Compare commits

...

144 Commits

Author SHA1 Message Date
Lance Release
679b031b99 Bump version: 0.14.0-beta.3 → 0.14.0 2024-12-06 17:13:15 +00:00
Lance Release
f50b5d532b Bump version: 0.14.0-beta.2 → 0.14.0-beta.3 2024-12-06 17:13:10 +00:00
Lance Release
fe655a15f0 Bump version: 0.17.0-beta.4 → 0.17.0 2024-12-06 17:12:43 +00:00
Lance Release
9d0af794d0 Bump version: 0.17.0-beta.3 → 0.17.0-beta.4 2024-12-06 17:12:43 +00:00
Will Jones
048a2d10f8 fix: data type parsing (#1918)
Fixes failing test on main
2024-12-06 08:56:07 -08:00
Lei Xu
c78a9849b4 ci: upgrade version of upload-pages-artifact and deploy-pages (#1917)
For
https://github.blog/changelog/2024-12-05-deprecation-notice-github-pages-actions-to-require-artifacts-actions-v4-on-github-com/
2024-12-06 10:45:24 -05:00
BubbleCal
c663085203 feat: support FTS options on RemoteTable (#1807) 2024-12-06 21:49:03 +08:00
Will Jones
8b628854d5 ci: fix nodejs release jobs (#1912)
* Clean up old commented out jobs
* Fix runner issue that caused these failures:
https://github.com/lancedb/lancedb/actions/runs/12186754094
2024-12-05 14:45:10 -08:00
Will Jones
a8d8c17b2a docs(rust): fix doctests (#1913)
* One doctest was running for > 60 seconds in CI, since it was
(unsuccessfully) trying to connect to LanceDB Cloud.
* Fixed the example for `Query::full_text_query()`, which was incorrect.
2024-12-05 14:44:59 -08:00
Will Jones
3c487e5fc7 perf: re-use table instance during write (#1909)
Previously, whenever `Table.add()` was called, we would write and
re-open the underlying dataset. This was bad for performance, as it
reset the table cache and initiated a lot of IO. It also could be the
source of bugs, since we didn't necessarily pass all the necessary
connection options down when re-opening the table.

Closes #1655
2024-12-05 14:44:50 -08:00
Will Jones
d6219d687c chore: simplify arrow json conversion (#1910)
Taking care of a small TODO
2024-12-05 13:14:43 -08:00
Bert
239f725b32 feat(python)!: async-sync feature parity on Connections (#1905)
Closes #1791
Closes #1764
Closes #1897 (Makes this unnecessary)

BREAKING CHANGE: when using azure connection string `az://...` the call
to connect will fail if the azure storage credentials are not set. this
is breaking from the previous behaviour where the call would fail after
connect, when user invokes methods on the connection.
2024-12-05 14:54:39 -05:00
Will Jones
5f261cf2d8 feat: upgrade to Lance v0.20.0 (#1908)
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0
2024-12-05 10:53:59 -08:00
Will Jones
79eaa52184 feat: schema evolution APIs in all SDKs (#1851)
* Support `add_columns`, `alter_columns`, `drop_columns` in Remote SDK
and async Python
* Add `data_type` parameter to node
* Docs updates
2024-12-04 14:47:50 -08:00
Lei Xu
bd82e1f66d feat(python): add support for Azure OpenAPI SDK (#1906)
Closes #1699
2024-12-04 13:09:38 -08:00
Lance Release
ba34c3bee1 Updating package-lock.json 2024-12-04 01:14:24 +00:00
Lance Release
d4d0873e2b Bump version: 0.14.0-beta.1 → 0.14.0-beta.2 2024-12-04 01:13:55 +00:00
Lance Release
12c7bd18a5 Bump version: 0.17.0-beta.2 → 0.17.0-beta.3 2024-12-04 01:13:18 +00:00
LuQQiu
c6bf6a25d6 feat: add remote db uri path with folder prefix (#1901)
Add remote database folder prefix
support db://bucket/path/to/folder/
2024-12-03 16:51:18 -08:00
Weston Pace
c998a47e17 feat: add a pyarrow dataset adapater for LanceDB tables (#1902)
This currently only works for local tables (remote tables cannot be
queried)
This is also exclusive to the sync interface. However, since the pyarrow
dataset interface is synchronous I am not sure if there is much value in
making an async-wrapping variant.

In addition, I added a `to_batches` method to the base query in the sync
API. This already exists in the async API. In the sync API this PR only
adds support for vector queries and scalar queries and not for hybrid or
FTS queries.
2024-12-03 15:42:54 -08:00
Frank Liu
d8c758513c feat: add multimodal capabilities for Voyage embedder (#1878)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-03 10:25:48 -08:00
Will Jones
3795e02ee3 chore: fix ci on main (#1899) 2024-12-02 15:21:18 -08:00
Mr. Doge
c7d424b2f3 ci: aarch64-pc-windows-msvc (#1890)
`npm run pack-build -- -t $TARGET_TRIPLE`
was needed instead of
`npm run pack-build -t $TARGET_TRIPLE`
https://github.com/lancedb/lancedb/pull/1889

some documentation about `*-pc-windows-msvc` cross-compilation (from
alpine):
https://github.com/lancedb/lancedb/pull/1831#issuecomment-2497156918

only `arm64` in `matrix` config is used
since `x86_64` built by `runs-on: windows-2022` is working
2024-12-02 11:17:37 -08:00
Bert
1efb9914ee ci: fix failing python release (#1896)
Fix failing python release for windows:
https://github.com/lancedb/lancedb/actions/runs/12019637086/job/33506642964

Also updates pkginfo to fix twine build as suggested here:
https://github.com/pypi/warehouse/issues/15611
failing release:
https://github.com/lancedb/lancedb/actions/runs/12091344173/job/33719622146
2024-12-02 11:05:29 -08:00
Lance Release
83e26a231e Updating package-lock.json 2024-11-29 22:46:45 +00:00
Lance Release
72a17b2de4 Bump version: 0.14.0-beta.0 → 0.14.0-beta.1 2024-11-29 22:46:20 +00:00
Lance Release
4231925476 Bump version: 0.17.0-beta.1 → 0.17.0-beta.2 2024-11-29 22:45:55 +00:00
Lance Release
84a6693294 Bump version: 0.17.0-beta.0 → 0.17.0-beta.1 2024-11-29 18:16:02 +00:00
Ryan Green
6c2d4c10a4 feat: support remote options for remote lancedb connection (#1895)
* Support subset of storage options as remote options
* Send Azure storage account name via HTTP header
2024-11-29 14:08:13 -03:30
Ryan Green
d914722f79 Revert "feat: support remote options for remote lancedb connection. Send Azure storage account name via HTTP header."
This reverts commit a6e4034dba.
2024-11-29 11:06:18 -03:30
Ryan Green
a6e4034dba feat: support remote options for remote lancedb connection. Send Azure storage account name via HTTP header. 2024-11-29 11:05:04 -03:30
QianZhu
2616a50502 fix: test errors after setting default limit (#1891) 2024-11-26 16:03:16 -08:00
LuQQiu
7b5e9d824a fix: dynamodb external manifest drop table (#1866)
second pr of https://github.com/lancedb/lancedb/issues/1812
2024-11-26 13:20:48 -08:00
QianZhu
3b173e7cb9 fix: default limit for remote nodejs client (#1886)
https://github.com/lancedb/lancedb/issues/1804
2024-11-26 11:01:25 -08:00
Mr. Doge
d496ab13a0 ci: linux: specify target triple for neon pack-build (vectordb) (#1889)
fixes that all `neon pack-build` packs are named
`vectordb-linux-x64-musl-*.tgz` even when cross-compiling

adds 2nd param:
`TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}`
`npm run pack-build -- -t $TARGET_TRIPLE`
2024-11-26 10:57:17 -08:00
Will Jones
69d9beebc7 docs: improve style and introduction to Python API docs (#1885)
I found the signatures difficult to read and the parameter section not
very space efficient.
2024-11-26 09:17:35 -08:00
Bert
d32360b99d feat: support overwrite and exist_ok mode for remote create_table (#1883)
Support passing modes "overwrite" and "exist_ok" when creating a remote
table.
2024-11-26 11:38:36 -05:00
Will Jones
9fa08bfa93 ci: use correct runner for vectordb (#1881)
We already do this for `gnu` builds, we should do this also for `musl`
builds.
2024-11-25 16:17:10 -08:00
LuQQiu
d6d9cb7415 feat: bump lance to 0.20.0b3 (#1882)
Bump lance version.
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0-beta.3
2024-11-25 16:15:44 -08:00
Lance Release
990d93f553 Updating package-lock.json 2024-11-25 22:06:39 +00:00
Lance Release
0832cba3c6 Bump version: 0.13.1-beta.0 → 0.14.0-beta.0 2024-11-25 22:06:14 +00:00
Lance Release
38b0d91848 Bump version: 0.16.1-beta.0 → 0.17.0-beta.0 2024-11-25 22:05:49 +00:00
Will Jones
6826039575 fix(python): run remote SDK futures in background thread (#1856)
Users who call the remote SDK from code that uses futures (either
`ThreadPoolExecutor` or `asyncio`) can get odd errors like:

```
Traceback (most recent call last):
  File "/usr/lib/python3.12/asyncio/events.py", line 88, in _run
    self._context.run(self._callback, *self._args)
RuntimeError: cannot enter context: <_contextvars.Context object at 0x7cfe94cdc900> is already entered
```

This PR fixes that by executing all LanceDB futures in a dedicated
thread pool running on a background thread. That way, it doesn't
interact with their threadpool.
2024-11-25 13:12:47 -08:00
QianZhu
3e9321fc40 docs: improve scalar index and filtering (#1874)
improved the docs on build a scalar index and pre-/post-filtering

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-11-25 11:30:57 -08:00
Lei Xu
2ded17452b fix(python)!: handle bad openai embeddings gracefully (#1873)
BREAKING-CHANGE: change Pydantic Vector field to be nullable by default.
Closes #1577
2024-11-23 13:33:52 -08:00
Mr. Doge
dfd9d2ac99 ci: musl missing node/package.json targets (#1870)
I missed targets when manually merging draft PR to updated main
I was copying from:
https://github.com/lancedb/lancedb/pull/1816/files#diff-d6e19f28e97cfeda63a9bd9426f10f1d2454eeed375ee1235e8ba842ceeb46a0

fixes:
error: Rust target x86_64-unknown-linux-musl not found in package.json.
2024-11-22 10:40:59 -08:00
Lance Release
162880140e Updating package-lock.json 2024-11-21 21:53:25 +00:00
Lance Release
99d9ced6d5 Bump version: 0.13.0 → 0.13.1-beta.0 2024-11-21 21:53:01 +00:00
Lance Release
96933d7df8 Bump version: 0.16.0 → 0.16.1-beta.0 2024-11-21 21:52:39 +00:00
Lei Xu
d369233b3d feat: bump lance to 0.20.0b2 (#1865)
Bump lance version.
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0-beta.2
2024-11-21 13:16:59 -08:00
QianZhu
43a670ed4b fix: limit docstring change (#1860) 2024-11-21 10:50:50 -08:00
Bert
cb9a00a28d feat: add list_versions to typescript, rust and remote python sdks (#1850)
Will require update to lance dependency to bring in this change which
makes the version serializable
https://github.com/lancedb/lance/pull/3143
2024-11-21 13:35:14 -05:00
Max Epstein
72af977a73 fix(CohereReranker): updated default model_name param to newest v3 (#1862) 2024-11-21 09:02:49 -08:00
Bert
7cecb71df0 feat: support for checkout and checkout_latest in remote sdks (#1863) 2024-11-21 11:28:46 -05:00
QianZhu
285071e5c8 docs: full-text search doc update (#1861)
Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2024-11-20 21:07:30 -08:00
QianZhu
114866fbcf docs: OSS doc improvement (#1859)
OSS doc improvement - HNSW index parameter explanation and others.

---------

Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2024-11-20 17:51:11 -08:00
Frank Liu
5387c0e243 docs: add Voyage models to sidebar (#1858) 2024-11-20 14:20:14 -08:00
Mr. Doge
53d1535de1 ci: musl x64,arm64 (#1853)
untested 4 artifacts at:
https://github.com/FuPeiJiang/lancedb/actions/runs/11926579058
node-native-linux-aarch64-musl 22.6 MB
node-native-linux-x86_64-musl 23.6 MB
nodejs-native-linux-aarch64-musl 26.7 MB
nodejs-native-linux-x86_64-musl 27 MB

this follows the same process as:
https://github.com/lancedb/lancedb/pull/1816#issuecomment-2484816669

Closes #1388
Closes #1107

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-11-20 10:53:19 -08:00
BubbleCal
b2f88f0b29 feat: support to sepcify ef search param (#1844)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-19 23:12:25 +08:00
fzowl
f2e3989831 docs: voyageai embedding in the index (#1813)
The code to support VoyageAI embedding and rerank models was added in
the https://github.com/lancedb/lancedb/pull/1799 PR.
Some of the documentation changes was also made, here adding the
VoyageAI embedding doc link to the index page.

These are my first PRs in lancedb and while i checked the
documentation/code structure, i might missed something important. Please
let me know if any changes required!
2024-11-18 14:34:16 -08:00
Emmanuel Ferdman
83ae52938a docs: update migration reference (#1837)
# PR Summary
PR fixes the `migration.md` reference in `docs/src/guides/tables.md`. On
the way, it also fixes some typos found in that document.

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2024-11-18 14:33:32 -08:00
Lei Xu
267aa83bf8 feat(python): check vector query is not None (#1847)
Fix the type hints of `nearest_to` method, and raise `ValueError` when
the input is None
2024-11-18 14:15:22 -08:00
Will Jones
cc72050206 chore: update package locks (#1845)
Also ran `npm audit`.
2024-11-18 13:44:06 -08:00
Will Jones
72543c8b9d test(python): test with_row_id in sync query (#1835)
Also remove weird `MockTable` fixture.
2024-11-18 11:32:52 -08:00
Will Jones
97d6210c33 ci: remove invalid references (#1834)
Fix release job
2024-11-18 11:32:44 -08:00
Ho Kim
a3d0c27b0a feat: add support for rustls (#1842)
Hello, this is a simple PR that supports `rustls-tls` feature.

The `reqwest`\`s default TLS `default-tls` is enabled by default, to
dismiss the side-effect.

The user can use `rustls-tls` like this:

```toml
lancedb = { version = "*", default-features = false, features = ["rustls-tls"] }
```
2024-11-18 10:36:20 -08:00
BubbleCal
b23d8abcdd docs: introduce incremental indexing for FTS (#1789)
don't merge it before https://github.com/lancedb/lancedb/pull/1769
merged

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-18 20:21:28 +08:00
Rob Meng
e3ea5cf9b9 chore: bump lance to 0.19.3 (#1839) 2024-11-16 14:57:52 -05:00
Lance Release
4f8b086175 Updating package-lock.json 2024-11-15 20:18:16 +00:00
Lance Release
72330fb759 Bump version: 0.13.0-beta.3 → 0.13.0 2024-11-15 20:17:59 +00:00
Lance Release
e3b2c5f438 Bump version: 0.13.0-beta.2 → 0.13.0-beta.3 2024-11-15 20:17:55 +00:00
Lance Release
66a881b33a Bump version: 0.16.0-beta.2 → 0.16.0 2024-11-15 20:17:34 +00:00
Lance Release
a7515d6ee2 Bump version: 0.16.0-beta.1 → 0.16.0-beta.2 2024-11-15 20:17:34 +00:00
Will Jones
587c0824af feat: flexible null handling and insert subschemas in Python (#1827)
* Test that we can insert subschemas (omit nullable columns) in Python.
* More work is needed to support this in Node. See:
https://github.com/lancedb/lancedb/issues/1832
* Test that we can insert data with nullable schema but no nulls in
non-nullable schema.
* Add `"null"` option for `on_bad_vectors` where we fill with null if
the vector is bad.
* Make null values not considered bad if the field itself is nullable.
2024-11-15 11:33:00 -08:00
Will Jones
b38a4269d0 fix(node): make openai and huggingface optional dependencies (#1809)
BREAKING CHANGE: openai and huggingface now have separate entrypoints.

Closes [#1624](https://github.com/lancedb/lancedb/issues/1624)
2024-11-14 15:04:35 -08:00
Will Jones
119d88b9db ci: disable Windows Arm64 until the release builds work (#1833)
Started to actually fix this, but it was taking too long
https://github.com/lancedb/lancedb/pull/1831
2024-11-14 15:04:23 -08:00
StevenSu
74f660d223 feat: add new feature, add amazon bedrock embedding function (#1788)
Add amazon bedrock embedding function to rust sdk.

1.  Add BedrockEmbeddingModel ( lancedb/src/embeddings/bedrock.rs)
2. Add example lancedb/examples/bedrock.rs
2024-11-14 11:04:59 -08:00
Lance Release
b2b0979b90 Updating package-lock.json 2024-11-14 04:42:38 +00:00
Lance Release
ee2a40b182 Bump version: 0.13.0-beta.1 → 0.13.0-beta.2 2024-11-14 04:42:19 +00:00
Lance Release
4ca0b15354 Bump version: 0.16.0-beta.0 → 0.16.0-beta.1 2024-11-14 04:41:56 +00:00
Rob Meng
d8c217b47d chore: bump lance to 0.19.2 (#1829) 2024-11-13 23:23:02 -05:00
Rob Meng
b724b1a01f feat: support remote empty query (#1828)
Support sending empty query types to remote lancedb. also include offset
and limit, where were previously omitted.
2024-11-13 23:04:52 -05:00
Will Jones
abd75e0ead feat: search multiple query vectors as one query (#1811)
Allows users to pass multiple query vector as part of a single query
plan. This just runs the queries in parallel without any further
optimization. It's mostly a convenience.

Previously, I think this was only handled by the sync Python remote API.
This makes it common across all SDKs.

Closes https://github.com/lancedb/lancedb/issues/1803

```python
>>> import lancedb
>>> import asyncio
>>> 
>>> async def main():
...     db = await lancedb.connect_async("./demo")
...     table = await db.create_table("demo", [{"id": 1, "vector": [1, 2, 3]}, {"id": 2, "vector": [4, 5, 6]}], mode="overwrite")
...     return await table.query().nearest_to([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [4.0, 5.0, 6.0]]).limit(1).to_pandas()
... 
>>> asyncio.run(main())
   query_index  id           vector  _distance
0            2   2  [4.0, 5.0, 6.0]        0.0
1            1   2  [4.0, 5.0, 6.0]        0.0
2            0   1  [1.0, 2.0, 3.0]        0.0
```
2024-11-13 16:05:16 -08:00
Will Jones
0fd8a50bd7 ci(node): run examples in CI (#1796)
This is done as setup for a PR that will fix the OpenAI dependency
issue.

 * [x] FTS examples
 * [x] Setup mock openai
 * [x] Ran `npm audit fix`
 * [x] sentences embeddings test
 * [x] Double check formatting of docs examples
2024-11-13 11:10:56 -08:00
Umut Hope YILDIRIM
9f228feb0e ci: remove cache to fix build issues on windows arm runner (#1820) 2024-11-13 09:27:10 -08:00
Ayush Chaurasia
90e9c52d0a docs: update hybrid search example to latest langchain (#1824)
Co-authored-by: qzhu <qian@lancedb.com>
2024-11-12 20:06:25 -08:00
Will Jones
68974a4e06 ci: add index URL to fix failing docs build (#1823) 2024-11-12 16:54:22 -08:00
Lei Xu
4c9bab0d92 fix: use pandas with pydantic embedding column (#1818)
* Make Pandas `DataFrame` works with embedding function + Subset of
columns
* Make `lancedb.create_table()` work with embedding function
2024-11-11 14:48:56 -08:00
QianZhu
5117aecc38 docs: search param explanation for OSS doc (#1815)
![Screenshot 2024-11-09 at 11 09
14 AM](https://github.com/user-attachments/assets/2aeba016-aeff-4658-85c6-8640285ba0c9)
2024-11-11 11:57:17 -08:00
Umut Hope YILDIRIM
729718cb09 fix: arm64 runner proto already installed bug (#1810)
https://github.com/lancedb/lancedb/actions/runs/11748512661/job/32732745458
2024-11-08 14:49:37 -08:00
Umut Hope YILDIRIM
b1c84e0bda feat: added lancedb and vectordb release ci for win32-arm64-msvc npmjs only (#1805) 2024-11-08 11:40:57 -08:00
fzowl
cbbc07d0f5 feat: voyageai support (#1799)
Adding VoyageAI embedding and rerank support
2024-11-09 00:51:20 +05:30
Kursat Aktas
21021f94ca docs: introducing LanceDB Guru on Gurubase.io (#1797)
Hello team,

I'm the maintainer of [Anteon](https://github.com/getanteon/anteon). We
have created Gurubase.io with the mission of building a centralized,
open-source tool-focused knowledge base. Essentially, each "guru" is
equipped with custom knowledge to answer user questions based on
collected data related to that tool.

I wanted to update you that I've manually added the [LanceDB
Guru](https://gurubase.io/g/lancedb) to Gurubase. LanceDB Guru uses the
data from this repo and data from the
[docs](https://lancedb.github.io/lancedb/) to answer questions by
leveraging the LLM.

In this PR, I showcased the "LanceDB Guru", which highlights that
LanceDB now has an AI assistant available to help users with their
questions. Please let me know your thoughts on this contribution.

Additionally, if you want me to disable LanceDB Guru in Gurubase, just
let me know that's totally fine.

Signed-off-by: Kursat Aktas <kursat.ce@gmail.com>
2024-11-08 10:55:22 -08:00
BubbleCal
0ed77fa990 chore: impl Debug & Clone for Index params (#1808)
we don't really need these trait in lancedb, but all fields in `Index`
implement the 2 traits, so do it for possibility to use `Index`
somewhere

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-09 01:07:43 +08:00
BubbleCal
4372c231cd feat: support optimize indices in sync API (#1769)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-08 08:48:07 -08:00
Umut Hope YILDIRIM
fa9ca8f7a6 ci: arm64 windows build support (#1770)
Adds support for 'aarch64-pc-windows-msvc'.
2024-11-06 15:34:23 -08:00
Lance Release
2a35d24ee6 Updating package-lock.json 2024-11-06 17:26:36 +00:00
Lance Release
dd9ce337e2 Bump version: 0.13.0-beta.0 → 0.13.0-beta.1 2024-11-06 17:26:17 +00:00
Will Jones
b9921d56cc fix(node): update default log level to warn (#1801)
🤦
2024-11-06 09:13:53 -08:00
Lance Release
0cfd9ed18e Updating package-lock.json 2024-11-05 23:21:50 +00:00
Lance Release
975398c3a8 Bump version: 0.12.0 → 0.13.0-beta.0 2024-11-05 23:21:32 +00:00
Lance Release
08d5f93f34 Bump version: 0.15.0 → 0.16.0-beta.0 2024-11-05 23:21:13 +00:00
Will Jones
91cab3b556 feat(python): transition Python remote sdk to use Rust implementation (#1701)
* Replaces Python implementation of Remote SDK with Rust one.
* Drops dependency on `attrs` and `cachetools`. Makes `requests` an
optional dependency used only for embeddings feature.
* Adds dependency on `nest-asyncio`. This was required to get hybrid
search working.
* Deprecate `request_thread_pool` parameter. We now use the tokio
threadpool.
* Stop caching the `schema` on a remote table. Schema is mutable and
there's no mechanism in place to invalidate the cache.
* Removed the client-side resolution of the vector column. We should
already be resolving this server-side.
2024-11-05 13:44:39 -08:00
Will Jones
c61bfc3af8 chore: update package locks (#1798) 2024-11-05 13:28:59 -08:00
Bert
4e8c7b0adf fix: serialize vectordb client errors as json (#1795) 2024-11-05 14:16:25 -05:00
Weston Pace
26f4a80e10 feat: upgrade to lance 0.19.2-beta.3 (#1794) 2024-11-05 06:43:41 -08:00
Will Jones
3604d20ad3 feat(python,node): support with_row_id in Python and remote (#1784)
Needed to support hybrid search in Remote SDK.
2024-11-04 11:25:45 -08:00
Gagan Bhullar
9708d829a9 fix: explain plan options (#1776)
PR fixes #1768
2024-11-04 10:25:34 -08:00
Will Jones
059c9794b5 fix(rust): fix update, open_table, fts search in remote client (#1785)
* `open_table` uses `POST` not `GET`
* `update` uses `predicate` key not `only_if`
* For FTS search, vector cannot be omitted. It must be passed as empty.
* Added logging of JSON request bodies to debug level logging.
2024-11-04 08:27:55 -08:00
Will Jones
15ed7f75a0 feat(python): support post filter on FTS (#1783) 2024-11-01 10:05:05 -07:00
Will Jones
96181ab421 feat: fast_search in Python and Node (#1623)
Sometimes it is acceptable to users to only search indexed data and skip
and new un-indexed data. For example, if un-indexed data will be shortly
indexed and they don't mind the delay. In these cases, we can save a lot
of CPU time in search, and provide better latency. Users can activate
this on queries using `fast_search()`.
2024-11-01 09:29:09 -07:00
Will Jones
f3fc339ef6 fix(rust): fix delete, update, query in remote SDK (#1782)
Fixes several minor issues with Rust remote SDK:

* Delete uses `predicate` not `filter` as parameter
* Update does not return the row value in remote SDK
* Update takes tuples
* Content type returned by query node is wrong, so we shouldn't validate
it. https://github.com/lancedb/sophon/issues/2742
* Data returned by query endpoint is actually an Arrow IPC file, not IPC
stream.
2024-10-31 15:22:09 -07:00
Will Jones
113cd6995b fix: index_stats works for FTS indices (#1780)
When running `index_stats()` for an FTS index, users would get the
deserialization error:

```
InvalidInput { message: "error deserializing index statistics: unknown variant `Inverted`, expected one of `IvfPq`, `IvfHnswPq`, `IvfHnswSq`, `BTree`, `Bitmap`, `LabelList`, `FTS` at line 1 column 24" }
```
2024-10-30 11:33:49 -07:00
Lance Release
02535bdc88 Updating package-lock.json 2024-10-29 22:16:51 +00:00
Lance Release
facc7d61c0 Bump version: 0.12.0-beta.0 → 0.12.0 2024-10-29 22:16:32 +00:00
Lance Release
f947259f16 Bump version: 0.11.1-beta.1 → 0.12.0-beta.0 2024-10-29 22:16:27 +00:00
Lance Release
e291212ecf Bump version: 0.15.0-beta.0 → 0.15.0 2024-10-29 22:16:05 +00:00
Lance Release
edc6445f6f Bump version: 0.14.1-beta.1 → 0.15.0-beta.0 2024-10-29 22:16:05 +00:00
Will Jones
a324f4ad7a feat(node): enable logging and show full errors (#1775)
This exposes the `LANCEDB_LOG` environment variable in node, so that
users can now turn on logging.

