mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 13:29:57 +00:00
Compare commits
11 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ff5bbfdd4c | ||
|
|
694ca30c7c | ||
|
|
b2317c904d | ||
|
|
613f3063b9 | ||
|
|
5d2cd7fb2e | ||
|
|
a88e9bb134 | ||
|
|
9c1adff426 | ||
|
|
f9d5fa88a1 | ||
|
|
4db554eea5 | ||
|
|
101066788d | ||
|
|
c4135d9d30 |
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.8.0"
|
||||
current_version = "0.9.0"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
14
Cargo.toml
14
Cargo.toml
@@ -20,12 +20,12 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
|
||||
categories = ["database-implementations"]
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.16.0", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.16.0" }
|
||||
lance-linalg = { "version" = "=0.16.0" }
|
||||
lance-testing = { "version" = "=0.16.0" }
|
||||
lance-datafusion = { "version" = "=0.16.0" }
|
||||
lance-encoding = { "version" = "=0.16.0" }
|
||||
lance = { "version" = "=0.16.1", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.16.1" }
|
||||
lance-linalg = { "version" = "=0.16.1" }
|
||||
lance-testing = { "version" = "=0.16.1" }
|
||||
lance-datafusion = { "version" = "=0.16.1" }
|
||||
lance-encoding = { "version" = "=0.16.1" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "52.2", optional = false }
|
||||
arrow-array = "52.2"
|
||||
@@ -43,7 +43,7 @@ half = { "version" = "=2.4.1", default-features = false, features = [
|
||||
] }
|
||||
futures = "0"
|
||||
log = "0.4"
|
||||
object_store = "0.10.1"
|
||||
object_store = "0.10.2"
|
||||
pin-project = "1.0.7"
|
||||
snafu = "0.7.4"
|
||||
url = "2"
|
||||
|
||||
@@ -2,8 +2,8 @@ Representing multi-modal data as vector embeddings is becoming a standard practi
|
||||
|
||||
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
|
||||
|
||||
!!! Note "LanceDB cloud doesn't support embedding functions yet"
|
||||
LanceDB Cloud does not support embedding functions yet. You need to generate embeddings before ingesting into the table or querying.
|
||||
!!! Note "Embedding functions on LanceDB cloud"
|
||||
When using embedding functions with LanceDB cloud, the embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings.
|
||||
|
||||
!!! warning
|
||||
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
|
||||
|
||||
@@ -99,28 +99,28 @@ LanceDB registers the Sentence Transformers embeddings function in the registry
|
||||
|
||||
Coming Soon!
|
||||
|
||||
### Jina Embeddings
|
||||
|
||||
LanceDB registers the JinaAI embeddings function in the registry as `jina`. You can pass any supported model name to the `create`. By default it uses `"jina-clip-v1"`.
|
||||
`jina-clip-v1` can handle both text and images and other models only support `text`.
|
||||
|
||||
You need to pass `JINA_API_KEY` in the environment variable or pass it as `api_key` to `create` method.
|
||||
### Embedding function with LanceDB cloud
|
||||
Embedding functions are now supported on LanceDB cloud. The embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings. Here's an example using the OpenAI embedding function:
|
||||
|
||||
```python
|
||||
import os
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
os.environ['JINA_API_KEY'] = "jina_*"
|
||||
os.environ['OPENAI_API_KEY'] = "..."
|
||||
|
||||
db = lancedb.connect("/tmp/db")
|
||||
func = get_registry().get("jina").create(name="jina-clip-v1")
|
||||
db = lancedb.connect(
|
||||
uri="db://....",
|
||||
api_key="sk_...",
|
||||
region="us-east-1"
|
||||
)
|
||||
func = get_registry().get("openai").create()
|
||||
|
||||
class Words(LanceModel):
|
||||
text: str = func.SourceField()
|
||||
vector: Vector(func.ndims()) = func.VectorField()
|
||||
|
||||
table = db.create_table("words", schema=Words, mode="overwrite")
|
||||
table = db.create_table("words", schema=Words)
|
||||
table.add(
|
||||
[
|
||||
{"text": "hello world"},
|
||||
|
||||
183
docs/src/fts.md
183
docs/src/fts.md
@@ -1,9 +1,14 @@
|
||||
# Full-text search
|
||||
|
||||
LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for Rust and JavaScript users as well. Follow along at [this Github issue](https://github.com/lancedb/lance/issues/1195)
|
||||
LanceDB provides support for full-text search via Lance (before via [Tantivy](https://github.com/quickwit-oss/tantivy) (Python only)), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
|
||||
|
||||
Currently, the Lance full text search is missing some features that are in the Tantivy full text search. This includes phrase queries, re-ranking, and customizing the tokenizer. Thus, in Python, Tantivy is still the default way to do full text search and many of the instructions below apply just to Tantivy-based indices.
|
||||
|
||||
|
||||
## Installation
|
||||
## Installation (Only for Tantivy-based FTS)
|
||||
|
||||
!!! note
|
||||
No need to install the tantivy dependency if using native FTS
|
||||
|
||||
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
|
||||
|
||||
@@ -14,42 +19,83 @@ pip install tantivy==0.20.1
|
||||
|
||||
## Example
|
||||
|
||||
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search.
|
||||
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
=== "Python"
|
||||
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
```python
|
||||
import lancedb
|
||||
|
||||
table = db.create_table(
|
||||
"my_table",
|
||||
data=[
|
||||
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
|
||||
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
|
||||
],
|
||||
)
|
||||
```
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
|
||||
## Create FTS index on single column
|
||||
table = db.create_table(
|
||||
"my_table",
|
||||
data=[
|
||||
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
|
||||
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
|
||||
],
|
||||
)
|
||||
|
||||
The FTS index must be created before you can search via keywords.
|
||||
# passing `use_tantivy=False` to use lance FTS index
|
||||
# `use_tantivy=True` by default
|
||||
table.create_fts_index("text")
|
||||
table.search("puppy").limit(10).select(["text"]).to_list()
|
||||
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
|
||||
# ...
|
||||
```
|
||||
|
||||
```python
|
||||
table.create_fts_index("text")
|
||||
```
|
||||
=== "TypeScript"
|
||||
|
||||
To search an FTS index via keywords, LanceDB's `table.search` accepts a string as input:
|
||||
```typescript
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
const uri = "data/sample-lancedb"
|
||||
const db = await lancedb.connect(uri);
|
||||
|
||||
```python
|
||||
table.search("puppy").limit(10).select(["text"]).to_list()
|
||||
```
|
||||
const data = [
|
||||
{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" },
|
||||
{ vector: [5.9, 26.5], text: "There are several kittens playing" },
|
||||
];
|
||||
const tbl = await db.createTable("my_table", data, { mode: "overwrite" });
|
||||
await tbl.createIndex("text", {
|
||||
config: lancedb.Index.fts(),
|
||||
});
|
||||
|
||||
This returns the result as a list of dictionaries as follows.
|
||||
await tbl
|
||||
.search("puppy")
|
||||
.select(["text"])
|
||||
.limit(10)
|
||||
.toArray();
|
||||
```
|
||||
|
||||
```python
|
||||
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
|
||||
```
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
let uri = "data/sample-lancedb";
|
||||
let db = connect(uri).execute().await?;
|
||||
let initial_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
|
||||
let tbl = db
|
||||
.create_table("my_table", initial_data)
|
||||
.execute()
|
||||
.await?;
|
||||
tbl
|
||||
.create_index(&["text"], Index::FTS(FtsIndexBuilder::default()))
|
||||
.execute()
|
||||
.await?;
|
||||
|
||||
tbl
|
||||
.query()
|
||||
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
|
||||
.select(lancedb::query::Select::Columns(vec!["text".to_owned()]))
|
||||
.limit(10)
|
||||
.execute()
|
||||
.await?;
|
||||
```
|
||||
|
||||
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
|
||||
For now, this is supported in tantivy way only.
|
||||
|
||||
Passing `fts_columns="text"` if you want to specify the columns to search, but it's not available for Tantivy-based full text search.
|
||||
|
||||
!!! note
|
||||
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
|
||||
@@ -57,20 +103,33 @@ This returns the result as a list of dictionaries as follows.
|
||||
## Tokenization
|
||||
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
|
||||
|
||||
```python
|
||||
table.create_fts_index("text", tokenizer_name="en_stem")
|
||||
```
|
||||
For now, only the Tantivy-based FTS index supports to specify the tokenizer, so it's only available in Python with `use_tantivy=True`.
|
||||
|
||||
The following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
|
||||
=== "use_tantivy=True"
|
||||
|
||||
```python
|
||||
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
|
||||
```
|
||||
|
||||
=== "use_tantivy=False"
|
||||
|
||||
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
|
||||
|
||||
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
|
||||
|
||||
## Index multiple columns
|
||||
|
||||
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
|
||||
|
||||
```python
|
||||
table.create_fts_index(["text1", "text2"])
|
||||
```
|
||||
=== "use_tantivy=True"
|
||||
|
||||
```python
|
||||
table.create_fts_index(["text1", "text2"])
|
||||
```
|
||||
|
||||
=== "use_tantivy=False"
|
||||
|
||||
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
|
||||
|
||||
Note that the search API call does not change - you can search over all indexed columns at once.
|
||||
|
||||
@@ -80,19 +139,48 @@ Currently the LanceDB full text search feature supports *post-filtering*, meanin
|
||||
applied on top of the full text search results. This can be invoked via the familiar
|
||||
`where` syntax:
|
||||
|
||||
```python
|
||||
table.search("puppy").limit(10).where("meta='foo'").to_list()
|
||||
```
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
table.search("puppy").limit(10).where("meta='foo'").to_list()
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
await tbl
|
||||
.search("apple")
|
||||
.select(["id", "doc"])
|
||||
.limit(10)
|
||||
.where("meta='foo'")
|
||||
.toArray();
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
table
|
||||
.query()
|
||||
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
|
||||
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
||||
.limit(10)
|
||||
.only_if("meta='foo'")
|
||||
.execute()
|
||||
.await?;
|
||||
```
|
||||
|
||||
## Sorting
|
||||
|
||||
!!! warning "Warn"
|
||||
Sorting is available for only Tantivy-based FTS
|
||||
|
||||
You can pre-sort the documents by specifying `ordering_field_names` when
|
||||
creating the full-text search index. Once pre-sorted, you can then specify
|
||||
`ordering_field_name` while searching to return results sorted by the given
|
||||
field. For example,
|
||||
field. For example,
|
||||
|
||||
```
|
||||
table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
|
||||
```python
|
||||
table.create_fts_index(["text_field"], use_tantivy=True, ordering_field_names=["sort_by_field"])
|
||||
|
||||
(table.search("terms", ordering_field_name="sort_by_field")
|
||||
.limit(20)
|
||||
@@ -105,8 +193,8 @@ table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
|
||||
error will be raised that looks like `ValueError: The field does not exist: xxx`
|
||||
|
||||
!!! note
|
||||
The fields to sort on must be of typed unsigned integer, or else you will see
|
||||
an error during indexing that looks like
|
||||
The fields to sort on must be of typed unsigned integer, or else you will see
|
||||
an error during indexing that looks like
|
||||
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
|
||||
|
||||
!!! note
|
||||
@@ -116,6 +204,9 @@ table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
|
||||
|
||||
## Phrase queries vs. terms queries
|
||||
|
||||
!!! warning "Warn"
|
||||
Phrase queries are available for only Tantivy-based FTS
|
||||
|
||||
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
|
||||
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
|
||||
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
|
||||
@@ -142,7 +233,7 @@ enforce it in one of two ways:
|
||||
|
||||
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
|
||||
a phrase query.
|
||||
2. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
|
||||
1. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
|
||||
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
|
||||
is treated as a phrase query.
