Compare commits

...

30 Commits

Author SHA1 Message Date
Lance Release
89bcc1b2e7 Bump version: 0.13.0-beta.0 → 0.13.0-beta.1 2024-08-23 13:56:30 +00:00
rahuljo
6ad5553eca docs: add dlt-lancedb integration page (#1551)
Co-authored-by: Akela Drissner-Schmid <32450038+akelad@users.noreply.github.com>
2024-08-22 15:18:49 +05:30
Gagan Bhullar
6eb7ccfdee fix: rerank attribute unknown (#1554)
PR fixes #1550
2024-08-22 11:46:36 +05:30
Rithik Kumar
758c82858f docs: add AI agent example (#1553)
before:
![Screenshot 2024-08-21
225014](https://github.com/user-attachments/assets/e5b05586-87c5-4739-a4df-2d6cd0704ba5)

After:
![Screenshot 2024-08-21
225029](https://github.com/user-attachments/assets/504959db-f560-49b2-9492-557e9846a793)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-22 00:54:05 +05:30
Rithik Kumar
0cbc9cd551 docs: add evaluation example (#1552)
before:
![Screenshot 2024-08-21
194228](https://github.com/user-attachments/assets/68d96658-7579-4934-85af-e8c898b64660)

After:
![Screenshot 2024-08-21
195258](https://github.com/user-attachments/assets/81ddb9cd-cb93-47fc-a121-ff82701fd11f)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-21 20:37:04 +05:30
Ayush Chaurasia
7d65dd97cf chore(python): update Colbert architecture and minor improvements (#1547)
- Update ColBertReranker architecture: The current implementation
doesn't use the right arch. This PR uses the implementation in Rerankers
library. Fixes https://github.com/lancedb/lancedb/issues/1546
Benchmark diff (hit rate):
Hybrid - 91 vs 87
reranked vector - 85 vs 80

- Reranking in FTS is basically disabled in main after last week's FTS
updates. I think there's no blocker in supporting that?
- Allow overriding accelerators: Most transformer based Rerankers and
Embedding automatically select device. This PR allows overriding those
settings by passing `device`. Fixes:
https://github.com/lancedb/lancedb/issues/1487

---------

Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2024-08-21 12:26:52 +05:30
Ayush Chaurasia
85bb7e54e4 docs: missing griffe dependency for mkdocs deployment (#1545) 2024-08-19 07:48:23 +05:30
Rithik Kumar
21014cab45 docs: add chatbot example and improve quality of other examples (#1544) 2024-08-17 12:35:33 +05:30
Lei Xu
5857cb4c6e docs: add a section to describe scalar index (#1495) 2024-08-16 18:48:29 -07:00
Rithik Kumar
09ce6c5bb5 docs: add vector search example (#1543) 2024-08-16 21:30:45 +05:30
BubbleCal
0fa50775d6 feat: support to query/index FTS on RemoteTable/AsyncTable (#1537)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-16 12:01:05 +08:00
Gagan Bhullar
20faa4424b feat(python): add delete unverified parameter (#1542)
PR fixes #1527
2024-08-15 09:01:32 -07:00
BubbleCal
b624fc59eb docs: add create_fts_index doc in Python API Reference (#1533)
resolve #1313

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-15 11:35:16 +08:00
Gagan Bhullar
d2caa5e202 feat(nodejs): add delete unverified (#1530)
PR fixes part of #1527
2024-08-14 08:53:53 -07:00
BubbleCal
501817cfac chore: bump the required python version to 3.9 (#1541)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-14 08:44:31 -07:00
Ryan Green
b3daa25f46 feat: allow new scalar index types to be created in remote table (#1538) 2024-08-13 16:05:42 -02:30
Matt Basta
6008a8257b fix: remove native.d.ts from .npmignore (#1531)
This removes the type definitions for a number of important TypeScript
interfaces from `.npmignore` so that the package is not incorrectly
typed `any` in a number of places.

---

Presently the `opts` argument to `lancedb.connect` is typed `any`, even
though it shouldn't be.

<img width="560" alt="image"
src="https://github.com/user-attachments/assets/5c974ce8-5a59-44a1-935d-cbb808f0ea24">

Clicking into the type definitions for the published package, it has the
correct type signature:

<img width="831" alt="image"
src="https://github.com/user-attachments/assets/6e39a519-13ff-4ca8-95ae-85538ac59d5d">

However, `ConnectionOptions` is imported from `native.js` (along with a
number of other imports a bit further down):

<img width="384" alt="image"
src="https://github.com/user-attachments/assets/10c1b055-ae78-4088-922e-2816af64c23c">

This is not otherwise an issue, except that the type definitions for
`native.js` are not included in the published package:

<img width="217" alt="image"
src="https://github.com/user-attachments/assets/f15cd3b6-a8de-4011-9fa2-391858da20ec">

I haven't compiled the Rust code and run the build script, but I
strongly suspect that disincluding the type definitions in `.npmignore`
is ultimately the root cause here.
2024-08-13 10:06:15 -07:00
Lance Release
aaff43d304 Updating package-lock.json 2024-08-12 19:48:18 +00:00
Lance Release
d4c3a8ca87 Bump version: 0.9.0 → 0.10.0-beta.0 2024-08-12 19:48:02 +00:00
Lance Release
ff5bbfdd4c Bump version: 0.12.0 → 0.13.0-beta.0 2024-08-12 19:47:57 +00:00
Lei Xu
694ca30c7c feat(nodejs): add bitmap and label list index types in nodejs (#1532) 2024-08-11 12:06:02 -07:00
Lei Xu
b2317c904d feat: create bitmap and label list scalar index using python async api (#1529)
* Expose `bitmap` and `LabelList` scalar index type via Rust and Async
Python API
* Add documents
2024-08-11 09:16:11 -07:00
BubbleCal
613f3063b9 chore: upgrade lance to 0.16.1 (#1524)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-09 19:18:05 +08:00
BubbleCal
5d2cd7fb2e chore: upgrade object_store to 0.10.2 (#1523)
To use the same version with lance

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-09 12:03:46 +08:00
Ayush Chaurasia
a88e9bb134 docs: add lancedb embedding fcn on cloud docs (#1521) 2024-08-09 07:21:04 +05:30
Gagan Bhullar
9c1adff426 feat(python): add to_list to async api (#1520)
PR fixes #1517
2024-08-08 11:45:20 -07:00
BubbleCal
f9d5fa88a1 feat!: migrate FTS from tantivy to lance-index (#1483)
Lance now supports FTS, so add it into lancedb Python, TypeScript and
Rust SDKs.

For Python, we still use tantivy based FTS by default because the lance
FTS index now misses some features of tantivy.

For Python:
- Support to create lance based FTS index
- Support to specify columns for full text search (only available for
lance based FTS index)

For TypeScript:
- Change the search method so that it can accept both string and vector
- Support full text search

For Rust
- Support full text search

The others:
- Update the FTS doc

BREAKING CHANGE: 
- for Python, this renames the attached score column of FTS from "score"
to "_score", this could be a breaking change for users that rely the
scores

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-08 15:33:15 +08:00
Lance Release
4db554eea5 Updating package-lock.json 2024-08-07 20:56:12 +00:00
Lance Release
101066788d Bump version: 0.9.0-beta.0 → 0.9.0 2024-08-07 20:55:53 +00:00
Lance Release
c4135d9d30 Bump version: 0.8.0 → 0.9.0-beta.0 2024-08-07 20:55:52 +00:00
80 changed files with 2062 additions and 406 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.8.0"
current_version = "0.10.0-beta.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -20,12 +20,12 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies]
lance = { "version" = "=0.16.0", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.16.0" }
lance-linalg = { "version" = "=0.16.0" }
lance-testing = { "version" = "=0.16.0" }
lance-datafusion = { "version" = "=0.16.0" }
lance-encoding = { "version" = "=0.16.0" }
lance = { "version" = "=0.16.1", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.16.1" }
lance-linalg = { "version" = "=0.16.1" }
lance-testing = { "version" = "=0.16.1" }
lance-datafusion = { "version" = "=0.16.1" }
lance-encoding = { "version" = "=0.16.1" }
# Note that this one does not include pyarrow
arrow = { version = "52.2", optional = false }
arrow-array = "52.2"
@@ -43,7 +43,7 @@ half = { "version" = "=2.4.1", default-features = false, features = [
] }
futures = "0"
log = "0.4"
object_store = "0.10.1"
object_store = "0.10.2"
pin-project = "1.0.7"
snafu = "0.7.4"
url = "2"

View File

@@ -58,7 +58,7 @@ plugins:
- https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter
- render_swagger:
allow_arbitrary_locations : true
allow_arbitrary_locations: true
markdown_extensions:
- admonition
@@ -89,9 +89,10 @@ nav:
- Data management: concepts/data_management.md
- 🔨 Guides:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Building a vector index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
@@ -128,15 +129,16 @@ nav:
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- LangChain:
- LangChain 🔗: integrations/langchain.md
- LangChain demo: notebooks/langchain_demo.ipynb
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LangChain 🔗: integrations/langchain.md
- LangChain demo: notebooks/langchain_demo.ipynb
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙:
- LlamaIndex docs: integrations/llamaIndex.md
- LlamaIndex demo: notebooks/llamaIndex_demo.ipynb
- LlamaIndex docs: integrations/llamaIndex.md
- LlamaIndex demo: notebooks/llamaIndex_demo.ipynb
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- 🎯 Examples:
- Overview: examples/index.md
- 🐍 Python:
@@ -144,6 +146,10 @@ nav:
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Vector Search: examples/python_examples/vector_search.md
- Chatbot: examples/python_examples/chatbot.md
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Miscellaneous:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
@@ -181,6 +187,7 @@ nav:
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
@@ -222,6 +229,7 @@ nav:
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- Examples:
- examples/index.md
- 🐍 Python:
@@ -229,6 +237,10 @@ nav:
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Vector Search: examples/python_examples/vector_search.md
- Chatbot: examples/python_examples/chatbot.md
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Miscellaneous:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb

View File

@@ -1,6 +1,7 @@
mkdocs==1.5.3
mkdocs-jupyter==0.24.1
mkdocs-material==9.5.3
mkdocstrings[python]==0.20.0
mkdocstrings[python]==0.25.2
griffe
mkdocs-render-swagger-plugin
pydantic

View File

@@ -0,0 +1,22 @@
<svg width="147" height="20" viewBox="0 0 147 20" fill="none" xmlns="http://www.w3.org/2000/svg">
<rect x="0.5" y="0.5" width="145.482" height="19" rx="9.5" fill="white" stroke="#EFEFEF"/>
<path d="M14.1863 10.9251V12.7593H16.0205V10.9251H14.1863Z" fill="#FF3270"/>
<path d="M17.8707 10.9251V12.7593H19.7049V10.9251H17.8707Z" fill="#861FFF"/>
<path d="M14.1863 7.24078V9.07496H16.0205V7.24078H14.1863Z" fill="#097EFF"/>
<path fill-rule="evenodd" clip-rule="evenodd" d="M12.903 6.77179C12.903 6.32194 13.2676 5.95728 13.7175 5.95728C14.1703 5.95728 15.2556 5.95728 16.1094 5.95728C16.7538 5.95728 17.2758 6.47963 17.2758 7.12398V9.6698H19.8217C20.4661 9.6698 20.9884 10.1922 20.9884 10.8365C20.9884 11.6337 20.9884 12.4309 20.9884 13.2282C20.9884 13.678 20.6237 14.0427 20.1738 14.0427H17.3039H16.5874H13.7175C13.2676 14.0427 12.903 13.678 12.903 13.2282V9.71653V9.64174V6.77179ZM14.1863 7.24066V9.07485H16.0205V7.24066H14.1863ZM14.1863 12.7593V10.9251H16.0205V12.7593H14.1863ZM17.8708 12.7593V10.9251H19.705V12.7593H17.8708Z" fill="black"/>
<path d="M18.614 8.35468L20.7796 6.18905M20.7796 6.18905V7.66073M20.7796 6.18905L19.2724 6.18905" stroke="black" stroke-width="0.686298" stroke-linecap="round" stroke-linejoin="round"/>
<path d="M31.6082 13.9838C30.8546 13.9838 30.1895 13.802 29.6132 13.4385C29.0368 13.066 28.5846 12.5429 28.2565 11.869C27.9373 11.1862 27.7777 10.3749 27.7777 9.43501C27.7777 8.49511 27.9373 7.69265 28.2565 7.02762C28.5846 6.3626 29.0368 5.85275 29.6132 5.49807C30.1895 5.14339 30.8546 4.96605 31.6082 4.96605C32.3708 4.96605 33.0403 5.14339 33.6166 5.49807C34.193 5.85275 34.6408 6.3626 34.96 7.02762C35.2881 7.69265 35.4521 8.49511 35.4521 9.43501C35.4521 10.3749 35.2881 11.1862 34.96 11.869C34.6408 12.5429 34.193 13.066 33.6166 13.4385C33.0403 13.802 32.3708 13.9838 31.6082 13.9838ZM31.6082 12.6404C32.291 12.6404 32.8363 12.3523 33.2442 11.7759C33.6521 11.1907 33.856 10.4104 33.856 9.43501C33.856 8.45964 33.6521 7.69708 33.2442 7.14733C32.8363 6.58871 32.291 6.3094 31.6082 6.3094C30.9255 6.3094 30.3802 6.58871 29.9723 7.14733C29.5644 7.69708 29.3605 8.45964 29.3605 9.43501C29.3605 10.4104 29.5644 11.1907 29.9723 11.7759C30.3802 12.3523 30.9255 12.6404 31.6082 12.6404Z" fill="#2C3236"/>
<path d="M37.0592 16.4045V7.29363H38.3227L38.4291 7.98526H38.4823C38.7572 7.75472 39.0631 7.55521 39.4 7.38674C39.7459 7.21826 40.0961 7.13403 40.4508 7.13403C41.2665 7.13403 41.8961 7.43551 42.3395 8.03846C42.7917 8.64142 43.0178 9.44831 43.0178 10.4591C43.0178 11.204 42.8848 11.8424 42.6188 12.3744C42.3528 12.8976 42.0069 13.2966 41.5813 13.5715C41.1646 13.8463 40.7124 13.9838 40.2247 13.9838C39.9409 13.9838 39.6572 13.9217 39.3734 13.7976C39.0897 13.6646 38.8148 13.4872 38.5488 13.2656L38.5887 14.3562V16.4045H37.0592ZM39.9055 12.7202C40.3399 12.7202 40.7035 12.5296 40.9961 12.1483C41.2887 11.767 41.435 11.2084 41.435 10.4724C41.435 9.81629 41.3242 9.30644 41.1025 8.94289C40.8808 8.57935 40.5217 8.39757 40.0252 8.39757C39.5641 8.39757 39.0853 8.64142 38.5887 9.1291V12.1749C38.8281 12.37 39.0587 12.5119 39.2803 12.6005C39.502 12.6803 39.7104 12.7202 39.9055 12.7202Z" fill="#2C3236"/>
<path d="M47.3598 13.9838C46.7568 13.9838 46.2115 13.8508 45.7238 13.5848C45.2361 13.3099 44.8504 12.9197 44.5667 12.4143C44.2829 11.9 44.141 11.2838 44.141 10.5656C44.141 9.85619 44.2829 9.24437 44.5667 8.73009C44.8593 8.2158 45.2361 7.82122 45.6972 7.54634C46.1583 7.27147 46.6415 7.13403 47.147 7.13403C47.741 7.13403 48.2376 7.26703 48.6366 7.53304C49.0356 7.79018 49.3371 8.15373 49.541 8.62368C49.745 9.08476 49.847 9.62122 49.847 10.233C49.847 10.5523 49.8248 10.8005 49.7805 10.9779H45.6307C45.7016 11.5542 45.91 12.002 46.2558 12.3212C46.6016 12.6404 47.0361 12.8 47.5593 12.8C47.843 12.8 48.1046 12.7601 48.344 12.6803C48.5923 12.5917 48.8361 12.472 49.0755 12.3212L49.5942 13.2789C49.2839 13.4828 48.9381 13.6513 48.5568 13.7843C48.1755 13.9173 47.7765 13.9838 47.3598 13.9838ZM45.6174 9.94043H48.5169C48.5169 9.43501 48.4061 9.04043 48.1844 8.75669C47.9627 8.46408 47.6302 8.31777 47.1869 8.31777C46.8056 8.31777 46.4642 8.45964 46.1627 8.74339C45.8701 9.01826 45.6883 9.41728 45.6174 9.94043Z" fill="#2C3236"/>
<path d="M51.3078 13.8242V7.29363H52.5714L52.6778 8.17147H52.731C53.0236 7.88772 53.3428 7.64388 53.6886 7.43994C54.0344 7.236 54.429 7.13403 54.8724 7.13403C55.5728 7.13403 56.0827 7.36014 56.4019 7.81235C56.7211 8.26457 56.8807 8.90299 56.8807 9.72762V13.8242H55.3512V9.92713C55.3512 9.38624 55.2714 9.00496 55.1118 8.78329C54.9522 8.56161 54.6906 8.45078 54.327 8.45078C54.0433 8.45078 53.7906 8.52171 53.5689 8.66358C53.3561 8.79659 53.1123 8.99609 52.8374 9.2621V13.8242H51.3078Z" fill="#2C3236"/>
<path d="M61.4131 13.8242V7.29363H62.9426V13.8242H61.4131ZM62.1845 6.14979C61.9096 6.14979 61.6879 6.06999 61.5195 5.91038C61.351 5.75078 61.2668 5.53797 61.2668 5.27196C61.2668 5.01482 61.351 4.80644 61.5195 4.64684C61.6879 4.48723 61.9096 4.40743 62.1845 4.40743C62.4594 4.40743 62.6811 4.48723 62.8495 4.64684C63.018 4.80644 63.1022 5.01482 63.1022 5.27196C63.1022 5.53797 63.018 5.75078 62.8495 5.91038C62.6811 6.06999 62.4594 6.14979 62.1845 6.14979Z" fill="#2C3236"/>
<path d="M64.8941 13.8242V7.29363H66.1576L66.264 8.17147H66.3172C66.6098 7.88772 66.929 7.64388 67.2748 7.43994C67.6207 7.236 68.0152 7.13403 68.4586 7.13403C69.1591 7.13403 69.6689 7.36014 69.9881 7.81235C70.3074 8.26457 70.467 8.90299 70.467 9.72762V13.8242H68.9374V9.92713C68.9374 9.38624 68.8576 9.00496 68.698 8.78329C68.5384 8.56161 68.2768 8.45078 67.9133 8.45078C67.6295 8.45078 67.3768 8.52171 67.1551 8.66358C66.9423 8.79659 66.6985 8.99609 66.4236 9.2621V13.8242H64.8941Z" fill="#2C3236"/>
<path d="M75.1323 13.8242V5.12565H76.6752V8.62368H80.1998V5.12565H81.7427V13.8242H80.1998V9.96703H76.6752V13.8242H75.1323Z" fill="#2C3236"/>
<path d="M83.9517 13.8242V5.12565H89.2054V6.4291H85.4945V8.88969H88.6601V10.1931H85.4945V13.8242H83.9517Z" fill="#2C3236"/>
<path d="M95.9349 13.9838C95.3497 13.9838 94.7822 13.8729 94.2324 13.6513C93.6915 13.4296 93.2127 13.1148 92.796 12.7069L93.7004 11.6562C94.0108 11.9488 94.3654 12.1882 94.7645 12.3744C95.1635 12.5518 95.5625 12.6404 95.9615 12.6404C96.458 12.6404 96.8349 12.5385 97.092 12.3345C97.3492 12.1306 97.4778 11.8601 97.4778 11.5232C97.4778 11.1596 97.3492 10.8981 97.092 10.7385C96.8438 10.5789 96.5245 10.4148 96.1344 10.2463L94.9374 9.72762C94.6536 9.60348 94.3743 9.44388 94.0994 9.2488C93.8334 9.05373 93.6117 8.80546 93.4344 8.50398C93.2659 8.2025 93.1817 7.83895 93.1817 7.41334C93.1817 6.95225 93.3058 6.53994 93.5541 6.17639C93.8113 5.80398 94.1571 5.51137 94.5915 5.29856C95.0349 5.07689 95.5403 4.96605 96.1078 4.96605C96.6132 4.96605 97.1009 5.06802 97.5709 5.27196C98.0408 5.46703 98.4442 5.73304 98.7812 6.06999L97.9965 7.05423C97.7216 6.82368 97.429 6.64191 97.1186 6.5089C96.8172 6.3759 96.4802 6.3094 96.1078 6.3094C95.6999 6.3094 95.3674 6.4025 95.1103 6.58871C94.862 6.76605 94.7379 7.01432 94.7379 7.33353C94.7379 7.55521 94.7999 7.74142 94.9241 7.89215C95.0571 8.03403 95.23 8.15816 95.4428 8.26457C95.6556 8.36211 95.8817 8.45964 96.1211 8.55718L97.3048 9.0493C97.8191 9.27097 98.2403 9.56358 98.5684 9.92713C98.8965 10.2818 99.0605 10.7739 99.0605 11.4035C99.0605 11.8734 98.9364 12.3035 98.6881 12.6936C98.4398 13.0838 98.0807 13.3986 97.6108 13.638C97.1497 13.8685 96.591 13.9838 95.9349 13.9838Z" fill="#2C3236"/>
<path d="M100.509 16.4045V7.29363H101.773L101.879 7.98526H101.932C102.207 7.75472 102.513 7.55521 102.85 7.38674C103.196 7.21826 103.546 7.13403 103.901 7.13403C104.717 7.13403 105.346 7.43551 105.79 8.03846C106.242 8.64142 106.468 9.44831 106.468 10.4591C106.468 11.204 106.335 11.8424 106.069 12.3744C105.803 12.8976 105.457 13.2966 105.031 13.5715C104.615 13.8463 104.162 13.9838 103.675 13.9838C103.391 13.9838 103.107 13.9217 102.824 13.7976C102.54 13.6646 102.265 13.4872 101.999 13.2656L102.039 14.3562V16.4045H100.509ZM103.356 12.7202C103.79 12.7202 104.154 12.5296 104.446 12.1483C104.739 11.767 104.885 11.2084 104.885 10.4724C104.885 9.81629 104.774 9.30644 104.553 8.94289C104.331 8.57935 103.972 8.39757 103.475 8.39757C103.014 8.39757 102.535 8.64142 102.039 9.1291V12.1749C102.278 12.37 102.509 12.5119 102.73 12.6005C102.952 12.6803 103.16 12.7202 103.356 12.7202Z" fill="#2C3236"/>
<path d="M109.444 13.9838C108.876 13.9838 108.411 13.8064 108.047 13.4518C107.692 13.0971 107.515 12.636 107.515 12.0685C107.515 11.368 107.821 10.8271 108.433 10.4458C109.045 10.0557 110.02 9.78969 111.359 9.64782C111.35 9.30201 111.257 9.00496 111.08 8.75669C110.911 8.49954 110.605 8.37097 110.162 8.37097C109.843 8.37097 109.528 8.43304 109.218 8.55718C108.916 8.68132 108.619 8.83206 108.326 9.0094L107.768 7.98526C108.131 7.75472 108.539 7.55521 108.991 7.38674C109.452 7.21826 109.94 7.13403 110.454 7.13403C111.27 7.13403 111.878 7.37787 112.277 7.86555C112.685 8.34437 112.888 9.04043 112.888 9.95373V13.8242H111.625L111.518 13.1059H111.465C111.173 13.3542 110.858 13.5626 110.521 13.7311C110.193 13.8995 109.834 13.9838 109.444 13.9838ZM109.936 12.7867C110.202 12.7867 110.441 12.7247 110.654 12.6005C110.876 12.4675 111.111 12.2902 111.359 12.0685V10.6055C110.472 10.7207 109.856 10.8936 109.51 11.1242C109.164 11.3458 108.991 11.6207 108.991 11.9488C108.991 12.2414 109.08 12.4542 109.257 12.5872C109.435 12.7202 109.661 12.7867 109.936 12.7867Z" fill="#2C3236"/>
<path d="M117.446 13.9838C116.851 13.9838 116.315 13.8508 115.836 13.5848C115.366 13.3099 114.989 12.9197 114.706 12.4143C114.431 11.9 114.293 11.2838 114.293 10.5656C114.293 9.83846 114.444 9.2222 114.746 8.71679C115.047 8.2025 115.446 7.81235 115.943 7.54634C116.448 7.27147 116.989 7.13403 117.565 7.13403C117.982 7.13403 118.346 7.20496 118.656 7.34684C118.966 7.48871 119.241 7.66161 119.48 7.86555L118.736 8.86309C118.567 8.71235 118.394 8.59708 118.217 8.51728C118.04 8.42861 117.849 8.38427 117.645 8.38427C117.122 8.38427 116.692 8.58378 116.355 8.98279C116.027 9.38181 115.863 9.9094 115.863 10.5656C115.863 11.2128 116.022 11.736 116.342 12.135C116.67 12.534 117.091 12.7335 117.605 12.7335C117.862 12.7335 118.102 12.6803 118.323 12.5739C118.554 12.4587 118.762 12.3256 118.948 12.1749L119.574 13.1857C119.272 13.4518 118.935 13.6513 118.563 13.7843C118.19 13.9173 117.818 13.9838 117.446 13.9838Z" fill="#2C3236"/>
<path d="M123.331 13.9838C122.728 13.9838 122.183 13.8508 121.695 13.5848C121.207 13.3099 120.822 12.9197 120.538 12.4143C120.254 11.9 120.112 11.2838 120.112 10.5656C120.112 9.85619 120.254 9.24437 120.538 8.73009C120.83 8.2158 121.207 7.82122 121.668 7.54634C122.13 7.27147 122.613 7.13403 123.118 7.13403C123.712 7.13403 124.209 7.26703 124.608 7.53304C125.007 7.79018 125.308 8.15373 125.512 8.62368C125.716 9.08476 125.818 9.62122 125.818 10.233C125.818 10.5523 125.796 10.8005 125.752 10.9779H121.602C121.673 11.5542 121.881 12.002 122.227 12.3212C122.573 12.6404 123.007 12.8 123.53 12.8C123.814 12.8 124.076 12.7601 124.315 12.6803C124.563 12.5917 124.807 12.472 125.047 12.3212L125.565 13.2789C125.255 13.4828 124.909 13.6513 124.528 13.7843C124.147 13.9173 123.748 13.9838 123.331 13.9838ZM121.589 9.94043H124.488C124.488 9.43501 124.377 9.04043 124.156 8.75669C123.934 8.46408 123.601 8.31777 123.158 8.31777C122.777 8.31777 122.435 8.45964 122.134 8.74339C121.841 9.01826 121.66 9.41728 121.589 9.94043Z" fill="#2C3236"/>
<path d="M129.101 13.9838C128.658 13.9838 128.215 13.8995 127.771 13.7311C127.328 13.5537 126.947 13.3365 126.627 13.0793L127.346 12.0951C127.638 12.3168 127.931 12.4941 128.223 12.6271C128.516 12.7601 128.826 12.8266 129.154 12.8266C129.509 12.8266 129.771 12.7513 129.939 12.6005C130.108 12.4498 130.192 12.2636 130.192 12.0419C130.192 11.8557 130.121 11.705 129.979 11.5897C129.846 11.4656 129.673 11.3591 129.46 11.2705C129.248 11.1729 129.026 11.0798 128.795 10.9912C128.512 10.8848 128.228 10.7562 127.944 10.6055C127.669 10.4458 127.443 10.2463 127.266 10.0069C127.088 9.75866 127 9.45274 127 9.0892C127 8.51284 127.213 8.04289 127.638 7.67935C128.064 7.3158 128.64 7.13403 129.367 7.13403C129.828 7.13403 130.241 7.21383 130.604 7.37344C130.968 7.53304 131.282 7.71482 131.548 7.91876L130.844 8.84979C130.613 8.68132 130.378 8.54831 130.139 8.45078C129.908 8.34437 129.664 8.29117 129.407 8.29117C129.079 8.29117 128.835 8.36211 128.676 8.50398C128.516 8.63698 128.436 8.80545 128.436 9.0094C128.436 9.26654 128.569 9.46161 128.835 9.59462C129.101 9.72762 129.412 9.85619 129.766 9.98033C130.068 10.0867 130.36 10.2197 130.644 10.3793C130.928 10.5301 131.163 10.7296 131.349 10.9779C131.544 11.2261 131.642 11.5542 131.642 11.9621C131.642 12.5207 131.424 12.9995 130.99 13.3986C130.555 13.7887 129.926 13.9838 129.101 13.9838Z" fill="#2C3236"/>
</svg>

