mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 05:19:58 +00:00
Compare commits
85 Commits
docs/mcp
...
v0.19.1-be
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d83424d6b4 | ||
|
|
8bf89f887c | ||
|
|
b2160b2304 | ||
|
|
1bb82597be | ||
|
|
e4eee38b3c | ||
|
|
64fc2be503 | ||
|
|
dc8054e90d | ||
|
|
1684940946 | ||
|
|
695813463c | ||
|
|
ed594b0f76 | ||
|
|
cee2b5ea42 | ||
|
|
f315f9665a | ||
|
|
5deb26bc8b | ||
|
|
3cc670ac38 | ||
|
|
4ade3e31e2 | ||
|
|
a222d2cd91 | ||
|
|
508e621f3d | ||
|
|
a1a0472f3f | ||
|
|
3425a6d339 | ||
|
|
af54e0ce06 | ||
|
|
089905fe8f | ||
|
|
554939e5d2 | ||
|
|
7a13814922 | ||
|
|
e9f25f6a12 | ||
|
|
419a433244 | ||
|
|
a9311c4dc0 | ||
|
|
178bcf9c90 | ||
|
|
b9be092cb1 | ||
|
|
e8c0c52315 | ||
|
|
a60fa0d3b7 | ||
|
|
726d629b9b | ||
|
|
b493f56dee | ||
|
|
a8b5ad7e74 | ||
|
|
f8f6264883 | ||
|
|
d8517117f1 | ||
|
|
ab66dd5ed2 | ||
|
|
cbb9a7877c | ||
|
|
b7fc223535 | ||
|
|
1fdaf7a1a4 | ||
|
|
d11819c90c | ||
|
|
9b902272f1 | ||
|
|
8c0622fa2c | ||
|
|
2191f948c3 | ||
|
|
acc3b03004 | ||
|
|
7f091b8c8e | ||
|
|
c19bdd9a24 | ||
|
|
dad0ff5cd2 | ||
|
|
a705621067 | ||
|
|
39614fdb7d | ||
|
|
96d534d4bc | ||
|
|
5051d30d09 | ||
|
|
db853c4041 | ||
|
|
76d1d22bdc | ||
|
|
d8746c61c6 | ||
|
|
1a66df2627 | ||
|
|
44670076c1 | ||
|
|
92f0b16e46 | ||
|
|
1620ba3508 | ||
|
|
3ae90dde80 | ||
|
|
4f07fea6df | ||
|
|
3d7d82cf86 | ||
|
|
edc4e40a7b | ||
|
|
ca3806a02f | ||
|
|
35cff12e31 | ||
|
|
c6c20cb2bd | ||
|
|
26080ee4c1 | ||
|
|
ef3a2b5357 | ||
|
|
c42a201389 | ||
|
|
24e42ccd4d | ||
|
|
8a50944061 | ||
|
|
40e066bc7c | ||
|
|
b3ad105fa0 | ||
|
|
6e701d3e1b | ||
|
|
2248aa9508 | ||
|
|
a6fa69ab89 | ||
|
|
b3a4efd587 | ||
|
|
4708b60bb1 | ||
|
|
080ea2f9a4 | ||
|
|
32fdde23f8 | ||
|
|
c44e5c046c | ||
|
|
f23aa0a793 | ||
|
|
83fc2b1851 | ||
|
|
56aa133ee6 | ||
|
|
27d9e5c596 | ||
|
|
ec8271931f |
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.19.0-beta.5"
|
||||
current_version = "0.19.1-beta.3"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
13
.github/workflows/docs.yml
vendored
13
.github/workflows/docs.yml
vendored
@@ -18,17 +18,24 @@ concurrency:
|
||||
group: "pages"
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
# This reduces the disk space needed for the build
|
||||
RUSTFLAGS: "-C debuginfo=0"
|
||||
# according to: https://matklad.github.io/2021/09/04/fast-rust-builds.html
|
||||
# CI builds are faster with incremental disabled.
|
||||
CARGO_INCREMENTAL: "0"
|
||||
|
||||
jobs:
|
||||
# Single deploy job since we're just deploying
|
||||
build:
|
||||
environment:
|
||||
name: github-pages
|
||||
url: ${{ steps.deployment.outputs.page_url }}
|
||||
runs-on: buildjet-8vcpu-ubuntu-2204
|
||||
runs-on: ubuntu-24.04
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Install dependecies needed for ubuntu
|
||||
- name: Install dependencies needed for ubuntu
|
||||
run: |
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
rustup update && rustup default
|
||||
@@ -38,6 +45,7 @@ jobs:
|
||||
python-version: "3.10"
|
||||
cache: "pip"
|
||||
cache-dependency-path: "docs/requirements.txt"
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- name: Build Python
|
||||
working-directory: python
|
||||
run: |
|
||||
@@ -49,7 +57,6 @@ jobs:
|
||||
node-version: 20
|
||||
cache: 'npm'
|
||||
cache-dependency-path: node/package-lock.json
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- name: Install node dependencies
|
||||
working-directory: node
|
||||
run: |
|
||||
|
||||
5
.github/workflows/python.yml
vendored
5
.github/workflows/python.yml
vendored
@@ -136,9 +136,9 @@ jobs:
|
||||
- uses: ./.github/workflows/run_tests
|
||||
with:
|
||||
integration: true
|
||||
- name: Test without pylance
|
||||
- name: Test without pylance or pandas
|
||||
run: |
|
||||
pip uninstall -y pylance
|
||||
pip uninstall -y pylance pandas
|
||||
pytest -vv python/tests/test_table.py
|
||||
# Make sure wheels are not included in the Rust cache
|
||||
- name: Delete wheels
|
||||
@@ -228,6 +228,7 @@ jobs:
|
||||
- name: Install lancedb
|
||||
run: |
|
||||
pip install "pydantic<2"
|
||||
pip install pyarrow==16
|
||||
pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests]
|
||||
pip install tantivy
|
||||
- name: Run tests
|
||||
|
||||
674
Cargo.lock
generated
674
Cargo.lock
generated
File diff suppressed because it is too large
Load Diff
18
Cargo.toml
18
Cargo.toml
@@ -21,16 +21,14 @@ categories = ["database-implementations"]
|
||||
rust-version = "1.78.0"
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.25.3", "features" = [
|
||||
"dynamodb",
|
||||
], tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
|
||||
lance-io = { version = "=0.25.3", tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
|
||||
lance-index = { version = "=0.25.3", tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
|
||||
lance-linalg = { version = "=0.25.3", tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
|
||||
lance-table = { version = "=0.25.3", tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
|
||||
lance-testing = { version = "=0.25.3", tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
|
||||
lance-datafusion = { version = "=0.25.3", tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
|
||||
lance-encoding = { version = "=0.25.3", tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
|
||||
lance = { "version" = "=0.27.0", "features" = ["dynamodb"], tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance-io = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance-index = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance-linalg = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance-table = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance-testing = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance-datafusion = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance-encoding = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "54.1", optional = false }
|
||||
arrow-array = "54.1"
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
LanceDB docs are deployed to https://lancedb.github.io/lancedb/.
|
||||
|
||||
Docs is built and deployed automatically by [Github Actions](.github/workflows/docs.yml)
|
||||
Docs is built and deployed automatically by [Github Actions](../.github/workflows/docs.yml)
|
||||
whenever a commit is pushed to the `main` branch. So it is possible for the docs to show
|
||||
unreleased features.
|
||||
|
||||
|
||||
@@ -342,7 +342,7 @@ For **read and write access**, LanceDB will need a policy such as:
|
||||
"Action": [
|
||||
"s3:PutObject",
|
||||
"s3:GetObject",
|
||||
"s3:DeleteObject",
|
||||
"s3:DeleteObject"
|
||||
],
|
||||
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
|
||||
},
|
||||
@@ -374,7 +374,7 @@ For **read-only access**, LanceDB will need a policy such as:
|
||||
{
|
||||
"Effect": "Allow",
|
||||
"Action": [
|
||||
"s3:GetObject",
|
||||
"s3:GetObject"
|
||||
],
|
||||
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
|
||||
},
|
||||
|
||||
@@ -765,7 +765,10 @@ This can be used to update zero to all rows depending on how many rows match the
|
||||
];
|
||||
const tbl = await db.createTable("my_table", data)
|
||||
|
||||
await tbl.update({vector: [10, 10]}, { where: "x = 2"})
|
||||
await tbl.update({
|
||||
values: { vector: [10, 10] },
|
||||
where: "x = 2"
|
||||
});
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -784,7 +787,10 @@ This can be used to update zero to all rows depending on how many rows match the
|
||||
];
|
||||
const tbl = await db.createTable("my_table", data)
|
||||
|
||||
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
|
||||
await tbl.update({
|
||||
where: "x = 2",
|
||||
values: { vector: [10, 10] }
|
||||
});
|
||||
```
|
||||
|
||||
#### Updating using a sql query
|
||||
@@ -1001,11 +1007,9 @@ In LanceDB OSS, users can set the `read_consistency_interval` parameter on conne
|
||||
|
||||
There are three possible settings for `read_consistency_interval`:
|
||||
|
||||
1. **Unset**: The database does not check for updates to tables made by other processes. This setting is suitable for applications where the data does not change during the lifetime of the table reference.
|
||||
2. **Zero seconds (Strong consistency)**: The database checks for updates on every read. This provides the strongest consistency guarantees, ensuring that all clients see the latest committed data. However, it has the most overhead. This setting is suitable when consistency matters more than having high QPS. For best performance, combine this setting with the storage option `new_table_enable_v2_manifest_paths` set to `true`.
|
||||
3. **Custom interval (Eventual consistency, the default)**: The database checks for updates at a custom interval. By default, this is every 5 seconds. This provides eventual consistency, allowing for some lag between write and read operations. Performance wise, this is a middle ground between strong consistency and no consistency check. This setting is suitable for applications where immediate consistency is not critical, but clients should see updated data eventually.
|
||||
|
||||
You can always force a synchronization by calling `checkout_latest()` / `checkoutLatest()` on a table.
|
||||
1. **Unset (default)**: The database does not check for updates to tables made by other processes. This provides the best query performance, but means that clients may not see the most up-to-date data. This setting is suitable for applications where the data does not change during the lifetime of the table reference.
|
||||
2. **Zero seconds (Strong consistency)**: The database checks for updates on every read. This provides the strongest consistency guarantees, ensuring that all clients see the latest committed data. However, it has the most overhead. This setting is suitable when consistency matters more than having high QPS.
|
||||
3. **Custom interval (Eventual consistency)**: The database checks for updates at a custom interval, such as every 5 seconds. This provides eventual consistency, allowing for some lag between write and read operations. Performance wise, this is a middle ground between strong consistency and no consistency check. This setting is suitable for applications where immediate consistency is not critical, but clients should see updated data eventually.
|
||||
|
||||
!!! tip "Consistency in LanceDB Cloud"
|
||||
|
||||
@@ -1043,21 +1047,7 @@ You can always force a synchronization by calling `checkout_latest()` / `checkou
|
||||
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_eventual_consistency"
|
||||
```
|
||||
|
||||
For no consistency, use `None`:
|
||||
|
||||
=== "Sync API"
|
||||
|
||||
```python
|
||||
--8<-- "python/python/tests/docs/test_guide_tables.py:table_no_consistency"
|
||||
```
|
||||
|
||||
=== "Async API"
|
||||
|
||||
```python
|
||||
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_no_consistency"
|
||||
```
|
||||
|
||||
To manually check for updates you can use `checkout_latest`:
|
||||
By default, a `Table` will never check for updates from other writers. To manually check for updates you can use `checkout_latest`:
|
||||
|
||||
=== "Sync API"
|
||||
|
||||
@@ -1075,25 +1065,15 @@ You can always force a synchronization by calling `checkout_latest()` / `checkou
|
||||
To set strong consistency, use `0`:
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.test.ts:table_strong_consistency"
|
||||
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
|
||||
const tbl = await db.openTable("my_table");
|
||||
```
|
||||
|
||||
For eventual consistency, specify the update interval as seconds:
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.test.ts:table_eventual_consistency"
|
||||
```
|
||||
|
||||
For no consistency, use `null`:
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.test.ts:table_no_consistency"
|
||||
```
|
||||
|
||||
To manually check for updates you can use `checkoutLatest`:
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.test.ts:table_checkout_latest"
|
||||
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
|
||||
const tbl = await db.openTable("my_table");
|
||||
```
|
||||
|
||||
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007
|
||||
|
||||
@@ -22,10 +22,13 @@ including methods to retrieve the query type and convert the query to a dictiona
|
||||
new BoostQuery(
|
||||
positive,
|
||||
negative,
|
||||
negativeBoost): BoostQuery
|
||||
options?): BoostQuery
|
||||
```
|
||||
|
||||
Creates an instance of BoostQuery.
|
||||
The boost returns documents that match the positive query,
|
||||
but penalizes those that match the negative query.
|
||||
the penalty is controlled by the `negativeBoost` parameter.
|
||||
|
||||
#### Parameters
|
||||
|
||||
@@ -35,8 +38,11 @@ Creates an instance of BoostQuery.
|
||||
* **negative**: [`FullTextQuery`](../interfaces/FullTextQuery.md)
|
||||
The negative query that reduces the relevance score.
|
||||
|
||||
* **negativeBoost**: `number`
|
||||
The factor by which the negative query reduces the score.
|
||||
* **options?**
|
||||
Optional parameters for the boost query.
|
||||
- `negativeBoost`: The boost factor for the negative query (default is 0.0).
|
||||
|
||||
* **options.negativeBoost?**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -50,6 +56,8 @@ Creates an instance of BoostQuery.
|
||||
queryType(): FullTextQueryType
|
||||
```
|
||||
|
||||
The type of the full-text query.
|
||||
|
||||
#### Returns
|
||||
|
||||
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
|
||||
@@ -57,19 +65,3 @@ queryType(): FullTextQueryType
|
||||
#### Implementation of
|
||||
|
||||
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)
|
||||
|
||||
***
|
||||
|
||||
### toDict()
|
||||
|
||||
```ts
|
||||
toDict(): Record<string, unknown>
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
`Record`<`string`, `unknown`>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`toDict`](../interfaces/FullTextQuery.md#todict)
|
||||
|
||||
@@ -22,9 +22,7 @@ including methods to retrieve the query type and convert the query to a dictiona
|
||||
new MatchQuery(
|
||||
query,
|
||||
column,
|
||||
boost,
|
||||
fuzziness,
|
||||
maxExpansions): MatchQuery
|
||||
options?): MatchQuery
|
||||
```
|
||||
|
||||
Creates an instance of MatchQuery.
|
||||
@@ -37,14 +35,17 @@ Creates an instance of MatchQuery.
|
||||
* **column**: `string`
|
||||
The name of the column to search within.
|
||||
|
||||
* **boost**: `number` = `1.0`
|
||||
(Optional) The boost factor to influence the relevance score of this query. Default is `1.0`.
|
||||
* **options?**
|
||||
Optional parameters for the match query.
|
||||
- `boost`: The boost factor for the query (default is 1.0).
|
||||
- `fuzziness`: The fuzziness level for the query (default is 0).
|
||||
- `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
|
||||
|
||||
* **fuzziness**: `number` = `0`
|
||||
(Optional) The allowed edit distance for fuzzy matching. Default is `0`.
|
||||
* **options.boost?**: `number`
|
||||
|
||||
* **maxExpansions**: `number` = `50`
|
||||
(Optional) The maximum number of terms to consider for fuzzy matching. Default is `50`.
|
||||
* **options.fuzziness?**: `number`
|
||||
|
||||
* **options.maxExpansions?**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -58,6 +59,8 @@ Creates an instance of MatchQuery.
|
||||
queryType(): FullTextQueryType
|
||||
```
|
||||
|
||||
The type of the full-text query.
|
||||
|
||||
#### Returns
|
||||
|
||||
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
|
||||
@@ -65,19 +68,3 @@ queryType(): FullTextQueryType
|
||||
#### Implementation of
|
||||
|
||||
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)
|
||||
|
||||
***
|
||||
|
||||
### toDict()
|
||||
|
||||
```ts
|
||||
toDict(): Record<string, unknown>
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
`Record`<`string`, `unknown`>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`toDict`](../interfaces/FullTextQuery.md#todict)
|
||||
|
||||
@@ -33,20 +33,20 @@ Construct a MergeInsertBuilder. __Internal use only.__
|
||||
### execute()
|
||||
|
||||
```ts
|
||||
execute(data): Promise<void>
|
||||
execute(data): Promise<MergeResult>
|
||||
```
|
||||
|
||||
Executes the merge insert operation
|
||||
|
||||
Nothing is returned but the `Table` is updated
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **data**: [`Data`](../type-aliases/Data.md)
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
`Promise`<[`MergeResult`](../interfaces/MergeResult.md)>
|
||||
|
||||
the merge result
|
||||
|
||||
***
|
||||
|
||||
|
||||
@@ -22,7 +22,7 @@ including methods to retrieve the query type and convert the query to a dictiona
|
||||
new MultiMatchQuery(
|
||||
query,
|
||||
columns,
|
||||
boosts): MultiMatchQuery
|
||||
options?): MultiMatchQuery
|
||||
```
|
||||
|
||||
Creates an instance of MultiMatchQuery.
|
||||
@@ -35,10 +35,11 @@ Creates an instance of MultiMatchQuery.
|
||||
* **columns**: `string`[]
|
||||
An array of column names to search within.
|
||||
|
||||
* **boosts**: `number`[] = `...`
|
||||
(Optional) An array of boost factors corresponding to each column. Default is an array of 1.0 for each column.
|
||||
The `boosts` array should have the same length as `columns`. If not provided, all columns will have a default boost of 1.0.
|
||||
If the length of `boosts` is less than `columns`, it will be padded with 1.0s.
|
||||
* **options?**
|
||||
Optional parameters for the multi-match query.
|
||||
- `boosts`: An array of boost factors for each column (default is 1.0 for all).
|
||||
|
||||
* **options.boosts?**: `number`[]
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -52,6 +53,8 @@ Creates an instance of MultiMatchQuery.
|
||||
queryType(): FullTextQueryType
|
||||
```
|
||||
|
||||
The type of the full-text query.
|
||||
|
||||
#### Returns
|
||||
|
||||
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
|
||||
@@ -59,19 +62,3 @@ queryType(): FullTextQueryType
|
||||
#### Implementation of
|
||||
|
||||
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)
|
||||
|
||||
***
|
||||
|
||||
### toDict()
|
||||
|
||||
```ts
|
||||
toDict(): Record<string, unknown>
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
`Record`<`string`, `unknown`>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`toDict`](../interfaces/FullTextQuery.md#todict)
|
||||
|
||||
@@ -44,6 +44,8 @@ Creates an instance of `PhraseQuery`.
|
||||
queryType(): FullTextQueryType
|
||||
```
|
||||
|
||||
The type of the full-text query.
|
||||
|
||||
#### Returns
|
||||
|
||||
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
|
||||
@@ -51,19 +53,3 @@ queryType(): FullTextQueryType
|
||||
#### Implementation of
|
||||
|
||||
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)
|
||||
|
||||
***
|
||||
|
||||
### toDict()
|
||||
|
||||
```ts
|
||||
toDict(): Record<string, unknown>
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
`Record`<`string`, `unknown`>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`toDict`](../interfaces/FullTextQuery.md#todict)
|
||||
|
||||
@@ -40,7 +40,7 @@ Returns the name of the table
|
||||
### add()
|
||||
|
||||
```ts
|
||||
abstract add(data, options?): Promise<void>
|
||||
abstract add(data, options?): Promise<AddResult>
|
||||
```
|
||||
|
||||
Insert records into this Table.
|
||||
@@ -54,14 +54,17 @@ Insert records into this Table.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
`Promise`<[`AddResult`](../interfaces/AddResult.md)>
|
||||
|
||||
A promise that resolves to an object
|
||||
containing the new version number of the table
|
||||
|
||||
***
|
||||
|
||||
### addColumns()
|
||||
|
||||
```ts
|
||||
abstract addColumns(newColumnTransforms): Promise<void>
|
||||
abstract addColumns(newColumnTransforms): Promise<AddColumnsResult>
|
||||
```
|
||||
|
||||
Add new columns with defined values.
|
||||
@@ -76,14 +79,17 @@ Add new columns with defined values.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
`Promise`<[`AddColumnsResult`](../interfaces/AddColumnsResult.md)>
|
||||
|
||||
A promise that resolves to an object
|
||||
containing the new version number of the table after adding the columns.
|
||||
|
||||
***
|
||||
|
||||
### alterColumns()
|
||||
|
||||
```ts
|
||||
abstract alterColumns(columnAlterations): Promise<void>
|
||||
abstract alterColumns(columnAlterations): Promise<AlterColumnsResult>
|
||||
```
|
||||
|
||||
Alter the name or nullability of columns.
|
||||
@@ -96,7 +102,10 @@ Alter the name or nullability of columns.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
`Promise`<[`AlterColumnsResult`](../interfaces/AlterColumnsResult.md)>
|
||||
|
||||
A promise that resolves to an object
|
||||
containing the new version number of the table after altering the columns.
|
||||
|
||||
***
|
||||
|
||||
@@ -117,8 +126,8 @@ wish to return to standard mode, call `checkoutLatest`.
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **version**: `number`
|
||||
The version to checkout
|
||||
* **version**: `string` \| `number`
|
||||
The version to checkout, could be version number or tag
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -252,7 +261,7 @@ await table.createIndex("my_float_col");
|
||||
### delete()
|
||||
|
||||
```ts
|
||||
abstract delete(predicate): Promise<void>
|
||||
abstract delete(predicate): Promise<DeleteResult>
|
||||
```
|
||||
|
||||
Delete the rows that satisfy the predicate.
|
||||
@@ -263,7 +272,10 @@ Delete the rows that satisfy the predicate.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
`Promise`<[`DeleteResult`](../interfaces/DeleteResult.md)>
|
||||
|
||||
A promise that resolves to an object
|
||||
containing the new version number of the table
|
||||
|
||||
***
|
||||
|
||||
@@ -284,7 +296,7 @@ Return a brief description of the table
|
||||
### dropColumns()
|
||||
|
||||
```ts
|
||||
abstract dropColumns(columnNames): Promise<void>
|
||||
abstract dropColumns(columnNames): Promise<DropColumnsResult>
|
||||
```
|
||||
|
||||
Drop one or more columns from the dataset
|
||||
@@ -303,7 +315,10 @@ then call ``cleanup_files`` to remove the old files.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
`Promise`<[`DropColumnsResult`](../interfaces/DropColumnsResult.md)>
|
||||
|
||||
A promise that resolves to an object
|
||||
containing the new version number of the table after dropping the columns.
|
||||
|
||||
***
|
||||
|
||||
@@ -454,6 +469,28 @@ Modeled after ``VACUUM`` in PostgreSQL.
|
||||
|
||||
***
|
||||
|
||||
### prewarmIndex()
|
||||
|
||||
```ts
|
||||
abstract prewarmIndex(name): Promise<void>
|
||||
```
|
||||
|
||||
Prewarm an index in the table.
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **name**: `string`
|
||||
The name of the index.
|
||||
This will load the index into memory. This may reduce the cold-start time for
|
||||
future queries. If the index does not fit in the cache then this call may be
|
||||
wasteful.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
|
||||
***
|
||||
|
||||
### query()
|
||||
|
||||
```ts
|
||||
@@ -575,7 +612,7 @@ of the given query
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **query**: `string` \| [`IntoVector`](../type-aliases/IntoVector.md)
|
||||
* **query**: `string` \| [`IntoVector`](../type-aliases/IntoVector.md) \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
|
||||
the query, a vector or string
|
||||
|
||||
* **queryType?**: `string`
|
||||
@@ -593,6 +630,50 @@ of the given query
|
||||
|
||||
***
|
||||
|
||||
### stats()
|
||||
|
||||
```ts
|
||||
abstract stats(): Promise<TableStatistics>
|
||||
```
|
||||
|
||||
Returns table and fragment statistics
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`TableStatistics`](../interfaces/TableStatistics.md)>
|
||||
|
||||
The table and fragment statistics
|
||||
|
||||
***
|
||||
|
||||
### tags()
|
||||
|
||||
```ts
|
||||
abstract tags(): Promise<Tags>
|
||||
```
|
||||
|
||||
Get a tags manager for this table.
|
||||
|
||||
Tags allow you to label specific versions of a table with a human-readable name.
|
||||
The returned tags manager can be used to list, create, update, or delete tags.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Tags`](Tags.md)>
|
||||
|
||||
A tags manager for this table
|
||||
|
||||
#### Example
|
||||
|
||||
```typescript
|
||||
const tagsManager = await table.tags();
|
||||
await tagsManager.create("v1", 1);
|
||||
const tags = await tagsManager.list();
|
||||
console.log(tags); // { "v1": { version: 1, manifestSize: ... } }
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### toArrow()
|
||||
|
||||
```ts
|
||||
@@ -612,7 +693,7 @@ Return the table as an arrow table
|
||||
#### update(opts)
|
||||
|
||||
```ts
|
||||
abstract update(opts): Promise<void>
|
||||
abstract update(opts): Promise<UpdateResult>
|
||||
```
|
||||
|
||||
Update existing records in the Table
|
||||
@@ -623,7 +704,10 @@ Update existing records in the Table
|
||||
|
||||
##### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
`Promise`<[`UpdateResult`](../interfaces/UpdateResult.md)>
|
||||
|
||||
A promise that resolves to an object containing
|
||||
the number of rows updated and the new version number
|
||||
|
||||
##### Example
|
||||
|
||||
@@ -634,7 +718,7 @@ table.update({where:"x = 2", values:{"vector": [10, 10]}})
|
||||
#### update(opts)
|
||||
|
||||
```ts
|
||||
abstract update(opts): Promise<void>
|
||||
abstract update(opts): Promise<UpdateResult>
|
||||
```
|
||||
|
||||
Update existing records in the Table
|
||||
@@ -645,7 +729,10 @@ Update existing records in the Table
|
||||
|
||||
##### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
`Promise`<[`UpdateResult`](../interfaces/UpdateResult.md)>
|
||||
|
||||
A promise that resolves to an object containing
|
||||
the number of rows updated and the new version number
|
||||
|
||||
##### Example
|
||||
|
||||
@@ -656,7 +743,7 @@ table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
|
||||
#### update(updates, options)
|
||||
|
||||
```ts
|
||||
abstract update(updates, options?): Promise<void>
|
||||
abstract update(updates, options?): Promise<UpdateResult>
|
||||
```
|
||||
|
||||
Update existing records in the Table
|
||||
@@ -679,10 +766,6 @@ repeatedly calilng this method.
|
||||
* **updates**: `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||
the
|
||||
columns to update
|
||||
Keys in the map should specify the name of the column to update.
|
||||
Values in the map provide the new value of the column. These can
|
||||
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
|
||||
based on the row being updated (e.g. "my_col + 1")
|
||||
|
||||
* **options?**: `Partial`<[`UpdateOptions`](../interfaces/UpdateOptions.md)>
|
||||
additional options to control
|
||||
@@ -690,7 +773,15 @@ repeatedly calilng this method.
|
||||
|
||||
##### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
`Promise`<[`UpdateResult`](../interfaces/UpdateResult.md)>
|
||||
|
||||
A promise that resolves to an object
|
||||
containing the number of rows updated and the new version number
|
||||
|
||||
Keys in the map should specify the name of the column to update.
|
||||
Values in the map provide the new value of the column. These can
|
||||
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
|
||||
based on the row being updated (e.g. "my_col + 1")
|
||||
|
||||
***
|
||||
|
||||
@@ -731,3 +822,26 @@ Retrieve the version of the table
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`>
|
||||
|
||||
***
|
||||
|
||||
### waitForIndex()
|
||||
|
||||
```ts
|
||||
abstract waitForIndex(indexNames, timeoutSeconds): Promise<void>
|
||||
```
|
||||
|
||||
Waits for asynchronous indexing to complete on the table.
