiseLinearCodec {
|
||||
const CODEC_TYPE: FastFieldCodecType = FastFieldCodecType::BlockwiseLinear;
|
||||
type Reader = BlockwiseLinearReader;
|
||||
|
||||
fn open_from_bytes(
|
||||
bytes: common::OwnedBytes,
|
||||
normalized_header: NormalizedHeader,
|
||||
) -> io::Result<Self::Reader> {
|
||||
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
|
||||
let footer_offset = bytes.len() - 4 - footer_len as usize;
|
||||
let (data, mut footer) = bytes.split(footer_offset);
|
||||
let num_blocks = compute_num_blocks(normalized_header.num_vals);
|
||||
let mut blocks: Vec<Block> = iter::repeat_with(|| Block::deserialize(&mut footer))
|
||||
.take(num_blocks)
|
||||
.collect::<io::Result<_>>()?;
|
||||
|
||||
let mut start_offset = 0;
|
||||
for block in &mut blocks {
|
||||
block.data_start_offset = start_offset;
|
||||
start_offset += (block.bit_unpacker.bit_width() as usize) * CHUNK_SIZE / 8;
|
||||
}
|
||||
Ok(BlockwiseLinearReader {
|
||||
blocks: Arc::new(blocks),
|
||||
data,
|
||||
normalized_header,
|
||||
})
|
||||
}
|
||||
|
||||
// Estimate first_chunk and extrapolate
|
||||
fn estimate(column: &dyn ColumnValues) -> Option<f32> {
|
||||
if column.num_vals() < 10 * CHUNK_SIZE as u32 {
|
||||
return None;
|
||||
}
|
||||
let mut first_chunk: Vec<u64> = column.iter().take(CHUNK_SIZE).collect();
|
||||
let line = Line::train(&VecColumn::from(&first_chunk));
|
||||
for (i, buffer_val) in first_chunk.iter_mut().enumerate() {
|
||||
let interpolated_val = line.eval(i as u32);
|
||||
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
|
||||
}
|
||||
let estimated_bit_width = first_chunk
|
||||
.iter()
|
||||
.map(|el| ((el + 1) as f32 * 3.0) as u64)
|
||||
.map(compute_num_bits)
|
||||
.max()
|
||||
.unwrap();
|
||||
|
||||
let metadata_per_block = {
|
||||
let mut out = vec![];
|
||||
Block::default().serialize(&mut out).unwrap();
|
||||
out.len()
|
||||
};
|
||||
let num_bits = estimated_bit_width as u64 * column.num_vals() as u64
|
||||
// function metadata per block
|
||||
+ metadata_per_block as u64 * (column.num_vals() as u64 / CHUNK_SIZE as u64);
|
||||
let num_bits_uncompressed = 64 * column.num_vals();
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
}
|
||||
|
||||
fn serialize(column: &dyn ColumnValues, wrt: &mut impl io::Write) -> io::Result<()> {
|
||||
// The BitpackedReader assumes a normalized vector.
|
||||
assert_eq!(column.min_value(), 0);
|
||||
let mut buffer = Vec::with_capacity(CHUNK_SIZE);
|
||||
let num_vals = column.num_vals();
|
||||
|
||||
let num_blocks = compute_num_blocks(num_vals);
|
||||
let mut blocks = Vec::with_capacity(num_blocks);
|
||||
|
||||
let mut vals = column.iter();
|
||||
|
||||
let mut bit_packer = BitPacker::new();
|
||||
|
||||
for _ in 0..num_blocks {
|
||||
buffer.clear();
|
||||
buffer.extend((&mut vals).take(CHUNK_SIZE));
|
||||
let line = Line::train(&VecColumn::from(&buffer));
|
||||
|
||||
assert!(!buffer.is_empty());
|
||||
|
||||
for (i, buffer_val) in buffer.iter_mut().enumerate() {
|
||||
let interpolated_val = line.eval(i as u32);
|
||||
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
|
||||
}
|
||||
let bit_width = buffer.iter().copied().map(compute_num_bits).max().unwrap();
|
||||
|
||||
for &buffer_val in &buffer {
|
||||
bit_packer.write(buffer_val, bit_width, wrt)?;
|
||||
}
|
||||
|
||||
blocks.push(Block {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
data_start_offset: 0,
|
||||
});
|
||||
}
|
||||
|
||||
bit_packer.close(wrt)?;
|
||||
|
||||
assert_eq!(blocks.len(), compute_num_blocks(num_vals));
|
||||
|
||||
let mut counting_wrt = CountingWriter::wrap(wrt);
|
||||
for block in &blocks {
|
||||
block.serialize(&mut counting_wrt)?;
|
||||
}
|
||||
let footer_len = counting_wrt.written_bytes();
|
||||
(footer_len as u32).serialize(&mut counting_wrt)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct BlockwiseLinearReader {
|
||||
blocks: Arc<Vec<Block>>,
|
||||
normalized_header: NormalizedHeader,
|
||||
data: OwnedBytes,
|
||||
}
|
||||
|
||||
impl ColumnValues for BlockwiseLinearReader {
|
||||
#[inline(always)]
|
||||
fn get_val(&self, idx: u32) -> u64 {
|
||||
let block_id = (idx / CHUNK_SIZE as u32) as usize;
|
||||
let idx_within_block = idx % (CHUNK_SIZE as u32);
|
||||
let block = &self.blocks[block_id];
|
||||
let interpoled_val: u64 = block.line.eval(idx_within_block);
|
||||
let block_bytes = &self.data[block.data_start_offset..];
|
||||
let bitpacked_diff = block.bit_unpacker.get(idx_within_block, block_bytes);
|
||||
interpoled_val.wrapping_add(bitpacked_diff)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The BlockwiseLinearReader assumes a normalized vector.
|
||||
0u64
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.normalized_header.max_value
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.normalized_header.num_vals
|
||||
}
|
||||
}
|
||||
@@ -1,376 +0,0 @@
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
|
||||
use tantivy_bitpacker::minmax;
|
||||
|
||||
use crate::column_values::monotonic_mapping::StrictlyMonotonicFn;
|
||||
|
||||
/// `ColumnValues` provides access to a dense field column.
|
||||
///
|
||||
/// `Column` are just a wrapper over `ColumnValues` and a `ColumnIndex`.
|
||||
pub trait ColumnValues<T: PartialOrd = u64>: Send + Sync {
|
||||
/// Return the value associated with the given idx.
|
||||
///
|
||||
/// This accessor should return as fast as possible.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `idx` is greater than the column length.
|
||||
fn get_val(&self, idx: u32) -> T;
|
||||
|
||||
/// Fills an output buffer with the fast field values
|
||||
/// associated with the `DocId` going from
|
||||
/// `start` to `start + output.len()`.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Must panic if `start + output.len()` is greater than
|
||||
/// the segment's `maxdoc`.
|
||||
#[inline]
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
for (out, idx) in output.iter_mut().zip(start..) {
|
||||
*out = self.get_val(idx as u32);
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the positions of values which are in the provided value range.
|
||||
///
|
||||
/// Note that position == docid for single value fast fields
|
||||
#[inline]
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<T>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
let doc_id_range = doc_id_range.start..doc_id_range.end.min(self.num_vals());
|
||||
|
||||
for idx in doc_id_range.start..doc_id_range.end {
|
||||
let val = self.get_val(idx);
|
||||
if value_range.contains(&val) {
|
||||
positions.push(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the minimum value for this fast field.
|
||||
///
|
||||
/// This min_value may not be exact.
|
||||
/// For instance, the min value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.min_value()`.
|
||||
fn min_value(&self) -> T;
|
||||
|
||||
/// Returns the maximum value for this fast field.
|
||||
///
|
||||
/// This max_value may not be exact.
|
||||
/// For instance, the max value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.max_value()`.
|
||||
fn max_value(&self) -> T;
|
||||
|
||||
/// The number of values in the column.
|
||||
fn num_vals(&self) -> u32;
|
||||
|
||||
/// Returns a iterator over the data
|
||||
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = T> + 'a> {
|
||||
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Copy + PartialOrd> ColumnValues<T> for std::sync::Arc<dyn ColumnValues<T>> {
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
self.as_ref().get_val(idx)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
self.as_ref().min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
self.as_ref().max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.as_ref().num_vals()
|
||||
}
|
||||
|
||||
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
|
||||
self.as_ref().iter()
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
self.as_ref().get_range(start, output)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, C: ColumnValues<T> + ?Sized, T: Copy + PartialOrd> ColumnValues<T> for &'a C {
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
(*self).get_val(idx)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
(*self).min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
(*self).max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
(*self).num_vals()
|
||||
}
|
||||
|
||||
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
|
||||
(*self).iter()
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
(*self).get_range(start, output)
|
||||
}
|
||||
}
|
||||
|
||||
/// VecColumn provides `Column` over a slice.
|
||||
pub struct VecColumn<'a, T = u64> {
|
||||
pub(crate) values: &'a [T],
|
||||
pub(crate) min_value: T,
|
||||
pub(crate) max_value: T,
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Send + Sync> ColumnValues<T> for VecColumn<'a, T> {
|
||||
fn get_val(&self, position: u32) -> T {
|
||||
self.values[position as usize]
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
|
||||
Box::new(self.values.iter().copied())
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
self.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.values.len() as u32
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
output.copy_from_slice(&self.values[start as usize..][..output.len()])
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Default, V> From<&'a V> for VecColumn<'a, T>
|
||||
where V: AsRef<[T]> + ?Sized
|
||||
{
|
||||
fn from(values: &'a V) -> Self {
|
||||
let values = values.as_ref();
|
||||
let (min_value, max_value) = minmax(values.iter().copied()).unwrap_or_default();
|
||||
Self {
|
||||
values,
|
||||
min_value,
|
||||
max_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct MonotonicMappingColumn<C, T, Input> {
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
_phantom: PhantomData<Input>,
|
||||
}
|
||||
|
||||
/// Creates a view of a column transformed by a strictly monotonic mapping. See
|
||||
/// [`StrictlyMonotonicFn`].
|
||||
///
|
||||
/// E.g. apply a gcd monotonic_mapping([100, 200, 300]) == [1, 2, 3]
|
||||
/// monotonic_mapping.mapping() is expected to be injective, and we should always have
|
||||
/// monotonic_mapping.inverse(monotonic_mapping.mapping(el)) == el
|
||||
///
|
||||
/// The inverse of the mapping is required for:
|
||||
/// `fn get_positions_for_value_range(&self, range: RangeInclusive<T>) -> Vec<u64> `
|
||||
/// The user provides the original value range and we need to monotonic map them in the same way the
|
||||
/// serialization does before calling the underlying column.
|
||||
///
|
||||
/// Note that when opening a codec, the monotonic_mapping should be the inverse of the mapping
|
||||
/// during serialization. And therefore the monotonic_mapping_inv when opening is the same as
|
||||
/// monotonic_mapping during serialization.
|
||||
pub fn monotonic_map_column<C, T, Input, Output>(
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
) -> impl ColumnValues<Output>
|
||||
where
|
||||
C: ColumnValues<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Sync + Clone,
|
||||
Output: PartialOrd + Send + Sync + Clone,
|
||||
{
|
||||
MonotonicMappingColumn {
|
||||
from_column,
|
||||
monotonic_mapping,
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
impl<C, T, Input, Output> ColumnValues<Output> for MonotonicMappingColumn<C, T, Input>
|
||||
where
|
||||
C: ColumnValues<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Sync + Clone,
|
||||
Output: PartialOrd + Send + Sync + Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn get_val(&self, idx: u32) -> Output {
|
||||
let from_val = self.from_column.get_val(idx);
|
||||
self.monotonic_mapping.mapping(from_val)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> Output {
|
||||
let from_min_value = self.from_column.min_value();
|
||||
self.monotonic_mapping.mapping(from_min_value)
|
||||
}
|
||||
|
||||
fn max_value(&self) -> Output {
|
||||
let from_max_value = self.from_column.max_value();
|
||||
self.monotonic_mapping.mapping(from_max_value)
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.from_column.num_vals()
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = Output> + '_> {
|
||||
Box::new(
|
||||
self.from_column
|
||||
.iter()
|
||||
.map(|el| self.monotonic_mapping.mapping(el)),
|
||||
)
|
||||
}
|
||||
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<Output>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.from_column.get_docids_for_value_range(
|
||||
self.monotonic_mapping.inverse(range.start().clone())
|
||||
..=self.monotonic_mapping.inverse(range.end().clone()),
|
||||
doc_id_range,
|
||||
positions,
|
||||
)
|
||||
}
|
||||
|
||||
// We voluntarily do not implement get_range as it yields a regression,
|
||||
// and we do not have any specialized implementation anyway.
|
||||
}
|
||||
|
||||
/// Wraps an iterator into a `Column`.
|
||||
pub struct IterColumn<T>(T);
|
||||
|
||||
impl<T> From<T> for IterColumn<T>
|
||||
where T: Iterator + Clone + ExactSizeIterator
|
||||
{
|
||||
fn from(iter: T) -> Self {
|
||||
IterColumn(iter)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> ColumnValues<T::Item> for IterColumn<T>
|
||||
where
|
||||
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
|
||||
T::Item: PartialOrd,
|
||||
{
|
||||
fn get_val(&self, idx: u32) -> T::Item {
|
||||
self.0.clone().nth(idx as usize).unwrap()
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T::Item {
|
||||
self.0.clone().next().unwrap()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T::Item {
|
||||
self.0.clone().last().unwrap()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.0.len() as u32
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T::Item> + '_> {
|
||||
Box::new(self.0.clone())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternalBaseval,
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping() {
|
||||
let vals = &[3u64, 5u64][..];
|
||||
let col = VecColumn::from(vals);
|
||||
let mapped = monotonic_map_column(col, StrictlyMonotonicMappingToInternalBaseval::new(2));
|
||||
assert_eq!(mapped.min_value(), 1u64);
|
||||
assert_eq!(mapped.max_value(), 3u64);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.get_val(0), 1);
|
||||
assert_eq!(mapped.get_val(1), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_as_col() {
|
||||
let col = IterColumn::from(10..100);
|
||||
assert_eq!(col.num_vals(), 90);
|
||||
assert_eq!(col.max_value(), 99);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_iter() {
|
||||
let vals: Vec<u64> = (10..110u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100),
|
||||
),
|
||||
);
|
||||
let val_i64s: Vec<u64> = mapped.iter().collect();
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_get_range() {
|
||||
let vals: Vec<u64> = (0..100u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 0),
|
||||
),
|
||||
);
|
||||
|
||||
assert_eq!(mapped.min_value(), 0u64);
|
||||
assert_eq!(mapped.max_value(), 9900u64);
|
||||
assert_eq!(mapped.num_vals(), 100);
|
||||
let val_u64s: Vec<u64> = mapped.iter().collect();
|
||||
assert_eq!(val_u64s.len(), 100);
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_u64s[i as usize], mapped.get_val(i));
|
||||
assert_eq!(val_u64s[i as usize], vals[i as usize] * 10);
|
||||
}
|
||||
let mut buf = [0u64; 20];
|
||||
mapped.get_range(7, &mut buf[..]);
|
||||
assert_eq!(&val_u64s[7..][..20], &buf);
|
||||
}
|
||||
}
|
||||
@@ -1,19 +0,0 @@
|
||||
// Copyright (C) 2022 Quickwit, Inc.
|
||||
//
|
||||
// Quickwit is offered under the AGPL v3.0 and as commercial software.
|
||||
// For commercial licensing, contact us at hello@quickwit.io.
|
||||
//
|
||||
// AGPL:
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Affero General Public License as
|
||||
// published by the Free Software Foundation, either version 3 of the
|
||||
// License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Affero General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Affero General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
//
|
||||
@@ -1,43 +0,0 @@
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
/// The range of a blank in value space.
|
||||
///
|
||||
/// A blank is an unoccupied space in the data.
|
||||
/// Use try_into() to construct.
|
||||
/// A range has to have at least length of 3. Invalid ranges will be rejected.
|
||||
///
|
||||
/// Ordered by range length.
|
||||
#[derive(Debug, Eq, PartialEq, Clone)]
|
||||
pub(crate) struct BlankRange {
|
||||
blank_range: RangeInclusive<u128>,
|
||||
}
|
||||
impl TryFrom<RangeInclusive<u128>> for BlankRange {
|
||||
type Error = &'static str;
|
||||
fn try_from(range: RangeInclusive<u128>) -> Result<Self, Self::Error> {
|
||||
let blank_size = range.end().saturating_sub(*range.start());
|
||||
if blank_size < 2 {
|
||||
Err("invalid range")
|
||||
} else {
|
||||
Ok(BlankRange { blank_range: range })
|
||||
}
|
||||
}
|
||||
}
|
||||
impl BlankRange {
|
||||
pub(crate) fn blank_size(&self) -> u128 {
|
||||
self.blank_range.end() - self.blank_range.start() + 1
|
||||
}
|
||||
pub(crate) fn blank_range(&self) -> RangeInclusive<u128> {
|
||||
self.blank_range.clone()
|
||||
}
|
||||
}
|
||||
|
||||
impl Ord for BlankRange {
|
||||
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
|
||||
self.blank_size().cmp(&other.blank_size())
|
||||
}
|
||||
}
|
||||
impl PartialOrd for BlankRange {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
|
||||
Some(self.blank_size().cmp(&other.blank_size()))
|
||||
}
|
||||
}
|
||||
@@ -1,231 +0,0 @@
|
||||
use std::collections::{BTreeSet, BinaryHeap};
|
||||
use std::iter;
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::blank_range::BlankRange;
|
||||
use super::{CompactSpace, RangeMapping};
|
||||
|
||||
/// Put the blanks for the sorted values into a binary heap
|
||||
fn get_blanks(values_sorted: &BTreeSet<u128>) -> BinaryHeap<BlankRange> {
|
||||
let mut blanks: BinaryHeap<BlankRange> = BinaryHeap::new();
|
||||
for (first, second) in values_sorted.iter().tuple_windows() {
|
||||
// Correctness Overflow: the values are deduped and sorted (BTreeSet property), that means
|
||||
// there's always space between two values.
|
||||
let blank_range = first + 1..=second - 1;
|
||||
let blank_range: Result<BlankRange, _> = blank_range.try_into();
|
||||
if let Ok(blank_range) = blank_range {
|
||||
blanks.push(blank_range);
|
||||
}
|
||||
}
|
||||
|
||||
blanks
|
||||
}
|
||||
|
||||
struct BlankCollector {
|
||||
blanks: Vec<BlankRange>,
|
||||
staged_blanks_sum: u128,
|
||||
}
|
||||
impl BlankCollector {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
blanks: vec![],
|
||||
staged_blanks_sum: 0,
|
||||
}
|
||||
}
|
||||
fn stage_blank(&mut self, blank: BlankRange) {
|
||||
self.staged_blanks_sum += blank.blank_size();
|
||||
self.blanks.push(blank);
|
||||
}
|
||||
fn drain(&mut self) -> impl Iterator<Item = BlankRange> + '_ {
|
||||
self.staged_blanks_sum = 0;
|
||||
self.blanks.drain(..)
|
||||
}
|
||||
fn staged_blanks_sum(&self) -> u128 {
|
||||
self.staged_blanks_sum
|
||||
}
|
||||
fn num_staged_blanks(&self) -> usize {
|
||||
self.blanks.len()
|
||||
}
|
||||
}
|
||||
fn num_bits(val: u128) -> u8 {
|
||||
(128u32 - val.leading_zeros()) as u8
|
||||
}
|
||||
|
||||
/// Will collect blanks and add them to compact space if more bits are saved than cost from
|
||||
/// metadata.
|
||||
pub fn get_compact_space(
|
||||
values_deduped_sorted: &BTreeSet<u128>,
|
||||
total_num_values: u32,
|
||||
cost_per_blank: usize,
|
||||
) -> CompactSpace {
|
||||
let mut compact_space_builder = CompactSpaceBuilder::new();
|
||||
if values_deduped_sorted.is_empty() {
|
||||
return compact_space_builder.finish();
|
||||
}
|
||||
|
||||
let mut blanks: BinaryHeap<BlankRange> = get_blanks(values_deduped_sorted);
|
||||
// Replace after stabilization of https://github.com/rust-lang/rust/issues/62924
|
||||
|
||||
// We start by space that's limited to min_value..=max_value
|
||||
let min_value = *values_deduped_sorted.iter().next().unwrap_or(&0);
|
||||
let max_value = *values_deduped_sorted.iter().last().unwrap_or(&0);
|
||||
|
||||
// +1 for null, in case min and max covers the whole space, we are off by one.
|
||||
let mut amplitude_compact_space = (max_value - min_value).saturating_add(1);
|
||||
if min_value != 0 {
|
||||
compact_space_builder.add_blanks(iter::once(0..=min_value - 1));
|
||||
}
|
||||
if max_value != u128::MAX {
|
||||
compact_space_builder.add_blanks(iter::once(max_value + 1..=u128::MAX));
|
||||
}
|
||||
|
||||
let mut amplitude_bits: u8 = num_bits(amplitude_compact_space);
|
||||
|
||||
let mut blank_collector = BlankCollector::new();
|
||||
// We will stage blanks until they reduce the compact space by at least 1 bit and then flush
|
||||
// them if the metadata cost is lower than the total number of saved bits.
|
||||
// Binary heap to process the gaps by their size
|
||||
while let Some(blank_range) = blanks.pop() {
|
||||
blank_collector.stage_blank(blank_range);
|
||||
|
||||
let staged_spaces_sum: u128 = blank_collector.staged_blanks_sum();
|
||||
let amplitude_new_compact_space = amplitude_compact_space - staged_spaces_sum;
|
||||
let amplitude_new_bits = num_bits(amplitude_new_compact_space);
|
||||
if amplitude_bits == amplitude_new_bits {
|
||||
continue;
|
||||
}
|
||||
let saved_bits = (amplitude_bits - amplitude_new_bits) as usize * total_num_values as usize;
|
||||
// TODO: Maybe calculate exact cost of blanks and run this more expensive computation only,
|
||||
// when amplitude_new_bits changes
|
||||
let cost = blank_collector.num_staged_blanks() * cost_per_blank;
|
||||
if cost >= saved_bits {
|
||||
// Continue here, since although we walk over the blanks by size,
|
||||
// we can potentially save a lot at the last bits, which are smaller blanks
|
||||
//
|
||||
// E.g. if the first range reduces the compact space by 1000 from 2000 to 1000, which
|
||||
// saves 11-10=1 bit and the next range reduces the compact space by 950 to
|
||||
// 50, which saves 10-6=4 bit
|
||||
continue;
|
||||
}
|
||||
|
||||
amplitude_compact_space = amplitude_new_compact_space;
|
||||
amplitude_bits = amplitude_new_bits;
|
||||
compact_space_builder.add_blanks(blank_collector.drain().map(|blank| blank.blank_range()));
|
||||
}
|
||||
|
||||
// special case, when we don't collected any blanks because:
|
||||
// * the data is empty (early exit)
|
||||
// * the algorithm did decide it's not worth the cost, which can be the case for single values
|
||||
//
|
||||
// We drain one collected blank unconditionally, so the empty case is reserved for empty
|
||||
// data, and therefore empty compact_space means the data is empty and no data is covered
|
||||
// (conversely to all data) and we can assign null to it.
|
||||
if compact_space_builder.is_empty() {
|
||||
compact_space_builder.add_blanks(
|
||||
blank_collector
|
||||
.drain()
|
||||
.map(|blank| blank.blank_range())
|
||||
.take(1),
|
||||
);
|
||||
}
|
||||
|
||||
let compact_space = compact_space_builder.finish();
|
||||
if max_value - min_value != u128::MAX {
|
||||
debug_assert_eq!(
|
||||
compact_space.amplitude_compact_space(),
|
||||
amplitude_compact_space
|
||||
);
|
||||
}
|
||||
compact_space
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
struct CompactSpaceBuilder {
|
||||
blanks: Vec<RangeInclusive<u128>>,
|
||||
}
|
||||
|
||||
impl CompactSpaceBuilder {
|
||||
/// Creates a new compact space builder which will initially cover the whole space.
|
||||
fn new() -> Self {
|
||||
Self { blanks: Vec::new() }
|
||||
}
|
||||
|
||||
/// Assumes that repeated add_blank calls don't overlap and are not adjacent,
|
||||
/// e.g. [3..=5, 5..=10] is not allowed
|
||||
///
|
||||
/// Both of those assumptions are true when blanks are produced from sorted values.
|
||||
fn add_blanks(&mut self, blank: impl Iterator<Item = RangeInclusive<u128>>) {
|
||||
self.blanks.extend(blank);
|
||||
}
|
||||
|
||||
fn is_empty(&self) -> bool {
|
||||
self.blanks.is_empty()
|
||||
}
|
||||
|
||||
/// Convert blanks to covered space and assign null value
|
||||
fn finish(mut self) -> CompactSpace {
|
||||
// sort by start. ranges are not allowed to overlap
|
||||
self.blanks.sort_unstable_by_key(|blank| *blank.start());
|
||||
|
||||
let mut covered_space = Vec::with_capacity(self.blanks.len());
|
||||
|
||||
// begining of the blanks
|
||||
if let Some(first_blank_start) = self.blanks.first().map(RangeInclusive::start) {
|
||||
if *first_blank_start != 0 {
|
||||
covered_space.push(0..=first_blank_start - 1);
|
||||
}
|
||||
}
|
||||
|
||||
// Between the blanks
|
||||
let between_blanks = self.blanks.iter().tuple_windows().map(|(left, right)| {
|
||||
assert!(
|
||||
left.end() < right.start(),
|
||||
"overlapping or adjacent ranges detected"
|
||||
);
|
||||
*left.end() + 1..=*right.start() - 1
|
||||
});
|
||||
covered_space.extend(between_blanks);
|
||||
|
||||
// end of the blanks
|
||||
if let Some(last_blank_end) = self.blanks.last().map(RangeInclusive::end) {
|
||||
if *last_blank_end != u128::MAX {
|
||||
covered_space.push(last_blank_end + 1..=u128::MAX);
|
||||
}
|
||||
}
|
||||
|
||||
if covered_space.is_empty() {
|
||||
covered_space.push(0..=0); // empty data case
|
||||
};
|
||||
|
||||
let mut compact_start: u64 = 1; // 0 is reserved for `null`
|
||||
let mut ranges_mapping: Vec<RangeMapping> = Vec::with_capacity(covered_space.len());
|
||||
for cov in covered_space {
|
||||
let range_mapping = super::RangeMapping {
|
||||
value_range: cov,
|
||||
compact_start,
|
||||
};
|
||||
let covered_range_len = range_mapping.range_length();
|
||||
ranges_mapping.push(range_mapping);
|
||||
compact_start += covered_range_len;
|
||||
}
|
||||
// println!("num ranges {}", ranges_mapping.len());
|
||||
CompactSpace { ranges_mapping }
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_binary_heap_pop_order() {
|
||||
let mut blanks: BinaryHeap<BlankRange> = BinaryHeap::new();
|
||||
blanks.push((0..=10).try_into().unwrap());
|
||||
blanks.push((100..=200).try_into().unwrap());
|
||||
blanks.push((100..=110).try_into().unwrap());
|
||||
assert_eq!(blanks.pop().unwrap().blank_size(), 101);
|
||||
assert_eq!(blanks.pop().unwrap().blank_size(), 11);
|
||||
}
|
||||
}
|
||||
@@ -1,813 +0,0 @@
|
||||
/// This codec takes a large number space (u128) and reduces it to a compact number space.
|
||||
///
|
||||
/// It will find spaces in the number range. For example:
|
||||
///
|
||||
/// 100, 101, 102, 103, 104, 50000, 50001
|
||||
/// could be mapped to
|
||||
/// 100..104 -> 0..4
|
||||
/// 50000..50001 -> 5..6
|
||||
///
|
||||
/// Compact space 0..=6 requires much less bits than 100..=50001
|
||||
///
|
||||
/// The codec is created to compress ip addresses, but may be employed in other use cases.
|
||||
use std::{
|
||||
cmp::Ordering,
|
||||
collections::BTreeSet,
|
||||
io::{self, Write},
|
||||
ops::{Range, RangeInclusive},
|
||||
};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt, VIntU128};
|
||||
use tantivy_bitpacker::{self, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::column_values::compact_space::build_compact_space::get_compact_space;
|
||||
use crate::column_values::ColumnValues;
|
||||
|
||||
mod blank_range;
|
||||
mod build_compact_space;
|
||||
|
||||
/// The cost per blank is quite hard actually, since blanks are delta encoded, the actual cost of
|
||||
/// blanks depends on the number of blanks.
|
||||
///
|
||||
/// The number is taken by looking at a real dataset. It is optimized for larger datasets.
|
||||
const COST_PER_BLANK_IN_BITS: usize = 36;
|
||||
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub struct CompactSpace {
|
||||
ranges_mapping: Vec<RangeMapping>,
|
||||
}
|
||||
|
||||
/// Maps the range from the original space to compact_start + range.len()
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
struct RangeMapping {
|
||||
value_range: RangeInclusive<u128>,
|
||||
compact_start: u64,
|
||||
}
|
||||
impl RangeMapping {
|
||||
fn range_length(&self) -> u64 {
|
||||
(self.value_range.end() - self.value_range.start()) as u64 + 1
|
||||
}
|
||||
|
||||
// The last value of the compact space in this range
|
||||
fn compact_end(&self) -> u64 {
|
||||
self.compact_start + self.range_length() - 1
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for CompactSpace {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.ranges_mapping.len() as u64).serialize(writer)?;
|
||||
|
||||
let mut prev_value = 0;
|
||||
for value_range in self
|
||||
.ranges_mapping
|
||||
.iter()
|
||||
.map(|range_mapping| &range_mapping.value_range)
|
||||
{
|
||||
let blank_delta_start = value_range.start() - prev_value;
|
||||
VIntU128(blank_delta_start).serialize(writer)?;
|
||||
prev_value = *value_range.start();
|
||||
|
||||
let blank_delta_end = value_range.end() - prev_value;
|
||||
VIntU128(blank_delta_end).serialize(writer)?;
|
||||
prev_value = *value_range.end();
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_ranges = VInt::deserialize(reader)?.0;
|
||||
let mut ranges_mapping: Vec<RangeMapping> = vec![];
|
||||
let mut value = 0u128;
|
||||
let mut compact_start = 1u64; // 0 is reserved for `null`
|
||||
for _ in 0..num_ranges {
|
||||
let blank_delta_start = VIntU128::deserialize(reader)?.0;
|
||||
value += blank_delta_start;
|
||||
let blank_start = value;
|
||||
|
||||
let blank_delta_end = VIntU128::deserialize(reader)?.0;
|
||||
value += blank_delta_end;
|
||||
let blank_end = value;
|
||||
|
||||
let range_mapping = RangeMapping {
|
||||
value_range: blank_start..=blank_end,
|
||||
compact_start,
|
||||
};
|
||||
let range_length = range_mapping.range_length();
|
||||
ranges_mapping.push(range_mapping);
|
||||
compact_start += range_length;
|
||||
}
|
||||
|
||||
Ok(Self { ranges_mapping })
|
||||
}
|
||||
}
|
||||
|
||||
impl CompactSpace {
|
||||
/// Amplitude is the value range of the compact space including the sentinel value used to
|
||||
/// identify null values. The compact space is 0..=amplitude .
|
||||
///
|
||||
/// It's only used to verify we don't exceed u64 number space, which would indicate a bug.
|
||||
fn amplitude_compact_space(&self) -> u128 {
|
||||
self.ranges_mapping
|
||||
.last()
|
||||
.map(|last_range| last_range.compact_end() as u128)
|
||||
.unwrap_or(1) // compact space starts at 1, 0 == null
|
||||
}
|
||||
|
||||
fn get_range_mapping(&self, pos: usize) -> &RangeMapping {
|
||||
&self.ranges_mapping[pos]
|
||||
}
|
||||
|
||||
/// Returns either Ok(the value in the compact space) or if it is outside the compact space the
|
||||
/// Err(position where it would be inserted)
|
||||
fn u128_to_compact(&self, value: u128) -> Result<u64, usize> {
|
||||
self.ranges_mapping
|
||||
.binary_search_by(|probe| {
|
||||
let value_range = &probe.value_range;
|
||||
if value < *value_range.start() {
|
||||
Ordering::Greater
|
||||
} else if value > *value_range.end() {
|
||||
Ordering::Less
|
||||
} else {
|
||||
Ordering::Equal
|
||||
}
|
||||
})
|
||||
.map(|pos| {
|
||||
let range_mapping = &self.ranges_mapping[pos];
|
||||
let pos_in_range = (value - range_mapping.value_range.start()) as u64;
|
||||
range_mapping.compact_start + pos_in_range
|
||||
})
|
||||
}
|
||||
|
||||
/// Unpacks a value from compact space u64 to u128 space
|
||||
fn compact_to_u128(&self, compact: u64) -> u128 {
|
||||
let pos = self
|
||||
.ranges_mapping
|
||||
.binary_search_by_key(&compact, |range_mapping| range_mapping.compact_start)
|
||||
// Correctness: Overflow. The first range starts at compact space 0, the error from
|
||||
// binary search can never be 0
|
||||
.map_or_else(|e| e - 1, |v| v);
|
||||
|
||||
let range_mapping = &self.ranges_mapping[pos];
|
||||
let diff = compact - range_mapping.compact_start;
|
||||
range_mapping.value_range.start() + diff as u128
|
||||
}
|
||||
}
|
||||
|
||||
pub struct CompactSpaceCompressor {
|
||||
params: IPCodecParams,
|
||||
}
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct IPCodecParams {
|
||||
compact_space: CompactSpace,
|
||||
bit_unpacker: BitUnpacker,
|
||||
min_value: u128,
|
||||
max_value: u128,
|
||||
num_vals: u32,
|
||||
num_bits: u8,
|
||||
}
|
||||
|
||||
impl CompactSpaceCompressor {
|
||||
/// Taking the vals as Vec may cost a lot of memory. It is used to sort the vals.
|
||||
pub fn train_from(iter: impl Iterator<Item = u128>, num_vals: u32) -> Self {
|
||||
let mut values_sorted = BTreeSet::new();
|
||||
values_sorted.extend(iter);
|
||||
let total_num_values = num_vals;
|
||||
|
||||
let compact_space =
|
||||
get_compact_space(&values_sorted, total_num_values, COST_PER_BLANK_IN_BITS);
|
||||
let amplitude_compact_space = compact_space.amplitude_compact_space();
|
||||
|
||||
assert!(
|
||||
amplitude_compact_space <= u64::MAX as u128,
|
||||
"case unsupported."
|
||||
);
|
||||
|
||||
let num_bits = tantivy_bitpacker::compute_num_bits(amplitude_compact_space as u64);
|
||||
let min_value = *values_sorted.iter().next().unwrap_or(&0);
|
||||
let max_value = *values_sorted.iter().last().unwrap_or(&0);
|
||||
assert_eq!(
|
||||
compact_space
|
||||
.u128_to_compact(max_value)
|
||||
.expect("could not convert max value to compact space"),
|
||||
amplitude_compact_space as u64
|
||||
);
|
||||
CompactSpaceCompressor {
|
||||
params: IPCodecParams {
|
||||
compact_space,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: total_num_values,
|
||||
num_bits,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
fn write_footer(self, writer: &mut impl Write) -> io::Result<()> {
|
||||
let writer = &mut CountingWriter::wrap(writer);
|
||||
self.params.serialize(writer)?;
|
||||
|
||||
let footer_len = writer.written_bytes() as u32;
|
||||
footer_len.serialize(writer)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn compress_into(
|
||||
self,
|
||||
vals: impl Iterator<Item = u128>,
|
||||
write: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
let mut bitpacker = BitPacker::default();
|
||||
for val in vals {
|
||||
let compact = self
|
||||
.params
|
||||
.compact_space
|
||||
.u128_to_compact(val)
|
||||
.map_err(|_| {
|
||||
io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
"Could not convert value to compact_space. This is a bug.",
|
||||
)
|
||||
})?;
|
||||
bitpacker.write(compact, self.params.num_bits, write)?;
|
||||
}
|
||||
bitpacker.close(write)?;
|
||||
self.write_footer(write)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct CompactSpaceDecompressor {
|
||||
data: OwnedBytes,
|
||||
params: IPCodecParams,
|
||||
}
|
||||
|
||||
impl BinarySerializable for IPCodecParams {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
// header flags for future optional dictionary encoding
|
||||
let footer_flags = 0u64;
|
||||
footer_flags.serialize(writer)?;
|
||||
|
||||
VIntU128(self.min_value).serialize(writer)?;
|
||||
VIntU128(self.max_value).serialize(writer)?;
|
||||
VIntU128(self.num_vals as u128).serialize(writer)?;
|
||||
self.num_bits.serialize(writer)?;
|
||||
|
||||
self.compact_space.serialize(writer)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let _header_flags = u64::deserialize(reader)?;
|
||||
let min_value = VIntU128::deserialize(reader)?.0;
|
||||
let max_value = VIntU128::deserialize(reader)?.0;
|
||||
let num_vals = VIntU128::deserialize(reader)?.0 as u32;
|
||||
let num_bits = u8::deserialize(reader)?;
|
||||
let compact_space = CompactSpace::deserialize(reader)?;
|
||||
|
||||
Ok(Self {
|
||||
compact_space,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals,
|
||||
num_bits,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl ColumnValues<u128> for CompactSpaceDecompressor {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u128 {
|
||||
self.get(doc)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u128 {
|
||||
self.min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u128 {
|
||||
self.max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.params.num_vals
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u128> + '_> {
|
||||
Box::new(self.iter())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u128>,
|
||||
positions_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.get_positions_for_value_range(value_range, positions_range, positions)
|
||||
}
|
||||
}
|
||||
|
||||
impl CompactSpaceDecompressor {
|
||||
pub fn open(data: OwnedBytes) -> io::Result<CompactSpaceDecompressor> {
|
||||
let (data_slice, footer_len_bytes) = data.split_at(data.len() - 4);
|
||||
let footer_len = u32::deserialize(&mut &footer_len_bytes[..])?;
|
||||
|
||||
let data_footer = &data_slice[data_slice.len() - footer_len as usize..];
|
||||
let params = IPCodecParams::deserialize(&mut &data_footer[..])?;
|
||||
let decompressor = CompactSpaceDecompressor { data, params };
|
||||
|
||||
Ok(decompressor)
|
||||
}
|
||||
|
||||
/// Converting to compact space for the decompressor is more complex, since we may get values
|
||||
/// which are outside the compact space. e.g. if we map
|
||||
/// 1000 => 5
|
||||
/// 2000 => 6
|
||||
///
|
||||
/// and we want a mapping for 1005, there is no equivalent compact space. We instead return an
|
||||
/// error with the index of the next range.
|
||||
fn u128_to_compact(&self, value: u128) -> Result<u64, usize> {
|
||||
self.params.compact_space.u128_to_compact(value)
|
||||
}
|
||||
|
||||
fn compact_to_u128(&self, compact: u64) -> u128 {
|
||||
self.params.compact_space.compact_to_u128(compact)
|
||||
}
|
||||
|
||||
/// Comparing on compact space: Random dataset 0,24 (50% random hit) - 1.05 GElements/s
|
||||
/// Comparing on compact space: Real dataset 1.08 GElements/s
|
||||
///
|
||||
/// Comparing on original space: Real dataset .06 GElements/s (not completely optimized)
|
||||
#[inline]
|
||||
pub fn get_positions_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u128>,
|
||||
position_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
if value_range.start() > value_range.end() {
|
||||
return;
|
||||
}
|
||||
let position_range = position_range.start..position_range.end.min(self.num_vals());
|
||||
let from_value = *value_range.start();
|
||||
let to_value = *value_range.end();
|
||||
assert!(to_value >= from_value);
|
||||
let compact_from = self.u128_to_compact(from_value);
|
||||
let compact_to = self.u128_to_compact(to_value);
|
||||
|
||||
// Quick return, if both ranges fall into the same non-mapped space, the range can't cover
|
||||
// any values, so we can early exit
|
||||
match (compact_to, compact_from) {
|
||||
(Err(pos1), Err(pos2)) if pos1 == pos2 => return,
|
||||
_ => {}
|
||||
}
|
||||
|
||||
let compact_from = compact_from.unwrap_or_else(|pos| {
|
||||
// Correctness: Out of bounds, if this value is Err(last_index + 1), we early exit,
|
||||
// since the to_value also mapps into the same non-mapped space
|
||||
let range_mapping = self.params.compact_space.get_range_mapping(pos);
|
||||
range_mapping.compact_start
|
||||
});
|
||||
// If there is no compact space, we go to the closest upperbound compact space
|
||||
let compact_to = compact_to.unwrap_or_else(|pos| {
|
||||
// Correctness: Overflow, if this value is Err(0), we early exit,
|
||||
// since the from_value also mapps into the same non-mapped space
|
||||
|
||||
// Get end of previous range
|
||||
let pos = pos - 1;
|
||||
let range_mapping = self.params.compact_space.get_range_mapping(pos);
|
||||
range_mapping.compact_end()
|
||||
});
|
||||
|
||||
let range = compact_from..=compact_to;
|
||||
|
||||
let scan_num_docs = position_range.end - position_range.start;
|
||||
|
||||
let step_size = 4;
|
||||
let cutoff = position_range.start + scan_num_docs - scan_num_docs % step_size;
|
||||
|
||||
let mut push_if_in_range = |idx, val| {
|
||||
if range.contains(&val) {
|
||||
positions.push(idx);
|
||||
}
|
||||
};
|
||||
let get_val = |idx| self.params.bit_unpacker.get(idx, &self.data);
|
||||
// unrolled loop
|
||||
for idx in (position_range.start..cutoff).step_by(step_size as usize) {
|
||||
let idx1 = idx;
|
||||
let idx2 = idx + 1;
|
||||
let idx3 = idx + 2;
|
||||
let idx4 = idx + 3;
|
||||
let val1 = get_val(idx1);
|
||||
let val2 = get_val(idx2);
|
||||
let val3 = get_val(idx3);
|
||||
let val4 = get_val(idx4);
|
||||
push_if_in_range(idx1, val1);
|
||||
push_if_in_range(idx2, val2);
|
||||
push_if_in_range(idx3, val3);
|
||||
push_if_in_range(idx4, val4);
|
||||
}
|
||||
|
||||
// handle rest
|
||||
for idx in cutoff..position_range.end {
|
||||
push_if_in_range(idx, get_val(idx));
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter_compact(&self) -> impl Iterator<Item = u64> + '_ {
|
||||
(0..self.params.num_vals).map(move |idx| self.params.bit_unpacker.get(idx, &self.data))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter(&self) -> impl Iterator<Item = u128> + '_ {
|
||||
// TODO: Performance. It would be better to iterate on the ranges and check existence via
|
||||
// the bit_unpacker.
|
||||
self.iter_compact()
|
||||
.map(|compact| self.compact_to_u128(compact))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn get(&self, idx: u32) -> u128 {
|
||||
let compact = self.params.bit_unpacker.get(idx, &self.data);
|
||||
self.compact_to_u128(compact)
|
||||
}
|
||||
|
||||
pub fn min_value(&self) -> u128 {
|
||||
self.params.min_value
|
||||
}
|
||||
|
||||
pub fn max_value(&self) -> u128 {
|
||||
self.params.max_value
|
||||
}
|
||||
}
|
||||
|
||||
// TODO reenable what can be reenabled.
