Compare commits

..

1 Commits

Author SHA1 Message Date
Paul Masurel
85ebb3c420 Introducing ColumnReader.
Introducing a ColumnReader trait and .reader() to Column,
hence removing the dreaded Mutex in the `MultiValueStartIndex`
thingy.
2022-09-21 12:47:44 +09:00
301 changed files with 8935 additions and 21594 deletions

1
.gitattributes vendored Normal file
View File

@@ -0,0 +1 @@
cpp/* linguist-vendored

View File

@@ -48,7 +48,7 @@ jobs:
strategy:
matrix:
features: [
{ label: "all", flags: "mmap,stopwords,brotli-compression,lz4-compression,snappy-compression,zstd-compression,failpoints" },
{ label: "all", flags: "mmap,brotli-compression,lz4-compression,snappy-compression,zstd-compression,failpoints" },
{ label: "quickwit", flags: "mmap,quickwit,failpoints" }
]

1
.gitignore vendored
View File

@@ -9,6 +9,7 @@ target/release
Cargo.lock
benchmark
.DS_Store
cpp/simdcomp/bitpackingbenchmark
*.bk
.idea
trace.dat

View File

@@ -1,37 +1,10 @@
Tantivy 0.19
================================
#### Bugfixes
- Fix missing fieldnorms for u64, i64, f64, bool, bytes and date [#1620](https://github.com/quickwit-oss/tantivy/pull/1620) (@PSeitz)
- Fix interpolation overflow in linear interpolation fastfield codec [#1480](https://github.com/quickwit-oss/tantivy/pull/1480) (@PSeitz @fulmicoton)
#### Features/Improvements
- Add support for `IN` in queryparser , e.g. `field: IN [val1 val2 val3]` [#1683](https://github.com/quickwit-oss/tantivy/pull/1683) (@trinity-1686a)
- Skip score calculation, when no scoring is required [#1646](https://github.com/quickwit-oss/tantivy/pull/1646) (@PSeitz)
- Limit fast fields to u32 (`get_val(u32)`) [#1644](https://github.com/quickwit-oss/tantivy/pull/1644) (@PSeitz)
- The `DateTime` type has been updated to hold timestamps with microseconds precision.
`DateOptions` and `DatePrecision` have been added to configure Date fields. The precision is used to hint on fast values compression. Otherwise, seconds precision is used everywhere else (i.e terms, indexing) [#1396](https://github.com/quickwit-oss/tantivy/pull/1396) (@evanxg852000)
- Add IP address field type [#1553](https://github.com/quickwit-oss/tantivy/pull/1553) (@PSeitz)
- Add boolean field type [#1382](https://github.com/quickwit-oss/tantivy/pull/1382) (@boraarslan)
- Remove Searcher pool and make `Searcher` cloneable. (@PSeitz)
- Validate settings on create [#1570](https://github.com/quickwit-oss/tantivy/pull/1570) (@PSeitz)
- Detect and apply gcd on fastfield codecs [#1418](https://github.com/quickwit-oss/tantivy/pull/1418) (@PSeitz)
- Doc store
- use separate thread to compress block store [#1389](https://github.com/quickwit-oss/tantivy/pull/1389) [#1510](https://github.com/quickwit-oss/tantivy/pull/1510) (@PSeitz @fulmicoton)
- Expose doc store cache size [#1403](https://github.com/quickwit-oss/tantivy/pull/1403) (@PSeitz)
- Enable compression levels for doc store [#1378](https://github.com/quickwit-oss/tantivy/pull/1378) (@PSeitz)
- Make block size configurable [#1374](https://github.com/quickwit-oss/tantivy/pull/1374) (@kryesh)
- Make `tantivy::TantivyError` cloneable [#1402](https://github.com/quickwit-oss/tantivy/pull/1402) (@PSeitz)
- Add support for phrase slop in query language [#1393](https://github.com/quickwit-oss/tantivy/pull/1393) (@saroh)
- Aggregation
- Add aggregation support for date type [#1693](https://github.com/quickwit-oss/tantivy/pull/1693)(@PSeitz)
- Add support for keyed parameter in range and histgram aggregations [#1424](https://github.com/quickwit-oss/tantivy/pull/1424) (@k-yomo)
- Add aggregation bucket limit [#1363](https://github.com/quickwit-oss/tantivy/pull/1363) (@PSeitz)
- Faster indexing
- [#1610](https://github.com/quickwit-oss/tantivy/pull/1610) (@PSeitz)
- [#1594](https://github.com/quickwit-oss/tantivy/pull/1594) (@PSeitz)
- [#1582](https://github.com/quickwit-oss/tantivy/pull/1582) (@PSeitz)
- [#1611](https://github.com/quickwit-oss/tantivy/pull/1611) (@PSeitz)
- Added a pre-configured stop word filter for various language [#1666](https://github.com/quickwit-oss/tantivy/pull/1666) (@adamreichold)
- Updated [Date Field Type](https://github.com/quickwit-oss/tantivy/pull/1396)
The `DateTime` type has been updated to hold timestamps with microseconds precision.
`DateOptions` and `DatePrecision` have been added to configure Date fields. The precision is used to hint on fast values compression. Otherwise, seconds precision is used everywhere else (i.e terms, indexing).
- Remove Searcher pool and make `Searcher` cloneable.
Tantivy 0.18
================================
@@ -49,10 +22,6 @@ Tantivy 0.18
- Add terms aggregation (@PSeitz)
- Add support for zstd compression (@kryesh)
Tantivy 0.18.1
================================
- Hotfix: positions computation. #1629 (@fmassot, @fulmicoton, @PSeitz)
Tantivy 0.17
================================

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy"
version = "0.19.0"
version = "0.18.0"
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
license = "MIT"
categories = ["database-implementations", "data-structures"]
@@ -11,21 +11,19 @@ repository = "https://github.com/quickwit-oss/tantivy"
readme = "README.md"
keywords = ["search", "information", "retrieval"]
edition = "2021"
rust-version = "1.62"
[dependencies]
oneshot = "0.1.5"
base64 = "0.21.0"
oneshot = "0.1.3"
base64 = "0.13.0"
byteorder = "1.4.3"
crc32fast = "1.3.2"
once_cell = "1.10.0"
regex = { version = "1.5.5", default-features = false, features = ["std", "unicode"] }
aho-corasick = "0.7"
tantivy-fst = "0.4.0"
tantivy-fst = "0.3.0"
memmap2 = { version = "0.5.3", optional = true }
lz4_flex = { version = "0.9.2", default-features = false, features = ["checked-decode"], optional = true }
brotli = { version = "3.3.4", optional = true }
zstd = { version = "0.12", optional = true, default-features = false }
zstd = { version = "0.11", optional = true }
snap = { version = "1.0.5", optional = true }
tempfile = { version = "3.3.0", optional = true }
log = "0.4.16"
@@ -36,11 +34,17 @@ fs2 = { version = "0.4.3", optional = true }
levenshtein_automata = "0.2.1"
uuid = { version = "1.0.0", features = ["v4", "serde"] }
crossbeam-channel = "0.5.4"
tantivy-query-grammar = { version="0.18.0", path="./query-grammar" }
tantivy-bitpacker = { version="0.2", path="./bitpacker" }
common = { version = "0.3", path = "./common/", package = "tantivy-common" }
fastfield_codecs = { version="0.2", path="./fastfield_codecs", default-features = false }
ownedbytes = { version="0.3", path="./ownedbytes" }
stable_deref_trait = "1.2.0"
rust-stemmers = "1.2.0"
downcast-rs = "1.2.0"
bitpacking = { version = "0.8.4", default-features = false, features = ["bitpacker4x"] }
census = "0.4.0"
rustc-hash = "1.1.0"
fnv = "1.0.7"
thiserror = "1.0.30"
htmlescape = "0.3.1"
fail = "0.5.0"
@@ -48,22 +52,14 @@ murmurhash32 = "0.2.0"
time = { version = "0.3.10", features = ["serde-well-known"] }
smallvec = "1.8.0"
rayon = "1.5.2"
lru = "0.9.0"
lru = "0.7.5"
fastdivide = "0.4.0"
itertools = "0.10.3"
measure_time = "0.8.2"
serde_cbor = { version = "0.11.2", optional = true }
async-trait = "0.1.53"
arc-swap = "1.5.0"
sstable = { version="0.1", path="./sstable", package ="tantivy-sstable", optional = true }
stacker = { version="0.1", path="./stacker", package ="tantivy-stacker" }
tantivy-query-grammar = { version= "0.19.0", path="./query-grammar" }
tantivy-bitpacker = { version= "0.3", path="./bitpacker" }
columnar = { version= "0.1", path="./columnar", package="tantivy-columnar" }
common = { version= "0.5", path = "./common/", package = "tantivy-common" }
fastfield_codecs = { version= "0.3", path="./fastfield_codecs", default-features = false }
tokenizer-api = { version="0.1", path="./tokenizer-api", package="tantivy-tokenizer-api" }
[target.'cfg(windows)'.dependencies]
winapi = "0.3.9"
@@ -73,10 +69,10 @@ maplit = "1.0.2"
matches = "0.1.9"
pretty_assertions = "1.2.1"
proptest = "1.0.0"
criterion = "0.4"
criterion = "0.3.5"
test-log = "0.2.10"
env_logger = "0.10.0"
pprof = { version = "0.11.0", features = ["flamegraph", "criterion"] }
env_logger = "0.9.0"
pprof = { version = "0.10.0", features = ["flamegraph", "criterion"] }
futures = "0.3.21"
[dev-dependencies.fail]
@@ -93,9 +89,8 @@ debug-assertions = true
overflow-checks = true
[features]
default = ["mmap", "stopwords", "lz4-compression"]
default = ["mmap", "lz4-compression" ]
mmap = ["fs2", "tempfile", "memmap2"]
stopwords = []
brotli-compression = ["brotli"]
lz4-compression = ["lz4_flex"]
@@ -105,10 +100,10 @@ zstd-compression = ["zstd"]
failpoints = ["fail/failpoints"]
unstable = [] # useful for benches.
quickwit = ["sstable"]
quickwit = ["serde_cbor"]
[workspace]
members = ["query-grammar", "bitpacker", "common", "fastfield_codecs", "ownedbytes", "stacker", "sstable", "tokenizer-api", "columnar"]
members = ["query-grammar", "bitpacker", "common", "fastfield_codecs", "ownedbytes"]
# Following the "fail" crate best practises, we isolate
# tests that define specific behavior in fail check points

View File

@@ -29,7 +29,7 @@ Your mileage WILL vary depending on the nature of queries and their load.
# Features
- Full-text search
- Configurable tokenizer (stemming available for 17 Latin languages) with third party support for Chinese ([tantivy-jieba](https://crates.io/crates/tantivy-jieba) and [cang-jie](https://crates.io/crates/cang-jie)), Japanese ([lindera](https://github.com/lindera-morphology/lindera-tantivy), [Vaporetto](https://crates.io/crates/vaporetto_tantivy), and [tantivy-tokenizer-tiny-segmenter](https://crates.io/crates/tantivy-tokenizer-tiny-segmenter)) and Korean ([lindera](https://github.com/lindera-morphology/lindera-tantivy) + [lindera-ko-dic-builder](https://github.com/lindera-morphology/lindera-ko-dic-builder))
- Configurable tokenizer (stemming available for 17 Latin languages with third party support for Chinese ([tantivy-jieba](https://crates.io/crates/tantivy-jieba) and [cang-jie](https://crates.io/crates/cang-jie)), Japanese ([lindera](https://github.com/lindera-morphology/lindera-tantivy), [Vaporetto](https://crates.io/crates/vaporetto_tantivy), and [tantivy-tokenizer-tiny-segmenter](https://crates.io/crates/tantivy-tokenizer-tiny-segmenter)) and Korean ([lindera](https://github.com/lindera-morphology/lindera-tantivy) + [lindera-ko-dic-builder](https://github.com/lindera-morphology/lindera-ko-dic-builder))
- Fast (check out the :racehorse: :sparkles: [benchmark](https://tantivy-search.github.io/bench/) :sparkles: :racehorse:)
- Tiny startup time (<10ms), perfect for command-line tools
- BM25 scoring (the same as Lucene)
@@ -41,13 +41,13 @@ Your mileage WILL vary depending on the nature of queries and their load.
- SIMD integer compression when the platform/CPU includes the SSE2 instruction set
- Single valued and multivalued u64, i64, and f64 fast fields (equivalent of doc values in Lucene)
- `&[u8]` fast fields
- Text, i64, u64, f64, dates, ip, bool, and hierarchical facet fields
- Compressed document store (LZ4, Zstd, None, Brotli, Snap)
- Text, i64, u64, f64, dates, and hierarchical facet fields
- LZ4 compressed document store
- Range queries
- Faceted search
- Configurable indexing (optional term frequency and position indexing)
- JSON Field
- Aggregation Collector: histogram, range buckets, average, and stats metrics
- Aggregation Collector: range buckets, average, and stats metrics
- LogMergePolicy with deletes
- Searcher Warmer API
- Cheesy logo with a horse
@@ -58,7 +58,7 @@ Distributed search is out of the scope of Tantivy, but if you are looking for th
# Getting started
Tantivy works on stable Rust and supports Linux, macOS, and Windows.
Tantivy works on stable Rust (>= 1.27) and supports Linux, macOS, and Windows.
- [Tantivy's simple search example](https://tantivy-search.github.io/examples/basic_search.html)
- [tantivy-cli and its tutorial](https://github.com/quickwit-oss/tantivy-cli) - `tantivy-cli` is an actual command-line interface that makes it easy for you to create a search engine,
@@ -80,21 +80,48 @@ There are many ways to support this project.
# Contributing code
We use the GitHub Pull Request workflow: reference a GitHub ticket and/or include a comprehensive commit message when opening a PR.
Feel free to update CHANGELOG.md with your contribution.
## Tokenizer
When implementing a tokenizer for tantivy depend on the `tantivy-tokenizer-api` crate.
## Clone and build locally
Tantivy compiles on stable Rust.
Tantivy compiles on stable Rust but requires `Rust >= 1.27`.
To check out and run tests, you can simply run:
```bash
git clone https://github.com/quickwit-oss/tantivy.git
cd tantivy
cargo test
git clone https://github.com/quickwit-oss/tantivy.git
cd tantivy
cargo build
```
## Run tests
Some tests will not run with just `cargo test` because of `fail-rs`.
To run the tests exhaustively, run `./run-tests.sh`.
## Debug
You might find it useful to step through the programme with a debugger.
### A failing test
Make sure you haven't run `cargo clean` after the most recent `cargo test` or `cargo build` to guarantee that the `target/` directory exists. Use this bash script to find the name of the most recent debug build of Tantivy and run it under `rust-gdb`:
```bash
find target/debug/ -maxdepth 1 -executable -type f -name "tantivy*" -printf '%TY-%Tm-%Td %TT %p\n' | sort -r | cut -d " " -f 3 | xargs -I RECENT_DBG_TANTIVY rust-gdb RECENT_DBG_TANTIVY
```
Now that you are in `rust-gdb`, you can set breakpoints on lines and methods that match your source code and run the debug executable with flags that you normally pass to `cargo test` like this:
```bash
$gdb run --test-threads 1 --test $NAME_OF_TEST
```
### An example
By default, `rustc` compiles everything in the `examples/` directory in debug mode. This makes it easy for you to make examples to reproduce bugs:
```bash
rust-gdb target/debug/examples/$EXAMPLE_NAME
$ gdb run
```
# Companies Using Tantivy

View File

@@ -1,18 +0,0 @@
Make schema_builder API fluent.
fix doc serialization and prevent compression problems
u64 , etc. shoudl return Resutl<Option> now that we support optional missing a column is really not an error
remove fastfield codecs
ditch the first_or_default trick. if it is still useful, improve its implementation.
rename FastFieldReaders::open to load
remove fast field reader
find a way to unify the two DateTime.
readd type check in the filter wrapper
add unit test on columnar list columns.
make sure sort works

View File

@@ -34,7 +34,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
let index = Index::create_in_ram(schema.clone());
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for _ in 0..NUM_REPEATS {
for doc_json in HDFS_LOGS.trim().split('\n') {
for doc_json in HDFS_LOGS.trim().split("\n") {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
}
@@ -46,7 +46,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
let index = Index::create_in_ram(schema.clone());
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for _ in 0..NUM_REPEATS {
for doc_json in HDFS_LOGS.trim().split('\n') {
for doc_json in HDFS_LOGS.trim().split("\n") {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
}
@@ -59,7 +59,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
let index = Index::create_in_ram(schema_with_store.clone());
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for _ in 0..NUM_REPEATS {
for doc_json in HDFS_LOGS.trim().split('\n') {
for doc_json in HDFS_LOGS.trim().split("\n") {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
}
@@ -71,7 +71,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
let index = Index::create_in_ram(schema_with_store.clone());
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for _ in 0..NUM_REPEATS {
for doc_json in HDFS_LOGS.trim().split('\n') {
for doc_json in HDFS_LOGS.trim().split("\n") {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
}
@@ -85,7 +85,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
let json_field = dynamic_schema.get_field("json").unwrap();
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for _ in 0..NUM_REPEATS {
for doc_json in HDFS_LOGS.trim().split('\n') {
for doc_json in HDFS_LOGS.trim().split("\n") {
let json_val: serde_json::Map<String, serde_json::Value> =
serde_json::from_str(doc_json).unwrap();
let doc = tantivy::doc!(json_field=>json_val);
@@ -101,7 +101,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
let json_field = dynamic_schema.get_field("json").unwrap();
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for _ in 0..NUM_REPEATS {
for doc_json in HDFS_LOGS.trim().split('\n') {
for doc_json in HDFS_LOGS.trim().split("\n") {
let json_val: serde_json::Map<String, serde_json::Value> =
serde_json::from_str(doc_json).unwrap();
let doc = tantivy::doc!(json_field=>json_val);

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy-bitpacker"
version = "0.3.0"
version = "0.2.0"
edition = "2021"
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
license = "MIT"
@@ -8,14 +8,8 @@ categories = []
description = """Tantivy-sub crate: bitpacking"""
repository = "https://github.com/quickwit-oss/tantivy"
keywords = []
documentation = "https://docs.rs/tantivy-bitpacker/latest/tantivy_bitpacker"
homepage = "https://github.com/quickwit-oss/tantivy"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
[dev-dependencies]
rand = "0.8"
proptest = "1"

View File

@@ -4,39 +4,9 @@ extern crate test;
#[cfg(test)]
mod tests {
use rand::seq::IteratorRandom;
use rand::thread_rng;
use tantivy_bitpacker::{BitPacker, BitUnpacker, BlockedBitpacker};
use tantivy_bitpacker::BlockedBitpacker;
use test::Bencher;
#[inline(never)]
fn create_bitpacked_data(bit_width: u8, num_els: u32) -> Vec<u8> {
let mut bitpacker = BitPacker::new();
let mut buffer = Vec::new();
for _ in 0..num_els {
// the values do not matter.
bitpacker.write(0u64, bit_width, &mut buffer).unwrap();
bitpacker.flush(&mut buffer).unwrap();
}
buffer
}
#[bench]
fn bench_bitpacking_read(b: &mut Bencher) {
let bit_width = 3;
let num_els = 1_000_000u32;
let bit_unpacker = BitUnpacker::new(bit_width);
let data = create_bitpacked_data(bit_width, num_els);
let idxs: Vec<u32> = (0..num_els).choose_multiple(&mut thread_rng(), 100_000);
b.iter(|| {
let mut out = 0u64;
for &idx in &idxs {
out = out.wrapping_add(bit_unpacker.get(idx, &data[..]));
}
out
});
}
#[bench]
fn bench_blockedbitp_read(b: &mut Bencher) {
let mut blocked_bitpacker = BlockedBitpacker::new();
@@ -44,9 +14,9 @@ mod tests {
blocked_bitpacker.add(val * val);
}
b.iter(|| {
let mut out = 0u64;
let mut out = 0;
for val in 0..=21500 {
out = out.wrapping_add(blocked_bitpacker.get(val));
out = blocked_bitpacker.get(val);
}
out
});

View File

@@ -25,14 +25,15 @@ impl BitPacker {
num_bits: u8,
output: &mut TWrite,
) -> io::Result<()> {
let val_u64 = val as u64;
let num_bits = num_bits as usize;
if self.mini_buffer_written + num_bits > 64 {
self.mini_buffer |= val.wrapping_shl(self.mini_buffer_written as u32);
self.mini_buffer |= val_u64.wrapping_shl(self.mini_buffer_written as u32);
output.write_all(self.mini_buffer.to_le_bytes().as_ref())?;
self.mini_buffer = val.wrapping_shr((64 - self.mini_buffer_written) as u32);
self.mini_buffer = val_u64.wrapping_shr((64 - self.mini_buffer_written) as u32);
self.mini_buffer_written = self.mini_buffer_written + num_bits - 64;
} else {
self.mini_buffer |= val << self.mini_buffer_written;
self.mini_buffer |= val_u64 << self.mini_buffer_written;
self.mini_buffer_written += num_bits;
if self.mini_buffer_written == 64 {
output.write_all(self.mini_buffer.to_le_bytes().as_ref())?;
@@ -56,31 +57,27 @@ impl BitPacker {
pub fn close<TWrite: io::Write>(&mut self, output: &mut TWrite) -> io::Result<()> {
self.flush(output)?;
// Padding the write file to simplify reads.
output.write_all(&[0u8; 7])?;
Ok(())
}
}
#[derive(Clone, Debug, Default, Copy)]
#[derive(Clone, Debug, Default)]
pub struct BitUnpacker {
num_bits: u32,
num_bits: u64,
mask: u64,
}
impl BitUnpacker {
/// Creates a bit unpacker, that assumes the same bitwidth for all values.
///
/// The bitunpacker works by doing an unaligned read of 8 bytes.
/// For this reason, values of `num_bits` between
/// [57..63] are forbidden.
pub fn new(num_bits: u8) -> BitUnpacker {
assert!(num_bits <= 7 * 8 || num_bits == 64);
let mask: u64 = if num_bits == 64 {
!0u64
} else {
(1u64 << num_bits) - 1u64
};
BitUnpacker {
num_bits: u32::from(num_bits),
num_bits: u64::from(num_bits),
mask,
}
}
@@ -90,32 +87,22 @@ impl BitUnpacker {
}
#[inline]
pub fn get(&self, idx: u32, data: &[u8]) -> u64 {
let addr_in_bits = idx * self.num_bits;
let addr = (addr_in_bits >> 3) as usize;
if addr + 8 > data.len() {
if self.num_bits == 0 {
return 0;
}
let bit_shift = addr_in_bits & 7;
return self.get_slow_path(addr, bit_shift, data);
pub fn get(&self, idx: u64, data: &[u8]) -> u64 {
if self.num_bits == 0 {
return 0u64;
}
let addr_in_bits = idx * self.num_bits;
let addr = addr_in_bits >> 3;
let bit_shift = addr_in_bits & 7;
let bytes: [u8; 8] = (&data[addr..addr + 8]).try_into().unwrap();
debug_assert!(
addr + 8 <= data.len() as u64,
"The fast field field should have been padded with 7 bytes."
);
let bytes: [u8; 8] = (&data[(addr as usize)..(addr as usize) + 8])
.try_into()
.unwrap();
let val_unshifted_unmasked: u64 = u64::from_le_bytes(bytes);
let val_shifted = val_unshifted_unmasked >> bit_shift;
val_shifted & self.mask
}
#[inline(never)]
fn get_slow_path(&self, addr: usize, bit_shift: u32, data: &[u8]) -> u64 {
let mut bytes: [u8; 8] = [0u8; 8];
let available_bytes = data.len() - addr;
// This function is meant to only be called if we did not have 8 bytes to load.
debug_assert!(available_bytes < 8);
bytes[..available_bytes].copy_from_slice(&data[addr..]);
let val_unshifted_unmasked: u64 = u64::from_le_bytes(bytes);
let val_shifted = val_unshifted_unmasked >> bit_shift;
let val_shifted = (val_unshifted_unmasked >> bit_shift) as u64;
val_shifted & self.mask
}
}
@@ -124,7 +111,7 @@ impl BitUnpacker {
mod test {
use super::{BitPacker, BitUnpacker};
fn create_bitpacker(len: usize, num_bits: u8) -> (BitUnpacker, Vec<u64>, Vec<u8>) {
fn create_fastfield_bitpacker(len: usize, num_bits: u8) -> (BitUnpacker, Vec<u64>, Vec<u8>) {
let mut data = Vec::new();
let mut bitpacker = BitPacker::new();
let max_val: u64 = (1u64 << num_bits as u64) - 1u64;
@@ -135,15 +122,15 @@ mod test {
bitpacker.write(val, num_bits, &mut data).unwrap();
}
bitpacker.close(&mut data).unwrap();
assert_eq!(data.len(), ((num_bits as usize) * len + 7) / 8);
assert_eq!(data.len(), ((num_bits as usize) * len + 7) / 8 + 7);
let bitunpacker = BitUnpacker::new(num_bits);
(bitunpacker, vals, data)
}
fn test_bitpacker_util(len: usize, num_bits: u8) {
let (bitunpacker, vals, data) = create_bitpacker(len, num_bits);
let (bitunpacker, vals, data) = create_fastfield_bitpacker(len, num_bits);
for (i, val) in vals.iter().enumerate() {
assert_eq!(bitunpacker.get(i as u32, &data), *val);
assert_eq!(bitunpacker.get(i as u64, &data), *val);
}
}
@@ -155,49 +142,4 @@ mod test {
test_bitpacker_util(6, 14);
test_bitpacker_util(1000, 14);
}
use proptest::prelude::*;
fn num_bits_strategy() -> impl Strategy<Value = u8> {
prop_oneof!(Just(0), Just(1), 2u8..56u8, Just(56), Just(64),)
}
fn vals_strategy() -> impl Strategy<Value = (u8, Vec<u64>)> {
(num_bits_strategy(), 0usize..100usize).prop_flat_map(|(num_bits, len)| {
let max_val = if num_bits == 64 {
u64::MAX
} else {
(1u64 << num_bits as u32) - 1
};
let vals = proptest::collection::vec(0..=max_val, len);
vals.prop_map(move |vals| (num_bits, vals))
})
}
fn test_bitpacker_aux(num_bits: u8, vals: &[u64]) {
let mut buffer: Vec<u8> = Vec::new();
let mut bitpacker = BitPacker::new();
for &val in vals {
bitpacker.write(val, num_bits, &mut buffer).unwrap();
}
bitpacker.flush(&mut buffer).unwrap();
assert_eq!(buffer.len(), (vals.len() * num_bits as usize + 7) / 8);
let bitunpacker = BitUnpacker::new(num_bits);
let max_val = if num_bits == 64 {
u64::MAX
} else {
(1u64 << num_bits) - 1
};
for (i, val) in vals.iter().copied().enumerate() {
assert!(val <= max_val);
assert_eq!(bitunpacker.get(i as u32, &buffer), val);
}
}
proptest::proptest! {
#[test]
fn test_bitpacker_proptest((num_bits, vals) in vals_strategy()) {
test_bitpacker_aux(num_bits, &vals);
}
}
}

View File

@@ -84,7 +84,7 @@ impl BlockedBitpacker {
#[inline]
pub fn add(&mut self, val: u64) {
self.buffer.push(val);
if self.buffer.len() == BLOCK_SIZE {
if self.buffer.len() == BLOCK_SIZE as usize {
self.flush();
}
}
@@ -126,11 +126,11 @@ impl BlockedBitpacker {
}
#[inline]
pub fn get(&self, idx: usize) -> u64 {
let metadata_pos = idx / BLOCK_SIZE;
let pos_in_block = idx % BLOCK_SIZE;
let metadata_pos = idx / BLOCK_SIZE as usize;
let pos_in_block = idx % BLOCK_SIZE as usize;
if let Some(metadata) = self.offset_and_bits.get(metadata_pos) {
let unpacked = BitUnpacker::new(metadata.num_bits()).get(
pos_in_block as u32,
pos_in_block as u64,
&self.compressed_blocks[metadata.offset() as usize..],
);
unpacked + metadata.base_value()

View File

@@ -1,8 +1,6 @@
mod bitpacker;
mod blocked_bitpacker;
use std::cmp::Ordering;
pub use crate::bitpacker::{BitPacker, BitUnpacker};
pub use crate::blocked_bitpacker::BlockedBitpacker;
@@ -39,104 +37,44 @@ pub fn compute_num_bits(n: u64) -> u8 {
}
}
/// Computes the (min, max) of an iterator of `PartialOrd` values.
///
/// For values implementing `Ord` (in a way consistent to their `PartialOrd` impl),
/// this function behaves as expected.
///
/// For values with partial ordering, the behavior is non-trivial and may
/// depends on the order of the values.
/// For floats however, it simply returns the same results as if NaN were
/// skipped.
pub fn minmax<I, T>(mut vals: I) -> Option<(T, T)>
where
I: Iterator<Item = T>,
T: Copy + PartialOrd,
T: Copy + Ord,
{
let first_el = vals.find(|val| {
// We use this to make sure we skip all NaN values when
// working with a float type.
val.partial_cmp(val) == Some(Ordering::Equal)
})?;
let mut min_so_far: T = first_el;
let mut max_so_far: T = first_el;
for val in vals {
if val.partial_cmp(&min_so_far) == Some(Ordering::Less) {
min_so_far = val;
}
if val.partial_cmp(&max_so_far) == Some(Ordering::Greater) {
max_so_far = val;
}
if let Some(first_el) = vals.next() {
return Some(vals.fold((first_el, first_el), |(min_val, max_val), el| {
(min_val.min(el), max_val.max(el))
}));
}
Some((min_so_far, max_so_far))
None
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_compute_num_bits() {
assert_eq!(compute_num_bits(1), 1u8);
assert_eq!(compute_num_bits(0), 0u8);
assert_eq!(compute_num_bits(2), 2u8);
assert_eq!(compute_num_bits(3), 2u8);
assert_eq!(compute_num_bits(4), 3u8);
assert_eq!(compute_num_bits(255), 8u8);
assert_eq!(compute_num_bits(256), 9u8);
assert_eq!(compute_num_bits(5_000_000_000), 33u8);
}
#[test]
fn test_minmax_empty() {
let vals: Vec<u32> = vec![];
assert_eq!(minmax(vals.into_iter()), None);
}
#[test]
fn test_minmax_one() {
assert_eq!(minmax(vec![1].into_iter()), Some((1, 1)));
}
#[test]
fn test_minmax_two() {
assert_eq!(minmax(vec![1, 2].into_iter()), Some((1, 2)));
assert_eq!(minmax(vec![2, 1].into_iter()), Some((1, 2)));
}
#[test]
fn test_minmax_nan() {
assert_eq!(
minmax(vec![f64::NAN, 1f64, 2f64].into_iter()),
Some((1f64, 2f64))
);
assert_eq!(
minmax(vec![2f64, f64::NAN, 1f64].into_iter()),
Some((1f64, 2f64))
);
assert_eq!(
minmax(vec![2f64, 1f64, f64::NAN].into_iter()),
Some((1f64, 2f64))
);
}
#[test]
fn test_minmax_inf() {
assert_eq!(
minmax(vec![f64::INFINITY, 1f64, 2f64].into_iter()),
Some((1f64, f64::INFINITY))
);
assert_eq!(
minmax(vec![-f64::INFINITY, 1f64, 2f64].into_iter()),
Some((-f64::INFINITY, 2f64))
);
assert_eq!(
minmax(vec![2f64, f64::INFINITY, 1f64].into_iter()),
Some((1f64, f64::INFINITY))
);
assert_eq!(
minmax(vec![2f64, 1f64, -f64::INFINITY].into_iter()),
Some((-f64::INFINITY, 2f64))
);
}
#[test]
fn test_compute_num_bits() {
assert_eq!(compute_num_bits(1), 1u8);
assert_eq!(compute_num_bits(0), 0u8);
assert_eq!(compute_num_bits(2), 2u8);
assert_eq!(compute_num_bits(3), 2u8);
assert_eq!(compute_num_bits(4), 3u8);
assert_eq!(compute_num_bits(255), 8u8);
assert_eq!(compute_num_bits(256), 9u8);
assert_eq!(compute_num_bits(5_000_000_000), 33u8);
}
#[test]
fn test_minmax_empty() {
let vals: Vec<u32> = vec![];
assert_eq!(minmax(vals.into_iter()), None);
}
#[test]
fn test_minmax_one() {
assert_eq!(minmax(vec![1].into_iter()), Some((1, 1)));
}
#[test]
fn test_minmax_two() {
assert_eq!(minmax(vec![1, 2].into_iter()), Some((1, 2)));
assert_eq!(minmax(vec![2, 1].into_iter()), Some((1, 2)));
}

View File

@@ -1,28 +0,0 @@
[package]
name = "tantivy-columnar"
version = "0.1.0"
edition = "2021"
license = "MIT"
[dependencies]
stacker = { path = "../stacker", package="tantivy-stacker"}
serde_json = "1"
thiserror = "1"
fnv = "1"
sstable = { path = "../sstable", package = "tantivy-sstable" }
common = { path = "../common", package = "tantivy-common" }
itertools = "0.10"
log = "0.4"
tantivy-bitpacker = { version= "0.3", path = "../bitpacker/" }
prettytable-rs = {version="0.10.0", optional= true}
rand = {version="0.8.3", optional= true}
fastdivide = "0.4"
measure_time = { version="0.8.2", optional=true}
[dev-dependencies]
proptest = "1"
more-asserts = "0.3.0"
rand = "0.8.3"
[features]
unstable = []

View File

@@ -1,6 +0,0 @@
test:
echo "Run test only... No examples."
cargo test --tests --lib
fmt:
cargo +nightly fmt --all

View File

@@ -1,109 +0,0 @@
# Columnar format
This crate describes columnar format used in tantivy.
## Goals
This format is special in the following way.
- it needs to be compact
- accessing a specific column does not require to load the entire columnar. It can be done in 2 to 3 random access.
- columns of several types can be associated with the same column name.
- it needs to support columns with different types `(str, u64, i64, f64)`
and different cardinality `(required, optional, multivalued)`.
- columns, once loaded, offer cheap random access.
- it is designed to allow range queries.
# Coercion rules
Users can create a columnar by inserting rows to a `ColumnarWriter`,
and serializing it into a `Write` object.
Nothing prevents a user from recording values with different type to the same `column_name`.
In that case, `tantivy-columnar`'s behavior is as follows:
- JsonValues are grouped into 3 types (String, Number, bool).
Values that corresponds to different groups are mapped to different columns. For instance, String values are treated independently
from Number or boolean values. `tantivy-columnar` will simply emit several columns associated to a given column_name.
- Only one column for a given json value type is emitted. If number values with different number types are recorded (e.g. u64, i64, f64),
`tantivy-columnar` will pick the first type that can represents the set of appended value, with the following prioriy order (`i64`, `u64`, `f64`).
`i64` is picked over `u64` as it is likely to yield less change of types. Most use cases strictly requiring `u64` show the
restriction on 50% of the values (e.g. a 64-bit hash). On the other hand, a lot of use cases can show rare negative value.
# Columnar format
This columnar format may have more than one column (with different types) associated to the same `column_name` (see [Coercion rules](#coercion-rules) above).
The `(column_name, columne_type)` couple however uniquely identifies a column.
That couple is serialized as a column `column_key`. The format of that key is:
`[column_name][ZERO_BYTE][column_type_header: u8]`
```
COLUMNAR:=
[COLUMNAR_DATA]
[COLUMNAR_KEY_TO_DATA_INDEX]
[COLUMNAR_FOOTER];
# Columns are sorted by their column key.
COLUMNAR_DATA:=
[COLUMN_DATA]+;
COLUMNAR_FOOTER := [RANGE_SSTABLE_BYTES_LEN: 8 bytes little endian]
```
The columnar file starts by the actual column data, concatenated one after the other,
sorted by column key.
A sstable associates
`(column name, column_cardinality, column_type) to range of bytes.
Column name may not contain the zero byte `\0`.
Listing all columns associated to `column_name` can therefore
be done by listing all keys prefixed by
`[column_name][ZERO_BYTE]`
The associated range of bytes refer to a range of bytes
This crate exposes a columnar format for tantivy.
This format is described in README.md
The crate introduces the following concepts.
`Columnar` is an equivalent of a dataframe.
It maps `column_key` to `Column`.
A `Column<T>` asssociates a `RowId` (u32) to any
number of values.
This is made possible by wrapping a `ColumnIndex` and a `ColumnValue` object.
The `ColumnValue<T>` represents a mapping that associates each `RowId` to
exactly one single value.
The `ColumnIndex` then maps each RowId to a set of `RowId` in the
`ColumnValue`.
For optimization, and compression purposes, the `ColumnIndex` has three
possible representation, each for different cardinalities.
- Full
All RowId have exactly one value. The ColumnIndex is the trivial mapping.
- Optional
All RowIds can have at most one value. The ColumnIndex is the trivial mapping `ColumnRowId -> Option<ColumnValueRowId>`.
- Multivalued
All RowIds can have any number of values.
The column index is mapping values to a range.
All these objects are implemented an unit tested independently
in their own module:
- columnar
- column_index
- column_values
- column

View File

@@ -1,311 +0,0 @@
#![feature(test)]
extern crate test;
#[cfg(test)]
mod tests {
use std::ops::RangeInclusive;
use std::sync::Arc;
use common::OwnedBytes;
use rand::prelude::*;
use tantivy_columnar::*;
use test::Bencher;
use super::*;
// Warning: this generates the same permutation at each call
fn generate_permutation() -> Vec<u64> {
let mut permutation: Vec<u64> = (0u64..100_000u64).collect();
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
permutation
}
fn generate_random() -> Vec<u64> {
let mut permutation: Vec<u64> = (0u64..100_000u64)
.map(|el| el + random::<u16>() as u64)
.collect();
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
permutation
}
// Warning: this generates the same permutation at each call
fn generate_permutation_gcd() -> Vec<u64> {
let mut permutation: Vec<u64> = (1u64..100_000u64).map(|el| el * 1000).collect();
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
permutation
}
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default>(
column: &[T],
) -> Arc<dyn Column<T>> {
let mut buffer = Vec::new();
serialize(VecColumn::from(&column), &mut buffer, &ALL_CODEC_TYPES).unwrap();
open(OwnedBytes::new(buffer)).unwrap()
}
#[bench]
fn bench_intfastfield_jumpy_veclookup(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
b.iter(|| {
let mut a = 0u64;
for _ in 0..n {
a = permutation[a as usize];
}
a
});
}
#[bench]
fn bench_intfastfield_jumpy_fflookup(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
b.iter(|| {
let mut a = 0u64;
for _ in 0..n {
a = column.get_val(a as u32);
}
a
});
}
const FIFTY_PERCENT_RANGE: RangeInclusive<u64> = 1..=50;
const SINGLE_ITEM: u64 = 90;
const SINGLE_ITEM_RANGE: RangeInclusive<u64> = 90..=90;
const ONE_PERCENT_ITEM_RANGE: RangeInclusive<u64> = 49..=49;
fn get_data_50percent_item() -> Vec<u128> {
let mut rng = StdRng::from_seed([1u8; 32]);
let mut data = vec![];
for _ in 0..300_000 {
let val = rng.gen_range(1..=100);
data.push(val);
}
data.push(SINGLE_ITEM);
data.shuffle(&mut rng);
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
data
}
fn get_u128_column_random() -> Arc<dyn Column<u128>> {
let permutation = generate_random();
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
get_u128_column_from_data(&permutation)
}
fn get_u128_column_from_data(data: &[u128]) -> Arc<dyn Column<u128>> {
let mut out = vec![];
let iter_gen = || data.iter().cloned();
serialize_u128(iter_gen, data.len() as u32, &mut out).unwrap();
let out = OwnedBytes::new(out);
open_u128::<u128>(out).unwrap()
}
// U64 RANGE START
#[bench]
fn bench_intfastfield_getrange_u64_50percent_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
FIFTY_PERCENT_RANGE,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u64_1percent_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
ONE_PERCENT_ITEM_RANGE,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u64_single_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
SINGLE_ITEM_RANGE,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u64_hit_all(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(0..=u64::MAX, 0..data.len() as u32, &mut positions);
positions
});
}
// U64 RANGE END
// U128 RANGE START
#[bench]
fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
*SINGLE_ITEM_RANGE.start() as u128..=*SINGLE_ITEM_RANGE.end() as u128,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
let data = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
positions
});
}
// U128 RANGE END
#[bench]
fn bench_intfastfield_scan_all_fflookup_u128(b: &mut Bencher) {
let column = get_u128_column_random();
b.iter(|| {
let mut a = 0u128;
for i in 0u64..column.num_vals() as u64 {
a += column.get_val(i as u32);
}
a
});
}
#[bench]
fn bench_intfastfield_jumpy_stride5_u128(b: &mut Bencher) {
let column = get_u128_column_random();
b.iter(|| {
let n = column.num_vals();
let mut a = 0u128;
for i in (0..n / 5).map(|val| val * 5) {
a += column.get_val(i);
}
a
});
}
#[bench]
fn bench_intfastfield_stride7_vec(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
b.iter(|| {
let mut a = 0u64;
for i in (0..n / 7).map(|val| val * 7) {
a += permutation[i as usize];
}
a
});
}
#[bench]
fn bench_intfastfield_stride7_fflookup(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
b.iter(|| {
let mut a = 0;
for i in (0..n / 7).map(|val| val * 7) {
a += column.get_val(i as u32);
}
a
});
}
#[bench]
fn bench_intfastfield_scan_all_fflookup(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
b.iter(|| {
let mut a = 0u64;
for i in 0u32..n as u32 {
a += column.get_val(i);
}
a
});
}
#[bench]
fn bench_intfastfield_scan_all_fflookup_gcd(b: &mut Bencher) {
let permutation = generate_permutation_gcd();
let n = permutation.len();
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
b.iter(|| {
let mut a = 0u64;
for i in 0..n {
a += column.get_val(i as u32);
}
a
});
}
#[bench]
fn bench_intfastfield_scan_all_vec(b: &mut Bencher) {
let permutation = generate_permutation();
b.iter(|| {
let mut a = 0u64;
for i in 0..permutation.len() {
a += permutation[i as usize] as u64;
}
a
});
}
}

View File

@@ -1,55 +0,0 @@
# zero to one
* merges
* full still needs a num_values
* replug u128
* add dictionary encoded stuff
* fix multivalued
* find a way to make columnar work with strict types
* plug to tantivy
- indexing
- aggregations
- merge
* replug facets
* replug range queries
+ mutlivaued range queries restrat frm the beginning all of the time.
# Perf and Size
* re-add ZSTD compression for dictionaries
no systematic monotonic mapping
consider removing multilinear
f32?
adhoc solution for bool?
add metrics helper for aggregate. sum(row_id)
review inline absence/presence
improv perf of select using PDEP
compare with roaring bitmap/elias fano etc etc.
SIMD range? (see blog post)
Add alignment?
Consider another codec to bridge the gap between few and 5k elements
# Cleanup and rationalization
remove the 6 bit limitation of columntype. use 4 + 4 bits instead.
in benchmark, unify percent vs ratio, f32 vs f64.
investigate if should have better errors? io::Error is overused at the moment.
rename rank/select in unit tests
Review the public API via cargo doc
go through TODOs
remove all doc_id occurences -> row_id
use the rank & select naming in unit tests branch.
multi-linear -> blockwise
linear codec -> simply a multiplication for the index column
rename columnar to something more explicit, like column_dictionary or columnar_table
remove old column from the fast field API.
remove the Column traits alias.
rename fastfield -> column
document changes
rationalization FastFieldValue, HasColumnType
# Other
fix enhance column-cli
# Santa claus
autodetect datetime ipaddr, plug customizable tokenizer.

