mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 21:39:57 +00:00
Compare commits
60 Commits
api-docs-f
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
82936c77ef | ||
|
|
dddcddcaf9 | ||
|
|
a9727eb318 | ||
|
|
48d55bf952 | ||
|
|
d2e71c8b08 | ||
|
|
f53aace89c | ||
|
|
d982ee934a | ||
|
|
57605a2d86 | ||
|
|
738511c5f2 | ||
|
|
0b0f42537e | ||
|
|
e412194008 | ||
|
|
a9088224c5 | ||
|
|
688c57a0d8 | ||
|
|
12a98deded | ||
|
|
e4bb042918 | ||
|
|
04e1662681 | ||
|
|
ce2242e06d | ||
|
|
778339388a | ||
|
|
7f8637a0b4 | ||
|
|
09cd08222d | ||
|
|
a248d7feec | ||
|
|
cc9473a94a | ||
|
|
d77e95a4f4 | ||
|
|
62f053ac92 | ||
|
|
34e10caad2 | ||
|
|
f5726e2d0c | ||
|
|
12b4fb42fc | ||
|
|
1328cd46f1 | ||
|
|
0c940ed9f8 | ||
|
|
5f59e51583 | ||
|
|
8d0ea29f89 | ||
|
|
b9468bb980 | ||
|
|
a42df158a3 | ||
|
|
9df6905d86 | ||
|
|
3ffed89793 | ||
|
|
f150768739 | ||
|
|
b432ecf2f6 | ||
|
|
d1a7257810 | ||
|
|
5c5e23bbb9 | ||
|
|
e5796a4836 | ||
|
|
b9c5323265 | ||
|
|
e41a52863a | ||
|
|
13acc8a480 | ||
|
|
22b9eceb12 | ||
|
|
5f62302614 | ||
|
|
d84e0d1db8 | ||
|
|
ac94b2a420 | ||
|
|
b49bc113c4 | ||
|
|
77b5b1cf0e | ||
|
|
e910809de0 | ||
|
|
90b5b55126 | ||
|
|
488e4f8452 | ||
|
|
ba6f949515 | ||
|
|
3dd8522bc9 | ||
|
|
e01ef63488 | ||
|
|
a6cf24b359 | ||
|
|
9a07c9aad8 | ||
|
|
d405798952 | ||
|
|
e8a8b92b2a | ||
|
|
66362c6506 |
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.4.4
|
||||
current_version = 0.4.8
|
||||
commit = True
|
||||
message = Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
|
||||
34
.cargo/config.toml
Normal file
34
.cargo/config.toml
Normal file
@@ -0,0 +1,34 @@
|
||||
[profile.release]
|
||||
lto = "fat"
|
||||
codegen-units = 1
|
||||
|
||||
[profile.release-with-debug]
|
||||
inherits = "release"
|
||||
debug = true
|
||||
# Prioritize compile time over runtime performance
|
||||
codegen-units = 16
|
||||
lto = "thin"
|
||||
|
||||
[target.'cfg(all())']
|
||||
rustflags = [
|
||||
"-Wclippy::all",
|
||||
"-Wclippy::style",
|
||||
"-Wclippy::fallible_impl_from",
|
||||
"-Wclippy::manual_let_else",
|
||||
"-Wclippy::redundant_pub_crate",
|
||||
"-Wclippy::string_add_assign",
|
||||
"-Wclippy::string_add",
|
||||
"-Wclippy::string_lit_as_bytes",
|
||||
"-Wclippy::string_to_string",
|
||||
"-Wclippy::use_self",
|
||||
"-Dclippy::cargo",
|
||||
"-Dclippy::dbg_macro",
|
||||
# not too much we can do to avoid multiple crate versions
|
||||
"-Aclippy::multiple-crate-versions",
|
||||
]
|
||||
|
||||
[target.x86_64-unknown-linux-gnu]
|
||||
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
|
||||
|
||||
[target.aarch64-apple-darwin]
|
||||
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
|
||||
2
.github/workflows/cargo-publish.yml
vendored
2
.github/workflows/cargo-publish.yml
vendored
@@ -16,7 +16,7 @@ jobs:
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
|
||||
10
.github/workflows/docs.yml
vendored
10
.github/workflows/docs.yml
vendored
@@ -27,9 +27,9 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.10"
|
||||
cache: "pip"
|
||||
@@ -42,7 +42,7 @@ jobs:
|
||||
- name: Set up node
|
||||
uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: ${{ matrix.node-version }}
|
||||
node-version: 20
|
||||
cache: 'npm'
|
||||
cache-dependency-path: node/package-lock.json
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
@@ -61,10 +61,10 @@ jobs:
|
||||
working-directory: node
|
||||
run: |
|
||||
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
|
||||
cp ../docs/src/javascript.md ../docs/src/javascript/javascript.md
|
||||
- name: Build docs
|
||||
working-directory: docs
|
||||
run: |
|
||||
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml
|
||||
PYTHONPATH=. mkdocs build
|
||||
- name: Setup Pages
|
||||
uses: actions/configure-pages@v2
|
||||
- name: Upload artifact
|
||||
|
||||
53
.github/workflows/docs_test.yml
vendored
53
.github/workflows/docs_test.yml
vendored
@@ -18,24 +18,20 @@ on:
|
||||
env:
|
||||
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||
# "1" means line tables only, which is useful for panic tracebacks.
|
||||
RUSTFLAGS: "-C debuginfo=1"
|
||||
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
|
||||
RUST_BACKTRACE: "1"
|
||||
|
||||
jobs:
|
||||
test-python:
|
||||
name: Test doc python code
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
python-minor-version: [ "11" ]
|
||||
os: ["ubuntu-22.04"]
|
||||
runs-on: "ubuntu-latest"
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.${{ matrix.python-minor-version }}
|
||||
python-version: 3.11
|
||||
cache: "pip"
|
||||
cache-dependency-path: "docs/test/requirements.txt"
|
||||
- name: Build Python
|
||||
@@ -52,45 +48,42 @@ jobs:
|
||||
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
|
||||
test-node:
|
||||
name: Test doc nodejs code
|
||||
runs-on: ${{ matrix.os }}
|
||||
runs-on: "ubuntu-latest"
|
||||
timeout-minutes: 45
|
||||
strategy:
|
||||
matrix:
|
||||
node-version: [ "18" ]
|
||||
os: ["ubuntu-22.04"]
|
||||
fail-fast: false
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Set up Node
|
||||
uses: actions/setup-node@v3
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: ${{ matrix.node-version }}
|
||||
node-version: 20
|
||||
- name: Install dependecies needed for ubuntu
|
||||
if: ${{ matrix.os == 'ubuntu-22.04' }}
|
||||
run: |
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Install node dependencies
|
||||
run: |
|
||||
cd docs/test
|
||||
npm install
|
||||
- name: Rust cache
|
||||
uses: swatinem/rust-cache@v2
|
||||
- name: Install LanceDB
|
||||
- name: Install node dependencies
|
||||
run: |
|
||||
cd docs/test/node_modules/vectordb
|
||||
sudo swapoff -a
|
||||
sudo fallocate -l 8G /swapfile
|
||||
sudo chmod 600 /swapfile
|
||||
sudo mkswap /swapfile
|
||||
sudo swapon /swapfile
|
||||
sudo swapon --show
|
||||
cd node
|
||||
npm ci
|
||||
npm run build-release
|
||||
npm run tsc
|
||||
- name: Create test files
|
||||
run: |
|
||||
cd docs/test
|
||||
node md_testing.js
|
||||
cd ../docs
|
||||
npm install
|
||||
- name: Test
|
||||
env:
|
||||
LANCEDB_URI: ${{ secrets.LANCEDB_URI }}
|
||||
LANCEDB_DEV_API_KEY: ${{ secrets.LANCEDB_DEV_API_KEY }}
|
||||
run: |
|
||||
cd docs/test/node
|
||||
for d in *; do cd "$d"; echo "$d".js; node "$d".js; cd ..; done
|
||||
cd docs
|
||||
npm t
|
||||
|
||||
8
.github/workflows/make-release-commit.yml
vendored
8
.github/workflows/make-release-commit.yml
vendored
@@ -26,7 +26,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Check out main
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: main
|
||||
persist-credentials: false
|
||||
@@ -37,10 +37,10 @@ jobs:
|
||||
run: |
|
||||
git config user.name 'Lance Release'
|
||||
git config user.email 'lance-dev@lancedb.com'
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v4
|
||||
- name: Set up Python 3.11
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.10"
|
||||
python-version: "3.11"
|
||||
- name: Bump version, create tag and commit
|
||||
run: |
|
||||
pip install bump2version
|
||||
|
||||
8
.github/workflows/node.yml
vendored
8
.github/workflows/node.yml
vendored
@@ -32,7 +32,7 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: node
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
@@ -57,7 +57,7 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: node
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
@@ -89,7 +89,7 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: node
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
@@ -128,7 +128,7 @@ jobs:
|
||||
# this one is for dynamodb
|
||||
DYNAMODB_ENDPOINT: http://localhost:4566
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
|
||||
8
.github/workflows/nodejs.yml
vendored
8
.github/workflows/nodejs.yml
vendored
@@ -29,7 +29,7 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: nodejs
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
@@ -61,7 +61,7 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: nodejs
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
@@ -84,13 +84,13 @@ jobs:
|
||||
run: npm run test
|
||||
macos:
|
||||
timeout-minutes: 30
|
||||
runs-on: "macos-13"
|
||||
runs-on: "macos-14"
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: nodejs
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
|
||||
14
.github/workflows/npm-publish.yml
vendored
14
.github/workflows/npm-publish.yml
vendored
@@ -15,7 +15,7 @@ jobs:
|
||||
working-directory: node
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 20
|
||||
@@ -45,13 +45,13 @@ jobs:
|
||||
runner: macos-13
|
||||
- arch: aarch64-apple-darwin
|
||||
# xlarge is implicitly arm64.
|
||||
runner: macos-13-xlarge
|
||||
runner: macos-14
|
||||
runs-on: ${{ matrix.config.runner }}
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Install system dependencies
|
||||
run: brew install protobuf
|
||||
- name: Install npm dependencies
|
||||
@@ -66,7 +66,7 @@ jobs:
|
||||
name: native-darwin
|
||||
path: |
|
||||
node/dist/lancedb-vectordb-darwin*.tgz
|
||||
|
||||
|
||||
|
||||
node-linux:
|
||||
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||
@@ -83,7 +83,7 @@ jobs:
|
||||
runner: buildjet-4vcpu-ubuntu-2204-arm
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Build Linux Artifacts
|
||||
run: |
|
||||
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
|
||||
@@ -104,7 +104,7 @@ jobs:
|
||||
target: [x86_64-pc-windows-msvc]
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Install Protoc v21.12
|
||||
working-directory: C:\
|
||||
run: |
|
||||
@@ -154,7 +154,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: main
|
||||
persist-credentials: false
|
||||
|
||||
4
.github/workflows/pypi-publish.yml
vendored
4
.github/workflows/pypi-publish.yml
vendored
@@ -14,9 +14,9 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: python
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.8"
|
||||
- name: Build distribution
|
||||
|
||||
@@ -26,7 +26,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Check out main
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: main
|
||||
persist-credentials: false
|
||||
@@ -37,10 +37,10 @@ jobs:
|
||||
run: |
|
||||
git config user.name 'Lance Release'
|
||||
git config user.email 'lance-dev@lancedb.com'
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v4
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.10"
|
||||
python-version: "3.11"
|
||||
- name: Bump version, create tag and commit
|
||||
working-directory: python
|
||||
run: |
|
||||
|
||||
16
.github/workflows/python.yml
vendored
16
.github/workflows/python.yml
vendored
@@ -18,19 +18,19 @@ jobs:
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
matrix:
|
||||
python-minor-version: [ "8", "9", "10", "11" ]
|
||||
python-minor-version: [ "8", "11" ]
|
||||
runs-on: "ubuntu-22.04"
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: python
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.${{ matrix.python-minor-version }}
|
||||
- name: Install lancedb
|
||||
@@ -55,7 +55,7 @@ jobs:
|
||||
- name: x86 Mac
|
||||
runner: macos-13
|
||||
- name: Arm Mac
|
||||
runner: macos-13-xlarge
|
||||
runner: macos-14
|
||||
- name: x86 Windows
|
||||
runner: windows-latest
|
||||
runs-on: "${{ matrix.config.runner }}"
|
||||
@@ -64,12 +64,12 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: python
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: Install lancedb
|
||||
@@ -87,12 +87,12 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: python
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.9
|
||||
- name: Install lancedb
|
||||
|
||||
12
.github/workflows/rust.yml
vendored
12
.github/workflows/rust.yml
vendored
@@ -32,7 +32,7 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: rust
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
@@ -55,7 +55,7 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: rust
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
@@ -70,18 +70,20 @@ jobs:
|
||||
run: cargo build --all-features
|
||||
- name: Run tests
|
||||
run: cargo test --all-features
|
||||
- name: Run examples
|
||||
run: cargo run --example simple
|
||||
macos:
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
matrix:
|
||||
mac-runner: [ "macos-13", "macos-13-xlarge" ]
|
||||
mac-runner: [ "macos-13", "macos-14" ]
|
||||
runs-on: "${{ matrix.mac-runner }}"
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: rust
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
@@ -99,7 +101,7 @@ jobs:
|
||||
windows:
|
||||
runs-on: windows-2022
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
|
||||
@@ -8,7 +8,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: main
|
||||
persist-credentials: false
|
||||
|
||||
29
Cargo.toml
29
Cargo.toml
@@ -6,24 +6,27 @@ resolver = "2"
|
||||
|
||||
[workspace.package]
|
||||
edition = "2021"
|
||||
authors = ["Lance Devs <dev@lancedb.com>"]
|
||||
authors = ["LanceDB Devs <dev@lancedb.com>"]
|
||||
license = "Apache-2.0"
|
||||
repository = "https://github.com/lancedb/lancedb"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
keywords = ["lancedb", "lance", "database", "vector", "search"]
|
||||
categories = ["database-implementations"]
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.9.9", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.9.9" }
|
||||
lance-linalg = { "version" = "=0.9.9" }
|
||||
lance-testing = { "version" = "=0.9.9" }
|
||||
lance = { "version" = "=0.9.15", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.9.15" }
|
||||
lance-linalg = { "version" = "=0.9.15" }
|
||||
lance-testing = { "version" = "=0.9.15" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "49.0.0", optional = false }
|
||||
arrow-array = "49.0"
|
||||
arrow-data = "49.0"
|
||||
arrow-ipc = "49.0"
|
||||
arrow-ord = "49.0"
|
||||
arrow-schema = "49.0"
|
||||
arrow-arith = "49.0"
|
||||
arrow-cast = "49.0"
|
||||
arrow = { version = "50.0", optional = false }
|
||||
arrow-array = "50.0"
|
||||
arrow-data = "50.0"
|
||||
arrow-ipc = "50.0"
|
||||
arrow-ord = "50.0"
|
||||
arrow-schema = "50.0"
|
||||
arrow-arith = "50.0"
|
||||
arrow-cast = "50.0"
|
||||
async-trait = "0"
|
||||
chrono = "0.4.23"
|
||||
half = { "version" = "=2.3.1", default-features = false, features = [
|
||||
|
||||
13
README.md
13
README.md
@@ -51,12 +51,19 @@ npm install vectordb
|
||||
const lancedb = require('vectordb');
|
||||
const db = await lancedb.connect('data/sample-lancedb');
|
||||
|
||||
const table = await db.createTable('vectors',
|
||||
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
|
||||
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
|
||||
const table = await db.createTable({
|
||||
name: 'vectors',
|
||||
data: [
|
||||
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
|
||||
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }
|
||||
]
|
||||
})
|
||||
|
||||
const query = table.search([0.1, 0.3]).limit(2);
|
||||
const results = await query.execute();
|
||||
|
||||
// You can also search for rows by specific criteria without involving a vector search.
|
||||
const rowsByCriteria = await table.search(undefined).where("price >= 10").execute();
|
||||
```
|
||||
|
||||
**Python**
|
||||
|
||||
@@ -33,3 +33,12 @@ You can run a local server to test the docs prior to deployment by navigating to
|
||||
cd docs
|
||||
mkdocs serve
|
||||
```
|
||||
|
||||
### Run doctest for typescript example
|
||||
|
||||
```bash
|
||||
cd lancedb/docs
|
||||
npm i
|
||||
npm run build
|
||||
npm run all
|
||||
```
|
||||
|
||||
@@ -67,7 +67,9 @@ markdown_extensions:
|
||||
line_spans: __span
|
||||
pygments_lang_class: true
|
||||
- pymdownx.inlinehilite
|
||||
- pymdownx.snippets
|
||||
- pymdownx.snippets:
|
||||
base_path: ..
|
||||
dedent_subsections: true
|
||||
- pymdownx.superfences
|
||||
- pymdownx.tabbed:
|
||||
alternate_style: true
|
||||
@@ -88,6 +90,7 @@ nav:
|
||||
- Building an ANN index: ann_indexes.md
|
||||
- Vector Search: search.md
|
||||
- Full-text search: fts.md
|
||||
- Hybrid search: hybrid_search.md
|
||||
- Filtering: sql.md
|
||||
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
|
||||
- Configuring Storage: guides/storage.md
|
||||
@@ -129,9 +132,13 @@ nav:
|
||||
- 💭 FAQs: faq.md
|
||||
- ⚙️ API reference:
|
||||
- 🐍 Python: python/python.md
|
||||
- 👾 JavaScript: javascript/javascript.md
|
||||
- 👾 JavaScript: javascript/modules.md
|
||||
- 🦀 Rust: https://docs.rs/vectordb/latest/vectordb/
|
||||
- ☁️ LanceDB Cloud:
|
||||
- Overview: cloud/index.md
|
||||
- API reference:
|
||||
- 🐍 Python: python/saas-python.md
|
||||
- 👾 JavaScript: javascript/saas-modules.md
|
||||
|
||||
|
||||
- Quick start: basic.md
|
||||
@@ -145,6 +152,7 @@ nav:
|
||||
- Building an ANN index: ann_indexes.md
|
||||
- Vector Search: search.md
|
||||
- Full-text search: fts.md
|
||||
- Hybrid search: hybrid_search.md
|
||||
- Filtering: sql.md
|
||||
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
|
||||
- Configuring Storage: guides/storage.md
|
||||
@@ -181,14 +189,20 @@ nav:
|
||||
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||
- API reference:
|
||||
- Python: python/python.md
|
||||
- Javascript: javascript/javascript.md
|
||||
- Javascript: javascript/modules.md
|
||||
- LanceDB Cloud:
|
||||
- Overview: cloud/index.md
|
||||
- API reference:
|
||||
- 🐍 Python: python/saas-python.md
|
||||
- 👾 JavaScript: javascript/saas-modules.md
|
||||
|
||||
extra_css:
|
||||
- styles/global.css
|
||||
- styles/extra.css
|
||||
|
||||
extra_javascript:
|
||||
- "extra_js/init_ask_ai_widget.js"
|
||||
|
||||
extra:
|
||||
analytics:
|
||||
provider: google
|
||||
|
||||
132
docs/package-lock.json
generated
Normal file
132
docs/package-lock.json
generated
Normal file
@@ -0,0 +1,132 @@
|
||||
{
|
||||
"name": "lancedb-docs-test",
|
||||
"version": "1.0.0",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "lancedb-docs-test",
|
||||
"version": "1.0.0",
|
||||
"license": "Apache 2",
|
||||
"dependencies": {
|
||||
"apache-arrow": "file:../node/node_modules/apache-arrow",
|
||||
"vectordb": "file:../node"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/node": "^20.11.8",
|
||||
"typescript": "^5.3.3"
|
||||
}
|
||||
},
|
||||
"../node": {
|
||||
"name": "vectordb",
|
||||
"version": "0.4.6",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
],
|
||||
"license": "Apache-2.0",
|
||||
"os": [
|
||||
"darwin",
|
||||
"linux",
|
||||
"win32"
|
||||
],
|
||||
"dependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
"@neon-rs/load": "^0.0.74",
|
||||
"apache-arrow": "^14.0.2",
|
||||
"axios": "^1.4.0"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@neon-rs/cli": "^0.0.160",
|
||||
"@types/chai": "^4.3.4",
|
||||
"@types/chai-as-promised": "^7.1.5",
|
||||
"@types/mocha": "^10.0.1",
|
||||
"@types/node": "^18.16.2",
|
||||
"@types/sinon": "^10.0.15",
|
||||
"@types/temp": "^0.9.1",
|
||||
"@types/uuid": "^9.0.3",
|
||||
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||
"cargo-cp-artifact": "^0.1",
|
||||
"chai": "^4.3.7",
|
||||
"chai-as-promised": "^7.1.1",
|
||||
"eslint": "^8.39.0",
|
||||
"eslint-config-standard-with-typescript": "^34.0.1",
|
||||
"eslint-plugin-import": "^2.26.0",
|
||||
"eslint-plugin-n": "^15.7.0",
|
||||
"eslint-plugin-promise": "^6.1.1",
|
||||
"mocha": "^10.2.0",
|
||||
"openai": "^4.24.1",
|
||||
"sinon": "^15.1.0",
|
||||
"temp": "^0.9.4",
|
||||
"ts-node": "^10.9.1",
|
||||
"ts-node-dev": "^2.0.0",
|
||||
"typedoc": "^0.24.7",
|
||||
"typedoc-plugin-markdown": "^3.15.3",
|
||||
"typescript": "*",
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.6",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.6",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
|
||||
}
|
||||
},
|
||||
"../node/node_modules/apache-arrow": {
|
||||
"version": "14.0.2",
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@types/command-line-args": "5.2.0",
|
||||
"@types/command-line-usage": "5.0.2",
|
||||
"@types/node": "20.3.0",
|
||||
"@types/pad-left": "2.1.1",
|
||||
"command-line-args": "5.2.1",
|
||||
"command-line-usage": "7.0.1",
|
||||
"flatbuffers": "23.5.26",
|
||||
"json-bignum": "^0.0.3",
|
||||
"pad-left": "^2.1.0",
|
||||
"tslib": "^2.5.3"
|
||||
},
|
||||
"bin": {
|
||||
"arrow2csv": "bin/arrow2csv.js"
|
||||
}
|
||||
},
|
||||
"node_modules/@types/node": {
|
||||
"version": "20.11.8",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.11.8.tgz",
|
||||
"integrity": "sha512-i7omyekpPTNdv4Jb/Rgqg0RU8YqLcNsI12quKSDkRXNfx7Wxdm6HhK1awT3xTgEkgxPn3bvnSpiEAc7a7Lpyow==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"undici-types": "~5.26.4"
|
||||
}
|
||||
},
|
||||
"node_modules/apache-arrow": {
|
||||
"resolved": "../node/node_modules/apache-arrow",
|
||||
"link": true
|
||||
},
|
||||
"node_modules/typescript": {
|
||||
"version": "5.3.3",
|
||||
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.3.3.tgz",
|
||||
"integrity": "sha512-pXWcraxM0uxAS+tN0AG/BF2TyqmHO014Z070UsJ+pFvYuRSq8KH8DmWpnbXe0pEPDHXZV3FcAbJkijJ5oNEnWw==",
|
||||
"dev": true,
|
||||
"bin": {
|
||||
"tsc": "bin/tsc",
|
||||
"tsserver": "bin/tsserver"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=14.17"
|
||||
}
|
||||
},
|
||||
"node_modules/undici-types": {
|
||||
"version": "5.26.5",
|
||||
"resolved": "https://registry.npmjs.org/undici-types/-/undici-types-5.26.5.tgz",
|
||||
"integrity": "sha512-JlCMO+ehdEIKqlFxk6IfVoAUVmgz7cU7zD/h9XZ0qzeosSHmUJVOzSQvvYSYWXkFXC+IfLKSIffhv0sVZup6pA==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/vectordb": {
|
||||
"resolved": "../node",
|
||||
"link": true
|
||||
}
|
||||
}
|
||||
}
|
||||
20
docs/package.json
Normal file
20
docs/package.json
Normal file
@@ -0,0 +1,20 @@
|
||||
{
|
||||
"name": "lancedb-docs-test",
|
||||
"version": "1.0.0",
|
||||
"description": "auto-generated tests from doc",
|
||||
"author": "dev@lancedb.com",
|
||||
"license": "Apache 2",
|
||||
"dependencies": {
|
||||
"apache-arrow": "file:../node/node_modules/apache-arrow",
|
||||
"vectordb": "file:../node"
|
||||
},
|
||||
"scripts": {
|
||||
"build": "tsc -b && cd ../node && npm run build-release",
|
||||
"example": "npm run build && node",
|
||||
"test": "npm run build && ls dist/*.js | xargs -n 1 node"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/node": "^20.11.8",
|
||||
"typescript": "^5.3.3"
|
||||
}
|
||||
}
|
||||
@@ -7,7 +7,7 @@ for brute-force scanning of the entire vector space.
|
||||
A vector index is faster but less accurate than exhaustive search (kNN or flat search).
|
||||
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
|
||||
|
||||
Currently, LanceDB does *not* automatically create the ANN index.
|
||||
Currently, LanceDB does _not_ automatically create the ANN index.
|
||||
LanceDB has optimized code for kNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
|
||||
If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
|
||||
|
||||
@@ -17,16 +17,17 @@ In the future we will look to automatically create and configure the ANN index a
|
||||
|
||||
Lance can support multiple index types, the most widely used one is `IVF_PQ`.
|
||||
|
||||
* `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
|
||||
and then use **Product Quantization** to compress vectors in each partition.
|
||||
* `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
|
||||
represent the nearest neighbors of each vector.
|
||||
- `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
|
||||
and then use **Product Quantization** to compress vectors in each partition.
|
||||
- `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
|
||||
represent the nearest neighbors of each vector.
|
||||
|
||||
## Creating an IVF_PQ Index
|
||||
|
||||
Lance supports `IVF_PQ` index type by default.
|
||||
|
||||
=== "Python"
|
||||
|
||||
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
|
||||
|
||||
```python
|
||||
@@ -46,25 +47,20 @@ Lance supports `IVF_PQ` index type by default.
|
||||
tbl.create_index(num_partitions=256, num_sub_vectors=96)
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const vectordb = require('vectordb')
|
||||
const db = await vectordb.connect('data/sample-lancedb')
|
||||
=== "Typescript"
|
||||
|
||||
let data = []
|
||||
for (let i = 0; i < 10_000; i++) {
|
||||
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
||||
}
|
||||
const table = await db.createTable('my_vectors', data)
|
||||
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
|
||||
```typescript
|
||||
--8<--- "docs/src/ann_indexes.ts:import"
|
||||
|
||||
--8<-- "docs/src/ann_indexes.ts:ingest"
|
||||
```
|
||||
|
||||
- **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
|
||||
We also support "cosine" and "dot" distance as well.
|
||||
We also support "cosine" and "dot" distance as well.
|
||||
- **num_partitions** (default: 256): The number of partitions of the index.
|
||||
- **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
|
||||
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
|
||||
a single PQ code.
|
||||
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
|
||||
a single PQ code.
|
||||
|
||||
<figure markdown>
|
||||

|
||||
@@ -78,7 +74,7 @@ Using GPU for index creation requires [PyTorch>2.0](https://pytorch.org/) being
|
||||
|
||||
You can specify the GPU device to train IVF partitions via
|
||||
|
||||
- **accelerator**: Specify to ``cuda`` or ``mps`` (on Apple Silicon) to enable GPU training.
|
||||
- **accelerator**: Specify to `cuda` or `mps` (on Apple Silicon) to enable GPU training.
|
||||
|
||||
=== "Linux"
|
||||
|
||||
@@ -106,10 +102,9 @@ You can specify the GPU device to train IVF partitions via
|
||||
|
||||
Trouble shootings:
|
||||
|
||||
If you see ``AssertionError: Torch not compiled with CUDA enabled``, you need to [install
|
||||
If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
|
||||
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
|
||||
|
||||
|
||||
## Querying an ANN Index
|
||||
|
||||
Querying vector indexes is done via the [search](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.search) function.
|
||||
@@ -127,6 +122,7 @@ There are a couple of parameters that can be used to fine-tune the search:
|
||||
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl.search(np.random.random((1536))) \
|
||||
.limit(2) \
|
||||
@@ -134,41 +130,35 @@ There are a couple of parameters that can be used to fine-tune the search:
|
||||
.refine_factor(10) \
|
||||
.to_pandas()
|
||||
```
|
||||
```
|
||||
|
||||
```text
|
||||
vector item _distance
|
||||
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
|
||||
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const results_1 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.limit(2)
|
||||
.nprobes(20)
|
||||
.refineFactor(10)
|
||||
.execute()
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/ann_indexes.ts:search1"
|
||||
```
|
||||
|
||||
The search will return the data requested in addition to the distance of each item.
|
||||
|
||||
|
||||
### Filtering (where clause)
|
||||
|
||||
You can further filter the elements returned by a search using a where clause.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
=== "Typescript"
|
||||
|
||||
```javascript
|
||||
const results_2 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.where("id != '1141'")
|
||||
.limit(2)
|
||||
.execute()
|
||||
--8<-- "docs/src/ann_indexes.ts:search2"
|
||||
```
|
||||
|
||||
### Projections (select clause)
|
||||
@@ -176,23 +166,23 @@ You can further filter the elements returned by a search using a where clause.
|
||||
You can select the columns returned by the query using a select clause.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
|
||||
```
|
||||
```
|
||||
vector _distance
|
||||
|
||||
|
||||
```text
|
||||
vector _distance
|
||||
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
||||
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
||||
...
