Compare commits

..

4 Commits

Author SHA1 Message Date
Pascal Seitz
208e5fd61a remove superfluous impls 2022-11-21 10:50:53 +08:00
PSeitz
caca4cdda4 Apply suggestions from code review
Co-authored-by: Paul Masurel <paul@quickwit.io>
2022-11-21 03:42:52 +01:00
Pascal Seitz
191fe5101b migrate to OptionalColumn 2022-11-18 15:09:15 +08:00
Pascal Seitz
c4474fef3a add OptionalColumn 2022-11-18 12:30:03 +08:00
185 changed files with 2478 additions and 8607 deletions

View File

@@ -1,29 +1,26 @@
Tantivy 0.19
================================
#### Bugfixes
- Fix missing fieldnorms for u64, i64, f64, bool, bytes and date [#1620](https://github.com/quickwit-oss/tantivy/pull/1620) (@PSeitz)
- Fix interpolation overflow in linear interpolation fastfield codec [#1480](https://github.com/quickwit-oss/tantivy/pull/1480) (@PSeitz @fulmicoton)
#### Features/Improvements
- Add support for `IN` in queryparser , e.g. `field: IN [val1 val2 val3]` [#1683](https://github.com/quickwit-oss/tantivy/pull/1683) (@trinity-1686a)
- Skip score calculation, when no scoring is required [#1646](https://github.com/quickwit-oss/tantivy/pull/1646) (@PSeitz)
- Limit fast fields to u32 (`get_val(u32)`) [#1644](https://github.com/quickwit-oss/tantivy/pull/1644) (@PSeitz)
- The `DateTime` type has been updated to hold timestamps with microseconds precision.
`DateOptions` and `DatePrecision` have been added to configure Date fields. The precision is used to hint on fast values compression. Otherwise, seconds precision is used everywhere else (i.e terms, indexing) [#1396](https://github.com/quickwit-oss/tantivy/pull/1396) (@evanxg852000)
- Major bugfix: Fix missing fieldnorms for u64, i64, f64, bool, bytes and date [#1620](https://github.com/quickwit-oss/tantivy/pull/1620) (@PSeitz)
- Updated [Date Field Type](https://github.com/quickwit-oss/tantivy/pull/1396)
The `DateTime` type has been updated to hold timestamps with microseconds precision.
`DateOptions` and `DatePrecision` have been added to configure Date fields. The precision is used to hint on fast values compression. Otherwise, seconds precision is used everywhere else (i.e terms, indexing). (@evanxg852000)
- Add IP address field type [#1553](https://github.com/quickwit-oss/tantivy/pull/1553) (@PSeitz)
- Add boolean field type [#1382](https://github.com/quickwit-oss/tantivy/pull/1382) (@boraarslan)
- Remove Searcher pool and make `Searcher` cloneable. (@PSeitz)
- Validate settings on create [#1570](https://github.com/quickwit-oss/tantivy/pull/1570) (@PSeitz)
- Validate settings on create [#1570](https://github.com/quickwit-oss/tantivy/pull/1570 (@PSeitz)
- Fix interpolation overflow in linear interpolation fastfield codec [#1480](https://github.com/quickwit-oss/tantivy/pull/1480 (@PSeitz @fulmicoton)
- Detect and apply gcd on fastfield codecs [#1418](https://github.com/quickwit-oss/tantivy/pull/1418) (@PSeitz)
- Doc store
- use separate thread to compress block store [#1389](https://github.com/quickwit-oss/tantivy/pull/1389) [#1510](https://github.com/quickwit-oss/tantivy/pull/1510) (@PSeitz @fulmicoton)
- use separate thread to compress block store [#1389](https://github.com/quickwit-oss/tantivy/pull/1389) [#1510](https://github.com/quickwit-oss/tantivy/pull/1510 (@PSeitz @fulmicoton)
- Expose doc store cache size [#1403](https://github.com/quickwit-oss/tantivy/pull/1403) (@PSeitz)
- Enable compression levels for doc store [#1378](https://github.com/quickwit-oss/tantivy/pull/1378) (@PSeitz)
- Make block size configurable [#1374](https://github.com/quickwit-oss/tantivy/pull/1374) (@kryesh)
- Make `tantivy::TantivyError` cloneable [#1402](https://github.com/quickwit-oss/tantivy/pull/1402) (@PSeitz)
- Add support for phrase slop in query language [#1393](https://github.com/quickwit-oss/tantivy/pull/1393) (@saroh)
- Aggregation
- Add aggregation support for date type [#1693](https://github.com/quickwit-oss/tantivy/pull/1693)(@PSeitz)
- Add support for keyed parameter in range and histgram aggregations [#1424](https://github.com/quickwit-oss/tantivy/pull/1424) (@k-yomo)
- Add aggregation bucket limit [#1363](https://github.com/quickwit-oss/tantivy/pull/1363) (@PSeitz)
- Faster indexing

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy"
version = "0.19.0"
version = "0.19.0-dev"
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
license = "MIT"
categories = ["database-implementations", "data-structures"]
@@ -15,7 +15,7 @@ rust-version = "1.62"
[dependencies]
oneshot = "0.1.5"
base64 = "0.21.0"
base64 = "0.13.0"
byteorder = "1.4.3"
crc32fast = "1.3.2"
once_cell = "1.10.0"
@@ -25,7 +25,7 @@ tantivy-fst = "0.4.0"
memmap2 = { version = "0.5.3", optional = true }
lz4_flex = { version = "0.9.2", default-features = false, features = ["checked-decode"], optional = true }
brotli = { version = "3.3.4", optional = true }
zstd = { version = "0.12", optional = true, default-features = false }
zstd = { version = "0.11", optional = true, default-features = false }
snap = { version = "1.0.5", optional = true }
tempfile = { version = "3.3.0", optional = true }
log = "0.4.16"
@@ -36,6 +36,12 @@ fs2 = { version = "0.4.3", optional = true }
levenshtein_automata = "0.2.1"
uuid = { version = "1.0.0", features = ["v4", "serde"] }
crossbeam-channel = "0.5.4"
tantivy-query-grammar = { version="0.18.0", path="./query-grammar" }
tantivy-bitpacker = { version="0.2", path="./bitpacker" }
common = { version = "0.3", path = "./common/", package = "tantivy-common" }
fastfield_codecs = { version="0.2", path="./fastfield_codecs", default-features = false }
ownedbytes = { version="0.3", path="./ownedbytes" }
stable_deref_trait = "1.2.0"
rust-stemmers = "1.2.0"
downcast-rs = "1.2.0"
bitpacking = { version = "0.8.4", default-features = false, features = ["bitpacker4x"] }
@@ -48,21 +54,14 @@ murmurhash32 = "0.2.0"
time = { version = "0.3.10", features = ["serde-well-known"] }
smallvec = "1.8.0"
rayon = "1.5.2"
lru = "0.9.0"
lru = "0.7.5"
fastdivide = "0.4.0"
itertools = "0.10.3"
measure_time = "0.8.2"
ciborium = { version = "0.2", optional = true}
async-trait = "0.1.53"
arc-swap = "1.5.0"
sstable = { version="0.1", path="./sstable", package ="tantivy-sstable", optional = true }
stacker = { version="0.1", path="./stacker", package ="tantivy-stacker" }
tantivy-query-grammar = { version= "0.19.0", path="./query-grammar" }
tantivy-bitpacker = { version= "0.3", path="./bitpacker" }
common = { version= "0.5", path = "./common/", package = "tantivy-common" }
fastfield_codecs = { version= "0.3", path="./fastfield_codecs", default-features = false }
tokenizer-api = { version="0.1", path="./tokenizer-api", package="tantivy-tokenizer-api" }
[target.'cfg(windows)'.dependencies]
winapi = "0.3.9"
@@ -74,7 +73,7 @@ pretty_assertions = "1.2.1"
proptest = "1.0.0"
criterion = "0.4"
test-log = "0.2.10"
env_logger = "0.10.0"
env_logger = "0.9.0"
pprof = { version = "0.11.0", features = ["flamegraph", "criterion"] }
futures = "0.3.21"
@@ -104,10 +103,10 @@ zstd-compression = ["zstd"]
failpoints = ["fail/failpoints"]
unstable = [] # useful for benches.
quickwit = ["sstable"]
quickwit = ["ciborium"]
[workspace]
members = ["query-grammar", "bitpacker", "common", "fastfield_codecs", "ownedbytes", "stacker", "sstable", "columnar", "tokenizer-api"]
members = ["query-grammar", "bitpacker", "common", "fastfield_codecs", "ownedbytes"]
# Following the "fail" crate best practises, we isolate
# tests that define specific behavior in fail check points

View File

@@ -29,7 +29,7 @@ Your mileage WILL vary depending on the nature of queries and their load.
# Features
- Full-text search
- Configurable tokenizer (stemming available for 17 Latin languages) with third party support for Chinese ([tantivy-jieba](https://crates.io/crates/tantivy-jieba) and [cang-jie](https://crates.io/crates/cang-jie)), Japanese ([lindera](https://github.com/lindera-morphology/lindera-tantivy), [Vaporetto](https://crates.io/crates/vaporetto_tantivy), and [tantivy-tokenizer-tiny-segmenter](https://crates.io/crates/tantivy-tokenizer-tiny-segmenter)) and Korean ([lindera](https://github.com/lindera-morphology/lindera-tantivy) + [lindera-ko-dic-builder](https://github.com/lindera-morphology/lindera-ko-dic-builder))
- Configurable tokenizer (stemming available for 17 Latin languages with third party support for Chinese ([tantivy-jieba](https://crates.io/crates/tantivy-jieba) and [cang-jie](https://crates.io/crates/cang-jie)), Japanese ([lindera](https://github.com/lindera-morphology/lindera-tantivy), [Vaporetto](https://crates.io/crates/vaporetto_tantivy), and [tantivy-tokenizer-tiny-segmenter](https://crates.io/crates/tantivy-tokenizer-tiny-segmenter)) and Korean ([lindera](https://github.com/lindera-morphology/lindera-tantivy) + [lindera-ko-dic-builder](https://github.com/lindera-morphology/lindera-ko-dic-builder))
- Fast (check out the :racehorse: :sparkles: [benchmark](https://tantivy-search.github.io/bench/) :sparkles: :racehorse:)
- Tiny startup time (<10ms), perfect for command-line tools
- BM25 scoring (the same as Lucene)
@@ -42,12 +42,12 @@ Your mileage WILL vary depending on the nature of queries and their load.
- Single valued and multivalued u64, i64, and f64 fast fields (equivalent of doc values in Lucene)
- `&[u8]` fast fields
- Text, i64, u64, f64, dates, and hierarchical facet fields
- Compressed document store (LZ4, Zstd, None, Brotli, Snap)
- LZ4 compressed document store
- Range queries
- Faceted search
- Configurable indexing (optional term frequency and position indexing)
- JSON Field
- Aggregation Collector: histogram, range buckets, average, and stats metrics
- Aggregation Collector: range buckets, average, and stats metrics
- LogMergePolicy with deletes
- Searcher Warmer API
- Cheesy logo with a horse
@@ -81,10 +81,6 @@ There are many ways to support this project.
We use the GitHub Pull Request workflow: reference a GitHub ticket and/or include a comprehensive commit message when opening a PR.
## Tokenizer
When implementing a tokenizer for tantivy depend on the `tantivy-tokenizer-api` crate.
## Minimum supported Rust version
Tantivy currently requires at least Rust 1.62 or later to compile.

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy-bitpacker"
version = "0.3.0"
version = "0.2.0"
edition = "2021"
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
license = "MIT"
@@ -8,8 +8,6 @@ categories = []
description = """Tantivy-sub crate: bitpacking"""
repository = "https://github.com/quickwit-oss/tantivy"
keywords = []
documentation = "https://docs.rs/tantivy-bitpacker/latest/tantivy_bitpacker"
homepage = "https://github.com/quickwit-oss/tantivy"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html

View File

@@ -25,14 +25,15 @@ impl BitPacker {
num_bits: u8,
output: &mut TWrite,
) -> io::Result<()> {
let val_u64 = val as u64;
let num_bits = num_bits as usize;
if self.mini_buffer_written + num_bits > 64 {
self.mini_buffer |= val.wrapping_shl(self.mini_buffer_written as u32);
self.mini_buffer |= val_u64.wrapping_shl(self.mini_buffer_written as u32);
output.write_all(self.mini_buffer.to_le_bytes().as_ref())?;
self.mini_buffer = val.wrapping_shr((64 - self.mini_buffer_written) as u32);
self.mini_buffer = val_u64.wrapping_shr((64 - self.mini_buffer_written) as u32);
self.mini_buffer_written = self.mini_buffer_written + num_bits - 64;
} else {
self.mini_buffer |= val << self.mini_buffer_written;
self.mini_buffer |= val_u64 << self.mini_buffer_written;
self.mini_buffer_written += num_bits;
if self.mini_buffer_written == 64 {
output.write_all(self.mini_buffer.to_le_bytes().as_ref())?;
@@ -91,15 +92,17 @@ impl BitUnpacker {
return 0u64;
}
let addr_in_bits = idx * self.num_bits as u32;
let addr = (addr_in_bits >> 3) as usize;
let addr = addr_in_bits >> 3;
let bit_shift = addr_in_bits & 7;
debug_assert!(
addr + 8 <= data.len(),
addr + 8 <= data.len() as u32,
"The fast field field should have been padded with 7 bytes."
);
let bytes: [u8; 8] = (&data[addr..addr + 8]).try_into().unwrap();
let bytes: [u8; 8] = (&data[(addr as usize)..(addr as usize) + 8])
.try_into()
.unwrap();
let val_unshifted_unmasked: u64 = u64::from_le_bytes(bytes);
let val_shifted = val_unshifted_unmasked >> bit_shift;
let val_shifted = (val_unshifted_unmasked >> bit_shift) as u64;
val_shifted & self.mask
}
}

View File

@@ -84,7 +84,7 @@ impl BlockedBitpacker {
#[inline]
pub fn add(&mut self, val: u64) {
self.buffer.push(val);
if self.buffer.len() == BLOCK_SIZE {
if self.buffer.len() == BLOCK_SIZE as usize {
self.flush();
}
}
@@ -126,8 +126,8 @@ impl BlockedBitpacker {
}
#[inline]
pub fn get(&self, idx: usize) -> u64 {
let metadata_pos = idx / BLOCK_SIZE;
let pos_in_block = idx % BLOCK_SIZE;
let metadata_pos = idx / BLOCK_SIZE as usize;
let pos_in_block = idx % BLOCK_SIZE as usize;
if let Some(metadata) = self.offset_and_bits.get(metadata_pos) {
let unpacked = BitUnpacker::new(metadata.num_bits()).get(
pos_in_block as u32,

View File

@@ -1,8 +1,6 @@
mod bitpacker;
mod blocked_bitpacker;
use std::cmp::Ordering;
pub use crate::bitpacker::{BitPacker, BitUnpacker};
pub use crate::blocked_bitpacker::BlockedBitpacker;
@@ -39,104 +37,44 @@ pub fn compute_num_bits(n: u64) -> u8 {
}
}
/// Computes the (min, max) of an iterator of `PartialOrd` values.
///
/// For values implementing `Ord` (in a way consistent to their `PartialOrd` impl),
/// this function behaves as expected.
///
/// For values with partial ordering, the behavior is non-trivial and may
/// depends on the order of the values.
/// For floats however, it simply returns the same results as if NaN were
/// skipped.
pub fn minmax<I, T>(mut vals: I) -> Option<(T, T)>
where
I: Iterator<Item = T>,
T: Copy + PartialOrd,
T: Copy + Ord,
{
let first_el = vals.find(|val| {
// We use this to make sure we skip all NaN values when
// working with a float type.
val.partial_cmp(val) == Some(Ordering::Equal)
})?;
let mut min_so_far: T = first_el;
let mut max_so_far: T = first_el;
for val in vals {
if val.partial_cmp(&min_so_far) == Some(Ordering::Less) {
min_so_far = val;
}
if val.partial_cmp(&max_so_far) == Some(Ordering::Greater) {
max_so_far = val;
}
if let Some(first_el) = vals.next() {
return Some(vals.fold((first_el, first_el), |(min_val, max_val), el| {
(min_val.min(el), max_val.max(el))
}));
}
Some((min_so_far, max_so_far))
None
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_compute_num_bits() {
assert_eq!(compute_num_bits(1), 1u8);
assert_eq!(compute_num_bits(0), 0u8);
assert_eq!(compute_num_bits(2), 2u8);
assert_eq!(compute_num_bits(3), 2u8);
assert_eq!(compute_num_bits(4), 3u8);
assert_eq!(compute_num_bits(255), 8u8);
assert_eq!(compute_num_bits(256), 9u8);
assert_eq!(compute_num_bits(5_000_000_000), 33u8);
}
#[test]
fn test_minmax_empty() {
let vals: Vec<u32> = vec![];
assert_eq!(minmax(vals.into_iter()), None);
}
#[test]
fn test_minmax_one() {
assert_eq!(minmax(vec![1].into_iter()), Some((1, 1)));
}
#[test]
fn test_minmax_two() {
assert_eq!(minmax(vec![1, 2].into_iter()), Some((1, 2)));
assert_eq!(minmax(vec![2, 1].into_iter()), Some((1, 2)));
}
#[test]
fn test_minmax_nan() {
assert_eq!(
minmax(vec![f64::NAN, 1f64, 2f64].into_iter()),
Some((1f64, 2f64))
);
assert_eq!(
minmax(vec![2f64, f64::NAN, 1f64].into_iter()),
Some((1f64, 2f64))
);
assert_eq!(
minmax(vec![2f64, 1f64, f64::NAN].into_iter()),
Some((1f64, 2f64))
);
}
#[test]
fn test_minmax_inf() {
assert_eq!(
minmax(vec![f64::INFINITY, 1f64, 2f64].into_iter()),
Some((1f64, f64::INFINITY))
);
assert_eq!(
minmax(vec![-f64::INFINITY, 1f64, 2f64].into_iter()),
Some((-f64::INFINITY, 2f64))
);
assert_eq!(
minmax(vec![2f64, f64::INFINITY, 1f64].into_iter()),
Some((1f64, f64::INFINITY))
);
assert_eq!(
minmax(vec![2f64, 1f64, -f64::INFINITY].into_iter()),
Some((-f64::INFINITY, 2f64))
);
}
#[test]
fn test_compute_num_bits() {
assert_eq!(compute_num_bits(1), 1u8);
assert_eq!(compute_num_bits(0), 0u8);
assert_eq!(compute_num_bits(2), 2u8);
assert_eq!(compute_num_bits(3), 2u8);
assert_eq!(compute_num_bits(4), 3u8);
assert_eq!(compute_num_bits(255), 8u8);
assert_eq!(compute_num_bits(256), 9u8);
assert_eq!(compute_num_bits(5_000_000_000), 33u8);
}
#[test]
fn test_minmax_empty() {
let vals: Vec<u32> = vec![];
assert_eq!(minmax(vals.into_iter()), None);
}
#[test]
fn test_minmax_one() {
assert_eq!(minmax(vec![1].into_iter()), Some((1, 1)));
}
#[test]
fn test_minmax_two() {
assert_eq!(minmax(vec![1, 2].into_iter()), Some((1, 2)));
assert_eq!(minmax(vec![2, 1].into_iter()), Some((1, 2)));
}

View File

@@ -1,18 +0,0 @@
[package]
name = "tantivy-columnar"
version = "0.1.0"
edition = "2021"
license = "MIT"
[dependencies]
stacker = { path = "../stacker", package="tantivy-stacker"}
serde_json = "1"
thiserror = "1"
fnv = "1"
sstable = { path = "../sstable", package = "tantivy-sstable" }
common = { path = "../common", package = "tantivy-common" }
fastfield_codecs = { path = "../fastfield_codecs"}
itertools = "0.10"
[dev-dependencies]
proptest = "1"

View File

@@ -1,67 +0,0 @@
# Columnar format
This crate describes columnar format used in tantivy.
## Goals
This format is special in the following way.
- it needs to be compact
- it does not required to be loaded in memory.
- it is designed to fit well with quickwit's strange constraint:
we need to be able to load columns rapidly.
- columns of several types can be associated with the same column name.
- it needs to support columns with different types `(str, u64, i64, f64)`
and different cardinality `(required, optional, multivalued)`.
- columns, once loaded, offer cheap random access.
# Coercion rules
Users can create a columnar by inserting rows to a `ColumnarWriter`,
and serializing it into a `Write` object.
Nothing prevents a user from recording values with different type to the same `column_name`.
In that case, `tantivy-columnar`'s behavior is as follows:
- JsonValues are grouped into 3 types (String, Number, bool).
Values that corresponds to different groups are mapped to different columns. For instance, String values are treated independently
from Number or boolean values. `tantivy-columnar` will simply emit several columns associated to a given column_name.
- Only one column for a given json value type is emitted. If number values with different number types are recorded (e.g. u64, i64, f64),
`tantivy-columnar` will pick the first type that can represents the set of appended value, with the following prioriy order (`i64`, `u64`, `f64`).
`i64` is picked over `u64` as it is likely to yield less change of types. Most use cases strictly requiring `u64` show the
restriction on 50% of the values (e.g. a 64-bit hash). On the other hand, a lot of use cases can show rare negative value.
# Columnar format
This columnar format may have more than one column (with different types) associated to the same `column_name` (see [Coercion rules](#coercion-rules) above).
The `(column_name, columne_type)` couple however uniquely identifies a column.
That couple is serialized as a column `column_key`. The format of that key is:
`[column_name][ZERO_BYTE][column_type_header: u8]`
```
COLUMNAR:=
[COLUMNAR_DATA]
[COLUMNAR_KEY_TO_DATA_INDEX]
[COLUMNAR_FOOTER];
# Columns are sorted by their column key.
COLUMNAR_DATA:=
[COLUMN_DATA]+;
COLUMNAR_FOOTER := [RANGE_SSTABLE_BYTES_LEN: 8 bytes little endian]
```
The columnar file starts by the actual column data, concatenated one after the other,
sorted by column key.
A sstable associates
`(column name, column_cardinality, column_type) to range of bytes.
Column name may not contain the zero byte `\0`.
Listing all columns associated to `column_name` can therefore
be done by listing all keys prefixed by
`[column_name][ZERO_BYTE]`
The associated range of bytes refer to a range of bytes

View File

@@ -1,201 +0,0 @@
use crate::utils::{place_bits, select_bits};
use crate::value::NumericalType;
use crate::InvalidData;
/// Enum describing the number of values that can exist per document
/// (or per row if you will).
///
/// The cardinality must fit on 2 bits.
#[derive(Clone, Copy, Hash, Default, Debug, PartialEq, Eq, PartialOrd, Ord)]
#[repr(u8)]
pub enum Cardinality {
/// All documents contain exactly one value.
/// Required is the default for auto-detecting the Cardinality, since it is the most strict.
#[default]
Required = 0,
/// All documents contain at most one value.
Optional = 1,
/// All documents may contain any number of values.
Multivalued = 2,
}
impl Cardinality {
pub(crate) fn to_code(self) -> u8 {
self as u8
}
pub(crate) fn try_from_code(code: u8) -> Result<Cardinality, InvalidData> {
match code {
0 => Ok(Cardinality::Required),
1 => Ok(Cardinality::Optional),
2 => Ok(Cardinality::Multivalued),
_ => Err(InvalidData),
}
}
}
/// The column type represents the column type and can fit on 6-bits.
///
/// - bits[0..3]: Column category type.
/// - bits[3..6]: Numerical type if necessary.
#[derive(Hash, Eq, PartialEq, Debug, Clone, Copy)]
pub enum ColumnType {
Bytes,
Numerical(NumericalType),
Bool,
}
impl ColumnType {
/// Encoded over 6 bits.
pub(crate) fn to_code(self) -> u8 {
let column_type_category;
let numerical_type_code: u8;
match self {
ColumnType::Bytes => {
column_type_category = ColumnTypeCategory::Str;
numerical_type_code = 0u8;
}
ColumnType::Numerical(numerical_type) => {
column_type_category = ColumnTypeCategory::Numerical;
numerical_type_code = numerical_type.to_code();
}
ColumnType::Bool => {
column_type_category = ColumnTypeCategory::Bool;
numerical_type_code = 0u8;
}
}
place_bits::<0, 3>(column_type_category.to_code()) | place_bits::<3, 6>(numerical_type_code)
}
pub(crate) fn try_from_code(code: u8) -> Result<ColumnType, InvalidData> {
if select_bits::<6, 8>(code) != 0u8 {
return Err(InvalidData);
}
let column_type_category_code = select_bits::<0, 3>(code);
let numerical_type_code = select_bits::<3, 6>(code);
let column_type_category = ColumnTypeCategory::try_from_code(column_type_category_code)?;
match column_type_category {
ColumnTypeCategory::Bool => {
if numerical_type_code != 0u8 {
return Err(InvalidData);
}
Ok(ColumnType::Bool)
}
ColumnTypeCategory::Str => {
if numerical_type_code != 0u8 {
return Err(InvalidData);
}
Ok(ColumnType::Bytes)
}
ColumnTypeCategory::Numerical => {
let numerical_type = NumericalType::try_from_code(numerical_type_code)?;
Ok(ColumnType::Numerical(numerical_type))
}
}
}
}
/// Column types are grouped into different categories that
/// corresponds to the different types of `JsonValue` types.
///
/// The columnar writer will apply coercion rules to make sure that
/// at most one column exist per `ColumnTypeCategory`.
///
/// See also [README.md].
#[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq, Debug)]
#[repr(u8)]
pub(crate) enum ColumnTypeCategory {
Bool = 0u8,
Str = 1u8,
Numerical = 2u8,
}
impl ColumnTypeCategory {
pub fn to_code(self) -> u8 {
self as u8
}
pub fn try_from_code(code: u8) -> Result<Self, InvalidData> {
match code {
0u8 => Ok(Self::Bool),
1u8 => Ok(Self::Str),
2u8 => Ok(Self::Numerical),
_ => Err(InvalidData),
}
}
}
/// Represents the type and cardinality of a column.
/// This is encoded over one-byte and added to a column key in the
/// columnar sstable.
///
/// - [0..6] bits: encodes the column type
/// - [6..8] bits: encodes the cardinality
#[derive(Eq, Hash, PartialEq, Debug, Copy, Clone)]
pub struct ColumnTypeAndCardinality {
pub typ: ColumnType,
pub cardinality: Cardinality,
}
impl ColumnTypeAndCardinality {
pub fn to_code(self) -> u8 {
place_bits::<0, 6>(self.typ.to_code()) | place_bits::<6, 8>(self.cardinality.to_code())
}
pub fn try_from_code(code: u8) -> Result<ColumnTypeAndCardinality, InvalidData> {
let typ_code = select_bits::<0, 6>(code);
let cardinality_code = select_bits::<6, 8>(code);
let cardinality = Cardinality::try_from_code(cardinality_code)?;
let typ = ColumnType::try_from_code(typ_code)?;
assert_eq!(typ.to_code(), typ_code);
Ok(ColumnTypeAndCardinality { cardinality, typ })
}
}
#[cfg(test)]
mod tests {
use std::collections::HashSet;
use super::ColumnTypeAndCardinality;
use crate::column_type_header::{Cardinality, ColumnType};
#[test]
fn test_column_type_header_to_code() {
let mut column_type_header_set: HashSet<ColumnTypeAndCardinality> = HashSet::new();
for code in u8::MIN..=u8::MAX {
if let Ok(column_type_header) = ColumnTypeAndCardinality::try_from_code(code) {
assert_eq!(column_type_header.to_code(), code);
assert!(column_type_header_set.insert(column_type_header));
}
}
assert_eq!(
column_type_header_set.len(),
3 /* cardinality */ *
(1 + 1 + 3) // column_types (str, bool, numerical x 3)
);
}
#[test]
fn test_column_type_to_code() {
let mut column_type_set: HashSet<ColumnType> = HashSet::new();
for code in u8::MIN..=u8::MAX {
if let Ok(column_type) = ColumnType::try_from_code(code) {
assert_eq!(column_type.to_code(), code);
assert!(column_type_set.insert(column_type));
}
}
assert_eq!(column_type_set.len(), 2 + 3);
}
#[test]
fn test_cardinality_to_code() {
let mut num_cardinality = 0;
for code in u8::MIN..=u8::MAX {
if let Ok(cardinality) = Cardinality::try_from_code(code) {
assert_eq!(cardinality.to_code(), code);
num_cardinality += 1;
}
}
assert_eq!(num_cardinality, 3);
}
}

View File

@@ -1,84 +0,0 @@
use std::io;
use fnv::FnvHashMap;
use sstable::SSTable;
pub(crate) struct TermIdMapping {
unordered_to_ord: Vec<OrderedId>,
}
impl TermIdMapping {
pub fn to_ord(&self, unordered: UnorderedId) -> OrderedId {
self.unordered_to_ord[unordered.0 as usize]
}
}
/// When we add values, we cannot know their ordered id yet.
/// For this reason, we temporarily assign them a `UnorderedId`
/// that will be mapped to an `OrderedId` upon serialization.
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
pub struct UnorderedId(pub u32);
#[derive(Clone, Copy, Hash, PartialEq, Eq, Debug)]
pub struct OrderedId(pub u32);
/// `DictionaryBuilder` for dictionary encoding.
///
/// It stores the different terms encounterred and assigns them a temporary value
/// we call unordered id.
///
/// Upon serialization, we will sort the ids and hence build a `UnorderedId -> Term ordinal`
/// mapping.
#[derive(Default)]
pub(crate) struct DictionaryBuilder {
dict: FnvHashMap<Vec<u8>, UnorderedId>,
}
impl DictionaryBuilder {
/// Get or allocate an unordered id.
/// (This ID is simply an auto-incremented id.)
pub fn get_or_allocate_id(&mut self, term: &[u8]) -> UnorderedId {
if let Some(term_id) = self.dict.get(term) {
return *term_id;
}
let new_id = UnorderedId(self.dict.len() as u32);
self.dict.insert(term.to_vec(), new_id);
new_id
}
/// Serialize the dictionary into an fst, and returns the
/// `UnorderedId -> TermOrdinal` map.
pub fn serialize<'a, W: io::Write + 'a>(&self, wrt: &mut W) -> io::Result<TermIdMapping> {
let mut terms: Vec<(&[u8], UnorderedId)> =
self.dict.iter().map(|(k, v)| (k.as_slice(), *v)).collect();
terms.sort_unstable_by_key(|(key, _)| *key);
// TODO Remove the allocation.
let mut unordered_to_ord: Vec<OrderedId> = vec![OrderedId(0u32); terms.len()];
let mut sstable_builder = sstable::VoidSSTable::writer(wrt);
for (ord, (key, unordered_id)) in terms.into_iter().enumerate() {
let ordered_id = OrderedId(ord as u32);
sstable_builder.insert(key, &())?;
unordered_to_ord[unordered_id.0 as usize] = ordered_id;
}
sstable_builder.finish()?;
Ok(TermIdMapping { unordered_to_ord })
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_dictionary_builder() {
let mut dictionary_builder = DictionaryBuilder::default();
let hello_uid = dictionary_builder.get_or_allocate_id(b"hello");
let happy_uid = dictionary_builder.get_or_allocate_id(b"happy");
let tax_uid = dictionary_builder.get_or_allocate_id(b"tax");
let mut buffer = Vec::new();
let id_mapping = dictionary_builder.serialize(&mut buffer).unwrap();
assert_eq!(id_mapping.to_ord(hello_uid), OrderedId(1));
assert_eq!(id_mapping.to_ord(happy_uid), OrderedId(0));
assert_eq!(id_mapping.to_ord(tax_uid), OrderedId(2));
}
}

View File

@@ -1,89 +0,0 @@
mod column_type_header;
mod dictionary;
mod reader;
pub(crate) mod utils;
mod value;
mod writer;
pub use column_type_header::Cardinality;
pub use reader::ColumnarReader;
pub use value::{NumericalType, NumericalValue};
pub use writer::ColumnarWriter;
pub type DocId = u32;
#[derive(Copy, Clone, Debug)]
pub struct InvalidData;
#[cfg(test)]
mod tests {
use std::ops::Range;
use common::file_slice::FileSlice;
use crate::column_type_header::{ColumnType, ColumnTypeAndCardinality};
use crate::reader::ColumnarReader;
use crate::value::NumericalValue;
use crate::{Cardinality, ColumnarWriter};
#[test]
fn test_dataframe_writer_bytes() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_str(1u32, "my_string", "hello");
dataframe_writer.record_str(3u32, "my_string", "helloeee");
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(5, &mut buffer).unwrap();
let columnar_fileslice = FileSlice::from(buffer);
let columnar = ColumnarReader::open(columnar_fileslice).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<(ColumnTypeAndCardinality, Range<u64>)> =
columnar.read_columns("my_string").unwrap();
assert_eq!(cols.len(), 1);
assert_eq!(cols[0].1, 0..158);
}
#[test]
fn test_dataframe_writer_bool() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_bool(1u32, "bool.value", false);
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(5, &mut buffer).unwrap();
let columnar_fileslice = FileSlice::from(buffer);
let columnar = ColumnarReader::open(columnar_fileslice).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<(ColumnTypeAndCardinality, Range<u64>)> =
columnar.read_columns("bool.value").unwrap();
assert_eq!(cols.len(), 1);
assert_eq!(
cols[0].0,
ColumnTypeAndCardinality {
cardinality: Cardinality::Optional,
typ: ColumnType::Bool
}
);
assert_eq!(cols[0].1, 0..21);
}
#[test]
fn test_dataframe_writer_numerical() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_numerical(1u32, "srical.value", NumericalValue::U64(12u64));
dataframe_writer.record_numerical(2u32, "srical.value", NumericalValue::U64(13u64));
dataframe_writer.record_numerical(4u32, "srical.value", NumericalValue::U64(15u64));
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(5, &mut buffer).unwrap();
let columnar_fileslice = FileSlice::from(buffer);
let columnar = ColumnarReader::open(columnar_fileslice).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<(ColumnTypeAndCardinality, Range<u64>)> =
columnar.read_columns("srical.value").unwrap();
assert_eq!(cols.len(), 1);
// Right now this 31 bytes are spent as follows
//
// - header 14 bytes
// - vals 8 //< due to padding? could have been 1byte?.
// - null footer 6 bytes
// - version footer 3 bytes // Should be file-wide
assert_eq!(cols[0].1, 0..31);
}
}

View File

@@ -1,110 +0,0 @@
use std::ops::Range;
use std::{io, mem};
use common::file_slice::FileSlice;
use common::BinarySerializable;
use sstable::{Dictionary, RangeSSTable};
use crate::column_type_header::ColumnTypeAndCardinality;
fn io_invalid_data(msg: String) -> io::Error {
io::Error::new(io::ErrorKind::InvalidData, msg)
}
/// The ColumnarReader makes it possible to access a set of columns
/// associated to field names.
pub struct ColumnarReader {
column_dictionary: Dictionary<RangeSSTable>,
column_data: FileSlice,
}
impl ColumnarReader {
/// Opens a new Columnar file.
pub fn open<F>(file_slice: F) -> io::Result<ColumnarReader>
where FileSlice: From<F> {
Self::open_inner(file_slice.into())
}
fn open_inner(file_slice: FileSlice) -> io::Result<ColumnarReader> {
let (file_slice_without_sstable_len, sstable_len_bytes) =
file_slice.split_from_end(mem::size_of::<u64>());
let mut sstable_len_bytes = sstable_len_bytes.read_bytes()?;
let sstable_len = u64::deserialize(&mut sstable_len_bytes)?;
let (column_data, sstable) =
file_slice_without_sstable_len.split_from_end(sstable_len as usize);
let column_dictionary = Dictionary::open(sstable)?;
Ok(ColumnarReader {
column_dictionary,
column_data,
})
}
// TODO fix ugly API
pub fn list_columns(
&self,
) -> io::Result<Vec<(String, ColumnTypeAndCardinality, Range<u64>, u64)>> {
let mut stream = self.column_dictionary.stream()?;
let mut results = Vec::new();
while stream.advance() {
let key_bytes: &[u8] = stream.key();
let column_code: u8 = key_bytes.last().cloned().unwrap();
let column_type_and_cardinality = ColumnTypeAndCardinality::try_from_code(column_code)
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
let range = stream.value().clone();
let column_name = String::from_utf8_lossy(&key_bytes[..key_bytes.len() - 1]);
let range_len = range.end - range.start;
results.push((
column_name.to_string(),
column_type_and_cardinality,
range,
range_len,
));
}
Ok(results)
}
/// Get all columns for the given column name.
///
/// There can be more than one column associated to a given column name, provided they have
/// different types.
// TODO fix ugly API
pub fn read_columns(
&self,
column_name: &str,
) -> io::Result<Vec<(ColumnTypeAndCardinality, Range<u64>)>> {
// Each column is a associated to a given `column_key`,
// that starts by `column_name\0column_header`.
//
// Listing the columns associated to the given column name is therefore equivalent to
// listing `column_key` with the prefix `column_name\0`.
//
// This is in turn equivalent to searching for the range
// `[column_name,\0`..column_name\1)`.
let mut start_key = column_name.to_string();
start_key.push('\0');
let mut end_key = column_name.to_string();
end_key.push(1u8 as char);
let mut stream = self
.column_dictionary
.range()
.ge(start_key.as_bytes())
.lt(end_key.as_bytes())
.into_stream()?;
let mut results = Vec::new();
while stream.advance() {
let key_bytes: &[u8] = stream.key();
assert!(key_bytes.starts_with(start_key.as_bytes()));
let column_code: u8 = key_bytes.last().cloned().unwrap();
let column_type_and_cardinality = ColumnTypeAndCardinality::try_from_code(column_code)
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
let range = stream.value().clone();
results.push((column_type_and_cardinality, range));
}
Ok(results)
}
/// Return the number of columns in the columnar.
pub fn num_columns(&self) -> usize {
self.column_dictionary.num_terms()
}
}

View File

@@ -1,76 +0,0 @@
const fn compute_mask(num_bits: u8) -> u8 {
if num_bits == 8 {
u8::MAX
} else {
(1u8 << num_bits) - 1
}
}
#[inline(always)]
#[must_use]
pub(crate) fn select_bits<const START: u8, const END: u8>(code: u8) -> u8 {
assert!(START <= END);
assert!(END <= 8);
let num_bits: u8 = END - START;
let mask: u8 = compute_mask(num_bits);
(code >> START) & mask
}
#[inline(always)]
#[must_use]
pub(crate) fn place_bits<const START: u8, const END: u8>(code: u8) -> u8 {
assert!(START <= END);
assert!(END <= 8);
let num_bits: u8 = END - START;
let mask: u8 = compute_mask(num_bits);
assert!(code <= mask);
code << START
}
/// Pop-front one bytes from a slice of bytes.
#[inline(always)]
pub fn pop_first_byte(bytes: &mut &[u8]) -> Option<u8> {
if bytes.is_empty() {
return None;
}
let first_byte = bytes[0];
*bytes = &bytes[1..];
Some(first_byte)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_select_bits() {
assert_eq!(255u8, select_bits::<0, 8>(255u8));
assert_eq!(0u8, select_bits::<0, 0>(255u8));
assert_eq!(8u8, select_bits::<0, 4>(8u8));
assert_eq!(4u8, select_bits::<1, 4>(8u8));
assert_eq!(0u8, select_bits::<1, 3>(8u8));
}
#[test]
fn test_place_bits() {
assert_eq!(255u8, place_bits::<0, 8>(255u8));
assert_eq!(4u8, place_bits::<2, 3>(1u8));
assert_eq!(0u8, place_bits::<2, 2>(0u8));
}
#[test]
#[should_panic]
fn test_place_bits_overflows() {
let _ = place_bits::<1, 4>(8u8);
}
#[test]
fn test_pop_first_byte() {
let mut cursor: &[u8] = &b"abcd"[..];
assert_eq!(pop_first_byte(&mut cursor), Some(b'a'));
assert_eq!(pop_first_byte(&mut cursor), Some(b'b'));
assert_eq!(pop_first_byte(&mut cursor), Some(b'c'));
assert_eq!(pop_first_byte(&mut cursor), Some(b'd'));
assert_eq!(pop_first_byte(&mut cursor), None);
}
}