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **indexNames**: `string`[]
|
||||
The name of the indices to wait for
|
||||
|
||||
* **timeoutSeconds**: `number`
|
||||
The number of seconds to wait before timing out
|
||||
This will raise an error if the indices are not created and fully indexed within the timeout.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
|
||||
35
docs/src/js/classes/TagContents.md
Normal file
35
docs/src/js/classes/TagContents.md
Normal file
@@ -0,0 +1,35 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / TagContents
|
||||
|
||||
# Class: TagContents
|
||||
|
||||
## Constructors
|
||||
|
||||
### new TagContents()
|
||||
|
||||
```ts
|
||||
new TagContents(): TagContents
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
[`TagContents`](TagContents.md)
|
||||
|
||||
## Properties
|
||||
|
||||
### manifestSize
|
||||
|
||||
```ts
|
||||
manifestSize: number;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### version
|
||||
|
||||
```ts
|
||||
version: number;
|
||||
```
|
||||
99
docs/src/js/classes/Tags.md
Normal file
99
docs/src/js/classes/Tags.md
Normal file
@@ -0,0 +1,99 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / Tags
|
||||
|
||||
# Class: Tags
|
||||
|
||||
## Constructors
|
||||
|
||||
### new Tags()
|
||||
|
||||
```ts
|
||||
new Tags(): Tags
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Tags`](Tags.md)
|
||||
|
||||
## Methods
|
||||
|
||||
### create()
|
||||
|
||||
```ts
|
||||
create(tag, version): Promise<void>
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **tag**: `string`
|
||||
|
||||
* **version**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
|
||||
***
|
||||
|
||||
### delete()
|
||||
|
||||
```ts
|
||||
delete(tag): Promise<void>
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **tag**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
|
||||
***
|
||||
|
||||
### getVersion()
|
||||
|
||||
```ts
|
||||
getVersion(tag): Promise<number>
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **tag**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`>
|
||||
|
||||
***
|
||||
|
||||
### list()
|
||||
|
||||
```ts
|
||||
list(): Promise<Record<string, TagContents>>
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`Record`<`string`, [`TagContents`](TagContents.md)>>
|
||||
|
||||
***
|
||||
|
||||
### update()
|
||||
|
||||
```ts
|
||||
update(tag, version): Promise<void>
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **tag**: `string`
|
||||
|
||||
* **version**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
@@ -27,19 +27,28 @@
|
||||
- [QueryBase](classes/QueryBase.md)
|
||||
- [RecordBatchIterator](classes/RecordBatchIterator.md)
|
||||
- [Table](classes/Table.md)
|
||||
- [TagContents](classes/TagContents.md)
|
||||
- [Tags](classes/Tags.md)
|
||||
- [VectorColumnOptions](classes/VectorColumnOptions.md)
|
||||
- [VectorQuery](classes/VectorQuery.md)
|
||||
|
||||
## Interfaces
|
||||
|
||||
- [AddColumnsResult](interfaces/AddColumnsResult.md)
|
||||
- [AddColumnsSql](interfaces/AddColumnsSql.md)
|
||||
- [AddDataOptions](interfaces/AddDataOptions.md)
|
||||
- [AddResult](interfaces/AddResult.md)
|
||||
- [AlterColumnsResult](interfaces/AlterColumnsResult.md)
|
||||
- [ClientConfig](interfaces/ClientConfig.md)
|
||||
- [ColumnAlteration](interfaces/ColumnAlteration.md)
|
||||
- [CompactionStats](interfaces/CompactionStats.md)
|
||||
- [ConnectionOptions](interfaces/ConnectionOptions.md)
|
||||
- [CreateTableOptions](interfaces/CreateTableOptions.md)
|
||||
- [DeleteResult](interfaces/DeleteResult.md)
|
||||
- [DropColumnsResult](interfaces/DropColumnsResult.md)
|
||||
- [ExecutableQuery](interfaces/ExecutableQuery.md)
|
||||
- [FragmentStatistics](interfaces/FragmentStatistics.md)
|
||||
- [FragmentSummaryStats](interfaces/FragmentSummaryStats.md)
|
||||
- [FtsOptions](interfaces/FtsOptions.md)
|
||||
- [FullTextQuery](interfaces/FullTextQuery.md)
|
||||
- [FullTextSearchOptions](interfaces/FullTextSearchOptions.md)
|
||||
@@ -50,6 +59,7 @@
|
||||
- [IndexStatistics](interfaces/IndexStatistics.md)
|
||||
- [IvfFlatOptions](interfaces/IvfFlatOptions.md)
|
||||
- [IvfPqOptions](interfaces/IvfPqOptions.md)
|
||||
- [MergeResult](interfaces/MergeResult.md)
|
||||
- [OpenTableOptions](interfaces/OpenTableOptions.md)
|
||||
- [OptimizeOptions](interfaces/OptimizeOptions.md)
|
||||
- [OptimizeStats](interfaces/OptimizeStats.md)
|
||||
@@ -57,8 +67,10 @@
|
||||
- [RemovalStats](interfaces/RemovalStats.md)
|
||||
- [RetryConfig](interfaces/RetryConfig.md)
|
||||
- [TableNamesOptions](interfaces/TableNamesOptions.md)
|
||||
- [TableStatistics](interfaces/TableStatistics.md)
|
||||
- [TimeoutConfig](interfaces/TimeoutConfig.md)
|
||||
- [UpdateOptions](interfaces/UpdateOptions.md)
|
||||
- [UpdateResult](interfaces/UpdateResult.md)
|
||||
- [Version](interfaces/Version.md)
|
||||
|
||||
## Type Aliases
|
||||
|
||||
15
docs/src/js/interfaces/AddColumnsResult.md
Normal file
15
docs/src/js/interfaces/AddColumnsResult.md
Normal file
@@ -0,0 +1,15 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / AddColumnsResult
|
||||
|
||||
# Interface: AddColumnsResult
|
||||
|
||||
## Properties
|
||||
|
||||
### version
|
||||
|
||||
```ts
|
||||
version: number;
|
||||
```
|
||||
15
docs/src/js/interfaces/AddResult.md
Normal file
15
docs/src/js/interfaces/AddResult.md
Normal file
@@ -0,0 +1,15 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / AddResult
|
||||
|
||||
# Interface: AddResult
|
||||
|
||||
## Properties
|
||||
|
||||
### version
|
||||
|
||||
```ts
|
||||
version: number;
|
||||
```
|
||||
15
docs/src/js/interfaces/AlterColumnsResult.md
Normal file
15
docs/src/js/interfaces/AlterColumnsResult.md
Normal file
@@ -0,0 +1,15 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / AlterColumnsResult
|
||||
|
||||
# Interface: AlterColumnsResult
|
||||
|
||||
## Properties
|
||||
|
||||
### version
|
||||
|
||||
```ts
|
||||
version: number;
|
||||
```
|
||||
@@ -44,7 +44,7 @@ for testing purposes.
|
||||
### readConsistencyInterval?
|
||||
|
||||
```ts
|
||||
optional readConsistencyInterval: null | number;
|
||||
optional readConsistencyInterval: number;
|
||||
```
|
||||
|
||||
(For LanceDB OSS only): The interval, in seconds, at which to check for
|
||||
|
||||
15
docs/src/js/interfaces/DeleteResult.md
Normal file
15
docs/src/js/interfaces/DeleteResult.md
Normal file
@@ -0,0 +1,15 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / DeleteResult
|
||||
|
||||
# Interface: DeleteResult
|
||||
|
||||
## Properties
|
||||
|
||||
### version
|
||||
|
||||
```ts
|
||||
version: number;
|
||||
```
|
||||
15
docs/src/js/interfaces/DropColumnsResult.md
Normal file
15
docs/src/js/interfaces/DropColumnsResult.md
Normal file
@@ -0,0 +1,15 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / DropColumnsResult
|
||||
|
||||
# Interface: DropColumnsResult
|
||||
|
||||
## Properties
|
||||
|
||||
### version
|
||||
|
||||
```ts
|
||||
version: number;
|
||||
```
|
||||
37
docs/src/js/interfaces/FragmentStatistics.md
Normal file
37
docs/src/js/interfaces/FragmentStatistics.md
Normal file
@@ -0,0 +1,37 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / FragmentStatistics
|
||||
|
||||
# Interface: FragmentStatistics
|
||||
|
||||
## Properties
|
||||
|
||||
### lengths
|
||||
|
||||
```ts
|
||||
lengths: FragmentSummaryStats;
|
||||
```
|
||||
|
||||
Statistics on the number of rows in the table fragments
|
||||
|
||||
***
|
||||
|
||||
### numFragments
|
||||
|
||||
```ts
|
||||
numFragments: number;
|
||||
```
|
||||
|
||||
The number of fragments in the table
|
||||
|
||||
***
|
||||
|
||||
### numSmallFragments
|
||||
|
||||
```ts
|
||||
numSmallFragments: number;
|
||||
```
|
||||
|
||||
The number of uncompacted fragments in the table
|
||||
77
docs/src/js/interfaces/FragmentSummaryStats.md
Normal file
77
docs/src/js/interfaces/FragmentSummaryStats.md
Normal file
@@ -0,0 +1,77 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / FragmentSummaryStats
|
||||
|
||||
# Interface: FragmentSummaryStats
|
||||
|
||||
## Properties
|
||||
|
||||
### max
|
||||
|
||||
```ts
|
||||
max: number;
|
||||
```
|
||||
|
||||
The number of rows in the fragment with the most rows
|
||||
|
||||
***
|
||||
|
||||
### mean
|
||||
|
||||
```ts
|
||||
mean: number;
|
||||
```
|
||||
|
||||
The mean number of rows in the fragments
|
||||
|
||||
***
|
||||
|
||||
### min
|
||||
|
||||
```ts
|
||||
min: number;
|
||||
```
|
||||
|
||||
The number of rows in the fragment with the fewest rows
|
||||
|
||||
***
|
||||
|
||||
### p25
|
||||
|
||||
```ts
|
||||
p25: number;
|
||||
```
|
||||
|
||||
The 25th percentile of number of rows in the fragments
|
||||
|
||||
***
|
||||
|
||||
### p50
|
||||
|
||||
```ts
|
||||
p50: number;
|
||||
```
|
||||
|
||||
The 50th percentile of number of rows in the fragments
|
||||
|
||||
***
|
||||
|
||||
### p75
|
||||
|
||||
```ts
|
||||
p75: number;
|
||||
```
|
||||
|
||||
The 75th percentile of number of rows in the fragments
|
||||
|
||||
***
|
||||
|
||||
### p99
|
||||
|
||||
```ts
|
||||
p99: number;
|
||||
```
|
||||
|
||||
The 99th percentile of number of rows in the fragments
|
||||
@@ -18,18 +18,8 @@ including methods to retrieve the query type and convert the query to a dictiona
|
||||
queryType(): FullTextQueryType
|
||||
```
|
||||
|
||||
The type of the full-text query.
|
||||
|
||||
#### Returns
|
||||
|
||||
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
|
||||
|
||||
***
|
||||
|
||||
### toDict()
|
||||
|
||||
```ts
|
||||
toDict(): Record<string, unknown>
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
`Record`<`string`, `unknown`>
|
||||
|
||||
@@ -39,3 +39,11 @@ and the same name, then an error will be returned. This is true even if
|
||||
that index is out of date.
|
||||
|
||||
The default is true
|
||||
|
||||
***
|
||||
|
||||
### waitTimeoutSeconds?
|
||||
|
||||
```ts
|
||||
optional waitTimeoutSeconds: number;
|
||||
```
|
||||
|
||||
39
docs/src/js/interfaces/MergeResult.md
Normal file
39
docs/src/js/interfaces/MergeResult.md
Normal file
@@ -0,0 +1,39 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / MergeResult
|
||||
|
||||
# Interface: MergeResult
|
||||
|
||||
## Properties
|
||||
|
||||
### numDeletedRows
|
||||
|
||||
```ts
|
||||
numDeletedRows: number;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### numInsertedRows
|
||||
|
||||
```ts
|
||||
numInsertedRows: number;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### numUpdatedRows
|
||||
|
||||
```ts
|
||||
numUpdatedRows: number;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### version
|
||||
|
||||
```ts
|
||||
version: number;
|
||||
```
|
||||
47
docs/src/js/interfaces/TableStatistics.md
Normal file
47
docs/src/js/interfaces/TableStatistics.md
Normal file
@@ -0,0 +1,47 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / TableStatistics
|
||||
|
||||
# Interface: TableStatistics
|
||||
|
||||
## Properties
|
||||
|
||||
### fragmentStats
|
||||
|
||||
```ts
|
||||
fragmentStats: FragmentStatistics;
|
||||
```
|
||||
|
||||
Statistics on table fragments
|
||||
|
||||
***
|
||||
|
||||
### numIndices
|
||||
|
||||
```ts
|
||||
numIndices: number;
|
||||
```
|
||||
|
||||
The number of indices in the table
|
||||
|
||||
***
|
||||
|
||||
### numRows
|
||||
|
||||
```ts
|
||||
numRows: number;
|
||||
```
|
||||
|
||||
The number of rows in the table
|
||||
|
||||
***
|
||||
|
||||
### totalBytes
|
||||
|
||||
```ts
|
||||
totalBytes: number;
|
||||
```
|
||||
|
||||
The total number of bytes in the table
|
||||
23
docs/src/js/interfaces/UpdateResult.md
Normal file
23
docs/src/js/interfaces/UpdateResult.md
Normal file
@@ -0,0 +1,23 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / UpdateResult
|
||||
|
||||
# Interface: UpdateResult
|
||||
|
||||
## Properties
|
||||
|
||||
### rowsUpdated
|
||||
|
||||
```ts
|
||||
rowsUpdated: number;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### version
|
||||
|
||||
```ts
|
||||
version: number;
|
||||
```
|
||||
@@ -11,7 +11,6 @@ likely that someone who knows the answer will see your question.
|
||||
## Common issues
|
||||
|
||||
* Multiprocessing with `fork` is not supported. You should use `spawn` instead.
|
||||
* Data returned by queries may not reflect the most recent writes, depending on configuration. LanceDB uses eventual consistency by default. See [consistency](/docs/src/guides/tables.md#consistency) for more information.
|
||||
|
||||
## Enabling logging
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
<parent>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.19.0-beta.5</version>
|
||||
<version>0.19.1-beta.3</version>
|
||||
<relativePath>../pom.xml</relativePath>
|
||||
</parent>
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.19.0-beta.5</version>
|
||||
<version>0.19.1-beta.3</version>
|
||||
<packaging>pom</packaging>
|
||||
|
||||
<name>LanceDB Parent</name>
|
||||
|
||||
51
node/package-lock.json
generated
51
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.19.0-beta.5",
|
||||
"version": "0.19.1-beta.2",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.19.0-beta.5",
|
||||
"version": "0.19.1-beta.2",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -52,11 +52,11 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.19.0-beta.5",
|
||||
"@lancedb/vectordb-darwin-x64": "0.19.0-beta.5",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.19.0-beta.5",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.19.0-beta.5",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.19.0-beta.5"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.19.1-beta.2",
|
||||
"@lancedb/vectordb-darwin-x64": "0.19.1-beta.2",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.19.1-beta.2",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.19.1-beta.2",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.19.1-beta.2"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
@@ -327,9 +327,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.19.0-beta.5",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.19.0-beta.5.tgz",
|
||||
"integrity": "sha512-NuJVGaV4b6XgH3dlkCEquvtGM1cY5sIJE5M/LgJ3HYYvAbco/seBQM5AHTV/7CULoPEY9eQeJZOj9fWP5oQLYQ==",
|
||||
"version": "0.19.1-beta.2",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.19.1-beta.2.tgz",
|
||||
"integrity": "sha512-mG0ZXL4y70GUynzGHAVfFfKLzjrro6iYRY09RWXGdapHHliZIIsLZIo+hdX4sJHjjq7MRoMbJEWtR5Wwc9t3+Q==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -340,9 +340,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.19.0-beta.5",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.19.0-beta.5.tgz",
|
||||
"integrity": "sha512-hbadwvQcUgKJfluUHhN+mx+XeFRwTuh9mD0L3Tf3t3BkDTxyHpEG5WNgOpWrh6e1RU6zW54CoCyQuSEaVqGgGw==",
|
||||
"version": "0.19.1-beta.2",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.19.1-beta.2.tgz",
|
||||
"integrity": "sha512-dvhUtOG4DzFotF9pJkLfxjbj4IXTkFja+jMBZ77Udh+IvbFXuORAYfIOopP65yxKXdzXU3Tk20owt+LgQZbJjQ==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -353,9 +353,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.19.0-beta.5",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.19.0-beta.5.tgz",
|
||||
"integrity": "sha512-fu/EOYLr3mx76/SP4dEgbq0vSYHfuTf68lVl5/tL6eIb1Purz42l22+jNKLJ/S3Plase2SkXdxyY90K2Y/CvSg==",
|
||||
"version": "0.19.1-beta.2",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.19.1-beta.2.tgz",
|
||||
"integrity": "sha512-Onmbqk0LutVIF65ljKfdRqyG/W6nXO9NTlxB6BO71f6X9Fqh2Sv7WOZjj3Ku3KK/5mcOguMCQde4qgLVmUbJdw==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -366,9 +366,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.19.0-beta.5",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.19.0-beta.5.tgz",
|
||||
"integrity": "sha512-pzb8fl5M8155sc/mEFnKmuh9rCfQohHBlb+j+5qNMe84AyygQ8Me1H3b1h9fOkUPu2Y168zYfuGkjNv4Bjm9eA==",
|
||||
"version": "0.19.1-beta.2",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.19.1-beta.2.tgz",
|
||||
"integrity": "sha512-QeZEgPQiollqgtbXXIPP/58M94f5cEk6md4k3ICl79N6hs5V+E0BrTPGYlSPZCE32B6AIGzjYCgiIDea/jvshw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -378,19 +378,6 @@
|
||||
"linux"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.19.0-beta.5",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.19.0-beta.5.tgz",
|
||||
"integrity": "sha512-5z6BSfTuZYJdDL2wwRrEQlnfluahzaUH2U7vj3i4ik4zaAwvaYcrjmdYCTLRYhFscUqzxd2pVFHbfRYe+maYzA==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"license": "Apache-2.0",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"win32"
|
||||
]
|
||||
},
|
||||
"node_modules/@neon-rs/cli": {
|
||||
"version": "0.0.160",
|
||||
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.19.0-beta.5",
|
||||
"version": "0.19.1-beta.3",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"private": false,
|
||||
"main": "dist/index.js",
|
||||
@@ -89,10 +89,10 @@
|
||||
}
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-x64": "0.19.0-beta.5",
|
||||
"@lancedb/vectordb-darwin-arm64": "0.19.0-beta.5",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.19.0-beta.5",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.19.0-beta.5",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.19.0-beta.5"
|
||||
"@lancedb/vectordb-darwin-x64": "0.19.1-beta.3",
|
||||
"@lancedb/vectordb-darwin-arm64": "0.19.1-beta.3",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.19.1-beta.3",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.19.1-beta.3",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.19.1-beta.3"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -110,7 +110,7 @@ describe('LanceDB Mirrored Store Integration test', function () {
|
||||
|
||||
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1, `Found files: ${files.map(f => f.name)}`)
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].name.endsWith('.lance'))
|
||||
})
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
[package]
|
||||
name = "lancedb-nodejs"
|
||||
edition.workspace = true
|
||||
version = "0.19.0-beta.5"
|
||||
version = "0.19.1-beta.3"
|
||||
license.workspace = true
|
||||
description.workspace = true
|
||||
repository.workspace = true
|
||||
@@ -28,6 +28,9 @@ napi-derive = "2.16.4"
|
||||
lzma-sys = { version = "*", features = ["static"] }
|
||||
log.workspace = true
|
||||
|
||||
# Workaround for build failure until we can fix it.
|
||||
aws-lc-sys = "=0.28.0"
|
||||
|
||||
[build-dependencies]
|
||||
napi-build = "2.1"
|
||||
|
||||
|
||||
@@ -374,6 +374,71 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
expect(table2.numRows).toBe(4);
|
||||
expect(table2.schema).toEqual(schema);
|
||||
});
|
||||
|
||||
it("should correctly retain values in nested struct fields", async function () {
|
||||
// Define test data with nested struct
|
||||
const testData = [
|
||||
{
|
||||
id: "doc1",
|
||||
vector: [1, 2, 3],
|
||||
metadata: {
|
||||
filePath: "/path/to/file1.ts",
|
||||
startLine: 10,
|
||||
endLine: 20,
|
||||
text: "function test() { return true; }",
|
||||
},
|
||||
},
|
||||
{
|
||||
id: "doc2",
|
||||
vector: [4, 5, 6],
|
||||
metadata: {
|
||||
filePath: "/path/to/file2.ts",
|
||||
startLine: 30,
|
||||
endLine: 40,
|
||||
text: "function test2() { return false; }",
|
||||
},
|
||||
},
|
||||
];
|
||||
|
||||
// Create Arrow table from the data
|
||||
const table = makeArrowTable(testData);
|
||||
|
||||
// Verify schema has the nested struct fields
|
||||
const metadataField = table.schema.fields.find(
|
||||
(f) => f.name === "metadata",
|
||||
);
|
||||
expect(metadataField).toBeDefined();
|
||||
// biome-ignore lint/suspicious/noExplicitAny: accessing fields in different Arrow versions
|
||||
const childNames = metadataField?.type.children.map((c: any) => c.name);
|
||||
expect(childNames).toEqual([
|
||||
"filePath",
|
||||
"startLine",
|
||||
"endLine",
|
||||
"text",
|
||||
]);
|
||||
|
||||
// Convert to buffer and back (simulating storage and retrieval)
|
||||
const buf = await fromTableToBuffer(table);
|
||||
const retrievedTable = tableFromIPC(buf);
|
||||
|
||||
// Verify the retrieved table has the same structure
|
||||
const rows = [];
|
||||
for (let i = 0; i < retrievedTable.numRows; i++) {
|
||||
rows.push(retrievedTable.get(i));
|
||||
}
|
||||
|
||||
// Check values in the first row
|
||||
const firstRow = rows[0];
|
||||
expect(firstRow.id).toBe("doc1");
|
||||
expect(firstRow.vector.toJSON()).toEqual([1, 2, 3]);
|
||||
|
||||
// Verify metadata values are preserved (this is where the bug is)
|
||||
expect(firstRow.metadata).toBeDefined();
|
||||
expect(firstRow.metadata.filePath).toBe("/path/to/file1.ts");
|
||||
expect(firstRow.metadata.startLine).toBe(10);
|
||||
expect(firstRow.metadata.endLine).toBe(20);
|
||||
expect(firstRow.metadata.text).toBe("function test() { return true; }");
|
||||
});
|
||||
});
|
||||
|
||||
class DummyEmbedding extends EmbeddingFunction<string> {
|
||||
|
||||
@@ -17,7 +17,7 @@ describe("when connecting", () => {
|
||||
it("should connect", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
expect(db.display()).toBe(
|
||||
`ListingDatabase(uri=${tmpDir.name}, read_consistency_interval=5s)`,
|
||||
`ListingDatabase(uri=${tmpDir.name}, read_consistency_interval=None)`,
|
||||
);
|
||||
});
|
||||
|
||||
|
||||
@@ -10,7 +10,7 @@ import * as arrow16 from "apache-arrow-16";
|
||||
import * as arrow17 from "apache-arrow-17";
|
||||
import * as arrow18 from "apache-arrow-18";
|
||||
|
||||
import { Table, connect } from "../lancedb";
|
||||
import { MatchQuery, PhraseQuery, Table, connect } from "../lancedb";
|
||||
import {
|
||||
Table as ArrowTable,
|
||||
Field,
|
||||
@@ -33,6 +33,8 @@ import {
|
||||
register,
|
||||
} from "../lancedb/embedding";
|
||||
import { Index } from "../lancedb/indices";
|
||||
import { instanceOfFullTextQuery } from "../lancedb/query";
|
||||
import exp = require("constants");
|
||||
|
||||
describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
"Given a table",
|
||||
@@ -58,7 +60,7 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
|
||||
it("be displayable", async () => {
|
||||
expect(table.display()).toMatch(
|
||||
/NativeTable\(some_table, uri=.*, read_consistency_interval=5s\)/,
|
||||
/NativeTable\(some_table, uri=.*, read_consistency_interval=None\)/,
|
||||
);
|
||||
table.close();
|
||||
expect(table.display()).toBe("ClosedTable(some_table)");
|
||||
@@ -70,8 +72,33 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
await expect(table.countRows()).resolves.toBe(3);
|
||||
});
|
||||
|
||||
it("should overwrite data if asked", async () => {
|
||||
it("should show table stats", async () => {
|
||||
await table.add([{ id: 1 }, { id: 2 }]);
|
||||
await table.add([{ id: 1 }]);
|
||||
await expect(table.stats()).resolves.toEqual({
|
||||
fragmentStats: {
|
||||
lengths: {
|
||||
max: 2,
|
||||
mean: 1,
|
||||
min: 1,
|
||||
p25: 1,
|
||||
p50: 2,
|
||||
p75: 2,
|
||||
p99: 2,
|
||||
},
|
||||
numFragments: 2,
|
||||
numSmallFragments: 2,
|
||||
},
|
||||
numIndices: 0,
|
||||
numRows: 3,
|
||||
totalBytes: 24,
|
||||
});
|
||||
});
|
||||
|
||||
it("should overwrite data if asked", async () => {
|
||||
const addRes = await table.add([{ id: 1 }, { id: 2 }]);
|
||||
expect(addRes).toHaveProperty("version");
|
||||
expect(addRes.version).toBe(2);
|
||||
await table.add([{ id: 1 }], { mode: "overwrite" });
|
||||
await expect(table.countRows()).resolves.toBe(1);
|
||||
});
|
||||
@@ -87,7 +114,11 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
await table.add([{ id: 1 }]);
|
||||
expect(await table.countRows("id == 1")).toBe(1);
|
||||
expect(await table.countRows("id == 7")).toBe(0);
|
||||
await table.update({ id: "7" });
|
||||
const updateRes = await table.update({ id: "7" });
|
||||
expect(updateRes).toHaveProperty("version");
|
||||
expect(updateRes.version).toBe(3);
|
||||
expect(updateRes).toHaveProperty("rowsUpdated");
|
||||
expect(updateRes.rowsUpdated).toBe(1);
|
||||
expect(await table.countRows("id == 1")).toBe(0);
|
||||
expect(await table.countRows("id == 7")).toBe(1);
|
||||
await table.add([{ id: 2 }]);
|
||||
@@ -314,11 +345,17 @@ describe("merge insert", () => {
|
||||
{ a: 3, b: "y" },
|
||||
{ a: 4, b: "z" },
|
||||
];
|
||||
await table
|
||||
const mergeInsertRes = await table
|
||||
.mergeInsert("a")
|
||||
.whenMatchedUpdateAll()
|
||||
.whenNotMatchedInsertAll()
|
||||
.execute(newData);
|
||||
expect(mergeInsertRes).toHaveProperty("version");
|
||||
expect(mergeInsertRes.version).toBe(2);
|
||||
expect(mergeInsertRes.numInsertedRows).toBe(1);
|
||||
expect(mergeInsertRes.numUpdatedRows).toBe(2);
|
||||
expect(mergeInsertRes.numDeletedRows).toBe(0);
|
||||
|
||||
const expected = [
|
||||
{ a: 1, b: "a" },
|
||||
{ a: 2, b: "x" },
|
||||
@@ -336,10 +373,12 @@ describe("merge insert", () => {
|
||||
{ a: 3, b: "y" },
|
||||
{ a: 4, b: "z" },
|
||||
];
|
||||
await table
|
||||
const mergeInsertRes = await table
|
||||
.mergeInsert("a")
|
||||
.whenMatchedUpdateAll({ where: "target.b = 'b'" })
|
||||
.execute(newData);
|
||||
expect(mergeInsertRes).toHaveProperty("version");
|
||||
expect(mergeInsertRes.version).toBe(2);
|
||||
|
||||
const expected = [
|
||||
{ a: 1, b: "a" },
|
||||
@@ -506,6 +545,15 @@ describe("When creating an index", () => {
|
||||
expect(indices2.length).toBe(0);
|
||||
});
|
||||
|
||||
it("should wait for index readiness", async () => {
|
||||
// Create an index and then wait for it to be ready
|
||||
await tbl.createIndex("vec");
|
||||
const indices = await tbl.listIndices();
|
||||
expect(indices.length).toBeGreaterThan(0);
|
||||
const idxName = indices[0].name;
|
||||
await expect(tbl.waitForIndex([idxName], 5)).resolves.toBeUndefined();
|
||||
});
|
||||
|
||||
it("should search with distance range", async () => {
|
||||
await tbl.createIndex("vec");
|
||||
|
||||
@@ -823,6 +871,7 @@ describe("When creating an index", () => {
|
||||
// Only build index over v1
|
||||
await tbl.createIndex("vec", {
|
||||
config: Index.ivfPq({ numPartitions: 2, numSubVectors: 2 }),
|
||||
waitTimeoutSeconds: 30,
|
||||
});
|
||||
|
||||
const rst = await tbl
|
||||
@@ -989,15 +1038,19 @@ describe("schema evolution", function () {
|
||||
{ id: 1n, vector: [0.1, 0.2] },
|
||||
]);
|
||||
// Can create a non-nullable column only through addColumns at the moment.