In addition, fixes a bug where only the top-level error from Rust was
being shown. This PR makes sure the full error chain is included in the
error message. In the future, will improve this so the error chain is
set on the [cause](https://nodejs.org/api/errors.html#errorcause)
property of JS errors https://github.com/lancedb/lancedb/issues/1779

Fixes #1774
2024-10-29 15:13:34 -07:00
Weston Pace
55104c5bae feat: allow distance type (metric) to be specified during hybrid search (#1777) 2024-10-29 13:51:18 -07:00
Rithik Kumar
d71df4572e docs: revamp langchain integration page (#1773)
Before - 
<img width="1030" alt="Screenshot 2024-10-28 132932"
src="https://github.com/user-attachments/assets/63f78bfa-949e-473e-ab22-0c692577fa3e">


After - 
<img width="1037" alt="Screenshot 2024-10-28 132727"
src="https://github.com/user-attachments/assets/85a12f6c-74f0-49ba-9f1a-fe77ad125704">
2024-10-29 22:55:50 +05:30
Rithik Kumar
aa269199ad docs: fix archived examples links (#1751) 2024-10-29 22:55:27 +05:30
BubbleCal
32fdcf97db feat!: upgrade lance to 0.19.1 (#1762)
BREAKING CHANGE: default tokenizer no longer does stemming or stop-word
removal. Users should explicitly turn that option on in the future.

- upgrade lance to 0.19.1
- update the FTS docs
- update the FTS API

Upstream change notes:
https://github.com/lancedb/lance/releases/tag/v0.19.1

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-10-29 09:03:52 -07:00
Ryan Green
b9802a0d23 Revert "fix: error during deserialization of "INVERTED" index type"
This reverts commit 2ea5939f85.
2024-10-25 14:46:47 -02:30
Ryan Green
2ea5939f85 fix: error during deserialization of "INVERTED" index type 2024-10-25 14:40:14 -02:30
Lance Release
04e1f1ee4c Updating package-lock.json 2024-10-23 00:34:22 +00:00
Lance Release
bbc588e27d Bump version: 0.11.1-beta.0 → 0.11.1-beta.1 2024-10-23 00:34:01 +00:00
Lance Release
5517e102c3 Bump version: 0.14.1-beta.0 → 0.14.1-beta.1 2024-10-23 00:33:40 +00:00
Will Jones
82197c54e4 perf: eliminate iop in refresh (#1760)
Closes #1741

If we checkout a version, we need to make a `HEAD` request to get the
size of the manifest. The new `checkout_latest()` code path can skip
this IOP. This makes the refresh slightly faster.
2024-10-18 13:40:24 -07:00
Will Jones
48f46d4751 docs(node): update indexStats signature and regenerate docs (#1742)
`indexStats` still referenced UUID even though in
https://github.com/lancedb/lancedb/pull/1702 we changed it to take name
instead.
2024-10-18 10:53:28 -07:00
Lance Release
437316cbbc Updating package-lock.json 2024-10-17 18:59:18 +00:00
Lance Release
d406eab2c8 Bump version: 0.11.0 → 0.11.1-beta.0 2024-10-17 18:59:01 +00:00
Lance Release
1f41101897 Bump version: 0.14.0 → 0.14.1-beta.0 2024-10-17 18:58:45 +00:00
Will Jones
99e4db0d6a feat(rust): allow add_embedding on create_empty_table (#1754)
Fixes https://github.com/lancedb/lancedb/issues/1750
2024-10-17 11:58:15 -07:00
Will Jones
46486d4d22 fix: list_indices can handle fts indexes (#1753)
Fixes #1752
2024-10-16 10:39:40 -07:00
Weston Pace
f43cb8bba1 feat: upgrade lance to 0.18.3 (#1748) 2024-10-16 00:48:31 -07:00
James Wu
38eb05f297 fix(python): remove dependency on retry package (#1749)
## user story

fixes https://github.com/lancedb/lancedb/issues/1480

https://github.com/invl/retry has not had an update in 8 years, one if
its sub-dependencies via requirements.txt
(https://github.com/pytest-dev/py) is no longer maintained and has a
high severity vulnerability (CVE-2022-42969).

retry is only used for a single function in the python codebase for a
deprecated helper function `with_embeddings`, which was created for an
older tutorial (https://github.com/lancedb/lancedb/pull/12) [but is now
deprecated](https://lancedb.github.io/lancedb/embeddings/legacy/).

## changes

i backported a limited range of functionality of the `@retry()`
decorator directly into lancedb so that we no longer have a dependency
to the `retry` package.

## tests

```
/Users/james/src/lancedb/python $ ruff check .
All checks passed!
/Users/james/src/lancedb/python $ pytest python/tests/test_embeddings.py
python/tests/test_embeddings.py .......s....                                                                                                                        [100%]
================================================================ 11 passed, 1 skipped, 2 warnings in 7.08s ================================================================
```
2024-10-15 15:13:57 -07:00
Ryan Green
679a70231e feat: allow fast_search on python remote table (#1747)
Add `fast_search` parameter to query builder and remote table to support
skipping flat search in remote search
2024-10-14 14:39:54 -06:00
Dominik Weckmüller
e7b56b7b2a docs: add permanent link chain icon to headings without impacting SEO (#1746)
I noted that there are no permanent links in the docs. Adapted the
current best solution from
https://github.com/squidfunk/mkdocs-material/discussions/3535. It adds a
GitHub-like chain icon to the left of each heading (right on mobile) and
does not impact SEO unlike the default solution with pilcrow char `¶`
that might show up on google search results.

<img alt="image"
src="https://user-images.githubusercontent.com/182589/153004627-6df3f8e9-c747-4f43-bd62-a8dabaa96c3f.gif">
2024-10-14 11:58:23 -07:00
Olzhas Alexandrov
5ccd0edec2 docs: clarify infrastructure requirements for S3 Express One Zone (#1745) 2024-10-11 14:06:28 -06:00
Will Jones
9c74c435e0 ci: update package lock (#1740) 2024-10-09 15:14:08 -06:00
Lance Release
6de53ce393 Updating package-lock.json 2024-10-09 18:54:29 +00:00
Lance Release
9f42fbba96 Bump version: 0.11.0-beta.2 → 0.11.0 2024-10-09 18:54:09 +00:00
Lance Release
d892f7a622 Bump version: 0.11.0-beta.1 → 0.11.0-beta.2 2024-10-09 18:54:04 +00:00
213 changed files with 15287 additions and 4316 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.11.0-beta.1"
current_version = "0.14.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.
@@ -87,11 +87,26 @@ glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-arm64-musl\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-arm64-musl\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-musl\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-musl\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""
search = "\"@lancedb/vectordb-win32-x64-msvc\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-arm64-msvc\": \"{new_version}\""
search = "\"@lancedb/vectordb-win32-arm64-msvc\": \"{current_version}\""
# Cargo files
# ------------
[[tool.bumpversion.files]]

View File

@@ -31,6 +31,9 @@ rustflags = [
[target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
[target.x86_64-unknown-linux-musl]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=-crt-static,+avx2,+fma,+f16c"]
[target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
@@ -38,3 +41,7 @@ rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm
# not found errors on systems that are missing it.
[target.x86_64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]
# Experimental target for Arm64 Windows
[target.aarch64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]

View File

@@ -31,7 +31,7 @@ jobs:
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
rustup update && rustup default
- name: Set up Python
uses: actions/setup-python@v5
with:
@@ -41,8 +41,8 @@ jobs:
- name: Build Python
working-directory: python
run: |
python -m pip install -e .
python -m pip install -r ../docs/requirements.txt
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r ../docs/requirements.txt
- name: Set up node
uses: actions/setup-node@v3
with:
@@ -72,9 +72,9 @@ jobs:
- name: Setup Pages
uses: actions/configure-pages@v2
- name: Upload artifact
uses: actions/upload-pages-artifact@v1
uses: actions/upload-pages-artifact@v3
with:
path: "docs/site"
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v1
uses: actions/deploy-pages@v4

View File

@@ -49,7 +49,7 @@ jobs:
- name: Build Python
working-directory: docs/test
run:
python -m pip install -r requirements.txt
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r requirements.txt
- name: Create test files
run: |
cd docs/test

View File

@@ -53,6 +53,9 @@ jobs:
cargo clippy --all --all-features -- -D warnings
npm ci
npm run lint-ci
- name: Lint examples
working-directory: nodejs/examples
run: npm ci && npm run lint-ci
linux:
name: Linux (NodeJS ${{ matrix.node-version }})
timeout-minutes: 30
@@ -91,6 +94,18 @@ jobs:
env:
S3_TEST: "1"
run: npm run test
- name: Setup examples
working-directory: nodejs/examples
run: npm ci
- name: Test examples
working-directory: ./
env:
OPENAI_API_KEY: test
OPENAI_BASE_URL: http://0.0.0.0:8000
run: |
python ci/mock_openai.py &
cd nodejs/examples
npm test
macos:
timeout-minutes: 30
runs-on: "macos-14"

View File

@@ -101,7 +101,7 @@ jobs:
path: |
nodejs/dist/*.node
node-linux:
node-linux-gnu:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
@@ -133,15 +133,67 @@ jobs:
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-gnu
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-linux-${{ matrix.config.arch }}
name: node-native-linux-${{ matrix.config.arch }}-gnu
path: |
node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux:
node-linux-musl:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-musl)
runs-on: ubuntu-latest
container: alpine:edge
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install common dependencies
run: |
apk add protobuf-dev curl clang mold grep npm bash
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
source "$HOME/.cargo/env"
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
curl -sSf $apk_url > apk_list
for pkg in gcc libgcc musl; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
mkdir -p $sysroot_lib
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
cp usr/lib/libgcc_s.so.1 $sysroot_lib
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
echo '!<arch>' > $sysroot_lib/libdl.a
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=apple-m1 -Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
- name: Build Linux Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-musl
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-linux-${{ matrix.config.arch }}-musl
path: |
node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux-gnu:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
@@ -178,7 +230,7 @@ jobs:
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}
name: nodejs-native-linux-${{ matrix.config.arch }}-gnu
path: |
nodejs/dist/*.node
# The generic files are the same in all distros so we just pick
@@ -192,6 +244,62 @@ jobs:
nodejs/dist/*
!nodejs/dist/*.node
nodejs-linux-musl:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-musl
runs-on: ubuntu-latest
container: alpine:edge
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install common dependencies
run: |
apk add protobuf-dev curl clang mold grep npm bash openssl-dev openssl-libs-static
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=/usr/include" >> saved_env
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=/usr/lib" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
source "$HOME/.cargo/env"
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
curl -sSf $apk_url > apk_list
for pkg in gcc libgcc musl openssl-dev openssl-libs-static; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
mkdir -p $sysroot_lib
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
cp usr/lib/libgcc_s.so.1 $sysroot_lib
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
echo '!<arch>' > $sysroot_lib/libdl.a
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
echo "export RUSTFLAGS='-Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=$(realpath usr/include)" >> saved_env
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=$(realpath usr/lib)" >> saved_env
- name: Build Linux Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}-musl
path: |
nodejs/dist/*.node
node-windows:
name: vectordb ${{ matrix.target }}
runs-on: windows-2022
@@ -226,6 +334,51 @@ jobs:
path: |
node/dist/lancedb-vectordb-win32*.tgz
node-windows-arm64:
name: vectordb ${{ matrix.config.arch }}-pc-windows-msvc
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
container: alpine:edge
strategy:
fail-fast: false
matrix:
config:
# - arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependencies
run: |
apk add protobuf-dev curl clang lld llvm19 grep npm bash msitools sed
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export AR=llvm-ar" >> saved_env
source "$HOME/.cargo/env"
rustup target add ${{ matrix.config.arch }}-pc-windows-msvc --toolchain 1.80.0
(mkdir -p sysroot && cd sysroot && sh ../ci/sysroot-${{ matrix.config.arch }}-pc-windows-msvc.sh)
echo "export C_INCLUDE_PATH=/usr/${{ matrix.config.arch }}-pc-windows-msvc/usr/include" >> saved_env
echo "export CARGO_BUILD_TARGET=${{ matrix.config.arch }}-pc-windows-msvc" >> saved_env
- name: Configure x86_64 build
if: ${{ matrix.config.arch == 'x86_64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=+crt-static,+avx2,+fma,+f16c -Clinker=lld -Clink-arg=/LIBPATH:/usr/x86_64-pc-windows-msvc/usr/lib'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-feature=+crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=lld -Clink-arg=/LIBPATH:/usr/aarch64-pc-windows-msvc/usr/lib -Clink-arg=arm64rt.lib'" >> saved_env
- name: Build Windows Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-pc-windows-msvc
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-windows-${{ matrix.config.arch }}
path: |
node/dist/lancedb-vectordb-win32*.tgz
nodejs-windows:
name: lancedb ${{ matrix.target }}
runs-on: windows-2022
@@ -260,9 +413,57 @@ jobs:
path: |
nodejs/dist/*.node
nodejs-windows-arm64:
name: lancedb ${{ matrix.config.arch }}-pc-windows-msvc
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
container: alpine:edge
strategy:
fail-fast: false
matrix:
config:
# - arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependencies
run: |
apk add protobuf-dev curl clang lld llvm19 grep npm bash msitools sed
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export AR=llvm-ar" >> saved_env
source "$HOME/.cargo/env"
rustup target add ${{ matrix.config.arch }}-pc-windows-msvc --toolchain 1.80.0
(mkdir -p sysroot && cd sysroot && sh ../ci/sysroot-${{ matrix.config.arch }}-pc-windows-msvc.sh)
echo "export C_INCLUDE_PATH=/usr/${{ matrix.config.arch }}-pc-windows-msvc/usr/include" >> saved_env
echo "export CARGO_BUILD_TARGET=${{ matrix.config.arch }}-pc-windows-msvc" >> saved_env
printf '#!/bin/sh\ncargo "$@"' > $HOME/.cargo/bin/cargo-xwin
chmod u+x $HOME/.cargo/bin/cargo-xwin
- name: Configure x86_64 build
if: ${{ matrix.config.arch == 'x86_64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=+crt-static,+avx2,+fma,+f16c -Clinker=lld -Clink-arg=/LIBPATH:/usr/x86_64-pc-windows-msvc/usr/lib'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-feature=+crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=lld -Clink-arg=/LIBPATH:/usr/aarch64-pc-windows-msvc/usr/lib -Clink-arg=arm64rt.lib'" >> saved_env
- name: Build Windows Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-windows-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
release:
name: vectordb NPM Publish
needs: [node, node-macos, node-linux, node-windows]
needs: [node, node-macos, node-linux-gnu, node-linux-musl, node-windows, node-windows-arm64]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -280,7 +481,7 @@ jobs:
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: |
# Tag beta as "preview" instead of default "latest". See lancedb
# Tag beta as "preview" instead of default "latest". See lancedb
# npm publish step for more info.
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
PUBLISH_ARGS="--tag preview"
@@ -302,7 +503,7 @@ jobs:
release-nodejs:
name: lancedb NPM Publish
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
needs: [nodejs-macos, nodejs-linux-gnu, nodejs-linux-musl, nodejs-windows, nodejs-windows-arm64]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -360,6 +561,7 @@ jobs:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
update-package-lock:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release]
runs-on: ubuntu-latest
permissions:
@@ -377,6 +579,7 @@ jobs:
github_token: ${{ secrets.GITHUB_TOKEN }}
update-package-lock-nodejs:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release-nodejs]
runs-on: ubuntu-latest
permissions:
@@ -394,6 +597,7 @@ jobs:
github_token: ${{ secrets.GITHUB_TOKEN }}
gh-release:
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
permissions:
contents: write

View File

@@ -83,7 +83,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.8
python-version: 3.12
- uses: ./.github/workflows/build_windows_wheel
with:
python-minor-version: 8

View File

@@ -138,7 +138,7 @@ jobs:
run: rm -rf target/wheels
windows:
name: "Windows: ${{ matrix.config.name }}"
timeout-minutes: 30
timeout-minutes: 60
strategy:
matrix:
config:

View File

@@ -35,21 +35,22 @@ jobs:
CC: clang-18
CXX: clang++-18
steps:
- uses: actions/checkout@v4
with:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Run format
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --workspace --tests --all-features -- -D warnings
- name: Run format
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --workspace --tests --all-features -- -D warnings
linux:
timeout-minutes: 30
# To build all features, we need more disk space than is available
@@ -65,37 +66,38 @@ jobs:
CC: clang-18
CXX: clang++-18
steps:
- uses: actions/checkout@v4
with:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Make Swap
run: |
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
- name: Start S3 integration test environment
working-directory: .
run: docker compose up --detach --wait
- name: Build
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features
- name: Run examples
run: cargo run --example simple
- name: Make Swap
run: |
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
- name: Start S3 integration test environment
working-directory: .
run: docker compose up --detach --wait
- name: Build
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features
- name: Run examples
run: cargo run --example simple
macos:
timeout-minutes: 30
strategy:
matrix:
mac-runner: [ "macos-13", "macos-14" ]
mac-runner: ["macos-13", "macos-14"]
runs-on: "${{ matrix.mac-runner }}"
defaults:
run:
@@ -104,8 +106,8 @@ jobs:
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
fetch-depth: 0
lfs: true
- name: CPU features
run: sysctl -a | grep cpu
- uses: Swatinem/rust-cache@v2
@@ -118,6 +120,7 @@ jobs:
- name: Run tests
# Run with everything except the integration tests.
run: cargo test --features remote,fp16kernels
windows:
runs-on: windows-2022
steps:
@@ -139,3 +142,99 @@ jobs:
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build
cargo test
windows-arm64:
runs-on: windows-4x-arm
steps:
- name: Install Git
run: |
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
shell: powershell
- name: Add Git to PATH
run: |
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
shell: powershell
- name: Configure Git symlinks
run: git config --global core.symlinks true
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.13"
- name: Install Visual Studio Build Tools
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
"--installPath", "C:\BuildTools", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
shell: powershell
- name: Add Visual Studio Build Tools to PATH
run: |
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# Add MSVC runtime libraries to LIB
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
# Add INCLUDE paths
$env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
shell: powershell
- name: Install Rust
run: |
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
shell: powershell
- name: Add Rust to PATH
run: |
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
shell: powershell
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install 7-Zip ARM
run: |
New-Item -Path 'C:\7zip' -ItemType Directory
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
shell: powershell
- name: Add 7-Zip to PATH
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
shell: powershell
- name: Install Protoc v21.12
working-directory: C:\
run: |
if (Test-Path 'C:\protoc') {
Write-Host "Protoc directory exists, skipping installation"
return
}
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
shell: powershell
- name: Add Protoc to PATH
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Run tests
run: |
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build --target aarch64-pc-windows-msvc
cargo test --target aarch64-pc-windows-msvc

View File

@@ -17,6 +17,7 @@ runs:
run: |
python -m pip install --upgrade pip
pip install twine
python3 -m pip install --upgrade pkginfo
- name: Choose repo
shell: bash
id: choose_repo

View File

@@ -18,28 +18,33 @@ repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
[workspace.dependencies]
lance = { "version" = "=0.18.2", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.18.2" }
lance-linalg = { "version" = "=0.18.2" }
lance-table = { "version" = "=0.18.2" }
lance-testing = { "version" = "=0.18.2" }
lance-datafusion = { "version" = "=0.18.2" }
lance-encoding = { "version" = "=0.18.2" }
lance = { "version" = "=0.20.0", "features" = [
"dynamodb",
] }
lance-io = "0.20.0"
lance-index = "0.20.0"
lance-linalg = "0.20.0"
lance-table = "0.20.0"
lance-testing = "0.20.0"
lance-datafusion = "0.20.0"
lance-encoding = "0.20.0"
# Note that this one does not include pyarrow
arrow = { version = "52.2", optional = false }
arrow-array = "52.2"
arrow-data = "52.2"
arrow-ipc = "52.2"
arrow-ord = "52.2"
arrow-schema = "52.2"
arrow-arith = "52.2"
arrow-cast = "52.2"
arrow = { version = "53.2", optional = false }
arrow-array = "53.2"
arrow-data = "53.2"
arrow-ipc = "53.2"
arrow-ord = "53.2"
arrow-schema = "53.2"
arrow-arith = "53.2"
arrow-cast = "53.2"
async-trait = "0"
chrono = "0.4.35"
datafusion-common = "41.0"
datafusion-physical-plan = "41.0"
datafusion-common = "42.0"
datafusion-physical-plan = "42.0"
env_logger = "0.10"
half = { "version" = "=2.4.1", default-features = false, features = [
"num-traits",
] }

View File

@@ -10,6 +10,7 @@
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
[![Gurubase](https://img.shields.io/badge/Gurubase-Ask%20LanceDB%20Guru-006BFF?style=for-the-badge)](https://gurubase.io/g/lancedb)
</p>

View File

@@ -1,8 +1,9 @@
#!/bin/bash
set -e
ARCH=${1:-x86_64}
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
# We pass down the current user so that when we later mount the local files
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_node
docker build \
@@ -18,4 +19,4 @@ docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \
bash ci/manylinux_node/build_vectordb.sh $ARCH
bash ci/manylinux_node/build_vectordb.sh $ARCH $TARGET_TRIPLE

View File

@@ -3,6 +3,7 @@
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
# - aarch64-pc-windows-msvc
function Prebuild-Rust {
param (
@@ -31,7 +32,7 @@ function Build-NodeBinaries {
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc"
$targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"

View File

@@ -3,6 +3,7 @@
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
# - aarch64-pc-windows-msvc
function Prebuild-Rust {
param (
@@ -31,7 +32,7 @@ function Build-NodeBinaries {
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc"
$targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"

View File

@@ -11,7 +11,8 @@ fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
#Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
cd nodejs
npm ci

View File

@@ -2,18 +2,20 @@
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
set -e
ARCH=${1:-x86_64}
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
#Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
cd node
npm ci
npm run build-release
npm run pack-build
npm run pack-build -- -t $TARGET_TRIPLE

57
ci/mock_openai.py Normal file
View File

@@ -0,0 +1,57 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
"""A zero-dependency mock OpenAI embeddings API endpoint for testing purposes."""
import argparse
import json
import http.server
class MockOpenAIRequestHandler(http.server.BaseHTTPRequestHandler):
def do_POST(self):
content_length = int(self.headers["Content-Length"])
post_data = self.rfile.read(content_length)
post_data = json.loads(post_data.decode("utf-8"))
# See: https://platform.openai.com/docs/api-reference/embeddings/create
if isinstance(post_data["input"], str):
num_inputs = 1
else:
num_inputs = len(post_data["input"])
model = post_data.get("model", "text-embedding-ada-002")
data = []
for i in range(num_inputs):
data.append({
"object": "embedding",
"embedding": [0.1] * 1536,
"index": i,
})
response = {
"object": "list",
"data": data,
"model": model,
"usage": {
"prompt_tokens": 0,
"total_tokens": 0,
}
}
self.send_response(200)
self.send_header("Content-type", "application/json")
self.end_headers()
self.wfile.write(json.dumps(response).encode("utf-8"))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Mock OpenAI embeddings API endpoint")
parser.add_argument("--port", type=int, default=8000, help="Port to listen on")
args = parser.parse_args()
port = args.port
print(f"server started on port {port}. Press Ctrl-C to stop.")
print(f"To use, set OPENAI_BASE_URL=http://localhost:{port} in your environment.")
with http.server.HTTPServer(("0.0.0.0", port), MockOpenAIRequestHandler) as server:
server.serve_forever()