View File

@@ -1,124 +0,0 @@
use crate::InvalidData;
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum NumericalValue {
I64(i64),
U64(u64),
F64(f64),
}
impl From<u64> for NumericalValue {
fn from(val: u64) -> NumericalValue {
NumericalValue::U64(val)
}
}
impl From<i64> for NumericalValue {
fn from(val: i64) -> Self {
NumericalValue::I64(val)
}
}
impl From<f64> for NumericalValue {
fn from(val: f64) -> Self {
NumericalValue::F64(val)
}
}
impl NumericalValue {
pub fn numerical_type(&self) -> NumericalType {
match self {
NumericalValue::F64(_) => NumericalType::F64,
NumericalValue::I64(_) => NumericalType::I64,
NumericalValue::U64(_) => NumericalType::U64,
}
}
}
impl Eq for NumericalValue {}
#[derive(Clone, Copy, Debug, Default, Hash, Eq, PartialEq)]
#[repr(u8)]
pub enum NumericalType {
#[default]
I64 = 0,
U64 = 1,
F64 = 2,
}
impl NumericalType {
pub fn to_code(self) -> u8 {
self as u8
}
pub fn try_from_code(code: u8) -> Result<NumericalType, InvalidData> {
match code {
0 => Ok(NumericalType::I64),
1 => Ok(NumericalType::U64),
2 => Ok(NumericalType::F64),
_ => Err(InvalidData),
}
}
}
/// We voluntarily avoid using `Into` here to keep this
/// implementation quirk as private as possible.
///
/// # Panics
/// This coercion trait actually panics if it is used
/// to convert a loose types to a stricter type.
///
/// The level is strictness is somewhat arbitrary.
/// - i64
/// - u64
/// - f64.
pub(crate) trait Coerce {
fn coerce(numerical_value: NumericalValue) -> Self;
}
impl Coerce for i64 {
fn coerce(value: NumericalValue) -> Self {
match value {
NumericalValue::I64(val) => val,
NumericalValue::U64(val) => val as i64,
NumericalValue::F64(_) => unreachable!(),
}
}
}
impl Coerce for u64 {
fn coerce(value: NumericalValue) -> Self {
match value {
NumericalValue::I64(val) => val as u64,
NumericalValue::U64(val) => val,
NumericalValue::F64(_) => unreachable!(),
}
}
}
impl Coerce for f64 {
fn coerce(value: NumericalValue) -> Self {
match value {
NumericalValue::I64(val) => val as f64,
NumericalValue::U64(val) => val as f64,
NumericalValue::F64(val) => val,
}
}
}
#[cfg(test)]
mod tests {
use super::NumericalType;
#[test]
fn test_numerical_type_code() {
let mut num_numerical_type = 0;
for code in u8::MIN..=u8::MAX {
if let Ok(numerical_type) = NumericalType::try_from_code(code) {
assert_eq!(numerical_type.to_code(), code);
num_numerical_type += 1;
}
}
assert_eq!(num_numerical_type, 3);
}
}

View File

@@ -1,346 +0,0 @@
use crate::dictionary::UnorderedId;
use crate::utils::{place_bits, pop_first_byte, select_bits};
use crate::value::NumericalValue;
use crate::{DocId, InvalidData, NumericalType};
/// When we build a columnar dataframe, we first just group
/// all mutations per column, and appends them in append-only buffer
/// in the stacker.
///
/// These ColumnOperation<T> are therefore serialize/deserialized
/// in memory.
///
/// We represents all of these operations as `ColumnOperation`.
#[derive(Eq, PartialEq, Debug, Clone, Copy)]
pub(super) enum ColumnOperation<T> {
NewDoc(DocId),
Value(T),
}
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
struct ColumnOperationMetadata {
op_type: ColumnOperationType,
len: u8,
}
impl ColumnOperationMetadata {
fn to_code(self) -> u8 {
place_bits::<0, 4>(self.len) | place_bits::<4, 8>(self.op_type.to_code())
}
fn try_from_code(code: u8) -> Result<Self, InvalidData> {
let len = select_bits::<0, 4>(code);
let typ_code = select_bits::<4, 8>(code);
let column_type = ColumnOperationType::try_from_code(typ_code)?;
Ok(ColumnOperationMetadata {
op_type: column_type,
len,
})
}
}
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[repr(u8)]
enum ColumnOperationType {
NewDoc = 0u8,
AddValue = 1u8,
}
impl ColumnOperationType {
pub fn to_code(self) -> u8 {
self as u8
}
pub fn try_from_code(code: u8) -> Result<Self, InvalidData> {
match code {
0 => Ok(Self::NewDoc),
1 => Ok(Self::AddValue),
_ => Err(InvalidData),
}
}
}
impl<V: SymbolValue> ColumnOperation<V> {
pub(super) fn serialize(self) -> impl AsRef<[u8]> {
let mut minibuf = MiniBuffer::default();
let column_op_metadata = match self {
ColumnOperation::NewDoc(new_doc) => {
let symbol_len = new_doc.serialize(&mut minibuf.bytes[1..]);
ColumnOperationMetadata {
op_type: ColumnOperationType::NewDoc,
len: symbol_len,
}
}
ColumnOperation::Value(val) => {
let symbol_len = val.serialize(&mut minibuf.bytes[1..]);
ColumnOperationMetadata {
op_type: ColumnOperationType::AddValue,
len: symbol_len,
}
}
};
minibuf.bytes[0] = column_op_metadata.to_code();
// +1 for the metadata
minibuf.len = 1 + column_op_metadata.len;
minibuf
}
/// Deserialize a colummn operation.
/// Returns None if the buffer is empty.
///
/// Panics if the payload is invalid:
/// this deserialize method is meant to target in memory.
pub(super) fn deserialize(bytes: &mut &[u8]) -> Option<Self> {
let column_op_metadata_byte = pop_first_byte(bytes)?;
let column_op_metadata = ColumnOperationMetadata::try_from_code(column_op_metadata_byte)
.expect("Invalid op metadata byte");
let symbol_bytes: &[u8];
(symbol_bytes, *bytes) = bytes.split_at(column_op_metadata.len as usize);
match column_op_metadata.op_type {
ColumnOperationType::NewDoc => {
let new_doc = u32::deserialize(symbol_bytes);
Some(ColumnOperation::NewDoc(new_doc))
}
ColumnOperationType::AddValue => {
let value = V::deserialize(symbol_bytes);
Some(ColumnOperation::Value(value))
}
}
}
}
impl<T> From<T> for ColumnOperation<T> {
fn from(value: T) -> Self {
ColumnOperation::Value(value)
}
}
// Serialization trait very local to the writer.
// As we write fast fields, we accumulate them in "in memory".
// In order to limit memory usage, and in order
// to benefit from the stacker, we do this by serialization our data
// as "Symbols".
#[allow(clippy::from_over_into)]
pub(super) trait SymbolValue: Clone + Copy {
// Serializes the symbol into the given buffer.
// Returns the number of bytes written into the buffer.
/// # Panics
/// May not exceed 9bytes
fn serialize(self, buffer: &mut [u8]) -> u8;
// Panics if invalid
fn deserialize(bytes: &[u8]) -> Self;
}
impl SymbolValue for bool {
fn serialize(self, buffer: &mut [u8]) -> u8 {
buffer[0] = u8::from(self);
1u8
}
fn deserialize(bytes: &[u8]) -> Self {
bytes[0] == 1u8
}
}
#[derive(Default)]
struct MiniBuffer {
pub bytes: [u8; 10],
pub len: u8,
}
impl AsRef<[u8]> for MiniBuffer {
fn as_ref(&self) -> &[u8] {
&self.bytes[..self.len as usize]
}
}
impl SymbolValue for NumericalValue {
fn deserialize(mut bytes: &[u8]) -> Self {
let type_code = pop_first_byte(&mut bytes).unwrap();
let symbol_type = NumericalType::try_from_code(type_code).unwrap();
let mut octet: [u8; 8] = [0u8; 8];
octet[..bytes.len()].copy_from_slice(bytes);
match symbol_type {
NumericalType::U64 => {
let val: u64 = u64::from_le_bytes(octet);
NumericalValue::U64(val)
}
NumericalType::I64 => {
let encoded: u64 = u64::from_le_bytes(octet);
let val: i64 = decode_zig_zag(encoded);
NumericalValue::I64(val)
}
NumericalType::F64 => {
debug_assert_eq!(bytes.len(), 8);
let val: f64 = f64::from_le_bytes(octet);
NumericalValue::F64(val)
}
}
}
/// F64: Serialize with a fixed size of 9 bytes
/// U64: Serialize without leading zeroes
/// I64: ZigZag encoded and serialize without leading zeroes
fn serialize(self, output: &mut [u8]) -> u8 {
match self {
NumericalValue::F64(val) => {
output[0] = NumericalType::F64 as u8;
output[1..9].copy_from_slice(&val.to_le_bytes());
9u8
}
NumericalValue::U64(val) => {
let len = compute_num_bytes_for_u64(val) as u8;
output[0] = NumericalType::U64 as u8;
output[1..9].copy_from_slice(&val.to_le_bytes());
len + 1u8
}
NumericalValue::I64(val) => {
let zig_zag_encoded = encode_zig_zag(val);
let len = compute_num_bytes_for_u64(zig_zag_encoded) as u8;
output[0] = NumericalType::I64 as u8;
output[1..9].copy_from_slice(&zig_zag_encoded.to_le_bytes());
len + 1u8
}
}
}
}
impl SymbolValue for u32 {
fn serialize(self, output: &mut [u8]) -> u8 {
let len = compute_num_bytes_for_u64(self as u64);
output[0..4].copy_from_slice(&self.to_le_bytes());
len as u8
}
fn deserialize(bytes: &[u8]) -> Self {
let mut quartet: [u8; 4] = [0u8; 4];
quartet[..bytes.len()].copy_from_slice(bytes);
u32::from_le_bytes(quartet)
}
}
impl SymbolValue for UnorderedId {
fn serialize(self, output: &mut [u8]) -> u8 {
self.0.serialize(output)
}
fn deserialize(bytes: &[u8]) -> Self {
UnorderedId(u32::deserialize(bytes))
}
}
fn compute_num_bytes_for_u64(val: u64) -> usize {
let msb = (64u32 - val.leading_zeros()) as usize;
(msb + 7) / 8
}
fn encode_zig_zag(n: i64) -> u64 {
((n << 1) ^ (n >> 63)) as u64
}
fn decode_zig_zag(n: u64) -> i64 {
((n >> 1) as i64) ^ (-((n & 1) as i64))
}
#[cfg(test)]
mod tests {
use super::*;
#[track_caller]
fn test_zig_zag_aux(val: i64) {
let encoded = super::encode_zig_zag(val);
assert_eq!(decode_zig_zag(encoded), val);
if let Some(abs_val) = val.checked_abs() {
let abs_val = abs_val as u64;
assert!(encoded <= abs_val * 2);
}
}
#[test]
fn test_zig_zag() {
assert_eq!(encode_zig_zag(0i64), 0u64);
assert_eq!(encode_zig_zag(-1i64), 1u64);
assert_eq!(encode_zig_zag(1i64), 2u64);
test_zig_zag_aux(0i64);
test_zig_zag_aux(i64::MIN);
test_zig_zag_aux(i64::MAX);
}
use proptest::prelude::any;
use proptest::proptest;
proptest! {
#[test]
fn test_proptest_zig_zag(val in any::<i64>()) {
test_zig_zag_aux(val);
}
}
#[test]
fn test_column_op_metadata_byte_serialization() {
for len in 0..=15 {
for op_type in [ColumnOperationType::AddValue, ColumnOperationType::NewDoc] {
let column_op_metadata = ColumnOperationMetadata { op_type, len };
let column_op_metadata_code = column_op_metadata.to_code();
let serdeser_metadata =
ColumnOperationMetadata::try_from_code(column_op_metadata_code).unwrap();
assert_eq!(column_op_metadata, serdeser_metadata);
}
}
}
#[track_caller]
fn ser_deser_symbol(column_op: ColumnOperation<NumericalValue>) {
let buf = column_op.serialize();
let mut buffer = buf.as_ref().to_vec();
buffer.extend_from_slice(b"234234");
let mut bytes = &buffer[..];
let serdeser_symbol = ColumnOperation::deserialize(&mut bytes).unwrap();
assert_eq!(bytes.len() + buf.as_ref().len() as usize, buffer.len());
assert_eq!(column_op, serdeser_symbol);
}
#[test]
fn test_compute_num_bytes_for_u64() {
assert_eq!(compute_num_bytes_for_u64(0), 0);
assert_eq!(compute_num_bytes_for_u64(1), 1);
assert_eq!(compute_num_bytes_for_u64(255), 1);
assert_eq!(compute_num_bytes_for_u64(256), 2);
assert_eq!(compute_num_bytes_for_u64((1 << 16) - 1), 2);
assert_eq!(compute_num_bytes_for_u64(1 << 16), 3);
}
#[test]
fn test_symbol_serialization() {
ser_deser_symbol(ColumnOperation::NewDoc(0));
ser_deser_symbol(ColumnOperation::NewDoc(3));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(0i64)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(1i64)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(257u64)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(-257i64)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(i64::MIN)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(0u64)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(u64::MIN)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(u64::MAX)));
}
fn test_column_operation_unordered_aux(val: u32, expected_len: usize) {
let column_op = ColumnOperation::Value(UnorderedId(val));
let minibuf = column_op.serialize();
assert_eq!(minibuf.as_ref().len() as usize, expected_len);
let mut buf = minibuf.as_ref().to_vec();
buf.extend_from_slice(&[2, 2, 2, 2, 2, 2]);
let mut cursor = &buf[..];
let column_op_serdeser: ColumnOperation<UnorderedId> =
ColumnOperation::deserialize(&mut cursor).unwrap();
assert_eq!(column_op_serdeser, ColumnOperation::Value(UnorderedId(val)));
assert_eq!(cursor.len() + expected_len, buf.len());
}
#[test]
fn test_column_operation_unordered() {
test_column_operation_unordered_aux(300u32, 3);
test_column_operation_unordered_aux(1u32, 2);
test_column_operation_unordered_aux(0u32, 1);
}
}

View File

@@ -1,265 +0,0 @@
use std::cmp::Ordering;
use stacker::{ExpUnrolledLinkedList, MemoryArena};
use crate::dictionary::{DictionaryBuilder, UnorderedId};
use crate::writer::column_operation::{ColumnOperation, SymbolValue};
use crate::{Cardinality, DocId, NumericalType, NumericalValue};
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[repr(u8)]
enum DocumentStep {
Same = 0,
Next = 1,
Skipped = 2,
}
#[inline(always)]
fn delta_with_last_doc(last_doc_opt: Option<u32>, doc: u32) -> DocumentStep {
let expected_next_doc = last_doc_opt.map(|last_doc| last_doc + 1).unwrap_or(0u32);
match doc.cmp(&expected_next_doc) {
Ordering::Less => DocumentStep::Same,
Ordering::Equal => DocumentStep::Next,
Ordering::Greater => DocumentStep::Skipped,
}
}
#[derive(Copy, Clone, Default)]
pub struct ColumnWriter {
// Detected cardinality of the column so far.
cardinality: Cardinality,
// Last document inserted.
// None if no doc has been added yet.
last_doc_opt: Option<u32>,
// Buffer containing the serialized values.
values: ExpUnrolledLinkedList,
}
impl ColumnWriter {
/// Returns an iterator over the Symbol that have been recorded
/// for the given column.
pub(super) fn operation_iterator<'a, V: SymbolValue>(
&self,
arena: &MemoryArena,
buffer: &'a mut Vec<u8>,
) -> impl Iterator<Item = ColumnOperation<V>> + 'a {
buffer.clear();
self.values.read_to_end(arena, buffer);
let mut cursor: &[u8] = &buffer[..];
std::iter::from_fn(move || ColumnOperation::deserialize(&mut cursor))
}
/// Records a change of the document being recorded.
///
/// This function will also update the cardinality of the column
/// if necessary.
pub(super) fn record<S: SymbolValue>(&mut self, doc: DocId, value: S, arena: &mut MemoryArena) {
// Difference between `doc` and the last doc.
match delta_with_last_doc(self.last_doc_opt, doc) {
DocumentStep::Same => {
// This is the last encounterred document.
self.cardinality = Cardinality::Multivalued;
}
DocumentStep::Next => {
self.last_doc_opt = Some(doc);
self.write_symbol::<S>(ColumnOperation::NewDoc(doc), arena);
}
DocumentStep::Skipped => {
self.cardinality = self.cardinality.max(Cardinality::Optional);
self.last_doc_opt = Some(doc);
self.write_symbol::<S>(ColumnOperation::NewDoc(doc), arena);
}
}
self.write_symbol(ColumnOperation::Value(value), arena);
}
// Get the cardinality.
// The overall number of docs in the column is necessary to
// deal with the case where the all docs contain 1 value, except some documents
// at the end of the column.
pub(crate) fn get_cardinality(&self, num_docs: DocId) -> Cardinality {
match delta_with_last_doc(self.last_doc_opt, num_docs) {
DocumentStep::Same | DocumentStep::Next => self.cardinality,
DocumentStep::Skipped => self.cardinality.max(Cardinality::Optional),
}
}
/// Appends a new symbol to the `ColumnWriter`.
fn write_symbol<V: SymbolValue>(
&mut self,
column_operation: ColumnOperation<V>,
arena: &mut MemoryArena,
) {
self.values
.writer(arena)
.extend_from_slice(column_operation.serialize().as_ref());
}
}
#[derive(Clone, Copy, Default)]
pub(crate) struct NumericalColumnWriter {
compatible_numerical_types: CompatibleNumericalTypes,
column_writer: ColumnWriter,
}
/// State used to store what types are still acceptable
/// after having seen a set of numerical values.
#[derive(Clone, Copy)]
struct CompatibleNumericalTypes {
all_values_within_i64_range: bool,
all_values_within_u64_range: bool,
// f64 is always acceptable.
}
impl Default for CompatibleNumericalTypes {
fn default() -> CompatibleNumericalTypes {
CompatibleNumericalTypes {
all_values_within_i64_range: true,
all_values_within_u64_range: true,
}
}
}
impl CompatibleNumericalTypes {
fn accept_value(&mut self, numerical_value: NumericalValue) {
match numerical_value {
NumericalValue::I64(val_i64) => {
let value_within_u64_range = val_i64 >= 0i64;
self.all_values_within_u64_range &= value_within_u64_range;
}
NumericalValue::U64(val_u64) => {
let value_within_i64_range = val_u64 < i64::MAX as u64;
self.all_values_within_i64_range &= value_within_i64_range;
}
NumericalValue::F64(_) => {
self.all_values_within_i64_range = false;
self.all_values_within_u64_range = false;
}
}
}
pub fn to_numerical_type(self) -> NumericalType {
if self.all_values_within_i64_range {
NumericalType::I64
} else if self.all_values_within_u64_range {
NumericalType::U64
} else {
NumericalType::F64
}
}
}
impl NumericalColumnWriter {
pub fn column_type_and_cardinality(&self, num_docs: DocId) -> (NumericalType, Cardinality) {
let numerical_type = self.compatible_numerical_types.to_numerical_type();
let cardinality = self.column_writer.get_cardinality(num_docs);
(numerical_type, cardinality)
}
pub fn record_numerical_value(
&mut self,
doc: DocId,
value: NumericalValue,
arena: &mut MemoryArena,
) {
self.compatible_numerical_types.accept_value(value);
self.column_writer.record(doc, value, arena);
}
pub(super) fn operation_iterator<'a>(
self,
arena: &MemoryArena,
buffer: &'a mut Vec<u8>,
) -> impl Iterator<Item = ColumnOperation<NumericalValue>> + 'a {
self.column_writer.operation_iterator(arena, buffer)
}
}
#[derive(Copy, Clone, Default)]
pub(crate) struct StrColumnWriter {
pub(crate) dictionary_id: u32,
pub(crate) column_writer: ColumnWriter,
}
impl StrColumnWriter {
pub(crate) fn with_dictionary_id(dictionary_id: u32) -> StrColumnWriter {
StrColumnWriter {
dictionary_id,
column_writer: Default::default(),
}
}
pub(crate) fn record_bytes(
&mut self,
doc: DocId,
bytes: &[u8],
dictionaries: &mut [DictionaryBuilder],
arena: &mut MemoryArena,
) {
let unordered_id = dictionaries[self.dictionary_id as usize].get_or_allocate_id(bytes);
self.column_writer.record(doc, unordered_id, arena);
}
pub(super) fn operation_iterator<'a>(
&self,
arena: &MemoryArena,
byte_buffer: &'a mut Vec<u8>,
) -> impl Iterator<Item = ColumnOperation<UnorderedId>> + 'a {
self.column_writer.operation_iterator(arena, byte_buffer)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_delta_with_last_doc() {
assert_eq!(delta_with_last_doc(None, 0u32), DocumentStep::Next);
assert_eq!(delta_with_last_doc(None, 1u32), DocumentStep::Skipped);
assert_eq!(delta_with_last_doc(None, 2u32), DocumentStep::Skipped);
assert_eq!(delta_with_last_doc(Some(0u32), 0u32), DocumentStep::Same);
assert_eq!(delta_with_last_doc(Some(1u32), 1u32), DocumentStep::Same);
assert_eq!(delta_with_last_doc(Some(1u32), 2u32), DocumentStep::Next);
assert_eq!(delta_with_last_doc(Some(1u32), 3u32), DocumentStep::Skipped);
assert_eq!(delta_with_last_doc(Some(1u32), 4u32), DocumentStep::Skipped);
}
#[track_caller]
fn test_column_writer_coercion_iter_aux(
values: impl Iterator<Item = NumericalValue>,
expected_numerical_type: NumericalType,
) {
let mut compatible_numerical_types = CompatibleNumericalTypes::default();
for value in values {
compatible_numerical_types.accept_value(value);
}
assert_eq!(
compatible_numerical_types.to_numerical_type(),
expected_numerical_type
);
}
#[track_caller]
fn test_column_writer_coercion_aux(
values: &[NumericalValue],
expected_numerical_type: NumericalType,
) {
test_column_writer_coercion_iter_aux(values.iter().copied(), expected_numerical_type);
test_column_writer_coercion_iter_aux(values.iter().rev().copied(), expected_numerical_type);
}
#[test]
fn test_column_writer_coercion() {
test_column_writer_coercion_aux(&[], NumericalType::I64);
test_column_writer_coercion_aux(&[1i64.into()], NumericalType::I64);
test_column_writer_coercion_aux(&[1u64.into()], NumericalType::I64);
// We don't detect exact integer at the moment. We could!
test_column_writer_coercion_aux(&[1f64.into()], NumericalType::F64);
test_column_writer_coercion_aux(&[u64::MAX.into()], NumericalType::U64);
test_column_writer_coercion_aux(&[(i64::MAX as u64).into()], NumericalType::U64);
test_column_writer_coercion_aux(&[(1u64 << 63).into()], NumericalType::U64);
test_column_writer_coercion_aux(&[1i64.into(), 1u64.into()], NumericalType::I64);
test_column_writer_coercion_aux(&[u64::MAX.into(), (-1i64).into()], NumericalType::F64);
}
}

View File

@@ -1,516 +0,0 @@
mod column_operation;
mod column_writers;
mod serializer;
mod value_index;
use std::io;
use column_operation::ColumnOperation;
use common::CountingWriter;
use fastfield_codecs::serialize::ValueIndexInfo;
use fastfield_codecs::{Column, MonotonicallyMappableToU64, VecColumn};
use serializer::ColumnarSerializer;
use stacker::{Addr, ArenaHashMap, MemoryArena};
use crate::column_type_header::{ColumnType, ColumnTypeAndCardinality, ColumnTypeCategory};
use crate::dictionary::{DictionaryBuilder, TermIdMapping, UnorderedId};
use crate::value::{Coerce, NumericalType, NumericalValue};
use crate::writer::column_writers::{ColumnWriter, NumericalColumnWriter, StrColumnWriter};
use crate::writer::value_index::{IndexBuilder, SpareIndexBuilders};
use crate::{Cardinality, DocId};
/// This is a set of buffers that are used to temporarily write the values into before passing them
/// to the fast field codecs.
#[derive(Default)]
struct SpareBuffers {
value_index_builders: SpareIndexBuilders,
i64_values: Vec<i64>,
u64_values: Vec<u64>,
f64_values: Vec<f64>,
bool_values: Vec<bool>,
}
/// Makes it possible to create a new columnar.
///
/// ```rust
/// use tantivy_columnar::ColumnarWriter;
///
/// let mut columnar_writer = ColumnarWriter::default();
/// columnar_writer.record_str(0u32 /* doc id */, "product_name", "Red backpack");
/// columnar_writer.record_numerical(0u32 /* doc id */, "price", 10u64);
/// columnar_writer.record_str(1u32 /* doc id */, "product_name", "Apple");
/// columnar_writer.record_numerical(0u32 /* doc id */, "price", 10.5f64); //< uh oh we ended up mixing integer and floats.
/// let mut wrt: Vec<u8> = Vec::new();
/// columnar_writer.serialize(2u32, &mut wrt).unwrap();
/// ```
pub struct ColumnarWriter {
numerical_field_hash_map: ArenaHashMap,
bool_field_hash_map: ArenaHashMap,
bytes_field_hash_map: ArenaHashMap,
arena: MemoryArena,
// Dictionaries used to store dictionary-encoded values.
dictionaries: Vec<DictionaryBuilder>,
buffers: SpareBuffers,
}
impl Default for ColumnarWriter {
fn default() -> Self {
ColumnarWriter {
numerical_field_hash_map: ArenaHashMap::new(10_000),
bool_field_hash_map: ArenaHashMap::new(10_000),
bytes_field_hash_map: ArenaHashMap::new(10_000),
dictionaries: Vec::new(),
arena: MemoryArena::default(),
buffers: SpareBuffers::default(),
}
}
}
impl ColumnarWriter {
pub fn record_numerical<T: Into<NumericalValue> + Copy>(
&mut self,
doc: DocId,
column_name: &str,
numerical_value: T,
) {
assert!(
!column_name.as_bytes().contains(&0u8),
"key may not contain the 0 byte"
);
let (hash_map, arena) = (&mut self.numerical_field_hash_map, &mut self.arena);
hash_map.mutate_or_create(
column_name.as_bytes(),
|column_opt: Option<NumericalColumnWriter>| {
let mut column: NumericalColumnWriter = column_opt.unwrap_or_default();
column.record_numerical_value(doc, numerical_value.into(), arena);
column
},
);
}
pub fn record_bool(&mut self, doc: DocId, column_name: &str, val: bool) {
assert!(
!column_name.as_bytes().contains(&0u8),
"key may not contain the 0 byte"
);
let (hash_map, arena) = (&mut self.bool_field_hash_map, &mut self.arena);
hash_map.mutate_or_create(
column_name.as_bytes(),
|column_opt: Option<ColumnWriter>| {
let mut column: ColumnWriter = column_opt.unwrap_or_default();
column.record(doc, val, arena);
column
},
);
}
pub fn record_str(&mut self, doc: DocId, column_name: &str, value: &str) {
assert!(
!column_name.as_bytes().contains(&0u8),
"key may not contain the 0 byte"
);
let (hash_map, arena, dictionaries) = (
&mut self.bytes_field_hash_map,
&mut self.arena,
&mut self.dictionaries,
);
hash_map.mutate_or_create(
column_name.as_bytes(),
|column_opt: Option<StrColumnWriter>| {
let mut column: StrColumnWriter = column_opt.unwrap_or_else(|| {
// Each column has its own dictionary
let dictionary_id = dictionaries.len() as u32;
dictionaries.push(DictionaryBuilder::default());
StrColumnWriter::with_dictionary_id(dictionary_id)
});
column.record_bytes(doc, value.as_bytes(), dictionaries, arena);
column
},
);
}
pub fn serialize(&mut self, num_docs: DocId, wrt: &mut dyn io::Write) -> io::Result<()> {
let mut serializer = ColumnarSerializer::new(wrt);
let mut field_columns: Vec<(&[u8], ColumnTypeCategory, Addr)> = self
.numerical_field_hash_map
.iter()
.map(|(term, addr, _)| (term, ColumnTypeCategory::Numerical, addr))
.collect();
field_columns.extend(
self.bytes_field_hash_map
.iter()
.map(|(term, addr, _)| (term, ColumnTypeCategory::Str, addr)),
);
field_columns.extend(
self.bool_field_hash_map
.iter()
.map(|(term, addr, _)| (term, ColumnTypeCategory::Bool, addr)),
);
field_columns.sort_unstable_by_key(|(column_name, col_type, _)| (*column_name, *col_type));
let (arena, buffers, dictionaries) = (&self.arena, &mut self.buffers, &self.dictionaries);
let mut symbol_byte_buffer: Vec<u8> = Vec::new();
for (column_name, bytes_or_numerical, addr) in field_columns {
match bytes_or_numerical {
ColumnTypeCategory::Bool => {
let column_writer: ColumnWriter = self.bool_field_hash_map.read(addr);
let cardinality = column_writer.get_cardinality(num_docs);
let column_type_and_cardinality = ColumnTypeAndCardinality {
cardinality,
typ: ColumnType::Bool,
};
let mut column_serializer =
serializer.serialize_column(column_name, column_type_and_cardinality);
serialize_bool_column(
cardinality,
num_docs,
column_writer.operation_iterator(arena, &mut symbol_byte_buffer),
buffers,
&mut column_serializer,
)?;
}
ColumnTypeCategory::Str => {
let str_column_writer: StrColumnWriter = self.bytes_field_hash_map.read(addr);
let dictionary_builder =
&dictionaries[str_column_writer.dictionary_id as usize];
let cardinality = str_column_writer.column_writer.get_cardinality(num_docs);
let column_type_and_cardinality = ColumnTypeAndCardinality {
cardinality,
typ: ColumnType::Bytes,
};
let mut column_serializer =
serializer.serialize_column(column_name, column_type_and_cardinality);
serialize_bytes_column(
cardinality,
num_docs,
dictionary_builder,
str_column_writer.operation_iterator(arena, &mut symbol_byte_buffer),
buffers,
&mut column_serializer,
)?;
}
ColumnTypeCategory::Numerical => {
let numerical_column_writer: NumericalColumnWriter =
self.numerical_field_hash_map.read(addr);
let (numerical_type, cardinality) =
numerical_column_writer.column_type_and_cardinality(num_docs);
let column_type_and_cardinality = ColumnTypeAndCardinality {
cardinality,
typ: ColumnType::Numerical(numerical_type),
};
let mut column_serializer =
serializer.serialize_column(column_name, column_type_and_cardinality);
serialize_numerical_column(
cardinality,
num_docs,
numerical_type,
numerical_column_writer.operation_iterator(arena, &mut symbol_byte_buffer),
buffers,
&mut column_serializer,
)?;
}
};
}
serializer.finalize()?;
Ok(())
}
}
fn serialize_bytes_column(
cardinality: Cardinality,
num_docs: DocId,
dictionary_builder: &DictionaryBuilder,
operation_it: impl Iterator<Item = ColumnOperation<UnorderedId>>,
buffers: &mut SpareBuffers,
wrt: impl io::Write,
) -> io::Result<()> {
let SpareBuffers {
value_index_builders,
u64_values,
..
} = buffers;
let mut counting_writer = CountingWriter::wrap(wrt);
let term_id_mapping: TermIdMapping = dictionary_builder.serialize(&mut counting_writer)?;
let dictionary_num_bytes: u32 = counting_writer.written_bytes() as u32;
let mut wrt = counting_writer.finish();
let operation_iterator = operation_it.map(|symbol: ColumnOperation<UnorderedId>| {
// We map unordered ids to ordered ids.
match symbol {
ColumnOperation::Value(unordered_id) => {
let ordered_id = term_id_mapping.to_ord(unordered_id);
ColumnOperation::Value(ordered_id.0 as u64)
}
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
}
});
serialize_column(
operation_iterator,
cardinality,
num_docs,
value_index_builders,
u64_values,
&mut wrt,
)?;
wrt.write_all(&dictionary_num_bytes.to_le_bytes()[..])?;
Ok(())
}
fn serialize_numerical_column(
cardinality: Cardinality,
num_docs: DocId,
numerical_type: NumericalType,
op_iterator: impl Iterator<Item = ColumnOperation<NumericalValue>>,
buffers: &mut SpareBuffers,
wrt: &mut impl io::Write,
) -> io::Result<()> {
let SpareBuffers {
value_index_builders,
u64_values,
i64_values,
f64_values,
..
} = buffers;
match numerical_type {
NumericalType::I64 => {
serialize_column(
coerce_numerical_symbol::<i64>(op_iterator),
cardinality,
num_docs,
value_index_builders,
i64_values,
wrt,
)?;
}
NumericalType::U64 => {
serialize_column(
coerce_numerical_symbol::<u64>(op_iterator),
cardinality,
num_docs,
value_index_builders,
u64_values,
wrt,
)?;
}
NumericalType::F64 => {
serialize_column(
coerce_numerical_symbol::<f64>(op_iterator),
cardinality,
num_docs,
value_index_builders,
f64_values,
wrt,
)?;
}
};
Ok(())
}
fn serialize_bool_column(
cardinality: Cardinality,
num_docs: DocId,
column_operations_it: impl Iterator<Item = ColumnOperation<bool>>,
buffers: &mut SpareBuffers,
wrt: &mut impl io::Write,
) -> io::Result<()> {
let SpareBuffers {
value_index_builders,
bool_values,
..
} = buffers;
serialize_column(
column_operations_it,
cardinality,
num_docs,
value_index_builders,
bool_values,
wrt,
)?;
Ok(())
}
fn serialize_column<
T: Copy + Default + std::fmt::Debug + Send + Sync + MonotonicallyMappableToU64 + PartialOrd,
>(
op_iterator: impl Iterator<Item = ColumnOperation<T>>,
cardinality: Cardinality,
num_docs: DocId,
value_index_builders: &mut SpareIndexBuilders,
values: &mut Vec<T>,
mut wrt: impl io::Write,
) -> io::Result<()>
where
for<'a> VecColumn<'a, T>: Column<T>,
{
values.clear();
match cardinality {
Cardinality::Required => {
consume_operation_iterator(
op_iterator,
value_index_builders.borrow_required_index_builder(),
values,
);
fastfield_codecs::serialize(
VecColumn::from(&values[..]),
&mut wrt,
&fastfield_codecs::ALL_CODEC_TYPES[..],
)?;
}
Cardinality::Optional => {
let optional_index_builder = value_index_builders.borrow_optional_index_builder();
consume_operation_iterator(op_iterator, optional_index_builder, values);
let optional_index = optional_index_builder.finish(num_docs);
fastfield_codecs::serialize::serialize_new(
ValueIndexInfo::SingleValue(Box::new(optional_index)),
VecColumn::from(&values[..]),
&mut wrt,
&fastfield_codecs::ALL_CODEC_TYPES[..],
)?;
}
Cardinality::Multivalued => {
let multivalued_index_builder = value_index_builders.borrow_multivalued_index_builder();
consume_operation_iterator(op_iterator, multivalued_index_builder, values);
let multivalued_index = multivalued_index_builder.finish(num_docs);
fastfield_codecs::serialize::serialize_new(
ValueIndexInfo::MultiValue(Box::new(multivalued_index)),
VecColumn::from(&values[..]),
&mut wrt,
&fastfield_codecs::ALL_CODEC_TYPES[..],
)?;
}
}
Ok(())
}
fn coerce_numerical_symbol<T>(
operation_iterator: impl Iterator<Item = ColumnOperation<NumericalValue>>,
) -> impl Iterator<Item = ColumnOperation<T>>
where T: Coerce {
operation_iterator.map(|symbol| match symbol {
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
ColumnOperation::Value(numerical_value) => {
ColumnOperation::Value(Coerce::coerce(numerical_value))
}
})
}
fn consume_operation_iterator<T: std::fmt::Debug, TIndexBuilder: IndexBuilder>(
operation_iterator: impl Iterator<Item = ColumnOperation<T>>,
index_builder: &mut TIndexBuilder,
values: &mut Vec<T>,
) {
for symbol in operation_iterator {
match symbol {
ColumnOperation::NewDoc(doc) => {
index_builder.record_doc(doc);
}
ColumnOperation::Value(value) => {
index_builder.record_value();
values.push(value);
}
}
}
}
#[cfg(test)]
mod tests {
use column_operation::ColumnOperation;
use stacker::MemoryArena;
use super::*;
use crate::value::NumericalValue;
use crate::Cardinality;
#[test]
fn test_column_writer_required_simple() {
let mut arena = MemoryArena::default();
let mut column_writer = super::ColumnWriter::default();
column_writer.record(0u32, NumericalValue::from(14i64), &mut arena);
column_writer.record(1u32, NumericalValue::from(15i64), &mut arena);
column_writer.record(2u32, NumericalValue::from(-16i64), &mut arena);
assert_eq!(column_writer.get_cardinality(3), Cardinality::Required);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&mut arena, &mut buffer)
.collect();
assert_eq!(symbols.len(), 6);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
assert!(matches!(
symbols[1],
ColumnOperation::Value(NumericalValue::I64(14i64))
));
assert!(matches!(symbols[2], ColumnOperation::NewDoc(1u32)));
assert!(matches!(
symbols[3],
ColumnOperation::Value(NumericalValue::I64(15i64))
));
assert!(matches!(symbols[4], ColumnOperation::NewDoc(2u32)));
assert!(matches!(
symbols[5],
ColumnOperation::Value(NumericalValue::I64(-16i64))
));
}
#[test]
fn test_column_writer_optional_cardinality_missing_first() {
let mut arena = MemoryArena::default();
let mut column_writer = super::ColumnWriter::default();
column_writer.record(1u32, NumericalValue::from(15i64), &mut arena);
column_writer.record(2u32, NumericalValue::from(-16i64), &mut arena);
assert_eq!(column_writer.get_cardinality(3), Cardinality::Optional);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&mut arena, &mut buffer)
.collect();
assert_eq!(symbols.len(), 4);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(1u32)));
assert!(matches!(
symbols[1],
ColumnOperation::Value(NumericalValue::I64(15i64))
));
assert!(matches!(symbols[2], ColumnOperation::NewDoc(2u32)));
assert!(matches!(
symbols[3],
ColumnOperation::Value(NumericalValue::I64(-16i64))
));
}
#[test]
fn test_column_writer_optional_cardinality_missing_last() {
let mut arena = MemoryArena::default();
let mut column_writer = super::ColumnWriter::default();
column_writer.record(0u32, NumericalValue::from(15i64), &mut arena);
assert_eq!(column_writer.get_cardinality(2), Cardinality::Optional);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&mut arena, &mut buffer)
.collect();
assert_eq!(symbols.len(), 2);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
assert!(matches!(
symbols[1],
ColumnOperation::Value(NumericalValue::I64(15i64))
));
}
#[test]
fn test_column_writer_multivalued() {
let mut arena = MemoryArena::default();
let mut column_writer = super::ColumnWriter::default();
column_writer.record(0u32, NumericalValue::from(16i64), &mut arena);
column_writer.record(0u32, NumericalValue::from(17i64), &mut arena);
assert_eq!(column_writer.get_cardinality(1), Cardinality::Multivalued);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&mut arena, &mut buffer)
.collect();
assert_eq!(symbols.len(), 3);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
assert!(matches!(
symbols[1],
ColumnOperation::Value(NumericalValue::I64(16i64))
));
assert!(matches!(
symbols[2],
ColumnOperation::Value(NumericalValue::I64(17i64))
));
}
}