View File

@@ -1,90 +0,0 @@
use std::io;
use std::ops::Deref;
use std::sync::Arc;
use sstable::{Dictionary, VoidSSTable};
use crate::column::Column;
use crate::RowId;
/// Dictionary encoded column.
///
/// The column simply gives access to a regular u64-column that, in
/// which the values are term-ordinals.
///
/// These ordinals are ids uniquely identify the bytes that are stored in
/// the column. These ordinals are small, and sorted in the same order
/// as the term_ord_column.
#[derive(Clone)]
pub struct BytesColumn {
pub(crate) dictionary: Arc<Dictionary<VoidSSTable>>,
pub(crate) term_ord_column: Column<u64>,
}
impl BytesColumn {
/// Fills the given `output` buffer with the term associated to the ordinal `ord`.
///
/// Returns `false` if the term does not exist (e.g. `term_ord` is greater or equal to the
/// overll number of terms).
pub fn ord_to_bytes(&self, ord: u64, output: &mut Vec<u8>) -> io::Result<bool> {
self.dictionary.ord_to_term(ord, output)
}
/// Returns the number of rows in the column.
pub fn num_rows(&self) -> RowId {
self.term_ord_column.num_rows()
}
pub fn term_ords(&self, row_id: RowId) -> impl Iterator<Item = u64> + '_ {
self.term_ord_column.values(row_id)
}
/// Returns the column of ordinals
pub fn ords(&self) -> &Column<u64> {
&self.term_ord_column
}
pub fn num_terms(&self) -> usize {
self.dictionary.num_terms()
}
pub fn dictionary(&self) -> &Dictionary<VoidSSTable> {
self.dictionary.as_ref()
}
}
#[derive(Clone)]
pub struct StrColumn(BytesColumn);
impl From<BytesColumn> for StrColumn {
fn from(bytes_col: BytesColumn) -> Self {
StrColumn(bytes_col)
}
}
impl StrColumn {
/// Fills the buffer
pub fn ord_to_str(&self, term_ord: u64, output: &mut String) -> io::Result<bool> {
unsafe {
let buf = output.as_mut_vec();
self.0.dictionary.ord_to_term(term_ord, buf)?;
// TODO consider remove checks if it hurts performance.
if std::str::from_utf8(buf.as_slice()).is_err() {
buf.clear();
return Err(io::Error::new(
io::ErrorKind::InvalidData,
"Not valid utf-8",
));
}
}
Ok(true)
}
}
impl Deref for StrColumn {
type Target = BytesColumn;
fn deref(&self) -> &Self::Target {
&self.0
}
}

View File

@@ -1,111 +0,0 @@
mod dictionary_encoded;
mod serialize;
use std::fmt::Debug;
use std::ops::Deref;
use std::sync::Arc;
use common::BinarySerializable;
pub use dictionary_encoded::{BytesColumn, StrColumn};
pub use serialize::{
open_column_bytes, open_column_u128, open_column_u64, serialize_column_mappable_to_u128,
serialize_column_mappable_to_u64,
};
use crate::column_index::ColumnIndex;
use crate::column_values::ColumnValues;
use crate::{Cardinality, RowId};
#[derive(Clone)]
pub struct Column<T> {
pub idx: ColumnIndex,
pub values: Arc<dyn ColumnValues<T>>,
}
impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
pub fn num_rows(&self) -> RowId {
match &self.idx {
ColumnIndex::Full => self.values.num_vals() as u32,
ColumnIndex::Optional(optional_index) => optional_index.num_rows(),
ColumnIndex::Multivalued(col_index) => {
// The multivalued index contains all value start row_id,
// and one extra value at the end with the overall number of rows.
col_index.num_rows()
}
}
}
pub fn min_value(&self) -> T {
self.values.min_value()
}
pub fn max_value(&self) -> T {
self.values.max_value()
}
pub fn first(&self, row_id: RowId) -> Option<T> {
self.values(row_id).next()
}
pub fn values(&self, row_id: RowId) -> impl Iterator<Item = T> + '_ {
self.value_row_ids(row_id)
.map(|value_row_id: RowId| self.values.get_val(value_row_id))
}
pub fn first_or_default_col(self, default_value: T) -> Arc<dyn ColumnValues<T>> {
Arc::new(FirstValueWithDefault {
column: self,
default_value,
})
}
}
impl<T> Deref for Column<T> {
type Target = ColumnIndex;
fn deref(&self) -> &Self::Target {
&self.idx
}
}
impl BinarySerializable for Cardinality {
fn serialize<W: std::io::Write>(&self, writer: &mut W) -> std::io::Result<()> {
self.to_code().serialize(writer)
}
fn deserialize<R: std::io::Read>(reader: &mut R) -> std::io::Result<Self> {
let cardinality_code = u8::deserialize(reader)?;
let cardinality = Cardinality::try_from_code(cardinality_code)?;
Ok(cardinality)
}
}
// TODO simplify or optimize
struct FirstValueWithDefault<T: Copy> {
column: Column<T>,
default_value: T,
}
impl<T: PartialOrd + Debug + Send + Sync + Copy + 'static> ColumnValues<T>
for FirstValueWithDefault<T>
{
fn get_val(&self, idx: u32) -> T {
self.column.first(idx).unwrap_or(self.default_value)
}
fn min_value(&self) -> T {
self.column.values.min_value()
}
fn max_value(&self) -> T {
self.column.values.max_value()
}
fn num_vals(&self) -> u32 {
match &self.column.idx {
ColumnIndex::Full => self.column.values.num_vals(),
ColumnIndex::Optional(optional_idx) => optional_idx.num_rows(),
ColumnIndex::Multivalued(_) => todo!(),
}
}
}

View File

@@ -1,102 +0,0 @@
use std::fmt::Debug;
use std::io;
use std::io::Write;
use std::sync::Arc;
use common::OwnedBytes;
use sstable::Dictionary;
use crate::column::{BytesColumn, Column};
use crate::column_index::{serialize_column_index, SerializableColumnIndex};
use crate::column_values::serialize::serialize_column_values_u128;
use crate::column_values::{
serialize_column_values, ColumnValues, FastFieldCodecType, MonotonicallyMappableToU128,
MonotonicallyMappableToU64,
};
pub fn serialize_column_mappable_to_u128<
F: Fn() -> I,
I: Iterator<Item = T>,
T: MonotonicallyMappableToU128,
>(
column_index: SerializableColumnIndex<'_>,
column_values: F,
num_vals: u32,
output: &mut impl Write,
) -> io::Result<()> {
let column_index_num_bytes = serialize_column_index(column_index, output)?;
serialize_column_values_u128(
|| column_values().map(|val| val.to_u128()),
num_vals,
output,
)?;
output.write_all(&column_index_num_bytes.to_le_bytes())?;
Ok(())
}
pub fn serialize_column_mappable_to_u64<T: MonotonicallyMappableToU64 + Debug>(
column_index: SerializableColumnIndex<'_>,
column_values: &impl ColumnValues<T>,
output: &mut impl Write,
) -> io::Result<()> {
let column_index_num_bytes = serialize_column_index(column_index, output)?;
serialize_column_values(
column_values,
&[
FastFieldCodecType::Bitpacked,
FastFieldCodecType::BlockwiseLinear,
],
output,
)?;
output.write_all(&column_index_num_bytes.to_le_bytes())?;
Ok(())
}
pub fn open_column_u64<T: MonotonicallyMappableToU64>(bytes: OwnedBytes) -> io::Result<Column<T>> {
let (body, column_index_num_bytes_payload) = bytes.rsplit(4);
let column_index_num_bytes = u32::from_le_bytes(
column_index_num_bytes_payload
.as_slice()
.try_into()
.unwrap(),
);
let (column_index_data, column_values_data) = body.split(column_index_num_bytes as usize);
let column_index = crate::column_index::open_column_index(column_index_data)?;
let column_values = crate::column_values::open_u64_mapped(column_values_data)?;
Ok(Column {
idx: column_index,
values: column_values,
})
}
pub fn open_column_u128<T: MonotonicallyMappableToU128>(
bytes: OwnedBytes,
) -> io::Result<Column<T>> {
let (body, column_index_num_bytes_payload) = bytes.rsplit(4);
let column_index_num_bytes = u32::from_le_bytes(
column_index_num_bytes_payload
.as_slice()
.try_into()
.unwrap(),
);
let (column_index_data, column_values_data) = body.split(column_index_num_bytes as usize);
let column_index = crate::column_index::open_column_index(column_index_data)?;
let column_values = crate::column_values::open_u128_mapped(column_values_data)?;
Ok(Column {
idx: column_index,
values: column_values,
})
}
pub fn open_column_bytes<T: From<BytesColumn>>(data: OwnedBytes) -> io::Result<T> {
let (body, dictionary_len_bytes) = data.rsplit(4);
let dictionary_len = u32::from_le_bytes(dictionary_len_bytes.as_slice().try_into().unwrap());
let (dictionary_bytes, column_bytes) = body.split(dictionary_len as usize);
let dictionary = Arc::new(Dictionary::from_bytes(dictionary_bytes)?);
let term_ord_column = crate::column::open_column_u64::<u64>(column_bytes)?;
let bytes_column = BytesColumn {
dictionary,
term_ord_column,
};
Ok(bytes_column.into())
}

View File

@@ -1,60 +0,0 @@
mod multivalued_index;
mod optional_index;
mod serialize;
use std::ops::Range;
pub use optional_index::{OptionalIndex, SerializableOptionalIndex, Set};
pub use serialize::{open_column_index, serialize_column_index, SerializableColumnIndex};
use crate::column_index::multivalued_index::MultiValueIndex;
use crate::{Cardinality, RowId};
#[derive(Clone)]
pub enum ColumnIndex {
Full,
Optional(OptionalIndex),
/// In addition, at index num_rows, an extra value is added
/// containing the overal number of values.
Multivalued(MultiValueIndex),
}
impl ColumnIndex {
pub fn get_cardinality(&self) -> Cardinality {
match self {
ColumnIndex::Full => Cardinality::Full,
ColumnIndex::Optional(_) => Cardinality::Optional,
ColumnIndex::Multivalued(_) => Cardinality::Multivalued,
}
}
pub fn value_row_ids(&self, row_id: RowId) -> Range<RowId> {
match self {
ColumnIndex::Full => row_id..row_id + 1,
ColumnIndex::Optional(optional_index) => {
if let Some(val) = optional_index.rank_if_exists(row_id) {
val..val + 1
} else {
0..0
}
}
ColumnIndex::Multivalued(multivalued_index) => multivalued_index.range(row_id),
}
}
pub fn select_batch_in_place(&self, rank_ids: &mut Vec<RowId>) {
match self {
ColumnIndex::Full => {
// No need to do anything:
// value_idx and row_idx are the same.
}
ColumnIndex::Optional(optional_index) => {
optional_index.select_batch(&mut rank_ids[..]);
}
ColumnIndex::Multivalued(multivalued_index) => {
// TODO important: avoid using 0u32, and restart from the beginning all of the time.
multivalued_index.select_batch_in_place(0u32, rank_ids)
}
}
}
}

View File

@@ -1,132 +0,0 @@
use std::io;
use std::io::Write;
use std::ops::Range;
use std::sync::Arc;
use common::OwnedBytes;
use crate::column_values::{ColumnValues, FastFieldCodecType};
use crate::RowId;
pub fn serialize_multivalued_index(
multivalued_index: &dyn ColumnValues<RowId>,
output: &mut impl Write,
) -> io::Result<()> {
crate::column_values::serialize_column_values(
&*multivalued_index,
&[FastFieldCodecType::Bitpacked, FastFieldCodecType::Linear],
output,
)?;
Ok(())
}
pub fn open_multivalued_index(bytes: OwnedBytes) -> io::Result<MultiValueIndex> {
let start_index_column: Arc<dyn ColumnValues<RowId>> =
crate::column_values::open_u64_mapped(bytes)?;
Ok(MultiValueIndex { start_index_column })
}
#[derive(Clone)]
/// Index to resolve value range for given doc_id.
/// Starts at 0.
pub struct MultiValueIndex {
start_index_column: Arc<dyn crate::ColumnValues<RowId>>,
}
impl From<Arc<dyn ColumnValues<RowId>>> for MultiValueIndex {
fn from(start_index_column: Arc<dyn ColumnValues<RowId>>) -> Self {
MultiValueIndex { start_index_column }
}
}
impl MultiValueIndex {
/// Returns `[start, end)`, such that the values associated with
/// the given document are `start..end`.
#[inline]
pub(crate) fn range(&self, row_id: RowId) -> Range<RowId> {
let start = self.start_index_column.get_val(row_id);
let end = self.start_index_column.get_val(row_id + 1);
start..end
}
/// Returns the number of documents in the index.
#[inline]
pub fn num_rows(&self) -> u32 {
self.start_index_column.num_vals() - 1
}
/// Converts a list of ranks (row ids of values) in a 1:n index to the corresponding list of
/// row_ids. Positions are converted inplace to docids.
///
/// Since there is no index for value pos -> docid, but docid -> value pos range, we scan the
/// index.
///
/// Correctness: positions needs to be sorted. idx_reader needs to contain monotonically
/// increasing positions.
///
/// TODO: Instead of a linear scan we can employ a exponential search into binary search to
/// match a docid to its value position.
#[allow(clippy::bool_to_int_with_if)]
pub(crate) fn select_batch_in_place(&self, row_start: RowId, ranks: &mut Vec<u32>) {
if ranks.is_empty() {
return;
}
let mut cur_doc = row_start;
let mut last_doc = None;
assert!(self.start_index_column.get_val(row_start) as u32 <= ranks[0]);
let mut write_doc_pos = 0;
for i in 0..ranks.len() {
let pos = ranks[i];
loop {
let end = self.start_index_column.get_val(cur_doc + 1) as u32;
if end > pos {
ranks[write_doc_pos] = cur_doc;
write_doc_pos += if last_doc == Some(cur_doc) { 0 } else { 1 };
last_doc = Some(cur_doc);
break;
}
cur_doc += 1;
}
}
ranks.truncate(write_doc_pos);
}
}
#[cfg(test)]
mod tests {
use std::ops::Range;
use std::sync::Arc;
use super::MultiValueIndex;
use crate::column_values::IterColumn;
use crate::{ColumnValues, RowId};
fn index_to_pos_helper(
index: &MultiValueIndex,
doc_id_range: Range<u32>,
positions: &[u32],
) -> Vec<u32> {
let mut positions = positions.to_vec();
index.select_batch_in_place(doc_id_range.start, &mut positions);
positions
}
#[test]
fn test_positions_to_docid() {
let offsets: Vec<RowId> = vec![0, 10, 12, 15, 22, 23]; // docid values are [0..10, 10..12, 12..15, etc.]
let column: Arc<dyn ColumnValues<RowId>> = Arc::new(IterColumn::from(offsets.into_iter()));
let index = MultiValueIndex::from(column);
assert_eq!(index.num_rows(), 5);
let positions = &[10u32, 11, 15, 20, 21, 22];
assert_eq!(index_to_pos_helper(&index, 0..5, positions), vec![1, 3, 4]);
assert_eq!(index_to_pos_helper(&index, 1..5, positions), vec![1, 3, 4]);
assert_eq!(index_to_pos_helper(&index, 0..5, &[9]), vec![0]);
assert_eq!(index_to_pos_helper(&index, 1..5, &[10]), vec![1]);
assert_eq!(index_to_pos_helper(&index, 1..5, &[11]), vec![1]);
assert_eq!(index_to_pos_helper(&index, 2..5, &[12]), vec![2]);
assert_eq!(index_to_pos_helper(&index, 2..5, &[12, 14]), vec![2]);
assert_eq!(index_to_pos_helper(&index, 2..5, &[12, 14, 15]), vec![2, 3]);
}
}

View File

@@ -1,498 +0,0 @@
use std::io::{self, Write};
use std::ops::Range;
use std::sync::Arc;
mod set;
mod set_block;
use common::{BinarySerializable, OwnedBytes, VInt};
pub use set::{SelectCursor, Set, SetCodec};
use set_block::{
DenseBlock, DenseBlockCodec, SparseBlock, SparseBlockCodec, DENSE_BLOCK_NUM_BYTES,
};
use crate::{InvalidData, RowId};
/// The threshold for for number of elements after which we switch to dense block encoding.
///
/// We simply pick the value that minimize the size of the blocks.
const DENSE_BLOCK_THRESHOLD: u32 =
set_block::DENSE_BLOCK_NUM_BYTES / std::mem::size_of::<u16>() as u32; //< 5_120
const ELEMENTS_PER_BLOCK: u32 = u16::MAX as u32 + 1;
const BLOCK_SIZE: RowId = 1 << 16;
#[derive(Copy, Clone, Debug)]
struct BlockMeta {
non_null_rows_before_block: u32,
start_byte_offset: u32,
block_variant: BlockVariant,
}
#[derive(Clone, Copy, Debug)]
enum BlockVariant {
Dense,
Sparse { num_vals: u16 },
}
impl BlockVariant {
pub fn empty() -> Self {
Self::Sparse { num_vals: 0 }
}
pub fn num_bytes_in_block(&self) -> u32 {
match *self {
BlockVariant::Dense => set_block::DENSE_BLOCK_NUM_BYTES,
BlockVariant::Sparse { num_vals } => num_vals as u32 * 2,
}
}
}
/// This codec is inspired by roaring bitmaps.
/// In the dense blocks, however, in order to accelerate `select`
/// we interleave an offset over two bytes. (more on this lower)
///
/// The lower 16 bits of doc ids are stored as u16 while the upper 16 bits are given by the block
/// id. Each block contains 1<<16 docids.
///
/// # Serialized Data Layout
/// The data starts with the block data. Each block is either dense or sparse encoded, depending on
/// the number of values in the block. A block is sparse when it contains less than
/// DENSE_BLOCK_THRESHOLD (6144) values.
/// [Sparse data block | dense data block, .. #repeat*; Desc: Either a sparse or dense encoded
/// block]
/// ### Sparse block data
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block]
/// ### Dense block data
/// [Dense codec for the whole block; Desc: Similar to a bitvec(0..ELEMENTS_PER_BLOCK) + Metadata
/// for faster lookups. See dense.rs]
///
/// The data is followed by block metadata, to know which area of the raw block data belongs to
/// which block. Only metadata for blocks with elements is recorded to
/// keep the overhead low for scenarios with many very sparse columns. The block metadata consists
/// of the block index and the number of values in the block. Since we don't store empty blocks
/// num_vals is incremented by 1, e.g. 0 means 1 value.
///
/// The last u16 is storing the number of metadata blocks.
/// [u16 LE, .. #repeat*; Desc: Positions with values in a block][(u16 LE, u16 LE), .. #repeat*;
/// Desc: (Block Id u16, Num Elements u16)][u16 LE; Desc: num blocks with values u16]
///
/// # Opening
/// When opening the data layout, the data is expanded to `Vec<SparseCodecBlockVariant>`, where the
/// index is the block index. For each block `byte_start` and `offset` is computed.
#[derive(Clone)]
pub struct OptionalIndex {
num_rows: RowId,
num_non_null_rows: RowId,
block_data: OwnedBytes,
block_metas: Arc<[BlockMeta]>,
}
impl OptionalIndex {
pub fn num_rows(&self) -> RowId {
self.num_rows
}
pub fn num_non_nulls(&self) -> RowId {
self.num_non_null_rows
}
}
/// Splits a value address into lower and upper 16bits.
/// The lower 16 bits are the value in the block
/// The upper 16 bits are the block index
#[derive(Copy, Debug, Clone)]
struct RowAddr {
block_id: u16,
in_block_row_id: u16,
}
#[inline(always)]
fn row_addr_from_row_id(row_id: RowId) -> RowAddr {
RowAddr {
block_id: (row_id / BLOCK_SIZE) as u16,
in_block_row_id: (row_id % BLOCK_SIZE) as u16,
}
}
enum BlockSelectCursor<'a> {
Dense(<DenseBlock<'a> as Set<u16>>::SelectCursor<'a>),
Sparse(<SparseBlock<'a> as Set<u16>>::SelectCursor<'a>),
}
impl<'a> BlockSelectCursor<'a> {
fn select(&mut self, rank: u16) -> u16 {
match self {
BlockSelectCursor::Dense(dense_select_cursor) => dense_select_cursor.select(rank),
BlockSelectCursor::Sparse(sparse_select_cursor) => sparse_select_cursor.select(rank),
}
}
}
pub struct OptionalIndexSelectCursor<'a> {
current_block_cursor: BlockSelectCursor<'a>,
current_block_id: u16,
// The current block is guaranteed to contain ranks < end_rank.
current_block_end_rank: RowId,
optional_index: &'a OptionalIndex,
block_doc_idx_start: RowId,
num_null_rows_before_block: RowId,
}
impl<'a> OptionalIndexSelectCursor<'a> {
fn search_and_load_block(&mut self, rank: RowId) {
if rank < self.current_block_end_rank {
// we are already in the right block
return;
}
self.current_block_id = self.optional_index.find_block(rank, self.current_block_id);
self.current_block_end_rank = self
.optional_index
.block_metas
.get(self.current_block_id as usize + 1)
.map(|block_meta| block_meta.non_null_rows_before_block)
.unwrap_or(u32::MAX);
self.block_doc_idx_start = (self.current_block_id as u32) * ELEMENTS_PER_BLOCK;
let block_meta = self.optional_index.block_metas[self.current_block_id as usize];
self.num_null_rows_before_block = block_meta.non_null_rows_before_block;
let block: Block<'_> = self.optional_index.block(block_meta);
self.current_block_cursor = match block {
Block::Dense(dense_block) => BlockSelectCursor::Dense(dense_block.select_cursor()),
Block::Sparse(sparse_block) => BlockSelectCursor::Sparse(sparse_block.select_cursor()),
};
}
}
impl<'a> SelectCursor<RowId> for OptionalIndexSelectCursor<'a> {
fn select(&mut self, rank: RowId) -> RowId {
self.search_and_load_block(rank);
let index_in_block = (rank - self.num_null_rows_before_block) as u16;
self.current_block_cursor.select(index_in_block) as RowId + self.block_doc_idx_start
}
}
impl Set<RowId> for OptionalIndex {
type SelectCursor<'b> = OptionalIndexSelectCursor<'b> where Self: 'b;
// Check if value at position is not null.
#[inline]
fn contains(&self, row_id: RowId) -> bool {
let RowAddr {
block_id,
in_block_row_id,
} = row_addr_from_row_id(row_id);
let block_meta = self.block_metas[block_id as usize];
match self.block(block_meta) {
Block::Dense(dense_block) => dense_block.contains(in_block_row_id),
Block::Sparse(sparse_block) => sparse_block.contains(in_block_row_id),
}
}
#[inline]
fn rank_if_exists(&self, row_id: RowId) -> Option<RowId> {
let RowAddr {
block_id,
in_block_row_id,
} = row_addr_from_row_id(row_id);
let block_meta = self.block_metas[block_id as usize];
let block = self.block(block_meta);
let block_offset_row_id = match block {
Block::Dense(dense_block) => dense_block.rank_if_exists(in_block_row_id),
Block::Sparse(sparse_block) => sparse_block.rank_if_exists(in_block_row_id),
}? as u32;
Some(block_meta.non_null_rows_before_block + block_offset_row_id)
}
#[inline]
fn select(&self, rank: RowId) -> RowId {
let block_pos = self.find_block(rank, 0);
let block_doc_idx_start = (block_pos as u32) * ELEMENTS_PER_BLOCK;
let block_meta = self.block_metas[block_pos as usize];
let block: Block<'_> = self.block(block_meta);
let index_in_block = (rank - block_meta.non_null_rows_before_block) as u16;
let in_block_rank = match block {
Block::Dense(dense_block) => dense_block.select(index_in_block),
Block::Sparse(sparse_block) => sparse_block.select(index_in_block),
};
block_doc_idx_start + in_block_rank as u32
}
fn select_cursor<'b>(&'b self) -> OptionalIndexSelectCursor<'b> {
OptionalIndexSelectCursor {
current_block_cursor: BlockSelectCursor::Sparse(
SparseBlockCodec::open(b"").select_cursor(),
),
current_block_id: 0u16,
current_block_end_rank: 0u32, //< this is sufficient to force the first load
optional_index: self,
block_doc_idx_start: 0u32,
num_null_rows_before_block: 0u32,
}
}
}
impl OptionalIndex {
pub fn select_batch(&self, ranks: &mut [RowId]) {
let mut select_cursor = self.select_cursor();
for rank in ranks.iter_mut() {
*rank = select_cursor.select(*rank);
}
}
#[inline]
fn block<'a>(&'a self, block_meta: BlockMeta) -> Block<'a> {
let BlockMeta {
start_byte_offset,
block_variant,
..
} = block_meta;
let start_byte_offset = start_byte_offset as usize;
let bytes = self.block_data.as_slice();
match block_variant {
BlockVariant::Dense => Block::Dense(DenseBlockCodec::open(
&bytes[start_byte_offset..start_byte_offset + DENSE_BLOCK_NUM_BYTES as usize],
)),
BlockVariant::Sparse { num_vals } => {
let end_byte_offset = start_byte_offset + num_vals as usize * 2;
let sparse_bytes = &bytes[start_byte_offset..end_byte_offset];
Block::Sparse(SparseBlockCodec::open(sparse_bytes))
}
}
}
#[inline]
fn find_block(&self, dense_idx: u32, start_block_pos: u16) -> u16 {
for block_pos in start_block_pos..self.block_metas.len() as u16 {
let offset = self.block_metas[block_pos as usize].non_null_rows_before_block;
if offset > dense_idx {
return block_pos - 1u16;
}
}
self.block_metas.len() as u16 - 1u16
}
// TODO Add a good API for the codec_idx to original_idx translation.
// The Iterator API is a probably a bad idea
}
#[derive(Copy, Clone)]
enum Block<'a> {
Dense(DenseBlock<'a>),
Sparse(SparseBlock<'a>),
}
#[derive(Debug, Copy, Clone)]
enum OptionalIndexCodec {
Dense = 0,
Sparse = 1,
}
impl OptionalIndexCodec {
fn to_code(self) -> u8 {
self as u8
}
fn try_from_code(code: u8) -> Result<Self, InvalidData> {
match code {
0 => Ok(Self::Dense),
1 => Ok(Self::Sparse),
_ => Err(InvalidData),
}
}
}
impl BinarySerializable for OptionalIndexCodec {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(&[self.to_code()])
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let optional_codec_code = u8::deserialize(reader)?;
let optional_codec = Self::try_from_code(optional_codec_code)?;
Ok(optional_codec)
}
}
fn serialize_optional_index_block(block_els: &[u16], out: &mut impl io::Write) -> io::Result<()> {
let is_sparse = is_sparse(block_els.len() as u32);
if is_sparse {
SparseBlockCodec::serialize(block_els.iter().copied(), out)?;
} else {
DenseBlockCodec::serialize(block_els.iter().copied(), out)?;
}
Ok(())
}
pub fn serialize_optional_index<'a, W: io::Write>(
serializable_optional_index: &dyn SerializableOptionalIndex<'a>,
output: &mut W,
) -> io::Result<()> {
VInt(serializable_optional_index.num_rows() as u64).serialize(output)?;
let mut rows_it = serializable_optional_index.non_null_rows();
let mut block_metadata: Vec<SerializedBlockMeta> = Vec::new();
let mut current_block = Vec::new();
// This if-statement for the first element ensures that
// `block_metadata` is not empty in the loop below.
let Some(idx) = rows_it.next() else {
output.write_all(&0u16.to_le_bytes())?;
return Ok(());
};
let row_addr = row_addr_from_row_id(idx);
let mut current_block_id = row_addr.block_id;
current_block.push(row_addr.in_block_row_id);
for idx in rows_it {
let value_addr = row_addr_from_row_id(idx);
if current_block_id != value_addr.block_id {
serialize_optional_index_block(&current_block[..], output)?;
block_metadata.push(SerializedBlockMeta {
block_id: current_block_id,
num_non_null_rows: current_block.len() as u32,
});
current_block.clear();
current_block_id = value_addr.block_id;
}
current_block.push(value_addr.in_block_row_id);
}
// handle last block
serialize_optional_index_block(&current_block[..], output)?;
block_metadata.push(SerializedBlockMeta {
block_id: current_block_id,
num_non_null_rows: current_block.len() as u32,
});
for block in &block_metadata {
output.write_all(&block.to_bytes())?;
}
output.write_all((block_metadata.len() as u16).to_le_bytes().as_ref())?;
Ok(())
}
const SERIALIZED_BLOCK_META_NUM_BYTES: usize = 4;
#[derive(Clone, Copy, Debug)]
struct SerializedBlockMeta {
block_id: u16,
num_non_null_rows: u32, //< takes values in 1..=u16::MAX
}
// TODO unit tests
impl SerializedBlockMeta {
#[inline]
fn from_bytes(bytes: [u8; SERIALIZED_BLOCK_META_NUM_BYTES]) -> SerializedBlockMeta {
let block_id = u16::from_le_bytes(bytes[0..2].try_into().unwrap());
let num_non_null_rows: u32 =
u16::from_le_bytes(bytes[2..4].try_into().unwrap()) as u32 + 1u32;
SerializedBlockMeta {
block_id,
num_non_null_rows,
}
}
#[inline]
fn to_bytes(&self) -> [u8; SERIALIZED_BLOCK_META_NUM_BYTES] {
assert!(self.num_non_null_rows > 0);
let mut bytes = [0u8; SERIALIZED_BLOCK_META_NUM_BYTES];
bytes[0..2].copy_from_slice(&self.block_id.to_le_bytes());
// We don't store empty blocks, therefore we can subtract 1.
// This way we will be able to use u16 when the number of elements is 1 << 16 or u16::MAX+1
bytes[2..4].copy_from_slice(&((self.num_non_null_rows - 1u32) as u16).to_le_bytes());
bytes
}
}
#[inline]
fn is_sparse(num_rows_in_block: u32) -> bool {
num_rows_in_block < DENSE_BLOCK_THRESHOLD as u32
}
fn deserialize_optional_index_block_metadatas(
data: &[u8],
num_rows: u32,
) -> (Box<[BlockMeta]>, u32) {
let num_blocks = data.len() / SERIALIZED_BLOCK_META_NUM_BYTES;
let mut block_metas = Vec::with_capacity(num_blocks as usize + 1);
let mut start_byte_offset = 0;
let mut non_null_rows_before_block = 0;
for block_meta_bytes in data.chunks_exact(SERIALIZED_BLOCK_META_NUM_BYTES) {
let block_meta_bytes: [u8; SERIALIZED_BLOCK_META_NUM_BYTES] =
block_meta_bytes.try_into().unwrap();
let SerializedBlockMeta {
block_id,
num_non_null_rows,
} = SerializedBlockMeta::from_bytes(block_meta_bytes);
block_metas.resize(
block_id as usize,
BlockMeta {
non_null_rows_before_block,
start_byte_offset,
block_variant: BlockVariant::empty(),
},
);
let block_variant = if is_sparse(num_non_null_rows) {
BlockVariant::Sparse {
num_vals: num_non_null_rows as u16,
}
} else {
BlockVariant::Dense
};
block_metas.push(BlockMeta {
non_null_rows_before_block,
start_byte_offset,
block_variant,
});
start_byte_offset += block_variant.num_bytes_in_block();
non_null_rows_before_block += num_non_null_rows as u32;
}
block_metas.resize(
((num_rows + BLOCK_SIZE - 1) / BLOCK_SIZE) as usize,
BlockMeta {
non_null_rows_before_block,
start_byte_offset,
block_variant: BlockVariant::empty(),
},
);
(block_metas.into_boxed_slice(), non_null_rows_before_block)
}
pub fn open_optional_index(bytes: OwnedBytes) -> io::Result<OptionalIndex> {
let (mut bytes, num_non_empty_blocks_bytes) = bytes.rsplit(2);
let num_non_empty_block_bytes =
u16::from_le_bytes(num_non_empty_blocks_bytes.as_slice().try_into().unwrap());
let num_rows = VInt::deserialize_u64(&mut bytes)? as u32;
let block_metas_num_bytes =
num_non_empty_block_bytes as usize * SERIALIZED_BLOCK_META_NUM_BYTES;
let (block_data, block_metas) = bytes.rsplit(block_metas_num_bytes);
let (block_metas, num_non_null_rows) =
deserialize_optional_index_block_metadatas(block_metas.as_slice(), num_rows).into();
let optional_index = OptionalIndex {
num_rows,
num_non_null_rows,
block_data,
block_metas: block_metas.into(),
};
Ok(optional_index)
}
pub trait SerializableOptionalIndex<'a> {
fn num_rows(&self) -> RowId;
fn non_null_rows(&self) -> Box<dyn Iterator<Item = RowId> + 'a>;
}
impl SerializableOptionalIndex<'static> for Range<u32> {
fn num_rows(&self) -> RowId {
self.end
}
fn non_null_rows(&self) -> Box<dyn Iterator<Item = RowId> + 'static> {
Box::new(self.clone())
}
}
#[cfg(test)]
mod tests;

View File

@@ -1,44 +0,0 @@
use std::io;
/// A codec makes it possible to serialize a set of
/// elements, and open the resulting Set representation.
pub trait SetCodec {
type Item: Copy + TryFrom<usize> + Eq + std::hash::Hash + std::fmt::Debug;
type Reader<'a>: Set<Self::Item>;
/// Serializes a set of unique sorted u16 elements.
///
/// May panic if the elements are not sorted.
fn serialize(els: impl Iterator<Item = Self::Item>, wrt: impl io::Write) -> io::Result<()>;
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a>;
}
/// Stateful object that makes it possible to compute several select in a row,
/// provided the rank passed as argument are increasing.
pub trait SelectCursor<T> {
// May panic if rank is greater than the number of elements in the Set,
// or if rank is < than value provided in the previous call.
fn select(&mut self, rank: T) -> T;
}
pub trait Set<T> {
type SelectCursor<'b>: SelectCursor<T>
where Self: 'b;
/// Returns true if the elements is contained in the Set
fn contains(&self, el: T) -> bool;
/// If the set contains `el` returns its position in the sortd set of elements.
/// If the set does not contain the element, it returns `None`.
fn rank_if_exists(&self, el: T) -> Option<T>;
/// Return the rank-th value stored in this bitmap.
///
/// # Panics
///
/// May panic if rank is greater than the number of elements in the Set.
fn select(&self, rank: T) -> T;
/// Creates a brand new select cursor.
fn select_cursor<'b>(&'b self) -> Self::SelectCursor<'b>;
}

View File

@@ -1,269 +0,0 @@
use std::convert::TryInto;
use std::io::{self, Write};
use common::BinarySerializable;
use crate::column_index::optional_index::{SelectCursor, Set, SetCodec, ELEMENTS_PER_BLOCK};
#[inline(always)]
fn get_bit_at(input: u64, n: u16) -> bool {
input & (1 << n) != 0
}
#[inline]
fn set_bit_at(input: &mut u64, n: u16) {
*input |= 1 << n;
}
/// For the `DenseCodec`, `data` which contains the encoded blocks.
/// Each block consists of [u8; 12]. The first 8 bytes is a bitvec for 64 elements.
/// The last 4 bytes are the offset, the number of set bits so far.
///
/// When translating the original index to a dense index, the correct block can be computed
/// directly `orig_idx/64`. Inside the block the position is `orig_idx%64`.
///
/// When translating a dense index to the original index, we can use the offset to find the correct
/// block. Direct computation is not possible, but we can employ a linear or binary search.
const ELEMENTS_PER_MINI_BLOCK: u16 = 64;
const MINI_BLOCK_BITVEC_NUM_BYTES: usize = 8;
const MINI_BLOCK_OFFSET_NUM_BYTES: usize = 2;
pub const MINI_BLOCK_NUM_BYTES: usize = MINI_BLOCK_BITVEC_NUM_BYTES + MINI_BLOCK_OFFSET_NUM_BYTES;
/// Number of bytes in a dense block.
pub const DENSE_BLOCK_NUM_BYTES: u32 =
(ELEMENTS_PER_BLOCK as u32 / ELEMENTS_PER_MINI_BLOCK as u32) * MINI_BLOCK_NUM_BYTES as u32;
pub struct DenseBlockCodec;
impl SetCodec for DenseBlockCodec {
type Item = u16;
type Reader<'a> = DenseBlock<'a>;
fn serialize(els: impl Iterator<Item = u16>, wrt: impl io::Write) -> io::Result<()> {
serialize_dense_codec(els, wrt)
}
#[inline]
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a> {
assert_eq!(data.len(), DENSE_BLOCK_NUM_BYTES as usize);
DenseBlock(data)
}
}
/// Interpreting the bitvec as a set of integer within 0..=63
/// and given an element, returns the number of elements in the
/// set lesser than the element.
///
/// # Panics
///
/// May panic or return a wrong result if el <= 64.
#[inline(always)]
fn rank_u64(bitvec: u64, el: u16) -> u16 {
debug_assert!(el < 64);
let mask = (1u64 << el) - 1;
let masked_bitvec = bitvec & mask;
masked_bitvec.count_ones() as u16
}
#[inline(always)]
fn select_u64(mut bitvec: u64, rank: u16) -> u16 {
for _ in 0..rank {
bitvec &= bitvec - 1;
}
bitvec.trailing_zeros() as u16
}
// TODO test the following solution on Intel... on Ryzen Zen <3 it is a catastrophy.
// #[target_feature(enable = "bmi2")]
// unsafe fn select_bitvec_unsafe(bitvec: u64, rank: u16) -> u16 {
// let pdep = _pdep_u64(1u64 << rank, bitvec);
// pdep.trailing_zeros() as u16
// }
#[derive(Clone, Copy, Debug)]
struct DenseMiniBlock {
bitvec: u64,
rank: u16,
}
impl DenseMiniBlock {
fn from_bytes(data: [u8; MINI_BLOCK_NUM_BYTES]) -> Self {
let bitvec = u64::from_le_bytes(data[..MINI_BLOCK_BITVEC_NUM_BYTES].try_into().unwrap());
let rank = u16::from_le_bytes(data[MINI_BLOCK_BITVEC_NUM_BYTES..].try_into().unwrap());
Self { bitvec, rank }
}
fn to_bytes(&self) -> [u8; MINI_BLOCK_NUM_BYTES] {
let mut bytes = [0u8; MINI_BLOCK_NUM_BYTES];
bytes[..MINI_BLOCK_BITVEC_NUM_BYTES].copy_from_slice(&self.bitvec.to_le_bytes());
bytes[MINI_BLOCK_BITVEC_NUM_BYTES..].copy_from_slice(&self.rank.to_le_bytes());
bytes
}
}
#[derive(Copy, Clone)]
pub struct DenseBlock<'a>(&'a [u8]);
pub struct DenseBlockSelectCursor<'a> {
block_id: u16,
dense_block: DenseBlock<'a>,
}
impl<'a> SelectCursor<u16> for DenseBlockSelectCursor<'a> {
#[inline]
fn select(&mut self, rank: u16) -> u16 {
self.block_id = self
.dense_block
.find_miniblock_containing_rank(rank, self.block_id)
.unwrap();
let index_block = self.dense_block.mini_block(self.block_id);
let in_block_rank = rank - index_block.rank;
self.block_id * ELEMENTS_PER_MINI_BLOCK + select_u64(index_block.bitvec, in_block_rank)
}
}
impl<'a> Set<u16> for DenseBlock<'a> {
type SelectCursor<'b> = DenseBlockSelectCursor<'a> where Self: 'b;
#[inline(always)]
fn contains(&self, el: u16) -> bool {
let mini_block_id = el / ELEMENTS_PER_MINI_BLOCK;
let bitvec = self.mini_block(mini_block_id).bitvec;
let pos_in_bitvec = el % ELEMENTS_PER_MINI_BLOCK;
get_bit_at(bitvec, pos_in_bitvec)
}
#[inline(always)]
fn rank_if_exists(&self, el: u16) -> Option<u16> {
let block_pos = el / ELEMENTS_PER_MINI_BLOCK;
let index_block = self.mini_block(block_pos);
let pos_in_block_bit_vec = el % ELEMENTS_PER_MINI_BLOCK;
let ones_in_block = rank_u64(index_block.bitvec, pos_in_block_bit_vec);
let rank = index_block.rank + ones_in_block;
if get_bit_at(index_block.bitvec, pos_in_block_bit_vec) {
Some(rank)
} else {
None
}
}
#[inline(always)]
fn select(&self, rank: u16) -> u16 {
let block_id = self.find_miniblock_containing_rank(rank, 0).unwrap();
let index_block = self.mini_block(block_id);
let in_block_rank = rank - index_block.rank;
block_id * ELEMENTS_PER_MINI_BLOCK + select_u64(index_block.bitvec, in_block_rank)
}
#[inline(always)]
fn select_cursor<'b>(&'b self) -> Self::SelectCursor<'b> {
DenseBlockSelectCursor {
block_id: 0,
dense_block: *self,
}
}
}
impl<'a> DenseBlock<'a> {
#[inline]
fn mini_block(&self, mini_block_id: u16) -> DenseMiniBlock {
let data_start_pos = mini_block_id as usize * MINI_BLOCK_NUM_BYTES;
DenseMiniBlock::from_bytes(
self.0[data_start_pos..data_start_pos + MINI_BLOCK_NUM_BYTES]
.try_into()
.unwrap(),
)
}
#[inline]
fn iter_miniblocks(
&self,
from_block_id: u16,
) -> impl Iterator<Item = (u16, DenseMiniBlock)> + '_ {
self.0
.chunks_exact(MINI_BLOCK_NUM_BYTES)
.enumerate()
.skip(from_block_id as usize)
.map(|(block_id, bytes)| {
let mini_block = DenseMiniBlock::from_bytes(bytes.try_into().unwrap());
(block_id as u16, mini_block)
})
}
/// Finds the block position containing the dense_idx.
///
/// # Correctness
/// dense_idx needs to be smaller than the number of values in the index
///
/// The last offset number is equal to the number of values in the index.
#[inline]
fn find_miniblock_containing_rank(&self, rank: u16, from_block_id: u16) -> Option<u16> {
self.iter_miniblocks(from_block_id)
.take_while(|(_, block)| block.rank <= rank)
.map(|(block_id, _)| block_id)
.last()
}
}
/// Iterator over all values, true if set, otherwise false
pub fn serialize_dense_codec(
els: impl Iterator<Item = u16>,
mut output: impl Write,
) -> io::Result<()> {
let mut non_null_rows_before: u16 = 0u16;
let mut block = 0u64;
let mut current_block_id = 0u16;
for el in els {
let block_id = el / ELEMENTS_PER_MINI_BLOCK;
let in_offset = el % ELEMENTS_PER_MINI_BLOCK;
while block_id > current_block_id {
let dense_mini_block = DenseMiniBlock {
bitvec: block,
rank: non_null_rows_before as u16,
};
output.write_all(&dense_mini_block.to_bytes())?;
non_null_rows_before += block.count_ones() as u16;
block = 0u64;
current_block_id += 1u16;
}
set_bit_at(&mut block, in_offset);
}
while current_block_id <= u16::MAX / ELEMENTS_PER_MINI_BLOCK {
block.serialize(&mut output)?;
non_null_rows_before.serialize(&mut output)?;
// This will overflow to 0 exactly if all bits are set.
// This is however not problem as we won't use this last value.
non_null_rows_before = non_null_rows_before.wrapping_add(block.count_ones() as u16);
block = 0u64;
current_block_id += 1u16;
}
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_select_bitvec() {
assert_eq!(select_u64(1u64, 0), 0);
assert_eq!(select_u64(2u64, 0), 1);
assert_eq!(select_u64(4u64, 0), 2);
assert_eq!(select_u64(8u64, 0), 3);
assert_eq!(select_u64(1 | 8u64, 0), 0);
assert_eq!(select_u64(1 | 8u64, 1), 3);
}
#[test]
fn test_count_ones() {
for i in 0..=63 {
assert_eq!(rank_u64(u64::MAX, i), i);
}
}
#[test]
fn test_dense() {
assert_eq!(DENSE_BLOCK_NUM_BYTES, 10_240);
}
}

View File

@@ -1,8 +0,0 @@
mod dense;
mod sparse;
pub use dense::{DenseBlock, DenseBlockCodec, DENSE_BLOCK_NUM_BYTES};
pub use sparse::{SparseBlock, SparseBlockCodec};
#[cfg(test)]
mod tests;

View File

@@ -1,106 +0,0 @@
use crate::column_index::optional_index::{SelectCursor, Set, SetCodec};
pub struct SparseBlockCodec;
impl SetCodec for SparseBlockCodec {
type Item = u16;
type Reader<'a> = SparseBlock<'a>;
fn serialize(
els: impl Iterator<Item = u16>,
mut wrt: impl std::io::Write,
) -> std::io::Result<()> {
for el in els {
wrt.write_all(&el.to_le_bytes())?;
}
Ok(())
}
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a> {
SparseBlock(data)
}
}
#[derive(Copy, Clone)]
pub struct SparseBlock<'a>(&'a [u8]);
impl<'a> SelectCursor<u16> for SparseBlock<'a> {
#[inline]
fn select(&mut self, rank: u16) -> u16 {
<SparseBlock<'a> as Set<u16>>::select(self, rank)
}
}
impl<'a> Set<u16> for SparseBlock<'a> {
type SelectCursor<'b> = Self where Self: 'b;
#[inline(always)]
fn contains(&self, el: u16) -> bool {
self.binary_search(el).is_ok()
}
#[inline(always)]
fn rank_if_exists(&self, el: u16) -> Option<u16> {
self.binary_search(el).ok()
}
#[inline(always)]
fn select(&self, rank: u16) -> u16 {
let offset = rank as usize * 2;
u16::from_le_bytes(self.0[offset..offset + 2].try_into().unwrap())
}
#[inline(always)]
fn select_cursor<'b>(&'b self) -> Self::SelectCursor<'b> {
*self
}
}
#[inline(always)]
fn get_u16(data: &[u8], byte_position: usize) -> u16 {
let bytes: [u8; 2] = data[byte_position..byte_position + 2].try_into().unwrap();
u16::from_le_bytes(bytes)
}
impl<'a> SparseBlock<'a> {
#[inline(always)]
fn value_at_idx(&self, data: &[u8], idx: u16) -> u16 {
let start_offset: usize = idx as usize * 2;
get_u16(data, start_offset)
}
#[inline]
fn num_vals(&self) -> u16 {
(self.0.len() / 2) as u16
}
#[inline]
#[allow(clippy::comparison_chain)]
// Looks for the element in the block. Returns the positions if found.
fn binary_search(&self, target: u16) -> Result<u16, u16> {
let data = &self.0;
let mut size = self.num_vals();
let mut left = 0;
let mut right = size;
// TODO try different implem.
// e.g. exponential search into binary search
while left < right {
let mid = left + size / 2;
// TODO do boundary check only once, and then use an
// unsafe `value_at_idx`
let mid_val = self.value_at_idx(data, mid);
if target > mid_val {
left = mid + 1;
} else if target < mid_val {
right = mid;
} else {
return Ok(mid);
}
size = right - left;
}
Err(left)
}
}

View File

@@ -1,105 +0,0 @@
use std::collections::HashMap;
use crate::column_index::optional_index::set_block::dense::DENSE_BLOCK_NUM_BYTES;
use crate::column_index::optional_index::set_block::{DenseBlockCodec, SparseBlockCodec};
use crate::column_index::optional_index::{SelectCursor, Set, SetCodec};
fn test_set_helper<C: SetCodec<Item = u16>>(vals: &[u16]) -> usize {
let mut buffer = Vec::new();
C::serialize(vals.iter().copied(), &mut buffer).unwrap();
let tested_set = C::open(buffer.as_slice());
let hash_set: HashMap<C::Item, C::Item> = vals
.iter()
.copied()
.enumerate()
.map(|(ord, val)| (val, C::Item::try_from(ord).ok().unwrap()))
.collect();
for val in 0u16..=u16::MAX {
assert_eq!(tested_set.contains(val), hash_set.contains_key(&val));
assert_eq!(tested_set.rank_if_exists(val), hash_set.get(&val).copied());
}
for rank in 0..vals.len() {
assert_eq!(tested_set.select(rank as u16), vals[rank]);
}
buffer.len()
}
#[test]
fn test_dense_block_set_u16_empty() {
let buffer_len = test_set_helper::<DenseBlockCodec>(&[]);
assert_eq!(buffer_len, DENSE_BLOCK_NUM_BYTES as usize);
}
#[test]
fn test_dense_block_set_u16_max() {
let buffer_len = test_set_helper::<DenseBlockCodec>(&[u16::MAX]);
assert_eq!(buffer_len, DENSE_BLOCK_NUM_BYTES as usize);
}
#[test]
fn test_sparse_block_set_u16_empty() {
let buffer_len = test_set_helper::<SparseBlockCodec>(&[]);
assert_eq!(buffer_len, 0);
}
#[test]
fn test_sparse_block_set_u16_max() {
let buffer_len = test_set_helper::<SparseBlockCodec>(&[u16::MAX]);
assert_eq!(buffer_len, 2);
}
use proptest::prelude::*;
proptest! {
#![proptest_config(ProptestConfig::with_cases(1))]
#[test]
fn test_prop_test_dense(els in proptest::collection::btree_set(0..=u16::MAX, 0..=u16::MAX as usize)) {
let vals: Vec<u16> = els.into_iter().collect();
let buffer_len = test_set_helper::<DenseBlockCodec>(&vals);
assert_eq!(buffer_len, DENSE_BLOCK_NUM_BYTES as usize);
}
#[test]
fn test_prop_test_sparse(els in proptest::collection::btree_set(0..=u16::MAX, 0..=u16::MAX as usize)) {
let vals: Vec<u16> = els.into_iter().collect();
let buffer_len = test_set_helper::<SparseBlockCodec>(&vals);
assert_eq!(buffer_len, vals.len() * 2);
}
}
#[test]
fn test_simple_translate_codec_codec_idx_to_original_idx_dense() {
let mut buffer = Vec::new();
DenseBlockCodec::serialize([1, 3, 17, 32, 30_000, 30_001].iter().copied(), &mut buffer)
.unwrap();
let tested_set = DenseBlockCodec::open(buffer.as_slice());
assert!(tested_set.contains(1));
let mut select_cursor = tested_set.select_cursor();
assert_eq!(select_cursor.select(0), 1);
assert_eq!(select_cursor.select(1), 3);
assert_eq!(select_cursor.select(2), 17);
}
#[test]
fn test_simple_translate_codec_idx_to_original_idx_sparse() {
let mut buffer = Vec::new();
SparseBlockCodec::serialize([1, 3, 17].iter().copied(), &mut buffer).unwrap();
let tested_set = SparseBlockCodec::open(buffer.as_slice());
assert!(tested_set.contains(1));
let mut select_cursor = tested_set.select_cursor();
assert_eq!(SelectCursor::select(&mut select_cursor, 0), 1);
assert_eq!(SelectCursor::select(&mut select_cursor, 1), 3);
assert_eq!(SelectCursor::select(&mut select_cursor, 2), 17);
}
#[test]
fn test_simple_translate_codec_idx_to_original_idx_dense() {
let mut buffer = Vec::new();
DenseBlockCodec::serialize(0u16..150u16, &mut buffer).unwrap();
let tested_set = DenseBlockCodec::open(buffer.as_slice());
assert!(tested_set.contains(1));
let mut select_cursor = tested_set.select_cursor();
for i in 0..150 {
assert_eq!(i, select_cursor.select(i));
}
}