|
||||
|
||||
@@ -150,7 +241,7 @@ In general, a query that's declared as a phrase query will be wrapped in double
|
||||
double quotes replaced by single quotes.
|
||||
|
||||
|
||||
## Configurations
|
||||
## Configurations (Only for Tantivy-based FTS)
|
||||
|
||||
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
|
||||
reduce this if running on a smaller node, or increase this for faster performance while
|
||||
@@ -164,6 +255,8 @@ table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
|
||||
|
||||
## Current limitations
|
||||
|
||||
For that Tantivy-based FTS:
|
||||
|
||||
1. Currently we do not yet support incremental writes.
|
||||
If you add data after FTS index creation, it won't be reflected
|
||||
in search results until you do a full reindex.
|
||||
|
||||
@@ -113,6 +113,10 @@ lists the indices that LanceDb supports.
|
||||
|
||||
::: lancedb.index.BTree
|
||||
|
||||
::: lancedb.index.Bitmap
|
||||
|
||||
::: lancedb.index.LabelList
|
||||
|
||||
::: lancedb.index.IvfPq
|
||||
|
||||
## Querying (Asynchronous)
|
||||
|
||||
4
node/package-lock.json
generated
4
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.8.0",
|
||||
"version": "0.9.0",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.8.0",
|
||||
"version": "0.9.0",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.8.0",
|
||||
"version": "0.9.0",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"main": "dist/index.js",
|
||||
"types": "dist/index.d.ts",
|
||||
|
||||
@@ -31,7 +31,9 @@ import {
|
||||
Float64,
|
||||
Int32,
|
||||
Int64,
|
||||
List,
|
||||
Schema,
|
||||
Utf8,
|
||||
makeArrowTable,
|
||||
} from "../lancedb/arrow";
|
||||
import {
|
||||
@@ -331,6 +333,7 @@ describe("When creating an index", () => {
|
||||
const schema = new Schema([
|
||||
new Field("id", new Int32(), true),
|
||||
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
|
||||
new Field("tags", new List(new Field("item", new Utf8(), true))),
|
||||
]);
|
||||
let tbl: Table;
|
||||
let queryVec: number[];
|
||||
@@ -346,6 +349,7 @@ describe("When creating an index", () => {
|
||||
vec: Array(32)
|
||||
.fill(1)
|
||||
.map(() => Math.random()),
|
||||
tags: ["tag1", "tag2", "tag3"],
|
||||
})),
|
||||
{
|
||||
schema,
|
||||
@@ -428,6 +432,22 @@ describe("When creating an index", () => {
|
||||
}
|
||||
});
|
||||
|
||||
test("create a bitmap index", async () => {
|
||||
await tbl.createIndex("id", {
|
||||
config: Index.bitmap(),
|
||||
});
|
||||
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
|
||||
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||
});
|
||||
|
||||
test("create a label list index", async () => {
|
||||
await tbl.createIndex("tags", {
|
||||
config: Index.labelList(),
|
||||
});
|
||||
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
|
||||
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||
});
|
||||
|
||||
test("should be able to get index stats", async () => {
|
||||
await tbl.createIndex("id");
|
||||
|
||||
@@ -785,11 +805,26 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
|
||||
];
|
||||
const table = await db.createTable("test", data);
|
||||
|
||||
expect(table.search("hello").toArray()).rejects.toThrow(
|
||||
expect(table.search("hello", "vector").toArray()).rejects.toThrow(
|
||||
"No embedding functions are defined in the table",
|
||||
);
|
||||
});
|
||||
|
||||
test("full text search if no embedding function provided", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = [
|
||||
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
|
||||
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
|
||||
];
|
||||
const table = await db.createTable("test", data);
|
||||
await table.createIndex("text", {
|
||||
config: Index.fts(),
|
||||
});
|
||||
|
||||
const results = await table.search("hello").toArray();
|
||||
expect(results[0].text).toBe(data[0].text);
|
||||
});
|
||||
|
||||
test.each([
|
||||
[0.4, 0.5, 0.599], // number[]
|
||||
Float32Array.of(0.4, 0.5, 0.599), // Float32Array
|
||||
|
||||
52
nodejs/examples/full_text_search.ts
Normal file
52
nodejs/examples/full_text_search.ts
Normal file
@@ -0,0 +1,52 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
|
||||
const db = await lancedb.connect("data/sample-lancedb");
|
||||
|
||||
const words = [
|
||||
"apple",
|
||||
"banana",
|
||||
"cherry",
|
||||
"date",
|
||||
"elderberry",
|
||||
"fig",
|
||||
"grape",
|
||||
];
|
||||
|
||||
const data = Array.from({ length: 10_000 }, (_, i) => ({
|
||||
vector: Array(1536).fill(i),
|
||||
id: i,
|
||||
item: `item ${i}`,
|
||||
strId: `${i}`,
|
||||
doc: words[i % words.length],
|
||||
}));
|
||||
|
||||
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
|
||||
|
||||
await tbl.createIndex("doc", {
|
||||
config: lancedb.Index.fts(),
|
||||
});
|
||||
|
||||
// --8<-- [start:full_text_search]
|
||||
let result = await tbl
|
||||
.search("apple")
|
||||
.select(["id", "doc"])
|
||||
.limit(10)
|
||||
.toArray();
|
||||
console.log(result);
|
||||
// --8<-- [end:full_text_search]
|
||||
|
||||
console.log("SQL search: done");
|
||||
42
nodejs/examples/package-lock.json
generated
42
nodejs/examples/package-lock.json
generated
@@ -10,7 +10,11 @@
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@lancedb/lancedb": "file:../",
|
||||
"@xenova/transformers": "^2.17.2"
|
||||
"@xenova/transformers": "^2.17.2",
|
||||
"tsc": "^2.0.4"
|
||||
},
|
||||
"devDependencies": {
|
||||
"typescript": "^5.5.4"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"typescript": "^5.0.0"
|
||||
@@ -18,7 +22,7 @@
|
||||
},
|
||||
"..": {
|
||||
"name": "@lancedb/lancedb",
|
||||
"version": "0.7.1",
|
||||
"version": "0.8.0",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -43,26 +47,30 @@
|
||||
"@types/axios": "^0.14.0",
|
||||
"@types/jest": "^29.1.2",
|
||||
"@types/tmp": "^0.2.6",
|
||||
"apache-arrow-old": "npm:apache-arrow@13.0.0",
|
||||
"apache-arrow-13": "npm:apache-arrow@13.0.0",
|
||||
"apache-arrow-14": "npm:apache-arrow@14.0.0",
|
||||
"apache-arrow-15": "npm:apache-arrow@15.0.0",
|
||||
"apache-arrow-16": "npm:apache-arrow@16.0.0",
|
||||
"apache-arrow-17": "npm:apache-arrow@17.0.0",
|
||||
"eslint": "^8.57.0",
|
||||
"jest": "^29.7.0",
|
||||
"shx": "^0.3.4",
|
||||
"tmp": "^0.2.3",
|
||||
"ts-jest": "^29.1.2",
|
||||
"typedoc": "^0.25.7",
|
||||
"typedoc-plugin-markdown": "^3.17.1",
|
||||
"typescript": "^5.3.3",
|
||||
"typedoc": "^0.26.4",
|
||||
"typedoc-plugin-markdown": "^4.2.1",
|
||||
"typescript": "^5.5.4",
|
||||
"typescript-eslint": "^7.1.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 18"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@xenova/transformers": "^2.17.2",
|
||||
"@xenova/transformers": ">=2.17 < 3",
|
||||
"openai": "^4.29.2"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"apache-arrow": "^15.0.0"
|
||||
"apache-arrow": ">=13.0.0 <=17.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@huggingface/jinja": {
|
||||
@@ -785,6 +793,15 @@
|
||||
"b4a": "^1.6.4"
|
||||
}
|
||||
},
|
||||
"node_modules/tsc": {
|
||||
"version": "2.0.4",
|
||||
"resolved": "https://registry.npmjs.org/tsc/-/tsc-2.0.4.tgz",
|
||||
"integrity": "sha512-fzoSieZI5KKJVBYGvwbVZs/J5za84f2lSTLPYf6AGiIf43tZ3GNrI1QzTLcjtyDDP4aLxd46RTZq1nQxe7+k5Q==",
|
||||
"license": "MIT",
|
||||
"bin": {
|
||||
"tsc": "bin/tsc"
|
||||
}
|
||||
},
|
||||
"node_modules/tunnel-agent": {
|
||||
"version": "0.6.0",
|
||||
"resolved": "https://registry.npmjs.org/tunnel-agent/-/tunnel-agent-0.6.0.tgz",
|
||||
@@ -797,10 +814,11 @@
|
||||
}
|
||||
},
|
||||
"node_modules/typescript": {
|
||||
"version": "5.5.2",
|
||||
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.2.tgz",
|
||||
"integrity": "sha512-NcRtPEOsPFFWjobJEtfihkLCZCXZt/os3zf8nTxjVH3RvTSxjrCamJpbExGvYOF+tFHc3pA65qpdwPbzjohhew==",
|
||||
"peer": true,
|
||||
"version": "5.5.4",
|
||||
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.4.tgz",
|
||||
"integrity": "sha512-Mtq29sKDAEYP7aljRgtPOpTvOfbwRWlS6dPRzwjdE+C0R4brX/GUyhHSecbHMFLNBLcJIPt9nl9yG5TZ1weH+Q==",
|
||||
"dev": true,
|
||||
"license": "Apache-2.0",
|
||||
"bin": {
|
||||
"tsc": "bin/tsc",
|
||||
"tsserver": "bin/tsserver"
|
||||
|
||||
@@ -13,7 +13,16 @@
|
||||
"@lancedb/lancedb": "file:../",
|
||||
"@xenova/transformers": "^2.17.2"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"typescript": "^5.0.0"
|
||||
"devDependencies": {
|
||||
"typescript": "^5.5.4"
|
||||
},
|
||||
"compilerOptions": {
|
||||
"target": "ESNext",
|
||||
"module": "ESNext",
|
||||
"moduleResolution": "Node",
|
||||
"strict": true,
|
||||
"esModuleInterop": true,
|
||||
"skipLibCheck": true,
|
||||
"forceConsistentCasingInFileNames": true
|
||||
}
|
||||
}
|
||||
|
||||
@@ -32,6 +32,7 @@ const _results2 = await tbl
|
||||
.distanceType("cosine")
|
||||
.limit(10)
|
||||
.toArray();
|
||||
console.log(_results2);
|
||||
// --8<-- [end:search2]
|
||||
|
||||
console.log("search: done");
|
||||
|
||||
@@ -37,6 +37,13 @@ interface EmbeddingFunctionCreate<T extends EmbeddingFunction> {
|
||||
export class EmbeddingFunctionRegistry {
|
||||
#functions = new Map<string, EmbeddingFunctionConstructor>();
|
||||
|
||||
/**
|
||||
* Get the number of registered functions
|
||||
*/
|
||||
length() {
|
||||
return this.#functions.size;
|
||||
}
|
||||
|
||||
/**
|
||||
* Register an embedding function
|
||||
* @param name The name of the function
|
||||
|
||||
@@ -175,6 +175,45 @@ export class Index {
|
||||
static btree() {
|
||||
return new Index(LanceDbIndex.btree());
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a bitmap index.
|
||||
*
|
||||
* A `Bitmap` index stores a bitmap for each distinct value in the column for every row.
|
||||
*
|
||||
* This index works best for low-cardinality columns, where the number of unique values
|
||||
* is small (i.e., less than a few hundreds).
|
||||
*/
|
||||
static bitmap() {
|
||||
return new Index(LanceDbIndex.bitmap());
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a label list index.
|
||||
*
|
||||
* LabelList index is a scalar index that can be used on `List<T>` columns to
|
||||
* support queries with `array_contains_all` and `array_contains_any`
|
||||
* using an underlying bitmap index.