After

Width:  |  Height:  |  Size: 12 KiB

View File

@@ -2,8 +2,8 @@ Representing multi-modal data as vector embeddings is becoming a standard practi
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
!!! Note "LanceDB cloud doesn't support embedding functions yet"
LanceDB Cloud does not support embedding functions yet. You need to generate embeddings before ingesting into the table or querying.
!!! Note "Embedding functions on LanceDB cloud"
When using embedding functions with LanceDB cloud, the embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings.
!!! warning
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.

View File

@@ -99,28 +99,28 @@ LanceDB registers the Sentence Transformers embeddings function in the registry
Coming Soon!
### Jina Embeddings
LanceDB registers the JinaAI embeddings function in the registry as `jina`. You can pass any supported model name to the `create`. By default it uses `"jina-clip-v1"`.
`jina-clip-v1` can handle both text and images and other models only support `text`.
You need to pass `JINA_API_KEY` in the environment variable or pass it as `api_key` to `create` method.
### Embedding function with LanceDB cloud
Embedding functions are now supported on LanceDB cloud. The embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings. Here's an example using the OpenAI embedding function:
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
os.environ['JINA_API_KEY'] = "jina_*"
os.environ['OPENAI_API_KEY'] = "..."
db = lancedb.connect("/tmp/db")
func = get_registry().get("jina").create(name="jina-clip-v1")
db = lancedb.connect(
uri="db://....",
api_key="sk_...",
region="us-east-1"
)
func = get_registry().get("openai").create()
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},

View File

@@ -0,0 +1,27 @@
# AI Agents: Intelligent Collaboration🤖
Think of a platform💻 where AI Agents🤖 can seamlessly exchange information, coordinate over tasks, and achieve shared targets with great efficiency📈🚀.
## Vector-Based Coordination: The Technical Advantage
Leveraging LanceDB's vector-based capabilities, our coordination application enables AI agents to communicate and collaborate through dense vector representations 🤖. AI agents can exchange information, coordinate on a task or work towards a common goal, just by giving queries📝.
| **AI Agents** | **Description** | **Links** |
|:--------------|:----------------|:----------|
| **AI Agents: Reducing Hallucinationt📊** | 🤖💡 Reduce AI hallucinations using Critique-Based Contexting! Learn by Simplifying and Automating tedious workflows by going through fitness trainer agent example.💪 | [![Github](../../assets/github.svg)][hullucination_github] <br>[![Open In Collab](../../assets/colab.svg)][hullucination_colab] <br>[![Python](../../assets/python.svg)][hullucination_python] <br>[![Ghost](../../assets/ghost.svg)][hullucination_ghost] |
| **AI Trends Searcher: CrewAI🔍** | 🔍️ Learn about CrewAI Agents ! Utilize the features of CrewAI - Role-based Agents, Task Management, and Inter-agent Delegation ! Make AI agents work together to do tricky stuff 😺| [![Github](../../assets/github.svg)][trend_github] <br>[![Open In Collab](../../assets/colab.svg)][trend_colab] <br>[![Ghost](../../assets/ghost.svg)][trend_ghost] |
| **SuperAgent Autogen🤖** | 💻 AI interactions with the Super Agent! Integrating Autogen, LanceDB, LangChain, LiteLLM, and Ollama to create AI agent that excels in understanding and processing complex queries.🤖 | [![Github](../../assets/github.svg)][superagent_github] <br>[![Open In Collab](../../assets/colab.svg)][superagent_colab] |
[hullucination_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents
[hullucination_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb
[hullucination_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.py
[hullucination_ghost]: https://blog.lancedb.com/how-to-reduce-hallucinations-from-llm-powered-agents-using-long-term-memory-72f262c3cc1f/
[trend_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/AI-Trends-with-CrewAI
[trend_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/AI-Trends-with-CrewAI/CrewAI_AI_Trends.ipynb
[trend_ghost]: https://blog.lancedb.com/track-ai-trends-crewai-agents-rag/
[superagent_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/SuperAgent_Autogen
[superagent_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/SuperAgent_Autogen/main.ipynb

View File

@@ -1,8 +1,8 @@
# Build from Scratch with LanceDB 🚀
# **Build from Scratch with LanceDB 🛠️🚀**
Start building your GenAI applications from the ground up using LanceDB's efficient vector-based document retrieval capabilities! 📄
Start building your GenAI applications from the ground up using LanceDB's efficient vector-based document retrieval capabilities! 📑
#### Get Started in Minutes ⏱️
**Get Started in Minutes ⏱️**
These examples provide a solid foundation for building your own GenAI applications using LanceDB. Jump from idea to proof of concept quickly with applied examples. Get started and see what you can create! 💻

View File

@@ -0,0 +1,41 @@
**Chatbot Application with LanceDB 🤖**
====================================================================
Create an innovative chatbot application that utilizes LanceDB for efficient vector-based response generation! 🌐✨
**Introduction 👋✨**
Users can input their queries, allowing the chatbot to retrieve relevant context seamlessly. 🔍📚 This enables the generation of coherent and context-aware replies that enhance user experience. 🌟🤝 Dive into the world of advanced conversational AI and streamline interactions with powerful data management! 🚀💡
| **Chatbot** | **Description** | **Links** |
|:----------------|:-----------------|:-----------|
| **Databricks DBRX Website Bot ⚡️** | Unlock magical conversations with the Hogwarts chatbot, powered by Open-source RAG, DBRX, LanceDB, LLama-index, and Hugging Face Embeddings, delivering enchanting user experiences and spellbinding interactions ✨ | [![GitHub](../../assets/github.svg)][databricks_github] <br>[![Python](../../assets/python.svg)][databricks_python] |
| **CLI SDK Manual Chatbot Locally 💻** | CLI chatbot for SDK/hardware documents, powered by Local RAG, LLama3, Ollama, LanceDB, and Openhermes Embeddings, built with Phidata Assistant and Knowledge Base for instant technical support 🤖 | [![GitHub](../../assets/github.svg)][clisdk_github] <br>[![Python](../../assets/python.svg)][clisdk_python] |
| **Youtube Transcript Search QA Bot 📹** | Unlock the power of YouTube transcripts with a Q&A bot, leveraging natural language search and LanceDB for effortless data management and instant answers 💬 | [![GitHub](../../assets/github.svg)][youtube_github] <br>[![Open In Collab](../../assets/colab.svg)][youtube_colab] <br>[![Python](../../assets/python.svg)][youtube_python] |
| **Code Documentation Q&A Bot with LangChain 🤖** | Revolutionize code documentation with a Q&A bot, powered by LangChain and LanceDB, allowing effortless querying of documentation using natural language, demonstrated with Numpy 1.26 docs 📚 | [![GitHub](../../assets/github.svg)][docs_github] <br>[![Open In Collab](../../assets/colab.svg)][docs_colab] <br>[![Python](../../assets/python.svg)][docs_python] |
| **Context-aware Chatbot using Llama 2 & LanceDB 🤖** | Experience the future of conversational AI with a context-aware chatbot, powered by Llama 2, LanceDB, and LangChain, enabling intuitive and meaningful conversations with your data 📚💬 | [![GitHub](../../assets/github.svg)][aware_github] <br>[![Open In Collab](../../assets/colab.svg)][aware_colab] <br>[![Ghost](../../assets/ghost.svg)][aware_ghost] |
| **Chat with csv using Hybrid Search 📊** | Revolutionize data interaction with a chat application that harnesses LanceDB's hybrid search capabilities to converse with CSV and Excel files, enabling efficient and scalable data exploration and analysis 🚀 | [![GitHub](../../assets/github.svg)][csv_github] <br>[![Open In Collab](../../assets/colab.svg)][csv_colab] <br>[![Ghost](../../assets/ghost.svg)][csv_ghost] |
[databricks_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/databricks_DBRX_website_bot
[databricks_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/databricks_DBRX_website_bot/main.py
[clisdk_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/CLI-SDK-Manual-Chatbot-Locally
[clisdk_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/CLI-SDK-Manual-Chatbot-Locally/assistant.py
[youtube_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Youtube-Search-QA-Bot
[youtube_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Youtube-Search-QA-Bot/main.ipynb
[youtube_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Youtube-Search-QA-Bot/main.py
[docs_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot
[docs_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb
[docs_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.py
[aware_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/chatbot_using_Llama2_&_lanceDB
[aware_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/chatbot_using_Llama2_&_lanceDB/main.ipynb
[aware_ghost]: https://blog.lancedb.com/context-aware-chatbot-using-llama-2-lancedb-as-vector-database-4d771d95c755
[csv_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Chat_with_csv_file
[csv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Chat_with_csv_file/main.ipynb
[csv_ghost]: https://blog.lancedb.com/p/d8c71df4-e55f-479a-819e-cde13354a6a3/

View File

@@ -0,0 +1,23 @@
**Evaluation: Assessing Text Performance with Precision 📊💡**
====================================================================
**Evaluation Fundamentals 📊**
Evaluation is a comprehensive tool designed to measure the performance of text-based inputs, enabling data-driven optimization and improvement 📈.
**Text Evaluation 101 📚**
By leveraging cutting-edge technologies, this provides a robust framework for evaluating reference and candidate texts across various metrics 📊, ensuring high-quality text outputs that meet specific requirements and standards 📝.
| **Evaluation** | **Description** | **Links** |
| -------------- | --------------- | --------- |
| **Evaluating Prompts with Prompttools 🤖** | Compare, visualize & evaluate embedding functions (incl. OpenAI) across metrics like latency & custom evaluation 📈📊 | [![Github](../../assets/github.svg)][prompttools_github] <br>[![Open In Collab](../../assets/colab.svg)][prompttools_colab] |
| **Evaluating RAG with RAGAs and GPT-4o 📊** | Evaluate RAG pipelines with cutting-edge metrics and tools, integrate with CI/CD for continuous performance checks, and generate responses with GPT-4o 🤖📈 | [![Github](../../assets/github.svg)][RAGAs_github] <br>[![Open In Collab](../../assets/colab.svg)][RAGAs_colab] |
[prompttools_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts
[prompttools_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb
[RAGAs_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Evaluating_RAG_with_RAGAs
[RAGAs_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Evaluating_RAG_with_RAGAs/Evaluating_RAG_with_RAGAs.ipynb