|
||||
// #[cfg(test)]
|
||||
// mod tests {
|
||||
//
|
||||
// use super::*;
|
||||
// use crate::column::format_version::read_format_version;
|
||||
// use crate::column::column_footer::read_null_index_footer;
|
||||
// use crate::column::serialize::U128Header;
|
||||
// use crate::column::{open_u128, serialize_u128};
|
||||
//
|
||||
// #[test]
|
||||
// fn compact_space_test() {
|
||||
// let ips = &[
|
||||
// 2u128, 4u128, 1000, 1001, 1002, 1003, 1004, 1005, 1008, 1010, 1012, 1260,
|
||||
// ]
|
||||
// .into_iter()
|
||||
// .collect();
|
||||
// let compact_space = get_compact_space(ips, ips.len() as u32, 11);
|
||||
// let amplitude = compact_space.amplitude_compact_space();
|
||||
// assert_eq!(amplitude, 17);
|
||||
// assert_eq!(1, compact_space.u128_to_compact(2).unwrap());
|
||||
// assert_eq!(2, compact_space.u128_to_compact(3).unwrap());
|
||||
// assert_eq!(compact_space.u128_to_compact(100).unwrap_err(), 1);
|
||||
//
|
||||
// for (num1, num2) in (0..3).tuple_windows() {
|
||||
// assert_eq!(
|
||||
// compact_space.get_range_mapping(num1).compact_end() + 1,
|
||||
// compact_space.get_range_mapping(num2).compact_start
|
||||
// );
|
||||
// }
|
||||
//
|
||||
// let mut output: Vec<u8> = Vec::new();
|
||||
// compact_space.serialize(&mut output).unwrap();
|
||||
//
|
||||
// assert_eq!(
|
||||
// compact_space,
|
||||
// CompactSpace::deserialize(&mut &output[..]).unwrap()
|
||||
// );
|
||||
//
|
||||
// for ip in ips {
|
||||
// let compact = compact_space.u128_to_compact(*ip).unwrap();
|
||||
// assert_eq!(compact_space.compact_to_u128(compact), *ip);
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn compact_space_amplitude_test() {
|
||||
// let ips = &[100000u128, 1000000].into_iter().collect();
|
||||
// let compact_space = get_compact_space(ips, ips.len() as u32, 1);
|
||||
// let amplitude = compact_space.amplitude_compact_space();
|
||||
// assert_eq!(amplitude, 2);
|
||||
// }
|
||||
//
|
||||
// fn test_all(mut data: OwnedBytes, expected: &[u128]) {
|
||||
// let _header = U128Header::deserialize(&mut data);
|
||||
// let decompressor = CompactSpaceDecompressor::open(data).unwrap();
|
||||
// for (idx, expected_val) in expected.iter().cloned().enumerate() {
|
||||
// let val = decompressor.get(idx as u32);
|
||||
// assert_eq!(val, expected_val);
|
||||
//
|
||||
// let test_range = |range: RangeInclusive<u128>| {
|
||||
// let expected_positions = expected
|
||||
// .iter()
|
||||
// .positions(|val| range.contains(val))
|
||||
// .map(|pos| pos as u32)
|
||||
// .collect::<Vec<_>>();
|
||||
// let mut positions = Vec::new();
|
||||
// decompressor.get_positions_for_value_range(
|
||||
// range,
|
||||
// 0..decompressor.num_vals(),
|
||||
// &mut positions,
|
||||
// );
|
||||
// assert_eq!(positions, expected_positions);
|
||||
// };
|
||||
//
|
||||
// test_range(expected_val.saturating_sub(1)..=expected_val);
|
||||
// test_range(expected_val..=expected_val);
|
||||
// test_range(expected_val..=expected_val.saturating_add(1));
|
||||
// test_range(expected_val.saturating_sub(1)..=expected_val.saturating_add(1));
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// fn test_aux_vals(u128_vals: &[u128]) -> OwnedBytes {
|
||||
// let mut out = Vec::new();
|
||||
// serialize_u128(
|
||||
// || u128_vals.iter().cloned(),
|
||||
// u128_vals.len() as u32,
|
||||
// &mut out,
|
||||
// )
|
||||
// .unwrap();
|
||||
//
|
||||
// let data = OwnedBytes::new(out);
|
||||
// let (data, _format_version) = read_format_version(data).unwrap();
|
||||
// let (data, _null_index_footer) = read_null_index_footer(data).unwrap();
|
||||
// test_all(data.clone(), u128_vals);
|
||||
//
|
||||
// data
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_range_1() {
|
||||
// let vals = &[
|
||||
// 1u128,
|
||||
// 100u128,
|
||||
// 3u128,
|
||||
// 99999u128,
|
||||
// 100000u128,
|
||||
// 100001u128,
|
||||
// 4_000_211_221u128,
|
||||
// 4_000_211_222u128,
|
||||
// 333u128,
|
||||
// ];
|
||||
// let mut data = test_aux_vals(vals);
|
||||
//
|
||||
// let _header = U128Header::deserialize(&mut data);
|
||||
// let decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
// let complete_range = 0..vals.len() as u32;
|
||||
// for (pos, val) in vals.iter().enumerate() {
|
||||
// let val = *val;
|
||||
// let pos = pos as u32;
|
||||
// let mut positions = Vec::new();
|
||||
// decomp.get_positions_for_value_range(val..=val, pos..pos + 1, &mut positions);
|
||||
// assert_eq!(positions, vec![pos]);
|
||||
// }
|
||||
//
|
||||
// handle docid range out of bounds
|
||||
// let positions: Vec<u32> = get_positions_for_value_range_helper(&decomp, 0..=1, 1..u32::MAX);
|
||||
// assert!(positions.is_empty());
|
||||
//
|
||||
// let positions =
|
||||
// get_positions_for_value_range_helper(&decomp, 0..=1, complete_range.clone());
|
||||
// assert_eq!(positions, vec![0]);
|
||||
// let positions =
|
||||
// get_positions_for_value_range_helper(&decomp, 0..=2, complete_range.clone());
|
||||
// assert_eq!(positions, vec![0]);
|
||||
// let positions =
|
||||
// get_positions_for_value_range_helper(&decomp, 0..=3, complete_range.clone());
|
||||
// assert_eq!(positions, vec![0, 2]);
|
||||
// assert_eq!(
|
||||
// get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 99999u128..=99999u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// vec![3]
|
||||
// );
|
||||
// assert_eq!(
|
||||
// get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 99999u128..=100000u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// vec![3, 4]
|
||||
// );
|
||||
// assert_eq!(
|
||||
// get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 99998u128..=100000u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// vec![3, 4]
|
||||
// );
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 99998u128..=99999u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// &[3]
|
||||
// );
|
||||
// assert!(get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 99998u128..=99998u128,
|
||||
// complete_range.clone()
|
||||
// )
|
||||
// .is_empty());
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 333u128..=333u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// &[8]
|
||||
// );
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 332u128..=333u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// &[8]
|
||||
// );
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 332u128..=334u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// &[8]
|
||||
// );
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 333u128..=334u128,
|
||||
// complete_range.clone()
|
||||
// ),
|
||||
// &[8]
|
||||
// );
|
||||
//
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(
|
||||
// &decomp,
|
||||
// 4_000_211_221u128..=5_000_000_000u128,
|
||||
// complete_range
|
||||
// ),
|
||||
// &[6, 7]
|
||||
// );
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_empty() {
|
||||
// let vals = &[];
|
||||
// let data = test_aux_vals(vals);
|
||||
// let _decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_range_2() {
|
||||
// let vals = &[
|
||||
// 100u128,
|
||||
// 99999u128,
|
||||
// 100000u128,
|
||||
// 100001u128,
|
||||
// 4_000_211_221u128,
|
||||
// 4_000_211_222u128,
|
||||
// 333u128,
|
||||
// ];
|
||||
// let mut data = test_aux_vals(vals);
|
||||
// let _header = U128Header::deserialize(&mut data);
|
||||
// let decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
// let complete_range = 0..vals.len() as u32;
|
||||
// assert!(
|
||||
// &get_positions_for_value_range_helper(&decomp, 0..=5, complete_range.clone())
|
||||
// .is_empty(),
|
||||
// );
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(&decomp, 0..=100, complete_range.clone()),
|
||||
// &[0]
|
||||
// );
|
||||
// assert_eq!(
|
||||
// &get_positions_for_value_range_helper(&decomp, 0..=105, complete_range),
|
||||
// &[0]
|
||||
// );
|
||||
// }
|
||||
//
|
||||
// fn get_positions_for_value_range_helper<C: Column<T> + ?Sized, T: PartialOrd>(
|
||||
// column: &C,
|
||||
// value_range: RangeInclusive<T>,
|
||||
// doc_id_range: Range<u32>,
|
||||
// ) -> Vec<u32> {
|
||||
// let mut positions = Vec::new();
|
||||
// column.get_docids_for_value_range(value_range, doc_id_range, &mut positions);
|
||||
// positions
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_range_3() {
|
||||
// let vals = &[
|
||||
// 200u128,
|
||||
// 201,
|
||||
// 202,
|
||||
// 203,
|
||||
// 204,
|
||||
// 204,
|
||||
// 206,
|
||||
// 207,
|
||||
// 208,
|
||||
// 209,
|
||||
// 210,
|
||||
// 1_000_000,
|
||||
// 5_000_000_000,
|
||||
// ];
|
||||
// let mut out = Vec::new();
|
||||
// serialize_u128(|| vals.iter().cloned(), vals.len() as u32, &mut out).unwrap();
|
||||
// let decomp = open_u128::<u128>(OwnedBytes::new(out)).unwrap();
|
||||
// let complete_range = 0..vals.len() as u32;
|
||||
//
|
||||
// assert_eq!(
|
||||
// get_positions_for_value_range_helper(&*decomp, 199..=200, complete_range.clone()),
|
||||
// vec![0]
|
||||
// );
|
||||
//
|
||||
// assert_eq!(
|
||||
// get_positions_for_value_range_helper(&*decomp, 199..=201, complete_range.clone()),
|
||||
// vec![0, 1]
|
||||
// );
|
||||
//
|
||||
// assert_eq!(
|
||||
// get_positions_for_value_range_helper(&*decomp, 200..=200, complete_range.clone()),
|
||||
// vec![0]
|
||||
// );
|
||||
//
|
||||
// assert_eq!(
|
||||
// get_positions_for_value_range_helper(&*decomp, 1_000_000..=1_000_000, complete_range),
|
||||
// vec![11]
|
||||
// );
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_bug1() {
|
||||
// let vals = &[9223372036854775806];
|
||||
// let _data = test_aux_vals(vals);
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_bug2() {
|
||||
// let vals = &[340282366920938463463374607431768211455u128];
|
||||
// let _data = test_aux_vals(vals);
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_bug3() {
|
||||
// let vals = &[340282366920938463463374607431768211454];
|
||||
// let _data = test_aux_vals(vals);
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_bug4() {
|
||||
// let vals = &[340282366920938463463374607431768211455, 0];
|
||||
// let _data = test_aux_vals(vals);
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_first_large_gaps() {
|
||||
// let vals = &[1_000_000_000u128; 100];
|
||||
// let _data = test_aux_vals(vals);
|
||||
// }
|
||||
// use itertools::Itertools;
|
||||
// use proptest::prelude::*;
|
||||
//
|
||||
// fn num_strategy() -> impl Strategy<Value = u128> {
|
||||
// prop_oneof![
|
||||
// 1 => prop::num::u128::ANY.prop_map(|num| u128::MAX - (num % 10) ),
|
||||
// 1 => prop::num::u128::ANY.prop_map(|num| i64::MAX as u128 + 5 - (num % 10) ),
|
||||
// 1 => prop::num::u128::ANY.prop_map(|num| i128::MAX as u128 + 5 - (num % 10) ),
|
||||
// 1 => prop::num::u128::ANY.prop_map(|num| num % 10 ),
|
||||
// 20 => prop::num::u128::ANY,
|
||||
// ]
|
||||
// }
|
||||
//
|
||||
// proptest! {
|
||||
// #![proptest_config(ProptestConfig::with_cases(10))]
|
||||
//
|
||||
// #[test]
|
||||
// fn compress_decompress_random(vals in proptest::collection::vec(num_strategy()
|
||||
// , 1..1000)) {
|
||||
// let _data = test_aux_vals(&vals);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//
|
||||
@@ -1,75 +0,0 @@
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
|
||||
/// Compute the gcd of two non null numbers.
|
||||
///
|
||||
/// It is recommended, but not required, to feed values such that `large >= small`.
|
||||
fn compute_gcd(mut large: NonZeroU64, mut small: NonZeroU64) -> NonZeroU64 {
|
||||
loop {
|
||||
let rem: u64 = large.get() % small;
|
||||
if let Some(new_small) = NonZeroU64::new(rem) {
|
||||
(large, small) = (small, new_small);
|
||||
} else {
|
||||
return small;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find GCD for iterator of numbers
|
||||
pub fn find_gcd(numbers: impl Iterator<Item = u64>) -> Option<NonZeroU64> {
|
||||
let mut numbers = numbers.flat_map(NonZeroU64::new);
|
||||
let mut gcd: NonZeroU64 = numbers.next()?;
|
||||
if gcd.get() == 1 {
|
||||
return Some(gcd);
|
||||
}
|
||||
|
||||
let mut gcd_divider = DividerU64::divide_by(gcd.get());
|
||||
for val in numbers {
|
||||
let remainder = val.get() - (gcd_divider.divide(val.get())) * gcd.get();
|
||||
if remainder == 0 {
|
||||
continue;
|
||||
}
|
||||
gcd = compute_gcd(val, gcd);
|
||||
if gcd.get() == 1 {
|
||||
return Some(gcd);
|
||||
}
|
||||
|
||||
gcd_divider = DividerU64::divide_by(gcd.get());
|
||||
}
|
||||
Some(gcd)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use crate::column_values::gcd::{compute_gcd, find_gcd};
|
||||
|
||||
#[test]
|
||||
fn test_compute_gcd() {
|
||||
let test_compute_gcd_aux = |large, small, expected| {
|
||||
let large = NonZeroU64::new(large).unwrap();
|
||||
let small = NonZeroU64::new(small).unwrap();
|
||||
let expected = NonZeroU64::new(expected).unwrap();
|
||||
assert_eq!(compute_gcd(small, large), expected);
|
||||
assert_eq!(compute_gcd(large, small), expected);
|
||||
};
|
||||
test_compute_gcd_aux(1, 4, 1);
|
||||
test_compute_gcd_aux(2, 4, 2);
|
||||
test_compute_gcd_aux(10, 25, 5);
|
||||
test_compute_gcd_aux(25, 25, 25);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn find_gcd_test() {
|
||||
assert_eq!(find_gcd([0].into_iter()), None);
|
||||
assert_eq!(find_gcd([0, 10].into_iter()), NonZeroU64::new(10));
|
||||
assert_eq!(find_gcd([10, 0].into_iter()), NonZeroU64::new(10));
|
||||
assert_eq!(find_gcd([].into_iter()), None);
|
||||
assert_eq!(find_gcd([15, 30, 5, 10].into_iter()), NonZeroU64::new(5));
|
||||
assert_eq!(find_gcd([15, 16, 10].into_iter()), NonZeroU64::new(1));
|
||||
assert_eq!(find_gcd([0, 5, 5, 5].into_iter()), NonZeroU64::new(5));
|
||||
assert_eq!(find_gcd([0, 0].into_iter()), None);
|
||||
}
|
||||
}
|
||||
@@ -1,222 +0,0 @@
|
||||
use std::io;
|
||||
use std::num::NonZeroU32;
|
||||
|
||||
use common::{BinarySerializable, VInt};
|
||||
|
||||
use crate::column_values::ColumnValues;
|
||||
|
||||
const MID_POINT: u64 = (1u64 << 32) - 1u64;
|
||||
|
||||
/// `Line` describes a line function `y: ax + b` using integer
|
||||
/// arithmetics.
|
||||
///
|
||||
/// The slope is in fact a decimal split into a 32 bit integer value,
|
||||
/// and a 32-bit decimal value.
|
||||
///
|
||||
/// The multiplication then becomes.
|
||||
/// `y = m * x >> 32 + b`
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Line {
|
||||
slope: u64,
|
||||
intercept: u64,
|
||||
}
|
||||
|
||||
/// Compute the line slope.
|
||||
///
|
||||
/// This function has the nice property of being
|
||||
/// invariant by translation.
|
||||
/// `
|
||||
/// compute_slope(y0, y1)
|
||||
/// = compute_slope(y0 + X % 2^64, y1 + X % 2^64)
|
||||
/// `
|
||||
fn compute_slope(y0: u64, y1: u64, num_vals: NonZeroU32) -> u64 {
|
||||
let dy = y1.wrapping_sub(y0);
|
||||
let sign = dy <= (1 << 63);
|
||||
let abs_dy = if sign {
|
||||
y1.wrapping_sub(y0)
|
||||
} else {
|
||||
y0.wrapping_sub(y1)
|
||||
};
|
||||
if abs_dy >= 1 << 32 {
|
||||
// This is outside of realm we handle.
|
||||
// Let's just bail.
|
||||
return 0u64;
|
||||
}
|
||||
|
||||
let abs_slope = (abs_dy << 32) / num_vals.get() as u64;
|
||||
if sign {
|
||||
abs_slope
|
||||
} else {
|
||||
// The complement does indeed create the
|
||||
// opposite decreasing slope...
|
||||
//
|
||||
// Intuitively (without the bitshifts and % u64::MAX)
|
||||
// ```
|
||||
// (x + shift)*(u64::MAX - abs_slope)
|
||||
// - (x * (u64::MAX - abs_slope))
|
||||
// = - shift * abs_slope
|
||||
// ```
|
||||
u64::MAX - abs_slope
|
||||
}
|
||||
}
|
||||
|
||||
impl Line {
|
||||
#[inline(always)]
|
||||
pub fn eval(&self, x: u32) -> u64 {
|
||||
let linear_part = ((x as u64).wrapping_mul(self.slope) >> 32) as i32 as u64;
|
||||
self.intercept.wrapping_add(linear_part)
|
||||
}
|
||||
|
||||
// Same as train, but the intercept is only estimated from provided sample positions
|
||||
pub fn estimate(sample_positions_and_values: &[(u64, u64)]) -> Self {
|
||||
let first_val = sample_positions_and_values[0].1;
|
||||
let last_val = sample_positions_and_values[sample_positions_and_values.len() - 1].1;
|
||||
let num_vals = sample_positions_and_values[sample_positions_and_values.len() - 1].0 + 1;
|
||||
Self::train_from(
|
||||
first_val,
|
||||
last_val,
|
||||
num_vals as u32,
|
||||
sample_positions_and_values.iter().cloned(),
|
||||
)
|
||||
}
|
||||
|
||||
// Intercept is only computed from provided positions
|
||||
fn train_from(
|
||||
first_val: u64,
|
||||
last_val: u64,
|
||||
num_vals: u32,
|
||||
positions_and_values: impl Iterator<Item = (u64, u64)>,
|
||||
) -> Self {
|
||||
// TODO replace with let else
|
||||
let idx_last_val = if let Some(idx_last_val) = NonZeroU32::new(num_vals - 1) {
|
||||
idx_last_val
|
||||
} else {
|
||||
return Line::default();
|
||||
};
|
||||
|
||||
let y0 = first_val;
|
||||
let y1 = last_val;
|
||||
|
||||
// We first independently pick our slope.
|
||||
let slope = compute_slope(y0, y1, idx_last_val);
|
||||
|
||||
// We picked our slope. Note that it does not have to be perfect.
|
||||
// Now we need to compute the best intercept.
|
||||
//
|
||||
// Intuitively, the best intercept is such that line passes through one of the
|
||||
// `(i, ys[])`.
|
||||
//
|
||||
// The best intercept therefore has the form
|
||||
// `y[i] - line.eval(i)` (using wrapping arithmetics).
|
||||
// In other words, the best intercept is one of the `y - Line::eval(ys[i])`
|
||||
// and our task is just to pick the one that minimizes our error.
|
||||
//
|
||||
// Without sorting our values, this is a difficult problem.
|
||||
// We however rely on the following trick...
|
||||
//
|
||||
// We only focus on the case where the interpolation is half decent.
|
||||
// If the line interpolation is doing its job on a dataset suited for it,
|
||||
// we can hope that the maximum error won't be larger than `u64::MAX / 2`.
|
||||
//
|
||||
// In other words, even without the intercept the values `y - Line::eval(ys[i])` will all be
|
||||
// within an interval that takes less than half of the modulo space of `u64`.
|
||||
//
|
||||
// Our task is therefore to identify this interval.
|
||||
// Here we simply translate all of our values by `y0 - 2^63` and pick the min.
|
||||
let mut line = Line {
|
||||
slope,
|
||||
intercept: 0,
|
||||
};
|
||||
let heuristic_shift = y0.wrapping_sub(MID_POINT);
|
||||
line.intercept = positions_and_values
|
||||
.map(|(pos, y)| y.wrapping_sub(line.eval(pos as u32)))
|
||||
.min_by_key(|&val| val.wrapping_sub(heuristic_shift))
|
||||
.unwrap_or(0u64); //< Never happens.
|
||||
line
|
||||
}
|
||||
|
||||
/// Returns a line that attemps to approximate a function
|
||||
/// f: i in 0..[ys.num_vals()) -> ys[i].
|
||||
///
|
||||
/// - The approximation is always lower than the actual value.
|
||||
/// Or more rigorously, formally `f(i).wrapping_sub(ys[i])` is small
|
||||
/// for any i in [0..ys.len()).
|
||||
/// - It computes without panicking for any value of it.
|
||||
///
|
||||
/// This function is only invariable by translation if all of the
|
||||
/// `ys` are packaged into half of the space. (See heuristic below)
|
||||
pub fn train(ys: &dyn ColumnValues) -> Self {
|
||||
let first_val = ys.iter().next().unwrap();
|
||||
let last_val = ys.iter().nth(ys.num_vals() as usize - 1).unwrap();
|
||||
Self::train_from(
|
||||
first_val,
|
||||
last_val,
|
||||
ys.num_vals(),
|
||||
ys.iter().enumerate().map(|(pos, val)| (pos as u64, val)),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for Line {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.slope).serialize(writer)?;
|
||||
VInt(self.intercept).serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let slope = VInt::deserialize(reader)?.0;
|
||||
let intercept = VInt::deserialize(reader)?.0;
|
||||
Ok(Line { slope, intercept })
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::VecColumn;
|
||||
|
||||
/// Test training a line and ensuring that the maximum difference between
|
||||
/// the data points and the line is `expected`.
|
||||
///
|
||||
/// This function operates translation over the data for better coverage.
|
||||
#[track_caller]
|
||||
fn test_line_interpol_with_translation(ys: &[u64], expected: Option<u64>) {
|
||||
let mut translations = vec![0, 100, u64::MAX / 2, u64::MAX, u64::MAX - 1];
|
||||
translations.extend_from_slice(ys);
|
||||
for translation in translations {
|
||||
let translated_ys: Vec<u64> = ys
|
||||
.iter()
|
||||
.copied()
|
||||
.map(|y| y.wrapping_add(translation))
|
||||
.collect();
|
||||
let largest_err = test_eval_max_err(&translated_ys);
|
||||
assert_eq!(largest_err, expected);
|
||||
}
|
||||
}
|
||||
|
||||
fn test_eval_max_err(ys: &[u64]) -> Option<u64> {
|
||||
let line = Line::train(&VecColumn::from(&ys));
|
||||
ys.iter()
|
||||
.enumerate()
|
||||
.map(|(x, y)| y.wrapping_sub(line.eval(x as u32)))
|
||||
.max()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_train() {
|
||||
test_line_interpol_with_translation(&[11, 11, 11, 12, 12, 13], Some(1));
|
||||
test_line_interpol_with_translation(&[13, 12, 12, 11, 11, 11], Some(1));
|
||||
test_line_interpol_with_translation(&[13, 13, 12, 11, 11, 11], Some(1));
|
||||
test_line_interpol_with_translation(&[13, 13, 12, 11, 11, 11], Some(1));
|
||||
test_line_interpol_with_translation(&[u64::MAX - 1, 0, 0, 1], Some(1));
|
||||
test_line_interpol_with_translation(&[u64::MAX - 1, u64::MAX, 0, 1], Some(0));
|
||||
test_line_interpol_with_translation(&[0, 1, 2, 3, 5], Some(0));
|
||||
test_line_interpol_with_translation(&[1, 2, 3, 4], Some(0));
|
||||
|
||||
let data: Vec<u64> = (0..255).collect();
|
||||
test_line_interpol_with_translation(&data, Some(0));
|
||||
let data: Vec<u64> = (0..255).map(|el| el * 2).collect();
|
||||
test_line_interpol_with_translation(&data, Some(0));
|
||||
}
|
||||
}
|
||||
@@ -1,230 +0,0 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use super::line::Line;
|
||||
use super::serialize::NormalizedHeader;
|
||||
use super::{ColumnValues, FastFieldCodec, FastFieldCodecType};
|
||||
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct LinearReader {
|
||||
data: OwnedBytes,
|
||||
linear_params: LinearParams,
|
||||
header: NormalizedHeader,
|
||||
}
|
||||
|
||||
impl ColumnValues for LinearReader {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
let interpoled_val: u64 = self.linear_params.line.eval(doc);
|
||||
let bitpacked_diff = self.linear_params.bit_unpacker.get(doc, &self.data);
|
||||
interpoled_val.wrapping_add(bitpacked_diff)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The LinearReader assumes a normalized vector.
|
||||
0u64
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.header.max_value
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.header.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
/// Fastfield serializer, which tries to guess values by linear interpolation
|
||||
/// and stores the difference bitpacked.
|
||||
pub struct LinearCodec;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct LinearParams {
|
||||
line: Line,
|
||||
bit_unpacker: BitUnpacker,
|
||||
}
|
||||
|
||||
impl BinarySerializable for LinearParams {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.line.serialize(writer)?;
|
||||
self.bit_unpacker.bit_width().serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let line = Line::deserialize(reader)?;
|
||||
let bit_width = u8::deserialize(reader)?;
|
||||
Ok(Self {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl FastFieldCodec for LinearCodec {
|
||||
const CODEC_TYPE: FastFieldCodecType = FastFieldCodecType::Linear;
|
||||
|
||||
type Reader = LinearReader;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn open_from_bytes(mut data: OwnedBytes, header: NormalizedHeader) -> io::Result<Self::Reader> {
|
||||
let linear_params = LinearParams::deserialize(&mut data)?;
|
||||
Ok(LinearReader {
|
||||
data,
|
||||
linear_params,
|
||||
header,
|
||||
})
|
||||
}
|
||||
|
||||
/// Creates a new fast field serializer.
|
||||
fn serialize(column: &dyn ColumnValues, write: &mut impl Write) -> io::Result<()> {
|
||||
assert_eq!(column.min_value(), 0);
|
||||
let line = Line::train(column);
|
||||
|
||||
let max_offset_from_line = column
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(pos, actual_value)| {
|
||||
let calculated_value = line.eval(pos as u32);
|
||||
actual_value.wrapping_sub(calculated_value)
|
||||
})
|
||||
.max()
|
||||
.unwrap();
|
||||
|
||||
let num_bits = compute_num_bits(max_offset_from_line);
|
||||
let linear_params = LinearParams {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
};
|
||||
linear_params.serialize(write)?;
|
||||
|
||||
let mut bit_packer = BitPacker::new();
|
||||
for (pos, actual_value) in column.iter().enumerate() {
|
||||
let calculated_value = line.eval(pos as u32);
|
||||
let offset = actual_value.wrapping_sub(calculated_value);
|
||||
bit_packer.write(offset, num_bits, write)?;
|
||||
}
|
||||
bit_packer.close(write)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// estimation for linear interpolation is hard because, you don't know
|
||||
/// where the local maxima for the deviation of the calculated value are and
|
||||
/// the offset to shift all values to >=0 is also unknown.
|
||||
#[allow(clippy::question_mark)]
|
||||
fn estimate(column: &dyn ColumnValues) -> Option<f32> {
|
||||
if column.num_vals() < 3 {
|
||||
return None; // disable compressor for this case
|
||||
}
|
||||
|
||||
let limit_num_vals = column.num_vals().min(100_000);
|
||||
|
||||
let num_samples = 100;
|
||||
let step_size = (limit_num_vals / num_samples).max(1); // 20 samples
|
||||
let mut sample_positions_and_values: Vec<_> = Vec::new();
|
||||
for (pos, val) in column.iter().enumerate().step_by(step_size as usize) {
|
||||
sample_positions_and_values.push((pos as u64, val));
|
||||
}
|
||||
|
||||
let line = Line::estimate(&sample_positions_and_values);
|
||||
|
||||
let estimated_bit_width = sample_positions_and_values
|
||||
.into_iter()
|
||||
.map(|(pos, actual_value)| {
|
||||
let interpolated_val = line.eval(pos as u32);
|
||||
actual_value.wrapping_sub(interpolated_val)
|
||||
})
|
||||
.map(|diff| ((diff as f32 * 1.5) * 2.0) as u64)
|
||||
.map(compute_num_bits)
|
||||
.max()
|
||||
.unwrap_or(0);
|
||||
|
||||
// Extrapolate to whole column
|
||||
let num_bits = (estimated_bit_width as u64 * column.num_vals() as u64) + 64;
|
||||
let num_bits_uncompressed = 64 * column.num_vals();
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use rand::RngCore;
|
||||
|
||||
use super::*;
|
||||
use crate::column_values::tests;
|
||||
|
||||
fn create_and_validate(data: &[u64], name: &str) -> Option<(f32, f32)> {
|
||||
tests::create_and_validate::<LinearCodec>(data, name)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compression() {
|
||||
let data = (10..=6_000_u64).collect::<Vec<_>>();
|
||||
let (estimate, actual_compression) =
|
||||
create_and_validate(&data, "simple monotonically large").unwrap();
|
||||
|
||||
assert_le!(actual_compression, 0.001);
|
||||
assert_le!(estimate, 0.02);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_datasets() {
|
||||
let data_sets = tests::get_codec_test_datasets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate(&data, name);
|
||||
data.reverse();
|
||||
create_and_validate(&data, name);
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_test_large_amplitude() {
|
||||
let data = vec![
|
||||
i64::MAX as u64 / 2,
|
||||
i64::MAX as u64 / 3,
|
||||
i64::MAX as u64 / 2,
|
||||
];
|
||||
|
||||
create_and_validate(&data, "large amplitude");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn overflow_error_test() {
|
||||
let data = vec![1572656989877777, 1170935903116329, 720575940379279, 0];
|
||||
create_and_validate(&data, "overflow test");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_interpol_fast_concave_data() {
|
||||
let data = vec![0, 1, 2, 5, 8, 10, 20, 50];
|
||||
create_and_validate(&data, "concave data");
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_convex_data() {
|
||||
let data = vec![0, 40, 60, 70, 75, 77];
|
||||
create_and_validate(&data, "convex data");
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_test_simple() {
|
||||
let data = (10..=20_u64).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "simple monotonically");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_rand() {
|
||||
let mut rng = rand::thread_rng();
|
||||
for _ in 0..50 {
|
||||
let mut data = (0..10_000).map(|_| rng.next_u64()).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "random");
|
||||
data.reverse();
|
||||
create_and_validate(&data, "random");
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,222 +0,0 @@
|
||||
#[macro_use]
|
||||
extern crate prettytable;
|
||||
use std::collections::HashSet;
|
||||
use std::env;
|
||||
use std::io::BufRead;
|
||||
use std::net::{IpAddr, Ipv6Addr};
|
||||
use std::str::FromStr;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use fastfield_codecs::{open_u128, serialize_u128, Column, FastFieldCodecType, VecColumn};
|
||||
use itertools::Itertools;
|
||||
use measure_time::print_time;
|
||||
use prettytable::{Cell, Row, Table};
|
||||
|
||||
fn print_set_stats(ip_addrs: &[u128]) {
|
||||
println!("NumIps\t{}", ip_addrs.len());
|
||||
let ip_addr_set: HashSet<u128> = ip_addrs.iter().cloned().collect();
|
||||
println!("NumUniqueIps\t{}", ip_addr_set.len());
|
||||
let ratio_unique = ip_addr_set.len() as f64 / ip_addrs.len() as f64;
|
||||
println!("RatioUniqueOverTotal\t{ratio_unique:.4}");
|
||||
|
||||
// histogram
|
||||
let mut ip_addrs = ip_addrs.to_vec();
|
||||
ip_addrs.sort();
|
||||
let mut cnts: Vec<usize> = ip_addrs
|
||||
.into_iter()
|
||||
.dedup_with_count()
|
||||
.map(|(cnt, _)| cnt)
|
||||
.collect();
|
||||
cnts.sort();
|
||||
|
||||
let top_256_cnt: usize = cnts.iter().rev().take(256).sum();
|
||||
let top_128_cnt: usize = cnts.iter().rev().take(128).sum();
|
||||
let top_64_cnt: usize = cnts.iter().rev().take(64).sum();
|
||||
let top_8_cnt: usize = cnts.iter().rev().take(8).sum();
|
||||
let total: usize = cnts.iter().sum();
|
||||
|
||||
println!("{}", total);
|
||||
println!("{}", top_256_cnt);
|
||||
println!("{}", top_128_cnt);
|
||||
println!("Percentage Top8 {:02}", top_8_cnt as f32 / total as f32);
|
||||
println!("Percentage Top64 {:02}", top_64_cnt as f32 / total as f32);
|
||||
println!("Percentage Top128 {:02}", top_128_cnt as f32 / total as f32);
|
||||
println!("Percentage Top256 {:02}", top_256_cnt as f32 / total as f32);
|
||||
|
||||
let mut cnts: Vec<(usize, usize)> = cnts.into_iter().dedup_with_count().collect();
|
||||
cnts.sort_by(|a, b| {
|
||||
if a.1 == b.1 {
|
||||
a.0.cmp(&b.0)
|
||||
} else {
|
||||
b.1.cmp(&a.1)
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
fn ip_dataset() -> Vec<u128> {
|
||||
let mut ip_addr_v4 = 0;
|
||||
|
||||
let stdin = std::io::stdin();
|
||||
let ip_addrs: Vec<u128> = stdin
|
||||
.lock()
|
||||
.lines()
|
||||
.flat_map(|line| {
|
||||
let line = line.unwrap();
|
||||
let line = line.trim();
|
||||
let ip_addr = IpAddr::from_str(line.trim()).ok()?;
|
||||
if ip_addr.is_ipv4() {
|
||||
ip_addr_v4 += 1;
|
||||
}
|
||||
let ip_addr_v6: Ipv6Addr = match ip_addr {
|
||||
IpAddr::V4(v4) => v4.to_ipv6_mapped(),
|
||||
IpAddr::V6(v6) => v6,
|
||||
};
|
||||
Some(ip_addr_v6)
|
||||
})
|
||||
.map(|ip_v6| u128::from_be_bytes(ip_v6.octets()))
|
||||
.collect();
|
||||
|
||||
println!("IpAddrsAny\t{}", ip_addrs.len());
|
||||
println!("IpAddrsV4\t{}", ip_addr_v4);
|
||||
|
||||
ip_addrs
|
||||
}
|
||||
|
||||
fn bench_ip() {
|
||||
let dataset = ip_dataset();
|
||||
print_set_stats(&dataset);
|
||||
|
||||
// Chunks
|
||||
{
|
||||
let mut data = vec![];
|
||||
for dataset in dataset.chunks(500_000) {
|
||||
serialize_u128(|| dataset.iter().cloned(), dataset.len() as u32, &mut data).unwrap();
|
||||
}
|
||||
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
|
||||
println!("Compression 50_000 chunks {:.4}", compression);
|
||||
println!(
|
||||
"Num Bits per elem {:.2}",
|
||||
(data.len() * 8) as f32 / dataset.len() as f32
|
||||
);
|
||||
}
|
||||
|
||||
let mut data = vec![];
|
||||
{
|
||||
print_time!("creation");
|
||||
serialize_u128(|| dataset.iter().cloned(), dataset.len() as u32, &mut data).unwrap();
|
||||
}
|
||||
|
||||
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
|
||||
println!("Compression {:.2}", compression);
|
||||
println!(
|
||||
"Num Bits per elem {:.2}",
|
||||
(data.len() * 8) as f32 / dataset.len() as f32
|
||||
);
|
||||
|
||||
let decompressor = open_u128::<u128>(OwnedBytes::new(data)).unwrap();
|
||||
// Sample some ranges
|
||||
let mut doc_values = Vec::new();
|
||||
for value in dataset.iter().take(1110).skip(1100).cloned() {
|
||||
doc_values.clear();
|
||||
print_time!("get range");
|
||||
decompressor.get_docids_for_value_range(
|
||||
value..=value,
|
||||
0..decompressor.num_vals(),
|
||||
&mut doc_values,
|
||||
);
|
||||
println!("{:?}", doc_values.len());
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
if env::args().nth(1).unwrap() == "bench_ip" {
|
||||
bench_ip();
|
||||
return;
|
||||
}
|
||||
|
||||
let mut table = Table::new();
|
||||
|
||||
// Add a row per time
|
||||
table.add_row(row!["", "Compression Ratio", "Compression Estimation"]);
|
||||
|
||||
for (data, data_set_name) in get_codec_test_data_sets() {
|
||||
let results: Vec<(f32, f32, FastFieldCodecType)> = [
|
||||
serialize_with_codec(&data, FastFieldCodecType::Bitpacked),
|
||||
serialize_with_codec(&data, FastFieldCodecType::Linear),
|
||||
serialize_with_codec(&data, FastFieldCodecType::BlockwiseLinear),
|
||||
]
|
||||
.into_iter()
|
||||
.flatten()
|
||||
.collect();
|
||||
let best_compression_ratio_codec = results
|
||||
.iter()
|
||||
.min_by(|&res1, &res2| res1.partial_cmp(res2).unwrap())
|
||||
.cloned()
|
||||
.unwrap();
|
||||
|
||||
table.add_row(Row::new(vec![Cell::new(data_set_name).style_spec("Bbb")]));
|
||||
for (est, comp, codec_type) in results {
|
||||
let est_cell = est.to_string();
|
||||
let ratio_cell = comp.to_string();
|
||||
let style = if comp == best_compression_ratio_codec.1 {
|
||||
"Fb"
|
||||
} else {
|
||||
""
|
||||
};
|
||||
table.add_row(Row::new(vec![
|
||||
Cell::new(&format!("{codec_type:?}")).style_spec("bFg"),
|
||||
Cell::new(&ratio_cell).style_spec(style),
|
||||
Cell::new(&est_cell).style_spec(""),
|
||||
]));
|
||||
}
|
||||
}
|
||||
|
||||
table.printstd();
|
||||
}
|
||||
|
||||
pub fn get_codec_test_data_sets() -> Vec<(Vec<u64>, &'static str)> {
|
||||
let mut data_and_names = vec![];
|
||||
|
||||
let data = (1000..=200_000_u64).collect::<Vec<_>>();
|
||||
data_and_names.push((data, "Autoincrement"));
|
||||
|
||||
let mut current_cumulative = 0;
|
||||
let data = (1..=200_000_u64)
|
||||
.map(|num| {
|
||||
let num = (num as f32 + num as f32).log10() as u64;
|
||||
current_cumulative += num;
|
||||
current_cumulative
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
// let data = (1..=200000_u64).map(|num| num + num).collect::<Vec<_>>();
|
||||
data_and_names.push((data, "Monotonically increasing concave"));
|
||||
|
||||
let mut current_cumulative = 0;
|
||||
let data = (1..=200_000_u64)
|
||||
.map(|num| {
|
||||
let num = (200_000.0 - num as f32).log10() as u64;
|
||||
current_cumulative += num;
|
||||
current_cumulative
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
data_and_names.push((data, "Monotonically increasing convex"));
|
||||
|
||||
let data = (1000..=200_000_u64)
|
||||
.map(|num| num + rand::random::<u8>() as u64)
|
||||
.collect::<Vec<_>>();
|
||||
data_and_names.push((data, "Almost monotonically increasing"));
|
||||
|
||||
data_and_names
|
||||
}
|
||||
|
||||
pub fn serialize_with_codec(
|
||||
data: &[u64],
|
||||
codec_type: FastFieldCodecType,
|
||||
) -> Option<(f32, f32, FastFieldCodecType)> {
|
||||
let col = VecColumn::from(data);
|
||||
let estimation = fastfield_codecs::estimate(&col, codec_type)?;
|
||||
let mut out = Vec::new();
|
||||
fastfield_codecs::serialize(&col, &mut out, &[codec_type]).ok()?;
|
||||
let actual_compression = out.len() as f32 / (col.num_vals() * 8) as f32;
|
||||
Some((estimation, actual_compression, codec_type))
|
||||
}
|
||||
@@ -1,326 +0,0 @@
|
||||
#![warn(missing_docs)]
|
||||
#![cfg_attr(all(feature = "unstable", test), feature(test))]
|
||||
|
||||
//! # `fastfield_codecs`
|
||||
//!
|
||||
//! - Columnar storage of data for tantivy [`Column`].
|
||||
//! - Encode data in different codecs.
|
||||
//! - Monotonically map values to u64/u128
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use compact_space::CompactSpaceDecompressor;
|
||||
use monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
|
||||
StrictlyMonotonicMappingToInternalBaseval, StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
use serialize::{Header, U128Header};
|
||||
|
||||
mod bitpacked;
|
||||
mod blockwise_linear;
|
||||
mod compact_space;
|
||||
mod line;
|
||||
mod linear;
|
||||
pub(crate) mod monotonic_mapping;
|
||||
pub(crate) mod monotonic_mapping_u128;
|
||||
|
||||
mod column;
|
||||
mod column_with_cardinality;
|
||||
mod gcd;
|
||||
pub mod serialize;
|
||||
|
||||
pub use self::column::{monotonic_map_column, ColumnValues, IterColumn, VecColumn};
|
||||
pub use self::monotonic_mapping::{MonotonicallyMappableToU64, StrictlyMonotonicFn};
|
||||
pub use self::monotonic_mapping_u128::MonotonicallyMappableToU128;
|
||||
#[cfg(test)]
|
||||
pub use self::serialize::tests::serialize_and_load;
|
||||
pub use self::serialize::{serialize_column_values, NormalizedHeader};
|
||||
use crate::column_values::bitpacked::BitpackedCodec;
|
||||
use crate::column_values::blockwise_linear::BlockwiseLinearCodec;
|
||||
use crate::column_values::linear::LinearCodec;
|
||||
|
||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
/// Available codecs to use to encode the u64 (via [`MonotonicallyMappableToU64`]) converted data.
|
||||
pub enum FastFieldCodecType {
|
||||
/// Bitpack all values in the value range. The number of bits is defined by the amplitude
|
||||
/// `column.max_value() - column.min_value()`
|
||||
Bitpacked = 1,
|
||||
/// Linear interpolation puts a line between the first and last value and then bitpacks the
|
||||
/// values by the offset from the line. The number of bits is defined by the max deviation from
|
||||
/// the line.
|
||||
Linear = 2,
|
||||
/// Same as [`FastFieldCodecType::Linear`], but encodes in blocks of 512 elements.
|
||||
BlockwiseLinear = 3,
|
||||
}
|
||||
|
||||
impl BinarySerializable for FastFieldCodecType {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl FastFieldCodecType {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::Bitpacked),
|
||||
2 => Some(Self::Linear),
|
||||
3 => Some(Self::BlockwiseLinear),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
/// Available codecs to use to encode the u128 (via [`MonotonicallyMappableToU128`]) converted data.
|
||||
pub enum U128FastFieldCodecType {
|
||||
/// This codec takes a large number space (u128) and reduces it to a compact number space, by
|
||||
/// removing the holes.
|
||||
CompactSpace = 1,
|
||||
}
|
||||
|
||||
impl BinarySerializable for U128FastFieldCodecType {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl U128FastFieldCodecType {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::CompactSpace),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open_u128_mapped<T: MonotonicallyMappableToU128>(
|
||||
mut bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
let header = U128Header::deserialize(&mut bytes)?;
|
||||
assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
|
||||
let reader = CompactSpaceDecompressor::open(bytes)?;
|
||||
|
||||
let inverted: StrictlyMonotonicMappingInverter<StrictlyMonotonicMappingToInternal<T>> =
|
||||
StrictlyMonotonicMappingToInternal::<T>::new().into();
|
||||
Ok(Arc::new(monotonic_map_column(reader, inverted)))
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open_u64_mapped<T: MonotonicallyMappableToU64>(
|
||||
mut bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
let header = Header::deserialize(&mut bytes)?;
|
||||
match header.codec_type {
|
||||
FastFieldCodecType::Bitpacked => open_specific_codec::<BitpackedCodec, _>(bytes, &header),
|
||||
FastFieldCodecType::Linear => open_specific_codec::<LinearCodec, _>(bytes, &header),
|
||||
FastFieldCodecType::BlockwiseLinear => {
|
||||
open_specific_codec::<BlockwiseLinearCodec, _>(bytes, &header)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64>(
|
||||
bytes: OwnedBytes,
|
||||
header: &Header,
|
||||
) -> io::Result<Arc<dyn ColumnValues<Item>>> {
|
||||
let normalized_header = header.normalized();
|
||||
let reader = C::open_from_bytes(bytes, normalized_header)?;
|
||||
let min_value = header.min_value;
|
||||
if let Some(gcd) = header.gcd {
|
||||
let mapping = StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd.get(), min_value),
|
||||
);
|
||||
Ok(Arc::new(monotonic_map_column(reader, mapping)))
|
||||
} else {
|
||||
let mapping = StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalBaseval::new(min_value),
|
||||
);
|
||||
Ok(Arc::new(monotonic_map_column(reader, mapping)))
|
||||
}
|
||||
}
|
||||
|
||||
/// The FastFieldSerializerEstimate trait is required on all variants
|
||||
/// of fast field compressions, to decide which one to choose.
|
||||
pub(crate) trait FastFieldCodec: 'static {
|
||||
/// A codex needs to provide a unique name and id, which is
|
||||
/// used for debugging and de/serialization.
|
||||
const CODEC_TYPE: FastFieldCodecType;
|
||||
|
||||
type Reader: ColumnValues<u64> + 'static;
|
||||
|
||||
/// Reads the metadata and returns the CodecReader
|
||||
fn open_from_bytes(bytes: OwnedBytes, header: NormalizedHeader) -> io::Result<Self::Reader>;
|
||||
|
||||
/// Serializes the data using the serializer into write.
|
||||
///
|
||||
/// The column iterator should be preferred over using column `get_val` method for
|
||||
/// performance reasons.
|
||||
fn serialize(column: &dyn ColumnValues, write: &mut impl Write) -> io::Result<()>;
|
||||
|
||||
/// Returns an estimate of the compression ratio.
|
||||
/// If the codec is not applicable, returns `None`.
|
||||
///
|
||||
/// The baseline is uncompressed 64bit data.
|
||||
///
|
||||
/// It could make sense to also return a value representing
|
||||
/// computational complexity.
|
||||
fn estimate(column: &dyn ColumnValues) -> Option<f32>;
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::*;
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55000_u64)
|
||||
.map(|num| num + rng.gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
fn get_reader_for_bench<Codec: FastFieldCodec>(data: &[u64]) -> Codec::Reader {
|
||||
let mut bytes = Vec::new();
|
||||
let min_value = *data.iter().min().unwrap();
|
||||
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
|
||||
let col = VecColumn::from(&data);
|
||||
let normalized_header = NormalizedHeader {
|
||||
num_vals: col.num_vals(),
|
||||
max_value: col.max_value(),
|
||||
};
|
||||
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
|
||||
Codec::open_from_bytes(OwnedBytes::new(bytes), normalized_header).unwrap()
|
||||
}
|
||||
fn bench_get<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = get_reader_for_bench::<Codec>(data);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn ColumnValues>) {
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
fn bench_get_dynamic<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = Arc::new(get_reader_for_bench::<Codec>(data));
|
||||
bench_get_dynamic_helper(b, col);
|
||||
}
|
||||
fn bench_create<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let min_value = *data.iter().min().unwrap();
|
||||
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
|
||||
|
||||
let mut bytes = Vec::new();
|
||||
b.iter(|| {
|
||||
bytes.clear();
|
||||
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
}
|
||||
@@ -1,278 +0,0 @@
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
|
||||
use super::MonotonicallyMappableToU128;
|
||||
use crate::RowId;
|
||||
|
||||
/// Monotonic maps a value to u64 value space.
|
||||
/// Monotonic mapping enables `PartialOrd` on u64 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU64: 'static + PartialOrd + Copy + Send + Sync {
|
||||
/// Converts a value to u64.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
fn to_u64(self) -> u64;
|
||||
|
||||
/// Converts a value from u64
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
/// **Note: To be used for converting encoded Term, Posting values.**
|
||||
fn from_u64(val: u64) -> Self;
|
||||
}
|
||||
|
||||
/// Values need to be strictly monotonic mapped to a `Internal` value (u64 or u128) that can be
|
||||
/// used in fast field codecs.
|
||||
///
|
||||
/// The monotonic mapping is required so that `PartialOrd` can be used on `Internal` without
|
||||
/// converting to `External`.
|
||||
///
|
||||
/// All strictly monotonic functions are invertible because they are guaranteed to have a one-to-one
|
||||
/// mapping from their range to their domain. The `inverse` method is required when opening a codec,
|
||||
/// so a value can be converted back to its original domain (e.g. ip address or f64) from its
|
||||
/// internal representation.
|
||||
pub trait StrictlyMonotonicFn<External, Internal> {
|
||||
/// Strictly monotonically maps the value from External to Internal.
|
||||
fn mapping(&self, inp: External) -> Internal;
|
||||
/// Inverse of `mapping`. Maps the value from Internal to External.
|
||||
fn inverse(&self, out: Internal) -> External;
|
||||
}
|
||||
|
||||
/// Inverts a strictly monotonic mapping from `StrictlyMonotonicFn<A, B>` to
|
||||
/// `StrictlyMonotonicFn<B, A>`.
|
||||
///
|
||||
/// # Warning
|
||||
///
|
||||
/// This type comes with a footgun. A type being strictly monotonic does not impose that the inverse
|
||||
/// mapping is strictly monotonic over the entire space External. e.g. a -> a * 2. Use at your own
|
||||
/// risks.
|
||||
pub(crate) struct StrictlyMonotonicMappingInverter<T> {
|
||||
orig_mapping: T,
|
||||
}
|
||||
impl<T> From<T> for StrictlyMonotonicMappingInverter<T> {
|
||||
fn from(orig_mapping: T) -> Self {
|
||||
Self { orig_mapping }
|
||||
}
|
||||
}
|
||||
|
||||
impl<From, To, T> StrictlyMonotonicFn<To, From> for StrictlyMonotonicMappingInverter<T>
|
||||
where T: StrictlyMonotonicFn<From, To>
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, val: To) -> From {
|
||||
self.orig_mapping.inverse(val)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, val: From) -> To {
|
||||
self.orig_mapping.mapping(val)
|
||||
}
|
||||
}
|
||||
|
||||
/// Applies the strictly monotonic mapping from `T` without any additional changes.
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternal<T> {
|
||||
_phantom: PhantomData<T>,
|
||||
}
|
||||
|
||||
impl<T> StrictlyMonotonicMappingToInternal<T> {
|
||||
pub(crate) fn new() -> StrictlyMonotonicMappingToInternal<T> {
|
||||
Self {
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<External: MonotonicallyMappableToU128, T: MonotonicallyMappableToU128>
|
||||
StrictlyMonotonicFn<External, u128> for StrictlyMonotonicMappingToInternal<T>
|
||||
where T: MonotonicallyMappableToU128
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: External) -> u128 {
|
||||
External::to_u128(inp)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: u128) -> External {
|
||||
External::from_u128(out)
|
||||
}
|
||||
}
|
||||
|
||||
impl<External: MonotonicallyMappableToU64, T: MonotonicallyMappableToU64>
|
||||
StrictlyMonotonicFn<External, u64> for StrictlyMonotonicMappingToInternal<T>
|
||||
where T: MonotonicallyMappableToU64
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: External) -> u64 {
|
||||
External::to_u64(inp)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: u64) -> External {
|
||||
External::from_u64(out)
|
||||
}
|
||||
}
|
||||
|
||||
/// Mapping dividing by gcd and a base value.
|
||||
///
|
||||
/// The function is assumed to be only called on values divided by passed
|
||||
/// gcd value. (It is necessary for the function to be monotonic.)
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternalGCDBaseval {
|
||||
gcd_divider: DividerU64,
|
||||
gcd: u64,
|
||||
min_value: u64,
|
||||
}
|
||||
impl StrictlyMonotonicMappingToInternalGCDBaseval {
|
||||
pub(crate) fn new(gcd: u64, min_value: u64) -> Self {
|
||||
let gcd_divider = DividerU64::divide_by(gcd);
|
||||
Self {
|
||||
gcd_divider,
|
||||
gcd,
|
||||
min_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
|
||||
for StrictlyMonotonicMappingToInternalGCDBaseval
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: External) -> u64 {
|
||||
self.gcd_divider
|
||||
.divide(External::to_u64(inp) - self.min_value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: u64) -> External {
|
||||
External::from_u64(self.min_value + out * self.gcd)
|
||||
}
|
||||
}
|
||||
|
||||
/// Strictly monotonic mapping with a base value.
