mirror of
https://github.com/quickwit-oss/tantivy.git
synced 2026-01-09 10:32:55 +00:00
Compare commits
22 Commits
sparse_cod
...
simplify
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
fb6d5acb82 | ||
|
|
4cf911d56a | ||
|
|
0f5cff762f | ||
|
|
6d9a123cf2 | ||
|
|
0f4a47816a | ||
|
|
b062ab2196 | ||
|
|
a9d2f3db23 | ||
|
|
44e03791f9 | ||
|
|
2d23763e9f | ||
|
|
a24ae8d924 | ||
|
|
927dff5262 | ||
|
|
a695edcc95 | ||
|
|
b4b4f3fa73 | ||
|
|
b50e4b7c20 | ||
|
|
f8686ab1ec | ||
|
|
2fe42719d8 | ||
|
|
fadd784a25 | ||
|
|
0e94213af0 | ||
|
|
0da2a2e70d | ||
|
|
0bcdf3cbbf | ||
|
|
8f647b817f | ||
|
|
a86b0df6f4 |
@@ -11,6 +11,7 @@ repository = "https://github.com/quickwit-oss/tantivy"
|
||||
readme = "README.md"
|
||||
keywords = ["search", "information", "retrieval"]
|
||||
edition = "2021"
|
||||
rust-version = "1.62"
|
||||
|
||||
[dependencies]
|
||||
oneshot = "0.1.3"
|
||||
@@ -19,11 +20,11 @@ byteorder = "1.4.3"
|
||||
crc32fast = "1.3.2"
|
||||
once_cell = "1.10.0"
|
||||
regex = { version = "1.5.5", default-features = false, features = ["std", "unicode"] }
|
||||
tantivy-fst = "0.3.0"
|
||||
tantivy-fst = "0.4.0"
|
||||
memmap2 = { version = "0.5.3", optional = true }
|
||||
lz4_flex = { version = "0.9.2", default-features = false, features = ["checked-decode"], optional = true }
|
||||
brotli = { version = "3.3.4", optional = true }
|
||||
zstd = { version = "0.11", optional = true }
|
||||
zstd = { version = "0.11", optional = true, default-features = false }
|
||||
snap = { version = "1.0.5", optional = true }
|
||||
tempfile = { version = "3.3.0", optional = true }
|
||||
log = "0.4.16"
|
||||
|
||||
@@ -58,7 +58,7 @@ Distributed search is out of the scope of Tantivy, but if you are looking for th
|
||||
|
||||
# Getting started
|
||||
|
||||
Tantivy works on stable Rust (>= 1.27) and supports Linux, macOS, and Windows.
|
||||
Tantivy works on stable Rust and supports Linux, macOS, and Windows.
|
||||
|
||||
- [Tantivy's simple search example](https://tantivy-search.github.io/examples/basic_search.html)
|
||||
- [tantivy-cli and its tutorial](https://github.com/quickwit-oss/tantivy-cli) - `tantivy-cli` is an actual command-line interface that makes it easy for you to create a search engine,
|
||||
@@ -81,9 +81,13 @@ There are many ways to support this project.
|
||||
|
||||
We use the GitHub Pull Request workflow: reference a GitHub ticket and/or include a comprehensive commit message when opening a PR.
|
||||
|
||||
## Minimum supported Rust version
|
||||
|
||||
Tantivy currently requires at least Rust 1.62 or later to compile.
|
||||
|
||||
## Clone and build locally
|
||||
|
||||
Tantivy compiles on stable Rust but requires `Rust >= 1.27`.
|
||||
Tantivy compiles on stable Rust.
|
||||
To check out and run tests, you can simply run:
|
||||
|
||||
```bash
|
||||
|
||||
@@ -312,7 +312,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn estimation_test_bad_interpolation_case_monotonically_increasing() {
|
||||
let mut data: Vec<u64> = (200..=20000_u64).collect();
|
||||
let mut data: Vec<u64> = (201..=20000_u64).collect();
|
||||
data.push(1_000_000);
|
||||
let data: VecColumn = data.as_slice().into();
|
||||
|
||||
|
||||
@@ -68,29 +68,37 @@ impl Line {
|
||||
}
|
||||
|
||||
// Same as train, but the intercept is only estimated from provided sample positions
|
||||
pub fn estimate(ys: &dyn Column, sample_positions: &[u64]) -> Self {
|
||||
pub fn estimate(sample_positions_and_values: &[(u64, u64)]) -> Self {
|
||||
let first_val = sample_positions_and_values[0].1;
|
||||
let last_val = sample_positions_and_values[sample_positions_and_values.len() - 1].1;
|
||||
let num_vals = sample_positions_and_values[sample_positions_and_values.len() - 1].0 + 1;
|
||||
Self::train_from(
|
||||
ys,
|
||||
sample_positions
|
||||
.iter()
|
||||
.cloned()
|
||||
.map(|pos| (pos, ys.get_val(pos))),
|
||||
first_val,
|
||||
last_val,
|
||||
num_vals,
|
||||
sample_positions_and_values.iter().cloned(),
|
||||
)
|
||||
}
|
||||
|
||||
// Intercept is only computed from provided positions
|
||||
fn train_from(ys: &dyn Column, positions_and_values: impl Iterator<Item = (u64, u64)>) -> Self {
|
||||
let num_vals = if let Some(num_vals) = NonZeroU64::new(ys.num_vals() - 1) {
|
||||
num_vals
|
||||
fn train_from(
|
||||
first_val: u64,
|
||||
last_val: u64,
|
||||
num_vals: u64,
|
||||
positions_and_values: impl Iterator<Item = (u64, u64)>,
|
||||
) -> Self {
|
||||
// TODO replace with let else
|
||||
let idx_last_val = if let Some(idx_last_val) = NonZeroU64::new(num_vals - 1) {
|
||||
idx_last_val
|
||||
} else {
|
||||
return Line::default();
|
||||
};
|
||||
|
||||
let y0 = ys.get_val(0);
|
||||
let y1 = ys.get_val(num_vals.get());
|
||||
let y0 = first_val;
|
||||
let y1 = last_val;
|
||||
|
||||
// We first independently pick our slope.
|
||||
let slope = compute_slope(y0, y1, num_vals);
|
||||
let slope = compute_slope(y0, y1, idx_last_val);
|
||||
|
||||
// We picked our slope. Note that it does not have to be perfect.
|
||||
// Now we need to compute the best intercept.
