mirror of
https://github.com/quickwit-oss/tantivy.git
synced 2025-12-27 20:42:54 +00:00
Compare commits
5 Commits
test_parse
...
typed-colu
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6e664d071f | ||
|
|
cdffce906c | ||
|
|
f08602fb7a | ||
|
|
f15cbfe368 | ||
|
|
d850054228 |
@@ -61,7 +61,6 @@ stacker = { version="0.1", path="./stacker", package ="tantivy-stacker" }
|
||||
tantivy-query-grammar = { version= "0.19.0", path="./query-grammar" }
|
||||
tantivy-bitpacker = { version= "0.3", path="./bitpacker" }
|
||||
common = { version= "0.5", path = "./common/", package = "tantivy-common" }
|
||||
fastfield_codecs = { version= "0.3", path="./fastfield_codecs", default-features = false }
|
||||
tokenizer-api = { version="0.1", path="./tokenizer-api", package="tantivy-tokenizer-api" }
|
||||
|
||||
[target.'cfg(windows)'.dependencies]
|
||||
@@ -108,7 +107,7 @@ unstable = [] # useful for benches.
|
||||
quickwit = ["sstable"]
|
||||
|
||||
[workspace]
|
||||
members = ["query-grammar", "bitpacker", "common", "fastfield_codecs", "ownedbytes", "stacker", "sstable", "tokenizer-api", "columnar"]
|
||||
members = ["query-grammar", "bitpacker", "common", "ownedbytes", "stacker", "sstable", "tokenizer-api", "columnar"]
|
||||
|
||||
# Following the "fail" crate best practises, we isolate
|
||||
# tests that define specific behavior in fail check points
|
||||
|
||||
18
TODO.txt
Normal file
18
TODO.txt
Normal file
@@ -0,0 +1,18 @@
|
||||
Make schema_builder API fluent.
|
||||
fix doc serialization and prevent compression problems
|
||||
|
||||
u64 , etc. shoudl return Resutl<Option> now that we support optional missing a column is really not an error
|
||||
remove fastfield codecs
|
||||
ditch the first_or_default trick. if it is still useful, improve its implementation.
|
||||
rename FastFieldReaders::open to load
|
||||
|
||||
|
||||
remove fast field reader
|
||||
|
||||
find a way to unify the two DateTime.
|
||||
readd type check in the filter wrapper
|
||||
|
||||
add unit test on columnar list columns.
|
||||
|
||||
make sure sort works
|
||||
|
||||
@@ -19,9 +19,9 @@ common = { path = "../common", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.3", path = "../bitpacker/" }
|
||||
|
||||
[dev-dependencies]
|
||||
proptest = "1.0.0"
|
||||
more-asserts = "0.3.1"
|
||||
rand = "0.8.5"
|
||||
proptest = "1"
|
||||
more-asserts = "0.3.0"
|
||||
rand = "0.8.3"
|
||||
|
||||
[features]
|
||||
unstable = []
|
||||
|
||||
6
columnar/Makefile
Normal file
6
columnar/Makefile
Normal file
@@ -0,0 +1,6 @@
|
||||
test:
|
||||
echo "Run test only... No examples."
|
||||
cargo test --tests --lib
|
||||
|
||||
fmt:
|
||||
cargo +nightly fmt --all
|
||||
311
columnar/benches/bench.rs
Normal file
311
columnar/benches/bench.rs
Normal file
@@ -0,0 +1,311 @@
|
||||
#![feature(test)]
|
||||
|
||||
extern crate test;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::ops::RangeInclusive;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use rand::prelude::*;
|
||||
use tantivy_columnar::*;
|
||||
use test::Bencher;
|
||||
|
||||
use super::*;
|
||||
|
||||
// Warning: this generates the same permutation at each call
|
||||
fn generate_permutation() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (0u64..100_000u64).collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
fn generate_random() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (0u64..100_000u64)
|
||||
.map(|el| el + random::<u16>() as u64)
|
||||
.collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
// Warning: this generates the same permutation at each call
|
||||
fn generate_permutation_gcd() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (1u64..100_000u64).map(|el| el * 1000).collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default>(
|
||||
column: &[T],
|
||||
) -> Arc<dyn Column<T>> {
|
||||
let mut buffer = Vec::new();
|
||||
serialize(VecColumn::from(&column), &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
open(OwnedBytes::new(buffer)).unwrap()
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_veclookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = permutation[a as usize];
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = column.get_val(a as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
const FIFTY_PERCENT_RANGE: RangeInclusive<u64> = 1..=50;
|
||||
const SINGLE_ITEM: u64 = 90;
|
||||
const SINGLE_ITEM_RANGE: RangeInclusive<u64> = 90..=90;
|
||||
const ONE_PERCENT_ITEM_RANGE: RangeInclusive<u64> = 49..=49;
|
||||
fn get_data_50percent_item() -> Vec<u128> {
|
||||
let mut rng = StdRng::from_seed([1u8; 32]);
|
||||
|
||||
let mut data = vec![];
|
||||
for _ in 0..300_000 {
|
||||
let val = rng.gen_range(1..=100);
|
||||
data.push(val);
|
||||
}
|
||||
data.push(SINGLE_ITEM);
|
||||
|
||||
data.shuffle(&mut rng);
|
||||
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
data
|
||||
}
|
||||
fn get_u128_column_random() -> Arc<dyn Column<u128>> {
|
||||
let permutation = generate_random();
|
||||
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
get_u128_column_from_data(&permutation)
|
||||
}
|
||||
|
||||
fn get_u128_column_from_data(data: &[u128]) -> Arc<dyn Column<u128>> {
|
||||
let mut out = vec![];
|
||||
let iter_gen = || data.iter().cloned();
|
||||
serialize_u128(iter_gen, data.len() as u32, &mut out).unwrap();
|
||||
let out = OwnedBytes::new(out);
|
||||
open_u128::<u128>(out).unwrap()
|
||||
}
|
||||
|
||||
// U64 RANGE START
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_50percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
FIFTY_PERCENT_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_1percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
ONE_PERCENT_ITEM_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_single_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
SINGLE_ITEM_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u64_hit_all(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(0..=u64::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
// U64 RANGE END
|
||||
|
||||
// U128 RANGE START
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
*SINGLE_ITEM_RANGE.start() as u128..=*SINGLE_ITEM_RANGE.end() as u128,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
|
||||
let data = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
// U128 RANGE END
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
let mut a = 0u128;
|
||||
for i in 0u64..column.num_vals() as u64 {
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_stride5_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
let n = column.num_vals();
|
||||
let mut a = 0u128;
|
||||
for i in (0..n / 5).map(|val| val * 5) {
|
||||
a += column.get_val(i);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_vec(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += permutation[i as usize];
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0u32..n as u32 {
|
||||
a += column.get_val(i);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_gcd(b: &mut Bencher) {
|
||||
let permutation = generate_permutation_gcd();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..n {
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_vec(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..permutation.len() {
|
||||
a += permutation[i as usize] as u64;
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
}
|
||||
@@ -9,6 +9,9 @@
|
||||
- indexing
|
||||
- aggregations
|
||||
- merge
|
||||
* replug facets
|
||||
* replug range queries
|
||||
+ mutlivaued range queries restrat frm the beginning all of the time.
|
||||
|
||||
# Perf and Size
|
||||
* re-add ZSTD compression for dictionaries
|
||||
@@ -24,8 +27,11 @@ compare with roaring bitmap/elias fano etc etc.
|
||||
SIMD range? (see blog post)
|
||||
Add alignment?
|
||||
Consider another codec to bridge the gap between few and 5k elements
|
||||
replug examples
|
||||
replug fast_field_codecs bench
|
||||
|
||||
# Cleanup and rationalization
|
||||
remove the 6 bit limitation of columntype. use 4 + 4 bits instead.
|
||||
in benchmark, unify percent vs ratio, f32 vs f64.
|
||||
investigate if should have better errors? io::Error is overused at the moment.
|
||||
rename rank/select in unit tests
|
||||
@@ -36,6 +42,12 @@ use the rank & select naming in unit tests branch.
|
||||
multi-linear -> blockwise
|
||||
linear codec -> simply a multiplication for the index column
|
||||
rename columnar to something more explicit, like column_dictionary or columnar_table
|
||||
remove old column from the fast field API.
|
||||
remove the Column traits alias.
|
||||
rename fastfield -> column
|
||||
document changes
|
||||
rationalization FastFieldValue, HasColumnType
|
||||
|
||||
|
||||
# Other
|
||||
fix enhance column-cli
|
||||
@@ -43,4 +55,3 @@ fix enhance column-cli
|
||||
# Santa claus
|
||||
|
||||
autodetect datetime ipaddr, plug customizable tokenizer.
|
||||
|
||||
|
||||
@@ -35,10 +35,22 @@ impl BytesColumn {
|
||||
self.term_ord_column.num_rows()
|
||||
}
|
||||
|
||||
pub fn term_ords(&self, row_id: RowId) -> impl Iterator<Item = u64> + '_ {
|
||||
self.term_ord_column.values(row_id)
|
||||
}
|
||||
|
||||
/// Returns the column of ordinals
|
||||
pub fn ords(&self) -> &Column<u64> {
|
||||
&self.term_ord_column
|
||||
}
|
||||
|
||||
pub fn num_terms(&self) -> usize {
|
||||
self.dictionary.num_terms()
|
||||
}
|
||||
|
||||
pub fn dictionary(&self) -> &Dictionary<VoidSSTable> {
|
||||
self.dictionary.as_ref()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
@@ -51,11 +63,17 @@ impl From<BytesColumn> for StrColumn {
|
||||
}
|
||||
|
||||
impl StrColumn {
|
||||
pub fn dictionary(&self) -> &Dictionary<VoidSSTable> {
|
||||
self.0.dictionary.as_ref()
|
||||
}
|
||||
|
||||
/// Fills the buffer
|
||||
pub fn ord_to_str(&self, term_ord: u64, output: &mut String) -> io::Result<bool> {
|
||||
unsafe {
|
||||
let buf = output.as_mut_vec();
|
||||
self.0.dictionary.ord_to_term(term_ord, buf)?;
|
||||
if !self.0.dictionary.ord_to_term(term_ord, buf)? {
|
||||
return Ok(false);
|
||||
}
|
||||
// TODO consider remove checks if it hurts performance.
|
||||
if std::str::from_utf8(buf.as_slice()).is_err() {
|
||||
buf.clear();
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
mod dictionary_encoded;
|
||||
mod serialize;
|
||||
|
||||
use std::fmt::Debug;
|
||||
use std::ops::Deref;
|
||||
use std::sync::Arc;
|
||||
|
||||
@@ -17,11 +18,11 @@ use crate::{Cardinality, RowId};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Column<T> {
|
||||
pub idx: ColumnIndex<'static>,
|
||||
pub idx: ColumnIndex,
|
||||
pub values: Arc<dyn ColumnValues<T>>,
|
||||
}
|
||||
|
||||
impl<T: PartialOrd> Column<T> {
|
||||
impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
match &self.idx {
|
||||
ColumnIndex::Full => self.values.num_vals() as u32,
|
||||
@@ -29,7 +30,7 @@ impl<T: PartialOrd> Column<T> {
|
||||
ColumnIndex::Multivalued(col_index) => {
|
||||
// The multivalued index contains all value start row_id,
|
||||
// and one extra value at the end with the overall number of rows.
|
||||
col_index.num_vals() - 1
|
||||
col_index.num_rows()
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -37,12 +38,11 @@ impl<T: PartialOrd> Column<T> {
|
||||
pub fn min_value(&self) -> T {
|
||||
self.values.min_value()
|
||||
}
|
||||
|
||||
pub fn max_value(&self) -> T {
|
||||
self.values.max_value()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: PartialOrd + Copy + Send + Sync + 'static> Column<T> {
|
||||
pub fn first(&self, row_id: RowId) -> Option<T> {
|
||||
self.values(row_id).next()
|
||||
}
|
||||
@@ -61,7 +61,7 @@ impl<T: PartialOrd + Copy + Send + Sync + 'static> Column<T> {
|
||||
}
|
||||
|
||||
impl<T> Deref for Column<T> {
|
||||
type Target = ColumnIndex<'static>;
|
||||
type Target = ColumnIndex;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.idx
|
||||
@@ -86,7 +86,9 @@ struct FirstValueWithDefault<T: Copy> {
|
||||
default_value: T,
|
||||
}
|
||||
|
||||
impl<T: PartialOrd + Send + Sync + Copy + 'static> ColumnValues<T> for FirstValueWithDefault<T> {
|
||||
impl<T: PartialOrd + Debug + Send + Sync + Copy + 'static> ColumnValues<T>
|
||||
for FirstValueWithDefault<T>
|
||||
{
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
self.column.first(idx).unwrap_or(self.default_value)
|
||||
}
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
use std::fmt::Debug;
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
@@ -33,7 +34,7 @@ pub fn serialize_column_mappable_to_u128<
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn serialize_column_mappable_to_u64<T: MonotonicallyMappableToU64>(
|
||||
pub fn serialize_column_mappable_to_u64<T: MonotonicallyMappableToU64 + Debug>(
|
||||
column_index: SerializableColumnIndex<'_>,
|
||||
column_values: &impl ColumnValues<T>,
|
||||
output: &mut impl Write,
|
||||
|
||||
@@ -3,28 +3,23 @@ mod optional_index;
|
||||
mod serialize;
|
||||
|
||||
use std::ops::Range;
|
||||
use std::sync::Arc;
|
||||
|
||||
pub use optional_index::{OptionalIndex, SerializableOptionalIndex, Set};
|
||||
pub use serialize::{open_column_index, serialize_column_index, SerializableColumnIndex};
|
||||
|
||||
use crate::column_values::ColumnValues;
|
||||
use crate::column_index::multivalued_index::MultiValueIndex;
|
||||
use crate::{Cardinality, RowId};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub enum ColumnIndex<'a> {
|
||||
pub enum ColumnIndex {
|
||||
Full,
|
||||
Optional(OptionalIndex),
|
||||
// TODO Remove the static by fixing the codec if possible.
|
||||
/// The column values enclosed contains for all row_id,
|
||||
/// the value start_index.
|
||||
///
|
||||
/// In addition, at index num_rows, an extra value is added
|
||||
/// containing the overal number of values.
|
||||
Multivalued(Arc<dyn ColumnValues<RowId> + 'a>),
|
||||
Multivalued(MultiValueIndex),
|
||||
}
|
||||
|
||||
impl<'a> ColumnIndex<'a> {
|
||||
impl ColumnIndex {
|
||||
pub fn get_cardinality(&self) -> Cardinality {
|
||||
match self {
|
||||
ColumnIndex::Full => Cardinality::Full,
|
||||
@@ -43,11 +38,22 @@ impl<'a> ColumnIndex<'a> {
|
||||
0..0
|
||||
}
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => multivalued_index.range(row_id),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn select_batch_in_place(&self, rank_ids: &mut Vec<RowId>) {
|
||||
match self {
|
||||
ColumnIndex::Full => {
|
||||
// No need to do anything:
|
||||
// value_idx and row_idx are the same.
|
||||
}
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
optional_index.select_batch(&mut rank_ids[..]);
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => {
|
||||
let multivalued_index_ref = &**multivalued_index;
|
||||
let start: u32 = multivalued_index_ref.get_val(row_id);
|
||||
let end: u32 = multivalued_index_ref.get_val(row_id + 1);
|
||||
start..end
|
||||
// TODO important: avoid using 0u32, and restart from the beginning all of the time.
|
||||
multivalued_index.select_batch_in_place(0u32, rank_ids)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::ops::Range;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
@@ -7,9 +8,6 @@ use common::OwnedBytes;
|
||||
use crate::column_values::{ColumnValues, FastFieldCodecType};
|
||||
use crate::RowId;
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct MultivaluedIndex(Arc<dyn ColumnValues<RowId>>);
|
||||
|
||||
pub fn serialize_multivalued_index(
|
||||
multivalued_index: &dyn ColumnValues<RowId>,
|
||||
output: &mut impl Write,
|
||||
@@ -22,8 +20,113 @@ pub fn serialize_multivalued_index(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn open_multivalued_index(bytes: OwnedBytes) -> io::Result<Arc<dyn ColumnValues<RowId>>> {
|
||||
pub fn open_multivalued_index(bytes: OwnedBytes) -> io::Result<MultiValueIndex> {
|
||||
let start_index_column: Arc<dyn ColumnValues<RowId>> =
|
||||
crate::column_values::open_u64_mapped(bytes)?;
|
||||
Ok(start_index_column)
|
||||
Ok(MultiValueIndex { start_index_column })
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
/// Index to resolve value range for given doc_id.
|
||||
/// Starts at 0.
|
||||
pub struct MultiValueIndex {
|
||||
start_index_column: Arc<dyn crate::ColumnValues<RowId>>,
|
||||
}
|
||||
|
||||
impl From<Arc<dyn ColumnValues<RowId>>> for MultiValueIndex {
|
||||
fn from(start_index_column: Arc<dyn ColumnValues<RowId>>) -> Self {
|
||||
MultiValueIndex { start_index_column }
|
||||
}
|
||||
}
|
||||
|
||||
impl MultiValueIndex {
|
||||
/// Returns `[start, end)`, such that the values associated with
|
||||
/// the given document are `start..end`.
|
||||
#[inline]
|
||||
pub(crate) fn range(&self, row_id: RowId) -> Range<RowId> {
|
||||
let start = self.start_index_column.get_val(row_id);
|
||||
let end = self.start_index_column.get_val(row_id + 1);
|
||||
start..end
|
||||
}
|
||||
|
||||
/// Returns the number of documents in the index.
|
||||
#[inline]
|
||||
pub fn num_rows(&self) -> u32 {
|
||||
self.start_index_column.num_vals() - 1
|
||||
}
|
||||
|
||||
/// Converts a list of ranks (row ids of values) in a 1:n index to the corresponding list of
|
||||
/// row_ids. Positions are converted inplace to docids.
|
||||
///
|
||||
/// Since there is no index for value pos -> docid, but docid -> value pos range, we scan the
|
||||
/// index.
|
||||
///
|
||||
/// Correctness: positions needs to be sorted. idx_reader needs to contain monotonically
|
||||
/// increasing positions.
|
||||
///
|
||||
/// TODO: Instead of a linear scan we can employ a exponential search into binary search to
|
||||
/// match a docid to its value position.
|
||||
#[allow(clippy::bool_to_int_with_if)]
|
||||
pub(crate) fn select_batch_in_place(&self, row_start: RowId, ranks: &mut Vec<u32>) {
|
||||
if ranks.is_empty() {
|
||||
return;
|
||||
}
|
||||
let mut cur_doc = row_start;
|
||||
let mut last_doc = None;
|
||||
|
||||
assert!(self.start_index_column.get_val(row_start) as u32 <= ranks[0]);
|
||||
|
||||
let mut write_doc_pos = 0;
|
||||
for i in 0..ranks.len() {
|
||||
let pos = ranks[i];
|
||||
loop {
|
||||
let end = self.start_index_column.get_val(cur_doc + 1) as u32;
|
||||
if end > pos {
|
||||
ranks[write_doc_pos] = cur_doc;
|
||||
write_doc_pos += if last_doc == Some(cur_doc) { 0 } else { 1 };
|
||||
last_doc = Some(cur_doc);
|
||||
break;
|
||||
}
|
||||
cur_doc += 1;
|
||||
}
|
||||
}
|
||||
ranks.truncate(write_doc_pos);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::ops::Range;
|
||||
use std::sync::Arc;
|
||||
|
||||
use super::MultiValueIndex;
|
||||
use crate::column_values::IterColumn;
|
||||
use crate::{ColumnValues, RowId};
|
||||
|
||||
fn index_to_pos_helper(
|
||||
index: &MultiValueIndex,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &[u32],
|
||||
) -> Vec<u32> {
|
||||
let mut positions = positions.to_vec();
|
||||
index.select_batch_in_place(doc_id_range.start, &mut positions);
|
||||
positions
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_positions_to_docid() {
|
||||
let offsets: Vec<RowId> = vec![0, 10, 12, 15, 22, 23]; // docid values are [0..10, 10..12, 12..15, etc.]
|
||||
let column: Arc<dyn ColumnValues<RowId>> = Arc::new(IterColumn::from(offsets.into_iter()));
|
||||
let index = MultiValueIndex::from(column);
|
||||
assert_eq!(index.num_rows(), 5);
|
||||
let positions = &[10u32, 11, 15, 20, 21, 22];
|
||||
assert_eq!(index_to_pos_helper(&index, 0..5, positions), vec![1, 3, 4]);
|
||||
assert_eq!(index_to_pos_helper(&index, 1..5, positions), vec![1, 3, 4]);
|
||||
assert_eq!(index_to_pos_helper(&index, 0..5, &[9]), vec![0]);
|
||||
assert_eq!(index_to_pos_helper(&index, 1..5, &[10]), vec![1]);
|
||||
assert_eq!(index_to_pos_helper(&index, 1..5, &[11]), vec![1]);
|
||||
assert_eq!(index_to_pos_helper(&index, 2..5, &[12]), vec![2]);
|
||||
assert_eq!(index_to_pos_helper(&index, 2..5, &[12, 14]), vec![2]);
|
||||
assert_eq!(index_to_pos_helper(&index, 2..5, &[12, 14, 15]), vec![2, 3]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -5,8 +5,8 @@ use std::sync::Arc;
|
||||
mod set;
|
||||
mod set_block;
|
||||
|
||||
use common::{BinarySerializable, GroupByIteratorExtended, OwnedBytes, VInt};
|
||||
pub use set::{Set, SetCodec};
|
||||
use common::{BinarySerializable, OwnedBytes, VInt};
|
||||
pub use set::{SelectCursor, Set, SetCodec};
|
||||
use set_block::{
|
||||
DenseBlock, DenseBlockCodec, SparseBlock, SparseBlockCodec, DENSE_BLOCK_NUM_BYTES,
|
||||
};
|
||||
@@ -115,7 +115,63 @@ fn row_addr_from_row_id(row_id: RowId) -> RowAddr {
|
||||
}
|
||||
}
|
||||
|
||||
enum BlockSelectCursor<'a> {
|
||||
Dense(<DenseBlock<'a> as Set<u16>>::SelectCursor<'a>),
|
||||
Sparse(<SparseBlock<'a> as Set<u16>>::SelectCursor<'a>),
|
||||
}
|
||||
|
||||
impl<'a> BlockSelectCursor<'a> {
|
||||
fn select(&mut self, rank: u16) -> u16 {
|
||||
match self {
|
||||
BlockSelectCursor::Dense(dense_select_cursor) => dense_select_cursor.select(rank),
|
||||
BlockSelectCursor::Sparse(sparse_select_cursor) => sparse_select_cursor.select(rank),
|
||||
}
|
||||
}
|
||||
}
|
||||
pub struct OptionalIndexSelectCursor<'a> {
|
||||
current_block_cursor: BlockSelectCursor<'a>,
|
||||
current_block_id: u16,
|
||||
// The current block is guaranteed to contain ranks < end_rank.
|
||||
current_block_end_rank: RowId,
|
||||
optional_index: &'a OptionalIndex,
|
||||
block_doc_idx_start: RowId,
|
||||
num_null_rows_before_block: RowId,
|
||||
}
|
||||
|
||||
impl<'a> OptionalIndexSelectCursor<'a> {
|
||||
fn search_and_load_block(&mut self, rank: RowId) {
|
||||
if rank < self.current_block_end_rank {
|
||||
// we are already in the right block
|
||||
return;
|
||||
}
|
||||
self.current_block_id = self.optional_index.find_block(rank, self.current_block_id);
|
||||
self.current_block_end_rank = self
|
||||
.optional_index
|
||||
.block_metas
|
||||
.get(self.current_block_id as usize + 1)
|
||||
.map(|block_meta| block_meta.non_null_rows_before_block)
|
||||
.unwrap_or(u32::MAX);
|
||||
self.block_doc_idx_start = (self.current_block_id as u32) * ELEMENTS_PER_BLOCK;
|
||||
let block_meta = self.optional_index.block_metas[self.current_block_id as usize];
|
||||
self.num_null_rows_before_block = block_meta.non_null_rows_before_block;
|
||||
let block: Block<'_> = self.optional_index.block(block_meta);
|
||||
self.current_block_cursor = match block {
|
||||
Block::Dense(dense_block) => BlockSelectCursor::Dense(dense_block.select_cursor()),
|
||||
Block::Sparse(sparse_block) => BlockSelectCursor::Sparse(sparse_block.select_cursor()),
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> SelectCursor<RowId> for OptionalIndexSelectCursor<'a> {
|
||||
fn select(&mut self, rank: RowId) -> RowId {
|
||||
self.search_and_load_block(rank);
|
||||
let index_in_block = (rank - self.num_null_rows_before_block) as u16;
|
||||
self.current_block_cursor.select(index_in_block) as RowId + self.block_doc_idx_start
|
||||
}
|
||||
}
|
||||
|
||||
impl Set<RowId> for OptionalIndex {
|
||||
type SelectCursor<'b> = OptionalIndexSelectCursor<'b> where Self: 'b;
|
||||
// Check if value at position is not null.
|
||||
#[inline]
|
||||
fn contains(&self, row_id: RowId) -> bool {
|
||||
@@ -148,7 +204,7 @@ impl Set<RowId> for OptionalIndex {
|
||||
#[inline]
|
||||
fn select(&self, rank: RowId) -> RowId {
|
||||
let block_pos = self.find_block(rank, 0);
|
||||
let block_doc_idx_start = block_pos * ELEMENTS_PER_BLOCK;
|
||||
let block_doc_idx_start = (block_pos as u32) * ELEMENTS_PER_BLOCK;
|
||||
let block_meta = self.block_metas[block_pos as usize];
|
||||
let block: Block<'_> = self.block(block_meta);
|
||||
let index_in_block = (rank - block_meta.non_null_rows_before_block) as u16;
|
||||
@@ -159,39 +215,28 @@ impl Set<RowId> for OptionalIndex {
|
||||
block_doc_idx_start + in_block_rank as u32
|
||||
}
|
||||
|
||||
fn select_batch(&self, ranks: &[u32], output_idxs: &mut [u32]) {
|
||||
let mut block_pos = 0u32;
|
||||
let mut start = 0;
|
||||
let group_by_it = ranks.iter().copied().group_by(move |codec_idx| {
|
||||
block_pos = self.find_block(*codec_idx, block_pos);
|
||||
block_pos
|
||||
});
|
||||
for (block_pos, block_iter) in group_by_it {
|
||||
let block_doc_idx_start = block_pos * ELEMENTS_PER_BLOCK;
|
||||
let block_meta = self.block_metas[block_pos as usize];
|
||||
let block: Block<'_> = self.block(block_meta);
|
||||
let offset = block_meta.non_null_rows_before_block;
|
||||
let indexes_in_block_iter =
|
||||
block_iter.map(move |codec_idx| (codec_idx - offset) as u16);
|
||||
match block {
|
||||
Block::Dense(dense_block) => {
|
||||
for in_offset in dense_block.select_iter(indexes_in_block_iter) {
|
||||
output_idxs[start] = in_offset as u32 + block_doc_idx_start;
|
||||
start += 1;
|
||||
}
|
||||
}
|
||||
Block::Sparse(sparse_block) => {
|
||||
for in_offset in sparse_block.select_iter(indexes_in_block_iter) {
|
||||
output_idxs[start] = in_offset as u32 + block_doc_idx_start;
|
||||
start += 1;
|
||||
}
|
||||
}
|
||||
};
|
||||
fn select_cursor<'b>(&'b self) -> OptionalIndexSelectCursor<'b> {
|
||||
OptionalIndexSelectCursor {
|
||||
current_block_cursor: BlockSelectCursor::Sparse(
|
||||
SparseBlockCodec::open(b"").select_cursor(),
|
||||
),
|
||||
current_block_id: 0u16,
|
||||
current_block_end_rank: 0u32, //< this is sufficient to force the first load
|
||||
optional_index: self,
|
||||
block_doc_idx_start: 0u32,
|
||||
num_null_rows_before_block: 0u32,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl OptionalIndex {
|
||||
pub fn select_batch(&self, ranks: &mut [RowId]) {
|
||||
let mut select_cursor = self.select_cursor();
|
||||
for rank in ranks.iter_mut() {
|
||||
*rank = select_cursor.select(*rank);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn block<'a>(&'a self, block_meta: BlockMeta) -> Block<'a> {
|
||||
let BlockMeta {
|
||||
@@ -214,14 +259,14 @@ impl OptionalIndex {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn find_block(&self, dense_idx: u32, start_block_pos: u32) -> u32 {
|
||||
for block_pos in start_block_pos..self.block_metas.len() as u32 {
|
||||
fn find_block(&self, dense_idx: u32, start_block_pos: u16) -> u16 {
|
||||
for block_pos in start_block_pos..self.block_metas.len() as u16 {
|
||||
let offset = self.block_metas[block_pos as usize].non_null_rows_before_block;
|
||||
if offset > dense_idx {
|
||||
return block_pos - 1;
|
||||
return block_pos - 1u16;
|
||||
}
|
||||
}
|
||||
self.block_metas.len() as u32 - 1u32
|
||||
self.block_metas.len() as u16 - 1u16
|
||||
}
|
||||
|
||||
// TODO Add a good API for the codec_idx to original_idx translation.
|
||||
|
||||
@@ -13,7 +13,18 @@ pub trait SetCodec {
|
||||
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a>;
|
||||
}
|
||||
|
||||
/// Stateful object that makes it possible to compute several select in a row,
|
||||
/// provided the rank passed as argument are increasing.
|
||||
pub trait SelectCursor<T> {
|
||||
// May panic if rank is greater than the number of elements in the Set,
|
||||
// or if rank is < than value provided in the previous call.
|
||||
fn select(&mut self, rank: T) -> T;
|
||||
}
|
||||
|
||||
pub trait Set<T> {
|
||||
type SelectCursor<'b>: SelectCursor<T>
|
||||
where Self: 'b;
|
||||
|
||||
/// Returns true if the elements is contained in the Set
|
||||
fn contains(&self, el: T) -> bool;
|
||||
|
||||
@@ -28,11 +39,6 @@ pub trait Set<T> {
|
||||
/// May panic if rank is greater than the number of elements in the Set.
|
||||
fn select(&self, rank: T) -> T;
|
||||
|
||||
/// Batch version of select.
|
||||
/// `ranks` is assumed to be sorted.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if rank is greater than the number of elements in the Set.
|
||||
fn select_batch(&self, ranks: &[T], outputs: &mut [T]);
|
||||
/// Creates a brand new select cursor.
|
||||
fn select_cursor<'b>(&'b self) -> Self::SelectCursor<'b>;
|
||||
}
|
||||
|
||||
@@ -3,7 +3,7 @@ use std::io::{self, Write};
|
||||
|
||||
use common::BinarySerializable;
|
||||
|
||||
use crate::column_index::optional_index::{Set, SetCodec, ELEMENTS_PER_BLOCK};
|
||||
use crate::column_index::optional_index::{SelectCursor, Set, SetCodec, ELEMENTS_PER_BLOCK};
|
||||
|
||||
#[inline(always)]
|
||||
fn get_bit_at(input: u64, n: u16) -> bool {
|
||||
@@ -105,7 +105,27 @@ impl DenseMiniBlock {
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct DenseBlock<'a>(&'a [u8]);
|
||||
|
||||
pub struct DenseBlockSelectCursor<'a> {
|
||||
block_id: u16,
|
||||
dense_block: DenseBlock<'a>,
|
||||
}
|
||||
|
||||
impl<'a> SelectCursor<u16> for DenseBlockSelectCursor<'a> {
|
||||
#[inline]
|
||||
fn select(&mut self, rank: u16) -> u16 {
|
||||
self.block_id = self
|
||||
.dense_block
|
||||
.find_miniblock_containing_rank(rank, self.block_id)
|
||||
.unwrap();
|
||||
let index_block = self.dense_block.mini_block(self.block_id);
|
||||
let in_block_rank = rank - index_block.rank;
|
||||
self.block_id * ELEMENTS_PER_MINI_BLOCK + select_u64(index_block.bitvec, in_block_rank)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Set<u16> for DenseBlock<'a> {
|
||||
type SelectCursor<'b> = DenseBlockSelectCursor<'a> where Self: 'b;
|
||||
|
||||
#[inline(always)]
|
||||
fn contains(&self, el: u16) -> bool {
|
||||
let mini_block_id = el / ELEMENTS_PER_MINI_BLOCK;
|
||||
@@ -136,37 +156,15 @@ impl<'a> Set<u16> for DenseBlock<'a> {
|
||||
block_id * ELEMENTS_PER_MINI_BLOCK + select_u64(index_block.bitvec, in_block_rank)
|
||||
}
|
||||
|
||||
fn select_batch(&self, ranks: &[u16], outputs: &mut [u16]) {
|
||||
let orig_ids = self.select_iter(ranks.iter().copied());
|
||||
for (output, original_id) in outputs.iter_mut().zip(orig_ids) {
|
||||
*output = original_id;
|
||||
#[inline(always)]
|
||||
fn select_cursor<'b>(&'b self) -> Self::SelectCursor<'b> {
|
||||
DenseBlockSelectCursor {
|
||||
block_id: 0,
|
||||
dense_block: *self,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> DenseBlock<'a> {
|
||||
/// Iterator verison of select.
|
||||
///
|
||||
/// # Panics
|
||||
/// Panics if one of the rank is higher than the number of elements in the set.
|
||||
pub fn select_iter<'b>(
|
||||
&self,
|
||||
rank_it: impl Iterator<Item = u16> + 'b,
|
||||
) -> impl Iterator<Item = u16> + 'b
|
||||
where
|
||||
Self: 'b,
|
||||
{
|
||||
let mut block_id = 0u16;
|
||||
let me = *self;
|
||||
rank_it.map(move |rank| {
|
||||
block_id = me.find_miniblock_containing_rank(rank, block_id).unwrap();
|
||||
let index_block = me.mini_block(block_id);
|
||||
let in_block_rank = rank - index_block.rank;
|
||||
block_id * ELEMENTS_PER_MINI_BLOCK + select_u64(index_block.bitvec, in_block_rank)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> DenseBlock<'a> {
|
||||
#[inline]
|
||||
fn mini_block(&self, mini_block_id: u16) -> DenseMiniBlock {
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
use crate::column_index::optional_index::{Set, SetCodec};
|
||||
use crate::column_index::optional_index::{SelectCursor, Set, SetCodec};
|
||||
|
||||
pub struct SparseBlockCodec;
|
||||
|
||||
@@ -24,7 +24,16 @@ impl SetCodec for SparseBlockCodec {
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct SparseBlock<'a>(&'a [u8]);
|
||||
|
||||
impl<'a> SelectCursor<u16> for SparseBlock<'a> {
|
||||
#[inline]
|
||||
fn select(&mut self, rank: u16) -> u16 {
|
||||
<SparseBlock<'a> as Set<u16>>::select(self, rank)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Set<u16> for SparseBlock<'a> {
|
||||
type SelectCursor<'b> = Self where Self: 'b;
|
||||
|
||||
#[inline(always)]
|
||||
fn contains(&self, el: u16) -> bool {
|
||||
self.binary_search(el).is_ok()
|
||||
@@ -41,11 +50,9 @@ impl<'a> Set<u16> for SparseBlock<'a> {
|
||||
u16::from_le_bytes(self.0[offset..offset + 2].try_into().unwrap())
|
||||
}
|
||||
|
||||
fn select_batch(&self, ranks: &[u16], outputs: &mut [u16]) {
|
||||
let orig_ids = self.select_iter(ranks.iter().copied());
|
||||
for (output, original_id) in outputs.iter_mut().zip(orig_ids) {
|
||||
*output = original_id;
|
||||
}
|
||||
#[inline(always)]
|
||||
fn select_cursor<'b>(&'b self) -> Self::SelectCursor<'b> {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
@@ -96,17 +103,4 @@ impl<'a> SparseBlock<'a> {
|
||||
}
|
||||
Err(left)
|
||||
}
|
||||
|
||||
pub fn select_iter<'b>(
|
||||
&self,
|
||||
iter: impl Iterator<Item = u16> + 'b,
|
||||
) -> impl Iterator<Item = u16> + 'b
|
||||
where
|
||||
Self: 'b,
|
||||
{
|
||||
iter.map(|codec_id| {
|
||||
let offset = codec_id as usize * 2;
|
||||
u16::from_le_bytes(self.0[offset..offset + 2].try_into().unwrap())
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,7 +3,7 @@ use std::collections::HashMap;
|
||||
use crate::column_index::optional_index::set_block::{
|
||||
DenseBlockCodec, SparseBlockCodec, DENSE_BLOCK_NUM_BYTES,
|
||||
};
|
||||
use crate::column_index::optional_index::{Set, SetCodec};
|
||||
use crate::column_index::optional_index::{SelectCursor, Set, SetCodec};
|
||||
|
||||
fn test_set_helper<C: SetCodec<Item = u16>>(vals: &[u16]) -> usize {
|
||||
let mut buffer = Vec::new();
|
||||
@@ -75,12 +75,10 @@ fn test_simple_translate_codec_codec_idx_to_original_idx_dense() {
|
||||
.unwrap();
|
||||
let tested_set = DenseBlockCodec::open(buffer.as_slice());
|
||||
assert!(tested_set.contains(1));
|
||||
assert_eq!(
|
||||
&tested_set
|
||||
.select_iter([0, 1, 2, 5].iter().copied())
|
||||
.collect::<Vec<u16>>(),
|
||||
&[1, 3, 17, 30_001]
|
||||
);
|
||||
let mut select_cursor = tested_set.select_cursor();
|
||||
assert_eq!(select_cursor.select(0), 1);
|
||||
assert_eq!(select_cursor.select(1), 3);
|
||||
assert_eq!(select_cursor.select(2), 17);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -89,12 +87,10 @@ fn test_simple_translate_codec_idx_to_original_idx_sparse() {
|
||||
SparseBlockCodec::serialize([1, 3, 17].iter().copied(), &mut buffer).unwrap();
|
||||
let tested_set = SparseBlockCodec::open(buffer.as_slice());
|
||||
assert!(tested_set.contains(1));
|
||||
assert_eq!(
|
||||
&tested_set
|
||||
.select_iter([0, 1, 2].iter().copied())
|
||||
.collect::<Vec<u16>>(),
|
||||
&[1, 3, 17]
|
||||
);
|
||||
let mut select_cursor = tested_set.select_cursor();
|
||||
assert_eq!(SelectCursor::select(&mut select_cursor, 0), 1);
|
||||
assert_eq!(SelectCursor::select(&mut select_cursor, 1), 3);
|
||||
assert_eq!(SelectCursor::select(&mut select_cursor, 2), 17);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -103,10 +99,8 @@ fn test_simple_translate_codec_idx_to_original_idx_dense() {
|
||||
DenseBlockCodec::serialize(0u16..150u16, &mut buffer).unwrap();
|
||||
let tested_set = DenseBlockCodec::open(buffer.as_slice());
|
||||
assert!(tested_set.contains(1));
|
||||
let rg = 0u16..150u16;
|
||||
let els: Vec<u16> = rg.clone().collect();
|
||||
assert_eq!(
|
||||
&tested_set.select_iter(rg.clone()).collect::<Vec<u16>>(),
|
||||
&els
|
||||
);
|
||||
let mut select_cursor = tested_set.select_cursor();
|
||||
for i in 0..150 {
|
||||
assert_eq!(i, select_cursor.select(i));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -41,9 +41,10 @@ fn test_with_random_sets_simple() {
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
let ranks: Vec<u32> = (65_472u32..65_473u32).collect();
|
||||
let els: Vec<u32> = ranks.iter().copied().map(|rank| rank + 10).collect();
|
||||
let mut output = vec![0u32; ranks.len()];
|
||||
null_index.select_batch(&ranks[..], &mut output[..]);
|
||||
assert_eq!(&output, &els);
|
||||
let mut select_cursor = null_index.select_cursor();
|
||||
for (rank, el) in ranks.iter().copied().zip(els.iter().copied()) {
|
||||
assert_eq!(select_cursor.select(rank), el);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -91,11 +92,10 @@ fn test_null_index(data: &[bool]) {
|
||||
.filter(|(_pos, val)| **val)
|
||||
.map(|(pos, _val)| pos as u32)
|
||||
.collect();
|
||||
let ids: Vec<u32> = (0..orig_idx_with_value.len() as u32).collect();
|
||||
let mut output = vec![0u32; ids.len()];
|
||||
null_index.select_batch(&ids[..], &mut output);
|
||||
// assert_eq!(&output[0..100], &orig_idx_with_value[0..100]);
|
||||
assert_eq!(output, orig_idx_with_value);
|
||||
let mut select_iter = null_index.select_cursor();
|
||||
for i in 0..orig_idx_with_value.len() {
|
||||
assert_eq!(select_iter.select(i as u32), orig_idx_with_value[i]);
|
||||
}
|
||||
|
||||
let step_size = (orig_idx_with_value.len() / 100).max(1);
|
||||
for (dense_idx, orig_idx) in orig_idx_with_value.iter().enumerate().step_by(step_size) {
|
||||
@@ -115,9 +115,9 @@ fn test_optional_index_test_translation() {
|
||||
let iter = &[true, false, true, false];
|
||||
serialize_optional_index(&&iter[..], &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
let mut output = vec![0u32; 2];
|
||||
null_index.select_batch(&[0, 1], &mut output);
|
||||
assert_eq!(output, &[0, 2]);
|
||||
let mut select_cursor = null_index.select_cursor();
|
||||
assert_eq!(select_cursor.select(0), 0);
|
||||
assert_eq!(select_cursor.select(1), 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -175,7 +175,6 @@ mod bench {
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.collect();
|
||||
serialize_optional_index(&&vals[..], &mut out).unwrap();
|
||||
|
||||
let codec = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
codec
|
||||
}
|
||||
@@ -311,7 +310,8 @@ mod bench {
|
||||
};
|
||||
let mut output = vec![0u32; idxs.len()];
|
||||
bench.iter(|| {
|
||||
codec.select_batch(&idxs[..], &mut output);
|
||||
output.copy_from_slice(&idxs[..]);
|
||||
codec.select_batch(&mut output);
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
@@ -47,7 +47,7 @@ pub fn serialize_column_index(
|
||||
Ok(column_index_num_bytes)
|
||||
}
|
||||
|
||||
pub fn open_column_index(mut bytes: OwnedBytes) -> io::Result<ColumnIndex<'static>> {
|
||||
pub fn open_column_index(mut bytes: OwnedBytes) -> io::Result<ColumnIndex> {
|
||||
if bytes.is_empty() {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::UnexpectedEof,
|
||||
@@ -64,8 +64,8 @@ pub fn open_column_index(mut bytes: OwnedBytes) -> io::Result<ColumnIndex<'stati
|
||||
Ok(ColumnIndex::Optional(optional_index))
|
||||
}
|
||||
Cardinality::Multivalued => {
|
||||
let multivalued_index = super::multivalued_index::open_multivalued_index(bytes)?;
|
||||
Ok(ColumnIndex::Multivalued(multivalued_index))
|
||||
let multivalue_index = super::multivalued_index::open_multivalued_index(bytes)?;
|
||||
Ok(ColumnIndex::Multivalued(multivalue_index))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
use std::fmt::Debug;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
|
||||
@@ -8,7 +9,7 @@ use crate::column_values::monotonic_mapping::StrictlyMonotonicFn;
|
||||
/// `ColumnValues` provides access to a dense field column.
|
||||
///
|
||||
/// `Column` are just a wrapper over `ColumnValues` and a `ColumnIndex`.
|
||||
pub trait ColumnValues<T: PartialOrd = u64>: Send + Sync {
|
||||
pub trait ColumnValues<T: PartialOrd + Debug = u64>: Send + Sync {
|
||||
/// Return the value associated with the given idx.
|
||||
///
|
||||
/// This accessor should return as fast as possible.
|
||||
@@ -44,7 +45,6 @@ pub trait ColumnValues<T: PartialOrd = u64>: Send + Sync {
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
let doc_id_range = doc_id_range.start..doc_id_range.end.min(self.num_vals());
|
||||
|
||||
for idx in doc_id_range.start..doc_id_range.end {
|
||||
let val = self.get_val(idx);
|
||||
if value_range.contains(&val) {
|
||||
@@ -78,7 +78,7 @@ pub trait ColumnValues<T: PartialOrd = u64>: Send + Sync {
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Copy + PartialOrd> ColumnValues<T> for std::sync::Arc<dyn ColumnValues<T>> {
|
||||
impl<T: Copy + PartialOrd + Debug> ColumnValues<T> for std::sync::Arc<dyn ColumnValues<T>> {
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
self.as_ref().get_val(idx)
|
||||
}
|
||||
@@ -104,7 +104,7 @@ impl<T: Copy + PartialOrd> ColumnValues<T> for std::sync::Arc<dyn ColumnValues<T
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, C: ColumnValues<T> + ?Sized, T: Copy + PartialOrd> ColumnValues<T> for &'a C {
|
||||
impl<'a, C: ColumnValues<T> + ?Sized, T: Copy + PartialOrd + Debug> ColumnValues<T> for &'a C {
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
(*self).get_val(idx)
|
||||
}
|
||||
@@ -137,7 +137,7 @@ pub struct VecColumn<'a, T = u64> {
|
||||
pub(crate) max_value: T,
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Send + Sync> ColumnValues<T> for VecColumn<'a, T> {
|
||||
impl<'a, T: Copy + PartialOrd + Send + Sync + Debug> ColumnValues<T> for VecColumn<'a, T> {
|
||||
fn get_val(&self, position: u32) -> T {
|
||||
self.values[position as usize]
|
||||
}
|
||||
@@ -205,8 +205,8 @@ pub fn monotonic_map_column<C, T, Input, Output>(
|
||||
where
|
||||
C: ColumnValues<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Sync + Clone,
|
||||
Output: PartialOrd + Send + Sync + Clone,
|
||||
Input: PartialOrd + Debug + Send + Sync + Clone,
|
||||
Output: PartialOrd + Debug + Send + Sync + Clone,
|
||||
{
|
||||
MonotonicMappingColumn {
|
||||
from_column,
|
||||
@@ -219,8 +219,8 @@ impl<C, T, Input, Output> ColumnValues<Output> for MonotonicMappingColumn<C, T,
|
||||
where
|
||||
C: ColumnValues<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Sync + Clone,
|
||||
Output: PartialOrd + Send + Sync + Clone,
|
||||
Input: PartialOrd + Send + Debug + Sync + Clone,
|
||||
Output: PartialOrd + Send + Debug + Sync + Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn get_val(&self, idx: u32) -> Output {
|
||||
@@ -282,7 +282,7 @@ where T: Iterator + Clone + ExactSizeIterator
|
||||
impl<T> ColumnValues<T::Item> for IterColumn<T>
|
||||
where
|
||||
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
|
||||
T::Item: PartialOrd,
|
||||
T::Item: PartialOrd + Debug,
|
||||
{
|
||||
fn get_val(&self, idx: u32) -> T::Item {
|
||||
self.0.clone().nth(idx as usize).unwrap()
|
||||
|
||||
@@ -1,19 +0,0 @@
|
||||
// Copyright (C) 2022 Quickwit, Inc.
|
||||
//
|
||||
// Quickwit is offered under the AGPL v3.0 and as commercial software.
|
||||
// For commercial licensing, contact us at hello@quickwit.io.
|
||||
//
|
||||
// AGPL:
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Affero General Public License as
|
||||
// published by the Free Software Foundation, either version 3 of the
|
||||
// License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Affero General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Affero General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
//
|
||||
@@ -10,16 +10,19 @@
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
use std::fmt::Debug;
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use compact_space::CompactSpaceDecompressor;
|
||||
pub use monotonic_mapping::{MonotonicallyMappableToU64, StrictlyMonotonicFn};
|
||||
use monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
|
||||
StrictlyMonotonicMappingToInternalBaseval, StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
pub use monotonic_mapping_u128::MonotonicallyMappableToU128;
|
||||
use serialize::{Header, U128Header};
|
||||
|
||||
mod bitpacked;
|
||||
@@ -31,13 +34,10 @@ pub(crate) mod monotonic_mapping;
|
||||
pub(crate) mod monotonic_mapping_u128;
|
||||
|
||||
mod column;
|
||||
mod column_with_cardinality;
|
||||
mod gcd;
|
||||
pub mod serialize;
|
||||
|
||||
pub use self::column::{monotonic_map_column, ColumnValues, IterColumn, VecColumn};
|
||||
pub use self::monotonic_mapping::{MonotonicallyMappableToU64, StrictlyMonotonicFn};
|
||||
pub use self::monotonic_mapping_u128::MonotonicallyMappableToU128;
|
||||
#[cfg(test)]
|
||||
pub use self::serialize::tests::serialize_and_load;
|
||||
pub use self::serialize::{serialize_column_values, NormalizedHeader};
|
||||
@@ -124,7 +124,7 @@ impl U128FastFieldCodecType {
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open_u128_mapped<T: MonotonicallyMappableToU128>(
|
||||
pub fn open_u128_mapped<T: MonotonicallyMappableToU128 + Debug>(
|
||||
mut bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
let header = U128Header::deserialize(&mut bytes)?;
|
||||
@@ -137,7 +137,7 @@ pub fn open_u128_mapped<T: MonotonicallyMappableToU128>(
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open_u64_mapped<T: MonotonicallyMappableToU64>(
|
||||
pub fn open_u64_mapped<T: MonotonicallyMappableToU64 + Debug>(
|
||||
mut bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
let header = Header::deserialize(&mut bytes)?;
|
||||
@@ -150,7 +150,7 @@ pub fn open_u64_mapped<T: MonotonicallyMappableToU64>(
|
||||
}
|
||||
}
|
||||
|
||||
fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64>(
|
||||
fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64 + Debug>(
|
||||
bytes: OwnedBytes,
|
||||
header: &Header,
|
||||
) -> io::Result<Arc<dyn ColumnValues<Item>>> {
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
use std::fmt::Debug;
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
@@ -7,7 +8,7 @@ use crate::RowId;
|
||||
|
||||
/// Monotonic maps a value to u64 value space.
|
||||
/// Monotonic mapping enables `PartialOrd` on u64 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU64: 'static + PartialOrd + Copy + Send + Sync {
|
||||
pub trait MonotonicallyMappableToU64: 'static + PartialOrd + Debug + Copy + Send + Sync {
|
||||
/// Converts a value to u64.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
use std::fmt::Debug;
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
/// Montonic maps a value to u128 value space
|
||||
/// Monotonic mapping enables `PartialOrd` on u128 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU128: 'static + PartialOrd + Copy + Send + Sync {
|
||||
pub trait MonotonicallyMappableToU128: 'static + PartialOrd + Copy + Debug + Send + Sync {
|
||||
/// Converts a value to u128.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
|
||||
@@ -1,22 +1,4 @@
|
||||
// Copyright (C) 2022 Quickwit, Inc.
|
||||
//
|
||||
// Quickwit is offered under the AGPL v3.0 and as commercial software.
|
||||
// For commercial licensing, contact us at hello@quickwit.io.
|
||||
//
|
||||
// AGPL:
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Affero General Public License as
|
||||
// published by the Free Software Foundation, either version 3 of the
|
||||
// License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Affero General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Affero General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
use std::fmt::Debug;
|
||||
use std::io;
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
@@ -178,7 +160,7 @@ pub fn serialize_column_values_u128<F: Fn() -> I, I: Iterator<Item = u128>>(
|
||||
}
|
||||
|
||||
/// Serializes the column with the codec with the best estimate on the data.
|
||||
pub fn serialize_column_values<T: MonotonicallyMappableToU64>(
|
||||
pub fn serialize_column_values<T: MonotonicallyMappableToU64 + Debug>(
|
||||
typed_column: impl ColumnValues<T>,
|
||||
codecs: &[FastFieldCodecType],
|
||||
output: &mut impl io::Write,
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
use std::fmt::Debug;
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
use crate::value::NumericalType;
|
||||
@@ -66,7 +67,7 @@ impl ColumnType {
|
||||
}
|
||||
|
||||
// TODO remove if possible
|
||||
pub trait HasAssociatedColumnType: 'static + Send + Sync + Copy + PartialOrd {
|
||||
pub trait HasAssociatedColumnType: 'static + Debug + Send + Sync + Copy + PartialOrd {
|
||||
fn column_type() -> ColumnType;
|
||||
fn default_value() -> Self;
|
||||
}
|
||||
|
||||
@@ -73,7 +73,6 @@ impl ColumnarReader {
|
||||
///
|
||||
/// There can be more than one column associated to a given column name, provided they have
|
||||
/// different types.
|
||||
// TODO fix ugly API
|
||||
pub fn read_columns(&self, column_name: &str) -> io::Result<Vec<DynamicColumnHandle>> {
|
||||
// Each column is a associated to a given `column_key`,
|
||||
// that starts by `column_name\0column_header`.
|
||||
@@ -120,3 +119,46 @@ impl ColumnarReader {
|
||||
self.column_dictionary.num_terms()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::{ColumnType, ColumnarReader, ColumnarWriter};
|
||||
|
||||
#[test]
|
||||
fn test_list_columns() {
|
||||
let mut columnar_writer = ColumnarWriter::default();
|
||||
columnar_writer.record_column_type("col1", ColumnType::Str, false);
|
||||
columnar_writer.record_column_type("col2", ColumnType::U64, false);
|
||||
let mut buffer = Vec::new();
|
||||
columnar_writer.serialize(1, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
let columns = columnar.list_columns().unwrap();
|
||||
assert_eq!(columns.len(), 2);
|
||||
assert_eq!(&columns[0].0, "col1");
|
||||
assert_eq!(columns[0].1.column_type(), ColumnType::Str);
|
||||
assert_eq!(&columns[1].0, "col2");
|
||||
assert_eq!(columns[1].1.column_type(), ColumnType::U64);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_list_columns_strict_typing_prevents_coercion() {
|
||||
let mut columnar_writer = ColumnarWriter::default();
|
||||
columnar_writer.record_column_type("count", ColumnType::U64, false);
|
||||
columnar_writer.record_numerical(1, "count", 1u64);
|
||||
let mut buffer = Vec::new();
|
||||
columnar_writer.serialize(2, &mut buffer).unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
let columns = columnar.list_columns().unwrap();
|
||||
assert_eq!(columns.len(), 1);
|
||||
assert_eq!(&columns[0].0, "count");
|
||||
assert_eq!(columns[0].1.column_type(), ColumnType::U64);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic(expect = "Input type forbidden")]
|
||||
fn test_list_columns_strict_typing_panics_on_wrong_types() {
|
||||
let mut columnar_writer = ColumnarWriter::default();
|
||||
columnar_writer.record_column_type("count", ColumnType::U64, false);
|
||||
columnar_writer.record_numerical(1, "count", 1i64);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -168,7 +168,12 @@ impl CompatibleNumericalTypes {
|
||||
}
|
||||
},
|
||||
CompatibleNumericalTypes::StaticType(typ) => {
|
||||
assert_eq!(numerical_value.numerical_type(), *typ);
|
||||
assert_eq!(
|
||||
numerical_value.numerical_type(),
|
||||
*typ,
|
||||
"Input type forbidden. This column has been forced to type {typ:?}, received \
|
||||
{numerical_value:?}"
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -215,6 +220,14 @@ impl NumericalColumnWriter {
|
||||
pub(crate) struct StrOrBytesColumnWriter {
|
||||
pub(crate) dictionary_id: u32,
|
||||
pub(crate) column_writer: ColumnWriter,
|
||||
// If true, when facing a multivalued cardinality,
|
||||
// values associated to a given document will be sorted.
|
||||
//
|
||||
// This is useful for facets.
|
||||
//
|
||||
// If false, the order of appearance in the document will be
|
||||
// observed.
|
||||
pub(crate) sort_values_within_row: bool,
|
||||
}
|
||||
|
||||
impl StrOrBytesColumnWriter {
|
||||
@@ -222,6 +235,7 @@ impl StrOrBytesColumnWriter {
|
||||
StrOrBytesColumnWriter {
|
||||
dictionary_id,
|
||||
column_writer: Default::default(),
|
||||
sort_values_within_row: false,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -29,10 +29,7 @@ use crate::{Cardinality, RowId};
|
||||
#[derive(Default)]
|
||||
struct SpareBuffers {
|
||||
value_index_builders: PreallocatedIndexBuilders,
|
||||
i64_values: Vec<i64>,
|
||||
u64_values: Vec<u64>,
|
||||
f64_values: Vec<f64>,
|
||||
bool_values: Vec<bool>,
|
||||
ip_addr_values: Vec<Ipv6Addr>,
|
||||
}
|
||||
|
||||
@@ -106,7 +103,23 @@ impl ColumnarWriter {
|
||||
+ self.datetime_field_hash_map.mem_usage()
|
||||
}
|
||||
|
||||
pub fn record_column_type(&mut self, column_name: &str, column_type: ColumnType) {
|
||||
/// Records a column type. This is useful to bypass the coercion process,
|
||||
/// makes sure the empty is present in the resulting columnar, or set
|
||||
/// the `sort_values_within_row`.
|
||||
///
|
||||
/// `sort_values_within_row` is only allowed for `Bytes` or `Str` columns.
|
||||
pub fn record_column_type(
|
||||
&mut self,
|
||||
column_name: &str,
|
||||
column_type: ColumnType,
|
||||
sort_values_within_row: bool,
|
||||
) {
|
||||
if sort_values_within_row {
|
||||
assert!(
|
||||
column_type == ColumnType::Bytes || column_type == ColumnType::Str,
|
||||
"sort_values_within_row is only allowed for Bytes and Str columns",
|
||||
);
|
||||
}
|
||||
match column_type {
|
||||
ColumnType::Str | ColumnType::Bytes => {
|
||||
let (hash_map, dictionaries) = (
|
||||
@@ -121,13 +134,15 @@ impl ColumnarWriter {
|
||||
hash_map,
|
||||
column_name,
|
||||
|column_opt: Option<StrOrBytesColumnWriter>| {
|
||||
if let Some(column_writer) = column_opt {
|
||||
let mut column_writer = if let Some(column_writer) = column_opt {
|
||||
column_writer
|
||||
} else {
|
||||
let dictionary_id = dictionaries.len() as u32;
|
||||
dictionaries.push(DictionaryBuilder::default());
|
||||
StrOrBytesColumnWriter::with_dictionary_id(dictionary_id)
|
||||
}
|
||||
};
|
||||
column_writer.sort_values_within_row = sort_values_within_row;
|
||||
column_writer
|
||||
},
|
||||
);
|
||||
}
|
||||
@@ -165,18 +180,6 @@ impl ColumnarWriter {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn force_numerical_type(&mut self, column_name: &str, numerical_type: NumericalType) {
|
||||
mutate_or_create_column(
|
||||
&mut self.numerical_field_hash_map,
|
||||
column_name,
|
||||
|column_opt: Option<NumericalColumnWriter>| {
|
||||
let mut column: NumericalColumnWriter = column_opt.unwrap_or_default();
|
||||
column.force_numerical_type(numerical_type);
|
||||
column
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
pub fn record_numerical<T: Into<NumericalValue> + Copy>(
|
||||
&mut self,
|
||||
doc: RowId,
|
||||
@@ -364,6 +367,7 @@ impl ColumnarWriter {
|
||||
serialize_bytes_or_str_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
str_or_bytes_column_writer.sort_values_within_row,
|
||||
dictionary_builder,
|
||||
str_or_bytes_column_writer
|
||||
.operation_iterator(arena, &mut symbol_byte_buffer),
|
||||
@@ -397,6 +401,7 @@ impl ColumnarWriter {
|
||||
fn serialize_bytes_or_str_column(
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
sort_values_within_row: bool,
|
||||
dictionary_builder: &DictionaryBuilder,
|
||||
operation_it: impl Iterator<Item = ColumnOperation<UnorderedId>>,
|
||||
buffers: &mut SpareBuffers,
|
||||
@@ -425,6 +430,7 @@ fn serialize_bytes_or_str_column(
|
||||
operation_iterator,
|
||||
cardinality,
|
||||
num_docs,
|
||||
sort_values_within_row,
|
||||
value_index_builders,
|
||||
u64_values,
|
||||
&mut wrt,
|
||||
@@ -444,8 +450,6 @@ fn serialize_numerical_column(
|
||||
let SpareBuffers {
|
||||
value_index_builders,
|
||||
u64_values,
|
||||
i64_values,
|
||||
f64_values,
|
||||
..