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternalBaseval {
|
||||
min_value: u64,
|
||||
}
|
||||
impl StrictlyMonotonicMappingToInternalBaseval {
|
||||
#[inline(always)]
|
||||
pub(crate) fn new(min_value: u64) -> Self {
|
||||
Self { min_value }
|
||||
}
|
||||
}
|
||||
|
||||
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
|
||||
for StrictlyMonotonicMappingToInternalBaseval
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, val: External) -> u64 {
|
||||
External::to_u64(val) - self.min_value
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, val: u64) -> External {
|
||||
External::from_u64(self.min_value + val)
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for u64 {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
self
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
val
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for i64 {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
common::i64_to_u64(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
common::u64_to_i64(val)
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for crate::DateTime {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
common::i64_to_u64(self.timestamp_micros)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
crate::DateTime {
|
||||
timestamp_micros: common::u64_to_i64(val),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for bool {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
u64::from(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
val > 0
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for RowId {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
u64::from(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> RowId {
|
||||
val as RowId
|
||||
}
|
||||
}
|
||||
|
||||
// TODO remove me.
|
||||
// Tantivy should refuse NaN values and work with NotNaN internally.
|
||||
impl MonotonicallyMappableToU64 for f64 {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
common::f64_to_u64(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
common::u64_to_f64(val)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn strictly_monotonic_test() {
|
||||
// identity mapping
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<u64>::new(), 100u64);
|
||||
// round trip to i64
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<i64>::new(), 100u64);
|
||||
// TODO
|
||||
// identity mapping
|
||||
// test_round_trip(&StrictlyMonotonicMappingToInternal::<u128>::new(), 100u128);
|
||||
|
||||
// base value to i64 round trip
|
||||
let mapping = StrictlyMonotonicMappingToInternalBaseval::new(100);
|
||||
test_round_trip::<_, _, u64>(&mapping, 100i64);
|
||||
// base value and gcd to u64 round trip
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100);
|
||||
test_round_trip::<_, _, u64>(&mapping, 100u64);
|
||||
}
|
||||
|
||||
fn test_round_trip<T: StrictlyMonotonicFn<K, L>, K: std::fmt::Debug + Eq + Copy, L>(
|
||||
mapping: &T,
|
||||
test_val: K,
|
||||
) {
|
||||
assert_eq!(mapping.inverse(mapping.mapping(test_val)), test_val);
|
||||
}
|
||||
}
|
||||
@@ -1,40 +0,0 @@
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
/// Montonic maps a value to u128 value space
|
||||
/// Monotonic mapping enables `PartialOrd` on u128 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU128: 'static + PartialOrd + Copy + Send + Sync {
|
||||
/// Converts a value to u128.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
fn to_u128(self) -> u128;
|
||||
|
||||
/// Converts a value from u128
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
/// **Note: To be used for converting encoded Term, Posting values.**
|
||||
fn from_u128(val: u128) -> Self;
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU128 for u128 {
|
||||
fn to_u128(self) -> u128 {
|
||||
self
|
||||
}
|
||||
|
||||
fn from_u128(val: u128) -> Self {
|
||||
val
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU128 for Ipv6Addr {
|
||||
fn to_u128(self) -> u128 {
|
||||
ip_to_u128(self)
|
||||
}
|
||||
|
||||
fn from_u128(val: u128) -> Self {
|
||||
Ipv6Addr::from(val.to_be_bytes())
|
||||
}
|
||||
}
|
||||
|
||||
fn ip_to_u128(ip_addr: Ipv6Addr) -> u128 {
|
||||
u128::from_be_bytes(ip_addr.octets())
|
||||
}
|
||||
@@ -1,320 +0,0 @@
|
||||
// Copyright (C) 2022 Quickwit, Inc.
|
||||
//
|
||||
// Quickwit is offered under the AGPL v3.0 and as commercial software.
|
||||
// For commercial licensing, contact us at hello@quickwit.io.
|
||||
//
|
||||
// AGPL:
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Affero General Public License as
|
||||
// published by the Free Software Foundation, either version 3 of the
|
||||
// License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Affero General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Affero General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
use std::io;
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use common::{BinarySerializable, VInt};
|
||||
use log::warn;
|
||||
|
||||
use super::bitpacked::BitpackedCodec;
|
||||
use super::blockwise_linear::BlockwiseLinearCodec;
|
||||
use super::linear::LinearCodec;
|
||||
use super::monotonic_mapping::{
|
||||
StrictlyMonotonicFn, StrictlyMonotonicMappingToInternal,
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
use super::{
|
||||
monotonic_map_column, ColumnValues, FastFieldCodec, FastFieldCodecType,
|
||||
MonotonicallyMappableToU64, U128FastFieldCodecType,
|
||||
};
|
||||
use crate::column_values::compact_space::CompactSpaceCompressor;
|
||||
|
||||
/// The normalized header gives some parameters after applying the following
|
||||
/// normalization of the vector:
|
||||
/// `val -> (val - min_value) / gcd`
|
||||
///
|
||||
/// By design, after normalization, `min_value = 0` and `gcd = 1`.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct NormalizedHeader {
|
||||
/// The number of values in the underlying column.
|
||||
pub num_vals: u32,
|
||||
/// The max value of the underlying column.
|
||||
pub max_value: u64,
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub(crate) struct Header {
|
||||
pub num_vals: u32,
|
||||
pub min_value: u64,
|
||||
pub max_value: u64,
|
||||
pub gcd: Option<NonZeroU64>,
|
||||
pub codec_type: FastFieldCodecType,
|
||||
}
|
||||
|
||||
impl Header {
|
||||
pub fn normalized(self) -> NormalizedHeader {
|
||||
let gcd = self.gcd.map(|gcd| gcd.get()).unwrap_or(1);
|
||||
let gcd_min_val_mapping =
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd, self.min_value);
|
||||
|
||||
let max_value = gcd_min_val_mapping.mapping(self.max_value);
|
||||
NormalizedHeader {
|
||||
num_vals: self.num_vals,
|
||||
max_value,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn normalize_column<C: ColumnValues>(&self, from_column: C) -> impl ColumnValues {
|
||||
normalize_column(from_column, self.min_value, self.gcd)
|
||||
}
|
||||
|
||||
pub fn compute_header(
|
||||
column: impl ColumnValues<u64>,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> Option<Header> {
|
||||
let num_vals = column.num_vals();
|
||||
let min_value = column.min_value();
|
||||
let max_value = column.max_value();
|
||||
let gcd = super::gcd::find_gcd(column.iter().map(|val| val - min_value))
|
||||
.filter(|gcd| gcd.get() > 1u64);
|
||||
let normalized_column = normalize_column(column, min_value, gcd);
|
||||
let codec_type = detect_codec(normalized_column, codecs)?;
|
||||
Some(Header {
|
||||
num_vals,
|
||||
min_value,
|
||||
max_value,
|
||||
gcd,
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
pub(crate) struct U128Header {
|
||||
pub num_vals: u32,
|
||||
pub codec_type: U128FastFieldCodecType,
|
||||
}
|
||||
|
||||
impl BinarySerializable for U128Header {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.num_vals as u64).serialize(writer)?;
|
||||
self.codec_type.serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_vals = VInt::deserialize(reader)?.0 as u32;
|
||||
let codec_type = U128FastFieldCodecType::deserialize(reader)?;
|
||||
Ok(U128Header {
|
||||
num_vals,
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn normalize_column<C: ColumnValues>(
|
||||
from_column: C,
|
||||
min_value: u64,
|
||||
gcd: Option<NonZeroU64>,
|
||||
) -> impl ColumnValues {
|
||||
let gcd = gcd.map(|gcd| gcd.get()).unwrap_or(1);
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd, min_value);
|
||||
monotonic_map_column(from_column, mapping)
|
||||
}
|
||||
|
||||
impl BinarySerializable for Header {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.num_vals as u64).serialize(writer)?;
|
||||
VInt(self.min_value).serialize(writer)?;
|
||||
VInt(self.max_value - self.min_value).serialize(writer)?;
|
||||
if let Some(gcd) = self.gcd {
|
||||
VInt(gcd.get()).serialize(writer)?;
|
||||
} else {
|
||||
VInt(0u64).serialize(writer)?;
|
||||
}
|
||||
self.codec_type.serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_vals = VInt::deserialize(reader)?.0 as u32;
|
||||
let min_value = VInt::deserialize(reader)?.0;
|
||||
let amplitude = VInt::deserialize(reader)?.0;
|
||||
let max_value = min_value + amplitude;
|
||||
let gcd_u64 = VInt::deserialize(reader)?.0;
|
||||
let codec_type = FastFieldCodecType::deserialize(reader)?;
|
||||
Ok(Header {
|
||||
num_vals,
|
||||
min_value,
|
||||
max_value,
|
||||
gcd: NonZeroU64::new(gcd_u64),
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Serializes u128 values with the compact space codec.
|
||||
pub fn serialize_column_values_u128<F: Fn() -> I, I: Iterator<Item = u128>>(
|
||||
iter_gen: F,
|
||||
num_vals: u32,
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let header = U128Header {
|
||||
num_vals,
|
||||
codec_type: U128FastFieldCodecType::CompactSpace,
|
||||
};
|
||||
header.serialize(output)?;
|
||||
let compressor = CompactSpaceCompressor::train_from(iter_gen(), num_vals);
|
||||
compressor.compress_into(iter_gen(), output)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Serializes the column with the codec with the best estimate on the data.
|
||||
pub fn serialize_column_values<T: MonotonicallyMappableToU64>(
|
||||
typed_column: impl ColumnValues<T>,
|
||||
codecs: &[FastFieldCodecType],
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let column = monotonic_map_column(typed_column, StrictlyMonotonicMappingToInternal::<T>::new());
|
||||
let header = Header::compute_header(&column, codecs).ok_or_else(|| {
|
||||
io::Error::new(
|
||||
io::ErrorKind::InvalidInput,
|
||||
format!(
|
||||
"Data cannot be serialized with this list of codec. {:?}",
|
||||
codecs
|
||||
),
|
||||
)
|
||||
})?;
|
||||
header.serialize(output)?;
|
||||
let normalized_column = header.normalize_column(column);
|
||||
assert_eq!(normalized_column.min_value(), 0u64);
|
||||
serialize_given_codec(normalized_column, header.codec_type, output)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn detect_codec(
|
||||
column: impl ColumnValues<u64>,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> Option<FastFieldCodecType> {
|
||||
let mut estimations = Vec::new();
|
||||
for &codec in codecs {
|
||||
let estimation_opt = match codec {
|
||||
FastFieldCodecType::Bitpacked => BitpackedCodec::estimate(&column),
|
||||
FastFieldCodecType::Linear => LinearCodec::estimate(&column),
|
||||
FastFieldCodecType::BlockwiseLinear => BlockwiseLinearCodec::estimate(&column),
|
||||
};
|
||||
if let Some(estimation) = estimation_opt {
|
||||
estimations.push((estimation, codec));
|
||||
}
|
||||
}
|
||||
if let Some(broken_estimation) = estimations.iter().find(|estimation| estimation.0.is_nan()) {
|
||||
warn!(
|
||||
"broken estimation for fast field codec {:?}",
|
||||
broken_estimation.1
|
||||
);
|
||||
}
|
||||
// removing nan values for codecs with broken calculations, and max values which disables
|
||||
// codecs
|
||||
estimations.retain(|estimation| !estimation.0.is_nan() && estimation.0 != f32::MAX);
|
||||
estimations.sort_by(|(score_left, _), (score_right, _)| score_left.total_cmp(score_right));
|
||||
Some(estimations.first()?.1)
|
||||
}
|
||||
|
||||
pub(crate) fn serialize_given_codec(
|
||||
column: impl ColumnValues<u64>,
|
||||
codec_type: FastFieldCodecType,
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
match codec_type {
|
||||
FastFieldCodecType::Bitpacked => {
|
||||
BitpackedCodec::serialize(&column, output)?;
|
||||
}
|
||||
FastFieldCodecType::Linear => {
|
||||
LinearCodec::serialize(&column, output)?;
|
||||
}
|
||||
FastFieldCodecType::BlockwiseLinear => {
|
||||
BlockwiseLinearCodec::serialize(&column, output)?;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
|
||||
use super::*;
|
||||
use crate::column_values::{open_u64_mapped, VecColumn};
|
||||
|
||||
const ALL_CODEC_TYPES: [FastFieldCodecType; 3] = [
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::Linear,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
];
|
||||
|
||||
/// Helper function to serialize a column (autodetect from all codecs) and then open it
|
||||
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default>(
|
||||
column: &[T],
|
||||
) -> Arc<dyn ColumnValues<T>> {
|
||||
let mut buffer = Vec::new();
|
||||
serialize_column_values(&VecColumn::from(&column), &ALL_CODEC_TYPES, &mut buffer).unwrap();
|
||||
open_u64_mapped(OwnedBytes::new(buffer)).unwrap()
|
||||
}
|
||||
#[test]
|
||||
fn test_serialize_deserialize_u128_header() {
|
||||
let original = U128Header {
|
||||
num_vals: 11,
|
||||
codec_type: U128FastFieldCodecType::CompactSpace,
|
||||
};
|
||||
let mut out = Vec::new();
|
||||
original.serialize(&mut out).unwrap();
|
||||
let restored = U128Header::deserialize(&mut &out[..]).unwrap();
|
||||
assert_eq!(restored, original);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_serialize_deserialize() {
|
||||
let original = [1u64, 5u64, 10u64];
|
||||
let restored: Vec<u64> = serialize_and_load(&original[..]).iter().collect();
|
||||
assert_eq!(&restored, &original[..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_bool_size_bitwidth_1() {
|
||||
let mut buffer = Vec::new();
|
||||
let col = VecColumn::from(&[false, true][..]);
|
||||
serialize_column_values(&col, &ALL_CODEC_TYPES, &mut buffer).unwrap();
|
||||
// TODO put the header as a footer so that it serves as a padding.
|
||||
// 5 bytes of header, 1 byte of value, 7 bytes of padding.
|
||||
assert_eq!(buffer.len(), 5 + 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_bool_bit_size_bitwidth_0() {
|
||||
let mut buffer = Vec::new();
|
||||
let col = VecColumn::from(&[true][..]);
|
||||
serialize_column_values(&col, &ALL_CODEC_TYPES, &mut buffer).unwrap();
|
||||
// 5 bytes of header, 0 bytes of value, 7 bytes of padding.
|
||||
assert_eq!(buffer.len(), 5);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd() {
|
||||
let mut buffer = Vec::new();
|
||||
let vals: Vec<u64> = (0..80).map(|val| (val % 7) * 1_000u64).collect();
|
||||
let col = VecColumn::from(&vals[..]);
|
||||
serialize_column_values(&col, &[FastFieldCodecType::Bitpacked], &mut buffer).unwrap();
|
||||
// Values are stored over 3 bits.
|
||||
assert_eq!(buffer.len(), 7 + (3 * 80 / 8));
|
||||
}
|
||||
}
|
||||
@@ -1,309 +0,0 @@
|
||||
use proptest::prelude::*;
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
|
||||
use super::bitpacked::BitpackedCodec;
|
||||
use super::blockwise_linear::BlockwiseLinearCodec;
|
||||
use super::linear::LinearCodec;
|
||||
use super::serialize::Header;
|
||||
|
||||
pub(crate) fn create_and_validate<Codec: FastFieldCodec>(
|
||||
data: &[u64],
|
||||
name: &str,
|
||||
) -> Option<(f32, f32)> {
|
||||
let col = &VecColumn::from(data);
|
||||
let header = Header::compute_header(col, &[Codec::CODEC_TYPE])?;
|
||||
let normalized_col = header.normalize_column(col);
|
||||
let estimation = Codec::estimate(&normalized_col)?;
|
||||
|
||||
let mut out = Vec::new();
|
||||
let col = VecColumn::from(data);
|
||||
serialize_column_values(&col, &[Codec::CODEC_TYPE], &mut out).unwrap();
|
||||
|
||||
let actual_compression = out.len() as f32 / (data.len() as f32 * 8.0);
|
||||
|
||||
let reader = super::open_u64_mapped::<u64>(OwnedBytes::new(out)).unwrap();
|
||||
assert_eq!(reader.num_vals(), data.len() as u32);
|
||||
for (doc, orig_val) in data.iter().copied().enumerate() {
|
||||
let val = reader.get_val(doc as u32);
|
||||
assert_eq!(
|
||||
val, orig_val,
|
||||
"val `{val}` does not match orig_val {orig_val:?}, in data set {name}, data `{data:?}`",
|
||||
);
|
||||
}
|
||||
|
||||
if !data.is_empty() {
|
||||
let test_rand_idx = rand::thread_rng().gen_range(0..=data.len() - 1);
|
||||
let expected_positions: Vec<u32> = data
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_, el)| **el == data[test_rand_idx])
|
||||
.map(|(pos, _)| pos as u32)
|
||||
.collect();
|
||||
let mut positions = Vec::new();
|
||||
reader.get_docids_for_value_range(
|
||||
data[test_rand_idx]..=data[test_rand_idx],
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
assert_eq!(expected_positions, positions);
|
||||
}
|
||||
Some((estimation, actual_compression))
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(100))]
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_bitpacked(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
|
||||
}
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(10))]
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_bitpacked(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
|
||||
}
|
||||
}
|
||||
|
||||
fn num_strategy() -> impl Strategy<Value = u64> {
|
||||
prop_oneof![
|
||||
1 => prop::num::u64::ANY.prop_map(|num| u64::MAX - (num % 10) ),
|
||||
1 => prop::num::u64::ANY.prop_map(|num| num % 10 ),
|
||||
20 => prop::num::u64::ANY,
|
||||
]
|
||||
}
|
||||
|
||||
pub fn get_codec_test_datasets() -> Vec<(Vec<u64>, &'static str)> {
|
||||
let mut data_and_names = vec![];
|
||||
|
||||
let data = (10..=10_000_u64).collect::<Vec<_>>();
|
||||
data_and_names.push((data, "simple monotonically increasing"));
|
||||
|
||||
data_and_names.push((
|
||||
vec![5, 6, 7, 8, 9, 10, 99, 100],
|
||||
"offset in linear interpol",
|
||||
));
|
||||
data_and_names.push((vec![5, 50, 3, 13, 1, 1000, 35], "rand small"));
|
||||
data_and_names.push((vec![10], "single value"));
|
||||
|
||||
data_and_names.push((
|
||||
vec![1572656989877777, 1170935903116329, 720575940379279, 0],
|
||||
"overflow error",
|
||||
));
|
||||
|
||||
data_and_names
|
||||
}
|
||||
|
||||
fn test_codec<C: FastFieldCodec>() {
|
||||
let codec_name = format!("{:?}", C::CODEC_TYPE);
|
||||
for (data, dataset_name) in get_codec_test_datasets() {
|
||||
let estimate_actual_opt: Option<(f32, f32)> =
|
||||
tests::create_and_validate::<C>(&data, dataset_name);
|
||||
let result = if let Some((estimate, actual)) = estimate_actual_opt {
|
||||
format!("Estimate `{estimate}` Actual `{actual}`")
|
||||
} else {
|
||||
"Disabled".to_string()
|
||||
};
|
||||
println!("Codec {codec_name}, DataSet {dataset_name}, {result}");
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn test_codec_bitpacking() {
|
||||
test_codec::<BitpackedCodec>();
|
||||
}
|
||||
#[test]
|
||||
fn test_codec_interpolation() {
|
||||
test_codec::<LinearCodec>();
|
||||
}
|
||||
#[test]
|
||||
fn test_codec_multi_interpolation() {
|
||||
test_codec::<BlockwiseLinearCodec>();
|
||||
}
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn estimation_good_interpolation_case() {
|
||||
let data = (10..=20000_u64).collect::<Vec<_>>();
|
||||
let data: VecColumn = data.as_slice().into();
|
||||
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
assert_le!(linear_interpol_estimation, 0.01);
|
||||
|
||||
let multi_linear_interpol_estimation = BlockwiseLinearCodec::estimate(&data).unwrap();
|
||||
assert_le!(multi_linear_interpol_estimation, 0.2);
|
||||
assert_lt!(linear_interpol_estimation, multi_linear_interpol_estimation);
|
||||
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_lt!(linear_interpol_estimation, bitpacked_estimation);
|
||||
}
|
||||
#[test]
|
||||
fn estimation_test_bad_interpolation_case() {
|
||||
let data: &[u64] = &[200, 10, 10, 10, 10, 1000, 20];
|
||||
|
||||
let data: VecColumn = data.into();
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
assert_le!(linear_interpol_estimation, 0.34);
|
||||
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn estimation_prefer_bitpacked() {
|
||||
let data = VecColumn::from(&[10, 10, 10, 10]);
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn estimation_test_bad_interpolation_case_monotonically_increasing() {
|
||||
let mut data: Vec<u64> = (201..=20000_u64).collect();
|
||||
data.push(1_000_000);
|
||||
let data: VecColumn = data.as_slice().into();
|
||||
|
||||
// in this case the linear interpolation can't in fact not be worse than bitpacking,
|
||||
// but the estimator adds some threshold, which leads to estimated worse behavior
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
assert_le!(linear_interpol_estimation, 0.35);
|
||||
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_le!(bitpacked_estimation, 0.32);
|
||||
assert_le!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fast_field_codec_type_to_code() {
|
||||
let mut count_codec = 0;
|
||||
for code in 0..=255 {
|
||||
if let Some(codec_type) = FastFieldCodecType::from_code(code) {
|
||||
assert_eq!(codec_type.to_code(), code);
|
||||
count_codec += 1;
|
||||
}
|
||||
}
|
||||
assert_eq!(count_codec, 3);
|
||||
}
|
||||
|
||||
fn test_fastfield_gcd_i64_with_codec(
|
||||
codec_type: FastFieldCodecType,
|
||||
num_vals: usize,
|
||||
) -> io::Result<()> {
|
||||
let mut vals: Vec<i64> = (-4..=(num_vals as i64) - 5).map(|val| val * 1000).collect();
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
crate::column_values::serialize_column_values(
|
||||
&VecColumn::from(&vals),
|
||||
&[codec_type],
|
||||
&mut buffer,
|
||||
)?;
|
||||
let buffer = OwnedBytes::new(buffer);
|
||||
let column = crate::column_values::open_u64_mapped::<i64>(buffer.clone())?;
|
||||
assert_eq!(column.get_val(0), -4000i64);
|
||||
assert_eq!(column.get_val(1), -3000i64);
|
||||
assert_eq!(column.get_val(2), -2000i64);
|
||||
assert_eq!(column.max_value(), (num_vals as i64 - 5) * 1000);
|
||||
assert_eq!(column.min_value(), -4000i64);
|
||||
|
||||
// Can't apply gcd
|
||||
let mut buffer_without_gcd = Vec::new();
|
||||
vals.pop();
|
||||
vals.push(1001i64);
|
||||
crate::column_values::serialize_column_values(
|
||||
&VecColumn::from(&vals),
|
||||
&[codec_type],
|
||||
&mut buffer_without_gcd,
|
||||
)?;
|
||||
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
|
||||
assert!(buffer_without_gcd.len() > buffer.len());
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd_i64() -> io::Result<()> {
|
||||
for &codec_type in &[
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
FastFieldCodecType::Linear,
|
||||
] {
|
||||
test_fastfield_gcd_i64_with_codec(codec_type, 5500)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn test_fastfield_gcd_u64_with_codec(
|
||||
codec_type: FastFieldCodecType,
|
||||
num_vals: usize,
|
||||
) -> io::Result<()> {
|
||||
let mut vals: Vec<u64> = (1..=num_vals).map(|i| i as u64 * 1000u64).collect();
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
crate::column_values::serialize_column_values(
|
||||
&VecColumn::from(&vals),
|
||||
&[codec_type],
|
||||
&mut buffer,
|
||||
)?;
|
||||
let buffer = OwnedBytes::new(buffer);
|
||||
let column = crate::column_values::open_u64_mapped::<u64>(buffer.clone())?;
|
||||
assert_eq!(column.get_val(0), 1000u64);
|
||||
assert_eq!(column.get_val(1), 2000u64);
|
||||
assert_eq!(column.get_val(2), 3000u64);
|
||||
assert_eq!(column.max_value(), num_vals as u64 * 1000);
|
||||
assert_eq!(column.min_value(), 1000u64);
|
||||
|
||||
// Can't apply gcd
|
||||
let mut buffer_without_gcd = Vec::new();
|
||||
vals.pop();
|
||||
vals.push(1001u64);
|
||||
crate::column_values::serialize_column_values(
|
||||
&VecColumn::from(&vals),
|
||||
&[codec_type],
|
||||
&mut buffer_without_gcd,
|
||||
)?;
|
||||
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
|
||||
assert!(buffer_without_gcd.len() > buffer.len());
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd_u64() -> io::Result<()> {
|
||||
for &codec_type in &[
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
FastFieldCodecType::Linear,
|
||||
] {
|
||||
test_fastfield_gcd_u64_with_codec(codec_type, 5500)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn test_fastfield2() {
|
||||
let test_fastfield = crate::column_values::serialize_and_load(&[100u64, 200u64, 300u64]);
|
||||
assert_eq!(test_fastfield.get_val(0), 100);
|
||||
assert_eq!(test_fastfield.get_val(1), 200);
|
||||
assert_eq!(test_fastfield.get_val(2), 300);
|
||||
}
|
||||
@@ -1,235 +0,0 @@
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
use crate::value::NumericalType;
|
||||
use crate::InvalidData;
|
||||
|
||||
/// The column type represents the column type and can fit on 6-bits.
|
||||
///
|
||||
/// - bits[0..3]: Column category type.
|
||||
/// - bits[3..6]: Numerical type if necessary.
|
||||
#[derive(Hash, Eq, PartialEq, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
pub enum ColumnType {
|
||||
I64 = 0u8,
|
||||
U64 = 1u8,
|
||||
F64 = 2u8,
|
||||
Bytes = 10u8,
|
||||
Str = 14u8,
|
||||
Bool = 18u8,
|
||||
IpAddr = 22u8,
|
||||
DateTime = 26u8,
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
const COLUMN_TYPES: [ColumnType; 8] = [
|
||||
ColumnType::I64,
|
||||
ColumnType::U64,
|
||||
ColumnType::F64,
|
||||
ColumnType::Bytes,
|
||||
ColumnType::Str,
|
||||
ColumnType::Bool,
|
||||
ColumnType::IpAddr,
|
||||
ColumnType::DateTime,
|
||||
];
|
||||
|
||||
impl ColumnType {
|
||||
pub fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn try_from_code(code: u8) -> Result<ColumnType, InvalidData> {
|
||||
use ColumnType::*;
|
||||
match code {
|
||||
0u8 => Ok(I64),
|
||||
1u8 => Ok(U64),
|
||||
2u8 => Ok(F64),
|
||||
10u8 => Ok(Bytes),
|
||||
14u8 => Ok(Str),
|
||||
18u8 => Ok(Bool),
|
||||
22u8 => Ok(IpAddr),
|
||||
26u8 => Ok(Self::DateTime),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<NumericalType> for ColumnType {
|
||||
fn from(numerical_type: NumericalType) -> Self {
|
||||
match numerical_type {
|
||||
NumericalType::I64 => ColumnType::I64,
|
||||
NumericalType::U64 => ColumnType::U64,
|
||||
NumericalType::F64 => ColumnType::F64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ColumnType {
|
||||
/// get column type category
|
||||
pub(crate) fn column_type_category(self) -> ColumnTypeCategory {
|
||||
match self {
|
||||
ColumnType::I64 | ColumnType::U64 | ColumnType::F64 => ColumnTypeCategory::Numerical,
|
||||
ColumnType::Bytes => ColumnTypeCategory::Bytes,
|
||||
ColumnType::Str => ColumnTypeCategory::Str,
|
||||
ColumnType::Bool => ColumnTypeCategory::Bool,
|
||||
ColumnType::IpAddr => ColumnTypeCategory::IpAddr,
|
||||
ColumnType::DateTime => ColumnTypeCategory::DateTime,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn numerical_type(&self) -> Option<NumericalType> {
|
||||
match self {
|
||||
ColumnType::I64 => Some(NumericalType::I64),
|
||||
ColumnType::U64 => Some(NumericalType::U64),
|
||||
ColumnType::F64 => Some(NumericalType::F64),
|
||||
ColumnType::Bytes
|
||||
| ColumnType::Str
|
||||
| ColumnType::Bool
|
||||
| ColumnType::IpAddr
|
||||
| ColumnType::DateTime => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO remove if possible
|
||||
pub trait HasAssociatedColumnType: 'static + Send + Sync + Copy + PartialOrd {
|
||||
fn column_type() -> ColumnType;
|
||||
fn default_value() -> Self;
|
||||
}
|
||||
|
||||
impl HasAssociatedColumnType for u64 {
|
||||
fn column_type() -> ColumnType {
|
||||
ColumnType::U64
|
||||
}
|
||||
|
||||
fn default_value() -> Self {
|
||||
0u64
|
||||
}
|
||||
}
|
||||
|
||||
impl HasAssociatedColumnType for i64 {
|
||||
fn column_type() -> ColumnType {
|
||||
ColumnType::I64
|
||||
}
|
||||
|
||||
fn default_value() -> Self {
|
||||
0i64
|
||||
}
|
||||
}
|
||||
|
||||
impl HasAssociatedColumnType for f64 {
|
||||
fn column_type() -> ColumnType {
|
||||
ColumnType::F64
|
||||
}
|
||||
|
||||
fn default_value() -> Self {
|
||||
Default::default()
|
||||
}
|
||||
}
|
||||
|
||||
impl HasAssociatedColumnType for bool {
|
||||
fn column_type() -> ColumnType {
|
||||
ColumnType::Bool
|
||||
}
|
||||
fn default_value() -> Self {
|
||||
Default::default()
|
||||
}
|
||||
}
|
||||
|
||||
impl HasAssociatedColumnType for crate::DateTime {
|
||||
fn column_type() -> ColumnType {
|
||||
ColumnType::DateTime
|
||||
}
|
||||
fn default_value() -> Self {
|
||||
Default::default()
|
||||
}
|
||||
}
|
||||
|
||||
impl HasAssociatedColumnType for Ipv6Addr {
|
||||
fn column_type() -> ColumnType {
|
||||
ColumnType::IpAddr
|
||||
}
|
||||
|
||||
fn default_value() -> Self {
|
||||
Ipv6Addr::from([0u8; 16])
|
||||
}
|
||||
}
|
||||
|
||||
/// Column types are grouped into different categories that
|
||||
/// corresponds to the different types of `JsonValue` types.
|
||||
///
|
||||
/// The columnar writer will apply coercion rules to make sure that
|
||||
/// at most one column exist per `ColumnTypeCategory`.
|
||||
///
|
||||
/// See also [README.md].
|
||||
#[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq, Hash, Debug)]
|
||||
#[repr(u8)]
|
||||
pub enum ColumnTypeCategory {
|
||||
Bool,
|
||||
Str,
|
||||
Numerical,
|
||||
DateTime,
|
||||
Bytes,
|
||||
IpAddr,
|
||||
}
|
||||
|
||||
impl From<ColumnType> for ColumnTypeCategory {
|
||||
fn from(column_type: ColumnType) -> Self {
|
||||
match column_type {
|
||||
ColumnType::I64 => ColumnTypeCategory::Numerical,
|
||||
ColumnType::U64 => ColumnTypeCategory::Numerical,
|
||||
ColumnType::F64 => ColumnTypeCategory::Numerical,
|
||||
ColumnType::Bytes => ColumnTypeCategory::Bytes,
|
||||
ColumnType::Str => ColumnTypeCategory::Str,
|
||||
ColumnType::Bool => ColumnTypeCategory::Bool,
|
||||
ColumnType::IpAddr => ColumnTypeCategory::IpAddr,
|
||||
ColumnType::DateTime => ColumnTypeCategory::DateTime,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::collections::HashSet;
|
||||
|
||||
use super::*;
|
||||
use crate::Cardinality;
|
||||
|
||||
#[test]
|
||||
fn test_column_type_to_code() {
|
||||
let mut column_type_set: HashSet<ColumnType> = HashSet::new();
|
||||
for code in u8::MIN..=u8::MAX {
|
||||
if let Ok(column_type) = ColumnType::try_from_code(code) {
|
||||
assert_eq!(column_type.to_code(), code);
|
||||
assert!(column_type_set.insert(column_type));
|
||||
}
|
||||
}
|
||||
assert_eq!(column_type_set.len(), super::COLUMN_TYPES.len());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_category_sort_consistent_with_column_type_sort() {
|
||||
// This is a very important property because we
|
||||
// we need to serialize colunmn in the right order.
|
||||
let mut column_types: Vec<ColumnType> = super::COLUMN_TYPES.iter().copied().collect();
|
||||
column_types.sort_by_key(|col| col.to_code());
|
||||
let column_categories: Vec<ColumnTypeCategory> = column_types
|
||||
.into_iter()
|
||||
.map(ColumnTypeCategory::from)
|
||||
.collect();
|
||||
for (prev, next) in column_categories.iter().zip(column_categories.iter()) {
|
||||
assert!(prev <= next);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cardinality_to_code() {
|
||||
let mut num_cardinality = 0;
|
||||
for code in u8::MIN..=u8::MAX {
|
||||
if let Ok(cardinality) = Cardinality::try_from_code(code) {
|
||||
assert_eq!(cardinality.to_code(), code);
|
||||
num_cardinality += 1;
|
||||
}
|
||||
}
|
||||
assert_eq!(num_cardinality, 3);
|
||||
}
|
||||
}
|
||||
@@ -1,73 +0,0 @@
|
||||
use crate::InvalidData;
|
||||
|
||||
pub const VERSION_FOOTER_NUM_BYTES: usize = MAGIC_BYTES.len() + std::mem::size_of::<u32>();
|
||||
|
||||
/// We end the file by these 4 bytes just to somewhat identify that
|
||||
/// this is indeed a columnar file.
|
||||
const MAGIC_BYTES: [u8; 4] = [2, 113, 119, 066];
|
||||
|
||||
pub fn footer() -> [u8; VERSION_FOOTER_NUM_BYTES] {
|
||||
let mut footer_bytes = [0u8; VERSION_FOOTER_NUM_BYTES];
|
||||
footer_bytes[0..4].copy_from_slice(&Version::V1.to_bytes());
|
||||
footer_bytes[4..8].copy_from_slice(&MAGIC_BYTES[..]);
|
||||
footer_bytes
|
||||
}
|
||||
|
||||
pub fn parse_footer(footer_bytes: [u8; VERSION_FOOTER_NUM_BYTES]) -> Result<Version, InvalidData> {
|
||||
if footer_bytes[4..8] != MAGIC_BYTES {
|
||||
return Err(InvalidData);
|
||||
}
|
||||
Version::try_from_bytes(footer_bytes[0..4].try_into().unwrap())
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
|
||||
#[repr(u32)]
|
||||
pub enum Version {
|
||||
V1 = 1u32,
|
||||
}
|
||||
|
||||
impl Version {
|
||||
fn to_bytes(&self) -> [u8; 4] {
|
||||
(*self as u32).to_le_bytes()
|
||||
}
|
||||
|
||||
fn try_from_bytes(bytes: [u8; 4]) -> Result<Version, InvalidData> {
|
||||
let code = u32::from_le_bytes(bytes);
|
||||
match code {
|
||||
1u32 => Ok(Version::V1),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::collections::HashSet;
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_footer_dserialization() {
|
||||
let parsed_version: Version = parse_footer(footer()).unwrap();
|
||||
assert_eq!(Version::V1, parsed_version);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_version_serialization() {
|
||||
let version_to_tests: Vec<u32> = [0, 1 << 8, 1 << 16, 1 << 24]
|
||||
.iter()
|
||||
.copied()
|
||||
.flat_map(|offset| (0..255).map(move |el| el + offset))
|
||||
.collect();
|
||||
let mut valid_versions: HashSet<u32> = HashSet::default();
|
||||
for &i in &version_to_tests {
|
||||
let version_res = Version::try_from_bytes(i.to_le_bytes());
|
||||
if let Ok(version) = version_res {
|
||||
assert_eq!(version, Version::V1);
|
||||
assert_eq!(version.to_bytes(), i.to_le_bytes());
|
||||
valid_versions.insert(i);
|
||||
}
|
||||
}
|
||||
assert_eq!(valid_versions.len(), 1);
|
||||
}
|
||||
}
|
||||
@@ -1,176 +0,0 @@
|
||||
use std::collections::HashMap;
|
||||
use std::io;
|
||||
|
||||
use super::column_type::ColumnTypeCategory;
|
||||
use crate::columnar::ColumnarReader;
|
||||
use crate::dynamic_column::DynamicColumn;
|
||||
|
||||
pub enum MergeDocOrder {
|
||||
/// Columnar tables are simply stacked one above the other.
|
||||
/// If the i-th columnar_readers has n_rows_i rows, then
|
||||
/// in the resulting columnar,
|
||||
/// rows [r0..n_row_0) contains the row of columnar_readers[0], in ordder
|
||||
/// rows [n_row_0..n_row_0 + n_row_1 contains the row of columnar_readers[1], in order.
|
||||
/// ..
|
||||
Stack,
|
||||
/// Some more complex mapping, that can interleaves rows from the different readers and
|
||||
/// possibly drop rows.
|
||||
Complex(()),
|
||||
}
|
||||
|
||||
pub fn merge_columnar(
|
||||
_columnar_readers: &[ColumnarReader],
|
||||
mapping: MergeDocOrder,
|
||||
_output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
match mapping {
|
||||
MergeDocOrder::Stack => {
|
||||
// implement me :)
|
||||
todo!();
|
||||
}
|
||||
MergeDocOrder::Complex(_) => {
|
||||
// for later
|
||||
todo!();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn collect_columns(
|
||||
columnar_readers: &[&ColumnarReader],
|
||||
) -> io::Result<HashMap<String, HashMap<ColumnTypeCategory, Vec<DynamicColumn>>>> {
|
||||
// Each column name may have multiple types of column associated.
|
||||
// For merging we are interested in the same column type category since they can be merged.
|
||||
let mut field_name_to_group: HashMap<String, HashMap<ColumnTypeCategory, Vec<DynamicColumn>>> =
|
||||
HashMap::new();
|
||||
|
||||
for columnar_reader in columnar_readers {
|
||||
let column_name_and_handle = columnar_reader.list_columns()?;
|
||||
for (column_name, handle) in column_name_and_handle {
|
||||
let column_type_to_handles = field_name_to_group
|
||||
.entry(column_name.to_string())
|
||||
.or_default();
|
||||
|
||||
let columns = column_type_to_handles
|
||||
.entry(handle.column_type().column_type_category())
|
||||
.or_default();
|
||||
columns.push(handle.open()?);
|
||||
}
|
||||
}
|
||||
|
||||
normalize_columns(&mut field_name_to_group);
|
||||
|
||||
Ok(field_name_to_group)
|
||||
}
|
||||
|
||||
/// Cast numerical type columns to the same type
|
||||
pub(crate) fn normalize_columns(
|
||||
map: &mut HashMap<String, HashMap<ColumnTypeCategory, Vec<DynamicColumn>>>,
|
||||
) {
|
||||
for (_field_name, type_category_to_columns) in map.iter_mut() {
|
||||
for (type_category, columns) in type_category_to_columns {
|
||||
if type_category == &ColumnTypeCategory::Numerical {
|
||||
let casted_columns = cast_to_common_numerical_column(&columns);
|
||||
*columns = casted_columns;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Receives a list of columns of numerical types (u64, i64, f64)
|
||||
///
|
||||
/// Returns a list of `DynamicColumn` which are all of the same numerical type
|
||||
fn cast_to_common_numerical_column(columns: &[DynamicColumn]) -> Vec<DynamicColumn> {
|
||||
assert!(columns
|
||||
.iter()
|
||||
.all(|column| column.column_type().numerical_type().is_some()));
|
||||
let coerce_to_i64: Vec<_> = columns
|
||||
.iter()
|
||||
.map(|column| column.clone().coerce_to_i64())
|
||||
.collect();
|
||||
|
||||
if coerce_to_i64.iter().all(|column| column.is_some()) {
|
||||
return coerce_to_i64
|
||||
.into_iter()
|
||||
.map(|column| column.unwrap())
|
||||
.collect();
|
||||
}
|
||||
|
||||
let coerce_to_u64: Vec<_> = columns
|
||||
.iter()
|
||||
.map(|column| column.clone().coerce_to_u64())
|
||||
.collect();
|
||||
|
||||
if coerce_to_u64.iter().all(|column| column.is_some()) {
|
||||
return coerce_to_u64
|
||||
.into_iter()
|
||||
.map(|column| column.unwrap())
|
||||
.collect();
|
||||
}
|
||||
|
||||
columns
|
||||
.iter()
|
||||
.map(|column| {
|
||||
column
|
||||
.clone()
|
||||
.coerce_to_f64()
|
||||
.expect("couldn't cast column to f64")
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::ColumnarWriter;
|
||||
|
||||
#[test]
|
||||
fn test_column_coercion() {
|
||||
// i64 type
|
||||
let columnar1 = {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_numerical(1u32, "numbers", 1i64);
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(2, &mut buffer).unwrap();
|
||||
ColumnarReader::open(buffer).unwrap()
|
||||
};
|
||||
// u64 type
|
||||
let columnar2 = {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_numerical(1u32, "numbers", u64::MAX - 100);
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(2, &mut buffer).unwrap();
|
||||
ColumnarReader::open(buffer).unwrap()
|
||||
};
|
||||
|
||||
// f64 type
|
||||
let columnar3 = {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_numerical(1u32, "numbers", 30.5);
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(2, &mut buffer).unwrap();
|
||||
ColumnarReader::open(buffer).unwrap()
|
||||
};
|
||||
|
||||
let column_map = collect_columns(&[&columnar1, &columnar2, &columnar3]).unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
let cat_to_columns = column_map.get("numbers").unwrap();
|
||||
assert_eq!(cat_to_columns.len(), 1);
|
||||
|
||||
let numerical = cat_to_columns.get(&ColumnTypeCategory::Numerical).unwrap();
|
||||
assert!(numerical.iter().all(|column| column.is_f64()));
|
||||
|
||||
let column_map = collect_columns(&[&columnar1, &columnar1]).unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
let cat_to_columns = column_map.get("numbers").unwrap();
|
||||
assert_eq!(cat_to_columns.len(), 1);
|
||||
let numerical = cat_to_columns.get(&ColumnTypeCategory::Numerical).unwrap();
|
||||
assert!(numerical.iter().all(|column| column.is_i64()));
|
||||
|
||||
let column_map = collect_columns(&[&columnar2, &columnar2]).unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
let cat_to_columns = column_map.get("numbers").unwrap();
|
||||
assert_eq!(cat_to_columns.len(), 1);
|
||||
let numerical = cat_to_columns.get(&ColumnTypeCategory::Numerical).unwrap();
|
||||
assert!(numerical.iter().all(|column| column.is_u64()));
|
||||
}
|
||||
}
|
||||
@@ -1,10 +0,0 @@
|
||||
mod column_type;
|
||||
mod format_version;
|
||||
mod merge;
|
||||
mod reader;
|
||||
mod writer;
|
||||
|
||||
pub use column_type::{ColumnType, HasAssociatedColumnType};
|
||||
pub use merge::{merge_columnar, MergeDocOrder};
|
||||
pub use reader::ColumnarReader;
|
||||
pub use writer::ColumnarWriter;
|
||||
@@ -1,241 +0,0 @@
|
||||
use std::io;
|
||||
use std::net::Ipv6Addr;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::file_slice::FileSlice;
|
||||
use common::{HasLen, OwnedBytes};
|
||||
|
||||
use crate::column::{BytesColumn, Column, StrColumn};
|
||||
use crate::column_values::{monotonic_map_column, StrictlyMonotonicFn};
|
||||
use crate::columnar::ColumnType;
|
||||
use crate::{DateTime, NumericalType};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub enum DynamicColumn {
|
||||
Bool(Column<bool>),
|
||||
I64(Column<i64>),
|
||||
U64(Column<u64>),
|
||||
F64(Column<f64>),
|
||||
IpAddr(Column<Ipv6Addr>),
|
||||
DateTime(Column<DateTime>),
|
||||
Bytes(BytesColumn),
|
||||
Str(StrColumn),
|
||||
}
|
||||
|
||||
impl DynamicColumn {
|
||||
pub fn column_type(&self) -> ColumnType {
|
||||
match self {
|
||||
DynamicColumn::Bool(_) => ColumnType::Bool,
|
||||
DynamicColumn::I64(_) => ColumnType::I64,
|
||||
DynamicColumn::U64(_) => ColumnType::U64,
|
||||
DynamicColumn::F64(_) => ColumnType::F64,
|
||||
DynamicColumn::IpAddr(_) => ColumnType::IpAddr,
|
||||
DynamicColumn::DateTime(_) => ColumnType::DateTime,
|
||||
DynamicColumn::Bytes(_) => ColumnType::Bytes,
|
||||
DynamicColumn::Str(_) => ColumnType::Str,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn is_numerical(&self) -> bool {
|
||||
self.column_type().numerical_type().is_some()
|
||||
}
|
||||
|
||||
pub fn is_f64(&self) -> bool {
|
||||
self.column_type().numerical_type() == Some(NumericalType::F64)
|
||||
}
|
||||
pub fn is_i64(&self) -> bool {
|
||||
self.column_type().numerical_type() == Some(NumericalType::I64)
|
||||
}
|
||||
pub fn is_u64(&self) -> bool {
|
||||
self.column_type().numerical_type() == Some(NumericalType::U64)
|
||||
}
|
||||
|
||||
pub fn coerce_to_f64(self) -> Option<DynamicColumn> {
|
||||
match self {
|
||||
DynamicColumn::I64(column) => Some(DynamicColumn::F64(Column {
|
||||
idx: column.idx,
|
||||
values: Arc::new(monotonic_map_column(column.values, MapI64ToF64)),
|
||||
})),
|
||||
DynamicColumn::U64(column) => Some(DynamicColumn::F64(Column {
|
||||
idx: column.idx,
|
||||
values: Arc::new(monotonic_map_column(column.values, MapU64ToF64)),
|
||||
})),
|
||||
DynamicColumn::F64(_) => Some(self),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
pub fn coerce_to_i64(self) -> Option<DynamicColumn> {
|
||||
match self {
|
||||
DynamicColumn::U64(column) => {
|
||||
if column.max_value() > i64::MAX as u64 {
|
||||
return None;
|
||||
}
|
||||
Some(DynamicColumn::I64(Column {
|
||||
idx: column.idx,
|
||||
values: Arc::new(monotonic_map_column(column.values, MapU64ToI64)),
|
||||
}))
|
||||
}
|
||||
DynamicColumn::I64(_) => Some(self),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
pub fn coerce_to_u64(self) -> Option<DynamicColumn> {
|
||||
match self {
|
||||
DynamicColumn::I64(column) => {
|
||||
if column.min_value() < 0 {
|
||||
return None;
|
||||
}
|
||||
Some(DynamicColumn::U64(Column {
|
||||
idx: column.idx,
|
||||
values: Arc::new(monotonic_map_column(column.values, MapI64ToU64)),
|
||||
}))
|
||||
}
|
||||
DynamicColumn::U64(_) => Some(self),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct MapI64ToF64;
|
||||
impl StrictlyMonotonicFn<i64, f64> for MapI64ToF64 {
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: i64) -> f64 {
|
||||
inp as f64
|
||||
}
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: f64) -> i64 {
|
||||
out as i64
|
||||
}
|
||||
}
|
||||
|
||||
struct MapU64ToF64;
|
||||
impl StrictlyMonotonicFn<u64, f64> for MapU64ToF64 {
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: u64) -> f64 {
|
||||
inp as f64
|
||||
}
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: f64) -> u64 {
|
||||
out as u64
|
||||
}
|
||||
}
|
||||
|
||||
struct MapU64ToI64;
|
||||
impl StrictlyMonotonicFn<u64, i64> for MapU64ToI64 {
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: u64) -> i64 {
|
||||
inp as i64
|
||||
}
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: i64) -> u64 {
|
||||
out as u64
|
||||
}
|
||||
}
|
||||
|
||||
struct MapI64ToU64;
|
||||
impl StrictlyMonotonicFn<i64, u64> for MapI64ToU64 {
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: i64) -> u64 {
|
||||
inp as u64
|
||||
}
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: u64) -> i64 {
|
||||
out as i64
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! static_dynamic_conversions {
|
||||
($typ:ty, $enum_name:ident) => {
|
||||
impl Into<Option<$typ>> for DynamicColumn {
|
||||
fn into(self) -> Option<$typ> {
|
||||
if let DynamicColumn::$enum_name(col) = self {
|
||||
Some(col)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<$typ> for DynamicColumn {
|
||||
fn from(typed_column: $typ) -> Self {
|
||||
DynamicColumn::$enum_name(typed_column)
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
static_dynamic_conversions!(Column<bool>, Bool);
|
||||
static_dynamic_conversions!(Column<u64>, U64);
|
||||
static_dynamic_conversions!(Column<i64>, I64);
|
||||
static_dynamic_conversions!(Column<f64>, F64);
|
||||
static_dynamic_conversions!(Column<crate::DateTime>, DateTime);
|
||||
static_dynamic_conversions!(StrColumn, Str);
|
||||
static_dynamic_conversions!(BytesColumn, Bytes);
|
||||
static_dynamic_conversions!(Column<Ipv6Addr>, IpAddr);
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct DynamicColumnHandle {
|
||||
pub(crate) file_slice: FileSlice,
|
||||
pub(crate) column_type: ColumnType,
|
||||
}
|
||||
|
||||
impl DynamicColumnHandle {
|
||||
// TODO rename load
|
||||
pub fn open(&self) -> io::Result<DynamicColumn> {
|
||||
let column_bytes: OwnedBytes = self.file_slice.read_bytes()?;
|
||||
self.open_internal(column_bytes)
|
||||
}
|
||||
|
||||
// TODO rename load_async
|
||||
pub async fn open_async(&self) -> io::Result<DynamicColumn> {
|
||||
let column_bytes: OwnedBytes = self.file_slice.read_bytes_async().await?;
|
||||
self.open_internal(column_bytes)
|
||||
}
|
||||
|
||||
/// Returns the `u64` fast field reader reader associated with `fields` of types
|
||||
/// Str, u64, i64, f64, or datetime.