|
||||
@@ -138,8 +146,12 @@ impl Line {
|
||||
/// This function is only invariable by translation if all of the
|
||||
/// `ys` are packaged into half of the space. (See heuristic below)
|
||||
pub fn train(ys: &dyn Column) -> Self {
|
||||
let first_val = ys.iter().next().unwrap();
|
||||
let last_val = ys.iter().nth(ys.num_vals() as usize - 1).unwrap();
|
||||
Self::train_from(
|
||||
ys,
|
||||
first_val,
|
||||
last_val,
|
||||
ys.num_vals(),
|
||||
ys.iter().enumerate().map(|(pos, val)| (pos as u64, val)),
|
||||
)
|
||||
}
|
||||
|
||||
@@ -126,18 +126,20 @@ impl FastFieldCodec for LinearCodec {
|
||||
return None; // disable compressor for this case
|
||||
}
|
||||
|
||||
// let's sample at 0%, 5%, 10% .. 95%, 100%
|
||||
let num_vals = column.num_vals() as f32 / 100.0;
|
||||
let sample_positions = (0..20)
|
||||
.map(|pos| (num_vals * pos as f32 * 5.0) as u64)
|
||||
.collect::<Vec<_>>();
|
||||
let limit_num_vals = column.num_vals().min(100_000);
|
||||
|
||||
let line = Line::estimate(column, &sample_positions);
|
||||
let num_samples = 100;
|
||||
let step_size = (limit_num_vals / num_samples).max(1); // 20 samples
|
||||
let mut sample_positions_and_values: Vec<_> = Vec::new();
|
||||
for (pos, val) in column.iter().enumerate().step_by(step_size as usize) {
|
||||
sample_positions_and_values.push((pos as u64, val));
|
||||
}
|
||||
|
||||
let estimated_bit_width = sample_positions
|
||||
let line = Line::estimate(&sample_positions_and_values);
|
||||
|
||||
let estimated_bit_width = sample_positions_and_values
|
||||
.into_iter()
|
||||
.map(|pos| {
|
||||
let actual_value = column.get_val(pos);
|
||||
.map(|(pos, actual_value)| {
|
||||
let interpolated_val = line.eval(pos as u64);
|
||||
actual_value.wrapping_sub(interpolated_val)
|
||||
})
|
||||
@@ -146,6 +148,7 @@ impl FastFieldCodec for LinearCodec {
|
||||
.max()
|
||||
.unwrap_or(0);
|
||||
|
||||
// Extrapolate to whole column
|
||||
let num_bits = (estimated_bit_width as u64 * column.num_vals() as u64) + 64;
|
||||
let num_bits_uncompressed = 64 * column.num_vals();
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
|
||||
@@ -323,8 +323,8 @@ impl SegmentRangeCollector {
|
||||
/// Converts the user provided f64 range value to fast field value space.
|
||||
///
|
||||
/// Internally fast field values are always stored as u64.
|
||||
/// If the fast field has u64 [1,2,5], these values are stored as is in the fast field.
|
||||
/// A fast field with f64 [1.0, 2.0, 5.0] is converted to u64 space, using a
|
||||
/// If the fast field has u64 `[1, 2, 5]`, these values are stored as is in the fast field.
|
||||
/// A fast field with f64 `[1.0, 2.0, 5.0]` is converted to u64 space, using a
|
||||
/// monotonic mapping function, so the order is preserved.
|
||||
///
|
||||
/// Consequently, a f64 user range 1.0..3.0 needs to be converted to fast field value space using
|
||||
|
||||
@@ -338,11 +338,7 @@ impl SegmentCollector for FacetSegmentCollector {
|
||||
let mut previous_collapsed_ord: usize = usize::MAX;
|
||||
for &facet_ord in &self.facet_ords_buf {
|
||||
let collapsed_ord = self.collapse_mapping[facet_ord as usize];
|
||||
self.counts[collapsed_ord] += if collapsed_ord == previous_collapsed_ord {
|
||||
0
|
||||
} else {
|
||||
1
|
||||
};
|
||||
self.counts[collapsed_ord] += u64::from(collapsed_ord != previous_collapsed_ord);
|
||||
previous_collapsed_ord = collapsed_ord;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -19,7 +19,7 @@ use crate::error::{DataCorruption, TantivyError};
|
||||
use crate::indexer::index_writer::{MAX_NUM_THREAD, MEMORY_ARENA_NUM_BYTES_MIN};
|
||||
use crate::indexer::segment_updater::save_metas;
|
||||
use crate::reader::{IndexReader, IndexReaderBuilder};
|
||||
use crate::schema::{Field, FieldType, Schema};
|
||||
use crate::schema::{Cardinality, Field, FieldType, Schema};
|
||||
use crate::tokenizer::{TextAnalyzer, TokenizerManager};
|
||||
use crate::IndexWriter;
|
||||
|
||||
@@ -152,9 +152,7 @@ impl IndexBuilder {
|
||||
/// This should only be used for unit tests.
|
||||
pub fn create_in_ram(self) -> Result<Index, TantivyError> {
|
||||
let ram_directory = RamDirectory::create();
|
||||
Ok(self
|
||||
.create(ram_directory)
|
||||
.expect("Creating a RamDirectory should never fail"))
|
||||
self.create(ram_directory)
|
||||
}
|
||||
|
||||
/// Creates a new index in a given filepath.
|
||||
@@ -228,10 +226,44 @@ impl IndexBuilder {
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
fn validate(&self) -> crate::Result<()> {
|
||||
if let Some(schema) = self.schema.as_ref() {
|
||||
if let Some(sort_by_field) = self.index_settings.sort_by_field.as_ref() {
|
||||
let schema_field = schema.get_field(&sort_by_field.field).ok_or_else(|| {
|
||||
TantivyError::InvalidArgument(format!(
|
||||
"Field to sort index {} not found in schema",
|
||||
sort_by_field.field
|
||||
))
|
||||
})?;
|
||||
let entry = schema.get_field_entry(schema_field);
|
||||
if !entry.is_fast() {
|
||||
return Err(TantivyError::InvalidArgument(format!(
|
||||
"Field {} is no fast field. Field needs to be a single value fast field \
|
||||
to be used to sort an index",
|
||||
sort_by_field.field
|
||||
)));
|
||||
}
|
||||
if entry.field_type().fastfield_cardinality() != Some(Cardinality::SingleValue) {
|
||||
return Err(TantivyError::InvalidArgument(format!(
|
||||
"Only single value fast field Cardinality supported for sorting index {}",
|
||||
sort_by_field.field
|
||||
)));
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
} else {
|
||||
Err(TantivyError::InvalidArgument(
|
||||
"no schema passed".to_string(),
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a new index given an implementation of the trait `Directory`.
|
||||
///
|
||||
/// If a directory previously existed, it will be erased.