|
||||
} = buffers;
|
||||
match numerical_type {
|
||||
@@ -454,8 +458,9 @@ fn serialize_numerical_column(
|
||||
coerce_numerical_symbol::<i64>(op_iterator),
|
||||
cardinality,
|
||||
num_docs,
|
||||
false,
|
||||
value_index_builders,
|
||||
i64_values,
|
||||
u64_values,
|
||||
wrt,
|
||||
)?;
|
||||
}
|
||||
@@ -464,6 +469,7 @@ fn serialize_numerical_column(
|
||||
coerce_numerical_symbol::<u64>(op_iterator),
|
||||
cardinality,
|
||||
num_docs,
|
||||
false,
|
||||
value_index_builders,
|
||||
u64_values,
|
||||
wrt,
|
||||
@@ -474,8 +480,9 @@ fn serialize_numerical_column(
|
||||
coerce_numerical_symbol::<f64>(op_iterator),
|
||||
cardinality,
|
||||
num_docs,
|
||||
false,
|
||||
value_index_builders,
|
||||
f64_values,
|
||||
u64_values,
|
||||
wrt,
|
||||
)?;
|
||||
}
|
||||
@@ -492,15 +499,19 @@ fn serialize_bool_column(
|
||||
) -> io::Result<()> {
|
||||
let SpareBuffers {
|
||||
value_index_builders,
|
||||
bool_values,
|
||||
u64_values,
|
||||
..
|
||||
} = buffers;
|
||||
send_to_serialize_column_mappable_to_u64(
|
||||
column_operations_it,
|
||||
column_operations_it.map(|bool_column_operation| match bool_column_operation {
|
||||
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
|
||||
ColumnOperation::Value(bool_val) => ColumnOperation::Value(bool_val.to_u64()),
|
||||
}),
|
||||
cardinality,
|
||||
num_docs,
|
||||
false,
|
||||
value_index_builders,
|
||||
bool_values,
|
||||
u64_values,
|
||||
wrt,
|
||||
)?;
|
||||
Ok(())
|
||||
@@ -530,7 +541,7 @@ fn serialize_ip_addr_column(
|
||||
}
|
||||
|
||||
fn send_to_serialize_column_mappable_to_u128<
|
||||
T: Copy + std::fmt::Debug + Send + Sync + MonotonicallyMappableToU128 + PartialOrd,
|
||||
T: Copy + Ord + std::fmt::Debug + Send + Sync + MonotonicallyMappableToU128 + PartialOrd,
|
||||
>(
|
||||
op_iterator: impl Iterator<Item = ColumnOperation<T>>,
|
||||
cardinality: Cardinality,
|
||||
@@ -575,18 +586,29 @@ where
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn send_to_serialize_column_mappable_to_u64<
|
||||
T: Copy + Default + std::fmt::Debug + Send + Sync + MonotonicallyMappableToU64 + PartialOrd,
|
||||
>(
|
||||
op_iterator: impl Iterator<Item = ColumnOperation<T>>,
|
||||
fn sort_values_within_row_in_place(
|
||||
multivalued_index: &impl ColumnValues<RowId>,
|
||||
values: &mut Vec<u64>,
|
||||
) {
|
||||
let mut start_index: usize = 0;
|
||||
for end_index in multivalued_index.iter() {
|
||||
let end_index = end_index as usize;
|
||||
values[start_index..end_index].sort_unstable();
|
||||
start_index = end_index;
|
||||
}
|
||||
}
|
||||
|
||||
fn send_to_serialize_column_mappable_to_u64(
|
||||
op_iterator: impl Iterator<Item = ColumnOperation<u64>>,
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
sort_values_within_row: bool,
|
||||
value_index_builders: &mut PreallocatedIndexBuilders,
|
||||
values: &mut Vec<T>,
|
||||
values: &mut Vec<u64>,
|
||||
mut wrt: impl io::Write,
|
||||
) -> io::Result<()>
|
||||
where
|
||||
for<'a> VecColumn<'a, T>: ColumnValues<T>,
|
||||
for<'a> VecColumn<'a, u64>: ColumnValues<u64>,
|
||||
{
|
||||
values.clear();
|
||||
let serializable_column_index = match cardinality {
|
||||
@@ -608,6 +630,9 @@ where
|
||||
let multivalued_index_builder = value_index_builders.borrow_multivalued_index_builder();
|
||||
consume_operation_iterator(op_iterator, multivalued_index_builder, values);
|
||||
let multivalued_index = multivalued_index_builder.finish(num_docs);
|
||||
if sort_values_within_row {
|
||||
sort_values_within_row_in_place(&multivalued_index, values);
|
||||
}
|
||||
SerializableColumnIndex::Multivalued(Box::new(multivalued_index))
|
||||
}
|
||||
};
|
||||
@@ -621,17 +646,17 @@ where
|
||||
|
||||
fn coerce_numerical_symbol<T>(
|
||||
operation_iterator: impl Iterator<Item = ColumnOperation<NumericalValue>>,
|
||||
) -> impl Iterator<Item = ColumnOperation<T>>
|
||||
where T: Coerce {
|
||||
) -> impl Iterator<Item = ColumnOperation<u64>>
|
||||
where T: Coerce + MonotonicallyMappableToU64 {
|
||||
operation_iterator.map(|symbol| match symbol {
|
||||
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
|
||||
ColumnOperation::Value(numerical_value) => {
|
||||
ColumnOperation::Value(Coerce::coerce(numerical_value))
|
||||
ColumnOperation::Value(T::coerce(numerical_value).to_u64())
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn consume_operation_iterator<T: std::fmt::Debug, TIndexBuilder: IndexBuilder>(
|
||||
fn consume_operation_iterator<T: Ord, TIndexBuilder: IndexBuilder>(
|
||||
operation_iterator: impl Iterator<Item = ColumnOperation<T>>,
|
||||
index_builder: &mut TIndexBuilder,
|
||||
values: &mut Vec<T>,
|
||||
|
||||
@@ -19,16 +19,20 @@ pub(crate) mod utils;
|
||||
mod value;
|
||||
|
||||
pub use column::{BytesColumn, Column, StrColumn};
|
||||
pub use column_values::ColumnValues;
|
||||
pub use column_index::ColumnIndex;
|
||||
pub use column_values::{ColumnValues, MonotonicallyMappableToU128, MonotonicallyMappableToU64};
|
||||
pub use columnar::{
|
||||
merge_columnar, ColumnType, ColumnarReader, ColumnarWriter, HasAssociatedColumnType,
|
||||
MergeDocOrder,
|
||||
};
|
||||
use sstable::VoidSSTable;
|
||||
pub use value::{NumericalType, NumericalValue};
|
||||
|
||||
pub use self::dynamic_column::{DynamicColumn, DynamicColumnHandle};
|
||||
|
||||
pub type RowId = u32;
|
||||
pub use sstable::Dictionary;
|
||||
pub type Streamer<'a> = sstable::Streamer<'a, VoidSSTable>;
|
||||
|
||||
#[derive(Clone, Copy, PartialOrd, PartialEq, Default, Debug)]
|
||||
pub struct DateTime {
|
||||
|
||||
@@ -13,7 +13,7 @@ use tantivy::aggregation::agg_result::AggregationResults;
|
||||
use tantivy::aggregation::metric::AverageAggregation;
|
||||
use tantivy::aggregation::AggregationCollector;
|
||||
use tantivy::query::TermQuery;
|
||||
use tantivy::schema::{self, Cardinality, IndexRecordOption, Schema, TextFieldIndexing};
|
||||
use tantivy::schema::{self, IndexRecordOption, Schema, TextFieldIndexing};
|
||||
use tantivy::{doc, Index, Term};
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
@@ -25,7 +25,7 @@ fn main() -> tantivy::Result<()> {
|
||||
.set_stored();
|
||||
let text_field = schema_builder.add_text_field("text", text_fieldtype);
|
||||
let score_fieldtype =
|
||||
crate::schema::NumericOptions::default().set_fast(Cardinality::SingleValue);
|
||||
crate::schema::NumericOptions::default().set_fast();
|
||||
let highscore_field = schema_builder.add_f64_field("highscore", score_fieldtype.clone());
|
||||
let price_field = schema_builder.add_f64_field("price", score_fieldtype);
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
|
||||
use tantivy::collector::TopDocs;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Cardinality, DateOptions, Schema, Value, INDEXED, STORED, STRING};
|
||||
use tantivy::schema::{DateOptions, Schema, Value, INDEXED, STORED, STRING};
|
||||
use tantivy::Index;
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
@@ -12,7 +12,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let opts = DateOptions::from(INDEXED)
|
||||
.set_stored()
|
||||
.set_fast(Cardinality::SingleValue)
|
||||
.set_fast()
|
||||
.set_precision(tantivy::DatePrecision::Seconds);
|
||||
let occurred_at = schema_builder.add_date_field("occurred_at", opts);
|
||||
let event_type = schema_builder.add_text_field("event", STRING | STORED);
|
||||
@@ -14,6 +14,7 @@ repository = "https://github.com/quickwit-oss/tantivy"
|
||||
[dependencies]
|
||||
common = { version = "0.5", path = "../common/", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.3", path = "../bitpacker/" }
|
||||
columnar = { version= "0.1", path="../columnar", package="tantivy-columnar" }
|
||||
prettytable-rs = {version="0.10.0", optional= true}
|
||||
rand = {version="0.8.3", optional= true}
|
||||
fastdivide = "0.4"
|
||||
|
||||
@@ -1,116 +0,0 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::OwnedBytes;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::serialize::NormalizedHeader;
|
||||
use crate::{Column, FastFieldCodec, FastFieldCodecType};
|
||||
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct BitpackedReader {
|
||||
data: OwnedBytes,
|
||||
bit_unpacker: BitUnpacker,
|
||||
normalized_header: NormalizedHeader,
|
||||
}
|
||||
|
||||
impl Column for BitpackedReader {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
self.bit_unpacker.get(doc, &self.data)
|
||||
}
|
||||
#[inline]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The BitpackedReader assumes a normalized vector.
|
||||
0
|
||||
}
|
||||
#[inline]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.normalized_header.max_value
|
||||
}
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.normalized_header.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
pub struct BitpackedCodec;
|
||||
|
||||
impl FastFieldCodec for BitpackedCodec {
|
||||
/// The CODEC_TYPE is an enum value used for serialization.
|
||||
const CODEC_TYPE: FastFieldCodecType = FastFieldCodecType::Bitpacked;
|
||||
|
||||
type Reader = BitpackedReader;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn open_from_bytes(
|
||||
data: OwnedBytes,
|
||||
normalized_header: NormalizedHeader,
|
||||
) -> io::Result<Self::Reader> {
|
||||
let num_bits = compute_num_bits(normalized_header.max_value);
|
||||
let bit_unpacker = BitUnpacker::new(num_bits);
|
||||
Ok(BitpackedReader {
|
||||
data,
|
||||
bit_unpacker,
|
||||
normalized_header,
|
||||
})
|
||||
}
|
||||
|
||||
/// Serializes data with the BitpackedFastFieldSerializer.
|
||||
///
|
||||
/// The bitpacker assumes that the column has been normalized.
|
||||
/// i.e. It has already been shifted by its minimum value, so that its
|
||||
/// current minimum value is 0.
|
||||
///
|
||||
/// Ideally, we made a shift upstream on the column so that `col.min_value() == 0`.
|
||||
fn serialize(column: &dyn Column, write: &mut impl Write) -> io::Result<()> {
|
||||
assert_eq!(column.min_value(), 0u64);
|
||||
let num_bits = compute_num_bits(column.max_value());
|
||||
let mut bit_packer = BitPacker::new();
|
||||
for val in column.iter() {
|
||||
bit_packer.write(val, num_bits, write)?;
|
||||
}
|
||||
bit_packer.close(write)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn estimate(column: &dyn Column) -> Option<f32> {
|
||||
let num_bits = compute_num_bits(column.max_value());
|
||||
let num_bits_uncompressed = 64;
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::tests::get_codec_test_datasets;
|
||||
|
||||
fn create_and_validate(data: &[u64], name: &str) {
|
||||
crate::tests::create_and_validate::<BitpackedCodec>(data, name);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_data_sets() {
|
||||
let data_sets = get_codec_test_datasets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate(&data, name);
|
||||
data.reverse();
|
||||
create_and_validate(&data, name);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bitpacked_fast_field_rand() {
|
||||
for _ in 0..500 {
|
||||
let mut data = (0..1 + rand::random::<u8>() as usize)
|
||||
.map(|_| rand::random::<i64>() as u64 / 2)
|
||||
.collect::<Vec<_>>();
|
||||
create_and_validate(&data, "rand");
|
||||
|
||||
data.reverse();
|
||||
create_and_validate(&data, "rand");
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,188 +0,0 @@
|
||||
use std::sync::Arc;
|
||||
use std::{io, iter};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, DeserializeFrom, OwnedBytes};
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::line::Line;
|
||||
use crate::serialize::NormalizedHeader;
|
||||
use crate::{Column, FastFieldCodec, FastFieldCodecType, VecColumn};
|
||||
|
||||
const CHUNK_SIZE: usize = 512;
|
||||
|
||||
#[derive(Debug, Default)]
|
||||
struct Block {
|
||||
line: Line,
|
||||
bit_unpacker: BitUnpacker,
|
||||
data_start_offset: usize,
|
||||
}
|
||||
|
||||
impl BinarySerializable for Block {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.line.serialize(writer)?;
|
||||
self.bit_unpacker.bit_width().serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let line = Line::deserialize(reader)?;
|
||||
let bit_width = u8::deserialize(reader)?;
|
||||
Ok(Block {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
data_start_offset: 0,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_num_blocks(num_vals: u32) -> usize {
|
||||
(num_vals as usize + CHUNK_SIZE - 1) / CHUNK_SIZE
|
||||
}
|
||||
|
||||
pub struct BlockwiseLinearCodec;
|
||||
|
||||
impl FastFieldCodec for BlockwiseLinearCodec {
|
||||
const CODEC_TYPE: crate::FastFieldCodecType = FastFieldCodecType::BlockwiseLinear;
|
||||
type Reader = BlockwiseLinearReader;
|
||||
|
||||
fn open_from_bytes(
|
||||
bytes: common::OwnedBytes,
|
||||
normalized_header: NormalizedHeader,
|
||||
) -> io::Result<Self::Reader> {
|
||||
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
|
||||
let footer_offset = bytes.len() - 4 - footer_len as usize;
|
||||
let (data, mut footer) = bytes.split(footer_offset);
|
||||
let num_blocks = compute_num_blocks(normalized_header.num_vals);
|
||||
let mut blocks: Vec<Block> = iter::repeat_with(|| Block::deserialize(&mut footer))
|
||||
.take(num_blocks)
|
||||
.collect::<io::Result<_>>()?;
|
||||
|
||||
let mut start_offset = 0;
|
||||
for block in &mut blocks {
|
||||
block.data_start_offset = start_offset;
|
||||
start_offset += (block.bit_unpacker.bit_width() as usize) * CHUNK_SIZE / 8;
|
||||
}
|
||||
Ok(BlockwiseLinearReader {
|
||||
blocks: Arc::new(blocks),
|
||||
data,
|
||||
normalized_header,
|
||||
})
|
||||
}
|
||||
|
||||
// Estimate first_chunk and extrapolate
|
||||
fn estimate(column: &dyn crate::Column) -> Option<f32> {
|
||||
if column.num_vals() < 10 * CHUNK_SIZE as u32 {
|
||||
return None;
|
||||
}
|
||||
let mut first_chunk: Vec<u64> = column.iter().take(CHUNK_SIZE).collect();
|
||||
let line = Line::train(&VecColumn::from(&first_chunk));
|
||||
for (i, buffer_val) in first_chunk.iter_mut().enumerate() {
|
||||
let interpolated_val = line.eval(i as u32);
|
||||
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
|
||||
}
|
||||
let estimated_bit_width = first_chunk
|
||||
.iter()
|
||||
.map(|el| ((el + 1) as f32 * 3.0) as u64)
|
||||
.map(compute_num_bits)
|
||||
.max()
|
||||
.unwrap();
|
||||
|
||||
let metadata_per_block = {
|
||||
let mut out = vec![];
|
||||
Block::default().serialize(&mut out).unwrap();
|
||||
out.len()
|
||||
};
|
||||
let num_bits = estimated_bit_width as u64 * column.num_vals() as u64
|
||||
// function metadata per block
|
||||
+ metadata_per_block as u64 * (column.num_vals() as u64 / CHUNK_SIZE as u64);
|
||||
let num_bits_uncompressed = 64 * column.num_vals();
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
}
|
||||
|
||||
fn serialize(column: &dyn Column, wrt: &mut impl io::Write) -> io::Result<()> {
|
||||
// The BitpackedReader assumes a normalized vector.
|
||||
assert_eq!(column.min_value(), 0);
|
||||
let mut buffer = Vec::with_capacity(CHUNK_SIZE);
|
||||
let num_vals = column.num_vals();
|
||||
|
||||
let num_blocks = compute_num_blocks(num_vals);
|
||||
let mut blocks = Vec::with_capacity(num_blocks);
|
||||
|
||||
let mut vals = column.iter();
|
||||
|
||||
let mut bit_packer = BitPacker::new();
|
||||
|
||||
for _ in 0..num_blocks {
|
||||
buffer.clear();
|
||||
buffer.extend((&mut vals).take(CHUNK_SIZE));
|
||||
let line = Line::train(&VecColumn::from(&buffer));
|
||||
|
||||
assert!(!buffer.is_empty());
|
||||
|
||||
for (i, buffer_val) in buffer.iter_mut().enumerate() {
|
||||
let interpolated_val = line.eval(i as u32);
|
||||
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
|
||||
}
|
||||
let bit_width = buffer.iter().copied().map(compute_num_bits).max().unwrap();
|
||||
|
||||
for &buffer_val in &buffer {
|
||||
bit_packer.write(buffer_val, bit_width, wrt)?;
|
||||
}
|
||||
|
||||
blocks.push(Block {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
data_start_offset: 0,
|
||||
});
|
||||
}
|
||||
|
||||
bit_packer.close(wrt)?;
|
||||
|
||||
assert_eq!(blocks.len(), compute_num_blocks(num_vals));
|
||||
|
||||
let mut counting_wrt = CountingWriter::wrap(wrt);
|
||||
for block in &blocks {
|
||||
block.serialize(&mut counting_wrt)?;
|
||||
}
|
||||
let footer_len = counting_wrt.written_bytes();
|
||||
(footer_len as u32).serialize(&mut counting_wrt)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct BlockwiseLinearReader {
|
||||
blocks: Arc<Vec<Block>>,
|
||||
normalized_header: NormalizedHeader,
|
||||
data: OwnedBytes,
|
||||
}
|
||||
|
||||
impl Column for BlockwiseLinearReader {
|
||||
#[inline(always)]
|
||||
fn get_val(&self, idx: u32) -> u64 {
|
||||
let block_id = (idx / CHUNK_SIZE as u32) as usize;
|
||||
let idx_within_block = idx % (CHUNK_SIZE as u32);
|
||||
let block = &self.blocks[block_id];
|
||||
let interpoled_val: u64 = block.line.eval(idx_within_block);
|
||||
let block_bytes = &self.data[block.data_start_offset..];
|
||||
let bitpacked_diff = block.bit_unpacker.get(idx_within_block, block_bytes);
|
||||
interpoled_val.wrapping_add(bitpacked_diff)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The BlockwiseLinearReader assumes a normalized vector.
|
||||
0u64
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.normalized_header.max_value
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.normalized_header.num_vals
|
||||
}
|
||||
}
|
||||
@@ -1,352 +0,0 @@
|
||||
use std::fmt::{self, Debug};
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
|
||||
use tantivy_bitpacker::minmax;
|
||||
|
||||
use crate::monotonic_mapping::StrictlyMonotonicFn;
|
||||
|
||||
/// `Column` provides columnar access on a field.
|
||||
pub trait Column<T: PartialOrd + Debug = u64>: Send + Sync {
|
||||
/// Return the value associated with the given idx.
|
||||
///
|
||||
/// This accessor should return as fast as possible.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `idx` is greater than the column length.
|
||||
fn get_val(&self, idx: u32) -> T;
|
||||
|
||||
/// Fills an output buffer with the fast field values
|
||||
/// associated with the `DocId` going from
|
||||
/// `start` to `start + output.len()`.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Must panic if `start + output.len()` is greater than
|
||||
/// the segment's `maxdoc`.
|
||||
#[inline]
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
for (out, idx) in output.iter_mut().zip(start..) {
|
||||
*out = self.get_val(idx as u32);
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the positions of values which are in the provided value range.
|
||||
///
|
||||
/// Note that position == docid for single value fast fields
|
||||
#[inline]
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<T>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
let doc_id_range = doc_id_range.start..doc_id_range.end.min(self.num_vals());
|
||||
|
||||
for idx in doc_id_range.start..doc_id_range.end {
|
||||
let val = self.get_val(idx);
|
||||
if value_range.contains(&val) {
|
||||
positions.push(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the minimum value for this fast field.
|
||||
///
|
||||
/// This min_value may not be exact.
|
||||
/// For instance, the min value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.min_value()`.
|
||||
fn min_value(&self) -> T;
|
||||
|
||||
/// Returns the maximum value for this fast field.
|
||||
///
|
||||
/// This max_value may not be exact.
|
||||
/// For instance, the max value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.max_value()`.
|
||||
fn max_value(&self) -> T;
|
||||
|
||||
/// The number of values in the column.
|
||||
fn num_vals(&self) -> u32;
|
||||
|
||||
/// Returns a iterator over the data
|
||||
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = T> + 'a> {
|
||||
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
|
||||
}
|
||||
}
|
||||
|
||||
/// VecColumn provides `Column` over a slice.
|
||||
pub struct VecColumn<'a, T = u64> {
|
||||
values: &'a [T],
|
||||
min_value: T,
|
||||
max_value: T,
|
||||
}
|
||||
|
||||
impl<'a, C: Column<T>, T: Copy + PartialOrd + fmt::Debug> Column<T> for &'a C {
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
(*self).get_val(idx)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
(*self).min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
(*self).max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
(*self).num_vals()
|
||||
}
|
||||
|
||||
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
|
||||
(*self).iter()
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
(*self).get_range(start, output)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Send + Sync + Debug> Column<T> for VecColumn<'a, T> {
|
||||
fn get_val(&self, position: u32) -> T {
|
||||
self.values[position as usize]
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
|
||||
Box::new(self.values.iter().copied())
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
self.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.values.len() as u32
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
output.copy_from_slice(&self.values[start as usize..][..output.len()])
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Default, V> From<&'a V> for VecColumn<'a, T>
|
||||
where V: AsRef<[T]> + ?Sized
|
||||
{
|
||||
fn from(values: &'a V) -> Self {
|
||||
let values = values.as_ref();
|
||||
let (min_value, max_value) = minmax(values.iter().copied()).unwrap_or_default();
|
||||
Self {
|
||||
values,
|
||||
min_value,
|
||||
max_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct MonotonicMappingColumn<C, T, Input> {
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
_phantom: PhantomData<Input>,
|
||||
}
|
||||
|
||||
/// Creates a view of a column transformed by a strictly monotonic mapping. See
|
||||
/// [`StrictlyMonotonicFn`].
|
||||
///
|
||||
/// E.g. apply a gcd monotonic_mapping([100, 200, 300]) == [1, 2, 3]
|
||||
/// monotonic_mapping.mapping() is expected to be injective, and we should always have
|
||||
/// monotonic_mapping.inverse(monotonic_mapping.mapping(el)) == el
|
||||
///
|
||||
/// The inverse of the mapping is required for:
|
||||
/// `fn get_positions_for_value_range(&self, range: RangeInclusive<T>) -> Vec<u64> `
|
||||
/// The user provides the original value range and we need to monotonic map them in the same way the
|
||||
/// serialization does before calling the underlying column.
|
||||
///
|
||||
/// Note that when opening a codec, the monotonic_mapping should be the inverse of the mapping
|
||||
/// during serialization. And therefore the monotonic_mapping_inv when opening is the same as
|
||||
/// monotonic_mapping during serialization.
|
||||
pub fn monotonic_map_column<C, T, Input, Output>(
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
) -> impl Column<Output>
|
||||
where
|
||||
C: Column<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Sync + Copy + Debug,
|
||||
Output: PartialOrd + Send + Sync + Copy + Debug,
|
||||
{
|
||||
MonotonicMappingColumn {
|
||||
from_column,
|
||||
monotonic_mapping,
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
impl<C, T, Input, Output> Column<Output> for MonotonicMappingColumn<C, T, Input>
|
||||
where
|
||||
C: Column<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Sync + Copy + Debug,
|
||||
Output: PartialOrd + Send + Sync + Copy + Debug,
|
||||
{
|
||||
#[inline]
|
||||
fn get_val(&self, idx: u32) -> Output {
|
||||
let from_val = self.from_column.get_val(idx);
|
||||
self.monotonic_mapping.mapping(from_val)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> Output {
|
||||
let from_min_value = self.from_column.min_value();
|
||||
self.monotonic_mapping.mapping(from_min_value)
|
||||
}
|
||||
|
||||
fn max_value(&self) -> Output {
|
||||
let from_max_value = self.from_column.max_value();
|
||||
self.monotonic_mapping.mapping(from_max_value)
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.from_column.num_vals()
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = Output> + '_> {
|
||||
Box::new(
|
||||
self.from_column
|
||||
.iter()
|
||||
.map(|el| self.monotonic_mapping.mapping(el)),
|
||||
)
|
||||
}
|
||||
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<Output>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
if range.start() > &self.max_value() || range.end() < &self.min_value() {
|
||||
return;
|
||||
}
|
||||
let range = self.monotonic_mapping.inverse_coerce(range);
|
||||
if range.start() > range.end() {
|
||||
return;
|
||||
}
|
||||
self.from_column
|
||||
.get_docids_for_value_range(range, doc_id_range, positions)
|
||||
}
|
||||
|
||||
// We voluntarily do not implement get_range as it yields a regression,
|
||||
// and we do not have any specialized implementation anyway.
|
||||
}
|
||||
|
||||
/// Wraps an iterator into a `Column`.
|
||||
pub struct IterColumn<T>(T);
|
||||
|
||||
impl<T> From<T> for IterColumn<T>
|
||||
where T: Iterator + Clone + ExactSizeIterator
|
||||
{
|
||||
fn from(iter: T) -> Self {
|
||||
IterColumn(iter)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Column<T::Item> for IterColumn<T>
|
||||
where
|
||||
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
|
||||
T::Item: PartialOrd + fmt::Debug,
|
||||
{
|
||||
fn get_val(&self, idx: u32) -> T::Item {
|
||||
self.0.clone().nth(idx as usize).unwrap()
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T::Item {
|
||||
self.0.clone().next().unwrap()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T::Item {
|
||||
self.0.clone().last().unwrap()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.0.len() as u32
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T::Item> + '_> {
|
||||
Box::new(self.0.clone())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternalBaseval,
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping() {
|
||||
let vals = &[3u64, 5u64][..];
|
||||
let col = VecColumn::from(vals);
|
||||
let mapped = monotonic_map_column(col, StrictlyMonotonicMappingToInternalBaseval::new(2));
|
||||
assert_eq!(mapped.min_value(), 1u64);
|
||||
assert_eq!(mapped.max_value(), 3u64);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.get_val(0), 1);
|
||||
assert_eq!(mapped.get_val(1), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_as_col() {
|
||||
let col = IterColumn::from(10..100);
|
||||
assert_eq!(col.num_vals(), 90);
|
||||
assert_eq!(col.max_value(), 99);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_iter() {
|
||||
let vals: Vec<u64> = (10..110u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100),
|
||||
),
|
||||
);
|
||||
let val_i64s: Vec<u64> = mapped.iter().collect();
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_get_range() {
|
||||
let vals: Vec<u64> = (0..100u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 0),
|
||||
),
|
||||
);
|
||||
|
||||
assert_eq!(mapped.min_value(), 0u64);
|
||||
assert_eq!(mapped.max_value(), 9900u64);
|
||||
assert_eq!(mapped.num_vals(), 100);
|
||||
let val_u64s: Vec<u64> = mapped.iter().collect();
|
||||
assert_eq!(val_u64s.len(), 100);
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_u64s[i as usize], mapped.get_val(i));
|
||||
assert_eq!(val_u64s[i as usize], vals[i as usize] * 10);
|
||||
}
|
||||
let mut buf = [0u64; 20];
|
||||
mapped.get_range(7, &mut buf[..]);
|
||||
assert_eq!(&val_u64s[7..][..20], &buf);
|
||||
}
|
||||
}
|
||||
@@ -1,43 +0,0 @@
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
/// The range of a blank in value space.
|
||||
///
|
||||
/// A blank is an unoccupied space in the data.
|
||||
/// Use try_into() to construct.
|
||||
/// A range has to have at least length of 3. Invalid ranges will be rejected.
|
||||
///
|
||||
/// Ordered by range length.
|
||||
#[derive(Debug, Eq, PartialEq, Clone)]
|
||||
pub(crate) struct BlankRange {
|
||||
blank_range: RangeInclusive<u128>,
|
||||
}
|
||||
impl TryFrom<RangeInclusive<u128>> for BlankRange {
|
||||
type Error = &'static str;
|
||||
fn try_from(range: RangeInclusive<u128>) -> Result<Self, Self::Error> {
|
||||
let blank_size = range.end().saturating_sub(*range.start());
|
||||
if blank_size < 2 {
|
||||
Err("invalid range")
|
||||
} else {
|
||||
Ok(BlankRange { blank_range: range })
|
||||
}
|
||||
}
|
||||
}
|
||||
impl BlankRange {
|
||||
pub(crate) fn blank_size(&self) -> u128 {
|
||||
self.blank_range.end() - self.blank_range.start() + 1
|
||||
}
|
||||
pub(crate) fn blank_range(&self) -> RangeInclusive<u128> {
|
||||
self.blank_range.clone()
|
||||
}
|
||||
}
|
||||
|
||||
impl Ord for BlankRange {
|
||||
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
|
||||
self.blank_size().cmp(&other.blank_size())
|
||||
}
|
||||
}
|
||||
impl PartialOrd for BlankRange {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
|
||||
Some(self.blank_size().cmp(&other.blank_size()))
|
||||
}
|
||||
}
|
||||
@@ -1,231 +0,0 @@
|
||||
use std::collections::{BTreeSet, BinaryHeap};
|
||||
use std::iter;
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::blank_range::BlankRange;
|
||||
use super::{CompactSpace, RangeMapping};
|
||||
|
||||
/// Put the blanks for the sorted values into a binary heap
|
||||
fn get_blanks(values_sorted: &BTreeSet<u128>) -> BinaryHeap<BlankRange> {
|
||||
let mut blanks: BinaryHeap<BlankRange> = BinaryHeap::new();
|
||||
for (first, second) in values_sorted.iter().tuple_windows() {
|
||||
// Correctness Overflow: the values are deduped and sorted (BTreeSet property), that means
|
||||
// there's always space between two values.
|
||||
let blank_range = first + 1..=second - 1;
|
||||
let blank_range: Result<BlankRange, _> = blank_range.try_into();
|
||||
if let Ok(blank_range) = blank_range {
|
||||
blanks.push(blank_range);
|
||||
}
|
||||
}
|
||||
|
||||
blanks
|
||||
}
|
||||
|
||||
struct BlankCollector {
|
||||
blanks: Vec<BlankRange>,
|
||||
staged_blanks_sum: u128,
|
||||
}
|
||||
impl BlankCollector {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
blanks: vec![],
|
||||
staged_blanks_sum: 0,
|
||||
}
|
||||
}
|
||||
fn stage_blank(&mut self, blank: BlankRange) {
|
||||
self.staged_blanks_sum += blank.blank_size();
|
||||
self.blanks.push(blank);
|
||||
}
|
||||
fn drain(&mut self) -> impl Iterator<Item = BlankRange> + '_ {
|
||||
self.staged_blanks_sum = 0;
|
||||
self.blanks.drain(..)
|
||||
}
|
||||
fn staged_blanks_sum(&self) -> u128 {
|
||||
self.staged_blanks_sum
|
||||
}
|
||||
fn num_staged_blanks(&self) -> usize {
|
||||
self.blanks.len()
|
||||
}
|
||||
}
|
||||
fn num_bits(val: u128) -> u8 {
|
||||
(128u32 - val.leading_zeros()) as u8
|
||||
}
|
||||
|
||||
/// Will collect blanks and add them to compact space if more bits are saved than cost from
|
||||
/// metadata.
|
||||
pub fn get_compact_space(
|
||||
values_deduped_sorted: &BTreeSet<u128>,
|
||||
total_num_values: u32,
|
||||
cost_per_blank: usize,
|
||||
) -> CompactSpace {
|
||||
let mut compact_space_builder = CompactSpaceBuilder::new();
|
||||
if values_deduped_sorted.is_empty() {
|
||||
return compact_space_builder.finish();
|
||||
}
|
||||
|
||||
let mut blanks: BinaryHeap<BlankRange> = get_blanks(values_deduped_sorted);
|
||||
// Replace after stabilization of https://github.com/rust-lang/rust/issues/62924
|
||||
|
||||
// We start by space that's limited to min_value..=max_value
|
||||
let min_value = *values_deduped_sorted.iter().next().unwrap_or(&0);
|
||||
let max_value = *values_deduped_sorted.iter().last().unwrap_or(&0);
|
||||
|
||||
// +1 for null, in case min and max covers the whole space, we are off by one.
|
||||
let mut amplitude_compact_space = (max_value - min_value).saturating_add(1);
|
||||
if min_value != 0 {
|
||||
compact_space_builder.add_blanks(iter::once(0..=min_value - 1));
|
||||
}
|
||||
if max_value != u128::MAX {
|
||||
compact_space_builder.add_blanks(iter::once(max_value + 1..=u128::MAX));
|
||||
}
|
||||
|
||||
let mut amplitude_bits: u8 = num_bits(amplitude_compact_space);
|
||||
|
||||
let mut blank_collector = BlankCollector::new();
|
||||
// We will stage blanks until they reduce the compact space by at least 1 bit and then flush
|
||||
// them if the metadata cost is lower than the total number of saved bits.
|
||||
// Binary heap to process the gaps by their size
|
||||
while let Some(blank_range) = blanks.pop() {
|
||||
blank_collector.stage_blank(blank_range);
|
||||
|
||||
let staged_spaces_sum: u128 = blank_collector.staged_blanks_sum();
|
||||
let amplitude_new_compact_space = amplitude_compact_space - staged_spaces_sum;
|
||||
let amplitude_new_bits = num_bits(amplitude_new_compact_space);
|
||||
if amplitude_bits == amplitude_new_bits {
|
||||
continue;
|
||||
}
|
||||
let saved_bits = (amplitude_bits - amplitude_new_bits) as usize * total_num_values as usize;
|
||||
// TODO: Maybe calculate exact cost of blanks and run this more expensive computation only,
|
||||
// when amplitude_new_bits changes
|
||||
let cost = blank_collector.num_staged_blanks() * cost_per_blank;
|
||||
if cost >= saved_bits {
|
||||
// Continue here, since although we walk over the blanks by size,
|
||||
// we can potentially save a lot at the last bits, which are smaller blanks
|
||||
//
|
||||
// E.g. if the first range reduces the compact space by 1000 from 2000 to 1000, which
|
||||
// saves 11-10=1 bit and the next range reduces the compact space by 950 to
|
||||
// 50, which saves 10-6=4 bit
|
||||
continue;
|
||||
}
|
||||
|
||||
amplitude_compact_space = amplitude_new_compact_space;
|
||||
amplitude_bits = amplitude_new_bits;
|
||||
compact_space_builder.add_blanks(blank_collector.drain().map(|blank| blank.blank_range()));
|
||||
}
|
||||
|
||||
// special case, when we don't collected any blanks because:
|
||||
// * the data is empty (early exit)
|
||||
// * the algorithm did decide it's not worth the cost, which can be the case for single values
|
||||
//
|
||||
// We drain one collected blank unconditionally, so the empty case is reserved for empty
|
||||
// data, and therefore empty compact_space means the data is empty and no data is covered
|
||||
// (conversely to all data) and we can assign null to it.
|
||||
if compact_space_builder.is_empty() {
|
||||
compact_space_builder.add_blanks(
|
||||
blank_collector
|
||||
.drain()
|
||||
.map(|blank| blank.blank_range())
|
||||
.take(1),
|
||||
);
|
||||
}
|
||||
|
||||
let compact_space = compact_space_builder.finish();
|
||||
if max_value - min_value != u128::MAX {
|
||||
debug_assert_eq!(
|
||||
compact_space.amplitude_compact_space(),
|
||||
amplitude_compact_space
|
||||
);
|
||||
}
|
||||
compact_space
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
struct CompactSpaceBuilder {
|
||||
blanks: Vec<RangeInclusive<u128>>,
|
||||
}
|
||||
|
||||
impl CompactSpaceBuilder {
|
||||
/// Creates a new compact space builder which will initially cover the whole space.
|
||||
fn new() -> Self {
|
||||
Self { blanks: Vec::new() }
|
||||
}
|
||||
|
||||
/// Assumes that repeated add_blank calls don't overlap and are not adjacent,
|
||||
/// e.g. [3..=5, 5..=10] is not allowed
|
||||
///
|
||||
/// Both of those assumptions are true when blanks are produced from sorted values.
|
||||
fn add_blanks(&mut self, blank: impl Iterator<Item = RangeInclusive<u128>>) {
|
||||
self.blanks.extend(blank);
|
||||
}
|
||||
|
||||
fn is_empty(&self) -> bool {
|
||||
self.blanks.is_empty()
|
||||
}
|
||||
|
||||
/// Convert blanks to covered space and assign null value
|
||||
fn finish(mut self) -> CompactSpace {
|
||||
// sort by start. ranges are not allowed to overlap
|
||||
self.blanks.sort_unstable_by_key(|blank| *blank.start());
|
||||
|
||||
let mut covered_space = Vec::with_capacity(self.blanks.len());
|
||||
|
||||
// begining of the blanks
|
||||
if let Some(first_blank_start) = self.blanks.first().map(RangeInclusive::start) {
|
||||
if *first_blank_start != 0 {
|
||||
covered_space.push(0..=first_blank_start - 1);
|
||||
}
|
||||
}
|
||||
|
||||
// Between the blanks
|
||||
let between_blanks = self.blanks.iter().tuple_windows().map(|(left, right)| {
|
||||
assert!(
|
||||
left.end() < right.start(),
|
||||
"overlapping or adjacent ranges detected"
|
||||
);
|
||||
*left.end() + 1..=*right.start() - 1
|
||||
});
|
||||
covered_space.extend(between_blanks);
|
||||
|
||||
// end of the blanks
|
||||
if let Some(last_blank_end) = self.blanks.last().map(RangeInclusive::end) {
|
||||
if *last_blank_end != u128::MAX {
|
||||
covered_space.push(last_blank_end + 1..=u128::MAX);
|
||||
}
|
||||
}
|
||||
|
||||
if covered_space.is_empty() {
|
||||
covered_space.push(0..=0); // empty data case
|
||||
};
|
||||
|
||||
let mut compact_start: u64 = 1; // 0 is reserved for `null`
|
||||
let mut ranges_mapping: Vec<RangeMapping> = Vec::with_capacity(covered_space.len());
|
||||
for cov in covered_space {
|
||||
let range_mapping = super::RangeMapping {
|
||||
value_range: cov,
|
||||
compact_start,
|
||||
};
|
||||
let covered_range_len = range_mapping.range_length();
|
||||
ranges_mapping.push(range_mapping);
|
||||
compact_start += covered_range_len;
|
||||
}
|
||||
// println!("num ranges {}", ranges_mapping.len());
|
||||
CompactSpace { ranges_mapping }
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_binary_heap_pop_order() {
|
||||
let mut blanks: BinaryHeap<BlankRange> = BinaryHeap::new();
|
||||
blanks.push((0..=10).try_into().unwrap());
|
||||
blanks.push((100..=200).try_into().unwrap());
|
||||
blanks.push((100..=110).try_into().unwrap());
|
||||
assert_eq!(blanks.pop().unwrap().blank_size(), 101);
|
||||
assert_eq!(blanks.pop().unwrap().blank_size(), 11);
|
||||
}
|
||||
}
|
||||
@@ -1,815 +0,0 @@
|
||||
/// This codec takes a large number space (u128) and reduces it to a compact number space.
|
||||
///
|
||||
/// It will find spaces in the number range. For example:
|
||||
///
|
||||
/// 100, 101, 102, 103, 104, 50000, 50001
|
||||
/// could be mapped to
|
||||
/// 100..104 -> 0..4
|
||||
/// 50000..50001 -> 5..6
|
||||
///
|
||||
/// Compact space 0..=6 requires much less bits than 100..=50001
|
||||
///
|
||||
/// The codec is created to compress ip addresses, but may be employed in other use cases.
|
||||
use std::{
|
||||
cmp::Ordering,
|
||||
collections::BTreeSet,
|
||||
io::{self, Write},
|
||||
ops::{Range, RangeInclusive},
|
||||
};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt, VIntU128};
|
||||
use tantivy_bitpacker::{self, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::compact_space::build_compact_space::get_compact_space;
|
||||
use crate::Column;
|
||||
|
||||
mod blank_range;
|
||||
mod build_compact_space;
|
||||
|
||||
/// The cost per blank is quite hard actually, since blanks are delta encoded, the actual cost of
|
||||
/// blanks depends on the number of blanks.
|
||||
///
|
||||
/// The number is taken by looking at a real dataset. It is optimized for larger datasets.
|
||||
const COST_PER_BLANK_IN_BITS: usize = 36;
|
||||
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub struct CompactSpace {
|
||||
ranges_mapping: Vec<RangeMapping>,
|
||||
}
|
||||
|
||||
/// Maps the range from the original space to compact_start + range.len()
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
struct RangeMapping {
|
||||
value_range: RangeInclusive<u128>,
|
||||
compact_start: u64,
|
||||
}
|
||||
impl RangeMapping {
|
||||
fn range_length(&self) -> u64 {
|
||||
(self.value_range.end() - self.value_range.start()) as u64 + 1
|
||||
}
|
||||
|
||||
// The last value of the compact space in this range
|
||||
fn compact_end(&self) -> u64 {
|
||||
self.compact_start + self.range_length() - 1
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for CompactSpace {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.ranges_mapping.len() as u64).serialize(writer)?;
|
||||
|
||||
let mut prev_value = 0;
|
||||
for value_range in self
|
||||
.ranges_mapping
|
||||
.iter()
|
||||
.map(|range_mapping| &range_mapping.value_range)
|
||||
{
|
||||
let blank_delta_start = value_range.start() - prev_value;
|
||||
VIntU128(blank_delta_start).serialize(writer)?;
|
||||
prev_value = *value_range.start();
|
||||
|
||||
let blank_delta_end = value_range.end() - prev_value;
|
||||
VIntU128(blank_delta_end).serialize(writer)?;
|
||||
prev_value = *value_range.end();
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_ranges = VInt::deserialize(reader)?.0;
|
||||
let mut ranges_mapping: Vec<RangeMapping> = vec![];
|
||||
let mut value = 0u128;
|
||||
let mut compact_start = 1u64; // 0 is reserved for `null`
|
||||
for _ in 0..num_ranges {
|
||||
let blank_delta_start = VIntU128::deserialize(reader)?.0;
|
||||
value += blank_delta_start;
|
||||
let blank_start = value;
|
||||
|
||||
let blank_delta_end = VIntU128::deserialize(reader)?.0;
|
||||
value += blank_delta_end;
|
||||
let blank_end = value;
|
||||
|
||||
let range_mapping = RangeMapping {
|
||||
value_range: blank_start..=blank_end,
|
||||
compact_start,
|
||||
};
|
||||
let range_length = range_mapping.range_length();
|
||||
ranges_mapping.push(range_mapping);
|
||||
compact_start += range_length;
|
||||
}
|
||||
|
||||
Ok(Self { ranges_mapping })
|
||||
}
|
||||
}
|
||||
|
||||
impl CompactSpace {
|
||||
/// Amplitude is the value range of the compact space including the sentinel value used to
|
||||
/// identify null values. The compact space is 0..=amplitude .
|
||||
///
|
||||
/// It's only used to verify we don't exceed u64 number space, which would indicate a bug.
|
||||
fn amplitude_compact_space(&self) -> u128 {
|
||||
self.ranges_mapping
|
||||
.last()
|
||||
.map(|last_range| last_range.compact_end() as u128)
|
||||
.unwrap_or(1) // compact space starts at 1, 0 == null
|
||||
}
|
||||
|
||||
fn get_range_mapping(&self, pos: usize) -> &RangeMapping {
|
||||
&self.ranges_mapping[pos]
|
||||
}
|
||||
|
||||
/// Returns either Ok(the value in the compact space) or if it is outside the compact space the
|
||||
/// Err(position where it would be inserted)
|
||||
fn u128_to_compact(&self, value: u128) -> Result<u64, usize> {
|
||||
self.ranges_mapping
|
||||
.binary_search_by(|probe| {
|
||||
let value_range = &probe.value_range;
|
||||
if value < *value_range.start() {
|
||||
Ordering::Greater
|
||||
} else if value > *value_range.end() {
|
||||
Ordering::Less
|
||||
} else {
|
||||
Ordering::Equal
|
||||
}
|
||||
})
|
||||
.map(|pos| {
|
||||
let range_mapping = &self.ranges_mapping[pos];
|
||||
let pos_in_range = (value - range_mapping.value_range.start()) as u64;
|
||||
range_mapping.compact_start + pos_in_range
|
||||
})
|
||||
}
|
||||
|
||||
/// Unpacks a value from compact space u64 to u128 space
|
||||
fn compact_to_u128(&self, compact: u64) -> u128 {
|
||||
let pos = self
|
||||
.ranges_mapping
|
||||
.binary_search_by_key(&compact, |range_mapping| range_mapping.compact_start)
|
||||
// Correctness: Overflow. The first range starts at compact space 0, the error from
|
||||
// binary search can never be 0
|
||||
.map_or_else(|e| e - 1, |v| v);
|
||||
|
||||
let range_mapping = &self.ranges_mapping[pos];
|
||||
let diff = compact - range_mapping.compact_start;
|
||||
range_mapping.value_range.start() + diff as u128
|
||||
}
|
||||
}
|
||||
|
||||
pub struct CompactSpaceCompressor {
|
||||
params: IPCodecParams,
|
||||
}
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct IPCodecParams {
|
||||
compact_space: CompactSpace,
|
||||
bit_unpacker: BitUnpacker,
|
||||
min_value: u128,
|
||||
max_value: u128,
|
||||
num_vals: u32,
|
||||
num_bits: u8,
|
||||
}
|
||||
|
||||
impl CompactSpaceCompressor {
|
||||
/// Taking the vals as Vec may cost a lot of memory. It is used to sort the vals.
|
||||
pub fn train_from(iter: impl Iterator<Item = u128>, num_vals: u32) -> Self {
|
||||
let mut values_sorted = BTreeSet::new();
|
||||
values_sorted.extend(iter);
|
||||
let total_num_values = num_vals;
|
||||
|
||||
let compact_space =
|
||||
get_compact_space(&values_sorted, total_num_values, COST_PER_BLANK_IN_BITS);
|
||||
let amplitude_compact_space = compact_space.amplitude_compact_space();
|
||||
|
||||
assert!(
|
||||
amplitude_compact_space <= u64::MAX as u128,
|
||||
"case unsupported."
|
||||
);
|
||||
|
||||
let num_bits = tantivy_bitpacker::compute_num_bits(amplitude_compact_space as u64);
|
||||
let min_value = *values_sorted.iter().next().unwrap_or(&0);
|
||||
let max_value = *values_sorted.iter().last().unwrap_or(&0);
|
||||
assert_eq!(
|
||||
compact_space
|
||||
.u128_to_compact(max_value)
|
||||
.expect("could not convert max value to compact space"),
|
||||
amplitude_compact_space as u64
|
||||
);
|
||||
CompactSpaceCompressor {
|
||||
params: IPCodecParams {
|
||||
compact_space,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: total_num_values,
|
||||
num_bits,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
fn write_footer(self, writer: &mut impl Write) -> io::Result<()> {
|
||||
let writer = &mut CountingWriter::wrap(writer);
|
||||
self.params.serialize(writer)?;
|
||||
|
||||
let footer_len = writer.written_bytes() as u32;
|
||||
footer_len.serialize(writer)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn compress_into(
|
||||
self,
|
||||
vals: impl Iterator<Item = u128>,
|
||||
write: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
let mut bitpacker = BitPacker::default();
|
||||
for val in vals {
|
||||
let compact = self
|
||||
.params
|
||||
.compact_space
|
||||
.u128_to_compact(val)
|
||||
.map_err(|_| {
|
||||
io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
"Could not convert value to compact_space. This is a bug.",
|
||||
)
|
||||
})?;
|
||||
bitpacker.write(compact, self.params.num_bits, write)?;
|
||||
}
|
||||
bitpacker.close(write)?;
|
||||
self.write_footer(write)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct CompactSpaceDecompressor {
|
||||
data: OwnedBytes,
|
||||
params: IPCodecParams,
|
||||
}
|
||||
|
||||
impl BinarySerializable for IPCodecParams {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
// header flags for future optional dictionary encoding
|
||||
let footer_flags = 0u64;
|
||||
footer_flags.serialize(writer)?;
|
||||
|
||||
VIntU128(self.min_value).serialize(writer)?;
|
||||
VIntU128(self.max_value).serialize(writer)?;
|
||||
VIntU128(self.num_vals as u128).serialize(writer)?;
|
||||
self.num_bits.serialize(writer)?;
|
||||
|
||||
self.compact_space.serialize(writer)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let _header_flags = u64::deserialize(reader)?;
|
||||
let min_value = VIntU128::deserialize(reader)?.0;
|
||||
let max_value = VIntU128::deserialize(reader)?.0;
|
||||
let num_vals = VIntU128::deserialize(reader)?.0 as u32;
|
||||
let num_bits = u8::deserialize(reader)?;
|
||||
let compact_space = CompactSpace::deserialize(reader)?;
|
||||
|
||||
Ok(Self {
|
||||
compact_space,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals,
|
||||
num_bits,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Column<u128> for CompactSpaceDecompressor {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u128 {
|
||||
self.get(doc)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u128 {
|
||||
self.min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u128 {
|
||||
self.max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.params.num_vals
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u128> + '_> {
|
||||
Box::new(self.iter())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u128>,
|
||||
positions_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.get_positions_for_value_range(value_range, positions_range, positions)
|
||||
}
|
||||
}
|
||||
|
||||
impl CompactSpaceDecompressor {
|
||||
pub fn open(data: OwnedBytes) -> io::Result<CompactSpaceDecompressor> {
|
||||
let (data_slice, footer_len_bytes) = data.split_at(data.len() - 4);
|
||||
let footer_len = u32::deserialize(&mut &footer_len_bytes[..])?;
|
||||
|
||||
let data_footer = &data_slice[data_slice.len() - footer_len as usize..];
|
||||
let params = IPCodecParams::deserialize(&mut &data_footer[..])?;
|
||||
let decompressor = CompactSpaceDecompressor { data, params };
|
||||
|
||||
Ok(decompressor)
|
||||
}
|
||||
|
||||
/// Converting to compact space for the decompressor is more complex, since we may get values
|
||||
/// which are outside the compact space. e.g. if we map
|
||||
/// 1000 => 5
|
||||
/// 2000 => 6
|
||||
///
|
||||
/// and we want a mapping for 1005, there is no equivalent compact space. We instead return an
|
||||
/// error with the index of the next range.
|
||||
fn u128_to_compact(&self, value: u128) -> Result<u64, usize> {
|
||||
self.params.compact_space.u128_to_compact(value)
|
||||
}
|
||||
|
||||
fn compact_to_u128(&self, compact: u64) -> u128 {
|
||||
self.params.compact_space.compact_to_u128(compact)
|
||||
}
|
||||
|
||||
/// Comparing on compact space: Random dataset 0,24 (50% random hit) - 1.05 GElements/s
|
||||
/// Comparing on compact space: Real dataset 1.08 GElements/s
|
||||
///
|
||||
/// Comparing on original space: Real dataset .06 GElements/s (not completely optimized)
|
||||
#[inline]
|
||||
pub fn get_positions_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u128>,
|
||||
position_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
if value_range.start() > value_range.end() {
|
||||
return;
|
||||
}
|
||||
let position_range = position_range.start..position_range.end.min(self.num_vals());
|
||||
let from_value = *value_range.start();
|
||||
let to_value = *value_range.end();
|
||||
assert!(to_value >= from_value);
|
||||
let compact_from = self.u128_to_compact(from_value);
|
||||
let compact_to = self.u128_to_compact(to_value);
|
||||
|
||||
// Quick return, if both ranges fall into the same non-mapped space, the range can't cover
|
||||
// any values, so we can early exit
|
||||
match (compact_to, compact_from) {
|
||||
(Err(pos1), Err(pos2)) if pos1 == pos2 => return,
|
||||
_ => {}
|
||||
}
|
||||
|
||||
let compact_from = compact_from.unwrap_or_else(|pos| {
|
||||
// Correctness: Out of bounds, if this value is Err(last_index + 1), we early exit,
|
||||
// since the to_value also mapps into the same non-mapped space
|
||||
let range_mapping = self.params.compact_space.get_range_mapping(pos);
|
||||
range_mapping.compact_start
|
||||
});
|
||||
// If there is no compact space, we go to the closest upperbound compact space
|
||||
let compact_to = compact_to.unwrap_or_else(|pos| {
|
||||
// Correctness: Overflow, if this value is Err(0), we early exit,
|
||||
// since the from_value also mapps into the same non-mapped space
|
||||
|
||||
// Get end of previous range
|
||||
let pos = pos - 1;
|
||||
let range_mapping = self.params.compact_space.get_range_mapping(pos);
|
||||
range_mapping.compact_end()
|
||||
});
|
||||
|
||||
let range = compact_from..=compact_to;
|
||||
|
||||
let scan_num_docs = position_range.end - position_range.start;
|
||||
|
||||
let step_size = 4;
|
||||
let cutoff = position_range.start + scan_num_docs - scan_num_docs % step_size;
|
||||
|
||||
let mut push_if_in_range = |idx, val| {
|
||||
if range.contains(&val) {
|
||||
positions.push(idx);
|
||||
}
|
||||
};
|
||||
let get_val = |idx| self.params.bit_unpacker.get(idx, &self.data);
|
||||
// unrolled loop
|
||||
for idx in (position_range.start..cutoff).step_by(step_size as usize) {
|
||||
let idx1 = idx;
|
||||
let idx2 = idx + 1;
|
||||
let idx3 = idx + 2;
|
||||
let idx4 = idx + 3;
|
||||
let val1 = get_val(idx1);
|
||||
let val2 = get_val(idx2);
|
||||
let val3 = get_val(idx3);
|
||||
let val4 = get_val(idx4);
|
||||
push_if_in_range(idx1, val1);
|
||||
push_if_in_range(idx2, val2);
|
||||
push_if_in_range(idx3, val3);
|
||||
push_if_in_range(idx4, val4);
|
||||
}
|
||||
|
||||
// handle rest
|
||||
for idx in cutoff..position_range.end {
|
||||
push_if_in_range(idx, get_val(idx));
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter_compact(&self) -> impl Iterator<Item = u64> + '_ {
|
||||
(0..self.params.num_vals).map(move |idx| self.params.bit_unpacker.get(idx, &self.data))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter(&self) -> impl Iterator<Item = u128> + '_ {
|
||||
// TODO: Performance. It would be better to iterate on the ranges and check existence via
|
||||
// the bit_unpacker.