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const results_3 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.select(["id"])
|
||||
.limit(2)
|
||||
.execute()
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/ann_indexes.ts:search3"
|
||||
```
|
||||
|
||||
## FAQ
|
||||
@@ -221,4 +211,4 @@ On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows
|
||||
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
|
||||
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
|
||||
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
|
||||
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
|
||||
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
|
||||
|
||||
53
docs/src/ann_indexes.ts
Normal file
53
docs/src/ann_indexes.ts
Normal file
@@ -0,0 +1,53 @@
|
||||
// --8<-- [start:import]
|
||||
import * as vectordb from "vectordb";
|
||||
// --8<-- [end:import]
|
||||
|
||||
(async () => {
|
||||
// --8<-- [start:ingest]
|
||||
const db = await vectordb.connect("data/sample-lancedb");
|
||||
|
||||
let data = [];
|
||||
for (let i = 0; i < 10_000; i++) {
|
||||
data.push({
|
||||
vector: Array(1536).fill(i),
|
||||
id: `${i}`,
|
||||
content: "",
|
||||
longId: `${i}`,
|
||||
});
|
||||
}
|
||||
const table = await db.createTable("my_vectors", data);
|
||||
await table.createIndex({
|
||||
type: "ivf_pq",
|
||||
column: "vector",
|
||||
num_partitions: 16,
|
||||
num_sub_vectors: 48,
|
||||
});
|
||||
// --8<-- [end:ingest]
|
||||
|
||||
// --8<-- [start:search1]
|
||||
const results_1 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.limit(2)
|
||||
.nprobes(20)
|
||||
.refineFactor(10)
|
||||
.execute();
|
||||
// --8<-- [end:search1]
|
||||
|
||||
// --8<-- [start:search2]
|
||||
const results_2 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.where("id != '1141'")
|
||||
.limit(2)
|
||||
.execute();
|
||||
// --8<-- [end:search2]
|
||||
|
||||
// --8<-- [start:search3]
|
||||
const results_3 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.select(["id"])
|
||||
.limit(2)
|
||||
.execute();
|
||||
// --8<-- [end:search3]
|
||||
|
||||
console.log("Ann indexes: done");
|
||||
})();
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 266 KiB After Width: | Height: | Size: 107 KiB |
@@ -11,43 +11,78 @@
|
||||
## Installation
|
||||
|
||||
=== "Python"
|
||||
|
||||
```shell
|
||||
pip install lancedb
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
=== "Typescript"
|
||||
|
||||
```shell
|
||||
npm install vectordb
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
!!! warning "Rust SDK is experimental, might introduce breaking changes in the near future"
|
||||
|
||||
```shell
|
||||
cargo add vectordb
|
||||
```
|
||||
|
||||
!!! info "To use the vectordb create, you first need to install protobuf."
|
||||
|
||||
=== "macOS"
|
||||
|
||||
```shell
|
||||
brew install protobuf
|
||||
```
|
||||
|
||||
=== "Ubuntu/Debian"
|
||||
|
||||
```shell
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
```
|
||||
|
||||
!!! info "Please also make sure you're using the same version of Arrow as in the [vectordb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
|
||||
|
||||
## How to connect to a database
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
```
|
||||
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
=== "Typescript"
|
||||
|
||||
If you need a reminder of the uri, use the `db.uri` property.
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:import"
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
--8<-- "docs/src/basic_legacy.ts:open_db"
|
||||
```
|
||||
|
||||
const uri = "data/sample-lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
```
|
||||
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
=== "Rust"
|
||||
|
||||
If you need a reminder of the uri, you can call `db.uri()`.
|
||||
```rust
|
||||
#[tokio::main]
|
||||
async fn main() -> Result<()> {
|
||||
--8<-- "rust/vectordb/examples/simple.rs:connect"
|
||||
}
|
||||
```
|
||||
|
||||
!!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/vectordb/examples/simple.rs) for a full working example."
|
||||
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
|
||||
If you need a reminder of the uri, you can call `db.uri()`.
|
||||
|
||||
## How to create a table
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
@@ -59,6 +94,7 @@
|
||||
to the `create_table` method.
|
||||
|
||||
You can also pass in a pandas DataFrame directly:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
@@ -66,19 +102,26 @@
|
||||
tbl = db.create_table("table_from_df", data=df)
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const tb = await db.createTable(
|
||||
"myTable",
|
||||
[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]
|
||||
)
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:create_table"
|
||||
```
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||
to the `createTable` function.
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
use arrow_schema::{DataType, Schema, Field};
|
||||
use arrow_array::{RecordBatch, RecordBatchIterator};
|
||||
|
||||
--8<-- "rust/vectordb/examples/simple.rs:create_table"
|
||||
```
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
|
||||
!!! info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
|
||||
|
||||
@@ -88,76 +131,145 @@ Sometimes you may not have the data to insert into the table at creation time.
|
||||
In this case, you can create an empty table and specify the schema.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import pyarrow as pa
|
||||
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
|
||||
tbl = db.create_table("empty_table", schema=schema)
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:create_empty_table"
|
||||
```
|
||||
|
||||
## How to open an existing table
|
||||
|
||||
Once created, you can open a table using the following code:
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
tbl = db.open_table("my_table")
|
||||
```
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
```python
|
||||
tbl = db.open_table("my_table")
|
||||
```
|
||||
|
||||
```python
|
||||
print(db.table_names())
|
||||
```
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
const tbl = await db.openTable("myTable");
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:open_with_existing_file"
|
||||
```
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
print(db.table_names())
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const tbl = await db.openTable("myTable");
|
||||
```
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
```javascript
|
||||
console.log(await db.tableNames());
|
||||
```
|
||||
|
||||
```javascript
|
||||
console.log(await db.tableNames());
|
||||
```
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:list_names"
|
||||
```
|
||||
|
||||
## How to add data to a table
|
||||
|
||||
After a table has been created, you can always add more data to it using
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
|
||||
# Option 1: Add a list of dicts to a table
|
||||
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
|
||||
tbl.add(data)
|
||||
```python
|
||||
|
||||
# Option 2: Add a pandas DataFrame to a table
|
||||
df = pd.DataFrame(data)
|
||||
tbl.add(data)
|
||||
```
|
||||
# Option 1: Add a list of dicts to a table
|
||||
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
|
||||
tbl.add(data)
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
|
||||
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
|
||||
```
|
||||
# Option 2: Add a pandas DataFrame to a table
|
||||
df = pd.DataFrame(data)
|
||||
tbl.add(data)
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:add"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:add"
|
||||
```
|
||||
|
||||
## How to search for (approximate) nearest neighbors
|
||||
|
||||
Once you've embedded the query, you can find its nearest neighbors using the following code:
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search([100, 100]).limit(2).to_pandas()
|
||||
```
|
||||
|
||||
This returns a pandas DataFrame with the results.
|
||||
```python
|
||||
tbl.search([100, 100]).limit(2).to_pandas()
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const query = await tbl.search([100, 100]).limit(2).execute();
|
||||
```
|
||||
This returns a pandas DataFrame with the results.
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:search"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
use futures::TryStreamExt;
|
||||
|
||||
--8<-- "rust/vectordb/examples/simple.rs:search"
|
||||
```
|
||||
|
||||
By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN).
|
||||
For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```py
|
||||
tbl.create_index()
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
```{.typescript .ignore}
|
||||
--8<-- "docs/src/basic_legacy.ts:create_index"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:create_index"
|
||||
```
|
||||
|
||||
Check [Approximate Nearest Neighbor (ANN) Indexes](/ann_indices.md) section for more details.
|
||||
|
||||
## How to delete rows from a table
|
||||
|
||||
@@ -166,20 +278,27 @@ which rows to delete, provide a filter that matches on the metadata columns.
|
||||
This can delete any number of rows that match the filter.
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.delete('item = "fizz"')
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
await tbl.delete('item = "fizz"')
|
||||
```
|
||||
```python
|
||||
tbl.delete('item = "fizz"')
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:delete"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:delete"
|
||||
```
|
||||
|
||||
The deletion predicate is a SQL expression that supports the same expressions
|
||||
as the `where()` clause on a search. They can be as simple or complex as needed.
|
||||
To see what expressions are supported, see the [SQL filters](sql.md) section.
|
||||
|
||||
|
||||
=== "Python"
|
||||
|
||||
Read more: [lancedb.table.Table.delete][]
|
||||
@@ -193,6 +312,7 @@ To see what expressions are supported, see the [SQL filters](sql.md) section.
|
||||
Use the `drop_table()` method on the database to remove a table.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
db.drop_table("my_table")
|
||||
```
|
||||
@@ -201,13 +321,20 @@ Use the `drop_table()` method on the database to remove a table.
|
||||
By default, if the table does not exist an exception is raised. To suppress this,
|
||||
you can pass in `ignore_missing=True`.
|
||||
|
||||
=== "JavaScript"
|
||||
```javascript
|
||||
await db.dropTable('myTable')
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:drop_table"
|
||||
```
|
||||
|
||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||
If the table does not exist an exception is raised.
|
||||
If the table does not exist an exception is raised.
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:drop_table"
|
||||
```
|
||||
|
||||
!!! note "Bundling `vectordb` apps with Webpack"
|
||||
|
||||
|
||||
92
docs/src/basic_legacy.ts
Normal file
92
docs/src/basic_legacy.ts
Normal file
@@ -0,0 +1,92 @@
|
||||
// --8<-- [start:import]
|
||||
import * as lancedb from "vectordb";
|
||||
import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow";
|
||||
// --8<-- [end:import]
|
||||
import * as fs from "fs";
|
||||
import { Table as ArrowTable, Utf8 } from "apache-arrow";
|
||||
|
||||
const example = async () => {
|
||||
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
|
||||
// --8<-- [start:open_db]
|
||||
const lancedb = require("vectordb");
|
||||
const uri = "data/sample-lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
// --8<-- [end:open_db]
|
||||
|
||||
// --8<-- [start:create_table]
|
||||
const tbl = await db.createTable(
|
||||
"myTable",
|
||||
[
|
||||
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||
],
|
||||
{ writeMode: lancedb.WriteMode.Overwrite }
|
||||
);
|
||||
// --8<-- [end:create_table]
|
||||
|
||||
// --8<-- [start:add]
|
||||
const newData = Array.from({ length: 500 }, (_, i) => ({
|
||||
vector: [i, i + 1],
|
||||
item: "fizz",
|
||||
price: i * 0.1,
|
||||
}));
|
||||
await tbl.add(newData);
|
||||
// --8<-- [end:add]
|
||||
|
||||
// --8<-- [start:create_index]
|
||||
await tbl.createIndex({
|
||||
type: "ivf_pq",
|
||||
num_partitions: 2,
|
||||
num_sub_vectors: 2,
|
||||
});
|
||||
// --8<-- [end:create_index]
|
||||
|
||||
// --8<-- [start:create_empty_table]
|
||||
const schema = new Schema([
|
||||
new Field("id", new Int32()),
|
||||
new Field("name", new Utf8()),
|
||||
]);
|
||||
const empty_tbl = await db.createTable({ name: "empty_table", schema });
|
||||
// --8<-- [end:create_empty_table]
|
||||
|
||||
// --8<-- [start:create_f16_table]
|
||||
const dim = 16
|
||||
const total = 10
|
||||
const f16_schema = new Schema([
|
||||
new Field('id', new Int32()),
|
||||
new Field(
|
||||
'vector',
|
||||
new FixedSizeList(dim, new Field('item', new Float16(), true)),
|
||||
false
|
||||
)
|
||||
])
|
||||
const data = lancedb.makeArrowTable(
|
||||
Array.from(Array(total), (_, i) => ({
|
||||
id: i,
|
||||
vector: Array.from(Array(dim), Math.random)
|
||||
})),
|
||||
{ f16_schema }
|
||||
)
|
||||
const table = await db.createTable('f16_tbl', data)
|
||||
// --8<-- [end:create_f16_table]
|
||||
|
||||
// --8<-- [start:search]
|
||||
const query = await tbl.search([100, 100]).limit(2).execute();
|
||||
// --8<-- [end:search]
|
||||
console.log(query);
|
||||
|
||||
// --8<-- [start:delete]
|
||||
await tbl.delete('item = "fizz"');
|
||||
// --8<-- [end:delete]
|
||||
|
||||
// --8<-- [start:drop_table]
|
||||
await db.dropTable("myTable");
|
||||
// --8<-- [end:drop_table]
|
||||
};
|
||||
|
||||
async function main() {
|
||||
await example();
|
||||
console.log("Basic example: done");
|
||||
}
|
||||
|
||||
main();
|
||||
@@ -119,7 +119,7 @@ texts = [{"text": "Capitalism has been dominant in the Western world since the e
|
||||
tbl.add(texts)
|
||||
```
|
||||
|
||||
## Gemini Embedding Function
|
||||
### Gemini Embeddings
|
||||
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
|
||||
The Gemini Embedding Model API supports various task types:
|
||||
|
||||
@@ -155,6 +155,51 @@ tbl.add(df)
|
||||
rs = tbl.search("hello").limit(1).to_pandas()
|
||||
```
|
||||
|
||||
### AWS Bedrock Text Embedding Functions
|
||||
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
|
||||
You can do so by using `awscli` and also add your session_token:
|
||||
```shell
|
||||
aws configure
|
||||
aws configure set aws_session_token "<your_session_token>"
|
||||
```
|
||||
to ensure that the credentials are set up correctly, you can run the following command:
|
||||
```shell
|
||||
aws sts get-caller-identity
|
||||
```
|
||||
|
||||
Supported Embedding modelIDs are:
|
||||
* `amazon.titan-embed-text-v1`
|
||||
* `cohere.embed-english-v3`
|
||||
* `cohere.embed-multilingual-v3`
|
||||
|
||||
Supported paramters (to be passed in `create` method) are:
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
|
||||
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
|
||||
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
|
||||
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
|
||||
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
|
||||
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
|
||||
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
|
||||
|
||||
Usage Example:
|
||||
|
||||
```python
|
||||
model = get_registry().get("bedrock-text").create()
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||
db = lancedb.connect("tmp_path")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
rs = tbl.search("hello").limit(1).to_pandas()
|
||||
```
|
||||
|
||||
## Multi-modal embedding functions
|
||||
Multi-modal embedding functions allow you to query your table using both images and text.
|
||||
|
||||
|
||||
@@ -79,7 +79,10 @@ def qanda_langchain(query):
|
||||
download_docs()
|
||||
docs = store_docs()
|
||||
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200,)
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=1000,
|
||||
chunk_overlap=200,
|
||||
)
|
||||
documents = text_splitter.split_documents(docs)
|
||||
embeddings = OpenAIEmbeddings()
|
||||
|
||||
|
||||
11
docs/src/extra_js/init_ask_ai_widget.js
Normal file
11
docs/src/extra_js/init_ask_ai_widget.js
Normal file
@@ -0,0 +1,11 @@
|
||||
document.addEventListener("DOMContentLoaded", function () {
|
||||
var script = document.createElement("script");
|
||||
script.src = "https://widget.kapa.ai/kapa-widget.bundle.js";
|
||||
script.setAttribute("data-website-id", "c5881fae-cec0-490b-b45e-d83d131d4f25");
|
||||
script.setAttribute("data-project-name", "LanceDB");
|
||||
script.setAttribute("data-project-color", "#000000");
|
||||
script.setAttribute("data-project-logo", "https://avatars.githubusercontent.com/u/108903835?s=200&v=4");
|
||||
script.setAttribute("data-modal-example-questions","Help me create an IVF_PQ index,How do I do an exhaustive search?,How do I create a LanceDB table?,Can I use my own embedding function?");
|
||||
script.async = true;
|
||||
document.head.appendChild(script);
|
||||
});
|
||||
@@ -69,3 +69,19 @@ MinIO supports an S3 compatible API. In order to connect to a MinIO instance, yo
|
||||
- Set the envvar `AWS_ENDPOINT` to the URL of your MinIO API
|
||||
- Set the envvars `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` with your MinIO credential
|
||||
- Call `lancedb.connect("s3://minio_bucket_name")`
|
||||
|
||||
### Where can I find benchmarks for LanceDB?
|
||||
|
||||
Refer to this [post](https://blog.lancedb.com/benchmarking-lancedb-92b01032874a) for recent benchmarks.
|
||||
|
||||
### How much data can LanceDB practically manage without effecting performance?
|
||||
|
||||
We target good performance on ~10-50 billion rows and ~10-30 TB of data.
|
||||
|
||||
### Does LanceDB support concurrent operations?
|
||||
|
||||
LanceDB can handle concurrent reads very well, and can scale horizontally. The main constraint is how well the [storage layer](https://lancedb.github.io/lancedb/concepts/storage/) you've chosen scales. For writes, we support concurrent writing, though too many concurrent writers can lead to failing writes as there is a limited number of times a writer retries a commit
|
||||
|
||||
!!! info "Multiprocessing with LanceDB"
|
||||
|
||||
For multiprocessing you should probably not use ```fork``` as lance is multi-threaded internally and ```fork``` and multi-thread do not work well.[Refer to this discussion](https://discuss.python.org/t/concerns-regarding-deprecation-of-fork-with-alive-threads/33555)
|
||||
|
||||
@@ -68,6 +68,82 @@ Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_
|
||||
|
||||
You can see a full list of environment variables [here](https://docs.rs/object_store/latest/object_store/aws/struct.AmazonS3Builder.html#method.from_env).
|
||||
|
||||
!!! tip "Automatic cleanup for failed writes"
|
||||
|
||||
LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide:
|
||||
|
||||
**[Configuring a bucket lifecycle configuration to delete incomplete multipart uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpu-abort-incomplete-mpu-lifecycle-config.html)**
|
||||
|
||||
#### AWS IAM Permissions
|
||||
|
||||
If a bucket is private, then an IAM policy must be specified to allow access to it. For many development scenarios, using broad permissions such as a PowerUser account is more than sufficient for working with LanceDB. However, in many production scenarios, you may wish to have as narrow as possible permissions.
|
||||
|
||||
For **read and write access**, LanceDB will need a policy such as:
|
||||
|
||||
```json
|
||||
{
|
||||
"Version": "2012-10-17",
|
||||
"Statement": [
|
||||
{
|
||||
"Effect": "Allow",
|
||||
"Action": [
|
||||
"s3:PutObject",
|
||||
"s3:GetObject",
|
||||
"s3:DeleteObject",
|
||||
],
|
||||
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
|
||||
},
|
||||
{
|
||||
"Effect": "Allow",
|
||||
"Action": [
|
||||
"s3:ListBucket",
|
||||
"s3:GetBucketLocation"
|
||||
],
|
||||
"Resource": "arn:aws:s3:::<bucket>",
|
||||
"Condition": {
|
||||
"StringLike": {
|
||||
"s3:prefix": [
|
||||
"<prefix>/*"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
For **read-only access**, LanceDB will need a policy such as:
|
||||
|
||||
```json
|
||||
{
|
||||
"Version": "2012-10-17",
|
||||
"Statement": [
|
||||
{
|
||||
"Effect": "Allow",
|
||||
"Action": [
|
||||
"s3:GetObject",
|
||||
],
|
||||
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
|
||||
},
|
||||
{
|
||||
"Effect": "Allow",
|
||||
"Action": [
|
||||
"s3:ListBucket",
|
||||
"s3:GetBucketLocation"
|
||||
],
|
||||
"Resource": "arn:aws:s3:::<bucket>",
|
||||
"Condition": {
|
||||
"StringLike": {
|
||||
"s3:prefix": [
|
||||
"<prefix>/*"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
#### S3-compatible stores
|
||||
|
||||
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify two environment variables: `AWS_ENDPOINT` and `AWS_DEFAULT_REGION`. `AWS_ENDPOINT` should be the URL of the S3-compatible store, and `AWS_DEFAULT_REGION` should be the region to use.
|
||||
|
||||
@@ -16,9 +16,22 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
db = lancedb.connect("./.lancedb")
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
|
||||
Initialize a VectorDB connection and create a table using one of the many methods listed below.
|
||||
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
|
||||
const uri = "data/sample-lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
```
|
||||
|
||||
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
|
||||
|
||||
### From list of tuples or dictionaries
|
||||
### From list of tuples or dictionaries
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
@@ -32,7 +45,6 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
|
||||
db["my_table"].head()
|
||||
```
|
||||
|
||||
!!! info "Note"
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
|
||||
@@ -51,6 +63,27 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
db.create_table("name", data, mode="overwrite")
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
|
||||
|
||||
```javascript
|
||||
const tb = await db.createTable("my_table", [{
|
||||
"vector": [3.1, 4.1],
|
||||
"item": "foo",
|
||||
"price": 10.0
|
||||
}, {
|
||||
"vector": [5.9, 26.5],
|
||||
"item": "bar",
|
||||
"price": 20.0
|
||||
}]);
|
||||
```
|
||||
!!! info "Note"
|
||||
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
|
||||
|
||||
```javascript
|
||||
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
|
||||
```
|
||||
|
||||
### From a Pandas DataFrame
|
||||
|
||||
```python
|
||||
@@ -67,7 +100,9 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
db["my_table"].head()
|
||||
```
|
||||
!!! info "Note"
|
||||
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
|
||||
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
|
||||
|
||||
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
|
||||
|
||||
```python
|
||||
custom_schema = pa.schema([
|
||||
@@ -79,7 +114,7 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
table = db.create_table("my_table", data, schema=custom_schema)
|
||||
```
|
||||
|
||||
### From a Polars DataFrame
|
||||
### From a Polars DataFrame
|
||||
|
||||
LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library
|
||||
written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow
|
||||
@@ -97,26 +132,44 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
table = db.create_table("pl_table", data=data)
|
||||
```
|
||||
|
||||
### From PyArrow Tables
|
||||
You can also create LanceDB tables directly from PyArrow tables
|
||||
### From an Arrow Table
|
||||
=== "Python"
|
||||
You can also create LanceDB tables directly from Arrow tables.
|
||||
LanceDB supports float16 data type!
|
||||
|
||||
```python
|
||||
table = pa.Table.from_arrays(
|
||||
[
|
||||
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
|
||||
pa.list_(pa.float32(), 4)),
|
||||
pa.array(["foo", "bar"]),
|
||||
pa.array([10.0, 20.0]),
|
||||
],
|
||||
["vector", "item", "price"],
|
||||
)
|
||||
import pyarrows as pa
|
||||
import numpy as np
|
||||
|
||||
dim = 16
|
||||
total = 2
|
||||
schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float16(), dim)),
|
||||
pa.field("text", pa.string())
|
||||
]
|
||||
)
|
||||
data = pa.Table.from_arrays(
|
||||
[
|
||||
pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],
|
||||
pa.list_(pa.float16(), dim)),
|
||||
pa.array(["foo", "bar"])
|
||||
],
|
||||
["vector", "text"],
|
||||
)
|
||||
tbl = db.create_table("f16_tbl", data, schema=schema)
|
||||
```
|
||||
|
||||
db = lancedb.connect("db")
|
||||
=== "Javascript"
|
||||
You can also create LanceDB tables directly from Arrow tables.
|
||||
LanceDB supports Float16 data type!
|
||||
|
||||
tbl = db.create_table("my_table", table)
|
||||
```javascript
|
||||
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
|
||||
```
|
||||
|
||||
### From Pydantic Models
|
||||
|
||||
When you create an empty table without data, you must specify the table schema.
|
||||
LanceDB supports creating tables by specifying a PyArrow schema or a specialized
|
||||
Pydantic model called `LanceModel`.
|
||||
@@ -261,37 +314,6 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
|
||||
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
|
||||
|
||||
=== "JavaScript"
|
||||
Initialize a VectorDB connection and create a table using one of the many methods listed below.
|
||||
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
|
||||
const uri = "data/sample-lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
```
|
||||
|
||||
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
|
||||
|
||||
```javascript
|
||||
const tb = await db.createTable("my_table", [{
|
||||
"vector": [3.1, 4.1],
|
||||
"item": "foo",
|
||||
"price": 10.0
|
||||
}, {
|
||||
"vector": [5.9, 26.5],
|
||||
"item": "bar",
|
||||
"price": 20.0
|
||||
}]);
|
||||
```
|
||||
|
||||
!!! info "Note"
|
||||
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
|
||||
|
||||
```javascript
|
||||
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
|
||||
```
|
||||
|
||||
## Open existing tables
|
||||
|
||||
=== "Python"
|
||||
|
||||
235
docs/src/hybrid_search.md
Normal file
235
docs/src/hybrid_search.md
Normal file
@@ -0,0 +1,235 @@
|
||||
# Hybrid Search
|
||||
|
||||
LanceDB supports both semantic and keyword-based search. In real world applications, it is often useful to combine these two approaches to get the best best results. For example, you may want to search for a document that is semantically similar to a query document, but also contains a specific keyword. This is an example of *hybrid search*, a search algorithm that combines multiple search techniques.
|
||||
|
||||
## Hybrid search in LanceDB
|
||||
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
import lancedb
|
||||
import openai
|
||||
from lancedb.embeddings import get_registry
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
|
||||
# Ingest embedding function in LanceDB table
|
||||
# Configuring the environment variable OPENAI_API_KEY
|
||||
if "OPENAI_API_KEY" not in os.environ:
|
||||
# OR set the key here as a variable
|
||||
openai.api_key = "sk-..."
|
||||
embeddings = get_registry().get("openai").create()
|
||||
|
||||
class Documents(LanceModel):
|
||||
vector: Vector(embeddings.ndims()) = embeddings.VectorField()
|
||||
text: str = embeddings.SourceField()
|
||||
|
||||
table = db.create_table("documents", schema=Documents)
|
||||
|
||||
data = [
|
||||
{ "text": "rebel spaceships striking from a hidden base"},
|
||||
{ "text": "have won their first victory against the evil Galactic Empire"},
|
||||
{ "text": "during the battle rebel spies managed to steal secret plans"},
|
||||
{ "text": "to the Empire's ultimate weapon the Death Star"}
|
||||
]
|
||||
|
||||
# ingest docs with auto-vectorization
|
||||
table.add(data)
|
||||
|
||||
# Create a fts index before the hybrid search
|
||||
table.create_fts_index("text")
|
||||
# hybrid search with default re-ranker
|
||||
results = table.search("flower moon", query_type="hybrid").to_pandas()
|
||||
```
|
||||
|
||||
By default, LanceDB uses `LinearCombinationReranker(weight=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
|
||||
|
||||
|
||||
### `rerank()` arguments
|
||||
* `normalize`: `str`, default `"score"`:
|
||||
The method to normalize the scores. Can be "rank" or "score". If "rank", the scores are converted to ranks and then normalized. If "score", the scores are normalized directly.
|
||||
* `reranker`: `Reranker`, default `LinearCombinationReranker(weight=0.7)`.
|
||||
The reranker to use. If not specified, the default reranker is used.
|
||||
|
||||
|
||||
## Available Rerankers
|
||||
LanceDB provides a number of re-rankers out of the box. You can use any of these re-rankers by passing them to the `rerank()` method. Here's a list of available re-rankers:
|
||||
|
||||
### Linear Combination Reranker
|
||||
This is the default re-ranker used by LanceDB. It combines the results of semantic and full-text search using a linear combination of the scores. The weights for the linear combination can be specified. It defaults to 0.7, i.e, 70% weight for semantic search and 30% weight for full-text search.
|
||||
|
||||
|
||||
```python
|
||||
from lancedb.rerankers import LinearCombinationReranker
|
||||
|
||||
reranker = LinearCombinationReranker(weight=0.3) # Use 0.3 as the weight for vector search
|
||||
|
||||
results = table.search("rebel", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
||||
```
|
||||
|
||||
Arguments
|
||||
----------------
|
||||
* `weight`: `float`, default `0.7`:
|
||||
The weight to use for the semantic search score. The weight for the full-text search score is `1 - weights`.
|
||||
* `fill`: `float`, default `1.0`:
|
||||
The score to give to results that are only in one of the two result sets.This is treated as penalty, so a higher value means a lower score.
|
||||
TODO: We should just hardcode this-- its pretty confusing as we invert scores to calculate final score
|
||||
* `return_score` : str, default `"relevance"`
|
||||
options are "relevance" or "all"
|
||||
The type of score to return. If "relevance", will return only the `_relevance_score. If "all", will return all scores from the vector and FTS search along with the relevance score.
|
||||
|
||||
### Cohere Reranker
|
||||
This re-ranker uses the [Cohere](https://cohere.ai/) API to combine the results of semantic and full-text search. You can use this re-ranker by passing `CohereReranker()` to the `rerank()` method. Note that you'll need to set the `COHERE_API_KEY` environment variable to use this re-ranker.
|
||||
|
||||
```python
|
||||
from lancedb.rerankers import CohereReranker
|
||||
|
||||
reranker = CohereReranker()
|
||||
|
||||
results = table.search("vampire weekend", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
||||
```
|
||||
|
||||
Arguments
|
||||
----------------
|
||||
* `model_name`` : str, default `"rerank-english-v2.0"``
|
||||
The name of the cross encoder model to use. Available cohere models are:
|
||||
- rerank-english-v2.0
|
||||
- rerank-multilingual-v2.0
|
||||
* `column` : str, default `"text"`
|
||||
The name of the column to use as input to the cross encoder model.
|
||||
* `top_n` : str, default `None`
|
||||
The number of results to return. If None, will return all results.
|
||||
|
||||
!!! Note
|
||||
Only returns `_relevance_score`. Does not support `return_score = "all"`.
|
||||
|
||||
### Cross Encoder Reranker
|
||||
This reranker uses the [Sentence Transformers](https://www.sbert.net/) library to combine the results of semantic and full-text search. You can use it by passing `CrossEncoderReranker()` to the `rerank()` method.
|
||||
|
||||
```python
|
||||
from lancedb.rerankers import CrossEncoderReranker
|
||||
|
||||
reranker = CrossEncoderReranker()
|
||||
|
||||
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
||||
```
|
||||
|
||||
|
||||
Arguments
|
||||
----------------
|
||||
* `model` : str, default `"cross-encoder/ms-marco-TinyBERT-L-6"`
|
||||
The name of the cross encoder model to use. Available cross encoder models can be found [here](https://www.sbert.net/docs/pretrained_cross-encoders.html)
|
||||
* `column` : str, default `"text"`
|
||||
The name of the column to use as input to the cross encoder model.