|
||||
fn create<T: Into<Box<dyn Directory>>>(self, dir: T) -> crate::Result<Index> {
|
||||
self.validate()?;
|
||||
let dir = dir.into();
|
||||
let directory = ManagedDirectory::wrap(dir)?;
|
||||
save_new_metas(
|
||||
|
||||
@@ -304,7 +304,7 @@ pub(crate) fn atomic_write(path: &Path, content: &[u8]) -> io::Result<()> {
|
||||
"Path {:?} does not have parent directory.",
|
||||
)
|
||||
})?;
|
||||
let mut tempfile = tempfile::Builder::new().tempfile_in(&parent_path)?;
|
||||
let mut tempfile = tempfile::Builder::new().tempfile_in(parent_path)?;
|
||||
tempfile.write_all(content)?;
|
||||
tempfile.flush()?;
|
||||
tempfile.as_file_mut().sync_data()?;
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
use std::io;
|
||||
use std::sync::Mutex;
|
||||
|
||||
use fastfield_codecs::{Column, MonotonicallyMappableToU64, VecColumn};
|
||||
use fnv::FnvHashMap;
|
||||
@@ -204,112 +203,63 @@ impl MultiValuedFastFieldWriter {
|
||||
pub(crate) struct MultivalueStartIndex<'a, C: Column> {
|
||||
column: &'a C,
|
||||
doc_id_map: &'a DocIdMapping,
|
||||
min_max_opt: Mutex<Option<(u64, u64)>>,
|
||||
random_seeker: Mutex<MultivalueStartIndexRandomSeeker<'a, C>>,
|
||||
}
|
||||
|
||||
struct MultivalueStartIndexRandomSeeker<'a, C: Column> {
|
||||
seek_head: MultivalueStartIndexIter<'a, C>,
|
||||
seek_next_id: u64,
|
||||
}
|
||||
impl<'a, C: Column> MultivalueStartIndexRandomSeeker<'a, C> {
|
||||
fn new(column: &'a C, doc_id_map: &'a DocIdMapping) -> Self {
|
||||
Self {
|
||||
seek_head: MultivalueStartIndexIter {
|
||||
column,
|
||||
doc_id_map,
|
||||
new_doc_id: 0,
|
||||
offset: 0u64,
|
||||
},
|
||||
seek_next_id: 0u64,
|
||||
}
|
||||
}
|
||||
min: u64,
|
||||
max: u64,
|
||||
}
|
||||
|
||||
impl<'a, C: Column> MultivalueStartIndex<'a, C> {
|
||||
pub fn new(column: &'a C, doc_id_map: &'a DocIdMapping) -> Self {
|
||||
assert_eq!(column.num_vals(), doc_id_map.num_old_doc_ids() as u64 + 1);
|
||||
let (min, max) =
|
||||
tantivy_bitpacker::minmax(iter_remapped_multivalue_index(doc_id_map, column))
|
||||
.unwrap_or((0u64, 0u64));
|
||||
MultivalueStartIndex {
|
||||
column,
|
||||
doc_id_map,
|
||||
min_max_opt: Mutex::default(),
|
||||
random_seeker: Mutex::new(MultivalueStartIndexRandomSeeker::new(column, doc_id_map)),
|
||||
min,
|
||||
max,
|
||||
}
|
||||
}
|
||||
|
||||
fn minmax(&self) -> (u64, u64) {
|
||||
if let Some((min, max)) = *self.min_max_opt.lock().unwrap() {
|
||||
return (min, max);
|
||||
}
|
||||
let (min, max) = tantivy_bitpacker::minmax(self.iter()).unwrap_or((0u64, 0u64));
|
||||
*self.min_max_opt.lock().unwrap() = Some((min, max));
|
||||
(min, max)
|
||||
}
|
||||
}
|
||||
impl<'a, C: Column> Column for MultivalueStartIndex<'a, C> {
|
||||
fn get_val(&self, idx: u64) -> u64 {
|
||||
let mut random_seeker_lock = self.random_seeker.lock().unwrap();
|
||||
if random_seeker_lock.seek_next_id > idx {
|
||||
*random_seeker_lock =
|
||||
MultivalueStartIndexRandomSeeker::new(self.column, self.doc_id_map);
|
||||
}
|
||||
let to_skip = idx - random_seeker_lock.seek_next_id;
|
||||
random_seeker_lock.seek_next_id = idx + 1;
|
||||
random_seeker_lock.seek_head.nth(to_skip as usize).unwrap()
|
||||
fn get_val(&self, _idx: u64) -> u64 {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u64 {
|
||||
self.minmax().0
|
||||
self.min
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.minmax().1
|
||||
self.max
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u64 {
|
||||
(self.doc_id_map.num_new_doc_ids() + 1) as u64
|
||||
}
|
||||
|
||||
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = u64> + 'b> {
|
||||
Box::new(MultivalueStartIndexIter::new(self.column, self.doc_id_map))
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
Box::new(iter_remapped_multivalue_index(
|
||||
self.doc_id_map,
|
||||
&self.column,
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
struct MultivalueStartIndexIter<'a, C: Column> {
|
||||
pub column: &'a C,
|
||||
pub doc_id_map: &'a DocIdMapping,
|
||||
pub new_doc_id: usize,
|
||||
pub offset: u64,
|
||||
}
|
||||
|
||||
impl<'a, C: Column> MultivalueStartIndexIter<'a, C> {
|
||||
fn new(column: &'a C, doc_id_map: &'a DocIdMapping) -> Self {
|
||||
Self {
|
||||
column,
|
||||
doc_id_map,
|
||||
new_doc_id: 0,
|
||||
offset: 0,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, C: Column> Iterator for MultivalueStartIndexIter<'a, C> {
|
||||
type Item = u64;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
if self.new_doc_id > self.doc_id_map.num_new_doc_ids() {
|
||||
return None;
|
||||
}
|
||||
let new_doc_id = self.new_doc_id;
|
||||
self.new_doc_id += 1;
|
||||
let start_offset = self.offset;
|
||||
if new_doc_id < self.doc_id_map.num_new_doc_ids() {
|
||||
let old_doc = self.doc_id_map.get_old_doc_id(new_doc_id as u32) as u64;
|
||||
let num_vals_for_doc = self.column.get_val(old_doc + 1) - self.column.get_val(old_doc);
|
||||
self.offset += num_vals_for_doc;
|
||||
}
|
||||
Some(start_offset)
|
||||
}
|
||||
fn iter_remapped_multivalue_index<'a, C: Column>(
|
||||
doc_id_map: &'a DocIdMapping,
|
||||
column: &'a C,
|
||||
) -> impl Iterator<Item = u64> + 'a {
|
||||
let mut offset = 0;
|
||||
let offsets = doc_id_map
|
||||
.iter_old_doc_ids()
|
||||
.map(move |old_doc| {
|
||||
let num_vals_for_doc =
|
||||
column.get_val(old_doc as u64 + 1) - column.get_val(old_doc as u64);
|
||||
offset += num_vals_for_doc;
|
||||
offset
|
||||
});
|
||||
std::iter::once(0u64).chain(offsets)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -344,11 +294,5 @@ mod tests {
|
||||
vec![0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
|
||||
);
|
||||
assert_eq!(multivalue_start_index.num_vals(), 11);
|
||||
assert_eq!(multivalue_start_index.get_val(3), 2);
|
||||
assert_eq!(multivalue_start_index.get_val(5), 5);
|
||||
assert_eq!(multivalue_start_index.get_val(8), 21);
|
||||
assert_eq!(multivalue_start_index.get_val(4), 3);
|
||||
assert_eq!(multivalue_start_index.get_val(0), 0);
|
||||
assert_eq!(multivalue_start_index.get_val(10), 55);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -391,15 +391,8 @@ impl<'map, 'bitp> Column for WriterFastFieldAccessProvider<'map, 'bitp> {
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `doc` is greater than the index.
