Compare commits

...

48 Commits

Author SHA1 Message Date
qzhu
a503845c9f more edit 2024-11-14 13:33:25 -08:00
qzhu
955a295026 code for cloud doc 2024-11-13 22:05:09 -08:00
qzhu
b70fa3892e code for cloud doc 2024-11-13 22:03:53 -08:00
qzhu
31fb3b3b5c first edit 2024-11-13 21:57:05 -08:00
Will Jones
0fd8a50bd7 ci(node): run examples in CI (#1796)
This is done as setup for a PR that will fix the OpenAI dependency
issue.

 * [x] FTS examples
 * [x] Setup mock openai
 * [x] Ran `npm audit fix`
 * [x] sentences embeddings test
 * [x] Double check formatting of docs examples
2024-11-13 11:10:56 -08:00
Umut Hope YILDIRIM
9f228feb0e ci: remove cache to fix build issues on windows arm runner (#1820) 2024-11-13 09:27:10 -08:00
Ayush Chaurasia
90e9c52d0a docs: update hybrid search example to latest langchain (#1824)
Co-authored-by: qzhu <qian@lancedb.com>
2024-11-12 20:06:25 -08:00
Will Jones
68974a4e06 ci: add index URL to fix failing docs build (#1823) 2024-11-12 16:54:22 -08:00
Lei Xu
4c9bab0d92 fix: use pandas with pydantic embedding column (#1818)
* Make Pandas `DataFrame` works with embedding function + Subset of
columns
* Make `lancedb.create_table()` work with embedding function
2024-11-11 14:48:56 -08:00
QianZhu
5117aecc38 docs: search param explanation for OSS doc (#1815)
![Screenshot 2024-11-09 at 11 09
14 AM](https://github.com/user-attachments/assets/2aeba016-aeff-4658-85c6-8640285ba0c9)
2024-11-11 11:57:17 -08:00
Umut Hope YILDIRIM
729718cb09 fix: arm64 runner proto already installed bug (#1810)
https://github.com/lancedb/lancedb/actions/runs/11748512661/job/32732745458
2024-11-08 14:49:37 -08:00
Umut Hope YILDIRIM
b1c84e0bda feat: added lancedb and vectordb release ci for win32-arm64-msvc npmjs only (#1805) 2024-11-08 11:40:57 -08:00
fzowl
cbbc07d0f5 feat: voyageai support (#1799)
Adding VoyageAI embedding and rerank support
2024-11-09 00:51:20 +05:30
Kursat Aktas
21021f94ca docs: introducing LanceDB Guru on Gurubase.io (#1797)
Hello team,

I'm the maintainer of [Anteon](https://github.com/getanteon/anteon). We
have created Gurubase.io with the mission of building a centralized,
open-source tool-focused knowledge base. Essentially, each "guru" is
equipped with custom knowledge to answer user questions based on
collected data related to that tool.

I wanted to update you that I've manually added the [LanceDB
Guru](https://gurubase.io/g/lancedb) to Gurubase. LanceDB Guru uses the
data from this repo and data from the
[docs](https://lancedb.github.io/lancedb/) to answer questions by
leveraging the LLM.

In this PR, I showcased the "LanceDB Guru", which highlights that
LanceDB now has an AI assistant available to help users with their
questions. Please let me know your thoughts on this contribution.

Additionally, if you want me to disable LanceDB Guru in Gurubase, just
let me know that's totally fine.

Signed-off-by: Kursat Aktas <kursat.ce@gmail.com>
2024-11-08 10:55:22 -08:00
BubbleCal
0ed77fa990 chore: impl Debug & Clone for Index params (#1808)
we don't really need these trait in lancedb, but all fields in `Index`
implement the 2 traits, so do it for possibility to use `Index`
somewhere

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-09 01:07:43 +08:00
BubbleCal
4372c231cd feat: support optimize indices in sync API (#1769)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-08 08:48:07 -08:00
Umut Hope YILDIRIM
fa9ca8f7a6 ci: arm64 windows build support (#1770)
Adds support for 'aarch64-pc-windows-msvc'.
2024-11-06 15:34:23 -08:00
Lance Release
2a35d24ee6 Updating package-lock.json 2024-11-06 17:26:36 +00:00
Lance Release
dd9ce337e2 Bump version: 0.13.0-beta.0 → 0.13.0-beta.1 2024-11-06 17:26:17 +00:00
Will Jones
b9921d56cc fix(node): update default log level to warn (#1801)
🤦
2024-11-06 09:13:53 -08:00
Lance Release
0cfd9ed18e Updating package-lock.json 2024-11-05 23:21:50 +00:00
Lance Release
975398c3a8 Bump version: 0.12.0 → 0.13.0-beta.0 2024-11-05 23:21:32 +00:00
Lance Release
08d5f93f34 Bump version: 0.15.0 → 0.16.0-beta.0 2024-11-05 23:21:13 +00:00
Will Jones
91cab3b556 feat(python): transition Python remote sdk to use Rust implementation (#1701)
* Replaces Python implementation of Remote SDK with Rust one.
* Drops dependency on `attrs` and `cachetools`. Makes `requests` an
optional dependency used only for embeddings feature.
* Adds dependency on `nest-asyncio`. This was required to get hybrid
search working.
* Deprecate `request_thread_pool` parameter. We now use the tokio
threadpool.
* Stop caching the `schema` on a remote table. Schema is mutable and
there's no mechanism in place to invalidate the cache.
* Removed the client-side resolution of the vector column. We should
already be resolving this server-side.
2024-11-05 13:44:39 -08:00
Will Jones
c61bfc3af8 chore: update package locks (#1798) 2024-11-05 13:28:59 -08:00
Bert
4e8c7b0adf fix: serialize vectordb client errors as json (#1795) 2024-11-05 14:16:25 -05:00
Weston Pace
26f4a80e10 feat: upgrade to lance 0.19.2-beta.3 (#1794) 2024-11-05 06:43:41 -08:00
Will Jones
3604d20ad3 feat(python,node): support with_row_id in Python and remote (#1784)
Needed to support hybrid search in Remote SDK.
2024-11-04 11:25:45 -08:00
Gagan Bhullar
9708d829a9 fix: explain plan options (#1776)
PR fixes #1768
2024-11-04 10:25:34 -08:00
Will Jones
059c9794b5 fix(rust): fix update, open_table, fts search in remote client (#1785)
* `open_table` uses `POST` not `GET`
* `update` uses `predicate` key not `only_if`
* For FTS search, vector cannot be omitted. It must be passed as empty.
* Added logging of JSON request bodies to debug level logging.
2024-11-04 08:27:55 -08:00
Will Jones
15ed7f75a0 feat(python): support post filter on FTS (#1783) 2024-11-01 10:05:05 -07:00
Will Jones
96181ab421 feat: fast_search in Python and Node (#1623)
Sometimes it is acceptable to users to only search indexed data and skip
and new un-indexed data. For example, if un-indexed data will be shortly
indexed and they don't mind the delay. In these cases, we can save a lot
of CPU time in search, and provide better latency. Users can activate
this on queries using `fast_search()`.
2024-11-01 09:29:09 -07:00
Will Jones
f3fc339ef6 fix(rust): fix delete, update, query in remote SDK (#1782)
Fixes several minor issues with Rust remote SDK:

* Delete uses `predicate` not `filter` as parameter
* Update does not return the row value in remote SDK
* Update takes tuples
* Content type returned by query node is wrong, so we shouldn't validate
it. https://github.com/lancedb/sophon/issues/2742
* Data returned by query endpoint is actually an Arrow IPC file, not IPC
stream.
2024-10-31 15:22:09 -07:00
Will Jones
113cd6995b fix: index_stats works for FTS indices (#1780)
When running `index_stats()` for an FTS index, users would get the
deserialization error:

```
InvalidInput { message: "error deserializing index statistics: unknown variant `Inverted`, expected one of `IvfPq`, `IvfHnswPq`, `IvfHnswSq`, `BTree`, `Bitmap`, `LabelList`, `FTS` at line 1 column 24" }
```
2024-10-30 11:33:49 -07:00
Lance Release
02535bdc88 Updating package-lock.json 2024-10-29 22:16:51 +00:00
Lance Release
facc7d61c0 Bump version: 0.12.0-beta.0 → 0.12.0 2024-10-29 22:16:32 +00:00
Lance Release
f947259f16 Bump version: 0.11.1-beta.1 → 0.12.0-beta.0 2024-10-29 22:16:27 +00:00
Lance Release
e291212ecf Bump version: 0.15.0-beta.0 → 0.15.0 2024-10-29 22:16:05 +00:00
Lance Release
edc6445f6f Bump version: 0.14.1-beta.1 → 0.15.0-beta.0 2024-10-29 22:16:05 +00:00
Will Jones
a324f4ad7a feat(node): enable logging and show full errors (#1775)
This exposes the `LANCEDB_LOG` environment variable in node, so that
users can now turn on logging.

In addition, fixes a bug where only the top-level error from Rust was
being shown. This PR makes sure the full error chain is included in the
error message. In the future, will improve this so the error chain is
set on the [cause](https://nodejs.org/api/errors.html#errorcause)
property of JS errors https://github.com/lancedb/lancedb/issues/1779

Fixes #1774
2024-10-29 15:13:34 -07:00
Weston Pace
55104c5bae feat: allow distance type (metric) to be specified during hybrid search (#1777) 2024-10-29 13:51:18 -07:00
Rithik Kumar
d71df4572e docs: revamp langchain integration page (#1773)
Before - 
<img width="1030" alt="Screenshot 2024-10-28 132932"
src="https://github.com/user-attachments/assets/63f78bfa-949e-473e-ab22-0c692577fa3e">


After - 
<img width="1037" alt="Screenshot 2024-10-28 132727"
src="https://github.com/user-attachments/assets/85a12f6c-74f0-49ba-9f1a-fe77ad125704">
2024-10-29 22:55:50 +05:30
Rithik Kumar
aa269199ad docs: fix archived examples links (#1751) 2024-10-29 22:55:27 +05:30
BubbleCal
32fdcf97db feat!: upgrade lance to 0.19.1 (#1762)
BREAKING CHANGE: default tokenizer no longer does stemming or stop-word
removal. Users should explicitly turn that option on in the future.

- upgrade lance to 0.19.1
- update the FTS docs
- update the FTS API

Upstream change notes:
https://github.com/lancedb/lance/releases/tag/v0.19.1

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-10-29 09:03:52 -07:00
Ryan Green
b9802a0d23 Revert "fix: error during deserialization of "INVERTED" index type"
This reverts commit 2ea5939f85.
2024-10-25 14:46:47 -02:30
Ryan Green
2ea5939f85 fix: error during deserialization of "INVERTED" index type 2024-10-25 14:40:14 -02:30
Lance Release
04e1f1ee4c Updating package-lock.json 2024-10-23 00:34:22 +00:00
Lance Release
bbc588e27d Bump version: 0.11.1-beta.0 → 0.11.1-beta.1 2024-10-23 00:34:01 +00:00
147 changed files with 11025 additions and 3533 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.11.1-beta.0"
current_version = "0.13.0-beta.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.
@@ -92,6 +92,11 @@ glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""
search = "\"@lancedb/vectordb-win32-x64-msvc\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-arm64-msvc\": \"{new_version}\""
search = "\"@lancedb/vectordb-win32-arm64-msvc\": \"{current_version}\""
# Cargo files
# ------------
[[tool.bumpversion.files]]

View File

@@ -38,3 +38,7 @@ rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm
# not found errors on systems that are missing it.
[target.x86_64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]
# Experimental target for Arm64 Windows
[target.aarch64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]

View File

@@ -31,7 +31,7 @@ jobs:
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
rustup update && rustup default
- name: Set up Python
uses: actions/setup-python@v5
with:
@@ -41,8 +41,8 @@ jobs:
- name: Build Python
working-directory: python
run: |
python -m pip install -e .
python -m pip install -r ../docs/requirements.txt
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r ../docs/requirements.txt
- name: Set up node
uses: actions/setup-node@v3
with:

View File

@@ -49,7 +49,7 @@ jobs:
- name: Build Python
working-directory: docs/test
run:
python -m pip install -r requirements.txt
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r requirements.txt
- name: Create test files
run: |
cd docs/test

View File

@@ -53,6 +53,9 @@ jobs:
cargo clippy --all --all-features -- -D warnings
npm ci
npm run lint-ci
- name: Lint examples
working-directory: nodejs/examples
run: npm ci && npm run lint-ci
linux:
name: Linux (NodeJS ${{ matrix.node-version }})
timeout-minutes: 30
@@ -91,6 +94,19 @@ jobs:
env:
S3_TEST: "1"
run: npm run test
- name: Setup examples
working-directory: nodejs/examples
run: npm ci
- name: Test examples
working-directory: ./
env:
OPENAI_API_KEY: test
OPENAI_BASE_URL: http://0.0.0.0:8000
run: |
python ci/mock_openai.py &
ss -ltnp | grep :8000
cd nodejs/examples
npm test
macos:
timeout-minutes: 30
runs-on: "macos-14"

View File

@@ -226,6 +226,109 @@ jobs:
path: |
node/dist/lancedb-vectordb-win32*.tgz
node-windows-arm64:
name: vectordb win32-arm64-msvc
runs-on: windows-4x-arm
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/checkout@v4
- name: Install Git
run: |
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
shell: powershell
- name: Add Git to PATH
run: |
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
shell: powershell
- name: Configure Git symlinks
run: git config --global core.symlinks true
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.13"
- name: Install Visual Studio Build Tools
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
"--installPath", "C:\BuildTools", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
shell: powershell
- name: Add Visual Studio Build Tools to PATH
run: |
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# Add MSVC runtime libraries to LIB
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
# Add INCLUDE paths
$env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
shell: powershell
- name: Install Rust
run: |
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
shell: powershell
- name: Add Rust to PATH
run: |
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
shell: powershell
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install 7-Zip ARM
run: |
New-Item -Path 'C:\7zip' -ItemType Directory
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
shell: powershell
- name: Add 7-Zip to PATH
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
shell: powershell
- name: Install Protoc v21.12
working-directory: C:\
run: |
if (Test-Path 'C:\protoc') {
Write-Host "Protoc directory exists, skipping installation"
return
}
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
shell: powershell
- name: Add Protoc to PATH
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts.ps1 aarch64-pc-windows-msvc
- name: Upload Windows ARM64 Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-windows-arm64
path: |
node/dist/*.node
nodejs-windows:
name: lancedb ${{ matrix.target }}
runs-on: windows-2022
@@ -260,9 +363,102 @@ jobs:
path: |
nodejs/dist/*.node
nodejs-windows-arm64:
name: lancedb win32-arm64-msvc
runs-on: windows-4x-arm
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/checkout@v4
- name: Install Git
run: |
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
shell: powershell
- name: Add Git to PATH
run: |
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
shell: powershell
- name: Configure Git symlinks
run: git config --global core.symlinks true
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.13"
- name: Install Visual Studio Build Tools
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
"--installPath", "C:\BuildTools", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
shell: powershell
- name: Add Visual Studio Build Tools to PATH
run: |
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
$env:LIB = ""
Add-Content $env:GITHUB_ENV "LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
shell: powershell
- name: Install Rust
run: |
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
shell: powershell
- name: Add Rust to PATH
run: |
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
shell: powershell
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install 7-Zip ARM
run: |
New-Item -Path 'C:\7zip' -ItemType Directory
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
shell: powershell
- name: Add 7-Zip to PATH
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
shell: powershell
- name: Install Protoc v21.12
working-directory: C:\
run: |
if (Test-Path 'C:\protoc') {
Write-Host "Protoc directory exists, skipping installation"
return
}
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
shell: powershell
- name: Add Protoc to PATH
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts_nodejs.ps1 aarch64-pc-windows-msvc
- name: Upload Windows ARM64 Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-windows-arm64
path: |
nodejs/dist/*.node
release:
name: vectordb NPM Publish
needs: [node, node-macos, node-linux, node-windows]
needs: [node, node-macos, node-linux, node-windows, node-windows-arm64]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -302,7 +498,7 @@ jobs:
release-nodejs:
name: lancedb NPM Publish
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
needs: [nodejs-macos, nodejs-linux, nodejs-windows, nodejs-windows-arm64]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')