View File

@@ -1,116 +0,0 @@
use std::io;
use std::io::Write;
use common::CountingWriter;
use sstable::value::RangeValueWriter;
use sstable::RangeSSTable;
use crate::column_type_header::ColumnTypeAndCardinality;
pub struct ColumnarSerializer<W: io::Write> {
wrt: CountingWriter<W>,
sstable_range: sstable::Writer<Vec<u8>, RangeValueWriter>,
prepare_key_buffer: Vec<u8>,
}
/// Returns a key consisting of the concatenation of the key and the column_type_and_cardinality
/// code.
fn prepare_key(
key: &[u8],
column_type_cardinality: ColumnTypeAndCardinality,
buffer: &mut Vec<u8>,
) {
buffer.clear();
buffer.extend_from_slice(key);
buffer.push(0u8);
buffer.push(column_type_cardinality.to_code());
}
impl<W: io::Write> ColumnarSerializer<W> {
pub(crate) fn new(wrt: W) -> ColumnarSerializer<W> {
let sstable_range: sstable::Writer<Vec<u8>, RangeValueWriter> =
sstable::Dictionary::<RangeSSTable>::builder(Vec::with_capacity(100_000)).unwrap();
ColumnarSerializer {
wrt: CountingWriter::wrap(wrt),
sstable_range,
prepare_key_buffer: Vec::new(),
}
}
pub fn serialize_column<'a>(
&'a mut self,
column_name: &[u8],
column_type_cardinality: ColumnTypeAndCardinality,
) -> impl io::Write + 'a {
let start_offset = self.wrt.written_bytes();
prepare_key(
column_name,
column_type_cardinality,
&mut self.prepare_key_buffer,
);
ColumnSerializer {
columnar_serializer: self,
start_offset,
}
}
pub(crate) fn finalize(mut self) -> io::Result<()> {
let sstable_bytes: Vec<u8> = self.sstable_range.finish()?;
let sstable_num_bytes: u64 = sstable_bytes.len() as u64;
self.wrt.write_all(&sstable_bytes)?;
self.wrt.write_all(&sstable_num_bytes.to_le_bytes()[..])?;
Ok(())
}
}
struct ColumnSerializer<'a, W: io::Write> {
columnar_serializer: &'a mut ColumnarSerializer<W>,
start_offset: u64,
}
impl<'a, W: io::Write> Drop for ColumnSerializer<'a, W> {
fn drop(&mut self) {
let end_offset: u64 = self.columnar_serializer.wrt.written_bytes();
let byte_range = self.start_offset..end_offset;
self.columnar_serializer.sstable_range.insert_cannot_fail(
&self.columnar_serializer.prepare_key_buffer[..],
&byte_range,
);
self.columnar_serializer.prepare_key_buffer.clear();
}
}
impl<'a, W: io::Write> io::Write for ColumnSerializer<'a, W> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.columnar_serializer.wrt.write(buf)
}
fn flush(&mut self) -> io::Result<()> {
self.columnar_serializer.wrt.flush()
}
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.columnar_serializer.wrt.write_all(buf)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::column_type_header::ColumnType;
use crate::Cardinality;
#[test]
fn test_prepare_key_bytes() {
let mut buffer: Vec<u8> = b"somegarbage".to_vec();
let column_type_and_cardinality = ColumnTypeAndCardinality {
typ: ColumnType::Bytes,
cardinality: Cardinality::Optional,
};
prepare_key(b"root\0child", column_type_and_cardinality, &mut buffer);
assert_eq!(buffer.len(), 12);
assert_eq!(&buffer[..10], b"root\0child");
assert_eq!(buffer[10], 0u8);
assert_eq!(buffer[11], column_type_and_cardinality.to_code());
}
}

View File

@@ -1,220 +0,0 @@
use fastfield_codecs::serialize::{MultiValueIndexInfo, SingleValueIndexInfo};
use crate::DocId;
/// The `IndexBuilder` interprets a sequence of
/// calls of the form:
/// (record_doc,record_value+)*
/// and can then serialize the results into an index to associate docids with their value[s].
///
/// It has different implementation depending on whether the
/// cardinality is required, optional, or multivalued.
pub(crate) trait IndexBuilder {
fn record_doc(&mut self, doc: DocId);
#[inline]
fn record_value(&mut self) {}
}
/// The RequiredIndexBuilder does nothing.
#[derive(Default)]
pub struct RequiredIndexBuilder;
impl IndexBuilder for RequiredIndexBuilder {
#[inline(always)]
fn record_doc(&mut self, _doc: DocId) {}
}
#[derive(Default)]
pub struct OptionalIndexBuilder {
docs: Vec<DocId>,
}
struct SingleValueArrayIndex<'a> {
// DocIds with a value. DocIds are strictly increasing
docs: &'a [DocId],
num_docs: DocId,
}
impl<'a> SingleValueIndexInfo for SingleValueArrayIndex<'a> {
fn num_vals(&self) -> u32 {
self.num_docs as u32
}
fn num_non_nulls(&self) -> u32 {
self.docs.len() as u32
}
fn iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
Box::new(self.docs.iter().copied())
}
}
impl OptionalIndexBuilder {
pub fn finish(&mut self, num_docs: DocId) -> impl SingleValueIndexInfo + '_ {
debug_assert!(self
.docs
.last()
.copied()
.map(|last_doc| last_doc < num_docs)
.unwrap_or(true));
SingleValueArrayIndex {
docs: &self.docs[..],
num_docs,
}
}
fn reset(&mut self) {
self.docs.clear();
}
}
impl IndexBuilder for OptionalIndexBuilder {
#[inline(always)]
fn record_doc(&mut self, doc: DocId) {
debug_assert!(self
.docs
.last()
.copied()
.map(|prev_doc| doc > prev_doc)
.unwrap_or(true));
self.docs.push(doc);
}
}
#[derive(Default)]
pub struct MultivaluedIndexBuilder {
// TODO should we switch to `start_offset`?
// contains the num values so far for each `DocId`.
end_offsets: Vec<DocId>,
total_num_vals_seen: u32,
}
pub struct MultivaluedValueArrayIndex<'a> {
end_offsets: &'a [DocId],
}
impl<'a> MultiValueIndexInfo for MultivaluedValueArrayIndex<'a> {
fn num_docs(&self) -> u32 {
self.end_offsets.len() as u32
}
fn num_vals(&self) -> u32 {
self.end_offsets.last().copied().unwrap_or(0u32)
}
fn iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
if self.end_offsets.is_empty() {
return Box::new(std::iter::empty());
}
let n = self.end_offsets.len();
Box::new(std::iter::once(0u32).chain(self.end_offsets[..n - 1].iter().copied()))
}
}
impl MultivaluedIndexBuilder {
pub fn finish(&mut self, num_docs: DocId) -> impl MultiValueIndexInfo + '_ {
self.end_offsets
.resize(num_docs as usize, self.total_num_vals_seen);
MultivaluedValueArrayIndex {
end_offsets: &self.end_offsets[..],
}
}
fn reset(&mut self) {
self.end_offsets.clear();
self.total_num_vals_seen = 0;
}
}
impl IndexBuilder for MultivaluedIndexBuilder {
fn record_doc(&mut self, doc: DocId) {
self.end_offsets
.resize(doc as usize, self.total_num_vals_seen);
}
fn record_value(&mut self) {
self.total_num_vals_seen += 1;
}
}
/// The `SpareIndexBuilders` is there to avoid allocating a
/// new index builder for every single column.
#[derive(Default)]
pub struct SpareIndexBuilders {
required_index_builder: RequiredIndexBuilder,
optional_index_builder: OptionalIndexBuilder,
multivalued_index_builder: MultivaluedIndexBuilder,
}
impl SpareIndexBuilders {
pub fn borrow_required_index_builder(&mut self) -> &mut RequiredIndexBuilder {
&mut self.required_index_builder
}
pub fn borrow_optional_index_builder(&mut self) -> &mut OptionalIndexBuilder {
self.optional_index_builder.reset();
&mut self.optional_index_builder
}
pub fn borrow_multivalued_index_builder(&mut self) -> &mut MultivaluedIndexBuilder {
self.multivalued_index_builder.reset();
&mut self.multivalued_index_builder
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_optional_value_index_builder() {
let mut opt_value_index_builder = OptionalIndexBuilder::default();
opt_value_index_builder.record_doc(0u32);
opt_value_index_builder.record_value();
assert_eq!(
&opt_value_index_builder
.finish(1u32)
.iter()
.collect::<Vec<u32>>(),
&[0]
);
opt_value_index_builder.reset();
opt_value_index_builder.record_doc(1u32);
opt_value_index_builder.record_value();
assert_eq!(
&opt_value_index_builder
.finish(2u32)
.iter()
.collect::<Vec<u32>>(),
&[1]
);
}
#[test]
fn test_multivalued_value_index_builder() {
let mut multivalued_value_index_builder = MultivaluedIndexBuilder::default();
multivalued_value_index_builder.record_doc(1u32);
multivalued_value_index_builder.record_value();
multivalued_value_index_builder.record_value();
multivalued_value_index_builder.record_doc(2u32);
multivalued_value_index_builder.record_value();
assert_eq!(
multivalued_value_index_builder
.finish(4u32)
.iter()
.collect::<Vec<u32>>(),
vec![0, 0, 2, 3]
);
multivalued_value_index_builder.reset();
multivalued_value_index_builder.record_doc(2u32);
multivalued_value_index_builder.record_value();
multivalued_value_index_builder.record_value();
assert_eq!(
multivalued_value_index_builder
.finish(4u32)
.iter()
.collect::<Vec<u32>>(),
vec![0, 0, 0, 2]
);
}
}

View File

@@ -1,21 +1,16 @@
[package]
name = "tantivy-common"
version = "0.5.0"
version = "0.3.0"
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
license = "MIT"
edition = "2021"
description = "common traits and utility functions used by multiple tantivy subcrates"
documentation = "https://docs.rs/tantivy_common/"
homepage = "https://github.com/quickwit-oss/tantivy"
repository = "https://github.com/quickwit-oss/tantivy"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
byteorder = "1.4.3"
ownedbytes = { version= "0.5", path="../ownedbytes" }
async-trait = "0.1"
ownedbytes = { version="0.3", path="../ownedbytes" }
[dev-dependencies]
proptest = "1.0.0"

View File

@@ -151,7 +151,7 @@ impl TinySet {
if self.is_empty() {
None
} else {
let lowest = self.0.trailing_zeros();
let lowest = self.0.trailing_zeros() as u32;
self.0 ^= TinySet::singleton(lowest).0;
Some(lowest)
}
@@ -421,7 +421,7 @@ mod tests {
bitset.serialize(&mut out).unwrap();
let bitset = ReadOnlyBitSet::open(OwnedBytes::new(out));
assert_eq!(bitset.len(), i as usize);
assert_eq!(bitset.len() as usize, i as usize);
}
}
@@ -432,7 +432,7 @@ mod tests {
bitset.serialize(&mut out).unwrap();
let bitset = ReadOnlyBitSet::open(OwnedBytes::new(out));
assert_eq!(bitset.len(), 64);
assert_eq!(bitset.len() as usize, 64);
}
#[test]

View File

@@ -1,166 +0,0 @@
use std::cell::RefCell;
use std::iter::Peekable;
use std::rc::Rc;
pub trait GroupByIteratorExtended: Iterator {
/// Return an `Iterator` that groups iterator elements. Consecutive elements that map to the
/// same key are assigned to the same group.
///
/// The returned Iterator item is `(K, impl Iterator)`, where Iterator are the items of the
/// group.
///
/// ```
/// use tantivy_common::GroupByIteratorExtended;
///
/// // group data into blocks of larger than zero or not.
/// let data: Vec<i32> = vec![1, 3, -2, -2, 1, 0, 1, 2];
/// // groups: |---->|------>|--------->|
///
/// let mut data_grouped = Vec::new();
/// // Note: group is an iterator
/// for (key, group) in data.into_iter().group_by(|val| *val >= 0) {
/// data_grouped.push((key, group.collect()));
/// }
/// assert_eq!(data_grouped, vec![(true, vec![1, 3]), (false, vec![-2, -2]), (true, vec![1, 0, 1, 2])]);
/// ```
fn group_by<K, F>(self, key: F) -> GroupByIterator<Self, F, K>
where
Self: Sized,
F: FnMut(&Self::Item) -> K,
K: PartialEq + Copy,
Self::Item: Copy,
{
GroupByIterator::new(self, key)
}
}
impl<I: Iterator> GroupByIteratorExtended for I {}
pub struct GroupByIterator<I, F, K: Copy>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
{
// I really would like to avoid the Rc<RefCell>, but the Iterator is shared between
// `GroupByIterator` and `GroupIter`. In practice they are used consecutive and
// `GroupByIter` is finished before calling next on `GroupByIterator`. I'm not sure there
// is a solution with lifetimes for that, because we would need to enforce it in the usage
// somehow.
//
// One potential solution would be to replace the iterator approach with something similar.
inner: Rc<RefCell<GroupByShared<I, F, K>>>,
}
struct GroupByShared<I, F, K: Copy>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
{
iter: Peekable<I>,
group_by_fn: F,
}
impl<I, F, K> GroupByIterator<I, F, K>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
K: Copy,
{
fn new(inner: I, group_by_fn: F) -> Self {
let inner = GroupByShared {
iter: inner.peekable(),
group_by_fn,
};
Self {
inner: Rc::new(RefCell::new(inner)),
}
}
}
impl<I, F, K> Iterator for GroupByIterator<I, F, K>
where
I: Iterator,
I::Item: Copy,
F: FnMut(&I::Item) -> K,
K: Copy,
{
type Item = (K, GroupIterator<I, F, K>);
fn next(&mut self) -> Option<Self::Item> {
let mut inner = self.inner.borrow_mut();
let value = *inner.iter.peek()?;
let key = (inner.group_by_fn)(&value);
let inner = self.inner.clone();
let group_iter = GroupIterator {
inner,
group_key: key,
};
Some((key, group_iter))
}
}
pub struct GroupIterator<I, F, K: Copy>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
{
inner: Rc<RefCell<GroupByShared<I, F, K>>>,
group_key: K,
}
impl<I, F, K: PartialEq + Copy> Iterator for GroupIterator<I, F, K>
where
I: Iterator,
I::Item: Copy,
F: FnMut(&I::Item) -> K,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
let mut inner = self.inner.borrow_mut();
// peek if next value is in group
let peek_val = *inner.iter.peek()?;
if (inner.group_by_fn)(&peek_val) == self.group_key {
inner.iter.next()
} else {
None
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn group_by_collect<I: Iterator<Item = u32>>(iter: I) -> Vec<(I::Item, Vec<I::Item>)> {
iter.group_by(|val| val / 10)
.map(|(el, iter)| (el, iter.collect::<Vec<_>>()))
.collect::<Vec<_>>()
}
#[test]
fn group_by_two_groups() {
let vals = vec![1u32, 4, 15];
let grouped_vals = group_by_collect(vals.into_iter());
assert_eq!(grouped_vals, vec![(0, vec![1, 4]), (1, vec![15])]);
}
#[test]
fn group_by_test_empty() {
let vals = vec![];
let grouped_vals = group_by_collect(vals.into_iter());
assert_eq!(grouped_vals, vec![]);
}
#[test]
fn group_by_three_groups() {
let vals = vec![1u32, 4, 15, 1];
let grouped_vals = group_by_collect(vals.into_iter());
assert_eq!(
grouped_vals,
vec![(0, vec![1, 4]), (1, vec![15]), (0, vec![1])]
);
}
}

View File

@@ -5,14 +5,11 @@ use std::ops::Deref;
pub use byteorder::LittleEndian as Endianness;
mod bitset;
pub mod file_slice;
mod group_by;
mod serialize;
mod vint;
mod writer;
pub use bitset::*;
pub use group_by::GroupByIteratorExtended;
pub use ownedbytes::{OwnedBytes, StableDeref};
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
pub use vint::{
deserialize_vint_u128, read_u32_vint, read_u32_vint_no_advance, serialize_vint_u128,

View File

@@ -94,20 +94,6 @@ impl FixedSize for u32 {
const SIZE_IN_BYTES: usize = 4;
}
impl BinarySerializable for u16 {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u16::<Endianness>(*self)
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<u16> {
reader.read_u16::<Endianness>()
}
}
impl FixedSize for u16 {
const SIZE_IN_BYTES: usize = 2;
}
impl BinarySerializable for u64 {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u64::<Endianness>(*self)

View File

@@ -118,7 +118,7 @@ fn main() -> tantivy::Result<()> {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();

View File

@@ -9,7 +9,7 @@
use std::sync::Arc;
use fastfield_codecs::Column;
use fastfield_codecs::OptionalColumn;
// ---
// Importing tantivy...
use tantivy::collector::{Collector, SegmentCollector};
@@ -97,7 +97,7 @@ impl Collector for StatsCollector {
}
struct StatsSegmentCollector {
fast_field_reader: Arc<dyn Column<u64>>,
fast_field_reader: Arc<dyn OptionalColumn<u64>>,
stats: Stats,
}
@@ -105,10 +105,12 @@ impl SegmentCollector for StatsSegmentCollector {
type Fruit = Option<Stats>;
fn collect(&mut self, doc: u32, _score: Score) {
let value = self.fast_field_reader.get_val(doc) as f64;
self.stats.count += 1;
self.stats.sum += value;
self.stats.squared_sum += value * value;
if let Some(value) = self.fast_field_reader.get_val(doc) {
let value = value as f64;
self.stats.count += 1;
self.stats.sum += value;
self.stats.squared_sum += value * value;
}
}
fn harvest(self) -> <Self as SegmentCollector>::Fruit {

View File

@@ -1,17 +1,15 @@
// # Faceted Search
// # Basic Example
//
// This example covers the faceted search functionalities of
// This example covers the basic functionalities of
// tantivy.
//
// We will :
// - define a text field "name" in our schema
// - define a facet field "classification" in our schema
// - create an index in memory
// - index few documents with respective facets in our index
// - search and count the number of documents that the classifications start the facet "/Felidae"
// - Search the facet "/Felidae/Pantherinae" and count the number of documents that the
// classifications include the facet.
//
// - define our schema
// = create an index in a directory
// - index few documents in our index
// - search for the best document matchings "sea whale"
// - retrieve the best document original content.
// ---
// Importing tantivy...
use tantivy::collector::FacetCollector;
@@ -23,7 +21,7 @@ fn main() -> tantivy::Result<()> {
// Let's create a temporary directory for the sake of this example
let mut schema_builder = Schema::builder();
let name = schema_builder.add_text_field("name", TEXT | STORED);
let name = schema_builder.add_text_field("felin_name", TEXT | STORED);
// this is our faceted field: its scientific classification
let classification = schema_builder.add_facet_field("classification", FacetOptions::default());

View File

@@ -51,7 +51,7 @@ impl Warmer for DynamicPriceColumn {
let product_id_reader = segment.fast_fields().u64(self.field)?;
let product_ids: Vec<ProductId> = segment
.doc_ids_alive()
.map(|doc| product_id_reader.get_val(doc))
.flat_map(|doc| product_id_reader.get_val(doc))
.collect();
let mut prices_it = self.price_fetcher.fetch_prices(&product_ids).into_iter();
let mut price_vals: Vec<Price> = Vec::new();

View File

@@ -1,20 +1,18 @@
[package]
name = "fastfield_codecs"
version = "0.3.0"
version = "0.2.0"
authors = ["Pascal Seitz <pascal@quickwit.io>"]
license = "MIT"
edition = "2021"
description = "Fast field codecs used by tantivy"
documentation = "https://docs.rs/fastfield_codecs/"
homepage = "https://github.com/quickwit-oss/tantivy"
repository = "https://github.com/quickwit-oss/tantivy"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
common = { version = "0.5", path = "../common/", package = "tantivy-common" }
tantivy-bitpacker = { version= "0.3", path = "../bitpacker/" }
prettytable-rs = {version="0.10.0", optional= true}
common = { version = "0.3", path = "../common/", package = "tantivy-common" }
tantivy-bitpacker = { version="0.2", path = "../bitpacker/" }
ownedbytes = { version = "0.3.0", path = "../ownedbytes" }
prettytable-rs = {version="0.9.0", optional= true}
rand = {version="0.8.3", optional= true}
fastdivide = "0.4"
log = "0.4"

View File

@@ -4,11 +4,11 @@ extern crate test;
#[cfg(test)]
mod tests {
use std::ops::RangeInclusive;
use std::iter;
use std::sync::Arc;
use common::OwnedBytes;
use fastfield_codecs::*;
use ownedbytes::OwnedBytes;
use rand::prelude::*;
use test::Bencher;
@@ -41,7 +41,7 @@ mod tests {
) -> Arc<dyn Column<T>> {
let mut buffer = Vec::new();
serialize(VecColumn::from(&column), &mut buffer, &ALL_CODEC_TYPES).unwrap();
open(OwnedBytes::new(buffer)).unwrap()
open(OwnedBytes::new(buffer)).unwrap().to_full().unwrap()
}
#[bench]
@@ -71,24 +71,27 @@ mod tests {
});
}
const FIFTY_PERCENT_RANGE: RangeInclusive<u64> = 1..=50;
const SINGLE_ITEM: u64 = 90;
const SINGLE_ITEM_RANGE: RangeInclusive<u64> = 90..=90;
const ONE_PERCENT_ITEM_RANGE: RangeInclusive<u64> = 49..=49;
fn get_data_50percent_item() -> Vec<u128> {
let mut rng = StdRng::from_seed([1u8; 32]);
fn get_exp_data() -> Vec<u64> {
let mut data = vec![];
for _ in 0..300_000 {
let val = rng.gen_range(1..=100);
data.push(val);
for i in 0..100 {
let num = i * i;
data.extend(iter::repeat(i as u64).take(num));
}
data.push(SINGLE_ITEM);
data.shuffle(&mut StdRng::from_seed([1u8; 32]));
data.shuffle(&mut rng);
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
// lengt = 328350
data
}
fn get_data_50percent_item() -> (u128, u128, Vec<u128>) {
let mut permutation = get_exp_data();
let major_item = 20;
let minor_item = 10;
permutation.extend(iter::repeat(major_item).take(permutation.len()));
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
(major_item as u128, minor_item as u128, permutation)
}
fn get_u128_column_random() -> Arc<dyn Column<u128>> {
let permutation = generate_random();
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
@@ -100,85 +103,18 @@ mod tests {
let iter_gen = || data.iter().cloned();
serialize_u128(iter_gen, data.len() as u32, &mut out).unwrap();
let out = OwnedBytes::new(out);
open_u128::<u128>(out).unwrap()
open_u128::<u128>(out).unwrap().to_full().unwrap()
}
// U64 RANGE START
#[bench]
fn bench_intfastfield_getrange_u64_50percent_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
FIFTY_PERCENT_RANGE,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u64_1percent_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
ONE_PERCENT_ITEM_RANGE,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u64_single_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
SINGLE_ITEM_RANGE,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u64_hit_all(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(0..=u64::MAX, 0..data.len() as u32, &mut positions);
positions
});
}
// U64 RANGE END
// U128 RANGE START
#[bench]
fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let (major_item, _minor_item, data) = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
major_item..=major_item,
0..data.len() as u32,
&mut positions,
);
@@ -188,13 +124,13 @@ mod tests {
#[bench]
fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let (_major_item, minor_item, data) = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
*SINGLE_ITEM_RANGE.start() as u128..=*SINGLE_ITEM_RANGE.end() as u128,
minor_item..=minor_item,
0..data.len() as u32,
&mut positions,
);
@@ -204,7 +140,7 @@ mod tests {
#[bench]
fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
let data = get_data_50percent_item();
let (_major_item, _minor_item, data) = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| {
@@ -213,7 +149,6 @@ mod tests {
positions
});
}
// U128 RANGE END
#[bench]
fn bench_intfastfield_scan_all_fflookup_u128(b: &mut Bencher) {

View File

@@ -1,6 +1,6 @@
use std::io::{self, Write};
use common::OwnedBytes;
use ownedbytes::OwnedBytes;
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use crate::serialize::NormalizedHeader;

View File

@@ -1,7 +1,8 @@
use std::sync::Arc;
use std::{io, iter};
use common::{BinarySerializable, CountingWriter, DeserializeFrom, OwnedBytes};
use common::{BinarySerializable, CountingWriter, DeserializeFrom};
use ownedbytes::OwnedBytes;
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use crate::line::Line;
@@ -46,7 +47,7 @@ impl FastFieldCodec for BlockwiseLinearCodec {
type Reader = BlockwiseLinearReader;
fn open_from_bytes(
bytes: common::OwnedBytes,
bytes: ownedbytes::OwnedBytes,
normalized_header: NormalizedHeader,
) -> io::Result<Self::Reader> {
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
@@ -74,7 +75,7 @@ impl FastFieldCodec for BlockwiseLinearCodec {
if column.num_vals() < 10 * CHUNK_SIZE as u32 {
return None;
}
let mut first_chunk: Vec<u64> = column.iter().take(CHUNK_SIZE).collect();
let mut first_chunk: Vec<u64> = column.iter().take(CHUNK_SIZE as usize).collect();
let line = Line::train(&VecColumn::from(&first_chunk));
for (i, buffer_val) in first_chunk.iter_mut().enumerate() {
let interpolated_val = line.eval(i as u32);
@@ -170,18 +171,15 @@ impl Column for BlockwiseLinearReader {
interpoled_val.wrapping_add(bitpacked_diff)
}
#[inline(always)]
fn min_value(&self) -> u64 {
// The BlockwiseLinearReader assumes a normalized vector.
0u64
}
#[inline(always)]
fn max_value(&self) -> u64 {
self.normalized_header.max_value
}
#[inline(always)]
fn num_vals(&self) -> u32 {
self.normalized_header.num_vals
}

View File

@@ -1,4 +1,3 @@
use std::fmt::{self, Debug};
use std::marker::PhantomData;
use std::ops::{Range, RangeInclusive};
@@ -7,7 +6,7 @@ use tantivy_bitpacker::minmax;
use crate::monotonic_mapping::StrictlyMonotonicFn;
/// `Column` provides columnar access on a field.
pub trait Column<T: PartialOrd + Debug = u64>: Send + Sync {
pub trait Column<T: PartialOrd = u64>: Send + Sync {
/// Return the value associated with the given idx.
///
/// This accessor should return as fast as possible.
@@ -35,10 +34,6 @@ pub trait Column<T: PartialOrd + Debug = u64>: Send + Sync {
/// Get the positions of values which are in the provided value range.
///
/// Note that position == docid for single value fast fields
///
/// # Truncation
/// `DateTime` has a truncation setting. This function should get passed the truncated values
/// to avoid unexpected results.
#[inline]
fn get_docids_for_value_range(
&self,
@@ -88,7 +83,7 @@ pub struct VecColumn<'a, T = u64> {
max_value: T,
}
impl<'a, C: Column<T>, T: Copy + PartialOrd + fmt::Debug> Column<T> for &'a C {
impl<'a, C: Column<T>, T: Copy + PartialOrd> Column<T> for &'a C {
fn get_val(&self, idx: u32) -> T {
(*self).get_val(idx)
}
@@ -114,7 +109,7 @@ impl<'a, C: Column<T>, T: Copy + PartialOrd + fmt::Debug> Column<T> for &'a C {
}
}
impl<'a, T: Copy + PartialOrd + Send + Sync + Debug> Column<T> for VecColumn<'a, T> {
impl<'a, T: Copy + PartialOrd + Send + Sync> Column<T> for VecColumn<'a, T> {
fn get_val(&self, position: u32) -> T {
self.values[position as usize]
}
@@ -140,9 +135,8 @@ impl<'a, T: Copy + PartialOrd + Send + Sync + Debug> Column<T> for VecColumn<'a,
}
}
impl<'a, T: Copy + PartialOrd + Default, V> From<&'a V> for VecColumn<'a, T>
where
V: AsRef<[T]> + ?Sized,
impl<'a, T: Copy + Ord + Default, V> From<&'a V> for VecColumn<'a, T>
where V: AsRef<[T]> + ?Sized
{
fn from(values: &'a V) -> Self {
let values = values.as_ref();
@@ -183,8 +177,8 @@ pub fn monotonic_map_column<C, T, Input, Output>(
where
C: Column<Input>,
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
Input: PartialOrd + Send + Sync + Copy + Debug,
Output: PartialOrd + Send + Sync + Copy + Debug,
Input: PartialOrd + Send + Sync + Clone,
Output: PartialOrd + Send + Sync + Clone,
{
MonotonicMappingColumn {
from_column,
@@ -197,8 +191,8 @@ impl<C, T, Input, Output> Column<Output> for MonotonicMappingColumn<C, T, Input>
where
C: Column<Input>,
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
Input: PartialOrd + Send + Sync + Copy + Debug,
Output: PartialOrd + Send + Sync + Copy + Debug,
Input: PartialOrd + Send + Sync + Clone,
Output: PartialOrd + Send + Sync + Clone,
{
#[inline]
fn get_val(&self, idx: u32) -> Output {
@@ -234,15 +228,12 @@ where
doc_id_range: Range<u32>,
positions: &mut Vec<u32>,
) {
if range.start() > &self.max_value() || range.end() < &self.min_value() {
return;
}
let range = self.monotonic_mapping.inverse_coerce(range);
if range.start() > range.end() {
return;
}
self.from_column
.get_docids_for_value_range(range, doc_id_range, positions)
self.from_column.get_docids_for_value_range(
self.monotonic_mapping.inverse(range.start().clone())
..=self.monotonic_mapping.inverse(range.end().clone()),
doc_id_range,
positions,
)
}
// We voluntarily do not implement get_range as it yields a regression,
@@ -253,8 +244,7 @@ where
pub struct IterColumn<T>(T);
impl<T> From<T> for IterColumn<T>
where
T: Iterator + Clone + ExactSizeIterator,
where T: Iterator + Clone + ExactSizeIterator
{
fn from(iter: T) -> Self {
IterColumn(iter)
@@ -264,7 +254,7 @@ where
impl<T> Column<T::Item> for IterColumn<T>
where
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
T::Item: PartialOrd + fmt::Debug,
T::Item: PartialOrd,
{
fn get_val(&self, idx: u32) -> T::Item {
self.0.clone().nth(idx as usize).unwrap()

View File

@@ -208,7 +208,7 @@ impl CompactSpaceBuilder {
};
let covered_range_len = range_mapping.range_length();
ranges_mapping.push(range_mapping);
compact_start += covered_range_len;
compact_start += covered_range_len as u64;
}
// println!("num ranges {}", ranges_mapping.len());
CompactSpace { ranges_mapping }

View File

@@ -17,7 +17,8 @@ use std::{
ops::{Range, RangeInclusive},
};
use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt, VIntU128};
use common::{BinarySerializable, CountingWriter, VInt, VIntU128};
use ownedbytes::OwnedBytes;
use tantivy_bitpacker::{self, BitPacker, BitUnpacker};
use crate::compact_space::build_compact_space::get_compact_space;
@@ -96,7 +97,7 @@ impl BinarySerializable for CompactSpace {
};
let range_length = range_mapping.range_length();
ranges_mapping.push(range_mapping);
compact_start += range_length;
compact_start += range_length as u64;
}
Ok(Self { ranges_mapping })
@@ -406,10 +407,10 @@ impl CompactSpaceDecompressor {
let idx2 = idx + 1;
let idx3 = idx + 2;
let idx4 = idx + 3;
let val1 = get_val(idx1);
let val2 = get_val(idx2);
let val3 = get_val(idx3);
let val4 = get_val(idx4);
let val1 = get_val(idx1 as u32);
let val2 = get_val(idx2 as u32);
let val3 = get_val(idx3 as u32);
let val4 = get_val(idx4 as u32);
push_if_in_range(idx1, val1);
push_if_in_range(idx2, val2);
push_if_in_range(idx3, val3);
@@ -418,13 +419,14 @@ impl CompactSpaceDecompressor {
// handle rest
for idx in cutoff..position_range.end {
push_if_in_range(idx, get_val(idx));
push_if_in_range(idx, get_val(idx as u32));
}
}
#[inline]
fn iter_compact(&self) -> impl Iterator<Item = u64> + '_ {
(0..self.params.num_vals).map(move |idx| self.params.bit_unpacker.get(idx, &self.data))
(0..self.params.num_vals)
.map(move |idx| self.params.bit_unpacker.get(idx, &self.data) as u64)
}
#[inline]
@@ -453,11 +455,7 @@ impl CompactSpaceDecompressor {
#[cfg(test)]
mod tests {
use std::fmt;
use super::*;
use crate::format_version::read_format_version;
use crate::null_index_footer::read_null_index_footer;
use crate::serialize::U128Header;
use crate::{open_u128, serialize_u128};
@@ -543,10 +541,7 @@ mod tests {
.unwrap();
let data = OwnedBytes::new(out);
let (data, _format_version) = read_format_version(data).unwrap();
let (data, _null_index_footer) = read_null_index_footer(data).unwrap();
test_all(data.clone(), u128_vals);
data
}
@@ -564,12 +559,11 @@ mod tests {
333u128,
];
let mut data = test_aux_vals(vals);
let _header = U128Header::deserialize(&mut data);
let decomp = CompactSpaceDecompressor::open(data).unwrap();
let complete_range = 0..vals.len() as u32;
for (pos, val) in vals.iter().enumerate() {
let val = *val;
let val = *val as u128;
let pos = pos as u32;
let mut positions = Vec::new();
decomp.get_positions_for_value_range(val..=val, pos..pos + 1, &mut positions);
@@ -666,7 +660,7 @@ mod tests {
get_positions_for_value_range_helper(
&decomp,
4_000_211_221u128..=5_000_000_000u128,
complete_range
complete_range.clone()
),
vec![6, 7]
);
@@ -703,12 +697,12 @@ mod tests {
vec![0]
);
assert_eq!(
get_positions_for_value_range_helper(&decomp, 0..=105, complete_range),
get_positions_for_value_range_helper(&decomp, 0..=105, complete_range.clone()),
vec![0]
);
}
fn get_positions_for_value_range_helper<C: Column<T> + ?Sized, T: PartialOrd + fmt::Debug>(
fn get_positions_for_value_range_helper<C: Column<T> + ?Sized, T: PartialOrd>(
column: &C,
value_range: RangeInclusive<T>,
doc_id_range: Range<u32>,
@@ -737,7 +731,10 @@ mod tests {
];
let mut out = Vec::new();
serialize_u128(|| vals.iter().cloned(), vals.len() as u32, &mut out).unwrap();
let decomp = open_u128::<u128>(OwnedBytes::new(out)).unwrap();
let decomp = open_u128::<u128>(OwnedBytes::new(out))
.unwrap()
.to_full()
.unwrap();
let complete_range = 0..vals.len() as u32;
assert_eq!(
@@ -756,7 +753,11 @@ mod tests {
);
assert_eq!(
get_positions_for_value_range_helper(&*decomp, 1_000_000..=1_000_000, complete_range),
get_positions_for_value_range_helper(
&*decomp,
1_000_000..=1_000_000,
complete_range.clone()
),
vec![11]
);
}

View File

@@ -1,38 +0,0 @@
use std::io;
use common::{BinarySerializable, OwnedBytes};
const MAGIC_NUMBER: u16 = 4335u16;
const FASTFIELD_FORMAT_VERSION: u8 = 1;
pub(crate) fn append_format_version(output: &mut impl io::Write) -> io::Result<()> {
FASTFIELD_FORMAT_VERSION.serialize(output)?;
MAGIC_NUMBER.serialize(output)?;
Ok(())
}
pub(crate) fn read_format_version(data: OwnedBytes) -> io::Result<(OwnedBytes, u8)> {
let (data, magic_number_bytes) = data.rsplit(2);
let magic_number = u16::deserialize(&mut magic_number_bytes.as_slice())?;
if magic_number != MAGIC_NUMBER {
return Err(io::Error::new(
io::ErrorKind::InvalidData,
format!("magic number mismatch {} != {}", magic_number, MAGIC_NUMBER),
));
}
let (data, format_version_bytes) = data.rsplit(1);
let format_version = u8::deserialize(&mut format_version_bytes.as_slice())?;
if format_version > FASTFIELD_FORMAT_VERSION {
return Err(io::Error::new(
io::ErrorKind::InvalidData,
format!(
"Unsupported fastfield format version: {}. Max supported version: {}",
format_version, FASTFIELD_FORMAT_VERSION
),
));
}
Ok((data, format_version))
}

View File

@@ -45,7 +45,7 @@ mod tests {
use std::io;
use std::num::NonZeroU64;
use common::OwnedBytes;
use ownedbytes::OwnedBytes;
use crate::gcd::{compute_gcd, find_gcd};
use crate::{FastFieldCodecType, VecColumn};
@@ -59,11 +59,11 @@ mod tests {
crate::serialize(VecColumn::from(&vals), &mut buffer, &[codec_type])?;
let buffer = OwnedBytes::new(buffer);
let column = crate::open::<i64>(buffer.clone())?;
assert_eq!(column.get_val(0), -4000i64);
assert_eq!(column.get_val(1), -3000i64);
assert_eq!(column.get_val(2), -2000i64);
assert_eq!(column.max_value(), (num_vals as i64 - 5) * 1000);
assert_eq!(column.min_value(), -4000i64);
assert_eq!(column.get_val(0), Some(-4000i64));
assert_eq!(column.get_val(1), Some(-3000i64));
assert_eq!(column.get_val(2), Some(-2000i64));
assert_eq!(column.max_value(), Some((num_vals as i64 - 5) * 1000));
assert_eq!(column.min_value(), Some(-4000i64));
// Can't apply gcd
let mut buffer_without_gcd = Vec::new();
@@ -101,11 +101,11 @@ mod tests {
crate::serialize(VecColumn::from(&vals), &mut buffer, &[codec_type])?;
let buffer = OwnedBytes::new(buffer);
let column = crate::open::<u64>(buffer.clone())?;
assert_eq!(column.get_val(0), 1000u64);
assert_eq!(column.get_val(1), 2000u64);
assert_eq!(column.get_val(2), 3000u64);
assert_eq!(column.max_value(), num_vals as u64 * 1000);
assert_eq!(column.min_value(), 1000u64);
assert_eq!(column.get_val(0), Some(1000u64));
assert_eq!(column.get_val(1), Some(2000u64));
assert_eq!(column.get_val(2), Some(3000u64));
assert_eq!(column.max_value(), Some(num_vals as u64 * 1000));
assert_eq!(column.min_value(), Some(1000u64));
// Can't apply gcd
let mut buffer_without_gcd = Vec::new();