|
||||
fn get_val(&self, doc: u64) -> u64 {
|
||||
if let Some(doc_id_map) = self.doc_id_map {
|
||||
self.vals
|
||||
.get(doc_id_map.get_old_doc_id(doc as u32) as usize) // consider extra
|
||||
// FastFieldReader wrapper for
|
||||
// non doc_id_map
|
||||
} else {
|
||||
self.vals.get(doc as usize)
|
||||
}
|
||||
fn get_val(&self, _doc: u64) -> u64 {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
|
||||
@@ -34,10 +34,6 @@ impl SegmentDocIdMapping {
|
||||
self.new_doc_id_to_old_doc_addr.len()
|
||||
}
|
||||
|
||||
pub(crate) fn get_old_doc_addr(&self, new_doc_id: DocId) -> DocAddress {
|
||||
self.new_doc_id_to_old_doc_addr[new_doc_id as usize]
|
||||
}
|
||||
|
||||
/// This flags means the segments are simply stacked in the order of their ordinal.
|
||||
/// e.g. [(0, 1), .. (n, 1), (0, 2)..., (m, 2)]
|
||||
///
|
||||
|
||||
@@ -1395,6 +1395,35 @@ mod tests {
|
||||
assert!(commit_again.is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sort_by_multivalue_field_error() -> crate::Result<()> {
|
||||
let mut schema_builder = schema::Schema::builder();
|
||||
let options = NumericOptions::default().set_fast(Cardinality::MultiValues);
|
||||
schema_builder.add_u64_field("id", options);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
let settings = IndexSettings {
|
||||
sort_by_field: Some(IndexSortByField {
|
||||
field: "id".to_string(),
|
||||
order: Order::Desc,
|
||||
}),
|
||||
..Default::default()
|
||||
};
|
||||
|
||||
let err = Index::builder()
|
||||
.schema(schema)
|
||||
.settings(settings)
|
||||
.create_in_ram()
|
||||
.unwrap_err();
|
||||
assert_eq!(
|
||||
err.to_string(),
|
||||
"An invalid argument was passed: 'Only single value fast field Cardinality supported \
|
||||
for sorting index id'"
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_delete_with_sort_by_field() -> crate::Result<()> {
|
||||
let mut schema_builder = schema::Schema::builder();
|
||||
|
||||
@@ -14,8 +14,8 @@ use crate::fastfield::{
|
||||
};
|
||||
use crate::fieldnorm::{FieldNormReader, FieldNormReaders, FieldNormsSerializer, FieldNormsWriter};
|
||||
use crate::indexer::doc_id_mapping::{expect_field_id_for_sort_field, SegmentDocIdMapping};
|
||||
use crate::indexer::sorted_doc_id_column::SortedDocIdColumn;
|
||||
use crate::indexer::sorted_doc_id_multivalue_column::SortedDocIdMultiValueColumn;
|
||||
use crate::indexer::sorted_doc_id_column::RemappedDocIdColumn;
|
||||
use crate::indexer::sorted_doc_id_multivalue_column::RemappedDocIdMultiValueColumn;
|
||||
use crate::indexer::SegmentSerializer;
|
||||
use crate::postings::{InvertedIndexSerializer, Postings, SegmentPostings};
|
||||
use crate::schema::{Cardinality, Field, FieldType, Schema};
|
||||
@@ -310,7 +310,7 @@ impl IndexMerger {
|
||||
fast_field_serializer: &mut CompositeFastFieldSerializer,
|
||||
doc_id_mapping: &SegmentDocIdMapping,
|
||||
) -> crate::Result<()> {
|
||||
let fast_field_accessor = SortedDocIdColumn::new(&self.readers, doc_id_mapping, field);
|
||||
let fast_field_accessor = RemappedDocIdColumn::new(&self.readers, doc_id_mapping, field);
|
||||
fast_field_serializer.create_auto_detect_u64_fast_field(field, fast_field_accessor)?;
|
||||
|
||||
Ok(())
|
||||
@@ -428,14 +428,8 @@ impl IndexMerger {
|
||||
fast_field_serializer: &mut CompositeFastFieldSerializer,
|
||||
doc_id_mapping: &SegmentDocIdMapping,
|
||||
reader_and_field_accessors: &[(&SegmentReader, T)],
|
||||
) -> crate::Result<Vec<u64>> {
|
||||
// We can now create our `idx` serializer, and in a second pass,
|
||||
// can effectively push the different indexes.
|
||||
|
||||
// copying into a temp vec is not ideal, but the fast field codec api requires random
|
||||
// access, which is used in the estimation. It's possible to 1. calculate random
|
||||
// access on the fly or 2. change the codec api to make random access optional, but
|
||||
// they both have also major drawbacks.
|
||||
) -> crate::Result<()> {
|
||||
// TODO Use `Column` implementation instead
|
||||
|
||||
let mut offsets = Vec::with_capacity(doc_id_mapping.len());
|
||||
let mut offset = 0;
|
||||
@@ -449,7 +443,7 @@ impl IndexMerger {
|
||||
let fastfield_accessor = VecColumn::from(&offsets[..]);
|
||||
|
||||
fast_field_serializer.create_auto_detect_u64_fast_field(field, fastfield_accessor)?;
|
||||
Ok(offsets)
|
||||
Ok(())
|
||||
}
|
||||
/// Returns the fastfield index (index for the data, not the data).
|
||||
fn write_multi_value_fast_field_idx(
|
||||
@@ -457,7 +451,7 @@ impl IndexMerger {
|
||||
field: Field,
|
||||
fast_field_serializer: &mut CompositeFastFieldSerializer,
|
||||
doc_id_mapping: &SegmentDocIdMapping,
|
||||
) -> crate::Result<Vec<u64>> {
|
||||
) -> crate::Result<()> {
|
||||
let reader_ordinal_and_field_accessors = self
|
||||
.readers
|
||||
.iter()
|
||||
@@ -561,16 +555,16 @@ impl IndexMerger {
|
||||
fast_field_serializer: &mut CompositeFastFieldSerializer,
|
||||
doc_id_mapping: &SegmentDocIdMapping,
|
||||
) -> crate::Result<()> {
|
||||
// Multifastfield consists in 2 fastfields.
