mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 05:19:58 +00:00
Compare commits
145 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f9789ec962 | ||
|
|
347515aa51 | ||
|
|
3324e7d525 | ||
|
|
ab5316b4fa | ||
|
|
db125013fc | ||
|
|
a43193c99b | ||
|
|
b70513ca72 | ||
|
|
78165801c6 | ||
|
|
6e5927ce6d | ||
|
|
6c1f32ac11 | ||
|
|
4fdf084777 | ||
|
|
1fad24fcd8 | ||
|
|
6ef20b85ca | ||
|
|
35bacdd57e | ||
|
|
a5ebe5a6c4 | ||
|
|
bf03ad1b4a | ||
|
|
2a9e3e2084 | ||
|
|
f298f15360 | ||
|
|
679b031b99 | ||
|
|
f50b5d532b | ||
|
|
fe655a15f0 | ||
|
|
9d0af794d0 | ||
|
|
048a2d10f8 | ||
|
|
c78a9849b4 | ||
|
|
c663085203 | ||
|
|
8b628854d5 | ||
|
|
a8d8c17b2a | ||
|
|
3c487e5fc7 | ||
|
|
d6219d687c | ||
|
|
239f725b32 | ||
|
|
5f261cf2d8 | ||
|
|
79eaa52184 | ||
|
|
bd82e1f66d | ||
|
|
ba34c3bee1 | ||
|
|
d4d0873e2b | ||
|
|
12c7bd18a5 | ||
|
|
c6bf6a25d6 | ||
|
|
c998a47e17 | ||
|
|
d8c758513c | ||
|
|
3795e02ee3 | ||
|
|
c7d424b2f3 | ||
|
|
1efb9914ee | ||
|
|
83e26a231e | ||
|
|
72a17b2de4 | ||
|
|
4231925476 | ||
|
|
84a6693294 | ||
|
|
6c2d4c10a4 | ||
|
|
d914722f79 | ||
|
|
a6e4034dba | ||
|
|
2616a50502 | ||
|
|
7b5e9d824a | ||
|
|
3b173e7cb9 | ||
|
|
d496ab13a0 | ||
|
|
69d9beebc7 | ||
|
|
d32360b99d | ||
|
|
9fa08bfa93 | ||
|
|
d6d9cb7415 | ||
|
|
990d93f553 | ||
|
|
0832cba3c6 | ||
|
|
38b0d91848 | ||
|
|
6826039575 | ||
|
|
3e9321fc40 | ||
|
|
2ded17452b | ||
|
|
dfd9d2ac99 | ||
|
|
162880140e | ||
|
|
99d9ced6d5 | ||
|
|
96933d7df8 | ||
|
|
d369233b3d | ||
|
|
43a670ed4b | ||
|
|
cb9a00a28d | ||
|
|
72af977a73 | ||
|
|
7cecb71df0 | ||
|
|
285071e5c8 | ||
|
|
114866fbcf | ||
|
|
5387c0e243 | ||
|
|
53d1535de1 | ||
|
|
b2f88f0b29 | ||
|
|
f2e3989831 | ||
|
|
83ae52938a | ||
|
|
267aa83bf8 | ||
|
|
cc72050206 | ||
|
|
72543c8b9d | ||
|
|
97d6210c33 | ||
|
|
a3d0c27b0a | ||
|
|
b23d8abcdd | ||
|
|
e3ea5cf9b9 | ||
|
|
4f8b086175 | ||
|
|
72330fb759 | ||
|
|
e3b2c5f438 | ||
|
|
66a881b33a | ||
|
|
a7515d6ee2 | ||
|
|
587c0824af | ||
|
|
b38a4269d0 | ||
|
|
119d88b9db | ||
|
|
74f660d223 | ||
|
|
b2b0979b90 | ||
|
|
ee2a40b182 | ||
|
|
4ca0b15354 | ||
|
|
d8c217b47d | ||
|
|
b724b1a01f | ||
|
|
abd75e0ead | ||
|
|
0fd8a50bd7 | ||
|
|
9f228feb0e | ||
|
|
90e9c52d0a | ||
|
|
68974a4e06 | ||
|
|
4c9bab0d92 | ||
|
|
5117aecc38 | ||
|
|
729718cb09 | ||
|
|
b1c84e0bda | ||
|
|
cbbc07d0f5 | ||
|
|
21021f94ca | ||
|
|
0ed77fa990 | ||
|
|
4372c231cd | ||
|
|
fa9ca8f7a6 | ||
|
|
2a35d24ee6 | ||
|
|
dd9ce337e2 | ||
|
|
b9921d56cc | ||
|
|
0cfd9ed18e | ||
|
|
975398c3a8 | ||
|
|
08d5f93f34 | ||
|
|
91cab3b556 | ||
|
|
c61bfc3af8 | ||
|
|
4e8c7b0adf | ||
|
|
26f4a80e10 | ||
|
|
3604d20ad3 | ||
|
|
9708d829a9 | ||
|
|
059c9794b5 | ||
|
|
15ed7f75a0 | ||
|
|
96181ab421 | ||
|
|
f3fc339ef6 | ||
|
|
113cd6995b | ||
|
|
02535bdc88 | ||
|
|
facc7d61c0 | ||
|
|
f947259f16 | ||
|
|
e291212ecf | ||
|
|
edc6445f6f | ||
|
|
a324f4ad7a | ||
|
|
55104c5bae | ||
|
|
d71df4572e | ||
|
|
aa269199ad | ||
|
|
32fdcf97db | ||
|
|
b9802a0d23 | ||
|
|
2ea5939f85 | ||
|
|
04e1f1ee4c | ||
|
|
bbc588e27d |
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.11.1-beta.0"
|
||||
current_version = "0.14.1-beta.1"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
@@ -87,11 +87,26 @@ glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-linux-arm64-musl\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-linux-arm64-musl\": \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-linux-x64-musl\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-linux-x64-musl\": \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-win32-x64-msvc\": \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-win32-arm64-msvc\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-win32-arm64-msvc\": \"{current_version}\""
|
||||
|
||||
# Cargo files
|
||||
# ------------
|
||||
[[tool.bumpversion.files]]
|
||||
|
||||
@@ -31,6 +31,9 @@ rustflags = [
|
||||
[target.x86_64-unknown-linux-gnu]
|
||||
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
|
||||
|
||||
[target.x86_64-unknown-linux-musl]
|
||||
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=-crt-static,+avx2,+fma,+f16c"]
|
||||
|
||||
[target.aarch64-apple-darwin]
|
||||
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
|
||||
|
||||
@@ -38,3 +41,7 @@ rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm
|
||||
# not found errors on systems that are missing it.
|
||||
[target.x86_64-pc-windows-msvc]
|
||||
rustflags = ["-Ctarget-feature=+crt-static"]
|
||||
|
||||
# Experimental target for Arm64 Windows
|
||||
[target.aarch64-pc-windows-msvc]
|
||||
rustflags = ["-Ctarget-feature=+crt-static"]
|
||||
10
.github/workflows/docs.yml
vendored
10
.github/workflows/docs.yml
vendored
@@ -31,7 +31,7 @@ jobs:
|
||||
- name: Install dependecies needed for ubuntu
|
||||
run: |
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
rustup update && rustup default
|
||||
rustup update && rustup default
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
@@ -41,8 +41,8 @@ jobs:
|
||||
- name: Build Python
|
||||
working-directory: python
|
||||
run: |
|
||||
python -m pip install -e .
|
||||
python -m pip install -r ../docs/requirements.txt
|
||||
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .
|
||||
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r ../docs/requirements.txt
|
||||
- name: Set up node
|
||||
uses: actions/setup-node@v3
|
||||
with:
|
||||
@@ -72,9 +72,9 @@ jobs:
|
||||
- name: Setup Pages
|
||||
uses: actions/configure-pages@v2
|
||||
- name: Upload artifact
|
||||
uses: actions/upload-pages-artifact@v1
|
||||
uses: actions/upload-pages-artifact@v3
|
||||
with:
|
||||
path: "docs/site"
|
||||
- name: Deploy to GitHub Pages
|
||||
id: deployment
|
||||
uses: actions/deploy-pages@v1
|
||||
uses: actions/deploy-pages@v4
|
||||
|
||||
2
.github/workflows/docs_test.yml
vendored
2
.github/workflows/docs_test.yml
vendored
@@ -49,7 +49,7 @@ jobs:
|
||||
- name: Build Python
|
||||
working-directory: docs/test
|
||||
run:
|
||||
python -m pip install -r requirements.txt
|
||||
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r requirements.txt
|
||||
- name: Create test files
|
||||
run: |
|
||||
cd docs/test
|
||||
|
||||
15
.github/workflows/nodejs.yml
vendored
15
.github/workflows/nodejs.yml
vendored
@@ -53,6 +53,9 @@ jobs:
|
||||
cargo clippy --all --all-features -- -D warnings
|
||||
npm ci
|
||||
npm run lint-ci
|
||||
- name: Lint examples
|
||||
working-directory: nodejs/examples
|
||||
run: npm ci && npm run lint-ci
|
||||
linux:
|
||||
name: Linux (NodeJS ${{ matrix.node-version }})
|
||||
timeout-minutes: 30
|
||||
@@ -91,6 +94,18 @@ jobs:
|
||||
env:
|
||||
S3_TEST: "1"
|
||||
run: npm run test
|
||||
- name: Setup examples
|
||||
working-directory: nodejs/examples
|
||||
run: npm ci
|
||||
- name: Test examples
|
||||
working-directory: ./
|
||||
env:
|
||||
OPENAI_API_KEY: test
|
||||
OPENAI_BASE_URL: http://0.0.0.0:8000
|
||||
run: |
|
||||
python ci/mock_openai.py &
|
||||
cd nodejs/examples
|
||||
npm test
|
||||
macos:
|
||||
timeout-minutes: 30
|
||||
runs-on: "macos-14"
|
||||
|
||||
220
.github/workflows/npm-publish.yml
vendored
220
.github/workflows/npm-publish.yml
vendored
@@ -101,7 +101,7 @@ jobs:
|
||||
path: |
|
||||
nodejs/dist/*.node
|
||||
|
||||
node-linux:
|
||||
node-linux-gnu:
|
||||
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
|
||||
runs-on: ${{ matrix.config.runner }}
|
||||
# Only runs on tags that matches the make-release action
|
||||
@@ -133,15 +133,67 @@ jobs:
|
||||
free -h
|
||||
- name: Build Linux Artifacts
|
||||
run: |
|
||||
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
|
||||
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-gnu
|
||||
- name: Upload Linux Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: node-native-linux-${{ matrix.config.arch }}
|
||||
name: node-native-linux-${{ matrix.config.arch }}-gnu
|
||||
path: |
|
||||
node/dist/lancedb-vectordb-linux*.tgz
|
||||
|
||||
nodejs-linux:
|
||||
node-linux-musl:
|
||||
name: vectordb (${{ matrix.config.arch}}-unknown-linux-musl)
|
||||
runs-on: ubuntu-latest
|
||||
container: alpine:edge
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
config:
|
||||
- arch: x86_64
|
||||
- arch: aarch64
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Install common dependencies
|
||||
run: |
|
||||
apk add protobuf-dev curl clang mold grep npm bash
|
||||
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
|
||||
echo "source $HOME/.cargo/env" >> saved_env
|
||||
echo "export CC=clang" >> saved_env
|
||||
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
|
||||
- name: Configure aarch64 build
|
||||
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||
run: |
|
||||
source "$HOME/.cargo/env"
|
||||
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
|
||||
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
|
||||
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
|
||||
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
|
||||
curl -sSf $apk_url > apk_list
|
||||
for pkg in gcc libgcc musl; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
|
||||
mkdir -p $sysroot_lib
|
||||
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
|
||||
cp usr/lib/libgcc_s.so.1 $sysroot_lib
|
||||
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
|
||||
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
|
||||
echo '!<arch>' > $sysroot_lib/libdl.a
|
||||
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
|
||||
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
|
||||
echo "export RUSTFLAGS='-Ctarget-cpu=apple-m1 -Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
|
||||
- name: Build Linux Artifacts
|
||||
run: |
|
||||
source ./saved_env
|
||||
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-musl
|
||||
- name: Upload Linux Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: node-native-linux-${{ matrix.config.arch }}-musl
|
||||
path: |
|
||||
node/dist/lancedb-vectordb-linux*.tgz
|
||||
|
||||
nodejs-linux-gnu:
|
||||
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||
runs-on: ${{ matrix.config.runner }}
|
||||
# Only runs on tags that matches the make-release action
|
||||
@@ -178,7 +230,7 @@ jobs:
|
||||
- name: Upload Linux Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: nodejs-native-linux-${{ matrix.config.arch }}
|
||||
name: nodejs-native-linux-${{ matrix.config.arch }}-gnu
|
||||
path: |
|
||||
nodejs/dist/*.node
|
||||
# The generic files are the same in all distros so we just pick
|
||||
@@ -192,6 +244,62 @@ jobs:
|
||||
nodejs/dist/*
|
||||
!nodejs/dist/*.node
|
||||
|
||||
nodejs-linux-musl:
|
||||
name: lancedb (${{ matrix.config.arch}}-unknown-linux-musl
|
||||
runs-on: ubuntu-latest
|
||||
container: alpine:edge
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
config:
|
||||
- arch: x86_64
|
||||
- arch: aarch64
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Install common dependencies
|
||||
run: |
|
||||
apk add protobuf-dev curl clang mold grep npm bash openssl-dev openssl-libs-static
|
||||
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
|
||||
echo "source $HOME/.cargo/env" >> saved_env
|
||||
echo "export CC=clang" >> saved_env
|
||||
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
|
||||
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=/usr/include" >> saved_env
|
||||
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=/usr/lib" >> saved_env
|
||||
- name: Configure aarch64 build
|
||||
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||
run: |
|
||||
source "$HOME/.cargo/env"
|
||||
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
|
||||
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
|
||||
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
|
||||
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
|
||||
curl -sSf $apk_url > apk_list
|
||||
for pkg in gcc libgcc musl openssl-dev openssl-libs-static; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
|
||||
mkdir -p $sysroot_lib
|
||||
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
|
||||
cp usr/lib/libgcc_s.so.1 $sysroot_lib
|
||||
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
|
||||
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
|
||||
echo '!<arch>' > $sysroot_lib/libdl.a
|
||||
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
|
||||
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
|
||||
echo "export RUSTFLAGS='-Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
|
||||
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=$(realpath usr/include)" >> saved_env
|
||||
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=$(realpath usr/lib)" >> saved_env
|
||||
- name: Build Linux Artifacts
|
||||
run: |
|
||||
source ./saved_env
|
||||
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
|
||||
- name: Upload Linux Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: nodejs-native-linux-${{ matrix.config.arch }}-musl
|
||||
path: |
|
||||
nodejs/dist/*.node
|
||||
|
||||
node-windows:
|
||||
name: vectordb ${{ matrix.target }}
|
||||
runs-on: windows-2022
|
||||
@@ -226,6 +334,51 @@ jobs:
|
||||
path: |
|
||||
node/dist/lancedb-vectordb-win32*.tgz
|
||||
|
||||
node-windows-arm64:
|
||||
name: vectordb ${{ matrix.config.arch }}-pc-windows-msvc
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
runs-on: ubuntu-latest
|
||||
container: alpine:edge
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
config:
|
||||
# - arch: x86_64
|
||||
- arch: aarch64
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
apk add protobuf-dev curl clang lld llvm19 grep npm bash msitools sed
|
||||
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
|
||||
echo "source $HOME/.cargo/env" >> saved_env
|
||||
echo "export CC=clang" >> saved_env
|
||||
echo "export AR=llvm-ar" >> saved_env
|
||||
source "$HOME/.cargo/env"
|
||||
rustup target add ${{ matrix.config.arch }}-pc-windows-msvc --toolchain 1.80.0
|
||||
(mkdir -p sysroot && cd sysroot && sh ../ci/sysroot-${{ matrix.config.arch }}-pc-windows-msvc.sh)
|
||||
echo "export C_INCLUDE_PATH=/usr/${{ matrix.config.arch }}-pc-windows-msvc/usr/include" >> saved_env
|
||||
echo "export CARGO_BUILD_TARGET=${{ matrix.config.arch }}-pc-windows-msvc" >> saved_env
|
||||
- name: Configure x86_64 build
|
||||
if: ${{ matrix.config.arch == 'x86_64' }}
|
||||
run: |
|
||||
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=+crt-static,+avx2,+fma,+f16c -Clinker=lld -Clink-arg=/LIBPATH:/usr/x86_64-pc-windows-msvc/usr/lib'" >> saved_env
|
||||
- name: Configure aarch64 build
|
||||
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||
run: |
|
||||
echo "export RUSTFLAGS='-Ctarget-feature=+crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=lld -Clink-arg=/LIBPATH:/usr/aarch64-pc-windows-msvc/usr/lib -Clink-arg=arm64rt.lib'" >> saved_env
|
||||
- name: Build Windows Artifacts
|
||||
run: |
|
||||
source ./saved_env
|
||||
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-pc-windows-msvc
|
||||
- name: Upload Windows Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: node-native-windows-${{ matrix.config.arch }}
|
||||
path: |
|
||||
node/dist/lancedb-vectordb-win32*.tgz
|
||||
|
||||
nodejs-windows:
|
||||
name: lancedb ${{ matrix.target }}
|
||||
runs-on: windows-2022
|
||||
@@ -260,9 +413,57 @@ jobs:
|
||||
path: |
|
||||
nodejs/dist/*.node
|
||||
|
||||
nodejs-windows-arm64:
|
||||
name: lancedb ${{ matrix.config.arch }}-pc-windows-msvc
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
runs-on: ubuntu-latest
|
||||
container: alpine:edge
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
config:
|
||||
# - arch: x86_64
|
||||
- arch: aarch64
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
apk add protobuf-dev curl clang lld llvm19 grep npm bash msitools sed
|
||||
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
|
||||
echo "source $HOME/.cargo/env" >> saved_env
|
||||
echo "export CC=clang" >> saved_env
|
||||
echo "export AR=llvm-ar" >> saved_env
|
||||
source "$HOME/.cargo/env"
|
||||
rustup target add ${{ matrix.config.arch }}-pc-windows-msvc --toolchain 1.80.0
|
||||
(mkdir -p sysroot && cd sysroot && sh ../ci/sysroot-${{ matrix.config.arch }}-pc-windows-msvc.sh)
|
||||
echo "export C_INCLUDE_PATH=/usr/${{ matrix.config.arch }}-pc-windows-msvc/usr/include" >> saved_env
|
||||
echo "export CARGO_BUILD_TARGET=${{ matrix.config.arch }}-pc-windows-msvc" >> saved_env
|
||||
printf '#!/bin/sh\ncargo "$@"' > $HOME/.cargo/bin/cargo-xwin
|
||||
chmod u+x $HOME/.cargo/bin/cargo-xwin
|
||||
- name: Configure x86_64 build
|
||||
if: ${{ matrix.config.arch == 'x86_64' }}
|
||||
run: |
|
||||
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=+crt-static,+avx2,+fma,+f16c -Clinker=lld -Clink-arg=/LIBPATH:/usr/x86_64-pc-windows-msvc/usr/lib'" >> saved_env
|
||||
- name: Configure aarch64 build
|
||||
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||
run: |
|
||||
echo "export RUSTFLAGS='-Ctarget-feature=+crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=lld -Clink-arg=/LIBPATH:/usr/aarch64-pc-windows-msvc/usr/lib -Clink-arg=arm64rt.lib'" >> saved_env
|
||||
- name: Build Windows Artifacts
|
||||
run: |
|
||||
source ./saved_env
|
||||
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
|
||||
- name: Upload Windows Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: nodejs-native-windows-${{ matrix.config.arch }}
|
||||
path: |
|
||||
nodejs/dist/*.node
|
||||
|
||||
release:
|
||||
name: vectordb NPM Publish
|
||||
needs: [node, node-macos, node-linux, node-windows]
|
||||
needs: [node, node-macos, node-linux-gnu, node-linux-musl, node-windows, node-windows-arm64]
|
||||
runs-on: ubuntu-latest
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
@@ -280,7 +481,7 @@ jobs:
|
||||
env:
|
||||
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
|
||||
run: |
|
||||
# Tag beta as "preview" instead of default "latest". See lancedb
|
||||
# Tag beta as "preview" instead of default "latest". See lancedb
|
||||
# npm publish step for more info.
|
||||
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
|
||||
PUBLISH_ARGS="--tag preview"
|
||||
@@ -302,7 +503,7 @@ jobs:
|
||||
|
||||
release-nodejs:
|
||||
name: lancedb NPM Publish
|
||||
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
|
||||
needs: [nodejs-macos, nodejs-linux-gnu, nodejs-linux-musl, nodejs-windows, nodejs-windows-arm64]
|
||||
runs-on: ubuntu-latest
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
@@ -360,6 +561,7 @@ jobs:
|
||||
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
|
||||
|
||||
update-package-lock:
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
needs: [release]
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
@@ -377,6 +579,7 @@ jobs:
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
update-package-lock-nodejs:
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
needs: [release-nodejs]
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
@@ -394,6 +597,7 @@ jobs:
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
gh-release:
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
2
.github/workflows/pypi-publish.yml
vendored
2
.github/workflows/pypi-publish.yml
vendored
@@ -83,7 +83,7 @@ jobs:
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.8
|
||||
python-version: 3.12
|
||||
- uses: ./.github/workflows/build_windows_wheel
|
||||
with:
|
||||
python-minor-version: 8
|
||||
|
||||
2
.github/workflows/python.yml
vendored
2
.github/workflows/python.yml
vendored
@@ -138,7 +138,7 @@ jobs:
|
||||
run: rm -rf target/wheels
|
||||
windows:
|
||||
name: "Windows: ${{ matrix.config.name }}"
|
||||
timeout-minutes: 30
|
||||
timeout-minutes: 60
|
||||
strategy:
|
||||
matrix:
|
||||
config:
|
||||
|
||||
169
.github/workflows/rust.yml
vendored
169
.github/workflows/rust.yml
vendored
@@ -35,21 +35,22 @@ jobs:
|
||||
CC: clang-18
|
||||
CXX: clang++-18
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Run format
|
||||
run: cargo fmt --all -- --check
|
||||
- name: Run clippy
|
||||
run: cargo clippy --workspace --tests --all-features -- -D warnings
|
||||
- name: Run format
|
||||
run: cargo fmt --all -- --check
|
||||
- name: Run clippy
|
||||
run: cargo clippy --workspace --tests --all-features -- -D warnings
|
||||
|
||||
linux:
|
||||
timeout-minutes: 30
|
||||
# To build all features, we need more disk space than is available
|
||||
@@ -65,37 +66,38 @@ jobs:
|
||||
CC: clang-18
|
||||
CXX: clang++-18
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Make Swap
|
||||
run: |
|
||||
sudo fallocate -l 16G /swapfile
|
||||
sudo chmod 600 /swapfile
|
||||
sudo mkswap /swapfile
|
||||
sudo swapon /swapfile
|
||||
- name: Start S3 integration test environment
|
||||
working-directory: .