|
||||
* `device` : str, default `None`
|
||||
The device to use for the cross encoder model. If None, will use "cuda" if available, otherwise "cpu".
|
||||
|
||||
!!! Note
|
||||
Only returns `_relevance_score`. Does not support `return_score = "all"`.
|
||||
|
||||
|
||||
### ColBERT Reranker
|
||||
This reranker uses the ColBERT model to combine the results of semantic and full-text search. You can use it by passing `ColbertrReranker()` to the `rerank()` method.
|
||||
|
||||
ColBERT reranker model calculates relevance of given docs against the query and don't take existing fts and vector search scores into account, so it currently only supports `return_score="relevance"`. By default, it looks for `text` column to rerank the results. But you can specify the column name to use as input to the cross encoder model as described below.
|
||||
|
||||
```python
|
||||
from lancedb.rerankers import ColbertReranker
|
||||
|
||||
reranker = ColbertReranker()
|
||||
|
||||
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
||||
```
|
||||
|
||||
Arguments
|
||||
----------------
|
||||
* `model_name` : `str`, default `"colbert-ir/colbertv2.0"`
|
||||
The name of the cross encoder model to use.
|
||||
* `column` : `str`, default `"text"`
|
||||
The name of the column to use as input to the cross encoder model.
|
||||
* `return_score` : `str`, default `"relevance"`
|
||||
options are `"relevance"` or `"all"`. Only `"relevance"` is supported for now.
|
||||
|
||||
!!! Note
|
||||
Only returns `_relevance_score`. Does not support `return_score = "all"`.
|
||||
|
||||
### OpenAI Reranker
|
||||
This reranker uses the OpenAI API to combine the results of semantic and full-text search. You can use it by passing `OpenaiReranker()` to the `rerank()` method.
|
||||
|
||||
!!! Note
|
||||
This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental.
|
||||
|
||||
!!! Tip
|
||||
You might run out of token limit so set the search `limits` based on your token limit.
|
||||
|
||||
```python
|
||||
from lancedb.rerankers import OpenaiReranker
|
||||
|
||||
reranker = OpenaiReranker()
|
||||
|
||||
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
||||
```
|
||||
|
||||
Arguments
|
||||
----------------
|
||||
`model_name` : `str`, default `"gpt-3.5-turbo-1106"`
|
||||
The name of the cross encoder model to use.
|
||||
`column` : `str`, default `"text"`
|
||||
The name of the column to use as input to the cross encoder model.
|
||||
`return_score` : `str`, default `"relevance"`
|
||||
options are "relevance" or "all". Only "relevance" is supported for now.
|
||||
`api_key` : `str`, default `None`
|
||||
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
|
||||
|
||||
|
||||
## Building Custom Rerankers
|
||||
You can build your own custom reranker by subclassing the `Reranker` class and implementing the `rerank_hybrid()` method. Here's an example of a custom reranker that combines the results of semantic and full-text search using a linear combination of the scores.
|
||||
|
||||
The `Reranker` base interface comes with a `merge_results()` method that can be used to combine the results of semantic and full-text search. This is a vanilla merging algorithm that simply concatenates the results and removes the duplicates without taking the scores into consideration. It only keeps the first copy of the row encountered. This works well in cases that don't require the scores of semantic and full-text search to combine the results. If you want to use the scores or want to support `return_score="all"`, you'll need to implement your own merging algorithm.
|
||||
|
||||
```python
|
||||
|
||||
from lancedb.rerankers import Reranker
|
||||
import pyarrow as pa
|
||||
|
||||
class MyReranker(Reranker):
|
||||
def __init__(self, param1, param2, ..., return_score="relevance"):
|
||||
super().__init__(return_score)
|
||||
self.param1 = param1
|
||||
self.param2 = param2
|
||||
|
||||
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table):
|
||||
# Use the built-in merging function
|
||||
combined_result = self.merge_results(vector_results, fts_results)
|
||||
|
||||
# Do something with the combined results
|
||||
# ...
|
||||
|
||||
# Return the combined results
|
||||
return combined_result
|
||||
|
||||
```
|
||||
|
||||
You can also accept additional arguments like a filter along with fts and vector search results
|
||||
|
||||
```python
|
||||
|
||||
from lancedb.rerankers import Reranker
|
||||
import pyarrow as pa
|
||||
|
||||
class MyReranker(Reranker):
|
||||
...
|
||||
|
||||
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table, filter: str):
|
||||
# Use the built-in merging function
|
||||
combined_result = self.merge_results(vector_results, fts_results)
|
||||
|
||||
# Do something with the combined results & filter
|
||||
# ...
|
||||
|
||||
# Return the combined results
|
||||
return combined_result
|
||||
|
||||
```
|
||||
@@ -1,62 +0,0 @@
|
||||
# Javascript API Reference
|
||||
|
||||
This section contains the API reference for LanceDB Javascript API.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
npm install vectordb
|
||||
```
|
||||
|
||||
This will download the appropriate native library for your platform. We currently
|
||||
support:
|
||||
|
||||
* Linux (x86_64 and aarch64)
|
||||
* MacOS (Intel and ARM/M1/M2)
|
||||
* Windows (x86_64 only)
|
||||
|
||||
We do not yet support musl-based Linux (such as Alpine Linux) or arch64 Windows.
|
||||
|
||||
## Usage
|
||||
|
||||
### Basic Example
|
||||
Connect to a local directory
|
||||
```javascript
|
||||
const lancedb = require('vectordb');
|
||||
//connect to a local database
|
||||
const db = await lancedb.connect('data/sample-lancedb');
|
||||
```
|
||||
Connect to LancdDB cloud
|
||||
```javascript
|
||||
connect to LanceDB Cloud
|
||||
const db = await lancedb.connect({
|
||||
uri: "db://my-database",
|
||||
apiKey: "sk_...",
|
||||
region: "us-east-1"
|
||||
});
|
||||
```
|
||||
Create a table followed by a search
|
||||
```javascript
|
||||
const table = await db.createTable("my_table",
|
||||
[{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
|
||||
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 }])
|
||||
const results = await table.search([0.1, 0.3]).limit(20).execute();
|
||||
console.log(results);
|
||||
```
|
||||
|
||||
The [examples](./examples) folder contains complete examples.
|
||||
|
||||
## Table of contents
|
||||
### Connection
|
||||
Connect to a LanceDB database.
|
||||
|
||||
- [Connection](interfaces/Connection.md)
|
||||
### Table
|
||||
A Table is a collection of Records in a LanceDB Database.
|
||||
|
||||
- [Table](interfaces/Table.md)
|
||||
### Query
|
||||
The LanceDB Query
|
||||
|
||||
- [Query](classes/Query.md)
|
||||
|
||||
@@ -38,4 +38,4 @@ A [WriteMode](../enums/WriteMode.md) to use on this operation
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:1070](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1070)
|
||||
[index.ts:1019](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1019)
|
||||
|
||||
@@ -46,7 +46,7 @@ A connection to a LanceDB database.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:496](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L496)
|
||||
[index.ts:489](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L489)
|
||||
|
||||
## Properties
|
||||
|
||||
@@ -56,7 +56,7 @@ A connection to a LanceDB database.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:494](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L494)
|
||||
[index.ts:487](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L487)
|
||||
|
||||
___
|
||||
|
||||
@@ -74,7 +74,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:493](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L493)
|
||||
[index.ts:486](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L486)
|
||||
|
||||
## Accessors
|
||||
|
||||
@@ -92,7 +92,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:501](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L501)
|
||||
[index.ts:494](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L494)
|
||||
|
||||
## Methods
|
||||
|
||||
@@ -113,7 +113,7 @@ Creates a new Table, optionally initializing it with new data.
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `name` | `string` \| [`CreateTableOptions`](../interfaces/CreateTableOptions.md)\<`T`\> |
|
||||
| `data?` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] |
|
||||
| `data?` | `Record`\<`string`, `unknown`\>[] |
|
||||
| `optsOrEmbedding?` | [`WriteOptions`](../interfaces/WriteOptions.md) \| [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
|
||||
| `opt?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
|
||||
|
||||
@@ -127,7 +127,7 @@ Creates a new Table, optionally initializing it with new data.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:549](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L549)
|
||||
[index.ts:542](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L542)
|
||||
|
||||
___
|
||||
|
||||
@@ -158,7 +158,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:583](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L583)
|
||||
[index.ts:576](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L576)
|
||||
|
||||
___
|
||||
|
||||
@@ -184,7 +184,7 @@ Drop an existing table.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:637](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L637)
|
||||
[index.ts:630](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L630)
|
||||
|
||||
___
|
||||
|
||||
@@ -210,7 +210,7 @@ Open a table in the database.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:517](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L517)
|
||||
[index.ts:510](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L510)
|
||||
|
||||
▸ **openTable**\<`T`\>(`name`, `embeddings`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||
|
||||
@@ -239,7 +239,7 @@ Connection.openTable
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:525](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L525)
|
||||
[index.ts:518](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L518)
|
||||
|
||||
▸ **openTable**\<`T`\>(`name`, `embeddings?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||
|
||||
@@ -266,7 +266,7 @@ Connection.openTable
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:529](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L529)
|
||||
[index.ts:522](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L522)
|
||||
|
||||
___
|
||||
|
||||
@@ -286,4 +286,4 @@ Get the names of all tables in the database.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:508](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L508)
|
||||
[index.ts:501](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L501)
|
||||
|
||||
@@ -74,7 +74,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:649](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L649)
|
||||
[index.ts:642](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L642)
|
||||
|
||||
• **new LocalTable**\<`T`\>(`tbl`, `name`, `options`, `embeddings`)
|
||||
|
||||
@@ -95,7 +95,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:656](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L656)
|
||||
[index.ts:649](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L649)
|
||||
|
||||
## Properties
|
||||
|
||||
@@ -105,7 +105,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:646](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L646)
|
||||
[index.ts:639](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L639)
|
||||
|
||||
___
|
||||
|
||||
@@ -115,7 +115,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:645](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L645)
|
||||
[index.ts:638](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L638)
|
||||
|
||||
___
|
||||
|
||||
@@ -125,7 +125,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:644](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L644)
|
||||
[index.ts:637](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L637)
|
||||
|
||||
___
|
||||
|
||||
@@ -143,7 +143,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:647](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L647)
|
||||
[index.ts:640](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L640)
|
||||
|
||||
___
|
||||
|
||||
@@ -153,7 +153,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:643](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L643)
|
||||
[index.ts:636](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L636)
|
||||
|
||||
___
|
||||
|
||||
@@ -179,7 +179,7 @@ Creates a filter query to find all rows matching the specified criteria
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:695](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L695)
|
||||
[index.ts:688](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L688)
|
||||
|
||||
## Accessors
|
||||
|
||||
@@ -197,7 +197,7 @@ Creates a filter query to find all rows matching the specified criteria
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:675](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L675)
|
||||
[index.ts:668](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L668)
|
||||
|
||||
___
|
||||
|
||||
@@ -215,7 +215,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:875](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L875)
|
||||
[index.ts:849](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L849)
|
||||
|
||||
## Methods
|
||||
|
||||
@@ -229,7 +229,7 @@ Insert records into this Table.
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -243,7 +243,7 @@ The number of rows added to the table
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:703](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L703)
|
||||
[index.ts:696](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L696)
|
||||
|
||||
___
|
||||
|
||||
@@ -257,7 +257,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:887](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L887)
|
||||
[index.ts:861](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L861)
|
||||
|
||||
___
|
||||
|
||||
@@ -267,8 +267,6 @@ ___
|
||||
|
||||
Clean up old versions of the table, freeing disk space.
|
||||
|
||||
Note: this API is not yet available on LanceDB Cloud
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
@@ -282,7 +280,7 @@ Note: this API is not yet available on LanceDB Cloud
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:833](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L833)
|
||||
[index.ts:808](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L808)
|
||||
|
||||
___
|
||||
|
||||
@@ -295,8 +293,6 @@ Run the compaction process on the table.
|
||||
This can be run after making several small appends to optimize the table
|
||||
for faster reads.
|
||||
|
||||
Note: this API is not yet available on LanceDB Cloud
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
@@ -311,7 +307,7 @@ Metrics about the compaction operation.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:857](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L857)
|
||||
[index.ts:831](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L831)
|
||||
|
||||
___
|
||||
|
||||
@@ -331,7 +327,7 @@ Returns the number of rows in this table.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:773](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L773)
|
||||
[index.ts:749](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L749)
|
||||
|
||||
___
|
||||
|
||||
@@ -361,7 +357,7 @@ VectorIndexParams.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:758](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L758)
|
||||
[index.ts:734](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L734)
|
||||
|
||||
___
|
||||
|
||||
@@ -396,7 +392,7 @@ await table.createScalarIndex('my_col')
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:766](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L766)
|
||||
[index.ts:742](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L742)
|
||||
|
||||
___
|
||||
|
||||
@@ -422,7 +418,7 @@ Delete rows from this table.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:782](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L782)
|
||||
[index.ts:758](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L758)
|
||||
|
||||
___
|
||||
|
||||
@@ -444,7 +440,7 @@ Creates a filter query to find all rows matching the specified criteria
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:691](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L691)
|
||||
[index.ts:684](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L684)
|
||||
|
||||
___
|
||||
|
||||
@@ -458,7 +454,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:880](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L880)
|
||||
[index.ts:854](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L854)
|
||||
|
||||
___
|
||||
|
||||
@@ -484,7 +480,7 @@ Get statistics about an index.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:871](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L871)
|
||||
[index.ts:845](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L845)
|
||||
|
||||
___
|
||||
|
||||
@@ -504,7 +500,7 @@ List the indicies on this table.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:867](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L867)
|
||||
[index.ts:841](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L841)
|
||||
|
||||
___
|
||||
|
||||
@@ -518,7 +514,7 @@ Insert records into this Table, replacing its contents.
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table Type Table is ArrowTable |
|
||||
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -532,7 +528,7 @@ The number of rows added to the table
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:732](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L732)
|
||||
[index.ts:716](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L716)
|
||||
|
||||
___
|
||||
|
||||
@@ -558,7 +554,7 @@ Creates a search query to find the nearest neighbors of the given search term
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:683](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L683)
|
||||
[index.ts:676](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L676)
|
||||
|
||||
___
|
||||
|
||||
@@ -584,4 +580,4 @@ Update rows in this table.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:795](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L795)
|
||||
[index.ts:771](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L771)
|
||||
|
||||
@@ -1,56 +0,0 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / MakeArrowTableOptions
|
||||
|
||||
# Class: MakeArrowTableOptions
|
||||
|
||||
Options to control the makeArrowTable call.
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](MakeArrowTableOptions.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [schema](MakeArrowTableOptions.md#schema)
|
||||
- [vectorColumns](MakeArrowTableOptions.md#vectorcolumns)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
|
||||
• **new MakeArrowTableOptions**(`values?`)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `values?` | `Partial`\<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)\> |
|
||||
|
||||
#### Defined in
|
||||
|
||||
[arrow.ts:56](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/arrow.ts#L56)
|
||||
|
||||
## Properties
|
||||
|
||||
### schema
|
||||
|
||||
• `Optional` **schema**: `Schema`\<`any`\>
|
||||
|
||||
Provided schema.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[arrow.ts:49](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/arrow.ts#L49)
|
||||
|
||||
___
|
||||
|
||||
### vectorColumns
|
||||
|
||||
• **vectorColumns**: `Record`\<`string`, `VectorColumnOptions`\>
|
||||
|
||||
Vector columns
|
||||
|
||||
#### Defined in
|
||||
|
||||
[arrow.ts:52](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/arrow.ts#L52)
|
||||
@@ -40,7 +40,7 @@ An embedding function that automatically creates vector representation for a giv
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:22](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/embedding/openai.ts#L22)
|
||||
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L21)
|
||||
|
||||
## Properties
|
||||
|
||||
@@ -50,17 +50,17 @@ An embedding function that automatically creates vector representation for a giv
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:20](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/embedding/openai.ts#L20)
|
||||
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L19)
|
||||
|
||||
___
|
||||
|
||||
### \_openai
|
||||
|
||||
• `Private` `Readonly` **\_openai**: `OpenAI`
|
||||
• `Private` `Readonly` **\_openai**: `any`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/embedding/openai.ts#L19)
|
||||
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L18)
|
||||
|
||||
___
|
||||
|
||||
@@ -76,7 +76,7 @@ The name of the column that will be used as input for the Embedding Function.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:56](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/embedding/openai.ts#L56)
|
||||
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L50)
|
||||
|
||||
## Methods
|
||||
|
||||
@@ -102,4 +102,4 @@ Creates a vector representation for the given values.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:43](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/embedding/openai.ts#L43)
|
||||
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L38)
|
||||
|
||||
@@ -65,7 +65,7 @@ A builder for nearest neighbor queries for LanceDB.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:38](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L38)
|
||||
[query.ts:38](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L38)
|
||||
|
||||
## Properties
|
||||
|
||||
@@ -75,7 +75,7 @@ A builder for nearest neighbor queries for LanceDB.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:36](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L36)
|
||||
[query.ts:36](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L36)
|
||||
|
||||
___
|
||||
|
||||
@@ -85,7 +85,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:33](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L33)
|
||||
[query.ts:33](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L33)
|
||||
|
||||
___
|
||||
|
||||
@@ -95,7 +95,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:29](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L29)
|
||||
[query.ts:29](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L29)
|
||||
|
||||
___
|
||||
|
||||
@@ -105,7 +105,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:34](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L34)
|
||||
[query.ts:34](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L34)
|
||||
|
||||
___
|
||||
|
||||
@@ -115,7 +115,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:31](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L31)
|
||||
[query.ts:31](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L31)
|
||||
|
||||
___
|
||||
|
||||
@@ -125,7 +125,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:35](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L35)
|
||||
[query.ts:35](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L35)
|
||||
|
||||
___
|
||||
|
||||
@@ -135,7 +135,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:26](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L26)
|
||||
[query.ts:26](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L26)
|
||||
|
||||
___
|
||||
|
||||
@@ -145,7 +145,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:28](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L28)
|
||||
[query.ts:28](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L28)
|
||||
|
||||
___
|
||||
|
||||
@@ -155,7 +155,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:30](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L30)
|
||||
[query.ts:30](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L30)
|
||||
|
||||
___
|
||||
|
||||
@@ -165,7 +165,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:32](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L32)
|
||||
[query.ts:32](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L32)
|
||||
|
||||
___
|
||||
|
||||
@@ -175,7 +175,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:27](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L27)
|
||||
[query.ts:27](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L27)
|
||||
|
||||
___
|
||||
|
||||
@@ -201,7 +201,7 @@ A filter statement to be applied to this query.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:87](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L87)
|
||||
[query.ts:87](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L87)
|
||||
|
||||
## Methods
|
||||
|
||||
@@ -223,7 +223,7 @@ Execute the query and return the results as an Array of Objects
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:115](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L115)
|
||||
[query.ts:115](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L115)
|
||||
|
||||
___
|
||||
|
||||
@@ -245,7 +245,7 @@ A filter statement to be applied to this query.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:82](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L82)
|
||||
[query.ts:82](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L82)
|
||||
|
||||
___
|
||||
|
||||
@@ -259,7 +259,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:143](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L143)
|
||||
[query.ts:142](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L142)
|
||||
|
||||
___
|
||||
|
||||
@@ -281,7 +281,7 @@ Sets the number of results that will be returned
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:55](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L55)
|
||||
[query.ts:55](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L55)
|
||||
|
||||
___
|
||||
|
||||
@@ -307,7 +307,7 @@ MetricType for the different options
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:102](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L102)
|
||||
[query.ts:102](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L102)
|
||||
|
||||
___
|
||||
|
||||
@@ -329,7 +329,7 @@ The number of probes used. A higher number makes search more accurate but also s
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:73](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L73)
|
||||
[query.ts:73](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L73)
|
||||
|
||||
___
|
||||
|
||||
@@ -349,7 +349,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:107](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L107)
|
||||
[query.ts:107](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L107)
|
||||
|
||||
___
|
||||
|
||||
@@ -371,7 +371,7 @@ Refine the results by reading extra elements and re-ranking them in memory.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:64](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L64)
|
||||
[query.ts:64](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L64)
|
||||
|
||||
___
|
||||
|
||||
@@ -393,4 +393,4 @@ Return only the specified columns.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:93](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/query.ts#L93)
|
||||
[query.ts:93](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L93)
|
||||
|
||||
@@ -1,224 +0,0 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / RemoteConnection
|
||||
|
||||
# Class: RemoteConnection
|
||||
|
||||
Remote connection.
|
||||
|
||||
## Implements
|
||||
|
||||
- [`Connection`](../interfaces/Connection.md)
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](RemoteConnection.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [\_client](RemoteConnection.md#_client)
|
||||
- [\_dbName](RemoteConnection.md#_dbname)
|
||||
|
||||
### Accessors
|
||||
|
||||
- [uri](RemoteConnection.md#uri)
|
||||
|
||||
### Methods
|
||||
|
||||
- [createTable](RemoteConnection.md#createtable)
|
||||
- [dropTable](RemoteConnection.md#droptable)
|
||||
- [openTable](RemoteConnection.md#opentable)
|
||||
- [tableNames](RemoteConnection.md#tablenames)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
|
||||
• **new RemoteConnection**(`opts`)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `opts` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) |
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:48](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L48)
|
||||
|
||||
## Properties
|
||||
|
||||
### \_client
|
||||
|
||||
• `Private` `Readonly` **\_client**: `HttpLancedbClient`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:45](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L45)
|
||||
|
||||
___
|
||||
|
||||
### \_dbName
|
||||
|
||||
• `Private` `Readonly` **\_dbName**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:46](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L46)
|
||||
|
||||
## Accessors
|
||||
|
||||
### uri
|
||||
|
||||
• `get` **uri**(): `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`string`
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Connection](../interfaces/Connection.md).[uri](../interfaces/Connection.md#uri)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:75](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L75)
|
||||
|
||||
## Methods
|
||||
|
||||
### createTable
|
||||
|
||||
▸ **createTable**\<`T`\>(`nameOrOpts`, `data?`, `optsOrEmbedding?`, `opt?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||
|
||||
Creates a new Table, optionally initializing it with new data.
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name |
|
||||
| :------ |
|
||||
| `T` |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `nameOrOpts` | `string` \| [`CreateTableOptions`](../interfaces/CreateTableOptions.md)\<`T`\> |
|
||||
| `data?` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] |
|
||||
| `optsOrEmbedding?` | [`WriteOptions`](../interfaces/WriteOptions.md) \| [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
|
||||
| `opt?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Connection](../interfaces/Connection.md).[createTable](../interfaces/Connection.md#createtable)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:107](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L107)
|
||||
|
||||
___
|
||||
|
||||
### dropTable
|
||||
|
||||
▸ **dropTable**(`name`): `Promise`\<`void`\>
|
||||
|
||||
Drop an existing table.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table to drop. |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`void`\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Connection](../interfaces/Connection.md).[dropTable](../interfaces/Connection.md#droptable)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:175](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L175)
|
||||
|
||||
___
|
||||
|
||||
### openTable
|
||||
|
||||
▸ **openTable**(`name`): `Promise`\<[`Table`](../interfaces/Table.md)\<`number`[]\>\>
|
||||
|
||||
Open a table in the database.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<[`Table`](../interfaces/Table.md)\<`number`[]\>\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Connection](../interfaces/Connection.md).[openTable](../interfaces/Connection.md#opentable)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:91](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L91)
|
||||
|
||||
▸ **openTable**\<`T`\>(`name`, `embeddings`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name |
|
||||
| :------ |
|
||||
| `T` |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `name` | `string` |
|
||||
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
Connection.openTable
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:92](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L92)
|
||||
|
||||
___
|
||||
|
||||
### tableNames
|
||||
|
||||
▸ **tableNames**(`pageToken?`, `limit?`): `Promise`\<`string`[]\>
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Default value |
|
||||
| :------ | :------ | :------ |
|
||||
| `pageToken` | `string` | `''` |
|
||||
| `limit` | `number` | `10` |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`string`[]\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Connection](../interfaces/Connection.md).[tableNames](../interfaces/Connection.md#tablenames)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:80](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L80)
|
||||
@@ -1,470 +0,0 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / RemoteTable
|
||||
|
||||
# Class: RemoteTable\<T\>
|
||||
|
||||
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
|
||||
|
||||
## Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `number`[] |
|
||||
|
||||
## Implements
|
||||
|
||||
- [`Table`](../interfaces/Table.md)\<`T`\>
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](RemoteTable.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [\_client](RemoteTable.md#_client)
|
||||
- [\_embeddings](RemoteTable.md#_embeddings)
|
||||
- [\_name](RemoteTable.md#_name)
|
||||
|
||||
### Accessors
|
||||
|
||||
- [name](RemoteTable.md#name)
|
||||
- [schema](RemoteTable.md#schema)
|
||||
|
||||
### Methods
|
||||
|
||||
- [add](RemoteTable.md#add)
|
||||
- [countRows](RemoteTable.md#countrows)
|
||||
- [createIndex](RemoteTable.md#createindex)
|
||||
- [createScalarIndex](RemoteTable.md#createscalarindex)
|
||||
- [delete](RemoteTable.md#delete)
|
||||
- [indexStats](RemoteTable.md#indexstats)
|
||||
- [listIndices](RemoteTable.md#listindices)
|
||||
- [overwrite](RemoteTable.md#overwrite)
|
||||
- [search](RemoteTable.md#search)
|
||||
- [update](RemoteTable.md#update)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
|
||||
• **new RemoteTable**\<`T`\>(`client`, `name`)
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `number`[] |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `client` | `HttpLancedbClient` |
|
||||
| `name` | `string` |
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:234](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L234)
|
||||
|
||||
• **new RemoteTable**\<`T`\>(`client`, `name`, `embeddings`)
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `number`[] |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `client` | `HttpLancedbClient` |
|
||||
| `name` | `string` |
|
||||
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:235](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L235)
|
||||
|
||||
## Properties
|
||||
|
||||
### \_client
|
||||
|
||||
• `Private` `Readonly` **\_client**: `HttpLancedbClient`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:230](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L230)
|
||||
|
||||
___
|
||||
|
||||
### \_embeddings
|
||||
|
||||
• `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:231](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L231)
|
||||
|
||||
___
|
||||
|
||||
### \_name
|
||||
|
||||
• `Private` `Readonly` **\_name**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:232](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L232)
|
||||
|
||||
## Accessors
|
||||
|
||||
### name
|
||||
|
||||
• `get` **name**(): `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`string`
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[name](../interfaces/Table.md#name)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:250](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L250)
|
||||
|
||||
___
|
||||
|
||||
### schema
|
||||
|
||||
• `get` **schema**(): `Promise`\<`any`\>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`any`\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[schema](../interfaces/Table.md#schema)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:254](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L254)
|
||||
|
||||
## Methods
|
||||
|
||||
### add
|
||||
|
||||
▸ **add**(`data`): `Promise`\<`number`\>
|
||||
|
||||
Insert records into this Table.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`number`\>
|
||||
|
||||
The number of rows added to the table
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[add](../interfaces/Table.md#add)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:273](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L273)
|
||||
|
||||
___
|
||||
|
||||
### countRows
|
||||
|
||||
▸ **countRows**(): `Promise`\<`number`\>
|
||||
|
||||
Returns the number of rows in this table.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`number`\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[countRows](../interfaces/Table.md#countrows)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:372](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L372)
|
||||
|
||||
___
|
||||
|
||||
### createIndex
|
||||
|
||||
▸ **createIndex**(`indexParams`): `Promise`\<`void`\>
|
||||
|
||||
Create an ANN index on this Table vector index.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `indexParams` | [`IvfPQIndexConfig`](../interfaces/IvfPQIndexConfig.md) | The parameters of this Index, |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`void`\>
|
||||
|
||||
**`See`**
|
||||
|
||||
VectorIndexParams.
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[createIndex](../interfaces/Table.md#createindex)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:326](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L326)
|
||||
|
||||
___
|
||||
|
||||
### createScalarIndex
|
||||
|
||||
▸ **createScalarIndex**(`column`, `replace`): `Promise`\<`void`\>
|
||||
|
||||
Create a scalar index on this Table for the given column
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `column` | `string` | The column to index |
|
||||
| `replace` | `boolean` | If false, fail if an index already exists on the column Scalar indices, like vector indices, can be used to speed up scans. A scalar index can speed up scans that contain filter expressions on the indexed column. For example, the following scan will be faster if the column `my_col` has a scalar index: ```ts const con = await lancedb.connect('./.lancedb'); const table = await con.openTable('images'); const results = await table.where('my_col = 7').execute(); ``` Scalar indices can also speed up scans containing a vector search and a prefilter: ```ts const con = await lancedb.connect('././lancedb'); const table = await con.openTable('images'); const results = await table.search([1.0, 2.0]).where('my_col != 7').prefilter(true); ``` Scalar indices can only speed up scans for basic filters using equality, comparison, range (e.g. `my_col BETWEEN 0 AND 100`), and set membership (e.g. `my_col IN (0, 1, 2)`) Scalar indices can be used if the filter contains multiple indexed columns and the filter criteria are AND'd or OR'd together (e.g. `my_col < 0 AND other_col> 100`) Scalar indices may be used if the filter contains non-indexed columns but, depending on the structure of the filter, they may not be usable. For example, if the column `not_indexed` does not have a scalar index then the filter `my_col = 0 OR not_indexed = 1` will not be able to use any scalar index on `my_col`. |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`void`\>
|
||||
|
||||
**`Examples`**
|
||||
|
||||
```ts
|
||||
const con = await lancedb.connect('././lancedb')
|
||||
const table = await con.openTable('images')
|
||||
await table.createScalarIndex('my_col')
|
||||
```
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[createScalarIndex](../interfaces/Table.md#createscalarindex)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:368](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L368)
|
||||
|
||||
___
|
||||
|
||||
### delete
|
||||
|
||||
▸ **delete**(`filter`): `Promise`\<`void`\>
|
||||
|
||||
Delete rows from this table.
|
||||
|
||||
This can be used to delete a single row, many rows, all rows, or
|
||||
sometimes no rows (if your predicate matches nothing).