View File

@@ -14,35 +14,33 @@ extern crate more_asserts;
#[cfg(all(test, feature = "unstable"))]
extern crate test;
use std::io;
use std::io::Write;
use std::sync::Arc;
use std::{fmt, io};
use common::{BinarySerializable, OwnedBytes};
use common::BinarySerializable;
use compact_space::CompactSpaceDecompressor;
use format_version::read_format_version;
use monotonic_mapping::{
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
StrictlyMonotonicMappingToInternalBaseval, StrictlyMonotonicMappingToInternalGCDBaseval,
};
use null_index_footer::read_null_index_footer;
pub use optional_column::OptionalColumn;
use optional_column::ToOptionalColumn;
use ownedbytes::OwnedBytes;
use serialize::{Header, U128Header};
mod bitpacked;
mod blockwise_linear;
mod compact_space;
mod format_version;
mod line;
mod linear;
mod monotonic_mapping;
mod monotonic_mapping_u128;
#[allow(dead_code)]
mod null_index;
mod null_index_footer;
mod optional_column;
mod column;
mod gcd;
pub mod serialize;
mod serialize;
use self::bitpacked::BitpackedCodec;
use self::blockwise_linear::BlockwiseLinearCodec;
@@ -133,25 +131,24 @@ impl U128FastFieldCodecType {
}
/// Returns the correct codec reader wrapped in the `Arc` for the data.
pub fn open_u128<Item: MonotonicallyMappableToU128 + fmt::Debug>(
bytes: OwnedBytes,
) -> io::Result<Arc<dyn Column<Item>>> {
let (bytes, _format_version) = read_format_version(bytes)?;
let (mut bytes, _null_index_footer) = read_null_index_footer(bytes)?;
pub fn open_u128<Item: MonotonicallyMappableToU128>(
mut bytes: OwnedBytes,
) -> io::Result<Arc<dyn OptionalColumn<Item>>> {
let header = U128Header::deserialize(&mut bytes)?;
assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
let reader = CompactSpaceDecompressor::open(bytes)?;
let inverted: StrictlyMonotonicMappingInverter<StrictlyMonotonicMappingToInternal<Item>> =
StrictlyMonotonicMappingToInternal::<Item>::new().into();
Ok(Arc::new(monotonic_map_column(reader, inverted)))
Ok(Arc::new(ToOptionalColumn::new(Arc::new(
monotonic_map_column(reader, inverted),
))))
}
/// Returns the correct codec reader wrapped in the `Arc` for the data.
pub fn open<T: MonotonicallyMappableToU64 + fmt::Debug>(
bytes: OwnedBytes,
) -> io::Result<Arc<dyn Column<T>>> {
let (bytes, _format_version) = read_format_version(bytes)?;
let (mut bytes, _null_index_footer) = read_null_index_footer(bytes)?;
pub fn open<T: MonotonicallyMappableToU64>(
mut bytes: OwnedBytes,
) -> io::Result<Arc<dyn OptionalColumn<T>>> {
let header = Header::deserialize(&mut bytes)?;
match header.codec_type {
FastFieldCodecType::Bitpacked => open_specific_codec::<BitpackedCodec, _>(bytes, &header),
@@ -162,10 +159,10 @@ pub fn open<T: MonotonicallyMappableToU64 + fmt::Debug>(
}
}
fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64 + fmt::Debug>(
fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64>(
bytes: OwnedBytes,
header: &Header,
) -> io::Result<Arc<dyn Column<Item>>> {
) -> io::Result<Arc<dyn OptionalColumn<Item>>> {
let normalized_header = header.normalized();
let reader = C::open_from_bytes(bytes, normalized_header)?;
let min_value = header.min_value;
@@ -173,12 +170,16 @@ fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64 + fmt
let mapping = StrictlyMonotonicMappingInverter::from(
StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd.get(), min_value),
);
Ok(Arc::new(monotonic_map_column(reader, mapping)))
Ok(Arc::new(ToOptionalColumn::new(Arc::new(
monotonic_map_column(reader, mapping),
))))
} else {
let mapping = StrictlyMonotonicMappingInverter::from(
StrictlyMonotonicMappingToInternalBaseval::new(min_value),
);
Ok(Arc::new(monotonic_map_column(reader, mapping)))
Ok(Arc::new(ToOptionalColumn::new(Arc::new(
monotonic_map_column(reader, mapping),
))))
}
}
@@ -249,8 +250,9 @@ mod tests {
for (doc, orig_val) in data.iter().copied().enumerate() {
let val = reader.get_val(doc as u32);
assert_eq!(
val, orig_val,
"val `{val}` does not match orig_val {orig_val:?}, in data set {name}, data \
val,
Some(orig_val),
"val `{val:?}` does not match orig_val {orig_val:?}, in data set {name}, data \
`{data:?}`",
);
}
@@ -323,9 +325,6 @@ mod tests {
pub fn get_codec_test_datasets() -> Vec<(Vec<u64>, &'static str)> {
let mut data_and_names = vec![];
let data = vec![10];
data_and_names.push((data, "minimal test"));
let data = (10..=10_000_u64).collect::<Vec<_>>();
data_and_names.push((data, "simple monotonically increasing"));
@@ -333,9 +332,6 @@ mod tests {
vec![5, 6, 7, 8, 9, 10, 99, 100],
"offset in linear interpol",
));
data_and_names.push((vec![3, 18446744073709551613, 5], "docid range regression"));
data_and_names.push((vec![5, 50, 3, 13, 1, 1000, 35], "rand small"));
data_and_names.push((vec![10], "single value"));
@@ -443,7 +439,7 @@ mod tests {
mod bench {
use std::sync::Arc;
use common::OwnedBytes;
use ownedbytes::OwnedBytes;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use test::{self, Bencher};

View File

@@ -1,6 +1,7 @@
use std::io::{self, Write};
use common::{BinarySerializable, OwnedBytes};
use common::BinarySerializable;
use ownedbytes::OwnedBytes;
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use crate::line::Line;
@@ -24,13 +25,13 @@ impl Column for LinearReader {
interpoled_val.wrapping_add(bitpacked_diff)
}
#[inline(always)]
#[inline]
fn min_value(&self) -> u64 {
// The LinearReader assumes a normalized vector.
0u64
}
#[inline(always)]
#[inline]
fn max_value(&self) -> u64 {
self.header.max_value
}

View File

@@ -6,10 +6,10 @@ use std::io::BufRead;
use std::net::{IpAddr, Ipv6Addr};
use std::str::FromStr;
use common::OwnedBytes;
use fastfield_codecs::{open_u128, serialize_u128, Column, FastFieldCodecType, VecColumn};
use itertools::Itertools;
use measure_time::print_time;
use ownedbytes::OwnedBytes;
use prettytable::{Cell, Row, Table};
fn print_set_stats(ip_addrs: &[u128]) {
@@ -113,7 +113,10 @@ fn bench_ip() {
(data.len() * 8) as f32 / dataset.len() as f32
);
let decompressor = open_u128::<u128>(OwnedBytes::new(data)).unwrap();
let decompressor = open_u128::<u128>(OwnedBytes::new(data))
.unwrap()
.to_full()
.unwrap();
// Sample some ranges
let mut doc_values = Vec::new();
for value in dataset.iter().take(1110).skip(1100).cloned() {

View File

@@ -1,6 +1,4 @@
use std::fmt;
use std::marker::PhantomData;
use std::ops::RangeInclusive;
use fastdivide::DividerU64;
@@ -8,9 +6,7 @@ use crate::MonotonicallyMappableToU128;
/// Monotonic maps a value to u64 value space.
/// Monotonic mapping enables `PartialOrd` on u64 space without conversion to original space.
pub trait MonotonicallyMappableToU64:
'static + PartialOrd + Copy + Send + Sync + fmt::Debug
{
pub trait MonotonicallyMappableToU64: 'static + PartialOrd + Copy + Send + Sync {
/// Converts a value to u64.
///
/// Internally all fast field values are encoded as u64.
@@ -33,29 +29,11 @@ pub trait MonotonicallyMappableToU64:
/// mapping from their range to their domain. The `inverse` method is required when opening a codec,
/// so a value can be converted back to its original domain (e.g. ip address or f64) from its
/// internal representation.
pub trait StrictlyMonotonicFn<External: Copy, Internal: Copy> {
pub trait StrictlyMonotonicFn<External, Internal> {
/// Strictly monotonically maps the value from External to Internal.
fn mapping(&self, inp: External) -> Internal;
/// Inverse of `mapping`. Maps the value from Internal to External.
fn inverse(&self, out: Internal) -> External;
/// Maps a user provded value from External to Internal.
/// It may be necessary to coerce the value if it is outside the value space.
/// In that case it tries to find the next greater value in the value space.
///
/// Returns a bool to mark if a value was outside the value space and had to be coerced _up_.
/// With that information we can detect if two values in a range both map outside the same value
/// space.
///
/// coerce_up means the next valid upper value in the value space will be chosen if the value
/// has to be coerced.
fn mapping_coerce(&self, inp: RangeInclusive<External>) -> RangeInclusive<Internal> {
self.mapping(*inp.start())..=self.mapping(*inp.end())
}
/// Inverse of `mapping_coerce`.
fn inverse_coerce(&self, out: RangeInclusive<Internal>) -> RangeInclusive<External> {
self.inverse(*out.start())..=self.inverse(*out.end())
}
}
/// Inverts a strictly monotonic mapping from `StrictlyMonotonicFn<A, B>` to
@@ -76,29 +54,15 @@ impl<T> From<T> for StrictlyMonotonicMappingInverter<T> {
}
impl<From, To, T> StrictlyMonotonicFn<To, From> for StrictlyMonotonicMappingInverter<T>
where
T: StrictlyMonotonicFn<From, To>,
From: Copy,
To: Copy,
where T: StrictlyMonotonicFn<From, To>
{
#[inline(always)]
fn mapping(&self, val: To) -> From {
self.orig_mapping.inverse(val)
}
#[inline(always)]
fn inverse(&self, val: From) -> To {
self.orig_mapping.mapping(val)
}
#[inline]
fn mapping_coerce(&self, inp: RangeInclusive<To>) -> RangeInclusive<From> {
self.orig_mapping.inverse_coerce(inp)
}
#[inline]
fn inverse_coerce(&self, out: RangeInclusive<From>) -> RangeInclusive<To> {
self.orig_mapping.mapping_coerce(out)
}
}
/// Applies the strictly monotonic mapping from `T` without any additional changes.
@@ -118,12 +82,10 @@ impl<External: MonotonicallyMappableToU128, T: MonotonicallyMappableToU128>
StrictlyMonotonicFn<External, u128> for StrictlyMonotonicMappingToInternal<T>
where T: MonotonicallyMappableToU128
{
#[inline(always)]
fn mapping(&self, inp: External) -> u128 {
External::to_u128(inp)
}
#[inline(always)]
fn inverse(&self, out: u128) -> External {
External::from_u128(out)
}
@@ -133,12 +95,10 @@ impl<External: MonotonicallyMappableToU64, T: MonotonicallyMappableToU64>
StrictlyMonotonicFn<External, u64> for StrictlyMonotonicMappingToInternal<T>
where T: MonotonicallyMappableToU64
{
#[inline(always)]
fn mapping(&self, inp: External) -> u64 {
External::to_u64(inp)
}
#[inline(always)]
fn inverse(&self, out: u64) -> External {
External::from_u64(out)
}
@@ -166,41 +126,14 @@ impl StrictlyMonotonicMappingToInternalGCDBaseval {
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
for StrictlyMonotonicMappingToInternalGCDBaseval
{
#[inline(always)]
fn mapping(&self, inp: External) -> u64 {
self.gcd_divider
.divide(External::to_u64(inp) - self.min_value)
}
#[inline(always)]
fn inverse(&self, out: u64) -> External {
External::from_u64(self.min_value + out * self.gcd)
}
#[inline]
#[allow(clippy::reversed_empty_ranges)]
fn mapping_coerce(&self, inp: RangeInclusive<External>) -> RangeInclusive<u64> {
let end = External::to_u64(*inp.end());
if end < self.min_value || inp.end() < inp.start() {
return 1..=0;
}
let map_coerce = |mut inp, coerce_up| {
let inp_lower_bound = self.inverse(0);
if inp < inp_lower_bound {
inp = inp_lower_bound;
}
let val = External::to_u64(inp);
let need_coercion = coerce_up && (val - self.min_value) % self.gcd != 0;
let mut mapped_val = self.mapping(inp);
if need_coercion {
mapped_val += 1;
}
mapped_val
};
let start = map_coerce(*inp.start(), true);
let end = map_coerce(*inp.end(), false);
start..=end
}
}
/// Strictly monotonic mapping with a base value.
@@ -208,7 +141,6 @@ pub(crate) struct StrictlyMonotonicMappingToInternalBaseval {
min_value: u64,
}
impl StrictlyMonotonicMappingToInternalBaseval {
#[inline(always)]
pub(crate) fn new(min_value: u64) -> Self {
Self { min_value }
}
@@ -217,35 +149,20 @@ impl StrictlyMonotonicMappingToInternalBaseval {
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
for StrictlyMonotonicMappingToInternalBaseval
{
#[inline]
#[allow(clippy::reversed_empty_ranges)]
fn mapping_coerce(&self, inp: RangeInclusive<External>) -> RangeInclusive<u64> {
if External::to_u64(*inp.end()) < self.min_value {
return 1..=0;
}
let start = self.mapping(External::to_u64(*inp.start()).max(self.min_value));
let end = self.mapping(External::to_u64(*inp.end()));
start..=end
}
#[inline(always)]
fn mapping(&self, val: External) -> u64 {
External::to_u64(val) - self.min_value
}
#[inline(always)]
fn inverse(&self, val: u64) -> External {
External::from_u64(self.min_value + val)
}
}
impl MonotonicallyMappableToU64 for u64 {
#[inline(always)]
fn to_u64(self) -> u64 {
self
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
val
}
@@ -275,15 +192,11 @@ impl MonotonicallyMappableToU64 for bool {
}
}
// TODO remove me.
// Tantivy should refuse NaN values and work with NotNaN internally.
impl MonotonicallyMappableToU64 for f64 {
#[inline(always)]
fn to_u64(self) -> u64 {
common::f64_to_u64(self)
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
common::u64_to_f64(val)
}
@@ -311,7 +224,7 @@ mod tests {
test_round_trip::<_, _, u64>(&mapping, 100u64);
}
fn test_round_trip<T: StrictlyMonotonicFn<K, L>, K: std::fmt::Debug + Eq + Copy, L: Copy>(
fn test_round_trip<T: StrictlyMonotonicFn<K, L>, K: std::fmt::Debug + Eq + Copy, L>(
mapping: &T,
test_val: K,
) {

View File

@@ -1,11 +1,8 @@
use std::fmt;
use std::net::Ipv6Addr;
/// Montonic maps a value to u128 value space
/// Monotonic mapping enables `PartialOrd` on u128 space without conversion to original space.
pub trait MonotonicallyMappableToU128:
'static + PartialOrd + Copy + Send + Sync + fmt::Debug
{
pub trait MonotonicallyMappableToU128: 'static + PartialOrd + Copy + Send + Sync {
/// Converts a value to u128.
///
/// Internally all fast field values are encoded as u64.

View File

@@ -1,500 +0,0 @@
use std::convert::TryInto;
use std::io::{self, Write};
use common::{BinarySerializable, OwnedBytes};
use itertools::Itertools;
use super::{get_bit_at, set_bit_at};
/// For the `DenseCodec`, `data` which contains the encoded blocks.
/// Each block consists of [u8; 12]. The first 8 bytes is a bitvec for 64 elements.
/// The last 4 bytes are the offset, the number of set bits so far.
///
/// When translating the original index to a dense index, the correct block can be computed
/// directly `orig_idx/64`. Inside the block the position is `orig_idx%64`.
///
/// When translating a dense index to the original index, we can use the offset to find the correct
/// block. Direct computation is not possible, but we can employ a linear or binary search.
#[derive(Clone)]
pub struct DenseCodec {
// data consists of blocks of 64 bits.
//
// The format is &[(u64, u32)]
// u64 is the bitvec
// u32 is the offset of the block, the number of set bits so far.
//
// At the end one block is appended, to store the number of values in the index in offset.
data: OwnedBytes,
}
const ELEMENTS_PER_BLOCK: u32 = 64;
const BLOCK_BITVEC_SIZE: usize = 8;
const BLOCK_OFFSET_SIZE: usize = 4;
const SERIALIZED_BLOCK_SIZE: usize = BLOCK_BITVEC_SIZE + BLOCK_OFFSET_SIZE;
/// Interpreting the bitvec as a list of 64 bits from the low weight to the
/// high weight.
///
/// This function returns the number of bits set to 1 within
/// `[0..pos_in_vec)`.
#[inline]
fn count_ones(bitvec: u64, pos_in_bitvec: u32) -> u32 {
let mask = (1u64 << pos_in_bitvec) - 1;
let masked_bitvec = bitvec & mask;
masked_bitvec.count_ones()
}
#[derive(Clone, Copy)]
struct DenseIndexBlock {
bitvec: u64,
offset: u32,
}
impl From<[u8; SERIALIZED_BLOCK_SIZE]> for DenseIndexBlock {
fn from(data: [u8; SERIALIZED_BLOCK_SIZE]) -> Self {
let bitvec = u64::from_le_bytes(data[..BLOCK_BITVEC_SIZE].try_into().unwrap());
let offset = u32::from_le_bytes(data[BLOCK_BITVEC_SIZE..].try_into().unwrap());
Self { bitvec, offset }
}
}
impl DenseCodec {
/// Open the DenseCodec from OwnedBytes
pub fn open(data: OwnedBytes) -> Self {
Self { data }
}
#[inline]
/// Check if value at position is not null.
pub fn exists(&self, idx: u32) -> bool {
let block_pos = idx / ELEMENTS_PER_BLOCK;
let bitvec = self.dense_index_block(block_pos).bitvec;
let pos_in_bitvec = idx % ELEMENTS_PER_BLOCK;
get_bit_at(bitvec, pos_in_bitvec)
}
#[inline]
fn dense_index_block(&self, block_pos: u32) -> DenseIndexBlock {
dense_index_block(&self.data, block_pos)
}
/// Return the number of non-null values in an index
pub fn num_non_nulls(&self) -> u32 {
let last_block = (self.data.len() / SERIALIZED_BLOCK_SIZE) - 1;
self.dense_index_block(last_block as u32).offset
}
#[inline]
/// Translate from the original index to the codec index.
pub fn translate_to_codec_idx(&self, idx: u32) -> Option<u32> {
let block_pos = idx / ELEMENTS_PER_BLOCK;
let index_block = self.dense_index_block(block_pos);
let pos_in_block_bit_vec = idx % ELEMENTS_PER_BLOCK;
let ones_in_block = count_ones(index_block.bitvec, pos_in_block_bit_vec);
if get_bit_at(index_block.bitvec, pos_in_block_bit_vec) {
Some(index_block.offset + ones_in_block)
} else {
None
}
}
/// Translate positions from the codec index to the original index.
///
/// # Panics
///
/// May panic if any `idx` is greater than the max codec index.
pub fn translate_codec_idx_to_original_idx<'a>(
&'a self,
iter: impl Iterator<Item = u32> + 'a,
) -> impl Iterator<Item = u32> + 'a {
let mut block_pos = 0u32;
iter.map(move |dense_idx| {
// update block_pos to limit search scope
block_pos = find_block(dense_idx, block_pos, &self.data);
let index_block = self.dense_index_block(block_pos);
// The next offset is higher than dense_idx and therefore:
// dense_idx <= offset + num_set_bits in block
let mut num_set_bits = 0;
for idx_in_bitvec in 0..ELEMENTS_PER_BLOCK {
if get_bit_at(index_block.bitvec, idx_in_bitvec) {
num_set_bits += 1;
}
if num_set_bits == (dense_idx - index_block.offset + 1) {
let orig_idx = block_pos * ELEMENTS_PER_BLOCK + idx_in_bitvec;
return orig_idx;
}
}
panic!("Internal Error: Offset calculation in dense idx seems to be wrong.");
})
}
}
#[inline]
fn dense_index_block(data: &[u8], block_pos: u32) -> DenseIndexBlock {
let data_start_pos = block_pos as usize * SERIALIZED_BLOCK_SIZE;
let block_data: [u8; SERIALIZED_BLOCK_SIZE] = data[data_start_pos..][..SERIALIZED_BLOCK_SIZE]
.try_into()
.unwrap();
block_data.into()
}
#[inline]
/// Finds the block position containing the dense_idx.
///
/// # Correctness
/// dense_idx needs to be smaller than the number of values in the index
///
/// The last offset number is equal to the number of values in the index.
fn find_block(dense_idx: u32, mut block_pos: u32, data: &[u8]) -> u32 {
loop {
let offset = dense_index_block(data, block_pos).offset;
if offset > dense_idx {
return block_pos - 1;
}
block_pos += 1;
}
}
/// Iterator over all values, true if set, otherwise false
pub fn serialize_dense_codec(
iter: impl Iterator<Item = bool>,
mut out: impl Write,
) -> io::Result<()> {
let mut offset: u32 = 0;
for chunk in &iter.chunks(ELEMENTS_PER_BLOCK as usize) {
let mut block: u64 = 0;
for (pos, is_bit_set) in chunk.enumerate() {
if is_bit_set {
set_bit_at(&mut block, pos as u64);
}
}
block.serialize(&mut out)?;
offset.serialize(&mut out)?;
offset += block.count_ones();
}
// Add sentinal block for the offset
let block: u64 = 0;
block.serialize(&mut out)?;
offset.serialize(&mut out)?;
Ok(())
}
#[cfg(test)]
mod tests {
use proptest::prelude::{any, prop, *};
use proptest::strategy::Strategy;
use proptest::{prop_oneof, proptest};
use super::*;
fn random_bitvec() -> BoxedStrategy<Vec<bool>> {
prop_oneof![
1 => prop::collection::vec(proptest::bool::weighted(1.0), 0..100),
1 => prop::collection::vec(proptest::bool::weighted(1.0), 0..64),
1 => prop::collection::vec(proptest::bool::weighted(0.0), 0..100),
1 => prop::collection::vec(proptest::bool::weighted(0.0), 0..64),
8 => vec![any::<bool>()],
2 => prop::collection::vec(any::<bool>(), 0..50),
]
.boxed()
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(500))]
#[test]
fn test_with_random_bitvecs(bitvec1 in random_bitvec(), bitvec2 in random_bitvec(), bitvec3 in random_bitvec()) {
let mut bitvec = Vec::new();
bitvec.extend_from_slice(&bitvec1);
bitvec.extend_from_slice(&bitvec2);
bitvec.extend_from_slice(&bitvec3);
test_null_index(bitvec);
}
}
#[test]
fn dense_codec_test_one_block_false() {
let mut iter = vec![false; 64];
iter.push(true);
test_null_index(iter);
}
fn test_null_index(data: Vec<bool>) {
let mut out = vec![];
serialize_dense_codec(data.iter().cloned(), &mut out).unwrap();
let null_index = DenseCodec::open(OwnedBytes::new(out));
let orig_idx_with_value: Vec<u32> = data
.iter()
.enumerate()
.filter(|(_pos, val)| **val)
.map(|(pos, _val)| pos as u32)
.collect();
assert_eq!(
null_index
.translate_codec_idx_to_original_idx(0..orig_idx_with_value.len() as u32)
.collect_vec(),
orig_idx_with_value
);
for (dense_idx, orig_idx) in orig_idx_with_value.iter().enumerate() {
assert_eq!(
null_index.translate_to_codec_idx(*orig_idx),
Some(dense_idx as u32)
);
}
for (pos, value) in data.iter().enumerate() {
assert_eq!(null_index.exists(pos as u32), *value);
}
}
#[test]
fn dense_codec_test_translation() {
let mut out = vec![];
let iter = ([true, false, true, false]).iter().cloned();
serialize_dense_codec(iter, &mut out).unwrap();
let null_index = DenseCodec::open(OwnedBytes::new(out));
assert_eq!(
null_index
.translate_codec_idx_to_original_idx(0..2)
.collect_vec(),
vec![0, 2]
);
}
#[test]
fn dense_codec_translate() {
let mut out = vec![];
let iter = ([true, false, true, false]).iter().cloned();
serialize_dense_codec(iter, &mut out).unwrap();
let null_index = DenseCodec::open(OwnedBytes::new(out));
assert_eq!(null_index.translate_to_codec_idx(0), Some(0));
assert_eq!(null_index.translate_to_codec_idx(2), Some(1));
}
#[test]
fn dense_codec_test_small() {
let mut out = vec![];
let iter = ([true, false, true, false]).iter().cloned();
serialize_dense_codec(iter, &mut out).unwrap();
let null_index = DenseCodec::open(OwnedBytes::new(out));
assert!(null_index.exists(0));
assert!(!null_index.exists(1));
assert!(null_index.exists(2));
assert!(!null_index.exists(3));
}
#[test]
fn dense_codec_test_large() {
let mut docs = vec![];
docs.extend((0..1000).map(|_idx| false));
docs.extend((0..=1000).map(|_idx| true));
let iter = docs.iter().cloned();
let mut out = vec![];
serialize_dense_codec(iter, &mut out).unwrap();
let null_index = DenseCodec::open(OwnedBytes::new(out));
assert!(!null_index.exists(0));
assert!(!null_index.exists(100));
assert!(!null_index.exists(999));
assert!(null_index.exists(1000));
assert!(null_index.exists(1999));
assert!(null_index.exists(2000));
assert!(!null_index.exists(2001));
}
#[test]
fn test_count_ones() {
let mut block = 0;
set_bit_at(&mut block, 0);
set_bit_at(&mut block, 2);
assert_eq!(count_ones(block, 0), 0);
assert_eq!(count_ones(block, 1), 1);
assert_eq!(count_ones(block, 2), 1);
assert_eq!(count_ones(block, 3), 2);
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use test::Bencher;
use super::*;
const TOTAL_NUM_VALUES: u32 = 1_000_000;
fn gen_bools(fill_ratio: f64) -> DenseCodec {
let mut out = Vec::new();
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
let bools: Vec<_> = (0..TOTAL_NUM_VALUES)
.map(|_| rng.gen_bool(fill_ratio))
.collect();
serialize_dense_codec(bools.into_iter(), &mut out).unwrap();
let codec = DenseCodec::open(OwnedBytes::new(out));
codec
}
fn random_range_iterator(
start: u32,
end: u32,
avg_step_size: u32,
avg_deviation: u32,
) -> impl Iterator<Item = u32> {
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
let mut current = start;
std::iter::from_fn(move || {
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
if current >= end {
None
} else {
Some(current)
}
})
}
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
let ratio = percent as f32 / 100.0;
let step_size = (1f32 / ratio) as u32;
let deviation = step_size - 1;
random_range_iterator(0, num_values, step_size, deviation)
}
fn walk_over_data(codec: &DenseCodec, avg_step_size: u32) -> Option<u32> {
walk_over_data_from_positions(
codec,
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
)
}
fn walk_over_data_from_positions(
codec: &DenseCodec,
positions: impl Iterator<Item = u32>,
) -> Option<u32> {
let mut dense_idx: Option<u32> = None;
for idx in positions {
dense_idx = dense_idx.or(codec.translate_to_codec_idx(idx));
}
dense_idx
}
#[bench]
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.05f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.05f64);
bench.iter(|| walk_over_data(&codec, 1000));
}
#[bench]
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
}
#[bench]
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
let codec = gen_bools(0.1f64);
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
}
#[bench]
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
let codec = gen_bools(0.9f64);
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
}
#[bench]
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.1f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.5f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.9f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
let num_non_nulls = codec.num_non_nulls();
bench.iter(|| {
codec
.translate_codec_idx_to_original_idx(n_percent_step_iterator(0.005, num_non_nulls))
.last()
});
}
#[bench]
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
let num_non_nulls = codec.num_non_nulls();
bench.iter(|| {
codec
.translate_codec_idx_to_original_idx(n_percent_step_iterator(10.0, num_non_nulls))
.last()
});
}
#[bench]
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
let num_vals = codec.num_non_nulls();
bench.iter(|| {
codec
.translate_codec_idx_to_original_idx(0..num_vals)
.last()
});
}
#[bench]
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.90f64);
let num_non_nulls = codec.num_non_nulls();
bench.iter(|| {
codec
.translate_codec_idx_to_original_idx(n_percent_step_iterator(0.005, num_non_nulls))
.last()
});
}
#[bench]
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
let codec = gen_bools(0.9f64);
let num_vals = codec.num_non_nulls();
bench.iter(|| {
codec
.translate_codec_idx_to_original_idx(0..num_vals)
.last()
});
}
}

View File

@@ -1,14 +0,0 @@
pub use dense::{serialize_dense_codec, DenseCodec};
mod dense;
mod sparse;
#[inline]
fn get_bit_at(input: u64, n: u32) -> bool {
input & (1 << n) != 0
}
#[inline]
fn set_bit_at(input: &mut u64, n: u64) {
*input |= 1 << n;
}

View File

@@ -1,768 +0,0 @@
use std::io::{self, Write};
use common::{BitSet, GroupByIteratorExtended, OwnedBytes};
use super::{serialize_dense_codec, DenseCodec};
/// `SparseCodec` is the codec for data, when only few documents have values.
/// In contrast to `DenseCodec` opening a `SparseCodec` causes runtime data to be produced, for
/// faster access.
///
/// The lower 16 bits of doc ids are stored as u16 while the upper 16 bits are given by the block
/// id. Each block contains 1<<16 docids.
///
/// # Serialized Data Layout
/// The data starts with the block data. Each block is either dense or sparse encoded, depending on
/// the number of values in the block. A block is sparse when it contains less than
/// DENSE_BLOCK_THRESHOLD (6144) values.
/// [Sparse data block | dense data block, .. #repeat*; Desc: Either a sparse or dense encoded
/// block]
/// ### Sparse block data
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block]
/// ### Dense block data
/// [Dense codec for the whole block; Desc: Similar to a bitvec(0..ELEMENTS_PER_BLOCK) + Metadata
/// for faster lookups. See dense.rs]
///
/// The data is followed by block metadata, to know which area of the raw block data belongs to
/// which block. Only metadata for blocks with elements is recorded to
/// keep the overhead low for scenarios with many very sparse columns. The block metadata consists
/// of the block index and the number of values in the block. Since we don't store empty blocks
/// num_vals is incremented by 1, e.g. 0 means 1 value.
///
/// The last u16 is storing the number of metadata blocks.
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block][(u16 LE, u16 LE), .. #repeat*;
/// Desc: (Block Id u16, Num Elements u16)][u16 LE; Desc: num blocks with values u16]
///
/// # Opening
/// When opening the data layout, the data is expanded to `Vec<SparseCodecBlockVariant>`, where the
/// index is the block index. For each block `byte_start` and `offset` is computed.
pub struct SparseCodec {
data: OwnedBytes,
blocks: Vec<SparseCodecBlockVariant>,
}
/// The threshold for for number of elements after which we switch to dense block encoding
const DENSE_BLOCK_THRESHOLD: u32 = 6144;
const ELEMENTS_PER_BLOCK: u32 = u16::MAX as u32 + 1;
/// 1.5 bit per Element + 12 bytes for the sentinal block
const NUM_BYTES_DENSE_BLOCK: u32 = (ELEMENTS_PER_BLOCK + ELEMENTS_PER_BLOCK / 2 + 64 + 32) / 8;
#[derive(Clone)]
enum SparseCodecBlockVariant {
Empty { offset: u32 },
Dense(DenseBlock),
Sparse(SparseBlock),
}
impl SparseCodecBlockVariant {
/// The number of non-null values that preceeded that block.
#[inline]
fn offset(&self) -> u32 {
match self {
SparseCodecBlockVariant::Empty { offset } => *offset,
SparseCodecBlockVariant::Dense(dense) => dense.offset,
SparseCodecBlockVariant::Sparse(sparse) => sparse.offset,
}
}
}
/// A block consists of max u16 values
#[derive(Clone)]
struct DenseBlock {
/// The number of values set before the block
offset: u32,
/// The data for the dense encoding
codec: DenseCodec,
}
impl DenseBlock {
#[inline]
pub fn exists(&self, idx: u32) -> bool {
self.codec.exists(idx)
}
#[inline]
pub fn translate_to_codec_idx(&self, idx: u32) -> Option<u32> {
self.codec.translate_to_codec_idx(idx)
}
#[inline]
pub fn translate_codec_idx_to_original_idx_iter<'a>(
&'a self,
iter: impl Iterator<Item = u32> + 'a,
) -> impl Iterator<Item = u32> + 'a {
self.codec.translate_codec_idx_to_original_idx(iter)
}
#[inline]
pub fn translate_codec_idx_to_original_idx(&self, idx: u32) -> u32 {
self.codec
.translate_codec_idx_to_original_idx(idx..=idx)
.next()
.unwrap()
}
}
/// A block consists of max u16 values
#[derive(Debug, Copy, Clone)]
struct SparseBlock {
/// The number of values in the block
num_vals: u32,
/// The number of values set before the block
offset: u32,
/// The start position of the data for the block
byte_start: u32,
}
impl SparseBlock {
fn empty_block(offset: u32) -> Self {
Self {
num_vals: 0,
byte_start: 0,
offset,
}
}
#[inline]
fn value_at_idx(&self, data: &[u8], idx: u16) -> u16 {
let start_offset: usize = self.byte_start as usize + (idx as u32 as usize * 2);
get_u16(data, start_offset)
}
#[inline]
#[allow(clippy::comparison_chain)]
// Looks for the element in the block. Returns the positions if found.
fn binary_search(&self, data: &[u8], target: u16) -> Option<u16> {
let mut size = self.num_vals as u16;
let mut left = 0;
let mut right = size;
// TODO try different implem.
// e.g. exponential search into binary search
while left < right {
let mid = left + size / 2;
// TODO do boundary check only once, and then use an
// unsafe `value_at_idx`
let mid_val = self.value_at_idx(data, mid);
if target > mid_val {
left = mid + 1;
} else if target < mid_val {
right = mid;
} else {
return Some(mid);
}
size = right - left;
}
None
}
}
#[inline]
fn get_u16(data: &[u8], byte_position: usize) -> u16 {
let bytes: [u8; 2] = data[byte_position..byte_position + 2].try_into().unwrap();
u16::from_le_bytes(bytes)
}
const SERIALIZED_BLOCK_METADATA_SIZE: usize = 4;
fn deserialize_sparse_codec_block(data: &OwnedBytes) -> Vec<SparseCodecBlockVariant> {
// The number of vals so far
let mut offset = 0;
let mut sparse_codec_blocks = Vec::new();
let num_blocks = get_u16(data, data.len() - 2);
let block_data_index_start =
data.len() - 2 - num_blocks as usize * SERIALIZED_BLOCK_METADATA_SIZE;
let mut byte_start = 0;
for block_num in 0..num_blocks as usize {
let block_data_index = block_data_index_start + SERIALIZED_BLOCK_METADATA_SIZE * block_num;
let block_idx = get_u16(data, block_data_index);
let num_vals = get_u16(data, block_data_index + 2) as u32 + 1;
sparse_codec_blocks.resize(
block_idx as usize,
SparseCodecBlockVariant::Empty { offset },
);
if is_sparse(num_vals) {
let block = SparseBlock {
num_vals,
offset,
byte_start,
};
sparse_codec_blocks.push(SparseCodecBlockVariant::Sparse(block));
byte_start += 2 * num_vals;
} else {
let block = DenseBlock {
offset,
codec: DenseCodec::open(data.slice(byte_start as usize..data.len()).clone()),
};
sparse_codec_blocks.push(SparseCodecBlockVariant::Dense(block));
// Dense blocks have a fixed size spanning ELEMENTS_PER_BLOCK.
byte_start += NUM_BYTES_DENSE_BLOCK;
}
offset += num_vals;
}
sparse_codec_blocks.push(SparseCodecBlockVariant::Empty { offset });
sparse_codec_blocks
}
/// Splits a value address into lower and upper 16bits.
/// The lower 16 bits are the value in the block
/// The upper 16 bits are the block index
#[derive(Debug, Clone, Copy)]
struct ValueAddr {
block_idx: u16,
value_in_block: u16,
}
/// Splits a idx into block index and value in the block
#[inline]
fn value_addr(idx: u32) -> ValueAddr {
/// Static assert number elements per block this method expects
#[allow(clippy::assertions_on_constants)]
const _: () = assert!(ELEMENTS_PER_BLOCK == (1 << 16));
let value_in_block = idx as u16;
let block_idx = (idx >> 16) as u16;
ValueAddr {
block_idx,
value_in_block,
}
}
impl SparseCodec {
/// Open the SparseCodec from OwnedBytes
pub fn open(data: OwnedBytes) -> Self {
let blocks = deserialize_sparse_codec_block(&data);
Self { data, blocks }
}
#[inline]
/// Check if value at position is not null.
pub fn exists(&self, idx: u32) -> bool {
let value_addr = value_addr(idx);
// There may be trailing nulls without data, those are not stored as blocks. It would be
// possible to create empty blocks, but for that we would need to serialize the number of
// values or pass them when opening
if let Some(block) = self.blocks.get(value_addr.block_idx as usize) {
match block {
SparseCodecBlockVariant::Empty { offset: _ } => false,
SparseCodecBlockVariant::Dense(block) => {
block.exists(value_addr.value_in_block as u32)
}
SparseCodecBlockVariant::Sparse(block) => block
.binary_search(&self.data, value_addr.value_in_block)
.is_some(),
}
} else {
false
}
}
/// Return the number of non-null values in an index
pub fn num_non_nulls(&self) -> u32 {
self.blocks.last().map(|block| block.offset()).unwrap_or(0)
}
#[inline]
/// Translate from the original index to the codec index.
pub fn translate_to_codec_idx(&self, idx: u32) -> Option<u32> {
let value_addr = value_addr(idx);
let block = self.blocks.get(value_addr.block_idx as usize)?;
match block {
SparseCodecBlockVariant::Empty { offset: _ } => None,
SparseCodecBlockVariant::Dense(block) => block
.translate_to_codec_idx(value_addr.value_in_block as u32)
.map(|pos_in_block| pos_in_block + block.offset),
SparseCodecBlockVariant::Sparse(block) => {
let pos_in_block = block.binary_search(&self.data, value_addr.value_in_block);
pos_in_block.map(|pos_in_block: u16| block.offset + pos_in_block as u32)
}
}
}
#[inline]
fn find_block(&self, dense_idx: u32, mut block_pos: u32) -> u32 {
loop {
let offset = self.blocks[block_pos as usize].offset();
if offset > dense_idx {
return block_pos - 1;
}
block_pos += 1;
}
}
/// Translate positions from the codec index to the original index.
/// Correctness: Provided values must be in increasing values
///
/// # Panics
///
/// May panic if any `idx` is greater than the max codec index.
pub fn translate_codec_idx_to_original_idx<'a>(
&'a self,
iter: impl Iterator<Item = u32> + 'a,
) -> impl Iterator<Item = u32> + 'a {
let mut block_pos = 0u32;
iter.group_by(move |codec_idx| {
block_pos = self.find_block(*codec_idx, block_pos);
block_pos
})
.flat_map(move |(block_pos, block_iter)| {
let block_doc_idx_start = block_pos * ELEMENTS_PER_BLOCK;
let block = &self.blocks[block_pos as usize];
let offset = block.offset();
let indexes_in_block_iter = block_iter.map(move |codec_idx| codec_idx - offset);
match block {
SparseCodecBlockVariant::Empty { offset: _ } => {
panic!(
"invalid input, cannot translate to original index. associated empty \
block with dense idx. block_pos {}, idx_in_block {:?}",
block_pos,
indexes_in_block_iter.collect::<Vec<_>>()
)
}
SparseCodecBlockVariant::Dense(dense) => {
Box::new(dense.translate_codec_idx_to_original_idx_iter(indexes_in_block_iter))
as Box<dyn Iterator<Item = u32>>
}
SparseCodecBlockVariant::Sparse(block) => {
Box::new(indexes_in_block_iter.map(move |idx_in_block| {
block.value_at_idx(&self.data, idx_in_block as u16) as u32
}))
}
}
.map(move |idx| idx + block_doc_idx_start)
})
}
}
#[inline]
fn is_sparse(num_elem_in_block: u32) -> bool {
num_elem_in_block < DENSE_BLOCK_THRESHOLD
}
#[derive(Default)]
struct BlockDataSerialized {
block_idx: u16,
num_vals: u32,
}
/// Iterator over positions of set values.
pub fn serialize_sparse_codec<W: Write>(
mut iter: impl Iterator<Item = u32>,
mut out: W,
) -> io::Result<()> {
let mut block_metadata: Vec<BlockDataSerialized> = Vec::new();
let mut current_block = Vec::new();
// This if-statement for the first element ensures that
// `block_metadata` is not empty in the loop below.
if let Some(idx) = iter.next() {
let value_addr = value_addr(idx);
block_metadata.push(BlockDataSerialized {
block_idx: value_addr.block_idx,
num_vals: 1,
});
current_block.push(value_addr.value_in_block);
}
let flush_block = |current_block: &mut Vec<u16>, out: &mut W| -> io::Result<()> {
let is_sparse = is_sparse(current_block.len() as u32);
if is_sparse {
for val_in_block in current_block.iter() {
out.write_all(val_in_block.to_le_bytes().as_ref())?;
}
} else {
let mut bitset = BitSet::with_max_value(ELEMENTS_PER_BLOCK + 1);
for val_in_block in current_block.iter() {
bitset.insert(*val_in_block as u32);
}
let iter = (0..ELEMENTS_PER_BLOCK).map(|idx| bitset.contains(idx));
serialize_dense_codec(iter, out)?;
}
current_block.clear();
Ok(())
};
for idx in iter {
let value_addr = value_addr(idx);
if block_metadata[block_metadata.len() - 1].block_idx == value_addr.block_idx {
let last_idx_metadata = block_metadata.len() - 1;
block_metadata[last_idx_metadata].num_vals += 1;
} else {
// flush prev block
flush_block(&mut current_block, &mut out)?;
block_metadata.push(BlockDataSerialized {
block_idx: value_addr.block_idx,
num_vals: 1,
});
}
current_block.push(value_addr.value_in_block);
}
// handle last block
flush_block(&mut current_block, &mut out)?;
for block in &block_metadata {
out.write_all(block.block_idx.to_le_bytes().as_ref())?;
// We don't store empty blocks, therefore we can subtract 1.
// This way we will be able to use u16 when the number of elements is 1 << 16 or u16::MAX+1
out.write_all(((block.num_vals - 1) as u16).to_le_bytes().as_ref())?;
}
out.write_all((block_metadata.len() as u16).to_le_bytes().as_ref())?;
Ok(())
}
#[cfg(test)]
mod tests {
use itertools::Itertools;
use proptest::prelude::{any, prop, *};
use proptest::strategy::Strategy;
use proptest::{prop_oneof, proptest};
use super::*;
fn random_bitvec() -> BoxedStrategy<Vec<bool>> {
prop_oneof![
1 => prop::collection::vec(proptest::bool::weighted(1.0), 0..100),
1 => prop::collection::vec(proptest::bool::weighted(0.00), 0..(ELEMENTS_PER_BLOCK as usize * 3)), // empty blocks
1 => prop::collection::vec(proptest::bool::weighted(1.00), 0..(ELEMENTS_PER_BLOCK as usize + 10)), // full block
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..100),
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..u16::MAX as usize),
8 => vec![any::<bool>()],
]
.boxed()
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(50))]
#[test]
fn test_with_random_bitvecs(bitvec1 in random_bitvec(), bitvec2 in random_bitvec(), bitvec3 in random_bitvec()) {
let mut bitvec = Vec::new();
bitvec.extend_from_slice(&bitvec1);
bitvec.extend_from_slice(&bitvec2);
bitvec.extend_from_slice(&bitvec3);
test_null_index(bitvec);
}
}
#[test]
fn sparse_codec_test_one_block_false() {
let mut iter = vec![false; ELEMENTS_PER_BLOCK as usize];
iter.push(true);
test_null_index(iter);
}
#[test]
fn sparse_codec_test_one_block_true() {
let mut iter = vec![true; ELEMENTS_PER_BLOCK as usize];
iter.push(true);
test_null_index(iter);
}
fn test_null_index(data: Vec<bool>) {
let mut out = vec![];
serialize_sparse_codec(
data.iter()
.cloned()
.enumerate()
.filter(|(_pos, val)| *val)
.map(|(pos, _val)| pos as u32),
&mut out,
)
.unwrap();
let null_index = SparseCodec::open(OwnedBytes::new(out));
let orig_idx_with_value: Vec<u32> = data
.iter()
.enumerate()
.filter(|(_pos, val)| **val)
.map(|(pos, _val)| pos as u32)
.collect();
assert_eq!(
null_index
.translate_codec_idx_to_original_idx(0..orig_idx_with_value.len() as u32)
.collect_vec(),
orig_idx_with_value
);
let step_size = (orig_idx_with_value.len() / 100).max(1);
for (dense_idx, orig_idx) in orig_idx_with_value.iter().enumerate().step_by(step_size) {
assert_eq!(
null_index.translate_to_codec_idx(*orig_idx),
Some(dense_idx as u32)
);
}
// 100 samples
let step_size = (data.len() / 100).max(1);
for (pos, value) in data.iter().enumerate().step_by(step_size) {
assert_eq!(null_index.exists(pos as u32), *value);
}
}
#[test]
fn sparse_codec_test_translation() {
let mut out = vec![];
let iter = ([true, false, true, false]).iter().cloned();
serialize_sparse_codec(
iter.enumerate()
.filter(|(_pos, val)| *val)
.map(|(pos, _val)| pos as u32),
&mut out,
)
.unwrap();
let null_index = SparseCodec::open(OwnedBytes::new(out));
assert_eq!(
null_index
.translate_codec_idx_to_original_idx(0..2)
.collect_vec(),
vec![0, 2]
);
}
#[test]
fn sparse_codec_translate() {
let mut out = vec![];
let iter = ([true, false, true, false]).iter().cloned();
serialize_sparse_codec(
iter.enumerate()
.filter(|(_pos, val)| *val)
.map(|(pos, _val)| pos as u32),
&mut out,
)
.unwrap();
let null_index = SparseCodec::open(OwnedBytes::new(out));
assert_eq!(null_index.translate_to_codec_idx(0), Some(0));
assert_eq!(null_index.translate_to_codec_idx(2), Some(1));
}
#[test]
fn sparse_codec_test_small() {
let mut out = vec![];
let iter = ([true, false, true, false]).iter().cloned();
serialize_sparse_codec(
iter.enumerate()
.filter(|(_pos, val)| *val)
.map(|(pos, _val)| pos as u32),
&mut out,
)
.unwrap();
let null_index = SparseCodec::open(OwnedBytes::new(out));
assert!(null_index.exists(0));
assert!(!null_index.exists(1));
assert!(null_index.exists(2));
assert!(!null_index.exists(3));
}
#[test]
fn sparse_codec_test_large() {
let mut docs = vec![];
docs.extend((0..ELEMENTS_PER_BLOCK).map(|_idx| false));
docs.extend((0..=1).map(|_idx| true));
let iter = docs.iter().cloned();
let mut out = vec![];
serialize_sparse_codec(
iter.enumerate()
.filter(|(_pos, val)| *val)
.map(|(pos, _val)| pos as u32),
&mut out,
)
.unwrap();
let null_index = SparseCodec::open(OwnedBytes::new(out));
assert!(!null_index.exists(0));
assert!(!null_index.exists(100));
assert!(!null_index.exists(ELEMENTS_PER_BLOCK - 1));
assert!(null_index.exists(ELEMENTS_PER_BLOCK));
assert!(null_index.exists(ELEMENTS_PER_BLOCK + 1));
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use test::Bencher;
use super::*;
const TOTAL_NUM_VALUES: u32 = 1_000_000;
fn gen_bools(fill_ratio: f64) -> SparseCodec {
let mut out = Vec::new();
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
serialize_sparse_codec(
(0..TOTAL_NUM_VALUES)
.map(|_| rng.gen_bool(fill_ratio))
.enumerate()
.filter(|(_pos, val)| *val)
.map(|(pos, _val)| pos as u32),
&mut out,
)
.unwrap();
let codec = SparseCodec::open(OwnedBytes::new(out));
codec
}
fn random_range_iterator(
start: u32,
end: u32,
avg_step_size: u32,
avg_deviation: u32,
) -> impl Iterator<Item = u32> {
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
let mut current = start;
std::iter::from_fn(move || {
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
if current >= end {
None
} else {
Some(current)
}
})
}
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
let ratio = percent as f32 / 100.0;
let step_size = (1f32 / ratio) as u32;
let deviation = step_size - 1;
random_range_iterator(0, num_values, step_size, deviation)
}
fn walk_over_data(codec: &SparseCodec, avg_step_size: u32) -> Option<u32> {
walk_over_data_from_positions(
codec,
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
)
}
fn walk_over_data_from_positions(
codec: &SparseCodec,
positions: impl Iterator<Item = u32>,
) -> Option<u32> {
let mut dense_idx: Option<u32> = None;
for idx in positions {
dense_idx = dense_idx.or(codec.translate_to_codec_idx(idx));
}
dense_idx
}
#[bench]
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.05f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.05f64);
bench.iter(|| walk_over_data(&codec, 1000));
}
#[bench]
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
}
#[bench]
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
let codec = gen_bools(0.1f64);
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
}
#[bench]
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
let codec = gen_bools(0.9f64);
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
}
#[bench]
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.1f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.5f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.9f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
let num_non_nulls = codec.num_non_nulls();
bench.iter(|| {
codec
.translate_codec_idx_to_original_idx(n_percent_step_iterator(0.005, num_non_nulls))
.last()
});
}
#[bench]
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
let num_non_nulls = codec.num_non_nulls();
bench.iter(|| {
codec
.translate_codec_idx_to_original_idx(n_percent_step_iterator(10.0, num_non_nulls))
.last()
});
}
#[bench]
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
let num_vals = codec.num_non_nulls();
bench.iter(|| {
codec
.translate_codec_idx_to_original_idx(0..num_vals)
.last()
});
}
#[bench]
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.90f64);
let num_non_nulls = codec.num_non_nulls();
bench.iter(|| {
codec
.translate_codec_idx_to_original_idx(n_percent_step_iterator(0.005, num_non_nulls))
.last()
});
}
#[bench]
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
let codec = gen_bools(0.9f64);
let num_vals = codec.num_non_nulls();
bench.iter(|| {
codec
.translate_codec_idx_to_original_idx(0..num_vals)
.last()
});
}
}