|
||||
run: docker compose up --detach --wait
|
||||
- name: Build
|
||||
run: cargo build --all-features
|
||||
- name: Run tests
|
||||
run: cargo test --all-features
|
||||
- name: Run examples
|
||||
run: cargo run --example simple
|
||||
- name: Make Swap
|
||||
run: |
|
||||
sudo fallocate -l 16G /swapfile
|
||||
sudo chmod 600 /swapfile
|
||||
sudo mkswap /swapfile
|
||||
sudo swapon /swapfile
|
||||
- name: Start S3 integration test environment
|
||||
working-directory: .
|
||||
run: docker compose up --detach --wait
|
||||
- name: Build
|
||||
run: cargo build --all-features
|
||||
- name: Run tests
|
||||
run: cargo test --all-features
|
||||
- name: Run examples
|
||||
run: cargo run --example simple
|
||||
|
||||
macos:
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
matrix:
|
||||
mac-runner: [ "macos-13", "macos-14" ]
|
||||
mac-runner: ["macos-13", "macos-14"]
|
||||
runs-on: "${{ matrix.mac-runner }}"
|
||||
defaults:
|
||||
run:
|
||||
@@ -104,8 +106,8 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: CPU features
|
||||
run: sysctl -a | grep cpu
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
@@ -118,6 +120,7 @@ jobs:
|
||||
- name: Run tests
|
||||
# Run with everything except the integration tests.
|
||||
run: cargo test --features remote,fp16kernels
|
||||
|
||||
windows:
|
||||
runs-on: windows-2022
|
||||
steps:
|
||||
@@ -139,3 +142,99 @@ jobs:
|
||||
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
|
||||
cargo build
|
||||
cargo test
|
||||
|
||||
windows-arm64:
|
||||
runs-on: windows-4x-arm
|
||||
steps:
|
||||
- name: Install Git
|
||||
run: |
|
||||
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
|
||||
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
|
||||
shell: powershell
|
||||
- name: Add Git to PATH
|
||||
run: |
|
||||
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
|
||||
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
|
||||
shell: powershell
|
||||
- name: Configure Git symlinks
|
||||
run: git config --global core.symlinks true
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.13"
|
||||
- name: Install Visual Studio Build Tools
|
||||
run: |
|
||||
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
|
||||
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
|
||||
"--installPath", "C:\BuildTools", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
|
||||
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
|
||||
shell: powershell
|
||||
- name: Add Visual Studio Build Tools to PATH
|
||||
run: |
|
||||
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
|
||||
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
|
||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
|
||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
|
||||
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
|
||||
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
|
||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
|
||||
|
||||
# Add MSVC runtime libraries to LIB
|
||||
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
|
||||
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
|
||||
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
|
||||
Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
|
||||
|
||||
# Add INCLUDE paths
|
||||
$env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
|
||||
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
|
||||
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
|
||||
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
|
||||
Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
|
||||
shell: powershell
|
||||
- name: Install Rust
|
||||
run: |
|
||||
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
|
||||
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
|
||||
shell: powershell
|
||||
- name: Add Rust to PATH
|
||||
run: |
|
||||
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
|
||||
shell: powershell
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
- name: Install 7-Zip ARM
|
||||
run: |
|
||||
New-Item -Path 'C:\7zip' -ItemType Directory
|
||||
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
|
||||
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
|
||||
shell: powershell
|
||||
- name: Add 7-Zip to PATH
|
||||
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
|
||||
shell: powershell
|
||||
- name: Install Protoc v21.12
|
||||
working-directory: C:\
|
||||
run: |
|
||||
if (Test-Path 'C:\protoc') {
|
||||
Write-Host "Protoc directory exists, skipping installation"
|
||||
return
|
||||
}
|
||||
New-Item -Path 'C:\protoc' -ItemType Directory
|
||||
Set-Location C:\protoc
|
||||
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
|
||||
shell: powershell
|
||||
- name: Add Protoc to PATH
|
||||
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||
shell: powershell
|
||||
- name: Run tests
|
||||
run: |
|
||||
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
|
||||
cargo build --target aarch64-pc-windows-msvc
|
||||
cargo test --target aarch64-pc-windows-msvc
|
||||
|
||||
1
.github/workflows/upload_wheel/action.yml
vendored
1
.github/workflows/upload_wheel/action.yml
vendored
@@ -17,6 +17,7 @@ runs:
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install twine
|
||||
python3 -m pip install --upgrade pkginfo
|
||||
- name: Choose repo
|
||||
shell: bash
|
||||
id: choose_repo
|
||||
|
||||
39
Cargo.toml
39
Cargo.toml
@@ -18,30 +18,33 @@ repository = "https://github.com/lancedb/lancedb"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
keywords = ["lancedb", "lance", "database", "vector", "search"]
|
||||
categories = ["database-implementations"]
|
||||
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.18.3", "features" = [
|
||||
lance = { "version" = "=0.20.0", "features" = [
|
||||
"dynamodb",
|
||||
], git = "https://github.com/lancedb/lance.git", tag = "v0.18.3-beta.2" }
|
||||
lance-index = { "version" = "=0.18.3", git = "https://github.com/lancedb/lance.git", tag = "v0.18.3-beta.2" }
|
||||
lance-linalg = { "version" = "=0.18.3", git = "https://github.com/lancedb/lance.git", tag = "v0.18.3-beta.2" }
|
||||
lance-table = { "version" = "=0.18.3", git = "https://github.com/lancedb/lance.git", tag = "v0.18.3-beta.2" }
|
||||
lance-testing = { "version" = "=0.18.3", git = "https://github.com/lancedb/lance.git", tag = "v0.18.3-beta.2" }
|
||||
lance-datafusion = { "version" = "=0.18.3", git = "https://github.com/lancedb/lance.git", tag = "v0.18.3-beta.2" }
|
||||
lance-encoding = { "version" = "=0.18.3", git = "https://github.com/lancedb/lance.git", tag = "v0.18.3-beta.2" }
|
||||
] }
|
||||
lance-io = "0.20.0"
|
||||
lance-index = "0.20.0"
|
||||
lance-linalg = "0.20.0"
|
||||
lance-table = "0.20.0"
|
||||
lance-testing = "0.20.0"
|
||||
lance-datafusion = "0.20.0"
|
||||
lance-encoding = "0.20.0"
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "52.2", optional = false }
|
||||
arrow-array = "52.2"
|
||||
arrow-data = "52.2"
|
||||
arrow-ipc = "52.2"
|
||||
arrow-ord = "52.2"
|
||||
arrow-schema = "52.2"
|
||||
arrow-arith = "52.2"
|
||||
arrow-cast = "52.2"
|
||||
arrow = { version = "53.2", optional = false }
|
||||
arrow-array = "53.2"
|
||||
arrow-data = "53.2"
|
||||
arrow-ipc = "53.2"
|
||||
arrow-ord = "53.2"
|
||||
arrow-schema = "53.2"
|
||||
arrow-arith = "53.2"
|
||||
arrow-cast = "53.2"
|
||||
async-trait = "0"
|
||||
chrono = "0.4.35"
|
||||
datafusion-common = "41.0"
|
||||
datafusion-physical-plan = "41.0"
|
||||
datafusion-common = "42.0"
|
||||
datafusion-physical-plan = "42.0"
|
||||
env_logger = "0.10"
|
||||
half = { "version" = "=2.4.1", default-features = false, features = [
|
||||
"num-traits",
|
||||
] }
|
||||
|
||||
@@ -10,6 +10,7 @@
|
||||
[](https://blog.lancedb.com/)
|
||||
[](https://discord.gg/zMM32dvNtd)
|
||||
[](https://twitter.com/lancedb)
|
||||
[](https://gurubase.io/g/lancedb)
|
||||
|
||||
</p>
|
||||
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
ARCH=${1:-x86_64}
|
||||
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
|
||||
|
||||
# We pass down the current user so that when we later mount the local files
|
||||
# We pass down the current user so that when we later mount the local files
|
||||
# into the container, the files are accessible by the current user.
|
||||
pushd ci/manylinux_node
|
||||
docker build \
|
||||
@@ -18,4 +19,4 @@ docker run \
|
||||
-v $(pwd):/io -w /io \
|
||||
--memory-swap=-1 \
|
||||
lancedb-node-manylinux \
|
||||
bash ci/manylinux_node/build_vectordb.sh $ARCH
|
||||
bash ci/manylinux_node/build_vectordb.sh $ARCH $TARGET_TRIPLE
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
# Targets supported:
|
||||
# - x86_64-pc-windows-msvc
|
||||
# - i686-pc-windows-msvc
|
||||
# - aarch64-pc-windows-msvc
|
||||
|
||||
function Prebuild-Rust {
|
||||
param (
|
||||
@@ -31,7 +32,7 @@ function Build-NodeBinaries {
|
||||
|
||||
$targets = $args[0]
|
||||
if (-not $targets) {
|
||||
$targets = "x86_64-pc-windows-msvc"
|
||||
$targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc"
|
||||
}
|
||||
|
||||
Write-Host "Building artifacts for targets: $targets"
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
# Targets supported:
|
||||
# - x86_64-pc-windows-msvc
|
||||
# - i686-pc-windows-msvc
|
||||
# - aarch64-pc-windows-msvc
|
||||
|
||||
function Prebuild-Rust {
|
||||
param (
|
||||
@@ -31,7 +32,7 @@ function Build-NodeBinaries {
|
||||
|
||||
$targets = $args[0]
|
||||
if (-not $targets) {
|
||||
$targets = "x86_64-pc-windows-msvc"
|
||||
$targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc"
|
||||
}
|
||||
|
||||
Write-Host "Building artifacts for targets: $targets"
|
||||
|
||||
@@ -11,7 +11,8 @@ fi
|
||||
export OPENSSL_STATIC=1
|
||||
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
||||
|
||||
source $HOME/.bashrc
|
||||
#Alpine doesn't have .bashrc
|
||||
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
|
||||
|
||||
cd nodejs
|
||||
npm ci
|
||||
|
||||
@@ -2,18 +2,20 @@
|
||||
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
|
||||
set -e
|
||||
ARCH=${1:-x86_64}
|
||||
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
|
||||
|
||||
if [ "$ARCH" = "x86_64" ]; then
|
||||
export OPENSSL_LIB_DIR=/usr/local/lib64/
|
||||
else
|
||||
else
|
||||
export OPENSSL_LIB_DIR=/usr/local/lib/
|
||||
fi
|
||||
export OPENSSL_STATIC=1
|
||||
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
||||
|
||||
source $HOME/.bashrc
|
||||
#Alpine doesn't have .bashrc
|
||||
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
|
||||
|
||||
cd node
|
||||
npm ci
|
||||
npm run build-release
|
||||
npm run pack-build
|
||||
npm run pack-build -- -t $TARGET_TRIPLE
|
||||
|
||||
57
ci/mock_openai.py
Normal file
57
ci/mock_openai.py
Normal file
@@ -0,0 +1,57 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
"""A zero-dependency mock OpenAI embeddings API endpoint for testing purposes."""
|
||||
import argparse
|
||||
import json
|
||||
import http.server
|
||||
|
||||
|
||||
class MockOpenAIRequestHandler(http.server.BaseHTTPRequestHandler):
|
||||
def do_POST(self):
|
||||
content_length = int(self.headers["Content-Length"])
|
||||
post_data = self.rfile.read(content_length)
|
||||
post_data = json.loads(post_data.decode("utf-8"))
|
||||
# See: https://platform.openai.com/docs/api-reference/embeddings/create
|
||||
|
||||
if isinstance(post_data["input"], str):
|
||||
num_inputs = 1
|
||||
else:
|
||||
num_inputs = len(post_data["input"])
|
||||
|
||||
model = post_data.get("model", "text-embedding-ada-002")
|
||||
|
||||
data = []
|
||||
for i in range(num_inputs):
|
||||
data.append({
|
||||
"object": "embedding",
|
||||
"embedding": [0.1] * 1536,
|
||||
"index": i,
|
||||
})
|
||||
|
||||
response = {
|
||||
"object": "list",
|
||||
"data": data,
|
||||
"model": model,
|
||||
"usage": {
|
||||
"prompt_tokens": 0,
|
||||
"total_tokens": 0,
|
||||
}
|
||||
}
|
||||
|
||||
self.send_response(200)
|
||||
self.send_header("Content-type", "application/json")
|
||||
self.end_headers()
|
||||
self.wfile.write(json.dumps(response).encode("utf-8"))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Mock OpenAI embeddings API endpoint")
|
||||
parser.add_argument("--port", type=int, default=8000, help="Port to listen on")
|
||||
args = parser.parse_args()
|
||||
port = args.port
|
||||
|
||||
print(f"server started on port {port}. Press Ctrl-C to stop.")
|
||||
print(f"To use, set OPENAI_BASE_URL=http://localhost:{port} in your environment.")
|
||||
|
||||
with http.server.HTTPServer(("0.0.0.0", port), MockOpenAIRequestHandler) as server:
|
||||
server.serve_forever()
|
||||
105
ci/sysroot-aarch64-pc-windows-msvc.sh
Normal file
105
ci/sysroot-aarch64-pc-windows-msvc.sh
Normal file
@@ -0,0 +1,105 @@
|
||||
#!/bin/sh
|
||||
|
||||
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
|
||||
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
|
||||
|
||||
# function dl() {
|
||||
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
|
||||
# }
|
||||
|
||||
# [[.h]]
|
||||
|
||||
# "id": "Win11SDK_10.0.26100"
|
||||
# "version": "10.0.26100.7"
|
||||
|
||||
# libucrt.lib
|
||||
|
||||
# example: <assert.h>
|
||||
# dir: ucrt/
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
|
||||
|
||||
# example: <windows.h>
|
||||
# dir: um/
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
|
||||
|
||||
# example: <winapifamily.h>
|
||||
# dir: /shared
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
|
||||
|
||||
|
||||
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
|
||||
# "version": "14.16.27045"
|
||||
|
||||
# example: <vcruntime.h>
|
||||
# dir: MSVC/
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
|
||||
|
||||
# [[.lib]]
|
||||
|
||||
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
|
||||
|
||||
# fwpuclnt.lib arm64rt.lib
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7a332420d812f7c1d41da865ae5a7c52/windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/19de98ed4a79938d0045d19c047936b3/3e2f7be479e3679d700ce0782e4cc318.cab
|
||||
|
||||
# libcmt.lib libvcruntime.lib
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/227f40682a88dc5fa0ccb9cadc9ad30af99ad1f1a75db63407587d079f60d035/Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
|
||||
|
||||
|
||||
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
|
||||
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
|
||||
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
|
||||
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
|
||||
msiextract windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
|
||||
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
|
||||
unzip -o Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
|
||||
|
||||
mkdir -p /usr/aarch64-pc-windows-msvc/usr/include
|
||||
mkdir -p /usr/aarch64-pc-windows-msvc/usr/lib
|
||||
|
||||
# lowercase folder/file names
|
||||
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
|
||||
|
||||
# .h
|
||||
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/aarch64-pc-windows-msvc/usr/include)
|
||||
|
||||
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/aarch64-pc-windows-msvc/usr/include
|
||||
|
||||
# lowercase #include "" and #include <>
|
||||
find /usr/aarch64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
|
||||
|
||||
# ARM intrinsics
|
||||
# original dir: MSVC/
|
||||
|
||||
# '__n128x4' redefined in arm_neon.h
|
||||
# "arm64_neon.h" included from intrin.h
|
||||
|
||||
(cd /usr/lib/llvm19/lib/clang/19/include && cp arm_neon.h intrin.h -t /usr/aarch64-pc-windows-msvc/usr/include)
|
||||
|
||||
# .lib
|
||||
|
||||
# _Interlocked intrinsics
|
||||
# must always link with arm64rt.lib
|
||||
# reason: https://developercommunity.visualstudio.com/t/libucrtlibstreamobj-error-lnk2001-unresolved-exter/1544787#T-ND1599818
|
||||
# I don't understand the 'correct' fix for this, arm64rt.lib is supposed to be the workaround
|
||||
|
||||
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/arm64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib fwpuclnt.lib arm64rt.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
|
||||
|
||||
(cd 'contents/vc/tools/msvc/14.16.27023/lib/arm64' && cp libcmt.lib libvcruntime.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
|
||||
|
||||
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/arm64/libucrt.lib' /usr/aarch64-pc-windows-msvc/usr/lib
|
||||
105
ci/sysroot-x86_64-pc-windows-msvc.sh
Normal file
105
ci/sysroot-x86_64-pc-windows-msvc.sh
Normal file
@@ -0,0 +1,105 @@
|
||||
#!/bin/sh
|
||||
|
||||
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
|
||||
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
|
||||
|
||||
# function dl() {
|
||||
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
|
||||
# }
|
||||
|
||||
# [[.h]]
|
||||
|
||||
# "id": "Win11SDK_10.0.26100"
|
||||
# "version": "10.0.26100.7"
|
||||
|
||||
# libucrt.lib
|
||||
|
||||
# example: <assert.h>
|
||||
# dir: ucrt/
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
|
||||
|
||||
# example: <windows.h>
|
||||
# dir: um/
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
|
||||
|
||||
# example: <winapifamily.h>
|
||||
# dir: /shared
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
|
||||
|
||||
|
||||
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
|
||||
# "version": "14.16.27045"
|
||||
|
||||
# example: <vcruntime.h>
|
||||
# dir: MSVC/
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
|
||||
|
||||
# [[.lib]]
|
||||
|
||||
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/bfc3904a0195453419ae4dfea7abd6fb/e10768bb6e9d0ea730280336b697da66.cab
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/637f9f3be880c71f9e3ca07b4d67345c/f9b24c8280986c0683fbceca5326d806.cab
|
||||
|
||||
# dbghelp.lib fwpuclnt.lib
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/9f51690d5aa804b1340ce12d1ec80f89/windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/d3a7df4ca3303a698640a29e558a5e5b/58314d0646d7e1a25e97c902166c3155.cab
|
||||
|
||||
# libcmt.lib libvcruntime.lib
|
||||
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/8728f21ae09940f1f4b4ee47b4a596be2509e2a47d2f0c83bbec0ea37d69644b/Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
|
||||
|
||||
|
||||
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
|
||||
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
|
||||
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
|
||||
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
|
||||
msiextract windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
|
||||
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
|
||||
unzip -o Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
|
||||
|
||||
mkdir -p /usr/x86_64-pc-windows-msvc/usr/include
|
||||
mkdir -p /usr/x86_64-pc-windows-msvc/usr/lib
|
||||
|
||||
# lowercase folder/file names
|
||||
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
|
||||
|
||||
# .h
|
||||
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/x86_64-pc-windows-msvc/usr/include)
|
||||
|
||||
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/x86_64-pc-windows-msvc/usr/include
|
||||
|
||||
# lowercase #include "" and #include <>
|
||||
find /usr/x86_64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
|
||||
|
||||
# x86 intrinsics
|
||||
# original dir: MSVC/
|
||||
|
||||
# '_mm_movemask_epi8' defined in emmintrin.h
|
||||
# '__v4sf' defined in xmmintrin.h
|
||||
# '__v2si' defined in mmintrin.h
|
||||
# '__m128d' redefined in immintrin.h
|
||||
# '__m128i' redefined in intrin.h
|
||||
# '_mm_comlt_epu8' defined in ammintrin.h
|
||||
|
||||
(cd /usr/lib/llvm19/lib/clang/19/include && cp emmintrin.h xmmintrin.h mmintrin.h immintrin.h intrin.h ammintrin.h -t /usr/x86_64-pc-windows-msvc/usr/include)
|
||||
|
||||
# .lib
|
||||
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/x64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib dbghelp.lib fwpuclnt.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
|
||||
|
||||
(cd 'contents/vc/tools/msvc/14.16.27023/lib/x64' && cp libcmt.lib libvcruntime.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
|
||||
|
||||
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/x64/libucrt.lib' /usr/x86_64-pc-windows-msvc/usr/lib
|
||||
@@ -55,6 +55,9 @@ plugins:
|
||||
show_signature_annotations: true
|
||||
show_root_heading: true
|
||||
members_order: source
|
||||
docstring_section_style: list
|
||||
signature_crossrefs: true
|
||||
separate_signature: true
|
||||
import:
|
||||
# for cross references
|
||||
- https://arrow.apache.org/docs/objects.inv
|
||||
@@ -100,7 +103,7 @@ nav:
|
||||
- 🏃🏼♂️ Quick start: basic.md
|
||||
- 📚 Concepts:
|
||||
- Vector search: concepts/vector_search.md
|
||||
- Indexing:
|
||||
- Indexing:
|
||||
- IVFPQ: concepts/index_ivfpq.md
|
||||
- HNSW: concepts/index_hnsw.md
|
||||
- Storage: concepts/storage.md
|
||||
@@ -109,7 +112,8 @@ nav:
|
||||
- Working with tables: guides/tables.md
|
||||
- Building a vector index: ann_indexes.md
|
||||
- Vector Search: search.md
|
||||
- Full-text search: fts.md
|
||||
- Full-text search (native): fts.md
|
||||
- Full-text search (tantivy-based): fts_tantivy.md
|
||||
- Building a scalar index: guides/scalar_index.md
|
||||
- Hybrid search:
|
||||
- Overview: hybrid_search/hybrid_search.md
|
||||
@@ -137,6 +141,7 @@ nav:
|
||||
- Jina Reranker: reranking/jina.md
|
||||
- OpenAI Reranker: reranking/openai.md
|
||||
- AnswerDotAi Rerankers: reranking/answerdotai.md
|
||||
- Voyage AI Rerankers: reranking/voyageai.md
|
||||
- Building Custom Rerankers: reranking/custom_reranker.md
|
||||
- Example: notebooks/lancedb_reranking.ipynb
|
||||
- Filtering: sql.md
|
||||
@@ -148,10 +153,10 @@ nav:
|
||||
- Reranking: guides/tuning_retrievers/2_reranking.md
|
||||
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
|
||||
- 🧬 Managing embeddings:
|
||||
- Understand Embeddings: embeddings/understanding_embeddings.md
|
||||
- Understand Embeddings: embeddings/understanding_embeddings.md
|
||||
- Get Started: embeddings/index.md
|
||||
- Embedding functions: embeddings/embedding_functions.md
|
||||
- Available models:
|
||||
- Available models:
|
||||
- Overview: embeddings/default_embedding_functions.md
|
||||
- Text Embedding Functions:
|
||||
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
|
||||
@@ -164,6 +169,7 @@ nav:
|
||||
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
|
||||
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
|
||||
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
|
||||
- Voyage AI Embeddings: embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
|
||||
- Multimodal Embedding Functions:
|
||||
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
|
||||
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
|
||||
@@ -200,7 +206,7 @@ nav:
|
||||
- Evaluation: examples/python_examples/evaluations.md
|
||||
- AI Agent: examples/python_examples/aiagent.md
|
||||
- Recommender System: examples/python_examples/recommendersystem.md
|
||||
- Miscellaneous:
|
||||
- Miscellaneous:
|
||||
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||
- 👾 JavaScript:
|
||||
@@ -210,9 +216,10 @@ nav:
|
||||
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||
- 🦀 Rust:
|
||||
- Overview: examples/examples_rust.md
|
||||
- Studies:
|
||||
- 📓 Studies:
|
||||
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
|
||||
- 💭 FAQs: faq.md
|
||||
- 🔍 Troubleshooting: troubleshooting.md
|
||||
- ⚙️ API reference:
|
||||
- 🐍 Python: python/python.md
|
||||
- 👾 JavaScript (vectordb): javascript/modules.md
|
||||
@@ -228,7 +235,7 @@ nav:
|
||||
- Quick start: basic.md
|
||||
- Concepts:
|
||||
- Vector search: concepts/vector_search.md
|
||||
- Indexing:
|
||||
- Indexing:
|
||||
- IVFPQ: concepts/index_ivfpq.md
|
||||
- HNSW: concepts/index_hnsw.md
|
||||
- Storage: concepts/storage.md
|
||||
@@ -237,7 +244,8 @@ nav:
|
||||
- Working with tables: guides/tables.md
|
||||
- Building an ANN index: ann_indexes.md
|
||||
- Vector Search: search.md
|
||||
- Full-text search: fts.md
|
||||
- Full-text search (native): fts.md
|
||||
- Full-text search (tantivy-based): fts_tantivy.md
|
||||
- Building a scalar index: guides/scalar_index.md
|
||||
- Hybrid search:
|
||||
- Overview: hybrid_search/hybrid_search.md
|
||||
@@ -276,10 +284,10 @@ nav:
|
||||
- Reranking: guides/tuning_retrievers/2_reranking.md
|
||||
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
|
||||
- Managing Embeddings:
|
||||
- Understand Embeddings: embeddings/understanding_embeddings.md
|
||||
- Understand Embeddings: embeddings/understanding_embeddings.md
|
||||
- Get Started: embeddings/index.md
|
||||
- Embedding functions: embeddings/embedding_functions.md
|
||||
- Available models:
|
||||
- Available models:
|
||||
- Overview: embeddings/default_embedding_functions.md
|
||||
- Text Embedding Functions:
|
||||
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
|
||||
@@ -324,7 +332,7 @@ nav:
|
||||
- Evaluation: examples/python_examples/evaluations.md
|
||||
- AI Agent: examples/python_examples/aiagent.md
|
||||
- Recommender System: examples/python_examples/recommendersystem.md
|
||||
- Miscellaneous:
|
||||
- Miscellaneous:
|
||||
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||
- 👾 JavaScript:
|
||||
@@ -367,5 +375,4 @@ extra:
|
||||
- icon: fontawesome/brands/x-twitter
|
||||
link: https://twitter.com/lancedb
|
||||
- icon: fontawesome/brands/linkedin
|
||||
link: https://www.linkedin.com/company/lancedb
|
||||
|
||||
link: https://www.linkedin.com/company/lancedb
|
||||
|
||||
21
docs/package-lock.json
generated
21
docs/package-lock.json
generated
@@ -19,7 +19,7 @@
|
||||
},
|
||||
"../node": {
|
||||
"name": "vectordb",
|
||||
"version": "0.4.6",
|
||||
"version": "0.12.0",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -31,9 +31,7 @@
|
||||
"win32"
|
||||
],
|
||||
"dependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
"@neon-rs/load": "^0.0.74",
|
||||
"apache-arrow": "^14.0.2",
|
||||
"axios": "^1.4.0"
|
||||
},
|
||||
"devDependencies": {
|
||||
@@ -46,6 +44,7 @@
|
||||
"@types/temp": "^0.9.1",
|
||||
"@types/uuid": "^9.0.3",
|
||||
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||
"apache-arrow-old": "npm:apache-arrow@13.0.0",
|
||||
"cargo-cp-artifact": "^0.1",
|
||||
"chai": "^4.3.7",
|
||||
"chai-as-promised": "^7.1.1",
|
||||
@@ -62,15 +61,19 @@
|
||||
"ts-node-dev": "^2.0.0",
|
||||
"typedoc": "^0.24.7",
|
||||
"typedoc-plugin-markdown": "^3.15.3",
|
||||
"typescript": "*",
|
||||
"typescript": "^5.1.0",
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.6",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.6",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.12.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.12.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.12.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.12.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
"apache-arrow": "^14.0.2"
|
||||
}
|
||||
},
|
||||
"../node/node_modules/apache-arrow": {
|
||||
|
||||
@@ -45,9 +45,9 @@ Lance supports `IVF_PQ` index type by default.