View File

@@ -1,10 +1,10 @@
# Multimodal Search with LanceDB 🔍💡
# **Multimodal Search with LanceDB 🤹‍♂️🔍**
Experience the future of search with LanceDB's multimodal capabilities. Combine text and image queries to find the most relevant results in your corpus and unlock new possibilities! 🔓💡
Experience the future of search with LanceDB's multimodal capabilities. Combine text and image queries to find the most relevant results in your corpus ! 🔓💡
#### Explore the Future of Search 🚀
**Explore the Future of Search 🚀**
Unlock the power of multimodal search with LanceDB, enabling efficient vector-based retrieval of text and image data! 📊💻
LanceDB supports multimodal search by indexing and querying vector representations of text and image data 🤖. This enables efficient retrieval of relevant documents and images using vector-based similarity search 📊. The platform facilitates cross-modal search, allowing for text-image and image-text retrieval, and supports scalable indexing of high-dimensional vector spaces 💻.
@@ -13,7 +13,7 @@ Unlock the power of multimodal search with LanceDB, enabling efficient vector-ba
| **Multimodal CLIP: DiffusionDB 🌐💥** | Revolutionize search with Multimodal CLIP and DiffusionDB, combining text and image understanding for a new dimension of discovery! 🔓 | [![GitHub](../../assets/github.svg)][Clip_diffusionDB_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_diffusionDB_colab] <br>[![Python](../../assets/python.svg)][Clip_diffusionDB_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_diffusionDB_ghost] |
| **Multimodal CLIP: Youtube Videos 📹👀** | Search Youtube videos using Multimodal CLIP, finding relevant content with ease and accuracy! 🎯 | [![Github](../../assets/github.svg)][Clip_youtube_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_youtube_colab] <br> [![Python](../../assets/python.svg)][Clip_youtube_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_youtube_python] |
| **Multimodal Image + Text Search 📸🔍** | Discover relevant documents and images with a single query, using LanceDB's multimodal search capabilities to bridge the gap between text and visuals! 🌉 | [![GitHub](../../assets/github.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search) <br>[![Open In Collab](../../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb) <br> [![Python](../../assets/python.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
| **Cambrian-1: Vision-Centric Image Exploration 🔍👀** | Dive into vision-centric exploration of images with Cambrian-1, powered by LanceDB's multimodal search to uncover new insights! 🔎 | [![GitHub](../../assets/github.svg)](https://www.kaggle.com/code/prasantdixit/cambrian-1-vision-centric-exploration-of-images/)<br>[![Open In Collab](../../assets/colab.svg)]() <br> [![Python](../../assets/python.svg)]() <br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/cambrian-1-vision-centric-exploration/) |
| **Cambrian-1: Vision-Centric Image Exploration 🔍👀** | Dive into vision-centric exploration of images with Cambrian-1, powered by LanceDB's multimodal search to uncover new insights! 🔎 | [![Kaggle](https://img.shields.io/badge/Kaggle-035a7d?style=for-the-badge&logo=kaggle&logoColor=white)](https://www.kaggle.com/code/prasantdixit/cambrian-1-vision-centric-exploration-of-images/)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/cambrian-1-vision-centric-exploration/) |
[Clip_diffusionDB_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb

View File

@@ -1,13 +1,12 @@
**🔍💡 RAG: Revolutionize Information Retrieval with LanceDB 🔓**
**RAG: Revolutionize Information Retrieval with LanceDB 🔓🧐**
====================================================================
Unlock the full potential of Retrieval-Augmented Generation (RAG) with LanceDB, the ultimate solution for efficient vector-based information retrieval 📊. Input text queries and retrieve relevant documents with lightning-fast speed ⚡️ and accuracy ✅. Generate comprehensive answers by combining retrieved information, uncovering new insights 🔍 and connections.
Unlock the full potential of Retrieval-Augmented Generation (RAG) with LanceDB, a solution for efficient vector-based information retrieval 📊.
### Experience the Future of Search 🔄
Experience the future of search with RAG, transforming information retrieval and answer generation. Apply RAG to various industries, streamlining processes 📈, saving time ⏰, and resources 💰. Stay ahead of the curve with innovative technology 🔝, powered by LanceDB. Discover the power of RAG with LanceDB and transform your industry with innovative solutions 💡.
**Experience the Future of Search 🔄**
RAG integrates large language models (LLMs) with scalable knowledge bases, enabling efficient information retrieval and answer generation 🤖. By applying RAG to industry-specific use cases, developers can optimize query processing 📊, reduce response latency ⏱️, and improve resource utilization 💻. LanceDB provides a robust framework for integrating LLMs with external knowledge sources, facilitating accurate and informative responses 📝.
| **RAG** | **Description** | **Links** |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|

View File

@@ -0,0 +1,80 @@
**Vector Search: Unlock Efficient Document Retrieval 🔓👀**
====================================================================
Unlock the power of vector search with LanceDB, a cutting-edge solution for efficient vector-based document retrieval 📊.
**Vector Search Capabilities in LanceDB🔝**
LanceDB implements vector search algorithms for efficient document retrieval and analysis 📊. This enables fast and accurate discovery of relevant documents, leveraging dense vector representations 🤖. The platform supports scalable indexing and querying of high-dimensional vector spaces, facilitating precise document matching and retrieval 📈.
| **Vector Search** | **Description** | **Links** |
|:-----------------|:---------------|:---------|
| **Inbuilt Hybrid Search 🔄** | Combine the power of traditional search algorithms with LanceDB's vector-based search for a robust and efficient search experience 📊 | [![Github](../../assets/github.svg)][inbuilt_hybrid_search_github] <br>[![Open In Collab](../../assets/colab.svg)][inbuilt_hybrid_search_colab] |
| **Hybrid Search with BM25 and LanceDB 💡** | Synergizes BM25's keyword-focused precision (term frequency, document length normalization, bias-free retrieval) with LanceDB's semantic understanding (contextual analysis, query intent alignment) for nuanced search results in complex datasets 📈 | [![Github](../../assets/github.svg)][BM25_github] <br>[![Open In Collab](../../assets/colab.svg)][BM25_colab] <br>[![Ghost](../../assets/ghost.svg)][BM25_ghost] |
| **NER-powered Semantic Search 🔎** | Unlock contextual understanding with Named Entity Recognition (NER) methods: Dictionary-Based, Rule-Based, and Deep Learning-Based, to accurately identify and extract entities, enabling precise semantic search results 🗂️ | [![Github](../../assets/github.svg)][NER_github] <br>[![Open In Collab](../../assets/colab.svg)][NER_colab] <br>[![Ghost](../../assets/ghost.svg)][NER_ghost]|
| **Audio Similarity Search using Vector Embeddings 🎵** | Create vector embeddings of audio files to find similar audio content, enabling efficient audio similarity search and retrieval in LanceDB's vector store 📻 |[![Github](../../assets/github.svg)][audio_search_github] <br>[![Open In Collab](../../assets/colab.svg)][audio_search_colab] <br>[![Python](../../assets/python.svg)][audio_search_python]|
| **LanceDB Embeddings API: Multi-lingual Semantic Search 🌎** | Build a universal semantic search table with LanceDB's Embeddings API, supporting multiple languages (e.g., English, French) using cohere's multi-lingual model, for accurate cross-lingual search results 📄 | [![Github](../../assets/github.svg)][mls_github] <br>[![Open In Collab](../../assets/colab.svg)][mls_colab] <br>[![Python](../../assets/python.svg)][mls_python] |
| **Facial Recognition: Face Embeddings 🤖** | Detect, crop, and embed faces using Facenet, then store and query face embeddings in LanceDB for efficient facial recognition and top-K matching results 👥 | [![Github](../../assets/github.svg)][fr_github] <br>[![Open In Collab](../../assets/colab.svg)][fr_colab] |
| **Sentiment Analysis: Hotel Reviews 🏨** | Analyze customer sentiments towards the hotel industry using BERT models, storing sentiment labels, scores, and embeddings in LanceDB, enabling queries on customer opinions and potential areas for improvement 💬 | [![Github](../../assets/github.svg)][sentiment_analysis_github] <br>[![Open In Collab](../../assets/colab.svg)][sentiment_analysis_colab] <br>[![Ghost](../../assets/ghost.svg)][sentiment_analysis_ghost] |
| **Vector Arithmetic with LanceDB ⚖️** | Unlock powerful semantic search capabilities by performing vector arithmetic on embeddings, enabling complex relationships and nuances in data to be captured, and simplifying the process of retrieving semantically similar results 📊 | [![Github](../../assets/github.svg)][arithmetic_github] <br>[![Open In Collab](../../assets/colab.svg)][arithmetic_colab] <br>[![Ghost](../../assets/ghost.svg)][arithmetic_ghost] |
| **Imagebind Demo 🖼️** | Explore the multi-modal capabilities of Imagebind through a Gradio app, leveraging LanceDB API for seamless image search and retrieval experiences 📸 | [![Github](../../assets/github.svg)][imagebind_github] <br> [![Open in Spaces](../../assets/open_hf_space.svg)][imagebind_huggingface] |
| **Search Engine using SAM & CLIP 🔍** | Build a search engine within an image using SAM and CLIP models, enabling object-level search and retrieval, with LanceDB indexing and search capabilities to find the closest match between image embeddings and user queries 📸 | [![Github](../../assets/github.svg)][swi_github] <br>[![Open In Collab](../../assets/colab.svg)][swi_colab] <br>[![Ghost](../../assets/ghost.svg)][swi_ghost] |
| **Zero Shot Object Localization and Detection with CLIP 🔎** | Perform object detection on images using OpenAI's CLIP, enabling zero-shot localization and detection of objects, with capabilities to split images into patches, parse with CLIP, and plot bounding boxes 📊 | [![Github](../../assets/github.svg)][zsod_github] <br>[![Open In Collab](../../assets/colab.svg)][zsod_colab] |
| **Accelerate Vector Search with OpenVINO 🚀** | Boost vector search applications using OpenVINO, achieving significant speedups with CLIP for text-to-image and image-to-image searching, through PyTorch model optimization, FP16 and INT8 format conversion, and quantization with OpenVINO NNCF 📈 | [![Github](../../assets/github.svg)][openvino_github] <br>[![Open In Collab](../../assets/colab.svg)][openvino_colab] <br>[![Ghost](../../assets/ghost.svg)][openvino_ghost] |
| **Zero-Shot Image Classification with CLIP and LanceDB 📸** | Achieve zero-shot image classification using CLIP and LanceDB, enabling models to classify images without prior training on specific use cases, unlocking flexible and adaptable image classification capabilities 🔓 | [![Github](../../assets/github.svg)][zsic_github] <br>[![Open In Collab](../../assets/colab.svg)][zsic_colab] <br>[![Ghost](../../assets/ghost.svg)][zsic_ghost] |
[inbuilt_hybrid_search_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Inbuilt-Hybrid-Search
[inbuilt_hybrid_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Inbuilt-Hybrid-Search/Inbuilt_Hybrid_Search_with_LanceDB.ipynb
[BM25_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Hybrid_search_bm25_lancedb
[BM25_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Hybrid_search_bm25_lancedb/main.ipynb
[BM25_ghost]: https://blog.lancedb.com/hybrid-search-combining-bm25-and-semantic-search-for-better-results-with-lan-1358038fe7e6
[NER_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/NER-powered-Semantic-Search
[NER_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/NER-powered-Semantic-Search/NER_powered_Semantic_Search_with_LanceDB.ipynb
[NER_ghost]: https://blog.lancedb.com/ner-powered-semantic-search-using-lancedb-51051dc3e493
[audio_search_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/audio_search
[audio_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb
[audio_search_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.py
[mls_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa
[mls_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa/main.ipynb
[mls_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa/main.py
[fr_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/facial_recognition
[fr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/facial_recognition/main.ipynb
[sentiment_analysis_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews
[sentiment_analysis_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews/Sentiment_Analysis_using_LanceDB.ipynb
[sentiment_analysis_ghost]: https://blog.lancedb.com/sentiment-analysis-using-lancedb-2da3cb1e3fa6
[arithmetic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Vector-Arithmetic-with-LanceDB
[arithmetic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Vector-Arithmetic-with-LanceDB/main.ipynb
[arithmetic_ghost]: https://blog.lancedb.com/vector-arithmetic-with-lancedb-an-intro-to-vector-embeddings/
[imagebind_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/imagebind_demo
[imagebind_huggingface]: https://huggingface.co/spaces/raghavd99/imagebind2
[swi_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/search-within-images-with-sam-and-clip
[swi_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/search-within-images-with-sam-and-clip/main.ipynb
[swi_ghost]: https://blog.lancedb.com/search-within-an-image-331b54e4285e
[zsod_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/zero-shot-object-detection-CLIP
[zsod_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/zero-shot-object-detection-CLIP/zero_shot_object_detection_clip.ipynb
[openvino_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Accelerate-Vector-Search-Applications-Using-OpenVINO
[openvino_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb
[openvino_ghost]: https://blog.lancedb.com/accelerate-vector-search-applications-using-openvino-lancedb/
[zsic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/zero-shot-image-classification
[zsic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/zero-shot-image-classification/main.ipynb
[zsic_ghost]: https://blog.lancedb.com/zero-shot-image-classification-with-vector-search/

