Compare commits

...

110 Commits

Author SHA1 Message Date
Zhenchi
f66803622d chore: bump version to 0.14.3
Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>
2025-05-23 20:23:23 +08:00
Ruihang Xia
e7774437b8 fix: require input ordering in series divide plan (#6148)
* require input ordering in series divide plan

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* add sqlness case

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* finilise

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

---------

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2025-05-23 20:23:23 +08:00
Ruihang Xia
c272b25456 feat: support altering multiple logical table in one remote write request (#6137)
Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2025-05-23 20:23:23 +08:00
discord9
724b802018 chore: invalid table flow mapping cache (#6135)
* chore: invalid table flow mapping

* chore: exists

* fix: invalid all related keys in kv cache when drop flow&refactor: per review

* fix: flow not found status code

* chore: rm unused error code

* chore: stuff

* chore: unused
2025-05-23 20:23:23 +08:00
Ruihang Xia
f3ca5f5d7f feat: accommodate default column name with pre-created table schema (#6126)
* refactor: prepare_mocked_backend

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* modify request in place

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* apply to influx line protocol

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* fix typo

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* return on empty alter expr list

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* expose to other write paths

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

---------

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2025-05-23 20:23:23 +08:00
Ruihang Xia
6c672b96bf fix: update promql-parser for regex anchor fix (#6117)
Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2025-05-23 20:23:23 +08:00
discord9
83018d6670 fix: flow update use proper update (#6108)
* fix: flow update use proper update

* refactor: per review

* fix: flow cache

* chore: per copilot review

* refactor: rm flow node id

* refactor: per review

* chore: per review

* refactor: per review

* chore: per review
2025-05-23 20:23:23 +08:00
discord9
69f1cbd484 fix(flow): flow task run interval (#6100)
* fix: always check for shutdown signal in flow
chore: correct log msg for flows that shouldn't exist
feat: use time window size/2 as sleep interval

* chore: better slower query refresh time

* chore

* refactor: per review
2025-05-23 20:23:23 +08:00
discord9
e1dad69648 fix: flownode chose fe randomly&not starve lock (#6077)
* fix: choose frontend randomly

* docs: update comment

* chore: more logs

* fix: ignore inserts until recovering flow is done

* chore: resolve TODO

* fix: rm unused code&set done in correct location

* refactor: speed up create flow
2025-05-23 20:23:23 +08:00
Ruihang Xia
6c976bc737 feat: don't hide atomic write dir (#6109)
* feat: don't hidden atomic write dir

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* compatible code

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* Update src/mito2/src/access_layer.rs

Co-authored-by: Yingwen <realevenyag@gmail.com>

---------

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
Co-authored-by: Yingwen <realevenyag@gmail.com>
2025-05-23 20:23:23 +08:00
jeremyhi
b20c1ac797 chore: reduce unnecessary txns in alter operations (#6133) 2025-05-23 20:23:23 +08:00
Yingwen
d7cfb741a5 fix: clean files under the atomic write dir on failure (#6112)
* fix: remove files under atomic dir on failure

* fix: clean atomic dir on download failure

* chore: update comment

* fix: clean if failed to write without write cache

* feat: add a TempFileCleaner to clean files on failure

* chore: after merge fix

* chore: more fix

---------

Co-authored-by: discord9 <55937128+discord9@users.noreply.github.com>
Co-authored-by: discord9 <discord9@163.com>
2025-05-23 20:23:23 +08:00
Weny Xu
1b3efef15c fix: append noop entry when auto topic creation is disabled (#6092)
* feat: improve topic management and add stale records cleanup

* fix: fix unit tests

* chore: apply suggestions from CR

* chore: apply suggestions from CR
2025-05-23 20:23:23 +08:00
Yingwen
1ca2dbd240 fix: reset tags when creating an empty metric in prom call (#6056)
* Revert "chore: remove debug logs"

This reverts commit f73f3a7373c83db974d8ed80cb47f5f87317b490.

* chore: more logs

* fix: reset tags and fields

* test: add binary time fn test

* chore: remove logs

* test: sort result
2025-05-23 20:23:23 +08:00
Ning Sun
d596dba240 fix: ident value in set search_path (#6153)
* fix: ident value in set search_path

* refactor: remove unneeded clone
2025-05-23 20:23:23 +08:00
discord9
5c9cbb5f4c chore: bump version to 0.14.2 (#6032)
* chore: only retry when retry-able in flow (#5987)

* chore: only retry when retry-able

* chore: revert dbg change

* refactor: per review

* fix: check for available frontend first

* docs: more explain&longer timeout&feat: more retry at every level&try send select 1

* fix: use `sql` method for "SELECT 1"

* fix: also put recover flows in spawned task and a dead loop

* test: update transient error in flow rebuild test

* chore: sleep after sqlness sleep

* chore: add a warning

* chore: wait even more time after reboot

* fix: sanitize_connection_string (#6012)

* fix: disable recursion limit in prost (#6010)

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* ci: fix the bugs of release-dev-builder-images and add update-dev-builder-image-tag (#6009)

* fix: the dev-builder release job is not triggered by merged event

* ci: add update-dev-builder-image-tag

* fix: always create mito engine (#6018)

* fix: force streaming mode for instant source table (#6031)

* fix: force streaming mode for instant source table

* tests: sqlness test&refactor: get table

* refactor: per review

* chore: bump version to 0.14.2

---------

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
Co-authored-by: jeremyhi <jiachun_feng@proton.me>
Co-authored-by: Ruihang Xia <waynestxia@gmail.com>
Co-authored-by: zyy17 <zyylsxm@gmail.com>
Co-authored-by: Lei, HUANG <6406592+v0y4g3r@users.noreply.github.com>
2025-05-01 09:20:01 -07:00
Zhenchi
e2df38d0d1 chore: bump version to 0.14.1 (#6006)
* feat: remove own greatest fn (#5994)

* fix: prune primary key with multiple columns may use default value as statistics (#5996)

* test: incorrect test result when filtering pk with multiple columns

* fix: prune non first tag correctly

Distinguish no column and no stats and only use default value when no
column

* test: update test result

* refactor: rename test file

* test: add test for null filter

* fix: use StatValues for null counts

* test: drop table

* test: fix unstable flow test

* fix: check if memtable is empty by stats (#5989)

fix/checking-memtable-empty-and-stats:
 - **Refactor timestamp updates**: Simplified timestamp range updates in `PartitionTreeMemtable` and `TimeSeriesMemtable` by replacing `update_timestamp_range` with `fetch_max` and `fetch_min` methods for `max_timestamp` and `min_timestamp`.
   - Affected files: `partition_tree.rs`, `time_series.rs`

 - **Remove unused code**: Deleted the `update_timestamp_range` method from `WriteMetrics` and removed unnecessary imports.
   - Affected file: `stats.rs`

 - **Optimize memtable filtering**: Streamlined the check for empty memtables in `ScanRegion` by directly using `time_range`.
   - Affected file: `scan_region.rs`

* chore: bump version to 0.14.1

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

---------

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>
Co-authored-by: dennis zhuang <killme2008@gmail.com>
Co-authored-by: Yingwen <realevenyag@gmail.com>
Co-authored-by: Lei, HUANG <6406592+v0y4g3r@users.noreply.github.com>
2025-04-28 07:39:49 +00:00
discord9
66e2242e46 fix: conn timeout&refactor: better err msg (#5974)
* fix: conn timeout&refactor: better err msg

* chore: clippy

* chore: make test work

* chore: comment

* todo: fix null cast

* fix: retry conn&udd_calc

* chore: comment

* chore: apply suggestion

---------

Co-authored-by: dennis zhuang <killme2008@gmail.com>
2025-04-25 19:12:30 +00:00
Ning Sun
489b16ae30 fix: security update (#5982) 2025-04-25 18:11:09 +00:00
dennis zhuang
85d564b0fb fix: upgrade sqlparse and validate align in range query (#5958)
* fix: upgrade sqlparse and validate align in range query

* update sqlparser to the merged commit

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

---------

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
Co-authored-by: Ruihang Xia <waynestxia@gmail.com>
Co-authored-by: Zhenchi <zhongzc_arch@outlook.com>
2025-04-25 17:34:49 +00:00
Zhenchi
d5026f3491 perf: optimize fulltext zh tokenizer for ascii-only text (#5975)
Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>
2025-04-24 23:31:26 +00:00
Weny Xu
e30753fc31 feat: allow forced region failover for local WAL (#5972)
* feat: allow forced region failover for local WAL

* chore: upgrade config.md

* chore: apply suggestions from CR
2025-04-24 08:11:45 +00:00
Ruihang Xia
b476584f56 feat: remove hyper parameter from promql functions (#5955)
* quantile udaf

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* extrapolate rate

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* predict_linear, round, holt_winters, quantile_overtime

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* fix clippy

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* fix quantile function

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

---------

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2025-04-24 07:17:10 +00:00
Weny Xu
ff3a46b1d0 feat: improve observability of region migration procedure (#5967)
* feat: improve observability of region migration procedure

* chore: apply suggestions from CR

* chore: observe non-zero value
2025-04-24 04:00:14 +00:00
Weny Xu
a533ac2555 feat: enhance selector with node exclusion support (#5966) 2025-04-24 02:27:27 +00:00
dennis zhuang
cc5629b4a1 chore: remove coderabbit (#5969) 2025-04-24 02:15:44 +00:00
Weny Xu
f3d000f6ec feat: track region failover attempts and adjust timeout (#5952) 2025-04-23 18:19:18 +00:00
discord9
9557b76224 fix: try prune one less (#5965)
* try prune one less

* test: also not add one

* ci: use longer fuzz time

* revert fuzz time&per review

* chore: no (

* docs: add explain to offset used in delete records

* test: fix test_procedure_execution
2025-04-23 16:57:54 +00:00
discord9
a0900f5b90 feat(flow): use batching mode&fix sqlness (#5903)
* feat: use flow batching engine

broken: try using logical plan

fix: use dummy catalog for logical plan

fix: insert plan exec&sqlness grpc addr

feat: use frontend instance in flownode in standalone

feat: flow type in metasrv&fix: flush flow out of sync& column name alias

tests: sqlness update

tests: sqlness flow rebuild udpate

chore: per review

refactor: keep chnl mgr

refactor: use catalog mgr for get table

tests: use valid sql

fix: add more check

refactor: put flow type determine to frontend

* chore: update proto

* chore: update proto to main branch

* fix: add locks for create/drop flow&docs: update docs

* feat: flush_flow flush all ranges now

* test: add align time window test

* docs: explain `nodeid` use in check task

* refactor: AddAutoColumnRewriter check for Projection

* refactor: per review

* fix: query without time window also clean dirty time window

* chore: better logging

* chore: add comments per review

* refactor: per review

* chore: per review

* chore: per review rename args

* refactor: per review partially

* chore: update docs

* chore: use better error variant

* chore: better error variant

* refactor: rename FlowWorkerManager to FlowStreamingEngine

* rename again

* refactor: per review

* chore: rebase after #5963 merged

* refactor: rename all flow_worker_manager occurs

* docs: rm resolved TODO
2025-04-23 15:12:16 +00:00
Yingwen
45a05fb08c docs: fix some units and adds the opendal errors panel (#5962)
* docs: fixes units in the dashboard

* docs: add opendal errors panel

* docs: opendal traffic use decbytes

* docs: update readme

---------

Co-authored-by: zyy17 <zyylsxm@gmail.com>
2025-04-23 13:31:29 +00:00
LFC
71db79c8d6 feat: node excluder (#5964)
* feat: node excluder

* fix ci

* fix ci
2025-04-23 10:48:46 +00:00
discord9
79ed7bbc44 fix: store flow query ctx on creation (#5963)
* fix: store flow schema on creation

* chore: update sqlness

* refactor: save the entire query context to flow info

* chore: sqlness update

* chore: rm pub

* fix: keep old version compatibility
2025-04-23 09:59:09 +00:00
zyy17
02e9a66d7a chore: update dac tools image and docs (#5961) 2025-04-23 05:00:37 +00:00
Weny Xu
55cadcd2c0 feat: introduce flush metadata region task for metric engine (#5951)
* feat: introduce flush metadata region task for metric engine

* docs: generate config.md

* chore: add header

* test: fix unit test

* fix: fix unit tests

* chore: apply suggestions from CR

* chore: remove docs

* fix: fix unit tests
2025-04-23 04:51:22 +00:00
fys
8c4796734a chore: remove unused attribute (#5960) 2025-04-23 03:17:13 +00:00
Yuhan Wang
919956999b fix: use max in flushed entry id and topic latest entry id (#5946) 2025-04-22 23:48:32 +00:00
ZonaHe
7e5f6cbeae feat: update dashboard to v0.9.0 (#5948)
Co-authored-by: ZonaHex <ZonaHex@users.noreply.github.com>
2025-04-22 11:35:33 +00:00
shuiyisong
5c07f0dec7 refactor: run_pipeline parameters (#5954)
* refactor: simplify run_pipeline params

* refactor: remove unnecessory function wrap
2025-04-22 11:34:19 +00:00
discord9
9fb0487e67 fix: parse flow expire after interval (#5953)
* fix: parse flow expire after interval

* fix: correct 30.44&comments
2025-04-22 08:44:04 +00:00
discord9
6e407ae4b9 test: use random seed for window sort fuzz test (#5950)
tests: use random seed for window sort fuzz test
2025-04-22 08:14:27 +00:00
Ning Sun
bcefc6b83f feat: add format support for promql http api (not prometheus) (#5939)
* feat: add format support for promql http api (not prometheus)

* test: add csv format test
2025-04-22 08:10:35 +00:00
Weny Xu
0f77135ef9 feat: add exclude_peer_ids to SelectorOptions (#5949)
* feat: add `exclude_peer_ids` to `SelectorOptions`

* chore: apply suggestions from CR

* fix: clippy
2025-04-22 07:49:22 +00:00
Weny Xu
0a4594c9e2 fix: remove obsolete failover detectors after region leader change (#5944)
* fix: remove obsolete failover detectors after region leader change

* chore: apply suggestions from CR

* fix: fix unit tests

* fix: fix unit test

* fix: failover logic
2025-04-22 06:15:47 +00:00
LFC
d9437c6da7 chore: assert plugin uniqueness (#5947) 2025-04-22 06:04:06 +00:00
zyy17
35f4fa3c3e refactor: unify all dashboards and use dac tool to generate intermediate dashboards (#5933)
* refactor: split cluster metrics into multiple dashboards

* chore: merge multiple dashboards into one dashboard

* refactor: add 'dac' tool to generate a intermediate dashboards

* refactor: generate markdown docs for dashboards
2025-04-22 06:03:01 +00:00
jeremyhi
60e4607b64 chore: better buckets for heartbeat stat size histogram (#5945)
chore: better buckets for METRIC_META_HEARTBEAT_STAT_MEMORY_SIZE
2025-04-21 16:12:27 +00:00
shuiyisong
3b8c6d5ce3 chore: use once_cell to avoid parse everytime in pipeline exec (#5943)
* chore: use once_cell to avoid parse everytime

* chore: remove pub on options
2025-04-21 12:55:48 +00:00
Weny Xu
7a8e1bc3f9 feat: support building metasrv with selector from plugins (#5942)
* chore: expose selector

* feat: use f64

* chore: expose selector::common

* feat: build metasrv with selector from plugins
2025-04-21 10:59:24 +00:00
Yuhan Wang
ee07b9bfa8 test: update configs to enable auto wal prune (#5938)
* test: update configs to enable auto wal prune

* fix: add humantime_serde

* fix: enable overwrite_entry_start_id

* fix: not in metasrv

* chore: update default value name

* Apply suggestions from code review

Co-authored-by: jeremyhi <jiachun_feng@proton.me>

* fix: kafka use overwrite_entry_start_id

---------

Co-authored-by: jeremyhi <jiachun_feng@proton.me>
2025-04-21 07:57:43 +00:00
Lei, HUANG
90ffaa8a62 feat: implement otel-arrow protocol for GreptimeDB (#5840)
* [wip]: implement arrow service

* add service

* feat/otel-arrow:
 ### Add OpenTelemetry Arrow Support

 - **`Cargo.toml`, `Cargo.lock`**: Updated `otel-arrow-rust` dependency to use a local path and added `arrow-ipc` as a dependency.
 - **`src/servers/src/grpc.rs`, `src/servers/src/grpc/builder.rs`**: Integrated `ArrowMetricsServiceServer` with gRPC server, including support for custom header interception and message compression.
 - **`src/servers/src/otel_arrow.rs`**: Implemented `OtelArrowServiceHandler` for handling OpenTelemetry Arrow metrics and added `HeaderInterceptor` for custom header handling.

* feat/otel-arrow:
 Add error handling for OpenTelemetry Arrow requests

 - **`src/error.rs`**: Introduced a new error variant `HandleOtelArrowRequest` to handle failures in processing OpenTelemetry Arrow requests.
 - **`src/otel_arrow.rs`**: Implemented error handling for receiving and consuming batches from the OpenTelemetry Arrow client. Added logging for errors and updated the response status accordingly.

* feat/otel-arrow:
 Remove `otel_arrow` Module from gRPC Server

 - Deleted the `otel_arrow` module from the gRPC server implementation.
 - Removed the `otel_arrow` module import from `grpc.rs`.
 - Deleted the `otel_arrow.rs` file, which contained the `OtelArrowServer` struct and its implementation.

* feat/otel-arrow:
 ## Remove `Arc` Implementations for Protocol and Pipeline Handlers

 - **Removed `Arc` Implementations**: Deleted `Arc` implementations for `OpenTelemetryProtocolHandler` and `PipelineHandler` traits in `query_handler.rs`. This change simplifies the code by removing redundant async trait implementations for `Arc<T>`.
 - **File Affected**: `src/servers/src/query_handler.rs`

* feat/otel-arrow:
 Improve error handling and metadata processing in `otel_arrow.rs`

 - Updated error handling by ignoring the result of `sender.send` to prevent panic on failure.
 - Enhanced metadata processing in `HeaderInterceptor` by using `Ok` to safely handle `grpc-encoding` entry retrieval.

* fix dependency

* feat/otel-arrow:
 - **Update Dependencies**:
   - Moved `otel-arrow-rust` dependency in `Cargo.toml`.
   - Adjusted workspace dependencies in `src/frontend/Cargo.toml`.

 - **Error Handling**:
   - Removed `MissingQueryContext` error variant from `src/servers/src/error.rs`.

* fix: toml format

* remove useless code

* chore: resolve conflicts
2025-04-21 07:24:23 +00:00
Yingwen
56f319a707 fix: filter doesn't consider default values after schema change (#5912)
* test: sqlness test case

* feat: use correct default while pruning row groups

* fix: consider default in SimpleFilterContext

* test: update sqlness test

* test: add order by
2025-04-21 06:32:26 +00:00
shuiyisong
9df493988b fix: wrong error msg in pipeline (#5937) 2025-04-21 04:05:46 +00:00
dennis zhuang
ad1b77ab04 feat: update readme (#5936)
* fix: title

* chore: format

* chore: format

* chore: format
2025-04-21 02:44:44 +00:00
Yuhan Wang
e817a65d75 feat: enable submitting wal prune procedure periodically (#5867)
* feat: enable submitting wal prune procedure periodically

* chore: fix and add options

* test: add unit test

* test: fix unit test

* test: enable active_wal_pruning in test

* test: update default config

* chore: update config name

* refactor: use semaphore to control the number of prune process

* refactor: use split client for wal prune manager and topic creator

* chore: add configs

* chore: apply review comments

* fix: use tracker properly

* fix: use guard to track semaphore

* test: update unit tests

* chore: update config name

* chore: use prunable_entry_id

* refactor: semaphore to only limit the process of submitting

* chore: remove legacy sort

* chore: better configs

* fix: update config.md

* chore: respect fmt

* test: update unit tests

* chore: use interval_at

* fix: fix unit test

* test: fix unit test

* test: fix unit test

* chore: apply review comments

* docs: update config docs
2025-04-18 16:02:33 +00:00
Yuhan Wang
41814bb49f feat: introduce high_watermark for remote wal logstore (#5877)
* feat: introduce high_watermark_since_flush

* test: add unit test for high watermark

* refactor: submit a request instead

* fix: send reply before submit request

* fix: no need to update twice

* feat: update high watermark in background periodically

* test: update unit tests

* fix: update high watermark periodically

* test: update unit tests

* chore: apply review comments

* chore: rename

* chore: apply review comments

* chore: clean up

* chore: apply review comments
2025-04-18 12:10:47 +00:00
Weny Xu
1e394af583 feat: prevent migrating a leader region to a peer that already has a region follower (#5923)
* feat: prevent migrating a leader region to a peer that already has a region follower

* chore: refine err msg
2025-04-18 11:13:01 +00:00
discord9
a9065f5319 chore: rm dev opt level 3 (#5932)
remove accidentally added dev profile opt level 3 for depend
2025-04-18 11:04:19 +00:00
Weny Xu
b8c6f1c8ed feat: sync region followers after altering regions (#5901)
* feat: close follower regions after dropping leader regions

* chore: upgrade greptime-proto

* feat: sync region followers after alter region operations

* test: add tests

* chore: apply suggestions from CR

* chore: apply suggestions from CR
2025-04-18 10:21:35 +00:00
Ruihang Xia
115e5a03a8 fix: anchor regex string to fully match in promql (#5920)
* fix: anchor regex string to fully match in promql

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* fix format

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* update sqlness result

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* update test result

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* update test result again

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

---------

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2025-04-18 10:13:45 +00:00
Yingwen
a5c443f734 perf: keep compiled regex in SimpleFilterEvaluator to avoid re-compiling (#5919)
* feat: cache regex in evaluator

* chore: fix warnings

* chore: add reference

* refactor: address CR comments

* Add negative to state
* Don't create the evaluator if the regex is invalid

* test: add test for maybe_build_regex
2025-04-18 09:36:28 +00:00
discord9
5287b87925 docs: memory profile scripts (#5922)
* docs: memory profile scripts

* chore: typo

* chore: comment

* Apply suggestions from code review

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* chore: newline eof

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-04-18 09:28:05 +00:00
jeremyhi
4d38d8aa1e chore: add heartbeat metrics (#5929) 2025-04-18 07:22:12 +00:00
Weny Xu
cc1b297831 fix: avoid double schema projection in file format readers (#5918) 2025-04-18 03:36:35 +00:00
Ruihang Xia
e4556ce12b fix: label values potential panic (#5921)
Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2025-04-17 14:01:21 +00:00
yihong
0f252c4d24 fix: oom for sqlness test in container (#5917)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-17 07:34:13 +00:00
Lei, HUANG
c58217ccec fix: support duration to interval conversion in PostgreSQL protocol (#5913)
* fix/pg-timestamp-diff:
 ### Add Support for `Duration` Type in PostgreSQL Encoding

 - **Enhanced `encode_value` Functionality**: Updated `src/servers/src/postgres/types.rs` to support encoding of `Value::Duration` using `PgInterval`.
 - **Implemented `Duration` Conversion**: Added conversion logic from `Duration` to `PgInterval` in `src/servers/src/postgres/types/interval.rs`.
 - **Added Unit Tests**: Introduced tests for `Duration` to `PgInterval` conversion in `src/servers/src/postgres/types/interval.rs`.
 - **Updated SQL Test Cases**: Modified `tests/cases/standalone/common/types/timestamp/timestamp.sql` and `timestamp.result` to include tests for timestamp subtraction using PostgreSQL protocol.

* fix: overflow

* fix/pg-timestamp-diff:
 Update `timestamp.sql` to ensure newline consistency

 - Modified `timestamp.sql` to add a newline at the end of the file for consistency.

* fix/pg-timestamp-diff:
 ### Add Documentation for Month Approximation in Interval Calculation

 - **File Modified**: `src/servers/src/postgres/types/interval.rs`
 - **Key Change**: Added a comment explaining the approximation of one month as 30.44 days in the interval calculations.
2025-04-17 03:58:36 +00:00
LFC
d27b9fc3a1 feat: implement Arrow Flight "DoPut" in Frontend (#5836)
* feat: implement Arrow Flight "DoPut" in Frontend

* support auth for "do_put"

* set request_id in DoPut requests and responses

* set "db" in request header
2025-04-17 03:46:19 +00:00
shuiyisong
fdab5d198e feat: add json parse processor (#5910)
* feat: add json parse processor

* chore: support parse to arr
2025-04-16 10:37:07 +00:00
Lin Yihai
7274ceba30 feat: Add query pipeline http api (#5819)
* feat(pipeline): add query pipeline http api.

* chore(pipeline): rename get pipepile method

* refactor(pipeline): Also insert string piple  into cache after inserting into table.

---------

Co-authored-by: shuiyisong <113876041+shuiyisong@users.noreply.github.com>
2025-04-16 10:17:20 +00:00
Weny Xu
55c9a0de42 chore: upgrade opendal to 0.52 (#5857)
* chore: upgrade opendal to 0.52

* chore: ugprade object_store_opendal to 0.50

* Update Cargo.toml

Co-authored-by: dennis zhuang <killme2008@gmail.com>

---------

Co-authored-by: dennis zhuang <killme2008@gmail.com>
2025-04-15 18:48:42 +00:00
Ruihang Xia
0fb9e1995e fix: preserve timestamp precision of irate (#5904)
Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2025-04-15 15:00:30 +00:00
Lei, HUANG
799c7cbfa9 feat(mito): bulk insert request handling on datanode (#5831)
* wip: implement basic request handling

* feat/bulk-insert:
 ### Add Error Handling and Enhance Bulk Insert Functionality

 - **Error Handling**: Introduced a new error variant `ConvertDataType` in `error.rs` to handle conversion failures from `ConcreteDataType` to `ColumnDataType`.
 - **Bulk Insert Enhancements**:
   - Updated `WorkerRequest::BulkInserts` in `request.rs` to include metadata and sender.
   - Implemented `handle_bulk_inserts` in `worker.rs` to process bulk insert requests with region metadata.
   - Added functions `region_metadata_to_column_schema` and `record_batch_to_rows` in `handle_bulk_insert.rs` for schema conversion and row processing.
 - **API Changes**: Modified `RegionBulkInsertsRequest` in `region_request.rs` to include `region_id`.

 Files affected: `error.rs`, `request.rs`, `worker.rs`, `handle_bulk_insert.rs`, `region_request.rs`.

* feat/bulk-insert:
 **Enhance Error Handling and Add Unit Tests**

 - Improved error handling in `record_batch_to_rows` function within `handle_bulk_insert.rs` by returning `Result` and handling errors with `context`.
 - Added unit tests for `region_metadata_to_column_schema` and `record_batch_to_rows` functions in `handle_bulk_insert.rs` to ensure correct functionality and error handling.

* chore: update proto version

* feat/bulk-insert:
 - **Refactor Error Handling**: Updated error handling in `error.rs` by modifying the `ConvertDataType` error handling.
 - **Improve Logging and Error Reporting**: Enhanced logging and error reporting in `worker.rs` by adding error messages for missing region metadata.
 - **Add New Error Type**: Introduced `DecodeArrowIpc` error in `metadata.rs` to handle Arrow IPC decoding failures.
 - **Handle Arrow IPC Decoding**: Updated `region_request.rs` to handle Arrow IPC decoding errors using the new `DecodeArrowIpc` error type.

* chore: update proto version

* feat/bulk-insert:
 Refactor `handle_bulk_insert.rs` to simplify row construction

 - Removed the mutable `current_row` vector and refactored `row_at` function to return a new vector directly.
 - Updated `record_batch_to_rows` to utilize the refactored `row_at` function for constructing rows.

* feat/bulk-insert:
 ### Commit Summary

 **Enhancements in Region Server Request Handling**

 - Updated `region_server.rs` to include `RegionRequest::BulkInserts(_)` in the `RegionChange::Ingest` category, improving the handling of bulk insert operations.
 - Refined the categorization of region requests to ensure accurate mapping to `RegionChange` actions.
2025-04-15 14:11:50 +00:00
Ruihang Xia
dcf1a486f6 feat: support @@ (AtAt) operator for term matching (#5902)
* update dep and sqlness case

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* implement transcribe rule

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* more tests

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* update sqlness result

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

---------

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2025-04-15 11:05:17 +00:00
Lei, HUANG
6700c0762d feat: Column-wise partition rule implementation (#5804)
* wip: naive impl

* feat/column-partition:
 ### Add support for DataFusion physical expressions

 - **`Cargo.lock` & `Cargo.toml`**: Added `datafusion-physical-expr` as a dependency to support physical expression creation.
 - **`expr.rs`**: Implemented conversion methods `try_as_logical_expr` and `try_as_physical_expr` for `Operand` and `PartitionExpr` to facilitate logical and physical expression handling.
 - **`multi_dim.rs`**: Enhanced `MultiDimPartitionRule` to utilize physical expressions for partitioning logic, including new methods for evaluating record batches.
 - **Tests**: Added unit tests for logical and physical expression conversions and partitioning logic in `expr.rs` and `multi_dim.rs`.