|
||||
await table.addColumns([
|
||||
const addColumnsRes = await table.addColumns([
|
||||
{ name: "price", valueSql: "cast(10.0 as double)" },
|
||||
]);
|
||||
expect(addColumnsRes).toHaveProperty("version");
|
||||
expect(addColumnsRes.version).toBe(2);
|
||||
expect(await table.schema()).toEqual(schema);
|
||||
|
||||
await table.alterColumns([
|
||||
const alterColumnsRes = await table.alterColumns([
|
||||
{ path: "id", rename: "new_id" },
|
||||
{ path: "price", nullable: true },
|
||||
]);
|
||||
expect(alterColumnsRes).toHaveProperty("version");
|
||||
expect(alterColumnsRes.version).toBe(3);
|
||||
|
||||
const expectedSchema = new Schema([
|
||||
new Field("new_id", new Int64(), true),
|
||||
@@ -1115,7 +1168,9 @@ describe("schema evolution", function () {
|
||||
const table = await con.createTable("vectors", [
|
||||
{ id: 1n, vector: [0.1, 0.2] },
|
||||
]);
|
||||
await table.dropColumns(["vector"]);
|
||||
const dropColumnsRes = await table.dropColumns(["vector"]);
|
||||
expect(dropColumnsRes).toHaveProperty("version");
|
||||
expect(dropColumnsRes.version).toBe(2);
|
||||
|
||||
const expectedSchema = new Schema([new Field("id", new Int64(), true)]);
|
||||
expect(await table.schema()).toEqual(expectedSchema);
|
||||
@@ -1167,6 +1222,73 @@ describe("when dealing with versioning", () => {
|
||||
});
|
||||
});
|
||||
|
||||
describe("when dealing with tags", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
beforeEach(() => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
afterEach(() => {
|
||||
tmpDir.removeCallback();
|
||||
});
|
||||
|
||||
it("can manage tags", async () => {
|
||||
const conn = await connect(tmpDir.name, {
|
||||
readConsistencyInterval: 0,
|
||||
});
|
||||
|
||||
const table = await conn.createTable("my_table", [
|
||||
{ id: 1n, vector: [0.1, 0.2] },
|
||||
]);
|
||||
expect(await table.version()).toBe(1);
|
||||
|
||||
await table.add([{ id: 2n, vector: [0.3, 0.4] }]);
|
||||
expect(await table.version()).toBe(2);
|
||||
|
||||
const tagsManager = await table.tags();
|
||||
|
||||
const initialTags = await tagsManager.list();
|
||||
expect(Object.keys(initialTags).length).toBe(0);
|
||||
|
||||
const tag1 = "tag1";
|
||||
await tagsManager.create(tag1, 1);
|
||||
expect(await tagsManager.getVersion(tag1)).toBe(1);
|
||||
|
||||
const tagsAfterFirst = await tagsManager.list();
|
||||
expect(Object.keys(tagsAfterFirst).length).toBe(1);
|
||||
expect(tagsAfterFirst).toHaveProperty(tag1);
|
||||
expect(tagsAfterFirst[tag1].version).toBe(1);
|
||||
|
||||
await tagsManager.create("tag2", 2);
|
||||
expect(await tagsManager.getVersion("tag2")).toBe(2);
|
||||
|
||||
const tagsAfterSecond = await tagsManager.list();
|
||||
expect(Object.keys(tagsAfterSecond).length).toBe(2);
|
||||
expect(tagsAfterSecond).toHaveProperty(tag1);
|
||||
expect(tagsAfterSecond[tag1].version).toBe(1);
|
||||
expect(tagsAfterSecond).toHaveProperty("tag2");
|
||||
expect(tagsAfterSecond["tag2"].version).toBe(2);
|
||||
|
||||
await table.add([{ id: 3n, vector: [0.5, 0.6] }]);
|
||||
await tagsManager.update(tag1, 3);
|
||||
expect(await tagsManager.getVersion(tag1)).toBe(3);
|
||||
|
||||
await tagsManager.delete("tag2");
|
||||
const tagsAfterDelete = await tagsManager.list();
|
||||
expect(Object.keys(tagsAfterDelete).length).toBe(1);
|
||||
expect(tagsAfterDelete).toHaveProperty(tag1);
|
||||
expect(tagsAfterDelete[tag1].version).toBe(3);
|
||||
|
||||
await table.add([{ id: 4n, vector: [0.7, 0.8] }]);
|
||||
expect(await table.version()).toBe(4);
|
||||
|
||||
await table.checkout(tag1);
|
||||
expect(await table.version()).toBe(3);
|
||||
|
||||
await table.checkoutLatest();
|
||||
expect(await table.version()).toBe(4);
|
||||
});
|
||||
});
|
||||
|
||||
describe("when optimizing a dataset", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
let table: Table;
|
||||
@@ -1302,6 +1424,56 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
|
||||
const results = await table.search("hello").toArray();
|
||||
expect(results[0].text).toBe(data[0].text);
|
||||
|
||||
const query = new MatchQuery("goodbye", "text");
|
||||
expect(instanceOfFullTextQuery(query)).toBe(true);
|
||||
const results2 = await table
|
||||
.search(new MatchQuery("goodbye", "text"))
|
||||
.toArray();
|
||||
expect(results2[0].text).toBe(data[1].text);
|
||||
});
|
||||
|
||||
test("prewarm full text search index", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = [
|
||||
{ text: ["lance database", "the", "search"], vector: [0.1, 0.2, 0.3] },
|
||||
{ text: ["lance database"], vector: [0.4, 0.5, 0.6] },
|
||||
{ text: ["lance", "search"], vector: [0.7, 0.8, 0.9] },
|
||||
{ text: ["database", "search"], vector: [1.0, 1.1, 1.2] },
|
||||
{ text: ["unrelated", "doc"], vector: [1.3, 1.4, 1.5] },
|
||||
];
|
||||
const table = await db.createTable("test", data);
|
||||
await table.createIndex("text", {
|
||||
config: Index.fts(),
|
||||
});
|
||||
|
||||
// For the moment, we just confirm we can call prewarmIndex without error
|
||||
// and still search it afterwards
|
||||
await table.prewarmIndex("text_idx");
|
||||
|
||||
const results = await table.search("lance").toArray();
|
||||
expect(results.length).toBe(3);
|
||||
});
|
||||
|
||||
test("full text index on list", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = [
|
||||
{ text: ["lance database", "the", "search"], vector: [0.1, 0.2, 0.3] },
|
||||
{ text: ["lance database"], vector: [0.4, 0.5, 0.6] },
|
||||
{ text: ["lance", "search"], vector: [0.7, 0.8, 0.9] },
|
||||
{ text: ["database", "search"], vector: [1.0, 1.1, 1.2] },
|
||||
{ text: ["unrelated", "doc"], vector: [1.3, 1.4, 1.5] },
|
||||
];
|
||||
const table = await db.createTable("test", data);
|
||||
await table.createIndex("text", {
|
||||
config: Index.fts(),
|
||||
});
|
||||
|
||||
const results = await table.search("lance").toArray();
|
||||
expect(results.length).toBe(3);
|
||||
|
||||
const results2 = await table.search('"lance database"').toArray();
|
||||
expect(results2.length).toBe(2);
|
||||
});
|
||||
|
||||
test("full text search without positions", async () => {
|
||||
@@ -1354,6 +1526,43 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
expect(results.length).toBe(2);
|
||||
const phraseResults = await table.search('"hello world"').toArray();
|
||||
expect(phraseResults.length).toBe(1);
|
||||
const phraseResults2 = await table
|
||||
.search(new PhraseQuery("hello world", "text"))
|
||||
.toArray();
|
||||
expect(phraseResults2.length).toBe(1);
|
||||
});
|
||||
|
||||
test("full text search fuzzy query", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = [
|
||||
{ text: "fa", vector: [0.1, 0.2, 0.3] },
|
||||
{ text: "fo", vector: [0.4, 0.5, 0.6] },
|
||||
{ text: "fob", vector: [0.4, 0.5, 0.6] },
|
||||
{ text: "focus", vector: [0.4, 0.5, 0.6] },
|
||||
{ text: "foo", vector: [0.4, 0.5, 0.6] },
|
||||
{ text: "food", vector: [0.4, 0.5, 0.6] },
|
||||
{ text: "foul", vector: [0.4, 0.5, 0.6] },
|
||||
];
|
||||
const table = await db.createTable("test", data);
|
||||
await table.createIndex("text", {
|
||||
config: Index.fts(),
|
||||
});
|
||||
|
||||
const results = await table
|
||||
.search(new MatchQuery("foo", "text"))
|
||||
.toArray();
|
||||
expect(results.length).toBe(1);
|
||||
expect(results[0].text).toBe("foo");
|
||||
|
||||
const fuzzyResults = await table
|
||||
.search(new MatchQuery("foo", "text", { fuzziness: 1 }))
|
||||
.toArray();
|
||||
expect(fuzzyResults.length).toBe(4);
|
||||
const resultSet = new Set(fuzzyResults.map((r) => r.text));
|
||||
expect(resultSet.has("foo")).toBe(true);
|
||||
expect(resultSet.has("fob")).toBe(true);
|
||||
expect(resultSet.has("fo")).toBe(true);
|
||||
expect(resultSet.has("food")).toBe(true);
|
||||
});
|
||||
|
||||
test.each([
|
||||
|
||||
@@ -202,35 +202,5 @@ test("basic table examples", async () => {
|
||||
// --8<-- [end:create_f16_table]
|
||||
await db.dropTable("f16_tbl");
|
||||
}
|
||||
const uri = databaseDir;
|
||||
await db.createTable("my_table", [{ id: 1 }, { id: 2 }]);
|
||||
{
|
||||
// --8<-- [start:table_strong_consistency]
|
||||
const db = await lancedb.connect({ uri, readConsistencyInterval: 0 });
|
||||
const tbl = await db.openTable("my_table");
|
||||
// --8<-- [end:table_strong_consistency]
|
||||
}
|
||||
{
|
||||
// --8<-- [start:table_eventual_consistency]
|
||||
const db = await lancedb.connect({ uri, readConsistencyInterval: 5 });
|
||||
const tbl = await db.openTable("my_table");
|
||||
// --8<-- [end:table_eventual_consistency]
|
||||
}
|
||||
{
|
||||
// --8<-- [start:table_no_consistency]
|
||||
const db = await lancedb.connect({ uri, readConsistencyInterval: null });
|
||||
const tbl = await db.openTable("my_table");
|
||||
// --8<-- [end:table_no_consistency]
|
||||
}
|
||||
{
|
||||
// --8<-- [start:table_checkout_latest]
|
||||
const tbl = await db.openTable("my_table");
|
||||
|
||||
// (Other writes happen to test_table_async from another process)
|
||||
|
||||
// Check for updates
|
||||
tbl.checkoutLatest();
|
||||
// --8<-- [end:table_checkout_latest]
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
@@ -639,8 +639,9 @@ function transposeData(
|
||||
): Vector {
|
||||
if (field.type instanceof Struct) {
|
||||
const childFields = field.type.children;
|
||||
const fullPath = [...path, field.name];
|
||||
const childVectors = childFields.map((child) => {
|
||||
return transposeData(data, child, [...path, child.name]);
|
||||
return transposeData(data, child, fullPath);
|
||||
});
|
||||
const structData = makeData({
|
||||
type: field.type,
|
||||
@@ -652,7 +653,14 @@ function transposeData(
|
||||
const values = data.map((datum) => {
|
||||
let current: unknown = datum;
|
||||
for (const key of valuesPath) {
|
||||
if (isObject(current) && Object.hasOwn(current, key)) {
|
||||
if (current == null) {
|
||||
return null;
|
||||
}
|
||||
|
||||
if (
|
||||
isObject(current) &&
|
||||
(Object.hasOwn(current, key) || key in current)
|
||||
) {
|
||||
current = current[key];
|
||||
} else {
|
||||
return null;
|
||||
|
||||
@@ -23,6 +23,18 @@ export {
|
||||
OptimizeStats,
|
||||
CompactionStats,
|
||||
RemovalStats,
|
||||
TableStatistics,
|
||||
FragmentStatistics,
|
||||
FragmentSummaryStats,
|
||||
Tags,
|
||||
TagContents,
|
||||
MergeResult,
|
||||
AddResult,
|
||||
AddColumnsResult,
|
||||
AlterColumnsResult,
|
||||
DeleteResult,
|
||||
DropColumnsResult,
|
||||
UpdateResult,
|
||||
} from "./native.js";
|
||||
|
||||
export {
|
||||
|
||||
@@ -681,4 +681,6 @@ export interface IndexOptions {
|
||||
* The default is true
|
||||
*/
|
||||
replace?: boolean;
|
||||
|
||||
waitTimeoutSeconds?: number;
|
||||
}
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
import { Data, Schema, fromDataToBuffer } from "./arrow";
|
||||
import { NativeMergeInsertBuilder } from "./native";
|
||||
import { MergeResult, NativeMergeInsertBuilder } from "./native";
|
||||
|
||||
/** A builder used to create and run a merge insert operation */
|
||||
export class MergeInsertBuilder {
|
||||
@@ -73,9 +73,9 @@ export class MergeInsertBuilder {
|
||||
/**
|
||||
* Executes the merge insert operation
|
||||
*
|
||||
* Nothing is returned but the `Table` is updated
|
||||
* @returns {Promise<MergeResult>} the merge result
|
||||
*/
|
||||
async execute(data: Data): Promise<void> {
|
||||
async execute(data: Data): Promise<MergeResult> {
|
||||
let schema: Schema;
|
||||
if (this.#schema instanceof Promise) {
|
||||
schema = await this.#schema;
|
||||
@@ -84,6 +84,6 @@ export class MergeInsertBuilder {
|
||||
schema = this.#schema;
|
||||
}
|
||||
const buffer = await fromDataToBuffer(data, undefined, schema);
|
||||
await this.#native.execute(buffer);
|
||||
return await this.#native.execute(buffer);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -11,6 +11,7 @@ import {
|
||||
} from "./arrow";
|
||||
import { type IvfPqOptions } from "./indices";
|
||||
import {
|
||||
JsFullTextQuery,
|
||||
RecordBatchIterator as NativeBatchIterator,
|
||||
Query as NativeQuery,
|
||||
Table as NativeTable,
|
||||
@@ -177,9 +178,7 @@ export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
|
||||
columns: columns,
|
||||
});
|
||||
} else {
|
||||
// If query is a FullTextQuery object, convert it to a dict
|
||||
const queryObj = query.toDict();
|
||||
inner.fullTextSearch(queryObj);
|
||||
inner.fullTextSearch({ query: query.inner });
|
||||
}
|
||||
});
|
||||
return this;
|
||||
@@ -743,8 +742,7 @@ export class Query extends QueryBase<NativeQuery> {
|
||||
columns: columns,
|
||||
});
|
||||
} else {
|
||||
const queryObj = query.toDict();
|
||||
inner.fullTextSearch(queryObj);
|
||||
inner.fullTextSearch({ query: query.inner });
|
||||
}
|
||||
});
|
||||
return this;
|
||||
@@ -772,130 +770,141 @@ export enum FullTextQueryType {
|
||||
* including methods to retrieve the query type and convert the query to a dictionary format.
|
||||
*/
|
||||
export interface FullTextQuery {
|
||||
/**
|
||||
* Returns the inner query object.
|
||||
* This is the underlying query object used by the database engine.
|
||||
* @ignore
|
||||
*/
|
||||
inner: JsFullTextQuery;
|
||||
|
||||
/**
|
||||
* The type of the full-text query.
|
||||
*/
|
||||
queryType(): FullTextQueryType;
|
||||
toDict(): Record<string, unknown>;
|
||||
}
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: we want any here
|
||||
export function instanceOfFullTextQuery(obj: any): obj is FullTextQuery {
|
||||
return obj != null && obj.inner instanceof JsFullTextQuery;
|
||||
}
|
||||
|
||||
export class MatchQuery implements FullTextQuery {
|
||||
/** @ignore */
|
||||
public readonly inner: JsFullTextQuery;
|
||||
/**
|
||||
* Creates an instance of MatchQuery.
|
||||
*
|
||||
* @param query - The text query to search for.
|
||||
* @param column - The name of the column to search within.
|
||||
* @param boost - (Optional) The boost factor to influence the relevance score of this query. Default is `1.0`.
|
||||
* @param fuzziness - (Optional) The allowed edit distance for fuzzy matching. Default is `0`.
|
||||
* @param maxExpansions - (Optional) The maximum number of terms to consider for fuzzy matching. Default is `50`.
|
||||
* @param options - Optional parameters for the match query.
|
||||
* - `boost`: The boost factor for the query (default is 1.0).
|
||||
* - `fuzziness`: The fuzziness level for the query (default is 0).
|
||||
* - `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
|
||||
*/
|
||||
constructor(
|
||||
private query: string,
|
||||
private column: string,
|
||||
private boost: number = 1.0,
|
||||
private fuzziness: number = 0,
|
||||
private maxExpansions: number = 50,
|
||||
) {}
|
||||
query: string,
|
||||
column: string,
|
||||
options?: {
|
||||
boost?: number;
|
||||
fuzziness?: number;
|
||||
maxExpansions?: number;
|
||||
},
|
||||
) {
|
||||
let fuzziness = options?.fuzziness;
|
||||
if (fuzziness === undefined) {
|
||||
fuzziness = 0;
|
||||
}
|
||||
this.inner = JsFullTextQuery.matchQuery(
|
||||
query,
|
||||
column,
|
||||
options?.boost ?? 1.0,
|
||||
fuzziness,
|
||||
options?.maxExpansions ?? 50,
|
||||
);
|
||||
}
|
||||
|
||||
queryType(): FullTextQueryType {
|
||||
return FullTextQueryType.Match;
|
||||
}
|
||||
|
||||
toDict(): Record<string, unknown> {
|
||||
return {
|
||||
[this.queryType()]: {
|
||||
[this.column]: {
|
||||
query: this.query,
|
||||
boost: this.boost,
|
||||
fuzziness: this.fuzziness,
|
||||
// biome-ignore lint/style/useNamingConvention: use underscore for consistency with the other APIs
|
||||
max_expansions: this.maxExpansions,
|
||||
},
|
||||
},
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
export class PhraseQuery implements FullTextQuery {
|
||||
/** @ignore */
|
||||
public readonly inner: JsFullTextQuery;
|
||||
/**
|
||||
* Creates an instance of `PhraseQuery`.
|
||||
*
|
||||
* @param query - The phrase to search for in the specified column.
|
||||
* @param column - The name of the column to search within.
|
||||
*/
|
||||
constructor(
|
||||
private query: string,
|
||||
private column: string,
|
||||
) {}
|
||||
constructor(query: string, column: string) {
|
||||
this.inner = JsFullTextQuery.phraseQuery(query, column);
|
||||
}
|
||||
|
||||
queryType(): FullTextQueryType {
|
||||
return FullTextQueryType.MatchPhrase;
|
||||
}
|
||||
|
||||
toDict(): Record<string, unknown> {
|
||||
return {
|
||||
[this.queryType()]: {
|
||||
[this.column]: this.query,
|
||||
},
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
export class BoostQuery implements FullTextQuery {
|
||||
/** @ignore */
|
||||
public readonly inner: JsFullTextQuery;
|
||||
/**
|
||||
* Creates an instance of BoostQuery.
|
||||
* The boost returns documents that match the positive query,
|
||||
* but penalizes those that match the negative query.
|
||||
* the penalty is controlled by the `negativeBoost` parameter.
|
||||
*
|
||||
* @param positive - The positive query that boosts the relevance score.
|
||||
* @param negative - The negative query that reduces the relevance score.
|
||||
* @param negativeBoost - The factor by which the negative query reduces the score.
|
||||
* @param options - Optional parameters for the boost query.
|
||||
* - `negativeBoost`: The boost factor for the negative query (default is 0.0).
|
||||
*/
|
||||
constructor(
|
||||
private positive: FullTextQuery,
|
||||
private negative: FullTextQuery,
|
||||
private negativeBoost: number,
|
||||
) {}
|
||||
positive: FullTextQuery,
|
||||
negative: FullTextQuery,
|
||||
options?: {
|
||||
negativeBoost?: number;
|
||||
},
|
||||
) {
|
||||
this.inner = JsFullTextQuery.boostQuery(
|
||||
positive.inner,
|
||||
negative.inner,
|
||||
options?.negativeBoost,
|
||||
);
|
||||
}
|
||||
|
||||
queryType(): FullTextQueryType {
|
||||
return FullTextQueryType.Boost;
|
||||
}
|
||||
|
||||
toDict(): Record<string, unknown> {
|
||||
return {
|
||||
[this.queryType()]: {
|
||||
positive: this.positive.toDict(),
|
||||
negative: this.negative.toDict(),
|
||||
// biome-ignore lint/style/useNamingConvention: use underscore for consistency with the other APIs
|
||||
negative_boost: this.negativeBoost,
|
||||
},
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
export class MultiMatchQuery implements FullTextQuery {
|
||||
/** @ignore */
|
||||
public readonly inner: JsFullTextQuery;
|
||||
/**
|
||||
* Creates an instance of MultiMatchQuery.
|
||||
*
|
||||
* @param query - The text query to search for across multiple columns.
|
||||
* @param columns - An array of column names to search within.
|
||||
* @param boosts - (Optional) An array of boost factors corresponding to each column. Default is an array of 1.0 for each column.
|
||||
*
|
||||
* The `boosts` array should have the same length as `columns`. If not provided, all columns will have a default boost of 1.0.
|
||||
* If the length of `boosts` is less than `columns`, it will be padded with 1.0s.
|
||||
* @param options - Optional parameters for the multi-match query.
|
||||
* - `boosts`: An array of boost factors for each column (default is 1.0 for all).
|
||||
*/
|
||||
constructor(
|
||||
private query: string,
|
||||
private columns: string[],
|
||||
private boosts: number[] = columns.map(() => 1.0),
|
||||
) {}
|
||||
query: string,
|
||||
columns: string[],
|
||||
options?: {
|
||||
boosts?: number[];
|
||||
},
|
||||
) {
|
||||
this.inner = JsFullTextQuery.multiMatchQuery(
|
||||
query,
|
||||
columns,
|
||||
options?.boosts,
|
||||
);
|
||||
}
|
||||
|
||||
queryType(): FullTextQueryType {
|
||||
return FullTextQueryType.MultiMatch;
|
||||
}
|
||||
|
||||
toDict(): Record<string, unknown> {
|
||||
return {
|
||||
[this.queryType()]: {
|
||||
query: this.query,
|
||||
columns: this.columns,
|
||||
boost: this.boosts,
|
||||
},
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
@@ -16,13 +16,26 @@ import { EmbeddingFunctionConfig, getRegistry } from "./embedding/registry";
|
||||
import { IndexOptions } from "./indices";
|
||||
import { MergeInsertBuilder } from "./merge";
|
||||
import {
|
||||
AddColumnsResult,
|
||||
AddColumnsSql,
|
||||
AddResult,
|
||||
AlterColumnsResult,
|
||||
DeleteResult,
|
||||
DropColumnsResult,
|
||||
IndexConfig,
|
||||
IndexStatistics,
|
||||
OptimizeStats,
|
||||
TableStatistics,
|
||||
Tags,
|
||||
UpdateResult,
|
||||
Table as _NativeTable,
|
||||
} from "./native";
|
||||
import { Query, VectorQuery } from "./query";
|
||||
import {
|
||||
FullTextQuery,
|
||||
Query,
|
||||
VectorQuery,
|
||||
instanceOfFullTextQuery,
|
||||
} from "./query";
|
||||
import { sanitizeType } from "./sanitize";
|
||||
import { IntoSql, toSQL } from "./util";
|
||||
export { IndexConfig } from "./native";
|
||||
@@ -119,12 +132,19 @@ export abstract class Table {
|
||||
/**
|
||||
* Insert records into this Table.
|
||||
* @param {Data} data Records to be inserted into the Table
|
||||
* @returns {Promise<AddResult>} A promise that resolves to an object
|
||||
* containing the new version number of the table
|
||||
*/
|
||||
abstract add(data: Data, options?: Partial<AddDataOptions>): Promise<void>;
|
||||
abstract add(
|
||||
data: Data,
|
||||
options?: Partial<AddDataOptions>,
|
||||
): Promise<AddResult>;
|
||||
/**
|
||||
* Update existing records in the Table
|
||||
* @param opts.values The values to update. The keys are the column names and the values
|
||||
* are the values to set.
|
||||
* @returns {Promise<UpdateResult>} A promise that resolves to an object containing
|
||||
* the number of rows updated and the new version number
|
||||
* @example
|
||||
* ```ts
|
||||
* table.update({where:"x = 2", values:{"vector": [10, 10]}})
|
||||
@@ -134,11 +154,13 @@ export abstract class Table {
|
||||
opts: {
|
||||
values: Map<string, IntoSql> | Record<string, IntoSql>;
|
||||
} & Partial<UpdateOptions>,
|
||||
): Promise<void>;
|
||||
): Promise<UpdateResult>;
|
||||
/**
|
||||
* Update existing records in the Table
|
||||
* @param opts.valuesSql The values to update. The keys are the column names and the values
|
||||
* are the values to set. The values are SQL expressions.
|
||||
* @returns {Promise<UpdateResult>} A promise that resolves to an object containing
|
||||
* the number of rows updated and the new version number
|
||||
* @example
|
||||
* ```ts
|
||||
* table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
|
||||
@@ -148,7 +170,7 @@ export abstract class Table {
|
||||
opts: {
|
||||
valuesSql: Map<string, string> | Record<string, string>;
|
||||
} & Partial<UpdateOptions>,
|
||||
): Promise<void>;
|
||||
): Promise<UpdateResult>;
|
||||
/**
|
||||
* Update existing records in the Table
|
||||
*
|
||||
@@ -166,6 +188,8 @@ export abstract class Table {
|
||||
* repeatedly calilng this method.
|
||||
* @param {Map<string, string> | Record<string, string>} updates - the
|
||||
* columns to update
|
||||
* @returns {Promise<UpdateResult>} A promise that resolves to an object
|
||||
* containing the number of rows updated and the new version number
|
||||
*
|
||||
* Keys in the map should specify the name of the column to update.
|
||||
* Values in the map provide the new value of the column. These can
|
||||
@@ -177,12 +201,16 @@ export abstract class Table {
|
||||
abstract update(
|
||||
updates: Map<string, string> | Record<string, string>,
|
||||
options?: Partial<UpdateOptions>,
|
||||
): Promise<void>;
|
||||
): Promise<UpdateResult>;
|
||||
|
||||
/** Count the total number of rows in the dataset. */
|
||||
abstract countRows(filter?: string): Promise<number>;
|
||||
/** Delete the rows that satisfy the predicate. */
|
||||
abstract delete(predicate: string): Promise<void>;
|
||||
/**
|
||||
* Delete the rows that satisfy the predicate.
|
||||
* @returns {Promise<DeleteResult>} A promise that resolves to an object
|
||||
* containing the new version number of the table
|
||||
*/
|
||||
abstract delete(predicate: string): Promise<DeleteResult>;
|
||||
/**
|
||||
* Create an index to speed up queries.
|
||||
*
|
||||
@@ -230,6 +258,30 @@ export abstract class Table {
|
||||
*/
|
||||
abstract dropIndex(name: string): Promise<void>;
|
||||
|
||||
/**
|
||||
* Prewarm an index in the table.
|
||||
*
|
||||
* @param name The name of the index.
|
||||
*
|
||||
* This will load the index into memory. This may reduce the cold-start time for
|
||||
* future queries. If the index does not fit in the cache then this call may be
|
||||
* wasteful.
|
||||
*/
|
||||
abstract prewarmIndex(name: string): Promise<void>;
|
||||
|
||||
/**
|
||||
* Waits for asynchronous indexing to complete on the table.
|
||||
*
|
||||
* @param indexNames The name of the indices to wait for
|
||||
* @param timeoutSeconds The number of seconds to wait before timing out
|
||||
*
|
||||
* This will raise an error if the indices are not created and fully indexed within the timeout.
|
||||
*/
|
||||
abstract waitForIndex(
|
||||
indexNames: string[],
|
||||
timeoutSeconds: number,
|
||||
): Promise<void>;
|
||||
|
||||
/**
|
||||
* Create a {@link Query} Builder.
|
||||
*
|
||||
@@ -294,7 +346,7 @@ export abstract class Table {
|
||||
* if the query is a string and no embedding function is defined, it will be treated as a full text search query
|
||||
*/
|
||||
abstract search(
|
||||
query: string | IntoVector,
|
||||
query: string | IntoVector | FullTextQuery,
|
||||
queryType?: string,
|
||||
ftsColumns?: string | string[],
|
||||
): VectorQuery | Query;
|
||||
@@ -312,15 +364,23 @@ export abstract class Table {
|
||||
* the SQL expression to use to calculate the value of the new column. These
|
||||
* expressions will be evaluated for each row in the table, and can
|
||||
* reference existing columns in the table.
|
||||
* @returns {Promise<AddColumnsResult>} A promise that resolves to an object
|
||||
* containing the new version number of the table after adding the columns.
|
||||
*/
|
||||
abstract addColumns(newColumnTransforms: AddColumnsSql[]): Promise<void>;
|
||||
abstract addColumns(
|
||||
newColumnTransforms: AddColumnsSql[],
|
||||
): Promise<AddColumnsResult>;
|
||||
|
||||
/**
|
||||
* Alter the name or nullability of columns.
|
||||
* @param {ColumnAlteration[]} columnAlterations One or more alterations to
|
||||
* apply to columns.
|
||||
* @returns {Promise<AlterColumnsResult>} A promise that resolves to an object
|
||||
* containing the new version number of the table after altering the columns.
|
||||
*/
|
||||
abstract alterColumns(columnAlterations: ColumnAlteration[]): Promise<void>;
|
||||
abstract alterColumns(
|
||||
columnAlterations: ColumnAlteration[],
|
||||
): Promise<AlterColumnsResult>;
|
||||
/**
|
||||
* Drop one or more columns from the dataset
|
||||
*
|
||||
@@ -331,8 +391,10 @@ export abstract class Table {
|
||||
* @param {string[]} columnNames The names of the columns to drop. These can
|
||||
* be nested column references (e.g. "a.b.c") or top-level column names
|
||||
* (e.g. "a").
|
||||
* @returns {Promise<DropColumnsResult>} A promise that resolves to an object
|
||||
* containing the new version number of the table after dropping the columns.
|
||||
*/
|
||||
abstract dropColumns(columnNames: string[]): Promise<void>;
|
||||
abstract dropColumns(columnNames: string[]): Promise<DropColumnsResult>;
|
||||
/** Retrieve the version of the table */
|
||||
|
||||
abstract version(): Promise<number>;
|
||||
@@ -345,7 +407,7 @@ export abstract class Table {
|
||||
*
|
||||
* Calling this method will set the table into time-travel mode. If you
|
||||
* wish to return to standard mode, call `checkoutLatest`.
|
||||
* @param {number} version The version to checkout
|
||||
* @param {number | string} version The version to checkout, could be version number or tag
|
||||
* @example
|
||||
* ```typescript
|
||||
* import * as lancedb from "@lancedb/lancedb"
|
||||
@@ -361,7 +423,8 @@ export abstract class Table {
|
||||
* console.log(await table.version()); // 2
|
||||
* ```
|
||||
*/
|
||||
abstract checkout(version: number): Promise<void>;
|
||||
abstract checkout(version: number | string): Promise<void>;
|
||||
|
||||
/**
|
||||
* Checkout the latest version of the table. _This is an in-place operation._
|
||||
*
|
||||
@@ -375,6 +438,23 @@ export abstract class Table {
|
||||
*/
|
||||
abstract listVersions(): Promise<Version[]>;
|
||||
|
||||
/**
|
||||
* Get a tags manager for this table.
|
||||
*
|
||||
* Tags allow you to label specific versions of a table with a human-readable name.
|
||||
* The returned tags manager can be used to list, create, update, or delete tags.
|
||||
*
|
||||
* @returns {Tags} A tags manager for this table
|
||||
* @example
|
||||
* ```typescript
|
||||
* const tagsManager = await table.tags();
|
||||
* await tagsManager.create("v1", 1);
|
||||
* const tags = await tagsManager.list();
|
||||
* console.log(tags); // { "v1": { version: 1, manifestSize: ... } }
|
||||
* ```
|
||||
*/
|
||||
abstract tags(): Promise<Tags>;
|
||||
|
||||
/**
|
||||
* Restore the table to the currently checked out version
|
||||
*
|
||||
@@ -434,6 +514,13 @@ export abstract class Table {
|
||||
* Use {@link Table.listIndices} to find the names of the indices.
|
||||
*/
|
||||
abstract indexStats(name: string): Promise<IndexStatistics | undefined>;
|
||||
|
||||
/** Returns table and fragment statistics
|
||||
*
|
||||
* @returns {TableStatistics} The table and fragment statistics
|
||||
*
|
||||
*/
|
||||
abstract stats(): Promise<TableStatistics>;
|
||||
}
|
||||
|
||||
export class LocalTable extends Table {
|
||||
@@ -473,12 +560,12 @@ export class LocalTable extends Table {
|
||||
return tbl.schema;
|
||||
}
|
||||
|
||||
async add(data: Data, options?: Partial<AddDataOptions>): Promise<void> {
|
||||
async add(data: Data, options?: Partial<AddDataOptions>): Promise<AddResult> {
|
||||
const mode = options?.mode ?? "append";
|
||||
const schema = await this.schema();
|
||||
|
||||
const buffer = await fromDataToBuffer(data, undefined, schema);
|
||||
await this.inner.add(buffer, mode);
|
||||
return await this.inner.add(buffer, mode);
|
||||
}
|
||||
|
||||
async update(
|
||||
@@ -491,7 +578,7 @@ export class LocalTable extends Table {
|
||||
valuesSql: Map<string, string> | Record<string, string>;
|
||||
} & Partial<UpdateOptions>),
|
||||
options?: Partial<UpdateOptions>,
|
||||
) {
|
||||
): Promise<UpdateResult> {
|
||||
const isValues =
|
||||
"values" in optsOrUpdates && typeof optsOrUpdates.values !== "string";
|
||||
const isValuesSql =
|
||||
@@ -538,38 +625,54 @@ export class LocalTable extends Table {
|
||||
columns = Object.entries(optsOrUpdates as Record<string, string>);
|
||||
predicate = options?.where;
|
||||
}
|
||||
await this.inner.update(predicate, columns);
|
||||
return await this.inner.update(predicate, columns);
|
||||
}
|
||||
|
||||
async countRows(filter?: string): Promise<number> {
|
||||
return await this.inner.countRows(filter);
|
||||
}
|
||||
|
||||
async delete(predicate: string): Promise<void> {
|
||||
await this.inner.delete(predicate);
|
||||
async delete(predicate: string): Promise<DeleteResult> {
|
||||
return await this.inner.delete(predicate);
|
||||
}
|
||||
|
||||
async createIndex(column: string, options?: Partial<IndexOptions>) {
|
||||
// Bit of a hack to get around the fact that TS has no package-scope.