View File

@@ -1,145 +0,0 @@
use std::io::{self, Write};
use std::ops::Range;
use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt};
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub(crate) enum FastFieldCardinality {
Single = 1,
Multi = 2,
}
impl BinarySerializable for FastFieldCardinality {
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
self.to_code().serialize(wrt)
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let code = u8::deserialize(reader)?;
let codec_type: Self = Self::from_code(code)
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
Ok(codec_type)
}
}
impl FastFieldCardinality {
pub(crate) fn to_code(self) -> u8 {
self as u8
}
pub(crate) fn from_code(code: u8) -> Option<Self> {
match code {
1 => Some(Self::Single),
2 => Some(Self::Multi),
_ => None,
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(crate) enum NullIndexCodec {
Full = 1,
}
impl BinarySerializable for NullIndexCodec {
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
self.to_code().serialize(wrt)
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let code = u8::deserialize(reader)?;
let codec_type: Self = Self::from_code(code)
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
Ok(codec_type)
}
}
impl NullIndexCodec {
pub(crate) fn to_code(self) -> u8 {
self as u8
}
pub(crate) fn from_code(code: u8) -> Option<Self> {
match code {
1 => Some(Self::Full),
_ => None,
}
}
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub(crate) struct NullIndexFooter {
pub(crate) cardinality: FastFieldCardinality,
pub(crate) null_index_codec: NullIndexCodec,
// Unused for NullIndexCodec::Full
pub(crate) null_index_byte_range: Range<u64>,
}
impl BinarySerializable for NullIndexFooter {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
self.cardinality.serialize(writer)?;
self.null_index_codec.serialize(writer)?;
VInt(self.null_index_byte_range.start).serialize(writer)?;
VInt(self.null_index_byte_range.end - self.null_index_byte_range.start)
.serialize(writer)?;
Ok(())
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let cardinality = FastFieldCardinality::deserialize(reader)?;
let null_index_codec = NullIndexCodec::deserialize(reader)?;
let null_index_byte_range_start = VInt::deserialize(reader)?.0;
let null_index_byte_range_end = VInt::deserialize(reader)?.0 + null_index_byte_range_start;
Ok(Self {
cardinality,
null_index_codec,
null_index_byte_range: null_index_byte_range_start..null_index_byte_range_end,
})
}
}
pub(crate) fn append_null_index_footer(
output: &mut impl io::Write,
null_index_footer: NullIndexFooter,
) -> io::Result<()> {
let mut counting_write = CountingWriter::wrap(output);
null_index_footer.serialize(&mut counting_write)?;
let footer_payload_len = counting_write.written_bytes();
BinarySerializable::serialize(&(footer_payload_len as u16), &mut counting_write)?;
Ok(())
}
pub(crate) fn read_null_index_footer(
data: OwnedBytes,
) -> io::Result<(OwnedBytes, NullIndexFooter)> {
let (data, null_footer_length_bytes) = data.rsplit(2);
let footer_length = u16::deserialize(&mut null_footer_length_bytes.as_slice())?;
let (data, null_index_footer_bytes) = data.rsplit(footer_length as usize);
let null_index_footer = NullIndexFooter::deserialize(&mut null_index_footer_bytes.as_ref())?;
Ok((data, null_index_footer))
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn null_index_footer_deser_test() {
let null_index_footer = NullIndexFooter {
cardinality: FastFieldCardinality::Single,
null_index_codec: NullIndexCodec::Full,
null_index_byte_range: 100..120,
};
let mut out = vec![];
null_index_footer.serialize(&mut out).unwrap();
assert_eq!(
null_index_footer,
NullIndexFooter::deserialize(&mut &out[..]).unwrap()
);
}
}

View File

@@ -0,0 +1,119 @@
use std::ops::{Range, RangeInclusive};
use std::sync::Arc;
use crate::Column;
/// `OptionalColumn` provides columnar access on a field.
pub trait OptionalColumn<T: PartialOrd = u64>: Send + Sync {
/// Return the value associated with the given idx.
///
/// This accessor should return as fast as possible.
///
/// # Panics
///
/// May panic if `idx` is greater than the column length.
fn get_val(&self, idx: u32) -> Option<T>;
/// Fills an output buffer with the fast field values
/// associated with the `DocId` going from
/// `start` to `start + output.len()`.
///
/// # Panics
///
/// Must panic if `start + output.len()` is greater than
/// the segment's `maxdoc`.
fn get_range(&self, start: u64, output: &mut [Option<T>]) {
for (out, idx) in output.iter_mut().zip(start..) {
*out = self.get_val(idx as u32);
}
}
/// Return the positions of values which are in the provided range.
fn get_docids_for_value_range(
&self,
value_range: RangeInclusive<T>,
doc_id_range: Range<u32>,
positions: &mut Vec<u32>,
) {
let doc_id_range = doc_id_range.start..doc_id_range.end.min(self.num_vals());
for idx in doc_id_range {
let val = self.get_val(idx);
if let Some(val) = val {
if value_range.contains(&val) {
positions.push(idx);
}
}
}
}
/// Returns the minimum value for this fast field.
///
/// This min_value may not be exact.
/// For instance, the min value does not take in account of possible
/// deleted document. All values are however guaranteed to be higher than
/// `.min_value()`.
fn min_value(&self) -> Option<T>;
/// Returns the maximum value for this fast field.
///
/// This max_value may not be exact.
/// For instance, the max value does not take in account of possible
/// deleted document. All values are however guaranteed to be higher than
/// `.max_value()`.
fn max_value(&self) -> Option<T>;
/// The number of values including `None` in the column.
fn num_vals(&self) -> u32;
/// Returns a iterator over the data
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = Option<T>> + 'a> {
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
}
/// return full column if all values are set and is not empty
fn to_full(&self) -> Option<Arc<dyn Column<T>>> {
None
}
}
/// Temporary wrapper to migrate to optional column
pub(crate) struct ToOptionalColumn<T> {
column: Arc<dyn Column<T>>,
}
impl<T: PartialOrd> ToOptionalColumn<T> {
pub(crate) fn new(column: Arc<dyn Column<T>>) -> Self {
Self { column }
}
}
impl<T: PartialOrd> OptionalColumn<T> for ToOptionalColumn<T> {
#[inline]
fn get_val(&self, idx: u32) -> Option<T> {
let val = self.column.get_val(idx);
Some(val)
}
fn min_value(&self) -> Option<T> {
let min_value = self.column.min_value();
Some(min_value)
}
fn max_value(&self) -> Option<T> {
let max_value = self.column.max_value();
Some(max_value)
}
fn num_vals(&self) -> u32 {
self.column.num_vals()
}
fn iter(&self) -> Box<dyn Iterator<Item = Option<T>> + '_> {
Box::new(self.column.iter().map(|el| Some(el)))
}
/// return full column if all values are set and is not empty
fn to_full(&self) -> Option<Arc<dyn Column<T>>> {
Some(self.column.clone())
}
}

View File

@@ -17,25 +17,22 @@
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
use std::io;
use std::num::NonZeroU64;
use std::sync::Arc;
use std::{fmt, io};
use common::{BinarySerializable, OwnedBytes, VInt};
use common::{BinarySerializable, VInt};
use log::warn;
use ownedbytes::OwnedBytes;
use crate::bitpacked::BitpackedCodec;
use crate::blockwise_linear::BlockwiseLinearCodec;
use crate::compact_space::CompactSpaceCompressor;
use crate::format_version::append_format_version;
use crate::linear::LinearCodec;
use crate::monotonic_mapping::{
StrictlyMonotonicFn, StrictlyMonotonicMappingToInternal,
StrictlyMonotonicMappingToInternalGCDBaseval,
};
use crate::null_index_footer::{
append_null_index_footer, FastFieldCardinality, NullIndexCodec, NullIndexFooter,
};
use crate::{
monotonic_map_column, Column, FastFieldCodec, FastFieldCodecType, MonotonicallyMappableToU64,
U128FastFieldCodecType, VecColumn, ALL_CODEC_TYPES,
@@ -167,7 +164,7 @@ impl BinarySerializable for Header {
/// Return estimated compression for given codec in the value range [0.0..1.0], where 1.0 means no
/// compression.
pub fn estimate<T: MonotonicallyMappableToU64 + fmt::Debug>(
pub fn estimate<T: MonotonicallyMappableToU64>(
typed_column: impl Column<T>,
codec_type: FastFieldCodecType,
) -> Option<f32> {
@@ -192,69 +189,6 @@ pub fn serialize_u128<F: Fn() -> I, I: Iterator<Item = u128>>(
iter_gen: F,
num_vals: u32,
output: &mut impl io::Write,
) -> io::Result<()> {
serialize_u128_new(ValueIndexInfo::default(), iter_gen, num_vals, output)
}
#[allow(dead_code)]
pub enum ValueIndexInfo<'a> {
MultiValue(Box<dyn MultiValueIndexInfo + 'a>),
SingleValue(Box<dyn SingleValueIndexInfo + 'a>),
}
// TODO Remove me
impl Default for ValueIndexInfo<'static> {
fn default() -> Self {
struct Dummy {}
impl SingleValueIndexInfo for Dummy {
fn num_vals(&self) -> u32 {
todo!()
}
fn num_non_nulls(&self) -> u32 {
todo!()
}
fn iter(&self) -> Box<dyn Iterator<Item = u32>> {
todo!()
}
}
Self::SingleValue(Box::new(Dummy {}))
}
}
impl<'a> ValueIndexInfo<'a> {
fn get_cardinality(&self) -> FastFieldCardinality {
match self {
ValueIndexInfo::MultiValue(_) => FastFieldCardinality::Multi,
ValueIndexInfo::SingleValue(_) => FastFieldCardinality::Single,
}
}
}
pub trait MultiValueIndexInfo {
/// The number of docs in the column.
fn num_docs(&self) -> u32;
/// The number of values in the column.
fn num_vals(&self) -> u32;
/// Return the start index of the values for each doc
fn iter(&self) -> Box<dyn Iterator<Item = u32> + '_>;
}
pub trait SingleValueIndexInfo {
/// The number of values including nulls in the column.
fn num_vals(&self) -> u32;
/// The number of non-null values in the column.
fn num_non_nulls(&self) -> u32;
/// Return a iterator of the positions of docs with a value
fn iter(&self) -> Box<dyn Iterator<Item = u32> + '_>;
}
/// Serializes u128 values with the compact space codec.
pub fn serialize_u128_new<F: Fn() -> I, I: Iterator<Item = u128>>(
value_index: ValueIndexInfo,
iter_gen: F,
num_vals: u32,
output: &mut impl io::Write,
) -> io::Result<()> {
let header = U128Header {
num_vals,
@@ -264,29 +198,11 @@ pub fn serialize_u128_new<F: Fn() -> I, I: Iterator<Item = u128>>(
let compressor = CompactSpaceCompressor::train_from(iter_gen(), num_vals);
compressor.compress_into(iter_gen(), output).unwrap();
let null_index_footer = NullIndexFooter {
cardinality: value_index.get_cardinality(),
null_index_codec: NullIndexCodec::Full,
null_index_byte_range: 0..0,
};
append_null_index_footer(output, null_index_footer)?;
append_format_version(output)?;
Ok(())
}
/// Serializes the column with the codec with the best estimate on the data.
pub fn serialize<T: MonotonicallyMappableToU64 + fmt::Debug>(
typed_column: impl Column<T>,
output: &mut impl io::Write,
codecs: &[FastFieldCodecType],
) -> io::Result<()> {
serialize_new(ValueIndexInfo::default(), typed_column, output, codecs)
}
/// Serializes the column with the codec with the best estimate on the data.
pub fn serialize_new<T: MonotonicallyMappableToU64 + fmt::Debug>(
value_index: ValueIndexInfo,
pub fn serialize<T: MonotonicallyMappableToU64>(
typed_column: impl Column<T>,
output: &mut impl io::Write,
codecs: &[FastFieldCodecType],
@@ -305,15 +221,6 @@ pub fn serialize_new<T: MonotonicallyMappableToU64 + fmt::Debug>(
let normalized_column = header.normalize_column(column);
assert_eq!(normalized_column.min_value(), 0u64);
serialize_given_codec(normalized_column, header.codec_type, output)?;
let null_index_footer = NullIndexFooter {
cardinality: value_index.get_cardinality(),
null_index_codec: NullIndexCodec::Full,
null_index_byte_range: 0..0,
};
append_null_index_footer(output, null_index_footer)?;
append_format_version(output)?;
Ok(())
}
@@ -366,12 +273,15 @@ fn serialize_given_codec(
}
/// Helper function to serialize a column (autodetect from all codecs) and then open it
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default + fmt::Debug>(
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default>(
column: &[T],
) -> Arc<dyn Column<T>> {
let mut buffer = Vec::new();
super::serialize(VecColumn::from(&column), &mut buffer, &ALL_CODEC_TYPES).unwrap();
super::open(OwnedBytes::new(buffer)).unwrap()
super::open(OwnedBytes::new(buffer))
.unwrap()
.to_full()
.unwrap()
}
#[cfg(test)]
@@ -403,7 +313,7 @@ mod tests {
let col = VecColumn::from(&[false, true][..]);
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
// 5 bytes of header, 1 byte of value, 7 bytes of padding.
assert_eq!(buffer.len(), 3 + 5 + 8 + 4 + 2);
assert_eq!(buffer.len(), 5 + 8);
}
#[test]
@@ -412,7 +322,7 @@ mod tests {
let col = VecColumn::from(&[true][..]);
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
// 5 bytes of header, 0 bytes of value, 7 bytes of padding.
assert_eq!(buffer.len(), 3 + 5 + 7 + 4 + 2);
assert_eq!(buffer.len(), 5 + 7);
}
#[test]
@@ -422,6 +332,6 @@ mod tests {
let col = VecColumn::from(&vals[..]);
serialize(col, &mut buffer, &[FastFieldCodecType::Bitpacked]).unwrap();
// Values are stored over 3 bits.
assert_eq!(buffer.len(), 3 + 7 + (3 * 80 / 8) + 7 + 4 + 2);
assert_eq!(buffer.len(), 7 + (3 * 80 / 8) + 7);
}
}

View File

@@ -1,14 +1,10 @@
[package]
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
name = "ownedbytes"
version = "0.5.0"
version = "0.3.0"
edition = "2021"
description = "Expose data as static slice"
license = "MIT"
documentation = "https://docs.rs/ownedbytes/"
homepage = "https://github.com/quickwit-oss/tantivy"
repository = "https://github.com/quickwit-oss/tantivy"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]

View File

@@ -3,7 +3,7 @@ use std::ops::{Deref, Range};
use std::sync::Arc;
use std::{fmt, io, mem};
pub use stable_deref_trait::StableDeref;
use stable_deref_trait::StableDeref;
/// An OwnedBytes simply wraps an object that owns a slice of data and exposes
/// this data as a slice.
@@ -80,21 +80,6 @@ impl OwnedBytes {
(left, right)
}
/// Splits the OwnedBytes into two OwnedBytes `(left, right)`.
///
/// Right will hold `split_len` bytes.
///
/// This operation is cheap and does not require to copy any memory.
/// On the other hand, both `left` and `right` retain a handle over
/// the entire slice of memory. In other words, the memory will only
/// be released when both left and right are dropped.
#[inline]
#[must_use]
pub fn rsplit(self, split_len: usize) -> (OwnedBytes, OwnedBytes) {
let data_len = self.data.len();
self.split(data_len - split_len)
}
/// Splits the right part of the `OwnedBytes` at the given offset.
///
/// `self` is truncated to `split_len`, left with the remaining bytes.

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy-query-grammar"
version = "0.19.0"
version = "0.18.0"
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
license = "MIT"
categories = ["database-implementations", "data-structures"]

View File

@@ -4,14 +4,14 @@ use std::rc::Rc;
use std::sync::atomic::AtomicU32;
use std::sync::Arc;
use fastfield_codecs::Column;
use fastfield_codecs::OptionalColumn;
use super::agg_req::{Aggregation, Aggregations, BucketAggregationType, MetricAggregation};
use super::bucket::{HistogramAggregation, RangeAggregation, TermsAggregation};
use super::metric::{AverageAggregation, StatsAggregation};
use super::segment_agg_result::BucketCount;
use super::VecWithNames;
use crate::fastfield::{type_and_cardinality, MultiValuedFastFieldReader};
use crate::fastfield::{type_and_cardinality, FastType, MultiValuedFastFieldReader};
use crate::schema::{Cardinality, Type};
use crate::{InvertedIndexReader, SegmentReader, TantivyError};
@@ -37,16 +37,16 @@ impl AggregationsWithAccessor {
#[derive(Clone)]
pub(crate) enum FastFieldAccessor {
Multi(MultiValuedFastFieldReader<u64>),
Single(Arc<dyn Column<u64>>),
Single(Arc<dyn OptionalColumn<u64>>),
}
impl FastFieldAccessor {
pub fn as_single(&self) -> Option<&dyn Column<u64>> {
pub fn as_single(&self) -> Option<&dyn OptionalColumn<u64>> {
match self {
FastFieldAccessor::Multi(_) => None,
FastFieldAccessor::Single(reader) => Some(&**reader),
}
}
pub fn into_single(self) -> Option<Arc<dyn Column<u64>>> {
pub fn into_single(self) -> Option<Arc<dyn OptionalColumn<u64>>> {
match self {
FastFieldAccessor::Multi(_) => None,
FastFieldAccessor::Single(reader) => Some(reader),
@@ -124,7 +124,7 @@ impl BucketAggregationWithAccessor {
pub struct MetricAggregationWithAccessor {
pub metric: MetricAggregation,
pub field_type: Type,
pub accessor: Arc<dyn Column>,
pub accessor: Arc<dyn OptionalColumn>,
}
impl MetricAggregationWithAccessor {
@@ -194,7 +194,13 @@ fn get_ff_reader_and_validate(
.ok_or_else(|| TantivyError::FieldNotFound(field_name.to_string()))?;
let field_type = reader.schema().get_field_entry(field).field_type();
if let Some((_ff_type, field_cardinality)) = type_and_cardinality(field_type) {
if let Some((ff_type, field_cardinality)) = type_and_cardinality(field_type) {
if ff_type == FastType::Date {
return Err(TantivyError::InvalidArgument(
"Unsupported field type date in aggregation".to_string(),
));
}
if cardinality != field_cardinality {
return Err(TantivyError::InvalidArgument(format!(
"Invalid field cardinality on field {} expected {:?}, but got {:?}",

View File

@@ -12,7 +12,6 @@ use super::bucket::GetDocCount;
use super::intermediate_agg_result::{IntermediateBucketResult, IntermediateMetricResult};
use super::metric::{SingleMetricResult, Stats};
use super::Key;
use crate::schema::Schema;
use crate::TantivyError;
#[derive(Clone, Default, Debug, PartialEq, Serialize, Deserialize)]
@@ -130,12 +129,9 @@ pub enum BucketResult {
}
impl BucketResult {
pub(crate) fn empty_from_req(
req: &BucketAggregationInternal,
schema: &Schema,
) -> crate::Result<Self> {
pub(crate) fn empty_from_req(req: &BucketAggregationInternal) -> crate::Result<Self> {
let empty_bucket = IntermediateBucketResult::empty_from_req(&req.bucket_agg);
empty_bucket.into_final_bucket_result(req, schema)
empty_bucket.into_final_bucket_result(req)
}
}
@@ -178,9 +174,6 @@ pub enum BucketEntries<T> {
/// ```
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub struct BucketEntry {
#[serde(skip_serializing_if = "Option::is_none")]
/// The string representation of the bucket.
pub key_as_string: Option<String>,
/// The identifier of the bucket.
pub key: Key,
/// Number of documents in the bucket.
@@ -245,10 +238,4 @@ pub struct RangeBucketEntry {
/// The to range of the bucket. Equals `f64::MAX` when `None`.
#[serde(skip_serializing_if = "Option::is_none")]
pub to: Option<f64>,
/// The optional string representation for the `from` range.
#[serde(skip_serializing_if = "Option::is_none")]
pub from_as_string: Option<String>,
/// The optional string representation for the `to` range.
#[serde(skip_serializing_if = "Option::is_none")]
pub to_as_string: Option<String>,
}

View File

@@ -1,7 +1,7 @@
use std::cmp::Ordering;
use std::fmt::Display;
use fastfield_codecs::Column;
use fastfield_codecs::OptionalColumn;
use itertools::Itertools;
use serde::{Deserialize, Serialize};
@@ -10,12 +10,12 @@ use crate::aggregation::agg_req_with_accessor::{
AggregationsWithAccessor, BucketAggregationWithAccessor,
};
use crate::aggregation::agg_result::BucketEntry;
use crate::aggregation::f64_from_fastfield_u64;
use crate::aggregation::intermediate_agg_result::{
IntermediateAggregationResults, IntermediateBucketResult, IntermediateHistogramBucketEntry,
};
use crate::aggregation::segment_agg_result::SegmentAggregationResultsCollector;
use crate::aggregation::{f64_from_fastfield_u64, format_date};
use crate::schema::{Schema, Type};
use crate::schema::Type;
use crate::{DocId, TantivyError};
/// Histogram is a bucket aggregation, where buckets are created dynamically for given `interval`.
@@ -206,7 +206,6 @@ pub struct SegmentHistogramCollector {
field_type: Type,
interval: f64,
offset: f64,
min_doc_count: u64,
first_bucket_num: i64,
bounds: HistogramBounds,
}
@@ -216,30 +215,6 @@ impl SegmentHistogramCollector {
self,
agg_with_accessor: &BucketAggregationWithAccessor,
) -> crate::Result<IntermediateBucketResult> {
// Compute the number of buckets to validate against max num buckets
// Note: We use min_doc_count here, but it's only an lowerbound here, since were are on the
// intermediate level and after merging the number of documents of a bucket could exceed
// `min_doc_count`.
{
let cut_off_buckets_front = self
.buckets
.iter()
.take_while(|bucket| bucket.doc_count <= self.min_doc_count)
.count();
let cut_off_buckets_back = self.buckets[cut_off_buckets_front..]
.iter()
.rev()
.take_while(|bucket| bucket.doc_count <= self.min_doc_count)
.count();
let estimate_num_buckets =
self.buckets.len() - cut_off_buckets_front - cut_off_buckets_back;
agg_with_accessor
.bucket_count
.add_count(estimate_num_buckets as u32);
agg_with_accessor.bucket_count.validate_bucket_count()?;
}
let mut buckets = Vec::with_capacity(
self.buckets
.iter()
@@ -276,6 +251,11 @@ impl SegmentHistogramCollector {
);
};
agg_with_accessor
.bucket_count
.add_count(buckets.len() as u32);
agg_with_accessor.bucket_count.validate_bucket_count()?;
Ok(IntermediateBucketResult::Histogram { buckets })
}
@@ -283,13 +263,17 @@ impl SegmentHistogramCollector {
req: &HistogramAggregation,
sub_aggregation: &AggregationsWithAccessor,
field_type: Type,
accessor: &dyn Column<u64>,
accessor: &dyn OptionalColumn<u64>,
) -> crate::Result<Self> {
req.validate()?;
let min = f64_from_fastfield_u64(accessor.min_value(), &field_type);
let max = f64_from_fastfield_u64(accessor.max_value(), &field_type);
let min_max_u64 = accessor.min_value().zip(accessor.max_value());
let min_max_f64 = min_max_u64.map(|(min, max)| {
let min = f64_from_fastfield_u64(min, &field_type);
let max = f64_from_fastfield_u64(max, &field_type);
(min, max)
});
let (min, max) = get_req_min_max(req, Some((min, max)));
let (min, max) = get_req_min_max(req, min_max_f64);
// We compute and generate the buckets range (min, max) based on the request and the min
// max in the fast field, but this is likely not ideal when this is a subbucket, where many
@@ -328,7 +312,6 @@ impl SegmentHistogramCollector {
first_bucket_num,
bounds,
sub_aggregations,
min_doc_count: req.min_doc_count(),
})
}
@@ -352,47 +335,58 @@ impl SegmentHistogramCollector {
.expect("unexpected fast field cardinatility");
let mut iter = doc.chunks_exact(4);
for docs in iter.by_ref() {
let val0 = self.f64_from_fastfield_u64(accessor.get_val(docs[0]));
let val1 = self.f64_from_fastfield_u64(accessor.get_val(docs[1]));
let val2 = self.f64_from_fastfield_u64(accessor.get_val(docs[2]));
let val3 = self.f64_from_fastfield_u64(accessor.get_val(docs[3]));
if let Some(val) = accessor.get_val(docs[0]) {
let val = self.f64_from_fastfield_u64(val);
let bucket_pos = get_bucket_num(val);
self.increment_bucket_if_in_bounds(
val,
&bounds,
bucket_pos,
docs[0],
&bucket_with_accessor.sub_aggregation,
)?;
}
let bucket_pos0 = get_bucket_num(val0);
let bucket_pos1 = get_bucket_num(val1);
let bucket_pos2 = get_bucket_num(val2);
let bucket_pos3 = get_bucket_num(val3);
if let Some(val) = accessor.get_val(docs[1]) {
let val = self.f64_from_fastfield_u64(val);
let bucket_pos = get_bucket_num(val);
self.increment_bucket_if_in_bounds(
val,
&bounds,
bucket_pos,
docs[1],
&bucket_with_accessor.sub_aggregation,
)?;
}
self.increment_bucket_if_in_bounds(
val0,
&bounds,
bucket_pos0,
docs[0],
&bucket_with_accessor.sub_aggregation,
)?;
self.increment_bucket_if_in_bounds(
val1,
&bounds,
bucket_pos1,
docs[1],
&bucket_with_accessor.sub_aggregation,
)?;
self.increment_bucket_if_in_bounds(
val2,
&bounds,
bucket_pos2,
docs[2],
&bucket_with_accessor.sub_aggregation,
)?;
self.increment_bucket_if_in_bounds(
val3,
&bounds,
bucket_pos3,
docs[3],
&bucket_with_accessor.sub_aggregation,
)?;
if let Some(val) = accessor.get_val(docs[2]) {
let val = self.f64_from_fastfield_u64(val);
let bucket_pos = get_bucket_num(val);
self.increment_bucket_if_in_bounds(
val,
&bounds,
bucket_pos,
docs[2],
&bucket_with_accessor.sub_aggregation,
)?;
}
if let Some(val) = accessor.get_val(docs[3]) {
let val = self.f64_from_fastfield_u64(val);
let bucket_pos = get_bucket_num(val);
self.increment_bucket_if_in_bounds(
val,
&bounds,
bucket_pos,
docs[3],
&bucket_with_accessor.sub_aggregation,
)?;
}
}
for &doc in iter.remainder() {
let val = f64_from_fastfield_u64(accessor.get_val(doc), &self.field_type);
let Some(val) = accessor.get_val(doc).map(|val|f64_from_fastfield_u64(val, &self.field_type)) else{
continue;
};
if !bounds.contains(val) {
continue;
}
@@ -401,7 +395,7 @@ impl SegmentHistogramCollector {
debug_assert_eq!(
self.buckets[bucket_pos].key,
get_bucket_val(val, self.interval, self.offset)
get_bucket_val(val, self.interval, self.offset) as f64
);
self.increment_bucket(bucket_pos, doc, &bucket_with_accessor.sub_aggregation)?;
}
@@ -428,7 +422,7 @@ impl SegmentHistogramCollector {
if bounds.contains(val) {
debug_assert_eq!(
self.buckets[bucket_pos].key,
get_bucket_val(val, self.interval, self.offset)
get_bucket_val(val, self.interval, self.offset) as f64
);
self.increment_bucket(bucket_pos, doc, bucket_with_accessor)?;
@@ -472,7 +466,6 @@ fn intermediate_buckets_to_final_buckets_fill_gaps(
buckets: Vec<IntermediateHistogramBucketEntry>,
histogram_req: &HistogramAggregation,
sub_aggregation: &AggregationsInternal,
schema: &Schema,
) -> crate::Result<Vec<BucketEntry>> {
// Generate the full list of buckets without gaps.
//
@@ -513,9 +506,7 @@ fn intermediate_buckets_to_final_buckets_fill_gaps(
sub_aggregation: empty_sub_aggregation.clone(),
},
})
.map(|intermediate_bucket| {
intermediate_bucket.into_final_bucket_entry(sub_aggregation, schema)
})
.map(|intermediate_bucket| intermediate_bucket.into_final_bucket_entry(sub_aggregation))
.collect::<crate::Result<Vec<_>>>()
}
@@ -524,43 +515,20 @@ pub(crate) fn intermediate_histogram_buckets_to_final_buckets(
buckets: Vec<IntermediateHistogramBucketEntry>,
histogram_req: &HistogramAggregation,
sub_aggregation: &AggregationsInternal,
schema: &Schema,
) -> crate::Result<Vec<BucketEntry>> {
let mut buckets = if histogram_req.min_doc_count() == 0 {
if histogram_req.min_doc_count() == 0 {
// With min_doc_count != 0, we may need to add buckets, so that there are no
// gaps, since intermediate result does not contain empty buckets (filtered to
// reduce serialization size).
intermediate_buckets_to_final_buckets_fill_gaps(
buckets,
histogram_req,
sub_aggregation,
schema,
)?
intermediate_buckets_to_final_buckets_fill_gaps(buckets, histogram_req, sub_aggregation)
} else {
buckets
.into_iter()
.filter(|histogram_bucket| histogram_bucket.doc_count >= histogram_req.min_doc_count())
.map(|histogram_bucket| {
histogram_bucket.into_final_bucket_entry(sub_aggregation, schema)
})
.collect::<crate::Result<Vec<_>>>()?
};
// If we have a date type on the histogram buckets, we add the `key_as_string` field as rfc339
let field = schema
.get_field(&histogram_req.field)
.ok_or_else(|| TantivyError::FieldNotFound(histogram_req.field.to_string()))?;
if schema.get_field_entry(field).field_type().is_date() {
for bucket in buckets.iter_mut() {
if let crate::aggregation::Key::F64(val) = bucket.key {
let key_as_string = format_date(val as i64)?;
bucket.key_as_string = Some(key_as_string);
}
}
.map(|histogram_bucket| histogram_bucket.into_final_bucket_entry(sub_aggregation))
.collect::<crate::Result<Vec<_>>>()
}
Ok(buckets)
}
/// Applies req extended_bounds/hard_bounds on the min_max value
@@ -1419,63 +1387,6 @@ mod tests {
Ok(())
}
#[test]
fn histogram_date_test_single_segment() -> crate::Result<()> {
histogram_date_test_with_opt(true)
}
#[test]
fn histogram_date_test_multi_segment() -> crate::Result<()> {
histogram_date_test_with_opt(false)
}
fn histogram_date_test_with_opt(merge_segments: bool) -> crate::Result<()> {
let index = get_test_index_2_segments(merge_segments)?;
let agg_req: Aggregations = vec![(
"histogram".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Histogram(HistogramAggregation {
field: "date".to_string(),
interval: 86400000000.0, // one day in microseconds
..Default::default()
}),
sub_aggregation: Default::default(),
}),
)]
.into_iter()
.collect();
let agg_res = exec_request(agg_req, &index)?;
let res: Value = serde_json::from_str(&serde_json::to_string(&agg_res)?)?;
assert_eq!(res["histogram"]["buckets"][0]["key"], 1546300800000000.0);
assert_eq!(
res["histogram"]["buckets"][0]["key_as_string"],
"2019-01-01T00:00:00Z"
);
assert_eq!(res["histogram"]["buckets"][0]["doc_count"], 1);
assert_eq!(res["histogram"]["buckets"][1]["key"], 1546387200000000.0);
assert_eq!(
res["histogram"]["buckets"][1]["key_as_string"],
"2019-01-02T00:00:00Z"
);
assert_eq!(res["histogram"]["buckets"][1]["doc_count"], 5);
assert_eq!(res["histogram"]["buckets"][2]["key"], 1546473600000000.0);
assert_eq!(
res["histogram"]["buckets"][2]["key_as_string"],
"2019-01-03T00:00:00Z"
);
assert_eq!(res["histogram"]["buckets"][3], Value::Null);
Ok(())
}
#[test]
fn histogram_invalid_request() -> crate::Result<()> {
let index = get_test_index_2_segments(true)?;
@@ -1542,36 +1453,4 @@ mod tests {
Ok(())
}
#[test]
fn histogram_test_max_buckets_segments() -> crate::Result<()> {
let values = vec![0.0, 70000.0];
let index = get_test_index_from_values(true, &values)?;
let agg_req: Aggregations = vec![(
"my_interval".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Histogram(HistogramAggregation {
field: "score_f64".to_string(),
interval: 1.0,
..Default::default()
}),
sub_aggregation: Default::default(),
}),
)]
.into_iter()
.collect();
let res = exec_request(agg_req, &index);
assert_eq!(
res.unwrap_err().to_string(),
"An invalid argument was passed: 'Aborting aggregation because too many buckets were \
created'"
.to_string()
);
Ok(())
}
}