|
||||
self.iter_compact()
|
||||
.map(|compact| self.compact_to_u128(compact))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn get(&self, idx: u32) -> u128 {
|
||||
let compact = self.params.bit_unpacker.get(idx, &self.data);
|
||||
self.compact_to_u128(compact)
|
||||
}
|
||||
|
||||
pub fn min_value(&self) -> u128 {
|
||||
self.params.min_value
|
||||
}
|
||||
|
||||
pub fn max_value(&self) -> u128 {
|
||||
self.params.max_value
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use std::fmt;
|
||||
|
||||
use super::*;
|
||||
use crate::format_version::read_format_version;
|
||||
use crate::null_index_footer::read_null_index_footer;
|
||||
use crate::serialize::U128Header;
|
||||
use crate::{open_u128, serialize_u128};
|
||||
|
||||
#[test]
|
||||
fn compact_space_test() {
|
||||
let ips = &[
|
||||
2u128, 4u128, 1000, 1001, 1002, 1003, 1004, 1005, 1008, 1010, 1012, 1260,
|
||||
]
|
||||
.into_iter()
|
||||
.collect();
|
||||
let compact_space = get_compact_space(ips, ips.len() as u32, 11);
|
||||
let amplitude = compact_space.amplitude_compact_space();
|
||||
assert_eq!(amplitude, 17);
|
||||
assert_eq!(1, compact_space.u128_to_compact(2).unwrap());
|
||||
assert_eq!(2, compact_space.u128_to_compact(3).unwrap());
|
||||
assert_eq!(compact_space.u128_to_compact(100).unwrap_err(), 1);
|
||||
|
||||
for (num1, num2) in (0..3).tuple_windows() {
|
||||
assert_eq!(
|
||||
compact_space.get_range_mapping(num1).compact_end() + 1,
|
||||
compact_space.get_range_mapping(num2).compact_start
|
||||
);
|
||||
}
|
||||
|
||||
let mut output: Vec<u8> = Vec::new();
|
||||
compact_space.serialize(&mut output).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
compact_space,
|
||||
CompactSpace::deserialize(&mut &output[..]).unwrap()
|
||||
);
|
||||
|
||||
for ip in ips {
|
||||
let compact = compact_space.u128_to_compact(*ip).unwrap();
|
||||
assert_eq!(compact_space.compact_to_u128(compact), *ip);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn compact_space_amplitude_test() {
|
||||
let ips = &[100000u128, 1000000].into_iter().collect();
|
||||
let compact_space = get_compact_space(ips, ips.len() as u32, 1);
|
||||
let amplitude = compact_space.amplitude_compact_space();
|
||||
assert_eq!(amplitude, 2);
|
||||
}
|
||||
|
||||
fn test_all(mut data: OwnedBytes, expected: &[u128]) {
|
||||
let _header = U128Header::deserialize(&mut data);
|
||||
let decompressor = CompactSpaceDecompressor::open(data).unwrap();
|
||||
for (idx, expected_val) in expected.iter().cloned().enumerate() {
|
||||
let val = decompressor.get(idx as u32);
|
||||
assert_eq!(val, expected_val);
|
||||
|
||||
let test_range = |range: RangeInclusive<u128>| {
|
||||
let expected_positions = expected
|
||||
.iter()
|
||||
.positions(|val| range.contains(val))
|
||||
.map(|pos| pos as u32)
|
||||
.collect::<Vec<_>>();
|
||||
let mut positions = Vec::new();
|
||||
decompressor.get_positions_for_value_range(
|
||||
range,
|
||||
0..decompressor.num_vals(),
|
||||
&mut positions,
|
||||
);
|
||||
assert_eq!(positions, expected_positions);
|
||||
};
|
||||
|
||||
test_range(expected_val.saturating_sub(1)..=expected_val);
|
||||
test_range(expected_val..=expected_val);
|
||||
test_range(expected_val..=expected_val.saturating_add(1));
|
||||
test_range(expected_val.saturating_sub(1)..=expected_val.saturating_add(1));
|
||||
}
|
||||
}
|
||||
|
||||
fn test_aux_vals(u128_vals: &[u128]) -> OwnedBytes {
|
||||
let mut out = Vec::new();
|
||||
serialize_u128(
|
||||
|| u128_vals.iter().cloned(),
|
||||
u128_vals.len() as u32,
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let data = OwnedBytes::new(out);
|
||||
let (data, _format_version) = read_format_version(data).unwrap();
|
||||
let (data, _null_index_footer) = read_null_index_footer(data).unwrap();
|
||||
test_all(data.clone(), u128_vals);
|
||||
|
||||
data
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_1() {
|
||||
let vals = &[
|
||||
1u128,
|
||||
100u128,
|
||||
3u128,
|
||||
99999u128,
|
||||
100000u128,
|
||||
100001u128,
|
||||
4_000_211_221u128,
|
||||
4_000_211_222u128,
|
||||
333u128,
|
||||
];
|
||||
let mut data = test_aux_vals(vals);
|
||||
|
||||
let _header = U128Header::deserialize(&mut data);
|
||||
let decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
let complete_range = 0..vals.len() as u32;
|
||||
for (pos, val) in vals.iter().enumerate() {
|
||||
let val = *val;
|
||||
let pos = pos as u32;
|
||||
let mut positions = Vec::new();
|
||||
decomp.get_positions_for_value_range(val..=val, pos..pos + 1, &mut positions);
|
||||
assert_eq!(positions, vec![pos]);
|
||||
}
|
||||
|
||||
// handle docid range out of bounds
|
||||
let positions = get_positions_for_value_range_helper(&decomp, 0..=1, 1..u32::MAX);
|
||||
assert_eq!(positions, vec![]);
|
||||
|
||||
let positions =
|
||||
get_positions_for_value_range_helper(&decomp, 0..=1, complete_range.clone());
|
||||
assert_eq!(positions, vec![0]);
|
||||
let positions =
|
||||
get_positions_for_value_range_helper(&decomp, 0..=2, complete_range.clone());
|
||||
assert_eq!(positions, vec![0]);
|
||||
let positions =
|
||||
get_positions_for_value_range_helper(&decomp, 0..=3, complete_range.clone());
|
||||
assert_eq!(positions, vec![0, 2]);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99999u128..=99999u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![3]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99999u128..=100000u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![3, 4]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=100000u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![3, 4]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=99999u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![3]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=99998u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
333u128..=333u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
332u128..=333u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
332u128..=334u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
333u128..=334u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
4_000_211_221u128..=5_000_000_000u128,
|
||||
complete_range
|
||||
),
|
||||
vec![6, 7]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_empty() {
|
||||
let vals = &[];
|
||||
let data = test_aux_vals(vals);
|
||||
let _decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_2() {
|
||||
let vals = &[
|
||||
100u128,
|
||||
99999u128,
|
||||
100000u128,
|
||||
100001u128,
|
||||
4_000_211_221u128,
|
||||
4_000_211_222u128,
|
||||
333u128,
|
||||
];
|
||||
let mut data = test_aux_vals(vals);
|
||||
let _header = U128Header::deserialize(&mut data);
|
||||
let decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
let complete_range = 0..vals.len() as u32;
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&decomp, 0..=5, complete_range.clone()),
|
||||
vec![]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&decomp, 0..=100, complete_range.clone()),
|
||||
vec![0]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&decomp, 0..=105, complete_range),
|
||||
vec![0]
|
||||
);
|
||||
}
|
||||
|
||||
fn get_positions_for_value_range_helper<C: Column<T> + ?Sized, T: PartialOrd + fmt::Debug>(
|
||||
column: &C,
|
||||
value_range: RangeInclusive<T>,
|
||||
doc_id_range: Range<u32>,
|
||||
) -> Vec<u32> {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(value_range, doc_id_range, &mut positions);
|
||||
positions
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_3() {
|
||||
let vals = &[
|
||||
200u128,
|
||||
201,
|
||||
202,
|
||||
203,
|
||||
204,
|
||||
204,
|
||||
206,
|
||||
207,
|
||||
208,
|
||||
209,
|
||||
210,
|
||||
1_000_000,
|
||||
5_000_000_000,
|
||||
];
|
||||
let mut out = Vec::new();
|
||||
serialize_u128(|| vals.iter().cloned(), vals.len() as u32, &mut out).unwrap();
|
||||
let decomp = open_u128::<u128>(OwnedBytes::new(out)).unwrap();
|
||||
let complete_range = 0..vals.len() as u32;
|
||||
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&*decomp, 199..=200, complete_range.clone()),
|
||||
vec![0]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&*decomp, 199..=201, complete_range.clone()),
|
||||
vec![0, 1]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&*decomp, 200..=200, complete_range.clone()),
|
||||
vec![0]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&*decomp, 1_000_000..=1_000_000, complete_range),
|
||||
vec![11]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bug1() {
|
||||
let vals = &[9223372036854775806];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bug2() {
|
||||
let vals = &[340282366920938463463374607431768211455u128];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bug3() {
|
||||
let vals = &[340282366920938463463374607431768211454];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bug4() {
|
||||
let vals = &[340282366920938463463374607431768211455, 0];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_first_large_gaps() {
|
||||
let vals = &[1_000_000_000u128; 100];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
use itertools::Itertools;
|
||||
use proptest::prelude::*;
|
||||
|
||||
fn num_strategy() -> impl Strategy<Value = u128> {
|
||||
prop_oneof![
|
||||
1 => prop::num::u128::ANY.prop_map(|num| u128::MAX - (num % 10) ),
|
||||
1 => prop::num::u128::ANY.prop_map(|num| i64::MAX as u128 + 5 - (num % 10) ),
|
||||
1 => prop::num::u128::ANY.prop_map(|num| i128::MAX as u128 + 5 - (num % 10) ),
|
||||
1 => prop::num::u128::ANY.prop_map(|num| num % 10 ),
|
||||
20 => prop::num::u128::ANY,
|
||||
]
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(10))]
|
||||
|
||||
#[test]
|
||||
fn compress_decompress_random(vals in proptest::collection::vec(num_strategy()
|
||||
, 1..1000)) {
|
||||
let _data = test_aux_vals(&vals);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,38 +0,0 @@
|
||||
use std::io;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
|
||||
const MAGIC_NUMBER: u16 = 4335u16;
|
||||
const FASTFIELD_FORMAT_VERSION: u8 = 1;
|
||||
|
||||
pub(crate) fn append_format_version(output: &mut impl io::Write) -> io::Result<()> {
|
||||
FASTFIELD_FORMAT_VERSION.serialize(output)?;
|
||||
MAGIC_NUMBER.serialize(output)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn read_format_version(data: OwnedBytes) -> io::Result<(OwnedBytes, u8)> {
|
||||
let (data, magic_number_bytes) = data.rsplit(2);
|
||||
|
||||
let magic_number = u16::deserialize(&mut magic_number_bytes.as_slice())?;
|
||||
if magic_number != MAGIC_NUMBER {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
format!("magic number mismatch {} != {}", magic_number, MAGIC_NUMBER),
|
||||
));
|
||||
}
|
||||
let (data, format_version_bytes) = data.rsplit(1);
|
||||
let format_version = u8::deserialize(&mut format_version_bytes.as_slice())?;
|
||||
if format_version > FASTFIELD_FORMAT_VERSION {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
format!(
|
||||
"Unsupported fastfield format version: {}. Max supported version: {}",
|
||||
format_version, FASTFIELD_FORMAT_VERSION
|
||||
),
|
||||
));
|
||||
}
|
||||
|
||||
Ok((data, format_version))
|
||||
}
|
||||
@@ -1,170 +0,0 @@
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
|
||||
/// Compute the gcd of two non null numbers.
|
||||
///
|
||||
/// It is recommended, but not required, to feed values such that `large >= small`.
|
||||
fn compute_gcd(mut large: NonZeroU64, mut small: NonZeroU64) -> NonZeroU64 {
|
||||
loop {
|
||||
let rem: u64 = large.get() % small;
|
||||
if let Some(new_small) = NonZeroU64::new(rem) {
|
||||
(large, small) = (small, new_small);
|
||||
} else {
|
||||
return small;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find GCD for iterator of numbers
|
||||
pub fn find_gcd(numbers: impl Iterator<Item = u64>) -> Option<NonZeroU64> {
|
||||
let mut numbers = numbers.flat_map(NonZeroU64::new);
|
||||
let mut gcd: NonZeroU64 = numbers.next()?;
|
||||
if gcd.get() == 1 {
|
||||
return Some(gcd);
|
||||
}
|
||||
|
||||
let mut gcd_divider = DividerU64::divide_by(gcd.get());
|
||||
for val in numbers {
|
||||
let remainder = val.get() - (gcd_divider.divide(val.get())) * gcd.get();
|
||||
if remainder == 0 {
|
||||
continue;
|
||||
}
|
||||
gcd = compute_gcd(val, gcd);
|
||||
if gcd.get() == 1 {
|
||||
return Some(gcd);
|
||||
}
|
||||
|
||||
gcd_divider = DividerU64::divide_by(gcd.get());
|
||||
}
|
||||
Some(gcd)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::io;
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use common::OwnedBytes;
|
||||
|
||||
use crate::gcd::{compute_gcd, find_gcd};
|
||||
use crate::{FastFieldCodecType, VecColumn};
|
||||
|
||||
fn test_fastfield_gcd_i64_with_codec(
|
||||
codec_type: FastFieldCodecType,
|
||||
num_vals: usize,
|
||||
) -> io::Result<()> {
|
||||
let mut vals: Vec<i64> = (-4..=(num_vals as i64) - 5).map(|val| val * 1000).collect();
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
crate::serialize(VecColumn::from(&vals), &mut buffer, &[codec_type])?;
|
||||
let buffer = OwnedBytes::new(buffer);
|
||||
let column = crate::open::<i64>(buffer.clone())?;
|
||||
assert_eq!(column.get_val(0), -4000i64);
|
||||
assert_eq!(column.get_val(1), -3000i64);
|
||||
assert_eq!(column.get_val(2), -2000i64);
|
||||
assert_eq!(column.max_value(), (num_vals as i64 - 5) * 1000);
|
||||
assert_eq!(column.min_value(), -4000i64);
|
||||
|
||||
// Can't apply gcd
|
||||
let mut buffer_without_gcd = Vec::new();
|
||||
vals.pop();
|
||||
vals.push(1001i64);
|
||||
crate::serialize(
|
||||
VecColumn::from(&vals),
|
||||
&mut buffer_without_gcd,
|
||||
&[codec_type],
|
||||
)?;
|
||||
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
|
||||
assert!(buffer_without_gcd.len() > buffer.len());
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd_i64() -> io::Result<()> {
|
||||
for &codec_type in &[
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
FastFieldCodecType::Linear,
|
||||
] {
|
||||
test_fastfield_gcd_i64_with_codec(codec_type, 5500)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn test_fastfield_gcd_u64_with_codec(
|
||||
codec_type: FastFieldCodecType,
|
||||
num_vals: usize,
|
||||
) -> io::Result<()> {
|
||||
let mut vals: Vec<u64> = (1..=num_vals).map(|i| i as u64 * 1000u64).collect();
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
crate::serialize(VecColumn::from(&vals), &mut buffer, &[codec_type])?;
|
||||
let buffer = OwnedBytes::new(buffer);
|
||||
let column = crate::open::<u64>(buffer.clone())?;
|
||||
assert_eq!(column.get_val(0), 1000u64);
|
||||
assert_eq!(column.get_val(1), 2000u64);
|
||||
assert_eq!(column.get_val(2), 3000u64);
|
||||
assert_eq!(column.max_value(), num_vals as u64 * 1000);
|
||||
assert_eq!(column.min_value(), 1000u64);
|
||||
|
||||
// Can't apply gcd
|
||||
let mut buffer_without_gcd = Vec::new();
|
||||
vals.pop();
|
||||
vals.push(1001u64);
|
||||
crate::serialize(
|
||||
VecColumn::from(&vals),
|
||||
&mut buffer_without_gcd,
|
||||
&[codec_type],
|
||||
)?;
|
||||
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
|
||||
assert!(buffer_without_gcd.len() > buffer.len());
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd_u64() -> io::Result<()> {
|
||||
for &codec_type in &[
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
FastFieldCodecType::Linear,
|
||||
] {
|
||||
test_fastfield_gcd_u64_with_codec(codec_type, 5500)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn test_fastfield2() {
|
||||
let test_fastfield = crate::serialize_and_load(&[100u64, 200u64, 300u64]);
|
||||
assert_eq!(test_fastfield.get_val(0), 100);
|
||||
assert_eq!(test_fastfield.get_val(1), 200);
|
||||
assert_eq!(test_fastfield.get_val(2), 300);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compute_gcd() {
|
||||
let test_compute_gcd_aux = |large, small, expected| {
|
||||
let large = NonZeroU64::new(large).unwrap();
|
||||
let small = NonZeroU64::new(small).unwrap();
|
||||
let expected = NonZeroU64::new(expected).unwrap();
|
||||
assert_eq!(compute_gcd(small, large), expected);
|
||||
assert_eq!(compute_gcd(large, small), expected);
|
||||
};
|
||||
test_compute_gcd_aux(1, 4, 1);
|
||||
test_compute_gcd_aux(2, 4, 2);
|
||||
test_compute_gcd_aux(10, 25, 5);
|
||||
test_compute_gcd_aux(25, 25, 25);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn find_gcd_test() {
|
||||
assert_eq!(find_gcd([0].into_iter()), None);
|
||||
assert_eq!(find_gcd([0, 10].into_iter()), NonZeroU64::new(10));
|
||||
assert_eq!(find_gcd([10, 0].into_iter()), NonZeroU64::new(10));
|
||||
assert_eq!(find_gcd([].into_iter()), None);
|
||||
assert_eq!(find_gcd([15, 30, 5, 10].into_iter()), NonZeroU64::new(5));
|
||||
assert_eq!(find_gcd([15, 16, 10].into_iter()), NonZeroU64::new(1));
|
||||
assert_eq!(find_gcd([0, 5, 5, 5].into_iter()), NonZeroU64::new(5));
|
||||
assert_eq!(find_gcd([0, 0].into_iter()), None);
|
||||
}
|
||||
}
|
||||
@@ -7,562 +7,4 @@
|
||||
//! - Encode data in different codecs.
|
||||
//! - Monotonically map values to u64/u128
|
||||
|
||||
#[cfg(test)]
|
||||
#[macro_use]
|
||||
extern crate more_asserts;
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
extern crate test;
|
||||
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use compact_space::CompactSpaceDecompressor;
|
||||
use format_version::read_format_version;
|
||||
use monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
|
||||
StrictlyMonotonicMappingToInternalBaseval, StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
use null_index_footer::read_null_index_footer;
|
||||
use serialize::{Header, U128Header};
|
||||
|
||||
mod bitpacked;
|
||||
mod blockwise_linear;
|
||||
mod compact_space;
|
||||
mod format_version;
|
||||
mod line;
|
||||
mod linear;
|
||||
mod monotonic_mapping;
|
||||
mod monotonic_mapping_u128;
|
||||
#[allow(dead_code)]
|
||||
mod null_index;
|
||||
mod null_index_footer;
|
||||
|
||||
mod column;
|
||||
mod gcd;
|
||||
pub mod serialize;
|
||||
|
||||
use self::bitpacked::BitpackedCodec;
|
||||
use self::blockwise_linear::BlockwiseLinearCodec;
|
||||
pub use self::column::{monotonic_map_column, Column, IterColumn, VecColumn};
|
||||
use self::linear::LinearCodec;
|
||||
pub use self::monotonic_mapping::{MonotonicallyMappableToU64, StrictlyMonotonicFn};
|
||||
pub use self::monotonic_mapping_u128::MonotonicallyMappableToU128;
|
||||
pub use self::serialize::{
|
||||
estimate, serialize, serialize_and_load, serialize_u128, NormalizedHeader,
|
||||
};
|
||||
|
||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
/// Available codecs to use to encode the u64 (via [`MonotonicallyMappableToU64`]) converted data.
|
||||
pub enum FastFieldCodecType {
|
||||
/// Bitpack all values in the value range. The number of bits is defined by the amplitude
|
||||
/// `column.max_value() - column.min_value()`
|
||||
Bitpacked = 1,
|
||||
/// Linear interpolation puts a line between the first and last value and then bitpacks the
|
||||
/// values by the offset from the line. The number of bits is defined by the max deviation from
|
||||
/// the line.
|
||||
Linear = 2,
|
||||
/// Same as [`FastFieldCodecType::Linear`], but encodes in blocks of 512 elements.
|
||||
BlockwiseLinear = 3,
|
||||
}
|
||||
|
||||
impl BinarySerializable for FastFieldCodecType {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl FastFieldCodecType {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::Bitpacked),
|
||||
2 => Some(Self::Linear),
|
||||
3 => Some(Self::BlockwiseLinear),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
/// Available codecs to use to encode the u128 (via [`MonotonicallyMappableToU128`]) converted data.
|
||||
pub enum U128FastFieldCodecType {
|
||||
/// This codec takes a large number space (u128) and reduces it to a compact number space, by
|
||||
/// removing the holes.
|
||||
CompactSpace = 1,
|
||||
}
|
||||
|
||||
impl BinarySerializable for U128FastFieldCodecType {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl U128FastFieldCodecType {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::CompactSpace),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open_u128<Item: MonotonicallyMappableToU128 + fmt::Debug>(
|
||||
bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn Column<Item>>> {
|
||||
let (bytes, _format_version) = read_format_version(bytes)?;
|
||||
let (mut bytes, _null_index_footer) = read_null_index_footer(bytes)?;
|
||||
let header = U128Header::deserialize(&mut bytes)?;
|
||||
assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
|
||||
let reader = CompactSpaceDecompressor::open(bytes)?;
|
||||
let inverted: StrictlyMonotonicMappingInverter<StrictlyMonotonicMappingToInternal<Item>> =
|
||||
StrictlyMonotonicMappingToInternal::<Item>::new().into();
|
||||
Ok(Arc::new(monotonic_map_column(reader, inverted)))
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open<T: MonotonicallyMappableToU64 + fmt::Debug>(
|
||||
bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn Column<T>>> {
|
||||
let (bytes, _format_version) = read_format_version(bytes)?;
|
||||
let (mut bytes, _null_index_footer) = read_null_index_footer(bytes)?;
|
||||
let header = Header::deserialize(&mut bytes)?;
|
||||
match header.codec_type {
|
||||
FastFieldCodecType::Bitpacked => open_specific_codec::<BitpackedCodec, _>(bytes, &header),
|
||||
FastFieldCodecType::Linear => open_specific_codec::<LinearCodec, _>(bytes, &header),
|
||||
FastFieldCodecType::BlockwiseLinear => {
|
||||
open_specific_codec::<BlockwiseLinearCodec, _>(bytes, &header)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64 + fmt::Debug>(
|
||||
bytes: OwnedBytes,
|
||||
header: &Header,
|
||||
) -> io::Result<Arc<dyn Column<Item>>> {
|
||||
let normalized_header = header.normalized();
|
||||
let reader = C::open_from_bytes(bytes, normalized_header)?;
|
||||
let min_value = header.min_value;
|
||||
if let Some(gcd) = header.gcd {
|
||||
let mapping = StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd.get(), min_value),
|
||||
);
|
||||
Ok(Arc::new(monotonic_map_column(reader, mapping)))
|
||||
} else {
|
||||
let mapping = StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalBaseval::new(min_value),
|
||||
);
|
||||
Ok(Arc::new(monotonic_map_column(reader, mapping)))
|
||||
}
|
||||
}
|
||||
|
||||
/// The FastFieldSerializerEstimate trait is required on all variants
|
||||
/// of fast field compressions, to decide which one to choose.
|
||||
trait FastFieldCodec: 'static {
|
||||
/// A codex needs to provide a unique name and id, which is
|
||||
/// used for debugging and de/serialization.
|
||||
const CODEC_TYPE: FastFieldCodecType;
|
||||
|
||||
type Reader: Column<u64> + 'static;
|
||||
|
||||
/// Reads the metadata and returns the CodecReader
|
||||
fn open_from_bytes(bytes: OwnedBytes, header: NormalizedHeader) -> io::Result<Self::Reader>;
|
||||
|
||||
/// Serializes the data using the serializer into write.
|
||||
///
|
||||
/// The column iterator should be preferred over using column `get_val` method for
|
||||
/// performance reasons.
|
||||
fn serialize(column: &dyn Column, write: &mut impl Write) -> io::Result<()>;
|
||||
|
||||
/// Returns an estimate of the compression ratio.
|
||||
/// If the codec is not applicable, returns `None`.
|
||||
///
|
||||
/// The baseline is uncompressed 64bit data.
|
||||
///
|
||||
/// It could make sense to also return a value representing
|
||||
/// computational complexity.
|
||||
fn estimate(column: &dyn Column) -> Option<f32>;
|
||||
}
|
||||
|
||||
/// The list of all available codecs for u64 convertible data.
|
||||
pub const ALL_CODEC_TYPES: [FastFieldCodecType; 3] = [
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
FastFieldCodecType::Linear,
|
||||
];
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use proptest::prelude::*;
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
|
||||
use crate::bitpacked::BitpackedCodec;
|
||||
use crate::blockwise_linear::BlockwiseLinearCodec;
|
||||
use crate::linear::LinearCodec;
|
||||
use crate::serialize::Header;
|
||||
|
||||
pub(crate) fn create_and_validate<Codec: FastFieldCodec>(
|
||||
data: &[u64],
|
||||
name: &str,
|
||||
) -> Option<(f32, f32)> {
|
||||
let col = &VecColumn::from(data);
|
||||
let header = Header::compute_header(col, &[Codec::CODEC_TYPE])?;
|
||||
let normalized_col = header.normalize_column(col);
|
||||
let estimation = Codec::estimate(&normalized_col)?;
|
||||
|
||||
let mut out = Vec::new();
|
||||
let col = VecColumn::from(data);
|
||||
serialize(col, &mut out, &[Codec::CODEC_TYPE]).unwrap();
|
||||
|
||||
let actual_compression = out.len() as f32 / (data.len() as f32 * 8.0);
|
||||
|
||||
let reader = crate::open::<u64>(OwnedBytes::new(out)).unwrap();
|
||||
assert_eq!(reader.num_vals(), data.len() as u32);
|
||||
for (doc, orig_val) in data.iter().copied().enumerate() {
|
||||
let val = reader.get_val(doc as u32);
|
||||
assert_eq!(
|
||||
val, orig_val,
|
||||
"val `{val}` does not match orig_val {orig_val:?}, in data set {name}, data \
|
||||
`{data:?}`",
|
||||
);
|
||||
}
|
||||
|
||||
if !data.is_empty() {
|
||||
let test_rand_idx = rand::thread_rng().gen_range(0..=data.len() - 1);
|
||||
let expected_positions: Vec<u32> = data
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_, el)| **el == data[test_rand_idx])
|
||||
.map(|(pos, _)| pos as u32)
|
||||
.collect();
|
||||
let mut positions = Vec::new();
|
||||
reader.get_docids_for_value_range(
|
||||
data[test_rand_idx]..=data[test_rand_idx],
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
assert_eq!(expected_positions, positions);
|
||||
}
|
||||
Some((estimation, actual_compression))
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(100))]
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_bitpacked(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
|
||||
}
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(10))]
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_bitpacked(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
|
||||
}
|
||||
}
|
||||
|
||||
fn num_strategy() -> impl Strategy<Value = u64> {
|
||||
prop_oneof![
|
||||
1 => prop::num::u64::ANY.prop_map(|num| u64::MAX - (num % 10) ),
|
||||
1 => prop::num::u64::ANY.prop_map(|num| num % 10 ),
|
||||
20 => prop::num::u64::ANY,
|
||||
]
|
||||
}
|
||||
|
||||
pub fn get_codec_test_datasets() -> Vec<(Vec<u64>, &'static str)> {
|
||||
let mut data_and_names = vec![];
|
||||
|
||||
let data = vec![10];
|
||||
data_and_names.push((data, "minimal test"));
|
||||
|
||||
let data = (10..=10_000_u64).collect::<Vec<_>>();
|
||||
data_and_names.push((data, "simple monotonically increasing"));
|
||||
|
||||
data_and_names.push((
|
||||
vec![5, 6, 7, 8, 9, 10, 99, 100],
|
||||
"offset in linear interpol",
|
||||
));
|
||||
|
||||
data_and_names.push((vec![3, 18446744073709551613, 5], "docid range regression"));
|
||||
|
||||
data_and_names.push((vec![5, 50, 3, 13, 1, 1000, 35], "rand small"));
|
||||
data_and_names.push((vec![10], "single value"));
|
||||
|
||||
data_and_names.push((
|
||||
vec![1572656989877777, 1170935903116329, 720575940379279, 0],
|
||||
"overflow error",
|
||||
));
|
||||
|
||||
data_and_names
|
||||
}
|
||||
|
||||
fn test_codec<C: FastFieldCodec>() {
|
||||
let codec_name = format!("{:?}", C::CODEC_TYPE);
|
||||
for (data, dataset_name) in get_codec_test_datasets() {
|
||||
let estimate_actual_opt: Option<(f32, f32)> =
|
||||
crate::tests::create_and_validate::<C>(&data, dataset_name);
|
||||
let result = if let Some((estimate, actual)) = estimate_actual_opt {
|
||||
format!("Estimate `{estimate}` Actual `{actual}`")
|
||||
} else {
|
||||
"Disabled".to_string()
|
||||
};
|
||||
println!("Codec {codec_name}, DataSet {dataset_name}, {result}");
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn test_codec_bitpacking() {
|
||||
test_codec::<BitpackedCodec>();
|
||||
}
|
||||
#[test]
|
||||
fn test_codec_interpolation() {
|
||||
test_codec::<LinearCodec>();
|
||||
}
|
||||
#[test]
|
||||
fn test_codec_multi_interpolation() {
|
||||
test_codec::<BlockwiseLinearCodec>();
|
||||
}
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn estimation_good_interpolation_case() {
|
||||
let data = (10..=20000_u64).collect::<Vec<_>>();
|
||||
let data: VecColumn = data.as_slice().into();
|
||||
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
assert_le!(linear_interpol_estimation, 0.01);
|
||||
|
||||
let multi_linear_interpol_estimation = BlockwiseLinearCodec::estimate(&data).unwrap();
|
||||
assert_le!(multi_linear_interpol_estimation, 0.2);
|
||||
assert_lt!(linear_interpol_estimation, multi_linear_interpol_estimation);
|
||||
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_lt!(linear_interpol_estimation, bitpacked_estimation);
|
||||
}
|
||||
#[test]
|
||||
fn estimation_test_bad_interpolation_case() {
|
||||
let data: &[u64] = &[200, 10, 10, 10, 10, 1000, 20];
|
||||
|
||||
let data: VecColumn = data.into();
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
assert_le!(linear_interpol_estimation, 0.34);
|
||||
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn estimation_prefer_bitpacked() {
|
||||
let data = VecColumn::from(&[10, 10, 10, 10]);
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn estimation_test_bad_interpolation_case_monotonically_increasing() {
|
||||
let mut data: Vec<u64> = (201..=20000_u64).collect();
|
||||
data.push(1_000_000);
|
||||
let data: VecColumn = data.as_slice().into();
|
||||
|
||||
// in this case the linear interpolation can't in fact not be worse than bitpacking,
|
||||
// but the estimator adds some threshold, which leads to estimated worse behavior
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
assert_le!(linear_interpol_estimation, 0.35);
|
||||
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_le!(bitpacked_estimation, 0.32);
|
||||
assert_le!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fast_field_codec_type_to_code() {
|
||||
let mut count_codec = 0;
|
||||
for code in 0..=255 {
|
||||
if let Some(codec_type) = FastFieldCodecType::from_code(code) {
|
||||
assert_eq!(codec_type.to_code(), code);
|
||||
count_codec += 1;
|
||||
}
|
||||
}
|
||||
assert_eq!(count_codec, 3);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::*;
|
||||
use crate::Column;
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55000_u64)
|
||||
.map(|num| num + rng.gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
fn get_reader_for_bench<Codec: FastFieldCodec>(data: &[u64]) -> Codec::Reader {
|
||||
let mut bytes = Vec::new();
|
||||
let min_value = *data.iter().min().unwrap();
|
||||
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
|
||||
let col = VecColumn::from(&data);
|
||||
let normalized_header = crate::NormalizedHeader {
|
||||
num_vals: col.num_vals(),
|
||||
max_value: col.max_value(),
|
||||
};
|
||||
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
|
||||
Codec::open_from_bytes(OwnedBytes::new(bytes), normalized_header).unwrap()
|
||||
}
|
||||
fn bench_get<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = get_reader_for_bench::<Codec>(data);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn Column>) {
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
fn bench_get_dynamic<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = Arc::new(get_reader_for_bench::<Codec>(data));
|
||||
bench_get_dynamic_helper(b, col);
|
||||
}
|
||||
fn bench_create<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let min_value = *data.iter().min().unwrap();
|
||||
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
|
||||
|
||||
let mut bytes = Vec::new();
|
||||
b.iter(|| {
|
||||
bytes.clear();
|
||||
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
}
|
||||
pub use columnar::ColumnValues as Column;
|
||||
|
||||
@@ -1,222 +0,0 @@
|
||||
use std::io;
|
||||
use std::num::NonZeroU32;
|
||||
|
||||
use common::{BinarySerializable, VInt};
|
||||
|
||||
use crate::Column;
|
||||
|
||||
const MID_POINT: u64 = (1u64 << 32) - 1u64;
|
||||
|
||||
/// `Line` describes a line function `y: ax + b` using integer
|
||||
/// arithmetics.
|
||||
///
|
||||
/// The slope is in fact a decimal split into a 32 bit integer value,
|
||||
/// and a 32-bit decimal value.
|
||||
///
|
||||
/// The multiplication then becomes.
|
||||
/// `y = m * x >> 32 + b`
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Line {
|
||||
slope: u64,
|
||||
intercept: u64,
|
||||
}
|
||||
|
||||
/// Compute the line slope.
|
||||
///
|
||||
/// This function has the nice property of being
|
||||
/// invariant by translation.
|
||||
/// `
|
||||
/// compute_slope(y0, y1)
|
||||
/// = compute_slope(y0 + X % 2^64, y1 + X % 2^64)
|
||||
/// `
|
||||
fn compute_slope(y0: u64, y1: u64, num_vals: NonZeroU32) -> u64 {
|
||||
let dy = y1.wrapping_sub(y0);
|
||||
let sign = dy <= (1 << 63);
|
||||
let abs_dy = if sign {
|
||||
y1.wrapping_sub(y0)
|
||||
} else {
|
||||
y0.wrapping_sub(y1)
|
||||
};
|
||||
if abs_dy >= 1 << 32 {
|
||||
// This is outside of realm we handle.
|
||||
// Let's just bail.
|
||||
return 0u64;
|
||||
}
|
||||
|
||||
let abs_slope = (abs_dy << 32) / num_vals.get() as u64;
|
||||
if sign {
|
||||
abs_slope
|
||||
} else {
|
||||
// The complement does indeed create the
|
||||
// opposite decreasing slope...
|
||||
//
|
||||
// Intuitively (without the bitshifts and % u64::MAX)
|
||||
// ```
|
||||
// (x + shift)*(u64::MAX - abs_slope)
|
||||
// - (x * (u64::MAX - abs_slope))
|
||||
// = - shift * abs_slope
|
||||
// ```
|
||||
u64::MAX - abs_slope
|
||||
}
|
||||
}
|
||||
|
||||
impl Line {
|
||||
#[inline(always)]
|
||||
pub fn eval(&self, x: u32) -> u64 {
|
||||
let linear_part = ((x as u64).wrapping_mul(self.slope) >> 32) as i32 as u64;
|
||||
self.intercept.wrapping_add(linear_part)
|
||||
}
|
||||
|
||||
// Same as train, but the intercept is only estimated from provided sample positions
|
||||
pub fn estimate(sample_positions_and_values: &[(u64, u64)]) -> Self {
|
||||
let first_val = sample_positions_and_values[0].1;
|
||||
let last_val = sample_positions_and_values[sample_positions_and_values.len() - 1].1;
|
||||
let num_vals = sample_positions_and_values[sample_positions_and_values.len() - 1].0 + 1;
|
||||
Self::train_from(
|
||||
first_val,
|
||||
last_val,
|
||||
num_vals as u32,
|
||||
sample_positions_and_values.iter().cloned(),
|
||||
)
|
||||
}
|
||||
|
||||
// Intercept is only computed from provided positions
|
||||
fn train_from(
|
||||
first_val: u64,
|
||||
last_val: u64,
|
||||
num_vals: u32,
|
||||
positions_and_values: impl Iterator<Item = (u64, u64)>,
|
||||
) -> Self {
|
||||
// TODO replace with let else
|
||||
let idx_last_val = if let Some(idx_last_val) = NonZeroU32::new(num_vals - 1) {
|
||||
idx_last_val
|
||||
} else {
|
||||
return Line::default();
|
||||
};
|
||||
|
||||
let y0 = first_val;
|
||||
let y1 = last_val;
|
||||
|
||||
// We first independently pick our slope.
|
||||
let slope = compute_slope(y0, y1, idx_last_val);
|
||||
|
||||
// We picked our slope. Note that it does not have to be perfect.
|
||||
// Now we need to compute the best intercept.
|
||||
//
|
||||
// Intuitively, the best intercept is such that line passes through one of the
|
||||
// `(i, ys[])`.
|
||||
//
|
||||
// The best intercept therefore has the form
|
||||
// `y[i] - line.eval(i)` (using wrapping arithmetics).
|
||||
// In other words, the best intercept is one of the `y - Line::eval(ys[i])`
|
||||
// and our task is just to pick the one that minimizes our error.
|
||||
//
|
||||
// Without sorting our values, this is a difficult problem.
|
||||
// We however rely on the following trick...
|
||||
//
|
||||
// We only focus on the case where the interpolation is half decent.
|
||||
// If the line interpolation is doing its job on a dataset suited for it,
|
||||
// we can hope that the maximum error won't be larger than `u64::MAX / 2`.
|
||||
//
|
||||
// In other words, even without the intercept the values `y - Line::eval(ys[i])` will all be
|
||||
// within an interval that takes less than half of the modulo space of `u64`.
|
||||
//
|
||||
// Our task is therefore to identify this interval.
|
||||
// Here we simply translate all of our values by `y0 - 2^63` and pick the min.
|
||||
let mut line = Line {
|
||||
slope,
|
||||
intercept: 0,
|
||||
};
|
||||
let heuristic_shift = y0.wrapping_sub(MID_POINT);
|
||||
line.intercept = positions_and_values
|
||||
.map(|(pos, y)| y.wrapping_sub(line.eval(pos as u32)))
|
||||
.min_by_key(|&val| val.wrapping_sub(heuristic_shift))
|
||||
.unwrap_or(0u64); //< Never happens.
|
||||
line
|
||||
}
|
||||
|
||||
/// Returns a line that attemps to approximate a function
|
||||
/// f: i in 0..[ys.num_vals()) -> ys[i].
|
||||
///
|
||||
/// - The approximation is always lower than the actual value.
|
||||
/// Or more rigorously, formally `f(i).wrapping_sub(ys[i])` is small
|
||||
/// for any i in [0..ys.len()).
|
||||
/// - It computes without panicking for any value of it.
|
||||
///
|
||||
/// This function is only invariable by translation if all of the
|
||||
/// `ys` are packaged into half of the space. (See heuristic below)
|
||||
pub fn train(ys: &dyn Column) -> Self {
|
||||
let first_val = ys.iter().next().unwrap();
|
||||
let last_val = ys.iter().nth(ys.num_vals() as usize - 1).unwrap();
|
||||
Self::train_from(
|
||||
first_val,
|
||||
last_val,
|
||||
ys.num_vals(),
|
||||
ys.iter().enumerate().map(|(pos, val)| (pos as u64, val)),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for Line {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.slope).serialize(writer)?;
|
||||
VInt(self.intercept).serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let slope = VInt::deserialize(reader)?.0;
|
||||
let intercept = VInt::deserialize(reader)?.0;
|
||||
Ok(Line { slope, intercept })
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::VecColumn;
|
||||
|
||||
/// Test training a line and ensuring that the maximum difference between
|
||||
/// the data points and the line is `expected`.
|
||||
///
|
||||
/// This function operates translation over the data for better coverage.
|
||||
#[track_caller]
|
||||
fn test_line_interpol_with_translation(ys: &[u64], expected: Option<u64>) {
|
||||
let mut translations = vec![0, 100, u64::MAX / 2, u64::MAX, u64::MAX - 1];
|
||||
translations.extend_from_slice(ys);
|
||||
for translation in translations {
|
||||
let translated_ys: Vec<u64> = ys
|
||||
.iter()
|
||||
.copied()
|
||||
.map(|y| y.wrapping_add(translation))
|
||||
.collect();
|
||||
let largest_err = test_eval_max_err(&translated_ys);
|
||||
assert_eq!(largest_err, expected);
|
||||
}
|
||||
}
|
||||
|
||||
fn test_eval_max_err(ys: &[u64]) -> Option<u64> {
|
||||
let line = Line::train(&VecColumn::from(&ys));
|
||||
ys.iter()
|
||||
.enumerate()
|
||||
.map(|(x, y)| y.wrapping_sub(line.eval(x as u32)))
|
||||
.max()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_train() {
|
||||
test_line_interpol_with_translation(&[11, 11, 11, 12, 12, 13], Some(1));
|
||||
test_line_interpol_with_translation(&[13, 12, 12, 11, 11, 11], Some(1));
|
||||
test_line_interpol_with_translation(&[13, 13, 12, 11, 11, 11], Some(1));
|
||||
test_line_interpol_with_translation(&[13, 13, 12, 11, 11, 11], Some(1));
|
||||
test_line_interpol_with_translation(&[u64::MAX - 1, 0, 0, 1], Some(1));
|
||||
test_line_interpol_with_translation(&[u64::MAX - 1, u64::MAX, 0, 1], Some(0));
|
||||
test_line_interpol_with_translation(&[0, 1, 2, 3, 5], Some(0));
|
||||
test_line_interpol_with_translation(&[1, 2, 3, 4], Some(0));
|
||||
|
||||
let data: Vec<u64> = (0..255).collect();
|
||||
test_line_interpol_with_translation(&data, Some(0));
|
||||
let data: Vec<u64> = (0..255).map(|el| el * 2).collect();
|
||||
test_line_interpol_with_translation(&data, Some(0));
|
||||
}
|
||||
}
|
||||
@@ -1,230 +0,0 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::line::Line;
|
||||
use crate::serialize::NormalizedHeader;
|
||||
use crate::{Column, FastFieldCodec, FastFieldCodecType};
|
||||
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct LinearReader {
|
||||
data: OwnedBytes,
|
||||
linear_params: LinearParams,
|
||||
header: NormalizedHeader,
|
||||
}
|
||||
|
||||
impl Column for LinearReader {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
let interpoled_val: u64 = self.linear_params.line.eval(doc);
|
||||
let bitpacked_diff = self.linear_params.bit_unpacker.get(doc, &self.data);
|
||||
interpoled_val.wrapping_add(bitpacked_diff)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The LinearReader assumes a normalized vector.
|
||||
0u64
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.header.max_value
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.header.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
/// Fastfield serializer, which tries to guess values by linear interpolation
|
||||
/// and stores the difference bitpacked.
|
||||
pub struct LinearCodec;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct LinearParams {
|
||||
line: Line,
|
||||
bit_unpacker: BitUnpacker,
|
||||
}
|
||||
|
||||
impl BinarySerializable for LinearParams {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.line.serialize(writer)?;
|
||||
self.bit_unpacker.bit_width().serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let line = Line::deserialize(reader)?;
|
||||
let bit_width = u8::deserialize(reader)?;
|
||||
Ok(Self {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl FastFieldCodec for LinearCodec {
|
||||
const CODEC_TYPE: FastFieldCodecType = FastFieldCodecType::Linear;
|
||||
|
||||
type Reader = LinearReader;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn open_from_bytes(mut data: OwnedBytes, header: NormalizedHeader) -> io::Result<Self::Reader> {
|
||||
let linear_params = LinearParams::deserialize(&mut data)?;
|
||||
Ok(LinearReader {
|
||||
data,
|
||||
linear_params,
|
||||
header,
|
||||
})
|
||||
}
|
||||
|
||||
/// Creates a new fast field serializer.
|
||||
fn serialize(column: &dyn Column, write: &mut impl Write) -> io::Result<()> {
|
||||
assert_eq!(column.min_value(), 0);
|
||||
let line = Line::train(column);
|
||||
|
||||
let max_offset_from_line = column
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(pos, actual_value)| {
|
||||
let calculated_value = line.eval(pos as u32);
|
||||
actual_value.wrapping_sub(calculated_value)
|
||||
})
|
||||
.max()
|
||||
.unwrap();
|
||||
|
||||
let num_bits = compute_num_bits(max_offset_from_line);
|
||||
let linear_params = LinearParams {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
};
|
||||
linear_params.serialize(write)?;
|
||||
|
||||
let mut bit_packer = BitPacker::new();
|
||||
for (pos, actual_value) in column.iter().enumerate() {
|
||||
let calculated_value = line.eval(pos as u32);
|
||||
let offset = actual_value.wrapping_sub(calculated_value);
|
||||
bit_packer.write(offset, num_bits, write)?;
|
||||
}
|
||||
bit_packer.close(write)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// estimation for linear interpolation is hard because, you don't know
|
||||
/// where the local maxima for the deviation of the calculated value are and
|
||||
/// the offset to shift all values to >=0 is also unknown.
|
||||
#[allow(clippy::question_mark)]
|
||||
fn estimate(column: &dyn Column) -> Option<f32> {
|
||||
if column.num_vals() < 3 {
|
||||
return None; // disable compressor for this case
|
||||
}
|
||||
|
||||
let limit_num_vals = column.num_vals().min(100_000);
|
||||
|
||||
let num_samples = 100;
|
||||
let step_size = (limit_num_vals / num_samples).max(1); // 20 samples
|
||||
let mut sample_positions_and_values: Vec<_> = Vec::new();
|
||||
for (pos, val) in column.iter().enumerate().step_by(step_size as usize) {
|
||||
sample_positions_and_values.push((pos as u64, val));
|
||||
}
|
||||
|
||||
let line = Line::estimate(&sample_positions_and_values);
|
||||
|
||||
let estimated_bit_width = sample_positions_and_values
|
||||
.into_iter()
|
||||
.map(|(pos, actual_value)| {
|
||||
let interpolated_val = line.eval(pos as u32);
|
||||
actual_value.wrapping_sub(interpolated_val)
|
||||
})
|
||||
.map(|diff| ((diff as f32 * 1.5) * 2.0) as u64)
|
||||
.map(compute_num_bits)
|
||||
.max()
|
||||
.unwrap_or(0);
|
||||
|
||||
// Extrapolate to whole column
|
||||
let num_bits = (estimated_bit_width as u64 * column.num_vals() as u64) + 64;
|
||||
let num_bits_uncompressed = 64 * column.num_vals();
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use rand::RngCore;
|
||||
|
||||
use super::*;
|
||||
use crate::tests::get_codec_test_datasets;
|
||||
|
||||
fn create_and_validate(data: &[u64], name: &str) -> Option<(f32, f32)> {
|
||||
crate::tests::create_and_validate::<LinearCodec>(data, name)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compression() {
|
||||
let data = (10..=6_000_u64).collect::<Vec<_>>();
|
||||
let (estimate, actual_compression) =
|
||||
create_and_validate(&data, "simple monotonically large").unwrap();
|
||||
|
||||
assert_le!(actual_compression, 0.001);
|
||||
assert_le!(estimate, 0.02);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_datasets() {
|
||||
let data_sets = get_codec_test_datasets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate(&data, name);
|
||||
data.reverse();
|
||||
create_and_validate(&data, name);
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_test_large_amplitude() {
|
||||
let data = vec![
|
||||
i64::MAX as u64 / 2,
|
||||
i64::MAX as u64 / 3,
|
||||
i64::MAX as u64 / 2,
|
||||
];
|
||||
|
||||
create_and_validate(&data, "large amplitude");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn overflow_error_test() {
|
||||
let data = vec![1572656989877777, 1170935903116329, 720575940379279, 0];
|
||||
create_and_validate(&data, "overflow test");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_interpol_fast_concave_data() {
|
||||
let data = vec![0, 1, 2, 5, 8, 10, 20, 50];
|
||||
create_and_validate(&data, "concave data");
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_convex_data() {
|
||||
let data = vec![0, 40, 60, 70, 75, 77];
|
||||
create_and_validate(&data, "convex data");
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_test_simple() {
|
||||
let data = (10..=20_u64).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "simple monotonically");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_rand() {
|
||||
let mut rng = rand::thread_rng();
|
||||
for _ in 0..50 {
|
||||
let mut data = (0..10_000).map(|_| rng.next_u64()).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "random");
|
||||
data.reverse();
|
||||
create_and_validate(&data, "random");
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,222 +0,0 @@
|
||||
#[macro_use]
|
||||
extern crate prettytable;
|
||||
use std::collections::HashSet;
|
||||
use std::env;
|
||||
use std::io::BufRead;
|
||||
use std::net::{IpAddr, Ipv6Addr};
|
||||
use std::str::FromStr;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use fastfield_codecs::{open_u128, serialize_u128, Column, FastFieldCodecType, VecColumn};
|
||||
use itertools::Itertools;
|
||||
use measure_time::print_time;
|
||||
use prettytable::{Cell, Row, Table};
|
||||
|
||||
fn print_set_stats(ip_addrs: &[u128]) {
|
||||
println!("NumIps\t{}", ip_addrs.len());
|
||||
let ip_addr_set: HashSet<u128> = ip_addrs.iter().cloned().collect();
|
||||
println!("NumUniqueIps\t{}", ip_addr_set.len());
|
||||
let ratio_unique = ip_addr_set.len() as f64 / ip_addrs.len() as f64;
|
||||
println!("RatioUniqueOverTotal\t{ratio_unique:.4}");
|
||||
|
||||
// histogram
|
||||
let mut ip_addrs = ip_addrs.to_vec();
|
||||
ip_addrs.sort();
|
||||
let mut cnts: Vec<usize> = ip_addrs
|
||||
.into_iter()
|
||||
.dedup_with_count()
|
||||
.map(|(cnt, _)| cnt)
|
||||
.collect();
|
||||
cnts.sort();
|
||||
|
||||
let top_256_cnt: usize = cnts.iter().rev().take(256).sum();
|
||||
let top_128_cnt: usize = cnts.iter().rev().take(128).sum();
|
||||
let top_64_cnt: usize = cnts.iter().rev().take(64).sum();
|
||||
let top_8_cnt: usize = cnts.iter().rev().take(8).sum();
|
||||
let total: usize = cnts.iter().sum();
|
||||
|
||||
println!("{}", total);
|
||||
println!("{}", top_256_cnt);
|
||||
println!("{}", top_128_cnt);
|
||||
println!("Percentage Top8 {:02}", top_8_cnt as f32 / total as f32);
|
||||
println!("Percentage Top64 {:02}", top_64_cnt as f32 / total as f32);
|
||||
println!("Percentage Top128 {:02}", top_128_cnt as f32 / total as f32);
|
||||
println!("Percentage Top256 {:02}", top_256_cnt as f32 / total as f32);
|
||||
|
||||
let mut cnts: Vec<(usize, usize)> = cnts.into_iter().dedup_with_count().collect();
|
||||
cnts.sort_by(|a, b| {
|
||||
if a.1 == b.1 {
|
||||
a.0.cmp(&b.0)
|
||||
} else {
|
||||
b.1.cmp(&a.1)
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
fn ip_dataset() -> Vec<u128> {
|
||||
let mut ip_addr_v4 = 0;
|
||||
|
||||
let stdin = std::io::stdin();
|
||||
let ip_addrs: Vec<u128> = stdin
|
||||
.lock()
|
||||
.lines()
|
||||
.flat_map(|line| {
|
||||
let line = line.unwrap();
|
||||
let line = line.trim();
|
||||
let ip_addr = IpAddr::from_str(line.trim()).ok()?;
|
||||
if ip_addr.is_ipv4() {
|
||||
ip_addr_v4 += 1;
|
||||
}
|
||||
let ip_addr_v6: Ipv6Addr = match ip_addr {
|
||||
IpAddr::V4(v4) => v4.to_ipv6_mapped(),
|
||||
IpAddr::V6(v6) => v6,
|
||||
};
|
||||
Some(ip_addr_v6)
|
||||
})
|
||||
.map(|ip_v6| u128::from_be_bytes(ip_v6.octets()))
|
||||
.collect();
|
||||
|
||||
println!("IpAddrsAny\t{}", ip_addrs.len());
|
||||
println!("IpAddrsV4\t{}", ip_addr_v4);
|
||||
|
||||
ip_addrs
|
||||
}
|
||||
|
||||
fn bench_ip() {
|
||||
let dataset = ip_dataset();
|
||||
print_set_stats(&dataset);
|
||||
|
||||
// Chunks
|
||||
{
|
||||
let mut data = vec![];
|
||||
for dataset in dataset.chunks(500_000) {
|
||||
serialize_u128(|| dataset.iter().cloned(), dataset.len() as u32, &mut data).unwrap();
|
||||
}
|
||||
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
|
||||
println!("Compression 50_000 chunks {:.4}", compression);
|
||||
println!(
|
||||
"Num Bits per elem {:.2}",
|
||||
(data.len() * 8) as f32 / dataset.len() as f32
|
||||
);
|
||||
}
|
||||
|
||||
let mut data = vec![];
|
||||
{
|
||||
print_time!("creation");
|
||||
serialize_u128(|| dataset.iter().cloned(), dataset.len() as u32, &mut data).unwrap();
|
||||
}
|
||||
|
||||
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
|
||||
println!("Compression {:.2}", compression);
|
||||
println!(
|
||||
"Num Bits per elem {:.2}",
|
||||
(data.len() * 8) as f32 / dataset.len() as f32
|
||||
);
|
||||
|
||||
let decompressor = open_u128::<u128>(OwnedBytes::new(data)).unwrap();
|
||||
// Sample some ranges
|
||||
let mut doc_values = Vec::new();
|
||||
for value in dataset.iter().take(1110).skip(1100).cloned() {
|
||||
doc_values.clear();
|
||||
print_time!("get range");
|
||||
decompressor.get_docids_for_value_range(
|
||||
value..=value,
|
||||
0..decompressor.num_vals(),
|
||||
&mut doc_values,
|
||||
);
|
||||
println!("{:?}", doc_values.len());
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
if env::args().nth(1).unwrap() == "bench_ip" {
|
||||
bench_ip();
|
||||
return;
|
||||
}
|
||||
|
||||
let mut table = Table::new();
|
||||
|
||||
// Add a row per time
|
||||
table.add_row(row!["", "Compression Ratio", "Compression Estimation"]);
|
||||
|
||||
for (data, data_set_name) in get_codec_test_data_sets() {
|
||||
let results: Vec<(f32, f32, FastFieldCodecType)> = [
|
||||
serialize_with_codec(&data, FastFieldCodecType::Bitpacked),
|
||||
serialize_with_codec(&data, FastFieldCodecType::Linear),
|
||||
serialize_with_codec(&data, FastFieldCodecType::BlockwiseLinear),
|
||||
]
|
||||
.into_iter()
|
||||
.flatten()
|
||||
.collect();
|
||||
let best_compression_ratio_codec = results
|
||||
.iter()
|
||||
.min_by(|&res1, &res2| res1.partial_cmp(res2).unwrap())
|
||||
.cloned()
|
||||
.unwrap();
|
||||
|
||||
table.add_row(Row::new(vec![Cell::new(data_set_name).style_spec("Bbb")]));
|
||||
for (est, comp, codec_type) in results {
|
||||
let est_cell = est.to_string();
|
||||
let ratio_cell = comp.to_string();
|
||||
let style = if comp == best_compression_ratio_codec.1 {
|
||||
"Fb"
|
||||
} else {
|
||||
""
|
||||
};
|
||||
table.add_row(Row::new(vec![
|
||||
Cell::new(&format!("{codec_type:?}")).style_spec("bFg"),
|
||||
Cell::new(&ratio_cell).style_spec(style),
|
||||
Cell::new(&est_cell).style_spec(""),
|
||||
]));
|
||||
}
|
||||
}
|
||||
|
||||
table.printstd();
|
||||
}
|
||||
|
||||
pub fn get_codec_test_data_sets() -> Vec<(Vec<u64>, &'static str)> {
|
||||
let mut data_and_names = vec![];
|
||||
|
||||
let data = (1000..=200_000_u64).collect::<Vec<_>>();
|
||||
data_and_names.push((data, "Autoincrement"));
|
||||
|
||||
let mut current_cumulative = 0;
|
||||
let data = (1..=200_000_u64)
|
||||
.map(|num| {
|
||||
let num = (num as f32 + num as f32).log10() as u64;
|
||||
current_cumulative += num;
|
||||
current_cumulative
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
// let data = (1..=200000_u64).map(|num| num + num).collect::<Vec<_>>();
|
||||
data_and_names.push((data, "Monotonically increasing concave"));
|
||||
|
||||
let mut current_cumulative = 0;
|
||||
let data = (1..=200_000_u64)
|
||||
.map(|num| {
|
||||
let num = (200_000.0 - num as f32).log10() as u64;
|
||||
current_cumulative += num;
|
||||
current_cumulative
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
data_and_names.push((data, "Monotonically increasing convex"));
|
||||
|
||||
let data = (1000..=200_000_u64)
|
||||
.map(|num| num + rand::random::<u8>() as u64)
|
||||
.collect::<Vec<_>>();
|
||||
data_and_names.push((data, "Almost monotonically increasing"));
|
||||
|
||||
data_and_names
|
||||
}
|
||||
|
||||
pub fn serialize_with_codec(
|
||||
data: &[u64],
|
||||
codec_type: FastFieldCodecType,
|
||||
) -> Option<(f32, f32, FastFieldCodecType)> {
|
||||
let col = VecColumn::from(data);
|
||||
let estimation = fastfield_codecs::estimate(&col, codec_type)?;
|
||||
let mut out = Vec::new();
|
||||
fastfield_codecs::serialize(&col, &mut out, &[codec_type]).ok()?;
|
||||
let actual_compression = out.len() as f32 / (col.num_vals() * 8) as f32;
|
||||
Some((estimation, actual_compression, codec_type))
|
||||
}
|
||||
@@ -1,320 +0,0 @@
|
||||
use std::fmt;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
|
||||
use crate::MonotonicallyMappableToU128;
|
||||
|
||||
/// Monotonic maps a value to u64 value space.
|
||||
/// Monotonic mapping enables `PartialOrd` on u64 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU64:
|
||||
'static + PartialOrd + Copy + Send + Sync + fmt::Debug
|
||||
{
|
||||
/// Converts a value to u64.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
fn to_u64(self) -> u64;
|
||||
|
||||
/// Converts a value from u64
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
/// **Note: To be used for converting encoded Term, Posting values.**
|
||||
fn from_u64(val: u64) -> Self;
|
||||
}
|
||||
|
||||
/// Values need to be strictly monotonic mapped to a `Internal` value (u64 or u128) that can be
|
||||
/// used in fast field codecs.
|
||||
///
|
||||
/// The monotonic mapping is required so that `PartialOrd` can be used on `Internal` without
|
||||
/// converting to `External`.
|
||||
///
|
||||
/// All strictly monotonic functions are invertible because they are guaranteed to have a one-to-one
|
||||
/// mapping from their range to their domain. The `inverse` method is required when opening a codec,
|
||||
/// so a value can be converted back to its original domain (e.g. ip address or f64) from its
|
||||
/// internal representation.
|
||||
pub trait StrictlyMonotonicFn<External: Copy, Internal: Copy> {
|
||||
/// Strictly monotonically maps the value from External to Internal.
|
||||
fn mapping(&self, inp: External) -> Internal;
|
||||
/// Inverse of `mapping`. Maps the value from Internal to External.
|
||||
fn inverse(&self, out: Internal) -> External;
|
||||
|
||||
/// Maps a user provded value from External to Internal.
|
||||
/// It may be necessary to coerce the value if it is outside the value space.
|
||||
/// In that case it tries to find the next greater value in the value space.
|
||||
///
|
||||
/// Returns a bool to mark if a value was outside the value space and had to be coerced _up_.
|
||||
/// With that information we can detect if two values in a range both map outside the same value
|
||||
/// space.
|
||||
///
|
||||
/// coerce_up means the next valid upper value in the value space will be chosen if the value
|
||||
/// has to be coerced.
|
||||
fn mapping_coerce(&self, inp: RangeInclusive<External>) -> RangeInclusive<Internal> {
|
||||
self.mapping(*inp.start())..=self.mapping(*inp.end())
|
||||
}
|
||||
/// Inverse of `mapping_coerce`.
|
||||
fn inverse_coerce(&self, out: RangeInclusive<Internal>) -> RangeInclusive<External> {
|
||||
self.inverse(*out.start())..=self.inverse(*out.end())
|
||||
}
|
||||
}
|
||||
|
||||
/// Inverts a strictly monotonic mapping from `StrictlyMonotonicFn<A, B>` to
|
||||
/// `StrictlyMonotonicFn<B, A>`.
|
||||
///
|
||||
/// # Warning
|
||||
///
|
||||
/// This type comes with a footgun. A type being strictly monotonic does not impose that the inverse
|
||||
/// mapping is strictly monotonic over the entire space External. e.g. a -> a * 2. Use at your own
|
||||
/// risks.
|
||||
pub(crate) struct StrictlyMonotonicMappingInverter<T> {
|
||||
orig_mapping: T,
|
||||
}
|
||||
impl<T> From<T> for StrictlyMonotonicMappingInverter<T> {
|
||||
fn from(orig_mapping: T) -> Self {
|
||||
Self { orig_mapping }
|
||||
}
|
||||
}
|
||||
|
||||
impl<From, To, T> StrictlyMonotonicFn<To, From> for StrictlyMonotonicMappingInverter<T>
|
||||
where
|
||||
T: StrictlyMonotonicFn<From, To>,
|
||||
From: Copy,
|
||||
To: Copy,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, val: To) -> From {
|
||||
self.orig_mapping.inverse(val)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, val: From) -> To {
|
||||
self.orig_mapping.mapping(val)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn mapping_coerce(&self, inp: RangeInclusive<To>) -> RangeInclusive<From> {
|
||||
self.orig_mapping.inverse_coerce(inp)
|
||||
}
|
||||
#[inline]
|
||||
fn inverse_coerce(&self, out: RangeInclusive<From>) -> RangeInclusive<To> {
|
||||
self.orig_mapping.mapping_coerce(out)
|
||||
}
|
||||
}
|
||||
|
||||
/// Applies the strictly monotonic mapping from `T` without any additional changes.
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternal<T> {
|
||||
_phantom: PhantomData<T>,
|
||||
}
|
||||
|
||||
impl<T> StrictlyMonotonicMappingToInternal<T> {
|
||||
pub(crate) fn new() -> StrictlyMonotonicMappingToInternal<T> {
|
||||
Self {
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<External: MonotonicallyMappableToU128, T: MonotonicallyMappableToU128>
|
||||
StrictlyMonotonicFn<External, u128> for StrictlyMonotonicMappingToInternal<T>
|
||||
where T: MonotonicallyMappableToU128
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: External) -> u128 {
|
||||
External::to_u128(inp)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: u128) -> External {
|
||||
External::from_u128(out)
|
||||
}
|
||||
}
|
||||
|
||||
impl<External: MonotonicallyMappableToU64, T: MonotonicallyMappableToU64>
|
||||
StrictlyMonotonicFn<External, u64> for StrictlyMonotonicMappingToInternal<T>
|
||||
where T: MonotonicallyMappableToU64
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: External) -> u64 {
|
||||
External::to_u64(inp)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: u64) -> External {
|
||||
External::from_u64(out)
|
||||
}
|
||||
}
|
||||
|
||||
/// Mapping dividing by gcd and a base value.
|
||||
///
|
||||
/// The function is assumed to be only called on values divided by passed
|
||||
/// gcd value. (It is necessary for the function to be monotonic.)