View File

@@ -138,7 +138,7 @@ jobs:
run: rm -rf target/wheels
windows:
name: "Windows: ${{ matrix.config.name }}"
timeout-minutes: 30
timeout-minutes: 60
strategy:
matrix:
config:

View File

@@ -35,21 +35,22 @@ jobs:
CC: clang-18
CXX: clang++-18
steps:
- uses: actions/checkout@v4
with:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Run format
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --workspace --tests --all-features -- -D warnings
- name: Run format
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --workspace --tests --all-features -- -D warnings
linux:
timeout-minutes: 30
# To build all features, we need more disk space than is available
@@ -65,37 +66,38 @@ jobs:
CC: clang-18
CXX: clang++-18
steps:
- uses: actions/checkout@v4
with:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Make Swap
run: |
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
- name: Start S3 integration test environment
working-directory: .
run: docker compose up --detach --wait
- name: Build
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features
- name: Run examples
run: cargo run --example simple
- name: Make Swap
run: |
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
- name: Start S3 integration test environment
working-directory: .
run: docker compose up --detach --wait
- name: Build
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features
- name: Run examples
run: cargo run --example simple
macos:
timeout-minutes: 30
strategy:
matrix:
mac-runner: [ "macos-13", "macos-14" ]
mac-runner: ["macos-13", "macos-14"]
runs-on: "${{ matrix.mac-runner }}"
defaults:
run:
@@ -104,8 +106,8 @@ jobs:
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
fetch-depth: 0
lfs: true
- name: CPU features
run: sysctl -a | grep cpu
- uses: Swatinem/rust-cache@v2
@@ -118,6 +120,7 @@ jobs:
- name: Run tests
# Run with everything except the integration tests.
run: cargo test --features remote,fp16kernels
windows:
runs-on: windows-2022
steps:
@@ -139,3 +142,99 @@ jobs:
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build
cargo test
windows-arm64:
runs-on: windows-4x-arm
steps:
- name: Install Git
run: |
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
shell: powershell
- name: Add Git to PATH
run: |
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
shell: powershell
- name: Configure Git symlinks
run: git config --global core.symlinks true
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.13"
- name: Install Visual Studio Build Tools
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
"--installPath", "C:\BuildTools", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
shell: powershell
- name: Add Visual Studio Build Tools to PATH
run: |
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# Add MSVC runtime libraries to LIB
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
# Add INCLUDE paths
$env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
shell: powershell
- name: Install Rust
run: |
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
shell: powershell
- name: Add Rust to PATH
run: |
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
shell: powershell
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install 7-Zip ARM
run: |
New-Item -Path 'C:\7zip' -ItemType Directory
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
shell: powershell
- name: Add 7-Zip to PATH
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
shell: powershell
- name: Install Protoc v21.12
working-directory: C:\
run: |
if (Test-Path 'C:\protoc') {
Write-Host "Protoc directory exists, skipping installation"
return
}
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
shell: powershell
- name: Add Protoc to PATH
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Run tests
run: |
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build --target aarch64-pc-windows-msvc
cargo test --target aarch64-pc-windows-msvc

View File

@@ -18,17 +18,18 @@ repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
[workspace.dependencies]
lance = { "version" = "=0.18.3", "features" = [
lance = { "version" = "=0.19.2", "features" = [
"dynamodb",
], git = "https://github.com/lancedb/lance.git", tag = "v0.18.3-beta.2" }
lance-index = { "version" = "=0.18.3", git = "https://github.com/lancedb/lance.git", tag = "v0.18.3-beta.2" }
lance-linalg = { "version" = "=0.18.3", git = "https://github.com/lancedb/lance.git", tag = "v0.18.3-beta.2" }
lance-table = { "version" = "=0.18.3", git = "https://github.com/lancedb/lance.git", tag = "v0.18.3-beta.2" }
lance-testing = { "version" = "=0.18.3", git = "https://github.com/lancedb/lance.git", tag = "v0.18.3-beta.2" }
lance-datafusion = { "version" = "=0.18.3", git = "https://github.com/lancedb/lance.git", tag = "v0.18.3-beta.2" }
lance-encoding = { "version" = "=0.18.3", git = "https://github.com/lancedb/lance.git", tag = "v0.18.3-beta.2" }
], git = "https://github.com/lancedb/lance.git", tag = "v0.19.2-beta.3" }
lance-index = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2-beta.3" }
lance-linalg = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2-beta.3" }
lance-table = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2-beta.3" }
lance-testing = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2-beta.3" }
lance-datafusion = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2-beta.3" }
lance-encoding = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2-beta.3" }
# Note that this one does not include pyarrow
arrow = { version = "52.2", optional = false }
arrow-array = "52.2"
@@ -42,6 +43,7 @@ async-trait = "0"
chrono = "0.4.35"
datafusion-common = "41.0"
datafusion-physical-plan = "41.0"
env_logger = "0.10"
half = { "version" = "=2.4.1", default-features = false, features = [
"num-traits",
] }

View File

@@ -10,6 +10,7 @@
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
[![Gurubase](https://img.shields.io/badge/Gurubase-Ask%20LanceDB%20Guru-006BFF?style=for-the-badge)](https://gurubase.io/g/lancedb)
</p>

View File

@@ -3,6 +3,7 @@
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
# - aarch64-pc-windows-msvc
function Prebuild-Rust {
param (
@@ -31,7 +32,7 @@ function Build-NodeBinaries {
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc"
$targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"

View File

@@ -3,6 +3,7 @@
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
# - aarch64-pc-windows-msvc
function Prebuild-Rust {
param (
@@ -31,7 +32,7 @@ function Build-NodeBinaries {
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc"
$targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"

57
ci/mock_openai.py Normal file
View File

@@ -0,0 +1,57 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
"""A zero-dependency mock OpenAI embeddings API endpoint for testing purposes."""
import argparse
import json
import http.server
class MockOpenAIRequestHandler(http.server.BaseHTTPRequestHandler):
def do_POST(self):
content_length = int(self.headers["Content-Length"])
post_data = self.rfile.read(content_length)
post_data = json.loads(post_data.decode("utf-8"))
# See: https://platform.openai.com/docs/api-reference/embeddings/create
if isinstance(post_data["input"], str):
num_inputs = 1
else:
num_inputs = len(post_data["input"])
model = post_data.get("model", "text-embedding-ada-002")
data = []
for i in range(num_inputs):
data.append({
"object": "embedding",
"embedding": [0.1] * 1536,
"index": i,
})
response = {
"object": "list",
"data": data,
"model": model,
"usage": {
"prompt_tokens": 0,
"total_tokens": 0,
}
}
self.send_response(200)
self.send_header("Content-type", "application/json")
self.end_headers()
self.wfile.write(json.dumps(response).encode("utf-8"))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Mock OpenAI embeddings API endpoint")
parser.add_argument("--port", type=int, default=8000, help="Port to listen on")
args = parser.parse_args()
port = args.port
print(f"server started on port {port}. Press Ctrl-C to stop.")
print(f"To use, set OPENAI_BASE_URL=http://localhost:{port} in your environment.")
with http.server.HTTPServer(("0.0.0.0", port), MockOpenAIRequestHandler) as server:
server.serve_forever()

View File

@@ -100,7 +100,7 @@ nav:
- 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md
@@ -109,7 +109,8 @@ nav:
- Working with tables: guides/tables.md
- Building a vector index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Full-text search (native): fts.md
- Full-text search (tantivy-based): fts_tantivy.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
@@ -148,10 +149,10 @@ nav:
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- 🧬 Managing embeddings:
- Understand Embeddings: embeddings/understanding_embeddings.md
- Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models:
- Available models:
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
@@ -200,7 +201,7 @@ nav:
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- Miscellaneous:
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
@@ -210,9 +211,10 @@ nav:
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- Studies:
- 📓 Studies:
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- 💭 FAQs: faq.md
- 🔍 Troubleshooting: troubleshooting.md
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md
@@ -220,15 +222,17 @@ nav:
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- ☁️ LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
- Quickstart: cloud/quickstart.md
- Best Practices: cloud/best_practices.md
# - API reference:
# - 🐍 Python: python/saas-python.md
# - 👾 JavaScript: javascript/modules.md
# - REST API: cloud/rest.md
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md
@@ -237,7 +241,8 @@ nav:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Full-text search (native): fts.md
- Full-text search (tantivy-based): fts_tantivy.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
@@ -276,10 +281,10 @@ nav:
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- Managing Embeddings:
- Understand Embeddings: embeddings/understanding_embeddings.md
- Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models:
- Available models:
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
@@ -324,7 +329,7 @@ nav:
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- Miscellaneous:
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
@@ -345,10 +350,17 @@ nav:
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
- LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
- Quickstart: cloud/quickstart.md
- Work with data:
- Ingest data: cloud/ingest_data.md
- Update data: cloud/update_data.md
- Build an index: cloud/build_index.md
- Vector search: cloud/vector_search.md
- Full-text search: cloud/full_text_search.md
- Hybrid search: cloud/hybrid_search.md
- Metadata Filtering: cloud/metadata_filtering.md
- Best Practices: cloud/best_practices.md
# - REST API: cloud/rest.md
extra_css:
- styles/global.css
@@ -367,5 +379,4 @@ extra:
- icon: fontawesome/brands/x-twitter
link: https://twitter.com/lancedb
- icon: fontawesome/brands/linkedin
link: https://www.linkedin.com/company/lancedb
link: https://www.linkedin.com/company/lancedb

View File

@@ -45,9 +45,9 @@ Lance supports `IVF_PQ` index type by default.
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
```typescript
--8<--- "nodejs/examples/ann_indexes.ts:import"
--8<--- "nodejs/examples/ann_indexes.test.ts:import"
--8<-- "nodejs/examples/ann_indexes.ts:ingest"
--8<-- "nodejs/examples/ann_indexes.test.ts:ingest"
```
=== "vectordb (deprecated)"
@@ -140,13 +140,15 @@ There are a couple of parameters that can be used to fine-tune the search:
- **limit** (default: 10): The amount of results that will be returned
- **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/>
Most of the time, setting nprobes to cover 5-10% of the dataset should achieve high recall with low latency.<br/>
e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/>
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
Most of the time, setting nprobes to cover 5-15% of the dataset should achieve high recall with low latency.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, `nprobes` should be set to ~20-40. This value can be adjusted to achieve the optimal balance between search latency and search quality. <br/>
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, setting the `refine_factor` to 200 will initially retrieve the top 4,000 candidates (top k * refine_factor) from all searched partitions. These candidates are then reranked to determine the final top 20 results.<br/>
!!! note
Both `nprobes` and `refine_factor` are only applicable if an ANN index is present. If specified on a table without an ANN index, those parameters are ignored.
=== "Python"
@@ -169,7 +171,7 @@ There are a couple of parameters that can be used to fine-tune the search:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search1"
--8<-- "nodejs/examples/ann_indexes.test.ts:search1"
```
=== "vectordb (deprecated)"
@@ -203,7 +205,7 @@ You can further filter the elements returned by a search using a where clause.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search2"
--8<-- "nodejs/examples/ann_indexes.test.ts:search2"
```
=== "vectordb (deprecated)"
@@ -235,7 +237,7 @@ You can select the columns returned by the query using a select clause.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search3"
--8<-- "nodejs/examples/ann_indexes.test.ts:search3"
```
=== "vectordb (deprecated)"

View File

@@ -157,7 +157,7 @@ recommend switching to stable releases.
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
--8<-- "nodejs/examples/basic.ts:connect"
--8<-- "nodejs/examples/basic.test.ts:connect"
```
=== "vectordb (deprecated)"
@@ -212,7 +212,7 @@ table.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_table"
--8<-- "nodejs/examples/basic.test.ts:create_table"
```
=== "vectordb (deprecated)"
@@ -268,7 +268,7 @@ similar to a `CREATE TABLE` statement in SQL.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_empty_table"
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
```
=== "vectordb (deprecated)"
@@ -298,7 +298,7 @@ Once created, you can open a table as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:open_table"
--8<-- "nodejs/examples/basic.test.ts:open_table"
```
=== "vectordb (deprecated)"
@@ -327,7 +327,7 @@ If you forget the name of your table, you can always get a listing of all table
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:table_names"
--8<-- "nodejs/examples/basic.test.ts:table_names"
```
=== "vectordb (deprecated)"
@@ -357,7 +357,7 @@ After a table has been created, you can always add more data to it as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:add_data"
--8<-- "nodejs/examples/basic.test.ts:add_data"
```
=== "vectordb (deprecated)"
@@ -389,7 +389,7 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:vector_search"
--8<-- "nodejs/examples/basic.test.ts:vector_search"
```
=== "vectordb (deprecated)"
@@ -429,7 +429,7 @@ LanceDB allows you to create an ANN index on a table as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_index"
--8<-- "nodejs/examples/basic.test.ts:create_index"
```
=== "vectordb (deprecated)"
@@ -469,7 +469,7 @@ This can delete any number of rows that match the filter.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:delete_rows"
--8<-- "nodejs/examples/basic.test.ts:delete_rows"
```
=== "vectordb (deprecated)"
@@ -527,7 +527,7 @@ Use the `drop_table()` method on the database to remove a table.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:drop_table"
--8<-- "nodejs/examples/basic.test.ts:drop_table"
```
=== "vectordb (deprecated)"
@@ -561,8 +561,8 @@ You can use the embedding API when working with embedding models. It automatical
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:openai_embeddings"
--8<-- "nodejs/examples/embedding.test.ts:imports"
--8<-- "nodejs/examples/embedding.test.ts:openai_embeddings"
```
=== "Rust"

View File

@@ -0,0 +1,20 @@
This section provides a set of recommended best practices to help you get the most out of LanceDB Cloud. By following these guidelines, you can optimize your usage of LanceDB Cloud, improve performance, and ensure a smooth experience.
### Should the db connection be created once and keep it open?
Yes! It is recommended to establish a single db connection and maintain it throughout your interaction with the tables within.
LanceDB uses `requests.Session()` for connection pooling, which automatically manages connection reuse and cleanup. This approach avoids the overhead of repeatedly establishing HTTP connections, significantly improving efficiency.
### Should a single `open_table` call be made and maintained for subsequent table operations?
`table = db.open_table()` should be called once and used for all subsequent table operations. If there are changes to the opened table, `table` always reflect the latest version of the data.
### Row id
### What are the vector indexing types supported by LanceDB Cloud?
We support `IVF_PQ` and `IVF_HNSW_SQ` as the `index_type` which is passed to `create_index`. LanceDB Cloud tunes the indexing parameters automatically to achieve the best tradeoff betweeln query latency and query quality.
### Do I need to do anything when there is new data added to a table with an existing index?
No! LanceDB Cloud triggers an asynchronous background job to index the new vectors. This process will either merge the new vectors into the existing index or initiate a complete re-indexing if needed.
There is a flag `fast_search` in `table.search()` that allows you to control whether the unindexed rows should be searched or not.