View File

@@ -0,0 +1,105 @@
#!/bin/sh
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
# function dl() {
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
# }
# [[.h]]
# "id": "Win11SDK_10.0.26100"
# "version": "10.0.26100.7"
# libucrt.lib
# example: <assert.h>
# dir: ucrt/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
# example: <windows.h>
# dir: um/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
# example: <winapifamily.h>
# dir: /shared
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
# "version": "14.16.27045"
# example: <vcruntime.h>
# dir: MSVC/
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
# [[.lib]]
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
# fwpuclnt.lib arm64rt.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7a332420d812f7c1d41da865ae5a7c52/windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/19de98ed4a79938d0045d19c047936b3/3e2f7be479e3679d700ce0782e4cc318.cab
# libcmt.lib libvcruntime.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/227f40682a88dc5fa0ccb9cadc9ad30af99ad1f1a75db63407587d079f60d035/Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
msiextract windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
unzip -o Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
mkdir -p /usr/aarch64-pc-windows-msvc/usr/include
mkdir -p /usr/aarch64-pc-windows-msvc/usr/lib
# lowercase folder/file names
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
# .h
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/aarch64-pc-windows-msvc/usr/include)
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/aarch64-pc-windows-msvc/usr/include
# lowercase #include "" and #include <>
find /usr/aarch64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
# ARM intrinsics
# original dir: MSVC/
# '__n128x4' redefined in arm_neon.h
# "arm64_neon.h" included from intrin.h
(cd /usr/lib/llvm19/lib/clang/19/include && cp arm_neon.h intrin.h -t /usr/aarch64-pc-windows-msvc/usr/include)
# .lib
# _Interlocked intrinsics
# must always link with arm64rt.lib
# reason: https://developercommunity.visualstudio.com/t/libucrtlibstreamobj-error-lnk2001-unresolved-exter/1544787#T-ND1599818
# I don't understand the 'correct' fix for this, arm64rt.lib is supposed to be the workaround
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/arm64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib fwpuclnt.lib arm64rt.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
(cd 'contents/vc/tools/msvc/14.16.27023/lib/arm64' && cp libcmt.lib libvcruntime.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/arm64/libucrt.lib' /usr/aarch64-pc-windows-msvc/usr/lib

View File

@@ -0,0 +1,105 @@
#!/bin/sh
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
# function dl() {
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
# }
# [[.h]]
# "id": "Win11SDK_10.0.26100"
# "version": "10.0.26100.7"
# libucrt.lib
# example: <assert.h>
# dir: ucrt/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
# example: <windows.h>
# dir: um/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
# example: <winapifamily.h>
# dir: /shared
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
# "version": "14.16.27045"
# example: <vcruntime.h>
# dir: MSVC/
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
# [[.lib]]
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/bfc3904a0195453419ae4dfea7abd6fb/e10768bb6e9d0ea730280336b697da66.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/637f9f3be880c71f9e3ca07b4d67345c/f9b24c8280986c0683fbceca5326d806.cab
# dbghelp.lib fwpuclnt.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/9f51690d5aa804b1340ce12d1ec80f89/windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/d3a7df4ca3303a698640a29e558a5e5b/58314d0646d7e1a25e97c902166c3155.cab
# libcmt.lib libvcruntime.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/8728f21ae09940f1f4b4ee47b4a596be2509e2a47d2f0c83bbec0ea37d69644b/Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
msiextract windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
unzip -o Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
mkdir -p /usr/x86_64-pc-windows-msvc/usr/include
mkdir -p /usr/x86_64-pc-windows-msvc/usr/lib
# lowercase folder/file names
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
# .h
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/x86_64-pc-windows-msvc/usr/include)
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/x86_64-pc-windows-msvc/usr/include
# lowercase #include "" and #include <>
find /usr/x86_64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
# x86 intrinsics
# original dir: MSVC/
# '_mm_movemask_epi8' defined in emmintrin.h
# '__v4sf' defined in xmmintrin.h
# '__v2si' defined in mmintrin.h
# '__m128d' redefined in immintrin.h
# '__m128i' redefined in intrin.h
# '_mm_comlt_epu8' defined in ammintrin.h
(cd /usr/lib/llvm19/lib/clang/19/include && cp emmintrin.h xmmintrin.h mmintrin.h immintrin.h intrin.h ammintrin.h -t /usr/x86_64-pc-windows-msvc/usr/include)
# .lib
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/x64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib dbghelp.lib fwpuclnt.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
(cd 'contents/vc/tools/msvc/14.16.27023/lib/x64' && cp libcmt.lib libvcruntime.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/x64/libucrt.lib' /usr/x86_64-pc-windows-msvc/usr/lib

View File

@@ -55,6 +55,9 @@ plugins:
show_signature_annotations: true
show_root_heading: true
members_order: source
docstring_section_style: list
signature_crossrefs: true
separate_signature: true
import:
# for cross references
- https://arrow.apache.org/docs/objects.inv
@@ -90,6 +93,9 @@ markdown_extensions:
- pymdownx.emoji:
emoji_index: !!python/name:material.extensions.emoji.twemoji
emoji_generator: !!python/name:material.extensions.emoji.to_svg
- markdown.extensions.toc:
baselevel: 1
permalink: ""
nav:
- Home:
@@ -97,7 +103,7 @@ nav:
- 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md
@@ -106,7 +112,8 @@ nav:
- Working with tables: guides/tables.md
- Building a vector index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Full-text search (native): fts.md
- Full-text search (tantivy-based): fts_tantivy.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
@@ -134,6 +141,7 @@ nav:
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Voyage AI Rerankers: reranking/voyageai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
@@ -145,10 +153,10 @@ nav:
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- 🧬 Managing embeddings:
- Understand Embeddings: embeddings/understanding_embeddings.md
- Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models:
- Available models:
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
@@ -161,6 +169,7 @@ nav:
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Voyage AI Embeddings: embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
@@ -197,7 +206,7 @@ nav:
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- Miscellaneous:
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
@@ -207,9 +216,10 @@ nav:
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- Studies:
- 📓 Studies:
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- 💭 FAQs: faq.md
- 🔍 Troubleshooting: troubleshooting.md
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md
@@ -225,7 +235,7 @@ nav:
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md
@@ -234,7 +244,8 @@ nav:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Full-text search (native): fts.md
- Full-text search (tantivy-based): fts_tantivy.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
@@ -273,10 +284,10 @@ nav:
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- Managing Embeddings:
- Understand Embeddings: embeddings/understanding_embeddings.md
- Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models:
- Available models:
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
@@ -321,7 +332,7 @@ nav:
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- Miscellaneous:
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
@@ -364,5 +375,4 @@ extra:
- icon: fontawesome/brands/x-twitter
link: https://twitter.com/lancedb
- icon: fontawesome/brands/linkedin
link: https://www.linkedin.com/company/lancedb
link: https://www.linkedin.com/company/lancedb

21
docs/package-lock.json generated
View File

@@ -19,7 +19,7 @@
},
"../node": {
"name": "vectordb",
"version": "0.4.6",
"version": "0.12.0",
"cpu": [
"x64",
"arm64"
@@ -31,9 +31,7 @@
"win32"
],
"dependencies": {
"@apache-arrow/ts": "^14.0.2",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0"
},
"devDependencies": {
@@ -46,6 +44,7 @@
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
"chai-as-promised": "^7.1.1",
@@ -62,15 +61,19 @@
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*",
"typescript": "^5.1.0",
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.6",
"@lancedb/vectordb-darwin-x64": "0.4.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
"@lancedb/vectordb-darwin-arm64": "0.12.0",
"@lancedb/vectordb-darwin-x64": "0.12.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0",
"@lancedb/vectordb-linux-x64-gnu": "0.12.0",
"@lancedb/vectordb-win32-x64-msvc": "0.12.0"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
"apache-arrow": "^14.0.2"
}
},
"../node/node_modules/apache-arrow": {

View File

@@ -45,9 +45,9 @@ Lance supports `IVF_PQ` index type by default.
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
```typescript
--8<--- "nodejs/examples/ann_indexes.ts:import"
--8<--- "nodejs/examples/ann_indexes.test.ts:import"
--8<-- "nodejs/examples/ann_indexes.ts:ingest"
--8<-- "nodejs/examples/ann_indexes.test.ts:ingest"
```
=== "vectordb (deprecated)"
@@ -140,13 +140,15 @@ There are a couple of parameters that can be used to fine-tune the search:
- **limit** (default: 10): The amount of results that will be returned
- **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/>
Most of the time, setting nprobes to cover 5-10% of the dataset should achieve high recall with low latency.<br/>
e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/>
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
Most of the time, setting nprobes to cover 5-15% of the dataset should achieve high recall with low latency.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, `nprobes` should be set to ~20-40. This value can be adjusted to achieve the optimal balance between search latency and search quality. <br/>
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, setting the `refine_factor` to 200 will initially retrieve the top 4,000 candidates (top k * refine_factor) from all searched partitions. These candidates are then reranked to determine the final top 20 results.<br/>
!!! note
Both `nprobes` and `refine_factor` are only applicable if an ANN index is present. If specified on a table without an ANN index, those parameters are ignored.
=== "Python"
@@ -169,7 +171,7 @@ There are a couple of parameters that can be used to fine-tune the search:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search1"
--8<-- "nodejs/examples/ann_indexes.test.ts:search1"
```
=== "vectordb (deprecated)"
@@ -203,7 +205,7 @@ You can further filter the elements returned by a search using a where clause.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search2"
--8<-- "nodejs/examples/ann_indexes.test.ts:search2"
```
=== "vectordb (deprecated)"
@@ -235,7 +237,7 @@ You can select the columns returned by the query using a select clause.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search3"
--8<-- "nodejs/examples/ann_indexes.test.ts:search3"
```
=== "vectordb (deprecated)"
@@ -275,7 +277,15 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
!!! note
if `num_sub_vectors` is set to be greater than the vector dimension, you will see errors like `attempt to divide by zero`
### How to choose `m` and `ef_construction` for `IVF_HNSW_*` index?
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase

View File

@@ -157,7 +157,7 @@ recommend switching to stable releases.
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
--8<-- "nodejs/examples/basic.ts:connect"
--8<-- "nodejs/examples/basic.test.ts:connect"
```
=== "vectordb (deprecated)"
@@ -212,7 +212,7 @@ table.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_table"
--8<-- "nodejs/examples/basic.test.ts:create_table"
```
=== "vectordb (deprecated)"
@@ -268,7 +268,7 @@ similar to a `CREATE TABLE` statement in SQL.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_empty_table"
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
```
=== "vectordb (deprecated)"
@@ -298,7 +298,7 @@ Once created, you can open a table as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:open_table"
--8<-- "nodejs/examples/basic.test.ts:open_table"
```
=== "vectordb (deprecated)"
@@ -327,7 +327,7 @@ If you forget the name of your table, you can always get a listing of all table
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:table_names"
--8<-- "nodejs/examples/basic.test.ts:table_names"
```
=== "vectordb (deprecated)"
@@ -357,7 +357,7 @@ After a table has been created, you can always add more data to it as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:add_data"
--8<-- "nodejs/examples/basic.test.ts:add_data"
```
=== "vectordb (deprecated)"
@@ -389,7 +389,7 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:vector_search"
--8<-- "nodejs/examples/basic.test.ts:vector_search"
```
=== "vectordb (deprecated)"
@@ -429,7 +429,7 @@ LanceDB allows you to create an ANN index on a table as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_index"
--8<-- "nodejs/examples/basic.test.ts:create_index"
```
=== "vectordb (deprecated)"
@@ -469,7 +469,7 @@ This can delete any number of rows that match the filter.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:delete_rows"
--8<-- "nodejs/examples/basic.test.ts:delete_rows"
```
=== "vectordb (deprecated)"
@@ -527,7 +527,7 @@ Use the `drop_table()` method on the database to remove a table.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:drop_table"
--8<-- "nodejs/examples/basic.test.ts:drop_table"
```
=== "vectordb (deprecated)"
@@ -561,8 +561,8 @@ You can use the embedding API when working with embedding models. It automatical
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:openai_embeddings"
--8<-- "nodejs/examples/embedding.test.ts:imports"
--8<-- "nodejs/examples/embedding.test.ts:openai_embeddings"
```
=== "Rust"

View File

@@ -57,6 +57,13 @@ Then the greedy search routine operates as follows:
## Usage
There are three key parameters to set when constructing an HNSW index:
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `m`: The number of neighbors to select for each vector in the HNSW graph.
* `ef_construction`: The number of candidates to evaluate during the construction of the HNSW graph.
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
### Construct index

View File

@@ -58,8 +58,10 @@ In Python, the index can be created as follows:
# Make sure you have enough data in the table for an effective training step
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
```
!!! note
`num_partitions`=256 and `num_sub_vectors`=96 does not work for every dataset. Those values needs to be adjusted for your particular dataset.
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See the [FAQs](#faq) below for best practices on choosing these parameters.
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See [here](../ann_indexes.md/#how-to-choose-num_partitions-and-num_sub_vectors-for-ivf_pq-index) for best practices on choosing these parameters.
### Query the index

View File

@@ -6,6 +6,7 @@ LanceDB registers the OpenAI embeddings function in the registry by default, as
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
| `use_azure` | bool | `False` | Set true to use Azure OpenAPI SDK |
```python

View File

@@ -0,0 +1,51 @@
# VoyageAI Embeddings
Voyage AI provides cutting-edge embedding and rerankers.
Using voyageai API requires voyageai package, which can be installed using `pip install voyageai`. Voyage AI embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
You also need to set the `VOYAGE_API_KEY` environment variable to use the VoyageAI API.
Supported models are:
- voyage-3
- voyage-3-lite
- voyage-finance-2
- voyage-multilingual-2
- voyage-law-2
- voyage-code-2
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|--------|---------|
| `name` | `str` | `None` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
voyageai = EmbeddingFunctionRegistry
.get_instance()
.get("voyageai")
.create(name="voyage-3")
class TextModel(LanceModel):
text: str = voyageai.SourceField()
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

View File

@@ -47,9 +47,9 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.ts:imports"
--8<--- "nodejs/examples/custom_embedding_function.test.ts:imports"
--8<--- "nodejs/examples/custom_embedding_function.ts:embedding_impl"
--8<--- "nodejs/examples/custom_embedding_function.test.ts:embedding_impl"
```
@@ -78,7 +78,7 @@ Now you can use this embedding function to create your table schema and that's i
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.ts:call_custom_function"
--8<--- "nodejs/examples/custom_embedding_function.test.ts:call_custom_function"
```
!!! note

View File

@@ -53,6 +53,7 @@ These functions are registered by default to handle text embeddings.
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="Jina Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/jina_embedding.md) |
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/aws_bedrock.png" alt="AWS Bedrock Icon" width="120" height="35">](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/watsonx.png" alt="Watsonx Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
| [**VoyageAI Embeddings**](available_embedding_models/text_embedding_functions/voyageai_embedding.md "voyageai") | 🌕 Voyage AI provides cutting-edge embedding and rerankers. This will help you get started with **VoyageAI** embedding models using LanceDB. Using voyageai API requires voyageai package. Install it via `pip`. | [<img src="https://www.voyageai.com/logo.svg" alt="VoyageAI Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/voyageai_embedding.md) |
@@ -66,6 +67,7 @@ These functions are registered by default to handle text embeddings.
[jina-key]: "jina"
[aws-key]: "bedrock-text"
[watsonx-key]: "watsonx"
[voyageai-key]: "voyageai"
## Multi-modal Embedding Functions🖼

View File

@@ -94,8 +94,8 @@ the embeddings at all:
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:embedding_function"
--8<-- "nodejs/examples/embedding.test.ts:imports"
--8<-- "nodejs/examples/embedding.test.ts:embedding_function"
```
=== "vectordb (deprecated)"
@@ -150,7 +150,7 @@ need to worry about it when you query the table:
.toArray()
```
=== "vectordb (deprecated)
=== "vectordb (deprecated)"
```ts
const results = await table

View File

@@ -51,8 +51,8 @@ LanceDB registers the OpenAI embeddings function in the registry as `openai`. Yo
=== "TypeScript"
```typescript
--8<--- "nodejs/examples/embedding.ts:imports"
--8<--- "nodejs/examples/embedding.ts:openai_embeddings"
--8<--- "nodejs/examples/embedding.test.ts:imports"
--8<--- "nodejs/examples/embedding.test.ts:openai_embeddings"
```
=== "Rust"
@@ -121,12 +121,10 @@ class Words(LanceModel):
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
table.add([
{"text": "hello world"},
{"text": "goodbye world"}
])
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]

View File

@@ -36,6 +36,6 @@
[aware_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/chatbot_using_Llama2_&_lanceDB/main.ipynb
[aware_ghost]: https://blog.lancedb.com/context-aware-chatbot-using-llama-2-lancedb-as-vector-database-4d771d95c755
[csv_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Chat_with_csv_file
[csv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Chat_with_csv_file/main.ipynb
[csv_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/Chat_with_csv_file
[csv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/Chat_with_csv_file/main.ipynb
[csv_ghost]: https://blog.lancedb.com/p/d8c71df4-e55f-479a-819e-cde13354a6a3/

View File

@@ -12,7 +12,7 @@ LanceDB supports multimodal search by indexing and querying vector representatio
|:----------------|:-----------------|:-----------|
| **Multimodal CLIP: DiffusionDB 🌐💥** | Multi-Modal Search with **CLIP** and **LanceDB** Using **DiffusionDB** Data for Combined Text and Image Understanding ! 🔓 | [![GitHub](../../assets/github.svg)][Clip_diffusionDB_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_diffusionDB_colab] <br>[![Python](../../assets/python.svg)][Clip_diffusionDB_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_diffusionDB_ghost] |
| **Multimodal CLIP: Youtube Videos 📹👀** | Search **Youtube videos** using Multimodal CLIP, finding relevant content with ease and accuracy! 🎯 | [![Github](../../assets/github.svg)][Clip_youtube_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_youtube_colab] <br> [![Python](../../assets/python.svg)][Clip_youtube_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_youtube_python] |
| **Multimodal Image + Text Search 📸🔍** | Find **relevant documents** and **images** with a single query using **LanceDB's** multimodal search capabilities, to seamlessly integrate text and visuals ! 🌉 | [![GitHub](../../assets/github.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search) <br>[![Open In Collab](../../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb) <br> [![Python](../../assets/python.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
| **Multimodal Image + Text Search 📸🔍** | Find **relevant documents** and **images** with a single query using **LanceDB's** multimodal search capabilities, to seamlessly integrate text and visuals ! 🌉 | [![GitHub](../../assets/github.svg)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/multimodal_search) <br>[![Open In Collab](../../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multimodal_search/main.ipynb) <br> [![Python](../../assets/python.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
| **Cambrian-1: Vision-Centric Image Exploration 🔍👀** | Learn how **Cambrian-1** works, using an example of **Vision-Centric** exploration on images found through vector search ! Work on **Flickr-8k** dataset 🔎 | [![Kaggle](https://img.shields.io/badge/Kaggle-035a7d?style=for-the-badge&logo=kaggle&logoColor=white)](https://www.kaggle.com/code/prasantdixit/cambrian-1-vision-centric-exploration-of-images/)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/cambrian-1-vision-centric-exploration/) |

View File

@@ -70,12 +70,12 @@ Build RAG (Retrieval-Augmented Generation) with LanceDB, a powerful solution fo
[flare_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR/main.ipynb
[flare_ghost]: https://blog.lancedb.com/better-rag-with-active-retrieval-augmented-generation-flare-3b66646e2a9f/
[query_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker/main.ipynb
[query_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/QueryExpansion%26Reranker
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/QueryExpansion&Reranker/main.ipynb
[fusion_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion/main.ipynb
[fusion_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/RAG_Fusion
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/RAG_Fusion/main.ipynb
[agentic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG
[agentic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG/main.ipynb

View File

@@ -19,8 +19,8 @@ Deliver personalized experiences with Recommender Systems. 🎁
[movie_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.py
[genre_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommendation-with-genres
[genre_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb
[genre_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/movie-recommendation-with-genres
[genre_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb
[genre_ghost]: https://blog.lancedb.com/movie-recommendation-system-using-lancedb-and-doc2vec/
[product_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender
@@ -33,5 +33,5 @@ Deliver personalized experiences with Recommender Systems. 🎁
[arxiv_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.py
[food_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Food_recommendation
[food_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Food_recommendation/main.ipynb
[food_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/Food_recommendation
[food_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/Food_recommendation/main.ipynb

View File

@@ -37,16 +37,16 @@ LanceDB implements vector search algorithms for efficient document retrieval and
[NER_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/NER-powered-Semantic-Search/NER_powered_Semantic_Search_with_LanceDB.ipynb
[NER_ghost]: https://blog.lancedb.com/ner-powered-semantic-search-using-lancedb-51051dc3e493
[audio_search_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/audio_search
[audio_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb
[audio_search_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.py
[audio_search_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/audio_search
[audio_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/audio_search/main.ipynb
[audio_search_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/archived_examples/audio_search/main.py
[mls_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa
[mls_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa/main.ipynb
[mls_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa/main.py
[mls_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/multi-lingual-wiki-qa
[mls_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multi-lingual-wiki-qa/main.ipynb
[mls_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multi-lingual-wiki-qa/main.py
[fr_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/facial_recognition
[fr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/facial_recognition/main.ipynb
[fr_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/facial_recognition
[fr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/facial_recognition/main.ipynb
[sentiment_analysis_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews
[sentiment_analysis_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews/Sentiment_Analysis_using_LanceDB.ipynb
@@ -70,8 +70,8 @@ LanceDB implements vector search algorithms for efficient document retrieval and
[openvino_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb
[openvino_ghost]: https://blog.lancedb.com/accelerate-vector-search-applications-using-openvino-lancedb/
[zsic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/zero-shot-image-classification
[zsic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/zero-shot-image-classification/main.ipynb
[zsic_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/zero-shot-image-classification
[zsic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/zero-shot-image-classification/main.ipynb
[zsic_ghost]: https://blog.lancedb.com/zero-shot-image-classification-with-vector-search/

View File

@@ -1,21 +1,9 @@
# Full-text search
# Full-text search (Native FTS)
LanceDB provides support for full-text search via Lance (before via [Tantivy](https://github.com/quickwit-oss/tantivy) (Python only)), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
Currently, the Lance full text search is missing some features that are in the Tantivy full text search. This includes query parser and customizing the tokenizer. Thus, in Python, Tantivy is still the default way to do full text search and many of the instructions below apply just to Tantivy-based indices.
## Installation (Only for Tantivy-based FTS)
LanceDB provides support for full-text search via Lance, allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
!!! note
No need to install the tantivy dependency if using native FTS
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
```sh
# Say you want to use tantivy==0.20.1
pip install tantivy==0.20.1
```
The Python SDK uses tantivy-based FTS by default, need to pass `use_tantivy=False` to use native FTS.
## Example
@@ -39,7 +27,7 @@ Consider that we have a LanceDB table named `my_table`, whose string column `tex
# passing `use_tantivy=False` to use lance FTS index
# `use_tantivy=True` by default
table.create_fts_index("text")
table.create_fts_index("text", use_tantivy=False)
table.search("puppy").limit(10).select(["text"]).to_list()
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
# ...
@@ -93,56 +81,78 @@ Consider that we have a LanceDB table named `my_table`, whose string column `tex
```
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
For now, this is supported in tantivy way only.
Passing `fts_columns="text"` if you want to specify the columns to search, but it's not available for Tantivy-based full text search.
Passing `fts_columns="text"` if you want to specify the columns to search.
!!! note
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
## Tokenization
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
By default the text is tokenized by splitting on punctuation and whitespaces, and would filter out words that are with length greater than 40, and lowercase all words.
For now, only the Tantivy-based FTS index supports to specify the tokenizer, so it's only available in Python with `use_tantivy=True`.
Stemming is useful for improving search results by reducing words to their root form, e.g. "running" to "run". LanceDB supports stemming for multiple languages, you can specify the tokenizer name to enable stemming by the pattern `tokenizer_name="{language_code}_stem"`, e.g. `en_stem` for English.
=== "use_tantivy=True"
```python
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
```
=== "use_tantivy=False"
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
For example, to enable stemming for English:
```python
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
```
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
## Index multiple columns
The tokenizer is customizable, you can specify how the tokenizer splits the text, and how it filters out words, etc.
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
=== "use_tantivy=True"
```python
table.create_fts_index(["text1", "text2"])
```
=== "use_tantivy=False"
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
Note that the search API call does not change - you can search over all indexed columns at once.
For example, for language with accents, you can specify the tokenizer to use `ascii_folding` to remove accents, e.g. 'é' to 'e':
```python
table.create_fts_index("text",
use_tantivy=False,
language="French",
stem=True,
ascii_folding=True)
```
## Filtering
Currently the LanceDB full text search feature supports *post-filtering*, meaning filters are
applied on top of the full text search results. This can be invoked via the familiar
`where` syntax:
LanceDB full text search supports to filter the search results by a condition, both pre-filtering and post-filtering are supported.
This can be invoked via the familiar `where` syntax.
With pre-filtering:
=== "Python"
```python
table.search("puppy").limit(10).where("meta='foo'").to_list()
table.search("puppy").limit(10).where("meta='foo'", prefilte=True).to_list()
```
=== "TypeScript"
```typescript
await tbl
.search("puppy")
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.prefilter(true)
.toArray();
```
=== "Rust"
```rust
table
.query()
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.limit(10)
.only_if("meta='foo'")
.execute()
.await?;
```
With post-filtering:
=== "Python"
```python
table.search("puppy").limit(10).where("meta='foo'", prefilte=False).to_list()
```
=== "TypeScript"
@@ -153,6 +163,7 @@ applied on top of the full text search results. This can be invoked via the fami
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.prefilter(false)
.toArray();
```
@@ -163,104 +174,56 @@ applied on top of the full text search results. This can be invoked via the fami
.query()
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.postfilter()
.limit(10)
.only_if("meta='foo'")
.execute()
.await?;
```
## Sorting
!!! warning "Warn"
Sorting is available for only Tantivy-based FTS
You can pre-sort the documents by specifying `ordering_field_names` when
creating the full-text search index. Once pre-sorted, you can then specify
`ordering_field_name` while searching to return results sorted by the given
field. For example,
```python
table.create_fts_index(["text_field"], use_tantivy=True, ordering_field_names=["sort_by_field"])
(table.search("terms", ordering_field_name="sort_by_field")
.limit(20)
.to_list())
```
!!! note
If you wish to specify an ordering field at query time, you must also
have specified it during indexing time. Otherwise at query time, an
error will be raised that looks like `ValueError: The field does not exist: xxx`
!!! note
The fields to sort on must be of typed unsigned integer, or else you will see
an error during indexing that looks like
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
!!! note
You can specify multiple fields for ordering at indexing time.
But at query time only one ordering field is supported.
## Phrase queries vs. terms queries
!!! warning "Warn"
Lance-based FTS doesn't support queries using boolean operators `OR`, `AND`.
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
or a **terms** search query like `old man sea`. For more details on the terms
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
!!! tip "Note"
The query parser will raise an exception on queries that are ambiguous. For example, in the query `they could have been dogs OR cats`, `OR` is capitalized so it's considered a keyword query operator. But it's ambiguous how the left part should be treated. So if you submit this search query as is, you'll get `Syntax Error: they could have been dogs OR cats`.
```py
# This raises a syntax error
table.search("they could have been dogs OR cats")
```
On the other hand, lowercasing `OR` to `or` will work, because there are no capitalized logical operators and
the query is treated as a phrase query.
```py
# This works!
table.search("they could have been dogs or cats")
```
It can be cumbersome to have to remember what will cause a syntax error depending on the type of
query you want to perform. To make this simpler, when you want to perform a phrase query, you can
enforce it in one of two ways:
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
a phrase query.
1. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
is treated as a phrase query.
In general, a query that's declared as a phrase query will be wrapped in double quotes during parsing, with nested
double quotes replaced by single quotes.
## Configurations (Only for Tantivy-based FTS)
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
reduce this if running on a smaller node, or increase this for faster performance while
indexing a larger corpus.
To search for a phrase, the index must be created with `with_position=True`:
```python
# configure a 512MB heap size
heap = 1024 * 1024 * 512
table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
table.create_fts_index("text", use_tantivy=False, with_position=True)
```
This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.
## Current limitations
For that Tantivy-based FTS:
## Incremental indexing
1. Currently we do not yet support incremental writes.
If you add data after FTS index creation, it won't be reflected
in search results until you do a full reindex.
LanceDB supports incremental indexing, which means you can add new records to the table without reindexing the entire table.
2. We currently only support local filesystem paths for the FTS index.
This is a tantivy limitation. We've implemented an object store plugin
but there's no way in tantivy-py to specify to use it.
This can make the query more efficient, especially when the table is large and the new records are relatively small.
=== "Python"
```python
table.add([{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"}])
table.optimize()
```
=== "TypeScript"
```typescript
await tbl.add([{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" }]);
await tbl.optimize();
```
=== "Rust"
```rust
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
tbl.add(more_data).execute().await?;
tbl.optimize(OptimizeAction::All).execute().await?;
```
!!! note
New data added after creating the FTS index will appear in search results while incremental index is still progress, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates this merging process, minimizing the impact on search speed.