View File

@@ -1,7 +1,6 @@
use std::fmt::Debug;
use std::ops::Range;
use fastfield_codecs::MonotonicallyMappableToU64;
use rustc_hash::FxHashMap;
use serde::{Deserialize, Serialize};
@@ -12,9 +11,7 @@ use crate::aggregation::intermediate_agg_result::{
IntermediateBucketResult, IntermediateRangeBucketEntry, IntermediateRangeBucketResult,
};
use crate::aggregation::segment_agg_result::{BucketCount, SegmentAggregationResultsCollector};
use crate::aggregation::{
f64_from_fastfield_u64, f64_to_fastfield_u64, format_date, Key, SerializedKey,
};
use crate::aggregation::{f64_from_fastfield_u64, f64_to_fastfield_u64, Key, SerializedKey};
use crate::schema::Type;
use crate::{DocId, TantivyError};
@@ -184,7 +181,7 @@ impl SegmentRangeCollector {
.into_iter()
.map(move |range_bucket| {
Ok((
range_to_string(&range_bucket.range, &field_type)?,
range_to_string(&range_bucket.range, &field_type),
range_bucket
.bucket
.into_intermediate_bucket_entry(&agg_with_accessor.sub_aggregation)?,
@@ -212,8 +209,8 @@ impl SegmentRangeCollector {
let key = range
.key
.clone()
.map(|key| Ok(Key::Str(key)))
.unwrap_or_else(|| range_to_key(&range.range, &field_type))?;
.map(Key::Str)
.unwrap_or_else(|| range_to_key(&range.range, &field_type));
let to = if range.range.end == u64::MAX {
None
} else {
@@ -231,7 +228,6 @@ impl SegmentRangeCollector {
sub_aggregation,
)?)
};
Ok(SegmentRangeAndBucketEntry {
range: range.range.clone(),
bucket: SegmentRangeBucketEntry {
@@ -271,20 +267,29 @@ impl SegmentRangeCollector {
let val2 = accessor.get_val(docs[1]);
let val3 = accessor.get_val(docs[2]);
let val4 = accessor.get_val(docs[3]);
let bucket_pos1 = self.get_bucket_pos(val1);
let bucket_pos2 = self.get_bucket_pos(val2);
let bucket_pos3 = self.get_bucket_pos(val3);
let bucket_pos4 = self.get_bucket_pos(val4);
self.increment_bucket(bucket_pos1, docs[0], &bucket_with_accessor.sub_aggregation)?;
self.increment_bucket(bucket_pos2, docs[1], &bucket_with_accessor.sub_aggregation)?;
self.increment_bucket(bucket_pos3, docs[2], &bucket_with_accessor.sub_aggregation)?;
self.increment_bucket(bucket_pos4, docs[3], &bucket_with_accessor.sub_aggregation)?;
if let Some(val) = val1 {
let bucket_pos = self.get_bucket_pos(val);
self.increment_bucket(bucket_pos, docs[0], &bucket_with_accessor.sub_aggregation)?;
}
if let Some(val) = val2 {
let bucket_pos = self.get_bucket_pos(val);
self.increment_bucket(bucket_pos, docs[1], &bucket_with_accessor.sub_aggregation)?;
}
if let Some(val) = val3 {
let bucket_pos = self.get_bucket_pos(val);
self.increment_bucket(bucket_pos, docs[2], &bucket_with_accessor.sub_aggregation)?;
}
if let Some(val) = val4 {
let bucket_pos = self.get_bucket_pos(val);
self.increment_bucket(bucket_pos, docs[3], &bucket_with_accessor.sub_aggregation)?;
}
}
for &doc in iter.remainder() {
let val = accessor.get_val(doc);
let bucket_pos = self.get_bucket_pos(val);
self.increment_bucket(bucket_pos, doc, &bucket_with_accessor.sub_aggregation)?;
if let Some(val) = val {
let bucket_pos = self.get_bucket_pos(val);
self.increment_bucket(bucket_pos, doc, &bucket_with_accessor.sub_aggregation)?;
}
}
if force_flush {
for bucket in &mut self.buckets {
@@ -406,45 +411,34 @@ fn extend_validate_ranges(
Ok(converted_buckets)
}
pub(crate) fn range_to_string(range: &Range<u64>, field_type: &Type) -> crate::Result<String> {
pub(crate) fn range_to_string(range: &Range<u64>, field_type: &Type) -> String {
// is_start is there for malformed requests, e.g. ig the user passes the range u64::MIN..0.0,
// it should be rendered as "*-0" and not "*-*"
let to_str = |val: u64, is_start: bool| {
if (is_start && val == u64::MIN) || (!is_start && val == u64::MAX) {
Ok("*".to_string())
} else if *field_type == Type::Date {
let val = i64::from_u64(val);
format_date(val)
"*".to_string()
} else {
Ok(f64_from_fastfield_u64(val, field_type).to_string())
f64_from_fastfield_u64(val, field_type).to_string()
}
};
Ok(format!(
"{}-{}",
to_str(range.start, true)?,
to_str(range.end, false)?
))
format!("{}-{}", to_str(range.start, true), to_str(range.end, false))
}
pub(crate) fn range_to_key(range: &Range<u64>, field_type: &Type) -> crate::Result<Key> {
Ok(Key::Str(range_to_string(range, field_type)?))
pub(crate) fn range_to_key(range: &Range<u64>, field_type: &Type) -> Key {
Key::Str(range_to_string(range, field_type))
}
#[cfg(test)]
mod tests {
use fastfield_codecs::MonotonicallyMappableToU64;
use serde_json::Value;
use super::*;
use crate::aggregation::agg_req::{
Aggregation, Aggregations, BucketAggregation, BucketAggregationType,
};
use crate::aggregation::tests::{
exec_request, exec_request_with_query, get_test_index_2_segments,
get_test_index_with_num_docs,
};
use crate::aggregation::tests::{exec_request_with_query, get_test_index_with_num_docs};
pub fn get_collector_from_ranges(
ranges: Vec<RangeAggregationRange>,
@@ -582,77 +576,6 @@ mod tests {
Ok(())
}
#[test]
fn range_date_test_single_segment() -> crate::Result<()> {
range_date_test_with_opt(true)
}
#[test]
fn range_date_test_multi_segment() -> crate::Result<()> {
range_date_test_with_opt(false)
}
fn range_date_test_with_opt(merge_segments: bool) -> crate::Result<()> {
let index = get_test_index_2_segments(merge_segments)?;
let agg_req: Aggregations = vec![(
"date_ranges".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Range(RangeAggregation {
field: "date".to_string(),
ranges: vec![
RangeAggregationRange {
key: None,
from: None,
to: Some(1546300800000000.0f64),
},
RangeAggregationRange {
key: None,
from: Some(1546300800000000.0f64),
to: Some(1546387200000000.0f64),
},
],
keyed: false,
}),
sub_aggregation: Default::default(),
}),
)]
.into_iter()
.collect();
let agg_res = exec_request(agg_req, &index)?;
let res: Value = serde_json::from_str(&serde_json::to_string(&agg_res)?)?;
assert_eq!(
res["date_ranges"]["buckets"][0]["from_as_string"],
Value::Null
);
assert_eq!(
res["date_ranges"]["buckets"][0]["key"],
"*-2019-01-01T00:00:00Z"
);
assert_eq!(
res["date_ranges"]["buckets"][1]["from_as_string"],
"2019-01-01T00:00:00Z"
);
assert_eq!(
res["date_ranges"]["buckets"][1]["to_as_string"],
"2019-01-02T00:00:00Z"
);
assert_eq!(
res["date_ranges"]["buckets"][2]["from_as_string"],
"2019-01-02T00:00:00Z"
);
assert_eq!(
res["date_ranges"]["buckets"][2]["to_as_string"],
Value::Null
);
Ok(())
}
#[test]
fn range_custom_key_keyed_buckets_test() -> crate::Result<()> {
let index = get_test_index_with_num_docs(false, 100)?;

View File

@@ -7,7 +7,6 @@ use super::intermediate_agg_result::IntermediateAggregationResults;
use super::segment_agg_result::SegmentAggregationResultsCollector;
use crate::aggregation::agg_req_with_accessor::get_aggs_with_accessor_and_validate;
use crate::collector::{Collector, SegmentCollector};
use crate::schema::Schema;
use crate::{SegmentReader, TantivyError};
/// The default max bucket count, before the aggregation fails.
@@ -17,7 +16,6 @@ pub const MAX_BUCKET_COUNT: u32 = 65000;
///
/// The collector collects all aggregations by the underlying aggregation request.
pub struct AggregationCollector {
schema: Schema,
agg: Aggregations,
max_bucket_count: u32,
}
@@ -27,9 +25,8 @@ impl AggregationCollector {
///
/// Aggregation fails when the total bucket count is higher than max_bucket_count.
/// max_bucket_count will default to `MAX_BUCKET_COUNT` (65000) when unset
pub fn from_aggs(agg: Aggregations, max_bucket_count: Option<u32>, schema: Schema) -> Self {
pub fn from_aggs(agg: Aggregations, max_bucket_count: Option<u32>) -> Self {
Self {
schema,
agg,
max_bucket_count: max_bucket_count.unwrap_or(MAX_BUCKET_COUNT),
}
@@ -116,7 +113,7 @@ impl Collector for AggregationCollector {
segment_fruits: Vec<<Self::Child as SegmentCollector>::Fruit>,
) -> crate::Result<Self::Fruit> {
let res = merge_fruits(segment_fruits)?;
res.into_final_bucket_result(self.agg.clone(), &self.schema)
res.into_final_bucket_result(self.agg.clone())
}
}

View File

@@ -1,18 +0,0 @@
use time::format_description::well_known::Rfc3339;
use time::OffsetDateTime;
use crate::TantivyError;
pub(crate) fn format_date(val: i64) -> crate::Result<String> {
let datetime =
OffsetDateTime::from_unix_timestamp_nanos(1_000 * (val as i128)).map_err(|err| {
TantivyError::InvalidArgument(format!(
"Could not convert {:?} to OffsetDateTime, err {:?}",
val, err
))
})?;
let key_as_string = datetime
.format(&Rfc3339)
.map_err(|_err| TantivyError::InvalidArgument("Could not serialize date".to_string()))?;
Ok(key_as_string)
}

View File

@@ -10,7 +10,7 @@ use serde::{Deserialize, Serialize};
use super::agg_req::{
Aggregations, AggregationsInternal, BucketAggregationInternal, BucketAggregationType,
MetricAggregation, RangeAggregation,
MetricAggregation,
};
use super::agg_result::{AggregationResult, BucketResult, RangeBucketEntry};
use super::bucket::{
@@ -19,11 +19,9 @@ use super::bucket::{
};
use super::metric::{IntermediateAverage, IntermediateStats};
use super::segment_agg_result::SegmentMetricResultCollector;
use super::{format_date, Key, SerializedKey, VecWithNames};
use super::{Key, SerializedKey, VecWithNames};
use crate::aggregation::agg_result::{AggregationResults, BucketEntries, BucketEntry};
use crate::aggregation::bucket::TermsAggregationInternal;
use crate::schema::Schema;
use crate::TantivyError;
/// Contains the intermediate aggregation result, which is optimized to be merged with other
/// intermediate results.
@@ -37,12 +35,8 @@ pub struct IntermediateAggregationResults {
impl IntermediateAggregationResults {
/// Convert intermediate result and its aggregation request to the final result.
pub fn into_final_bucket_result(
self,
req: Aggregations,
schema: &Schema,
) -> crate::Result<AggregationResults> {
self.into_final_bucket_result_internal(&(req.into()), schema)
pub fn into_final_bucket_result(self, req: Aggregations) -> crate::Result<AggregationResults> {
self.into_final_bucket_result_internal(&(req.into()))
}
/// Convert intermediate result and its aggregation request to the final result.
@@ -52,7 +46,6 @@ impl IntermediateAggregationResults {
pub(crate) fn into_final_bucket_result_internal(
self,
req: &AggregationsInternal,
schema: &Schema,
) -> crate::Result<AggregationResults> {
// Important assumption:
// When the tree contains buckets/metric, we expect it to have all buckets/metrics from the
@@ -60,11 +53,11 @@ impl IntermediateAggregationResults {
let mut results: FxHashMap<String, AggregationResult> = FxHashMap::default();
if let Some(buckets) = self.buckets {
convert_and_add_final_buckets_to_result(&mut results, buckets, &req.buckets, schema)?
convert_and_add_final_buckets_to_result(&mut results, buckets, &req.buckets)?
} else {
// When there are no buckets, we create empty buckets, so that the serialized json
// format is constant
add_empty_final_buckets_to_result(&mut results, &req.buckets, schema)?
add_empty_final_buckets_to_result(&mut results, &req.buckets)?
};
if let Some(metrics) = self.metrics {
@@ -165,12 +158,10 @@ fn add_empty_final_metrics_to_result(
fn add_empty_final_buckets_to_result(
results: &mut FxHashMap<String, AggregationResult>,
req_buckets: &VecWithNames<BucketAggregationInternal>,
schema: &Schema,
) -> crate::Result<()> {
let requested_buckets = req_buckets.iter();
for (key, req) in requested_buckets {
let empty_bucket =
AggregationResult::BucketResult(BucketResult::empty_from_req(req, schema)?);
let empty_bucket = AggregationResult::BucketResult(BucketResult::empty_from_req(req)?);
results.insert(key.to_string(), empty_bucket);
}
Ok(())
@@ -180,13 +171,12 @@ fn convert_and_add_final_buckets_to_result(
results: &mut FxHashMap<String, AggregationResult>,
buckets: VecWithNames<IntermediateBucketResult>,
req_buckets: &VecWithNames<BucketAggregationInternal>,
schema: &Schema,
) -> crate::Result<()> {
assert_eq!(buckets.len(), req_buckets.len());
let buckets_with_request = buckets.into_iter().zip(req_buckets.values());
for ((key, bucket), req) in buckets_with_request {
let result = AggregationResult::BucketResult(bucket.into_final_bucket_result(req, schema)?);
let result = AggregationResult::BucketResult(bucket.into_final_bucket_result(req)?);
results.insert(key, result);
}
Ok(())
@@ -276,21 +266,13 @@ impl IntermediateBucketResult {
pub(crate) fn into_final_bucket_result(
self,
req: &BucketAggregationInternal,
schema: &Schema,
) -> crate::Result<BucketResult> {
match self {
IntermediateBucketResult::Range(range_res) => {
let mut buckets: Vec<RangeBucketEntry> = range_res
.buckets
.into_values()
.map(|bucket| {
bucket.into_final_bucket_entry(
&req.sub_aggregation,
schema,
req.as_range()
.expect("unexpected aggregation, expected histogram aggregation"),
)
})
.into_iter()
.map(|(_, bucket)| bucket.into_final_bucket_entry(&req.sub_aggregation))
.collect::<crate::Result<Vec<_>>>()?;
buckets.sort_by(|left, right| {
@@ -321,7 +303,6 @@ impl IntermediateBucketResult {
req.as_histogram()
.expect("unexpected aggregation, expected histogram aggregation"),
&req.sub_aggregation,
schema,
)?;
let buckets = if req.as_histogram().unwrap().keyed {
@@ -340,7 +321,6 @@ impl IntermediateBucketResult {
req.as_term()
.expect("unexpected aggregation, expected term aggregation"),
&req.sub_aggregation,
schema,
),
}
}
@@ -431,7 +411,6 @@ impl IntermediateTermBucketResult {
self,
req: &TermsAggregation,
sub_aggregation_req: &AggregationsInternal,
schema: &Schema,
) -> crate::Result<BucketResult> {
let req = TermsAggregationInternal::from_req(req);
let mut buckets: Vec<BucketEntry> = self
@@ -440,12 +419,11 @@ impl IntermediateTermBucketResult {
.filter(|bucket| bucket.1.doc_count >= req.min_doc_count)
.map(|(key, entry)| {
Ok(BucketEntry {
key_as_string: None,
key: Key::Str(key),
doc_count: entry.doc_count,
sub_aggregation: entry
.sub_aggregation
.into_final_bucket_result_internal(sub_aggregation_req, schema)?,
.into_final_bucket_result_internal(sub_aggregation_req)?,
})
})
.collect::<crate::Result<_>>()?;
@@ -550,15 +528,13 @@ impl IntermediateHistogramBucketEntry {
pub(crate) fn into_final_bucket_entry(
self,
req: &AggregationsInternal,
schema: &Schema,
) -> crate::Result<BucketEntry> {
Ok(BucketEntry {
key_as_string: None,
key: Key::F64(self.key),
doc_count: self.doc_count,
sub_aggregation: self
.sub_aggregation
.into_final_bucket_result_internal(req, schema)?,
.into_final_bucket_result_internal(req)?,
})
}
}
@@ -595,38 +571,16 @@ impl IntermediateRangeBucketEntry {
pub(crate) fn into_final_bucket_entry(
self,
req: &AggregationsInternal,
schema: &Schema,
range_req: &RangeAggregation,
) -> crate::Result<RangeBucketEntry> {
let mut range_bucket_entry = RangeBucketEntry {
Ok(RangeBucketEntry {
key: self.key,
doc_count: self.doc_count,
sub_aggregation: self
.sub_aggregation
.into_final_bucket_result_internal(req, schema)?,
.into_final_bucket_result_internal(req)?,
to: self.to,
from: self.from,
to_as_string: None,
from_as_string: None,
};
// If we have a date type on the histogram buckets, we add the `key_as_string` field as
// rfc339
let field = schema
.get_field(&range_req.field)
.ok_or_else(|| TantivyError::FieldNotFound(range_req.field.to_string()))?;
if schema.get_field_entry(field).field_type().is_date() {
if let Some(val) = range_bucket_entry.to {
let key_as_string = format_date(val as i64)?;
range_bucket_entry.to_as_string = Some(key_as_string);
}
if let Some(val) = range_bucket_entry.from {
let key_as_string = format_date(val as i64)?;
range_bucket_entry.from_as_string = Some(key_as_string);
}
}
Ok(range_bucket_entry)
})
}
}

View File

@@ -1,6 +1,6 @@
use std::fmt::Debug;
use fastfield_codecs::Column;
use fastfield_codecs::OptionalColumn;
use serde::{Deserialize, Serialize};
use crate::aggregation::f64_from_fastfield_u64;
@@ -57,26 +57,33 @@ impl SegmentAverageCollector {
data: Default::default(),
}
}
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &dyn Column<u64>) {
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &dyn OptionalColumn<u64>) {
let mut iter = doc.chunks_exact(4);
for docs in iter.by_ref() {
let val1 = field.get_val(docs[0]);
let val2 = field.get_val(docs[1]);
let val3 = field.get_val(docs[2]);
let val4 = field.get_val(docs[3]);
let val1 = f64_from_fastfield_u64(val1, &self.field_type);
let val2 = f64_from_fastfield_u64(val2, &self.field_type);
let val3 = f64_from_fastfield_u64(val3, &self.field_type);
let val4 = f64_from_fastfield_u64(val4, &self.field_type);
self.data.collect(val1);
self.data.collect(val2);
self.data.collect(val3);
self.data.collect(val4);
if let Some(val) = field.get_val(docs[0]) {
let val = f64_from_fastfield_u64(val, &self.field_type);
self.data.collect(val);
}
if let Some(val) = field.get_val(docs[1]) {
let val = f64_from_fastfield_u64(val, &self.field_type);
self.data.collect(val);
}
if let Some(val) = field.get_val(docs[2]) {
let val = f64_from_fastfield_u64(val, &self.field_type);
self.data.collect(val);
}
if let Some(val) = field.get_val(docs[3]) {
let val = f64_from_fastfield_u64(val, &self.field_type);
self.data.collect(val);
}
}
for &doc in iter.remainder() {
let val = field.get_val(doc);
let val = f64_from_fastfield_u64(val, &self.field_type);
self.data.collect(val);
if let Some(val) = field.get_val(doc) {
let val = f64_from_fastfield_u64(val, &self.field_type);
self.data.collect(val);
}
}
}
}

View File

@@ -1,4 +1,4 @@
use fastfield_codecs::Column;
use fastfield_codecs::OptionalColumn;
use serde::{Deserialize, Serialize};
use crate::aggregation::f64_from_fastfield_u64;
@@ -163,26 +163,31 @@ impl SegmentStatsCollector {
stats: IntermediateStats::default(),
}
}
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &dyn Column<u64>) {
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &dyn OptionalColumn<u64>) {
let mut iter = doc.chunks_exact(4);
for docs in iter.by_ref() {
let val1 = field.get_val(docs[0]);
let val2 = field.get_val(docs[1]);
let val3 = field.get_val(docs[2]);
let val4 = field.get_val(docs[3]);
let val1 = f64_from_fastfield_u64(val1, &self.field_type);
let val2 = f64_from_fastfield_u64(val2, &self.field_type);
let val3 = f64_from_fastfield_u64(val3, &self.field_type);
let val4 = f64_from_fastfield_u64(val4, &self.field_type);
self.stats.collect(val1);
self.stats.collect(val2);
self.stats.collect(val3);
self.stats.collect(val4);
if let Some(val) = field.get_val(docs[0]) {
let val = f64_from_fastfield_u64(val, &self.field_type);
self.stats.collect(val);
}
if let Some(val) = field.get_val(docs[1]) {
let val = f64_from_fastfield_u64(val, &self.field_type);
self.stats.collect(val);
}
if let Some(val) = field.get_val(docs[2]) {
let val = f64_from_fastfield_u64(val, &self.field_type);
self.stats.collect(val);
}
if let Some(val) = field.get_val(docs[3]) {
let val = f64_from_fastfield_u64(val, &self.field_type);
self.stats.collect(val);
}
}
for &doc in iter.remainder() {
let val = field.get_val(doc);
let val = f64_from_fastfield_u64(val, &self.field_type);
self.stats.collect(val);
if let Some(val) = field.get_val(doc) {
let val = f64_from_fastfield_u64(val, &self.field_type);
self.stats.collect(val);
}
}
}
}
@@ -222,7 +227,7 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let reader = index.reader()?;
let searcher = reader.searcher();
@@ -300,7 +305,7 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();

View File

@@ -12,7 +12,7 @@
//!
//! ## Prerequisite
//! Currently aggregations work only on [fast fields](`crate::fastfield`). Single value fast fields
//! of type `u64`, `f64`, `i64`, `date` and fast fields on text fields.
//! of type `u64`, `f64`, `i64` and fast fields on text fields.
//!
//! ## Usage
//! To use aggregations, build an aggregation request by constructing
@@ -53,10 +53,9 @@
//! use tantivy::query::AllQuery;
//! use tantivy::aggregation::agg_result::AggregationResults;
//! use tantivy::IndexReader;
//! use tantivy::schema::Schema;
//!
//! # #[allow(dead_code)]
//! fn aggregate_on_index(reader: &IndexReader, schema: Schema) {
//! fn aggregate_on_index(reader: &IndexReader) {
//! let agg_req: Aggregations = vec![
//! (
//! "average".to_string(),
@@ -68,7 +67,7 @@
//! .into_iter()
//! .collect();
//!
//! let collector = AggregationCollector::from_aggs(agg_req, None, schema);
//! let collector = AggregationCollector::from_aggs(agg_req, None);
//!
//! let searcher = reader.searcher();
//! let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
@@ -158,7 +157,6 @@ mod agg_req_with_accessor;
pub mod agg_result;
pub mod bucket;
mod collector;
mod date;
pub mod intermediate_agg_result;
pub mod metric;
mod segment_agg_result;
@@ -169,7 +167,6 @@ pub use collector::{
AggregationCollector, AggregationSegmentCollector, DistributedAggregationCollector,
MAX_BUCKET_COUNT,
};
pub(crate) use date::format_date;
use fastfield_codecs::MonotonicallyMappableToU64;
use itertools::Itertools;
use serde::{Deserialize, Serialize};
@@ -286,11 +283,11 @@ impl Display for Key {
/// Inverse of `to_fastfield_u64`. Used to convert to `f64` for metrics.
///
/// # Panics
/// Only `u64`, `f64`, `date`, and `i64` are supported.
/// Only `u64`, `f64`, and `i64` are supported.
pub(crate) fn f64_from_fastfield_u64(val: u64, field_type: &Type) -> f64 {
match field_type {
Type::U64 => val as f64,
Type::I64 | Type::Date => i64::from_u64(val) as f64,
Type::I64 => i64::from_u64(val) as f64,
Type::F64 => f64::from_u64(val),
_ => {
panic!("unexpected type {:?}. This should not happen", field_type)
@@ -298,9 +295,10 @@ pub(crate) fn f64_from_fastfield_u64(val: u64, field_type: &Type) -> f64 {
}
}
/// Converts the `f64` value to fast field value space, which is always u64.
/// Converts the `f64` value to fast field value space.
///
/// If the fast field has `u64`, values are stored unchanged as `u64` in the fast field.
/// If the fast field has `u64`, values are stored as `u64` in the fast field.
/// A `f64` value of e.g. `2.0` therefore needs to be converted to `1u64`.
///
/// If the fast field has `f64` values are converted and stored to `u64` using a
/// monotonic mapping.
@@ -310,7 +308,7 @@ pub(crate) fn f64_from_fastfield_u64(val: u64, field_type: &Type) -> f64 {
pub(crate) fn f64_to_fastfield_u64(val: f64, field_type: &Type) -> Option<u64> {
match field_type {
Type::U64 => Some(val as u64),
Type::I64 | Type::Date => Some((val as i64).to_u64()),
Type::I64 => Some((val as i64).to_u64()),
Type::F64 => Some(val.to_u64()),
_ => None,
}
@@ -319,7 +317,6 @@ pub(crate) fn f64_to_fastfield_u64(val: f64, field_type: &Type) -> Option<u64> {
#[cfg(test)]
mod tests {
use serde_json::Value;
use time::OffsetDateTime;
use super::agg_req::{Aggregation, Aggregations, BucketAggregation};
use super::bucket::RangeAggregation;
@@ -335,7 +332,7 @@ mod tests {
use crate::aggregation::DistributedAggregationCollector;
use crate::query::{AllQuery, TermQuery};
use crate::schema::{Cardinality, IndexRecordOption, Schema, TextFieldIndexing, FAST, STRING};
use crate::{DateTime, Index, Term};
use crate::{Index, Term};
fn get_avg_req(field_name: &str) -> Aggregation {
Aggregation::Metric(MetricAggregation::Average(
@@ -361,7 +358,7 @@ mod tests {
index: &Index,
query: Option<(&str, &str)>,
) -> crate::Result<Value> {
let collector = AggregationCollector::from_aggs(agg_req, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req, None);
let reader = index.reader()?;
let searcher = reader.searcher();
@@ -451,9 +448,9 @@ mod tests {
text_field_id => term.to_string(),
string_field_id => term.to_string(),
score_field => i as u64,
score_field_f64 => i,
score_field_f64 => i as f64,
score_field_i64 => i as i64,
fraction_field => i/100.0,
fraction_field => i as f64/100.0,
))?;
}
index_writer.commit()?;
@@ -555,10 +552,10 @@ mod tests {
let searcher = reader.searcher();
let intermediate_agg_result = searcher.search(&AllQuery, &collector).unwrap();
intermediate_agg_result
.into_final_bucket_result(agg_req, &index.schema())
.into_final_bucket_result(agg_req)
.unwrap()
} else {
let collector = AggregationCollector::from_aggs(agg_req, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req, None);
let searcher = reader.searcher();
searcher.search(&AllQuery, &collector).unwrap()
@@ -651,7 +648,6 @@ mod tests {
.set_fast()
.set_stored();
let text_field = schema_builder.add_text_field("text", text_fieldtype);
let date_field = schema_builder.add_date_field("date", FAST);
schema_builder.add_text_field("dummy_text", STRING);
let score_fieldtype =
crate::schema::NumericOptions::default().set_fast(Cardinality::SingleValue);
@@ -669,7 +665,6 @@ mod tests {
// writing the segment
index_writer.add_document(doc!(
text_field => "cool",
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800).unwrap()),
score_field => 1u64,
score_field_f64 => 1f64,
score_field_i64 => 1i64,
@@ -678,7 +673,6 @@ mod tests {
))?;
index_writer.add_document(doc!(
text_field => "cool",
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400).unwrap()),
score_field => 3u64,
score_field_f64 => 3f64,
score_field_i64 => 3i64,
@@ -687,21 +681,18 @@ mod tests {
))?;
index_writer.add_document(doc!(
text_field => "cool",
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400).unwrap()),
score_field => 5u64,
score_field_f64 => 5f64,
score_field_i64 => 5i64,
))?;
index_writer.add_document(doc!(
text_field => "nohit",
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400).unwrap()),
score_field => 6u64,
score_field_f64 => 6f64,
score_field_i64 => 6i64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400).unwrap()),
score_field => 7u64,
score_field_f64 => 7f64,
score_field_i64 => 7i64,
@@ -709,14 +700,12 @@ mod tests {
index_writer.commit()?;
index_writer.add_document(doc!(
text_field => "cool",
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400).unwrap()),
score_field => 11u64,
score_field_f64 => 11f64,
score_field_i64 => 11i64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400 + 86400).unwrap()),
score_field => 14u64,
score_field_f64 => 14f64,
score_field_i64 => 14i64,
@@ -724,7 +713,6 @@ mod tests {
index_writer.add_document(doc!(
text_field => "cool",
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400 + 86400).unwrap()),
score_field => 44u64,
score_field_f64 => 44.5f64,
score_field_i64 => 44i64,
@@ -735,7 +723,6 @@ mod tests {
// no hits segment
index_writer.add_document(doc!(
text_field => "nohit",
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400 + 86400).unwrap()),
score_field => 44u64,
score_field_f64 => 44.5f64,
score_field_i64 => 44i64,
@@ -808,7 +795,7 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();
@@ -1008,10 +995,9 @@ mod tests {
// Test de/serialization roundtrip on intermediate_agg_result
let res: IntermediateAggregationResults =
serde_json::from_str(&serde_json::to_string(&res).unwrap()).unwrap();
res.into_final_bucket_result(agg_req.clone(), &index.schema())
.unwrap()
res.into_final_bucket_result(agg_req.clone()).unwrap()
} else {
let collector = AggregationCollector::from_aggs(agg_req.clone(), None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req.clone(), None);
let searcher = reader.searcher();
searcher.search(&term_query, &collector).unwrap()
@@ -1069,7 +1055,7 @@ mod tests {
);
// Test empty result set
let collector = AggregationCollector::from_aggs(agg_req, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req, None);
let searcher = reader.searcher();
searcher.search(&query_with_no_hits, &collector).unwrap();
@@ -1134,7 +1120,7 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
@@ -1208,7 +1194,7 @@ mod tests {
text_field_many_terms => many_terms_data.choose(&mut rng).unwrap().to_string(),
text_field_few_terms => few_terms_data.choose(&mut rng).unwrap().to_string(),
score_field => val as u64,
score_field_f64 => val,
score_field_f64 => val as f64,
score_field_i64 => val as i64,
))?;
}
@@ -1247,10 +1233,13 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
searcher.search(&term_query, &collector).unwrap()
let agg_res: AggregationResults =
searcher.search(&term_query, &collector).unwrap().into();
agg_res
});
}
@@ -1275,10 +1264,13 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
searcher.search(&term_query, &collector).unwrap()
let agg_res: AggregationResults =
searcher.search(&term_query, &collector).unwrap().into();
agg_res
});
}
@@ -1303,10 +1295,13 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
searcher.search(&term_query, &collector).unwrap()
let agg_res: AggregationResults =
searcher.search(&term_query, &collector).unwrap().into();
agg_res
});
}
@@ -1339,10 +1334,13 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
searcher.search(&term_query, &collector).unwrap()
let agg_res: AggregationResults =
searcher.search(&term_query, &collector).unwrap().into();
agg_res
});
}
@@ -1365,10 +1363,13 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req, None);
let searcher = reader.searcher();
searcher.search(&AllQuery, &collector).unwrap()
let agg_res: AggregationResults =
searcher.search(&AllQuery, &collector).unwrap().into();
agg_res
});
}
@@ -1391,10 +1392,13 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req, None);
let searcher = reader.searcher();
searcher.search(&AllQuery, &collector).unwrap()
let agg_res: AggregationResults =
searcher.search(&AllQuery, &collector).unwrap().into();
agg_res
});
}
@@ -1425,10 +1429,13 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
searcher.search(&AllQuery, &collector).unwrap()
let agg_res: AggregationResults =
searcher.search(&AllQuery, &collector).unwrap().into();
agg_res
});
}
@@ -1457,10 +1464,13 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
searcher.search(&AllQuery, &collector).unwrap()
let agg_res: AggregationResults =
searcher.search(&AllQuery, &collector).unwrap().into();
agg_res
});
}
@@ -1493,10 +1503,13 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
searcher.search(&AllQuery, &collector).unwrap()
let agg_res: AggregationResults =
searcher.search(&AllQuery, &collector).unwrap().into();
agg_res
});
}
@@ -1520,10 +1533,13 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
searcher.search(&AllQuery, &collector).unwrap()
let agg_res: AggregationResults =
searcher.search(&AllQuery, &collector).unwrap().into();
agg_res
});
}
@@ -1567,17 +1583,20 @@ mod tests {
],
..Default::default()
}),
sub_aggregation: sub_agg_req_1,
sub_aggregation: sub_agg_req_1.clone(),
}),
),
]
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
searcher.search(&term_query, &collector).unwrap()
let agg_res: AggregationResults =
searcher.search(&term_query, &collector).unwrap().into();
agg_res
});
}
}

View File

@@ -305,7 +305,7 @@ impl BucketCount {
}
pub(crate) fn add_count(&self, count: u32) {
self.bucket_count
.fetch_add(count, std::sync::atomic::Ordering::Relaxed);
.fetch_add(count as u32, std::sync::atomic::Ordering::Relaxed);
}
pub(crate) fn get_count(&self) -> u32 {
self.bucket_count.load(std::sync::atomic::Ordering::Relaxed)

View File

@@ -357,7 +357,7 @@ impl SegmentCollector for FacetSegmentCollector {
let mut facet = vec![];
let facet_ord = self.collapse_facet_ords[collapsed_facet_ord];
// TODO handle errors.
if facet_dict.ord_to_term(facet_ord, &mut facet).is_ok() {
if facet_dict.ord_to_term(facet_ord as u64, &mut facet).is_ok() {
if let Ok(facet) = Facet::from_encoded(facet) {
facet_counts.insert(facet, count);
}

View File

@@ -130,7 +130,9 @@ where
let fast_field_reader = segment_reader
.fast_fields()
.typed_fast_field_reader(self.field)?;
.typed_fast_field_reader(self.field)?
.to_full()
.expect("temp migration solution");
let segment_collector = self
.collector

View File

@@ -112,7 +112,11 @@ impl Collector for HistogramCollector {
_segment_local_id: crate::SegmentOrdinal,
segment: &crate::SegmentReader,
) -> crate::Result<Self::Child> {
let ff_reader = segment.fast_fields().u64_lenient(self.field)?;
let ff_reader = segment
.fast_fields()
.u64_lenient(self.field)?
.to_full()
.expect("temp migration solution");
Ok(SegmentHistogramCollector {
histogram_computer: HistogramComputer {
counts: vec![0; self.num_buckets],

View File

@@ -170,7 +170,7 @@ pub trait Collector: Sync + Send {
segment_ord: u32,
reader: &SegmentReader,
) -> crate::Result<<Self::Child as SegmentCollector>::Fruit> {
let mut segment_collector = self.for_segment(segment_ord, reader)?;
let mut segment_collector = self.for_segment(segment_ord as u32, reader)?;
match (reader.alive_bitset(), self.requires_scoring()) {
(Some(alive_bitset), true) => {

View File

@@ -1,6 +1,6 @@
use std::sync::Arc;
use fastfield_codecs::Column;
use fastfield_codecs::OptionalColumn;
use super::*;
use crate::collector::{Count, FilterCollector, TopDocs};
@@ -160,7 +160,7 @@ pub struct FastFieldTestCollector {
pub struct FastFieldSegmentCollector {
vals: Vec<u64>,
reader: Arc<dyn Column<u64>>,
reader: Arc<dyn OptionalColumn<u64>>,
}
impl FastFieldTestCollector {
@@ -202,7 +202,9 @@ impl SegmentCollector for FastFieldSegmentCollector {
fn collect(&mut self, doc: DocId, _score: Score) {
let val = self.reader.get_val(doc);
self.vals.push(val);
if let Some(val) = val {
self.vals.push(val);
}
}
fn harvest(self) -> Vec<u64> {

View File

@@ -156,7 +156,9 @@ impl CustomScorer<u64> for ScorerByField {
// The conversion will then happen only on the top-K docs.
let ff_reader = segment_reader
.fast_fields()
.typed_fast_field_reader(self.field)?;
.typed_fast_field_reader(self.field)?
.to_full()
.expect("temp migration solution");
Ok(ScorerByFastFieldReader { ff_reader })
}
}
@@ -458,7 +460,7 @@ impl TopDocs {
///
/// // We can now define our actual scoring function
/// move |doc: DocId, original_score: Score| {
/// let popularity: u64 = popularity_reader.get_val(doc);
/// let popularity: u64 = popularity_reader.get_val(doc).unwrap();
/// // Well.. For the sake of the example we use a simple logarithm
/// // function.
/// let popularity_boost_score = ((2u64 + popularity) as Score).log2();
@@ -567,8 +569,8 @@ impl TopDocs {
///
/// // We can now define our actual scoring function
/// move |doc: DocId| {
/// let popularity: u64 = popularity_reader.get_val(doc);
/// let boosted: u64 = boosted_reader.get_val(doc);
/// let popularity: u64 = popularity_reader.get_val(doc).unwrap();
/// let boosted: u64 = boosted_reader.get_val(doc).unwrap();
/// // Score do not have to be `f64` in tantivy.
/// // Here we return a couple to get lexicographical order
/// // for free.

View File

@@ -149,8 +149,7 @@ impl IndexBuilder {
/// Creates a new index using the [`RamDirectory`].
///
/// The index will be allocated in anonymous memory.
/// This is useful for indexing small set of documents
/// for instances like unit test or temporary in memory index.
/// This should only be used for unit tests.
pub fn create_in_ram(self) -> Result<Index, TantivyError> {
let ram_directory = RamDirectory::create();
self.create(ram_directory)
@@ -813,7 +812,7 @@ mod tests {
let field = schema.get_field("num_likes").unwrap();
let tempdir = TempDir::new().unwrap();
let tempdir_path = PathBuf::from(tempdir.path());
let index = Index::create_in_dir(tempdir_path, schema).unwrap();
let index = Index::create_in_dir(&tempdir_path, schema).unwrap();
let reader = index
.reader_builder()
.reload_policy(ReloadPolicy::OnCommit)

View File

@@ -200,7 +200,10 @@ impl InvertedIndexReader {
#[cfg(feature = "quickwit")]
impl InvertedIndexReader {
pub(crate) async fn get_term_info_async(&self, term: &Term) -> io::Result<Option<TermInfo>> {
pub(crate) async fn get_term_info_async(
&self,
term: &Term,
) -> crate::AsyncIoResult<Option<TermInfo>> {
self.termdict.get_async(term.value_bytes()).await
}
@@ -208,8 +211,12 @@ impl InvertedIndexReader {
/// This method is for an advanced usage only.
///
/// Most users should prefer using [`Self::read_postings()`] instead.
pub async fn warm_postings(&self, term: &Term, with_positions: bool) -> io::Result<()> {
let term_info_opt: Option<TermInfo> = self.get_term_info_async(term).await?;
pub async fn warm_postings(
&self,
term: &Term,
with_positions: bool,
) -> crate::AsyncIoResult<()> {
let term_info_opt = self.get_term_info_async(term).await?;
if let Some(term_info) = term_info_opt {
self.postings_file_slice
.read_bytes_slice_async(term_info.postings_range.clone())
@@ -227,7 +234,7 @@ impl InvertedIndexReader {
/// This method is for an advanced usage only.
///
/// If you know which terms to pre-load, prefer using [`Self::warm_postings`] instead.
pub async fn warm_postings_full(&self, with_positions: bool) -> io::Result<()> {
pub async fn warm_postings_full(&self, with_positions: bool) -> crate::AsyncIoResult<()> {
self.postings_file_slice.read_bytes_async().await?;
if with_positions {
self.positions_file_slice.read_bytes_async().await?;
@@ -236,7 +243,7 @@ impl InvertedIndexReader {
}
/// Returns the number of documents containing the term asynchronously.
pub async fn doc_freq_async(&self, term: &Term) -> io::Result<u32> {
pub async fn doc_freq_async(&self, term: &Term) -> crate::AsyncIoResult<u32> {
Ok(self
.get_term_info_async(term)
.await?