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternalGCDBaseval {
|
||||
gcd_divider: DividerU64,
|
||||
gcd: u64,
|
||||
min_value: u64,
|
||||
}
|
||||
impl StrictlyMonotonicMappingToInternalGCDBaseval {
|
||||
pub(crate) fn new(gcd: u64, min_value: u64) -> Self {
|
||||
let gcd_divider = DividerU64::divide_by(gcd);
|
||||
Self {
|
||||
gcd_divider,
|
||||
gcd,
|
||||
min_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
|
||||
for StrictlyMonotonicMappingToInternalGCDBaseval
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: External) -> u64 {
|
||||
self.gcd_divider
|
||||
.divide(External::to_u64(inp) - self.min_value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: u64) -> External {
|
||||
External::from_u64(self.min_value + out * self.gcd)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[allow(clippy::reversed_empty_ranges)]
|
||||
fn mapping_coerce(&self, inp: RangeInclusive<External>) -> RangeInclusive<u64> {
|
||||
let end = External::to_u64(*inp.end());
|
||||
if end < self.min_value || inp.end() < inp.start() {
|
||||
return 1..=0;
|
||||
}
|
||||
let map_coerce = |mut inp, coerce_up| {
|
||||
let inp_lower_bound = self.inverse(0);
|
||||
if inp < inp_lower_bound {
|
||||
inp = inp_lower_bound;
|
||||
}
|
||||
let val = External::to_u64(inp);
|
||||
let need_coercion = coerce_up && (val - self.min_value) % self.gcd != 0;
|
||||
let mut mapped_val = self.mapping(inp);
|
||||
if need_coercion {
|
||||
mapped_val += 1;
|
||||
}
|
||||
mapped_val
|
||||
};
|
||||
let start = map_coerce(*inp.start(), true);
|
||||
let end = map_coerce(*inp.end(), false);
|
||||
start..=end
|
||||
}
|
||||
}
|
||||
|
||||
/// Strictly monotonic mapping with a base value.
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternalBaseval {
|
||||
min_value: u64,
|
||||
}
|
||||
impl StrictlyMonotonicMappingToInternalBaseval {
|
||||
#[inline(always)]
|
||||
pub(crate) fn new(min_value: u64) -> Self {
|
||||
Self { min_value }
|
||||
}
|
||||
}
|
||||
|
||||
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
|
||||
for StrictlyMonotonicMappingToInternalBaseval
|
||||
{
|
||||
#[inline]
|
||||
#[allow(clippy::reversed_empty_ranges)]
|
||||
fn mapping_coerce(&self, inp: RangeInclusive<External>) -> RangeInclusive<u64> {
|
||||
if External::to_u64(*inp.end()) < self.min_value {
|
||||
return 1..=0;
|
||||
}
|
||||
let start = self.mapping(External::to_u64(*inp.start()).max(self.min_value));
|
||||
let end = self.mapping(External::to_u64(*inp.end()));
|
||||
start..=end
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn mapping(&self, val: External) -> u64 {
|
||||
External::to_u64(val) - self.min_value
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, val: u64) -> External {
|
||||
External::from_u64(self.min_value + val)
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for u64 {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
self
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
val
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for i64 {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
common::i64_to_u64(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
common::u64_to_i64(val)
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for bool {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
u64::from(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
val > 0
|
||||
}
|
||||
}
|
||||
|
||||
// TODO remove me.
|
||||
// Tantivy should refuse NaN values and work with NotNaN internally.
|
||||
impl MonotonicallyMappableToU64 for f64 {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
common::f64_to_u64(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
common::u64_to_f64(val)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn strictly_monotonic_test() {
|
||||
// identity mapping
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<u64>::new(), 100u64);
|
||||
// round trip to i64
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<i64>::new(), 100u64);
|
||||
// identity mapping
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<u128>::new(), 100u128);
|
||||
|
||||
// base value to i64 round trip
|
||||
let mapping = StrictlyMonotonicMappingToInternalBaseval::new(100);
|
||||
test_round_trip::<_, _, u64>(&mapping, 100i64);
|
||||
// base value and gcd to u64 round trip
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100);
|
||||
test_round_trip::<_, _, u64>(&mapping, 100u64);
|
||||
}
|
||||
|
||||
fn test_round_trip<T: StrictlyMonotonicFn<K, L>, K: std::fmt::Debug + Eq + Copy, L: Copy>(
|
||||
mapping: &T,
|
||||
test_val: K,
|
||||
) {
|
||||
assert_eq!(mapping.inverse(mapping.mapping(test_val)), test_val);
|
||||
}
|
||||
}
|
||||
@@ -1,43 +0,0 @@
|
||||
use std::fmt;
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
/// Montonic maps a value to u128 value space
|
||||
/// Monotonic mapping enables `PartialOrd` on u128 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU128:
|
||||
'static + PartialOrd + Copy + Send + Sync + fmt::Debug
|
||||
{
|
||||
/// Converts a value to u128.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
fn to_u128(self) -> u128;
|
||||
|
||||
/// Converts a value from u128
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
/// **Note: To be used for converting encoded Term, Posting values.**
|
||||
fn from_u128(val: u128) -> Self;
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU128 for u128 {
|
||||
fn to_u128(self) -> u128 {
|
||||
self
|
||||
}
|
||||
|
||||
fn from_u128(val: u128) -> Self {
|
||||
val
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU128 for Ipv6Addr {
|
||||
fn to_u128(self) -> u128 {
|
||||
ip_to_u128(self)
|
||||
}
|
||||
|
||||
fn from_u128(val: u128) -> Self {
|
||||
Ipv6Addr::from(val.to_be_bytes())
|
||||
}
|
||||
}
|
||||
|
||||
fn ip_to_u128(ip_addr: Ipv6Addr) -> u128 {
|
||||
u128::from_be_bytes(ip_addr.octets())
|
||||
}
|
||||
@@ -1,500 +0,0 @@
|
||||
use std::convert::TryInto;
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::{get_bit_at, set_bit_at};
|
||||
|
||||
/// For the `DenseCodec`, `data` which contains the encoded blocks.
|
||||
/// Each block consists of [u8; 12]. The first 8 bytes is a bitvec for 64 elements.
|
||||
/// The last 4 bytes are the offset, the number of set bits so far.
|
||||
///
|
||||
/// When translating the original index to a dense index, the correct block can be computed
|
||||
/// directly `orig_idx/64`. Inside the block the position is `orig_idx%64`.
|
||||
///
|
||||
/// When translating a dense index to the original index, we can use the offset to find the correct
|
||||
/// block. Direct computation is not possible, but we can employ a linear or binary search.
|
||||
#[derive(Clone)]
|
||||
pub struct DenseCodec {
|
||||
// data consists of blocks of 64 bits.
|
||||
//
|
||||
// The format is &[(u64, u32)]
|
||||
// u64 is the bitvec
|
||||
// u32 is the offset of the block, the number of set bits so far.
|
||||
//
|
||||
// At the end one block is appended, to store the number of values in the index in offset.
|
||||
data: OwnedBytes,
|
||||
}
|
||||
const ELEMENTS_PER_BLOCK: u32 = 64;
|
||||
const BLOCK_BITVEC_SIZE: usize = 8;
|
||||
const BLOCK_OFFSET_SIZE: usize = 4;
|
||||
const SERIALIZED_BLOCK_SIZE: usize = BLOCK_BITVEC_SIZE + BLOCK_OFFSET_SIZE;
|
||||
|
||||
/// Interpreting the bitvec as a list of 64 bits from the low weight to the
|
||||
/// high weight.
|
||||
///
|
||||
/// This function returns the number of bits set to 1 within
|
||||
/// `[0..pos_in_vec)`.
|
||||
#[inline]
|
||||
fn count_ones(bitvec: u64, pos_in_bitvec: u32) -> u32 {
|
||||
let mask = (1u64 << pos_in_bitvec) - 1;
|
||||
let masked_bitvec = bitvec & mask;
|
||||
masked_bitvec.count_ones()
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
struct DenseIndexBlock {
|
||||
bitvec: u64,
|
||||
offset: u32,
|
||||
}
|
||||
|
||||
impl From<[u8; SERIALIZED_BLOCK_SIZE]> for DenseIndexBlock {
|
||||
fn from(data: [u8; SERIALIZED_BLOCK_SIZE]) -> Self {
|
||||
let bitvec = u64::from_le_bytes(data[..BLOCK_BITVEC_SIZE].try_into().unwrap());
|
||||
let offset = u32::from_le_bytes(data[BLOCK_BITVEC_SIZE..].try_into().unwrap());
|
||||
Self { bitvec, offset }
|
||||
}
|
||||
}
|
||||
|
||||
impl DenseCodec {
|
||||
/// Open the DenseCodec from OwnedBytes
|
||||
pub fn open(data: OwnedBytes) -> Self {
|
||||
Self { data }
|
||||
}
|
||||
#[inline]
|
||||
/// Check if value at position is not null.
|
||||
pub fn exists(&self, idx: u32) -> bool {
|
||||
let block_pos = idx / ELEMENTS_PER_BLOCK;
|
||||
let bitvec = self.dense_index_block(block_pos).bitvec;
|
||||
let pos_in_bitvec = idx % ELEMENTS_PER_BLOCK;
|
||||
get_bit_at(bitvec, pos_in_bitvec)
|
||||
}
|
||||
#[inline]
|
||||
fn dense_index_block(&self, block_pos: u32) -> DenseIndexBlock {
|
||||
dense_index_block(&self.data, block_pos)
|
||||
}
|
||||
|
||||
/// Return the number of non-null values in an index
|
||||
pub fn num_non_nulls(&self) -> u32 {
|
||||
let last_block = (self.data.len() / SERIALIZED_BLOCK_SIZE) - 1;
|
||||
self.dense_index_block(last_block as u32).offset
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Translate from the original index to the codec index.
|
||||
pub fn translate_to_codec_idx(&self, idx: u32) -> Option<u32> {
|
||||
let block_pos = idx / ELEMENTS_PER_BLOCK;
|
||||
let index_block = self.dense_index_block(block_pos);
|
||||
let pos_in_block_bit_vec = idx % ELEMENTS_PER_BLOCK;
|
||||
let ones_in_block = count_ones(index_block.bitvec, pos_in_block_bit_vec);
|
||||
if get_bit_at(index_block.bitvec, pos_in_block_bit_vec) {
|
||||
Some(index_block.offset + ones_in_block)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// Translate positions from the codec index to the original index.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if any `idx` is greater than the max codec index.
|
||||
pub fn translate_codec_idx_to_original_idx<'a>(
|
||||
&'a self,
|
||||
iter: impl Iterator<Item = u32> + 'a,
|
||||
) -> impl Iterator<Item = u32> + 'a {
|
||||
let mut block_pos = 0u32;
|
||||
iter.map(move |dense_idx| {
|
||||
// update block_pos to limit search scope
|
||||
block_pos = find_block(dense_idx, block_pos, &self.data);
|
||||
let index_block = self.dense_index_block(block_pos);
|
||||
|
||||
// The next offset is higher than dense_idx and therefore:
|
||||
// dense_idx <= offset + num_set_bits in block
|
||||
let mut num_set_bits = 0;
|
||||
for idx_in_bitvec in 0..ELEMENTS_PER_BLOCK {
|
||||
if get_bit_at(index_block.bitvec, idx_in_bitvec) {
|
||||
num_set_bits += 1;
|
||||
}
|
||||
if num_set_bits == (dense_idx - index_block.offset + 1) {
|
||||
let orig_idx = block_pos * ELEMENTS_PER_BLOCK + idx_in_bitvec;
|
||||
return orig_idx;
|
||||
}
|
||||
}
|
||||
panic!("Internal Error: Offset calculation in dense idx seems to be wrong.");
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn dense_index_block(data: &[u8], block_pos: u32) -> DenseIndexBlock {
|
||||
let data_start_pos = block_pos as usize * SERIALIZED_BLOCK_SIZE;
|
||||
let block_data: [u8; SERIALIZED_BLOCK_SIZE] = data[data_start_pos..][..SERIALIZED_BLOCK_SIZE]
|
||||
.try_into()
|
||||
.unwrap();
|
||||
block_data.into()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Finds the block position containing the dense_idx.
|
||||
///
|
||||
/// # Correctness
|
||||
/// dense_idx needs to be smaller than the number of values in the index
|
||||
///
|
||||
/// The last offset number is equal to the number of values in the index.
|
||||
fn find_block(dense_idx: u32, mut block_pos: u32, data: &[u8]) -> u32 {
|
||||
loop {
|
||||
let offset = dense_index_block(data, block_pos).offset;
|
||||
if offset > dense_idx {
|
||||
return block_pos - 1;
|
||||
}
|
||||
block_pos += 1;
|
||||
}
|
||||
}
|
||||
|
||||
/// Iterator over all values, true if set, otherwise false
|
||||
pub fn serialize_dense_codec(
|
||||
iter: impl Iterator<Item = bool>,
|
||||
mut out: impl Write,
|
||||
) -> io::Result<()> {
|
||||
let mut offset: u32 = 0;
|
||||
|
||||
for chunk in &iter.chunks(ELEMENTS_PER_BLOCK as usize) {
|
||||
let mut block: u64 = 0;
|
||||
for (pos, is_bit_set) in chunk.enumerate() {
|
||||
if is_bit_set {
|
||||
set_bit_at(&mut block, pos as u64);
|
||||
}
|
||||
}
|
||||
|
||||
block.serialize(&mut out)?;
|
||||
offset.serialize(&mut out)?;
|
||||
|
||||
offset += block.count_ones();
|
||||
}
|
||||
// Add sentinal block for the offset
|
||||
let block: u64 = 0;
|
||||
block.serialize(&mut out)?;
|
||||
offset.serialize(&mut out)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use proptest::prelude::{any, prop, *};
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
|
||||
use super::*;
|
||||
|
||||
fn random_bitvec() -> BoxedStrategy<Vec<bool>> {
|
||||
prop_oneof![
|
||||
1 => prop::collection::vec(proptest::bool::weighted(1.0), 0..100),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(1.0), 0..64),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.0), 0..100),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.0), 0..64),
|
||||
8 => vec![any::<bool>()],
|
||||
2 => prop::collection::vec(any::<bool>(), 0..50),
|
||||
]
|
||||
.boxed()
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(500))]
|
||||
#[test]
|
||||
fn test_with_random_bitvecs(bitvec1 in random_bitvec(), bitvec2 in random_bitvec(), bitvec3 in random_bitvec()) {
|
||||
let mut bitvec = Vec::new();
|
||||
bitvec.extend_from_slice(&bitvec1);
|
||||
bitvec.extend_from_slice(&bitvec2);
|
||||
bitvec.extend_from_slice(&bitvec3);
|
||||
test_null_index(bitvec);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn dense_codec_test_one_block_false() {
|
||||
let mut iter = vec![false; 64];
|
||||
iter.push(true);
|
||||
test_null_index(iter);
|
||||
}
|
||||
|
||||
fn test_null_index(data: Vec<bool>) {
|
||||
let mut out = vec![];
|
||||
|
||||
serialize_dense_codec(data.iter().cloned(), &mut out).unwrap();
|
||||
let null_index = DenseCodec::open(OwnedBytes::new(out));
|
||||
|
||||
let orig_idx_with_value: Vec<u32> = data
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| **val)
|
||||
.map(|(pos, _val)| pos as u32)
|
||||
.collect();
|
||||
|
||||
assert_eq!(
|
||||
null_index
|
||||
.translate_codec_idx_to_original_idx(0..orig_idx_with_value.len() as u32)
|
||||
.collect_vec(),
|
||||
orig_idx_with_value
|
||||
);
|
||||
|
||||
for (dense_idx, orig_idx) in orig_idx_with_value.iter().enumerate() {
|
||||
assert_eq!(
|
||||
null_index.translate_to_codec_idx(*orig_idx),
|
||||
Some(dense_idx as u32)
|
||||
);
|
||||
}
|
||||
|
||||
for (pos, value) in data.iter().enumerate() {
|
||||
assert_eq!(null_index.exists(pos as u32), *value);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn dense_codec_test_translation() {
|
||||
let mut out = vec![];
|
||||
|
||||
let iter = ([true, false, true, false]).iter().cloned();
|
||||
serialize_dense_codec(iter, &mut out).unwrap();
|
||||
let null_index = DenseCodec::open(OwnedBytes::new(out));
|
||||
|
||||
assert_eq!(
|
||||
null_index
|
||||
.translate_codec_idx_to_original_idx(0..2)
|
||||
.collect_vec(),
|
||||
vec![0, 2]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn dense_codec_translate() {
|
||||
let mut out = vec![];
|
||||
|
||||
let iter = ([true, false, true, false]).iter().cloned();
|
||||
serialize_dense_codec(iter, &mut out).unwrap();
|
||||
let null_index = DenseCodec::open(OwnedBytes::new(out));
|
||||
assert_eq!(null_index.translate_to_codec_idx(0), Some(0));
|
||||
assert_eq!(null_index.translate_to_codec_idx(2), Some(1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn dense_codec_test_small() {
|
||||
let mut out = vec![];
|
||||
|
||||
let iter = ([true, false, true, false]).iter().cloned();
|
||||
serialize_dense_codec(iter, &mut out).unwrap();
|
||||
let null_index = DenseCodec::open(OwnedBytes::new(out));
|
||||
assert!(null_index.exists(0));
|
||||
assert!(!null_index.exists(1));
|
||||
assert!(null_index.exists(2));
|
||||
assert!(!null_index.exists(3));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn dense_codec_test_large() {
|
||||
let mut docs = vec![];
|
||||
docs.extend((0..1000).map(|_idx| false));
|
||||
docs.extend((0..=1000).map(|_idx| true));
|
||||
|
||||
let iter = docs.iter().cloned();
|
||||
let mut out = vec![];
|
||||
serialize_dense_codec(iter, &mut out).unwrap();
|
||||
let null_index = DenseCodec::open(OwnedBytes::new(out));
|
||||
assert!(!null_index.exists(0));
|
||||
assert!(!null_index.exists(100));
|
||||
assert!(!null_index.exists(999));
|
||||
assert!(null_index.exists(1000));
|
||||
assert!(null_index.exists(1999));
|
||||
assert!(null_index.exists(2000));
|
||||
assert!(!null_index.exists(2001));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_count_ones() {
|
||||
let mut block = 0;
|
||||
set_bit_at(&mut block, 0);
|
||||
set_bit_at(&mut block, 2);
|
||||
|
||||
assert_eq!(count_ones(block, 0), 0);
|
||||
assert_eq!(count_ones(block, 1), 1);
|
||||
assert_eq!(count_ones(block, 2), 1);
|
||||
assert_eq!(count_ones(block, 3), 2);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::Bencher;
|
||||
|
||||
use super::*;
|
||||
|
||||
const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
fn gen_bools(fill_ratio: f64) -> DenseCodec {
|
||||
let mut out = Vec::new();
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let bools: Vec<_> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.collect();
|
||||
serialize_dense_codec(bools.into_iter(), &mut out).unwrap();
|
||||
|
||||
let codec = DenseCodec::open(OwnedBytes::new(out));
|
||||
codec
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
start: u32,
|
||||
end: u32,
|
||||
avg_step_size: u32,
|
||||
avg_deviation: u32,
|
||||
) -> impl Iterator<Item = u32> {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end {
|
||||
None
|
||||
} else {
|
||||
Some(current)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent as f32 / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
}
|
||||
|
||||
fn walk_over_data(codec: &DenseCodec, avg_step_size: u32) -> Option<u32> {
|
||||
walk_over_data_from_positions(
|
||||
codec,
|
||||
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
|
||||
)
|
||||
}
|
||||
|
||||
fn walk_over_data_from_positions(
|
||||
codec: &DenseCodec,
|
||||
positions: impl Iterator<Item = u32>,
|
||||
) -> Option<u32> {
|
||||
let mut dense_idx: Option<u32> = None;
|
||||
for idx in positions {
|
||||
dense_idx = dense_idx.or(codec.translate_to_codec_idx(idx));
|
||||
}
|
||||
dense_idx
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 1000));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.5f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(n_percent_step_iterator(0.005, num_non_nulls))
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(n_percent_step_iterator(10.0, num_non_nulls))
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
let num_vals = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(0..num_vals)
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.90f64);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(n_percent_step_iterator(0.005, num_non_nulls))
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
let num_vals = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(0..num_vals)
|
||||
.last()
|
||||
});
|
||||
}
|
||||
}
|
||||
@@ -1,14 +0,0 @@
|
||||
pub use dense::{serialize_dense_codec, DenseCodec};
|
||||
|
||||
mod dense;
|
||||
mod sparse;
|
||||
|
||||
#[inline]
|
||||
fn get_bit_at(input: u64, n: u32) -> bool {
|
||||
input & (1 << n) != 0
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_bit_at(input: &mut u64, n: u64) {
|
||||
*input |= 1 << n;
|
||||
}
|
||||
@@ -1,768 +0,0 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::{BitSet, GroupByIteratorExtended, OwnedBytes};
|
||||
|
||||
use super::{serialize_dense_codec, DenseCodec};
|
||||
|
||||
/// `SparseCodec` is the codec for data, when only few documents have values.
|
||||
/// In contrast to `DenseCodec` opening a `SparseCodec` causes runtime data to be produced, for
|
||||
/// faster access.
|
||||
///
|
||||
/// The lower 16 bits of doc ids are stored as u16 while the upper 16 bits are given by the block
|
||||
/// id. Each block contains 1<<16 docids.
|
||||
///
|
||||
/// # Serialized Data Layout
|
||||
/// The data starts with the block data. Each block is either dense or sparse encoded, depending on
|
||||
/// the number of values in the block. A block is sparse when it contains less than
|
||||
/// DENSE_BLOCK_THRESHOLD (6144) values.
|
||||
/// [Sparse data block | dense data block, .. #repeat*; Desc: Either a sparse or dense encoded
|
||||
/// block]
|
||||
/// ### Sparse block data
|
||||
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block]
|
||||
/// ### Dense block data
|
||||
/// [Dense codec for the whole block; Desc: Similar to a bitvec(0..ELEMENTS_PER_BLOCK) + Metadata
|
||||
/// for faster lookups. See dense.rs]
|
||||
///
|
||||
/// The data is followed by block metadata, to know which area of the raw block data belongs to
|
||||
/// which block. Only metadata for blocks with elements is recorded to
|
||||
/// keep the overhead low for scenarios with many very sparse columns. The block metadata consists
|
||||
/// of the block index and the number of values in the block. Since we don't store empty blocks
|
||||
/// num_vals is incremented by 1, e.g. 0 means 1 value.
|
||||
///
|
||||
/// The last u16 is storing the number of metadata blocks.
|
||||
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block][(u16 LE, u16 LE), .. #repeat*;
|
||||
/// Desc: (Block Id u16, Num Elements u16)][u16 LE; Desc: num blocks with values u16]
|
||||
///
|
||||
/// # Opening
|
||||
/// When opening the data layout, the data is expanded to `Vec<SparseCodecBlockVariant>`, where the
|
||||
/// index is the block index. For each block `byte_start` and `offset` is computed.
|
||||
pub struct SparseCodec {
|
||||
data: OwnedBytes,
|
||||
blocks: Vec<SparseCodecBlockVariant>,
|
||||
}
|
||||
|
||||
/// The threshold for for number of elements after which we switch to dense block encoding
|
||||
const DENSE_BLOCK_THRESHOLD: u32 = 6144;
|
||||
|
||||
const ELEMENTS_PER_BLOCK: u32 = u16::MAX as u32 + 1;
|
||||
|
||||
/// 1.5 bit per Element + 12 bytes for the sentinal block
|
||||
const NUM_BYTES_DENSE_BLOCK: u32 = (ELEMENTS_PER_BLOCK + ELEMENTS_PER_BLOCK / 2 + 64 + 32) / 8;
|
||||
|
||||
#[derive(Clone)]
|
||||
enum SparseCodecBlockVariant {
|
||||
Empty { offset: u32 },
|
||||
Dense(DenseBlock),
|
||||
Sparse(SparseBlock),
|
||||
}
|
||||
|
||||
impl SparseCodecBlockVariant {
|
||||
/// The number of non-null values that preceeded that block.
|
||||
#[inline]
|
||||
fn offset(&self) -> u32 {
|
||||
match self {
|
||||
SparseCodecBlockVariant::Empty { offset } => *offset,
|
||||
SparseCodecBlockVariant::Dense(dense) => dense.offset,
|
||||
SparseCodecBlockVariant::Sparse(sparse) => sparse.offset,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A block consists of max u16 values
|
||||
#[derive(Clone)]
|
||||
struct DenseBlock {
|
||||
/// The number of values set before the block
|
||||
offset: u32,
|
||||
/// The data for the dense encoding
|
||||
codec: DenseCodec,
|
||||
}
|
||||
|
||||
impl DenseBlock {
|
||||
#[inline]
|
||||
pub fn exists(&self, idx: u32) -> bool {
|
||||
self.codec.exists(idx)
|
||||
}
|
||||
#[inline]
|
||||
pub fn translate_to_codec_idx(&self, idx: u32) -> Option<u32> {
|
||||
self.codec.translate_to_codec_idx(idx)
|
||||
}
|
||||
#[inline]
|
||||
pub fn translate_codec_idx_to_original_idx_iter<'a>(
|
||||
&'a self,
|
||||
iter: impl Iterator<Item = u32> + 'a,
|
||||
) -> impl Iterator<Item = u32> + 'a {
|
||||
self.codec.translate_codec_idx_to_original_idx(iter)
|
||||
}
|
||||
#[inline]
|
||||
pub fn translate_codec_idx_to_original_idx(&self, idx: u32) -> u32 {
|
||||
self.codec
|
||||
.translate_codec_idx_to_original_idx(idx..=idx)
|
||||
.next()
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
/// A block consists of max u16 values
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
struct SparseBlock {
|
||||
/// The number of values in the block
|
||||
num_vals: u32,
|
||||
/// The number of values set before the block
|
||||
offset: u32,
|
||||
/// The start position of the data for the block
|
||||
byte_start: u32,
|
||||
}
|
||||
|
||||
impl SparseBlock {
|
||||
fn empty_block(offset: u32) -> Self {
|
||||
Self {
|
||||
num_vals: 0,
|
||||
byte_start: 0,
|
||||
offset,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn value_at_idx(&self, data: &[u8], idx: u16) -> u16 {
|
||||
let start_offset: usize = self.byte_start as usize + (idx as u32 as usize * 2);
|
||||
get_u16(data, start_offset)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[allow(clippy::comparison_chain)]
|
||||
// Looks for the element in the block. Returns the positions if found.
|
||||
fn binary_search(&self, data: &[u8], target: u16) -> Option<u16> {
|
||||
let mut size = self.num_vals as u16;
|
||||
let mut left = 0;
|
||||
let mut right = size;
|
||||
// TODO try different implem.
|
||||
// e.g. exponential search into binary search
|
||||
while left < right {
|
||||
let mid = left + size / 2;
|
||||
|
||||
// TODO do boundary check only once, and then use an
|
||||
// unsafe `value_at_idx`
|
||||
let mid_val = self.value_at_idx(data, mid);
|
||||
|
||||
if target > mid_val {
|
||||
left = mid + 1;
|
||||
} else if target < mid_val {
|
||||
right = mid;
|
||||
} else {
|
||||
return Some(mid);
|
||||
}
|
||||
|
||||
size = right - left;
|
||||
}
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_u16(data: &[u8], byte_position: usize) -> u16 {
|
||||
let bytes: [u8; 2] = data[byte_position..byte_position + 2].try_into().unwrap();
|
||||
u16::from_le_bytes(bytes)
|
||||
}
|
||||
|
||||
const SERIALIZED_BLOCK_METADATA_SIZE: usize = 4;
|
||||
|
||||
fn deserialize_sparse_codec_block(data: &OwnedBytes) -> Vec<SparseCodecBlockVariant> {
|
||||
// The number of vals so far
|
||||
let mut offset = 0;
|
||||
let mut sparse_codec_blocks = Vec::new();
|
||||
let num_blocks = get_u16(data, data.len() - 2);
|
||||
let block_data_index_start =
|
||||
data.len() - 2 - num_blocks as usize * SERIALIZED_BLOCK_METADATA_SIZE;
|
||||
let mut byte_start = 0;
|
||||
for block_num in 0..num_blocks as usize {
|
||||
let block_data_index = block_data_index_start + SERIALIZED_BLOCK_METADATA_SIZE * block_num;
|
||||
let block_idx = get_u16(data, block_data_index);
|
||||
let num_vals = get_u16(data, block_data_index + 2) as u32 + 1;
|
||||
sparse_codec_blocks.resize(
|
||||
block_idx as usize,
|
||||
SparseCodecBlockVariant::Empty { offset },
|
||||
);
|
||||
|
||||
if is_sparse(num_vals) {
|
||||
let block = SparseBlock {
|
||||
num_vals,
|
||||
offset,
|
||||
byte_start,
|
||||
};
|
||||
sparse_codec_blocks.push(SparseCodecBlockVariant::Sparse(block));
|
||||
byte_start += 2 * num_vals;
|
||||
} else {
|
||||
let block = DenseBlock {
|
||||
offset,
|
||||
codec: DenseCodec::open(data.slice(byte_start as usize..data.len()).clone()),
|
||||
};
|
||||
sparse_codec_blocks.push(SparseCodecBlockVariant::Dense(block));
|
||||
// Dense blocks have a fixed size spanning ELEMENTS_PER_BLOCK.
|
||||
byte_start += NUM_BYTES_DENSE_BLOCK;
|
||||
}
|
||||
|
||||
offset += num_vals;
|
||||
}
|
||||
sparse_codec_blocks.push(SparseCodecBlockVariant::Empty { offset });
|
||||
sparse_codec_blocks
|
||||
}
|
||||
|
||||
/// Splits a value address into lower and upper 16bits.
|
||||
/// The lower 16 bits are the value in the block
|
||||
/// The upper 16 bits are the block index
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct ValueAddr {
|
||||
block_idx: u16,
|
||||
value_in_block: u16,
|
||||
}
|
||||
|
||||
/// Splits a idx into block index and value in the block
|
||||
#[inline]
|
||||
fn value_addr(idx: u32) -> ValueAddr {
|
||||
/// Static assert number elements per block this method expects
|
||||
#[allow(clippy::assertions_on_constants)]
|
||||
const _: () = assert!(ELEMENTS_PER_BLOCK == (1 << 16));
|
||||
|
||||
let value_in_block = idx as u16;
|
||||
let block_idx = (idx >> 16) as u16;
|
||||
ValueAddr {
|
||||
block_idx,
|
||||
value_in_block,
|
||||
}
|
||||
}
|
||||
|
||||
impl SparseCodec {
|
||||
/// Open the SparseCodec from OwnedBytes
|
||||
pub fn open(data: OwnedBytes) -> Self {
|
||||
let blocks = deserialize_sparse_codec_block(&data);
|
||||
Self { data, blocks }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Check if value at position is not null.
|
||||
pub fn exists(&self, idx: u32) -> bool {
|
||||
let value_addr = value_addr(idx);
|
||||
// There may be trailing nulls without data, those are not stored as blocks. It would be
|
||||
// possible to create empty blocks, but for that we would need to serialize the number of
|
||||
// values or pass them when opening
|
||||
|
||||
if let Some(block) = self.blocks.get(value_addr.block_idx as usize) {
|
||||
match block {
|
||||
SparseCodecBlockVariant::Empty { offset: _ } => false,
|
||||
SparseCodecBlockVariant::Dense(block) => {
|
||||
block.exists(value_addr.value_in_block as u32)
|
||||
}
|
||||
SparseCodecBlockVariant::Sparse(block) => block
|
||||
.binary_search(&self.data, value_addr.value_in_block)
|
||||
.is_some(),
|
||||
}
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
/// Return the number of non-null values in an index
|
||||
pub fn num_non_nulls(&self) -> u32 {
|
||||
self.blocks.last().map(|block| block.offset()).unwrap_or(0)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Translate from the original index to the codec index.
|
||||
pub fn translate_to_codec_idx(&self, idx: u32) -> Option<u32> {
|
||||
let value_addr = value_addr(idx);
|
||||
let block = self.blocks.get(value_addr.block_idx as usize)?;
|
||||
|
||||
match block {
|
||||
SparseCodecBlockVariant::Empty { offset: _ } => None,
|
||||
SparseCodecBlockVariant::Dense(block) => block
|
||||
.translate_to_codec_idx(value_addr.value_in_block as u32)
|
||||
.map(|pos_in_block| pos_in_block + block.offset),
|
||||
SparseCodecBlockVariant::Sparse(block) => {
|
||||
let pos_in_block = block.binary_search(&self.data, value_addr.value_in_block);
|
||||
pos_in_block.map(|pos_in_block: u16| block.offset + pos_in_block as u32)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn find_block(&self, dense_idx: u32, mut block_pos: u32) -> u32 {
|
||||
loop {
|
||||
let offset = self.blocks[block_pos as usize].offset();
|
||||
if offset > dense_idx {
|
||||
return block_pos - 1;
|
||||
}
|
||||
block_pos += 1;
|
||||
}
|
||||
}
|
||||
|
||||
/// Translate positions from the codec index to the original index.
|
||||
/// Correctness: Provided values must be in increasing values
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if any `idx` is greater than the max codec index.
|
||||
pub fn translate_codec_idx_to_original_idx<'a>(
|
||||
&'a self,
|
||||
iter: impl Iterator<Item = u32> + 'a,
|
||||
) -> impl Iterator<Item = u32> + 'a {
|
||||
let mut block_pos = 0u32;
|
||||
iter.group_by(move |codec_idx| {
|
||||
block_pos = self.find_block(*codec_idx, block_pos);
|
||||
block_pos
|
||||
})
|
||||
.flat_map(move |(block_pos, block_iter)| {
|
||||
let block_doc_idx_start = block_pos * ELEMENTS_PER_BLOCK;
|
||||
let block = &self.blocks[block_pos as usize];
|
||||
let offset = block.offset();
|
||||
let indexes_in_block_iter = block_iter.map(move |codec_idx| codec_idx - offset);
|
||||
match block {
|
||||
SparseCodecBlockVariant::Empty { offset: _ } => {
|
||||
panic!(
|
||||
"invalid input, cannot translate to original index. associated empty \
|
||||
block with dense idx. block_pos {}, idx_in_block {:?}",
|
||||
block_pos,
|
||||
indexes_in_block_iter.collect::<Vec<_>>()
|
||||
)
|
||||
}
|
||||
SparseCodecBlockVariant::Dense(dense) => {
|
||||
Box::new(dense.translate_codec_idx_to_original_idx_iter(indexes_in_block_iter))
|
||||
as Box<dyn Iterator<Item = u32>>
|
||||
}
|
||||
SparseCodecBlockVariant::Sparse(block) => {
|
||||
Box::new(indexes_in_block_iter.map(move |idx_in_block| {
|
||||
block.value_at_idx(&self.data, idx_in_block as u16) as u32
|
||||
}))
|
||||
}
|
||||
}
|
||||
.map(move |idx| idx + block_doc_idx_start)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn is_sparse(num_elem_in_block: u32) -> bool {
|
||||
num_elem_in_block < DENSE_BLOCK_THRESHOLD
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
struct BlockDataSerialized {
|
||||
block_idx: u16,
|
||||
num_vals: u32,
|
||||
}
|
||||
|
||||
/// Iterator over positions of set values.
|
||||
pub fn serialize_sparse_codec<W: Write>(
|
||||
mut iter: impl Iterator<Item = u32>,
|
||||
mut out: W,
|
||||
) -> io::Result<()> {
|
||||
let mut block_metadata: Vec<BlockDataSerialized> = Vec::new();
|
||||
let mut current_block = Vec::new();
|
||||
// This if-statement for the first element ensures that
|
||||
// `block_metadata` is not empty in the loop below.
|
||||
if let Some(idx) = iter.next() {
|
||||
let value_addr = value_addr(idx);
|
||||
block_metadata.push(BlockDataSerialized {
|
||||
block_idx: value_addr.block_idx,
|
||||
num_vals: 1,
|
||||
});
|
||||
current_block.push(value_addr.value_in_block);
|
||||
}
|
||||
let flush_block = |current_block: &mut Vec<u16>, out: &mut W| -> io::Result<()> {
|
||||
let is_sparse = is_sparse(current_block.len() as u32);
|
||||
if is_sparse {
|
||||
for val_in_block in current_block.iter() {
|
||||
out.write_all(val_in_block.to_le_bytes().as_ref())?;
|
||||
}
|
||||
} else {
|
||||
let mut bitset = BitSet::with_max_value(ELEMENTS_PER_BLOCK + 1);
|
||||
for val_in_block in current_block.iter() {
|
||||
bitset.insert(*val_in_block as u32);
|
||||
}
|
||||
|
||||
let iter = (0..ELEMENTS_PER_BLOCK).map(|idx| bitset.contains(idx));
|
||||
serialize_dense_codec(iter, out)?;
|
||||
}
|
||||
current_block.clear();
|
||||
Ok(())
|
||||
};
|
||||
for idx in iter {
|
||||
let value_addr = value_addr(idx);
|
||||
if block_metadata[block_metadata.len() - 1].block_idx == value_addr.block_idx {
|
||||
let last_idx_metadata = block_metadata.len() - 1;
|
||||
block_metadata[last_idx_metadata].num_vals += 1;
|
||||
} else {
|
||||
// flush prev block
|
||||
flush_block(&mut current_block, &mut out)?;
|
||||
|
||||
block_metadata.push(BlockDataSerialized {
|
||||
block_idx: value_addr.block_idx,
|
||||
num_vals: 1,
|
||||
});
|
||||
}
|
||||
current_block.push(value_addr.value_in_block);
|
||||
}
|
||||
// handle last block
|
||||
flush_block(&mut current_block, &mut out)?;
|
||||
|
||||
for block in &block_metadata {
|
||||
out.write_all(block.block_idx.to_le_bytes().as_ref())?;
|
||||
// We don't store empty blocks, therefore we can subtract 1.
|
||||
// This way we will be able to use u16 when the number of elements is 1 << 16 or u16::MAX+1
|
||||
out.write_all(((block.num_vals - 1) as u16).to_le_bytes().as_ref())?;
|
||||
}
|
||||
out.write_all((block_metadata.len() as u16).to_le_bytes().as_ref())?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use itertools::Itertools;
|
||||
use proptest::prelude::{any, prop, *};
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
|
||||
use super::*;
|
||||
|
||||
fn random_bitvec() -> BoxedStrategy<Vec<bool>> {
|
||||
prop_oneof![
|
||||
1 => prop::collection::vec(proptest::bool::weighted(1.0), 0..100),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.00), 0..(ELEMENTS_PER_BLOCK as usize * 3)), // empty blocks
|
||||
1 => prop::collection::vec(proptest::bool::weighted(1.00), 0..(ELEMENTS_PER_BLOCK as usize + 10)), // full block
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..100),
|
||||
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..u16::MAX as usize),
|
||||
8 => vec![any::<bool>()],
|
||||
]
|
||||
.boxed()
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(50))]
|
||||
#[test]
|
||||
fn test_with_random_bitvecs(bitvec1 in random_bitvec(), bitvec2 in random_bitvec(), bitvec3 in random_bitvec()) {
|
||||
let mut bitvec = Vec::new();
|
||||
bitvec.extend_from_slice(&bitvec1);
|
||||
bitvec.extend_from_slice(&bitvec2);
|
||||
bitvec.extend_from_slice(&bitvec3);
|
||||
test_null_index(bitvec);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sparse_codec_test_one_block_false() {
|
||||
let mut iter = vec![false; ELEMENTS_PER_BLOCK as usize];
|
||||
iter.push(true);
|
||||
test_null_index(iter);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sparse_codec_test_one_block_true() {
|
||||
let mut iter = vec![true; ELEMENTS_PER_BLOCK as usize];
|
||||
iter.push(true);
|
||||
test_null_index(iter);
|
||||
}
|
||||
|
||||
fn test_null_index(data: Vec<bool>) {
|
||||
let mut out = vec![];
|
||||
|
||||
serialize_sparse_codec(
|
||||
data.iter()
|
||||
.cloned()
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _val)| pos as u32),
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
let null_index = SparseCodec::open(OwnedBytes::new(out));
|
||||
|
||||
let orig_idx_with_value: Vec<u32> = data
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| **val)
|
||||
.map(|(pos, _val)| pos as u32)
|
||||
.collect();
|
||||
|
||||
assert_eq!(
|
||||
null_index
|
||||
.translate_codec_idx_to_original_idx(0..orig_idx_with_value.len() as u32)
|
||||
.collect_vec(),
|
||||
orig_idx_with_value
|
||||
);
|
||||
|
||||
let step_size = (orig_idx_with_value.len() / 100).max(1);
|
||||
for (dense_idx, orig_idx) in orig_idx_with_value.iter().enumerate().step_by(step_size) {
|
||||
assert_eq!(
|
||||
null_index.translate_to_codec_idx(*orig_idx),
|
||||
Some(dense_idx as u32)
|
||||
);
|
||||
}
|
||||
|
||||
// 100 samples
|
||||
let step_size = (data.len() / 100).max(1);
|
||||
for (pos, value) in data.iter().enumerate().step_by(step_size) {
|
||||
assert_eq!(null_index.exists(pos as u32), *value);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sparse_codec_test_translation() {
|
||||
let mut out = vec![];
|
||||
|
||||
let iter = ([true, false, true, false]).iter().cloned();
|
||||
serialize_sparse_codec(
|
||||
iter.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _val)| pos as u32),
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
let null_index = SparseCodec::open(OwnedBytes::new(out));
|
||||
|
||||
assert_eq!(
|
||||
null_index
|
||||
.translate_codec_idx_to_original_idx(0..2)
|
||||
.collect_vec(),
|
||||
vec![0, 2]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sparse_codec_translate() {
|
||||
let mut out = vec![];
|
||||
|
||||
let iter = ([true, false, true, false]).iter().cloned();
|
||||
serialize_sparse_codec(
|
||||
iter.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _val)| pos as u32),
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
let null_index = SparseCodec::open(OwnedBytes::new(out));
|
||||
assert_eq!(null_index.translate_to_codec_idx(0), Some(0));
|
||||
assert_eq!(null_index.translate_to_codec_idx(2), Some(1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sparse_codec_test_small() {
|
||||
let mut out = vec![];
|
||||
|
||||
let iter = ([true, false, true, false]).iter().cloned();
|
||||
serialize_sparse_codec(
|
||||
iter.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _val)| pos as u32),
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
let null_index = SparseCodec::open(OwnedBytes::new(out));
|
||||
assert!(null_index.exists(0));
|
||||
assert!(!null_index.exists(1));
|
||||
assert!(null_index.exists(2));
|
||||
assert!(!null_index.exists(3));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sparse_codec_test_large() {
|
||||
let mut docs = vec![];
|
||||
docs.extend((0..ELEMENTS_PER_BLOCK).map(|_idx| false));
|
||||
docs.extend((0..=1).map(|_idx| true));
|
||||
|
||||
let iter = docs.iter().cloned();
|
||||
let mut out = vec![];
|
||||
serialize_sparse_codec(
|
||||
iter.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _val)| pos as u32),
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
let null_index = SparseCodec::open(OwnedBytes::new(out));
|
||||
assert!(!null_index.exists(0));
|
||||
assert!(!null_index.exists(100));
|
||||
assert!(!null_index.exists(ELEMENTS_PER_BLOCK - 1));
|
||||
assert!(null_index.exists(ELEMENTS_PER_BLOCK));
|
||||
assert!(null_index.exists(ELEMENTS_PER_BLOCK + 1));
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::Bencher;
|
||||
|
||||
use super::*;
|
||||
|
||||
const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
fn gen_bools(fill_ratio: f64) -> SparseCodec {
|
||||
let mut out = Vec::new();
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
serialize_sparse_codec(
|
||||
(0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _val)| pos as u32),
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let codec = SparseCodec::open(OwnedBytes::new(out));
|
||||
codec
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
start: u32,
|
||||
end: u32,
|
||||
avg_step_size: u32,
|
||||
avg_deviation: u32,
|
||||
) -> impl Iterator<Item = u32> {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end {
|
||||
None
|
||||
} else {
|
||||
Some(current)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent as f32 / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
}
|
||||
|
||||
fn walk_over_data(codec: &SparseCodec, avg_step_size: u32) -> Option<u32> {
|
||||
walk_over_data_from_positions(
|
||||
codec,
|
||||
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
|
||||
)
|
||||
}
|
||||
|
||||
fn walk_over_data_from_positions(
|
||||
codec: &SparseCodec,
|
||||
positions: impl Iterator<Item = u32>,
|
||||
) -> Option<u32> {
|
||||
let mut dense_idx: Option<u32> = None;
|
||||
for idx in positions {
|
||||
dense_idx = dense_idx.or(codec.translate_to_codec_idx(idx));
|
||||
}
|
||||
dense_idx
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 1000));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.5f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(n_percent_step_iterator(0.005, num_non_nulls))
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(n_percent_step_iterator(10.0, num_non_nulls))
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
let num_vals = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(0..num_vals)
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.90f64);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(n_percent_step_iterator(0.005, num_non_nulls))
|
||||
.last()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
let num_vals = codec.num_non_nulls();
|
||||
bench.iter(|| {
|
||||
codec
|
||||
.translate_codec_idx_to_original_idx(0..num_vals)
|
||||
.last()
|
||||
});
|
||||
}
|
||||
}
|
||||
@@ -1,145 +0,0 @@
|
||||
use std::io::{self, Write};
|
||||
use std::ops::Range;
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt};
|
||||
|
||||
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
|
||||
pub(crate) enum FastFieldCardinality {
|
||||
Single = 1,
|
||||
Multi = 2,
|
||||
}
|
||||
|
||||
impl BinarySerializable for FastFieldCardinality {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl FastFieldCardinality {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::Single),
|
||||
2 => Some(Self::Multi),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub(crate) enum NullIndexCodec {
|
||||
Full = 1,
|
||||
}
|
||||
|
||||
impl BinarySerializable for NullIndexCodec {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl NullIndexCodec {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::Full),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub(crate) struct NullIndexFooter {
|
||||
pub(crate) cardinality: FastFieldCardinality,
|
||||
pub(crate) null_index_codec: NullIndexCodec,
|
||||
// Unused for NullIndexCodec::Full
|
||||
pub(crate) null_index_byte_range: Range<u64>,
|
||||
}
|
||||
|
||||
impl BinarySerializable for NullIndexFooter {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.cardinality.serialize(writer)?;
|
||||
self.null_index_codec.serialize(writer)?;
|
||||
VInt(self.null_index_byte_range.start).serialize(writer)?;
|
||||
VInt(self.null_index_byte_range.end - self.null_index_byte_range.start)
|
||||
.serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let cardinality = FastFieldCardinality::deserialize(reader)?;
|
||||
let null_index_codec = NullIndexCodec::deserialize(reader)?;
|
||||
let null_index_byte_range_start = VInt::deserialize(reader)?.0;
|
||||
let null_index_byte_range_end = VInt::deserialize(reader)?.0 + null_index_byte_range_start;
|
||||
Ok(Self {
|
||||
cardinality,
|
||||
null_index_codec,
|
||||
null_index_byte_range: null_index_byte_range_start..null_index_byte_range_end,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn append_null_index_footer(
|
||||
output: &mut impl io::Write,
|
||||
null_index_footer: NullIndexFooter,
|
||||
) -> io::Result<()> {
|
||||
let mut counting_write = CountingWriter::wrap(output);
|
||||
null_index_footer.serialize(&mut counting_write)?;
|
||||
let footer_payload_len = counting_write.written_bytes();
|
||||
BinarySerializable::serialize(&(footer_payload_len as u16), &mut counting_write)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn read_null_index_footer(
|
||||
data: OwnedBytes,
|
||||
) -> io::Result<(OwnedBytes, NullIndexFooter)> {
|
||||
let (data, null_footer_length_bytes) = data.rsplit(2);
|
||||
|
||||
let footer_length = u16::deserialize(&mut null_footer_length_bytes.as_slice())?;
|
||||
let (data, null_index_footer_bytes) = data.rsplit(footer_length as usize);
|
||||
let null_index_footer = NullIndexFooter::deserialize(&mut null_index_footer_bytes.as_ref())?;
|
||||
|
||||
Ok((data, null_index_footer))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn null_index_footer_deser_test() {
|
||||
let null_index_footer = NullIndexFooter {
|
||||
cardinality: FastFieldCardinality::Single,
|
||||
null_index_codec: NullIndexCodec::Full,
|
||||
null_index_byte_range: 100..120,
|
||||
};
|
||||
|
||||
let mut out = vec![];
|
||||
null_index_footer.serialize(&mut out).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
null_index_footer,
|
||||
NullIndexFooter::deserialize(&mut &out[..]).unwrap()
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -1,427 +0,0 @@
|
||||
// Copyright (C) 2022 Quickwit, Inc.
|
||||
//
|
||||
// Quickwit is offered under the AGPL v3.0 and as commercial software.
|
||||
// For commercial licensing, contact us at hello@quickwit.io.
|
||||
//
|
||||
// AGPL:
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Affero General Public License as
|
||||
// published by the Free Software Foundation, either version 3 of the
|
||||
// License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Affero General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Affero General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
use std::num::NonZeroU64;
|
||||
use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes, VInt};
|
||||
use log::warn;
|
||||
|
||||
use crate::bitpacked::BitpackedCodec;
|
||||
use crate::blockwise_linear::BlockwiseLinearCodec;
|
||||
use crate::compact_space::CompactSpaceCompressor;
|
||||
use crate::format_version::append_format_version;
|
||||
use crate::linear::LinearCodec;
|
||||
use crate::monotonic_mapping::{
|
||||
StrictlyMonotonicFn, StrictlyMonotonicMappingToInternal,
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
use crate::null_index_footer::{
|
||||
append_null_index_footer, FastFieldCardinality, NullIndexCodec, NullIndexFooter,
|
||||
};
|
||||
use crate::{
|
||||
monotonic_map_column, Column, FastFieldCodec, FastFieldCodecType, MonotonicallyMappableToU64,
|
||||
U128FastFieldCodecType, VecColumn, ALL_CODEC_TYPES,
|
||||
};
|
||||
|
||||
/// The normalized header gives some parameters after applying the following
|
||||
/// normalization of the vector:
|
||||
/// `val -> (val - min_value) / gcd`
|
||||
///
|
||||
/// By design, after normalization, `min_value = 0` and `gcd = 1`.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct NormalizedHeader {
|
||||
/// The number of values in the underlying column.
|
||||
pub num_vals: u32,
|
||||
/// The max value of the underlying column.
|
||||
pub max_value: u64,
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub(crate) struct Header {
|
||||
pub num_vals: u32,
|
||||
pub min_value: u64,
|
||||
pub max_value: u64,
|
||||
pub gcd: Option<NonZeroU64>,
|
||||
pub codec_type: FastFieldCodecType,
|
||||
}
|
||||
|
||||
impl Header {
|
||||
pub fn normalized(self) -> NormalizedHeader {
|
||||
let gcd = self.gcd.map(|gcd| gcd.get()).unwrap_or(1);
|
||||
let gcd_min_val_mapping =
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd, self.min_value);
|
||||
|
||||
let max_value = gcd_min_val_mapping.mapping(self.max_value);
|
||||
NormalizedHeader {
|
||||
num_vals: self.num_vals,
|
||||
max_value,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn normalize_column<C: Column>(&self, from_column: C) -> impl Column {
|
||||
normalize_column(from_column, self.min_value, self.gcd)
|
||||
}
|
||||
|
||||
pub fn compute_header(
|
||||
column: impl Column<u64>,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> Option<Header> {
|
||||
let num_vals = column.num_vals();
|
||||
let min_value = column.min_value();
|
||||
let max_value = column.max_value();
|
||||
let gcd = crate::gcd::find_gcd(column.iter().map(|val| val - min_value))
|
||||
.filter(|gcd| gcd.get() > 1u64);
|
||||
let normalized_column = normalize_column(column, min_value, gcd);
|
||||
let codec_type = detect_codec(normalized_column, codecs)?;
|
||||
Some(Header {
|
||||
num_vals,
|
||||
min_value,
|
||||
max_value,
|
||||
gcd,
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
pub(crate) struct U128Header {
|
||||
pub num_vals: u32,
|
||||
pub codec_type: U128FastFieldCodecType,
|
||||
}
|
||||
|
||||
impl BinarySerializable for U128Header {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.num_vals as u64).serialize(writer)?;
|
||||
self.codec_type.serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_vals = VInt::deserialize(reader)?.0 as u32;
|
||||
let codec_type = U128FastFieldCodecType::deserialize(reader)?;
|
||||
Ok(U128Header {
|
||||
num_vals,
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub fn normalize_column<C: Column>(
|
||||
from_column: C,
|
||||
min_value: u64,
|
||||
gcd: Option<NonZeroU64>,
|
||||
) -> impl Column {
|
||||
let gcd = gcd.map(|gcd| gcd.get()).unwrap_or(1);
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd, min_value);
|
||||
monotonic_map_column(from_column, mapping)
|
||||
}
|
||||
|
||||
impl BinarySerializable for Header {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.num_vals as u64).serialize(writer)?;
|
||||
VInt(self.min_value).serialize(writer)?;
|
||||
VInt(self.max_value - self.min_value).serialize(writer)?;
|
||||
if let Some(gcd) = self.gcd {
|
||||
VInt(gcd.get()).serialize(writer)?;
|
||||
} else {
|
||||
VInt(0u64).serialize(writer)?;
|
||||
}
|
||||
self.codec_type.serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_vals = VInt::deserialize(reader)?.0 as u32;
|
||||
let min_value = VInt::deserialize(reader)?.0;
|
||||
let amplitude = VInt::deserialize(reader)?.0;
|
||||
let max_value = min_value + amplitude;
|
||||
let gcd_u64 = VInt::deserialize(reader)?.0;
|
||||
let codec_type = FastFieldCodecType::deserialize(reader)?;
|
||||
Ok(Header {
|
||||
num_vals,
|
||||
min_value,
|
||||
max_value,
|
||||
gcd: NonZeroU64::new(gcd_u64),
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Return estimated compression for given codec in the value range [0.0..1.0], where 1.0 means no
|
||||
/// compression.
|
||||
pub fn estimate<T: MonotonicallyMappableToU64 + fmt::Debug>(
|
||||
typed_column: impl Column<T>,
|
||||
codec_type: FastFieldCodecType,
|
||||
) -> Option<f32> {
|
||||
let column = monotonic_map_column(typed_column, StrictlyMonotonicMappingToInternal::<T>::new());
|
||||
let min_value = column.min_value();
|
||||
let gcd = crate::gcd::find_gcd(column.iter().map(|val| val - min_value))
|
||||
.filter(|gcd| gcd.get() > 1u64);
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(
|
||||
gcd.map(|gcd| gcd.get()).unwrap_or(1u64),
|
||||
min_value,
|
||||
);
|
||||
let normalized_column = monotonic_map_column(&column, mapping);
|
||||
match codec_type {
|
||||
FastFieldCodecType::Bitpacked => BitpackedCodec::estimate(&normalized_column),
|
||||
FastFieldCodecType::Linear => LinearCodec::estimate(&normalized_column),
|
||||
FastFieldCodecType::BlockwiseLinear => BlockwiseLinearCodec::estimate(&normalized_column),
|
||||
}
|
||||
}
|
||||
|
||||
/// Serializes u128 values with the compact space codec.
|
||||
pub fn serialize_u128<F: Fn() -> I, I: Iterator<Item = u128>>(
|
||||
iter_gen: F,
|
||||
num_vals: u32,
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
serialize_u128_new(ValueIndexInfo::default(), iter_gen, num_vals, output)
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub enum ValueIndexInfo<'a> {
|
||||
MultiValue(Box<dyn MultiValueIndexInfo + 'a>),
|
||||
SingleValue(Box<dyn SingleValueIndexInfo + 'a>),
|
||||
}
|
||||
|
||||
// TODO Remove me
|
||||
impl Default for ValueIndexInfo<'static> {
|
||||
fn default() -> Self {
|
||||
struct Dummy {}
|
||||
impl SingleValueIndexInfo for Dummy {
|
||||
fn num_vals(&self) -> u32 {
|
||||
todo!()
|
||||
}
|
||||
fn num_non_nulls(&self) -> u32 {
|
||||
todo!()
|
||||
}
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u32>> {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
Self::SingleValue(Box::new(Dummy {}))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> ValueIndexInfo<'a> {
|
||||
fn get_cardinality(&self) -> FastFieldCardinality {
|
||||
match self {
|
||||
ValueIndexInfo::MultiValue(_) => FastFieldCardinality::Multi,
|
||||
ValueIndexInfo::SingleValue(_) => FastFieldCardinality::Single,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait MultiValueIndexInfo {
|
||||
/// The number of docs in the column.
|
||||
fn num_docs(&self) -> u32;
|
||||
/// The number of values in the column.
|
||||
fn num_vals(&self) -> u32;
|
||||
/// Return the start index of the values for each doc
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u32> + '_>;
|
||||
}
|
||||
|
||||
pub trait SingleValueIndexInfo {
|
||||
/// The number of values including nulls in the column.
|
||||
fn num_vals(&self) -> u32;
|
||||
/// The number of non-null values in the column.
|
||||
fn num_non_nulls(&self) -> u32;
|
||||
/// Return a iterator of the positions of docs with a value
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u32> + '_>;
|
||||
}
|
||||
|
||||
/// Serializes u128 values with the compact space codec.
|
||||
pub fn serialize_u128_new<F: Fn() -> I, I: Iterator<Item = u128>>(
|
||||
value_index: ValueIndexInfo,
|
||||
iter_gen: F,
|
||||
num_vals: u32,
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let header = U128Header {
|
||||
num_vals,
|
||||
codec_type: U128FastFieldCodecType::CompactSpace,
|
||||
};
|
||||
header.serialize(output)?;
|
||||
let compressor = CompactSpaceCompressor::train_from(iter_gen(), num_vals);
|
||||
compressor.compress_into(iter_gen(), output).unwrap();
|
||||
|
||||
let null_index_footer = NullIndexFooter {
|
||||
cardinality: value_index.get_cardinality(),
|
||||
null_index_codec: NullIndexCodec::Full,
|
||||
null_index_byte_range: 0..0,
|
||||
};
|
||||
append_null_index_footer(output, null_index_footer)?;
|
||||
append_format_version(output)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Serializes the column with the codec with the best estimate on the data.
|
||||
pub fn serialize<T: MonotonicallyMappableToU64 + fmt::Debug>(
|
||||
typed_column: impl Column<T>,
|
||||
output: &mut impl io::Write,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> io::Result<()> {
|
||||
serialize_new(ValueIndexInfo::default(), typed_column, output, codecs)
|
||||
}
|
||||
|
||||
/// Serializes the column with the codec with the best estimate on the data.