|
||||
///
|
||||
/// If not, the fastfield reader will returns the u64-value associated with the original
|
||||
/// FastValue.
|
||||
pub fn open_u64_lenient(&self) -> io::Result<Option<Column<u64>>> {
|
||||
let column_bytes = self.file_slice.read_bytes()?;
|
||||
match self.column_type {
|
||||
ColumnType::Str | ColumnType::Bytes => {
|
||||
let column: BytesColumn = crate::column::open_column_bytes(column_bytes)?;
|
||||
Ok(Some(column.term_ord_column))
|
||||
}
|
||||
ColumnType::Bool => Ok(None),
|
||||
ColumnType::IpAddr => Ok(None),
|
||||
ColumnType::I64 | ColumnType::U64 | ColumnType::F64 | ColumnType::DateTime => {
|
||||
let column = crate::column::open_column_u64::<u64>(column_bytes)?;
|
||||
Ok(Some(column))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn open_internal(&self, column_bytes: OwnedBytes) -> io::Result<DynamicColumn> {
|
||||
let dynamic_column: DynamicColumn = match self.column_type {
|
||||
ColumnType::Bytes => {
|
||||
crate::column::open_column_bytes::<BytesColumn>(column_bytes)?.into()
|
||||
}
|
||||
ColumnType::Str => crate::column::open_column_bytes::<StrColumn>(column_bytes)?.into(),
|
||||
ColumnType::I64 => crate::column::open_column_u64::<i64>(column_bytes)?.into(),
|
||||
ColumnType::U64 => crate::column::open_column_u64::<u64>(column_bytes)?.into(),
|
||||
ColumnType::F64 => crate::column::open_column_u64::<f64>(column_bytes)?.into(),
|
||||
ColumnType::Bool => crate::column::open_column_u64::<bool>(column_bytes)?.into(),
|
||||
ColumnType::IpAddr => crate::column::open_column_u128::<Ipv6Addr>(column_bytes)?.into(),
|
||||
ColumnType::DateTime => {
|
||||
crate::column::open_column_u64::<crate::DateTime>(column_bytes)?.into()
|
||||
}
|
||||
};
|
||||
Ok(dynamic_column)
|
||||
}
|
||||
|
||||
pub fn num_bytes(&self) -> usize {
|
||||
self.file_slice.len()
|
||||
}
|
||||
|
||||
pub fn column_type(&self) -> ColumnType {
|
||||
self.column_type
|
||||
}
|
||||
}
|
||||
@@ -1,80 +1,89 @@
|
||||
#![cfg_attr(all(feature = "unstable", test), feature(test))]
|
||||
|
||||
#[cfg(test)]
|
||||
#[macro_use]
|
||||
extern crate more_asserts;
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
extern crate test;
|
||||
|
||||
use std::io;
|
||||
|
||||
mod column;
|
||||
mod column_index;
|
||||
mod column_values;
|
||||
mod columnar;
|
||||
mod column_type_header;
|
||||
mod dictionary;
|
||||
mod dynamic_column;
|
||||
mod reader;
|
||||
pub(crate) mod utils;
|
||||
mod value;
|
||||
mod writer;
|
||||
|
||||
pub use column::{BytesColumn, Column, StrColumn};
|
||||
pub use column_values::ColumnValues;
|
||||
pub use columnar::{
|
||||
merge_columnar, ColumnType, ColumnarReader, ColumnarWriter, HasAssociatedColumnType,
|
||||
MergeDocOrder,
|
||||
};
|
||||
pub use column_type_header::Cardinality;
|
||||
pub use reader::ColumnarReader;
|
||||
pub use value::{NumericalType, NumericalValue};
|
||||
pub use writer::ColumnarWriter;
|
||||
|
||||
pub use self::dynamic_column::{DynamicColumn, DynamicColumnHandle};
|
||||
|
||||
pub type RowId = u32;
|
||||
|
||||
#[derive(Clone, Copy, PartialOrd, PartialEq, Default, Debug)]
|
||||
pub struct DateTime {
|
||||
pub timestamp_micros: i64,
|
||||
}
|
||||
pub type DocId = u32;
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct InvalidData;
|
||||
|
||||
impl From<InvalidData> for io::Error {
|
||||
fn from(_: InvalidData) -> Self {
|
||||
io::Error::new(io::ErrorKind::InvalidData, "Invalid data")
|
||||
}
|
||||
}
|
||||
|
||||
/// Enum describing the number of values that can exist per document
|
||||
/// (or per row if you will).
|
||||
///
|
||||
/// The cardinality must fit on 2 bits.
|
||||
#[derive(Clone, Copy, Hash, Default, Debug, PartialEq, Eq, PartialOrd, Ord)]
|
||||
#[repr(u8)]
|
||||
pub enum Cardinality {
|
||||
/// All documents contain exactly one value.
|
||||
/// `Full` is the default for auto-detecting the Cardinality, since it is the most strict.
|
||||
#[default]
|
||||
Full = 0,
|
||||
/// All documents contain at most one value.
|
||||
Optional = 1,
|
||||
/// All documents may contain any number of values.
|
||||
Multivalued = 2,
|
||||
}
|
||||
|
||||
impl Cardinality {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn try_from_code(code: u8) -> Result<Cardinality, InvalidData> {
|
||||
match code {
|
||||
0 => Ok(Cardinality::Full),
|
||||
1 => Ok(Cardinality::Optional),
|
||||
2 => Ok(Cardinality::Multivalued),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
mod tests {
|
||||
use std::ops::Range;
|
||||
|
||||
use common::file_slice::FileSlice;
|
||||
|
||||
use crate::column_type_header::{ColumnType, ColumnTypeAndCardinality};
|
||||
use crate::reader::ColumnarReader;
|
||||
use crate::value::NumericalValue;
|
||||
use crate::{Cardinality, ColumnarWriter};
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_bytes() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_str(1u32, "my_string", "hello");
|
||||
dataframe_writer.record_str(3u32, "my_string", "helloeee");
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(5, &mut buffer).unwrap();
|
||||
let columnar_fileslice = FileSlice::from(buffer);
|
||||
let columnar = ColumnarReader::open(columnar_fileslice).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<(ColumnTypeAndCardinality, Range<u64>)> =
|
||||
columnar.read_columns("my_string").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].1, 0..158);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_bool() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_bool(1u32, "bool.value", false);
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(5, &mut buffer).unwrap();
|
||||
let columnar_fileslice = FileSlice::from(buffer);
|
||||
let columnar = ColumnarReader::open(columnar_fileslice).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<(ColumnTypeAndCardinality, Range<u64>)> =
|
||||
columnar.read_columns("bool.value").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(
|
||||
cols[0].0,
|
||||
ColumnTypeAndCardinality {
|
||||
cardinality: Cardinality::Optional,
|
||||
typ: ColumnType::Bool
|
||||
}
|
||||
);
|
||||
assert_eq!(cols[0].1, 0..21);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_numerical() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_numerical(1u32, "srical.value", NumericalValue::U64(12u64));
|
||||
dataframe_writer.record_numerical(2u32, "srical.value", NumericalValue::U64(13u64));
|
||||
dataframe_writer.record_numerical(4u32, "srical.value", NumericalValue::U64(15u64));
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(5, &mut buffer).unwrap();
|
||||
let columnar_fileslice = FileSlice::from(buffer);
|
||||
let columnar = ColumnarReader::open(columnar_fileslice).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<(ColumnTypeAndCardinality, Range<u64>)> =
|
||||
columnar.read_columns("srical.value").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
// Right now this 31 bytes are spent as follows
|
||||
//
|
||||
// - header 14 bytes
|
||||
// - vals 8 //< due to padding? could have been 1byte?.
|
||||
// - null footer 6 bytes
|
||||
// - version footer 3 bytes // Should be file-wide
|
||||
assert_eq!(cols[0].1, 0..31);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
use std::ops::Range;
|
||||
use std::{io, mem};
|
||||
|
||||
use common::file_slice::FileSlice;
|
||||
use common::BinarySerializable;
|
||||
use sstable::{Dictionary, RangeSSTable};
|
||||
|
||||
use crate::columnar::{format_version, ColumnType};
|
||||
use crate::dynamic_column::DynamicColumnHandle;
|
||||
use crate::column_type_header::ColumnTypeAndCardinality;
|
||||
|
||||
fn io_invalid_data(msg: String) -> io::Error {
|
||||
io::Error::new(io::ErrorKind::InvalidData, msg)
|
||||
@@ -26,14 +26,9 @@ impl ColumnarReader {
|
||||
}
|
||||
|
||||
fn open_inner(file_slice: FileSlice) -> io::Result<ColumnarReader> {
|
||||
let (file_slice_without_sstable_len, footer_slice) = file_slice
|
||||
.split_from_end(mem::size_of::<u64>() + format_version::VERSION_FOOTER_NUM_BYTES);
|
||||
let footer_bytes = footer_slice.read_bytes()?;
|
||||
let (mut sstable_len_bytes, version_footer_bytes) =
|
||||
footer_bytes.rsplit(format_version::VERSION_FOOTER_NUM_BYTES);
|
||||
let version_footer_bytes: [u8; format_version::VERSION_FOOTER_NUM_BYTES] =
|
||||
version_footer_bytes.as_slice().try_into().unwrap();
|
||||
let _version = format_version::parse_footer(version_footer_bytes)?;
|
||||
let (file_slice_without_sstable_len, sstable_len_bytes) =
|
||||
file_slice.split_from_end(mem::size_of::<u64>());
|
||||
let mut sstable_len_bytes = sstable_len_bytes.read_bytes()?;
|
||||
let sstable_len = u64::deserialize(&mut sstable_len_bytes)?;
|
||||
let (column_data, sstable) =
|
||||
file_slice_without_sstable_len.split_from_end(sstable_len as usize);
|
||||
@@ -44,27 +39,26 @@ impl ColumnarReader {
|
||||
})
|
||||
}
|
||||
|
||||
// TODO Add unit tests
|
||||
pub fn list_columns(&self) -> io::Result<Vec<(String, DynamicColumnHandle)>> {
|
||||
// TODO fix ugly API
|
||||
pub fn list_columns(
|
||||
&self,
|
||||
) -> io::Result<Vec<(String, ColumnTypeAndCardinality, Range<u64>, u64)>> {
|
||||
let mut stream = self.column_dictionary.stream()?;
|
||||
let mut results = Vec::new();
|
||||
while stream.advance() {
|
||||
let key_bytes: &[u8] = stream.key();
|
||||
let column_code: u8 = key_bytes.last().cloned().unwrap();
|
||||
let column_type: ColumnType = ColumnType::try_from_code(column_code)
|
||||
let column_type_and_cardinality = ColumnTypeAndCardinality::try_from_code(column_code)
|
||||
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
|
||||
let range = stream.value().clone();
|
||||
let column_name =
|
||||
// The last two bytes are respectively the 0u8 separator and the column_type.
|
||||
String::from_utf8_lossy(&key_bytes[..key_bytes.len() - 2]).to_string();
|
||||
let file_slice = self
|
||||
.column_data
|
||||
.slice(range.start as usize..range.end as usize);
|
||||
let column_handle = DynamicColumnHandle {
|
||||
file_slice,
|
||||
column_type,
|
||||
};
|
||||
results.push((column_name, column_handle));
|
||||
let column_name = String::from_utf8_lossy(&key_bytes[..key_bytes.len() - 1]);
|
||||
let range_len = range.end - range.start;
|
||||
results.push((
|
||||
column_name.to_string(),
|
||||
column_type_and_cardinality,
|
||||
range,
|
||||
range_len,
|
||||
));
|
||||
}
|
||||
Ok(results)
|
||||
}
|
||||
@@ -74,7 +68,10 @@ impl ColumnarReader {
|
||||
/// There can be more than one column associated to a given column name, provided they have
|
||||
/// different types.
|
||||
// TODO fix ugly API
|
||||
pub fn read_columns(&self, column_name: &str) -> io::Result<Vec<DynamicColumnHandle>> {
|
||||
pub fn read_columns(
|
||||
&self,
|
||||
column_name: &str,
|
||||
) -> io::Result<Vec<(ColumnTypeAndCardinality, Range<u64>)>> {
|
||||
// Each column is a associated to a given `column_key`,
|
||||
// that starts by `column_name\0column_header`.
|
||||
//
|
||||
@@ -83,8 +80,6 @@ impl ColumnarReader {
|
||||
//
|
||||
// This is in turn equivalent to searching for the range
|
||||
// `[column_name,\0`..column_name\1)`.
|
||||
|
||||
// TODO can we get some more generic `prefix(..)` logic in the dictioanry.
|
||||
let mut start_key = column_name.to_string();
|
||||
start_key.push('\0');
|
||||
let mut end_key = column_name.to_string();
|
||||
@@ -100,17 +95,10 @@ impl ColumnarReader {
|
||||
let key_bytes: &[u8] = stream.key();
|
||||
assert!(key_bytes.starts_with(start_key.as_bytes()));
|
||||
let column_code: u8 = key_bytes.last().cloned().unwrap();
|
||||
let column_type = ColumnType::try_from_code(column_code)
|
||||
let column_type_and_cardinality = ColumnTypeAndCardinality::try_from_code(column_code)
|
||||
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
|
||||
let range = stream.value().clone();
|
||||
let file_slice = self
|
||||
.column_data
|
||||
.slice(range.start as usize..range.end as usize);
|
||||
let dynamic_column_handle = DynamicColumnHandle {
|
||||
file_slice,
|
||||
column_type,
|
||||
};
|
||||
results.push(dynamic_column_handle);
|
||||
results.push((column_type_and_cardinality, range));
|
||||
}
|
||||
Ok(results)
|
||||
}
|
||||
@@ -1,212 +0,0 @@
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
use crate::column_values::MonotonicallyMappableToU128;
|
||||
use crate::columnar::ColumnType;
|
||||
use crate::dynamic_column::{DynamicColumn, DynamicColumnHandle};
|
||||
use crate::value::NumericalValue;
|
||||
use crate::{Cardinality, ColumnarReader, ColumnarWriter};
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_str() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_str(1u32, "my_string", "hello");
|
||||
dataframe_writer.record_str(3u32, "my_string", "helloeee");
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(5, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("my_string").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 158);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_bytes() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_bytes(1u32, "my_string", b"hello");
|
||||
dataframe_writer.record_bytes(3u32, "my_string", b"helloeee");
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(5, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("my_string").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 158);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_bool() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_bool(1u32, "bool.value", false);
|
||||
dataframe_writer.record_bool(3u32, "bool.value", true);
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(5, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("bool.value").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 22);
|
||||
assert_eq!(cols[0].column_type(), ColumnType::Bool);
|
||||
let dyn_bool_col = cols[0].open().unwrap();
|
||||
let DynamicColumn::Bool(bool_col) = dyn_bool_col else { panic!(); };
|
||||
let vals: Vec<Option<bool>> = (0..5).map(|row_id| bool_col.first(row_id)).collect();
|
||||
assert_eq!(&vals, &[None, Some(false), None, Some(true), None,]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_u64_multivalued() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_numerical(2u32, "divisor", 2u64);
|
||||
dataframe_writer.record_numerical(3u32, "divisor", 3u64);
|
||||
dataframe_writer.record_numerical(4u32, "divisor", 2u64);
|
||||
dataframe_writer.record_numerical(5u32, "divisor", 5u64);
|
||||
dataframe_writer.record_numerical(6u32, "divisor", 2u64);
|
||||
dataframe_writer.record_numerical(6u32, "divisor", 3u64);
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(7, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("divisor").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 29);
|
||||
let dyn_i64_col = cols[0].open().unwrap();
|
||||
let DynamicColumn::I64(divisor_col) = dyn_i64_col else { panic!(); };
|
||||
assert_eq!(
|
||||
divisor_col.get_cardinality(),
|
||||
crate::Cardinality::Multivalued
|
||||
);
|
||||
assert_eq!(divisor_col.num_rows(), 7);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_ip_addr() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_ip_addr(1, "ip_addr", Ipv6Addr::from_u128(1001));
|
||||
dataframe_writer.record_ip_addr(3, "ip_addr", Ipv6Addr::from_u128(1050));
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(5, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("ip_addr").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 42);
|
||||
assert_eq!(cols[0].column_type(), ColumnType::IpAddr);
|
||||
let dyn_bool_col = cols[0].open().unwrap();
|
||||
let DynamicColumn::IpAddr(ip_col) = dyn_bool_col else { panic!(); };
|
||||
let vals: Vec<Option<Ipv6Addr>> = (0..5).map(|row_id| ip_col.first(row_id)).collect();
|
||||
assert_eq!(
|
||||
&vals,
|
||||
&[
|
||||
None,
|
||||
Some(Ipv6Addr::from_u128(1001)),
|
||||
None,
|
||||
Some(Ipv6Addr::from_u128(1050)),
|
||||
None,
|
||||
]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_numerical() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_numerical(1u32, "srical.value", NumericalValue::U64(12u64));
|
||||
dataframe_writer.record_numerical(2u32, "srical.value", NumericalValue::U64(13u64));
|
||||
dataframe_writer.record_numerical(4u32, "srical.value", NumericalValue::U64(15u64));
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer.serialize(6, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("srical.value").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
// Right now this 31 bytes are spent as follows
|
||||
//
|
||||
// - header 14 bytes
|
||||
// - vals 8 //< due to padding? could have been 1byte?.
|
||||
// - null footer 6 bytes
|
||||
assert_eq!(cols[0].num_bytes(), 33);
|
||||
let column = cols[0].open().unwrap();
|
||||
let DynamicColumn::I64(column_i64) = column else { panic!(); };
|
||||
assert_eq!(column_i64.idx.get_cardinality(), Cardinality::Optional);
|
||||
assert_eq!(column_i64.first(0), None);
|
||||
assert_eq!(column_i64.first(1), Some(12i64));
|
||||
assert_eq!(column_i64.first(2), Some(13i64));
|
||||
assert_eq!(column_i64.first(3), None);
|
||||
assert_eq!(column_i64.first(4), Some(15i64));
|
||||
assert_eq!(column_i64.first(5), None);
|
||||
assert_eq!(column_i64.first(6), None); //< we can change the spec for that one.
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dictionary_encoded_str() {
|
||||
let mut buffer = Vec::new();
|
||||
let mut columnar_writer = ColumnarWriter::default();
|
||||
columnar_writer.record_str(1, "my.column", "a");
|
||||
columnar_writer.record_str(3, "my.column", "c");
|
||||
columnar_writer.record_str(3, "my.column2", "different_column!");
|
||||
columnar_writer.record_str(4, "my.column", "b");
|
||||
columnar_writer.serialize(5, &mut buffer).unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_columns(), 2);
|
||||
let col_handles = columnar_reader.read_columns("my.column").unwrap();
|
||||
assert_eq!(col_handles.len(), 1);
|
||||
let DynamicColumn::Str(str_col) = col_handles[0].open().unwrap() else { panic!(); };
|
||||
let index: Vec<Option<u64>> = (0..5).map(|row_id| str_col.ords().first(row_id)).collect();
|
||||
assert_eq!(index, &[None, Some(0), None, Some(2), Some(1)]);
|
||||
assert_eq!(str_col.num_rows(), 5);
|
||||
let mut term_buffer = String::new();
|
||||
let term_ords = str_col.ords();
|
||||
assert_eq!(term_ords.first(0), None);
|
||||
assert_eq!(term_ords.first(1), Some(0));
|
||||
str_col.ord_to_str(0u64, &mut term_buffer).unwrap();
|
||||
assert_eq!(term_buffer, "a");
|
||||
assert_eq!(term_ords.first(2), None);
|
||||
assert_eq!(term_ords.first(3), Some(2));
|
||||
str_col.ord_to_str(2u64, &mut term_buffer).unwrap();
|
||||
assert_eq!(term_buffer, "c");
|
||||
assert_eq!(term_ords.first(4), Some(1));
|
||||
str_col.ord_to_str(1u64, &mut term_buffer).unwrap();
|
||||
assert_eq!(term_buffer, "b");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dictionary_encoded_bytes() {
|
||||
let mut buffer = Vec::new();
|
||||
let mut columnar_writer = ColumnarWriter::default();
|
||||
columnar_writer.record_bytes(1, "my.column", b"a");
|
||||
columnar_writer.record_bytes(3, "my.column", b"c");
|
||||
columnar_writer.record_bytes(3, "my.column2", b"different_column!");
|
||||
columnar_writer.record_bytes(4, "my.column", b"b");
|
||||
columnar_writer.serialize(5, &mut buffer).unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_columns(), 2);
|
||||
let col_handles = columnar_reader.read_columns("my.column").unwrap();
|
||||
assert_eq!(col_handles.len(), 1);
|
||||
let DynamicColumn::Bytes(bytes_col) = col_handles[0].open().unwrap() else { panic!(); };
|
||||
let index: Vec<Option<u64>> = (0..5)
|
||||
.map(|row_id| bytes_col.ords().first(row_id))
|
||||
.collect();
|
||||
assert_eq!(index, &[None, Some(0), None, Some(2), Some(1)]);
|
||||
assert_eq!(bytes_col.num_rows(), 5);
|
||||
let mut term_buffer = Vec::new();
|
||||
let term_ords = bytes_col.ords();
|
||||
assert_eq!(term_ords.first(0), None);
|
||||
assert_eq!(term_ords.first(1), Some(0));
|
||||
bytes_col
|
||||
.dictionary
|
||||
.ord_to_term(0u64, &mut term_buffer)
|
||||
.unwrap();
|
||||
assert_eq!(term_buffer, b"a");
|
||||
assert_eq!(term_ords.first(2), None);
|
||||
assert_eq!(term_ords.first(3), Some(2));
|
||||
bytes_col
|
||||
.dictionary
|
||||
.ord_to_term(2u64, &mut term_buffer)
|
||||
.unwrap();
|
||||
assert_eq!(term_buffer, b"c");
|
||||
assert_eq!(term_ords.first(4), Some(1));
|
||||
bytes_col
|
||||
.dictionary
|
||||
.ord_to_term(1u64, &mut term_buffer)
|
||||
.unwrap();
|
||||
assert_eq!(term_buffer, b"b");
|
||||
}
|
||||
@@ -1,22 +1,12 @@
|
||||
use crate::InvalidData;
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, Debug)]
|
||||
#[derive(Copy, Clone, Debug, PartialEq)]
|
||||
pub enum NumericalValue {
|
||||
I64(i64),
|
||||
U64(u64),
|
||||
F64(f64),
|
||||
}
|
||||
|
||||
impl NumericalValue {
|
||||
pub fn numerical_type(&self) -> NumericalType {
|
||||
match self {
|
||||
NumericalValue::I64(_) => NumericalType::I64,
|
||||
NumericalValue::U64(_) => NumericalType::U64,
|
||||
NumericalValue::F64(_) => NumericalType::F64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<u64> for NumericalValue {
|
||||
fn from(val: u64) -> NumericalValue {
|
||||
NumericalValue::U64(val)
|
||||
@@ -35,6 +25,18 @@ impl From<f64> for NumericalValue {
|
||||
}
|
||||
}
|
||||
|
||||
impl NumericalValue {
|
||||
pub fn numerical_type(&self) -> NumericalType {
|
||||
match self {
|
||||
NumericalValue::F64(_) => NumericalType::F64,
|
||||
NumericalValue::I64(_) => NumericalType::I64,
|
||||
NumericalValue::U64(_) => NumericalType::U64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Eq for NumericalValue {}
|
||||
|
||||
#[derive(Clone, Copy, Debug, Default, Hash, Eq, PartialEq)]
|
||||
#[repr(u8)]
|
||||
pub enum NumericalType {
|
||||
@@ -104,13 +106,6 @@ impl Coerce for f64 {
|
||||
}
|
||||
}
|
||||
|
||||
impl Coerce for crate::DateTime {
|
||||
fn coerce(value: NumericalValue) -> Self {
|
||||
let timestamp_micros = i64::coerce(value);
|
||||
crate::DateTime { timestamp_micros }
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::NumericalType;
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
use crate::dictionary::UnorderedId;
|
||||
use crate::utils::{place_bits, pop_first_byte, select_bits};
|
||||
use crate::value::NumericalValue;
|
||||
use crate::{InvalidData, NumericalType, RowId};
|
||||
use crate::{DocId, InvalidData, NumericalType};
|
||||
|
||||
/// When we build a columnar dataframe, we first just group
|
||||
/// all mutations per column, and appends them in append-only buffer
|
||||
@@ -15,7 +13,7 @@ use crate::{InvalidData, NumericalType, RowId};
|
||||
/// We represents all of these operations as `ColumnOperation`.
|
||||
#[derive(Eq, PartialEq, Debug, Clone, Copy)]
|
||||
pub(super) enum ColumnOperation<T> {
|
||||
NewDoc(RowId),
|
||||
NewDoc(DocId),
|
||||
Value(T),
|
||||
}
|
||||
|
||||
@@ -27,12 +25,12 @@ struct ColumnOperationMetadata {
|
||||
|
||||
impl ColumnOperationMetadata {
|
||||
fn to_code(self) -> u8 {
|
||||
place_bits::<0, 6>(self.len) | place_bits::<6, 8>(self.op_type.to_code())
|
||||
place_bits::<0, 4>(self.len) | place_bits::<4, 8>(self.op_type.to_code())
|
||||
}
|
||||
|
||||
fn try_from_code(code: u8) -> Result<Self, InvalidData> {
|
||||
let len = select_bits::<0, 6>(code);
|
||||
let typ_code = select_bits::<6, 8>(code);
|
||||
let len = select_bits::<0, 4>(code);
|
||||
let typ_code = select_bits::<4, 8>(code);
|
||||
let column_type = ColumnOperationType::try_from_code(typ_code)?;
|
||||
Ok(ColumnOperationMetadata {
|
||||
op_type: column_type,
|
||||
@@ -144,21 +142,9 @@ impl SymbolValue for bool {
|
||||
}
|
||||
}
|
||||
|
||||
impl SymbolValue for Ipv6Addr {
|
||||
fn serialize(self, buffer: &mut [u8]) -> u8 {
|
||||
buffer[0..16].copy_from_slice(&self.octets());
|
||||
16
|
||||
}
|
||||
|
||||
fn deserialize(bytes: &[u8]) -> Self {
|
||||
let octets: [u8; 16] = bytes[0..16].try_into().unwrap();
|
||||
Ipv6Addr::from(octets)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
struct MiniBuffer {
|
||||
pub bytes: [u8; 17],
|
||||
pub bytes: [u8; 10],
|
||||
pub len: u8,
|
||||
}
|
||||
|
||||
@@ -2,9 +2,9 @@ use std::cmp::Ordering;
|
||||
|
||||
use stacker::{ExpUnrolledLinkedList, MemoryArena};
|
||||
|
||||
use crate::columnar::writer::column_operation::{ColumnOperation, SymbolValue};
|
||||
use crate::dictionary::{DictionaryBuilder, UnorderedId};
|
||||
use crate::{Cardinality, NumericalType, NumericalValue, RowId};
|
||||
use crate::writer::column_operation::{ColumnOperation, SymbolValue};
|
||||
use crate::{Cardinality, DocId, NumericalType, NumericalValue};
|
||||
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[repr(u8)]
|
||||
@@ -53,7 +53,7 @@ impl ColumnWriter {
|
||||
///
|
||||
/// This function will also update the cardinality of the column
|
||||
/// if necessary.
|
||||
pub(super) fn record<S: SymbolValue>(&mut self, doc: RowId, value: S, arena: &mut MemoryArena) {
|
||||
pub(super) fn record<S: SymbolValue>(&mut self, doc: DocId, value: S, arena: &mut MemoryArena) {
|
||||
// Difference between `doc` and the last doc.
|
||||
match delta_with_last_doc(self.last_doc_opt, doc) {
|
||||
DocumentStep::Same => {
|
||||
@@ -77,7 +77,7 @@ impl ColumnWriter {
|
||||
// The overall number of docs in the column is necessary to
|
||||
// deal with the case where the all docs contain 1 value, except some documents
|
||||
// at the end of the column.
|
||||
pub(crate) fn get_cardinality(&self, num_docs: RowId) -> Cardinality {
|
||||
pub(crate) fn get_cardinality(&self, num_docs: DocId) -> Cardinality {
|
||||
match delta_with_last_doc(self.last_doc_opt, num_docs) {
|
||||
DocumentStep::Same | DocumentStep::Next => self.cardinality,
|
||||
DocumentStep::Skipped => self.cardinality.max(Cardinality::Optional),
|
||||
@@ -102,29 +102,18 @@ pub(crate) struct NumericalColumnWriter {
|
||||
column_writer: ColumnWriter,
|
||||
}
|
||||
|
||||
impl NumericalColumnWriter {
|
||||
pub fn force_numerical_type(&mut self, numerical_type: NumericalType) {
|
||||
assert!(self
|
||||
.compatible_numerical_types
|
||||
.is_type_accepted(numerical_type));
|
||||
self.compatible_numerical_types = CompatibleNumericalTypes::StaticType(numerical_type);
|
||||
}
|
||||
}
|
||||
|
||||
/// State used to store what types are still acceptable
|
||||
/// after having seen a set of numerical values.
|
||||
#[derive(Clone, Copy)]
|
||||
enum CompatibleNumericalTypes {
|
||||
Dynamic {
|
||||
all_values_within_i64_range: bool,
|
||||
all_values_within_u64_range: bool,
|
||||
},
|
||||
StaticType(NumericalType),
|
||||
struct CompatibleNumericalTypes {
|
||||
all_values_within_i64_range: bool,
|
||||
all_values_within_u64_range: bool,
|
||||
// f64 is always acceptable.
|
||||
}
|
||||
|
||||
impl Default for CompatibleNumericalTypes {
|
||||
fn default() -> CompatibleNumericalTypes {
|
||||
CompatibleNumericalTypes::Dynamic {
|
||||
CompatibleNumericalTypes {
|
||||
all_values_within_i64_range: true,
|
||||
all_values_within_u64_range: true,
|
||||
}
|
||||
@@ -132,59 +121,36 @@ impl Default for CompatibleNumericalTypes {
|
||||
}
|
||||
|
||||
impl CompatibleNumericalTypes {
|
||||
fn is_type_accepted(&self, numerical_type: NumericalType) -> bool {
|
||||
match self {
|
||||
CompatibleNumericalTypes::Dynamic {
|
||||
all_values_within_i64_range,
|
||||
all_values_within_u64_range,
|
||||
} => match numerical_type {
|
||||
NumericalType::I64 => *all_values_within_i64_range,
|
||||
NumericalType::U64 => *all_values_within_u64_range,
|
||||
NumericalType::F64 => true,
|
||||
},
|
||||
CompatibleNumericalTypes::StaticType(static_numerical_type) => {
|
||||
*static_numerical_type == numerical_type
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn accept_value(&mut self, numerical_value: NumericalValue) {
|
||||
match self {
|
||||
CompatibleNumericalTypes::Dynamic {
|
||||
all_values_within_i64_range,
|
||||
all_values_within_u64_range,
|
||||
} => match numerical_value {
|
||||
NumericalValue::I64(val_i64) => {
|
||||
let value_within_u64_range = val_i64 >= 0i64;
|
||||
*all_values_within_u64_range &= value_within_u64_range;
|
||||
}
|
||||
NumericalValue::U64(val_u64) => {
|
||||
let value_within_i64_range = val_u64 < i64::MAX as u64;
|
||||
*all_values_within_i64_range &= value_within_i64_range;
|
||||
}
|
||||
NumericalValue::F64(_) => {
|
||||
*all_values_within_i64_range = false;
|
||||
*all_values_within_u64_range = false;
|
||||
}
|
||||
},
|
||||
CompatibleNumericalTypes::StaticType(typ) => {
|
||||
assert_eq!(numerical_value.numerical_type(), *typ);
|
||||
match numerical_value {
|
||||
NumericalValue::I64(val_i64) => {
|
||||
let value_within_u64_range = val_i64 >= 0i64;
|
||||
self.all_values_within_u64_range &= value_within_u64_range;
|
||||
}
|
||||
NumericalValue::U64(val_u64) => {
|
||||
let value_within_i64_range = val_u64 < i64::MAX as u64;
|
||||
self.all_values_within_i64_range &= value_within_i64_range;
|
||||
}
|
||||
NumericalValue::F64(_) => {
|
||||
self.all_values_within_i64_range = false;
|
||||
self.all_values_within_u64_range = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn to_numerical_type(self) -> NumericalType {
|
||||
for numerical_type in [NumericalType::I64, NumericalType::U64] {
|
||||
if self.is_type_accepted(numerical_type) {
|
||||
return numerical_type;
|
||||
}
|
||||
if self.all_values_within_i64_range {
|
||||
NumericalType::I64
|
||||
} else if self.all_values_within_u64_range {
|
||||
NumericalType::U64
|
||||
} else {
|
||||
NumericalType::F64
|
||||
}
|
||||
NumericalType::F64
|
||||
}
|
||||
}
|
||||
|
||||
impl NumericalColumnWriter {
|
||||
pub fn column_type_and_cardinality(&self, num_docs: RowId) -> (NumericalType, Cardinality) {
|
||||
pub fn column_type_and_cardinality(&self, num_docs: DocId) -> (NumericalType, Cardinality) {
|
||||
let numerical_type = self.compatible_numerical_types.to_numerical_type();
|
||||
let cardinality = self.column_writer.get_cardinality(num_docs);
|
||||
(numerical_type, cardinality)
|
||||
@@ -192,7 +158,7 @@ impl NumericalColumnWriter {
|
||||
|
||||
pub fn record_numerical_value(
|
||||
&mut self,
|
||||
doc: RowId,
|
||||
doc: DocId,
|
||||
value: NumericalValue,
|
||||
arena: &mut MemoryArena,
|
||||
) {
|
||||
@@ -209,15 +175,15 @@ impl NumericalColumnWriter {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub(crate) struct StrOrBytesColumnWriter {
|
||||
#[derive(Copy, Clone, Default)]
|
||||
pub(crate) struct StrColumnWriter {
|
||||
pub(crate) dictionary_id: u32,
|
||||
pub(crate) column_writer: ColumnWriter,
|
||||
}
|
||||
|
||||
impl StrOrBytesColumnWriter {
|
||||
pub(crate) fn with_dictionary_id(dictionary_id: u32) -> StrOrBytesColumnWriter {
|
||||
StrOrBytesColumnWriter {
|
||||
impl StrColumnWriter {
|
||||
pub(crate) fn with_dictionary_id(dictionary_id: u32) -> StrColumnWriter {
|
||||
StrColumnWriter {
|
||||
dictionary_id,
|
||||
column_writer: Default::default(),
|
||||
}
|
||||
@@ -225,7 +191,7 @@ impl StrOrBytesColumnWriter {
|
||||
|
||||
pub(crate) fn record_bytes(
|
||||
&mut self,
|
||||
doc: RowId,
|
||||
doc: DocId,
|
||||
bytes: &[u8],
|
||||
dictionaries: &mut [DictionaryBuilder],
|
||||
arena: &mut MemoryArena,
|
||||
@@ -296,27 +262,4 @@ mod tests {
|
||||
test_column_writer_coercion_aux(&[1i64.into(), 1u64.into()], NumericalType::I64);
|
||||
test_column_writer_coercion_aux(&[u64::MAX.into(), (-1i64).into()], NumericalType::F64);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic]
|
||||
fn test_compatible_numerical_types_static_incompatible_type() {
|
||||
let mut compatible_numerical_types =
|
||||
CompatibleNumericalTypes::StaticType(NumericalType::U64);
|
||||
compatible_numerical_types.accept_value(NumericalValue::I64(1i64));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compatible_numerical_types_static_different_type_forbidden() {
|
||||
let mut compatible_numerical_types =
|
||||
CompatibleNumericalTypes::StaticType(NumericalType::U64);
|
||||
compatible_numerical_types.accept_value(NumericalValue::U64(u64::MAX));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compatible_numerical_types_static() {
|
||||
for typ in [NumericalType::I64, NumericalType::I64, NumericalType::F64] {
|
||||
let compatible_numerical_types = CompatibleNumericalTypes::StaticType(typ);
|
||||
assert_eq!(compatible_numerical_types.to_numerical_type(), typ);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -4,36 +4,30 @@ mod serializer;
|
||||
mod value_index;
|
||||
|
||||
use std::io;
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
use column_operation::ColumnOperation;
|
||||
use common::CountingWriter;
|
||||
use fastfield_codecs::serialize::ValueIndexInfo;
|
||||
use fastfield_codecs::{Column, MonotonicallyMappableToU64, VecColumn};
|
||||
use serializer::ColumnarSerializer;
|
||||
use stacker::{Addr, ArenaHashMap, MemoryArena};
|
||||
|
||||
use crate::column_index::SerializableColumnIndex;
|
||||
use crate::column_values::{
|
||||
ColumnValues, MonotonicallyMappableToU128, MonotonicallyMappableToU64, VecColumn,
|
||||
};
|
||||
use crate::columnar::column_type::{ColumnType, ColumnTypeCategory};
|
||||
use crate::columnar::writer::column_writers::{
|
||||
ColumnWriter, NumericalColumnWriter, StrOrBytesColumnWriter,
|
||||
};
|
||||
use crate::columnar::writer::value_index::{IndexBuilder, PreallocatedIndexBuilders};
|
||||
use crate::column_type_header::{ColumnType, ColumnTypeAndCardinality, ColumnTypeCategory};
|
||||
use crate::dictionary::{DictionaryBuilder, TermIdMapping, UnorderedId};
|
||||
use crate::value::{Coerce, NumericalType, NumericalValue};
|
||||
use crate::{Cardinality, RowId};
|
||||
use crate::writer::column_writers::{ColumnWriter, NumericalColumnWriter, StrColumnWriter};
|
||||
use crate::writer::value_index::{IndexBuilder, SpareIndexBuilders};
|
||||
use crate::{Cardinality, DocId};
|
||||
|
||||
/// This is a set of buffers that are used to temporarily write the values into before passing them
|
||||
/// to the fast field codecs.
|
||||
#[derive(Default)]
|
||||
struct SpareBuffers {
|
||||
value_index_builders: PreallocatedIndexBuilders,
|
||||
value_index_builders: SpareIndexBuilders,
|
||||
i64_values: Vec<i64>,
|
||||
u64_values: Vec<u64>,
|
||||
f64_values: Vec<f64>,
|
||||
bool_values: Vec<bool>,
|
||||
ip_addr_values: Vec<Ipv6Addr>,
|
||||
}
|
||||
|
||||
/// Makes it possible to create a new columnar.
|
||||
@@ -51,11 +45,8 @@ struct SpareBuffers {
|
||||
/// ```
|
||||
pub struct ColumnarWriter {
|
||||
numerical_field_hash_map: ArenaHashMap,
|
||||
datetime_field_hash_map: ArenaHashMap,
|
||||
bool_field_hash_map: ArenaHashMap,
|
||||
ip_addr_field_hash_map: ArenaHashMap,
|
||||
bytes_field_hash_map: ArenaHashMap,
|
||||
str_field_hash_map: ArenaHashMap,
|
||||
arena: MemoryArena,
|
||||
// Dictionaries used to store dictionary-encoded values.
|
||||
dictionaries: Vec<DictionaryBuilder>,
|
||||
@@ -67,10 +58,7 @@ impl Default for ColumnarWriter {
|
||||
ColumnarWriter {
|
||||
numerical_field_hash_map: ArenaHashMap::new(10_000),
|
||||
bool_field_hash_map: ArenaHashMap::new(10_000),
|
||||
ip_addr_field_hash_map: ArenaHashMap::new(10_000),
|
||||
bytes_field_hash_map: ArenaHashMap::new(10_000),
|
||||
str_field_hash_map: ArenaHashMap::new(10_000),
|
||||
datetime_field_hash_map: ArenaHashMap::new(10_000),
|
||||
dictionaries: Vec::new(),
|
||||
arena: MemoryArena::default(),
|
||||
buffers: SpareBuffers::default(),
|
||||
@@ -78,115 +66,20 @@ impl Default for ColumnarWriter {
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn mutate_or_create_column<V, TMutator>(
|
||||
arena_hash_map: &mut ArenaHashMap,
|
||||
column_name: &str,
|
||||
updater: TMutator,
|
||||
) where
|
||||
V: Copy + 'static,
|
||||
TMutator: FnMut(Option<V>) -> V,
|
||||
{
|
||||
assert!(
|
||||
!column_name.as_bytes().contains(&0u8),
|
||||
"key may not contain the 0 byte"
|
||||
);
|
||||
arena_hash_map.mutate_or_create(column_name.as_bytes(), updater);
|
||||
}
|
||||
|
||||
impl ColumnarWriter {
|
||||
pub fn mem_usage(&self) -> usize {
|
||||
// TODO add dictionary builders.