View File

@@ -1,9 +1,14 @@
# Full-text search
LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for Rust and JavaScript users as well. Follow along at [this Github issue](https://github.com/lancedb/lance/issues/1195)
LanceDB provides support for full-text search via Lance (before via [Tantivy](https://github.com/quickwit-oss/tantivy) (Python only)), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
Currently, the Lance full text search is missing some features that are in the Tantivy full text search. This includes phrase queries, re-ranking, and customizing the tokenizer. Thus, in Python, Tantivy is still the default way to do full text search and many of the instructions below apply just to Tantivy-based indices.
## Installation
## Installation (Only for Tantivy-based FTS)
!!! note
No need to install the tantivy dependency if using native FTS
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
@@ -14,42 +19,83 @@ pip install tantivy==0.20.1
## Example
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search.
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
```python
import lancedb
=== "Python"
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```python
import lancedb
table = db.create_table(
"my_table",
data=[
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
],
)
```
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
## Create FTS index on single column
table = db.create_table(
"my_table",
data=[
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
],
)
The FTS index must be created before you can search via keywords.
# passing `use_tantivy=False` to use lance FTS index
# `use_tantivy=True` by default
table.create_fts_index("text")
table.search("puppy").limit(10).select(["text"]).to_list()
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
# ...
```
```python
table.create_fts_index("text")
```
=== "TypeScript"
To search an FTS index via keywords, LanceDB's `table.search` accepts a string as input:
```typescript
import * as lancedb from "@lancedb/lancedb";
const uri = "data/sample-lancedb"
const db = await lancedb.connect(uri);
```python
table.search("puppy").limit(10).select(["text"]).to_list()
```
const data = [
{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" },
{ vector: [5.9, 26.5], text: "There are several kittens playing" },
];
const tbl = await db.createTable("my_table", data, { mode: "overwrite" });
await tbl.createIndex("text", {
config: lancedb.Index.fts(),
});
This returns the result as a list of dictionaries as follows.
await tbl
.search("puppy")
.select(["text"])
.limit(10)
.toArray();
```
```python
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
```
=== "Rust"
```rust
let uri = "data/sample-lancedb";
let db = connect(uri).execute().await?;
let initial_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
let tbl = db
.create_table("my_table", initial_data)
.execute()
.await?;
tbl
.create_index(&["text"], Index::FTS(FtsIndexBuilder::default()))
.execute()
.await?;
tbl
.query()
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
.select(lancedb::query::Select::Columns(vec!["text".to_owned()]))
.limit(10)
.execute()
.await?;
```
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
For now, this is supported in tantivy way only.
Passing `fts_columns="text"` if you want to specify the columns to search, but it's not available for Tantivy-based full text search.
!!! note
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
@@ -57,20 +103,33 @@ This returns the result as a list of dictionaries as follows.
## Tokenization
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
```python
table.create_fts_index("text", tokenizer_name="en_stem")
```
For now, only the Tantivy-based FTS index supports to specify the tokenizer, so it's only available in Python with `use_tantivy=True`.
The following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
=== "use_tantivy=True"
```python
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
```
=== "use_tantivy=False"
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
## Index multiple columns
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
```python
table.create_fts_index(["text1", "text2"])
```
=== "use_tantivy=True"
```python
table.create_fts_index(["text1", "text2"])
```
=== "use_tantivy=False"
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
Note that the search API call does not change - you can search over all indexed columns at once.
@@ -80,19 +139,48 @@ Currently the LanceDB full text search feature supports *post-filtering*, meanin
applied on top of the full text search results. This can be invoked via the familiar
`where` syntax:
```python
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
=== "Python"
```python
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
=== "TypeScript"
```typescript
await tbl
.search("apple")
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.toArray();
```
=== "Rust"
```rust
table
.query()
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.limit(10)
.only_if("meta='foo'")
.execute()
.await?;
```
## Sorting
!!! warning "Warn"
Sorting is available for only Tantivy-based FTS
You can pre-sort the documents by specifying `ordering_field_names` when
creating the full-text search index. Once pre-sorted, you can then specify
`ordering_field_name` while searching to return results sorted by the given
field. For example,
field. For example,
```
table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
```python
table.create_fts_index(["text_field"], use_tantivy=True, ordering_field_names=["sort_by_field"])
(table.search("terms", ordering_field_name="sort_by_field")
.limit(20)
@@ -105,8 +193,8 @@ table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
error will be raised that looks like `ValueError: The field does not exist: xxx`
!!! note
The fields to sort on must be of typed unsigned integer, or else you will see
an error during indexing that looks like
The fields to sort on must be of typed unsigned integer, or else you will see
an error during indexing that looks like
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
!!! note
@@ -116,6 +204,9 @@ table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
## Phrase queries vs. terms queries
!!! warning "Warn"
Phrase queries are available for only Tantivy-based FTS
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
@@ -142,7 +233,7 @@ enforce it in one of two ways:
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
a phrase query.
2. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
1. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
is treated as a phrase query.
@@ -150,7 +241,7 @@ In general, a query that's declared as a phrase query will be wrapped in double
double quotes replaced by single quotes.
## Configurations
## Configurations (Only for Tantivy-based FTS)
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
reduce this if running on a smaller node, or increase this for faster performance while
@@ -164,6 +255,8 @@ table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
## Current limitations
For that Tantivy-based FTS:
1. Currently we do not yet support incremental writes.
If you add data after FTS index creation, it won't be reflected
in search results until you do a full reindex.

View File

@@ -0,0 +1,108 @@
# Building Scalar Index
Similar to many SQL databases, LanceDB supports several types of Scalar indices to accelerate search
over scalar columns.
- `BTREE`: The most common type is BTREE. This index is inspired by the btree data structure
although only the first few layers of the btree are cached in memory.
It will perform well on columns with a large number of unique values and few rows per value.
- `BITMAP`: this index stores a bitmap for each unique value in the column.
This index is useful for columns with a finite number of unique values and many rows per value.
For example, columns that represent "categories", "labels", or "tags"
- `LABEL_LIST`: a special index that is used to index list columns whose values have a finite set of possibilities.
For example, a column that contains lists of tags (e.g. `["tag1", "tag2", "tag3"]`) can be indexed with a `LABEL_LIST` index.
| Data Type | Filter | Index Type |
| --------------------------------------------------------------- | ----------------------------------------- | ------------ |
| Numeric, String, Temporal | `<`, `=`, `>`, `in`, `between`, `is null` | `BTREE` |
| Boolean, numbers or strings with fewer than 1,000 unique values | `<`, `=`, `>`, `in`, `between`, `is null` | `BITMAP` |
| List of low cardinality of numbers or strings | `array_has_any`, `array_has_all` | `LABEL_LIST` |
=== "Python"
```python
import lancedb
books = [
{"book_id": 1, "publisher": "plenty of books", "tags": ["fantasy", "adventure"]},
{"book_id": 2, "publisher": "book town", "tags": ["non-fiction"]},
{"book_id": 3, "publisher": "oreilly", "tags": ["textbook"]}
]
db = lancedb.connect("./db")
table = db.create_table("books", books)
table.create_scalar_index("book_id") # BTree by default
table.create_scalar_index("publisher", index_type="BITMAP")
```
=== "Typescript"
=== "@lancedb/lancedb"
```js
const db = await lancedb.connect("data");
const tbl = await db.openTable("my_vectors");
await tbl.create_index("book_id");
await tlb.create_index("publisher", { config: lancedb.Index.bitmap() })
```
For example, the following scan will be faster if the column `my_col` has a scalar index:
=== "Python"
```python
import lancedb
table = db.open_table("books")
my_df = table.search().where("book_id = 2").to_pandas()
```
=== "Typescript"
=== "@lancedb/lancedb"
```js
const db = await lancedb.connect("data");
const tbl = await db.openTable("books");
await tbl
.query()
.where("book_id = 2")
.limit(10)
.toArray();
```
Scalar indices can also speed up scans containing a vector search or full text search, and a prefilter:
=== "Python"
```python
import lancedb
data = [
{"book_id": 1, "vector": [1, 2]},
{"book_id": 2, "vector": [3, 4]},
{"book_id": 3, "vector": [5, 6]}
]
table = db.create_table("book_with_embeddings", data)
(
table.search([1, 2])
.where("book_id != 3", prefilter=True)
.to_pandas()
)
```
=== "Typescript"
=== "@lancedb/lancedb"
```js
const db = await lancedb.connect("data/lance");
const tbl = await db.openTable("book_with_embeddings");
await tbl.search(Array(1536).fill(1.2))
.where("book_id != 3") // prefilter is default behavior.
.limit(10)
.toArray();
```

View File

@@ -0,0 +1,142 @@
# dlt
[dlt](https://dlthub.com/docs/intro) is an open-source library that you can add to your Python scripts to load data from various and often messy data sources into well-structured, live datasets. dlt's [integration with LanceDB](https://dlthub.com/docs/dlt-ecosystem/destinations/lancedb) lets you ingest data from any source (databases, APIs, CSVs, dataframes, JSONs, and more) into LanceDB with a few lines of simple python code. The integration enables automatic normalization of nested data, schema inference, incremental loading and embedding the data. dlt also has integrations with several other tools like dbt, airflow, dagster etc. that can be inserted into your LanceDB workflow.
## How to ingest data into LanceDB
In this example, we will be fetching movie information from the [Open Movie Database (OMDb) API](https://www.omdbapi.com/) and loading it into a local LanceDB instance. To implement it, you will need an API key for the OMDb API (which can be created freely [here](https://www.omdbapi.com/apikey.aspx)).
1. **Install `dlt` with LanceDB extras:**
```sh
pip install dlt[lancedb]
```
2. **Inside an empty directory, initialize a `dlt` project with:**
```sh
dlt init rest_api lancedb
```
This will add all the files necessary to create a `dlt` pipeline that can ingest data from any REST API (ex: OMDb API) and load into LanceDB.
```text
├── .dlt
│ ├── config.toml
│ └── secrets.toml
├── rest_api
├── rest_api_pipeline.py
└── requirements.txt
```
dlt has a list of pre-built [sources](https://dlthub.com/docs/dlt-ecosystem/verified-sources/) like [SQL databases](https://dlthub.com/docs/dlt-ecosystem/verified-sources/sql_database), [REST APIs](https://dlthub.com/docs/dlt-ecosystem/verified-sources/rest_api), [Google Sheets](https://dlthub.com/docs/dlt-ecosystem/verified-sources/google_sheets), [Notion](https://dlthub.com/docs/dlt-ecosystem/verified-sources/notion) etc., that can be used out-of-the-box by running `dlt init <source_name> lancedb`. Since dlt is a python library, it is also very easy to modify these pre-built sources or to write your own custom source from scratch.
3. **Specify necessary credentials and/or embedding model details:**
In order to fetch data from the OMDb API, you will need to pass a valid API key into your pipeline. Depending on whether you're using LanceDB OSS or LanceDB cloud, you also may need to provide the necessary credentials to connect to the LanceDB instance. These can be pasted inside `.dlt/sercrets.toml`.
dlt's LanceDB integration also allows you to automatically embed the data during ingestion. Depending on the embedding model chosen, you may need to paste the necessary credentials inside `.dlt/sercrets.toml`:
```toml
[sources.rest_api]
api_key = "api_key" # Enter the API key for the OMDb API
[destination.lancedb]
embedding_model_provider = "sentence-transformers"
embedding_model = "all-MiniLM-L6-v2"
[destination.lancedb.credentials]
uri = ".lancedb"
api_key = "api_key" # API key to connect to LanceDB Cloud. Leave out if you are using LanceDB OSS.
embedding_model_provider_api_key = "embedding_model_provider_api_key" # Not needed for providers that don't need authentication (ollama, sentence-transformers).
```
See [here](https://dlthub.com/docs/dlt-ecosystem/destinations/lancedb#configure-the-destination) for more information and for a list of available models and model providers.
4. **Write the pipeline code inside `rest_api_pipeline.py`:**
The following code shows how you can configure dlt's REST API source to connect to the [OMDb API](https://www.omdbapi.com/), fetch all movies with the word "godzilla" in the title, and load it into a LanceDB table. The REST API source allows you to pull data from any API with minimal code, to learn more read the [dlt docs](https://dlthub.com/docs/dlt-ecosystem/verified-sources/rest_api).
```python
# Import necessary modules
import dlt
from rest_api import rest_api_source
# Configure the REST API source
movies_source = rest_api_source(
{
"client": {
"base_url": "https://www.omdbapi.com/",
"auth": { # authentication strategy for the OMDb API
"type": "api_key",
"name": "apikey",
"api_key": dlt.secrets["sources.rest_api.api_token"], # read API credentials directly from secrets.toml
"location": "query"
},
"paginator": { # pagination strategy for the OMDb API
"type": "page_number",
"base_page": 1,
"total_path": "totalResults",
"maximum_page": 5
}
},
"resources": [ # list of API endpoints to request
{
"name": "movie_search",
"endpoint": {
"path": "/",
"params": {
"s": "godzilla",
"type": "movie"
}
}
}
]
})
if __name__ == "__main__":
# Create a pipeline object
pipeline = dlt.pipeline(
pipeline_name='movies_pipeline',
destination='lancedb', # this tells dlt to load the data into LanceDB
dataset_name='movies_data_pipeline',
)
# Run the pipeline
load_info = pipeline.run(movies_source)
# pretty print the information on data that was loaded
print(load_info)
```
The script above will ingest the data into LanceDB as it is, i.e. without creating any embeddings. If we want to embed one of the fields (for example, `"Title"` that contains the movie titles), then we will use dlt's `lancedb_adapter` and modify the script as follows:
- Add the following import statement:
```python
from dlt.destinations.adapters import lancedb_adapter
```
- Modify the pipeline run like this:
```python
load_info = pipeline.run(
lancedb_adapter(
movies_source,
embed="Title",
)
)
```
This will use the embedding model specified inside `.dlt/secrets.toml` to embed the field `"Title"`.
5. **Install necessary dependencies:**
```sh
pip install -r requirements.txt
```
Note: You may need to install the dependencies for your embedding models separately.
```sh
pip install sentence-transformers
```
6. **Run the pipeline:**
Finally, running the following command will ingest the data into your LanceDB instance.
```sh
python custom_source.py
```
For more information and advanced usage of dlt's LanceDB integration, read [the dlt documentation](https://dlthub.com/docs/dlt-ecosystem/destinations/lancedb).

View File

@@ -113,6 +113,10 @@ lists the indices that LanceDb supports.
::: lancedb.index.BTree
::: lancedb.index.Bitmap
::: lancedb.index.LabelList
::: lancedb.index.IvfPq
## Querying (Asynchronous)

2
docs/test/md_testing.py Normal file → Executable file
View File

@@ -1,3 +1,5 @@
#!/usr/bin/env python3
import glob
from typing import Iterator, List
from pathlib import Path

View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.8.0",
"version": "0.10.0-beta.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.8.0",
"version": "0.10.0-beta.0",
"cpu": [
"x64",
"arm64"

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.8.0",
"version": "0.10.0-beta.0",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",

View File

@@ -20,6 +20,5 @@ Cargo.toml
biome.json
build.rs
jest.config.js
native.d.ts
tsconfig.json
typedoc.json
typedoc.json

View File

@@ -31,7 +31,9 @@ import {
Float64,
Int32,
Int64,
List,
Schema,
Utf8,
makeArrowTable,
} from "../lancedb/arrow";
import {
@@ -331,6 +333,7 @@ describe("When creating an index", () => {
const schema = new Schema([
new Field("id", new Int32(), true),
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
new Field("tags", new List(new Field("item", new Utf8(), true))),
]);
let tbl: Table;
let queryVec: number[];
@@ -346,6 +349,7 @@ describe("When creating an index", () => {
vec: Array(32)
.fill(1)
.map(() => Math.random()),
tags: ["tag1", "tag2", "tag3"],
})),
{
schema,
@@ -428,6 +432,22 @@ describe("When creating an index", () => {
}
});
test("create a bitmap index", async () => {
await tbl.createIndex("id", {
config: Index.bitmap(),
});
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
});
test("create a label list index", async () => {
await tbl.createIndex("tags", {
config: Index.labelList(),
});
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
});
test("should be able to get index stats", async () => {
await tbl.createIndex("id");
@@ -706,6 +726,21 @@ describe("when optimizing a dataset", () => {
expect(stats.prune.bytesRemoved).toBeGreaterThan(0);
expect(stats.prune.oldVersionsRemoved).toBe(3);
});
it("delete unverified", async () => {
const version = await table.version();
const versionFile = `${tmpDir.name}/${table.name}.lance/_versions/${version - 1}.manifest`;
fs.rmSync(versionFile);
let stats = await table.optimize({ deleteUnverified: false });
expect(stats.prune.oldVersionsRemoved).toBe(0);
stats = await table.optimize({
cleanupOlderThan: new Date(),
deleteUnverified: true,
});
expect(stats.prune.oldVersionsRemoved).toBeGreaterThan(1);
});
});
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
@@ -785,11 +820,26 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
];
const table = await db.createTable("test", data);
expect(table.search("hello").toArray()).rejects.toThrow(
expect(table.search("hello", "vector").toArray()).rejects.toThrow(
"No embedding functions are defined in the table",
);
});
test("full text search if no embedding function provided", async () => {
const db = await connect(tmpDir.name);
const data = [
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts(),
});
const results = await table.search("hello").toArray();
expect(results[0].text).toBe(data[0].text);
});
test.each([
[0.4, 0.5, 0.599], // number[]
Float32Array.of(0.4, 0.5, 0.599), // Float32Array

View File

@@ -0,0 +1,52 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const words = [
"apple",
"banana",
"cherry",
"date",
"elderberry",
"fig",
"grape",
];
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
doc: words[i % words.length],
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
await tbl.createIndex("doc", {
config: lancedb.Index.fts(),
});
// --8<-- [start:full_text_search]
let result = await tbl
.search("apple")
.select(["id", "doc"])
.limit(10)
.toArray();
console.log(result);
// --8<-- [end:full_text_search]
console.log("SQL search: done");

View File

@@ -10,7 +10,11 @@
"license": "Apache-2.0",
"dependencies": {
"@lancedb/lancedb": "file:../",
"@xenova/transformers": "^2.17.2"
"@xenova/transformers": "^2.17.2",
"tsc": "^2.0.4"
},
"devDependencies": {
"typescript": "^5.5.4"
},
"peerDependencies": {
"typescript": "^5.0.0"
@@ -18,7 +22,7 @@
},
"..": {
"name": "@lancedb/lancedb",
"version": "0.7.1",
"version": "0.8.0",
"cpu": [
"x64",
"arm64"
@@ -43,26 +47,30 @@
"@types/axios": "^0.14.0",
"@types/jest": "^29.1.2",
"@types/tmp": "^0.2.6",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"apache-arrow-13": "npm:apache-arrow@13.0.0",
"apache-arrow-14": "npm:apache-arrow@14.0.0",