View File

@@ -1,327 +0,0 @@
use proptest::prelude::{any, prop, *};
use proptest::strategy::Strategy;
use proptest::{prop_oneof, proptest};
use super::*;
#[test]
fn test_dense_block_threshold() {
assert_eq!(super::DENSE_BLOCK_THRESHOLD, 5_120);
}
fn random_bitvec() -> BoxedStrategy<Vec<bool>> {
prop_oneof![
1 => prop::collection::vec(proptest::bool::weighted(1.0), 0..100),
1 => prop::collection::vec(proptest::bool::weighted(0.00), 0..(ELEMENTS_PER_BLOCK as usize * 3)), // empty blocks
1 => prop::collection::vec(proptest::bool::weighted(1.00), 0..(ELEMENTS_PER_BLOCK as usize + 10)), // full block
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..100),
1 => prop::collection::vec(proptest::bool::weighted(0.01), 0..u16::MAX as usize),
8 => vec![any::<bool>()],
]
.boxed()
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(50))]
#[test]
fn test_with_random_bitvecs(bitvec1 in random_bitvec(), bitvec2 in random_bitvec(), bitvec3 in random_bitvec()) {
let mut bitvec = Vec::new();
bitvec.extend_from_slice(&bitvec1);
bitvec.extend_from_slice(&bitvec2);
bitvec.extend_from_slice(&bitvec3);
test_null_index(&bitvec[..]);
}
}
#[test]
fn test_with_random_sets_simple() {
let vals = 10..BLOCK_SIZE * 2;
let mut out: Vec<u8> = Vec::new();
serialize_optional_index(&vals.clone(), &mut out).unwrap();
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
let ranks: Vec<u32> = (65_472u32..65_473u32).collect();
let els: Vec<u32> = ranks.iter().copied().map(|rank| rank + 10).collect();
let mut select_cursor = null_index.select_cursor();
for (rank, el) in ranks.iter().copied().zip(els.iter().copied()) {
assert_eq!(select_cursor.select(rank), el);
}
}
#[test]
fn test_optional_index_trailing_empty_blocks() {
test_null_index(&[false]);
}
#[test]
fn test_optional_index_one_block_false() {
let mut iter = vec![false; ELEMENTS_PER_BLOCK as usize];
iter.push(true);
test_null_index(&iter[..]);
}
#[test]
fn test_optional_index_one_block_true() {
let mut iter = vec![true; ELEMENTS_PER_BLOCK as usize];
iter.push(true);
test_null_index(&iter[..]);
}
impl<'a> SerializableOptionalIndex<'a> for &'a [bool] {
fn num_rows(&self) -> RowId {
self.len() as u32
}
fn non_null_rows(&self) -> Box<dyn Iterator<Item = RowId> + 'a> {
Box::new(
self.iter()
.cloned()
.enumerate()
.filter(|(_pos, val)| *val)
.map(|(pos, _val)| pos as u32),
)
}
}
fn test_null_index(data: &[bool]) {
let mut out: Vec<u8> = Vec::new();
serialize_optional_index(&data, &mut out).unwrap();
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
let orig_idx_with_value: Vec<u32> = data
.iter()
.enumerate()
.filter(|(_pos, val)| **val)
.map(|(pos, _val)| pos as u32)
.collect();
let mut select_iter = null_index.select_cursor();
for i in 0..orig_idx_with_value.len() {
assert_eq!(select_iter.select(i as u32), orig_idx_with_value[i]);
}
let step_size = (orig_idx_with_value.len() / 100).max(1);
for (dense_idx, orig_idx) in orig_idx_with_value.iter().enumerate().step_by(step_size) {
assert_eq!(null_index.rank_if_exists(*orig_idx), Some(dense_idx as u32));
}
// 100 samples
let step_size = (data.len() / 100).max(1);
for (pos, value) in data.iter().enumerate().step_by(step_size) {
assert_eq!(null_index.contains(pos as u32), *value);
}
}
#[test]
fn test_optional_index_test_translation() {
let mut out = vec![];
let iter = &[true, false, true, false];
serialize_optional_index(&&iter[..], &mut out).unwrap();
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
let mut select_cursor = null_index.select_cursor();
assert_eq!(select_cursor.select(0), 0);
assert_eq!(select_cursor.select(1), 2);
}
#[test]
fn test_optional_index_translate() {
let mut out = vec![];
let iter = &[true, false, true, false];
serialize_optional_index(&&iter[..], &mut out).unwrap();
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
assert_eq!(null_index.rank_if_exists(0), Some(0));
assert_eq!(null_index.rank_if_exists(2), Some(1));
}
#[test]
fn test_optional_index_small() {
let mut out = vec![];
let iter = &[true, false, true, false];
serialize_optional_index(&&iter[..], &mut out).unwrap();
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
assert!(null_index.contains(0));
assert!(!null_index.contains(1));
assert!(null_index.contains(2));
assert!(!null_index.contains(3));
}
#[test]
fn test_optional_index_large() {
let mut docs = vec![];
docs.extend((0..ELEMENTS_PER_BLOCK).map(|_idx| false));
docs.extend((0..=1).map(|_idx| true));
let mut out = vec![];
serialize_optional_index(&&docs[..], &mut out).unwrap();
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
assert!(!null_index.contains(0));
assert!(!null_index.contains(100));
assert!(!null_index.contains(ELEMENTS_PER_BLOCK - 1));
assert!(null_index.contains(ELEMENTS_PER_BLOCK));
assert!(null_index.contains(ELEMENTS_PER_BLOCK + 1));
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use test::Bencher;
use super::*;
const TOTAL_NUM_VALUES: u32 = 1_000_000;
fn gen_bools(fill_ratio: f64) -> OptionalIndex {
let mut out = Vec::new();
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
let vals: Vec<bool> = (0..TOTAL_NUM_VALUES)
.map(|_| rng.gen_bool(fill_ratio))
.collect();
serialize_optional_index(&&vals[..], &mut out).unwrap();
let codec = open_optional_index(OwnedBytes::new(out)).unwrap();
codec
}
fn random_range_iterator(
start: u32,
end: u32,
avg_step_size: u32,
avg_deviation: u32,
) -> impl Iterator<Item = u32> {
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
let mut current = start;
std::iter::from_fn(move || {
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
if current >= end {
None
} else {
Some(current)
}
})
}
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
let ratio = percent as f32 / 100.0;
let step_size = (1f32 / ratio) as u32;
let deviation = step_size - 1;
random_range_iterator(0, num_values, step_size, deviation)
}
fn walk_over_data(codec: &OptionalIndex, avg_step_size: u32) -> Option<u32> {
walk_over_data_from_positions(
codec,
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
)
}
fn walk_over_data_from_positions(
codec: &OptionalIndex,
positions: impl Iterator<Item = u32>,
) -> Option<u32> {
let mut dense_idx: Option<u32> = None;
for idx in positions {
dense_idx = dense_idx.or(codec.rank_if_exists(idx));
}
dense_idx
}
#[bench]
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.05f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.05f64);
bench.iter(|| walk_over_data(&codec, 1000));
}
#[bench]
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
let codec = gen_bools(0.01f64);
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
}
#[bench]
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
let codec = gen_bools(0.1f64);
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
}
#[bench]
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
let codec = gen_bools(0.9f64);
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
}
#[bench]
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.1f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.5f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
let codec = gen_bools(0.9f64);
bench.iter(|| walk_over_data(&codec, 100));
}
#[bench]
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.01f64, 0.005f32, bench);
}
#[bench]
fn bench_translate_codec_to_orig_10percent_filled_0comma005percent_hit(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.1f64, 0.005f32, bench);
}
#[bench]
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.01f64, 10f32, bench);
}
#[bench]
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.01f64, 100f32, bench);
}
fn bench_translate_codec_to_orig_util(
percent_filled: f64,
percent_hit: f32,
bench: &mut Bencher,
) {
let codec = gen_bools(percent_filled);
let num_non_nulls = codec.num_non_nulls();
let idxs: Vec<u32> = if percent_hit == 100.0f32 {
(0..num_non_nulls).collect()
} else {
n_percent_step_iterator(percent_hit, num_non_nulls).collect()
};
let mut output = vec![0u32; idxs.len()];
bench.iter(|| {
output.copy_from_slice(&idxs[..]);
codec.select_batch(&mut output);
});
}
#[bench]
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.9f64, 0.005, bench);
}
#[bench]
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
bench_translate_codec_to_orig_util(0.9f64, 100.0f32, bench);
}
}

View File

@@ -1,73 +0,0 @@
use std::io;
use std::io::Write;
use common::{CountingWriter, OwnedBytes};
use crate::column_index::multivalued_index::serialize_multivalued_index;
use crate::column_index::optional_index::serialize_optional_index;
use crate::column_index::{ColumnIndex, SerializableOptionalIndex};
use crate::column_values::ColumnValues;
use crate::{Cardinality, RowId};
pub enum SerializableColumnIndex<'a> {
Full,
Optional(Box<dyn SerializableOptionalIndex<'a> + 'a>),
// TODO remove the Arc<dyn> apart from serialization this is not
// dynamic at all.
Multivalued(Box<dyn ColumnValues<RowId> + 'a>),
}
impl<'a> SerializableColumnIndex<'a> {
pub fn get_cardinality(&self) -> Cardinality {
match self {
SerializableColumnIndex::Full => Cardinality::Full,
SerializableColumnIndex::Optional(_) => Cardinality::Optional,
SerializableColumnIndex::Multivalued(_) => Cardinality::Multivalued,
}
}
}
pub fn serialize_column_index(
column_index: SerializableColumnIndex,
output: &mut impl Write,
) -> io::Result<u32> {
let mut output = CountingWriter::wrap(output);
let cardinality = column_index.get_cardinality().to_code();
output.write_all(&[cardinality])?;
match column_index {
SerializableColumnIndex::Full => {}
SerializableColumnIndex::Optional(optional_index) => {
serialize_optional_index(&*optional_index, &mut output)?
}
SerializableColumnIndex::Multivalued(multivalued_index) => {
serialize_multivalued_index(&*multivalued_index, &mut output)?
}
}
let column_index_num_bytes = output.written_bytes() as u32;
Ok(column_index_num_bytes)
}
pub fn open_column_index(mut bytes: OwnedBytes) -> io::Result<ColumnIndex> {
if bytes.is_empty() {
return Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
"Failed to deserialize column index. Empty buffer.",
));
}
let cardinality_code = bytes[0];
let cardinality = Cardinality::try_from_code(cardinality_code)?;
bytes.advance(1);
match cardinality {
Cardinality::Full => Ok(ColumnIndex::Full),
Cardinality::Optional => {
let optional_index = super::optional_index::open_optional_index(bytes)?;
Ok(ColumnIndex::Optional(optional_index))
}
Cardinality::Multivalued => {
let multivalue_index = super::multivalued_index::open_multivalued_index(bytes)?;
Ok(ColumnIndex::Multivalued(multivalue_index))
}
}
}
// TODO unit tests

View File

@@ -1,376 +0,0 @@
use std::fmt::Debug;
use std::marker::PhantomData;
use std::ops::{Range, RangeInclusive};
use tantivy_bitpacker::minmax;
use crate::column_values::monotonic_mapping::StrictlyMonotonicFn;
/// `ColumnValues` provides access to a dense field column.
///
/// `Column` are just a wrapper over `ColumnValues` and a `ColumnIndex`.
pub trait ColumnValues<T: PartialOrd + Debug = u64>: Send + Sync {
/// Return the value associated with the given idx.
///
/// This accessor should return as fast as possible.
///
/// # Panics
///
/// May panic if `idx` is greater than the column length.
fn get_val(&self, idx: u32) -> T;
/// Fills an output buffer with the fast field values
/// associated with the `DocId` going from
/// `start` to `start + output.len()`.
///
/// # Panics
///
/// Must panic if `start + output.len()` is greater than
/// the segment's `maxdoc`.
#[inline]
fn get_range(&self, start: u64, output: &mut [T]) {
for (out, idx) in output.iter_mut().zip(start..) {
*out = self.get_val(idx as u32);
}
}
/// Get the positions of values which are in the provided value range.
///
/// Note that position == docid for single value fast fields
#[inline]
fn get_docids_for_value_range(
&self,
value_range: RangeInclusive<T>,
doc_id_range: Range<u32>,
positions: &mut Vec<u32>,
) {
let doc_id_range = doc_id_range.start..doc_id_range.end.min(self.num_vals());
for idx in doc_id_range.start..doc_id_range.end {
let val = self.get_val(idx);
if value_range.contains(&val) {
positions.push(idx);
}
}
}
/// Returns the minimum value for this fast field.
///
/// This min_value may not be exact.
/// For instance, the min value does not take in account of possible
/// deleted document. All values are however guaranteed to be higher than
/// `.min_value()`.
fn min_value(&self) -> T;
/// Returns the maximum value for this fast field.
///
/// This max_value may not be exact.
/// For instance, the max value does not take in account of possible
/// deleted document. All values are however guaranteed to be higher than
/// `.max_value()`.
fn max_value(&self) -> T;
/// The number of values in the column.
fn num_vals(&self) -> u32;
/// Returns a iterator over the data
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = T> + 'a> {
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
}
}
impl<T: Copy + PartialOrd + Debug> ColumnValues<T> for std::sync::Arc<dyn ColumnValues<T>> {
fn get_val(&self, idx: u32) -> T {
self.as_ref().get_val(idx)
}
fn min_value(&self) -> T {
self.as_ref().min_value()
}
fn max_value(&self) -> T {
self.as_ref().max_value()
}
fn num_vals(&self) -> u32 {
self.as_ref().num_vals()
}
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
self.as_ref().iter()
}
fn get_range(&self, start: u64, output: &mut [T]) {
self.as_ref().get_range(start, output)
}
}
impl<'a, C: ColumnValues<T> + ?Sized, T: Copy + PartialOrd + Debug> ColumnValues<T> for &'a C {
fn get_val(&self, idx: u32) -> T {
(*self).get_val(idx)
}
fn min_value(&self) -> T {
(*self).min_value()
}
fn max_value(&self) -> T {
(*self).max_value()
}
fn num_vals(&self) -> u32 {
(*self).num_vals()
}
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
(*self).iter()
}
fn get_range(&self, start: u64, output: &mut [T]) {
(*self).get_range(start, output)
}
}
/// VecColumn provides `Column` over a slice.
pub struct VecColumn<'a, T = u64> {
pub(crate) values: &'a [T],
pub(crate) min_value: T,
pub(crate) max_value: T,
}
impl<'a, T: Copy + PartialOrd + Send + Sync + Debug> ColumnValues<T> for VecColumn<'a, T> {
fn get_val(&self, position: u32) -> T {
self.values[position as usize]
}
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
Box::new(self.values.iter().copied())
}
fn min_value(&self) -> T {
self.min_value
}
fn max_value(&self) -> T {
self.max_value
}
fn num_vals(&self) -> u32 {
self.values.len() as u32
}
fn get_range(&self, start: u64, output: &mut [T]) {
output.copy_from_slice(&self.values[start as usize..][..output.len()])
}
}
impl<'a, T: Copy + PartialOrd + Default, V> From<&'a V> for VecColumn<'a, T>
where V: AsRef<[T]> + ?Sized
{
fn from(values: &'a V) -> Self {
let values = values.as_ref();
let (min_value, max_value) = minmax(values.iter().copied()).unwrap_or_default();
Self {
values,
min_value,
max_value,
}
}
}
struct MonotonicMappingColumn<C, T, Input> {
from_column: C,
monotonic_mapping: T,
_phantom: PhantomData<Input>,
}
/// Creates a view of a column transformed by a strictly monotonic mapping. See
/// [`StrictlyMonotonicFn`].
///
/// E.g. apply a gcd monotonic_mapping([100, 200, 300]) == [1, 2, 3]
/// monotonic_mapping.mapping() is expected to be injective, and we should always have
/// monotonic_mapping.inverse(monotonic_mapping.mapping(el)) == el
///
/// The inverse of the mapping is required for:
/// `fn get_positions_for_value_range(&self, range: RangeInclusive<T>) -> Vec<u64> `
/// The user provides the original value range and we need to monotonic map them in the same way the
/// serialization does before calling the underlying column.
///
/// Note that when opening a codec, the monotonic_mapping should be the inverse of the mapping
/// during serialization. And therefore the monotonic_mapping_inv when opening is the same as
/// monotonic_mapping during serialization.
pub fn monotonic_map_column<C, T, Input, Output>(
from_column: C,
monotonic_mapping: T,
) -> impl ColumnValues<Output>
where
C: ColumnValues<Input>,
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
Input: PartialOrd + Debug + Send + Sync + Clone,
Output: PartialOrd + Debug + Send + Sync + Clone,
{
MonotonicMappingColumn {
from_column,
monotonic_mapping,
_phantom: PhantomData,
}
}
impl<C, T, Input, Output> ColumnValues<Output> for MonotonicMappingColumn<C, T, Input>
where
C: ColumnValues<Input>,
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
Input: PartialOrd + Send + Debug + Sync + Clone,
Output: PartialOrd + Send + Debug + Sync + Clone,
{
#[inline]
fn get_val(&self, idx: u32) -> Output {
let from_val = self.from_column.get_val(idx);
self.monotonic_mapping.mapping(from_val)
}
fn min_value(&self) -> Output {
let from_min_value = self.from_column.min_value();
self.monotonic_mapping.mapping(from_min_value)
}
fn max_value(&self) -> Output {
let from_max_value = self.from_column.max_value();
self.monotonic_mapping.mapping(from_max_value)
}
fn num_vals(&self) -> u32 {
self.from_column.num_vals()
}
fn iter(&self) -> Box<dyn Iterator<Item = Output> + '_> {
Box::new(
self.from_column
.iter()
.map(|el| self.monotonic_mapping.mapping(el)),
)
}
fn get_docids_for_value_range(
&self,
range: RangeInclusive<Output>,
doc_id_range: Range<u32>,
positions: &mut Vec<u32>,
) {
self.from_column.get_docids_for_value_range(
self.monotonic_mapping.inverse(range.start().clone())
..=self.monotonic_mapping.inverse(range.end().clone()),
doc_id_range,
positions,
)
}
// We voluntarily do not implement get_range as it yields a regression,
// and we do not have any specialized implementation anyway.
}
/// Wraps an iterator into a `Column`.
pub struct IterColumn<T>(T);
impl<T> From<T> for IterColumn<T>
where T: Iterator + Clone + ExactSizeIterator
{
fn from(iter: T) -> Self {
IterColumn(iter)
}
}
impl<T> ColumnValues<T::Item> for IterColumn<T>
where
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
T::Item: PartialOrd + Debug,
{
fn get_val(&self, idx: u32) -> T::Item {
self.0.clone().nth(idx as usize).unwrap()
}
fn min_value(&self) -> T::Item {
self.0.clone().next().unwrap()
}
fn max_value(&self) -> T::Item {
self.0.clone().last().unwrap()
}
fn num_vals(&self) -> u32 {
self.0.len() as u32
}
fn iter(&self) -> Box<dyn Iterator<Item = T::Item> + '_> {
Box::new(self.0.clone())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::column_values::monotonic_mapping::{
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternalBaseval,
StrictlyMonotonicMappingToInternalGCDBaseval,
};
#[test]
fn test_monotonic_mapping() {
let vals = &[3u64, 5u64][..];
let col = VecColumn::from(vals);
let mapped = monotonic_map_column(col, StrictlyMonotonicMappingToInternalBaseval::new(2));
assert_eq!(mapped.min_value(), 1u64);
assert_eq!(mapped.max_value(), 3u64);
assert_eq!(mapped.num_vals(), 2);
assert_eq!(mapped.num_vals(), 2);
assert_eq!(mapped.get_val(0), 1);
assert_eq!(mapped.get_val(1), 3);
}
#[test]
fn test_range_as_col() {
let col = IterColumn::from(10..100);
assert_eq!(col.num_vals(), 90);
assert_eq!(col.max_value(), 99);
}
#[test]
fn test_monotonic_mapping_iter() {
let vals: Vec<u64> = (10..110u64).map(|el| el * 10).collect();
let col = VecColumn::from(&vals);
let mapped = monotonic_map_column(
col,
StrictlyMonotonicMappingInverter::from(
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100),
),
);
let val_i64s: Vec<u64> = mapped.iter().collect();
for i in 0..100 {
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
}
}
#[test]
fn test_monotonic_mapping_get_range() {
let vals: Vec<u64> = (0..100u64).map(|el| el * 10).collect();
let col = VecColumn::from(&vals);
let mapped = monotonic_map_column(
col,
StrictlyMonotonicMappingInverter::from(
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 0),
),
);
assert_eq!(mapped.min_value(), 0u64);
assert_eq!(mapped.max_value(), 9900u64);
assert_eq!(mapped.num_vals(), 100);
let val_u64s: Vec<u64> = mapped.iter().collect();
assert_eq!(val_u64s.len(), 100);
for i in 0..100 {
assert_eq!(val_u64s[i as usize], mapped.get_val(i));
assert_eq!(val_u64s[i as usize], vals[i as usize] * 10);
}
let mut buf = [0u64; 20];
mapped.get_range(7, &mut buf[..]);
assert_eq!(&val_u64s[7..][..20], &buf);
}
}

View File

@@ -1,75 +0,0 @@
use std::num::NonZeroU64;
use fastdivide::DividerU64;
/// Compute the gcd of two non null numbers.
///
/// It is recommended, but not required, to feed values such that `large >= small`.
fn compute_gcd(mut large: NonZeroU64, mut small: NonZeroU64) -> NonZeroU64 {
loop {
let rem: u64 = large.get() % small;
if let Some(new_small) = NonZeroU64::new(rem) {
(large, small) = (small, new_small);
} else {
return small;
}
}
}
// Find GCD for iterator of numbers
pub fn find_gcd(numbers: impl Iterator<Item = u64>) -> Option<NonZeroU64> {
let mut numbers = numbers.flat_map(NonZeroU64::new);
let mut gcd: NonZeroU64 = numbers.next()?;
if gcd.get() == 1 {
return Some(gcd);
}
let mut gcd_divider = DividerU64::divide_by(gcd.get());
for val in numbers {
let remainder = val.get() - (gcd_divider.divide(val.get())) * gcd.get();
if remainder == 0 {
continue;
}
gcd = compute_gcd(val, gcd);
if gcd.get() == 1 {
return Some(gcd);
}
gcd_divider = DividerU64::divide_by(gcd.get());
}
Some(gcd)
}
#[cfg(test)]
mod tests {
use std::num::NonZeroU64;
use crate::column_values::gcd::{compute_gcd, find_gcd};
#[test]
fn test_compute_gcd() {
let test_compute_gcd_aux = |large, small, expected| {
let large = NonZeroU64::new(large).unwrap();
let small = NonZeroU64::new(small).unwrap();
let expected = NonZeroU64::new(expected).unwrap();
assert_eq!(compute_gcd(small, large), expected);
assert_eq!(compute_gcd(large, small), expected);
};
test_compute_gcd_aux(1, 4, 1);
test_compute_gcd_aux(2, 4, 2);
test_compute_gcd_aux(10, 25, 5);
test_compute_gcd_aux(25, 25, 25);
}
#[test]
fn find_gcd_test() {
assert_eq!(find_gcd([0].into_iter()), None);
assert_eq!(find_gcd([0, 10].into_iter()), NonZeroU64::new(10));
assert_eq!(find_gcd([10, 0].into_iter()), NonZeroU64::new(10));
assert_eq!(find_gcd([].into_iter()), None);
assert_eq!(find_gcd([15, 30, 5, 10].into_iter()), NonZeroU64::new(5));
assert_eq!(find_gcd([15, 16, 10].into_iter()), NonZeroU64::new(1));
assert_eq!(find_gcd([0, 5, 5, 5].into_iter()), NonZeroU64::new(5));
assert_eq!(find_gcd([0, 0].into_iter()), None);
}
}

View File

@@ -1,326 +0,0 @@
#![warn(missing_docs)]
#![cfg_attr(all(feature = "unstable", test), feature(test))]
//! # `fastfield_codecs`
//!
//! - Columnar storage of data for tantivy [`Column`].
//! - Encode data in different codecs.
//! - Monotonically map values to u64/u128
#[cfg(test)]
mod tests;
use std::fmt::Debug;
use std::io;
use std::io::Write;
use std::sync::Arc;
use common::{BinarySerializable, OwnedBytes};
use compact_space::CompactSpaceDecompressor;
pub use monotonic_mapping::{MonotonicallyMappableToU64, StrictlyMonotonicFn};
use monotonic_mapping::{
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
StrictlyMonotonicMappingToInternalBaseval, StrictlyMonotonicMappingToInternalGCDBaseval,
};
pub use monotonic_mapping_u128::MonotonicallyMappableToU128;
use serialize::{Header, U128Header};
mod bitpacked;
mod blockwise_linear;
mod compact_space;
mod line;
mod linear;
pub(crate) mod monotonic_mapping;
pub(crate) mod monotonic_mapping_u128;
mod column;
mod gcd;
pub mod serialize;
pub use self::column::{monotonic_map_column, ColumnValues, IterColumn, VecColumn};
#[cfg(test)]
pub use self::serialize::tests::serialize_and_load;
pub use self::serialize::{serialize_column_values, NormalizedHeader};
use crate::column_values::bitpacked::BitpackedCodec;
use crate::column_values::blockwise_linear::BlockwiseLinearCodec;
use crate::column_values::linear::LinearCodec;
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
#[repr(u8)]
/// Available codecs to use to encode the u64 (via [`MonotonicallyMappableToU64`]) converted data.
pub enum FastFieldCodecType {
/// Bitpack all values in the value range. The number of bits is defined by the amplitude
/// `column.max_value() - column.min_value()`
Bitpacked = 1,
/// Linear interpolation puts a line between the first and last value and then bitpacks the
/// values by the offset from the line. The number of bits is defined by the max deviation from
/// the line.
Linear = 2,
/// Same as [`FastFieldCodecType::Linear`], but encodes in blocks of 512 elements.
BlockwiseLinear = 3,
}
impl BinarySerializable for FastFieldCodecType {
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
self.to_code().serialize(wrt)
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let code = u8::deserialize(reader)?;
let codec_type: Self = Self::from_code(code)
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
Ok(codec_type)
}
}
impl FastFieldCodecType {
pub(crate) fn to_code(self) -> u8 {
self as u8
}
pub(crate) fn from_code(code: u8) -> Option<Self> {
match code {
1 => Some(Self::Bitpacked),
2 => Some(Self::Linear),
3 => Some(Self::BlockwiseLinear),
_ => None,
}
}
}
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
#[repr(u8)]
/// Available codecs to use to encode the u128 (via [`MonotonicallyMappableToU128`]) converted data.
pub enum U128FastFieldCodecType {
/// This codec takes a large number space (u128) and reduces it to a compact number space, by
/// removing the holes.
CompactSpace = 1,
}
impl BinarySerializable for U128FastFieldCodecType {
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
self.to_code().serialize(wrt)
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let code = u8::deserialize(reader)?;
let codec_type: Self = Self::from_code(code)
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
Ok(codec_type)
}
}
impl U128FastFieldCodecType {
pub(crate) fn to_code(self) -> u8 {
self as u8
}
pub(crate) fn from_code(code: u8) -> Option<Self> {
match code {
1 => Some(Self::CompactSpace),
_ => None,
}
}
}
/// Returns the correct codec reader wrapped in the `Arc` for the data.
pub fn open_u128_mapped<T: MonotonicallyMappableToU128 + Debug>(
mut bytes: OwnedBytes,
) -> io::Result<Arc<dyn ColumnValues<T>>> {
let header = U128Header::deserialize(&mut bytes)?;
assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
let reader = CompactSpaceDecompressor::open(bytes)?;
let inverted: StrictlyMonotonicMappingInverter<StrictlyMonotonicMappingToInternal<T>> =
StrictlyMonotonicMappingToInternal::<T>::new().into();
Ok(Arc::new(monotonic_map_column(reader, inverted)))
}
/// Returns the correct codec reader wrapped in the `Arc` for the data.
pub fn open_u64_mapped<T: MonotonicallyMappableToU64 + Debug>(
mut bytes: OwnedBytes,
) -> io::Result<Arc<dyn ColumnValues<T>>> {
let header = Header::deserialize(&mut bytes)?;
match header.codec_type {
FastFieldCodecType::Bitpacked => open_specific_codec::<BitpackedCodec, _>(bytes, &header),
FastFieldCodecType::Linear => open_specific_codec::<LinearCodec, _>(bytes, &header),
FastFieldCodecType::BlockwiseLinear => {
open_specific_codec::<BlockwiseLinearCodec, _>(bytes, &header)
}
}
}
fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64 + Debug>(
bytes: OwnedBytes,
header: &Header,
) -> io::Result<Arc<dyn ColumnValues<Item>>> {
let normalized_header = header.normalized();
let reader = C::open_from_bytes(bytes, normalized_header)?;
let min_value = header.min_value;
if let Some(gcd) = header.gcd {
let mapping = StrictlyMonotonicMappingInverter::from(
StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd.get(), min_value),
);
Ok(Arc::new(monotonic_map_column(reader, mapping)))
} else {
let mapping = StrictlyMonotonicMappingInverter::from(
StrictlyMonotonicMappingToInternalBaseval::new(min_value),
);
Ok(Arc::new(monotonic_map_column(reader, mapping)))
}
}
/// The FastFieldSerializerEstimate trait is required on all variants
/// of fast field compressions, to decide which one to choose.
pub(crate) trait FastFieldCodec: 'static {
/// A codex needs to provide a unique name and id, which is
/// used for debugging and de/serialization.
const CODEC_TYPE: FastFieldCodecType;
type Reader: ColumnValues<u64> + 'static;
/// Reads the metadata and returns the CodecReader
fn open_from_bytes(bytes: OwnedBytes, header: NormalizedHeader) -> io::Result<Self::Reader>;
/// Serializes the data using the serializer into write.
///
/// The column iterator should be preferred over using column `get_val` method for
/// performance reasons.
fn serialize(column: &dyn ColumnValues, write: &mut impl Write) -> io::Result<()>;
/// Returns an estimate of the compression ratio.
/// If the codec is not applicable, returns `None`.
///
/// The baseline is uncompressed 64bit data.
///
/// It could make sense to also return a value representing
/// computational complexity.
fn estimate(column: &dyn ColumnValues) -> Option<f32>;
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use std::sync::Arc;
use common::OwnedBytes;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use test::{self, Bencher};
use super::*;
fn get_data() -> Vec<u64> {
let mut rng = StdRng::seed_from_u64(2u64);
let mut data: Vec<_> = (100..55000_u64)
.map(|num| num + rng.gen::<u8>() as u64)
.collect();
data.push(99_000);
data.insert(1000, 2000);
data.insert(2000, 100);
data.insert(3000, 4100);
data.insert(4000, 100);
data.insert(5000, 800);
data
}
#[inline(never)]
fn value_iter() -> impl Iterator<Item = u64> {
0..20_000
}
fn get_reader_for_bench<Codec: FastFieldCodec>(data: &[u64]) -> Codec::Reader {
let mut bytes = Vec::new();
let min_value = *data.iter().min().unwrap();
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
let col = VecColumn::from(&data);
let normalized_header = NormalizedHeader {
num_vals: col.num_vals(),
max_value: col.max_value(),
};
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
Codec::open_from_bytes(OwnedBytes::new(bytes), normalized_header).unwrap()
}
fn bench_get<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
let col = get_reader_for_bench::<Codec>(data);
b.iter(|| {
let mut sum = 0u64;
for pos in value_iter() {
let val = col.get_val(pos as u32);
sum = sum.wrapping_add(val);
}
sum
});
}
#[inline(never)]
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn ColumnValues>) {
b.iter(|| {
let mut sum = 0u64;
for pos in value_iter() {
let val = col.get_val(pos as u32);
sum = sum.wrapping_add(val);
}
sum
});
}
fn bench_get_dynamic<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
let col = Arc::new(get_reader_for_bench::<Codec>(data));
bench_get_dynamic_helper(b, col);
}
fn bench_create<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
let min_value = *data.iter().min().unwrap();
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
let mut bytes = Vec::new();
b.iter(|| {
bytes.clear();
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
});
}
#[bench]
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<BlockwiseLinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<BlockwiseLinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
}
}

View File

@@ -1,279 +0,0 @@
use std::fmt::Debug;
use std::marker::PhantomData;
use fastdivide::DividerU64;
use super::MonotonicallyMappableToU128;
use crate::RowId;
/// Monotonic maps a value to u64 value space.
/// Monotonic mapping enables `PartialOrd` on u64 space without conversion to original space.
pub trait MonotonicallyMappableToU64: 'static + PartialOrd + Debug + Copy + Send + Sync {
/// Converts a value to u64.
///
/// Internally all fast field values are encoded as u64.
fn to_u64(self) -> u64;
/// Converts a value from u64
///
/// Internally all fast field values are encoded as u64.
/// **Note: To be used for converting encoded Term, Posting values.**
fn from_u64(val: u64) -> Self;
}
/// Values need to be strictly monotonic mapped to a `Internal` value (u64 or u128) that can be
/// used in fast field codecs.
///
/// The monotonic mapping is required so that `PartialOrd` can be used on `Internal` without
/// converting to `External`.
///
/// All strictly monotonic functions are invertible because they are guaranteed to have a one-to-one
/// mapping from their range to their domain. The `inverse` method is required when opening a codec,
/// so a value can be converted back to its original domain (e.g. ip address or f64) from its
/// internal representation.
pub trait StrictlyMonotonicFn<External, Internal> {
/// Strictly monotonically maps the value from External to Internal.
fn mapping(&self, inp: External) -> Internal;
/// Inverse of `mapping`. Maps the value from Internal to External.
fn inverse(&self, out: Internal) -> External;
}
/// Inverts a strictly monotonic mapping from `StrictlyMonotonicFn<A, B>` to
/// `StrictlyMonotonicFn<B, A>`.
///
/// # Warning
///
/// This type comes with a footgun. A type being strictly monotonic does not impose that the inverse
/// mapping is strictly monotonic over the entire space External. e.g. a -> a * 2. Use at your own
/// risks.
pub(crate) struct StrictlyMonotonicMappingInverter<T> {
orig_mapping: T,
}
impl<T> From<T> for StrictlyMonotonicMappingInverter<T> {
fn from(orig_mapping: T) -> Self {
Self { orig_mapping }
}
}
impl<From, To, T> StrictlyMonotonicFn<To, From> for StrictlyMonotonicMappingInverter<T>
where T: StrictlyMonotonicFn<From, To>
{
#[inline(always)]
fn mapping(&self, val: To) -> From {
self.orig_mapping.inverse(val)
}
#[inline(always)]
fn inverse(&self, val: From) -> To {
self.orig_mapping.mapping(val)
}
}
/// Applies the strictly monotonic mapping from `T` without any additional changes.
pub(crate) struct StrictlyMonotonicMappingToInternal<T> {
_phantom: PhantomData<T>,
}
impl<T> StrictlyMonotonicMappingToInternal<T> {
pub(crate) fn new() -> StrictlyMonotonicMappingToInternal<T> {
Self {
_phantom: PhantomData,
}
}
}
impl<External: MonotonicallyMappableToU128, T: MonotonicallyMappableToU128>
StrictlyMonotonicFn<External, u128> for StrictlyMonotonicMappingToInternal<T>
where T: MonotonicallyMappableToU128
{
#[inline(always)]
fn mapping(&self, inp: External) -> u128 {
External::to_u128(inp)
}
#[inline(always)]
fn inverse(&self, out: u128) -> External {
External::from_u128(out)
}
}
impl<External: MonotonicallyMappableToU64, T: MonotonicallyMappableToU64>
StrictlyMonotonicFn<External, u64> for StrictlyMonotonicMappingToInternal<T>
where T: MonotonicallyMappableToU64
{
#[inline(always)]
fn mapping(&self, inp: External) -> u64 {
External::to_u64(inp)
}
#[inline(always)]
fn inverse(&self, out: u64) -> External {
External::from_u64(out)
}
}
/// Mapping dividing by gcd and a base value.
///
/// The function is assumed to be only called on values divided by passed
/// gcd value. (It is necessary for the function to be monotonic.)
pub(crate) struct StrictlyMonotonicMappingToInternalGCDBaseval {
gcd_divider: DividerU64,
gcd: u64,
min_value: u64,
}
impl StrictlyMonotonicMappingToInternalGCDBaseval {
pub(crate) fn new(gcd: u64, min_value: u64) -> Self {
let gcd_divider = DividerU64::divide_by(gcd);
Self {
gcd_divider,
gcd,
min_value,
}
}
}
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
for StrictlyMonotonicMappingToInternalGCDBaseval
{
#[inline(always)]
fn mapping(&self, inp: External) -> u64 {
self.gcd_divider
.divide(External::to_u64(inp) - self.min_value)
}
#[inline(always)]
fn inverse(&self, out: u64) -> External {
External::from_u64(self.min_value + out * self.gcd)
}
}
/// Strictly monotonic mapping with a base value.
pub(crate) struct StrictlyMonotonicMappingToInternalBaseval {
min_value: u64,
}
impl StrictlyMonotonicMappingToInternalBaseval {
#[inline(always)]
pub(crate) fn new(min_value: u64) -> Self {
Self { min_value }
}
}
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
for StrictlyMonotonicMappingToInternalBaseval
{
#[inline(always)]
fn mapping(&self, val: External) -> u64 {
External::to_u64(val) - self.min_value
}
#[inline(always)]
fn inverse(&self, val: u64) -> External {
External::from_u64(self.min_value + val)
}
}
impl MonotonicallyMappableToU64 for u64 {
#[inline(always)]
fn to_u64(self) -> u64 {
self
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
val
}
}
impl MonotonicallyMappableToU64 for i64 {
#[inline(always)]
fn to_u64(self) -> u64 {
common::i64_to_u64(self)
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
common::u64_to_i64(val)
}
}
impl MonotonicallyMappableToU64 for crate::DateTime {
#[inline(always)]
fn to_u64(self) -> u64 {
common::i64_to_u64(self.timestamp_micros)
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
crate::DateTime {
timestamp_micros: common::u64_to_i64(val),
}
}
}
impl MonotonicallyMappableToU64 for bool {
#[inline(always)]
fn to_u64(self) -> u64 {
u64::from(self)
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
val > 0
}
}
impl MonotonicallyMappableToU64 for RowId {
#[inline(always)]
fn to_u64(self) -> u64 {
u64::from(self)
}
#[inline(always)]
fn from_u64(val: u64) -> RowId {
val as RowId
}
}
// TODO remove me.
// Tantivy should refuse NaN values and work with NotNaN internally.
impl MonotonicallyMappableToU64 for f64 {
#[inline(always)]
fn to_u64(self) -> u64 {
common::f64_to_u64(self)
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
common::u64_to_f64(val)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn strictly_monotonic_test() {
// identity mapping
test_round_trip(&StrictlyMonotonicMappingToInternal::<u64>::new(), 100u64);
// round trip to i64
test_round_trip(&StrictlyMonotonicMappingToInternal::<i64>::new(), 100u64);
// TODO
// identity mapping
// test_round_trip(&StrictlyMonotonicMappingToInternal::<u128>::new(), 100u128);
// base value to i64 round trip
let mapping = StrictlyMonotonicMappingToInternalBaseval::new(100);
test_round_trip::<_, _, u64>(&mapping, 100i64);
// base value and gcd to u64 round trip
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100);
test_round_trip::<_, _, u64>(&mapping, 100u64);
}
fn test_round_trip<T: StrictlyMonotonicFn<K, L>, K: std::fmt::Debug + Eq + Copy, L>(
mapping: &T,
test_val: K,
) {
assert_eq!(mapping.inverse(mapping.mapping(test_val)), test_val);
}
}

View File

@@ -1,41 +0,0 @@
use std::fmt::Debug;
use std::net::Ipv6Addr;
/// Montonic maps a value to u128 value space
/// Monotonic mapping enables `PartialOrd` on u128 space without conversion to original space.
pub trait MonotonicallyMappableToU128: 'static + PartialOrd + Copy + Debug + Send + Sync {
/// Converts a value to u128.
///
/// Internally all fast field values are encoded as u64.
fn to_u128(self) -> u128;
/// Converts a value from u128
///
/// Internally all fast field values are encoded as u64.
/// **Note: To be used for converting encoded Term, Posting values.**
fn from_u128(val: u128) -> Self;
}
impl MonotonicallyMappableToU128 for u128 {
fn to_u128(self) -> u128 {
self
}
fn from_u128(val: u128) -> Self {
val
}
}
impl MonotonicallyMappableToU128 for Ipv6Addr {
fn to_u128(self) -> u128 {
ip_to_u128(self)
}
fn from_u128(val: u128) -> Self {
Ipv6Addr::from(val.to_be_bytes())
}
}
fn ip_to_u128(ip_addr: Ipv6Addr) -> u128 {
u128::from_be_bytes(ip_addr.octets())
}