|
||||
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
|
||||
|
||||
```typescript
|
||||
--8<--- "nodejs/examples/ann_indexes.ts:import"
|
||||
--8<--- "nodejs/examples/ann_indexes.test.ts:import"
|
||||
|
||||
--8<-- "nodejs/examples/ann_indexes.ts:ingest"
|
||||
--8<-- "nodejs/examples/ann_indexes.test.ts:ingest"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -83,6 +83,7 @@ The following IVF_PQ paramters can be specified:
|
||||
- **num_sub_vectors**: The number of sub-vectors (M) that will be created during Product Quantization (PQ).
|
||||
For D dimensional vector, it will be divided into `M` subvectors with dimension `D/M`, each of which is replaced by
|
||||
a single PQ code. The default is the dimension of the vector divided by 16.
|
||||
- **num_bits**: The number of bits used to encode each sub-vector. Only 4 and 8 are supported. The higher the number of bits, the higher the accuracy of the index, also the slower search. The default is 8.
|
||||
|
||||
!!! note
|
||||
|
||||
@@ -140,13 +141,15 @@ There are a couple of parameters that can be used to fine-tune the search:
|
||||
|
||||
- **limit** (default: 10): The amount of results that will be returned
|
||||
- **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/>
|
||||
Most of the time, setting nprobes to cover 5-10% of the dataset should achieve high recall with low latency.<br/>
|
||||
e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/>
|
||||
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
||||
Most of the time, setting nprobes to cover 5-15% of the dataset should achieve high recall with low latency.<br/>
|
||||
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, `nprobes` should be set to ~20-40. This value can be adjusted to achieve the optimal balance between search latency and search quality. <br/>
|
||||
|
||||
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
|
||||
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
|
||||
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
|
||||
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
||||
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, setting the `refine_factor` to 200 will initially retrieve the top 4,000 candidates (top k * refine_factor) from all searched partitions. These candidates are then reranked to determine the final top 20 results.<br/>
|
||||
!!! note
|
||||
Both `nprobes` and `refine_factor` are only applicable if an ANN index is present. If specified on a table without an ANN index, those parameters are ignored.
|
||||
|
||||
|
||||
=== "Python"
|
||||
|
||||
@@ -169,7 +172,7 @@ There are a couple of parameters that can be used to fine-tune the search:
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/ann_indexes.ts:search1"
|
||||
--8<-- "nodejs/examples/ann_indexes.test.ts:search1"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -203,7 +206,7 @@ You can further filter the elements returned by a search using a where clause.
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/ann_indexes.ts:search2"
|
||||
--8<-- "nodejs/examples/ann_indexes.test.ts:search2"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -235,7 +238,7 @@ You can select the columns returned by the query using a select clause.
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/ann_indexes.ts:search3"
|
||||
--8<-- "nodejs/examples/ann_indexes.test.ts:search3"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -275,7 +278,15 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
|
||||
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
|
||||
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
|
||||
|
||||
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
|
||||
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
|
||||
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
|
||||
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
|
||||
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
|
||||
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
|
||||
|
||||
!!! note
|
||||
if `num_sub_vectors` is set to be greater than the vector dimension, you will see errors like `attempt to divide by zero`
|
||||
|
||||
### How to choose `m` and `ef_construction` for `IVF_HNSW_*` index?
|
||||
|
||||
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
|
||||
|
||||
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase
|
||||
|
||||
@@ -157,7 +157,7 @@ recommend switching to stable releases.
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
import * as arrow from "apache-arrow";
|
||||
|
||||
--8<-- "nodejs/examples/basic.ts:connect"
|
||||
--8<-- "nodejs/examples/basic.test.ts:connect"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -212,7 +212,7 @@ table.
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:create_table"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -268,7 +268,7 @@ similar to a `CREATE TABLE` statement in SQL.
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:create_empty_table"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -298,7 +298,7 @@ Once created, you can open a table as follows:
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:open_table"
|
||||
--8<-- "nodejs/examples/basic.test.ts:open_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -327,7 +327,7 @@ If you forget the name of your table, you can always get a listing of all table
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:table_names"
|
||||
--8<-- "nodejs/examples/basic.test.ts:table_names"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -357,7 +357,7 @@ After a table has been created, you can always add more data to it as follows:
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:add_data"
|
||||
--8<-- "nodejs/examples/basic.test.ts:add_data"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -389,7 +389,7 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:vector_search"
|
||||
--8<-- "nodejs/examples/basic.test.ts:vector_search"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -429,7 +429,7 @@ LanceDB allows you to create an ANN index on a table as follows:
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:create_index"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_index"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -469,7 +469,7 @@ This can delete any number of rows that match the filter.
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:delete_rows"
|
||||
--8<-- "nodejs/examples/basic.test.ts:delete_rows"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -527,7 +527,7 @@ Use the `drop_table()` method on the database to remove a table.
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:drop_table"
|
||||
--8<-- "nodejs/examples/basic.test.ts:drop_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -561,8 +561,8 @@ You can use the embedding API when working with embedding models. It automatical
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/embedding.ts:imports"
|
||||
--8<-- "nodejs/examples/embedding.ts:openai_embeddings"
|
||||
--8<-- "nodejs/examples/embedding.test.ts:imports"
|
||||
--8<-- "nodejs/examples/embedding.test.ts:openai_embeddings"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -57,6 +57,13 @@ Then the greedy search routine operates as follows:
|
||||
|
||||
## Usage
|
||||
|
||||
There are three key parameters to set when constructing an HNSW index:
|
||||
|
||||
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
|
||||
* `m`: The number of neighbors to select for each vector in the HNSW graph.
|
||||
* `ef_construction`: The number of candidates to evaluate during the construction of the HNSW graph.
|
||||
|
||||
|
||||
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
|
||||
|
||||
### Construct index
|
||||
|
||||
@@ -58,8 +58,10 @@ In Python, the index can be created as follows:
|
||||
# Make sure you have enough data in the table for an effective training step
|
||||
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
|
||||
```
|
||||
!!! note
|
||||
`num_partitions`=256 and `num_sub_vectors`=96 does not work for every dataset. Those values needs to be adjusted for your particular dataset.
|
||||
|
||||
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See the [FAQs](#faq) below for best practices on choosing these parameters.
|
||||
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See [here](../ann_indexes.md/#how-to-choose-num_partitions-and-num_sub_vectors-for-ivf_pq-index) for best practices on choosing these parameters.
|
||||
|
||||
|
||||
### Query the index
|
||||
|
||||
@@ -6,6 +6,7 @@ LanceDB registers the OpenAI embeddings function in the registry by default, as
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
|
||||
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
|
||||
| `use_azure` | bool | `False` | Set true to use Azure OpenAPI SDK |
|
||||
|
||||
|
||||
```python
|
||||
|
||||
@@ -0,0 +1,51 @@
|
||||
# VoyageAI Embeddings
|
||||
|
||||
Voyage AI provides cutting-edge embedding and rerankers.
|
||||
|
||||
|
||||
Using voyageai API requires voyageai package, which can be installed using `pip install voyageai`. Voyage AI embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
|
||||
You also need to set the `VOYAGE_API_KEY` environment variable to use the VoyageAI API.
|
||||
|
||||
Supported models are:
|
||||
|
||||
- voyage-3
|
||||
- voyage-3-lite
|
||||
- voyage-finance-2
|
||||
- voyage-multilingual-2
|
||||
- voyage-law-2
|
||||
- voyage-code-2
|
||||
|
||||
|
||||
Supported parameters (to be passed in `create` method) are:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|--------|---------|
|
||||
| `name` | `str` | `None` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
|
||||
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
|
||||
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |
|
||||
|
||||
|
||||
Usage Example:
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||
|
||||
voyageai = EmbeddingFunctionRegistry
|
||||
.get_instance()
|
||||
.get("voyageai")
|
||||
.create(name="voyage-3")
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = voyageai.SourceField()
|
||||
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
|
||||
|
||||
data = [ { "text": "hello world" },
|
||||
{ "text": "goodbye world" }]
|
||||
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(data)
|
||||
```
|
||||
@@ -47,9 +47,9 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
|
||||
=== "TypeScript"
|
||||
|
||||
```ts
|
||||
--8<--- "nodejs/examples/custom_embedding_function.ts:imports"
|
||||
--8<--- "nodejs/examples/custom_embedding_function.test.ts:imports"
|
||||
|
||||
--8<--- "nodejs/examples/custom_embedding_function.ts:embedding_impl"
|
||||
--8<--- "nodejs/examples/custom_embedding_function.test.ts:embedding_impl"
|
||||
```
|
||||
|
||||
|
||||
@@ -78,7 +78,7 @@ Now you can use this embedding function to create your table schema and that's i
|
||||
=== "TypeScript"
|
||||
|
||||
```ts
|
||||
--8<--- "nodejs/examples/custom_embedding_function.ts:call_custom_function"
|
||||
--8<--- "nodejs/examples/custom_embedding_function.test.ts:call_custom_function"
|
||||
```
|
||||
|
||||
!!! note
|
||||
|
||||
@@ -53,6 +53,7 @@ These functions are registered by default to handle text embeddings.
|
||||
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="Jina Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/jina_embedding.md) |
|
||||
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/aws_bedrock.png" alt="AWS Bedrock Icon" width="120" height="35">](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
|
||||
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/watsonx.png" alt="Watsonx Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
|
||||
| [**VoyageAI Embeddings**](available_embedding_models/text_embedding_functions/voyageai_embedding.md "voyageai") | 🌕 Voyage AI provides cutting-edge embedding and rerankers. This will help you get started with **VoyageAI** embedding models using LanceDB. Using voyageai API requires voyageai package. Install it via `pip`. | [<img src="https://www.voyageai.com/logo.svg" alt="VoyageAI Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/voyageai_embedding.md) |
|
||||
|
||||
|
||||
|
||||
@@ -66,6 +67,7 @@ These functions are registered by default to handle text embeddings.
|
||||
[jina-key]: "jina"
|
||||
[aws-key]: "bedrock-text"
|
||||
[watsonx-key]: "watsonx"
|
||||
[voyageai-key]: "voyageai"
|
||||
|
||||
|
||||
## Multi-modal Embedding Functions🖼️
|
||||
|
||||
@@ -94,8 +94,8 @@ the embeddings at all:
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/embedding.ts:imports"
|
||||
--8<-- "nodejs/examples/embedding.ts:embedding_function"
|
||||
--8<-- "nodejs/examples/embedding.test.ts:imports"
|
||||
--8<-- "nodejs/examples/embedding.test.ts:embedding_function"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -150,7 +150,7 @@ need to worry about it when you query the table:
|
||||
.toArray()
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```ts
|
||||
const results = await table
|
||||
|
||||
@@ -51,8 +51,8 @@ LanceDB registers the OpenAI embeddings function in the registry as `openai`. Yo
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
--8<--- "nodejs/examples/embedding.ts:imports"
|
||||
--8<--- "nodejs/examples/embedding.ts:openai_embeddings"
|
||||
--8<--- "nodejs/examples/embedding.test.ts:imports"
|
||||
--8<--- "nodejs/examples/embedding.test.ts:openai_embeddings"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
@@ -121,12 +121,10 @@ class Words(LanceModel):
|
||||
vector: Vector(func.ndims()) = func.VectorField()
|
||||
|
||||
table = db.create_table("words", schema=Words)
|
||||
table.add(
|
||||
[
|
||||
{"text": "hello world"},
|
||||
{"text": "goodbye world"}
|
||||
]
|
||||
)
|
||||
table.add([
|
||||
{"text": "hello world"},
|
||||
{"text": "goodbye world"}
|
||||
])
|
||||
|
||||
query = "greetings"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
|
||||
@@ -36,6 +36,6 @@
|
||||
[aware_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/chatbot_using_Llama2_&_lanceDB/main.ipynb
|
||||
[aware_ghost]: https://blog.lancedb.com/context-aware-chatbot-using-llama-2-lancedb-as-vector-database-4d771d95c755
|
||||
|
||||
[csv_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Chat_with_csv_file
|
||||
[csv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Chat_with_csv_file/main.ipynb
|
||||
[csv_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/Chat_with_csv_file
|
||||
[csv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/Chat_with_csv_file/main.ipynb
|
||||
[csv_ghost]: https://blog.lancedb.com/p/d8c71df4-e55f-479a-819e-cde13354a6a3/
|
||||
|
||||
@@ -12,7 +12,7 @@ LanceDB supports multimodal search by indexing and querying vector representatio
|
||||
|:----------------|:-----------------|:-----------|
|
||||
| **Multimodal CLIP: DiffusionDB 🌐💥** | Multi-Modal Search with **CLIP** and **LanceDB** Using **DiffusionDB** Data for Combined Text and Image Understanding ! 🔓 | [][Clip_diffusionDB_github] <br>[][Clip_diffusionDB_colab] <br>[][Clip_diffusionDB_python] <br>[][Clip_diffusionDB_ghost] |
|
||||
| **Multimodal CLIP: Youtube Videos 📹👀** | Search **Youtube videos** using Multimodal CLIP, finding relevant content with ease and accuracy! 🎯 | [][Clip_youtube_github] <br>[][Clip_youtube_colab] <br> [][Clip_youtube_python] <br>[][Clip_youtube_python] |
|
||||
| **Multimodal Image + Text Search 📸🔍** | Find **relevant documents** and **images** with a single query using **LanceDB's** multimodal search capabilities, to seamlessly integrate text and visuals ! 🌉 | [](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search) <br>[](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb) <br> [](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
|
||||
| **Multimodal Image + Text Search 📸🔍** | Find **relevant documents** and **images** with a single query using **LanceDB's** multimodal search capabilities, to seamlessly integrate text and visuals ! 🌉 | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/multimodal_search) <br>[](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multimodal_search/main.ipynb) <br> [](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
|
||||
| **Cambrian-1: Vision-Centric Image Exploration 🔍👀** | Learn how **Cambrian-1** works, using an example of **Vision-Centric** exploration on images found through vector search ! Work on **Flickr-8k** dataset 🔎 | [](https://www.kaggle.com/code/prasantdixit/cambrian-1-vision-centric-exploration-of-images/)<br> [](https://blog.lancedb.com/cambrian-1-vision-centric-exploration/) |
|
||||
|
||||
|
||||
|
||||
@@ -70,12 +70,12 @@ Build RAG (Retrieval-Augmented Generation) with LanceDB, a powerful solution fo
|
||||
[flare_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR/main.ipynb
|
||||
[flare_ghost]: https://blog.lancedb.com/better-rag-with-active-retrieval-augmented-generation-flare-3b66646e2a9f/
|
||||
|
||||
[query_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker
|
||||
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker/main.ipynb
|
||||
[query_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/QueryExpansion%26Reranker
|
||||
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/QueryExpansion&Reranker/main.ipynb
|
||||
|
||||
|
||||
[fusion_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion
|
||||
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion/main.ipynb
|
||||
[fusion_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/RAG_Fusion
|
||||
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/RAG_Fusion/main.ipynb
|
||||
|
||||
[agentic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG
|
||||
[agentic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG/main.ipynb
|
||||
|
||||
@@ -19,8 +19,8 @@ Deliver personalized experiences with Recommender Systems. 🎁
|
||||
[movie_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.py
|
||||
|
||||
|
||||
[genre_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommendation-with-genres
|
||||
[genre_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb
|
||||
[genre_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/movie-recommendation-with-genres
|
||||
[genre_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb
|
||||
[genre_ghost]: https://blog.lancedb.com/movie-recommendation-system-using-lancedb-and-doc2vec/
|
||||
|
||||
[product_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender
|
||||
@@ -33,5 +33,5 @@ Deliver personalized experiences with Recommender Systems. 🎁
|
||||
[arxiv_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.py
|
||||
|
||||
|
||||
[food_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Food_recommendation
|
||||
[food_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Food_recommendation/main.ipynb
|
||||
[food_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/Food_recommendation
|
||||
[food_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/Food_recommendation/main.ipynb
|
||||
|
||||
@@ -37,16 +37,16 @@ LanceDB implements vector search algorithms for efficient document retrieval and
|
||||
[NER_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/NER-powered-Semantic-Search/NER_powered_Semantic_Search_with_LanceDB.ipynb
|
||||
[NER_ghost]: https://blog.lancedb.com/ner-powered-semantic-search-using-lancedb-51051dc3e493
|
||||
|
||||
[audio_search_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/audio_search
|
||||
[audio_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb
|
||||
[audio_search_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.py
|
||||
[audio_search_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/audio_search
|
||||
[audio_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/audio_search/main.ipynb
|
||||
[audio_search_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/archived_examples/audio_search/main.py
|
||||
|
||||
[mls_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa
|
||||
[mls_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa/main.ipynb
|
||||
[mls_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa/main.py
|
||||
[mls_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/multi-lingual-wiki-qa
|
||||
[mls_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multi-lingual-wiki-qa/main.ipynb
|
||||
[mls_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multi-lingual-wiki-qa/main.py
|
||||
|
||||
[fr_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/facial_recognition
|
||||
[fr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/facial_recognition/main.ipynb
|
||||
[fr_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/facial_recognition
|
||||
[fr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/facial_recognition/main.ipynb
|
||||
|
||||
[sentiment_analysis_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews
|
||||
[sentiment_analysis_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews/Sentiment_Analysis_using_LanceDB.ipynb
|
||||
@@ -70,8 +70,8 @@ LanceDB implements vector search algorithms for efficient document retrieval and
|
||||
[openvino_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb
|
||||
[openvino_ghost]: https://blog.lancedb.com/accelerate-vector-search-applications-using-openvino-lancedb/
|
||||
|
||||
[zsic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/zero-shot-image-classification
|
||||
[zsic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/zero-shot-image-classification/main.ipynb
|
||||
[zsic_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/zero-shot-image-classification
|
||||
[zsic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/zero-shot-image-classification/main.ipynb
|
||||
[zsic_ghost]: https://blog.lancedb.com/zero-shot-image-classification-with-vector-search/
|
||||
|
||||
|
||||
|
||||
219
docs/src/fts.md
219
docs/src/fts.md
@@ -1,21 +1,9 @@
|
||||
# Full-text search
|
||||
# Full-text search (Native FTS)
|
||||
|
||||
LanceDB provides support for full-text search via Lance (before via [Tantivy](https://github.com/quickwit-oss/tantivy) (Python only)), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
|
||||
|
||||
Currently, the Lance full text search is missing some features that are in the Tantivy full text search. This includes query parser and customizing the tokenizer. Thus, in Python, Tantivy is still the default way to do full text search and many of the instructions below apply just to Tantivy-based indices.