* feat/column-partition:
 ### Refactor and Enhance Partition Handling

 - **Refactor Partition Parsing Logic**: Moved partition parsing logic from `src/operator/src/statement/ddl.rs` to a new utility module `src/partition/src/utils.rs`. This includes functions like `parse_partitions`, `find_partition_bounds`, and `convert_one_expr`.
 - **Error Handling Improvements**: Added new error variants `ColumnNotFound`, `InvalidPartitionRule`, and `ParseSqlValue` in `src/partition/src/error.rs` to improve error reporting for partition-related operations.
 - **Dependency Updates**: Updated `Cargo.lock` and `Cargo.toml` to include new dependencies `common-time` and `session`.
 - **Code Cleanup**: Removed redundant partition parsing functions from `src/operator/src/error.rs` and `src/operator/src/statement/ddl.rs`.

* feat/column-partition:
 ## Refactor and Enhance SQL and Table Handling

 - **Refactor Column Definitions and Error Handling**
   - Made `FULLTEXT_GRPC_KEY`, `INVERTED_INDEX_GRPC_KEY`, and `SKIPPING_INDEX_GRPC_KEY` public in `column_def.rs`.
   - Removed `IllegalPrimaryKeysDef` error from `error.rs` and moved it to `sql/src/error.rs`.
   - Updated error handling in `fill_impure_default.rs` and `expr_helper.rs`.

 - **Enhance SQL Utility Functions**
   - Moved and refactored functions like `create_to_expr`, `find_primary_keys`, and `validate_create_expr` to `sql/src/util.rs`.
   - Added new utility functions for SQL parsing and validation in `sql/src/util.rs`.

 - **Improve Partition Handling**
   - Added `parse_partition_columns_and_exprs` function in `partition/src/utils.rs`.
   - Updated partition rule tests in `partition/src/multi_dim.rs` to use SQL-based partitioning.

 - **Simplify Table Name Handling**
   - Re-exported `table_idents_to_full_name` from `sql::util` in `session/src/table_name.rs`.

 - **Test Enhancements**
   - Updated tests in `partition/src/multi_dim.rs` to use SQL for partition rule creation.

* feat/column-partition:
 **Add Benchmarking and Enhance Partitioning Logic**

 - **Benchmarking**: Introduced a new benchmark for `split_record_batch` in `bench_split_record_batch.rs` using `criterion` and `rand` as development dependencies in `Cargo.toml`.
 - **Partitioning Logic**: Enhanced `MultiDimPartitionRule` in `multi_dim.rs` to include a default region for unmatched partition expressions and optimized the `split_record_batch` method.
 - **Refactoring**: Moved `sql_to_partition_rule` function to a public scope for reuse in `multi_dim.rs`.
 - **Testing**: Added new test module `test_split_record_batch` to validate the partitioning logic.

* Revert "feat/column-partition:  ### Refactor and Enhance Partition Handling"

This reverts commit 183fa19f

* fix: revert refctoring parse_partition

* revert some refactor

* feat/column-partition:
 ### Enhance Partitioning and Error Handling

 - **Benchmark Enhancements**: Added new benchmark `bench_split_record_batch_vs_row` in `bench_split_record_batch.rs` to compare row and column-based splitting.
 - **Error Handling Improvements**: Introduced new error variants in `error.rs` for better error reporting related to record batch evaluation and arrow kernel computation.
 - **Expression Handling**: Updated `expr.rs` to improve error context when converting schemas and creating physical expressions.
 - **Partition Rule Enhancements**: Made `row_at` and `record_batch_to_cols` methods public in `multi_dim.rs` and improved error handling for physical expression evaluation and boolean operations.

* feat/column-partition:
 ### Add `eq` Method and Optimize Expression Caching

 - **`expr.rs`**: Added a new `eq` method to the `Operand` struct for equality comparisons.
 - **`multi_dim.rs`**: Introduced a caching mechanism for physical expressions using `RwLock` to improve performance in `MultiDimPartitionRule`.
 - **`lib.rs`**: Enabled the `let_chains` feature for more concise code.
 - **`multi_dim.rs` Tests**: Enhanced test coverage with new test cases for multi-dimensional partitioning, including random record batch generation and default region handling.

* feat/column-partition:
 ### Add `split_record_batch` Method to `PartitionRule` Trait

 - **Files Modified**:
   - `src/partition/src/multi_dim.rs`
   - `src/partition/src/partition.rs`
   - `src/partition/src/splitter.rs`

 Added a new method `split_record_batch` to the `PartitionRule` trait, allowing record batches to be split into multiple regions based on partition values. Implemented this method in `MultiDimPartitionRule` and provided unimplemented stubs in test modules.

 ### Dependency Update

 - **File Modified**:
   - `src/operator/src/expr_helper.rs`

 Removed unused import `ColumnDataType` and `Timezone` from the test module.

 ### Miscellaneous

 - **File Modified**:
   - `src/partition/Cargo.toml`

 No functional changes; only minor formatting adjustments.

* chore: add license header

* chore: remove useless fules

* feat/column-partition:
 Add support for handling unsupported partition expression values

 - **`error.rs`**: Introduced a new error variant `UnsupportedPartitionExprValue` to handle unsupported partition expression values, and updated `ErrorExt` to map this error to `StatusCode::InvalidArguments`.
 - **`expr.rs`**: Modified the `Operand` implementation to return the new error when encountering unsupported partition expression values.
 - **`multi_dim.rs`**: Added a fast path to optimize the selection process when all rows are selected.

* feat/column-partition: Add validation for expression and region length in MultiDimPartitionRule constructor

 • Ensure the lengths of exprs and regions match to prevent mismatches.
 • Introduce error handling for length discrepancies with a descriptive error message.

* chore: add debug log

* feat/column-partition: Removed the validation check for matching lengths between exprs and regions in MultiDimPartitionRule constructor, simplifying the initialization process.

* fix: unit tests
2025-04-15 10:42:07 +00:00
discord9
032df4c533 feat(flow): dual engine (#5881)
* feat: partial use batch mode(WIP)

* feat: add flow engine trait

* refactor: more trait method

* dual engine

* feat: dual engine

* refactor: flow map cache

* chore: per review

* chore: per review
2025-04-15 07:03:12 +00:00
zyy17
7b13376239 refactor: add partition_rules_for_uuid() (#5743)
* refactor: add partition_rules_for_uuid()

* refactor: support up to 65536 partitions for partition_rules_for_uuid()
2025-04-15 06:46:31 +00:00
Zhenchi
2189631efd feat: optimize matches_term with constant term pre-compilation (#5886)
* feat: precompile finder for `matches_term`

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

* fix sqlness

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

---------

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>
2025-04-15 06:45:56 +00:00
Ruihang Xia
96fbce1797 feat: report per-region metrics on region server (#5893)
* feat: report per-region metrics on region server

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* rename Change to Ingest

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

---------

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2025-04-15 06:45:00 +00:00
Zhenchi
8d485e9be0 feat: support altering fulltext backend (#5896)
* feat: add `greptime_index_type` to `information_schema.key_column_usage`

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

* fix: show create

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

---------

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>
2025-04-15 06:36:06 +00:00
Lei, HUANG
6a50d71920 fix: memtable panic (#5894)
* fix: memtable panic

* fix: ci
2025-04-14 13:15:56 +00:00
Ruihang Xia
747b71bf74 feat: add query engine options (#5895)
* feat: add query engine options

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* update example

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

---------

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2025-04-14 13:12:37 +00:00
Weny Xu
c522893552 fix: ensure logical regions are synced during region sync (#5878)
* fix: ensure logical regions are synced during region sync

* chore: apply suggestions from CR

* chore: apply suggestions from CR
2025-04-14 12:37:31 +00:00
yihong
7ddd7a9888 fix: flaky test on windows (#5890)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-14 07:13:40 +00:00
Zhenchi
e3675494b4 feat: apply terms with fulltext bloom backend (#5884)
* feat: apply terms with fulltext bloom backend

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

* perf: preload jieba

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

* polish doc

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

---------

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>
2025-04-14 07:08:59 +00:00
dennis zhuang
7cd6b0f04b docs: update readme (#5891)
* docs: update readme

* chore: format

* docs: shorten

* chore: title

* fix: blank

Co-authored-by: Lei, HUANG <6406592+v0y4g3r@users.noreply.github.com>

---------

Co-authored-by: Lei, HUANG <6406592+v0y4g3r@users.noreply.github.com>
2025-04-14 06:45:24 +00:00
Ning Sun
be837ddc24 test: add tests to ensure nested data structure for identity pipeline (#5888) 2025-04-14 03:13:46 +00:00
liyang
5b0c75c85f ci: not push latest image when schedule release (#5883)
* ci: delete the scheduled release

* do no push latest image when schedule release

* check ref type and name

* check not schedule
2025-04-14 01:22:40 +00:00
Weny Xu
5a36fa5e18 fix: alway rejects write while downgrading region (#5842)
* fix: alway rejects write while downgrading region

* chore: apply suggestions from CR
2025-04-11 06:42:41 +00:00
fys
84e2bc52c2 fix: gRPC connection pool leak (#5876)
* fix: gRPC connection pool leak

* use .config() instead of .inner.config

* cancel the bg task if it is running

* fix: cr

* add unit test for pool release

* Avoid potential data races
2025-04-11 05:54:28 +00:00
LFC
71255b3cbd refactor: avoid empty display in errors (#5858)
* refactor: avoid empty display in errors

* fix: resolve PR comments
2025-04-10 10:08:45 +00:00
Weny Xu
382eacdc13 fix: include follower peers in region distribution (#5844) 2025-04-10 09:19:32 +00:00
Lei, HUANG
74d8fd00a4 fix: remove metadata region options (#5852)
* fix/remove-metadata-region-options:
 ### Add `SKIP_WAL_KEY` Option to Metric Engine

 - **Enhancements**:
   - Introduced `SKIP_WAL_KEY` to the metric engine options in `create.rs` and `mito_engine_options.rs`.
   - Updated test cases in `create.rs` to include `skip_wal` option and ensure it is removed for metadata regions.

 - **Refactoring**:
   - Updated `requests.rs` to use `SKIP_WAL_KEY` from `store_api::mito_engine_options`.

 These changes enhance the metric engine by allowing the option to skip Write-Ahead Logging (WAL) and ensure consistent usage of option keys across modules.

* fix/remove-metadata-region-options: Add note for new options in mito_engine_options.rs

 • Introduce a comment to remind developers to check if new options should be removed in region_options_for_metadata_region within metric_engine::engine::create.

* empty
2025-04-10 08:07:04 +00:00
Zhenchi
dce5e35d7c feat: apply terms with fulltext tantivy backend (#5869)
* feat: apply terms with fulltext tantivy backend

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

* fix test

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

* address comments

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

---------

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>
2025-04-10 07:32:15 +00:00
Weny Xu
54ef29f394 feat: add catalog_manager to ProcedureServiceHandler (#5873) 2025-04-10 06:55:46 +00:00
LFC
e052c65a58 chore: remove repl (#5860) 2025-04-10 06:30:29 +00:00
LFC
e23979df9f chore: un-allow clippy's "readonly_write_lock" (#5862) 2025-04-10 02:05:50 +00:00
LFC
4b82ec7409 chore: remove obsolete way of passing http configurations through env (#5864) 2025-04-09 11:57:57 +00:00
Ruihang Xia
08d0f31865 perf: avoid duplicate computation in promql (#5863)
Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2025-04-09 11:53:25 +00:00
Ruihang Xia
dda7496265 perf: faster range manipulate for promql (#5859)
* try 1

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* heuristically advance cursor

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* prevent underflow

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* some comments

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* postpone vec allocation

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

---------

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2025-04-09 10:08:41 +00:00
discord9
df362be012 feat(flow): batching mode engine (#5807)
* feat: partial impl of rr task/state

* feat: recording rule engine

* chore: rm unused

* chore: per review partially

* test: gen create table

* chore: rm some unused

* test: merge time window

* refactor: rename to batching mode

* refactor: per review

* refactor(partially): per review

* refactor: split engine.rs into three files

* refactor: use plan not sql

* chore: per review

* chore: per review

* refactor: per review

* refactor: per review

* chore: more per review

* refactor: per review

* refactor(partial): per review

* refactor: per review

* chore: clone task cheaper&more comments

* chore: fmt

* chore: typo
2025-04-09 09:53:32 +00:00
Ning Sun
2ebe005e3c refactor: simplify tls key read code (#5856) 2025-04-09 08:50:43 +00:00
Weny Xu
746b4e2369 refactor: improve error code handling in status code conversion (#5851)
* refactor: improve error code handling in status code conversion

* chore: apply suggestions from CR

* fix: only hanlde client side thrown error

* feat: introduce `DeadlineExceeded`

* fix: exclude Code::Unknown from retry conditions
2025-04-09 07:58:23 +00:00
Zhenchi
6c66ec3ffc refactor: abstract index source from fulltext index applier (#5845)
* feat: add term as fulltext index request

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

* fix fmt

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

* address comments

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

* refactor: abstract index source from fulltext index applier

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

* address comments

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

---------

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>
2025-04-09 04:27:41 +00:00
Yingwen
95d0c650ec feat: pushdown select distinct in some cases (#5847)
* feat: pushdown select distinct

* test: add sqlness test

* test: fix analyzer test
2025-04-09 02:39:04 +00:00
LFC
311727939d chore: update datafusion family (#5814) 2025-04-09 02:20:55 +00:00
Weny Xu
7e3cad8a55 feat: make admin_fn macro usable outside common_function module (#5850)
* feat: make `admin_fn` macro usable outside common_function module

* chore: expose mod for testing
2025-04-08 14:25:37 +00:00
discord9
72625958bf refactor(flow): make start flownode clearer (#5848)
refactor: make start flownode clearer
2025-04-08 14:08:51 +00:00
Ruihang Xia
7ea04817bd feat: shorten possible wrong query range (#5849)
* feat: shorten possible wrong query range

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* add unit test case

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

---------

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2025-04-08 13:51:50 +00:00
Ruihang Xia
c26e165887 refactor: check and fix super import (#5846)
* refactor: check and fix super import

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* add to makefile

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* change dir

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

---------

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2025-04-08 11:48:52 +00:00
Zhenchi
7335293983 feat: add term as fulltext index request (#5843)
* feat: add term as fulltext index request

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

* fix fmt

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

* address comments

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>

---------

Signed-off-by: Zhenchi <zhongzc_arch@outlook.com>
2025-04-08 11:19:32 +00:00
620 changed files with 39819 additions and 17981 deletions

View File

@@ -1,15 +0,0 @@
# yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json
language: "en-US"
early_access: false
reviews:
profile: "chill"
request_changes_workflow: false
high_level_summary: true
poem: true
review_status: true
collapse_walkthrough: false
auto_review:
enabled: false
drafts: false
chat:
auto_reply: true

View File

@@ -2,13 +2,14 @@ meta:
configData: |-
[runtime]
global_rt_size = 4
[wal]
provider = "kafka"
broker_endpoints = ["kafka.kafka-cluster.svc.cluster.local:9092"]
num_topics = 3
auto_prune_interval = "30s"
trigger_flush_threshold = 100
[datanode]
[datanode.client]
timeout = "120s"
@@ -22,6 +23,7 @@ datanode:
provider = "kafka"
broker_endpoints = ["kafka.kafka-cluster.svc.cluster.local:9092"]
linger = "2ms"
overwrite_entry_start_id = true
frontend:
configData: |-
[runtime]

View File

@@ -25,7 +25,7 @@ function create_version() {
fi
# Reuse $NEXT_RELEASE_VERSION to identify whether it's a nightly build.
# It will be like 'nigtly-20230808-7d0d8dc6'.
# It will be like 'nightly-20230808-7d0d8dc6'.
if [ "$NEXT_RELEASE_VERSION" = nightly ]; then
echo "$NIGHTLY_RELEASE_PREFIX-$(date "+%Y%m%d")-$(git rev-parse --short HEAD)"
exit 0
@@ -60,9 +60,9 @@ function create_version() {
}
# You can run as following examples:
# GITHUB_EVENT_NAME=push NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nigtly GITHUB_REF_NAME=v0.3.0 ./create-version.sh
# GITHUB_EVENT_NAME=workflow_dispatch NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nigtly ./create-version.sh
# GITHUB_EVENT_NAME=schedule NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nigtly ./create-version.sh
# GITHUB_EVENT_NAME=schedule NEXT_RELEASE_VERSION=nightly NIGHTLY_RELEASE_PREFIX=nigtly ./create-version.sh
# GITHUB_EVENT_NAME=workflow_dispatch COMMIT_SHA=f0e7216c4bb6acce9b29a21ec2d683be2e3f984a NEXT_RELEASE_VERSION=dev NIGHTLY_RELEASE_PREFIX=nigtly ./create-version.sh
# GITHUB_EVENT_NAME=push NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nightly GITHUB_REF_NAME=v0.3.0 ./create-version.sh
# GITHUB_EVENT_NAME=workflow_dispatch NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nightly ./create-version.sh
# GITHUB_EVENT_NAME=schedule NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nightly ./create-version.sh
# GITHUB_EVENT_NAME=schedule NEXT_RELEASE_VERSION=nightly NIGHTLY_RELEASE_PREFIX=nightly ./create-version.sh
# GITHUB_EVENT_NAME=workflow_dispatch COMMIT_SHA=f0e7216c4bb6acce9b29a21ec2d683be2e3f984a NEXT_RELEASE_VERSION=dev NIGHTLY_RELEASE_PREFIX=nightly ./create-version.sh
create_version

37
.github/scripts/update-dev-builder-version.sh vendored Executable file
View File

@@ -0,0 +1,37 @@
#!/bin/bash
DEV_BUILDER_IMAGE_TAG=$1
update_dev_builder_version() {
if [ -z "$DEV_BUILDER_IMAGE_TAG" ]; then
echo "Error: Should specify the dev-builder image tag"
exit 1
fi
# Configure Git configs.
git config --global user.email greptimedb-ci@greptime.com
git config --global user.name greptimedb-ci
# Checkout a new branch.
BRANCH_NAME="ci/update-dev-builder-$(date +%Y%m%d%H%M%S)"
git checkout -b $BRANCH_NAME
# Update the dev-builder image tag in the Makefile.
gsed -i "s/DEV_BUILDER_IMAGE_TAG ?=.*/DEV_BUILDER_IMAGE_TAG ?= ${DEV_BUILDER_IMAGE_TAG}/g" Makefile
# Commit the changes.
git add Makefile
git commit -m "ci: update dev-builder image tag"
git push origin $BRANCH_NAME
# Create a Pull Request.
gh pr create \
--title "ci: update dev-builder image tag" \
--body "This PR updates the dev-builder image tag" \
--base main \
--head $BRANCH_NAME \
--reviewer zyy17 \
--reviewer daviderli614
}
update_dev_builder_version

View File

@@ -21,32 +21,6 @@ jobs:
run: sudo apt-get install -y jq
# Make the check.sh script executable
- name: Make check.sh executable
run: chmod +x grafana/check.sh
# Run the check.sh script
- name: Run check.sh
run: ./grafana/check.sh
# Only run summary.sh for pull_request events (not for merge queues or final pushes)
- name: Check if this is a pull request
id: check-pr
- name: Check grafana dashboards
run: |
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
echo "is_pull_request=true" >> $GITHUB_OUTPUT
else
echo "is_pull_request=false" >> $GITHUB_OUTPUT
fi
# Make the summary.sh script executable
- name: Make summary.sh executable
if: steps.check-pr.outputs.is_pull_request == 'true'
run: chmod +x grafana/summary.sh
# Run the summary.sh script and add its output to the GitHub Job Summary
- name: Run summary.sh and add to Job Summary
if: steps.check-pr.outputs.is_pull_request == 'true'
run: |
SUMMARY=$(./grafana/summary.sh)
echo "### Summary of Grafana Panels" >> $GITHUB_STEP_SUMMARY
echo "$SUMMARY" >> $GITHUB_STEP_SUMMARY
make check-dashboards

View File

@@ -24,11 +24,19 @@ on:
description: Release dev-builder-android image
required: false
default: false
update_dev_builder_image_tag:
type: boolean
description: Update the DEV_BUILDER_IMAGE_TAG in Makefile and create a PR
required: false
default: false
jobs:
release-dev-builder-images:
name: Release dev builder images
if: ${{ inputs.release_dev_builder_ubuntu_image || inputs.release_dev_builder_centos_image || inputs.release_dev_builder_android_image }} # Only manually trigger this job.
# The jobs are triggered by the following events:
# 1. Manually triggered workflow_dispatch event
# 2. Push event when the PR that modifies the `rust-toolchain.toml` or `docker/dev-builder/**` is merged to main
if: ${{ github.event_name == 'push' || inputs.release_dev_builder_ubuntu_image || inputs.release_dev_builder_centos_image || inputs.release_dev_builder_android_image }}
runs-on: ubuntu-latest
outputs:
version: ${{ steps.set-version.outputs.version }}
@@ -57,9 +65,9 @@ jobs:
version: ${{ env.VERSION }}
dockerhub-image-registry-username: ${{ secrets.DOCKERHUB_USERNAME }}
dockerhub-image-registry-token: ${{ secrets.DOCKERHUB_TOKEN }}
build-dev-builder-ubuntu: ${{ inputs.release_dev_builder_ubuntu_image }}
build-dev-builder-centos: ${{ inputs.release_dev_builder_centos_image }}
build-dev-builder-android: ${{ inputs.release_dev_builder_android_image }}
build-dev-builder-ubuntu: ${{ inputs.release_dev_builder_ubuntu_image || github.event_name == 'push' }}
build-dev-builder-centos: ${{ inputs.release_dev_builder_centos_image || github.event_name == 'push' }}
build-dev-builder-android: ${{ inputs.release_dev_builder_android_image || github.event_name == 'push' }}
release-dev-builder-images-ecr:
name: Release dev builder images to AWS ECR
@@ -85,7 +93,7 @@ jobs:
- name: Push dev-builder-ubuntu image
shell: bash
if: ${{ inputs.release_dev_builder_ubuntu_image }}
if: ${{ inputs.release_dev_builder_ubuntu_image || github.event_name == 'push' }}
env:
IMAGE_VERSION: ${{ needs.release-dev-builder-images.outputs.version }}
IMAGE_NAMESPACE: ${{ vars.IMAGE_NAMESPACE }}
@@ -106,7 +114,7 @@ jobs:
- name: Push dev-builder-centos image
shell: bash
if: ${{ inputs.release_dev_builder_centos_image }}
if: ${{ inputs.release_dev_builder_centos_image || github.event_name == 'push' }}
env:
IMAGE_VERSION: ${{ needs.release-dev-builder-images.outputs.version }}
IMAGE_NAMESPACE: ${{ vars.IMAGE_NAMESPACE }}
@@ -127,7 +135,7 @@ jobs:
- name: Push dev-builder-android image
shell: bash
if: ${{ inputs.release_dev_builder_android_image }}
if: ${{ inputs.release_dev_builder_android_image || github.event_name == 'push' }}
env:
IMAGE_VERSION: ${{ needs.release-dev-builder-images.outputs.version }}
IMAGE_NAMESPACE: ${{ vars.IMAGE_NAMESPACE }}
@@ -162,7 +170,7 @@ jobs:
- name: Push dev-builder-ubuntu image
shell: bash
if: ${{ inputs.release_dev_builder_ubuntu_image }}
if: ${{ inputs.release_dev_builder_ubuntu_image || github.event_name == 'push' }}
env:
IMAGE_VERSION: ${{ needs.release-dev-builder-images.outputs.version }}
IMAGE_NAMESPACE: ${{ vars.IMAGE_NAMESPACE }}
@@ -176,7 +184,7 @@ jobs:
- name: Push dev-builder-centos image
shell: bash
if: ${{ inputs.release_dev_builder_centos_image }}
if: ${{ inputs.release_dev_builder_centos_image || github.event_name == 'push' }}
env:
IMAGE_VERSION: ${{ needs.release-dev-builder-images.outputs.version }}
IMAGE_NAMESPACE: ${{ vars.IMAGE_NAMESPACE }}
@@ -190,7 +198,7 @@ jobs:
- name: Push dev-builder-android image
shell: bash
if: ${{ inputs.release_dev_builder_android_image }}
if: ${{ inputs.release_dev_builder_android_image || github.event_name == 'push' }}
env:
IMAGE_VERSION: ${{ needs.release-dev-builder-images.outputs.version }}
IMAGE_NAMESPACE: ${{ vars.IMAGE_NAMESPACE }}
@@ -201,3 +209,24 @@ jobs:
quay.io/skopeo/stable:latest \
copy -a docker://docker.io/$IMAGE_NAMESPACE/dev-builder-android:$IMAGE_VERSION \
docker://$ACR_IMAGE_REGISTRY/$IMAGE_NAMESPACE/dev-builder-android:$IMAGE_VERSION
update-dev-builder-image-tag:
name: Update dev-builder image tag
runs-on: ubuntu-latest
permissions:
contents: write
pull-requests: write
if: ${{ github.event_name == 'push' || inputs.update_dev_builder_image_tag }}
needs: [
release-dev-builder-images
]
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Update dev-builder image tag
shell: bash
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
./.github/scripts/update-dev-builder-version.sh ${{ needs.release-dev-builder-images.outputs.version }}

View File

@@ -317,7 +317,7 @@ jobs:
image-registry-username: ${{ secrets.DOCKERHUB_USERNAME }}
image-registry-password: ${{ secrets.DOCKERHUB_TOKEN }}
version: ${{ needs.allocate-runners.outputs.version }}
push-latest-tag: true
push-latest-tag: ${{ github.ref_type == 'tag' && !contains(github.ref_name, 'nightly') && github.event_name != 'schedule' }}
- name: Set build image result
id: set-build-image-result
@@ -364,7 +364,7 @@ jobs:
dev-mode: false
upload-to-s3: true
update-version-info: true
push-latest-tag: true
push-latest-tag: ${{ github.ref_type == 'tag' && !contains(github.ref_name, 'nightly') && github.event_name != 'schedule' }}
publish-github-release:
name: Create GitHub release and upload artifacts