|
||||
self.arena.mem_usage()
|
||||
+ self.numerical_field_hash_map.mem_usage()
|
||||
+ self.bool_field_hash_map.mem_usage()
|
||||
+ self.bytes_field_hash_map.mem_usage()
|
||||
+ self.str_field_hash_map.mem_usage()
|
||||
+ self.ip_addr_field_hash_map.mem_usage()
|
||||
+ self.datetime_field_hash_map.mem_usage()
|
||||
}
|
||||
|
||||
pub fn record_column_type(&mut self, column_name: &str, column_type: ColumnType) {
|
||||
match column_type {
|
||||
ColumnType::Str | ColumnType::Bytes => {
|
||||
let (hash_map, dictionaries) = (
|
||||
if column_type == ColumnType::Str {
|
||||
&mut self.str_field_hash_map
|
||||
} else {
|
||||
&mut self.bytes_field_hash_map
|
||||
},
|
||||
&mut self.dictionaries,
|
||||
);
|
||||
mutate_or_create_column(
|
||||
hash_map,
|
||||
column_name,
|
||||
|column_opt: Option<StrOrBytesColumnWriter>| {
|
||||
if let Some(column_writer) = column_opt {
|
||||
column_writer
|
||||
} else {
|
||||
let dictionary_id = dictionaries.len() as u32;
|
||||
dictionaries.push(DictionaryBuilder::default());
|
||||
StrOrBytesColumnWriter::with_dictionary_id(dictionary_id)
|
||||
}
|
||||
},
|
||||
);
|
||||
}
|
||||
ColumnType::Bool => {
|
||||
mutate_or_create_column(
|
||||
&mut self.bool_field_hash_map,
|
||||
column_name,
|
||||
|column_opt: Option<ColumnWriter>| column_opt.unwrap_or_default(),
|
||||
);
|
||||
}
|
||||
ColumnType::DateTime => {
|
||||
mutate_or_create_column(
|
||||
&mut self.datetime_field_hash_map,
|
||||
column_name,
|
||||
|column_opt: Option<ColumnWriter>| column_opt.unwrap_or_default(),
|
||||
);
|
||||
}
|
||||
ColumnType::I64 | ColumnType::F64 | ColumnType::U64 => {
|
||||
let numerical_type = column_type.numerical_type().unwrap();
|
||||
mutate_or_create_column(
|
||||
&mut self.numerical_field_hash_map,
|
||||
column_name,
|
||||
|column_opt: Option<NumericalColumnWriter>| {
|
||||
let mut column: NumericalColumnWriter = column_opt.unwrap_or_default();
|
||||
column.force_numerical_type(numerical_type);
|
||||
column
|
||||
},
|
||||
);
|
||||
}
|
||||
ColumnType::IpAddr => mutate_or_create_column(
|
||||
&mut self.ip_addr_field_hash_map,
|
||||
column_name,
|
||||
|column_opt: Option<ColumnWriter>| column_opt.unwrap_or_default(),
|
||||
),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn force_numerical_type(&mut self, column_name: &str, numerical_type: NumericalType) {
|
||||
mutate_or_create_column(
|
||||
&mut self.numerical_field_hash_map,
|
||||
column_name,
|
||||
|column_opt: Option<NumericalColumnWriter>| {
|
||||
let mut column: NumericalColumnWriter = column_opt.unwrap_or_default();
|
||||
column.force_numerical_type(numerical_type);
|
||||
column
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
pub fn record_numerical<T: Into<NumericalValue> + Copy>(
|
||||
&mut self,
|
||||
doc: RowId,
|
||||
doc: DocId,
|
||||
column_name: &str,
|
||||
numerical_value: T,
|
||||
) {
|
||||
assert!(
|
||||
!column_name.as_bytes().contains(&0u8),
|
||||
"key may not contain the 0 byte"
|
||||
);
|
||||
let (hash_map, arena) = (&mut self.numerical_field_hash_map, &mut self.arena);
|
||||
mutate_or_create_column(
|
||||
hash_map,
|
||||
column_name,
|
||||
hash_map.mutate_or_create(
|
||||
column_name.as_bytes(),
|
||||
|column_opt: Option<NumericalColumnWriter>| {
|
||||
let mut column: NumericalColumnWriter = column_opt.unwrap_or_default();
|
||||
column.record_numerical_value(doc, numerical_value.into(), arena);
|
||||
@@ -195,62 +88,23 @@ impl ColumnarWriter {
|
||||
);
|
||||
}
|
||||
|
||||
pub fn record_ip_addr(&mut self, doc: RowId, column_name: &str, ip_addr: Ipv6Addr) {
|
||||
pub fn record_bool(&mut self, doc: DocId, column_name: &str, val: bool) {
|
||||
assert!(
|
||||
!column_name.as_bytes().contains(&0u8),
|
||||
"key may not contain the 0 byte"
|
||||
);
|
||||
let (hash_map, arena) = (&mut self.ip_addr_field_hash_map, &mut self.arena);
|
||||
let (hash_map, arena) = (&mut self.bool_field_hash_map, &mut self.arena);
|
||||
hash_map.mutate_or_create(
|
||||
column_name.as_bytes(),
|
||||
|column_opt: Option<ColumnWriter>| {
|
||||
let mut column: ColumnWriter = column_opt.unwrap_or_default();
|
||||
column.record(doc, ip_addr, arena);
|
||||
column.record(doc, val, arena);
|
||||
column
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
pub fn record_bool(&mut self, doc: RowId, column_name: &str, val: bool) {
|
||||
let (hash_map, arena) = (&mut self.bool_field_hash_map, &mut self.arena);
|
||||
mutate_or_create_column(hash_map, column_name, |column_opt: Option<ColumnWriter>| {
|
||||
let mut column: ColumnWriter = column_opt.unwrap_or_default();
|
||||
column.record(doc, val, arena);
|
||||
column
|
||||
});
|
||||
}
|
||||
|
||||
pub fn record_datetime(&mut self, doc: RowId, column_name: &str, datetime: crate::DateTime) {
|
||||
let (hash_map, arena) = (&mut self.datetime_field_hash_map, &mut self.arena);
|
||||
mutate_or_create_column(hash_map, column_name, |column_opt: Option<ColumnWriter>| {
|
||||
let mut column: ColumnWriter = column_opt.unwrap_or_default();
|
||||
column.record(doc, NumericalValue::I64(datetime.timestamp_micros), arena);
|
||||
column
|
||||
});
|
||||
}
|
||||
|
||||
pub fn record_str(&mut self, doc: RowId, column_name: &str, value: &str) {
|
||||
let (hash_map, arena, dictionaries) = (
|
||||
&mut self.str_field_hash_map,
|
||||
&mut self.arena,
|
||||
&mut self.dictionaries,
|
||||
);
|
||||
hash_map.mutate_or_create(
|
||||
column_name.as_bytes(),
|
||||
|column_opt: Option<StrOrBytesColumnWriter>| {
|
||||
let mut column: StrOrBytesColumnWriter = column_opt.unwrap_or_else(|| {
|
||||
// Each column has its own dictionary
|
||||
let dictionary_id = dictionaries.len() as u32;
|
||||
dictionaries.push(DictionaryBuilder::default());
|
||||
StrOrBytesColumnWriter::with_dictionary_id(dictionary_id)
|
||||
});
|
||||
column.record_bytes(doc, value.as_bytes(), dictionaries, arena);
|
||||
column
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
pub fn record_bytes(&mut self, doc: RowId, column_name: &str, value: &[u8]) {
|
||||
pub fn record_str(&mut self, doc: DocId, column_name: &str, value: &str) {
|
||||
assert!(
|
||||
!column_name.as_bytes().contains(&0u8),
|
||||
"key may not contain the 0 byte"
|
||||
@@ -262,61 +116,50 @@ impl ColumnarWriter {
|
||||
);
|
||||
hash_map.mutate_or_create(
|
||||
column_name.as_bytes(),
|
||||
|column_opt: Option<StrOrBytesColumnWriter>| {
|
||||
let mut column: StrOrBytesColumnWriter = column_opt.unwrap_or_else(|| {
|
||||
|column_opt: Option<StrColumnWriter>| {
|
||||
let mut column: StrColumnWriter = column_opt.unwrap_or_else(|| {
|
||||
// Each column has its own dictionary
|
||||
let dictionary_id = dictionaries.len() as u32;
|
||||
dictionaries.push(DictionaryBuilder::default());
|
||||
StrOrBytesColumnWriter::with_dictionary_id(dictionary_id)
|
||||
StrColumnWriter::with_dictionary_id(dictionary_id)
|
||||
});
|
||||
column.record_bytes(doc, value, dictionaries, arena);
|
||||
column.record_bytes(doc, value.as_bytes(), dictionaries, arena);
|
||||
column
|
||||
},
|
||||
);
|
||||
}
|
||||
pub fn serialize(&mut self, num_docs: RowId, wrt: &mut dyn io::Write) -> io::Result<()> {
|
||||
|
||||
pub fn serialize(&mut self, num_docs: DocId, wrt: &mut dyn io::Write) -> io::Result<()> {
|
||||
let mut serializer = ColumnarSerializer::new(wrt);
|
||||
let mut columns: Vec<(&[u8], ColumnTypeCategory, Addr)> = self
|
||||
let mut field_columns: Vec<(&[u8], ColumnTypeCategory, Addr)> = self
|
||||
.numerical_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnTypeCategory::Numerical, addr))
|
||||
.map(|(term, addr, _)| (term, ColumnTypeCategory::Numerical, addr))
|
||||
.collect();
|
||||
columns.extend(
|
||||
field_columns.extend(
|
||||
self.bytes_field_hash_map
|
||||
.iter()
|
||||
.map(|(term, addr, _)| (term, ColumnTypeCategory::Bytes, addr)),
|
||||
.map(|(term, addr, _)| (term, ColumnTypeCategory::Str, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
self.str_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnTypeCategory::Str, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
field_columns.extend(
|
||||
self.bool_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnTypeCategory::Bool, addr)),
|
||||
.map(|(term, addr, _)| (term, ColumnTypeCategory::Bool, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
self.ip_addr_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnTypeCategory::IpAddr, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
self.datetime_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnTypeCategory::DateTime, addr)),
|
||||
);
|
||||
columns.sort_unstable_by_key(|(column_name, col_type, _)| (*column_name, *col_type));
|
||||
|
||||
field_columns.sort_unstable_by_key(|(column_name, col_type, _)| (*column_name, *col_type));
|
||||
let (arena, buffers, dictionaries) = (&self.arena, &mut self.buffers, &self.dictionaries);
|
||||
let mut symbol_byte_buffer: Vec<u8> = Vec::new();
|
||||
for (column_name, column_type, addr) in columns {
|
||||
match column_type {
|
||||
for (column_name, bytes_or_numerical, addr) in field_columns {
|
||||
match bytes_or_numerical {
|
||||
ColumnTypeCategory::Bool => {
|
||||
let column_writer: ColumnWriter = self.bool_field_hash_map.read(addr);
|
||||
let cardinality = column_writer.get_cardinality(num_docs);
|
||||
let column_type_and_cardinality = ColumnTypeAndCardinality {
|
||||
cardinality,
|
||||
typ: ColumnType::Bool,
|
||||
};
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, ColumnType::Bool);
|
||||
serializer.serialize_column(column_name, column_type_and_cardinality);
|
||||
serialize_bool_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
@@ -325,32 +168,18 @@ impl ColumnarWriter {
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
}
|
||||
ColumnTypeCategory::IpAddr => {
|
||||
let column_writer: ColumnWriter = self.ip_addr_field_hash_map.read(addr);
|
||||
let cardinality = column_writer.get_cardinality(num_docs);
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, ColumnType::IpAddr);
|
||||
serialize_ip_addr_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
column_writer.operation_iterator(arena, &mut symbol_byte_buffer),
|
||||
buffers,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
}
|
||||
ColumnTypeCategory::Bytes | ColumnTypeCategory::Str => {
|
||||
let (column_type, str_column_writer): (ColumnType, StrOrBytesColumnWriter) =
|
||||
if column_type == ColumnTypeCategory::Bytes {
|
||||
(ColumnType::Bytes, self.bytes_field_hash_map.read(addr))
|
||||
} else {
|
||||
(ColumnType::Str, self.str_field_hash_map.read(addr))
|
||||
};
|
||||
ColumnTypeCategory::Str => {
|
||||
let str_column_writer: StrColumnWriter = self.bytes_field_hash_map.read(addr);
|
||||
let dictionary_builder =
|
||||
&dictionaries[str_column_writer.dictionary_id as usize];
|
||||
let cardinality = str_column_writer.column_writer.get_cardinality(num_docs);
|
||||
let column_type_and_cardinality = ColumnTypeAndCardinality {
|
||||
cardinality,
|
||||
typ: ColumnType::Bytes,
|
||||
};
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, column_type);
|
||||
serialize_bytes_or_str_column(
|
||||
serializer.serialize_column(column_name, column_type_and_cardinality);
|
||||
serialize_bytes_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
dictionary_builder,
|
||||
@@ -364,8 +193,12 @@ impl ColumnarWriter {
|
||||
self.numerical_field_hash_map.read(addr);
|
||||
let (numerical_type, cardinality) =
|
||||
numerical_column_writer.column_type_and_cardinality(num_docs);
|
||||
let column_type_and_cardinality = ColumnTypeAndCardinality {
|
||||
cardinality,
|
||||
typ: ColumnType::Numerical(numerical_type),
|
||||
};
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, ColumnType::from(numerical_type));
|
||||
serializer.serialize_column(column_name, column_type_and_cardinality);
|
||||
serialize_numerical_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
@@ -375,20 +208,6 @@ impl ColumnarWriter {
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
}
|
||||
ColumnTypeCategory::DateTime => {
|
||||
let column_writer: ColumnWriter = self.datetime_field_hash_map.read(addr);
|
||||
let cardinality = column_writer.get_cardinality(num_docs);
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, ColumnType::DateTime);
|
||||
serialize_numerical_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
NumericalType::I64,
|
||||
column_writer.operation_iterator(arena, &mut symbol_byte_buffer),
|
||||
buffers,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
}
|
||||
};
|
||||
}
|
||||
serializer.finalize()?;
|
||||
@@ -396,9 +215,9 @@ impl ColumnarWriter {
|
||||
}
|
||||
}
|
||||
|
||||
fn serialize_bytes_or_str_column(
|
||||
fn serialize_bytes_column(
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
num_docs: DocId,
|
||||
dictionary_builder: &DictionaryBuilder,
|
||||
operation_it: impl Iterator<Item = ColumnOperation<UnorderedId>>,
|
||||
buffers: &mut SpareBuffers,
|
||||
@@ -423,7 +242,7 @@ fn serialize_bytes_or_str_column(
|
||||
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
|
||||
}
|
||||
});
|
||||
send_to_serialize_column_mappable_to_u64(
|
||||
serialize_column(
|
||||
operation_iterator,
|
||||
cardinality,
|
||||
num_docs,
|
||||
@@ -437,7 +256,7 @@ fn serialize_bytes_or_str_column(
|
||||
|
||||
fn serialize_numerical_column(
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
num_docs: DocId,
|
||||
numerical_type: NumericalType,
|
||||
op_iterator: impl Iterator<Item = ColumnOperation<NumericalValue>>,
|
||||
buffers: &mut SpareBuffers,
|
||||
@@ -452,7 +271,7 @@ fn serialize_numerical_column(
|
||||
} = buffers;
|
||||
match numerical_type {
|
||||
NumericalType::I64 => {
|
||||
send_to_serialize_column_mappable_to_u64(
|
||||
serialize_column(
|
||||
coerce_numerical_symbol::<i64>(op_iterator),
|
||||
cardinality,
|
||||
num_docs,
|
||||
@@ -462,7 +281,7 @@ fn serialize_numerical_column(
|
||||
)?;
|
||||
}
|
||||
NumericalType::U64 => {
|
||||
send_to_serialize_column_mappable_to_u64(
|
||||
serialize_column(
|
||||
coerce_numerical_symbol::<u64>(op_iterator),
|
||||
cardinality,
|
||||
num_docs,
|
||||
@@ -472,7 +291,7 @@ fn serialize_numerical_column(
|
||||
)?;
|
||||
}
|
||||
NumericalType::F64 => {
|
||||
send_to_serialize_column_mappable_to_u64(
|
||||
serialize_column(
|
||||
coerce_numerical_symbol::<f64>(op_iterator),
|
||||
cardinality,
|
||||
num_docs,
|
||||
@@ -487,7 +306,7 @@ fn serialize_numerical_column(
|
||||
|
||||
fn serialize_bool_column(
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
num_docs: DocId,
|
||||
column_operations_it: impl Iterator<Item = ColumnOperation<bool>>,
|
||||
buffers: &mut SpareBuffers,
|
||||
wrt: &mut impl io::Write,
|
||||
@@ -497,7 +316,7 @@ fn serialize_bool_column(
|
||||
bool_values,
|
||||
..
|
||||
} = buffers;
|
||||
send_to_serialize_column_mappable_to_u64(
|
||||
serialize_column(
|
||||
column_operations_it,
|
||||
cardinality,
|
||||
num_docs,
|
||||
@@ -508,116 +327,56 @@ fn serialize_bool_column(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn serialize_ip_addr_column(
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
column_operations_it: impl Iterator<Item = ColumnOperation<Ipv6Addr>>,
|
||||
buffers: &mut SpareBuffers,
|
||||
wrt: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let SpareBuffers {
|
||||
value_index_builders,
|
||||
ip_addr_values,
|
||||
..
|
||||
} = buffers;
|
||||
send_to_serialize_column_mappable_to_u128(
|
||||
column_operations_it,
|
||||
cardinality,
|
||||
num_docs,
|
||||
value_index_builders,
|
||||
ip_addr_values,
|
||||
wrt,
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn send_to_serialize_column_mappable_to_u128<
|
||||
T: Copy + std::fmt::Debug + Send + Sync + MonotonicallyMappableToU128 + PartialOrd,
|
||||
>(
|
||||
op_iterator: impl Iterator<Item = ColumnOperation<T>>,
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
value_index_builders: &mut PreallocatedIndexBuilders,
|
||||
values: &mut Vec<T>,
|
||||
mut wrt: impl io::Write,
|
||||
) -> io::Result<()>
|
||||
where
|
||||
for<'a> VecColumn<'a, T>: ColumnValues<T>,
|
||||
{
|
||||
values.clear();
|
||||
// TODO: split index and values
|
||||
let serializable_column_index = match cardinality {
|
||||
Cardinality::Full => {
|
||||
consume_operation_iterator(
|
||||
op_iterator,
|
||||
value_index_builders.borrow_required_index_builder(),
|
||||
values,
|
||||
);
|
||||
SerializableColumnIndex::Full
|
||||
}
|
||||
Cardinality::Optional => {
|
||||
let optional_index_builder = value_index_builders.borrow_optional_index_builder();
|
||||
consume_operation_iterator(op_iterator, optional_index_builder, values);
|
||||
let optional_index = optional_index_builder.finish(num_docs);
|
||||
SerializableColumnIndex::Optional(Box::new(optional_index))
|
||||
}
|
||||
Cardinality::Multivalued => {
|
||||
let multivalued_index_builder = value_index_builders.borrow_multivalued_index_builder();
|
||||
consume_operation_iterator(op_iterator, multivalued_index_builder, values);
|
||||
let multivalued_index = multivalued_index_builder.finish(num_docs);
|
||||
SerializableColumnIndex::Multivalued(Box::new(multivalued_index))
|
||||
}
|
||||
};
|
||||
crate::column::serialize_column_mappable_to_u128(
|
||||
serializable_column_index,
|
||||
|| values.iter().cloned(),
|
||||
values.len() as u32,
|
||||
&mut wrt,
|
||||
)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn send_to_serialize_column_mappable_to_u64<
|
||||
fn serialize_column<
|
||||
T: Copy + Default + std::fmt::Debug + Send + Sync + MonotonicallyMappableToU64 + PartialOrd,
|
||||
>(
|
||||
op_iterator: impl Iterator<Item = ColumnOperation<T>>,
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
value_index_builders: &mut PreallocatedIndexBuilders,
|
||||
num_docs: DocId,
|
||||
value_index_builders: &mut SpareIndexBuilders,
|
||||
values: &mut Vec<T>,
|
||||
mut wrt: impl io::Write,
|
||||
) -> io::Result<()>
|
||||
where
|
||||
for<'a> VecColumn<'a, T>: ColumnValues<T>,
|
||||
for<'a> VecColumn<'a, T>: Column<T>,
|
||||
{
|
||||
values.clear();
|
||||
let serializable_column_index = match cardinality {
|
||||
Cardinality::Full => {
|
||||
match cardinality {
|
||||
Cardinality::Required => {
|
||||
consume_operation_iterator(
|
||||
op_iterator,
|
||||
value_index_builders.borrow_required_index_builder(),
|
||||
values,
|
||||
);
|
||||
SerializableColumnIndex::Full
|
||||
fastfield_codecs::serialize(
|
||||
VecColumn::from(&values[..]),
|
||||
&mut wrt,
|
||||
&fastfield_codecs::ALL_CODEC_TYPES[..],
|
||||
)?;
|
||||
}
|
||||
Cardinality::Optional => {
|
||||
let optional_index_builder = value_index_builders.borrow_optional_index_builder();
|
||||
consume_operation_iterator(op_iterator, optional_index_builder, values);
|
||||
let optional_index = optional_index_builder.finish(num_docs);
|
||||
SerializableColumnIndex::Optional(Box::new(optional_index))
|
||||
fastfield_codecs::serialize::serialize_new(
|
||||
ValueIndexInfo::SingleValue(Box::new(optional_index)),
|
||||
VecColumn::from(&values[..]),
|
||||
&mut wrt,
|
||||
&fastfield_codecs::ALL_CODEC_TYPES[..],
|
||||
)?;
|
||||
}
|
||||
Cardinality::Multivalued => {
|
||||
let multivalued_index_builder = value_index_builders.borrow_multivalued_index_builder();
|
||||
consume_operation_iterator(op_iterator, multivalued_index_builder, values);
|
||||
let multivalued_index = multivalued_index_builder.finish(num_docs);
|
||||
SerializableColumnIndex::Multivalued(Box::new(multivalued_index))
|
||||
fastfield_codecs::serialize::serialize_new(
|
||||
ValueIndexInfo::MultiValue(Box::new(multivalued_index)),
|
||||
VecColumn::from(&values[..]),
|
||||
&mut wrt,
|
||||
&fastfield_codecs::ALL_CODEC_TYPES[..],
|
||||
)?;
|
||||
}
|
||||
};
|
||||
crate::column::serialize_column_mappable_to_u64(
|
||||
serializable_column_index,
|
||||
&VecColumn::from(&values[..]),
|
||||
&mut wrt,
|
||||
)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -641,7 +400,7 @@ fn consume_operation_iterator<T: std::fmt::Debug, TIndexBuilder: IndexBuilder>(
|
||||
for symbol in operation_iterator {
|
||||
match symbol {
|
||||
ColumnOperation::NewDoc(doc) => {
|
||||
index_builder.record_row(doc);
|
||||
index_builder.record_doc(doc);
|
||||
}
|
||||
ColumnOperation::Value(value) => {
|
||||
index_builder.record_value();
|
||||
@@ -653,10 +412,12 @@ fn consume_operation_iterator<T: std::fmt::Debug, TIndexBuilder: IndexBuilder>(
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use column_operation::ColumnOperation;
|
||||
use stacker::MemoryArena;
|
||||
|
||||
use crate::columnar::writer::column_operation::ColumnOperation;
|
||||
use crate::{Cardinality, NumericalValue};
|
||||
use super::*;
|
||||
use crate::value::NumericalValue;
|
||||
use crate::Cardinality;
|
||||
|
||||
#[test]
|
||||
fn test_column_writer_required_simple() {
|
||||
@@ -665,7 +426,7 @@ mod tests {
|
||||
column_writer.record(0u32, NumericalValue::from(14i64), &mut arena);
|
||||
column_writer.record(1u32, NumericalValue::from(15i64), &mut arena);
|
||||
column_writer.record(2u32, NumericalValue::from(-16i64), &mut arena);
|
||||
assert_eq!(column_writer.get_cardinality(3), Cardinality::Full);
|
||||
assert_eq!(column_writer.get_cardinality(3), Cardinality::Required);
|
||||
let mut buffer = Vec::new();
|
||||
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
|
||||
.operation_iterator(&mut arena, &mut buffer)
|
||||
@@ -5,7 +5,7 @@ use common::CountingWriter;
|
||||
use sstable::value::RangeValueWriter;
|
||||
use sstable::RangeSSTable;
|
||||
|
||||
use crate::columnar::ColumnType;
|
||||
use crate::column_type_header::ColumnTypeAndCardinality;
|
||||
|
||||
pub struct ColumnarSerializer<W: io::Write> {
|
||||
wrt: CountingWriter<W>,
|
||||
@@ -15,11 +15,15 @@ pub struct ColumnarSerializer<W: io::Write> {
|
||||
|
||||
/// Returns a key consisting of the concatenation of the key and the column_type_and_cardinality
|
||||
/// code.
|
||||
fn prepare_key(key: &[u8], column_type: ColumnType, buffer: &mut Vec<u8>) {
|
||||
fn prepare_key(
|
||||
key: &[u8],
|
||||
column_type_cardinality: ColumnTypeAndCardinality,
|
||||
buffer: &mut Vec<u8>,
|
||||
) {
|
||||
buffer.clear();
|
||||
buffer.extend_from_slice(key);
|
||||
buffer.push(0u8);
|
||||
buffer.push(column_type.to_code());
|
||||
buffer.push(column_type_cardinality.to_code());
|
||||
}
|
||||
|
||||
impl<W: io::Write> ColumnarSerializer<W> {
|
||||
@@ -36,10 +40,14 @@ impl<W: io::Write> ColumnarSerializer<W> {
|
||||
pub fn serialize_column<'a>(
|
||||
&'a mut self,
|
||||
column_name: &[u8],
|
||||
column_type: ColumnType,
|
||||
column_type_cardinality: ColumnTypeAndCardinality,
|
||||
) -> impl io::Write + 'a {
|
||||
let start_offset = self.wrt.written_bytes();
|
||||
prepare_key(column_name, column_type, &mut self.prepare_key_buffer);
|
||||
prepare_key(
|
||||
column_name,
|
||||
column_type_cardinality,
|
||||
&mut self.prepare_key_buffer,
|
||||
);
|
||||
ColumnSerializer {
|
||||
columnar_serializer: self,
|
||||
start_offset,
|
||||
@@ -51,9 +59,6 @@ impl<W: io::Write> ColumnarSerializer<W> {
|
||||
let sstable_num_bytes: u64 = sstable_bytes.len() as u64;
|
||||
self.wrt.write_all(&sstable_bytes)?;
|
||||
self.wrt.write_all(&sstable_num_bytes.to_le_bytes()[..])?;
|
||||
self.wrt
|
||||
.write_all(&super::super::format_version::footer())?;
|
||||
self.wrt.flush()?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -92,15 +97,20 @@ impl<'a, W: io::Write> io::Write for ColumnSerializer<'a, W> {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::columnar::column_type::ColumnType;
|
||||
use crate::column_type_header::ColumnType;
|
||||
use crate::Cardinality;
|
||||
|
||||
#[test]
|
||||
fn test_prepare_key_bytes() {
|
||||
let mut buffer: Vec<u8> = b"somegarbage".to_vec();
|
||||
prepare_key(b"root\0child", ColumnType::Str, &mut buffer);
|
||||
let column_type_and_cardinality = ColumnTypeAndCardinality {
|
||||
typ: ColumnType::Bytes,
|
||||
cardinality: Cardinality::Optional,
|
||||
};
|
||||
prepare_key(b"root\0child", column_type_and_cardinality, &mut buffer);
|
||||
assert_eq!(buffer.len(), 12);
|
||||
assert_eq!(&buffer[..10], b"root\0child");
|
||||
assert_eq!(buffer[10], 0u8);
|
||||
assert_eq!(buffer[11], ColumnType::Str.to_code());
|
||||
assert_eq!(buffer[11], column_type_and_cardinality.to_code());
|
||||
}
|
||||
}
|
||||
@@ -1,6 +1,6 @@
|
||||
use crate::column_index::SerializableOptionalIndex;
|
||||
use crate::column_values::{ColumnValues, VecColumn};
|
||||
use crate::RowId;
|
||||
use fastfield_codecs::serialize::{MultiValueIndexInfo, SingleValueIndexInfo};
|
||||
|
||||
use crate::DocId;
|
||||
|
||||
/// The `IndexBuilder` interprets a sequence of
|
||||
/// calls of the form:
|
||||
@@ -10,52 +10,56 @@ use crate::RowId;
|
||||
/// It has different implementation depending on whether the
|
||||
/// cardinality is required, optional, or multivalued.
|
||||
pub(crate) trait IndexBuilder {
|
||||
fn record_row(&mut self, doc: RowId);
|
||||
fn record_doc(&mut self, doc: DocId);
|
||||
#[inline]
|
||||
fn record_value(&mut self) {}
|
||||
}
|
||||
|
||||
/// The FullIndexBuilder does nothing.
|
||||
/// The RequiredIndexBuilder does nothing.
|
||||
#[derive(Default)]
|
||||
pub struct FullIndexBuilder;
|
||||
pub struct RequiredIndexBuilder;
|
||||
|
||||
impl IndexBuilder for FullIndexBuilder {
|
||||
impl IndexBuilder for RequiredIndexBuilder {
|
||||
#[inline(always)]
|
||||
fn record_row(&mut self, _doc: RowId) {}
|
||||
fn record_doc(&mut self, _doc: DocId) {}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct OptionalIndexBuilder {
|
||||
docs: Vec<RowId>,
|
||||
docs: Vec<DocId>,
|
||||
}
|
||||
|
||||
struct SingleValueArrayIndex<'a> {
|
||||
// RowIds with a value, in a strictly increasing order
|
||||
row_ids: &'a [RowId],
|
||||
num_rows: RowId,
|
||||
// DocIds with a value. DocIds are strictly increasing
|
||||
docs: &'a [DocId],
|
||||
num_docs: DocId,
|
||||
}
|
||||
|
||||
impl<'a> SerializableOptionalIndex<'a> for SingleValueArrayIndex<'a> {
|
||||
fn num_rows(&self) -> RowId {
|
||||
self.num_rows
|
||||
impl<'a> SingleValueIndexInfo for SingleValueArrayIndex<'a> {
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.num_docs as u32
|
||||
}
|
||||
|
||||
fn non_null_rows(&self) -> Box<dyn Iterator<Item = RowId> + 'a> {
|
||||
Box::new(self.row_ids.iter().copied())
|
||||
fn num_non_nulls(&self) -> u32 {
|
||||
self.docs.len() as u32
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
|
||||
Box::new(self.docs.iter().copied())
|
||||
}
|
||||
}
|
||||
|
||||
impl OptionalIndexBuilder {
|
||||
pub fn finish<'a>(&'a mut self, num_rows: RowId) -> impl SerializableOptionalIndex + 'a {
|
||||
pub fn finish(&mut self, num_docs: DocId) -> impl SingleValueIndexInfo + '_ {
|
||||
debug_assert!(self
|
||||
.docs
|
||||
.last()
|
||||
.copied()
|
||||
.map(|last_doc| last_doc < num_rows)
|
||||
.map(|last_doc| last_doc < num_docs)
|
||||
.unwrap_or(true));
|
||||
SingleValueArrayIndex {
|
||||
row_ids: &self.docs[..],
|
||||
num_rows,
|
||||
docs: &self.docs[..],
|
||||
num_docs,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -66,7 +70,7 @@ impl OptionalIndexBuilder {
|
||||
|
||||
impl IndexBuilder for OptionalIndexBuilder {
|
||||
#[inline(always)]
|
||||
fn record_row(&mut self, doc: RowId) {
|
||||
fn record_doc(&mut self, doc: DocId) {
|
||||
debug_assert!(self
|
||||
.docs
|
||||
.last()
|
||||
@@ -79,32 +83,53 @@ impl IndexBuilder for OptionalIndexBuilder {
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct MultivaluedIndexBuilder {
|
||||
start_offsets: Vec<RowId>,
|
||||
// TODO should we switch to `start_offset`?
|
||||
// contains the num values so far for each `DocId`.
|
||||
end_offsets: Vec<DocId>,
|
||||
total_num_vals_seen: u32,
|
||||
}
|
||||
|
||||
pub struct MultivaluedValueArrayIndex<'a> {
|
||||
end_offsets: &'a [DocId],
|
||||
}
|
||||
|
||||
impl<'a> MultiValueIndexInfo for MultivaluedValueArrayIndex<'a> {
|
||||
fn num_docs(&self) -> u32 {
|
||||
self.end_offsets.len() as u32
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.end_offsets.last().copied().unwrap_or(0u32)
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
|
||||
if self.end_offsets.is_empty() {
|
||||
return Box::new(std::iter::empty());
|
||||
}
|
||||
let n = self.end_offsets.len();
|
||||
Box::new(std::iter::once(0u32).chain(self.end_offsets[..n - 1].iter().copied()))
|
||||
}
|
||||
}
|
||||
|
||||
impl MultivaluedIndexBuilder {
|
||||
pub fn finish(&mut self, num_docs: RowId) -> impl ColumnValues<u32> + '_ {
|
||||
self.start_offsets
|
||||
.resize(num_docs as usize + 1, self.total_num_vals_seen);
|
||||
VecColumn {
|
||||
values: &&self.start_offsets[..],
|
||||
min_value: 0,
|
||||
max_value: self.start_offsets.last().copied().unwrap_or(0),
|
||||
pub fn finish(&mut self, num_docs: DocId) -> impl MultiValueIndexInfo + '_ {
|
||||
self.end_offsets
|
||||
.resize(num_docs as usize, self.total_num_vals_seen);
|
||||
MultivaluedValueArrayIndex {
|
||||
end_offsets: &self.end_offsets[..],
|
||||
}
|
||||
}
|
||||
|
||||
fn reset(&mut self) {
|
||||
self.start_offsets.clear();
|
||||
self.start_offsets.push(0u32);
|
||||
self.end_offsets.clear();
|
||||
self.total_num_vals_seen = 0;
|
||||
}
|
||||
}
|
||||
|
||||
impl IndexBuilder for MultivaluedIndexBuilder {
|
||||
fn record_row(&mut self, row_id: RowId) {
|
||||
self.start_offsets
|
||||
.resize(row_id as usize + 1, self.total_num_vals_seen);
|
||||
fn record_doc(&mut self, doc: DocId) {
|
||||
self.end_offsets
|
||||
.resize(doc as usize, self.total_num_vals_seen);
|
||||
}
|
||||
|
||||
fn record_value(&mut self) {
|
||||
@@ -115,14 +140,14 @@ impl IndexBuilder for MultivaluedIndexBuilder {
|
||||
/// The `SpareIndexBuilders` is there to avoid allocating a
|
||||
/// new index builder for every single column.
|
||||
#[derive(Default)]
|
||||
pub struct PreallocatedIndexBuilders {
|
||||
required_index_builder: FullIndexBuilder,
|
||||
pub struct SpareIndexBuilders {
|
||||
required_index_builder: RequiredIndexBuilder,
|
||||
optional_index_builder: OptionalIndexBuilder,
|
||||
multivalued_index_builder: MultivaluedIndexBuilder,
|
||||
}
|
||||
|
||||
impl PreallocatedIndexBuilders {
|
||||
pub fn borrow_required_index_builder(&mut self) -> &mut FullIndexBuilder {
|
||||
impl SpareIndexBuilders {
|
||||
pub fn borrow_required_index_builder(&mut self) -> &mut RequiredIndexBuilder {
|
||||
&mut self.required_index_builder
|
||||
}
|
||||
|
||||
@@ -144,22 +169,22 @@ mod tests {
|
||||
#[test]
|
||||
fn test_optional_value_index_builder() {
|
||||
let mut opt_value_index_builder = OptionalIndexBuilder::default();
|
||||
opt_value_index_builder.record_row(0u32);
|
||||
opt_value_index_builder.record_doc(0u32);
|
||||
opt_value_index_builder.record_value();
|
||||
assert_eq!(
|
||||
&opt_value_index_builder
|
||||
.finish(1u32)
|
||||
.non_null_rows()
|
||||
.iter()
|
||||
.collect::<Vec<u32>>(),
|
||||
&[0]
|
||||
);
|
||||
opt_value_index_builder.reset();
|
||||
opt_value_index_builder.record_row(1u32);
|
||||
opt_value_index_builder.record_doc(1u32);
|
||||
opt_value_index_builder.record_value();
|
||||
assert_eq!(
|
||||
&opt_value_index_builder
|
||||
.finish(2u32)
|
||||
.non_null_rows()
|
||||
.iter()
|
||||
.collect::<Vec<u32>>(),
|
||||
&[1]
|
||||
);
|
||||
@@ -168,20 +193,20 @@ mod tests {
|
||||
#[test]
|
||||
fn test_multivalued_value_index_builder() {
|
||||
let mut multivalued_value_index_builder = MultivaluedIndexBuilder::default();
|
||||
multivalued_value_index_builder.record_row(1u32);
|
||||
multivalued_value_index_builder.record_doc(1u32);
|
||||
multivalued_value_index_builder.record_value();
|
||||
multivalued_value_index_builder.record_value();
|
||||
multivalued_value_index_builder.record_row(2u32);
|
||||
multivalued_value_index_builder.record_doc(2u32);
|
||||
multivalued_value_index_builder.record_value();
|
||||
assert_eq!(
|
||||
multivalued_value_index_builder
|
||||
.finish(4u32)
|
||||
.iter()
|
||||
.collect::<Vec<u32>>(),
|
||||
vec![0, 0, 2, 3, 3]
|
||||
vec![0, 0, 2, 3]
|
||||
);
|
||||
multivalued_value_index_builder.reset();
|
||||
multivalued_value_index_builder.record_row(2u32);
|
||||
multivalued_value_index_builder.record_doc(2u32);
|
||||
multivalued_value_index_builder.record_value();
|
||||
multivalued_value_index_builder.record_value();
|
||||
assert_eq!(
|
||||
@@ -189,7 +214,7 @@ mod tests {
|
||||
.finish(4u32)
|
||||
.iter()
|
||||
.collect::<Vec<u32>>(),
|
||||
vec![0, 0, 0, 2, 2]
|
||||
vec![0, 0, 0, 2]
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -27,7 +27,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let score_fieldtype =
|
||||
crate::schema::NumericOptions::default().set_fast(Cardinality::SingleValue);
|
||||
let highscore_field = schema_builder.add_f64_field("highscore", score_fieldtype.clone());
|
||||
let price_field = schema_builder.add_f64_field("price", score_fieldtype);
|
||||
let price_field = schema_builder.add_f64_field("price", score_fieldtype.clone());
|
||||
|
||||
let schema = schema_builder.build();
|
||||
|
||||
@@ -112,7 +112,7 @@ fn main() -> tantivy::Result<()> {
|
||||
],
|
||||
..Default::default()
|
||||
}),
|
||||
sub_aggregation: sub_agg_req_1,
|
||||
sub_aggregation: sub_agg_req_1.clone(),
|
||||
}),
|
||||
)]
|
||||
.into_iter()
|
||||
@@ -123,7 +123,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();
|
||||
|
||||
let res: Value = serde_json::to_value(agg_res)?;
|
||||
let res: Value = serde_json::to_value(&agg_res)?;
|
||||
println!("{}", serde_json::to_string_pretty(&res)?);
|
||||
|
||||
Ok(())
|
||||
|
||||
@@ -14,7 +14,7 @@ use fastfield_codecs::Column;
|
||||
// Importing tantivy...
|
||||
use tantivy::collector::{Collector, SegmentCollector};
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Schema, FAST, INDEXED, TEXT};
|
||||
use tantivy::schema::{Field, Schema, FAST, INDEXED, TEXT};
|
||||
use tantivy::{doc, Index, Score, SegmentReader};
|
||||
|
||||
#[derive(Default)]
|
||||
@@ -52,11 +52,11 @@ impl Stats {
|
||||
}
|
||||
|
||||
struct StatsCollector {
|
||||
field: String,
|
||||
field: Field,
|
||||
}
|
||||
|
||||
impl StatsCollector {
|
||||
fn with_field(field: String) -> StatsCollector {
|
||||
fn with_field(field: Field) -> StatsCollector {
|
||||
StatsCollector { field }
|
||||
}
|
||||
}
|
||||
@@ -73,7 +73,7 @@ impl Collector for StatsCollector {
|
||||
_segment_local_id: u32,
|
||||
segment_reader: &SegmentReader,
|
||||
) -> tantivy::Result<StatsSegmentCollector> {
|
||||
let fast_field_reader = segment_reader.fast_fields().u64(&self.field)?;
|
||||
let fast_field_reader = segment_reader.fast_fields().u64(self.field)?;
|
||||
Ok(StatsSegmentCollector {
|
||||
fast_field_reader,
|
||||
stats: Stats::default(),
|
||||
@@ -171,9 +171,7 @@ fn main() -> tantivy::Result<()> {
|
||||
|
||||
// here we want to get a hit on the 'ken' in Frankenstein
|
||||
let query = query_parser.parse_query("broom")?;
|
||||
if let Some(stats) =
|
||||
searcher.search(&query, &StatsCollector::with_field("price".to_string()))?
|
||||
{
|
||||
if let Some(stats) = searcher.search(&query, &StatsCollector::with_field(price))? {
|
||||
println!("count: {}", stats.count());
|
||||
println!("mean: {}", stats.mean());
|
||||
println!("standard deviation: {}", stats.standard_deviation());
|
||||
|
||||
@@ -27,7 +27,7 @@ fn main() -> Result<()> {
|
||||
reader.reload()?;
|
||||
let searcher = reader.searcher();
|
||||
// The end is excluded i.e. here we are searching up to 1969
|
||||
let docs_in_the_sixties = RangeQuery::new_u64("year".to_string(), 1960..1970);
|
||||
let docs_in_the_sixties = RangeQuery::new_u64(year_field, 1960..1970);
|
||||
// Uses a Count collector to sum the total number of docs in the range
|
||||
let num_60s_books = searcher.search(&docs_in_the_sixties, &Count)?;
|
||||
assert_eq!(num_60s_books, 10);
|
||||
|
||||
@@ -1,73 +0,0 @@
|
||||
// # IP Address example
|
||||
//
|
||||
// This example shows how the ip field can be used
|
||||
// with IpV6 and IpV4.
|
||||
|
||||
use tantivy::collector::{Count, TopDocs};
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Schema, FAST, INDEXED, STORED, STRING};
|
||||
use tantivy::Index;
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// # Defining the schema
|
||||
let mut schema_builder = Schema::builder();
|
||||
let event_type = schema_builder.add_text_field("event_type", STRING | STORED);
|
||||
let ip = schema_builder.add_ip_addr_field("ip", STORED | INDEXED | FAST);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
// # Indexing documents
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"ip": "192.168.0.33",
|
||||
"event_type": "login"
|
||||
}"#,
|
||||
)?;
|
||||
index_writer.add_document(doc)?;
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"ip": "192.168.0.80",
|
||||
"event_type": "checkout"
|
||||
}"#,
|
||||
)?;
|
||||
index_writer.add_document(doc)?;
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"ip": "2001:0db8:85a3:0000:0000:8a2e:0370:7334",
|
||||
"event_type": "checkout"
|
||||
}"#,
|
||||
)?;
|
||||
|
||||
index_writer.add_document(doc)?;
|
||||
index_writer.commit()?;
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
|
||||
let query_parser = QueryParser::for_index(&index, vec![event_type, ip]);
|
||||
{
|
||||
let query = query_parser.parse_query("ip:[192.168.0.0 TO 192.168.0.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5))?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
{
|
||||
let query = query_parser.parse_query("ip:[192.168.1.0 TO 192.168.1.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(count_docs.len(), 0);
|
||||
}
|
||||
{
|
||||
let query = query_parser.parse_query("ip:192.168.0.80")?;
|
||||
let count_docs = searcher.search(&*query, &Count)?;
|
||||
assert_eq!(count_docs, 1);
|
||||
}
|
||||
{
|
||||
// IpV6 needs to be escaped because it contains `:`
|
||||
let query = query_parser.parse_query("ip:\"2001:0db8:85a3:0000:0000:8a2e:0370:7334\"")?;
|
||||
let count_docs = searcher.search(&*query, &Count)?;
|
||||
assert_eq!(count_docs, 1);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -4,7 +4,7 @@ use std::sync::{Arc, RwLock, Weak};
|
||||
|
||||
use tantivy::collector::TopDocs;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Schema, FAST, TEXT};
|
||||
use tantivy::schema::{Field, Schema, FAST, TEXT};
|
||||
use tantivy::{
|
||||
doc, DocAddress, DocId, Index, IndexReader, Opstamp, Searcher, SearcherGeneration, SegmentId,
|
||||
SegmentReader, Warmer,
|
||||
@@ -25,13 +25,13 @@ pub trait PriceFetcher: Send + Sync + 'static {
|
||||
}
|
||||
|
||||
struct DynamicPriceColumn {
|
||||
field: String,
|
||||
field: Field,
|
||||
price_cache: RwLock<HashMap<(SegmentId, Option<Opstamp>), Arc<Vec<Price>>>>,
|
||||
price_fetcher: Box<dyn PriceFetcher>,
|
||||
}
|
||||
|
||||
impl DynamicPriceColumn {
|
||||
pub fn with_product_id_field<T: PriceFetcher>(field: String, price_fetcher: T) -> Self {
|
||||
pub fn with_product_id_field<T: PriceFetcher>(field: Field, price_fetcher: T) -> Self {
|
||||
DynamicPriceColumn {
|
||||
field,
|
||||
price_cache: Default::default(),
|
||||
@@ -48,7 +48,7 @@ impl Warmer for DynamicPriceColumn {
|
||||
fn warm(&self, searcher: &Searcher) -> tantivy::Result<()> {
|
||||
for segment in searcher.segment_readers() {
|
||||
let key = (segment.segment_id(), segment.delete_opstamp());
|
||||
let product_id_reader = segment.fast_fields().u64(&self.field)?;
|
||||
let product_id_reader = segment.fast_fields().u64(self.field)?;
|
||||
let product_ids: Vec<ProductId> = segment
|
||||
.doc_ids_alive()
|
||||
.map(|doc| product_id_reader.get_val(doc))
|
||||
@@ -123,7 +123,7 @@ fn main() -> tantivy::Result<()> {
|
||||
|
||||
let price_table = ExternalPriceTable::default();
|
||||
let price_dynamic_column = Arc::new(DynamicPriceColumn::with_product_id_field(
|
||||
"product_id".to_string(),
|
||||
product_id,
|
||||
price_table.clone(),
|
||||
));
|
||||
price_table.update_price(OLIVE_OIL, 12);
|
||||
|
||||
@@ -35,6 +35,10 @@ pub trait Column<T: PartialOrd + Debug = u64>: Send + Sync {
|
||||
/// Get the positions of values which are in the provided value range.
|
||||
///
|
||||
/// Note that position == docid for single value fast fields
|
||||
///
|
||||
/// # Truncation
|
||||
/// `DateTime` has a truncation setting. This function should get passed the truncated values
|
||||
/// to avoid unexpected results.
|
||||
#[inline]
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
@@ -137,7 +141,8 @@ impl<'a, T: Copy + PartialOrd + Send + Sync + Debug> Column<T> for VecColumn<'a,
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Default, V> From<&'a V> for VecColumn<'a, T>
|
||||
where V: AsRef<[T]> + ?Sized
|
||||
where
|
||||
V: AsRef<[T]> + ?Sized,
|
||||
{
|
||||
fn from(values: &'a V) -> Self {
|
||||
let values = values.as_ref();
|
||||
@@ -248,7 +253,8 @@ where
|
||||
pub struct IterColumn<T>(T);
|
||||
|
||||
impl<T> From<T> for IterColumn<T>
|
||||
where T: Iterator + Clone + ExactSizeIterator
|
||||
where
|
||||
T: Iterator + Clone + ExactSizeIterator,
|
||||
{
|
||||
fn from(iter: T) -> Self {
|
||||
IterColumn(iter)
|
||||
|
||||
@@ -402,8 +402,8 @@ mod tests {
|
||||
let mut buffer = Vec::new();
|
||||
let col = VecColumn::from(&[false, true][..]);
|
||||
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
// 5 bytes of header, 1 byte of value
|
||||
assert_eq!(buffer.len(), 3 + 5 + 1 + 4 + 2);
|
||||
// 5 bytes of header, 1 byte of value, 7 bytes of padding.
|
||||
assert_eq!(buffer.len(), 3 + 5 + 8 + 4 + 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -411,8 +411,8 @@ mod tests {
|
||||
let mut buffer = Vec::new();
|
||||
let col = VecColumn::from(&[true][..]);
|
||||
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
// 5 bytes of header, 0 bytes of value
|
||||
assert_eq!(buffer.len(), 3 + 5 + 4 + 2);
|
||||
// 5 bytes of header, 0 bytes of value, 7 bytes of padding.
|
||||
assert_eq!(buffer.len(), 3 + 5 + 7 + 4 + 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -422,6 +422,6 @@ mod tests {
|
||||
let col = VecColumn::from(&vals[..]);
|
||||
serialize(col, &mut buffer, &[FastFieldCodecType::Bitpacked]).unwrap();
|
||||
// Values are stored over 3 bits.
|
||||
assert_eq!(buffer.len(), 3 + 7 + (3 * 80 / 8) + 4 + 2);
|
||||
assert_eq!(buffer.len(), 3 + 7 + (3 * 80 / 8) + 7 + 4 + 2);
|
||||
}
|
||||
}
|
||||
|
||||
2
run-tests.sh
Executable file
2
run-tests.sh
Executable file
@@ -0,0 +1,2 @@
|
||||
#!/bin/bash
|
||||
cargo test
|
||||
@@ -51,10 +51,7 @@ use serde::{Deserialize, Serialize};
|
||||
|
||||
pub use super::bucket::RangeAggregation;
|
||||
use super::bucket::{HistogramAggregation, TermsAggregation};
|
||||
use super::metric::{
|
||||
AverageAggregation, CountAggregation, MaxAggregation, MinAggregation, StatsAggregation,
|
||||
SumAggregation,
|
||||
};
|
||||
use super::metric::{AverageAggregation, StatsAggregation};
|
||||
use super::VecWithNames;
|
||||
|
||||
/// The top-level aggregation request structure, which contains [`Aggregation`] and their user
|
||||
@@ -240,38 +237,20 @@ impl BucketAggregationType {
|
||||
/// called multi-value numeric metrics aggregation.