View File

@@ -198,10 +198,11 @@ impl Searcher {
collector: &C,
executor: &Executor,
) -> crate::Result<C::Fruit> {
let enabled_scoring = if collector.requires_scoring() {
EnableScoring::enabled_from_searcher(self)
let scoring_enabled = collector.requires_scoring();
let enabled_scoring = if scoring_enabled {
EnableScoring::Enabled(self)
} else {
EnableScoring::disabled_from_searcher(self)
EnableScoring::Disabled(self.schema())
};
let weight = query.weight(enabled_scoring)?;
let segment_readers = self.segment_readers();

View File

@@ -75,7 +75,7 @@ impl<W: TerminatingWrite + Write> CompositeWrite<W> {
let mut prev_offset = 0;
for (file_addr, offset) in self.offsets {
VInt(offset - prev_offset).serialize(&mut self.write)?;
VInt((offset - prev_offset) as u64).serialize(&mut self.write)?;
file_addr.serialize(&mut self.write)?;
prev_offset = offset;
}

View File

@@ -32,7 +32,7 @@ impl LockError {
/// Error that may occur when opening a directory
#[derive(Debug, Clone, Error)]
pub enum OpenDirectoryError {
/// The underlying directory does not exist.
/// The underlying directory does not exists.
#[error("Directory does not exist: '{0}'.")]
DoesNotExist(PathBuf),
/// The path exists but is not a directory.
@@ -151,8 +151,8 @@ impl fmt::Debug for Incompatibility {
/// Error that may occur when accessing a file read
#[derive(Debug, Clone, Error)]
pub enum OpenReadError {
/// The file does not exist.
#[error("Files does not exist: {0:?}")]
/// The file does not exists.
#[error("Files does not exists: {0:?}")]
FileDoesNotExist(PathBuf),
/// Any kind of io::Error.
#[error(
@@ -181,8 +181,8 @@ impl OpenReadError {
/// Error that may occur when trying to delete a file
#[derive(Debug, Clone, Error)]
pub enum DeleteError {
/// The file does not exist.
#[error("File does not exist: '{0}'.")]
/// The file does not exists.
#[error("File does not exists: '{0}'.")]
FileDoesNotExist(PathBuf),
/// Any kind of IO error that happens when
/// interacting with the underlying IO device.

View File

@@ -1,18 +1,19 @@
use std::ops::{Deref, Range, RangeBounds};
use std::ops::{Deref, Range};
use std::sync::Arc;
use std::{fmt, io};
use async_trait::async_trait;
use ownedbytes::{OwnedBytes, StableDeref};
use common::HasLen;
use stable_deref_trait::StableDeref;
use crate::HasLen;
use crate::directory::OwnedBytes;
/// Objects that represents files sections in tantivy.
///
/// By contract, whatever happens to the directory file, as long as a FileHandle
/// is alive, the data associated with it cannot be altered or destroyed.
///
/// The underlying behavior is therefore specific to the `Directory` that
/// The underlying behavior is therefore specific to the [`Directory`](crate::Directory) that
/// created it. Despite its name, a [`FileSlice`] may or may not directly map to an actual file
/// on the filesystem.
@@ -23,12 +24,13 @@ pub trait FileHandle: 'static + Send + Sync + HasLen + fmt::Debug {
/// This method may panic if the range requested is invalid.
fn read_bytes(&self, range: Range<usize>) -> io::Result<OwnedBytes>;
#[cfg(feature = "quickwit")]
#[doc(hidden)]
async fn read_bytes_async(&self, _byte_range: Range<usize>) -> io::Result<OwnedBytes> {
Err(io::Error::new(
io::ErrorKind::Unsupported,
"Async read is not supported.",
))
async fn read_bytes_async(
&self,
_byte_range: Range<usize>,
) -> crate::AsyncIoResult<OwnedBytes> {
Err(crate::error::AsyncIoError::AsyncUnsupported)
}
}
@@ -39,7 +41,8 @@ impl FileHandle for &'static [u8] {
Ok(OwnedBytes::new(bytes))
}
async fn read_bytes_async(&self, byte_range: Range<usize>) -> io::Result<OwnedBytes> {
#[cfg(feature = "quickwit")]
async fn read_bytes_async(&self, byte_range: Range<usize>) -> crate::AsyncIoResult<OwnedBytes> {
Ok(self.read_bytes(byte_range)?)
}
}
@@ -67,34 +70,6 @@ impl fmt::Debug for FileSlice {
}
}
/// Takes a range, a `RangeBounds` object, and returns
/// a `Range` that corresponds to the relative application of the
/// `RangeBounds` object to the original `Range`.
///
/// For instance, combine_ranges(`[2..11)`, `[5..7]`) returns `[7..10]`
/// as it reads, what is the sub-range that starts at the 5 element of
/// `[2..11)` and ends at the 9th element included.
///
/// This function panics, if the result would suggest something outside
/// of the bounds of the original range.
fn combine_ranges<R: RangeBounds<usize>>(orig_range: Range<usize>, rel_range: R) -> Range<usize> {
let start: usize = orig_range.start
+ match rel_range.start_bound().cloned() {
std::ops::Bound::Included(rel_start) => rel_start,
std::ops::Bound::Excluded(rel_start) => rel_start + 1,
std::ops::Bound::Unbounded => 0,
};
assert!(start <= orig_range.end);
let end: usize = match rel_range.end_bound().cloned() {
std::ops::Bound::Included(rel_end) => orig_range.start + rel_end + 1,
std::ops::Bound::Excluded(rel_end) => orig_range.start + rel_end,
std::ops::Bound::Unbounded => orig_range.end,
};
assert!(end >= start);
assert!(end <= orig_range.end);
start..end
}
impl FileSlice {
/// Wraps a FileHandle.
pub fn new(file_handle: Arc<dyn FileHandle>) -> Self {
@@ -118,11 +93,11 @@ impl FileSlice {
///
/// Panics if `byte_range.end` exceeds the filesize.
#[must_use]
#[inline]
pub fn slice<R: RangeBounds<usize>>(&self, byte_range: R) -> FileSlice {
pub fn slice(&self, byte_range: Range<usize>) -> FileSlice {
assert!(byte_range.end <= self.len());
FileSlice {
data: self.data.clone(),
range: combine_ranges(self.range.clone(), byte_range),
range: self.range.start + byte_range.start..self.range.start + byte_range.end,
}
}
@@ -142,8 +117,9 @@ impl FileSlice {
self.data.read_bytes(self.range.clone())
}
#[cfg(feature = "quickwit")]
#[doc(hidden)]
pub async fn read_bytes_async(&self) -> io::Result<OwnedBytes> {
pub async fn read_bytes_async(&self) -> crate::AsyncIoResult<OwnedBytes> {
self.data.read_bytes_async(self.range.clone()).await
}
@@ -161,8 +137,12 @@ impl FileSlice {
.read_bytes(self.range.start + range.start..self.range.start + range.end)
}
#[cfg(feature = "quickwit")]
#[doc(hidden)]
pub async fn read_bytes_slice_async(&self, byte_range: Range<usize>) -> io::Result<OwnedBytes> {
pub async fn read_bytes_slice_async(
&self,
byte_range: Range<usize>,
) -> crate::AsyncIoResult<OwnedBytes> {
assert!(
self.range.start + byte_range.end <= self.range.end,
"`to` exceeds the fileslice length"
@@ -224,7 +204,8 @@ impl FileHandle for FileSlice {
self.read_bytes_slice(range)
}
async fn read_bytes_async(&self, byte_range: Range<usize>) -> io::Result<OwnedBytes> {
#[cfg(feature = "quickwit")]
async fn read_bytes_async(&self, byte_range: Range<usize>) -> crate::AsyncIoResult<OwnedBytes> {
self.read_bytes_slice_async(byte_range).await
}
}
@@ -241,20 +222,21 @@ impl FileHandle for OwnedBytes {
Ok(self.slice(range))
}
async fn read_bytes_async(&self, range: Range<usize>) -> io::Result<OwnedBytes> {
self.read_bytes(range)
#[cfg(feature = "quickwit")]
async fn read_bytes_async(&self, range: Range<usize>) -> crate::AsyncIoResult<OwnedBytes> {
let bytes = self.read_bytes(range)?;
Ok(bytes)
}
}
#[cfg(test)]
mod tests {
use std::io;
use std::ops::Bound;
use std::sync::Arc;
use common::HasLen;
use super::{FileHandle, FileSlice};
use crate::file_slice::combine_ranges;
use crate::HasLen;
#[test]
fn test_file_slice() -> io::Result<()> {
@@ -325,23 +307,4 @@ mod tests {
b"bcd"
);
}
#[test]
fn test_combine_range() {
assert_eq!(combine_ranges(1..3, 0..1), 1..2);
assert_eq!(combine_ranges(1..3, 1..), 2..3);
assert_eq!(combine_ranges(1..4, ..2), 1..3);
assert_eq!(combine_ranges(3..10, 2..5), 5..8);
assert_eq!(combine_ranges(2..11, 5..=7), 7..10);
assert_eq!(
combine_ranges(2..11, (Bound::Excluded(5), Bound::Unbounded)),
8..11
);
}
#[test]
#[should_panic]
fn test_combine_range_panics() {
let _ = combine_ranges(3..5, 1..4);
}
}

View File

@@ -38,7 +38,7 @@ impl Footer {
counting_write.write_all(serde_json::to_string(&self)?.as_ref())?;
let footer_payload_len = counting_write.written_bytes();
BinarySerializable::serialize(&(footer_payload_len as u32), write)?;
BinarySerializable::serialize(&FOOTER_MAGIC_NUMBER, write)?;
BinarySerializable::serialize(&(FOOTER_MAGIC_NUMBER as u32), write)?;
Ok(())
}
@@ -90,10 +90,9 @@ impl Footer {
));
}
let footer: Footer =
serde_json::from_slice(&file.read_bytes_slice(
file.len() - total_footer_size..file.len() - footer_metadata_len,
)?)?;
let footer: Footer = serde_json::from_slice(&file.read_bytes_slice(
file.len() - total_footer_size..file.len() - footer_metadata_len as usize,
)?)?;
let body = file.slice_to(file.len() - total_footer_size);
Ok((footer, body))

View File

@@ -388,7 +388,7 @@ mod tests_mmap_specific {
let tempdir_path = PathBuf::from(tempdir.path());
let living_files = HashSet::new();
let mmap_directory = MmapDirectory::open(tempdir_path).unwrap();
let mmap_directory = MmapDirectory::open(&tempdir_path).unwrap();
let mut managed_directory = ManagedDirectory::wrap(Box::new(mmap_directory)).unwrap();
let mut write = managed_directory.open_write(test_path1).unwrap();
write.write_all(&[0u8, 1u8]).unwrap();

View File

@@ -6,10 +6,10 @@ use std::path::{Path, PathBuf};
use std::sync::{Arc, RwLock, Weak};
use std::{fmt, result};
use common::StableDeref;
use fs2::FileExt;
use memmap2::Mmap;
use serde::{Deserialize, Serialize};
use stable_deref_trait::StableDeref;
use tempfile::TempDir;
use crate::core::META_FILEPATH;
@@ -341,7 +341,7 @@ impl Directory for MmapDirectory {
/// removed before the file is deleted.
fn delete(&self, path: &Path) -> result::Result<(), DeleteError> {
let full_path = self.resolve_path(path);
fs::remove_file(full_path).map_err(|e| {
fs::remove_file(&full_path).map_err(|e| {
if e.kind() == io::ErrorKind::NotFound {
DeleteError::FileDoesNotExist(path.to_owned())
} else {
@@ -395,7 +395,7 @@ impl Directory for MmapDirectory {
fn atomic_read(&self, path: &Path) -> Result<Vec<u8>, OpenReadError> {
let full_path = self.resolve_path(path);
let mut buffer = Vec::new();
match File::open(full_path) {
match File::open(&full_path) {
Ok(mut file) => {
file.read_to_end(&mut buffer).map_err(|io_error| {
OpenReadError::wrap_io_error(io_error, path.to_path_buf())
@@ -425,7 +425,7 @@ impl Directory for MmapDirectory {
let file: File = OpenOptions::new()
.write(true)
.create(true) //< if the file does not exist yet, create it.
.open(full_path)
.open(&full_path)
.map_err(LockError::wrap_io_error)?;
if lock.is_blocking {
file.lock_exclusive().map_err(LockError::wrap_io_error)?;

View File

@@ -5,6 +5,7 @@ mod mmap_directory;
mod directory;
mod directory_lock;
mod file_slice;
mod file_watcher;
mod footer;
mod managed_directory;
@@ -19,12 +20,13 @@ mod composite_file;
use std::io::BufWriter;
use std::path::PathBuf;
pub use common::file_slice::{FileHandle, FileSlice};
pub use common::{AntiCallToken, OwnedBytes, TerminatingWrite};
pub use common::{AntiCallToken, TerminatingWrite};
pub use ownedbytes::OwnedBytes;
pub(crate) use self::composite_file::{CompositeFile, CompositeWrite};
pub use self::directory::{Directory, DirectoryClone, DirectoryLock};
pub use self::directory_lock::{Lock, INDEX_WRITER_LOCK, META_LOCK};
pub use self::file_slice::{FileHandle, FileSlice};
pub use self::ram_directory::RamDirectory;
pub use self::watch_event_router::{WatchCallback, WatchCallbackList, WatchHandle};

View File

@@ -232,7 +232,7 @@ impl Directory for RamDirectory {
let path_buf = PathBuf::from(path);
self.fs.write().unwrap().write(path_buf, data);
if path == *META_FILEPATH {
drop(self.fs.write().unwrap().watch_router.broadcast());
let _ = self.fs.write().unwrap().watch_router.broadcast();
}
Ok(())
}

View File

@@ -168,7 +168,7 @@ mod tests {
watch_event_router.broadcast().wait().unwrap();
assert_eq!(2, counter.load(Ordering::SeqCst));
mem::drop(handle_a);
drop(watch_event_router.broadcast());
let _ = watch_event_router.broadcast();
watch_event_router.broadcast().wait().unwrap();
assert_eq!(2, counter.load(Ordering::SeqCst));
}

View File

@@ -104,6 +104,28 @@ pub enum TantivyError {
InternalError(String),
}
#[cfg(feature = "quickwit")]
#[derive(Error, Debug)]
#[doc(hidden)]
pub enum AsyncIoError {
#[error("io::Error `{0}`")]
Io(#[from] io::Error),
#[error("Asynchronous API is unsupported by this directory")]
AsyncUnsupported,
}
#[cfg(feature = "quickwit")]
impl From<AsyncIoError> for TantivyError {
fn from(async_io_err: AsyncIoError) -> Self {
match async_io_err {
AsyncIoError::Io(io_err) => TantivyError::from(io_err),
AsyncIoError::AsyncUnsupported => {
TantivyError::SystemError(format!("{:?}", async_io_err))
}
}
}
}
impl From<io::Error> for TantivyError {
fn from(io_err: io::Error) -> TantivyError {
TantivyError::IoError(Arc::new(io_err))

View File

@@ -1,7 +1,8 @@
use std::io;
use std::io::Write;
use common::{intersect_bitsets, BitSet, OwnedBytes, ReadOnlyBitSet};
use common::{intersect_bitsets, BitSet, ReadOnlyBitSet};
use ownedbytes::OwnedBytes;
use crate::space_usage::ByteCount;
use crate::DocId;
@@ -175,7 +176,7 @@ mod bench {
fn get_alive() -> Vec<u32> {
let mut data = (0..1_000_000_u32).collect::<Vec<u32>>();
for _ in 0..1_000_000 / 8 {
for _ in 0..(1_000_000) * 1 / 8 {
remove_rand(&mut data);
}
data

View File

@@ -96,7 +96,7 @@ mod tests {
let term = Term::from_field_bytes(field, b"lucene".as_ref());
let term_query = TermQuery::new(term, IndexRecordOption::Basic);
let term_weight_err =
term_query.specialized_weight(EnableScoring::disabled_from_schema(searcher.schema()));
term_query.specialized_weight(EnableScoring::Disabled(searcher.schema()));
assert!(matches!(
term_weight_err,
Err(crate::TantivyError::SchemaError(_))

View File

@@ -64,7 +64,9 @@ impl FacetReader {
facet_ord: TermOrdinal,
output: &mut Facet,
) -> crate::Result<()> {
let found_term = self.term_dict.ord_to_term(facet_ord, &mut self.buffer)?;
let found_term = self
.term_dict
.ord_to_term(facet_ord as u64, &mut self.buffer)?;
assert!(found_term, "Term ordinal {} no found.", facet_ord);
let facet_str = str::from_utf8(&self.buffer[..])
.map_err(|utf8_err| DataCorruption::comment_only(utf8_err.to_string()))?;

View File

@@ -12,15 +12,13 @@
//!
//!
//! Fields have to be declared as `FAST` in the schema.
//! Currently supported fields are: u64, i64, f64, bytes, ip and text.
//! Currently supported fields are: u64, i64, f64, bytes and text.
//!
//! Fast fields are stored in with [different codecs](fastfield_codecs). The best codec is detected
//! automatically, when serializing.
//!
//! Read access performance is comparable to that of an array lookup.
use std::net::Ipv6Addr;
use fastfield_codecs::MonotonicallyMappableToU64;
pub use self::alive_bitset::{intersect_alive_bitsets, write_alive_bitset, AliveBitSet};
@@ -30,10 +28,10 @@ pub use self::facet_reader::FacetReader;
pub(crate) use self::multivalued::{get_fastfield_codecs_for_multivalue, MultivalueStartIndex};
pub use self::multivalued::{
MultiValueIndex, MultiValueU128FastFieldWriter, MultiValuedFastFieldReader,
MultiValuedFastFieldWriter,
MultiValuedFastFieldWriter, MultiValuedU128FastFieldReader,
};
pub(crate) use self::readers::type_and_cardinality;
pub use self::readers::FastFieldReaders;
pub(crate) use self::readers::{type_and_cardinality, FastType};
pub use self::serializer::{Column, CompositeFastFieldSerializer};
use self::writer::unexpected_value;
pub use self::writer::{FastFieldsWriter, IntFastFieldWriter};
@@ -49,33 +47,6 @@ mod readers;
mod serializer;
mod writer;
/// Trait for types that provide a zero value.
///
/// The resulting value is never used, just as placeholder, e.g. for `vec.resize()`.
pub trait MakeZero {
/// Build a default value. This default value is never used, so the value does not
/// really matter.
fn make_zero() -> Self;
}
impl<T: FastValue> MakeZero for T {
fn make_zero() -> Self {
T::from_u64(0)
}
}
impl MakeZero for u128 {
fn make_zero() -> Self {
0
}
}
impl MakeZero for Ipv6Addr {
fn make_zero() -> Self {
Ipv6Addr::from(0u128.to_be_bytes())
}
}
/// Trait for types that are allowed for fast fields:
/// (u64, i64 and f64, bool, DateTime).
pub trait FastValue:
@@ -83,6 +54,12 @@ pub trait FastValue:
{
/// Returns the `schema::Type` for this FastValue.
fn to_type() -> Type;
/// Build a default value. This default value is never used, so the value does not
/// really matter.
fn make_zero() -> Self {
Self::from_u64(0u64)
}
}
impl FastValue for u64 {
@@ -124,6 +101,12 @@ impl FastValue for DateTime {
fn to_type() -> Type {
Type::Date
}
fn make_zero() -> Self {
DateTime {
timestamp_micros: 0,
}
}
}
fn value_to_u64(value: &Value) -> crate::Result<u64> {
@@ -162,7 +145,7 @@ impl FastFieldType {
mod tests {
use std::collections::HashMap;
use std::ops::{Range, RangeInclusive};
use std::ops::Range;
use std::path::Path;
use std::sync::Arc;
@@ -176,9 +159,7 @@ mod tests {
use super::*;
use crate::directory::{CompositeFile, Directory, RamDirectory, WritePtr};
use crate::merge_policy::NoMergePolicy;
use crate::schema::{
Cardinality, Document, Field, Schema, SchemaBuilder, FAST, INDEXED, STRING, TEXT,
};
use crate::schema::{Cardinality, Document, Field, Schema, SchemaBuilder, FAST, STRING, TEXT};
use crate::time::OffsetDateTime;
use crate::{DateOptions, DatePrecision, Index, SegmentId, SegmentReader};
@@ -226,10 +207,10 @@ mod tests {
serializer.close().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 34);
assert_eq!(file.len(), 25);
let composite_file = CompositeFile::open(&file)?;
let fast_field_bytes = composite_file.open_read(*FIELD).unwrap().read_bytes()?;
let fast_field_reader = open::<u64>(fast_field_bytes)?;
let fast_field_reader = open::<u64>(fast_field_bytes)?.to_full().unwrap();
assert_eq!(fast_field_reader.get_val(0), 13u64);
assert_eq!(fast_field_reader.get_val(1), 14u64);
assert_eq!(fast_field_reader.get_val(2), 2u64);
@@ -275,14 +256,14 @@ mod tests {
serializer.close()?;
}
let file = directory.open_read(path)?;
assert_eq!(file.len(), 62);
assert_eq!(file.len(), 53);
{
let fast_fields_composite = CompositeFile::open(&file)?;
let data = fast_fields_composite
.open_read(*FIELD)
.unwrap()
.read_bytes()?;
let fast_field_reader = open::<u64>(data)?;
let fast_field_reader = open::<u64>(data)?.to_full().unwrap();
assert_eq!(fast_field_reader.get_val(0), 4u64);
assert_eq!(fast_field_reader.get_val(1), 14_082_001u64);
assert_eq!(fast_field_reader.get_val(2), 3_052u64);
@@ -316,14 +297,14 @@ mod tests {
serializer.close().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 35);
assert_eq!(file.len(), 26);
{
let fast_fields_composite = CompositeFile::open(&file).unwrap();
let data = fast_fields_composite
.open_read(*FIELD)
.unwrap()
.read_bytes()?;
let fast_field_reader = open::<u64>(data)?;
let fast_field_reader = open::<u64>(data)?.to_full().unwrap();
for doc in 0..10_000 {
assert_eq!(fast_field_reader.get_val(doc), 100_000u64);
}
@@ -355,14 +336,14 @@ mod tests {
serializer.close().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 80049);
assert_eq!(file.len(), 80040);
{
let fast_fields_composite = CompositeFile::open(&file)?;
let data = fast_fields_composite
.open_read(*FIELD)
.unwrap()
.read_bytes()?;
let fast_field_reader = open::<u64>(data)?;
let fast_field_reader = open::<u64>(data)?.to_full().unwrap();
assert_eq!(fast_field_reader.get_val(0), 0u64);
for doc in 1..10_001 {
assert_eq!(
@@ -397,7 +378,7 @@ mod tests {
serializer.close().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 49_usize);
assert_eq!(file.len(), 40_usize);
{
let fast_fields_composite = CompositeFile::open(&file)?;
@@ -405,7 +386,7 @@ mod tests {
.open_read(i64_field)
.unwrap()
.read_bytes()?;
let fast_field_reader = open::<i64>(data)?;
let fast_field_reader = open::<i64>(data)?.to_full().unwrap();
assert_eq!(fast_field_reader.min_value(), -100i64);
assert_eq!(fast_field_reader.max_value(), 9_999i64);
@@ -448,7 +429,7 @@ mod tests {
.open_read(i64_field)
.unwrap()
.read_bytes()?;
let fast_field_reader = open::<i64>(data)?;
let fast_field_reader = open::<i64>(data)?.to_full().unwrap();
assert_eq!(fast_field_reader.get_val(0), 0i64);
}
Ok(())
@@ -489,10 +470,10 @@ mod tests {
.open_read(*FIELD)
.unwrap()
.read_bytes()?;
let fast_field_reader = open::<u64>(data)?;
let fast_field_reader = open::<u64>(data)?.to_full().unwrap();
for a in 0..n {
assert_eq!(fast_field_reader.get_val(a as u32), permutation[a]);
assert_eq!(fast_field_reader.get_val(a as u32), permutation[a as usize]);
}
}
Ok(())
@@ -539,6 +520,11 @@ mod tests {
Ok(())
}
#[test]
fn test_default_date() {
assert_eq!(0, DateTime::make_zero().into_timestamp_secs());
}
fn get_vals_for_docs(ff: &MultiValuedFastFieldReader<u64>, docs: Range<u32>) -> Vec<u64> {
let mut all = vec![];
@@ -777,19 +763,28 @@ mod tests {
let dates_fast_field = fast_fields.dates(multi_date_field).unwrap();
let mut dates = vec![];
{
assert_eq!(date_fast_field.get_val(0).into_timestamp_micros(), 1i64);
assert_eq!(
date_fast_field.get_val(0).unwrap().into_timestamp_micros(),
1i64
);
dates_fast_field.get_vals(0u32, &mut dates);
assert_eq!(dates.len(), 2);
assert_eq!(dates[0].into_timestamp_micros(), 2i64);
assert_eq!(dates[1].into_timestamp_micros(), 3i64);
}
{
assert_eq!(date_fast_field.get_val(1).into_timestamp_micros(), 4i64);
assert_eq!(
date_fast_field.get_val(1).unwrap().into_timestamp_micros(),
4i64
);
dates_fast_field.get_vals(1u32, &mut dates);
assert!(dates.is_empty());
}
{
assert_eq!(date_fast_field.get_val(2).into_timestamp_micros(), 0i64);
assert_eq!(
date_fast_field.get_val(2).unwrap().into_timestamp_micros(),
0i64
);
dates_fast_field.get_vals(2u32, &mut dates);
assert_eq!(dates.len(), 2);
assert_eq!(dates[0].into_timestamp_micros(), 5i64);
@@ -836,10 +831,10 @@ mod tests {
serializer.close().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 33);
assert_eq!(file.len(), 24);
let composite_file = CompositeFile::open(&file)?;
let data = composite_file.open_read(field).unwrap().read_bytes()?;
let fast_field_reader = open::<bool>(data)?;
let fast_field_reader = open::<bool>(data)?.to_full().unwrap();
assert_eq!(fast_field_reader.get_val(0), true);
assert_eq!(fast_field_reader.get_val(1), false);
assert_eq!(fast_field_reader.get_val(2), true);
@@ -874,10 +869,10 @@ mod tests {
serializer.close().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 45);
assert_eq!(file.len(), 36);
let composite_file = CompositeFile::open(&file)?;
let data = composite_file.open_read(field).unwrap().read_bytes()?;
let fast_field_reader = open::<bool>(data)?;
let fast_field_reader = open::<bool>(data)?.to_full().unwrap();
for i in 0..25 {
assert_eq!(fast_field_reader.get_val(i * 2), true);
assert_eq!(fast_field_reader.get_val(i * 2 + 1), false);
@@ -906,9 +901,9 @@ mod tests {
}
let file = directory.open_read(path).unwrap();
let composite_file = CompositeFile::open(&file)?;
assert_eq!(file.len(), 32);
assert_eq!(file.len(), 23);
let data = composite_file.open_read(field).unwrap().read_bytes()?;
let fast_field_reader = open::<bool>(data)?;
let fast_field_reader = open::<bool>(data)?.to_full().unwrap();
assert_eq!(fast_field_reader.get_val(0), false);
Ok(())
@@ -940,10 +935,10 @@ mod tests {
pub fn test_gcd_date() -> crate::Result<()> {
let size_prec_sec =
test_gcd_date_with_codec(FastFieldCodecType::Bitpacked, DatePrecision::Seconds)?;
assert_eq!(size_prec_sec, 5 + 4 + 28 + (1_000 * 13) / 8); // 13 bits per val = ceil(log_2(number of seconds in 2hours);
assert_eq!(size_prec_sec, 28 + (1_000 * 13) / 8); // 13 bits per val = ceil(log_2(number of seconds in 2hours);
let size_prec_micro =
test_gcd_date_with_codec(FastFieldCodecType::Bitpacked, DatePrecision::Microseconds)?;
assert_eq!(size_prec_micro, 5 + 4 + 26 + (1_000 * 33) / 8); // 33 bits per val = ceil(log_2(number of microsecsseconds in 2hours);
assert_eq!(size_prec_micro, 26 + (1_000 * 33) / 8); // 33 bits per val = ceil(log_2(number of microsecsseconds in 2hours);
Ok(())
}
@@ -976,124 +971,13 @@ mod tests {
let composite_file = CompositeFile::open(&file)?;
let file = composite_file.open_read(*FIELD).unwrap();
let len = file.len();
let test_fastfield = open::<DateTime>(file.read_bytes()?)?;
let test_fastfield = open::<DateTime>(file.read_bytes()?)?
.to_full()
.expect("temp migration solution");
for (i, time) in times.iter().enumerate() {
assert_eq!(test_fastfield.get_val(i as u32), time.truncate(precision));
}
Ok(len)
}
#[test]
fn test_gcd_bug_regression_1757() {
let mut schema_builder = Schema::builder();
let num_field = schema_builder.add_u64_field("url_norm_hash", FAST | INDEXED);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
{
let mut writer = index.writer_for_tests().unwrap();
writer
.add_document(doc! {
num_field => 100u64,
})
.unwrap();
writer
.add_document(doc! {
num_field => 200u64,
})
.unwrap();
writer
.add_document(doc! {
num_field => 300u64,
})
.unwrap();
writer.commit().unwrap();
}
let reader = index.reader().unwrap();
let searcher = reader.searcher();
let segment = &searcher.segment_readers()[0];
let field = segment.fast_fields().u64(num_field).unwrap();
let numbers = vec![100, 200, 300];
let test_range = |range: RangeInclusive<u64>| {
let expexted_count = numbers.iter().filter(|num| range.contains(num)).count();
let mut vec = vec![];
field.get_docids_for_value_range(range, 0..u32::MAX, &mut vec);
assert_eq!(vec.len(), expexted_count);
};
test_range(50..=50);
test_range(150..=150);
test_range(350..=350);
test_range(100..=250);
test_range(101..=200);
test_range(101..=199);
test_range(100..=300);
test_range(100..=299);
}
#[test]
fn test_mapping_bug_docids_for_value_range() {
let mut schema_builder = Schema::builder();
let num_field = schema_builder.add_u64_field("url_norm_hash", FAST | INDEXED);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
{
// Values without gcd, but with min_value
let mut writer = index.writer_for_tests().unwrap();
writer
.add_document(doc! {
num_field => 1000u64,
})
.unwrap();
writer
.add_document(doc! {
num_field => 1001u64,
})
.unwrap();
writer
.add_document(doc! {
num_field => 1003u64,
})
.unwrap();
writer.commit().unwrap();
}
let reader = index.reader().unwrap();
let searcher = reader.searcher();
let segment = &searcher.segment_readers()[0];
let field = segment.fast_fields().u64(num_field).unwrap();
let numbers = vec![1000, 1001, 1003];
let test_range = |range: RangeInclusive<u64>| {
let expexted_count = numbers.iter().filter(|num| range.contains(num)).count();
let mut vec = vec![];
field.get_docids_for_value_range(range, 0..u32::MAX, &mut vec);
assert_eq!(vec.len(), expexted_count);
};
let test_range_variant = |start, stop| {
let start_range = start..=stop;
test_range(start_range);
let start_range = start..=(stop - 1);
test_range(start_range);
let start_range = start..=(stop + 1);
test_range(start_range);
let start_range = (start - 1)..=stop;
test_range(start_range);
let start_range = (start - 1)..=(stop - 1);
test_range(start_range);
let start_range = (start - 1)..=(stop + 1);
test_range(start_range);
let start_range = (start + 1)..=stop;
test_range(start_range);
let start_range = (start + 1)..=(stop - 1);
test_range(start_range);
let start_range = (start + 1)..=(stop + 1);
test_range(start_range);
};
test_range_variant(50, 50);
test_range_variant(1000, 1000);
test_range_variant(1000, 1002);
}
}

View File

@@ -80,7 +80,6 @@ impl MultiValueIndex {
///
/// TODO: Instead of a linear scan we can employ a exponential search into binary search to
/// match a docid to its value position.
#[allow(clippy::bool_to_int_with_if)]
pub(crate) fn positions_to_docids(&self, doc_id_range: Range<u32>, positions: &mut Vec<u32>) {
if positions.is_empty() {
return;

View File

@@ -5,7 +5,7 @@ mod writer;
use fastfield_codecs::FastFieldCodecType;
pub use index::MultiValueIndex;
pub use self::reader::MultiValuedFastFieldReader;
pub use self::reader::{MultiValuedFastFieldReader, MultiValuedU128FastFieldReader};
pub(crate) use self::writer::MultivalueStartIndex;
pub use self::writer::{MultiValueU128FastFieldWriter, MultiValuedFastFieldWriter};
@@ -525,7 +525,7 @@ mod bench {
serializer.close().unwrap();
field
};
let file = directory.open_read(path).unwrap();
let file = directory.open_read(&path).unwrap();
{
let fast_fields_composite = CompositeFile::open(&file).unwrap();
let data_idx = fast_fields_composite
@@ -533,14 +533,17 @@ mod bench {
.unwrap()
.read_bytes()
.unwrap();
let idx_reader = fastfield_codecs::open(data_idx).unwrap();
let idx_reader = fastfield_codecs::open(data_idx).unwrap().to_full().unwrap();
let data_vals = fast_fields_composite
.open_read_with_idx(field, 1)
.unwrap()
.read_bytes()
.unwrap();
let vals_reader = fastfield_codecs::open(data_vals).unwrap();
let vals_reader = fastfield_codecs::open(data_vals)
.unwrap()
.to_full()
.unwrap();
let fast_field_reader = MultiValuedFastFieldReader::open(idx_reader, vals_reader);
b.iter(|| {
let mut sum = 0u64;

View File

@@ -1,31 +1,107 @@
use core::fmt;
use std::ops::{Range, RangeInclusive};
use std::sync::Arc;
use fastfield_codecs::Column;
use fastfield_codecs::{Column, MonotonicallyMappableToU128};
use super::MultiValueIndex;
use crate::fastfield::MakeZero;
use crate::fastfield::FastValue;
use crate::DocId;
/// Reader for a multivalued fast field.
/// Reader for a multivalued `u64` fast field.
///
/// The reader is implemented as two fast fields, one u64 fast field for the index and one for the
/// values.
/// The reader is implemented as two `u64` fast field.
///
/// The `vals_reader` will access the concatenated list of all values.
/// The `idx_reader` associates, for each document, the index of its first value.
/// The `vals_reader` will access the concatenated list of all
/// values for all reader.
/// The `idx_reader` associated, for each document, the index of its first value.
/// Stores the start position for each document.
#[derive(Clone)]
pub struct MultiValuedFastFieldReader<T> {
pub struct MultiValuedFastFieldReader<Item: FastValue> {
idx_reader: MultiValueIndex,
vals_reader: Arc<dyn Column<Item>>,
}
impl<Item: FastValue> MultiValuedFastFieldReader<Item> {
pub(crate) fn open(
idx_reader: Arc<dyn Column<u64>>,
vals_reader: Arc<dyn Column<Item>>,
) -> MultiValuedFastFieldReader<Item> {
MultiValuedFastFieldReader {
idx_reader: MultiValueIndex::new(idx_reader),
vals_reader,
}
}
/// Returns the array of values associated with the given `doc`.
#[inline]
fn get_vals_for_range(&self, range: Range<u32>, vals: &mut Vec<Item>) {
let len = (range.end - range.start) as usize;
vals.resize(len, Item::make_zero());
self.vals_reader
.get_range(range.start as u64, &mut vals[..]);
}
/// Returns the array of values associated with the given `doc`.
#[inline]
pub fn get_vals(&self, doc: DocId, vals: &mut Vec<Item>) {
let range = self.idx_reader.range(doc);
self.get_vals_for_range(range, vals);
}
/// returns the multivalue index
pub fn get_index_reader(&self) -> &MultiValueIndex {
&self.idx_reader
}
/// Returns the minimum value for this fast field.
///
/// The min value does not take in account of possible
/// deleted document, and should be considered as a lower bound
/// of the actual minimum value.
pub fn min_value(&self) -> Item {
self.vals_reader.min_value()
}
/// Returns the maximum value for this fast field.
///
/// The max value does not take in account of possible
/// deleted document, and should be considered as an upper bound
/// of the actual maximum value.
pub fn max_value(&self) -> Item {
self.vals_reader.max_value()
}
/// Returns the number of values associated with the document `DocId`.
#[inline]
pub fn num_vals(&self, doc: DocId) -> u32 {
self.idx_reader.num_vals_for_doc(doc)
}
/// Returns the overall number of values in this field.
#[inline]
pub fn total_num_vals(&self) -> u32 {
self.idx_reader.total_num_vals()
}
}
/// Reader for a multivalued `u128` fast field.
///
/// The reader is implemented as a `u64` fast field for the index and a `u128` fast field.
///
/// The `vals_reader` will access the concatenated list of all
/// values for all reader.
/// The `idx_reader` associated, for each document, the index of its first value.
#[derive(Clone)]
pub struct MultiValuedU128FastFieldReader<T: MonotonicallyMappableToU128> {
idx_reader: MultiValueIndex,
vals_reader: Arc<dyn Column<T>>,
}
impl<T: PartialOrd + MakeZero + Copy + fmt::Debug> MultiValuedFastFieldReader<T> {
impl<T: MonotonicallyMappableToU128> MultiValuedU128FastFieldReader<T> {
pub(crate) fn open(
idx_reader: Arc<dyn Column<u64>>,
vals_reader: Arc<dyn Column<T>>,
) -> MultiValuedFastFieldReader<T> {
) -> MultiValuedU128FastFieldReader<T> {
Self {
idx_reader: MultiValueIndex::new(idx_reader),
vals_reader,
@@ -46,7 +122,7 @@ impl<T: PartialOrd + MakeZero + Copy + fmt::Debug> MultiValuedFastFieldReader<T>
#[inline]
fn get_vals_for_range(&self, range: Range<u32>, vals: &mut Vec<T>) {
let len = (range.end - range.start) as usize;
vals.resize(len, T::make_zero());
vals.resize(len, T::from_u128(0));
self.vals_reader
.get_range(range.start as u64, &mut vals[..]);
}
@@ -123,131 +199,8 @@ impl<T: PartialOrd + MakeZero + Copy + fmt::Debug> MultiValuedFastFieldReader<T>
#[cfg(test)]
mod tests {
use time::{Duration, OffsetDateTime};
use crate::collector::Count;
use crate::core::Index;
use crate::query::RangeQuery;
use crate::schema::{Cardinality, Facet, FacetOptions, NumericOptions, Schema};
use crate::{DateOptions, DatePrecision, DateTime};
#[test]
fn test_multivalued_date_docids_for_value_range_1() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let date_field = schema_builder.add_date_field(
"multi_date_field",
DateOptions::default()
.set_fast(Cardinality::MultiValues)
.set_indexed()
.set_fieldnorm()
.set_precision(DatePrecision::Microseconds)
.set_stored(),
);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer = index.writer_for_tests()?;
let first_time_stamp = OffsetDateTime::now_utc();
index_writer.add_document(doc!(
date_field => DateTime::from_utc(first_time_stamp),
date_field => DateTime::from_utc(first_time_stamp),
))?;
// add another second
let two_secs_ahead = first_time_stamp + Duration::seconds(2);
index_writer.commit()?;
let reader = index.reader()?;
let searcher = reader.searcher();
let reader = searcher.segment_reader(0);
let date_ff_reader = reader.fast_fields().dates(date_field).unwrap();
let mut docids = vec![];
date_ff_reader.get_docids_for_value_range(
DateTime::from_utc(first_time_stamp)..=DateTime::from_utc(two_secs_ahead),
0..5,
&mut docids,
);
assert_eq!(docids, vec![0]);
let count_multiples =
|range_query: RangeQuery| searcher.search(&range_query, &Count).unwrap();
assert_eq!(
count_multiples(RangeQuery::new_date(
date_field,
DateTime::from_utc(first_time_stamp)..DateTime::from_utc(two_secs_ahead)
)),
1
);
Ok(())
}
#[test]
fn test_multivalued_date_docids_for_value_range_2() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let date_field = schema_builder.add_date_field(
"multi_date_field",
DateOptions::default()
.set_fast(Cardinality::MultiValues)
// TODO: Test different precision after fixing https://github.com/quickwit-oss/tantivy/issues/1783
.set_precision(DatePrecision::Microseconds)
.set_indexed()
.set_fieldnorm()
.set_stored(),
);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer = index.writer_for_tests()?;
let first_time_stamp = OffsetDateTime::now_utc();
index_writer.add_document(doc!(
date_field => DateTime::from_utc(first_time_stamp),
date_field => DateTime::from_utc(first_time_stamp),
))?;
index_writer.add_document(doc!())?;
// add one second
index_writer.add_document(doc!(
date_field => DateTime::from_utc(first_time_stamp + Duration::seconds(1)),
))?;
// add another second
let two_secs_ahead = first_time_stamp + Duration::seconds(2);
index_writer.add_document(doc!(
date_field => DateTime::from_utc(two_secs_ahead),
date_field => DateTime::from_utc(two_secs_ahead),
date_field => DateTime::from_utc(two_secs_ahead),
))?;
// add three seconds
index_writer.add_document(doc!(
date_field => DateTime::from_utc(first_time_stamp + Duration::seconds(3)),
))?;
index_writer.commit()?;
let reader = index.reader()?;
let searcher = reader.searcher();
let reader = searcher.segment_reader(0);
assert_eq!(reader.num_docs(), 5);
let date_ff_reader = reader.fast_fields().dates(date_field).unwrap();
let mut docids = vec![];
date_ff_reader.get_docids_for_value_range(
DateTime::from_utc(first_time_stamp)..=DateTime::from_utc(two_secs_ahead),
0..5,
&mut docids,
);
assert_eq!(docids, vec![0, 2, 3]);
let count_multiples =
|range_query: RangeQuery| searcher.search(&range_query, &Count).unwrap();
assert_eq!(
count_multiples(RangeQuery::new_date(
date_field,
DateTime::from_utc(first_time_stamp)..DateTime::from_utc(two_secs_ahead)
)),
2
);
Ok(())
}
#[test]
fn test_multifastfield_reader() -> crate::Result<()> {