|
||||
|
||||
|
||||
## Installation (Only for Tantivy-based FTS)
|
||||
LanceDB provides support for full-text search via Lance, allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
|
||||
|
||||
!!! note
|
||||
No need to install the tantivy dependency if using native FTS
|
||||
|
||||
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
|
||||
|
||||
```sh
|
||||
# Say you want to use tantivy==0.20.1
|
||||
pip install tantivy==0.20.1
|
||||
```
|
||||
The Python SDK uses tantivy-based FTS by default, need to pass `use_tantivy=False` to use native FTS.
|
||||
|
||||
## Example
|
||||
|
||||
@@ -39,7 +27,7 @@ Consider that we have a LanceDB table named `my_table`, whose string column `tex
|
||||
|
||||
# passing `use_tantivy=False` to use lance FTS index
|
||||
# `use_tantivy=True` by default
|
||||
table.create_fts_index("text")
|
||||
table.create_fts_index("text", use_tantivy=False)
|
||||
table.search("puppy").limit(10).select(["text"]).to_list()
|
||||
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
|
||||
# ...
|
||||
@@ -93,56 +81,78 @@ Consider that we have a LanceDB table named `my_table`, whose string column `tex
|
||||
```
|
||||
|
||||
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
|
||||
For now, this is supported in tantivy way only.
|
||||
|
||||
Passing `fts_columns="text"` if you want to specify the columns to search, but it's not available for Tantivy-based full text search.
|
||||
Passing `fts_columns="text"` if you want to specify the columns to search.
|
||||
|
||||
!!! note
|
||||
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
|
||||
|
||||
## Tokenization
|
||||
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
|
||||
By default the text is tokenized by splitting on punctuation and whitespaces, and would filter out words that are with length greater than 40, and lowercase all words.
|
||||
|
||||
For now, only the Tantivy-based FTS index supports to specify the tokenizer, so it's only available in Python with `use_tantivy=True`.
|
||||
Stemming is useful for improving search results by reducing words to their root form, e.g. "running" to "run". LanceDB supports stemming for multiple languages, you can specify the tokenizer name to enable stemming by the pattern `tokenizer_name="{language_code}_stem"`, e.g. `en_stem` for English.
|
||||
|
||||
=== "use_tantivy=True"
|
||||
|
||||
```python
|
||||
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
|
||||
```
|
||||
|
||||
=== "use_tantivy=False"
|
||||
|
||||
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
|
||||
For example, to enable stemming for English:
|
||||
```python
|
||||
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
|
||||
```
|
||||
|
||||
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
|
||||
|
||||
## Index multiple columns
|
||||
The tokenizer is customizable, you can specify how the tokenizer splits the text, and how it filters out words, etc.
|
||||
|
||||
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
|
||||
|
||||
=== "use_tantivy=True"
|
||||
|
||||
```python
|
||||
table.create_fts_index(["text1", "text2"])
|
||||
```
|
||||
|
||||
=== "use_tantivy=False"
|
||||
|
||||
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
|
||||
|
||||
Note that the search API call does not change - you can search over all indexed columns at once.
|
||||
For example, for language with accents, you can specify the tokenizer to use `ascii_folding` to remove accents, e.g. 'é' to 'e':
|
||||
```python
|
||||
table.create_fts_index("text",
|
||||
use_tantivy=False,
|
||||
language="French",
|
||||
stem=True,
|
||||
ascii_folding=True)
|
||||
```
|
||||
|
||||
## Filtering
|
||||
|
||||
Currently the LanceDB full text search feature supports *post-filtering*, meaning filters are
|
||||
applied on top of the full text search results. This can be invoked via the familiar
|
||||
`where` syntax:
|
||||
LanceDB full text search supports to filter the search results by a condition, both pre-filtering and post-filtering are supported.
|
||||
|
||||
This can be invoked via the familiar `where` syntax.
|
||||
|
||||
With pre-filtering:
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
table.search("puppy").limit(10).where("meta='foo'").to_list()
|
||||
table.search("puppy").limit(10).where("meta='foo'", prefilte=True).to_list()
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
await tbl
|
||||
.search("puppy")
|
||||
.select(["id", "doc"])
|
||||
.limit(10)
|
||||
.where("meta='foo'")
|
||||
.prefilter(true)
|
||||
.toArray();
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
table
|
||||
.query()
|
||||
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
|
||||
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
||||
.limit(10)
|
||||
.only_if("meta='foo'")
|
||||
.execute()
|
||||
.await?;
|
||||
```
|
||||
|
||||
With post-filtering:
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
table.search("puppy").limit(10).where("meta='foo'", prefilte=False).to_list()
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
@@ -153,6 +163,7 @@ applied on top of the full text search results. This can be invoked via the fami
|
||||
.select(["id", "doc"])
|
||||
.limit(10)
|
||||
.where("meta='foo'")
|
||||
.prefilter(false)
|
||||
.toArray();
|
||||
```
|
||||
|
||||
@@ -163,104 +174,56 @@ applied on top of the full text search results. This can be invoked via the fami
|
||||
.query()
|
||||
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
|
||||
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
||||
.postfilter()
|
||||
.limit(10)
|
||||
.only_if("meta='foo'")
|
||||
.execute()
|
||||
.await?;
|
||||
```
|
||||
|
||||
## Sorting
|
||||
|
||||
!!! warning "Warn"
|
||||
Sorting is available for only Tantivy-based FTS
|
||||
|
||||
You can pre-sort the documents by specifying `ordering_field_names` when
|
||||
creating the full-text search index. Once pre-sorted, you can then specify
|
||||
`ordering_field_name` while searching to return results sorted by the given
|
||||
field. For example,
|
||||
|
||||
```python
|
||||
table.create_fts_index(["text_field"], use_tantivy=True, ordering_field_names=["sort_by_field"])
|
||||
|
||||
(table.search("terms", ordering_field_name="sort_by_field")
|
||||
.limit(20)
|
||||
.to_list())
|
||||
```
|
||||
|
||||
!!! note
|
||||
If you wish to specify an ordering field at query time, you must also
|
||||
have specified it during indexing time. Otherwise at query time, an
|
||||
error will be raised that looks like `ValueError: The field does not exist: xxx`
|
||||
|
||||
!!! note
|
||||
The fields to sort on must be of typed unsigned integer, or else you will see
|
||||
an error during indexing that looks like
|
||||
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
|
||||
|
||||
!!! note
|
||||
You can specify multiple fields for ordering at indexing time.
|
||||
But at query time only one ordering field is supported.
|
||||
|
||||
|
||||
## Phrase queries vs. terms queries
|
||||
|
||||
!!! warning "Warn"
|
||||
Lance-based FTS doesn't support queries using boolean operators `OR`, `AND`.
|
||||
|
||||
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
|
||||
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
|
||||
or a **terms** search query like `old man sea`. For more details on the terms
|
||||
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
|
||||
|
||||
!!! tip "Note"
|
||||
The query parser will raise an exception on queries that are ambiguous. For example, in the query `they could have been dogs OR cats`, `OR` is capitalized so it's considered a keyword query operator. But it's ambiguous how the left part should be treated. So if you submit this search query as is, you'll get `Syntax Error: they could have been dogs OR cats`.
|
||||
|
||||
```py
|
||||
# This raises a syntax error
|
||||
table.search("they could have been dogs OR cats")
|
||||
```
|
||||
|
||||
On the other hand, lowercasing `OR` to `or` will work, because there are no capitalized logical operators and
|
||||
the query is treated as a phrase query.
|
||||
|
||||
```py
|
||||
# This works!
|
||||
table.search("they could have been dogs or cats")
|
||||
```
|
||||
|
||||
It can be cumbersome to have to remember what will cause a syntax error depending on the type of
|
||||
query you want to perform. To make this simpler, when you want to perform a phrase query, you can
|
||||
enforce it in one of two ways:
|
||||
|
||||
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
|
||||
a phrase query.
|
||||
1. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
|
||||
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
|
||||
is treated as a phrase query.
|
||||
|
||||
In general, a query that's declared as a phrase query will be wrapped in double quotes during parsing, with nested
|
||||
double quotes replaced by single quotes.
|
||||
|
||||
|
||||
## Configurations (Only for Tantivy-based FTS)
|
||||
|
||||
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
|
||||
reduce this if running on a smaller node, or increase this for faster performance while
|
||||
indexing a larger corpus.
|
||||
|
||||
To search for a phrase, the index must be created with `with_position=True`:
|
||||
```python
|
||||
# configure a 512MB heap size
|
||||
heap = 1024 * 1024 * 512
|
||||
table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
|
||||
table.create_fts_index("text", use_tantivy=False, with_position=True)
|
||||
```
|
||||
This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.
|
||||
|
||||
## Current limitations
|
||||
|
||||
For that Tantivy-based FTS:
|
||||
## Incremental indexing
|
||||
|
||||
1. Currently we do not yet support incremental writes.
|
||||
If you add data after FTS index creation, it won't be reflected
|
||||
in search results until you do a full reindex.
|
||||
LanceDB supports incremental indexing, which means you can add new records to the table without reindexing the entire table.
|
||||
|
||||
2. We currently only support local filesystem paths for the FTS index.
|
||||
This is a tantivy limitation. We've implemented an object store plugin
|
||||
but there's no way in tantivy-py to specify to use it.
|
||||
This can make the query more efficient, especially when the table is large and the new records are relatively small.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
table.add([{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"}])
|
||||
table.optimize()
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
await tbl.add([{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" }]);
|
||||
await tbl.optimize();
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
|
||||
tbl.add(more_data).execute().await?;
|
||||
tbl.optimize(OptimizeAction::All).execute().await?;
|
||||
```
|
||||
!!! note
|
||||
|
||||
New data added after creating the FTS index will appear in search results while incremental index is still progress, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates this merging process, minimizing the impact on search speed.
|
||||
160
docs/src/fts_tantivy.md
Normal file
160
docs/src/fts_tantivy.md
Normal file
@@ -0,0 +1,160 @@
|
||||
# Full-text search (Tantivy-based FTS)
|
||||
|
||||
LanceDB also provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
|
||||
|
||||
The tantivy-based FTS is only available in Python and does not support building indexes on object storage or incremental indexing. If you need these features, try native FTS [native FTS](fts.md).
|
||||
|
||||
## Installation
|
||||
|
||||
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
|
||||
|
||||
```sh
|
||||
# Say you want to use tantivy==0.20.1
|
||||
pip install tantivy==0.20.1
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
Consider that we have a LanceDB table named `my_table`, whose string column `content` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
|
||||
table = db.create_table(
|
||||
"my_table",
|
||||
data=[
|
||||
{"id": 1, "vector": [3.1, 4.1], "title": "happy puppy", "content": "Frodo was a happy puppy", "meta": "foo"},
|
||||
{"id": 2, "vector": [5.9, 26.5], "title": "playing kittens", "content": "There are several kittens playing around the puppy", "meta": "bar"},
|
||||
],
|
||||
)
|
||||
|
||||
# passing `use_tantivy=False` to use lance FTS index
|
||||
# `use_tantivy=True` by default
|
||||
table.create_fts_index("content", use_tantivy=True)
|
||||
table.search("puppy").limit(10).select(["content"]).to_list()
|
||||
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
|
||||
# ...
|
||||
```
|
||||
|
||||
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
|
||||
|
||||
!!! note
|
||||
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
|
||||
|
||||
## Tokenization
|
||||
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
|
||||
|
||||
```python
|
||||
table.create_fts_index("content", use_tantivy=True, tokenizer_name="en_stem", replace=True)
|
||||
```
|
||||
|
||||
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
|
||||
|
||||
## Index multiple columns
|
||||
|
||||
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
|
||||
|
||||
```python
|
||||
table.create_fts_index(["title", "content"], use_tantivy=True, replace=True)
|
||||
```
|
||||
|
||||
Note that the search API call does not change - you can search over all indexed columns at once.
|
||||
|
||||
## Filtering
|
||||
|
||||
Currently the LanceDB full text search feature supports *post-filtering*, meaning filters are
|
||||
applied on top of the full text search results (see [native FTS](fts.md) if you need pre-filtering). This can be invoked via the familiar
|
||||
`where` syntax:
|
||||
|
||||
```python
|
||||
table.search("puppy").limit(10).where("meta='foo'").to_list()
|
||||
```
|
||||
|
||||
## Sorting
|
||||
|
||||
You can pre-sort the documents by specifying `ordering_field_names` when
|
||||
creating the full-text search index. Once pre-sorted, you can then specify
|
||||
`ordering_field_name` while searching to return results sorted by the given
|
||||
field. For example,
|
||||
|
||||
```python
|
||||
table.create_fts_index(["content"], use_tantivy=True, ordering_field_names=["id"], replace=True)
|
||||
|
||||
(table.search("puppy", ordering_field_name="id")
|
||||
.limit(20)
|
||||
.to_list())
|
||||
```
|
||||
|
||||
!!! note
|
||||
If you wish to specify an ordering field at query time, you must also
|
||||
have specified it during indexing time. Otherwise at query time, an
|
||||
error will be raised that looks like `ValueError: The field does not exist: xxx`
|
||||
|
||||
!!! note
|
||||
The fields to sort on must be of typed unsigned integer, or else you will see
|
||||
an error during indexing that looks like
|
||||
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
|
||||
|
||||
!!! note
|
||||
You can specify multiple fields for ordering at indexing time.
|
||||
But at query time only one ordering field is supported.
|
||||
|
||||
|
||||
## Phrase queries vs. terms queries
|
||||
|
||||
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
|
||||
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
|
||||
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
|
||||
|
||||
!!! tip "Note"
|
||||
The query parser will raise an exception on queries that are ambiguous. For example, in the query `they could have been dogs OR cats`, `OR` is capitalized so it's considered a keyword query operator. But it's ambiguous how the left part should be treated. So if you submit this search query as is, you'll get `Syntax Error: they could have been dogs OR cats`.
|
||||
|
||||
```py
|
||||
# This raises a syntax error
|
||||
table.search("they could have been dogs OR cats")
|
||||
```
|
||||
|
||||
On the other hand, lowercasing `OR` to `or` will work, because there are no capitalized logical operators and
|
||||
the query is treated as a phrase query.
|
||||
|
||||
```py
|
||||
# This works!
|
||||
table.search("they could have been dogs or cats")
|
||||
```
|
||||
|
||||
It can be cumbersome to have to remember what will cause a syntax error depending on the type of
|
||||
query you want to perform. To make this simpler, when you want to perform a phrase query, you can
|
||||
enforce it in one of two ways:
|
||||
|
||||
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
|
||||
a phrase query.
|
||||
1. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
|
||||
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
|
||||
is treated as a phrase query.
|
||||
|
||||
In general, a query that's declared as a phrase query will be wrapped in double quotes during parsing, with nested
|
||||
double quotes replaced by single quotes.
|
||||
|
||||
|
||||
## Configurations
|
||||
|
||||
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
|
||||
reduce this if running on a smaller node, or increase this for faster performance while
|
||||
indexing a larger corpus.
|
||||
|
||||
```python
|
||||
# configure a 512MB heap size
|
||||
heap = 1024 * 1024 * 512
|
||||
table.create_fts_index(["title", "content"], use_tantivy=True, writer_heap_size=heap, replace=True)
|
||||
```
|
||||
|
||||
## Current limitations
|
||||
|
||||
1. New data added after creating the FTS index will appear in search results, but with increased latency due to a flat search on the unindexed portion. Re-indexing with `create_fts_index` will reduce latency. LanceDB Cloud automates this merging process, minimizing the impact on search speed.
|
||||
|
||||
2. We currently only support local filesystem paths for the FTS index.
|
||||
This is a tantivy limitation. We've implemented an object store plugin
|
||||
but there's no way in tantivy-py to specify to use it.
|
||||
@@ -1,23 +1,35 @@
|
||||
# Building Scalar Index
|
||||
# Building a Scalar Index
|
||||
|
||||
Similar to many SQL databases, LanceDB supports several types of Scalar indices to accelerate search
|
||||
Scalar indices organize data by scalar attributes (e.g. numbers, categorical values), enabling fast filtering of vector data. In vector databases, scalar indices accelerate the retrieval of scalar data associated with vectors, thus enhancing the query performance when searching for vectors that meet certain scalar criteria.
|
||||
|
||||
Similar to many SQL databases, LanceDB supports several types of scalar indices to accelerate search
|
||||
over scalar columns.
|
||||
|
||||
- `BTREE`: The most common type is BTREE. This index is inspired by the btree data structure
|
||||
although only the first few layers of the btree are cached in memory.
|
||||
It will perform well on columns with a large number of unique values and few rows per value.
|
||||
- `BITMAP`: this index stores a bitmap for each unique value in the column.
|
||||
This index is useful for columns with a finite number of unique values and many rows per value.
|
||||
For example, columns that represent "categories", "labels", or "tags"
|
||||
- `LABEL_LIST`: a special index that is used to index list columns whose values have a finite set of possibilities.
|
||||
- `BTREE`: The most common type is BTREE. The index stores a copy of the
|
||||
column in sorted order. This sorted copy allows a binary search to be used to
|
||||
satisfy queries.
|
||||
- `BITMAP`: this index stores a bitmap for each unique value in the column. It
|
||||
uses a series of bits to indicate whether a value is present in a row of a table
|
||||
- `LABEL_LIST`: a special index that can be used on `List<T>` columns to
|
||||
support queries with `array_contains_all` and `array_contains_any`
|
||||
using an underlying bitmap index.
|
||||
For example, a column that contains lists of tags (e.g. `["tag1", "tag2", "tag3"]`) can be indexed with a `LABEL_LIST` index.
|
||||
|
||||
!!! tips "How to choose the right scalar index type"
|
||||
|
||||
`BTREE`: This index is good for scalar columns with mostly distinct values and does best when the query is highly selective.
|
||||
|
||||
`BITMAP`: This index works best for low-cardinality numeric or string columns, where the number of unique values is small (i.e., less than a few thousands).
|
||||
|
||||
`LABEL_LIST`: This index should be used for columns containing list-type data.
|
||||
|
||||
| Data Type | Filter | Index Type |
|
||||
| --------------------------------------------------------------- | ----------------------------------------- | ------------ |
|
||||
| Numeric, String, Temporal | `<`, `=`, `>`, `in`, `between`, `is null` | `BTREE` |
|
||||
| Boolean, numbers or strings with fewer than 1,000 unique values | `<`, `=`, `>`, `in`, `between`, `is null` | `BITMAP` |
|
||||
| List of low cardinality of numbers or strings | `array_has_any`, `array_has_all` | `LABEL_LIST` |
|
||||
|
||||
### Create a scalar index
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
@@ -46,7 +58,7 @@ over scalar columns.
|
||||
await tlb.create_index("publisher", { config: lancedb.Index.bitmap() })
|
||||
```
|
||||
|
||||
For example, the following scan will be faster if the column `my_col` has a scalar index:
|
||||
The following scan will be faster if the column `book_id` has a scalar index:
|
||||
|
||||
=== "Python"
|
||||
|
||||
@@ -106,3 +118,30 @@ Scalar indices can also speed up scans containing a vector search or full text s
|
||||
.limit(10)
|
||||
.toArray();
|
||||
```
|
||||
### Update a scalar index
|
||||
Updating the table data (adding, deleting, or modifying records) requires that you also update the scalar index. This can be done by calling `optimize`, which will trigger an update to the existing scalar index.
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
table.add([{"vector": [7, 8], "book_id": 4}])
|
||||
table.optimize()
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
await tbl.add([{ vector: [7, 8], book_id: 4 }]);
|
||||
await tbl.optimize();
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
|
||||
tbl.add(more_data).execute().await?;
|
||||
tbl.optimize(OptimizeAction::All).execute().await?;
|
||||
```
|
||||
|
||||
!!! note
|
||||
|
||||
New data added after creating the scalar index will still appear in search results if optimize is not used, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates the optimize process, minimizing the impact on search speed.
|
||||
@@ -27,10 +27,13 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
|
||||
|
||||
Azure Blob Storage:
|
||||
|
||||
<!-- skip-test -->
|
||||
```python
|
||||
import lancedb
|
||||
db = lancedb.connect("az://bucket/path")
|
||||
```
|
||||
Note that for Azure, storage credentials must be configured. See [below](#azure-blob-storage) for more details.
|
||||
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
@@ -87,11 +90,6 @@ In most cases, when running in the respective cloud and permissions are set up c
|
||||
export TIMEOUT=60s
|
||||
```
|
||||
|
||||
!!! note "`storage_options` availability"
|
||||
|
||||
The `storage_options` parameter is only available in Python *async* API and JavaScript API.
|
||||
It is not yet supported in the Python synchronous API.
|
||||
|
||||
If you only want this to apply to one particular connection, you can pass the `storage_options` argument when opening the connection:
|
||||
|
||||
=== "Python"
|
||||
|
||||
@@ -85,13 +85,13 @@ Initialize a LanceDB connection and create a table
|
||||
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.ts:create_table"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_table"
|
||||
```
|
||||
|
||||
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use `apache-arrow` to declare a schema
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.ts:create_table_with_schema"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_table_with_schema"
|
||||
```
|
||||
|
||||
!!! info "Note"
|
||||
@@ -100,14 +100,14 @@ Initialize a LanceDB connection and create a table
|
||||
passed in will NOT be appended to the table in that case.
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.ts:create_table_exists_ok"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_table_exists_ok"
|
||||
```
|
||||
|
||||
Sometimes you want to make sure that you start fresh. If you want to
|
||||
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.ts:create_table_overwrite"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_table_overwrite"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -227,7 +227,7 @@ LanceDB supports float16 data type!
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:create_f16_table"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_f16_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -274,7 +274,7 @@ table = db.create_table(table_name, schema=Content)
|
||||
|
||||
Sometimes your data model may contain nested objects.
|
||||
For example, you may want to store the document string
|
||||
and the document soure name as a nested Document object:
|
||||
and the document source name as a nested Document object:
|
||||
|
||||
```python
|
||||
class Document(BaseModel):
|
||||
@@ -455,7 +455,7 @@ You can create an empty table for scenarios where you want to add data to the ta
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:create_empty_table"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -466,7 +466,7 @@ You can create an empty table for scenarios where you want to add data to the ta
|
||||
|
||||
## Adding to a table
|
||||
|
||||
After a table has been created, you can always add more data to it usind the `add` method
|
||||
After a table has been created, you can always add more data to it using the `add` method
|
||||
|
||||
=== "Python"
|
||||
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
|
||||
@@ -535,7 +535,7 @@ After a table has been created, you can always add more data to it usind the `ad
|
||||
```
|
||||
|
||||
??? "Ingesting Pydantic models with LanceDB embedding API"
|
||||
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` feild as None to allow LanceDB to automatically vectorize the data.
|
||||
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` field as None to allow LanceDB to automatically vectorize the data.