View File

@@ -1,309 +0,0 @@
use proptest::prelude::*;
use proptest::strategy::Strategy;
use proptest::{prop_oneof, proptest};
use super::bitpacked::BitpackedCodec;
use super::blockwise_linear::BlockwiseLinearCodec;
use super::linear::LinearCodec;
use super::serialize::Header;
pub(crate) fn create_and_validate<Codec: FastFieldCodec>(
data: &[u64],
name: &str,
) -> Option<(f32, f32)> {
let col = &VecColumn::from(data);
let header = Header::compute_header(col, &[Codec::CODEC_TYPE])?;
let normalized_col = header.normalize_column(col);
let estimation = Codec::estimate(&normalized_col)?;
let mut out = Vec::new();
let col = VecColumn::from(data);
serialize_column_values(&col, &[Codec::CODEC_TYPE], &mut out).unwrap();
let actual_compression = out.len() as f32 / (data.len() as f32 * 8.0);
let reader = super::open_u64_mapped::<u64>(OwnedBytes::new(out)).unwrap();
assert_eq!(reader.num_vals(), data.len() as u32);
for (doc, orig_val) in data.iter().copied().enumerate() {
let val = reader.get_val(doc as u32);
assert_eq!(
val, orig_val,
"val `{val}` does not match orig_val {orig_val:?}, in data set {name}, data `{data:?}`",
);
}
if !data.is_empty() {
let test_rand_idx = rand::thread_rng().gen_range(0..=data.len() - 1);
let expected_positions: Vec<u32> = data
.iter()
.enumerate()
.filter(|(_, el)| **el == data[test_rand_idx])
.map(|(pos, _)| pos as u32)
.collect();
let mut positions = Vec::new();
reader.get_docids_for_value_range(
data[test_rand_idx]..=data[test_rand_idx],
0..data.len() as u32,
&mut positions,
);
assert_eq!(expected_positions, positions);
}
Some((estimation, actual_compression))
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(100))]
#[test]
fn test_proptest_small_bitpacked(data in proptest::collection::vec(num_strategy(), 1..10)) {
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
}
#[test]
fn test_proptest_small_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
}
#[test]
fn test_proptest_small_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
}
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(10))]
#[test]
fn test_proptest_large_bitpacked(data in proptest::collection::vec(num_strategy(), 1..6000)) {
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
}
#[test]
fn test_proptest_large_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
}
#[test]
fn test_proptest_large_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
}
}
fn num_strategy() -> impl Strategy<Value = u64> {
prop_oneof![
1 => prop::num::u64::ANY.prop_map(|num| u64::MAX - (num % 10) ),
1 => prop::num::u64::ANY.prop_map(|num| num % 10 ),
20 => prop::num::u64::ANY,
]
}
pub fn get_codec_test_datasets() -> Vec<(Vec<u64>, &'static str)> {
let mut data_and_names = vec![];
let data = (10..=10_000_u64).collect::<Vec<_>>();
data_and_names.push((data, "simple monotonically increasing"));
data_and_names.push((
vec![5, 6, 7, 8, 9, 10, 99, 100],
"offset in linear interpol",
));
data_and_names.push((vec![5, 50, 3, 13, 1, 1000, 35], "rand small"));
data_and_names.push((vec![10], "single value"));
data_and_names.push((
vec![1572656989877777, 1170935903116329, 720575940379279, 0],
"overflow error",
));
data_and_names
}
fn test_codec<C: FastFieldCodec>() {
let codec_name = format!("{:?}", C::CODEC_TYPE);
for (data, dataset_name) in get_codec_test_datasets() {
let estimate_actual_opt: Option<(f32, f32)> =
tests::create_and_validate::<C>(&data, dataset_name);
let result = if let Some((estimate, actual)) = estimate_actual_opt {
format!("Estimate `{estimate}` Actual `{actual}`")
} else {
"Disabled".to_string()
};
println!("Codec {codec_name}, DataSet {dataset_name}, {result}");
}
}
#[test]
fn test_codec_bitpacking() {
test_codec::<BitpackedCodec>();
}
#[test]
fn test_codec_interpolation() {
test_codec::<LinearCodec>();
}
#[test]
fn test_codec_multi_interpolation() {
test_codec::<BlockwiseLinearCodec>();
}
use super::*;
#[test]
fn estimation_good_interpolation_case() {
let data = (10..=20000_u64).collect::<Vec<_>>();
let data: VecColumn = data.as_slice().into();
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
assert_le!(linear_interpol_estimation, 0.01);
let multi_linear_interpol_estimation = BlockwiseLinearCodec::estimate(&data).unwrap();
assert_le!(multi_linear_interpol_estimation, 0.2);
assert_lt!(linear_interpol_estimation, multi_linear_interpol_estimation);
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
assert_lt!(linear_interpol_estimation, bitpacked_estimation);
}
#[test]
fn estimation_test_bad_interpolation_case() {
let data: &[u64] = &[200, 10, 10, 10, 10, 1000, 20];
let data: VecColumn = data.into();
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
assert_le!(linear_interpol_estimation, 0.34);
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
}
#[test]
fn estimation_prefer_bitpacked() {
let data = VecColumn::from(&[10, 10, 10, 10]);
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
}
#[test]
fn estimation_test_bad_interpolation_case_monotonically_increasing() {
let mut data: Vec<u64> = (201..=20000_u64).collect();
data.push(1_000_000);
let data: VecColumn = data.as_slice().into();
// in this case the linear interpolation can't in fact not be worse than bitpacking,
// but the estimator adds some threshold, which leads to estimated worse behavior
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
assert_le!(linear_interpol_estimation, 0.35);
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
assert_le!(bitpacked_estimation, 0.32);
assert_le!(bitpacked_estimation, linear_interpol_estimation);
}
#[test]
fn test_fast_field_codec_type_to_code() {
let mut count_codec = 0;
for code in 0..=255 {
if let Some(codec_type) = FastFieldCodecType::from_code(code) {
assert_eq!(codec_type.to_code(), code);
count_codec += 1;
}
}
assert_eq!(count_codec, 3);
}
fn test_fastfield_gcd_i64_with_codec(
codec_type: FastFieldCodecType,
num_vals: usize,
) -> io::Result<()> {
let mut vals: Vec<i64> = (-4..=(num_vals as i64) - 5).map(|val| val * 1000).collect();
let mut buffer: Vec<u8> = Vec::new();
crate::column_values::serialize_column_values(
&VecColumn::from(&vals),
&[codec_type],
&mut buffer,
)?;
let buffer = OwnedBytes::new(buffer);
let column = crate::column_values::open_u64_mapped::<i64>(buffer.clone())?;
assert_eq!(column.get_val(0), -4000i64);
assert_eq!(column.get_val(1), -3000i64);
assert_eq!(column.get_val(2), -2000i64);
assert_eq!(column.max_value(), (num_vals as i64 - 5) * 1000);
assert_eq!(column.min_value(), -4000i64);
// Can't apply gcd
let mut buffer_without_gcd = Vec::new();
vals.pop();
vals.push(1001i64);
crate::column_values::serialize_column_values(
&VecColumn::from(&vals),
&[codec_type],
&mut buffer_without_gcd,
)?;
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
assert!(buffer_without_gcd.len() > buffer.len());
Ok(())
}
#[test]
fn test_fastfield_gcd_i64() -> io::Result<()> {
for &codec_type in &[
FastFieldCodecType::Bitpacked,
FastFieldCodecType::BlockwiseLinear,
FastFieldCodecType::Linear,
] {
test_fastfield_gcd_i64_with_codec(codec_type, 5500)?;
}
Ok(())
}
fn test_fastfield_gcd_u64_with_codec(
codec_type: FastFieldCodecType,
num_vals: usize,
) -> io::Result<()> {
let mut vals: Vec<u64> = (1..=num_vals).map(|i| i as u64 * 1000u64).collect();
let mut buffer: Vec<u8> = Vec::new();
crate::column_values::serialize_column_values(
&VecColumn::from(&vals),
&[codec_type],
&mut buffer,
)?;
let buffer = OwnedBytes::new(buffer);
let column = crate::column_values::open_u64_mapped::<u64>(buffer.clone())?;
assert_eq!(column.get_val(0), 1000u64);
assert_eq!(column.get_val(1), 2000u64);
assert_eq!(column.get_val(2), 3000u64);
assert_eq!(column.max_value(), num_vals as u64 * 1000);
assert_eq!(column.min_value(), 1000u64);
// Can't apply gcd
let mut buffer_without_gcd = Vec::new();
vals.pop();
vals.push(1001u64);
crate::column_values::serialize_column_values(
&VecColumn::from(&vals),
&[codec_type],
&mut buffer_without_gcd,
)?;
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
assert!(buffer_without_gcd.len() > buffer.len());
Ok(())
}
#[test]
fn test_fastfield_gcd_u64() -> io::Result<()> {
for &codec_type in &[
FastFieldCodecType::Bitpacked,
FastFieldCodecType::BlockwiseLinear,
FastFieldCodecType::Linear,
] {
test_fastfield_gcd_u64_with_codec(codec_type, 5500)?;
}
Ok(())
}
#[test]
pub fn test_fastfield2() {
let test_fastfield = crate::column_values::serialize_and_load(&[100u64, 200u64, 300u64]);
assert_eq!(test_fastfield.get_val(0), 100);
assert_eq!(test_fastfield.get_val(1), 200);
assert_eq!(test_fastfield.get_val(2), 300);
}

View File

@@ -1,236 +0,0 @@
use std::fmt::Debug;
use std::net::Ipv6Addr;
use crate::value::NumericalType;
use crate::InvalidData;
/// The column type represents the column type and can fit on 6-bits.
///
/// - bits[0..3]: Column category type.
/// - bits[3..6]: Numerical type if necessary.
#[derive(Hash, Eq, PartialEq, Debug, Clone, Copy)]
#[repr(u8)]
pub enum ColumnType {
I64 = 0u8,
U64 = 1u8,
F64 = 2u8,
Bytes = 10u8,
Str = 14u8,
Bool = 18u8,
IpAddr = 22u8,
DateTime = 26u8,
}
#[cfg(test)]
const COLUMN_TYPES: [ColumnType; 8] = [
ColumnType::I64,
ColumnType::U64,
ColumnType::F64,
ColumnType::Bytes,
ColumnType::Str,
ColumnType::Bool,
ColumnType::IpAddr,
ColumnType::DateTime,
];
impl ColumnType {
pub fn to_code(self) -> u8 {
self as u8
}
pub(crate) fn try_from_code(code: u8) -> Result<ColumnType, InvalidData> {
use ColumnType::*;
match code {
0u8 => Ok(I64),
1u8 => Ok(U64),
2u8 => Ok(F64),
10u8 => Ok(Bytes),
14u8 => Ok(Str),
18u8 => Ok(Bool),
22u8 => Ok(IpAddr),
26u8 => Ok(Self::DateTime),
_ => Err(InvalidData),
}
}
}
impl From<NumericalType> for ColumnType {
fn from(numerical_type: NumericalType) -> Self {
match numerical_type {
NumericalType::I64 => ColumnType::I64,
NumericalType::U64 => ColumnType::U64,
NumericalType::F64 => ColumnType::F64,
}
}
}
impl ColumnType {
/// get column type category
pub(crate) fn column_type_category(self) -> ColumnTypeCategory {
match self {
ColumnType::I64 | ColumnType::U64 | ColumnType::F64 => ColumnTypeCategory::Numerical,
ColumnType::Bytes => ColumnTypeCategory::Bytes,
ColumnType::Str => ColumnTypeCategory::Str,
ColumnType::Bool => ColumnTypeCategory::Bool,
ColumnType::IpAddr => ColumnTypeCategory::IpAddr,
ColumnType::DateTime => ColumnTypeCategory::DateTime,
}
}
pub fn numerical_type(&self) -> Option<NumericalType> {
match self {
ColumnType::I64 => Some(NumericalType::I64),
ColumnType::U64 => Some(NumericalType::U64),
ColumnType::F64 => Some(NumericalType::F64),
ColumnType::Bytes
| ColumnType::Str
| ColumnType::Bool
| ColumnType::IpAddr
| ColumnType::DateTime => None,
}
}
}
// TODO remove if possible
pub trait HasAssociatedColumnType: 'static + Debug + Send + Sync + Copy + PartialOrd {
fn column_type() -> ColumnType;
fn default_value() -> Self;
}
impl HasAssociatedColumnType for u64 {
fn column_type() -> ColumnType {
ColumnType::U64
}
fn default_value() -> Self {
0u64
}
}
impl HasAssociatedColumnType for i64 {
fn column_type() -> ColumnType {
ColumnType::I64
}
fn default_value() -> Self {
0i64
}
}
impl HasAssociatedColumnType for f64 {
fn column_type() -> ColumnType {
ColumnType::F64
}
fn default_value() -> Self {
Default::default()
}
}
impl HasAssociatedColumnType for bool {
fn column_type() -> ColumnType {
ColumnType::Bool
}
fn default_value() -> Self {
Default::default()
}
}
impl HasAssociatedColumnType for crate::DateTime {
fn column_type() -> ColumnType {
ColumnType::DateTime
}
fn default_value() -> Self {
Default::default()
}
}
impl HasAssociatedColumnType for Ipv6Addr {
fn column_type() -> ColumnType {
ColumnType::IpAddr
}
fn default_value() -> Self {
Ipv6Addr::from([0u8; 16])
}
}
/// Column types are grouped into different categories that
/// corresponds to the different types of `JsonValue` types.
///
/// The columnar writer will apply coercion rules to make sure that
/// at most one column exist per `ColumnTypeCategory`.
///
/// See also [README.md].
#[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq, Hash, Debug)]
#[repr(u8)]
pub enum ColumnTypeCategory {
Bool,
Str,
Numerical,
DateTime,
Bytes,
IpAddr,
}
impl From<ColumnType> for ColumnTypeCategory {
fn from(column_type: ColumnType) -> Self {
match column_type {
ColumnType::I64 => ColumnTypeCategory::Numerical,
ColumnType::U64 => ColumnTypeCategory::Numerical,
ColumnType::F64 => ColumnTypeCategory::Numerical,
ColumnType::Bytes => ColumnTypeCategory::Bytes,
ColumnType::Str => ColumnTypeCategory::Str,
ColumnType::Bool => ColumnTypeCategory::Bool,
ColumnType::IpAddr => ColumnTypeCategory::IpAddr,
ColumnType::DateTime => ColumnTypeCategory::DateTime,
}
}
}
#[cfg(test)]
mod tests {
use std::collections::HashSet;
use super::*;
use crate::Cardinality;
#[test]
fn test_column_type_to_code() {
let mut column_type_set: HashSet<ColumnType> = HashSet::new();
for code in u8::MIN..=u8::MAX {
if let Ok(column_type) = ColumnType::try_from_code(code) {
assert_eq!(column_type.to_code(), code);
assert!(column_type_set.insert(column_type));
}
}
assert_eq!(column_type_set.len(), super::COLUMN_TYPES.len());
}
#[test]
fn test_column_category_sort_consistent_with_column_type_sort() {
// This is a very important property because we
// we need to serialize colunmn in the right order.
let mut column_types: Vec<ColumnType> = super::COLUMN_TYPES.iter().copied().collect();
column_types.sort_by_key(|col| col.to_code());
let column_categories: Vec<ColumnTypeCategory> = column_types
.into_iter()
.map(ColumnTypeCategory::from)
.collect();
for (prev, next) in column_categories.iter().zip(column_categories.iter()) {
assert!(prev <= next);
}
}
#[test]
fn test_cardinality_to_code() {
let mut num_cardinality = 0;
for code in u8::MIN..=u8::MAX {
if let Ok(cardinality) = Cardinality::try_from_code(code) {
assert_eq!(cardinality.to_code(), code);
num_cardinality += 1;
}
}
assert_eq!(num_cardinality, 3);
}
}

View File

@@ -1,73 +0,0 @@
use crate::InvalidData;
pub const VERSION_FOOTER_NUM_BYTES: usize = MAGIC_BYTES.len() + std::mem::size_of::<u32>();
/// We end the file by these 4 bytes just to somewhat identify that
/// this is indeed a columnar file.
const MAGIC_BYTES: [u8; 4] = [2, 113, 119, 066];
pub fn footer() -> [u8; VERSION_FOOTER_NUM_BYTES] {
let mut footer_bytes = [0u8; VERSION_FOOTER_NUM_BYTES];
footer_bytes[0..4].copy_from_slice(&Version::V1.to_bytes());
footer_bytes[4..8].copy_from_slice(&MAGIC_BYTES[..]);
footer_bytes
}
pub fn parse_footer(footer_bytes: [u8; VERSION_FOOTER_NUM_BYTES]) -> Result<Version, InvalidData> {
if footer_bytes[4..8] != MAGIC_BYTES {
return Err(InvalidData);
}
Version::try_from_bytes(footer_bytes[0..4].try_into().unwrap())
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[repr(u32)]
pub enum Version {
V1 = 1u32,
}
impl Version {
fn to_bytes(&self) -> [u8; 4] {
(*self as u32).to_le_bytes()
}
fn try_from_bytes(bytes: [u8; 4]) -> Result<Version, InvalidData> {
let code = u32::from_le_bytes(bytes);
match code {
1u32 => Ok(Version::V1),
_ => Err(InvalidData),
}
}
}
#[cfg(test)]
mod tests {
use std::collections::HashSet;
use super::*;
#[test]
fn test_footer_dserialization() {
let parsed_version: Version = parse_footer(footer()).unwrap();
assert_eq!(Version::V1, parsed_version);
}
#[test]
fn test_version_serialization() {
let version_to_tests: Vec<u32> = [0, 1 << 8, 1 << 16, 1 << 24]
.iter()
.copied()
.flat_map(|offset| (0..255).map(move |el| el + offset))
.collect();
let mut valid_versions: HashSet<u32> = HashSet::default();
for &i in &version_to_tests {
let version_res = Version::try_from_bytes(i.to_le_bytes());
if let Ok(version) = version_res {
assert_eq!(version, Version::V1);
assert_eq!(version.to_bytes(), i.to_le_bytes());
valid_versions.insert(i);
}
}
assert_eq!(valid_versions.len(), 1);
}
}

View File

@@ -1,176 +0,0 @@
use std::collections::HashMap;
use std::io;
use super::column_type::ColumnTypeCategory;
use crate::columnar::ColumnarReader;
use crate::dynamic_column::DynamicColumn;
pub enum MergeDocOrder {
/// Columnar tables are simply stacked one above the other.
/// If the i-th columnar_readers has n_rows_i rows, then
/// in the resulting columnar,
/// rows [r0..n_row_0) contains the row of columnar_readers[0], in ordder
/// rows [n_row_0..n_row_0 + n_row_1 contains the row of columnar_readers[1], in order.
/// ..
Stack,
/// Some more complex mapping, that can interleaves rows from the different readers and
/// possibly drop rows.
Complex(()),
}
pub fn merge_columnar(
_columnar_readers: &[ColumnarReader],
mapping: MergeDocOrder,
_output: &mut impl io::Write,
) -> io::Result<()> {
match mapping {
MergeDocOrder::Stack => {
// implement me :)
todo!();
}
MergeDocOrder::Complex(_) => {
// for later
todo!();
}
}
}
pub fn collect_columns(
columnar_readers: &[&ColumnarReader],
) -> io::Result<HashMap<String, HashMap<ColumnTypeCategory, Vec<DynamicColumn>>>> {
// Each column name may have multiple types of column associated.
// For merging we are interested in the same column type category since they can be merged.
let mut field_name_to_group: HashMap<String, HashMap<ColumnTypeCategory, Vec<DynamicColumn>>> =
HashMap::new();
for columnar_reader in columnar_readers {
let column_name_and_handle = columnar_reader.list_columns()?;
for (column_name, handle) in column_name_and_handle {
let column_type_to_handles = field_name_to_group
.entry(column_name.to_string())
.or_default();
let columns = column_type_to_handles
.entry(handle.column_type().column_type_category())
.or_default();
columns.push(handle.open()?);
}
}
normalize_columns(&mut field_name_to_group);
Ok(field_name_to_group)
}
/// Cast numerical type columns to the same type
pub(crate) fn normalize_columns(
map: &mut HashMap<String, HashMap<ColumnTypeCategory, Vec<DynamicColumn>>>,
) {
for (_field_name, type_category_to_columns) in map.iter_mut() {
for (type_category, columns) in type_category_to_columns {
if type_category == &ColumnTypeCategory::Numerical {
let casted_columns = cast_to_common_numerical_column(&columns);
*columns = casted_columns;
}
}
}
}
/// Receives a list of columns of numerical types (u64, i64, f64)
///
/// Returns a list of `DynamicColumn` which are all of the same numerical type
fn cast_to_common_numerical_column(columns: &[DynamicColumn]) -> Vec<DynamicColumn> {
assert!(columns
.iter()
.all(|column| column.column_type().numerical_type().is_some()));
let coerce_to_i64: Vec<_> = columns
.iter()
.map(|column| column.clone().coerce_to_i64())
.collect();
if coerce_to_i64.iter().all(|column| column.is_some()) {
return coerce_to_i64
.into_iter()
.map(|column| column.unwrap())
.collect();
}
let coerce_to_u64: Vec<_> = columns
.iter()
.map(|column| column.clone().coerce_to_u64())
.collect();
if coerce_to_u64.iter().all(|column| column.is_some()) {
return coerce_to_u64
.into_iter()
.map(|column| column.unwrap())
.collect();
}
columns
.iter()
.map(|column| {
column
.clone()
.coerce_to_f64()
.expect("couldn't cast column to f64")
})
.collect()
}
#[cfg(test)]
mod tests {
use super::*;
use crate::ColumnarWriter;
#[test]
fn test_column_coercion() {
// i64 type
let columnar1 = {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_numerical(1u32, "numbers", 1i64);
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(2, &mut buffer).unwrap();
ColumnarReader::open(buffer).unwrap()
};
// u64 type
let columnar2 = {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_numerical(1u32, "numbers", u64::MAX - 100);
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(2, &mut buffer).unwrap();
ColumnarReader::open(buffer).unwrap()
};
// f64 type
let columnar3 = {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_numerical(1u32, "numbers", 30.5);
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(2, &mut buffer).unwrap();
ColumnarReader::open(buffer).unwrap()
};
let column_map = collect_columns(&[&columnar1, &columnar2, &columnar3]).unwrap();
assert_eq!(column_map.len(), 1);
let cat_to_columns = column_map.get("numbers").unwrap();
assert_eq!(cat_to_columns.len(), 1);
let numerical = cat_to_columns.get(&ColumnTypeCategory::Numerical).unwrap();
assert!(numerical.iter().all(|column| column.is_f64()));
let column_map = collect_columns(&[&columnar1, &columnar1]).unwrap();
assert_eq!(column_map.len(), 1);
let cat_to_columns = column_map.get("numbers").unwrap();
assert_eq!(cat_to_columns.len(), 1);
let numerical = cat_to_columns.get(&ColumnTypeCategory::Numerical).unwrap();
assert!(numerical.iter().all(|column| column.is_i64()));
let column_map = collect_columns(&[&columnar2, &columnar2]).unwrap();
assert_eq!(column_map.len(), 1);
let cat_to_columns = column_map.get("numbers").unwrap();
assert_eq!(cat_to_columns.len(), 1);
let numerical = cat_to_columns.get(&ColumnTypeCategory::Numerical).unwrap();
assert!(numerical.iter().all(|column| column.is_u64()));
}
}

View File

@@ -1,10 +0,0 @@
mod column_type;
mod format_version;
mod merge;
mod reader;
mod writer;
pub use column_type::{ColumnType, HasAssociatedColumnType};
pub use merge::{merge_columnar, MergeDocOrder};
pub use reader::ColumnarReader;
pub use writer::ColumnarWriter;

View File

@@ -1,164 +0,0 @@
use std::{io, mem};
use common::file_slice::FileSlice;
use common::BinarySerializable;
use sstable::{Dictionary, RangeSSTable};
use crate::columnar::{format_version, ColumnType};
use crate::dynamic_column::DynamicColumnHandle;
fn io_invalid_data(msg: String) -> io::Error {
io::Error::new(io::ErrorKind::InvalidData, msg)
}
/// The ColumnarReader makes it possible to access a set of columns
/// associated to field names.
pub struct ColumnarReader {
column_dictionary: Dictionary<RangeSSTable>,
column_data: FileSlice,
}
impl ColumnarReader {
/// Opens a new Columnar file.
pub fn open<F>(file_slice: F) -> io::Result<ColumnarReader>
where FileSlice: From<F> {
Self::open_inner(file_slice.into())
}
fn open_inner(file_slice: FileSlice) -> io::Result<ColumnarReader> {
let (file_slice_without_sstable_len, footer_slice) = file_slice
.split_from_end(mem::size_of::<u64>() + format_version::VERSION_FOOTER_NUM_BYTES);
let footer_bytes = footer_slice.read_bytes()?;
let (mut sstable_len_bytes, version_footer_bytes) =
footer_bytes.rsplit(format_version::VERSION_FOOTER_NUM_BYTES);
let version_footer_bytes: [u8; format_version::VERSION_FOOTER_NUM_BYTES] =
version_footer_bytes.as_slice().try_into().unwrap();
let _version = format_version::parse_footer(version_footer_bytes)?;
let sstable_len = u64::deserialize(&mut sstable_len_bytes)?;
let (column_data, sstable) =
file_slice_without_sstable_len.split_from_end(sstable_len as usize);
let column_dictionary = Dictionary::open(sstable)?;
Ok(ColumnarReader {
column_dictionary,
column_data,
})
}
// TODO Add unit tests
pub fn list_columns(&self) -> io::Result<Vec<(String, DynamicColumnHandle)>> {
let mut stream = self.column_dictionary.stream()?;
let mut results = Vec::new();
while stream.advance() {
let key_bytes: &[u8] = stream.key();
let column_code: u8 = key_bytes.last().cloned().unwrap();
let column_type: ColumnType = ColumnType::try_from_code(column_code)
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
let range = stream.value().clone();
let column_name =
// The last two bytes are respectively the 0u8 separator and the column_type.
String::from_utf8_lossy(&key_bytes[..key_bytes.len() - 2]).to_string();
let file_slice = self
.column_data
.slice(range.start as usize..range.end as usize);
let column_handle = DynamicColumnHandle {
file_slice,
column_type,
};
results.push((column_name, column_handle));
}
Ok(results)
}
/// Get all columns for the given column name.
///
/// There can be more than one column associated to a given column name, provided they have
/// different types.
pub fn read_columns(&self, column_name: &str) -> io::Result<Vec<DynamicColumnHandle>> {
// Each column is a associated to a given `column_key`,
// that starts by `column_name\0column_header`.
//
// Listing the columns associated to the given column name is therefore equivalent to
// listing `column_key` with the prefix `column_name\0`.
//
// This is in turn equivalent to searching for the range
// `[column_name,\0`..column_name\1)`.
// TODO can we get some more generic `prefix(..)` logic in the dictioanry.
let mut start_key = column_name.to_string();
start_key.push('\0');
let mut end_key = column_name.to_string();
end_key.push(1u8 as char);
let mut stream = self
.column_dictionary
.range()
.ge(start_key.as_bytes())
.lt(end_key.as_bytes())
.into_stream()?;
let mut results = Vec::new();
while stream.advance() {
let key_bytes: &[u8] = stream.key();
assert!(key_bytes.starts_with(start_key.as_bytes()));
let column_code: u8 = key_bytes.last().cloned().unwrap();
let column_type = ColumnType::try_from_code(column_code)
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
let range = stream.value().clone();
let file_slice = self
.column_data
.slice(range.start as usize..range.end as usize);
let dynamic_column_handle = DynamicColumnHandle {
file_slice,
column_type,
};
results.push(dynamic_column_handle);
}
Ok(results)
}
/// Return the number of columns in the columnar.
pub fn num_columns(&self) -> usize {
self.column_dictionary.num_terms()
}
}
#[cfg(test)]
mod tests {
use crate::{ColumnType, ColumnarReader, ColumnarWriter};
#[test]
fn test_list_columns() {
let mut columnar_writer = ColumnarWriter::default();
columnar_writer.record_column_type("col1", ColumnType::Str, false);
columnar_writer.record_column_type("col2", ColumnType::U64, false);
let mut buffer = Vec::new();
columnar_writer.serialize(1, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
let columns = columnar.list_columns().unwrap();
assert_eq!(columns.len(), 2);
assert_eq!(&columns[0].0, "col1");
assert_eq!(columns[0].1.column_type(), ColumnType::Str);
assert_eq!(&columns[1].0, "col2");
assert_eq!(columns[1].1.column_type(), ColumnType::U64);
}
#[test]
fn test_list_columns_strict_typing_prevents_coercion() {
let mut columnar_writer = ColumnarWriter::default();
columnar_writer.record_column_type("count", ColumnType::U64, false);
columnar_writer.record_numerical(1, "count", 1u64);
let mut buffer = Vec::new();
columnar_writer.serialize(2, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
let columns = columnar.list_columns().unwrap();
assert_eq!(columns.len(), 1);
assert_eq!(&columns[0].0, "count");
assert_eq!(columns[0].1.column_type(), ColumnType::U64);
}
#[test]
#[should_panic(expect = "Input type forbidden")]
fn test_list_columns_strict_typing_panics_on_wrong_types() {
let mut columnar_writer = ColumnarWriter::default();
columnar_writer.record_column_type("count", ColumnType::U64, false);
columnar_writer.record_numerical(1, "count", 1i64);
}
}

View File

@@ -1,360 +0,0 @@
use std::net::Ipv6Addr;
use crate::dictionary::UnorderedId;
use crate::utils::{place_bits, pop_first_byte, select_bits};
use crate::value::NumericalValue;
use crate::{InvalidData, NumericalType, RowId};
/// When we build a columnar dataframe, we first just group
/// all mutations per column, and appends them in append-only buffer
/// in the stacker.
///
/// These ColumnOperation<T> are therefore serialize/deserialized
/// in memory.
///
/// We represents all of these operations as `ColumnOperation`.
#[derive(Eq, PartialEq, Debug, Clone, Copy)]
pub(super) enum ColumnOperation<T> {
NewDoc(RowId),
Value(T),
}
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
struct ColumnOperationMetadata {
op_type: ColumnOperationType,
len: u8,
}
impl ColumnOperationMetadata {
fn to_code(self) -> u8 {
place_bits::<0, 6>(self.len) | place_bits::<6, 8>(self.op_type.to_code())
}
fn try_from_code(code: u8) -> Result<Self, InvalidData> {
let len = select_bits::<0, 6>(code);
let typ_code = select_bits::<6, 8>(code);
let column_type = ColumnOperationType::try_from_code(typ_code)?;
Ok(ColumnOperationMetadata {
op_type: column_type,
len,
})
}
}
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[repr(u8)]
enum ColumnOperationType {
NewDoc = 0u8,
AddValue = 1u8,
}
impl ColumnOperationType {
pub fn to_code(self) -> u8 {
self as u8
}
pub fn try_from_code(code: u8) -> Result<Self, InvalidData> {
match code {
0 => Ok(Self::NewDoc),
1 => Ok(Self::AddValue),
_ => Err(InvalidData),
}
}
}
impl<V: SymbolValue> ColumnOperation<V> {
pub(super) fn serialize(self) -> impl AsRef<[u8]> {
let mut minibuf = MiniBuffer::default();
let column_op_metadata = match self {
ColumnOperation::NewDoc(new_doc) => {
let symbol_len = new_doc.serialize(&mut minibuf.bytes[1..]);
ColumnOperationMetadata {
op_type: ColumnOperationType::NewDoc,
len: symbol_len,
}
}
ColumnOperation::Value(val) => {
let symbol_len = val.serialize(&mut minibuf.bytes[1..]);
ColumnOperationMetadata {
op_type: ColumnOperationType::AddValue,
len: symbol_len,
}
}
};
minibuf.bytes[0] = column_op_metadata.to_code();
// +1 for the metadata
minibuf.len = 1 + column_op_metadata.len;
minibuf
}
/// Deserialize a colummn operation.
/// Returns None if the buffer is empty.
///
/// Panics if the payload is invalid:
/// this deserialize method is meant to target in memory.
pub(super) fn deserialize(bytes: &mut &[u8]) -> Option<Self> {
let column_op_metadata_byte = pop_first_byte(bytes)?;
let column_op_metadata = ColumnOperationMetadata::try_from_code(column_op_metadata_byte)
.expect("Invalid op metadata byte");
let symbol_bytes: &[u8];
(symbol_bytes, *bytes) = bytes.split_at(column_op_metadata.len as usize);
match column_op_metadata.op_type {
ColumnOperationType::NewDoc => {
let new_doc = u32::deserialize(symbol_bytes);
Some(ColumnOperation::NewDoc(new_doc))
}
ColumnOperationType::AddValue => {
let value = V::deserialize(symbol_bytes);
Some(ColumnOperation::Value(value))
}
}
}
}
impl<T> From<T> for ColumnOperation<T> {
fn from(value: T) -> Self {
ColumnOperation::Value(value)
}
}
// Serialization trait very local to the writer.
// As we write fast fields, we accumulate them in "in memory".
// In order to limit memory usage, and in order
// to benefit from the stacker, we do this by serialization our data
// as "Symbols".
#[allow(clippy::from_over_into)]
pub(super) trait SymbolValue: Clone + Copy {
// Serializes the symbol into the given buffer.
// Returns the number of bytes written into the buffer.
/// # Panics
/// May not exceed 9bytes
fn serialize(self, buffer: &mut [u8]) -> u8;
// Panics if invalid
fn deserialize(bytes: &[u8]) -> Self;
}
impl SymbolValue for bool {
fn serialize(self, buffer: &mut [u8]) -> u8 {
buffer[0] = u8::from(self);
1u8
}
fn deserialize(bytes: &[u8]) -> Self {
bytes[0] == 1u8
}
}
impl SymbolValue for Ipv6Addr {
fn serialize(self, buffer: &mut [u8]) -> u8 {
buffer[0..16].copy_from_slice(&self.octets());
16
}
fn deserialize(bytes: &[u8]) -> Self {
let octets: [u8; 16] = bytes[0..16].try_into().unwrap();
Ipv6Addr::from(octets)
}
}
#[derive(Default)]
struct MiniBuffer {
pub bytes: [u8; 17],
pub len: u8,
}
impl AsRef<[u8]> for MiniBuffer {
fn as_ref(&self) -> &[u8] {
&self.bytes[..self.len as usize]
}
}
impl SymbolValue for NumericalValue {
fn deserialize(mut bytes: &[u8]) -> Self {
let type_code = pop_first_byte(&mut bytes).unwrap();
let symbol_type = NumericalType::try_from_code(type_code).unwrap();
let mut octet: [u8; 8] = [0u8; 8];
octet[..bytes.len()].copy_from_slice(bytes);
match symbol_type {
NumericalType::U64 => {
let val: u64 = u64::from_le_bytes(octet);
NumericalValue::U64(val)
}
NumericalType::I64 => {
let encoded: u64 = u64::from_le_bytes(octet);
let val: i64 = decode_zig_zag(encoded);
NumericalValue::I64(val)
}
NumericalType::F64 => {
debug_assert_eq!(bytes.len(), 8);
let val: f64 = f64::from_le_bytes(octet);
NumericalValue::F64(val)
}
}
}
/// F64: Serialize with a fixed size of 9 bytes
/// U64: Serialize without leading zeroes
/// I64: ZigZag encoded and serialize without leading zeroes
fn serialize(self, output: &mut [u8]) -> u8 {
match self {
NumericalValue::F64(val) => {
output[0] = NumericalType::F64 as u8;
output[1..9].copy_from_slice(&val.to_le_bytes());
9u8
}
NumericalValue::U64(val) => {
let len = compute_num_bytes_for_u64(val) as u8;
output[0] = NumericalType::U64 as u8;
output[1..9].copy_from_slice(&val.to_le_bytes());
len + 1u8
}
NumericalValue::I64(val) => {
let zig_zag_encoded = encode_zig_zag(val);
let len = compute_num_bytes_for_u64(zig_zag_encoded) as u8;
output[0] = NumericalType::I64 as u8;
output[1..9].copy_from_slice(&zig_zag_encoded.to_le_bytes());
len + 1u8
}
}
}
}
impl SymbolValue for u32 {
fn serialize(self, output: &mut [u8]) -> u8 {
let len = compute_num_bytes_for_u64(self as u64);
output[0..4].copy_from_slice(&self.to_le_bytes());
len as u8
}
fn deserialize(bytes: &[u8]) -> Self {
let mut quartet: [u8; 4] = [0u8; 4];
quartet[..bytes.len()].copy_from_slice(bytes);
u32::from_le_bytes(quartet)
}
}
impl SymbolValue for UnorderedId {
fn serialize(self, output: &mut [u8]) -> u8 {
self.0.serialize(output)
}
fn deserialize(bytes: &[u8]) -> Self {
UnorderedId(u32::deserialize(bytes))
}
}
fn compute_num_bytes_for_u64(val: u64) -> usize {
let msb = (64u32 - val.leading_zeros()) as usize;
(msb + 7) / 8
}
fn encode_zig_zag(n: i64) -> u64 {
((n << 1) ^ (n >> 63)) as u64
}
fn decode_zig_zag(n: u64) -> i64 {
((n >> 1) as i64) ^ (-((n & 1) as i64))
}
#[cfg(test)]
mod tests {
use super::*;
#[track_caller]
fn test_zig_zag_aux(val: i64) {
let encoded = super::encode_zig_zag(val);
assert_eq!(decode_zig_zag(encoded), val);
if let Some(abs_val) = val.checked_abs() {
let abs_val = abs_val as u64;
assert!(encoded <= abs_val * 2);
}
}
#[test]
fn test_zig_zag() {
assert_eq!(encode_zig_zag(0i64), 0u64);
assert_eq!(encode_zig_zag(-1i64), 1u64);
assert_eq!(encode_zig_zag(1i64), 2u64);
test_zig_zag_aux(0i64);
test_zig_zag_aux(i64::MIN);
test_zig_zag_aux(i64::MAX);
}
use proptest::prelude::any;
use proptest::proptest;
proptest! {
#[test]
fn test_proptest_zig_zag(val in any::<i64>()) {
test_zig_zag_aux(val);
}
}
#[test]
fn test_column_op_metadata_byte_serialization() {
for len in 0..=15 {
for op_type in [ColumnOperationType::AddValue, ColumnOperationType::NewDoc] {
let column_op_metadata = ColumnOperationMetadata { op_type, len };
let column_op_metadata_code = column_op_metadata.to_code();
let serdeser_metadata =
ColumnOperationMetadata::try_from_code(column_op_metadata_code).unwrap();
assert_eq!(column_op_metadata, serdeser_metadata);
}
}
}
#[track_caller]
fn ser_deser_symbol(column_op: ColumnOperation<NumericalValue>) {
let buf = column_op.serialize();
let mut buffer = buf.as_ref().to_vec();
buffer.extend_from_slice(b"234234");
let mut bytes = &buffer[..];
let serdeser_symbol = ColumnOperation::deserialize(&mut bytes).unwrap();
assert_eq!(bytes.len() + buf.as_ref().len() as usize, buffer.len());
assert_eq!(column_op, serdeser_symbol);
}
#[test]
fn test_compute_num_bytes_for_u64() {
assert_eq!(compute_num_bytes_for_u64(0), 0);
assert_eq!(compute_num_bytes_for_u64(1), 1);
assert_eq!(compute_num_bytes_for_u64(255), 1);
assert_eq!(compute_num_bytes_for_u64(256), 2);
assert_eq!(compute_num_bytes_for_u64((1 << 16) - 1), 2);
assert_eq!(compute_num_bytes_for_u64(1 << 16), 3);
}
#[test]
fn test_symbol_serialization() {
ser_deser_symbol(ColumnOperation::NewDoc(0));
ser_deser_symbol(ColumnOperation::NewDoc(3));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(0i64)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(1i64)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(257u64)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(-257i64)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::I64(i64::MIN)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(0u64)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(u64::MIN)));
ser_deser_symbol(ColumnOperation::Value(NumericalValue::U64(u64::MAX)));
}
fn test_column_operation_unordered_aux(val: u32, expected_len: usize) {
let column_op = ColumnOperation::Value(UnorderedId(val));
let minibuf = column_op.serialize();
assert_eq!(minibuf.as_ref().len() as usize, expected_len);
let mut buf = minibuf.as_ref().to_vec();
buf.extend_from_slice(&[2, 2, 2, 2, 2, 2]);
let mut cursor = &buf[..];
let column_op_serdeser: ColumnOperation<UnorderedId> =
ColumnOperation::deserialize(&mut cursor).unwrap();
assert_eq!(column_op_serdeser, ColumnOperation::Value(UnorderedId(val)));
assert_eq!(cursor.len() + expected_len, buf.len());
}
#[test]
fn test_column_operation_unordered() {
test_column_operation_unordered_aux(300u32, 3);
test_column_operation_unordered_aux(1u32, 2);
test_column_operation_unordered_aux(0u32, 1);
}
}

View File

@@ -1,336 +0,0 @@
use std::cmp::Ordering;
use stacker::{ExpUnrolledLinkedList, MemoryArena};
use crate::columnar::writer::column_operation::{ColumnOperation, SymbolValue};
use crate::dictionary::{DictionaryBuilder, UnorderedId};
use crate::{Cardinality, NumericalType, NumericalValue, RowId};
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[repr(u8)]
enum DocumentStep {
Same = 0,
Next = 1,
Skipped = 2,
}
#[inline(always)]
fn delta_with_last_doc(last_doc_opt: Option<u32>, doc: u32) -> DocumentStep {
let expected_next_doc = last_doc_opt.map(|last_doc| last_doc + 1).unwrap_or(0u32);
match doc.cmp(&expected_next_doc) {
Ordering::Less => DocumentStep::Same,
Ordering::Equal => DocumentStep::Next,
Ordering::Greater => DocumentStep::Skipped,
}
}
#[derive(Copy, Clone, Default)]
pub struct ColumnWriter {
// Detected cardinality of the column so far.
cardinality: Cardinality,
// Last document inserted.
// None if no doc has been added yet.
last_doc_opt: Option<u32>,
// Buffer containing the serialized values.
values: ExpUnrolledLinkedList,
}
impl ColumnWriter {
/// Returns an iterator over the Symbol that have been recorded
/// for the given column.
pub(super) fn operation_iterator<'a, V: SymbolValue>(
&self,
arena: &MemoryArena,
buffer: &'a mut Vec<u8>,
) -> impl Iterator<Item = ColumnOperation<V>> + 'a {
buffer.clear();
self.values.read_to_end(arena, buffer);
let mut cursor: &[u8] = &buffer[..];
std::iter::from_fn(move || ColumnOperation::deserialize(&mut cursor))
}
/// Records a change of the document being recorded.
///
/// This function will also update the cardinality of the column
/// if necessary.
pub(super) fn record<S: SymbolValue>(&mut self, doc: RowId, value: S, arena: &mut MemoryArena) {
// Difference between `doc` and the last doc.
match delta_with_last_doc(self.last_doc_opt, doc) {
DocumentStep::Same => {
// This is the last encounterred document.
self.cardinality = Cardinality::Multivalued;
}
DocumentStep::Next => {
self.last_doc_opt = Some(doc);
self.write_symbol::<S>(ColumnOperation::NewDoc(doc), arena);
}
DocumentStep::Skipped => {
self.cardinality = self.cardinality.max(Cardinality::Optional);
self.last_doc_opt = Some(doc);
self.write_symbol::<S>(ColumnOperation::NewDoc(doc), arena);
}
}
self.write_symbol(ColumnOperation::Value(value), arena);
}
// Get the cardinality.
// The overall number of docs in the column is necessary to
// deal with the case where the all docs contain 1 value, except some documents
// at the end of the column.
pub(crate) fn get_cardinality(&self, num_docs: RowId) -> Cardinality {
match delta_with_last_doc(self.last_doc_opt, num_docs) {
DocumentStep::Same | DocumentStep::Next => self.cardinality,
DocumentStep::Skipped => self.cardinality.max(Cardinality::Optional),
}
}
/// Appends a new symbol to the `ColumnWriter`.
fn write_symbol<V: SymbolValue>(
&mut self,
column_operation: ColumnOperation<V>,
arena: &mut MemoryArena,
) {
self.values
.writer(arena)
.extend_from_slice(column_operation.serialize().as_ref());
}
}
#[derive(Clone, Copy, Default)]
pub(crate) struct NumericalColumnWriter {
compatible_numerical_types: CompatibleNumericalTypes,
column_writer: ColumnWriter,
}
impl NumericalColumnWriter {
pub fn force_numerical_type(&mut self, numerical_type: NumericalType) {
assert!(self
.compatible_numerical_types
.is_type_accepted(numerical_type));
self.compatible_numerical_types = CompatibleNumericalTypes::StaticType(numerical_type);
}
}
/// State used to store what types are still acceptable
/// after having seen a set of numerical values.
#[derive(Clone, Copy)]
enum CompatibleNumericalTypes {
Dynamic {
all_values_within_i64_range: bool,
all_values_within_u64_range: bool,
},
StaticType(NumericalType),
}
impl Default for CompatibleNumericalTypes {
fn default() -> CompatibleNumericalTypes {
CompatibleNumericalTypes::Dynamic {
all_values_within_i64_range: true,
all_values_within_u64_range: true,
}
}
}
impl CompatibleNumericalTypes {
fn is_type_accepted(&self, numerical_type: NumericalType) -> bool {
match self {
CompatibleNumericalTypes::Dynamic {
all_values_within_i64_range,
all_values_within_u64_range,
} => match numerical_type {
NumericalType::I64 => *all_values_within_i64_range,
NumericalType::U64 => *all_values_within_u64_range,
NumericalType::F64 => true,
},
CompatibleNumericalTypes::StaticType(static_numerical_type) => {
*static_numerical_type == numerical_type
}
}
}
fn accept_value(&mut self, numerical_value: NumericalValue) {
match self {
CompatibleNumericalTypes::Dynamic {
all_values_within_i64_range,
all_values_within_u64_range,
} => match numerical_value {
NumericalValue::I64(val_i64) => {
let value_within_u64_range = val_i64 >= 0i64;
*all_values_within_u64_range &= value_within_u64_range;
}
NumericalValue::U64(val_u64) => {
let value_within_i64_range = val_u64 < i64::MAX as u64;
*all_values_within_i64_range &= value_within_i64_range;
}
NumericalValue::F64(_) => {
*all_values_within_i64_range = false;
*all_values_within_u64_range = false;
}
},
CompatibleNumericalTypes::StaticType(typ) => {
assert_eq!(
numerical_value.numerical_type(),
*typ,
"Input type forbidden. This column has been forced to type {typ:?}, received \
{numerical_value:?}"
);
}
}
}
pub fn to_numerical_type(self) -> NumericalType {
for numerical_type in [NumericalType::I64, NumericalType::U64] {
if self.is_type_accepted(numerical_type) {
return numerical_type;
}
}
NumericalType::F64
}
}
impl NumericalColumnWriter {
pub fn column_type_and_cardinality(&self, num_docs: RowId) -> (NumericalType, Cardinality) {
let numerical_type = self.compatible_numerical_types.to_numerical_type();
let cardinality = self.column_writer.get_cardinality(num_docs);
(numerical_type, cardinality)
}
pub fn record_numerical_value(
&mut self,
doc: RowId,
value: NumericalValue,
arena: &mut MemoryArena,
) {
self.compatible_numerical_types.accept_value(value);
self.column_writer.record(doc, value, arena);
}
pub(super) fn operation_iterator<'a>(
self,
arena: &MemoryArena,
buffer: &'a mut Vec<u8>,
) -> impl Iterator<Item = ColumnOperation<NumericalValue>> + 'a {
self.column_writer.operation_iterator(arena, buffer)
}
}
#[derive(Copy, Clone)]
pub(crate) struct StrOrBytesColumnWriter {
pub(crate) dictionary_id: u32,
pub(crate) column_writer: ColumnWriter,
// If true, when facing a multivalued cardinality,
// values associated to a given document will be sorted.
//
// This is useful for facets.
//
// If false, the order of appearance in the document will be
// observed.
pub(crate) sort_values_within_row: bool,
}
impl StrOrBytesColumnWriter {
pub(crate) fn with_dictionary_id(dictionary_id: u32) -> StrOrBytesColumnWriter {
StrOrBytesColumnWriter {
dictionary_id,
column_writer: Default::default(),
sort_values_within_row: false,
}
}
pub(crate) fn record_bytes(
&mut self,
doc: RowId,
bytes: &[u8],
dictionaries: &mut [DictionaryBuilder],
arena: &mut MemoryArena,
) {
let unordered_id = dictionaries[self.dictionary_id as usize].get_or_allocate_id(bytes);
self.column_writer.record(doc, unordered_id, arena);
}
pub(super) fn operation_iterator<'a>(
&self,
arena: &MemoryArena,
byte_buffer: &'a mut Vec<u8>,
) -> impl Iterator<Item = ColumnOperation<UnorderedId>> + 'a {
self.column_writer.operation_iterator(arena, byte_buffer)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_delta_with_last_doc() {
assert_eq!(delta_with_last_doc(None, 0u32), DocumentStep::Next);
assert_eq!(delta_with_last_doc(None, 1u32), DocumentStep::Skipped);
assert_eq!(delta_with_last_doc(None, 2u32), DocumentStep::Skipped);
assert_eq!(delta_with_last_doc(Some(0u32), 0u32), DocumentStep::Same);
assert_eq!(delta_with_last_doc(Some(1u32), 1u32), DocumentStep::Same);
assert_eq!(delta_with_last_doc(Some(1u32), 2u32), DocumentStep::Next);
assert_eq!(delta_with_last_doc(Some(1u32), 3u32), DocumentStep::Skipped);
assert_eq!(delta_with_last_doc(Some(1u32), 4u32), DocumentStep::Skipped);
}
#[track_caller]
fn test_column_writer_coercion_iter_aux(
values: impl Iterator<Item = NumericalValue>,
expected_numerical_type: NumericalType,
) {
let mut compatible_numerical_types = CompatibleNumericalTypes::default();
for value in values {
compatible_numerical_types.accept_value(value);
}
assert_eq!(
compatible_numerical_types.to_numerical_type(),
expected_numerical_type
);
}
#[track_caller]
fn test_column_writer_coercion_aux(
values: &[NumericalValue],
expected_numerical_type: NumericalType,
) {
test_column_writer_coercion_iter_aux(values.iter().copied(), expected_numerical_type);
test_column_writer_coercion_iter_aux(values.iter().rev().copied(), expected_numerical_type);
}
#[test]
fn test_column_writer_coercion() {
test_column_writer_coercion_aux(&[], NumericalType::I64);
test_column_writer_coercion_aux(&[1i64.into()], NumericalType::I64);
test_column_writer_coercion_aux(&[1u64.into()], NumericalType::I64);
// We don't detect exact integer at the moment. We could!
test_column_writer_coercion_aux(&[1f64.into()], NumericalType::F64);
test_column_writer_coercion_aux(&[u64::MAX.into()], NumericalType::U64);
test_column_writer_coercion_aux(&[(i64::MAX as u64).into()], NumericalType::U64);
test_column_writer_coercion_aux(&[(1u64 << 63).into()], NumericalType::U64);
test_column_writer_coercion_aux(&[1i64.into(), 1u64.into()], NumericalType::I64);
test_column_writer_coercion_aux(&[u64::MAX.into(), (-1i64).into()], NumericalType::F64);
}
#[test]
#[should_panic]
fn test_compatible_numerical_types_static_incompatible_type() {
let mut compatible_numerical_types =
CompatibleNumericalTypes::StaticType(NumericalType::U64);
compatible_numerical_types.accept_value(NumericalValue::I64(1i64));
}
#[test]
fn test_compatible_numerical_types_static_different_type_forbidden() {
let mut compatible_numerical_types =
CompatibleNumericalTypes::StaticType(NumericalType::U64);
compatible_numerical_types.accept_value(NumericalValue::U64(u64::MAX));
}
#[test]
fn test_compatible_numerical_types_static() {
for typ in [NumericalType::I64, NumericalType::I64, NumericalType::F64] {
let compatible_numerical_types = CompatibleNumericalTypes::StaticType(typ);
assert_eq!(compatible_numerical_types.to_numerical_type(), typ);
}
}
}