|
||||
*/
|
||||
static labelList() {
|
||||
return new Index(LanceDbIndex.labelList());
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a full text search index
|
||||
*
|
||||
* A full text search index is an index on a string column, so that you can conduct full
|
||||
* text searches on the column.
|
||||
*
|
||||
* The results of a full text search are ordered by relevance measured by BM25.
|
||||
*
|
||||
* You can combine filters with full text search.
|
||||
*
|
||||
* For now, the full text search index only supports English, and doesn't support phrase search.
|
||||
*/
|
||||
static fts() {
|
||||
return new Index(LanceDbIndex.fts());
|
||||
}
|
||||
}
|
||||
|
||||
export interface IndexOptions {
|
||||
|
||||
@@ -88,6 +88,19 @@ export interface QueryExecutionOptions {
|
||||
maxBatchLength?: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Options that control the behavior of a full text search
|
||||
*/
|
||||
export interface FullTextSearchOptions {
|
||||
/**
|
||||
* The columns to search
|
||||
*
|
||||
* If not specified, all indexed columns will be searched.
|
||||
* For now, only one column can be searched.
|
||||
*/
|
||||
columns?: string | string[];
|
||||
}
|
||||
|
||||
/** Common methods supported by all query types */
|
||||
export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
|
||||
implements AsyncIterable<RecordBatch>
|
||||
@@ -134,6 +147,25 @@ export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
|
||||
return this.where(predicate);
|
||||
}
|
||||
|
||||
fullTextSearch(
|
||||
query: string,
|
||||
options?: Partial<FullTextSearchOptions>,
|
||||
): this {
|
||||
let columns: string[] | null = null;
|
||||
if (options) {
|
||||
if (typeof options.columns === "string") {
|
||||
columns = [options.columns];
|
||||
} else if (Array.isArray(options.columns)) {
|
||||
columns = options.columns;
|
||||
}
|
||||
}
|
||||
|
||||
this.doCall((inner: NativeQueryType) =>
|
||||
inner.fullTextSearch(query, columns),
|
||||
);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return only the specified columns.
|
||||
*
|
||||
|
||||
@@ -270,22 +270,23 @@ export abstract class Table {
|
||||
* @returns {Query} A builder that can be used to parameterize the query
|
||||
*/
|
||||
abstract query(): Query;
|
||||
|
||||
/**
|
||||
* Create a search query to find the nearest neighbors
|
||||
* of the given query vector
|
||||
* @param {string} query - the query. This will be converted to a vector using the table's provided embedding function
|
||||
* @note If no embedding functions are defined in the table, this will error when collecting the results.
|
||||
* of the given query
|
||||
* @param {string | IntoVector} query - the query, a vector or string
|
||||
* @param {string} queryType - the type of the query, "vector", "fts", or "auto"
|
||||
* @param {string | string[]} ftsColumns - the columns to search in for full text search
|
||||
* for now, only one column can be searched at a time.
|
||||
*
|
||||
* This is just a convenience method for calling `.query().nearestTo(await myEmbeddingFunction(query))`
|
||||
* when "auto" is used, if the query is a string and an embedding function is defined, it will be treated as a vector query
|
||||
* if the query is a string and no embedding function is defined, it will be treated as a full text search query
|
||||
*/
|
||||
abstract search(query: string): VectorQuery;
|
||||
/**
|
||||
* Create a search query to find the nearest neighbors
|
||||
* of the given query vector
|
||||
* @param {IntoVector} query - the query vector
|
||||
* This is just a convenience method for calling `.query().nearestTo(query)`
|
||||
*/
|
||||
abstract search(query: IntoVector): VectorQuery;
|
||||
abstract search(
|
||||
query: string | IntoVector,
|
||||
queryType?: string,
|
||||
ftsColumns?: string | string[],
|
||||
): VectorQuery | Query;
|
||||
/**
|
||||
* Search the table with a given query vector.
|
||||
*
|
||||
@@ -581,27 +582,50 @@ export class LocalTable extends Table {
|
||||
query(): Query {
|
||||
return new Query(this.inner);
|
||||
}
|
||||
search(query: string | IntoVector): VectorQuery {
|
||||
if (typeof query !== "string") {
|
||||
return this.vectorSearch(query);
|
||||
} else {
|
||||
const queryPromise = this.getEmbeddingFunctions().then(
|
||||
async (functions) => {
|
||||
// TODO: Support multiple embedding functions
|
||||
const embeddingFunc: EmbeddingFunctionConfig | undefined = functions
|
||||
.values()
|
||||
.next().value;
|
||||
if (!embeddingFunc) {
|
||||
return Promise.reject(
|
||||
new Error("No embedding functions are defined in the table"),
|
||||
);
|
||||
}
|
||||
return await embeddingFunc.function.computeQueryEmbeddings(query);
|
||||
},
|
||||
);
|
||||
|
||||
return this.query().nearestTo(queryPromise);
|
||||
search(
|
||||
query: string | IntoVector,
|
||||
queryType: string = "auto",
|
||||
ftsColumns?: string | string[],
|
||||
): VectorQuery | Query {
|
||||
if (typeof query !== "string") {
|
||||
if (queryType === "fts") {
|
||||
throw new Error("Cannot perform full text search on a vector query");
|
||||
}
|
||||
return this.vectorSearch(query);
|
||||
}
|
||||
|
||||
// If the query is a string, we need to determine if it is a vector query or a full text search query
|
||||
if (queryType === "fts") {
|
||||
return this.query().fullTextSearch(query, {
|
||||
columns: ftsColumns,
|
||||
});
|
||||
}
|
||||
|
||||
// The query type is auto or vector
|
||||
// fall back to full text search if no embedding functions are defined and the query is a string
|
||||
if (queryType === "auto" && getRegistry().length() === 0) {
|
||||
return this.query().fullTextSearch(query, {
|
||||
columns: ftsColumns,
|
||||
});
|
||||
}
|
||||
|
||||
const queryPromise = this.getEmbeddingFunctions().then(
|
||||
async (functions) => {
|
||||
// TODO: Support multiple embedding functions
|
||||
const embeddingFunc: EmbeddingFunctionConfig | undefined = functions
|
||||
.values()
|
||||
.next().value;
|
||||
if (!embeddingFunc) {
|
||||
return Promise.reject(
|
||||
new Error("No embedding functions are defined in the table"),
|
||||
);
|
||||
}
|
||||
return await embeddingFunc.function.computeQueryEmbeddings(query);
|
||||
},
|
||||
);
|
||||
|
||||
return this.query().nearestTo(queryPromise);
|
||||
}
|
||||
|
||||
vectorSearch(vector: IntoVector): VectorQuery {
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-arm64",
|
||||
"version": "0.8.0",
|
||||
"version": "0.9.0",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.darwin-arm64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-x64",
|
||||
"version": "0.8.0",
|
||||
"version": "0.9.0",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.darwin-x64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-gnu",
|
||||
"version": "0.8.0",
|
||||
"version": "0.9.0",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-gnu",
|
||||
"version": "0.8.0",
|
||||
"version": "0.9.0",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-x64-msvc",
|
||||
"version": "0.8.0",
|
||||
"version": "0.9.0",
|
||||
"os": ["win32"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.win32-x64-msvc.node",
|
||||
|
||||
9
nodejs/package-lock.json
generated
9
nodejs/package-lock.json
generated
@@ -43,7 +43,7 @@
|
||||
"ts-jest": "^29.1.2",
|
||||
"typedoc": "^0.26.4",
|
||||
"typedoc-plugin-markdown": "^4.2.1",
|
||||
"typescript": "^5.3.3",
|
||||
"typescript": "^5.5.4",
|
||||
"typescript-eslint": "^7.1.0"
|
||||
},
|
||||
"engines": {
|
||||
@@ -9292,10 +9292,11 @@
|
||||
}
|
||||
},
|
||||
"node_modules/typescript": {
|
||||
"version": "5.3.3",
|
||||
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.3.3.tgz",
|
||||
"integrity": "sha512-pXWcraxM0uxAS+tN0AG/BF2TyqmHO014Z070UsJ+pFvYuRSq8KH8DmWpnbXe0pEPDHXZV3FcAbJkijJ5oNEnWw==",
|
||||
"version": "5.5.4",
|
||||
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.4.tgz",
|
||||
"integrity": "sha512-Mtq29sKDAEYP7aljRgtPOpTvOfbwRWlS6dPRzwjdE+C0R4brX/GUyhHSecbHMFLNBLcJIPt9nl9yG5TZ1weH+Q==",
|
||||
"dev": true,
|
||||
"license": "Apache-2.0",
|
||||
"bin": {
|
||||
"tsc": "bin/tsc",
|
||||
"tsserver": "bin/tsserver"
|
||||
|
||||
@@ -10,7 +10,7 @@
|
||||
"vector database",
|
||||
"ann"
|
||||
],
|
||||
"version": "0.8.0",
|
||||
"version": "0.9.0",
|
||||
"main": "dist/index.js",
|
||||
"exports": {
|
||||
".": "./dist/index.js",
|
||||
@@ -53,7 +53,7 @@
|
||||
"ts-jest": "^29.1.2",
|
||||
"typedoc": "^0.26.4",
|
||||
"typedoc-plugin-markdown": "^4.2.1",
|
||||
"typescript": "^5.3.3",
|
||||
"typescript": "^5.5.4",
|
||||
"typescript-eslint": "^7.1.0"
|
||||
},
|
||||
"ava": {
|
||||
|
||||
@@ -14,7 +14,7 @@
|
||||
|
||||
use std::sync::Mutex;
|
||||
|
||||
use lancedb::index::scalar::BTreeIndexBuilder;
|
||||
use lancedb::index::scalar::{BTreeIndexBuilder, FtsIndexBuilder};
|
||||
use lancedb::index::vector::IvfPqIndexBuilder;
|
||||
use lancedb::index::Index as LanceDbIndex;
|
||||
use napi_derive::napi;
|
||||
@@ -76,4 +76,25 @@ impl Index {
|
||||
inner: Mutex::new(Some(LanceDbIndex::BTree(BTreeIndexBuilder::default()))),
|
||||
}
|
||||
}
|
||||
|
||||
#[napi(factory)]
|
||||
pub fn bitmap() -> Self {
|
||||
Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::Bitmap(Default::default()))),
|
||||
}
|
||||
}
|
||||
|
||||
#[napi(factory)]
|
||||
pub fn label_list() -> Self {
|
||||
Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::LabelList(Default::default()))),
|
||||
}
|
||||
}
|
||||
|
||||
#[napi(factory)]
|
||||
pub fn fts() -> Self {
|
||||
Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::FTS(FtsIndexBuilder::default()))),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -12,6 +12,7 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use lancedb::index::scalar::FullTextSearchQuery;
|
||||
use lancedb::query::ExecutableQuery;
|
||||
use lancedb::query::Query as LanceDbQuery;
|
||||
use lancedb::query::QueryBase;
|
||||
@@ -42,6 +43,12 @@ impl Query {
|
||||
self.inner = self.inner.clone().only_if(predicate);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn full_text_search(&mut self, query: String, columns: Option<Vec<String>>) {
|
||||
let query = FullTextSearchQuery::new(query).columns(columns);
|
||||
self.inner = self.inner.clone().full_text_search(query);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn select(&mut self, columns: Vec<(String, String)>) {
|
||||
self.inner = self.inner.clone().select(Select::dynamic(&columns));
|
||||
@@ -138,6 +145,12 @@ impl VectorQuery {
|
||||
self.inner = self.inner.clone().only_if(predicate);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn full_text_search(&mut self, query: String, columns: Option<Vec<String>>) {
|
||||
let query = FullTextSearchQuery::new(query).columns(columns);
|
||||
self.inner = self.inner.clone().full_text_search(query);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn select(&mut self, columns: Vec<(String, String)>) {
|
||||
self.inner = self.inner.clone().select(Select::dynamic(&columns));
|
||||
|
||||
@@ -9,7 +9,8 @@
|
||||
"allowJs": true,
|
||||
"resolveJsonModule": true,
|
||||
"emitDecoratorMetadata": true,
|
||||
"experimentalDecorators": true
|
||||
"experimentalDecorators": true,
|
||||
"moduleResolution": "Node"
|
||||
},
|
||||
"exclude": ["./dist/*"],
|
||||
"typedocOptions": {
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.12.0"
|
||||
current_version = "0.13.0-beta.0"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-python"
|
||||
version = "0.12.0"
|
||||
version = "0.13.0-beta.0"
|
||||
edition.workspace = true
|
||||
description = "Python bindings for LanceDB"
|
||||
license.workspace = true
|
||||
|
||||
@@ -3,7 +3,7 @@ name = "lancedb"
|
||||
# version in Cargo.toml
|
||||
dependencies = [
|
||||
"deprecation",
|
||||
"pylance==0.16.0",
|
||||
"pylance==0.16.1",
|
||||
"ratelimiter~=1.0",
|
||||
"requests>=2.31.0",
|
||||
"retry>=0.9.2",
|
||||
|
||||
@@ -8,7 +8,7 @@ from ._lancedb import (
|
||||
)
|
||||
|
||||
|
||||
class BTree(object):
|
||||
class BTree:
|
||||
"""Describes a btree index configuration
|
||||
|
||||
A btree index is an index on scalar columns. The index stores a copy of the
|
||||
@@ -22,7 +22,8 @@ class BTree(object):
|
||||
sizeof(Scalar) * 4096 bytes to find the correct row ids.