1529
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -68,7 +68,7 @@ members = [
resolver = "2"
[workspace.package]
version = "0.14.0"
version = "0.14.3"
edition = "2021"
license = "Apache-2.0"
@@ -77,7 +77,6 @@ clippy.print_stdout = "warn"
clippy.print_stderr = "warn"
clippy.dbg_macro = "warn"
clippy.implicit_clone = "warn"
clippy.readonly_write_lock = "allow"
rust.unknown_lints = "deny"
rust.unexpected_cfgs = { level = "warn", check-cfg = ['cfg(tokio_unstable)'] }
@@ -90,11 +89,11 @@ rust.unexpected_cfgs = { level = "warn", check-cfg = ['cfg(tokio_unstable)'] }
# See for more detaiils: https://github.com/rust-lang/cargo/issues/11329
ahash = { version = "0.8", features = ["compile-time-rng"] }
aquamarine = "0.6"
arrow = { version = "53.0.0", features = ["prettyprint"] }
arrow-array = { version = "53.0.0", default-features = false, features = ["chrono-tz"] }
arrow-flight = "53.0"
arrow-ipc = { version = "53.0.0", default-features = false, features = ["lz4", "zstd"] }
arrow-schema = { version = "53.0", features = ["serde"] }
arrow = { version = "54.2", features = ["prettyprint"] }
arrow-array = { version = "54.2", default-features = false, features = ["chrono-tz"] }
arrow-flight = "54.2"
arrow-ipc = { version = "54.2", default-features = false, features = ["lz4", "zstd"] }
arrow-schema = { version = "54.2", features = ["serde"] }
async-stream = "0.3"
async-trait = "0.1"
# Remember to update axum-extra, axum-macros when updating axum
@@ -113,15 +112,15 @@ clap = { version = "4.4", features = ["derive"] }
config = "0.13.0"
crossbeam-utils = "0.8"
dashmap = "6.1"
datafusion = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-common = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-expr = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-functions = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-optimizer = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-physical-expr = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-physical-plan = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-sql = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-substrait = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-common = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-expr = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-functions = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-optimizer = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-physical-expr = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-physical-plan = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-sql = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-substrait = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
deadpool = "0.12"
deadpool-postgres = "0.14"
derive_builder = "0.20"
@@ -130,7 +129,7 @@ etcd-client = "0.14"
fst = "0.4.7"
futures = "0.3"
futures-util = "0.3"
greptime-proto = { git = "https://github.com/GreptimeTeam/greptime-proto.git", rev = "dd4a1996982534636734674db66e44464b0c0d83" }
greptime-proto = { git = "https://github.com/GreptimeTeam/greptime-proto.git", rev = "4d4136692fe7fbbd509ebc8c902f6afcc0ce61e4" }
hex = "0.4"
http = "1"
humantime = "2.1"
@@ -148,6 +147,7 @@ moka = "0.12"
nalgebra = "0.33"
notify = "8.0"
num_cpus = "1.16"
object_store_opendal = "0.50"
once_cell = "1.18"
opentelemetry-proto = { version = "0.27", features = [
"gen-tonic",
@@ -157,12 +157,14 @@ opentelemetry-proto = { version = "0.27", features = [
"logs",
] }
parking_lot = "0.12"
parquet = { version = "53.0.0", default-features = false, features = ["arrow", "async", "object_store"] }
parquet = { version = "54.2", default-features = false, features = ["arrow", "async", "object_store"] }
paste = "1.0"
pin-project = "1.0"
prometheus = { version = "0.13.3", features = ["process"] }
promql-parser = { version = "0.5", features = ["ser"] }
prost = "0.13"
promql-parser = { git = "https://github.com/GreptimeTeam/promql-parser.git", rev = "0410e8b459dda7cb222ce9596f8bf3971bd07bd2", features = [
"ser",
] }
prost = { version = "0.13", features = ["no-recursion-limit"] }
raft-engine = { version = "0.4.1", default-features = false }
rand = "0.9"
ratelimit = "0.10"
@@ -191,19 +193,18 @@ simd-json = "0.15"
similar-asserts = "1.6.0"
smallvec = { version = "1", features = ["serde"] }
snafu = "0.8"
sqlparser = { git = "https://github.com/GreptimeTeam/sqlparser-rs.git", rev = "0cf6c04490d59435ee965edd2078e8855bd8471e", features = [
"visitor",
"serde",
] } # branch = "v0.54.x"
sqlx = { version = "0.8", features = [
"runtime-tokio-rustls",
"mysql",
"postgres",
"chrono",
] }
sysinfo = "0.33"
# on branch v0.52.x
sqlparser = { git = "https://github.com/GreptimeTeam/sqlparser-rs.git", rev = "71dd86058d2af97b9925093d40c4e03360403170", features = [
"visitor",
"serde",
] } # on branch v0.44.x
strum = { version = "0.27", features = ["derive"] }
sysinfo = "0.33"
tempfile = "3"
tokio = { version = "1.40", features = ["full"] }
tokio-postgres = "0.7"
@@ -270,6 +271,9 @@ metric-engine = { path = "src/metric-engine" }
mito2 = { path = "src/mito2" }
object-store = { path = "src/object-store" }
operator = { path = "src/operator" }
otel-arrow-rust = { git = "https://github.com/open-telemetry/otel-arrow", rev = "5d551412d2a12e689cde4d84c14ef29e36784e51", features = [
"server",
] }
partition = { path = "src/partition" }
pipeline = { path = "src/pipeline" }
plugins = { path = "src/plugins" }

View File

@@ -32,6 +32,10 @@ ifneq ($(strip $(BUILD_JOBS)),)
NEXTEST_OPTS += --build-jobs=${BUILD_JOBS}
endif
ifneq ($(strip $(BUILD_JOBS)),)
SQLNESS_OPTS += --jobs ${BUILD_JOBS}
endif
ifneq ($(strip $(CARGO_PROFILE)),)
CARGO_BUILD_OPTS += --profile ${CARGO_PROFILE}
endif
@@ -193,6 +197,7 @@ fix-clippy: ## Fix clippy violations.
fmt-check: ## Check code format.
cargo fmt --all -- --check
python3 scripts/check-snafu.py
python3 scripts/check-super-imports.py
.PHONY: start-etcd
start-etcd: ## Start single node etcd for testing purpose.
@@ -217,6 +222,16 @@ start-cluster: ## Start the greptimedb cluster with etcd by using docker compose
stop-cluster: ## Stop the greptimedb cluster that created by docker compose.
docker compose -f ./docker/docker-compose/cluster-with-etcd.yaml stop
##@ Grafana
.PHONY: check-dashboards
check-dashboards: ## Check the Grafana dashboards.
@./grafana/scripts/check.sh
.PHONY: dashboards
dashboards: ## Generate the Grafana dashboards for standalone mode and intermediate dashboards.
@./grafana/scripts/gen-dashboards.sh
##@ Docs
config-docs: ## Generate configuration documentation from toml files.
docker run --rm \

View File

@@ -6,7 +6,7 @@
</picture>
</p>
<h2 align="center">Unified & Cost-Effective Observerability Database for Metrics, Logs, and Events</h2>
<h2 align="center">Real-Time & Cloud-Native Observability Database<br/>for metrics, logs, and traces</h2>
<div align="center">
<h3 align="center">
@@ -62,7 +62,7 @@
## Introduction
**GreptimeDB** is an open-source unified & cost-effective observerability database for **Metrics**, **Logs**, and **Events** (also **Traces** in plan). You can gain real-time insights from Edge to Cloud at Any Scale.
**GreptimeDB** is an open-source, cloud-native, unified & cost-effective observability database for **Metrics**, **Logs**, and **Traces**. You can gain real-time insights from Edge to Cloud at Any Scale.
## News
@@ -70,27 +70,27 @@
## Why GreptimeDB
Our core developers have been building observerability data platforms for years. Based on our best practices, GreptimeDB was born to give you:
Our core developers have been building observability data platforms for years. Based on our best practices, GreptimeDB was born to give you:
* **Unified Processing of Metrics, Logs, and Events**
* **Unified Processing of Observability Data**
GreptimeDB unifies observerability data processing by treating all data - whether metrics, logs, or events - as timestamped events with context. Users can analyze this data using either [SQL](https://docs.greptime.com/user-guide/query-data/sql) or [PromQL](https://docs.greptime.com/user-guide/query-data/promql) and leverage stream processing ([Flow](https://docs.greptime.com/user-guide/flow-computation/overview)) to enable continuous aggregation. [Read more](https://docs.greptime.com/user-guide/concepts/data-model).
A unified database that treats metrics, logs, and traces as timestamped wide events with context, supporting [SQL](https://docs.greptime.com/user-guide/query-data/sql)/[PromQL](https://docs.greptime.com/user-guide/query-data/promql) queries and [stream processing](https://docs.greptime.com/user-guide/flow-computation/overview) to simplify complex data stacks.
* **High Performance and Cost-effective**
Written in Rust, combines a distributed query engine with [rich indexing](https://docs.greptime.com/user-guide/manage-data/data-index) (inverted, fulltext, skip data, and vector) and optimized columnar storage to deliver sub-second responses on petabyte-scale data and high-cost efficiency.
* **Cloud-native Distributed Database**
Built for [Kubernetes](https://docs.greptime.com/user-guide/deployments/deploy-on-kubernetes/greptimedb-operator-management). GreptimeDB achieves seamless scalability with its [cloud-native architecture](https://docs.greptime.com/user-guide/concepts/architecture) of separated compute and storage, built on object storage (AWS S3, Azure Blob Storage, etc.) while enabling cross-cloud deployment through a unified data access layer.
* **Performance and Cost-effective**
* **Developer-Friendly**
Written in pure Rust for superior performance and reliability. GreptimeDB features a distributed query engine with intelligent indexing to handle high cardinality data efficiently. Its optimized columnar storage achieves 50x cost efficiency on cloud object storage through advanced compression. [Benchmark reports](https://www.greptime.com/blogs/2024-09-09-report-summary).
Access standardized SQL/PromQL interfaces through built-in web dashboard, REST API, and MySQL/PostgreSQL protocols. Supports widely adopted data ingestion [protocols](https://docs.greptime.com/user-guide/protocols/overview) for seamless migration and integration.
* **Cloud-Edge Collaboration**
* **Flexible Deployment Options**
GreptimeDB seamlessly operates across cloud and edge (ARM/Android/Linux), providing consistent APIs and control plane for unified data management and efficient synchronization. [Learn how to run on Android](https://docs.greptime.com/user-guide/deployments/run-on-android/).
* **Multi-protocol Ingestion, SQL & PromQL Ready**
Widely adopted database protocols and APIs, including MySQL, PostgreSQL, InfluxDB, OpenTelemetry, Loki and Prometheus, etc. Effortless Adoption & Seamless Migration. [Supported Protocols Overview](https://docs.greptime.com/user-guide/protocols/overview).
Deploy GreptimeDB anywhere from ARM-based edge devices to cloud environments with unified APIs and bandwidth-efficient data synchronization. Query edge and cloud data seamlessly through identical APIs. [Learn how to run on Android](https://docs.greptime.com/user-guide/deployments/run-on-android/).
For more detailed info please read [Why GreptimeDB](https://docs.greptime.com/user-guide/concepts/why-greptimedb).
@@ -233,3 +233,5 @@ Special thanks to all the contributors who have propelled GreptimeDB forward. Fo
- GreptimeDB's query engine is powered by [Apache Arrow DataFusion™](https://arrow.apache.org/datafusion/).
- [Apache OpenDAL™](https://opendal.apache.org) gives GreptimeDB a very general and elegant data access abstraction layer.
- GreptimeDB's meta service is based on [etcd](https://etcd.io/).
<img alt="Known Users" src="https://greptime.com/logo/img/users.png"/>

View File

@@ -96,6 +96,8 @@
| `procedure.max_running_procedures` | Integer | `128` | Max running procedures.<br/>The maximum number of procedures that can be running at the same time.<br/>If the number of running procedures exceeds this limit, the procedure will be rejected. |
| `flow` | -- | -- | flow engine options. |
| `flow.num_workers` | Integer | `0` | The number of flow worker in flownode.<br/>Not setting(or set to 0) this value will use the number of CPU cores divided by 2. |
| `query` | -- | -- | The query engine options. |
| `query.parallelism` | Integer | `0` | Parallelism of the query engine.<br/>Default to 0, which means the number of CPU cores. |
| `storage` | -- | -- | The data storage options. |
| `storage.data_home` | String | `./greptimedb_data/` | The working home directory. |
| `storage.type` | String | `File` | The storage type used to store the data.<br/>- `File`: the data is stored in the local file system.<br/>- `S3`: the data is stored in the S3 object storage.<br/>- `Gcs`: the data is stored in the Google Cloud Storage.<br/>- `Azblob`: the data is stored in the Azure Blob Storage.<br/>- `Oss`: the data is stored in the Aliyun OSS. |
@@ -270,6 +272,8 @@
| `meta_client.metadata_cache_max_capacity` | Integer | `100000` | The configuration about the cache of the metadata. |
| `meta_client.metadata_cache_ttl` | String | `10m` | TTL of the metadata cache. |
| `meta_client.metadata_cache_tti` | String | `5m` | -- |
| `query` | -- | -- | The query engine options. |
| `query.parallelism` | Integer | `0` | Parallelism of the query engine.<br/>Default to 0, which means the number of CPU cores. |
| `datanode` | -- | -- | Datanode options. |
| `datanode.client` | -- | -- | Datanode client options. |
| `datanode.client.connect_timeout` | String | `10s` | -- |
@@ -315,6 +319,7 @@
| `selector` | String | `round_robin` | Datanode selector type.<br/>- `round_robin` (default value)<br/>- `lease_based`<br/>- `load_based`<br/>For details, please see "https://docs.greptime.com/developer-guide/metasrv/selector". |
| `use_memory_store` | Bool | `false` | Store data in memory. |
| `enable_region_failover` | Bool | `false` | Whether to enable region failover.<br/>This feature is only available on GreptimeDB running on cluster mode and<br/>- Using Remote WAL<br/>- Using shared storage (e.g., s3). |
| `allow_region_failover_on_local_wal` | Bool | `false` | Whether to allow region failover on local WAL.<br/>**This option is not recommended to be set to true, because it may lead to data loss during failover.** |
| `node_max_idle_time` | String | `24hours` | Max allowed idle time before removing node info from metasrv memory. |
| `enable_telemetry` | Bool | `true` | Whether to enable greptimedb telemetry. Enabled by default. |
| `runtime` | -- | -- | The runtime options. |
@@ -339,6 +344,9 @@
| `wal.provider` | String | `raft_engine` | -- |
| `wal.broker_endpoints` | Array | -- | The broker endpoints of the Kafka cluster. |
| `wal.auto_create_topics` | Bool | `true` | Automatically create topics for WAL.<br/>Set to `true` to automatically create topics for WAL.<br/>Otherwise, use topics named `topic_name_prefix_[0..num_topics)` |
| `wal.auto_prune_interval` | String | `0s` | Interval of automatically WAL pruning.<br/>Set to `0s` to disable automatically WAL pruning which delete unused remote WAL entries periodically. |
| `wal.trigger_flush_threshold` | Integer | `0` | The threshold to trigger a flush operation of a region in automatically WAL pruning.<br/>Metasrv will send a flush request to flush the region when:<br/>`trigger_flush_threshold` + `prunable_entry_id` < `max_prunable_entry_id`<br/>where:<br/>- `prunable_entry_id` is the maximum entry id that can be pruned of the region.<br/>- `max_prunable_entry_id` is the maximum prunable entry id among all regions in the same topic.<br/>Set to `0` to disable the flush operation. |
| `wal.auto_prune_parallelism` | Integer | `10` | Concurrent task limit for automatically WAL pruning. |
| `wal.num_topics` | Integer | `64` | Number of topics. |
| `wal.selector_type` | String | `round_robin` | Topic selector type.<br/>Available selector types:<br/>- `round_robin` (default) |
| `wal.topic_name_prefix` | String | `greptimedb_wal_topic` | A Kafka topic is constructed by concatenating `topic_name_prefix` and `topic_id`.<br/>Only accepts strings that match the following regular expression pattern:<br/>[a-zA-Z_:-][a-zA-Z0-9_:\-\.@#]*<br/>i.g., greptimedb_wal_topic_0, greptimedb_wal_topic_1. |
@@ -429,6 +437,8 @@
| `wal.create_index` | Bool | `true` | Whether to enable WAL index creation.<br/>**It's only used when the provider is `kafka`**. |
| `wal.dump_index_interval` | String | `60s` | The interval for dumping WAL indexes.<br/>**It's only used when the provider is `kafka`**. |
| `wal.overwrite_entry_start_id` | Bool | `false` | Ignore missing entries during read WAL.<br/>**It's only used when the provider is `kafka`**.<br/><br/>This option ensures that when Kafka messages are deleted, the system<br/>can still successfully replay memtable data without throwing an<br/>out-of-range error.<br/>However, enabling this option might lead to unexpected data loss,<br/>as the system will skip over missing entries instead of treating<br/>them as critical errors. |
| `query` | -- | -- | The query engine options. |
| `query.parallelism` | Integer | `0` | Parallelism of the query engine.<br/>Default to 0, which means the number of CPU cores. |
| `storage` | -- | -- | The data storage options. |
| `storage.data_home` | String | `./greptimedb_data/` | The working home directory. |
| `storage.type` | String | `File` | The storage type used to store the data.<br/>- `File`: the data is stored in the local file system.<br/>- `S3`: the data is stored in the S3 object storage.<br/>- `Gcs`: the data is stored in the Google Cloud Storage.<br/>- `Azblob`: the data is stored in the Azure Blob Storage.<br/>- `Oss`: the data is stored in the Aliyun OSS. |

View File

@@ -243,6 +243,12 @@ overwrite_entry_start_id = false
# credential = "base64-credential"
# endpoint = "https://storage.googleapis.com"
## The query engine options.
[query]
## Parallelism of the query engine.
## Default to 0, which means the number of CPU cores.
parallelism = 0
## The data storage options.
[storage]
## The working home directory.

View File

@@ -179,6 +179,12 @@ metadata_cache_ttl = "10m"
# TTI of the metadata cache.
metadata_cache_tti = "5m"
## The query engine options.
[query]
## Parallelism of the query engine.
## Default to 0, which means the number of CPU cores.
parallelism = 0
## Datanode options.
[datanode]
## Datanode client options.

View File

@@ -50,6 +50,10 @@ use_memory_store = false
## - Using shared storage (e.g., s3).
enable_region_failover = false
## Whether to allow region failover on local WAL.
## **This option is not recommended to be set to true, because it may lead to data loss during failover.**
allow_region_failover_on_local_wal = false
## Max allowed idle time before removing node info from metasrv memory.
node_max_idle_time = "24hours"
@@ -130,6 +134,22 @@ broker_endpoints = ["127.0.0.1:9092"]
## Otherwise, use topics named `topic_name_prefix_[0..num_topics)`
auto_create_topics = true
## Interval of automatically WAL pruning.
## Set to `0s` to disable automatically WAL pruning which delete unused remote WAL entries periodically.
auto_prune_interval = "0s"
## The threshold to trigger a flush operation of a region in automatically WAL pruning.
## Metasrv will send a flush request to flush the region when:
## `trigger_flush_threshold` + `prunable_entry_id` < `max_prunable_entry_id`
## where:
## - `prunable_entry_id` is the maximum entry id that can be pruned of the region.
## - `max_prunable_entry_id` is the maximum prunable entry id among all regions in the same topic.
## Set to `0` to disable the flush operation.
trigger_flush_threshold = 0
## Concurrent task limit for automatically WAL pruning.
auto_prune_parallelism = 10
## Number of topics.
num_topics = 64

View File

@@ -334,6 +334,12 @@ max_running_procedures = 128
# credential = "base64-credential"
# endpoint = "https://storage.googleapis.com"
## The query engine options.
[query]
## Parallelism of the query engine.
## Default to 0, which means the number of CPU cores.
parallelism = 0
## The data storage options.
[storage]
## The working home directory.

View File

@@ -1,6 +1,6 @@
# Profile memory usage of GreptimeDB
This crate provides an easy approach to dump memory profiling info.
This crate provides an easy approach to dump memory profiling info. A set of ready to use scripts is provided in [docs/how-to/memory-profile-scripts](docs/how-to/memory-profile-scripts).
## Prerequisites
### jemalloc

View File

@@ -0,0 +1,52 @@
# Memory Analysis Process
This section will guide you through the process of analyzing memory usage for greptimedb.
1. Get the `jeprof` tool script, see the next section("Getting the `jeprof` tool") for details.
2. After starting `greptimedb`(with env var `MALLOC_CONF=prof:true`), execute the `dump.sh` script with the PID of the `greptimedb` process as an argument. This continuously monitors memory usage and captures profiles when exceeding thresholds (e.g. +20MB within 10 minutes). Outputs `greptime-{timestamp}.gprof` files.
3. With 2-3 gprof files, run `gen_flamegraph.sh` in the same environment to generate flame graphs showing memory allocation call stacks.
4. **NOTE:** The `gen_flamegraph.sh` script requires `jeprof` and optionally `flamegraph.pl` to be in the current directory. If needed to gen flamegraph now, run the `get_flamegraph_tool.sh` script, which downloads the flame graph generation tool `flamegraph.pl` to the current directory.
The usage of `gen_flamegraph.sh` is:
`Usage: ./gen_flamegraph.sh <binary_path> <gprof_directory>`
where `<binary_path>` is the path to the greptimedb binary, `<gprof_directory>` is the directory containing the gprof files(the directory `dump.sh` is dumping profiles to).
Example call: `./gen_flamegraph.sh ./greptime .`
Generating the flame graph might take a few minutes. The generated flame graphs are located in the `<gprof_directory>/flamegraphs` directory. Or if no `flamegraph.pl` is found, it will only contain `.collapse` files which is also fine.
5. You can send the generated flame graphs(the entire folder of `<gprof_directory>/flamegraphs`) to developers for further analysis.
## Getting the `jeprof` tool
there are three ways to get `jeprof`, list in here from simple to complex, using any one of those methods is ok, as long as it's the same environment as the `greptimedb` will be running on:
1. If you are compiling greptimedb from source, then `jeprof` is already produced during compilation. After running `cargo build`, execute `find_compiled_jeprof.sh`. This will copy `jeprof` to the current directory.
2. Or, if you have the Rust toolchain installed locally, simply follow these commands:
```bash
cargo new get_jeprof
cd get_jeprof
```
Then add this line to `Cargo.toml`:
```toml
[dependencies]
tikv-jemalloc-ctl = { version = "0.6", features = ["use_std", "stats"] }
```
then run:
```bash
cargo build
```
after that the `jeprof` tool is produced. Now run `find_compiled_jeprof.sh` in current directory, it will copy the `jeprof` tool to the current directory.
3. compile jemalloc from source
you can first clone this repo, and checkout to this commit:
```bash
git clone https://github.com/tikv/jemalloc.git
cd jemalloc
git checkout e13ca993e8ccb9ba9847cc330696e02839f328f7
```
then run:
```bash
./configure
make
```
and `jeprof` is in `.bin/` directory. Copy it to the current directory.

View File

@@ -0,0 +1,78 @@
#!/bin/bash
# Monitors greptime process memory usage every 10 minutes
# Triggers memory profile capture via `curl -X POST localhost:4000/debug/prof/mem > greptime-{timestamp}.gprof`
# when memory increases by more than 20MB since last check
# Generated profiles can be analyzed using flame graphs as described in `how-to-profile-memory.md`
# (jeprof is compiled with the database - see documentation)
# Alternative: Share binaries + profiles for analysis (Docker images preferred)
# Threshold in Kilobytes (20 MB)
threshold_kb=$((20 * 1024))
sleep_interval=$((10 * 60))
# Variable to store the last measured memory usage in KB
last_mem_kb=0
echo "Starting memory monitoring for 'greptime' process..."
while true; do
# Check if PID is provided as an argument
if [ -z "$1" ]; then
echo "$(date): PID must be provided as a command-line argument."
exit 1
fi
pid="$1"
# Validate that the PID is a number
if ! [[ "$pid" =~ ^[0-9]+$ ]]; then
echo "$(date): Invalid PID: '$pid'. PID must be a number."
exit 1
fi
# Get the current Resident Set Size (RSS) in Kilobytes
current_mem_kb=$(ps -o rss= -p "$pid")
# Check if ps command was successful and returned a number
if ! [[ "$current_mem_kb" =~ ^[0-9]+$ ]]; then
echo "$(date): Failed to get memory usage for PID $pid. Skipping check."
# Keep last_mem_kb to avoid false positives if the process briefly becomes unreadable.
continue
fi
echo "$(date): Current memory usage for PID $pid: ${current_mem_kb} KB"
# Compare with the last measurement
# if it's the first run, also do a baseline dump just to make sure we can dump
diff_kb=$((current_mem_kb - last_mem_kb))
echo "$(date): Memory usage change since last check: ${diff_kb} KB"
if [ "$diff_kb" -gt "$threshold_kb" ]; then
echo "$(date): Memory increase (${diff_kb} KB) exceeded threshold (${threshold_kb} KB). Dumping profile..."
timestamp=$(date +%Y%m%d%H%M%S)
profile_file="greptime-${timestamp}.gprof"
# Execute curl and capture output to file
if curl -sf -X POST localhost:4000/debug/prof/mem > "$profile_file"; then
echo "$(date): Memory profile saved to $profile_file"
else
echo "$(date): Failed to dump memory profile (curl exit code: $?)."
# Remove the potentially empty/failed profile file
rm -f "$profile_file"
fi
else
echo "$(date): Memory increase (${diff_kb} KB) is within the threshold (${threshold_kb} KB)."
fi
# Update the last memory usage
last_mem_kb=$current_mem_kb
# Wait for 5 minutes
echo "$(date): Sleeping for $sleep_interval seconds..."
sleep $sleep_interval
done
echo "Memory monitoring script stopped." # This line might not be reached in normal operation

View File

@@ -0,0 +1,15 @@
#!/bin/bash
# Locates compiled jeprof binary (memory analysis tool) after cargo build
# Copies it to current directory from target/ build directories
JPROF_PATH=$(find . -name 'jeprof' -print -quit)
if [ -n "$JPROF_PATH" ]; then
echo "Found jeprof at $JPROF_PATH"
cp "$JPROF_PATH" .
chmod +x jeprof
echo "Copied jeprof to current directory and made it executable."
else
echo "jeprof not found"
exit 1
fi

View File

@@ -0,0 +1,89 @@
#!/bin/bash
# Generate flame graphs from a series of `.gprof` files
# First argument: Path to the binary executable
# Second argument: Path to directory containing gprof files
# Requires `jeprof` and `flamegraph.pl` in current directory
# What this script essentially does is:
# ./jeprof <binary> <gprof> --collapse | ./flamegraph.pl > <output>
# For differential analysis between consecutive profiles:
# ./jeprof <binary> --base <gprof1> <gprof2> --collapse | ./flamegraph.pl > <output_diff>
set -e # Exit immediately if a command exits with a non-zero status.
# Check for required tools
if [ ! -f "./jeprof" ]; then
echo "Error: jeprof not found in the current directory."
exit 1
fi
if [ ! -f "./flamegraph.pl" ]; then
echo "Error: flamegraph.pl not found in the current directory."
exit 1
fi
# Check arguments
if [ "$#" -ne 2 ]; then
echo "Usage: $0 <binary_path> <gprof_directory>"
exit 1
fi
BINARY_PATH=$1
GPROF_DIR=$2
OUTPUT_DIR="${GPROF_DIR}/flamegraphs" # Store outputs in a subdirectory
if [ ! -f "$BINARY_PATH" ]; then
echo "Error: Binary file not found at $BINARY_PATH"
exit 1
fi
if [ ! -d "$GPROF_DIR" ]; then
echo "Error: gprof directory not found at $GPROF_DIR"
exit 1
fi
mkdir -p "$OUTPUT_DIR"
echo "Generating flamegraphs in $OUTPUT_DIR"
# Find and sort gprof files
# Use find + sort -V for natural sort of version numbers if present in filenames
# Use null-terminated strings for safety with find/xargs/sort
mapfile -d $'\0' gprof_files < <(find "$GPROF_DIR" -maxdepth 1 -name '*.gprof' -print0 | sort -zV)
if [ ${#gprof_files[@]} -eq 0 ]; then
echo "No .gprof files found in $GPROF_DIR"
exit 0
fi
prev_gprof=""
# Generate flamegraphs
for gprof_file in "${gprof_files[@]}"; do
# Skip empty entries if any
if [ -z "$gprof_file" ]; then
continue
fi
filename=$(basename "$gprof_file" .gprof)
output_collapse="${OUTPUT_DIR}/${filename}.collapse"
output_svg="${OUTPUT_DIR}/${filename}.svg"
echo "Generating collapse file for $gprof_file -> $output_collapse"
./jeprof "$BINARY_PATH" "$gprof_file" --collapse > "$output_collapse"
echo "Generating flamegraph for $gprof_file -> $output_svg"
./flamegraph.pl "$output_collapse" > "$output_svg" || true
# Generate diff flamegraph if not the first file
if [ -n "$prev_gprof" ]; then
prev_filename=$(basename "$prev_gprof" .gprof)
diff_output_collapse="${OUTPUT_DIR}/${prev_filename}_vs_${filename}_diff.collapse"
diff_output_svg="${OUTPUT_DIR}/${prev_filename}_vs_${filename}_diff.svg"
echo "Generating diff collapse file for $prev_gprof vs $gprof_file -> $diff_output_collapse"
./jeprof "$BINARY_PATH" --base "$prev_gprof" "$gprof_file" --collapse > "$diff_output_collapse"
echo "Generating diff flamegraph for $prev_gprof vs $gprof_file -> $diff_output_svg"
./flamegraph.pl "$diff_output_collapse" > "$diff_output_svg" || true
fi
prev_gprof="$gprof_file"
done
echo "Flamegraph generation complete."