160
docs/src/fts_tantivy.md Normal file
View File

@@ -0,0 +1,160 @@
# Full-text search (Tantivy-based FTS)
LanceDB also provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
The tantivy-based FTS is only available in Python and does not support building indexes on object storage or incremental indexing. If you need these features, try native FTS [native FTS](fts.md).
## Installation
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
```sh
# Say you want to use tantivy==0.20.1
pip install tantivy==0.20.1
```
## Example
Consider that we have a LanceDB table named `my_table`, whose string column `content` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table(
"my_table",
data=[
{"id": 1, "vector": [3.1, 4.1], "title": "happy puppy", "content": "Frodo was a happy puppy", "meta": "foo"},
{"id": 2, "vector": [5.9, 26.5], "title": "playing kittens", "content": "There are several kittens playing around the puppy", "meta": "bar"},
],
)
# passing `use_tantivy=False` to use lance FTS index
# `use_tantivy=True` by default
table.create_fts_index("content", use_tantivy=True)
table.search("puppy").limit(10).select(["content"]).to_list()
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
# ...
```
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
!!! note
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
## Tokenization
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
```python
table.create_fts_index("content", use_tantivy=True, tokenizer_name="en_stem", replace=True)
```
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
## Index multiple columns
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
```python
table.create_fts_index(["title", "content"], use_tantivy=True, replace=True)
```
Note that the search API call does not change - you can search over all indexed columns at once.
## Filtering
Currently the LanceDB full text search feature supports *post-filtering*, meaning filters are
applied on top of the full text search results (see [native FTS](fts.md) if you need pre-filtering). This can be invoked via the familiar
`where` syntax:
```python
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
## Sorting
You can pre-sort the documents by specifying `ordering_field_names` when
creating the full-text search index. Once pre-sorted, you can then specify
`ordering_field_name` while searching to return results sorted by the given
field. For example,
```python
table.create_fts_index(["content"], use_tantivy=True, ordering_field_names=["id"], replace=True)
(table.search("puppy", ordering_field_name="id")
.limit(20)
.to_list())
```
!!! note
If you wish to specify an ordering field at query time, you must also
have specified it during indexing time. Otherwise at query time, an
error will be raised that looks like `ValueError: The field does not exist: xxx`
!!! note
The fields to sort on must be of typed unsigned integer, or else you will see
an error during indexing that looks like
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
!!! note
You can specify multiple fields for ordering at indexing time.
But at query time only one ordering field is supported.
## Phrase queries vs. terms queries
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
!!! tip "Note"
The query parser will raise an exception on queries that are ambiguous. For example, in the query `they could have been dogs OR cats`, `OR` is capitalized so it's considered a keyword query operator. But it's ambiguous how the left part should be treated. So if you submit this search query as is, you'll get `Syntax Error: they could have been dogs OR cats`.
```py
# This raises a syntax error
table.search("they could have been dogs OR cats")
```
On the other hand, lowercasing `OR` to `or` will work, because there are no capitalized logical operators and
the query is treated as a phrase query.
```py
# This works!
table.search("they could have been dogs or cats")
```
It can be cumbersome to have to remember what will cause a syntax error depending on the type of
query you want to perform. To make this simpler, when you want to perform a phrase query, you can
enforce it in one of two ways:
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
a phrase query.
1. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
is treated as a phrase query.
In general, a query that's declared as a phrase query will be wrapped in double quotes during parsing, with nested
double quotes replaced by single quotes.
## Configurations
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
reduce this if running on a smaller node, or increase this for faster performance while
indexing a larger corpus.
```python
# configure a 512MB heap size
heap = 1024 * 1024 * 512
table.create_fts_index(["title", "content"], use_tantivy=True, writer_heap_size=heap, replace=True)
```
## Current limitations
1. New data added after creating the FTS index will appear in search results, but with increased latency due to a flat search on the unindexed portion. Re-indexing with `create_fts_index` will reduce latency. LanceDB Cloud automates this merging process, minimizing the impact on search speed.
2. We currently only support local filesystem paths for the FTS index.
This is a tantivy limitation. We've implemented an object store plugin
but there's no way in tantivy-py to specify to use it.

View File

@@ -1,23 +1,35 @@
# Building Scalar Index
# Building a Scalar Index
Similar to many SQL databases, LanceDB supports several types of Scalar indices to accelerate search
Scalar indices organize data by scalar attributes (e.g. numbers, categorical values), enabling fast filtering of vector data. In vector databases, scalar indices accelerate the retrieval of scalar data associated with vectors, thus enhancing the query performance when searching for vectors that meet certain scalar criteria.
Similar to many SQL databases, LanceDB supports several types of scalar indices to accelerate search
over scalar columns.
- `BTREE`: The most common type is BTREE. This index is inspired by the btree data structure
although only the first few layers of the btree are cached in memory.
It will perform well on columns with a large number of unique values and few rows per value.
- `BITMAP`: this index stores a bitmap for each unique value in the column.
This index is useful for columns with a finite number of unique values and many rows per value.
For example, columns that represent "categories", "labels", or "tags"
- `LABEL_LIST`: a special index that is used to index list columns whose values have a finite set of possibilities.
- `BTREE`: The most common type is BTREE. The index stores a copy of the
column in sorted order. This sorted copy allows a binary search to be used to
satisfy queries.
- `BITMAP`: this index stores a bitmap for each unique value in the column. It
uses a series of bits to indicate whether a value is present in a row of a table
- `LABEL_LIST`: a special index that can be used on `List<T>` columns to
support queries with `array_contains_all` and `array_contains_any`
using an underlying bitmap index.
For example, a column that contains lists of tags (e.g. `["tag1", "tag2", "tag3"]`) can be indexed with a `LABEL_LIST` index.
!!! tips "How to choose the right scalar index type"
`BTREE`: This index is good for scalar columns with mostly distinct values and does best when the query is highly selective.
`BITMAP`: This index works best for low-cardinality numeric or string columns, where the number of unique values is small (i.e., less than a few thousands).
`LABEL_LIST`: This index should be used for columns containing list-type data.
| Data Type | Filter | Index Type |
| --------------------------------------------------------------- | ----------------------------------------- | ------------ |
| Numeric, String, Temporal | `<`, `=`, `>`, `in`, `between`, `is null` | `BTREE` |
| Boolean, numbers or strings with fewer than 1,000 unique values | `<`, `=`, `>`, `in`, `between`, `is null` | `BITMAP` |
| List of low cardinality of numbers or strings | `array_has_any`, `array_has_all` | `LABEL_LIST` |
### Create a scalar index
=== "Python"
```python
@@ -46,7 +58,7 @@ over scalar columns.
await tlb.create_index("publisher", { config: lancedb.Index.bitmap() })
```
For example, the following scan will be faster if the column `my_col` has a scalar index:
The following scan will be faster if the column `book_id` has a scalar index:
=== "Python"
@@ -106,3 +118,30 @@ Scalar indices can also speed up scans containing a vector search or full text s
.limit(10)
.toArray();
```
### Update a scalar index
Updating the table data (adding, deleting, or modifying records) requires that you also update the scalar index. This can be done by calling `optimize`, which will trigger an update to the existing scalar index.
=== "Python"
```python
table.add([{"vector": [7, 8], "book_id": 4}])
table.optimize()
```
=== "TypeScript"
```typescript
await tbl.add([{ vector: [7, 8], book_id: 4 }]);
await tbl.optimize();
```
=== "Rust"
```rust
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
tbl.add(more_data).execute().await?;
tbl.optimize(OptimizeAction::All).execute().await?;
```
!!! note
New data added after creating the scalar index will still appear in search results if optimize is not used, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates the optimize process, minimizing the impact on search speed.

View File

@@ -27,10 +27,13 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
Azure Blob Storage:
<!-- skip-test -->
```python
import lancedb
db = lancedb.connect("az://bucket/path")
```
Note that for Azure, storage credentials must be configured. See [below](#azure-blob-storage) for more details.
=== "TypeScript"
@@ -87,11 +90,6 @@ In most cases, when running in the respective cloud and permissions are set up c
export TIMEOUT=60s
```
!!! note "`storage_options` availability"
The `storage_options` parameter is only available in Python *async* API and JavaScript API.
It is not yet supported in the Python synchronous API.
If you only want this to apply to one particular connection, you can pass the `storage_options` argument when opening the connection:
=== "Python"
@@ -498,7 +496,7 @@ This can also be done with the ``AWS_ENDPOINT`` and ``AWS_DEFAULT_REGION`` envir
#### S3 Express
LanceDB supports [S3 Express One Zone](https://aws.amazon.com/s3/storage-classes/express-one-zone/) endpoints, but requires additional configuration. Also, S3 Express endpoints only support connecting from an EC2 instance within the same region.
LanceDB supports [S3 Express One Zone](https://aws.amazon.com/s3/storage-classes/express-one-zone/) endpoints, but requires additional infrastructure configuration for the compute service, such as EC2 or Lambda. Please refer to [Networking requirements for S3 Express One Zone](https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-express-networking.html).
To configure LanceDB to use an S3 Express endpoint, you must set the storage option `s3_express`. The bucket name in your table URI should **include the suffix**.

View File

@@ -85,13 +85,13 @@ Initialize a LanceDB connection and create a table
```ts
--8<-- "nodejs/examples/basic.ts:create_table"
--8<-- "nodejs/examples/basic.test.ts:create_table"
```
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use `apache-arrow` to declare a schema
```ts
--8<-- "nodejs/examples/basic.ts:create_table_with_schema"
--8<-- "nodejs/examples/basic.test.ts:create_table_with_schema"
```
!!! info "Note"
@@ -100,14 +100,14 @@ Initialize a LanceDB connection and create a table
passed in will NOT be appended to the table in that case.
```ts
--8<-- "nodejs/examples/basic.ts:create_table_exists_ok"
--8<-- "nodejs/examples/basic.test.ts:create_table_exists_ok"
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
```ts
--8<-- "nodejs/examples/basic.ts:create_table_overwrite"
--8<-- "nodejs/examples/basic.test.ts:create_table_overwrite"
```
=== "vectordb (deprecated)"
@@ -227,7 +227,7 @@ LanceDB supports float16 data type!
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_f16_table"
--8<-- "nodejs/examples/basic.test.ts:create_f16_table"
```
=== "vectordb (deprecated)"
@@ -274,7 +274,7 @@ table = db.create_table(table_name, schema=Content)
Sometimes your data model may contain nested objects.
For example, you may want to store the document string
and the document soure name as a nested Document object:
and the document source name as a nested Document object:
```python
class Document(BaseModel):
@@ -455,7 +455,7 @@ You can create an empty table for scenarios where you want to add data to the ta
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_empty_table"
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
```
=== "vectordb (deprecated)"
@@ -466,7 +466,7 @@ You can create an empty table for scenarios where you want to add data to the ta
## Adding to a table
After a table has been created, you can always add more data to it usind the `add` method
After a table has been created, you can always add more data to it using the `add` method
=== "Python"
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
@@ -535,7 +535,7 @@ After a table has been created, you can always add more data to it usind the `ad
```
??? "Ingesting Pydantic models with LanceDB embedding API"
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` feild as None to allow LanceDB to automatically vectorize the data.
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` field as None to allow LanceDB to automatically vectorize the data.
```python
import lancedb
@@ -790,6 +790,122 @@ Use the `drop_table()` method on the database to remove a table.
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
## Changing schemas
While tables must have a schema specified when they are created, you can
change the schema over time. There's three methods to alter the schema of
a table:
* `add_columns`: Add new columns to the table
* `alter_columns`: Alter the name, nullability, or data type of a column
* `drop_columns`: Drop columns from the table
### Adding new columns
You can add new columns to the table with the `add_columns` method. New columns
are filled with values based on a SQL expression. For example, you can add a new
column `y` to the table and fill it with the value of `x + 1`.
=== "Python"
```python
table.add_columns({"double_price": "price * 2"})
```
**API Reference:** [lancedb.table.Table.add_columns][]
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:add_columns"
```
**API Reference:** [lancedb.Table.addColumns](../js/classes/Table.md/#addcolumns)
If you want to fill it with null, you can use `cast(NULL as <data_type>)` as
the SQL expression to fill the column with nulls, while controlling the data
type of the column. Available data types are base on the
[DataFusion data types](https://datafusion.apache.org/user-guide/sql/data_types.html).
You can use any of the SQL types, such as `BIGINT`:
```sql
cast(NULL as BIGINT)
```
Using Arrow data types and the `arrow_typeof` function is not yet supported.
<!-- TODO: we could provide a better formula for filling with nulls:
https://github.com/lancedb/lance/issues/3175
-->
### Altering existing columns
You can alter the name, nullability, or data type of a column with the `alter_columns`
method.
Changing the name or nullability of a column just updates the metadata. Because
of this, it's a fast operation. Changing the data type of a column requires
rewriting the column, which can be a heavy operation.
=== "Python"
```python
import pyarrow as pa
table.alter_column({"path": "double_price", "rename": "dbl_price",
"data_type": pa.float32(), "nullable": False})
```
**API Reference:** [lancedb.table.Table.alter_columns][]
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:alter_columns"
```
**API Reference:** [lancedb.Table.alterColumns](../js/classes/Table.md/#altercolumns)
### Dropping columns
You can drop columns from the table with the `drop_columns` method. This will
will remove the column from the schema.
<!-- TODO: Provide guidance on how to reduce disk usage once optimize helps here
waiting on: https://github.com/lancedb/lance/issues/3177
-->
=== "Python"
```python
table.drop_columns(["dbl_price"])
```
**API Reference:** [lancedb.table.Table.drop_columns][]
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:drop_columns"
```
**API Reference:** [lancedb.Table.dropColumns](../js/classes/Table.md/#altercolumns)
## Handling bad vectors
In LanceDB Python, you can use the `on_bad_vectors` parameter to choose how
invalid vector values are handled. Invalid vectors are vectors that are not valid
because:
1. They are the wrong dimension
2. They contain NaN values
3. They are null but are on a non-nullable field
By default, LanceDB will raise an error if it encounters a bad vector. You can
also choose one of the following options:
* `drop`: Ignore rows with bad vectors
* `fill`: Replace bad values (NaNs) or missing values (too few dimensions) with
the fill value specified in the `fill_value` parameter. An input like
`[1.0, NaN, 3.0]` will be replaced with `[1.0, 0.0, 3.0]` if `fill_value=0.0`.
* `null`: Replace bad vectors with null (only works if the column is nullable).
A bad vector `[1.0, NaN, 3.0]` will be replaced with `null` if the column is
nullable. If the vector column is non-nullable, then bad vectors will cause an
error
## Consistency
@@ -859,4 +975,4 @@ There are three possible settings for `read_consistency_interval`:
Learn the best practices on creating an ANN index and getting the most out of it.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](../migration.md) for more information.

View File

@@ -49,7 +49,8 @@ The following pages go deeper into the internal of LanceDB and how to use it.
* [Working with tables](guides/tables.md): Learn how to work with tables and their associated functions
* [Indexing](ann_indexes.md): Understand how to create indexes
* [Vector search](search.md): Learn how to perform vector similarity search
* [Full-text search](fts.md): Learn how to perform full-text search
* [Full-text search (native)](fts.md): Learn how to perform full-text search
* [Full-text search (tantivy-based)](fts_tantivy.md): Learn how to perform full-text search using Tantivy
* [Managing embeddings](embeddings/index.md): Managing embeddings and the embedding functions API in LanceDB
* [Ecosystem Integrations](integrations/index.md): Integrate LanceDB with other tools in the data ecosystem
* [Python API Reference](python/python.md): Python OSS and Cloud API references

View File

@@ -1,5 +1,10 @@
# Langchain
![Illustration](../assets/langchain.png)
**LangChain** is a framework designed for building applications with large language models (LLMs) by chaining together various components. It supports a range of functionalities including memory, agents, and chat models, enabling developers to create context-aware applications.
![Illustration](https://raw.githubusercontent.com/lancedb/assets/refs/heads/main/docs/assets/integration/langchain_rag.png)
LangChain streamlines these stages (in figure above) by providing pre-built components and tools for integration, memory management, and deployment, allowing developers to focus on application logic rather than underlying complexities.
Integration of **Langchain** with **LanceDB** enables applications to retrieve the most relevant data by comparing query vectors against stored vectors, facilitating effective information retrieval. It results in better and context aware replies and actions by the LLMs.
## Quick Start
You can load your document data using langchain's loaders, for this example we are using `TextLoader` and `OpenAIEmbeddings` as the embedding model. Checkout Complete example here - [LangChain demo](../notebooks/langchain_example.ipynb)
@@ -26,20 +31,28 @@ print(docs[0].page_content)
## Documentation
In the above example `LanceDB` vector store class object is created using `from_documents()` method which is a `classmethod` and returns the initialized class object.
You can also use `LanceDB.from_texts(texts: List[str],embedding: Embeddings)` class method.
The exhaustive list of parameters for `LanceDB` vector store are :
- `connection`: (Optional) `lancedb.db.LanceDBConnection` connection object to use. If not provided, a new connection will be created.
- `embedding`: Langchain embedding model.
- `vector_key`: (Optional) Column name to use for vector's in the table. Defaults to `'vector'`.
- `id_key`: (Optional) Column name to use for id's in the table. Defaults to `'id'`.
- `text_key`: (Optional) Column name to use for text in the table. Defaults to `'text'`.
- `table_name`: (Optional) Name of your table in the database. Defaults to `'vectorstore'`.
- `api_key`: (Optional) API key to use for LanceDB cloud database. Defaults to `None`.
- `region`: (Optional) Region to use for LanceDB cloud database. Only for LanceDB Cloud, defaults to `None`.
- `mode`: (Optional) Mode to use for adding data to the table. Defaults to `'overwrite'`.
- `reranker`: (Optional) The reranker to use for LanceDB.
- `relevance_score_fn`: (Optional[Callable[[float], float]]) Langchain relevance score function to be used. Defaults to `None`.
The exhaustive list of parameters for `LanceDB` vector store are :
|Name|type|Purpose|default|
|:----|:----|:----|:----|
|`connection`| (Optional) `Any` |`lancedb.db.LanceDBConnection` connection object to use. If not provided, a new connection will be created.|`None`|
|`embedding`| (Optional) `Embeddings` | Langchain embedding model.|Provided by user.|
|`uri`| (Optional) `str` |It specifies the directory location of **LanceDB database** and establishes a connection that can be used to interact with the database. |`/tmp/lancedb`|
|`vector_key` |(Optional) `str`| Column name to use for vector's in the table.|`'vector'`|
|`id_key` |(Optional) `str`| Column name to use for id's in the table.|`'id'`|
|`text_key` |(Optional) `str` |Column name to use for text in the table.|`'text'`|
|`table_name` |(Optional) `str`| Name of your table in the database.|`'vectorstore'`|
|`api_key` |(Optional `str`) |API key to use for LanceDB cloud database.|`None`|
|`region` |(Optional) `str`| Region to use for LanceDB cloud database.|Only for LanceDB Cloud : `None`.|
|`mode` |(Optional) `str` |Mode to use for adding data to the table. Valid values are "append" and "overwrite".|`'overwrite'`|
|`table`| (Optional) `Any`|You can connect to an existing table of LanceDB, created outside of langchain, and utilize it.|`None`|
|`distance`|(Optional) `str`|The choice of distance metric used to calculate the similarity between vectors.|`'l2'`|
|`reranker` |(Optional) `Any`|The reranker to use for LanceDB.|`None`|
|`relevance_score_fn` |(Optional) `Callable[[float], float]` | Langchain relevance score function to be used.|`None`|
|`limit`|`int`|Set the maximum number of results to return.|`DEFAULT_K` (it is 4)|
```python
db_url = "db://lang_test" # url of db you created
@@ -51,19 +64,24 @@ vector_store = LanceDB(
api_key=api_key, #(dont include for local API)
region=region, #(dont include for local API)
embedding=embeddings,
table_name='langchain_test' #Optional
table_name='langchain_test' # Optional
)
```
### Methods
##### add_texts()
- `texts`: `Iterable` of strings to add to the vectorstore.
- `metadatas`: Optional `list[dict()]` of metadatas associated with the texts.
- `ids`: Optional `list` of ids to associate with the texts.
- `kwargs`: `Any`
This method adds texts and stores respective embeddings automatically.
This method turn texts into embedding and add it to the database.
|Name|Purpose|defaults|
|:---|:---|:---|
|`texts`|`Iterable` of strings to add to the vectorstore.|Provided by user|
|`metadatas`|Optional `list[dict()]` of metadatas associated with the texts.|`None`|
|`ids`|Optional `list` of ids to associate with the texts.|`None`|
|`kwargs`| Other keyworded arguments provided by the user. |-|
It returns list of ids of the added texts.
```python
vector_store.add_texts(texts = ['test_123'], metadatas =[{'source' :'wiki'}])
@@ -78,14 +96,25 @@ pd_df.to_csv("docsearch.csv", index=False)
# you can also create a new vector store object using an older connection object:
vector_store = LanceDB(connection=tbl, embedding=embeddings)
```
##### create_index()
- `col_name`: `Optional[str] = None`
- `vector_col`: `Optional[str] = None`
- `num_partitions`: `Optional[int] = 256`
- `num_sub_vectors`: `Optional[int] = 96`
- `index_cache_size`: `Optional[int] = None`
This method creates an index for the vector store. For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
------
##### create_index()
This method creates a scalar(for non-vector cols) or a vector index on a table.
|Name|type|Purpose|defaults|
|:---|:---|:---|:---|
|`vector_col`|`Optional[str]`| Provide if you want to create index on a vector column. |`None`|
|`col_name`|`Optional[str]`| Provide if you want to create index on a non-vector column. |`None`|
|`metric`|`Optional[str]` |Provide the metric to use for vector index. choice of metrics: 'L2', 'dot', 'cosine'. |`L2`|
|`num_partitions`|`Optional[int]`|Number of partitions to use for the index.|`256`|
|`num_sub_vectors`|`Optional[int]` |Number of sub-vectors to use for the index.|`96`|
|`index_cache_size`|`Optional[int]` |Size of the index cache.|`None`|
|`name`|`Optional[str]` |Name of the table to create index on.|`None`|
For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
```python
# for creating vector index
@@ -96,42 +125,63 @@ vector_store.create_index(col_name='text')
```
##### similarity_search()
- `query`: `str`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `fts`: `Optional[bool] = False`
- `name`: `Optional[str] = None`
- `kwargs`: `Any`
------
Return documents most similar to the query without relevance scores
##### similarity_search()
This method performs similarity search based on **text query**.
| Name | Type | Purpose | Default |
|---------|----------------------|---------|---------|
| `query` | `str` | A `str` representing the text query that you want to search for in the vector store. | N/A |
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. | `None` |
| `fts` | `Optional[bool]` | It indicates whether to perform a full-text search (FTS). | `False` |
| `name` | `Optional[str]` | It is used for specifying the name of the table to query. If not provided, it uses the default table set during the initialization of the LanceDB instance. | `None` |
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
Return documents most similar to the query **without relevance scores**.
```python
docs = docsearch.similarity_search(query)
print(docs[0].page_content)
```
##### similarity_search_by_vector()
- `embedding`: `List[float]`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `name`: `Optional[str] = None`
- `kwargs`: `Any`
------
Returns documents most similar to the query vector.
##### similarity_search_by_vector()
The method returns documents that are most similar to the specified **embedding (query) vector**.
| Name | Type | Purpose | Default |
|-------------|---------------------------|---------|---------|
| `embedding` | `List[float]` | The embedding vector you want to use to search for similar documents in the vector store. | N/A |
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. | `None` |
| `name` | `Optional[str]` | It is used for specifying the name of the table to query. If not provided, it uses the default table set during the initialization of the LanceDB instance. | `None` |
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
**It does not provide relevance scores.**
```python
docs = docsearch.similarity_search_by_vector(query)
print(docs[0].page_content)
```
##### similarity_search_with_score()
- `query`: `str`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `kwargs`: `Any`
------
Returns documents most similar to the query string with relevance scores, gets called by base class's `similarity_search_with_relevance_scores` which selects relevance score based on our `_select_relevance_score_fn`.
##### similarity_search_with_score()
Returns documents most similar to the **query string** along with their relevance scores.
| Name | Type | Purpose | Default |
|----------|---------------------------|---------|---------|
| `query` | `str` |A `str` representing the text query you want to search for in the vector store. This query will be converted into an embedding using the specified embedding function. | N/A |
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. This allows you to narrow down the search results based on certain metadata attributes associated with the documents. | `None` |
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
It gets called by base class's `similarity_search_with_relevance_scores` which selects relevance score based on our `_select_relevance_score_fn`.
```python
docs = docsearch.similarity_search_with_relevance_scores(query)
@@ -139,15 +189,21 @@ print("relevance score - ", docs[0][1])
print("text- ", docs[0][0].page_content[:1000])
```
##### similarity_search_by_vector_with_relevance_scores()
- `embedding`: `List[float]`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `name`: `Optional[str] = None`
- `kwargs`: `Any`
------
Return documents most similar to the query vector with relevance scores.
Relevance score
##### similarity_search_by_vector_with_relevance_scores()
Similarity search using **query vector**.
| Name | Type | Purpose | Default |
|-------------|---------------------------|---------|---------|
| `embedding` | `List[float]` | The embedding vector you want to use to search for similar documents in the vector store. | N/A |
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. | `None` |
| `name` | `Optional[str]` | It is used for specifying the name of the table to query. | `None` |
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
The method returns documents most similar to the specified embedding (query) vector, along with their relevance scores.
```python
docs = docsearch.similarity_search_by_vector_with_relevance_scores(query_embedding)
@@ -155,20 +211,22 @@ print("relevance score - ", docs[0][1])
print("text- ", docs[0][0].page_content[:1000])
```
##### max_marginal_relevance_search()
- `query`: `str`
- `k`: `Optional[int] = None`
- `fetch_k` : Number of Documents to fetch to pass to MMR algorithm, `Optional[int] = None`
- `lambda_mult`: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5. `float = 0.5`
- `filter`: `Optional[Dict[str, str]] = None`
- `kwargs`: `Any`
------
Returns docs selected using the maximal marginal relevance(MMR).
##### max_marginal_relevance_search()
This method returns docs selected using the maximal marginal relevance(MMR).
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
| Name | Type | Purpose | Default |
|---------------|-----------------|-----------|---------|
| `query` | `str` | Text to look up documents similar to. | N/A |
| `k` | `Optional[int]` | Number of Documents to return.| `4` |
| `fetch_k`| `Optional[int]`| Number of Documents to fetch to pass to MMR algorithm.| `None` |
| `lambda_mult` | `float` | Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. | `0.5` |
| `filter`| `Optional[Dict[str, str]]`| Filter by metadata. | `None` |
|`kwargs`| Other keyworded arguments provided by the user. |-|
Similarly, `max_marginal_relevance_search_by_vector()` function returns docs most similar to the embedding passed to the function using MMR. instead of a string query you need to pass the embedding to be searched for.
```python
@@ -186,12 +244,19 @@ result_texts = [doc.page_content for doc in result]
print(result_texts)
```
##### add_images()
- `uris` : File path to the image. `List[str]`.
- `metadatas` : Optional list of metadatas. `(Optional[List[dict]], optional)`
- `ids` : Optional list of IDs. `(Optional[List[str]], optional)`
------
Adds images by automatically creating their embeddings and adds them to the vectorstore.
##### add_images()
This method ddds images by automatically creating their embeddings and adds them to the vectorstore.
| Name | Type | Purpose | Default |
|------------|-------------------------------|--------------------------------|---------|
| `uris` | `List[str]` | File path to the image | N/A |
| `metadatas`| `Optional[List[dict]]` | Optional list of metadatas | `None` |
| `ids` | `Optional[List[str]]` | Optional list of IDs | `None` |
It returns list of IDs of the added images.
```python
vec_store.add_images(uris=image_uris)