|
||||
|
||||
This index is good for scalar columns with mostly distinct values and does best
|
||||
when the query is highly selective.
|
||||
when the query is highly selective. It works with numeric, temporal, and string
|
||||
columns.
|
||||
|
||||
The btree index does not currently have any parameters though parameters such as
|
||||
the block size may be added in the future.
|
||||
@@ -32,7 +33,44 @@ class BTree(object):
|
||||
self._inner = LanceDbIndex.btree()
|
||||
|
||||
|
||||
class IvfPq(object):
|
||||
class Bitmap:
|
||||
"""Describe a Bitmap index configuration.
|
||||
|
||||
A `Bitmap` index stores a bitmap for each distinct value in the column for
|
||||
every row.
|
||||
|
||||
This index works best for low-cardinality numeric or string columns,
|
||||
where the number of unique values is small (i.e., less than a few thousands).
|
||||
`Bitmap` index can accelerate the following filters:
|
||||
|
||||
- `<`, `<=`, `=`, `>`, `>=`
|
||||
- `IN (value1, value2, ...)`
|
||||
- `between (value1, value2)`
|
||||
- `is null`
|
||||
|
||||
For example, a bitmap index with a table with 1Bi rows, and 128 distinct values,
|
||||
requires 128 / 8 * 1Bi bytes on disk.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._inner = LanceDbIndex.bitmap()
|
||||
|
||||
|
||||
class LabelList:
|
||||
"""Describe a LabelList index configuration.
|
||||
|
||||
`LabelList` is a scalar index that can be used on `List<T>` columns to
|
||||
support queries with `array_contains_all` and `array_contains_any`
|
||||
using an underlying bitmap index.
|
||||
|
||||
For example, it works with `tags`, `categories`, `keywords`, etc.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._inner = LanceDbIndex.label_list()
|
||||
|
||||
|
||||
class IvfPq:
|
||||
"""Describes an IVF PQ Index
|
||||
|
||||
This index stores a compressed (quantized) copy of every vector. These vectors
|
||||
|
||||
@@ -99,6 +99,9 @@ class Query(pydantic.BaseModel):
|
||||
# if True then apply the filter before vector search
|
||||
prefilter: bool = False
|
||||
|
||||
# full text search query
|
||||
full_text_query: Optional[Union[str, dict]] = None
|
||||
|
||||
# top k results to return
|
||||
k: int
|
||||
|
||||
@@ -131,6 +134,7 @@ class LanceQueryBuilder(ABC):
|
||||
query_type: str,
|
||||
vector_column_name: str,
|
||||
ordering_field_name: str = None,
|
||||
fts_columns: Union[str, List[str]] = None,
|
||||
) -> LanceQueryBuilder:
|
||||
"""
|
||||
Create a query builder based on the given query and query type.
|
||||
@@ -226,6 +230,7 @@ class LanceQueryBuilder(ABC):
|
||||
self._limit = 10
|
||||
self._columns = None
|
||||
self._where = None
|
||||
self._prefilter = False
|
||||
self._with_row_id = False
|
||||
|
||||
@deprecation.deprecated(
|
||||
@@ -664,12 +669,19 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
"""A builder for full text search for LanceDB."""
|
||||
|
||||
def __init__(self, table: "Table", query: str, ordering_field_name: str = None):
|
||||
def __init__(
|
||||
self,
|
||||
table: "Table",
|
||||
query: str,
|
||||
ordering_field_name: str = None,
|
||||
fts_columns: Union[str, List[str]] = None,
|
||||
):
|
||||
super().__init__(table)
|
||||
self._query = query
|
||||
self._phrase_query = False
|
||||
self.ordering_field_name = ordering_field_name
|
||||
self._reranker = None
|
||||
self._fts_columns = fts_columns
|
||||
|
||||
def phrase_query(self, phrase_query: bool = True) -> LanceFtsQueryBuilder:
|
||||
"""Set whether to use phrase query.
|
||||
@@ -689,6 +701,35 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
return self
|
||||
|
||||
def to_arrow(self) -> pa.Table:
|
||||
tantivy_index_path = self._table._get_fts_index_path()
|
||||
if Path(tantivy_index_path).exists():
|
||||
return self.tantivy_to_arrow()
|
||||
|
||||
query = self._query
|
||||
if self._phrase_query:
|
||||
raise NotImplementedError(
|
||||
"Phrase query is not yet supported in Lance FTS. "
|
||||
"Use tantivy-based index instead for now."
|
||||
)
|
||||
if self._reranker:
|
||||
raise NotImplementedError(
|
||||
"Reranking is not yet supported in Lance FTS. "
|
||||
"Use tantivy-based index instead for now."
|
||||
)
|
||||
ds = self._table.to_lance()
|
||||
return ds.to_table(
|
||||
columns=self._columns,
|
||||
filter=self._where,
|
||||
limit=self._limit,
|
||||
prefilter=self._prefilter,
|
||||
with_row_id=self._with_row_id,
|
||||
full_text_query={
|
||||
"query": query,
|
||||
"columns": self._fts_columns,
|
||||
},
|
||||
)
|
||||
|
||||
def tantivy_to_arrow(self) -> pa.Table:
|
||||
try:
|
||||
import tantivy
|
||||
except ImportError:
|
||||
@@ -726,11 +767,11 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
index, query, self._limit, ordering_field=self.ordering_field_name
|
||||
)
|
||||
if len(row_ids) == 0:
|
||||
empty_schema = pa.schema([pa.field("score", pa.float32())])
|
||||
empty_schema = pa.schema([pa.field("_score", pa.float32())])
|
||||
return pa.Table.from_pylist([], schema=empty_schema)
|
||||
scores = pa.array(scores)
|
||||
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
|
||||
output_tbl = output_tbl.append_column("score", scores)
|
||||
output_tbl = output_tbl.append_column("_score", scores)
|
||||
# this needs to match vector search results which are uint64
|
||||
row_ids = pa.array(row_ids, type=pa.uint64())
|
||||
|
||||
@@ -784,8 +825,7 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
LanceFtsQueryBuilder
|
||||
The LanceQueryBuilder object.
|
||||
"""
|
||||
self._reranker = reranker
|
||||
return self
|
||||
raise NotImplementedError("Reranking is not yet supported for FTS queries.")
|
||||
|
||||
|
||||
class LanceEmptyQueryBuilder(LanceQueryBuilder):
|
||||
@@ -856,13 +896,13 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
# convert to ranks first if needed
|
||||
if self._norm == "rank":
|
||||
vector_results = self._rank(vector_results, "_distance")
|
||||
fts_results = self._rank(fts_results, "score")
|
||||
fts_results = self._rank(fts_results, "_score")
|
||||
# normalize the scores to be between 0 and 1, 0 being most relevant
|
||||
vector_results = self._normalize_scores(vector_results, "_distance")
|
||||
|
||||
# In fts higher scores represent relevance. Not inverting them here as
|
||||
# rerankers might need to preserve this score to support `return_score="all"`
|
||||
fts_results = self._normalize_scores(fts_results, "score")
|
||||
fts_results = self._normalize_scores(fts_results, "_score")
|
||||
|
||||
results = self._reranker.rerank_hybrid(
|
||||
self._fts_query._query, vector_results, fts_results
|
||||
@@ -1177,6 +1217,16 @@ class AsyncQueryBase(object):
|
||||
await batch_iter.read_all(), schema=batch_iter.schema
|
||||
)
|
||||
|
||||
async def to_list(self) -> List[dict]:
|
||||
"""
|
||||
Execute the query and return the results as a list of dictionaries.
|
||||
|
||||
Each list entry is a dictionary with the selected column names as keys,
|
||||
or all table columns if `select` is not called. The vector and the "_distance"
|
||||
fields are returned whether or not they're explicitly selected.
|
||||
"""
|
||||
return (await self.to_arrow()).to_pylist()
|
||||
|
||||
async def to_pandas(self) -> "pd.DataFrame":
|
||||
"""
|
||||
Execute the query and collect the results into a pandas DataFrame.