View File

@@ -0,0 +1,44 @@
#!/bin/bash
# Generate flame graphs from .collapse files
# Argument: Path to directory containing collapse files
# Requires `flamegraph.pl` in current directory
# Check if flamegraph.pl exists
if [ ! -f "./flamegraph.pl" ]; then
echo "Error: flamegraph.pl not found in the current directory."
exit 1
fi
# Check if directory argument is provided
if [ -z "$1" ]; then
echo "Usage: $0 <collapse_directory>"
exit 1
fi
COLLAPSE_DIR=$1
# Check if the provided argument is a directory
if [ ! -d "$COLLAPSE_DIR" ]; then
echo "Error: '$COLLAPSE_DIR' is not a valid directory."
exit 1
fi
echo "Generating flame graphs from collapse files in '$COLLAPSE_DIR'..."
# Find and process each .collapse file
find "$COLLAPSE_DIR" -maxdepth 1 -name "*.collapse" -print0 | while IFS= read -r -d $'\0' collapse_file; do
if [ -f "$collapse_file" ]; then
# Construct the output SVG filename
svg_file="${collapse_file%.collapse}.svg"
echo "Generating $svg_file from $collapse_file..."
./flamegraph.pl "$collapse_file" > "$svg_file"
if [ $? -ne 0 ]; then
echo "Error generating flame graph for $collapse_file"
else
echo "Successfully generated $svg_file"
fi
fi
done
echo "Flame graph generation complete."

View File

@@ -0,0 +1,6 @@
#!/bin/bash
# Download flamegraph.pl to current directory - this is the flame graph generation tool script
curl https://raw.githubusercontent.com/brendangregg/FlameGraph/master/flamegraph.pl > ./flamegraph.pl
chmod +x ./flamegraph.pl

View File

@@ -1,61 +1,89 @@
Grafana dashboard for GreptimeDB
--------------------------------
# Grafana dashboards for GreptimeDB
GreptimeDB's official Grafana dashboard.
## Overview
Status notify: we are still working on this config. It's expected to change frequently in the recent days. Please feel free to submit your feedback and/or contribution to this dashboard 🤗
This repository maintains the Grafana dashboards for GreptimeDB. It has two types of dashboards:
If you use Helm [chart](https://github.com/GreptimeTeam/helm-charts) to deploy GreptimeDB cluster, you can enable self-monitoring by setting the following values in your Helm chart:
- `cluster/dashboard.json`: The Grafana dashboard for the GreptimeDB cluster. Read the [dashboard.md](./dashboards/cluster/dashboard.md) for more details.
- `standalone/dashboard.json`: The Grafana dashboard for the standalone GreptimeDB instance. **It's generated from the `cluster/dashboard.json` by removing the instance filter through the `make dashboards` command**. Read the [dashboard.md](./dashboards/standalone/dashboard.md) for more details.
As the rapid development of GreptimeDB, the metrics may be changed, and please feel free to submit your feedback and/or contribution to this dashboard 🤗
**NOTE**:
- The Grafana version should be greater than 9.0.
- If you want to modify the dashboards, you only need to modify the `cluster/dashboard.json` and run the `make dashboards` command to generate the `standalone/dashboard.json` and other related files.
To maintain the dashboards easily, we use the [`dac`](https://github.com/zyy17/dac) tool to generate the intermediate dashboards and markdown documents:
- `cluster/dashboard.yaml`: The intermediate dashboard for the GreptimeDB cluster.
- `standalone/dashboard.yaml`: The intermediate dashboard for the standalone GreptimeDB instance.
## Data Sources
There are two data sources for the dashboards to fetch the metrics:
- **Prometheus**: Expose the metrics of GreptimeDB.
- **Information Schema**: It is the MySQL port of the current monitored instance. The `overview` dashboard will use this datasource to show the information schema of the current instance.
## Instance Filters
To deploy the dashboards for multiple scenarios (K8s, bare metal, etc.), we prefer to use the `instance` label when filtering instances.
Additionally, we recommend including the `pod` label in the legend to make it easier to identify each instance, even though this field will be empty in bare metal scenarios.
For example, the following query is recommended:
```promql
sum(process_resident_memory_bytes{instance=~"$datanode"}) by (instance, pod)
```
And the legend will be like: `[{{instance}}]-[{{ pod }}]`.
## Deployment
### Helm
If you use the Helm [chart](https://github.com/GreptimeTeam/helm-charts) to deploy a GreptimeDB cluster, you can enable self-monitoring by setting the following values in your Helm chart:
- `monitoring.enabled=true`: Deploys a standalone GreptimeDB instance dedicated to monitoring the cluster;
- `grafana.enabled=true`: Deploys Grafana and automatically imports the monitoring dashboard;
The standalone GreptimeDB instance will collect metrics from your cluster and the dashboard will be available in the Grafana UI. For detailed deployment instructions, please refer to our [Kubernetes deployment guide](https://docs.greptime.com/nightly/user-guide/deployments/deploy-on-kubernetes/getting-started).
The standalone GreptimeDB instance will collect metrics from your cluster, and the dashboard will be available in the Grafana UI. For detailed deployment instructions, please refer to our [Kubernetes deployment guide](https://docs.greptime.com/nightly/user-guide/deployments/deploy-on-kubernetes/getting-started).
# How to use
### Self-host Prometheus and import dashboards manually
## `greptimedb.json`
1. **Configure Prometheus to scrape the cluster**
Open Grafana Dashboard page, choose `New` -> `Import`. And upload `greptimedb.json` file.
The following is an example configuration(**Please modify it according to your actual situation**):
## `greptimedb-cluster.json`
```yml
# example config
# only to indicate how to assign labels to each target
# modify yours accordingly
scrape_configs:
- job_name: metasrv
static_configs:
- targets: ['<metasrv-ip>:<port>']
This cluster dashboard provides a comprehensive view of incoming requests, response statuses, and internal activities such as flush and compaction, with a layered structure from frontend to datanode. Designed with a focus on alert functionality, its primary aim is to highlight any anomalies in metrics, allowing users to quickly pinpoint the cause of errors.
- job_name: datanode
static_configs:
- targets: ['<datanode0-ip>:<port>', '<datanode1-ip>:<port>', '<datanode2-ip>:<port>']
We use Prometheus to scrape off metrics from nodes in GreptimeDB cluster, Grafana to visualize the diagram. Any compatible stack should work too.
- job_name: frontend
static_configs:
- targets: ['<frontend-ip>:<port>']
```
__Note__: This dashboard is still in an early stage of development. Any issue or advice on improvement is welcomed.
2. **Configure the data sources in Grafana**
### Configuration
You need to add two data sources in Grafana:
Please ensure the following configuration before importing the dashboard into Grafana.
- Prometheus: It is the Prometheus instance that scrapes the GreptimeDB metrics.
- Information Schema: It is the MySQL port of the current monitored instance. The dashboard will use this datasource to show the information schema of the current instance.
__1. Prometheus scrape config__
3. **Import the dashboards based on your deployment scenario**
Configure Prometheus to scrape the cluster.
```yml
# example config
# only to indicate how to assign labels to each target
# modify yours accordingly
scrape_configs:
- job_name: metasrv
static_configs:
- targets: ['<metasrv-ip>:<port>']
- job_name: datanode
static_configs:
- targets: ['<datanode0-ip>:<port>', '<datanode1-ip>:<port>', '<datanode2-ip>:<port>']
- job_name: frontend
static_configs:
- targets: ['<frontend-ip>:<port>']
```
__2. Grafana config__
Create a Prometheus data source in Grafana before using this dashboard. We use `datasource` as a variable in Grafana dashboard so that multiple environments are supported.
### Usage
Use `datasource` or `instance` on the upper-left corner to filter data from certain node.
- **Cluster**: Import the `cluster/dashboard.json` dashboard.
- **Standalone**: Import the `standalone/dashboard.json` dashboard.

View File

@@ -1,19 +0,0 @@
#!/usr/bin/env bash
BASEDIR=$(dirname "$0")
# Use jq to check for panels with empty or missing descriptions
invalid_panels=$(cat $BASEDIR/greptimedb-cluster.json | jq -r '
.panels[]
| select((.type == "stats" or .type == "timeseries") and (.description == "" or .description == null))
')
# Check if any invalid panels were found
if [[ -n "$invalid_panels" ]]; then
echo "Error: The following panels have empty or missing descriptions:"
echo "$invalid_panels"
exit 1
else
echo "All panels with type 'stats' or 'timeseries' have valid descriptions."
exit 0
fi

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,97 @@
# Overview
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Uptime | `time() - process_start_time_seconds` | `stat` | The start time of GreptimeDB. | `prometheus` | `s` | `__auto` |
| Version | `SELECT pkg_version FROM information_schema.build_info` | `stat` | GreptimeDB version. | `mysql` | -- | -- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))` | `stat` | Total ingestion rate. | `prometheus` | `rowsps` | `__auto` |
| Total Storage Size | `select SUM(disk_size) from information_schema.region_statistics;` | `stat` | Total number of data file size. | `mysql` | `decbytes` | -- |
| Total Rows | `select SUM(region_rows) from information_schema.region_statistics;` | `stat` | Total number of data rows in the cluster. Calculated by sum of rows from each region. | `mysql` | `sishort` | -- |
| Deployment | `SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';`<br/>`SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';`<br/>`SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';`<br/>`SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';` | `stat` | The deployment topology of GreptimeDB. | `mysql` | -- | -- |
| Database Resources | `SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')`<br/>`SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'`<br/>`SELECT COUNT(region_id) as regions FROM information_schema.region_peers`<br/>`SELECT COUNT(*) as flows FROM information_schema.flows` | `stat` | The number of the key resources in GreptimeDB. | `mysql` | -- | -- |
| Data Size | `SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;`<br/>`SELECT SUM(index_size) as index FROM information_schema.region_statistics;`<br/>`SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;` | `stat` | The data size of wal/index/manifest in the GreptimeDB. | `mysql` | `decbytes` | -- |
# Ingestion
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `prometheus` | `rowsps` | `ingestion` |
| Ingestion Rate by Type | `sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))`<br/>`sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `prometheus` | `rowsps` | `http-logs` |
# Queries
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Query Rate | `sum (rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_http_promql_elapsed_counte{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Total rate of query API calls by protocol. This metric is collected from frontends.<br/><br/>Here we listed 3 main protocols:<br/>- MySQL<br/>- Postgres<br/>- Prometheus API<br/><br/>Note that there are some other minor query APIs like /sql are not included | `prometheus` | `reqps` | `mysql` |
# Resources
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Datanode Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$datanode"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{instance}}]-[{{ pod }}]` |
| Datanode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$datanode"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$frontend"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$frontend"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]-cpu` |
| Metasrv Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$metasrv"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]-resident` |
| Metasrv CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$metasrv"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$flownode"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$flownode"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
# Frontend Requests
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| HTTP QPS per Instance | `sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{instance=~"$frontend",path!~"/health\|/metrics"}[$__rate_interval]))` | `timeseries` | HTTP QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]` |
| HTTP P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{instance=~"$frontend",path!~"/health\|/metrics"}[$__rate_interval])))` | `timeseries` | HTTP P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| gRPC QPS per Instance | `sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | gRPC QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]` |
| gRPC P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | gRPC P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| MySQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | MySQL QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]` |
| MySQL P99 per Instance | `histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | MySQL P99 per Instance. | `prometheus` | `s` | `[{{ instance }}]-[{{ pod }}]-p99` |
| PostgreSQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | PostgreSQL QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]` |
| PostgreSQL P99 per Instance | `histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | PostgreSQL P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-p99` |
# Frontend to Datanode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Ingest Rows per Instance | `sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Ingestion rate by row as in each frontend | `prometheus` | `rowsps` | `[{{instance}}]-[{{pod}}]` |
| Region Call QPS per Instance | `sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Region Call QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
| Region Call P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | Region Call P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
# Mito Engine
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Request OPS per Instance | `sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Request QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Request P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Write Buffer per Instance | `greptime_mito_write_buffer_bytes{instance=~"$datanode"}` | `timeseries` | Write Buffer per Instance. | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]` |
| Write Rows per Instance | `sum by (instance, pod) (rate(greptime_mito_write_rows_total{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Ingestion size by row counts. | `prometheus` | `rowsps` | `[{{instance}}]-[{{pod}}]` |
| Flush OPS per Instance | `sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Flush QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{reason}}]` |
| Write Stall per Instance | `sum by(instance, pod) (greptime_mito_write_stall_total{instance=~"$datanode"})` | `timeseries` | Write Stall per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]` |
| Read Stage OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{instance=~"$datanode", stage="total"}[$__rate_interval]))` | `timeseries` | Read Stage OPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]` |
| Read Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Read Stage P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Write Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Write Stage P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Compaction OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Compaction OPS per Instance. | `prometheus` | `ops` | `[{{ instance }}]-[{{pod}}]` |
| Compaction P99 per Instance by Stage | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Compaction latency by stage | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-p99` |
| Compaction P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Compaction P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction` |
| WAL write size | `histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))` | `timeseries` | Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate. | `prometheus` | `bytes` | `[{{instance}}]-[{{pod}}]-req-size-p95` |
| Cached Bytes per Instance | `greptime_mito_cache_bytes{instance=~"$datanode"}` | `timeseries` | Cached Bytes per Instance. | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Inflight Compaction | `greptime_mito_inflight_compaction_count` | `timeseries` | Ongoing compaction task count | `prometheus` | `none` | `[{{instance}}]-[{{pod}}]` |
| WAL sync duration seconds | `histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))` | `timeseries` | Raft engine (local disk) log store sync latency, p99 | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-p99` |
| Log Store op duration seconds | `histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))` | `timeseries` | Write-ahead log operations latency at p99 | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99` |
| Inflight Flush | `greptime_mito_inflight_flush_count` | `timeseries` | Ongoing flush task count | `prometheus` | `none` | `[{{instance}}]-[{{pod}}]` |
# OpenDAL
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| QPS per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Read QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="read"}[$__rate_interval]))` | `timeseries` | Read QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Read P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode",operation="read"}[$__rate_interval])))` | `timeseries` | Read P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="write"}[$__rate_interval]))` | `timeseries` | Write QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="write"}[$__rate_interval])))` | `timeseries` | Write P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="list"}[$__rate_interval]))` | `timeseries` | List QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="list"}[$__rate_interval])))` | `timeseries` | List P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Other Requests per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode",operation!~"read\|write\|list\|stat"}[$__rate_interval]))` | `timeseries` | Other Requests per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Other Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation!~"read\|write\|list"}[$__rate_interval])))` | `timeseries` | Other Request P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Opendal traffic | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Total traffic as in bytes by instance and operation | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| OpenDAL errors per Instance | `sum by(instance, pod, scheme, operation, error) (rate(opendal_operation_errors_total{instance=~"$datanode", error!="NotFound"}[$__rate_interval]))` | `timeseries` | OpenDAL error counts per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]-[{{error}}]` |
# Metasrv
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Region migration datanode | `greptime_meta_region_migration_stat{datanode_type="src"}`<br/>`greptime_meta_region_migration_stat{datanode_type="desc"}` | `state-timeline` | Counter of region migration by source and destination | `prometheus` | `none` | `from-datanode-{{datanode_id}}` |
| Region migration error | `greptime_meta_region_migration_error` | `timeseries` | Counter of region migration error | `prometheus` | `none` | `__auto` |
| Datanode load | `greptime_datanode_load` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `prometheus` | `none` | `__auto` |
# Flownode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Flow Ingest / Output Rate | `sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))` | `timeseries` | Flow Ingest / Output Rate. | `prometheus` | -- | `[{{pod}}]-[{{instance}}]-[{{direction}}]` |
| Flow Ingest Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))` | `timeseries` | Flow Ingest Latency. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-p95` |
| Flow Operation Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))` | `timeseries` | Flow Operation Latency. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{type}}]-p95` |
| Flow Buffer Size per Instance | `greptime_flow_input_buf_size` | `timeseries` | Flow Buffer Size per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}]` |
| Flow Processing Error per Instance | `sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))` | `timeseries` | Flow Processing Error per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{code}}]` |

View File

@@ -0,0 +1,769 @@
groups:
- title: Overview
panels:
- title: Uptime
type: stat
description: The start time of GreptimeDB.
unit: s
queries:
- expr: time() - process_start_time_seconds
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Version
type: stat
description: GreptimeDB version.
queries:
- expr: SELECT pkg_version FROM information_schema.build_info
datasource:
type: mysql
uid: ${information_schema}
- title: Total Ingestion Rate
type: stat
description: Total ingestion rate.
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Total Storage Size
type: stat
description: Total number of data file size.
unit: decbytes
queries:
- expr: select SUM(disk_size) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Total Rows
type: stat
description: Total number of data rows in the cluster. Calculated by sum of rows from each region.
unit: sishort
queries:
- expr: select SUM(region_rows) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Deployment
type: stat
description: The deployment topology of GreptimeDB.
queries:
- expr: SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';
datasource:
type: mysql
uid: ${information_schema}
- title: Database Resources
type: stat
description: The number of the key resources in GreptimeDB.
queries:
- expr: SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(region_id) as regions FROM information_schema.region_peers
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as flows FROM information_schema.flows
datasource:
type: mysql
uid: ${information_schema}
- title: Data Size
type: stat
description: The data size of wal/index/manifest in the GreptimeDB.
unit: decbytes
queries:
- expr: SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(index_size) as index FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Ingestion
panels:
- title: Total Ingestion Rate
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: ingestion
- title: Ingestion Rate by Type
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: http-logs
- expr: sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: prometheus-remote-write
- title: Queries
panels:
- title: Total Query Rate
type: timeseries
description: |-
Total rate of query API calls by protocol. This metric is collected from frontends.
Here we listed 3 main protocols:
- MySQL
- Postgres
- Prometheus API
Note that there are some other minor query APIs like /sql are not included
unit: reqps
queries:
- expr: sum (rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: mysql
- expr: sum (rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: pg
- expr: sum (rate(greptime_servers_http_promql_elapsed_counte{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: promql
- title: Resources
panels:
- title: Datanode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$datanode"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{ pod }}]'
- title: Datanode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$datanode"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$frontend"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$frontend"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-cpu'
- title: Metasrv Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$metasrv"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-resident'
- title: Metasrv CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$metasrv"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$flownode"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$flownode"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Requests
panels:
- title: HTTP QPS per Instance
type: timeseries
description: HTTP QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{instance=~"$frontend",path!~"/health|/metrics"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]'
- title: HTTP P99 per Instance
type: timeseries
description: HTTP P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{instance=~"$frontend",path!~"/health|/metrics"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: gRPC QPS per Instance
type: timeseries
description: gRPC QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]'
- title: gRPC P99 per Instance
type: timeseries
description: gRPC P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: MySQL QPS per Instance
type: timeseries
description: MySQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: MySQL P99 per Instance
type: timeseries
description: MySQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-p99'
- title: PostgreSQL QPS per Instance
type: timeseries
description: PostgreSQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: PostgreSQL P99 per Instance
type: timeseries
description: PostgreSQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Frontend to Datanode
panels:
- title: Ingest Rows per Instance
type: timeseries
description: Ingestion rate by row as in each frontend
unit: rowsps
queries:
- expr: sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Region Call QPS per Instance
type: timeseries
description: Region Call QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: Region Call P99 per Instance
type: timeseries
description: Region Call P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: Mito Engine
panels:
- title: Request OPS per Instance
type: timeseries
description: Request QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Request P99 per Instance
type: timeseries
description: Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Write Buffer per Instance
type: timeseries
description: Write Buffer per Instance.
unit: decbytes
queries:
- expr: greptime_mito_write_buffer_bytes{instance=~"$datanode"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Write Rows per Instance
type: timeseries
description: Ingestion size by row counts.
unit: rowsps
queries:
- expr: sum by (instance, pod) (rate(greptime_mito_write_rows_total{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Flush OPS per Instance
type: timeseries
description: Flush QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{reason}}]'
- title: Write Stall per Instance
type: timeseries
description: Write Stall per Instance.
queries:
- expr: sum by(instance, pod) (greptime_mito_write_stall_total{instance=~"$datanode"})
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage OPS per Instance
type: timeseries
description: Read Stage OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{instance=~"$datanode", stage="total"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage P99 per Instance
type: timeseries
description: Read Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Write Stage P99 per Instance
type: timeseries
description: Write Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Compaction OPS per Instance
type: timeseries
description: Compaction OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{pod}}]'
- title: Compaction P99 per Instance by Stage
type: timeseries
description: Compaction latency by stage
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-p99'
- title: Compaction P99 per Instance
type: timeseries
description: Compaction P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction'
- title: WAL write size
type: timeseries
description: Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate.
unit: bytes
queries:
- expr: histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p95'
- expr: histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p99'
- expr: sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-throughput'
- title: Cached Bytes per Instance
type: timeseries
description: Cached Bytes per Instance.
unit: decbytes
queries:
- expr: greptime_mito_cache_bytes{instance=~"$datanode"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Inflight Compaction
type: timeseries
description: Ongoing compaction task count
unit: none
queries:
- expr: greptime_mito_inflight_compaction_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: WAL sync duration seconds
type: timeseries
description: Raft engine (local disk) log store sync latency, p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Log Store op duration seconds
type: timeseries
description: Write-ahead log operations latency at p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99'
- title: Inflight Flush
type: timeseries
description: Ongoing flush task count
unit: none
queries:
- expr: greptime_mito_inflight_flush_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: OpenDAL
panels:
- title: QPS per Instance
type: timeseries
description: QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Read QPS per Instance
type: timeseries
description: Read QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="read"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Read P99 per Instance
type: timeseries
description: Read P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode",operation="read"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write QPS per Instance
type: timeseries
description: Write QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="write"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write P99 per Instance
type: timeseries
description: Write P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="write"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List QPS per Instance
type: timeseries
description: List QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="list"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List P99 per Instance
type: timeseries
description: List P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Other Requests per Instance
type: timeseries
description: Other Requests per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode",operation!~"read|write|list|stat"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Other Request P99 per Instance
type: timeseries
description: Other Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation!~"read|write|list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Opendal traffic
type: timeseries
description: Total traffic as in bytes by instance and operation
unit: decbytes
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: OpenDAL errors per Instance
type: timeseries
description: OpenDAL error counts per Instance.
queries:
- expr: sum by(instance, pod, scheme, operation, error) (rate(opendal_operation_errors_total{instance=~"$datanode", error!="NotFound"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]-[{{error}}]'
- title: Metasrv
panels:
- title: Region migration datanode
type: state-timeline
description: Counter of region migration by source and destination
unit: none
queries:
- expr: greptime_meta_region_migration_stat{datanode_type="src"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: from-datanode-{{datanode_id}}
- expr: greptime_meta_region_migration_stat{datanode_type="desc"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: to-datanode-{{datanode_id}}
- title: Region migration error
type: timeseries
description: Counter of region migration error
unit: none
queries:
- expr: greptime_meta_region_migration_error
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Datanode load
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: none
queries:
- expr: greptime_datanode_load
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Flownode
panels:
- title: Flow Ingest / Output Rate
type: timeseries
description: Flow Ingest / Output Rate.
queries:
- expr: sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{pod}}]-[{{instance}}]-[{{direction}}]'
- title: Flow Ingest Latency
type: timeseries
description: Flow Ingest Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Flow Operation Latency
type: timeseries
description: Flow Operation Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p99'
- title: Flow Buffer Size per Instance
type: timeseries
description: Flow Buffer Size per Instance.
queries:
- expr: greptime_flow_input_buf_size
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}]'
- title: Flow Processing Error per Instance
type: timeseries
description: Flow Processing Error per Instance.
queries:
- expr: sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{code}}]'

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,97 @@
# Overview
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Uptime | `time() - process_start_time_seconds` | `stat` | The start time of GreptimeDB. | `prometheus` | `s` | `__auto` |
| Version | `SELECT pkg_version FROM information_schema.build_info` | `stat` | GreptimeDB version. | `mysql` | -- | -- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))` | `stat` | Total ingestion rate. | `prometheus` | `rowsps` | `__auto` |
| Total Storage Size | `select SUM(disk_size) from information_schema.region_statistics;` | `stat` | Total number of data file size. | `mysql` | `decbytes` | -- |
| Total Rows | `select SUM(region_rows) from information_schema.region_statistics;` | `stat` | Total number of data rows in the cluster. Calculated by sum of rows from each region. | `mysql` | `sishort` | -- |
| Deployment | `SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';`<br/>`SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';`<br/>`SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';`<br/>`SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';` | `stat` | The deployment topology of GreptimeDB. | `mysql` | -- | -- |
| Database Resources | `SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')`<br/>`SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'`<br/>`SELECT COUNT(region_id) as regions FROM information_schema.region_peers`<br/>`SELECT COUNT(*) as flows FROM information_schema.flows` | `stat` | The number of the key resources in GreptimeDB. | `mysql` | -- | -- |
| Data Size | `SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;`<br/>`SELECT SUM(index_size) as index FROM information_schema.region_statistics;`<br/>`SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;` | `stat` | The data size of wal/index/manifest in the GreptimeDB. | `mysql` | `decbytes` | -- |
# Ingestion
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `prometheus` | `rowsps` | `ingestion` |
| Ingestion Rate by Type | `sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))`<br/>`sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `prometheus` | `rowsps` | `http-logs` |
# Queries
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Query Rate | `sum (rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_http_promql_elapsed_counte{}[$__rate_interval]))` | `timeseries` | Total rate of query API calls by protocol. This metric is collected from frontends.<br/><br/>Here we listed 3 main protocols:<br/>- MySQL<br/>- Postgres<br/>- Prometheus API<br/><br/>Note that there are some other minor query APIs like /sql are not included | `prometheus` | `reqps` | `mysql` |
# Resources
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Datanode Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{instance}}]-[{{ pod }}]` |
| Datanode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]-cpu` |
| Metasrv Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]-resident` |
| Metasrv CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
# Frontend Requests
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| HTTP QPS per Instance | `sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{path!~"/health\|/metrics"}[$__rate_interval]))` | `timeseries` | HTTP QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]` |
| HTTP P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{path!~"/health\|/metrics"}[$__rate_interval])))` | `timeseries` | HTTP P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| gRPC QPS per Instance | `sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{}[$__rate_interval]))` | `timeseries` | gRPC QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]` |
| gRPC P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | gRPC P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| MySQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))` | `timeseries` | MySQL QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]` |
| MySQL P99 per Instance | `histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | MySQL P99 per Instance. | `prometheus` | `s` | `[{{ instance }}]-[{{ pod }}]-p99` |
| PostgreSQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))` | `timeseries` | PostgreSQL QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]` |
| PostgreSQL P99 per Instance | `histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | PostgreSQL P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-p99` |
# Frontend to Datanode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Ingest Rows per Instance | `sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))` | `timeseries` | Ingestion rate by row as in each frontend | `prometheus` | `rowsps` | `[{{instance}}]-[{{pod}}]` |
| Region Call QPS per Instance | `sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{}[$__rate_interval]))` | `timeseries` | Region Call QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
| Region Call P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{}[$__rate_interval])))` | `timeseries` | Region Call P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
# Mito Engine
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Request OPS per Instance | `sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{}[$__rate_interval]))` | `timeseries` | Request QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Request P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Write Buffer per Instance | `greptime_mito_write_buffer_bytes{}` | `timeseries` | Write Buffer per Instance. | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]` |
| Write Rows per Instance | `sum by (instance, pod) (rate(greptime_mito_write_rows_total{}[$__rate_interval]))` | `timeseries` | Ingestion size by row counts. | `prometheus` | `rowsps` | `[{{instance}}]-[{{pod}}]` |
| Flush OPS per Instance | `sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{}[$__rate_interval]))` | `timeseries` | Flush QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{reason}}]` |
| Write Stall per Instance | `sum by(instance, pod) (greptime_mito_write_stall_total{})` | `timeseries` | Write Stall per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]` |
| Read Stage OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{ stage="total"}[$__rate_interval]))` | `timeseries` | Read Stage OPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]` |
| Read Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Read Stage P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Write Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Write Stage P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Compaction OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{}[$__rate_interval]))` | `timeseries` | Compaction OPS per Instance. | `prometheus` | `ops` | `[{{ instance }}]-[{{pod}}]` |
| Compaction P99 per Instance by Stage | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Compaction latency by stage | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-p99` |
| Compaction P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Compaction P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction` |
| WAL write size | `histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))` | `timeseries` | Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate. | `prometheus` | `bytes` | `[{{instance}}]-[{{pod}}]-req-size-p95` |
| Cached Bytes per Instance | `greptime_mito_cache_bytes{}` | `timeseries` | Cached Bytes per Instance. | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Inflight Compaction | `greptime_mito_inflight_compaction_count` | `timeseries` | Ongoing compaction task count | `prometheus` | `none` | `[{{instance}}]-[{{pod}}]` |
| WAL sync duration seconds | `histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))` | `timeseries` | Raft engine (local disk) log store sync latency, p99 | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-p99` |
| Log Store op duration seconds | `histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))` | `timeseries` | Write-ahead log operations latency at p99 | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99` |
| Inflight Flush | `greptime_mito_inflight_flush_count` | `timeseries` | Ongoing flush task count | `prometheus` | `none` | `[{{instance}}]-[{{pod}}]` |
# OpenDAL
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| QPS per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{}[$__rate_interval]))` | `timeseries` | QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Read QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="read"}[$__rate_interval]))` | `timeseries` | Read QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Read P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{operation="read"}[$__rate_interval])))` | `timeseries` | Read P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="write"}[$__rate_interval]))` | `timeseries` | Write QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="write"}[$__rate_interval])))` | `timeseries` | Write P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="list"}[$__rate_interval]))` | `timeseries` | List QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="list"}[$__rate_interval])))` | `timeseries` | List P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Other Requests per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{operation!~"read\|write\|list\|stat"}[$__rate_interval]))` | `timeseries` | Other Requests per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Other Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{ operation!~"read\|write\|list"}[$__rate_interval])))` | `timeseries` | Other Request P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Opendal traffic | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{}[$__rate_interval]))` | `timeseries` | Total traffic as in bytes by instance and operation | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| OpenDAL errors per Instance | `sum by(instance, pod, scheme, operation, error) (rate(opendal_operation_errors_total{ error!="NotFound"}[$__rate_interval]))` | `timeseries` | OpenDAL error counts per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]-[{{error}}]` |
# Metasrv
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Region migration datanode | `greptime_meta_region_migration_stat{datanode_type="src"}`<br/>`greptime_meta_region_migration_stat{datanode_type="desc"}` | `state-timeline` | Counter of region migration by source and destination | `prometheus` | `none` | `from-datanode-{{datanode_id}}` |
| Region migration error | `greptime_meta_region_migration_error` | `timeseries` | Counter of region migration error | `prometheus` | `none` | `__auto` |
| Datanode load | `greptime_datanode_load` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `prometheus` | `none` | `__auto` |
# Flownode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Flow Ingest / Output Rate | `sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))` | `timeseries` | Flow Ingest / Output Rate. | `prometheus` | -- | `[{{pod}}]-[{{instance}}]-[{{direction}}]` |
| Flow Ingest Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))` | `timeseries` | Flow Ingest Latency. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-p95` |
| Flow Operation Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))` | `timeseries` | Flow Operation Latency. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{type}}]-p95` |
| Flow Buffer Size per Instance | `greptime_flow_input_buf_size` | `timeseries` | Flow Buffer Size per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}]` |
| Flow Processing Error per Instance | `sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))` | `timeseries` | Flow Processing Error per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{code}}]` |