|
||||
// Multifastfield consists of 2 fastfields.
|
||||
// The first serves as an index into the second one and is strictly increasing.
|
||||
// The second contains the actual values.
|
||||
|
||||
// First we merge the idx fast field.
|
||||
let offsets =
|
||||
self.write_multi_value_fast_field_idx(field, fast_field_serializer, doc_id_mapping)?;
|
||||
|
||||
self.write_multi_value_fast_field_idx(field, fast_field_serializer, doc_id_mapping)?;
|
||||
|
||||
let fastfield_accessor =
|
||||
SortedDocIdMultiValueColumn::new(&self.readers, doc_id_mapping, &offsets, field);
|
||||
RemappedDocIdMultiValueColumn::new(&self.readers, doc_id_mapping, field);
|
||||
fast_field_serializer.create_auto_detect_u64_fast_field_with_idx(
|
||||
field,
|
||||
fastfield_accessor,
|
||||
|
||||
@@ -24,12 +24,25 @@ impl SegmentSerializer {
|
||||
// In the merge case this is not necessary because we can kmerge the already sorted
|
||||
// segments
|
||||
let remapping_required = segment.index().settings().sort_by_field.is_some() && !is_in_merge;
|
||||
let store_component = if remapping_required {
|
||||
SegmentComponent::TempStore
|
||||
let settings = segment.index().settings().clone();
|
||||
let store_writer = if remapping_required {
|
||||
let store_write = segment.open_write(SegmentComponent::TempStore)?;
|
||||
StoreWriter::new(
|
||||
store_write,
|
||||
crate::store::Compressor::None,
|
||||
0, // we want random access on the docs, so we choose a minimal block size. Every
|
||||
// doc will get its own block.
|
||||
settings.docstore_compress_dedicated_thread,
|
||||
)?
|
||||
} else {
|
||||
SegmentComponent::Store
|
||||
let store_write = segment.open_write(SegmentComponent::Store)?;
|
||||
StoreWriter::new(
|
||||
store_write,
|
||||
settings.docstore_compression,
|
||||
settings.docstore_blocksize,
|
||||
settings.docstore_compress_dedicated_thread,
|
||||
)?
|
||||
};
|
||||
let store_write = segment.open_write(store_component)?;
|
||||
|
||||
let fast_field_write = segment.open_write(SegmentComponent::FastFields)?;
|
||||
let fast_field_serializer = CompositeFastFieldSerializer::from_write(fast_field_write)?;
|
||||
@@ -38,13 +51,6 @@ impl SegmentSerializer {
|
||||
let fieldnorms_serializer = FieldNormsSerializer::from_write(fieldnorms_write)?;
|
||||
|
||||
let postings_serializer = InvertedIndexSerializer::open(&mut segment)?;
|
||||
let settings = segment.index().settings();
|
||||
let store_writer = StoreWriter::new(
|
||||
store_write,
|
||||
settings.docstore_compression,
|
||||
settings.docstore_blocksize,
|
||||
settings.docstore_compress_dedicated_thread,
|
||||
)?;
|
||||
Ok(SegmentSerializer {
|
||||
segment,
|
||||
store_writer,
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
use fastfield_codecs::MonotonicallyMappableToU64;
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::doc_id_mapping::{get_doc_id_mapping_from_field, DocIdMapping};
|
||||
use super::operation::AddOperation;
|
||||
@@ -157,7 +158,13 @@ impl SegmentWriter {
|
||||
|
||||
fn index_document(&mut self, doc: &Document) -> crate::Result<()> {
|
||||
let doc_id = self.max_doc;
|
||||
for (field, values) in doc.get_sorted_field_values() {
|
||||
let vals_grouped_by_field = doc
|
||||
.field_values()
|
||||
.iter()
|
||||
.sorted_by_key(|el| el.field())
|
||||
.group_by(|el| el.field());
|
||||
for (field, field_values) in &vals_grouped_by_field {
|
||||
let values = field_values.map(|field_value| field_value.value());
|
||||
let field_entry = self.schema.get_field_entry(field);
|
||||
let make_schema_error = || {
|
||||
crate::TantivyError::SchemaError(format!(
|
||||
@@ -198,24 +205,16 @@ impl SegmentWriter {
|
||||
}
|
||||
FieldType::Str(_) => {
|
||||
let mut token_streams: Vec<BoxTokenStream> = vec![];
|
||||
let mut offsets = vec![];
|
||||
let mut total_offset = 0;
|
||||
|
||||
for value in values {
|
||||
match value {
|
||||
Value::PreTokStr(tok_str) => {
|
||||
offsets.push(total_offset);
|
||||
if let Some(last_token) = tok_str.tokens.last() {
|
||||
total_offset += last_token.offset_to;
|
||||
}
|
||||
token_streams
|
||||
.push(PreTokenizedStream::from(tok_str.clone()).into());
|
||||
}
|
||||
Value::Str(ref text) => {
|
||||
let text_analyzer =
|
||||
&self.per_field_text_analyzers[field.field_id() as usize];
|
||||
offsets.push(total_offset);
|
||||
total_offset += text.len();
|
||||
token_streams.push(text_analyzer.token_stream(text));
|
||||
}
|
||||
_ => (),
|
||||
@@ -284,9 +283,8 @@ impl SegmentWriter {
|
||||
}
|
||||
FieldType::JsonObject(_) => {
|
||||
let text_analyzer = &self.per_field_text_analyzers[field.field_id() as usize];
|
||||
let json_values_it = values
|
||||
.iter()
|
||||
.map(|value| value.as_json().ok_or_else(make_schema_error));
|
||||
let json_values_it =
|
||||
values.map(|value| value.as_json().ok_or_else(make_schema_error));
|
||||
index_json_values(
|
||||
doc_id,
|
||||
json_values_it,
|
||||
@@ -374,9 +372,9 @@ fn remap_and_write(
|
||||
doc_id_map,
|
||||
)?;
|
||||
|
||||
debug!("resort-docstore");
|
||||
// finalize temp docstore and create version, which reflects the doc_id_map
|
||||
if let Some(doc_id_map) = doc_id_map {
|
||||
debug!("resort-docstore");
|
||||
let store_write = serializer
|
||||
.segment_mut()
|
||||
.open_write(SegmentComponent::Store)?;
|
||||
@@ -393,7 +391,8 @@ fn remap_and_write(
|
||||
serializer
|
||||
.segment()
|