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`void`\>
|
||||
|
||||
**`Examples`**
|
||||
|
||||
```ts
|
||||
const con = await lancedb.connect("./.lancedb")
|
||||
const data = [
|
||||
{id: 1, vector: [1, 2]},
|
||||
{id: 2, vector: [3, 4]},
|
||||
{id: 3, vector: [5, 6]},
|
||||
];
|
||||
const tbl = await con.createTable("my_table", data)
|
||||
await tbl.delete("id = 2")
|
||||
await tbl.countRows() // Returns 2
|
||||
```
|
||||
|
||||
If you have a list of values to delete, you can combine them into a
|
||||
stringified list and use the `IN` operator:
|
||||
|
||||
```ts
|
||||
const to_remove = [1, 5];
|
||||
await tbl.delete(`id IN (${to_remove.join(",")})`)
|
||||
await tbl.countRows() // Returns 1
|
||||
```
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[delete](../interfaces/Table.md#delete)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:377](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L377)
|
||||
|
||||
___
|
||||
|
||||
### indexStats
|
||||
|
||||
▸ **indexStats**(`indexUuid`): `Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
|
||||
|
||||
Get statistics about an index.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `indexUuid` | `string` |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[indexStats](../interfaces/Table.md#indexstats)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:414](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L414)
|
||||
|
||||
___
|
||||
|
||||
### listIndices
|
||||
|
||||
▸ **listIndices**(): `Promise`\<[`VectorIndex`](../interfaces/VectorIndex.md)[]\>
|
||||
|
||||
List the indicies on this table.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<[`VectorIndex`](../interfaces/VectorIndex.md)[]\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[listIndices](../interfaces/Table.md#listindices)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:403](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L403)
|
||||
|
||||
___
|
||||
|
||||
### overwrite
|
||||
|
||||
▸ **overwrite**(`data`): `Promise`\<`number`\>
|
||||
|
||||
Insert records into this Table, replacing its contents.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`number`\>
|
||||
|
||||
The number of rows added to the table
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[overwrite](../interfaces/Table.md#overwrite)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:300](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L300)
|
||||
|
||||
___
|
||||
|
||||
### search
|
||||
|
||||
▸ **search**(`query`): [`Query`](Query.md)\<`T`\>
|
||||
|
||||
Creates a search query to find the nearest neighbors of the given search term
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `query` | `T` | The query search term |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)\<`T`\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#search)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:269](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L269)
|
||||
|
||||
___
|
||||
|
||||
### update
|
||||
|
||||
▸ **update**(`args`): `Promise`\<`void`\>
|
||||
|
||||
Update rows in this table.
|
||||
|
||||
This can be used to update a single row, many rows, all rows, or
|
||||
sometimes no rows (if your predicate matches nothing).
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `args` | [`UpdateArgs`](../interfaces/UpdateArgs.md) \| [`UpdateSqlArgs`](../interfaces/UpdateSqlArgs.md) | see [UpdateArgs](../interfaces/UpdateArgs.md) and [UpdateSqlArgs](../interfaces/UpdateSqlArgs.md) for more details |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`void`\>
|
||||
|
||||
**`Examples`**
|
||||
|
||||
```ts
|
||||
const con = await lancedb.connect("./.lancedb")
|
||||
const data = [
|
||||
{id: 1, vector: [3, 3], name: 'Ye'},
|
||||
{id: 2, vector: [4, 4], name: 'Mike'},
|
||||
];
|
||||
const tbl = await con.createTable("my_table", data)
|
||||
|
||||
await tbl.update({
|
||||
where: "id = 2",
|
||||
values: { vector: [2, 2], name: "Michael" },
|
||||
})
|
||||
|
||||
let results = await tbl.search([1, 1]).execute();
|
||||
// Returns [
|
||||
// {id: 2, vector: [2, 2], name: 'Michael'}
|
||||
// {id: 1, vector: [3, 3], name: 'Ye'}
|
||||
// ]
|
||||
```
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[update](../interfaces/Table.md#update)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[remote/index.ts:383](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/remote/index.ts#L383)
|
||||
@@ -22,7 +22,7 @@ Cosine distance
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:1092](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1092)
|
||||
[index.ts:1041](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1041)
|
||||
|
||||
___
|
||||
|
||||
@@ -34,7 +34,7 @@ Dot product
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:1097](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1097)
|
||||
[index.ts:1046](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1046)
|
||||
|
||||
___
|
||||
|
||||
@@ -46,4 +46,4 @@ Euclidean distance
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:1087](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1087)
|
||||
[index.ts:1036](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1036)
|
||||
|
||||
@@ -22,7 +22,7 @@ Append new data to the table.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:1058](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1058)
|
||||
[index.ts:1007](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1007)
|
||||
|
||||
___
|
||||
|
||||
@@ -34,7 +34,7 @@ Create a new [Table](../interfaces/Table.md).
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:1054](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1054)
|
||||
[index.ts:1003](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1003)
|
||||
|
||||
___
|
||||
|
||||
@@ -46,4 +46,4 @@ Overwrite the existing [Table](../interfaces/Table.md) if presented.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:1056](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1056)
|
||||
[index.ts:1005](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1005)
|
||||
|
||||
@@ -18,7 +18,7 @@
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:57](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L57)
|
||||
[index.ts:54](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L54)
|
||||
|
||||
___
|
||||
|
||||
@@ -28,7 +28,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:59](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L59)
|
||||
[index.ts:56](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L56)
|
||||
|
||||
___
|
||||
|
||||
@@ -38,4 +38,4 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:61](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L61)
|
||||
[index.ts:58](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L58)
|
||||
|
||||
@@ -19,7 +19,7 @@ The number of bytes removed from disk.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:904](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L904)
|
||||
[index.ts:878](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L878)
|
||||
|
||||
___
|
||||
|
||||
@@ -31,4 +31,4 @@ The number of old table versions removed.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:908](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L908)
|
||||
[index.ts:882](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L882)
|
||||
|
||||
@@ -22,7 +22,7 @@ fragments added.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:959](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L959)
|
||||
[index.ts:933](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L933)
|
||||
|
||||
___
|
||||
|
||||
@@ -35,7 +35,7 @@ file.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:954](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L954)
|
||||
[index.ts:928](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L928)
|
||||
|
||||
___
|
||||
|
||||
@@ -47,7 +47,7 @@ The number of new fragments that were created.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:949](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L949)
|
||||
[index.ts:923](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L923)
|
||||
|
||||
___
|
||||
|
||||
@@ -59,4 +59,4 @@ The number of fragments that were removed.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:945](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L945)
|
||||
[index.ts:919](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L919)
|
||||
|
||||
@@ -24,7 +24,7 @@ Default is true.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:927](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L927)
|
||||
[index.ts:901](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L901)
|
||||
|
||||
___
|
||||
|
||||
@@ -38,7 +38,7 @@ the deleted rows. Default is 10%.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:933](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L933)
|
||||
[index.ts:907](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L907)
|
||||
|
||||
___
|
||||
|
||||
@@ -50,7 +50,7 @@ The maximum number of rows per group. Defaults to 1024.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:921](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L921)
|
||||
[index.ts:895](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L895)
|
||||
|
||||
___
|
||||
|
||||
@@ -63,7 +63,7 @@ the number of cores on the machine.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:938](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L938)
|
||||
[index.ts:912](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L912)
|
||||
|
||||
___
|
||||
|
||||
@@ -77,4 +77,4 @@ Defaults to 1024 * 1024.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:917](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L917)
|
||||
[index.ts:891](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L891)
|
||||
|
||||
@@ -9,7 +9,6 @@ Connection could be local against filesystem or remote against a server.
|
||||
## Implemented by
|
||||
|
||||
- [`LocalConnection`](../classes/LocalConnection.md)
|
||||
- [`RemoteConnection`](../classes/RemoteConnection.md)
|
||||
|
||||
## Table of contents
|
||||
|
||||
@@ -32,7 +31,7 @@ Connection could be local against filesystem or remote against a server.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:188](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L188)
|
||||
[index.ts:183](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L183)
|
||||
|
||||
## Methods
|
||||
|
||||
@@ -60,7 +59,7 @@ Creates a new Table, optionally initializing it with new data.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:212](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L212)
|
||||
[index.ts:207](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L207)
|
||||
|
||||
▸ **createTable**(`name`, `data`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
|
||||
|
||||
@@ -71,7 +70,7 @@ Creates a new Table and initialize it with new data.
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
||||
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -79,7 +78,7 @@ Creates a new Table and initialize it with new data.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:226](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L226)
|
||||
[index.ts:221](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L221)
|
||||
|
||||
▸ **createTable**(`name`, `data`, `options`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
|
||||
|
||||
@@ -90,7 +89,7 @@ Creates a new Table and initialize it with new data.
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
||||
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
||||
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
|
||||
|
||||
#### Returns
|
||||
@@ -99,7 +98,7 @@ Creates a new Table and initialize it with new data.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:238](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L238)
|
||||
[index.ts:233](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L233)
|
||||
|
||||
▸ **createTable**\<`T`\>(`name`, `data`, `embeddings`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
|
||||
|
||||
@@ -116,7 +115,7 @@ Creates a new Table and initialize it with new data.
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
||||
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
||||
| `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
|
||||
|
||||
#### Returns
|
||||
@@ -125,7 +124,7 @@ Creates a new Table and initialize it with new data.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:251](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L251)
|
||||
[index.ts:246](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L246)
|
||||
|
||||
▸ **createTable**\<`T`\>(`name`, `data`, `embeddings`, `options`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
|
||||
|
||||
@@ -142,7 +141,7 @@ Creates a new Table and initialize it with new data.
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
||||
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
||||
| `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
|
||||
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
|
||||
|
||||
@@ -152,7 +151,7 @@ Creates a new Table and initialize it with new data.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:264](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L264)
|
||||
[index.ts:259](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L259)
|
||||
|
||||
___
|
||||
|
||||
@@ -174,7 +173,7 @@ Drop an existing table.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:275](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L275)
|
||||
[index.ts:270](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L270)
|
||||
|
||||
___
|
||||
|
||||
@@ -203,7 +202,7 @@ Open a table in the database.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:198](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L198)
|
||||
[index.ts:193](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L193)
|
||||
|
||||
___
|
||||
|
||||
@@ -217,4 +216,4 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:190](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L190)
|
||||
[index.ts:185](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L185)
|
||||
|
||||
@@ -19,13 +19,9 @@
|
||||
|
||||
• `Optional` **apiKey**: `string`
|
||||
|
||||
API key for the remote connections
|
||||
|
||||
Can also be passed by setting environment variable `LANCEDB_API_KEY`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:88](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L88)
|
||||
[index.ts:81](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L81)
|
||||
|
||||
___
|
||||
|
||||
@@ -39,7 +35,7 @@ If not provided, LanceDB will use the default credentials provider chain.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:78](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L78)
|
||||
[index.ts:75](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L75)
|
||||
|
||||
___
|
||||
|
||||
@@ -51,7 +47,7 @@ AWS region to connect to. Default is defaultAwsRegion.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:81](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L81)
|
||||
[index.ts:78](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L78)
|
||||
|
||||
___
|
||||
|
||||
@@ -59,13 +55,13 @@ ___
|
||||
|
||||
• `Optional` **hostOverride**: `string`
|
||||
|
||||
Override the host URL for the remote connection.
|
||||
Override the host URL for the remote connections.
|
||||
|
||||
This is useful for local testing.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:98](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L98)
|
||||
[index.ts:91](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L91)
|
||||
|
||||
___
|
||||
|
||||
@@ -77,7 +73,7 @@ Region to connect
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:91](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L91)
|
||||
[index.ts:84](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L84)
|
||||
|
||||
___
|
||||
|
||||
@@ -89,8 +85,8 @@ LanceDB database URI.
|
||||
|
||||
- `/path/to/database` - local database
|
||||
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
|
||||
- `db://host:port` - remote database (LanceDB cloud)
|
||||
- `db://host:port` - remote database (SaaS)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:72](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L72)
|
||||
[index.ts:69](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L69)
|
||||
|
||||
@@ -26,7 +26,7 @@
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:121](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L121)
|
||||
[index.ts:116](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L116)
|
||||
|
||||
___
|
||||
|
||||
@@ -36,7 +36,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:127](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L127)
|
||||
[index.ts:122](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L122)
|
||||
|
||||
___
|
||||
|
||||
@@ -46,7 +46,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:118](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L118)
|
||||
[index.ts:113](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L113)
|
||||
|
||||
___
|
||||
|
||||
@@ -56,7 +56,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:124](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L124)
|
||||
[index.ts:119](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L119)
|
||||
|
||||
___
|
||||
|
||||
@@ -66,4 +66,4 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:130](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L130)
|
||||
[index.ts:125](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L125)
|
||||
|
||||
@@ -45,7 +45,7 @@ Creates a vector representation for the given values.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/embedding/embedding_function.ts#L27)
|
||||
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/embedding_function.ts#L27)
|
||||
|
||||
___
|
||||
|
||||
@@ -57,4 +57,4 @@ The name of the column that will be used as input for the Embedding Function.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/embedding/embedding_function.ts#L22)
|
||||
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/embedding_function.ts#L22)
|
||||
|
||||
@@ -17,7 +17,7 @@
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:485](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L485)
|
||||
[index.ts:478](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L478)
|
||||
|
||||
___
|
||||
|
||||
@@ -27,4 +27,4 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:486](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L486)
|
||||
[index.ts:479](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L479)
|
||||
|
||||
@@ -29,7 +29,7 @@ The column to be indexed
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:968](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L968)
|
||||
[index.ts:942](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L942)
|
||||
|
||||
___
|
||||
|
||||
@@ -41,7 +41,7 @@ Cache size of the index
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:1042](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1042)
|
||||
[index.ts:991](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L991)
|
||||
|
||||
___
|
||||
|
||||
@@ -49,11 +49,11 @@ ___
|
||||
|
||||
• `Optional` **index\_name**: `string`
|
||||
|
||||
Note: this parameter is not supported on LanceDB Cloud
|
||||
A unique name for the index
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:976](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L976)
|
||||
[index.ts:947](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L947)
|
||||
|
||||
___
|
||||
|
||||
@@ -61,11 +61,11 @@ ___
|
||||
|
||||
• `Optional` **max\_iters**: `number`
|
||||
|
||||
Note: this parameter is not yet supported on LanceDB Cloud
|
||||
The max number of iterations for kmeans training.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:997](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L997)
|
||||
[index.ts:962](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L962)
|
||||
|
||||
___
|
||||
|
||||
@@ -73,11 +73,11 @@ ___
|
||||
|
||||
• `Optional` **max\_opq\_iters**: `number`
|
||||
|
||||
Note: this parameter is not yet supported on LanceDB Cloud
|
||||
Max number of iterations to train OPQ, if `use_opq` is true.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:1029](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1029)
|
||||
[index.ts:981](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L981)
|
||||
|
||||
___
|
||||
|
||||
@@ -89,7 +89,7 @@ Metric type, L2 or Cosine
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:981](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L981)
|
||||
[index.ts:952](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L952)
|
||||
|
||||
___
|
||||
|
||||
@@ -97,11 +97,11 @@ ___
|
||||
|
||||
• `Optional` **num\_bits**: `number`
|
||||
|
||||
Note: this parameter is not yet supported on LanceDB Cloud
|
||||
The number of bits to present one PQ centroid.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:1021](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1021)
|
||||
[index.ts:976](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L976)
|
||||
|
||||
___
|
||||
|
||||
@@ -109,11 +109,11 @@ ___
|
||||
|
||||
• `Optional` **num\_partitions**: `number`
|
||||
|
||||
Note: this parameter is not yet supported on LanceDB Cloud
|
||||
The number of partitions this index
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:989](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L989)
|
||||
[index.ts:957](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L957)
|
||||
|
||||
___
|
||||
|
||||
@@ -121,11 +121,11 @@ ___
|
||||
|
||||
• `Optional` **num\_sub\_vectors**: `number`
|
||||
|
||||
Note: this parameter is not yet supported on LanceDB Cloud
|
||||
Number of subvectors to build PQ code
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:1013](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1013)
|
||||
[index.ts:972](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L972)
|
||||
|
||||
___
|
||||
|
||||
@@ -133,11 +133,11 @@ ___
|
||||
|
||||
• `Optional` **replace**: `boolean`
|
||||
|
||||
Note: this parameter is not yet supported on LanceDB Cloud
|
||||
Replace an existing index with the same name if it exists.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:1037](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1037)
|
||||
[index.ts:986](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L986)
|
||||
|
||||
___
|
||||
|
||||
@@ -147,7 +147,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:1044](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1044)
|
||||
[index.ts:993](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L993)
|
||||
|
||||
___
|
||||
|
||||
@@ -155,8 +155,8 @@ ___
|
||||
|
||||
• `Optional` **use\_opq**: `boolean`
|
||||
|
||||
Note: this parameter is not yet supported on LanceDB Cloud
|
||||
Train as optimized product quantization.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:1005](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1005)
|
||||
[index.ts:967](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L967)
|
||||
|
||||
@@ -13,7 +13,6 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
||||
## Implemented by
|
||||
|
||||
- [`LocalTable`](../classes/LocalTable.md)
|
||||
- [`RemoteTable`](../classes/RemoteTable.md)
|
||||
|
||||
## Table of contents
|
||||
|
||||
@@ -36,7 +35,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
||||
|
||||
### add
|
||||
|
||||
• **add**: (`data`: `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
|
||||
• **add**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
|
||||
|
||||
#### Type declaration
|
||||
|
||||
@@ -48,7 +47,7 @@ Insert records into this Table.
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||
|
||||
##### Returns
|
||||
|
||||
@@ -58,7 +57,7 @@ The number of rows added to the table
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:296](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L296)
|
||||
[index.ts:291](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L291)
|
||||
|
||||
___
|
||||
|
||||
@@ -78,7 +77,7 @@ Returns the number of rows in this table.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:368](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L368)
|
||||
[index.ts:361](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L361)
|
||||
|
||||
___
|
||||
|
||||
@@ -108,7 +107,7 @@ VectorIndexParams.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:313](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L313)
|
||||
[index.ts:306](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L306)
|
||||
|
||||
___
|
||||
|
||||
@@ -143,7 +142,7 @@ await table.createScalarIndex('my_col')
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:363](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L363)
|
||||
[index.ts:356](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L356)
|
||||
|
||||
___
|
||||
|
||||
@@ -195,7 +194,7 @@ await tbl.countRows() // Returns 1
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:402](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L402)
|
||||
[index.ts:395](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L395)
|
||||
|
||||
___
|
||||
|
||||
@@ -221,7 +220,7 @@ Get statistics about an index.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:445](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L445)
|
||||
[index.ts:438](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L438)
|
||||
|
||||
___
|
||||
|
||||
@@ -241,7 +240,7 @@ List the indicies on this table.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:440](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L440)
|
||||
[index.ts:433](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L433)
|
||||
|
||||
___
|
||||
|
||||
@@ -251,13 +250,13 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:282](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L282)
|
||||
[index.ts:277](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L277)
|
||||
|
||||
___
|
||||
|
||||
### overwrite
|
||||
|
||||
• **overwrite**: (`data`: `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
|
||||
• **overwrite**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
|
||||
|
||||
#### Type declaration
|
||||
|
||||
@@ -269,7 +268,7 @@ Insert records into this Table, replacing its contents.
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||
|
||||
##### Returns
|
||||
|
||||
@@ -279,7 +278,7 @@ The number of rows added to the table
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:304](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L304)
|
||||
[index.ts:299](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L299)
|
||||
|
||||
___
|
||||
|
||||
@@ -289,7 +288,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:447](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L447)
|
||||
[index.ts:440](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L440)
|
||||
|
||||
___
|
||||
|
||||
@@ -315,7 +314,7 @@ Creates a search query to find the nearest neighbors of the given search term
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:288](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L288)
|
||||
[index.ts:283](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L283)
|
||||
|
||||
___
|
||||
|
||||
@@ -366,4 +365,4 @@ let results = await tbl.search([1, 1]).execute();
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:435](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L435)
|
||||
[index.ts:428](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L428)
|
||||
|
||||
@@ -20,7 +20,7 @@ new values to set
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:461](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L461)
|
||||
[index.ts:454](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L454)
|
||||
|
||||
___
|
||||
|
||||
@@ -33,4 +33,4 @@ in which case all rows will be updated.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:455](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L455)
|
||||
[index.ts:448](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L448)
|
||||
|
||||
@@ -20,7 +20,7 @@ new values to set as SQL expressions.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:475](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L475)
|
||||
[index.ts:468](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L468)
|
||||
|
||||
___
|
||||
|
||||
@@ -33,4 +33,4 @@ in which case all rows will be updated.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:469](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L469)
|
||||
[index.ts:462](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L462)
|
||||
|
||||
@@ -18,7 +18,7 @@
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:479](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L479)
|
||||
[index.ts:472](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L472)
|
||||
|
||||
___
|
||||
|
||||
@@ -28,7 +28,7 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:480](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L480)
|
||||
[index.ts:473](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L473)
|
||||
|
||||
___
|
||||
|
||||
@@ -38,4 +38,4 @@ ___
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:481](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L481)
|
||||
[index.ts:474](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L474)
|
||||
|
||||
@@ -24,4 +24,4 @@ A [WriteMode](../enums/WriteMode.md) to use on this operation
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:1066](https://github.com/lancedb/lancedb/blob/5228ca4/node/src/index.ts#L1066)
|
||||
[index.ts:1015](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1015)
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 50,
|
||||
"execution_count": 2,
|
||||
"id": "c1b4e34b-a49c-471d-a343-a5940bb5138a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -23,7 +23,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 3,
|
||||
"id": "4e5a8d07-d9a1-48c1-913a-8e0629289579",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -44,7 +44,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 4,
|
||||
"id": "5df12f66-8d99-43ad-8d0b-22189ec0a6b9",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -62,7 +62,7 @@
|
||||
"long: [[-122.7,-74.1]]"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -90,7 +90,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 5,
|
||||
"id": "f4d87ae9-0ccb-48eb-b31d-bb8f2370e47e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -108,7 +108,7 @@
|
||||
"long: [[-122.7,-74.1]]"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -135,10 +135,17 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 6,
|
||||
"id": "25f34bcf-fca0-4431-8601-eac95d1bd347",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[2024-01-31T18:59:33Z WARN lance::dataset] No existing dataset at /Users/qian/Work/LanceDB/lancedb/docs/src/notebooks/.lancedb/table3.lance, it will be created\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
@@ -148,7 +155,7 @@
|
||||
"long: float"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -171,45 +178,51 @@
|
||||
"id": "4df51925-7ca2-4005-9c72-38b3d26240c6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### From PyArrow Tables\n",
|
||||
"### From an Arrow Table\n",
|
||||
"\n",
|
||||
"You can also create LanceDB tables directly from pyarrow tables"
|
||||
"You can also create LanceDB tables directly from pyarrow tables. LanceDB supports float16 type."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 7,
|
||||
"id": "90a880f6-be43-4c9d-ba65-0b05197c0f6f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"vector: fixed_size_list<item: float>[2]\n",
|
||||
" child 0, item: float\n",
|
||||
"item: string\n",
|
||||
"price: double"
|
||||
"vector: fixed_size_list<item: halffloat>[16]\n",
|
||||
" child 0, item: halffloat\n",
|
||||
"text: string"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"table = pa.Table.from_arrays(\n",
|
||||
" [\n",
|
||||
" pa.array([[3.1, 4.1], [5.9, 26.5]],\n",
|
||||
" pa.list_(pa.float32(), 2)),\n",
|
||||
" pa.array([\"foo\", \"bar\"]),\n",
|
||||
" pa.array([10.0, 20.0]),\n",
|
||||
" ],\n",
|
||||
" [\"vector\", \"item\", \"price\"],\n",
|
||||
" )\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"db = lancedb.connect(\"db\")\n",
|
||||
"dim = 16\n",
|
||||
"total = 2\n",
|
||||
"schema = pa.schema(\n",
|
||||
" [\n",
|
||||
" pa.field(\"vector\", pa.list_(pa.float16(), dim)),\n",
|
||||
" pa.field(\"text\", pa.string())\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"data = pa.Table.from_arrays(\n",
|
||||
" [\n",
|
||||
" pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],\n",
|
||||
" pa.list_(pa.float16(), dim)),\n",
|
||||
" pa.array([\"foo\", \"bar\"])\n",
|
||||
" ],\n",
|
||||
" [\"vector\", \"text\"],\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"tbl = db.create_table(\"test1\", table, mode=\"overwrite\")\n",
|
||||
"tbl = db.create_table(\"f16_tbl\", data, schema=schema)\n",
|
||||
"tbl.schema"
|
||||
]
|
||||
},
|
||||
@@ -225,7 +238,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": 8,
|
||||
"id": "d81121d7-e4b7-447c-a48c-974b6ebb464a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -240,7 +253,7 @@
|
||||
"imdb_id: int64 not null"
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -282,7 +295,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": 9,
|
||||
"id": "bc247142-4e3c-41a2-b94c-8e00d2c2a508",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -292,7 +305,7 @@
|
||||
"LanceTable(table4)"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -333,7 +346,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"execution_count": 10,
|
||||
"id": "25ad3523-e0c9-4c28-b3df-38189c4e0e5f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -346,7 +359,7 @@
|
||||
"price: double not null"
|
||||
]
|
||||
},
|
||||
"execution_count": 16,
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -385,7 +398,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"execution_count": 11,
|
||||
"id": "2814173a-eacc-4dd8-a64d-6312b44582cc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -411,7 +424,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"execution_count": 12,
|
||||
"id": "df9e13c0-41f6-437f-9dfa-2fd71d3d9c45",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -421,7 +434,7 @@
|
||||
"['table6', 'table4', 'table5', 'movielens_small']"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -432,7 +445,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"execution_count": 13,
|
||||
"id": "9343f5ad-6024-42ee-ac2f-6c1471df8679",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -541,7 +554,7 @@
|
||||
"9 [5.9, 26.5] bar 20.0"
|
||||
]
|
||||
},
|
||||
"execution_count": 20,
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -564,7 +577,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"execution_count": 14,
|
||||
"id": "8a56250f-73a1-4c26-a6ad-5c7a0ce3a9ab",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -590,7 +603,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"execution_count": 15,
|
||||
"id": "030c7057-b98e-4e2f-be14-b8c1f927f83c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -621,7 +634,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"execution_count": 16,
|
||||
"id": "e7a17de2-08d2-41b7-bd05-f63d1045ab1f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -629,16 +642,16 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"32\n"
|
||||
"22\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"17"
|
||||
"12"
|
||||
]
|
||||
},
|
||||
"execution_count": 24,
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -661,7 +674,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"execution_count": 17,
|
||||
"id": "fe3310bd-08f4-4a22-a63b-b3127d22f9f7",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -681,25 +694,20 @@
|
||||
"8 [3.1, 4.1] foo 10.0\n",
|
||||
"9 [3.1, 4.1] foo 10.0\n",
|
||||
"10 [3.1, 4.1] foo 10.0\n",
|
||||
"11 [3.1, 4.1] foo 10.0\n",
|
||||
"12 [3.1, 4.1] foo 10.0\n",
|
||||
"13 [3.1, 4.1] foo 10.0\n",
|
||||
"14 [3.1, 4.1] foo 10.0\n",
|
||||
"15 [3.1, 4.1] foo 10.0\n",
|
||||
"16 [3.1, 4.1] foo 10.0\n"
|
||||
"11 [3.1, 4.1] foo 10.0\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"ename": "OSError",
|
||||
"evalue": "LanceError(IO): Error during planning: column foo does not exist",
|
||||
"evalue": "LanceError(IO): Error during planning: column foo does not exist, /Users/runner/work/lance/lance/rust/lance-core/src/error.rs:212:23",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
|
||||
"Cell \u001b[0;32mIn[30], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m to_remove \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mstr\u001b[39m(v) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m to_remove)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(tbl\u001b[38;5;241m.\u001b[39mto_pandas())\n\u001b[0;32m----> 4\u001b[0m \u001b[43mtbl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mitem IN (\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mto_remove\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m)\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 5\u001b[0m tbl\u001b[38;5;241m.\u001b[39mto_pandas()\n",
|
||||
"File \u001b[0;32m~/Documents/lancedb/lancedb/python/lancedb/table.py:610\u001b[0m, in \u001b[0;36mLanceTable.delete\u001b[0;34m(self, where)\u001b[0m\n\u001b[1;32m 609\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdelete\u001b[39m(\u001b[38;5;28mself\u001b[39m, where: \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m--> 610\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mwhere\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/Documents/lancedb/lancedb/env/lib/python3.11/site-packages/lance/dataset.py:489\u001b[0m, in \u001b[0;36mLanceDataset.delete\u001b[0;34m(self, predicate)\u001b[0m\n\u001b[1;32m 487\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(predicate, pa\u001b[38;5;241m.\u001b[39mcompute\u001b[38;5;241m.\u001b[39mExpression):\n\u001b[1;32m 488\u001b[0m predicate \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(predicate)\n\u001b[0;32m--> 489\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpredicate\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"\u001b[0;31mOSError\u001b[0m: LanceError(IO): Error during planning: column foo does not exist"
|
||||
"Cell \u001b[0;32mIn[17], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m to_remove \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mstr\u001b[39m(v) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m to_remove)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(tbl\u001b[38;5;241m.\u001b[39mto_pandas())\n\u001b[0;32m----> 4\u001b[0m \u001b[43mtbl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mitem IN (\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mto_remove\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m)\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/Work/LanceDB/lancedb/docs/doc-venv/lib/python3.11/site-packages/lancedb/table.py:872\u001b[0m, in \u001b[0;36mLanceTable.delete\u001b[0;34m(self, where)\u001b[0m\n\u001b[1;32m 871\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdelete\u001b[39m(\u001b[38;5;28mself\u001b[39m, where: \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m--> 872\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mwhere\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/Work/LanceDB/lancedb/docs/doc-venv/lib/python3.11/site-packages/lance/dataset.py:596\u001b[0m, in \u001b[0;36mLanceDataset.delete\u001b[0;34m(self, predicate)\u001b[0m\n\u001b[1;32m 594\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(predicate, pa\u001b[38;5;241m.\u001b[39mcompute\u001b[38;5;241m.\u001b[39mExpression):\n\u001b[1;32m 595\u001b[0m predicate \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(predicate)\n\u001b[0;32m--> 596\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpredicate\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"\u001b[0;31mOSError\u001b[0m: LanceError(IO): Error during planning: column foo does not exist, /Users/runner/work/lance/lance/rust/lance-core/src/error.rs:212:23"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -712,7 +720,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 43,
|
||||
"execution_count": null,
|
||||
"id": "87d5bc21-847f-4c81-b56e-f6dbe5d05aac",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -729,7 +737,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 44,
|
||||
"execution_count": null,
|
||||
"id": "9cba4519-eb3a-4941-ab7e-873d762e750f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -742,7 +750,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 46,
|
||||
"execution_count": null,
|
||||
"id": "5bdc9801-d5ed-4871-92d0-88b27108e788",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -817,7 +825,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
"version": "3.11.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -58,6 +58,8 @@ pip install lancedb
|
||||
|
||||
::: lancedb.schema.vector
|
||||
|
||||
::: lancedb.merge.LanceMergeInsertBuilder
|
||||
|
||||
## Integrations
|
||||
|
||||
### Pydantic
|
||||
|
||||
20
docs/src/python/saas-python.md
Normal file
20
docs/src/python/saas-python.md
Normal file
@@ -0,0 +1,20 @@
|
||||
# Python API Reference (SaaS)
|
||||
|
||||
This section contains the API reference for the SaaS Python API.