View File

@@ -0,0 +1,64 @@
LanceDB Cloud supports **vector index**, **scalar index** and **full-text search index**. Compared to open-source version, LanceDB Cloud focuses on **automation**:
- If there is a single vector column in the table, the vector column can be inferred from the schema and the index will be automatically created.
- Indexing parameters will be automatically tuned for customer's data.
## Vector index
LanceDB has implemented the state-of-art indexing algorithms (more about [IVF-PQ](https://lancedb.github.io/lancedb/concepts/index_ivfpq/) and [HNSW](https://lancedb.github.io/lancedb/concepts/index_hnsw/)). We currently
support the _L2_, _Cosine_ and _Dot_ as distance calculation metrics. You can create multiple vector indices within a table.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_cloud.py:create_index"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/cloud.test.ts:imports"
--8<-- "nodejs/examples/cloud.test.ts:connect_db_and_open_table"
--8<-- "nodejs/examples/cloud.test.ts:create_index"
```
## Scalar index
LanceDB Cloud and LanceDB Enterprise supports several types of Scalar indices to accelerate search over scalar columns.
- *BTREE*: The most common type is BTREE. This index is inspired by the btree data structure although only the first few layers of the btree are cached in memory. It will perform well on columns with a large number of unique values and few rows per value.
- *BITMAP*: this index stores a bitmap for each unique value in the column. This index is useful for columns with a finite number of unique values and many rows per value.
- For example, columns that represent "categories", "labels", or "tags"
- *LABEL_LIST*: a special index that is used to index list columns whose values have a finite set of possibilities.
- For example, a column that contains lists of tags (e.g. ["tag1", "tag2", "tag3"]) can be indexed with a LABEL_LIST index.
You can create multiple scalar indices within a table.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_cloud.py:create_scalar_index"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/cloud.test.ts:imports"
--8<-- "nodejs/examples/cloud.test.ts:connect_db_and_open_table"
--8<-- "nodejs/examples/cloud.test.ts:create_scalar_index"
```
## Full-text search index
We provide performant full-text search on LanceDB Cloud, allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
!!! note ""
`use_tantivy` is not available with `create_fts_index` on LanceDB Cloud as we used our native implementation, which has better performance comparing to tantivy.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_cloud.py:create_fts_index"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/cloud.test.ts:imports"
--8<-- "nodejs/examples/cloud.test.ts:create_fts_index"
```

View File

@@ -0,0 +1,14 @@
The full-text search allows you to
incorporate keyword-based search (based on BM25) in your retrieval solutions.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_cloud.py:full_text_search"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/cloud.test.ts:imports"
--8<-- "nodejs/examples/cloud.test.ts:full_text_search"
```

View File

@@ -0,0 +1,10 @@
We support hybrid search that combines semantic and full-text search via a
reranking algorithm of your choice, to get the best of both worlds. LanceDB
comes with [built-in rerankers](https://lancedb.github.io/lancedb/reranking/)
and you can implement you own _customized reranker_ as well.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_cloud.py:hybrid_search"
```

View File

@@ -0,0 +1,31 @@
## Insert data
The LanceDB Cloud SDK for data ingestion remains consistent with our open-source version,
ensuring a seamless transition for existing OSS users.
!!! note "unsupported parameters in create_table"
The following two parameters: `mode="overwrite"` and `exist_ok`, are expected to be added by Nov, 2024.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_cloud.py:import-ingest-data"
--8<-- "python/python/tests/docs/test_cloud.py:ingest_data"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/cloud.test.ts:imports"
--8<-- "nodejs/examples/cloud.test.ts:ingest_data"
```
## Insert large datasets
It is recommended to use itertators to add large datasets in batches when creating
your table in one go. Data will be automatically compacted for the best query performance.
!!! info "batch size"
The batch size .
=== "Python"
```python
--8<-- "python/python/tests/docs/test_cloud.py:ingest_data_in_batch"
```

View File

@@ -0,0 +1,33 @@
LanceDB Cloud supports rich filtering features of query results based on metadata fields.
By default, _post-filtering_ is performed on the top-k results returned by the vector search.
However, _pre-filtering_ is also an option that performs the filter prior to vector search.
This can be useful to narrow down on the search space on a very large dataset to reduce query
latency.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_cloud.py:filtering"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/cloud.test.ts:imports"
--8<-- "nodejs/examples/cloud.test.ts:filtering"
```
We also support standard SQL expressions as predicates for filtering operations.
It can be used during vector search, update, and deletion operations.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_cloud.py:sql_filtering"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/cloud.test.ts:imports"
--8<-- "nodejs/examples/cloud.test.ts:sql_filtering"
```

View File

@@ -0,0 +1,49 @@
LanceDB Cloud efficiently manages updates across many tables.
Currently, we offer _update_, _merge_insert_, and _delete_.
## update
=== "Python"
```python
--8<-- "python/python/tests/docs/test_cloud.py:update_data"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/cloud.test.ts:imports"
--8<-- "nodejs/examples/cloud.test.ts:connect_db_and_open_table"
--8<-- "nodejs/examples/cloud.test.ts:update_data"
```
## merge insert
This merge insert can add rows, update rows, and remove rows all in a single transaction.
It combines new data from a source table with existing data in a target table by using a join.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_cloud.py:merge_insert"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/cloud.test.ts:imports"
--8<-- "nodejs/examples/cloud.test.ts:connect_db_and_open_table"
--8<-- "nodejs/examples/cloud.test.ts:merge_insert"
```
## delete
=== "Python"
```python
--8<-- "python/python/tests/docs/test_cloud.py:delete_data"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/cloud.test.ts:imports"
--8<-- "nodejs/examples/cloud.test.ts:connect_db_and_open_table"
--8<-- "nodejs/examples/cloud.test.ts:delete_data"
```

View File

@@ -0,0 +1,21 @@
Users can also tune the following parameters for better search quality.
- [nprobes](https://lancedb.github.io/lancedb/js/classes/VectorQuery/#nprobes):
the number of partitions to search (probe).
- [refine factor](https://lancedb.github.io/lancedb/js/classes/VectorQuery/#refinefactor):
a multiplier to control how many additional rows are taken during the refine step.
[Metadata filtering](filtering) combined with the vector search is also supported.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_cloud.py:vector_search"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/cloud.test.ts:imports"
--8<-- "nodejs/examples/cloud.test.ts:vector_search"
```

View File

@@ -0,0 +1,51 @@
# VoyageAI Embeddings
Voyage AI provides cutting-edge embedding and rerankers.
Using voyageai API requires voyageai package, which can be installed using `pip install voyageai`. Voyage AI embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
You also need to set the `VOYAGE_API_KEY` environment variable to use the VoyageAI API.
Supported models are:
- voyage-3
- voyage-3-lite
- voyage-finance-2
- voyage-multilingual-2
- voyage-law-2
- voyage-code-2
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|--------|---------|
| `name` | `str` | `"voyage-3"` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
voyageai = EmbeddingFunctionRegistry
.get_instance()
.get("voyageai")
.create(name="voyage-3")
class TextModel(LanceModel):
text: str = voyageai.SourceField()
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

View File

@@ -47,9 +47,9 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.ts:imports"
--8<--- "nodejs/examples/custom_embedding_function.test.ts:imports"
--8<--- "nodejs/examples/custom_embedding_function.ts:embedding_impl"
--8<--- "nodejs/examples/custom_embedding_function.test.ts:embedding_impl"
```
@@ -78,7 +78,7 @@ Now you can use this embedding function to create your table schema and that's i
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.ts:call_custom_function"
--8<--- "nodejs/examples/custom_embedding_function.test.ts:call_custom_function"
```
!!! note

View File

@@ -94,8 +94,8 @@ the embeddings at all:
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:embedding_function"
--8<-- "nodejs/examples/embedding.test.ts:imports"
--8<-- "nodejs/examples/embedding.test.ts:embedding_function"
```
=== "vectordb (deprecated)"
@@ -150,7 +150,7 @@ need to worry about it when you query the table:
.toArray()
```
=== "vectordb (deprecated)
=== "vectordb (deprecated)"
```ts
const results = await table

View File

@@ -51,8 +51,8 @@ LanceDB registers the OpenAI embeddings function in the registry as `openai`. Yo
=== "TypeScript"
```typescript
--8<--- "nodejs/examples/embedding.ts:imports"
--8<--- "nodejs/examples/embedding.ts:openai_embeddings"
--8<--- "nodejs/examples/embedding.test.ts:imports"
--8<--- "nodejs/examples/embedding.test.ts:openai_embeddings"
```
=== "Rust"
@@ -121,12 +121,10 @@ class Words(LanceModel):
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
table.add([
{"text": "hello world"},
{"text": "goodbye world"}
])
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]

View File

@@ -36,6 +36,6 @@
[aware_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/chatbot_using_Llama2_&_lanceDB/main.ipynb
[aware_ghost]: https://blog.lancedb.com/context-aware-chatbot-using-llama-2-lancedb-as-vector-database-4d771d95c755
[csv_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Chat_with_csv_file
[csv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Chat_with_csv_file/main.ipynb
[csv_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/Chat_with_csv_file
[csv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/Chat_with_csv_file/main.ipynb
[csv_ghost]: https://blog.lancedb.com/p/d8c71df4-e55f-479a-819e-cde13354a6a3/

View File

@@ -12,7 +12,7 @@ LanceDB supports multimodal search by indexing and querying vector representatio
|:----------------|:-----------------|:-----------|
| **Multimodal CLIP: DiffusionDB 🌐💥** | Multi-Modal Search with **CLIP** and **LanceDB** Using **DiffusionDB** Data for Combined Text and Image Understanding ! 🔓 | [![GitHub](../../assets/github.svg)][Clip_diffusionDB_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_diffusionDB_colab] <br>[![Python](../../assets/python.svg)][Clip_diffusionDB_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_diffusionDB_ghost] |
| **Multimodal CLIP: Youtube Videos 📹👀** | Search **Youtube videos** using Multimodal CLIP, finding relevant content with ease and accuracy! 🎯 | [![Github](../../assets/github.svg)][Clip_youtube_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_youtube_colab] <br> [![Python](../../assets/python.svg)][Clip_youtube_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_youtube_python] |
| **Multimodal Image + Text Search 📸🔍** | Find **relevant documents** and **images** with a single query using **LanceDB's** multimodal search capabilities, to seamlessly integrate text and visuals ! 🌉 | [![GitHub](../../assets/github.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search) <br>[![Open In Collab](../../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb) <br> [![Python](../../assets/python.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
| **Multimodal Image + Text Search 📸🔍** | Find **relevant documents** and **images** with a single query using **LanceDB's** multimodal search capabilities, to seamlessly integrate text and visuals ! 🌉 | [![GitHub](../../assets/github.svg)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/multimodal_search) <br>[![Open In Collab](../../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multimodal_search/main.ipynb) <br> [![Python](../../assets/python.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
| **Cambrian-1: Vision-Centric Image Exploration 🔍👀** | Learn how **Cambrian-1** works, using an example of **Vision-Centric** exploration on images found through vector search ! Work on **Flickr-8k** dataset 🔎 | [![Kaggle](https://img.shields.io/badge/Kaggle-035a7d?style=for-the-badge&logo=kaggle&logoColor=white)](https://www.kaggle.com/code/prasantdixit/cambrian-1-vision-centric-exploration-of-images/)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/cambrian-1-vision-centric-exploration/) |

View File

@@ -70,12 +70,12 @@ Build RAG (Retrieval-Augmented Generation) with LanceDB, a powerful solution fo
[flare_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR/main.ipynb
[flare_ghost]: https://blog.lancedb.com/better-rag-with-active-retrieval-augmented-generation-flare-3b66646e2a9f/
[query_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker/main.ipynb
[query_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/QueryExpansion%26Reranker
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/QueryExpansion&Reranker/main.ipynb
[fusion_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion/main.ipynb
[fusion_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/RAG_Fusion
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/RAG_Fusion/main.ipynb
[agentic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG
[agentic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG/main.ipynb

View File

@@ -19,8 +19,8 @@ Deliver personalized experiences with Recommender Systems. 🎁
[movie_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.py
[genre_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommendation-with-genres
[genre_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb
[genre_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/movie-recommendation-with-genres
[genre_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb
[genre_ghost]: https://blog.lancedb.com/movie-recommendation-system-using-lancedb-and-doc2vec/
[product_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender
@@ -33,5 +33,5 @@ Deliver personalized experiences with Recommender Systems. 🎁
[arxiv_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.py
[food_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Food_recommendation
[food_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Food_recommendation/main.ipynb
[food_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/Food_recommendation
[food_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/Food_recommendation/main.ipynb

View File

@@ -37,16 +37,16 @@ LanceDB implements vector search algorithms for efficient document retrieval and
[NER_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/NER-powered-Semantic-Search/NER_powered_Semantic_Search_with_LanceDB.ipynb
[NER_ghost]: https://blog.lancedb.com/ner-powered-semantic-search-using-lancedb-51051dc3e493
[audio_search_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/audio_search
[audio_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb
[audio_search_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.py
[audio_search_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/audio_search
[audio_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/audio_search/main.ipynb
[audio_search_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/archived_examples/audio_search/main.py
[mls_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa
[mls_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa/main.ipynb
[mls_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa/main.py
[mls_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/multi-lingual-wiki-qa
[mls_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multi-lingual-wiki-qa/main.ipynb
[mls_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multi-lingual-wiki-qa/main.py
[fr_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/facial_recognition
[fr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/facial_recognition/main.ipynb
[fr_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/facial_recognition
[fr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/facial_recognition/main.ipynb
[sentiment_analysis_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews
[sentiment_analysis_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews/Sentiment_Analysis_using_LanceDB.ipynb
@@ -70,8 +70,8 @@ LanceDB implements vector search algorithms for efficient document retrieval and
[openvino_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb
[openvino_ghost]: https://blog.lancedb.com/accelerate-vector-search-applications-using-openvino-lancedb/
[zsic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/zero-shot-image-classification
[zsic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/zero-shot-image-classification/main.ipynb
[zsic_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/zero-shot-image-classification
[zsic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/zero-shot-image-classification/main.ipynb
[zsic_ghost]: https://blog.lancedb.com/zero-shot-image-classification-with-vector-search/

View File

@@ -1,21 +1,9 @@
# Full-text search
# Full-text search (Native FTS)
LanceDB provides support for full-text search via Lance (before via [Tantivy](https://github.com/quickwit-oss/tantivy) (Python only)), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
Currently, the Lance full text search is missing some features that are in the Tantivy full text search. This includes query parser and customizing the tokenizer. Thus, in Python, Tantivy is still the default way to do full text search and many of the instructions below apply just to Tantivy-based indices.
## Installation (Only for Tantivy-based FTS)
LanceDB provides support for full-text search via Lance, allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
!!! note
No need to install the tantivy dependency if using native FTS
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
```sh
# Say you want to use tantivy==0.20.1
pip install tantivy==0.20.1
```
The Python SDK uses tantivy-based FTS by default, need to pass `use_tantivy=False` to use native FTS.
## Example
@@ -39,7 +27,7 @@ Consider that we have a LanceDB table named `my_table`, whose string column `tex
# passing `use_tantivy=False` to use lance FTS index
# `use_tantivy=True` by default
table.create_fts_index("text")
table.create_fts_index("text", use_tantivy=False)
table.search("puppy").limit(10).select(["text"]).to_list()
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
# ...
@@ -93,51 +81,40 @@ Consider that we have a LanceDB table named `my_table`, whose string column `tex
```
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
For now, this is supported in tantivy way only.
Passing `fts_columns="text"` if you want to specify the columns to search, but it's not available for Tantivy-based full text search.
Passing `fts_columns="text"` if you want to specify the columns to search.
!!! note
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
## Tokenization
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
By default the text is tokenized by splitting on punctuation and whitespaces, and would filter out words that are with length greater than 40, and lowercase all words.
For now, only the Tantivy-based FTS index supports to specify the tokenizer, so it's only available in Python with `use_tantivy=True`.
Stemming is useful for improving search results by reducing words to their root form, e.g. "running" to "run". LanceDB supports stemming for multiple languages, you can specify the tokenizer name to enable stemming by the pattern `tokenizer_name="{language_code}_stem"`, e.g. `en_stem` for English.
=== "use_tantivy=True"
```python
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
```
=== "use_tantivy=False"
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
For example, to enable stemming for English:
```python
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
```
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
## Index multiple columns
The tokenizer is customizable, you can specify how the tokenizer splits the text, and how it filters out words, etc.
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
=== "use_tantivy=True"
```python
table.create_fts_index(["text1", "text2"])
```
=== "use_tantivy=False"
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
Note that the search API call does not change - you can search over all indexed columns at once.
For example, for language with accents, you can specify the tokenizer to use `ascii_folding` to remove accents, e.g. 'é' to 'e':
```python
table.create_fts_index("text",
use_tantivy=False,
language="French",
stem=True,
ascii_folding=True)
```
## Filtering
Currently the LanceDB full text search feature supports *post-filtering*, meaning filters are
applied on top of the full text search results. This can be invoked via the familiar
`where` syntax:
LanceDB full text search supports to filter the search results by a condition, both pre-filtering and post-filtering are supported.
This can be invoked via the familiar `where` syntax:
=== "Python"
@@ -169,98 +146,17 @@ applied on top of the full text search results. This can be invoked via the fami
.await?;
```
## Sorting
!!! warning "Warn"
Sorting is available for only Tantivy-based FTS
You can pre-sort the documents by specifying `ordering_field_names` when
creating the full-text search index. Once pre-sorted, you can then specify
`ordering_field_name` while searching to return results sorted by the given
field. For example,
```python
table.create_fts_index(["text_field"], use_tantivy=True, ordering_field_names=["sort_by_field"])
(table.search("terms", ordering_field_name="sort_by_field")
.limit(20)
.to_list())
```
!!! note
If you wish to specify an ordering field at query time, you must also
have specified it during indexing time. Otherwise at query time, an
error will be raised that looks like `ValueError: The field does not exist: xxx`
!!! note
The fields to sort on must be of typed unsigned integer, or else you will see
an error during indexing that looks like
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
!!! note
You can specify multiple fields for ordering at indexing time.
But at query time only one ordering field is supported.
## Phrase queries vs. terms queries
!!! warning "Warn"
Lance-based FTS doesn't support queries using boolean operators `OR`, `AND`.
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
or a **terms** search query like `old man sea`. For more details on the terms
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
!!! tip "Note"
The query parser will raise an exception on queries that are ambiguous. For example, in the query `they could have been dogs OR cats`, `OR` is capitalized so it's considered a keyword query operator. But it's ambiguous how the left part should be treated. So if you submit this search query as is, you'll get `Syntax Error: they could have been dogs OR cats`.
```py
# This raises a syntax error
table.search("they could have been dogs OR cats")
```
On the other hand, lowercasing `OR` to `or` will work, because there are no capitalized logical operators and
the query is treated as a phrase query.
```py
# This works!
table.search("they could have been dogs or cats")
```
It can be cumbersome to have to remember what will cause a syntax error depending on the type of
query you want to perform. To make this simpler, when you want to perform a phrase query, you can
enforce it in one of two ways:
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
a phrase query.
1. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
is treated as a phrase query.
In general, a query that's declared as a phrase query will be wrapped in double quotes during parsing, with nested
double quotes replaced by single quotes.
## Configurations (Only for Tantivy-based FTS)
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
reduce this if running on a smaller node, or increase this for faster performance while
indexing a larger corpus.
To search for a phrase, the index must be created with `with_position=True`:
```python
# configure a 512MB heap size
heap = 1024 * 1024 * 512
table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
table.create_fts_index("text", use_tantivy=False, with_position=True)
```
## Current limitations
For that Tantivy-based FTS:
1. Currently we do not yet support incremental writes.
If you add data after FTS index creation, it won't be reflected
in search results until you do a full reindex.
2. We currently only support local filesystem paths for the FTS index.
This is a tantivy limitation. We've implemented an object store plugin
but there's no way in tantivy-py to specify to use it.
This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.

162
docs/src/fts_tantivy.md Normal file
View File

@@ -0,0 +1,162 @@
# Full-text search (Tantivy-based FTS)
LanceDB also provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
The tantivy-based FTS is only available in Python and does not support building indexes on object storage or incremental indexing. If you need these features, try native FTS [native FTS](fts.md).
## Installation
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
```sh
# Say you want to use tantivy==0.20.1
pip install tantivy==0.20.1
```
## Example
Consider that we have a LanceDB table named `my_table`, whose string column `content` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table(
"my_table",
data=[
{"id": 1, "vector": [3.1, 4.1], "title": "happy puppy", "content": "Frodo was a happy puppy", "meta": "foo"},
{"id": 2, "vector": [5.9, 26.5], "title": "playing kittens", "content": "There are several kittens playing around the puppy", "meta": "bar"},
],
)
# passing `use_tantivy=False` to use lance FTS index
# `use_tantivy=True` by default
table.create_fts_index("content", use_tantivy=True)
table.search("puppy").limit(10).select(["content"]).to_list()
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
# ...
```
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
!!! note
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
## Tokenization
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
```python
table.create_fts_index("content", use_tantivy=True, tokenizer_name="en_stem", replace=True)
```
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
## Index multiple columns
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
```python
table.create_fts_index(["title", "content"], use_tantivy=True, replace=True)
```
Note that the search API call does not change - you can search over all indexed columns at once.
## Filtering
Currently the LanceDB full text search feature supports *post-filtering*, meaning filters are
applied on top of the full text search results (see [native FTS](fts.md) if you need pre-filtering). This can be invoked via the familiar
`where` syntax:
```python
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
## Sorting
You can pre-sort the documents by specifying `ordering_field_names` when
creating the full-text search index. Once pre-sorted, you can then specify
`ordering_field_name` while searching to return results sorted by the given
field. For example,
```python
table.create_fts_index(["content"], use_tantivy=True, ordering_field_names=["id"], replace=True)
(table.search("puppy", ordering_field_name="id")
.limit(20)
.to_list())
```
!!! note
If you wish to specify an ordering field at query time, you must also
have specified it during indexing time. Otherwise at query time, an
error will be raised that looks like `ValueError: The field does not exist: xxx`
!!! note
The fields to sort on must be of typed unsigned integer, or else you will see
an error during indexing that looks like
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
!!! note
You can specify multiple fields for ordering at indexing time.
But at query time only one ordering field is supported.
## Phrase queries vs. terms queries
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
!!! tip "Note"
The query parser will raise an exception on queries that are ambiguous. For example, in the query `they could have been dogs OR cats`, `OR` is capitalized so it's considered a keyword query operator. But it's ambiguous how the left part should be treated. So if you submit this search query as is, you'll get `Syntax Error: they could have been dogs OR cats`.
```py
# This raises a syntax error
table.search("they could have been dogs OR cats")
```
On the other hand, lowercasing `OR` to `or` will work, because there are no capitalized logical operators and
the query is treated as a phrase query.
```py
# This works!
table.search("they could have been dogs or cats")
```
It can be cumbersome to have to remember what will cause a syntax error depending on the type of
query you want to perform. To make this simpler, when you want to perform a phrase query, you can
enforce it in one of two ways:
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
a phrase query.
1. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
is treated as a phrase query.
In general, a query that's declared as a phrase query will be wrapped in double quotes during parsing, with nested
double quotes replaced by single quotes.
## Configurations
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
reduce this if running on a smaller node, or increase this for faster performance while
indexing a larger corpus.
```python
# configure a 512MB heap size
heap = 1024 * 1024 * 512
table.create_fts_index(["title", "content"], use_tantivy=True, writer_heap_size=heap, replace=True)
```
## Current limitations
1. Currently we do not yet support incremental writes.
If you add data after FTS index creation, it won't be reflected
in search results until you do a full reindex.
2. We currently only support local filesystem paths for the FTS index.
This is a tantivy limitation. We've implemented an object store plugin
but there's no way in tantivy-py to specify to use it.

View File

@@ -85,13 +85,13 @@ Initialize a LanceDB connection and create a table
```ts
--8<-- "nodejs/examples/basic.ts:create_table"
--8<-- "nodejs/examples/basic.test.ts:create_table"
```
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use `apache-arrow` to declare a schema
```ts
--8<-- "nodejs/examples/basic.ts:create_table_with_schema"
--8<-- "nodejs/examples/basic.test.ts:create_table_with_schema"
```
!!! info "Note"
@@ -100,14 +100,14 @@ Initialize a LanceDB connection and create a table
passed in will NOT be appended to the table in that case.
```ts
--8<-- "nodejs/examples/basic.ts:create_table_exists_ok"
--8<-- "nodejs/examples/basic.test.ts:create_table_exists_ok"
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
```ts
--8<-- "nodejs/examples/basic.ts:create_table_overwrite"
--8<-- "nodejs/examples/basic.test.ts:create_table_overwrite"
```
=== "vectordb (deprecated)"
@@ -227,7 +227,7 @@ LanceDB supports float16 data type!
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_f16_table"
--8<-- "nodejs/examples/basic.test.ts:create_f16_table"
```
=== "vectordb (deprecated)"
@@ -455,7 +455,7 @@ You can create an empty table for scenarios where you want to add data to the ta
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_empty_table"
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
```
=== "vectordb (deprecated)"