View File

@@ -0,0 +1,769 @@
groups:
- title: Overview
panels:
- title: Uptime
type: stat
description: The start time of GreptimeDB.
unit: s
queries:
- expr: time() - process_start_time_seconds
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Version
type: stat
description: GreptimeDB version.
queries:
- expr: SELECT pkg_version FROM information_schema.build_info
datasource:
type: mysql
uid: ${information_schema}
- title: Total Ingestion Rate
type: stat
description: Total ingestion rate.
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Total Storage Size
type: stat
description: Total number of data file size.
unit: decbytes
queries:
- expr: select SUM(disk_size) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Total Rows
type: stat
description: Total number of data rows in the cluster. Calculated by sum of rows from each region.
unit: sishort
queries:
- expr: select SUM(region_rows) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Deployment
type: stat
description: The deployment topology of GreptimeDB.
queries:
- expr: SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';
datasource:
type: mysql
uid: ${information_schema}
- title: Database Resources
type: stat
description: The number of the key resources in GreptimeDB.
queries:
- expr: SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(region_id) as regions FROM information_schema.region_peers
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as flows FROM information_schema.flows
datasource:
type: mysql
uid: ${information_schema}
- title: Data Size
type: stat
description: The data size of wal/index/manifest in the GreptimeDB.
unit: decbytes
queries:
- expr: SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(index_size) as index FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Ingestion
panels:
- title: Total Ingestion Rate
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: ingestion
- title: Ingestion Rate by Type
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: http-logs
- expr: sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: prometheus-remote-write
- title: Queries
panels:
- title: Total Query Rate
type: timeseries
description: |-
Total rate of query API calls by protocol. This metric is collected from frontends.
Here we listed 3 main protocols:
- MySQL
- Postgres
- Prometheus API
Note that there are some other minor query APIs like /sql are not included
unit: reqps
queries:
- expr: sum (rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: mysql
- expr: sum (rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: pg
- expr: sum (rate(greptime_servers_http_promql_elapsed_counte{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: promql
- title: Resources
panels:
- title: Datanode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{ pod }}]'
- title: Datanode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-cpu'
- title: Metasrv Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-resident'
- title: Metasrv CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Requests
panels:
- title: HTTP QPS per Instance
type: timeseries
description: HTTP QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{path!~"/health|/metrics"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]'
- title: HTTP P99 per Instance
type: timeseries
description: HTTP P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{path!~"/health|/metrics"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: gRPC QPS per Instance
type: timeseries
description: gRPC QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]'
- title: gRPC P99 per Instance
type: timeseries
description: gRPC P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: MySQL QPS per Instance
type: timeseries
description: MySQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: MySQL P99 per Instance
type: timeseries
description: MySQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-p99'
- title: PostgreSQL QPS per Instance
type: timeseries
description: PostgreSQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: PostgreSQL P99 per Instance
type: timeseries
description: PostgreSQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Frontend to Datanode
panels:
- title: Ingest Rows per Instance
type: timeseries
description: Ingestion rate by row as in each frontend
unit: rowsps
queries:
- expr: sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Region Call QPS per Instance
type: timeseries
description: Region Call QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: Region Call P99 per Instance
type: timeseries
description: Region Call P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: Mito Engine
panels:
- title: Request OPS per Instance
type: timeseries
description: Request QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Request P99 per Instance
type: timeseries
description: Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Write Buffer per Instance
type: timeseries
description: Write Buffer per Instance.
unit: decbytes
queries:
- expr: greptime_mito_write_buffer_bytes{}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Write Rows per Instance
type: timeseries
description: Ingestion size by row counts.
unit: rowsps
queries:
- expr: sum by (instance, pod) (rate(greptime_mito_write_rows_total{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Flush OPS per Instance
type: timeseries
description: Flush QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{reason}}]'
- title: Write Stall per Instance
type: timeseries
description: Write Stall per Instance.
queries:
- expr: sum by(instance, pod) (greptime_mito_write_stall_total{})
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage OPS per Instance
type: timeseries
description: Read Stage OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{ stage="total"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage P99 per Instance
type: timeseries
description: Read Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Write Stage P99 per Instance
type: timeseries
description: Write Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Compaction OPS per Instance
type: timeseries
description: Compaction OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{pod}}]'
- title: Compaction P99 per Instance by Stage
type: timeseries
description: Compaction latency by stage
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-p99'
- title: Compaction P99 per Instance
type: timeseries
description: Compaction P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction'
- title: WAL write size
type: timeseries
description: Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate.
unit: bytes
queries:
- expr: histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p95'
- expr: histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p99'
- expr: sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-throughput'
- title: Cached Bytes per Instance
type: timeseries
description: Cached Bytes per Instance.
unit: decbytes
queries:
- expr: greptime_mito_cache_bytes{}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Inflight Compaction
type: timeseries
description: Ongoing compaction task count
unit: none
queries:
- expr: greptime_mito_inflight_compaction_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: WAL sync duration seconds
type: timeseries
description: Raft engine (local disk) log store sync latency, p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Log Store op duration seconds
type: timeseries
description: Write-ahead log operations latency at p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99'
- title: Inflight Flush
type: timeseries
description: Ongoing flush task count
unit: none
queries:
- expr: greptime_mito_inflight_flush_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: OpenDAL
panels:
- title: QPS per Instance
type: timeseries
description: QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Read QPS per Instance
type: timeseries
description: Read QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="read"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Read P99 per Instance
type: timeseries
description: Read P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{operation="read"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write QPS per Instance
type: timeseries
description: Write QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="write"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write P99 per Instance
type: timeseries
description: Write P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="write"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List QPS per Instance
type: timeseries
description: List QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="list"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List P99 per Instance
type: timeseries
description: List P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Other Requests per Instance
type: timeseries
description: Other Requests per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{operation!~"read|write|list|stat"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Other Request P99 per Instance
type: timeseries
description: Other Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{ operation!~"read|write|list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Opendal traffic
type: timeseries
description: Total traffic as in bytes by instance and operation
unit: decbytes
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: OpenDAL errors per Instance
type: timeseries
description: OpenDAL error counts per Instance.
queries:
- expr: sum by(instance, pod, scheme, operation, error) (rate(opendal_operation_errors_total{ error!="NotFound"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]-[{{error}}]'
- title: Metasrv
panels:
- title: Region migration datanode
type: state-timeline
description: Counter of region migration by source and destination
unit: none
queries:
- expr: greptime_meta_region_migration_stat{datanode_type="src"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: from-datanode-{{datanode_id}}
- expr: greptime_meta_region_migration_stat{datanode_type="desc"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: to-datanode-{{datanode_id}}
- title: Region migration error
type: timeseries
description: Counter of region migration error
unit: none
queries:
- expr: greptime_meta_region_migration_error
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Datanode load
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: none
queries:
- expr: greptime_datanode_load
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Flownode
panels:
- title: Flow Ingest / Output Rate
type: timeseries
description: Flow Ingest / Output Rate.
queries:
- expr: sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{pod}}]-[{{instance}}]-[{{direction}}]'
- title: Flow Ingest Latency
type: timeseries
description: Flow Ingest Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Flow Operation Latency
type: timeseries
description: Flow Operation Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p99'
- title: Flow Buffer Size per Instance
type: timeseries
description: Flow Buffer Size per Instance.
queries:
- expr: greptime_flow_input_buf_size
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}]'
- title: Flow Processing Error per Instance
type: timeseries
description: Flow Processing Error per Instance.
queries:
- expr: sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{code}}]'

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

54
grafana/scripts/check.sh Executable file
View File

@@ -0,0 +1,54 @@
#!/usr/bin/env bash
DASHBOARD_DIR=${1:-grafana/dashboards}
check_dashboard_description() {
for dashboard in $(find $DASHBOARD_DIR -name "*.json"); do
echo "Checking $dashboard description"
# Use jq to check for panels with empty or missing descriptions
invalid_panels=$(cat $dashboard | jq -r '
.panels[]
| select((.type == "stats" or .type == "timeseries") and (.description == "" or .description == null))')
# Check if any invalid panels were found
if [[ -n "$invalid_panels" ]]; then
echo "Error: The following panels have empty or missing descriptions:"
echo "$invalid_panels"
exit 1
else
echo "All panels with type 'stats' or 'timeseries' have valid descriptions."
fi
done
}
check_dashboards_generation() {
./grafana/scripts/gen-dashboards.sh
if [[ -n "$(git diff --name-only grafana/dashboards)" ]]; then
echo "Error: The dashboards are not generated correctly. You should execute the `make dashboards` command."
exit 1
fi
}
check_datasource() {
for dashboard in $(find $DASHBOARD_DIR -name "*.json"); do
echo "Checking $dashboard datasource"
jq -r '.panels[] | select(.type != "row") | .targets[] | [.datasource.type, .datasource.uid] | @tsv' $dashboard | while read -r type uid; do
# if the datasource is prometheus, check if the uid is ${metrics}
if [[ "$type" == "prometheus" && "$uid" != "\${metrics}" ]]; then
echo "Error: The datasource uid of $dashboard is not valid. It should be \${metrics}, got $uid"
exit 1
fi
# if the datasource is mysql, check if the uid is ${information_schema}
if [[ "$type" == "mysql" && "$uid" != "\${information_schema}" ]]; then
echo "Error: The datasource uid of $dashboard is not valid. It should be \${information_schema}, got $uid"
exit 1
fi
done
done
}
check_dashboards_generation
check_dashboard_description
check_datasource

View File

@@ -0,0 +1,25 @@
#! /usr/bin/env bash
CLUSTER_DASHBOARD_DIR=${1:-grafana/dashboards/cluster}
STANDALONE_DASHBOARD_DIR=${2:-grafana/dashboards/standalone}
DAC_IMAGE=ghcr.io/zyy17/dac:20250423-522bd35
remove_instance_filters() {
# Remove the instance filters for the standalone dashboards.
sed 's/instance=~\\"$datanode\\",//; s/instance=~\\"$datanode\\"//; s/instance=~\\"$frontend\\",//; s/instance=~\\"$frontend\\"//; s/instance=~\\"$metasrv\\",//; s/instance=~\\"$metasrv\\"//; s/instance=~\\"$flownode\\",//; s/instance=~\\"$flownode\\"//;' $CLUSTER_DASHBOARD_DIR/dashboard.json > $STANDALONE_DASHBOARD_DIR/dashboard.json
}
generate_intermediate_dashboards_and_docs() {
docker run -v ${PWD}:/greptimedb --rm ${DAC_IMAGE} \
-i /greptimedb/$CLUSTER_DASHBOARD_DIR/dashboard.json \
-o /greptimedb/$CLUSTER_DASHBOARD_DIR/dashboard.yaml \
-m /greptimedb/$CLUSTER_DASHBOARD_DIR/dashboard.md
docker run -v ${PWD}:/greptimedb --rm ${DAC_IMAGE} \
-i /greptimedb/$STANDALONE_DASHBOARD_DIR/dashboard.json \
-o /greptimedb/$STANDALONE_DASHBOARD_DIR/dashboard.yaml \
-m /greptimedb/$STANDALONE_DASHBOARD_DIR/dashboard.md
}
remove_instance_filters
generate_intermediate_dashboards_and_docs

View File

@@ -1,11 +0,0 @@
#!/usr/bin/env bash
BASEDIR=$(dirname "$0")
echo '| Title | Description | Expressions |
|---|---|---|'
cat $BASEDIR/greptimedb-cluster.json | jq -r '
.panels |
map(select(.type == "stat" or .type == "timeseries")) |
.[] | "| \(.title) | \(.description | gsub("\n"; "<br>")) | \(.targets | map(.expr // .rawSql | "`\(.|gsub("\n"; "<br>"))`") | join("<br>")) |"
'

View File

@@ -0,0 +1,74 @@
# Copyright 2023 Greptime Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
from multiprocessing import Pool
def find_rust_files(directory):
rust_files = []
for root, _, files in os.walk(directory):
# Skip files with "test" in the path
if "test" in root.lower():
continue
for file in files:
# Skip files with "test" in the filename
if "test" in file.lower():
continue
if file.endswith(".rs"):
rust_files.append(os.path.join(root, file))
return rust_files
def check_file_for_super_import(file_path):
with open(file_path, "r") as file:
lines = file.readlines()
violations = []
for line_number, line in enumerate(lines, 1):
# Check for "use super::" without leading tab
if line.startswith("use super::"):
violations.append((line_number, line.strip()))
if violations:
return file_path, violations
return None
def main():
rust_files = find_rust_files(".")
with Pool() as pool:
results = pool.map(check_file_for_super_import, rust_files)
# Filter out None results
violations = [result for result in results if result]
if violations:
print("Found 'use super::' without leading tab in the following files:")
counter = 1
for file_path, file_violations in violations:
for line_number, line in file_violations:
print(f"{counter:>5} {file_path}:{line_number} - {line}")
counter += 1
raise SystemExit(1)
else:
print("No 'use super::' without leading tab found. All files are compliant.")
if __name__ == "__main__":
main()

View File

@@ -514,6 +514,7 @@ fn query_request_type(request: &QueryRequest) -> &'static str {
Some(Query::Sql(_)) => "query.sql",
Some(Query::LogicalPlan(_)) => "query.logical_plan",
Some(Query::PromRangeQuery(_)) => "query.prom_range",
Some(Query::InsertIntoPlan(_)) => "query.insert_into_plan",
None => "query.empty",
}
}

View File

@@ -49,7 +49,6 @@ pub use table_names::*;
use views::InformationSchemaViews;
use self::columns::InformationSchemaColumns;
use super::{SystemSchemaProviderInner, SystemTable, SystemTableRef};
use crate::error::{Error, Result};
use crate::system_schema::information_schema::cluster_info::InformationSchemaClusterInfo;
use crate::system_schema::information_schema::flows::InformationSchemaFlows;
@@ -63,7 +62,9 @@ use crate::system_schema::information_schema::table_constraints::InformationSche
use crate::system_schema::information_schema::tables::InformationSchemaTables;
use crate::system_schema::memory_table::MemoryTable;
pub(crate) use crate::system_schema::predicate::Predicates;
use crate::system_schema::SystemSchemaProvider;
use crate::system_schema::{
SystemSchemaProvider, SystemSchemaProviderInner, SystemTable, SystemTableRef,
};
use crate::CatalogManager;
lazy_static! {

View File

@@ -36,9 +36,8 @@ use datatypes::vectors::{
use snafu::ResultExt;
use store_api::storage::{ScanRequest, TableId};
use super::CLUSTER_INFO;
use crate::error::{CreateRecordBatchSnafu, InternalSnafu, Result};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::system_schema::information_schema::{InformationTable, Predicates, CLUSTER_INFO};
use crate::system_schema::utils;
use crate::CatalogManager;

View File

@@ -38,11 +38,11 @@ use snafu::{OptionExt, ResultExt};
use sql::statements;
use store_api::storage::{ScanRequest, TableId};
use super::{InformationTable, COLUMNS};
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::Predicates;
use crate::system_schema::information_schema::{InformationTable, COLUMNS};
use crate::CatalogManager;
#[derive(Debug)]

View File

@@ -18,7 +18,7 @@ use common_catalog::consts::{METRIC_ENGINE, MITO_ENGINE};
use datatypes::schema::{Schema, SchemaRef};
use datatypes::vectors::{Int64Vector, StringVector, VectorRef};
use super::table_names::*;
use crate::system_schema::information_schema::table_names::*;
use crate::system_schema::utils::tables::{
bigint_column, string_column, string_columns, timestamp_micro_column,
};

View File

@@ -24,18 +24,17 @@ use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatch
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::prelude::{ConcreteDataType, MutableVector, ScalarVectorBuilder, VectorRef};
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::schema::{ColumnSchema, FulltextBackend, Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::{ConstantVector, StringVector, StringVectorBuilder, UInt32VectorBuilder};
use futures_util::TryStreamExt;
use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use super::KEY_COLUMN_USAGE;
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::system_schema::information_schema::{InformationTable, Predicates, KEY_COLUMN_USAGE};
use crate::CatalogManager;
pub const CONSTRAINT_SCHEMA: &str = "constraint_schema";
@@ -48,20 +47,38 @@ pub const TABLE_SCHEMA: &str = "table_schema";
pub const TABLE_NAME: &str = "table_name";
pub const COLUMN_NAME: &str = "column_name";
pub const ORDINAL_POSITION: &str = "ordinal_position";
/// The type of the index.
pub const GREPTIME_INDEX_TYPE: &str = "greptime_index_type";
const INIT_CAPACITY: usize = 42;
/// Primary key constraint name
pub(crate) const PRI_CONSTRAINT_NAME: &str = "PRIMARY";
/// Time index constraint name
pub(crate) const TIME_INDEX_CONSTRAINT_NAME: &str = "TIME INDEX";
pub(crate) const CONSTRAINT_NAME_TIME_INDEX: &str = "TIME INDEX";
/// Primary key constraint name
pub(crate) const CONSTRAINT_NAME_PRI: &str = "PRIMARY";
/// Primary key index type
pub(crate) const INDEX_TYPE_PRI: &str = "greptime-primary-key-v1";
/// Inverted index constraint name
pub(crate) const INVERTED_INDEX_CONSTRAINT_NAME: &str = "INVERTED INDEX";
pub(crate) const CONSTRAINT_NAME_INVERTED_INDEX: &str = "INVERTED INDEX";
/// Inverted index type
pub(crate) const INDEX_TYPE_INVERTED_INDEX: &str = "greptime-inverted-index-v1";
/// Fulltext index constraint name
pub(crate) const FULLTEXT_INDEX_CONSTRAINT_NAME: &str = "FULLTEXT INDEX";
pub(crate) const CONSTRAINT_NAME_FULLTEXT_INDEX: &str = "FULLTEXT INDEX";
/// Fulltext index v1 type
pub(crate) const INDEX_TYPE_FULLTEXT_TANTIVY: &str = "greptime-fulltext-index-v1";
/// Fulltext index bloom type
pub(crate) const INDEX_TYPE_FULLTEXT_BLOOM: &str = "greptime-fulltext-index-bloom";
/// Skipping index constraint name
pub(crate) const SKIPPING_INDEX_CONSTRAINT_NAME: &str = "SKIPPING INDEX";
pub(crate) const CONSTRAINT_NAME_SKIPPING_INDEX: &str = "SKIPPING INDEX";
/// Skipping index type
pub(crate) const INDEX_TYPE_SKIPPING_INDEX: &str = "greptime-bloom-filter-v1";
/// The virtual table implementation for `information_schema.KEY_COLUMN_USAGE`.
///
/// Provides an extra column `greptime_index_type` for the index type of the key column.
#[derive(Debug)]
pub(super) struct InformationSchemaKeyColumnUsage {
schema: SchemaRef,
@@ -121,6 +138,11 @@ impl InformationSchemaKeyColumnUsage {
ConcreteDataType::string_datatype(),
true,
),
ColumnSchema::new(
GREPTIME_INDEX_TYPE,
ConcreteDataType::string_datatype(),
true,
),
]))
}
@@ -185,6 +207,7 @@ struct InformationSchemaKeyColumnUsageBuilder {
column_name: StringVectorBuilder,
ordinal_position: UInt32VectorBuilder,
position_in_unique_constraint: UInt32VectorBuilder,
greptime_index_type: StringVectorBuilder,
}
impl InformationSchemaKeyColumnUsageBuilder {
@@ -207,6 +230,7 @@ impl InformationSchemaKeyColumnUsageBuilder {
column_name: StringVectorBuilder::with_capacity(INIT_CAPACITY),
ordinal_position: UInt32VectorBuilder::with_capacity(INIT_CAPACITY),
position_in_unique_constraint: UInt32VectorBuilder::with_capacity(INIT_CAPACITY),
greptime_index_type: StringVectorBuilder::with_capacity(INIT_CAPACITY),
}
}
@@ -230,34 +254,47 @@ impl InformationSchemaKeyColumnUsageBuilder {
for (idx, column) in schema.column_schemas().iter().enumerate() {
let mut constraints = vec![];
let mut greptime_index_type = vec![];
if column.is_time_index() {
self.add_key_column_usage(
&predicates,
&schema_name,
TIME_INDEX_CONSTRAINT_NAME,
CONSTRAINT_NAME_TIME_INDEX,
&catalog_name,
&schema_name,
table_name,
&column.name,
1, //always 1 for time index
"",
);
}
// TODO(dimbtp): foreign key constraint not supported yet
if keys.contains(&idx) {
constraints.push(PRI_CONSTRAINT_NAME);
constraints.push(CONSTRAINT_NAME_PRI);
greptime_index_type.push(INDEX_TYPE_PRI);
}
if column.is_inverted_indexed() {
constraints.push(INVERTED_INDEX_CONSTRAINT_NAME);
constraints.push(CONSTRAINT_NAME_INVERTED_INDEX);
greptime_index_type.push(INDEX_TYPE_INVERTED_INDEX);
}
if column.is_fulltext_indexed() {
constraints.push(FULLTEXT_INDEX_CONSTRAINT_NAME);
if let Ok(Some(options)) = column.fulltext_options() {
if options.enable {
constraints.push(CONSTRAINT_NAME_FULLTEXT_INDEX);
let index_type = match options.backend {
FulltextBackend::Bloom => INDEX_TYPE_FULLTEXT_BLOOM,
FulltextBackend::Tantivy => INDEX_TYPE_FULLTEXT_TANTIVY,
};
greptime_index_type.push(index_type);
}
}
if column.is_skipping_indexed() {
constraints.push(SKIPPING_INDEX_CONSTRAINT_NAME);
constraints.push(CONSTRAINT_NAME_SKIPPING_INDEX);
greptime_index_type.push(INDEX_TYPE_SKIPPING_INDEX);
}
if !constraints.is_empty() {
let aggregated_constraints = constraints.join(", ");
let aggregated_index_types = greptime_index_type.join(", ");
self.add_key_column_usage(
&predicates,
&schema_name,
@@ -267,6 +304,7 @@ impl InformationSchemaKeyColumnUsageBuilder {
table_name,
&column.name,
idx as u32 + 1,
&aggregated_index_types,
);
}
}
@@ -289,6 +327,7 @@ impl InformationSchemaKeyColumnUsageBuilder {
table_name: &str,
column_name: &str,
ordinal_position: u32,
index_types: &str,
) {
let row = [
(CONSTRAINT_SCHEMA, &Value::from(constraint_schema)),
@@ -298,6 +337,7 @@ impl InformationSchemaKeyColumnUsageBuilder {
(TABLE_NAME, &Value::from(table_name)),
(COLUMN_NAME, &Value::from(column_name)),
(ORDINAL_POSITION, &Value::from(ordinal_position)),
(GREPTIME_INDEX_TYPE, &Value::from(index_types)),
];
if !predicates.eval(&row) {
@@ -314,6 +354,7 @@ impl InformationSchemaKeyColumnUsageBuilder {
self.column_name.push(Some(column_name));
self.ordinal_position.push(Some(ordinal_position));
self.position_in_unique_constraint.push(None);
self.greptime_index_type.push(Some(index_types));
}
fn finish(&mut self) -> Result<RecordBatch> {
@@ -337,6 +378,7 @@ impl InformationSchemaKeyColumnUsageBuilder {
null_string_vector.clone(),
null_string_vector.clone(),
null_string_vector,
Arc::new(self.greptime_index_type.finish()),
];
RecordBatch::new(self.schema.clone(), columns).context(CreateRecordBatchSnafu)
}

View File

@@ -39,13 +39,12 @@ use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use table::metadata::{TableInfo, TableType};
use super::PARTITIONS;
use crate::error::{
CreateRecordBatchSnafu, FindPartitionsSnafu, InternalSnafu, PartitionManagerNotFoundSnafu,
Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::kvbackend::KvBackendCatalogManager;
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::system_schema::information_schema::{InformationTable, Predicates, PARTITIONS};
use crate::CatalogManager;
const TABLE_CATALOG: &str = "table_catalog";

View File

@@ -33,9 +33,8 @@ use datatypes::vectors::{StringVectorBuilder, TimestampMillisecondVectorBuilder}
use snafu::ResultExt;
use store_api::storage::{ScanRequest, TableId};
use super::PROCEDURE_INFO;
use crate::error::{CreateRecordBatchSnafu, InternalSnafu, Result};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::system_schema::information_schema::{InformationTable, Predicates, PROCEDURE_INFO};
use crate::system_schema::utils;
use crate::CatalogManager;

View File

@@ -35,13 +35,12 @@ use snafu::{OptionExt, ResultExt};
use store_api::storage::{RegionId, ScanRequest, TableId};
use table::metadata::TableType;
use super::REGION_PEERS;
use crate::error::{
CreateRecordBatchSnafu, FindRegionRoutesSnafu, InternalSnafu, Result,
UpgradeWeakCatalogManagerRefSnafu,
};
use crate::kvbackend::KvBackendCatalogManager;
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::system_schema::information_schema::{InformationTable, Predicates, REGION_PEERS};
use crate::CatalogManager;
pub const TABLE_CATALOG: &str = "table_catalog";