"apache-arrow-15": "npm:apache-arrow@15.0.0",
"apache-arrow-16": "npm:apache-arrow@16.0.0",
"apache-arrow-17": "npm:apache-arrow@17.0.0",
"eslint": "^8.57.0",
"jest": "^29.7.0",
"shx": "^0.3.4",
"tmp": "^0.2.3",
"ts-jest": "^29.1.2",
"typedoc": "^0.25.7",
"typedoc-plugin-markdown": "^3.17.1",
"typescript": "^5.3.3",
"typedoc": "^0.26.4",
"typedoc-plugin-markdown": "^4.2.1",
"typescript": "^5.5.4",
"typescript-eslint": "^7.1.0"
},
"engines": {
"node": ">= 18"
},
"optionalDependencies": {
"@xenova/transformers": "^2.17.2",
"@xenova/transformers": ">=2.17 < 3",
"openai": "^4.29.2"
},
"peerDependencies": {
"apache-arrow": "^15.0.0"
"apache-arrow": ">=13.0.0 <=17.0.0"
}
},
"node_modules/@huggingface/jinja": {
@@ -785,6 +793,15 @@
"b4a": "^1.6.4"
}
},
"node_modules/tsc": {
"version": "2.0.4",
"resolved": "https://registry.npmjs.org/tsc/-/tsc-2.0.4.tgz",
"integrity": "sha512-fzoSieZI5KKJVBYGvwbVZs/J5za84f2lSTLPYf6AGiIf43tZ3GNrI1QzTLcjtyDDP4aLxd46RTZq1nQxe7+k5Q==",
"license": "MIT",
"bin": {
"tsc": "bin/tsc"
}
},
"node_modules/tunnel-agent": {
"version": "0.6.0",
"resolved": "https://registry.npmjs.org/tunnel-agent/-/tunnel-agent-0.6.0.tgz",
@@ -797,10 +814,11 @@
}
},
"node_modules/typescript": {
"version": "5.5.2",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.2.tgz",
"integrity": "sha512-NcRtPEOsPFFWjobJEtfihkLCZCXZt/os3zf8nTxjVH3RvTSxjrCamJpbExGvYOF+tFHc3pA65qpdwPbzjohhew==",
"peer": true,
"version": "5.5.4",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.4.tgz",
"integrity": "sha512-Mtq29sKDAEYP7aljRgtPOpTvOfbwRWlS6dPRzwjdE+C0R4brX/GUyhHSecbHMFLNBLcJIPt9nl9yG5TZ1weH+Q==",
"dev": true,
"license": "Apache-2.0",
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"

View File

@@ -13,7 +13,16 @@
"@lancedb/lancedb": "file:../",
"@xenova/transformers": "^2.17.2"
},
"peerDependencies": {
"typescript": "^5.0.0"
"devDependencies": {
"typescript": "^5.5.4"
},
"compilerOptions": {
"target": "ESNext",
"module": "ESNext",
"moduleResolution": "Node",
"strict": true,
"esModuleInterop": true,
"skipLibCheck": true,
"forceConsistentCasingInFileNames": true
}
}

View File

@@ -32,6 +32,7 @@ const _results2 = await tbl
.distanceType("cosine")
.limit(10)
.toArray();
console.log(_results2);
// --8<-- [end:search2]
console.log("search: done");

View File

@@ -37,6 +37,13 @@ interface EmbeddingFunctionCreate<T extends EmbeddingFunction> {
export class EmbeddingFunctionRegistry {
#functions = new Map<string, EmbeddingFunctionConstructor>();
/**
* Get the number of registered functions
*/
length() {
return this.#functions.size;
}
/**
* Register an embedding function
* @param name The name of the function

View File

@@ -175,6 +175,45 @@ export class Index {
static btree() {
return new Index(LanceDbIndex.btree());
}
/**
* Create a bitmap index.
*
* A `Bitmap` index stores a bitmap for each distinct value in the column for every row.
*
* This index works best for low-cardinality columns, where the number of unique values
* is small (i.e., less than a few hundreds).
*/
static bitmap() {
return new Index(LanceDbIndex.bitmap());
}
/**
* Create a label list index.
*
* LabelList index is a scalar index that can be used on `List<T>` columns to
* support queries with `array_contains_all` and `array_contains_any`
* using an underlying bitmap index.
*/
static labelList() {
return new Index(LanceDbIndex.labelList());
}
/**
* Create a full text search index
*
* A full text search index is an index on a string column, so that you can conduct full
* text searches on the column.
*
* The results of a full text search are ordered by relevance measured by BM25.
*
* You can combine filters with full text search.
*
* For now, the full text search index only supports English, and doesn't support phrase search.
*/
static fts() {
return new Index(LanceDbIndex.fts());
}
}
export interface IndexOptions {

View File

@@ -88,6 +88,19 @@ export interface QueryExecutionOptions {
maxBatchLength?: number;
}
/**
* Options that control the behavior of a full text search
*/
export interface FullTextSearchOptions {
/**
* The columns to search
*
* If not specified, all indexed columns will be searched.
* For now, only one column can be searched.
*/
columns?: string | string[];
}
/** Common methods supported by all query types */
export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
implements AsyncIterable<RecordBatch>
@@ -134,6 +147,25 @@ export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
return this.where(predicate);
}
fullTextSearch(
query: string,
options?: Partial<FullTextSearchOptions>,
): this {
let columns: string[] | null = null;
if (options) {
if (typeof options.columns === "string") {
columns = [options.columns];
} else if (Array.isArray(options.columns)) {
columns = options.columns;
}
}
this.doCall((inner: NativeQueryType) =>
inner.fullTextSearch(query, columns),
);
return this;
}
/**
* Return only the specified columns.
*

View File

@@ -84,6 +84,7 @@ export interface OptimizeOptions {
* tbl.cleanupOlderVersions(new Date());
*/
cleanupOlderThan: Date;
deleteUnverified: boolean;
}
/**
@@ -270,22 +271,23 @@ export abstract class Table {
* @returns {Query} A builder that can be used to parameterize the query
*/
abstract query(): Query;
/**
* Create a search query to find the nearest neighbors
* of the given query vector
* @param {string} query - the query. This will be converted to a vector using the table's provided embedding function
* @note If no embedding functions are defined in the table, this will error when collecting the results.
* of the given query
* @param {string | IntoVector} query - the query, a vector or string
* @param {string} queryType - the type of the query, "vector", "fts", or "auto"
* @param {string | string[]} ftsColumns - the columns to search in for full text search
* for now, only one column can be searched at a time.
*
* This is just a convenience method for calling `.query().nearestTo(await myEmbeddingFunction(query))`
* when "auto" is used, if the query is a string and an embedding function is defined, it will be treated as a vector query
* if the query is a string and no embedding function is defined, it will be treated as a full text search query
*/
abstract search(query: string): VectorQuery;
/**
* Create a search query to find the nearest neighbors
* of the given query vector
* @param {IntoVector} query - the query vector
* This is just a convenience method for calling `.query().nearestTo(query)`
*/
abstract search(query: IntoVector): VectorQuery;
abstract search(
query: string | IntoVector,
queryType?: string,
ftsColumns?: string | string[],
): VectorQuery | Query;
/**
* Search the table with a given query vector.
*
@@ -581,27 +583,50 @@ export class LocalTable extends Table {
query(): Query {
return new Query(this.inner);
}
search(query: string | IntoVector): VectorQuery {
if (typeof query !== "string") {
return this.vectorSearch(query);
} else {
const queryPromise = this.getEmbeddingFunctions().then(
async (functions) => {
// TODO: Support multiple embedding functions
const embeddingFunc: EmbeddingFunctionConfig | undefined = functions
.values()
.next().value;
if (!embeddingFunc) {
return Promise.reject(
new Error("No embedding functions are defined in the table"),
);
}
return await embeddingFunc.function.computeQueryEmbeddings(query);
},
);
return this.query().nearestTo(queryPromise);
search(
query: string | IntoVector,
queryType: string = "auto",
ftsColumns?: string | string[],
): VectorQuery | Query {
if (typeof query !== "string") {
if (queryType === "fts") {
throw new Error("Cannot perform full text search on a vector query");
}
return this.vectorSearch(query);
}
// If the query is a string, we need to determine if it is a vector query or a full text search query
if (queryType === "fts") {
return this.query().fullTextSearch(query, {
columns: ftsColumns,
});
}
// The query type is auto or vector
// fall back to full text search if no embedding functions are defined and the query is a string
if (queryType === "auto" && getRegistry().length() === 0) {
return this.query().fullTextSearch(query, {
columns: ftsColumns,
});
}
const queryPromise = this.getEmbeddingFunctions().then(
async (functions) => {
// TODO: Support multiple embedding functions
const embeddingFunc: EmbeddingFunctionConfig | undefined = functions
.values()
.next().value;
if (!embeddingFunc) {
return Promise.reject(
new Error("No embedding functions are defined in the table"),
);
}
return await embeddingFunc.function.computeQueryEmbeddings(query);
},
);
return this.query().nearestTo(queryPromise);
}
vectorSearch(vector: IntoVector): VectorQuery {
@@ -647,7 +672,10 @@ export class LocalTable extends Table {
cleanupOlderThanMs =
new Date().getTime() - options.cleanupOlderThan.getTime();
}
return await this.inner.optimize(cleanupOlderThanMs);
return await this.inner.optimize(
cleanupOlderThanMs,
options?.deleteUnverified,
);
}
async listIndices(): Promise<IndexConfig[]> {

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.8.0",
"version": "0.10.0-beta.0",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.8.0",
"version": "0.10.0-beta.0",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.8.0",
"version": "0.10.0-beta.0",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.8.0",
"version": "0.10.0-beta.0",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.8.0",
"version": "0.10.0-beta.0",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

View File

@@ -43,7 +43,7 @@
"ts-jest": "^29.1.2",
"typedoc": "^0.26.4",
"typedoc-plugin-markdown": "^4.2.1",
"typescript": "^5.3.3",
"typescript": "^5.5.4",
"typescript-eslint": "^7.1.0"
},
"engines": {
@@ -9292,10 +9292,11 @@
}
},
"node_modules/typescript": {
"version": "5.3.3",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.3.3.tgz",
"integrity": "sha512-pXWcraxM0uxAS+tN0AG/BF2TyqmHO014Z070UsJ+pFvYuRSq8KH8DmWpnbXe0pEPDHXZV3FcAbJkijJ5oNEnWw==",
"version": "5.5.4",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.4.tgz",
"integrity": "sha512-Mtq29sKDAEYP7aljRgtPOpTvOfbwRWlS6dPRzwjdE+C0R4brX/GUyhHSecbHMFLNBLcJIPt9nl9yG5TZ1weH+Q==",
"dev": true,
"license": "Apache-2.0",
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"

View File

@@ -10,7 +10,7 @@
"vector database",
"ann"
],
"version": "0.8.0",
"version": "0.10.0-beta.0",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",
@@ -53,7 +53,7 @@
"ts-jest": "^29.1.2",
"typedoc": "^0.26.4",
"typedoc-plugin-markdown": "^4.2.1",
"typescript": "^5.3.3",
"typescript": "^5.5.4",
"typescript-eslint": "^7.1.0"
},
"ava": {

View File

@@ -14,7 +14,7 @@
use std::sync::Mutex;
use lancedb::index::scalar::BTreeIndexBuilder;
use lancedb::index::scalar::{BTreeIndexBuilder, FtsIndexBuilder};
use lancedb::index::vector::IvfPqIndexBuilder;
use lancedb::index::Index as LanceDbIndex;
use napi_derive::napi;
@@ -76,4 +76,25 @@ impl Index {
inner: Mutex::new(Some(LanceDbIndex::BTree(BTreeIndexBuilder::default()))),
}
}
#[napi(factory)]
pub fn bitmap() -> Self {
Self {
inner: Mutex::new(Some(LanceDbIndex::Bitmap(Default::default()))),
}
}
#[napi(factory)]
pub fn label_list() -> Self {
Self {
inner: Mutex::new(Some(LanceDbIndex::LabelList(Default::default()))),
}
}
#[napi(factory)]
pub fn fts() -> Self {
Self {
inner: Mutex::new(Some(LanceDbIndex::FTS(FtsIndexBuilder::default()))),
}
}
}

View File

@@ -12,6 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use lancedb::index::scalar::FullTextSearchQuery;
use lancedb::query::ExecutableQuery;
use lancedb::query::Query as LanceDbQuery;
use lancedb::query::QueryBase;
@@ -42,6 +43,12 @@ impl Query {
self.inner = self.inner.clone().only_if(predicate);
}
#[napi]
pub fn full_text_search(&mut self, query: String, columns: Option<Vec<String>>) {
let query = FullTextSearchQuery::new(query).columns(columns);
self.inner = self.inner.clone().full_text_search(query);
}
#[napi]
pub fn select(&mut self, columns: Vec<(String, String)>) {
self.inner = self.inner.clone().select(Select::dynamic(&columns));
@@ -138,6 +145,12 @@ impl VectorQuery {
self.inner = self.inner.clone().only_if(predicate);
}
#[napi]
pub fn full_text_search(&mut self, query: String, columns: Option<Vec<String>>) {
let query = FullTextSearchQuery::new(query).columns(columns);
self.inner = self.inner.clone().full_text_search(query);
}
#[napi]
pub fn select(&mut self, columns: Vec<(String, String)>) {
self.inner = self.inner.clone().select(Select::dynamic(&columns));

View File

@@ -265,7 +265,11 @@ impl Table {
}
#[napi(catch_unwind)]
pub async fn optimize(&self, older_than_ms: Option<i64>) -> napi::Result<OptimizeStats> {
pub async fn optimize(
&self,
older_than_ms: Option<i64>,
delete_unverified: Option<bool>,
) -> napi::Result<OptimizeStats> {
let inner = self.inner_ref()?;
let older_than = if let Some(ms) = older_than_ms {
@@ -292,7 +296,7 @@ impl Table {
let prune_stats = inner
.optimize(OptimizeAction::Prune {
older_than,
delete_unverified: None,
delete_unverified,
error_if_tagged_old_versions: None,
})
.await

View File

@@ -9,7 +9,8 @@
"allowJs": true,
"resolveJsonModule": true,
"emitDecoratorMetadata": true,
"experimentalDecorators": true
"experimentalDecorators": true,
"moduleResolution": "Node"
},
"exclude": ["./dist/*"],
"typedocOptions": {

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.12.0"
current_version = "0.13.0-beta.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.12.0"
version = "0.13.0-beta.1"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true

View File

@@ -3,7 +3,7 @@ name = "lancedb"
# version in Cargo.toml
dependencies = [
"deprecation",
"pylance==0.16.0",
"pylance==0.16.1",
"ratelimiter~=1.0",
"requests>=2.31.0",
"retry>=0.9.2",
@@ -18,7 +18,7 @@ description = "lancedb"
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
license = { file = "LICENSE" }
readme = "README.md"
requires-python = ">=3.8"
requires-python = ">=3.9"
keywords = [
"data-format",
"data-science",

View File

@@ -74,6 +74,7 @@ class Query:
def select(self, columns: Tuple[str, str]): ...
def limit(self, limit: int): ...
def nearest_to(self, query_vec: pa.Array) -> VectorQuery: ...
def nearest_to_text(self, query: dict) -> Query: ...
async def execute(self, max_batch_legnth: Optional[int]) -> RecordBatchStream: ...
class VectorQuery:

View File

@@ -276,6 +276,10 @@ class DBConnection(EnforceOverrides):
"""
raise NotImplementedError
@property
def uri(self) -> str:
return self._uri
class LanceDBConnection(DBConnection):
"""
@@ -340,10 +344,6 @@ class LanceDBConnection(DBConnection):
val += ")"
return val
@property
def uri(self) -> str:
return self._uri
async def _async_get_table_names(self, start_after: Optional[str], limit: int):
conn = AsyncConnection(await lancedb_connect(self.uri))
return await conn.table_names(start_after=start_after, limit=limit)

View File

@@ -127,6 +127,7 @@ class InstructorEmbeddingFunction(TextEmbeddingFunction):
batch_size=self.batch_size,
show_progress_bar=self.show_progress_bar,
normalize_embeddings=self.normalize_embeddings,
device=self.device,
).tolist()
return res

View File

@@ -44,6 +44,7 @@ class TransformersEmbeddingFunction(EmbeddingFunction):
"""
name: str = "colbert-ir/colbertv2.0"
device: str = "cpu"
_tokenizer: Any = PrivateAttr()
_model: Any = PrivateAttr()
@@ -53,6 +54,7 @@ class TransformersEmbeddingFunction(EmbeddingFunction):
transformers = attempt_import_or_raise("transformers")
self._tokenizer = transformers.AutoTokenizer.from_pretrained(self.name)
self._model = transformers.AutoModel.from_pretrained(self.name)
self._model.to(self.device)
if PYDANTIC_VERSION.major < 2: # Pydantic 1.x compat
@@ -75,9 +77,9 @@ class TransformersEmbeddingFunction(EmbeddingFunction):
for text in texts:
encoding = self._tokenizer(
text, return_tensors="pt", padding=True, truncation=True
)
).to(self.device)
emb = self._model(**encoding).last_hidden_state.mean(dim=1).squeeze()
embedding.append(emb.detach().numpy())
embedding.append(emb.tolist())
return embedding

View File

@@ -8,7 +8,7 @@ from ._lancedb import (
)
class BTree(object):
class BTree:
"""Describes a btree index configuration
A btree index is an index on scalar columns. The index stores a copy of the
@@ -22,7 +22,8 @@ class BTree(object):
sizeof(Scalar) * 4096 bytes to find the correct row ids.
This index is good for scalar columns with mostly distinct values and does best
when the query is highly selective.
when the query is highly selective. It works with numeric, temporal, and string
columns.
The btree index does not currently have any parameters though parameters such as
the block size may be added in the future.
@@ -32,7 +33,56 @@ class BTree(object):
self._inner = LanceDbIndex.btree()
class IvfPq(object):
class Bitmap:
"""Describe a Bitmap index configuration.
A `Bitmap` index stores a bitmap for each distinct value in the column for
every row.
This index works best for low-cardinality numeric or string columns,
where the number of unique values is small (i.e., less than a few thousands).
`Bitmap` index can accelerate the following filters:
- `<`, `<=`, `=`, `>`, `>=`
- `IN (value1, value2, ...)`
- `between (value1, value2)`
- `is null`
For example, a bitmap index with a table with 1Bi rows, and 128 distinct values,
requires 128 / 8 * 1Bi bytes on disk.
"""
def __init__(self):
self._inner = LanceDbIndex.bitmap()
class LabelList:
"""Describe a LabelList index configuration.
`LabelList` is a scalar index that can be used on `List<T>` columns to
support queries with `array_contains_all` and `array_contains_any`
using an underlying bitmap index.
For example, it works with `tags`, `categories`, `keywords`, etc.
"""
def __init__(self):
self._inner = LanceDbIndex.label_list()
class FTS:
"""Describe a FTS index configuration.
`FTS` is a full-text search index that can be used on `String` columns
For example, it works with `title`, `description`, `content`, etc.
"""
def __init__(self):
self._inner = LanceDbIndex.fts()
class IvfPq:
"""Describes an IVF PQ Index
This index stores a compressed (quantized) copy of every vector. These vectors

View File

@@ -15,7 +15,6 @@ from __future__ import annotations
from abc import ABC, abstractmethod
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from typing import (
TYPE_CHECKING,
Dict,
@@ -38,7 +37,7 @@ from .arrow import AsyncRecordBatchReader
from .common import VEC
from .rerankers.base import Reranker
from .rerankers.linear_combination import LinearCombinationReranker
from .util import fs_from_uri, safe_import_pandas
from .util import safe_import_pandas
if TYPE_CHECKING:
import PIL
@@ -99,6 +98,9 @@ class Query(pydantic.BaseModel):
# if True then apply the filter before vector search
prefilter: bool = False
# full text search query
full_text_query: Optional[Union[str, dict]] = None
# top k results to return
k: int
@@ -131,6 +133,7 @@ class LanceQueryBuilder(ABC):
query_type: str,
vector_column_name: str,
ordering_field_name: str = None,
fts_columns: Union[str, List[str]] = None,
) -> LanceQueryBuilder:
"""
Create a query builder based on the given query and query type.
@@ -170,7 +173,9 @@ class LanceQueryBuilder(ABC):
if isinstance(query, str):
# fts
return LanceFtsQueryBuilder(
table, query, ordering_field_name=ordering_field_name
table,
query,
ordering_field_name=ordering_field_name,
)
if isinstance(query, list):
@@ -226,6 +231,7 @@ class LanceQueryBuilder(ABC):
self._limit = 10
self._columns = None
self._where = None
self._prefilter = False
self._with_row_id = False
@deprecation.deprecated(
@@ -451,6 +457,22 @@ class LanceQueryBuilder(ABC):
},
).explain_plan(verbose)
@abstractmethod
def rerank(self, reranker: Reranker) -> LanceQueryBuilder:
"""Rerank the results using the specified reranker.
Parameters
----------
reranker: Reranker
The reranker to use.
Returns
-------
The LanceQueryBuilder object.
"""
raise NotImplementedError
class LanceVectorQueryBuilder(LanceQueryBuilder):
"""
@@ -664,12 +686,21 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
class LanceFtsQueryBuilder(LanceQueryBuilder):
"""A builder for full text search for LanceDB."""
def __init__(self, table: "Table", query: str, ordering_field_name: str = None):
def __init__(
self,
table: "Table",
query: str,
ordering_field_name: str = None,
fts_columns: Union[str, List[str]] = None,
):
super().__init__(table)
self._query = query
self._phrase_query = False
self.ordering_field_name = ordering_field_name
self._reranker = None
if isinstance(fts_columns, str):
fts_columns = [fts_columns]
self._fts_columns = fts_columns
def phrase_query(self, phrase_query: bool = True) -> LanceFtsQueryBuilder:
"""Set whether to use phrase query.
@@ -689,6 +720,35 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
return self
def to_arrow(self) -> pa.Table:
path, fs, exist = self._table._get_fts_index_path()
if exist:
return self.tantivy_to_arrow()
query = self._query
if self._phrase_query:
raise NotImplementedError(
"Phrase query is not yet supported in Lance FTS. "
"Use tantivy-based index instead for now."
)
query = Query(
columns=self._columns,
filter=self._where,
k=self._limit,
prefilter=self._prefilter,
with_row_id=self._with_row_id,