|
||||
// biome-ignore lint/suspicious/noExplicitAny: skip
|
||||
const nativeIndex = (options?.config as any)?.inner;
|
||||
await this.inner.createIndex(nativeIndex, column, options?.replace);
|
||||
await this.inner.createIndex(
|
||||
nativeIndex,
|
||||
column,
|
||||
options?.replace,
|
||||
options?.waitTimeoutSeconds,
|
||||
);
|
||||
}
|
||||
|
||||
async dropIndex(name: string): Promise<void> {
|
||||
await this.inner.dropIndex(name);
|
||||
}
|
||||
|
||||
async prewarmIndex(name: string): Promise<void> {
|
||||
await this.inner.prewarmIndex(name);
|
||||
}
|
||||
|
||||
async waitForIndex(
|
||||
indexNames: string[],
|
||||
timeoutSeconds: number,
|
||||
): Promise<void> {
|
||||
await this.inner.waitForIndex(indexNames, timeoutSeconds);
|
||||
}
|
||||
|
||||
query(): Query {
|
||||
return new Query(this.inner);
|
||||
}
|
||||
|
||||
search(
|
||||
query: string | IntoVector,
|
||||
query: string | IntoVector | FullTextQuery,
|
||||
queryType: string = "auto",
|
||||
ftsColumns?: string | string[],
|
||||
): VectorQuery | Query {
|
||||
if (typeof query !== "string") {
|
||||
if (typeof query !== "string" && !instanceOfFullTextQuery(query)) {
|
||||
if (queryType === "fts") {
|
||||
throw new Error("Cannot perform full text search on a vector query");
|
||||
}
|
||||
@@ -585,7 +688,10 @@ export class LocalTable extends Table {
|
||||
|
||||
// The query type is auto or vector
|
||||
// fall back to full text search if no embedding functions are defined and the query is a string
|
||||
if (queryType === "auto" && getRegistry().length() === 0) {
|
||||
if (
|
||||
queryType === "auto" &&
|
||||
(getRegistry().length() === 0 || instanceOfFullTextQuery(query))
|
||||
) {
|
||||
return this.query().fullTextSearch(query, {
|
||||
columns: ftsColumns,
|
||||
});
|
||||
@@ -615,11 +721,15 @@ export class LocalTable extends Table {
|
||||
|
||||
// TODO: Support BatchUDF
|
||||
|
||||
async addColumns(newColumnTransforms: AddColumnsSql[]): Promise<void> {
|
||||
await this.inner.addColumns(newColumnTransforms);
|
||||
async addColumns(
|
||||
newColumnTransforms: AddColumnsSql[],
|
||||
): Promise<AddColumnsResult> {
|
||||
return await this.inner.addColumns(newColumnTransforms);
|
||||
}
|
||||
|
||||
async alterColumns(columnAlterations: ColumnAlteration[]): Promise<void> {
|
||||
async alterColumns(
|
||||
columnAlterations: ColumnAlteration[],
|
||||
): Promise<AlterColumnsResult> {
|
||||
const processedAlterations = columnAlterations.map((alteration) => {
|
||||
if (typeof alteration.dataType === "string") {
|
||||
return {
|
||||
@@ -640,19 +750,22 @@ export class LocalTable extends Table {
|
||||
}
|
||||
});
|
||||
|
||||
await this.inner.alterColumns(processedAlterations);
|
||||
return await this.inner.alterColumns(processedAlterations);
|
||||
}
|
||||
|
||||
async dropColumns(columnNames: string[]): Promise<void> {
|
||||
await this.inner.dropColumns(columnNames);
|
||||
async dropColumns(columnNames: string[]): Promise<DropColumnsResult> {
|
||||
return await this.inner.dropColumns(columnNames);
|
||||
}
|
||||
|
||||
async version(): Promise<number> {
|
||||
return await this.inner.version();
|
||||
}
|
||||
|
||||
async checkout(version: number): Promise<void> {
|
||||
await this.inner.checkout(version);
|
||||
async checkout(version: number | string): Promise<void> {
|
||||
if (typeof version === "string") {
|
||||
return this.inner.checkoutTag(version);
|
||||
}
|
||||
return this.inner.checkout(version);
|
||||
}
|
||||
|
||||
async checkoutLatest(): Promise<void> {
|
||||
@@ -671,6 +784,10 @@ export class LocalTable extends Table {
|
||||
await this.inner.restore();
|
||||
}
|
||||
|
||||
async tags(): Promise<Tags> {
|
||||
return await this.inner.tags();
|
||||
}
|
||||
|
||||
async optimize(options?: Partial<OptimizeOptions>): Promise<OptimizeStats> {
|
||||
let cleanupOlderThanMs;
|
||||
if (
|
||||
@@ -701,6 +818,11 @@ export class LocalTable extends Table {
|
||||
}
|
||||
return stats;
|
||||
}
|
||||
|
||||
async stats(): Promise<TableStatistics> {
|
||||
return await this.inner.stats();
|
||||
}
|
||||
|
||||
mergeInsert(on: string | string[]): MergeInsertBuilder {
|
||||
on = Array.isArray(on) ? on : [on];
|
||||
return new MergeInsertBuilder(this.inner.mergeInsert(on), this.schema());
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-arm64",
|
||||
"version": "0.19.0-beta.5",
|
||||
"version": "0.19.1-beta.3",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.darwin-arm64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-x64",
|
||||
"version": "0.19.0-beta.5",
|
||||
"version": "0.19.1-beta.3",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.darwin-x64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-gnu",
|
||||
"version": "0.19.0-beta.5",
|
||||
"version": "0.19.1-beta.3",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-musl",
|
||||
"version": "0.19.0-beta.5",
|
||||
"version": "0.19.1-beta.3",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-musl.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-gnu",
|
||||
"version": "0.19.0-beta.5",
|
||||
"version": "0.19.1-beta.3",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-musl",
|
||||
"version": "0.19.0-beta.5",
|
||||
"version": "0.19.1-beta.3",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-musl.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-arm64-msvc",
|
||||
"version": "0.19.0-beta.5",
|
||||
"version": "0.19.1-beta.3",
|
||||
"os": [
|
||||
"win32"
|
||||
],
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-x64-msvc",
|
||||
"version": "0.19.0-beta.5",
|
||||
"version": "0.19.1-beta.3",
|
||||
"os": ["win32"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.win32-x64-msvc.node",
|
||||
|
||||
4
nodejs/package-lock.json
generated
4
nodejs/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb",
|
||||
"version": "0.19.0-beta.5",
|
||||
"version": "0.19.1-beta.2",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@lancedb/lancedb",
|
||||
"version": "0.19.0-beta.5",
|
||||
"version": "0.19.1-beta.2",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
"ann"
|
||||
],
|
||||
"private": false,
|
||||
"version": "0.19.0-beta.5",
|
||||
"version": "0.19.1-beta.3",
|
||||
"main": "dist/index.js",
|
||||
"exports": {
|
||||
".": "./dist/index.js",
|
||||
|
||||
@@ -48,16 +48,8 @@ impl Connection {
|
||||
pub async fn new(uri: String, options: ConnectionOptions) -> napi::Result<Self> {
|
||||
let mut builder = ConnectBuilder::new(&uri);
|
||||
if let Some(interval) = options.read_consistency_interval {
|
||||
match interval {
|
||||
Either::A(seconds) => {
|
||||
builder = builder.read_consistency_interval(Some(
|
||||
std::time::Duration::from_secs_f64(seconds),
|
||||
));
|
||||
}
|
||||
Either::B(_) => {
|
||||
builder = builder.read_consistency_interval(None);
|
||||
}
|
||||
}
|
||||
builder =
|
||||
builder.read_consistency_interval(std::time::Duration::from_secs_f64(interval));
|
||||
}
|
||||
if let Some(storage_options) = options.storage_options {
|
||||
for (key, value) in storage_options {
|
||||
|
||||
@@ -4,7 +4,6 @@
|
||||
use std::collections::HashMap;
|
||||
|
||||
use env_logger::Env;
|
||||
use napi::{bindgen_prelude::Null, Either};
|
||||
use napi_derive::*;
|
||||
|
||||
mod connection;
|
||||
@@ -19,6 +18,7 @@ mod table;
|
||||
mod util;
|
||||
|
||||
#[napi(object)]
|
||||
#[derive(Debug)]
|
||||
pub struct ConnectionOptions {
|
||||
/// (For LanceDB OSS only): The interval, in seconds, at which to check for
|
||||
/// updates to the table from other processes. If None, then consistency is not
|
||||
@@ -29,7 +29,7 @@ pub struct ConnectionOptions {
|
||||
/// has passed since the last check, then the table will be checked for updates.
|
||||
/// Note: this consistency only applies to read operations. Write operations are
|
||||
/// always consistent.
|
||||
pub read_consistency_interval: Option<Either<f64, Null>>,
|
||||
pub read_consistency_interval: Option<f64>,
|
||||
/// (For LanceDB OSS only): configuration for object storage.
|
||||
///
|
||||
/// The available options are described at https://lancedb.github.io/lancedb/guides/storage/
|
||||
|
||||
@@ -5,7 +5,7 @@ use lancedb::{arrow::IntoArrow, ipc::ipc_file_to_batches, table::merge::MergeIns
|
||||
use napi::bindgen_prelude::*;
|
||||
use napi_derive::napi;
|
||||
|
||||
use crate::error::convert_error;
|
||||
use crate::{error::convert_error, table::MergeResult};
|
||||
|
||||
#[napi]
|
||||
#[derive(Clone)]
|
||||
@@ -37,7 +37,7 @@ impl NativeMergeInsertBuilder {
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn execute(&self, buf: Buffer) -> napi::Result<()> {
|
||||
pub async fn execute(&self, buf: Buffer) -> napi::Result<MergeResult> {
|
||||
let data = ipc_file_to_batches(buf.to_vec())
|
||||
.and_then(IntoArrow::into_arrow)
|
||||
.map_err(|e| {
|
||||
@@ -46,12 +46,13 @@ impl NativeMergeInsertBuilder {
|
||||
|
||||
let this = self.clone();
|
||||
|
||||
this.inner.execute(data).await.map_err(|e| {
|
||||
let res = this.inner.execute(data).await.map_err(|e| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to execute merge insert: {}",
|
||||
convert_error(&e)
|
||||
))
|
||||
})
|
||||
})?;
|
||||
Ok(res.into())
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -3,7 +3,9 @@
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use lancedb::index::scalar::{FtsQuery, FullTextSearchQuery, MatchQuery, PhraseQuery};
|
||||
use lancedb::index::scalar::{
|
||||
BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, PhraseQuery,
|
||||
};
|
||||
use lancedb::query::ExecutableQuery;
|
||||
use lancedb::query::Query as LanceDbQuery;
|
||||
use lancedb::query::QueryBase;
|
||||
@@ -18,7 +20,7 @@ use crate::error::NapiErrorExt;
|
||||
use crate::iterator::RecordBatchIterator;
|
||||
use crate::rerankers::Reranker;
|
||||
use crate::rerankers::RerankerCallbacks;
|
||||
use crate::util::{parse_distance_type, parse_fts_query};
|
||||
use crate::util::parse_distance_type;
|
||||
|
||||
#[napi]
|
||||
pub struct Query {
|
||||
@@ -38,51 +40,8 @@ impl Query {
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn full_text_search(&mut self, query: napi::JsUnknown) -> napi::Result<()> {
|
||||
let query = unsafe { query.cast::<napi::JsObject>() };
|
||||
let query = if let Some(query_text) = query.get::<_, String>("query").transpose() {
|
||||
let mut query_text = query_text?;
|
||||
let columns = query.get::<_, Option<Vec<String>>>("columns")?.flatten();
|
||||
|
||||
let is_phrase =
|
||||
query_text.len() >= 2 && query_text.starts_with('"') && query_text.ends_with('"');
|
||||
let is_multi_match = columns.as_ref().map(|cols| cols.len() > 1).unwrap_or(false);
|
||||
|
||||
if is_phrase {
|
||||
// Remove the surrounding quotes for phrase queries
|
||||
query_text = query_text[1..query_text.len() - 1].to_string();
|
||||
}
|
||||
|
||||
let query: FtsQuery = match (is_phrase, is_multi_match) {
|
||||
(false, _) => MatchQuery::new(query_text).into(),
|
||||
(true, false) => PhraseQuery::new(query_text).into(),
|
||||
(true, true) => {
|
||||
return Err(napi::Error::from_reason(
|
||||
"Phrase queries cannot be used with multiple columns.",
|
||||
));
|
||||
}
|
||||
};
|
||||
let mut query = FullTextSearchQuery::new_query(query);
|
||||
if let Some(cols) = columns {
|
||||
if !cols.is_empty() {
|
||||
query = query.with_columns(&cols).map_err(|e| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to set full text search columns: {}",
|
||||
e
|
||||
))
|
||||
})?;
|
||||
}
|
||||
}
|
||||
query
|
||||
} else if let Some(query) = query.get::<_, napi::JsObject>("query")? {
|
||||
let query = parse_fts_query(&query)?;
|
||||
FullTextSearchQuery::new_query(query)
|
||||
} else {
|
||||
return Err(napi::Error::from_reason(
|
||||
"Invalid full text search query object".to_string(),
|
||||
));
|
||||
};
|
||||
|
||||
pub fn full_text_search(&mut self, query: napi::JsObject) -> napi::Result<()> {
|
||||
let query = parse_fts_query(query)?;
|
||||
self.inner = self.inner.clone().full_text_search(query);
|
||||
Ok(())
|
||||
}
|
||||
@@ -243,51 +202,8 @@ impl VectorQuery {
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn full_text_search(&mut self, query: napi::JsUnknown) -> napi::Result<()> {
|
||||
let query = unsafe { query.cast::<napi::JsObject>() };
|
||||
let query = if let Some(query_text) = query.get::<_, String>("query").transpose() {
|
||||
let mut query_text = query_text?;
|
||||
let columns = query.get::<_, Option<Vec<String>>>("columns")?.flatten();
|
||||
|
||||
let is_phrase =
|
||||
query_text.len() >= 2 && query_text.starts_with('"') && query_text.ends_with('"');
|
||||
let is_multi_match = columns.as_ref().map(|cols| cols.len() > 1).unwrap_or(false);
|
||||
|
||||
if is_phrase {
|
||||
// Remove the surrounding quotes for phrase queries
|
||||
query_text = query_text[1..query_text.len() - 1].to_string();
|
||||
}
|
||||
|
||||
let query: FtsQuery = match (is_phrase, is_multi_match) {
|
||||
(false, _) => MatchQuery::new(query_text).into(),
|
||||
(true, false) => PhraseQuery::new(query_text).into(),
|
||||
(true, true) => {
|
||||
return Err(napi::Error::from_reason(
|
||||
"Phrase queries cannot be used with multiple columns.",
|
||||
));
|
||||
}
|
||||
};
|
||||
let mut query = FullTextSearchQuery::new_query(query);
|
||||
if let Some(cols) = columns {
|
||||
if !cols.is_empty() {
|
||||
query = query.with_columns(&cols).map_err(|e| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to set full text search columns: {}",
|
||||
e
|
||||
))
|
||||
})?;
|
||||
}
|
||||
}
|
||||
query
|
||||
} else if let Some(query) = query.get::<_, napi::JsObject>("query")? {
|
||||
let query = parse_fts_query(&query)?;
|
||||
FullTextSearchQuery::new_query(query)
|
||||
} else {
|
||||
return Err(napi::Error::from_reason(
|
||||
"Invalid full text search query object".to_string(),
|
||||
));
|
||||
};
|
||||
|
||||
pub fn full_text_search(&mut self, query: napi::JsObject) -> napi::Result<()> {
|
||||
let query = parse_fts_query(query)?;
|
||||
self.inner = self.inner.clone().full_text_search(query);
|
||||
Ok(())
|
||||
}
|
||||
@@ -376,3 +292,116 @@ impl VectorQuery {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[napi]
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct JsFullTextQuery {
|
||||
pub(crate) inner: FtsQuery,
|
||||
}
|
||||
|
||||
#[napi]
|
||||
impl JsFullTextQuery {
|
||||
#[napi(factory)]
|
||||
pub fn match_query(
|
||||
query: String,
|
||||
column: String,
|
||||
boost: f64,
|
||||
fuzziness: Option<u32>,
|
||||
max_expansions: u32,
|
||||
) -> napi::Result<Self> {
|
||||
Ok(Self {
|
||||
inner: MatchQuery::new(query)
|
||||
.with_column(Some(column))
|
||||
.with_boost(boost as f32)
|
||||
.with_fuzziness(fuzziness)
|
||||
.with_max_expansions(max_expansions as usize)
|
||||
.into(),
|
||||
})
|
||||
}
|
||||
|
||||
#[napi(factory)]
|
||||
pub fn phrase_query(query: String, column: String) -> napi::Result<Self> {
|
||||
Ok(Self {
|
||||
inner: PhraseQuery::new(query).with_column(Some(column)).into(),
|
||||
})
|
||||
}
|
||||
|
||||
#[napi(factory)]
|
||||
#[allow(clippy::use_self)] // NAPI doesn't allow Self here but clippy reports it
|
||||
pub fn boost_query(
|
||||
positive: &JsFullTextQuery,
|
||||
negative: &JsFullTextQuery,
|
||||
negative_boost: Option<f64>,
|
||||
) -> napi::Result<Self> {
|
||||
Ok(Self {
|
||||
inner: BoostQuery::new(
|
||||
positive.inner.clone(),
|
||||
negative.inner.clone(),
|
||||
negative_boost.map(|v| v as f32),
|
||||
)
|
||||
.into(),
|
||||
})
|
||||
}
|
||||
|
||||
#[napi(factory)]
|
||||
pub fn multi_match_query(
|
||||
query: String,
|
||||
columns: Vec<String>,
|
||||
boosts: Option<Vec<f64>>,
|
||||
) -> napi::Result<Self> {
|
||||
let q = match boosts {
|
||||
Some(boosts) => MultiMatchQuery::try_new(query, columns)
|
||||
.and_then(|q| q.try_with_boosts(boosts.into_iter().map(|v| v as f32).collect())),
|
||||
None => MultiMatchQuery::try_new(query, columns),
|
||||
}
|
||||
.map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to create multi match query: {}", e))
|
||||
})?;
|
||||
|
||||
Ok(Self { inner: q.into() })
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_fts_query(query: napi::JsObject) -> napi::Result<FullTextSearchQuery> {
|
||||
if let Ok(Some(query)) = query.get::<_, &JsFullTextQuery>("query") {
|
||||
Ok(FullTextSearchQuery::new_query(query.inner.clone()))
|
||||
} else if let Ok(Some(query_text)) = query.get::<_, String>("query") {
|
||||
let mut query_text = query_text;
|
||||
let columns = query.get::<_, Option<Vec<String>>>("columns")?.flatten();
|
||||
|
||||
let is_phrase =
|
||||
query_text.len() >= 2 && query_text.starts_with('"') && query_text.ends_with('"');
|
||||
let is_multi_match = columns.as_ref().map(|cols| cols.len() > 1).unwrap_or(false);
|
||||
|
||||
if is_phrase {
|
||||
// Remove the surrounding quotes for phrase queries
|
||||
query_text = query_text[1..query_text.len() - 1].to_string();
|
||||
}
|
||||
|
||||
let query: FtsQuery = match (is_phrase, is_multi_match) {
|
||||
(false, _) => MatchQuery::new(query_text).into(),
|
||||
(true, false) => PhraseQuery::new(query_text).into(),
|
||||
(true, true) => {
|
||||
return Err(napi::Error::from_reason(
|
||||
"Phrase queries cannot be used with multiple columns.",
|
||||
));
|
||||
}
|
||||
};
|
||||
let mut query = FullTextSearchQuery::new_query(query);
|
||||
if let Some(cols) = columns {
|
||||
if !cols.is_empty() {
|
||||
query = query.with_columns(&cols).map_err(|e| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to set full text search columns: {}",
|
||||
e
|
||||
))
|
||||
})?;
|
||||
}
|
||||
}
|
||||
Ok(query)
|
||||
} else {
|
||||
Err(napi::Error::from_reason(
|
||||
"Invalid full text search query object".to_string(),
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -75,7 +75,7 @@ impl Table {
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn add(&self, buf: Buffer, mode: String) -> napi::Result<()> {
|
||||
pub async fn add(&self, buf: Buffer, mode: String) -> napi::Result<AddResult> {
|
||||
let batches = ipc_file_to_batches(buf.to_vec())
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
|
||||
let mut op = self.inner_ref()?.add(batches);
|
||||
@@ -88,7 +88,8 @@ impl Table {
|
||||
return Err(napi::Error::from_reason(format!("Invalid mode: {}", mode)));
|
||||
};
|
||||
|
||||
op.execute().await.default_error()
|
||||
let res = op.execute().await.default_error()?;
|
||||
Ok(res.into())
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
@@ -101,8 +102,9 @@ impl Table {
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn delete(&self, predicate: String) -> napi::Result<()> {
|
||||
self.inner_ref()?.delete(&predicate).await.default_error()
|
||||
pub async fn delete(&self, predicate: String) -> napi::Result<DeleteResult> {
|
||||
let res = self.inner_ref()?.delete(&predicate).await.default_error()?;
|
||||
Ok(res.into())
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
@@ -111,6 +113,7 @@ impl Table {
|
||||
index: Option<&Index>,
|
||||
column: String,
|
||||
replace: Option<bool>,
|
||||
wait_timeout_s: Option<i64>,
|
||||
) -> napi::Result<()> {
|
||||
let lancedb_index = if let Some(index) = index {
|
||||
index.consume()?
|
||||
@@ -121,6 +124,10 @@ impl Table {
|
||||
if let Some(replace) = replace {
|
||||
builder = builder.replace(replace);
|
||||
}
|
||||
if let Some(timeout) = wait_timeout_s {
|
||||
builder =
|
||||
builder.wait_timeout(std::time::Duration::from_secs(timeout.try_into().unwrap()));
|
||||
}
|
||||
builder.execute().await.default_error()
|
||||
}
|
||||
|
||||
@@ -132,12 +139,38 @@ impl Table {
|
||||
.default_error()
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn prewarm_index(&self, index_name: String) -> napi::Result<()> {
|
||||
self.inner_ref()?
|
||||
.prewarm_index(&index_name)
|
||||
.await
|
||||
.default_error()
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn wait_for_index(&self, index_names: Vec<String>, timeout_s: i64) -> Result<()> {
|
||||
let timeout = std::time::Duration::from_secs(timeout_s.try_into().unwrap());
|
||||
let index_names: Vec<&str> = index_names.iter().map(|s| s.as_str()).collect();
|
||||
let slice: &[&str] = &index_names;
|
||||
|
||||
self.inner_ref()?
|
||||
.wait_for_index(slice, timeout)
|
||||
.await
|
||||
.default_error()
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn stats(&self) -> Result<TableStatistics> {
|
||||
let stats = self.inner_ref()?.stats().await.default_error()?;
|
||||
Ok(stats.into())
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn update(
|
||||
&self,
|
||||
only_if: Option<String>,
|
||||
columns: Vec<(String, String)>,
|
||||
) -> napi::Result<u64> {
|
||||
) -> napi::Result<UpdateResult> {
|
||||
let mut op = self.inner_ref()?.update();
|
||||
if let Some(only_if) = only_if {
|
||||
op = op.only_if(only_if);
|
||||
@@ -145,7 +178,8 @@ impl Table {
|
||||
for (column_name, value) in columns {
|
||||
op = op.column(column_name, value);
|
||||
}
|
||||
op.execute().await.default_error()
|
||||
let res = op.execute().await.default_error()?;
|
||||
Ok(res.into())
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
@@ -159,21 +193,28 @@ impl Table {
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn add_columns(&self, transforms: Vec<AddColumnsSql>) -> napi::Result<()> {
|
||||
pub async fn add_columns(
|
||||
&self,
|
||||
transforms: Vec<AddColumnsSql>,
|
||||
) -> napi::Result<AddColumnsResult> {
|
||||
let transforms = transforms
|
||||
.into_iter()
|
||||
.map(|sql| (sql.name, sql.value_sql))
|
||||
.collect::<Vec<_>>();
|
||||
let transforms = NewColumnTransform::SqlExpressions(transforms);
|
||||
self.inner_ref()?
|
||||
let res = self
|
||||
.inner_ref()?
|
||||
.add_columns(transforms, None)
|
||||
.await
|
||||
.default_error()?;
|
||||
Ok(())
|
||||
Ok(res.into())
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn alter_columns(&self, alterations: Vec<ColumnAlteration>) -> napi::Result<()> {
|
||||
pub async fn alter_columns(
|
||||
&self,
|
||||
alterations: Vec<ColumnAlteration>,
|
||||
) -> napi::Result<AlterColumnsResult> {
|
||||
for alteration in &alterations {
|
||||
if alteration.rename.is_none()
|
||||
&& alteration.nullable.is_none()
|
||||
@@ -190,21 +231,23 @@ impl Table {
|
||||
.collect::<std::result::Result<Vec<_>, String>>()
|
||||
.map_err(napi::Error::from_reason)?;
|
||||
|
||||
self.inner_ref()?
|
||||
let res = self
|
||||
.inner_ref()?
|
||||
.alter_columns(&alterations)
|
||||
.await
|
||||
.default_error()?;
|
||||
Ok(())
|
||||
Ok(res.into())
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn drop_columns(&self, columns: Vec<String>) -> napi::Result<()> {
|
||||
pub async fn drop_columns(&self, columns: Vec<String>) -> napi::Result<DropColumnsResult> {
|
||||
let col_refs = columns.iter().map(String::as_str).collect::<Vec<_>>();
|
||||
self.inner_ref()?
|
||||
let res = self
|
||||
.inner_ref()?
|
||||
.drop_columns(&col_refs)
|
||||
.await
|
||||
.default_error()?;
|
||||
Ok(())
|
||||
Ok(res.into())
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
@@ -224,6 +267,14 @@ impl Table {
|
||||
.default_error()
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn checkout_tag(&self, tag: String) -> napi::Result<()> {
|
||||
self.inner_ref()?
|
||||
.checkout_tag(tag.as_str())
|
||||
.await
|
||||
.default_error()
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn checkout_latest(&self) -> napi::Result<()> {
|
||||
self.inner_ref()?.checkout_latest().await.default_error()
|
||||
@@ -256,6 +307,13 @@ impl Table {
|
||||
self.inner_ref()?.restore().await.default_error()
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn tags(&self) -> napi::Result<Tags> {
|
||||
Ok(Tags {
|
||||
inner: self.inner_ref()?.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn optimize(
|
||||
&self,
|
||||
@@ -515,9 +573,257 @@ impl From<lancedb::index::IndexStatistics> for IndexStatistics {
|
||||
}
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
pub struct TableStatistics {
|
||||
/// The total number of bytes in the table
|
||||
pub total_bytes: i64,
|
||||
|
||||
/// The number of rows in the table
|
||||
pub num_rows: i64,
|
||||
|
||||
/// The number of indices in the table
|
||||
pub num_indices: i64,
|
||||
|
||||
/// Statistics on table fragments
|
||||
pub fragment_stats: FragmentStatistics,
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
pub struct FragmentStatistics {
|
||||
/// The number of fragments in the table
|
||||
pub num_fragments: i64,
|
||||
|
||||
/// The number of uncompacted fragments in the table
|
||||
pub num_small_fragments: i64,
|
||||
|
||||
/// Statistics on the number of rows in the table fragments
|
||||
pub lengths: FragmentSummaryStats,
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
pub struct FragmentSummaryStats {
|
||||
/// The number of rows in the fragment with the fewest rows
|
||||
pub min: i64,
|
||||
|
||||
/// The number of rows in the fragment with the most rows
|
||||
pub max: i64,
|
||||
|
||||
/// The mean number of rows in the fragments
|
||||
pub mean: i64,
|
||||
|
||||
/// The 25th percentile of number of rows in the fragments
|
||||
pub p25: i64,
|
||||
|
||||
/// The 50th percentile of number of rows in the fragments
|
||||
pub p50: i64,
|
||||
|
||||
/// The 75th percentile of number of rows in the fragments
|
||||
pub p75: i64,
|
||||
|
||||
/// The 99th percentile of number of rows in the fragments
|
||||
pub p99: i64,
|
||||
}
|
||||
|
||||
impl From<lancedb::table::TableStatistics> for TableStatistics {
|
||||
fn from(v: lancedb::table::TableStatistics) -> Self {
|
||||
Self {
|
||||
total_bytes: v.total_bytes as i64,
|
||||
num_rows: v.num_rows as i64,
|
||||
num_indices: v.num_indices as i64,
|
||||
fragment_stats: FragmentStatistics {
|
||||
num_fragments: v.fragment_stats.num_fragments as i64,
|
||||
num_small_fragments: v.fragment_stats.num_small_fragments as i64,
|
||||
lengths: FragmentSummaryStats {
|
||||
min: v.fragment_stats.lengths.min as i64,
|
||||
max: v.fragment_stats.lengths.max as i64,
|
||||
mean: v.fragment_stats.lengths.mean as i64,
|
||||
p25: v.fragment_stats.lengths.p25 as i64,
|
||||
p50: v.fragment_stats.lengths.p50 as i64,
|
||||
p75: v.fragment_stats.lengths.p75 as i64,
|
||||
p99: v.fragment_stats.lengths.p99 as i64,
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
pub struct Version {
|
||||
pub version: i64,
|
||||
pub timestamp: i64,
|
||||
pub metadata: HashMap<String, String>,
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
pub struct UpdateResult {
|
||||
pub rows_updated: i64,
|
||||
pub version: i64,
|
||||
}
|
||||
|
||||
impl From<lancedb::table::UpdateResult> for UpdateResult {
|
||||
fn from(value: lancedb::table::UpdateResult) -> Self {
|
||||
Self {
|
||||
rows_updated: value.rows_updated as i64,
|
||||
version: value.version as i64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
pub struct AddResult {
|
||||
pub version: i64,
|
||||
}
|
||||
|
||||
impl From<lancedb::table::AddResult> for AddResult {
|
||||
fn from(value: lancedb::table::AddResult) -> Self {
|
||||
Self {
|
||||
version: value.version as i64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
pub struct DeleteResult {
|
||||
pub version: i64,
|
||||
}
|
||||
|
||||
impl From<lancedb::table::DeleteResult> for DeleteResult {
|
||||
fn from(value: lancedb::table::DeleteResult) -> Self {
|
||||
Self {
|
||||
version: value.version as i64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
pub struct MergeResult {
|
||||
pub version: i64,
|
||||
pub num_inserted_rows: i64,
|
||||
pub num_updated_rows: i64,
|
||||
pub num_deleted_rows: i64,
|
||||
}
|
||||
|
||||
impl From<lancedb::table::MergeResult> for MergeResult {
|
||||
fn from(value: lancedb::table::MergeResult) -> Self {
|
||||
Self {
|
||||
version: value.version as i64,
|
||||
num_inserted_rows: value.num_inserted_rows as i64,
|
||||
num_updated_rows: value.num_updated_rows as i64,
|
||||
num_deleted_rows: value.num_deleted_rows as i64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
pub struct AddColumnsResult {
|
||||
pub version: i64,
|
||||
}
|
||||
|
||||
impl From<lancedb::table::AddColumnsResult> for AddColumnsResult {
|
||||
fn from(value: lancedb::table::AddColumnsResult) -> Self {
|
||||
Self {
|
||||
version: value.version as i64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
pub struct AlterColumnsResult {
|
||||
pub version: i64,
|
||||
}
|
||||
|
||||
impl From<lancedb::table::AlterColumnsResult> for AlterColumnsResult {
|
||||
fn from(value: lancedb::table::AlterColumnsResult) -> Self {
|
||||
Self {
|
||||
version: value.version as i64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
pub struct DropColumnsResult {
|
||||
pub version: i64,
|
||||
}
|
||||
|
||||
impl From<lancedb::table::DropColumnsResult> for DropColumnsResult {
|
||||
fn from(value: lancedb::table::DropColumnsResult) -> Self {
|
||||
Self {
|
||||
version: value.version as i64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub struct TagContents {
|
||||
pub version: i64,
|
||||
pub manifest_size: i64,
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub struct Tags {
|
||||
inner: LanceDbTable,
|
||||
}
|
||||
|
||||
#[napi]
|
||||
impl Tags {
|
||||
#[napi]
|
||||
pub async fn list(&self) -> napi::Result<HashMap<String, TagContents>> {
|
||||
let rust_tags = self.inner.tags().await.default_error()?;
|
||||
let tag_list = rust_tags.as_ref().list().await.default_error()?;
|
||||
let tag_contents = tag_list
|
||||
.into_iter()
|
||||
.map(|(k, v)| {
|
||||
(
|
||||
k,
|
||||
TagContents {
|
||||
version: v.version as i64,
|
||||
manifest_size: v.manifest_size as i64,
|
||||
},
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
|
||||
Ok(tag_contents)
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn get_version(&self, tag: String) -> napi::Result<i64> {
|
||||
let rust_tags = self.inner.tags().await.default_error()?;
|
||||
rust_tags
|
||||
.as_ref()
|
||||
.get_version(tag.as_str())
|
||||
.await
|
||||
.map(|v| v as i64)
|
||||
.default_error()
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async unsafe fn create(&mut self, tag: String, version: i64) -> napi::Result<()> {
|
||||
let mut rust_tags = self.inner.tags().await.default_error()?;
|
||||
rust_tags
|
||||
.as_mut()
|
||||
.create(tag.as_str(), version as u64)
|
||||
.await
|
||||
.default_error()
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async unsafe fn delete(&mut self, tag: String) -> napi::Result<()> {
|
||||
let mut rust_tags = self.inner.tags().await.default_error()?;
|
||||
rust_tags
|
||||
.as_mut()
|
||||
.delete(tag.as_str())
|
||||
.await
|
||||
.default_error()
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async unsafe fn update(&mut self, tag: String, version: i64) -> napi::Result<()> {
|
||||
let mut rust_tags = self.inner.tags().await.default_error()?;
|
||||
rust_tags
|
||||
.as_mut()
|
||||
.update(tag.as_str(), version as u64)
|
||||
.await
|
||||
.default_error()
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
use lancedb::index::scalar::{BoostQuery, FtsQuery, MatchQuery, MultiMatchQuery, PhraseQuery};
|
||||
use lancedb::DistanceType;
|
||||
|
||||
pub fn parse_distance_type(distance_type: impl AsRef<str>) -> napi::Result<DistanceType> {
|
||||
@@ -16,144 +15,3 @@ pub fn parse_distance_type(distance_type: impl AsRef<str>) -> napi::Result<Dista
|
||||
))),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn parse_fts_query(query: &napi::JsObject) -> napi::Result<FtsQuery> {
|
||||
let query_type = query
|
||||
.get_property_names()?