View File

@@ -30,9 +30,9 @@ use datatypes::vectors::{StringVectorBuilder, UInt32VectorBuilder, UInt64VectorB
use snafu::ResultExt;
use store_api::storage::{ScanRequest, TableId};
use super::{InformationTable, REGION_STATISTICS};
use crate::error::{CreateRecordBatchSnafu, InternalSnafu, Result};
use crate::information_schema::Predicates;
use crate::system_schema::information_schema::{InformationTable, REGION_STATISTICS};
use crate::system_schema::utils;
use crate::CatalogManager;

View File

@@ -35,8 +35,8 @@ use itertools::Itertools;
use snafu::ResultExt;
use store_api::storage::{ScanRequest, TableId};
use super::{InformationTable, RUNTIME_METRICS};
use crate::error::{CreateRecordBatchSnafu, InternalSnafu, Result};
use crate::system_schema::information_schema::{InformationTable, RUNTIME_METRICS};
#[derive(Debug)]
pub(super) struct InformationSchemaMetrics {

View File

@@ -31,12 +31,11 @@ use datatypes::vectors::StringVectorBuilder;
use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use super::SCHEMATA;
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, TableMetadataManagerSnafu,
UpgradeWeakCatalogManagerRefSnafu,
};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::system_schema::information_schema::{InformationTable, Predicates, SCHEMATA};
use crate::system_schema::utils;
use crate::CatalogManager;

View File

@@ -32,14 +32,14 @@ use futures::TryStreamExt;
use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use super::{InformationTable, TABLE_CONSTRAINTS};
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::key_column_usage::{
PRI_CONSTRAINT_NAME, TIME_INDEX_CONSTRAINT_NAME,
CONSTRAINT_NAME_PRI, CONSTRAINT_NAME_TIME_INDEX,
};
use crate::information_schema::Predicates;
use crate::system_schema::information_schema::{InformationTable, TABLE_CONSTRAINTS};
use crate::CatalogManager;
/// The `TABLE_CONSTRAINTS` table describes which tables have constraints.
@@ -188,7 +188,7 @@ impl InformationSchemaTableConstraintsBuilder {
self.add_table_constraint(
&predicates,
&schema_name,
TIME_INDEX_CONSTRAINT_NAME,
CONSTRAINT_NAME_TIME_INDEX,
&schema_name,
&table.table_info().name,
TIME_INDEX_CONSTRAINT_TYPE,
@@ -199,7 +199,7 @@ impl InformationSchemaTableConstraintsBuilder {
self.add_table_constraint(
&predicates,
&schema_name,
PRI_CONSTRAINT_NAME,
CONSTRAINT_NAME_PRI,
&schema_name,
&table.table_info().name,
PRI_KEY_CONSTRAINT_TYPE,

View File

@@ -38,11 +38,10 @@ use snafu::{OptionExt, ResultExt};
use store_api::storage::{RegionId, ScanRequest, TableId};
use table::metadata::{TableInfo, TableType};
use super::TABLES;
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::system_schema::information_schema::{InformationTable, Predicates, TABLES};
use crate::system_schema::utils;
use crate::CatalogManager;

View File

@@ -32,13 +32,12 @@ use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use table::metadata::TableType;
use super::VIEWS;
use crate::error::{
CastManagerSnafu, CreateRecordBatchSnafu, GetViewCacheSnafu, InternalSnafu, Result,
UpgradeWeakCatalogManagerRefSnafu, ViewInfoNotFoundSnafu,
};
use crate::kvbackend::KvBackendCatalogManager;
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::system_schema::information_schema::{InformationTable, Predicates, VIEWS};
use crate::CatalogManager;
const INIT_CAPACITY: usize = 42;

View File

@@ -29,8 +29,8 @@ use datatypes::vectors::VectorRef;
use snafu::ResultExt;
use store_api::storage::{ScanRequest, TableId};
use super::SystemTable;
use crate::error::{CreateRecordBatchSnafu, InternalSnafu, Result};
use crate::system_schema::SystemTable;
/// A memory table with specified schema and columns.
#[derive(Debug)]

View File

@@ -34,9 +34,9 @@ use table::TableRef;
pub use table_names::*;
use self::pg_namespace::oid_map::{PGNamespaceOidMap, PGNamespaceOidMapRef};
use super::memory_table::MemoryTable;
use super::utils::tables::u32_column;
use super::{SystemSchemaProvider, SystemSchemaProviderInner, SystemTableRef};
use crate::system_schema::memory_table::MemoryTable;
use crate::system_schema::utils::tables::u32_column;
use crate::system_schema::{SystemSchemaProvider, SystemSchemaProviderInner, SystemTableRef};
use crate::CatalogManager;
lazy_static! {

View File

@@ -17,9 +17,9 @@ use std::sync::Arc;
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::vectors::{Int16Vector, StringVector, UInt32Vector, VectorRef};
use super::oid_column;
use super::table_names::PG_TYPE;
use crate::memory_table_cols;
use crate::system_schema::pg_catalog::oid_column;
use crate::system_schema::pg_catalog::table_names::PG_TYPE;
use crate::system_schema::utils::tables::{i16_column, string_column};
fn pg_type_schema_columns() -> (Vec<ColumnSchema>, Vec<VectorRef>) {

View File

@@ -32,12 +32,12 @@ use snafu::{OptionExt, ResultExt};
use store_api::storage::ScanRequest;
use table::metadata::TableType;
use super::pg_namespace::oid_map::PGNamespaceOidMapRef;
use super::{query_ctx, OID_COLUMN_NAME, PG_CLASS};
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::Predicates;
use crate::system_schema::pg_catalog::pg_namespace::oid_map::PGNamespaceOidMapRef;
use crate::system_schema::pg_catalog::{query_ctx, OID_COLUMN_NAME, PG_CLASS};
use crate::system_schema::utils::tables::{string_column, u32_column};
use crate::system_schema::SystemTable;
use crate::CatalogManager;

View File

@@ -29,12 +29,12 @@ use datatypes::vectors::{StringVectorBuilder, UInt32VectorBuilder, VectorRef};
use snafu::{OptionExt, ResultExt};
use store_api::storage::ScanRequest;
use super::pg_namespace::oid_map::PGNamespaceOidMapRef;
use super::{query_ctx, OID_COLUMN_NAME, PG_DATABASE};
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::Predicates;
use crate::system_schema::pg_catalog::pg_namespace::oid_map::PGNamespaceOidMapRef;
use crate::system_schema::pg_catalog::{query_ctx, OID_COLUMN_NAME, PG_DATABASE};
use crate::system_schema::utils::tables::{string_column, u32_column};
use crate::system_schema::SystemTable;
use crate::CatalogManager;

View File

@@ -35,11 +35,13 @@ use datatypes::vectors::{StringVectorBuilder, UInt32VectorBuilder, VectorRef};
use snafu::{OptionExt, ResultExt};
use store_api::storage::ScanRequest;
use super::{query_ctx, PGNamespaceOidMapRef, OID_COLUMN_NAME, PG_NAMESPACE};
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::Predicates;
use crate::system_schema::pg_catalog::{
query_ctx, PGNamespaceOidMapRef, OID_COLUMN_NAME, PG_NAMESPACE,
};
use crate::system_schema::utils::tables::{string_column, u32_column};
use crate::system_schema::SystemTable;
use crate::CatalogManager;

View File

@@ -437,10 +437,7 @@ mod tests {
}
fn column(name: &str) -> Expr {
Expr::Column(Column {
relation: None,
name: name.to_string(),
})
Expr::Column(Column::from_name(name))
}
fn string_literal(v: &str) -> Expr {

View File

@@ -27,7 +27,7 @@ use session::context::QueryContextRef;
use snafu::{ensure, OptionExt, ResultExt};
use table::metadata::TableType;
use table::table::adapter::DfTableProviderAdapter;
mod dummy_catalog;
pub mod dummy_catalog;
use dummy_catalog::DummyCatalogList;
use table::TableRef;

View File

@@ -17,7 +17,6 @@ use std::any::Any;
use common_error::ext::{BoxedError, ErrorExt};
use common_error::status_code::StatusCode;
use common_macro::stack_trace_debug;
use rustyline::error::ReadlineError;
use snafu::{Location, Snafu};
#[derive(Snafu)]
@@ -105,52 +104,6 @@ pub enum Error {
#[snafu(display("Invalid REPL command: {reason}"))]
InvalidReplCommand { reason: String },
#[snafu(display("Cannot create REPL"))]
ReplCreation {
#[snafu(source)]
error: ReadlineError,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Error reading command"))]
Readline {
#[snafu(source)]
error: ReadlineError,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Failed to request database, sql: {sql}"))]
RequestDatabase {
sql: String,
#[snafu(source)]
source: client::Error,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Failed to collect RecordBatches"))]
CollectRecordBatches {
#[snafu(implicit)]
location: Location,
source: common_recordbatch::error::Error,
},
#[snafu(display("Failed to pretty print Recordbatches"))]
PrettyPrintRecordBatches {
#[snafu(implicit)]
location: Location,
source: common_recordbatch::error::Error,
},
#[snafu(display("Failed to start Meta client"))]
StartMetaClient {
#[snafu(implicit)]
location: Location,
source: meta_client::error::Error,
},
#[snafu(display("Failed to parse SQL: {}", sql))]
ParseSql {
sql: String,
@@ -166,13 +119,6 @@ pub enum Error {
source: query::error::Error,
},
#[snafu(display("Failed to encode logical plan in substrait"))]
SubstraitEncodeLogicalPlan {
#[snafu(implicit)]
location: Location,
source: substrait::error::Error,
},
#[snafu(display("Failed to load layered config"))]
LoadLayeredConfig {
#[snafu(source(from(common_config::error::Error, Box::new)))]
@@ -318,17 +264,10 @@ impl ErrorExt for Error {
Error::StartProcedureManager { source, .. }
| Error::StopProcedureManager { source, .. } => source.status_code(),
Error::StartWalOptionsAllocator { source, .. } => source.status_code(),
Error::ReplCreation { .. } | Error::Readline { .. } | Error::HttpQuerySql { .. } => {
StatusCode::Internal
}
Error::RequestDatabase { source, .. } => source.status_code(),
Error::CollectRecordBatches { source, .. }
| Error::PrettyPrintRecordBatches { source, .. } => source.status_code(),
Error::StartMetaClient { source, .. } => source.status_code(),
Error::HttpQuerySql { .. } => StatusCode::Internal,
Error::ParseSql { source, .. } | Error::PlanStatement { source, .. } => {
source.status_code()
}
Error::SubstraitEncodeLogicalPlan { source, .. } => source.status_code(),
Error::SerdeJson { .. }
| Error::FileIo { .. }

View File

@@ -23,15 +23,12 @@ mod helper;
// Wait for https://github.com/GreptimeTeam/greptimedb/issues/2373
mod database;
mod import;
#[allow(unused)]
mod repl;
use async_trait::async_trait;
use clap::Parser;
use common_error::ext::BoxedError;
pub use database::DatabaseClient;
use error::Result;
pub use repl::Repl;
pub use crate::bench::BenchTableMetadataCommand;
pub use crate::export::ExportCommand;

View File

@@ -1,299 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::path::PathBuf;
use std::sync::Arc;
use std::time::Instant;
use cache::{
build_fundamental_cache_registry, with_default_composite_cache_registry, TABLE_CACHE_NAME,
TABLE_ROUTE_CACHE_NAME,
};
use catalog::information_extension::DistributedInformationExtension;
use catalog::kvbackend::{
CachedKvBackend, CachedKvBackendBuilder, KvBackendCatalogManager, MetaKvBackend,
};
use client::{Client, Database, OutputData, DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME};
use common_base::Plugins;
use common_config::Mode;
use common_error::ext::ErrorExt;
use common_meta::cache::{CacheRegistryBuilder, LayeredCacheRegistryBuilder};
use common_meta::kv_backend::KvBackendRef;
use common_query::Output;
use common_recordbatch::RecordBatches;
use common_telemetry::debug;
use either::Either;
use meta_client::client::{ClusterKvBackend, MetaClientBuilder};
use query::datafusion::DatafusionQueryEngine;
use query::parser::QueryLanguageParser;
use query::query_engine::{DefaultSerializer, QueryEngineState};
use query::QueryEngine;
use rustyline::error::ReadlineError;
use rustyline::Editor;
use session::context::QueryContext;
use snafu::{OptionExt, ResultExt};
use substrait::{DFLogicalSubstraitConvertor, SubstraitPlan};
use crate::cmd::ReplCommand;
use crate::error::{
CollectRecordBatchesSnafu, ParseSqlSnafu, PlanStatementSnafu, PrettyPrintRecordBatchesSnafu,
ReadlineSnafu, ReplCreationSnafu, RequestDatabaseSnafu, Result, StartMetaClientSnafu,
SubstraitEncodeLogicalPlanSnafu,
};
use crate::helper::RustylineHelper;
use crate::{error, AttachCommand};
/// Captures the state of the repl, gathers commands and executes them one by one
pub struct Repl {
/// Rustyline editor for interacting with user on command line
rl: Editor<RustylineHelper>,
/// Current prompt
prompt: String,
/// Client for interacting with GreptimeDB
database: Database,
query_engine: Option<DatafusionQueryEngine>,
}
#[allow(clippy::print_stdout)]
impl Repl {
fn print_help(&self) {
println!("{}", ReplCommand::help())
}
pub(crate) async fn try_new(cmd: &AttachCommand) -> Result<Self> {
let mut rl = Editor::new().context(ReplCreationSnafu)?;
if !cmd.disable_helper {
rl.set_helper(Some(RustylineHelper::default()));
let history_file = history_file();
if let Err(e) = rl.load_history(&history_file) {
debug!(
"failed to load history file on {}, error: {e}",
history_file.display()
);
}
}
let client = Client::with_urls([&cmd.grpc_addr]);
let database = Database::new(DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME, client);
let query_engine = if let Some(meta_addr) = &cmd.meta_addr {
create_query_engine(meta_addr).await.map(Some)?
} else {
None
};
Ok(Self {
rl,
prompt: "> ".to_string(),
database,
query_engine,
})
}
/// Parse the next command
fn next_command(&mut self) -> Result<ReplCommand> {
match self.rl.readline(&self.prompt) {
Ok(ref line) => {
let request = line.trim();
let _ = self.rl.add_history_entry(request.to_string());
request.try_into()
}
Err(ReadlineError::Eof) | Err(ReadlineError::Interrupted) => Ok(ReplCommand::Exit),
// Some sort of real underlying error
Err(e) => Err(e).context(ReadlineSnafu),
}
}
/// Read Evaluate Print Loop (interactive command line) for GreptimeDB
///
/// Inspired / based on repl.rs from InfluxDB IOX
pub(crate) async fn run(&mut self) -> Result<()> {
println!("Ready for commands. (Hint: try 'help')");
loop {
match self.next_command()? {
ReplCommand::Help => {
self.print_help();
}
ReplCommand::UseDatabase { db_name } => {
if self.execute_sql(format!("USE {db_name}")).await {
println!("Using {db_name}");
self.database.set_schema(&db_name);
self.prompt = format!("[{db_name}] > ");
}
}
ReplCommand::Sql { sql } => {
let _ = self.execute_sql(sql).await;
}
ReplCommand::Exit => {
return Ok(());
}
}
}
}
async fn execute_sql(&self, sql: String) -> bool {
self.do_execute_sql(sql)
.await
.map_err(|e| {
let status_code = e.status_code();
let root_cause = e.output_msg();
println!("Error: {}({status_code}), {root_cause}", status_code as u32)
})
.is_ok()
}
async fn do_execute_sql(&self, sql: String) -> Result<()> {
let start = Instant::now();
let output = if let Some(query_engine) = &self.query_engine {
let query_ctx = Arc::new(QueryContext::with(
self.database.catalog(),
self.database.schema(),
));
let stmt = QueryLanguageParser::parse_sql(&sql, &query_ctx)
.with_context(|_| ParseSqlSnafu { sql: sql.clone() })?;
let plan = query_engine
.planner()
.plan(&stmt, query_ctx.clone())
.await
.context(PlanStatementSnafu)?;
let plan = query_engine
.optimize(&query_engine.engine_context(query_ctx), &plan)
.context(PlanStatementSnafu)?;
let plan = DFLogicalSubstraitConvertor {}
.encode(&plan, DefaultSerializer)
.context(SubstraitEncodeLogicalPlanSnafu)?;
self.database.logical_plan(plan.to_vec()).await
} else {
self.database.sql(&sql).await
}
.context(RequestDatabaseSnafu { sql: &sql })?;
let either = match output.data {
OutputData::Stream(s) => {
let x = RecordBatches::try_collect(s)
.await
.context(CollectRecordBatchesSnafu)?;
Either::Left(x)
}
OutputData::RecordBatches(x) => Either::Left(x),
OutputData::AffectedRows(rows) => Either::Right(rows),
};
let end = Instant::now();
match either {
Either::Left(recordbatches) => {
let total_rows: usize = recordbatches.iter().map(|x| x.num_rows()).sum();
if total_rows > 0 {
println!(
"{}",
recordbatches
.pretty_print()
.context(PrettyPrintRecordBatchesSnafu)?
);
}
println!("Total Rows: {total_rows}")
}
Either::Right(rows) => println!("Affected Rows: {rows}"),
};
println!("Cost {} ms", (end - start).as_millis());
Ok(())
}
}
impl Drop for Repl {
fn drop(&mut self) {
if self.rl.helper().is_some() {
let history_file = history_file();
if let Err(e) = self.rl.save_history(&history_file) {
debug!(
"failed to save history file on {}, error: {e}",
history_file.display()
);
}
}
}
}
/// Return the location of the history file (defaults to $HOME/".greptimedb_cli_history")
fn history_file() -> PathBuf {
let mut buf = match std::env::var("HOME") {
Ok(home) => PathBuf::from(home),
Err(_) => PathBuf::new(),
};
buf.push(".greptimedb_cli_history");
buf
}
async fn create_query_engine(meta_addr: &str) -> Result<DatafusionQueryEngine> {
let mut meta_client = MetaClientBuilder::default().enable_store().build();
meta_client
.start([meta_addr])
.await
.context(StartMetaClientSnafu)?;
let meta_client = Arc::new(meta_client);
let cached_meta_backend = Arc::new(
CachedKvBackendBuilder::new(Arc::new(MetaKvBackend::new(meta_client.clone()))).build(),
);
let layered_cache_builder = LayeredCacheRegistryBuilder::default().add_cache_registry(
CacheRegistryBuilder::default()
.add_cache(cached_meta_backend.clone())
.build(),
);
let fundamental_cache_registry =
build_fundamental_cache_registry(Arc::new(MetaKvBackend::new(meta_client.clone())));
let layered_cache_registry = Arc::new(
with_default_composite_cache_registry(
layered_cache_builder.add_cache_registry(fundamental_cache_registry),
)
.context(error::BuildCacheRegistrySnafu)?
.build(),
);
let information_extension = Arc::new(DistributedInformationExtension::new(meta_client.clone()));
let catalog_manager = KvBackendCatalogManager::new(
information_extension,
cached_meta_backend.clone(),
layered_cache_registry,
None,
);
let plugins: Plugins = Default::default();
let state = Arc::new(QueryEngineState::new(
catalog_manager,
None,
None,
None,
None,
false,
plugins.clone(),
));
Ok(DatafusionQueryEngine::new(state, plugins))
}

View File

@@ -16,6 +16,7 @@ arc-swap = "1.6"
arrow-flight.workspace = true
async-stream.workspace = true
async-trait.workspace = true
base64.workspace = true
common-catalog.workspace = true
common-error.workspace = true
common-grpc.workspace = true
@@ -25,6 +26,7 @@ common-query.workspace = true
common-recordbatch.workspace = true
common-telemetry.workspace = true
enum_dispatch = "0.3"
futures.workspace = true
futures-util.workspace = true
lazy_static.workspace = true
moka = { workspace = true, features = ["future"] }

View File

@@ -12,36 +12,49 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::pin::Pin;
use std::str::FromStr;
use api::v1::auth_header::AuthScheme;
use api::v1::ddl_request::Expr as DdlExpr;
use api::v1::greptime_database_client::GreptimeDatabaseClient;
use api::v1::greptime_request::Request;
use api::v1::query_request::Query;
use api::v1::{
AlterTableExpr, AuthHeader, CreateTableExpr, DdlRequest, GreptimeRequest, InsertRequests,
QueryRequest, RequestHeader,
AlterTableExpr, AuthHeader, Basic, CreateTableExpr, DdlRequest, GreptimeRequest,
InsertRequests, QueryRequest, RequestHeader,
};
use arrow_flight::Ticket;
use arrow_flight::{FlightData, Ticket};
use async_stream::stream;
use base64::prelude::BASE64_STANDARD;
use base64::Engine;
use common_catalog::build_db_string;
use common_catalog::consts::{DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME};
use common_error::ext::{BoxedError, ErrorExt};
use common_grpc::flight::do_put::DoPutResponse;
use common_grpc::flight::{FlightDecoder, FlightMessage};
use common_query::Output;
use common_recordbatch::error::ExternalSnafu;
use common_recordbatch::RecordBatchStreamWrapper;
use common_telemetry::error;
use common_telemetry::tracing_context::W3cTrace;
use futures_util::StreamExt;
use common_telemetry::{error, warn};
use futures::future;
use futures_util::{Stream, StreamExt, TryStreamExt};
use prost::Message;
use snafu::{ensure, ResultExt};
use tonic::metadata::AsciiMetadataKey;
use tonic::metadata::{AsciiMetadataKey, MetadataValue};
use tonic::transport::Channel;
use crate::error::{
ConvertFlightDataSnafu, Error, FlightGetSnafu, IllegalFlightMessagesSnafu, InvalidAsciiSnafu,
ServerSnafu,
InvalidTonicMetadataValueSnafu, ServerSnafu,
};
use crate::{from_grpc_response, Client, Result};
type FlightDataStream = Pin<Box<dyn Stream<Item = FlightData> + Send>>;
type DoPutResponseStream = Pin<Box<dyn Stream<Item = Result<DoPutResponse>>>>;
#[derive(Clone, Debug, Default)]
pub struct Database {
// The "catalog" and "schema" to be used in processing the requests at the server side.
@@ -108,16 +121,24 @@ impl Database {
self.catalog = catalog.into();
}
pub fn catalog(&self) -> &String {
&self.catalog
fn catalog_or_default(&self) -> &str {
if self.catalog.is_empty() {
DEFAULT_CATALOG_NAME
} else {
&self.catalog
}
}
pub fn set_schema(&mut self, schema: impl Into<String>) {
self.schema = schema.into();
}
pub fn schema(&self) -> &String {
&self.schema
fn schema_or_default(&self) -> &str {
if self.schema.is_empty() {
DEFAULT_SCHEMA_NAME
} else {
&self.schema
}
}
pub fn set_timezone(&mut self, timezone: impl Into<String>) {
@@ -164,13 +185,43 @@ impl Database {
from_grpc_response(response)
}
async fn handle(&self, request: Request) -> Result<u32> {
pub async fn handle(&self, request: Request) -> Result<u32> {
let mut client = make_database_client(&self.client)?.inner;
let request = self.to_rpc_request(request);
let response = client.handle(request).await?.into_inner();
from_grpc_response(response)
}
/// Retry if connection fails, max_retries is the max number of retries, so the total wait time
/// is `max_retries * GRPC_CONN_TIMEOUT`
pub async fn handle_with_retry(&self, request: Request, max_retries: u32) -> Result<u32> {
let mut client = make_database_client(&self.client)?.inner;
let mut retries = 0;
let request = self.to_rpc_request(request);
loop {
let raw_response = client.handle(request.clone()).await;
match (raw_response, retries < max_retries) {
(Ok(resp), _) => return from_grpc_response(resp.into_inner()),
(Err(err), true) => {
// determine if the error is retryable
if is_grpc_retryable(&err) {
// retry
retries += 1;
warn!("Retrying {} times with error = {:?}", retries, err);
continue;
}
}
(Err(err), false) => {
error!(
"Failed to send request to grpc handle after {} retries, error = {:?}",
retries, err
);
return Err(err.into());
}
}
}
}
#[inline]
fn to_rpc_request(&self, request: Request) -> GreptimeRequest {
GreptimeRequest {
@@ -310,6 +361,46 @@ impl Database {
}
}
}
/// Ingest a stream of [RecordBatch]es that belong to a table, using Arrow Flight's "`DoPut`"
/// method. The return value is also a stream, produces [DoPutResponse]s.
pub async fn do_put(&self, stream: FlightDataStream) -> Result<DoPutResponseStream> {
let mut request = tonic::Request::new(stream);
if let Some(AuthHeader {
auth_scheme: Some(AuthScheme::Basic(Basic { username, password })),
}) = &self.ctx.auth_header
{
let encoded = BASE64_STANDARD.encode(format!("{username}:{password}"));
let value =
MetadataValue::from_str(&encoded).context(InvalidTonicMetadataValueSnafu)?;
request.metadata_mut().insert("x-greptime-auth", value);
}
let db_to_put = if !self.dbname.is_empty() {
&self.dbname
} else {
&build_db_string(self.catalog_or_default(), self.schema_or_default())
};
request.metadata_mut().insert(
"x-greptime-db-name",
MetadataValue::from_str(db_to_put).context(InvalidTonicMetadataValueSnafu)?,
);
let mut client = self.client.make_flight_client()?;
let response = client.mut_inner().do_put(request).await?;
let response = response
.into_inner()
.map_err(Into::into)
.and_then(|x| future::ready(DoPutResponse::try_from(x).context(ConvertFlightDataSnafu)))
.boxed();
Ok(response)
}
}
/// by grpc standard, only `Unavailable` is retryable, see: https://github.com/grpc/grpc/blob/master/doc/statuscodes.md#status-codes-and-their-use-in-grpc
pub fn is_grpc_retryable(err: &tonic::Status) -> bool {
matches!(err.code(), tonic::Code::Unavailable)
}
#[derive(Default, Debug, Clone)]

View File

@@ -15,10 +15,11 @@
use std::any::Any;
use common_error::ext::{BoxedError, ErrorExt};
use common_error::status_code::StatusCode;
use common_error::status_code::{convert_tonic_code_to_status_code, StatusCode};
use common_error::{GREPTIME_DB_HEADER_ERROR_CODE, GREPTIME_DB_HEADER_ERROR_MSG};
use common_macro::stack_trace_debug;
use snafu::{location, Location, Snafu};
use tonic::metadata::errors::InvalidMetadataValue;
use tonic::{Code, Status};
#[derive(Snafu)]
@@ -115,6 +116,14 @@ pub enum Error {
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Invalid Tonic metadata value"))]
InvalidTonicMetadataValue {
#[snafu(source)]
error: InvalidMetadataValue,
#[snafu(implicit)]
location: Location,
},
}
pub type Result<T> = std::result::Result<T, Error>;
@@ -135,7 +144,9 @@ impl ErrorExt for Error {
| Error::CreateTlsChannel { source, .. } => source.status_code(),
Error::IllegalGrpcClientState { .. } => StatusCode::Unexpected,
Error::InvalidAscii { .. } => StatusCode::InvalidArguments,
Error::InvalidAscii { .. } | Error::InvalidTonicMetadataValue { .. } => {
StatusCode::InvalidArguments
}
}
}
@@ -152,15 +163,15 @@ impl From<Status> for Error {
.and_then(|v| String::from_utf8(v.as_bytes().to_vec()).ok())
}
let code = get_metadata_value(&e, GREPTIME_DB_HEADER_ERROR_CODE)
.and_then(|s| {
if let Ok(code) = s.parse::<u32>() {
StatusCode::from_u32(code)
} else {
None
}
})
.unwrap_or(StatusCode::Unknown);
let code = get_metadata_value(&e, GREPTIME_DB_HEADER_ERROR_CODE).and_then(|s| {
if let Ok(code) = s.parse::<u32>() {
StatusCode::from_u32(code)
} else {
None
}
});
let tonic_code = e.code();
let code = code.unwrap_or_else(|| convert_tonic_code_to_status_code(tonic_code));
let msg = get_metadata_value(&e, GREPTIME_DB_HEADER_ERROR_MSG)
.unwrap_or_else(|| e.message().to_string());
@@ -187,9 +198,6 @@ impl Error {
} | Self::RegionServer {
code: Code::Unavailable,
..
} | Self::RegionServer {
code: Code::Unknown,
..
}
)
}

View File

@@ -16,7 +16,7 @@
mod client;
pub mod client_manager;
mod database;
pub mod database;
pub mod error;
pub mod flow;
pub mod load_balance;

View File

@@ -201,12 +201,11 @@ impl RegionRequester {
.await
.map_err(|e| {
let code = e.code();
let err: error::Error = e.into();
// Uses `Error::RegionServer` instead of `Error::Server`
error::Error::RegionServer {
addr,
code,
source: BoxedError::new(err),
source: BoxedError::new(error::Error::from(e)),
location: location!(),
}
})?