full_text_query={
"query": query,
"columns": self._fts_columns,
},
vector=[],
)
results = self._table._execute_query(query)
results = results.read_all()
if self._reranker is not None:
results = self._reranker.rerank_fts(self._query, results)
return results
def tantivy_to_arrow(self) -> pa.Table:
try:
import tantivy
except ImportError:
@@ -699,24 +759,24 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
from .fts import search_index
# get the index path
index_path = self._table._get_fts_index_path()
# Check that we are on local filesystem
fs, _path = fs_from_uri(index_path)
if not isinstance(fs, pa_fs.LocalFileSystem):
raise NotImplementedError(
"Full-text search is only supported on the local filesystem"
)
path, fs, exist = self._table._get_fts_index_path()
# check if the index exist
if not Path(index_path).exists():
if not exist:
raise FileNotFoundError(
"Fts index does not exist. "
"Please first call table.create_fts_index(['<field_names>']) to "
"create the fts index."
)
# Check that we are on local filesystem
if not isinstance(fs, pa_fs.LocalFileSystem):
raise NotImplementedError(
"Tantivy-based full text search "
"is only supported on the local filesystem"
)
# open the index
index = tantivy.Index.open(index_path)
index = tantivy.Index.open(path)
# get the scores and doc ids
query = self._query
if self._phrase_query:
@@ -726,11 +786,11 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
index, query, self._limit, ordering_field=self.ordering_field_name
)
if len(row_ids) == 0:
empty_schema = pa.schema([pa.field("score", pa.float32())])
empty_schema = pa.schema([pa.field("_score", pa.float32())])
return pa.Table.from_pylist([], schema=empty_schema)
scores = pa.array(scores)
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
output_tbl = output_tbl.append_column("score", scores)
output_tbl = output_tbl.append_column("_score", scores)
# this needs to match vector search results which are uint64
row_ids = pa.array(row_ids, type=pa.uint64())
@@ -797,6 +857,21 @@ class LanceEmptyQueryBuilder(LanceQueryBuilder):
limit=self._limit,
)
def rerank(self, reranker: Reranker) -> LanceEmptyQueryBuilder:
"""Rerank the results using the specified reranker.
Parameters
----------
reranker: Reranker
The reranker to use.
Returns
-------
LanceEmptyQueryBuilder
The LanceQueryBuilder object.
"""
raise NotImplementedError("Reranking is not yet supported.")
class LanceHybridQueryBuilder(LanceQueryBuilder):
"""
@@ -811,7 +886,6 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
def __init__(self, table: "Table", query: str, vector_column: str):
super().__init__(table)
self._validate_fts_index()
vector_query, fts_query = self._validate_query(query)
self._fts_query = LanceFtsQueryBuilder(table, fts_query)
vector_query = self._query_to_vector(table, vector_query, vector_column)
@@ -819,12 +893,6 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._norm = "score"
self._reranker = LinearCombinationReranker(weight=0.7, fill=1.0)
def _validate_fts_index(self):
if self._table._get_fts_index_path() is None:
raise ValueError(
"Please create a full-text search index " "to perform hybrid search."
)
def _validate_query(self, query):
# Temp hack to support vectorized queries for hybrid search
if isinstance(query, str):
@@ -856,13 +924,13 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
# convert to ranks first if needed
if self._norm == "rank":
vector_results = self._rank(vector_results, "_distance")
fts_results = self._rank(fts_results, "score")
fts_results = self._rank(fts_results, "_score")
# normalize the scores to be between 0 and 1, 0 being most relevant
vector_results = self._normalize_scores(vector_results, "_distance")
# In fts higher scores represent relevance. Not inverting them here as
# rerankers might need to preserve this score to support `return_score="all"`
fts_results = self._normalize_scores(fts_results, "score")
fts_results = self._normalize_scores(fts_results, "_score")
results = self._reranker.rerank_hybrid(
self._fts_query._query, vector_results, fts_results
@@ -1177,6 +1245,16 @@ class AsyncQueryBase(object):
await batch_iter.read_all(), schema=batch_iter.schema
)
async def to_list(self) -> List[dict]:
"""
Execute the query and return the results as a list of dictionaries.
Each list entry is a dictionary with the selected column names as keys,
or all table columns if `select` is not called. The vector and the "_distance"
fields are returned whether or not they're explicitly selected.
"""
return (await self.to_arrow()).to_pylist()
async def to_pandas(self) -> "pd.DataFrame":
"""
Execute the query and collect the results into a pandas DataFrame.
@@ -1304,6 +1382,35 @@ class AsyncQuery(AsyncQueryBase):
self._inner.nearest_to(AsyncQuery._query_vec_to_array(query_vector))
)
def nearest_to_text(
self, query: str, columns: Union[str, List[str]] = None
) -> AsyncQuery:
"""
Find the documents that are most relevant to the given text query.
This method will perform a full text search on the table and return
the most relevant documents. The relevance is determined by BM25.
The columns to search must be with native FTS index
(Tantivy-based can't work with this method).
By default, all indexed columns are searched,
now only one column can be searched at a time.
Parameters
----------
query: str
The text query to search for.
columns: str or list of str, default None
The columns to search in. If None, all indexed columns are searched.
For now only one column can be searched at a time.
"""
if isinstance(columns, str):
columns = [columns]
return AsyncQuery(
self._inner.nearest_to_text({"query": query, "columns": columns})
)
class AsyncVectorQuery(AsyncQueryBase):
def __init__(self, inner: LanceVectorQuery):

View File

@@ -49,6 +49,7 @@ class RemoteDBConnection(DBConnection):
parsed = urlparse(db_url)
if parsed.scheme != "db":
raise ValueError(f"Invalid scheme: {parsed.scheme}, only accepts db://")
self._uri = str(db_url)
self.db_name = parsed.netloc
self.api_key = api_key
self._client = RestfulLanceDBClient(

View File

@@ -15,7 +15,7 @@ import logging
import uuid
from concurrent.futures import Future
from functools import cached_property
from typing import Dict, Iterable, Optional, Union
from typing import Dict, Iterable, Optional, Union, Literal
import pyarrow as pa
from lance import json_to_schema
@@ -35,10 +35,10 @@ from .db import RemoteDBConnection
class RemoteTable(Table):
def __init__(self, conn: RemoteDBConnection, name: str):
self._conn = conn
self._name = name
self.name = name
def __repr__(self) -> str:
return f"RemoteTable({self._conn.db_name}.{self._name})"
return f"RemoteTable({self._conn.db_name}.{self.name})"
def __len__(self) -> int:
self.count_rows(None)
@@ -49,14 +49,14 @@ class RemoteTable(Table):
of this Table
"""
resp = self._conn._client.post(f"/v1/table/{self._name}/describe/")
resp = self._conn._client.post(f"/v1/table/{self.name}/describe/")
schema = json_to_schema(resp["schema"])
return schema
@property
def version(self) -> int:
"""Get the current version of the table"""
resp = self._conn._client.post(f"/v1/table/{self._name}/describe/")
resp = self._conn._client.post(f"/v1/table/{self.name}/describe/")
return resp["version"]
@cached_property
@@ -84,19 +84,20 @@ class RemoteTable(Table):
def list_indices(self):
"""List all the indices on the table"""
resp = self._conn._client.post(f"/v1/table/{self._name}/index/list/")
resp = self._conn._client.post(f"/v1/table/{self.name}/index/list/")
return resp
def index_stats(self, index_uuid: str):
"""List all the stats of a specified index"""
resp = self._conn._client.post(
f"/v1/table/{self._name}/index/{index_uuid}/stats/"
f"/v1/table/{self.name}/index/{index_uuid}/stats/"
)
return resp
def create_scalar_index(
self,
column: str,
index_type: Literal["BTREE", "BITMAP", "LABEL_LIST", "scalar"] = "scalar",
):
"""Creates a scalar index
Parameters
@@ -104,8 +105,10 @@ class RemoteTable(Table):
column : str
The column to be indexed. Must be a boolean, integer, float,
or string column.
index_type : str
The index type of the scalar index. Must be "scalar" (BTREE),
"BTREE", "BITMAP", or "LABEL_LIST"
"""
index_type = "scalar"
data = {
"column": column,
@@ -113,11 +116,27 @@ class RemoteTable(Table):
"replace": True,
}
resp = self._conn._client.post(
f"/v1/table/{self._name}/create_scalar_index/", data=data
f"/v1/table/{self.name}/create_scalar_index/", data=data
)
return resp
def create_fts_index(
self,
column: str,
*,
replace: bool = False,
):
data = {
"column": column,
"index_type": "FTS",
"replace": replace,
}
resp = self._conn._client.post(
f"/v1/table/{self.name}/create_index/", data=data
)
return resp
def create_index(
self,
metric="L2",
@@ -191,7 +210,7 @@ class RemoteTable(Table):
"index_cache_size": index_cache_size,
}
resp = self._conn._client.post(
f"/v1/table/{self._name}/create_index/", data=data
f"/v1/table/{self.name}/create_index/", data=data
)
return resp
@@ -238,7 +257,7 @@ class RemoteTable(Table):
request_id = uuid.uuid4().hex
self._conn._client.post(
f"/v1/table/{self._name}/insert/",
f"/v1/table/{self.name}/insert/",
data=payload,
params={"request_id": request_id, "mode": mode},
content_type=ARROW_STREAM_CONTENT_TYPE,
@@ -248,6 +267,7 @@ class RemoteTable(Table):
self,
query: Union[VEC, str],
vector_column_name: Optional[str] = None,
query_type="auto",
) -> LanceVectorQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector. We currently support [vector search][search]
@@ -307,10 +327,18 @@ class RemoteTable(Table):
- and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
if vector_column_name is None:
vector_column_name = inf_vector_column_query(self.schema)
query = LanceQueryBuilder._query_to_vector(self, query, vector_column_name)
return LanceVectorQueryBuilder(self, query, vector_column_name)
if vector_column_name is None and query is not None and query_type != "fts":
try:
vector_column_name = inf_vector_column_query(self.schema)
except Exception as e:
raise e
return LanceQueryBuilder.create(
self,
query,
query_type,
vector_column_name=vector_column_name,
)
def _execute_query(
self, query: Query, batch_size: Optional[int] = None
@@ -339,12 +367,12 @@ class RemoteTable(Table):
v = list(v)
q = query.copy()
q.vector = v
results.append(submit(self._name, q))
results.append(submit(self.name, q))
return pa.concat_tables(
[add_index(r.result().to_arrow(), i) for i, r in enumerate(results)]
).to_reader()
else:
result = self._conn._client.query(self._name, query)
result = self._conn._client.query(self.name, query)
return result.to_arrow().to_reader()
def merge_insert(self, on: Union[str, Iterable[str]]) -> LanceMergeInsertBuilder:
@@ -394,7 +422,7 @@ class RemoteTable(Table):
)
self._conn._client.post(
f"/v1/table/{self._name}/merge_insert/",
f"/v1/table/{self.name}/merge_insert/",
data=payload,
params=params,
content_type=ARROW_STREAM_CONTENT_TYPE,
@@ -448,7 +476,7 @@ class RemoteTable(Table):
0 2 [3.0, 4.0] 85.0 # doctest: +SKIP
"""
payload = {"predicate": predicate}
self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload)
self._conn._client.post(f"/v1/table/{self.name}/delete/", data=payload)
def update(
self,
@@ -509,7 +537,7 @@ class RemoteTable(Table):
updates = [[k, v] for k, v in values_sql.items()]
payload = {"predicate": where, "updates": updates}
self._conn._client.post(f"/v1/table/{self._name}/update/", data=payload)
self._conn._client.post(f"/v1/table/{self.name}/update/", data=payload)
def cleanup_old_versions(self, *_):
"""cleanup_old_versions() is not supported on the LanceDB cloud"""
@@ -526,7 +554,7 @@ class RemoteTable(Table):
def count_rows(self, filter: Optional[str] = None) -> int:
payload = {"predicate": filter}
resp = self._conn._client.post(
f"/v1/table/{self._name}/count_rows/", data=payload
f"/v1/table/{self.name}/count_rows/", data=payload
)
return resp

View File

@@ -220,8 +220,8 @@ class Reranker(ABC):
def _keep_relevance_score(self, combined_results: pa.Table):
if self.score == "relevance":
if "score" in combined_results.column_names:
combined_results = combined_results.drop_columns(["score"])
if "_score" in combined_results.column_names:
combined_results = combined_results.drop_columns(["_score"])
if "_distance" in combined_results.column_names:
combined_results = combined_results.drop_columns(["_distance"])
return combined_results

View File

@@ -113,6 +113,6 @@ class CohereReranker(Reranker):
):
result_set = self._rerank(fts_results, query)
if self.score == "relevance":
result_set = result_set.drop_columns(["score"])
result_set = result_set.drop_columns(["_score"])
return result_set

View File

@@ -1,5 +1,3 @@
from functools import cached_property
import pyarrow as pa
from ..util import attempt_import_or_raise
@@ -12,7 +10,7 @@ class ColbertReranker(Reranker):
Parameters
----------
model_name : str, default "colbert-ir/colbertv2.0"
model_name : str, default "colbert" (colbert-ir/colbert-v2.0)
The name of the cross encoder model to use.
column : str, default "text"
The name of the column to use as input to the cross encoder model.
@@ -22,41 +20,26 @@ class ColbertReranker(Reranker):
def __init__(
self,
model_name: str = "colbert-ir/colbertv2.0",
model_name: str = "colbert",
column: str = "text",
return_score="relevance",
):
super().__init__(return_score)
self.model_name = model_name
self.column = column
self.torch = attempt_import_or_raise(
"torch"
rerankers = attempt_import_or_raise(
"rerankers"
) # import here for faster ops later
self.colbert = rerankers.Reranker(self.model_name, model_type="colbert")
def _rerank(self, result_set: pa.Table, query: str):
docs = result_set[self.column].to_pylist()
doc_ids = list(range(len(docs)))
result = self.colbert.rank(query, docs, doc_ids=doc_ids)
tokenizer, model = self._model
# get the scores of each document in the same order as the input
scores = [result.get_result_by_docid(i).score for i in doc_ids]
# Encode the query
query_encoding = tokenizer(query, return_tensors="pt")
query_embedding = model(**query_encoding).last_hidden_state.mean(dim=1)
scores = []
# Get score for each document
for document in docs:
document_encoding = tokenizer(
document, return_tensors="pt", truncation=True, max_length=512
)
document_embedding = model(**document_encoding).last_hidden_state
# Calculate MaxSim score
score = self.maxsim(query_embedding.unsqueeze(0), document_embedding)
scores.append(score.item())
# replace the self.column column with the docs
result_set = result_set.drop(self.column)
result_set = result_set.append_column(
self.column, pa.array(docs, type=pa.string())
)
# add the scores
result_set = result_set.append_column(
"_relevance_score", pa.array(scores, type=pa.float32())
@@ -105,36 +88,8 @@ class ColbertReranker(Reranker):
):
result_set = self._rerank(fts_results, query)
if self.score == "relevance":
result_set = result_set.drop_columns(["score"])
result_set = result_set.drop_columns(["_score"])
result_set = result_set.sort_by([("_relevance_score", "descending")])
return result_set
@cached_property
def _model(self):
transformers = attempt_import_or_raise("transformers")
tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name)
model = transformers.AutoModel.from_pretrained(self.model_name)
return tokenizer, model
def maxsim(self, query_embedding, document_embedding):
# Expand dimensions for broadcasting
# Query: [batch, length, size] -> [batch, query, 1, size]
# Document: [batch, length, size] -> [batch, 1, length, size]
expanded_query = query_embedding.unsqueeze(2)
expanded_doc = document_embedding.unsqueeze(1)
# Compute cosine similarity across the embedding dimension
sim_matrix = self.torch.nn.functional.cosine_similarity(
expanded_query, expanded_doc, dim=-1
)
# Take the maximum similarity for each query token (across all document tokens)
# sim_matrix shape: [batch_size, query_length, doc_length]
max_sim_scores, _ = self.torch.max(sim_matrix, dim=2)
# Average these maximum scores across all query tokens
avg_max_sim = self.torch.mean(max_sim_scores, dim=1)
return avg_max_sim

View File

@@ -42,7 +42,8 @@ class CrossEncoderReranker(Reranker):
@cached_property
def model(self):
sbert = attempt_import_or_raise("sentence_transformers")
cross_encoder = sbert.CrossEncoder(self.model_name)
# Allows overriding the automatically selected device
cross_encoder = sbert.CrossEncoder(self.model_name, device=self.device)
return cross_encoder
@@ -96,7 +97,7 @@ class CrossEncoderReranker(Reranker):
):
fts_results = self._rerank(fts_results, query)
if self.score == "relevance":
fts_results = fts_results.drop_columns(["score"])
fts_results = fts_results.drop_columns(["_score"])
fts_results = fts_results.sort_by([("_relevance_score", "descending")])
return fts_results

View File

@@ -117,6 +117,6 @@ class JinaReranker(Reranker):
):
result_set = self._rerank(fts_results, query)
if self.score == "relevance":
result_set = result_set.drop_columns(["score"])
result_set = result_set.drop_columns(["_score"])
return result_set

View File

@@ -69,12 +69,12 @@ class LinearCombinationReranker(Reranker):
vi = vector_list[i]
fj = fts_list[j]
# invert the fts score from relevance to distance
inverted_fts_score = self._invert_score(fj["score"])
inverted_fts_score = self._invert_score(fj["_score"])
if vi["_rowid"] == fj["_rowid"]:
vi["_relevance_score"] = self._combine_score(
vi["_distance"], inverted_fts_score
)
vi["score"] = fj["score"] # keep the original score
vi["_score"] = fj["_score"] # keep the original score
combined_list.append(vi)
i += 1
j += 1

View File

@@ -108,7 +108,7 @@ class OpenaiReranker(Reranker):
def rerank_fts(self, query: str, fts_results: pa.Table):
fts_results = self._rerank(fts_results, query)
if self.score == "relevance":
fts_results = fts_results.drop_columns(["score"])
fts_results = fts_results.drop_columns(["_score"])
fts_results = fts_results.sort_by([("_relevance_score", "descending")])

View File

@@ -1,15 +1,5 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
from __future__ import annotations
@@ -59,10 +49,9 @@ from .util import (
if TYPE_CHECKING:
import PIL
from lance.dataset import CleanupStats, ReaderLike
from ._lancedb import Table as LanceDBTable, OptimizeStats
from .db import LanceDBConnection
from .index import BTree, IndexConfig, IvfPq
from .index import BTree, IndexConfig, IvfPq, Bitmap, LabelList, FTS
pd = safe_import_pandas()
@@ -352,6 +341,7 @@ class Table(ABC):
column: str,
*,
replace: bool = True,
index_type: Literal["BTREE", "BITMAP", "LABEL_LIST"] = "BTREE",
):
"""Create a scalar index on a column.
@@ -401,6 +391,8 @@ class Table(ABC):
or string column.
replace : bool, default True
Replace the existing index if it exists.
index_type: Literal["BTREE", "BITMAP", "LABEL_LIST"], default "BTREE"
The type of index to create.
Examples
--------
@@ -413,6 +405,47 @@ class Table(ABC):
"""
raise NotImplementedError
def create_fts_index(
self,
field_names: Union[str, List[str]],
ordering_field_names: Union[str, List[str]] = None,
*,
replace: bool = False,
writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
tokenizer_name: str = "default",
use_tantivy: bool = True,
):
"""Create a full-text search index on the table.
Warning - this API is highly experimental and is highly likely to change
in the future.
Parameters
----------
field_names: str or list of str
The name(s) of the field to index.
can be only str if use_tantivy=True for now.
replace: bool, default False
If True, replace the existing index if it exists. Note that this is
not yet an atomic operation; the index will be temporarily
unavailable while the new index is being created.
writer_heap_size: int, default 1GB
Only available with use_tantivy=True
ordering_field_names:
A list of unsigned type fields to index to optionally order
results on at search time.
only available with use_tantivy=True
tokenizer_name: str, default "default"
The tokenizer to use for the index. Can be "raw", "default" or the 2 letter
language code followed by "_stem". So for english it would be "en_stem".
For available languages see: https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html
only available with use_tantivy=True for now
use_tantivy: bool, default True
If True, use the legacy full-text search implementation based on tantivy.
If False, use the new full-text search implementation based on lance-index.
"""
raise NotImplementedError
@abstractmethod
def add(
self,
@@ -511,6 +544,8 @@ class Table(ABC):
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
vector_column_name: Optional[str] = None,
query_type: str = "auto",
ordering_field_name: Optional[str] = None,
fts_columns: Union[str, List[str]] = None,
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector. We currently support [vector search][search]
@@ -807,6 +842,18 @@ class Table(ABC):
The names of the columns to drop.
"""
@cached_property
def _dataset_uri(self) -> str:
return _table_uri(self._conn.uri, self.name)
def _get_fts_index_path(self) -> Tuple[str, pa_fs.FileSystem, bool]:
if get_uri_scheme(self._dataset_uri) != "file":
return ("", None, False)
path = join_uri(self._dataset_uri, "_indices", "fts")
fs, path = fs_from_uri(path)