View File

@@ -49,7 +49,8 @@ The following pages go deeper into the internal of LanceDB and how to use it.
* [Working with tables](guides/tables.md): Learn how to work with tables and their associated functions
* [Indexing](ann_indexes.md): Understand how to create indexes
* [Vector search](search.md): Learn how to perform vector similarity search
* [Full-text search](fts.md): Learn how to perform full-text search
* [Full-text search (native)](fts.md): Learn how to perform full-text search
* [Full-text search (tantivy-based)](fts_tantivy.md): Learn how to perform full-text search using Tantivy
* [Managing embeddings](embeddings/index.md): Managing embeddings and the embedding functions API in LanceDB
* [Ecosystem Integrations](integrations/index.md): Integrate LanceDB with other tools in the data ecosystem
* [Python API Reference](python/python.md): Python OSS and Cloud API references

View File

@@ -1,5 +1,10 @@
# Langchain
![Illustration](../assets/langchain.png)
**LangChain** is a framework designed for building applications with large language models (LLMs) by chaining together various components. It supports a range of functionalities including memory, agents, and chat models, enabling developers to create context-aware applications.
![Illustration](https://raw.githubusercontent.com/lancedb/assets/refs/heads/main/docs/assets/integration/langchain_rag.png)
LangChain streamlines these stages (in figure above) by providing pre-built components and tools for integration, memory management, and deployment, allowing developers to focus on application logic rather than underlying complexities.
Integration of **Langchain** with **LanceDB** enables applications to retrieve the most relevant data by comparing query vectors against stored vectors, facilitating effective information retrieval. It results in better and context aware replies and actions by the LLMs.
## Quick Start
You can load your document data using langchain's loaders, for this example we are using `TextLoader` and `OpenAIEmbeddings` as the embedding model. Checkout Complete example here - [LangChain demo](../notebooks/langchain_example.ipynb)
@@ -26,20 +31,28 @@ print(docs[0].page_content)
## Documentation
In the above example `LanceDB` vector store class object is created using `from_documents()` method which is a `classmethod` and returns the initialized class object.
You can also use `LanceDB.from_texts(texts: List[str],embedding: Embeddings)` class method.
The exhaustive list of parameters for `LanceDB` vector store are :
- `connection`: (Optional) `lancedb.db.LanceDBConnection` connection object to use. If not provided, a new connection will be created.
- `embedding`: Langchain embedding model.
- `vector_key`: (Optional) Column name to use for vector's in the table. Defaults to `'vector'`.
- `id_key`: (Optional) Column name to use for id's in the table. Defaults to `'id'`.
- `text_key`: (Optional) Column name to use for text in the table. Defaults to `'text'`.
- `table_name`: (Optional) Name of your table in the database. Defaults to `'vectorstore'`.
- `api_key`: (Optional) API key to use for LanceDB cloud database. Defaults to `None`.
- `region`: (Optional) Region to use for LanceDB cloud database. Only for LanceDB Cloud, defaults to `None`.
- `mode`: (Optional) Mode to use for adding data to the table. Defaults to `'overwrite'`.
- `reranker`: (Optional) The reranker to use for LanceDB.
- `relevance_score_fn`: (Optional[Callable[[float], float]]) Langchain relevance score function to be used. Defaults to `None`.
The exhaustive list of parameters for `LanceDB` vector store are :
|Name|type|Purpose|default|
|:----|:----|:----|:----|
|`connection`| (Optional) `Any` |`lancedb.db.LanceDBConnection` connection object to use. If not provided, a new connection will be created.|`None`|
|`embedding`| (Optional) `Embeddings` | Langchain embedding model.|Provided by user.|
|`uri`| (Optional) `str` |It specifies the directory location of **LanceDB database** and establishes a connection that can be used to interact with the database. |`/tmp/lancedb`|
|`vector_key` |(Optional) `str`| Column name to use for vector's in the table.|`'vector'`|
|`id_key` |(Optional) `str`| Column name to use for id's in the table.|`'id'`|
|`text_key` |(Optional) `str` |Column name to use for text in the table.|`'text'`|
|`table_name` |(Optional) `str`| Name of your table in the database.|`'vectorstore'`|
|`api_key` |(Optional `str`) |API key to use for LanceDB cloud database.|`None`|
|`region` |(Optional) `str`| Region to use for LanceDB cloud database.|Only for LanceDB Cloud : `None`.|
|`mode` |(Optional) `str` |Mode to use for adding data to the table. Valid values are "append" and "overwrite".|`'overwrite'`|
|`table`| (Optional) `Any`|You can connect to an existing table of LanceDB, created outside of langchain, and utilize it.|`None`|
|`distance`|(Optional) `str`|The choice of distance metric used to calculate the similarity between vectors.|`'l2'`|
|`reranker` |(Optional) `Any`|The reranker to use for LanceDB.|`None`|
|`relevance_score_fn` |(Optional) `Callable[[float], float]` | Langchain relevance score function to be used.|`None`|
|`limit`|`int`|Set the maximum number of results to return.|`DEFAULT_K` (it is 4)|
```python
db_url = "db://lang_test" # url of db you created
@@ -51,19 +64,24 @@ vector_store = LanceDB(
api_key=api_key, #(dont include for local API)
region=region, #(dont include for local API)
embedding=embeddings,
table_name='langchain_test' #Optional
table_name='langchain_test' # Optional
)
```
### Methods
##### add_texts()
- `texts`: `Iterable` of strings to add to the vectorstore.
- `metadatas`: Optional `list[dict()]` of metadatas associated with the texts.
- `ids`: Optional `list` of ids to associate with the texts.
- `kwargs`: `Any`
This method adds texts and stores respective embeddings automatically.
This method turn texts into embedding and add it to the database.
|Name|Purpose|defaults|
|:---|:---|:---|
|`texts`|`Iterable` of strings to add to the vectorstore.|Provided by user|
|`metadatas`|Optional `list[dict()]` of metadatas associated with the texts.|`None`|
|`ids`|Optional `list` of ids to associate with the texts.|`None`|
|`kwargs`| Other keyworded arguments provided by the user. |-|
It returns list of ids of the added texts.
```python
vector_store.add_texts(texts = ['test_123'], metadatas =[{'source' :'wiki'}])
@@ -78,14 +96,25 @@ pd_df.to_csv("docsearch.csv", index=False)
# you can also create a new vector store object using an older connection object:
vector_store = LanceDB(connection=tbl, embedding=embeddings)
```
##### create_index()
- `col_name`: `Optional[str] = None`
- `vector_col`: `Optional[str] = None`
- `num_partitions`: `Optional[int] = 256`
- `num_sub_vectors`: `Optional[int] = 96`
- `index_cache_size`: `Optional[int] = None`
This method creates an index for the vector store. For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
------
##### create_index()
This method creates a scalar(for non-vector cols) or a vector index on a table.
|Name|type|Purpose|defaults|
|:---|:---|:---|:---|
|`vector_col`|`Optional[str]`| Provide if you want to create index on a vector column. |`None`|
|`col_name`|`Optional[str]`| Provide if you want to create index on a non-vector column. |`None`|
|`metric`|`Optional[str]` |Provide the metric to use for vector index. choice of metrics: 'L2', 'dot', 'cosine'. |`L2`|
|`num_partitions`|`Optional[int]`|Number of partitions to use for the index.|`256`|
|`num_sub_vectors`|`Optional[int]` |Number of sub-vectors to use for the index.|`96`|
|`index_cache_size`|`Optional[int]` |Size of the index cache.|`None`|
|`name`|`Optional[str]` |Name of the table to create index on.|`None`|
For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
```python
# for creating vector index
@@ -96,42 +125,63 @@ vector_store.create_index(col_name='text')
```
##### similarity_search()
- `query`: `str`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `fts`: `Optional[bool] = False`
- `name`: `Optional[str] = None`
- `kwargs`: `Any`
------
Return documents most similar to the query without relevance scores
##### similarity_search()
This method performs similarity search based on **text query**.
| Name | Type | Purpose | Default |
|---------|----------------------|---------|---------|
| `query` | `str` | A `str` representing the text query that you want to search for in the vector store. | N/A |
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. | `None` |
| `fts` | `Optional[bool]` | It indicates whether to perform a full-text search (FTS). | `False` |
| `name` | `Optional[str]` | It is used for specifying the name of the table to query. If not provided, it uses the default table set during the initialization of the LanceDB instance. | `None` |
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
Return documents most similar to the query **without relevance scores**.
```python
docs = docsearch.similarity_search(query)
print(docs[0].page_content)
```
##### similarity_search_by_vector()
- `embedding`: `List[float]`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `name`: `Optional[str] = None`
- `kwargs`: `Any`
------
Returns documents most similar to the query vector.
##### similarity_search_by_vector()
The method returns documents that are most similar to the specified **embedding (query) vector**.
| Name | Type | Purpose | Default |
|-------------|---------------------------|---------|---------|
| `embedding` | `List[float]` | The embedding vector you want to use to search for similar documents in the vector store. | N/A |
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. | `None` |
| `name` | `Optional[str]` | It is used for specifying the name of the table to query. If not provided, it uses the default table set during the initialization of the LanceDB instance. | `None` |
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
**It does not provide relevance scores.**
```python
docs = docsearch.similarity_search_by_vector(query)
print(docs[0].page_content)
```
##### similarity_search_with_score()
- `query`: `str`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `kwargs`: `Any`
------
Returns documents most similar to the query string with relevance scores, gets called by base class's `similarity_search_with_relevance_scores` which selects relevance score based on our `_select_relevance_score_fn`.
##### similarity_search_with_score()
Returns documents most similar to the **query string** along with their relevance scores.
| Name | Type | Purpose | Default |
|----------|---------------------------|---------|---------|
| `query` | `str` |A `str` representing the text query you want to search for in the vector store. This query will be converted into an embedding using the specified embedding function. | N/A |
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. This allows you to narrow down the search results based on certain metadata attributes associated with the documents. | `None` |
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
It gets called by base class's `similarity_search_with_relevance_scores` which selects relevance score based on our `_select_relevance_score_fn`.
```python
docs = docsearch.similarity_search_with_relevance_scores(query)
@@ -139,15 +189,21 @@ print("relevance score - ", docs[0][1])
print("text- ", docs[0][0].page_content[:1000])
```
##### similarity_search_by_vector_with_relevance_scores()
- `embedding`: `List[float]`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `name`: `Optional[str] = None`
- `kwargs`: `Any`
------
Return documents most similar to the query vector with relevance scores.
Relevance score
##### similarity_search_by_vector_with_relevance_scores()
Similarity search using **query vector**.
| Name | Type | Purpose | Default |
|-------------|---------------------------|---------|---------|
| `embedding` | `List[float]` | The embedding vector you want to use to search for similar documents in the vector store. | N/A |
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. | `None` |
| `name` | `Optional[str]` | It is used for specifying the name of the table to query. | `None` |
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
The method returns documents most similar to the specified embedding (query) vector, along with their relevance scores.
```python
docs = docsearch.similarity_search_by_vector_with_relevance_scores(query_embedding)
@@ -155,20 +211,22 @@ print("relevance score - ", docs[0][1])
print("text- ", docs[0][0].page_content[:1000])
```
##### max_marginal_relevance_search()
- `query`: `str`
- `k`: `Optional[int] = None`
- `fetch_k` : Number of Documents to fetch to pass to MMR algorithm, `Optional[int] = None`
- `lambda_mult`: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5. `float = 0.5`
- `filter`: `Optional[Dict[str, str]] = None`
- `kwargs`: `Any`
------
Returns docs selected using the maximal marginal relevance(MMR).
##### max_marginal_relevance_search()
This method returns docs selected using the maximal marginal relevance(MMR).
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
| Name | Type | Purpose | Default |
|---------------|-----------------|-----------|---------|
| `query` | `str` | Text to look up documents similar to. | N/A |
| `k` | `Optional[int]` | Number of Documents to return.| `4` |
| `fetch_k`| `Optional[int]`| Number of Documents to fetch to pass to MMR algorithm.| `None` |
| `lambda_mult` | `float` | Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. | `0.5` |
| `filter`| `Optional[Dict[str, str]]`| Filter by metadata. | `None` |
|`kwargs`| Other keyworded arguments provided by the user. |-|
Similarly, `max_marginal_relevance_search_by_vector()` function returns docs most similar to the embedding passed to the function using MMR. instead of a string query you need to pass the embedding to be searched for.
```python
@@ -186,12 +244,19 @@ result_texts = [doc.page_content for doc in result]
print(result_texts)
```
##### add_images()
- `uris` : File path to the image. `List[str]`.
- `metadatas` : Optional list of metadatas. `(Optional[List[dict]], optional)`
- `ids` : Optional list of IDs. `(Optional[List[str]], optional)`
------
Adds images by automatically creating their embeddings and adds them to the vectorstore.
##### add_images()
This method ddds images by automatically creating their embeddings and adds them to the vectorstore.
| Name | Type | Purpose | Default |
|------------|-------------------------------|--------------------------------|---------|
| `uris` | `List[str]` | File path to the image | N/A |
| `metadatas`| `Optional[List[dict]]` | Optional list of metadatas | `None` |
| `ids` | `Optional[List[str]]` | Optional list of IDs | `None` |
It returns list of IDs of the added images.
```python
vec_store.add_images(uris=image_uris)

View File

@@ -45,7 +45,7 @@ Let's see how using LanceDB inside phidata helps in making LLM more useful:
**Install the following packages in the virtual environment**
```python
pip install lancedb phidata youtube_transcript_api openai ollama pandas numpy
pip install lancedb phidata youtube_transcript_api openai ollama numpy pandas
```
**Create python files and import necessary libraries**

View File

@@ -0,0 +1,25 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / FtsOptions
# Interface: FtsOptions
Options to create an `FTS` index
## Properties
### withPosition?
> `optional` **withPosition**: `boolean`
Whether to store the positions of the term in the document.
If this is true then the index will store the positions of the term in the document.
This allows phrase queries to be run. But it also increases the size of the index,
and the time to build the index.
The default value is true.
***

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,77 @@
# Voyage AI Reranker
Voyage AI provides cutting-edge embedding and rerankers.
This re-ranker uses the [VoyageAI](https://docs.voyageai.com/docs/) API to rerank the search results. You can use this re-ranker by passing `VoyageAIReranker()` to the `rerank()` method. Note that you'll either need to set the `VOYAGE_API_KEY` environment variable or pass the `api_key` argument to use this re-ranker.
!!! note
Supported Query Types: Hybrid, Vector, FTS
```python
import numpy
import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
from lancedb.rerankers import VoyageAIReranker
embedder = get_registry().get("sentence-transformers").create()
db = lancedb.connect("~/.lancedb")
class Schema(LanceModel):
text: str = embedder.SourceField()
vector: Vector(embedder.ndims()) = embedder.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"}
]
tbl = db.create_table("test", schema=Schema, mode="overwrite")
tbl.add(data)
reranker = VoyageAIReranker(model_name="rerank-2")
# Run vector search with a reranker
result = tbl.search("hello").rerank(reranker=reranker).to_list()
# Run FTS search with a reranker
result = tbl.search("hello", query_type="fts").rerank(reranker=reranker).to_list()
# Run hybrid search with a reranker
tbl.create_fts_index("text", replace=True)
result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list()
```
Accepted Arguments
----------------
| Argument | Type | Default | Description |
| --- | --- | --- | --- |
| `model_name` | `str` | `None` | The name of the reranker model to use. Available models are: rerank-2, rerank-2-lite |
| `column` | `str` | `"text"` | The name of the column to use as input to the cross encoder model. |
| `top_n` | `str` | `None` | The number of results to return. If None, will return all results. |
| `api_key` | `str` | `None` | The API key for the Voyage AI API. If not provided, the `VOYAGE_API_KEY` environment variable is used. |
| `return_score` | str | `"relevance"` | Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score. If "all" is supported, will return relevance score along with the vector and/or fts scores depending on query type |
| `truncation` | `bool` | `None` | Whether to truncate the input to satisfy the "context length limit" on the query and the documents. |
## Supported Scores for each query type
You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:
### Hybrid Search
|`return_score`| Status | Description |
| --- | --- | --- |
| `relevance` | ✅ Supported | Returns only have the `_relevance_score` column |
| `all` | ❌ Not Supported | Returns have vector(`_distance`) and FTS(`score`) along with Hybrid Search score(`_relevance_score`) |
### Vector Search
|`return_score`| Status | Description |
| --- | --- | --- |
| `relevance` | ✅ Supported | Returns only have the `_relevance_score` column |
| `all` | ✅ Supported | Returns have vector(`_distance`) along with Hybrid Search score(`_relevance_score`) |
### FTS Search
|`return_score`| Status | Description |
| --- | --- | --- |
| `relevance` | ✅ Supported | Returns only have the `_relevance_score` column |
| `all` | ✅ Supported | Returns have FTS(`score`) along with Hybrid Search score(`_relevance_score`) |

View File

@@ -58,9 +58,9 @@ db.create_table("my_vectors", data=data)
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/search.ts:import"
--8<-- "nodejs/examples/search.test.ts:import"
--8<-- "nodejs/examples/search.ts:search1"
--8<-- "nodejs/examples/search.test.ts:search1"
```
@@ -89,7 +89,7 @@ By default, `l2` will be used as metric type. You can specify the metric type as
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/search.ts:search2"
--8<-- "nodejs/examples/search.test.ts:search2"
```
=== "vectordb (deprecated)"

View File

@@ -49,7 +49,7 @@ const tbl = await db.createTable('myVectors', data)
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.ts:search"
--8<-- "nodejs/examples/filtering.test.ts:search"
```
=== "vectordb (deprecated)"
@@ -91,7 +91,7 @@ For example, the following filter string is acceptable:
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.ts:vec_search"
--8<-- "nodejs/examples/filtering.test.ts:vec_search"
```
=== "vectordb (deprecated)"
@@ -169,7 +169,7 @@ You can also filter your data without search.
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.ts:sql_search"
--8<-- "nodejs/examples/filtering.test.ts:sql_search"
```
=== "vectordb (deprecated)"

View File

@@ -0,0 +1,33 @@
## Getting help
The following sections provide various diagnostics and troubleshooting tips for LanceDB.
These can help you provide additional information when asking questions or making
error reports.
For trouble shooting, the best place to ask is in our Discord, under the relevant
language channel. By asking in the language-specific channel, it makes it more
likely that someone who knows the answer will see your question.
## Enabling logging
To provide more information, especially for LanceDB Cloud related issues, enable
debug logging. You can set the `LANCEDB_LOG` environment variable:
```shell
export LANCEDB_LOG=debug
```
You can turn off colors and formatting in the logs by setting
```shell
export LANCEDB_LOG_STYLE=never
```
## Explaining query plans
If you have slow queries or unexpected query results, it can be helpful to
print the resolved query plan. You can use the `explain_plan` method to do this:
* Python Sync: [LanceQueryBuilder.explain_plan][lancedb.query.LanceQueryBuilder.explain_plan]
* Python Async: [AsyncQueryBase.explain_plan][lancedb.query.AsyncQueryBase.explain_plan]
* Node @lancedb/lancedb: [LanceQueryBuilder.explainPlan](/lancedb/js/classes/QueryBase/#explainplan)

View File

@@ -22,7 +22,8 @@ excluded_globs = [
"../src/embeddings/available_embedding_models/text_embedding_functions/*.md",
"../src/embeddings/available_embedding_models/multimodal_embedding_functions/*.md",
"../src/rag/*.md",
"../src/rag/advanced_techniques/*.md"
"../src/rag/advanced_techniques/*.md",
"../src/cloud/*.md"
]

View File

@@ -3,7 +3,7 @@ numpy
pandas
pylance
duckdb
tantivy==0.20.1
--extra-index-url https://download.pytorch.org/whl/cpu
torch
polars>=0.19, <=1.3.0

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.11.1-beta.0</version>
<version>0.13.0-beta.1</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.11.1-beta.0</version>
<version>0.13.0-beta.1</version>
<packaging>pom</packaging>
<name>LanceDB Parent</name>

75
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.11.1-beta.0",
"version": "0.13.0-beta.1",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.11.1-beta.0",
"version": "0.13.0-beta.1",
"cpu": [
"x64",
"arm64"
@@ -52,11 +52,12 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.11.1-beta.0",
"@lancedb/vectordb-darwin-x64": "0.11.1-beta.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.11.1-beta.0",
"@lancedb/vectordb-linux-x64-gnu": "0.11.1-beta.0",
"@lancedb/vectordb-win32-x64-msvc": "0.11.1-beta.0"
"@lancedb/vectordb-darwin-arm64": "0.13.0-beta.1",
"@lancedb/vectordb-darwin-x64": "0.13.0-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.13.0-beta.1",
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.13.0-beta.1"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
@@ -326,6 +327,66 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.13.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.13.0-beta.1.tgz",
"integrity": "sha512-beOrf6selCzzhLgDG8Nibma4nO/CSnA1wUKRmlJHEPtGcg7PW18z6MP/nfwQMpMR/FLRfTo8pPTbpzss47MiQQ==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.13.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.13.0-beta.1.tgz",
"integrity": "sha512-YdraGRF/RbJRkKh0v3xT03LUhq47T2GtCvJ5gZp8wKlh4pHa8LuhLU0DIdvmG/DT5vuQA+td8HDkBm/e3EOdNg==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.13.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.13.0-beta.1.tgz",
"integrity": "sha512-Pp0O/uhEqof1oLaWrNbv+Ym+q8kBkiCqaA5+2eAZ6a3e9U+Ozkvb0FQrHuyi9adJ5wKQ4NabyQE9BMf2bYpOnQ==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.13.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.13.0-beta.1.tgz",
"integrity": "sha512-y8nxOye4egfWF5FGED9EfkmZ1O5HnRLU4a61B8m5JSpkivO9v2epTcbYN0yt/7ZFCgtqMfJ8VW4Mi7qQcz3KDA==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.13.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.13.0-beta.1.tgz",
"integrity": "sha512-STMDP9dp0TBLkB3ro+16pKcGy6bmbhRuEZZZ1Tp5P75yTPeVh4zIgWkidMdU1qBbEYM7xacnsp9QAwgLnMU/Ow==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.11.1-beta.0",
"version": "0.13.0-beta.1",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -84,14 +84,16 @@
"aarch64-apple-darwin": "@lancedb/vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "@lancedb/vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "@lancedb/vectordb-linux-arm64-gnu",
"x86_64-pc-windows-msvc": "@lancedb/vectordb-win32-x64-msvc"
"x86_64-pc-windows-msvc": "@lancedb/vectordb-win32-x64-msvc",
"aarch64-pc-windows-msvc": "@lancedb/vectordb-win32-arm64-msvc"
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.11.1-beta.0",
"@lancedb/vectordb-darwin-x64": "0.11.1-beta.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.11.1-beta.0",
"@lancedb/vectordb-linux-x64-gnu": "0.11.1-beta.0",
"@lancedb/vectordb-win32-x64-msvc": "0.11.1-beta.0"
"@lancedb/vectordb-darwin-arm64": "0.13.0-beta.1",
"@lancedb/vectordb-darwin-x64": "0.13.0-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.13.0-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.13.0-beta.1",
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0-beta.1"
}
}

View File

@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import axios, { type AxiosResponse, type ResponseType } from 'axios'
import axios, { type AxiosError, type AxiosResponse, type ResponseType } from 'axios'
import { tableFromIPC, type Table as ArrowTable } from 'apache-arrow'
@@ -197,7 +197,7 @@ export class HttpLancedbClient {
response = await callWithMiddlewares(req, this._middlewares)
return response
} catch (err: any) {
console.error('error: ', err)
console.error(serializeErrorAsJson(err))
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
@@ -247,7 +247,8 @@ export class HttpLancedbClient {
// return response
} catch (err: any) {
console.error('error: ', err)
console.error(serializeErrorAsJson(err))
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
@@ -287,3 +288,15 @@ export class HttpLancedbClient {
return clone
}
}
function serializeErrorAsJson(err: AxiosError) {
const error = JSON.parse(JSON.stringify(err, Object.getOwnPropertyNames(err)))
error.response = err.response != null
? JSON.parse(JSON.stringify(
err.response,
// config contains the request data, too noisy
Object.getOwnPropertyNames(err.response).filter(prop => prop !== 'config')
))
: null
return JSON.stringify({ error })
}

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.11.1-beta.0"
version = "0.13.0-beta.1"
license.workspace = true
description.workspace = true
repository.workspace = true
@@ -13,15 +13,17 @@ crate-type = ["cdylib"]
[dependencies]
arrow-ipc.workspace = true
env_logger.workspace = true
futures.workspace = true
lancedb = { path = "../rust/lancedb", features = ["remote"] }
napi = { version = "2.16.8", default-features = false, features = [
"napi9",
"async",
"async"
] }
napi-derive = "2.16.4"
# Prevent dynamic linking of lzma, which comes from datafusion
lzma-sys = { version = "*", features = ["static"] }
log.workspace = true
[build-dependencies]
napi-build = "2.1"