|
||||
|
||||
@@ -220,8 +220,8 @@ class Reranker(ABC):
|
||||
|
||||
def _keep_relevance_score(self, combined_results: pa.Table):
|
||||
if self.score == "relevance":
|
||||
if "score" in combined_results.column_names:
|
||||
combined_results = combined_results.drop_columns(["score"])
|
||||
if "_score" in combined_results.column_names:
|
||||
combined_results = combined_results.drop_columns(["_score"])
|
||||
if "_distance" in combined_results.column_names:
|
||||
combined_results = combined_results.drop_columns(["_distance"])
|
||||
return combined_results
|
||||
|
||||
@@ -113,6 +113,6 @@ class CohereReranker(Reranker):
|
||||
):
|
||||
result_set = self._rerank(fts_results, query)
|
||||
if self.score == "relevance":
|
||||
result_set = result_set.drop_columns(["score"])
|
||||
result_set = result_set.drop_columns(["_score"])
|
||||
|
||||
return result_set
|
||||
|
||||
@@ -105,7 +105,7 @@ class ColbertReranker(Reranker):
|
||||
):
|
||||
result_set = self._rerank(fts_results, query)
|
||||
if self.score == "relevance":
|
||||
result_set = result_set.drop_columns(["score"])
|
||||
result_set = result_set.drop_columns(["_score"])
|
||||
|
||||
result_set = result_set.sort_by([("_relevance_score", "descending")])
|
||||
|
||||
|
||||
@@ -96,7 +96,7 @@ class CrossEncoderReranker(Reranker):
|
||||
):
|
||||
fts_results = self._rerank(fts_results, query)
|
||||
if self.score == "relevance":
|
||||
fts_results = fts_results.drop_columns(["score"])
|
||||
fts_results = fts_results.drop_columns(["_score"])
|
||||
|
||||
fts_results = fts_results.sort_by([("_relevance_score", "descending")])
|
||||
return fts_results
|
||||
|
||||
@@ -117,6 +117,6 @@ class JinaReranker(Reranker):
|
||||
):
|
||||
result_set = self._rerank(fts_results, query)
|
||||
if self.score == "relevance":
|
||||
result_set = result_set.drop_columns(["score"])
|
||||
result_set = result_set.drop_columns(["_score"])
|
||||
|
||||
return result_set
|
||||
|
||||
@@ -69,12 +69,12 @@ class LinearCombinationReranker(Reranker):
|
||||
vi = vector_list[i]
|
||||
fj = fts_list[j]
|
||||
# invert the fts score from relevance to distance
|
||||
inverted_fts_score = self._invert_score(fj["score"])
|
||||
inverted_fts_score = self._invert_score(fj["_score"])
|
||||
if vi["_rowid"] == fj["_rowid"]:
|
||||
vi["_relevance_score"] = self._combine_score(
|
||||
vi["_distance"], inverted_fts_score
|
||||
)
|
||||
vi["score"] = fj["score"] # keep the original score
|
||||
vi["_score"] = fj["_score"] # keep the original score
|
||||
combined_list.append(vi)
|
||||
i += 1
|
||||
j += 1
|
||||
|
||||
@@ -108,7 +108,7 @@ class OpenaiReranker(Reranker):
|
||||
def rerank_fts(self, query: str, fts_results: pa.Table):
|
||||
fts_results = self._rerank(fts_results, query)
|
||||
if self.score == "relevance":
|
||||
fts_results = fts_results.drop_columns(["score"])
|
||||
fts_results = fts_results.drop_columns(["_score"])
|
||||
|
||||
fts_results = fts_results.sort_by([("_relevance_score", "descending")])
|
||||
|
||||
|
||||
@@ -1,15 +1,5 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
@@ -59,10 +49,9 @@ from .util import (
|
||||
if TYPE_CHECKING:
|
||||
import PIL
|
||||
from lance.dataset import CleanupStats, ReaderLike
|
||||
|
||||
from ._lancedb import Table as LanceDBTable, OptimizeStats
|
||||
from .db import LanceDBConnection
|
||||
from .index import BTree, IndexConfig, IvfPq
|
||||
from .index import BTree, IndexConfig, IvfPq, Bitmap, LabelList
|
||||
|
||||
|
||||
pd = safe_import_pandas()
|
||||
@@ -350,6 +339,7 @@ class Table(ABC):
|
||||
def create_scalar_index(
|
||||
self,
|
||||
column: str,
|
||||
index_type: Literal["BTREE", "BITMAP", "LABEL_LIST"] = "BTREE",
|
||||
*,
|
||||
replace: bool = True,
|
||||
):
|
||||
@@ -511,6 +501,8 @@ class Table(ABC):
|
||||
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
|
||||
vector_column_name: Optional[str] = None,
|
||||
query_type: str = "auto",
|
||||
ordering_field_name: Optional[str] = None,
|
||||
fts_columns: Union[str, List[str]] = None,
|
||||
) -> LanceQueryBuilder:
|
||||
"""Create a search query to find the nearest neighbors
|
||||
of the given query vector. We currently support [vector search][search]
|
||||
@@ -1188,9 +1180,15 @@ class LanceTable(Table):
|
||||
index_cache_size=index_cache_size,
|
||||
)
|
||||
|
||||
def create_scalar_index(self, column: str, *, replace: bool = True):
|
||||
def create_scalar_index(
|
||||
self,
|
||||
column: str,
|
||||
index_type: Literal["BTREE", "BITMAP", "LABEL_LIST"] = "BTREE",
|
||||
*,
|
||||
replace: bool = True,
|
||||
):
|
||||
self._dataset_mut.create_scalar_index(
|
||||
column, index_type="BTREE", replace=replace
|
||||
column, index_type=index_type, replace=replace
|
||||
)
|
||||
|
||||
def create_fts_index(
|
||||
@@ -1201,6 +1199,7 @@ class LanceTable(Table):
|
||||
replace: bool = False,
|
||||
writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
|
||||
tokenizer_name: str = "default",
|
||||
use_tantivy: bool = True,
|
||||
):
|
||||
"""Create a full-text search index on the table.
|
||||
|
||||
@@ -1211,6 +1210,7 @@ class LanceTable(Table):
|
||||
----------
|
||||
field_names: str or list of str
|
||||
The name(s) of the field to index.
|
||||
can be only str if use_tantivy=True for now.
|
||||
replace: bool, default False
|
||||
If True, replace the existing index if it exists. Note that this is
|
||||
not yet an atomic operation; the index will be temporarily
|
||||
@@ -1218,12 +1218,31 @@ class LanceTable(Table):
|
||||
writer_heap_size: int, default 1GB
|
||||
ordering_field_names:
|
||||
A list of unsigned type fields to index to optionally order
|
||||
results on at search time
|
||||
results on at search time.
|
||||
only available with use_tantivy=True
|
||||
tokenizer_name: str, default "default"
|
||||
The tokenizer to use for the index. Can be "raw", "default" or the 2 letter
|
||||
language code followed by "_stem". So for english it would be "en_stem".
|
||||
For available languages see: https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html
|
||||
only available with use_tantivy=True for now
|
||||
use_tantivy: bool, default False
|
||||
If True, use the legacy full-text search implementation based on tantivy.
|
||||
If False, use the new full-text search implementation based on lance-index.
|
||||
"""
|
||||
if not use_tantivy:
|
||||
if not isinstance(field_names, str):
|
||||
raise ValueError("field_names must be a string when use_tantivy=False")
|
||||
# delete the existing legacy index if it exists
|
||||
if replace:
|
||||
fs, path = fs_from_uri(self._get_fts_index_path())
|
||||
index_exists = fs.get_file_info(path).type != pa_fs.FileType.NotFound
|
||||
if index_exists:
|
||||
fs.delete_dir(path)
|
||||
self._dataset_mut.create_scalar_index(
|
||||
field_names, index_type="INVERTED", replace=replace
|
||||
)
|
||||
return
|
||||
|
||||
from .fts import create_index, populate_index
|
||||
|
||||
if isinstance(field_names, str):
|
||||
@@ -1392,6 +1411,7 @@ class LanceTable(Table):
|
||||
vector_column_name: Optional[str] = None,
|
||||
query_type: str = "auto",
|
||||
ordering_field_name: Optional[str] = None,
|
||||
fts_columns: Union[str, List[str]] = None,
|
||||
) -> LanceQueryBuilder:
|
||||
"""Create a search query to find the nearest neighbors
|
||||
of the given query vector. We currently support [vector search][search]
|
||||
@@ -1446,6 +1466,10 @@ class LanceTable(Table):
|
||||
or raise an error if no corresponding embedding function is found.
|
||||
If the `query` is a string, then the query type is "vector" if the
|
||||
table has embedding functions, else the query type is "fts"
|
||||
fts_columns: str or list of str, default None
|
||||
The column(s) to search in for full-text search.
|
||||
If None then the search is performed on all indexed columns.
|
||||
For now, only one column can be searched at a time.
|
||||
|
||||
Returns
|
||||
-------
|
||||
@@ -1665,6 +1689,7 @@ class LanceTable(Table):
|
||||
"nprobes": query.nprobes,
|
||||
"refine_factor": query.refine_factor,
|
||||
},
|
||||
full_text_query=query.full_text_query,
|
||||
with_row_id=query.with_row_id,
|
||||
batch_size=batch_size,
|
||||
).to_reader()
|
||||
@@ -2088,7 +2113,7 @@ class AsyncTable:
|
||||
column: str,
|
||||
*,
|
||||
replace: Optional[bool] = None,
|
||||
config: Optional[Union[IvfPq, BTree]] = None,
|
||||
config: Optional[Union[IvfPq, BTree, Bitmap, LabelList]] = None,
|
||||
):
|
||||
"""Create an index to speed up queries
|
||||
|
||||
|
||||
@@ -22,7 +22,8 @@ import pytest
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
|
||||
|
||||
def test_basic(tmp_path):
|
||||
@pytest.mark.parametrize("use_tantivy", [True, False])
|
||||
def test_basic(tmp_path, use_tantivy):
|
||||
db = lancedb.connect(tmp_path)
|
||||
|
||||
assert db.uri == str(tmp_path)
|
||||
@@ -55,7 +56,7 @@ def test_basic(tmp_path):
|
||||
assert len(rs) == 1
|
||||
assert rs["item"].iloc[0] == "foo"
|
||||
|
||||
table.create_fts_index(["item"])
|
||||
table.create_fts_index("item", use_tantivy=use_tantivy)
|
||||
rs = table.search("bar", query_type="fts").to_pandas()
|
||||
assert len(rs) == 1
|
||||
assert rs["item"].iloc[0] == "bar"
|
||||
|
||||
@@ -74,7 +74,12 @@ def test_create_index_with_stemming(tmp_path, table):
|
||||
assert os.path.exists(str(tmp_path / "index"))
|
||||
|
||||
# Check stemming by running tokenizer on non empty table
|
||||
table.create_fts_index("text", tokenizer_name="en_stem")
|
||||
table.create_fts_index("text", tokenizer_name="en_stem", use_tantivy=True)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("use_tantivy", [True, False])
|
||||
def test_create_inverted_index(table, use_tantivy):
|
||||
table.create_fts_index("text", use_tantivy=use_tantivy)
|
||||
|
||||
|
||||
def test_populate_index(tmp_path, table):
|
||||
@@ -92,8 +97,15 @@ def test_search_index(tmp_path, table):
|
||||
assert len(results[1]) == 10 # _distance
|
||||
|
||||
|
||||
@pytest.mark.parametrize("use_tantivy", [True, False])
|
||||
def test_search_fts(table, use_tantivy):
|
||||
table.create_fts_index("text", use_tantivy=use_tantivy)
|
||||
results = table.search("puppy").limit(10).to_list()
|
||||
assert len(results) == 10
|
||||
|
||||
|
||||
def test_search_ordering_field_index_table(tmp_path, table):
|
||||
table.create_fts_index("text", ordering_field_names=["count"])
|
||||
table.create_fts_index("text", ordering_field_names=["count"], use_tantivy=True)
|
||||
rows = (
|
||||
table.search("puppy", ordering_field_name="count")
|
||||
.limit(20)
|
||||
@@ -125,8 +137,9 @@ def test_search_ordering_field_index(tmp_path, table):
|
||||
assert sorted(rows, key=lambda x: x["count"], reverse=True) == rows
|
||||
|
||||
|
||||
def test_create_index_from_table(tmp_path, table):
|
||||
table.create_fts_index("text")
|
||||
@pytest.mark.parametrize("use_tantivy", [True, False])
|
||||
def test_create_index_from_table(tmp_path, table, use_tantivy):
|
||||
table.create_fts_index("text", use_tantivy=use_tantivy)
|
||||
df = table.search("puppy").limit(10).select(["text"]).to_pandas()
|
||||
assert len(df) <= 10
|
||||
assert "text" in df.columns
|
||||
@@ -145,15 +158,15 @@ def test_create_index_from_table(tmp_path, table):
|
||||
]
|
||||
)
|
||||
|
||||
with pytest.raises(ValueError, match="already exists"):
|
||||
table.create_fts_index("text")
|
||||
with pytest.raises(Exception, match="already exists"):
|
||||
table.create_fts_index("text", use_tantivy=use_tantivy)
|
||||
|
||||
table.create_fts_index("text", replace=True)
|
||||
table.create_fts_index("text", replace=True, use_tantivy=use_tantivy)
|
||||
assert len(table.search("gorilla").limit(1).to_pandas()) == 1
|
||||
|
||||
|
||||
def test_create_index_multiple_columns(tmp_path, table):
|
||||
table.create_fts_index(["text", "text2"])
|
||||
table.create_fts_index(["text", "text2"], use_tantivy=True)
|
||||
df = table.search("puppy").limit(10).to_pandas()
|
||||
assert len(df) == 10
|
||||