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub enum MetricAggregation {
|
||||
/// Computes the average of the extracted values.
|
||||
/// Calculates the average.
|
||||
#[serde(rename = "avg")]
|
||||
Average(AverageAggregation),
|
||||
/// Counts the number of extracted values.
|
||||
#[serde(rename = "value_count")]
|
||||
Count(CountAggregation),
|
||||
/// Finds the maximum value.
|
||||
#[serde(rename = "max")]
|
||||
Max(MaxAggregation),
|
||||
/// Finds the minimum value.
|
||||
#[serde(rename = "min")]
|
||||
Min(MinAggregation),
|
||||
/// Computes a collection of statistics (`min`, `max`, `sum`, `count`, and `avg`) over the
|
||||
/// extracted values.
|
||||
/// Calculates stats sum, average, min, max, standard_deviation on a field.
|
||||
#[serde(rename = "stats")]
|
||||
Stats(StatsAggregation),
|
||||
/// Computes the sum of the extracted values.
|
||||
#[serde(rename = "sum")]
|
||||
Sum(SumAggregation),
|
||||
}
|
||||
|
||||
impl MetricAggregation {
|
||||
fn get_fast_field_names(&self, fast_field_names: &mut HashSet<String>) {
|
||||
let fast_field_name = match self {
|
||||
MetricAggregation::Average(avg) => avg.field_name(),
|
||||
MetricAggregation::Count(count) => count.field_name(),
|
||||
MetricAggregation::Max(max) => max.field_name(),
|
||||
MetricAggregation::Min(min) => min.field_name(),
|
||||
MetricAggregation::Stats(stats) => stats.field_name(),
|
||||
MetricAggregation::Sum(sum) => sum.field_name(),
|
||||
match self {
|
||||
MetricAggregation::Average(avg) => fast_field_names.insert(avg.field.to_string()),
|
||||
MetricAggregation::Stats(stats) => fast_field_names.insert(stats.field.to_string()),
|
||||
};
|
||||
fast_field_names.insert(fast_field_name.to_string());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -279,38 +258,6 @@ impl MetricAggregation {
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_metric_aggregations_deser() {
|
||||
let agg_req_json = r#"{
|
||||
"price_avg": { "avg": { "field": "price" } },
|
||||
"price_count": { "value_count": { "field": "price" } },
|
||||
"price_max": { "max": { "field": "price" } },
|
||||
"price_min": { "min": { "field": "price" } },
|
||||
"price_stats": { "stats": { "field": "price" } },
|
||||
"price_sum": { "sum": { "field": "price" } }
|
||||
}"#;
|
||||
let agg_req: Aggregations = serde_json::from_str(agg_req_json).unwrap();
|
||||
|
||||
assert!(
|
||||
matches!(agg_req.get("price_avg").unwrap(), Aggregation::Metric(MetricAggregation::Average(avg)) if avg.field == "price")
|
||||
);
|
||||
assert!(
|
||||
matches!(agg_req.get("price_count").unwrap(), Aggregation::Metric(MetricAggregation::Count(count)) if count.field == "price")
|
||||
);
|
||||
assert!(
|
||||
matches!(agg_req.get("price_max").unwrap(), Aggregation::Metric(MetricAggregation::Max(max)) if max.field == "price")
|
||||
);
|
||||
assert!(
|
||||
matches!(agg_req.get("price_min").unwrap(), Aggregation::Metric(MetricAggregation::Min(min)) if min.field == "price")
|
||||
);
|
||||
assert!(
|
||||
matches!(agg_req.get("price_stats").unwrap(), Aggregation::Metric(MetricAggregation::Stats(stats)) if stats.field == "price")
|
||||
);
|
||||
assert!(
|
||||
matches!(agg_req.get("price_sum").unwrap(), Aggregation::Metric(MetricAggregation::Sum(sum)) if sum.field == "price")
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn serialize_to_json_test() {
|
||||
let agg_req1: Aggregations = vec![(
|
||||
|
||||
@@ -8,10 +8,7 @@ use fastfield_codecs::Column;
|
||||
|
||||
use super::agg_req::{Aggregation, Aggregations, BucketAggregationType, MetricAggregation};
|
||||
use super::bucket::{HistogramAggregation, RangeAggregation, TermsAggregation};
|
||||
use super::metric::{
|
||||
AverageAggregation, CountAggregation, MaxAggregation, MinAggregation, StatsAggregation,
|
||||
SumAggregation,
|
||||
};
|
||||
use super::metric::{AverageAggregation, StatsAggregation};
|
||||
use super::segment_agg_result::BucketCount;
|
||||
use super::VecWithNames;
|
||||
use crate::fastfield::{type_and_cardinality, MultiValuedFastFieldReader};
|
||||
@@ -94,7 +91,10 @@ impl BucketAggregationWithAccessor {
|
||||
BucketAggregationType::Terms(TermsAggregation {
|
||||
field: field_name, ..
|
||||
}) => {
|
||||
let field = reader.schema().get_field(field_name)?;
|
||||
let field = reader
|
||||
.schema()
|
||||
.get_field(field_name)
|
||||
.ok_or_else(|| TantivyError::FieldNotFound(field_name.to_string()))?;
|
||||
inverted_index = Some(reader.inverted_index(field)?);
|
||||
get_ff_reader_and_validate(reader, field_name, Cardinality::MultiValues)?
|
||||
}
|
||||
@@ -134,11 +134,7 @@ impl MetricAggregationWithAccessor {
|
||||
) -> crate::Result<MetricAggregationWithAccessor> {
|
||||
match &metric {
|
||||
MetricAggregation::Average(AverageAggregation { field: field_name })
|
||||
| MetricAggregation::Count(CountAggregation { field: field_name })
|
||||
| MetricAggregation::Max(MaxAggregation { field: field_name })
|
||||
| MetricAggregation::Min(MinAggregation { field: field_name })
|
||||
| MetricAggregation::Stats(StatsAggregation { field: field_name })
|
||||
| MetricAggregation::Sum(SumAggregation { field: field_name }) => {
|
||||
| MetricAggregation::Stats(StatsAggregation { field: field_name }) => {
|
||||
let (accessor, field_type) =
|
||||
get_ff_reader_and_validate(reader, field_name, Cardinality::SingleValue)?;
|
||||
|
||||
@@ -192,7 +188,10 @@ fn get_ff_reader_and_validate(
|
||||
field_name: &str,
|
||||
cardinality: Cardinality,
|
||||
) -> crate::Result<(FastFieldAccessor, Type)> {
|
||||
let field = reader.schema().get_field(field_name)?;
|
||||
let field = reader
|
||||
.schema()
|
||||
.get_field(field_name)
|
||||
.ok_or_else(|| TantivyError::FieldNotFound(field_name.to_string()))?;
|
||||
let field_type = reader.schema().get_field_entry(field).field_type();
|
||||
|
||||
if let Some((_ff_type, field_cardinality)) = type_and_cardinality(field_type) {
|
||||
@@ -212,10 +211,10 @@ fn get_ff_reader_and_validate(
|
||||
let ff_fields = reader.fast_fields();
|
||||
match cardinality {
|
||||
Cardinality::SingleValue => ff_fields
|
||||
.u64_lenient(field_name)
|
||||
.u64_lenient(field)
|
||||
.map(|field| (FastFieldAccessor::Single(field), field_type.value_type())),
|
||||
Cardinality::MultiValues => ff_fields
|
||||
.u64s_lenient(field_name)
|
||||
.u64s_lenient(field)
|
||||
.map(|field| (FastFieldAccessor::Multi(field), field_type.value_type())),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -30,7 +30,7 @@ impl AggregationResults {
|
||||
} else {
|
||||
// Validation is be done during request parsing, so we can't reach this state.
|
||||
Err(TantivyError::InternalError(format!(
|
||||
"Can't find aggregation {:?} in sub-aggregations",
|
||||
"Can't find aggregation {:?} in sub_aggregations",
|
||||
name
|
||||
)))
|
||||
}
|
||||
@@ -70,51 +70,27 @@ impl AggregationResult {
|
||||
pub enum MetricResult {
|
||||
/// Average metric result.
|
||||
Average(SingleMetricResult),
|
||||
/// Count metric result.
|
||||
Count(SingleMetricResult),
|
||||
/// Max metric result.
|
||||
Max(SingleMetricResult),
|
||||
/// Min metric result.
|
||||
Min(SingleMetricResult),
|
||||
/// Stats metric result.
|
||||
Stats(Stats),
|
||||
/// Sum metric result.
|
||||
Sum(SingleMetricResult),
|
||||
}
|
||||
|
||||
impl MetricResult {
|
||||
fn get_value(&self, agg_property: &str) -> crate::Result<Option<f64>> {
|
||||
match self {
|
||||
MetricResult::Average(avg) => Ok(avg.value),
|
||||
MetricResult::Count(count) => Ok(count.value),
|
||||
MetricResult::Max(max) => Ok(max.value),
|
||||
MetricResult::Min(min) => Ok(min.value),
|
||||
MetricResult::Stats(stats) => stats.get_value(agg_property),
|
||||
MetricResult::Sum(sum) => Ok(sum.value),
|
||||
}
|
||||
}
|
||||
}
|
||||
impl From<IntermediateMetricResult> for MetricResult {
|
||||
fn from(metric: IntermediateMetricResult) -> Self {
|
||||
match metric {
|
||||
IntermediateMetricResult::Average(intermediate_avg) => {
|
||||
MetricResult::Average(intermediate_avg.finalize().into())
|
||||
}
|
||||
IntermediateMetricResult::Count(intermediate_count) => {
|
||||
MetricResult::Count(intermediate_count.finalize().into())
|
||||
}
|
||||
IntermediateMetricResult::Max(intermediate_max) => {
|
||||
MetricResult::Max(intermediate_max.finalize().into())
|
||||
}
|
||||
IntermediateMetricResult::Min(intermediate_min) => {
|
||||
MetricResult::Min(intermediate_min.finalize().into())
|
||||
IntermediateMetricResult::Average(avg_data) => {
|
||||
MetricResult::Average(avg_data.finalize().into())
|
||||
}
|
||||
IntermediateMetricResult::Stats(intermediate_stats) => {
|
||||
MetricResult::Stats(intermediate_stats.finalize())
|
||||
}
|
||||
IntermediateMetricResult::Sum(intermediate_sum) => {
|
||||
MetricResult::Sum(intermediate_sum.finalize().into())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -124,13 +100,13 @@ impl From<IntermediateMetricResult> for MetricResult {
|
||||
#[serde(untagged)]
|
||||
pub enum BucketResult {
|
||||
/// This is the range entry for a bucket, which contains a key, count, from, to, and optionally
|
||||
/// sub-aggregations.
|
||||
/// sub_aggregations.
|
||||
Range {
|
||||
/// The range buckets sorted by range.
|
||||
buckets: BucketEntries<RangeBucketEntry>,
|
||||
},
|
||||
/// This is the histogram entry for a bucket, which contains a key, count, and optionally
|
||||
/// sub-aggregations.
|
||||
/// sub_aggregations.
|
||||
Histogram {
|
||||
/// The buckets.
|
||||
///
|
||||
@@ -175,7 +151,7 @@ pub enum BucketEntries<T> {
|
||||
}
|
||||
|
||||
/// This is the default entry for a bucket, which contains a key, count, and optionally
|
||||
/// sub-aggregations.
|
||||
/// sub_aggregations.
|
||||
///
|
||||
/// # JSON Format
|
||||
/// ```json
|
||||
@@ -225,7 +201,7 @@ impl GetDocCount for BucketEntry {
|
||||
}
|
||||
|
||||
/// This is the range entry for a bucket, which contains a key, count, and optionally
|
||||
/// sub-aggregations.
|
||||
/// sub_aggregations.
|
||||
///
|
||||
/// # JSON Format
|
||||
/// ```json
|
||||
@@ -261,7 +237,7 @@ pub struct RangeBucketEntry {
|
||||
/// Number of documents in the bucket.
|
||||
pub doc_count: u64,
|
||||
#[serde(flatten)]
|
||||
/// Sub-aggregations in this bucket.
|
||||
/// sub-aggregations in this bucket.
|
||||
pub sub_aggregation: AggregationResults,
|
||||
/// The from range of the bucket. Equals `f64::MIN` when `None`.
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
|
||||
@@ -548,7 +548,9 @@ pub(crate) fn intermediate_histogram_buckets_to_final_buckets(
|
||||
};
|
||||
|
||||
// If we have a date type on the histogram buckets, we add the `key_as_string` field as rfc339
|
||||
let field = schema.get_field(&histogram_req.field)?;
|
||||
let field = schema
|
||||
.get_field(&histogram_req.field)
|
||||
.ok_or_else(|| TantivyError::FieldNotFound(histogram_req.field.to_string()))?;
|
||||
if schema.get_field_entry(field).field_type().is_date() {
|
||||
for bucket in buckets.iter_mut() {
|
||||
if let crate::aggregation::Key::F64(val) = bucket.key {
|
||||
@@ -1364,6 +1366,7 @@ mod tests {
|
||||
"min": Value::Null,
|
||||
"max": Value::Null,
|
||||
"avg": Value::Null,
|
||||
"standard_deviation": Value::Null,
|
||||
}
|
||||
})
|
||||
);
|
||||
|
||||
@@ -17,15 +17,13 @@ use super::bucket::{
|
||||
cut_off_buckets, get_agg_name_and_property, intermediate_histogram_buckets_to_final_buckets,
|
||||
GetDocCount, Order, OrderTarget, SegmentHistogramBucketEntry, TermsAggregation,
|
||||
};
|
||||
use super::metric::{
|
||||
IntermediateAverage, IntermediateCount, IntermediateMax, IntermediateMin, IntermediateStats,
|
||||
IntermediateSum,
|
||||
};
|
||||
use super::metric::{IntermediateAverage, IntermediateStats};
|
||||
use super::segment_agg_result::SegmentMetricResultCollector;
|
||||
use super::{format_date, Key, SerializedKey, VecWithNames};
|
||||
use crate::aggregation::agg_result::{AggregationResults, BucketEntries, BucketEntry};
|
||||
use crate::aggregation::bucket::TermsAggregationInternal;
|
||||
use crate::schema::Schema;
|
||||
use crate::TantivyError;
|
||||
|
||||
/// Contains the intermediate aggregation result, which is optimized to be merged with other
|
||||
/// intermediate results.
|
||||
@@ -206,43 +204,21 @@ pub enum IntermediateAggregationResult {
|
||||
/// Holds the intermediate data for metric results
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub enum IntermediateMetricResult {
|
||||
/// Intermediate average result.
|
||||
/// Average containing intermediate average data result
|
||||
Average(IntermediateAverage),
|
||||
/// Intermediate count result.
|
||||
Count(IntermediateCount),
|
||||
/// Intermediate max result.
|
||||
Max(IntermediateMax),
|
||||
/// Intermediate min result.
|
||||
Min(IntermediateMin),
|
||||
/// Intermediate stats result.
|
||||
/// AverageData variant
|
||||
Stats(IntermediateStats),
|
||||
/// Intermediate sum result.
|
||||
Sum(IntermediateSum),
|
||||
}
|
||||
|
||||
impl From<SegmentMetricResultCollector> for IntermediateMetricResult {
|
||||
fn from(tree: SegmentMetricResultCollector) -> Self {
|
||||
match tree {
|
||||
SegmentMetricResultCollector::Stats(collector) => match collector.collecting_for {
|
||||
super::metric::SegmentStatsType::Average => IntermediateMetricResult::Average(
|
||||
IntermediateAverage::from_collector(collector),
|
||||
),
|
||||
super::metric::SegmentStatsType::Count => {
|
||||
IntermediateMetricResult::Count(IntermediateCount::from_collector(collector))
|
||||
}
|
||||
super::metric::SegmentStatsType::Max => {
|
||||
IntermediateMetricResult::Max(IntermediateMax::from_collector(collector))
|
||||
}
|
||||
super::metric::SegmentStatsType::Min => {
|
||||
IntermediateMetricResult::Min(IntermediateMin::from_collector(collector))
|
||||
}
|
||||
super::metric::SegmentStatsType::Stats => {
|
||||
IntermediateMetricResult::Stats(collector.stats)
|
||||
}
|
||||
super::metric::SegmentStatsType::Sum => {
|
||||
IntermediateMetricResult::Sum(IntermediateSum::from_collector(collector))
|
||||
}
|
||||
},
|
||||
SegmentMetricResultCollector::Average(collector) => {
|
||||
IntermediateMetricResult::Average(IntermediateAverage::from_collector(collector))
|
||||
}
|
||||
SegmentMetricResultCollector::Stats(collector) => {
|
||||
IntermediateMetricResult::Stats(collector.stats)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -253,36 +229,18 @@ impl IntermediateMetricResult {
|
||||
MetricAggregation::Average(_) => {
|
||||
IntermediateMetricResult::Average(IntermediateAverage::default())
|
||||
}
|
||||
MetricAggregation::Count(_) => {
|
||||
IntermediateMetricResult::Count(IntermediateCount::default())
|
||||
}
|
||||
MetricAggregation::Max(_) => IntermediateMetricResult::Max(IntermediateMax::default()),
|
||||
MetricAggregation::Min(_) => IntermediateMetricResult::Min(IntermediateMin::default()),
|
||||
MetricAggregation::Stats(_) => {
|
||||
IntermediateMetricResult::Stats(IntermediateStats::default())
|
||||
}
|
||||
MetricAggregation::Sum(_) => IntermediateMetricResult::Sum(IntermediateSum::default()),
|
||||
}
|
||||
}
|
||||
fn merge_fruits(&mut self, other: IntermediateMetricResult) {
|
||||
match (self, other) {
|
||||
(
|
||||
IntermediateMetricResult::Average(avg_left),
|
||||
IntermediateMetricResult::Average(avg_right),
|
||||
IntermediateMetricResult::Average(avg_data_left),
|
||||
IntermediateMetricResult::Average(avg_data_right),
|
||||
) => {
|
||||
avg_left.merge_fruits(avg_right);
|
||||
}
|
||||
(
|
||||
IntermediateMetricResult::Count(count_left),
|
||||
IntermediateMetricResult::Count(count_right),
|
||||
) => {
|
||||
count_left.merge_fruits(count_right);
|
||||
}
|
||||
(IntermediateMetricResult::Max(max_left), IntermediateMetricResult::Max(max_right)) => {
|
||||
max_left.merge_fruits(max_right);
|
||||
}
|
||||
(IntermediateMetricResult::Min(min_left), IntermediateMetricResult::Min(min_right)) => {
|
||||
min_left.merge_fruits(min_right);
|
||||
avg_data_left.merge_fruits(avg_data_right);
|
||||
}
|
||||
(
|
||||
IntermediateMetricResult::Stats(stats_left),
|
||||
@@ -290,9 +248,6 @@ impl IntermediateMetricResult {
|
||||
) => {
|
||||
stats_left.merge_fruits(stats_right);
|
||||
}
|
||||
(IntermediateMetricResult::Sum(sum_left), IntermediateMetricResult::Sum(sum_right)) => {
|
||||
sum_left.merge_fruits(sum_right);
|
||||
}
|
||||
_ => {
|
||||
panic!("incompatible fruit types in tree");
|
||||
}
|
||||
@@ -657,7 +612,9 @@ impl IntermediateRangeBucketEntry {
|
||||
|
||||
// If we have a date type on the histogram buckets, we add the `key_as_string` field as
|
||||
// rfc339
|
||||
let field = schema.get_field(&range_req.field)?;
|
||||
let field = schema
|
||||
.get_field(&range_req.field)
|
||||
.ok_or_else(|| TantivyError::FieldNotFound(range_req.field.to_string()))?;
|
||||
if schema.get_field_entry(field).field_type().is_date() {
|
||||
if let Some(val) = range_bucket_entry.to {
|
||||
let key_as_string = format_date(val as i64)?;
|
||||
|
||||
@@ -1,58 +1,114 @@
|
||||
use std::fmt::Debug;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::{IntermediateStats, SegmentStatsCollector};
|
||||
use crate::aggregation::f64_from_fastfield_u64;
|
||||
use crate::schema::Type;
|
||||
use crate::DocId;
|
||||
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
/// A single-value metric aggregation that computes the average of numeric values that are
|
||||
/// extracted from the aggregated documents.
|
||||
/// Supported field types are u64, i64, and f64.
|
||||
/// See [super::SingleMetricResult] for return value.
|
||||
///
|
||||
/// # JSON Format
|
||||
/// ```json
|
||||
/// {
|
||||
/// "avg": {
|
||||
/// "field": "score"
|
||||
/// "field": "score",
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct AverageAggregation {
|
||||
/// The field name to compute the average on.
|
||||
/// The field name to compute the stats on.
|
||||
pub field: String,
|
||||
}
|
||||
|
||||
impl AverageAggregation {
|
||||
/// Creates a new [`AverageAggregation`] instance from a field name.
|
||||
/// Create new AverageAggregation from a field.
|
||||
pub fn from_field_name(field_name: String) -> Self {
|
||||
Self { field: field_name }
|
||||
AverageAggregation { field: field_name }
|
||||
}
|
||||
/// Returns the field name the aggregation is computed on.
|
||||
/// Return the field name.
|
||||
pub fn field_name(&self) -> &str {
|
||||
&self.field
|
||||
}
|
||||
}
|
||||
|
||||
/// Intermediate result of the average aggregation that can be combined with other intermediate
|
||||
/// results.
|
||||
#[derive(Clone, PartialEq)]
|
||||
pub(crate) struct SegmentAverageCollector {
|
||||
pub data: IntermediateAverage,
|
||||
field_type: Type,
|
||||
}
|
||||
|
||||
impl Debug for SegmentAverageCollector {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("AverageCollector")
|
||||
.field("data", &self.data)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl SegmentAverageCollector {
|
||||
pub fn from_req(field_type: Type) -> Self {
|
||||
Self {
|
||||
field_type,
|
||||
data: Default::default(),
|
||||
}
|
||||
}
|
||||
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &dyn Column<u64>) {
|
||||
let mut iter = doc.chunks_exact(4);
|
||||
for docs in iter.by_ref() {
|
||||
let val1 = field.get_val(docs[0]);
|
||||
let val2 = field.get_val(docs[1]);
|
||||
let val3 = field.get_val(docs[2]);
|
||||
let val4 = field.get_val(docs[3]);
|
||||
let val1 = f64_from_fastfield_u64(val1, &self.field_type);
|
||||
let val2 = f64_from_fastfield_u64(val2, &self.field_type);
|
||||
let val3 = f64_from_fastfield_u64(val3, &self.field_type);
|
||||
let val4 = f64_from_fastfield_u64(val4, &self.field_type);
|
||||
self.data.collect(val1);
|
||||
self.data.collect(val2);
|
||||
self.data.collect(val3);
|
||||
self.data.collect(val4);
|
||||
}
|
||||
for &doc in iter.remainder() {
|
||||
let val = field.get_val(doc);
|
||||
let val = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.data.collect(val);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Contains mergeable version of average data.
|
||||
#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct IntermediateAverage {
|
||||
stats: IntermediateStats,
|
||||
pub(crate) sum: f64,
|
||||
pub(crate) doc_count: u64,
|
||||
}
|
||||
|
||||
impl IntermediateAverage {
|
||||
/// Creates a new [`IntermediateAverage`] instance from a [`SegmentStatsCollector`].
|
||||
pub(crate) fn from_collector(collector: SegmentStatsCollector) -> Self {
|
||||
Self {
|
||||
stats: collector.stats,
|
||||
pub(crate) fn from_collector(collector: SegmentAverageCollector) -> Self {
|
||||
collector.data
|
||||
}
|
||||
|
||||
/// Merge average data into this instance.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateAverage) {
|
||||
self.sum += other.sum;
|
||||
self.doc_count += other.doc_count;
|
||||
}
|
||||
/// compute final result
|
||||
pub fn finalize(&self) -> Option<f64> {
|
||||
if self.doc_count == 0 {
|
||||
None
|
||||
} else {
|
||||
Some(self.sum / self.doc_count as f64)
|
||||
}
|
||||
}
|
||||
/// Merges the other intermediate result into self.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateAverage) {
|
||||
self.stats.merge_fruits(other.stats);
|
||||
}
|
||||
/// Computes the final average value.
|
||||
pub fn finalize(&self) -> Option<f64> {
|
||||
self.stats.finalize().avg
|
||||
#[inline]
|
||||
fn collect(&mut self, val: f64) {
|
||||
self.doc_count += 1;
|
||||
self.sum += val;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,58 +0,0 @@
|
||||
use std::fmt::Debug;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::{IntermediateStats, SegmentStatsCollector};
|
||||
|
||||
/// A single-value metric aggregation that counts the number of values that are
|
||||
/// extracted from the aggregated documents.
|
||||
/// See [super::SingleMetricResult] for return value.
|
||||
///
|
||||
/// # JSON Format
|
||||
/// ```json
|
||||
/// {
|
||||
/// "value_count": {
|
||||
/// "field": "score"
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct CountAggregation {
|
||||
/// The field name to compute the minimum on.
|
||||
pub field: String,
|
||||
}
|
||||
|
||||
impl CountAggregation {
|
||||
/// Creates a new [`CountAggregation`] instance from a field name.
|
||||
pub fn from_field_name(field_name: String) -> Self {
|
||||
Self { field: field_name }
|
||||
}
|
||||
/// Returns the field name the aggregation is computed on.
|
||||
pub fn field_name(&self) -> &str {
|
||||
&self.field
|
||||
}
|
||||
}
|
||||
|
||||
/// Intermediate result of the count aggregation that can be combined with other intermediate
|
||||
/// results.
|
||||
#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct IntermediateCount {
|
||||
stats: IntermediateStats,
|
||||
}
|
||||
|
||||
impl IntermediateCount {
|
||||
/// Creates a new [`IntermediateCount`] instance from a [`SegmentStatsCollector`].
|
||||
pub(crate) fn from_collector(collector: SegmentStatsCollector) -> Self {
|
||||
Self {
|
||||
stats: collector.stats,
|
||||
}
|
||||
}
|
||||
/// Merges the other intermediate result into self.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateCount) {
|
||||
self.stats.merge_fruits(other.stats);
|
||||
}
|
||||
/// Computes the final minimum value.
|
||||
pub fn finalize(&self) -> Option<f64> {
|
||||
Some(self.stats.finalize().count as f64)
|
||||
}
|
||||
}
|
||||
@@ -1,58 +0,0 @@
|
||||
use std::fmt::Debug;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::{IntermediateStats, SegmentStatsCollector};
|
||||
|
||||
/// A single-value metric aggregation that computes the maximum of numeric values that are
|
||||
/// extracted from the aggregated documents.
|
||||
/// See [super::SingleMetricResult] for return value.
|
||||
///
|
||||
/// # JSON Format
|
||||
/// ```json
|
||||
/// {
|
||||
/// "max": {
|
||||
/// "field": "score"
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct MaxAggregation {
|
||||
/// The field name to compute the maximum on.
|
||||
pub field: String,
|
||||
}
|
||||
|
||||
impl MaxAggregation {
|
||||
/// Creates a new [`MaxAggregation`] instance from a field name.
|
||||
pub fn from_field_name(field_name: String) -> Self {
|
||||
Self { field: field_name }
|
||||
}
|
||||
/// Returns the field name the aggregation is computed on.
|
||||
pub fn field_name(&self) -> &str {
|
||||
&self.field
|
||||
}
|
||||
}
|
||||
|
||||
/// Intermediate result of the maximum aggregation that can be combined with other intermediate
|
||||
/// results.
|
||||
#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct IntermediateMax {
|
||||
stats: IntermediateStats,
|
||||
}
|
||||
|
||||
impl IntermediateMax {
|
||||
/// Creates a new [`IntermediateMax`] instance from a [`SegmentStatsCollector`].
|
||||
pub(crate) fn from_collector(collector: SegmentStatsCollector) -> Self {
|
||||
Self {
|
||||
stats: collector.stats,
|
||||
}
|
||||
}
|
||||
/// Merges the other intermediate result into self.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateMax) {
|
||||
self.stats.merge_fruits(other.stats);
|
||||
}
|
||||
/// Computes the final maximum value.
|
||||
pub fn finalize(&self) -> Option<f64> {
|
||||
self.stats.finalize().max
|
||||
}
|
||||
}
|
||||
@@ -1,58 +0,0 @@
|
||||
use std::fmt::Debug;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::{IntermediateStats, SegmentStatsCollector};
|
||||
|
||||
/// A single-value metric aggregation that computes the minimum of numeric values that are
|
||||
/// extracted from the aggregated documents.
|
||||
/// See [super::SingleMetricResult] for return value.
|
||||
///
|
||||
/// # JSON Format
|
||||
/// ```json
|
||||
/// {
|
||||
/// "min": {
|
||||
/// "field": "score"
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct MinAggregation {
|
||||
/// The field name to compute the minimum on.
|
||||
pub field: String,
|
||||
}
|
||||
|
||||
impl MinAggregation {
|
||||
/// Creates a new [`MinAggregation`] instance from a field name.
|
||||
pub fn from_field_name(field_name: String) -> Self {
|
||||
Self { field: field_name }
|
||||
}
|
||||
/// Returns the field name the aggregation is computed on.
|
||||
pub fn field_name(&self) -> &str {
|
||||
&self.field
|
||||
}
|
||||
}
|
||||
|
||||
/// Intermediate result of the minimum aggregation that can be combined with other intermediate
|
||||
/// results.
|
||||
#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct IntermediateMin {
|
||||
stats: IntermediateStats,
|
||||
}
|
||||
|
||||
impl IntermediateMin {
|
||||
/// Creates a new [`IntermediateMin`] instance from a [`SegmentStatsCollector`].
|
||||
pub(crate) fn from_collector(collector: SegmentStatsCollector) -> Self {
|
||||
Self {
|
||||
stats: collector.stats,
|
||||
}
|
||||
}
|
||||
/// Merges the other intermediate result into self.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateMin) {
|
||||
self.stats.merge_fruits(other.stats);
|
||||
}
|
||||
/// Computes the final minimum value.
|
||||
pub fn finalize(&self) -> Option<f64> {
|
||||
self.stats.finalize().min
|
||||
}
|
||||
}
|
||||
@@ -3,18 +3,10 @@
|
||||
//! The aggregations in this family compute metrics, see [super::agg_req::MetricAggregation] for
|
||||
//! details.
|
||||
mod average;
|
||||
mod count;
|
||||
mod max;
|
||||
mod min;
|
||||
mod stats;
|
||||
mod sum;
|
||||
pub use average::*;
|
||||
pub use count::*;
|
||||
pub use max::*;
|
||||
pub use min::*;
|
||||
use serde::{Deserialize, Serialize};
|
||||
pub use stats::*;
|
||||
pub use sum::*;
|
||||
|
||||
/// Single-metric aggregations use this common result structure.
|
||||
///
|
||||
@@ -36,61 +28,3 @@ impl From<Option<f64>> for SingleMetricResult {
|
||||
Self { value }
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::aggregation::agg_req::Aggregations;
|
||||
use crate::aggregation::agg_result::AggregationResults;
|
||||
use crate::aggregation::AggregationCollector;
|
||||
use crate::query::AllQuery;
|
||||
use crate::schema::{Cardinality, NumericOptions, Schema};
|
||||
use crate::Index;
|
||||
|
||||
#[test]
|
||||
fn test_metric_aggregations() {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field_options = NumericOptions::default().set_fast(Cardinality::SingleValue);
|
||||
let field = schema_builder.add_f64_field("price", field_options);
|
||||
let index = Index::create_in_ram(schema_builder.build());
|
||||
let mut index_writer = index.writer_for_tests().unwrap();
|
||||
|
||||
for i in 0..3 {
|
||||
index_writer
|
||||
.add_document(doc!(
|
||||
field => i as f64,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
index_writer.commit().unwrap();
|
||||
|
||||
for i in 3..6 {
|
||||
index_writer
|
||||
.add_document(doc!(
|
||||
field => i as f64,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
index_writer.commit().unwrap();
|
||||
|
||||
let aggregations_json = r#"{
|
||||
"price_avg": { "avg": { "field": "price" } },
|
||||
"price_count": { "value_count": { "field": "price" } },
|
||||
"price_max": { "max": { "field": "price" } },
|
||||
"price_min": { "min": { "field": "price" } },
|
||||
"price_stats": { "stats": { "field": "price" } },
|
||||
"price_sum": { "sum": { "field": "price" } }
|
||||
}"#;
|
||||
let aggregations: Aggregations = serde_json::from_str(aggregations_json).unwrap();
|
||||
let collector = AggregationCollector::from_aggs(aggregations, None, index.schema());
|
||||
let reader = index.reader().unwrap();
|
||||
let searcher = reader.searcher();
|
||||
let aggregations_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
|
||||
let aggregations_res_json = serde_json::to_value(aggregations_res).unwrap();
|
||||
|
||||
assert_eq!(aggregations_res_json["price_avg"]["value"], 2.5);
|
||||
assert_eq!(aggregations_res_json["price_count"]["value"], 6.0);
|
||||
assert_eq!(aggregations_res_json["price_max"]["value"], 5.0);
|
||||
assert_eq!(aggregations_res_json["price_min"]["value"], 0.0);
|
||||
assert_eq!(aggregations_res_json["price_sum"]["value"], 15.0);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -5,15 +5,16 @@ use crate::aggregation::f64_from_fastfield_u64;
|
||||
use crate::schema::Type;
|
||||
use crate::{DocId, TantivyError};
|
||||
|
||||
/// A multi-value metric aggregation that computes a collection of statistics on numeric values that
|
||||
/// are extracted from the aggregated documents.
|
||||
/// A multi-value metric aggregation that computes stats of numeric values that are
|
||||
/// extracted from the aggregated documents.
|
||||
/// Supported field types are `u64`, `i64`, and `f64`.
|
||||
/// See [`Stats`] for returned statistics.
|
||||
///
|
||||
/// # JSON Format
|
||||
/// ```json
|
||||
/// {
|
||||
/// "stats": {
|
||||
/// "field": "score"
|
||||
/// "field": "score",
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
@@ -25,11 +26,11 @@ pub struct StatsAggregation {
|
||||
}
|
||||
|
||||
impl StatsAggregation {
|
||||
/// Creates a new [`StatsAggregation`] instance from a field name.
|
||||
/// Create new StatsAggregation from a field.
|
||||
pub fn from_field_name(field_name: String) -> Self {
|
||||
StatsAggregation { field: field_name }
|
||||
}
|
||||
/// Returns the field name the aggregation is computed on.
|
||||
/// Return the field name.
|
||||
pub fn field_name(&self) -> &str {
|
||||
&self.field
|
||||
}
|
||||
@@ -39,14 +40,16 @@ impl StatsAggregation {
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct Stats {
|
||||
/// The number of documents.
|
||||
pub count: u64,
|
||||
pub count: usize,
|
||||
/// The sum of the fast field values.
|
||||
pub sum: f64,
|
||||
/// The standard deviation of the fast field values. `None` for count == 0.
|
||||
pub standard_deviation: Option<f64>,
|
||||
/// The min value of the fast field values.
|
||||
pub min: Option<f64>,
|
||||
/// The max value of the fast field values.
|
||||
pub max: Option<f64>,
|
||||
/// The average of the fast field values. `None` if count equals zero.
|
||||
/// The average of the values. `None` for count == 0.
|
||||
pub avg: Option<f64>,
|
||||
}
|
||||
|
||||
@@ -55,36 +58,33 @@ impl Stats {
|
||||
match agg_property {
|
||||
"count" => Ok(Some(self.count as f64)),
|
||||
"sum" => Ok(Some(self.sum)),
|
||||
"standard_deviation" => Ok(self.standard_deviation),
|
||||
"min" => Ok(self.min),
|
||||
"max" => Ok(self.max),
|
||||
"avg" => Ok(self.avg),
|
||||
_ => Err(TantivyError::InvalidArgument(format!(
|
||||
"Unknown property {} on stats metric aggregation",
|
||||
"unknown property {} on stats metric aggregation",
|
||||
agg_property
|
||||
))),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Intermediate result of the stats aggregation that can be combined with other intermediate
|
||||
/// results.
|
||||
/// `IntermediateStats` contains the mergeable version for stats.
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct IntermediateStats {
|
||||
/// The number of extracted values.
|
||||
count: u64,
|
||||
/// The sum of the extracted values.
|
||||
count: usize,
|
||||
sum: f64,
|
||||
/// The min value.
|
||||
squared_sum: f64,
|
||||
min: f64,
|
||||
/// The max value.
|
||||
max: f64,
|
||||
}
|
||||
|
||||
impl Default for IntermediateStats {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
count: 0,
|
||||
sum: 0.0,
|
||||
squared_sum: 0.0,
|
||||
min: f64::MAX,
|
||||
max: f64::MIN,
|
||||
}
|
||||
@@ -92,15 +92,33 @@ impl Default for IntermediateStats {
|
||||
}
|
||||
|
||||
impl IntermediateStats {
|
||||
/// Merges the other stats intermediate result into self.
|
||||
pub(crate) fn avg(&self) -> Option<f64> {
|
||||
if self.count == 0 {
|
||||
None
|
||||
} else {
|
||||
Some(self.sum / (self.count as f64))
|
||||
}
|
||||
}
|
||||
|
||||
fn square_mean(&self) -> f64 {
|
||||
self.squared_sum / (self.count as f64)
|
||||
}
|
||||
|
||||
pub(crate) fn standard_deviation(&self) -> Option<f64> {
|
||||
self.avg()
|
||||
.map(|average| (self.square_mean() - average * average).sqrt())
|
||||
}
|
||||
|
||||
/// Merge data from other stats into this instance.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateStats) {
|
||||
self.count += other.count;
|
||||
self.sum += other.sum;
|
||||
self.squared_sum += other.squared_sum;
|
||||
self.min = self.min.min(other.min);
|
||||
self.max = self.max.max(other.max);
|
||||
}
|
||||
|
||||
/// Computes the final stats value.
|
||||
/// compute final resultimprove_docs
|
||||
pub fn finalize(&self) -> Stats {
|
||||
let min = if self.count == 0 {
|
||||
None
|
||||
@@ -112,17 +130,13 @@ impl IntermediateStats {
|
||||
} else {
|
||||
Some(self.max)
|
||||
};
|
||||
let avg = if self.count == 0 {
|
||||
None
|
||||
} else {
|
||||
Some(self.sum / (self.count as f64))
|
||||
};
|
||||
Stats {
|
||||
count: self.count,
|
||||
sum: self.sum,
|
||||
standard_deviation: self.standard_deviation(),
|
||||
min,
|
||||
max,
|
||||
avg,
|
||||
avg: self.avg(),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -130,33 +144,22 @@ impl IntermediateStats {
|
||||
fn collect(&mut self, value: f64) {
|
||||
self.count += 1;
|
||||
self.sum += value;
|
||||
self.squared_sum += value * value;
|
||||
self.min = self.min.min(value);
|
||||
self.max = self.max.max(value);
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub(crate) enum SegmentStatsType {
|
||||
Average,
|
||||
Count,
|
||||
Max,
|
||||
Min,
|
||||
Stats,
|
||||
Sum,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub(crate) struct SegmentStatsCollector {
|
||||
field_type: Type,
|
||||
pub(crate) collecting_for: SegmentStatsType,
|
||||
pub(crate) stats: IntermediateStats,
|
||||
field_type: Type,
|
||||
}
|
||||
|
||||
impl SegmentStatsCollector {
|
||||
pub fn from_req(field_type: Type, collecting_for: SegmentStatsType) -> Self {
|
||||
pub fn from_req(field_type: Type) -> Self {
|
||||
Self {
|
||||
field_type,
|
||||
collecting_for,
|
||||
stats: IntermediateStats::default(),
|
||||
}
|
||||
}
|
||||
@@ -233,6 +236,7 @@ mod tests {
|
||||
"count": 0,
|
||||
"max": Value::Null,
|
||||
"min": Value::Null,
|
||||
"standard_deviation": Value::Null,
|
||||
"sum": 0.0
|
||||
})
|
||||
);
|
||||
@@ -309,6 +313,7 @@ mod tests {
|
||||
"count": 7,
|
||||
"max": 44.0,
|
||||
"min": 1.0,
|
||||
"standard_deviation": 13.65313748796613,
|
||||
"sum": 85.0
|
||||
})
|
||||
);
|
||||
@@ -320,6 +325,7 @@ mod tests {
|
||||
"count": 7,
|
||||
"max": 44.0,
|
||||
"min": 1.0,
|
||||
"standard_deviation": 13.65313748796613,
|
||||
"sum": 85.0
|
||||
})
|
||||
);
|
||||
@@ -331,6 +337,7 @@ mod tests {
|
||||
"count": 7,
|
||||
"max": 44.5,
|
||||
"min": 1.0,
|
||||
"standard_deviation": 13.819905785437443,
|
||||
"sum": 85.5
|
||||
})
|
||||
);
|
||||
@@ -342,6 +349,7 @@ mod tests {
|
||||
"count": 3,
|
||||
"max": 14.0,
|
||||
"min": 7.0,
|
||||
"standard_deviation": 2.867441755680877,
|
||||
"sum": 32.0
|
||||
})
|
||||
);
|
||||
@@ -353,6 +361,7 @@ mod tests {
|
||||
"count": 0,
|
||||
"max": serde_json::Value::Null,
|
||||
"min": serde_json::Value::Null,
|
||||
"standard_deviation": serde_json::Value::Null,
|
||||
"sum": 0.0,
|
||||
})
|
||||
);
|
||||
|
||||
@@ -1,58 +0,0 @@
|
||||
use std::fmt::Debug;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::{IntermediateStats, SegmentStatsCollector};
|
||||
|
||||
/// A single-value metric aggregation that sums up numeric values that are
|
||||
/// extracted from the aggregated documents.
|
||||
/// See [super::SingleMetricResult] for return value.
|
||||
///
|
||||
/// # JSON Format
|
||||
/// ```json
|
||||
/// {
|
||||
/// "sum": {
|
||||
/// "field": "score"
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct SumAggregation {
|
||||
/// The field name to compute the minimum on.
|
||||
pub field: String,
|
||||
}
|
||||
|
||||
impl SumAggregation {
|
||||
/// Creates a new [`SumAggregation`] instance from a field name.
|
||||
pub fn from_field_name(field_name: String) -> Self {
|
||||
Self { field: field_name }
|
||||
}
|
||||
/// Returns the field name the aggregation is computed on.
|
||||
pub fn field_name(&self) -> &str {
|
||||
&self.field
|
||||
}
|
||||
}
|
||||
|
||||
/// Intermediate result of the minimum aggregation that can be combined with other intermediate
|
||||
/// results.
|
||||
#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct IntermediateSum {
|
||||
stats: IntermediateStats,
|
||||
}
|
||||
|
||||
impl IntermediateSum {
|
||||
/// Creates a new [`IntermediateSum`] instance from a [`SegmentStatsCollector`].
|
||||
pub(crate) fn from_collector(collector: SegmentStatsCollector) -> Self {
|
||||
Self {
|
||||
stats: collector.stats,
|
||||
}
|
||||
}
|
||||
/// Merges the other intermediate result into self.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateSum) {
|
||||
self.stats.merge_fruits(other.stats);
|
||||
}
|
||||
/// Computes the final minimum value.
|
||||
pub fn finalize(&self) -> Option<f64> {
|
||||
Some(self.stats.finalize().sum)
|
||||
}
|
||||
}
|
||||
@@ -1,5 +1,6 @@
|
||||
//! # Aggregations
|
||||
//!
|
||||
//!
|
||||
//! An aggregation summarizes your data as statistics on buckets or metrics.
|
||||
//!
|
||||
//! Aggregations can provide answer to questions like:
|
||||
@@ -40,10 +41,6 @@
|
||||
//! - [Metric](metric)
|
||||
//! - [Average](metric::AverageAggregation)
|
||||
//! - [Stats](metric::StatsAggregation)
|
||||
//! - [Min](metric::MinAggregation)
|
||||
//! - [Max](metric::MaxAggregation)
|
||||
//! - [Sum](metric::SumAggregation)
|
||||
//! - [Count](metric::CountAggregation)
|
||||
//!
|
||||
//! # Example
|
||||
//! Compute the average metric, by building [`agg_req::Aggregations`], which is built from an
|
||||
@@ -78,7 +75,7 @@
|
||||
//! }
|
||||
//! ```
|
||||
//! # Example JSON
|
||||
//! Requests are compatible with the elasticsearch JSON request format.
|
||||
//! Requests are compatible with the elasticsearch json request format.
|
||||
//!
|
||||
//! ```
|
||||
//! use tantivy::aggregation::agg_req::Aggregations;
|
||||
@@ -219,8 +216,8 @@ impl<T: Clone> VecWithNames<T> {
|
||||
fn from_entries(mut entries: Vec<(String, T)>) -> Self {
|
||||
// Sort to ensure order of elements match across multiple instances
|
||||
entries.sort_by(|left, right| left.0.cmp(&right.0));
|
||||
let mut data = Vec::with_capacity(entries.len());
|
||||
let mut data_names = Vec::with_capacity(entries.len());
|
||||
let mut data = vec![];
|
||||
let mut data_names = vec![];
|
||||
for entry in entries {
|
||||
data_names.push(entry.0);
|
||||
data.push(entry.1);
|
||||
|
||||
@@ -15,8 +15,7 @@ use super::bucket::{SegmentHistogramCollector, SegmentRangeCollector, SegmentTer
|
||||
use super::collector::MAX_BUCKET_COUNT;
|
||||
use super::intermediate_agg_result::{IntermediateAggregationResults, IntermediateBucketResult};
|
||||
use super::metric::{
|
||||
AverageAggregation, CountAggregation, MaxAggregation, MinAggregation, SegmentStatsCollector,
|
||||
SegmentStatsType, StatsAggregation, SumAggregation,
|
||||
AverageAggregation, SegmentAverageCollector, SegmentStatsCollector, StatsAggregation,
|
||||
};
|
||||
use super::VecWithNames;
|
||||
use crate::aggregation::agg_req::BucketAggregationType;
|
||||
@@ -164,46 +163,30 @@ impl SegmentAggregationResultsCollector {
|
||||
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub(crate) enum SegmentMetricResultCollector {
|
||||
Average(SegmentAverageCollector),
|
||||
Stats(SegmentStatsCollector),
|
||||
}
|
||||
|
||||
impl SegmentMetricResultCollector {
|
||||
pub fn from_req_and_validate(req: &MetricAggregationWithAccessor) -> crate::Result<Self> {
|
||||
match &req.metric {
|
||||
MetricAggregation::Average(AverageAggregation { .. }) => {
|
||||
Ok(SegmentMetricResultCollector::Stats(
|
||||
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Average),
|
||||
MetricAggregation::Average(AverageAggregation { field: _ }) => {
|
||||
Ok(SegmentMetricResultCollector::Average(
|
||||
SegmentAverageCollector::from_req(req.field_type),
|
||||
))
|
||||
}
|
||||
MetricAggregation::Count(CountAggregation { .. }) => {
|
||||
MetricAggregation::Stats(StatsAggregation { field: _ }) => {
|
||||
Ok(SegmentMetricResultCollector::Stats(
|
||||
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Count),
|
||||
))
|
||||
}
|
||||
MetricAggregation::Max(MaxAggregation { .. }) => {
|
||||
Ok(SegmentMetricResultCollector::Stats(
|
||||
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Max),
|
||||
))
|
||||
}
|
||||
MetricAggregation::Min(MinAggregation { .. }) => {
|
||||
Ok(SegmentMetricResultCollector::Stats(
|
||||
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Min),
|
||||
))
|
||||
}
|
||||
MetricAggregation::Stats(StatsAggregation { .. }) => {
|
||||
Ok(SegmentMetricResultCollector::Stats(
|
||||
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Stats),
|
||||
))
|
||||
}
|
||||
MetricAggregation::Sum(SumAggregation { .. }) => {
|
||||
Ok(SegmentMetricResultCollector::Stats(
|
||||
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Sum),
|
||||
SegmentStatsCollector::from_req(req.field_type),
|
||||
))
|
||||
}
|
||||
}
|
||||
}
|
||||
pub(crate) fn collect_block(&mut self, doc: &[DocId], metric: &MetricAggregationWithAccessor) {
|
||||
match self {
|
||||
SegmentMetricResultCollector::Average(avg_collector) => {
|
||||
avg_collector.collect_block(doc, &*metric.accessor);
|
||||
}
|
||||
SegmentMetricResultCollector::Stats(stats_collector) => {
|
||||
stats_collector.collect_block(doc, &*metric.accessor);
|
||||
}
|
||||
|
||||
@@ -130,7 +130,7 @@ where
|
||||
|
||||
let fast_field_reader = segment_reader
|
||||
.fast_fields()
|
||||
.typed_fast_field_reader(schema.get_field_name(self.field))?;
|
||||
.typed_fast_field_reader(self.field)?;
|
||||
|
||||
let segment_collector = self
|
||||
.collector
|
||||
|
||||
@@ -5,7 +5,7 @@ use fastfield_codecs::Column;
|
||||
|
||||
use crate::collector::{Collector, SegmentCollector};
|
||||
use crate::fastfield::FastValue;
|
||||
use crate::schema::Type;
|
||||
use crate::schema::{Field, Type};
|
||||
use crate::{DocId, Score};
|
||||
|
||||
/// Histogram builds an histogram of the values of a fastfield for the
|
||||
@@ -28,7 +28,7 @@ pub struct HistogramCollector {
|
||||
min_value: u64,
|
||||
num_buckets: usize,
|
||||
divider: DividerU64,
|
||||
field: String,
|
||||
field: Field,
|
||||
}
|
||||
|
||||
impl HistogramCollector {
|
||||
@@ -46,7 +46,7 @@ impl HistogramCollector {
|
||||
/// # Disclaimer
|
||||
/// This function panics if the field given is of type f64.
|
||||
pub fn new<TFastValue: FastValue>(
|
||||
field: String,
|
||||
field: Field,
|
||||
min_value: TFastValue,
|
||||
bucket_width: u64,
|
||||
num_buckets: usize,
|
||||
@@ -112,7 +112,7 @@ impl Collector for HistogramCollector {
|
||||
_segment_local_id: crate::SegmentOrdinal,
|
||||
segment: &crate::SegmentReader,
|
||||
) -> crate::Result<Self::Child> {
|
||||
let ff_reader = segment.fast_fields().u64_lenient(&self.field)?;
|
||||
let ff_reader = segment.fast_fields().u64_lenient(self.field)?;
|
||||
Ok(SegmentHistogramCollector {
|
||||
histogram_computer: HistogramComputer {
|
||||
counts: vec![0; self.num_buckets],
|
||||
@@ -211,13 +211,13 @@ mod tests {
|
||||
#[test]
|
||||
fn test_no_segments() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
schema_builder.add_u64_field("val_field", FAST);
|
||||
let val_field = schema_builder.add_u64_field("val_field", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
let all_query = AllQuery;
|
||||
let histogram_collector = HistogramCollector::new("val_field".to_string(), 0u64, 2, 5);
|
||||
let histogram_collector = HistogramCollector::new(val_field, 0u64, 2, 5);
|
||||
let histogram = searcher.search(&all_query, &histogram_collector)?;
|
||||
assert_eq!(histogram, vec![0; 5]);
|
||||
Ok(())
|
||||
@@ -238,8 +238,7 @@ mod tests {
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
let all_query = AllQuery;
|
||||
let histogram_collector =
|
||||
HistogramCollector::new("val_field".to_string(), -20i64, 10u64, 4);
|
||||
let histogram_collector = HistogramCollector::new(val_field, -20i64, 10u64, 4);
|
||||
let histogram = searcher.search(&all_query, &histogram_collector)?;
|
||||
assert_eq!(histogram, vec![1, 1, 0, 1]);
|
||||
Ok(())
|
||||
@@ -263,8 +262,7 @@ mod tests {
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
let all_query = AllQuery;
|
||||
let histogram_collector =
|
||||
HistogramCollector::new("val_field".to_string(), -20i64, 10u64, 4);
|
||||
let histogram_collector = HistogramCollector::new(val_field, -20i64, 10u64, 4);
|
||||
let histogram = searcher.search(&all_query, &histogram_collector)?;
|
||||
assert_eq!(histogram, vec![1, 1, 0, 1]);
|
||||
Ok(())
|
||||
@@ -287,7 +285,7 @@ mod tests {
|
||||
let searcher = reader.searcher();
|
||||
let all_query = AllQuery;
|
||||
let week_histogram_collector = HistogramCollector::new(
|
||||
"date_field".to_string(),
|
||||
date_field,
|
||||
DateTime::from_primitive(
|
||||
Date::from_calendar_date(1980, Month::January, 1)?.with_hms(0, 0, 0)?,
|
||||
),
|
||||
|
||||
@@ -155,7 +155,7 @@ impl SegmentCollector for TestSegmentCollector {
|
||||
///
|
||||
/// This collector is mainly useful for tests.