View File

@@ -1,780 +0,0 @@
mod column_operation;
mod column_writers;
mod serializer;
mod value_index;
use std::io;
use std::net::Ipv6Addr;
use column_operation::ColumnOperation;
use common::CountingWriter;
use serializer::ColumnarSerializer;
use stacker::{Addr, ArenaHashMap, MemoryArena};
use crate::column_index::SerializableColumnIndex;
use crate::column_values::{
ColumnValues, MonotonicallyMappableToU128, MonotonicallyMappableToU64, VecColumn,
};
use crate::columnar::column_type::{ColumnType, ColumnTypeCategory};
use crate::columnar::writer::column_writers::{
ColumnWriter, NumericalColumnWriter, StrOrBytesColumnWriter,
};
use crate::columnar::writer::value_index::{IndexBuilder, PreallocatedIndexBuilders};
use crate::dictionary::{DictionaryBuilder, TermIdMapping, UnorderedId};
use crate::value::{Coerce, NumericalType, NumericalValue};
use crate::{Cardinality, RowId};
/// This is a set of buffers that are used to temporarily write the values into before passing them
/// to the fast field codecs.
#[derive(Default)]
struct SpareBuffers {
value_index_builders: PreallocatedIndexBuilders,
u64_values: Vec<u64>,
ip_addr_values: Vec<Ipv6Addr>,
}
/// Makes it possible to create a new columnar.
///
/// ```rust
/// use tantivy_columnar::ColumnarWriter;
///
/// let mut columnar_writer = ColumnarWriter::default();
/// columnar_writer.record_str(0u32 /* doc id */, "product_name", "Red backpack");
/// columnar_writer.record_numerical(0u32 /* doc id */, "price", 10u64);
/// columnar_writer.record_str(1u32 /* doc id */, "product_name", "Apple");
/// columnar_writer.record_numerical(0u32 /* doc id */, "price", 10.5f64); //< uh oh we ended up mixing integer and floats.
/// let mut wrt: Vec<u8> = Vec::new();
/// columnar_writer.serialize(2u32, &mut wrt).unwrap();
/// ```
pub struct ColumnarWriter {
numerical_field_hash_map: ArenaHashMap,
datetime_field_hash_map: ArenaHashMap,
bool_field_hash_map: ArenaHashMap,
ip_addr_field_hash_map: ArenaHashMap,
bytes_field_hash_map: ArenaHashMap,
str_field_hash_map: ArenaHashMap,
arena: MemoryArena,
// Dictionaries used to store dictionary-encoded values.
dictionaries: Vec<DictionaryBuilder>,
buffers: SpareBuffers,
}
impl Default for ColumnarWriter {
fn default() -> Self {
ColumnarWriter {
numerical_field_hash_map: ArenaHashMap::new(10_000),
bool_field_hash_map: ArenaHashMap::new(10_000),
ip_addr_field_hash_map: ArenaHashMap::new(10_000),
bytes_field_hash_map: ArenaHashMap::new(10_000),
str_field_hash_map: ArenaHashMap::new(10_000),
datetime_field_hash_map: ArenaHashMap::new(10_000),
dictionaries: Vec::new(),
arena: MemoryArena::default(),
buffers: SpareBuffers::default(),
}
}
}
#[inline]
fn mutate_or_create_column<V, TMutator>(
arena_hash_map: &mut ArenaHashMap,
column_name: &str,
updater: TMutator,
) where
V: Copy + 'static,
TMutator: FnMut(Option<V>) -> V,
{
assert!(
!column_name.as_bytes().contains(&0u8),
"key may not contain the 0 byte"
);
arena_hash_map.mutate_or_create(column_name.as_bytes(), updater);
}
impl ColumnarWriter {
pub fn mem_usage(&self) -> usize {
// TODO add dictionary builders.
self.arena.mem_usage()
+ self.numerical_field_hash_map.mem_usage()
+ self.bool_field_hash_map.mem_usage()
+ self.bytes_field_hash_map.mem_usage()
+ self.str_field_hash_map.mem_usage()
+ self.ip_addr_field_hash_map.mem_usage()
+ self.datetime_field_hash_map.mem_usage()
}
/// Records a column type. This is useful to bypass the coercion process,
/// makes sure the empty is present in the resulting columnar, or set
/// the `sort_values_within_row`.
///
/// `sort_values_within_row` is only allowed for `Bytes` or `Str` columns.
pub fn record_column_type(
&mut self,
column_name: &str,
column_type: ColumnType,
sort_values_within_row: bool,
) {
if sort_values_within_row {
assert!(
column_type == ColumnType::Bytes || column_type == ColumnType::Str,
"sort_values_within_row is only allowed for Bytes and Str columns",
);
}
match column_type {
ColumnType::Str | ColumnType::Bytes => {
let (hash_map, dictionaries) = (
if column_type == ColumnType::Str {
&mut self.str_field_hash_map
} else {
&mut self.bytes_field_hash_map
},
&mut self.dictionaries,
);
mutate_or_create_column(
hash_map,
column_name,
|column_opt: Option<StrOrBytesColumnWriter>| {
let mut column_writer = if let Some(column_writer) = column_opt {
column_writer
} else {
let dictionary_id = dictionaries.len() as u32;
dictionaries.push(DictionaryBuilder::default());
StrOrBytesColumnWriter::with_dictionary_id(dictionary_id)
};
column_writer.sort_values_within_row = sort_values_within_row;
column_writer
},
);
}
ColumnType::Bool => {
mutate_or_create_column(
&mut self.bool_field_hash_map,
column_name,
|column_opt: Option<ColumnWriter>| column_opt.unwrap_or_default(),
);
}
ColumnType::DateTime => {
mutate_or_create_column(
&mut self.datetime_field_hash_map,
column_name,
|column_opt: Option<ColumnWriter>| column_opt.unwrap_or_default(),
);
}
ColumnType::I64 | ColumnType::F64 | ColumnType::U64 => {
let numerical_type = column_type.numerical_type().unwrap();
mutate_or_create_column(
&mut self.numerical_field_hash_map,
column_name,
|column_opt: Option<NumericalColumnWriter>| {
let mut column: NumericalColumnWriter = column_opt.unwrap_or_default();
column.force_numerical_type(numerical_type);
column
},
);
}
ColumnType::IpAddr => mutate_or_create_column(
&mut self.ip_addr_field_hash_map,
column_name,
|column_opt: Option<ColumnWriter>| column_opt.unwrap_or_default(),
),
}
}
pub fn record_numerical<T: Into<NumericalValue> + Copy>(
&mut self,
doc: RowId,
column_name: &str,
numerical_value: T,
) {
let (hash_map, arena) = (&mut self.numerical_field_hash_map, &mut self.arena);
mutate_or_create_column(
hash_map,
column_name,
|column_opt: Option<NumericalColumnWriter>| {
let mut column: NumericalColumnWriter = column_opt.unwrap_or_default();
column.record_numerical_value(doc, numerical_value.into(), arena);
column
},
);
}
pub fn record_ip_addr(&mut self, doc: RowId, column_name: &str, ip_addr: Ipv6Addr) {
assert!(
!column_name.as_bytes().contains(&0u8),
"key may not contain the 0 byte"
);
let (hash_map, arena) = (&mut self.ip_addr_field_hash_map, &mut self.arena);
hash_map.mutate_or_create(
column_name.as_bytes(),
|column_opt: Option<ColumnWriter>| {
let mut column: ColumnWriter = column_opt.unwrap_or_default();
column.record(doc, ip_addr, arena);
column
},
);
}
pub fn record_bool(&mut self, doc: RowId, column_name: &str, val: bool) {
let (hash_map, arena) = (&mut self.bool_field_hash_map, &mut self.arena);
mutate_or_create_column(hash_map, column_name, |column_opt: Option<ColumnWriter>| {
let mut column: ColumnWriter = column_opt.unwrap_or_default();
column.record(doc, val, arena);
column
});
}
pub fn record_datetime(&mut self, doc: RowId, column_name: &str, datetime: crate::DateTime) {
let (hash_map, arena) = (&mut self.datetime_field_hash_map, &mut self.arena);
mutate_or_create_column(hash_map, column_name, |column_opt: Option<ColumnWriter>| {
let mut column: ColumnWriter = column_opt.unwrap_or_default();
column.record(doc, NumericalValue::I64(datetime.timestamp_micros), arena);
column
});
}
pub fn record_str(&mut self, doc: RowId, column_name: &str, value: &str) {
let (hash_map, arena, dictionaries) = (
&mut self.str_field_hash_map,
&mut self.arena,
&mut self.dictionaries,
);
hash_map.mutate_or_create(
column_name.as_bytes(),
|column_opt: Option<StrOrBytesColumnWriter>| {
let mut column: StrOrBytesColumnWriter = column_opt.unwrap_or_else(|| {
// Each column has its own dictionary
let dictionary_id = dictionaries.len() as u32;
dictionaries.push(DictionaryBuilder::default());
StrOrBytesColumnWriter::with_dictionary_id(dictionary_id)
});
column.record_bytes(doc, value.as_bytes(), dictionaries, arena);
column
},
);
}
pub fn record_bytes(&mut self, doc: RowId, column_name: &str, value: &[u8]) {
assert!(
!column_name.as_bytes().contains(&0u8),
"key may not contain the 0 byte"
);
let (hash_map, arena, dictionaries) = (
&mut self.bytes_field_hash_map,
&mut self.arena,
&mut self.dictionaries,
);
hash_map.mutate_or_create(
column_name.as_bytes(),
|column_opt: Option<StrOrBytesColumnWriter>| {
let mut column: StrOrBytesColumnWriter = column_opt.unwrap_or_else(|| {
// Each column has its own dictionary
let dictionary_id = dictionaries.len() as u32;
dictionaries.push(DictionaryBuilder::default());
StrOrBytesColumnWriter::with_dictionary_id(dictionary_id)
});
column.record_bytes(doc, value, dictionaries, arena);
column
},
);
}
pub fn serialize(&mut self, num_docs: RowId, wrt: &mut dyn io::Write) -> io::Result<()> {
let mut serializer = ColumnarSerializer::new(wrt);
let mut columns: Vec<(&[u8], ColumnTypeCategory, Addr)> = self
.numerical_field_hash_map
.iter()
.map(|(column_name, addr, _)| (column_name, ColumnTypeCategory::Numerical, addr))
.collect();
columns.extend(
self.bytes_field_hash_map
.iter()
.map(|(term, addr, _)| (term, ColumnTypeCategory::Bytes, addr)),
);
columns.extend(
self.str_field_hash_map
.iter()
.map(|(column_name, addr, _)| (column_name, ColumnTypeCategory::Str, addr)),
);
columns.extend(
self.bool_field_hash_map
.iter()
.map(|(column_name, addr, _)| (column_name, ColumnTypeCategory::Bool, addr)),
);
columns.extend(
self.ip_addr_field_hash_map
.iter()
.map(|(column_name, addr, _)| (column_name, ColumnTypeCategory::IpAddr, addr)),
);
columns.extend(
self.datetime_field_hash_map
.iter()
.map(|(column_name, addr, _)| (column_name, ColumnTypeCategory::DateTime, addr)),
);
columns.sort_unstable_by_key(|(column_name, col_type, _)| (*column_name, *col_type));
let (arena, buffers, dictionaries) = (&self.arena, &mut self.buffers, &self.dictionaries);
let mut symbol_byte_buffer: Vec<u8> = Vec::new();
for (column_name, column_type, addr) in columns {
match column_type {
ColumnTypeCategory::Bool => {
let column_writer: ColumnWriter = self.bool_field_hash_map.read(addr);
let cardinality = column_writer.get_cardinality(num_docs);
let mut column_serializer =
serializer.serialize_column(column_name, ColumnType::Bool);
serialize_bool_column(
cardinality,
num_docs,
column_writer.operation_iterator(arena, &mut symbol_byte_buffer),
buffers,
&mut column_serializer,
)?;
}
ColumnTypeCategory::IpAddr => {
let column_writer: ColumnWriter = self.ip_addr_field_hash_map.read(addr);
let cardinality = column_writer.get_cardinality(num_docs);
let mut column_serializer =
serializer.serialize_column(column_name, ColumnType::IpAddr);
serialize_ip_addr_column(
cardinality,
num_docs,
column_writer.operation_iterator(arena, &mut symbol_byte_buffer),
buffers,
&mut column_serializer,
)?;
}
ColumnTypeCategory::Bytes | ColumnTypeCategory::Str => {
let (column_type, str_column_writer): (ColumnType, StrOrBytesColumnWriter) =
if column_type == ColumnTypeCategory::Bytes {
(ColumnType::Bytes, self.bytes_field_hash_map.read(addr))
} else {
(ColumnType::Str, self.str_field_hash_map.read(addr))
};
let dictionary_builder =
&dictionaries[str_column_writer.dictionary_id as usize];
let cardinality = str_column_writer.column_writer.get_cardinality(num_docs);
let mut column_serializer =
serializer.serialize_column(column_name, column_type);
serialize_bytes_or_str_column(
cardinality,
num_docs,
str_column_writer.sort_values_within_row,
dictionary_builder,
str_column_writer.operation_iterator(arena, &mut symbol_byte_buffer),
buffers,
&mut column_serializer,
)?;
}
ColumnTypeCategory::Numerical => {
let numerical_column_writer: NumericalColumnWriter =
self.numerical_field_hash_map.read(addr);
let (numerical_type, cardinality) =
numerical_column_writer.column_type_and_cardinality(num_docs);
let mut column_serializer =
serializer.serialize_column(column_name, ColumnType::from(numerical_type));
serialize_numerical_column(
cardinality,
num_docs,
numerical_type,
numerical_column_writer.operation_iterator(arena, &mut symbol_byte_buffer),
buffers,
&mut column_serializer,
)?;
}
ColumnTypeCategory::DateTime => {
let column_writer: ColumnWriter = self.datetime_field_hash_map.read(addr);
let cardinality = column_writer.get_cardinality(num_docs);
let mut column_serializer =
serializer.serialize_column(column_name, ColumnType::DateTime);
serialize_numerical_column(
cardinality,
num_docs,
NumericalType::I64,
column_writer.operation_iterator(arena, &mut symbol_byte_buffer),
buffers,
&mut column_serializer,
)?;
}
};
}
serializer.finalize()?;
Ok(())
}
}
fn serialize_bytes_or_str_column(
cardinality: Cardinality,
num_docs: RowId,
sort_values_within_row: bool,
dictionary_builder: &DictionaryBuilder,
operation_it: impl Iterator<Item = ColumnOperation<UnorderedId>>,
buffers: &mut SpareBuffers,
wrt: impl io::Write,
) -> io::Result<()> {
let SpareBuffers {
value_index_builders,
u64_values,
..
} = buffers;
let mut counting_writer = CountingWriter::wrap(wrt);
let term_id_mapping: TermIdMapping = dictionary_builder.serialize(&mut counting_writer)?;
let dictionary_num_bytes: u32 = counting_writer.written_bytes() as u32;
let mut wrt = counting_writer.finish();
let operation_iterator = operation_it.map(|symbol: ColumnOperation<UnorderedId>| {
// We map unordered ids to ordered ids.
match symbol {
ColumnOperation::Value(unordered_id) => {
let ordered_id = term_id_mapping.to_ord(unordered_id);
ColumnOperation::Value(ordered_id.0 as u64)
}
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
}
});
send_to_serialize_column_mappable_to_u64(
operation_iterator,
cardinality,
num_docs,
sort_values_within_row,
value_index_builders,
u64_values,
&mut wrt,
)?;
wrt.write_all(&dictionary_num_bytes.to_le_bytes()[..])?;
Ok(())
}
fn serialize_numerical_column(
cardinality: Cardinality,
num_docs: RowId,
numerical_type: NumericalType,
op_iterator: impl Iterator<Item = ColumnOperation<NumericalValue>>,
buffers: &mut SpareBuffers,
wrt: &mut impl io::Write,
) -> io::Result<()> {
let SpareBuffers {
value_index_builders,
u64_values,
..
} = buffers;
match numerical_type {
NumericalType::I64 => {
send_to_serialize_column_mappable_to_u64(
coerce_numerical_symbol::<i64>(op_iterator),
cardinality,
num_docs,
false,
value_index_builders,
u64_values,
wrt,
)?;
}
NumericalType::U64 => {
send_to_serialize_column_mappable_to_u64(
coerce_numerical_symbol::<u64>(op_iterator),
cardinality,
num_docs,
false,
value_index_builders,
u64_values,
wrt,
)?;
}
NumericalType::F64 => {
send_to_serialize_column_mappable_to_u64(
coerce_numerical_symbol::<f64>(op_iterator),
cardinality,
num_docs,
false,
value_index_builders,
u64_values,
wrt,
)?;
}
};
Ok(())
}
fn serialize_bool_column(
cardinality: Cardinality,
num_docs: RowId,
column_operations_it: impl Iterator<Item = ColumnOperation<bool>>,
buffers: &mut SpareBuffers,
wrt: &mut impl io::Write,
) -> io::Result<()> {
let SpareBuffers {
value_index_builders,
u64_values,
..
} = buffers;
send_to_serialize_column_mappable_to_u64(
column_operations_it.map(|bool_column_operation| match bool_column_operation {
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
ColumnOperation::Value(bool_val) => ColumnOperation::Value(bool_val.to_u64()),
}),
cardinality,
num_docs,
false,
value_index_builders,
u64_values,
wrt,
)?;
Ok(())
}
fn serialize_ip_addr_column(
cardinality: Cardinality,
num_docs: RowId,
column_operations_it: impl Iterator<Item = ColumnOperation<Ipv6Addr>>,
buffers: &mut SpareBuffers,
wrt: &mut impl io::Write,
) -> io::Result<()> {
let SpareBuffers {
value_index_builders,
ip_addr_values,
..
} = buffers;
send_to_serialize_column_mappable_to_u128(
column_operations_it,
cardinality,
num_docs,
value_index_builders,
ip_addr_values,
wrt,
)?;
Ok(())
}
fn send_to_serialize_column_mappable_to_u128<
T: Copy + Ord + std::fmt::Debug + Send + Sync + MonotonicallyMappableToU128 + PartialOrd,
>(
op_iterator: impl Iterator<Item = ColumnOperation<T>>,
cardinality: Cardinality,
num_docs: RowId,
value_index_builders: &mut PreallocatedIndexBuilders,
values: &mut Vec<T>,
mut wrt: impl io::Write,
) -> io::Result<()>
where
for<'a> VecColumn<'a, T>: ColumnValues<T>,
{
values.clear();
// TODO: split index and values
let serializable_column_index = match cardinality {
Cardinality::Full => {
consume_operation_iterator(
op_iterator,
value_index_builders.borrow_required_index_builder(),
values,
);
SerializableColumnIndex::Full
}
Cardinality::Optional => {
let optional_index_builder = value_index_builders.borrow_optional_index_builder();
consume_operation_iterator(op_iterator, optional_index_builder, values);
let optional_index = optional_index_builder.finish(num_docs);
SerializableColumnIndex::Optional(Box::new(optional_index))
}
Cardinality::Multivalued => {
let multivalued_index_builder = value_index_builders.borrow_multivalued_index_builder();
consume_operation_iterator(op_iterator, multivalued_index_builder, values);
let multivalued_index = multivalued_index_builder.finish(num_docs);
SerializableColumnIndex::Multivalued(Box::new(multivalued_index))
}
};
crate::column::serialize_column_mappable_to_u128(
serializable_column_index,
|| values.iter().cloned(),
values.len() as u32,
&mut wrt,
)?;
Ok(())
}
fn sort_values_within_row_in_place(
multivalued_index: &impl ColumnValues<RowId>,
values: &mut Vec<u64>,
) {
let mut start_index: usize = 0;
for end_index in multivalued_index.iter() {
let end_index = end_index as usize;
values[start_index..end_index].sort_unstable();
start_index = end_index;
}
}
fn send_to_serialize_column_mappable_to_u64(
op_iterator: impl Iterator<Item = ColumnOperation<u64>>,
cardinality: Cardinality,
num_docs: RowId,
sort_values_within_row: bool,
value_index_builders: &mut PreallocatedIndexBuilders,
values: &mut Vec<u64>,
mut wrt: impl io::Write,
) -> io::Result<()>
where
for<'a> VecColumn<'a, u64>: ColumnValues<u64>,
{
values.clear();
let serializable_column_index = match cardinality {
Cardinality::Full => {
consume_operation_iterator(
op_iterator,
value_index_builders.borrow_required_index_builder(),
values,
);
SerializableColumnIndex::Full
}
Cardinality::Optional => {
let optional_index_builder = value_index_builders.borrow_optional_index_builder();
consume_operation_iterator(op_iterator, optional_index_builder, values);
let optional_index = optional_index_builder.finish(num_docs);
SerializableColumnIndex::Optional(Box::new(optional_index))
}
Cardinality::Multivalued => {
let multivalued_index_builder = value_index_builders.borrow_multivalued_index_builder();
consume_operation_iterator(op_iterator, multivalued_index_builder, values);
let multivalued_index = multivalued_index_builder.finish(num_docs);
if sort_values_within_row {
sort_values_within_row_in_place(&multivalued_index, values);
}
SerializableColumnIndex::Multivalued(Box::new(multivalued_index))
}
};
crate::column::serialize_column_mappable_to_u64(
serializable_column_index,
&VecColumn::from(&values[..]),
&mut wrt,
)?;
Ok(())
}
fn coerce_numerical_symbol<T>(
operation_iterator: impl Iterator<Item = ColumnOperation<NumericalValue>>,
) -> impl Iterator<Item = ColumnOperation<u64>>
where T: Coerce + MonotonicallyMappableToU64 {
operation_iterator.map(|symbol| match symbol {
ColumnOperation::NewDoc(doc) => ColumnOperation::NewDoc(doc),
ColumnOperation::Value(numerical_value) => {
ColumnOperation::Value(T::coerce(numerical_value).to_u64())
}
})
}
fn consume_operation_iterator<T: Ord, TIndexBuilder: IndexBuilder>(
operation_iterator: impl Iterator<Item = ColumnOperation<T>>,
index_builder: &mut TIndexBuilder,
values: &mut Vec<T>,
) {
for symbol in operation_iterator {
match symbol {
ColumnOperation::NewDoc(doc) => {
index_builder.record_row(doc);
}
ColumnOperation::Value(value) => {
index_builder.record_value();
values.push(value);
}
}
}
}
#[cfg(test)]
mod tests {
use stacker::MemoryArena;
use crate::columnar::writer::column_operation::ColumnOperation;
use crate::{Cardinality, NumericalValue};
#[test]
fn test_column_writer_required_simple() {
let mut arena = MemoryArena::default();
let mut column_writer = super::ColumnWriter::default();
column_writer.record(0u32, NumericalValue::from(14i64), &mut arena);
column_writer.record(1u32, NumericalValue::from(15i64), &mut arena);
column_writer.record(2u32, NumericalValue::from(-16i64), &mut arena);
assert_eq!(column_writer.get_cardinality(3), Cardinality::Full);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&mut arena, &mut buffer)
.collect();
assert_eq!(symbols.len(), 6);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
assert!(matches!(
symbols[1],
ColumnOperation::Value(NumericalValue::I64(14i64))
));
assert!(matches!(symbols[2], ColumnOperation::NewDoc(1u32)));
assert!(matches!(
symbols[3],
ColumnOperation::Value(NumericalValue::I64(15i64))
));
assert!(matches!(symbols[4], ColumnOperation::NewDoc(2u32)));
assert!(matches!(
symbols[5],
ColumnOperation::Value(NumericalValue::I64(-16i64))
));
}
#[test]
fn test_column_writer_optional_cardinality_missing_first() {
let mut arena = MemoryArena::default();
let mut column_writer = super::ColumnWriter::default();
column_writer.record(1u32, NumericalValue::from(15i64), &mut arena);
column_writer.record(2u32, NumericalValue::from(-16i64), &mut arena);
assert_eq!(column_writer.get_cardinality(3), Cardinality::Optional);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&mut arena, &mut buffer)
.collect();
assert_eq!(symbols.len(), 4);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(1u32)));
assert!(matches!(
symbols[1],
ColumnOperation::Value(NumericalValue::I64(15i64))
));
assert!(matches!(symbols[2], ColumnOperation::NewDoc(2u32)));
assert!(matches!(
symbols[3],
ColumnOperation::Value(NumericalValue::I64(-16i64))
));
}
#[test]
fn test_column_writer_optional_cardinality_missing_last() {
let mut arena = MemoryArena::default();
let mut column_writer = super::ColumnWriter::default();
column_writer.record(0u32, NumericalValue::from(15i64), &mut arena);
assert_eq!(column_writer.get_cardinality(2), Cardinality::Optional);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&mut arena, &mut buffer)
.collect();
assert_eq!(symbols.len(), 2);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
assert!(matches!(
symbols[1],
ColumnOperation::Value(NumericalValue::I64(15i64))
));
}
#[test]
fn test_column_writer_multivalued() {
let mut arena = MemoryArena::default();
let mut column_writer = super::ColumnWriter::default();
column_writer.record(0u32, NumericalValue::from(16i64), &mut arena);
column_writer.record(0u32, NumericalValue::from(17i64), &mut arena);
assert_eq!(column_writer.get_cardinality(1), Cardinality::Multivalued);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&mut arena, &mut buffer)
.collect();
assert_eq!(symbols.len(), 3);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
assert!(matches!(
symbols[1],
ColumnOperation::Value(NumericalValue::I64(16i64))
));
assert!(matches!(
symbols[2],
ColumnOperation::Value(NumericalValue::I64(17i64))
));
}
}

View File

@@ -1,106 +0,0 @@
use std::io;
use std::io::Write;
use common::CountingWriter;
use sstable::value::RangeValueWriter;
use sstable::RangeSSTable;
use crate::columnar::ColumnType;
pub struct ColumnarSerializer<W: io::Write> {
wrt: CountingWriter<W>,
sstable_range: sstable::Writer<Vec<u8>, RangeValueWriter>,
prepare_key_buffer: Vec<u8>,
}
/// Returns a key consisting of the concatenation of the key and the column_type_and_cardinality
/// code.
fn prepare_key(key: &[u8], column_type: ColumnType, buffer: &mut Vec<u8>) {
buffer.clear();
buffer.extend_from_slice(key);
buffer.push(0u8);
buffer.push(column_type.to_code());
}
impl<W: io::Write> ColumnarSerializer<W> {
pub(crate) fn new(wrt: W) -> ColumnarSerializer<W> {
let sstable_range: sstable::Writer<Vec<u8>, RangeValueWriter> =
sstable::Dictionary::<RangeSSTable>::builder(Vec::with_capacity(100_000)).unwrap();
ColumnarSerializer {
wrt: CountingWriter::wrap(wrt),
sstable_range,
prepare_key_buffer: Vec::new(),
}
}
pub fn serialize_column<'a>(
&'a mut self,
column_name: &[u8],
column_type: ColumnType,
) -> impl io::Write + 'a {
let start_offset = self.wrt.written_bytes();
prepare_key(column_name, column_type, &mut self.prepare_key_buffer);
ColumnSerializer {
columnar_serializer: self,
start_offset,
}
}
pub(crate) fn finalize(mut self) -> io::Result<()> {
let sstable_bytes: Vec<u8> = self.sstable_range.finish()?;
let sstable_num_bytes: u64 = sstable_bytes.len() as u64;
self.wrt.write_all(&sstable_bytes)?;
self.wrt.write_all(&sstable_num_bytes.to_le_bytes()[..])?;
self.wrt
.write_all(&super::super::format_version::footer())?;
self.wrt.flush()?;
Ok(())
}
}
struct ColumnSerializer<'a, W: io::Write> {
columnar_serializer: &'a mut ColumnarSerializer<W>,
start_offset: u64,
}
impl<'a, W: io::Write> Drop for ColumnSerializer<'a, W> {
fn drop(&mut self) {
let end_offset: u64 = self.columnar_serializer.wrt.written_bytes();
let byte_range = self.start_offset..end_offset;
self.columnar_serializer.sstable_range.insert_cannot_fail(
&self.columnar_serializer.prepare_key_buffer[..],
&byte_range,
);
self.columnar_serializer.prepare_key_buffer.clear();
}
}
impl<'a, W: io::Write> io::Write for ColumnSerializer<'a, W> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.columnar_serializer.wrt.write(buf)
}
fn flush(&mut self) -> io::Result<()> {
self.columnar_serializer.wrt.flush()
}
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.columnar_serializer.wrt.write_all(buf)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::columnar::column_type::ColumnType;
#[test]
fn test_prepare_key_bytes() {
let mut buffer: Vec<u8> = b"somegarbage".to_vec();
prepare_key(b"root\0child", ColumnType::Str, &mut buffer);
assert_eq!(buffer.len(), 12);
assert_eq!(&buffer[..10], b"root\0child");
assert_eq!(buffer[10], 0u8);
assert_eq!(buffer[11], ColumnType::Str.to_code());
}
}

View File

@@ -1,195 +0,0 @@
use crate::column_index::SerializableOptionalIndex;
use crate::column_values::{ColumnValues, VecColumn};
use crate::RowId;
/// The `IndexBuilder` interprets a sequence of
/// calls of the form:
/// (record_doc,record_value+)*
/// and can then serialize the results into an index to associate docids with their value[s].
///
/// It has different implementation depending on whether the
/// cardinality is required, optional, or multivalued.
pub(crate) trait IndexBuilder {
fn record_row(&mut self, doc: RowId);
#[inline]
fn record_value(&mut self) {}
}
/// The FullIndexBuilder does nothing.
#[derive(Default)]
pub struct FullIndexBuilder;
impl IndexBuilder for FullIndexBuilder {
#[inline(always)]
fn record_row(&mut self, _doc: RowId) {}
}
#[derive(Default)]
pub struct OptionalIndexBuilder {
docs: Vec<RowId>,
}
struct SingleValueArrayIndex<'a> {
// RowIds with a value, in a strictly increasing order
row_ids: &'a [RowId],
num_rows: RowId,
}
impl<'a> SerializableOptionalIndex<'a> for SingleValueArrayIndex<'a> {
fn num_rows(&self) -> RowId {
self.num_rows
}
fn non_null_rows(&self) -> Box<dyn Iterator<Item = RowId> + 'a> {
Box::new(self.row_ids.iter().copied())
}
}
impl OptionalIndexBuilder {
pub fn finish<'a>(&'a mut self, num_rows: RowId) -> impl SerializableOptionalIndex + 'a {
debug_assert!(self
.docs
.last()
.copied()
.map(|last_doc| last_doc < num_rows)
.unwrap_or(true));
SingleValueArrayIndex {
row_ids: &self.docs[..],
num_rows,
}
}
fn reset(&mut self) {
self.docs.clear();
}
}
impl IndexBuilder for OptionalIndexBuilder {
#[inline(always)]
fn record_row(&mut self, doc: RowId) {
debug_assert!(self
.docs
.last()
.copied()
.map(|prev_doc| doc > prev_doc)
.unwrap_or(true));
self.docs.push(doc);
}
}
#[derive(Default)]
pub struct MultivaluedIndexBuilder {
start_offsets: Vec<RowId>,
total_num_vals_seen: u32,
}
impl MultivaluedIndexBuilder {
pub fn finish(&mut self, num_docs: RowId) -> impl ColumnValues<u32> + '_ {
self.start_offsets
.resize(num_docs as usize + 1, self.total_num_vals_seen);
VecColumn {
values: &&self.start_offsets[..],
min_value: 0,
max_value: self.start_offsets.last().copied().unwrap_or(0),
}
}
fn reset(&mut self) {
self.start_offsets.clear();
self.start_offsets.push(0u32);
self.total_num_vals_seen = 0;
}
}
impl IndexBuilder for MultivaluedIndexBuilder {
fn record_row(&mut self, row_id: RowId) {
self.start_offsets
.resize(row_id as usize + 1, self.total_num_vals_seen);
}
fn record_value(&mut self) {
self.total_num_vals_seen += 1;
}
}
/// The `SpareIndexBuilders` is there to avoid allocating a
/// new index builder for every single column.
#[derive(Default)]
pub struct PreallocatedIndexBuilders {
required_index_builder: FullIndexBuilder,
optional_index_builder: OptionalIndexBuilder,
multivalued_index_builder: MultivaluedIndexBuilder,
}
impl PreallocatedIndexBuilders {
pub fn borrow_required_index_builder(&mut self) -> &mut FullIndexBuilder {
&mut self.required_index_builder
}
pub fn borrow_optional_index_builder(&mut self) -> &mut OptionalIndexBuilder {
self.optional_index_builder.reset();
&mut self.optional_index_builder
}
pub fn borrow_multivalued_index_builder(&mut self) -> &mut MultivaluedIndexBuilder {
self.multivalued_index_builder.reset();
&mut self.multivalued_index_builder
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_optional_value_index_builder() {
let mut opt_value_index_builder = OptionalIndexBuilder::default();
opt_value_index_builder.record_row(0u32);
opt_value_index_builder.record_value();
assert_eq!(
&opt_value_index_builder
.finish(1u32)
.non_null_rows()
.collect::<Vec<u32>>(),
&[0]
);
opt_value_index_builder.reset();
opt_value_index_builder.record_row(1u32);
opt_value_index_builder.record_value();
assert_eq!(
&opt_value_index_builder
.finish(2u32)
.non_null_rows()
.collect::<Vec<u32>>(),
&[1]
);
}
#[test]
fn test_multivalued_value_index_builder() {
let mut multivalued_value_index_builder = MultivaluedIndexBuilder::default();
multivalued_value_index_builder.record_row(1u32);
multivalued_value_index_builder.record_value();
multivalued_value_index_builder.record_value();
multivalued_value_index_builder.record_row(2u32);
multivalued_value_index_builder.record_value();
assert_eq!(
multivalued_value_index_builder
.finish(4u32)
.iter()
.collect::<Vec<u32>>(),
vec![0, 0, 2, 3, 3]
);
multivalued_value_index_builder.reset();
multivalued_value_index_builder.record_row(2u32);
multivalued_value_index_builder.record_value();
multivalued_value_index_builder.record_value();
assert_eq!(
multivalued_value_index_builder
.finish(4u32)
.iter()
.collect::<Vec<u32>>(),
vec![0, 0, 0, 2, 2]
);
}
}

View File

@@ -1,84 +0,0 @@
use std::io;
use fnv::FnvHashMap;
use sstable::SSTable;
pub(crate) struct TermIdMapping {
unordered_to_ord: Vec<OrderedId>,
}
impl TermIdMapping {
pub fn to_ord(&self, unordered: UnorderedId) -> OrderedId {
self.unordered_to_ord[unordered.0 as usize]
}
}
/// When we add values, we cannot know their ordered id yet.
/// For this reason, we temporarily assign them a `UnorderedId`
/// that will be mapped to an `OrderedId` upon serialization.
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
pub struct UnorderedId(pub u32);
#[derive(Clone, Copy, Hash, PartialEq, Eq, Debug)]
pub struct OrderedId(pub u32);
/// `DictionaryBuilder` for dictionary encoding.
///
/// It stores the different terms encounterred and assigns them a temporary value
/// we call unordered id.
///
/// Upon serialization, we will sort the ids and hence build a `UnorderedId -> Term ordinal`
/// mapping.
#[derive(Default)]
pub(crate) struct DictionaryBuilder {
dict: FnvHashMap<Vec<u8>, UnorderedId>,
}
impl DictionaryBuilder {
/// Get or allocate an unordered id.
/// (This ID is simply an auto-incremented id.)
pub fn get_or_allocate_id(&mut self, term: &[u8]) -> UnorderedId {
if let Some(term_id) = self.dict.get(term) {
return *term_id;
}
let new_id = UnorderedId(self.dict.len() as u32);
self.dict.insert(term.to_vec(), new_id);
new_id
}
/// Serialize the dictionary into an fst, and returns the
/// `UnorderedId -> TermOrdinal` map.
pub fn serialize<'a, W: io::Write + 'a>(&self, wrt: &mut W) -> io::Result<TermIdMapping> {
let mut terms: Vec<(&[u8], UnorderedId)> =
self.dict.iter().map(|(k, v)| (k.as_slice(), *v)).collect();
terms.sort_unstable_by_key(|(key, _)| *key);
// TODO Remove the allocation.
let mut unordered_to_ord: Vec<OrderedId> = vec![OrderedId(0u32); terms.len()];
let mut sstable_builder = sstable::VoidSSTable::writer(wrt);
for (ord, (key, unordered_id)) in terms.into_iter().enumerate() {
let ordered_id = OrderedId(ord as u32);
sstable_builder.insert(key, &())?;
unordered_to_ord[unordered_id.0 as usize] = ordered_id;
}
sstable_builder.finish()?;
Ok(TermIdMapping { unordered_to_ord })
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_dictionary_builder() {
let mut dictionary_builder = DictionaryBuilder::default();
let hello_uid = dictionary_builder.get_or_allocate_id(b"hello");
let happy_uid = dictionary_builder.get_or_allocate_id(b"happy");
let tax_uid = dictionary_builder.get_or_allocate_id(b"tax");
let mut buffer = Vec::new();
let id_mapping = dictionary_builder.serialize(&mut buffer).unwrap();
assert_eq!(id_mapping.to_ord(hello_uid), OrderedId(1));
assert_eq!(id_mapping.to_ord(happy_uid), OrderedId(0));
assert_eq!(id_mapping.to_ord(tax_uid), OrderedId(2));
}
}

View File

@@ -1,241 +0,0 @@
use std::io;
use std::net::Ipv6Addr;
use std::sync::Arc;
use common::file_slice::FileSlice;
use common::{HasLen, OwnedBytes};
use crate::column::{BytesColumn, Column, StrColumn};
use crate::column_values::{monotonic_map_column, StrictlyMonotonicFn};
use crate::columnar::ColumnType;
use crate::{DateTime, NumericalType};
#[derive(Clone)]
pub enum DynamicColumn {
Bool(Column<bool>),
I64(Column<i64>),
U64(Column<u64>),
F64(Column<f64>),
IpAddr(Column<Ipv6Addr>),
DateTime(Column<DateTime>),
Bytes(BytesColumn),
Str(StrColumn),
}
impl DynamicColumn {
pub fn column_type(&self) -> ColumnType {
match self {
DynamicColumn::Bool(_) => ColumnType::Bool,
DynamicColumn::I64(_) => ColumnType::I64,
DynamicColumn::U64(_) => ColumnType::U64,
DynamicColumn::F64(_) => ColumnType::F64,
DynamicColumn::IpAddr(_) => ColumnType::IpAddr,
DynamicColumn::DateTime(_) => ColumnType::DateTime,
DynamicColumn::Bytes(_) => ColumnType::Bytes,
DynamicColumn::Str(_) => ColumnType::Str,
}
}
pub fn is_numerical(&self) -> bool {
self.column_type().numerical_type().is_some()
}
pub fn is_f64(&self) -> bool {
self.column_type().numerical_type() == Some(NumericalType::F64)
}
pub fn is_i64(&self) -> bool {
self.column_type().numerical_type() == Some(NumericalType::I64)
}
pub fn is_u64(&self) -> bool {
self.column_type().numerical_type() == Some(NumericalType::U64)
}
pub fn coerce_to_f64(self) -> Option<DynamicColumn> {
match self {
DynamicColumn::I64(column) => Some(DynamicColumn::F64(Column {
idx: column.idx,
values: Arc::new(monotonic_map_column(column.values, MapI64ToF64)),
})),
DynamicColumn::U64(column) => Some(DynamicColumn::F64(Column {
idx: column.idx,
values: Arc::new(monotonic_map_column(column.values, MapU64ToF64)),
})),
DynamicColumn::F64(_) => Some(self),
_ => None,
}
}
pub fn coerce_to_i64(self) -> Option<DynamicColumn> {
match self {
DynamicColumn::U64(column) => {
if column.max_value() > i64::MAX as u64 {
return None;
}
Some(DynamicColumn::I64(Column {
idx: column.idx,
values: Arc::new(monotonic_map_column(column.values, MapU64ToI64)),
}))
}
DynamicColumn::I64(_) => Some(self),
_ => None,
}
}
pub fn coerce_to_u64(self) -> Option<DynamicColumn> {
match self {
DynamicColumn::I64(column) => {
if column.min_value() < 0 {
return None;
}
Some(DynamicColumn::U64(Column {
idx: column.idx,
values: Arc::new(monotonic_map_column(column.values, MapI64ToU64)),
}))
}
DynamicColumn::U64(_) => Some(self),
_ => None,
}
}
}
struct MapI64ToF64;
impl StrictlyMonotonicFn<i64, f64> for MapI64ToF64 {
#[inline(always)]
fn mapping(&self, inp: i64) -> f64 {
inp as f64
}
#[inline(always)]
fn inverse(&self, out: f64) -> i64 {
out as i64
}
}
struct MapU64ToF64;
impl StrictlyMonotonicFn<u64, f64> for MapU64ToF64 {
#[inline(always)]
fn mapping(&self, inp: u64) -> f64 {
inp as f64
}
#[inline(always)]
fn inverse(&self, out: f64) -> u64 {
out as u64
}
}
struct MapU64ToI64;
impl StrictlyMonotonicFn<u64, i64> for MapU64ToI64 {
#[inline(always)]
fn mapping(&self, inp: u64) -> i64 {
inp as i64
}
#[inline(always)]
fn inverse(&self, out: i64) -> u64 {
out as u64
}
}
struct MapI64ToU64;
impl StrictlyMonotonicFn<i64, u64> for MapI64ToU64 {
#[inline(always)]
fn mapping(&self, inp: i64) -> u64 {
inp as u64
}
#[inline(always)]
fn inverse(&self, out: u64) -> i64 {
out as i64
}
}
macro_rules! static_dynamic_conversions {
($typ:ty, $enum_name:ident) => {
impl Into<Option<$typ>> for DynamicColumn {
fn into(self) -> Option<$typ> {
if let DynamicColumn::$enum_name(col) = self {
Some(col)
} else {
None
}
}
}
impl From<$typ> for DynamicColumn {
fn from(typed_column: $typ) -> Self {
DynamicColumn::$enum_name(typed_column)
}
}
};
}
static_dynamic_conversions!(Column<bool>, Bool);
static_dynamic_conversions!(Column<u64>, U64);
static_dynamic_conversions!(Column<i64>, I64);
static_dynamic_conversions!(Column<f64>, F64);
static_dynamic_conversions!(Column<crate::DateTime>, DateTime);
static_dynamic_conversions!(StrColumn, Str);
static_dynamic_conversions!(BytesColumn, Bytes);
static_dynamic_conversions!(Column<Ipv6Addr>, IpAddr);
#[derive(Clone)]
pub struct DynamicColumnHandle {
pub(crate) file_slice: FileSlice,
pub(crate) column_type: ColumnType,
}
impl DynamicColumnHandle {
// TODO rename load
pub fn open(&self) -> io::Result<DynamicColumn> {
let column_bytes: OwnedBytes = self.file_slice.read_bytes()?;
self.open_internal(column_bytes)
}
// TODO rename load_async
pub async fn open_async(&self) -> io::Result<DynamicColumn> {
let column_bytes: OwnedBytes = self.file_slice.read_bytes_async().await?;
self.open_internal(column_bytes)
}
/// Returns the `u64` fast field reader reader associated with `fields` of types
/// Str, u64, i64, f64, or datetime.
///
/// If not, the fastfield reader will returns the u64-value associated with the original
/// FastValue.
pub fn open_u64_lenient(&self) -> io::Result<Option<Column<u64>>> {
let column_bytes = self.file_slice.read_bytes()?;
match self.column_type {
ColumnType::Str | ColumnType::Bytes => {
let column: BytesColumn = crate::column::open_column_bytes(column_bytes)?;
Ok(Some(column.term_ord_column))
}
ColumnType::Bool => Ok(None),
ColumnType::IpAddr => Ok(None),
ColumnType::I64 | ColumnType::U64 | ColumnType::F64 | ColumnType::DateTime => {
let column = crate::column::open_column_u64::<u64>(column_bytes)?;
Ok(Some(column))
}
}
}
fn open_internal(&self, column_bytes: OwnedBytes) -> io::Result<DynamicColumn> {
let dynamic_column: DynamicColumn = match self.column_type {
ColumnType::Bytes => {
crate::column::open_column_bytes::<BytesColumn>(column_bytes)?.into()
}
ColumnType::Str => crate::column::open_column_bytes::<StrColumn>(column_bytes)?.into(),
ColumnType::I64 => crate::column::open_column_u64::<i64>(column_bytes)?.into(),
ColumnType::U64 => crate::column::open_column_u64::<u64>(column_bytes)?.into(),
ColumnType::F64 => crate::column::open_column_u64::<f64>(column_bytes)?.into(),
ColumnType::Bool => crate::column::open_column_u64::<bool>(column_bytes)?.into(),
ColumnType::IpAddr => crate::column::open_column_u128::<Ipv6Addr>(column_bytes)?.into(),
ColumnType::DateTime => {
crate::column::open_column_u64::<crate::DateTime>(column_bytes)?.into()
}
};
Ok(dynamic_column)
}
pub fn num_bytes(&self) -> usize {
self.file_slice.len()
}
pub fn column_type(&self) -> ColumnType {
self.column_type
}
}