View File

@@ -45,7 +45,7 @@ Let's see how using LanceDB inside phidata helps in making LLM more useful:
**Install the following packages in the virtual environment**
```python
pip install lancedb phidata youtube_transcript_api openai ollama pandas numpy
pip install lancedb phidata youtube_transcript_api openai ollama numpy pandas
```
**Create python files and import necessary libraries**

View File

@@ -41,7 +41,6 @@ To build everything fresh:
```bash
npm install
npm run tsc
npm run build
```
@@ -51,18 +50,6 @@ Then you should be able to run the tests with:
npm test
```
### Rebuilding Rust library
```bash
npm run build
```
### Rebuilding Typescript
```bash
npm run tsc
```
### Fix lints
To run the linter and have it automatically fix all errors

View File

@@ -38,4 +38,4 @@ A [WriteMode](../enums/WriteMode.md) to use on this operation
#### Defined in
[index.ts:1019](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1019)
[index.ts:1359](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1359)

View File

@@ -30,6 +30,7 @@ A connection to a LanceDB database.
- [dropTable](LocalConnection.md#droptable)
- [openTable](LocalConnection.md#opentable)
- [tableNames](LocalConnection.md#tablenames)
- [withMiddleware](LocalConnection.md#withmiddleware)
## Constructors
@@ -46,7 +47,7 @@ A connection to a LanceDB database.
#### Defined in
[index.ts:489](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L489)
[index.ts:739](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L739)
## Properties
@@ -56,7 +57,7 @@ A connection to a LanceDB database.
#### Defined in
[index.ts:487](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L487)
[index.ts:737](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L737)
___
@@ -74,7 +75,7 @@ ___
#### Defined in
[index.ts:486](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L486)
[index.ts:736](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L736)
## Accessors
@@ -92,7 +93,7 @@ ___
#### Defined in
[index.ts:494](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L494)
[index.ts:744](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L744)
## Methods
@@ -113,7 +114,7 @@ Creates a new Table, optionally initializing it with new data.
| Name | Type |
| :------ | :------ |
| `name` | `string` \| [`CreateTableOptions`](../interfaces/CreateTableOptions.md)\<`T`\> |
| `data?` | `Record`\<`string`, `unknown`\>[] |
| `data?` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] |
| `optsOrEmbedding?` | [`WriteOptions`](../interfaces/WriteOptions.md) \| [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
| `opt?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
@@ -127,7 +128,7 @@ Creates a new Table, optionally initializing it with new data.
#### Defined in
[index.ts:542](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L542)
[index.ts:788](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L788)
___
@@ -158,7 +159,7 @@ ___
#### Defined in
[index.ts:576](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L576)
[index.ts:822](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L822)
___
@@ -184,7 +185,7 @@ Drop an existing table.
#### Defined in
[index.ts:630](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L630)
[index.ts:876](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L876)
___
@@ -210,7 +211,7 @@ Open a table in the database.
#### Defined in
[index.ts:510](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L510)
[index.ts:760](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L760)
**openTable**\<`T`\>(`name`, `embeddings`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
@@ -239,7 +240,7 @@ Connection.openTable
#### Defined in
[index.ts:518](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L518)
[index.ts:768](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L768)
**openTable**\<`T`\>(`name`, `embeddings?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
@@ -266,7 +267,7 @@ Connection.openTable
#### Defined in
[index.ts:522](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L522)
[index.ts:772](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L772)
___
@@ -286,4 +287,36 @@ Get the names of all tables in the database.
#### Defined in
[index.ts:501](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L501)
[index.ts:751](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L751)
___
### withMiddleware
**withMiddleware**(`middleware`): [`Connection`](../interfaces/Connection.md)
Instrument the behavior of this Connection with middleware.
The middleware will be called in the order they are added.
Currently this functionality is only supported for remote Connections.
#### Parameters
| Name | Type |
| :------ | :------ |
| `middleware` | `HttpMiddleware` |
#### Returns
[`Connection`](../interfaces/Connection.md)
- this Connection instrumented by the passed middleware
#### Implementation of
[Connection](../interfaces/Connection.md).[withMiddleware](../interfaces/Connection.md#withmiddleware)
#### Defined in
[index.ts:880](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L880)

View File

@@ -37,6 +37,8 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
### Methods
- [add](LocalTable.md#add)
- [addColumns](LocalTable.md#addcolumns)
- [alterColumns](LocalTable.md#altercolumns)
- [checkElectron](LocalTable.md#checkelectron)
- [cleanupOldVersions](LocalTable.md#cleanupoldversions)
- [compactFiles](LocalTable.md#compactfiles)
@@ -44,13 +46,16 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
- [createIndex](LocalTable.md#createindex)
- [createScalarIndex](LocalTable.md#createscalarindex)
- [delete](LocalTable.md#delete)
- [dropColumns](LocalTable.md#dropcolumns)
- [filter](LocalTable.md#filter)
- [getSchema](LocalTable.md#getschema)
- [indexStats](LocalTable.md#indexstats)
- [listIndices](LocalTable.md#listindices)
- [mergeInsert](LocalTable.md#mergeinsert)
- [overwrite](LocalTable.md#overwrite)
- [search](LocalTable.md#search)
- [update](LocalTable.md#update)
- [withMiddleware](LocalTable.md#withmiddleware)
## Constructors
@@ -74,7 +79,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
#### Defined in
[index.ts:642](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L642)
[index.ts:892](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L892)
**new LocalTable**\<`T`\>(`tbl`, `name`, `options`, `embeddings`)
@@ -95,7 +100,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
#### Defined in
[index.ts:649](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L649)
[index.ts:899](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L899)
## Properties
@@ -105,7 +110,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
#### Defined in
[index.ts:639](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L639)
[index.ts:889](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L889)
___
@@ -115,7 +120,7 @@ ___
#### Defined in
[index.ts:638](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L638)
[index.ts:888](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L888)
___
@@ -125,7 +130,7 @@ ___
#### Defined in
[index.ts:637](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L637)
[index.ts:887](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L887)
___
@@ -143,7 +148,7 @@ ___
#### Defined in
[index.ts:640](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L640)
[index.ts:890](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L890)
___
@@ -153,7 +158,7 @@ ___
#### Defined in
[index.ts:636](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L636)
[index.ts:886](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L886)
___
@@ -179,7 +184,7 @@ Creates a filter query to find all rows matching the specified criteria
#### Defined in
[index.ts:688](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L688)
[index.ts:938](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L938)
## Accessors
@@ -197,7 +202,7 @@ Creates a filter query to find all rows matching the specified criteria
#### Defined in
[index.ts:668](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L668)
[index.ts:918](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L918)
___
@@ -215,7 +220,7 @@ ___
#### Defined in
[index.ts:849](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L849)
[index.ts:1171](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1171)
## Methods
@@ -229,7 +234,7 @@ Insert records into this Table.
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
@@ -243,7 +248,59 @@ The number of rows added to the table
#### Defined in
[index.ts:696](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L696)
[index.ts:946](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L946)
___
### addColumns
**addColumns**(`newColumnTransforms`): `Promise`\<`void`\>
Add new columns with defined values.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `newColumnTransforms` | \{ `name`: `string` ; `valueSql`: `string` }[] | pairs of column names and the SQL expression to use to calculate the value of the new column. These expressions will be evaluated for each row in the table, and can reference existing columns in the table. |
#### Returns
`Promise`\<`void`\>
#### Implementation of
[Table](../interfaces/Table.md).[addColumns](../interfaces/Table.md#addcolumns)
#### Defined in
[index.ts:1195](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1195)
___
### alterColumns
**alterColumns**(`columnAlterations`): `Promise`\<`void`\>
Alter the name or nullability of columns.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `columnAlterations` | [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[] | One or more alterations to apply to columns. |
#### Returns
`Promise`\<`void`\>
#### Implementation of
[Table](../interfaces/Table.md).[alterColumns](../interfaces/Table.md#altercolumns)
#### Defined in
[index.ts:1201](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1201)
___
@@ -257,7 +314,7 @@ ___
#### Defined in
[index.ts:861](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L861)
[index.ts:1183](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1183)
___
@@ -280,7 +337,7 @@ Clean up old versions of the table, freeing disk space.
#### Defined in
[index.ts:808](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L808)
[index.ts:1130](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1130)
___
@@ -307,16 +364,22 @@ Metrics about the compaction operation.
#### Defined in
[index.ts:831](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L831)
[index.ts:1153](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1153)
___
### countRows
**countRows**(): `Promise`\<`number`\>
**countRows**(`filter?`): `Promise`\<`number`\>
Returns the number of rows in this table.
#### Parameters
| Name | Type |
| :------ | :------ |
| `filter?` | `string` |
#### Returns
`Promise`\<`number`\>
@@ -327,7 +390,7 @@ Returns the number of rows in this table.
#### Defined in
[index.ts:749](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L749)
[index.ts:1021](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1021)
___
@@ -357,13 +420,13 @@ VectorIndexParams.
#### Defined in
[index.ts:734](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L734)
[index.ts:1003](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1003)
___
### createScalarIndex
**createScalarIndex**(`column`, `replace`): `Promise`\<`void`\>
**createScalarIndex**(`column`, `replace?`): `Promise`\<`void`\>
Create a scalar index on this Table for the given column
@@ -372,7 +435,7 @@ Create a scalar index on this Table for the given column
| Name | Type | Description |
| :------ | :------ | :------ |
| `column` | `string` | The column to index |
| `replace` | `boolean` | If false, fail if an index already exists on the column Scalar indices, like vector indices, can be used to speed up scans. A scalar index can speed up scans that contain filter expressions on the indexed column. For example, the following scan will be faster if the column `my_col` has a scalar index: ```ts const con = await lancedb.connect('./.lancedb'); const table = await con.openTable('images'); const results = await table.where('my_col = 7').execute(); ``` Scalar indices can also speed up scans containing a vector search and a prefilter: ```ts const con = await lancedb.connect('././lancedb'); const table = await con.openTable('images'); const results = await table.search([1.0, 2.0]).where('my_col != 7').prefilter(true); ``` Scalar indices can only speed up scans for basic filters using equality, comparison, range (e.g. `my_col BETWEEN 0 AND 100`), and set membership (e.g. `my_col IN (0, 1, 2)`) Scalar indices can be used if the filter contains multiple indexed columns and the filter criteria are AND'd or OR'd together (e.g. `my_col < 0 AND other_col> 100`) Scalar indices may be used if the filter contains non-indexed columns but, depending on the structure of the filter, they may not be usable. For example, if the column `not_indexed` does not have a scalar index then the filter `my_col = 0 OR not_indexed = 1` will not be able to use any scalar index on `my_col`. |
| `replace?` | `boolean` | If false, fail if an index already exists on the column it is always set to true for remote connections Scalar indices, like vector indices, can be used to speed up scans. A scalar index can speed up scans that contain filter expressions on the indexed column. For example, the following scan will be faster if the column `my_col` has a scalar index: ```ts const con = await lancedb.connect('./.lancedb'); const table = await con.openTable('images'); const results = await table.where('my_col = 7').execute(); ``` Scalar indices can also speed up scans containing a vector search and a prefilter: ```ts const con = await lancedb.connect('././lancedb'); const table = await con.openTable('images'); const results = await table.search([1.0, 2.0]).where('my_col != 7').prefilter(true); ``` Scalar indices can only speed up scans for basic filters using equality, comparison, range (e.g. `my_col BETWEEN 0 AND 100`), and set membership (e.g. `my_col IN (0, 1, 2)`) Scalar indices can be used if the filter contains multiple indexed columns and the filter criteria are AND'd or OR'd together (e.g. `my_col < 0 AND other_col> 100`) Scalar indices may be used if the filter contains non-indexed columns but, depending on the structure of the filter, they may not be usable. For example, if the column `not_indexed` does not have a scalar index then the filter `my_col = 0 OR not_indexed = 1` will not be able to use any scalar index on `my_col`. |
#### Returns
@@ -392,7 +455,7 @@ await table.createScalarIndex('my_col')
#### Defined in
[index.ts:742](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L742)
[index.ts:1011](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1011)
___
@@ -418,7 +481,38 @@ Delete rows from this table.
#### Defined in
[index.ts:758](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L758)
[index.ts:1030](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1030)
___
### dropColumns
▸ **dropColumns**(`columnNames`): `Promise`\<`void`\>
Drop one or more columns from the dataset
This is a metadata-only operation and does not remove the data from the
underlying storage. In order to remove the data, you must subsequently
call ``compact_files`` to rewrite the data without the removed columns and
then call ``cleanup_files`` to remove the old files.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `columnNames` | `string`[] | The names of the columns to drop. These can be nested column references (e.g. "a.b.c") or top-level column names (e.g. "a"). |
#### Returns
`Promise`\<`void`\>
#### Implementation of
[Table](../interfaces/Table.md).[dropColumns](../interfaces/Table.md#dropcolumns)
#### Defined in
[index.ts:1205](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1205)
___
@@ -438,9 +532,13 @@ Creates a filter query to find all rows matching the specified criteria
[`Query`](Query.md)\<`T`\>
#### Implementation of
[Table](../interfaces/Table.md).[filter](../interfaces/Table.md#filter)
#### Defined in
[index.ts:684](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L684)
[index.ts:934](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L934)
___
@@ -454,13 +552,13 @@ ___
#### Defined in
[index.ts:854](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L854)
[index.ts:1176](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1176)
___
### indexStats
▸ **indexStats**(`indexUuid`): `Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
▸ **indexStats**(`indexName`): `Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
Get statistics about an index.
@@ -468,7 +566,7 @@ Get statistics about an index.
| Name | Type |
| :------ | :------ |
| `indexUuid` | `string` |
| `indexName` | `string` |
#### Returns
@@ -480,7 +578,7 @@ Get statistics about an index.
#### Defined in
[index.ts:845](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L845)
[index.ts:1167](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1167)
___
@@ -500,7 +598,57 @@ List the indicies on this table.
#### Defined in
[index.ts:841](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L841)
[index.ts:1163](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1163)
___
### mergeInsert
▸ **mergeInsert**(`on`, `data`, `args`): `Promise`\<`void`\>
Runs a "merge insert" operation on the table
This operation can add rows, update rows, and remove rows all in a single
transaction. It is a very generic tool that can be used to create
behaviors like "insert if not exists", "update or insert (i.e. upsert)",
or even replace a portion of existing data with new data (e.g. replace
all data where month="january")
The merge insert operation works by combining new data from a
**source table** with existing data in a **target table** by using a
join. There are three categories of records.
"Matched" records are records that exist in both the source table and
the target table. "Not matched" records exist only in the source table
(e.g. these are new data) "Not matched by source" records exist only
in the target table (this is old data)
The MergeInsertArgs can be used to customize what should happen for
each category of data.
Please note that the data may appear to be reordered as part of this
operation. This is because updated rows will be deleted from the
dataset and then reinserted at the end with the new values.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `on` | `string` | a column to join on. This is how records from the source table and target table are matched. |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | the new data to insert |
| `args` | [`MergeInsertArgs`](../interfaces/MergeInsertArgs.md) | parameters controlling how the operation should behave |
#### Returns
`Promise`\<`void`\>
#### Implementation of
[Table](../interfaces/Table.md).[mergeInsert](../interfaces/Table.md#mergeinsert)
#### Defined in
[index.ts:1065](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1065)
___
@@ -514,7 +662,7 @@ Insert records into this Table, replacing its contents.
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
@@ -528,7 +676,7 @@ The number of rows added to the table
#### Defined in
[index.ts:716](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L716)
[index.ts:977](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L977)
___
@@ -554,7 +702,7 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in
[index.ts:676](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L676)
[index.ts:926](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L926)
___
@@ -580,4 +728,36 @@ Update rows in this table.
#### Defined in
[index.ts:771](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L771)
[index.ts:1043](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1043)
___
### withMiddleware
▸ **withMiddleware**(`middleware`): [`Table`](../interfaces/Table.md)\<`T`\>
Instrument the behavior of this Table with middleware.
The middleware will be called in the order they are added.
Currently this functionality is only supported for remote tables.
#### Parameters
| Name | Type |
| :------ | :------ |
| `middleware` | `HttpMiddleware` |
#### Returns
[`Table`](../interfaces/Table.md)\<`T`\>
- this Table instrumented by the passed middleware
#### Implementation of
[Table](../interfaces/Table.md).[withMiddleware](../interfaces/Table.md#withmiddleware)
#### Defined in
[index.ts:1209](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1209)

View File

@@ -0,0 +1,82 @@
[vectordb](../README.md) / [Exports](../modules.md) / MakeArrowTableOptions
# Class: MakeArrowTableOptions
Options to control the makeArrowTable call.
## Table of contents
### Constructors
- [constructor](MakeArrowTableOptions.md#constructor)
### Properties
- [dictionaryEncodeStrings](MakeArrowTableOptions.md#dictionaryencodestrings)
- [embeddings](MakeArrowTableOptions.md#embeddings)
- [schema](MakeArrowTableOptions.md#schema)
- [vectorColumns](MakeArrowTableOptions.md#vectorcolumns)
## Constructors
### constructor
**new MakeArrowTableOptions**(`values?`)
#### Parameters
| Name | Type |
| :------ | :------ |
| `values?` | `Partial`\<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)\> |
#### Defined in
[arrow.ts:98](https://github.com/lancedb/lancedb/blob/92179835/node/src/arrow.ts#L98)
## Properties
### dictionaryEncodeStrings
**dictionaryEncodeStrings**: `boolean` = `false`
If true then string columns will be encoded with dictionary encoding
Set this to true if your string columns tend to repeat the same values
often. For more precise control use the `schema` property to specify the
data type for individual columns.
If `schema` is provided then this property is ignored.
#### Defined in
[arrow.ts:96](https://github.com/lancedb/lancedb/blob/92179835/node/src/arrow.ts#L96)
___
### embeddings
`Optional` **embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`any`\>
#### Defined in
[arrow.ts:85](https://github.com/lancedb/lancedb/blob/92179835/node/src/arrow.ts#L85)
___
### schema
`Optional` **schema**: `Schema`\<`any`\>
#### Defined in
[arrow.ts:63](https://github.com/lancedb/lancedb/blob/92179835/node/src/arrow.ts#L63)
___
### vectorColumns
**vectorColumns**: `Record`\<`string`, `VectorColumnOptions`\>
#### Defined in
[arrow.ts:81](https://github.com/lancedb/lancedb/blob/92179835/node/src/arrow.ts#L81)

View File

@@ -40,7 +40,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L21)
[embedding/openai.ts:22](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/openai.ts#L22)
## Properties
@@ -50,17 +50,17 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L19)
[embedding/openai.ts:20](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/openai.ts#L20)
___
### \_openai
`Private` `Readonly` **\_openai**: `any`
`Private` `Readonly` **\_openai**: `OpenAI`
#### Defined in
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L18)
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/openai.ts#L19)
___
@@ -76,7 +76,7 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L50)
[embedding/openai.ts:56](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/openai.ts#L56)
## Methods
@@ -102,4 +102,4 @@ Creates a vector representation for the given values.
#### Defined in
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L38)
[embedding/openai.ts:43](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/openai.ts#L43)

View File

@@ -19,6 +19,7 @@ A builder for nearest neighbor queries for LanceDB.
### Properties
- [\_embeddings](Query.md#_embeddings)
- [\_fastSearch](Query.md#_fastsearch)
- [\_filter](Query.md#_filter)
- [\_limit](Query.md#_limit)
- [\_metricType](Query.md#_metrictype)
@@ -34,6 +35,7 @@ A builder for nearest neighbor queries for LanceDB.
### Methods
- [execute](Query.md#execute)
- [fastSearch](Query.md#fastsearch)
- [filter](Query.md#filter)
- [isElectron](Query.md#iselectron)
- [limit](Query.md#limit)
@@ -65,7 +67,7 @@ A builder for nearest neighbor queries for LanceDB.
#### Defined in
[query.ts:38](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L38)
[query.ts:39](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L39)
## Properties
@@ -75,7 +77,17 @@ A builder for nearest neighbor queries for LanceDB.
#### Defined in
[query.ts:36](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L36)
[query.ts:37](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L37)
___
### \_fastSearch
`Private` **\_fastSearch**: `boolean`
#### Defined in
[query.ts:36](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L36)
___
@@ -85,7 +97,7 @@ ___
#### Defined in
[query.ts:33](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L33)
[query.ts:33](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L33)
___
@@ -95,7 +107,7 @@ ___
#### Defined in
[query.ts:29](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L29)
[query.ts:29](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L29)
___
@@ -105,7 +117,7 @@ ___
#### Defined in
[query.ts:34](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L34)
[query.ts:34](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L34)
___
@@ -115,7 +127,7 @@ ___
#### Defined in
[query.ts:31](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L31)
[query.ts:31](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L31)
___
@@ -125,7 +137,7 @@ ___
#### Defined in
[query.ts:35](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L35)
[query.ts:35](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L35)
___
@@ -135,7 +147,7 @@ ___
#### Defined in
[query.ts:26](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L26)
[query.ts:26](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L26)
___
@@ -145,7 +157,7 @@ ___
#### Defined in
[query.ts:28](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L28)
[query.ts:28](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L28)
___
@@ -155,7 +167,7 @@ ___
#### Defined in
[query.ts:30](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L30)
[query.ts:30](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L30)
___
@@ -165,7 +177,7 @@ ___
#### Defined in
[query.ts:32](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L32)
[query.ts:32](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L32)
___
@@ -175,7 +187,7 @@ ___
#### Defined in
[query.ts:27](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L27)
[query.ts:27](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L27)
___
@@ -201,7 +213,7 @@ A filter statement to be applied to this query.
#### Defined in
[query.ts:87](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L87)
[query.ts:90](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L90)
## Methods
@@ -223,7 +235,30 @@ Execute the query and return the results as an Array of Objects
#### Defined in
[query.ts:115](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L115)
[query.ts:127](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L127)
___
### fastSearch
**fastSearch**(`value`): [`Query`](Query.md)\<`T`\>
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
#### Parameters
| Name | Type |
| :------ | :------ |
| `value` | `boolean` |
#### Returns
[`Query`](Query.md)\<`T`\>
#### Defined in
[query.ts:119](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L119)
___
@@ -245,7 +280,7 @@ A filter statement to be applied to this query.
#### Defined in
[query.ts:82](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L82)
[query.ts:85](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L85)
___
@@ -259,7 +294,7 @@ ___
#### Defined in
[query.ts:142](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L142)
[query.ts:155](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L155)
___
@@ -268,6 +303,7 @@ ___
**limit**(`value`): [`Query`](Query.md)\<`T`\>
Sets the number of results that will be returned
default value is 10
#### Parameters
@@ -281,7 +317,7 @@ Sets the number of results that will be returned
#### Defined in
[query.ts:55](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L55)
[query.ts:58](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L58)
___
@@ -307,7 +343,7 @@ MetricType for the different options
#### Defined in
[query.ts:102](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L102)
[query.ts:105](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L105)
___
@@ -329,7 +365,7 @@ The number of probes used. A higher number makes search more accurate but also s
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L73)
[query.ts:76](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L76)
___
@@ -349,7 +385,7 @@ ___
#### Defined in
[query.ts:107](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L107)
[query.ts:110](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L110)
___
@@ -371,7 +407,7 @@ Refine the results by reading extra elements and re-ranking them in memory.
#### Defined in
[query.ts:64](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L64)
[query.ts:67](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L67)
___
@@ -393,4 +429,4 @@ Return only the specified columns.
#### Defined in
[query.ts:93](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L93)
[query.ts:96](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L96)

View File

@@ -0,0 +1,52 @@
[vectordb](../README.md) / [Exports](../modules.md) / IndexStatus
# Enumeration: IndexStatus
## Table of contents
### Enumeration Members
- [Done](IndexStatus.md#done)
- [Failed](IndexStatus.md#failed)
- [Indexing](IndexStatus.md#indexing)
- [Pending](IndexStatus.md#pending)
## Enumeration Members
### Done
**Done** = ``"done"``
#### Defined in
[index.ts:713](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L713)
___
### Failed
• **Failed** = ``"failed"``
#### Defined in
[index.ts:714](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L714)
___
### Indexing
• **Indexing** = ``"indexing"``
#### Defined in
[index.ts:712](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L712)
___
### Pending
• **Pending** = ``"pending"``
#### Defined in
[index.ts:711](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L711)

View File

@@ -22,7 +22,7 @@ Cosine distance
#### Defined in
[index.ts:1041](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1041)
[index.ts:1381](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1381)
___
@@ -34,7 +34,7 @@ Dot product
#### Defined in
[index.ts:1046](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1046)
[index.ts:1386](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1386)
___
@@ -46,4 +46,4 @@ Euclidean distance
#### Defined in
[index.ts:1036](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1036)
[index.ts:1376](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1376)

View File

@@ -22,7 +22,7 @@ Append new data to the table.
#### Defined in
[index.ts:1007](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1007)
[index.ts:1347](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1347)
___
@@ -34,7 +34,7 @@ Create a new [Table](../interfaces/Table.md).
#### Defined in
[index.ts:1003](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1003)
[index.ts:1343](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1343)
___
@@ -46,4 +46,4 @@ Overwrite the existing [Table](../interfaces/Table.md) if presented.
#### Defined in
[index.ts:1005](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1005)
[index.ts:1345](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1345)

View File

@@ -18,7 +18,7 @@
#### Defined in
[index.ts:54](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L54)
[index.ts:68](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L68)
___
@@ -28,7 +28,7 @@ ___
#### Defined in
[index.ts:56](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L56)
[index.ts:70](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L70)
___
@@ -38,4 +38,4 @@ ___
#### Defined in
[index.ts:58](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L58)
[index.ts:72](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L72)

View File

@@ -19,7 +19,7 @@ The number of bytes removed from disk.
#### Defined in
[index.ts:878](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L878)
[index.ts:1218](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1218)
___
@@ -31,4 +31,4 @@ The number of old table versions removed.
#### Defined in
[index.ts:882](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L882)
[index.ts:1222](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1222)

View File

@@ -0,0 +1,53 @@
[vectordb](../README.md) / [Exports](../modules.md) / ColumnAlteration
# Interface: ColumnAlteration
A definition of a column alteration. The alteration changes the column at
`path` to have the new name `name`, to be nullable if `nullable` is true,
and to have the data type `data_type`. At least one of `rename` or `nullable`
must be provided.
## Table of contents
### Properties
- [nullable](ColumnAlteration.md#nullable)
- [path](ColumnAlteration.md#path)
- [rename](ColumnAlteration.md#rename)
## Properties
### nullable
`Optional` **nullable**: `boolean`
Set the new nullability. Note that a nullable column cannot be made non-nullable.
#### Defined in
[index.ts:638](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L638)
___
### path
**path**: `string`
The path to the column to alter. This is a dot-separated path to the column.
If it is a top-level column then it is just the name of the column. If it is
a nested column then it is the path to the column, e.g. "a.b.c" for a column
`c` nested inside a column `b` nested inside a column `a`.
#### Defined in
[index.ts:633](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L633)
___
### rename
`Optional` **rename**: `string`
#### Defined in
[index.ts:634](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L634)

View File

@@ -22,7 +22,7 @@ fragments added.
#### Defined in
[index.ts:933](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L933)
[index.ts:1273](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1273)
___
@@ -35,7 +35,7 @@ file.
#### Defined in
[index.ts:928](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L928)
[index.ts:1268](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1268)
___
@@ -47,7 +47,7 @@ The number of new fragments that were created.
#### Defined in
[index.ts:923](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L923)
[index.ts:1263](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1263)
___
@@ -59,4 +59,4 @@ The number of fragments that were removed.
#### Defined in
[index.ts:919](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L919)
[index.ts:1259](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1259)

View File

@@ -24,7 +24,7 @@ Default is true.
#### Defined in
[index.ts:901](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L901)
[index.ts:1241](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1241)
___
@@ -38,7 +38,7 @@ the deleted rows. Default is 10%.
#### Defined in
[index.ts:907](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L907)
[index.ts:1247](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1247)
___
@@ -46,11 +46,11 @@ ___
`Optional` **maxRowsPerGroup**: `number`
The maximum number of rows per group. Defaults to 1024.
The maximum number of T per group. Defaults to 1024.
#### Defined in
[index.ts:895](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L895)
[index.ts:1235](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1235)
___
@@ -63,7 +63,7 @@ the number of cores on the machine.
#### Defined in
[index.ts:912](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L912)
[index.ts:1252](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1252)
___
@@ -77,4 +77,4 @@ Defaults to 1024 * 1024.
#### Defined in
[index.ts:891](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L891)
[index.ts:1231](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1231)

View File

@@ -22,6 +22,7 @@ Connection could be local against filesystem or remote against a server.
- [dropTable](Connection.md#droptable)
- [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames)
- [withMiddleware](Connection.md#withmiddleware)
## Properties
@@ -31,7 +32,7 @@ Connection could be local against filesystem or remote against a server.
#### Defined in
[index.ts:183](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L183)
[index.ts:261](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L261)
## Methods
@@ -59,7 +60,7 @@ Creates a new Table, optionally initializing it with new data.
#### Defined in
[index.ts:207](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L207)
[index.ts:285](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L285)
**createTable**(`name`, `data`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
@@ -70,7 +71,7 @@ Creates a new Table and initialize it with new data.
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
#### Returns
@@ -78,7 +79,7 @@ Creates a new Table and initialize it with new data.
#### Defined in
[index.ts:221](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L221)
[index.ts:299](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L299)
**createTable**(`name`, `data`, `options`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
@@ -89,7 +90,7 @@ Creates a new Table and initialize it with new data.
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
#### Returns
@@ -98,7 +99,7 @@ Creates a new Table and initialize it with new data.