|
||||
.get_element::<napi::JsString>(0)?;
|
||||
let query_type = query_type.into_utf8()?.into_owned()?;
|
||||
let query_value =
|
||||
query
|
||||
.get::<_, napi::JsObject>(&query_type)?
|
||||
.ok_or(napi::Error::from_reason(format!(
|
||||
"query value {} not found",
|
||||
query_type
|
||||
)))?;
|
||||
|
||||
match query_type.as_str() {
|
||||
"match" => {
|
||||
let column = query_value
|
||||
.get_property_names()?
|
||||
.get_element::<napi::JsString>(0)?
|
||||
.into_utf8()?
|
||||
.into_owned()?;
|
||||
let params =
|
||||
query_value
|
||||
.get::<_, napi::JsObject>(&column)?
|
||||
.ok_or(napi::Error::from_reason(format!(
|
||||
"column {} not found",
|
||||
column
|
||||
)))?;
|
||||
|
||||
let query = params
|
||||
.get::<_, napi::JsString>("query")?
|
||||
.ok_or(napi::Error::from_reason("query not found"))?
|
||||
.into_utf8()?
|
||||
.into_owned()?;
|
||||
let boost = params
|
||||
.get::<_, napi::JsNumber>("boost")?
|
||||
.ok_or(napi::Error::from_reason("boost not found"))?
|
||||
.get_double()? as f32;
|
||||
let fuzziness = params
|
||||
.get::<_, napi::JsNumber>("fuzziness")?
|
||||
.map(|f| f.get_uint32())
|
||||
.transpose()?;
|
||||
let max_expansions = params
|
||||
.get::<_, napi::JsNumber>("max_expansions")?
|
||||
.ok_or(napi::Error::from_reason("max_expansions not found"))?
|
||||
.get_uint32()? as usize;
|
||||
|
||||
let query = MatchQuery::new(query)
|
||||
.with_column(Some(column))
|
||||
.with_boost(boost)
|
||||
.with_fuzziness(fuzziness)
|
||||
.with_max_expansions(max_expansions);
|
||||
Ok(query.into())
|
||||
}
|
||||
|
||||
"match_phrase" => {
|
||||
let column = query_value
|
||||
.get_property_names()?
|
||||
.get_element::<napi::JsString>(0)?
|
||||
.into_utf8()?
|
||||
.into_owned()?;
|
||||
let query = query_value
|
||||
.get::<_, napi::JsString>(&column)?
|
||||
.ok_or(napi::Error::from_reason(format!(
|
||||
"column {} not found",
|
||||
column
|
||||
)))?
|
||||
.into_utf8()?
|
||||
.into_owned()?;
|
||||
|
||||
let query = PhraseQuery::new(query).with_column(Some(column));
|
||||
Ok(query.into())
|
||||
}
|
||||
|
||||
"boost" => {
|
||||
let positive = query_value
|
||||
.get::<_, napi::JsObject>("positive")?
|
||||
.ok_or(napi::Error::from_reason("positive not found"))?;
|
||||
|
||||
let negative = query_value
|
||||
.get::<_, napi::JsObject>("negative")?
|
||||
.ok_or(napi::Error::from_reason("negative not found"))?;
|
||||
let negative_boost = query_value
|
||||
.get::<_, napi::JsNumber>("negative_boost")?
|
||||
.ok_or(napi::Error::from_reason("negative_boost not found"))?
|
||||
.get_double()? as f32;
|
||||
|
||||
let positive = parse_fts_query(&positive)?;
|
||||
let negative = parse_fts_query(&negative)?;
|
||||
let query = BoostQuery::new(positive, negative, Some(negative_boost));
|
||||
Ok(query.into())
|
||||
}
|
||||
|
||||
"multi_match" => {
|
||||
let query = query_value
|
||||
.get::<_, napi::JsString>("query")?
|
||||
.ok_or(napi::Error::from_reason("query not found"))?
|
||||
.into_utf8()?
|
||||
.into_owned()?;
|
||||
let columns_array = query_value
|
||||
.get::<_, napi::JsTypedArray>("columns")?
|
||||
.ok_or(napi::Error::from_reason("columns not found"))?;
|
||||
let columns_num = columns_array.get_array_length()?;
|
||||
let mut columns = Vec::with_capacity(columns_num as usize);
|
||||
for i in 0..columns_num {
|
||||
let column = columns_array
|
||||
.get_element::<napi::JsString>(i)?
|
||||
.into_utf8()?
|
||||
.into_owned()?;
|
||||
columns.push(column);
|
||||
}
|
||||
let boost_array = query_value
|
||||
.get::<_, napi::JsTypedArray>("boost")?
|
||||
.ok_or(napi::Error::from_reason("boost not found"))?;
|
||||
if boost_array.get_array_length()? != columns_num {
|
||||
return Err(napi::Error::from_reason(format!(
|
||||
"boost array length ({}) does not match columns length ({})",
|
||||
boost_array.get_array_length()?,
|
||||
columns_num
|
||||
)));
|
||||
}
|
||||
let mut boost = Vec::with_capacity(columns_num as usize);
|
||||
for i in 0..columns_num {
|
||||
let b = boost_array.get_element::<napi::JsNumber>(i)?.get_double()? as f32;
|
||||
boost.push(b);
|
||||
}
|
||||
|
||||
let query =
|
||||
MultiMatchQuery::try_new_with_boosts(query, columns, boost).map_err(|e| {
|
||||
napi::Error::from_reason(format!("Error creating MultiMatchQuery: {}", e))
|
||||
})?;
|
||||
|
||||
Ok(query.into())
|
||||
}
|
||||
|
||||
_ => Err(napi::Error::from_reason(format!(
|
||||
"Unsupported query type: {}",
|
||||
query_type
|
||||
))),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.22.0-beta.5"
|
||||
current_version = "0.22.1-beta.3"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-python"
|
||||
version = "0.22.0-beta.5"
|
||||
version = "0.22.1-beta.3"
|
||||
edition.workspace = true
|
||||
description = "Python bindings for LanceDB"
|
||||
license.workspace = true
|
||||
|
||||
@@ -7,7 +7,7 @@ dependencies = [
|
||||
"numpy",
|
||||
"overrides>=0.7",
|
||||
"packaging",
|
||||
"pyarrow>=14",
|
||||
"pyarrow>=16",
|
||||
"pydantic>=1.10",
|
||||
"tqdm>=4.27.0",
|
||||
]
|
||||
@@ -43,6 +43,9 @@ classifiers = [
|
||||
repository = "https://github.com/lancedb/lancedb"
|
||||
|
||||
[project.optional-dependencies]
|
||||
pylance = [
|
||||
"pylance>=0.25",
|
||||
]
|
||||
tests = [
|
||||
"aiohttp",
|
||||
"boto3",
|
||||
@@ -55,7 +58,7 @@ tests = [
|
||||
"polars>=0.19, <=1.3.0",
|
||||
"tantivy",
|
||||
"pyarrow-stubs",
|
||||
"pylance>=0.23.2",
|
||||
"pylance>=0.25",
|
||||
"requests",
|
||||
]
|
||||
dev = [
|
||||
@@ -74,6 +77,7 @@ embeddings = [
|
||||
"pillow",
|
||||
"open-clip-torch",
|
||||
"cohere",
|
||||
"colpali-engine>=0.3.10",
|
||||
"huggingface_hub",
|
||||
"InstructorEmbedding",
|
||||
"google.generativeai",
|
||||
|
||||
@@ -26,7 +26,7 @@ def connect(
|
||||
api_key: Optional[str] = None,
|
||||
region: str = "us-east-1",
|
||||
host_override: Optional[str] = None,
|
||||
read_consistency_interval: Optional[timedelta] = timedelta(seconds=5),
|
||||
read_consistency_interval: Optional[timedelta] = None,
|
||||
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
|
||||
client_config: Union[ClientConfig, Dict[str, Any], None] = None,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
@@ -49,8 +49,9 @@ def connect(
|
||||
read_consistency_interval: timedelta, default None
|
||||
(For LanceDB OSS only)
|
||||
The interval at which to check for updates to the table from other
|
||||
processes. If None, then consistency is not checked. For strong consistency,
|
||||
set this to zero seconds. Then every read will check for updates from other
|
||||
processes. If None, then consistency is not checked. For performance
|
||||
reasons, this is the default. For strong consistency, set this to
|
||||
zero seconds. Then every read will check for updates from other
|
||||
processes. As a compromise, you can set this to a non-zero timedelta
|
||||
for eventual consistency. If more than that interval has passed since
|
||||
the last check, then the table will be checked for updates. Note: this
|
||||
@@ -121,7 +122,7 @@ async def connect_async(
|
||||
api_key: Optional[str] = None,
|
||||
region: str = "us-east-1",
|
||||
host_override: Optional[str] = None,
|
||||
read_consistency_interval: Optional[timedelta] = timedelta(seconds=5),
|
||||
read_consistency_interval: Optional[timedelta] = None,
|
||||
client_config: Optional[Union[ClientConfig, Dict[str, Any]]] = None,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
) -> AsyncConnection:
|
||||
@@ -142,8 +143,9 @@ async def connect_async(
|
||||
read_consistency_interval: timedelta, default None
|
||||
(For LanceDB OSS only)
|
||||
The interval at which to check for updates to the table from other
|
||||
processes. If None, then consistency is not checked. For strong consistency,
|
||||
set this to zero seconds. Then every read will check for updates from other
|
||||
processes. If None, then consistency is not checked. For performance
|
||||
reasons, this is the default. For strong consistency, set this to
|
||||
zero seconds. Then every read will check for updates from other
|
||||
processes. As a compromise, you can set this to a non-zero timedelta
|
||||
for eventual consistency. If more than that interval has passed since
|
||||
the last check, then the table will be checked for updates. Note: this
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from datetime import timedelta
|
||||
from typing import Dict, List, Optional, Tuple, Any, Union, Literal
|
||||
from typing import Dict, List, Optional, Tuple, Any, TypedDict, Union, Literal
|
||||
|
||||
import pyarrow as pa
|
||||
|
||||
@@ -36,8 +36,10 @@ class Table:
|
||||
async def schema(self) -> pa.Schema: ...
|
||||
async def add(
|
||||
self, data: pa.RecordBatchReader, mode: Literal["append", "overwrite"]
|
||||
) -> None: ...
|
||||
async def update(self, updates: Dict[str, str], where: Optional[str]) -> None: ...
|
||||
) -> AddResult: ...
|
||||
async def update(
|
||||
self, updates: Dict[str, str], where: Optional[str]
|
||||
) -> UpdateResult: ...
|
||||
async def count_rows(self, filter: Optional[str]) -> int: ...
|
||||
async def create_index(
|
||||
self,
|
||||
@@ -47,23 +49,34 @@ class Table:
|
||||
): ...
|
||||
async def list_versions(self) -> List[Dict[str, Any]]: ...
|
||||
async def version(self) -> int: ...
|
||||
async def checkout(self, version: int): ...
|
||||
async def checkout(self, version: Union[int, str]): ...
|
||||
async def checkout_latest(self): ...
|
||||
async def restore(self, version: Optional[int] = None): ...
|
||||
async def list_indices(self) -> list[IndexConfig]: ...
|
||||
async def delete(self, filter: str): ...
|
||||
async def add_columns(self, columns: list[tuple[str, str]]) -> None: ...
|
||||
async def add_columns_with_schema(self, schema: pa.Schema) -> None: ...
|
||||
async def alter_columns(self, columns: list[dict[str, Any]]) -> None: ...
|
||||
async def delete(self, filter: str) -> DeleteResult: ...
|
||||
async def add_columns(self, columns: list[tuple[str, str]]) -> AddColumnsResult: ...
|
||||
async def add_columns_with_schema(self, schema: pa.Schema) -> AddColumnsResult: ...
|
||||
async def alter_columns(
|
||||
self, columns: list[dict[str, Any]]
|
||||
) -> AlterColumnsResult: ...
|
||||
async def optimize(
|
||||
self,
|
||||
*,
|
||||
cleanup_since_ms: Optional[int] = None,
|
||||
delete_unverified: Optional[bool] = None,
|
||||
) -> OptimizeStats: ...
|
||||
@property
|
||||
def tags(self) -> Tags: ...
|
||||
def query(self) -> Query: ...
|
||||
def vector_search(self) -> VectorQuery: ...
|
||||
|
||||
class Tags:
|
||||
async def list(self) -> Dict[str, Tag]: ...
|
||||
async def get_version(self, tag: str) -> int: ...
|
||||
async def create(self, tag: str, version: int): ...
|
||||
async def delete(self, tag: str): ...
|
||||
async def update(self, tag: str, version: int): ...
|
||||
|
||||
class IndexConfig:
|
||||
index_type: str
|
||||
columns: List[str]
|
||||
@@ -195,3 +208,32 @@ class RemovalStats:
|
||||
class OptimizeStats:
|
||||
compaction: CompactionStats
|
||||
prune: RemovalStats
|
||||
|
||||
class Tag(TypedDict):
|
||||
version: int
|
||||
manifest_size: int
|
||||
|
||||
class AddResult:
|
||||
version: int
|
||||
|
||||
class DeleteResult:
|
||||
version: int
|
||||
|
||||
class UpdateResult:
|
||||
rows_updated: int
|
||||
version: int
|
||||
|
||||
class MergeResult:
|
||||
version: int
|
||||
num_updated_rows: int
|
||||
num_inserted_rows: int
|
||||
num_deleted_rows: int
|
||||
|
||||
class AddColumnsResult:
|
||||
version: int
|
||||
|
||||
class AlterColumnsResult:
|
||||
version: int
|
||||
|
||||
class DropColumnsResult:
|
||||
version: int
|
||||
|
||||
@@ -9,7 +9,7 @@ import numpy as np
|
||||
import pyarrow as pa
|
||||
import pyarrow.dataset
|
||||
|
||||
from .dependencies import pandas as pd
|
||||
from .dependencies import _check_for_pandas, pandas as pd
|
||||
|
||||
DATA = Union[List[dict], "pd.DataFrame", pa.Table, Iterable[pa.RecordBatch]]
|
||||
VEC = Union[list, np.ndarray, pa.Array, pa.ChunkedArray]
|
||||
@@ -63,7 +63,7 @@ def data_to_reader(
|
||||
data: DATA, schema: Optional[pa.Schema] = None
|
||||
) -> pa.RecordBatchReader:
|
||||
"""Convert various types of input into a RecordBatchReader"""
|
||||
if pd is not None and isinstance(data, pd.DataFrame):
|
||||
if _check_for_pandas(data) and isinstance(data, pd.DataFrame):
|
||||
return pa.Table.from_pandas(data, schema=schema).to_reader()
|
||||
elif isinstance(data, pa.Table):
|
||||
return data.to_reader()
|
||||
|
||||
@@ -6,7 +6,6 @@ from __future__ import annotations
|
||||
|
||||
from abc import abstractmethod
|
||||
from pathlib import Path
|
||||
from datetime import timedelta
|
||||
from typing import TYPE_CHECKING, Dict, Iterable, List, Literal, Optional, Union
|
||||
|
||||
from lancedb.embeddings.registry import EmbeddingFunctionRegistry
|
||||
@@ -33,6 +32,7 @@ import deprecation
|
||||
if TYPE_CHECKING:
|
||||
import pyarrow as pa
|
||||
from .pydantic import LanceModel
|
||||
from datetime import timedelta
|
||||
|
||||
from ._lancedb import Connection as LanceDbConnection
|
||||
from .common import DATA, URI
|
||||
@@ -318,8 +318,9 @@ class LanceDBConnection(DBConnection):
|
||||
The root uri of the database.
|
||||
read_consistency_interval: timedelta, default None
|
||||
The interval at which to check for updates to the table from other
|
||||
processes. If None, then consistency is not checked. For strong consistency,
|
||||
set this to zero seconds. Then every read will check for updates from other
|
||||
processes. If None, then consistency is not checked. For performance
|
||||
reasons, this is the default. For strong consistency, set this to
|
||||
zero seconds. Then every read will check for updates from other
|
||||
processes. As a compromise, you can set this to a non-zero timedelta
|
||||
for eventual consistency. If more than that interval has passed since
|
||||
the last check, then the table will be checked for updates. Note: this
|
||||
@@ -351,7 +352,7 @@ class LanceDBConnection(DBConnection):
|
||||
self,
|
||||
uri: URI,
|
||||
*,
|
||||
read_consistency_interval: Optional[timedelta] = timedelta(seconds=5),
|
||||
read_consistency_interval: Optional[timedelta] = None,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
):
|
||||
if not isinstance(uri, Path):
|
||||
|
||||
@@ -19,3 +19,4 @@ from .imagebind import ImageBindEmbeddings
|
||||
from .jinaai import JinaEmbeddings
|
||||
from .watsonx import WatsonxEmbeddings
|
||||
from .voyageai import VoyageAIEmbeddingFunction
|
||||
from .colpali import ColPaliEmbeddings
|
||||
|
||||
255
python/python/lancedb/embeddings/colpali.py
Normal file
255
python/python/lancedb/embeddings/colpali.py
Normal file
@@ -0,0 +1,255 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
|
||||
from functools import lru_cache
|
||||
from typing import List, Union, Optional, Any
|
||||
import numpy as np
|
||||
import io
|
||||
|
||||
from ..util import attempt_import_or_raise
|
||||
from .base import EmbeddingFunction
|
||||
from .registry import register
|
||||
from .utils import TEXT, IMAGES, is_flash_attn_2_available
|
||||
|
||||
|
||||
@register("colpali")
|
||||
class ColPaliEmbeddings(EmbeddingFunction):
|
||||
"""
|
||||
An embedding function that uses the ColPali engine for
|
||||
multimodal multi-vector embeddings.
|
||||
|
||||
This embedding function supports ColQwen2.5 models, producing multivector outputs
|
||||
for both text and image inputs. The output embeddings are lists of vectors, each
|
||||
vector being 128-dimensional by default, represented as List[List[float]].
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model_name : str
|
||||
The name of the model to use (e.g., "Metric-AI/ColQwen2.5-3b-multilingual-v1.0")
|
||||
device : str
|
||||
The device for inference (default "cuda:0").
|
||||
dtype : str
|
||||
Data type for model weights (default "bfloat16").
|
||||
use_token_pooling : bool
|
||||
Whether to use token pooling to reduce embedding size (default True).
|
||||
pool_factor : int
|
||||
Factor to reduce sequence length if token pooling is enabled (default 2).
|
||||
quantization_config : Optional[BitsAndBytesConfig]
|
||||
Quantization configuration for the model. (default None, bitsandbytes needed)
|
||||
batch_size : int
|
||||
Batch size for processing inputs (default 2).
|
||||
"""
|
||||
|
||||
model_name: str = "Metric-AI/ColQwen2.5-3b-multilingual-v1.0"
|
||||
device: str = "auto"
|
||||
dtype: str = "bfloat16"
|
||||
use_token_pooling: bool = True
|
||||
pool_factor: int = 2
|
||||
quantization_config: Optional[Any] = None
|
||||
batch_size: int = 2
|
||||
|
||||
_model = None
|
||||
_processor = None
|
||||
_token_pooler = None
|
||||
_vector_dim = None
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
(
|
||||
self._model,
|
||||
self._processor,
|
||||
self._token_pooler,
|
||||
) = self._load_model(
|
||||
self.model_name,
|
||||
self.dtype,
|
||||
self.device,
|
||||
self.use_token_pooling,
|
||||
self.quantization_config,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
@lru_cache(maxsize=1)
|
||||
def _load_model(
|
||||
model_name: str,
|
||||
dtype: str,
|
||||
device: str,
|
||||
use_token_pooling: bool,
|
||||
quantization_config: Optional[Any],
|
||||
):
|
||||
"""
|
||||
Initialize and cache the ColPali model, processor, and token pooler.
|
||||
"""
|
||||
torch = attempt_import_or_raise("torch", "torch")
|
||||
transformers = attempt_import_or_raise("transformers", "transformers")
|
||||
colpali_engine = attempt_import_or_raise("colpali_engine", "colpali_engine")
|
||||
from colpali_engine.compression.token_pooling import HierarchicalTokenPooler
|
||||
|
||||
if quantization_config is not None:
|
||||
if not isinstance(quantization_config, transformers.BitsAndBytesConfig):
|
||||
raise ValueError("quantization_config must be a BitsAndBytesConfig")
|
||||
|
||||
if dtype == "bfloat16":
|
||||
torch_dtype = torch.bfloat16
|
||||
elif dtype == "float16":
|
||||
torch_dtype = torch.float16
|
||||
elif dtype == "float64":
|
||||
torch_dtype = torch.float64
|
||||
else:
|
||||
torch_dtype = torch.float32
|
||||
|
||||
model = colpali_engine.models.ColQwen2_5.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch_dtype,
|
||||
device_map=device,
|
||||
quantization_config=quantization_config
|
||||
if quantization_config is not None
|
||||
else None,
|
||||
attn_implementation="flash_attention_2"
|
||||
if is_flash_attn_2_available()
|
||||
else None,
|
||||
).eval()
|
||||
processor = colpali_engine.models.ColQwen2_5_Processor.from_pretrained(
|
||||
model_name
|
||||
)
|
||||
token_pooler = HierarchicalTokenPooler() if use_token_pooling else None
|
||||
return model, processor, token_pooler
|
||||
|
||||
def ndims(self):
|
||||
"""
|
||||
Return the dimension of a vector in the multivector output (e.g., 128).
|
||||
"""
|
||||
torch = attempt_import_or_raise("torch", "torch")
|
||||
if self._vector_dim is None:
|
||||
dummy_query = "test"
|
||||
batch_queries = self._processor.process_queries([dummy_query]).to(
|
||||
self._model.device
|
||||
)
|
||||
with torch.no_grad():
|
||||
query_embeddings = self._model(**batch_queries)
|
||||
|
||||
if self.use_token_pooling and self._token_pooler is not None:
|
||||
query_embeddings = self._token_pooler.pool_embeddings(
|
||||
query_embeddings,
|
||||
pool_factor=self.pool_factor,
|
||||
padding=True,
|
||||
padding_side=self._processor.tokenizer.padding_side,
|
||||
)
|
||||
|
||||
self._vector_dim = query_embeddings[0].shape[-1]
|
||||
return self._vector_dim
|
||||
|
||||
def _process_embeddings(self, embeddings):
|
||||
"""
|
||||
Format model embeddings into List[List[float]].
|
||||
Use token pooling if enabled.
|
||||
"""
|
||||
torch = attempt_import_or_raise("torch", "torch")
|
||||
if self.use_token_pooling and self._token_pooler is not None:
|
||||
embeddings = self._token_pooler.pool_embeddings(
|
||||
embeddings,
|
||||
pool_factor=self.pool_factor,
|
||||
padding=True,
|
||||
padding_side=self._processor.tokenizer.padding_side,
|
||||
)
|
||||
|
||||
if isinstance(embeddings, torch.Tensor):
|
||||
tensors = embeddings.detach().cpu()
|
||||
if tensors.dtype == torch.bfloat16:
|
||||
tensors = tensors.to(torch.float32)
|
||||
return (
|
||||
tensors.numpy()
|
||||
.astype(np.float64 if self.dtype == "float64" else np.float32)
|
||||
.tolist()
|
||||
)
|
||||
return []
|
||||
|
||||
def generate_text_embeddings(self, text: TEXT) -> List[List[List[float]]]:
|
||||
"""
|
||||
Generate embeddings for text input.
|
||||
"""
|
||||
torch = attempt_import_or_raise("torch", "torch")
|
||||
text = self.sanitize_input(text)
|
||||
all_embeddings = []
|
||||
|
||||
for i in range(0, len(text), self.batch_size):
|
||||
batch_text = text[i : i + self.batch_size]
|
||||
batch_queries = self._processor.process_queries(batch_text).to(
|
||||
self._model.device
|
||||
)
|
||||
with torch.no_grad():
|
||||
query_embeddings = self._model(**batch_queries)
|
||||
all_embeddings.extend(self._process_embeddings(query_embeddings))
|
||||
return all_embeddings
|
||||
|
||||
def _prepare_images(self, images: IMAGES) -> List:
|
||||
"""
|
||||
Convert image inputs to PIL Images.
|
||||
"""
|
||||
PIL = attempt_import_or_raise("PIL", "pillow")
|
||||
requests = attempt_import_or_raise("requests", "requests")
|
||||
images = self.sanitize_input(images)
|
||||
pil_images = []
|
||||
try:
|
||||
for image in images:
|
||||
if isinstance(image, str):
|
||||
if image.startswith(("http://", "https://")):
|
||||
response = requests.get(image, timeout=10)
|
||||
response.raise_for_status()
|
||||
pil_images.append(PIL.Image.open(io.BytesIO(response.content)))
|
||||
else:
|
||||
with PIL.Image.open(image) as im:
|
||||
pil_images.append(im.copy())
|
||||
elif isinstance(image, bytes):
|
||||
pil_images.append(PIL.Image.open(io.BytesIO(image)))
|
||||
else:
|
||||
# Assume it's a PIL Image; will raise if invalid
|
||||
pil_images.append(image)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to process image: {e}")
|
||||
|
||||
return pil_images
|
||||
|
||||
def generate_image_embeddings(self, images: IMAGES) -> List[List[List[float]]]:
|
||||
"""
|
||||
Generate embeddings for a batch of images.
|
||||
"""
|
||||
torch = attempt_import_or_raise("torch", "torch")
|
||||
pil_images = self._prepare_images(images)
|
||||
all_embeddings = []
|
||||
|
||||
for i in range(0, len(pil_images), self.batch_size):
|
||||
batch_images = pil_images[i : i + self.batch_size]
|
||||
batch_images = self._processor.process_images(batch_images).to(
|
||||
self._model.device
|
||||
)
|
||||
with torch.no_grad():
|
||||
image_embeddings = self._model(**batch_images)
|
||||
all_embeddings.extend(self._process_embeddings(image_embeddings))
|
||||
return all_embeddings
|
||||
|
||||
def compute_query_embeddings(
|
||||
self, query: Union[str, IMAGES], *args, **kwargs
|
||||
) -> List[List[List[float]]]:
|
||||
"""
|
||||
Compute embeddings for a single user query (text only).
|
||||
"""
|
||||
if not isinstance(query, str):
|
||||
raise ValueError(
|
||||
"Query must be a string, image to image search is not supported"
|
||||
)
|
||||
return self.generate_text_embeddings([query])
|
||||
|
||||
def compute_source_embeddings(
|
||||
self, images: IMAGES, *args, **kwargs
|
||||
) -> List[List[List[float]]]:
|
||||
"""
|
||||
Compute embeddings for a batch of source images.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
images : Union[str, bytes, List, pa.Array, pa.ChunkedArray, np.ndarray]
|
||||
Batch of images (paths, URLs, bytes, or PIL Images).
|
||||
"""
|
||||
images = self.sanitize_input(images)
|
||||
return self.generate_image_embeddings(images)
|
||||
@@ -18,6 +18,7 @@ import numpy as np
|
||||
import pyarrow as pa
|
||||
|
||||
from ..dependencies import pandas as pd
|
||||
from ..util import attempt_import_or_raise
|
||||
|
||||
|
||||
# ruff: noqa: PERF203
|
||||
@@ -275,3 +276,12 @@ def url_retrieve(url: str):
|
||||
def api_key_not_found_help(provider):
|
||||
logging.error("Could not find API key for %s", provider)
|
||||
raise ValueError(f"Please set the {provider.upper()}_API_KEY environment variable.")
|
||||
|
||||
|
||||
def is_flash_attn_2_available():
|
||||
try:
|
||||
attempt_import_or_raise("flash_attn", "flash_attn")
|
||||
|
||||
return True
|
||||
except ImportError:
|
||||
return False
|
||||
|
||||
@@ -8,6 +8,9 @@ from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .common import DATA
|
||||
from ._lancedb import (
|
||||
MergeInsertResult,
|
||||
)
|
||||
|
||||
|
||||
class LanceMergeInsertBuilder(object):
|
||||
@@ -78,7 +81,7 @@ class LanceMergeInsertBuilder(object):
|
||||
new_data: DATA,
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
):
|
||||
) -> MergeInsertResult:
|
||||
"""
|
||||
Executes the merge insert operation
|
||||
|
||||
@@ -95,5 +98,10 @@ class LanceMergeInsertBuilder(object):
|
||||
One of "error", "drop", "fill".
|
||||
fill_value: float, default 0.