|
||||
pub fn serialize_new<T: MonotonicallyMappableToU64 + fmt::Debug>(
|
||||
value_index: ValueIndexInfo,
|
||||
typed_column: impl Column<T>,
|
||||
output: &mut impl io::Write,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> io::Result<()> {
|
||||
let column = monotonic_map_column(typed_column, StrictlyMonotonicMappingToInternal::<T>::new());
|
||||
let header = Header::compute_header(&column, codecs).ok_or_else(|| {
|
||||
io::Error::new(
|
||||
io::ErrorKind::InvalidInput,
|
||||
format!(
|
||||
"Data cannot be serialized with this list of codec. {:?}",
|
||||
codecs
|
||||
),
|
||||
)
|
||||
})?;
|
||||
header.serialize(output)?;
|
||||
let normalized_column = header.normalize_column(column);
|
||||
assert_eq!(normalized_column.min_value(), 0u64);
|
||||
serialize_given_codec(normalized_column, header.codec_type, output)?;
|
||||
|
||||
let null_index_footer = NullIndexFooter {
|
||||
cardinality: value_index.get_cardinality(),
|
||||
null_index_codec: NullIndexCodec::Full,
|
||||
null_index_byte_range: 0..0,
|
||||
};
|
||||
append_null_index_footer(output, null_index_footer)?;
|
||||
append_format_version(output)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn detect_codec(
|
||||
column: impl Column<u64>,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> Option<FastFieldCodecType> {
|
||||
let mut estimations = Vec::new();
|
||||
for &codec in codecs {
|
||||
let estimation_opt = match codec {
|
||||
FastFieldCodecType::Bitpacked => BitpackedCodec::estimate(&column),
|
||||
FastFieldCodecType::Linear => LinearCodec::estimate(&column),
|
||||
FastFieldCodecType::BlockwiseLinear => BlockwiseLinearCodec::estimate(&column),
|
||||
};
|
||||
if let Some(estimation) = estimation_opt {
|
||||
estimations.push((estimation, codec));
|
||||
}
|
||||
}
|
||||
if let Some(broken_estimation) = estimations.iter().find(|estimation| estimation.0.is_nan()) {
|
||||
warn!(
|
||||
"broken estimation for fast field codec {:?}",
|
||||
broken_estimation.1
|
||||
);
|
||||
}
|
||||
// removing nan values for codecs with broken calculations, and max values which disables
|
||||
// codecs
|
||||
estimations.retain(|estimation| !estimation.0.is_nan() && estimation.0 != f32::MAX);
|
||||
estimations.sort_by(|(score_left, _), (score_right, _)| score_left.total_cmp(score_right));
|
||||
Some(estimations.first()?.1)
|
||||
}
|
||||
|
||||
fn serialize_given_codec(
|
||||
column: impl Column<u64>,
|
||||
codec_type: FastFieldCodecType,
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
match codec_type {
|
||||
FastFieldCodecType::Bitpacked => {
|
||||
BitpackedCodec::serialize(&column, output)?;
|
||||
}
|
||||
FastFieldCodecType::Linear => {
|
||||
LinearCodec::serialize(&column, output)?;
|
||||
}
|
||||
FastFieldCodecType::BlockwiseLinear => {
|
||||
BlockwiseLinearCodec::serialize(&column, output)?;
|
||||
}
|
||||
}
|
||||
output.flush()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Helper function to serialize a column (autodetect from all codecs) and then open it
|
||||
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default + fmt::Debug>(
|
||||
column: &[T],
|
||||
) -> Arc<dyn Column<T>> {
|
||||
let mut buffer = Vec::new();
|
||||
super::serialize(VecColumn::from(&column), &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
super::open(OwnedBytes::new(buffer)).unwrap()
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_serialize_deserialize_u128_header() {
|
||||
let original = U128Header {
|
||||
num_vals: 11,
|
||||
codec_type: U128FastFieldCodecType::CompactSpace,
|
||||
};
|
||||
let mut out = Vec::new();
|
||||
original.serialize(&mut out).unwrap();
|
||||
let restored = U128Header::deserialize(&mut &out[..]).unwrap();
|
||||
assert_eq!(restored, original);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_serialize_deserialize() {
|
||||
let original = [1u64, 5u64, 10u64];
|
||||
let restored: Vec<u64> = serialize_and_load(&original[..]).iter().collect();
|
||||
assert_eq!(&restored, &original[..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_bool_size_bitwidth_1() {
|
||||
let mut buffer = Vec::new();
|
||||
let col = VecColumn::from(&[false, true][..]);
|
||||
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
// 5 bytes of header, 1 byte of value
|
||||
assert_eq!(buffer.len(), 3 + 5 + 1 + 4 + 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_bool_bit_size_bitwidth_0() {
|
||||
let mut buffer = Vec::new();
|
||||
let col = VecColumn::from(&[true][..]);
|
||||
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
// 5 bytes of header, 0 bytes of value
|
||||
assert_eq!(buffer.len(), 3 + 5 + 4 + 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd() {
|
||||
let mut buffer = Vec::new();
|
||||
let vals: Vec<u64> = (0..80).map(|val| (val % 7) * 1_000u64).collect();
|
||||
let col = VecColumn::from(&vals[..]);
|
||||
serialize(col, &mut buffer, &[FastFieldCodecType::Bitpacked]).unwrap();
|
||||
// Values are stored over 3 bits.
|
||||
assert_eq!(buffer.len(), 3 + 7 + (3 * 80 / 8) + 4 + 2);
|
||||
}
|
||||
}
|
||||
@@ -4,7 +4,7 @@ use std::rc::Rc;
|
||||
use std::sync::atomic::AtomicU32;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
use columnar::{Column, StrColumn};
|
||||
|
||||
use super::agg_req::{Aggregation, Aggregations, BucketAggregationType, MetricAggregation};
|
||||
use super::bucket::{HistogramAggregation, RangeAggregation, TermsAggregation};
|
||||
@@ -14,8 +14,7 @@ use super::metric::{
|
||||
};
|
||||
use super::segment_agg_result::BucketCount;
|
||||
use super::VecWithNames;
|
||||
use crate::fastfield::{type_and_cardinality, MultiValuedFastFieldReader};
|
||||
use crate::schema::{Cardinality, Type};
|
||||
use crate::schema::{FieldType, Type};
|
||||
use crate::{InvertedIndexReader, SegmentReader, TantivyError};
|
||||
|
||||
#[derive(Clone, Default)]
|
||||
@@ -37,38 +36,12 @@ impl AggregationsWithAccessor {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub(crate) enum FastFieldAccessor {
|
||||
Multi(MultiValuedFastFieldReader<u64>),
|
||||
Single(Arc<dyn Column<u64>>),
|
||||
}
|
||||
impl FastFieldAccessor {
|
||||
pub fn as_single(&self) -> Option<&dyn Column<u64>> {
|
||||
match self {
|
||||
FastFieldAccessor::Multi(_) => None,
|
||||
FastFieldAccessor::Single(reader) => Some(&**reader),
|
||||
}
|
||||
}
|
||||
pub fn into_single(self) -> Option<Arc<dyn Column<u64>>> {
|
||||
match self {
|
||||
FastFieldAccessor::Multi(_) => None,
|
||||
FastFieldAccessor::Single(reader) => Some(reader),
|
||||
}
|
||||
}
|
||||
pub fn as_multi(&self) -> Option<&MultiValuedFastFieldReader<u64>> {
|
||||
match self {
|
||||
FastFieldAccessor::Multi(reader) => Some(reader),
|
||||
FastFieldAccessor::Single(_) => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct BucketAggregationWithAccessor {
|
||||
/// In general there can be buckets without fast field access, e.g. buckets that are created
|
||||
/// based on search terms. So eventually this needs to be Option or moved.
|
||||
pub(crate) accessor: FastFieldAccessor,
|
||||
pub(crate) inverted_index: Option<Arc<InvertedIndexReader>>,
|
||||
pub(crate) accessor: Column<u64>,
|
||||
pub(crate) str_dict_column: Option<StrColumn>,
|
||||
pub(crate) field_type: Type,
|
||||
pub(crate) bucket_agg: BucketAggregationType,
|
||||
pub(crate) sub_aggregation: AggregationsWithAccessor,
|
||||
@@ -83,20 +56,19 @@ impl BucketAggregationWithAccessor {
|
||||
bucket_count: Rc<AtomicU32>,
|
||||
max_bucket_count: u32,
|
||||
) -> crate::Result<BucketAggregationWithAccessor> {
|
||||
let mut inverted_index = None;
|
||||
let mut str_dict_column = None;
|
||||
let (accessor, field_type) = match &bucket {
|
||||
BucketAggregationType::Range(RangeAggregation {
|
||||
field: field_name, ..
|
||||
}) => get_ff_reader_and_validate(reader, field_name, Cardinality::SingleValue)?,
|
||||
}) => get_ff_reader_and_validate(reader, field_name)?,
|
||||
BucketAggregationType::Histogram(HistogramAggregation {
|
||||
field: field_name, ..
|
||||
}) => get_ff_reader_and_validate(reader, field_name, Cardinality::SingleValue)?,
|
||||
}) => get_ff_reader_and_validate(reader, field_name)?,
|
||||
BucketAggregationType::Terms(TermsAggregation {
|
||||
field: field_name, ..
|
||||
}) => {
|
||||
let field = reader.schema().get_field(field_name)?;
|
||||
inverted_index = Some(reader.inverted_index(field)?);
|
||||
get_ff_reader_and_validate(reader, field_name, Cardinality::MultiValues)?
|
||||
str_dict_column = reader.fast_fields().str(&field_name)?;
|
||||
get_ff_reader_and_validate(reader, field_name)?
|
||||
}
|
||||
};
|
||||
let sub_aggregation = sub_aggregation.clone();
|
||||
@@ -110,7 +82,7 @@ impl BucketAggregationWithAccessor {
|
||||
max_bucket_count,
|
||||
)?,
|
||||
bucket_agg: bucket.clone(),
|
||||
inverted_index,
|
||||
str_dict_column,
|
||||
bucket_count: BucketCount {
|
||||
bucket_count,
|
||||
max_bucket_count,
|
||||
@@ -124,7 +96,7 @@ impl BucketAggregationWithAccessor {
|
||||
pub struct MetricAggregationWithAccessor {
|
||||
pub metric: MetricAggregation,
|
||||
pub field_type: Type,
|
||||
pub accessor: Arc<dyn Column>,
|
||||
pub accessor: Column<u64>,
|
||||
}
|
||||
|
||||
impl MetricAggregationWithAccessor {
|
||||
@@ -139,13 +111,10 @@ impl MetricAggregationWithAccessor {
|
||||
| MetricAggregation::Min(MinAggregation { field: field_name })
|
||||
| MetricAggregation::Stats(StatsAggregation { field: field_name })
|
||||
| MetricAggregation::Sum(SumAggregation { field: field_name }) => {
|
||||
let (accessor, field_type) =
|
||||
get_ff_reader_and_validate(reader, field_name, Cardinality::SingleValue)?;
|
||||
let (accessor, field_type) = get_ff_reader_and_validate(reader, field_name)?;
|
||||
|
||||
Ok(MetricAggregationWithAccessor {
|
||||
accessor: accessor
|
||||
.into_single()
|
||||
.expect("unexpected fast field cardinality"),
|
||||
accessor,
|
||||
field_type,
|
||||
metric: metric.clone(),
|
||||
})
|
||||
@@ -190,32 +159,19 @@ pub(crate) fn get_aggs_with_accessor_and_validate(
|
||||
fn get_ff_reader_and_validate(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
cardinality: Cardinality,
|
||||
) -> crate::Result<(FastFieldAccessor, Type)> {
|
||||
) -> crate::Result<(columnar::Column<u64>, Type)> {
|
||||
let field = reader.schema().get_field(field_name)?;
|
||||
let field_type = reader.schema().get_field_entry(field).field_type();
|
||||
|
||||
if let Some((_ff_type, field_cardinality)) = type_and_cardinality(field_type) {
|
||||
if cardinality != field_cardinality {
|
||||
return Err(TantivyError::InvalidArgument(format!(
|
||||
"Invalid field cardinality on field {} expected {:?}, but got {:?}",
|
||||
field_name, cardinality, field_cardinality
|
||||
)));
|
||||
}
|
||||
} else {
|
||||
return Err(TantivyError::InvalidArgument(format!(
|
||||
"Only fast fields of type f64, u64, i64 are supported, but got {:?} ",
|
||||
field_type.value_type()
|
||||
)));
|
||||
};
|
||||
// TODO we should get type metadata from columnar
|
||||
let field_type = reader
|
||||
.schema()
|
||||
.get_field_entry(field)
|
||||
.field_type()
|
||||
.value_type();
|
||||
// TODO Do validation
|
||||
|
||||
let ff_fields = reader.fast_fields();
|
||||
match cardinality {
|
||||
Cardinality::SingleValue => ff_fields
|
||||
.u64_lenient(field_name)
|
||||
.map(|field| (FastFieldAccessor::Single(field), field_type.value_type())),
|
||||
Cardinality::MultiValues => ff_fields
|
||||
.u64s_lenient(field_name)
|
||||
.map(|field| (FastFieldAccessor::Multi(field), field_type.value_type())),
|
||||
}
|
||||
let ff_field = ff_fields.u64_lenient(field_name)?.ok_or_else(|| {
|
||||
TantivyError::InvalidArgument(format!("No fast field found for field: {}", field_name))
|
||||
})?;
|
||||
Ok((ff_field, field_type))
|
||||
}
|
||||
|
||||
123
src/aggregation/bucket/histogram/date_histogram.rs
Normal file
123
src/aggregation/bucket/histogram/date_histogram.rs
Normal file
@@ -0,0 +1,123 @@
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
/// DateHistogramAggregation is similar to `HistogramAggregation`, but it can only be used with date type.
|
||||
///
|
||||
/// Currently only **fixed time** intervals are supported. Calendar-aware time intervals are not
|
||||
/// supported.
|
||||
///
|
||||
/// Like the histogram, values are rounded down into the closest bucket.
|
||||
///
|
||||
/// For this calculation all fastfield values are converted to f64.
|
||||
///
|
||||
/// # Limitations/Compatibility
|
||||
/// Only fixed time intervals are supported.
|
||||
///
|
||||
/// # JSON Format
|
||||
/// ```json
|
||||
/// {
|
||||
/// "prices": {
|
||||
/// "date_histogram": {
|
||||
/// "field": "price",
|
||||
/// "fixed_interval": "30d"
|
||||
/// }
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// Response
|
||||
/// See [`BucketEntry`](crate::aggregation::agg_result::BucketEntry)
|
||||
#[derive(Clone, Debug, Default, PartialEq, Serialize, Deserialize)]
|
||||
pub struct DateHistogramAggregationReq {
|
||||
/// The field to aggregate on.
|
||||
pub field: String,
|
||||
/// The interval to chunk your data range. Each bucket spans a value range of [0..fixed_interval).
|
||||
/// Accepted values
|
||||
///
|
||||
/// Fixed intervals are configured with the `fixed_interval` parameter.
|
||||
/// In contrast to calendar-aware intervals, fixed intervals are a fixed number of SI units and never deviate, regardless of where they fall on the calendar.
|
||||
/// One second is always composed of 1000ms. This allows fixed intervals to be specified in any multiple of the supported units.
|
||||
/// However, it means fixed intervals cannot express other units such as months, since the duration of a month is not a fixed quantity.
|
||||
/// Attempting to specify a calendar interval like month or quarter will return an Error.
|
||||
///
|
||||
/// The accepted units for fixed intervals are:
|
||||
/// * `ms`: milliseconds
|
||||
/// * `s`: seconds. Defined as 1000 milliseconds each.
|
||||
/// * `m`: minutes. Defined as 60 seconds each (60_000 milliseconds).
|
||||
/// * `h`: hours. Defined as 60 minutes each (3_600_000 milliseconds).
|
||||
/// * `d`: days. Defined as 24 hours (86_400_000 milliseconds).
|
||||
///
|
||||
/// Fractional time values are not supported, but you can address this by shifting to another time unit
|
||||
/// (e.g., `1.5h` could instead be specified as `90m`).
|
||||
pub fixed_interval: String,
|
||||
/// Intervals implicitly defines an absolute grid of buckets `[interval * k, interval * (k + 1))`.
|
||||
///
|
||||
pub offset: Option<String>,
|
||||
/// Whether to return the buckets as a hash map
|
||||
#[serde(default)]
|
||||
pub keyed: bool,
|
||||
}
|
||||
|
||||
impl DateHistogramAggregationReq {
|
||||
fn validate(&self) -> crate::Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
/// Errors when parsing the fixed interval for `DateHistogramAggregationReq`.
|
||||
pub enum DateHistogramParseError {
|
||||
/// Unit not recognized in passed String
|
||||
UnitNotRecognized(String),
|
||||
/// Number not found in passed String
|
||||
NumberMissing(String),
|
||||
/// Unit not found in passed String
|
||||
UnitMissing(String),
|
||||
}
|
||||
|
||||
fn parse_into_milliseconds(input: &str) -> Result<u64, DateHistogramParseError> {
|
||||
let split_boundary = input
|
||||
.char_indices()
|
||||
.take_while(|(pos, el)| el.is_numeric())
|
||||
.count();
|
||||
let (number, unit) = input.split_at(split_boundary);
|
||||
if number.is_empty() {
|
||||
return Err(DateHistogramParseError::NumberMissing(input.to_string()));
|
||||
}
|
||||
if unit.is_empty() {
|
||||
return Err(DateHistogramParseError::UnitMissing(input.to_string()));
|
||||
}
|
||||
let number: u64 = number.parse().unwrap();
|
||||
let multiplier_from_unit = match unit {
|
||||
"ms" => 1,
|
||||
"s" => 1000,
|
||||
"m" => 60 * 1000,
|
||||
"h" => 60 * 60 * 1000,
|
||||
"d" => 24 * 60 * 60 * 1000,
|
||||
_ => return Err(DateHistogramParseError::UnitNotRecognized(unit.to_string())),
|
||||
};
|
||||
|
||||
Ok(number * multiplier_from_unit)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn parser_test() {
|
||||
assert_eq!(parse_into_milliseconds("1m").unwrap(), 60_000);
|
||||
assert_eq!(parse_into_milliseconds("2m").unwrap(), 120_000);
|
||||
assert_eq!(
|
||||
parse_into_milliseconds("2y").unwrap_err(),
|
||||
DateHistogramParseError::UnitNotRecognized("y".to_string())
|
||||
);
|
||||
assert_eq!(
|
||||
parse_into_milliseconds("2000").unwrap_err(),
|
||||
DateHistogramParseError::UnitMissing("2000".to_string())
|
||||
);
|
||||
assert_eq!(
|
||||
parse_into_milliseconds("ms").unwrap_err(),
|
||||
DateHistogramParseError::NumberMissing("ms".to_string())
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -1,7 +1,7 @@
|
||||
use std::cmp::Ordering;
|
||||
use std::fmt::Display;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
use columnar::Column;
|
||||
use itertools::Itertools;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
@@ -13,7 +13,9 @@ use crate::aggregation::agg_result::BucketEntry;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResults, IntermediateBucketResult, IntermediateHistogramBucketEntry,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationResultsCollector;
|
||||
use crate::aggregation::segment_agg_result::{
|
||||
GenericSegmentAggregationResultsCollector, SegmentAggregationCollector,
|
||||
};
|
||||
use crate::aggregation::{f64_from_fastfield_u64, format_date};
|
||||
use crate::schema::{Schema, Type};
|
||||
use crate::{DocId, TantivyError};
|
||||
@@ -62,7 +64,6 @@ use crate::{DocId, TantivyError};
|
||||
///
|
||||
/// Response
|
||||
/// See [`BucketEntry`](crate::aggregation::agg_result::BucketEntry)
|
||||
|
||||
#[derive(Clone, Debug, Default, PartialEq, Serialize, Deserialize)]
|
||||
pub struct HistogramAggregation {
|
||||
/// The field to aggregate on.
|
||||
@@ -184,7 +185,7 @@ pub(crate) struct SegmentHistogramBucketEntry {
|
||||
impl SegmentHistogramBucketEntry {
|
||||
pub(crate) fn into_intermediate_bucket_entry(
|
||||
self,
|
||||
sub_aggregation: SegmentAggregationResultsCollector,
|
||||
sub_aggregation: GenericSegmentAggregationResultsCollector,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
) -> crate::Result<IntermediateHistogramBucketEntry> {
|
||||
Ok(IntermediateHistogramBucketEntry {
|
||||
@@ -198,11 +199,11 @@ impl SegmentHistogramBucketEntry {
|
||||
|
||||
/// The collector puts values from the fast field into the correct buckets and does a conversion to
|
||||
/// the correct datatype.
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SegmentHistogramCollector {
|
||||
/// The buckets containing the aggregation data.
|
||||
buckets: Vec<SegmentHistogramBucketEntry>,
|
||||
sub_aggregations: Option<Vec<SegmentAggregationResultsCollector>>,
|
||||
sub_aggregations: Option<Vec<GenericSegmentAggregationResultsCollector>>,
|
||||
field_type: Type,
|
||||
interval: f64,
|
||||
offset: f64,
|
||||
@@ -283,7 +284,7 @@ impl SegmentHistogramCollector {
|
||||
req: &HistogramAggregation,
|
||||
sub_aggregation: &AggregationsWithAccessor,
|
||||
field_type: Type,
|
||||
accessor: &dyn Column<u64>,
|
||||
accessor: &Column<u64>,
|
||||
) -> crate::Result<Self> {
|
||||
req.validate()?;
|
||||
let min = f64_from_fastfield_u64(accessor.min_value(), &field_type);
|
||||
@@ -300,7 +301,7 @@ impl SegmentHistogramCollector {
|
||||
None
|
||||
} else {
|
||||
let sub_aggregation =
|
||||
SegmentAggregationResultsCollector::from_req_and_validate(sub_aggregation)?;
|
||||
GenericSegmentAggregationResultsCollector::from_req_and_validate(sub_aggregation)?;
|
||||
Some(buckets.iter().map(|_| sub_aggregation.clone()).collect())
|
||||
};
|
||||
|
||||
@@ -335,7 +336,7 @@ impl SegmentHistogramCollector {
|
||||
#[inline]
|
||||
pub(crate) fn collect_block(
|
||||
&mut self,
|
||||
doc: &[DocId],
|
||||
docs: &[DocId],
|
||||
bucket_with_accessor: &BucketAggregationWithAccessor,
|
||||
force_flush: bool,
|
||||
) -> crate::Result<()> {
|
||||
@@ -346,64 +347,20 @@ impl SegmentHistogramCollector {
|
||||
let get_bucket_num =
|
||||
|val| (get_bucket_num_f64(val, interval, offset) as i64 - first_bucket_num) as usize;
|
||||
|
||||
let accessor = bucket_with_accessor
|
||||
.accessor
|
||||
.as_single()
|
||||
.expect("unexpected fast field cardinatility");
|
||||
let mut iter = doc.chunks_exact(4);
|
||||
for docs in iter.by_ref() {
|
||||
let val0 = self.f64_from_fastfield_u64(accessor.get_val(docs[0]));
|
||||
let val1 = self.f64_from_fastfield_u64(accessor.get_val(docs[1]));
|
||||
let val2 = self.f64_from_fastfield_u64(accessor.get_val(docs[2]));
|
||||
let val3 = self.f64_from_fastfield_u64(accessor.get_val(docs[3]));
|
||||
let accessor = &bucket_with_accessor.accessor;
|
||||
for doc in docs {
|
||||
for val in accessor.values(*doc) {
|
||||
let val = self.f64_from_fastfield_u64(val);
|
||||
|
||||
let bucket_pos0 = get_bucket_num(val0);
|
||||
let bucket_pos1 = get_bucket_num(val1);
|
||||
let bucket_pos2 = get_bucket_num(val2);
|
||||
let bucket_pos3 = get_bucket_num(val3);
|
||||
|
||||
self.increment_bucket_if_in_bounds(
|
||||
val0,
|
||||
&bounds,
|
||||
bucket_pos0,
|
||||
docs[0],
|
||||
&bucket_with_accessor.sub_aggregation,
|
||||
)?;
|
||||
self.increment_bucket_if_in_bounds(
|
||||
val1,
|
||||
&bounds,
|
||||
bucket_pos1,
|
||||
docs[1],
|
||||
&bucket_with_accessor.sub_aggregation,
|
||||
)?;
|
||||
self.increment_bucket_if_in_bounds(
|
||||
val2,
|
||||
&bounds,
|
||||
bucket_pos2,
|
||||
docs[2],
|
||||
&bucket_with_accessor.sub_aggregation,
|
||||
)?;
|
||||
self.increment_bucket_if_in_bounds(
|
||||
val3,
|
||||
&bounds,
|
||||
bucket_pos3,
|
||||
docs[3],
|
||||
&bucket_with_accessor.sub_aggregation,
|
||||
)?;
|
||||
}
|
||||
for &doc in iter.remainder() {
|
||||
let val = f64_from_fastfield_u64(accessor.get_val(doc), &self.field_type);
|
||||
if !bounds.contains(val) {
|
||||
continue;
|
||||
let bucket_pos = get_bucket_num(val);
|
||||
self.increment_bucket_if_in_bounds(
|
||||
val,
|
||||
&bounds,
|
||||
bucket_pos,
|
||||
*doc,
|
||||
&bucket_with_accessor.sub_aggregation,
|
||||
)?;
|
||||
}
|
||||
let bucket_pos = (get_bucket_num_f64(val, self.interval, self.offset) as i64
|
||||
- self.first_bucket_num) as usize;
|
||||
|
||||
debug_assert_eq!(
|
||||
self.buckets[bucket_pos].key,
|
||||
get_bucket_val(val, self.interval, self.offset)
|
||||
);
|
||||
self.increment_bucket(bucket_pos, doc, &bucket_with_accessor.sub_aggregation)?;
|
||||
}
|
||||
if force_flush {
|
||||
if let Some(sub_aggregations) = self.sub_aggregations.as_mut() {
|
||||
|
||||
@@ -1,2 +1,4 @@
|
||||
mod date_histogram;
|
||||
mod histogram;
|
||||
pub use date_histogram::*;
|
||||
pub use histogram::*;
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
use std::fmt::Debug;
|
||||
use std::ops::Range;
|
||||
|
||||
use fastfield_codecs::MonotonicallyMappableToU64;
|
||||
use columnar::MonotonicallyMappableToU64;
|
||||
use rustc_hash::FxHashMap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
@@ -11,7 +11,9 @@ use crate::aggregation::agg_req_with_accessor::{
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateBucketResult, IntermediateRangeBucketEntry, IntermediateRangeBucketResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::{BucketCount, SegmentAggregationResultsCollector};
|
||||
use crate::aggregation::segment_agg_result::{
|
||||
BucketCount, GenericSegmentAggregationResultsCollector, SegmentAggregationCollector,
|
||||
};
|
||||
use crate::aggregation::{
|
||||
f64_from_fastfield_u64, f64_to_fastfield_u64, format_date, Key, SerializedKey,
|
||||
};
|
||||
@@ -114,7 +116,7 @@ impl From<Range<u64>> for InternalRangeAggregationRange {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub(crate) struct SegmentRangeAndBucketEntry {
|
||||
range: Range<u64>,
|
||||
bucket: SegmentRangeBucketEntry,
|
||||
@@ -122,18 +124,18 @@ pub(crate) struct SegmentRangeAndBucketEntry {
|
||||
|
||||
/// The collector puts values from the fast field into the correct buckets and does a conversion to
|
||||
/// the correct datatype.
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SegmentRangeCollector {
|
||||
/// The buckets containing the aggregation data.
|
||||
buckets: Vec<SegmentRangeAndBucketEntry>,
|
||||
field_type: Type,
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq)]
|
||||
#[derive(Clone)]
|
||||
pub(crate) struct SegmentRangeBucketEntry {
|
||||
pub key: Key,
|
||||
pub doc_count: u64,
|
||||
pub sub_aggregation: Option<SegmentAggregationResultsCollector>,
|
||||
pub sub_aggregation: Option<GenericSegmentAggregationResultsCollector>,
|
||||
/// The from range of the bucket. Equals `f64::MIN` when `None`.
|
||||
pub from: Option<f64>,
|
||||
/// The to range of the bucket. Equals `f64::MAX` when `None`. Open interval, `to` is not
|
||||
@@ -227,9 +229,11 @@ impl SegmentRangeCollector {
|
||||
let sub_aggregation = if sub_aggregation.is_empty() {
|
||||
None
|
||||
} else {
|
||||
Some(SegmentAggregationResultsCollector::from_req_and_validate(
|
||||
sub_aggregation,
|
||||
)?)
|
||||
Some(
|
||||
GenericSegmentAggregationResultsCollector::from_req_and_validate(
|
||||
sub_aggregation,
|
||||
)?,
|
||||
)
|
||||
};
|
||||
|
||||
Ok(SegmentRangeAndBucketEntry {
|
||||
@@ -257,35 +261,18 @@ impl SegmentRangeCollector {
|
||||
#[inline]
|
||||
pub(crate) fn collect_block(
|
||||
&mut self,
|
||||
doc: &[DocId],
|
||||
docs: &[DocId],
|
||||
bucket_with_accessor: &BucketAggregationWithAccessor,
|
||||
force_flush: bool,
|
||||
) -> crate::Result<()> {
|
||||
let mut iter = doc.chunks_exact(4);
|
||||
let accessor = bucket_with_accessor
|
||||
.accessor
|
||||
.as_single()
|
||||
.expect("unexpected fast field cardinality");
|
||||
for docs in iter.by_ref() {
|
||||
let val1 = accessor.get_val(docs[0]);
|
||||
let val2 = accessor.get_val(docs[1]);
|
||||
let val3 = accessor.get_val(docs[2]);
|
||||
let val4 = accessor.get_val(docs[3]);
|
||||
let bucket_pos1 = self.get_bucket_pos(val1);
|
||||
let bucket_pos2 = self.get_bucket_pos(val2);
|
||||
let bucket_pos3 = self.get_bucket_pos(val3);
|
||||
let bucket_pos4 = self.get_bucket_pos(val4);
|
||||
let accessor = &bucket_with_accessor.accessor;
|
||||
for doc in docs {
|
||||
for val in accessor.values(*doc) {
|
||||
let bucket_pos = self.get_bucket_pos(val);
|
||||
self.increment_bucket(bucket_pos, *doc, &bucket_with_accessor.sub_aggregation)?;
|
||||
}
|
||||
}
|
||||
|
||||
self.increment_bucket(bucket_pos1, docs[0], &bucket_with_accessor.sub_aggregation)?;
|
||||
self.increment_bucket(bucket_pos2, docs[1], &bucket_with_accessor.sub_aggregation)?;
|
||||
self.increment_bucket(bucket_pos3, docs[2], &bucket_with_accessor.sub_aggregation)?;
|
||||
self.increment_bucket(bucket_pos4, docs[3], &bucket_with_accessor.sub_aggregation)?;
|
||||
}
|
||||
for &doc in iter.remainder() {
|
||||
let val = accessor.get_val(doc);
|
||||
let bucket_pos = self.get_bucket_pos(val);
|
||||
self.increment_bucket(bucket_pos, doc, &bucket_with_accessor.sub_aggregation)?;
|
||||
}
|
||||
if force_flush {
|
||||
for bucket in &mut self.buckets {
|
||||
if let Some(sub_aggregation) = &mut bucket.bucket.sub_aggregation {
|
||||
@@ -434,7 +421,7 @@ pub(crate) fn range_to_key(range: &Range<u64>, field_type: &Type) -> crate::Resu
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use fastfield_codecs::MonotonicallyMappableToU64;
|
||||
use columnar::MonotonicallyMappableToU64;
|
||||
use serde_json::Value;
|
||||
|
||||
use super::*;
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
use std::fmt::Debug;
|
||||
|
||||
use columnar::Column;
|
||||
use itertools::Itertools;
|
||||
use rustc_hash::FxHashMap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
@@ -11,9 +12,11 @@ use crate::aggregation::agg_req_with_accessor::{
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateBucketResult, IntermediateTermBucketEntry, IntermediateTermBucketResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::{BucketCount, SegmentAggregationResultsCollector};
|
||||
use crate::aggregation::segment_agg_result::{
|
||||
build_segment_agg_collector, GenericSegmentAggregationResultsCollector,
|
||||
SegmentAggregationCollector,
|
||||
};
|
||||
use crate::error::DataCorruption;
|
||||
use crate::fastfield::MultiValuedFastFieldReader;
|
||||
use crate::schema::Type;
|
||||
use crate::{DocId, TantivyError};
|
||||
|
||||
@@ -196,17 +199,16 @@ impl TermsAggregationInternal {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
#[derive(Clone, Debug, Default)]
|
||||
/// Container to store term_ids and their buckets.
|
||||
struct TermBuckets {
|
||||
pub(crate) entries: FxHashMap<u32, TermBucketEntry>,
|
||||
blueprint: Option<SegmentAggregationResultsCollector>,
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, Default)]
|
||||
#[derive(Clone, Default)]
|
||||
struct TermBucketEntry {
|
||||
doc_count: u64,
|
||||
sub_aggregations: Option<SegmentAggregationResultsCollector>,
|
||||
sub_aggregations: Option<Box<dyn SegmentAggregationCollector>>,
|
||||
}
|
||||
|
||||
impl Debug for TermBucketEntry {
|
||||
@@ -218,7 +220,7 @@ impl Debug for TermBucketEntry {
|
||||
}
|
||||
|
||||
impl TermBucketEntry {
|
||||
fn from_blueprint(blueprint: &Option<SegmentAggregationResultsCollector>) -> Self {
|
||||
fn from_blueprint(blueprint: &Option<Box<dyn SegmentAggregationCollector>>) -> Self {
|
||||
Self {
|
||||
doc_count: 0,
|
||||
sub_aggregations: blueprint.clone(),
|
||||
@@ -247,46 +249,11 @@ impl TermBuckets {
|
||||
sub_aggregation: &AggregationsWithAccessor,
|
||||
_max_term_id: usize,
|
||||
) -> crate::Result<Self> {
|
||||
let has_sub_aggregations = sub_aggregation.is_empty();
|
||||
|
||||
let blueprint = if has_sub_aggregations {
|
||||
let sub_aggregation =
|
||||
SegmentAggregationResultsCollector::from_req_and_validate(sub_aggregation)?;
|
||||
Some(sub_aggregation)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
Ok(TermBuckets {
|
||||
blueprint,
|
||||
entries: Default::default(),
|
||||
})
|
||||
}
|
||||
|
||||
fn increment_bucket(
|
||||
&mut self,
|
||||
term_ids: &[u64],
|
||||
doc: DocId,
|
||||
sub_aggregation: &AggregationsWithAccessor,
|
||||
bucket_count: &BucketCount,
|
||||
blueprint: &Option<SegmentAggregationResultsCollector>,
|
||||
) -> crate::Result<()> {
|
||||
for &term_id in term_ids {
|
||||
let entry = self.entries.entry(term_id as u32).or_insert_with(|| {
|
||||
bucket_count.add_count(1);
|
||||
|
||||
TermBucketEntry::from_blueprint(blueprint)
|
||||
});
|
||||
entry.doc_count += 1;
|
||||
if let Some(sub_aggregations) = entry.sub_aggregations.as_mut() {
|
||||
sub_aggregations.collect(doc, sub_aggregation)?;
|
||||
}
|
||||
}
|
||||
bucket_count.validate_bucket_count()?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn force_flush(&mut self, agg_with_accessor: &AggregationsWithAccessor) -> crate::Result<()> {
|
||||
for entry in &mut self.entries.values_mut() {
|
||||
if let Some(sub_aggregations) = entry.sub_aggregations.as_mut() {
|
||||
@@ -299,13 +266,12 @@ impl TermBuckets {
|
||||
|
||||
/// The collector puts values from the fast field into the correct buckets and does a conversion to
|
||||
/// the correct datatype.
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SegmentTermCollector {
|
||||
/// The buckets containing the aggregation data.
|
||||
term_buckets: TermBuckets,
|
||||
req: TermsAggregationInternal,
|
||||
field_type: Type,
|
||||
blueprint: Option<SegmentAggregationResultsCollector>,
|
||||
blueprint: Option<Box<dyn SegmentAggregationCollector>>,
|
||||
}
|
||||
|
||||
pub(crate) fn get_agg_name_and_property(name: &str) -> (&str, &str) {
|
||||
@@ -317,12 +283,8 @@ impl SegmentTermCollector {
|
||||
pub(crate) fn from_req_and_validate(
|
||||
req: &TermsAggregation,
|
||||
sub_aggregations: &AggregationsWithAccessor,
|
||||
field_type: Type,
|
||||
accessor: &MultiValuedFastFieldReader<u64>,
|
||||
) -> crate::Result<Self> {
|
||||
let max_term_id = accessor.max_value();
|
||||
let term_buckets =
|
||||
TermBuckets::from_req_and_validate(sub_aggregations, max_term_id as usize)?;
|
||||
let term_buckets = TermBuckets::default();
|
||||
|
||||
if let Some(custom_order) = req.order.as_ref() {
|
||||
// Validate sub aggregtion exists
|
||||
@@ -340,8 +302,7 @@ impl SegmentTermCollector {
|
||||
|
||||
let has_sub_aggregations = !sub_aggregations.is_empty();
|
||||
let blueprint = if has_sub_aggregations {
|
||||
let sub_aggregation =
|
||||
SegmentAggregationResultsCollector::from_req_and_validate(sub_aggregations)?;
|
||||
let sub_aggregation = build_segment_agg_collector(sub_aggregations)?;
|
||||
Some(sub_aggregation)
|
||||
} else {
|
||||
None
|
||||
@@ -350,7 +311,6 @@ impl SegmentTermCollector {
|
||||
Ok(SegmentTermCollector {
|
||||
req: TermsAggregationInternal::from_req(req),
|
||||
term_buckets,
|
||||
field_type,
|
||||
blueprint,
|
||||
})
|
||||
}
|
||||
@@ -368,7 +328,14 @@ impl SegmentTermCollector {
|
||||
|
||||
match self.req.order.target {
|
||||
OrderTarget::Key => {
|
||||
// defer order and cut_off after loading the texts from the dictionary
|
||||
// We rely on the fact, that term ordinals match the order of the strings
|
||||
// TODO: We could have a special collector, that keeps only TOP n results at any
|
||||
// time.
|
||||
if self.req.order.order == Order::Desc {
|
||||
entries.sort_unstable_by_key(|bucket| std::cmp::Reverse(bucket.0));
|
||||
} else {
|
||||
entries.sort_unstable_by_key(|bucket| bucket.0);
|
||||
}
|
||||
}
|
||||
OrderTarget::SubAggregation(_name) => {
|
||||
// don't sort and cut off since it's hard to make assumptions on the quality of the
|
||||
@@ -384,34 +351,40 @@ impl SegmentTermCollector {
|
||||
}
|
||||
}
|
||||
|
||||
let (term_doc_count_before_cutoff, mut sum_other_doc_count) =
|
||||
if order_by_key || order_by_sub_aggregation {
|
||||
(0, 0)
|
||||
} else {
|
||||
cut_off_buckets(&mut entries, self.req.segment_size as usize)
|
||||
};
|
||||
let (term_doc_count_before_cutoff, mut sum_other_doc_count) = if order_by_sub_aggregation {
|
||||
(0, 0)
|
||||
} else {
|
||||
cut_off_buckets(&mut entries, self.req.segment_size as usize)
|
||||
};
|
||||
|
||||
let inverted_index = agg_with_accessor
|
||||
.inverted_index
|
||||
.str_dict_column
|
||||
.as_ref()
|
||||
.expect("internal error: inverted index not loaded for term aggregation");
|
||||
let term_dict = inverted_index.terms();
|
||||
let term_dict = inverted_index;
|
||||
|
||||
let mut dict: FxHashMap<String, IntermediateTermBucketEntry> = Default::default();
|
||||
let mut buffer = vec![];
|
||||
let mut buffer = String::new();
|
||||
for (term_id, entry) in entries {
|
||||
term_dict
|
||||
.ord_to_term(term_id as u64, &mut buffer)
|
||||
.expect("could not find term");
|
||||
if !term_dict.ord_to_str(term_id as u64, &mut buffer)? {
|
||||
return Err(TantivyError::InternalError(format!(
|
||||
"Couldn't find term_id {} in dict",
|
||||
term_id
|
||||
)));
|
||||
}
|
||||
dict.insert(
|
||||
String::from_utf8(buffer.to_vec())
|
||||
.map_err(|utf8_err| DataCorruption::comment_only(utf8_err.to_string()))?,
|
||||
buffer.to_string(),
|
||||
entry.into_intermediate_bucket_entry(&agg_with_accessor.sub_aggregation)?,
|
||||
);
|
||||
}
|
||||
if self.req.min_doc_count == 0 {
|
||||
let mut stream = term_dict.stream()?;
|
||||
// TODO: Handle rev streaming for descending sorting by keys
|
||||
let mut stream = term_dict.dictionary().stream()?;
|
||||
while let Some((key, _ord)) = stream.next() {
|
||||
if dict.len() >= self.req.segment_size as usize {
|
||||
break;
|
||||
}
|
||||
|
||||
let key = std::str::from_utf8(key)
|
||||
.map_err(|utf8_err| DataCorruption::comment_only(utf8_err.to_string()))?;
|
||||
if !dict.contains_key(key) {
|
||||
@@ -446,65 +419,26 @@ impl SegmentTermCollector {
|
||||
#[inline]
|
||||
pub(crate) fn collect_block(
|
||||
&mut self,
|
||||
doc: &[DocId],
|
||||
docs: &[DocId],
|
||||
bucket_with_accessor: &BucketAggregationWithAccessor,
|
||||
force_flush: bool,
|
||||
) -> crate::Result<()> {
|
||||
let accessor = bucket_with_accessor
|
||||
.accessor
|
||||
.as_multi()
|
||||
.expect("unexpected fast field cardinatility");
|
||||
let mut iter = doc.chunks_exact(4);
|
||||
let mut vals1 = vec![];
|
||||
let mut vals2 = vec![];
|
||||
let mut vals3 = vec![];
|
||||
let mut vals4 = vec![];
|
||||
for docs in iter.by_ref() {
|
||||
accessor.get_vals(docs[0], &mut vals1);
|
||||
accessor.get_vals(docs[1], &mut vals2);
|
||||
accessor.get_vals(docs[2], &mut vals3);
|
||||
accessor.get_vals(docs[3], &mut vals4);
|
||||
let accessor = &bucket_with_accessor.accessor;
|
||||
|
||||
self.term_buckets.increment_bucket(
|
||||
&vals1,
|
||||
docs[0],
|
||||
&bucket_with_accessor.sub_aggregation,
|
||||
&bucket_with_accessor.bucket_count,
|
||||
&self.blueprint,
|
||||
)?;
|
||||
self.term_buckets.increment_bucket(
|
||||
&vals2,
|
||||
docs[1],
|
||||
&bucket_with_accessor.sub_aggregation,
|
||||
&bucket_with_accessor.bucket_count,
|
||||
&self.blueprint,
|
||||
)?;
|
||||
self.term_buckets.increment_bucket(
|
||||
&vals3,
|
||||
docs[2],
|
||||
&bucket_with_accessor.sub_aggregation,
|
||||
&bucket_with_accessor.bucket_count,
|
||||
&self.blueprint,
|
||||
)?;
|
||||
self.term_buckets.increment_bucket(
|
||||
&vals4,
|
||||
docs[3],
|
||||
&bucket_with_accessor.sub_aggregation,
|
||||
&bucket_with_accessor.bucket_count,
|
||||
&self.blueprint,
|
||||
)?;
|
||||
for doc in docs {
|
||||
for term_id in accessor.values(*doc) {
|
||||
let entry = self
|
||||
.term_buckets
|
||||
.entries
|
||||
.entry(term_id as u32)
|
||||
.or_insert_with(|| TermBucketEntry::from_blueprint(&self.blueprint));
|
||||
entry.doc_count += 1;
|
||||
if let Some(sub_aggregations) = entry.sub_aggregations.as_mut() {
|
||||
sub_aggregations.collect(*doc, &bucket_with_accessor.sub_aggregation)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
for &doc in iter.remainder() {
|
||||
accessor.get_vals(doc, &mut vals1);
|
||||
|
||||
self.term_buckets.increment_bucket(
|
||||
&vals1,
|
||||
doc,
|
||||
&bucket_with_accessor.sub_aggregation,
|
||||
&bucket_with_accessor.bucket_count,
|
||||
&self.blueprint,
|
||||
)?;
|
||||
}
|
||||
if force_flush {
|
||||
self.term_buckets
|
||||
.force_flush(&bucket_with_accessor.sub_aggregation)?;
|
||||
@@ -1207,36 +1141,37 @@ mod tests {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_term_bucket_limit() -> crate::Result<()> {
|
||||
let terms: Vec<String> = (0..100_000).map(|el| el.to_string()).collect();
|
||||
let terms_per_segment = vec![terms.iter().map(|el| el.as_str()).collect()];
|
||||
// TODO reenable with memory limit
|
||||
//#[test]
|
||||
// fn terms_aggregation_term_bucket_limit() -> crate::Result<()> {
|
||||
// let terms: Vec<String> = (0..100_000).map(|el| el.to_string()).collect();
|
||||
// let terms_per_segment = vec![terms.iter().map(|el| el.as_str()).collect()];
|
||||
|
||||
let index = get_test_index_from_terms(true, &terms_per_segment)?;
|
||||
// let index = get_test_index_from_terms(true, &terms_per_segment)?;
|
||||
|
||||
let agg_req: Aggregations = vec![(
|
||||
"my_texts".to_string(),
|
||||
Aggregation::Bucket(BucketAggregation {
|
||||
bucket_agg: BucketAggregationType::Terms(TermsAggregation {
|
||||
field: "string_id".to_string(),
|
||||
min_doc_count: Some(0),
|
||||
..Default::default()
|
||||
}),
|
||||
sub_aggregation: Default::default(),
|
||||
}),
|
||||
)]
|
||||
.into_iter()
|
||||
.collect();
|
||||
// let agg_req: Aggregations = vec![(
|
||||
//"my_texts".to_string(),
|
||||
// Aggregation::Bucket(BucketAggregation {
|
||||
// bucket_agg: BucketAggregationType::Terms(TermsAggregation {
|
||||
// field: "string_id".to_string(),
|
||||
// min_doc_count: Some(0),
|
||||
//..Default::default()
|
||||
//}),
|
||||
// sub_aggregation: Default::default(),
|
||||
//}),
|
||||
//)]
|
||||
//.into_iter()
|
||||
//.collect();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None);
|
||||
// let res = exec_request_with_query(agg_req, &index, None);
|
||||
|
||||
assert!(res.is_err());
|
||||
// assert!(res.is_err());
|
||||
|
||||
Ok(())
|
||||
}
|
||||
// Ok(())
|
||||
//}
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_multi_token_per_doc() -> crate::Result<()> {
|
||||
fn terms_aggregation_different_tokenizer_on_ff_test() -> crate::Result<()> {
|
||||
let terms = vec!["Hello Hello", "Hallo Hallo"];
|
||||
|
||||
let index = get_test_index_from_terms(true, &[terms])?;
|
||||
@@ -1256,12 +1191,13 @@ mod tests {
|
||||
.collect();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None).unwrap();
|
||||
println!("{}", serde_json::to_string_pretty(&res).unwrap());
|
||||
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["key"], "hello");
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["doc_count"], 2);
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["key"], "Hallo Hallo");
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["doc_count"], 1);
|
||||
|
||||
assert_eq!(res["my_texts"]["buckets"][1]["key"], "hallo");
|
||||
assert_eq!(res["my_texts"]["buckets"][1]["doc_count"], 2);
|
||||
assert_eq!(res["my_texts"]["buckets"][1]["key"], "Hello Hello");
|
||||
assert_eq!(res["my_texts"]["buckets"][1]["doc_count"], 1);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -1352,68 +1288,3 @@ mod tests {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use itertools::Itertools;
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::thread_rng;
|
||||
|
||||
use super::*;
|
||||
|
||||
fn get_collector_with_buckets(num_docs: u64) -> TermBuckets {
|
||||
TermBuckets::from_req_and_validate(&Default::default(), num_docs as usize).unwrap()
|
||||
}
|
||||
|
||||
fn get_rand_terms(total_terms: u64, num_terms_returned: u64) -> Vec<u64> {
|
||||
let mut rng = thread_rng();
|
||||
|
||||
let all_terms = (0..total_terms - 1).collect_vec();
|
||||
|
||||
let mut vals = vec![];
|
||||
for _ in 0..num_terms_returned {
|
||||
let val = all_terms.as_slice().choose(&mut rng).unwrap();
|
||||
vals.push(*val);
|
||||
}
|
||||
|
||||
vals
|
||||
}
|
||||
|
||||
fn bench_term_buckets(b: &mut test::Bencher, num_terms: u64, total_terms: u64) {
|
||||
let mut collector = get_collector_with_buckets(total_terms);
|
||||
let vals = get_rand_terms(total_terms, num_terms);
|
||||
let aggregations_with_accessor: AggregationsWithAccessor = Default::default();
|
||||
let bucket_count: BucketCount = BucketCount {
|
||||
bucket_count: Default::default(),
|
||||
max_bucket_count: 1_000_001u32,
|
||||
};
|
||||
b.iter(|| {
|
||||
for &val in &vals {
|
||||
collector
|
||||
.increment_bucket(&[val], 0, &aggregations_with_accessor, &bucket_count, &None)
|
||||
.unwrap();
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_term_buckets_500_of_1_000_000(b: &mut test::Bencher) {
|
||||
bench_term_buckets(b, 500u64, 1_000_000u64)
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_term_buckets_1_000_000_of_50_000(b: &mut test::Bencher) {
|
||||
bench_term_buckets(b, 1_000_000u64, 50_000u64)
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_term_buckets_1_000_000_of_50(b: &mut test::Bencher) {
|
||||
bench_term_buckets(b, 1_000_000u64, 50u64)
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_term_buckets_1_000_000_of_1_000_000(b: &mut test::Bencher) {
|
||||
bench_term_buckets(b, 1_000_000u64, 1_000_000u64)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4,7 +4,10 @@ use super::agg_req::Aggregations;
|
||||
use super::agg_req_with_accessor::AggregationsWithAccessor;
|
||||
use super::agg_result::AggregationResults;
|
||||
use super::intermediate_agg_result::IntermediateAggregationResults;
|
||||
use super::segment_agg_result::SegmentAggregationResultsCollector;
|
||||
use super::segment_agg_result::{
|
||||
build_segment_agg_collector, GenericSegmentAggregationResultsCollector,
|
||||
SegmentAggregationCollector,
|
||||
};
|
||||
use crate::aggregation::agg_req_with_accessor::get_aggs_with_accessor_and_validate;
|
||||
use crate::collector::{Collector, SegmentCollector};
|
||||
use crate::schema::Schema;
|
||||
@@ -137,7 +140,7 @@ fn merge_fruits(
|
||||
/// `AggregationSegmentCollector` does the aggregation collection on a segment.
|
||||
pub struct AggregationSegmentCollector {
|
||||
aggs_with_accessor: AggregationsWithAccessor,
|
||||
result: SegmentAggregationResultsCollector,
|
||||
result: Box<dyn SegmentAggregationCollector>,
|
||||
error: Option<TantivyError>,
|
||||
}
|
||||
|
||||
@@ -151,8 +154,7 @@ impl AggregationSegmentCollector {
|
||||
) -> crate::Result<Self> {
|
||||
let aggs_with_accessor =
|
||||
get_aggs_with_accessor_and_validate(agg, reader, Rc::default(), max_bucket_count)?;
|
||||
let result =
|
||||
SegmentAggregationResultsCollector::from_req_and_validate(&aggs_with_accessor)?;
|
||||
let result = build_segment_agg_collector(&aggs_with_accessor)?;
|
||||
Ok(AggregationSegmentCollector {
|
||||
aggs_with_accessor,
|
||||
result,
|
||||
|
||||
@@ -222,24 +222,23 @@ pub enum IntermediateMetricResult {
|
||||
|
||||
impl From<SegmentMetricResultCollector> for IntermediateMetricResult {
|
||||
fn from(tree: SegmentMetricResultCollector) -> Self {
|
||||
use super::metric::SegmentStatsType;
|
||||
match tree {
|
||||
SegmentMetricResultCollector::Stats(collector) => match collector.collecting_for {
|
||||
super::metric::SegmentStatsType::Average => IntermediateMetricResult::Average(
|
||||
SegmentStatsType::Average => IntermediateMetricResult::Average(
|
||||
IntermediateAverage::from_collector(collector),
|
||||
),
|
||||
super::metric::SegmentStatsType::Count => {
|
||||
SegmentStatsType::Count => {
|
||||
IntermediateMetricResult::Count(IntermediateCount::from_collector(collector))
|
||||
}
|
||||
super::metric::SegmentStatsType::Max => {
|
||||
SegmentStatsType::Max => {
|
||||
IntermediateMetricResult::Max(IntermediateMax::from_collector(collector))
|
||||
}
|
||||
super::metric::SegmentStatsType::Min => {
|
||||
SegmentStatsType::Min => {
|
||||
IntermediateMetricResult::Min(IntermediateMin::from_collector(collector))
|
||||
}
|
||||
super::metric::SegmentStatsType::Stats => {
|
||||
IntermediateMetricResult::Stats(collector.stats)
|
||||
}
|
||||
super::metric::SegmentStatsType::Sum => {
|
||||
SegmentStatsType::Stats => IntermediateMetricResult::Stats(collector.stats),
|
||||
SegmentStatsType::Sum => {
|
||||
IntermediateMetricResult::Sum(IntermediateSum::from_collector(collector))
|
||||
}
|
||||
},
|
||||
|
||||
@@ -43,13 +43,13 @@ mod tests {
|
||||
use crate::aggregation::agg_result::AggregationResults;
|
||||
use crate::aggregation::AggregationCollector;
|
||||
use crate::query::AllQuery;
|
||||
use crate::schema::{Cardinality, NumericOptions, Schema};
|
||||
use crate::schema::{NumericOptions, Schema};
|
||||
use crate::Index;
|
||||
|
||||
#[test]
|
||||
fn test_metric_aggregations() {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field_options = NumericOptions::default().set_fast(Cardinality::SingleValue);
|
||||
let field_options = NumericOptions::default().set_fast();
|
||||
let field = schema_builder.add_f64_field("price", field_options);
|
||||
let index = Index::create_in_ram(schema_builder.build());
|
||||
let mut index_writer = index.writer_for_tests().unwrap();
|
||||
|
||||
@@ -1,10 +1,17 @@
|
||||
use fastfield_codecs::Column;
|
||||
use columnar::Column;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::aggregation::f64_from_fastfield_u64;
|
||||
use crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResults, IntermediateMetricResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::{f64_from_fastfield_u64, VecWithNames};
|
||||
use crate::schema::Type;
|
||||
use crate::{DocId, TantivyError};
|
||||
|
||||
use super::*;
|
||||
|
||||
/// A multi-value metric aggregation that computes a collection of statistics on numeric values that
|
||||
/// are extracted from the aggregated documents.
|
||||
/// See [`Stats`] for returned statistics.
|
||||
@@ -160,27 +167,74 @@ impl SegmentStatsCollector {
|
||||
stats: IntermediateStats::default(),
|
||||
}
|
||||
}
|
||||
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &dyn Column<u64>) {
|
||||
let mut iter = doc.chunks_exact(4);
|
||||
for docs in iter.by_ref() {
|
||||
let val1 = field.get_val(docs[0]);
|
||||
let val2 = field.get_val(docs[1]);
|
||||
let val3 = field.get_val(docs[2]);
|
||||
let val4 = field.get_val(docs[3]);
|
||||
let val1 = f64_from_fastfield_u64(val1, &self.field_type);
|
||||
let val2 = f64_from_fastfield_u64(val2, &self.field_type);
|
||||
let val3 = f64_from_fastfield_u64(val3, &self.field_type);
|
||||
let val4 = f64_from_fastfield_u64(val4, &self.field_type);
|
||||
pub(crate) fn collect_block(&mut self, docs: &[DocId], field: &Column<u64>) {
|
||||
// TODO special case for Required, Optional column type
|
||||
for doc in docs {
|
||||
for val in field.values(*doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.stats.collect(val1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl SegmentAggregationCollector for SegmentStatsCollector {
|
||||
fn into_intermediate_aggregations_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
) -> crate::Result<IntermediateAggregationResults> {
|
||||
let name = agg_with_accessor.metrics.keys[0].to_string();
|
||||
|
||||
let intermediate_metric_result = match self.collecting_for {
|
||||
SegmentStatsType::Average => {
|
||||
IntermediateMetricResult::Average(IntermediateAverage::from_collector(*self))
|
||||
}
|
||||
SegmentStatsType::Count => {
|
||||
IntermediateMetricResult::Count(IntermediateCount::from_collector(*self))
|
||||
}
|
||||
SegmentStatsType::Max => {
|
||||
IntermediateMetricResult::Max(IntermediateMax::from_collector(*self))
|
||||
}
|
||||
SegmentStatsType::Min => {
|
||||
IntermediateMetricResult::Min(IntermediateMin::from_collector(*self))
|
||||
}
|
||||
SegmentStatsType::Stats => IntermediateMetricResult::Stats(self.stats),
|
||||
SegmentStatsType::Sum => {
|
||||
IntermediateMetricResult::Sum(IntermediateSum::from_collector(*self))
|
||||
}
|
||||
};
|
||||
|
||||
let metrics = Some(VecWithNames::from_entries(vec![(
|
||||
name,
|
||||
intermediate_metric_result,
|
||||
)]));
|
||||
|
||||
Ok(IntermediateAggregationResults {
|
||||
metrics,
|
||||
buckets: None,
|
||||
})
|
||||
}
|
||||
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
let accessor = &agg_with_accessor.metrics.values[0].accessor;
|
||||
for val in accessor.values(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.stats.collect(val1);
|
||||
self.stats.collect(val2);
|
||||
self.stats.collect(val3);
|
||||
self.stats.collect(val4);
|
||||
}
|
||||
for &doc in iter.remainder() {
|
||||
let val = field.get_val(doc);
|
||||
let val = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.stats.collect(val);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn flush_staged_docs(
|
||||
&mut self,
|
||||
_agg_with_accessor: &AggregationsWithAccessor,
|
||||
_force_flush: bool,
|
||||
) -> crate::Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -172,8 +172,8 @@ pub use collector::{
|
||||
AggregationCollector, AggregationSegmentCollector, DistributedAggregationCollector,
|
||||
MAX_BUCKET_COUNT,
|
||||
};
|
||||
use columnar::MonotonicallyMappableToU64;
|
||||
pub(crate) use date::format_date;
|
||||
use fastfield_codecs::MonotonicallyMappableToU64;
|
||||
use itertools::Itertools;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
@@ -182,7 +182,7 @@ use crate::schema::Type;
|
||||
/// Represents an associative array `(key => values)` in a very efficient manner.