#### Defined in
[index.ts:233](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L233)
[index.ts:311](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L311)
**createTable**\<`T`\>(`name`, `data`, `embeddings`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
@@ -115,7 +116,7 @@ Creates a new Table and initialize it with new data.
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
#### Returns
@@ -124,7 +125,7 @@ Creates a new Table and initialize it with new data.
#### Defined in
[index.ts:246](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L246)
[index.ts:324](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L324)
**createTable**\<`T`\>(`name`, `data`, `embeddings`, `options`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
@@ -141,7 +142,7 @@ Creates a new Table and initialize it with new data.
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
@@ -151,7 +152,7 @@ Creates a new Table and initialize it with new data.
#### Defined in
[index.ts:259](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L259)
[index.ts:337](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L337)
___
@@ -173,7 +174,7 @@ Drop an existing table.
#### Defined in
[index.ts:270](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L270)
[index.ts:348](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L348)
___
@@ -202,7 +203,7 @@ Open a table in the database.
#### Defined in
[index.ts:193](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L193)
[index.ts:271](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L271)
___
@@ -216,4 +217,32 @@ ___
#### Defined in
[index.ts:185](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L185)
[index.ts:263](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L263)
___
### withMiddleware
**withMiddleware**(`middleware`): [`Connection`](Connection.md)
Instrument the behavior of this Connection with middleware.
The middleware will be called in the order they are added.
Currently this functionality is only supported for remote Connections.
#### Parameters
| Name | Type |
| :------ | :------ |
| `middleware` | `HttpMiddleware` |
#### Returns
[`Connection`](Connection.md)
- this Connection instrumented by the passed middleware
#### Defined in
[index.ts:360](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L360)

View File

@@ -10,7 +10,10 @@
- [awsCredentials](ConnectionOptions.md#awscredentials)
- [awsRegion](ConnectionOptions.md#awsregion)
- [hostOverride](ConnectionOptions.md#hostoverride)
- [readConsistencyInterval](ConnectionOptions.md#readconsistencyinterval)
- [region](ConnectionOptions.md#region)
- [storageOptions](ConnectionOptions.md#storageoptions)
- [timeout](ConnectionOptions.md#timeout)
- [uri](ConnectionOptions.md#uri)
## Properties
@@ -19,9 +22,13 @@
`Optional` **apiKey**: `string`
API key for the remote connections
Can also be passed by setting environment variable `LANCEDB_API_KEY`
#### Defined in
[index.ts:81](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L81)
[index.ts:112](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L112)
___
@@ -33,9 +40,14 @@ User provided AWS crednetials.
If not provided, LanceDB will use the default credentials provider chain.
**`Deprecated`**
Pass `aws_access_key_id`, `aws_secret_access_key`, and `aws_session_token`
through `storageOptions` instead.
#### Defined in
[index.ts:75](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L75)
[index.ts:92](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L92)
___
@@ -43,11 +55,15 @@ ___
`Optional` **awsRegion**: `string`
AWS region to connect to. Default is defaultAwsRegion.
AWS region to connect to. Default is defaultAwsRegion
**`Deprecated`**
Pass `region` through `storageOptions` instead.
#### Defined in
[index.ts:78](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L78)
[index.ts:98](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L98)
___
@@ -55,13 +71,33 @@ ___
`Optional` **hostOverride**: `string`
Override the host URL for the remote connections.
Override the host URL for the remote connection.
This is useful for local testing.
#### Defined in
[index.ts:91](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L91)
[index.ts:122](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L122)
___
### readConsistencyInterval
`Optional` **readConsistencyInterval**: `number`
(For LanceDB OSS only): The interval, in seconds, at which to check for
updates to the table from other processes. If None, then consistency is not
checked. For performance reasons, this is the default. For strong
consistency, set this to zero seconds. Then every read will check for
updates from other processes. As a compromise, you can set this to a
non-zero value for eventual consistency. If more than that interval
has passed since the last check, then the table will be checked for updates.
Note: this consistency only applies to read operations. Write operations are
always consistent.
#### Defined in
[index.ts:140](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L140)
___
@@ -69,11 +105,37 @@ ___
`Optional` **region**: `string`
Region to connect
Region to connect. Default is 'us-east-1'
#### Defined in
[index.ts:84](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L84)
[index.ts:115](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L115)
___
### storageOptions
`Optional` **storageOptions**: `Record`\<`string`, `string`\>
User provided options for object storage. For example, S3 credentials or request timeouts.
The various options are described at https://lancedb.github.io/lancedb/guides/storage/
#### Defined in
[index.ts:105](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L105)
___
### timeout
`Optional` **timeout**: `number`
Duration in milliseconds for request timeout. Default = 10,000 (10 seconds)
#### Defined in
[index.ts:127](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L127)
___
@@ -85,8 +147,8 @@ LanceDB database URI.
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (SaaS)
- `db://host:port` - remote database (LanceDB cloud)
#### Defined in
[index.ts:69](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L69)
[index.ts:83](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L83)

View File

@@ -26,7 +26,7 @@
#### Defined in
[index.ts:116](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L116)
[index.ts:163](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L163)
___
@@ -36,7 +36,7 @@ ___
#### Defined in
[index.ts:122](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L122)
[index.ts:169](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L169)
___
@@ -46,7 +46,7 @@ ___
#### Defined in
[index.ts:113](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L113)
[index.ts:160](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L160)
___
@@ -56,7 +56,7 @@ ___
#### Defined in
[index.ts:119](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L119)
[index.ts:166](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L166)
___
@@ -66,4 +66,4 @@ ___
#### Defined in
[index.ts:125](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L125)
[index.ts:172](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L172)

View File

@@ -18,11 +18,29 @@ An embedding function that automatically creates vector representation for a giv
### Properties
- [destColumn](EmbeddingFunction.md#destcolumn)
- [embed](EmbeddingFunction.md#embed)
- [embeddingDataType](EmbeddingFunction.md#embeddingdatatype)
- [embeddingDimension](EmbeddingFunction.md#embeddingdimension)
- [excludeSource](EmbeddingFunction.md#excludesource)
- [sourceColumn](EmbeddingFunction.md#sourcecolumn)
## Properties
### destColumn
`Optional` **destColumn**: `string`
The name of the column that will contain the embedding
By default this is "vector"
#### Defined in
[embedding/embedding_function.ts:49](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/embedding_function.ts#L49)
___
### embed
**embed**: (`data`: `T`[]) => `Promise`\<`number`[][]\>
@@ -45,7 +63,54 @@ Creates a vector representation for the given values.
#### Defined in
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/embedding_function.ts#L27)
[embedding/embedding_function.ts:62](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/embedding_function.ts#L62)
___
### embeddingDataType
`Optional` **embeddingDataType**: `Float`\<`Floats`\>
The data type of the embedding
The embedding function should return `number`. This will be converted into
an Arrow float array. By default this will be Float32 but this property can
be used to control the conversion.
#### Defined in
[embedding/embedding_function.ts:33](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/embedding_function.ts#L33)
___
### embeddingDimension
`Optional` **embeddingDimension**: `number`
The dimension of the embedding
This is optional, normally this can be determined by looking at the results of
`embed`. If this is not specified, and there is an attempt to apply the embedding
to an empty table, then that process will fail.
#### Defined in
[embedding/embedding_function.ts:42](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/embedding_function.ts#L42)
___
### excludeSource
`Optional` **excludeSource**: `boolean`
Should the source column be excluded from the resulting table
By default the source column is included. Set this to true and
only the embedding will be stored.
#### Defined in
[embedding/embedding_function.ts:57](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/embedding_function.ts#L57)
___
@@ -57,4 +122,4 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/embedding_function.ts#L22)
[embedding/embedding_function.ts:24](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/embedding_function.ts#L24)

View File

@@ -6,18 +6,51 @@
### Properties
- [distanceType](IndexStats.md#distancetype)
- [indexType](IndexStats.md#indextype)
- [numIndexedRows](IndexStats.md#numindexedrows)
- [numIndices](IndexStats.md#numindices)
- [numUnindexedRows](IndexStats.md#numunindexedrows)
## Properties
### distanceType
`Optional` **distanceType**: `string`
#### Defined in
[index.ts:728](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L728)
___
### indexType
**indexType**: `string`
#### Defined in
[index.ts:727](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L727)
___
### numIndexedRows
**numIndexedRows**: ``null`` \| `number`
#### Defined in
[index.ts:478](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L478)
[index.ts:725](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L725)
___
### numIndices
• `Optional` **numIndices**: `number`
#### Defined in
[index.ts:729](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L729)
___
@@ -27,4 +60,4 @@ ___
#### Defined in
[index.ts:479](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L479)
[index.ts:726](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L726)

View File

@@ -29,7 +29,7 @@ The column to be indexed
#### Defined in
[index.ts:942](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L942)
[index.ts:1282](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1282)
___
@@ -41,7 +41,7 @@ Cache size of the index
#### Defined in
[index.ts:991](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L991)
[index.ts:1331](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1331)
___
@@ -53,7 +53,7 @@ A unique name for the index
#### Defined in
[index.ts:947](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L947)
[index.ts:1287](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1287)
___
@@ -65,7 +65,7 @@ The max number of iterations for kmeans training.
#### Defined in
[index.ts:962](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L962)
[index.ts:1302](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1302)
___
@@ -77,7 +77,7 @@ Max number of iterations to train OPQ, if `use_opq` is true.
#### Defined in
[index.ts:981](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L981)
[index.ts:1321](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1321)
___
@@ -89,7 +89,7 @@ Metric type, L2 or Cosine
#### Defined in
[index.ts:952](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L952)
[index.ts:1292](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1292)
___
@@ -101,7 +101,7 @@ The number of bits to present one PQ centroid.
#### Defined in
[index.ts:976](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L976)
[index.ts:1316](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1316)
___
@@ -113,7 +113,7 @@ The number of partitions this index
#### Defined in
[index.ts:957](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L957)
[index.ts:1297](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1297)
___
@@ -125,7 +125,7 @@ Number of subvectors to build PQ code
#### Defined in
[index.ts:972](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L972)
[index.ts:1312](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1312)
___
@@ -137,7 +137,7 @@ Replace an existing index with the same name if it exists.
#### Defined in
[index.ts:986](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L986)
[index.ts:1326](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1326)
___
@@ -147,7 +147,7 @@ ___
#### Defined in
[index.ts:993](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L993)
[index.ts:1333](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1333)
___
@@ -159,4 +159,4 @@ Train as optimized product quantization.
#### Defined in
[index.ts:967](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L967)
[index.ts:1307](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1307)

View File

@@ -0,0 +1,73 @@
[vectordb](../README.md) / [Exports](../modules.md) / MergeInsertArgs
# Interface: MergeInsertArgs
## Table of contents
### Properties
- [whenMatchedUpdateAll](MergeInsertArgs.md#whenmatchedupdateall)
- [whenNotMatchedBySourceDelete](MergeInsertArgs.md#whennotmatchedbysourcedelete)
- [whenNotMatchedInsertAll](MergeInsertArgs.md#whennotmatchedinsertall)
## Properties
### whenMatchedUpdateAll
`Optional` **whenMatchedUpdateAll**: `string` \| `boolean`
If true then rows that exist in both the source table (new data) and
the target table (old data) will be updated, replacing the old row
with the corresponding matching row.
If there are multiple matches then the behavior is undefined.
Currently this causes multiple copies of the row to be created
but that behavior is subject to change.
Optionally, a filter can be specified. This should be an SQL
filter where fields with the prefix "target." refer to fields
in the target table (old data) and fields with the prefix
"source." refer to fields in the source table (new data). For
example, the filter "target.lastUpdated < source.lastUpdated" will
only update matched rows when the incoming `lastUpdated` value is
newer.
Rows that do not match the filter will not be updated. Rows that
do not match the filter do become "not matched" rows.
#### Defined in
[index.ts:690](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L690)
___
### whenNotMatchedBySourceDelete
`Optional` **whenNotMatchedBySourceDelete**: `string` \| `boolean`
If true then rows that exist only in the target table (old data)
will be deleted.
If this is a string then it will be treated as an SQL filter and
only rows that both do not match any row in the source table and
match the given filter will be deleted.
This can be used to replace a selection of existing data with
new data.
#### Defined in
[index.ts:707](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L707)
___
### whenNotMatchedInsertAll
`Optional` **whenNotMatchedInsertAll**: `boolean`
If true then rows that exist only in the source table (new data)
will be inserted into the target table.
#### Defined in
[index.ts:695](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L695)

View File

@@ -25,17 +25,26 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
- [delete](Table.md#delete)
- [indexStats](Table.md#indexstats)
- [listIndices](Table.md#listindices)
- [mergeInsert](Table.md#mergeinsert)
- [name](Table.md#name)
- [overwrite](Table.md#overwrite)
- [schema](Table.md#schema)
- [search](Table.md#search)
- [update](Table.md#update)
### Methods
- [addColumns](Table.md#addcolumns)
- [alterColumns](Table.md#altercolumns)
- [dropColumns](Table.md#dropcolumns)
- [filter](Table.md#filter)
- [withMiddleware](Table.md#withmiddleware)
## Properties
### add
**add**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
**add**: (`data`: `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
#### Type declaration
@@ -47,7 +56,7 @@ Insert records into this Table.
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns
@@ -57,27 +66,33 @@ The number of rows added to the table
#### Defined in
[index.ts:291](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L291)
[index.ts:381](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L381)
___
### countRows
**countRows**: () => `Promise`\<`number`\>
**countRows**: (`filter?`: `string`) => `Promise`\<`number`\>
#### Type declaration
▸ (): `Promise`\<`number`\>
▸ (`filter?`): `Promise`\<`number`\>
Returns the number of rows in this table.
##### Parameters
| Name | Type |
| :------ | :------ |
| `filter?` | `string` |
##### Returns
`Promise`\<`number`\>
#### Defined in
[index.ts:361](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L361)
[index.ts:454](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L454)
___
@@ -107,17 +122,17 @@ VectorIndexParams.
#### Defined in
[index.ts:306](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L306)
[index.ts:398](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L398)
___
### createScalarIndex
**createScalarIndex**: (`column`: `string`, `replace`: `boolean`) => `Promise`\<`void`\>
**createScalarIndex**: (`column`: `string`, `replace?`: `boolean`) => `Promise`\<`void`\>
#### Type declaration
▸ (`column`, `replace`): `Promise`\<`void`\>
▸ (`column`, `replace?`): `Promise`\<`void`\>
Create a scalar index on this Table for the given column
@@ -126,7 +141,7 @@ Create a scalar index on this Table for the given column
| Name | Type | Description |
| :------ | :------ | :------ |
| `column` | `string` | The column to index |
| `replace` | `boolean` | If false, fail if an index already exists on the column Scalar indices, like vector indices, can be used to speed up scans. A scalar index can speed up scans that contain filter expressions on the indexed column. For example, the following scan will be faster if the column `my_col` has a scalar index: ```ts const con = await lancedb.connect('./.lancedb'); const table = await con.openTable('images'); const results = await table.where('my_col = 7').execute(); ``` Scalar indices can also speed up scans containing a vector search and a prefilter: ```ts const con = await lancedb.connect('././lancedb'); const table = await con.openTable('images'); const results = await table.search([1.0, 2.0]).where('my_col != 7').prefilter(true); ``` Scalar indices can only speed up scans for basic filters using equality, comparison, range (e.g. `my_col BETWEEN 0 AND 100`), and set membership (e.g. `my_col IN (0, 1, 2)`) Scalar indices can be used if the filter contains multiple indexed columns and the filter criteria are AND'd or OR'd together (e.g. `my_col < 0 AND other_col> 100`) Scalar indices may be used if the filter contains non-indexed columns but, depending on the structure of the filter, they may not be usable. For example, if the column `not_indexed` does not have a scalar index then the filter `my_col = 0 OR not_indexed = 1` will not be able to use any scalar index on `my_col`. |
| `replace?` | `boolean` | If false, fail if an index already exists on the column it is always set to true for remote connections Scalar indices, like vector indices, can be used to speed up scans. A scalar index can speed up scans that contain filter expressions on the indexed column. For example, the following scan will be faster if the column `my_col` has a scalar index: ```ts const con = await lancedb.connect('./.lancedb'); const table = await con.openTable('images'); const results = await table.where('my_col = 7').execute(); ``` Scalar indices can also speed up scans containing a vector search and a prefilter: ```ts const con = await lancedb.connect('././lancedb'); const table = await con.openTable('images'); const results = await table.search([1.0, 2.0]).where('my_col != 7').prefilter(true); ``` Scalar indices can only speed up scans for basic filters using equality, comparison, range (e.g. `my_col BETWEEN 0 AND 100`), and set membership (e.g. `my_col IN (0, 1, 2)`) Scalar indices can be used if the filter contains multiple indexed columns and the filter criteria are AND'd or OR'd together (e.g. `my_col < 0 AND other_col> 100`) Scalar indices may be used if the filter contains non-indexed columns but, depending on the structure of the filter, they may not be usable. For example, if the column `not_indexed` does not have a scalar index then the filter `my_col = 0 OR not_indexed = 1` will not be able to use any scalar index on `my_col`. |
##### Returns
@@ -142,7 +157,7 @@ await table.createScalarIndex('my_col')
#### Defined in
[index.ts:356](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L356)
[index.ts:449](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L449)
___
@@ -194,17 +209,17 @@ await tbl.countRows() // Returns 1
#### Defined in
[index.ts:395](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L395)
[index.ts:488](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L488)
___
### indexStats
• **indexStats**: (`indexUuid`: `string`) => `Promise`\<[`IndexStats`](IndexStats.md)\>
• **indexStats**: (`indexName`: `string`) => `Promise`\<[`IndexStats`](IndexStats.md)\>
#### Type declaration
▸ (`indexUuid`): `Promise`\<[`IndexStats`](IndexStats.md)\>
▸ (`indexName`): `Promise`\<[`IndexStats`](IndexStats.md)\>
Get statistics about an index.
@@ -212,7 +227,7 @@ Get statistics about an index.
| Name | Type |
| :------ | :------ |
| `indexUuid` | `string` |
| `indexName` | `string` |
##### Returns
@@ -220,7 +235,7 @@ Get statistics about an index.
#### Defined in
[index.ts:438](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L438)
[index.ts:567](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L567)
___
@@ -240,7 +255,57 @@ List the indicies on this table.
#### Defined in
[index.ts:433](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L433)
[index.ts:562](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L562)
___
### mergeInsert
• **mergeInsert**: (`on`: `string`, `data`: `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[], `args`: [`MergeInsertArgs`](MergeInsertArgs.md)) => `Promise`\<`void`\>
#### Type declaration
▸ (`on`, `data`, `args`): `Promise`\<`void`\>
Runs a "merge insert" operation on the table
This operation can add rows, update rows, and remove rows all in a single
transaction. It is a very generic tool that can be used to create
behaviors like "insert if not exists", "update or insert (i.e. upsert)",
or even replace a portion of existing data with new data (e.g. replace
all data where month="january")
The merge insert operation works by combining new data from a
**source table** with existing data in a **target table** by using a
join. There are three categories of records.
"Matched" records are records that exist in both the source table and
the target table. "Not matched" records exist only in the source table
(e.g. these are new data) "Not matched by source" records exist only
in the target table (this is old data)
The MergeInsertArgs can be used to customize what should happen for
each category of data.
Please note that the data may appear to be reordered as part of this
operation. This is because updated rows will be deleted from the
dataset and then reinserted at the end with the new values.
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `on` | `string` | a column to join on. This is how records from the source table and target table are matched. |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | the new data to insert |
| `args` | [`MergeInsertArgs`](MergeInsertArgs.md) | parameters controlling how the operation should behave |
##### Returns
`Promise`\<`void`\>
#### Defined in
[index.ts:553](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L553)
___
@@ -250,13 +315,13 @@ ___
#### Defined in
[index.ts:277](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L277)
[index.ts:367](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L367)
___
### overwrite
• **overwrite**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
• **overwrite**: (`data`: `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
#### Type declaration
@@ -268,7 +333,7 @@ Insert records into this Table, replacing its contents.
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns
@@ -278,7 +343,7 @@ The number of rows added to the table
#### Defined in
[index.ts:299](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L299)
[index.ts:389](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L389)
___
@@ -288,7 +353,7 @@ ___
#### Defined in
[index.ts:440](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L440)
[index.ts:571](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L571)
___
@@ -314,7 +379,7 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in
[index.ts:283](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L283)
[index.ts:373](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L373)
___
@@ -365,4 +430,123 @@ let results = await tbl.search([1, 1]).execute();
#### Defined in
[index.ts:428](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L428)
[index.ts:521](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L521)
## Methods
### addColumns
▸ **addColumns**(`newColumnTransforms`): `Promise`\<`void`\>
Add new columns with defined values.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `newColumnTransforms` | \{ `name`: `string` ; `valueSql`: `string` }[] | pairs of column names and the SQL expression to use to calculate the value of the new column. These expressions will be evaluated for each row in the table, and can reference existing columns in the table. |
#### Returns
`Promise`\<`void`\>
#### Defined in
[index.ts:582](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L582)
___
### alterColumns
▸ **alterColumns**(`columnAlterations`): `Promise`\<`void`\>
Alter the name or nullability of columns.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `columnAlterations` | [`ColumnAlteration`](ColumnAlteration.md)[] | One or more alterations to apply to columns. |
#### Returns
`Promise`\<`void`\>
#### Defined in
[index.ts:591](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L591)
___
### dropColumns
▸ **dropColumns**(`columnNames`): `Promise`\<`void`\>
Drop one or more columns from the dataset
This is a metadata-only operation and does not remove the data from the
underlying storage. In order to remove the data, you must subsequently
call ``compact_files`` to rewrite the data without the removed columns and
then call ``cleanup_files`` to remove the old files.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `columnNames` | `string`[] | The names of the columns to drop. These can be nested column references (e.g. "a.b.c") or top-level column names (e.g. "a"). |
#### Returns
`Promise`\<`void`\>
#### Defined in
[index.ts:605](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L605)
___
### filter
▸ **filter**(`value`): [`Query`](../classes/Query.md)\<`T`\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `value` | `string` |
#### Returns
[`Query`](../classes/Query.md)\<`T`\>
#### Defined in
[index.ts:569](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L569)
___
### withMiddleware
▸ **withMiddleware**(`middleware`): [`Table`](Table.md)\<`T`\>
Instrument the behavior of this Table with middleware.
The middleware will be called in the order they are added.
Currently this functionality is only supported for remote tables.
#### Parameters
| Name | Type |
| :------ | :------ |
| `middleware` | `HttpMiddleware` |
#### Returns
[`Table`](Table.md)\<`T`\>
- this Table instrumented by the passed middleware
#### Defined in
[index.ts:617](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L617)

View File

@@ -20,7 +20,7 @@ new values to set
#### Defined in
[index.ts:454](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L454)
[index.ts:652](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L652)
___
@@ -33,4 +33,4 @@ in which case all rows will be updated.
#### Defined in
[index.ts:448](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L448)
[index.ts:646](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L646)

View File

@@ -20,7 +20,7 @@ new values to set as SQL expressions.
#### Defined in
[index.ts:468](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L468)
[index.ts:666](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L666)
___
@@ -33,4 +33,4 @@ in which case all rows will be updated.
#### Defined in
[index.ts:462](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L462)
[index.ts:660](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L660)

View File

@@ -8,6 +8,7 @@
- [columns](VectorIndex.md#columns)
- [name](VectorIndex.md#name)
- [status](VectorIndex.md#status)
- [uuid](VectorIndex.md#uuid)
## Properties
@@ -18,7 +19,7 @@
#### Defined in
[index.ts:472](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L472)
[index.ts:718](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L718)
___
@@ -28,7 +29,17 @@ ___
#### Defined in
[index.ts:473](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L473)
[index.ts:719](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L719)
___
### status
**status**: [`IndexStatus`](../enums/IndexStatus.md)
#### Defined in
[index.ts:721](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L721)
___
@@ -38,4 +49,4 @@ ___
#### Defined in
[index.ts:474](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L474)
[index.ts:720](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L720)

View File

@@ -24,4 +24,4 @@ A [WriteMode](../enums/WriteMode.md) to use on this operation
#### Defined in
[index.ts:1015](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1015)
[index.ts:1355](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1355)

View File

@@ -6,6 +6,7 @@
### Enumerations
- [IndexStatus](enums/IndexStatus.md)
- [MetricType](enums/MetricType.md)
- [WriteMode](enums/WriteMode.md)
@@ -14,6 +15,7 @@
- [DefaultWriteOptions](classes/DefaultWriteOptions.md)
- [LocalConnection](classes/LocalConnection.md)
- [LocalTable](classes/LocalTable.md)
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
- [Query](classes/Query.md)
@@ -21,6 +23,7 @@
- [AwsCredentials](interfaces/AwsCredentials.md)
- [CleanupStats](interfaces/CleanupStats.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md)
- [CompactionMetrics](interfaces/CompactionMetrics.md)
- [CompactionOptions](interfaces/CompactionOptions.md)
- [Connection](interfaces/Connection.md)
@@ -29,6 +32,7 @@
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
- [IndexStats](interfaces/IndexStats.md)
- [IvfPQIndexConfig](interfaces/IvfPQIndexConfig.md)
- [MergeInsertArgs](interfaces/MergeInsertArgs.md)
- [Table](interfaces/Table.md)
- [UpdateArgs](interfaces/UpdateArgs.md)
- [UpdateSqlArgs](interfaces/UpdateSqlArgs.md)
@@ -42,7 +46,9 @@
### Functions
- [connect](modules.md#connect)
- [convertToTable](modules.md#converttotable)
- [isWriteOptions](modules.md#iswriteoptions)
- [makeArrowTable](modules.md#makearrowtable)
## Type Aliases
@@ -52,7 +58,7 @@
#### Defined in
[index.ts:996](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L996)
[index.ts:1336](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1336)
## Functions
@@ -62,11 +68,11 @@
Connect to a LanceDB instance at the given URI.
Accpeted formats:
Accepted formats:
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (SaaS)
- `db://host:port` - remote database (LanceDB cloud)
#### Parameters
@@ -84,7 +90,7 @@ Accpeted formats:
#### Defined in
[index.ts:141](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L141)
[index.ts:188](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L188)
**connect**(`opts`): `Promise`\<[`Connection`](interfaces/Connection.md)\>
@@ -102,7 +108,35 @@ Connect to a LanceDB instance with connection options.
#### Defined in
[index.ts:147](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L147)
[index.ts:194](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L194)
___
### convertToTable
**convertToTable**\<`T`\>(`data`, `embeddings?`, `makeTableOptions?`): `Promise`\<`ArrowTable`\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `Record`\<`string`, `unknown`\>[] |
| `embeddings?` | [`EmbeddingFunction`](interfaces/EmbeddingFunction.md)\<`T`\> |
| `makeTableOptions?` | `Partial`\<[`MakeArrowTableOptions`](classes/MakeArrowTableOptions.md)\> |
#### Returns
`Promise`\<`ArrowTable`\>
#### Defined in
[arrow.ts:465](https://github.com/lancedb/lancedb/blob/92179835/node/src/arrow.ts#L465)
___
@@ -122,4 +156,116 @@ value is WriteOptions
#### Defined in
[index.ts:1022](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1022)
[index.ts:1362](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1362)
___
### makeArrowTable
**makeArrowTable**(`data`, `options?`): `ArrowTable`
An enhanced version of the makeTable function from Apache Arrow
that supports nested fields and embeddings columns.
This function converts an array of Record<String, any> (row-major JS objects)
to an Arrow Table (a columnar structure)
Note that it currently does not support nulls.
If a schema is provided then it will be used to determine the resulting array
types. Fields will also be reordered to fit the order defined by the schema.
If a schema is not provided then the types will be inferred and the field order
will be controlled by the order of properties in the first record.
If the input is empty then a schema must be provided to create an empty table.
When a schema is not specified then data types will be inferred. The inference
rules are as follows:
- boolean => Bool
- number => Float64
- String => Utf8
- Buffer => Binary
- Record<String, any> => Struct
- Array<any> => List
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`\<`string`, `any`\>[] | input data |
| `options?` | `Partial`\<[`MakeArrowTableOptions`](classes/MakeArrowTableOptions.md)\> | options to control the makeArrowTable call. |
#### Returns
`ArrowTable`
**`Example`**
```ts
import { fromTableToBuffer, makeArrowTable } from "../arrow";
import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
const schema = new Schema([
new Field("a", new Int32()),
new Field("b", new Float32()),
new Field("c", new FixedSizeList(3, new Field("item", new Float16()))),
]);
const table = makeArrowTable([
{ a: 1, b: 2, c: [1, 2, 3] },
{ a: 4, b: 5, c: [4, 5, 6] },
{ a: 7, b: 8, c: [7, 8, 9] },
], { schema });
```
By default it assumes that the column named `vector` is a vector column
and it will be converted into a fixed size list array of type float32.
The `vectorColumns` option can be used to support other vector column
names and data types.
```ts
const schema = new Schema([
new Field("a", new Float64()),
new Field("b", new Float64()),
new Field(
"vector",
new FixedSizeList(3, new Field("item", new Float32()))
),
]);
const table = makeArrowTable([
{ a: 1, b: 2, vector: [1, 2, 3] },
{ a: 4, b: 5, vector: [4, 5, 6] },
{ a: 7, b: 8, vector: [7, 8, 9] },
]);
assert.deepEqual(table.schema, schema);
```
You can specify the vector column types and names using the options as well
```typescript
const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
]);
const table = makeArrowTable([
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] }
], {
vectorColumns: {
vec1: { type: new Float16() },
vec2: { type: new Float16() }
}
}
assert.deepEqual(table.schema, schema)
```
#### Defined in
[arrow.ts:198](https://github.com/lancedb/lancedb/blob/92179835/node/src/arrow.ts#L198)

View File

@@ -0,0 +1,25 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / FtsOptions
# Interface: FtsOptions
Options to create an `FTS` index
## Properties
### withPosition?
> `optional` **withPosition**: `boolean`
Whether to store the positions of the term in the document.
If this is true then the index will store the positions of the term in the document.
This allows phrase queries to be run. But it also increases the size of the index,
and the time to build the index.
The default value is true.
***

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,16 @@
# Python API Reference
This section contains the API reference for the OSS Python API.
This section contains the API reference for the Python API. There is a
synchronous and an asynchronous API client.
The general flow of using the API is:
1. Use [lancedb.connect][] or [lancedb.connect_async][] to connect to a database.
2. Use the returned [lancedb.DBConnection][] or [lancedb.AsyncConnection][] to
create or open tables.
3. Use the returned [lancedb.table.Table][] or [lancedb.AsyncTable][] to query
or modify tables.
## Installation

View File

@@ -6,6 +6,9 @@ This re-ranker uses the [Cohere](https://cohere.ai/) API to rerank the search re
!!! note
Supported Query Types: Hybrid, Vector, FTS
```shell
pip install cohere
```
```python
import numpy