|
||||
|
||||
## Installation
|
||||
|
||||
```shell
|
||||
pip install lancedb
|
||||
```
|
||||
|
||||
## Connection
|
||||
|
||||
::: lancedb.connect
|
||||
|
||||
::: lancedb.remote.db.RemoteDBConnection
|
||||
|
||||
## Table
|
||||
|
||||
::: lancedb.remote.table.RemoteTable
|
||||
|
||||
@@ -2,27 +2,26 @@
|
||||
|
||||
A vector search finds the approximate or exact nearest neighbors to a given query vector.
|
||||
|
||||
* In a recommendation system or search engine, you can find similar records to
|
||||
the one you searched.
|
||||
* In LLM and other AI applications,
|
||||
each data point can be represented by [embeddings generated from existing models](embeddings/index.md),
|
||||
following which the search returns the most relevant features.
|
||||
- In a recommendation system or search engine, you can find similar records to
|
||||
the one you searched.
|
||||
- In LLM and other AI applications,
|
||||
each data point can be represented by [embeddings generated from existing models](embeddings/index.md),
|
||||
following which the search returns the most relevant features.
|
||||
|
||||
## Distance metrics
|
||||
|
||||
Distance metrics are a measure of the similarity between a pair of vectors.
|
||||
Currently, LanceDB supports the following metrics:
|
||||
|
||||
| Metric | Description |
|
||||
| ----------- | ------------------------------------ |
|
||||
| `l2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
|
||||
| `cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)|
|
||||
| `dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
|
||||
|
||||
| Metric | Description |
|
||||
| -------- | --------------------------------------------------------------------------- |
|
||||
| `l2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
|
||||
| `cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity) |
|
||||
| `dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
|
||||
|
||||
## Exhaustive search (kNN)
|
||||
|
||||
If you do not create a vector index, LanceDB exhaustively scans the *entire* vector space
|
||||
If you do not create a vector index, LanceDB exhaustively scans the _entire_ vector space
|
||||
and compute the distance to every vector in order to find the exact nearest neighbors. This is effectively a kNN search.
|
||||
|
||||
<!-- Setup Code
|
||||
@@ -38,22 +37,9 @@ data = [{"vector": row, "item": f"item {i}"}
|
||||
db.create_table("my_vectors", data=data)
|
||||
```
|
||||
-->
|
||||
<!-- Setup Code
|
||||
```javascript
|
||||
const vectordb_setup = require('vectordb')
|
||||
const db_setup = await vectordb_setup.connect('data/sample-lancedb')
|
||||
|
||||
let data = []
|
||||
for (let i = 0; i < 10_000; i++) {
|
||||
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
||||
}
|
||||
await db_setup.createTable('my_vectors', data)
|
||||
```
|
||||
-->
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
import numpy as np
|
||||
@@ -70,17 +56,12 @@ await db_setup.createTable('my_vectors', data)
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript
|
||||
const vectordb = require('vectordb')
|
||||
const db = await vectordb.connect('data/sample-lancedb')
|
||||
--8<-- "docs/src/search_legacy.ts:import"
|
||||
|
||||
const tbl = await db.openTable("my_vectors")
|
||||
|
||||
const results_1 = await tbl.search(Array(1536).fill(1.2))
|
||||
.limit(10)
|
||||
.execute()
|
||||
--8<-- "docs/src/search_legacy.ts:search1"
|
||||
```
|
||||
|
||||
By default, `l2` will be used as metric type. You can specify the metric type as
|
||||
By default, `l2` will be used as metric type. You can specify the metric type as
|
||||
`cosine` or `dot` if required.
|
||||
|
||||
=== "Python"
|
||||
@@ -92,20 +73,16 @@ By default, `l2` will be used as metric type. You can specify the metric type as
|
||||
.to_list()
|
||||
```
|
||||
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript
|
||||
const results_2 = await tbl.search(Array(1536).fill(1.2))
|
||||
.metricType("cosine")
|
||||
.limit(10)
|
||||
.execute()
|
||||
--8<-- "docs/src/search_legacy.ts:search2"
|
||||
```
|
||||
|
||||
## Approximate nearest neighbor (ANN) search
|
||||
|
||||
To perform scalable vector retrieval with acceptable latencies, it's common to build a vector index.
|
||||
While the exhaustive search is guaranteed to always return 100% recall, the approximate nature of
|
||||
While the exhaustive search is guaranteed to always return 100% recall, the approximate nature of
|
||||
an ANN search means that using an index often involves a trade-off between recall and latency.
|
||||
|
||||
See the [IVF_PQ index](./concepts/index_ivfpq.md.md) for a deeper description of how `IVF_PQ`
|
||||
@@ -117,7 +94,9 @@ LanceDB returns vector search results via different formats commonly used in pyt
|
||||
Let's create a LanceDB table with a nested schema:
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
|
||||
from datetime import datetime
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
@@ -153,7 +132,7 @@ Let's create a LanceDB table with a nested schema:
|
||||
### As a PyArrow table
|
||||
|
||||
Using `to_arrow()` we can get the results back as a pyarrow Table.
|
||||
This result table has the same columns as the LanceDB table, with
|
||||
This result table has the same columns as the LanceDB table, with
|
||||
the addition of an `_distance` column for vector search or a `score`
|
||||
column for full text search.
|
||||
|
||||
@@ -169,11 +148,11 @@ Let's create a LanceDB table with a nested schema:
|
||||
tbl.search(np.random.randn(1536)).to_pandas()
|
||||
```
|
||||
|
||||
While other formats like Arrow/Pydantic/Python dicts have a natural
|
||||
way to handle nested schemas, pandas can only store nested data as a
|
||||
While other formats like Arrow/Pydantic/Python dicts have a natural
|
||||
way to handle nested schemas, pandas can only store nested data as a
|
||||
python dict column, which makes it difficult to support nested references.
|
||||
So for convenience, you can also tell LanceDB to flatten a nested schema
|
||||
when creating the pandas dataframe.
|
||||
So for convenience, you can also tell LanceDB to flatten a nested schema
|
||||
when creating the pandas dataframe.
|
||||
|
||||
```python
|
||||
tbl.search(np.random.randn(1536)).to_pandas(flatten=True)
|
||||
|
||||
41
docs/src/search_legacy.ts
Normal file
41
docs/src/search_legacy.ts
Normal file
@@ -0,0 +1,41 @@
|
||||
// --8<-- [start:import]
|
||||
import * as lancedb from "vectordb";
|
||||
// --8<-- [end:import]
|
||||
import * as fs from "fs";
|
||||
|
||||
async function setup() {
|
||||
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
|
||||
const db = await lancedb.connect("data/sample-lancedb");
|
||||
|
||||
let data = [];
|
||||
for (let i = 0; i < 10_000; i++) {
|
||||
data.push({
|
||||
vector: Array(1536).fill(i),
|
||||
id: `${i}`,
|
||||
content: "",
|
||||
longId: `${i}`,
|
||||
});
|
||||
}
|
||||
await db.createTable("my_vectors", data);
|
||||
}
|
||||
|
||||
async () => {
|
||||
await setup();
|
||||
|
||||
// --8<-- [start:search1]
|
||||
const db = await lancedb.connect("data/sample-lancedb");
|
||||
const tbl = await db.openTable("my_vectors");
|
||||
|
||||
const results_1 = await tbl.search(Array(1536).fill(1.2)).limit(10).execute();
|
||||
// --8<-- [end:search1]
|
||||
|
||||
// --8<-- [start:search2]
|
||||
const results_2 = await tbl
|
||||
.search(Array(1536).fill(1.2))
|
||||
.metricType(lancedb.MetricType.Cosine)
|
||||
.limit(10)
|
||||
.execute();
|
||||
// --8<-- [end:search2]
|
||||
|
||||
console.log("search: done");
|
||||
};
|
||||
@@ -8,7 +8,7 @@ option that performs the filter prior to vector search. This can be useful to na
|
||||
the search space on a very large dataset to reduce query latency.
|
||||
|
||||
<!-- Setup Code
|
||||
```python
|
||||
```python
|
||||
import lancedb
|
||||
import numpy as np
|
||||
uri = "data/sample-lancedb"
|
||||
@@ -21,7 +21,7 @@ tbl = db.create_table("my_vectors", data=data)
|
||||
```
|
||||
-->
|
||||
<!-- Setup Code
|
||||
```javascript
|
||||
```javascript
|
||||
const vectordb = require('vectordb')
|
||||
const db = await vectordb.connect('data/sample-lancedb')
|
||||
|
||||
@@ -34,6 +34,7 @@ const tbl = await db.createTable('myVectors', data)
|
||||
-->
|
||||
|
||||
=== "Python"
|
||||
|
||||
```py
|
||||
result = (
|
||||
tbl.search([0.5, 0.2])
|
||||
@@ -44,12 +45,9 @@ const tbl = await db.createTable('myVectors', data)
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript
|
||||
let result = await tbl.search(Array(1536).fill(0.5))
|
||||
.limit(1)
|
||||
.filter("id = 10")
|
||||
.prefilter(true)
|
||||
.execute()
|
||||
--8<-- "docs/src/sql_legacy.ts:search"
|
||||
```
|
||||
|
||||
## SQL filters
|
||||
@@ -60,14 +58,14 @@ It can be used during vector search, update, and deletion operations.
|
||||
|
||||
Currently, Lance supports a growing list of SQL expressions.
|
||||
|
||||
* ``>``, ``>=``, ``<``, ``<=``, ``=``
|
||||
* ``AND``, ``OR``, ``NOT``
|
||||
* ``IS NULL``, ``IS NOT NULL``
|
||||
* ``IS TRUE``, ``IS NOT TRUE``, ``IS FALSE``, ``IS NOT FALSE``
|
||||
* ``IN``
|
||||
* ``LIKE``, ``NOT LIKE``
|
||||
* ``CAST``
|
||||
* ``regexp_match(column, pattern)``
|
||||
- `>`, `>=`, `<`, `<=`, `=`
|
||||
- `AND`, `OR`, `NOT`
|
||||
- `IS NULL`, `IS NOT NULL`
|
||||
- `IS TRUE`, `IS NOT TRUE`, `IS FALSE`, `IS NOT FALSE`
|
||||
- `IN`
|
||||
- `LIKE`, `NOT LIKE`
|
||||
- `CAST`
|
||||
- `regexp_match(column, pattern)`
|
||||
|
||||
For example, the following filter string is acceptable:
|
||||
|
||||
@@ -82,29 +80,27 @@ For example, the following filter string is acceptable:
|
||||
=== "Javascript"
|
||||
|
||||
```javascript
|
||||
await tbl.search(Array(1536).fill(0))
|
||||
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
|
||||
.execute()
|
||||
--8<-- "docs/src/sql_legacy.ts:vec_search"
|
||||
```
|
||||
|
||||
|
||||
If your column name contains special characters or is a [SQL Keyword](https://docs.rs/sqlparser/latest/sqlparser/keywords/index.html),
|
||||
you can use backtick (`` ` ``) to escape it. For nested fields, each segment of the
|
||||
path must be wrapped in backticks.
|
||||
|
||||
=== "SQL"
|
||||
|
||||
```sql
|
||||
`CUBE` = 10 AND `column name with space` IS NOT NULL
|
||||
AND `nested with space`.`inner with space` < 2
|
||||
```
|
||||
|
||||
!!! warning
|
||||
Field names containing periods (``.``) are not supported.
|
||||
!!!warning "Field names containing periods (`.`) are not supported."
|
||||
|
||||
Literals for dates, timestamps, and decimals can be written by writing the string
|
||||
value after the type name. For example
|
||||
|
||||
=== "SQL"
|
||||
|
||||
```sql
|
||||
date_col = date '2021-01-01'
|
||||
and timestamp_col = timestamp '2021-01-01 00:00:00'
|
||||
@@ -114,49 +110,47 @@ value after the type name. For example
|
||||
For timestamp columns, the precision can be specified as a number in the type
|
||||
parameter. Microsecond precision (6) is the default.
|
||||
|
||||
| SQL | Time unit |
|
||||
|------------------|--------------|
|
||||
| ``timestamp(0)`` | Seconds |
|
||||
| ``timestamp(3)`` | Milliseconds |
|
||||
| ``timestamp(6)`` | Microseconds |
|
||||
| ``timestamp(9)`` | Nanoseconds |
|
||||
| SQL | Time unit |
|
||||
| -------------- | ------------ |
|
||||
| `timestamp(0)` | Seconds |
|
||||
| `timestamp(3)` | Milliseconds |
|
||||
| `timestamp(6)` | Microseconds |
|
||||
| `timestamp(9)` | Nanoseconds |
|
||||
|
||||
LanceDB internally stores data in [Apache Arrow](https://arrow.apache.org/) format.
|
||||
The mapping from SQL types to Arrow types is:
|
||||
|
||||
| SQL type | Arrow type |
|
||||
|----------|------------|
|
||||
| ``boolean`` | ``Boolean`` |
|
||||
| ``tinyint`` / ``tinyint unsigned`` | ``Int8`` / ``UInt8`` |
|
||||
| ``smallint`` / ``smallint unsigned`` | ``Int16`` / ``UInt16`` |
|
||||
| ``int`` or ``integer`` / ``int unsigned`` or ``integer unsigned`` | ``Int32`` / ``UInt32`` |
|
||||
| ``bigint`` / ``bigint unsigned`` | ``Int64`` / ``UInt64`` |
|
||||
| ``float`` | ``Float32`` |
|
||||
| ``double`` | ``Float64`` |
|
||||
| ``decimal(precision, scale)`` | ``Decimal128`` |
|
||||
| ``date`` | ``Date32`` |
|
||||
| ``timestamp`` | ``Timestamp`` [^1] |
|
||||
| ``string`` | ``Utf8`` |
|
||||
| ``binary`` | ``Binary`` |
|
||||
| SQL type | Arrow type |
|
||||
| --------------------------------------------------------- | ------------------ |
|
||||
| `boolean` | `Boolean` |
|
||||
| `tinyint` / `tinyint unsigned` | `Int8` / `UInt8` |
|
||||
| `smallint` / `smallint unsigned` | `Int16` / `UInt16` |
|
||||
| `int` or `integer` / `int unsigned` or `integer unsigned` | `Int32` / `UInt32` |
|
||||
| `bigint` / `bigint unsigned` | `Int64` / `UInt64` |
|
||||
| `float` | `Float32` |
|
||||
| `double` | `Float64` |
|
||||
| `decimal(precision, scale)` | `Decimal128` |
|
||||
| `date` | `Date32` |
|
||||
| `timestamp` | `Timestamp` [^1] |
|
||||
| `string` | `Utf8` |
|
||||
| `binary` | `Binary` |
|
||||
|
||||
[^1]: See precision mapping in previous table.
|
||||
|
||||
|
||||
## Filtering without Vector Search
|
||||
|
||||
You can also filter your data without search.
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search().where("id = 10").limit(10).to_arrow()
|
||||
```
|
||||
|
||||
```python
|
||||
tbl.search().where("id = 10").limit(10).to_arrow()
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
```javascript
|
||||
await tbl.where('id = 10').limit(10).execute()
|
||||
```
|
||||
|
||||
!!! warning
|
||||
If your table is large, this could potentially return a very large
|
||||
amount of data. Please be sure to use a `limit` clause unless
|
||||
you're sure you want to return the whole result set.
|
||||
```javascript
|
||||
--8<---- "docs/src/sql_legacy.ts:sql_search"
|
||||
```
|
||||
|
||||
!!!warning "If your table is large, this could potentially return a very large amount of data. Please be sure to use a `limit` clause unless you're sure you want to return the whole result set."
|
||||
|
||||
38
docs/src/sql_legacy.ts
Normal file
38
docs/src/sql_legacy.ts
Normal file
@@ -0,0 +1,38 @@
|
||||
import * as vectordb from "vectordb";
|
||||
|
||||
(async () => {
|
||||
const db = await vectordb.connect("data/sample-lancedb");
|
||||
|
||||
let data = [];
|
||||
for (let i = 0; i < 10_000; i++) {
|
||||
data.push({
|
||||
vector: Array(1536).fill(i),
|
||||
id: i,
|
||||
item: `item ${i}`,
|
||||
strId: `${i}`,
|
||||
});
|
||||
}
|
||||
const tbl = await db.createTable("myVectors", data);
|
||||
|
||||
// --8<-- [start:search]
|
||||
let result = await tbl
|
||||
.search(Array(1536).fill(0.5))
|
||||
.limit(1)
|
||||
.filter("id = 10")
|
||||
.prefilter(true)
|
||||
.execute();
|
||||
// --8<-- [end:search]
|
||||
|
||||
// --8<-- [start:vec_search]
|
||||
await tbl
|
||||
.search(Array(1536).fill(0))
|
||||
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
|
||||
.execute();
|
||||
// --8<-- [end:vec_search]
|
||||
|
||||
// --8<-- [start:sql_search]
|
||||
await tbl.filter("id = 10").limit(10).execute();
|
||||
// --8<-- [end:sql_search]
|
||||
|
||||
console.log("SQL search: done");
|
||||
})();
|
||||
@@ -1,55 +0,0 @@
|
||||
const glob = require("glob");
|
||||
const fs = require("fs");
|
||||
const path = require("path");
|
||||
|
||||
const globString = "../src/**/*.md";
|
||||
|
||||
const excludedGlobs = [
|
||||
"../src/fts.md",
|
||||
"../src/embedding.md",
|
||||
"../src/examples/*.md",
|
||||
"../src/guides/tables.md",
|
||||
"../src/guides/storage.md",
|
||||
"../src/embeddings/*.md",
|
||||
];
|
||||
|
||||
const nodePrefix = "javascript";
|
||||
const nodeFile = ".js";
|
||||
const nodeFolder = "node";
|
||||
const asyncPrefix = "(async () => {\n";
|
||||
const asyncSuffix = "})();";
|
||||
|
||||
function* yieldLines(lines, prefix, suffix) {
|
||||
let inCodeBlock = false;
|
||||
for (const line of lines) {
|
||||
if (line.trim().startsWith(prefix + nodePrefix)) {
|
||||
inCodeBlock = true;
|
||||
} else if (inCodeBlock && line.trim().startsWith(suffix)) {
|
||||
inCodeBlock = false;
|
||||
yield "\n";
|
||||
} else if (inCodeBlock) {
|
||||
yield line;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const files = glob.sync(globString, { recursive: true });
|
||||
const excludedFiles = glob.sync(excludedGlobs, { recursive: true });
|
||||
|
||||
for (const file of files.filter((file) => !excludedFiles.includes(file))) {
|
||||
const lines = [];
|
||||
const data = fs.readFileSync(file, "utf-8");
|
||||
const fileLines = data.split("\n");
|
||||
|
||||
for (const line of yieldLines(fileLines, "```", "```")) {
|
||||
lines.push(line);
|
||||
}
|
||||
|
||||
if (lines.length > 0) {
|
||||
const fileName = path.basename(file, ".md");
|
||||
const outPath = path.join(nodeFolder, fileName, `${fileName}${nodeFile}`);
|
||||
console.log(outPath)
|
||||
fs.mkdirSync(path.dirname(outPath), { recursive: true });
|
||||
fs.writeFileSync(outPath, asyncPrefix + "\n" + lines.join("\n") + asyncSuffix);
|
||||
}
|
||||
}
|
||||
@@ -14,6 +14,7 @@ excluded_globs = [
|
||||
"../src/concepts/*.md",
|
||||
"../src/ann_indexes.md",
|
||||
"../src/basic.md",
|
||||
"../src/hybrid_search.md",
|
||||
]
|
||||
|
||||
python_prefix = "py"
|
||||
@@ -48,6 +49,7 @@ def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
|
||||
if not skip_test:
|
||||
yield line[strip_length:]
|
||||
|
||||
|
||||
for file in filter(lambda file: file not in excluded_files, files):
|
||||
with open(file, "r") as f:
|
||||
lines = list(yield_lines(iter(f), "```", "```"))
|
||||
|
||||
@@ -1,13 +0,0 @@
|
||||
{
|
||||
"name": "lancedb-docs-test",
|
||||
"version": "1.0.0",
|
||||
"description": "",
|
||||
"author": "",
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"fs": "^0.0.1-security",
|
||||
"glob": "^10.2.7",
|
||||
"path": "^0.12.7",
|
||||
"vectordb": "https://gitpkg.now.sh/lancedb/lancedb/node?main"
|
||||
}
|
||||
}
|
||||
17
docs/tsconfig.json
Normal file
17
docs/tsconfig.json
Normal file
@@ -0,0 +1,17 @@
|
||||
{
|
||||
"include": [
|
||||
"src/*.ts",
|
||||
],
|
||||
"compilerOptions": {
|
||||
"target": "es2022",
|
||||
"module": "nodenext",
|
||||
"declaration": true,
|
||||
"outDir": "./dist",
|
||||
"strict": true,
|
||||
"allowJs": true,
|
||||
"resolveJsonModule": true,
|
||||
},
|
||||
"exclude": [
|
||||
"./dist/*",
|
||||
]
|
||||
}
|
||||
74
node/package-lock.json
generated
74
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.4.4",
|
||||
"version": "0.4.8",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.4.4",
|
||||
"version": "0.4.8",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -53,11 +53,11 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.4",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.4",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.4",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.4",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.4"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.8",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.8",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.8",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.8",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.8"
|
||||
}
|
||||
},
|
||||
"node_modules/@75lb/deep-merge": {
|
||||
@@ -328,6 +328,66 @@
|
||||
"@jridgewell/sourcemap-codec": "^1.4.10"
|
||||
}
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.4.8",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.8.tgz",
|
||||
"integrity": "sha512-FpnJaw7KmNdD/FtOw9AcmPL5P+L04AcnfPj9ZyEjN8iCwB/qaOGYgdfBv+EbEtfHIsqA12q/1BRduu9KdB6BIA==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"darwin"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.4.8",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.8.tgz",
|
||||
"integrity": "sha512-RafOEYyZIgphp8wPGuVLFaTc8aAqo0NCO1LQMx0mB0xV96vrdo0Mooivs+dYN3RFfSHtTKPw9O1Jc957Vp1TLg==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"darwin"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.4.8",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.8.tgz",
|
||||
"integrity": "sha512-WlbYNfj4+v1hBHUluF+hnlG/A0ZaQFdXBTGDfHQniL11o+n3emWm4ujP5nSAoQHXjSH9DaOTGr/N4Mc9Xe+luw==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.4.8",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.8.tgz",
|
||||
"integrity": "sha512-z+qFJrDqnNEv4JcwYDyt51PHmWjuM/XaOlSjpBnyyuUImeY+QcwctMuyXt8+Q4zhuqQR1AhLKrMwCU+YmMfk5g==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.4.8",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.8.tgz",
|
||||
"integrity": "sha512-VjUryVvEA04r0j4lU9pJy84cmjuQm1GhBzbPc8kwbn5voT4A6BPglrlNsU0Zc+j8Fbjyvauzw2lMEcMsF4F0rw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"win32"
|
||||
]
|
||||
},
|
||||
"node_modules/@neon-rs/cli": {
|
||||
"version": "0.0.160",
|
||||
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.4.4",
|
||||
"version": "0.4.8",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"main": "dist/index.js",
|
||||
"types": "dist/index.d.ts",
|
||||
"scripts": {
|
||||
"tsc": "tsc -b",
|
||||
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json && tsc -b",
|
||||
"build": "npm run tsc && cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
|
||||
"build-release": "npm run build -- --release",
|
||||
"test": "npm run tsc && mocha -recursive dist/test",
|
||||
"integration-test": "npm run tsc && mocha -recursive dist/integration_test",
|
||||
@@ -17,7 +17,11 @@
|
||||
},
|
||||
"repository": {
|
||||
"type": "git",
|
||||
"url": "https://github.com/lancedb/lancedb/node"
|
||||
"url": "https://github.com/lancedb/lancedb.git"
|
||||
},
|
||||
"homepage": "https://lancedb.github.io/lancedb/",
|
||||
"bugs": {
|
||||
"url": "https://github.com/lancedb/lancedb/issues"
|
||||
},
|
||||
"keywords": [
|
||||
"data-format",
|
||||
@@ -81,10 +85,10 @@
|
||||
}
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.4",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.4",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.4",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.4",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.4"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.8",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.8",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.8",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.8",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.8"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
// Copyright 2023 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License")
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
@@ -37,6 +37,7 @@ const {
|
||||
tableCountRows,
|
||||
tableDelete,
|
||||
tableUpdate,
|
||||
tableMergeInsert,
|
||||
tableCleanupOldVersions,
|
||||
tableCompactFiles,
|
||||
tableListIndices,
|
||||
@@ -49,7 +50,6 @@ export { Query }
|
||||
export type { EmbeddingFunction }
|
||||
export { OpenAIEmbeddingFunction } from './embedding/openai'
|
||||
export { makeArrowTable, type MakeArrowTableOptions } from './arrow'
|
||||
export { RemoteConnection, RemoteTable } from './remote'
|
||||
|
||||
const defaultAwsRegion = 'us-west-2'
|
||||
|
||||
@@ -164,6 +164,7 @@ export async function connect (
|
||||
{
|
||||
uri: '',
|
||||
awsCredentials: undefined,
|
||||
awsRegion: defaultAwsRegion,
|
||||
apiKey: undefined,
|
||||
region: defaultAwsRegion
|
||||
},
|
||||
@@ -175,7 +176,13 @@ export async function connect (
|
||||
// Remote connection
|
||||
return new RemoteConnection(opts)
|
||||
}
|
||||
const db = await databaseNew(opts.uri)
|
||||
const db = await databaseNew(
|
||||
opts.uri,
|
||||
opts.awsCredentials?.accessKeyId,
|
||||
opts.awsCredentials?.secretKey,
|
||||
opts.awsCredentials?.sessionToken,
|
||||
opts.awsRegion
|
||||
)
|
||||
return new LocalConnection(db, opts)
|
||||
}
|
||||
|
||||
@@ -365,7 +372,7 @@ export interface Table<T = number[]> {
|
||||
/**
|
||||
* Returns the number of rows in this table.
|
||||
*/
|
||||
countRows: () => Promise<number>
|
||||
countRows: (filter?: string) => Promise<number>
|
||||
|
||||
/**
|
||||
* Delete rows from this table.
|
||||
@@ -434,6 +441,38 @@ export interface Table<T = number[]> {
|
||||
*/
|
||||
update: (args: UpdateArgs | UpdateSqlArgs) => Promise<void>
|
||||
|
||||
/**
|
||||
* Runs a "merge insert" operation on the table
|
||||
*
|
||||
* This operation can add rows, update rows, and remove rows all in a single
|
||||
* transaction. It is a very generic tool that can be used to create
|
||||
* behaviors like "insert if not exists", "update or insert (i.e. upsert)",
|
||||
* or even replace a portion of existing data with new data (e.g. replace
|
||||
* all data where month="january")
|
||||
*
|
||||
* The merge insert operation works by combining new data from a
|
||||
* **source table** with existing data in a **target table** by using a
|
||||
* join. There are three categories of records.
|
||||
*
|
||||
* "Matched" records are records that exist in both the source table and
|
||||
* the target table. "Not matched" records exist only in the source table
|
||||
* (e.g. these are new data) "Not matched by source" records exist only
|
||||
* in the target table (this is old data)
|
||||
*
|
||||
* The MergeInsertArgs can be used to customize what should happen for
|
||||
* each category of data.
|
||||
*
|
||||
* Please note that the data may appear to be reordered as part of this
|
||||
* operation. This is because updated rows will be deleted from the
|
||||
* dataset and then reinserted at the end with the new values.
|
||||
*
|
||||
* @param on a column to join on. This is how records from the source
|
||||
* table and target table are matched.
|
||||
* @param data the new data to insert
|
||||
* @param args parameters controlling how the operation should behave
|
||||
*/
|
||||
mergeInsert: (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs) => Promise<void>
|
||||
|
||||
/**
|
||||
* List the indicies on this table.