|
||||
#[derive(Clone, PartialEq, Serialize, Deserialize)]
|
||||
pub(crate) struct VecWithNames<T: Clone> {
|
||||
values: Vec<T>,
|
||||
pub(crate) values: Vec<T>,
|
||||
keys: Vec<String>,
|
||||
}
|
||||
|
||||
@@ -248,9 +248,6 @@ impl<T: Clone> VecWithNames<T> {
|
||||
fn values_mut(&mut self) -> impl Iterator<Item = &mut T> + '_ {
|
||||
self.values.iter_mut()
|
||||
}
|
||||
fn entries(&self) -> impl Iterator<Item = (&str, &T)> + '_ {
|
||||
self.keys().zip(self.values.iter())
|
||||
}
|
||||
fn is_empty(&self) -> bool {
|
||||
self.keys.is_empty()
|
||||
}
|
||||
@@ -336,8 +333,9 @@ mod tests {
|
||||
use crate::aggregation::intermediate_agg_result::IntermediateAggregationResults;
|
||||
use crate::aggregation::segment_agg_result::DOC_BLOCK_SIZE;
|
||||
use crate::aggregation::DistributedAggregationCollector;
|
||||
use crate::indexer::NoMergePolicy;
|
||||
use crate::query::{AllQuery, TermQuery};
|
||||
use crate::schema::{Cardinality, IndexRecordOption, Schema, TextFieldIndexing, FAST, STRING};
|
||||
use crate::schema::{IndexRecordOption, Schema, TextFieldIndexing, FAST, STRING};
|
||||
use crate::{DateTime, Index, Term};
|
||||
|
||||
fn get_avg_req(field_name: &str) -> Aggregation {
|
||||
@@ -432,19 +430,19 @@ mod tests {
|
||||
let text_field = schema_builder.add_text_field("text", text_fieldtype.clone());
|
||||
let text_field_id = schema_builder.add_text_field("text_id", text_fieldtype);
|
||||
let string_field_id = schema_builder.add_text_field("string_id", STRING | FAST);
|
||||
let score_fieldtype =
|
||||
crate::schema::NumericOptions::default().set_fast(Cardinality::SingleValue);
|
||||
let score_fieldtype = crate::schema::NumericOptions::default().set_fast();
|
||||
let score_field = schema_builder.add_u64_field("score", score_fieldtype.clone());
|
||||
let score_field_f64 = schema_builder.add_f64_field("score_f64", score_fieldtype.clone());
|
||||
let score_field_i64 = schema_builder.add_i64_field("score_i64", score_fieldtype);
|
||||
let fraction_field = schema_builder.add_f64_field(
|
||||
"fraction_f64",
|
||||
crate::schema::NumericOptions::default().set_fast(Cardinality::SingleValue),
|
||||
crate::schema::NumericOptions::default().set_fast(),
|
||||
);
|
||||
let index = Index::create_in_ram(schema_builder.build());
|
||||
{
|
||||
// let mut index_writer = index.writer_for_tests()?;
|
||||
let mut index_writer = index.writer_with_num_threads(1, 30_000_000)?;
|
||||
index_writer.set_merge_policy(Box::new(NoMergePolicy));
|
||||
for values in segment_and_values {
|
||||
for (i, term) in values {
|
||||
let i = *i;
|
||||
@@ -656,13 +654,11 @@ mod tests {
|
||||
let text_field = schema_builder.add_text_field("text", text_fieldtype);
|
||||
let date_field = schema_builder.add_date_field("date", FAST);
|
||||
schema_builder.add_text_field("dummy_text", STRING);
|
||||
let score_fieldtype =
|
||||
crate::schema::NumericOptions::default().set_fast(Cardinality::SingleValue);
|
||||
let score_fieldtype = crate::schema::NumericOptions::default().set_fast();
|
||||
let score_field = schema_builder.add_u64_field("score", score_fieldtype.clone());
|
||||
let score_field_f64 = schema_builder.add_f64_field("score_f64", score_fieldtype.clone());
|
||||
|
||||
let multivalue =
|
||||
crate::schema::NumericOptions::default().set_fast(Cardinality::MultiValues);
|
||||
let multivalue = crate::schema::NumericOptions::default().set_fast();
|
||||
let scores_field_i64 = schema_builder.add_i64_field("scores_i64", multivalue);
|
||||
|
||||
let score_field_i64 = schema_builder.add_i64_field("score_i64", score_fieldtype);
|
||||
@@ -1168,6 +1164,9 @@ mod tests {
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use crate::aggregation::bucket::CustomOrder;
|
||||
use crate::aggregation::bucket::Order;
|
||||
use crate::aggregation::bucket::OrderTarget;
|
||||
use rand::prelude::SliceRandom;
|
||||
use rand::{thread_rng, Rng};
|
||||
use test::{self, Bencher};
|
||||
@@ -1177,7 +1176,7 @@ mod tests {
|
||||
use crate::aggregation::metric::StatsAggregation;
|
||||
use crate::query::AllQuery;
|
||||
|
||||
fn get_test_index_bench(merge_segments: bool) -> crate::Result<Index> {
|
||||
fn get_test_index_bench(_merge_segments: bool) -> crate::Result<Index> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let text_fieldtype = crate::schema::TextOptions::default()
|
||||
.set_indexing_options(
|
||||
@@ -1189,20 +1188,19 @@ mod tests {
|
||||
schema_builder.add_text_field("text_many_terms", STRING | FAST);
|
||||
let text_field_few_terms =
|
||||
schema_builder.add_text_field("text_few_terms", STRING | FAST);
|
||||
let score_fieldtype =
|
||||
crate::schema::NumericOptions::default().set_fast(Cardinality::SingleValue);
|
||||
let score_fieldtype = crate::schema::NumericOptions::default().set_fast();
|
||||
let score_field = schema_builder.add_u64_field("score", score_fieldtype.clone());
|
||||
let score_field_f64 =
|
||||
schema_builder.add_f64_field("score_f64", score_fieldtype.clone());
|
||||
let score_field_i64 = schema_builder.add_i64_field("score_i64", score_fieldtype);
|
||||
let index = Index::create_from_tempdir(schema_builder.build())?;
|
||||
let few_terms_data = vec!["INFO", "ERROR", "WARN", "DEBUG"];
|
||||
let many_terms_data = (0..15_000)
|
||||
let many_terms_data = (0..150_000)
|
||||
.map(|num| format!("author{}", num))
|
||||
.collect::<Vec<_>>();
|
||||
{
|
||||
let mut rng = thread_rng();
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000)?;
|
||||
// writing the segment
|
||||
for _ in 0..1_000_000 {
|
||||
let val: f64 = rng.gen_range(0.0..1_000_000.0);
|
||||
@@ -1217,14 +1215,6 @@ mod tests {
|
||||
}
|
||||
index_writer.commit()?;
|
||||
}
|
||||
if merge_segments {
|
||||
let segment_ids = index
|
||||
.searchable_segment_ids()
|
||||
.expect("Searchable segments failed.");
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.merge(&segment_ids).wait()?;
|
||||
index_writer.wait_merging_threads()?;
|
||||
}
|
||||
|
||||
Ok(index)
|
||||
}
|
||||
@@ -1376,7 +1366,42 @@ mod tests {
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_aggregation_terms_many(b: &mut Bencher) {
|
||||
fn bench_aggregation_terms_many_with_sub_agg(b: &mut Bencher) {
|
||||
let index = get_test_index_bench(false).unwrap();
|
||||
let reader = index.reader().unwrap();
|
||||
|
||||
b.iter(|| {
|
||||
let sub_agg_req: Aggregations = vec![(
|
||||
"average_f64".to_string(),
|
||||
Aggregation::Metric(MetricAggregation::Average(
|
||||
AverageAggregation::from_field_name("score_f64".to_string()),
|
||||
)),
|
||||
)]
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let agg_req: Aggregations = vec![(
|
||||
"my_texts".to_string(),
|
||||
Aggregation::Bucket(BucketAggregation {
|
||||
bucket_agg: BucketAggregationType::Terms(TermsAggregation {
|
||||
field: "text_many_terms".to_string(),
|
||||
..Default::default()
|
||||
}),
|
||||
sub_aggregation: sub_agg_req,
|
||||
}),
|
||||
)]
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req, None, index.schema());
|
||||
|
||||
let searcher = reader.searcher();
|
||||
searcher.search(&AllQuery, &collector).unwrap()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_aggregation_terms_many2(b: &mut Bencher) {
|
||||
let index = get_test_index_bench(false).unwrap();
|
||||
let reader = index.reader().unwrap();
|
||||
|
||||
@@ -1401,6 +1426,36 @@ mod tests {
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_aggregation_terms_many_order_by_term(b: &mut Bencher) {
|
||||
let index = get_test_index_bench(false).unwrap();
|
||||
let reader = index.reader().unwrap();
|
||||
|
||||
b.iter(|| {
|
||||
let agg_req: Aggregations = vec![(
|
||||
"my_texts".to_string(),
|
||||
Aggregation::Bucket(BucketAggregation {
|
||||
bucket_agg: BucketAggregationType::Terms(TermsAggregation {
|
||||
field: "text_many_terms".to_string(),
|
||||
order: Some(CustomOrder {
|
||||
order: Order::Desc,
|
||||
target: OrderTarget::Key,
|
||||
}),
|
||||
..Default::default()
|
||||
}),
|
||||
sub_aggregation: Default::default(),
|
||||
}),
|
||||
)]
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req, None, index.schema());
|
||||
|
||||
let searcher = reader.searcher();
|
||||
searcher.search(&AllQuery, &collector).unwrap()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_aggregation_range_only(b: &mut Bencher) {
|
||||
let index = get_test_index_bench(false).unwrap();
|
||||
|
||||
@@ -25,15 +25,90 @@ use crate::{DocId, TantivyError};
|
||||
pub(crate) const DOC_BLOCK_SIZE: usize = 64;
|
||||
pub(crate) type DocBlock = [DocId; DOC_BLOCK_SIZE];
|
||||
|
||||
#[derive(Clone, PartialEq)]
|
||||
pub(crate) struct SegmentAggregationResultsCollector {
|
||||
pub(crate) trait SegmentAggregationCollector: CollectorClone + Debug {
|
||||
fn into_intermediate_aggregations_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
) -> crate::Result<IntermediateAggregationResults>;
|
||||
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
) -> crate::Result<()>;
|
||||
|
||||
fn flush_staged_docs(
|
||||
&mut self,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
force_flush: bool,
|
||||
) -> crate::Result<()>;
|
||||
}
|
||||
|
||||
pub(crate) trait CollectorClone {
|
||||
fn clone_box(&self) -> Box<dyn SegmentAggregationCollector>;
|
||||
}
|
||||
|
||||
impl<T> CollectorClone for T
|
||||
where
|
||||
T: 'static + SegmentAggregationCollector + Clone,
|
||||
{
|
||||
fn clone_box(&self) -> Box<dyn SegmentAggregationCollector> {
|
||||
Box::new(self.clone())
|
||||
}
|
||||
}
|
||||
|
||||
impl Clone for Box<dyn SegmentAggregationCollector> {
|
||||
fn clone(&self) -> Box<dyn SegmentAggregationCollector> {
|
||||
self.clone_box()
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn build_segment_agg_collector(
|
||||
req: &AggregationsWithAccessor,
|
||||
) -> crate::Result<Box<dyn SegmentAggregationCollector>> {
|
||||
// Single metric special case
|
||||
if req.buckets.is_empty() && req.metrics.len() == 1 {
|
||||
let req = &req.metrics.values[0];
|
||||
let stats_collector = match &req.metric {
|
||||
MetricAggregation::Average(AverageAggregation { .. }) => {
|
||||
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Average)
|
||||
}
|
||||
MetricAggregation::Count(CountAggregation { .. }) => {
|
||||
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Count)
|
||||
}
|
||||
MetricAggregation::Max(MaxAggregation { .. }) => {
|
||||
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Max)
|
||||
}
|
||||
MetricAggregation::Min(MinAggregation { .. }) => {
|
||||
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Min)
|
||||
}
|
||||
MetricAggregation::Stats(StatsAggregation { .. }) => {
|
||||
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Stats)
|
||||
}
|
||||
MetricAggregation::Sum(SumAggregation { .. }) => {
|
||||
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Sum)
|
||||
}
|
||||
};
|
||||
|
||||
return Ok(Box::new(stats_collector));
|
||||
}
|
||||
|
||||
let agg = GenericSegmentAggregationResultsCollector::from_req_and_validate(req)?;
|
||||
Ok(Box::new(agg))
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
/// The GenericSegmentAggregationResultsCollector is the generic version of the collector, which
|
||||
/// can handle arbitrary complexity of sub-aggregations. Ideally we never have to pick this one
|
||||
/// and can provide specialized versions instead, that remove some of its overhead.
|
||||
pub(crate) struct GenericSegmentAggregationResultsCollector {
|
||||
pub(crate) metrics: Option<VecWithNames<SegmentMetricResultCollector>>,
|
||||
pub(crate) buckets: Option<VecWithNames<SegmentBucketResultCollector>>,
|
||||
staged_docs: DocBlock,
|
||||
num_staged_docs: usize,
|
||||
}
|
||||
|
||||
impl Default for SegmentAggregationResultsCollector {
|
||||
impl Default for GenericSegmentAggregationResultsCollector {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
metrics: Default::default(),
|
||||
@@ -44,7 +119,7 @@ impl Default for SegmentAggregationResultsCollector {
|
||||
}
|
||||
}
|
||||
|
||||
impl Debug for SegmentAggregationResultsCollector {
|
||||
impl Debug for GenericSegmentAggregationResultsCollector {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("SegmentAggregationResultsCollector")
|
||||
.field("metrics", &self.metrics)
|
||||
@@ -55,9 +130,9 @@ impl Debug for SegmentAggregationResultsCollector {
|
||||
}
|
||||
}
|
||||
|
||||
impl SegmentAggregationResultsCollector {
|
||||
pub fn into_intermediate_aggregations_result(
|
||||
self,
|
||||
impl SegmentAggregationCollector for GenericSegmentAggregationResultsCollector {
|
||||
fn into_intermediate_aggregations_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
) -> crate::Result<IntermediateAggregationResults> {
|
||||
let buckets = if let Some(buckets) = self.buckets {
|
||||
@@ -75,47 +150,7 @@ impl SegmentAggregationResultsCollector {
|
||||
Ok(IntermediateAggregationResults { metrics, buckets })
|
||||
}
|
||||
|
||||
pub(crate) fn from_req_and_validate(req: &AggregationsWithAccessor) -> crate::Result<Self> {
|
||||
let buckets = req
|
||||
.buckets
|
||||
.entries()
|
||||
.map(|(key, req)| {
|
||||
Ok((
|
||||
key.to_string(),
|
||||
SegmentBucketResultCollector::from_req_and_validate(req)?,
|
||||
))
|
||||
})
|
||||
.collect::<crate::Result<Vec<(String, _)>>>()?;
|
||||
let metrics = req
|
||||
.metrics
|
||||
.entries()
|
||||
.map(|(key, req)| {
|
||||
Ok((
|
||||
key.to_string(),
|
||||
SegmentMetricResultCollector::from_req_and_validate(req)?,
|
||||
))
|
||||
})
|
||||
.collect::<crate::Result<Vec<(String, _)>>>()?;
|
||||
let metrics = if metrics.is_empty() {
|
||||
None
|
||||
} else {
|
||||
Some(VecWithNames::from_entries(metrics))
|
||||
};
|
||||
let buckets = if buckets.is_empty() {
|
||||
None
|
||||
} else {
|
||||
Some(VecWithNames::from_entries(buckets))
|
||||
};
|
||||
Ok(SegmentAggregationResultsCollector {
|
||||
metrics,
|
||||
buckets,
|
||||
staged_docs: [0; DOC_BLOCK_SIZE],
|
||||
num_staged_docs: 0,
|
||||
})
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub(crate) fn collect(
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
@@ -128,7 +163,7 @@ impl SegmentAggregationResultsCollector {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn flush_staged_docs(
|
||||
fn flush_staged_docs(
|
||||
&mut self,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
force_flush: bool,
|
||||
@@ -162,6 +197,66 @@ impl SegmentAggregationResultsCollector {
|
||||
}
|
||||
}
|
||||
|
||||
impl GenericSegmentAggregationResultsCollector {
|
||||
pub fn into_intermediate_aggregations_result(
|
||||
self,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
) -> crate::Result<IntermediateAggregationResults> {
|
||||
let buckets = if let Some(buckets) = self.buckets {
|
||||
let entries = buckets
|
||||
.into_iter()
|
||||
.zip(agg_with_accessor.buckets.values())
|
||||
.map(|((key, bucket), acc)| Ok((key, bucket.into_intermediate_bucket_result(acc)?)))
|
||||
.collect::<crate::Result<Vec<(String, _)>>>()?;
|
||||
Some(VecWithNames::from_entries(entries))
|
||||
} else {
|
||||
None
|
||||
};
|
||||
let metrics = self.metrics.map(VecWithNames::from_other);
|
||||
|
||||
Ok(IntermediateAggregationResults { metrics, buckets })
|
||||
}
|
||||
|
||||
pub(crate) fn from_req_and_validate(req: &AggregationsWithAccessor) -> crate::Result<Self> {
|
||||
let buckets = req
|
||||
.buckets
|
||||
.iter()
|
||||
.map(|(key, req)| {
|
||||
Ok((
|
||||
key.to_string(),
|
||||
SegmentBucketResultCollector::from_req_and_validate(req)?,
|
||||
))
|
||||
})
|
||||
.collect::<crate::Result<Vec<(String, _)>>>()?;
|
||||
let metrics = req
|
||||
.metrics
|
||||
.iter()
|
||||
.map(|(key, req)| {
|
||||
Ok((
|
||||
key.to_string(),
|
||||
SegmentMetricResultCollector::from_req_and_validate(req)?,
|
||||
))
|
||||
})
|
||||
.collect::<crate::Result<Vec<(String, _)>>>()?;
|
||||
let metrics = if metrics.is_empty() {
|
||||
None
|
||||
} else {
|
||||
Some(VecWithNames::from_entries(metrics))
|
||||
};
|
||||
let buckets = if buckets.is_empty() {
|
||||
None
|
||||
} else {
|
||||
Some(VecWithNames::from_entries(buckets))
|
||||
};
|
||||
Ok(GenericSegmentAggregationResultsCollector {
|
||||
metrics,
|
||||
buckets,
|
||||
staged_docs: [0; DOC_BLOCK_SIZE],
|
||||
num_staged_docs: 0,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub(crate) enum SegmentMetricResultCollector {
|
||||
Stats(SegmentStatsCollector),
|
||||
@@ -205,7 +300,7 @@ impl SegmentMetricResultCollector {
|
||||
pub(crate) fn collect_block(&mut self, doc: &[DocId], metric: &MetricAggregationWithAccessor) {
|
||||
match self {
|
||||
SegmentMetricResultCollector::Stats(stats_collector) => {
|
||||
stats_collector.collect_block(doc, &*metric.accessor);
|
||||
stats_collector.collect_block(doc, &metric.accessor);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -215,7 +310,7 @@ impl SegmentMetricResultCollector {
|
||||
/// segments.
|
||||
/// The typical structure of Map<Key, Bucket> is not suitable during collection for performance
|
||||
/// reasons.
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub(crate) enum SegmentBucketResultCollector {
|
||||
Range(SegmentRangeCollector),
|
||||
Histogram(Box<SegmentHistogramCollector>),
|
||||
@@ -243,14 +338,7 @@ impl SegmentBucketResultCollector {
|
||||
pub fn from_req_and_validate(req: &BucketAggregationWithAccessor) -> crate::Result<Self> {
|
||||
match &req.bucket_agg {
|
||||
BucketAggregationType::Terms(terms_req) => Ok(Self::Terms(Box::new(
|
||||
SegmentTermCollector::from_req_and_validate(
|
||||
terms_req,
|
||||
&req.sub_aggregation,
|
||||
req.field_type,
|
||||
req.accessor
|
||||
.as_multi()
|
||||
.expect("unexpected fast field cardinality"),
|
||||
)?,
|
||||
SegmentTermCollector::from_req_and_validate(terms_req, &req.sub_aggregation)?,
|
||||
))),
|
||||
BucketAggregationType::Range(range_req) => {
|
||||
Ok(Self::Range(SegmentRangeCollector::from_req_and_validate(
|
||||
@@ -265,9 +353,7 @@ impl SegmentBucketResultCollector {
|
||||
histogram,
|
||||
&req.sub_aggregation,
|
||||
req.field_type,
|
||||
req.accessor
|
||||
.as_single()
|
||||
.expect("unexpected fast field cardinality"),
|
||||
&req.accessor,
|
||||
)?,
|
||||
))),
|
||||
}
|
||||
|
||||
@@ -1,12 +1,11 @@
|
||||
use std::cmp::Ordering;
|
||||
use std::collections::{btree_map, BTreeMap, BTreeSet, BinaryHeap};
|
||||
use std::iter::Peekable;
|
||||
use std::ops::Bound;
|
||||
use std::{u64, usize};
|
||||
use std::{io, u64, usize};
|
||||
|
||||
use crate::collector::{Collector, SegmentCollector};
|
||||
use crate::fastfield::FacetReader;
|
||||
use crate::schema::{Facet, Field};
|
||||
use crate::schema::Facet;
|
||||
use crate::{DocId, Score, SegmentOrdinal, SegmentReader};
|
||||
|
||||
struct Hit<'a> {
|
||||
@@ -119,7 +118,7 @@ fn facet_depth(facet_bytes: &[u8]) -> usize {
|
||||
/// let searcher = reader.searcher();
|
||||
///
|
||||
/// {
|
||||
/// let mut facet_collector = FacetCollector::for_field(facet);
|
||||
/// let mut facet_collector = FacetCollector::for_field("facet");
|
||||
/// facet_collector.add_facet("/lang");
|
||||
/// facet_collector.add_facet("/category");
|
||||
/// let facet_counts = searcher.search(&AllQuery, &facet_collector)?;
|
||||
@@ -135,7 +134,7 @@ fn facet_depth(facet_bytes: &[u8]) -> usize {
|
||||
/// }
|
||||
///
|
||||
/// {
|
||||
/// let mut facet_collector = FacetCollector::for_field(facet);
|
||||
/// let mut facet_collector = FacetCollector::for_field("facet");
|
||||
/// facet_collector.add_facet("/category/fiction");
|
||||
/// let facet_counts = searcher.search(&AllQuery, &facet_collector)?;
|
||||
///
|
||||
@@ -167,47 +166,18 @@ fn facet_depth(facet_bytes: &[u8]) -> usize {
|
||||
/// # assert!(example().is_ok());
|
||||
/// ```
|
||||
pub struct FacetCollector {
|
||||
field: Field,
|
||||
field_name: String,
|
||||
facets: BTreeSet<Facet>,
|
||||
}
|
||||
|
||||
pub struct FacetSegmentCollector {
|
||||
reader: FacetReader,
|
||||
facet_ords_buf: Vec<u64>,
|
||||
// facet_ord -> collapse facet_id
|
||||
collapse_mapping: Vec<usize>,
|
||||
// collapse facet_id -> count
|
||||
counts: Vec<u64>,
|
||||
// collapse facet_id -> facet_ord
|
||||
collapse_facet_ords: Vec<u64>,
|
||||
}
|
||||
|
||||
enum SkipResult {
|
||||
Found,
|
||||
NotFound,
|
||||
}
|
||||
|
||||
fn skip<'a, I: Iterator<Item = &'a Facet>>(
|
||||
target: &[u8],
|
||||
collapse_it: &mut Peekable<I>,
|
||||
) -> SkipResult {
|
||||
loop {
|
||||
match collapse_it.peek() {
|
||||
Some(facet_bytes) => match facet_bytes.encoded_str().as_bytes().cmp(target) {
|
||||
Ordering::Less => {}
|
||||
Ordering::Greater => {
|
||||
return SkipResult::NotFound;
|
||||
}
|
||||
Ordering::Equal => {
|
||||
return SkipResult::Found;
|
||||
}
|
||||
},
|
||||
None => {
|
||||
return SkipResult::NotFound;
|
||||
}
|
||||
}
|
||||
collapse_it.next();
|
||||
}
|
||||
// facet_ord -> compressed collapse facet_id
|
||||
compressed_collapse_mapping: Vec<usize>,
|
||||
// compressed collapse facet_id -> facet_ord
|
||||
unique_facet_ords: Vec<(u64, usize)>,
|
||||
}
|
||||
|
||||
impl FacetCollector {
|
||||
@@ -216,9 +186,9 @@ impl FacetCollector {
|
||||
///
|
||||
/// This function does not check whether the field
|
||||
/// is of the proper type.
|
||||
pub fn for_field(field: Field) -> FacetCollector {
|
||||
pub fn for_field(field_name: impl ToString) -> FacetCollector {
|
||||
FacetCollector {
|
||||
field,
|
||||
field_name: field_name.to_string(),
|
||||
facets: BTreeSet::default(),
|
||||
}
|
||||
}
|
||||
@@ -249,6 +219,29 @@ impl FacetCollector {
|
||||
}
|
||||
}
|
||||
|
||||
fn compress_mapping(mapping: &[(u64, usize)]) -> (Vec<usize>, Vec<(u64, usize)>) {
|
||||
// facet_ord -> collapse facet_id
|
||||
let mut compressed_collapse_mapping: Vec<usize> = Vec::with_capacity(mapping.len());
|
||||
// collapse facet_id -> facet_ord
|
||||
let mut unique_facet_ords: Vec<(u64, usize)> = Vec::new();
|
||||
if mapping.is_empty() {
|
||||
return (Vec::new(), Vec::new());
|
||||
}
|
||||
compressed_collapse_mapping.push(0);
|
||||
unique_facet_ords.push(mapping[0]);
|
||||
let mut last_facet_ord = mapping[0];
|
||||
let mut last_facet_id = 0;
|
||||
for &facet_ord in &mapping[1..] {
|
||||
if facet_ord != last_facet_ord {
|
||||
last_facet_id += 1;
|
||||
last_facet_ord = facet_ord;
|
||||
unique_facet_ords.push(facet_ord);
|
||||
}
|
||||
compressed_collapse_mapping.push(last_facet_id);
|
||||
}
|
||||
(compressed_collapse_mapping, unique_facet_ords)
|
||||
}
|
||||
|
||||
impl Collector for FacetCollector {
|
||||
type Fruit = FacetCounts;
|
||||
|
||||
@@ -259,59 +252,17 @@ impl Collector for FacetCollector {
|
||||
_: SegmentOrdinal,
|
||||
reader: &SegmentReader,
|
||||
) -> crate::Result<FacetSegmentCollector> {
|
||||
let facet_reader = reader.facet_reader(self.field)?;
|
||||
|
||||
let mut collapse_mapping = Vec::new();
|
||||
let mut counts = Vec::new();
|
||||
let mut collapse_facet_ords = Vec::new();
|
||||
|
||||
let mut collapse_facet_it = self.facets.iter().peekable();
|
||||
collapse_facet_ords.push(0);
|
||||
{
|
||||
let mut facet_streamer = facet_reader.facet_dict().range().into_stream()?;
|
||||
if facet_streamer.advance() {
|
||||
'outer: loop {
|
||||
// at the beginning of this loop, facet_streamer
|
||||
// is positioned on a term that has not been processed yet.
|
||||
let skip_result = skip(facet_streamer.key(), &mut collapse_facet_it);
|
||||
match skip_result {
|
||||
SkipResult::Found => {
|
||||
// we reach a facet we decided to collapse.
|
||||
let collapse_depth = facet_depth(facet_streamer.key());
|
||||
let mut collapsed_id = 0;
|
||||
collapse_mapping.push(0);
|
||||
while facet_streamer.advance() {
|
||||
let depth = facet_depth(facet_streamer.key());
|
||||
if depth <= collapse_depth {
|
||||
continue 'outer;
|
||||
}
|
||||
if depth == collapse_depth + 1 {
|
||||
collapsed_id = collapse_facet_ords.len();
|
||||
collapse_facet_ords.push(facet_streamer.term_ord());
|
||||
}
|
||||
collapse_mapping.push(collapsed_id);
|
||||
}
|
||||
break;
|
||||
}
|
||||
SkipResult::NotFound => {
|
||||
collapse_mapping.push(0);
|
||||
if !facet_streamer.advance() {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
counts.resize(collapse_facet_ords.len(), 0);
|
||||
|
||||
let facet_reader = reader.facet_reader(&self.field_name)?;
|
||||
let facet_dict = facet_reader.facet_dict();
|
||||
let collapse_mapping: Vec<(u64, usize)> =
|
||||
compute_collapse_mapping(facet_dict, &self.facets)?;
|
||||
let (compressed_collapse_mapping, unique_facet_ords) = compress_mapping(&collapse_mapping);
|
||||
let counts = vec![0u64; unique_facet_ords.len()];
|
||||
Ok(FacetSegmentCollector {
|
||||
reader: facet_reader,
|
||||
facet_ords_buf: Vec::with_capacity(255),
|
||||
collapse_mapping,
|
||||
compressed_collapse_mapping,
|
||||
counts,
|
||||
collapse_facet_ords,
|
||||
unique_facet_ords,
|
||||
})
|
||||
}
|
||||
|
||||
@@ -330,14 +281,78 @@ impl Collector for FacetCollector {
|
||||
}
|
||||
}
|
||||
|
||||
fn is_child_facet(parent_facet: &[u8], possible_child_facet: &[u8]) -> bool {
|
||||
if !possible_child_facet.starts_with(parent_facet) {
|
||||
return false;
|
||||
}
|
||||
possible_child_facet.get(parent_facet.len()).copied() == Some(0u8)
|
||||
}
|
||||
|
||||
fn compute_collapse_mapping_one(
|
||||
facet_terms: &mut columnar::Streamer,
|
||||
facet_bytes: &[u8],
|
||||
collapsed: &mut [(u64, usize)],
|
||||
) -> io::Result<bool> {
|
||||
let mut facet_child: Vec<u8> = Vec::new();
|
||||
let mut term_ord = 0;
|
||||
let offset = facet_bytes.len() + 1;
|
||||
let depth = facet_depth(facet_bytes);
|
||||
loop {
|
||||
match facet_terms.key().cmp(facet_bytes) {
|
||||
Ordering::Less | Ordering::Equal => {}
|
||||
Ordering::Greater => {
|
||||
if !is_child_facet(facet_bytes, facet_terms.key()) {
|
||||
return Ok(true);
|
||||
}
|
||||
let suffix = &facet_terms.key()[offset..];
|
||||
if facet_child.is_empty() || !is_child_facet(&facet_child, suffix) {
|
||||
facet_child.clear();
|
||||
term_ord = facet_terms.term_ord();
|
||||
let end = suffix
|
||||
.iter()
|
||||
.position(|b| *b == 0u8)
|
||||
.unwrap_or(suffix.len());
|
||||
facet_child.extend(&suffix[..end]);
|
||||
}
|
||||
collapsed[facet_terms.term_ord() as usize] = (term_ord, depth);
|
||||
}
|
||||
}
|
||||
if !facet_terms.advance() {
|
||||
return Ok(false);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_collapse_mapping(
|
||||
facet_dict: &columnar::Dictionary,
|
||||
facets: &BTreeSet<Facet>,
|
||||
) -> io::Result<Vec<(u64, usize)>> {
|
||||
let mut collapsed = vec![(u64::MAX, 0); facet_dict.num_terms()];
|
||||
if facets.is_empty() {
|
||||
return Ok(collapsed);
|
||||
}
|
||||
let mut facet_terms: columnar::Streamer = facet_dict.range().into_stream()?;
|
||||
if !facet_terms.advance() {
|
||||
return Ok(collapsed);
|
||||
}
|
||||
let mut facet_bytes = Vec::new();
|
||||
for facet in facets {
|
||||
facet_bytes.clear();
|
||||
facet_bytes.extend(facet.encoded_str().as_bytes());
|
||||
if !compute_collapse_mapping_one(&mut facet_terms, &facet_bytes, &mut collapsed[..])? {
|
||||
break;
|
||||
}
|
||||
}
|
||||
Ok(collapsed)
|
||||
}
|
||||
|
||||
impl SegmentCollector for FacetSegmentCollector {
|
||||
type Fruit = FacetCounts;
|
||||
|
||||
fn collect(&mut self, doc: DocId, _: Score) {
|
||||
self.reader.facet_ords(doc, &mut self.facet_ords_buf);
|
||||
let mut previous_collapsed_ord: usize = usize::MAX;
|
||||
for &facet_ord in &self.facet_ords_buf {
|
||||
let collapsed_ord = self.collapse_mapping[facet_ord as usize];
|
||||
for facet_ord in self.reader.facet_ords(doc) {
|
||||
let collapsed_ord = self.compressed_collapse_mapping[facet_ord as usize];
|
||||
self.counts[collapsed_ord] += u64::from(collapsed_ord != previous_collapsed_ord);
|
||||
previous_collapsed_ord = collapsed_ord;
|
||||
}
|
||||
@@ -355,9 +370,17 @@ impl SegmentCollector for FacetSegmentCollector {
|
||||
continue;
|
||||
}
|
||||
let mut facet = vec![];
|
||||
let facet_ord = self.collapse_facet_ords[collapsed_facet_ord];
|
||||
let (facet_ord, facet_depth) = self.unique_facet_ords[collapsed_facet_ord];
|
||||
// TODO handle errors.
|
||||
if facet_dict.ord_to_term(facet_ord, &mut facet).is_ok() {
|
||||
if let Some((end_collapsed_facet, _)) = facet
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_pos, &b)| b == 0u8)
|
||||
.nth(facet_depth)
|
||||
{
|
||||
facet.truncate(end_collapsed_facet);
|
||||
}
|
||||
if let Ok(facet) = Facet::from_encoded(facet) {
|
||||
facet_counts.insert(facet, count);
|
||||
}
|
||||
@@ -441,27 +464,114 @@ impl FacetCounts {
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::collections::BTreeSet;
|
||||
use std::iter;
|
||||
|
||||
use columnar::Dictionary;
|
||||
use rand::distributions::Uniform;
|
||||
use rand::prelude::SliceRandom;
|
||||
use rand::{thread_rng, Rng};
|
||||
|
||||
use super::{FacetCollector, FacetCounts};
|
||||
use crate::collector::facet_collector::compress_mapping;
|
||||
use crate::collector::Count;
|
||||
use crate::core::Index;
|
||||
use crate::query::{AllQuery, QueryParser, TermQuery};
|
||||
use crate::schema::{Document, Facet, FacetOptions, Field, IndexRecordOption, Schema};
|
||||
use crate::schema::{Document, Facet, FacetOptions, IndexRecordOption, Schema};
|
||||
use crate::Term;
|
||||
|
||||
fn test_collapse_mapping_aux(
|
||||
facet_terms: &[&str],
|
||||
facet_params: &[&str],
|
||||
expected_collapsed_mapping: &[(u64, usize)],
|
||||
) {
|
||||
let mut facets: Vec<Facet> = facet_terms.iter().map(Facet::from).collect();
|
||||
facets.sort();
|
||||
let facet_terms: Vec<&str> = facets.iter().map(|facet| facet.encoded_str()).collect();
|
||||
let dictionary = Dictionary::build_for_tests(&facet_terms);
|
||||
let facet_params: BTreeSet<Facet> = facet_params.iter().map(Facet::from).collect();
|
||||
let collapse_mapping = super::compute_collapse_mapping(&dictionary, &facet_params).unwrap();
|
||||
assert_eq!(&collapse_mapping[..], expected_collapsed_mapping);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_facet_collector_drilldown() -> crate::Result<()> {
|
||||
fn test_collapse_simple() {
|
||||
test_collapse_mapping_aux(&["/facet/a", "/facet/b"], &["/facet"], &[(0, 1), (1, 1)]);
|
||||
test_collapse_mapping_aux(
|
||||
&["/facet/a", "/facet/a2", "/facet/b"],
|
||||
&["/facet"],
|
||||
&[(0, 1), (1, 1), (2, 1)],
|
||||
);
|
||||
test_collapse_mapping_aux(&["/facet/a", "/facet/a/2"], &["/facet"], &[(0, 1), (0, 1)]);
|
||||
test_collapse_mapping_aux(
|
||||
&["/facet/a", "/facet/a/2", "/facet/b"],
|
||||
&["/facet"],
|
||||
&[(0, 1), (0, 1), (2, 1)],
|
||||
);
|
||||
}
|
||||
|
||||
fn test_compress_mapping_aux(
|
||||
collapsed_mapping: &[(u64, usize)],
|
||||
expected_compressed_collapsed_mapping: &[usize],
|
||||
expected_unique_facet_ords: &[(u64, usize)],
|
||||
) {
|
||||
let (compressed_collapsed_mapping, unique_facet_ords) =
|
||||
compress_mapping(&collapsed_mapping);
|
||||
assert_eq!(
|
||||
compressed_collapsed_mapping,
|
||||
expected_compressed_collapsed_mapping
|
||||
);
|
||||
assert_eq!(unique_facet_ords, expected_unique_facet_ords);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compress_mapping() {
|
||||
test_compress_mapping_aux(&[], &[], &[]);
|
||||
test_compress_mapping_aux(&[(1, 2)], &[0], &[(1, 2)]);
|
||||
test_compress_mapping_aux(&[(1, 2), (1, 2)], &[0, 0], &[(1, 2)]);
|
||||
test_compress_mapping_aux(
|
||||
&[(1, 2), (5, 2), (5, 2), (6, 3), (8, 3)],
|
||||
&[0, 1, 1, 2, 3],
|
||||
&[(1, 2), (5, 2), (6, 3), (8, 3)],
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_facet_collector_simple() {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let facet_field = schema_builder.add_facet_field("facet", FacetOptions::default());
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests().unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(facet_field=>Facet::from("/facet/a")))
|
||||
.unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(facet_field=>Facet::from("/facet/b")))
|
||||
.unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(facet_field=>Facet::from("/facet/b")))
|
||||
.unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(facet_field=>Facet::from("/facet/c")))
|
||||
.unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
let searcher = index.reader().unwrap().searcher();
|
||||
let mut facet_collector = FacetCollector::for_field("facet");
|
||||
facet_collector.add_facet("/facet");
|
||||
let counts: FacetCounts = searcher.search(&AllQuery, &facet_collector).unwrap();
|
||||
let facets: Vec<(&Facet, u64)> = counts.top_k("/facet", 1);
|
||||
assert_eq!(facets, vec![(&Facet::from("/facet/b"), 2)]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_facet_collector_drilldown() {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let facet_field = schema_builder.add_facet_field("facet", FacetOptions::default());
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
let mut index_writer = index.writer_for_tests().unwrap();
|
||||
let num_facets: usize = 3 * 4 * 5;
|
||||
let facets: Vec<Facet> = (0..num_facets)
|
||||
.map(|mut n| {
|
||||
@@ -476,14 +586,14 @@ mod tests {
|
||||
for i in 0..num_facets * 10 {
|
||||
let mut doc = Document::new();
|
||||
doc.add_facet(facet_field, facets[i % num_facets].clone());
|
||||
index_writer.add_document(doc)?;
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
index_writer.commit()?;
|
||||
let reader = index.reader()?;
|
||||
index_writer.commit().unwrap();
|
||||
let reader = index.reader().unwrap();
|
||||
let searcher = reader.searcher();
|
||||
let mut facet_collector = FacetCollector::for_field(facet_field);
|
||||
let mut facet_collector = FacetCollector::for_field("facet");
|
||||
facet_collector.add_facet(Facet::from("/top1"));
|
||||
let counts = searcher.search(&AllQuery, &facet_collector)?;
|
||||
let counts = searcher.search(&AllQuery, &facet_collector).unwrap();
|
||||
|
||||
{
|
||||
let facets: Vec<(String, u64)> = counts
|
||||
@@ -503,7 +613,6 @@ mod tests {
|
||||
.collect::<Vec<_>>()
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -511,7 +620,7 @@ mod tests {
|
||||
expected = "Tried to add a facet which is a descendant of an already added facet."
|
||||
)]
|
||||
fn test_misused_facet_collector() {
|
||||
let mut facet_collector = FacetCollector::for_field(Field::from_field_id(0));
|
||||
let mut facet_collector = FacetCollector::for_field("facet");
|
||||
facet_collector.add_facet(Facet::from("/country"));
|
||||
facet_collector.add_facet(Facet::from("/country/europe"));
|
||||
}
|
||||
@@ -533,7 +642,7 @@ mod tests {
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
assert_eq!(searcher.num_docs(), 1);
|
||||
let mut facet_collector = FacetCollector::for_field(facet_field);
|
||||
let mut facet_collector = FacetCollector::for_field("facets");
|
||||
facet_collector.add_facet("/subjects");
|
||||
let counts = searcher.search(&AllQuery, &facet_collector)?;
|
||||
let facets: Vec<(&Facet, u64)> = counts.get("/subjects").collect();
|
||||
@@ -593,7 +702,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_non_used_facet_collector() {
|
||||
let mut facet_collector = FacetCollector::for_field(Field::from_field_id(0));
|
||||
let mut facet_collector = FacetCollector::for_field("facet");
|
||||
facet_collector.add_facet(Facet::from("/country"));
|
||||
facet_collector.add_facet(Facet::from("/countryeurope"));
|
||||
}
|
||||
@@ -630,7 +739,7 @@ mod tests {
|
||||
index_writer.commit().unwrap();
|
||||
let searcher = index.reader().unwrap().searcher();
|
||||
|
||||
let mut facet_collector = FacetCollector::for_field(facet_field);
|
||||
let mut facet_collector = FacetCollector::for_field("facet");
|
||||
facet_collector.add_facet("/facet");
|
||||
let counts: FacetCounts = searcher.search(&AllQuery, &facet_collector).unwrap();
|
||||
|
||||
@@ -670,7 +779,7 @@ mod tests {
|
||||
index_writer.commit()?;
|
||||
|
||||
let searcher = index.reader()?.searcher();
|
||||
let mut facet_collector = FacetCollector::for_field(facet_field);
|
||||
let mut facet_collector = FacetCollector::for_field("facet");
|
||||
facet_collector.add_facet("/facet");
|
||||
let counts: FacetCounts = searcher.search(&AllQuery, &facet_collector)?;
|
||||
|
||||
@@ -720,7 +829,7 @@ mod bench {
|
||||
let reader = index.reader().unwrap();
|
||||
b.iter(|| {
|
||||
let searcher = reader.searcher();
|
||||
let facet_collector = FacetCollector::for_field(facet_field);
|
||||
let facet_collector = FacetCollector::for_field("facet");
|
||||
searcher.search(&AllQuery, &facet_collector).unwrap();
|
||||
});
|
||||
}
|
||||
|
||||
@@ -12,10 +12,9 @@
|
||||
use std::marker::PhantomData;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
use columnar::{ColumnValues, DynamicColumn, HasAssociatedColumnType};
|
||||
|
||||
use crate::collector::{Collector, SegmentCollector};
|
||||
use crate::fastfield::FastValue;
|
||||
use crate::schema::Field;
|
||||
use crate::{Score, SegmentReader, TantivyError};
|
||||
|
||||
@@ -61,7 +60,7 @@ use crate::{Score, SegmentReader, TantivyError};
|
||||
/// # Ok(())
|
||||
/// # }
|
||||
/// ```
|
||||
pub struct FilterCollector<TCollector, TPredicate, TPredicateValue: FastValue>
|
||||
pub struct FilterCollector<TCollector, TPredicate, TPredicateValue: Default>
|
||||
where TPredicate: 'static + Clone
|
||||
{
|
||||
field: Field,
|
||||
@@ -70,7 +69,7 @@ where TPredicate: 'static + Clone
|
||||
t_predicate_value: PhantomData<TPredicateValue>,
|
||||
}
|
||||
|
||||
impl<TCollector, TPredicate, TPredicateValue: FastValue>
|
||||
impl<TCollector, TPredicate, TPredicateValue: Default>
|
||||
FilterCollector<TCollector, TPredicate, TPredicateValue>
|
||||
where
|
||||
TCollector: Collector + Send + Sync,
|
||||
@@ -91,12 +90,13 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl<TCollector, TPredicate, TPredicateValue: FastValue> Collector
|
||||
impl<TCollector, TPredicate, TPredicateValue: Default> Collector
|
||||
for FilterCollector<TCollector, TPredicate, TPredicateValue>
|
||||
where
|
||||
TCollector: Collector + Send + Sync,
|
||||
TPredicate: 'static + Fn(TPredicateValue) -> bool + Send + Sync + Clone,
|
||||
TPredicateValue: FastValue,
|
||||
TPredicateValue: HasAssociatedColumnType,
|
||||
DynamicColumn: Into<Option<columnar::Column<TPredicateValue>>>,
|
||||
{
|
||||
// That's the type of our result.
|
||||
// Our standard deviation will be a float.
|
||||
@@ -117,20 +117,10 @@ where
|
||||
field_entry.name()
|
||||
)));
|
||||
}
|
||||
let requested_type = TPredicateValue::to_type();
|
||||
let field_schema_type = field_entry.field_type().value_type();
|
||||
if requested_type != field_schema_type {
|
||||
return Err(TantivyError::SchemaError(format!(
|
||||
"Field {:?} is of type {:?}!={:?}",
|
||||
field_entry.name(),
|
||||
requested_type,
|
||||
field_schema_type
|
||||
)));
|
||||
}
|
||||
|
||||
let fast_field_reader = segment_reader
|
||||
.fast_fields()
|
||||
.typed_fast_field_reader(schema.get_field_name(self.field))?;
|
||||
.typed_column_first_or_default(schema.get_field_name(self.field))?;
|
||||
|
||||
let segment_collector = self
|
||||
.collector
|
||||
@@ -159,9 +149,9 @@ where
|
||||
pub struct FilterSegmentCollector<TSegmentCollector, TPredicate, TPredicateValue>
|
||||
where
|
||||
TPredicate: 'static,
|
||||
TPredicateValue: FastValue,
|
||||
DynamicColumn: Into<Option<columnar::Column<TPredicateValue>>>,
|
||||
{
|
||||
fast_field_reader: Arc<dyn Column<TPredicateValue>>,
|
||||
fast_field_reader: Arc<dyn ColumnValues<TPredicateValue>>,
|
||||
segment_collector: TSegmentCollector,
|
||||
predicate: TPredicate,
|
||||
t_predicate_value: PhantomData<TPredicateValue>,
|
||||
@@ -171,8 +161,9 @@ impl<TSegmentCollector, TPredicate, TPredicateValue> SegmentCollector
|
||||
for FilterSegmentCollector<TSegmentCollector, TPredicate, TPredicateValue>
|
||||
where
|
||||
TSegmentCollector: SegmentCollector,
|
||||
TPredicateValue: HasAssociatedColumnType,
|
||||
TPredicate: 'static + Fn(TPredicateValue) -> bool + Send + Sync,
|
||||
TPredicateValue: FastValue,
|
||||
DynamicColumn: Into<Option<columnar::Column<TPredicateValue>>>,
|
||||
{
|
||||
type Fruit = TSegmentCollector::Fruit;
|
||||
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use columnar::ColumnValues;
|
||||
use fastdivide::DividerU64;
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use crate::collector::{Collector, SegmentCollector};
|
||||
use crate::fastfield::FastValue;
|
||||
use crate::fastfield::{FastFieldNotAvailableError, FastValue};
|
||||
use crate::schema::Type;
|
||||
use crate::{DocId, Score};
|
||||
|
||||
@@ -87,14 +87,14 @@ impl HistogramComputer {
|
||||
}
|
||||
pub struct SegmentHistogramCollector {
|
||||
histogram_computer: HistogramComputer,
|
||||
ff_reader: Arc<dyn Column<u64>>,
|
||||
column_u64: Arc<dyn ColumnValues<u64>>,
|
||||
}
|
||||
|
||||
impl SegmentCollector for SegmentHistogramCollector {
|
||||
type Fruit = Vec<u64>;
|
||||
|
||||
fn collect(&mut self, doc: DocId, _score: Score) {
|
||||
let value = self.ff_reader.get_val(doc);
|
||||
let value = self.column_u64.get_val(doc);
|
||||
self.histogram_computer.add_value(value);
|
||||
}
|
||||
|
||||
@@ -112,14 +112,18 @@ impl Collector for HistogramCollector {
|
||||
_segment_local_id: crate::SegmentOrdinal,
|
||||
segment: &crate::SegmentReader,
|
||||
) -> crate::Result<Self::Child> {
|
||||
let ff_reader = segment.fast_fields().u64_lenient(&self.field)?;
|
||||
let column_opt = segment.fast_fields().u64_lenient(&self.field)?;
|
||||
let column = column_opt.ok_or_else(|| FastFieldNotAvailableError {
|
||||
field_name: self.field.clone(),
|
||||
})?;
|
||||
let column_u64 = column.first_or_default_col(0u64);
|
||||
Ok(SegmentHistogramCollector {
|
||||
histogram_computer: HistogramComputer {
|
||||
counts: vec![0; self.num_buckets],
|
||||
min_value: self.min_value,
|
||||
divider: self.divider,
|
||||
},
|
||||
ff_reader,
|
||||
column_u64,
|
||||
})
|
||||
}
|
||||
|
||||
|
||||
@@ -104,7 +104,6 @@ pub use self::custom_score_top_collector::{CustomScorer, CustomSegmentScorer};
|
||||
|
||||
mod tweak_score_top_collector;
|
||||
pub use self::tweak_score_top_collector::{ScoreSegmentTweaker, ScoreTweaker};
|
||||
|
||||
mod facet_collector;
|
||||
pub use self::facet_collector::{FacetCollector, FacetCounts};
|
||||
use crate::query::Weight;
|
||||
|
||||
@@ -1,13 +1,12 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
use columnar::ColumnValues;
|
||||
|
||||
use super::*;
|
||||
use crate::collector::{Count, FilterCollector, TopDocs};
|
||||
use crate::core::SegmentReader;
|
||||
use crate::fastfield::BytesFastFieldReader;
|
||||
use crate::query::{AllQuery, QueryParser};
|
||||
use crate::schema::{Field, Schema, FAST, TEXT};
|
||||
use crate::schema::{Schema, FAST, TEXT};
|
||||
use crate::time::format_description::well_known::Rfc3339;
|
||||
use crate::time::OffsetDateTime;
|
||||
use crate::{doc, DateTime, DocAddress, DocId, Document, Index, Score, Searcher, SegmentOrdinal};
|
||||
@@ -58,9 +57,10 @@ pub fn test_filter_collector() -> crate::Result<()> {
|
||||
|
||||
assert_eq!(filtered_top_docs.len(), 0);
|
||||
|
||||
fn date_filter(value: DateTime) -> bool {
|
||||
(value.into_utc() - OffsetDateTime::parse("2019-04-09T00:00:00+00:00", &Rfc3339).unwrap())
|
||||
.whole_weeks()
|
||||
fn date_filter(value: columnar::DateTime) -> bool {
|
||||
(crate::DateTime::from(value).into_utc()
|
||||
- OffsetDateTime::parse("2019-04-09T00:00:00+00:00", &Rfc3339).unwrap())
|
||||
.whole_weeks()
|
||||
> 0
|
||||
}
|
||||
|
||||
@@ -160,12 +160,14 @@ pub struct FastFieldTestCollector {
|
||||
|
||||
pub struct FastFieldSegmentCollector {
|
||||
vals: Vec<u64>,
|
||||
reader: Arc<dyn Column<u64>>,
|
||||
reader: Arc<dyn columnar::ColumnValues>,
|
||||
}
|
||||
|
||||
impl FastFieldTestCollector {
|
||||
pub fn for_field(field: String) -> FastFieldTestCollector {
|
||||
FastFieldTestCollector { field }
|
||||
pub fn for_field(field: impl ToString) -> FastFieldTestCollector {
|
||||
FastFieldTestCollector {
|
||||
field: field.to_string(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -210,64 +212,62 @@ impl SegmentCollector for FastFieldSegmentCollector {
|
||||
}
|
||||
}
|
||||
|
||||
/// Collects in order all of the fast field bytes for all of the
|
||||
/// docs in the `DocSet`
|
||||
///
|
||||
/// This collector is mainly useful for tests.
|
||||
pub struct BytesFastFieldTestCollector {
|
||||
field: Field,
|
||||
}
|
||||
// /// Collects in order all of the fast field bytes for all of the
|
||||
// /// docs in the `DocSet`
|
||||
// ///
|
||||
// /// This collector is mainly useful for tests.
|
||||
// pub struct BytesFastFieldTestCollector {
|
||||
// field: Field,
|
||||
// }
|
||||
|
||||
pub struct BytesFastFieldSegmentCollector {
|
||||
vals: Vec<u8>,
|
||||
reader: BytesFastFieldReader,
|
||||
}
|
||||
// pub struct BytesFastFieldSegmentCollector {
|
||||
// vals: Vec<u8>,
|
||||
// reader: BytesFastFieldReader,
|
||||
// }
|
||||
|
||||
impl BytesFastFieldTestCollector {
|
||||
pub fn for_field(field: Field) -> BytesFastFieldTestCollector {
|
||||
BytesFastFieldTestCollector { field }
|
||||
}
|
||||
}
|
||||
// impl BytesFastFieldTestCollector {
|
||||
// pub fn for_field(field: Field) -> BytesFastFieldTestCollector {
|
||||
// BytesFastFieldTestCollector { field }
|
||||
// }
|
||||
// }
|
||||
|
||||
impl Collector for BytesFastFieldTestCollector {
|
||||
type Fruit = Vec<u8>;
|
||||
type Child = BytesFastFieldSegmentCollector;
|
||||
// impl Collector for BytesFastFieldTestCollector {
|
||||
// type Fruit = Vec<u8>;
|
||||
// type Child = BytesFastFieldSegmentCollector;
|
||||
|
||||
fn for_segment(
|
||||
&self,
|
||||
_segment_local_id: u32,
|
||||
segment_reader: &SegmentReader,
|
||||
) -> crate::Result<BytesFastFieldSegmentCollector> {
|
||||
let reader = segment_reader
|
||||
.fast_fields()
|
||||
.bytes(segment_reader.schema().get_field_name(self.field))?;
|
||||
Ok(BytesFastFieldSegmentCollector {
|
||||
vals: Vec::new(),
|
||||
reader,
|
||||
})
|
||||
}
|
||||
// fn for_segment(
|
||||
// &self,
|
||||
// _segment_local_id: u32,
|
||||
// segment_reader: &SegmentReader,
|
||||
// ) -> crate::Result<BytesFastFieldSegmentCollector> {
|
||||
// let reader = segment_reader.fast_fields().bytes(self.field)?;
|
||||
// Ok(BytesFastFieldSegmentCollector {
|
||||
// vals: Vec::new(),
|
||||
// reader,
|
||||
// })
|
||||
// }
|
||||
|
||||
fn requires_scoring(&self) -> bool {
|
||||
false
|
||||
}
|
||||
// fn requires_scoring(&self) -> bool {
|
||||
// false
|
||||
// }
|
||||
|
||||
fn merge_fruits(&self, children: Vec<Vec<u8>>) -> crate::Result<Vec<u8>> {
|
||||
Ok(children.into_iter().flat_map(|c| c.into_iter()).collect())
|
||||
}
|
||||
}
|
||||
// fn merge_fruits(&self, children: Vec<Vec<u8>>) -> crate::Result<Vec<u8>> {
|
||||
// Ok(children.into_iter().flat_map(|c| c.into_iter()).collect())
|
||||
// }
|
||||
// }
|
||||
|
||||
impl SegmentCollector for BytesFastFieldSegmentCollector {
|
||||
type Fruit = Vec<u8>;
|
||||
// impl SegmentCollector for BytesFastFieldSegmentCollector {
|
||||
// type Fruit = Vec<u8>;
|
||||
|
||||
fn collect(&mut self, doc: u32, _score: Score) {
|
||||
let data = self.reader.get_bytes(doc);
|
||||
self.vals.extend(data);
|
||||
}
|
||||
// fn collect(&mut self, doc: u32, _score: Score) {
|
||||
// let data = self.reader.get_bytes(doc);
|
||||
// self.vals.extend(data);
|
||||
// }
|
||||
|
||||
fn harvest(self) -> <Self as SegmentCollector>::Fruit {
|
||||
self.vals
|
||||
}
|
||||
}
|
||||
// fn harvest(self) -> <Self as SegmentCollector>::Fruit {
|
||||
// self.vals
|
||||
// }
|
||||
// }
|
||||
|
||||
fn make_test_searcher() -> crate::Result<Searcher> {
|
||||
let schema = Schema::builder().build();
|
||||
|
||||
@@ -3,7 +3,7 @@ use std::fmt;
|
||||
use std::marker::PhantomData;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
use columnar::ColumnValues;
|
||||
|
||||
use super::Collector;
|
||||
use crate::collector::custom_score_top_collector::CustomScoreTopCollector;
|
||||
@@ -12,9 +12,8 @@ use crate::collector::tweak_score_top_collector::TweakedScoreTopCollector;
|
||||
use crate::collector::{
|
||||
CustomScorer, CustomSegmentScorer, ScoreSegmentTweaker, ScoreTweaker, SegmentCollector,
|
||||
};
|
||||
use crate::fastfield::FastValue;
|
||||
use crate::fastfield::{FastFieldNotAvailableError, FastValue};
|
||||
use crate::query::Weight;
|
||||
use crate::schema::Field;
|
||||
use crate::{DocAddress, DocId, Score, SegmentOrdinal, SegmentReader, TantivyError};
|
||||
|
||||
struct FastFieldConvertCollector<
|
||||
@@ -22,7 +21,7 @@ struct FastFieldConvertCollector<
|
||||
TFastValue: FastValue,
|
||||
> {
|
||||
pub collector: TCollector,
|
||||
pub field: Field,
|
||||
pub field: String,
|
||||
pub fast_value: std::marker::PhantomData<TFastValue>,
|
||||
}
|
||||
|
||||
@@ -41,7 +40,8 @@ where
|
||||
segment: &SegmentReader,
|
||||
) -> crate::Result<Self::Child> {
|
||||
let schema = segment.schema();
|
||||
let field_entry = schema.get_field_entry(self.field);
|
||||
let field = schema.get_field(&self.field)?;
|
||||
let field_entry = schema.get_field_entry(field);
|
||||
if !field_entry.is_fast() {
|
||||
return Err(TantivyError::SchemaError(format!(
|
||||
"Field {:?} is not a fast field.",
|
||||
@@ -132,17 +132,17 @@ impl fmt::Debug for TopDocs {
|
||||
}
|
||||
|
||||
struct ScorerByFastFieldReader {
|
||||
ff_reader: Arc<dyn Column<u64>>,
|
||||
sort_column: Arc<dyn ColumnValues<u64>>,
|
||||
}
|
||||
|
||||
impl CustomSegmentScorer<u64> for ScorerByFastFieldReader {
|
||||
fn score(&mut self, doc: DocId) -> u64 {
|
||||
self.ff_reader.get_val(doc)
|
||||
self.sort_column.get_val(doc)
|
||||
}
|
||||
}
|
||||
|
||||
struct ScorerByField {
|
||||
field: Field,
|
||||
field: String,
|
||||
}
|
||||
|
||||
impl CustomScorer<u64> for ScorerByField {
|
||||
@@ -154,10 +154,13 @@ impl CustomScorer<u64> for ScorerByField {
|
||||
// mapping is monotonic, so it is sufficient to compute our top-K docs.
|
||||
//
|
||||
// The conversion will then happen only on the top-K docs.
|
||||
let ff_reader = segment_reader
|
||||
.fast_fields()
|
||||
.typed_fast_field_reader(segment_reader.schema().get_field_name(self.field))?;
|
||||
Ok(ScorerByFastFieldReader { ff_reader })
|
||||
let sort_column_opt = segment_reader.fast_fields().u64_lenient(&self.field)?;
|
||||
let sort_column = sort_column_opt
|
||||
.ok_or_else(|| FastFieldNotAvailableError {
|
||||
field_name: self.field.clone(),
|
||||
})?
|
||||
.first_or_default_col(0u64);
|
||||
Ok(ScorerByFastFieldReader { sort_column })
|
||||
}
|
||||
}
|
||||
|
||||
@@ -290,9 +293,14 @@ impl TopDocs {
|
||||
/// the [.order_by_fast_field(...)](TopDocs::order_by_fast_field) method.
|
||||
pub fn order_by_u64_field(
|
||||
self,
|
||||
field: Field,
|
||||
field: impl ToString,
|
||||
) -> impl Collector<Fruit = Vec<(u64, DocAddress)>> {
|
||||
CustomScoreTopCollector::new(ScorerByField { field }, self.0.into_tscore())
|
||||
CustomScoreTopCollector::new(
|
||||
ScorerByField {
|
||||
field: field.to_string(),
|
||||
},
|
||||
self.0.into_tscore(),
|
||||
)
|
||||
}
|
||||
|
||||
/// Set top-K to rank documents by a given fast field.