View File

@@ -68,7 +68,6 @@ query.workspace = true
rand.workspace = true
regex.workspace = true
reqwest.workspace = true
rustyline = "10.1"
serde.workspace = true
serde_json.workspace = true
servers.workspace = true

View File

@@ -17,7 +17,6 @@ use std::any::Any;
use common_error::ext::{BoxedError, ErrorExt};
use common_error::status_code::StatusCode;
use common_macro::stack_trace_debug;
use rustyline::error::ReadlineError;
use snafu::{Location, Snafu};
#[derive(Snafu)]
@@ -181,52 +180,6 @@ pub enum Error {
#[snafu(display("Invalid REPL command: {reason}"))]
InvalidReplCommand { reason: String },
#[snafu(display("Cannot create REPL"))]
ReplCreation {
#[snafu(source)]
error: ReadlineError,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Error reading command"))]
Readline {
#[snafu(source)]
error: ReadlineError,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Failed to request database, sql: {sql}"))]
RequestDatabase {
sql: String,
#[snafu(source)]
source: client::Error,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Failed to collect RecordBatches"))]
CollectRecordBatches {
#[snafu(implicit)]
location: Location,
source: common_recordbatch::error::Error,
},
#[snafu(display("Failed to pretty print Recordbatches"))]
PrettyPrintRecordBatches {
#[snafu(implicit)]
location: Location,
source: common_recordbatch::error::Error,
},
#[snafu(display("Failed to start Meta client"))]
StartMetaClient {
#[snafu(implicit)]
location: Location,
source: meta_client::error::Error,
},
#[snafu(display("Failed to parse SQL: {}", sql))]
ParseSql {
sql: String,
@@ -242,13 +195,6 @@ pub enum Error {
source: query::error::Error,
},
#[snafu(display("Failed to encode logical plan in substrait"))]
SubstraitEncodeLogicalPlan {
#[snafu(implicit)]
location: Location,
source: substrait::error::Error,
},
#[snafu(display("Failed to load layered config"))]
LoadLayeredConfig {
#[snafu(source(from(common_config::error::Error, Box::new)))]
@@ -395,17 +341,10 @@ impl ErrorExt for Error {
| Error::StopProcedureManager { source, .. } => source.status_code(),
Error::BuildWalOptionsAllocator { source, .. }
| Error::StartWalOptionsAllocator { source, .. } => source.status_code(),
Error::ReplCreation { .. } | Error::Readline { .. } | Error::HttpQuerySql { .. } => {
StatusCode::Internal
}
Error::RequestDatabase { source, .. } => source.status_code(),
Error::CollectRecordBatches { source, .. }
| Error::PrettyPrintRecordBatches { source, .. } => source.status_code(),
Error::StartMetaClient { source, .. } => source.status_code(),
Error::HttpQuerySql { .. } => StatusCode::Internal,
Error::ParseSql { source, .. } | Error::PlanStatement { source, .. } => {
source.status_code()
}
Error::SubstraitEncodeLogicalPlan { source, .. } => source.status_code(),
Error::SerdeJson { .. }
| Error::FileIo { .. }

View File

@@ -32,7 +32,9 @@ use common_meta::key::TableMetadataManager;
use common_telemetry::info;
use common_telemetry::logging::TracingOptions;
use common_version::{short_version, version};
use flow::{FlownodeBuilder, FlownodeInstance, FrontendInvoker};
use flow::{
FlownodeBuilder, FlownodeInstance, FlownodeServiceBuilder, FrontendClient, FrontendInvoker,
};
use meta_client::{MetaClientOptions, MetaClientType};
use snafu::{ensure, OptionExt, ResultExt};
use tracing_appender::non_blocking::WorkerGuard;
@@ -313,16 +315,26 @@ impl StartCommand {
);
let flow_metadata_manager = Arc::new(FlowMetadataManager::new(cached_meta_backend.clone()));
let frontend_client = FrontendClient::from_meta_client(meta_client.clone());
let flownode_builder = FlownodeBuilder::new(
opts,
opts.clone(),
Plugins::new(),
table_metadata_manager,
catalog_manager.clone(),
flow_metadata_manager,
Arc::new(frontend_client),
)
.with_heartbeat_task(heartbeat_task);
let flownode = flownode_builder.build().await.context(StartFlownodeSnafu)?;
let mut flownode = flownode_builder.build().await.context(StartFlownodeSnafu)?;
let services = FlownodeServiceBuilder::new(&opts)
.with_grpc_server(flownode.flownode_server().clone())
.enable_http_service()
.build()
.await
.context(StartFlownodeSnafu)?;
flownode.setup_services(services);
let flownode = flownode;
// flownode's frontend to datanode need not timeout.
// Some queries are expected to take long time.
@@ -333,7 +345,7 @@ impl StartCommand {
let client = Arc::new(NodeClients::new(channel_config));
let invoker = FrontendInvoker::build_from(
flownode.flow_worker_manager().clone(),
flownode.flow_engine().streaming_engine(),
catalog_manager.clone(),
cached_meta_backend.clone(),
layered_cache_registry.clone(),
@@ -343,7 +355,9 @@ impl StartCommand {
.await
.context(StartFlownodeSnafu)?;
flownode
.flow_worker_manager()
.flow_engine()
.streaming_engine()
// TODO(discord9): refactor and avoid circular reference
.set_frontend_invoker(invoker)
.await;

View File

@@ -12,6 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::fmt;
use std::time::Duration;
use async_trait::async_trait;
@@ -131,8 +132,8 @@ impl SubCommand {
}
}
#[derive(Debug, Default, Parser)]
struct StartCommand {
#[derive(Default, Parser)]
pub struct StartCommand {
/// The address to bind the gRPC server.
#[clap(long, alias = "bind-addr")]
rpc_bind_addr: Option<String>,
@@ -171,8 +172,29 @@ struct StartCommand {
backend: Option<BackendImpl>,
}
impl fmt::Debug for StartCommand {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("StartCommand")
.field("rpc_bind_addr", &self.rpc_bind_addr)
.field("rpc_server_addr", &self.rpc_server_addr)
.field("store_addrs", &self.sanitize_store_addrs())
.field("config_file", &self.config_file)
.field("selector", &self.selector)
.field("use_memory_store", &self.use_memory_store)
.field("enable_region_failover", &self.enable_region_failover)
.field("http_addr", &self.http_addr)
.field("http_timeout", &self.http_timeout)
.field("env_prefix", &self.env_prefix)
.field("data_home", &self.data_home)
.field("store_key_prefix", &self.store_key_prefix)
.field("max_txn_ops", &self.max_txn_ops)
.field("backend", &self.backend)
.finish()
}
}
impl StartCommand {
fn load_options(&self, global_options: &GlobalOptions) -> Result<MetasrvOptions> {
pub fn load_options(&self, global_options: &GlobalOptions) -> Result<MetasrvOptions> {
let mut opts = MetasrvOptions::load_layered_options(
self.config_file.as_deref(),
self.env_prefix.as_ref(),
@@ -184,6 +206,15 @@ impl StartCommand {
Ok(opts)
}
fn sanitize_store_addrs(&self) -> Option<Vec<String>> {
self.store_addrs.as_ref().map(|addrs| {
addrs
.iter()
.map(|addr| common_meta::kv_backend::util::sanitize_connection_string(addr))
.collect()
})
}
// The precedence order is: cli > config file > environment variables > default values.
fn merge_with_cli_options(
&self,
@@ -261,7 +292,7 @@ impl StartCommand {
Ok(())
}
async fn build(&self, opts: MetasrvOptions) -> Result<Instance> {
pub async fn build(&self, opts: MetasrvOptions) -> Result<Instance> {
common_runtime::init_global_runtimes(&opts.runtime);
let guard = common_telemetry::init_global_logging(

View File

@@ -55,7 +55,10 @@ use datanode::config::{DatanodeOptions, ProcedureConfig, RegionEngineConfig, Sto
use datanode::datanode::{Datanode, DatanodeBuilder};
use datanode::region_server::RegionServer;
use file_engine::config::EngineConfig as FileEngineConfig;
use flow::{FlowConfig, FlowWorkerManager, FlownodeBuilder, FlownodeOptions, FrontendInvoker};
use flow::{
FlowConfig, FlownodeBuilder, FlownodeInstance, FlownodeOptions, FrontendClient,
FrontendInvoker, GrpcQueryHandlerWithBoxedError, StreamingEngine,
};
use frontend::frontend::{Frontend, FrontendOptions};
use frontend::instance::builder::FrontendBuilder;
use frontend::instance::{Instance as FeInstance, StandaloneDatanodeManager};
@@ -74,10 +77,10 @@ use servers::http::HttpOptions;
use servers::tls::{TlsMode, TlsOption};
use servers::Mode;
use snafu::ResultExt;
use tokio::sync::{broadcast, RwLock};
use tokio::sync::RwLock;
use tracing_appender::non_blocking::WorkerGuard;
use crate::error::Result;
use crate::error::{Result, StartFlownodeSnafu};
use crate::options::{GlobalOptions, GreptimeOptions};
use crate::{error, log_versions, App};
@@ -244,9 +247,7 @@ impl StandaloneOptions {
pub struct Instance {
datanode: Datanode,
frontend: Frontend,
// TODO(discord9): wrapped it in flownode instance instead
flow_worker_manager: Arc<FlowWorkerManager>,
flow_shutdown: broadcast::Sender<()>,
flownode: FlownodeInstance,
procedure_manager: ProcedureManagerRef,
wal_options_allocator: WalOptionsAllocatorRef,
// Keep the logging guard to prevent the worker from being dropped.
@@ -288,9 +289,7 @@ impl App for Instance {
.await
.context(error::StartFrontendSnafu)?;
self.flow_worker_manager
.clone()
.run_background(Some(self.flow_shutdown.subscribe()));
self.flownode.start().await.context(StartFlownodeSnafu)?;
Ok(())
}
@@ -311,14 +310,9 @@ impl App for Instance {
.await
.context(error::ShutdownDatanodeSnafu)?;
self.flow_shutdown
.send(())
.map_err(|_e| {
flow::error::InternalSnafu {
reason: "Failed to send shutdown signal to flow worker manager, all receiver end already closed".to_string(),
}
.build()
})
self.flownode
.shutdown()
.await
.context(error::ShutdownFlownodeSnafu)?;
info!("Datanode instance stopped.");
@@ -529,32 +523,36 @@ impl StartCommand {
flow: opts.flow.clone(),
..Default::default()
};
// for standalone not use grpc, but get a handler to frontend grpc client without
// actually make a connection
let (frontend_client, frontend_instance_handler) =
FrontendClient::from_empty_grpc_handler();
let flow_builder = FlownodeBuilder::new(
flownode_options,
plugins.clone(),
table_metadata_manager.clone(),
catalog_manager.clone(),
flow_metadata_manager.clone(),
Arc::new(frontend_client.clone()),
);
let flownode = Arc::new(
flow_builder
.build()
.await
.map_err(BoxedError::new)
.context(error::OtherSnafu)?,
);
let flownode = flow_builder
.build()
.await
.map_err(BoxedError::new)
.context(error::OtherSnafu)?;
// set the ref to query for the local flow state
{
let flow_worker_manager = flownode.flow_worker_manager();
let flow_streaming_engine = flownode.flow_engine().streaming_engine();
information_extension
.set_flow_worker_manager(flow_worker_manager.clone())
.set_flow_streaming_engine(flow_streaming_engine)
.await;
}
let node_manager = Arc::new(StandaloneDatanodeManager {
region_server: datanode.region_server(),
flow_server: flownode.flow_worker_manager(),
flow_server: flownode.flow_engine(),
});
let table_id_sequence = Arc::new(
@@ -608,10 +606,19 @@ impl StartCommand {
.context(error::StartFrontendSnafu)?;
let fe_instance = Arc::new(fe_instance);
let flow_worker_manager = flownode.flow_worker_manager();
// set the frontend client for flownode
let grpc_handler = fe_instance.clone() as Arc<dyn GrpcQueryHandlerWithBoxedError>;
let weak_grpc_handler = Arc::downgrade(&grpc_handler);
frontend_instance_handler
.lock()
.unwrap()
.replace(weak_grpc_handler);
// set the frontend invoker for flownode
let flow_streaming_engine = flownode.flow_engine().streaming_engine();
// flow server need to be able to use frontend to write insert requests back
let invoker = FrontendInvoker::build_from(
flow_worker_manager.clone(),
flow_streaming_engine.clone(),
catalog_manager.clone(),
kv_backend.clone(),
layered_cache_registry.clone(),
@@ -620,9 +627,7 @@ impl StartCommand {
)
.await
.context(error::StartFlownodeSnafu)?;
flow_worker_manager.set_frontend_invoker(invoker).await;
let (tx, _rx) = broadcast::channel(1);
flow_streaming_engine.set_frontend_invoker(invoker).await;
let export_metrics_task = ExportMetricsTask::try_new(&opts.export_metrics, Some(&plugins))
.context(error::ServersSnafu)?;
@@ -642,8 +647,7 @@ impl StartCommand {
Ok(Instance {
datanode,
frontend,
flow_worker_manager,
flow_shutdown: tx,
flownode,
procedure_manager,
wal_options_allocator,
_guard: guard,
@@ -699,7 +703,7 @@ pub struct StandaloneInformationExtension {
region_server: RegionServer,
procedure_manager: ProcedureManagerRef,
start_time_ms: u64,
flow_worker_manager: RwLock<Option<Arc<FlowWorkerManager>>>,
flow_streaming_engine: RwLock<Option<Arc<StreamingEngine>>>,
}
impl StandaloneInformationExtension {
@@ -708,14 +712,14 @@ impl StandaloneInformationExtension {
region_server,
procedure_manager,
start_time_ms: common_time::util::current_time_millis() as u64,
flow_worker_manager: RwLock::new(None),
flow_streaming_engine: RwLock::new(None),
}
}
/// Set the flow worker manager for the standalone instance.
pub async fn set_flow_worker_manager(&self, flow_worker_manager: Arc<FlowWorkerManager>) {
let mut guard = self.flow_worker_manager.write().await;
*guard = Some(flow_worker_manager);
/// Set the flow streaming engine for the standalone instance.
pub async fn set_flow_streaming_engine(&self, flow_streaming_engine: Arc<StreamingEngine>) {
let mut guard = self.flow_streaming_engine.write().await;
*guard = Some(flow_streaming_engine);
}
}
@@ -784,6 +788,8 @@ impl InformationExtension for StandaloneInformationExtension {
sst_size: region_stat.sst_size,
index_size: region_stat.index_size,
region_manifest: region_stat.manifest.into(),
data_topic_latest_entry_id: region_stat.data_topic_latest_entry_id,
metadata_topic_latest_entry_id: region_stat.metadata_topic_latest_entry_id,
}
})
.collect::<Vec<_>>();
@@ -792,7 +798,7 @@ impl InformationExtension for StandaloneInformationExtension {
async fn flow_stats(&self) -> std::result::Result<Option<FlowStat>, Self::Error> {
Ok(Some(
self.flow_worker_manager
self.flow_streaming_engine
.read()
.await
.as_ref()

View File

@@ -1,148 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#[cfg(target_os = "macos")]
mod tests {
use std::path::PathBuf;
use std::process::{Command, Stdio};
use std::time::Duration;
use common_test_util::temp_dir::create_temp_dir;
use rexpect::session::PtyReplSession;
struct Repl {
repl: PtyReplSession,
}
impl Repl {
fn send_line(&mut self, line: &str) {
let _ = self.repl.send_line(line).unwrap();
// read a line to consume the prompt
let _ = self.read_line();
}
fn read_line(&mut self) -> String {
self.repl.read_line().unwrap()
}
fn read_expect(&mut self, expect: &str) {
assert_eq!(self.read_line(), expect);
}
fn read_contains(&mut self, pat: &str) {
assert!(self.read_line().contains(pat));
}
}
// TODO(LFC): Un-ignore this REPL test.
// Ignore this REPL test because some logical plans like create database are not supported yet in Datanode.
#[ignore]
#[test]
fn test_repl() {
let data_home = create_temp_dir("data");
let wal_dir = create_temp_dir("wal");
let mut bin_path = PathBuf::from(env!("CARGO_MANIFEST_DIR"));
bin_path.push("../../target/debug");
let bin_path = bin_path.to_str().unwrap();
let mut datanode = Command::new("./greptime")
.current_dir(bin_path)
.args([
"datanode",
"start",
"--rpc-bind-addr=0.0.0.0:4321",
"--node-id=1",
&format!("--data-home={}", data_home.path().display()),
&format!("--wal-dir={}", wal_dir.path().display()),
])
.stdout(Stdio::null())
.spawn()
.unwrap();
// wait for Datanode actually started
std::thread::sleep(Duration::from_secs(3));
let mut repl_cmd = Command::new("./greptime");
let _ = repl_cmd.current_dir(bin_path).args([
"--log-level=off",
"cli",
"attach",
"--grpc-bind-addr=0.0.0.0:4321",
// history commands can sneaky into stdout and mess up our tests, so disable it
"--disable-helper",
]);
let pty_session = rexpect::session::spawn_command(repl_cmd, Some(5_000)).unwrap();
let repl = PtyReplSession {
prompt: "> ".to_string(),
pty_session,
quit_command: None,
echo_on: false,
};
let repl = &mut Repl { repl };
repl.read_expect("Ready for commands. (Hint: try 'help')");
test_create_database(repl);
test_use_database(repl);
test_create_table(repl);
test_insert(repl);
test_select(repl);
datanode.kill().unwrap();
let _ = datanode.wait().unwrap();
}
fn test_create_database(repl: &mut Repl) {
repl.send_line("CREATE DATABASE db;");
repl.read_expect("Affected Rows: 1");
repl.read_contains("Cost");
}
fn test_use_database(repl: &mut Repl) {
repl.send_line("USE db");
repl.read_expect("Total Rows: 0");
repl.read_contains("Cost");
repl.read_expect("Using db");
}
fn test_create_table(repl: &mut Repl) {
repl.send_line("CREATE TABLE t(x STRING, ts TIMESTAMP TIME INDEX);");
repl.read_expect("Affected Rows: 0");
repl.read_contains("Cost");
}
fn test_insert(repl: &mut Repl) {
repl.send_line("INSERT INTO t(x, ts) VALUES ('hello', 1676895812239);");
repl.read_expect("Affected Rows: 1");
repl.read_contains("Cost");
}
fn test_select(repl: &mut Repl) {
repl.send_line("SELECT * FROM t;");
repl.read_expect("+-------+-------------------------+");
repl.read_expect("| x | ts |");
repl.read_expect("+-------+-------------------------+");
repl.read_expect("| hello | 2023-02-20T12:23:32.239 |");
repl.read_expect("+-------+-------------------------+");
repl.read_expect("Total Rows: 1");
repl.read_contains("Cost");
}
}

View File

@@ -74,6 +74,7 @@ fn test_load_datanode_example_config() {
RegionEngineConfig::File(FileEngineConfig {}),
RegionEngineConfig::Metric(MetricEngineConfig {
experimental_sparse_primary_key_encoding: false,
flush_metadata_region_interval: Duration::from_secs(30),
}),
],
logging: LoggingOptions {
@@ -216,6 +217,7 @@ fn test_load_standalone_example_config() {
RegionEngineConfig::File(FileEngineConfig {}),
RegionEngineConfig::Metric(MetricEngineConfig {
experimental_sparse_primary_key_encoding: false,
flush_metadata_region_interval: Duration::from_secs(30),
}),
],
storage: StorageConfig {

View File

@@ -31,7 +31,8 @@ impl Plugins {
}
pub fn insert<T: 'static + Send + Sync>(&self, value: T) {
let _ = self.write().insert(value);
let last = self.write().insert(value);
assert!(last.is_none(), "each type of plugins must be one and only");
}
pub fn get<T: 'static + Send + Sync + Clone>(&self) -> Option<T> {
@@ -137,4 +138,12 @@ mod tests {
assert_eq!(plugins.len(), 2);
assert!(!plugins.is_empty());
}
#[test]
#[should_panic(expected = "each type of plugins must be one and only")]
fn test_plugin_uniqueness() {
let plugins = Plugins::new();
plugins.insert(1i32);
plugins.insert(2i32);
}
}

View File

@@ -31,7 +31,8 @@ derive_builder.workspace = true
futures.workspace = true
lazy_static.workspace = true
object-store.workspace = true
orc-rust = { version = "0.5", default-features = false, features = [
object_store_opendal.workspace = true
orc-rust = { git = "https://github.com/datafusion-contrib/orc-rust", rev = "3134cab581a8e91b942d6a23aca2916ea965f6bb", default-features = false, features = [
"async",
] }
parquet.workspace = true

View File

@@ -19,6 +19,7 @@ use std::str::FromStr;
use async_compression::tokio::bufread::{BzDecoder, GzipDecoder, XzDecoder, ZstdDecoder};
use async_compression::tokio::write;
use bytes::Bytes;
use datafusion::datasource::file_format::file_compression_type::FileCompressionType;
use futures::Stream;
use serde::{Deserialize, Serialize};
use strum::EnumIter;
@@ -192,3 +193,15 @@ macro_rules! impl_compression_type {
}
impl_compression_type!((Gzip, Gzip), (Bzip2, Bz), (Xz, Xz), (Zstd, Zstd));
impl From<CompressionType> for FileCompressionType {
fn from(t: CompressionType) -> Self {
match t {
CompressionType::Gzip => FileCompressionType::GZIP,
CompressionType::Bzip2 => FileCompressionType::BZIP2,
CompressionType::Xz => FileCompressionType::XZ,
CompressionType::Zstd => FileCompressionType::ZSTD,
CompressionType::Uncompressed => FileCompressionType::UNCOMPRESSED,
}
}
}

View File

@@ -14,28 +14,23 @@
use std::collections::HashMap;
use std::str::FromStr;
use std::sync::Arc;
use arrow::csv;
use arrow::csv::reader::Format;
use arrow::record_batch::RecordBatch;
use arrow_schema::{Schema, SchemaRef};
use arrow_schema::Schema;
use async_trait::async_trait;
use common_runtime;
use datafusion::datasource::physical_plan::{FileMeta, FileOpenFuture, FileOpener};
use datafusion::error::Result as DataFusionResult;
use datafusion::physical_plan::SendableRecordBatchStream;
use derive_builder::Builder;
use object_store::ObjectStore;
use snafu::ResultExt;
use tokio_util::compat::FuturesAsyncReadCompatExt;
use tokio_util::io::SyncIoBridge;
use super::stream_to_file;
use crate::buffered_writer::DfRecordBatchEncoder;
use crate::compression::CompressionType;
use crate::error::{self, Result};
use crate::file_format::{self, open_with_decoder, FileFormat};
use crate::file_format::{self, stream_to_file, FileFormat};
use crate::share_buffer::SharedBuffer;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
@@ -100,66 +95,6 @@ impl Default for CsvFormat {
}
}
#[derive(Debug, Clone, Builder)]
pub struct CsvConfig {
batch_size: usize,
file_schema: SchemaRef,
#[builder(default = "None")]
file_projection: Option<Vec<usize>>,
#[builder(default = "true")]
has_header: bool,
#[builder(default = "b','")]
delimiter: u8,
}
impl CsvConfig {
fn builder(&self) -> csv::ReaderBuilder {
let mut builder = csv::ReaderBuilder::new(self.file_schema.clone())
.with_delimiter(self.delimiter)
.with_batch_size(self.batch_size)
.with_header(self.has_header);
if let Some(proj) = &self.file_projection {
builder = builder.with_projection(proj.clone());
}
builder
}
}
#[derive(Debug, Clone)]
pub struct CsvOpener {
config: Arc<CsvConfig>,
object_store: Arc<ObjectStore>,
compression_type: CompressionType,
}
impl CsvOpener {
/// Return a new [`CsvOpener`]. The caller must ensure [`CsvConfig`].file_schema must correspond to the opening file.
pub fn new(
config: CsvConfig,
object_store: ObjectStore,
compression_type: CompressionType,
) -> Self {
CsvOpener {
config: Arc::new(config),
object_store: Arc::new(object_store),
compression_type,
}
}
}
impl FileOpener for CsvOpener {
fn open(&self, meta: FileMeta) -> DataFusionResult<FileOpenFuture> {
open_with_decoder(
self.object_store.clone(),
meta.location().to_string(),
self.compression_type,
|| Ok(self.config.builder().build_decoder()),
)
}
}
#[async_trait]
impl FileFormat for CsvFormat {
async fn infer_schema(&self, store: &ObjectStore, path: &str) -> Result<Schema> {

View File

@@ -15,29 +15,24 @@
use std::collections::HashMap;
use std::io::BufReader;
use std::str::FromStr;
use std::sync::Arc;
use arrow::datatypes::SchemaRef;
use arrow::json;
use arrow::json::reader::{infer_json_schema_from_iterator, ValueIter};
use arrow::json::writer::LineDelimited;
use arrow::json::{self, ReaderBuilder};
use arrow::record_batch::RecordBatch;
use arrow_schema::Schema;
use async_trait::async_trait;
use common_runtime;
use datafusion::datasource::physical_plan::{FileMeta, FileOpenFuture, FileOpener};
use datafusion::error::{DataFusionError, Result as DataFusionResult};
use datafusion::physical_plan::SendableRecordBatchStream;
use object_store::ObjectStore;
use snafu::ResultExt;
use tokio_util::compat::FuturesAsyncReadCompatExt;
use tokio_util::io::SyncIoBridge;
use super::stream_to_file;
use crate::buffered_writer::DfRecordBatchEncoder;
use crate::compression::CompressionType;
use crate::error::{self, Result};
use crate::file_format::{self, open_with_decoder, FileFormat};
use crate::file_format::{self, stream_to_file, FileFormat};
use crate::share_buffer::SharedBuffer;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
@@ -114,47 +109,6 @@ impl FileFormat for JsonFormat {
}
}
#[derive(Debug, Clone)]
pub struct JsonOpener {
batch_size: usize,
projected_schema: SchemaRef,
object_store: Arc<ObjectStore>,
compression_type: CompressionType,
}
impl JsonOpener {
/// Return a new [`JsonOpener`]. Any fields not present in `projected_schema` will be ignored.
pub fn new(
batch_size: usize,
projected_schema: SchemaRef,
object_store: ObjectStore,
compression_type: CompressionType,
) -> Self {
Self {
batch_size,
projected_schema,
object_store: Arc::new(object_store),
compression_type,
}
}
}
impl FileOpener for JsonOpener {
fn open(&self, meta: FileMeta) -> DataFusionResult<FileOpenFuture> {
open_with_decoder(
self.object_store.clone(),
meta.location().to_string(),
self.compression_type,
|| {
ReaderBuilder::new(self.projected_schema.clone())
.with_batch_size(self.batch_size)
.build_decoder()
.map_err(DataFusionError::from)
},
)
}
}
pub async fn stream_to_json(
stream: SendableRecordBatchStream,
store: ObjectStore,