|
||||
*/
|
||||
@@ -444,6 +483,8 @@ export interface Table<T = number[]> {
|
||||
*/
|
||||
indexStats: (indexUuid: string) => Promise<IndexStats>
|
||||
|
||||
filter(value: string): Query<T>
|
||||
|
||||
schema: Promise<Schema>
|
||||
}
|
||||
|
||||
@@ -475,6 +516,47 @@ export interface UpdateSqlArgs {
|
||||
valuesSql: Record<string, string>
|
||||
}
|
||||
|
||||
export interface MergeInsertArgs {
|
||||
/**
|
||||
* If true then rows that exist in both the source table (new data) and
|
||||
* the target table (old data) will be updated, replacing the old row
|
||||
* with the corresponding matching row.
|
||||
*
|
||||
* If there are multiple matches then the behavior is undefined.
|
||||
* Currently this causes multiple copies of the row to be created
|
||||
* but that behavior is subject to change.
|
||||
*
|
||||
* Optionally, a filter can be specified. This should be an SQL
|
||||
* filter where fields with the prefix "target." refer to fields
|
||||
* in the target table (old data) and fields with the prefix
|
||||
* "source." refer to fields in the source table (new data). For
|
||||
* example, the filter "target.lastUpdated < source.lastUpdated" will
|
||||
* only update matched rows when the incoming `lastUpdated` value is
|
||||
* newer.
|
||||
*
|
||||
* Rows that do not match the filter will not be updated. Rows that
|
||||
* do not match the filter do become "not matched" rows.
|
||||
*/
|
||||
whenMatchedUpdateAll?: string | boolean
|
||||
/**
|
||||
* If true then rows that exist only in the source table (new data)
|
||||
* will be inserted into the target table.
|
||||
*/
|
||||
whenNotMatchedInsertAll?: boolean
|
||||
/**
|
||||
* If true then rows that exist only in the target table (old data)
|
||||
* will be deleted.
|
||||
*
|
||||
* If this is a string then it will be treated as an SQL filter and
|
||||
* only rows that both do not match any row in the source table and
|
||||
* match the given filter will be deleted.
|
||||
*
|
||||
* This can be used to replace a selection of existing data with
|
||||
* new data.
|
||||
*/
|
||||
whenNotMatchedBySourceDelete?: string | boolean
|
||||
}
|
||||
|
||||
export interface VectorIndex {
|
||||
columns: string[]
|
||||
name: string
|
||||
@@ -726,7 +808,6 @@ export class LocalTable<T = number[]> implements Table<T> {
|
||||
* Insert records into this Table, replacing its contents.
|
||||
*
|
||||
* @param data Records to be inserted into the Table
|
||||
* Type Table is ArrowTable
|
||||
* @return The number of rows added to the table
|
||||
*/
|
||||
async overwrite (
|
||||
@@ -770,8 +851,8 @@ export class LocalTable<T = number[]> implements Table<T> {
|
||||
/**
|
||||
* Returns the number of rows in this table.
|
||||
*/
|
||||
async countRows (): Promise<number> {
|
||||
return tableCountRows.call(this._tbl)
|
||||
async countRows (filter?: string): Promise<number> {
|
||||
return tableCountRows.call(this._tbl, filter)
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -814,10 +895,49 @@ export class LocalTable<T = number[]> implements Table<T> {
|
||||
})
|
||||
}
|
||||
|
||||
async mergeInsert (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs): Promise<void> {
|
||||
let whenMatchedUpdateAll = false
|
||||
let whenMatchedUpdateAllFilt = null
|
||||
if (args.whenMatchedUpdateAll !== undefined && args.whenMatchedUpdateAll !== null) {
|
||||
whenMatchedUpdateAll = true
|
||||
if (args.whenMatchedUpdateAll !== true) {
|
||||
whenMatchedUpdateAllFilt = args.whenMatchedUpdateAll
|
||||
}
|
||||
}
|
||||
const whenNotMatchedInsertAll = args.whenNotMatchedInsertAll ?? false
|
||||
let whenNotMatchedBySourceDelete = false
|
||||
let whenNotMatchedBySourceDeleteFilt = null
|
||||
if (args.whenNotMatchedBySourceDelete !== undefined && args.whenNotMatchedBySourceDelete !== null) {
|
||||
whenNotMatchedBySourceDelete = true
|
||||
if (args.whenNotMatchedBySourceDelete !== true) {
|
||||
whenNotMatchedBySourceDeleteFilt = args.whenNotMatchedBySourceDelete
|
||||
}
|
||||
}
|
||||
|
||||
const schema = await this.schema
|
||||
let tbl: ArrowTable
|
||||
if (data instanceof ArrowTable) {
|
||||
tbl = data
|
||||
} else {
|
||||
tbl = makeArrowTable(data, { schema })
|
||||
}
|
||||
const buffer = await fromTableToBuffer(tbl, this._embeddings, schema)
|
||||
|
||||
this._tbl = await tableMergeInsert.call(
|
||||
this._tbl,
|
||||
on,
|
||||
whenMatchedUpdateAll,
|
||||
whenMatchedUpdateAllFilt,
|
||||
whenNotMatchedInsertAll,
|
||||
whenNotMatchedBySourceDelete,
|
||||
whenNotMatchedBySourceDeleteFilt,
|
||||
buffer
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Clean up old versions of the table, freeing disk space.
|
||||
*
|
||||
* Note: this API is not yet available on LanceDB Cloud
|
||||
* @param olderThan The minimum age in minutes of the versions to delete. If not
|
||||
* provided, defaults to two weeks.
|
||||
* @param deleteUnverified Because they may be part of an in-progress
|
||||
@@ -848,7 +968,6 @@ export class LocalTable<T = number[]> implements Table<T> {
|
||||
* This can be run after making several small appends to optimize the table
|
||||
* for faster reads.
|
||||
*
|
||||
* Note: this API is not yet available on LanceDB Cloud
|
||||
* @param options Advanced options configuring compaction. In most cases, you
|
||||
* can omit this arguments, as the default options are sensible
|
||||
* for most tables.
|
||||
@@ -970,9 +1089,6 @@ export interface IvfPQIndexConfig {
|
||||
/**
|
||||
* A unique name for the index
|
||||
*/
|
||||
/**
|
||||
* Note: this parameter is not supported on LanceDB Cloud
|
||||
*/
|
||||
index_name?: string
|
||||
|
||||
/**
|
||||
@@ -983,57 +1099,35 @@ export interface IvfPQIndexConfig {
|
||||
/**
|
||||
* The number of partitions this index
|
||||
*/
|
||||
/**
|
||||
* Note: this parameter is not yet supported on LanceDB Cloud
|
||||
*/
|
||||
num_partitions?: number
|
||||
|
||||
/**
|
||||
* The max number of iterations for kmeans training.
|
||||
*/
|
||||
/**
|
||||
* Note: this parameter is not yet supported on LanceDB Cloud
|
||||
*/
|
||||
max_iters?: number
|
||||
|
||||
/**
|
||||
* Train as optimized product quantization.
|
||||
*/
|
||||
/**
|
||||
* Note: this parameter is not yet supported on LanceDB Cloud
|
||||
*/
|
||||
use_opq?: boolean
|
||||
|
||||
/**
|
||||
* Number of subvectors to build PQ code
|
||||
*/
|
||||
/**
|
||||
* Note: this parameter is not yet supported on LanceDB Cloud
|
||||
*/
|
||||
num_sub_vectors?: number
|
||||
|
||||
/**
|
||||
* The number of bits to present one PQ centroid.
|
||||
*/
|
||||
/**
|
||||
* Note: this parameter is not yet supported on LanceDB Cloud
|
||||
*/
|
||||
num_bits?: number
|
||||
|
||||
/**
|
||||
* Max number of iterations to train OPQ, if `use_opq` is true.
|
||||
*/
|
||||
/**
|
||||
* Note: this parameter is not yet supported on LanceDB Cloud
|
||||
*/
|
||||
max_opq_iters?: number
|
||||
|
||||
/**
|
||||
* Replace an existing index with the same name if it exists.
|
||||
*/
|
||||
/**
|
||||
* Note: this parameter is not yet supported on LanceDB Cloud
|
||||
*/
|
||||
replace?: boolean
|
||||
|
||||
/**
|
||||
|
||||
@@ -24,7 +24,8 @@ import {
|
||||
type IndexStats,
|
||||
type UpdateArgs,
|
||||
type UpdateSqlArgs,
|
||||
makeArrowTable
|
||||
makeArrowTable,
|
||||
type MergeInsertArgs
|
||||
} from '../index'
|
||||
import { Query } from '../query'
|
||||
|
||||
@@ -270,6 +271,59 @@ export class RemoteTable<T = number[]> implements Table<T> {
|
||||
return new RemoteQuery(query, this._client, this._name) //, this._embeddings_new)
|
||||
}
|
||||
|
||||
filter (where: string): Query<T> {
|
||||
throw new Error('Not implemented')
|
||||
}
|
||||
|
||||
async mergeInsert (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs): Promise<void> {
|
||||
let tbl: ArrowTable
|
||||
if (data instanceof ArrowTable) {
|
||||
tbl = data
|
||||
} else {
|
||||
tbl = makeArrowTable(data, await this.schema)
|
||||
}
|
||||
|
||||
const queryParams: any = {
|
||||
on
|
||||
}
|
||||
if (args.whenMatchedUpdateAll !== false && args.whenMatchedUpdateAll !== null && args.whenMatchedUpdateAll !== undefined) {
|
||||
queryParams.when_matched_update_all = 'true'
|
||||
if (typeof args.whenMatchedUpdateAll === 'string') {
|
||||
queryParams.when_matched_update_all_filt = args.whenMatchedUpdateAll
|
||||
}
|
||||
} else {
|
||||
queryParams.when_matched_update_all = 'false'
|
||||
}
|
||||
if (args.whenNotMatchedInsertAll ?? false) {
|
||||
queryParams.when_not_matched_insert_all = 'true'
|
||||
} else {
|
||||
queryParams.when_not_matched_insert_all = 'false'
|
||||
}
|
||||
if (args.whenNotMatchedBySourceDelete !== false && args.whenNotMatchedBySourceDelete !== null && args.whenNotMatchedBySourceDelete !== undefined) {
|
||||
queryParams.when_not_matched_by_source_delete = 'true'
|
||||
if (typeof args.whenNotMatchedBySourceDelete === 'string') {
|
||||
queryParams.when_not_matched_by_source_delete_filt = args.whenNotMatchedBySourceDelete
|
||||
}
|
||||
} else {
|
||||
queryParams.when_not_matched_by_source_delete = 'false'
|
||||
}
|
||||
|
||||
const buffer = await fromTableToStreamBuffer(tbl, this._embeddings)
|
||||
const res = await this._client.post(
|
||||
`/v1/table/${this._name}/merge_insert/`,
|
||||
buffer,
|
||||
queryParams,
|
||||
'application/vnd.apache.arrow.stream'
|
||||
)
|
||||
if (res.status !== 200) {
|
||||
throw new Error(
|
||||
`Server Error, status: ${res.status}, ` +
|
||||
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
|
||||
`message: ${res.statusText}: ${res.data}`
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
async add (data: Array<Record<string, unknown>> | ArrowTable): Promise<number> {
|
||||
let tbl: ArrowTable
|
||||
if (data instanceof ArrowTable) {
|
||||
|
||||
@@ -294,6 +294,7 @@ describe('LanceDB client', function () {
|
||||
})
|
||||
assert.equal(table.name, 'vectors')
|
||||
assert.equal(await table.countRows(), 10)
|
||||
assert.equal(await table.countRows('vector IS NULL'), 0)
|
||||
assert.deepEqual(await con.tableNames(), ['vectors'])
|
||||
})
|
||||
|
||||
@@ -369,6 +370,7 @@ describe('LanceDB client', function () {
|
||||
const table = await con.createTable('f16', data)
|
||||
assert.equal(table.name, 'f16')
|
||||
assert.equal(await table.countRows(), total)
|
||||
assert.equal(await table.countRows('id < 5'), 5)
|
||||
assert.deepEqual(await con.tableNames(), ['f16'])
|
||||
assert.deepEqual(await table.schema, schema)
|
||||
|
||||
@@ -391,24 +393,6 @@ describe('LanceDB client', function () {
|
||||
})
|
||||
}).timeout(120000)
|
||||
|
||||
it('fails to create a new table when the vector column is missing', async function () {
|
||||
const dir = await track().mkdir('lancejs')
|
||||
const con = await lancedb.connect(dir)
|
||||
|
||||
const data = [
|
||||
{
|
||||
id: 1,
|
||||
price: 10
|
||||
}
|
||||
]
|
||||
|
||||
const create = con.createTable('missing_vector', data)
|
||||
await expect(create).to.be.rejectedWith(
|
||||
Error,
|
||||
"column 'vector' is missing"
|
||||
)
|
||||
})
|
||||
|
||||
it('use overwrite flag to overwrite existing table', async function () {
|
||||
const dir = await track().mkdir('lancejs')
|
||||
const con = await lancedb.connect(dir)
|
||||
@@ -549,6 +533,54 @@ describe('LanceDB client', function () {
|
||||
assert.equal(await table.countRows(), 2)
|
||||
})
|
||||
|
||||
it('can merge insert records into the table', async function () {
|
||||
const dir = await track().mkdir('lancejs')
|
||||
const con = await lancedb.connect(dir)
|
||||
|
||||
const data = [{ id: 1, age: 1 }, { id: 2, age: 1 }]
|
||||
const table = await con.createTable('my_table', data)
|
||||
|
||||
// insert if not exists
|
||||
let newData = [{ id: 2, age: 2 }, { id: 3, age: 2 }]
|
||||
await table.mergeInsert('id', newData, {
|
||||
whenNotMatchedInsertAll: true
|
||||
})
|
||||
assert.equal(await table.countRows(), 3)
|
||||
assert.equal(await table.countRows('age = 2'), 1)
|
||||
|
||||
// conditional update
|
||||
newData = [{ id: 2, age: 3 }, { id: 3, age: 3 }]
|
||||
await table.mergeInsert('id', newData, {
|
||||
whenMatchedUpdateAll: 'target.age = 1'
|
||||
})
|
||||
assert.equal(await table.countRows(), 3)
|
||||
assert.equal(await table.countRows('age = 1'), 1)
|
||||
assert.equal(await table.countRows('age = 3'), 1)
|
||||
|
||||
newData = [{ id: 3, age: 4 }, { id: 4, age: 4 }]
|
||||
await table.mergeInsert('id', newData, {
|
||||
whenNotMatchedInsertAll: true,
|
||||
whenMatchedUpdateAll: true
|
||||
})
|
||||
assert.equal(await table.countRows(), 4)
|
||||
assert.equal((await table.filter('age = 4').execute()).length, 2)
|
||||
|
||||
newData = [{ id: 5, age: 5 }]
|
||||
await table.mergeInsert('id', newData, {
|
||||
whenNotMatchedInsertAll: true,
|
||||
whenMatchedUpdateAll: true,
|
||||
whenNotMatchedBySourceDelete: 'age < 4'
|
||||
})
|
||||
assert.equal(await table.countRows(), 3)
|
||||
|
||||
await table.mergeInsert('id', newData, {
|
||||
whenNotMatchedInsertAll: true,
|
||||
whenMatchedUpdateAll: true,
|
||||
whenNotMatchedBySourceDelete: true
|
||||
})
|
||||
assert.equal(await table.countRows(), 1)
|
||||
})
|
||||
|
||||
it('can update records in the table', async function () {
|
||||
const uri = await createTestDB()
|
||||
const con = await lancedb.connect(uri)
|
||||
|
||||
@@ -1,27 +1,27 @@
|
||||
[package]
|
||||
name = "vectordb-nodejs"
|
||||
edition = "2021"
|
||||
edition.workspace = true
|
||||
version = "0.0.0"
|
||||
license.workspace = true
|
||||
description.workspace = true
|
||||
repository.workspace = true
|
||||
keywords.workspace = true
|
||||
categories.workspace = true
|
||||
|
||||
[lib]
|
||||
crate-type = ["cdylib"]
|
||||
|
||||
[dependencies]
|
||||
arrow-ipc.workspace = true
|
||||
napi = { version = "2.14", default-features = false, features = [
|
||||
futures.workspace = true
|
||||
lance-linalg.workspace = true
|
||||
lance.workspace = true
|
||||
vectordb = { path = "../rust/vectordb" }
|
||||
napi = { version = "2.15", default-features = false, features = [
|
||||
"napi7",
|
||||
"async"
|
||||
] }
|
||||
napi-derive = "2.14"
|
||||
vectordb = { path = "../rust/vectordb" }
|
||||
lance.workspace = true
|
||||
lance-linalg.workspace = true
|
||||
napi-derive = "2"
|
||||
|
||||
[build-dependencies]
|
||||
napi-build = "2.1"
|
||||
|
||||
[profile.release]
|
||||
lto = true
|
||||
strip = "symbols"
|
||||
|
||||
@@ -53,6 +53,16 @@ describe("Test creating index", () => {
|
||||
const indexDir = path.join(tmpDir, "test.lance", "_indices");
|
||||
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||
// TODO: check index type.
|
||||
|
||||
// Search without specifying the column
|
||||
let query_vector = data.toArray()[5].vec.toJSON();
|
||||
let rst = await tbl.query().nearestTo(query_vector).limit(2).toArrow();
|
||||
expect(rst.numRows).toBe(2);
|
||||
|
||||
// Search with specifying the column
|
||||
let rst2 = await tbl.search(query_vector, "vec").limit(2).toArrow();
|
||||
expect(rst2.numRows).toBe(2);
|
||||
expect(rst.toString()).toEqual(rst2.toString());
|
||||
});
|
||||
|
||||
test("no vector column available", async () => {
|
||||
@@ -71,6 +81,80 @@ describe("Test creating index", () => {
|
||||
await tbl.createIndex("val").build();
|
||||
const indexDir = path.join(tmpDir, "no_vec.lance", "_indices");
|
||||
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||
|
||||
for await (const r of tbl.query().filter("id > 1").select(["id"])) {
|
||||
expect(r.numRows).toBe(1);
|
||||
}
|
||||
});
|
||||
|
||||
test("two columns with different dimensions", async () => {
|
||||
const db = await connect(tmpDir);
|
||||
const schema = new Schema([
|
||||
new Field("id", new Int32(), true),
|
||||
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
|
||||
new Field(
|
||||
"vec2",
|
||||
new FixedSizeList(64, new Field("item", new Float32()))
|
||||
),
|
||||
]);
|
||||
const tbl = await db.createTable(
|
||||
"two_vectors",
|
||||
makeArrowTable(
|
||||
Array(300)
|
||||
.fill(1)
|
||||
.map((_, i) => ({
|
||||
id: i,
|
||||
vec: Array(32)
|
||||
.fill(1)
|
||||
.map(() => Math.random()),
|
||||
vec2: Array(64) // different dimension
|
||||
.fill(1)
|
||||
.map(() => Math.random()),
|
||||
})),
|
||||
{ schema }
|
||||
)
|
||||
);
|
||||
|
||||
// Only build index over v1
|
||||
await expect(tbl.createIndex().build()).rejects.toThrow(
|
||||
/.*More than one vector columns found.*/
|
||||
);
|
||||
tbl
|
||||
.createIndex("vec")
|
||||
.ivf_pq({ num_partitions: 2, num_sub_vectors: 2 })
|
||||
.build();
|
||||
|
||||
const rst = await tbl
|
||||
.query()
|
||||
.nearestTo(
|
||||
Array(32)
|
||||
.fill(1)
|
||||
.map(() => Math.random())
|
||||
)
|
||||
.limit(2)
|
||||
.toArrow();
|
||||
expect(rst.numRows).toBe(2);
|
||||
|
||||
// Search with specifying the column
|
||||
await expect(
|
||||
tbl
|
||||
.search(
|
||||
Array(64)
|
||||
.fill(1)
|
||||
.map(() => Math.random()),
|
||||
"vec"
|
||||
)
|
||||
.limit(2)
|
||||
.toArrow()
|
||||
).rejects.toThrow(/.*does not match the dimension.*/);
|
||||
|
||||
const query64 = Array(64)
|
||||
.fill(1)
|
||||
.map(() => Math.random());
|
||||
const rst64_1 = await tbl.query().nearestTo(query64).limit(2).toArrow();
|
||||
const rst64_2 = await tbl.search(query64, "vec2").limit(2).toArrow();
|
||||
expect(rst64_1.toString()).toEqual(rst64_2.toString());
|
||||
expect(rst64_1.numRows).toBe(2);
|
||||
});
|
||||
|
||||
test("create scalar index", async () => {
|
||||
|
||||
@@ -2,4 +2,6 @@
|
||||
module.exports = {
|
||||
preset: 'ts-jest',
|
||||
testEnvironment: 'node',
|
||||
};
|
||||
moduleDirectories: ["node_modules", "./dist"],
|
||||
moduleFileExtensions: ["js", "ts"],
|
||||
};
|
||||
|
||||
@@ -91,7 +91,6 @@ impl IndexBuilder {
|
||||
|
||||
#[napi]
|
||||
pub async fn build(&self) -> napi::Result<()> {
|
||||
println!("nodejs::index.rs : build");
|
||||
self.inner
|
||||
.build()
|
||||
.await
|
||||
|
||||
47
nodejs/src/iterator.rs
Normal file
47
nodejs/src/iterator.rs
Normal file
@@ -0,0 +1,47 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use futures::StreamExt;
|
||||
use lance::io::RecordBatchStream;
|
||||
use napi::bindgen_prelude::*;
|
||||
use napi_derive::napi;
|
||||
use vectordb::ipc::batches_to_ipc_file;
|
||||
|
||||
/** Typescript-style Async Iterator over RecordBatches */
|
||||
#[napi]
|
||||
pub struct RecordBatchIterator {
|
||||
inner: Box<dyn RecordBatchStream + Unpin>,
|
||||
}
|
||||
|
||||
#[napi]
|
||||
impl RecordBatchIterator {
|
||||
pub(crate) fn new(inner: Box<dyn RecordBatchStream + Unpin>) -> Self {
|
||||
Self { inner }
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async unsafe fn next(&mut self) -> napi::Result<Option<Buffer>> {
|
||||
if let Some(rst) = self.inner.next().await {
|
||||
let batch = rst.map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to get next batch from stream: {}", e))
|
||||
})?;
|
||||
batches_to_ipc_file(&[batch])
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to write IPC file: {}", e)))
|
||||
.map(|buf| Some(Buffer::from(buf)))
|
||||
} else {
|
||||
// We are done with the stream.
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -17,6 +17,7 @@ use napi_derive::*;
|
||||
|
||||
mod connection;
|
||||
mod index;
|
||||
mod iterator;
|
||||
mod query;
|
||||
mod table;
|
||||
|
||||
|
||||
@@ -16,7 +16,7 @@ use napi::bindgen_prelude::*;
|
||||
use napi_derive::napi;
|
||||
use vectordb::query::Query as LanceDBQuery;
|
||||
|
||||
use crate::table::Table;
|
||||
use crate::{iterator::RecordBatchIterator, table::Table};
|
||||
|
||||
#[napi]
|
||||
pub struct Query {
|
||||
@@ -32,17 +32,50 @@ impl Query {
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn vector(&mut self, vector: Float32Array) {
|
||||
let inn = self.inner.clone().nearest_to(&vector);
|
||||
self.inner = inn;
|
||||
pub fn column(&mut self, column: String) {
|
||||
self.inner = self.inner.clone().column(&column);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn to_arrow(&self) -> napi::Result<()> {
|
||||
// let buf = self.inner.to_arrow().map_err(|e| {
|
||||
// napi::Error::from_reason(format!("Failed to convert query to arrow: {}", e))
|
||||
// })?;
|
||||
// Ok(buf)
|
||||
todo!()
|
||||
pub fn filter(&mut self, filter: String) {
|
||||
self.inner = self.inner.clone().filter(filter);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn select(&mut self, columns: Vec<String>) {
|
||||
self.inner = self.inner.clone().select(&columns);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn limit(&mut self, limit: u32) {
|
||||
self.inner = self.inner.clone().limit(limit as usize);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn prefilter(&mut self, prefilter: bool) {
|
||||
self.inner = self.inner.clone().prefilter(prefilter);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn nearest_to(&mut self, vector: Float32Array) {
|
||||
self.inner = self.inner.clone().nearest_to(&vector);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn refine_factor(&mut self, refine_factor: u32) {
|
||||
self.inner = self.inner.clone().refine_factor(refine_factor);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn nprobes(&mut self, nprobe: u32) {
|
||||
self.inner = self.inner.clone().nprobes(nprobe as usize);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn execute_stream(&self) -> napi::Result<RecordBatchIterator> {
|
||||
let inner_stream = self.inner.execute_stream().await.map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to execute query stream: {}", e))
|
||||
})?;
|
||||
Ok(RecordBatchIterator::new(Box::new(inner_stream)))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -57,8 +57,8 @@ impl Table {
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn count_rows(&self) -> napi::Result<usize> {
|
||||
self.table.count_rows().await.map_err(|e| {
|
||||
pub async fn count_rows(&self, filter: Option<String>) -> napi::Result<usize> {
|
||||
self.table.count_rows(filter).await.map_err(|e| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to count rows in table {}: {}",
|
||||
self.table, e
|
||||
|
||||
17
nodejs/vectordb/native.d.ts
vendored
17
nodejs/vectordb/native.d.ts
vendored
@@ -54,15 +54,26 @@ export class IndexBuilder {
|
||||
scalar(): void
|
||||
build(): Promise<void>
|
||||
}
|
||||
/** Typescript-style Async Iterator over RecordBatches */
|
||||
export class RecordBatchIterator {
|
||||
next(): Promise<Buffer | null>
|
||||
}
|
||||
export class Query {
|
||||
vector(vector: Float32Array): void
|
||||
toArrow(): void
|
||||
column(column: string): void
|
||||
filter(filter: string): void
|
||||
select(columns: Array<string>): void
|
||||
limit(limit: number): void
|
||||
prefilter(prefilter: boolean): void
|
||||
nearestTo(vector: Float32Array): void
|
||||
refineFactor(refineFactor: number): void
|
||||
nprobes(nprobe: number): void
|
||||
executeStream(): Promise<RecordBatchIterator>
|
||||
}
|
||||
export class Table {
|
||||
/** Return Schema as empty Arrow IPC file. */
|
||||
schema(): Buffer
|
||||
add(buf: Buffer): Promise<void>
|
||||
countRows(): Promise<bigint>
|
||||
countRows(filter?: string): Promise<bigint>
|
||||
delete(predicate: string): Promise<void>
|
||||
createIndex(): IndexBuilder
|
||||
query(): Query
|
||||
|
||||
@@ -295,12 +295,13 @@ if (!nativeBinding) {
|
||||
throw new Error(`Failed to load native binding`)
|
||||
}
|
||||
|
||||
const { Connection, IndexType, MetricType, IndexBuilder, Query, Table, WriteMode, connect } = nativeBinding
|
||||
const { Connection, IndexType, MetricType, IndexBuilder, RecordBatchIterator, Query, Table, WriteMode, connect } = nativeBinding
|
||||
|
||||
module.exports.Connection = Connection
|
||||
module.exports.IndexType = IndexType
|
||||
module.exports.MetricType = MetricType
|
||||
module.exports.IndexBuilder = IndexBuilder
|
||||
module.exports.RecordBatchIterator = RecordBatchIterator
|
||||
module.exports.Query = Query
|
||||
module.exports.Table = Table
|
||||
module.exports.WriteMode = WriteMode
|
||||
|
||||
@@ -12,46 +12,73 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { RecordBatch } from "apache-arrow";
|
||||
import { Table } from "./table";
|
||||
import { RecordBatch, tableFromIPC, Table as ArrowTable } from "apache-arrow";
|
||||
import {
|
||||
RecordBatchIterator as NativeBatchIterator,
|
||||
Query as NativeQuery,
|
||||
Table as NativeTable,
|
||||
} from "./native";
|
||||
|
||||
// TODO: re-eanble eslint once we have a real implementation
|
||||
/* eslint-disable */
|
||||
class RecordBatchIterator implements AsyncIterator<RecordBatch> {
|
||||
next(
|
||||
...args: [] | [undefined]
|
||||
): Promise<IteratorResult<RecordBatch<any>, any>> {
|
||||
throw new Error("Method not implemented.");
|
||||
private promised_inner?: Promise<NativeBatchIterator>;
|
||||
private inner?: NativeBatchIterator;
|
||||
|
||||
constructor(
|
||||
inner?: NativeBatchIterator,
|
||||
promise?: Promise<NativeBatchIterator>
|
||||
) {
|
||||
// TODO: check promise reliably so we dont need to pass two arguments.
|
||||
this.inner = inner;
|
||||
this.promised_inner = promise;
|
||||
}
|
||||
return?(value?: any): Promise<IteratorResult<RecordBatch<any>, any>> {
|
||||
throw new Error("Method not implemented.");
|
||||
}
|
||||
throw?(e?: any): Promise<IteratorResult<RecordBatch<any>, any>> {
|
||||
throw new Error("Method not implemented.");
|
||||
|
||||
async next(): Promise<IteratorResult<RecordBatch<any>, any>> {
|
||||
if (this.inner === undefined) {
|
||||
this.inner = await this.promised_inner;
|
||||
}
|
||||
if (this.inner === undefined) {
|
||||
throw new Error("Invalid iterator state state");
|
||||
}
|
||||
const n = await this.inner.next();
|
||||
if (n == null) {
|
||||
return Promise.resolve({ done: true, value: null });
|
||||
}
|
||||
const tbl = tableFromIPC(n);
|
||||
if (tbl.batches.length != 1) {
|
||||
throw new Error("Expected only one batch");
|
||||
}
|
||||
return Promise.resolve({ done: false, value: tbl.batches[0] });
|
||||
}
|
||||
}
|
||||
/* eslint-enable */
|
||||
|
||||
/** Query executor */
|
||||
export class Query implements AsyncIterable<RecordBatch> {
|
||||
private readonly tbl: Table;
|
||||
private _filter?: string;
|
||||
private _limit?: number;
|
||||
private readonly inner: NativeQuery;
|
||||
|
||||
// Vector search
|
||||
private _vector?: Float32Array;
|
||||
private _nprobes?: number;
|
||||
private _refine_factor?: number = 1;
|
||||
constructor(tbl: NativeTable) {
|
||||
this.inner = tbl.query();
|
||||
}
|
||||
|
||||
constructor(tbl: Table) {
|
||||
this.tbl = tbl;
|
||||
/** Set the column to run query. */
|
||||
column(column: string): Query {
|
||||
this.inner.column(column);
|
||||
return this;
|
||||
}
|
||||
|
||||
/** Set the filter predicate, only returns the results that satisfy the filter.