View File

@@ -90,4 +90,29 @@ describe("remote connection", () => {
},
);
});
it("shows the full error messages on retry errors", async () => {
await withMockDatabase(
(_req, res) => {
// We retry on 500 errors, so we return 500s until the client gives up.
res.writeHead(500).end("Internal Server Error");
},
async (db) => {
try {
await db.tableNames();
fail("expected an error");
// biome-ignore lint/suspicious/noExplicitAny: skip
} catch (e: any) {
expect(e.message).toContain("Hit retry limit for request_id=");
expect(e.message).toContain("Caused by: Http error");
expect(e.message).toContain("500 Internal Server Error");
}
},
{
clientConfig: {
retryConfig: { retries: 2 },
},
},
);
});
});

View File

@@ -402,6 +402,40 @@ describe("When creating an index", () => {
expect(rst.numRows).toBe(1);
});
it("should be able to query unindexed data", async () => {
await tbl.createIndex("vec");
await tbl.add([
{
id: 300,
vec: Array(32)
.fill(1)
.map(() => Math.random()),
tags: [],
},
]);
const plan1 = await tbl.query().nearestTo(queryVec).explainPlan(true);
expect(plan1).toMatch("LanceScan");
const plan2 = await tbl
.query()
.nearestTo(queryVec)
.fastSearch()
.explainPlan(true);
expect(plan2).not.toMatch("LanceScan");
});
it("should be able to query with row id", async () => {
const results = await tbl
.query()
.nearestTo(queryVec)
.withRowId()
.limit(1)
.toArray();
expect(results.length).toBe(1);
expect(results[0]).toHaveProperty("_rowid");
});
it("should allow parameters to be specified", async () => {
await tbl.createIndex("vec", {
config: Index.ivfPq({

View File

@@ -9,7 +9,8 @@
"**/native.js",
"**/native.d.ts",
"**/npm/**/*",
"**/.vscode/**"
"**/.vscode/**",
"./examples/*"
]
},
"formatter": {

View File

@@ -0,0 +1,57 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
import { VectorQuery } from "@lancedb/lancedb";
// --8<-- [end:import]
import { withTempDirectory } from "./util.ts";
test("ann index examples", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:ingest]
const db = await lancedb.connect(databaseDir);
const data = Array.from({ length: 5_000 }, (_, i) => ({
vector: Array(128).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
const table = await db.createTable("my_vectors", data, {
mode: "overwrite",
});
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 10,
numSubVectors: 16,
}),
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const search = table.search(Array(128).fill(1.2)).limit(2) as VectorQuery;
const results1 = await search.nprobes(20).refineFactor(10).toArray();
// --8<-- [end:search1]
expect(results1.length).toBe(2);
// --8<-- [start:search2]
const results2 = await table
.search(Array(128).fill(1.2))
.where("id != '1141'")
.limit(2)
.toArray();
// --8<-- [end:search2]
expect(results2.length).toBe(2);
// --8<-- [start:search3]
const results3 = await table
.search(Array(128).fill(1.2))
.select(["id"])
.limit(2)
.toArray();
// --8<-- [end:search3]
expect(results3.length).toBe(2);
});
}, 100_000);

View File

@@ -1,49 +0,0 @@
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
// --8<-- [end:import]
// --8<-- [start:ingest]
const db = await lancedb.connect("/tmp/lancedb/");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
const table = await db.createTable("my_vectors", data, { mode: "overwrite" });
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 16,
numSubVectors: 48,
}),
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const _results1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.toArray();
// --8<-- [end:search1]
// --8<-- [start:search2]
const _results2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.toArray();
// --8<-- [end:search2]
// --8<-- [start:search3]
const _results3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.toArray();
// --8<-- [end:search3]
console.log("Ann indexes: done");

View File

@@ -0,0 +1,175 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
import {
Field,
FixedSizeList,
Float16,
Int32,
Schema,
Utf8,
} from "apache-arrow";
// --8<-- [end:imports]
import { withTempDirectory } from "./util.ts";
test("basic table examples", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:connect]
const db = await lancedb.connect(databaseDir);
// --8<-- [end:connect]
{
// --8<-- [start:create_table]
const _tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ mode: "overwrite" },
);
// --8<-- [end:create_table]
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
{
// --8<-- [start:create_table_exists_ok]
const tbl = await db.createTable("myTable", data, {
existOk: true,
});
// --8<-- [end:create_table_exists_ok]
expect(await tbl.countRows()).toBe(2);
}
{
// --8<-- [start:create_table_overwrite]
const tbl = await db.createTable("myTable", data, {
mode: "overwrite",
});
// --8<-- [end:create_table_overwrite]
expect(await tbl.countRows()).toBe(2);
}
}
await db.dropTable("myTable");
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const tbl = await db.createTable("myTable", data, {
schema,
});
// --8<-- [end:create_table_with_schema]
expect(await tbl.countRows()).toBe(2);
}
{
// --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
]);
const emptyTbl = await db.createEmptyTable("empty_table", schema);
// --8<-- [end:create_empty_table]
expect(await emptyTbl.countRows()).toBe(0);
}
{
// --8<-- [start:open_table]
const _tbl = await db.openTable("myTable");
// --8<-- [end:open_table]
}
{
// --8<-- [start:table_names]
const tableNames = await db.tableNames();
// --8<-- [end:table_names]
expect(tableNames).toEqual(["empty_table", "myTable"]);
}
const tbl = await db.openTable("myTable");
{
// --8<-- [start:add_data]
const data = [
{ vector: [1.3, 1.4], item: "fizz", price: 100.0 },
{ vector: [9.5, 56.2], item: "buzz", price: 200.0 },
];
await tbl.add(data);
// --8<-- [end:add_data]
}
{
// --8<-- [start:vector_search]
const res = await tbl.search([100, 100]).limit(2).toArray();
// --8<-- [end:vector_search]
expect(res.length).toBe(2);
}
{
const data = Array.from({ length: 1000 })
.fill(null)
.map(() => ({
vector: [Math.random(), Math.random()],
item: "autogen",
price: Math.round(Math.random() * 100),
}));
await tbl.add(data);
}
// --8<-- [start:create_index]
await tbl.createIndex("vector");
// --8<-- [end:create_index]
// --8<-- [start:delete_rows]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete_rows]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
await db.dropTable("empty_table");
{
// --8<-- [start:create_f16_table]
const db = await lancedb.connect(databaseDir);
const dim = 16;
const total = 10;
const f16Schema = new Schema([
new Field("id", new Int32()),
new Field(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]);
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random),
})),
{ schema: f16Schema },
);
const _table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table]
await db.dropTable("f16_tbl");
}
});
});

View File

@@ -1,162 +0,0 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
import {
Field,
FixedSizeList,
Float16,
Int32,
Schema,
Utf8,
} from "apache-arrow";
// --8<-- [end:imports]
// --8<-- [start:connect]
const uri = "/tmp/lancedb/";
const db = await lancedb.connect(uri);
// --8<-- [end:connect]
{
// --8<-- [start:create_table]
const tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ mode: "overwrite" },
);
// --8<-- [end:create_table]
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
{
// --8<-- [start:create_table_exists_ok]
const tbl = await db.createTable("myTable", data, {
existsOk: true,
});
// --8<-- [end:create_table_exists_ok]
}
{
// --8<-- [start:create_table_overwrite]
const _tbl = await db.createTable("myTable", data, {
mode: "overwrite",
});
// --8<-- [end:create_table_overwrite]
}
}
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const _tbl = await db.createTable("myTable", data, {
schema,
});
// --8<-- [end:create_table_with_schema]
}
{
// --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
]);
const empty_tbl = await db.createEmptyTable("empty_table", schema);
// --8<-- [end:create_empty_table]
}
{
// --8<-- [start:open_table]
const _tbl = await db.openTable("myTable");
// --8<-- [end:open_table]
}
{
// --8<-- [start:table_names]
const tableNames = await db.tableNames();
console.log(tableNames);
// --8<-- [end:table_names]
}
const tbl = await db.openTable("myTable");
{
// --8<-- [start:add_data]
const data = [
{ vector: [1.3, 1.4], item: "fizz", price: 100.0 },
{ vector: [9.5, 56.2], item: "buzz", price: 200.0 },
];
await tbl.add(data);
// --8<-- [end:add_data]
}
{
// --8<-- [start:vector_search]
const _res = tbl.search([100, 100]).limit(2).toArray();
// --8<-- [end:vector_search]
}
{
const data = Array.from({ length: 1000 })
.fill(null)
.map(() => ({
vector: [Math.random(), Math.random()],
item: "autogen",
price: Math.round(Math.random() * 100),
}));
await tbl.add(data);
}
// --8<-- [start:create_index]
await tbl.createIndex("vector");
// --8<-- [end:create_index]
// --8<-- [start:delete_rows]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete_rows]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
await db.dropTable("empty_table");
{
// --8<-- [start:create_f16_table]
const db = await lancedb.connect("/tmp/lancedb");
const dim = 16;
const total = 10;
const f16Schema = new Schema([
new Field("id", new Int32()),
new Field(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]);
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random),
})),
{ schema: f16Schema },
);
const _table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table]
await db.dropTable("f16_tbl");
}

View File

@@ -0,0 +1,230 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
// --8<-- [end:imports]
// --8<-- [start:generate_data]
function genData(numRows: number, numVectorDim: number): any[] {
const data = [];
for (let i = 0; i < numRows; i++) {
const vector = [];
for (let j = 0; j < numVectorDim; j++) {
vector.push(i + j * 0.1);
}
data.push({
id: i,
name: `name_${i}`,
vector,
});
}
return data;
}
// --8<-- [end:generate_data]
test("cloud quickstart", async () => {
{
// --8<-- [start:connect]
const db = await lancedb.connect({
uri: "db://your-project-slug",
apiKey: "your-api-key",
region: "your-cloud-region",
});
// --8<-- [end:connect]
// --8<-- [start:create_table]
const tableName = "myTable"
const data = genData(5000, 1536)
const table = await db.createTable(tableName, data);
// --8<-- [end:create_table]
// --8<-- [start:create_index_search]
// create a vector index
await table.createIndex({
column: "vector",
metric_type: lancedb.MetricType.Cosine,
type: "ivf_pq",
});
const result = await table.search([0.01, 0.02])
.select(["vector", "item"])
.limit(1)
.execute();
// --8<-- [end:create_index_search]
// --8<-- [start:drop_table]
await db.dropTable(tableName);
// --8<-- [end:drop_table]
}
});
test("ingest data", async () => {
// --8<-- [start:ingest_data]
import { Schema, Field, Float32, FixedSizeList, Utf8 } from "apache-arrow";
const db = await lancedb.connect({
uri: "db://your-project-slug",
apiKey: "your-api-key",
region: "us-east-1"
});
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
{ vector: [10.2, 100.8], item: "baz", price: 30.0},
{ vector: [1.4, 9.5], item: "fred", price: 40.0},
]
// create an empty table with schema
const schema = new Schema([
new Field(
"vector",
new FixedSizeList(2, new Field("float32", new Float32())),
),
new Field("item", new Utf8()),
new Field("price", new Float32()),
]);
const tableName = "myTable";
const table = await db.createTable({
name: tableName,
schema,
});
await table.add(data);
// --8<-- [end:ingest_data]
});
test("update data", async () => {
// --8<-- [start:connect_db_and_open_table]
const db = await lancedb.connect({
uri: "db://your-project-slug",
apiKey: "your-api-key",
region: "us-east-1"
});
const tableName = "myTable"
const table = await db.openTable(tableName);
// --8<-- [end:connect_db_and_open_table]
// --8<-- [start:update_data]
await table.update({
where: "price < 20.0",
values: { vector: [2, 2], item: "foo-updated" },
});
// --8<-- [end:update_data]
// --8<-- [start:merge_insert]
let newData = [
{vector: [1, 1], item: 'foo-updated', price: 50.0}
];
// upsert
await table.mergeInsert("item", newData, {
whenMatchedUpdateAll: true,
whenNotMatchedInsertAll: true,
});
// --8<-- [end:merge_insert]
// --8<-- [start:delete_data]
// delete data
const predicate = "price = 30.0";
await table.delete(predicate);
// --8<-- [end:delete_data]
});
test("create index", async () => {
const db = await lancedb.connect({
uri: "db://your-project-slug",
apiKey: "your-api-key",
region: "us-east-1"
});
const tableName = "myTable";
const table = await db.openTable(tableName);
// --8<-- [start:create_index]
// the vector column only needs to be specified when there are
// multiple vector columns or the column is not named as "vector"
// L2 is used as the default distance metric
await table.createIndex({
column: "vector",
metric_type: lancedb.MetricType.Cosine,
});
// --8<-- [end:create_index]
// --8<-- [start:create_scalar_index]
await table.createScalarIndex("item");
// --8<-- [end:create_scalar_index]
// --8<-- [start:create_fts_index]
const db = await lancedb.connect({
uri: "db://your-project-slug",
apiKey: "your-api-key",
region: "us-east-1"
});
const tableName = "myTable"
const data = [
{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" },
{ vector: [5.9, 26.5], text: "There are several kittens playing" },
];
const table = createTable(tableName, data);
await table.createIndex("text", {
config: lancedb.Index.fts(),
});
// --8<-- [end:create_fts_index]
});
test("vector search", async () => {
// --8<-- [start:vector_search]
const db = await lancedb.connect({
uri: "db://your-project-slug",
apiKey: "your-api-key",
region: "us-east-1"
});
const tableName = "myTable"
const table = await db.openTable(tableName);
const result = await table.search([0.4, 1.4])
.where("price > 10.0")
.prefilter(true)
.select(["item", "vector"])
.limit(2)
.execute();
// --8<-- [end:vector_search]
});
test("full-text search", async () => {
// --8<-- [start:full_text_search]
const db = await lancedb.connect({
uri: "db://your-project-slug",
apiKey: "your-api-key",
region: "us-east-1"
});
const data = [
{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" },
{ vector: [5.9, 26.5], text: "There are several kittens playing" },
];
const tableName = "myTable"
const table = await db.createTable(tableName, data);
await table.createIndex("text", {
config: lancedb.Index.fts(),
});
await tableName
.search("puppy", queryType="fts")
.select(["text"])
.limit(10)
.toArray();
// --8<-- [end:full_text_search]
});
test("metadata filtering", async () => {
// --8<-- [start:filtering]
const db = await lancedb.connect({
uri: "db://your-project-slug",
apiKey: "your-api-key",
region: "us-east-1"
});
const tableName = "myTable"
const table = await db.openTable(tableName);
await table
.search(Array(2).fill(0.1))
.where("(item IN ('foo', 'bar')) AND (price > 10.0)")
.postfilter()
.toArray();
// --8<-- [end:filtering]
// --8<-- [start:sql_filtering]
await table
.search(Array(2).fill(0.1))
.where("(item IN ('foo', 'bar')) AND (price > 10.0)")
.postfilter()
.toArray();
// --8<-- [end:sql_filtering]
});

View File

@@ -0,0 +1,76 @@
import { FeatureExtractionPipeline, pipeline } from "@huggingface/transformers";
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import {
LanceSchema,
TextEmbeddingFunction,
getRegistry,
register,
} from "@lancedb/lancedb/embedding";
// --8<-- [end:imports]
import { withTempDirectory } from "./util.ts";
// --8<-- [start:embedding_impl]
@register("sentence-transformers")
class SentenceTransformersEmbeddings extends TextEmbeddingFunction {
name = "Xenova/all-miniLM-L6-v2";
#ndims!: number;
extractor!: FeatureExtractionPipeline;
async init() {
this.extractor = await pipeline("feature-extraction", this.name, {
dtype: "fp32",
});
this.#ndims = await this.generateEmbeddings(["hello"]).then(
(e) => e[0].length,
);
}
ndims() {
return this.#ndims;
}
toJSON() {
return {
name: this.name,
};
}
async generateEmbeddings(texts: string[]) {
const output = await this.extractor(texts, {
pooling: "mean",
normalize: true,
});
return output.tolist();
}
}
// -8<-- [end:embedding_impl]
test("Registry examples", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:call_custom_function]
const registry = getRegistry();
const sentenceTransformer = await registry
.get<SentenceTransformersEmbeddings>("sentence-transformers")!
.create();
const schema = LanceSchema({
vector: sentenceTransformer.vectorField(),
text: sentenceTransformer.sourceField(),
});
const db = await lancedb.connect(databaseDir);
const table = await db.createEmptyTable("table", schema, {
mode: "overwrite",
});
await table.add([{ text: "hello" }, { text: "world" }]);
const results = await table.search("greeting").limit(1).toArray();
// -8<-- [end:call_custom_function]
expect(results.length).toBe(1);
});
}, 100_000);