View File

@@ -1,84 +0,0 @@
#![cfg_attr(all(feature = "unstable", test), feature(test))]
#[cfg(test)]
#[macro_use]
extern crate more_asserts;
#[cfg(all(test, feature = "unstable"))]
extern crate test;
use std::io;
mod column;
mod column_index;
mod column_values;
mod columnar;
mod dictionary;
mod dynamic_column;
pub(crate) mod utils;
mod value;
pub use column::{BytesColumn, Column, StrColumn};
pub use column_index::ColumnIndex;
pub use column_values::{ColumnValues, MonotonicallyMappableToU128, MonotonicallyMappableToU64};
pub use columnar::{
merge_columnar, ColumnType, ColumnarReader, ColumnarWriter, HasAssociatedColumnType,
MergeDocOrder,
};
use sstable::VoidSSTable;
pub use value::{NumericalType, NumericalValue};
pub use self::dynamic_column::{DynamicColumn, DynamicColumnHandle};
pub type RowId = u32;
pub use sstable::Dictionary;
pub type Streamer<'a> = sstable::Streamer<'a, VoidSSTable>;
#[derive(Clone, Copy, PartialOrd, PartialEq, Default, Debug)]
pub struct DateTime {
pub timestamp_micros: i64,
}
#[derive(Copy, Clone, Debug)]
pub struct InvalidData;
impl From<InvalidData> for io::Error {
fn from(_: InvalidData) -> Self {
io::Error::new(io::ErrorKind::InvalidData, "Invalid data")
}
}
/// Enum describing the number of values that can exist per document
/// (or per row if you will).
///
/// The cardinality must fit on 2 bits.
#[derive(Clone, Copy, Hash, Default, Debug, PartialEq, Eq, PartialOrd, Ord)]
#[repr(u8)]
pub enum Cardinality {
/// All documents contain exactly one value.
/// `Full` is the default for auto-detecting the Cardinality, since it is the most strict.
#[default]
Full = 0,
/// All documents contain at most one value.
Optional = 1,
/// All documents may contain any number of values.
Multivalued = 2,
}
impl Cardinality {
pub(crate) fn to_code(self) -> u8 {
self as u8
}
pub(crate) fn try_from_code(code: u8) -> Result<Cardinality, InvalidData> {
match code {
0 => Ok(Cardinality::Full),
1 => Ok(Cardinality::Optional),
2 => Ok(Cardinality::Multivalued),
_ => Err(InvalidData),
}
}
}
#[cfg(test)]
mod tests;

View File

@@ -1,212 +0,0 @@
use std::net::Ipv6Addr;
use crate::column_values::MonotonicallyMappableToU128;
use crate::columnar::ColumnType;
use crate::dynamic_column::{DynamicColumn, DynamicColumnHandle};
use crate::value::NumericalValue;
use crate::{Cardinality, ColumnarReader, ColumnarWriter};
#[test]
fn test_dataframe_writer_str() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_str(1u32, "my_string", "hello");
dataframe_writer.record_str(3u32, "my_string", "helloeee");
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(5, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("my_string").unwrap();
assert_eq!(cols.len(), 1);
assert_eq!(cols[0].num_bytes(), 158);
}
#[test]
fn test_dataframe_writer_bytes() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_bytes(1u32, "my_string", b"hello");
dataframe_writer.record_bytes(3u32, "my_string", b"helloeee");
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(5, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("my_string").unwrap();
assert_eq!(cols.len(), 1);
assert_eq!(cols[0].num_bytes(), 158);
}
#[test]
fn test_dataframe_writer_bool() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_bool(1u32, "bool.value", false);
dataframe_writer.record_bool(3u32, "bool.value", true);
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(5, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("bool.value").unwrap();
assert_eq!(cols.len(), 1);
assert_eq!(cols[0].num_bytes(), 22);
assert_eq!(cols[0].column_type(), ColumnType::Bool);
let dyn_bool_col = cols[0].open().unwrap();
let DynamicColumn::Bool(bool_col) = dyn_bool_col else { panic!(); };
let vals: Vec<Option<bool>> = (0..5).map(|row_id| bool_col.first(row_id)).collect();
assert_eq!(&vals, &[None, Some(false), None, Some(true), None,]);
}
#[test]
fn test_dataframe_writer_u64_multivalued() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_numerical(2u32, "divisor", 2u64);
dataframe_writer.record_numerical(3u32, "divisor", 3u64);
dataframe_writer.record_numerical(4u32, "divisor", 2u64);
dataframe_writer.record_numerical(5u32, "divisor", 5u64);
dataframe_writer.record_numerical(6u32, "divisor", 2u64);
dataframe_writer.record_numerical(6u32, "divisor", 3u64);
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(7, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("divisor").unwrap();
assert_eq!(cols.len(), 1);
assert_eq!(cols[0].num_bytes(), 29);
let dyn_i64_col = cols[0].open().unwrap();
let DynamicColumn::I64(divisor_col) = dyn_i64_col else { panic!(); };
assert_eq!(
divisor_col.get_cardinality(),
crate::Cardinality::Multivalued
);
assert_eq!(divisor_col.num_rows(), 7);
}
#[test]
fn test_dataframe_writer_ip_addr() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_ip_addr(1, "ip_addr", Ipv6Addr::from_u128(1001));
dataframe_writer.record_ip_addr(3, "ip_addr", Ipv6Addr::from_u128(1050));
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(5, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("ip_addr").unwrap();
assert_eq!(cols.len(), 1);
assert_eq!(cols[0].num_bytes(), 42);
assert_eq!(cols[0].column_type(), ColumnType::IpAddr);
let dyn_bool_col = cols[0].open().unwrap();
let DynamicColumn::IpAddr(ip_col) = dyn_bool_col else { panic!(); };
let vals: Vec<Option<Ipv6Addr>> = (0..5).map(|row_id| ip_col.first(row_id)).collect();
assert_eq!(
&vals,
&[
None,
Some(Ipv6Addr::from_u128(1001)),
None,
Some(Ipv6Addr::from_u128(1050)),
None,
]
);
}
#[test]
fn test_dataframe_writer_numerical() {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_numerical(1u32, "srical.value", NumericalValue::U64(12u64));
dataframe_writer.record_numerical(2u32, "srical.value", NumericalValue::U64(13u64));
dataframe_writer.record_numerical(4u32, "srical.value", NumericalValue::U64(15u64));
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer.serialize(6, &mut buffer).unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("srical.value").unwrap();
assert_eq!(cols.len(), 1);
// Right now this 31 bytes are spent as follows
//
// - header 14 bytes
// - vals 8 //< due to padding? could have been 1byte?.
// - null footer 6 bytes
assert_eq!(cols[0].num_bytes(), 33);
let column = cols[0].open().unwrap();
let DynamicColumn::I64(column_i64) = column else { panic!(); };
assert_eq!(column_i64.idx.get_cardinality(), Cardinality::Optional);
assert_eq!(column_i64.first(0), None);
assert_eq!(column_i64.first(1), Some(12i64));
assert_eq!(column_i64.first(2), Some(13i64));
assert_eq!(column_i64.first(3), None);
assert_eq!(column_i64.first(4), Some(15i64));
assert_eq!(column_i64.first(5), None);
assert_eq!(column_i64.first(6), None); //< we can change the spec for that one.
}
#[test]
fn test_dictionary_encoded_str() {
let mut buffer = Vec::new();
let mut columnar_writer = ColumnarWriter::default();
columnar_writer.record_str(1, "my.column", "a");
columnar_writer.record_str(3, "my.column", "c");
columnar_writer.record_str(3, "my.column2", "different_column!");
columnar_writer.record_str(4, "my.column", "b");
columnar_writer.serialize(5, &mut buffer).unwrap();
let columnar_reader = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar_reader.num_columns(), 2);
let col_handles = columnar_reader.read_columns("my.column").unwrap();
assert_eq!(col_handles.len(), 1);
let DynamicColumn::Str(str_col) = col_handles[0].open().unwrap() else { panic!(); };
let index: Vec<Option<u64>> = (0..5).map(|row_id| str_col.ords().first(row_id)).collect();
assert_eq!(index, &[None, Some(0), None, Some(2), Some(1)]);
assert_eq!(str_col.num_rows(), 5);
let mut term_buffer = String::new();
let term_ords = str_col.ords();
assert_eq!(term_ords.first(0), None);
assert_eq!(term_ords.first(1), Some(0));
str_col.ord_to_str(0u64, &mut term_buffer).unwrap();
assert_eq!(term_buffer, "a");
assert_eq!(term_ords.first(2), None);
assert_eq!(term_ords.first(3), Some(2));
str_col.ord_to_str(2u64, &mut term_buffer).unwrap();
assert_eq!(term_buffer, "c");
assert_eq!(term_ords.first(4), Some(1));
str_col.ord_to_str(1u64, &mut term_buffer).unwrap();
assert_eq!(term_buffer, "b");
}
#[test]
fn test_dictionary_encoded_bytes() {
let mut buffer = Vec::new();
let mut columnar_writer = ColumnarWriter::default();
columnar_writer.record_bytes(1, "my.column", b"a");
columnar_writer.record_bytes(3, "my.column", b"c");
columnar_writer.record_bytes(3, "my.column2", b"different_column!");
columnar_writer.record_bytes(4, "my.column", b"b");
columnar_writer.serialize(5, &mut buffer).unwrap();
let columnar_reader = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar_reader.num_columns(), 2);
let col_handles = columnar_reader.read_columns("my.column").unwrap();
assert_eq!(col_handles.len(), 1);
let DynamicColumn::Bytes(bytes_col) = col_handles[0].open().unwrap() else { panic!(); };
let index: Vec<Option<u64>> = (0..5)
.map(|row_id| bytes_col.ords().first(row_id))
.collect();
assert_eq!(index, &[None, Some(0), None, Some(2), Some(1)]);
assert_eq!(bytes_col.num_rows(), 5);
let mut term_buffer = Vec::new();
let term_ords = bytes_col.ords();
assert_eq!(term_ords.first(0), None);
assert_eq!(term_ords.first(1), Some(0));
bytes_col
.dictionary
.ord_to_term(0u64, &mut term_buffer)
.unwrap();
assert_eq!(term_buffer, b"a");
assert_eq!(term_ords.first(2), None);
assert_eq!(term_ords.first(3), Some(2));
bytes_col
.dictionary
.ord_to_term(2u64, &mut term_buffer)
.unwrap();
assert_eq!(term_buffer, b"c");
assert_eq!(term_ords.first(4), Some(1));
bytes_col
.dictionary
.ord_to_term(1u64, &mut term_buffer)
.unwrap();
assert_eq!(term_buffer, b"b");
}

View File

@@ -1,76 +0,0 @@
const fn compute_mask(num_bits: u8) -> u8 {
if num_bits == 8 {
u8::MAX
} else {
(1u8 << num_bits) - 1
}
}
#[inline(always)]
#[must_use]
pub(crate) fn select_bits<const START: u8, const END: u8>(code: u8) -> u8 {
assert!(START <= END);
assert!(END <= 8);
let num_bits: u8 = END - START;
let mask: u8 = compute_mask(num_bits);
(code >> START) & mask
}
#[inline(always)]
#[must_use]
pub(crate) fn place_bits<const START: u8, const END: u8>(code: u8) -> u8 {
assert!(START <= END);
assert!(END <= 8);
let num_bits: u8 = END - START;
let mask: u8 = compute_mask(num_bits);
assert!(code <= mask);
code << START
}
/// Pop-front one bytes from a slice of bytes.
#[inline(always)]
pub fn pop_first_byte(bytes: &mut &[u8]) -> Option<u8> {
if bytes.is_empty() {
return None;
}
let first_byte = bytes[0];
*bytes = &bytes[1..];
Some(first_byte)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_select_bits() {
assert_eq!(255u8, select_bits::<0, 8>(255u8));
assert_eq!(0u8, select_bits::<0, 0>(255u8));
assert_eq!(8u8, select_bits::<0, 4>(8u8));
assert_eq!(4u8, select_bits::<1, 4>(8u8));
assert_eq!(0u8, select_bits::<1, 3>(8u8));
}
#[test]
fn test_place_bits() {
assert_eq!(255u8, place_bits::<0, 8>(255u8));
assert_eq!(4u8, place_bits::<2, 3>(1u8));
assert_eq!(0u8, place_bits::<2, 2>(0u8));
}
#[test]
#[should_panic]
fn test_place_bits_overflows() {
let _ = place_bits::<1, 4>(8u8);
}
#[test]
fn test_pop_first_byte() {
let mut cursor: &[u8] = &b"abcd"[..];
assert_eq!(pop_first_byte(&mut cursor), Some(b'a'));
assert_eq!(pop_first_byte(&mut cursor), Some(b'b'));
assert_eq!(pop_first_byte(&mut cursor), Some(b'c'));
assert_eq!(pop_first_byte(&mut cursor), Some(b'd'));
assert_eq!(pop_first_byte(&mut cursor), None);
}
}

View File

@@ -1,129 +0,0 @@
use crate::InvalidData;
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum NumericalValue {
I64(i64),
U64(u64),
F64(f64),
}
impl NumericalValue {
pub fn numerical_type(&self) -> NumericalType {
match self {
NumericalValue::I64(_) => NumericalType::I64,
NumericalValue::U64(_) => NumericalType::U64,
NumericalValue::F64(_) => NumericalType::F64,
}
}
}
impl From<u64> for NumericalValue {
fn from(val: u64) -> NumericalValue {
NumericalValue::U64(val)
}
}
impl From<i64> for NumericalValue {
fn from(val: i64) -> Self {
NumericalValue::I64(val)
}
}
impl From<f64> for NumericalValue {
fn from(val: f64) -> Self {
NumericalValue::F64(val)
}
}
#[derive(Clone, Copy, Debug, Default, Hash, Eq, PartialEq)]
#[repr(u8)]
pub enum NumericalType {
#[default]
I64 = 0,
U64 = 1,
F64 = 2,
}
impl NumericalType {
pub fn to_code(self) -> u8 {
self as u8
}
pub fn try_from_code(code: u8) -> Result<NumericalType, InvalidData> {
match code {
0 => Ok(NumericalType::I64),
1 => Ok(NumericalType::U64),
2 => Ok(NumericalType::F64),
_ => Err(InvalidData),
}
}
}
/// We voluntarily avoid using `Into` here to keep this
/// implementation quirk as private as possible.
///
/// # Panics
/// This coercion trait actually panics if it is used
/// to convert a loose types to a stricter type.
///
/// The level is strictness is somewhat arbitrary.
/// - i64
/// - u64
/// - f64.
pub(crate) trait Coerce {
fn coerce(numerical_value: NumericalValue) -> Self;
}
impl Coerce for i64 {
fn coerce(value: NumericalValue) -> Self {
match value {
NumericalValue::I64(val) => val,
NumericalValue::U64(val) => val as i64,
NumericalValue::F64(_) => unreachable!(),
}
}
}
impl Coerce for u64 {
fn coerce(value: NumericalValue) -> Self {
match value {
NumericalValue::I64(val) => val as u64,
NumericalValue::U64(val) => val,
NumericalValue::F64(_) => unreachable!(),
}
}
}
impl Coerce for f64 {
fn coerce(value: NumericalValue) -> Self {
match value {
NumericalValue::I64(val) => val as f64,
NumericalValue::U64(val) => val as f64,
NumericalValue::F64(val) => val,
}
}
}
impl Coerce for crate::DateTime {
fn coerce(value: NumericalValue) -> Self {
let timestamp_micros = i64::coerce(value);
crate::DateTime { timestamp_micros }
}
}
#[cfg(test)]
mod tests {
use super::NumericalType;
#[test]
fn test_numerical_type_code() {
let mut num_numerical_type = 0;
for code in u8::MIN..=u8::MAX {
if let Ok(numerical_type) = NumericalType::try_from_code(code) {
assert_eq!(numerical_type.to_code(), code);
num_numerical_type += 1;
}
}
assert_eq!(num_numerical_type, 3);
}
}

View File

@@ -1,21 +1,16 @@
[package]
name = "tantivy-common"
version = "0.5.0"
version = "0.3.0"
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
license = "MIT"
edition = "2021"
description = "common traits and utility functions used by multiple tantivy subcrates"
documentation = "https://docs.rs/tantivy_common/"
homepage = "https://github.com/quickwit-oss/tantivy"
repository = "https://github.com/quickwit-oss/tantivy"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
byteorder = "1.4.3"
ownedbytes = { version= "0.5", path="../ownedbytes" }
async-trait = "0.1"
ownedbytes = { version="0.3", path="../ownedbytes" }
[dev-dependencies]
proptest = "1.0.0"

View File

@@ -151,7 +151,7 @@ impl TinySet {
if self.is_empty() {
None
} else {
let lowest = self.0.trailing_zeros();
let lowest = self.0.trailing_zeros() as u32;
self.0 ^= TinySet::singleton(lowest).0;
Some(lowest)
}
@@ -259,7 +259,11 @@ impl BitSet {
// we do not check saturated els.
let higher = el / 64u32;
let lower = el % 64u32;
self.len += u64::from(self.tinysets[higher as usize].insert_mut(lower));
self.len += if self.tinysets[higher as usize].insert_mut(lower) {
1
} else {
0
};
}
/// Inserts an element in the `BitSet`
@@ -268,7 +272,11 @@ impl BitSet {
// we do not check saturated els.
let higher = el / 64u32;
let lower = el % 64u32;
self.len -= u64::from(self.tinysets[higher as usize].remove_mut(lower));
self.len -= if self.tinysets[higher as usize].remove_mut(lower) {
1
} else {
0
};
}
/// Returns true iff the elements is in the `BitSet`.
@@ -277,7 +285,7 @@ impl BitSet {
self.tinyset(el / 64u32).contains(el % 64)
}
/// Returns the first non-empty `TinySet` associated with a bucket lower
/// Returns the first non-empty `TinySet` associated to a bucket lower
/// or greater than bucket.
///
/// Reminder: the tiny set with the bucket `bucket`, represents the
@@ -421,7 +429,7 @@ mod tests {
bitset.serialize(&mut out).unwrap();
let bitset = ReadOnlyBitSet::open(OwnedBytes::new(out));
assert_eq!(bitset.len(), i as usize);
assert_eq!(bitset.len() as usize, i as usize);
}
}
@@ -432,7 +440,7 @@ mod tests {
bitset.serialize(&mut out).unwrap();
let bitset = ReadOnlyBitSet::open(OwnedBytes::new(out));
assert_eq!(bitset.len(), 64);
assert_eq!(bitset.len() as usize, 64);
}
#[test]

View File

@@ -1,166 +0,0 @@
use std::cell::RefCell;
use std::iter::Peekable;
use std::rc::Rc;
pub trait GroupByIteratorExtended: Iterator {
/// Return an `Iterator` that groups iterator elements. Consecutive elements that map to the
/// same key are assigned to the same group.
///
/// The returned Iterator item is `(K, impl Iterator)`, where Iterator are the items of the
/// group.
///
/// ```
/// use tantivy_common::GroupByIteratorExtended;
///
/// // group data into blocks of larger than zero or not.
/// let data: Vec<i32> = vec![1, 3, -2, -2, 1, 0, 1, 2];
/// // groups: |---->|------>|--------->|
///
/// let mut data_grouped = Vec::new();
/// // Note: group is an iterator
/// for (key, group) in data.into_iter().group_by(|val| *val >= 0) {
/// data_grouped.push((key, group.collect()));
/// }
/// assert_eq!(data_grouped, vec![(true, vec![1, 3]), (false, vec![-2, -2]), (true, vec![1, 0, 1, 2])]);
/// ```
fn group_by<K, F>(self, key: F) -> GroupByIterator<Self, F, K>
where
Self: Sized,
F: FnMut(&Self::Item) -> K,
K: PartialEq + Copy,
Self::Item: Copy,
{
GroupByIterator::new(self, key)
}
}
impl<I: Iterator> GroupByIteratorExtended for I {}
pub struct GroupByIterator<I, F, K: Copy>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
{
// I really would like to avoid the Rc<RefCell>, but the Iterator is shared between
// `GroupByIterator` and `GroupIter`. In practice they are used consecutive and
// `GroupByIter` is finished before calling next on `GroupByIterator`. I'm not sure there
// is a solution with lifetimes for that, because we would need to enforce it in the usage
// somehow.
//
// One potential solution would be to replace the iterator approach with something similar.
inner: Rc<RefCell<GroupByShared<I, F, K>>>,
}
struct GroupByShared<I, F, K: Copy>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
{
iter: Peekable<I>,
group_by_fn: F,
}
impl<I, F, K> GroupByIterator<I, F, K>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
K: Copy,
{
fn new(inner: I, group_by_fn: F) -> Self {
let inner = GroupByShared {
iter: inner.peekable(),
group_by_fn,
};
Self {
inner: Rc::new(RefCell::new(inner)),
}
}
}
impl<I, F, K> Iterator for GroupByIterator<I, F, K>
where
I: Iterator,
I::Item: Copy,
F: FnMut(&I::Item) -> K,
K: Copy,
{
type Item = (K, GroupIterator<I, F, K>);
fn next(&mut self) -> Option<Self::Item> {
let mut inner = self.inner.borrow_mut();
let value = *inner.iter.peek()?;
let key = (inner.group_by_fn)(&value);
let inner = self.inner.clone();
let group_iter = GroupIterator {
inner,
group_key: key,
};
Some((key, group_iter))
}
}
pub struct GroupIterator<I, F, K: Copy>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
{
inner: Rc<RefCell<GroupByShared<I, F, K>>>,
group_key: K,
}
impl<I, F, K: PartialEq + Copy> Iterator for GroupIterator<I, F, K>
where
I: Iterator,
I::Item: Copy,
F: FnMut(&I::Item) -> K,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
let mut inner = self.inner.borrow_mut();
// peek if next value is in group
let peek_val = *inner.iter.peek()?;
if (inner.group_by_fn)(&peek_val) == self.group_key {
inner.iter.next()
} else {
None
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn group_by_collect<I: Iterator<Item = u32>>(iter: I) -> Vec<(I::Item, Vec<I::Item>)> {
iter.group_by(|val| val / 10)
.map(|(el, iter)| (el, iter.collect::<Vec<_>>()))
.collect::<Vec<_>>()
}
#[test]
fn group_by_two_groups() {
let vals = vec![1u32, 4, 15];
let grouped_vals = group_by_collect(vals.into_iter());
assert_eq!(grouped_vals, vec![(0, vec![1, 4]), (1, vec![15])]);
}
#[test]
fn group_by_test_empty() {
let vals = vec![];
let grouped_vals = group_by_collect(vals.into_iter());
assert_eq!(grouped_vals, vec![]);
}
#[test]
fn group_by_three_groups() {
let vals = vec![1u32, 4, 15, 1];
let grouped_vals = group_by_collect(vals.into_iter());
assert_eq!(
grouped_vals,
vec![(0, vec![1, 4]), (1, vec![15]), (0, vec![1])]
);
}
}

View File

@@ -5,14 +5,11 @@ use std::ops::Deref;
pub use byteorder::LittleEndian as Endianness;
mod bitset;
pub mod file_slice;
mod group_by;
mod serialize;
mod vint;
mod writer;
pub use bitset::*;
pub use group_by::GroupByIteratorExtended;
pub use ownedbytes::{OwnedBytes, StableDeref};
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
pub use vint::{
deserialize_vint_u128, read_u32_vint, read_u32_vint_no_advance, serialize_vint_u128,

View File

@@ -94,20 +94,6 @@ impl FixedSize for u32 {
const SIZE_IN_BYTES: usize = 4;
}
impl BinarySerializable for u16 {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u16::<Endianness>(*self)
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<u16> {
reader.read_u16::<Endianness>()
}
}
impl FixedSize for u16 {
const SIZE_IN_BYTES: usize = 2;
}
impl BinarySerializable for u64 {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u64::<Endianness>(*self)
@@ -121,19 +107,6 @@ impl FixedSize for u64 {
const SIZE_IN_BYTES: usize = 8;
}
impl BinarySerializable for u128 {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u128::<Endianness>(*self)
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
reader.read_u128::<Endianness>()
}
}
impl FixedSize for u128 {
const SIZE_IN_BYTES: usize = 16;
}
impl BinarySerializable for f32 {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_f32::<Endianness>(*self)
@@ -188,7 +161,8 @@ impl FixedSize for u8 {
impl BinarySerializable for bool {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u8(u8::from(*self))
let val = if *self { 1 } else { 0 };
writer.write_u8(val)
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<bool> {
let val = reader.read_u8()?;

View File

@@ -157,7 +157,7 @@ fn vint_len(data: &[u8]) -> usize {
/// If the buffer does not start by a valid
/// vint payload
pub fn read_u32_vint(data: &mut &[u8]) -> u32 {
let (result, vlen) = read_u32_vint_no_advance(data);
let (result, vlen) = read_u32_vint_no_advance(*data);
*data = &data[vlen..];
result
}

View File

@@ -50,7 +50,7 @@ to get tantivy to fit your use case:
*Example 1* You could for instance use hadoop to build a very large search index in a timely manner, copy all of the resulting segment files in the same directory and edit the `meta.json` to get a functional index.[^2]
*Example 2* You could also disable your merge policy and enforce daily segments. Removing data after one week can then be done very efficiently by just editing the `meta.json` and deleting the files associated with segment `D-7`.
*Example 2* You could also disable your merge policy and enforce daily segments. Removing data after one week can then be done very efficiently by just editing the `meta.json` and deleting the files associated to segment `D-7`.
## Merging

View File

@@ -1,73 +0,0 @@
// # IP Address example
//
// This example shows how the ip field can be used
// with IpV6 and IpV4.
use tantivy::collector::{Count, TopDocs};
use tantivy::query::QueryParser;
use tantivy::schema::{Schema, FAST, INDEXED, STORED, STRING};
use tantivy::Index;
fn main() -> tantivy::Result<()> {
// # Defining the schema
let mut schema_builder = Schema::builder();
let event_type = schema_builder.add_text_field("event_type", STRING | STORED);
let ip = schema_builder.add_ip_addr_field("ip", STORED | INDEXED | FAST);
let schema = schema_builder.build();
// # Indexing documents
let index = Index::create_in_ram(schema.clone());
let mut index_writer = index.writer(50_000_000)?;
let doc = schema.parse_document(
r#"{
"ip": "192.168.0.33",
"event_type": "login"
}"#,
)?;
index_writer.add_document(doc)?;
let doc = schema.parse_document(
r#"{
"ip": "192.168.0.80",
"event_type": "checkout"
}"#,
)?;
index_writer.add_document(doc)?;
let doc = schema.parse_document(
r#"{
"ip": "2001:0db8:85a3:0000:0000:8a2e:0370:7334",
"event_type": "checkout"
}"#,
)?;
index_writer.add_document(doc)?;
index_writer.commit()?;
let reader = index.reader()?;
let searcher = reader.searcher();
let query_parser = QueryParser::for_index(&index, vec![event_type, ip]);
{
let query = query_parser.parse_query("ip:[192.168.0.0 TO 192.168.0.100]")?;
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5))?;
assert_eq!(count_docs.len(), 2);
}
{
let query = query_parser.parse_query("ip:[192.168.1.0 TO 192.168.1.100]")?;
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
assert_eq!(count_docs.len(), 0);
}
{
let query = query_parser.parse_query("ip:192.168.0.80")?;
let count_docs = searcher.search(&*query, &Count)?;
assert_eq!(count_docs, 1);
}
{
// IpV6 needs to be escaped because it contains `:`
let query = query_parser.parse_query("ip:\"2001:0db8:85a3:0000:0000:8a2e:0370:7334\"")?;
let count_docs = searcher.search(&*query, &Count)?;
assert_eq!(count_docs, 1);
}
Ok(())
}

View File

@@ -13,7 +13,7 @@ use tantivy::aggregation::agg_result::AggregationResults;
use tantivy::aggregation::metric::AverageAggregation;
use tantivy::aggregation::AggregationCollector;
use tantivy::query::TermQuery;
use tantivy::schema::{self, IndexRecordOption, Schema, TextFieldIndexing};
use tantivy::schema::{self, Cardinality, IndexRecordOption, Schema, TextFieldIndexing};
use tantivy::{doc, Index, Term};
fn main() -> tantivy::Result<()> {
@@ -25,9 +25,9 @@ fn main() -> tantivy::Result<()> {
.set_stored();
let text_field = schema_builder.add_text_field("text", text_fieldtype);
let score_fieldtype =
crate::schema::NumericOptions::default().set_fast();
crate::schema::NumericOptions::default().set_fast(Cardinality::SingleValue);
let highscore_field = schema_builder.add_f64_field("highscore", score_fieldtype.clone());
let price_field = schema_builder.add_f64_field("price", score_fieldtype);
let price_field = schema_builder.add_f64_field("price", score_fieldtype.clone());
let schema = schema_builder.build();
@@ -112,18 +112,18 @@ fn main() -> tantivy::Result<()> {
],
..Default::default()
}),
sub_aggregation: sub_agg_req_1,
sub_aggregation: sub_agg_req_1.clone(),
}),
)]
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();
let res: Value = serde_json::to_value(agg_res)?;
let res: Value = serde_json::to_value(&agg_res)?;
println!("{}", serde_json::to_string_pretty(&res)?);
Ok(())

View File

@@ -14,7 +14,7 @@ use fastfield_codecs::Column;
// Importing tantivy...
use tantivy::collector::{Collector, SegmentCollector};
use tantivy::query::QueryParser;
use tantivy::schema::{Schema, FAST, INDEXED, TEXT};
use tantivy::schema::{Field, Schema, FAST, INDEXED, TEXT};
use tantivy::{doc, Index, Score, SegmentReader};
#[derive(Default)]
@@ -52,11 +52,11 @@ impl Stats {
}
struct StatsCollector {
field: String,
field: Field,
}
impl StatsCollector {
fn with_field(field: String) -> StatsCollector {
fn with_field(field: Field) -> StatsCollector {
StatsCollector { field }
}
}
@@ -73,7 +73,7 @@ impl Collector for StatsCollector {
_segment_local_id: u32,
segment_reader: &SegmentReader,
) -> tantivy::Result<StatsSegmentCollector> {
let fast_field_reader = segment_reader.fast_fields().u64(&self.field)?;
let fast_field_reader = segment_reader.fast_fields().u64(self.field)?;
Ok(StatsSegmentCollector {
fast_field_reader,
stats: Stats::default(),
@@ -105,7 +105,7 @@ impl SegmentCollector for StatsSegmentCollector {
type Fruit = Option<Stats>;
fn collect(&mut self, doc: u32, _score: Score) {
let value = self.fast_field_reader.get_val(doc) as f64;
let value = self.fast_field_reader.get_val(doc as u64) as f64;
self.stats.count += 1;
self.stats.sum += value;
self.stats.squared_sum += value * value;
@@ -171,9 +171,7 @@ fn main() -> tantivy::Result<()> {
// here we want to get a hit on the 'ken' in Frankenstein
let query = query_parser.parse_query("broom")?;
if let Some(stats) =
searcher.search(&query, &StatsCollector::with_field("price".to_string()))?
{
if let Some(stats) = searcher.search(&query, &StatsCollector::with_field(price))? {
println!("count: {}", stats.count());
println!("mean: {}", stats.mean());
println!("standard deviation: {}", stats.standard_deviation());

View File

@@ -4,7 +4,7 @@
use tantivy::collector::TopDocs;
use tantivy::query::QueryParser;
use tantivy::schema::{DateOptions, Schema, Value, INDEXED, STORED, STRING};
use tantivy::schema::{Cardinality, DateOptions, Schema, Value, INDEXED, STORED, STRING};
use tantivy::Index;
fn main() -> tantivy::Result<()> {
@@ -12,7 +12,7 @@ fn main() -> tantivy::Result<()> {
let mut schema_builder = Schema::builder();
let opts = DateOptions::from(INDEXED)
.set_stored()
.set_fast()
.set_fast(Cardinality::SingleValue)
.set_precision(tantivy::DatePrecision::Seconds);
let occurred_at = schema_builder.add_date_field("occurred_at", opts);
let event_type = schema_builder.add_text_field("event", STRING | STORED);

View File

@@ -113,7 +113,7 @@ fn main() -> tantivy::Result<()> {
// on its id.
//
// Note that `tantivy` does nothing to enforce the idea that
// there is only one document associated with this id.
// there is only one document associated to this id.
//
// Also you might have noticed that we apply the delete before
// having committed. This does not matter really...

View File

@@ -1,17 +1,15 @@
// # Faceted Search
// # Basic Example
//
// This example covers the faceted search functionalities of
// This example covers the basic functionalities of
// tantivy.
//
// We will :
// - define a text field "name" in our schema
// - define a facet field "classification" in our schema
// - create an index in memory
// - index few documents with respective facets in our index
// - search and count the number of documents that the classifications start the facet "/Felidae"
// - Search the facet "/Felidae/Pantherinae" and count the number of documents that the
// classifications include the facet.
//
// - define our schema
// = create an index in a directory
// - index few documents in our index
// - search for the best document matchings "sea whale"
// - retrieve the best document original content.
// ---
// Importing tantivy...
use tantivy::collector::FacetCollector;
@@ -23,7 +21,7 @@ fn main() -> tantivy::Result<()> {
// Let's create a temporary directory for the sake of this example
let mut schema_builder = Schema::builder();
let name = schema_builder.add_text_field("name", TEXT | STORED);
let name = schema_builder.add_text_field("felin_name", TEXT | STORED);
// this is our faceted field: its scientific classification
let classification = schema_builder.add_facet_field("classification", FacetOptions::default());

View File

@@ -27,7 +27,7 @@ fn main() -> Result<()> {
reader.reload()?;
let searcher = reader.searcher();
// The end is excluded i.e. here we are searching up to 1969
let docs_in_the_sixties = RangeQuery::new_u64("year".to_string(), 1960..1970);
let docs_in_the_sixties = RangeQuery::new_u64(year_field, 1960..1970);
// Uses a Count collector to sum the total number of docs in the range
let num_60s_books = searcher.search(&docs_in_the_sixties, &Count)?;
assert_eq!(num_60s_books, 10);

View File

@@ -44,7 +44,7 @@ fn main() -> tantivy::Result<()> {
// A segment contains different data structure.
// Inverted index stands for the combination of
// - the term dictionary
// - the inverted lists associated with each terms and their positions
// - the inverted lists associated to each terms and their positions
let inverted_index = segment_reader.inverted_index(title)?;
// A `Term` is a text token associated with a field.
@@ -105,7 +105,7 @@ fn main() -> tantivy::Result<()> {
// A segment contains different data structure.
// Inverted index stands for the combination of
// - the term dictionary
// - the inverted lists associated with each terms and their positions
// - the inverted lists associated to each terms and their positions
let inverted_index = segment_reader.inverted_index(title)?;
// This segment posting object is like a cursor over the documents matching the term.

View File

@@ -4,7 +4,7 @@ use std::sync::{Arc, RwLock, Weak};
use tantivy::collector::TopDocs;
use tantivy::query::QueryParser;
use tantivy::schema::{Schema, FAST, TEXT};
use tantivy::schema::{Field, Schema, FAST, TEXT};
use tantivy::{
doc, DocAddress, DocId, Index, IndexReader, Opstamp, Searcher, SearcherGeneration, SegmentId,
SegmentReader, Warmer,
@@ -25,13 +25,13 @@ pub trait PriceFetcher: Send + Sync + 'static {
}
struct DynamicPriceColumn {
field: String,
field: Field,
price_cache: RwLock<HashMap<(SegmentId, Option<Opstamp>), Arc<Vec<Price>>>>,
price_fetcher: Box<dyn PriceFetcher>,
}
impl DynamicPriceColumn {
pub fn with_product_id_field<T: PriceFetcher>(field: String, price_fetcher: T) -> Self {
pub fn with_product_id_field<T: PriceFetcher>(field: Field, price_fetcher: T) -> Self {
DynamicPriceColumn {
field,
price_cache: Default::default(),
@@ -48,10 +48,10 @@ impl Warmer for DynamicPriceColumn {
fn warm(&self, searcher: &Searcher) -> tantivy::Result<()> {
for segment in searcher.segment_readers() {
let key = (segment.segment_id(), segment.delete_opstamp());
let product_id_reader = segment.fast_fields().u64(&self.field)?;
let product_id_reader = segment.fast_fields().u64(self.field)?;
let product_ids: Vec<ProductId> = segment
.doc_ids_alive()
.map(|doc| product_id_reader.get_val(doc))
.map(|doc| product_id_reader.get_val(doc as u64))
.collect();
let mut prices_it = self.price_fetcher.fetch_prices(&product_ids).into_iter();
let mut price_vals: Vec<Price> = Vec::new();
@@ -123,7 +123,7 @@ fn main() -> tantivy::Result<()> {
let price_table = ExternalPriceTable::default();
let price_dynamic_column = Arc::new(DynamicPriceColumn::with_product_id_field(
"product_id".to_string(),
product_id,
price_table.clone(),
));
price_table.update_price(OLIVE_OIL, 12);

View File

@@ -1,21 +1,18 @@
[package]
name = "fastfield_codecs"
version = "0.3.0"
version = "0.2.0"
authors = ["Pascal Seitz <pascal@quickwit.io>"]
license = "MIT"
edition = "2021"
description = "Fast field codecs used by tantivy"
documentation = "https://docs.rs/fastfield_codecs/"
homepage = "https://github.com/quickwit-oss/tantivy"
repository = "https://github.com/quickwit-oss/tantivy"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
common = { version = "0.5", path = "../common/", package = "tantivy-common" }
tantivy-bitpacker = { version= "0.3", path = "../bitpacker/" }
columnar = { version= "0.1", path="../columnar", package="tantivy-columnar" }
prettytable-rs = {version="0.10.0", optional= true}
common = { version = "0.3", path = "../common/", package = "tantivy-common" }
tantivy-bitpacker = { version="0.2", path = "../bitpacker/" }
ownedbytes = { version = "0.3.0", path = "../ownedbytes" }
prettytable-rs = {version="0.9.0", optional= true}
rand = {version="0.8.3", optional= true}
fastdivide = "0.4"
log = "0.4"

View File

@@ -4,11 +4,11 @@ extern crate test;
#[cfg(test)]
mod tests {
use std::ops::RangeInclusive;
use std::iter;
use std::sync::Arc;
use common::OwnedBytes;
use fastfield_codecs::*;
use ownedbytes::OwnedBytes;
use rand::prelude::*;
use test::Bencher;
@@ -65,30 +65,33 @@ mod tests {
b.iter(|| {
let mut a = 0u64;
for _ in 0..n {
a = column.get_val(a as u32);
a = column.get_val(a as u64);
}
a
});
}
const FIFTY_PERCENT_RANGE: RangeInclusive<u64> = 1..=50;
const SINGLE_ITEM: u64 = 90;
const SINGLE_ITEM_RANGE: RangeInclusive<u64> = 90..=90;
const ONE_PERCENT_ITEM_RANGE: RangeInclusive<u64> = 49..=49;
fn get_data_50percent_item() -> Vec<u128> {
let mut rng = StdRng::from_seed([1u8; 32]);
fn get_exp_data() -> Vec<u64> {
let mut data = vec![];
for _ in 0..300_000 {
let val = rng.gen_range(1..=100);
data.push(val);
for i in 0..100 {
let num = i * i;
data.extend(iter::repeat(i as u64).take(num));
}
data.push(SINGLE_ITEM);
data.shuffle(&mut StdRng::from_seed([1u8; 32]));
data.shuffle(&mut rng);
let data = data.iter().map(|el| *el as u128).collect::<Vec<_>>();
// lengt = 328350
data
}
fn get_data_50percent_item() -> (u128, u128, Vec<u128>) {
let mut permutation = get_exp_data();
let major_item = 20;
let minor_item = 10;
permutation.extend(iter::repeat(major_item).take(permutation.len()));
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
(major_item as u128, minor_item as u128, permutation)
}
fn get_u128_column_random() -> Arc<dyn Column<u128>> {
let permutation = generate_random();
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
@@ -97,123 +100,34 @@ mod tests {
fn get_u128_column_from_data(data: &[u128]) -> Arc<dyn Column<u128>> {
let mut out = vec![];
let iter_gen = || data.iter().cloned();
serialize_u128(iter_gen, data.len() as u32, &mut out).unwrap();
serialize_u128(VecColumn::from(&data), &mut out).unwrap();
let out = OwnedBytes::new(out);
open_u128::<u128>(out).unwrap()
open_u128(out).unwrap()
}
// U64 RANGE START
#[bench]
fn bench_intfastfield_getrange_u64_50percent_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
FIFTY_PERCENT_RANGE,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u64_1percent_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
ONE_PERCENT_ITEM_RANGE,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u64_single_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
SINGLE_ITEM_RANGE,
0..data.len() as u32,
&mut positions,
);
positions
});
}
#[bench]
fn bench_intfastfield_getrange_u64_hit_all(b: &mut Bencher) {
let data = get_data_50percent_item();
let data = data.iter().map(|el| *el as u64).collect::<Vec<_>>();
let column: Arc<dyn Column<u64>> = serialize_and_load(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(0..=u64::MAX, 0..data.len() as u32, &mut positions);
positions
});
}
// U64 RANGE END
// U128 RANGE START
#[bench]
fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let (major_item, _minor_item, data) = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
0..data.len() as u32,
&mut positions,
);
positions
});
b.iter(|| column.get_between_vals(major_item..=major_item));
}
#[bench]
fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
let data = get_data_50percent_item();
let (_major_item, minor_item, data) = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
*SINGLE_ITEM_RANGE.start() as u128..=*SINGLE_ITEM_RANGE.end() as u128,
0..data.len() as u32,
&mut positions,
);
positions
});
b.iter(|| column.get_between_vals(minor_item..=minor_item));
}
#[bench]
fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
let data = get_data_50percent_item();
let (_major_item, _minor_item, data) = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
positions
});
b.iter(|| column.get_between_vals(0..=u128::MAX));
}
// U128 RANGE END
#[bench]
fn bench_intfastfield_scan_all_fflookup_u128(b: &mut Bencher) {
@@ -222,7 +136,7 @@ mod tests {
b.iter(|| {
let mut a = 0u128;
for i in 0u64..column.num_vals() as u64 {
a += column.get_val(i as u32);
a += column.get_val(i);
}
a
});
@@ -236,7 +150,7 @@ mod tests {
let n = column.num_vals();
let mut a = 0u128;
for i in (0..n / 5).map(|val| val * 5) {
a += column.get_val(i);
a += column.get_val(i as u64);
}
a
});
@@ -261,9 +175,9 @@ mod tests {
let n = permutation.len();
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
b.iter(|| {
let mut a = 0;
let mut a = 0u64;
for i in (0..n / 7).map(|val| val * 7) {
a += column.get_val(i as u32);
a += column.get_val(i as u64);
}
a
});
@@ -276,7 +190,7 @@ mod tests {
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
b.iter(|| {
let mut a = 0u64;
for i in 0u32..n as u32 {
for i in 0u64..n as u64 {
a += column.get_val(i);
}
a
@@ -290,8 +204,8 @@ mod tests {
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
b.iter(|| {
let mut a = 0u64;
for i in 0..n {
a += column.get_val(i as u32);
for i in 0..n as u64 {
a += column.get_val(i);
}
a
});

View File

@@ -1,10 +1,10 @@
use std::io::{self, Write};
use common::OwnedBytes;
use ownedbytes::OwnedBytes;
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use super::serialize::NormalizedHeader;
use super::{ColumnValues, FastFieldCodec, FastFieldCodecType};
use crate::serialize::NormalizedHeader;
use crate::{Column, FastFieldCodec, FastFieldCodecType};
/// Depending on the field type, a different
/// fast field is required.
@@ -15,9 +15,9 @@ pub struct BitpackedReader {
normalized_header: NormalizedHeader,
}
impl ColumnValues for BitpackedReader {
impl Column for BitpackedReader {
#[inline]
fn get_val(&self, doc: u32) -> u64 {
fn get_val(&self, doc: u64) -> u64 {
self.bit_unpacker.get(doc, &self.data)
}
#[inline]
@@ -30,7 +30,7 @@ impl ColumnValues for BitpackedReader {
self.normalized_header.max_value
}
#[inline]
fn num_vals(&self) -> u32 {
fn num_vals(&self) -> u64 {
self.normalized_header.num_vals
}
}
@@ -64,7 +64,7 @@ impl FastFieldCodec for BitpackedCodec {
/// current minimum value is 0.
///
/// Ideally, we made a shift upstream on the column so that `col.min_value() == 0`.
fn serialize(column: &dyn ColumnValues, write: &mut impl Write) -> io::Result<()> {
fn serialize(column: &dyn Column, write: &mut impl Write) -> io::Result<()> {
assert_eq!(column.min_value(), 0u64);
let num_bits = compute_num_bits(column.max_value());
let mut bit_packer = BitPacker::new();
@@ -75,7 +75,7 @@ impl FastFieldCodec for BitpackedCodec {
Ok(())
}
fn estimate(column: &dyn ColumnValues) -> Option<f32> {
fn estimate(column: &impl Column) -> Option<f32> {
let num_bits = compute_num_bits(column.max_value());
let num_bits_uncompressed = 64;
Some(num_bits as f32 / num_bits_uncompressed as f32)
@@ -85,19 +85,19 @@ impl FastFieldCodec for BitpackedCodec {
#[cfg(test)]
mod tests {
use super::*;
use crate::column_values::tests::create_and_validate;
use crate::tests::get_codec_test_datasets;
fn create_and_validate_bitpacked_codec(data: &[u64], name: &str) {
create_and_validate::<BitpackedCodec>(data, name);
fn create_and_validate(data: &[u64], name: &str) {
crate::tests::create_and_validate::<BitpackedCodec>(data, name);
}
#[test]
fn test_with_codec_data_sets() {
let data_sets = crate::column_values::tests::get_codec_test_datasets();
let data_sets = get_codec_test_datasets();
for (mut data, name) in data_sets {
create_and_validate_bitpacked_codec(&data, name);
create_and_validate(&data, name);
data.reverse();
create_and_validate::<BitpackedCodec>(&data, name);
create_and_validate(&data, name);
}
}
@@ -107,9 +107,10 @@ mod tests {
let mut data = (0..1 + rand::random::<u8>() as usize)
.map(|_| rand::random::<i64>() as u64 / 2)
.collect::<Vec<_>>();
create_and_validate_bitpacked_codec(&data, "rand");
create_and_validate(&data, "rand");
data.reverse();
create_and_validate::<BitpackedCodec>(&data, "rand");
create_and_validate(&data, "rand");
}
}
}