View File

@@ -9,6 +9,7 @@ LanceDB comes with some built-in rerankers. Some of the rerankers that are avail
| `CrossEncoderReranker` | Uses a cross-encoder model to rerank search results | Vector, FTS, Hybrid |
| `ColbertReranker` | Uses a colbert model to rerank search results | Vector, FTS, Hybrid |
| `OpenaiReranker`(Experimental) | Uses OpenAI's chat model to rerank search results | Vector, FTS, Hybrid |
| `VoyageAIReranker` | Uses voyageai Reranker API to rerank results | Vector, FTS, Hybrid |
## Using a Reranker
@@ -73,6 +74,7 @@ LanceDB comes with some built-in rerankers. Here are some of the rerankers that
- [Jina Reranker](./jina.md)
- [AnswerDotAI Rerankers](./answerdotai.md)
- [Reciprocal Rank Fusion Reranker](./rrf.md)
- [VoyageAI Reranker](./voyageai.md)
## Creating Custom Rerankers

View File

@@ -0,0 +1,77 @@
# Voyage AI Reranker
Voyage AI provides cutting-edge embedding and rerankers.
This re-ranker uses the [VoyageAI](https://docs.voyageai.com/docs/) API to rerank the search results. You can use this re-ranker by passing `VoyageAIReranker()` to the `rerank()` method. Note that you'll either need to set the `VOYAGE_API_KEY` environment variable or pass the `api_key` argument to use this re-ranker.
!!! note
Supported Query Types: Hybrid, Vector, FTS
```python
import numpy
import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
from lancedb.rerankers import VoyageAIReranker
embedder = get_registry().get("sentence-transformers").create()
db = lancedb.connect("~/.lancedb")
class Schema(LanceModel):
text: str = embedder.SourceField()
vector: Vector(embedder.ndims()) = embedder.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"}
]
tbl = db.create_table("test", schema=Schema, mode="overwrite")
tbl.add(data)
reranker = VoyageAIReranker(model_name="rerank-2")
# Run vector search with a reranker
result = tbl.search("hello").rerank(reranker=reranker).to_list()
# Run FTS search with a reranker
result = tbl.search("hello", query_type="fts").rerank(reranker=reranker).to_list()
# Run hybrid search with a reranker
tbl.create_fts_index("text", replace=True)
result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list()
```
Accepted Arguments
----------------
| Argument | Type | Default | Description |
| --- | --- | --- | --- |
| `model_name` | `str` | `None` | The name of the reranker model to use. Available models are: rerank-2, rerank-2-lite |
| `column` | `str` | `"text"` | The name of the column to use as input to the cross encoder model. |
| `top_n` | `str` | `None` | The number of results to return. If None, will return all results. |
| `api_key` | `str` | `None` | The API key for the Voyage AI API. If not provided, the `VOYAGE_API_KEY` environment variable is used. |
| `return_score` | str | `"relevance"` | Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score. If "all" is supported, will return relevance score along with the vector and/or fts scores depending on query type |
| `truncation` | `bool` | `None` | Whether to truncate the input to satisfy the "context length limit" on the query and the documents. |
## Supported Scores for each query type
You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:
### Hybrid Search
|`return_score`| Status | Description |
| --- | --- | --- |
| `relevance` | ✅ Supported | Returns only have the `_relevance_score` column |
| `all` | ❌ Not Supported | Returns have vector(`_distance`) and FTS(`score`) along with Hybrid Search score(`_relevance_score`) |
### Vector Search
|`return_score`| Status | Description |
| --- | --- | --- |
| `relevance` | ✅ Supported | Returns only have the `_relevance_score` column |
| `all` | ✅ Supported | Returns have vector(`_distance`) along with Hybrid Search score(`_relevance_score`) |
### FTS Search
|`return_score`| Status | Description |
| --- | --- | --- |
| `relevance` | ✅ Supported | Returns only have the `_relevance_score` column |
| `all` | ✅ Supported | Returns have FTS(`score`) along with Hybrid Search score(`_relevance_score`) |

View File

@@ -58,9 +58,9 @@ db.create_table("my_vectors", data=data)
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/search.ts:import"
--8<-- "nodejs/examples/search.test.ts:import"
--8<-- "nodejs/examples/search.ts:search1"
--8<-- "nodejs/examples/search.test.ts:search1"
```
@@ -89,7 +89,7 @@ By default, `l2` will be used as metric type. You can specify the metric type as
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/search.ts:search2"
--8<-- "nodejs/examples/search.test.ts:search2"
```
=== "vectordb (deprecated)"

View File

@@ -7,6 +7,10 @@ performed on the top-k results returned by the vector search. However, pre-filte
option that performs the filter prior to vector search. This can be useful to narrow down on
the search space on a very large dataset to reduce query latency.
Note that both pre-filtering and post-filtering can yield false positives. For pre-filtering, if the filter is too selective, it might eliminate relevant items that the vector search would have otherwise identified as a good match. In this case, increasing `nprobes` parameter will help reduce such false positives. It is recommended to set `use_index=false` if you know that the filter is highly selective.
Similarly, a highly selective post-filter can lead to false positives. Increasing both `nprobes` and `refine_factor` can mitigate this issue. When deciding between pre-filtering and post-filtering, pre-filtering is generally the safer choice if you're uncertain.
<!-- Setup Code
```python
import lancedb
@@ -49,7 +53,7 @@ const tbl = await db.createTable('myVectors', data)
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.ts:search"
--8<-- "nodejs/examples/filtering.test.ts:search"
```
=== "vectordb (deprecated)"
@@ -57,6 +61,9 @@ const tbl = await db.createTable('myVectors', data)
```ts
--8<-- "docs/src/sql_legacy.ts:search"
```
!!! note
Creating a [scalar index](guides/scalar_index.md) accelerates filtering
## SQL filters
@@ -91,7 +98,7 @@ For example, the following filter string is acceptable:
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.ts:vec_search"
--8<-- "nodejs/examples/filtering.test.ts:vec_search"
```
=== "vectordb (deprecated)"
@@ -169,7 +176,7 @@ You can also filter your data without search.
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.ts:sql_search"
--8<-- "nodejs/examples/filtering.test.ts:sql_search"
```
=== "vectordb (deprecated)"

View File

@@ -39,4 +39,46 @@
height: 1.2rem;
margin-top: -.1rem;
}
}
}
/* remove pilcrow as permanent link and add chain icon similar to github https://github.com/squidfunk/mkdocs-material/discussions/3535 */
.headerlink {
--permalink-size: 16px; /* for font-relative sizes, 0.6em is a good choice */
--permalink-spacing: 4px;
width: calc(var(--permalink-size) + var(--permalink-spacing));
height: var(--permalink-size);
vertical-align: middle;
background-color: var(--md-default-fg-color--lighter);
background-size: var(--permalink-size);
mask-size: var(--permalink-size);
-webkit-mask-size: var(--permalink-size);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
visibility: visible;
mask-image: url('data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" version="1.1" width="16" height="16" aria-hidden="true"><path fill-rule="evenodd" d="M7.775 3.275a.75.75 0 001.06 1.06l1.25-1.25a2 2 0 112.83 2.83l-2.5 2.5a2 2 0 01-2.83 0 .75.75 0 00-1.06 1.06 3.5 3.5 0 004.95 0l2.5-2.5a3.5 3.5 0 00-4.95-4.95l-1.25 1.25zm-4.69 9.64a2 2 0 010-2.83l2.5-2.5a2 2 0 012.83 0 .75.75 0 001.06-1.06 3.5 3.5 0 00-4.95 0l-2.5 2.5a3.5 3.5 0 004.95 4.95l1.25-1.25a.75.75 0 00-1.06-1.06l-1.25 1.25a2 2 0 01-2.83 0z"></path></svg>');
-webkit-mask-image: url('data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" version="1.1" width="16" height="16" aria-hidden="true"><path fill-rule="evenodd" d="M7.775 3.275a.75.75 0 001.06 1.06l1.25-1.25a2 2 0 112.83 2.83l-2.5 2.5a2 2 0 01-2.83 0 .75.75 0 00-1.06 1.06 3.5 3.5 0 004.95 0l2.5-2.5a3.5 3.5 0 00-4.95-4.95l-1.25 1.25zm-4.69 9.64a2 2 0 010-2.83l2.5-2.5a2 2 0 012.83 0 .75.75 0 001.06-1.06 3.5 3.5 0 00-4.95 0l-2.5 2.5a3.5 3.5 0 004.95 4.95l1.25-1.25a.75.75 0 00-1.06-1.06l-1.25 1.25a2 2 0 01-2.83 0z"></path></svg>');
}
[id]:target .headerlink {
background-color: var(--md-typeset-a-color);
}
.headerlink:hover {
background-color: var(--md-accent-fg-color) !important;
}
@media screen and (min-width: 76.25em) {
h1, h2, h3, h4, h5, h6 {
display: flex;
align-items: center;
flex-direction: row;
column-gap: 0.2em; /* fixes spaces in titles */
}
.headerlink {
order: -1;
margin-left: calc(var(--permalink-size) * -1 - var(--permalink-spacing)) !important;
}
}