|
||||
pub struct FastFieldTestCollector {
|
||||
field: String,
|
||||
field: Field,
|
||||
}
|
||||
|
||||
pub struct FastFieldSegmentCollector {
|
||||
@@ -164,7 +164,7 @@ pub struct FastFieldSegmentCollector {
|
||||
}
|
||||
|
||||
impl FastFieldTestCollector {
|
||||
pub fn for_field(field: String) -> FastFieldTestCollector {
|
||||
pub fn for_field(field: Field) -> FastFieldTestCollector {
|
||||
FastFieldTestCollector { field }
|
||||
}
|
||||
}
|
||||
@@ -180,7 +180,7 @@ impl Collector for FastFieldTestCollector {
|
||||
) -> crate::Result<FastFieldSegmentCollector> {
|
||||
let reader = segment_reader
|
||||
.fast_fields()
|
||||
.u64(&self.field)
|
||||
.u64(self.field)
|
||||
.expect("Requested field is not a fast field.");
|
||||
Ok(FastFieldSegmentCollector {
|
||||
vals: Vec::new(),
|
||||
@@ -238,9 +238,7 @@ impl Collector for BytesFastFieldTestCollector {
|
||||
_segment_local_id: u32,
|
||||
segment_reader: &SegmentReader,
|
||||
) -> crate::Result<BytesFastFieldSegmentCollector> {
|
||||
let reader = segment_reader
|
||||
.fast_fields()
|
||||
.bytes(segment_reader.schema().get_field_name(self.field))?;
|
||||
let reader = segment_reader.fast_fields().bytes(self.field)?;
|
||||
Ok(BytesFastFieldSegmentCollector {
|
||||
vals: Vec::new(),
|
||||
reader,
|
||||
|
||||
@@ -156,7 +156,7 @@ impl CustomScorer<u64> for ScorerByField {
|
||||
// The conversion will then happen only on the top-K docs.
|
||||
let ff_reader = segment_reader
|
||||
.fast_fields()
|
||||
.typed_fast_field_reader(segment_reader.schema().get_field_name(self.field))?;
|
||||
.typed_fast_field_reader(self.field)?;
|
||||
Ok(ScorerByFastFieldReader { ff_reader })
|
||||
}
|
||||
}
|
||||
@@ -454,7 +454,7 @@ impl TopDocs {
|
||||
/// // In our case, we will get a reader for the popularity
|
||||
/// // fast field.
|
||||
/// let popularity_reader =
|
||||
/// segment_reader.fast_fields().u64("popularity").unwrap();
|
||||
/// segment_reader.fast_fields().u64(popularity).unwrap();
|
||||
///
|
||||
/// // We can now define our actual scoring function
|
||||
/// move |doc: DocId, original_score: Score| {
|
||||
@@ -561,9 +561,9 @@ impl TopDocs {
|
||||
/// // Note that this is implemented by using a `(u64, u64)`
|
||||
/// // as a score.
|
||||
/// let popularity_reader =
|
||||
/// segment_reader.fast_fields().u64("popularity").unwrap();
|
||||
/// segment_reader.fast_fields().u64(popularity).unwrap();
|
||||
/// let boosted_reader =
|
||||
/// segment_reader.fast_fields().u64("boosted").unwrap();
|
||||
/// segment_reader.fast_fields().u64(boosted).unwrap();
|
||||
///
|
||||
/// // We can now define our actual scoring function
|
||||
/// move |doc: DocId| {
|
||||
|
||||
@@ -231,7 +231,7 @@ impl IndexBuilder {
|
||||
fn validate(&self) -> crate::Result<()> {
|
||||
if let Some(schema) = self.schema.as_ref() {
|
||||
if let Some(sort_by_field) = self.index_settings.sort_by_field.as_ref() {
|
||||
let schema_field = schema.get_field(&sort_by_field.field).map_err(|_| {
|
||||
let schema_field = schema.get_field(&sort_by_field.field).ok_or_else(|| {
|
||||
TantivyError::InvalidArgument(format!(
|
||||
"Field to sort index {} not found in schema",
|
||||
sort_by_field.field
|
||||
|
||||
@@ -95,8 +95,7 @@ impl SegmentReader {
|
||||
|
||||
match field_entry.field_type() {
|
||||
FieldType::Facet(_) => {
|
||||
let term_ords_reader =
|
||||
self.fast_fields().u64s(self.schema.get_field_name(field))?;
|
||||
let term_ords_reader = self.fast_fields().u64s(field)?;
|
||||
let termdict = self
|
||||
.termdict_composite
|
||||
.open_read(field)
|
||||
|
||||
@@ -25,7 +25,7 @@ mod tests {
|
||||
index_writer.commit()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let bytes_reader = segment_reader.fast_fields().bytes("bytesfield").unwrap();
|
||||
let bytes_reader = segment_reader.fast_fields().bytes(bytes_field).unwrap();
|
||||
assert_eq!(bytes_reader.get_bytes(0), &[0u8, 1, 2, 3]);
|
||||
assert!(bytes_reader.get_bytes(1).is_empty());
|
||||
assert_eq!(bytes_reader.get_bytes(2), &[255u8]);
|
||||
@@ -109,7 +109,8 @@ mod tests {
|
||||
let searcher = create_index_for_test(FAST)?;
|
||||
assert_eq!(searcher.num_docs(), 1);
|
||||
let fast_fields = searcher.segment_reader(0u32).fast_fields();
|
||||
let fast_field_reader = fast_fields.bytes("string_bytes").unwrap();
|
||||
let field = searcher.schema().get_field("string_bytes").unwrap();
|
||||
let fast_field_reader = fast_fields.bytes(field).unwrap();
|
||||
assert_eq!(fast_field_reader.get_bytes(0u32), b"tantivy");
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -226,7 +226,7 @@ mod tests {
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
let file = directory.open_read(path).unwrap();
|
||||
assert_eq!(file.len(), 27);
|
||||
assert_eq!(file.len(), 34);
|
||||
let composite_file = CompositeFile::open(&file)?;
|
||||
let fast_field_bytes = composite_file.open_read(*FIELD).unwrap().read_bytes()?;
|
||||
let fast_field_reader = open::<u64>(fast_field_bytes)?;
|
||||
@@ -275,7 +275,7 @@ mod tests {
|
||||
serializer.close()?;
|
||||
}
|
||||
let file = directory.open_read(path)?;
|
||||
assert_eq!(file.len(), 55);
|
||||
assert_eq!(file.len(), 62);
|
||||
{
|
||||
let fast_fields_composite = CompositeFile::open(&file)?;
|
||||
let data = fast_fields_composite
|
||||
@@ -316,7 +316,7 @@ mod tests {
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
let file = directory.open_read(path).unwrap();
|
||||
assert_eq!(file.len(), 28);
|
||||
assert_eq!(file.len(), 35);
|
||||
{
|
||||
let fast_fields_composite = CompositeFile::open(&file).unwrap();
|
||||
let data = fast_fields_composite
|
||||
@@ -355,7 +355,7 @@ mod tests {
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
let file = directory.open_read(path).unwrap();
|
||||
assert_eq!(file.len(), 80042);
|
||||
assert_eq!(file.len(), 80049);
|
||||
{
|
||||
let fast_fields_composite = CompositeFile::open(&file)?;
|
||||
let data = fast_fields_composite
|
||||
@@ -397,7 +397,7 @@ mod tests {
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
let file = directory.open_read(path).unwrap();
|
||||
assert_eq!(file.len(), 42_usize);
|
||||
assert_eq!(file.len(), 49_usize);
|
||||
|
||||
{
|
||||
let fast_fields_composite = CompositeFile::open(&file)?;
|
||||
@@ -583,7 +583,7 @@ mod tests {
|
||||
assert_eq!(searcher.segment_readers().len(), 1);
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let fast_fields = segment_reader.fast_fields();
|
||||
let text_fast_field = fast_fields.u64s("text").unwrap();
|
||||
let text_fast_field = fast_fields.u64s(text_field).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
get_vals_for_docs(&text_fast_field, 0..5),
|
||||
@@ -622,7 +622,7 @@ mod tests {
|
||||
assert_eq!(searcher.segment_readers().len(), 2);
|
||||
let segment_reader = searcher.segment_reader(1);
|
||||
let fast_fields = segment_reader.fast_fields();
|
||||
let text_fast_field = fast_fields.u64s("text").unwrap();
|
||||
let text_fast_field = fast_fields.u64s(text_field).unwrap();
|
||||
|
||||
assert_eq!(get_vals_for_docs(&text_fast_field, 0..3), vec![0, 1, 0]);
|
||||
}
|
||||
@@ -638,7 +638,7 @@ mod tests {
|
||||
let searcher = reader.searcher();
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let fast_fields = segment_reader.fast_fields();
|
||||
let text_fast_field = fast_fields.u64s("text").unwrap();
|
||||
let text_fast_field = fast_fields.u64s(text_field).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
get_vals_for_docs(&text_fast_field, 0..8),
|
||||
@@ -681,7 +681,7 @@ mod tests {
|
||||
assert_eq!(searcher.segment_readers().len(), 1);
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let fast_fields = segment_reader.fast_fields();
|
||||
let text_fast_field = fast_fields.u64s("text").unwrap();
|
||||
let text_fast_field = fast_fields.u64s(text_field).unwrap();
|
||||
|
||||
assert_eq!(get_vals_for_docs(&text_fast_field, 0..6), vec![1, 0, 0, 2]);
|
||||
|
||||
@@ -712,7 +712,7 @@ mod tests {
|
||||
assert_eq!(searcher.segment_readers().len(), 2);
|
||||
let segment_reader = searcher.segment_reader(1);
|
||||
let fast_fields = segment_reader.fast_fields();
|
||||
let text_fast_field = fast_fields.u64s("text").unwrap();
|
||||
let text_fast_field = fast_fields.u64s(text_field).unwrap();
|
||||
|
||||
assert_eq!(get_vals_for_docs(&text_fast_field, 0..2), vec![0, 1]);
|
||||
}
|
||||
@@ -728,7 +728,7 @@ mod tests {
|
||||
let searcher = reader.searcher();
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let fast_fields = segment_reader.fast_fields();
|
||||
let text_fast_field = fast_fields.u64s("text").unwrap();
|
||||
let text_fast_field = fast_fields.u64s(text_field).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
get_vals_for_docs(&text_fast_field, 0..9),
|
||||
@@ -773,8 +773,8 @@ mod tests {
|
||||
assert_eq!(searcher.segment_readers().len(), 1);
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let fast_fields = segment_reader.fast_fields();
|
||||
let date_fast_field = fast_fields.date("date").unwrap();
|
||||
let dates_fast_field = fast_fields.dates("multi_date").unwrap();
|
||||
let date_fast_field = fast_fields.date(date_field).unwrap();
|
||||
let dates_fast_field = fast_fields.dates(multi_date_field).unwrap();
|
||||
let mut dates = vec![];
|
||||
{
|
||||
assert_eq!(date_fast_field.get_val(0).into_timestamp_micros(), 1i64);
|
||||
@@ -836,7 +836,7 @@ mod tests {
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
let file = directory.open_read(path).unwrap();
|
||||
assert_eq!(file.len(), 26);
|
||||
assert_eq!(file.len(), 33);
|
||||
let composite_file = CompositeFile::open(&file)?;
|
||||
let data = composite_file.open_read(field).unwrap().read_bytes()?;
|
||||
let fast_field_reader = open::<bool>(data)?;
|
||||
@@ -874,7 +874,7 @@ mod tests {
|
||||
serializer.close().unwrap();
|
||||
}
|
||||
let file = directory.open_read(path).unwrap();
|
||||
assert_eq!(file.len(), 38);
|
||||
assert_eq!(file.len(), 45);
|
||||
let composite_file = CompositeFile::open(&file)?;
|
||||
let data = composite_file.open_read(field).unwrap().read_bytes()?;
|
||||
let fast_field_reader = open::<bool>(data)?;
|
||||
@@ -906,7 +906,7 @@ mod tests {
|
||||
}
|
||||
let file = directory.open_read(path).unwrap();
|
||||
let composite_file = CompositeFile::open(&file)?;
|
||||
assert_eq!(file.len(), 25);
|
||||
assert_eq!(file.len(), 32);
|
||||
let data = composite_file.open_read(field).unwrap().read_bytes()?;
|
||||
let fast_field_reader = open::<bool>(data)?;
|
||||
assert_eq!(fast_field_reader.get_val(0), false);
|
||||
@@ -940,10 +940,10 @@ mod tests {
|
||||
pub fn test_gcd_date() -> crate::Result<()> {
|
||||
let size_prec_sec =
|
||||
test_gcd_date_with_codec(FastFieldCodecType::Bitpacked, DatePrecision::Seconds)?;
|
||||
assert_eq!(size_prec_sec, 5 + 4 + 21 + (1_000 * 13) / 8); // 13 bits per val = ceil(log_2(number of seconds in 2hours);
|
||||
assert_eq!(size_prec_sec, 5 + 4 + 28 + (1_000 * 13) / 8); // 13 bits per val = ceil(log_2(number of seconds in 2hours);
|
||||
let size_prec_micro =
|
||||
test_gcd_date_with_codec(FastFieldCodecType::Bitpacked, DatePrecision::Microseconds)?;
|
||||
assert_eq!(size_prec_micro, 5 + 4 + 19 + (1_000 * 33) / 8); // 33 bits per val = ceil(log_2(number of microsecsseconds in 2hours);
|
||||
assert_eq!(size_prec_micro, 5 + 4 + 26 + (1_000 * 33) / 8); // 33 bits per val = ceil(log_2(number of microsecsseconds in 2hours);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -1014,7 +1014,7 @@ mod tests {
|
||||
let reader = index.reader().unwrap();
|
||||
let searcher = reader.searcher();
|
||||
let segment = &searcher.segment_readers()[0];
|
||||
let field = segment.fast_fields().u64("url_norm_hash").unwrap();
|
||||
let field = segment.fast_fields().u64(num_field).unwrap();
|
||||
|
||||
let numbers = vec![100, 200, 300];
|
||||
let test_range = |range: RangeInclusive<u64>| {
|
||||
@@ -1063,7 +1063,7 @@ mod tests {
|
||||
let reader = index.reader().unwrap();
|
||||
let searcher = reader.searcher();
|
||||
let segment = &searcher.segment_readers()[0];
|
||||
let field = segment.fast_fields().u64("url_norm_hash").unwrap();
|
||||
let field = segment.fast_fields().u64(num_field).unwrap();
|
||||
|
||||
let numbers = vec![1000, 1001, 1003];
|
||||
let test_range = |range: RangeInclusive<u64>| {
|
||||
|
||||
@@ -52,7 +52,7 @@ mod tests {
|
||||
let searcher = index.reader()?.searcher();
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let mut vals = Vec::new();
|
||||
let multi_value_reader = segment_reader.fast_fields().u64s("multifield")?;
|
||||
let multi_value_reader = segment_reader.fast_fields().u64s(field)?;
|
||||
{
|
||||
multi_value_reader.get_vals(2, &mut vals);
|
||||
assert_eq!(&vals, &[4u64]);
|
||||
@@ -229,7 +229,7 @@ mod tests {
|
||||
let searcher = index.reader()?.searcher();
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let mut vals = Vec::new();
|
||||
let multi_value_reader = segment_reader.fast_fields().i64s("multifield").unwrap();
|
||||
let multi_value_reader = segment_reader.fast_fields().i64s(field).unwrap();
|
||||
multi_value_reader.get_vals(2, &mut vals);
|
||||
assert_eq!(&vals, &[-4i64]);
|
||||
multi_value_reader.get_vals(0, &mut vals);
|
||||
@@ -261,7 +261,7 @@ mod tests {
|
||||
let searcher = index.reader()?.searcher();
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let mut vals = Vec::new();
|
||||
let multi_value_reader = segment_reader.fast_fields().bools("multifield").unwrap();
|
||||
let multi_value_reader = segment_reader.fast_fields().bools(bool_field).unwrap();
|
||||
multi_value_reader.get_vals(2, &mut vals);
|
||||
assert_eq!(&vals, &[false]);
|
||||
multi_value_reader.get_vals(0, &mut vals);
|
||||
|
||||
@@ -159,7 +159,7 @@ mod tests {
|
||||
let searcher = reader.searcher();
|
||||
let reader = searcher.segment_reader(0);
|
||||
|
||||
let date_ff_reader = reader.fast_fields().dates("multi_date_field").unwrap();
|
||||
let date_ff_reader = reader.fast_fields().dates(date_field).unwrap();
|
||||
let mut docids = vec![];
|
||||
date_ff_reader.get_docids_for_value_range(
|
||||
DateTime::from_utc(first_time_stamp)..=DateTime::from_utc(two_secs_ahead),
|
||||
@@ -173,7 +173,7 @@ mod tests {
|
||||
|
||||
assert_eq!(
|
||||
count_multiples(RangeQuery::new_date(
|
||||
"multi_date_field".to_string(),
|
||||
date_field,
|
||||
DateTime::from_utc(first_time_stamp)..DateTime::from_utc(two_secs_ahead)
|
||||
)),
|
||||
1
|
||||
@@ -226,7 +226,7 @@ mod tests {
|
||||
let reader = searcher.segment_reader(0);
|
||||
assert_eq!(reader.num_docs(), 5);
|
||||
|
||||
let date_ff_reader = reader.fast_fields().dates("multi_date_field").unwrap();
|
||||
let date_ff_reader = reader.fast_fields().dates(date_field).unwrap();
|
||||
let mut docids = vec![];
|
||||
date_ff_reader.get_docids_for_value_range(
|
||||
DateTime::from_utc(first_time_stamp)..=DateTime::from_utc(two_secs_ahead),
|
||||
@@ -240,7 +240,7 @@ mod tests {
|
||||
|
||||
assert_eq!(
|
||||
count_multiples(RangeQuery::new_date(
|
||||
"multi_date_field".to_string(),
|
||||
date_field,
|
||||
DateTime::from_utc(first_time_stamp)..DateTime::from_utc(two_secs_ahead)
|
||||
)),
|
||||
2
|
||||
@@ -324,7 +324,7 @@ mod tests {
|
||||
index_writer.commit()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let field_reader = segment_reader.fast_fields().i64s("items")?;
|
||||
let field_reader = segment_reader.fast_fields().i64s(item_field)?;
|
||||
|
||||
assert_eq!(field_reader.min_value(), -2);
|
||||
assert_eq!(field_reader.max_value(), 6);
|
||||
|
||||
@@ -114,11 +114,9 @@ impl FastFieldReaders {
|
||||
|
||||
pub(crate) fn typed_fast_field_reader_with_idx<TFastValue: FastValue>(
|
||||
&self,
|
||||
field_name: &str,
|
||||
field: Field,
|
||||
index: usize,
|
||||
) -> crate::Result<Arc<dyn Column<TFastValue>>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
|
||||
let fast_field_slice = self.fast_field_data(field, index)?;
|
||||
let bytes = fast_field_slice.read_bytes()?;
|
||||
let column = fastfield_codecs::open(bytes)?;
|
||||
@@ -127,37 +125,32 @@ impl FastFieldReaders {
|
||||
|
||||
pub(crate) fn typed_fast_field_reader<TFastValue: FastValue>(
|
||||
&self,
|
||||
field_name: &str,
|
||||
field: Field,
|
||||
) -> crate::Result<Arc<dyn Column<TFastValue>>> {
|
||||
self.typed_fast_field_reader_with_idx(field_name, 0)
|
||||
self.typed_fast_field_reader_with_idx(field, 0)
|
||||
}
|
||||
|
||||
pub(crate) fn typed_fast_field_multi_reader<TFastValue: FastValue>(
|
||||
&self,
|
||||
field_name: &str,
|
||||
field: Field,
|
||||
) -> crate::Result<MultiValuedFastFieldReader<TFastValue>> {
|
||||
let idx_reader = self.typed_fast_field_reader(field_name)?;
|
||||
let vals_reader = self.typed_fast_field_reader_with_idx(field_name, 1)?;
|
||||
let idx_reader = self.typed_fast_field_reader(field)?;
|
||||
let vals_reader = self.typed_fast_field_reader_with_idx(field, 1)?;
|
||||
Ok(MultiValuedFastFieldReader::open(idx_reader, vals_reader))
|
||||
}
|
||||
|
||||
/// Returns the `u64` fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a u64 fast field, this method returns an Error.
|
||||
pub fn u64(&self, field_name: &str) -> crate::Result<Arc<dyn Column<u64>>> {
|
||||
self.check_type(
|
||||
self.schema.get_field(field_name)?,
|
||||
FastType::U64,
|
||||
Cardinality::SingleValue,
|
||||
)?;
|
||||
self.typed_fast_field_reader(field_name)
|
||||
pub fn u64(&self, field: Field) -> crate::Result<Arc<dyn Column<u64>>> {
|
||||
self.check_type(field, FastType::U64, Cardinality::SingleValue)?;
|
||||
self.typed_fast_field_reader(field)
|
||||
}
|
||||
|
||||
/// Returns the `ip` fast field reader reader associated to `field`.
|
||||
///
|
||||
/// If `field` is not a u128 fast field, this method returns an Error.
|
||||
pub fn ip_addr(&self, field_name: &str) -> crate::Result<Arc<dyn Column<Ipv6Addr>>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
pub fn ip_addr(&self, field: Field) -> crate::Result<Arc<dyn Column<Ipv6Addr>>> {
|
||||
self.check_type(field, FastType::U128, Cardinality::SingleValue)?;
|
||||
let bytes = self.fast_field_data(field, 0)?.read_bytes()?;
|
||||
Ok(open_u128::<Ipv6Addr>(bytes)?)
|
||||
@@ -166,13 +159,9 @@ impl FastFieldReaders {
|
||||
/// Returns the `ip` fast field reader reader associated to `field`.
|
||||
///
|
||||
/// If `field` is not a u128 fast field, this method returns an Error.
|
||||
pub fn ip_addrs(
|
||||
&self,
|
||||
field_name: &str,
|
||||
) -> crate::Result<MultiValuedFastFieldReader<Ipv6Addr>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
pub fn ip_addrs(&self, field: Field) -> crate::Result<MultiValuedFastFieldReader<Ipv6Addr>> {
|
||||
self.check_type(field, FastType::U128, Cardinality::MultiValues)?;
|
||||
let idx_reader: Arc<dyn Column<u64>> = self.typed_fast_field_reader(field_name)?;
|
||||
let idx_reader: Arc<dyn Column<u64>> = self.typed_fast_field_reader(field)?;
|
||||
|
||||
let bytes = self.fast_field_data(field, 1)?.read_bytes()?;
|
||||
let vals_reader = open_u128::<Ipv6Addr>(bytes)?;
|
||||
@@ -183,8 +172,7 @@ impl FastFieldReaders {
|
||||
/// Returns the `u128` fast field reader reader associated to `field`.
|
||||
///
|
||||
/// If `field` is not a u128 fast field, this method returns an Error.
|
||||
pub(crate) fn u128(&self, field_name: &str) -> crate::Result<Arc<dyn Column<u128>>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
pub(crate) fn u128(&self, field: Field) -> crate::Result<Arc<dyn Column<u128>>> {
|
||||
self.check_type(field, FastType::U128, Cardinality::SingleValue)?;
|
||||
let bytes = self.fast_field_data(field, 0)?.read_bytes()?;
|
||||
Ok(open_u128::<u128>(bytes)?)
|
||||
@@ -193,11 +181,9 @@ impl FastFieldReaders {
|
||||
/// Returns the `u128` multi-valued fast field reader reader associated to `field`.
|
||||
///
|
||||
/// If `field` is not a u128 multi-valued fast field, this method returns an Error.
|
||||
pub fn u128s(&self, field_name: &str) -> crate::Result<MultiValuedFastFieldReader<u128>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
pub fn u128s(&self, field: Field) -> crate::Result<MultiValuedFastFieldReader<u128>> {
|
||||
self.check_type(field, FastType::U128, Cardinality::MultiValues)?;
|
||||
let idx_reader: Arc<dyn Column<u64>> =
|
||||
self.typed_fast_field_reader(self.schema.get_field_name(field))?;
|
||||
let idx_reader: Arc<dyn Column<u64>> = self.typed_fast_field_reader(field)?;
|
||||
|
||||
let bytes = self.fast_field_data(field, 1)?.read_bytes()?;
|
||||
let vals_reader = open_u128::<u128>(bytes)?;
|
||||
@@ -210,88 +196,80 @@ impl FastFieldReaders {
|
||||
///
|
||||
/// If not, the fastfield reader will returns the u64-value associated with the original
|
||||
/// FastValue.
|
||||
pub fn u64_lenient(&self, field_name: &str) -> crate::Result<Arc<dyn Column<u64>>> {
|
||||
self.typed_fast_field_reader(field_name)
|
||||
pub fn u64_lenient(&self, field: Field) -> crate::Result<Arc<dyn Column<u64>>> {
|
||||
self.typed_fast_field_reader(field)
|
||||
}
|
||||
|
||||
/// Returns the `i64` fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a i64 fast field, this method returns an Error.
|
||||
pub fn i64(&self, field_name: &str) -> crate::Result<Arc<dyn Column<i64>>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
pub fn i64(&self, field: Field) -> crate::Result<Arc<dyn Column<i64>>> {
|
||||
self.check_type(field, FastType::I64, Cardinality::SingleValue)?;
|
||||
self.typed_fast_field_reader(self.schema.get_field_name(field))
|
||||
self.typed_fast_field_reader(field)
|
||||
}
|
||||
|
||||
/// Returns the `date` fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a date fast field, this method returns an Error.
|
||||
pub fn date(&self, field_name: &str) -> crate::Result<Arc<dyn Column<DateTime>>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
pub fn date(&self, field: Field) -> crate::Result<Arc<dyn Column<DateTime>>> {
|
||||
self.check_type(field, FastType::Date, Cardinality::SingleValue)?;
|
||||
self.typed_fast_field_reader(field_name)
|
||||
self.typed_fast_field_reader(field)
|
||||
}
|
||||
|
||||
/// Returns the `f64` fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a f64 fast field, this method returns an Error.
|
||||
pub fn f64(&self, field_name: &str) -> crate::Result<Arc<dyn Column<f64>>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
pub fn f64(&self, field: Field) -> crate::Result<Arc<dyn Column<f64>>> {
|
||||
self.check_type(field, FastType::F64, Cardinality::SingleValue)?;
|
||||
self.typed_fast_field_reader(field_name)
|
||||
self.typed_fast_field_reader(field)
|
||||
}
|
||||
|
||||
/// Returns the `bool` fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a bool fast field, this method returns an Error.
|
||||
pub fn bool(&self, field_name: &str) -> crate::Result<Arc<dyn Column<bool>>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
pub fn bool(&self, field: Field) -> crate::Result<Arc<dyn Column<bool>>> {
|
||||
self.check_type(field, FastType::Bool, Cardinality::SingleValue)?;
|
||||
self.typed_fast_field_reader(field_name)
|
||||
self.typed_fast_field_reader(field)
|
||||
}
|
||||
|
||||
/// Returns a `u64s` multi-valued fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a u64 multi-valued fast field, this method returns an Error.
|
||||
pub fn u64s(&self, field_name: &str) -> crate::Result<MultiValuedFastFieldReader<u64>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
pub fn u64s(&self, field: Field) -> crate::Result<MultiValuedFastFieldReader<u64>> {
|
||||
self.check_type(field, FastType::U64, Cardinality::MultiValues)?;
|
||||
self.typed_fast_field_multi_reader(field_name)
|
||||
self.typed_fast_field_multi_reader(field)
|
||||
}
|
||||
|
||||
/// Returns a `u64s` multi-valued fast field reader reader associated with `field`, regardless
|
||||
/// of whether the given field is effectively of type `u64` or not.
|
||||
///
|
||||
/// If `field` is not a u64 multi-valued fast field, this method returns an Error.
|
||||
pub fn u64s_lenient(&self, field_name: &str) -> crate::Result<MultiValuedFastFieldReader<u64>> {
|
||||
self.typed_fast_field_multi_reader(field_name)
|
||||
pub fn u64s_lenient(&self, field: Field) -> crate::Result<MultiValuedFastFieldReader<u64>> {
|
||||
self.typed_fast_field_multi_reader(field)
|
||||
}
|
||||
|
||||
/// Returns a `i64s` multi-valued fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a i64 multi-valued fast field, this method returns an Error.
|
||||
pub fn i64s(&self, field_name: &str) -> crate::Result<MultiValuedFastFieldReader<i64>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
pub fn i64s(&self, field: Field) -> crate::Result<MultiValuedFastFieldReader<i64>> {
|
||||
self.check_type(field, FastType::I64, Cardinality::MultiValues)?;
|
||||
self.typed_fast_field_multi_reader(self.schema.get_field_name(field))
|
||||
self.typed_fast_field_multi_reader(field)
|
||||
}
|
||||
|
||||
/// Returns a `f64s` multi-valued fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a f64 multi-valued fast field, this method returns an Error.
|
||||
pub fn f64s(&self, field_name: &str) -> crate::Result<MultiValuedFastFieldReader<f64>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
pub fn f64s(&self, field: Field) -> crate::Result<MultiValuedFastFieldReader<f64>> {
|
||||
self.check_type(field, FastType::F64, Cardinality::MultiValues)?;
|
||||
self.typed_fast_field_multi_reader(self.schema.get_field_name(field))
|
||||
self.typed_fast_field_multi_reader(field)
|
||||
}
|
||||
|
||||
/// Returns a `bools` multi-valued fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a bool multi-valued fast field, this method returns an Error.
|
||||
pub fn bools(&self, field_name: &str) -> crate::Result<MultiValuedFastFieldReader<bool>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
pub fn bools(&self, field: Field) -> crate::Result<MultiValuedFastFieldReader<bool>> {
|
||||
self.check_type(field, FastType::Bool, Cardinality::MultiValues)?;
|
||||
self.typed_fast_field_multi_reader(self.schema.get_field_name(field))
|
||||
self.typed_fast_field_multi_reader(field)
|
||||
}
|
||||
|
||||
/// Returns a `time::OffsetDateTime` multi-valued fast field reader reader associated with
|
||||
@@ -299,17 +277,15 @@ impl FastFieldReaders {
|
||||
///
|
||||
/// If `field` is not a `time::OffsetDateTime` multi-valued fast field, this method returns an
|
||||
/// Error.
|
||||
pub fn dates(&self, field_name: &str) -> crate::Result<MultiValuedFastFieldReader<DateTime>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
pub fn dates(&self, field: Field) -> crate::Result<MultiValuedFastFieldReader<DateTime>> {
|
||||
self.check_type(field, FastType::Date, Cardinality::MultiValues)?;
|
||||
self.typed_fast_field_multi_reader(self.schema.get_field_name(field))
|
||||
self.typed_fast_field_multi_reader(field)
|
||||
}
|
||||
|
||||
/// Returns the `bytes` fast field reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a bytes fast field, returns an Error.
|
||||
pub fn bytes(&self, field_name: &str) -> crate::Result<BytesFastFieldReader> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
pub fn bytes(&self, field: Field) -> crate::Result<BytesFastFieldReader> {
|
||||
let field_entry = self.schema.get_field_entry(field);
|
||||
if let FieldType::Bytes(bytes_option) = field_entry.field_type() {
|
||||
if !bytes_option.is_fast() {
|
||||
|
||||
322
src/indexer/demuxer.rs
Normal file
322
src/indexer/demuxer.rs
Normal file
@@ -0,0 +1,322 @@
|
||||
use common::BitSet;
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::fastfield::AliveBitSet;
|
||||
use crate::{merge_filtered_segments, Directory, Index, IndexSettings, Segment, SegmentOrdinal};
|
||||
/// DemuxMapping can be used to reorganize data from multiple segments.
|
||||
///
|
||||
/// DemuxMapping is useful in a multitenant settings, in which each document might actually belong
|
||||
/// to a different tenant. It allows to reorganize documents as follows:
|
||||
///
|
||||
/// e.g. if you have two tenant ids TENANT_A and TENANT_B and two segments with
|
||||
/// the documents (simplified)
|
||||
/// Seg 1 [TENANT_A, TENANT_B]
|
||||
/// Seg 2 [TENANT_A, TENANT_B]
|
||||
///
|
||||
/// You may want to group your documents to
|
||||
/// Seg 1 [TENANT_A, TENANT_A]
|
||||
/// Seg 2 [TENANT_B, TENANT_B]
|
||||
///
|
||||
/// Demuxing is the tool for that.
|
||||
/// Semantically you can define a mapping from [old segment ordinal, old doc_id] -> [new segment
|
||||
/// ordinal].
|
||||
#[derive(Debug, Default)]
|
||||
pub struct DemuxMapping {
|
||||
/// [index old segment ordinal] -> [index doc_id] = new segment ordinal
|
||||
mapping: Vec<DocIdToSegmentOrdinal>,
|
||||
}
|
||||
|
||||
/// DocIdToSegmentOrdinal maps from doc_id within a segment to the new segment ordinal for demuxing.
|
||||
///
|
||||
/// For every source segment there is a `DocIdToSegmentOrdinal` to distribute its doc_ids.
|
||||
#[derive(Debug, Default)]
|
||||
pub struct DocIdToSegmentOrdinal {
|
||||
doc_id_index_to_segment_ord: Vec<SegmentOrdinal>,
|
||||
}
|
||||
|
||||
impl DocIdToSegmentOrdinal {
|
||||
/// Creates a new DocIdToSegmentOrdinal with size of num_doc_ids.
|
||||
/// Initially all doc_ids point to segment ordinal 0 and need to be set
|
||||
/// the via `set` method.
|
||||
pub fn with_max_doc(max_doc: usize) -> Self {
|
||||
DocIdToSegmentOrdinal {
|
||||
doc_id_index_to_segment_ord: vec![0; max_doc],
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the number of documents in this mapping.
|
||||
/// It should be equal to the `max_doc` of the segment it targets.
|
||||
pub fn max_doc(&self) -> u32 {
|
||||
self.doc_id_index_to_segment_ord.len() as u32
|
||||
}
|
||||
|
||||
/// Associates a doc_id with an output `SegmentOrdinal`.
|
||||
pub fn set(&mut self, doc_id: u32, segment_ord: SegmentOrdinal) {
|
||||
self.doc_id_index_to_segment_ord[doc_id as usize] = segment_ord;
|
||||
}
|
||||
|
||||
/// Iterates over the new SegmentOrdinal in the order of the doc_id.
|
||||
pub fn iter(&self) -> impl Iterator<Item = SegmentOrdinal> + '_ {
|
||||
self.doc_id_index_to_segment_ord.iter().cloned()
|
||||
}
|
||||
}
|
||||
|
||||
impl DemuxMapping {
|
||||
/// Adds a DocIdToSegmentOrdinal. The order of the pus calls
|
||||
/// defines the old segment ordinal. e.g. first push = ordinal 0.
|
||||
pub fn add(&mut self, segment_mapping: DocIdToSegmentOrdinal) {
|
||||
self.mapping.push(segment_mapping);
|
||||
}
|
||||
|
||||
/// Returns the old number of segments.
|
||||
pub fn get_old_num_segments(&self) -> usize {
|
||||
self.mapping.len()
|
||||
}
|
||||
}
|
||||
|
||||
fn docs_for_segment_ord(
|
||||
doc_id_to_segment_ord: &DocIdToSegmentOrdinal,
|
||||
target_segment_ord: SegmentOrdinal,
|
||||
) -> AliveBitSet {
|
||||
let mut bitset = BitSet::with_max_value(doc_id_to_segment_ord.max_doc());
|
||||
for doc_id in doc_id_to_segment_ord
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_doc_id, new_segment_ord)| *new_segment_ord == target_segment_ord)
|
||||
.map(|(doc_id, _)| doc_id)
|
||||
{
|
||||
// add document if segment ordinal = target segment ordinal
|
||||
bitset.insert(doc_id as u32);
|
||||
}
|
||||
AliveBitSet::from_bitset(&bitset)
|
||||
}
|
||||
|
||||
fn get_alive_bitsets(
|
||||
demux_mapping: &DemuxMapping,
|
||||
target_segment_ord: SegmentOrdinal,
|
||||
) -> Vec<AliveBitSet> {
|
||||
demux_mapping
|
||||
.mapping
|
||||
.iter()
|
||||
.map(|doc_id_to_segment_ord| {
|
||||
docs_for_segment_ord(doc_id_to_segment_ord, target_segment_ord)
|
||||
})
|
||||
.collect_vec()
|
||||
}
|
||||
|
||||
/// Demux the segments according to `demux_mapping`. See `DemuxMapping`.
|
||||
/// The number of output_directories need to match max new segment ordinal from `demux_mapping`.
|
||||
///
|
||||
/// The ordinal of `segments` need to match the ordinals provided in `demux_mapping`.
|
||||
pub fn demux(
|
||||
segments: &[Segment],
|
||||
demux_mapping: &DemuxMapping,
|
||||
target_settings: IndexSettings,
|
||||
output_directories: Vec<Box<dyn Directory>>,
|
||||
) -> crate::Result<Vec<Index>> {
|
||||
let mut indices = vec![];
|
||||
for (target_segment_ord, output_directory) in output_directories.into_iter().enumerate() {
|
||||
let alive_bitset = get_alive_bitsets(demux_mapping, target_segment_ord as u32)
|
||||
.into_iter()
|
||||
.map(Some)
|
||||
.collect_vec();
|
||||
let index = merge_filtered_segments(
|
||||
segments,
|
||||
target_settings.clone(),
|
||||
alive_bitset,
|
||||
output_directory,
|
||||
)?;
|
||||
indices.push(index);
|
||||
}
|
||||
Ok(indices)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::collector::TopDocs;
|
||||
use crate::directory::RamDirectory;
|
||||
use crate::query::QueryParser;
|
||||
use crate::schema::{Schema, TEXT};
|
||||
use crate::{DocAddress, Term};
|
||||
|
||||
#[test]
|
||||
fn test_demux_map_to_alive_bitset() {
|
||||
let max_value = 2;
|
||||
let mut demux_mapping = DemuxMapping::default();
|
||||
// segment ordinal 0 mapping
|
||||
let mut doc_id_to_segment = DocIdToSegmentOrdinal::with_max_doc(max_value);
|
||||
doc_id_to_segment.set(0, 1);
|
||||
doc_id_to_segment.set(1, 0);
|
||||
demux_mapping.add(doc_id_to_segment);
|
||||
|
||||
// segment ordinal 1 mapping
|
||||
let mut doc_id_to_segment = DocIdToSegmentOrdinal::with_max_doc(max_value);
|
||||
doc_id_to_segment.set(0, 1);
|
||||
doc_id_to_segment.set(1, 1);
|
||||
demux_mapping.add(doc_id_to_segment);
|
||||
{
|
||||
let bit_sets_for_demuxing_to_segment_ord_0 = get_alive_bitsets(&demux_mapping, 0);
|
||||
|
||||
assert_eq!(
|
||||
bit_sets_for_demuxing_to_segment_ord_0[0].is_deleted(0),
|
||||
true
|
||||
);
|
||||
assert_eq!(
|
||||
bit_sets_for_demuxing_to_segment_ord_0[0].is_deleted(1),
|
||||
false
|
||||
);
|
||||
assert_eq!(
|
||||
bit_sets_for_demuxing_to_segment_ord_0[1].is_deleted(0),
|
||||
true
|
||||
);
|
||||
assert_eq!(
|
||||
bit_sets_for_demuxing_to_segment_ord_0[1].is_deleted(1),
|
||||
true
|
||||
);
|
||||
}
|
||||
|
||||
{
|
||||
let bit_sets_for_demuxing_to_segment_ord_1 = get_alive_bitsets(&demux_mapping, 1);
|
||||
|
||||
assert_eq!(
|
||||
bit_sets_for_demuxing_to_segment_ord_1[0].is_deleted(0),
|
||||
false
|
||||
);
|
||||
assert_eq!(
|
||||
bit_sets_for_demuxing_to_segment_ord_1[0].is_deleted(1),
|
||||
true
|
||||
);
|
||||
assert_eq!(
|
||||
bit_sets_for_demuxing_to_segment_ord_1[1].is_deleted(0),
|
||||
false
|
||||
);
|
||||
assert_eq!(
|
||||
bit_sets_for_demuxing_to_segment_ord_1[1].is_deleted(1),
|
||||
false
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_demux_segments() -> crate::Result<()> {
|
||||
let first_index = {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let text_field = schema_builder.add_text_field("text", TEXT);
|
||||
let index = Index::create_in_ram(schema_builder.build());
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.add_document(doc!(text_field=>"texto1"))?;
|
||||
index_writer.add_document(doc!(text_field=>"texto2"))?;
|
||||
index_writer.commit()?;
|
||||
index
|
||||
};
|
||||
|
||||
let second_index = {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let text_field = schema_builder.add_text_field("text", TEXT);
|
||||
let index = Index::create_in_ram(schema_builder.build());
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.add_document(doc!(text_field=>"texto3"))?;
|
||||
index_writer.add_document(doc!(text_field=>"texto4"))?;
|
||||
index_writer.delete_term(Term::from_field_text(text_field, "4"));
|
||||
|
||||
index_writer.commit()?;
|
||||
index
|
||||
};
|
||||
|
||||
let mut segments: Vec<Segment> = Vec::new();
|
||||
segments.extend(first_index.searchable_segments()?);
|
||||
segments.extend(second_index.searchable_segments()?);
|
||||
|
||||
let target_settings = first_index.settings().clone();
|
||||
|
||||
let mut demux_mapping = DemuxMapping::default();
|
||||
{
|
||||
let max_value = 2;
|
||||
// segment ordinal 0 mapping
|
||||
let mut doc_id_to_segment = DocIdToSegmentOrdinal::with_max_doc(max_value);
|
||||
doc_id_to_segment.set(0, 1);
|
||||
doc_id_to_segment.set(1, 0);
|
||||
demux_mapping.add(doc_id_to_segment);
|
||||
|
||||
// segment ordinal 1 mapping
|
||||
let mut doc_id_to_segment = DocIdToSegmentOrdinal::with_max_doc(max_value);
|
||||
doc_id_to_segment.set(0, 1);
|
||||
doc_id_to_segment.set(1, 1);
|
||||
demux_mapping.add(doc_id_to_segment);
|
||||
}
|
||||
assert_eq!(demux_mapping.get_old_num_segments(), 2);
|
||||
|
||||
let demuxed_indices = demux(
|
||||
&segments,
|
||||
&demux_mapping,
|
||||
target_settings,
|
||||
vec![
|
||||
Box::<RamDirectory>::default(),
|
||||
Box::<RamDirectory>::default(),
|
||||
],
|
||||
)?;
|
||||
|
||||
{
|
||||
let index = &demuxed_indices[0];
|
||||
|
||||
let segments = index.searchable_segments()?;
|
||||
assert_eq!(segments.len(), 1);
|
||||
|
||||
let segment_metas = segments[0].meta();
|
||||
assert_eq!(segment_metas.num_deleted_docs(), 0);
|
||||
assert_eq!(segment_metas.num_docs(), 1);
|
||||
|
||||
let searcher = index.reader().unwrap().searcher();
|
||||
{
|
||||
let text_field = index.schema().get_field("text").unwrap();
|
||||
|
||||
let do_search = |term: &str| {
|
||||
let query = QueryParser::for_index(index, vec![text_field])
|
||||
.parse_query(term)
|
||||
.unwrap();
|
||||
let top_docs: Vec<(f32, DocAddress)> =
|
||||
searcher.search(&query, &TopDocs::with_limit(3)).unwrap();
|
||||
|
||||
top_docs.iter().map(|el| el.1.doc_id).collect::<Vec<_>>()
|
||||
};
|
||||
|
||||
assert_eq!(do_search("texto1"), vec![] as Vec<u32>);
|
||||
assert_eq!(do_search("texto2"), vec![0]);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let index = &demuxed_indices[1];
|
||||
|
||||
let segments = index.searchable_segments()?;
|
||||
assert_eq!(segments.len(), 1);
|
||||
|
||||
let segment_metas = segments[0].meta();
|
||||
assert_eq!(segment_metas.num_deleted_docs(), 0);
|
||||
assert_eq!(segment_metas.num_docs(), 3);
|
||||
|
||||
let searcher = index.reader().unwrap().searcher();
|
||||
{
|
||||
let text_field = index.schema().get_field("text").unwrap();
|
||||
|
||||
let do_search = |term: &str| {
|
||||
let query = QueryParser::for_index(index, vec![text_field])
|
||||
.parse_query(term)
|
||||
.unwrap();
|
||||
let top_docs: Vec<(f32, DocAddress)> =
|
||||
searcher.search(&query, &TopDocs::with_limit(3)).unwrap();
|
||||
|
||||
top_docs.iter().map(|el| el.1.doc_id).collect::<Vec<_>>()
|
||||
};
|
||||
|
||||
assert_eq!(do_search("texto1"), vec![0]);
|
||||
assert_eq!(do_search("texto2"), vec![] as Vec<u32>);
|
||||
assert_eq!(do_search("texto3"), vec![1]);
|
||||
assert_eq!(do_search("texto4"), vec![2]);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -99,7 +99,7 @@ pub(crate) fn expect_field_id_for_sort_field(
|
||||
schema: &Schema,
|
||||
sort_by_field: &IndexSortByField,
|
||||
) -> crate::Result<Field> {
|
||||
schema.get_field(&sort_by_field.field).map_err(|_| {
|
||||
schema.get_field(&sort_by_field.field).ok_or_else(|| {
|
||||
TantivyError::InvalidArgument(format!(
|
||||
"field to sort index by not found: {:?}",
|
||||
sort_by_field.field
|
||||
@@ -462,14 +462,15 @@ mod tests_indexsorting {
|
||||
assert_eq!(searcher.segment_readers().len(), 1);
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let fast_fields = segment_reader.fast_fields();
|
||||
index.schema().get_field("my_number").unwrap();
|
||||
let my_number = index.schema().get_field("my_number").unwrap();
|
||||
|
||||
let fast_field = fast_fields.u64("my_number").unwrap();
|
||||
let fast_field = fast_fields.u64(my_number).unwrap();
|
||||
assert_eq!(fast_field.get_val(0), 10u64);
|
||||
assert_eq!(fast_field.get_val(1), 20u64);
|
||||
assert_eq!(fast_field.get_val(2), 30u64);
|
||||
|
||||
let multifield = fast_fields.u64s("multi_numbers").unwrap();
|
||||
let multi_numbers = index.schema().get_field("multi_numbers").unwrap();
|
||||
let multifield = fast_fields.u64s(multi_numbers).unwrap();
|
||||
let mut vals = vec![];
|
||||
multifield.get_vals(0u32, &mut vals);
|
||||
assert_eq!(vals, &[] as &[u64]);
|
||||
|
||||
@@ -1465,7 +1465,7 @@ mod tests {
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
assert_eq!(segment_reader.num_docs(), 8);
|
||||
assert_eq!(segment_reader.max_doc(), 10);
|
||||
let fast_field_reader = segment_reader.fast_fields().u64("id")?;
|
||||
let fast_field_reader = segment_reader.fast_fields().u64(id_field)?;
|
||||
let in_order_alive_ids: Vec<u64> = segment_reader
|
||||
.doc_ids_alive()
|
||||
.map(|doc| fast_field_reader.get_val(doc))
|
||||
@@ -1526,7 +1526,7 @@ mod tests {
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
assert_eq!(segment_reader.num_docs(), 8);
|
||||
assert_eq!(segment_reader.max_doc(), 10);
|
||||
let fast_field_reader = segment_reader.fast_fields().u64("id")?;
|
||||
let fast_field_reader = segment_reader.fast_fields().u64(id_field)?;
|
||||
let in_order_alive_ids: Vec<u64> = segment_reader
|
||||
.doc_ids_alive()
|
||||
.map(|doc| fast_field_reader.get_val(doc))
|
||||
@@ -1778,7 +1778,7 @@ mod tests {
|
||||
.segment_readers()
|
||||
.iter()
|
||||
.flat_map(|segment_reader| {
|
||||
let ff_reader = segment_reader.fast_fields().u64("id").unwrap();
|
||||
let ff_reader = segment_reader.fast_fields().u64(id_field).unwrap();
|
||||
segment_reader
|
||||
.doc_ids_alive()
|
||||
.map(move |doc| ff_reader.get_val(doc))
|
||||
@@ -1789,7 +1789,7 @@ mod tests {
|
||||
.segment_readers()
|
||||
.iter()
|
||||
.flat_map(|segment_reader| {
|
||||
let ff_reader = segment_reader.fast_fields().u64("id").unwrap();
|
||||
let ff_reader = segment_reader.fast_fields().u64(id_field).unwrap();
|
||||
segment_reader
|
||||
.doc_ids_alive()
|
||||
.map(move |doc| ff_reader.get_val(doc))
|
||||
@@ -1804,7 +1804,7 @@ mod tests {
|
||||
let mut all_ips = Vec::new();
|
||||
let mut num_ips = 0;
|
||||
for segment_reader in searcher.segment_readers().iter() {
|
||||
let ip_reader = segment_reader.fast_fields().ip_addrs("ips").unwrap();
|
||||
let ip_reader = segment_reader.fast_fields().ip_addrs(ips_field).unwrap();
|
||||
for doc in segment_reader.doc_ids_alive() {
|
||||
let mut vals = vec![];
|
||||
ip_reader.get_vals(doc, &mut vals);
|
||||
@@ -1851,7 +1851,7 @@ mod tests {
|
||||
.segment_readers()
|
||||
.iter()
|
||||
.map(|segment_reader| {
|
||||
let ff_reader = segment_reader.fast_fields().ip_addrs("ips").unwrap();
|
||||
let ff_reader = segment_reader.fast_fields().ip_addrs(ips_field).unwrap();
|
||||
ff_reader.get_index_reader().num_docs() as usize
|
||||
})
|
||||
.sum();
|
||||
@@ -1863,7 +1863,7 @@ mod tests {
|
||||
.segment_readers()
|
||||
.iter()
|
||||
.flat_map(|segment_reader| {
|
||||
let ff_reader = segment_reader.fast_fields().ip_addr("ip").unwrap();
|
||||
let ff_reader = segment_reader.fast_fields().ip_addr(ip_field).unwrap();
|
||||
segment_reader.doc_ids_alive().flat_map(move |doc| {
|
||||
let val = ff_reader.get_val(doc);
|
||||
if val == Ipv6Addr::from_u128(0) {
|
||||
@@ -1902,7 +1902,7 @@ mod tests {
|
||||
.segment_readers()
|
||||
.iter()
|
||||
.flat_map(|segment_reader| {
|
||||
let ff_reader = segment_reader.fast_fields().ip_addrs("ips").unwrap();
|
||||
let ff_reader = segment_reader.fast_fields().ip_addrs(ips_field).unwrap();
|
||||
segment_reader.doc_ids_alive().flat_map(move |doc| {
|
||||
let mut vals = vec![];
|
||||
ff_reader.get_vals(doc, &mut vals);
|
||||
@@ -1914,9 +1914,9 @@ mod tests {
|
||||
|
||||
// multivalue fast field tests
|
||||
for segment_reader in searcher.segment_readers().iter() {
|
||||
let id_reader = segment_reader.fast_fields().u64("id").unwrap();
|
||||
let ff_reader = segment_reader.fast_fields().u64s("multi_numbers").unwrap();
|
||||
let bool_ff_reader = segment_reader.fast_fields().bools("multi_bools").unwrap();
|
||||
let id_reader = segment_reader.fast_fields().u64(id_field).unwrap();
|
||||
let ff_reader = segment_reader.fast_fields().u64s(multi_numbers).unwrap();
|
||||
let bool_ff_reader = segment_reader.fast_fields().bools(multi_bools).unwrap();
|
||||
for doc in segment_reader.doc_ids_alive() {
|
||||
let mut vals = vec![];
|
||||
ff_reader.get_vals(doc, &mut vals);
|
||||
@@ -2109,7 +2109,7 @@ mod tests {
|
||||
// test facets
|
||||
for segment_reader in searcher.segment_readers().iter() {
|
||||
let mut facet_reader = segment_reader.facet_reader(facet_field).unwrap();
|
||||
let ff_reader = segment_reader.fast_fields().u64("id").unwrap();
|
||||
let ff_reader = segment_reader.fast_fields().u64(id_field).unwrap();
|
||||
for doc_id in segment_reader.doc_ids_alive() {
|
||||
let mut facet_ords = Vec::new();
|
||||
facet_reader.facet_ords(doc_id, &mut facet_ords);
|
||||
|
||||
@@ -16,7 +16,7 @@ use crate::fastfield::{
|
||||
MultiValueIndex, MultiValuedFastFieldReader,
|
||||
};
|
||||
use crate::fieldnorm::{FieldNormReader, FieldNormReaders, FieldNormsSerializer, FieldNormsWriter};
|
||||
use crate::indexer::doc_id_mapping::SegmentDocIdMapping;
|
||||
use crate::indexer::doc_id_mapping::{expect_field_id_for_sort_field, SegmentDocIdMapping};
|
||||
use crate::indexer::sorted_doc_id_column::RemappedDocIdColumn;
|
||||
use crate::indexer::sorted_doc_id_multivalue_column::RemappedDocIdMultiValueColumn;
|
||||
use crate::indexer::SegmentSerializer;
|
||||
@@ -335,10 +335,8 @@ impl IndexMerger {
|
||||
.readers
|
||||
.iter()
|
||||
.map(|segment_reader| {
|
||||
let ff_reader: MultiValuedFastFieldReader<u128> = segment_reader
|
||||
.fast_fields()
|
||||
.u128s(self.schema.get_field_name(field))
|
||||
.expect(
|
||||
let ff_reader: MultiValuedFastFieldReader<u128> =
|
||||
segment_reader.fast_fields().u128s(field).expect(
|
||||
"Failed to find index for multivalued field. This is a bug in tantivy, \
|
||||
please report.",
|
||||
);
|
||||
@@ -403,13 +401,10 @@ impl IndexMerger {
|
||||
.readers
|
||||
.iter()
|
||||
.map(|reader| {
|
||||
let u128_reader: Arc<dyn Column<u128>> = reader
|
||||
.fast_fields()
|
||||
.u128(self.schema.get_field_name(field))
|
||||
.expect(
|
||||
"Failed to find a reader for single fast field. This is a tantivy bug and \
|
||||
it should never happen.",
|
||||
);
|
||||
let u128_reader: Arc<dyn Column<u128>> = reader.fast_fields().u128(field).expect(
|
||||
"Failed to find a reader for single fast field. This is a tantivy bug and it \
|
||||
should never happen.",
|
||||
);
|
||||
u128_reader
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
@@ -436,11 +431,7 @@ impl IndexMerger {
|
||||
fast_field_serializer: &mut CompositeFastFieldSerializer,
|
||||
doc_id_mapping: &SegmentDocIdMapping,
|
||||
) -> crate::Result<()> {
|
||||
let fast_field_accessor = RemappedDocIdColumn::new(
|
||||
&self.readers,
|
||||
doc_id_mapping,
|
||||
self.schema.get_field_name(field),
|
||||
);
|
||||
let fast_field_accessor = RemappedDocIdColumn::new(&self.readers, doc_id_mapping, field);
|
||||
fast_field_serializer.create_auto_detect_u64_fast_field(field, fast_field_accessor)?;
|
||||
|
||||
Ok(())
|
||||
@@ -473,8 +464,8 @@ impl IndexMerger {
|
||||
reader: &SegmentReader,
|
||||
sort_by_field: &IndexSortByField,
|
||||
) -> crate::Result<Arc<dyn Column>> {
|
||||
reader.schema().get_field(&sort_by_field.field)?;
|
||||
let value_accessor = reader.fast_fields().u64_lenient(&sort_by_field.field)?;
|
||||
let field_id = expect_field_id_for_sort_field(reader.schema(), sort_by_field)?; // for now expect fastfield, but not strictly required
|
||||
let value_accessor = reader.fast_fields().u64_lenient(field_id)?;
|
||||
Ok(value_accessor)
|
||||
}
|
||||
/// Collecting value_accessors into a vec to bind the lifetime.