assert "text" in df.columns
|
||||
@@ -161,20 +174,21 @@ def test_create_index_multiple_columns(tmp_path, table):
|
||||
|
||||
|
||||
def test_empty_rs(tmp_path, table, mocker):
|
||||
table.create_fts_index(["text", "text2"])
|
||||
table.create_fts_index(["text", "text2"], use_tantivy=True)
|
||||
mocker.patch("lancedb.fts.search_index", return_value=([], []))
|
||||
df = table.search("puppy").limit(10).to_pandas()
|
||||
assert len(df) == 0
|
||||
|
||||
|
||||
def test_nested_schema(tmp_path, table):
|
||||
table.create_fts_index("nested.text")
|
||||
table.create_fts_index("nested.text", use_tantivy=True)
|
||||
rs = table.search("puppy").limit(10).to_list()
|
||||
assert len(rs) == 10
|
||||
|
||||
|
||||
def test_search_index_with_filter(table):
|
||||
table.create_fts_index("text")
|
||||
@pytest.mark.parametrize("use_tantivy", [True, False])
|
||||
def test_search_index_with_filter(table, use_tantivy):
|
||||
table.create_fts_index("text", use_tantivy=use_tantivy)
|
||||
orig_import = __import__
|
||||
|
||||
def import_mock(name, *args):
|
||||
@@ -186,7 +200,7 @@ def test_search_index_with_filter(table):
|
||||
with mock.patch("builtins.__import__", side_effect=import_mock):
|
||||
rs = table.search("puppy").where("id=1").limit(10)
|
||||
# test schema
|
||||
assert rs.to_arrow().drop("score").schema.equals(table.schema)
|
||||
assert rs.to_arrow().drop("_score").schema.equals(table.schema)
|
||||
|
||||
rs = rs.to_list()
|
||||
for r in rs:
|
||||
@@ -204,7 +218,8 @@ def test_search_index_with_filter(table):
|
||||
assert r["_rowid"] is not None
|
||||
|
||||
|
||||
def test_null_input(table):
|
||||
@pytest.mark.parametrize("use_tantivy", [True, False])
|
||||
def test_null_input(table, use_tantivy):
|
||||
table.add(
|
||||
[
|
||||
{
|
||||
@@ -217,12 +232,12 @@ def test_null_input(table):
|
||||
}
|
||||
]
|
||||
)
|
||||
table.create_fts_index("text")
|
||||
table.create_fts_index("text", use_tantivy=use_tantivy)
|
||||
|
||||
|
||||
def test_syntax(table):
|
||||
# https://github.com/lancedb/lancedb/issues/769
|
||||
table.create_fts_index("text")
|
||||
table.create_fts_index("text", use_tantivy=True)
|
||||
with pytest.raises(ValueError, match="Syntax Error"):
|
||||
table.search("they could have been dogs OR").limit(10).to_list()
|
||||
|
||||
|
||||
@@ -1,10 +1,14 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
from datetime import timedelta
|
||||
import random
|
||||
|
||||
import pyarrow as pa
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
from lancedb import AsyncConnection, AsyncTable, connect_async
|
||||
from lancedb.index import BTree, IvfPq
|
||||
from lancedb.index import BTree, IvfPq, Bitmap, LabelList
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@@ -25,8 +29,11 @@ NROWS = 256
|
||||
async def some_table(db_async):
|
||||
data = pa.Table.from_pydict(
|
||||
{
|
||||
"id": list(range(256)),
|
||||
"id": list(range(NROWS)),
|
||||
"vector": sample_fixed_size_list_array(NROWS, DIM),
|
||||
"tags": [
|
||||
[f"tag{random.randint(0, 8)}" for _ in range(2)] for _ in range(NROWS)
|
||||
],
|
||||
}
|
||||
)
|
||||
return await db_async.create_table(
|
||||
@@ -53,6 +60,22 @@ async def test_create_scalar_index(some_table: AsyncTable):
|
||||
await some_table.create_index("id", config=BTree())
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_bitmap_index(some_table: AsyncTable):
|
||||
await some_table.create_index("id", config=Bitmap())
|
||||
# TODO: Fix via https://github.com/lancedb/lance/issues/2039
|
||||
# indices = await some_table.list_indices()
|
||||
# assert str(indices) == '[Index(Bitmap, columns=["id"])]'
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_label_list_index(some_table: AsyncTable):
|
||||
await some_table.create_index("tags", config=LabelList())
|
||||
# TODO: Fix via https://github.com/lancedb/lance/issues/2039
|
||||
# indices = await some_table.list_indices()
|
||||
# assert str(indices) == '[Index(LabelList, columns=["id"])]'
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_vector_index(some_table: AsyncTable):
|
||||
# Can create
|
||||
|
||||
@@ -354,3 +354,11 @@ async def test_query_camelcase_async(tmp_path):
|
||||
|
||||
result = await table.query().select(["camelCase"]).to_arrow()
|
||||
assert result == pa.table({"camelCase": pa.array([1, 2])})
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_to_list_async(table_async: AsyncTable):
|
||||
list = await table_async.query().to_list()
|
||||
assert len(list) == 2
|
||||
assert list[0]["vector"] == [1, 2]
|
||||
assert list[1]["vector"] == [3, 4]
|
||||
|
||||
@@ -22,7 +22,7 @@ from lancedb.table import LanceTable
|
||||
pytest.importorskip("lancedb.fts")
|
||||
|
||||
|
||||
def get_test_table(tmp_path):
|
||||
def get_test_table(tmp_path, use_tantivy):
|
||||
db = lancedb.connect(tmp_path)
|
||||
# Create a LanceDB table schema with a vector and a text column
|
||||
emb = EmbeddingFunctionRegistry.get_instance().get("test")()
|
||||
@@ -89,7 +89,7 @@ def get_test_table(tmp_path):
|
||||
)
|
||||
|
||||
# Create a fts index
|
||||
table.create_fts_index("text")
|
||||
table.create_fts_index("text", use_tantivy=use_tantivy)
|
||||
|
||||
return table, MyTable
|
||||
|
||||
@@ -174,8 +174,8 @@ def _run_test_reranker(reranker, table, query, query_vector, schema):
|
||||
assert len(result) == 20 and result == result_arrow
|
||||
|
||||
|
||||
def _run_test_hybrid_reranker(reranker, tmp_path):
|
||||
table, schema = get_test_table(tmp_path)
|
||||
def _run_test_hybrid_reranker(reranker, tmp_path, use_tantivy):
|
||||
table, schema = get_test_table(tmp_path, use_tantivy)
|
||||
# The default reranker
|
||||
result1 = (
|
||||
table.search(
|
||||
@@ -221,14 +221,16 @@ def _run_test_hybrid_reranker(reranker, tmp_path):
|
||||
)
|
||||
|
||||
|
||||
def test_linear_combination(tmp_path):
|
||||
@pytest.mark.parametrize("use_tantivy", [True, False])
|
||||
def test_linear_combination(tmp_path, use_tantivy):
|
||||
reranker = LinearCombinationReranker()
|
||||
_run_test_hybrid_reranker(reranker, tmp_path)
|
||||
_run_test_hybrid_reranker(reranker, tmp_path, use_tantivy)
|
||||
|
||||
|
||||
def test_rrf_reranker(tmp_path):
|
||||
@pytest.mark.parametrize("use_tantivy", [True, False])
|
||||
def test_rrf_reranker(tmp_path, use_tantivy):
|
||||
reranker = RRFReranker()
|
||||
_run_test_hybrid_reranker(reranker, tmp_path)
|
||||
_run_test_hybrid_reranker(reranker, tmp_path, use_tantivy)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
|
||||
@@ -84,6 +84,20 @@ impl Index {
|
||||
inner: Mutex::new(Some(LanceDbIndex::BTree(BTreeIndexBuilder::default()))),
|
||||
})
|
||||
}
|
||||
|
||||
#[staticmethod]
|
||||
pub fn bitmap() -> PyResult<Self> {
|
||||
Ok(Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::Bitmap(Default::default()))),
|
||||
})
|
||||
}
|
||||
|
||||
#[staticmethod]
|
||||
pub fn label_list() -> PyResult<Self> {
|
||||
Ok(Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::LabelList(Default::default()))),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[pyclass(get_all)]
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-node"
|
||||
version = "0.8.0"
|
||||
version = "0.9.0"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
license.workspace = true
|
||||
edition.workspace = true
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb"
|
||||
version = "0.8.0"
|
||||
version = "0.9.0"
|
||||
edition.workspace = true
|
||||
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
||||
license.workspace = true
|
||||
@@ -56,6 +56,7 @@ tokenizers = { version = "0.19.1", optional = true }
|
||||
[dev-dependencies]
|
||||
tempfile = "3.5.0"
|
||||
rand = { version = "0.8.3", features = ["small_rng"] }
|
||||
random_word = { version = "0.4.3", features = ["en"] }
|
||||
uuid = { version = "1.7.0", features = ["v4"] }
|
||||
walkdir = "2"
|
||||
aws-sdk-dynamodb = { version = "1.38.0" }
|
||||
|
||||
114
rust/lancedb/examples/full_text_search.rs
Normal file
114
rust/lancedb/examples/full_text_search.rs
Normal file
@@ -0,0 +1,114 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use arrow_array::{Int32Array, RecordBatch, RecordBatchIterator, RecordBatchReader, StringArray};
|
||||
use arrow_schema::{DataType, Field, Schema};
|
||||
|
||||
use futures::TryStreamExt;
|
||||
use lance_index::scalar::FullTextSearchQuery;
|
||||
use lancedb::connection::Connection;
|
||||
use lancedb::index::scalar::FtsIndexBuilder;
|
||||
use lancedb::index::Index;
|
||||
use lancedb::query::{ExecutableQuery, QueryBase};
|
||||
use lancedb::{connect, Result, Table};
|
||||
use rand::random;
|
||||
|
||||
#[tokio::main]
|
||||
async fn main() -> Result<()> {
|
||||
if std::path::Path::new("data").exists() {
|
||||
std::fs::remove_dir_all("data").unwrap();
|
||||
}
|
||||
let uri = "data/sample-lancedb";
|
||||
let db = connect(uri).execute().await?;
|
||||
let tbl = create_table(&db).await?;
|
||||
|
||||
create_index(&tbl).await?;
|
||||
search_index(&tbl).await?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn create_some_records() -> Result<Box<dyn RecordBatchReader + Send>> {
|
||||
const TOTAL: usize = 1000;
|
||||
|
||||
let schema = Arc::new(Schema::new(vec![
|
||||
Field::new("id", DataType::Int32, false),
|
||||
Field::new("doc", DataType::Utf8, true),
|
||||
]));
|
||||
|
||||
let words = random_word::all(random_word::Lang::En)
|
||||
.iter()
|
||||
.step_by(1024)
|
||||
.take(500)
|
||||
.map(|w| *w)
|
||||
.collect::<Vec<_>>();
|
||||
let n_terms = 3;
|
||||
let batches = RecordBatchIterator::new(
|
||||
vec![RecordBatch::try_new(
|
||||
schema.clone(),
|
||||
vec![
|
||||
Arc::new(Int32Array::from_iter_values(0..TOTAL as i32)),
|
||||
Arc::new(StringArray::from_iter_values((0..TOTAL).map(|_| {
|
||||
(0..n_terms)
|
||||
.map(|_| words[random::<usize>() % words.len()])
|
||||
.collect::<Vec<_>>()
|
||||
.join(" ")
|
||||
}))),
|
||||
],
|
||||
)
|
||||
.unwrap()]
|
||||
.into_iter()
|
||||
.map(Ok),
|
||||
schema.clone(),
|
||||
);
|
||||
Ok(Box::new(batches))
|
||||
}
|
||||
|
||||
async fn create_table(db: &Connection) -> Result<Table> {
|
||||
let initial_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
|
||||
let tbl = db.create_table("my_table", initial_data).execute().await?;
|
||||
Ok(tbl)
|
||||
}
|
||||
|
||||
async fn create_index(table: &Table) -> Result<()> {
|
||||
table
|
||||
.create_index(&["doc"], Index::FTS(FtsIndexBuilder::default()))
|
||||
.execute()
|
||||
.await?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
async fn search_index(table: &Table) -> Result<()> {
|
||||
let words = random_word::all(random_word::Lang::En)
|
||||
.iter()
|
||||
.step_by(1024)
|
||||
.take(500)
|
||||
.map(|w| *w)
|
||||
.collect::<Vec<_>>();
|
||||
let query = words[0].to_owned();
|
||||
println!("Searching for: {}", query);
|
||||
|
||||
let mut results = table
|
||||
.query()
|
||||
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
|
||||
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
||||
.limit(10)
|
||||
.execute()
|
||||
.await?;
|
||||
while let Some(batch) = results.try_next().await? {
|
||||
println!("{:?}", batch);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
@@ -1217,7 +1217,7 @@ mod tests {
|
||||
|
||||
let tbl = db
|
||||
.create_table("v2_test", make_data())
|
||||
.use_legacy_format(false)
|
||||
.data_storage_version(LanceFileVersion::Stable)
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
@@ -14,24 +14,54 @@
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use scalar::FtsIndexBuilder;
|
||||
use serde::Deserialize;
|
||||
use serde_with::skip_serializing_none;
|
||||
|
||||
use crate::{table::TableInternal, Result};
|
||||
|
||||
use self::{
|
||||
scalar::BTreeIndexBuilder,
|
||||
scalar::{BTreeIndexBuilder, BitmapIndexBuilder, LabelListIndexBuilder},
|
||||
vector::{IvfHnswPqIndexBuilder, IvfHnswSqIndexBuilder, IvfPqIndexBuilder},
|
||||
};
|
||||
|
||||
pub mod scalar;
|
||||
pub mod vector;
|
||||
|
||||
/// Supported index types.