View File

@@ -1,64 +0,0 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import {
LanceSchema,
TextEmbeddingFunction,
getRegistry,
register,
} from "@lancedb/lancedb/embedding";
import { pipeline } from "@xenova/transformers";
// --8<-- [end:imports]
// --8<-- [start:embedding_impl]
@register("sentence-transformers")
class SentenceTransformersEmbeddings extends TextEmbeddingFunction {
name = "Xenova/all-miniLM-L6-v2";
#ndims!: number;
extractor: any;
async init() {
this.extractor = await pipeline("feature-extraction", this.name);
this.#ndims = await this.generateEmbeddings(["hello"]).then(
(e) => e[0].length,
);
}
ndims() {
return this.#ndims;
}
toJSON() {
return {
name: this.name,
};
}
async generateEmbeddings(texts: string[]) {
const output = await this.extractor(texts, {
pooling: "mean",
normalize: true,
});
return output.tolist();
}
}
// -8<-- [end:embedding_impl]
// --8<-- [start:call_custom_function]
const registry = getRegistry();
const sentenceTransformer = await registry
.get<SentenceTransformersEmbeddings>("sentence-transformers")!
.create();
const schema = LanceSchema({
vector: sentenceTransformer.vectorField(),
text: sentenceTransformer.sourceField(),
});
const db = await lancedb.connect("/tmp/db");
const table = await db.createEmptyTable("table", schema, { mode: "overwrite" });
await table.add([{ text: "hello" }, { text: "world" }]);
const results = await table.search("greeting").limit(1).toArray();
console.log(results[0].text);
// -8<-- [end:call_custom_function]

View File

@@ -0,0 +1,96 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import "@lancedb/lancedb/embedding/openai";
import { LanceSchema, getRegistry, register } from "@lancedb/lancedb/embedding";
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
import { type Float, Float32, Utf8 } from "apache-arrow";
// --8<-- [end:imports]
import { withTempDirectory } from "./util.ts";
const openAiTest = process.env.OPENAI_API_KEY == null ? test.skip : test;
openAiTest("openai embeddings", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:openai_embeddings]
const db = await lancedb.connect(databaseDir);
const func = getRegistry()
.get("openai")
?.create({ model: "text-embedding-ada-002" }) as EmbeddingFunction;
const wordsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createEmptyTable("words", wordsSchema, {
mode: "overwrite",
});
await tbl.add([{ text: "hello world" }, { text: "goodbye world" }]);
const query = "greetings";
const actual = (await tbl.search(query).limit(1).toArray())[0];
// --8<-- [end:openai_embeddings]
expect(actual).toHaveProperty("text");
});
});
test("custom embedding function", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:embedding_function]
const db = await lancedb.connect(databaseDir);
@register("my_embedding")
class MyEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {};
}
ndims() {
return 3;
}
embeddingDataType(): Float {
return new Float32();
}
async computeQueryEmbeddings(_data: string) {
// This is a placeholder for a real embedding function
return [1, 2, 3];
}
async computeSourceEmbeddings(data: string[]) {
// This is a placeholder for a real embedding function
return Array.from({ length: data.length }).fill([
1, 2, 3,
]) as number[][];
}
}
const func = new MyEmbeddingFunction();
const data = [{ text: "pepperoni" }, { text: "pineapple" }];
// Option 1: manually specify the embedding function
const table = await db.createTable("vectors", data, {
embeddingFunction: {
function: func,
sourceColumn: "text",
vectorColumn: "vector",
},
mode: "overwrite",
});
// Option 2: provide the embedding function through a schema
const schema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const table2 = await db.createTable("vectors2", data, {
schema,
mode: "overwrite",
});
// --8<-- [end:embedding_function]
expect(await table.countRows()).toBe(2);
expect(await table2.countRows()).toBe(2);
});
});

View File

@@ -1,83 +0,0 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import { LanceSchema, getRegistry, register } from "@lancedb/lancedb/embedding";
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
import { type Float, Float32, Utf8 } from "apache-arrow";
// --8<-- [end:imports]
{
// --8<-- [start:openai_embeddings]
const db = await lancedb.connect("/tmp/db");
const func = getRegistry()
.get("openai")
?.create({ model: "text-embedding-ada-002" }) as EmbeddingFunction;
const wordsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createEmptyTable("words", wordsSchema, {
mode: "overwrite",
});
await tbl.add([{ text: "hello world" }, { text: "goodbye world" }]);
const query = "greetings";
const actual = (await (await tbl.search(query)).limit(1).toArray())[0];
// --8<-- [end:openai_embeddings]
console.log("result = ", actual.text);
}
{
// --8<-- [start:embedding_function]
const db = await lancedb.connect("/tmp/db");
@register("my_embedding")
class MyEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {};
}
ndims() {
return 3;
}
embeddingDataType(): Float {
return new Float32();
}
async computeQueryEmbeddings(_data: string) {
// This is a placeholder for a real embedding function
return [1, 2, 3];
}
async computeSourceEmbeddings(data: string[]) {
// This is a placeholder for a real embedding function
return Array.from({ length: data.length }).fill([1, 2, 3]) as number[][];
}
}
const func = new MyEmbeddingFunction();
const data = [{ text: "pepperoni" }, { text: "pineapple" }];
// Option 1: manually specify the embedding function
const table = await db.createTable("vectors", data, {
embeddingFunction: {
function: func,
sourceColumn: "text",
vectorColumn: "vector",
},
mode: "overwrite",
});
// Option 2: provide the embedding function through a schema
const schema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const table2 = await db.createTable("vectors2", data, {
schema,
mode: "overwrite",
});
// --8<-- [end:embedding_function]
}

View File

@@ -0,0 +1,42 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
import * as lancedb from "@lancedb/lancedb";
import { withTempDirectory } from "./util.ts";
test("filtering examples", async () => {
await withTempDirectory(async (databaseDir) => {
const db = await lancedb.connect(databaseDir);
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
// --8<-- [start:search]
const _result = await tbl
.search(Array(1536).fill(0.5))
.limit(1)
.where("id = 10")
.toArray();
// --8<-- [end:search]
// --8<-- [start:vec_search]
const result = await (
tbl.search(Array(1536).fill(0)) as lancedb.VectorQuery
)
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.postfilter()
.toArray();
// --8<-- [end:vec_search]
expect(result.length).toBe(0);
// --8<-- [start:sql_search]
await tbl.query().where("id = 10").limit(10).toArray();
// --8<-- [end:sql_search]
});
});

View File

@@ -1,34 +0,0 @@
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
// --8<-- [start:search]
const _result = await tbl
.search(Array(1536).fill(0.5))
.limit(1)
.where("id = 10")
.toArray();
// --8<-- [end:search]
// --8<-- [start:vec_search]
await tbl
.search(Array(1536).fill(0))
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.postfilter()
.toArray();
// --8<-- [end:vec_search]
// --8<-- [start:sql_search]
await tbl.query().where("id = 10").limit(10).toArray();
// --8<-- [end:sql_search]
console.log("SQL search: done");

View File

@@ -0,0 +1,45 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
import * as lancedb from "@lancedb/lancedb";
import { withTempDirectory } from "./util.ts";
test("full text search", async () => {
await withTempDirectory(async (databaseDir) => {
const db = await lancedb.connect(databaseDir);
const words = [
"apple",
"banana",
"cherry",
"date",
"elderberry",
"fig",
"grape",
];
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
doc: words[i % words.length],
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
await tbl.createIndex("doc", {
config: lancedb.Index.fts(),
});
// --8<-- [start:full_text_search]
const result = await tbl
.query()
.nearestToText("apple")
.select(["id", "doc"])
.limit(10)
.toArray();
expect(result.length).toBe(10);
// --8<-- [end:full_text_search]
});
});

View File

@@ -1,52 +0,0 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const words = [
"apple",
"banana",
"cherry",
"date",
"elderberry",
"fig",
"grape",
];
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
doc: words[i % words.length],
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
await tbl.createIndex("doc", {
config: lancedb.Index.fts(),
});
// --8<-- [start:full_text_search]
let result = await tbl
.search("apple")
.select(["id", "doc"])
.limit(10)
.toArray();
console.log(result);
// --8<-- [end:full_text_search]
console.log("SQL search: done");

View File

@@ -0,0 +1,6 @@
/** @type {import('ts-jest').JestConfigWithTsJest} */
module.exports = {
preset: "ts-jest",
testEnvironment: "node",
testPathIgnorePatterns: ["./dist"],
};

View File

@@ -1,27 +0,0 @@
{
"compilerOptions": {
// Enable latest features
"lib": ["ESNext", "DOM"],
"target": "ESNext",
"module": "ESNext",
"moduleDetection": "force",
"jsx": "react-jsx",
"allowJs": true,
// Bundler mode
"moduleResolution": "bundler",
"allowImportingTsExtensions": true,
"verbatimModuleSyntax": true,
"noEmit": true,
// Best practices
"strict": true,
"skipLibCheck": true,
"noFallthroughCasesInSwitch": true,
// Some stricter flags (disabled by default)
"noUnusedLocals": false,
"noUnusedParameters": false,
"noPropertyAccessFromIndexSignature": false
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -5,24 +5,29 @@
"main": "index.js",
"type": "module",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
"//1": "--experimental-vm-modules is needed to run jest with sentence-transformers",
"//2": "--testEnvironment is needed to run jest with sentence-transformers",
"//3": "See: https://github.com/huggingface/transformers.js/issues/57",
"test": "node --experimental-vm-modules node_modules/.bin/jest --testEnvironment jest-environment-node-single-context --verbose",
"lint": "biome check *.ts && biome format *.ts",
"lint-ci": "biome ci .",
"lint-fix": "biome check --write *.ts && npm run format",
"format": "biome format --write *.ts"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"@lancedb/lancedb": "file:../",
"@xenova/transformers": "^2.17.2"
"@huggingface/transformers": "^3.0.2",
"@lancedb/lancedb": "file:../dist",
"openai": "^4.29.2",
"sharp": "^0.33.5"
},
"devDependencies": {
"@biomejs/biome": "^1.7.3",
"@jest/globals": "^29.7.0",
"jest": "^29.7.0",
"jest-environment-node-single-context": "^29.4.0",
"ts-jest": "^29.2.5",
"typescript": "^5.5.4"
},
"compilerOptions": {
"target": "ESNext",
"module": "ESNext",
"moduleResolution": "Node",
"strict": true,
"esModuleInterop": true,
"skipLibCheck": true,
"forceConsistentCasingInFileNames": true
}
}

View File

@@ -0,0 +1,42 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
// --8<-- [end:import]
import { withTempDirectory } from "./util.ts";
test("full text search", async () => {
await withTempDirectory(async (databaseDir) => {
{
const db = await lancedb.connect(databaseDir);
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(128).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
await db.createTable("my_vectors", data);
}
// --8<-- [start:search1]
const db = await lancedb.connect(databaseDir);
const tbl = await db.openTable("my_vectors");
const results1 = await tbl.search(Array(128).fill(1.2)).limit(10).toArray();
// --8<-- [end:search1]
expect(results1.length).toBe(10);
// --8<-- [start:search2]
const results2 = await (
tbl.search(Array(128).fill(1.2)) as lancedb.VectorQuery
)
.distanceType("cosine")
.limit(10)
.toArray();
// --8<-- [end:search2]
expect(results2.length).toBe(10);
});
});

View File

@@ -1,38 +0,0 @@
// --8<-- [end:import]
import * as fs from "node:fs";
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
async function setup() {
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
const db = await lancedb.connect("data/sample-lancedb");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
await db.createTable("my_vectors", data);
}
await setup();
// --8<-- [start:search1]
const db = await lancedb.connect("data/sample-lancedb");
const tbl = await db.openTable("my_vectors");
const _results1 = await tbl.search(Array(1536).fill(1.2)).limit(10).toArray();
// --8<-- [end:search1]
// --8<-- [start:search2]
const _results2 = await tbl
.search(Array(1536).fill(1.2))
.distanceType("cosine")
.limit(10)
.toArray();
console.log(_results2);
// --8<-- [end:search2]
console.log("search: done");

View File

@@ -1,50 +0,0 @@
import * as lancedb from "@lancedb/lancedb";
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
import { Utf8 } from "apache-arrow";
const db = await lancedb.connect("/tmp/db");
const func = await getRegistry().get("huggingface").create();
const facts = [
"Albert Einstein was a theoretical physicist.",
"The capital of France is Paris.",
"The Great Wall of China is one of the Seven Wonders of the World.",
"Python is a popular programming language.",
"Mount Everest is the highest mountain in the world.",
"Leonardo da Vinci painted the Mona Lisa.",
"Shakespeare wrote Hamlet.",
"The human body has 206 bones.",
"The speed of light is approximately 299,792 kilometers per second.",
"Water boils at 100 degrees Celsius.",
"The Earth orbits the Sun.",
"The Pyramids of Giza are located in Egypt.",
"Coffee is one of the most popular beverages in the world.",
"Tokyo is the capital city of Japan.",
"Photosynthesis is the process by which plants make their food.",
"The Pacific Ocean is the largest ocean on Earth.",
"Mozart was a prolific composer of classical music.",
"The Internet is a global network of computers.",
"Basketball is a sport played with a ball and a hoop.",
"The first computer virus was created in 1983.",
"Artificial neural networks are inspired by the human brain.",
"Deep learning is a subset of machine learning.",
"IBM's Watson won Jeopardy! in 2011.",
"The first computer programmer was Ada Lovelace.",
"The first chatbot was ELIZA, created in the 1960s.",
].map((text) => ({ text }));
const factsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createTable("facts", facts, {
mode: "overwrite",
schema: factsSchema,
});
const query = "How many bones are in the human body?";
const actual = await tbl.search(query).limit(1).toArray();
console.log("Answer: ", actual[0]["text"]);

View File

@@ -0,0 +1,59 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
import { withTempDirectory } from "./util.ts";
import * as lancedb from "@lancedb/lancedb";
import "@lancedb/lancedb/embedding/transformers";
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
import { Utf8 } from "apache-arrow";
test("full text search", async () => {
await withTempDirectory(async (databaseDir) => {
const db = await lancedb.connect(databaseDir);
const func = await getRegistry().get("huggingface").create();
const facts = [
"Albert Einstein was a theoretical physicist.",
"The capital of France is Paris.",
"The Great Wall of China is one of the Seven Wonders of the World.",
"Python is a popular programming language.",
"Mount Everest is the highest mountain in the world.",
"Leonardo da Vinci painted the Mona Lisa.",
"Shakespeare wrote Hamlet.",
"The human body has 206 bones.",
"The speed of light is approximately 299,792 kilometers per second.",
"Water boils at 100 degrees Celsius.",
"The Earth orbits the Sun.",
"The Pyramids of Giza are located in Egypt.",
"Coffee is one of the most popular beverages in the world.",
"Tokyo is the capital city of Japan.",
"Photosynthesis is the process by which plants make their food.",
"The Pacific Ocean is the largest ocean on Earth.",
"Mozart was a prolific composer of classical music.",
"The Internet is a global network of computers.",
"Basketball is a sport played with a ball and a hoop.",
"The first computer virus was created in 1983.",
"Artificial neural networks are inspired by the human brain.",
"Deep learning is a subset of machine learning.",
"IBM's Watson won Jeopardy! in 2011.",
"The first computer programmer was Ada Lovelace.",
"The first chatbot was ELIZA, created in the 1960s.",
].map((text) => ({ text }));
const factsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createTable("facts", facts, {
mode: "overwrite",
schema: factsSchema,
});
const query = "How many bones are in the human body?";
const actual = await tbl.search(query).limit(1).toArray();
expect(actual[0]["text"]).toBe("The human body has 206 bones.");
});
});

View File

@@ -0,0 +1,17 @@
{
"include": ["*.test.ts"],
"compilerOptions": {
"target": "es2022",
"module": "NodeNext",
"declaration": true,
"outDir": "./dist",
"strict": true,
"allowJs": true,
"resolveJsonModule": true,
"emitDecoratorMetadata": true,
"experimentalDecorators": true,
"moduleResolution": "NodeNext",
"allowImportingTsExtensions": true,
"emitDeclarationOnly": true
}
}