||||
.open_read(SegmentComponent::TempStore)?,
|
||||
50,
|
||||
1, /* The docstore is configured to have one doc per block, and each doc is accessed
|
||||
* only once: we don't need caching. */
|
||||
)?;
|
||||
for old_doc_id in doc_id_map.iter_old_doc_ids() {
|
||||
let doc_bytes = store_read.get_document_bytes(old_doc_id)?;
|
||||
|
||||
@@ -5,9 +5,9 @@ use itertools::Itertools;
|
||||
|
||||
use crate::indexer::doc_id_mapping::SegmentDocIdMapping;
|
||||
use crate::schema::Field;
|
||||
use crate::{DocAddress, SegmentReader};
|
||||
use crate::SegmentReader;
|
||||
|
||||
pub(crate) struct SortedDocIdColumn<'a> {
|
||||
pub(crate) struct RemappedDocIdColumn<'a> {
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
fast_field_readers: Vec<Arc<dyn Column<u64>>>,
|
||||
min_value: u64,
|
||||
@@ -37,7 +37,7 @@ fn compute_min_max_val(
|
||||
.into_option()
|
||||
}
|
||||
|
||||
impl<'a> SortedDocIdColumn<'a> {
|
||||
impl<'a> RemappedDocIdColumn<'a> {
|
||||
pub(crate) fn new(
|
||||
readers: &'a [SegmentReader],
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
@@ -68,7 +68,7 @@ impl<'a> SortedDocIdColumn<'a> {
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
SortedDocIdColumn {
|
||||
RemappedDocIdColumn {
|
||||
doc_id_mapping,
|
||||
fast_field_readers,
|
||||
min_value,
|
||||
@@ -78,13 +78,9 @@ impl<'a> SortedDocIdColumn<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Column for SortedDocIdColumn<'a> {
|
||||
fn get_val(&self, doc: u64) -> u64 {
|
||||
let DocAddress {
|
||||
doc_id,
|
||||
segment_ord,
|
||||
} = self.doc_id_mapping.get_old_doc_addr(doc as u32);
|
||||
self.fast_field_readers[segment_ord as usize].get_val(doc_id as u64)
|
||||
impl<'a> Column for RemappedDocIdColumn<'a> {
|
||||
fn get_val(&self, _doc: u64) -> u64 {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
|
||||
@@ -2,26 +2,23 @@ use std::cmp;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use crate::fastfield::{MultiValueLength, MultiValuedFastFieldReader};
|
||||
use crate::fastfield::MultiValuedFastFieldReader;
|
||||
use crate::indexer::doc_id_mapping::SegmentDocIdMapping;
|
||||
use crate::schema::Field;
|
||||
use crate::{DocId, SegmentReader};
|
||||
use crate::SegmentReader;
|
||||
|
||||
// We can now initialize our serializer, and push it the different values
|
||||
pub(crate) struct SortedDocIdMultiValueColumn<'a> {
|
||||
pub(crate) struct RemappedDocIdMultiValueColumn<'a> {
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
fast_field_readers: Vec<MultiValuedFastFieldReader<u64>>,
|
||||
offsets: &'a [u64],
|
||||
min_value: u64,
|
||||
max_value: u64,
|
||||
num_vals: u64,
|
||||
}
|
||||
|
||||
impl<'a> SortedDocIdMultiValueColumn<'a> {
|
||||
impl<'a> RemappedDocIdMultiValueColumn<'a> {
|
||||
pub(crate) fn new(
|
||||
readers: &'a [SegmentReader],
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
offsets: &'a [u64],
|
||||
field: Field,
|
||||
) -> Self {
|
||||
// Our values are bitpacked and we need to know what should be
|
||||
@@ -58,10 +55,9 @@ impl<'a> SortedDocIdMultiValueColumn<'a> {
|
||||
min_value = 0;
|
||||
max_value = 0;
|
||||
}
|
||||
SortedDocIdMultiValueColumn {
|
||||
RemappedDocIdMultiValueColumn {
|
||||
doc_id_mapping,
|
||||
fast_field_readers,
|
||||
offsets,
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: num_vals as u64,
|
||||
@@ -69,26 +65,9 @@ impl<'a> SortedDocIdMultiValueColumn<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Column for SortedDocIdMultiValueColumn<'a> {
|
||||
fn get_val(&self, pos: u64) -> u64 {
|
||||
// use the offsets index to find the doc_id which will contain the position.
|
||||
// the offsets are strictly increasing so we can do a binary search on it.
|
||||
|
||||
let new_doc_id: DocId = self.offsets.partition_point(|&offset| offset <= pos) as DocId - 1; // Offsets start at 0, so -1 is safe
|
||||
|
||||
// now we need to find the position of `pos` in the multivalued bucket
|
||||
let num_pos_covered_until_now = self.offsets[new_doc_id as usize];
|
||||
let pos_in_values = pos - num_pos_covered_until_now;
|
||||
|
||||
let old_doc_addr = self.doc_id_mapping.get_old_doc_addr(new_doc_id);
|
||||
let num_vals =
|
||||
self.fast_field_readers[old_doc_addr.segment_ord as usize].get_len(old_doc_addr.doc_id);
|
||||
assert!(num_vals >= pos_in_values);
|
||||
let mut vals = Vec::new();
|
||||
self.fast_field_readers[old_doc_addr.segment_ord as usize]
|
||||
.get_vals(old_doc_addr.doc_id, &mut vals);
|
||||
|
||||
vals[pos_in_values as usize]
|
||||
impl<'a> Column for RemappedDocIdMultiValueColumn<'a> {
|
||||
fn get_val(&self, _pos: u64) -> u64 {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
|
||||
@@ -106,7 +106,7 @@ impl BlockDecoder {
|
||||
|
||||
pub trait VIntEncoder {
|
||||
/// Compresses an array of `u32` integers,
|
||||
/// using [delta-encoding](https://en.wikipedia.org/wiki/Delta_ encoding)
|
||||
/// using [delta-encoding](https://en.wikipedia.org/wiki/Delta_encoding)
|
||||
/// and variable bytes encoding.
|
||||
///
|
||||
/// The method takes an array of ints to compress, and returns
|
||||
|
||||
@@ -144,7 +144,7 @@ fn advance_all_scorers_on_pivot(term_scorers: &mut Vec<TermScorerWithMaxScore>,
|
||||
|
||||
/// Implements the WAND (Weak AND) algorithm for dynamic pruning
|
||||
/// described in the paper "Faster Top-k Document Retrieval Using Block-Max Indexes".