|
||||
pub enum Index {
|
||||
Auto,
|
||||
/// A `BTree` index is an sorted index on scalar columns.
|
||||
/// This index is good for scalar columns with mostly distinct values and does best when
|
||||
/// the query is highly selective. It can apply to numeric, temporal, and string columns.
|
||||
///
|
||||
/// BTree index is useful to answer queries with
|
||||
/// equality (`=`), inequality (`>`, `>=`, `<`, `<=`),and range queries.
|
||||
///
|
||||
/// This is the default index type for scalar columns.
|
||||
BTree(BTreeIndexBuilder),
|
||||
|
||||
/// A `Bitmap` index stores a bitmap for each distinct value in the column for every row.
|
||||
///
|
||||
/// This index works best for low-cardinality columns,
|
||||
/// where the number of unique values is small (i.e., less than a few hundreds).
|
||||
Bitmap(BitmapIndexBuilder),
|
||||
|
||||
/// [LabelListIndexBuilder] is a scalar index that can be used on `List<T>` columns to
|
||||
/// support queries with `array_contains_all` and `array_contains_any`
|
||||
/// using an underlying bitmap index.
|
||||
LabelList(LabelListIndexBuilder),
|
||||
|
||||
/// Full text search index using bm25.
|
||||
FTS(FtsIndexBuilder),
|
||||
|
||||
/// IVF index with Product Quantization
|
||||
IvfPq(IvfPqIndexBuilder),
|
||||
|
||||
/// IVF-HNSW index with Product Quantization
|
||||
IvfHnswPq(IvfHnswPqIndexBuilder),
|
||||
|
||||
/// IVF-HNSW index with Scalar Quantization
|
||||
IvfHnswSq(IvfHnswSqIndexBuilder),
|
||||
}
|
||||
|
||||
@@ -72,10 +102,14 @@ impl IndexBuilder {
|
||||
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
pub enum IndexType {
|
||||
// Vector
|
||||
IvfPq,
|
||||
IvfHnswPq,
|
||||
IvfHnswSq,
|
||||
// Scalar
|
||||
BTree,
|
||||
Bitmap,
|
||||
LabelList,
|
||||
}
|
||||
|
||||
/// A description of an index currently configured on a column
|
||||
|
||||
@@ -28,3 +28,32 @@
|
||||
pub struct BTreeIndexBuilder {}
|
||||
|
||||
impl BTreeIndexBuilder {}
|
||||
|
||||
/// Builder for a Bitmap index.
|
||||
///
|
||||
/// It is a scalar index that stores a bitmap for each possible value
|
||||
///
|
||||
/// This index works best for low-cardinality (i.e., less than 1000 unique values) columns,
|
||||
/// where the number of unique values is small.
|
||||
/// The bitmap stores a list of row ids where the value is present.
|
||||
#[derive(Debug, Clone, Default)]
|
||||
pub struct BitmapIndexBuilder {}
|
||||
|
||||
/// Builder for LabelList index.
|
||||
///
|
||||
/// [LabeListIndexBuilder] is a scalar index that can be used on `List<T>` columns to
|
||||
/// support queries with `array_contains_all` and `array_contains_any`
|
||||
/// using an underlying bitmap index.
|
||||
///
|
||||
#[derive(Debug, Clone, Default)]
|
||||
pub struct LabelListIndexBuilder {}
|
||||
|
||||
/// Builder for a full text search index
|
||||
///
|
||||
/// A full text search index is an index on a string column that allows for full text search
|
||||
#[derive(Debug, Clone, Default)]
|
||||
pub struct FtsIndexBuilder {}
|
||||
|
||||
impl FtsIndexBuilder {}
|
||||
|
||||
pub use lance_index::scalar::FullTextSearchQuery;
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
// limitations under the License.
|
||||
|
||||
//! [LanceDB](https://github.com/lancedb/lancedb) is an open-source database for vector-search built with persistent storage,
|
||||
//! which greatly simplifies retrevial, filtering and management of embeddings.
|
||||
//! which greatly simplifies retrieval, filtering and management of embeddings.
|
||||
//!
|
||||
//! The key features of LanceDB include:
|
||||
//! - Production-scale vector search with no servers to manage.
|
||||
@@ -133,6 +133,13 @@
|
||||
//!
|
||||
//! #### Create vector index (IVF_PQ)
|
||||
//!
|
||||
//! LanceDB is capable to automatically create appropriate indices based on the data types
|
||||
//! of the columns. For example,
|
||||
//!
|
||||
//! * If a column has a data type of `FixedSizeList<Float16/Float32>`,
|
||||
//! LanceDB will create a `IVF-PQ` vector index with default parameters.
|
||||
//! * Otherwise, it creates a `BTree` index by default.
|
||||
//!
|
||||
//! ```no_run
|
||||
//! # use std::sync::Arc;
|
||||
//! # use arrow_array::{FixedSizeListArray, types::Float32Type, RecordBatch,
|
||||
@@ -150,7 +157,10 @@
|
||||
//! # });
|
||||
//! ```
|
||||
//!
|
||||
//! #### Open table and run search
|
||||
//!
|
||||
//! User can also specify the index type explicitly, see [`Table::create_index`].
|
||||
//!
|
||||
//! #### Open table and search
|
||||
//!
|
||||
//! ```rust
|
||||
//! # use std::sync::Arc;
|
||||
|
||||
@@ -21,6 +21,7 @@ use datafusion_physical_plan::ExecutionPlan;
|
||||
use half::f16;
|
||||
use lance::dataset::scanner::DatasetRecordBatchStream;
|
||||
use lance_datafusion::exec::execute_plan;
|
||||
use lance_index::scalar::FullTextSearchQuery;
|
||||
|
||||
use crate::arrow::SendableRecordBatchStream;
|
||||
use crate::error::{Error, Result};
|
||||
@@ -351,6 +352,17 @@ pub trait QueryBase {
|
||||
/// on the filter column(s).
|
||||
fn only_if(self, filter: impl AsRef<str>) -> Self;
|
||||
|
||||
/// Perform a full text search on the table.
|
||||
///
|
||||
/// The results will be returned in order of BM25 scores.
|
||||
///
|
||||
/// This method is only valid on tables that have a full text search index.
|
||||
///
|
||||
/// ```ignore
|
||||
/// query.full_text_search(FullTextSearchQuery::new("hello world"))
|
||||
/// ```
|
||||
fn full_text_search(self, query: FullTextSearchQuery) -> Self;
|
||||
|
||||
/// Return only the specified columns.
|
||||
///
|
||||
/// By default a query will return all columns from the table. However, this can have
|
||||
@@ -401,6 +413,11 @@ impl<T: HasQuery> QueryBase for T {
|
||||
self
|
||||
}
|
||||
|
||||
fn full_text_search(mut self, query: FullTextSearchQuery) -> Self {
|
||||
self.mut_query().full_text_search = Some(query);
|
||||
self
|
||||
}
|
||||
|
||||
fn select(mut self, select: Select) -> Self {
|
||||
self.mut_query().select = select;
|
||||
self
|
||||
@@ -502,8 +519,13 @@ pub struct Query {
|
||||
|
||||
/// limit the number of rows to return.
|
||||
pub(crate) limit: Option<usize>,
|
||||
|
||||
/// Apply filter to the returned rows.
|
||||
pub(crate) filter: Option<String>,
|
||||
|
||||
/// Perform a full text search on the table.
|
||||
pub(crate) full_text_search: Option<FullTextSearchQuery>,
|
||||
|
||||
/// Select column projection.
|
||||
pub(crate) select: Select,
|
||||
|
||||
@@ -520,6 +542,7 @@ impl Query {
|
||||
parent,
|
||||
limit: None,
|
||||
filter: None,
|
||||
full_text_search: None,
|
||||
select: Select::All,
|
||||
fast_search: false,
|
||||
}
|
||||
|
||||
@@ -573,7 +573,8 @@ impl Table {
|
||||
/// There are a variety of indices available. They are described more in
|
||||
/// [`crate::index::Index`]. The simplest thing to do is to use `index::Index::Auto` which
|
||||
/// will attempt to create the most useful index based on the column type and column
|
||||
/// statistics.
|
||||
/// statistics. `BTree` index is created by default for numeric, temporal, and
|
||||
/// string columns.
|
||||
///
|
||||
/// Once an index is created it will remain until the data is overwritten (e.g. an
|
||||
/// add operation with mode overwrite) or the indexed column is dropped.
|
||||
@@ -607,10 +608,21 @@ impl Table {
|
||||
/// .await
|
||||
/// .unwrap();
|
||||
/// # let tbl = db.open_table("idx_test").execute().await.unwrap();
|
||||
/// // Create IVF PQ index on the "vector" column by default.
|
||||
/// tbl.create_index(&["vector"], Index::Auto)
|
||||
/// .execute()
|
||||
/// .await
|
||||
/// .unwrap();
|
||||
/// // Create a BTree index on the "id" column.
|
||||
/// tbl.create_index(&["id"], Index::Auto)
|
||||
/// .execute()
|
||||
/// .await
|
||||
/// .unwrap();
|
||||
/// // Create a LabelList index on the "tags" column.