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
|
||||
Returns
|
||||
-------
|
||||
MergeInsertResult
|
||||
version: the new version number of the table after doing merge insert.
|
||||
"""
|
||||
return self._table._do_merge(self, new_data, on_bad_vectors, fill_value)
|
||||
|
||||
@@ -152,6 +152,104 @@ def Vector(
|
||||
return FixedSizeList
|
||||
|
||||
|
||||
def MultiVector(
|
||||
dim: int, value_type: pa.DataType = pa.float32(), nullable: bool = True
|
||||
) -> Type:
|
||||
"""Pydantic MultiVector Type for multi-vector embeddings.
|
||||
|
||||
This type represents a list of vectors, each with the same dimension.
|
||||
Useful for models that produce multiple embeddings per input, like ColPali.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
dim : int
|
||||
The dimension of each vector in the multi-vector.
|
||||
value_type : pyarrow.DataType, optional
|
||||
The value type of the vectors, by default pa.float32()
|
||||
nullable : bool, optional
|
||||
Whether the multi-vector is nullable, by default it is True.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> import pydantic
|
||||
>>> from lancedb.pydantic import MultiVector
|
||||
...
|
||||
>>> class MyModel(pydantic.BaseModel):
|
||||
... id: int
|
||||
... text: str
|
||||
... embeddings: MultiVector(128) # List of 128-dimensional vectors
|
||||
>>> schema = pydantic_to_schema(MyModel)
|
||||
>>> assert schema == pa.schema([
|
||||
... pa.field("id", pa.int64(), False),
|
||||
... pa.field("text", pa.utf8(), False),
|
||||
... pa.field("embeddings", pa.list_(pa.list_(pa.float32(), 128)))
|
||||
... ])
|
||||
"""
|
||||
|
||||
class MultiVectorList(list, FixedSizeListMixin):
|
||||
def __repr__(self):
|
||||
return f"MultiVector(dim={dim})"
|
||||
|
||||
@staticmethod
|
||||
def nullable() -> bool:
|
||||
return nullable
|
||||
|
||||
@staticmethod
|
||||
def dim() -> int:
|
||||
return dim
|
||||
|
||||
@staticmethod
|
||||
def value_arrow_type() -> pa.DataType:
|
||||
return value_type
|
||||
|
||||
@staticmethod
|
||||
def is_multi_vector() -> bool:
|
||||
return True
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(
|
||||
cls, _source_type: Any, _handler: pydantic.GetCoreSchemaHandler
|
||||
) -> CoreSchema:
|
||||
return core_schema.no_info_after_validator_function(
|
||||
cls,
|
||||
core_schema.list_schema(
|
||||
items_schema=core_schema.list_schema(
|
||||
min_length=dim,
|
||||
max_length=dim,
|
||||
items_schema=core_schema.float_schema(),
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def __get_validators__(cls) -> Generator[Callable, None, None]:
|
||||
yield cls.validate
|
||||
|
||||
# For pydantic v1
|
||||
@classmethod
|
||||
def validate(cls, v):
|
||||
if not isinstance(v, (list, range)):
|
||||
raise TypeError("A list of vectors is needed")
|
||||
for vec in v:
|
||||
if not isinstance(vec, (list, range, np.ndarray)) or len(vec) != dim:
|
||||
raise TypeError(f"Each vector must be a list of {dim} numbers")
|
||||
return cls(v)
|
||||
|
||||
if PYDANTIC_VERSION.major < 2:
|
||||
|
||||
@classmethod
|
||||
def __modify_schema__(cls, field_schema: Dict[str, Any]):
|
||||
field_schema["items"] = {
|
||||
"type": "array",
|
||||
"items": {"type": "number"},
|
||||
"minItems": dim,
|
||||
"maxItems": dim,
|
||||
}
|
||||
|
||||
return MultiVectorList
|
||||
|
||||
|
||||
def _py_type_to_arrow_type(py_type: Type[Any], field: FieldInfo) -> pa.DataType:
|
||||
"""Convert a field with native Python type to Arrow data type.
|
||||
|
||||
@@ -206,6 +304,9 @@ def _pydantic_type_to_arrow_type(tp: Any, field: FieldInfo) -> pa.DataType:
|
||||
fields = _pydantic_model_to_fields(tp)
|
||||
return pa.struct(fields)
|
||||
if issubclass(tp, FixedSizeListMixin):
|
||||
if getattr(tp, "is_multi_vector", lambda: False)():
|
||||
return pa.list_(pa.list_(tp.value_arrow_type(), tp.dim()))
|
||||
# For regular Vector
|
||||
return pa.list_(tp.value_arrow_type(), tp.dim())
|
||||
return _py_type_to_arrow_type(tp, field)
|
||||
|
||||
@@ -314,6 +415,7 @@ class LanceModel(pydantic.BaseModel):
|
||||
>>> table.add([
|
||||
... TestModel(name="test", vector=[1.0, 2.0])
|
||||
... ])
|
||||
AddResult(version=2)
|
||||
>>> table.search([0., 0.]).limit(1).to_pydantic(TestModel)
|
||||
[TestModel(name='test', vector=FixedSizeList(dim=2))]
|
||||
"""
|
||||
|
||||
@@ -28,6 +28,8 @@ import pyarrow.compute as pc
|
||||
import pyarrow.fs as pa_fs
|
||||
import pydantic
|
||||
|
||||
from lancedb.pydantic import PYDANTIC_VERSION
|
||||
|
||||
from . import __version__
|
||||
from .arrow import AsyncRecordBatchReader
|
||||
from .dependencies import pandas as pd
|
||||
@@ -266,8 +268,8 @@ class MultiMatchQuery(FullTextQuery):
|
||||
|
||||
Parameters
|
||||
----------
|
||||
query : str | list[Query]
|
||||
If a string, the query string to match against.
|
||||
query : str
|
||||
The query string to match against.
|
||||
|
||||
columns : list[str]
|
||||
The list of columns to match against.
|
||||
@@ -498,10 +500,14 @@ class Query(pydantic.BaseModel):
|
||||
)
|
||||
return query
|
||||
|
||||
class Config:
|
||||
# This tells pydantic to allow custom types (needed for the `vector` query since
|
||||
# pa.Array wouln't be allowed otherwise)
|
||||
arbitrary_types_allowed = True
|
||||
# This tells pydantic to allow custom types (needed for the `vector` query since
|
||||
# pa.Array wouln't be allowed otherwise)
|
||||
if PYDANTIC_VERSION.major < 2: # Pydantic 1.x compat
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
else:
|
||||
model_config = {"arbitrary_types_allowed": True}
|
||||
|
||||
|
||||
class LanceQueryBuilder(ABC):
|
||||
@@ -1586,6 +1592,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
self._refine_factor = None
|
||||
self._distance_type = None
|
||||
self._phrase_query = None
|
||||
self._lower_bound = None
|
||||
self._upper_bound = None
|
||||
|
||||
def _validate_query(self, query, vector=None, text=None):
|
||||
if query is not None and (vector is not None or text is not None):
|
||||
@@ -1628,47 +1636,7 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
raise NotImplementedError("to_query_object not yet supported on a hybrid query")
|
||||
|
||||
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
|
||||
vector_query, fts_query = self._validate_query(
|
||||
self._query, self._vector, self._text
|
||||
)
|
||||
self._fts_query = LanceFtsQueryBuilder(
|
||||
self._table, fts_query, fts_columns=self._fts_columns
|
||||
)
|
||||
vector_query = self._query_to_vector(
|
||||
self._table, vector_query, self._vector_column
|
||||
)
|
||||
self._vector_query = LanceVectorQueryBuilder(
|
||||
self._table, vector_query, self._vector_column
|
||||
)
|
||||
|
||||
if self._limit:
|
||||
self._vector_query.limit(self._limit)
|
||||
self._fts_query.limit(self._limit)
|
||||
if self._columns:
|
||||
self._vector_query.select(self._columns)
|
||||
self._fts_query.select(self._columns)
|
||||
if self._where:
|
||||
self._vector_query.where(self._where, self._postfilter)
|
||||
self._fts_query.where(self._where, self._postfilter)
|
||||
if self._with_row_id:
|
||||
self._vector_query.with_row_id(True)
|
||||
self._fts_query.with_row_id(True)
|
||||
if self._phrase_query:
|
||||
self._fts_query.phrase_query(True)
|
||||
if self._distance_type:
|
||||
self._vector_query.metric(self._distance_type)
|
||||
if self._nprobes:
|
||||
self._vector_query.nprobes(self._nprobes)
|
||||
if self._refine_factor:
|
||||
self._vector_query.refine_factor(self._refine_factor)
|
||||
if self._ef:
|
||||
self._vector_query.ef(self._ef)
|
||||
if self._bypass_vector_index:
|
||||
self._vector_query.bypass_vector_index()
|
||||
|
||||
if self._reranker is None:
|
||||
self._reranker = RRFReranker()
|
||||
|
||||
self._create_query_builders()
|
||||
with ThreadPoolExecutor() as executor:
|
||||
fts_future = executor.submit(
|
||||
self._fts_query.with_row_id(True).to_arrow, timeout=timeout
|
||||
@@ -1991,6 +1959,112 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
self._bypass_vector_index = True
|
||||
return self
|
||||
|
||||
def explain_plan(self, verbose: Optional[bool] = False) -> str:
|
||||
"""Return the execution plan for this query.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import lancedb
|
||||
>>> db = lancedb.connect("./.lancedb")
|
||||
>>> table = db.create_table("my_table", [{"vector": [99.0, 99]}])
|
||||
>>> query = [100, 100]
|
||||
>>> plan = table.search(query).explain_plan(True)
|
||||
>>> print(plan) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
|
||||
ProjectionExec: expr=[vector@0 as vector, _distance@2 as _distance]
|
||||
GlobalLimitExec: skip=0, fetch=10
|
||||
FilterExec: _distance@2 IS NOT NULL
|
||||
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
|
||||
KNNVectorDistance: metric=l2
|
||||
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
|
||||
|
||||
Parameters
|
||||
----------
|
||||
verbose : bool, default False
|
||||
Use a verbose output format.
|
||||
|
||||
Returns
|
||||
-------
|
||||
plan : str
|
||||
""" # noqa: E501
|
||||
self._create_query_builders()
|
||||
|
||||
results = ["Vector Search Plan:"]
|
||||
results.append(
|
||||
self._table._explain_plan(
|
||||
self._vector_query.to_query_object(), verbose=verbose
|
||||
)
|
||||
)
|
||||
results.append("FTS Search Plan:")
|
||||
results.append(
|
||||
self._table._explain_plan(
|
||||
self._fts_query.to_query_object(), verbose=verbose
|
||||
)
|
||||
)
|
||||
return "\n".join(results)
|
||||
|
||||
def analyze_plan(self):
|
||||
"""Execute the query and display with runtime metrics.
|
||||
|
||||
Returns
|
||||
-------
|
||||
plan : str
|
||||
"""
|
||||
self._create_query_builders()
|
||||
|
||||
results = ["Vector Search Plan:"]
|
||||
results.append(self._table._analyze_plan(self._vector_query.to_query_object()))
|
||||
results.append("FTS Search Plan:")
|
||||
results.append(self._table._analyze_plan(self._fts_query.to_query_object()))
|
||||
return "\n".join(results)
|
||||
|
||||
def _create_query_builders(self):
|
||||
"""Set up and configure the vector and FTS query builders."""
|
||||
vector_query, fts_query = self._validate_query(
|
||||
self._query, self._vector, self._text
|
||||
)
|
||||
self._fts_query = LanceFtsQueryBuilder(
|
||||
self._table, fts_query, fts_columns=self._fts_columns
|
||||
)
|
||||
vector_query = self._query_to_vector(
|
||||
self._table, vector_query, self._vector_column
|
||||
)
|
||||
self._vector_query = LanceVectorQueryBuilder(
|
||||
self._table, vector_query, self._vector_column
|
||||
)
|
||||
|
||||
# Apply common configurations
|
||||
if self._limit:
|
||||
self._vector_query.limit(self._limit)
|
||||
self._fts_query.limit(self._limit)
|
||||
if self._columns:
|
||||
self._vector_query.select(self._columns)
|
||||
self._fts_query.select(self._columns)
|
||||
if self._where:
|
||||
self._vector_query.where(self._where, self._postfilter)
|
||||
self._fts_query.where(self._where, self._postfilter)
|
||||
if self._with_row_id:
|
||||
self._vector_query.with_row_id(True)
|
||||
self._fts_query.with_row_id(True)
|
||||
if self._phrase_query:
|
||||
self._fts_query.phrase_query(True)
|
||||
if self._distance_type:
|
||||
self._vector_query.metric(self._distance_type)
|
||||
if self._nprobes:
|
||||
self._vector_query.nprobes(self._nprobes)
|
||||
if self._refine_factor:
|
||||
self._vector_query.refine_factor(self._refine_factor)
|
||||
if self._ef:
|
||||
self._vector_query.ef(self._ef)
|
||||
if self._bypass_vector_index:
|
||||
self._vector_query.bypass_vector_index()
|
||||
if self._lower_bound or self._upper_bound:
|
||||
self._vector_query.distance_range(
|
||||
lower_bound=self._lower_bound, upper_bound=self._upper_bound
|
||||
)
|
||||
|
||||
if self._reranker is None:
|
||||
self._reranker = RRFReranker()
|
||||
|
||||
|
||||
class AsyncQueryBase(object):
|
||||
def __init__(self, inner: Union[LanceQuery, LanceVectorQuery]):
|
||||
|
||||
@@ -7,7 +7,16 @@ from functools import cached_property
|
||||
from typing import Dict, Iterable, List, Optional, Union, Literal
|
||||
import warnings
|
||||
|
||||
from lancedb._lancedb import IndexConfig
|
||||
from lancedb._lancedb import (
|
||||
AddColumnsResult,
|
||||
AddResult,
|
||||
AlterColumnsResult,
|
||||
DeleteResult,
|
||||
DropColumnsResult,
|
||||
IndexConfig,
|
||||
MergeResult,
|
||||
UpdateResult,
|
||||
)
|
||||
from lancedb.embeddings.base import EmbeddingFunctionConfig
|
||||
from lancedb.index import FTS, BTree, Bitmap, HnswPq, HnswSq, IvfFlat, IvfPq, LabelList
|
||||
from lancedb.remote.db import LOOP
|
||||
@@ -18,7 +27,7 @@ from lancedb.merge import LanceMergeInsertBuilder
|
||||
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||
|
||||
from ..query import LanceVectorQueryBuilder, LanceQueryBuilder
|
||||
from ..table import AsyncTable, IndexStatistics, Query, Table
|
||||
from ..table import AsyncTable, IndexStatistics, Query, Table, Tags
|
||||
|
||||
|
||||
class RemoteTable(Table):
|
||||
@@ -54,6 +63,10 @@ class RemoteTable(Table):
|
||||
"""Get the current version of the table"""
|
||||
return LOOP.run(self._table.version())
|
||||
|
||||
@property
|
||||
def tags(self) -> Tags:
|
||||
return Tags(self._table)
|
||||
|
||||
@cached_property
|
||||
def embedding_functions(self) -> Dict[str, EmbeddingFunctionConfig]:
|
||||
"""
|
||||
@@ -81,7 +94,7 @@ class RemoteTable(Table):
|
||||
"""to_pandas() is not yet supported on LanceDB cloud."""
|
||||
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
|
||||
|
||||
def checkout(self, version: int):
|
||||
def checkout(self, version: Union[int, str]):
|
||||
return LOOP.run(self._table.checkout(version))
|
||||
|
||||
def checkout_latest(self):
|
||||
@@ -104,6 +117,7 @@ class RemoteTable(Table):
|
||||
index_type: Literal["BTREE", "BITMAP", "LABEL_LIST", "scalar"] = "scalar",
|
||||
*,
|
||||
replace: bool = False,
|
||||
wait_timeout: timedelta = None,
|
||||
):
|
||||
"""Creates a scalar index
|
||||
Parameters
|
||||
@@ -126,13 +140,18 @@ class RemoteTable(Table):
|
||||
else:
|
||||
raise ValueError(f"Unknown index type: {index_type}")
|
||||
|
||||
LOOP.run(self._table.create_index(column, config=config, replace=replace))
|
||||
LOOP.run(
|
||||
self._table.create_index(
|
||||
column, config=config, replace=replace, wait_timeout=wait_timeout
|
||||
)
|
||||
)
|
||||
|
||||
def create_fts_index(
|
||||
self,
|
||||
column: str,
|
||||
*,
|
||||
replace: bool = False,
|
||||
wait_timeout: timedelta = None,
|
||||
with_position: bool = True,
|
||||
# tokenizer configs:
|
||||
base_tokenizer: str = "simple",
|
||||
@@ -153,7 +172,11 @@ class RemoteTable(Table):
|
||||
remove_stop_words=remove_stop_words,
|
||||
ascii_folding=ascii_folding,
|
||||
)
|
||||
LOOP.run(self._table.create_index(column, config=config, replace=replace))
|
||||
LOOP.run(
|
||||
self._table.create_index(
|
||||
column, config=config, replace=replace, wait_timeout=wait_timeout
|
||||
)
|
||||
)
|
||||
|
||||
def create_index(
|
||||
self,
|
||||
@@ -165,6 +188,7 @@ class RemoteTable(Table):
|
||||
replace: Optional[bool] = None,
|
||||
accelerator: Optional[str] = None,
|
||||
index_type="vector",
|
||||
wait_timeout: Optional[timedelta] = None,
|
||||
):
|
||||
"""Create an index on the table.
|
||||
Currently, the only parameters that matter are
|
||||
@@ -236,7 +260,11 @@ class RemoteTable(Table):
|
||||
" 'IVF_FLAT', 'IVF_PQ', 'IVF_HNSW_PQ', 'IVF_HNSW_SQ'"
|
||||
)
|
||||
|
||||
LOOP.run(self._table.create_index(vector_column_name, config=config))
|
||||
LOOP.run(
|
||||
self._table.create_index(
|
||||
vector_column_name, config=config, wait_timeout=wait_timeout
|
||||
)
|
||||
)
|
||||
|
||||
def add(
|
||||
self,
|
||||
@@ -244,7 +272,7 @@ class RemoteTable(Table):
|
||||
mode: str = "append",
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
) -> int:
|
||||
) -> AddResult:
|
||||
"""Add more data to the [Table](Table). It has the same API signature as
|
||||
the OSS version.
|
||||
|
||||
@@ -267,8 +295,12 @@ class RemoteTable(Table):
|
||||
fill_value: float, default 0.
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
|
||||
Returns
|
||||
-------
|
||||
AddResult
|
||||
An object containing the new version number of the table after adding data.
|
||||
"""
|
||||
LOOP.run(
|
||||
return LOOP.run(
|
||||
self._table.add(
|
||||
data, mode=mode, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
||||
)
|
||||
@@ -394,10 +426,12 @@ class RemoteTable(Table):
|
||||
new_data: DATA,
|
||||
on_bad_vectors: str,
|
||||
fill_value: float,
|
||||
):
|
||||
LOOP.run(self._table._do_merge(merge, new_data, on_bad_vectors, fill_value))
|
||||
) -> MergeResult:
|
||||
return LOOP.run(
|
||||
self._table._do_merge(merge, new_data, on_bad_vectors, fill_value)
|
||||
)
|
||||
|
||||
def delete(self, predicate: str):
|
||||
def delete(self, predicate: str) -> DeleteResult:
|
||||
"""Delete rows from the table.
|
||||
|
||||
This can be used to delete a single row, many rows, all rows, or
|
||||
@@ -412,6 +446,11 @@ class RemoteTable(Table):
|
||||
|
||||
The filter must not be empty, or it will error.
|
||||
|
||||
Returns
|
||||
-------
|
||||
DeleteResult
|
||||
An object containing the new version number of the table after deletion.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import lancedb
|
||||
@@ -444,7 +483,7 @@ class RemoteTable(Table):
|
||||
x vector _distance # doctest: +SKIP
|
||||
0 2 [3.0, 4.0] 85.0 # doctest: +SKIP
|
||||
"""
|
||||
LOOP.run(self._table.delete(predicate))
|
||||
return LOOP.run(self._table.delete(predicate))
|
||||
|
||||
def update(
|
||||
self,
|
||||
@@ -452,7 +491,7 @@ class RemoteTable(Table):
|
||||
values: Optional[dict] = None,
|
||||
*,
|
||||
values_sql: Optional[Dict[str, str]] = None,
|
||||
):
|
||||
) -> UpdateResult:
|
||||
"""
|
||||
This can be used to update zero to all rows depending on how many
|
||||
rows match the where clause.
|
||||
@@ -470,6 +509,12 @@ class RemoteTable(Table):
|
||||
reference existing columns. For example, {"x": "x + 1"} will increment
|
||||
the x column by 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
UpdateResult
|
||||
- rows_updated: The number of rows that were updated
|
||||
- version: The new version number of the table after the update
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import lancedb
|
||||
@@ -494,7 +539,7 @@ class RemoteTable(Table):
|
||||
2 2 [10.0, 10.0] # doctest: +SKIP
|
||||
|
||||
"""
|
||||
LOOP.run(
|
||||
return LOOP.run(
|
||||
self._table.update(where=where, updates=values, updates_sql=values_sql)
|
||||
)
|
||||
|
||||
@@ -542,18 +587,28 @@ class RemoteTable(Table):
|
||||
def count_rows(self, filter: Optional[str] = None) -> int:
|
||||
return LOOP.run(self._table.count_rows(filter))
|
||||
|
||||
def add_columns(self, transforms: Dict[str, str]):
|
||||
def add_columns(self, transforms: Dict[str, str]) -> AddColumnsResult:
|
||||
return LOOP.run(self._table.add_columns(transforms))
|
||||
|
||||
def alter_columns(self, *alterations: Iterable[Dict[str, str]]):
|
||||
def alter_columns(
|
||||
self, *alterations: Iterable[Dict[str, str]]
|
||||
) -> AlterColumnsResult:
|
||||
return LOOP.run(self._table.alter_columns(*alterations))
|
||||
|
||||
def drop_columns(self, columns: Iterable[str]):
|
||||
def drop_columns(self, columns: Iterable[str]) -> DropColumnsResult:
|
||||
return LOOP.run(self._table.drop_columns(columns))
|
||||
|
||||
def drop_index(self, index_name: str):
|
||||
return LOOP.run(self._table.drop_index(index_name))
|
||||
|
||||
def wait_for_index(
|
||||
self, index_names: Iterable[str], timeout: timedelta = timedelta(seconds=300)
|
||||
):
|
||||
return LOOP.run(self._table.wait_for_index(index_names, timeout))
|
||||
|
||||
def stats(self):
|
||||
return LOOP.run(self._table.stats())
|
||||
|
||||
def uses_v2_manifest_paths(self) -> bool:
|
||||
raise NotImplementedError(
|
||||
"uses_v2_manifest_paths() is not supported on the LanceDB Cloud"
|
||||
|
||||
@@ -47,6 +47,9 @@ class AnswerdotaiRerankers(Reranker):
|
||||
)
|
||||
|
||||
def _rerank(self, result_set: pa.Table, query: str):
|
||||
result_set = self._handle_empty_results(result_set)
|
||||
if len(result_set) == 0:
|
||||
return result_set
|
||||
docs = result_set[self.column].to_pylist()
|
||||
doc_ids = list(range(len(docs)))
|
||||
result = self.reranker.rank(query, docs, doc_ids=doc_ids)
|
||||
@@ -83,7 +86,6 @@ class AnswerdotaiRerankers(Reranker):
|
||||
vector_results = self._rerank(vector_results, query)
|
||||
if self.score == "relevance":
|
||||
vector_results = vector_results.drop_columns(["_distance"])
|
||||
|
||||
vector_results = vector_results.sort_by([("_relevance_score", "descending")])
|
||||
return vector_results
|
||||
|
||||
@@ -91,7 +93,5 @@ class AnswerdotaiRerankers(Reranker):
|
||||
fts_results = self._rerank(fts_results, query)
|
||||
if self.score == "relevance":
|
||||
fts_results = fts_results.drop_columns(["_score"])
|
||||
|
||||
fts_results = fts_results.sort_by([("_relevance_score", "descending")])
|
||||
|
||||
return fts_results
|
||||
|
||||
@@ -65,6 +65,16 @@ class Reranker(ABC):
|
||||
f"{self.__class__.__name__} does not implement rerank_vector"
|
||||
)
|
||||
|
||||
def _handle_empty_results(self, results: pa.Table):
|
||||
"""
|
||||
Helper method to handle empty FTS results consistently
|
||||
"""
|
||||
if len(results) > 0:
|
||||
return results
|
||||
return results.append_column(
|
||||
"_relevance_score", pa.array([], type=pa.float32())
|
||||
)
|
||||
|
||||
def rerank_fts(
|
||||
self,
|
||||
query: str,
|
||||
|
||||
@@ -62,6 +62,9 @@ class CohereReranker(Reranker):
|
||||
return cohere.Client(os.environ.get("COHERE_API_KEY") or self.api_key)
|
||||
|
||||
def _rerank(self, result_set: pa.Table, query: str):
|
||||
result_set = self._handle_empty_results(result_set)
|
||||
if len(result_set) == 0:
|
||||
return result_set
|
||||
docs = result_set[self.column].to_pylist()
|
||||
response = self._client.rerank(
|
||||
query=query,
|
||||
@@ -99,24 +102,14 @@ class CohereReranker(Reranker):
|
||||
)
|
||||
return combined_results
|
||||
|
||||
def rerank_vector(
|
||||
self,
|
||||
query: str,
|
||||
vector_results: pa.Table,
|
||||
):
|
||||
result_set = self._rerank(vector_results, query)
|
||||
def rerank_vector(self, query: str, vector_results: pa.Table):
|
||||
vector_results = self._rerank(vector_results, query)
|
||||
if self.score == "relevance":
|
||||
result_set = result_set.drop_columns(["_distance"])
|
||||
vector_results = vector_results.drop_columns(["_distance"])
|
||||
return vector_results
|
||||
|
||||
return result_set
|
||||
|
||||
def rerank_fts(
|
||||
self,
|
||||
query: str,
|
||||
fts_results: pa.Table,
|
||||
):
|
||||
result_set = self._rerank(fts_results, query)
|
||||
def rerank_fts(self, query: str, fts_results: pa.Table):
|
||||
fts_results = self._rerank(fts_results, query)
|
||||
if self.score == "relevance":
|
||||
result_set = result_set.drop_columns(["_score"])
|
||||
|
||||
return result_set
|
||||
fts_results = fts_results.drop_columns(["_score"])
|
||||
return fts_results
|
||||
|
||||
@@ -63,6 +63,9 @@ class CrossEncoderReranker(Reranker):
|
||||
return cross_encoder
|
||||
|
||||
def _rerank(self, result_set: pa.Table, query: str):
|
||||
result_set = self._handle_empty_results(result_set)
|
||||
if len(result_set) == 0:
|
||||
return result_set
|
||||
passages = result_set[self.column].to_pylist()
|
||||
cross_inp = [[query, passage] for passage in passages]
|
||||
cross_scores = self.model.predict(cross_inp)
|
||||
@@ -93,11 +96,7 @@ class CrossEncoderReranker(Reranker):
|
||||
|
||||
return combined_results
|
||||
|
||||
def rerank_vector(
|
||||
self,
|
||||
query: str,
|
||||
vector_results: pa.Table,
|
||||
):
|
||||
def rerank_vector(self, query: str, vector_results: pa.Table):
|
||||
vector_results = self._rerank(vector_results, query)
|
||||
if self.score == "relevance":
|
||||
vector_results = vector_results.drop_columns(["_distance"])
|
||||
@@ -105,11 +104,7 @@ class CrossEncoderReranker(Reranker):
|
||||
vector_results = vector_results.sort_by([("_relevance_score", "descending")])
|
||||
return vector_results
|
||||
|
||||
def rerank_fts(
|
||||
self,
|
||||
query: str,
|
||||
fts_results: pa.Table,
|
||||
):
|
||||
def rerank_fts(self, query: str, fts_results: pa.Table):
|
||||
fts_results = self._rerank(fts_results, query)
|
||||
if self.score == "relevance":
|
||||
fts_results = fts_results.drop_columns(["_score"])
|
||||
|
||||
@@ -62,6 +62,9 @@ class JinaReranker(Reranker):
|
||||
return self._session
|
||||
|
||||
def _rerank(self, result_set: pa.Table, query: str):
|
||||
result_set = self._handle_empty_results(result_set)
|
||||
if len(result_set) == 0:
|
||||
return result_set
|
||||
docs = result_set[self.column].to_pylist()
|
||||
response = self._client.post( # type: ignore
|
||||
API_URL,
|
||||
@@ -104,24 +107,14 @@ class JinaReranker(Reranker):
|
||||
)
|
||||
return combined_results
|
||||
|
||||
def rerank_vector(
|
||||
self,
|
||||
query: str,
|
||||
vector_results: pa.Table,
|
||||
):
|
||||
result_set = self._rerank(vector_results, query)
|
||||
def rerank_vector(self, query: str, vector_results: pa.Table):
|
||||
vector_results = self._rerank(vector_results, query)
|
||||
if self.score == "relevance":
|
||||
result_set = result_set.drop_columns(["_distance"])
|
||||
vector_results = vector_results.drop_columns(["_distance"])
|
||||
return vector_results
|
||||
|
||||
return result_set
|
||||
|
||||
def rerank_fts(
|
||||
self,
|
||||
query: str,
|
||||
fts_results: pa.Table,
|
||||
):
|
||||
result_set = self._rerank(fts_results, query)
|
||||
def rerank_fts(self, query: str, fts_results: pa.Table):
|
||||
fts_results = self._rerank(fts_results, query)
|
||||
if self.score == "relevance":
|
||||