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
@@ -790,6 +790,122 @@ Use the `drop_table()` method on the database to remove a table.
|
||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||
If the table does not exist an exception is raised.
|
||||
|
||||
## Changing schemas
|
||||
|
||||
While tables must have a schema specified when they are created, you can
|
||||
change the schema over time. There's three methods to alter the schema of
|
||||
a table:
|
||||
|
||||
* `add_columns`: Add new columns to the table
|
||||
* `alter_columns`: Alter the name, nullability, or data type of a column
|
||||
* `drop_columns`: Drop columns from the table
|
||||
|
||||
### Adding new columns
|
||||
|
||||
You can add new columns to the table with the `add_columns` method. New columns
|
||||
are filled with values based on a SQL expression. For example, you can add a new
|
||||
column `y` to the table and fill it with the value of `x + 1`.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
table.add_columns({"double_price": "price * 2"})
|
||||
```
|
||||
**API Reference:** [lancedb.table.Table.add_columns][]
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.test.ts:add_columns"
|
||||
```
|
||||
**API Reference:** [lancedb.Table.addColumns](../js/classes/Table.md/#addcolumns)
|
||||
|
||||
If you want to fill it with null, you can use `cast(NULL as <data_type>)` as
|
||||
the SQL expression to fill the column with nulls, while controlling the data
|
||||
type of the column. Available data types are base on the
|
||||
[DataFusion data types](https://datafusion.apache.org/user-guide/sql/data_types.html).
|
||||
You can use any of the SQL types, such as `BIGINT`:
|
||||
|
||||
```sql
|
||||
cast(NULL as BIGINT)
|
||||
```
|
||||
|
||||
Using Arrow data types and the `arrow_typeof` function is not yet supported.
|
||||
|
||||
<!-- TODO: we could provide a better formula for filling with nulls:
|
||||
https://github.com/lancedb/lance/issues/3175
|
||||
-->
|
||||
|
||||
### Altering existing columns
|
||||
|
||||
You can alter the name, nullability, or data type of a column with the `alter_columns`
|
||||
method.
|
||||
|
||||
Changing the name or nullability of a column just updates the metadata. Because
|
||||
of this, it's a fast operation. Changing the data type of a column requires
|
||||
rewriting the column, which can be a heavy operation.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import pyarrow as pa
|
||||
table.alter_column({"path": "double_price", "rename": "dbl_price",
|
||||
"data_type": pa.float32(), "nullable": False})
|
||||
```
|
||||
**API Reference:** [lancedb.table.Table.alter_columns][]
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.test.ts:alter_columns"
|
||||
```
|
||||
**API Reference:** [lancedb.Table.alterColumns](../js/classes/Table.md/#altercolumns)
|
||||
|
||||
### Dropping columns
|
||||
|
||||
You can drop columns from the table with the `drop_columns` method. This will
|
||||
will remove the column from the schema.
|
||||
|
||||
<!-- TODO: Provide guidance on how to reduce disk usage once optimize helps here
|
||||
waiting on: https://github.com/lancedb/lance/issues/3177
|
||||
-->
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
table.drop_columns(["dbl_price"])
|
||||
```
|
||||
**API Reference:** [lancedb.table.Table.drop_columns][]
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.test.ts:drop_columns"
|
||||
```
|
||||
**API Reference:** [lancedb.Table.dropColumns](../js/classes/Table.md/#altercolumns)
|
||||
|
||||
|
||||
## Handling bad vectors
|
||||
|
||||
In LanceDB Python, you can use the `on_bad_vectors` parameter to choose how
|
||||
invalid vector values are handled. Invalid vectors are vectors that are not valid
|
||||
because:
|
||||
|
||||
1. They are the wrong dimension
|
||||
2. They contain NaN values
|
||||
3. They are null but are on a non-nullable field
|
||||
|
||||
By default, LanceDB will raise an error if it encounters a bad vector. You can
|
||||
also choose one of the following options:
|
||||
|
||||
* `drop`: Ignore rows with bad vectors
|
||||
* `fill`: Replace bad values (NaNs) or missing values (too few dimensions) with
|
||||
the fill value specified in the `fill_value` parameter. An input like
|
||||
`[1.0, NaN, 3.0]` will be replaced with `[1.0, 0.0, 3.0]` if `fill_value=0.0`.
|
||||
* `null`: Replace bad vectors with null (only works if the column is nullable).
|
||||
A bad vector `[1.0, NaN, 3.0]` will be replaced with `null` if the column is
|
||||
nullable. If the vector column is non-nullable, then bad vectors will cause an
|
||||
error
|
||||
|
||||
## Consistency
|
||||
|
||||
@@ -859,4 +975,4 @@ There are three possible settings for `read_consistency_interval`:
|
||||
|
||||
Learn the best practices on creating an ANN index and getting the most out of it.
|
||||
|
||||
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.
|
||||
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](../migration.md) for more information.
|
||||
|
||||
@@ -49,7 +49,8 @@ The following pages go deeper into the internal of LanceDB and how to use it.
|
||||
* [Working with tables](guides/tables.md): Learn how to work with tables and their associated functions
|
||||
* [Indexing](ann_indexes.md): Understand how to create indexes
|
||||
* [Vector search](search.md): Learn how to perform vector similarity search
|
||||
* [Full-text search](fts.md): Learn how to perform full-text search
|
||||
* [Full-text search (native)](fts.md): Learn how to perform full-text search
|
||||
* [Full-text search (tantivy-based)](fts_tantivy.md): Learn how to perform full-text search using Tantivy
|
||||
* [Managing embeddings](embeddings/index.md): Managing embeddings and the embedding functions API in LanceDB
|
||||
* [Ecosystem Integrations](integrations/index.md): Integrate LanceDB with other tools in the data ecosystem
|
||||
* [Python API Reference](python/python.md): Python OSS and Cloud API references
|
||||
|
||||
@@ -1,5 +1,10 @@
|
||||
# Langchain
|
||||

|
||||
**LangChain** is a framework designed for building applications with large language models (LLMs) by chaining together various components. It supports a range of functionalities including memory, agents, and chat models, enabling developers to create context-aware applications.
|
||||
|
||||

|
||||
|
||||
LangChain streamlines these stages (in figure above) by providing pre-built components and tools for integration, memory management, and deployment, allowing developers to focus on application logic rather than underlying complexities.
|
||||
|
||||
Integration of **Langchain** with **LanceDB** enables applications to retrieve the most relevant data by comparing query vectors against stored vectors, facilitating effective information retrieval. It results in better and context aware replies and actions by the LLMs.
|
||||
|
||||
## Quick Start
|
||||
You can load your document data using langchain's loaders, for this example we are using `TextLoader` and `OpenAIEmbeddings` as the embedding model. Checkout Complete example here - [LangChain demo](../notebooks/langchain_example.ipynb)
|
||||
@@ -26,20 +31,28 @@ print(docs[0].page_content)
|
||||
|
||||
## Documentation
|
||||
In the above example `LanceDB` vector store class object is created using `from_documents()` method which is a `classmethod` and returns the initialized class object.
|
||||
|
||||
You can also use `LanceDB.from_texts(texts: List[str],embedding: Embeddings)` class method.
|
||||
|
||||
The exhaustive list of parameters for `LanceDB` vector store are :
|
||||
- `connection`: (Optional) `lancedb.db.LanceDBConnection` connection object to use. If not provided, a new connection will be created.
|
||||
- `embedding`: Langchain embedding model.
|
||||
- `vector_key`: (Optional) Column name to use for vector's in the table. Defaults to `'vector'`.
|
||||
- `id_key`: (Optional) Column name to use for id's in the table. Defaults to `'id'`.
|
||||
- `text_key`: (Optional) Column name to use for text in the table. Defaults to `'text'`.
|
||||
- `table_name`: (Optional) Name of your table in the database. Defaults to `'vectorstore'`.
|
||||
- `api_key`: (Optional) API key to use for LanceDB cloud database. Defaults to `None`.
|
||||
- `region`: (Optional) Region to use for LanceDB cloud database. Only for LanceDB Cloud, defaults to `None`.
|
||||
- `mode`: (Optional) Mode to use for adding data to the table. Defaults to `'overwrite'`.
|
||||
- `reranker`: (Optional) The reranker to use for LanceDB.
|
||||
- `relevance_score_fn`: (Optional[Callable[[float], float]]) Langchain relevance score function to be used. Defaults to `None`.
|
||||
The exhaustive list of parameters for `LanceDB` vector store are :
|
||||
|
||||
|Name|type|Purpose|default|
|
||||
|:----|:----|:----|:----|
|
||||
|`connection`| (Optional) `Any` |`lancedb.db.LanceDBConnection` connection object to use. If not provided, a new connection will be created.|`None`|
|
||||
|`embedding`| (Optional) `Embeddings` | Langchain embedding model.|Provided by user.|
|
||||
|`uri`| (Optional) `str` |It specifies the directory location of **LanceDB database** and establishes a connection that can be used to interact with the database. |`/tmp/lancedb`|
|
||||
|`vector_key` |(Optional) `str`| Column name to use for vector's in the table.|`'vector'`|
|
||||
|`id_key` |(Optional) `str`| Column name to use for id's in the table.|`'id'`|
|
||||
|`text_key` |(Optional) `str` |Column name to use for text in the table.|`'text'`|
|
||||
|`table_name` |(Optional) `str`| Name of your table in the database.|`'vectorstore'`|
|
||||
|`api_key` |(Optional `str`) |API key to use for LanceDB cloud database.|`None`|
|
||||
|`region` |(Optional) `str`| Region to use for LanceDB cloud database.|Only for LanceDB Cloud : `None`.|
|
||||
|`mode` |(Optional) `str` |Mode to use for adding data to the table. Valid values are "append" and "overwrite".|`'overwrite'`|
|
||||
|`table`| (Optional) `Any`|You can connect to an existing table of LanceDB, created outside of langchain, and utilize it.|`None`|
|
||||
|`distance`|(Optional) `str`|The choice of distance metric used to calculate the similarity between vectors.|`'l2'`|
|
||||
|`reranker` |(Optional) `Any`|The reranker to use for LanceDB.|`None`|
|
||||
|`relevance_score_fn` |(Optional) `Callable[[float], float]` | Langchain relevance score function to be used.|`None`|
|
||||
|`limit`|`int`|Set the maximum number of results to return.|`DEFAULT_K` (it is 4)|
|
||||
|
||||
```python
|
||||
db_url = "db://lang_test" # url of db you created
|
||||
@@ -51,19 +64,24 @@ vector_store = LanceDB(
|
||||
api_key=api_key, #(dont include for local API)
|
||||
region=region, #(dont include for local API)
|
||||
embedding=embeddings,
|
||||
table_name='langchain_test' #Optional
|
||||
table_name='langchain_test' # Optional
|
||||
)
|
||||
```
|
||||
|
||||
### Methods
|
||||
|
||||
##### add_texts()
|
||||
- `texts`: `Iterable` of strings to add to the vectorstore.
|
||||
- `metadatas`: Optional `list[dict()]` of metadatas associated with the texts.
|
||||
- `ids`: Optional `list` of ids to associate with the texts.
|
||||
- `kwargs`: `Any`
|
||||
|
||||
This method adds texts and stores respective embeddings automatically.
|
||||
This method turn texts into embedding and add it to the database.
|
||||
|
||||
|Name|Purpose|defaults|
|
||||
|:---|:---|:---|
|
||||
|`texts`|`Iterable` of strings to add to the vectorstore.|Provided by user|
|
||||
|`metadatas`|Optional `list[dict()]` of metadatas associated with the texts.|`None`|
|
||||
|`ids`|Optional `list` of ids to associate with the texts.|`None`|
|
||||
|`kwargs`| Other keyworded arguments provided by the user. |-|
|
||||
|
||||
It returns list of ids of the added texts.
|
||||
|
||||
```python
|
||||
vector_store.add_texts(texts = ['test_123'], metadatas =[{'source' :'wiki'}])
|
||||
@@ -78,14 +96,25 @@ pd_df.to_csv("docsearch.csv", index=False)
|
||||
# you can also create a new vector store object using an older connection object:
|
||||
vector_store = LanceDB(connection=tbl, embedding=embeddings)
|
||||
```
|
||||
##### create_index()
|
||||
- `col_name`: `Optional[str] = None`
|
||||
- `vector_col`: `Optional[str] = None`
|
||||
- `num_partitions`: `Optional[int] = 256`
|
||||
- `num_sub_vectors`: `Optional[int] = 96`
|
||||
- `index_cache_size`: `Optional[int] = None`
|
||||
|
||||
This method creates an index for the vector store. For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
|
||||
------
|
||||
|
||||
|
||||
##### create_index()
|
||||
|
||||
This method creates a scalar(for non-vector cols) or a vector index on a table.
|
||||
|
||||
|Name|type|Purpose|defaults|
|
||||
|:---|:---|:---|:---|
|
||||
|`vector_col`|`Optional[str]`| Provide if you want to create index on a vector column. |`None`|
|
||||
|`col_name`|`Optional[str]`| Provide if you want to create index on a non-vector column. |`None`|
|
||||
|`metric`|`Optional[str]` |Provide the metric to use for vector index. choice of metrics: 'L2', 'dot', 'cosine'. |`L2`|
|
||||
|`num_partitions`|`Optional[int]`|Number of partitions to use for the index.|`256`|
|
||||
|`num_sub_vectors`|`Optional[int]` |Number of sub-vectors to use for the index.|`96`|
|
||||
|`index_cache_size`|`Optional[int]` |Size of the index cache.|`None`|
|
||||
|`name`|`Optional[str]` |Name of the table to create index on.|`None`|
|
||||
|
||||
For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
|
||||
|
||||
```python
|
||||
# for creating vector index
|
||||
@@ -96,42 +125,63 @@ vector_store.create_index(col_name='text')
|
||||
|
||||
```
|
||||
|
||||
##### similarity_search()
|
||||
- `query`: `str`
|
||||
- `k`: `Optional[int] = None`
|
||||
- `filter`: `Optional[Dict[str, str]] = None`
|
||||
- `fts`: `Optional[bool] = False`
|
||||
- `name`: `Optional[str] = None`
|
||||
- `kwargs`: `Any`
|
||||
------
|
||||
|
||||
Return documents most similar to the query without relevance scores
|
||||
##### similarity_search()
|
||||
|
||||
This method performs similarity search based on **text query**.
|
||||
|
||||
| Name | Type | Purpose | Default |
|
||||
|---------|----------------------|---------|---------|
|
||||
| `query` | `str` | A `str` representing the text query that you want to search for in the vector store. | N/A |
|
||||
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
|
||||
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. | `None` |
|
||||
| `fts` | `Optional[bool]` | It indicates whether to perform a full-text search (FTS). | `False` |
|
||||
| `name` | `Optional[str]` | It is used for specifying the name of the table to query. If not provided, it uses the default table set during the initialization of the LanceDB instance. | `None` |
|
||||
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
|
||||
|
||||
Return documents most similar to the query **without relevance scores**.
|
||||
|
||||
```python
|
||||
docs = docsearch.similarity_search(query)
|
||||
print(docs[0].page_content)
|
||||
```
|
||||
|
||||
##### similarity_search_by_vector()
|
||||
- `embedding`: `List[float]`
|
||||
- `k`: `Optional[int] = None`
|
||||
- `filter`: `Optional[Dict[str, str]] = None`
|
||||
- `name`: `Optional[str] = None`
|
||||
- `kwargs`: `Any`
|
||||
------
|
||||
|
||||
Returns documents most similar to the query vector.
|
||||
##### similarity_search_by_vector()
|
||||
|
||||
The method returns documents that are most similar to the specified **embedding (query) vector**.
|
||||
|
||||
| Name | Type | Purpose | Default |
|
||||
|-------------|---------------------------|---------|---------|
|
||||
| `embedding` | `List[float]` | The embedding vector you want to use to search for similar documents in the vector store. | N/A |
|
||||
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
|
||||
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. | `None` |
|
||||
| `name` | `Optional[str]` | It is used for specifying the name of the table to query. If not provided, it uses the default table set during the initialization of the LanceDB instance. | `None` |
|
||||
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
|
||||
|
||||
**It does not provide relevance scores.**
|
||||
|
||||
```python
|
||||
docs = docsearch.similarity_search_by_vector(query)
|
||||
print(docs[0].page_content)
|
||||
```
|
||||
|
||||
##### similarity_search_with_score()
|
||||
- `query`: `str`
|
||||
- `k`: `Optional[int] = None`
|
||||
- `filter`: `Optional[Dict[str, str]] = None`
|
||||
- `kwargs`: `Any`
|
||||
------
|
||||
|
||||
Returns documents most similar to the query string with relevance scores, gets called by base class's `similarity_search_with_relevance_scores` which selects relevance score based on our `_select_relevance_score_fn`.
|
||||
##### similarity_search_with_score()
|
||||
|
||||
Returns documents most similar to the **query string** along with their relevance scores.
|
||||
|
||||
| Name | Type | Purpose | Default |
|
||||
|----------|---------------------------|---------|---------|
|
||||
| `query` | `str` |A `str` representing the text query you want to search for in the vector store. This query will be converted into an embedding using the specified embedding function. | N/A |
|
||||
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
|
||||
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. This allows you to narrow down the search results based on certain metadata attributes associated with the documents. | `None` |
|
||||
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
|
||||
|
||||
It gets called by base class's `similarity_search_with_relevance_scores` which selects relevance score based on our `_select_relevance_score_fn`.
|
||||
|
||||
```python
|
||||
docs = docsearch.similarity_search_with_relevance_scores(query)
|
||||
@@ -139,15 +189,21 @@ print("relevance score - ", docs[0][1])
|
||||
print("text- ", docs[0][0].page_content[:1000])
|
||||
```
|
||||
|
||||
##### similarity_search_by_vector_with_relevance_scores()
|
||||
- `embedding`: `List[float]`
|
||||
- `k`: `Optional[int] = None`
|
||||
- `filter`: `Optional[Dict[str, str]] = None`
|
||||
- `name`: `Optional[str] = None`
|
||||
- `kwargs`: `Any`
|
||||
------
|
||||
|
||||
Return documents most similar to the query vector with relevance scores.
|
||||
Relevance score
|
||||
##### similarity_search_by_vector_with_relevance_scores()
|
||||
|
||||
Similarity search using **query vector**.
|
||||
|
||||
| Name | Type | Purpose | Default |
|
||||
|-------------|---------------------------|---------|---------|
|
||||
| `embedding` | `List[float]` | The embedding vector you want to use to search for similar documents in the vector store. | N/A |
|
||||
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
|
||||
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. | `None` |
|
||||
| `name` | `Optional[str]` | It is used for specifying the name of the table to query. | `None` |
|
||||
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
|
||||
|
||||
The method returns documents most similar to the specified embedding (query) vector, along with their relevance scores.
|
||||
|
||||
```python
|
||||
docs = docsearch.similarity_search_by_vector_with_relevance_scores(query_embedding)
|
||||
@@ -155,20 +211,22 @@ print("relevance score - ", docs[0][1])
|
||||
print("text- ", docs[0][0].page_content[:1000])
|
||||
```
|
||||
|
||||
##### max_marginal_relevance_search()
|
||||
- `query`: `str`
|
||||
- `k`: `Optional[int] = None`
|
||||
- `fetch_k` : Number of Documents to fetch to pass to MMR algorithm, `Optional[int] = None`
|
||||
- `lambda_mult`: Number between 0 and 1 that determines the degree
|
||||
of diversity among the results with 0 corresponding
|
||||
to maximum diversity and 1 to minimum diversity.
|
||||
Defaults to 0.5. `float = 0.5`
|
||||
- `filter`: `Optional[Dict[str, str]] = None`
|
||||
- `kwargs`: `Any`
|
||||
------
|
||||
|
||||
Returns docs selected using the maximal marginal relevance(MMR).
|
||||
##### max_marginal_relevance_search()
|
||||
|
||||
This method returns docs selected using the maximal marginal relevance(MMR).
|
||||
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
|
||||
|
||||
| Name | Type | Purpose | Default |
|
||||
|---------------|-----------------|-----------|---------|
|
||||
| `query` | `str` | Text to look up documents similar to. | N/A |
|
||||
| `k` | `Optional[int]` | Number of Documents to return.| `4` |
|
||||
| `fetch_k`| `Optional[int]`| Number of Documents to fetch to pass to MMR algorithm.| `None` |
|
||||
| `lambda_mult` | `float` | Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. | `0.5` |
|
||||
| `filter`| `Optional[Dict[str, str]]`| Filter by metadata. | `None` |
|
||||
|`kwargs`| Other keyworded arguments provided by the user. |-|
|
||||
|
||||
Similarly, `max_marginal_relevance_search_by_vector()` function returns docs most similar to the embedding passed to the function using MMR. instead of a string query you need to pass the embedding to be searched for.
|
||||
|
||||
```python
|
||||
@@ -186,12 +244,19 @@ result_texts = [doc.page_content for doc in result]
|
||||
print(result_texts)
|
||||
```
|
||||
|
||||
##### add_images()
|
||||
- `uris` : File path to the image. `List[str]`.
|
||||
- `metadatas` : Optional list of metadatas. `(Optional[List[dict]], optional)`
|
||||
- `ids` : Optional list of IDs. `(Optional[List[str]], optional)`
|
||||
------
|
||||
|
||||
Adds images by automatically creating their embeddings and adds them to the vectorstore.
|
||||
##### add_images()
|
||||
|
||||
This method ddds images by automatically creating their embeddings and adds them to the vectorstore.
|
||||
|
||||
| Name | Type | Purpose | Default |
|
||||
|------------|-------------------------------|--------------------------------|---------|
|
||||
| `uris` | `List[str]` | File path to the image | N/A |
|
||||
| `metadatas`| `Optional[List[dict]]` | Optional list of metadatas | `None` |
|
||||
| `ids` | `Optional[List[str]]` | Optional list of IDs | `None` |
|
||||
|
||||
It returns list of IDs of the added images.
|
||||
|
||||
```python
|
||||
vec_store.add_images(uris=image_uris)
|
||||
|
||||
@@ -45,7 +45,7 @@ Let's see how using LanceDB inside phidata helps in making LLM more useful:
|
||||
|
||||
**Install the following packages in the virtual environment**
|
||||
```python
|
||||
pip install lancedb phidata youtube_transcript_api openai ollama pandas numpy
|
||||
pip install lancedb phidata youtube_transcript_api openai ollama numpy pandas
|
||||
```
|
||||
|
||||
**Create python files and import necessary libraries**
|
||||
|
||||
@@ -1 +0,0 @@
|
||||
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.