index_exists = fs.get_file_info(path).type != pa_fs.FileType.NotFound
return (path, fs, index_exists)
class _LanceDatasetRef(ABC):
@property
@@ -946,10 +993,6 @@ class LanceTable(Table):
# Cacheable since it's deterministic
return _table_path(self._conn.uri, self.name)
@cached_property
def _dataset_uri(self) -> str:
return _table_uri(self._conn.uri, self.name)
@property
def _dataset(self) -> LanceDataset:
return self._ref.dataset
@@ -1188,9 +1231,15 @@ class LanceTable(Table):
index_cache_size=index_cache_size,
)
def create_scalar_index(self, column: str, *, replace: bool = True):
def create_scalar_index(
self,
column: str,
*,
replace: bool = True,
index_type: Literal["BTREE", "BITMAP", "LABEL_LIST"] = "BTREE",
):
self._dataset_mut.create_scalar_index(
column, index_type="BTREE", replace=replace
column, index_type=index_type, replace=replace
)
def create_fts_index(
@@ -1201,29 +1250,21 @@ class LanceTable(Table):
replace: bool = False,
writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
tokenizer_name: str = "default",
use_tantivy: bool = True,
):
"""Create a full-text search index on the table.
if not use_tantivy:
if not isinstance(field_names, str):
raise ValueError("field_names must be a string when use_tantivy=False")
# delete the existing legacy index if it exists
if replace:
path, fs, exist = self._get_fts_index_path()
if exist:
fs.delete_dir(path)
self._dataset_mut.create_scalar_index(
field_names, index_type="INVERTED", replace=replace
)
return
Warning - this API is highly experimental and is highly likely to change
in the future.
Parameters
----------
field_names: str or list of str
The name(s) of the field to index.
replace: bool, default False
If True, replace the existing index if it exists. Note that this is
not yet an atomic operation; the index will be temporarily
unavailable while the new index is being created.
writer_heap_size: int, default 1GB
ordering_field_names:
A list of unsigned type fields to index to optionally order
results on at search time
tokenizer_name: str, default "default"
The tokenizer to use for the index. Can be "raw", "default" or the 2 letter
language code followed by "_stem". So for english it would be "en_stem".
For available languages see: https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html
"""
from .fts import create_index, populate_index
if isinstance(field_names, str):
@@ -1232,9 +1273,8 @@ class LanceTable(Table):
if isinstance(ordering_field_names, str):
ordering_field_names = [ordering_field_names]
fs, path = fs_from_uri(self._get_fts_index_path())
index_exists = fs.get_file_info(path).type != pa_fs.FileType.NotFound
if index_exists:
path, fs, exist = self._get_fts_index_path()
if exist:
if not replace:
raise ValueError("Index already exists. Use replace=True to overwrite.")
fs.delete_dir(path)
@@ -1245,7 +1285,7 @@ class LanceTable(Table):
)
index = create_index(
self._get_fts_index_path(),
path,
field_names,
ordering_fields=ordering_field_names,
tokenizer_name=tokenizer_name,
@@ -1258,13 +1298,6 @@ class LanceTable(Table):
writer_heap_size=writer_heap_size,
)
def _get_fts_index_path(self):
if get_uri_scheme(self._dataset_uri) != "file":
raise NotImplementedError(
"Full-text search is not supported on object stores."
)
return join_uri(self._dataset_uri, "_indices", "tantivy")
def add(
self,
data: DATA,
@@ -1392,6 +1425,7 @@ class LanceTable(Table):
vector_column_name: Optional[str] = None,
query_type: str = "auto",
ordering_field_name: Optional[str] = None,
fts_columns: Union[str, List[str]] = None,
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector. We currently support [vector search][search]
@@ -1446,6 +1480,10 @@ class LanceTable(Table):
or raise an error if no corresponding embedding function is found.
If the `query` is a string, then the query type is "vector" if the
table has embedding functions, else the query type is "fts"
fts_columns: str or list of str, default None
The column(s) to search in for full-text search.
If None then the search is performed on all indexed columns.
For now, only one column can be searched at a time.
Returns
-------
@@ -1455,14 +1493,11 @@ class LanceTable(Table):
and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
if vector_column_name is None and query is not None:
if vector_column_name is None and query is not None and query_type != "fts":
try:
vector_column_name = inf_vector_column_query(self.schema)
except Exception as e:
if query_type == "fts":
vector_column_name = ""
else:
raise e
raise e
return LanceQueryBuilder.create(
self,
@@ -1653,18 +1688,23 @@ class LanceTable(Table):
self, query: Query, batch_size: Optional[int] = None
) -> pa.RecordBatchReader:
ds = self.to_lance()
return ds.scanner(
columns=query.columns,
filter=query.filter,
prefilter=query.prefilter,
nearest={
nearest = None
if len(query.vector) > 0:
nearest = {
"column": query.vector_column,
"q": query.vector,
"k": query.k,
"metric": query.metric,
"nprobes": query.nprobes,
"refine_factor": query.refine_factor,
},
}
return ds.scanner(
columns=query.columns,
limit=query.k,
filter=query.filter,
prefilter=query.prefilter,
nearest=nearest,
full_text_query=query.full_text_query,
with_row_id=query.with_row_id,
batch_size=batch_size,
).to_reader()
@@ -2088,7 +2128,7 @@ class AsyncTable:
column: str,
*,
replace: Optional[bool] = None,
config: Optional[Union[IvfPq, BTree]] = None,
config: Optional[Union[IvfPq, BTree, Bitmap, LabelList, FTS]] = None,
):
"""Create an index to speed up queries
@@ -2413,7 +2453,10 @@ class AsyncTable:
await self._inner.restore()
async def optimize(
self, *, cleanup_older_than: Optional[timedelta] = None
self,
*,
cleanup_older_than: Optional[timedelta] = None,
delete_unverified: bool = False,
) -> OptimizeStats:
"""
Optimize the on-disk data and indices for better performance.
@@ -2432,6 +2475,11 @@ class AsyncTable:
All files belonging to versions older than this will be removed. Set
to 0 days to remove all versions except the latest. The latest version
is never removed.
delete_unverified: bool, default False
Files leftover from a failed transaction may appear to be part of an
in-progress operation (e.g. appending new data) and these files will not
be deleted unless they are at least 7 days old. If delete_unverified is True
then these files will be deleted regardless of their age.
Experimental API
----------------
@@ -2453,7 +2501,7 @@ class AsyncTable:
"""
if cleanup_older_than is not None:
cleanup_older_than = round(cleanup_older_than.total_seconds() * 1000)
return await self._inner.optimize(cleanup_older_than)
return await self._inner.optimize(cleanup_older_than, delete_unverified)
async def list_indices(self) -> IndexConfig:
"""

View File

@@ -22,7 +22,8 @@ import pytest
from lancedb.pydantic import LanceModel, Vector
def test_basic(tmp_path):
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_basic(tmp_path, use_tantivy):
db = lancedb.connect(tmp_path)
assert db.uri == str(tmp_path)
@@ -55,7 +56,7 @@ def test_basic(tmp_path):
assert len(rs) == 1
assert rs["item"].iloc[0] == "foo"
table.create_fts_index(["item"])
table.create_fts_index("item", use_tantivy=use_tantivy)
rs = table.search("bar", query_type="fts").to_pandas()
assert len(rs) == 1
assert rs["item"].iloc[0] == "bar"

View File

@@ -15,6 +15,7 @@ import random
from unittest import mock
import lancedb as ldb
from lancedb.index import FTS
import numpy as np
import pandas as pd
import pytest
@@ -60,6 +61,43 @@ def table(tmp_path) -> ldb.table.LanceTable:
return table
@pytest.fixture
async def async_table(tmp_path) -> ldb.table.AsyncTable:
db = await ldb.connect_async(tmp_path)
vectors = [np.random.randn(128) for _ in range(100)]
nouns = ("puppy", "car", "rabbit", "girl", "monkey")
verbs = ("runs", "hits", "jumps", "drives", "barfs")
adv = ("crazily.", "dutifully.", "foolishly.", "merrily.", "occasionally.")
adj = ("adorable", "clueless", "dirty", "odd", "stupid")
text = [
" ".join(
[
nouns[random.randrange(0, 5)],
verbs[random.randrange(0, 5)],
adv[random.randrange(0, 5)],
adj[random.randrange(0, 5)],
]
)
for _ in range(100)
]
count = [random.randint(1, 10000) for _ in range(100)]
table = await db.create_table(
"test",
data=pd.DataFrame(
{
"vector": vectors,
"id": [i % 2 for i in range(100)],
"text": text,
"text2": text,
"nested": [{"text": t} for t in text],
"count": count,
}
),
)
return table
def test_create_index(tmp_path):
index = ldb.fts.create_index(str(tmp_path / "index"), ["text"])
assert isinstance(index, tantivy.Index)
@@ -74,7 +112,12 @@ def test_create_index_with_stemming(tmp_path, table):
assert os.path.exists(str(tmp_path / "index"))
# Check stemming by running tokenizer on non empty table
table.create_fts_index("text", tokenizer_name="en_stem")
table.create_fts_index("text", tokenizer_name="en_stem", use_tantivy=True)
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_create_inverted_index(table, use_tantivy):
table.create_fts_index("text", use_tantivy=use_tantivy)
def test_populate_index(tmp_path, table):
@@ -86,14 +129,27 @@ def test_search_index(tmp_path, table):
index = ldb.fts.create_index(str(tmp_path / "index"), ["text"])
ldb.fts.populate_index(index, table, ["text"])
index.reload()
results = ldb.fts.search_index(index, query="puppy", limit=10)
results = ldb.fts.search_index(index, query="puppy", limit=5)
assert len(results) == 2
assert len(results[0]) == 10 # row_ids
assert len(results[1]) == 10 # _distance
assert len(results[0]) == 5 # row_ids
assert len(results[1]) == 5 # _score
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_search_fts(table, use_tantivy):
table.create_fts_index("text", use_tantivy=use_tantivy)
results = table.search("puppy").limit(5).to_list()
assert len(results) == 5
async def test_search_fts_async(async_table):
await async_table.create_index("text", config=FTS())
results = await async_table.query().nearest_to_text("puppy").limit(5).to_list()
assert len(results) == 5
def test_search_ordering_field_index_table(tmp_path, table):
table.create_fts_index("text", ordering_field_names=["count"])
table.create_fts_index("text", ordering_field_names=["count"], use_tantivy=True)
rows = (
table.search("puppy", ordering_field_name="count")
.limit(20)
@@ -113,11 +169,11 @@ def test_search_ordering_field_index(tmp_path, table):
ldb.fts.populate_index(index, table, ["text"], ordering_fields=["count"])
index.reload()
results = ldb.fts.search_index(
index, query="puppy", limit=10, ordering_field="count"
index, query="puppy", limit=5, ordering_field="count"
)
assert len(results) == 2
assert len(results[0]) == 10 # row_ids
assert len(results[1]) == 10 # _distance
assert len(results[0]) == 5 # row_ids
assert len(results[1]) == 5 # _distance
rows = table.to_lance().take(results[0]).to_pylist()
for r in rows:
@@ -125,10 +181,11 @@ def test_search_ordering_field_index(tmp_path, table):
assert sorted(rows, key=lambda x: x["count"], reverse=True) == rows
def test_create_index_from_table(tmp_path, table):
table.create_fts_index("text")
df = table.search("puppy").limit(10).select(["text"]).to_pandas()
assert len(df) <= 10
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_create_index_from_table(tmp_path, table, use_tantivy):
table.create_fts_index("text", use_tantivy=use_tantivy)
df = table.search("puppy").limit(5).select(["text"]).to_pandas()
assert len(df) <= 5
assert "text" in df.columns
# Check whether it can be updated
@@ -145,36 +202,37 @@ def test_create_index_from_table(tmp_path, table):
]
)
with pytest.raises(ValueError, match="already exists"):
table.create_fts_index("text")
with pytest.raises(Exception, match="already exists"):
table.create_fts_index("text", use_tantivy=use_tantivy)
table.create_fts_index("text", replace=True)
table.create_fts_index("text", replace=True, use_tantivy=use_tantivy)
assert len(table.search("gorilla").limit(1).to_pandas()) == 1
def test_create_index_multiple_columns(tmp_path, table):
table.create_fts_index(["text", "text2"])
df = table.search("puppy").limit(10).to_pandas()
assert len(df) == 10
table.create_fts_index(["text", "text2"], use_tantivy=True)
df = table.search("puppy").limit(5).to_pandas()
assert len(df) == 5
assert "text" in df.columns
assert "text2" in df.columns
def test_empty_rs(tmp_path, table, mocker):
table.create_fts_index(["text", "text2"])
table.create_fts_index(["text", "text2"], use_tantivy=True)
mocker.patch("lancedb.fts.search_index", return_value=([], []))
df = table.search("puppy").limit(10).to_pandas()
df = table.search("puppy").limit(5).to_pandas()
assert len(df) == 0
def test_nested_schema(tmp_path, table):
table.create_fts_index("nested.text")
rs = table.search("puppy").limit(10).to_list()
assert len(rs) == 10
table.create_fts_index("nested.text", use_tantivy=True)
rs = table.search("puppy").limit(5).to_list()
assert len(rs) == 5
def test_search_index_with_filter(table):
table.create_fts_index("text")
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_search_index_with_filter(table, use_tantivy):
table.create_fts_index("text", use_tantivy=use_tantivy)
orig_import = __import__
def import_mock(name, *args):
@@ -186,7 +244,7 @@ def test_search_index_with_filter(table):
with mock.patch("builtins.__import__", side_effect=import_mock):
rs = table.search("puppy").where("id=1").limit(10)
# test schema
assert rs.to_arrow().drop("score").schema.equals(table.schema)
assert rs.to_arrow().drop("_score").schema.equals(table.schema)
rs = rs.to_list()
for r in rs:
@@ -204,7 +262,8 @@ def test_search_index_with_filter(table):
assert r["_rowid"] is not None
def test_null_input(table):
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_null_input(table, use_tantivy):
table.add(
[
{
@@ -217,12 +276,12 @@ def test_null_input(table):
}
]
)
table.create_fts_index("text")
table.create_fts_index("text", use_tantivy=use_tantivy)
def test_syntax(table):
# https://github.com/lancedb/lancedb/issues/769
table.create_fts_index("text")
table.create_fts_index("text", use_tantivy=True)
with pytest.raises(ValueError, match="Syntax Error"):
table.search("they could have been dogs OR").limit(10).to_list()

View File

@@ -1,10 +1,14 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
from datetime import timedelta
import random
import pyarrow as pa
import pytest
import pytest_asyncio
from lancedb import AsyncConnection, AsyncTable, connect_async
from lancedb.index import BTree, IvfPq
from lancedb.index import BTree, IvfPq, Bitmap, LabelList
@pytest_asyncio.fixture
@@ -25,8 +29,11 @@ NROWS = 256
async def some_table(db_async):
data = pa.Table.from_pydict(
{
"id": list(range(256)),
"id": list(range(NROWS)),
"vector": sample_fixed_size_list_array(NROWS, DIM),
"tags": [
[f"tag{random.randint(0, 8)}" for _ in range(2)] for _ in range(NROWS)
],
}
)
return await db_async.create_table(
@@ -53,6 +60,22 @@ async def test_create_scalar_index(some_table: AsyncTable):
await some_table.create_index("id", config=BTree())
@pytest.mark.asyncio
async def test_create_bitmap_index(some_table: AsyncTable):
await some_table.create_index("id", config=Bitmap())
# TODO: Fix via https://github.com/lancedb/lance/issues/2039
# indices = await some_table.list_indices()
# assert str(indices) == '[Index(Bitmap, columns=["id"])]'
@pytest.mark.asyncio
async def test_create_label_list_index(some_table: AsyncTable):
await some_table.create_index("tags", config=LabelList())
# TODO: Fix via https://github.com/lancedb/lance/issues/2039
# indices = await some_table.list_indices()
# assert str(indices) == '[Index(LabelList, columns=["id"])]'
@pytest.mark.asyncio
async def test_create_vector_index(some_table: AsyncTable):
# Can create

View File

@@ -354,3 +354,11 @@ async def test_query_camelcase_async(tmp_path):
result = await table.query().select(["camelCase"]).to_arrow()
assert result == pa.table({"camelCase": pa.array([1, 2])})
@pytest.mark.asyncio
async def test_query_to_list_async(table_async: AsyncTable):
list = await table_async.query().to_list()
assert len(list) == 2
assert list[0]["vector"] == [1, 2]
assert list[1]["vector"] == [3, 4]

View File

@@ -22,7 +22,7 @@ from lancedb.table import LanceTable
pytest.importorskip("lancedb.fts")
def get_test_table(tmp_path):
def get_test_table(tmp_path, use_tantivy):
db = lancedb.connect(tmp_path)
# Create a LanceDB table schema with a vector and a text column
emb = EmbeddingFunctionRegistry.get_instance().get("test")()
@@ -89,7 +89,7 @@ def get_test_table(tmp_path):
)
# Create a fts index
table.create_fts_index("text")
table.create_fts_index("text", use_tantivy=use_tantivy)
return table, MyTable
@@ -174,8 +174,8 @@ def _run_test_reranker(reranker, table, query, query_vector, schema):
assert len(result) == 20 and result == result_arrow
def _run_test_hybrid_reranker(reranker, tmp_path):
table, schema = get_test_table(tmp_path)
def _run_test_hybrid_reranker(reranker, tmp_path, use_tantivy):
table, schema = get_test_table(tmp_path, use_tantivy)
# The default reranker
result1 = (
table.search(
@@ -221,46 +221,52 @@ def _run_test_hybrid_reranker(reranker, tmp_path):
)
def test_linear_combination(tmp_path):
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_linear_combination(tmp_path, use_tantivy):
reranker = LinearCombinationReranker()
_run_test_hybrid_reranker(reranker, tmp_path)
_run_test_hybrid_reranker(reranker, tmp_path, use_tantivy)
def test_rrf_reranker(tmp_path):
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_rrf_reranker(tmp_path, use_tantivy):
reranker = RRFReranker()
_run_test_hybrid_reranker(reranker, tmp_path)
_run_test_hybrid_reranker(reranker, tmp_path, use_tantivy)
@pytest.mark.skipif(
os.environ.get("COHERE_API_KEY") is None, reason="COHERE_API_KEY not set"
)
def test_cohere_reranker(tmp_path):
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_cohere_reranker(tmp_path, use_tantivy):
pytest.importorskip("cohere")
reranker = CohereReranker()
table, schema = get_test_table(tmp_path)
table, schema = get_test_table(tmp_path, use_tantivy)
_run_test_reranker(reranker, table, "single player experience", None, schema)
def test_cross_encoder_reranker(tmp_path):
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_cross_encoder_reranker(tmp_path, use_tantivy):
pytest.importorskip("sentence_transformers")
reranker = CrossEncoderReranker()
table, schema = get_test_table(tmp_path)
table, schema = get_test_table(tmp_path, use_tantivy)
_run_test_reranker(reranker, table, "single player experience", None, schema)
def test_colbert_reranker(tmp_path):
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_colbert_reranker(tmp_path, use_tantivy):
pytest.importorskip("transformers")
reranker = ColbertReranker()
table, schema = get_test_table(tmp_path)
table, schema = get_test_table(tmp_path, use_tantivy)
_run_test_reranker(reranker, table, "single player experience", None, schema)
@pytest.mark.skipif(
os.environ.get("OPENAI_API_KEY") is None, reason="OPENAI_API_KEY not set"
)
def test_openai_reranker(tmp_path):
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_openai_reranker(tmp_path, use_tantivy):
pytest.importorskip("openai")
table, schema = get_test_table(tmp_path)
table, schema = get_test_table(tmp_path, use_tantivy)
reranker = OpenaiReranker()
_run_test_reranker(reranker, table, "single player experience", None, schema)
@@ -268,8 +274,9 @@ def test_openai_reranker(tmp_path):
@pytest.mark.skipif(
os.environ.get("JINA_API_KEY") is None, reason="JINA_API_KEY not set"
)
def test_jina_reranker(tmp_path):
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_jina_reranker(tmp_path, use_tantivy):
pytest.importorskip("jina")
table, schema = get_test_table(tmp_path)
table, schema = get_test_table(tmp_path, use_tantivy)
reranker = JinaReranker()
_run_test_reranker(reranker, table, "single player experience", None, schema)

View File

@@ -251,7 +251,8 @@ def test_s3_dynamodb_sync(s3_bucket: str, commit_table: str, monkeypatch):
# FTS indices should error since they are not supported yet.
with pytest.raises(
NotImplementedError, match="Full-text search is not supported on object stores."
NotImplementedError,
match="Full-text search is only supported on the local filesystem",
):
table.create_fts_index("x")

View File

@@ -8,6 +8,7 @@ from pathlib import Path
from time import sleep
from typing import List
from unittest.mock import PropertyMock, patch
import os
import lance
import lancedb
@@ -27,7 +28,7 @@ from pydantic import BaseModel
class MockDB:
def __init__(self, uri: Path):
self.uri = uri
self.uri = str(uri)
self.read_consistency_interval = None
@functools.cached_property
@@ -1052,3 +1053,25 @@ async def test_optimize(db_async: AsyncConnection):
assert stats.prune.old_versions_removed == 3
assert await table.query().to_arrow() == pa.table({"x": [[1], [2]]})
@pytest.mark.asyncio
async def test_optimize_delete_unverified(db_async: AsyncConnection, tmp_path):
table = await db_async.create_table(
"test",
data=[{"x": [1]}],
)
await table.add(
data=[
{"x": [2]},
],
)
version = await table.version()
path = tmp_path / "test.lance" / "_versions" / f"{version - 1}.manifest"
os.remove(path)
stats = await table.optimize(delete_unverified=False)