|
||||
/// tbl.create_index(&["tags"], Index::LabelList(Default::default()))
|
||||
/// .execute()
|
||||
/// .await
|
||||
/// .unwrap();
|
||||
/// # });
|
||||
/// ```
|
||||
pub fn create_index(&self, columns: &[impl AsRef<str>], index: Index) -> IndexBuilder {
|
||||
@@ -1054,6 +1066,24 @@ impl NativeTable {
|
||||
)
|
||||
}
|
||||
|
||||
fn supported_bitmap_data_type(dtype: &DataType) -> bool {
|
||||
dtype.is_integer() || matches!(dtype, DataType::Utf8)
|
||||
}
|
||||
|
||||
fn supported_label_list_data_type(dtype: &DataType) -> bool {
|
||||
match dtype {
|
||||
DataType::List(field) => Self::supported_bitmap_data_type(field.data_type()),
|
||||
DataType::FixedSizeList(field, _) => {
|
||||
Self::supported_bitmap_data_type(field.data_type())
|
||||
}
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
|
||||
fn supported_fts_data_type(dtype: &DataType) -> bool {
|
||||
matches!(dtype, DataType::Utf8 | DataType::LargeUtf8)
|
||||
}
|
||||
|
||||
fn supported_vector_data_type(dtype: &DataType) -> bool {
|
||||
match dtype {
|
||||
DataType::FixedSizeList(inner, _) => DataType::is_floating(inner.data_type()),
|
||||
@@ -1512,6 +1542,87 @@ impl NativeTable {
|
||||
let lance_idx_params = lance_index::scalar::ScalarIndexParams {
|
||||
force_index_type: Some(lance_index::scalar::ScalarIndexType::BTree),
|
||||
};
|
||||
dataset
|
||||
.create_index(
|
||||
&[field.name()],
|
||||
IndexType::BTree,
|
||||
None,
|
||||
&lance_idx_params,
|
||||
opts.replace,
|
||||
)
|
||||
.await?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
async fn create_bitmap_index(&self, field: &Field, opts: IndexBuilder) -> Result<()> {
|
||||
if !Self::supported_bitmap_data_type(field.data_type()) {
|
||||
return Err(Error::Schema {
|
||||
message: format!(
|
||||
"A Bitmap index cannot be created on the field `{}` which has data type {}",
|
||||
field.name(),
|
||||
field.data_type()
|
||||
),
|
||||
});
|
||||
}
|
||||
|
||||
let mut dataset = self.dataset.get_mut().await?;
|
||||
let lance_idx_params = lance_index::scalar::ScalarIndexParams {
|
||||
force_index_type: Some(lance_index::scalar::ScalarIndexType::Bitmap),
|
||||
};
|
||||
dataset
|
||||
.create_index(
|
||||
&[field.name()],
|
||||
IndexType::Bitmap,
|
||||
None,
|
||||
&lance_idx_params,
|
||||
opts.replace,
|
||||
)
|
||||
.await?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
async fn create_label_list_index(&self, field: &Field, opts: IndexBuilder) -> Result<()> {
|
||||
if !Self::supported_label_list_data_type(field.data_type()) {
|
||||
return Err(Error::Schema {
|
||||
message: format!(
|
||||
"A LabelList index cannot be created on the field `{}` which has data type {}",
|
||||
field.name(),
|
||||
field.data_type()
|
||||
),
|
||||
});
|
||||
}
|
||||
|
||||
let mut dataset = self.dataset.get_mut().await?;
|
||||
let lance_idx_params = lance_index::scalar::ScalarIndexParams {
|
||||
force_index_type: Some(lance_index::scalar::ScalarIndexType::LabelList),
|
||||
};
|
||||
dataset
|
||||
.create_index(
|
||||
&[field.name()],
|
||||
IndexType::LabelList,
|
||||
None,
|
||||
&lance_idx_params,
|
||||
opts.replace,
|
||||
)
|
||||
.await?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
async fn create_fts_index(&self, field: &Field, opts: IndexBuilder) -> Result<()> {
|
||||
if !Self::supported_fts_data_type(field.data_type()) {
|
||||
return Err(Error::Schema {
|
||||
message: format!(
|
||||
"A FTS index cannot be created on the field `{}` which has data type {}",
|
||||
field.name(),
|
||||
field.data_type()
|
||||
),
|
||||
});
|
||||
}
|
||||
|
||||
let mut dataset = self.dataset.get_mut().await?;
|
||||
let lance_idx_params = lance_index::scalar::ScalarIndexParams {
|
||||
force_index_type: Some(lance_index::scalar::ScalarIndexType::Inverted),
|
||||
};
|
||||
dataset
|
||||
.create_index(
|
||||
&[field.name()],
|
||||
@@ -1659,6 +1770,9 @@ impl TableInternal for NativeTable {
|
||||
match opts.index {
|
||||
Index::Auto => self.create_auto_index(field, opts).await,
|
||||
Index::BTree(_) => self.create_btree_index(field, opts).await,
|
||||
Index::Bitmap(_) => self.create_bitmap_index(field, opts).await,
|
||||
Index::LabelList(_) => self.create_label_list_index(field, opts).await,
|
||||
Index::FTS(_) => self.create_fts_index(field, opts).await,
|
||||
Index::IvfPq(ivf_pq) => self.create_ivf_pq_index(ivf_pq, field, opts.replace).await,
|
||||
Index::IvfHnswPq(ivf_hnsw_pq) => {
|
||||
self.create_ivf_hnsw_pq_index(ivf_hnsw_pq, field, opts.replace)
|
||||
@@ -1789,6 +1903,10 @@ impl TableInternal for NativeTable {
|
||||
scanner.filter(filter)?;
|
||||
}
|
||||
|
||||
if let Some(fts) = &query.base.full_text_search {
|
||||
scanner.full_text_search(fts.clone())?;
|
||||
}
|
||||
|
||||
if let Some(refine_factor) = query.refine_factor {
|
||||
scanner.refine(refine_factor);
|
||||
}
|
||||
@@ -1977,6 +2095,7 @@ mod tests {
|
||||
use std::time::Duration;
|
||||
|
||||
use arrow_array::{
|
||||
builder::{ListBuilder, StringBuilder},
|
||||
Array, BooleanArray, Date32Array, FixedSizeListArray, Float32Array, Float64Array,
|
||||
Int32Array, Int64Array, LargeStringArray, RecordBatch, RecordBatchIterator,
|
||||
RecordBatchReader, StringArray, TimestampMillisecondArray, TimestampNanosecondArray,
|
||||
@@ -1986,17 +2105,17 @@ mod tests {
|
||||
use arrow_schema::{DataType, Field, Schema, TimeUnit};
|
||||
use futures::TryStreamExt;
|
||||
use lance::dataset::{Dataset, WriteMode};
|
||||
use lance::index::DatasetIndexInternalExt;
|
||||
use lance::io::{ObjectStoreParams, WrappingObjectStore};
|
||||
use rand::Rng;
|
||||
use tempfile::tempdir;
|
||||
|
||||
use super::*;
|
||||
use crate::connect;
|
||||
use crate::connection::ConnectBuilder;
|
||||
use crate::index::scalar::BTreeIndexBuilder;
|
||||
use crate::query::{ExecutableQuery, QueryBase};
|
||||
|
||||
use super::*;
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_open() {
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
@@ -2961,6 +3080,151 @@ mod tests {
|
||||
);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_create_bitmap_index() {
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
let uri = tmp_dir.path().to_str().unwrap();
|
||||
|
||||
let conn = ConnectBuilder::new(uri).execute().await.unwrap();
|
||||
|
||||
let schema = Arc::new(Schema::new(vec![
|
||||
Field::new("id", DataType::Int32, false),
|
||||
Field::new("category", DataType::Utf8, true),
|
||||
]));
|
||||
|
||||
let batch = RecordBatch::try_new(
|
||||
schema.clone(),
|
||||
vec![
|
||||
Arc::new(Int32Array::from_iter_values(0..100)),
|
||||
Arc::new(StringArray::from_iter_values(
|
||||
(0..100).map(|i| format!("category_{}", i % 5)),
|
||||
)),
|
||||
],
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let table = conn
|
||||
.create_table(
|
||||
"test_bitmap",
|
||||
RecordBatchIterator::new(vec![Ok(batch.clone())], batch.schema()),
|
||||
)
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
// Create bitmap index on the "category" column
|
||||
table
|
||||
.create_index(&["category"], Index::Bitmap(Default::default()))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
// Verify the index was created
|
||||
let index_configs = table.list_indices().await.unwrap();
|
||||
assert_eq!(index_configs.len(), 1);
|
||||
let index = index_configs.into_iter().next().unwrap();
|
||||
// TODO: Fix via https://github.com/lancedb/lance/issues/2039
|
||||
// assert_eq!(index.index_type, crate::index::IndexType::Bitmap);
|
||||
assert_eq!(index.columns, vec!["category".to_string()]);
|
||||
|
||||
// For now, just open the index to verify its type
|
||||
let lance_dataset = table.as_native().unwrap().dataset.get().await.unwrap();
|
||||
let indices = lance_dataset
|
||||
.load_indices_by_name(&index.name)
|
||||
.await
|
||||
.unwrap();
|
||||
let index_meta = &indices[0];
|
||||
let idx = lance_dataset
|
||||
.open_scalar_index("category", &index_meta.uuid.to_string())
|
||||
.await
|
||||
.unwrap();
|
||||
assert_eq!(idx.index_type(), IndexType::Bitmap);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_create_label_list_index() {
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
let uri = tmp_dir.path().to_str().unwrap();
|
||||
|
||||
let conn = ConnectBuilder::new(uri).execute().await.unwrap();
|
||||
|
||||
let schema = Arc::new(Schema::new(vec![
|
||||
Field::new("id", DataType::Int32, false),
|
||||
Field::new(
|
||||
"tags",
|
||||
DataType::List(Field::new("item", DataType::Utf8, true).into()),
|
||||
true,
|
||||
),
|
||||
]));
|
||||
|
||||
const TAGS: [&str; 3] = ["cat", "dog", "fish"];
|
||||
|
||||
let values_builder = StringBuilder::new();
|
||||
let mut builder = ListBuilder::new(values_builder);
|
||||
for i in 0..120 {
|
||||
builder.values().append_value(TAGS[i % 3].to_string());
|
||||
if i % 3 == 0 {
|
||||
builder.append(true)
|
||||
}
|
||||
}
|
||||
let tags = Arc::new(builder.finish());
|
||||
|
||||
let batch = RecordBatch::try_new(
|
||||
schema.clone(),
|
||||
vec![Arc::new(Int32Array::from_iter_values(0..40)), tags],
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let table = conn
|
||||
.create_table(
|
||||
"test_bitmap",
|
||||
RecordBatchIterator::new(vec![Ok(batch.clone())], batch.schema()),
|
||||
)
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
// Can not create btree or bitmap index on list column
|
||||
assert!(table
|
||||
.create_index(&["tags"], Index::BTree(Default::default()))
|
||||
.execute()
|
||||
.await
|
||||
.is_err());
|
||||
assert!(table
|
||||
.create_index(&["tags"], Index::Bitmap(Default::default()))
|
||||
.execute()
|
||||
.await
|
||||
.is_err());
|
||||
|
||||
// Create bitmap index on the "category" column
|
||||
table
|
||||
.create_index(&["tags"], Index::LabelList(Default::default()))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
// Verify the index was created
|
||||
let index_configs = table.list_indices().await.unwrap();
|
||||
assert_eq!(index_configs.len(), 1);
|
||||
let index = index_configs.into_iter().next().unwrap();
|
||||
// TODO: Fix via https://github.com/lancedb/lance/issues/2039
|
||||
// assert_eq!(index.index_type, crate::index::IndexType::LabelList);
|
||||
assert_eq!(index.columns, vec!["tags".to_string()]);
|
||||
|
||||
// For now, just open the index to verify its type
|
||||
let lance_dataset = table.as_native().unwrap().dataset.get().await.unwrap();
|
||||
let indices = lance_dataset
|
||||
.load_indices_by_name(&index.name)
|
||||
.await
|
||||
.unwrap();
|
||||
let index_meta = &indices[0];
|
||||
let idx = lance_dataset
|
||||
.open_scalar_index("tags", &index_meta.uuid.to_string())
|
||||
.await
|
||||
.unwrap();
|
||||
assert_eq!(idx.index_type(), IndexType::LabelList);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_read_consistency_interval() {
|
||||
let intervals = vec![
|
||||
|
||||
Reference in New Issue
Block a user