result_set = result_set.drop_columns(["_score"])
|
||||
|
||||
return result_set
|
||||
fts_results = fts_results.drop_columns(["_score"])
|
||||
return fts_results
|
||||
|
||||
@@ -44,6 +44,9 @@ class OpenaiReranker(Reranker):
|
||||
self.api_key = api_key
|
||||
|
||||
def _rerank(self, result_set: pa.Table, query: str):
|
||||
result_set = self._handle_empty_results(result_set)
|
||||
if len(result_set) == 0:
|
||||
return result_set
|
||||
docs = result_set[self.column].to_pylist()
|
||||
response = self._client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
@@ -104,18 +107,14 @@ class OpenaiReranker(Reranker):
|
||||
vector_results = self._rerank(vector_results, query)
|
||||
if self.score == "relevance":
|
||||
vector_results = vector_results.drop_columns(["_distance"])
|
||||
|
||||
vector_results = vector_results.sort_by([("_relevance_score", "descending")])
|
||||
|
||||
return vector_results
|
||||
|
||||
def rerank_fts(self, query: str, fts_results: pa.Table):
|
||||
fts_results = self._rerank(fts_results, query)
|
||||
if self.score == "relevance":
|
||||
fts_results = fts_results.drop_columns(["_score"])
|
||||
|
||||
fts_results = fts_results.sort_by([("_relevance_score", "descending")])
|
||||
|
||||
return fts_results
|
||||
|
||||
@cached_property
|
||||
|
||||
@@ -63,6 +63,9 @@ class VoyageAIReranker(Reranker):
|
||||
)
|
||||
|
||||
def _rerank(self, result_set: pa.Table, query: str):
|
||||
result_set = self._handle_empty_results(result_set)
|
||||
if len(result_set) == 0:
|
||||
return result_set
|
||||
docs = result_set[self.column].to_pylist()
|
||||
response = self._client.rerank(
|
||||
query=query,
|
||||
@@ -101,24 +104,14 @@ class VoyageAIReranker(Reranker):
|
||||
)
|
||||
return combined_results
|
||||
|
||||
def rerank_vector(
|
||||
self,
|
||||
query: str,
|
||||
vector_results: pa.Table,
|
||||
):
|
||||
result_set = self._rerank(vector_results, query)
|
||||
def rerank_vector(self, query: str, vector_results: pa.Table):
|
||||
vector_results = self._rerank(vector_results, query)
|
||||
if self.score == "relevance":
|
||||
result_set = result_set.drop_columns(["_distance"])
|
||||
vector_results = vector_results.drop_columns(["_distance"])
|
||||
return vector_results
|
||||
|
||||
return result_set
|
||||
|
||||
def rerank_fts(
|
||||
self,
|
||||
query: str,
|
||||
fts_results: pa.Table,
|
||||
):
|
||||
result_set = self._rerank(fts_results, query)
|
||||
def rerank_fts(self, query: str, fts_results: pa.Table):
|
||||
fts_results = self._rerank(fts_results, query)
|
||||
if self.score == "relevance":
|
||||
result_set = result_set.drop_columns(["_score"])
|
||||
|
||||
return result_set
|
||||
fts_results = fts_results.drop_columns(["_score"])
|
||||
return fts_results
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -253,9 +253,14 @@ def infer_vector_column_name(
|
||||
query: Optional[Any], # inferred later in query builder
|
||||
vector_column_name: Optional[str],
|
||||
):
|
||||
if (vector_column_name is None and query is not None and query_type != "fts") or (
|
||||
vector_column_name is None and query_type == "hybrid"
|
||||
):
|
||||
if vector_column_name is not None:
|
||||
return vector_column_name
|
||||
|
||||
if query_type == "fts":
|
||||
# FTS queries do not require a vector column
|
||||
return None
|
||||
|
||||
if query is not None or query_type == "hybrid":
|
||||
try:
|
||||
vector_column_name = inf_vector_column_query(schema)
|
||||
except Exception as e:
|
||||
|
||||
@@ -315,11 +315,6 @@ def test_table():
|
||||
db = lancedb.connect(uri, read_consistency_interval=timedelta(seconds=5))
|
||||
tbl = db.open_table("test_table")
|
||||
# --8<-- [end:table_eventual_consistency]
|
||||
# --8<-- [start:table_no_consistency]
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri, read_consistency_interval=None)
|
||||
tbl = db.open_table("test_table")
|
||||
# --8<-- [end:table_no_consistency]
|
||||
# --8<-- [start:table_checkout_latest]
|
||||
tbl = db.open_table("test_table")
|
||||
|
||||
@@ -574,12 +569,6 @@ async def test_table_async():
|
||||
)
|
||||
async_tbl = await async_db.open_table("test_table_async")
|
||||
# --8<-- [end:table_async_eventual_consistency]
|
||||
# --8<-- [start:table_async_no_consistency]
|
||||
uri = "data/sample-lancedb"
|
||||
async_db = await lancedb.connect_async(uri, read_consistency_interval=None)
|
||||
async_tbl = await async_db.open_table("test_table_async")
|
||||
# --8<-- [end:table_async_no_consistency]
|
||||
|
||||
# --8<-- [start:table_async_checkout_latest]
|
||||
async_tbl = await async_db.open_table("test_table_async")
|
||||
|
||||
|
||||
@@ -18,15 +18,19 @@ def test_upsert(mem_db):
|
||||
{"id": 1, "name": "Bobby"},
|
||||
{"id": 2, "name": "Charlie"},
|
||||
]
|
||||
(
|
||||
res = (
|
||||
table.merge_insert("id")
|
||||
.when_matched_update_all()
|
||||
.when_not_matched_insert_all()
|
||||
.execute(new_users)
|
||||
)
|
||||
table.count_rows() # 3
|
||||
res # {'num_inserted_rows': 1, 'num_updated_rows': 1, 'num_deleted_rows': 0}
|
||||
# --8<-- [end:upsert_basic]
|
||||
assert table.count_rows() == 3
|
||||
assert res.num_inserted_rows == 1
|
||||
assert res.num_deleted_rows == 0
|
||||
assert res.num_updated_rows == 1
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -44,15 +48,22 @@ async def test_upsert_async(mem_db_async):
|
||||
{"id": 1, "name": "Bobby"},
|
||||
{"id": 2, "name": "Charlie"},
|
||||
]
|
||||
await (
|
||||
res = await (
|
||||
table.merge_insert("id")
|
||||
.when_matched_update_all()
|
||||
.when_not_matched_insert_all()
|
||||
.execute(new_users)
|
||||
)
|
||||
await table.count_rows() # 3
|
||||
res
|
||||
# MergeResult(version=2, num_updated_rows=1,
|
||||
# num_inserted_rows=1, num_deleted_rows=0)
|
||||
# --8<-- [end:upsert_basic_async]
|
||||
assert await table.count_rows() == 3
|
||||
assert res.version == 2
|
||||
assert res.num_inserted_rows == 1
|
||||
assert res.num_deleted_rows == 0
|
||||
assert res.num_updated_rows == 1
|
||||
|
||||
|
||||
def test_insert_if_not_exists(mem_db):
|
||||
@@ -69,10 +80,19 @@ def test_insert_if_not_exists(mem_db):
|
||||
{"domain": "google.com", "name": "Google"},
|
||||
{"domain": "facebook.com", "name": "Facebook"},
|
||||
]
|
||||
(table.merge_insert("domain").when_not_matched_insert_all().execute(new_domains))
|
||||
res = (
|
||||
table.merge_insert("domain").when_not_matched_insert_all().execute(new_domains)
|
||||
)
|
||||
table.count_rows() # 3
|
||||
res
|
||||
# MergeResult(version=2, num_updated_rows=0,
|
||||
# num_inserted_rows=1, num_deleted_rows=0)
|
||||
# --8<-- [end:insert_if_not_exists]
|
||||
assert table.count_rows() == 3
|
||||
assert res.version == 2
|
||||
assert res.num_inserted_rows == 1
|
||||
assert res.num_deleted_rows == 0
|
||||
assert res.num_updated_rows == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -90,12 +110,19 @@ async def test_insert_if_not_exists_async(mem_db_async):
|
||||
{"domain": "google.com", "name": "Google"},
|
||||
{"domain": "facebook.com", "name": "Facebook"},
|
||||
]
|
||||
await (
|
||||
res = await (
|
||||
table.merge_insert("domain").when_not_matched_insert_all().execute(new_domains)
|
||||
)
|
||||
await table.count_rows() # 3
|
||||
# --8<-- [end:insert_if_not_exists_async]
|
||||
res
|
||||
# MergeResult(version=2, num_updated_rows=0,
|
||||
# num_inserted_rows=1, num_deleted_rows=0)
|
||||
# --8<-- [end:insert_if_not_exists]
|
||||
assert await table.count_rows() == 3
|
||||
assert res.version == 2
|
||||
assert res.num_inserted_rows == 1
|
||||
assert res.num_deleted_rows == 0
|
||||
assert res.num_updated_rows == 0
|
||||
|
||||
|
||||
def test_replace_range(mem_db):
|
||||
@@ -113,7 +140,7 @@ def test_replace_range(mem_db):
|
||||
new_chunks = [
|
||||
{"doc_id": 1, "chunk_id": 0, "text": "Baz"},
|
||||
]
|
||||
(
|
||||
res = (
|
||||
table.merge_insert(["doc_id", "chunk_id"])
|
||||
.when_matched_update_all()
|
||||
.when_not_matched_insert_all()
|
||||
@@ -121,8 +148,15 @@ def test_replace_range(mem_db):
|
||||
.execute(new_chunks)
|
||||
)
|
||||
table.count_rows("doc_id = 1") # 1
|
||||
# --8<-- [end:replace_range]
|
||||
res
|
||||
# MergeResult(version=2, num_updated_rows=1,
|
||||
# num_inserted_rows=0, num_deleted_rows=1)
|
||||
# --8<-- [end:insert_if_not_exists]
|
||||
assert table.count_rows("doc_id = 1") == 1
|
||||
assert res.version == 2
|
||||
assert res.num_inserted_rows == 0
|
||||
assert res.num_deleted_rows == 1
|
||||
assert res.num_updated_rows == 1
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -141,7 +175,7 @@ async def test_replace_range_async(mem_db_async):
|
||||
new_chunks = [
|
||||
{"doc_id": 1, "chunk_id": 0, "text": "Baz"},
|
||||
]
|
||||
await (
|
||||
res = await (
|
||||
table.merge_insert(["doc_id", "chunk_id"])
|
||||
.when_matched_update_all()
|
||||
.when_not_matched_insert_all()
|
||||
@@ -149,5 +183,12 @@ async def test_replace_range_async(mem_db_async):
|
||||
.execute(new_chunks)
|
||||
)
|
||||
await table.count_rows("doc_id = 1") # 1
|
||||
# --8<-- [end:replace_range_async]
|
||||
res
|
||||
# MergeResult(version=2, num_updated_rows=1,
|
||||
# num_inserted_rows=0, num_deleted_rows=1)
|
||||
# --8<-- [end:insert_if_not_exists]
|
||||
assert await table.count_rows("doc_id = 1") == 1
|
||||
assert res.version == 2
|
||||
assert res.num_inserted_rows == 0
|
||||
assert res.num_deleted_rows == 1
|
||||
assert res.num_updated_rows == 1
|
||||
|
||||
@@ -6,7 +6,9 @@ import lancedb
|
||||
|
||||
# --8<-- [end:import-lancedb]
|
||||
# --8<-- [start:import-numpy]
|
||||
from lancedb.query import BoostQuery, MatchQuery
|
||||
import numpy as np
|
||||
import pyarrow as pa
|
||||
|
||||
# --8<-- [end:import-numpy]
|
||||
# --8<-- [start:import-datetime]
|
||||
@@ -154,6 +156,84 @@ async def test_vector_search_async():
|
||||
# --8<-- [end:search_result_async_as_list]
|
||||
|
||||
|
||||
def test_fts_fuzzy_query():
|
||||
uri = "data/fuzzy-example"
|
||||
db = lancedb.connect(uri)
|
||||
|
||||
table = db.create_table(
|
||||
"my_table_fts_fuzzy",
|
||||
data=pa.table(
|
||||
{
|
||||
"text": [
|
||||
"fa",
|
||||
"fo", # spellchecker:disable-line
|
||||
"fob",
|
||||
"focus",
|
||||
"foo",
|
||||
"food",
|
||||
"foul",
|
||||
]
|
||||
}
|
||||
),
|
||||
mode="overwrite",
|
||||
)
|
||||
table.create_fts_index("text", use_tantivy=False, replace=True)
|
||||
|
||||
results = table.search(MatchQuery("foo", "text", fuzziness=1)).to_pandas()
|
||||
assert len(results) == 4
|
||||
assert set(results["text"].to_list()) == {
|
||||
"foo",
|
||||
"fo", # 1 deletion # spellchecker:disable-line
|
||||
"fob", # 1 substitution
|
||||
"food", # 1 insertion
|
||||
}
|
||||
|
||||
|
||||
def test_fts_boost_query():
|
||||
uri = "data/boost-example"
|
||||
db = lancedb.connect(uri)
|
||||
|
||||
table = db.create_table(
|
||||
"my_table_fts_boost",
|
||||
data=pa.table(
|
||||
{
|
||||
"title": [
|
||||
"The Hidden Gems of Travel",
|
||||
"Exploring Nature's Wonders",
|
||||
"Cultural Treasures Unveiled",
|
||||
"The Nightlife Chronicles",
|
||||
"Scenic Escapes and Challenges",
|
||||
],
|
||||
"desc": [
|
||||
"A vibrant city with occasional traffic jams.",
|
||||
"Beautiful landscapes but overpriced tourist spots.",
|
||||
"Rich cultural heritage but humid summers.",
|
||||
"Bustling nightlife but noisy streets.",
|
||||
"Scenic views but limited public transport options.",
|
||||
],
|
||||
}
|
||||
),
|
||||
mode="overwrite",
|
||||
)
|
||||
table.create_fts_index("desc", use_tantivy=False, replace=True)
|
||||
|
||||
results = table.search(
|
||||
BoostQuery(
|
||||
MatchQuery("beautiful, cultural, nightlife", "desc"),
|
||||
MatchQuery("bad traffic jams, overpriced", "desc"),
|
||||
),
|
||||
).to_pandas()
|
||||
|
||||
# we will hit 3 results because the positive query has 3 hits
|
||||
assert len(results) == 3
|
||||
# the one containing "overpriced" will be negatively boosted,
|
||||
# so it will be the last one
|
||||
assert (
|
||||
results["desc"].to_list()[2]
|
||||
== "Beautiful landscapes but overpriced tourist spots."
|
||||
)
|
||||
|
||||
|
||||
def test_fts_native():
|
||||
# --8<-- [start:basic_fts]
|
||||
uri = "data/sample-lancedb"
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
|
||||
|
||||
import re
|
||||
from datetime import timedelta
|
||||
import os
|
||||
|
||||
import lancedb
|
||||
@@ -298,11 +299,13 @@ def test_create_exist_ok(tmp_db: lancedb.DBConnection):
|
||||
@pytest.mark.asyncio
|
||||
async def test_connect(tmp_path):
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
assert str(db) == f"ListingDatabase(uri={tmp_path}, read_consistency_interval=5s)"
|
||||
|
||||
db = await lancedb.connect_async(tmp_path, read_consistency_interval=None)
|
||||
assert str(db) == f"ListingDatabase(uri={tmp_path}, read_consistency_interval=None)"
|
||||
|
||||
db = await lancedb.connect_async(
|
||||
tmp_path, read_consistency_interval=timedelta(seconds=5)
|
||||
)
|
||||
assert str(db) == f"ListingDatabase(uri={tmp_path}, read_consistency_interval=5s)"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_close(mem_db_async: lancedb.AsyncConnection):
|
||||
@@ -450,7 +453,7 @@ async def test_open_table(tmp_path):
|
||||
assert tbl.name == "test"
|
||||
assert (
|
||||
re.search(
|
||||
r"NativeTable\(test, uri=.*test\.lance, read_consistency_interval=5s\)",
|
||||
r"NativeTable\(test, uri=.*test\.lance, read_consistency_interval=None\)",
|
||||
str(tbl),
|
||||
)
|
||||
is not None
|
||||
|
||||
@@ -11,7 +11,7 @@ import pandas as pd
|
||||
import pyarrow as pa
|
||||
import pytest
|
||||
from lancedb.embeddings import get_registry
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.pydantic import LanceModel, Vector, MultiVector
|
||||
import requests
|
||||
|
||||
# These are integration tests for embedding functions.
|
||||
@@ -575,3 +575,67 @@ def test_voyageai_multimodal_embedding_text_function():
|
||||
|
||||
tbl.add(df)
|
||||
assert len(tbl.to_pandas()["vector"][0]) == voyageai.ndims()
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(
|
||||
importlib.util.find_spec("colpali_engine") is None,
|
||||
reason="colpali_engine not installed",
|
||||
)
|
||||
def test_colpali(tmp_path):
|
||||
import requests
|
||||
from lancedb.pydantic import LanceModel
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
registry = get_registry()
|
||||
func = registry.get("colpali").create()
|
||||
|
||||
class MediaItems(LanceModel):
|
||||
text: str
|
||||
image_uri: str = func.SourceField()
|
||||
image_bytes: bytes = func.SourceField()
|
||||
image_vectors: MultiVector(func.ndims()) = (
|
||||
func.VectorField()
|
||||
) # Multivector image embeddings
|
||||
|
||||
table = db.create_table("media", schema=MediaItems)
|
||||
|
||||
texts = [
|
||||
"a cute cat playing with yarn",
|
||||
"a puppy in a flower field",
|
||||
"a red sports car on the highway",
|
||||
"a vintage bicycle leaning against a wall",
|
||||
"a plate of delicious pasta",
|
||||
"fresh fruit salad in a bowl",
|
||||
]
|
||||
|
||||
uris = [
|
||||
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
||||
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
||||
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
||||
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
||||
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
|
||||
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
|
||||
]
|
||||
|
||||
# Get images as bytes
|
||||
image_bytes = [requests.get(uri).content for uri in uris]
|
||||
|
||||
table.add(
|
||||
pd.DataFrame({"text": texts, "image_uri": uris, "image_bytes": image_bytes})
|
||||
)
|
||||
|
||||
# Test text-to-image search
|
||||
image_results = (
|
||||
table.search("fluffy companion", vector_column_name="image_vectors")
|
||||
.limit(1)
|
||||
.to_pydantic(MediaItems)[0]
|
||||
)
|
||||
assert "cat" in image_results.text.lower() or "puppy" in image_results.text.lower()
|
||||
|
||||
# Verify multivector dimensions
|
||||
first_row = table.to_arrow().to_pylist()[0]
|
||||
assert len(first_row["image_vectors"]) > 1, "Should have multiple image vectors"
|
||||
assert len(first_row["image_vectors"][0]) == func.ndims(), (
|
||||
"Vector dimension mismatch"
|
||||
)
|
||||
|
||||
@@ -22,6 +22,7 @@ from lancedb.db import DBConnection
|
||||
from lancedb.index import FTS
|
||||
from lancedb.query import BoostQuery, MatchQuery, MultiMatchQuery, PhraseQuery
|
||||
import numpy as np
|
||||
import pyarrow as pa
|
||||
import pandas as pd
|
||||
import pytest
|
||||
from utils import exception_output
|
||||
@@ -626,3 +627,32 @@ def test_language(mem_db: DBConnection):
|
||||
# Stop words -> no results
|
||||
results = table.search("la", query_type="fts").limit(5).to_list()
|
||||
assert len(results) == 0
|
||||
|
||||
|
||||
def test_fts_on_list(mem_db: DBConnection):
|
||||
data = pa.table(
|
||||
{
|
||||
"text": [
|
||||
["lance database", "the", "search"],
|
||||
["lance database"],
|
||||
["lance", "search"],
|
||||
["database", "search"],
|
||||
["unrelated", "doc"],
|
||||
],
|
||||
"vector": [
|
||||
[1.0, 2.0, 3.0],
|
||||
[4.0, 5.0, 6.0],
|
||||
[7.0, 8.0, 9.0],
|
||||
[10.0, 11.0, 12.0],
|
||||
[13.0, 14.0, 15.0],
|
||||
],
|
||||
}
|
||||
)
|
||||
table = mem_db.create_table("test", data=data)
|
||||
table.create_fts_index("text", use_tantivy=False)
|
||||
|
||||
res = table.search("lance").limit(5).to_list()
|
||||
assert len(res) == 3
|
||||
|
||||
res = table.search(PhraseQuery("lance database", "text")).limit(5).to_list()
|
||||
assert len(res) == 2
|
||||
|
||||
@@ -4,13 +4,32 @@
|
||||
import lancedb
|
||||
|
||||
from lancedb.query import LanceHybridQueryBuilder
|
||||
from lancedb.rerankers.rrf import RRFReranker
|
||||
import pyarrow as pa
|
||||
import pyarrow.compute as pc
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from lancedb.index import FTS
|
||||
from lancedb.table import AsyncTable
|
||||
from lancedb.table import AsyncTable, Table
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sync_table(tmpdir_factory) -> Table:
|
||||
tmp_path = str(tmpdir_factory.mktemp("data"))
|
||||
db = lancedb.connect(tmp_path)
|
||||
data = pa.table(
|
||||
{
|
||||
"text": pa.array(["a", "b", "cat", "dog"]),
|
||||
"vector": pa.array(
|
||||
[[0.1, 0.1], [2, 2], [-0.1, -0.1], [0.5, -0.5]],
|
||||
type=pa.list_(pa.float32(), list_size=2),
|
||||
),
|
||||
}
|
||||
)
|
||||
table = db.create_table("test", data)
|
||||
table.create_fts_index("text", with_position=False, use_tantivy=False)
|
||||
return table
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@@ -102,6 +121,42 @@ async def test_async_hybrid_query_default_limit(table: AsyncTable):
|
||||
assert texts.count("a") == 1
|
||||
|
||||
|
||||
def test_hybrid_query_distance_range(sync_table: Table):
|
||||
reranker = RRFReranker(return_score="all")
|
||||
result = (
|
||||
sync_table.search(query_type="hybrid")
|
||||
.vector([0.0, 0.4])
|
||||
.text("cat and dog")
|
||||
.distance_range(lower_bound=0.2, upper_bound=0.5)
|
||||
.rerank(reranker)
|
||||
.limit(2)
|
||||
.to_arrow()
|
||||
)
|
||||
assert len(result) == 2
|
||||
print(result)
|
||||
for dist in result["_distance"]:
|
||||
if dist.is_valid:
|
||||
assert 0.2 <= dist.as_py() <= 0.5
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_hybrid_query_distance_range_async(table: AsyncTable):
|
||||
reranker = RRFReranker(return_score="all")
|
||||
result = await (
|
||||
table.query()
|
||||
.nearest_to([0.0, 0.4])
|
||||
.nearest_to_text("cat and dog")
|
||||
.distance_range(lower_bound=0.2, upper_bound=0.5)
|
||||
.rerank(reranker)
|
||||
.limit(2)
|
||||
.to_arrow()
|
||||
)
|
||||
assert len(result) == 2
|
||||
for dist in result["_distance"]:
|
||||
if dist.is_valid:
|
||||
assert 0.2 <= dist.as_py() <= 0.5
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_explain_plan(table: AsyncTable):
|
||||
plan = await (
|
||||
|
||||
@@ -8,7 +8,7 @@ import pyarrow as pa
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
from lancedb import AsyncConnection, AsyncTable, connect_async
|
||||
from lancedb.index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq
|
||||
from lancedb.index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq, FTS
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@@ -119,6 +119,18 @@ async def test_create_label_list_index(some_table: AsyncTable):
|
||||
assert str(indices) == '[Index(LabelList, columns=["tags"], name="tags_idx")]'
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_full_text_search_index(some_table: AsyncTable):
|
||||
await some_table.create_index("tags", config=FTS(with_position=False))
|
||||
indices = await some_table.list_indices()
|
||||
assert str(indices) == '[Index(FTS, columns=["tags"], name="tags_idx")]'
|
||||
|
||||
await some_table.prewarm_index("tags_idx")
|
||||
|
||||
res = await (await some_table.search("tag0")).to_arrow()
|
||||
assert res.num_rows > 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_vector_index(some_table: AsyncTable):
|
||||
# Can create
|
||||
|
||||
@@ -9,7 +9,13 @@ from typing import List, Optional, Tuple
|
||||
import pyarrow as pa
|
||||
import pydantic
|
||||
import pytest
|
||||
from lancedb.pydantic import PYDANTIC_VERSION, LanceModel, Vector, pydantic_to_schema
|
||||
from lancedb.pydantic import (
|
||||
PYDANTIC_VERSION,
|
||||
LanceModel,
|
||||
Vector,
|
||||
pydantic_to_schema,
|
||||
MultiVector,
|
||||
)
|
||||
from pydantic import BaseModel
|
||||
from pydantic import Field
|
||||
|
||||
@@ -354,3 +360,55 @@ def test_optional_nested_model():
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def test_multi_vector():
|
||||
class TestModel(pydantic.BaseModel):
|
||||
vec: MultiVector(8)
|
||||
|
||||
schema = pydantic_to_schema(TestModel)
|
||||
assert schema == pa.schema(
|
||||
[pa.field("vec", pa.list_(pa.list_(pa.float32(), 8)), True)]
|
||||
)
|
||||
|
||||
with pytest.raises(pydantic.ValidationError):
|
||||
TestModel(vec=[[1.0] * 7])
|
||||
|
||||
with pytest.raises(pydantic.ValidationError):
|
||||
TestModel(vec=[[1.0] * 9])
|
||||
|
||||
TestModel(vec=[[1.0] * 8])
|
||||
TestModel(vec=[[1.0] * 8, [2.0] * 8])
|
||||
|
||||
TestModel(vec=[])
|
||||
|
||||
|
||||
def test_multi_vector_nullable():
|
||||
class NullableModel(pydantic.BaseModel):
|
||||
vec: MultiVector(16, nullable=False)
|
||||
|
||||
schema = pydantic_to_schema(NullableModel)
|
||||
assert schema == pa.schema(
|
||||
[pa.field("vec", pa.list_(pa.list_(pa.float32(), 16)), False)]
|
||||
)
|
||||
|
||||
class DefaultModel(pydantic.BaseModel):
|
||||
vec: MultiVector(16)
|
||||
|
||||
schema = pydantic_to_schema(DefaultModel)
|
||||
assert schema == pa.schema(
|
||||
[pa.field("vec", pa.list_(pa.list_(pa.float32(), 16)), True)]
|
||||
)
|
||||
|
||||
|
||||
def test_multi_vector_in_lance_model():
|
||||
class TestModel(LanceModel):
|
||||
id: int
|
||||
vectors: MultiVector(16) = Field(default=[[0.0] * 16])
|
||||
|
||||
schema = pydantic_to_schema(TestModel)
|
||||
assert schema == TestModel.to_arrow_schema()
|
||||
assert TestModel.field_names() == ["id", "vectors"]
|
||||
|
||||
t = TestModel(id=1)
|
||||
assert t.vectors == [[0.0] * 16]
|
||||
|
||||
@@ -257,7 +257,9 @@ async def test_distance_range_with_new_rows_async():
|
||||
}
|
||||
)
|
||||
table = await conn.create_table("test", data)
|
||||
table.create_index("vector", config=IvfPq(num_partitions=1, num_sub_vectors=2))
|
||||
await table.create_index(
|
||||
"vector", config=IvfPq(num_partitions=1, num_sub_vectors=2)
|
||||
)
|
||||
|
||||
q = [0, 0]
|
||||
rs = await table.query().nearest_to(q).to_arrow()
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
import re
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import contextlib
|
||||
from datetime import timedelta
|
||||
@@ -235,6 +235,10 @@ def test_table_add_in_threadpool():
|
||||
|
||||
def test_table_create_indices():
|
||||
def handler(request):
|
||||
index_stats = dict(
|
||||
index_type="IVF_PQ", num_indexed_rows=1000, num_unindexed_rows=0
|
||||
)
|
||||
|
||||
if request.path == "/v1/table/test/create_index/":
|
||||
request.send_response(200)
|
||||
request.end_headers()
|
||||
@@ -258,6 +262,47 @@ def test_table_create_indices():
|
||||
)
|
||||
)
|
||||
request.wfile.write(payload.encode())
|
||||
elif request.path == "/v1/table/test/index/list/":
|
||||
request.send_response(200)
|
||||
request.send_header("Content-Type", "application/json")
|
||||
request.end_headers()
|
||||
payload = json.dumps(
|
||||
dict(
|
||||
indexes=[
|
||||
{
|
||||
"index_name": "id_idx",
|
||||
"columns": ["id"],
|
||||
},
|
||||
{
|
||||
"index_name": "text_idx",
|
||||
"columns": ["text"],
|
||||
},
|
||||
{
|
||||
"index_name": "vector_idx",
|
||||
"columns": ["vector"],
|
||||
},
|
||||
]
|
||||
)
|
||||
)
|
||||
request.wfile.write(payload.encode())
|
||||
elif request.path == "/v1/table/test/index/id_idx/stats/":
|
||||
request.send_response(200)
|
||||
request.send_header("Content-Type", "application/json")
|
||||
request.end_headers()
|
||||
payload = json.dumps(index_stats)
|
||||
request.wfile.write(payload.encode())
|
||||
elif request.path == "/v1/table/test/index/text_idx/stats/":
|
||||
request.send_response(200)
|
||||
request.send_header("Content-Type", "application/json")
|
||||
request.end_headers()
|
||||
payload = json.dumps(index_stats)
|
||||
request.wfile.write(payload.encode())
|
||||
elif request.path == "/v1/table/test/index/vector_idx/stats/":
|
||||
request.send_response(200)
|
||||
request.send_header("Content-Type", "application/json")
|
||||
request.end_headers()
|
||||
payload = json.dumps(index_stats)
|
||||
request.wfile.write(payload.encode())
|
||||
elif "/drop/" in request.path:
|
||||
request.send_response(200)
|
||||
request.end_headers()
|
||||
@@ -269,14 +314,125 @@ def test_table_create_indices():