|
||||
/// Link: http://engineering.nyu.edu/~suel/papers/bmw.pdf
|
||||
/// Link: <http://engineering.nyu.edu/~suel/papers/bmw.pdf>
|
||||
pub fn block_wand(
|
||||
mut scorers: Vec<TermScorer>,
|
||||
mut threshold: Score,
|
||||
|
||||
@@ -174,9 +174,9 @@ impl<TScoreCombiner: ScoreCombiner + Sync> Weight for BooleanWeight<TScoreCombin
|
||||
into_box_scorer(specialized_scorer, &self.score_combiner_fn)
|
||||
})
|
||||
} else {
|
||||
self.complex_scorer(reader, boost, &DoNothingCombiner::default)
|
||||
self.complex_scorer(reader, boost, DoNothingCombiner::default)
|
||||
.map(|specialized_scorer| {
|
||||
into_box_scorer(specialized_scorer, &DoNothingCombiner::default)
|
||||
into_box_scorer(specialized_scorer, DoNothingCombiner::default)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -21,6 +21,7 @@ mod range_query;
|
||||
mod regex_query;
|
||||
mod reqopt_scorer;
|
||||
mod scorer;
|
||||
mod set_query;
|
||||
mod term_query;
|
||||
mod union;
|
||||
mod weight;
|
||||
@@ -58,6 +59,7 @@ pub use self::score_combiner::{
|
||||
DisjunctionMaxCombiner, ScoreCombiner, SumCombiner, SumWithCoordsCombiner,
|
||||
};
|
||||
pub use self::scorer::Scorer;
|
||||
pub use self::set_query::TermSetQuery;
|
||||
pub use self::term_query::TermQuery;
|
||||
pub use self::union::Union;
|
||||
#[cfg(test)]
|
||||
|
||||
@@ -33,9 +33,9 @@ impl Ord for ScoreTerm {
|
||||
}
|
||||
}
|
||||
|
||||
/// A struct used as helper to build [`MoreLikeThisQuery`]
|
||||
/// This more-like-this implementation is inspired by the Appache Lucene
|
||||
/// amd closely follows the same implementation with adaptabtion to Tantivy vocabulary and API.
|
||||
/// A struct used as helper to build [`MoreLikeThisQuery`](crate::query::MoreLikeThisQuery)
|
||||
/// This more-like-this implementation is inspired by the Apache Lucene
|
||||
/// and closely follows the same implementation with adaptation to Tantivy vocabulary and API.
|
||||
///
|
||||
/// [MoreLikeThis](https://github.com/apache/lucene/blob/main/lucene/queries/src/java/org/apache/lucene/queries/mlt/MoreLikeThis.java#L147)
|
||||
/// [MoreLikeThisQuery](https://github.com/apache/lucene/blob/main/lucene/queries/src/java/org/apache/lucene/queries/mlt/MoreLikeThisQuery.java#L36)
|
||||
|
||||
222
src/query/set_query.rs
Normal file
222
src/query/set_query.rs
Normal file
@@ -0,0 +1,222 @@
|
||||
use std::collections::HashMap;
|
||||
|
||||
use tantivy_fst::raw::CompiledAddr;
|
||||
use tantivy_fst::{Automaton, Map};
|
||||
|
||||
use crate::query::score_combiner::DoNothingCombiner;
|
||||
use crate::query::{AutomatonWeight, BooleanWeight, Occur, Query, Weight};
|
||||
use crate::schema::Field;
|
||||
use crate::{Searcher, Term};
|
||||
|
||||
/// A Term Set Query matches all of the documents containing any of the Term provided
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct TermSetQuery {
|
||||
terms_map: HashMap<Field, Vec<Term>>,
|
||||
}
|
||||
|
||||
impl TermSetQuery {
|
||||
/// Create a Term Set Query
|
||||
pub fn new<T: IntoIterator<Item = Term>>(terms: T) -> Self {
|
||||
let mut terms_map: HashMap<_, Vec<_>> = HashMap::new();
|
||||
for term in terms {
|
||||
terms_map.entry(term.field()).or_default().push(term);
|
||||
}
|
||||
|
||||
for terms in terms_map.values_mut() {
|
||||
terms.sort_unstable();
|
||||
terms.dedup();
|
||||
}
|
||||
|
||||
TermSetQuery { terms_map }
|
||||
}
|
||||
|
||||
fn specialized_weight(
|
||||
&self,
|
||||
searcher: &Searcher,
|
||||
) -> crate::Result<BooleanWeight<DoNothingCombiner>> {
|
||||
let mut sub_queries: Vec<(_, Box<dyn Weight>)> = Vec::with_capacity(self.terms_map.len());
|
||||
|
||||
for (&field, sorted_terms) in self.terms_map.iter() {
|
||||
let field_entry = searcher.schema().get_field_entry(field);
|
||||
let field_type = field_entry.field_type();
|
||||
if !field_type.is_indexed() {
|
||||
let error_msg = format!("Field {:?} is not indexed.", field_entry.name());
|
||||
return Err(crate::TantivyError::SchemaError(error_msg));
|
||||
}
|
||||
|
||||
// In practice this won't fail because:
|
||||
// - we are writing to memory, so no IoError
|
||||
// - Terms are ordered
|
||||
let map = Map::from_iter(sorted_terms.iter().map(|key| (key.value_bytes(), 0)))
|
||||
.map_err(|e| std::io::Error::new(std::io::ErrorKind::Other, e))?;
|
||||
|
||||
sub_queries.push((
|
||||
Occur::Should,
|
||||
Box::new(AutomatonWeight::new(field, SetDfaWrapper(map))),
|
||||
));
|
||||
}
|
||||
|
||||
Ok(BooleanWeight::new(
|
||||
sub_queries,
|
||||
false,
|
||||
Box::new(|| DoNothingCombiner),
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
impl Query for TermSetQuery {
|
||||
fn weight(
|
||||
&self,
|
||||
searcher: &Searcher,
|
||||
_scoring_enabled: bool,
|
||||
) -> crate::Result<Box<dyn Weight>> {
|
||||
Ok(Box::new(self.specialized_weight(searcher)?))