|
||||
@@ -578,7 +569,7 @@ impl IndexMerger {
|
||||
.map(|reader| {
|
||||
let u64s_reader: MultiValuedFastFieldReader<u64> = reader
|
||||
.fast_fields()
|
||||
.typed_fast_field_multi_reader::<u64>(self.schema.get_field_name(field))
|
||||
.typed_fast_field_multi_reader::<u64>(field)
|
||||
.expect(
|
||||
"Failed to find index for multivalued field. This is a bug in tantivy, \
|
||||
please report.",
|
||||
@@ -622,7 +613,7 @@ impl IndexMerger {
|
||||
.map(|reader| {
|
||||
let ff_reader: MultiValuedFastFieldReader<u64> = reader
|
||||
.fast_fields()
|
||||
.u64s(self.schema.get_field_name(field))
|
||||
.u64s(field)
|
||||
.expect("Could not find multivalued u64 fast value reader.");
|
||||
ff_reader
|
||||
})
|
||||
@@ -693,11 +684,8 @@ impl IndexMerger {
|
||||
|
||||
self.write_multi_value_fast_field_idx(field, fast_field_serializer, doc_id_mapping)?;
|
||||
|
||||
let fastfield_accessor = RemappedDocIdMultiValueColumn::new(
|
||||
&self.readers,
|
||||
doc_id_mapping,
|
||||
self.schema.get_field_name(field),
|
||||
);
|
||||
let fastfield_accessor =
|
||||
RemappedDocIdMultiValueColumn::new(&self.readers, doc_id_mapping, field);
|
||||
fast_field_serializer.create_auto_detect_u64_fast_field_with_idx_and_codecs(
|
||||
field,
|
||||
fastfield_accessor,
|
||||
@@ -718,13 +706,10 @@ impl IndexMerger {
|
||||
.readers
|
||||
.iter()
|
||||
.map(|reader| {
|
||||
let bytes_reader = reader
|
||||
.fast_fields()
|
||||
.bytes(self.schema.get_field_name(field))
|
||||
.expect(
|
||||
"Failed to find index for bytes field. This is a bug in tantivy, please \
|
||||
report.",
|
||||
);
|
||||
let bytes_reader = reader.fast_fields().bytes(field).expect(
|
||||
"Failed to find index for bytes field. This is a bug in tantivy, please \
|
||||
report.",
|
||||
);
|
||||
(reader, bytes_reader)
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
@@ -1221,10 +1206,7 @@ mod tests {
|
||||
{
|
||||
let get_fast_vals = |terms: Vec<Term>| {
|
||||
let query = BooleanQuery::new_multiterms_query(terms);
|
||||
searcher.search(
|
||||
&query,
|
||||
&FastFieldTestCollector::for_field("score".to_string()),
|
||||
)
|
||||
searcher.search(&query, &FastFieldTestCollector::for_field(score_field))
|
||||
};
|
||||
let get_fast_vals_bytes = |terms: Vec<Term>| {
|
||||
let query = BooleanQuery::new_multiterms_query(terms);
|
||||
@@ -1262,7 +1244,7 @@ mod tests {
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
let reader = index.reader().unwrap();
|
||||
let search_term = |searcher: &Searcher, term: Term| {
|
||||
let collector = FastFieldTestCollector::for_field("score".to_string());
|
||||
let collector = FastFieldTestCollector::for_field(score_field);
|
||||
let bytes_collector = BytesFastFieldTestCollector::for_field(bytes_score_field);
|
||||
let term_query = TermQuery::new(term, IndexRecordOption::Basic);
|
||||
searcher
|
||||
@@ -1384,7 +1366,7 @@ mod tests {
|
||||
let score_field_reader = searcher
|
||||
.segment_reader(0)
|
||||
.fast_fields()
|
||||
.u64("score")
|
||||
.u64(score_field)
|
||||
.unwrap();
|
||||
assert_eq!(score_field_reader.min_value(), 4000);
|
||||
assert_eq!(score_field_reader.max_value(), 7000);
|
||||
@@ -1392,7 +1374,7 @@ mod tests {
|
||||
let score_field_reader = searcher
|
||||
.segment_reader(1)
|
||||
.fast_fields()
|
||||
.u64("score")
|
||||
.u64(score_field)
|
||||
.unwrap();
|
||||
assert_eq!(score_field_reader.min_value(), 1);
|
||||
assert_eq!(score_field_reader.max_value(), 3);
|
||||
@@ -1438,7 +1420,7 @@ mod tests {
|
||||
let score_field_reader = searcher
|
||||
.segment_reader(0)
|
||||
.fast_fields()
|
||||
.u64("score")
|
||||
.u64(score_field)
|
||||
.unwrap();
|
||||
assert_eq!(score_field_reader.min_value(), 3);
|
||||
assert_eq!(score_field_reader.max_value(), 7000);
|
||||
@@ -1485,7 +1467,7 @@ mod tests {
|
||||
let score_field_reader = searcher
|
||||
.segment_reader(0)
|
||||
.fast_fields()
|
||||
.u64("score")
|
||||
.u64(score_field)
|
||||
.unwrap();
|
||||
assert_eq!(score_field_reader.min_value(), 3);
|
||||
assert_eq!(score_field_reader.max_value(), 7000);
|
||||
@@ -1532,7 +1514,7 @@ mod tests {
|
||||
let score_field_reader = searcher
|
||||
.segment_reader(0)
|
||||
.fast_fields()
|
||||
.u64("score")
|
||||
.u64(score_field)
|
||||
.unwrap();
|
||||
assert_eq!(score_field_reader.min_value(), 6000);
|
||||
assert_eq!(score_field_reader.max_value(), 7000);
|
||||
@@ -1854,7 +1836,7 @@ mod tests {
|
||||
|
||||
{
|
||||
let segment = searcher.segment_reader(0u32);
|
||||
let ff_reader = segment.fast_fields().u64s("intvals").unwrap();
|
||||
let ff_reader = segment.fast_fields().u64s(int_field).unwrap();
|
||||
|
||||
ff_reader.get_vals(0, &mut vals);
|
||||
assert_eq!(&vals, &[1, 2]);
|
||||
@@ -1880,7 +1862,7 @@ mod tests {
|
||||
|
||||
{
|
||||
let segment = searcher.segment_reader(1u32);
|
||||
let ff_reader = segment.fast_fields().u64s("intvals").unwrap();
|
||||
let ff_reader = segment.fast_fields().u64s(int_field).unwrap();
|
||||
ff_reader.get_vals(0, &mut vals);
|
||||
assert_eq!(&vals, &[28, 27]);
|
||||
|
||||
@@ -1890,7 +1872,7 @@ mod tests {
|
||||
|
||||
{
|
||||
let segment = searcher.segment_reader(2u32);
|
||||
let ff_reader = segment.fast_fields().u64s("intvals").unwrap();
|
||||
let ff_reader = segment.fast_fields().u64s(int_field).unwrap();
|
||||
ff_reader.get_vals(0, &mut vals);
|
||||
assert_eq!(&vals, &[20]);
|
||||
}
|
||||
@@ -1907,7 +1889,7 @@ mod tests {
|
||||
{
|
||||
let searcher = reader.searcher();
|
||||
let segment = searcher.segment_reader(0u32);
|
||||
let ff_reader = segment.fast_fields().u64s("intvals").unwrap();
|
||||
let ff_reader = segment.fast_fields().u64s(int_field).unwrap();
|
||||
|
||||
ff_reader.get_vals(0, &mut vals);
|
||||
assert_eq!(&vals, &[1, 2]);
|
||||
|
||||
@@ -185,7 +185,7 @@ mod tests {
|
||||
let segment_reader = searcher.segment_readers().last().unwrap();
|
||||
|
||||
let fast_fields = segment_reader.fast_fields();
|
||||
let fast_field = fast_fields.u64("intval").unwrap();
|
||||
let fast_field = fast_fields.u64(int_field).unwrap();
|
||||
assert_eq!(fast_field.get_val(5), 1u64);
|
||||
assert_eq!(fast_field.get_val(4), 2u64);
|
||||
assert_eq!(fast_field.get_val(3), 3u64);
|
||||
@@ -364,13 +364,15 @@ mod tests {
|
||||
.unwrap();
|
||||
|
||||
let int_field = index.schema().get_field("intval").unwrap();
|
||||
let multi_numbers = index.schema().get_field("multi_numbers").unwrap();
|
||||
let bytes_field = index.schema().get_field("bytes").unwrap();
|
||||
let reader = index.reader().unwrap();
|
||||
let searcher = reader.searcher();
|
||||
assert_eq!(searcher.segment_readers().len(), 1);
|
||||
let segment_reader = searcher.segment_readers().last().unwrap();
|
||||
|
||||
let fast_fields = segment_reader.fast_fields();
|
||||
let fast_field = fast_fields.u64("intval").unwrap();
|
||||
let fast_field = fast_fields.u64(int_field).unwrap();
|
||||
assert_eq!(fast_field.get_val(0), 1u64);
|
||||
assert_eq!(fast_field.get_val(1), 2u64);
|
||||
assert_eq!(fast_field.get_val(2), 3u64);
|
||||
@@ -384,7 +386,7 @@ mod tests {
|
||||
vals
|
||||
};
|
||||
let fast_fields = segment_reader.fast_fields();
|
||||
let fast_field = fast_fields.u64s("multi_numbers").unwrap();
|
||||
let fast_field = fast_fields.u64s(multi_numbers).unwrap();
|
||||
assert_eq!(&get_vals(&fast_field, 0), &[] as &[u64]);
|
||||
assert_eq!(&get_vals(&fast_field, 1), &[2, 3]);
|
||||
assert_eq!(&get_vals(&fast_field, 2), &[3, 4]);
|
||||
@@ -392,7 +394,7 @@ mod tests {
|
||||
assert_eq!(&get_vals(&fast_field, 4), &[20]);
|
||||
assert_eq!(&get_vals(&fast_field, 5), &[1001, 1002]);
|
||||
|
||||
let fast_field = fast_fields.bytes("bytes").unwrap();
|
||||
let fast_field = fast_fields.bytes(bytes_field).unwrap();
|
||||
assert_eq!(fast_field.get_bytes(0), &[] as &[u8]);
|
||||
assert_eq!(fast_field.get_bytes(2), &[1, 2, 3]);
|
||||
assert_eq!(fast_field.get_bytes(5), &[5, 5]);
|
||||
@@ -525,6 +527,7 @@ mod bench_sorted_index_merge {
|
||||
order: Order::Desc,
|
||||
};
|
||||
let index = create_index(Some(sort_by_field.clone()));
|
||||
let field = index.schema().get_field("intval").unwrap();
|
||||
let segments = index.searchable_segments().unwrap();
|
||||
let merger: IndexMerger =
|
||||
IndexMerger::open(index.schema(), index.settings().clone(), &segments[..])?;
|
||||
@@ -532,10 +535,8 @@ mod bench_sorted_index_merge {
|
||||
b.iter(|| {
|
||||
let sorted_doc_ids = doc_id_mapping.iter_old_doc_addrs().map(|doc_addr| {
|
||||
let reader = &merger.readers[doc_addr.segment_ord as usize];
|
||||
let u64_reader: Arc<dyn Column<u64>> = reader
|
||||
.fast_fields()
|
||||
.typed_fast_field_reader("intval")
|
||||
.expect(
|
||||
let u64_reader: Arc<dyn Column<u64>> =
|
||||
reader.fast_fields().typed_fast_field_reader(field).expect(
|
||||
"Failed to find a reader for single fast field. This is a tantivy bug and \
|
||||
it should never happen.",
|
||||
);
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
pub mod delete_queue;
|
||||
|
||||
pub mod demuxer;
|
||||
pub mod doc_id_mapping;
|
||||
mod doc_opstamp_mapping;
|
||||
mod flat_map_with_buffer;
|
||||
|
||||
@@ -4,6 +4,7 @@ use fastfield_codecs::Column;
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::indexer::doc_id_mapping::SegmentDocIdMapping;
|
||||
use crate::schema::Field;
|
||||
use crate::SegmentReader;
|
||||
|
||||
pub(crate) struct RemappedDocIdColumn<'a> {
|
||||
@@ -40,7 +41,7 @@ impl<'a> RemappedDocIdColumn<'a> {
|
||||
pub(crate) fn new(
|
||||
readers: &'a [SegmentReader],
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
field: &str,
|
||||
field: Field,
|
||||
) -> Self {
|
||||
let (min_value, max_value) = readers
|
||||
.iter()
|
||||
|
||||
@@ -5,6 +5,7 @@ use fastfield_codecs::Column;
|
||||
use super::flat_map_with_buffer::FlatMapWithBufferIter;
|
||||
use crate::fastfield::{MultiValueIndex, MultiValuedFastFieldReader};
|
||||
use crate::indexer::doc_id_mapping::SegmentDocIdMapping;
|
||||
use crate::schema::Field;
|
||||
use crate::{DocAddress, SegmentReader};
|
||||
|
||||
pub(crate) struct RemappedDocIdMultiValueColumn<'a> {
|
||||
@@ -19,7 +20,7 @@ impl<'a> RemappedDocIdMultiValueColumn<'a> {
|
||||
pub(crate) fn new(
|
||||
readers: &'a [SegmentReader],
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
field: &str,
|
||||
field: Field,
|
||||
) -> Self {
|
||||
// Our values are bitpacked and we need to know what should be
|
||||
// our bitwidth and our minimum value before serializing any values.
|
||||
|
||||
19
src/lib.rs
19
src/lib.rs
@@ -299,6 +299,7 @@ pub use crate::core::{
|
||||
SegmentReader, SingleSegmentIndexWriter,
|
||||
};
|
||||
pub use crate::directory::Directory;
|
||||
pub use crate::indexer::demuxer::*;
|
||||
pub use crate::indexer::operation::UserOperation;
|
||||
pub use crate::indexer::{merge_filtered_segments, merge_indices, IndexWriter, PreparedCommit};
|
||||
pub use crate::postings::Postings;
|
||||
@@ -994,8 +995,8 @@ pub mod tests {
|
||||
let fast_field_unsigned = schema_builder.add_u64_field("unsigned", FAST);
|
||||
let fast_field_signed = schema_builder.add_i64_field("signed", FAST);
|
||||
let fast_field_float = schema_builder.add_f64_field("float", FAST);
|
||||
schema_builder.add_text_field("text", TEXT);
|
||||
schema_builder.add_u64_field("stored_int", STORED);
|
||||
let text_field = schema_builder.add_text_field("text", TEXT);
|
||||
let stored_int_field = schema_builder.add_u64_field("stored_int", STORED);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
let index = Index::create_in_ram(schema);
|
||||
@@ -1010,37 +1011,37 @@ pub mod tests {
|
||||
let searcher = reader.searcher();
|
||||
let segment_reader: &SegmentReader = searcher.segment_reader(0);
|
||||
{
|
||||
let fast_field_reader_res = segment_reader.fast_fields().u64("text");
|
||||
let fast_field_reader_res = segment_reader.fast_fields().u64(text_field);
|
||||
assert!(fast_field_reader_res.is_err());
|
||||
}
|
||||
{
|
||||
let fast_field_reader_opt = segment_reader.fast_fields().u64("stored_int");
|
||||
let fast_field_reader_opt = segment_reader.fast_fields().u64(stored_int_field);
|
||||
assert!(fast_field_reader_opt.is_err());
|
||||
}
|
||||
{
|
||||
let fast_field_reader_opt = segment_reader.fast_fields().u64("signed");
|
||||
let fast_field_reader_opt = segment_reader.fast_fields().u64(fast_field_signed);
|
||||
assert!(fast_field_reader_opt.is_err());
|
||||
}
|
||||
{
|
||||
let fast_field_reader_opt = segment_reader.fast_fields().u64("float");
|
||||
let fast_field_reader_opt = segment_reader.fast_fields().u64(fast_field_float);
|
||||
assert!(fast_field_reader_opt.is_err());
|
||||
}
|
||||
{
|
||||
let fast_field_reader_opt = segment_reader.fast_fields().u64("unsigned");
|
||||
let fast_field_reader_opt = segment_reader.fast_fields().u64(fast_field_unsigned);
|
||||
assert!(fast_field_reader_opt.is_ok());
|
||||
let fast_field_reader = fast_field_reader_opt.unwrap();
|
||||
assert_eq!(fast_field_reader.get_val(0), 4u64)
|
||||
}
|
||||
|
||||
{
|
||||
let fast_field_reader_res = segment_reader.fast_fields().i64("signed");
|
||||
let fast_field_reader_res = segment_reader.fast_fields().i64(fast_field_signed);
|
||||
assert!(fast_field_reader_res.is_ok());
|
||||
let fast_field_reader = fast_field_reader_res.unwrap();
|
||||
assert_eq!(fast_field_reader.get_val(0), 4i64)
|
||||
}
|
||||
|
||||
{
|
||||
let fast_field_reader_res = segment_reader.fast_fields().f64("float");
|
||||
let fast_field_reader_res = segment_reader.fast_fields().f64(fast_field_float);
|
||||
assert!(fast_field_reader_res.is_ok());
|
||||
let fast_field_reader = fast_field_reader_res.unwrap();
|
||||
assert_eq!(fast_field_reader.get_val(0), 4f64)
|
||||
|
||||
@@ -10,7 +10,7 @@ pub enum LogicalLiteral {
|
||||
Term(Term),
|
||||
Phrase(Vec<(usize, Term)>, u32),
|
||||
Range {
|
||||
field: String,
|
||||
field: Field,
|
||||
value_type: Type,
|
||||
lower: Bound<Term>,
|
||||
upper: Bound<Term>,
|
||||
|
||||
@@ -672,7 +672,7 @@ impl QueryParser {
|
||||
let field_entry = self.schema.get_field_entry(field);
|
||||
let value_type = field_entry.field_type().value_type();
|
||||
let logical_ast = LogicalAst::Leaf(Box::new(LogicalLiteral::Range {
|
||||
field: self.schema.get_field_name(field).to_string(),
|
||||
field,
|
||||
value_type,
|
||||
lower: self.resolve_bound(field, json_path, &lower)?,
|
||||
upper: self.resolve_bound(field, json_path, &upper)?,
|
||||
@@ -964,7 +964,7 @@ mod test {
|
||||
let query = make_query_parser().parse_query("title:[A TO B]").unwrap();
|
||||
assert_eq!(
|
||||
format!("{:?}", query),
|
||||
"RangeQuery { field: \"title\", value_type: Str, left_bound: Included([97]), \
|
||||
"RangeQuery { field: Field(0), value_type: Str, left_bound: Included([97]), \
|
||||
right_bound: Included([98]) }"
|
||||
);
|
||||
}
|
||||
|
||||
@@ -67,7 +67,7 @@ pub(crate) fn map_bound<TFrom, TTo, Transform: Fn(&TFrom) -> TTo>(
|
||||
///
|
||||
/// let reader = index.reader()?;
|
||||
/// let searcher = reader.searcher();
|
||||
/// let docs_in_the_sixties = RangeQuery::new_u64("year".to_string(), 1960..1970);
|
||||
/// let docs_in_the_sixties = RangeQuery::new_u64(year_field, 1960..1970);
|
||||
/// let num_60s_books = searcher.search(&docs_in_the_sixties, &Count)?;
|
||||
/// assert_eq!(num_60s_books, 2285);
|
||||
/// Ok(())
|
||||
@@ -76,7 +76,7 @@ pub(crate) fn map_bound<TFrom, TTo, Transform: Fn(&TFrom) -> TTo>(
|
||||
/// ```
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct RangeQuery {
|
||||
field: String,
|
||||
field: Field,
|
||||
value_type: Type,
|
||||
left_bound: Bound<Vec<u8>>,
|
||||
right_bound: Bound<Vec<u8>>,
|
||||
@@ -88,12 +88,15 @@ impl RangeQuery {
|
||||
/// If the value type is not correct, something may go terribly wrong when
|
||||
/// the `Weight` object is created.
|
||||
pub fn new_term_bounds(
|
||||
field: String,
|
||||
field: Field,
|
||||
value_type: Type,
|
||||
left_bound: &Bound<Term>,
|
||||
right_bound: &Bound<Term>,
|
||||
) -> RangeQuery {
|
||||
let verify_and_unwrap_term = |val: &Term| val.value_bytes().to_owned();
|
||||
let verify_and_unwrap_term = |val: &Term| {
|
||||
assert_eq!(field, val.field());
|
||||
val.value_bytes().to_owned()
|
||||
};
|
||||
RangeQuery {
|
||||
field,
|
||||
value_type,
|
||||
@@ -106,7 +109,7 @@ impl RangeQuery {
|
||||
///
|
||||
/// If the field is not of the type `i64`, tantivy
|
||||
/// will panic when the `Weight` object is created.
|
||||
pub fn new_i64(field: String, range: Range<i64>) -> RangeQuery {
|
||||
pub fn new_i64(field: Field, range: Range<i64>) -> RangeQuery {
|
||||
RangeQuery::new_i64_bounds(
|
||||
field,
|
||||
Bound::Included(range.start),
|
||||
@@ -122,15 +125,11 @@ impl RangeQuery {
|
||||
/// If the field is not of the type `i64`, tantivy
|
||||
/// will panic when the `Weight` object is created.
|
||||
pub fn new_i64_bounds(
|
||||
field: String,
|
||||
field: Field,
|
||||
left_bound: Bound<i64>,
|
||||
right_bound: Bound<i64>,
|
||||
) -> RangeQuery {
|
||||
let make_term_val = |val: &i64| {
|
||||
Term::from_field_i64(Field::from_field_id(0), *val)
|
||||
.value_bytes()
|
||||
.to_owned()
|
||||
};
|
||||
let make_term_val = |val: &i64| Term::from_field_i64(field, *val).value_bytes().to_owned();
|
||||
RangeQuery {
|
||||
field,
|
||||
value_type: Type::I64,
|
||||
@@ -143,7 +142,7 @@ impl RangeQuery {
|
||||
///
|
||||
/// If the field is not of the type `f64`, tantivy
|
||||
/// will panic when the `Weight` object is created.
|
||||
pub fn new_f64(field: String, range: Range<f64>) -> RangeQuery {
|
||||
pub fn new_f64(field: Field, range: Range<f64>) -> RangeQuery {
|
||||
RangeQuery::new_f64_bounds(
|
||||
field,
|
||||
Bound::Included(range.start),
|
||||
@@ -159,15 +158,11 @@ impl RangeQuery {
|
||||
/// If the field is not of the type `f64`, tantivy
|
||||
/// will panic when the `Weight` object is created.
|
||||
pub fn new_f64_bounds(
|
||||
field: String,
|
||||
field: Field,
|
||||
left_bound: Bound<f64>,
|
||||
right_bound: Bound<f64>,
|
||||
) -> RangeQuery {
|
||||
let make_term_val = |val: &f64| {
|
||||
Term::from_field_f64(Field::from_field_id(0), *val)
|
||||
.value_bytes()
|
||||
.to_owned()
|
||||
};
|
||||
let make_term_val = |val: &f64| Term::from_field_f64(field, *val).value_bytes().to_owned();
|
||||
RangeQuery {
|
||||
field,
|
||||
value_type: Type::F64,
|
||||
@@ -184,15 +179,11 @@ impl RangeQuery {
|
||||
/// If the field is not of the type `u64`, tantivy
|
||||
/// will panic when the `Weight` object is created.
|
||||
pub fn new_u64_bounds(
|
||||
field: String,
|
||||
field: Field,
|
||||
left_bound: Bound<u64>,
|
||||
right_bound: Bound<u64>,
|
||||
) -> RangeQuery {
|
||||
let make_term_val = |val: &u64| {
|
||||
Term::from_field_u64(Field::from_field_id(0), *val)
|
||||
.value_bytes()
|
||||
.to_owned()
|
||||
};
|
||||
let make_term_val = |val: &u64| Term::from_field_u64(field, *val).value_bytes().to_owned();
|
||||
RangeQuery {
|
||||
field,
|
||||
value_type: Type::U64,
|
||||
@@ -205,7 +196,7 @@ impl RangeQuery {
|
||||
///
|
||||
/// If the field is not of the type `u64`, tantivy
|
||||
/// will panic when the `Weight` object is created.
|
||||
pub fn new_u64(field: String, range: Range<u64>) -> RangeQuery {
|
||||
pub fn new_u64(field: Field, range: Range<u64>) -> RangeQuery {
|
||||
RangeQuery::new_u64_bounds(
|
||||
field,
|
||||
Bound::Included(range.start),
|
||||
@@ -221,15 +212,12 @@ impl RangeQuery {
|
||||
/// If the field is not of the type `date`, tantivy
|
||||
/// will panic when the `Weight` object is created.
|
||||
pub fn new_date_bounds(
|
||||
field: String,
|
||||
field: Field,
|
||||
left_bound: Bound<DateTime>,
|
||||
right_bound: Bound<DateTime>,
|
||||
) -> RangeQuery {
|
||||
let make_term_val = |val: &DateTime| {
|
||||
Term::from_field_date(Field::from_field_id(0), *val)
|
||||
.value_bytes()
|
||||
.to_owned()
|
||||
};
|
||||
let make_term_val =
|
||||
|val: &DateTime| Term::from_field_date(field, *val).value_bytes().to_owned();
|
||||
RangeQuery {
|
||||
field,
|
||||
value_type: Type::Date,
|
||||
@@ -242,7 +230,7 @@ impl RangeQuery {
|
||||
///
|
||||
/// If the field is not of the type `date`, tantivy
|
||||
/// will panic when the `Weight` object is created.
|
||||
pub fn new_date(field: String, range: Range<DateTime>) -> RangeQuery {
|
||||
pub fn new_date(field: Field, range: Range<DateTime>) -> RangeQuery {
|
||||
RangeQuery::new_date_bounds(
|
||||
field,
|
||||
Bound::Included(range.start),
|
||||
@@ -257,7 +245,7 @@ impl RangeQuery {
|
||||
///
|
||||
/// If the field is not of the type `Str`, tantivy
|
||||
/// will panic when the `Weight` object is created.
|
||||
pub fn new_str_bounds(field: String, left: Bound<&str>, right: Bound<&str>) -> RangeQuery {
|
||||
pub fn new_str_bounds(field: Field, left: Bound<&str>, right: Bound<&str>) -> RangeQuery {
|
||||
let make_term_val = |val: &&str| val.as_bytes().to_vec();
|
||||
RangeQuery {
|
||||
field,
|
||||
@@ -271,7 +259,7 @@ impl RangeQuery {
|
||||
///
|
||||
/// If the field is not of the type `Str`, tantivy
|
||||
/// will panic when the `Weight` object is created.
|
||||
pub fn new_str(field: String, range: Range<&str>) -> RangeQuery {
|
||||
pub fn new_str(field: Field, range: Range<&str>) -> RangeQuery {
|
||||
RangeQuery::new_str_bounds(
|
||||
field,
|
||||
Bound::Included(range.start),
|
||||
@@ -280,8 +268,22 @@ impl RangeQuery {
|
||||
}
|
||||
|
||||
/// Field to search over
|
||||
pub fn field(&self) -> &str {
|
||||
&self.field
|
||||
pub fn field(&self) -> Field {
|
||||
self.field
|
||||
}
|
||||
|
||||
/// Lower bound of range
|
||||
pub fn left_bound(&self) -> Bound<Term> {
|
||||
map_bound(&self.left_bound, &|bytes| {
|
||||
Term::from_field_bytes(self.field, bytes)
|
||||
})
|
||||
}
|
||||
|
||||
/// Upper bound of range
|
||||
pub fn right_bound(&self) -> Bound<Term> {
|
||||
map_bound(&self.right_bound, &|bytes| {
|
||||
Term::from_field_bytes(self.field, bytes)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -305,9 +307,7 @@ pub(crate) fn maps_to_u64_fastfield(typ: Type) -> bool {
|
||||
impl Query for RangeQuery {
|
||||
fn weight(&self, enable_scoring: EnableScoring<'_>) -> crate::Result<Box<dyn Weight>> {
|
||||
let schema = enable_scoring.schema();
|
||||
let field_type = schema
|
||||
.get_field_entry(schema.get_field(&self.field)?)
|
||||
.field_type();
|
||||
let field_type = schema.get_field_entry(self.field).field_type();
|
||||
let value_type = field_type.value_type();
|
||||
if value_type != self.value_type {
|
||||
let err_msg = format!(
|
||||
@@ -320,7 +320,7 @@ impl Query for RangeQuery {
|
||||
if field_type.is_fast() && is_type_valid_for_fastfield_range_query(self.value_type) {
|
||||
if field_type.is_ip_addr() {
|
||||
Ok(Box::new(IPFastFieldRangeWeight::new(
|
||||
self.field.to_string(),
|
||||
self.field,
|
||||
&self.left_bound,
|
||||
&self.right_bound,
|
||||
)))
|
||||
@@ -335,14 +335,14 @@ impl Query for RangeQuery {
|
||||
let left_bound = map_bound(&self.left_bound, &parse_from_bytes);
|
||||
let right_bound = map_bound(&self.right_bound, &parse_from_bytes);
|
||||
Ok(Box::new(FastFieldRangeWeight::new(
|
||||
self.field.to_string(),
|
||||
self.field,
|
||||
left_bound,
|
||||
right_bound,
|
||||
)))
|
||||
}
|
||||
} else {
|
||||
Ok(Box::new(RangeWeight {
|
||||
field: self.field.to_string(),
|
||||
field: self.field,
|
||||
left_bound: self.left_bound.clone(),
|
||||
right_bound: self.right_bound.clone(),
|
||||
}))
|
||||
@@ -351,7 +351,7 @@ impl Query for RangeQuery {
|
||||
}
|
||||
|
||||
pub struct RangeWeight {
|
||||
field: String,
|
||||
field: Field,
|
||||
left_bound: Bound<Vec<u8>>,
|
||||
right_bound: Bound<Vec<u8>>,
|
||||
}
|
||||
@@ -379,7 +379,7 @@ impl Weight for RangeWeight {
|
||||
let max_doc = reader.max_doc();
|
||||
let mut doc_bitset = BitSet::with_max_value(max_doc);
|
||||
|
||||
let inverted_index = reader.inverted_index(reader.schema().get_field(&self.field)?)?;
|
||||
let inverted_index = reader.inverted_index(self.field)?;
|
||||
let term_dict = inverted_index.terms();
|
||||
let mut term_range = self.term_range(term_dict)?;
|
||||
while term_range.advance() {
|
||||
@@ -443,7 +443,7 @@ mod tests {
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
|
||||
let docs_in_the_sixties = RangeQuery::new_u64("year".to_string(), 1960u64..1970u64);
|
||||
let docs_in_the_sixties = RangeQuery::new_u64(year_field, 1960u64..1970u64);
|
||||
|
||||
// ... or `1960..=1969` if inclusive range is enabled.
|
||||
let count = searcher.search(&docs_in_the_sixties, &Count)?;
|
||||
@@ -481,13 +481,10 @@ mod tests {
|
||||
let count_multiples =
|
||||
|range_query: RangeQuery| searcher.search(&range_query, &Count).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
count_multiples(RangeQuery::new_i64("intfield".to_string(), 10..11)),
|
||||
9
|
||||
);
|
||||
assert_eq!(count_multiples(RangeQuery::new_i64(int_field, 10..11)), 9);
|
||||
assert_eq!(
|
||||
count_multiples(RangeQuery::new_i64_bounds(
|
||||
"intfield".to_string(),
|
||||
int_field,
|
||||
Bound::Included(10),
|
||||
Bound::Included(11)
|
||||
)),
|
||||
@@ -495,7 +492,7 @@ mod tests {
|
||||
);
|
||||
assert_eq!(
|
||||
count_multiples(RangeQuery::new_i64_bounds(
|
||||
"intfield".to_string(),
|
||||
int_field,
|
||||
Bound::Excluded(9),
|
||||
Bound::Included(10)
|
||||
)),
|
||||
@@ -503,7 +500,7 @@ mod tests {
|
||||
);
|
||||
assert_eq!(
|
||||
count_multiples(RangeQuery::new_i64_bounds(
|
||||
"intfield".to_string(),
|
||||
int_field,
|
||||
Bound::Included(9),
|
||||
Bound::Unbounded
|
||||
)),
|
||||
@@ -543,12 +540,12 @@ mod tests {
|
||||
|range_query: RangeQuery| searcher.search(&range_query, &Count).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
count_multiples(RangeQuery::new_f64("floatfield".to_string(), 10.0..11.0)),
|
||||
count_multiples(RangeQuery::new_f64(float_field, 10.0..11.0)),
|
||||
9
|
||||
);
|
||||
assert_eq!(
|
||||
count_multiples(RangeQuery::new_f64_bounds(
|
||||
"floatfield".to_string(),
|
||||
float_field,
|
||||
Bound::Included(10.0),
|
||||
Bound::Included(11.0)
|
||||
)),
|
||||
@@ -556,7 +553,7 @@ mod tests {
|
||||
);
|
||||
assert_eq!(
|
||||
count_multiples(RangeQuery::new_f64_bounds(
|
||||
"floatfield".to_string(),
|
||||
float_field,
|
||||
Bound::Excluded(9.0),
|
||||
Bound::Included(10.0)
|
||||
)),
|
||||
@@ -564,7 +561,7 @@ mod tests {
|
||||
);
|
||||
assert_eq!(
|
||||
count_multiples(RangeQuery::new_f64_bounds(
|
||||
"floatfield".to_string(),
|
||||
float_field,
|
||||
Bound::Included(9.0),
|
||||
Bound::Unbounded
|
||||
)),
|
||||
|
||||
@@ -11,18 +11,18 @@ use fastfield_codecs::MonotonicallyMappableToU128;
|
||||
use super::fast_field_range_query::{FastFieldCardinality, RangeDocSet};
|
||||
use super::range_query::map_bound;
|
||||
use crate::query::{ConstScorer, Explanation, Scorer, Weight};
|
||||
use crate::schema::Cardinality;
|
||||
use crate::schema::{Cardinality, Field};
|
||||
use crate::{DocId, DocSet, Score, SegmentReader, TantivyError};
|
||||
|
||||
/// `IPFastFieldRangeWeight` uses the ip address fast field to execute range queries.
|
||||
pub struct IPFastFieldRangeWeight {
|
||||
field: String,
|
||||
field: Field,
|
||||
left_bound: Bound<Ipv6Addr>,
|
||||
right_bound: Bound<Ipv6Addr>,
|
||||
}
|
||||
|
||||
impl IPFastFieldRangeWeight {
|
||||
pub fn new(field: String, left_bound: &Bound<Vec<u8>>, right_bound: &Bound<Vec<u8>>) -> Self {
|
||||
pub fn new(field: Field, left_bound: &Bound<Vec<u8>>, right_bound: &Bound<Vec<u8>>) -> Self {
|
||||
let parse_ip_from_bytes = |data: &Vec<u8>| {
|
||||
let ip_u128: u128 =
|
||||
u128::from_be(BinarySerializable::deserialize(&mut &data[..]).unwrap());
|
||||
@@ -40,13 +40,10 @@ impl IPFastFieldRangeWeight {
|
||||
|
||||
impl Weight for IPFastFieldRangeWeight {
|
||||
fn scorer(&self, reader: &SegmentReader, boost: Score) -> crate::Result<Box<dyn Scorer>> {
|
||||
let field_type = reader
|
||||
.schema()
|
||||
.get_field_entry(reader.schema().get_field(&self.field)?)
|
||||
.field_type();
|
||||
let field_type = reader.schema().get_field_entry(self.field).field_type();
|
||||
match field_type.fastfield_cardinality().unwrap() {
|
||||
Cardinality::SingleValue => {
|
||||
let ip_addr_fast_field = reader.fast_fields().ip_addr(&self.field)?;
|
||||
let ip_addr_fast_field = reader.fast_fields().ip_addr(self.field)?;
|
||||
let value_range = bound_to_value_range(
|
||||
&self.left_bound,
|
||||
&self.right_bound,
|
||||
@@ -60,7 +57,7 @@ impl Weight for IPFastFieldRangeWeight {
|
||||
Ok(Box::new(ConstScorer::new(docset, boost)))
|
||||
}
|
||||
Cardinality::MultiValues => {
|
||||
let ip_addr_fast_field = reader.fast_fields().ip_addrs(&self.field)?;
|
||||
let ip_addr_fast_field = reader.fast_fields().ip_addrs(self.field)?;
|
||||
let value_range = bound_to_value_range(
|
||||
&self.left_bound,
|
||||
&self.right_bound,
|
||||
|
||||
@@ -9,18 +9,18 @@ use fastfield_codecs::MonotonicallyMappableToU64;
|
||||
use super::fast_field_range_query::{FastFieldCardinality, RangeDocSet};
|
||||
use super::range_query::map_bound;
|
||||
use crate::query::{ConstScorer, Explanation, Scorer, Weight};
|
||||
use crate::schema::Cardinality;
|
||||
use crate::schema::{Cardinality, Field};
|
||||
use crate::{DocId, DocSet, Score, SegmentReader, TantivyError};
|
||||
|
||||
/// `FastFieldRangeWeight` uses the fast field to execute range queries.
|
||||
pub struct FastFieldRangeWeight {
|
||||
field: String,
|
||||
field: Field,
|
||||
left_bound: Bound<u64>,
|
||||
right_bound: Bound<u64>,
|
||||
}
|
||||
|
||||
impl FastFieldRangeWeight {
|
||||
pub fn new(field: String, left_bound: Bound<u64>, right_bound: Bound<u64>) -> Self {
|
||||
pub fn new(field: Field, left_bound: Bound<u64>, right_bound: Bound<u64>) -> Self {
|
||||
let left_bound = map_bound(&left_bound, &|val| *val);
|
||||
let right_bound = map_bound(&right_bound, &|val| *val);
|
||||
Self {
|
||||
@@ -33,13 +33,10 @@ impl FastFieldRangeWeight {
|
||||
|
||||
impl Weight for FastFieldRangeWeight {
|
||||
fn scorer(&self, reader: &SegmentReader, boost: Score) -> crate::Result<Box<dyn Scorer>> {
|
||||
let field_type = reader
|
||||
.schema()
|
||||
.get_field_entry(reader.schema().get_field(&self.field)?)
|
||||
.field_type();
|
||||
let field_type = reader.schema().get_field_entry(self.field).field_type();
|
||||
match field_type.fastfield_cardinality().unwrap() {
|
||||
Cardinality::SingleValue => {
|
||||
let fast_field = reader.fast_fields().u64_lenient(&self.field)?;
|
||||
let fast_field = reader.fast_fields().u64_lenient(self.field)?;
|
||||
let value_range = bound_to_value_range(
|
||||
&self.left_bound,
|
||||
&self.right_bound,
|
||||
@@ -51,7 +48,7 @@ impl Weight for FastFieldRangeWeight {
|
||||
Ok(Box::new(ConstScorer::new(docset, boost)))
|
||||
}
|
||||
Cardinality::MultiValues => {
|
||||
let fast_field = reader.fast_fields().u64s_lenient(&self.field)?;
|
||||
let fast_field = reader.fast_fields().u64s_lenient(self.field)?;
|
||||
let value_range = bound_to_value_range(
|
||||
&self.left_bound,
|
||||
&self.right_bound,
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user