|
||||
# Parameters are well-tested through local and async tests.
|
||||
# This is a smoke-test.
|
||||
table = db.create_table("test", [{"id": 1}])
|
||||
table.create_scalar_index("id")
|
||||
table.create_fts_index("text")
|
||||
table.create_scalar_index("vector")
|
||||
table.create_scalar_index("id", wait_timeout=timedelta(seconds=2))
|
||||
table.create_fts_index("text", wait_timeout=timedelta(seconds=2))
|
||||
table.create_index(
|
||||
vector_column_name="vector", wait_timeout=timedelta(seconds=10)
|
||||
)
|
||||
table.wait_for_index(["id_idx"], timedelta(seconds=2))
|
||||
table.wait_for_index(["text_idx", "vector_idx"], timedelta(seconds=2))
|
||||
table.drop_index("vector_idx")
|
||||
table.drop_index("id_idx")
|
||||
table.drop_index("text_idx")
|
||||
|
||||
|
||||
def test_table_wait_for_index_timeout():
|
||||
def handler(request):
|
||||
index_stats = dict(
|
||||
index_type="BTREE", num_indexed_rows=1000, num_unindexed_rows=1
|
||||
)
|
||||
|
||||
if request.path == "/v1/table/test/create/?mode=create":
|
||||
request.send_response(200)
|
||||
request.send_header("Content-Type", "application/json")
|
||||
request.end_headers()
|
||||
request.wfile.write(b"{}")
|
||||
elif request.path == "/v1/table/test/describe/":
|
||||
request.send_response(200)
|
||||
request.send_header("Content-Type", "application/json")
|
||||
request.end_headers()
|
||||
payload = json.dumps(
|
||||
dict(
|
||||
version=1,
|
||||
schema=dict(
|
||||
fields=[
|
||||
dict(name="id", type={"type": "int64"}, nullable=False),
|
||||
]
|
||||
),
|
||||
)
|
||||
)
|
||||
request.wfile.write(payload.encode())
|
||||
elif request.path == "/v1/table/test/index/list/":
|
||||
request.send_response(200)
|
||||
request.send_header("Content-Type", "application/json")
|
||||
request.end_headers()
|
||||
payload = json.dumps(
|
||||
dict(
|
||||
indexes=[
|
||||
{
|
||||
"index_name": "id_idx",
|
||||
"columns": ["id"],
|
||||
},
|
||||
]
|
||||
)
|
||||
)
|
||||
request.wfile.write(payload.encode())
|
||||
elif request.path == "/v1/table/test/index/id_idx/stats/":
|
||||
request.send_response(200)
|
||||
request.send_header("Content-Type", "application/json")
|
||||
request.end_headers()
|
||||
payload = json.dumps(index_stats)
|
||||
print(f"{index_stats=}")
|
||||
request.wfile.write(payload.encode())
|
||||
else:
|
||||
request.send_response(404)
|
||||
request.end_headers()
|
||||
|
||||
with mock_lancedb_connection(handler) as db:
|
||||
table = db.create_table("test", [{"id": 1}])
|
||||
with pytest.raises(
|
||||
RuntimeError,
|
||||
match=re.escape(
|
||||
'Timeout error: timed out waiting for indices: ["id_idx"] after 1s'
|
||||
),
|
||||
):
|
||||
table.wait_for_index(["id_idx"], timedelta(seconds=1))
|
||||
|
||||
|
||||
def test_stats():
|
||||
stats = {
|
||||
"total_bytes": 38,
|
||||
"num_rows": 2,
|
||||
"num_indices": 0,
|
||||
"fragment_stats": {
|
||||
"num_fragments": 1,
|
||||
"num_small_fragments": 1,
|
||||
"lengths": {
|
||||
"min": 2,
|
||||
"max": 2,
|
||||
"mean": 2,
|
||||
"p25": 2,
|
||||
"p50": 2,
|
||||
"p75": 2,
|
||||
"p99": 2,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
def handler(request):
|
||||
if request.path == "/v1/table/test/create/?mode=create":
|
||||
request.send_response(200)
|
||||
request.send_header("Content-Type", "application/json")
|
||||
request.end_headers()
|
||||
request.wfile.write(b"{}")
|
||||
elif request.path == "/v1/table/test/stats/":
|
||||
request.send_response(200)
|
||||
request.send_header("Content-Type", "application/json")
|
||||
request.end_headers()
|
||||
payload = json.dumps(stats)
|
||||
request.wfile.write(payload.encode())
|
||||
else:
|
||||
print(request.path)
|
||||
request.send_response(404)
|
||||
request.end_headers()
|
||||
|
||||
with mock_lancedb_connection(handler) as db:
|
||||
table = db.create_table("test", [{"id": 1}])
|
||||
res = table.stats()
|
||||
print(f"{res=}")
|
||||
assert res == stats
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def query_test_table(query_handler, *, server_version=Version("0.1.0")):
|
||||
def handler(request):
|
||||
|
||||
@@ -457,3 +457,45 @@ def test_voyageai_reranker(tmp_path, use_tantivy):
|
||||
reranker = VoyageAIReranker(model_name="rerank-2")
|
||||
table, schema = get_test_table(tmp_path, use_tantivy)
|
||||
_run_test_reranker(reranker, table, "single player experience", None, schema)
|
||||
|
||||
|
||||
def test_empty_result_reranker():
|
||||
pytest.importorskip("sentence_transformers")
|
||||
db = lancedb.connect("memory://")
|
||||
|
||||
# Define schema
|
||||
schema = pa.schema(
|
||||
[
|
||||
("id", pa.int64()),
|
||||
("text", pa.string()),
|
||||
("vector", pa.list_(pa.float32(), 128)), # 128-dimensional vector
|
||||
]
|
||||
)
|
||||
|
||||
# Create empty table with schema
|
||||
empty_table = db.create_table("empty_table", schema=schema, mode="overwrite")
|
||||
empty_table.create_fts_index("text", use_tantivy=False, replace=True)
|
||||
for reranker in [
|
||||
CrossEncoderReranker(),
|
||||
# ColbertReranker(),
|
||||
# AnswerdotaiRerankers(),
|
||||
# OpenaiReranker(),
|
||||
# JinaReranker(),
|
||||
# VoyageAIReranker(model_name="rerank-2"),
|
||||
]:
|
||||
results = (
|
||||
empty_table.search(list(range(128)))
|
||||
.limit(3)
|
||||
.rerank(reranker, "query")
|
||||
.to_arrow()
|
||||
)
|
||||
# check if empty set contains _relevance_score column
|
||||
assert "_relevance_score" in results.column_names
|
||||
assert len(results) == 0
|
||||
|
||||
results = (
|
||||
empty_table.search("query", query_type="fts")
|
||||
.limit(3)
|
||||
.rerank(reranker)
|
||||
.to_arrow()
|
||||
)
|
||||
|
||||
@@ -9,9 +9,9 @@ from typing import List
|
||||
from unittest.mock import patch
|
||||
|
||||
import lancedb
|
||||
from lancedb.dependencies import _PANDAS_AVAILABLE
|
||||
from lancedb.index import HnswPq, HnswSq, IvfPq
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import polars as pl
|
||||
import pyarrow as pa
|
||||
import pyarrow.dataset
|
||||
@@ -32,11 +32,7 @@ def test_basic(mem_db: DBConnection):
|
||||
table = mem_db.create_table("test", data=data)
|
||||
|
||||
assert table.name == "test"
|
||||
assert (
|
||||
"LanceTable(name='test', version=1, "
|
||||
"read_consistency_interval=datetime.timedelta(seconds=5), "
|
||||
"_conn=LanceDBConnection("
|
||||
) in repr(table)
|
||||
assert "LanceTable(name='test', version=1, _conn=LanceDBConnection(" in repr(table)
|
||||
expected_schema = pa.schema(
|
||||
{
|
||||
"vector": pa.list_(pa.float32(), 2),
|
||||
@@ -110,15 +106,22 @@ async def test_update_async(mem_db_async: AsyncConnection):
|
||||
table = await mem_db_async.create_table("some_table", data=[{"id": 0}])
|
||||
assert await table.count_rows("id == 0") == 1
|
||||
assert await table.count_rows("id == 7") == 0
|
||||
await table.update({"id": 7})
|
||||
update_res = await table.update({"id": 7})
|
||||
assert update_res.rows_updated == 1
|
||||
assert update_res.version == 2
|
||||
assert await table.count_rows("id == 7") == 1
|
||||
assert await table.count_rows("id == 0") == 0
|
||||
await table.add([{"id": 2}])
|
||||
await table.update(where="id % 2 == 0", updates_sql={"id": "5"})
|
||||
add_res = await table.add([{"id": 2}])
|
||||
assert add_res.version == 3
|
||||
update_res = await table.update(where="id % 2 == 0", updates_sql={"id": "5"})
|
||||
assert update_res.rows_updated == 1
|
||||
assert update_res.version == 4
|
||||
assert await table.count_rows("id == 7") == 1
|
||||
assert await table.count_rows("id == 2") == 0
|
||||
assert await table.count_rows("id == 5") == 1
|
||||
await table.update({"id": 10}, where="id == 5")
|
||||
update_res = await table.update({"id": 10}, where="id == 5")
|
||||
assert update_res.rows_updated == 1
|
||||
assert update_res.version == 5
|
||||
assert await table.count_rows("id == 10") == 1
|
||||
|
||||
|
||||
@@ -142,13 +145,16 @@ def test_create_table(mem_db: DBConnection):
|
||||
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
||||
]
|
||||
df = pd.DataFrame(rows)
|
||||
pa_table = pa.Table.from_pandas(df, schema=schema)
|
||||
pa_table = pa.Table.from_pylist(rows, schema=schema)
|
||||
data = [
|
||||
("Rows", rows),
|
||||
("pd_DataFrame", df),
|
||||
("pa_Table", pa_table),
|
||||
]
|
||||
if _PANDAS_AVAILABLE:
|
||||
import pandas as pd
|
||||
|
||||
df = pd.DataFrame(rows)
|
||||
data.append(("pd_DataFrame", df))
|
||||
|
||||
for name, d in data:
|
||||
tbl = mem_db.create_table(name, data=d, schema=schema).to_arrow()
|
||||
@@ -300,7 +306,7 @@ def test_add_subschema(mem_db: DBConnection):
|
||||
|
||||
data = {"price": 10.0, "item": "foo"}
|
||||
table.add([data])
|
||||
data = pd.DataFrame({"price": [2.0], "vector": [[3.1, 4.1]]})
|
||||
data = pa.Table.from_pydict({"price": [2.0], "vector": [[3.1, 4.1]]})
|
||||
table.add(data)
|
||||
data = {"price": 3.0, "vector": [5.9, 26.5], "item": "bar"}
|
||||
table.add([data])
|
||||
@@ -409,6 +415,7 @@ def test_add_nullability(mem_db: DBConnection):
|
||||
|
||||
|
||||
def test_add_pydantic_model(mem_db: DBConnection):
|
||||
pytest.importorskip("pandas")
|
||||
# https://github.com/lancedb/lancedb/issues/562
|
||||
|
||||
class Metadata(BaseModel):
|
||||
@@ -437,7 +444,8 @@ def test_add_pydantic_model(mem_db: DBConnection):
|
||||
content="foo", meta=Metadata(source="bar", timestamp=datetime.now())
|
||||
),
|
||||
)
|
||||
tbl.add([expected])
|
||||
add_res = tbl.add([expected])
|
||||
assert add_res.version == 2
|
||||
|
||||
result = tbl.search([0.0, 0.0]).limit(1).to_pydantic(LanceSchema)[0]
|
||||
assert result == expected
|
||||
@@ -459,11 +467,12 @@ async def test_add_async(mem_db_async: AsyncConnection):
|
||||
],
|
||||
)
|
||||
assert await table.count_rows() == 2
|
||||
await table.add(
|
||||
add_res = await table.add(
|
||||
data=[
|
||||
{"vector": [10.0, 11.0], "item": "baz", "price": 30.0},
|
||||
],
|
||||
)
|
||||
assert add_res.version == 2
|
||||
assert await table.count_rows() == 3
|
||||
|
||||
|
||||
@@ -477,10 +486,10 @@ def test_polars(mem_db: DBConnection):
|
||||
table = mem_db.create_table("test", data=pl.DataFrame(data))
|
||||
assert len(table) == 2
|
||||
|
||||
result = table.to_pandas()
|
||||
assert np.allclose(result["vector"].tolist(), data["vector"])
|
||||
assert result["item"].tolist() == data["item"]
|
||||
assert np.allclose(result["price"].tolist(), data["price"])
|
||||
result = table.to_arrow()
|
||||
assert np.allclose(result["vector"].to_pylist(), data["vector"])
|
||||
assert result["item"].to_pylist() == data["item"]
|
||||
assert np.allclose(result["price"].to_pylist(), data["price"])
|
||||
|
||||
schema = pa.schema(
|
||||
[
|
||||
@@ -529,6 +538,113 @@ def test_versioning(mem_db: DBConnection):
|
||||
assert len(table) == 2
|
||||
|
||||
|
||||
def test_tags(mem_db: DBConnection):
|
||||
table = mem_db.create_table(
|
||||
"test",
|
||||
data=[
|
||||
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
||||
],
|
||||
)
|
||||
|
||||
table.tags.create("tag1", 1)
|
||||
tags = table.tags.list()
|
||||
assert "tag1" in tags
|
||||
assert tags["tag1"]["version"] == 1
|
||||
|
||||
table.add(
|
||||
data=[
|
||||
{"vector": [10.0, 11.0], "item": "baz", "price": 30.0},
|
||||
],
|
||||
)
|
||||
|
||||
table.tags.create("tag2", 2)
|
||||
tags = table.tags.list()
|
||||
assert "tag1" in tags
|
||||
assert "tag2" in tags
|
||||
assert tags["tag1"]["version"] == 1
|
||||
assert tags["tag2"]["version"] == 2
|
||||
|
||||
table.tags.delete("tag2")
|
||||
table.tags.update("tag1", 2)
|
||||
tags = table.tags.list()
|
||||
assert "tag1" in tags
|
||||
assert tags["tag1"]["version"] == 2
|
||||
|
||||
table.tags.update("tag1", 1)
|
||||
tags = table.tags.list()
|
||||
assert "tag1" in tags
|
||||
assert tags["tag1"]["version"] == 1
|
||||
|
||||
table.checkout("tag1")
|
||||
assert table.version == 1
|
||||
assert table.count_rows() == 2
|
||||
table.tags.create("tag2", 2)
|
||||
table.checkout("tag2")
|
||||
assert table.version == 2
|
||||
assert table.count_rows() == 3
|
||||
table.checkout_latest()
|
||||
table.add(
|
||||
data=[
|
||||
{"vector": [12.0, 13.0], "item": "baz", "price": 40.0},
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_tags(mem_db_async: AsyncConnection):
|
||||
table = await mem_db_async.create_table(
|
||||
"test",
|
||||
data=[
|
||||
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
||||
],
|
||||
)
|
||||
|
||||
await table.tags.create("tag1", 1)
|
||||
tags = await table.tags.list()
|
||||
assert "tag1" in tags
|
||||
assert tags["tag1"]["version"] == 1
|
||||
|
||||
await table.add(
|
||||
data=[
|
||||
{"vector": [10.0, 11.0], "item": "baz", "price": 30.0},
|
||||
],
|
||||
)
|
||||
|
||||
await table.tags.create("tag2", 2)
|
||||
tags = await table.tags.list()
|
||||
assert "tag1" in tags
|
||||
assert "tag2" in tags
|
||||
assert tags["tag1"]["version"] == 1
|
||||
assert tags["tag2"]["version"] == 2
|
||||
|
||||
await table.tags.delete("tag2")
|
||||
await table.tags.update("tag1", 2)
|
||||
tags = await table.tags.list()
|
||||
assert "tag1" in tags
|
||||
assert tags["tag1"]["version"] == 2
|
||||
|
||||
await table.tags.update("tag1", 1)
|
||||
tags = await table.tags.list()
|
||||
assert "tag1" in tags
|
||||
assert tags["tag1"]["version"] == 1
|
||||
|
||||
await table.checkout("tag1")
|
||||
assert await table.version() == 1
|
||||
assert await table.count_rows() == 2
|
||||
await table.tags.create("tag2", 2)
|
||||
await table.checkout("tag2")
|
||||
assert await table.version() == 2
|
||||
assert await table.count_rows() == 3
|
||||
await table.checkout_latest()
|
||||
await table.add(
|
||||
data=[
|
||||
{"vector": [12.0, 13.0], "item": "baz", "price": 40.0},
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@patch("lancedb.table.AsyncTable.create_index")
|
||||
def test_create_index_method(mock_create_index, mem_db: DBConnection):
|
||||
table = mem_db.create_table(
|
||||
@@ -688,11 +804,12 @@ def test_delete(mem_db: DBConnection):
|
||||
)
|
||||
assert len(table) == 2
|
||||
assert len(table.list_versions()) == 1
|
||||
table.delete("id=0")
|
||||
delete_res = table.delete("id=0")
|
||||
assert delete_res.version == 2
|
||||
assert len(table.list_versions()) == 2
|
||||
assert table.version == 2
|
||||
assert len(table) == 1
|
||||
assert table.to_pandas()["id"].tolist() == [1]
|
||||
assert table.to_arrow()["id"].to_pylist() == [1]
|
||||
|
||||
|
||||
def test_update(mem_db: DBConnection):
|
||||
@@ -702,7 +819,9 @@ def test_update(mem_db: DBConnection):
|
||||
)
|
||||
assert len(table) == 2
|
||||
assert len(table.list_versions()) == 1
|
||||
table.update(where="id=0", values={"vector": [1.1, 1.1]})
|
||||
update_res = table.update(where="id=0", values={"vector": [1.1, 1.1]})
|
||||
assert update_res.version == 2
|
||||
assert update_res.rows_updated == 1
|
||||
assert len(table.list_versions()) == 2
|
||||
assert table.version == 2
|
||||
assert len(table) == 2
|
||||
@@ -791,9 +910,16 @@ def test_merge_insert(mem_db: DBConnection):
|
||||
new_data = pa.table({"a": [2, 3, 4], "b": ["x", "y", "z"]})
|
||||
|
||||
# upsert
|
||||
table.merge_insert(
|
||||
"a"
|
||||
).when_matched_update_all().when_not_matched_insert_all().execute(new_data)
|
||||
merge_insert_res = (
|
||||
table.merge_insert("a")
|
||||
.when_matched_update_all()
|
||||
.when_not_matched_insert_all()
|
||||
.execute(new_data)
|
||||
)
|
||||
assert merge_insert_res.version == 2
|
||||
assert merge_insert_res.num_inserted_rows == 1
|
||||
assert merge_insert_res.num_updated_rows == 2
|
||||
assert merge_insert_res.num_deleted_rows == 0
|
||||
|
||||
expected = pa.table({"a": [1, 2, 3, 4], "b": ["a", "x", "y", "z"]})
|
||||
assert table.to_arrow().sort_by("a") == expected
|
||||
@@ -801,17 +927,28 @@ def test_merge_insert(mem_db: DBConnection):
|
||||
table.restore(version)
|
||||
|
||||
# conditional update
|
||||
table.merge_insert("a").when_matched_update_all(where="target.b = 'b'").execute(
|
||||
new_data
|
||||
merge_insert_res = (
|
||||
table.merge_insert("a")
|
||||
.when_matched_update_all(where="target.b = 'b'")
|
||||
.execute(new_data)
|
||||
)
|
||||
assert merge_insert_res.version == 4
|
||||
assert merge_insert_res.num_inserted_rows == 0
|
||||
assert merge_insert_res.num_updated_rows == 1
|
||||
assert merge_insert_res.num_deleted_rows == 0
|
||||
expected = pa.table({"a": [1, 2, 3], "b": ["a", "x", "c"]})
|
||||
assert table.to_arrow().sort_by("a") == expected
|
||||
|
||||
table.restore(version)
|
||||
|
||||
# insert-if-not-exists
|
||||
table.merge_insert("a").when_not_matched_insert_all().execute(new_data)
|
||||
|
||||
merge_insert_res = (
|
||||
table.merge_insert("a").when_not_matched_insert_all().execute(new_data)
|
||||
)
|
||||
assert merge_insert_res.version == 6
|
||||
assert merge_insert_res.num_inserted_rows == 1
|
||||
assert merge_insert_res.num_updated_rows == 0
|
||||
assert merge_insert_res.num_deleted_rows == 0
|
||||
expected = pa.table({"a": [1, 2, 3, 4], "b": ["a", "b", "c", "z"]})
|
||||
assert table.to_arrow().sort_by("a") == expected
|
||||
|
||||
@@ -820,13 +957,17 @@ def test_merge_insert(mem_db: DBConnection):
|
||||
new_data = pa.table({"a": [2, 4], "b": ["x", "z"]})
|
||||
|
||||
# replace-range
|
||||
(
|
||||
merge_insert_res = (
|
||||
table.merge_insert("a")
|
||||
.when_matched_update_all()
|
||||
.when_not_matched_insert_all()
|
||||
.when_not_matched_by_source_delete("a > 2")
|
||||
.execute(new_data)
|
||||
)
|
||||
assert merge_insert_res.version == 8
|
||||
assert merge_insert_res.num_inserted_rows == 1
|
||||
assert merge_insert_res.num_updated_rows == 1
|
||||
assert merge_insert_res.num_deleted_rows == 1
|
||||
|
||||
expected = pa.table({"a": [1, 2, 4], "b": ["a", "x", "z"]})
|
||||
assert table.to_arrow().sort_by("a") == expected
|
||||
@@ -834,11 +975,17 @@ def test_merge_insert(mem_db: DBConnection):
|
||||
table.restore(version)
|
||||
|
||||
# replace-range no condition
|
||||
table.merge_insert(
|
||||
"a"
|
||||
).when_matched_update_all().when_not_matched_insert_all().when_not_matched_by_source_delete().execute(
|
||||
new_data
|
||||
merge_insert_res = (
|
||||
table.merge_insert("a")
|
||||
.when_matched_update_all()
|
||||
.when_not_matched_insert_all()
|
||||
.when_not_matched_by_source_delete()
|
||||
.execute(new_data)
|
||||
)
|
||||
assert merge_insert_res.version == 10
|
||||
assert merge_insert_res.num_inserted_rows == 1
|
||||
assert merge_insert_res.num_updated_rows == 1
|
||||
assert merge_insert_res.num_deleted_rows == 2
|
||||
|
||||
expected = pa.table({"a": [2, 4], "b": ["x", "z"]})
|
||||
assert table.to_arrow().sort_by("a") == expected
|
||||
@@ -856,6 +1003,7 @@ def test_merge_insert(mem_db: DBConnection):
|
||||
ids=["pa.Table", "pd.DataFrame", "rows"],
|
||||
)
|
||||
def test_merge_insert_subschema(mem_db: DBConnection, data_format):
|
||||
pytest.importorskip("pandas")
|
||||
initial_data = pa.table(
|
||||
{"id": range(3), "a": [1.0, 2.0, 3.0], "c": ["x", "x", "x"]}
|
||||
)
|
||||
@@ -952,7 +1100,7 @@ def test_create_with_embedding_function(mem_db: DBConnection):
|
||||
|
||||
func = MockTextEmbeddingFunction.create()
|
||||
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
|
||||
df = pd.DataFrame({"text": texts, "vector": func.compute_source_embeddings(texts)})
|
||||
df = pa.table({"text": texts, "vector": func.compute_source_embeddings(texts)})
|
||||
|
||||
conf = EmbeddingFunctionConfig(
|
||||
source_column="text", vector_column="vector", function=func
|
||||
@@ -977,7 +1125,7 @@ def test_create_f16_table(mem_db: DBConnection):
|
||||
text: str
|
||||
vector: Vector(32, value_type=pa.float16())
|
||||
|
||||
df = pd.DataFrame(
|
||||
df = pa.table(
|
||||
{
|
||||
"text": [f"s-{i}" for i in range(512)],
|
||||
"vector": [np.random.randn(32).astype(np.float16) for _ in range(512)],
|
||||
@@ -990,7 +1138,7 @@ def test_create_f16_table(mem_db: DBConnection):
|
||||
table.add(df)
|
||||
table.create_index(num_partitions=2, num_sub_vectors=2)
|
||||
|
||||
query = df.vector.iloc[2]
|
||||
query = df["vector"][2].as_py()
|
||||
expected = table.search(query).limit(2).to_arrow()
|
||||
|
||||
assert "s-2" in expected["text"].to_pylist()
|
||||
@@ -1006,7 +1154,7 @@ def test_add_with_embedding_function(mem_db: DBConnection):
|
||||
table = mem_db.create_table("my_table", schema=MyTable)
|
||||
|
||||
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
|
||||
df = pd.DataFrame({"text": texts})
|
||||
df = pa.table({"text": texts})
|
||||
table.add(df)
|
||||
|
||||
texts = ["the quick brown fox", "jumped over the lazy dog"]
|
||||
@@ -1037,14 +1185,14 @@ def test_multiple_vector_columns(mem_db: DBConnection):
|
||||
{"vector1": v1, "vector2": v2, "text": "foo"},
|
||||
{"vector1": v2, "vector2": v1, "text": "bar"},
|
||||
]
|
||||
df = pd.DataFrame(data)
|
||||
df = pa.Table.from_pylist(data)
|
||||
table.add(df)
|
||||
|
||||
q = np.random.randn(10)
|
||||
result1 = table.search(q, vector_column_name="vector1").limit(1).to_pandas()
|
||||
result2 = table.search(q, vector_column_name="vector2").limit(1).to_pandas()
|
||||
result1 = table.search(q, vector_column_name="vector1").limit(1).to_arrow()
|
||||
result2 = table.search(q, vector_column_name="vector2").limit(1).to_arrow()
|
||||
|
||||
assert result1["text"].iloc[0] != result2["text"].iloc[0]
|
||||
assert result1["text"][0] != result2["text"][0]
|
||||
|
||||
|
||||
def test_create_scalar_index(mem_db: DBConnection):
|
||||
@@ -1082,22 +1230,22 @@ def test_empty_query(mem_db: DBConnection):
|
||||
"my_table",
|
||||
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
|
||||
)
|
||||
df = table.search().select(["id"]).where("text='bar'").limit(1).to_pandas()
|
||||
val = df.id.iloc[0]
|
||||
df = table.search().select(["id"]).where("text='bar'").limit(1).to_arrow()
|
||||
val = df["id"][0].as_py()
|
||||
assert val == 1
|
||||
|
||||
table = mem_db.create_table("my_table2", data=[{"id": i} for i in range(100)])
|
||||
df = table.search().select(["id"]).to_pandas()
|
||||
assert len(df) == 100
|
||||
df = table.search().select(["id"]).to_arrow()
|
||||
assert df.num_rows == 100
|
||||
# None is the same as default
|
||||
df = table.search().select(["id"]).limit(None).to_pandas()
|
||||
assert len(df) == 100
|
||||
df = table.search().select(["id"]).limit(None).to_arrow()
|
||||
assert df.num_rows == 100
|
||||
# invalid limist is the same as None, wihch is the same as default
|
||||
df = table.search().select(["id"]).limit(-1).to_pandas()
|
||||
assert len(df) == 100
|
||||
df = table.search().select(["id"]).limit(-1).to_arrow()
|
||||
assert df.num_rows == 100
|
||||
# valid limit should work
|
||||
df = table.search().select(["id"]).limit(42).to_pandas()
|
||||
assert len(df) == 42
|
||||
df = table.search().select(["id"]).limit(42).to_arrow()
|
||||
assert df.num_rows == 42
|
||||
|
||||
|
||||
def test_search_with_schema_inf_single_vector(mem_db: DBConnection):
|
||||
@@ -1116,14 +1264,14 @@ def test_search_with_schema_inf_single_vector(mem_db: DBConnection):
|
||||
{"vector_col": v1, "text": "foo"},
|
||||
{"vector_col": v2, "text": "bar"},
|
||||
]
|
||||
df = pd.DataFrame(data)
|
||||
df = pa.Table.from_pylist(data)
|
||||
table.add(df)
|
||||
|
||||
q = np.random.randn(10)
|
||||
result1 = table.search(q, vector_column_name="vector_col").limit(1).to_pandas()
|
||||
result2 = table.search(q).limit(1).to_pandas()
|
||||
result1 = table.search(q, vector_column_name="vector_col").limit(1).to_arrow()
|
||||
result2 = table.search(q).limit(1).to_arrow()
|
||||
|
||||
assert result1["text"].iloc[0] == result2["text"].iloc[0]
|
||||
assert result1["text"][0].as_py() == result2["text"][0].as_py()
|
||||
|
||||
|
||||
def test_search_with_schema_inf_multiple_vector(mem_db: DBConnection):
|
||||
@@ -1143,12 +1291,12 @@ def test_search_with_schema_inf_multiple_vector(mem_db: DBConnection):
|
||||
{"vector1": v1, "vector2": v2, "text": "foo"},
|
||||
{"vector1": v2, "vector2": v1, "text": "bar"},
|
||||
]
|
||||
df = pd.DataFrame(data)
|
||||
df = pa.Table.from_pylist(data)
|
||||
table.add(df)
|
||||
|
||||
q = np.random.randn(10)
|
||||
with pytest.raises(ValueError):
|
||||
table.search(q).limit(1).to_pandas()
|
||||
table.search(q).limit(1).to_arrow()
|
||||
|
||||
|
||||
def test_compact_cleanup(tmp_db: DBConnection):
|
||||
@@ -1370,11 +1518,13 @@ def test_restore_consistency(tmp_path):
|
||||
def test_add_columns(mem_db: DBConnection):
|
||||
data = pa.table({"id": [0, 1]})
|
||||
table = LanceTable.create(mem_db, "my_table", data=data)
|
||||
table.add_columns({"new_col": "id + 2"})
|
||||
add_columns_res = table.add_columns({"new_col": "id + 2"})
|
||||
assert add_columns_res.version == 2
|
||||
assert table.to_arrow().column_names == ["id", "new_col"]
|
||||
assert table.to_arrow()["new_col"].to_pylist() == [2, 3]
|
||||
|
||||
table.add_columns({"null_int": "cast(null as bigint)"})
|
||||
add_columns_res = table.add_columns({"null_int": "cast(null as bigint)"})
|
||||
assert add_columns_res.version == 3
|
||||
assert table.schema.field("null_int").type == pa.int64()
|
||||
|
||||
|
||||
@@ -1382,7 +1532,8 @@ def test_add_columns(mem_db: DBConnection):
|
||||
async def test_add_columns_async(mem_db_async: AsyncConnection):
|
||||
data = pa.table({"id": [0, 1]})
|
||||
table = await mem_db_async.create_table("my_table", data=data)
|
||||
await table.add_columns({"new_col": "id + 2"})
|
||||
add_columns_res = await table.add_columns({"new_col": "id + 2"})
|
||||
assert add_columns_res.version == 2
|
||||
data = await table.to_arrow()
|
||||
assert data.column_names == ["id", "new_col"]
|
||||
assert data["new_col"].to_pylist() == [2, 3]
|
||||
@@ -1392,9 +1543,10 @@ async def test_add_columns_async(mem_db_async: AsyncConnection):
|
||||
async def test_add_columns_with_schema(mem_db_async: AsyncConnection):
|
||||
data = pa.table({"id": [0, 1]})
|
||||
table = await mem_db_async.create_table("my_table", data=data)
|
||||
await table.add_columns(
|
||||
add_columns_res = await table.add_columns(
|
||||
[pa.field("x", pa.int64()), pa.field("vector", pa.list_(pa.float32(), 8))]
|
||||
)
|
||||
assert add_columns_res.version == 2
|
||||
|
||||
assert await table.schema() == pa.schema(
|
||||
[
|
||||
@@ -1405,11 +1557,12 @@ async def test_add_columns_with_schema(mem_db_async: AsyncConnection):
|
||||
)
|
||||
|
||||
table = await mem_db_async.create_table("table2", data=data)
|
||||
await table.add_columns(
|
||||
add_columns_res = await table.add_columns(
|
||||
pa.schema(
|
||||
[pa.field("y", pa.int64()), pa.field("emb", pa.list_(pa.float32(), 8))]
|
||||
)
|
||||
)
|
||||
assert add_columns_res.version == 2
|
||||
assert await table.schema() == pa.schema(
|
||||
[
|
||||
pa.field("id", pa.int64()),
|
||||
@@ -1422,7 +1575,8 @@ async def test_add_columns_with_schema(mem_db_async: AsyncConnection):
|
||||
def test_alter_columns(mem_db: DBConnection):
|
||||
data = pa.table({"id": [0, 1]})
|
||||
table = mem_db.create_table("my_table", data=data)
|
||||
table.alter_columns({"path": "id", "rename": "new_id"})
|
||||
alter_columns_res = table.alter_columns({"path": "id", "rename": "new_id"})
|
||||
assert alter_columns_res.version == 2
|
||||
assert table.to_arrow().column_names == ["new_id"]
|
||||
|
||||
|
||||
@@ -1430,9 +1584,13 @@ def test_alter_columns(mem_db: DBConnection):
|
||||
async def test_alter_columns_async(mem_db_async: AsyncConnection):
|
||||
data = pa.table({"id": [0, 1]})
|
||||
table = await mem_db_async.create_table("my_table", data=data)
|
||||
await table.alter_columns({"path": "id", "rename": "new_id"})
|
||||
alter_columns_res = await table.alter_columns({"path": "id", "rename": "new_id"})
|
||||
assert alter_columns_res.version == 2
|
||||
assert (await table.to_arrow()).column_names == ["new_id"]
|
||||
await table.alter_columns(dict(path="new_id", data_type=pa.int16(), nullable=True))
|
||||
alter_columns_res = await table.alter_columns(
|
||||
dict(path="new_id", data_type=pa.int16(), nullable=True)
|
||||
)
|
||||
assert alter_columns_res.version == 3
|
||||
data = await table.to_arrow()
|
||||
assert data.column(0).type == pa.int16()
|
||||
assert data.schema.field(0).nullable
|
||||
@@ -1441,7 +1599,8 @@ async def test_alter_columns_async(mem_db_async: AsyncConnection):
|
||||
def test_drop_columns(mem_db: DBConnection):
|
||||
data = pa.table({"id": [0, 1], "category": ["a", "b"]})
|
||||
table = mem_db.create_table("my_table", data=data)
|
||||
table.drop_columns(["category"])
|
||||
drop_columns_res = table.drop_columns(["category"])
|
||||
assert drop_columns_res.version == 2
|
||||
assert table.to_arrow().column_names == ["id"]
|
||||
|
||||
|
||||
@@ -1449,7 +1608,8 @@ def test_drop_columns(mem_db: DBConnection):
|
||||
async def test_drop_columns_async(mem_db_async: AsyncConnection):
|
||||
data = pa.table({"id": [0, 1], "category": ["a", "b"]})
|
||||
table = await mem_db_async.create_table("my_table", data=data)
|
||||
await table.drop_columns(["category"])
|
||||
drop_columns_res = await table.drop_columns(["category"])
|
||||
assert drop_columns_res.version == 2
|
||||
assert (await table.to_arrow()).column_names == ["id"]
|
||||
|
||||
|
||||
@@ -1587,3 +1747,31 @@ def test_replace_field_metadata(tmp_path):
|
||||
schema = table.schema
|
||||
field = schema[0].metadata
|
||||
assert field == {b"foo": b"bar"}
|
||||
|
||||
|
||||
def test_stats(mem_db: DBConnection):
|
||||
table = mem_db.create_table(
|
||||
"my_table",
|
||||
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
|
||||
)
|
||||
assert len(table) == 2
|
||||
stats = table.stats()
|
||||
print(f"{stats=}")
|
||||
assert stats == {
|
||||
"total_bytes": 38,
|
||||
"num_rows": 2,
|
||||
"num_indices": 0,
|
||||
"fragment_stats": {
|
||||
"num_fragments": 1,
|
||||
"num_small_fragments": 1,
|
||||
"lengths": {
|
||||
"min": 2,
|
||||
"max": 2,
|
||||
"mean": 2,
|
||||
"p25": 2,
|
||||
"p50": 2,
|
||||
"p75": 2,
|
||||
"p99": 2,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
@@ -204,9 +204,7 @@ pub fn connect(
|
||||
}
|
||||
if let Some(read_consistency_interval) = read_consistency_interval {
|
||||
let read_consistency_interval = Duration::from_secs_f64(read_consistency_interval);
|
||||
builder = builder.read_consistency_interval(Some(read_consistency_interval));
|
||||
} else {
|
||||
builder = builder.read_consistency_interval(None);
|
||||
builder = builder.read_consistency_interval(read_consistency_interval);
|
||||
}
|
||||
if let Some(storage_options) = storage_options {
|
||||
builder = builder.storage_options(storage_options);
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user