View File

@@ -1,12 +1,13 @@
use std::sync::Arc;
use std::{io, iter};
use common::{BinarySerializable, CountingWriter, DeserializeFrom, OwnedBytes};
use common::{BinarySerializable, CountingWriter, DeserializeFrom};
use ownedbytes::OwnedBytes;
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use crate::column_values::line::Line;
use crate::column_values::serialize::NormalizedHeader;
use crate::column_values::{ColumnValues, FastFieldCodec, FastFieldCodecType, VecColumn};
use crate::line::Line;
use crate::serialize::NormalizedHeader;
use crate::{Column, FastFieldCodec, FastFieldCodecType, VecColumn};
const CHUNK_SIZE: usize = 512;
@@ -35,18 +36,18 @@ impl BinarySerializable for Block {
}
}
fn compute_num_blocks(num_vals: u32) -> usize {
fn compute_num_blocks(num_vals: u64) -> usize {
(num_vals as usize + CHUNK_SIZE - 1) / CHUNK_SIZE
}
pub struct BlockwiseLinearCodec;
impl FastFieldCodec for BlockwiseLinearCodec {
const CODEC_TYPE: FastFieldCodecType = FastFieldCodecType::BlockwiseLinear;
const CODEC_TYPE: crate::FastFieldCodecType = FastFieldCodecType::BlockwiseLinear;
type Reader = BlockwiseLinearReader;
fn open_from_bytes(
bytes: common::OwnedBytes,
bytes: ownedbytes::OwnedBytes,
normalized_header: NormalizedHeader,
) -> io::Result<Self::Reader> {
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
@@ -70,14 +71,14 @@ impl FastFieldCodec for BlockwiseLinearCodec {
}
// Estimate first_chunk and extrapolate
fn estimate(column: &dyn ColumnValues) -> Option<f32> {
if column.num_vals() < 10 * CHUNK_SIZE as u32 {
fn estimate(column: &impl crate::Column) -> Option<f32> {
if column.num_vals() < 10 * CHUNK_SIZE as u64 {
return None;
}
let mut first_chunk: Vec<u64> = column.iter().take(CHUNK_SIZE).collect();
let mut first_chunk: Vec<u64> = column.iter().take(CHUNK_SIZE as usize).collect();
let line = Line::train(&VecColumn::from(&first_chunk));
for (i, buffer_val) in first_chunk.iter_mut().enumerate() {
let interpolated_val = line.eval(i as u32);
let interpolated_val = line.eval(i as u64);
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
}
let estimated_bit_width = first_chunk
@@ -94,12 +95,12 @@ impl FastFieldCodec for BlockwiseLinearCodec {
};
let num_bits = estimated_bit_width as u64 * column.num_vals() as u64
// function metadata per block
+ metadata_per_block as u64 * (column.num_vals() as u64 / CHUNK_SIZE as u64);
+ metadata_per_block as u64 * (column.num_vals() / CHUNK_SIZE as u64);
let num_bits_uncompressed = 64 * column.num_vals();
Some(num_bits as f32 / num_bits_uncompressed as f32)
}
fn serialize(column: &dyn ColumnValues, wrt: &mut impl io::Write) -> io::Result<()> {
fn serialize(column: &dyn crate::Column, wrt: &mut impl io::Write) -> io::Result<()> {
// The BitpackedReader assumes a normalized vector.
assert_eq!(column.min_value(), 0);
let mut buffer = Vec::with_capacity(CHUNK_SIZE);
@@ -120,7 +121,7 @@ impl FastFieldCodec for BlockwiseLinearCodec {
assert!(!buffer.is_empty());
for (i, buffer_val) in buffer.iter_mut().enumerate() {
let interpolated_val = line.eval(i as u32);
let interpolated_val = line.eval(i as u64);
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
}
let bit_width = buffer.iter().copied().map(compute_num_bits).max().unwrap();
@@ -158,11 +159,11 @@ pub struct BlockwiseLinearReader {
data: OwnedBytes,
}
impl ColumnValues for BlockwiseLinearReader {
impl Column for BlockwiseLinearReader {
#[inline(always)]
fn get_val(&self, idx: u32) -> u64 {
let block_id = (idx / CHUNK_SIZE as u32) as usize;
let idx_within_block = idx % (CHUNK_SIZE as u32);
fn get_val(&self, idx: u64) -> u64 {
let block_id = (idx / CHUNK_SIZE as u64) as usize;
let idx_within_block = idx % (CHUNK_SIZE as u64);
let block = &self.blocks[block_id];
let interpoled_val: u64 = block.line.eval(idx_within_block);
let block_bytes = &self.data[block.data_start_offset..];
@@ -170,19 +171,16 @@ impl ColumnValues for BlockwiseLinearReader {
interpoled_val.wrapping_add(bitpacked_diff)
}
#[inline(always)]
fn min_value(&self) -> u64 {
// The BlockwiseLinearReader assumes a normalized vector.
0u64
}
#[inline(always)]
fn max_value(&self) -> u64 {
self.normalized_header.max_value
}
#[inline(always)]
fn num_vals(&self) -> u32 {
fn num_vals(&self) -> u64 {
self.normalized_header.num_vals
}
}

View File

@@ -0,0 +1,356 @@
use std::marker::PhantomData;
use std::ops::RangeInclusive;
use tantivy_bitpacker::minmax;
pub trait Column<T: PartialOrd = u64>: Send + Sync {
/// Return a `ColumnReader`.
fn reader(&self) -> Box<dyn ColumnReader<T> + '_> {
Box::new(ColumnReaderAdapter { column: self })
}
/// Return the value associated to the given idx.
///
/// This accessor should return as fast as possible.
///
/// # Panics
///
/// May panic if `idx` is greater than the column length.
///
/// TODO remove to force people to use `.reader()`.
fn get_val(&self, idx: u64) -> T;
/// Fills an output buffer with the fast field values
/// associated with the `DocId` going from
/// `start` to `start + output.len()`.
///
/// # Panics
///
/// Must panic if `start + output.len()` is greater than
/// the segment's `maxdoc`.
#[inline]
fn get_range(&self, start: u64, output: &mut [T]) {
for (out, idx) in output.iter_mut().zip(start..) {
*out = self.get_val(idx);
}
}
/// Return the positions of values which are in the provided range.
#[inline]
fn get_between_vals(&self, range: RangeInclusive<T>) -> Vec<u64> {
let mut vals = Vec::new();
for idx in 0..self.num_vals() {
let val = self.get_val(idx);
if range.contains(&val) {
vals.push(idx);
}
}
vals
}
/// Returns the minimum value for this fast field.
///
/// This min_value may not be exact.
/// For instance, the min value does not take in account of possible
/// deleted document. All values are however guaranteed to be higher than
/// `.min_value()`.
fn min_value(&self) -> T;
/// Returns the maximum value for this fast field.
///
/// This max_value may not be exact.
/// For instance, the max value does not take in account of possible
/// deleted document. All values are however guaranteed to be higher than
/// `.max_value()`.
fn max_value(&self) -> T;
fn num_vals(&self) -> u64;
/// Returns a iterator over the data
///
/// TODO get rid of `.iter()` and extend ColumnReader instead.
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
}
}
/// `ColumnReader` makes it possible to read forward through a column.
///
/// TODO add methods to make it possible to scan the column and replace `.iter()`
pub trait ColumnReader<T = u64> {
fn seek(&mut self, idx: u64) -> T;
}
pub(crate) struct ColumnReaderAdapter<'a, C: ?Sized> {
column: &'a C,
}
impl<'a, C: ?Sized> From<&'a C> for ColumnReaderAdapter<'a, C> {
fn from(column: &'a C) -> Self {
ColumnReaderAdapter { column }
}
}
impl<'a, T, C: ?Sized> ColumnReader<T> for ColumnReaderAdapter<'a, C>
where
C: Column<T>,
T: PartialOrd<T>,
{
fn seek(&mut self, idx: u64) -> T {
self.column.get_val(idx)
}
}
pub struct VecColumn<'a, T = u64> {
values: &'a [T],
min_value: T,
max_value: T,
}
impl<'a, C: Column<T>, T: Copy + PartialOrd> Column<T> for &'a C {
fn get_val(&self, idx: u64) -> T {
(*self).get_val(idx)
}
fn min_value(&self) -> T {
(*self).min_value()
}
fn max_value(&self) -> T {
(*self).max_value()
}
fn num_vals(&self) -> u64 {
(*self).num_vals()
}
fn reader(&self) -> Box<dyn ColumnReader<T> + '_> {
(*self).reader()
}
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
(*self).iter()
}
fn get_range(&self, start: u64, output: &mut [T]) {
(*self).get_range(start, output)
}
}
impl<'a, T: Copy + PartialOrd + Send + Sync> Column<T> for VecColumn<'a, T> {
fn get_val(&self, position: u64) -> T {
self.values[position as usize]
}
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
Box::new(self.values.iter().copied())
}
fn min_value(&self) -> T {
self.min_value
}
fn max_value(&self) -> T {
self.max_value
}
fn num_vals(&self) -> u64 {
self.values.len() as u64
}
fn get_range(&self, start: u64, output: &mut [T]) {
output.copy_from_slice(&self.values[start as usize..][..output.len()])
}
}
impl<'a, T: Copy + Ord + Default, V> From<&'a V> for VecColumn<'a, T>
where V: AsRef<[T]> + ?Sized
{
fn from(values: &'a V) -> Self {
let values = values.as_ref();
let (min_value, max_value) = minmax(values.iter().copied()).unwrap_or_default();
Self {
values,
min_value,
max_value,
}
}
}
struct MonotonicMappingColumn<C, T, Input> {
from_column: C,
monotonic_mapping: T,
_phantom: PhantomData<Input>,
}
/// Creates a view of a column transformed by a monotonic mapping.
pub fn monotonic_map_column<C, T, Input: PartialOrd, Output: PartialOrd>(
from_column: C,
monotonic_mapping: T,
) -> impl Column<Output>
where
C: Column<Input>,
T: Fn(Input) -> Output + Send + Sync,
Input: Send + Sync,
Output: Send + Sync,
{
MonotonicMappingColumn {
from_column,
monotonic_mapping,
_phantom: PhantomData,
}
}
impl<C, T, Input: PartialOrd, Output: PartialOrd> Column<Output>
for MonotonicMappingColumn<C, T, Input>
where
C: Column<Input>,
T: Fn(Input) -> Output + Send + Sync,
Input: Send + Sync,
Output: Send + Sync,
{
#[inline]
fn get_val(&self, idx: u64) -> Output {
let from_val = self.from_column.get_val(idx);
(self.monotonic_mapping)(from_val)
}
fn min_value(&self) -> Output {
let from_min_value = self.from_column.min_value();
(self.monotonic_mapping)(from_min_value)
}
fn max_value(&self) -> Output {
let from_max_value = self.from_column.max_value();
(self.monotonic_mapping)(from_max_value)
}
fn num_vals(&self) -> u64 {
self.from_column.num_vals()
}
fn iter(&self) -> Box<dyn Iterator<Item = Output> + '_> {
Box::new(self.from_column.iter().map(&self.monotonic_mapping))
}
fn reader(&self) -> Box<dyn ColumnReader<Output> + '_> {
Box::new(MonotonicMappingColumnReader {
col_reader: ColumnReaderAdapter::from(&self.from_column),
monotonic_mapping: &self.monotonic_mapping,
intermdiary_type: PhantomData,
})
}
// We voluntarily do not implement get_range as it yields a regression,
// and we do not have any specialized implementation anyway.
}
struct MonotonicMappingColumnReader<'a, ColR, Transform, U> {
col_reader: ColR,
monotonic_mapping: &'a Transform,
intermdiary_type: PhantomData<U>,
}
impl<'a, U, V, ColR, Transform> ColumnReader<V>
for MonotonicMappingColumnReader<'a, ColR, Transform, U>
where
ColR: ColumnReader<U> + 'a,
Transform: Fn(U) -> V,
{
fn seek(&mut self, idx: u64) -> V {
let intermediary_value = self.col_reader.seek(idx);
(*self.monotonic_mapping)(intermediary_value)
}
}
pub struct IterColumn<T>(T);
impl<T> From<T> for IterColumn<T>
where T: Iterator + Clone + ExactSizeIterator
{
fn from(iter: T) -> Self {
IterColumn(iter)
}
}
impl<T> Column<T::Item> for IterColumn<T>
where
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
T::Item: PartialOrd,
{
fn get_val(&self, idx: u64) -> T::Item {
self.0.clone().nth(idx as usize).unwrap()
}
fn min_value(&self) -> T::Item {
self.0.clone().next().unwrap()
}
fn max_value(&self) -> T::Item {
self.0.clone().last().unwrap()
}
fn num_vals(&self) -> u64 {
self.0.len() as u64
}
fn iter(&self) -> Box<dyn Iterator<Item = T::Item> + '_> {
Box::new(self.0.clone())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::MonotonicallyMappableToU64;
#[test]
fn test_monotonic_mapping() {
let vals = &[1u64, 3u64][..];
let col = VecColumn::from(vals);
let mapped = monotonic_map_column(col, |el| el + 4);
assert_eq!(mapped.min_value(), 5u64);
assert_eq!(mapped.max_value(), 7u64);
assert_eq!(mapped.num_vals(), 2);
assert_eq!(mapped.num_vals(), 2);
assert_eq!(mapped.get_val(0), 5);
assert_eq!(mapped.get_val(1), 7);
}
#[test]
fn test_range_as_col() {
let col = IterColumn::from(10..100);
assert_eq!(col.num_vals(), 90);
assert_eq!(col.max_value(), 99);
}
#[test]
fn test_monotonic_mapping_iter() {
let vals: Vec<u64> = (-1..99).map(i64::to_u64).collect();
let col = VecColumn::from(&vals);
let mapped = monotonic_map_column(col, |el| i64::from_u64(el) * 10i64);
let val_i64s: Vec<i64> = mapped.iter().collect();
for i in 0..100 {
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
}
}
#[test]
fn test_monotonic_mapping_get_range() {
let vals: Vec<u64> = (-1..99).map(i64::to_u64).collect();
let col = VecColumn::from(&vals);
let mapped = monotonic_map_column(col, |el| i64::from_u64(el) * 10i64);
assert_eq!(mapped.min_value(), -10i64);
assert_eq!(mapped.max_value(), 980i64);
assert_eq!(mapped.num_vals(), 100);
let val_i64s: Vec<i64> = mapped.iter().collect();
assert_eq!(val_i64s.len(), 100);
for i in 0..100 {
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
assert_eq!(val_i64s[i as usize], i64::from_u64(vals[i as usize]) * 10);
}
let mut buf = [0i64; 20];
mapped.get_range(7, &mut buf[..]);
assert_eq!(&val_i64s[7..][..20], &buf);
}
}

View File

@@ -57,7 +57,7 @@ fn num_bits(val: u128) -> u8 {
/// metadata.
pub fn get_compact_space(
values_deduped_sorted: &BTreeSet<u128>,
total_num_values: u32,
total_num_values: u64,
cost_per_blank: usize,
) -> CompactSpace {
let mut compact_space_builder = CompactSpaceBuilder::new();
@@ -208,7 +208,7 @@ impl CompactSpaceBuilder {
};
let covered_range_len = range_mapping.range_length();
ranges_mapping.push(range_mapping);
compact_start += covered_range_len;
compact_start += covered_range_len as u64;
}
// println!("num ranges {}", ranges_mapping.len());
CompactSpace { ranges_mapping }

View File

@@ -14,14 +14,15 @@ use std::{
cmp::Ordering,
collections::BTreeSet,
io::{self, Write},
ops::{Range, RangeInclusive},
ops::RangeInclusive,
};
use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt, VIntU128};
use common::{BinarySerializable, CountingWriter, VInt, VIntU128};
use ownedbytes::OwnedBytes;
use tantivy_bitpacker::{self, BitPacker, BitUnpacker};
use crate::column_values::compact_space::build_compact_space::get_compact_space;
use crate::column_values::ColumnValues;
use crate::compact_space::build_compact_space::get_compact_space;
use crate::Column;
mod blank_range;
mod build_compact_space;
@@ -96,7 +97,7 @@ impl BinarySerializable for CompactSpace {
};
let range_length = range_mapping.range_length();
ranges_mapping.push(range_mapping);
compact_start += range_length;
compact_start += range_length as u64;
}
Ok(Self { ranges_mapping })
@@ -164,16 +165,16 @@ pub struct IPCodecParams {
bit_unpacker: BitUnpacker,
min_value: u128,
max_value: u128,
num_vals: u32,
num_vals: u64,
num_bits: u8,
}
impl CompactSpaceCompressor {
/// Taking the vals as Vec may cost a lot of memory. It is used to sort the vals.
pub fn train_from(iter: impl Iterator<Item = u128>, num_vals: u32) -> Self {
pub fn train_from(column: &impl Column<u128>) -> Self {
let mut values_sorted = BTreeSet::new();
values_sorted.extend(iter);
let total_num_values = num_vals;
values_sorted.extend(column.iter());
let total_num_values = column.num_vals();
let compact_space =
get_compact_space(&values_sorted, total_num_values, COST_PER_BLANK_IN_BITS);
@@ -199,7 +200,7 @@ impl CompactSpaceCompressor {
bit_unpacker: BitUnpacker::new(num_bits),
min_value,
max_value,
num_vals: total_num_values,
num_vals: total_num_values as u64,
num_bits,
},
}
@@ -266,7 +267,7 @@ impl BinarySerializable for IPCodecParams {
let _header_flags = u64::deserialize(reader)?;
let min_value = VIntU128::deserialize(reader)?.0;
let max_value = VIntU128::deserialize(reader)?.0;
let num_vals = VIntU128::deserialize(reader)?.0 as u32;
let num_vals = VIntU128::deserialize(reader)?.0 as u64;
let num_bits = u8::deserialize(reader)?;
let compact_space = CompactSpace::deserialize(reader)?;
@@ -281,9 +282,9 @@ impl BinarySerializable for IPCodecParams {
}
}
impl ColumnValues<u128> for CompactSpaceDecompressor {
impl Column<u128> for CompactSpaceDecompressor {
#[inline]
fn get_val(&self, doc: u32) -> u128 {
fn get_val(&self, doc: u64) -> u128 {
self.get(doc)
}
@@ -295,7 +296,7 @@ impl ColumnValues<u128> for CompactSpaceDecompressor {
self.max_value()
}
fn num_vals(&self) -> u32 {
fn num_vals(&self) -> u64 {
self.params.num_vals
}
@@ -303,15 +304,8 @@ impl ColumnValues<u128> for CompactSpaceDecompressor {
fn iter(&self) -> Box<dyn Iterator<Item = u128> + '_> {
Box::new(self.iter())
}
#[inline]
fn get_docids_for_value_range(
&self,
value_range: RangeInclusive<u128>,
positions_range: Range<u32>,
positions: &mut Vec<u32>,
) {
self.get_positions_for_value_range(value_range, positions_range, positions)
fn get_between_vals(&self, range: RangeInclusive<u128>) -> Vec<u64> {
self.get_between_vals(range)
}
}
@@ -346,19 +340,12 @@ impl CompactSpaceDecompressor {
/// Comparing on compact space: Real dataset 1.08 GElements/s
///
/// Comparing on original space: Real dataset .06 GElements/s (not completely optimized)
#[inline]
pub fn get_positions_for_value_range(
&self,
value_range: RangeInclusive<u128>,
position_range: Range<u32>,
positions: &mut Vec<u32>,
) {
if value_range.start() > value_range.end() {
return;
pub fn get_between_vals(&self, range: RangeInclusive<u128>) -> Vec<u64> {
if range.start() > range.end() {
return Vec::new();
}
let position_range = position_range.start..position_range.end.min(self.num_vals());
let from_value = *value_range.start();
let to_value = *value_range.end();
let from_value = *range.start();
let to_value = *range.end();
assert!(to_value >= from_value);
let compact_from = self.u128_to_compact(from_value);
let compact_to = self.u128_to_compact(to_value);
@@ -366,7 +353,7 @@ impl CompactSpaceDecompressor {
// Quick return, if both ranges fall into the same non-mapped space, the range can't cover
// any values, so we can early exit
match (compact_to, compact_from) {
(Err(pos1), Err(pos2)) if pos1 == pos2 => return,
(Err(pos1), Err(pos2)) if pos1 == pos2 => return Vec::new(),
_ => {}
}
@@ -388,20 +375,19 @@ impl CompactSpaceDecompressor {
});
let range = compact_from..=compact_to;
let scan_num_docs = position_range.end - position_range.start;
let mut positions = Vec::new();
let step_size = 4;
let cutoff = position_range.start + scan_num_docs - scan_num_docs % step_size;
let cutoff = self.params.num_vals - self.params.num_vals % step_size;
let mut push_if_in_range = |idx, val| {
if range.contains(&val) {
positions.push(idx);
}
};
let get_val = |idx| self.params.bit_unpacker.get(idx, &self.data);
let get_val = |idx| self.params.bit_unpacker.get(idx as u64, &self.data);
// unrolled loop
for idx in (position_range.start..cutoff).step_by(step_size as usize) {
for idx in (0..cutoff).step_by(step_size as usize) {
let idx1 = idx;
let idx2 = idx + 1;
let idx3 = idx + 2;
@@ -417,14 +403,17 @@ impl CompactSpaceDecompressor {
}
// handle rest
for idx in cutoff..position_range.end {
for idx in cutoff..self.params.num_vals {
push_if_in_range(idx, get_val(idx));
}
positions
}
#[inline]
fn iter_compact(&self) -> impl Iterator<Item = u64> + '_ {
(0..self.params.num_vals).map(move |idx| self.params.bit_unpacker.get(idx, &self.data))
(0..self.params.num_vals)
.map(move |idx| self.params.bit_unpacker.get(idx as u64, &self.data) as u64)
}
#[inline]
@@ -436,7 +425,7 @@ impl CompactSpaceDecompressor {
}
#[inline]
pub fn get(&self, idx: u32) -> u128 {
pub fn get(&self, idx: u64) -> u128 {
let compact = self.params.bit_unpacker.get(idx, &self.data);
self.compact_to_u128(compact)
}
@@ -450,364 +439,228 @@ impl CompactSpaceDecompressor {
}
}
// TODO reenable what can be reenabled.
// #[cfg(test)]
// mod tests {
//
// use super::*;
// use crate::column::format_version::read_format_version;
// use crate::column::column_footer::read_null_index_footer;
// use crate::column::serialize::U128Header;
// use crate::column::{open_u128, serialize_u128};
//
// #[test]
// fn compact_space_test() {
// let ips = &[
// 2u128, 4u128, 1000, 1001, 1002, 1003, 1004, 1005, 1008, 1010, 1012, 1260,
// ]
// .into_iter()
// .collect();
// let compact_space = get_compact_space(ips, ips.len() as u32, 11);
// let amplitude = compact_space.amplitude_compact_space();
// assert_eq!(amplitude, 17);
// assert_eq!(1, compact_space.u128_to_compact(2).unwrap());
// assert_eq!(2, compact_space.u128_to_compact(3).unwrap());
// assert_eq!(compact_space.u128_to_compact(100).unwrap_err(), 1);
//
// for (num1, num2) in (0..3).tuple_windows() {
// assert_eq!(
// compact_space.get_range_mapping(num1).compact_end() + 1,
// compact_space.get_range_mapping(num2).compact_start
// );
// }
//
// let mut output: Vec<u8> = Vec::new();
// compact_space.serialize(&mut output).unwrap();
//
// assert_eq!(
// compact_space,
// CompactSpace::deserialize(&mut &output[..]).unwrap()
// );
//
// for ip in ips {
// let compact = compact_space.u128_to_compact(*ip).unwrap();
// assert_eq!(compact_space.compact_to_u128(compact), *ip);
// }
// }
//
// #[test]
// fn compact_space_amplitude_test() {
// let ips = &[100000u128, 1000000].into_iter().collect();
// let compact_space = get_compact_space(ips, ips.len() as u32, 1);
// let amplitude = compact_space.amplitude_compact_space();
// assert_eq!(amplitude, 2);
// }
//
// fn test_all(mut data: OwnedBytes, expected: &[u128]) {
// let _header = U128Header::deserialize(&mut data);
// let decompressor = CompactSpaceDecompressor::open(data).unwrap();
// for (idx, expected_val) in expected.iter().cloned().enumerate() {
// let val = decompressor.get(idx as u32);
// assert_eq!(val, expected_val);
//
// let test_range = |range: RangeInclusive<u128>| {
// let expected_positions = expected
// .iter()
// .positions(|val| range.contains(val))
// .map(|pos| pos as u32)
// .collect::<Vec<_>>();
// let mut positions = Vec::new();
// decompressor.get_positions_for_value_range(
// range,
// 0..decompressor.num_vals(),
// &mut positions,
// );
// assert_eq!(positions, expected_positions);
// };
//
// test_range(expected_val.saturating_sub(1)..=expected_val);
// test_range(expected_val..=expected_val);
// test_range(expected_val..=expected_val.saturating_add(1));
// test_range(expected_val.saturating_sub(1)..=expected_val.saturating_add(1));
// }
// }
//
// fn test_aux_vals(u128_vals: &[u128]) -> OwnedBytes {
// let mut out = Vec::new();
// serialize_u128(
// || u128_vals.iter().cloned(),
// u128_vals.len() as u32,
// &mut out,
// )
// .unwrap();
//
// let data = OwnedBytes::new(out);
// let (data, _format_version) = read_format_version(data).unwrap();
// let (data, _null_index_footer) = read_null_index_footer(data).unwrap();
// test_all(data.clone(), u128_vals);
//
// data
// }
//
// #[test]
// fn test_range_1() {
// let vals = &[
// 1u128,
// 100u128,
// 3u128,
// 99999u128,
// 100000u128,
// 100001u128,
// 4_000_211_221u128,
// 4_000_211_222u128,
// 333u128,
// ];
// let mut data = test_aux_vals(vals);
//
// let _header = U128Header::deserialize(&mut data);
// let decomp = CompactSpaceDecompressor::open(data).unwrap();
// let complete_range = 0..vals.len() as u32;
// for (pos, val) in vals.iter().enumerate() {
// let val = *val;
// let pos = pos as u32;
// let mut positions = Vec::new();
// decomp.get_positions_for_value_range(val..=val, pos..pos + 1, &mut positions);
// assert_eq!(positions, vec![pos]);
// }
//
// handle docid range out of bounds
// let positions: Vec<u32> = get_positions_for_value_range_helper(&decomp, 0..=1, 1..u32::MAX);
// assert!(positions.is_empty());
//
// let positions =
// get_positions_for_value_range_helper(&decomp, 0..=1, complete_range.clone());
// assert_eq!(positions, vec![0]);
// let positions =
// get_positions_for_value_range_helper(&decomp, 0..=2, complete_range.clone());
// assert_eq!(positions, vec![0]);
// let positions =
// get_positions_for_value_range_helper(&decomp, 0..=3, complete_range.clone());
// assert_eq!(positions, vec![0, 2]);
// assert_eq!(
// get_positions_for_value_range_helper(
// &decomp,
// 99999u128..=99999u128,
// complete_range.clone()
// ),
// vec![3]
// );
// assert_eq!(
// get_positions_for_value_range_helper(
// &decomp,
// 99999u128..=100000u128,
// complete_range.clone()
// ),
// vec![3, 4]
// );
// assert_eq!(
// get_positions_for_value_range_helper(
// &decomp,
// 99998u128..=100000u128,
// complete_range.clone()
// ),
// vec![3, 4]
// );
// assert_eq!(
// &get_positions_for_value_range_helper(
// &decomp,
// 99998u128..=99999u128,
// complete_range.clone()
// ),
// &[3]
// );
// assert!(get_positions_for_value_range_helper(
// &decomp,
// 99998u128..=99998u128,
// complete_range.clone()
// )
// .is_empty());
// assert_eq!(
// &get_positions_for_value_range_helper(
// &decomp,
// 333u128..=333u128,
// complete_range.clone()
// ),
// &[8]
// );
// assert_eq!(
// &get_positions_for_value_range_helper(
// &decomp,
// 332u128..=333u128,
// complete_range.clone()
// ),
// &[8]
// );
// assert_eq!(
// &get_positions_for_value_range_helper(
// &decomp,
// 332u128..=334u128,
// complete_range.clone()
// ),
// &[8]
// );
// assert_eq!(
// &get_positions_for_value_range_helper(
// &decomp,
// 333u128..=334u128,
// complete_range.clone()
// ),
// &[8]
// );
//
// assert_eq!(
// &get_positions_for_value_range_helper(
// &decomp,
// 4_000_211_221u128..=5_000_000_000u128,
// complete_range
// ),
// &[6, 7]
// );
// }
//
// #[test]
// fn test_empty() {
// let vals = &[];
// let data = test_aux_vals(vals);
// let _decomp = CompactSpaceDecompressor::open(data).unwrap();
// }
//
// #[test]
// fn test_range_2() {
// let vals = &[
// 100u128,
// 99999u128,
// 100000u128,
// 100001u128,
// 4_000_211_221u128,
// 4_000_211_222u128,
// 333u128,
// ];
// let mut data = test_aux_vals(vals);
// let _header = U128Header::deserialize(&mut data);
// let decomp = CompactSpaceDecompressor::open(data).unwrap();
// let complete_range = 0..vals.len() as u32;
// assert!(
// &get_positions_for_value_range_helper(&decomp, 0..=5, complete_range.clone())
// .is_empty(),
// );
// assert_eq!(
// &get_positions_for_value_range_helper(&decomp, 0..=100, complete_range.clone()),
// &[0]
// );
// assert_eq!(
// &get_positions_for_value_range_helper(&decomp, 0..=105, complete_range),
// &[0]
// );
// }
//
// fn get_positions_for_value_range_helper<C: Column<T> + ?Sized, T: PartialOrd>(
// column: &C,
// value_range: RangeInclusive<T>,
// doc_id_range: Range<u32>,
// ) -> Vec<u32> {
// let mut positions = Vec::new();
// column.get_docids_for_value_range(value_range, doc_id_range, &mut positions);
// positions
// }
//
// #[test]
// fn test_range_3() {
// let vals = &[
// 200u128,
// 201,
// 202,
// 203,
// 204,
// 204,
// 206,
// 207,
// 208,
// 209,
// 210,
// 1_000_000,
// 5_000_000_000,
// ];
// let mut out = Vec::new();
// serialize_u128(|| vals.iter().cloned(), vals.len() as u32, &mut out).unwrap();
// let decomp = open_u128::<u128>(OwnedBytes::new(out)).unwrap();
// let complete_range = 0..vals.len() as u32;
//
// assert_eq!(
// get_positions_for_value_range_helper(&*decomp, 199..=200, complete_range.clone()),
// vec![0]
// );
//
// assert_eq!(
// get_positions_for_value_range_helper(&*decomp, 199..=201, complete_range.clone()),
// vec![0, 1]
// );
//
// assert_eq!(
// get_positions_for_value_range_helper(&*decomp, 200..=200, complete_range.clone()),
// vec![0]
// );
//
// assert_eq!(
// get_positions_for_value_range_helper(&*decomp, 1_000_000..=1_000_000, complete_range),
// vec![11]
// );
// }
//
// #[test]
// fn test_bug1() {
// let vals = &[9223372036854775806];
// let _data = test_aux_vals(vals);
// }
//
// #[test]
// fn test_bug2() {
// let vals = &[340282366920938463463374607431768211455u128];
// let _data = test_aux_vals(vals);
// }
//
// #[test]
// fn test_bug3() {
// let vals = &[340282366920938463463374607431768211454];
// let _data = test_aux_vals(vals);
// }
//
// #[test]
// fn test_bug4() {
// let vals = &[340282366920938463463374607431768211455, 0];
// let _data = test_aux_vals(vals);
// }
//
// #[test]
// fn test_first_large_gaps() {
// let vals = &[1_000_000_000u128; 100];
// let _data = test_aux_vals(vals);
// }
// use itertools::Itertools;
// use proptest::prelude::*;
//
// fn num_strategy() -> impl Strategy<Value = u128> {
// prop_oneof![
// 1 => prop::num::u128::ANY.prop_map(|num| u128::MAX - (num % 10) ),
// 1 => prop::num::u128::ANY.prop_map(|num| i64::MAX as u128 + 5 - (num % 10) ),
// 1 => prop::num::u128::ANY.prop_map(|num| i128::MAX as u128 + 5 - (num % 10) ),
// 1 => prop::num::u128::ANY.prop_map(|num| num % 10 ),
// 20 => prop::num::u128::ANY,
// ]
// }
//
// proptest! {
// #![proptest_config(ProptestConfig::with_cases(10))]
//
// #[test]
// fn compress_decompress_random(vals in proptest::collection::vec(num_strategy()
// , 1..1000)) {
// let _data = test_aux_vals(&vals);
// }
// }
// }
//
#[cfg(test)]
mod tests {
use super::*;
use crate::{open_u128, serialize_u128, VecColumn};
#[test]
fn compact_space_test() {
let ips = &[
2u128, 4u128, 1000, 1001, 1002, 1003, 1004, 1005, 1008, 1010, 1012, 1260,
]
.into_iter()
.collect();
let compact_space = get_compact_space(ips, ips.len() as u64, 11);
let amplitude = compact_space.amplitude_compact_space();
assert_eq!(amplitude, 17);
assert_eq!(1, compact_space.u128_to_compact(2).unwrap());
assert_eq!(2, compact_space.u128_to_compact(3).unwrap());
assert_eq!(compact_space.u128_to_compact(100).unwrap_err(), 1);
for (num1, num2) in (0..3).tuple_windows() {
assert_eq!(
compact_space.get_range_mapping(num1).compact_end() + 1,
compact_space.get_range_mapping(num2).compact_start
);
}
let mut output: Vec<u8> = Vec::new();
compact_space.serialize(&mut output).unwrap();
assert_eq!(
compact_space,
CompactSpace::deserialize(&mut &output[..]).unwrap()
);
for ip in ips {
let compact = compact_space.u128_to_compact(*ip).unwrap();
assert_eq!(compact_space.compact_to_u128(compact), *ip);
}
}
#[test]
fn compact_space_amplitude_test() {
let ips = &[100000u128, 1000000].into_iter().collect();
let compact_space = get_compact_space(ips, ips.len() as u64, 1);
let amplitude = compact_space.amplitude_compact_space();
assert_eq!(amplitude, 2);
}
fn test_all(data: OwnedBytes, expected: &[u128]) {
let decompressor = CompactSpaceDecompressor::open(data).unwrap();
for (idx, expected_val) in expected.iter().cloned().enumerate() {
let val = decompressor.get(idx as u64);
assert_eq!(val, expected_val);
let test_range = |range: RangeInclusive<u128>| {
let expected_positions = expected
.iter()
.positions(|val| range.contains(val))
.map(|pos| pos as u64)
.collect::<Vec<_>>();
let positions = decompressor.get_between_vals(range);
assert_eq!(positions, expected_positions);
};
test_range(expected_val.saturating_sub(1)..=expected_val);
test_range(expected_val..=expected_val);
test_range(expected_val..=expected_val.saturating_add(1));
test_range(expected_val.saturating_sub(1)..=expected_val.saturating_add(1));
}
}
fn test_aux_vals(u128_vals: &[u128]) -> OwnedBytes {
let mut out = Vec::new();
serialize_u128(VecColumn::from(u128_vals), &mut out).unwrap();
let data = OwnedBytes::new(out);
test_all(data.clone(), u128_vals);
data
}
#[test]
fn test_range_1() {
let vals = &[
1u128,
100u128,
3u128,
99999u128,
100000u128,
100001u128,
4_000_211_221u128,
4_000_211_222u128,
333u128,
];
let data = test_aux_vals(vals);
let decomp = CompactSpaceDecompressor::open(data).unwrap();
let positions = decomp.get_between_vals(0..=1);
assert_eq!(positions, vec![0]);
let positions = decomp.get_between_vals(0..=2);
assert_eq!(positions, vec![0]);
let positions = decomp.get_between_vals(0..=3);
assert_eq!(positions, vec![0, 2]);
assert_eq!(decomp.get_between_vals(99999u128..=99999u128), vec![3]);
assert_eq!(decomp.get_between_vals(99999u128..=100000u128), vec![3, 4]);
assert_eq!(decomp.get_between_vals(99998u128..=100000u128), vec![3, 4]);
assert_eq!(decomp.get_between_vals(99998u128..=99999u128), vec![3]);
assert_eq!(decomp.get_between_vals(99998u128..=99998u128), vec![]);
assert_eq!(decomp.get_between_vals(333u128..=333u128), vec![8]);
assert_eq!(decomp.get_between_vals(332u128..=333u128), vec![8]);
assert_eq!(decomp.get_between_vals(332u128..=334u128), vec![8]);
assert_eq!(decomp.get_between_vals(333u128..=334u128), vec![8]);
assert_eq!(
decomp.get_between_vals(4_000_211_221u128..=5_000_000_000u128),
vec![6, 7]
);
}
#[test]
fn test_empty() {
let vals = &[];
let data = test_aux_vals(vals);
let _decomp = CompactSpaceDecompressor::open(data).unwrap();
}
#[test]
fn test_range_2() {
let vals = &[
100u128,
99999u128,
100000u128,
100001u128,
4_000_211_221u128,
4_000_211_222u128,
333u128,
];
let data = test_aux_vals(vals);
let decomp = CompactSpaceDecompressor::open(data).unwrap();
let positions = decomp.get_between_vals(0..=5);
assert_eq!(positions, vec![]);
let positions = decomp.get_between_vals(0..=100);
assert_eq!(positions, vec![0]);
let positions = decomp.get_between_vals(0..=105);
assert_eq!(positions, vec![0]);
}
#[test]
fn test_range_3() {
let vals = &[
200u128,
201,
202,
203,
204,
204,
206,
207,
208,
209,
210,
1_000_000,
5_000_000_000,
];
let mut out = Vec::new();
serialize_u128(VecColumn::from(vals), &mut out).unwrap();
let decomp = open_u128(OwnedBytes::new(out)).unwrap();
assert_eq!(decomp.get_between_vals(199..=200), vec![0]);
assert_eq!(decomp.get_between_vals(199..=201), vec![0, 1]);
assert_eq!(decomp.get_between_vals(200..=200), vec![0]);
assert_eq!(decomp.get_between_vals(1_000_000..=1_000_000), vec![11]);
}
#[test]
fn test_bug1() {
let vals = &[9223372036854775806];
let _data = test_aux_vals(vals);
}
#[test]
fn test_bug2() {
let vals = &[340282366920938463463374607431768211455u128];
let _data = test_aux_vals(vals);
}
#[test]
fn test_bug3() {
let vals = &[340282366920938463463374607431768211454];
let _data = test_aux_vals(vals);
}
#[test]
fn test_bug4() {
let vals = &[340282366920938463463374607431768211455, 0];
let _data = test_aux_vals(vals);
}
#[test]
fn test_first_large_gaps() {
let vals = &[1_000_000_000u128; 100];
let _data = test_aux_vals(vals);
}
use itertools::Itertools;
use proptest::prelude::*;
fn num_strategy() -> impl Strategy<Value = u128> {
prop_oneof![
1 => prop::num::u128::ANY.prop_map(|num| u128::MAX - (num % 10) ),
1 => prop::num::u128::ANY.prop_map(|num| i64::MAX as u128 + 5 - (num % 10) ),
1 => prop::num::u128::ANY.prop_map(|num| i128::MAX as u128 + 5 - (num % 10) ),
1 => prop::num::u128::ANY.prop_map(|num| num % 10 ),
20 => prop::num::u128::ANY,
]
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(10))]
#[test]
fn compress_decompress_random(vals in proptest::collection::vec(num_strategy()
, 1..1000)) {
let _data = test_aux_vals(&vals);
}
}
}

170
fastfield_codecs/src/gcd.rs Normal file
View File

@@ -0,0 +1,170 @@
use std::num::NonZeroU64;
use fastdivide::DividerU64;
/// Compute the gcd of two non null numbers.
///
/// It is recommended, but not required, to feed values such that `large >= small`.
fn compute_gcd(mut large: NonZeroU64, mut small: NonZeroU64) -> NonZeroU64 {
loop {
let rem: u64 = large.get() % small;
if let Some(new_small) = NonZeroU64::new(rem) {
(large, small) = (small, new_small);
} else {
return small;
}
}
}
// Find GCD for iterator of numbers
pub fn find_gcd(numbers: impl Iterator<Item = u64>) -> Option<NonZeroU64> {
let mut numbers = numbers.flat_map(NonZeroU64::new);
let mut gcd: NonZeroU64 = numbers.next()?;
if gcd.get() == 1 {
return Some(gcd);
}
let mut gcd_divider = DividerU64::divide_by(gcd.get());
for val in numbers {
let remainder = val.get() - (gcd_divider.divide(val.get())) * gcd.get();
if remainder == 0 {
continue;
}
gcd = compute_gcd(val, gcd);
if gcd.get() == 1 {
return Some(gcd);
}
gcd_divider = DividerU64::divide_by(gcd.get());
}
Some(gcd)
}
#[cfg(test)]
mod tests {
use std::io;
use std::num::NonZeroU64;
use ownedbytes::OwnedBytes;
use crate::gcd::{compute_gcd, find_gcd};
use crate::{FastFieldCodecType, VecColumn};
fn test_fastfield_gcd_i64_with_codec(
codec_type: FastFieldCodecType,
num_vals: usize,
) -> io::Result<()> {
let mut vals: Vec<i64> = (-4..=(num_vals as i64) - 5).map(|val| val * 1000).collect();
let mut buffer: Vec<u8> = Vec::new();
crate::serialize(VecColumn::from(&vals), &mut buffer, &[codec_type])?;
let buffer = OwnedBytes::new(buffer);
let column = crate::open::<i64>(buffer.clone())?;
assert_eq!(column.get_val(0), -4000i64);
assert_eq!(column.get_val(1), -3000i64);
assert_eq!(column.get_val(2), -2000i64);
assert_eq!(column.max_value(), (num_vals as i64 - 5) * 1000);
assert_eq!(column.min_value(), -4000i64);
// Can't apply gcd
let mut buffer_without_gcd = Vec::new();
vals.pop();
vals.push(1001i64);
crate::serialize(
VecColumn::from(&vals),
&mut buffer_without_gcd,
&[codec_type],
)?;
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
assert!(buffer_without_gcd.len() > buffer.len());
Ok(())
}
#[test]
fn test_fastfield_gcd_i64() -> io::Result<()> {
for &codec_type in &[
FastFieldCodecType::Bitpacked,
FastFieldCodecType::BlockwiseLinear,
FastFieldCodecType::Linear,
] {
test_fastfield_gcd_i64_with_codec(codec_type, 5500)?;
}
Ok(())
}
fn test_fastfield_gcd_u64_with_codec(
codec_type: FastFieldCodecType,
num_vals: usize,
) -> io::Result<()> {
let mut vals: Vec<u64> = (1..=num_vals).map(|i| i as u64 * 1000u64).collect();
let mut buffer: Vec<u8> = Vec::new();
crate::serialize(VecColumn::from(&vals), &mut buffer, &[codec_type])?;
let buffer = OwnedBytes::new(buffer);
let column = crate::open::<u64>(buffer.clone())?;
assert_eq!(column.get_val(0), 1000u64);
assert_eq!(column.get_val(1), 2000u64);
assert_eq!(column.get_val(2), 3000u64);
assert_eq!(column.max_value(), num_vals as u64 * 1000);
assert_eq!(column.min_value(), 1000u64);
// Can't apply gcd
let mut buffer_without_gcd = Vec::new();
vals.pop();
vals.push(1001u64);
crate::serialize(
VecColumn::from(&vals),
&mut buffer_without_gcd,
&[codec_type],
)?;
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
assert!(buffer_without_gcd.len() > buffer.len());
Ok(())
}
#[test]
fn test_fastfield_gcd_u64() -> io::Result<()> {
for &codec_type in &[
FastFieldCodecType::Bitpacked,
FastFieldCodecType::BlockwiseLinear,
FastFieldCodecType::Linear,
] {
test_fastfield_gcd_u64_with_codec(codec_type, 5500)?;
}
Ok(())
}
#[test]
pub fn test_fastfield2() {
let test_fastfield = crate::serialize_and_load(&[100u64, 200u64, 300u64]);
assert_eq!(test_fastfield.get_val(0), 100);
assert_eq!(test_fastfield.get_val(1), 200);
assert_eq!(test_fastfield.get_val(2), 300);
}
#[test]
fn test_compute_gcd() {
let test_compute_gcd_aux = |large, small, expected| {
let large = NonZeroU64::new(large).unwrap();
let small = NonZeroU64::new(small).unwrap();
let expected = NonZeroU64::new(expected).unwrap();
assert_eq!(compute_gcd(small, large), expected);
assert_eq!(compute_gcd(large, small), expected);
};
test_compute_gcd_aux(1, 4, 1);
test_compute_gcd_aux(2, 4, 2);
test_compute_gcd_aux(10, 25, 5);
test_compute_gcd_aux(25, 25, 25);
}
#[test]
fn find_gcd_test() {
assert_eq!(find_gcd([0].into_iter()), None);
assert_eq!(find_gcd([0, 10].into_iter()), NonZeroU64::new(10));
assert_eq!(find_gcd([10, 0].into_iter()), NonZeroU64::new(10));
assert_eq!(find_gcd([].into_iter()), None);
assert_eq!(find_gcd([15, 30, 5, 10].into_iter()), NonZeroU64::new(5));
assert_eq!(find_gcd([15, 16, 10].into_iter()), NonZeroU64::new(1));
assert_eq!(find_gcd([0, 5, 5, 5].into_iter()), NonZeroU64::new(5));
assert_eq!(find_gcd([0, 0].into_iter()), None);
}
}