|
||||
@@ -367,15 +375,15 @@ impl TopDocs {
|
||||
/// ```
|
||||
pub fn order_by_fast_field<TFastValue>(
|
||||
self,
|
||||
fast_field: Field,
|
||||
fast_field: impl ToString,
|
||||
) -> impl Collector<Fruit = Vec<(TFastValue, DocAddress)>>
|
||||
where
|
||||
TFastValue: FastValue,
|
||||
{
|
||||
let u64_collector = self.order_by_u64_field(fast_field);
|
||||
let u64_collector = self.order_by_u64_field(fast_field.to_string());
|
||||
FastFieldConvertCollector {
|
||||
collector: u64_collector,
|
||||
field: fast_field,
|
||||
field: fast_field.to_string(),
|
||||
fast_value: PhantomData,
|
||||
}
|
||||
}
|
||||
@@ -877,7 +885,7 @@ mod tests {
|
||||
});
|
||||
let searcher = index.reader()?.searcher();
|
||||
|
||||
let top_collector = TopDocs::with_limit(4).order_by_u64_field(size);
|
||||
let top_collector = TopDocs::with_limit(4).order_by_u64_field(SIZE);
|
||||
let top_docs: Vec<(u64, DocAddress)> = searcher.search(&query, &top_collector)?;
|
||||
assert_eq!(
|
||||
&top_docs[..],
|
||||
@@ -916,7 +924,7 @@ mod tests {
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let top_collector = TopDocs::with_limit(3).order_by_fast_field(birthday);
|
||||
let top_collector = TopDocs::with_limit(3).order_by_fast_field("birthday");
|
||||
let top_docs: Vec<(DateTime, DocAddress)> = searcher.search(&AllQuery, &top_collector)?;
|
||||
assert_eq!(
|
||||
&top_docs[..],
|
||||
@@ -946,7 +954,7 @@ mod tests {
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let top_collector = TopDocs::with_limit(3).order_by_fast_field(altitude);
|
||||
let top_collector = TopDocs::with_limit(3).order_by_fast_field("altitude");
|
||||
let top_docs: Vec<(i64, DocAddress)> = searcher.search(&AllQuery, &top_collector)?;
|
||||
assert_eq!(
|
||||
&top_docs[..],
|
||||
@@ -976,7 +984,7 @@ mod tests {
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let top_collector = TopDocs::with_limit(3).order_by_fast_field(altitude);
|
||||
let top_collector = TopDocs::with_limit(3).order_by_fast_field("altitude");
|
||||
let top_docs: Vec<(f64, DocAddress)> = searcher.search(&AllQuery, &top_collector)?;
|
||||
assert_eq!(
|
||||
&top_docs[..],
|
||||
@@ -1004,7 +1012,7 @@ mod tests {
|
||||
.unwrap();
|
||||
});
|
||||
let searcher = index.reader().unwrap().searcher();
|
||||
let top_collector = TopDocs::with_limit(4).order_by_u64_field(Field::from_field_id(2));
|
||||
let top_collector = TopDocs::with_limit(4).order_by_u64_field("missing_field");
|
||||
let segment_reader = searcher.segment_reader(0u32);
|
||||
top_collector
|
||||
.for_segment(0, segment_reader)
|
||||
@@ -1022,7 +1030,7 @@ mod tests {
|
||||
index_writer.commit()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let segment = searcher.segment_reader(0);
|
||||
let top_collector = TopDocs::with_limit(4).order_by_u64_field(size);
|
||||
let top_collector = TopDocs::with_limit(4).order_by_u64_field(SIZE);
|
||||
let err = top_collector.for_segment(0, segment).err().unwrap();
|
||||
assert!(matches!(err, crate::TantivyError::SchemaError(_)));
|
||||
Ok(())
|
||||
@@ -1039,7 +1047,7 @@ mod tests {
|
||||
index_writer.commit()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let segment = searcher.segment_reader(0);
|
||||
let top_collector = TopDocs::with_limit(4).order_by_fast_field::<i64>(size);
|
||||
let top_collector = TopDocs::with_limit(4).order_by_fast_field::<i64>(SIZE);
|
||||
let err = top_collector.for_segment(0, segment).err().unwrap();
|
||||
assert!(
|
||||
matches!(err, crate::TantivyError::SchemaError(msg) if msg == "Field \"size\" is not a fast field.")
|
||||
|
||||
@@ -19,7 +19,7 @@ use crate::error::{DataCorruption, TantivyError};
|
||||
use crate::indexer::index_writer::{MAX_NUM_THREAD, MEMORY_ARENA_NUM_BYTES_MIN};
|
||||
use crate::indexer::segment_updater::save_metas;
|
||||
use crate::reader::{IndexReader, IndexReaderBuilder};
|
||||
use crate::schema::{Cardinality, Field, FieldType, Schema};
|
||||
use crate::schema::{Field, FieldType, Schema};
|
||||
use crate::tokenizer::{TextAnalyzer, TokenizerManager};
|
||||
use crate::IndexWriter;
|
||||
|
||||
@@ -93,7 +93,7 @@ fn save_new_metas(
|
||||
/// let body_field = schema_builder.add_text_field("body", TEXT);
|
||||
/// let number_field = schema_builder.add_u64_field(
|
||||
/// "number",
|
||||
/// NumericOptions::default().set_fast(Cardinality::SingleValue),
|
||||
/// NumericOptions::default().set_fast(),
|
||||
/// );
|
||||
///
|
||||
/// let schema = schema_builder.build();
|
||||
@@ -245,12 +245,6 @@ impl IndexBuilder {
|
||||
sort_by_field.field
|
||||
)));
|
||||
}
|
||||
if entry.field_type().fastfield_cardinality() != Some(Cardinality::SingleValue) {
|
||||
return Err(TantivyError::InvalidArgument(format!(
|
||||
"Only single value fast field Cardinality supported for sorting index {}",
|
||||
sort_by_field.field
|
||||
)));
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
} else {
|
||||
|
||||
@@ -9,7 +9,7 @@ use crate::directory::{CompositeFile, FileSlice};
|
||||
use crate::error::DataCorruption;
|
||||
use crate::fastfield::{intersect_alive_bitsets, AliveBitSet, FacetReader, FastFieldReaders};
|
||||
use crate::fieldnorm::{FieldNormReader, FieldNormReaders};
|
||||
use crate::schema::{Field, FieldType, IndexRecordOption, Schema};
|
||||
use crate::schema::{Field, FieldType, IndexRecordOption, Schema, Type};
|
||||
use crate::space_usage::SegmentSpaceUsage;
|
||||
use crate::store::StoreReader;
|
||||
use crate::termdict::TermDictionary;
|
||||
@@ -90,25 +90,19 @@ impl SegmentReader {
|
||||
}
|
||||
|
||||
/// Accessor to the `FacetReader` associated with a given `Field`.
|
||||
pub fn facet_reader(&self, field: Field) -> crate::Result<FacetReader> {
|
||||
let field_entry = self.schema.get_field_entry(field);
|
||||
|
||||
match field_entry.field_type() {
|
||||
FieldType::Facet(_) => {
|
||||
let term_ords_reader =
|
||||
self.fast_fields().u64s(self.schema.get_field_name(field))?;
|
||||
let termdict = self
|
||||
.termdict_composite
|
||||
.open_read(field)
|
||||
.map(TermDictionary::open)
|
||||
.unwrap_or_else(|| Ok(TermDictionary::empty()))?;
|
||||
Ok(FacetReader::new(term_ords_reader, termdict))
|
||||
}
|
||||
_ => Err(crate::TantivyError::InvalidArgument(format!(
|
||||
"Field {:?} is not a facet field.",
|
||||
field_entry.name()
|
||||
))),
|
||||
pub fn facet_reader(&self, field_name: &str) -> crate::Result<FacetReader> {
|
||||
let schema = self.schema();
|
||||
let field = schema.get_field(field_name)?;
|
||||
let field_entry = schema.get_field_entry(field);
|
||||
if field_entry.field_type().value_type() != Type::Facet {
|
||||
return Err(crate::TantivyError::SchemaError(format!(
|
||||
"`{field_name}` is not a facet field.`"
|
||||
)));
|
||||
}
|
||||
let Some(facet_column) = self.fast_fields().str_column_opt(field_name)? else {
|
||||
panic!("Facet Field `{field_name}` is missing. This should not happen");
|
||||
};
|
||||
Ok(FacetReader::new(facet_column))
|
||||
}
|
||||
|
||||
/// Accessor to the segment's `Field norms`'s reader.
|
||||
@@ -173,9 +167,7 @@ impl SegmentReader {
|
||||
let schema = segment.schema();
|
||||
|
||||
let fast_fields_data = segment.open_read(SegmentComponent::FastFields)?;
|
||||
let fast_fields_composite = CompositeFile::open(&fast_fields_data)?;
|
||||
let fast_fields_readers =
|
||||
Arc::new(FastFieldReaders::new(schema.clone(), fast_fields_composite));
|
||||
let fast_fields_readers = Arc::new(FastFieldReaders::open(fast_fields_data)?);
|
||||
let fieldnorm_data = segment.open_read(SegmentComponent::FieldNorms)?;
|
||||
let fieldnorm_readers = FieldNormReaders::open(fieldnorm_data)?;
|
||||
|
||||
@@ -329,7 +321,7 @@ impl SegmentReader {
|
||||
self.termdict_composite.space_usage(),
|
||||
self.postings_composite.space_usage(),
|
||||
self.positions_composite.space_usage(),
|
||||
self.fast_fields_readers.space_usage(),
|
||||
self.fast_fields_readers.space_usage(self.schema())?,
|
||||
self.fieldnorm_readers.space_usage(),
|
||||
self.get_store_reader(0)?.space_usage(),
|
||||
self.alive_bitset_opt
|
||||
|
||||
@@ -169,12 +169,11 @@ impl CompositeFile {
|
||||
}
|
||||
|
||||
pub fn space_usage(&self) -> PerFieldSpaceUsage {
|
||||
let mut fields = HashMap::new();
|
||||
let mut fields = Vec::new();
|
||||
for (&field_addr, byte_range) in &self.offsets_index {
|
||||
fields
|
||||
.entry(field_addr.field)
|
||||
.or_insert_with(|| FieldUsage::empty(field_addr.field))
|
||||
.add_field_idx(field_addr.idx, byte_range.len());
|
||||
let mut field_usage = FieldUsage::empty(field_addr.field);
|
||||
field_usage.add_field_idx(field_addr.idx, byte_range.len());
|
||||
fields.push(field_usage);
|
||||
}
|
||||
PerFieldSpaceUsage::new(fields)
|
||||
}
|
||||
|
||||
@@ -1,116 +0,0 @@
|
||||
mod reader;
|
||||
mod writer;
|
||||
|
||||
pub use self::reader::BytesFastFieldReader;
|
||||
pub use self::writer::BytesFastFieldWriter;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::query::{EnableScoring, TermQuery};
|
||||
use crate::schema::{BytesOptions, IndexRecordOption, Schema, Value, FAST, INDEXED, STORED};
|
||||
use crate::{DocAddress, DocSet, Index, Searcher, Term};
|
||||
|
||||
#[test]
|
||||
fn test_bytes() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let bytes_field = schema_builder.add_bytes_field("bytesfield", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.add_document(doc!(bytes_field=>vec![0u8, 1, 2, 3]))?;
|
||||
index_writer.add_document(doc!(bytes_field=>vec![]))?;
|
||||
index_writer.add_document(doc!(bytes_field=>vec![255u8]))?;
|
||||
index_writer.add_document(doc!(bytes_field=>vec![1u8, 3, 5, 7, 9]))?;
|
||||
index_writer.add_document(doc!(bytes_field=>vec![0u8; 1000]))?;
|
||||
index_writer.commit()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let bytes_reader = segment_reader.fast_fields().bytes("bytesfield").unwrap();
|
||||
assert_eq!(bytes_reader.get_bytes(0), &[0u8, 1, 2, 3]);
|
||||
assert!(bytes_reader.get_bytes(1).is_empty());
|
||||
assert_eq!(bytes_reader.get_bytes(2), &[255u8]);
|
||||
assert_eq!(bytes_reader.get_bytes(3), &[1u8, 3, 5, 7, 9]);
|
||||
let long = vec![0u8; 1000];
|
||||
assert_eq!(bytes_reader.get_bytes(4), long.as_slice());
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn create_index_for_test<T: Into<BytesOptions>>(byte_options: T) -> crate::Result<Searcher> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field = schema_builder.add_bytes_field("string_bytes", byte_options.into());
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.add_document(doc!(
|
||||
field => b"tantivy".as_ref(),
|
||||
field => b"lucene".as_ref()
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
Ok(index.reader()?.searcher())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_stored_bytes() -> crate::Result<()> {
|
||||
let searcher = create_index_for_test(STORED)?;
|
||||
assert_eq!(searcher.num_docs(), 1);
|
||||
let retrieved_doc = searcher.doc(DocAddress::new(0u32, 0u32))?;
|
||||
let field = searcher.schema().get_field("string_bytes").unwrap();
|
||||
let values: Vec<&Value> = retrieved_doc.get_all(field).collect();
|
||||
assert_eq!(values.len(), 2);
|
||||
let values_bytes: Vec<&[u8]> = values
|
||||
.into_iter()
|
||||
.flat_map(|value| value.as_bytes())
|
||||
.collect();
|
||||
assert_eq!(values_bytes, &[&b"tantivy"[..], &b"lucene"[..]]);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_non_stored_bytes() -> crate::Result<()> {
|
||||
let searcher = create_index_for_test(INDEXED)?;
|
||||
assert_eq!(searcher.num_docs(), 1);
|
||||
let retrieved_doc = searcher.doc(DocAddress::new(0u32, 0u32))?;
|
||||
let field = searcher.schema().get_field("string_bytes").unwrap();
|
||||
assert!(retrieved_doc.get_first(field).is_none());
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_index_bytes() -> crate::Result<()> {
|
||||
let searcher = create_index_for_test(INDEXED)?;
|
||||
assert_eq!(searcher.num_docs(), 1);
|
||||
let field = searcher.schema().get_field("string_bytes").unwrap();
|
||||
let term = Term::from_field_bytes(field, b"lucene".as_ref());
|
||||
let term_query = TermQuery::new(term, IndexRecordOption::Basic);
|
||||
let term_weight = term_query.specialized_weight(EnableScoring::Enabled(&searcher))?;
|
||||
let term_scorer = term_weight.specialized_scorer(searcher.segment_reader(0), 1.0)?;
|
||||
assert_eq!(term_scorer.doc(), 0u32);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_non_index_bytes() -> crate::Result<()> {
|
||||
let searcher = create_index_for_test(STORED)?;
|
||||
assert_eq!(searcher.num_docs(), 1);
|
||||
let field = searcher.schema().get_field("string_bytes").unwrap();
|
||||
let term = Term::from_field_bytes(field, b"lucene".as_ref());
|
||||
let term_query = TermQuery::new(term, IndexRecordOption::Basic);
|
||||
let term_weight_err =
|
||||
term_query.specialized_weight(EnableScoring::disabled_from_schema(searcher.schema()));
|
||||
assert!(matches!(
|
||||
term_weight_err,
|
||||
Err(crate::TantivyError::SchemaError(_))
|
||||
));
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fast_bytes_multivalue_value() -> crate::Result<()> {
|
||||
let searcher = create_index_for_test(FAST)?;
|
||||
assert_eq!(searcher.num_docs(), 1);
|
||||
let fast_fields = searcher.segment_reader(0u32).fast_fields();
|
||||
let fast_field_reader = fast_fields.bytes("string_bytes").unwrap();
|
||||
assert_eq!(fast_field_reader.get_bytes(0u32), b"tantivy");
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -1,58 +0,0 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use crate::directory::{FileSlice, OwnedBytes};
|
||||
use crate::fastfield::MultiValueIndex;
|
||||
use crate::DocId;
|
||||
|
||||
/// Reader for byte array fast fields
|
||||
///
|
||||
/// The reader is implemented as a `u64` fast field and a separate collection of bytes.
|
||||
///
|
||||
/// The `vals_reader` will access the concatenated list of all values for all documents.
|
||||
///
|
||||
/// The `idx_reader` associates, for each document, the index of its first value.
|
||||
///
|
||||
/// Reading the value for a document is done by reading the start index for it,
|
||||
/// and the start index for the next document, and keeping the bytes in between.
|
||||
#[derive(Clone)]
|
||||
pub struct BytesFastFieldReader {
|
||||
idx_reader: MultiValueIndex,
|
||||
values: OwnedBytes,
|
||||
}
|
||||
|
||||
impl BytesFastFieldReader {
|
||||
pub(crate) fn open(
|
||||
idx_reader: Arc<dyn Column<u64>>,
|
||||
values_file: FileSlice,
|
||||
) -> crate::Result<BytesFastFieldReader> {
|
||||
let values = values_file.read_bytes()?;
|
||||
Ok(BytesFastFieldReader {
|
||||
idx_reader: MultiValueIndex::new(idx_reader),
|
||||
values,
|
||||
})
|
||||
}
|
||||
|
||||
/// returns the multivalue index
|
||||
pub fn get_index_reader(&self) -> &MultiValueIndex {
|
||||
&self.idx_reader
|
||||
}
|
||||
|
||||
/// Returns the bytes associated with the given `doc`
|
||||
pub fn get_bytes(&self, doc: DocId) -> &[u8] {
|
||||
let range = self.idx_reader.range(doc);
|
||||
&self.values.as_slice()[range.start as usize..range.end as usize]
|
||||
}
|
||||
|
||||
/// Returns the length of the bytes associated with the given `doc`
|
||||
pub fn num_bytes(&self, doc: DocId) -> u64 {
|
||||
let range = self.idx_reader.range(doc);
|
||||
(range.end - range.start) as u64
|
||||
}
|
||||
|
||||
/// Returns the overall number of bytes in this bytes fast field.
|
||||
pub fn total_num_bytes(&self) -> u32 {
|
||||
self.values.len() as u32
|
||||
}
|
||||
}
|
||||
@@ -1,145 +0,0 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use fastfield_codecs::VecColumn;
|
||||
|
||||
use crate::fastfield::serializer::CompositeFastFieldSerializer;
|
||||
use crate::fastfield::MultivalueStartIndex;
|
||||
use crate::indexer::doc_id_mapping::DocIdMapping;
|
||||
use crate::schema::{Document, Field, Value};
|
||||
use crate::DocId;
|
||||
|
||||
/// Writer for byte array (as in, any number of bytes per document) fast fields
|
||||
///
|
||||
/// This `BytesFastFieldWriter` is only useful for advanced users.
|
||||
/// The normal way to get your associated bytes in your index
|
||||
/// is to
|
||||
/// - declare your field with fast set to
|
||||
/// [`Cardinality::SingleValue`](crate::schema::Cardinality::SingleValue)
|
||||
/// in your schema
|
||||
/// - add your document simply by calling `.add_document(...)` with associating bytes to the field.
|
||||
///
|
||||
/// The `BytesFastFieldWriter` can be acquired from the
|
||||
/// fast field writer by calling
|
||||
/// [`.get_bytes_writer_mut(...)`](crate::fastfield::FastFieldsWriter::get_bytes_writer_mut).
|
||||
///
|
||||
/// Once acquired, writing is done by calling
|
||||
/// [`.add_document_val(&[u8])`](BytesFastFieldWriter::add_document_val)
|
||||
/// once per document, even if there are no bytes associated with it.
|
||||
pub struct BytesFastFieldWriter {
|
||||
field: Field,
|
||||
vals: Vec<u8>,
|
||||
doc_index: Vec<u64>,
|
||||
}
|
||||
|
||||
impl BytesFastFieldWriter {
|
||||
/// Creates a new `BytesFastFieldWriter`
|
||||
pub fn new(field: Field) -> Self {
|
||||
BytesFastFieldWriter {
|
||||
field,
|
||||
vals: Vec::new(),
|
||||
doc_index: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
/// The memory used (inclusive childs)
|
||||
pub fn mem_usage(&self) -> usize {
|
||||
self.vals.capacity() + self.doc_index.capacity() * std::mem::size_of::<u64>()
|
||||
}
|
||||
/// Access the field associated with the `BytesFastFieldWriter`
|
||||
pub fn field(&self) -> Field {
|
||||
self.field
|
||||
}
|
||||
|
||||
/// Finalize the current document.
|
||||
pub(crate) fn next_doc(&mut self) {
|
||||
self.doc_index.push(self.vals.len() as u64);
|
||||
}
|
||||
|
||||
/// Shift to the next document and add all of the
|
||||
/// matching field values present in the document.
|
||||
pub fn add_document(&mut self, doc: &Document) -> crate::Result<()> {
|
||||
self.next_doc();
|
||||
for field_value in doc.get_all(self.field) {
|
||||
if let Value::Bytes(ref bytes) = field_value {
|
||||
self.vals.extend_from_slice(bytes);
|
||||
return Ok(());
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Register the bytes associated with a document.
|
||||
///
|
||||
/// The method returns the `DocId` of the document that was
|
||||
/// just written.
|
||||
pub fn add_document_val(&mut self, val: &[u8]) -> DocId {
|
||||
let doc = self.doc_index.len() as DocId;
|
||||
self.next_doc();
|
||||
self.vals.extend_from_slice(val);
|
||||
doc
|
||||
}
|
||||
|
||||
/// Returns an iterator over values per doc_id in ascending doc_id order.
|
||||
///
|
||||
/// Normally the order is simply iterating self.doc_id_index.
|
||||
/// With doc_id_map it accounts for the new mapping, returning values in the order of the
|
||||
/// new doc_ids.
|
||||
fn get_ordered_values<'a: 'b, 'b>(
|
||||
&'a self,
|
||||
doc_id_map: Option<&'b DocIdMapping>,
|
||||
) -> impl Iterator<Item = &'b [u8]> {
|
||||
let doc_id_iter: Box<dyn Iterator<Item = u32>> = if let Some(doc_id_map) = doc_id_map {
|
||||
Box::new(doc_id_map.iter_old_doc_ids())
|
||||
} else {
|
||||
let max_doc = self.doc_index.len() as u32;
|
||||
Box::new(0..max_doc)
|
||||
};
|
||||
doc_id_iter.map(move |doc_id| self.get_values_for_doc_id(doc_id))
|
||||
}
|
||||
|
||||
/// returns all values for a doc_ids
|
||||
fn get_values_for_doc_id(&self, doc_id: u32) -> &[u8] {
|
||||
let start_pos = self.doc_index[doc_id as usize] as usize;
|
||||
let end_pos = self
|
||||
.doc_index
|
||||
.get(doc_id as usize + 1)
|
||||
.cloned()
|
||||
.unwrap_or(self.vals.len() as u64) as usize; // special case, last doc_id has no offset information
|
||||
&self.vals[start_pos..end_pos]
|
||||
}
|
||||
|
||||
/// Serializes the fast field values by pushing them to the `FastFieldSerializer`.
|
||||
pub fn serialize(
|
||||
mut self,
|
||||
serializer: &mut CompositeFastFieldSerializer,
|
||||
doc_id_map: Option<&DocIdMapping>,
|
||||
) -> io::Result<()> {
|
||||
// writing the offset index
|
||||
{
|
||||
self.doc_index.push(self.vals.len() as u64);
|
||||
let col = VecColumn::from(&self.doc_index[..]);
|
||||
if let Some(doc_id_map) = doc_id_map {
|
||||
let multi_value_start_index = MultivalueStartIndex::new(&col, doc_id_map);
|
||||
serializer.create_auto_detect_u64_fast_field_with_idx(
|
||||
self.field,
|
||||
multi_value_start_index,
|
||||
0,
|
||||
)?;
|
||||
} else {
|
||||
serializer.create_auto_detect_u64_fast_field_with_idx(self.field, col, 0)?;
|
||||
}
|
||||
}
|
||||
// writing the values themselves
|
||||
let mut value_serializer = serializer.new_bytes_fast_field(self.field);
|
||||
// the else could be removed, but this is faster (difference not benchmarked)
|
||||
if let Some(doc_id_map) = doc_id_map {
|
||||
for vals in self.get_ordered_values(Some(doc_id_map)) {
|
||||
// sort values in case of remapped doc_ids?
|
||||
value_serializer.write_all(vals)?;
|
||||
}
|
||||
} else {
|
||||
value_serializer.write_all(&self.vals)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -8,7 +8,7 @@ use crate::schema::FieldEntry;
|
||||
#[derive(Debug, Error)]
|
||||
#[error("Fast field not available: '{field_name:?}'")]
|
||||
pub struct FastFieldNotAvailableError {
|
||||
field_name: String,
|
||||
pub(crate) field_name: String,
|
||||
}
|
||||
|
||||
impl FastFieldNotAvailableError {
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
use std::str;
|
||||
use columnar::StrColumn;
|
||||
|
||||
use super::MultiValuedFastFieldReader;
|
||||
use crate::error::DataCorruption;
|
||||
use crate::schema::Facet;
|
||||
use crate::termdict::{TermDictionary, TermOrdinal};
|
||||
use crate::termdict::TermOrdinal;
|
||||
use crate::DocId;
|
||||
|
||||
/// The facet reader makes it possible to access the list of
|
||||
@@ -20,9 +18,7 @@ use crate::DocId;
|
||||
/// list of facets. This ordinal is segment local and
|
||||
/// only makes sense for a given segment.
|
||||
pub struct FacetReader {
|
||||
term_ords: MultiValuedFastFieldReader<u64>,
|
||||
term_dict: TermDictionary,
|
||||
buffer: Vec<u8>,
|
||||
facet_column: StrColumn,
|
||||
}
|
||||
|
||||
impl FacetReader {
|
||||
@@ -33,15 +29,8 @@ impl FacetReader {
|
||||
/// access the list of facet ords for a given document.
|
||||
/// - a `TermDictionary` that helps associating a facet to
|
||||
/// an ordinal and vice versa.
|
||||
pub fn new(
|
||||
term_ords: MultiValuedFastFieldReader<u64>,
|
||||
term_dict: TermDictionary,
|
||||
) -> FacetReader {
|
||||
FacetReader {
|
||||
term_ords,
|
||||
term_dict,
|
||||
buffer: vec![],
|
||||
}
|
||||
pub fn new(facet_column: StrColumn) -> FacetReader {
|
||||
FacetReader { facet_column }
|
||||
}
|
||||
|
||||
/// Returns the size of the sets of facets in the segment.
|
||||
@@ -50,31 +39,23 @@ impl FacetReader {
|
||||
///
|
||||
/// `Facet` ordinals range from `0` to `num_facets() - 1`.
|
||||
pub fn num_facets(&self) -> usize {
|
||||
self.term_dict.num_terms()
|
||||
}
|
||||
|
||||
/// Accessor for the facet term dictionary.
|
||||
pub fn facet_dict(&self) -> &TermDictionary {
|
||||
&self.term_dict
|
||||
self.facet_column.num_terms()
|
||||
}
|
||||
|
||||
/// Given a term ordinal returns the term associated with it.
|
||||
pub fn facet_from_ord(
|
||||
&mut self,
|
||||
facet_ord: TermOrdinal,
|
||||
output: &mut Facet,
|
||||
) -> crate::Result<()> {
|
||||
let found_term = self.term_dict.ord_to_term(facet_ord, &mut self.buffer)?;
|
||||
assert!(found_term, "Term ordinal {} no found.", facet_ord);
|
||||
let facet_str = str::from_utf8(&self.buffer[..])
|
||||
.map_err(|utf8_err| DataCorruption::comment_only(utf8_err.to_string()))?;
|
||||
output.set_facet_str(facet_str);
|
||||
pub fn facet_from_ord(&self, facet_ord: TermOrdinal, output: &mut Facet) -> crate::Result<()> {
|
||||
let found_term = self.facet_column.ord_to_str(facet_ord, &mut output.0)?;
|
||||
assert!(found_term, "Term ordinal {facet_ord} no found.");
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Return the list of facet ordinals associated with a document.
|
||||
pub fn facet_ords(&self, doc: DocId, output: &mut Vec<u64>) {
|
||||
self.term_ords.get_vals(doc, output);
|
||||
pub fn facet_ords(&self, doc: DocId) -> impl Iterator<Item = u64> + '_ {
|
||||
self.facet_column.ords().values(doc)
|
||||
}
|
||||
|
||||
pub fn facet_dict(&self) -> &columnar::Dictionary {
|
||||
self.facet_column.dictionary()
|
||||
}
|
||||
}
|
||||
|
||||
@@ -84,26 +65,66 @@ mod tests {
|
||||
use crate::{DocAddress, Document, Index};
|
||||
|
||||
#[test]
|
||||
fn test_facet_only_indexed() -> crate::Result<()> {
|
||||
fn test_facet_only_indexed() {
|
||||
let mut schema_builder = SchemaBuilder::default();
|
||||
let facet_field = schema_builder.add_facet_field("facet", FacetOptions::default());
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.add_document(doc!(facet_field=>Facet::from_text("/a/b").unwrap()))?;
|
||||
index_writer.commit()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let facet_reader = searcher
|
||||
.segment_reader(0u32)
|
||||
.facet_reader(facet_field)
|
||||
let mut index_writer = index.writer_for_tests().unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(facet_field=>Facet::from_text("/a/b").unwrap()))
|
||||
.unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
let searcher = index.reader().unwrap().searcher();
|
||||
let facet_reader = searcher.segment_reader(0u32).facet_reader("facet").unwrap();
|
||||
let mut facet_ords = Vec::new();
|
||||
facet_reader.facet_ords(0u32, &mut facet_ords);
|
||||
assert_eq!(&facet_ords, &[2u64]);
|
||||
let doc = searcher.doc(DocAddress::new(0u32, 0u32))?;
|
||||
facet_ords.extend(facet_reader.facet_ords(0u32));
|
||||
assert_eq!(&facet_ords, &[0u64]);
|
||||
assert_eq!(facet_reader.num_facets(), 1);
|
||||
let mut facet = Facet::default();
|
||||
facet_reader.facet_from_ord(0, &mut facet).unwrap();
|
||||
assert_eq!(facet.to_path_string(), "/a/b");
|
||||
let doc = searcher.doc(DocAddress::new(0u32, 0u32)).unwrap();
|
||||
let value = doc.get_first(facet_field).and_then(Value::as_facet);
|
||||
assert_eq!(value, None);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_facet_several_facets_sorted() {
|
||||
let mut schema_builder = SchemaBuilder::default();
|
||||
let facet_field = schema_builder.add_facet_field("facet", FacetOptions::default());
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests().unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(facet_field=>Facet::from_text("/parent/child1").unwrap()))
|
||||
.unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(
|
||||
facet_field=>Facet::from_text("/parent/child2").unwrap(),
|
||||
facet_field=>Facet::from_text("/parent/child1/blop").unwrap(),
|
||||
))
|
||||
.unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
let searcher = index.reader().unwrap().searcher();
|
||||
let facet_reader = searcher.segment_reader(0u32).facet_reader("facet").unwrap();
|
||||
let mut facet_ords = Vec::new();
|
||||
|
||||
facet_ords.extend(facet_reader.facet_ords(0u32));
|
||||
assert_eq!(&facet_ords, &[0u64]);
|
||||
|
||||
facet_ords.clear();
|
||||
facet_ords.extend(facet_reader.facet_ords(1u32));
|
||||
assert_eq!(&facet_ords, &[1u64, 2u64]);
|
||||
|
||||
assert_eq!(facet_reader.num_facets(), 3);
|
||||
let mut facet = Facet::default();
|
||||
facet_reader.facet_from_ord(0, &mut facet).unwrap();
|
||||
assert_eq!(facet.to_path_string(), "/parent/child1");
|
||||
facet_reader.facet_from_ord(1, &mut facet).unwrap();
|
||||
assert_eq!(facet.to_path_string(), "/parent/child1/blop");
|
||||
facet_reader.facet_from_ord(2, &mut facet).unwrap();
|
||||
assert_eq!(facet.to_path_string(), "/parent/child2");
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -116,13 +137,10 @@ mod tests {
|
||||
index_writer.add_document(doc!(facet_field=>Facet::from_text("/a/b").unwrap()))?;
|
||||
index_writer.commit()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let facet_reader = searcher
|
||||
.segment_reader(0u32)
|
||||
.facet_reader(facet_field)
|
||||
.unwrap();
|
||||
let facet_reader = searcher.segment_reader(0u32).facet_reader("facet").unwrap();
|
||||
let mut facet_ords = Vec::new();
|
||||
facet_reader.facet_ords(0u32, &mut facet_ords);
|
||||
assert_eq!(&facet_ords, &[2u64]);
|
||||
facet_ords.extend(facet_reader.facet_ords(0u32));
|
||||
assert_eq!(&facet_ords, &[0u64]);
|
||||
let doc = searcher.doc(DocAddress::new(0u32, 0u32))?;
|
||||
let value: Option<&Facet> = doc.get_first(facet_field).and_then(Value::as_facet);
|
||||
assert_eq!(value, Facet::from_text("/a/b").ok().as_ref());
|
||||
@@ -140,14 +158,12 @@ mod tests {
|
||||
index_writer.add_document(Document::default())?;
|
||||
index_writer.commit()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let facet_reader = searcher
|
||||
.segment_reader(0u32)
|
||||
.facet_reader(facet_field)
|
||||
.unwrap();
|
||||
let facet_reader = searcher.segment_reader(0u32).facet_reader("facet").unwrap();
|
||||
let mut facet_ords = Vec::new();
|
||||
facet_reader.facet_ords(0u32, &mut facet_ords);
|
||||
assert_eq!(&facet_ords, &[2u64]);
|
||||
facet_reader.facet_ords(1u32, &mut facet_ords);
|
||||
facet_ords.extend(facet_reader.facet_ords(0u32));
|
||||
assert_eq!(&facet_ords, &[0u64]);
|
||||
facet_ords.clear();
|
||||
facet_ords.extend(facet_reader.facet_ords(1u32));
|
||||
assert!(facet_ords.is_empty());
|
||||
Ok(())
|
||||
}
|
||||
@@ -155,7 +171,7 @@ mod tests {
|
||||
#[test]
|
||||
fn test_facet_not_populated_for_any_docs() -> crate::Result<()> {
|
||||
let mut schema_builder = SchemaBuilder::default();
|
||||
let facet_field = schema_builder.add_facet_field("facet", FacetOptions::default());
|
||||
schema_builder.add_facet_field("facet", FacetOptions::default());
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
@@ -163,15 +179,9 @@ mod tests {
|
||||
index_writer.add_document(Document::default())?;
|
||||
index_writer.commit()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let facet_reader = searcher
|
||||
.segment_reader(0u32)
|
||||
.facet_reader(facet_field)
|
||||
.unwrap();
|
||||
let mut facet_ords = Vec::new();
|
||||
facet_reader.facet_ords(0u32, &mut facet_ords);
|
||||
assert!(facet_ords.is_empty());
|
||||
facet_reader.facet_ords(1u32, &mut facet_ords);
|
||||
assert!(facet_ords.is_empty());
|
||||
let facet_reader = searcher.segment_reader(0u32).facet_reader("facet").unwrap();
|
||||
assert!(facet_reader.facet_ords(0u32).next().is_none());
|
||||
assert!(facet_reader.facet_ords(1u32).next().is_none());
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
1017
src/fastfield/mod.rs
1017
src/fastfield/mod.rs
File diff suppressed because it is too large
Load Diff
@@ -1,149 +0,0 @@
|
||||
use std::ops::Range;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use crate::DocId;
|
||||
|
||||
#[derive(Clone)]
|
||||
/// Index to resolve value range for given doc_id.
|
||||
/// Starts at 0.
|
||||
pub struct MultiValueIndex {
|
||||
idx: Arc<dyn Column<u64>>,
|
||||
}
|
||||
|
||||
impl MultiValueIndex {
|
||||
pub(crate) fn new(idx: Arc<dyn Column<u64>>) -> Self {
|
||||
Self { idx }
|
||||
}
|
||||
|
||||
/// Returns `[start, end)`, such that the values associated with
|
||||
/// the given document are `start..end`.
|
||||
#[inline]
|
||||
pub(crate) fn range(&self, doc: DocId) -> Range<u32> {
|
||||
let start = self.idx.get_val(doc) as u32;
|
||||
let end = self.idx.get_val(doc + 1) as u32;
|
||||
start..end
|
||||
}
|
||||
|
||||
/// Given a range of documents, returns the Range of value offsets fo
|
||||
/// these documents.
|
||||
///
|
||||
/// For instance, `given start_doc..end_doc`,
|
||||
/// if we assume Document #start_doc end #end_doc both
|
||||
/// have values, this function returns `start..end`
|
||||
/// such that `value_column.get(start_doc)` is the first value of
|
||||
/// `start_doc` (well, if there is one), and `value_column.get(end_doc - 1)`
|
||||
/// is the last value of `end_doc`.
|
||||
///
|
||||
/// The passed end range is allowed to be out of bounds, in which case
|
||||
/// it will be clipped to make it valid.
|
||||
#[inline]
|
||||
pub(crate) fn docid_range_to_position_range(&self, range: Range<DocId>) -> Range<u32> {
|
||||
let end_docid = range.end.min(self.num_docs() - 1) + 1;
|
||||
let start_docid = range.start.min(end_docid);
|
||||
|
||||
let start = self.idx.get_val(start_docid) as u32;
|
||||
let end = self.idx.get_val(end_docid) as u32;
|
||||
assert!(start <= end);
|
||||
|
||||
start..end
|
||||
}
|
||||
|
||||
/// returns the num of values associated with a doc_id
|
||||
pub(crate) fn num_vals_for_doc(&self, doc: DocId) -> u32 {
|
||||
let range = self.range(doc);
|
||||
range.end - range.start
|
||||
}
|
||||
|
||||
/// Returns the overall number of values in this field.
|
||||
#[inline]
|
||||
pub fn total_num_vals(&self) -> u32 {
|
||||
self.idx.max_value() as u32
|
||||
}
|
||||
|
||||
/// Returns the number of documents in the index.
|
||||
#[inline]
|
||||
pub fn num_docs(&self) -> u32 {
|
||||
self.idx.num_vals() - 1
|
||||
}
|
||||
|
||||
/// Converts a list of positions of values in a 1:n index to the corresponding list of DocIds.
|
||||
/// Positions are converted inplace to docids.
|
||||
///
|
||||
/// Since there is no index for value pos -> docid, but docid -> value pos range, we scan the
|
||||
/// index.
|
||||
///
|
||||
/// Correctness: positions needs to be sorted. idx_reader needs to contain monotonically
|
||||
/// increasing positions.
|
||||
///
|
||||
///
|
||||
/// TODO: Instead of a linear scan we can employ a exponential search into binary search to
|
||||
/// match a docid to its value position.
|
||||
#[allow(clippy::bool_to_int_with_if)]
|
||||
pub(crate) fn positions_to_docids(&self, doc_id_range: Range<u32>, positions: &mut Vec<u32>) {
|
||||
if positions.is_empty() {
|
||||
return;
|
||||
}
|
||||
let mut cur_doc = doc_id_range.start;
|
||||
let mut last_doc = None;
|
||||
|
||||
assert!(self.idx.get_val(doc_id_range.start) as u32 <= positions[0]);
|
||||
|
||||
let mut write_doc_pos = 0;
|
||||
for i in 0..positions.len() {
|
||||
let pos = positions[i];
|
||||
loop {
|
||||
let end = self.idx.get_val(cur_doc + 1) as u32;
|
||||
if end > pos {
|
||||
positions[write_doc_pos] = cur_doc;
|
||||
write_doc_pos += if last_doc == Some(cur_doc) { 0 } else { 1 };
|
||||
last_doc = Some(cur_doc);
|
||||
break;
|
||||
}
|
||||
cur_doc += 1;
|
||||
}
|
||||
}
|
||||
positions.truncate(write_doc_pos);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::ops::Range;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::IterColumn;
|
||||
|
||||
use crate::fastfield::MultiValueIndex;
|
||||
|
||||
fn index_to_pos_helper(
|
||||
index: &MultiValueIndex,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &[u32],
|
||||
) -> Vec<u32> {
|
||||
let mut positions = positions.to_vec();
|
||||
index.positions_to_docids(doc_id_range, &mut positions);
|
||||
positions
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_positions_to_docid() {
|
||||
let offsets = vec![0, 10, 12, 15, 22, 23]; // docid values are [0..10, 10..12, 12..15, etc.]
|
||||
let column = IterColumn::from(offsets.into_iter());
|
||||
let index = MultiValueIndex::new(Arc::new(column));
|
||||
assert_eq!(index.num_docs(), 5);
|
||||
{
|
||||
let positions = vec![10u32, 11, 15, 20, 21, 22];
|
||||
|
||||
assert_eq!(index_to_pos_helper(&index, 0..5, &positions), vec![1, 3, 4]);
|
||||
assert_eq!(index_to_pos_helper(&index, 1..5, &positions), vec![1, 3, 4]);
|
||||
assert_eq!(index_to_pos_helper(&index, 0..5, &[9]), vec![0]);
|
||||
assert_eq!(index_to_pos_helper(&index, 1..5, &[10]), vec![1]);
|
||||
assert_eq!(index_to_pos_helper(&index, 1..5, &[11]), vec![1]);
|
||||
assert_eq!(index_to_pos_helper(&index, 2..5, &[12]), vec![2]);
|
||||
assert_eq!(index_to_pos_helper(&index, 2..5, &[12, 14]), vec![2]);
|
||||
assert_eq!(index_to_pos_helper(&index, 2..5, &[12, 14, 15]), vec![2, 3]);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,619 +0,0 @@
|
||||
mod index;
|
||||
mod reader;
|
||||
mod writer;
|
||||
|
||||
use fastfield_codecs::FastFieldCodecType;
|
||||
pub use index::MultiValueIndex;
|
||||
|
||||
pub use self::reader::MultiValuedFastFieldReader;
|
||||
pub(crate) use self::writer::MultivalueStartIndex;
|
||||
pub use self::writer::{MultiValueU128FastFieldWriter, MultiValuedFastFieldWriter};
|
||||
|
||||
/// The valid codecs for multivalue values excludes the linear interpolation codec.
|
||||
///
|
||||
/// This limitation is only valid for the values, not the offset index of the multivalue index.
|
||||
pub(crate) fn get_fastfield_codecs_for_multivalue() -> [FastFieldCodecType; 2] {
|
||||
[
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
]
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
use test_log::test;
|
||||
|
||||
use crate::collector::TopDocs;
|
||||
use crate::indexer::NoMergePolicy;
|
||||
use crate::query::QueryParser;
|
||||
use crate::schema::{Cardinality, DateOptions, Facet, FacetOptions, NumericOptions, Schema};
|
||||
use crate::time::format_description::well_known::Rfc3339;
|
||||
use crate::time::{Duration, OffsetDateTime};
|
||||
use crate::{DateTime, Document, Index, Term};
|
||||
|
||||
#[test]
|
||||
fn test_multivalued_u64() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field = schema_builder.add_u64_field(
|
||||
"multifield",
|
||||
NumericOptions::default().set_fast(Cardinality::MultiValues),
|
||||
);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.add_document(doc!(field=>1u64, field=>3u64))?;
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.add_document(doc!(field=>4u64))?;
|
||||
index_writer.add_document(doc!(field=>5u64, field=>20u64,field=>1u64))?;
|
||||
index_writer.commit()?;
|
||||
|
||||
let searcher = index.reader()?.searcher();
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let mut vals = Vec::new();
|
||||
let multi_value_reader = segment_reader.fast_fields().u64s("multifield")?;
|
||||
{
|
||||
multi_value_reader.get_vals(2, &mut vals);
|
||||
assert_eq!(&vals, &[4u64]);
|
||||
}
|
||||
{
|
||||
multi_value_reader.get_vals(0, &mut vals);
|
||||
assert_eq!(&vals, &[1u64, 3u64]);
|
||||
}
|
||||
{
|
||||
multi_value_reader.get_vals(1, &mut vals);
|
||||
assert!(vals.is_empty());
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multivalued_date() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let date_field = schema_builder.add_date_field(
|
||||
"multi_date_field",
|
||||
DateOptions::default()
|
||||
.set_fast(Cardinality::MultiValues)
|
||||
.set_indexed()
|
||||
.set_fieldnorm()
|
||||
.set_stored(),
|
||||
);
|
||||
let time_i =
|
||||
schema_builder.add_i64_field("time_stamp_i", NumericOptions::default().set_stored());
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
let first_time_stamp = OffsetDateTime::now_utc();
|
||||
index_writer.add_document(doc!(
|
||||
date_field => DateTime::from_utc(first_time_stamp),
|
||||
date_field => DateTime::from_utc(first_time_stamp),
|
||||
time_i=>1i64))?;
|
||||
index_writer.add_document(doc!(time_i => 0i64))?;
|
||||
// add one second
|
||||
index_writer.add_document(doc!(
|
||||
date_field => DateTime::from_utc(first_time_stamp + Duration::seconds(1)),
|
||||
time_i => 2i64))?;
|
||||
// add another second
|
||||
let two_secs_ahead = first_time_stamp + Duration::seconds(2);
|
||||
index_writer.add_document(doc!(
|
||||
date_field => DateTime::from_utc(two_secs_ahead),
|
||||
date_field => DateTime::from_utc(two_secs_ahead),
|
||||
date_field => DateTime::from_utc(two_secs_ahead),
|
||||
time_i => 3i64))?;
|
||||
// add three seconds
|
||||
index_writer.add_document(doc!(
|
||||
date_field => DateTime::from_utc(first_time_stamp + Duration::seconds(3)),
|
||||
time_i => 4i64))?;
|
||||
index_writer.commit()?;
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
let reader = searcher.segment_reader(0);
|
||||
assert_eq!(reader.num_docs(), 5);
|
||||
|
||||
{
|
||||
let parser = QueryParser::for_index(&index, vec![]);
|
||||
let query = parser.parse_query(&format!(
|
||||
"multi_date_field:\"{}\"",
|
||||
first_time_stamp.format(&Rfc3339)?,
|
||||
))?;
|
||||
let results = searcher.search(&query, &TopDocs::with_limit(5))?;
|
||||
assert_eq!(results.len(), 1);
|
||||
for (_score, doc_address) in results {
|
||||
let retrieved_doc = searcher.doc(doc_address)?;
|
||||
assert_eq!(
|
||||
retrieved_doc
|
||||
.get_first(date_field)
|
||||
.expect("cannot find value")
|
||||
.as_date()
|
||||
.unwrap(),
|
||||
DateTime::from_utc(first_time_stamp),
|
||||
);
|
||||
assert_eq!(
|
||||
retrieved_doc
|
||||
.get_first(time_i)
|
||||
.expect("cannot find value")
|
||||
.as_i64(),
|
||||
Some(1i64)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let parser = QueryParser::for_index(&index, vec![date_field]);
|
||||
let query = parser.parse_query(&format!("\"{}\"", two_secs_ahead.format(&Rfc3339)?))?;
|
||||
let results = searcher.search(&query, &TopDocs::with_limit(5))?;
|
||||
|
||||
assert_eq!(results.len(), 1);
|
||||
|
||||
for (_score, doc_address) in results {
|
||||
let retrieved_doc = searcher.doc(doc_address).expect("cannot fetch doc");
|
||||
assert_eq!(
|
||||
retrieved_doc
|
||||
.get_first(date_field)
|
||||
.expect("cannot find value")
|
||||
.as_date()
|
||||
.unwrap(),
|
||||
DateTime::from_utc(two_secs_ahead)
|
||||
);
|
||||
assert_eq!(
|
||||
retrieved_doc
|
||||
.get_first(time_i)
|
||||
.expect("cannot find value")
|
||||
.as_i64(),
|
||||
Some(3i64)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let parser = QueryParser::for_index(&index, vec![date_field]);
|
||||
let range_q = format!(
|
||||
"multi_date_field:[{} TO {}}}",
|
||||
(first_time_stamp + Duration::seconds(1)).format(&Rfc3339)?,
|
||||
(first_time_stamp + Duration::seconds(3)).format(&Rfc3339)?
|
||||
);
|
||||
let query = parser.parse_query(&range_q)?;
|
||||
let results = searcher.search(&query, &TopDocs::with_limit(5))?;
|
||||
|
||||
assert_eq!(results.len(), 2);
|
||||
for (i, doc_pair) in results.iter().enumerate() {
|
||||
let retrieved_doc = searcher.doc(doc_pair.1).expect("cannot fetch doc");
|
||||
let offset_sec = match i {
|
||||
0 => 1,
|
||||
1 => 2,
|
||||
_ => panic!("should not have more than 2 docs"),
|
||||
};
|
||||
let time_i_val = match i {
|
||||
0 => 2,
|
||||
1 => 3,
|
||||
_ => panic!("should not have more than 2 docs"),
|
||||
};
|
||||
assert_eq!(
|
||||
retrieved_doc
|
||||
.get_first(date_field)
|
||||
.expect("cannot find value")
|
||||
.as_date()
|
||||
.expect("value not of Date type"),
|
||||
DateTime::from_utc(first_time_stamp + Duration::seconds(offset_sec)),
|
||||
);
|
||||
assert_eq!(
|
||||
retrieved_doc
|
||||
.get_first(time_i)
|
||||
.expect("cannot find value")
|
||||
.as_i64(),
|
||||
Some(time_i_val)
|
||||
);
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multivalued_i64() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field = schema_builder.add_i64_field(
|
||||
"multifield",
|
||||
NumericOptions::default().set_fast(Cardinality::MultiValues),
|
||||
);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.add_document(doc!(field=> 1i64, field => 3i64))?;
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.add_document(doc!(field=> -4i64))?;
|
||||
index_writer.add_document(doc!(field=> -5i64, field => -20i64, field=>1i64))?;
|
||||
index_writer.commit()?;
|
||||
|
||||
let searcher = index.reader()?.searcher();
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let mut vals = Vec::new();
|
||||
let multi_value_reader = segment_reader.fast_fields().i64s("multifield").unwrap();
|
||||
multi_value_reader.get_vals(2, &mut vals);
|
||||
assert_eq!(&vals, &[-4i64]);
|
||||
multi_value_reader.get_vals(0, &mut vals);
|
||||
assert_eq!(&vals, &[1i64, 3i64]);
|
||||
multi_value_reader.get_vals(1, &mut vals);
|
||||
assert!(vals.is_empty());
|
||||
multi_value_reader.get_vals(3, &mut vals);
|
||||
assert_eq!(&vals, &[-5i64, -20i64, 1i64]);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multivalued_bool() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let bool_field = schema_builder.add_bool_field(
|
||||
"multifield",
|
||||
NumericOptions::default().set_fast(Cardinality::MultiValues),
|
||||
);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.add_document(doc!(bool_field=> true, bool_field => false))?;
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.add_document(doc!(bool_field=> false))?;
|
||||
index_writer
|
||||
.add_document(doc!(bool_field=> true, bool_field => true, bool_field => false))?;
|
||||
index_writer.commit()?;
|
||||
|
||||
let searcher = index.reader()?.searcher();
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let mut vals = Vec::new();
|
||||
let multi_value_reader = segment_reader.fast_fields().bools("multifield").unwrap();
|
||||
multi_value_reader.get_vals(2, &mut vals);
|
||||
assert_eq!(&vals, &[false]);
|
||||
multi_value_reader.get_vals(0, &mut vals);
|
||||
assert_eq!(&vals, &[true, false]);
|
||||
multi_value_reader.get_vals(1, &mut vals);
|
||||
assert!(vals.is_empty());
|
||||
multi_value_reader.get_vals(3, &mut vals);
|
||||
assert_eq!(&vals, &[true, true, false]);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn test_multivalued_no_panic(ops: &[IndexingOp]) -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field = schema_builder.add_u64_field(
|
||||
"multifield",
|
||||
NumericOptions::default()
|
||||
.set_fast(Cardinality::MultiValues)
|
||||
.set_indexed(),
|
||||
);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.set_merge_policy(Box::new(NoMergePolicy));
|
||||
|
||||
for &op in ops {
|
||||
match op {
|
||||
IndexingOp::AddDoc { id } => {
|
||||
match id % 3 {
|
||||
0 => {
|
||||
index_writer.add_document(doc!())?;
|
||||
}
|
||||
1 => {
|
||||
let mut doc = Document::new();
|
||||
for _ in 0..5001 {
|
||||
doc.add_u64(field, id as u64);
|
||||
}
|
||||
index_writer.add_document(doc)?;
|
||||
}
|
||||
_ => {
|
||||
let mut doc = Document::new();
|
||||
doc.add_u64(field, id as u64);
|
||||
index_writer.add_document(doc)?;
|
||||
}
|
||||
};
|
||||
}
|
||||
IndexingOp::DeleteDoc { id } => {
|
||||
index_writer.delete_term(Term::from_field_u64(field, id as u64));
|
||||
}
|
||||
IndexingOp::Commit => {
|
||||
index_writer.commit().unwrap();
|
||||
}
|
||||
IndexingOp::Merge => {
|
||||
let segment_ids = index.searchable_segment_ids()?;
|
||||
if segment_ids.len() >= 2 {
|
||||
index_writer.merge(&segment_ids).wait()?;
|
||||
index_writer.segment_updater().wait_merging_thread()?;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
index_writer.commit()?;
|
||||
|
||||
// Merging the segments
|
||||
{
|
||||
let segment_ids = index
|
||||
.searchable_segment_ids()
|
||||
.expect("Searchable segments failed.");
|
||||
if !segment_ids.is_empty() {
|
||||
index_writer.merge(&segment_ids).wait()?;
|
||||
assert!(index_writer.wait_merging_threads().is_ok());
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
enum IndexingOp {
|
||||
AddDoc { id: u32 },
|
||||
DeleteDoc { id: u32 },
|
||||
Commit,
|
||||
Merge,
|
||||
}
|
||||
|
||||
fn operation_strategy() -> impl Strategy<Value = IndexingOp> {
|
||||
prop_oneof![
|
||||
(0u32..10u32).prop_map(|id| IndexingOp::DeleteDoc { id }),
|
||||
(0u32..10u32).prop_map(|id| IndexingOp::AddDoc { id }),
|
||||
(0u32..2u32).prop_map(|_| IndexingOp::Commit),
|
||||
(0u32..1u32).prop_map(|_| IndexingOp::Merge),
|
||||
]
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(proptest::prelude::ProptestConfig::with_cases(5))]
|
||||
#[test]
|
||||
fn test_multivalued_proptest(ops in proptest::collection::vec(operation_strategy(), 1..10)) {
|
||||
assert!(test_multivalued_no_panic(&ops[..]).is_ok());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multivalued_proptest_gcd() {
|
||||
use IndexingOp::*;
|
||||
let ops = [AddDoc { id: 9 }, AddDoc { id: 9 }, Merge];
|
||||
|
||||
assert!(test_multivalued_no_panic(&ops[..]).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multivalued_proptest_off_by_one_bug_1151() {
|
||||
use IndexingOp::*;
|
||||
let ops = [
|
||||
AddDoc { id: 3 },
|
||||
AddDoc { id: 1 },
|
||||
AddDoc { id: 3 },
|
||||
Commit,
|
||||
Merge,
|
||||
];
|
||||
|
||||
assert!(test_multivalued_no_panic(&ops[..]).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[ignore]
|
||||
fn test_many_facets() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field = schema_builder.add_facet_field("facetfield", FacetOptions::default());
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
for i in 0..100_000 {
|
||||
index_writer
|
||||
.add_document(doc!(field=> Facet::from(format!("/lang/{}", i).as_str())))?;
|
||||
}
|
||||
index_writer.commit()?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
use std::collections::HashMap;
|
||||
use std::path::Path;
|
||||
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::*;
|
||||
use crate::directory::{CompositeFile, Directory, RamDirectory, WritePtr};
|
||||
use crate::fastfield::{CompositeFastFieldSerializer, FastFieldsWriter};
|
||||
use crate::indexer::doc_id_mapping::DocIdMapping;
|
||||
use crate::schema::{Cardinality, NumericOptions, Schema};
|
||||
use crate::Document;
|
||||
|
||||
fn bench_multi_value_ff_merge_opt(
|
||||
num_docs: usize,
|
||||
segments_every_n_docs: usize,
|
||||
merge_policy: impl crate::indexer::MergePolicy + 'static,
|
||||
) {
|
||||
let mut builder = crate::schema::SchemaBuilder::new();
|
||||
|
||||
let fast_multi =
|
||||
crate::schema::NumericOptions::default().set_fast(Cardinality::MultiValues);
|
||||
let multi_field = builder.add_f64_field("f64s", fast_multi);
|
||||
|
||||
let index = crate::Index::create_in_ram(builder.build());
|
||||
|
||||
let mut writer = index.writer_for_tests().unwrap();
|
||||
writer.set_merge_policy(Box::new(merge_policy));
|
||||
|
||||
for i in 0..num_docs {
|
||||
let mut doc = crate::Document::new();
|
||||
doc.add_f64(multi_field, 0.24);
|
||||
doc.add_f64(multi_field, 0.27);
|
||||
doc.add_f64(multi_field, 0.37);
|
||||
if i % 3 == 0 {
|
||||
doc.add_f64(multi_field, 0.44);
|
||||
}
|
||||
|
||||
writer.add_document(doc).unwrap();
|
||||
if i % segments_every_n_docs == 0 {
|
||||
writer.commit().unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
writer.wait_merging_threads().unwrap();
|
||||
let mut writer = index.writer_for_tests().unwrap();
|
||||
let segment_ids = index.searchable_segment_ids().unwrap();
|
||||
writer.merge(&segment_ids).wait().unwrap();
|
||||
}
|
||||
|
||||
// If a merging thread fails, we should end up with more
|
||||
// than one segment here
|
||||
assert_eq!(1, index.searchable_segments().unwrap().len());
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_multi_value_ff_merge_many_segments(b: &mut Bencher) {
|
||||
let num_docs = 100_000;
|
||||
b.iter(|| {
|
||||
bench_multi_value_ff_merge_opt(num_docs, 1_000, crate::indexer::NoMergePolicy);
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_multi_value_ff_merge_many_segments_log_merge(b: &mut Bencher) {
|
||||
let num_docs = 100_000;
|
||||
b.iter(|| {
|
||||
let merge_policy = crate::indexer::LogMergePolicy::default();
|
||||
bench_multi_value_ff_merge_opt(num_docs, 1_000, merge_policy);
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_multi_value_ff_merge_few_segments(b: &mut Bencher) {
|
||||
let num_docs = 100_000;
|
||||
b.iter(|| {
|
||||
bench_multi_value_ff_merge_opt(num_docs, 33_000, crate::indexer::NoMergePolicy);
|
||||
});
|
||||
}
|
||||
|
||||
fn multi_values(num_docs: usize, vals_per_doc: usize) -> Vec<Vec<u64>> {
|
||||
let mut vals = vec![];
|
||||
for _i in 0..num_docs {
|
||||
let mut block = vec![];
|
||||
for j in 0..vals_per_doc {
|
||||
block.push(j as u64);
|
||||
}
|
||||
vals.push(block);
|
||||
}
|
||||
|
||||
vals
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_multi_value_fflookup(b: &mut Bencher) {
|
||||
let num_docs = 100_000;
|
||||
|
||||
let path = Path::new("test");
|
||||
let directory: RamDirectory = RamDirectory::create();
|
||||
let field = {
|
||||
let options = NumericOptions::default().set_fast(Cardinality::MultiValues);
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field = schema_builder.add_u64_field("field", options);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
|
||||
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
|
||||
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema);
|
||||
for block in &multi_values(num_docs, 3) {
|
||||
let mut doc = Document::new();
|
||||
for val in block {
|
||||
doc.add_u64(field, *val);
|
||||
}
|
||||
fast_field_writers.add_document(&doc).unwrap();
|
||||
}
|
||||
fast_field_writers
|
||||
.serialize(&mut serializer, &HashMap::new(), None)
|
||||
.unwrap();
|
||||
serializer.close().unwrap();
|
||||
field
|
||||
};
|
||||
let file = directory.open_read(path).unwrap();
|
||||
{
|
||||
let fast_fields_composite = CompositeFile::open(&file).unwrap();
|
||||
let data_idx = fast_fields_composite
|
||||
.open_read_with_idx(field, 0)
|
||||
.unwrap()
|
||||
.read_bytes()
|
||||
.unwrap();
|
||||
let idx_reader = fastfield_codecs::open(data_idx).unwrap();
|
||||
|
||||
let data_vals = fast_fields_composite
|
||||
.open_read_with_idx(field, 1)
|
||||
.unwrap()
|
||||
.read_bytes()
|
||||
.unwrap();
|
||||
let vals_reader = fastfield_codecs::open(data_vals).unwrap();
|
||||
let fast_field_reader = MultiValuedFastFieldReader::open(idx_reader, vals_reader);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
let mut data = Vec::with_capacity(10);
|
||||
for i in 0u32..num_docs as u32 {
|
||||
fast_field_reader.get_vals(i, &mut data);
|
||||
sum += data.iter().sum::<u64>();
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_multi_value_ff_creation(b: &mut Bencher) {
|
||||
// 3 million ff entries
|
||||
let num_docs = 1_000_000;
|
||||
let multi_values = multi_values(num_docs, 3);
|
||||
|
||||
b.iter(|| {
|
||||
let directory: RamDirectory = RamDirectory::create();
|
||||
let options = NumericOptions::default().set_fast(Cardinality::MultiValues);
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field = schema_builder.add_u64_field("field", options);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
|
||||
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
|
||||
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema);
|
||||
for block in &multi_values {
|
||||
let mut doc = Document::new();
|
||||
for val in block {
|
||||
doc.add_u64(field, *val);
|
||||
}
|
||||
fast_field_writers.add_document(&doc).unwrap();
|
||||
}
|
||||
fast_field_writers
|
||||
.serialize(&mut serializer, &HashMap::new(), None)
|
||||
.unwrap();
|
||||
serializer.close().unwrap();
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_multi_value_ff_creation_with_sorting(b: &mut Bencher) {
|
||||
// 3 million ff entries
|
||||
let num_docs = 1_000_000;
|
||||
let multi_values = multi_values(num_docs, 3);
|
||||
|
||||
let doc_id_mapping =
|
||||
DocIdMapping::from_new_id_to_old_id((0..1_000_000).collect::<Vec<_>>());
|
||||
|
||||
b.iter(|| {
|
||||
let directory: RamDirectory = RamDirectory::create();
|
||||
let options = NumericOptions::default().set_fast(Cardinality::MultiValues);
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field = schema_builder.add_u64_field("field", options);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
|
||||
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
|
||||
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema);
|
||||
for block in &multi_values {
|
||||
let mut doc = Document::new();
|
||||
for val in block {
|
||||
doc.add_u64(field, *val);
|
||||
}
|
||||
fast_field_writers.add_document(&doc).unwrap();
|
||||
}
|
||||
fast_field_writers
|
||||
.serialize(&mut serializer, &HashMap::new(), Some(&doc_id_mapping))
|
||||
.unwrap();
|
||||
serializer.close().unwrap();
|
||||
});
|
||||
}
|
||||
}
|
||||
@@ -1,333 +0,0 @@
|
||||
use core::fmt;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use super::MultiValueIndex;
|
||||
use crate::fastfield::MakeZero;
|
||||
use crate::DocId;
|
||||
|
||||
/// Reader for a multivalued fast field.