View File

@@ -19,7 +19,10 @@ use std::vec;
use common_test_util::find_workspace_path;
use datafusion::assert_batches_eq;
use datafusion::datasource::physical_plan::{FileOpener, FileScanConfig, FileStream, ParquetExec};
use datafusion::datasource::file_format::file_compression_type::FileCompressionType;
use datafusion::datasource::physical_plan::{
CsvConfig, CsvOpener, FileOpener, FileScanConfig, FileStream, JsonOpener, ParquetExec,
};
use datafusion::execution::context::TaskContext;
use datafusion::physical_plan::metrics::ExecutionPlanMetricsSet;
use datafusion::physical_plan::ExecutionPlan;
@@ -27,14 +30,11 @@ use datafusion::prelude::SessionContext;
use futures::StreamExt;
use super::FORMAT_TYPE;
use crate::compression::CompressionType;
use crate::error;
use crate::file_format::csv::{CsvConfigBuilder, CsvOpener};
use crate::file_format::json::JsonOpener;
use crate::file_format::orc::{OrcFormat, OrcOpener};
use crate::file_format::parquet::DefaultParquetFileReaderFactory;
use crate::file_format::{FileFormat, Format};
use crate::test_util::{self, scan_config, test_basic_schema, test_store};
use crate::test_util::{scan_config, test_basic_schema, test_store};
use crate::{error, test_util};
struct Test<'a, T: FileOpener> {
config: FileScanConfig,
@@ -62,15 +62,18 @@ impl<T: FileOpener> Test<'_, T> {
#[tokio::test]
async fn test_json_opener() {
let store = test_store("/");
let store = Arc::new(object_store_opendal::OpendalStore::new(store));
let schema = test_basic_schema();
let json_opener = JsonOpener::new(
100,
schema.clone(),
store.clone(),
CompressionType::Uncompressed,
);
let json_opener = || {
JsonOpener::new(
test_util::TEST_BATCH_SIZE,
schema.clone(),
FileCompressionType::UNCOMPRESSED,
store.clone(),
)
};
let path = &find_workspace_path("/src/common/datasource/tests/json/basic.json")
.display()
@@ -78,7 +81,7 @@ async fn test_json_opener() {
let tests = [
Test {
config: scan_config(schema.clone(), None, path),
opener: json_opener.clone(),
opener: json_opener(),
expected: vec![
"+-----+-------+",
"| num | str |",
@@ -91,7 +94,7 @@ async fn test_json_opener() {
},
Test {
config: scan_config(schema.clone(), Some(1), path),
opener: json_opener.clone(),
opener: json_opener(),
expected: vec![
"+-----+------+",
"| num | str |",
@@ -110,23 +113,30 @@ async fn test_json_opener() {
#[tokio::test]
async fn test_csv_opener() {
let store = test_store("/");
let store = Arc::new(object_store_opendal::OpendalStore::new(store));
let schema = test_basic_schema();
let path = &find_workspace_path("/src/common/datasource/tests/csv/basic.csv")
.display()
.to_string();
let csv_conf = CsvConfigBuilder::default()
.batch_size(test_util::TEST_BATCH_SIZE)
.file_schema(schema.clone())
.build()
.unwrap();
let csv_config = Arc::new(CsvConfig::new(
test_util::TEST_BATCH_SIZE,
schema.clone(),
None,
true,
b',',
b'"',
None,
store,
None,
));
let csv_opener = CsvOpener::new(csv_conf, store, CompressionType::Uncompressed);
let csv_opener = || CsvOpener::new(csv_config.clone(), FileCompressionType::UNCOMPRESSED);
let tests = [
Test {
config: scan_config(schema.clone(), None, path),
opener: csv_opener.clone(),
opener: csv_opener(),
expected: vec![
"+-----+-------+",
"| num | str |",
@@ -139,7 +149,7 @@ async fn test_csv_opener() {
},
Test {
config: scan_config(schema.clone(), Some(1), path),
opener: csv_opener.clone(),
opener: csv_opener(),
expected: vec![
"+-----+------+",
"| num | str |",

View File

@@ -16,17 +16,19 @@ use std::sync::Arc;
use arrow_schema::{DataType, Field, Schema, SchemaRef};
use common_test_util::temp_dir::{create_temp_dir, TempDir};
use datafusion::common::Statistics;
use datafusion::common::{Constraints, Statistics};
use datafusion::datasource::file_format::file_compression_type::FileCompressionType;
use datafusion::datasource::listing::PartitionedFile;
use datafusion::datasource::object_store::ObjectStoreUrl;
use datafusion::datasource::physical_plan::{FileScanConfig, FileStream};
use datafusion::datasource::physical_plan::{
CsvConfig, CsvOpener, FileScanConfig, FileStream, JsonOpener,
};
use datafusion::physical_plan::metrics::ExecutionPlanMetricsSet;
use object_store::services::Fs;
use object_store::ObjectStore;
use crate::compression::CompressionType;
use crate::file_format::csv::{stream_to_csv, CsvConfigBuilder, CsvOpener};
use crate::file_format::json::{stream_to_json, JsonOpener};
use crate::file_format::csv::stream_to_csv;
use crate::file_format::json::stream_to_json;
use crate::test_util;
pub const TEST_BATCH_SIZE: usize = 100;
@@ -74,6 +76,7 @@ pub fn scan_config(file_schema: SchemaRef, limit: Option<usize>, filename: &str)
object_store_url: ObjectStoreUrl::parse("empty://").unwrap(), // won't be used
file_schema,
file_groups: vec![vec![PartitionedFile::new(filename.to_string(), 10)]],
constraints: Constraints::empty(),
statistics,
projection: None,
limit,
@@ -90,8 +93,8 @@ pub async fn setup_stream_to_json_test(origin_path: &str, threshold: impl Fn(usi
let json_opener = JsonOpener::new(
test_util::TEST_BATCH_SIZE,
schema.clone(),
store.clone(),
CompressionType::Uncompressed,
FileCompressionType::UNCOMPRESSED,
Arc::new(object_store_opendal::OpendalStore::new(store.clone())),
);
let size = store.read(origin_path).await.unwrap().len();
@@ -124,13 +127,19 @@ pub async fn setup_stream_to_csv_test(origin_path: &str, threshold: impl Fn(usiz
let schema = test_basic_schema();
let csv_conf = CsvConfigBuilder::default()
.batch_size(test_util::TEST_BATCH_SIZE)
.file_schema(schema.clone())
.build()
.unwrap();
let csv_config = Arc::new(CsvConfig::new(
TEST_BATCH_SIZE,
schema.clone(),
None,
true,
b',',
b'"',
None,
Arc::new(object_store_opendal::OpendalStore::new(store.clone())),
None,
));
let csv_opener = CsvOpener::new(csv_conf, store.clone(), CompressionType::Uncompressed);
let csv_opener = CsvOpener::new(csv_config, FileCompressionType::UNCOMPRESSED);
let size = store.read(origin_path).await.unwrap().len();

View File

@@ -12,3 +12,6 @@ http.workspace = true
snafu.workspace = true
strum.workspace = true
tonic.workspace = true
[dev-dependencies]
common-macro.workspace = true

View File

@@ -42,7 +42,7 @@ pub trait ErrorExt: StackError {
if let Some(external_error) = error.source() {
let external_root = external_error.sources().last().unwrap();
if error.to_string().is_empty() {
if error.transparent() {
format!("{external_root}")
} else {
format!("{error}: {external_root}")
@@ -86,6 +86,14 @@ pub trait StackError: std::error::Error {
}
result
}
/// Indicates whether this error is "transparent", that it delegates its "display" and "source"
/// to the underlying error. Could be useful when you are just wrapping some external error,
/// **AND** can not or would not provide meaningful contextual info. For example, the
/// `DataFusionError`.
fn transparent(&self) -> bool {
false
}
}
impl<T: ?Sized + StackError> StackError for Arc<T> {

View File

@@ -34,12 +34,14 @@ pub enum StatusCode {
Internal = 1003,
/// Invalid arguments.
InvalidArguments = 1004,
/// The task is cancelled.
/// The task is cancelled (typically caller-side).
Cancelled = 1005,
/// Illegal state, can be exposed to users.
IllegalState = 1006,
/// Caused by some error originated from external system.
External = 1007,
/// The request is deadline exceeded (typically server-side).
DeadlineExceeded = 1008,
// ====== End of common status code ================
// ====== Begin of SQL related status code =========
@@ -142,6 +144,7 @@ impl StatusCode {
| StatusCode::Unexpected
| StatusCode::InvalidArguments
| StatusCode::Cancelled
| StatusCode::DeadlineExceeded
| StatusCode::InvalidSyntax
| StatusCode::DatabaseAlreadyExists
| StatusCode::PlanQuery
@@ -177,6 +180,7 @@ impl StatusCode {
| StatusCode::Unexpected
| StatusCode::Internal
| StatusCode::Cancelled
| StatusCode::DeadlineExceeded
| StatusCode::IllegalState
| StatusCode::EngineExecuteQuery
| StatusCode::StorageUnavailable
@@ -272,6 +276,7 @@ pub fn status_to_tonic_code(status_code: StatusCode) -> Code {
Code::InvalidArgument
}
StatusCode::Cancelled => Code::Cancelled,
StatusCode::DeadlineExceeded => Code::DeadlineExceeded,
StatusCode::TableAlreadyExists
| StatusCode::TableColumnExists
| StatusCode::RegionAlreadyExists
@@ -299,6 +304,15 @@ pub fn status_to_tonic_code(status_code: StatusCode) -> Code {
}
}
/// Converts tonic [Code] to [StatusCode].
pub fn convert_tonic_code_to_status_code(code: Code) -> StatusCode {
match code {
Code::Cancelled => StatusCode::Cancelled,
Code::DeadlineExceeded => StatusCode::DeadlineExceeded,
_ => StatusCode::Internal,
}
}
#[cfg(test)]
mod tests {
use strum::IntoEnumIterator;

View File

@@ -0,0 +1,115 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::any::Any;
use common_error::ext::{ErrorExt, PlainError, StackError};
use common_error::status_code::StatusCode;
use common_macro::stack_trace_debug;
use snafu::{Location, ResultExt, Snafu};
#[derive(Snafu)]
#[stack_trace_debug]
enum MyError {
#[snafu(display(r#"A normal error with "display" attribute, message "{}""#, message))]
Normal {
message: String,
#[snafu(source)]
error: PlainError,
#[snafu(implicit)]
location: Location,
},
#[snafu(transparent)]
Transparent {
#[snafu(source)]
error: PlainError,
#[snafu(implicit)]
location: Location,
},
}
impl ErrorExt for MyError {
fn status_code(&self) -> StatusCode {
StatusCode::Unexpected
}
fn as_any(&self) -> &dyn Any {
self
}
}
fn normal_error() -> Result<(), MyError> {
let plain_error = PlainError::new("<root cause>".to_string(), StatusCode::Unexpected);
Err(plain_error).context(NormalSnafu { message: "blabla" })
}
fn transparent_error() -> Result<(), MyError> {
let plain_error = PlainError::new("<root cause>".to_string(), StatusCode::Unexpected);
Err(plain_error)?
}
#[test]
fn test_output_msg() {
let result = normal_error();
assert_eq!(
result.unwrap_err().output_msg(),
r#"A normal error with "display" attribute, message "blabla": <root cause>"#
);
let result = transparent_error();
assert_eq!(result.unwrap_err().output_msg(), "<root cause>");
}
#[test]
fn test_to_string() {
let result = normal_error();
assert_eq!(
result.unwrap_err().to_string(),
r#"A normal error with "display" attribute, message "blabla""#
);
let result = transparent_error();
assert_eq!(result.unwrap_err().to_string(), "<root cause>");
}
#[test]
fn test_debug_format() {
let result = normal_error();
let debug_output = format!("{:?}", result.unwrap_err());
let normalized_output = debug_output.replace('\\', "/");
assert_eq!(
normalized_output,
r#"0: A normal error with "display" attribute, message "blabla", at src/common/error/tests/ext.rs:55:22
1: PlainError { msg: "<root cause>", status_code: Unexpected }"#
);
let result = transparent_error();
let debug_output = format!("{:?}", result.unwrap_err());
let normalized_output = debug_output.replace('\\', "/");
assert_eq!(
normalized_output,
r#"0: <transparent>, at src/common/error/tests/ext.rs:60:5
1: PlainError { msg: "<root cause>", status_code: Unexpected }"#
);
}
#[test]
fn test_transparent_flag() {
let result = normal_error();
assert!(!result.unwrap_err().transparent());
let result = transparent_error();
assert!(result.unwrap_err().transparent());
}

View File

@@ -8,6 +8,7 @@ license.workspace = true
workspace = true
[features]
testing = []
default = ["geo"]
geo = ["geohash", "h3o", "s2", "wkt", "geo-types", "dep:geo"]
@@ -17,6 +18,7 @@ api.workspace = true
arc-swap = "1.0"
async-trait.workspace = true
bincode = "1.3"
catalog.workspace = true
chrono.workspace = true
common-base.workspace = true
common-catalog.workspace = true

View File

@@ -25,12 +25,13 @@ use session::context::QueryContextRef;
use crate::handlers::ProcedureServiceHandlerRef;
use crate::helper::cast_u64;
const DEFAULT_TIMEOUT_SECS: u64 = 30;
/// The default timeout for migrate region procedure.
const DEFAULT_TIMEOUT_SECS: u64 = 300;
/// A function to migrate a region from source peer to target peer.
/// Returns the submitted procedure id if success. Only available in cluster mode.
///
/// - `migrate_region(region_id, from_peer, to_peer)`, with timeout(30 seconds).
/// - `migrate_region(region_id, from_peer, to_peer)`, with timeout(300 seconds).
/// - `migrate_region(region_id, from_peer, to_peer, timeout(secs))`.
///
/// The parameters:

View File

@@ -32,7 +32,7 @@ pub struct FunctionContext {
impl FunctionContext {
/// Create a mock [`FunctionContext`] for test.
#[cfg(test)]
#[cfg(any(test, feature = "testing"))]
pub fn mock() -> Self {
Self {
query_ctx: QueryContextBuilder::default().build().into(),

View File

@@ -15,6 +15,7 @@
use std::sync::Arc;
use async_trait::async_trait;
use catalog::CatalogManagerRef;
use common_base::AffectedRows;
use common_meta::rpc::procedure::{
AddRegionFollowerRequest, MigrateRegionRequest, ProcedureStateResponse,
@@ -72,6 +73,9 @@ pub trait ProcedureServiceHandler: Send + Sync {
/// Remove a region follower from a region.
async fn remove_region_follower(&self, request: RemoveRegionFollowerRequest) -> Result<()>;
/// Get the catalog manager
fn catalog_manager(&self) -> &CatalogManagerRef;
}
/// This flow service handler is only use for flush flow for now.

View File

@@ -27,7 +27,7 @@ use datatypes::value::{ListValue, Value};
use datatypes::vectors::VectorRef;
use snafu::{ensure, ResultExt};
use super::helpers::{ensure_columns_len, ensure_columns_n};
use crate::scalars::geo::helpers::{ensure_columns_len, ensure_columns_n};
/// Accumulator of lat, lng, timestamp tuples
#[derive(Debug)]

View File

@@ -31,8 +31,8 @@ use h3o::{CellIndex, LatLng, Resolution};
use once_cell::sync::Lazy;
use snafu::ResultExt;
use super::helpers::{ensure_and_coerce, ensure_columns_len, ensure_columns_n};
use crate::function::{Function, FunctionContext};
use crate::scalars::geo::helpers::{ensure_and_coerce, ensure_columns_len, ensure_columns_n};
static CELL_TYPES: Lazy<Vec<ConcreteDataType>> = Lazy::new(|| {
vec![

View File

@@ -26,9 +26,9 @@ use geo::{Area, Distance, Haversine};
use geo_types::Geometry;
use snafu::ResultExt;
use super::helpers::{ensure_columns_len, ensure_columns_n};
use super::wkt::parse_wkt;
use crate::function::{Function, FunctionContext};
use crate::scalars::geo::helpers::{ensure_columns_len, ensure_columns_n};
use crate::scalars::geo::wkt::parse_wkt;
/// Return WGS84(SRID: 4326) euclidean distance between two geometry object, in degree
#[derive(Clone, Debug, Default, Display)]

View File

@@ -23,9 +23,9 @@ use geo::algorithm::contains::Contains;
use geo::algorithm::intersects::Intersects;
use geo::algorithm::within::Within;
use super::helpers::{ensure_columns_len, ensure_columns_n};
use super::wkt::parse_wkt;
use crate::function::{Function, FunctionContext};
use crate::scalars::geo::helpers::{ensure_columns_len, ensure_columns_n};
use crate::scalars::geo::wkt::parse_wkt;
/// Test if spatial relationship: contains
#[derive(Clone, Debug, Default, Display)]

View File

@@ -26,8 +26,8 @@ use once_cell::sync::Lazy;
use snafu::ResultExt;
use wkt::{ToWkt, TryFromWkt};
use super::helpers::{ensure_columns_len, ensure_columns_n};
use crate::function::{Function, FunctionContext};
use crate::scalars::geo::helpers::{ensure_columns_len, ensure_columns_n};
static COORDINATE_TYPES: Lazy<Vec<ConcreteDataType>> = Lazy::new(|| {
vec![

View File

@@ -13,10 +13,8 @@
// limitations under the License.
use std::sync::Arc;
mod greatest;
mod to_unixtime;
use greatest::GreatestFunction;
use to_unixtime::ToUnixtimeFunction;
use crate::function_registry::FunctionRegistry;
@@ -26,6 +24,5 @@ pub(crate) struct TimestampFunction;
impl TimestampFunction {
pub fn register(registry: &FunctionRegistry) {
registry.register(Arc::new(ToUnixtimeFunction));
registry.register(Arc::new(GreatestFunction));
}
}

View File

@@ -1,328 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::fmt::{self};
use common_query::error::{
self, ArrowComputeSnafu, InvalidFuncArgsSnafu, Result, UnsupportedInputDataTypeSnafu,
};
use common_query::prelude::{Signature, Volatility};
use datafusion::arrow::compute::kernels::cmp::gt;
use datatypes::arrow::array::AsArray;
use datatypes::arrow::compute::cast;
use datatypes::arrow::compute::kernels::zip;
use datatypes::arrow::datatypes::{
DataType as ArrowDataType, Date32Type, TimeUnit, TimestampMicrosecondType,
TimestampMillisecondType, TimestampNanosecondType, TimestampSecondType,
};
use datatypes::prelude::ConcreteDataType;
use datatypes::types::TimestampType;
use datatypes::vectors::{Helper, VectorRef};
use snafu::{ensure, ResultExt};
use crate::function::{Function, FunctionContext};
#[derive(Clone, Debug, Default)]
pub struct GreatestFunction;
const NAME: &str = "greatest";
macro_rules! gt_time_types {
($ty: ident, $columns:expr) => {{
let column1 = $columns[0].to_arrow_array();
let column2 = $columns[1].to_arrow_array();
let column1 = column1.as_primitive::<$ty>();
let column2 = column2.as_primitive::<$ty>();
let boolean_array = gt(&column1, &column2).context(ArrowComputeSnafu)?;
let result = zip::zip(&boolean_array, &column1, &column2).context(ArrowComputeSnafu)?;
Helper::try_into_vector(&result).context(error::FromArrowArraySnafu)
}};
}
impl Function for GreatestFunction {
fn name(&self) -> &str {
NAME
}
fn return_type(&self, input_types: &[ConcreteDataType]) -> Result<ConcreteDataType> {
ensure!(
input_types.len() == 2,
InvalidFuncArgsSnafu {
err_msg: format!(
"The length of the args is not correct, expect exactly two, have: {}",
input_types.len()
)
}
);
match &input_types[0] {
ConcreteDataType::String(_) => Ok(ConcreteDataType::timestamp_millisecond_datatype()),
ConcreteDataType::Date(_) => Ok(ConcreteDataType::date_datatype()),
ConcreteDataType::Timestamp(ts_type) => Ok(ConcreteDataType::Timestamp(*ts_type)),
_ => UnsupportedInputDataTypeSnafu {
function: NAME,
datatypes: input_types,
}
.fail(),
}
}
fn signature(&self) -> Signature {
Signature::uniform(
2,
vec![
ConcreteDataType::string_datatype(),
ConcreteDataType::date_datatype(),
ConcreteDataType::timestamp_nanosecond_datatype(),
ConcreteDataType::timestamp_microsecond_datatype(),
ConcreteDataType::timestamp_millisecond_datatype(),
ConcreteDataType::timestamp_second_datatype(),
],
Volatility::Immutable,
)
}
fn eval(&self, _func_ctx: &FunctionContext, columns: &[VectorRef]) -> Result<VectorRef> {
ensure!(
columns.len() == 2,
InvalidFuncArgsSnafu {
err_msg: format!(
"The length of the args is not correct, expect exactly two, have: {}",
columns.len()
),
}
);
match columns[0].data_type() {
ConcreteDataType::String(_) => {
let column1 = cast(
&columns[0].to_arrow_array(),
&ArrowDataType::Timestamp(TimeUnit::Millisecond, None),
)
.context(ArrowComputeSnafu)?;
let column1 = column1.as_primitive::<TimestampMillisecondType>();
let column2 = cast(
&columns[1].to_arrow_array(),
&ArrowDataType::Timestamp(TimeUnit::Millisecond, None),
)
.context(ArrowComputeSnafu)?;
let column2 = column2.as_primitive::<TimestampMillisecondType>();
let boolean_array = gt(&column1, &column2).context(ArrowComputeSnafu)?;
let result =
zip::zip(&boolean_array, &column1, &column2).context(ArrowComputeSnafu)?;
Ok(Helper::try_into_vector(&result).context(error::FromArrowArraySnafu)?)
}
ConcreteDataType::Date(_) => gt_time_types!(Date32Type, columns),
ConcreteDataType::Timestamp(ts_type) => match ts_type {
TimestampType::Second(_) => gt_time_types!(TimestampSecondType, columns),
TimestampType::Millisecond(_) => {
gt_time_types!(TimestampMillisecondType, columns)
}
TimestampType::Microsecond(_) => {
gt_time_types!(TimestampMicrosecondType, columns)
}
TimestampType::Nanosecond(_) => {
gt_time_types!(TimestampNanosecondType, columns)
}
},
_ => UnsupportedInputDataTypeSnafu {
function: NAME,
datatypes: columns.iter().map(|c| c.data_type()).collect::<Vec<_>>(),
}
.fail(),
}
}
}
impl fmt::Display for GreatestFunction {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "GREATEST")
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use common_time::timestamp::TimeUnit;
use common_time::{Date, Timestamp};
use datatypes::types::{
DateType, TimestampMicrosecondType, TimestampMillisecondType, TimestampNanosecondType,
TimestampSecondType,
};
use datatypes::value::Value;
use datatypes::vectors::{
DateVector, StringVector, TimestampMicrosecondVector, TimestampMillisecondVector,
TimestampNanosecondVector, TimestampSecondVector, Vector,
};
use paste::paste;
use super::*;
#[test]
fn test_greatest_takes_string_vector() {
let function = GreatestFunction;
assert_eq!(
function
.return_type(&[
ConcreteDataType::string_datatype(),
ConcreteDataType::string_datatype()
])
.unwrap(),
ConcreteDataType::timestamp_millisecond_datatype()
);
let columns = vec![
Arc::new(StringVector::from(vec![
"1970-01-01".to_string(),
"2012-12-23".to_string(),
])) as _,
Arc::new(StringVector::from(vec![
"2001-02-01".to_string(),
"1999-01-01".to_string(),
])) as _,
];
let result = function
.eval(&FunctionContext::default(), &columns)
.unwrap();
let result = result
.as_any()
.downcast_ref::<TimestampMillisecondVector>()
.unwrap();
assert_eq!(result.len(), 2);
assert_eq!(
result.get(0),
Value::Timestamp(Timestamp::from_str("2001-02-01 00:00:00", None).unwrap())
);
assert_eq!(
result.get(1),
Value::Timestamp(Timestamp::from_str("2012-12-23 00:00:00", None).unwrap())
);
}
#[test]
fn test_greatest_takes_date_vector() {
let function = GreatestFunction;
assert_eq!(
function
.return_type(&[
ConcreteDataType::date_datatype(),
ConcreteDataType::date_datatype()
])
.unwrap(),
ConcreteDataType::Date(DateType)
);
let columns = vec![
Arc::new(DateVector::from_slice(vec![-1, 2])) as _,
Arc::new(DateVector::from_slice(vec![0, 1])) as _,
];
let result = function
.eval(&FunctionContext::default(), &columns)
.unwrap();
let result = result.as_any().downcast_ref::<DateVector>().unwrap();
assert_eq!(result.len(), 2);
assert_eq!(
result.get(0),
Value::Date(Date::from_str_utc("1970-01-01").unwrap())
);
assert_eq!(
result.get(1),
Value::Date(Date::from_str_utc("1970-01-03").unwrap())
);
}
#[test]
fn test_greatest_takes_datetime_vector() {
let function = GreatestFunction;
assert_eq!(
function
.return_type(&[
ConcreteDataType::timestamp_millisecond_datatype(),
ConcreteDataType::timestamp_millisecond_datatype()
])
.unwrap(),
ConcreteDataType::timestamp_millisecond_datatype()
);
let columns = vec![
Arc::new(TimestampMillisecondVector::from_slice(vec![-1, 2])) as _,
Arc::new(TimestampMillisecondVector::from_slice(vec![0, 1])) as _,
];
let result = function
.eval(&FunctionContext::default(), &columns)
.unwrap();
let result = result
.as_any()
.downcast_ref::<TimestampMillisecondVector>()
.unwrap();
assert_eq!(result.len(), 2);
assert_eq!(
result.get(0),
Value::Timestamp(Timestamp::from_str("1970-01-01 00:00:00", None).unwrap())
);
assert_eq!(
result.get(1),
Value::Timestamp(Timestamp::from_str("1970-01-01 00:00:00.002", None).unwrap())
);
}
macro_rules! test_timestamp {
($type: expr,$unit: ident) => {
paste! {
#[test]
fn [<test_greatest_takes_ $unit:lower _vector>]() {
let function = GreatestFunction;
assert_eq!(
function.return_type(&[$type, $type]).unwrap(),
ConcreteDataType::Timestamp(TimestampType::$unit([<Timestamp $unit Type>]))
);
let columns = vec![
Arc::new([<Timestamp $unit Vector>]::from_slice(vec![-1, 2])) as _,
Arc::new([<Timestamp $unit Vector>]::from_slice(vec![0, 1])) as _,
];
let result = function.eval(&FunctionContext::default(), &columns).unwrap();
let result = result.as_any().downcast_ref::<[<Timestamp $unit Vector>]>().unwrap();
assert_eq!(result.len(), 2);
assert_eq!(
result.get(0),
Value::Timestamp(Timestamp::new(0, TimeUnit::$unit))
);
assert_eq!(
result.get(1),
Value::Timestamp(Timestamp::new(2, TimeUnit::$unit))
);
}
}
}
}
test_timestamp!(
ConcreteDataType::timestamp_nanosecond_datatype(),
Nanosecond
);
test_timestamp!(
ConcreteDataType::timestamp_microsecond_datatype(),
Microsecond
);
test_timestamp!(
ConcreteDataType::timestamp_millisecond_datatype(),
Millisecond
);
test_timestamp!(ConcreteDataType::timestamp_second_datatype(), Second);
}

View File

@@ -115,6 +115,13 @@ impl Function for UddSketchCalcFunction {
}
};
// Check if the sketch is empty, if so, return null
// This is important to avoid panics when calling estimate_quantile on an empty sketch
// In practice, this will happen if input is all null
if sketch.bucket_iter().count() == 0 {
builder.push_null();
continue;
}
// Compute the estimated quantile from the sketch
let result = sketch.estimate_quantile(perc);
builder.push(Some(result));

View File

@@ -163,7 +163,7 @@ mod tests {
];
let args = ScalarFunctionArgs {
args: &args,
args,
number_rows: 4,
return_type: &ConcreteDataType::boolean_datatype().as_arrow_type(),
};

View File

@@ -28,12 +28,13 @@ pub struct FunctionState {
impl FunctionState {
/// Create a mock [`FunctionState`] for test.
#[cfg(test)]
#[cfg(any(test, feature = "testing"))]
pub fn mock() -> Self {
use std::sync::Arc;
use api::v1::meta::ProcedureStatus;
use async_trait::async_trait;
use catalog::CatalogManagerRef;
use common_base::AffectedRows;
use common_meta::rpc::procedure::{
AddRegionFollowerRequest, MigrateRegionRequest, ProcedureStateResponse,
@@ -80,6 +81,10 @@ impl FunctionState {
) -> Result<()> {
Ok(())
}
fn catalog_manager(&self) -> &CatalogManagerRef {
unimplemented!()
}
}
#[async_trait]

Some files were not shown because too many files have changed in this diff Show More