|
||||
}
|
||||
}
|
||||
|
||||
struct SetDfaWrapper(Map<Vec<u8>>);
|
||||
|
||||
impl Automaton for SetDfaWrapper {
|
||||
type State = Option<CompiledAddr>;
|
||||
|
||||
fn start(&self) -> Option<CompiledAddr> {
|
||||
Some(self.0.as_ref().root().addr())
|
||||
}
|
||||
|
||||
fn is_match(&self, state_opt: &Option<CompiledAddr>) -> bool {
|
||||
if let Some(state) = state_opt {
|
||||
self.0.as_ref().node(*state).is_final()
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
fn accept(&self, state_opt: &Option<CompiledAddr>, byte: u8) -> Option<CompiledAddr> {
|
||||
let state = state_opt.as_ref()?;
|
||||
let node = self.0.as_ref().node(*state);
|
||||
let transition = node.find_input(byte)?;
|
||||
Some(node.transition_addr(transition))
|
||||
}
|
||||
|
||||
fn can_match(&self, state: &Self::State) -> bool {
|
||||
state.is_some()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use crate::collector::TopDocs;
|
||||
use crate::query::TermSetQuery;
|
||||
use crate::schema::{Schema, TEXT};
|
||||
use crate::{assert_nearly_equals, Index, Term};
|
||||
|
||||
#[test]
|
||||
pub fn test_term_set_query() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field1 = schema_builder.add_text_field("field1", TEXT);
|
||||
let field2 = schema_builder.add_text_field("field1", TEXT);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
{
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.add_document(doc!(
|
||||
field1 => "doc1",
|
||||
field2 => "val1",
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
field1 => "doc2",
|
||||
field2 => "val2",
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
field1 => "doc3",
|
||||
field2 => "val3",
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
field1 => "val3",
|
||||
field2 => "doc3",
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
}
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
|
||||
{
|
||||
// single element
|
||||
let terms = vec![Term::from_field_text(field1, "doc1")];
|
||||
|
||||
let term_set_query = TermSetQuery::new(terms);
|
||||
let top_docs = searcher.search(&term_set_query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(top_docs.len(), 1, "Expected 1 document");
|
||||
let (score, _) = top_docs[0];
|
||||
assert_nearly_equals!(1.0, score);
|
||||
}
|
||||
|
||||
{
|
||||
// single element, absent
|
||||
let terms = vec![Term::from_field_text(field1, "doc4")];
|
||||
|
||||
let term_set_query = TermSetQuery::new(terms);
|
||||
let top_docs = searcher.search(&term_set_query, &TopDocs::with_limit(1))?;
|
||||
assert!(top_docs.is_empty(), "Expected 0 document");
|
||||
}
|
||||
|
||||
{
|
||||
// multiple elements
|
||||
let terms = vec![
|
||||
Term::from_field_text(field1, "doc1"),
|
||||
Term::from_field_text(field1, "doc2"),
|
||||
];
|
||||
|
||||
let term_set_query = TermSetQuery::new(terms);
|
||||
let top_docs = searcher.search(&term_set_query, &TopDocs::with_limit(2))?;
|
||||
assert_eq!(top_docs.len(), 2, "Expected 2 documents");
|
||||
for (score, _) in top_docs {
|
||||
assert_nearly_equals!(1.0, score);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
// multiple elements, mixed fields
|
||||
let terms = vec![
|
||||
Term::from_field_text(field1, "doc1"),
|
||||
Term::from_field_text(field1, "doc1"),
|
||||
Term::from_field_text(field2, "val2"),
|
||||
];
|
||||
|
||||
let term_set_query = TermSetQuery::new(terms);
|
||||
let top_docs = searcher.search(&term_set_query, &TopDocs::with_limit(3))?;
|
||||
|
||||
assert_eq!(top_docs.len(), 2, "Expected 2 document");
|
||||
for (score, _) in top_docs {
|
||||
assert_nearly_equals!(1.0, score);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
// no field crosstalk
|
||||
let terms = vec![Term::from_field_text(field1, "doc3")];
|
||||
|
||||
let term_set_query = TermSetQuery::new(terms);
|
||||
let top_docs = searcher.search(&term_set_query, &TopDocs::with_limit(3))?;
|
||||
assert_eq!(top_docs.len(), 1, "Expected 1 document");
|
||||
|
||||
let terms = vec![Term::from_field_text(field2, "doc3")];
|
||||
|
||||
let term_set_query = TermSetQuery::new(terms);
|
||||
let top_docs = searcher.search(&term_set_query, &TopDocs::with_limit(3))?;
|
||||
assert_eq!(top_docs.len(), 1, "Expected 1 document");
|
||||
|
||||
let terms = vec![
|
||||
Term::from_field_text(field1, "doc3"),
|
||||
Term::from_field_text(field2, "doc3"),
|
||||
];
|
||||
|
||||
let term_set_query = TermSetQuery::new(terms);
|
||||
let top_docs = searcher.search(&term_set_query, &TopDocs::with_limit(3))?;
|
||||
assert_eq!(top_docs.len(), 2, "Expected 2 document");
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -2,6 +2,7 @@ use serde::{Deserialize, Serialize};
|
||||
use serde_json::Value as JsonValue;
|
||||
use thiserror::Error;
|
||||
|
||||
use super::Cardinality;
|
||||
use crate::schema::bytes_options::BytesOptions;
|
||||
use crate::schema::facet_options::FacetOptions;
|
||||
use crate::schema::{
|
||||
@@ -214,6 +215,26 @@ impl FieldType {
|
||||
}
|
||||
}
|
||||
|
||||
/// returns true if the field is fast.
|
||||
pub fn fastfield_cardinality(&self) -> Option<Cardinality> {
|
||||
match *self {
|
||||
FieldType::Bytes(ref bytes_options) if bytes_options.is_fast() => {
|
||||
Some(Cardinality::SingleValue)
|
||||
}
|
||||
FieldType::Str(ref text_options) if text_options.is_fast() => {
|
||||
Some(Cardinality::MultiValues)
|
||||
}
|
||||
FieldType::U64(ref int_options)
|
||||
| FieldType::I64(ref int_options)
|
||||
| FieldType::F64(ref int_options)
|
||||
| FieldType::Bool(ref int_options) => int_options.get_fastfield_cardinality(),
|
||||
FieldType::Date(ref date_options) => date_options.get_fastfield_cardinality(),
|
||||
FieldType::Facet(_) => Some(Cardinality::MultiValues),
|
||||
FieldType::JsonObject(_) => None,
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
/// returns true if the field is normed (see [fieldnorms](crate::fieldnorm)).
|
||||
pub fn has_fieldnorms(&self) -> bool {
|
||||
match *self {
|
||||
|
||||
@@ -104,6 +104,13 @@ impl ZstdCompressor {
|
||||
value, opt_name, err
|
||||
)
|
||||
})?;
|
||||
if value >= 15 {
|
||||
warn!(
|
||||
"High zstd compression level detected: {:?}. High compression levels \
|
||||
(>=15) are slow and will limit indexing speed.",
|
||||
value
|
||||
)
|
||||
}
|
||||
compressor.compression_level = Some(value);
|
||||
}
|
||||
_ => {
|
||||
|
||||
@@ -255,7 +255,7 @@ where T: Iterator<Item = usize>
|
||||
/// Emits all of the offsets where a codepoint starts
|
||||
/// or a codepoint ends.
|
||||
///
|
||||
/// By convention, we emit [0] for the empty string.
|
||||
/// By convention, we emit `[0]` for the empty string.
|
||||
struct CodepointFrontiers<'a> {
|
||||
s: &'a str,
|
||||
next_el: Option<usize>,
|
||||
|
||||
Reference in New Issue
Block a user