|
||||
@@ -27,7 +27,9 @@ the underlying connection has been closed.
|
||||
|
||||
### new Connection()
|
||||
|
||||
> **new Connection**(): [`Connection`](Connection.md)
|
||||
```ts
|
||||
new Connection(): Connection
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -37,7 +39,9 @@ the underlying connection has been closed.
|
||||
|
||||
### close()
|
||||
|
||||
> `abstract` **close**(): `void`
|
||||
```ts
|
||||
abstract close(): void
|
||||
```
|
||||
|
||||
Close the connection, releasing any underlying resources.
|
||||
|
||||
@@ -53,21 +57,24 @@ Any attempt to use the connection after it is closed will result in an error.
|
||||
|
||||
### createEmptyTable()
|
||||
|
||||
> `abstract` **createEmptyTable**(`name`, `schema`, `options`?): `Promise`<[`Table`](Table.md)>
|
||||
```ts
|
||||
abstract createEmptyTable(
|
||||
name,
|
||||
schema,
|
||||
options?): Promise<Table>
|
||||
```
|
||||
|
||||
Creates a new empty Table
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **name**: `string`
|
||||
* **name**: `string`
|
||||
The name of the table.
|
||||
|
||||
The name of the table.
|
||||
* **schema**: `SchemaLike`
|
||||
The schema of the table
|
||||
|
||||
• **schema**: `SchemaLike`
|
||||
|
||||
The schema of the table
|
||||
|
||||
• **options?**: `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||
* **options?**: `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -79,15 +86,16 @@ The schema of the table
|
||||
|
||||
#### createTable(options)
|
||||
|
||||
> `abstract` **createTable**(`options`): `Promise`<[`Table`](Table.md)>
|
||||
```ts
|
||||
abstract createTable(options): Promise<Table>
|
||||
```
|
||||
|
||||
Creates a new Table and initialize it with new data.
|
||||
|
||||
##### Parameters
|
||||
|
||||
• **options**: `object` & `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||
|
||||
The options object.
|
||||
* **options**: `object` & `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||
The options object.
|
||||
|
||||
##### Returns
|
||||
|
||||
@@ -95,22 +103,25 @@ The options object.
|
||||
|
||||
#### createTable(name, data, options)
|
||||
|
||||
> `abstract` **createTable**(`name`, `data`, `options`?): `Promise`<[`Table`](Table.md)>
|
||||
```ts
|
||||
abstract createTable(
|
||||
name,
|
||||
data,
|
||||
options?): Promise<Table>
|
||||
```
|
||||
|
||||
Creates a new Table and initialize it with new data.
|
||||
|
||||
##### Parameters
|
||||
|
||||
• **name**: `string`
|
||||
* **name**: `string`
|
||||
The name of the table.
|
||||
|
||||
The name of the table.
|
||||
* **data**: `TableLike` \| `Record`<`string`, `unknown`>[]
|
||||
Non-empty Array of Records
|
||||
to be inserted into the table
|
||||
|
||||
• **data**: `TableLike` \| `Record`<`string`, `unknown`>[]
|
||||
|
||||
Non-empty Array of Records
|
||||
to be inserted into the table
|
||||
|
||||
• **options?**: `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||
* **options?**: `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||
|
||||
##### Returns
|
||||
|
||||
@@ -120,7 +131,9 @@ to be inserted into the table
|
||||
|
||||
### display()
|
||||
|
||||
> `abstract` **display**(): `string`
|
||||
```ts
|
||||
abstract display(): string
|
||||
```
|
||||
|
||||
Return a brief description of the connection
|
||||
|
||||
@@ -132,15 +145,16 @@ Return a brief description of the connection
|
||||
|
||||
### dropTable()
|
||||
|
||||
> `abstract` **dropTable**(`name`): `Promise`<`void`>
|
||||
```ts
|
||||
abstract dropTable(name): Promise<void>
|
||||
```
|
||||
|
||||
Drop an existing table.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **name**: `string`
|
||||
|
||||
The name of the table to drop.
|
||||
* **name**: `string`
|
||||
The name of the table to drop.
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -150,7 +164,9 @@ The name of the table to drop.
|
||||
|
||||
### isOpen()
|
||||
|
||||
> `abstract` **isOpen**(): `boolean`
|
||||
```ts
|
||||
abstract isOpen(): boolean
|
||||
```
|
||||
|
||||
Return true if the connection has not been closed
|
||||
|
||||
@@ -162,17 +178,18 @@ Return true if the connection has not been closed
|
||||
|
||||
### openTable()
|
||||
|
||||
> `abstract` **openTable**(`name`, `options`?): `Promise`<[`Table`](Table.md)>
|
||||
```ts
|
||||
abstract openTable(name, options?): Promise<Table>
|
||||
```
|
||||
|
||||
Open a table in the database.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **name**: `string`
|
||||
* **name**: `string`
|
||||
The name of the table
|
||||
|
||||
The name of the table
|
||||
|
||||
• **options?**: `Partial`<`OpenTableOptions`>
|
||||
* **options?**: `Partial`<`OpenTableOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -182,7 +199,9 @@ The name of the table
|
||||
|
||||
### tableNames()
|
||||
|
||||
> `abstract` **tableNames**(`options`?): `Promise`<`string`[]>
|
||||
```ts
|
||||
abstract tableNames(options?): Promise<string[]>
|
||||
```
|
||||
|
||||
List all the table names in this database.
|
||||
|
||||
@@ -190,10 +209,9 @@ Tables will be returned in lexicographical order.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<[`TableNamesOptions`](../interfaces/TableNamesOptions.md)>
|
||||
|
||||
options to control the
|
||||
paging / start point
|
||||
* **options?**: `Partial`<[`TableNamesOptions`](../interfaces/TableNamesOptions.md)>
|
||||
options to control the
|
||||
paging / start point
|
||||
|
||||
#### Returns
|
||||
|
||||
|
||||
@@ -8,9 +8,30 @@
|
||||
|
||||
## Methods
|
||||
|
||||
### bitmap()
|
||||
|
||||
```ts
|
||||
static bitmap(): Index
|
||||
```
|
||||
|
||||
Create a bitmap index.
|
||||
|
||||
A `Bitmap` index stores a bitmap for each distinct value in the column for every row.
|
||||
|
||||
This index works best for low-cardinality columns, where the number of unique values
|
||||
is small (i.e., less than a few hundreds).
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Index`](Index.md)
|
||||
|
||||
***
|
||||
|
||||
### btree()
|
||||
|
||||
> `static` **btree**(): [`Index`](Index.md)
|
||||
```ts
|
||||
static btree(): Index
|
||||
```
|
||||
|
||||
Create a btree index
|
||||
|
||||
@@ -36,9 +57,82 @@ block size may be added in the future.
|
||||
|
||||
***
|
||||
|
||||
### fts()
|
||||
|
||||
```ts
|
||||
static fts(options?): Index
|
||||
```
|
||||
|
||||
Create a full text search index
|
||||
|
||||
A full text search index is an index on a string column, so that you can conduct full
|
||||
text searches on the column.
|
||||
|
||||
The results of a full text search are ordered by relevance measured by BM25.
|
||||
|
||||
You can combine filters with full text search.
|
||||
|
||||
For now, the full text search index only supports English, and doesn't support phrase search.
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **options?**: `Partial`<`FtsOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Index`](Index.md)
|
||||
|
||||
***
|
||||
|
||||
### hnswPq()
|
||||
|
||||
```ts
|
||||
static hnswPq(options?): Index
|
||||
```
|
||||
|
||||
Create a hnswPq index
|
||||
|
||||
HNSW-PQ stands for Hierarchical Navigable Small World - Product Quantization.
|
||||
It is a variant of the HNSW algorithm that uses product quantization to compress
|
||||
the vectors.
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **options?**: `Partial`<`HnswPqOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Index`](Index.md)
|
||||
|
||||
***
|
||||
|
||||
### hnswSq()
|
||||
|
||||
```ts
|
||||
static hnswSq(options?): Index
|
||||
```
|
||||
|
||||
Create a hnswSq index
|
||||
|
||||
HNSW-SQ stands for Hierarchical Navigable Small World - Scalar Quantization.
|
||||
It is a variant of the HNSW algorithm that uses scalar quantization to compress
|
||||
the vectors.
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **options?**: `Partial`<`HnswSqOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Index`](Index.md)
|
||||
|
||||
***
|
||||
|
||||
### ivfPq()
|
||||
|
||||
> `static` **ivfPq**(`options`?): [`Index`](Index.md)
|
||||
```ts
|
||||
static ivfPq(options?): Index
|
||||
```
|
||||
|
||||
Create an IvfPq index
|
||||
|
||||
@@ -63,29 +157,25 @@ currently is also a memory intensive operation.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<[`IvfPqOptions`](../interfaces/IvfPqOptions.md)>
|
||||
* **options?**: `Partial`<[`IvfPqOptions`](../interfaces/IvfPqOptions.md)>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Index`](Index.md)
|
||||
|
||||
### fts()
|
||||
***
|
||||
|
||||
> `static` **fts**(`options`?): [`Index`](Index.md)
|
||||
### labelList()
|
||||
|
||||
Create a full text search index
|
||||
```ts
|
||||
static labelList(): Index
|
||||
```
|
||||
|
||||
This index is used to search for text data. The index is created by tokenizing the text
|
||||
into words and then storing occurrences of these words in a data structure called inverted index
|
||||
that allows for fast search.
|
||||
Create a label list index.
|
||||
|
||||
During a search the query is tokenized and the inverted index is used to find the rows that
|
||||
contain the query words. The rows are then scored based on BM25 and the top scoring rows are
|
||||
sorted and returned.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<[`FtsOptions`](../interfaces/FtsOptions.md)>
|
||||
LabelList index is a scalar index that can be used on `List<T>` columns to
|
||||
support queries with `array_contains_all` and `array_contains_any`
|
||||
using an underlying bitmap index.
|
||||
|
||||
#### Returns
|
||||
|
||||
|
||||
@@ -12,11 +12,13 @@ Options to control the makeArrowTable call.
|
||||
|
||||
### new MakeArrowTableOptions()
|
||||
|
||||
> **new MakeArrowTableOptions**(`values`?): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
|
||||
```ts
|
||||
new MakeArrowTableOptions(values?): MakeArrowTableOptions
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **values?**: `Partial`<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)>
|
||||
* **values?**: `Partial`<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -26,7 +28,9 @@ Options to control the makeArrowTable call.
|
||||
|
||||
### dictionaryEncodeStrings
|
||||
|
||||
> **dictionaryEncodeStrings**: `boolean` = `false`
|
||||
```ts
|
||||
dictionaryEncodeStrings: boolean = false;
|
||||
```
|
||||
|
||||
If true then string columns will be encoded with dictionary encoding
|
||||
|
||||
@@ -40,22 +44,30 @@ If `schema` is provided then this property is ignored.
|
||||
|
||||
### embeddingFunction?
|
||||
|
||||
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
|
||||
```ts
|
||||
optional embeddingFunction: EmbeddingFunctionConfig;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### embeddings?
|
||||
|
||||
> `optional` **embeddings**: [`EmbeddingFunction`](../namespaces/embedding/classes/EmbeddingFunction.md)<`unknown`, `FunctionOptions`>
|
||||
```ts
|
||||
optional embeddings: EmbeddingFunction<unknown, FunctionOptions>;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### schema?
|
||||
|
||||
> `optional` **schema**: `SchemaLike`
|
||||
```ts
|
||||
optional schema: SchemaLike;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### vectorColumns
|
||||
|
||||
> **vectorColumns**: `Record`<`string`, [`VectorColumnOptions`](VectorColumnOptions.md)>
|
||||
```ts
|
||||
vectorColumns: Record<string, VectorColumnOptions>;
|
||||
```
|
||||
|
||||
@@ -16,11 +16,13 @@ A builder for LanceDB queries.
|
||||
|
||||
### new Query()
|
||||
|
||||
> **new Query**(`tbl`): [`Query`](Query.md)
|
||||
```ts
|
||||
new Query(tbl): Query
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **tbl**: `Table`
|
||||
* **tbl**: `Table`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -34,7 +36,9 @@ A builder for LanceDB queries.
|
||||
|
||||
### inner
|
||||
|
||||
> `protected` **inner**: `Query` \| `Promise`<`Query`>
|
||||
```ts
|
||||
protected inner: Query | Promise<Query>;
|
||||
```
|
||||
|
||||
#### Inherited from
|
||||
|
||||
@@ -44,7 +48,9 @@ A builder for LanceDB queries.
|
||||
|
||||
### \[asyncIterator\]()
|
||||
|
||||
> **\[asyncIterator\]**(): `AsyncIterator`<`RecordBatch`<`any`>, `any`, `undefined`>
|
||||
```ts
|
||||
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -58,11 +64,13 @@ A builder for LanceDB queries.
|
||||
|
||||
### doCall()
|
||||
|
||||
> `protected` **doCall**(`fn`): `void`
|
||||
```ts
|
||||
protected doCall(fn): void
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **fn**
|
||||
* **fn**
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -76,13 +84,15 @@ A builder for LanceDB queries.
|
||||
|
||||
### execute()
|
||||
|
||||
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
```ts
|
||||
protected execute(options?): RecordBatchIterator
|
||||
```
|
||||
|
||||
Execute the query and return the results as an
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
* **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -108,15 +118,16 @@ single query)
|
||||
|
||||
### explainPlan()
|
||||
|
||||
> **explainPlan**(`verbose`): `Promise`<`string`>
|
||||
```ts
|
||||
explainPlan(verbose): Promise<string>
|
||||
```
|
||||
|
||||
Generates an explanation of the query execution plan.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **verbose**: `boolean` = `false`
|
||||
|
||||
If true, provides a more detailed explanation. Defaults to false.
|
||||
* **verbose**: `boolean` = `false`
|
||||
If true, provides a more detailed explanation. Defaults to false.
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -141,15 +152,38 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
|
||||
|
||||
***
|
||||
|
||||
### fastSearch()
|
||||
|
||||
```ts
|
||||
fastSearch(): this
|
||||
```
|
||||
|
||||
Skip searching un-indexed data. This can make search faster, but will miss
|
||||
any data that is not yet indexed.
|
||||
|
||||
Use lancedb.Table#optimize to index all un-indexed data.
|
||||
|
||||
#### Returns
|
||||
|
||||
`this`
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`fastSearch`](QueryBase.md#fastsearch)
|
||||
|
||||
***
|
||||
|
||||
### ~~filter()~~
|
||||
|
||||
> **filter**(`predicate`): `this`
|
||||
```ts
|
||||
filter(predicate): this
|
||||
```
|
||||
|
||||
A filter statement to be applied to this query.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **predicate**: `string`
|
||||
* **predicate**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -169,9 +203,33 @@ Use `where` instead
|
||||
|
||||
***
|
||||
|
||||
### fullTextSearch()
|
||||
|
||||
```ts
|
||||
fullTextSearch(query, options?): this
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **query**: `string`
|
||||
|
||||
* **options?**: `Partial`<`FullTextSearchOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`this`
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`fullTextSearch`](QueryBase.md#fulltextsearch)
|
||||
|
||||
***
|
||||
|
||||
### limit()
|
||||
|
||||
> **limit**(`limit`): `this`
|
||||
```ts
|
||||
limit(limit): this
|
||||
```
|
||||
|
||||
Set the maximum number of results to return.
|
||||
|
||||
@@ -180,7 +238,7 @@ called then every valid row from the table will be returned.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **limit**: `number`
|
||||
* **limit**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -194,11 +252,13 @@ called then every valid row from the table will be returned.
|
||||
|
||||
### nativeExecute()
|
||||
|
||||
> `protected` **nativeExecute**(`options`?): `Promise`<`RecordBatchIterator`>
|
||||
```ts
|
||||
protected nativeExecute(options?): Promise<RecordBatchIterator>
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
* **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -212,7 +272,9 @@ called then every valid row from the table will be returned.
|
||||
|
||||
### nearestTo()
|
||||
|
||||
> **nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
|
||||
```ts
|
||||
nearestTo(vector): VectorQuery
|
||||
```
|
||||
|
||||
Find the nearest vectors to the given query vector.
|
||||
|
||||
@@ -232,7 +294,7 @@ If there is more than one vector column you must use
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **vector**: `IntoVector`
|
||||
* **vector**: `IntoVector`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -264,9 +326,49 @@ a default `limit` of 10 will be used.
|
||||
|
||||
***
|
||||
|
||||
### nearestToText()
|
||||
|
||||
```ts
|
||||
nearestToText(query, columns?): Query
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **query**: `string`
|
||||
|
||||
* **columns?**: `string`[]
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)
|
||||
|
||||
***
|
||||
|
||||
### offset()
|
||||
|
||||
```ts
|
||||
offset(offset): this
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **offset**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
`this`
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`offset`](QueryBase.md#offset)
|
||||
|
||||
***
|
||||
|
||||
### select()
|
||||
|
||||
> **select**(`columns`): `this`
|
||||
```ts
|
||||
select(columns): this
|
||||
```
|
||||
|
||||
Return only the specified columns.
|
||||
|
||||
@@ -290,7 +392,7 @@ input to this method would be:
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **columns**: `string` \| `string`[] \| `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||
* **columns**: `string` \| `string`[] \| `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -317,13 +419,15 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
|
||||
|
||||
### toArray()
|
||||
|
||||
> **toArray**(`options`?): `Promise`<`any`[]>
|
||||
```ts
|
||||
toArray(options?): Promise<any[]>
|
||||
```
|
||||
|
||||
Collect the results as an array of objects.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
* **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -337,13 +441,15 @@ Collect the results as an array of objects.
|
||||
|
||||
### toArrow()
|
||||
|
||||
> **toArrow**(`options`?): `Promise`<`Table`<`any`>>
|
||||
```ts
|
||||
toArrow(options?): Promise<Table<any>>
|
||||
```
|
||||
|
||||
Collect the results as an Arrow
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
* **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -361,7 +467,9 @@ ArrowTable.
|
||||
|
||||
### where()
|
||||
|
||||
> **where**(`predicate`): `this`
|
||||
```ts
|
||||
where(predicate): this
|
||||
```
|
||||
|
||||
A filter statement to be applied to this query.
|
||||
|
||||
@@ -369,7 +477,7 @@ The filter should be supplied as an SQL query string. For example:
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **predicate**: `string`
|
||||
* **predicate**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -389,3 +497,25 @@ on the filter column(s).
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
|
||||
|
||||
***
|
||||
|
||||
### withRowId()
|
||||
|
||||
```ts
|
||||
withRowId(): this
|
||||
```
|
||||
|
||||
Whether to return the row id in the results.
|
||||
|
||||
This column can be used to match results between different queries. For
|
||||
example, to match results from a full text search and a vector search in
|
||||
order to perform hybrid search.
|
||||
|
||||
#### Returns
|
||||
|
||||
`this`
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`withRowId`](QueryBase.md#withrowid)
|
||||
|
||||
@@ -25,11 +25,13 @@ Common methods supported by all query types
|
||||
|
||||
### new QueryBase()
|
||||
|
||||
> `protected` **new QueryBase**<`NativeQueryType`>(`inner`): [`QueryBase`](QueryBase.md)<`NativeQueryType`>
|
||||
```ts
|
||||
protected new QueryBase<NativeQueryType>(inner): QueryBase<NativeQueryType>
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **inner**: `NativeQueryType` \| `Promise`<`NativeQueryType`>
|
||||
* **inner**: `NativeQueryType` \| `Promise`<`NativeQueryType`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -39,13 +41,17 @@ Common methods supported by all query types
|
||||
|
||||
### inner
|
||||
|
||||
> `protected` **inner**: `NativeQueryType` \| `Promise`<`NativeQueryType`>
|
||||
```ts
|
||||
protected inner: NativeQueryType | Promise<NativeQueryType>;
|
||||
```
|
||||
|
||||
## Methods
|
||||
|
||||
### \[asyncIterator\]()
|
||||
|
||||
> **\[asyncIterator\]**(): `AsyncIterator`<`RecordBatch`<`any`>, `any`, `undefined`>
|
||||
```ts
|
||||
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -59,11 +65,13 @@ Common methods supported by all query types
|
||||
|
||||
### doCall()
|
||||
|
||||
> `protected` **doCall**(`fn`): `void`
|
||||
```ts
|
||||
protected doCall(fn): void
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **fn**
|
||||
* **fn**
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -73,13 +81,15 @@ Common methods supported by all query types
|
||||
|
||||
### execute()
|
||||
|
||||
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
```ts
|
||||
protected execute(options?): RecordBatchIterator
|
||||
```
|
||||
|
||||
Execute the query and return the results as an
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
* **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -101,15 +111,16 @@ single query)
|
||||
|
||||
### explainPlan()
|
||||
|
||||
> **explainPlan**(`verbose`): `Promise`<`string`>
|
||||
```ts
|
||||
explainPlan(verbose): Promise<string>
|
||||
```
|
||||
|
||||
Generates an explanation of the query execution plan.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **verbose**: `boolean` = `false`
|
||||
|
||||
If true, provides a more detailed explanation. Defaults to false.
|
||||
* **verbose**: `boolean` = `false`
|
||||
If true, provides a more detailed explanation. Defaults to false.