16
nodejs/examples/util.ts Normal file
View File

@@ -0,0 +1,16 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import * as fs from "fs";
import { tmpdir } from "os";
import * as path from "path";
export async function withTempDirectory(
fn: (tempDir: string) => Promise<void>,
) {
const tmpDirPath = fs.mkdtempSync(path.join(tmpdir(), "temp-dir-"));
try {
await fn(tmpDirPath);
} finally {
fs.rmSync(tmpDirPath, { recursive: true });
}
}

View File

@@ -4,4 +4,5 @@ module.exports = {
testEnvironment: "node",
moduleDirectories: ["node_modules", "./dist"],
moduleFileExtensions: ["js", "ts"],
modulePathIgnorePatterns: ["<rootDir>/examples/"],
};

View File

@@ -47,8 +47,8 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
string,
Partial<XenovaTransformerOptions>
> {
#model?: import("@xenova/transformers").PreTrainedModel;
#tokenizer?: import("@xenova/transformers").PreTrainedTokenizer;
#model?: import("@huggingface/transformers").PreTrainedModel;
#tokenizer?: import("@huggingface/transformers").PreTrainedTokenizer;
#modelName: XenovaTransformerOptions["model"];
#initialized = false;
#tokenizerOptions: XenovaTransformerOptions["tokenizerOptions"];
@@ -92,18 +92,19 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
try {
// SAFETY:
// since typescript transpiles `import` to `require`, we need to do this in an unsafe way
// We can't use `require` because `@xenova/transformers` is an ESM module
// We can't use `require` because `@huggingface/transformers` is an ESM module
// and we can't use `import` directly because typescript will transpile it to `require`.
// and we want to remain compatible with both ESM and CJS modules
// so we use `eval` to bypass typescript for this specific import.
transformers = await eval('import("@xenova/transformers")');
transformers = await eval('import("@huggingface/transformers")');
} catch (e) {
throw new Error(`error loading @xenova/transformers\nReason: ${e}`);
throw new Error(`error loading @huggingface/transformers\nReason: ${e}`);
}
try {
this.#model = await transformers.AutoModel.from_pretrained(
this.#modelName,
{ dtype: "fp32" },
);
} catch (e) {
throw new Error(
@@ -128,7 +129,8 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
} else {
const config = this.#model!.config;
const ndims = config["hidden_size"];
// biome-ignore lint/style/useNamingConvention: we don't control this name.
const ndims = (config as unknown as { hidden_size: number }).hidden_size;
if (!ndims) {
throw new Error(
"hidden_size not found in model config, you may need to manually specify the embedding dimensions. ",
@@ -183,7 +185,7 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
}
const tensorDiv = (
src: import("@xenova/transformers").Tensor,
src: import("@huggingface/transformers").Tensor,
divBy: number,
) => {
for (let i = 0; i < src.data.length; ++i) {

View File

@@ -239,6 +239,29 @@ export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
return this;
}
/**
* Skip searching un-indexed data. This can make search faster, but will miss
* any data that is not yet indexed.
*
* Use {@link lancedb.Table#optimize} to index all un-indexed data.
*/
fastSearch(): this {
this.doCall((inner: NativeQueryType) => inner.fastSearch());
return this;
}
/**
* Whether to return the row id in the results.
*
* This column can be used to match results between different queries. For
* example, to match results from a full text search and a vector search in
* order to perform hybrid search.
*/
withRowId(): this {
this.doCall((inner: NativeQueryType) => inner.withRowId());
return this;
}
protected nativeExecute(
options?: Partial<QueryExecutionOptions>,
): Promise<NativeBatchIterator> {
@@ -548,4 +571,9 @@ export class Query extends QueryBase<NativeQuery> {
return new VectorQuery(vectorQuery);
}
}
nearestToText(query: string, columns?: string[]): Query {
this.doCall((inner) => inner.fullTextSearch(query, columns));
return this;
}
}

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.11.1-beta.0",
"version": "0.13.0-beta.1",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.11.1-beta.0",
"version": "0.13.0-beta.1",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.11.1-beta.0",
"version": "0.13.0-beta.1",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.11.1-beta.0",
"version": "0.13.0-beta.1",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -0,0 +1,3 @@
# `@lancedb/lancedb-win32-arm64-msvc`
This is the **aarch64-pc-windows-msvc** binary for `@lancedb/lancedb`

View File

@@ -0,0 +1,18 @@
{
"name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.13.0-beta.1",
"os": [
"win32"
],
"cpu": [
"arm64"
],
"main": "lancedb.win32-arm64-msvc.node",
"files": [
"lancedb.win32-arm64-msvc.node"
],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
}
}

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.11.1-beta.0",
"version": "0.13.0-beta.1",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

1432
nodejs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -10,7 +10,7 @@
"vector database",
"ann"
],
"version": "0.11.1-beta.0",
"version": "0.13.0-beta.1",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",
@@ -85,7 +85,7 @@
"reflect-metadata": "^0.2.2"
},
"optionalDependencies": {
"@xenova/transformers": ">=2.17 < 3",
"@huggingface/transformers": "^3.0.2",
"openai": "^4.29.2"
},
"peerDependencies": {

View File

@@ -18,6 +18,7 @@ use std::str::FromStr;
use napi::bindgen_prelude::*;
use napi_derive::*;
use crate::error::{convert_error, NapiErrorExt};
use crate::table::Table;
use crate::ConnectionOptions;
use lancedb::connection::{
@@ -86,12 +87,7 @@ impl Connection {
builder = builder.host_override(&host_override);
}
Ok(Self::inner_new(
builder
.execute()
.await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?,
))
Ok(Self::inner_new(builder.execute().await.default_error()?))
}
#[napi]
@@ -123,9 +119,7 @@ impl Connection {
if let Some(limit) = limit {
op = op.limit(limit);
}
op.execute()
.await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))
op.execute().await.default_error()
}
/// Create table from a Apache Arrow IPC (file) buffer.
@@ -156,17 +150,13 @@ impl Connection {
}
if let Some(data_storage_option) = data_storage_options.as_ref() {
builder = builder.data_storage_version(
LanceFileVersion::from_str(data_storage_option)
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?,
LanceFileVersion::from_str(data_storage_option).map_err(|e| convert_error(&e))?,
);
}
if let Some(enable_v2_manifest_paths) = enable_v2_manifest_paths {
builder = builder.enable_v2_manifest_paths(enable_v2_manifest_paths);
}
let tbl = builder
.execute()
.await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?;
let tbl = builder.execute().await.default_error()?;
Ok(Table::new(tbl))
}
@@ -195,17 +185,13 @@ impl Connection {
}
if let Some(data_storage_option) = data_storage_options.as_ref() {
builder = builder.data_storage_version(
LanceFileVersion::from_str(data_storage_option)
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?,
LanceFileVersion::from_str(data_storage_option).map_err(|e| convert_error(&e))?,
);
}
if let Some(enable_v2_manifest_paths) = enable_v2_manifest_paths {
builder = builder.enable_v2_manifest_paths(enable_v2_manifest_paths);
}
let tbl = builder
.execute()
.await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?;
let tbl = builder.execute().await.default_error()?;
Ok(Table::new(tbl))
}
@@ -225,19 +211,13 @@ impl Connection {
if let Some(index_cache_size) = index_cache_size {
builder = builder.index_cache_size(index_cache_size);
}
let tbl = builder
.execute()
.await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?;
let tbl = builder.execute().await.default_error()?;
Ok(Table::new(tbl))
}
/// Drop table with the name. Or raise an error if the table does not exist.
#[napi(catch_unwind)]
pub async fn drop_table(&self, name: String) -> napi::Result<()> {
self.get_inner()?
.drop_table(&name)
.await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))
self.get_inner()?.drop_table(&name).await.default_error()
}
}

View File

@@ -7,6 +7,31 @@ pub trait NapiErrorExt<T> {
impl<T> NapiErrorExt<T> for std::result::Result<T, lancedb::Error> {
fn default_error(self) -> Result<T> {
self.map_err(|err| napi::Error::from_reason(err.to_string()))
self.map_err(|err| convert_error(&err))
}
}
pub fn convert_error(err: &dyn std::error::Error) -> napi::Error {
let mut message = err.to_string();
// Append causes
let mut cause = err.source();
let mut indent = 2;
while let Some(err) = cause {
let cause_message = format!("Caused by: {}", err);
message.push_str(&indent_string(&cause_message, indent));
cause = err.source();
indent += 2;
}
napi::Error::from_reason(message)
}
fn indent_string(s: &str, amount: usize) -> String {
let indent = " ".repeat(amount);
s.lines()
.map(|line| format!("{}{}", indent, line))
.collect::<Vec<_>>()
.join("\n")
}

View File

@@ -14,6 +14,7 @@
use std::collections::HashMap;
use env_logger::Env;
use napi_derive::*;
mod connection;
@@ -77,3 +78,11 @@ pub struct WriteOptions {
pub struct OpenTableOptions {
pub storage_options: Option<HashMap<String, String>>,
}
#[napi::module_init]
fn init() {
let env = Env::new()
.filter_or("LANCEDB_LOG", "warn")
.write_style("LANCEDB_LOG_STYLE");
env_logger::init_from_env(env);
}

View File

@@ -2,6 +2,8 @@ use lancedb::{arrow::IntoArrow, ipc::ipc_file_to_batches, table::merge::MergeIns
use napi::bindgen_prelude::*;
use napi_derive::napi;
use crate::error::convert_error;
#[napi]
#[derive(Clone)]
/// A builder used to create and run a merge insert operation
@@ -35,14 +37,18 @@ impl NativeMergeInsertBuilder {
pub async fn execute(&self, buf: Buffer) -> napi::Result<()> {
let data = ipc_file_to_batches(buf.to_vec())
.and_then(IntoArrow::into_arrow)
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
.map_err(|e| {
napi::Error::from_reason(format!("Failed to read IPC file: {}", convert_error(&e)))
})?;
let this = self.clone();
this.inner
.execute(data)
.await
.map_err(|e| napi::Error::from_reason(format!("Failed to execute merge insert: {}", e)))
this.inner.execute(data).await.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to execute merge insert: {}",
convert_error(&e)
))
})
}
}

View File

@@ -22,6 +22,7 @@ use lancedb::query::VectorQuery as LanceDbVectorQuery;
use napi::bindgen_prelude::*;
use napi_derive::napi;
use crate::error::convert_error;
use crate::error::NapiErrorExt;
use crate::iterator::RecordBatchIterator;
use crate::util::parse_distance_type;
@@ -79,6 +80,16 @@ impl Query {
Ok(VectorQuery { inner })
}
#[napi]
pub fn fast_search(&mut self) {
self.inner = self.inner.clone().fast_search();
}
#[napi]
pub fn with_row_id(&mut self) {
self.inner = self.inner.clone().with_row_id();
}
#[napi(catch_unwind)]
pub async fn execute(
&self,
@@ -93,7 +104,10 @@ impl Query {
.execute_with_options(execution_opts)
.await
.map_err(|e| {
napi::Error::from_reason(format!("Failed to execute query stream: {}", e))
napi::Error::from_reason(format!(
"Failed to execute query stream: {}",
convert_error(&e)
))
})?;
Ok(RecordBatchIterator::new(inner_stream))
}
@@ -101,7 +115,10 @@ impl Query {
#[napi]
pub async fn explain_plan(&self, verbose: bool) -> napi::Result<String> {
self.inner.explain_plan(verbose).await.map_err(|e| {
napi::Error::from_reason(format!("Failed to retrieve the query plan: {}", e))
napi::Error::from_reason(format!(
"Failed to retrieve the query plan: {}",
convert_error(&e)
))
})
}
}
@@ -176,6 +193,16 @@ impl VectorQuery {
self.inner = self.inner.clone().offset(offset as usize);
}
#[napi]
pub fn fast_search(&mut self) {
self.inner = self.inner.clone().fast_search();
}
#[napi]
pub fn with_row_id(&mut self) {
self.inner = self.inner.clone().with_row_id();
}
#[napi(catch_unwind)]
pub async fn execute(
&self,
@@ -190,7 +217,10 @@ impl VectorQuery {
.execute_with_options(execution_opts)
.await
.map_err(|e| {
napi::Error::from_reason(format!("Failed to execute query stream: {}", e))
napi::Error::from_reason(format!(
"Failed to execute query stream: {}",
convert_error(&e)
))
})?;
Ok(RecordBatchIterator::new(inner_stream))
}
@@ -198,7 +228,10 @@ impl VectorQuery {
#[napi]
pub async fn explain_plan(&self, verbose: bool) -> napi::Result<String> {
self.inner.explain_plan(verbose).await.map_err(|e| {
napi::Error::from_reason(format!("Failed to retrieve the query plan: {}", e))
napi::Error::from_reason(format!(
"Failed to retrieve the query plan: {}",
convert_error(&e)
))
})
}
}

View File

@@ -72,10 +72,7 @@ impl Table {
/// Return Schema as empty Arrow IPC file.
#[napi(catch_unwind)]
pub async fn schema(&self) -> napi::Result<Buffer> {
let schema =
self.inner_ref()?.schema().await.map_err(|e| {
napi::Error::from_reason(format!("Failed to create IPC file: {}", e))
})?;
let schema = self.inner_ref()?.schema().await.default_error()?;
let mut writer = FileWriter::try_new(vec![], &schema)
.map_err(|e| napi::Error::from_reason(format!("Failed to create IPC file: {}", e)))?;
writer
@@ -100,12 +97,7 @@ impl Table {
return Err(napi::Error::from_reason(format!("Invalid mode: {}", mode)));
};
op.execute().await.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to add batches to table {}: {}",
self.name, e
))
})
op.execute().await.default_error()
}
#[napi(catch_unwind)]
@@ -114,22 +106,12 @@ impl Table {
.count_rows(filter)
.await
.map(|val| val as i64)
.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to count rows in table {}: {}",
self.name, e
))
})
.default_error()
}
#[napi(catch_unwind)]
pub async fn delete(&self, predicate: String) -> napi::Result<()> {
self.inner_ref()?.delete(&predicate).await.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to delete rows in table {}: predicate={}",
self.name, e
))
})
self.inner_ref()?.delete(&predicate).await.default_error()
}
#[napi(catch_unwind)]
@@ -187,12 +169,7 @@ impl Table {
self.inner_ref()?
.add_columns(transforms, None)
.await
.map_err(|err| {
napi::Error::from_reason(format!(
"Failed to add columns to table {}: {}",
self.name, err
))
})?;
.default_error()?;
Ok(())
}
@@ -213,12 +190,7 @@ impl Table {
self.inner_ref()?
.alter_columns(&alterations)
.await
.map_err(|err| {
napi::Error::from_reason(format!(
"Failed to alter columns in table {}: {}",
self.name, err
))
})?;
.default_error()?;
Ok(())
}
@@ -228,12 +200,7 @@ impl Table {
self.inner_ref()?
.drop_columns(&col_refs)
.await
.map_err(|err| {
napi::Error::from_reason(format!(
"Failed to drop columns from table {}: {}",
self.name, err
))
})?;
.default_error()?;
Ok(())
}

View File

@@ -12,7 +12,7 @@
"experimentalDecorators": true,
"moduleResolution": "Node"
},
"exclude": ["./dist/*"],
"exclude": ["./dist/*", "./examples/*"],
"typedocOptions": {
"entryPoints": ["lancedb/index.ts"],
"out": "../docs/src/javascript/",

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.14.1-beta.1"
current_version = "0.16.0-beta.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.14.1-beta.1"
version = "0.16.0-beta.0"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true
@@ -16,7 +16,7 @@ crate-type = ["cdylib"]
[dependencies]
arrow = { version = "52.1", features = ["pyarrow"] }
lancedb = { path = "../rust/lancedb" }
env_logger = "0.10"
env_logger.workspace = true
pyo3 = { version = "0.21", features = ["extension-module", "abi3-py38", "gil-refs"] }
# Using this fork for now: https://github.com/awestlake87/pyo3-asyncio/issues/119
# pyo3-asyncio = { version = "0.20", features = ["attributes", "tokio-runtime"] }

Some files were not shown because too many files have changed in this diff Show More