|
||||
///
|
||||
/// The reader is implemented as two fast fields, one u64 fast field for the index and one for the
|
||||
/// values.
|
||||
///
|
||||
/// The `vals_reader` will access the concatenated list of all values.
|
||||
/// The `idx_reader` associates, for each document, the index of its first value.
|
||||
#[derive(Clone)]
|
||||
pub struct MultiValuedFastFieldReader<T> {
|
||||
idx_reader: MultiValueIndex,
|
||||
vals_reader: Arc<dyn Column<T>>,
|
||||
}
|
||||
|
||||
impl<T: PartialOrd + MakeZero + Copy + fmt::Debug> MultiValuedFastFieldReader<T> {
|
||||
pub(crate) fn open(
|
||||
idx_reader: Arc<dyn Column<u64>>,
|
||||
vals_reader: Arc<dyn Column<T>>,
|
||||
) -> MultiValuedFastFieldReader<T> {
|
||||
Self {
|
||||
idx_reader: MultiValueIndex::new(idx_reader),
|
||||
vals_reader,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the array of values associated to the given `doc`.
|
||||
#[inline]
|
||||
pub fn get_first_val(&self, doc: DocId) -> Option<T> {
|
||||
let range = self.idx_reader.range(doc);
|
||||
if range.is_empty() {
|
||||
return None;
|
||||
}
|
||||
Some(self.vals_reader.get_val(range.start))
|
||||
}
|
||||
|
||||
/// Returns the array of values associated to the given `doc`.
|
||||
#[inline]
|
||||
fn get_vals_for_range(&self, range: Range<u32>, vals: &mut Vec<T>) {
|
||||
let len = (range.end - range.start) as usize;
|
||||
vals.resize(len, T::make_zero());
|
||||
self.vals_reader
|
||||
.get_range(range.start as u64, &mut vals[..]);
|
||||
}
|
||||
|
||||
/// Returns the index reader
|
||||
pub fn get_index_reader(&self) -> &MultiValueIndex {
|
||||
&self.idx_reader
|
||||
}
|
||||
|
||||
/// Returns the array of values associated to the given `doc`.
|
||||
#[inline]
|
||||
pub fn get_vals(&self, doc: DocId, vals: &mut Vec<T>) {
|
||||
let range = self.idx_reader.range(doc);
|
||||
self.get_vals_for_range(range, vals);
|
||||
}
|
||||
|
||||
/// Iterates over all elements in the fast field
|
||||
pub fn iter(&self) -> impl Iterator<Item = T> + '_ {
|
||||
self.vals_reader.iter()
|
||||
}
|
||||
|
||||
/// Returns the minimum value for this fast field.
|
||||
///
|
||||
/// The min value does not take in account of possible
|
||||
/// deleted document, and should be considered as a lower bound
|
||||
/// of the actual mimimum value.
|
||||
pub fn min_value(&self) -> T {
|
||||
self.vals_reader.min_value()
|
||||
}
|
||||
|
||||
/// Returns the maximum value for this fast field.
|
||||
///
|
||||
/// The max value does not take in account of possible
|
||||
/// deleted document, and should be considered as an upper bound
|
||||
/// of the actual maximum value.
|
||||
pub fn max_value(&self) -> T {
|
||||
self.vals_reader.max_value()
|
||||
}
|
||||
|
||||
/// Returns the number of values associated with the document `DocId`.
|
||||
#[inline]
|
||||
pub fn num_vals(&self, doc: DocId) -> u32 {
|
||||
self.idx_reader.num_vals_for_doc(doc)
|
||||
}
|
||||
|
||||
/// Returns the overall number of values in this field. It does not include deletes.
|
||||
#[inline]
|
||||
pub fn total_num_vals(&self) -> u32 {
|
||||
assert_eq!(
|
||||
self.vals_reader.num_vals(),
|
||||
self.get_index_reader().total_num_vals()
|
||||
);
|
||||
self.idx_reader.total_num_vals()
|
||||
}
|
||||
|
||||
/// Returns the docids matching given doc_id_range and value_range.
|
||||
#[inline]
|
||||
pub fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<T>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
let position_range = self
|
||||
.get_index_reader()
|
||||
.docid_range_to_position_range(doc_id_range.clone());
|
||||
self.vals_reader
|
||||
.get_docids_for_value_range(value_range, position_range, positions);
|
||||
|
||||
self.idx_reader.positions_to_docids(doc_id_range, positions);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use time::{Duration, OffsetDateTime};
|
||||
|
||||
use crate::collector::Count;
|
||||
use crate::core::Index;
|
||||
use crate::query::RangeQuery;
|
||||
use crate::schema::{Cardinality, Facet, FacetOptions, NumericOptions, Schema};
|
||||
use crate::{DateOptions, DatePrecision, DateTime};
|
||||
|
||||
#[test]
|
||||
fn test_multivalued_date_docids_for_value_range_1() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let date_field = schema_builder.add_date_field(
|
||||
"multi_date_field",
|
||||
DateOptions::default()
|
||||
.set_fast(Cardinality::MultiValues)
|
||||
.set_indexed()
|
||||
.set_fieldnorm()
|
||||
.set_precision(DatePrecision::Microseconds)
|
||||
.set_stored(),
|
||||
);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
let first_time_stamp = OffsetDateTime::now_utc();
|
||||
index_writer.add_document(doc!(
|
||||
date_field => DateTime::from_utc(first_time_stamp),
|
||||
date_field => DateTime::from_utc(first_time_stamp),
|
||||
))?;
|
||||
// add another second
|
||||
let two_secs_ahead = first_time_stamp + Duration::seconds(2);
|
||||
index_writer.commit()?;
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
let reader = searcher.segment_reader(0);
|
||||
|
||||
let date_ff_reader = reader.fast_fields().dates("multi_date_field").unwrap();
|
||||
let mut docids = vec![];
|
||||
date_ff_reader.get_docids_for_value_range(
|
||||
DateTime::from_utc(first_time_stamp)..=DateTime::from_utc(two_secs_ahead),
|
||||
0..5,
|
||||
&mut docids,
|
||||
);
|
||||
assert_eq!(docids, vec![0]);
|
||||
|
||||
let count_multiples =
|
||||
|range_query: RangeQuery| searcher.search(&range_query, &Count).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
count_multiples(RangeQuery::new_date(
|
||||
"multi_date_field".to_string(),
|
||||
DateTime::from_utc(first_time_stamp)..DateTime::from_utc(two_secs_ahead)
|
||||
)),
|
||||
1
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multivalued_date_docids_for_value_range_2() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let date_field = schema_builder.add_date_field(
|
||||
"multi_date_field",
|
||||
DateOptions::default()
|
||||
.set_fast(Cardinality::MultiValues)
|
||||
// TODO: Test different precision after fixing https://github.com/quickwit-oss/tantivy/issues/1783
|
||||
.set_precision(DatePrecision::Microseconds)
|
||||
.set_indexed()
|
||||
.set_fieldnorm()
|
||||
.set_stored(),
|
||||
);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
let first_time_stamp = OffsetDateTime::now_utc();
|
||||
index_writer.add_document(doc!(
|
||||
date_field => DateTime::from_utc(first_time_stamp),
|
||||
date_field => DateTime::from_utc(first_time_stamp),
|
||||
))?;
|
||||
index_writer.add_document(doc!())?;
|
||||
// add one second
|
||||
index_writer.add_document(doc!(
|
||||
date_field => DateTime::from_utc(first_time_stamp + Duration::seconds(1)),
|
||||
))?;
|
||||
// add another second
|
||||
let two_secs_ahead = first_time_stamp + Duration::seconds(2);
|
||||
index_writer.add_document(doc!(
|
||||
date_field => DateTime::from_utc(two_secs_ahead),
|
||||
date_field => DateTime::from_utc(two_secs_ahead),
|
||||
date_field => DateTime::from_utc(two_secs_ahead),
|
||||
))?;
|
||||
// add three seconds
|
||||
index_writer.add_document(doc!(
|
||||
date_field => DateTime::from_utc(first_time_stamp + Duration::seconds(3)),
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
let reader = searcher.segment_reader(0);
|
||||
assert_eq!(reader.num_docs(), 5);
|
||||
|
||||
let date_ff_reader = reader.fast_fields().dates("multi_date_field").unwrap();
|
||||
let mut docids = vec![];
|
||||
date_ff_reader.get_docids_for_value_range(
|
||||
DateTime::from_utc(first_time_stamp)..=DateTime::from_utc(two_secs_ahead),
|
||||
0..5,
|
||||
&mut docids,
|
||||
);
|
||||
assert_eq!(docids, vec![0, 2, 3]);
|
||||
|
||||
let count_multiples =
|
||||
|range_query: RangeQuery| searcher.search(&range_query, &Count).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
count_multiples(RangeQuery::new_date(
|
||||
"multi_date_field".to_string(),
|
||||
DateTime::from_utc(first_time_stamp)..DateTime::from_utc(two_secs_ahead)
|
||||
)),
|
||||
2
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multifastfield_reader() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let facet_field = schema_builder.add_facet_field("facets", FacetOptions::default());
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.add_document(doc!(
|
||||
facet_field => Facet::from("/category/cat2"),
|
||||
facet_field => Facet::from("/category/cat1"),
|
||||
))?;
|
||||
index_writer.add_document(doc!(facet_field => Facet::from("/category/cat2")))?;
|
||||
index_writer.add_document(doc!(facet_field => Facet::from("/category/cat3")))?;
|
||||
index_writer.commit()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let mut facet_reader = segment_reader.facet_reader(facet_field)?;
|
||||
|
||||
let mut facet = Facet::root();
|
||||
{
|
||||
facet_reader.facet_from_ord(1, &mut facet).unwrap();
|
||||
assert_eq!(facet, Facet::from("/category"));
|
||||
}
|
||||
{
|
||||
facet_reader.facet_from_ord(2, &mut facet).unwrap();
|
||||
assert_eq!(facet, Facet::from("/category/cat1"));
|
||||
}
|
||||
{
|
||||
facet_reader.facet_from_ord(3, &mut facet).unwrap();
|
||||
assert_eq!(format!("{}", facet), "/category/cat2");
|
||||
assert_eq!(facet, Facet::from("/category/cat2"));
|
||||
}
|
||||
{
|
||||
facet_reader.facet_from_ord(4, &mut facet).unwrap();
|
||||
assert_eq!(facet, Facet::from("/category/cat3"));
|
||||
}
|
||||
|
||||
let mut vals = Vec::new();
|
||||
{
|
||||
facet_reader.facet_ords(0, &mut vals);
|
||||
assert_eq!(&vals[..], &[2, 3]);
|
||||
}
|
||||
{
|
||||
facet_reader.facet_ords(1, &mut vals);
|
||||
assert_eq!(&vals[..], &[3]);
|
||||
}
|
||||
{
|
||||
facet_reader.facet_ords(2, &mut vals);
|
||||
assert_eq!(&vals[..], &[4]);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multifastfield_reader_min_max() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field_options = NumericOptions::default()
|
||||
.set_indexed()
|
||||
.set_fast(Cardinality::MultiValues);
|
||||
let item_field = schema_builder.add_i64_field("items", field_options);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index
|
||||
.writer_for_tests()
|
||||
.expect("Failed to create index writer.");
|
||||
index_writer.add_document(doc!(
|
||||
item_field => 2i64,
|
||||
item_field => 3i64,
|
||||
item_field => -2i64,
|
||||
))?;
|
||||
index_writer.add_document(doc!(item_field => 6i64, item_field => 3i64))?;
|
||||
index_writer.add_document(doc!(item_field => 4i64))?;
|
||||
index_writer.commit()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let segment_reader = searcher.segment_reader(0);
|
||||
let field_reader = segment_reader.fast_fields().i64s("items")?;
|
||||
|
||||
assert_eq!(field_reader.min_value(), -2);
|
||||
assert_eq!(field_reader.max_value(), 6);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -1,442 +0,0 @@
|
||||
use std::io;
|
||||
|
||||
use fastfield_codecs::{
|
||||
Column, MonotonicallyMappableToU128, MonotonicallyMappableToU64, VecColumn,
|
||||
};
|
||||
use rustc_hash::FxHashMap;
|
||||
|
||||
use super::get_fastfield_codecs_for_multivalue;
|
||||
use crate::fastfield::writer::unexpected_value;
|
||||
use crate::fastfield::{value_to_u64, CompositeFastFieldSerializer, FastFieldType};
|
||||
use crate::indexer::doc_id_mapping::DocIdMapping;
|
||||
use crate::postings::UnorderedTermId;
|
||||
use crate::schema::{Document, Field, Value};
|
||||
use crate::termdict::TermOrdinal;
|
||||
use crate::{DatePrecision, DocId};
|
||||
|
||||
/// Writer for multi-valued (as in, more than one value per document)
|
||||
/// int fast field.
|
||||
///
|
||||
/// This `Writer` is only useful for advanced users.
|
||||
/// The normal way to get your multivalued int in your index
|
||||
/// is to
|
||||
/// - declare your field with fast set to
|
||||
/// [`Cardinality::MultiValues`](crate::schema::Cardinality::MultiValues) in your schema
|
||||
/// - add your document simply by calling `.add_document(...)`.
|
||||
///
|
||||
/// The `MultiValuedFastFieldWriter` can be acquired from the fastfield writer, by calling
|
||||
/// [`FastFieldWriter::get_multivalue_writer_mut()`](crate::fastfield::FastFieldsWriter::get_multivalue_writer_mut).
|
||||
///
|
||||
/// Once acquired, writing is done by calling
|
||||
/// [`.add_document(&Document)`](MultiValuedFastFieldWriter::add_document) once per value.
|
||||
///
|
||||
/// The serializer makes it possible to remap all of the values
|
||||
/// that were pushed to the writer using a mapping.
|
||||
/// This makes it possible to push unordered term ids,
|
||||
/// during indexing and remap them to their respective
|
||||
/// term ids when the segment is getting serialized.
|
||||
pub struct MultiValuedFastFieldWriter {
|
||||
field: Field,
|
||||
precision_opt: Option<DatePrecision>,
|
||||
vals: Vec<UnorderedTermId>,
|
||||
doc_index: Vec<u64>,
|
||||
fast_field_type: FastFieldType,
|
||||
}
|
||||
|
||||
impl MultiValuedFastFieldWriter {
|
||||
/// Creates a new `MultiValuedFastFieldWriter`
|
||||
pub(crate) fn new(
|
||||
field: Field,
|
||||
fast_field_type: FastFieldType,
|
||||
precision_opt: Option<DatePrecision>,
|
||||
) -> Self {
|
||||
MultiValuedFastFieldWriter {
|
||||
field,
|
||||
precision_opt,
|
||||
vals: Vec::new(),
|
||||
doc_index: Vec::new(),
|
||||
fast_field_type,
|
||||
}
|
||||
}
|
||||
|
||||
/// The memory used (inclusive childs)
|
||||
pub fn mem_usage(&self) -> usize {
|
||||
self.vals.capacity() * std::mem::size_of::<UnorderedTermId>()
|
||||
+ self.doc_index.capacity() * std::mem::size_of::<u64>()
|
||||
}
|
||||
|
||||
/// Access the field associated with the `MultiValuedFastFieldWriter`
|
||||
pub fn field(&self) -> Field {
|
||||
self.field
|
||||
}
|
||||
|
||||
/// Finalize the current document.
|
||||
pub(crate) fn next_doc(&mut self) {
|
||||
self.doc_index.push(self.vals.len() as u64);
|
||||
}
|
||||
|
||||
/// Pushes a new value to the current document.
|
||||
pub(crate) fn add_val(&mut self, val: UnorderedTermId) {
|
||||
self.vals.push(val);
|
||||
}
|
||||
|
||||
/// Shift to the next document and adds
|
||||
/// all of the matching field values present in the document.
|
||||
pub fn add_document(&mut self, doc: &Document) -> crate::Result<()> {
|
||||
self.next_doc();
|
||||
// facets/texts are indexed in the `SegmentWriter` as we encode their unordered id.
|
||||
if self.fast_field_type.is_storing_term_ids() {
|
||||
return Ok(());
|
||||
}
|
||||
for field_value in doc.field_values() {
|
||||
if field_value.field == self.field {
|
||||
let value = field_value.value();
|
||||
let value_u64 = match (self.precision_opt, value) {
|
||||
(Some(precision), Value::Date(date_val)) => {
|
||||
date_val.truncate(precision).to_u64()
|
||||
}
|
||||
_ => value_to_u64(value)?,
|
||||
};
|
||||
self.add_val(value_u64);
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Returns an iterator over values per doc_id in ascending doc_id order.
|
||||
///
|
||||
/// Normally the order is simply iterating self.doc_id_index.
|
||||
/// With doc_id_map it accounts for the new mapping, returning values in the order of the
|
||||
/// new doc_ids.
|
||||
fn get_ordered_values<'a: 'b, 'b>(
|
||||
&'a self,
|
||||
doc_id_map: Option<&'b DocIdMapping>,
|
||||
) -> impl Iterator<Item = &'b [u64]> {
|
||||
let doc_id_iter: Box<dyn Iterator<Item = u32>> = if let Some(doc_id_map) = doc_id_map {
|
||||
Box::new(doc_id_map.iter_old_doc_ids())
|
||||
} else {
|
||||
let max_doc = self.doc_index.len() as DocId;
|
||||
Box::new(0..max_doc)
|
||||
};
|
||||
doc_id_iter.map(move |doc_id| self.get_values_for_doc_id(doc_id))
|
||||
}
|
||||
|
||||
/// returns all values for a doc_ids
|
||||
fn get_values_for_doc_id(&self, doc_id: u32) -> &[u64] {
|
||||
let start_pos = self.doc_index[doc_id as usize] as usize;
|
||||
let end_pos = self
|
||||
.doc_index
|
||||
.get(doc_id as usize + 1)
|
||||
.cloned()
|
||||
.unwrap_or(self.vals.len() as u64) as usize; // special case, last doc_id has no offset information
|
||||
&self.vals[start_pos..end_pos]
|
||||
}
|
||||
/// Serializes fast field values by pushing them to the `FastFieldSerializer`.
|
||||
///
|
||||
/// If a mapping is given, the values are remapped *and sorted* before serialization.
|
||||
/// This is used when serializing `facets`. Specifically their terms are
|
||||
/// first stored in the writer as their position in the `IndexWriter`'s `HashMap`.
|
||||
/// This value is called an `UnorderedTermId`.
|
||||
///
|
||||
/// During the serialization of the segment, terms gets sorted and
|
||||
/// `tantivy` builds a mapping to convert this `UnorderedTermId` into
|
||||
/// term ordinals.
|
||||
pub fn serialize(
|
||||
mut self,
|
||||
serializer: &mut CompositeFastFieldSerializer,
|
||||
term_mapping_opt: Option<&FxHashMap<UnorderedTermId, TermOrdinal>>,
|
||||
doc_id_map: Option<&DocIdMapping>,
|
||||
) -> io::Result<()> {
|
||||
{
|
||||
self.doc_index.push(self.vals.len() as u64);
|
||||
let col = VecColumn::from(&self.doc_index[..]);
|
||||
if let Some(doc_id_map) = doc_id_map {
|
||||
let multi_value_start_index = MultivalueStartIndex::new(&col, doc_id_map);
|
||||
serializer.create_auto_detect_u64_fast_field_with_idx(
|
||||
self.field,
|
||||
multi_value_start_index,
|
||||
0,
|
||||
)?;
|
||||
} else {
|
||||
serializer.create_auto_detect_u64_fast_field_with_idx(self.field, col, 0)?;
|
||||
}
|
||||
}
|
||||
{
|
||||
// Writing the values themselves.
|
||||
// TODO FIXME: Use less memory.
|
||||
let mut values: Vec<u64> = Vec::new();
|
||||
if let Some(term_mapping) = term_mapping_opt {
|
||||
if self.fast_field_type.is_facet() {
|
||||
let mut doc_vals: Vec<u64> = Vec::with_capacity(100);
|
||||
for vals in self.get_ordered_values(doc_id_map) {
|
||||
// In the case of facets, we want a vec of facet ord that is sorted.
|
||||
doc_vals.clear();
|
||||
let remapped_vals = vals
|
||||
.iter()
|
||||
.map(|val| *term_mapping.get(val).expect("Missing term ordinal"));
|
||||
doc_vals.extend(remapped_vals);
|
||||
doc_vals.sort_unstable();
|
||||
for &val in &doc_vals {
|
||||
values.push(val);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for vals in self.get_ordered_values(doc_id_map) {
|
||||
let remapped_vals = vals
|
||||
.iter()
|
||||
.map(|val| *term_mapping.get(val).expect("Missing term ordinal"));
|
||||
for val in remapped_vals {
|
||||
values.push(val);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for vals in self.get_ordered_values(doc_id_map) {
|
||||
// sort values in case of remapped doc_ids?
|
||||
for &val in vals {
|
||||
values.push(val);
|
||||
}
|
||||
}
|
||||
}
|
||||
let col = VecColumn::from(&values[..]);
|
||||
serializer.create_auto_detect_u64_fast_field_with_idx_and_codecs(
|
||||
self.field,
|
||||
col,
|
||||
1,
|
||||
&get_fastfield_codecs_for_multivalue(),
|
||||
)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) struct MultivalueStartIndex<'a, C: Column> {
|
||||
column: &'a C,
|
||||
doc_id_map: &'a DocIdMapping,
|
||||
min: u64,
|
||||
max: u64,
|
||||
}
|
||||
|
||||
impl<'a, C: Column> MultivalueStartIndex<'a, C> {
|
||||
pub fn new(column: &'a C, doc_id_map: &'a DocIdMapping) -> Self {
|
||||
assert_eq!(column.num_vals(), doc_id_map.num_old_doc_ids() as u32 + 1);
|
||||
let (min, max) =
|
||||
tantivy_bitpacker::minmax(iter_remapped_multivalue_index(doc_id_map, column))
|
||||
.unwrap_or((0u64, 0u64));
|
||||
MultivalueStartIndex {
|
||||
column,
|
||||
doc_id_map,
|
||||
min,
|
||||
max,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<'a, C: Column> Column for MultivalueStartIndex<'a, C> {
|
||||
fn get_val(&self, _idx: u32) -> u64 {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u64 {
|
||||
self.min
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.max
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
(self.doc_id_map.num_new_doc_ids() + 1) as u32
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
Box::new(iter_remapped_multivalue_index(
|
||||
self.doc_id_map,
|
||||
&self.column,
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
fn iter_remapped_multivalue_index<'a, C: Column>(
|
||||
doc_id_map: &'a DocIdMapping,
|
||||
column: &'a C,
|
||||
) -> impl Iterator<Item = u64> + 'a {
|
||||
let mut offset = 0;
|
||||
std::iter::once(0).chain(doc_id_map.iter_old_doc_ids().map(move |old_doc| {
|
||||
let num_vals_for_doc = column.get_val(old_doc + 1) - column.get_val(old_doc);
|
||||
offset += num_vals_for_doc;
|
||||
offset
|
||||
}))
|
||||
}
|
||||
|
||||
/// Writer for multi-valued (as in, more than one value per document)
|
||||
/// int fast field.
|
||||
///
|
||||
/// This `Writer` is only useful for advanced users.
|
||||
/// The normal way to get your multivalued int in your index
|
||||
/// is to
|
||||
/// - declare your field with fast set to `Cardinality::MultiValues`
|
||||
/// in your schema
|
||||
/// - add your document simply by calling `.add_document(...)`.
|
||||
///
|
||||
/// The `MultiValuedFastFieldWriter` can be acquired from the
|
||||
|
||||
pub struct MultiValueU128FastFieldWriter {
|
||||
field: Field,
|
||||
vals: Vec<u128>,
|
||||
doc_index: Vec<u64>,
|
||||
}
|
||||
|
||||
impl MultiValueU128FastFieldWriter {
|
||||
/// Creates a new `U128MultiValueFastFieldWriter`
|
||||
pub(crate) fn new(field: Field) -> Self {
|
||||
MultiValueU128FastFieldWriter {
|
||||
field,
|
||||
vals: Vec::new(),
|
||||
doc_index: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
/// The memory used (inclusive childs)
|
||||
pub fn mem_usage(&self) -> usize {
|
||||
self.vals.capacity() * std::mem::size_of::<UnorderedTermId>()
|
||||
+ self.doc_index.capacity() * std::mem::size_of::<u64>()
|
||||
}
|
||||
|
||||
/// Finalize the current document.
|
||||
pub(crate) fn next_doc(&mut self) {
|
||||
self.doc_index.push(self.vals.len() as u64);
|
||||
}
|
||||
|
||||
/// Pushes a new value to the current document.
|
||||
pub(crate) fn add_val(&mut self, val: u128) {
|
||||
self.vals.push(val);
|
||||
}
|
||||
|
||||
/// Shift to the next document and adds
|
||||
/// all of the matching field values present in the document.
|
||||
pub fn add_document(&mut self, doc: &Document) -> crate::Result<()> {
|
||||
self.next_doc();
|
||||
for field_value in doc.field_values() {
|
||||
if field_value.field == self.field {
|
||||
let value = field_value.value();
|
||||
let ip_addr = value
|
||||
.as_ip_addr()
|
||||
.ok_or_else(|| unexpected_value("ip", value))?;
|
||||
let ip_addr_u128 = ip_addr.to_u128();
|
||||
self.add_val(ip_addr_u128);
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Returns an iterator over values per doc_id in ascending doc_id order.
|
||||
///
|
||||
/// Normally the order is simply iterating self.doc_id_index.
|
||||
/// With doc_id_map it accounts for the new mapping, returning values in the order of the
|
||||
/// new doc_ids.
|
||||
fn get_ordered_values<'a: 'b, 'b>(
|
||||
&'a self,
|
||||
doc_id_map: Option<&'b DocIdMapping>,
|
||||
) -> impl Iterator<Item = &'b [u128]> {
|
||||
get_ordered_values(&self.vals, &self.doc_index, doc_id_map)
|
||||
}
|
||||
|
||||
/// Serializes fast field values.
|
||||
pub fn serialize(
|
||||
mut self,
|
||||
serializer: &mut CompositeFastFieldSerializer,
|
||||
doc_id_map: Option<&DocIdMapping>,
|
||||
) -> io::Result<()> {
|
||||
{
|
||||
// writing the offset index
|
||||
//
|
||||
self.doc_index.push(self.vals.len() as u64);
|
||||
let col = VecColumn::from(&self.doc_index[..]);
|
||||
if let Some(doc_id_map) = doc_id_map {
|
||||
let multi_value_start_index = MultivalueStartIndex::new(&col, doc_id_map);
|
||||
serializer.create_auto_detect_u64_fast_field_with_idx(
|
||||
self.field,
|
||||
multi_value_start_index,
|
||||
0,
|
||||
)?;
|
||||
} else {
|
||||
serializer.create_auto_detect_u64_fast_field_with_idx(self.field, col, 0)?;
|
||||
}
|
||||
}
|
||||
{
|
||||
let iter_gen = || self.get_ordered_values(doc_id_map).flatten().cloned();
|
||||
|
||||
serializer.create_u128_fast_field_with_idx(
|
||||
self.field,
|
||||
iter_gen,
|
||||
self.vals.len() as u32,
|
||||
1,
|
||||
)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns an iterator over values per doc_id in ascending doc_id order.
|
||||
///
|
||||
/// Normally the order is simply iterating self.doc_id_index.
|
||||
/// With doc_id_map it accounts for the new mapping, returning values in the order of the
|
||||
/// new doc_ids.
|
||||
fn get_ordered_values<'a: 'b, 'b, T>(
|
||||
vals: &'a [T],
|
||||
doc_index: &'a [u64],
|
||||
doc_id_map: Option<&'b DocIdMapping>,
|
||||
) -> impl Iterator<Item = &'b [T]> {
|
||||
let doc_id_iter: Box<dyn Iterator<Item = u32>> = if let Some(doc_id_map) = doc_id_map {
|
||||
Box::new(doc_id_map.iter_old_doc_ids())
|
||||
} else {
|
||||
let max_doc = doc_index.len() as DocId;
|
||||
Box::new(0..max_doc)
|
||||
};
|
||||
doc_id_iter.map(move |doc_id| get_values_for_doc_id(doc_id, vals, doc_index))
|
||||
}
|
||||
|
||||
/// returns all values for a doc_id
|
||||
fn get_values_for_doc_id<'a, T>(doc_id: u32, vals: &'a [T], doc_index: &'a [u64]) -> &'a [T] {
|
||||
let start_pos = doc_index[doc_id as usize] as usize;
|
||||
let end_pos = doc_index
|
||||
.get(doc_id as usize + 1)
|
||||
.cloned()
|
||||
.unwrap_or(vals.len() as u64) as usize; // special case, last doc_id has no offset information
|
||||
&vals[start_pos..end_pos]
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_multivalue_start_index() {
|
||||
let doc_id_mapping = DocIdMapping::from_new_id_to_old_id(vec![4, 1, 2]);
|
||||
assert_eq!(doc_id_mapping.num_old_doc_ids(), 5);
|
||||
let col = VecColumn::from(&[0u64, 3, 5, 10, 12, 16][..]);
|
||||
let multivalue_start_index = MultivalueStartIndex::new(
|
||||
&col, // 3, 2, 5, 2, 4
|
||||
&doc_id_mapping,
|
||||
);
|
||||
assert_eq!(multivalue_start_index.num_vals(), 4);
|
||||
assert_eq!(
|
||||
multivalue_start_index.iter().collect::<Vec<u64>>(),
|
||||
vec![0, 4, 6, 11]
|
||||
); // 4, 2, 5
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multivalue_get_vals() {
|
||||
let doc_id_mapping =
|
||||
DocIdMapping::from_new_id_to_old_id(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
|
||||
assert_eq!(doc_id_mapping.num_old_doc_ids(), 10);
|
||||
let col = VecColumn::from(&[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55][..]);
|
||||
let multivalue_start_index = MultivalueStartIndex::new(&col, &doc_id_mapping);
|
||||
assert_eq!(
|
||||
multivalue_start_index.iter().collect::<Vec<u64>>(),
|
||||
vec![0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
|
||||
);
|
||||
assert_eq!(multivalue_start_index.num_vals(), 11);
|
||||
}
|
||||
}
|
||||
@@ -1,14 +1,15 @@
|
||||
use std::io;
|
||||
use std::net::Ipv6Addr;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::{open, open_u128, Column};
|
||||
use columnar::{
|
||||
BytesColumn, ColumnType, ColumnValues, ColumnarReader, DynamicColumn, DynamicColumnHandle,
|
||||
HasAssociatedColumnType, StrColumn,
|
||||
};
|
||||
|
||||
use super::multivalued::MultiValuedFastFieldReader;
|
||||
use crate::directory::{CompositeFile, FileSlice};
|
||||
use crate::fastfield::{BytesFastFieldReader, FastFieldNotAvailableError, FastValue};
|
||||
use crate::schema::{Cardinality, Field, FieldType, Schema};
|
||||
use crate::space_usage::PerFieldSpaceUsage;
|
||||
use crate::{DateTime, TantivyError};
|
||||
use crate::directory::FileSlice;
|
||||
use crate::schema::Schema;
|
||||
use crate::space_usage::{FieldUsage, PerFieldSpaceUsage};
|
||||
|
||||
/// Provides access to all of the BitpackedFastFieldReader.
|
||||
///
|
||||
@@ -16,315 +17,162 @@ use crate::{DateTime, TantivyError};
|
||||
/// and just wraps several `HashMap`.
|
||||
#[derive(Clone)]
|
||||
pub struct FastFieldReaders {
|
||||
schema: Schema,
|
||||
fast_fields_composite: CompositeFile,
|
||||
}
|
||||
#[derive(Eq, PartialEq, Debug)]
|
||||
pub(crate) enum FastType {
|
||||
I64,
|
||||
U64,
|
||||
U128,
|
||||
F64,
|
||||
Bool,
|
||||
Date,
|
||||
}
|
||||
|
||||
pub(crate) fn type_and_cardinality(field_type: &FieldType) -> Option<(FastType, Cardinality)> {
|
||||
match field_type {
|
||||
FieldType::U64(options) => options
|
||||
.get_fastfield_cardinality()
|
||||
.map(|cardinality| (FastType::U64, cardinality)),
|
||||
FieldType::I64(options) => options
|
||||
.get_fastfield_cardinality()
|
||||
.map(|cardinality| (FastType::I64, cardinality)),
|
||||
FieldType::F64(options) => options
|
||||
.get_fastfield_cardinality()
|
||||
.map(|cardinality| (FastType::F64, cardinality)),
|
||||
FieldType::Bool(options) => options
|
||||
.get_fastfield_cardinality()
|
||||
.map(|cardinality| (FastType::Bool, cardinality)),
|
||||
FieldType::Date(options) => options
|
||||
.get_fastfield_cardinality()
|
||||
.map(|cardinality| (FastType::Date, cardinality)),
|
||||
FieldType::Facet(_) => Some((FastType::U64, Cardinality::MultiValues)),
|
||||
FieldType::Str(options) if options.is_fast() => {
|
||||
Some((FastType::U64, Cardinality::MultiValues))
|
||||
}
|
||||
FieldType::IpAddr(options) => options
|
||||
.get_fastfield_cardinality()
|
||||
.map(|cardinality| (FastType::U128, cardinality)),
|
||||
_ => None,
|
||||
}
|
||||
columnar: Arc<ColumnarReader>,
|
||||
}
|
||||
|
||||
impl FastFieldReaders {
|
||||
pub(crate) fn new(schema: Schema, fast_fields_composite: CompositeFile) -> FastFieldReaders {
|
||||
FastFieldReaders {
|
||||
schema,
|
||||
fast_fields_composite,
|
||||
pub(crate) fn open(fast_field_file: FileSlice) -> io::Result<FastFieldReaders> {
|
||||
let columnar = Arc::new(ColumnarReader::open(fast_field_file)?);
|
||||
Ok(FastFieldReaders { columnar })
|
||||
}
|
||||
|
||||
pub(crate) fn space_usage(&self, schema: &Schema) -> io::Result<PerFieldSpaceUsage> {
|
||||
let mut per_field_usages: Vec<FieldUsage> = Default::default();
|
||||
for (field, field_entry) in schema.fields() {
|
||||
let column_handles = self.columnar.read_columns(field_entry.name())?;
|
||||
let num_bytes: usize = column_handles
|
||||
.iter()
|
||||
.map(|column_handle| column_handle.num_bytes())
|
||||
.sum();
|
||||
let mut field_usage = FieldUsage::empty(field);
|
||||
field_usage.add_field_idx(0, num_bytes);
|
||||
per_field_usages.push(field_usage);
|
||||
}
|
||||
// TODO fix space usage for JSON fields.
|
||||
Ok(PerFieldSpaceUsage::new(per_field_usages))
|
||||
}
|
||||
|
||||
pub(crate) fn space_usage(&self) -> PerFieldSpaceUsage {
|
||||
self.fast_fields_composite.space_usage()
|
||||
}
|
||||
|
||||
#[doc(hidden)]
|
||||
pub fn fast_field_data(&self, field: Field, idx: usize) -> crate::Result<FileSlice> {
|
||||
self.fast_fields_composite
|
||||
.open_read_with_idx(field, idx)
|
||||
.ok_or_else(|| {
|
||||
let field_name = self.schema.get_field_entry(field).name();
|
||||
TantivyError::SchemaError(format!("Field({}) data was not found", field_name))
|
||||
})
|
||||
}
|
||||
|
||||
fn check_type(
|
||||
&self,
|
||||
field: Field,
|
||||
expected_fast_type: FastType,
|
||||
expected_cardinality: Cardinality,
|
||||
) -> crate::Result<()> {
|
||||
let field_entry = self.schema.get_field_entry(field);
|
||||
let (fast_type, cardinality) =
|
||||
type_and_cardinality(field_entry.field_type()).ok_or_else(|| {
|
||||
crate::TantivyError::SchemaError(format!(
|
||||
"Field {:?} is not a fast field.",
|
||||
field_entry.name()
|
||||
))
|
||||
})?;
|
||||
if fast_type != expected_fast_type {
|
||||
return Err(crate::TantivyError::SchemaError(format!(
|
||||
"Field {:?} is of type {:?}, expected {:?}.",
|
||||
field_entry.name(),
|
||||
fast_type,
|
||||
expected_fast_type
|
||||
)));
|
||||
}
|
||||
if cardinality != expected_cardinality {
|
||||
return Err(crate::TantivyError::SchemaError(format!(
|
||||
"Field {:?} is of cardinality {:?}, expected {:?}.",
|
||||
field_entry.name(),
|
||||
cardinality,
|
||||
expected_cardinality
|
||||
)));
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn typed_fast_field_reader_with_idx<TFastValue: FastValue>(
|
||||
pub fn typed_column_opt<T>(
|
||||
&self,
|
||||
field_name: &str,
|
||||
index: usize,
|
||||
) -> crate::Result<Arc<dyn Column<TFastValue>>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
|
||||
let fast_field_slice = self.fast_field_data(field, index)?;
|
||||
let bytes = fast_field_slice.read_bytes()?;
|
||||
let column = fastfield_codecs::open(bytes)?;
|
||||
Ok(column)
|
||||
) -> crate::Result<Option<columnar::Column<T>>>
|
||||
where
|
||||
T: PartialOrd + Copy + HasAssociatedColumnType + Send + Sync + 'static,
|
||||
DynamicColumn: Into<Option<columnar::Column<T>>>,
|
||||
{
|
||||
let column_type = T::column_type();
|
||||
let Some(dynamic_column_handle) = self.column_handle(field_name, column_type)?
|
||||
else {
|
||||
return Ok(None);
|
||||
};
|
||||
let dynamic_column = dynamic_column_handle.open()?;
|
||||
Ok(dynamic_column.into())
|
||||
}
|
||||
|
||||
pub(crate) fn typed_fast_field_reader<TFastValue: FastValue>(
|
||||
&self,
|
||||
field_name: &str,
|
||||
) -> crate::Result<Arc<dyn Column<TFastValue>>> {
|
||||
self.typed_fast_field_reader_with_idx(field_name, 0)
|
||||
pub fn bytes_column_opt(&self, field_name: &str) -> crate::Result<Option<BytesColumn>> {
|
||||
let Some(dynamic_column_handle) = self.column_handle(field_name, ColumnType::Bytes)?
|
||||
else {
|
||||
return Ok(None);
|
||||
};
|
||||
let dynamic_column = dynamic_column_handle.open()?;
|
||||
Ok(dynamic_column.into())
|
||||
}
|
||||
pub fn str_column_opt(&self, field_name: &str) -> crate::Result<Option<StrColumn>> {
|
||||
let Some(dynamic_column_handle) = self.column_handle(field_name, ColumnType::Str)?
|
||||
else {
|
||||
return Ok(None);
|
||||
};
|
||||
let dynamic_column = dynamic_column_handle.open()?;
|
||||
Ok(dynamic_column.into())
|
||||
}
|
||||
|
||||
pub(crate) fn typed_fast_field_multi_reader<TFastValue: FastValue>(
|
||||
pub fn column_num_bytes(&self, field: &str) -> crate::Result<usize> {
|
||||
Ok(self
|
||||
.columnar
|
||||
.read_columns(field)?
|
||||
.into_iter()
|
||||
.map(|column_handle| column_handle.num_bytes())
|
||||
.sum())
|
||||
}
|
||||
|
||||
pub fn typed_column_first_or_default<T>(
|
||||
&self,
|
||||
field_name: &str,
|
||||
) -> crate::Result<MultiValuedFastFieldReader<TFastValue>> {
|
||||
let idx_reader = self.typed_fast_field_reader(field_name)?;
|
||||
let vals_reader = self.typed_fast_field_reader_with_idx(field_name, 1)?;
|
||||
Ok(MultiValuedFastFieldReader::open(idx_reader, vals_reader))
|
||||
field: &str,
|
||||
) -> crate::Result<Arc<dyn ColumnValues<T>>>
|
||||
where
|
||||
T: PartialOrd + Copy + HasAssociatedColumnType + Send + Sync + 'static,
|
||||
DynamicColumn: Into<Option<columnar::Column<T>>>,
|
||||
{
|
||||
let col_opt: Option<columnar::Column<T>> = self.typed_column_opt(field)?;
|
||||
if let Some(col) = col_opt {
|
||||
Ok(col.first_or_default_col(T::default_value()))
|
||||
} else {
|
||||
Err(crate::TantivyError::SchemaError(format!(
|
||||
"Field `{field}` is missing or is not configured as a fast field."
|
||||
)))
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the `u64` fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a u64 fast field, this method returns an Error.
|
||||
pub fn u64(&self, field_name: &str) -> crate::Result<Arc<dyn Column<u64>>> {
|
||||
self.check_type(
|
||||
self.schema.get_field(field_name)?,
|
||||
FastType::U64,
|
||||
Cardinality::SingleValue,
|
||||
)?;
|
||||
self.typed_fast_field_reader(field_name)
|
||||
}
|
||||
|
||||
/// Returns the `ip` fast field reader reader associated to `field`.
|
||||
///
|
||||
/// If `field` is not a u128 fast field, this method returns an Error.
|
||||
pub fn ip_addr(&self, field_name: &str) -> crate::Result<Arc<dyn Column<Ipv6Addr>>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
self.check_type(field, FastType::U128, Cardinality::SingleValue)?;
|
||||
let bytes = self.fast_field_data(field, 0)?.read_bytes()?;
|
||||
Ok(open_u128::<Ipv6Addr>(bytes)?)
|
||||
}
|
||||
|
||||
/// Returns the `ip` fast field reader reader associated to `field`.
|
||||
///
|
||||
/// If `field` is not a u128 fast field, this method returns an Error.
|
||||
pub fn ip_addrs(
|
||||
&self,
|
||||
field_name: &str,
|
||||
) -> crate::Result<MultiValuedFastFieldReader<Ipv6Addr>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
self.check_type(field, FastType::U128, Cardinality::MultiValues)?;
|
||||
let idx_reader: Arc<dyn Column<u64>> = self.typed_fast_field_reader(field_name)?;
|
||||
|
||||
let bytes = self.fast_field_data(field, 1)?.read_bytes()?;
|
||||
let vals_reader = open_u128::<Ipv6Addr>(bytes)?;
|
||||
|
||||
Ok(MultiValuedFastFieldReader::open(idx_reader, vals_reader))
|
||||
}
|
||||
|
||||
/// Returns the `u128` fast field reader reader associated to `field`.
|
||||
///
|
||||
/// If `field` is not a u128 fast field, this method returns an Error.
|
||||
pub(crate) fn u128(&self, field_name: &str) -> crate::Result<Arc<dyn Column<u128>>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
self.check_type(field, FastType::U128, Cardinality::SingleValue)?;
|
||||
let bytes = self.fast_field_data(field, 0)?.read_bytes()?;
|
||||
Ok(open_u128::<u128>(bytes)?)
|
||||
}
|
||||
|
||||
/// Returns the `u128` multi-valued fast field reader reader associated to `field`.
|
||||
///
|
||||
/// If `field` is not a u128 multi-valued fast field, this method returns an Error.
|
||||
pub fn u128s(&self, field_name: &str) -> crate::Result<MultiValuedFastFieldReader<u128>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
self.check_type(field, FastType::U128, Cardinality::MultiValues)?;
|
||||
let idx_reader: Arc<dyn Column<u64>> =
|
||||
self.typed_fast_field_reader(self.schema.get_field_name(field))?;
|
||||
|
||||
let bytes = self.fast_field_data(field, 1)?.read_bytes()?;
|
||||
let vals_reader = open_u128::<u128>(bytes)?;
|
||||
|
||||
Ok(MultiValuedFastFieldReader::open(idx_reader, vals_reader))
|
||||
}
|
||||
|
||||
/// Returns the `u64` fast field reader reader associated with `field`, regardless of whether
|
||||
/// the given field is effectively of type `u64` or not.
|
||||
///
|
||||
/// If not, the fastfield reader will returns the u64-value associated with the original
|
||||
/// FastValue.
|
||||
pub fn u64_lenient(&self, field_name: &str) -> crate::Result<Arc<dyn Column<u64>>> {
|
||||
self.typed_fast_field_reader(field_name)
|
||||
}
|
||||
|
||||
/// Returns the `i64` fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a i64 fast field, this method returns an Error.
|
||||
pub fn i64(&self, field_name: &str) -> crate::Result<Arc<dyn Column<i64>>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
self.check_type(field, FastType::I64, Cardinality::SingleValue)?;
|
||||
self.typed_fast_field_reader(self.schema.get_field_name(field))
|
||||
pub fn u64(&self, field: &str) -> crate::Result<Arc<dyn ColumnValues<u64>>> {
|
||||
self.typed_column_first_or_default(field)
|
||||
}
|
||||
|
||||
/// Returns the `date` fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a date fast field, this method returns an Error.
|
||||
pub fn date(&self, field_name: &str) -> crate::Result<Arc<dyn Column<DateTime>>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
self.check_type(field, FastType::Date, Cardinality::SingleValue)?;
|
||||
self.typed_fast_field_reader(field_name)
|
||||
pub fn date(&self, field: &str) -> crate::Result<Arc<dyn ColumnValues<columnar::DateTime>>> {
|
||||
self.typed_column_first_or_default(field)
|
||||
}
|
||||
|
||||
/// Returns the `ip` fast field reader reader associated to `field`.
|
||||
///
|
||||
/// If `field` is not a u128 fast field, this method returns an Error.
|
||||
pub fn ip_addr(&self, field: &str) -> crate::Result<Arc<dyn ColumnValues<Ipv6Addr>>> {
|
||||
self.typed_column_first_or_default(field)
|
||||
}
|
||||
|
||||
pub fn str(&self, field: &str) -> crate::Result<Option<columnar::StrColumn>> {
|
||||
self.str_column_opt(field)
|
||||
}
|
||||
|
||||
pub fn bytes(&self, field: &str) -> crate::Result<Option<columnar::BytesColumn>> {
|
||||
self.bytes_column_opt(field)
|
||||
}
|
||||
|
||||
pub fn column_handle(
|
||||
&self,
|
||||
field_name: &str,
|
||||
column_type: ColumnType,
|
||||
) -> crate::Result<Option<DynamicColumnHandle>> {
|
||||
let dynamic_column_handle_opt = self
|
||||
.columnar
|
||||
.read_columns(field_name)?
|
||||
.into_iter()
|
||||
.filter(|column| column.column_type() == column_type)
|
||||
.next();
|
||||
Ok(dynamic_column_handle_opt)
|
||||
}
|
||||
|
||||
pub fn u64_lenient(&self, field_name: &str) -> crate::Result<Option<columnar::Column<u64>>> {
|
||||
for col in self.columnar.read_columns(field_name)? {
|
||||
if let Some(col_u64) = col.open_u64_lenient()? {
|
||||
return Ok(Some(col_u64));
|
||||
}
|
||||
}
|
||||
Ok(None)
|
||||
}
|
||||
|
||||
/// Returns the `i64` fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a i64 fast field, this method returns an Error.
|
||||
pub fn i64(&self, field_name: &str) -> crate::Result<Arc<dyn ColumnValues<i64>>> {
|
||||
self.typed_column_first_or_default(field_name)
|
||||
}
|
||||
|
||||
/// Returns the `f64` fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a f64 fast field, this method returns an Error.
|
||||
pub fn f64(&self, field_name: &str) -> crate::Result<Arc<dyn Column<f64>>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
self.check_type(field, FastType::F64, Cardinality::SingleValue)?;
|
||||
self.typed_fast_field_reader(field_name)
|
||||
pub fn f64(&self, field_name: &str) -> crate::Result<Arc<dyn ColumnValues<f64>>> {
|
||||
self.typed_column_first_or_default(field_name)
|
||||
}
|
||||
|
||||
/// Returns the `bool` fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a bool fast field, this method returns an Error.
|
||||
pub fn bool(&self, field_name: &str) -> crate::Result<Arc<dyn Column<bool>>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
self.check_type(field, FastType::Bool, Cardinality::SingleValue)?;
|
||||
self.typed_fast_field_reader(field_name)
|
||||
}
|
||||
|
||||
/// Returns a `u64s` multi-valued fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a u64 multi-valued fast field, this method returns an Error.
|
||||
pub fn u64s(&self, field_name: &str) -> crate::Result<MultiValuedFastFieldReader<u64>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
self.check_type(field, FastType::U64, Cardinality::MultiValues)?;
|
||||
self.typed_fast_field_multi_reader(field_name)
|
||||
}
|
||||
|
||||
/// Returns a `u64s` multi-valued fast field reader reader associated with `field`, regardless
|
||||
/// of whether the given field is effectively of type `u64` or not.
|
||||
///
|
||||
/// If `field` is not a u64 multi-valued fast field, this method returns an Error.
|
||||
pub fn u64s_lenient(&self, field_name: &str) -> crate::Result<MultiValuedFastFieldReader<u64>> {
|
||||
self.typed_fast_field_multi_reader(field_name)
|
||||
}
|
||||
|
||||
/// Returns a `i64s` multi-valued fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a i64 multi-valued fast field, this method returns an Error.
|
||||
pub fn i64s(&self, field_name: &str) -> crate::Result<MultiValuedFastFieldReader<i64>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
self.check_type(field, FastType::I64, Cardinality::MultiValues)?;
|
||||
self.typed_fast_field_multi_reader(self.schema.get_field_name(field))
|
||||
}
|
||||
|
||||
/// Returns a `f64s` multi-valued fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a f64 multi-valued fast field, this method returns an Error.
|
||||
pub fn f64s(&self, field_name: &str) -> crate::Result<MultiValuedFastFieldReader<f64>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
self.check_type(field, FastType::F64, Cardinality::MultiValues)?;
|
||||
self.typed_fast_field_multi_reader(self.schema.get_field_name(field))
|
||||
}
|
||||
|
||||
/// Returns a `bools` multi-valued fast field reader reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a bool multi-valued fast field, this method returns an Error.
|
||||
pub fn bools(&self, field_name: &str) -> crate::Result<MultiValuedFastFieldReader<bool>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
self.check_type(field, FastType::Bool, Cardinality::MultiValues)?;
|
||||
self.typed_fast_field_multi_reader(self.schema.get_field_name(field))
|
||||
}
|
||||
|
||||
/// Returns a `time::OffsetDateTime` multi-valued fast field reader reader associated with
|
||||
/// `field`.
|
||||
///
|
||||
/// If `field` is not a `time::OffsetDateTime` multi-valued fast field, this method returns an
|
||||
/// Error.
|
||||
pub fn dates(&self, field_name: &str) -> crate::Result<MultiValuedFastFieldReader<DateTime>> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
self.check_type(field, FastType::Date, Cardinality::MultiValues)?;
|
||||
self.typed_fast_field_multi_reader(self.schema.get_field_name(field))
|
||||
}
|
||||
|
||||
/// Returns the `bytes` fast field reader associated with `field`.
|
||||
///
|
||||
/// If `field` is not a bytes fast field, returns an Error.
|
||||
pub fn bytes(&self, field_name: &str) -> crate::Result<BytesFastFieldReader> {
|
||||
let field = self.schema.get_field(field_name)?;
|
||||
let field_entry = self.schema.get_field_entry(field);
|
||||
if let FieldType::Bytes(bytes_option) = field_entry.field_type() {
|
||||
if !bytes_option.is_fast() {
|
||||
return Err(crate::TantivyError::SchemaError(format!(
|
||||
"Field {:?} is not a fast field.",
|
||||
field_entry.name()
|
||||
)));
|
||||
}
|
||||
let fast_field_idx_file = self.fast_field_data(field, 0)?;
|
||||
let fast_field_idx_bytes = fast_field_idx_file.read_bytes()?;
|
||||
let idx_reader = open(fast_field_idx_bytes)?;
|
||||
let data = self.fast_field_data(field, 1)?;
|
||||
BytesFastFieldReader::open(idx_reader, data)
|
||||
} else {
|
||||
Err(FastFieldNotAvailableError::new(field_entry).into())
|
||||
}
|
||||
pub fn bool(&self, field_name: &str) -> crate::Result<Arc<dyn ColumnValues<bool>>> {
|
||||
self.typed_column_first_or_default(field_name)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,122 +0,0 @@
|
||||
use std::fmt;
|
||||
use std::io::{self, Write};
|
||||
|
||||
pub use fastfield_codecs::Column;
|
||||
use fastfield_codecs::{FastFieldCodecType, MonotonicallyMappableToU64, ALL_CODEC_TYPES};
|
||||
|
||||
use crate::directory::{CompositeWrite, WritePtr};
|
||||
use crate::schema::Field;
|
||||
|
||||
/// `CompositeFastFieldSerializer` is in charge of serializing
|
||||
/// fastfields on disk.
|
||||
///
|
||||
/// Fast fields have different encodings like bit-packing.
|
||||
///
|
||||
/// `FastFieldWriter`s are in charge of pushing the data to
|
||||
/// the serializer.
|
||||
/// The serializer expects to receive the following calls.
|
||||
///
|
||||
/// * `create_auto_detect_u64_fast_field(...)`
|
||||
/// * `create_auto_detect_u64_fast_field(...)`
|
||||
/// * ...
|
||||
/// * `let bytes_fastfield = new_bytes_fast_field(...)`
|
||||
/// * `bytes_fastfield.write_all(...)`
|
||||
/// * `bytes_fastfield.write_all(...)`
|
||||
/// * `bytes_fastfield.flush()`
|
||||
/// * ...
|
||||
/// * `close()`
|
||||
pub struct CompositeFastFieldSerializer {
|
||||
composite_write: CompositeWrite<WritePtr>,
|
||||
codec_types: Vec<FastFieldCodecType>,
|
||||
}
|
||||
|
||||
impl CompositeFastFieldSerializer {
|
||||
/// New fast field serializer with all codec types
|
||||
pub fn from_write(write: WritePtr) -> io::Result<CompositeFastFieldSerializer> {
|
||||
Self::from_write_with_codec(write, &ALL_CODEC_TYPES)
|
||||
}
|
||||
|
||||
/// New fast field serializer with allowed codec types
|
||||
pub fn from_write_with_codec(
|
||||
write: WritePtr,
|
||||
codec_types: &[FastFieldCodecType],
|
||||
) -> io::Result<CompositeFastFieldSerializer> {
|
||||
let composite_write = CompositeWrite::wrap(write);
|
||||
Ok(CompositeFastFieldSerializer {
|
||||
composite_write,
|
||||
codec_types: codec_types.to_vec(),
|
||||
})
|
||||
}
|
||||
|
||||
/// Serialize data into a new u64 fast field. The best compression codec will be chosen
|
||||
/// automatically.
|
||||
pub fn create_auto_detect_u64_fast_field<T: MonotonicallyMappableToU64 + fmt::Debug>(
|
||||
&mut self,
|
||||
field: Field,
|
||||
fastfield_accessor: impl Column<T>,
|
||||
) -> io::Result<()> {
|
||||
self.create_auto_detect_u64_fast_field_with_idx(field, fastfield_accessor, 0)
|
||||
}
|
||||
|
||||
/// Serialize data into a new u64 fast field. The best compression codec will be chosen
|
||||
/// automatically.
|
||||
pub fn create_auto_detect_u64_fast_field_with_idx<
|
||||
T: MonotonicallyMappableToU64 + fmt::Debug,
|
||||
>(
|
||||
&mut self,
|
||||
field: Field,
|
||||
fastfield_accessor: impl Column<T>,
|
||||
idx: usize,
|
||||
) -> io::Result<()> {
|
||||
let field_write = self.composite_write.for_field_with_idx(field, idx);
|
||||
fastfield_codecs::serialize(fastfield_accessor, field_write, &self.codec_types)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Serialize data into a new u64 fast field. The best compression codec of the the provided
|
||||
/// will be chosen.
|
||||
pub fn create_auto_detect_u64_fast_field_with_idx_and_codecs<
|
||||
T: MonotonicallyMappableToU64 + fmt::Debug,
|
||||
>(
|
||||
&mut self,
|
||||
field: Field,
|
||||
fastfield_accessor: impl Column<T>,
|
||||
idx: usize,
|
||||
codec_types: &[FastFieldCodecType],
|
||||
) -> io::Result<()> {
|
||||
let field_write = self.composite_write.for_field_with_idx(field, idx);
|
||||
fastfield_codecs::serialize(fastfield_accessor, field_write, codec_types)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Serialize data into a new u128 fast field. The codec will be compact space compressor,
|
||||
/// which is optimized for scanning the fast field for a given range.
|
||||
pub fn create_u128_fast_field_with_idx<F: Fn() -> I, I: Iterator<Item = u128>>(
|
||||
&mut self,
|
||||
field: Field,
|
||||
iter_gen: F,
|
||||
num_vals: u32,
|
||||
idx: usize,
|
||||
) -> io::Result<()> {
|
||||
let field_write = self.composite_write.for_field_with_idx(field, idx);
|
||||
fastfield_codecs::serialize_u128(iter_gen, num_vals, field_write)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Start serializing a new [u8] fast field. Use the returned writer to write data into the
|
||||
/// bytes field. To associate the bytes with documents a seperate index must be created on
|
||||
/// index 0. See bytes/writer.rs::serialize for an example.
|
||||
///
|
||||
/// The bytes will be stored as is, no compression will be applied.
|
||||
pub fn new_bytes_fast_field(&mut self, field: Field) -> impl Write + '_ {
|
||||
self.composite_write.for_field_with_idx(field, 1)
|
||||
}
|
||||
|
||||
/// Closes the serializer
|
||||
///
|
||||
/// After this call the data must be persistently saved on disk.
|
||||
pub fn close(self) -> io::Result<()> {
|
||||
self.composite_write.close()
|
||||
}
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user