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -130,15 +141,34 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
|
||||
|
||||
***
|
||||
|
||||
### fastSearch()
|
||||
|
||||
```ts
|
||||
fastSearch(): this
|
||||
```
|
||||
|
||||
Skip searching un-indexed data. This can make search faster, but will miss
|
||||
any data that is not yet indexed.
|
||||
|
||||
Use lancedb.Table#optimize to index all un-indexed data.
|
||||
|
||||
#### Returns
|
||||
|
||||
`this`
|
||||
|
||||
***
|
||||
|
||||
### ~~filter()~~
|
||||
|
||||
> **filter**(`predicate`): `this`
|
||||
```ts
|
||||
filter(predicate): this
|
||||
```
|
||||
|
||||
A filter statement to be applied to this query.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **predicate**: `string`
|
||||
* **predicate**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -154,9 +184,29 @@ Use `where` instead
|
||||
|
||||
***
|
||||
|
||||
### fullTextSearch()
|
||||
|
||||
```ts
|
||||
fullTextSearch(query, options?): this
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **query**: `string`
|
||||
|
||||
* **options?**: `Partial`<`FullTextSearchOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`this`
|
||||
|
||||
***
|
||||
|
||||
### limit()
|
||||
|
||||
> **limit**(`limit`): `this`
|
||||
```ts
|
||||
limit(limit): this
|
||||
```
|
||||
|
||||
Set the maximum number of results to return.
|
||||
|
||||
@@ -165,7 +215,7 @@ called then every valid row from the table will be returned.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **limit**: `number`
|
||||
* **limit**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -175,11 +225,13 @@ called then every valid row from the table will be returned.
|
||||
|
||||
### nativeExecute()
|
||||
|
||||
> `protected` **nativeExecute**(`options`?): `Promise`<`RecordBatchIterator`>
|
||||
```ts
|
||||
protected nativeExecute(options?): Promise<RecordBatchIterator>
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
* **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -187,9 +239,27 @@ called then every valid row from the table will be returned.
|
||||
|
||||
***
|
||||
|
||||
### offset()
|
||||
|
||||
```ts
|
||||
offset(offset): this
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **offset**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
`this`
|
||||
|
||||
***
|
||||
|
||||
### select()
|
||||
|
||||
> **select**(`columns`): `this`
|
||||
```ts
|
||||
select(columns): this
|
||||
```
|
||||
|
||||
Return only the specified columns.
|
||||
|
||||
@@ -213,7 +283,7 @@ input to this method would be:
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **columns**: `string` \| `string`[] \| `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||
* **columns**: `string` \| `string`[] \| `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -236,13 +306,15 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
|
||||
|
||||
### toArray()
|
||||
|
||||
> **toArray**(`options`?): `Promise`<`any`[]>
|
||||
```ts
|
||||
toArray(options?): Promise<any[]>
|
||||
```
|
||||
|
||||
Collect the results as an array of objects.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
* **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -252,13 +324,15 @@ Collect the results as an array of objects.
|
||||
|
||||
### toArrow()
|
||||
|
||||
> **toArrow**(`options`?): `Promise`<`Table`<`any`>>
|
||||
```ts
|
||||
toArrow(options?): Promise<Table<any>>
|
||||
```
|
||||
|
||||
Collect the results as an Arrow
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
* **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -272,7 +346,9 @@ ArrowTable.
|
||||
|
||||
### where()
|
||||
|
||||
> **where**(`predicate`): `this`
|
||||
```ts
|
||||
where(predicate): this
|
||||
```
|
||||
|
||||
A filter statement to be applied to this query.
|
||||
|
||||
@@ -280,7 +356,7 @@ The filter should be supplied as an SQL query string. For example:
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **predicate**: `string`
|
||||
* **predicate**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -296,3 +372,21 @@ x > 5 OR y = 'test'
|
||||
Filtering performance can often be improved by creating a scalar index
|
||||
on the filter column(s).
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### withRowId()
|
||||
|
||||
```ts
|
||||
withRowId(): this
|
||||
```
|
||||
|
||||
Whether to return the row id in the results.
|
||||
|
||||
This column can be used to match results between different queries. For
|
||||
example, to match results from a full text search and a vector search in
|
||||
order to perform hybrid search.
|
||||
|
||||
#### Returns
|
||||
|
||||
`this`
|
||||
|
||||
@@ -14,11 +14,13 @@
|
||||
|
||||
### new RecordBatchIterator()
|
||||
|
||||
> **new RecordBatchIterator**(`promise`?): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
```ts
|
||||
new RecordBatchIterator(promise?): RecordBatchIterator
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **promise?**: `Promise`<`RecordBatchIterator`>
|
||||
* **promise?**: `Promise`<`RecordBatchIterator`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -28,7 +30,9 @@
|
||||
|
||||
### next()
|
||||
|
||||
> **next**(): `Promise`<`IteratorResult`<`RecordBatch`<`any`>, `any`>>
|
||||
```ts
|
||||
next(): Promise<IteratorResult<RecordBatch<any>, any>>
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
|
||||
@@ -21,7 +21,9 @@ collected.
|
||||
|
||||
### new Table()
|
||||
|
||||
> **new Table**(): [`Table`](Table.md)
|
||||
```ts
|
||||
new Table(): Table
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -31,7 +33,9 @@ collected.
|
||||
|
||||
### name
|
||||
|
||||
> `get` `abstract` **name**(): `string`
|
||||
```ts
|
||||
get abstract name(): string
|
||||
```
|
||||
|
||||
Returns the name of the table
|
||||
|
||||
@@ -43,17 +47,18 @@ Returns the name of the table
|
||||
|
||||
### add()
|
||||
|
||||
> `abstract` **add**(`data`, `options`?): `Promise`<`void`>
|
||||
```ts
|
||||
abstract add(data, options?): Promise<void>
|
||||
```
|
||||
|
||||
Insert records into this Table.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **data**: [`Data`](../type-aliases/Data.md)
|
||||
* **data**: [`Data`](../type-aliases/Data.md)
|
||||
Records to be inserted into the Table
|
||||
|
||||
Records to be inserted into the Table
|
||||
|
||||
• **options?**: `Partial`<[`AddDataOptions`](../interfaces/AddDataOptions.md)>
|
||||
* **options?**: `Partial`<[`AddDataOptions`](../interfaces/AddDataOptions.md)>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -63,18 +68,19 @@ Records to be inserted into the Table
|
||||
|
||||
### addColumns()
|
||||
|
||||
> `abstract` **addColumns**(`newColumnTransforms`): `Promise`<`void`>
|
||||
```ts
|
||||
abstract addColumns(newColumnTransforms): Promise<void>
|
||||
```
|
||||
|
||||
Add new columns with defined values.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **newColumnTransforms**: [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[]
|
||||
|
||||
pairs of column names and
|
||||
the SQL expression to use to calculate the value of the new column. These
|
||||
expressions will be evaluated for each row in the table, and can
|
||||
reference existing columns in the table.
|
||||
* **newColumnTransforms**: [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[]
|
||||
pairs of column names and
|
||||
the SQL expression to use to calculate the value of the new column. These
|
||||
expressions will be evaluated for each row in the table, and can
|
||||
reference existing columns in the table.
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -84,16 +90,17 @@ reference existing columns in the table.
|
||||
|
||||
### alterColumns()
|
||||
|
||||
> `abstract` **alterColumns**(`columnAlterations`): `Promise`<`void`>
|
||||
```ts
|
||||
abstract alterColumns(columnAlterations): Promise<void>
|
||||
```
|
||||
|
||||
Alter the name or nullability of columns.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **columnAlterations**: [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[]
|
||||
|
||||
One or more alterations to
|
||||
apply to columns.
|
||||
* **columnAlterations**: [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[]
|
||||
One or more alterations to
|
||||
apply to columns.
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -103,7 +110,9 @@ apply to columns.
|
||||
|
||||
### checkout()
|
||||
|
||||
> `abstract` **checkout**(`version`): `Promise`<`void`>
|
||||
```ts
|
||||
abstract checkout(version): Promise<void>
|
||||
```
|
||||
|
||||
Checks out a specific version of the table _This is an in-place operation._
|
||||
|
||||
@@ -116,9 +125,8 @@ wish to return to standard mode, call `checkoutLatest`.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **version**: `number`
|
||||
|
||||
The version to checkout
|
||||
* **version**: `number`
|
||||
The version to checkout
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -144,7 +152,9 @@ console.log(await table.version()); // 2
|
||||
|
||||
### checkoutLatest()
|
||||
|
||||
> `abstract` **checkoutLatest**(): `Promise`<`void`>
|
||||
```ts
|
||||
abstract checkoutLatest(): Promise<void>
|
||||
```
|
||||
|
||||
Checkout the latest version of the table. _This is an in-place operation._
|
||||
|
||||
@@ -159,7 +169,9 @@ version of the table.
|
||||
|
||||
### close()
|
||||
|
||||
> `abstract` **close**(): `void`
|
||||
```ts
|
||||
abstract close(): void
|
||||
```
|
||||
|
||||
Close the table, releasing any underlying resources.
|
||||
|
||||
@@ -175,13 +187,15 @@ Any attempt to use the table after it is closed will result in an error.
|
||||
|
||||
### countRows()
|
||||
|
||||
> `abstract` **countRows**(`filter`?): `Promise`<`number`>
|
||||
```ts
|
||||
abstract countRows(filter?): Promise<number>
|
||||
```
|
||||
|
||||
Count the total number of rows in the dataset.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **filter?**: `string`
|
||||
* **filter?**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -191,7 +205,9 @@ Count the total number of rows in the dataset.
|
||||
|
||||
### createIndex()
|
||||
|
||||
> `abstract` **createIndex**(`column`, `options`?): `Promise`<`void`>
|
||||
```ts
|
||||
abstract createIndex(column, options?): Promise<void>
|
||||
```
|
||||
|
||||
Create an index to speed up queries.
|
||||
|
||||
@@ -202,9 +218,9 @@ vector and non-vector searches)
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **column**: `string`
|
||||
* **column**: `string`
|
||||
|
||||
• **options?**: `Partial`<[`IndexOptions`](../interfaces/IndexOptions.md)>
|
||||
* **options?**: `Partial`<[`IndexOptions`](../interfaces/IndexOptions.md)>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -245,13 +261,15 @@ await table.createIndex("my_float_col");
|
||||
|
||||
### delete()
|
||||
|
||||
> `abstract` **delete**(`predicate`): `Promise`<`void`>
|
||||
```ts
|
||||
abstract delete(predicate): Promise<void>
|
||||
```
|
||||
|
||||
Delete the rows that satisfy the predicate.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **predicate**: `string`
|
||||
* **predicate**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -261,7 +279,9 @@ Delete the rows that satisfy the predicate.
|
||||
|
||||
### display()
|
||||
|
||||
> `abstract` **display**(): `string`
|
||||
```ts
|
||||
abstract display(): string
|
||||
```
|
||||
|
||||
Return a brief description of the table
|
||||
|
||||
@@ -273,7 +293,9 @@ Return a brief description of the table
|
||||
|
||||
### dropColumns()
|
||||
|
||||
> `abstract` **dropColumns**(`columnNames`): `Promise`<`void`>
|
||||
```ts
|
||||
abstract dropColumns(columnNames): Promise<void>
|
||||
```
|
||||
|
||||
Drop one or more columns from the dataset
|
||||
|
||||
@@ -284,11 +306,10 @@ then call ``cleanup_files`` to remove the old files.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **columnNames**: `string`[]
|
||||
|
||||
The names of the columns to drop. These can
|
||||
be nested column references (e.g. "a.b.c") or top-level column names
|
||||
(e.g. "a").
|
||||
* **columnNames**: `string`[]
|
||||
The names of the columns to drop. These can
|
||||
be nested column references (e.g. "a.b.c") or top-level column names
|
||||
(e.g. "a").
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -298,15 +319,16 @@ be nested column references (e.g. "a.b.c") or top-level column names
|
||||
|
||||
### indexStats()
|
||||
|
||||
> `abstract` **indexStats**(`name`): `Promise`<`undefined` \| [`IndexStatistics`](../interfaces/IndexStatistics.md)>
|
||||
```ts
|
||||
abstract indexStats(name): Promise<undefined | IndexStatistics>
|
||||
```
|
||||
|
||||
List all the stats of a specified index
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **name**: `string`
|
||||
|
||||
The name of the index.
|
||||
* **name**: `string`
|
||||
The name of the index.
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -318,7 +340,9 @@ The stats of the index. If the index does not exist, it will return undefined
|
||||
|
||||
### isOpen()
|
||||
|
||||
> `abstract` **isOpen**(): `boolean`
|
||||
```ts
|
||||
abstract isOpen(): boolean
|
||||
```
|
||||
|
||||
Return true if the table has not been closed
|
||||
|
||||
@@ -330,7 +354,9 @@ Return true if the table has not been closed
|
||||
|
||||
### listIndices()
|
||||
|
||||
> `abstract` **listIndices**(): `Promise`<[`IndexConfig`](../interfaces/IndexConfig.md)[]>
|
||||
```ts
|
||||
abstract listIndices(): Promise<IndexConfig[]>
|
||||
```
|
||||
|
||||
List all indices that have been created with [Table.createIndex](Table.md#createindex)
|
||||
|
||||
@@ -340,13 +366,29 @@ List all indices that have been created with [Table.createIndex](Table.md#create
|
||||
|
||||
***
|
||||
|
||||
### listVersions()
|
||||
|
||||
```ts
|
||||
abstract listVersions(): Promise<Version[]>
|
||||
```
|
||||
|
||||
List all the versions of the table
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`Version`[]>
|
||||
|
||||
***
|
||||
|
||||
### mergeInsert()
|
||||
|
||||
> `abstract` **mergeInsert**(`on`): `MergeInsertBuilder`
|
||||
```ts
|
||||
abstract mergeInsert(on): MergeInsertBuilder
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **on**: `string` \| `string`[]
|
||||
* **on**: `string` \| `string`[]
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -356,7 +398,9 @@ List all indices that have been created with [Table.createIndex](Table.md#create
|
||||
|
||||
### optimize()
|
||||
|
||||
> `abstract` **optimize**(`options`?): `Promise`<`OptimizeStats`>
|
||||
```ts
|
||||
abstract optimize(options?): Promise<OptimizeStats>
|
||||
```
|
||||
|
||||
Optimize the on-disk data and indices for better performance.
|
||||
|
||||
@@ -388,7 +432,7 @@ Modeled after ``VACUUM`` in PostgreSQL.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`OptimizeOptions`>
|
||||
* **options?**: `Partial`<[`OptimizeOptions`](../interfaces/OptimizeOptions.md)>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -398,7 +442,9 @@ Modeled after ``VACUUM`` in PostgreSQL.
|
||||
|
||||
### query()
|
||||
|
||||
> `abstract` **query**(): [`Query`](Query.md)
|
||||
```ts
|
||||
abstract query(): Query
|
||||
```
|
||||
|
||||
Create a [Query](Query.md) Builder.
|
||||
|
||||
@@ -466,7 +512,9 @@ for await (const batch of table.query()) {
|
||||
|
||||
### restore()
|
||||
|
||||
> `abstract` **restore**(): `Promise`<`void`>
|
||||
```ts
|
||||
abstract restore(): Promise<void>
|
||||
```
|
||||
|
||||
Restore the table to the currently checked out version
|
||||
|
||||
@@ -487,7 +535,9 @@ out state and the read_consistency_interval, if any, will apply.
|
||||
|
||||
### schema()
|
||||
|
||||
> `abstract` **schema**(): `Promise`<`Schema`<`any`>>
|
||||
```ts
|
||||
abstract schema(): Promise<Schema<any>>
|
||||
```
|
||||
|
||||
Get the schema of the table.
|
||||
|
||||
@@ -499,61 +549,41 @@ Get the schema of the table.
|
||||
|
||||
### search()
|
||||
|
||||
#### search(query)
|
||||
|
||||
> `abstract` **search**(`query`, `queryType`, `ftsColumns`): [`VectorQuery`](VectorQuery.md)
|
||||
```ts
|
||||
abstract search(
|
||||
query,
|
||||
queryType?,
|
||||
ftsColumns?): VectorQuery | Query
|
||||
```
|
||||
|
||||
Create a search query to find the nearest neighbors
|
||||
of the given query vector, or the documents
|
||||
with the highest relevance to the query string.
|
||||
of the given query
|
||||
|
||||
##### Parameters
|
||||
#### Parameters
|
||||
|
||||
• **query**: `string`
|
||||
* **query**: `string` \| `IntoVector`
|
||||
the query, a vector or string
|
||||
|
||||
the query. This will be converted to a vector using the table's provided embedding function,
|
||||
or the query string for full-text search if `queryType` is "fts".
|
||||
* **queryType?**: `string`
|
||||
the type of the query, "vector", "fts", or "auto"
|
||||
|
||||
• **queryType**: `string` = `"auto"` \| `"fts"`
|
||||
* **ftsColumns?**: `string` \| `string`[]
|
||||
the columns to search in for full text search
|
||||
for now, only one column can be searched at a time.
|
||||
when "auto" is used, if the query is a string and an embedding function is defined, it will be treated as a vector query
|
||||
if the query is a string and no embedding function is defined, it will be treated as a full text search query
|
||||
|
||||
the type of query to run. If "auto", the query type will be determined based on the query.
|
||||
#### Returns
|
||||
|
||||
• **ftsColumns**: `string[] | str` = undefined
|
||||
|
||||
the columns to search in. If not provided, all indexed columns will be searched.
|
||||
|
||||
For now, this can support to search only one column.
|
||||
|
||||
##### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
|
||||
##### Note
|
||||
|
||||
If no embedding functions are defined in the table, this will error when collecting the results.
|
||||
|
||||
#### search(query)
|
||||
|
||||
> `abstract` **search**(`query`): [`VectorQuery`](VectorQuery.md)
|
||||
|
||||
Create a search query to find the nearest neighbors
|
||||
of the given query vector
|
||||
|
||||
##### Parameters
|
||||
|
||||
• **query**: `IntoVector`
|
||||
|
||||
the query vector
|
||||
|
||||
##### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
[`VectorQuery`](VectorQuery.md) \| [`Query`](Query.md)
|
||||
|
||||
***
|
||||
|
||||
### toArrow()
|
||||
|
||||
> `abstract` **toArrow**(): `Promise`<`Table`<`any`>>
|
||||
```ts
|
||||
abstract toArrow(): Promise<Table<any>>
|
||||
```
|
||||
|
||||
Return the table as an arrow table
|
||||
|
||||
@@ -567,13 +597,15 @@ Return the table as an arrow table
|
||||
|
||||
#### update(opts)
|
||||
|
||||
> `abstract` **update**(`opts`): `Promise`<`void`>
|
||||
```ts
|
||||
abstract update(opts): Promise<void>
|
||||
```
|
||||
|
||||
Update existing records in the Table
|
||||
|
||||
##### Parameters
|
||||
|
||||
• **opts**: `object` & `Partial`<[`UpdateOptions`](../interfaces/UpdateOptions.md)>
|
||||
* **opts**: `object` & `Partial`<[`UpdateOptions`](../interfaces/UpdateOptions.md)>
|
||||
|
||||
##### Returns
|
||||
|
||||
@@ -587,13 +619,15 @@ table.update({where:"x = 2", values:{"vector": [10, 10]}})
|
||||
|
||||
#### update(opts)
|
||||
|
||||
> `abstract` **update**(`opts`): `Promise`<`void`>
|
||||
```ts
|
||||
abstract update(opts): Promise<void>
|
||||
```
|
||||
|
||||
Update existing records in the Table
|
||||
|
||||
##### Parameters
|
||||
|
||||
• **opts**: `object` & `Partial`<[`UpdateOptions`](../interfaces/UpdateOptions.md)>
|
||||
* **opts**: `object` & `Partial`<[`UpdateOptions`](../interfaces/UpdateOptions.md)>
|
||||
|
||||
##### Returns
|
||||
|
||||
@@ -607,7 +641,9 @@ table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
|
||||
|
||||
#### update(updates, options)
|
||||
|
||||
> `abstract` **update**(`updates`, `options`?): `Promise`<`void`>
|
||||
```ts
|
||||
abstract update(updates, options?): Promise<void>
|
||||
```
|
||||
|
||||
Update existing records in the Table
|
||||
|
||||
@@ -626,20 +662,17 @@ repeatedly calilng this method.
|
||||
|
||||
##### Parameters
|
||||
|
||||
• **updates**: `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||
* **updates**: `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||
the
|
||||
columns to update
|
||||
Keys in the map should specify the name of the column to update.
|
||||
Values in the map provide the new value of the column. These can
|
||||
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
|
||||
based on the row being updated (e.g. "my_col + 1")
|
||||
|
||||
the
|
||||
columns to update
|
||||
|
||||
Keys in the map should specify the name of the column to update.
|
||||
Values in the map provide the new value of the column. These can
|
||||
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
|
||||
based on the row being updated (e.g. "my_col + 1")
|
||||
|
||||
• **options?**: `Partial`<[`UpdateOptions`](../interfaces/UpdateOptions.md)>
|
||||
|
||||
additional options to control
|
||||
the update behavior
|
||||
* **options?**: `Partial`<[`UpdateOptions`](../interfaces/UpdateOptions.md)>
|
||||
additional options to control
|
||||
the update behavior
|
||||
|
||||
##### Returns
|
||||
|
||||
@@ -649,7 +682,9 @@ the update behavior
|
||||
|
||||
### vectorSearch()
|
||||
|
||||
> `abstract` **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
|
||||
```ts
|
||||
abstract vectorSearch(vector): VectorQuery
|
||||
```
|
||||
|
||||
Search the table with a given query vector.
|
||||
|
||||
@@ -659,7 +694,7 @@ by `query`.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **vector**: `IntoVector`
|
||||
* **vector**: `IntoVector`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -673,7 +708,9 @@ by `query`.
|
||||
|
||||
### version()
|
||||
|
||||
> `abstract` **version**(): `Promise`<`number`>
|
||||
```ts
|
||||
abstract version(): Promise<number>
|
||||
```
|
||||
|
||||
Retrieve the version of the table
|
||||
|
||||
@@ -685,15 +722,20 @@ Retrieve the version of the table
|
||||
|
||||
### parseTableData()
|
||||
|
||||
> `static` **parseTableData**(`data`, `options`?, `streaming`?): `Promise`<`object`>
|
||||
```ts
|
||||
static parseTableData(
|
||||
data,
|
||||
options?,
|
||||
streaming?): Promise<object>
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **data**: `TableLike` \| `Record`<`string`, `unknown`>[]
|
||||
* **data**: `TableLike` \| `Record`<`string`, `unknown`>[]
|
||||
|
||||
• **options?**: `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||
* **options?**: `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||
|
||||
• **streaming?**: `boolean` = `false`
|
||||
* **streaming?**: `boolean` = `false`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -701,8 +743,12 @@ Retrieve the version of the table
|
||||
|
||||
##### buf
|
||||
|
||||
> **buf**: `Buffer`
|
||||
```ts
|
||||
buf: Buffer;
|
||||
```
|
||||
|
||||
##### mode
|
||||
|
||||
> **mode**: `string`
|
||||
```ts
|
||||
mode: string;
|
||||
```
|
||||
|
||||
@@ -10,11 +10,13 @@
|
||||
|
||||
### new VectorColumnOptions()
|
||||
|
||||
> **new VectorColumnOptions**(`values`?): [`VectorColumnOptions`](VectorColumnOptions.md)
|
||||
```ts
|
||||
new VectorColumnOptions(values?): VectorColumnOptions
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **values?**: `Partial`<[`VectorColumnOptions`](VectorColumnOptions.md)>
|
||||
* **values?**: `Partial`<[`VectorColumnOptions`](VectorColumnOptions.md)>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -24,6 +26,8 @@
|
||||
|
||||
### type
|
||||
|
||||
> **type**: `Float`<`Floats`>
|
||||
```ts
|
||||
type: Float<Floats>;
|
||||
```
|
||||
|
||||
Vector column type.
|
||||
|
||||
@@ -18,11 +18,13 @@ This builder can be reused to execute the query many times.
|
||||
|
||||
### new VectorQuery()
|
||||
|
||||
> **new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
|
||||
```ts
|
||||
new VectorQuery(inner): VectorQuery
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **inner**: `VectorQuery` \| `Promise`<`VectorQuery`>
|
||||
* **inner**: `VectorQuery` \| `Promise`<`VectorQuery`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -36,7 +38,9 @@ This builder can be reused to execute the query many times.
|
||||
|
||||
### inner
|
||||
|
||||
> `protected` **inner**: `VectorQuery` \| `Promise`<`VectorQuery`>
|
||||
```ts
|
||||
protected inner: VectorQuery | Promise<VectorQuery>;
|
||||
```
|
||||
|
||||
#### Inherited from
|
||||
|
||||
@@ -46,7 +50,9 @@ This builder can be reused to execute the query many times.
|
||||
|
||||
### \[asyncIterator\]()
|
||||
|
||||
> **\[asyncIterator\]**(): `AsyncIterator`<`RecordBatch`<`any`>, `any`, `undefined`>
|
||||
```ts
|
||||
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -58,9 +64,27 @@ This builder can be reused to execute the query many times.
|
||||
|
||||
***
|
||||
|
||||
### addQueryVector()
|
||||
|
||||
```ts
|
||||
addQueryVector(vector): VectorQuery
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **vector**: `IntoVector`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
|
||||
***
|
||||
|
||||
### bypassVectorIndex()
|
||||
|
||||
> **bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
|
||||
```ts
|
||||
bypassVectorIndex(): VectorQuery
|
||||
```
|
||||
|
||||
If this is called then any vector index is skipped
|
||||
|
||||
@@ -78,7 +102,9 @@ calculate your recall to select an appropriate value for nprobes.
|
||||
|
||||
### column()
|
||||
|
||||
> **column**(`column`): [`VectorQuery`](VectorQuery.md)
|
||||
```ts
|
||||
column(column): VectorQuery
|
||||
```
|
||||
|
||||
Set the vector column to query
|
||||
|
||||
@@ -87,7 +113,7 @@ the call to
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **column**: `string`
|
||||
* **column**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -104,7 +130,9 @@ whose data type is a fixed-size-list of floats.
|
||||
|
||||
### distanceType()
|
||||
|
||||
> **distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
|
||||
```ts
|
||||
distanceType(distanceType): VectorQuery
|
||||
```
|
||||
|
||||
Set the distance metric to use
|
||||
|
||||
@@ -114,7 +142,7 @@ use. See
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
|
||||
* **distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -135,11 +163,13 @@ By default "l2" is used.
|
||||
|
||||
### doCall()
|
||||
|
||||
> `protected` **doCall**(`fn`): `void`
|
||||
```ts
|
||||
protected doCall(fn): void
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **fn**
|
||||
* **fn**
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -151,15 +181,41 @@ By default "l2" is used.
|
||||
|
||||
***
|
||||
|
||||
### ef()
|
||||
|
||||
```ts
|
||||
ef(ef): VectorQuery
|
||||
```
|
||||
|
||||
Set the number of candidates to consider during the search
|
||||
|
||||
This argument is only used when the vector column has an HNSW index.
|
||||
If there is no index then this value is ignored.
|
||||
|
||||
Increasing this value will increase the recall of your query but will
|
||||
also increase the latency of your query. The default value is 1.5*limit.