View File

@@ -1,10 +1,468 @@
#![warn(missing_docs)]
#![cfg_attr(all(feature = "unstable", test), feature(test))]
//! # `fastfield_codecs`
//!
//! - Columnar storage of data for tantivy [`Column`].
//! - Encode data in different codecs.
//! - Monotonically map values to u64/u128
#[cfg(test)]
#[macro_use]
extern crate more_asserts;
pub use columnar::ColumnValues as Column;
#[cfg(all(test, feature = "unstable"))]
extern crate test;
use std::io;
use std::io::Write;
use std::sync::Arc;
use common::BinarySerializable;
use compact_space::CompactSpaceDecompressor;
use ownedbytes::OwnedBytes;
use serialize::Header;
mod bitpacked;
mod blockwise_linear;
mod compact_space;
mod line;
mod linear;
mod monotonic_mapping;
mod column;
mod gcd;
mod serialize;
use self::bitpacked::BitpackedCodec;
use self::blockwise_linear::BlockwiseLinearCodec;
pub use self::column::{monotonic_map_column, Column, ColumnReader, VecColumn};
use self::linear::LinearCodec;
pub use self::monotonic_mapping::MonotonicallyMappableToU64;
pub use self::serialize::{
estimate, serialize, serialize_and_load, serialize_u128, NormalizedHeader,
};
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
#[repr(u8)]
pub enum FastFieldCodecType {
Bitpacked = 1,
Linear = 2,
BlockwiseLinear = 3,
}
impl BinarySerializable for FastFieldCodecType {
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
self.to_code().serialize(wrt)
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let code = u8::deserialize(reader)?;
let codec_type: Self = Self::from_code(code)
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
Ok(codec_type)
}
}
impl FastFieldCodecType {
pub fn to_code(self) -> u8 {
self as u8
}
pub fn from_code(code: u8) -> Option<Self> {
match code {
1 => Some(Self::Bitpacked),
2 => Some(Self::Linear),
3 => Some(Self::BlockwiseLinear),
_ => None,
}
}
}
/// Returns the correct codec reader wrapped in the `Arc` for the data.
pub fn open_u128(bytes: OwnedBytes) -> io::Result<Arc<dyn Column<u128>>> {
Ok(Arc::new(CompactSpaceDecompressor::open(bytes)?))
}
/// Returns the correct codec reader wrapped in the `Arc` for the data.
pub fn open<T: MonotonicallyMappableToU64>(
mut bytes: OwnedBytes,
) -> io::Result<Arc<dyn Column<T>>> {
let header = Header::deserialize(&mut bytes)?;
match header.codec_type {
FastFieldCodecType::Bitpacked => open_specific_codec::<BitpackedCodec, _>(bytes, &header),
FastFieldCodecType::Linear => open_specific_codec::<LinearCodec, _>(bytes, &header),
FastFieldCodecType::BlockwiseLinear => {
open_specific_codec::<BlockwiseLinearCodec, _>(bytes, &header)
}
}
}
fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64>(
bytes: OwnedBytes,
header: &Header,
) -> io::Result<Arc<dyn Column<Item>>> {
let normalized_header = header.normalized();
let reader = C::open_from_bytes(bytes, normalized_header)?;
let min_value = header.min_value;
if let Some(gcd) = header.gcd {
let monotonic_mapping = move |val: u64| Item::from_u64(min_value + val * gcd.get());
Ok(Arc::new(monotonic_map_column(reader, monotonic_mapping)))
} else {
let monotonic_mapping = move |val: u64| Item::from_u64(min_value + val);
Ok(Arc::new(monotonic_map_column(reader, monotonic_mapping)))
}
}
/// The FastFieldSerializerEstimate trait is required on all variants
/// of fast field compressions, to decide which one to choose.
trait FastFieldCodec: 'static {
/// A codex needs to provide a unique name and id, which is
/// used for debugging and de/serialization.
const CODEC_TYPE: FastFieldCodecType;
type Reader: Column<u64> + 'static;
/// Reads the metadata and returns the CodecReader
fn open_from_bytes(bytes: OwnedBytes, header: NormalizedHeader) -> io::Result<Self::Reader>;
/// Serializes the data using the serializer into write.
///
/// The column iterator should be preferred over using column `get_val` method for
/// performance reasons.
fn serialize(column: &dyn Column<u64>, write: &mut impl Write) -> io::Result<()>;
/// Returns an estimate of the compression ratio.
/// If the codec is not applicable, returns `None`.
///
/// The baseline is uncompressed 64bit data.
///
/// It could make sense to also return a value representing
/// computational complexity.
fn estimate(column: &impl Column) -> Option<f32>;
}
pub const ALL_CODEC_TYPES: [FastFieldCodecType; 3] = [
FastFieldCodecType::Bitpacked,
FastFieldCodecType::BlockwiseLinear,
FastFieldCodecType::Linear,
];
#[cfg(test)]
mod tests {
use proptest::prelude::*;
use proptest::strategy::Strategy;
use proptest::{prop_oneof, proptest};
use crate::bitpacked::BitpackedCodec;
use crate::blockwise_linear::BlockwiseLinearCodec;
use crate::linear::LinearCodec;
use crate::serialize::Header;
pub(crate) fn create_and_validate<Codec: FastFieldCodec>(
data: &[u64],
name: &str,
) -> Option<(f32, f32)> {
let col = &VecColumn::from(data);
let header = Header::compute_header(col, &[Codec::CODEC_TYPE])?;
let normalized_col = header.normalize_column(col);
let estimation = Codec::estimate(&normalized_col)?;
let mut out = Vec::new();
let col = VecColumn::from(data);
serialize(col, &mut out, &[Codec::CODEC_TYPE]).unwrap();
let actual_compression = out.len() as f32 / (data.len() as f32 * 8.0);
let reader = crate::open::<u64>(OwnedBytes::new(out)).unwrap();
assert_eq!(reader.num_vals(), data.len() as u64);
for (doc, orig_val) in data.iter().copied().enumerate() {
let val = reader.get_val(doc as u64);
assert_eq!(
val, orig_val,
"val `{val}` does not match orig_val {orig_val:?}, in data set {name}, data \
`{data:?}`",
);
}
Some((estimation, actual_compression))
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(100))]
#[test]
fn test_proptest_small_bitpacked(data in proptest::collection::vec(num_strategy(), 1..10)) {
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
}
#[test]
fn test_proptest_small_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
}
#[test]
fn test_proptest_small_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
}
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(10))]
#[test]
fn test_proptest_large_bitpacked(data in proptest::collection::vec(num_strategy(), 1..6000)) {
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
}
#[test]
fn test_proptest_large_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
}
#[test]
fn test_proptest_large_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
}
}
fn num_strategy() -> impl Strategy<Value = u64> {
prop_oneof![
1 => prop::num::u64::ANY.prop_map(|num| u64::MAX - (num % 10) ),
1 => prop::num::u64::ANY.prop_map(|num| num % 10 ),
20 => prop::num::u64::ANY,
]
}
pub fn get_codec_test_datasets() -> Vec<(Vec<u64>, &'static str)> {
let mut data_and_names = vec![];
let data = (10..=10_000_u64).collect::<Vec<_>>();
data_and_names.push((data, "simple monotonically increasing"));
data_and_names.push((
vec![5, 6, 7, 8, 9, 10, 99, 100],
"offset in linear interpol",
));
data_and_names.push((vec![5, 50, 3, 13, 1, 1000, 35], "rand small"));
data_and_names.push((vec![10], "single value"));
data_and_names.push((
vec![1572656989877777, 1170935903116329, 720575940379279, 0],
"overflow error",
));
data_and_names
}
fn test_codec<C: FastFieldCodec>() {
let codec_name = format!("{:?}", C::CODEC_TYPE);
for (data, dataset_name) in get_codec_test_datasets() {
let estimate_actual_opt: Option<(f32, f32)> =
crate::tests::create_and_validate::<C>(&data, dataset_name);
let result = if let Some((estimate, actual)) = estimate_actual_opt {
format!("Estimate `{estimate}` Actual `{actual}`")
} else {
"Disabled".to_string()
};
println!("Codec {codec_name}, DataSet {dataset_name}, {result}");
}
}
#[test]
fn test_codec_bitpacking() {
test_codec::<BitpackedCodec>();
}
#[test]
fn test_codec_interpolation() {
test_codec::<LinearCodec>();
}
#[test]
fn test_codec_multi_interpolation() {
test_codec::<BlockwiseLinearCodec>();
}
use super::*;
#[test]
fn estimation_good_interpolation_case() {
let data = (10..=20000_u64).collect::<Vec<_>>();
let data: VecColumn = data.as_slice().into();
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
assert_le!(linear_interpol_estimation, 0.01);
let multi_linear_interpol_estimation = BlockwiseLinearCodec::estimate(&data).unwrap();
assert_le!(multi_linear_interpol_estimation, 0.2);
assert_lt!(linear_interpol_estimation, multi_linear_interpol_estimation);
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
assert_lt!(linear_interpol_estimation, bitpacked_estimation);
}
#[test]
fn estimation_test_bad_interpolation_case() {
let data: &[u64] = &[200, 10, 10, 10, 10, 1000, 20];
let data: VecColumn = data.into();
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
assert_le!(linear_interpol_estimation, 0.34);
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
}
#[test]
fn estimation_prefer_bitpacked() {
let data = VecColumn::from(&[10, 10, 10, 10]);
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
}
#[test]
fn estimation_test_bad_interpolation_case_monotonically_increasing() {
let mut data: Vec<u64> = (200..=20000_u64).collect();
data.push(1_000_000);
let data: VecColumn = data.as_slice().into();
// in this case the linear interpolation can't in fact not be worse than bitpacking,
// but the estimator adds some threshold, which leads to estimated worse behavior
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
assert_le!(linear_interpol_estimation, 0.35);
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
assert_le!(bitpacked_estimation, 0.32);
assert_le!(bitpacked_estimation, linear_interpol_estimation);
}
#[test]
fn test_fast_field_codec_type_to_code() {
let mut count_codec = 0;
for code in 0..=255 {
if let Some(codec_type) = FastFieldCodecType::from_code(code) {
assert_eq!(codec_type.to_code(), code);
count_codec += 1;
}
}
assert_eq!(count_codec, 3);
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use std::sync::Arc;
use ownedbytes::OwnedBytes;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use test::{self, Bencher};
use super::*;
use crate::Column;
fn get_data() -> Vec<u64> {
let mut rng = StdRng::seed_from_u64(2u64);
let mut data: Vec<_> = (100..55000_u64)
.map(|num| num + rng.gen::<u8>() as u64)
.collect();
data.push(99_000);
data.insert(1000, 2000);
data.insert(2000, 100);
data.insert(3000, 4100);
data.insert(4000, 100);
data.insert(5000, 800);
data
}
#[inline(never)]
fn value_iter() -> impl Iterator<Item = u64> {
0..20_000
}
fn get_reader_for_bench<Codec: FastFieldCodec>(data: &[u64]) -> Codec::Reader {
let mut bytes = Vec::new();
let min_value = *data.iter().min().unwrap();
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
let col = VecColumn::from(&data);
let normalized_header = crate::NormalizedHeader {
num_vals: col.num_vals(),
max_value: col.max_value(),
};
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
Codec::open_from_bytes(OwnedBytes::new(bytes), normalized_header).unwrap()
}
fn bench_get<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
let col = get_reader_for_bench::<Codec>(data);
b.iter(|| {
let mut sum = 0u64;
for pos in value_iter() {
let val = col.get_val(pos as u64);
sum = sum.wrapping_add(val);
}
sum
});
}
#[inline(never)]
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn Column>) {
b.iter(|| {
let mut sum = 0u64;
for pos in value_iter() {
let val = col.get_val(pos as u64);
sum = sum.wrapping_add(val);
}
sum
});
}
fn bench_get_dynamic<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
let col = Arc::new(get_reader_for_bench::<Codec>(data));
bench_get_dynamic_helper(b, col);
}
fn bench_create<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
let min_value = *data.iter().min().unwrap();
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
let mut bytes = Vec::new();
b.iter(|| {
bytes.clear();
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
});
}
#[bench]
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<BlockwiseLinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<BlockwiseLinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
}
}

View File

@@ -1,9 +1,9 @@
use std::io;
use std::num::NonZeroU32;
use std::num::NonZeroU64;
use common::{BinarySerializable, VInt};
use crate::column_values::ColumnValues;
use crate::Column;
const MID_POINT: u64 = (1u64 << 32) - 1u64;
@@ -29,7 +29,7 @@ pub struct Line {
/// compute_slope(y0, y1)
/// = compute_slope(y0 + X % 2^64, y1 + X % 2^64)
/// `
fn compute_slope(y0: u64, y1: u64, num_vals: NonZeroU32) -> u64 {
fn compute_slope(y0: u64, y1: u64, num_vals: NonZeroU64) -> u64 {
let dy = y1.wrapping_sub(y0);
let sign = dy <= (1 << 63);
let abs_dy = if sign {
@@ -43,7 +43,7 @@ fn compute_slope(y0: u64, y1: u64, num_vals: NonZeroU32) -> u64 {
return 0u64;
}
let abs_slope = (abs_dy << 32) / num_vals.get() as u64;
let abs_slope = (abs_dy << 32) / num_vals.get();
if sign {
abs_slope
} else {
@@ -62,43 +62,30 @@ fn compute_slope(y0: u64, y1: u64, num_vals: NonZeroU32) -> u64 {
impl Line {
#[inline(always)]
pub fn eval(&self, x: u32) -> u64 {
let linear_part = ((x as u64).wrapping_mul(self.slope) >> 32) as i32 as u64;
pub fn eval(&self, x: u64) -> u64 {
let linear_part = (x.wrapping_mul(self.slope) >> 32) as i32 as u64;
self.intercept.wrapping_add(linear_part)
}
// Same as train, but the intercept is only estimated from provided sample positions
pub fn estimate(sample_positions_and_values: &[(u64, u64)]) -> Self {
let first_val = sample_positions_and_values[0].1;
let last_val = sample_positions_and_values[sample_positions_and_values.len() - 1].1;
let num_vals = sample_positions_and_values[sample_positions_and_values.len() - 1].0 + 1;
Self::train_from(
first_val,
last_val,
num_vals as u32,
sample_positions_and_values.iter().cloned(),
)
pub fn estimate(ys: &dyn Column, sample_positions: &[u64]) -> Self {
Self::train_from(ys, sample_positions.iter().cloned())
}
// Intercept is only computed from provided positions
fn train_from(
first_val: u64,
last_val: u64,
num_vals: u32,
positions_and_values: impl Iterator<Item = (u64, u64)>,
) -> Self {
// TODO replace with let else
let idx_last_val = if let Some(idx_last_val) = NonZeroU32::new(num_vals - 1) {
idx_last_val
fn train_from(ys: &dyn Column, positions: impl Iterator<Item = u64>) -> Self {
let last_idx = if let Some(last_idx) = NonZeroU64::new(ys.num_vals() - 1) {
last_idx
} else {
return Line::default();
};
let y0 = first_val;
let y1 = last_val;
let mut ys_reader = ys.reader();
let y0 = ys_reader.seek(0);
let y1 = ys_reader.seek(last_idx.get());
// We first independently pick our slope.
let slope = compute_slope(y0, y1, idx_last_val);
let slope = compute_slope(y0, y1, last_idx);
// We picked our slope. Note that it does not have to be perfect.
// Now we need to compute the best intercept.
@@ -128,8 +115,12 @@ impl Line {
intercept: 0,
};
let heuristic_shift = y0.wrapping_sub(MID_POINT);
line.intercept = positions_and_values
.map(|(pos, y)| y.wrapping_sub(line.eval(pos as u32)))
let mut ys_reader = ys.reader();
line.intercept = positions
.map(|pos| {
let y = ys_reader.seek(pos);
y.wrapping_sub(line.eval(pos))
})
.min_by_key(|&val| val.wrapping_sub(heuristic_shift))
.unwrap_or(0u64); //< Never happens.
line
@@ -145,15 +136,8 @@ impl Line {
///
/// This function is only invariable by translation if all of the
/// `ys` are packaged into half of the space. (See heuristic below)
pub fn train(ys: &dyn ColumnValues) -> Self {
let first_val = ys.iter().next().unwrap();
let last_val = ys.iter().nth(ys.num_vals() as usize - 1).unwrap();
Self::train_from(
first_val,
last_val,
ys.num_vals(),
ys.iter().enumerate().map(|(pos, val)| (pos as u64, val)),
)
pub fn train(ys: &dyn Column) -> Self {
Self::train_from(ys, 0..ys.num_vals())
}
}
@@ -174,7 +158,7 @@ impl BinarySerializable for Line {
#[cfg(test)]
mod tests {
use super::*;
use crate::column_values::VecColumn;
use crate::VecColumn;
/// Test training a line and ensuring that the maximum difference between
/// the data points and the line is `expected`.
@@ -199,7 +183,7 @@ mod tests {
let line = Line::train(&VecColumn::from(&ys));
ys.iter()
.enumerate()
.map(|(x, y)| y.wrapping_sub(line.eval(x as u32)))
.map(|(x, y)| y.wrapping_sub(line.eval(x as u64)))
.max()
}

View File

@@ -1,11 +1,12 @@
use std::io::{self, Write};
use common::{BinarySerializable, OwnedBytes};
use common::BinarySerializable;
use ownedbytes::OwnedBytes;
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use super::line::Line;
use super::serialize::NormalizedHeader;
use super::{ColumnValues, FastFieldCodec, FastFieldCodecType};
use crate::line::Line;
use crate::serialize::NormalizedHeader;
use crate::{Column, FastFieldCodec, FastFieldCodecType};
/// Depending on the field type, a different
/// fast field is required.
@@ -16,27 +17,27 @@ pub struct LinearReader {
header: NormalizedHeader,
}
impl ColumnValues for LinearReader {
impl Column for LinearReader {
#[inline]
fn get_val(&self, doc: u32) -> u64 {
fn get_val(&self, doc: u64) -> u64 {
let interpoled_val: u64 = self.linear_params.line.eval(doc);
let bitpacked_diff = self.linear_params.bit_unpacker.get(doc, &self.data);
interpoled_val.wrapping_add(bitpacked_diff)
}
#[inline(always)]
#[inline]
fn min_value(&self) -> u64 {
// The LinearReader assumes a normalized vector.
0u64
}
#[inline(always)]
#[inline]
fn max_value(&self) -> u64 {
self.header.max_value
}
#[inline]
fn num_vals(&self) -> u32 {
fn num_vals(&self) -> u64 {
self.header.num_vals
}
}
@@ -84,7 +85,7 @@ impl FastFieldCodec for LinearCodec {
}
/// Creates a new fast field serializer.
fn serialize(column: &dyn ColumnValues, write: &mut impl Write) -> io::Result<()> {
fn serialize(column: &dyn Column, write: &mut impl Write) -> io::Result<()> {
assert_eq!(column.min_value(), 0);
let line = Line::train(column);
@@ -92,7 +93,7 @@ impl FastFieldCodec for LinearCodec {
.iter()
.enumerate()
.map(|(pos, actual_value)| {
let calculated_value = line.eval(pos as u32);
let calculated_value = line.eval(pos as u64);
actual_value.wrapping_sub(calculated_value)
})
.max()
@@ -107,7 +108,7 @@ impl FastFieldCodec for LinearCodec {
let mut bit_packer = BitPacker::new();
for (pos, actual_value) in column.iter().enumerate() {
let calculated_value = line.eval(pos as u32);
let calculated_value = line.eval(pos as u64);
let offset = actual_value.wrapping_sub(calculated_value);
bit_packer.write(offset, num_bits, write)?;
}
@@ -120,26 +121,25 @@ impl FastFieldCodec for LinearCodec {
/// where the local maxima for the deviation of the calculated value are and
/// the offset to shift all values to >=0 is also unknown.
#[allow(clippy::question_mark)]
fn estimate(column: &dyn ColumnValues) -> Option<f32> {
fn estimate(column: &impl Column) -> Option<f32> {
if column.num_vals() < 3 {
return None; // disable compressor for this case
}
let limit_num_vals = column.num_vals().min(100_000);
// let's sample at 0%, 5%, 10% .. 95%, 100%
let num_vals = column.num_vals() as f32 / 100.0;
let sample_positions = (0..20)
.map(|pos| (num_vals * pos as f32 * 5.0) as u64)
.collect::<Vec<_>>();
let num_samples = 100;
let step_size = (limit_num_vals / num_samples).max(1); // 20 samples
let mut sample_positions_and_values: Vec<_> = Vec::new();
for (pos, val) in column.iter().enumerate().step_by(step_size as usize) {
sample_positions_and_values.push((pos as u64, val));
}
let line = Line::estimate(column, &sample_positions);
let line = Line::estimate(&sample_positions_and_values);
let estimated_bit_width = sample_positions_and_values
let mut column_reader = column.reader();
let estimated_bit_width = sample_positions
.into_iter()
.map(|(pos, actual_value)| {
let interpolated_val = line.eval(pos as u32);
.map(|pos| {
let actual_value = column_reader.seek(pos);
let interpolated_val = line.eval(pos as u64);
actual_value.wrapping_sub(interpolated_val)
})
.map(|diff| ((diff as f32 * 1.5) * 2.0) as u64)
@@ -147,7 +147,6 @@ impl FastFieldCodec for LinearCodec {
.max()
.unwrap_or(0);
// Extrapolate to whole column
let num_bits = (estimated_bit_width as u64 * column.num_vals() as u64) + 64;
let num_bits_uncompressed = 64 * column.num_vals();
Some(num_bits as f32 / num_bits_uncompressed as f32)
@@ -159,10 +158,10 @@ mod tests {
use rand::RngCore;
use super::*;
use crate::column_values::tests;
use crate::tests::get_codec_test_datasets;
fn create_and_validate(data: &[u64], name: &str) -> Option<(f32, f32)> {
tests::create_and_validate::<LinearCodec>(data, name)
crate::tests::create_and_validate::<LinearCodec>(data, name)
}
#[test]
@@ -177,7 +176,7 @@ mod tests {
#[test]
fn test_with_codec_datasets() {
let data_sets = tests::get_codec_test_datasets();
let data_sets = get_codec_test_datasets();
for (mut data, name) in data_sets {
create_and_validate(&data, name);
data.reverse();

View File

@@ -6,10 +6,10 @@ use std::io::BufRead;
use std::net::{IpAddr, Ipv6Addr};
use std::str::FromStr;
use common::OwnedBytes;
use fastfield_codecs::{open_u128, serialize_u128, Column, FastFieldCodecType, VecColumn};
use itertools::Itertools;
use measure_time::print_time;
use ownedbytes::OwnedBytes;
use prettytable::{Cell, Row, Table};
fn print_set_stats(ip_addrs: &[u128]) {
@@ -90,7 +90,7 @@ fn bench_ip() {
{
let mut data = vec![];
for dataset in dataset.chunks(500_000) {
serialize_u128(|| dataset.iter().cloned(), dataset.len() as u32, &mut data).unwrap();
serialize_u128(VecColumn::from(dataset), &mut data).unwrap();
}
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
println!("Compression 50_000 chunks {:.4}", compression);
@@ -101,10 +101,7 @@ fn bench_ip() {
}
let mut data = vec![];
{
print_time!("creation");
serialize_u128(|| dataset.iter().cloned(), dataset.len() as u32, &mut data).unwrap();
}
serialize_u128(VecColumn::from(&dataset), &mut data).unwrap();
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
println!("Compression {:.2}", compression);
@@ -113,17 +110,11 @@ fn bench_ip() {
(data.len() * 8) as f32 / dataset.len() as f32
);
let decompressor = open_u128::<u128>(OwnedBytes::new(data)).unwrap();
let decompressor = open_u128(OwnedBytes::new(data)).unwrap();
// Sample some ranges
let mut doc_values = Vec::new();
for value in dataset.iter().take(1110).skip(1100).cloned() {
doc_values.clear();
print_time!("get range");
decompressor.get_docids_for_value_range(
value..=value,
0..decompressor.num_vals(),
&mut doc_values,
);
let doc_values = decompressor.get_between_vals(value..=value);
println!("{:?}", doc_values.len());
}
}

View File

@@ -0,0 +1,60 @@
pub trait MonotonicallyMappableToU64: 'static + PartialOrd + Copy + Send + Sync {
/// Converts a value to u64.
///
/// Internally all fast field values are encoded as u64.
fn to_u64(self) -> u64;
/// Converts a value from u64
///
/// Internally all fast field values are encoded as u64.
/// **Note: To be used for converting encoded Term, Posting values.**
fn from_u64(val: u64) -> Self;
}
impl MonotonicallyMappableToU64 for u64 {
fn to_u64(self) -> u64 {
self
}
fn from_u64(val: u64) -> Self {
val
}
}
impl MonotonicallyMappableToU64 for i64 {
#[inline(always)]
fn to_u64(self) -> u64 {
common::i64_to_u64(self)
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
common::u64_to_i64(val)
}
}
impl MonotonicallyMappableToU64 for bool {
#[inline(always)]
fn to_u64(self) -> u64 {
if self {
1
} else {
0
}
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
val > 0
}
}
impl MonotonicallyMappableToU64 for f64 {
fn to_u64(self) -> u64 {
common::f64_to_u64(self)
}
fn from_u64(val: u64) -> Self {
common::u64_to_f64(val)
}
}

View File

@@ -1,39 +1,54 @@
use std::fmt::Debug;
// Copyright (C) 2022 Quickwit, Inc.
//
// Quickwit is offered under the AGPL v3.0 and as commercial software.
// For commercial licensing, contact us at hello@quickwit.io.
//
// AGPL:
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
use std::io;
use std::num::NonZeroU64;
use std::sync::Arc;
use common::{BinarySerializable, VInt};
use fastdivide::DividerU64;
use log::warn;
use ownedbytes::OwnedBytes;
use super::bitpacked::BitpackedCodec;
use super::blockwise_linear::BlockwiseLinearCodec;
use super::linear::LinearCodec;
use super::monotonic_mapping::{
StrictlyMonotonicFn, StrictlyMonotonicMappingToInternal,
StrictlyMonotonicMappingToInternalGCDBaseval,
use crate::bitpacked::BitpackedCodec;
use crate::blockwise_linear::BlockwiseLinearCodec;
use crate::compact_space::CompactSpaceCompressor;
use crate::linear::LinearCodec;
use crate::{
monotonic_map_column, Column, FastFieldCodec, FastFieldCodecType, MonotonicallyMappableToU64,
VecColumn, ALL_CODEC_TYPES,
};
use super::{
monotonic_map_column, ColumnValues, FastFieldCodec, FastFieldCodecType,
MonotonicallyMappableToU64, U128FastFieldCodecType,
};
use crate::column_values::compact_space::CompactSpaceCompressor;
/// The normalized header gives some parameters after applying the following
/// normalization of the vector:
/// `val -> (val - min_value) / gcd`
/// val -> (val - min_value) / gcd
///
/// By design, after normalization, `min_value = 0` and `gcd = 1`.
#[derive(Debug, Copy, Clone)]
pub struct NormalizedHeader {
/// The number of values in the underlying column.
pub num_vals: u32,
/// The max value of the underlying column.
pub num_vals: u64,
pub max_value: u64,
}
#[derive(Debug, Copy, Clone)]
pub(crate) struct Header {
pub num_vals: u32,
pub num_vals: u64,
pub min_value: u64,
pub max_value: u64,
pub gcd: Option<NonZeroU64>,
@@ -42,32 +57,33 @@ pub(crate) struct Header {
impl Header {
pub fn normalized(self) -> NormalizedHeader {
let gcd = self.gcd.map(|gcd| gcd.get()).unwrap_or(1);
let gcd_min_val_mapping =
StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd, self.min_value);
let max_value = gcd_min_val_mapping.mapping(self.max_value);
let max_value =
(self.max_value - self.min_value) / self.gcd.map(|gcd| gcd.get()).unwrap_or(1);
NormalizedHeader {
num_vals: self.num_vals,
max_value,
}
}
pub(crate) fn normalize_column<C: ColumnValues>(&self, from_column: C) -> impl ColumnValues {
normalize_column(from_column, self.min_value, self.gcd)
pub fn normalize_column<C: Column>(&self, from_column: C) -> impl Column {
let min_value = self.min_value;
let gcd = self.gcd.map(|gcd| gcd.get()).unwrap_or(1);
let divider = DividerU64::divide_by(gcd);
monotonic_map_column(from_column, move |val| divider.divide(val - min_value))
}
pub fn compute_header(
column: impl ColumnValues<u64>,
column: impl Column<u64>,
codecs: &[FastFieldCodecType],
) -> Option<Header> {
let num_vals = column.num_vals();
let min_value = column.min_value();
let max_value = column.max_value();
let gcd = super::gcd::find_gcd(column.iter().map(|val| val - min_value))
let gcd = crate::gcd::find_gcd(column.iter().map(|val| val - min_value))
.filter(|gcd| gcd.get() > 1u64);
let normalized_column = normalize_column(column, min_value, gcd);
let codec_type = detect_codec(normalized_column, codecs)?;
let divider = DividerU64::divide_by(gcd.map(|gcd| gcd.get()).unwrap_or(1u64));
let shifted_column = monotonic_map_column(&column, |val| divider.divide(val - min_value));
let codec_type = detect_codec(shifted_column, codecs)?;
Some(Header {
num_vals,
min_value,
@@ -78,42 +94,9 @@ impl Header {
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(crate) struct U128Header {
pub num_vals: u32,
pub codec_type: U128FastFieldCodecType,
}
impl BinarySerializable for U128Header {
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
VInt(self.num_vals as u64).serialize(writer)?;
self.codec_type.serialize(writer)?;
Ok(())
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let num_vals = VInt::deserialize(reader)?.0 as u32;
let codec_type = U128FastFieldCodecType::deserialize(reader)?;
Ok(U128Header {
num_vals,
codec_type,
})
}
}
fn normalize_column<C: ColumnValues>(
from_column: C,
min_value: u64,
gcd: Option<NonZeroU64>,
) -> impl ColumnValues {
let gcd = gcd.map(|gcd| gcd.get()).unwrap_or(1);
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd, min_value);
monotonic_map_column(from_column, mapping)
}
impl BinarySerializable for Header {
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
VInt(self.num_vals as u64).serialize(writer)?;
VInt(self.num_vals).serialize(writer)?;
VInt(self.min_value).serialize(writer)?;
VInt(self.max_value - self.min_value).serialize(writer)?;
if let Some(gcd) = self.gcd {
@@ -126,7 +109,7 @@ impl BinarySerializable for Header {
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let num_vals = VInt::deserialize(reader)?.0 as u32;
let num_vals = VInt::deserialize(reader)?.0;
let min_value = VInt::deserialize(reader)?.0;
let amplitude = VInt::deserialize(reader)?.0;
let max_value = min_value + amplitude;
@@ -142,30 +125,42 @@ impl BinarySerializable for Header {
}
}
/// Serializes u128 values with the compact space codec.
pub fn serialize_column_values_u128<F: Fn() -> I, I: Iterator<Item = u128>>(
iter_gen: F,
num_vals: u32,
pub fn estimate<T: MonotonicallyMappableToU64>(
typed_column: impl Column<T>,
codec_type: FastFieldCodecType,
) -> Option<f32> {
let column = monotonic_map_column(typed_column, T::to_u64);
let min_value = column.min_value();
let gcd = crate::gcd::find_gcd(column.iter().map(|val| val - min_value))
.filter(|gcd| gcd.get() > 1u64);
let divider = DividerU64::divide_by(gcd.map(|gcd| gcd.get()).unwrap_or(1u64));
let normalized_column = monotonic_map_column(&column, |val| divider.divide(val - min_value));
match codec_type {
FastFieldCodecType::Bitpacked => BitpackedCodec::estimate(&normalized_column),
FastFieldCodecType::Linear => LinearCodec::estimate(&normalized_column),
FastFieldCodecType::BlockwiseLinear => BlockwiseLinearCodec::estimate(&normalized_column),
}
}
pub fn serialize_u128(
typed_column: impl Column<u128>,
output: &mut impl io::Write,
) -> io::Result<()> {
let header = U128Header {
num_vals,
codec_type: U128FastFieldCodecType::CompactSpace,
};
header.serialize(output)?;
let compressor = CompactSpaceCompressor::train_from(iter_gen(), num_vals);
compressor.compress_into(iter_gen(), output)?;
// TODO write header, to later support more codecs
let compressor = CompactSpaceCompressor::train_from(&typed_column);
compressor
.compress_into(typed_column.iter(), output)
.unwrap();
Ok(())
}
/// Serializes the column with the codec with the best estimate on the data.
pub fn serialize_column_values<T: MonotonicallyMappableToU64 + Debug>(
typed_column: impl ColumnValues<T>,
codecs: &[FastFieldCodecType],
pub fn serialize<T: MonotonicallyMappableToU64>(
typed_column: impl Column<T>,
output: &mut impl io::Write,
codecs: &[FastFieldCodecType],
) -> io::Result<()> {
let column = monotonic_map_column(typed_column, StrictlyMonotonicMappingToInternal::<T>::new());
let column = monotonic_map_column(typed_column, T::to_u64);
let header = Header::compute_header(&column, codecs).ok_or_else(|| {
io::Error::new(
io::ErrorKind::InvalidInput,
@@ -183,7 +178,7 @@ pub fn serialize_column_values<T: MonotonicallyMappableToU64 + Debug>(
}
fn detect_codec(
column: impl ColumnValues<u64>,
column: impl Column<u64>,
codecs: &[FastFieldCodecType],
) -> Option<FastFieldCodecType> {
let mut estimations = Vec::new();
@@ -210,8 +205,8 @@ fn detect_codec(
Some(estimations.first()?.1)
}
pub(crate) fn serialize_given_codec(
column: impl ColumnValues<u64>,
fn serialize_given_codec(
column: impl Column<u64>,
codec_type: FastFieldCodecType,
output: &mut impl io::Write,
) -> io::Result<()> {
@@ -226,43 +221,21 @@ pub(crate) fn serialize_given_codec(
BlockwiseLinearCodec::serialize(&column, output)?;
}
}
output.flush()?;
Ok(())
}
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default>(
column: &[T],
) -> Arc<dyn Column<T>> {
let mut buffer = Vec::new();
super::serialize(VecColumn::from(&column), &mut buffer, &ALL_CODEC_TYPES).unwrap();
super::open(OwnedBytes::new(buffer)).unwrap()
}
#[cfg(test)]
pub mod tests {
use std::sync::Arc;
use common::OwnedBytes;
mod tests {
use super::*;
use crate::column_values::{open_u64_mapped, VecColumn};
const ALL_CODEC_TYPES: [FastFieldCodecType; 3] = [
FastFieldCodecType::Bitpacked,
FastFieldCodecType::Linear,
FastFieldCodecType::BlockwiseLinear,
];
/// Helper function to serialize a column (autodetect from all codecs) and then open it
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default>(
column: &[T],
) -> Arc<dyn ColumnValues<T>> {
let mut buffer = Vec::new();
serialize_column_values(&VecColumn::from(&column), &ALL_CODEC_TYPES, &mut buffer).unwrap();
open_u64_mapped(OwnedBytes::new(buffer)).unwrap()
}
#[test]
fn test_serialize_deserialize_u128_header() {
let original = U128Header {
num_vals: 11,
codec_type: U128FastFieldCodecType::CompactSpace,
};
let mut out = Vec::new();
original.serialize(&mut out).unwrap();
let restored = U128Header::deserialize(&mut &out[..]).unwrap();
assert_eq!(restored, original);
}
#[test]
fn test_serialize_deserialize() {
@@ -275,19 +248,18 @@ pub mod tests {
fn test_fastfield_bool_size_bitwidth_1() {
let mut buffer = Vec::new();
let col = VecColumn::from(&[false, true][..]);
serialize_column_values(&col, &ALL_CODEC_TYPES, &mut buffer).unwrap();
// TODO put the header as a footer so that it serves as a padding.
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
// 5 bytes of header, 1 byte of value, 7 bytes of padding.
assert_eq!(buffer.len(), 5 + 1);
assert_eq!(buffer.len(), 5 + 8);
}
#[test]
fn test_fastfield_bool_bit_size_bitwidth_0() {
let mut buffer = Vec::new();
let col = VecColumn::from(&[true][..]);
serialize_column_values(&col, &ALL_CODEC_TYPES, &mut buffer).unwrap();
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
// 5 bytes of header, 0 bytes of value, 7 bytes of padding.
assert_eq!(buffer.len(), 5);
assert_eq!(buffer.len(), 5 + 7);
}
#[test]
@@ -295,8 +267,8 @@ pub mod tests {
let mut buffer = Vec::new();
let vals: Vec<u64> = (0..80).map(|val| (val % 7) * 1_000u64).collect();
let col = VecColumn::from(&vals[..]);
serialize_column_values(&col, &[FastFieldCodecType::Bitpacked], &mut buffer).unwrap();
serialize(col, &mut buffer, &[FastFieldCodecType::Bitpacked]).unwrap();
// Values are stored over 3 bits.
assert_eq!(buffer.len(), 7 + (3 * 80 / 8));
assert_eq!(buffer.len(), 7 + (3 * 80 / 8) + 7);
}
}

View File

@@ -1,14 +1,10 @@
[package]
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
name = "ownedbytes"
version = "0.5.0"
version = "0.3.0"
edition = "2021"
description = "Expose data as static slice"
license = "MIT"
documentation = "https://docs.rs/ownedbytes/"
homepage = "https://github.com/quickwit-oss/tantivy"
repository = "https://github.com/quickwit-oss/tantivy"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]

View File

@@ -3,7 +3,7 @@ use std::ops::{Deref, Range};
use std::sync::Arc;
use std::{fmt, io, mem};
pub use stable_deref_trait::StableDeref;
use stable_deref_trait::StableDeref;
/// An OwnedBytes simply wraps an object that owns a slice of data and exposes
/// this data as a slice.
@@ -80,21 +80,6 @@ impl OwnedBytes {
(left, right)
}
/// Splits the OwnedBytes into two OwnedBytes `(left, right)`.
///
/// Right will hold `split_len` bytes.
///
/// This operation is cheap and does not require to copy any memory.
/// On the other hand, both `left` and `right` retain a handle over
/// the entire slice of memory. In other words, the memory will only
/// be released when both left and right are dropped.
#[inline]
#[must_use]
pub fn rsplit(self, split_len: usize) -> (OwnedBytes, OwnedBytes) {
let data_len = self.data.len();
self.split(data_len - split_len)
}
/// Splits the right part of the `OwnedBytes` at the given offset.
///
/// `self` is truncated to `split_len`, left with the remaining bytes.

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy-query-grammar"
version = "0.19.0"
version = "0.18.0"
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
license = "MIT"
categories = ["database-implementations", "data-structures"]

View File

@@ -5,8 +5,7 @@ use combine::parser::range::{take_while, take_while1};
use combine::parser::repeat::escaped;
use combine::parser::Parser;
use combine::{
attempt, between, choice, eof, many, many1, one_of, optional, parser, satisfy, sep_by,
skip_many1, value,
attempt, choice, eof, many, many1, one_of, optional, parser, satisfy, skip_many1, value,
};
use once_cell::sync::Lazy;
use regex::Regex;
@@ -63,20 +62,6 @@ fn word<'a>() -> impl Parser<&'a str, Output = String> {
})
}
// word variant that allows more characters, e.g. for range queries that don't allow field
// specifier
fn relaxed_word<'a>() -> impl Parser<&'a str, Output = String> {
(
satisfy(|c: char| {
!c.is_whitespace() && !['`', '{', '}', '"', '[', ']', '(', ')'].contains(&c)
}),
many(satisfy(|c: char| {
!c.is_whitespace() && !['{', '}', '"', '[', ']', '(', ')'].contains(&c)
})),
)
.map(|(s1, s2): (char, String)| format!("{}{}", s1, s2))
}
/// Parses a date time according to rfc3339
/// 2015-08-02T18:54:42+02
/// 2021-04-13T19:46:26.266051969+00:00
@@ -196,8 +181,8 @@ fn spaces1<'a>() -> impl Parser<&'a str, Output = ()> {
fn range<'a>() -> impl Parser<&'a str, Output = UserInputLeaf> {
let range_term_val = || {
attempt(date_time())
.or(word())
.or(negative_number())
.or(relaxed_word())
.or(char('*').with(value("*".to_string())))
};
@@ -265,17 +250,6 @@ fn range<'a>() -> impl Parser<&'a str, Output = UserInputLeaf> {
})
}
/// Function that parses a set out of a Stream
/// Supports ranges like: `IN [val1 val2 val3]`
fn set<'a>() -> impl Parser<&'a str, Output = UserInputLeaf> {
let term_list = between(char('['), char(']'), sep_by(term_val(), spaces()));
let set_content = ((string("IN"), spaces()), term_list).map(|(_, elements)| elements);
(optional(attempt(field_name().skip(spaces()))), set_content)
.map(|(field, elements)| UserInputLeaf::Set { field, elements })
}
fn negate(expr: UserInputAst) -> UserInputAst {
expr.unary(Occur::MustNot)
}
@@ -290,7 +264,6 @@ fn leaf<'a>() -> impl Parser<&'a str, Output = UserInputAst> {
string("NOT").skip(spaces1()).with(leaf()).map(negate),
))
.or(attempt(range().map(UserInputAst::from)))
.or(attempt(set().map(UserInputAst::from)))
.or(literal().map(UserInputAst::from))
.parse_stream(input)
.into_result()
@@ -676,34 +649,6 @@ mod test {
.expect("Cannot parse date range")
.0;
assert_eq!(res6, expected_flexible_dates);
// IP Range Unbounded
let expected_weight = UserInputLeaf::Range {
field: Some("ip".to_string()),
lower: UserInputBound::Inclusive("::1".to_string()),
upper: UserInputBound::Unbounded,
};
let res1 = range()
.parse("ip: >=::1")
.expect("Cannot parse ip v6 format")
.0;
let res2 = range()
.parse("ip:[::1 TO *}")
.expect("Cannot parse ip v6 format")
.0;
assert_eq!(res1, expected_weight);
assert_eq!(res2, expected_weight);
// IP Range Bounded
let expected_weight = UserInputLeaf::Range {
field: Some("ip".to_string()),
lower: UserInputBound::Inclusive("::0.0.0.50".to_string()),
upper: UserInputBound::Exclusive("::0.0.0.52".to_string()),
};
let res1 = range()
.parse("ip:[::0.0.0.50 TO ::0.0.0.52}")
.expect("Cannot parse ip v6 format")
.0;
assert_eq!(res1, expected_weight);
}
#[test]
@@ -760,14 +705,6 @@ mod test {
test_parse_query_to_ast_helper("+(a b) +d", "(+(*\"a\" *\"b\") +\"d\")");
}
#[test]
fn test_parse_test_query_set() {
test_parse_query_to_ast_helper("abc: IN [a b c]", r#""abc": IN ["a" "b" "c"]"#);
test_parse_query_to_ast_helper("abc: IN [1]", r#""abc": IN ["1"]"#);
test_parse_query_to_ast_helper("abc: IN []", r#""abc": IN []"#);
test_parse_query_to_ast_helper("IN [1 2]", r#"IN ["1" "2"]"#);
}
#[test]
fn test_parse_test_query_other() {
test_parse_query_to_ast_helper("(+a +b) d", "(*(+\"a\" +\"b\") *\"d\")");

View File

@@ -12,10 +12,6 @@ pub enum UserInputLeaf {
lower: UserInputBound,
upper: UserInputBound,
},
Set {
field: Option<String>,
elements: Vec<String>,
},
}
impl Debug for UserInputLeaf {
@@ -35,19 +31,6 @@ impl Debug for UserInputLeaf {
upper.display_upper(formatter)?;
Ok(())
}
UserInputLeaf::Set { field, elements } => {
if let Some(ref field) = field {
write!(formatter, "\"{}\": ", field)?;
}
write!(formatter, "IN [")?;
for (i, element) in elements.iter().enumerate() {
if i != 0 {
write!(formatter, " ")?;
}
write!(formatter, "\"{}\"", element)?;
}
write!(formatter, "]")
}
UserInputLeaf::All => write!(formatter, "*"),
}
}

2
run-tests.sh Executable file
View File

@@ -0,0 +1,2 @@
#!/bin/bash
cargo test

View File

@@ -51,10 +51,7 @@ use serde::{Deserialize, Serialize};
pub use super::bucket::RangeAggregation;
use super::bucket::{HistogramAggregation, TermsAggregation};
use super::metric::{
AverageAggregation, CountAggregation, MaxAggregation, MinAggregation, StatsAggregation,
SumAggregation,
};
use super::metric::{AverageAggregation, StatsAggregation};
use super::VecWithNames;
/// The top-level aggregation request structure, which contains [`Aggregation`] and their user
@@ -240,38 +237,20 @@ impl BucketAggregationType {
/// called multi-value numeric metrics aggregation.
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub enum MetricAggregation {
/// Computes the average of the extracted values.
/// Calculates the average.
#[serde(rename = "avg")]
Average(AverageAggregation),
/// Counts the number of extracted values.
#[serde(rename = "value_count")]
Count(CountAggregation),
/// Finds the maximum value.
#[serde(rename = "max")]
Max(MaxAggregation),
/// Finds the minimum value.
#[serde(rename = "min")]
Min(MinAggregation),
/// Computes a collection of statistics (`min`, `max`, `sum`, `count`, and `avg`) over the
/// extracted values.
/// Calculates stats sum, average, min, max, standard_deviation on a field.
#[serde(rename = "stats")]
Stats(StatsAggregation),
/// Computes the sum of the extracted values.
#[serde(rename = "sum")]
Sum(SumAggregation),
}
impl MetricAggregation {
fn get_fast_field_names(&self, fast_field_names: &mut HashSet<String>) {
let fast_field_name = match self {
MetricAggregation::Average(avg) => avg.field_name(),
MetricAggregation::Count(count) => count.field_name(),
MetricAggregation::Max(max) => max.field_name(),
MetricAggregation::Min(min) => min.field_name(),
MetricAggregation::Stats(stats) => stats.field_name(),
MetricAggregation::Sum(sum) => sum.field_name(),
match self {
MetricAggregation::Average(avg) => fast_field_names.insert(avg.field.to_string()),
MetricAggregation::Stats(stats) => fast_field_names.insert(stats.field.to_string()),
};
fast_field_names.insert(fast_field_name.to_string());
}
}
@@ -279,38 +258,6 @@ impl MetricAggregation {
mod tests {
use super::*;
#[test]
fn test_metric_aggregations_deser() {
let agg_req_json = r#"{
"price_avg": { "avg": { "field": "price" } },
"price_count": { "value_count": { "field": "price" } },
"price_max": { "max": { "field": "price" } },
"price_min": { "min": { "field": "price" } },
"price_stats": { "stats": { "field": "price" } },
"price_sum": { "sum": { "field": "price" } }
}"#;
let agg_req: Aggregations = serde_json::from_str(agg_req_json).unwrap();
assert!(
matches!(agg_req.get("price_avg").unwrap(), Aggregation::Metric(MetricAggregation::Average(avg)) if avg.field == "price")
);
assert!(
matches!(agg_req.get("price_count").unwrap(), Aggregation::Metric(MetricAggregation::Count(count)) if count.field == "price")
);
assert!(
matches!(agg_req.get("price_max").unwrap(), Aggregation::Metric(MetricAggregation::Max(max)) if max.field == "price")
);
assert!(
matches!(agg_req.get("price_min").unwrap(), Aggregation::Metric(MetricAggregation::Min(min)) if min.field == "price")
);
assert!(
matches!(agg_req.get("price_stats").unwrap(), Aggregation::Metric(MetricAggregation::Stats(stats)) if stats.field == "price")
);
assert!(
matches!(agg_req.get("price_sum").unwrap(), Aggregation::Metric(MetricAggregation::Sum(sum)) if sum.field == "price")
);
}
#[test]
fn serialize_to_json_test() {
let agg_req1: Aggregations = vec![(

Some files were not shown because too many files have changed in this diff Show More