docs: add recommender system example (#1561)

before:
![Screenshot 2024-08-24
230216](https://github.com/user-attachments/assets/cc8a810a-b032-45d7-b086-b2ef0720dc16)

After:
![Screenshot 2024-08-24
230228](https://github.com/user-attachments/assets/eaa1dc31-ac7f-4b81-aa79-b4cf94f0cbd5)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
This commit is contained in:
Rithik Kumar
2024-08-25 12:30:30 +05:30
committed by GitHub
parent 02d85a4ea4
commit 632007d0e2
5 changed files with 52 additions and 5 deletions

View File

@@ -2,11 +2,11 @@
**RAG: Revolutionize Information Retrieval with LanceDB 🔓🧐**
====================================================================
Unlock the full potential of Retrieval-Augmented Generation (RAG) with LanceDB, a solution for efficient vector-based information retrieval 📊.
Build RAG (Retrieval-Augmented Generation) with LanceDB, a powerful solution for efficient vector-based information retrieval 📊.
**Experience the Future of Search 🔄**
RAG integrates large language models (LLMs) with scalable knowledge bases, enabling efficient information retrieval and answer generation 🤖. By applying RAG to industry-specific use cases, developers can optimize query processing 📊, reduce response latency ⏱️, and improve resource utilization 💻. LanceDB provides a robust framework for integrating LLMs with external knowledge sources, facilitating accurate and informative responses 📝.
🤖 RAG enables AI to **retrieve** relevant information from external sources and use it to **generate** more accurate and context-specific responses. 💻 LanceDB provides a robust framework for integrating LLMs with external knowledge sources 📝.
| **RAG** | **Description** | **Links** |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|