View File

@@ -0,0 +1,33 @@
## Getting help
The following sections provide various diagnostics and troubleshooting tips for LanceDB.
These can help you provide additional information when asking questions or making
error reports.
For trouble shooting, the best place to ask is in our Discord, under the relevant
language channel. By asking in the language-specific channel, it makes it more
likely that someone who knows the answer will see your question.
## Enabling logging
To provide more information, especially for LanceDB Cloud related issues, enable
debug logging. You can set the `LANCEDB_LOG` environment variable:
```shell
export LANCEDB_LOG=debug
```
You can turn off colors and formatting in the logs by setting
```shell
export LANCEDB_LOG_STYLE=never
```
## Explaining query plans
If you have slow queries or unexpected query results, it can be helpful to
print the resolved query plan. You can use the `explain_plan` method to do this:
* Python Sync: [LanceQueryBuilder.explain_plan][lancedb.query.LanceQueryBuilder.explain_plan]
* Python Async: [AsyncQueryBase.explain_plan][lancedb.query.AsyncQueryBase.explain_plan]
* Node @lancedb/lancedb: [LanceQueryBuilder.explainPlan](/lancedb/js/classes/QueryBase/#explainplan)

View File

@@ -3,7 +3,7 @@ numpy
pandas
pylance
duckdb
tantivy==0.20.1
--extra-index-url https://download.pytorch.org/whl/cpu
torch
polars>=0.19, <=1.3.0

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.11.0-beta.1</version>
<version>0.14.0-final.0</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.11.0-beta.1</version>
<version>0.14.0-final.0</version>
<packaging>pom</packaging>
<name>LanceDB Parent</name>

83
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.11.0-beta.1",
"version": "0.14.0-beta.2",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.11.0-beta.1",
"version": "0.14.0-beta.2",
"cpu": [
"x64",
"arm64"
@@ -52,11 +52,14 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.11.0-beta.1",
"@lancedb/vectordb-darwin-x64": "0.11.0-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.11.0-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.11.0-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.11.0-beta.1"
"@lancedb/vectordb-darwin-arm64": "0.14.0-beta.2",
"@lancedb/vectordb-darwin-x64": "0.14.0-beta.2",
"@lancedb/vectordb-linux-arm64-gnu": "0.14.0-beta.2",
"@lancedb/vectordb-linux-arm64-musl": "0.14.0-beta.2",
"@lancedb/vectordb-linux-x64-gnu": "0.14.0-beta.2",
"@lancedb/vectordb-linux-x64-musl": "0.14.0-beta.2",
"@lancedb/vectordb-win32-arm64-msvc": "0.14.0-beta.2",
"@lancedb/vectordb-win32-x64-msvc": "0.14.0-beta.2"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
@@ -326,66 +329,6 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.11.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.11.0-beta.1.tgz",
"integrity": "sha512-qKQbFJwstMQEO2MVkkipyDxmH3/KafkuC4xfU8LjMtZ98ZGTQIW47t/OyftiUXYWcjsVxeXI3l2m9MCozFOdhg==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.11.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.11.0-beta.1.tgz",
"integrity": "sha512-245Q5hjQKljczBcDLbiq3N5fmUaY2zFRHoW6SBxOziQwyMphhLDSTNkAYkc3JnrQvf6dMolVYWigOsRVCFj56A==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.11.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.11.0-beta.1.tgz",
"integrity": "sha512-B4z6sx4X6uqGDnQm3zL5mL47Agn4X4spf/nlxtrUWEfiOAyp9Iw465UQMmrbnodi+4k/BNjCNZNMFSjMOSsrcA==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.11.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.11.0-beta.1.tgz",
"integrity": "sha512-0vWcPqpe3to78bYkc+3XWZToRu6TMrhLJAxC9cnV5d9GMuN1VbDoLqD8QPRWkoEr9Nk7jdIRKEBUwfq5yGOFLw==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.11.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.11.0-beta.1.tgz",
"integrity": "sha512-jU/+w2TfA4HKOZkib1UP4kIpaLgu+88S/t+Ccde67w/4qQuP0uAixTAls1WE4mtlf6pOnG0A1ILTY98nVkIQ3A==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
@@ -1500,9 +1443,9 @@
"dev": true
},
"node_modules/cross-spawn": {
"version": "7.0.3",
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
"integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
"version": "7.0.6",
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz",
"integrity": "sha512-uV2QOWP2nWzsy2aMp8aRibhi9dlzF5Hgh5SHaB9OiTGEyDTiJJyx0uy51QXdyWbtAHNua4XJzUKca3OzKUd3vA==",
"dev": true,
"dependencies": {
"path-key": "^3.1.0",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.11.0-beta.1",
"version": "0.14.0",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -84,14 +84,20 @@
"aarch64-apple-darwin": "@lancedb/vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "@lancedb/vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "@lancedb/vectordb-linux-arm64-gnu",
"x86_64-pc-windows-msvc": "@lancedb/vectordb-win32-x64-msvc"
"x86_64-unknown-linux-musl": "@lancedb/vectordb-linux-x64-musl",
"aarch64-unknown-linux-musl": "@lancedb/vectordb-linux-arm64-musl",
"x86_64-pc-windows-msvc": "@lancedb/vectordb-win32-x64-msvc",
"aarch64-pc-windows-msvc": "@lancedb/vectordb-win32-arm64-msvc"
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.11.0-beta.1",
"@lancedb/vectordb-darwin-x64": "0.11.0-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.11.0-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.11.0-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.11.0-beta.1"
"@lancedb/vectordb-darwin-x64": "0.14.0",
"@lancedb/vectordb-darwin-arm64": "0.14.0",
"@lancedb/vectordb-linux-x64-gnu": "0.14.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.14.0",
"@lancedb/vectordb-linux-x64-musl": "0.14.0",
"@lancedb/vectordb-linux-arm64-musl": "0.14.0",
"@lancedb/vectordb-win32-x64-msvc": "0.14.0",
"@lancedb/vectordb-win32-arm64-msvc": "0.14.0"
}
}

View File

@@ -564,7 +564,7 @@ export interface Table<T = number[]> {
/**
* Get statistics about an index.
*/
indexStats: (indexUuid: string) => Promise<IndexStats>
indexStats: (indexName: string) => Promise<IndexStats>
filter(value: string): Query<T>
@@ -1164,8 +1164,8 @@ export class LocalTable<T = number[]> implements Table<T> {
return tableListIndices.call(this._tbl);
}
async indexStats(indexUuid: string): Promise<IndexStats> {
return tableIndexStats.call(this._tbl, indexUuid);
async indexStats(indexName: string): Promise<IndexStats> {
return tableIndexStats.call(this._tbl, indexName);
}
get schema(): Promise<Schema> {

View File

@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import axios, { type AxiosResponse, type ResponseType } from 'axios'
import axios, { type AxiosError, type AxiosResponse, type ResponseType } from 'axios'
import { tableFromIPC, type Table as ArrowTable } from 'apache-arrow'
@@ -197,7 +197,7 @@ export class HttpLancedbClient {
response = await callWithMiddlewares(req, this._middlewares)
return response
} catch (err: any) {
console.error('error: ', err)
console.error(serializeErrorAsJson(err))
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
@@ -247,7 +247,8 @@ export class HttpLancedbClient {
// return response
} catch (err: any) {
console.error('error: ', err)
console.error(serializeErrorAsJson(err))
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
@@ -287,3 +288,15 @@ export class HttpLancedbClient {
return clone
}
}
function serializeErrorAsJson(err: AxiosError) {
const error = JSON.parse(JSON.stringify(err, Object.getOwnPropertyNames(err)))
error.response = err.response != null
? JSON.parse(JSON.stringify(
err.response,
// config contains the request data, too noisy
Object.getOwnPropertyNames(err.response).filter(prop => prop !== 'config')
))
: null
return JSON.stringify({ error })
}

View File

@@ -517,9 +517,9 @@ export class RemoteTable<T = number[]> implements Table<T> {
}))
}
async indexStats (indexUuid: string): Promise<IndexStats> {
async indexStats (indexName: string): Promise<IndexStats> {
const results = await this._client.post(
`/v1/table/${encodeURIComponent(this._name)}/index/${indexUuid}/stats/`
`/v1/table/${encodeURIComponent(this._name)}/index/${indexName}/stats/`
)
const body = await results.body()
return {

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.11.0-beta.1"
version = "0.14.0"
license.workspace = true
description.workspace = true
repository.workspace = true
@@ -13,15 +13,17 @@ crate-type = ["cdylib"]
[dependencies]
arrow-ipc.workspace = true
env_logger.workspace = true
futures.workspace = true
lancedb = { path = "../rust/lancedb", features = ["remote"] }
napi = { version = "2.16.8", default-features = false, features = [
"napi9",
"async",
"async"
] }
napi-derive = "2.16.4"
# Prevent dynamic linking of lzma, which comes from datafusion
lzma-sys = { version = "*", features = ["static"] }
log.workspace = true
[build-dependencies]
napi-build = "2.1"

View File

@@ -110,7 +110,10 @@ describe("given a connection", () => {
let table = await db.createTable("test", data, { useLegacyFormat: true });
const isV2 = async (table: Table) => {
const data = await table.query().toArrow({ maxBatchLength: 100000 });
const data = await table
.query()
.limit(10000)
.toArrow({ maxBatchLength: 100000 });
console.log(data.batches.length);
return data.batches.length < 5;
};

View File

@@ -90,4 +90,29 @@ describe("remote connection", () => {
},
);
});
it("shows the full error messages on retry errors", async () => {
await withMockDatabase(
(_req, res) => {
// We retry on 500 errors, so we return 500s until the client gives up.
res.writeHead(500).end("Internal Server Error");
},
async (db) => {
try {
await db.tableNames();
fail("expected an error");
// biome-ignore lint/suspicious/noExplicitAny: skip
} catch (e: any) {
expect(e.message).toContain("Hit retry limit for request_id=");
expect(e.message).toContain("Caused by: Http error");
expect(e.message).toContain("500 Internal Server Error");
}
},
{
clientConfig: {
retryConfig: { retries: 2 },
},
},
);
});
});

View File

@@ -187,6 +187,81 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
},
);
// TODO: https://github.com/lancedb/lancedb/issues/1832
it.skip("should be able to omit nullable fields", async () => {
const db = await connect(tmpDir.name);
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float64()),
),
true,
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float64(), false),
]);
const table = await db.createEmptyTable("test", schema);
const data1 = { item: "foo", price: 10.0 };
await table.add([data1]);
const data2 = { vector: [3.1, 4.1], price: 2.0 };
await table.add([data2]);
const data3 = { vector: [5.9, 26.5], item: "bar", price: 3.0 };
await table.add([data3]);
let res = await table.query().limit(10).toArray();
const resVector = res.map((r) => r.get("vector").toArray());
expect(resVector).toEqual([null, data2.vector, data3.vector]);
const resItem = res.map((r) => r.get("item").toArray());
expect(resItem).toEqual(["foo", null, "bar"]);
const resPrice = res.map((r) => r.get("price").toArray());
expect(resPrice).toEqual([10.0, 2.0, 3.0]);
const data4 = { item: "foo" };
// We can't omit a column if it's not nullable
await expect(table.add([data4])).rejects.toThrow("Invalid user input");
// But we can alter columns to make them nullable
await table.alterColumns([{ path: "price", nullable: true }]);
await table.add([data4]);
res = (await table.query().limit(10).toArray()).map((r) => r.toJSON());
expect(res).toEqual([data1, data2, data3, data4]);
});
it("should be able to insert nullable data for non-nullable fields", async () => {
const db = await connect(tmpDir.name);
const schema = new arrow.Schema([
new arrow.Field("x", new arrow.Float64(), false),
new arrow.Field("id", new arrow.Utf8(), false),
]);
const table = await db.createEmptyTable("test", schema);
const data1 = { x: 4.1, id: "foo" };
await table.add([data1]);
const res = (await table.query().toArray())[0];
expect(res.x).toEqual(data1.x);
expect(res.id).toEqual(data1.id);
const data2 = { x: null, id: "bar" };
await expect(table.add([data2])).rejects.toThrow(
"declared as non-nullable but contains null values",
);
// But we can alter columns to make them nullable
await table.alterColumns([{ path: "x", nullable: true }]);
await table.add([data2]);
const res2 = await table.query().toArray();
expect(res2.length).toBe(2);
expect(res2[0].x).toEqual(data1.x);
expect(res2[0].id).toEqual(data1.id);
expect(res2[1].x).toBeNull();
expect(res2[1].id).toEqual(data2.id);
});
it("should return the table as an instance of an arrow table", async () => {
const arrowTbl = await table.toArrow();
expect(arrowTbl).toBeInstanceOf(ArrowTable);
@@ -402,6 +477,88 @@ describe("When creating an index", () => {
expect(rst.numRows).toBe(1);
});
it("should create and search IVF_HNSW indices", async () => {
await tbl.createIndex("vec", {
config: Index.hnswSq(),
});
// check index directory
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
const indices = await tbl.listIndices();
expect(indices.length).toBe(1);
expect(indices[0]).toEqual({
name: "vec_idx",
indexType: "IvfHnswSq",
columns: ["vec"],
});
// Search without specifying the column
let rst = await tbl
.query()
.limit(2)
.nearestTo(queryVec)
.distanceType("dot")
.toArrow();
expect(rst.numRows).toBe(2);
// Search using `vectorSearch`
rst = await tbl.vectorSearch(queryVec).limit(2).toArrow();
expect(rst.numRows).toBe(2);
// Search with specifying the column
const rst2 = await tbl
.query()
.limit(2)
.nearestTo(queryVec)
.column("vec")
.toArrow();
expect(rst2.numRows).toBe(2);
expect(rst.toString()).toEqual(rst2.toString());
// test offset
rst = await tbl.query().limit(2).offset(1).nearestTo(queryVec).toArrow();
expect(rst.numRows).toBe(1);
// test ef
rst = await tbl.query().limit(2).nearestTo(queryVec).ef(100).toArrow();
expect(rst.numRows).toBe(2);
});
it("should be able to query unindexed data", async () => {
await tbl.createIndex("vec");
await tbl.add([
{
id: 300,
vec: Array(32)
.fill(1)
.map(() => Math.random()),
tags: [],
},
]);
const plan1 = await tbl.query().nearestTo(queryVec).explainPlan(true);
expect(plan1).toMatch("LanceScan");
const plan2 = await tbl
.query()
.nearestTo(queryVec)
.fastSearch()
.explainPlan(true);
expect(plan2).not.toMatch("LanceScan");
});
it("should be able to query with row id", async () => {
const results = await tbl
.query()
.nearestTo(queryVec)
.withRowId()
.limit(1)
.toArray();
expect(results.length).toBe(1);
expect(results[0]).toHaveProperty("_rowid");
});
it("should allow parameters to be specified", async () => {
await tbl.createIndex("vec", {
config: Index.ivfPq({
@@ -428,11 +585,11 @@ describe("When creating an index", () => {
expect(fs.readdirSync(indexDir)).toHaveLength(1);
for await (const r of tbl.query().where("id > 1").select(["id"])) {
expect(r.numRows).toBe(298);
expect(r.numRows).toBe(10);
}
// should also work with 'filter' alias
for await (const r of tbl.query().filter("id > 1").select(["id"])) {
expect(r.numRows).toBe(298);
expect(r.numRows).toBe(10);
}
});
@@ -668,6 +825,18 @@ describe("schema evolution", function () {
new Field("price", new Float64(), true),
]);
expect(await table.schema()).toEqual(expectedSchema);
await table.alterColumns([{ path: "new_id", dataType: "int32" }]);
const expectedSchema2 = new Schema([
new Field("new_id", new Int32(), true),
new Field(
"vector",
new FixedSizeList(2, new Field("item", new Float32(), true)),
true,
),
new Field("price", new Float64(), true),
]);
expect(await table.schema()).toEqual(expectedSchema2);
});
it("can drop a column from the schema", async function () {
@@ -964,4 +1133,18 @@ describe("column name options", () => {
const results = await table.query().where("`camelCase` = 1").toArray();
expect(results[0].camelCase).toBe(1);
});
test("can make multiple vector queries in one go", async () => {
const results = await table
.query()
.nearestTo([0.1, 0.2])
.addQueryVector([0.1, 0.2])
.limit(1)
.toArray();
console.log(results);
expect(results.length).toBe(2);
results.sort((a, b) => a.query_index - b.query_index);
expect(results[0].query_index).toBe(0);
expect(results[1].query_index).toBe(1);
});
});

View File

@@ -9,7 +9,8 @@
"**/native.js",
"**/native.d.ts",
"**/npm/**/*",
"**/.vscode/**"
"**/.vscode/**",
"./examples/*"
]
},
"formatter": {

View File

@@ -0,0 +1,57 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
import { VectorQuery } from "@lancedb/lancedb";
// --8<-- [end:import]
import { withTempDirectory } from "./util.ts";
test("ann index examples", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:ingest]
const db = await lancedb.connect(databaseDir);
const data = Array.from({ length: 5_000 }, (_, i) => ({
vector: Array(128).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
const table = await db.createTable("my_vectors", data, {
mode: "overwrite",
});
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 10,
numSubVectors: 16,
}),
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const search = table.search(Array(128).fill(1.2)).limit(2) as VectorQuery;
const results1 = await search.nprobes(20).refineFactor(10).toArray();
// --8<-- [end:search1]
expect(results1.length).toBe(2);
// --8<-- [start:search2]
const results2 = await table
.search(Array(128).fill(1.2))
.where("id != '1141'")
.limit(2)
.toArray();
// --8<-- [end:search2]
expect(results2.length).toBe(2);
// --8<-- [start:search3]
const results3 = await table
.search(Array(128).fill(1.2))
.select(["id"])
.limit(2)
.toArray();
// --8<-- [end:search3]
expect(results3.length).toBe(2);
});
}, 100_000);

View File

@@ -1,49 +0,0 @@
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
// --8<-- [end:import]
// --8<-- [start:ingest]
const db = await lancedb.connect("/tmp/lancedb/");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
const table = await db.createTable("my_vectors", data, { mode: "overwrite" });
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 16,
numSubVectors: 48,
}),
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const _results1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.toArray();
// --8<-- [end:search1]
// --8<-- [start:search2]
const _results2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.toArray();
// --8<-- [end:search2]
// --8<-- [start:search3]
const _results3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.toArray();
// --8<-- [end:search3]
console.log("Ann indexes: done");

View File

@@ -0,0 +1,195 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
import {
Field,
FixedSizeList,
Float16,
Int32,
Schema,
Utf8,
} from "apache-arrow";
// --8<-- [end:imports]
import { withTempDirectory } from "./util.ts";
test("basic table examples", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:connect]
const db = await lancedb.connect(databaseDir);
// --8<-- [end:connect]
{
// --8<-- [start:create_table]
const _tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ mode: "overwrite" },
);
// --8<-- [end:create_table]
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
{
// --8<-- [start:create_table_exists_ok]
const tbl = await db.createTable("myTable", data, {
existOk: true,
});
// --8<-- [end:create_table_exists_ok]
expect(await tbl.countRows()).toBe(2);
}
{
// --8<-- [start:create_table_overwrite]
const tbl = await db.createTable("myTable", data, {
mode: "overwrite",
});
// --8<-- [end:create_table_overwrite]
expect(await tbl.countRows()).toBe(2);
}
}
await db.dropTable("myTable");
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const tbl = await db.createTable("myTable", data, {
schema,
});
// --8<-- [end:create_table_with_schema]
expect(await tbl.countRows()).toBe(2);
}
{
// --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
]);
const emptyTbl = await db.createEmptyTable("empty_table", schema);
// --8<-- [end:create_empty_table]
expect(await emptyTbl.countRows()).toBe(0);
}
{
// --8<-- [start:open_table]
const _tbl = await db.openTable("myTable");
// --8<-- [end:open_table]
}
{
// --8<-- [start:table_names]
const tableNames = await db.tableNames();
// --8<-- [end:table_names]
expect(tableNames).toEqual(["empty_table", "myTable"]);
}
const tbl = await db.openTable("myTable");
{
// --8<-- [start:add_data]
const data = [
{ vector: [1.3, 1.4], item: "fizz", price: 100.0 },
{ vector: [9.5, 56.2], item: "buzz", price: 200.0 },
];
await tbl.add(data);
// --8<-- [end:add_data]
}
{
// --8<-- [start:add_columns]
await tbl.addColumns([{ name: "double_price", valueSql: "price * 2" }]);
// --8<-- [end:add_columns]
// --8<-- [start:alter_columns]
await tbl.alterColumns([
{
path: "double_price",
rename: "dbl_price",
dataType: "float",
nullable: true,
},
]);
// --8<-- [end:alter_columns]
// --8<-- [start:drop_columns]
await tbl.dropColumns(["dbl_price"]);
// --8<-- [end:drop_columns]
}
{
// --8<-- [start:vector_search]
const res = await tbl.search([100, 100]).limit(2).toArray();
// --8<-- [end:vector_search]
expect(res.length).toBe(2);
}
{
const data = Array.from({ length: 1000 })
.fill(null)
.map(() => ({
vector: [Math.random(), Math.random()],
item: "autogen",
price: Math.round(Math.random() * 100),
}));
await tbl.add(data);
}
// --8<-- [start:create_index]
await tbl.createIndex("vector");
// --8<-- [end:create_index]
// --8<-- [start:delete_rows]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete_rows]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
await db.dropTable("empty_table");
{
// --8<-- [start:create_f16_table]
const db = await lancedb.connect(databaseDir);
const dim = 16;
const total = 10;
const f16Schema = new Schema([
new Field("id", new Int32()),
new Field(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]);
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random),
})),
{ schema: f16Schema },
);
const _table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table]
await db.dropTable("f16_tbl");
}
});
});

View File

@@ -1,162 +0,0 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
import {
Field,
FixedSizeList,
Float16,
Int32,
Schema,
Utf8,
} from "apache-arrow";
// --8<-- [end:imports]
// --8<-- [start:connect]
const uri = "/tmp/lancedb/";
const db = await lancedb.connect(uri);
// --8<-- [end:connect]
{
// --8<-- [start:create_table]
const tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ mode: "overwrite" },
);
// --8<-- [end:create_table]
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
{
// --8<-- [start:create_table_exists_ok]
const tbl = await db.createTable("myTable", data, {
existsOk: true,
});
// --8<-- [end:create_table_exists_ok]
}
{
// --8<-- [start:create_table_overwrite]
const _tbl = await db.createTable("myTable", data, {
mode: "overwrite",
});
// --8<-- [end:create_table_overwrite]
}
}
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const _tbl = await db.createTable("myTable", data, {
schema,
});
// --8<-- [end:create_table_with_schema]
}
{
// --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
]);
const empty_tbl = await db.createEmptyTable("empty_table", schema);
// --8<-- [end:create_empty_table]
}
{
// --8<-- [start:open_table]
const _tbl = await db.openTable("myTable");
// --8<-- [end:open_table]
}
{
// --8<-- [start:table_names]
const tableNames = await db.tableNames();
console.log(tableNames);
// --8<-- [end:table_names]
}
const tbl = await db.openTable("myTable");
{
// --8<-- [start:add_data]
const data = [
{ vector: [1.3, 1.4], item: "fizz", price: 100.0 },
{ vector: [9.5, 56.2], item: "buzz", price: 200.0 },
];
await tbl.add(data);
// --8<-- [end:add_data]
}
{
// --8<-- [start:vector_search]
const _res = tbl.search([100, 100]).limit(2).toArray();
// --8<-- [end:vector_search]
}
{
const data = Array.from({ length: 1000 })
.fill(null)
.map(() => ({
vector: [Math.random(), Math.random()],
item: "autogen",
price: Math.round(Math.random() * 100),
}));
await tbl.add(data);
}
// --8<-- [start:create_index]
await tbl.createIndex("vector");
// --8<-- [end:create_index]
// --8<-- [start:delete_rows]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete_rows]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
await db.dropTable("empty_table");
{
// --8<-- [start:create_f16_table]
const db = await lancedb.connect("/tmp/lancedb");
const dim = 16;
const total = 10;
const f16Schema = new Schema([
new Field("id", new Int32()),
new Field(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]);
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random),
})),
{ schema: f16Schema },
);
const _table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table]
await db.dropTable("f16_tbl");
}

Some files were not shown because too many files have changed in this diff Show More