assert stats.prune.old_versions_removed == 0
stats = await table.optimize(
cleanup_older_than=timedelta(seconds=0), delete_unverified=True
)
assert stats.prune.old_versions_removed == 2

View File

@@ -84,6 +84,20 @@ impl Index {
inner: Mutex::new(Some(LanceDbIndex::BTree(BTreeIndexBuilder::default()))),
})
}
#[staticmethod]
pub fn bitmap() -> PyResult<Self> {
Ok(Self {
inner: Mutex::new(Some(LanceDbIndex::Bitmap(Default::default()))),
})
}
#[staticmethod]
pub fn label_list() -> PyResult<Self> {
Ok(Self {
inner: Mutex::new(Some(LanceDbIndex::LabelList(Default::default()))),
})
}
}
#[pyclass(get_all)]

View File

@@ -15,17 +15,20 @@
use arrow::array::make_array;
use arrow::array::ArrayData;
use arrow::pyarrow::FromPyArrow;
use lancedb::index::scalar::FullTextSearchQuery;
use lancedb::query::QueryExecutionOptions;
use lancedb::query::{
ExecutableQuery, Query as LanceDbQuery, QueryBase, Select, VectorQuery as LanceDbVectorQuery,
};
use pyo3::exceptions::PyRuntimeError;
use pyo3::pyclass;
use pyo3::prelude::{PyAnyMethods, PyDictMethods};
use pyo3::pymethods;
use pyo3::types::PyDict;
use pyo3::Bound;
use pyo3::PyAny;
use pyo3::PyRef;
use pyo3::PyResult;
use pyo3::{pyclass, PyErr};
use pyo3_asyncio_0_21::tokio::future_into_py;
use crate::arrow::RecordBatchStream;
@@ -68,6 +71,24 @@ impl Query {
Ok(VectorQuery { inner })
}
pub fn nearest_to_text(&mut self, query: Bound<'_, PyDict>) -> PyResult<()> {
let query_text = query
.get_item("query")?
.ok_or(PyErr::new::<PyRuntimeError, _>(
"Query text is required for nearest_to_text",
))?
.extract::<String>()?;
let columns = query
.get_item("columns")?
.map(|columns| columns.extract::<Vec<String>>())
.transpose()?;
let fts_query = FullTextSearchQuery::new(query_text).columns(columns);
self.inner = self.inner.clone().full_text_search(fts_query);
Ok(())
}
pub fn execute(
self_: PyRef<'_, Self>,
max_batch_length: Option<u32>,

View File

@@ -248,6 +248,7 @@ impl Table {
pub fn optimize(
self_: PyRef<'_, Self>,
cleanup_since_ms: Option<u64>,
delete_unverified: Option<bool>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner_ref()?.clone();
let older_than = if let Some(ms) = cleanup_since_ms {
@@ -275,7 +276,7 @@ impl Table {
let prune_stats = inner
.optimize(OptimizeAction::Prune {
older_than,
delete_unverified: None,
delete_unverified,
error_if_tagged_old_versions: None,
})
.await

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-node"
version = "0.8.0"
version = "0.10.0-beta.0"
description = "Serverless, low-latency vector database for AI applications"
license.workspace = true
edition.workspace = true

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb"
version = "0.8.0"
version = "0.10.0-beta.0"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true
@@ -56,6 +56,7 @@ tokenizers = { version = "0.19.1", optional = true }
[dev-dependencies]
tempfile = "3.5.0"
rand = { version = "0.8.3", features = ["small_rng"] }
random_word = { version = "0.4.3", features = ["en"] }
uuid = { version = "1.7.0", features = ["v4"] }
walkdir = "2"
aws-sdk-dynamodb = { version = "1.38.0" }

View File

@@ -0,0 +1,114 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use arrow_array::{Int32Array, RecordBatch, RecordBatchIterator, RecordBatchReader, StringArray};
use arrow_schema::{DataType, Field, Schema};
use futures::TryStreamExt;
use lance_index::scalar::FullTextSearchQuery;
use lancedb::connection::Connection;
use lancedb::index::scalar::FtsIndexBuilder;
use lancedb::index::Index;
use lancedb::query::{ExecutableQuery, QueryBase};
use lancedb::{connect, Result, Table};
use rand::random;
#[tokio::main]
async fn main() -> Result<()> {
if std::path::Path::new("data").exists() {
std::fs::remove_dir_all("data").unwrap();
}
let uri = "data/sample-lancedb";
let db = connect(uri).execute().await?;
let tbl = create_table(&db).await?;
create_index(&tbl).await?;
search_index(&tbl).await?;
Ok(())
}
fn create_some_records() -> Result<Box<dyn RecordBatchReader + Send>> {
const TOTAL: usize = 1000;
let schema = Arc::new(Schema::new(vec![
Field::new("id", DataType::Int32, false),
Field::new("doc", DataType::Utf8, true),
]));
let words = random_word::all(random_word::Lang::En)
.iter()
.step_by(1024)
.take(500)
.map(|w| *w)
.collect::<Vec<_>>();
let n_terms = 3;
let batches = RecordBatchIterator::new(
vec![RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(Int32Array::from_iter_values(0..TOTAL as i32)),
Arc::new(StringArray::from_iter_values((0..TOTAL).map(|_| {
(0..n_terms)
.map(|_| words[random::<usize>() % words.len()])
.collect::<Vec<_>>()
.join(" ")
}))),
],
)
.unwrap()]
.into_iter()
.map(Ok),
schema.clone(),
);
Ok(Box::new(batches))
}
async fn create_table(db: &Connection) -> Result<Table> {
let initial_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
let tbl = db.create_table("my_table", initial_data).execute().await?;
Ok(tbl)
}
async fn create_index(table: &Table) -> Result<()> {
table
.create_index(&["doc"], Index::FTS(FtsIndexBuilder::default()))
.execute()
.await?;
Ok(())
}
async fn search_index(table: &Table) -> Result<()> {
let words = random_word::all(random_word::Lang::En)
.iter()
.step_by(1024)
.take(500)
.map(|w| *w)
.collect::<Vec<_>>();
let query = words[0].to_owned();
println!("Searching for: {}", query);
let mut results = table
.query()
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.limit(10)
.execute()
.await?;
while let Some(batch) = results.try_next().await? {
println!("{:?}", batch);
}
Ok(())
}

View File

@@ -1217,7 +1217,7 @@ mod tests {
let tbl = db
.create_table("v2_test", make_data())
.use_legacy_format(false)
.data_storage_version(LanceFileVersion::Stable)
.execute()
.await
.unwrap();

View File

@@ -14,24 +14,54 @@
use std::sync::Arc;
use scalar::FtsIndexBuilder;
use serde::Deserialize;
use serde_with::skip_serializing_none;
use crate::{table::TableInternal, Result};
use self::{
scalar::BTreeIndexBuilder,
scalar::{BTreeIndexBuilder, BitmapIndexBuilder, LabelListIndexBuilder},
vector::{IvfHnswPqIndexBuilder, IvfHnswSqIndexBuilder, IvfPqIndexBuilder},
};
pub mod scalar;
pub mod vector;
/// Supported index types.
pub enum Index {
Auto,
/// A `BTree` index is an sorted index on scalar columns.
/// This index is good for scalar columns with mostly distinct values and does best when
/// the query is highly selective. It can apply to numeric, temporal, and string columns.
///
/// BTree index is useful to answer queries with
/// equality (`=`), inequality (`>`, `>=`, `<`, `<=`),and range queries.
///
/// This is the default index type for scalar columns.
BTree(BTreeIndexBuilder),
/// A `Bitmap` index stores a bitmap for each distinct value in the column for every row.
///
/// This index works best for low-cardinality columns,
/// where the number of unique values is small (i.e., less than a few hundreds).
Bitmap(BitmapIndexBuilder),
/// [LabelListIndexBuilder] is a scalar index that can be used on `List<T>` columns to
/// support queries with `array_contains_all` and `array_contains_any`
/// using an underlying bitmap index.
LabelList(LabelListIndexBuilder),
/// Full text search index using bm25.
FTS(FtsIndexBuilder),
/// IVF index with Product Quantization
IvfPq(IvfPqIndexBuilder),
/// IVF-HNSW index with Product Quantization
IvfHnswPq(IvfHnswPqIndexBuilder),
/// IVF-HNSW index with Scalar Quantization
IvfHnswSq(IvfHnswSqIndexBuilder),
}
@@ -72,10 +102,14 @@ impl IndexBuilder {
#[derive(Debug, Clone, PartialEq)]
pub enum IndexType {
// Vector
IvfPq,
IvfHnswPq,
IvfHnswSq,
// Scalar
BTree,
Bitmap,
LabelList,
}
/// A description of an index currently configured on a column

View File

@@ -28,3 +28,32 @@
pub struct BTreeIndexBuilder {}
impl BTreeIndexBuilder {}
/// Builder for a Bitmap index.
///
/// It is a scalar index that stores a bitmap for each possible value
///
/// This index works best for low-cardinality (i.e., less than 1000 unique values) columns,
/// where the number of unique values is small.
/// The bitmap stores a list of row ids where the value is present.
#[derive(Debug, Clone, Default)]
pub struct BitmapIndexBuilder {}
/// Builder for LabelList index.
///
/// [LabeListIndexBuilder] is a scalar index that can be used on `List<T>` columns to
/// support queries with `array_contains_all` and `array_contains_any`
/// using an underlying bitmap index.
///
#[derive(Debug, Clone, Default)]
pub struct LabelListIndexBuilder {}
/// Builder for a full text search index
///
/// A full text search index is an index on a string column that allows for full text search
#[derive(Debug, Clone, Default)]
pub struct FtsIndexBuilder {}
impl FtsIndexBuilder {}
pub use lance_index::scalar::FullTextSearchQuery;

View File

@@ -13,7 +13,7 @@
// limitations under the License.
//! [LanceDB](https://github.com/lancedb/lancedb) is an open-source database for vector-search built with persistent storage,
//! which greatly simplifies retrevial, filtering and management of embeddings.
//! which greatly simplifies retrieval, filtering and management of embeddings.
//!
//! The key features of LanceDB include:
//! - Production-scale vector search with no servers to manage.
@@ -133,6 +133,13 @@
//!
//! #### Create vector index (IVF_PQ)
//!
//! LanceDB is capable to automatically create appropriate indices based on the data types
//! of the columns. For example,
//!
//! * If a column has a data type of `FixedSizeList<Float16/Float32>`,
//! LanceDB will create a `IVF-PQ` vector index with default parameters.
//! * Otherwise, it creates a `BTree` index by default.
//!
//! ```no_run
//! # use std::sync::Arc;
//! # use arrow_array::{FixedSizeListArray, types::Float32Type, RecordBatch,
@@ -150,7 +157,10 @@
//! # });
//! ```
//!
//! #### Open table and run search
//!
//! User can also specify the index type explicitly, see [`Table::create_index`].
//!
//! #### Open table and search
//!
//! ```rust
//! # use std::sync::Arc;

View File

@@ -21,6 +21,7 @@ use datafusion_physical_plan::ExecutionPlan;
use half::f16;
use lance::dataset::scanner::DatasetRecordBatchStream;
use lance_datafusion::exec::execute_plan;
use lance_index::scalar::FullTextSearchQuery;
use crate::arrow::SendableRecordBatchStream;
use crate::error::{Error, Result};
@@ -351,6 +352,17 @@ pub trait QueryBase {
/// on the filter column(s).
fn only_if(self, filter: impl AsRef<str>) -> Self;
/// Perform a full text search on the table.
///
/// The results will be returned in order of BM25 scores.
///
/// This method is only valid on tables that have a full text search index.
///
/// ```ignore
/// query.full_text_search(FullTextSearchQuery::new("hello world"))
/// ```
fn full_text_search(self, query: FullTextSearchQuery) -> Self;
/// Return only the specified columns.
///
/// By default a query will return all columns from the table. However, this can have
@@ -401,6 +413,11 @@ impl<T: HasQuery> QueryBase for T {
self
}
fn full_text_search(mut self, query: FullTextSearchQuery) -> Self {
self.mut_query().full_text_search = Some(query);
self
}
fn select(mut self, select: Select) -> Self {
self.mut_query().select = select;
self
@@ -502,8 +519,13 @@ pub struct Query {
/// limit the number of rows to return.
pub(crate) limit: Option<usize>,
/// Apply filter to the returned rows.
pub(crate) filter: Option<String>,
/// Perform a full text search on the table.
pub(crate) full_text_search: Option<FullTextSearchQuery>,
/// Select column projection.
pub(crate) select: Select,
@@ -520,6 +542,7 @@ impl Query {
parent,
limit: None,
filter: None,
full_text_search: None,
select: Select::All,
fast_search: false,
}

View File

@@ -573,7 +573,8 @@ impl Table {
/// There are a variety of indices available. They are described more in
/// [`crate::index::Index`]. The simplest thing to do is to use `index::Index::Auto` which
/// will attempt to create the most useful index based on the column type and column
/// statistics.
/// statistics. `BTree` index is created by default for numeric, temporal, and
/// string columns.
///
/// Once an index is created it will remain until the data is overwritten (e.g. an
/// add operation with mode overwrite) or the indexed column is dropped.
@@ -607,10 +608,21 @@ impl Table {
/// .await
/// .unwrap();
/// # let tbl = db.open_table("idx_test").execute().await.unwrap();
/// // Create IVF PQ index on the "vector" column by default.
/// tbl.create_index(&["vector"], Index::Auto)
/// .execute()
/// .await
/// .unwrap();
/// // Create a BTree index on the "id" column.
/// tbl.create_index(&["id"], Index::Auto)
/// .execute()
/// .await
/// .unwrap();
/// // Create a LabelList index on the "tags" column.
/// tbl.create_index(&["tags"], Index::LabelList(Default::default()))
/// .execute()
/// .await
/// .unwrap();
/// # });
/// ```
pub fn create_index(&self, columns: &[impl AsRef<str>], index: Index) -> IndexBuilder {
@@ -1054,6 +1066,24 @@ impl NativeTable {
)
}
fn supported_bitmap_data_type(dtype: &DataType) -> bool {
dtype.is_integer() || matches!(dtype, DataType::Utf8)
}
fn supported_label_list_data_type(dtype: &DataType) -> bool {
match dtype {
DataType::List(field) => Self::supported_bitmap_data_type(field.data_type()),
DataType::FixedSizeList(field, _) => {
Self::supported_bitmap_data_type(field.data_type())
}
_ => false,
}
}
fn supported_fts_data_type(dtype: &DataType) -> bool {
matches!(dtype, DataType::Utf8 | DataType::LargeUtf8)
}
fn supported_vector_data_type(dtype: &DataType) -> bool {
match dtype {
DataType::FixedSizeList(inner, _) => DataType::is_floating(inner.data_type()),
@@ -1512,6 +1542,87 @@ impl NativeTable {
let lance_idx_params = lance_index::scalar::ScalarIndexParams {
force_index_type: Some(lance_index::scalar::ScalarIndexType::BTree),
};
dataset
.create_index(
&[field.name()],
IndexType::BTree,
None,
&lance_idx_params,
opts.replace,
)
.await?;
Ok(())
}
async fn create_bitmap_index(&self, field: &Field, opts: IndexBuilder) -> Result<()> {
if !Self::supported_bitmap_data_type(field.data_type()) {
return Err(Error::Schema {
message: format!(
"A Bitmap index cannot be created on the field `{}` which has data type {}",
field.name(),
field.data_type()
),
});
}
let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance_index::scalar::ScalarIndexParams {
force_index_type: Some(lance_index::scalar::ScalarIndexType::Bitmap),
};
dataset
.create_index(
&[field.name()],
IndexType::Bitmap,
None,
&lance_idx_params,
opts.replace,
)
.await?;
Ok(())
}
async fn create_label_list_index(&self, field: &Field, opts: IndexBuilder) -> Result<()> {
if !Self::supported_label_list_data_type(field.data_type()) {
return Err(Error::Schema {
message: format!(
"A LabelList index cannot be created on the field `{}` which has data type {}",
field.name(),
field.data_type()
),
});
}
let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance_index::scalar::ScalarIndexParams {
force_index_type: Some(lance_index::scalar::ScalarIndexType::LabelList),
};
dataset
.create_index(
&[field.name()],
IndexType::LabelList,
None,
&lance_idx_params,
opts.replace,
)
.await?;
Ok(())
}
async fn create_fts_index(&self, field: &Field, opts: IndexBuilder) -> Result<()> {
if !Self::supported_fts_data_type(field.data_type()) {
return Err(Error::Schema {
message: format!(
"A FTS index cannot be created on the field `{}` which has data type {}",
field.name(),
field.data_type()
),
});
}
let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance_index::scalar::ScalarIndexParams {
force_index_type: Some(lance_index::scalar::ScalarIndexType::Inverted),
};
dataset
.create_index(
&[field.name()],
@@ -1659,6 +1770,9 @@ impl TableInternal for NativeTable {
match opts.index {
Index::Auto => self.create_auto_index(field, opts).await,
Index::BTree(_) => self.create_btree_index(field, opts).await,
Index::Bitmap(_) => self.create_bitmap_index(field, opts).await,
Index::LabelList(_) => self.create_label_list_index(field, opts).await,
Index::FTS(_) => self.create_fts_index(field, opts).await,
Index::IvfPq(ivf_pq) => self.create_ivf_pq_index(ivf_pq, field, opts.replace).await,
Index::IvfHnswPq(ivf_hnsw_pq) => {
self.create_ivf_hnsw_pq_index(ivf_hnsw_pq, field, opts.replace)
@@ -1789,6 +1903,10 @@ impl TableInternal for NativeTable {
scanner.filter(filter)?;
}
if let Some(fts) = &query.base.full_text_search {
scanner.full_text_search(fts.clone())?;
}
if let Some(refine_factor) = query.refine_factor {
scanner.refine(refine_factor);
}
@@ -1977,6 +2095,7 @@ mod tests {
use std::time::Duration;
use arrow_array::{
builder::{ListBuilder, StringBuilder},
Array, BooleanArray, Date32Array, FixedSizeListArray, Float32Array, Float64Array,
Int32Array, Int64Array, LargeStringArray, RecordBatch, RecordBatchIterator,
RecordBatchReader, StringArray, TimestampMillisecondArray, TimestampNanosecondArray,
@@ -1986,17 +2105,17 @@ mod tests {
use arrow_schema::{DataType, Field, Schema, TimeUnit};
use futures::TryStreamExt;
use lance::dataset::{Dataset, WriteMode};
use lance::index::DatasetIndexInternalExt;
use lance::io::{ObjectStoreParams, WrappingObjectStore};
use rand::Rng;
use tempfile::tempdir;
use super::*;
use crate::connect;
use crate::connection::ConnectBuilder;
use crate::index::scalar::BTreeIndexBuilder;
use crate::query::{ExecutableQuery, QueryBase};
use super::*;
#[tokio::test]
async fn test_open() {
let tmp_dir = tempdir().unwrap();
@@ -2961,6 +3080,151 @@ mod tests {
);
}
#[tokio::test]
async fn test_create_bitmap_index() {
let tmp_dir = tempdir().unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let conn = ConnectBuilder::new(uri).execute().await.unwrap();
let schema = Arc::new(Schema::new(vec![
Field::new("id", DataType::Int32, false),
Field::new("category", DataType::Utf8, true),
]));
let batch = RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(Int32Array::from_iter_values(0..100)),
Arc::new(StringArray::from_iter_values(
(0..100).map(|i| format!("category_{}", i % 5)),
)),
],
)
.unwrap();
let table = conn
.create_table(
"test_bitmap",
RecordBatchIterator::new(vec![Ok(batch.clone())], batch.schema()),
)
.execute()
.await
.unwrap();
// Create bitmap index on the "category" column
table
.create_index(&["category"], Index::Bitmap(Default::default()))
.execute()
.await
.unwrap();
// Verify the index was created
let index_configs = table.list_indices().await.unwrap();
assert_eq!(index_configs.len(), 1);
let index = index_configs.into_iter().next().unwrap();
// TODO: Fix via https://github.com/lancedb/lance/issues/2039
// assert_eq!(index.index_type, crate::index::IndexType::Bitmap);
assert_eq!(index.columns, vec!["category".to_string()]);
// For now, just open the index to verify its type
let lance_dataset = table.as_native().unwrap().dataset.get().await.unwrap();
let indices = lance_dataset
.load_indices_by_name(&index.name)
.await
.unwrap();
let index_meta = &indices[0];
let idx = lance_dataset
.open_scalar_index("category", &index_meta.uuid.to_string())
.await
.unwrap();
assert_eq!(idx.index_type(), IndexType::Bitmap);
}
#[tokio::test]
async fn test_create_label_list_index() {
let tmp_dir = tempdir().unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let conn = ConnectBuilder::new(uri).execute().await.unwrap();
let schema = Arc::new(Schema::new(vec![
Field::new("id", DataType::Int32, false),
Field::new(
"tags",
DataType::List(Field::new("item", DataType::Utf8, true).into()),
true,
),
]));
const TAGS: [&str; 3] = ["cat", "dog", "fish"];
let values_builder = StringBuilder::new();
let mut builder = ListBuilder::new(values_builder);
for i in 0..120 {
builder.values().append_value(TAGS[i % 3].to_string());
if i % 3 == 0 {
builder.append(true)
}
}
let tags = Arc::new(builder.finish());
let batch = RecordBatch::try_new(
schema.clone(),
vec![Arc::new(Int32Array::from_iter_values(0..40)), tags],
)
.unwrap();
let table = conn
.create_table(
"test_bitmap",
RecordBatchIterator::new(vec![Ok(batch.clone())], batch.schema()),
)
.execute()
.await
.unwrap();
// Can not create btree or bitmap index on list column
assert!(table
.create_index(&["tags"], Index::BTree(Default::default()))
.execute()
.await
.is_err());
assert!(table
.create_index(&["tags"], Index::Bitmap(Default::default()))
.execute()
.await
.is_err());
// Create bitmap index on the "category" column
table
.create_index(&["tags"], Index::LabelList(Default::default()))
.execute()
.await
.unwrap();
// Verify the index was created
let index_configs = table.list_indices().await.unwrap();
assert_eq!(index_configs.len(), 1);
let index = index_configs.into_iter().next().unwrap();
// TODO: Fix via https://github.com/lancedb/lance/issues/2039
// assert_eq!(index.index_type, crate::index::IndexType::LabelList);
assert_eq!(index.columns, vec!["tags".to_string()]);
// For now, just open the index to verify its type
let lance_dataset = table.as_native().unwrap().dataset.get().await.unwrap();
let indices = lance_dataset
.load_indices_by_name(&index.name)
.await
.unwrap();
let index_meta = &indices[0];
let idx = lance_dataset
.open_scalar_index("tags", &index_meta.uuid.to_string())
.await
.unwrap();
assert_eq!(idx.index_type(), IndexType::LabelList);
}
#[tokio::test]
async fn test_read_consistency_interval() {
let intervals = vec![