View File

@@ -264,7 +264,7 @@ fn iter_remapped_multivalue_index<'a, C: Column>(
std::iter::once(0).chain(doc_id_map.iter_old_doc_ids().map(move |old_doc| {
let num_vals_for_doc = column.get_val(old_doc + 1) - column.get_val(old_doc);
offset += num_vals_for_doc;
offset
offset as u64
}))
}

View File

@@ -1,11 +1,13 @@
use std::net::Ipv6Addr;
use std::sync::Arc;
use fastfield_codecs::{open, open_u128, Column};
use fastfield_codecs::{open, open_u128, Column, OptionalColumn};
use super::multivalued::MultiValuedFastFieldReader;
use super::multivalued::MultiValuedU128FastFieldReader;
use crate::directory::{CompositeFile, FileSlice};
use crate::fastfield::{BytesFastFieldReader, FastFieldNotAvailableError, FastValue};
use crate::fastfield::{
BytesFastFieldReader, FastFieldNotAvailableError, FastValue, MultiValuedFastFieldReader,
};
use crate::schema::{Cardinality, Field, FieldType, Schema};
use crate::space_usage::PerFieldSpaceUsage;
use crate::{DateTime, TantivyError};
@@ -116,7 +118,7 @@ impl FastFieldReaders {
&self,
field: Field,
index: usize,
) -> crate::Result<Arc<dyn Column<TFastValue>>> {
) -> crate::Result<Arc<dyn OptionalColumn<TFastValue>>> {
let fast_field_slice = self.fast_field_data(field, index)?;
let bytes = fast_field_slice.read_bytes()?;
let column = fastfield_codecs::open(bytes)?;
@@ -126,7 +128,7 @@ impl FastFieldReaders {
pub(crate) fn typed_fast_field_reader<TFastValue: FastValue>(
&self,
field: Field,
) -> crate::Result<Arc<dyn Column<TFastValue>>> {
) -> crate::Result<Arc<dyn OptionalColumn<TFastValue>>> {
self.typed_fast_field_reader_with_idx(field, 0)
}
@@ -136,13 +138,20 @@ impl FastFieldReaders {
) -> crate::Result<MultiValuedFastFieldReader<TFastValue>> {
let idx_reader = self.typed_fast_field_reader(field)?;
let vals_reader = self.typed_fast_field_reader_with_idx(field, 1)?;
Ok(MultiValuedFastFieldReader::open(idx_reader, vals_reader))
Ok(MultiValuedFastFieldReader::open(
idx_reader
.to_full()
.expect("multivalue fast field are always full"),
vals_reader
.to_full()
.expect("multivalue fast field are always full"),
))
}
/// Returns the `u64` fast field reader reader associated with `field`.
///
/// If `field` is not a u64 fast field, this method returns an Error.
pub fn u64(&self, field: Field) -> crate::Result<Arc<dyn Column<u64>>> {
pub fn u64(&self, field: Field) -> crate::Result<Arc<dyn OptionalColumn<u64>>> {
self.check_type(field, FastType::U64, Cardinality::SingleValue)?;
self.typed_fast_field_reader(field)
}
@@ -150,7 +159,7 @@ impl FastFieldReaders {
/// Returns the `ip` fast field reader reader associated to `field`.
///
/// If `field` is not a u128 fast field, this method returns an Error.
pub fn ip_addr(&self, field: Field) -> crate::Result<Arc<dyn Column<Ipv6Addr>>> {
pub fn ip_addr(&self, field: Field) -> crate::Result<Arc<dyn OptionalColumn<Ipv6Addr>>> {
self.check_type(field, FastType::U128, Cardinality::SingleValue)?;
let bytes = self.fast_field_data(field, 0)?.read_bytes()?;
Ok(open_u128::<Ipv6Addr>(bytes)?)
@@ -159,20 +168,32 @@ impl FastFieldReaders {
/// Returns the `ip` fast field reader reader associated to `field`.
///
/// If `field` is not a u128 fast field, this method returns an Error.
pub fn ip_addrs(&self, field: Field) -> crate::Result<MultiValuedFastFieldReader<Ipv6Addr>> {
pub fn ip_addrs(
&self,
field: Field,
) -> crate::Result<MultiValuedU128FastFieldReader<Ipv6Addr>> {
self.check_type(field, FastType::U128, Cardinality::MultiValues)?;
let idx_reader: Arc<dyn Column<u64>> = self.typed_fast_field_reader(field)?;
let idx_reader: Arc<dyn Column<u64>> = self
.typed_fast_field_reader(field)?
.to_full()
.expect("multivalue fast fields are always full");
let bytes = self.fast_field_data(field, 1)?.read_bytes()?;
let vals_reader = open_u128::<Ipv6Addr>(bytes)?;
let vals_reader = open_u128::<Ipv6Addr>(bytes)?
.to_full()
.expect("multivalue fields are always full");
Ok(MultiValuedFastFieldReader::open(idx_reader, vals_reader))
Ok(MultiValuedU128FastFieldReader::open(
idx_reader,
vals_reader,
))
}
/// Returns the `u128` fast field reader reader associated to `field`.
///
/// If `field` is not a u128 fast field, this method returns an Error.
pub(crate) fn u128(&self, field: Field) -> crate::Result<Arc<dyn Column<u128>>> {
/// If `field` is not a u128 base type fast field, this method returns an Error.
/// Ip addresses use u128 as base type.
pub(crate) fn u128(&self, field: Field) -> crate::Result<Arc<dyn OptionalColumn<u128>>> {
self.check_type(field, FastType::U128, Cardinality::SingleValue)?;
let bytes = self.fast_field_data(field, 0)?.read_bytes()?;
Ok(open_u128::<u128>(bytes)?)
@@ -181,14 +202,22 @@ impl FastFieldReaders {
/// Returns the `u128` multi-valued fast field reader reader associated to `field`.
///
/// If `field` is not a u128 multi-valued fast field, this method returns an Error.
pub fn u128s(&self, field: Field) -> crate::Result<MultiValuedFastFieldReader<u128>> {
pub fn u128s(&self, field: Field) -> crate::Result<MultiValuedU128FastFieldReader<u128>> {
self.check_type(field, FastType::U128, Cardinality::MultiValues)?;
let idx_reader: Arc<dyn Column<u64>> = self.typed_fast_field_reader(field)?;
let idx_reader: Arc<dyn Column<u64>> = self
.typed_fast_field_reader(field)?
.to_full()
.expect("multivalue fast fields are always full");
let bytes = self.fast_field_data(field, 1)?.read_bytes()?;
let vals_reader = open_u128::<u128>(bytes)?;
let vals_reader = open_u128::<u128>(bytes)?
.to_full()
.expect("multivalue fast fields are always full");
Ok(MultiValuedFastFieldReader::open(idx_reader, vals_reader))
Ok(MultiValuedU128FastFieldReader::open(
idx_reader,
vals_reader,
))
}
/// Returns the `u64` fast field reader reader associated with `field`, regardless of whether
@@ -196,14 +225,14 @@ impl FastFieldReaders {
///
/// If not, the fastfield reader will returns the u64-value associated with the original
/// FastValue.
pub fn u64_lenient(&self, field: Field) -> crate::Result<Arc<dyn Column<u64>>> {
pub fn u64_lenient(&self, field: Field) -> crate::Result<Arc<dyn OptionalColumn<u64>>> {
self.typed_fast_field_reader(field)
}
/// Returns the `i64` fast field reader reader associated with `field`.
///
/// If `field` is not a i64 fast field, this method returns an Error.
pub fn i64(&self, field: Field) -> crate::Result<Arc<dyn Column<i64>>> {
pub fn i64(&self, field: Field) -> crate::Result<Arc<dyn OptionalColumn<i64>>> {
self.check_type(field, FastType::I64, Cardinality::SingleValue)?;
self.typed_fast_field_reader(field)
}
@@ -211,7 +240,7 @@ impl FastFieldReaders {
/// Returns the `date` fast field reader reader associated with `field`.
///
/// If `field` is not a date fast field, this method returns an Error.
pub fn date(&self, field: Field) -> crate::Result<Arc<dyn Column<DateTime>>> {
pub fn date(&self, field: Field) -> crate::Result<Arc<dyn OptionalColumn<DateTime>>> {
self.check_type(field, FastType::Date, Cardinality::SingleValue)?;
self.typed_fast_field_reader(field)
}
@@ -219,7 +248,7 @@ impl FastFieldReaders {
/// Returns the `f64` fast field reader reader associated with `field`.
///
/// If `field` is not a f64 fast field, this method returns an Error.
pub fn f64(&self, field: Field) -> crate::Result<Arc<dyn Column<f64>>> {
pub fn f64(&self, field: Field) -> crate::Result<Arc<dyn OptionalColumn<f64>>> {
self.check_type(field, FastType::F64, Cardinality::SingleValue)?;
self.typed_fast_field_reader(field)
}
@@ -227,7 +256,7 @@ impl FastFieldReaders {
/// Returns the `bool` fast field reader reader associated with `field`.
///
/// If `field` is not a bool fast field, this method returns an Error.
pub fn bool(&self, field: Field) -> crate::Result<Arc<dyn Column<bool>>> {
pub fn bool(&self, field: Field) -> crate::Result<Arc<dyn OptionalColumn<bool>>> {
self.check_type(field, FastType::Bool, Cardinality::SingleValue)?;
self.typed_fast_field_reader(field)
}
@@ -298,7 +327,12 @@ impl FastFieldReaders {
let fast_field_idx_bytes = fast_field_idx_file.read_bytes()?;
let idx_reader = open(fast_field_idx_bytes)?;
let data = self.fast_field_data(field, 1)?;
BytesFastFieldReader::open(idx_reader, data)
BytesFastFieldReader::open(
idx_reader
.to_full()
.expect("multivalue fields are always full"),
data,
)
} else {
Err(FastFieldNotAvailableError::new(field_entry).into())
}

View File

@@ -1,4 +1,3 @@
use std::fmt;
use std::io::{self, Write};
pub use fastfield_codecs::Column;
@@ -50,7 +49,7 @@ impl CompositeFastFieldSerializer {
/// Serialize data into a new u64 fast field. The best compression codec will be chosen
/// automatically.
pub fn create_auto_detect_u64_fast_field<T: MonotonicallyMappableToU64 + fmt::Debug>(
pub fn create_auto_detect_u64_fast_field<T: MonotonicallyMappableToU64>(
&mut self,
field: Field,
fastfield_accessor: impl Column<T>,
@@ -60,9 +59,7 @@ impl CompositeFastFieldSerializer {
/// Serialize data into a new u64 fast field. The best compression codec will be chosen
/// automatically.
pub fn create_auto_detect_u64_fast_field_with_idx<
T: MonotonicallyMappableToU64 + fmt::Debug,
>(
pub fn create_auto_detect_u64_fast_field_with_idx<T: MonotonicallyMappableToU64>(
&mut self,
field: Field,
fastfield_accessor: impl Column<T>,
@@ -75,9 +72,7 @@ impl CompositeFastFieldSerializer {
/// Serialize data into a new u64 fast field. The best compression codec of the the provided
/// will be chosen.
pub fn create_auto_detect_u64_fast_field_with_idx_and_codecs<
T: MonotonicallyMappableToU64 + fmt::Debug,
>(
pub fn create_auto_detect_u64_fast_field_with_idx_and_codecs<T: MonotonicallyMappableToU64>(
&mut self,
field: Field,
fastfield_accessor: impl Column<T>,

View File

@@ -360,10 +360,20 @@ impl U128FastFieldWriter {
.map(|idx| self.vals[idx as usize])
};
serializer.create_u128_fast_field_with_idx(self.field, iter_gen, self.val_count, 0)?;
serializer.create_u128_fast_field_with_idx(
self.field,
iter_gen,
self.val_count as u32,
0,
)?;
} else {
let iter_gen = || self.vals.iter().cloned();
serializer.create_u128_fast_field_with_idx(self.field, iter_gen, self.val_count, 0)?;
serializer.create_u128_fast_field_with_idx(
self.field,
iter_gen,
self.val_count as u32,
0,
)?;
}
Ok(())

View File

@@ -252,8 +252,8 @@ mod tests {
&demux_mapping,
target_settings,
vec![
Box::<RamDirectory>::default(),
Box::<RamDirectory>::default(),
Box::new(RamDirectory::default()),
Box::new(RamDirectory::default()),
],
)?;

View File

@@ -465,9 +465,9 @@ mod tests_indexsorting {
let my_number = index.schema().get_field("my_number").unwrap();
let fast_field = fast_fields.u64(my_number).unwrap();
assert_eq!(fast_field.get_val(0), 10u64);
assert_eq!(fast_field.get_val(1), 20u64);
assert_eq!(fast_field.get_val(2), 30u64);
assert_eq!(fast_field.get_val(0), Some(10u64));
assert_eq!(fast_field.get_val(1), Some(20u64));
assert_eq!(fast_field.get_val(2), Some(30u64));
let multi_numbers = index.schema().get_field("multi_numbers").unwrap();
let multifield = fast_fields.u64s(multi_numbers).unwrap();

View File

@@ -152,7 +152,7 @@ pub(crate) fn advance_deletes(
let num_deleted_docs = max_doc - num_alive_docs;
if num_deleted_docs > num_deleted_docs_before {
// There are new deletes. We need to write a new delete file.
segment = segment.with_delete_meta(num_deleted_docs, target_opstamp);
segment = segment.with_delete_meta(num_deleted_docs as u32, target_opstamp);
let mut alive_doc_file = segment.open_write(SegmentComponent::Delete)?;
write_alive_bitset(&alive_bitset, &mut alive_doc_file)?;
alive_doc_file.terminate()?;
@@ -678,7 +678,7 @@ impl IndexWriter {
/// only after calling `commit()`.
#[doc(hidden)]
pub fn delete_query(&self, query: Box<dyn Query>) -> crate::Result<Opstamp> {
let weight = query.weight(EnableScoring::disabled_from_schema(&self.index.schema()))?;
let weight = query.weight(EnableScoring::Disabled(&self.index.schema()))?;
let opstamp = self.stamper.stamp();
let delete_operation = DeleteOperation {
opstamp,
@@ -759,8 +759,7 @@ impl IndexWriter {
match user_op {
UserOperation::Delete(term) => {
let query = TermQuery::new(term, IndexRecordOption::Basic);
let weight =
query.weight(EnableScoring::disabled_from_schema(&self.index.schema()))?;
let weight = query.weight(EnableScoring::Disabled(&self.index.schema()))?;
let delete_operation = DeleteOperation {
opstamp,
target: weight,
@@ -985,7 +984,7 @@ mod tests {
"LogMergePolicy { min_num_segments: 8, max_docs_before_merge: 10000000, \
min_layer_size: 10000, level_log_size: 0.75, del_docs_ratio_before_merge: 1.0 }"
);
let merge_policy = Box::<NoMergePolicy>::default();
let merge_policy = Box::new(NoMergePolicy::default());
index_writer.set_merge_policy(merge_policy);
assert_eq!(
format!("{:?}", index_writer.get_merge_policy()),
@@ -1468,7 +1467,7 @@ mod tests {
let fast_field_reader = segment_reader.fast_fields().u64(id_field)?;
let in_order_alive_ids: Vec<u64> = segment_reader
.doc_ids_alive()
.map(|doc| fast_field_reader.get_val(doc))
.map(|doc| fast_field_reader.get_val(doc).unwrap())
.collect();
assert_eq!(&in_order_alive_ids[..], &[9, 8, 7, 6, 5, 4, 1, 0]);
Ok(())
@@ -1529,7 +1528,7 @@ mod tests {
let fast_field_reader = segment_reader.fast_fields().u64(id_field)?;
let in_order_alive_ids: Vec<u64> = segment_reader
.doc_ids_alive()
.map(|doc| fast_field_reader.get_val(doc))
.map(|doc| fast_field_reader.get_val(doc).unwrap())
.collect();
assert_eq!(&in_order_alive_ids[..], &[9, 8, 7, 6, 5, 4, 2, 0]);
Ok(())
@@ -1778,7 +1777,12 @@ mod tests {
.segment_readers()
.iter()
.flat_map(|segment_reader| {
let ff_reader = segment_reader.fast_fields().u64(id_field).unwrap();
let ff_reader = segment_reader
.fast_fields()
.u64(id_field)
.unwrap()
.to_full()
.unwrap();
segment_reader
.doc_ids_alive()
.map(move |doc| ff_reader.get_val(doc))
@@ -1789,7 +1793,12 @@ mod tests {
.segment_readers()
.iter()
.flat_map(|segment_reader| {
let ff_reader = segment_reader.fast_fields().u64(id_field).unwrap();
let ff_reader = segment_reader
.fast_fields()
.u64(id_field)
.unwrap()
.to_full()
.unwrap();
segment_reader
.doc_ids_alive()
.map(move |doc| ff_reader.get_val(doc))
@@ -1814,8 +1823,8 @@ mod tests {
}
let num_docs_expected = expected_ids_and_num_occurrences
.values()
.map(|id_occurrences| *id_occurrences as usize)
.iter()
.map(|(_, id_occurrences)| *id_occurrences as usize)
.sum::<usize>();
assert_eq!(searcher.num_docs() as usize, num_docs_expected);
assert_eq!(old_searcher.num_docs() as usize, num_docs_expected);
@@ -1865,7 +1874,7 @@ mod tests {
.flat_map(|segment_reader| {
let ff_reader = segment_reader.fast_fields().ip_addr(ip_field).unwrap();
segment_reader.doc_ids_alive().flat_map(move |doc| {
let val = ff_reader.get_val(doc);
let val = ff_reader.get_val(doc).unwrap(); // TODO handle null
if val == Ipv6Addr::from_u128(0) {
// TODO Fix null handling
None
@@ -1922,7 +1931,7 @@ mod tests {
ff_reader.get_vals(doc, &mut vals);
assert_eq!(vals.len(), 2);
assert_eq!(vals[0], vals[1]);
assert_eq!(id_reader.get_val(doc), vals[0]);
assert_eq!(id_reader.get_val(doc).unwrap(), vals[0]);
let mut bool_vals = vec![];
bool_ff_reader.get_vals(doc, &mut bool_vals);
@@ -2118,7 +2127,7 @@ mod tests {
facet_reader
.facet_from_ord(facet_ords[0], &mut facet)
.unwrap();
let id = ff_reader.get_val(doc_id);
let id = ff_reader.get_val(doc_id).unwrap();
let facet_expected = Facet::from(&("/cola/".to_string() + &id.to_string()));
assert_eq!(facet, facet_expected);

View File

@@ -67,12 +67,11 @@ pub(crate) fn index_json_values<'a>(
doc: DocId,
json_values: impl Iterator<Item = crate::Result<&'a serde_json::Map<String, serde_json::Value>>>,
text_analyzer: &TextAnalyzer,
expand_dots_enabled: bool,
term_buffer: &mut Term,
postings_writer: &mut dyn PostingsWriter,
ctx: &mut IndexingContext,
) -> crate::Result<()> {
let mut json_term_writer = JsonTermWriter::wrap(term_buffer, expand_dots_enabled);
let mut json_term_writer = JsonTermWriter::wrap(term_buffer);
let mut positions_per_path: IndexingPositionsPerPath = Default::default();
for json_value_res in json_values {
let json_value = json_value_res?;
@@ -89,11 +88,11 @@ pub(crate) fn index_json_values<'a>(
Ok(())
}
fn index_json_object(
fn index_json_object<'a>(
doc: DocId,
json_value: &serde_json::Map<String, serde_json::Value>,
text_analyzer: &TextAnalyzer,
json_term_writer: &mut JsonTermWriter,
json_term_writer: &mut JsonTermWriter<'a>,
postings_writer: &mut dyn PostingsWriter,
ctx: &mut IndexingContext,
positions_per_path: &mut IndexingPositionsPerPath,
@@ -113,11 +112,11 @@ fn index_json_object(
}
}
fn index_json_value(
fn index_json_value<'a>(
doc: DocId,
json_value: &serde_json::Value,
text_analyzer: &TextAnalyzer,
json_term_writer: &mut JsonTermWriter,
json_term_writer: &mut JsonTermWriter<'a>,
postings_writer: &mut dyn PostingsWriter,
ctx: &mut IndexingContext,
positions_per_path: &mut IndexingPositionsPerPath,
@@ -260,7 +259,6 @@ pub(crate) fn set_string_and_get_terms(
pub struct JsonTermWriter<'a> {
term_buffer: &'a mut Term,
path_stack: Vec<usize>,
expand_dots_enabled: bool,
}
/// Splits a json path supplied to the query parser in such a way that
@@ -300,25 +298,23 @@ impl<'a> JsonTermWriter<'a> {
pub fn from_field_and_json_path(
field: Field,
json_path: &str,
expand_dots_enabled: bool,
term_buffer: &'a mut Term,
) -> Self {
term_buffer.set_field_and_type(field, Type::Json);
let mut json_term_writer = Self::wrap(term_buffer, expand_dots_enabled);
let mut json_term_writer = Self::wrap(term_buffer);
for segment in split_json_path(json_path) {
json_term_writer.push_path_segment(&segment);
}
json_term_writer
}
pub fn wrap(term_buffer: &'a mut Term, expand_dots_enabled: bool) -> Self {
pub fn wrap(term_buffer: &'a mut Term) -> Self {
term_buffer.clear_with_type(Type::Json);
let mut path_stack = Vec::with_capacity(10);
path_stack.push(0);
Self {
term_buffer,
path_stack,
expand_dots_enabled,
}
}
@@ -340,24 +336,11 @@ impl<'a> JsonTermWriter<'a> {
self.trim_to_end_of_path();
let buffer = self.term_buffer.value_bytes_mut();
let buffer_len = buffer.len();
if self.path_stack.len() > 1 {
buffer[buffer_len - 1] = JSON_PATH_SEGMENT_SEP;
}
if self.expand_dots_enabled && segment.as_bytes().contains(&b'.') {
// We need to replace `.` by JSON_PATH_SEGMENT_SEP.
self.term_buffer
.append_bytes(segment.as_bytes())
.iter_mut()
.for_each(|byte| {
if *byte == b'.' {
*byte = JSON_PATH_SEGMENT_SEP;
}
});
} else {
self.term_buffer.append_bytes(segment.as_bytes());
}
self.term_buffer.push_byte(JSON_PATH_SEGMENT_SEP);
self.term_buffer.append_bytes(segment.as_bytes());
self.term_buffer.append_bytes(&[JSON_PATH_SEGMENT_SEP]);
self.path_stack.push(self.term_buffer.len_bytes());
}
@@ -408,7 +391,7 @@ mod tests {
fn test_json_writer() {
let field = Field::from_field_id(1);
let mut term = Term::with_type_and_field(Type::Json, field);
let mut json_writer = JsonTermWriter::wrap(&mut term, false);
let mut json_writer = JsonTermWriter::wrap(&mut term);
json_writer.push_path_segment("attributes");
json_writer.push_path_segment("color");
json_writer.set_str("red");
@@ -442,7 +425,7 @@ mod tests {
fn test_string_term() {
let field = Field::from_field_id(1);
let mut term = Term::with_type_and_field(Type::Json, field);
let mut json_writer = JsonTermWriter::wrap(&mut term, false);
let mut json_writer = JsonTermWriter::wrap(&mut term);
json_writer.push_path_segment("color");
json_writer.set_str("red");
assert_eq!(
@@ -455,7 +438,7 @@ mod tests {
fn test_i64_term() {
let field = Field::from_field_id(1);
let mut term = Term::with_type_and_field(Type::Json, field);
let mut json_writer = JsonTermWriter::wrap(&mut term, false);
let mut json_writer = JsonTermWriter::wrap(&mut term);
json_writer.push_path_segment("color");
json_writer.set_fast_value(-4i64);
assert_eq!(
@@ -468,7 +451,7 @@ mod tests {
fn test_u64_term() {
let field = Field::from_field_id(1);
let mut term = Term::with_type_and_field(Type::Json, field);
let mut json_writer = JsonTermWriter::wrap(&mut term, false);
let mut json_writer = JsonTermWriter::wrap(&mut term);
json_writer.push_path_segment("color");
json_writer.set_fast_value(4u64);
assert_eq!(
@@ -481,7 +464,7 @@ mod tests {
fn test_f64_term() {
let field = Field::from_field_id(1);
let mut term = Term::with_type_and_field(Type::Json, field);
let mut json_writer = JsonTermWriter::wrap(&mut term, false);
let mut json_writer = JsonTermWriter::wrap(&mut term);
json_writer.push_path_segment("color");
json_writer.set_fast_value(4.0f64);
assert_eq!(
@@ -494,7 +477,7 @@ mod tests {
fn test_bool_term() {
let field = Field::from_field_id(1);
let mut term = Term::with_type_and_field(Type::Json, field);
let mut json_writer = JsonTermWriter::wrap(&mut term, false);
let mut json_writer = JsonTermWriter::wrap(&mut term);
json_writer.push_path_segment("color");
json_writer.set_fast_value(true);
assert_eq!(
@@ -507,7 +490,7 @@ mod tests {
fn test_push_after_set_path_segment() {
let field = Field::from_field_id(1);
let mut term = Term::with_type_and_field(Type::Json, field);
let mut json_writer = JsonTermWriter::wrap(&mut term, false);
let mut json_writer = JsonTermWriter::wrap(&mut term);
json_writer.push_path_segment("attribute");
json_writer.set_str("something");
json_writer.push_path_segment("color");
@@ -522,7 +505,7 @@ mod tests {
fn test_pop_segment() {
let field = Field::from_field_id(1);
let mut term = Term::with_type_and_field(Type::Json, field);
let mut json_writer = JsonTermWriter::wrap(&mut term, false);
let mut json_writer = JsonTermWriter::wrap(&mut term);
json_writer.push_path_segment("color");
json_writer.push_path_segment("hue");
json_writer.pop_path_segment();
@@ -537,7 +520,7 @@ mod tests {
fn test_json_writer_path() {
let field = Field::from_field_id(1);
let mut term = Term::with_type_and_field(Type::Json, field);
let mut json_writer = JsonTermWriter::wrap(&mut term, false);
let mut json_writer = JsonTermWriter::wrap(&mut term);
json_writer.push_path_segment("color");
assert_eq!(json_writer.path(), b"color");
json_writer.push_path_segment("hue");
@@ -546,37 +529,6 @@ mod tests {
assert_eq!(json_writer.path(), b"color\x01hue");
}
#[test]
fn test_json_path_expand_dots_disabled() {
let field = Field::from_field_id(1);
let mut term = Term::with_type_and_field(Type::Json, field);
let mut json_writer = JsonTermWriter::wrap(&mut term, false);
json_writer.push_path_segment("color.hue");
assert_eq!(json_writer.path(), b"color.hue");
}
#[test]
fn test_json_path_expand_dots_enabled() {
let field = Field::from_field_id(1);
let mut term = Term::with_type_and_field(Type::Json, field);
let mut json_writer = JsonTermWriter::wrap(&mut term, true);
json_writer.push_path_segment("color.hue");
assert_eq!(json_writer.path(), b"color\x01hue");
}
#[test]
fn test_json_path_expand_dots_enabled_pop_segment() {
let field = Field::from_field_id(1);
let mut term = Term::with_type_and_field(Type::Json, field);
let mut json_writer = JsonTermWriter::wrap(&mut term, true);
json_writer.push_path_segment("hello");
assert_eq!(json_writer.path(), b"hello");
json_writer.push_path_segment("color.hue");
assert_eq!(json_writer.path(), b"hello\x01color\x01hue");
json_writer.pop_path_segment();
assert_eq!(json_writer.path(), b"hello");
}
#[test]
fn test_split_json_path_simple() {
let json_path = split_json_path("titi.toto");

View File

@@ -13,7 +13,7 @@ use crate::docset::{DocSet, TERMINATED};
use crate::error::DataCorruption;
use crate::fastfield::{
get_fastfield_codecs_for_multivalue, AliveBitSet, Column, CompositeFastFieldSerializer,
MultiValueIndex, MultiValuedFastFieldReader,
MultiValueIndex, MultiValuedFastFieldReader, MultiValuedU128FastFieldReader,
};
use crate::fieldnorm::{FieldNormReader, FieldNormReaders, FieldNormsSerializer, FieldNormsWriter};
use crate::indexer::doc_id_mapping::{expect_field_id_for_sort_field, SegmentDocIdMapping};
@@ -331,18 +331,18 @@ impl IndexMerger {
fast_field_serializer: &mut CompositeFastFieldSerializer,
doc_id_mapping: &SegmentDocIdMapping,
) -> crate::Result<()> {
let segment_and_ff_readers: Vec<(&SegmentReader, MultiValuedFastFieldReader<u128>)> = self
.readers
.iter()
.map(|segment_reader| {
let ff_reader: MultiValuedFastFieldReader<u128> =
segment_reader.fast_fields().u128s(field).expect(
"Failed to find index for multivalued field. This is a bug in tantivy, \
please report.",
);
(segment_reader, ff_reader)
})
.collect::<Vec<_>>();
let segment_and_ff_readers: Vec<(&SegmentReader, MultiValuedU128FastFieldReader<u128>)> =
self.readers
.iter()
.map(|segment_reader| {
let ff_reader: MultiValuedU128FastFieldReader<u128> =
segment_reader.fast_fields().u128s(field).expect(
"Failed to find index for multivalued field. This is a bug in \
tantivy, please report.",
);
(segment_reader, ff_reader)
})
.collect::<Vec<_>>();
Self::write_1_n_fast_field_idx_generic(
field,
@@ -366,7 +366,7 @@ impl IndexMerger {
.map(|doc| reader.num_vals(doc))
.sum()
} else {
reader.total_num_vals()
reader.total_num_vals() as u32
}
})
.sum();
@@ -401,10 +401,15 @@ impl IndexMerger {
.readers
.iter()
.map(|reader| {
let u128_reader: Arc<dyn Column<u128>> = reader.fast_fields().u128(field).expect(
"Failed to find a reader for single fast field. This is a tantivy bug and it \
should never happen.",
);
let u128_reader: Arc<dyn Column<u128>> = reader
.fast_fields()
.u128(field)
.expect(
"Failed to find a reader for single fast field. This is a tantivy bug and \
it should never happen.",
)
.to_full()
.expect("temp migration solution");
u128_reader
})
.collect::<Vec<_>>();
@@ -465,7 +470,11 @@ impl IndexMerger {
sort_by_field: &IndexSortByField,
) -> crate::Result<Arc<dyn Column>> {
let field_id = expect_field_id_for_sort_field(reader.schema(), sort_by_field)?; // for now expect fastfield, but not strictly required
let value_accessor = reader.fast_fields().u64_lenient(field_id)?;
let value_accessor = reader
.fast_fields()
.u64_lenient(field_id)?
.to_full()
.expect("temp migration solution");
Ok(value_accessor)
}
/// Collecting value_accessors into a vec to bind the lifetime.
@@ -968,7 +977,7 @@ impl IndexMerger {
let doc_bytes = doc_bytes_res?;
store_writer.store_bytes(&doc_bytes)?;
} else {
return Err(DataCorruption::comment_only(format!(
return Err(DataCorruption::comment_only(&format!(
"unexpected missing document in docstore on merge, doc address \
{old_doc_addr:?}",
))
@@ -1368,16 +1377,16 @@ mod tests {
.fast_fields()
.u64(score_field)
.unwrap();
assert_eq!(score_field_reader.min_value(), 4000);
assert_eq!(score_field_reader.max_value(), 7000);
assert_eq!(score_field_reader.min_value(), Some(4000));
assert_eq!(score_field_reader.max_value(), Some(7000));
let score_field_reader = searcher
.segment_reader(1)
.fast_fields()
.u64(score_field)
.unwrap();
assert_eq!(score_field_reader.min_value(), 1);
assert_eq!(score_field_reader.max_value(), 3);
assert_eq!(score_field_reader.min_value(), Some(1));
assert_eq!(score_field_reader.max_value(), Some(3));
}
{
// merging the segments
@@ -1422,8 +1431,8 @@ mod tests {
.fast_fields()
.u64(score_field)
.unwrap();
assert_eq!(score_field_reader.min_value(), 3);
assert_eq!(score_field_reader.max_value(), 7000);
assert_eq!(score_field_reader.min_value(), Some(3));
assert_eq!(score_field_reader.max_value(), Some(7000));
}
{
// test a commit with only deletes
@@ -1469,8 +1478,8 @@ mod tests {
.fast_fields()
.u64(score_field)
.unwrap();
assert_eq!(score_field_reader.min_value(), 3);
assert_eq!(score_field_reader.max_value(), 7000);
assert_eq!(score_field_reader.min_value(), Some(3));
assert_eq!(score_field_reader.max_value(), Some(7000));
}
{
// Test merging a single segment in order to remove deletes.
@@ -1516,8 +1525,8 @@ mod tests {
.fast_fields()
.u64(score_field)
.unwrap();
assert_eq!(score_field_reader.min_value(), 6000);
assert_eq!(score_field_reader.max_value(), 7000);
assert_eq!(score_field_reader.min_value(), Some(6000));
assert_eq!(score_field_reader.max_value(), Some(7000));
}
{

View File

@@ -186,17 +186,17 @@ mod tests {
let fast_fields = segment_reader.fast_fields();
let fast_field = fast_fields.u64(int_field).unwrap();
assert_eq!(fast_field.get_val(5), 1u64);
assert_eq!(fast_field.get_val(4), 2u64);
assert_eq!(fast_field.get_val(3), 3u64);
assert_eq!(fast_field.get_val(5), Some(1u64));
assert_eq!(fast_field.get_val(4), Some(2u64));
assert_eq!(fast_field.get_val(3), Some(3u64));
if force_disjunct_segment_sort_values {
assert_eq!(fast_field.get_val(2), 20u64);
assert_eq!(fast_field.get_val(1), 100u64);
assert_eq!(fast_field.get_val(2), Some(20u64));
assert_eq!(fast_field.get_val(1), Some(100u64));
} else {
assert_eq!(fast_field.get_val(2), 10u64);
assert_eq!(fast_field.get_val(1), 20u64);
assert_eq!(fast_field.get_val(2), Some(10u64));
assert_eq!(fast_field.get_val(1), Some(20u64));
}
assert_eq!(fast_field.get_val(0), 1_000u64);
assert_eq!(fast_field.get_val(0), Some(1_000u64));
// test new field norm mapping
{
@@ -373,12 +373,12 @@ mod tests {
let fast_fields = segment_reader.fast_fields();
let fast_field = fast_fields.u64(int_field).unwrap();
assert_eq!(fast_field.get_val(0), 1u64);
assert_eq!(fast_field.get_val(1), 2u64);
assert_eq!(fast_field.get_val(2), 3u64);
assert_eq!(fast_field.get_val(3), 10u64);
assert_eq!(fast_field.get_val(4), 20u64);
assert_eq!(fast_field.get_val(5), 1_000u64);
assert_eq!(fast_field.get_val(0), Some(1u64));
assert_eq!(fast_field.get_val(1), Some(2u64));
assert_eq!(fast_field.get_val(2), Some(3u64));
assert_eq!(fast_field.get_val(3), Some(10u64));
assert_eq!(fast_field.get_val(4), Some(20u64));
assert_eq!(fast_field.get_val(5), Some(1_000u64));
let get_vals = |fast_field: &MultiValuedFastFieldReader<u64>, doc_id: u32| -> Vec<u64> {
let mut vals = vec![];
@@ -535,11 +535,15 @@ mod bench_sorted_index_merge {
b.iter(|| {
let sorted_doc_ids = doc_id_mapping.iter_old_doc_addrs().map(|doc_addr| {
let reader = &merger.readers[doc_addr.segment_ord as usize];
let u64_reader: Arc<dyn Column<u64>> =
reader.fast_fields().typed_fast_field_reader(field).expect(
let u64_reader: Arc<dyn Column<u64>> = reader
.fast_fields()
.typed_fast_field_reader(field)
.expect(
"Failed to find a reader for single fast field. This is a tantivy bug and \
it should never happen.",
);
)
.to_full()
.unwrap();
(doc_addr.doc_id, reader, u64_reader)
});
// add values in order of the new doc_ids

View File

@@ -60,7 +60,7 @@ type AddBatchReceiver = channel::Receiver<AddBatch>;
mod tests_mmap {
use crate::collector::Count;
use crate::query::QueryParser;
use crate::schema::{JsonObjectOptions, Schema, TEXT};
use crate::schema::{Schema, STORED, TEXT};
use crate::{Index, Term};
#[test]
@@ -81,9 +81,9 @@ mod tests_mmap {
}
#[test]
fn test_json_field_expand_dots_disabled_dot_escaped_required() {
fn test_json_field_espace() {
let mut schema_builder = Schema::builder();
let json_field = schema_builder.add_json_field("json", TEXT);
let json_field = schema_builder.add_json_field("json", TEXT | STORED);
let index = Index::create_in_ram(schema_builder.build());
let mut index_writer = index.writer_for_tests().unwrap();
let json = serde_json::json!({"k8s.container.name": "prometheus", "val": "hello"});
@@ -99,26 +99,4 @@ mod tests_mmap {
let num_docs = searcher.search(&query, &Count).unwrap();
assert_eq!(num_docs, 1);
}
#[test]
fn test_json_field_expand_dots_enabled_dot_escape_not_required() {
let mut schema_builder = Schema::builder();
let json_options: JsonObjectOptions =
JsonObjectOptions::from(TEXT).set_expand_dots_enabled();
let json_field = schema_builder.add_json_field("json", json_options);
let index = Index::create_in_ram(schema_builder.build());
let mut index_writer = index.writer_for_tests().unwrap();
let json = serde_json::json!({"k8s.container.name": "prometheus", "val": "hello"});
index_writer.add_document(doc!(json_field=>json)).unwrap();
index_writer.commit().unwrap();
let reader = index.reader().unwrap();
let searcher = reader.searcher();
assert_eq!(searcher.num_docs(), 1);
let parse_query = QueryParser::for_index(&index, Vec::new());
let query = parse_query
.parse_query(r#"json.k8s.container.name:prometheus"#)
.unwrap();
let num_docs = searcher.search(&query, &Count).unwrap();
assert_eq!(num_docs, 1);
}
}

Some files were not shown because too many files have changed in this diff Show More