|
||||
*
|
||||
*/
|
||||
filter(predicate: string): Query {
|
||||
this._filter = predicate;
|
||||
this.inner.filter(predicate);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Select the columns to return. If not set, all columns are returned.
|
||||
*/
|
||||
select(columns: string[]): Query {
|
||||
this.inner.select(columns);
|
||||
return this;
|
||||
}
|
||||
|
||||
@@ -59,35 +86,67 @@ export class Query implements AsyncIterable<RecordBatch> {
|
||||
* Set the limit of rows to return.
|
||||
*/
|
||||
limit(limit: number): Query {
|
||||
this._limit = limit;
|
||||
this.inner.limit(limit);
|
||||
return this;
|
||||
}
|
||||
|
||||
prefilter(prefilter: boolean): Query {
|
||||
this.inner.prefilter(prefilter);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the query vector.
|
||||
*/
|
||||
vector(vector: number[]): Query {
|
||||
this._vector = Float32Array.from(vector);
|
||||
nearestTo(vector: number[]): Query {
|
||||
this.inner.nearestTo(Float32Array.from(vector));
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the number of probes to use for the query.
|
||||
* Set the number of IVF partitions to use for the query.
|
||||
*/
|
||||
nprobes(nprobes: number): Query {
|
||||
this._nprobes = nprobes;
|
||||
this.inner.nprobes(nprobes);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the refine factor for the query.
|
||||
*/
|
||||
refine_factor(refine_factor: number): Query {
|
||||
this._refine_factor = refine_factor;
|
||||
refineFactor(refine_factor: number): Query {
|
||||
this.inner.refineFactor(refine_factor);
|
||||
return this;
|
||||
}
|
||||
|
||||
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>, any, undefined> {
|
||||
throw new RecordBatchIterator();
|
||||
/**
|
||||
* Execute the query and return the results as an AsyncIterator.
|
||||
*/
|
||||
async executeStream(): Promise<RecordBatchIterator> {
|
||||
const inner = await this.inner.executeStream();
|
||||
return new RecordBatchIterator(inner);
|
||||
}
|
||||
|
||||
/** Collect the results as an Arrow Table. */
|
||||
async toArrow(): Promise<ArrowTable> {
|
||||
const batches = [];
|
||||
for await (const batch of this) {
|
||||
batches.push(batch);
|
||||
}
|
||||
return new ArrowTable(batches);
|
||||
}
|
||||
|
||||
/** Returns a JSON Array of All results.
|
||||
*
|
||||
*/
|
||||
async toArray(): Promise<any[]> {
|
||||
const tbl = await this.toArrow();
|
||||
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
|
||||
return tbl.toArray();
|
||||
}
|
||||
|
||||
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>> {
|
||||
const promise = this.inner.executeStream();
|
||||
return new RecordBatchIterator(undefined, promise);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -50,8 +50,8 @@ export class Table {
|
||||
}
|
||||
|
||||
/** Count the total number of rows in the dataset. */
|
||||
async countRows(): Promise<bigint> {
|
||||
return await this.inner.countRows();
|
||||
async countRows(filter?: string): Promise<bigint> {
|
||||
return await this.inner.countRows(filter);
|
||||
}
|
||||
|
||||
/** Delete the rows that satisfy the predicate. */
|
||||
@@ -95,10 +95,58 @@ export class Table {
|
||||
return builder;
|
||||
}
|
||||
|
||||
search(vector?: number[]): Query {
|
||||
const q = new Query(this);
|
||||
if (vector !== undefined) {
|
||||
q.vector(vector);
|
||||
/**
|
||||
* Create a generic {@link Query} Builder.
|
||||
*
|
||||
* When appropriate, various indices and statistics based pruning will be used to
|
||||
* accelerate the query.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* ### Run a SQL-style query
|
||||
* ```typescript
|
||||
* for await (const batch of table.query()
|
||||
* .filter("id > 1").select(["id"]).limit(20)) {
|
||||
* console.log(batch);
|
||||
* }
|
||||
* ```
|
||||
*
|
||||
* ### Run Top-10 vector similarity search
|
||||
* ```typescript
|
||||
* for await (const batch of table.query()
|
||||
* .nearestTo([1, 2, 3])
|
||||
* .refineFactor(5).nprobe(10)
|
||||
* .limit(10)) {
|
||||
* console.log(batch);
|
||||
* }
|
||||
*```
|
||||
*
|
||||
* ### Scan the full dataset
|
||||
* ```typescript
|
||||
* for await (const batch of table.query()) {
|
||||
* console.log(batch);
|
||||
* }
|
||||
*
|
||||
* ### Return the full dataset as Arrow Table
|
||||
* ```typescript
|
||||
* let arrowTbl = await table.query().nearestTo([1.0, 2.0, 0.5, 6.7]).toArrow();
|
||||
* ```
|
||||
*
|
||||
* @returns {@link Query}
|
||||
*/
|
||||
query(): Query {
|
||||
return new Query(this.inner);
|
||||
}
|
||||
|
||||
/** Search the table with a given query vector.
|
||||
*
|
||||
* This is a convenience method for preparing an ANN {@link Query}.
|
||||
*/
|
||||
search(vector: number[], column?: string): Query {
|
||||
const q = this.query();
|
||||
q.nearestTo(vector);
|
||||
if (column !== undefined) {
|
||||
q.column(column);
|
||||
}
|
||||
return q;
|
||||
}
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.5.1
|
||||
current_version = 0.5.4
|
||||
commit = True
|
||||
message = [python] Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
|
||||
@@ -42,6 +42,12 @@ To run the unit tests:
|
||||
pytest
|
||||
```
|
||||
|
||||
To run the doc tests:
|
||||
|
||||
```bash
|
||||
pytest --doctest-modules lancedb
|
||||
```
|
||||
|
||||
To run linter and automatically fix all errors:
|
||||
|
||||
```bash
|
||||
|
||||
@@ -13,6 +13,7 @@
|
||||
|
||||
import importlib.metadata
|
||||
import os
|
||||
from datetime import timedelta
|
||||
from typing import Optional
|
||||
|
||||
__version__ = importlib.metadata.version("lancedb")
|
||||
@@ -30,6 +31,7 @@ def connect(
|
||||
api_key: Optional[str] = None,
|
||||
region: str = "us-east-1",
|
||||
host_override: Optional[str] = None,
|
||||
read_consistency_interval: Optional[timedelta] = None,
|
||||
) -> DBConnection:
|
||||
"""Connect to a LanceDB database.
|
||||
|
||||
@@ -45,6 +47,18 @@ def connect(
|
||||
The region to use for LanceDB Cloud.
|
||||
host_override: str, optional
|
||||
The override url for LanceDB Cloud.
|
||||
read_consistency_interval: timedelta, default None
|
||||
(For LanceDB OSS only)
|
||||
The interval at which to check for updates to the table from other
|
||||
processes. If None, then consistency is not checked. For performance
|
||||
reasons, this is the default. For strong consistency, set this to
|
||||
zero seconds. Then every read will check for updates from other
|
||||
processes. As a compromise, you can set this to a non-zero timedelta
|
||||
for eventual consistency. If more than that interval has passed since
|
||||
the last check, then the table will be checked for updates. Note: this
|
||||
consistency only applies to read operations. Write operations are
|
||||
always consistent.
|
||||
|
||||
|
||||
Examples
|
||||
--------
|
||||
@@ -73,4 +87,4 @@ def connect(
|
||||
if api_key is None:
|
||||
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
|
||||
return RemoteDBConnection(uri, api_key, region, host_override)
|
||||
return LanceDBConnection(uri)
|
||||
return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval)
|
||||
|
||||
@@ -26,6 +26,8 @@ from .table import LanceTable, Table
|
||||
from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datetime import timedelta
|
||||
|
||||
from .common import DATA, URI
|
||||
from .embeddings import EmbeddingFunctionConfig
|
||||
from .pydantic import LanceModel
|
||||
@@ -87,25 +89,16 @@ class DBConnection(EnforceOverrides):
|
||||
Can be either "create" or "overwrite".
|
||||
By default, if the table already exists, an exception is raised.
|
||||
If you want to overwrite the table, use mode="overwrite".
|
||||
|
||||
**Note: this parameter is not yet supported on LanceDB Cloud**
|
||||
exist_ok: bool, default False
|
||||
If a table by the same name already exists, then raise an exception
|
||||
if exist_ok=False. If exist_ok=True, then open the existing table;
|
||||
it will not add the provided data but will validate against any
|
||||
schema that's specified.
|
||||
|
||||
**Note: this parameter is not yet supported on LanceDB Cloud**
|
||||
on_bad_vectors: str, default "error"
|
||||
What to do if any of the vectors are not the same size or contains NaNs.
|
||||
One of "error", "drop", "fill".
|
||||
fill_value: float
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
embedding_functions: List[EmbeddingFunctionConfig], default None
|
||||
The embedding functions to be applied before inserting data to
|
||||
LanceDB table.
|
||||
|
||||
**Note: this parameter is not yet supported on LanceDB Cloud**
|
||||
|
||||
Returns
|
||||
-------
|
||||
@@ -127,7 +120,7 @@ class DBConnection(EnforceOverrides):
|
||||
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
|
||||
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
|
||||
>>> db.create_table("my_table", data)
|
||||
LanceTable(my_table)
|
||||
LanceTable(connection=..., name="my_table")
|
||||
>>> db["my_table"].head()
|
||||
pyarrow.Table
|
||||
vector: fixed_size_list<item: float>[2]
|
||||
@@ -148,7 +141,7 @@ class DBConnection(EnforceOverrides):
|
||||
... "long": [-122.7, -74.1]
|
||||
... })
|
||||
>>> db.create_table("table2", data)
|
||||
LanceTable(table2)
|
||||
LanceTable(connection=..., name="table2")
|
||||
>>> db["table2"].head()
|
||||
pyarrow.Table
|
||||
vector: fixed_size_list<item: float>[2]
|
||||
@@ -170,7 +163,7 @@ class DBConnection(EnforceOverrides):
|
||||
... pa.field("long", pa.float32())
|
||||
... ])
|
||||
>>> db.create_table("table3", data, schema = custom_schema)
|
||||
LanceTable(table3)
|
||||
LanceTable(connection=..., name="table3")
|
||||
>>> db["table3"].head()
|
||||
pyarrow.Table
|
||||
vector: fixed_size_list<item: float>[2]
|
||||
@@ -204,7 +197,7 @@ class DBConnection(EnforceOverrides):
|
||||
... pa.field("price", pa.float32()),
|
||||
... ])
|
||||
>>> db.create_table("table4", make_batches(), schema=schema)
|
||||
LanceTable(table4)
|
||||
LanceTable(connection=..., name="table4")
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
@@ -239,9 +232,7 @@ class DBConnection(EnforceOverrides):
|
||||
def drop_database(self):
|
||||
"""
|
||||
Drop database
|
||||
This functions the same as dropping all the tables
|
||||
|
||||
**Note: this API is not yet available on LanceDB Cloud**
|
||||
This is the same thing as dropping all the tables
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -254,6 +245,16 @@ class LanceDBConnection(DBConnection):
|
||||
----------
|
||||
uri: str or Path
|
||||
The root uri of the database.
|
||||
read_consistency_interval: timedelta, default None
|
||||
The interval at which to check for updates to the table from other
|
||||
processes. If None, then consistency is not checked. For performance
|
||||
reasons, this is the default. For strong consistency, set this to
|
||||
zero seconds. Then every read will check for updates from other
|
||||
processes. As a compromise, you can set this to a non-zero timedelta
|
||||
for eventual consistency. If more than that interval has passed since
|
||||
the last check, then the table will be checked for updates. Note: this
|
||||
consistency only applies to read operations. Write operations are
|
||||
always consistent.
|
||||
|
||||
Examples
|
||||
--------
|
||||
@@ -261,22 +262,24 @@ class LanceDBConnection(DBConnection):
|
||||
>>> db = lancedb.connect("./.lancedb")
|
||||
>>> db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2},
|
||||
... {"vector": [0.5, 1.3], "b": 4}])
|
||||
LanceTable(my_table)
|
||||
LanceTable(connection=..., name="my_table")
|
||||
>>> db.create_table("another_table", data=[{"vector": [0.4, 0.4], "b": 6}])
|
||||
LanceTable(another_table)
|
||||
LanceTable(connection=..., name="another_table")
|
||||
>>> sorted(db.table_names())
|
||||
['another_table', 'my_table']
|
||||
>>> len(db)
|
||||
2
|
||||
>>> db["my_table"]
|
||||
LanceTable(my_table)
|
||||
LanceTable(connection=..., name="my_table")
|
||||
>>> "my_table" in db
|
||||
True
|
||||
>>> db.drop_table("my_table")
|
||||
>>> db.drop_table("another_table")
|
||||
"""
|
||||
|
||||
def __init__(self, uri: URI):
|
||||
def __init__(
|
||||
self, uri: URI, *, read_consistency_interval: Optional[timedelta] = None
|
||||
):
|
||||
if not isinstance(uri, Path):
|
||||
scheme = get_uri_scheme(uri)
|
||||
is_local = isinstance(uri, Path) or scheme == "file"
|
||||
@@ -288,6 +291,14 @@ class LanceDBConnection(DBConnection):
|
||||
self._uri = str(uri)
|
||||
|
||||
self._entered = False
|
||||
self.read_consistency_interval = read_consistency_interval
|
||||
|
||||
def __repr__(self) -> str:
|
||||
val = f"{self.__class__.__name__}({self._uri}"
|
||||
if self.read_consistency_interval is not None:
|
||||
val += f", read_consistency_interval={repr(self.read_consistency_interval)}"
|
||||
val += ")"
|
||||
return val
|
||||
|
||||
@property
|
||||
def uri(self) -> str:
|
||||
|
||||
@@ -13,6 +13,7 @@
|
||||
|
||||
# ruff: noqa: F401
|
||||
from .base import EmbeddingFunction, EmbeddingFunctionConfig, TextEmbeddingFunction
|
||||
from .bedrock import BedRockText
|
||||
from .cohere import CohereEmbeddingFunction
|
||||
from .gemini_text import GeminiText
|
||||
from .instructor import InstructorEmbeddingFunction
|
||||
|
||||
223
python/lancedb/embeddings/bedrock.py
Normal file
223
python/lancedb/embeddings/bedrock.py
Normal file
@@ -0,0 +1,223 @@
|
||||
# Copyright (c) 2023. LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
from functools import cached_property
|
||||
from typing import List, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lancedb.pydantic import PYDANTIC_VERSION
|
||||
|
||||
from .base import TextEmbeddingFunction
|
||||
from .registry import register
|
||||
from .utils import TEXT
|
||||
|
||||
|
||||
@register("bedrock-text")
|
||||
class BedRockText(TextEmbeddingFunction):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
name: str, default "amazon.titan-embed-text-v1"
|
||||
The model ID of the bedrock model to use. Supported models for are:
|
||||
- amazon.titan-embed-text-v1
|
||||
- cohere.embed-english-v3
|
||||
- cohere.embed-multilingual-v3
|
||||
region: str, default "us-east-1"
|
||||
Optional name of the AWS Region in which the service should be called.
|
||||
profile_name: str, default None
|
||||
Optional name of the AWS profile to use for calling the Bedrock service.
|
||||
If not specified, the default profile will be used.
|
||||
assumed_role: str, default None
|
||||
Optional ARN of an AWS IAM role to assume for calling the Bedrock service.
|
||||
If not specified, the current active credentials will be used.
|
||||
role_session_name: str, default "lancedb-embeddings"
|
||||
Optional name of the AWS IAM role session to use for calling the Bedrock
|
||||
service. If not specified, "lancedb-embeddings" name will be used.
|
||||
|
||||
Examples
|
||||
--------
|
||||
import lancedb
|
||||
import pandas as pd
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
|
||||
model = get_registry().get("bedrock-text").create()
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||
db = lancedb.connect("tmp_path")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
|
||||
rs = tbl.search("hello").limit(1).to_pandas()
|
||||
"""
|
||||
|
||||
name: str = "amazon.titan-embed-text-v1"
|
||||
region: str = "us-east-1"
|
||||
assumed_role: Union[str, None] = None
|
||||
profile_name: Union[str, None] = None
|
||||
role_session_name: str = "lancedb-embeddings"
|
||||
|
||||
if PYDANTIC_VERSION < (2, 0): # Pydantic 1.x compat
|
||||
|
||||
class Config:
|
||||
keep_untouched = (cached_property,)
|
||||
|
||||
def ndims(self):
|
||||
# return len(self._generate_embedding("test"))
|
||||
# TODO: fix hardcoding
|
||||
if self.name == "amazon.titan-embed-text-v1":
|
||||
return 1536
|
||||
elif self.name in {"cohere.embed-english-v3", "cohere.embed-multilingual-v3"}:
|
||||
return 1024
|
||||
else:
|
||||
raise ValueError(f"Unknown model name: {self.name}")
|
||||
|
||||
def compute_query_embeddings(
|
||||
self, query: str, *args, **kwargs
|
||||
) -> List[List[float]]:
|
||||
return self.compute_source_embeddings(query)
|
||||
|
||||
def compute_source_embeddings(
|
||||
self, texts: TEXT, *args, **kwargs
|
||||
) -> List[List[float]]:
|
||||
texts = self.sanitize_input(texts)
|
||||
return self.generate_embeddings(texts)
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray], *args, **kwargs
|
||||
) -> List[List[float]]:
|
||||
"""
|
||||
Get the embeddings for the given texts
|
||||
|
||||
Parameters
|
||||
----------
|
||||
texts: list[str] or np.ndarray (of str)
|
||||
The texts to embed
|
||||
|
||||
Returns
|
||||
-------
|
||||
list[list[float]]
|
||||
The embeddings for the given texts
|
||||
"""
|
||||
results = []
|
||||
for text in texts:
|
||||
response = self._generate_embedding(text)
|
||||
results.append(response)
|
||||
return results
|
||||
|
||||
def _generate_embedding(self, text: str) -> List[float]:
|
||||
"""
|
||||
Get the embeddings for the given texts
|
||||
|
||||
Parameters
|
||||
----------
|
||||
texts: str
|
||||
The texts to embed
|
||||
|
||||
Returns
|
||||
-------
|
||||
list[float]
|
||||
The embeddings for the given texts
|
||||
"""
|
||||
# format input body for provider
|
||||
provider = self.name.split(".")[0]
|
||||
_model_kwargs = {}
|
||||
input_body = {**_model_kwargs}
|
||||
if provider == "cohere":
|
||||
if "input_type" not in input_body.keys():
|
||||
input_body["input_type"] = "search_document"
|
||||
input_body["texts"] = [text]
|
||||
else:
|
||||
# includes common provider == "amazon"
|
||||
input_body["inputText"] = text
|
||||
body = json.dumps(input_body)
|
||||
|
||||
try:
|
||||
# invoke bedrock API
|
||||
response = self.client.invoke_model(
|
||||
body=body,
|
||||
modelId=self.name,
|
||||
accept="application/json",
|
||||
contentType="application/json",
|
||||
)
|
||||
|
||||
# format output based on provider
|
||||
response_body = json.loads(response.get("body").read())
|
||||
if provider == "cohere":
|
||||
return response_body.get("embeddings")[0]
|
||||
else:
|
||||
# includes common provider == "amazon"
|
||||
return response_body.get("embedding")
|
||||
except Exception as e:
|
||||
help_txt = """
|
||||
boto3 client failed to invoke the bedrock API. In case of
|
||||
AWS credentials error:
|
||||
- Please check your AWS credentials and ensure that you have access.
|
||||
You can set up aws credentials using `aws configure` command and
|
||||
verify by running `aws sts get-caller-identity` in your terminal.
|
||||
"""
|
||||
raise ValueError(f"Error raised by boto3 client: {e}. \n {help_txt}")
|
||||
|
||||
@cached_property
|
||||
def client(self):
|
||||
"""Create a boto3 client for Amazon Bedrock service
|
||||
|
||||
Returns
|
||||
-------
|
||||
boto3.client
|
||||
The boto3 client for Amazon Bedrock service
|
||||
"""
|
||||
botocore = self.safe_import("botocore")
|
||||
boto3 = self.safe_import("boto3")
|
||||
|
||||
session_kwargs = {"region_name": self.region}
|
||||
client_kwargs = {**session_kwargs}
|
||||
|
||||
if self.profile_name:
|
||||
session_kwargs["profile_name"] = self.profile_name
|
||||
|
||||
retry_config = botocore.config.Config(
|
||||
region_name=self.region,
|
||||
retries={
|
||||
"max_attempts": 0, # disable this as retries retries are handled
|
||||
"mode": "standard",
|
||||
},
|
||||
)
|
||||
session = (
|
||||
boto3.Session(**session_kwargs) if self.profile_name else boto3.Session()
|
||||
)
|
||||
if self.assumed_role: # if not using default credentials
|
||||
sts = session.client("sts")
|
||||
response = sts.assume_role(
|
||||
RoleArn=str(self.assumed_role),
|
||||
RoleSessionName=self.role_session_name,
|
||||
)
|
||||
client_kwargs["aws_access_key_id"] = response["Credentials"]["AccessKeyId"]
|
||||
client_kwargs["aws_secret_access_key"] = response["Credentials"][
|
||||
"SecretAccessKey"
|
||||
]
|
||||
client_kwargs["aws_session_token"] = response["Credentials"]["SessionToken"]
|
||||
|
||||
service_name = "bedrock-runtime"
|
||||
|
||||
bedrock_client = session.client(
|
||||
service_name=service_name, config=retry_config, **client_kwargs
|
||||
)
|
||||
|
||||
return bedrock_client
|
||||
130
python/lancedb/embeddings/gte.py
Normal file
130
python/lancedb/embeddings/gte.py
Normal file
@@ -0,0 +1,130 @@
|
||||
# Copyright (c) 2023. LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import List, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .base import TextEmbeddingFunction
|
||||
from .registry import register
|
||||
from .utils import weak_lru
|
||||
|
||||
|
||||
@register("gte-text")
|
||||
class GteEmbeddings(TextEmbeddingFunction):
|
||||
"""
|
||||
An embedding function that uses GTE-LARGE MLX format(for Apple silicon devices only)
|
||||
as well as the standard cpu/gpu version from: https://huggingface.co/thenlper/gte-large.
|
||||
|
||||
For Apple users, you will need the mlx package insalled, which can be done with:
|
||||
pip install mlx
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name: str, default "thenlper/gte-large"
|
||||
The name of the model to use.
|
||||
device: str, default "cpu"
|
||||
Sets the device type for the model.
|
||||
normalize: str, default "True"
|
||||
Controls normalize param in encode function for the transformer.
|
||||
mlx: bool, default False
|
||||
Controls which model to use. False for gte-large,True for the mlx version.
|
||||
|
||||
Examples
|
||||
--------
|
||||
import lancedb
|
||||
import lancedb.embeddings.gte
|
||||
from lancedb.embeddings import get_registry
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
import pandas as pd
|
||||
|
||||
model = get_registry().get("gte-text").create() # mlx=True for Apple silicon
|
||||
class TextModel(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
rs = tbl.search("hello").limit(1).to_pandas()
|
||||
|
||||
"""
|
||||
|
||||
name: str = "thenlper/gte-large"
|
||||
device: str = "cpu"
|
||||
normalize: bool = True
|
||||
mlx: bool = False
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self._ndims = None
|
||||
if kwargs:
|
||||
self.mlx = kwargs.get("mlx", False)
|
||||
if self.mlx is True:
|
||||
self.name = "gte-mlx"
|
||||
|
||||
@property
|
||||
def embedding_model(self):
|
||||
"""
|
||||
Get the embedding model specified by the flag,
|
||||
name and device. This is cached so that the model is only loaded
|
||||
once per process.
|
||||
"""
|
||||
return self.get_embedding_model()
|
||||
|
||||
def ndims(self):
|
||||
if self.mlx is True:
|
||||
self._ndims = self.embedding_model.dims
|
||||
if self._ndims is None:
|
||||
self._ndims = len(self.generate_embeddings("foo")[0])
|
||||
return self._ndims
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
) -> List[np.array]:
|
||||
"""
|
||||
Get the embeddings for the given texts.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
texts: list[str] or np.ndarray (of str)
|
||||
The texts to embed
|
||||
"""
|
||||
if self.mlx is True:
|
||||
return self.embedding_model.run(list(texts)).tolist()
|
||||
|
||||
return self.embedding_model.encode(
|
||||
list(texts),
|
||||
convert_to_numpy=True,
|
||||
normalize_embeddings=self.normalize,
|
||||
).tolist()
|
||||
|
||||
@weak_lru(maxsize=1)
|
||||
def get_embedding_model(self):
|
||||
"""
|
||||
Get the embedding model specified by the flag,
|
||||
name and device. This is cached so that the model is only loaded
|
||||
once per process.
|
||||
"""
|
||||
if self.mlx is True:
|
||||
from .gte_mlx_model import Model
|
||||
|
||||
return Model()
|
||||
else:
|
||||
sentence_transformers = self.safe_import(
|
||||
"sentence_transformers", "sentence-transformers"
|
||||
)
|
||||
return sentence_transformers.SentenceTransformer(
|
||||
self.name, device=self.device
|
||||
)
|
||||
154
python/lancedb/embeddings/gte_mlx_model.py
Normal file
154
python/lancedb/embeddings/gte_mlx_model.py
Normal file
@@ -0,0 +1,154 @@
|
||||
import json
|
||||
from typing import List, Optional
|
||||
|
||||
import numpy as np
|
||||
from huggingface_hub import snapshot_download
|
||||
from pydantic import BaseModel
|
||||
from transformers import BertTokenizer
|
||||
|
||||
try:
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
except ImportError:
|
||||
raise ImportError("You need to install MLX to use this model use - pip install mlx")
|
||||
|
||||
|
||||
def average_pool(last_hidden_state: mx.array, attention_mask: mx.array) -> mx.array:
|
||||
last_hidden = mx.multiply(last_hidden_state, attention_mask[..., None])
|
||||
return last_hidden.sum(axis=1) / attention_mask.sum(axis=1)[..., None]
|
||||
|
||||
|
||||
class ModelConfig(BaseModel):
|
||||
dim: int = 1024
|
||||
num_attention_heads: int = 16
|
||||
num_hidden_layers: int = 24
|
||||
vocab_size: int = 30522
|
||||
attention_probs_dropout_prob: float = 0.1
|
||||
hidden_dropout_prob: float = 0.1
|
||||
layer_norm_eps: float = 1e-12
|
||||
max_position_embeddings: int = 512
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
"""
|
||||
A transformer encoder layer with (the original BERT) post-normalization.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dims: int,
|
||||
num_heads: int,
|
||||
mlp_dims: Optional[int] = None,
|
||||
layer_norm_eps: float = 1e-12,
|
||||
):
|
||||
super().__init__()
|
||||
mlp_dims = mlp_dims or dims * 4
|
||||
self.attention = nn.MultiHeadAttention(dims, num_heads, bias=True)
|
||||
self.ln1 = nn.LayerNorm(dims, eps=layer_norm_eps)
|
||||
self.ln2 = nn.LayerNorm(dims, eps=layer_norm_eps)
|
||||
self.linear1 = nn.Linear(dims, mlp_dims)
|
||||
self.linear2 = nn.Linear(mlp_dims, dims)
|
||||
self.gelu = nn.GELU()
|
||||
|
||||
def __call__(self, x, mask):
|
||||
attention_out = self.attention(x, x, x, mask)
|
||||
add_and_norm = self.ln1(x + attention_out)
|
||||
|
||||
ff = self.linear1(add_and_norm)
|
||||
ff_gelu = self.gelu(ff)
|
||||
ff_out = self.linear2(ff_gelu)
|
||||
x = self.ln2(ff_out + add_and_norm)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class TransformerEncoder(nn.Module):
|
||||
def __init__(
|
||||
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
|
||||
):
|
||||
super().__init__()
|
||||
self.layers = [
|
||||
TransformerEncoderLayer(dims, num_heads, mlp_dims)
|
||||
for i in range(num_layers)
|
||||
]
|
||||
|
||||
def __call__(self, x, mask):
|
||||
for layer in self.layers:
|
||||
x = layer(x, mask)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class BertEmbeddings(nn.Module):
|
||||
def __init__(self, config: ModelConfig):
|
||||
self.word_embeddings = nn.Embedding(config.vocab_size, config.dim)
|
||||
self.token_type_embeddings = nn.Embedding(2, config.dim)
|
||||
self.position_embeddings = nn.Embedding(
|
||||
config.max_position_embeddings, config.dim
|
||||
)
|
||||
self.norm = nn.LayerNorm(config.dim, eps=config.layer_norm_eps)
|
||||
|
||||
def __call__(self, input_ids: mx.array, token_type_ids: mx.array) -> mx.array:
|
||||
words = self.word_embeddings(input_ids)
|
||||
position = self.position_embeddings(
|
||||
mx.broadcast_to(mx.arange(input_ids.shape[1]), input_ids.shape)
|
||||
)
|
||||
token_types = self.token_type_embeddings(token_type_ids)
|
||||
|
||||
embeddings = position + words + token_types
|
||||
return self.norm(embeddings)
|
||||
|
||||
|
||||
class Bert(nn.Module):
|
||||
def __init__(self, config: ModelConfig):
|
||||
self.embeddings = BertEmbeddings(config)
|
||||
self.encoder = TransformerEncoder(
|
||||
num_layers=config.num_hidden_layers,
|
||||
dims=config.dim,
|
||||
num_heads=config.num_attention_heads,
|
||||
)
|
||||
self.pooler = nn.Linear(config.dim, config.dim)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
input_ids: mx.array,
|
||||
token_type_ids: mx.array,
|
||||
attention_mask: mx.array = None,
|
||||
) -> tuple[mx.array, mx.array]:
|
||||
x = self.embeddings(input_ids, token_type_ids)
|
||||
|
||||
if attention_mask is not None:
|
||||
# convert 0's to -infs, 1's to 0's, and make it broadcastable
|
||||
attention_mask = mx.log(attention_mask)
|
||||
attention_mask = mx.expand_dims(attention_mask, (1, 2))
|
||||
|
||||
y = self.encoder(x, attention_mask)
|
||||
return y, mx.tanh(self.pooler(y[:, 0]))
|
||||
|
||||
|
||||
class Model:
|
||||
def __init__(self) -> None:
|
||||
# get converted embedding model
|
||||
model_path = snapshot_download(repo_id="vegaluisjose/mlx-rag")
|
||||
with open(f"{model_path}/config.json") as f:
|
||||
model_config = ModelConfig(**json.load(f))
|
||||
self.dims = model_config.dim
|
||||
self.model = Bert(model_config)
|
||||
self.model.load_weights(f"{model_path}/model.npz")
|
||||
self.tokenizer = BertTokenizer.from_pretrained("thenlper/gte-large")
|
||||
self.embeddings = []
|
||||
|
||||
def run(self, input_text: List[str]) -> mx.array:
|
||||
tokens = self.tokenizer(input_text, return_tensors="np", padding=True)
|
||||
tokens = {key: mx.array(v) for key, v in tokens.items()}
|
||||
|
||||
last_hidden_state, _ = self.model(**tokens)
|
||||
|
||||
embeddings = average_pool(
|
||||
last_hidden_state, tokens["attention_mask"].astype(mx.float32)
|
||||
)
|
||||
self.embeddings = (
|
||||
embeddings / mx.linalg.norm(embeddings, ord=2, axis=1)[..., None]
|
||||
)
|
||||
|
||||
return np.array(embeddings.astype(mx.float32))
|
||||
@@ -12,7 +12,7 @@
|
||||
# limitations under the License.
|
||||
import os
|
||||
from functools import cached_property
|
||||
from typing import List, Union
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -30,10 +30,21 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
|
||||
"""
|
||||
|
||||
name: str = "text-embedding-ada-002"
|
||||
dim: Optional[int] = None
|
||||
|
||||
def ndims(self):
|
||||
# TODO don't hardcode this
|
||||
return 1536
|
||||
return self._ndims
|
||||
|
||||
@cached_property
|
||||
def _ndims(self):
|
||||
if self.name == "text-embedding-ada-002":
|
||||
return 1536
|
||||
elif self.name == "text-embedding-3-large":
|
||||
return self.dim or 3072
|
||||
elif self.name == "text-embedding-3-small":
|
||||
return self.dim or 1536
|
||||
else:
|
||||
raise ValueError(f"Unknown model name {self.name}")
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
@@ -47,7 +58,12 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
|
||||
The texts to embed
|
||||
"""
|
||||
# TODO retry, rate limit, token limit
|
||||
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
|
||||
if self.name == "text-embedding-ada-002":
|
||||
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
|
||||
else:
|
||||
rs = self._openai_client.embeddings.create(
|
||||
input=texts, model=self.name, dimensions=self.ndims()
|
||||
)
|
||||
return [v.embedding for v in rs.data]
|
||||
|
||||
@cached_property
|
||||
|
||||
107
python/lancedb/merge.py
Normal file
107
python/lancedb/merge.py
Normal file
@@ -0,0 +1,107 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .common import DATA
|
||||
|
||||
|
||||
class LanceMergeInsertBuilder(object):
|
||||
"""Builder for a LanceDB merge insert operation
|
||||
|
||||
See [`merge_insert`][lancedb.table.Table.merge_insert] for
|
||||
more context
|
||||
"""
|
||||
|
||||
def __init__(self, table: "Table", on: List[str]): # noqa: F821
|
||||
# Do not put a docstring here. This method should be hidden
|
||||
# from API docs. Users should use merge_insert to create
|
||||
# this object.
|
||||
self._table = table
|
||||
self._on = on
|
||||
self._when_matched_update_all = False
|
||||
self._when_matched_update_all_condition = None
|
||||
self._when_not_matched_insert_all = False
|
||||
self._when_not_matched_by_source_delete = False
|
||||
self._when_not_matched_by_source_condition = None
|
||||
|
||||
def when_matched_update_all(
|
||||
self, *, where: Optional[str] = None
|
||||
) -> LanceMergeInsertBuilder:
|
||||
"""
|
||||
Rows that exist in both the source table (new data) and
|
||||
the target table (old data) will be updated, replacing
|
||||
the old row with the corresponding matching row.
|
||||
|
||||
If there are multiple matches then the behavior is undefined.
|
||||
Currently this causes multiple copies of the row to be created
|
||||
but that behavior is subject to change.
|
||||
"""
|
||||
self._when_matched_update_all = True
|
||||
self._when_matched_update_all_condition = where
|
||||
return self
|
||||
|
||||
def when_not_matched_insert_all(self) -> LanceMergeInsertBuilder:
|
||||
"""
|
||||
Rows that exist only in the source table (new data) should
|
||||
be inserted into the target table.
|
||||
"""
|
||||
self._when_not_matched_insert_all = True
|
||||
return self
|
||||
|
||||
def when_not_matched_by_source_delete(
|
||||
self, condition: Optional[str] = None
|
||||
) -> LanceMergeInsertBuilder:
|
||||
"""
|
||||
Rows that exist only in the target table (old data) will be
|
||||
deleted. An optional condition can be provided to limit what
|
||||
data is deleted.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
condition: Optional[str], default None
|
||||
If None then all such rows will be deleted. Otherwise the
|
||||
condition will be used as an SQL filter to limit what rows
|
||||
are deleted.
|
||||
"""
|
||||
self._when_not_matched_by_source_delete = True
|
||||
if condition is not None:
|
||||
self._when_not_matched_by_source_condition = condition
|
||||
return self
|
||||
|
||||
def execute(
|
||||
self,
|
||||
new_data: DATA,
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
):
|
||||
"""
|
||||
Executes the merge insert operation
|
||||
|
||||
Nothing is returned but the [`Table`][lancedb.table.Table] is updated
|
||||
|
||||
Parameters
|
||||
----------
|
||||
new_data: DATA
|
||||
New records which will be matched against the existing records
|
||||
to potentially insert or update into the table. This parameter
|
||||
can be anything you use for [`add`][lancedb.table.Table.add]
|
||||
on_bad_vectors: str, default "error"
|
||||
What to do if any of the vectors are not the same size or contains NaNs.
|
||||
One of "error", "drop", "fill".
|
||||
fill_value: float, default 0.
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
"""
|
||||
self._table._do_merge(self, new_data, on_bad_vectors, fill_value)
|
||||
@@ -304,7 +304,7 @@ class LanceModel(pydantic.BaseModel):
|
||||
... name: str
|
||||
... vector: Vector(2)
|
||||
...
|
||||
>>> db = lancedb.connect("/tmp")
|
||||
>>> db = lancedb.connect("./example")
|
||||
>>> table = db.create_table("test", schema=TestModel.to_arrow_schema())
|
||||
>>> table.add([
|
||||
... TestModel(name="test", vector=[1.0, 2.0])
|
||||
|
||||
@@ -14,8 +14,9 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, List, Literal, Optional, Type, Union
|
||||
from typing import TYPE_CHECKING, List, Literal, Optional, Tuple, Type, Union
|
||||
|
||||
import deprecation
|
||||
import numpy as np
|
||||
@@ -23,7 +24,9 @@ import pyarrow as pa
|
||||
import pydantic
|
||||
|
||||
from . import __version__
|
||||
from .common import VECTOR_COLUMN_NAME
|
||||
from .common import VEC, VECTOR_COLUMN_NAME
|
||||
from .rerankers.base import Reranker
|
||||
from .rerankers.linear_combination import LinearCombinationReranker
|
||||
from .util import safe_import_pandas
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -99,6 +102,8 @@ class Query(pydantic.BaseModel):
|
||||
# Refine factor.
|
||||
refine_factor: Optional[int] = None
|
||||
|
||||
with_row_id: bool = False
|
||||
|
||||
|
||||
class LanceQueryBuilder(ABC):
|
||||
"""Build LanceDB query based on specific query type:
|
||||
@@ -109,19 +114,26 @@ class LanceQueryBuilder(ABC):
|
||||
def create(
|
||||
cls,
|
||||
table: "Table",
|
||||
query: Optional[Union[np.ndarray, str, "PIL.Image.Image"]],
|
||||
query: Optional[Union[np.ndarray, str, "PIL.Image.Image", Tuple]],
|
||||
query_type: str,
|
||||
vector_column_name: str,
|
||||
) -> LanceQueryBuilder:
|
||||
if query is None:
|
||||
return LanceEmptyQueryBuilder(table)
|
||||
|
||||
# convert "auto" query_type to "vector" or "fts"
|
||||
# and convert the query to vector if needed
|
||||
if query_type == "hybrid":
|
||||
# hybrid fts and vector query
|
||||
return LanceHybridQueryBuilder(table, query, vector_column_name)
|
||||
|
||||
# convert "auto" query_type to "vector", "fts"
|
||||
# or "hybrid" and convert the query to vector if needed
|
||||
query, query_type = cls._resolve_query(
|
||||
table, query, query_type, vector_column_name
|
||||
)
|
||||
|
||||
if query_type == "hybrid":
|
||||
return LanceHybridQueryBuilder(table, query, vector_column_name)
|
||||
|
||||
if isinstance(query, str):
|
||||
# fts
|
||||
return LanceFtsQueryBuilder(table, query)
|
||||
@@ -144,17 +156,13 @@ class LanceQueryBuilder(ABC):
|
||||
raise TypeError(f"'fts' queries must be a string: {type(query)}")
|
||||
return query, query_type
|
||||
elif query_type == "vector":
|
||||
if not isinstance(query, (list, np.ndarray)):
|
||||
conf = table.embedding_functions.get(vector_column_name)
|
||||
if conf is not None:
|
||||
query = conf.function.compute_query_embeddings_with_retry(query)[0]
|
||||
else:
|
||||
msg = f"No embedding function for {vector_column_name}"
|
||||
raise ValueError(msg)
|
||||
query = cls._query_to_vector(table, query, vector_column_name)
|
||||
return query, query_type
|
||||
elif query_type == "auto":
|
||||
if isinstance(query, (list, np.ndarray)):
|
||||
return query, "vector"
|
||||
if isinstance(query, tuple):
|
||||
return query, "hybrid"
|
||||
else:
|
||||
conf = table.embedding_functions.get(vector_column_name)
|
||||
if conf is not None:
|
||||
@@ -167,11 +175,23 @@ class LanceQueryBuilder(ABC):
|
||||
f"Invalid query_type, must be 'vector', 'fts', or 'auto': {query_type}"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _query_to_vector(cls, table, query, vector_column_name):
|
||||
if isinstance(query, (list, np.ndarray)):
|
||||
return query
|
||||
conf = table.embedding_functions.get(vector_column_name)
|
||||
if conf is not None:
|
||||
return conf.function.compute_query_embeddings_with_retry(query)[0]
|
||||
else:
|
||||
msg = f"No embedding function for {vector_column_name}"
|
||||
raise ValueError(msg)
|
||||
|
||||
def __init__(self, table: "Table"):
|
||||
self._table = table
|
||||
self._limit = 10
|
||||
self._columns = None
|
||||
self._where = None
|
||||
self._with_row_id = False
|
||||
|
||||
@deprecation.deprecated(
|
||||
deprecated_in="0.3.1",
|
||||
@@ -341,6 +361,22 @@ class LanceQueryBuilder(ABC):
|
||||
self._prefilter = prefilter
|
||||
return self
|
||||
|
||||
def with_row_id(self, with_row_id: bool) -> LanceQueryBuilder:
|
||||
"""Set whether to return row ids.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
with_row_id: bool
|
||||
If True, return _rowid column in the results.
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceQueryBuilder
|
||||
The LanceQueryBuilder object.
|
||||
"""
|
||||
self._with_row_id = with_row_id
|
||||
return self
|
||||
|
||||
|
||||
class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
"""
|
||||
@@ -459,6 +495,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
nprobes=self._nprobes,
|
||||
refine_factor=self._refine_factor,
|
||||
vector_column=self._vector_column,
|
||||
with_row_id=self._with_row_id,
|
||||
)
|
||||
return self._table._execute_query(query)
|
||||
|
||||
@@ -568,6 +605,10 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
ds = lance.write_dataset(output_tbl, tmp)
|
||||
output_tbl = ds.to_table(filter=self._where)
|
||||
|
||||
if self._with_row_id:
|
||||
# Need to set this to uint explicitly as vector results are in uint64
|
||||
row_ids = pa.array(row_ids, type=pa.uint64())
|
||||
output_tbl = output_tbl.append_column("_rowid", row_ids)
|
||||
return output_tbl
|
||||
|
||||
|
||||
@@ -579,3 +620,265 @@ class LanceEmptyQueryBuilder(LanceQueryBuilder):
|
||||
filter=self._where,
|
||||
limit=self._limit,
|
||||
)
|
||||
|
||||
|
||||
class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
def __init__(self, table: "Table", query: str, vector_column: str):
|
||||
super().__init__(table)
|
||||
self._validate_fts_index()
|
||||
vector_query, fts_query = self._validate_query(query)
|
||||
self._fts_query = LanceFtsQueryBuilder(table, fts_query)
|
||||
vector_query = self._query_to_vector(table, vector_query, vector_column)
|
||||
self._vector_query = LanceVectorQueryBuilder(table, vector_query, vector_column)
|
||||
self._norm = "score"
|
||||
self._reranker = LinearCombinationReranker(weight=0.7, fill=1.0)
|
||||
|
||||
def _validate_fts_index(self):
|
||||
if self._table._get_fts_index_path() is None:
|
||||
raise ValueError(
|
||||
"Please create a full-text search index " "to perform hybrid search."
|
||||
)
|
||||
|
||||
def _validate_query(self, query):
|
||||
# Temp hack to support vectorized queries for hybrid search
|
||||
if isinstance(query, str):
|
||||
return query, query
|
||||
elif isinstance(query, tuple):
|
||||
if len(query) != 2:
|
||||
raise ValueError(
|
||||
"The query must be a tuple of (vector_query, fts_query)."
|
||||
)
|
||||
if not isinstance(query[0], (list, np.ndarray, pa.Array, pa.ChunkedArray)):
|
||||
raise ValueError(f"The vector query must be one of {VEC}.")
|
||||
if not isinstance(query[1], str):
|
||||
raise ValueError("The fts query must be a string.")
|
||||
return query[0], query[1]
|
||||
else:
|
||||
raise ValueError(
|
||||
"The query must be either a string or a tuple of (vector, string)."
|
||||
)
|
||||
|
||||
def to_arrow(self) -> pa.Table:
|
||||
with ThreadPoolExecutor() as executor:
|
||||
fts_future = executor.submit(self._fts_query.with_row_id(True).to_arrow)
|
||||
vector_future = executor.submit(
|
||||
self._vector_query.with_row_id(True).to_arrow
|
||||
)
|
||||
fts_results = fts_future.result()
|
||||
vector_results = vector_future.result()
|
||||
|
||||
# convert to ranks first if needed
|
||||
if self._norm == "rank":
|
||||
vector_results = self._rank(vector_results, "_distance")
|
||||
fts_results = self._rank(fts_results, "score")
|
||||
# normalize the scores to be between 0 and 1, 0 being most relevant
|
||||
vector_results = self._normalize_scores(vector_results, "_distance")
|
||||
|
||||
# In fts higher scores represent relevance. Not inverting them here as
|
||||
# rerankers might need to preserve this score to support `return_score="all"`
|
||||
fts_results = self._normalize_scores(fts_results, "score")
|
||||
|
||||
results = self._reranker.rerank_hybrid(
|
||||
self._fts_query._query, vector_results, fts_results
|
||||
)
|
||||
|
||||
if not isinstance(results, pa.Table): # Enforce type
|
||||
raise TypeError(
|
||||
f"rerank_hybrid must return a pyarrow.Table, got {type(results)}"
|
||||
)
|
||||
|
||||
# apply limit after reranking
|
||||
results = results.slice(length=self._limit)
|
||||
|
||||
if not self._with_row_id:
|
||||
results = results.drop(["_rowid"])
|
||||
return results
|
||||
|
||||
def _rank(self, results: pa.Table, column: str, ascending: bool = True):
|
||||
if len(results) == 0:
|
||||
return results
|
||||
# Get the _score column from results
|
||||
scores = results.column(column).to_numpy()
|
||||
sort_indices = np.argsort(scores)
|
||||
if not ascending:
|
||||
sort_indices = sort_indices[::-1]
|
||||
ranks = np.empty_like(sort_indices)
|
||||
ranks[sort_indices] = np.arange(len(scores)) + 1
|
||||
# replace the _score column with the ranks
|
||||
_score_idx = results.column_names.index(column)
|
||||
results = results.set_column(
|
||||
_score_idx, column, pa.array(ranks, type=pa.float32())
|
||||
)
|
||||
return results
|
||||
|
||||
def _normalize_scores(self, results: pa.Table, column: str, invert=False):
|
||||
if len(results) == 0:
|
||||
return results
|
||||
# Get the _score column from results
|
||||
scores = results.column(column).to_numpy()
|
||||
# normalize the scores by subtracting the min and dividing by the max
|
||||
max, min = np.max(scores), np.min(scores)
|
||||
if np.isclose(max, min):
|
||||
rng = max
|
||||
else:
|
||||
rng = max - min
|
||||
scores = (scores - min) / rng
|
||||
if invert:
|
||||
scores = 1 - scores
|
||||
# replace the _score column with the ranks
|
||||
_score_idx = results.column_names.index(column)
|
||||
results = results.set_column(
|
||||
_score_idx, column, pa.array(scores, type=pa.float32())
|
||||
)
|
||||
return results
|
||||
|
||||
def rerank(
|
||||
self,
|
||||
normalize="score",
|
||||
reranker: Reranker = LinearCombinationReranker(weight=0.7, fill=1.0),
|
||||
) -> LanceHybridQueryBuilder:
|
||||
"""
|
||||
Rerank the hybrid search results using the specified reranker. The reranker
|
||||
must be an instance of Reranker class.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
normalize: str, default "score"
|
||||
The method to normalize the scores. Can be "rank" or "score". If "rank",
|
||||
the scores are converted to ranks and then normalized. If "score", the
|
||||
scores are normalized directly.
|
||||
reranker: Reranker, default LinearCombinationReranker(weight=0.7, fill=1.0)
|
||||
The reranker to use. Must be an instance of Reranker class.
|
||||
Returns
|
||||
-------
|
||||
LanceHybridQueryBuilder
|
||||
The LanceHybridQueryBuilder object.
|
||||
"""
|
||||
if normalize not in ["rank", "score"]:
|
||||
raise ValueError("normalize must be 'rank' or 'score'.")
|
||||
if reranker and not isinstance(reranker, Reranker):
|
||||
raise ValueError("reranker must be an instance of Reranker class.")
|
||||
|
||||
self._norm = normalize
|
||||
self._reranker = reranker
|
||||
|
||||
return self
|
||||
|
||||
def limit(self, limit: int) -> LanceHybridQueryBuilder:
|
||||
"""
|
||||
Set the maximum number of results to return for both vector and fts search
|
||||
components.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
limit: int
|
||||
The maximum number of results to return.
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceHybridQueryBuilder
|
||||
The LanceHybridQueryBuilder object.
|
||||
"""
|
||||
self._vector_query.limit(limit)
|
||||
self._fts_query.limit(limit)
|
||||
self._limit = limit
|
||||
|
||||
return self
|
||||
|
||||
def select(self, columns: list) -> LanceHybridQueryBuilder:
|
||||
"""
|
||||
Set the columns to return for both vector and fts search.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
columns: list
|
||||
The columns to return.
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceHybridQueryBuilder
|
||||
The LanceHybridQueryBuilder object.
|
||||
"""
|
||||
self._vector_query.select(columns)
|
||||
self._fts_query.select(columns)
|
||||
return self
|
||||
|
||||
def where(self, where: str, prefilter: bool = False) -> LanceHybridQueryBuilder:
|
||||
"""
|
||||
Set the where clause for both vector and fts search.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
where: str
|
||||
The where clause which is a valid SQL where clause. See
|
||||
`Lance filter pushdown <https://lancedb.github.io/lance/read_and_write.html#filter-push-down>`_
|
||||
for valid SQL expressions.
|
||||
|
||||
prefilter: bool, default False
|
||||
If True, apply the filter before vector search, otherwise the
|
||||
filter is applied on the result of vector search.
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceHybridQueryBuilder
|
||||
The LanceHybridQueryBuilder object.
|
||||
"""
|
||||
|
||||
self._vector_query.where(where, prefilter=prefilter)
|
||||
self._fts_query.where(where)
|
||||
return self
|
||||
|
||||
def metric(self, metric: Literal["L2", "cosine"]) -> LanceHybridQueryBuilder:
|
||||
"""
|
||||
Set the distance metric to use for vector search.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
metric: "L2" or "cosine"
|
||||
The distance metric to use. By default "L2" is used.
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceHybridQueryBuilder
|
||||
The LanceHybridQueryBuilder object.
|
||||
"""
|
||||
self._vector_query.metric(metric)
|
||||
return self
|
||||
|
||||
def nprobes(self, nprobes: int) -> LanceHybridQueryBuilder:
|
||||
"""
|
||||
Set the number of probes to use for vector search.
|
||||
|
||||
Higher values will yield better recall (more likely to find vectors if
|
||||
they exist) at the expense of latency.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nprobes: int
|
||||
The number of probes to use.
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceHybridQueryBuilder
|
||||
The LanceHybridQueryBuilder object.
|
||||
"""
|
||||
self._vector_query.nprobes(nprobes)
|
||||
return self
|
||||
|
||||
def refine_factor(self, refine_factor: int) -> LanceHybridQueryBuilder:
|
||||
"""
|
||||
Refine the vector search results by reading extra elements and
|
||||
re-ranking them in memory.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
refine_factor: int
|
||||
The refine factor to use.
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceHybridQueryBuilder
|
||||
The LanceHybridQueryBuilder object.
|
||||
"""
|
||||
self._vector_query.refine_factor(refine_factor)
|
||||
return self
|
||||
|
||||
@@ -13,6 +13,8 @@
|
||||
|
||||
|
||||
import functools
|
||||
import logging
|
||||
import os
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
from urllib.parse import urljoin
|
||||
|
||||
@@ -20,6 +22,8 @@ import attrs
|
||||
import pyarrow as pa
|
||||
import requests
|
||||
from pydantic import BaseModel
|
||||
from requests.adapters import HTTPAdapter
|
||||
from urllib3 import Retry
|
||||
|
||||
from lancedb.common import Credential
|
||||
from lancedb.remote import VectorQuery, VectorQueryResult
|
||||
@@ -57,6 +61,10 @@ class RestfulLanceDBClient:
|
||||
@functools.cached_property
|
||||
def session(self) -> requests.Session:
|
||||
sess = requests.Session()
|
||||
|
||||
retry_adapter_instance = retry_adapter(retry_adapter_options())
|
||||
sess.mount(urljoin(self.url, "/v1/table/"), retry_adapter_instance)
|
||||
|
||||
adapter_class = LanceDBClientHTTPAdapterFactory()
|
||||
sess.mount("https://", adapter_class())
|
||||
return sess
|
||||
@@ -109,7 +117,7 @@ class RestfulLanceDBClient:
|
||||
urljoin(self.url, uri),
|
||||
params=params,
|
||||
headers=self.headers,
|
||||
timeout=(10.0, 300.0),
|
||||
timeout=(120.0, 300.0),
|
||||
) as resp:
|
||||
self._check_status(resp)
|
||||
return resp.json()
|
||||
@@ -151,7 +159,7 @@ class RestfulLanceDBClient:
|
||||
urljoin(self.url, uri),
|
||||
headers=headers,
|
||||
params=params,
|
||||
timeout=(10.0, 300.0),
|
||||
timeout=(120.0, 300.0),
|
||||
**req_kwargs,
|
||||
) as resp:
|
||||
self._check_status(resp)
|
||||
@@ -170,3 +178,72 @@ class RestfulLanceDBClient:
|
||||
"""Query a table."""
|
||||
tbl = self.post(f"/v1/table/{table_name}/query/", query, deserialize=_read_ipc)
|
||||
return VectorQueryResult(tbl)
|
||||
|
||||
def mount_retry_adapter_for_table(self, table_name: str) -> None:
|
||||
"""
|
||||
Adds an http adapter to session that will retry retryable requests to the table.
|
||||
"""
|
||||
retry_options = retry_adapter_options(methods=["GET", "POST"])
|
||||
retry_adapter_instance = retry_adapter(retry_options)
|
||||
session = self.session
|
||||
|
||||
session.mount(
|
||||
urljoin(self.url, f"/v1/table/{table_name}/query/"), retry_adapter_instance
|
||||
)
|
||||
session.mount(
|
||||
urljoin(self.url, f"/v1/table/{table_name}/describe/"),
|
||||
retry_adapter_instance,
|
||||
)
|
||||
session.mount(
|
||||
urljoin(self.url, f"/v1/table/{table_name}/index/list/"),
|
||||
retry_adapter_instance,
|
||||
)
|
||||
|
||||
|
||||
def retry_adapter_options(methods=["GET"]) -> Dict[str, Any]:
|
||||
return {
|
||||
"retries": int(os.environ.get("LANCE_CLIENT_MAX_RETRIES", "3")),
|
||||
"connect_retries": int(os.environ.get("LANCE_CLIENT_CONNECT_RETRIES", "3")),
|
||||
"read_retries": int(os.environ.get("LANCE_CLIENT_READ_RETRIES", "3")),
|
||||
"backoff_factor": float(
|
||||
os.environ.get("LANCE_CLIENT_RETRY_BACKOFF_FACTOR", "0.25")
|
||||
),
|
||||
"backoff_jitter": float(
|
||||
os.environ.get("LANCE_CLIENT_RETRY_BACKOFF_JITTER", "0.25")
|
||||
),
|
||||
"statuses": [
|
||||
int(i.strip())
|
||||
for i in os.environ.get(
|
||||
"LANCE_CLIENT_RETRY_STATUSES", "429, 500, 502, 503"
|
||||
).split(",")
|
||||
],
|
||||
"methods": methods,
|
||||
}
|
||||
|
||||
|
||||
def retry_adapter(options: Dict[str, Any]) -> HTTPAdapter:
|
||||
total_retries = options["retries"]
|
||||
connect_retries = options["connect_retries"]
|
||||
read_retries = options["read_retries"]
|
||||
backoff_factor = options["backoff_factor"]
|
||||
backoff_jitter = options["backoff_jitter"]
|
||||
statuses = options["statuses"]
|
||||
methods = frozenset(options["methods"])
|
||||
logging.debug(
|
||||
f"Setting up retry adapter with {total_retries} retries," # noqa G003
|
||||
+ f"connect retries {connect_retries}, read retries {read_retries},"
|
||||
+ f"backoff factor {backoff_factor}, statuses {statuses}, "
|
||||
+ f"methods {methods}"
|
||||
)
|
||||
|
||||
return HTTPAdapter(
|
||||
max_retries=Retry(
|
||||
total=total_retries,
|
||||
connect=connect_retries,
|
||||
read=read_retries,
|
||||
backoff_factor=backoff_factor,
|
||||
backoff_jitter=backoff_jitter,
|
||||
status_forcelist=statuses,
|
||||
allowed_methods=methods,
|
||||
)
|
||||
)
|
||||
|
||||
@@ -95,6 +95,8 @@ class RemoteDBConnection(DBConnection):
|
||||
"""
|
||||
from .table import RemoteTable
|
||||
|
||||
self._client.mount_retry_adapter_for_table(name)
|
||||
|
||||
# check if table exists
|
||||
try:
|
||||
self._client.post(f"/v1/table/{name}/describe/")
|
||||
@@ -116,6 +118,7 @@ class RemoteDBConnection(DBConnection):
|
||||
schema: Optional[Union[pa.Schema, LanceModel]] = None,
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
mode: Optional[str] = None,
|
||||
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
|
||||
) -> Table:
|
||||
"""Create a [Table][lancedb.table.Table] in the database.
|
||||
@@ -213,11 +216,13 @@ class RemoteDBConnection(DBConnection):
|
||||
if data is None and schema is None:
|
||||
raise ValueError("Either data or schema must be provided.")
|
||||
if embedding_functions is not None:
|
||||
raise NotImplementedError(
|
||||
"embedding_functions is not supported for remote databases."
|
||||
logging.warning(
|
||||
"embedding_functions is not yet supported on LanceDB Cloud."
|
||||
"Please vote https://github.com/lancedb/lancedb/issues/626 "
|
||||
"for this feature."
|
||||
)
|
||||
if mode is not None:
|
||||
logging.warning("mode is not yet supported on LanceDB Cloud.")
|
||||
|
||||
if inspect.isclass(schema) and issubclass(schema, LanceModel):
|
||||
# convert LanceModel to pyarrow schema
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user