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **ef**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
|
||||
***
|
||||
|
||||
### execute()
|
||||
|
||||
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
```ts
|
||||
protected execute(options?): RecordBatchIterator
|
||||
```
|
||||
|
||||
Execute the query and return the results as an
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
* **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -185,15 +241,16 @@ single query)
|
||||
|
||||
### explainPlan()
|
||||
|
||||
> **explainPlan**(`verbose`): `Promise`<`string`>
|
||||
```ts
|
||||
explainPlan(verbose): Promise<string>
|
||||
```
|
||||
|
||||
Generates an explanation of the query execution plan.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **verbose**: `boolean` = `false`
|
||||
|
||||
If true, provides a more detailed explanation. Defaults to false.
|
||||
* **verbose**: `boolean` = `false`
|
||||
If true, provides a more detailed explanation. Defaults to false.
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -218,15 +275,38 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
|
||||
|
||||
***
|
||||
|
||||
### fastSearch()
|
||||
|
||||
```ts
|
||||
fastSearch(): this
|
||||
```
|
||||
|
||||
Skip searching un-indexed data. This can make search faster, but will miss
|
||||
any data that is not yet indexed.
|
||||
|
||||
Use lancedb.Table#optimize to index all un-indexed data.
|
||||
|
||||
#### Returns
|
||||
|
||||
`this`
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`fastSearch`](QueryBase.md#fastsearch)
|
||||
|
||||
***
|
||||
|
||||
### ~~filter()~~
|
||||
|
||||
> **filter**(`predicate`): `this`
|
||||
```ts
|
||||
filter(predicate): this
|
||||
```
|
||||
|
||||
A filter statement to be applied to this query.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **predicate**: `string`
|
||||
* **predicate**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -246,9 +326,33 @@ Use `where` instead
|
||||
|
||||
***
|
||||
|
||||
### fullTextSearch()
|
||||
|
||||
```ts
|
||||
fullTextSearch(query, options?): this
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **query**: `string`
|
||||
|
||||
* **options?**: `Partial`<`FullTextSearchOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`this`
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`fullTextSearch`](QueryBase.md#fulltextsearch)
|
||||
|
||||
***
|
||||
|
||||
### limit()
|
||||
|
||||
> **limit**(`limit`): `this`
|
||||
```ts
|
||||
limit(limit): this
|
||||
```
|
||||
|
||||
Set the maximum number of results to return.
|
||||
|
||||
@@ -257,7 +361,7 @@ called then every valid row from the table will be returned.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **limit**: `number`
|
||||
* **limit**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -271,11 +375,13 @@ called then every valid row from the table will be returned.
|
||||
|
||||
### nativeExecute()
|
||||
|
||||
> `protected` **nativeExecute**(`options`?): `Promise`<`RecordBatchIterator`>
|
||||
```ts
|
||||
protected nativeExecute(options?): Promise<RecordBatchIterator>
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
* **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -289,7 +395,9 @@ called then every valid row from the table will be returned.
|
||||
|
||||
### nprobes()
|
||||
|
||||
> **nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
|
||||
```ts
|
||||
nprobes(nprobes): VectorQuery
|
||||
```
|
||||
|
||||
Set the number of partitions to search (probe)
|
||||
|
||||
@@ -314,7 +422,7 @@ you the desired recall.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **nprobes**: `number`
|
||||
* **nprobes**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -322,9 +430,31 @@ you the desired recall.
|
||||
|
||||
***
|
||||
|
||||
### offset()
|
||||
|
||||
```ts
|
||||
offset(offset): this
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **offset**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
`this`
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`offset`](QueryBase.md#offset)
|
||||
|
||||
***
|
||||
|
||||
### postfilter()
|
||||
|
||||
> **postfilter**(): [`VectorQuery`](VectorQuery.md)
|
||||
```ts
|
||||
postfilter(): VectorQuery
|
||||
```
|
||||
|
||||
If this is called then filtering will happen after the vector search instead of
|
||||
before.
|
||||
@@ -356,7 +486,9 @@ factor can often help restore some of the results lost by post filtering.
|
||||
|
||||
### refineFactor()
|
||||
|
||||
> **refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
|
||||
```ts
|
||||
refineFactor(refineFactor): VectorQuery
|
||||
```
|
||||
|
||||
A multiplier to control how many additional rows are taken during the refine step
|
||||
|
||||
@@ -388,7 +520,7 @@ distance between the query vector and the actual uncompressed vector.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **refineFactor**: `number`
|
||||
* **refineFactor**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -398,7 +530,9 @@ distance between the query vector and the actual uncompressed vector.
|
||||
|
||||
### select()
|
||||
|
||||
> **select**(`columns`): `this`
|
||||
```ts
|
||||
select(columns): this
|
||||
```
|
||||
|
||||
Return only the specified columns.
|
||||
|
||||
@@ -422,7 +556,7 @@ input to this method would be:
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **columns**: `string` \| `string`[] \| `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||
* **columns**: `string` \| `string`[] \| `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -449,13 +583,15 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
|
||||
|
||||
### toArray()
|
||||
|
||||
> **toArray**(`options`?): `Promise`<`any`[]>
|
||||
```ts
|
||||
toArray(options?): Promise<any[]>
|
||||
```
|
||||
|
||||
Collect the results as an array of objects.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
* **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -469,13 +605,15 @@ Collect the results as an array of objects.
|
||||
|
||||
### toArrow()
|
||||
|
||||
> **toArrow**(`options`?): `Promise`<`Table`<`any`>>
|
||||
```ts
|
||||
toArrow(options?): Promise<Table<any>>
|
||||
```
|
||||
|
||||
Collect the results as an Arrow
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
* **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -493,7 +631,9 @@ ArrowTable.
|
||||
|
||||
### where()
|
||||
|
||||
> **where**(`predicate`): `this`
|
||||
```ts
|
||||
where(predicate): this
|
||||
```
|
||||
|
||||
A filter statement to be applied to this query.
|
||||
|
||||
@@ -501,7 +641,7 @@ The filter should be supplied as an SQL query string. For example:
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **predicate**: `string`
|
||||
* **predicate**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -521,3 +661,25 @@ on the filter column(s).
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
|
||||
|
||||
***
|
||||
|
||||
### withRowId()
|
||||
|
||||
```ts
|
||||
withRowId(): this
|
||||
```
|
||||
|
||||
Whether to return the row id in the results.
|
||||
|
||||
This column can be used to match results between different queries. For
|
||||
example, to match results from a full text search and a vector search in
|
||||
order to perform hybrid search.
|
||||
|
||||
#### Returns
|
||||
|
||||
`this`
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`withRowId`](QueryBase.md#withrowid)
|
||||
|
||||
@@ -12,16 +12,22 @@ Write mode for writing a table.
|
||||
|
||||
### Append
|
||||
|
||||
> **Append**: `"Append"`
|
||||
```ts
|
||||
Append: "Append";
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### Create
|
||||
|
||||
> **Create**: `"Create"`
|
||||
```ts
|
||||
Create: "Create";
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### Overwrite
|
||||
|
||||
> **Overwrite**: `"Overwrite"`
|
||||
```ts
|
||||
Overwrite: "Overwrite";
|
||||
```
|
||||
|
||||
@@ -8,7 +8,9 @@
|
||||
|
||||
## connect(uri, opts)
|
||||
|
||||
> **connect**(`uri`, `opts`?): `Promise`<[`Connection`](../classes/Connection.md)>
|
||||
```ts
|
||||
function connect(uri, opts?): Promise<Connection>
|
||||
```
|
||||
|
||||
Connect to a LanceDB instance at the given URI.
|
||||
|
||||
@@ -20,12 +22,11 @@ Accepted formats:
|
||||
|
||||
### Parameters
|
||||
|
||||
• **uri**: `string`
|
||||
* **uri**: `string`
|
||||
The uri of the database. If the database uri starts
|
||||
with `db://` then it connects to a remote database.
|
||||
|
||||
The uri of the database. If the database uri starts
|
||||
with `db://` then it connects to a remote database.
|
||||
|
||||
• **opts?**: `Partial`<[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`>
|
||||
* **opts?**: `Partial`<[`ConnectionOptions`](../interfaces/ConnectionOptions.md)>
|
||||
|
||||
### Returns
|
||||
|
||||
@@ -50,7 +51,9 @@ const conn = await connect(
|
||||
|
||||
## connect(opts)
|
||||
|
||||
> **connect**(`opts`): `Promise`<[`Connection`](../classes/Connection.md)>
|
||||
```ts
|
||||
function connect(opts): Promise<Connection>
|
||||
```
|
||||
|
||||
Connect to a LanceDB instance at the given URI.
|
||||
|
||||
@@ -62,7 +65,7 @@ Accepted formats:
|
||||
|
||||
### Parameters
|
||||
|
||||
• **opts**: `Partial`<[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`> & `object`
|
||||
* **opts**: `Partial`<[`ConnectionOptions`](../interfaces/ConnectionOptions.md)> & `object`
|
||||
|
||||
### Returns
|
||||
|
||||
|
||||
@@ -6,7 +6,12 @@
|
||||
|
||||
# Function: makeArrowTable()
|
||||
|
||||
> **makeArrowTable**(`data`, `options`?, `metadata`?): `ArrowTable`
|
||||
```ts
|
||||
function makeArrowTable(
|
||||
data,
|
||||
options?,
|
||||
metadata?): ArrowTable
|
||||
```
|
||||
|
||||
An enhanced version of the makeTable function from Apache Arrow
|
||||
that supports nested fields and embeddings columns.
|
||||
@@ -40,11 +45,11 @@ rules are as follows:
|
||||
|
||||
## Parameters
|
||||
|
||||
• **data**: `Record`<`string`, `unknown`>[]
|
||||
* **data**: `Record`<`string`, `unknown`>[]
|
||||
|
||||
• **options?**: `Partial`<[`MakeArrowTableOptions`](../classes/MakeArrowTableOptions.md)>
|
||||
* **options?**: `Partial`<[`MakeArrowTableOptions`](../classes/MakeArrowTableOptions.md)>
|
||||
|
||||
• **metadata?**: `Map`<`string`, `string`>
|
||||
* **metadata?**: `Map`<`string`, `string`>
|
||||
|
||||
## Returns
|
||||
|
||||
|
||||
@@ -28,17 +28,19 @@
|
||||
|
||||
- [AddColumnsSql](interfaces/AddColumnsSql.md)
|
||||
- [AddDataOptions](interfaces/AddDataOptions.md)
|
||||
- [ClientConfig](interfaces/ClientConfig.md)
|
||||
- [ColumnAlteration](interfaces/ColumnAlteration.md)
|
||||
- [ConnectionOptions](interfaces/ConnectionOptions.md)
|
||||
- [CreateTableOptions](interfaces/CreateTableOptions.md)
|
||||
- [ExecutableQuery](interfaces/ExecutableQuery.md)
|
||||
- [IndexConfig](interfaces/IndexConfig.md)
|
||||
- [IndexMetadata](interfaces/IndexMetadata.md)
|
||||
- [IndexOptions](interfaces/IndexOptions.md)
|
||||
- [IndexStatistics](interfaces/IndexStatistics.md)
|
||||
- [IvfPqOptions](interfaces/IvfPqOptions.md)
|
||||
- [FtsOptions](interfaces/FtsOptions.md)
|
||||
- [OptimizeOptions](interfaces/OptimizeOptions.md)
|
||||
- [RetryConfig](interfaces/RetryConfig.md)
|
||||
- [TableNamesOptions](interfaces/TableNamesOptions.md)
|
||||
- [TimeoutConfig](interfaces/TimeoutConfig.md)
|
||||
- [UpdateOptions](interfaces/UpdateOptions.md)
|
||||
- [WriteOptions](interfaces/WriteOptions.md)
|
||||
|
||||
|
||||
@@ -12,7 +12,9 @@ A definition of a new column to add to a table.
|
||||
|
||||
### name
|
||||
|
||||
> **name**: `string`
|
||||
```ts
|
||||
name: string;
|
||||
```
|
||||
|
||||
The name of the new column.
|
||||
|
||||
@@ -20,7 +22,9 @@ The name of the new column.
|
||||
|
||||
### valueSql
|
||||
|
||||
> **valueSql**: `string`
|
||||
```ts
|
||||
valueSql: string;
|
||||
```
|
||||
|
||||
The values to populate the new column with, as a SQL expression.
|
||||
The expression can reference other columns in the table.
|
||||
|
||||
@@ -12,7 +12,9 @@ Options for adding data to a table.
|
||||
|
||||
### mode
|
||||
|
||||
> **mode**: `"append"` \| `"overwrite"`
|
||||
```ts
|
||||
mode: "append" | "overwrite";
|
||||
```
|
||||
|
||||
If "append" (the default) then the new data will be added to the table
|
||||
|
||||
|
||||
31
docs/src/js/interfaces/ClientConfig.md
Normal file
31
docs/src/js/interfaces/ClientConfig.md
Normal file
@@ -0,0 +1,31 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / ClientConfig
|
||||
|
||||
# Interface: ClientConfig
|
||||
|
||||
## Properties
|
||||
|
||||
### retryConfig?
|
||||
|
||||
```ts
|
||||
optional retryConfig: RetryConfig;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### timeoutConfig?
|
||||
|
||||
```ts
|
||||
optional timeoutConfig: TimeoutConfig;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### userAgent?
|
||||
|
||||
```ts
|
||||
optional userAgent: string;
|
||||
```
|
||||
@@ -13,9 +13,29 @@ must be provided.
|
||||
|
||||
## Properties
|
||||
|
||||
### dataType?
|
||||
|
||||
```ts
|
||||
optional dataType: string;
|
||||
```
|
||||
|
||||
A new data type for the column. If not provided then the data type will not be changed.
|
||||
Changing data types is limited to casting to the same general type. For example, these
|
||||
changes are valid:
|
||||
* `int32` -> `int64` (integers)
|
||||
* `double` -> `float` (floats)
|
||||
* `string` -> `large_string` (strings)
|
||||
But these changes are not:
|
||||
* `int32` -> `double` (mix integers and floats)
|
||||
* `string` -> `int32` (mix strings and integers)
|
||||
|
||||
***
|
||||
|
||||
### nullable?
|
||||
|
||||
> `optional` **nullable**: `boolean`
|
||||
```ts
|
||||
optional nullable: boolean;
|
||||
```
|
||||
|
||||
Set the new nullability. Note that a nullable column cannot be made non-nullable.
|
||||
|
||||
@@ -23,7 +43,9 @@ Set the new nullability. Note that a nullable column cannot be made non-nullable
|
||||
|
||||
### path
|
||||
|
||||
> **path**: `string`
|
||||
```ts
|
||||
path: string;
|
||||
```
|
||||
|
||||
The path to the column to alter. This is a dot-separated path to the column.
|
||||
If it is a top-level column then it is just the name of the column. If it is
|
||||
@@ -34,7 +56,9 @@ a nested column then it is the path to the column, e.g. "a.b.c" for a column
|
||||
|
||||
### rename?
|
||||
|
||||
> `optional` **rename**: `string`
|
||||
```ts
|
||||
optional rename: string;
|
||||
```
|
||||
|
||||
The new name of the column. If not provided then the name will not be changed.
|
||||
This must be distinct from the names of all other columns in the table.
|
||||
|
||||
@@ -8,9 +8,44 @@
|
||||
|
||||
## Properties
|
||||
|
||||
### apiKey?
|
||||
|
||||
```ts
|
||||
optional apiKey: string;
|
||||
```
|
||||
|
||||
(For LanceDB cloud only): the API key to use with LanceDB Cloud.
|
||||
|
||||
Can also be set via the environment variable `LANCEDB_API_KEY`.
|
||||
|
||||
***
|
||||
|
||||
### clientConfig?
|
||||
|
||||
```ts
|
||||
optional clientConfig: ClientConfig;
|
||||
```
|
||||
|
||||
(For LanceDB cloud only): configuration for the remote HTTP client.
|
||||
|
||||
***
|
||||
|
||||
### hostOverride?
|
||||
|
||||
```ts
|
||||
optional hostOverride: string;
|
||||
```
|
||||
|
||||
(For LanceDB cloud only): the host to use for LanceDB cloud. Used
|
||||
for testing purposes.
|
||||
|
||||
***
|
||||
|
||||
### readConsistencyInterval?
|
||||
|
||||
> `optional` **readConsistencyInterval**: `number`
|
||||
```ts
|
||||
optional readConsistencyInterval: number;
|
||||
```
|
||||
|
||||
(For LanceDB OSS only): The interval, in seconds, at which to check for
|
||||
updates to the table from other processes. If None, then consistency is not
|
||||
@@ -24,9 +59,22 @@ always consistent.
|
||||
|
||||
***
|
||||
|
||||
### region?
|
||||
|
||||
```ts
|
||||
optional region: string;
|
||||
```
|
||||
|
||||
(For LanceDB cloud only): the region to use for LanceDB cloud.
|
||||
Defaults to 'us-east-1'.
|
||||
|
||||
***
|
||||
|
||||
### storageOptions?
|
||||
|
||||
> `optional` **storageOptions**: `Record`<`string`, `string`>
|
||||
```ts
|
||||
optional storageOptions: Record<string, string>;
|
||||
```
|
||||
|
||||
(For LanceDB OSS only): configuration for object storage.
|
||||
|
||||
|
||||
@@ -8,15 +8,46 @@
|
||||
|
||||
## Properties
|
||||
|
||||
### dataStorageVersion?
|
||||
|
||||
```ts
|
||||
optional dataStorageVersion: string;
|
||||
```
|
||||
|
||||
The version of the data storage format to use.
|
||||
|
||||
The default is `stable`.
|
||||
Set to "legacy" to use the old format.
|
||||
|
||||
***
|
||||
|
||||
### embeddingFunction?
|
||||
|
||||
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
|
||||
```ts
|
||||
optional embeddingFunction: EmbeddingFunctionConfig;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### enableV2ManifestPaths?
|
||||
|
||||
```ts
|
||||
optional enableV2ManifestPaths: boolean;
|
||||
```
|
||||
|
||||
Use the new V2 manifest paths. These paths provide more efficient
|
||||
opening of datasets with many versions on object stores. WARNING:
|
||||
turning this on will make the dataset unreadable for older versions
|
||||
of LanceDB (prior to 0.10.0). To migrate an existing dataset, instead
|
||||
use the LocalTable#migrateManifestPathsV2 method.
|
||||
|
||||
***
|
||||
|
||||
### existOk
|
||||
|
||||
> **existOk**: `boolean`
|
||||
```ts
|
||||
existOk: boolean;
|
||||
```
|
||||
|
||||
If this is true and the table already exists and the mode is "create"
|
||||
then no error will be raised.
|
||||
@@ -25,7 +56,9 @@ then no error will be raised.
|
||||
|
||||
### mode
|
||||
|
||||
> **mode**: `"overwrite"` \| `"create"`
|
||||
```ts
|
||||
mode: "overwrite" | "create";
|
||||
```
|
||||
|
||||
The mode to use when creating the table.
|
||||
|
||||
@@ -39,13 +72,17 @@ If this is set to "overwrite" then any existing table will be replaced.
|
||||
|
||||
### schema?
|
||||
|
||||
> `optional` **schema**: `SchemaLike`
|
||||
```ts
|
||||
optional schema: SchemaLike;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### storageOptions?
|
||||
|
||||
> `optional` **storageOptions**: `Record`<`string`, `string`>
|
||||
```ts
|
||||
optional storageOptions: Record<string, string>;
|
||||
```
|
||||
|
||||
Configuration for object storage.
|
||||
|
||||
@@ -58,8 +95,12 @@ The available options are described at https://lancedb.github.io/lancedb/guides/
|
||||
|
||||
### useLegacyFormat?
|
||||
|
||||
> `optional` **useLegacyFormat**: `boolean`
|
||||
```ts
|
||||
optional useLegacyFormat: boolean;
|
||||
```
|
||||
|
||||
If true then data files will be written with the legacy format
|
||||
|
||||
The default is true while the new format is in beta
|
||||
The default is false.
|
||||
|
||||
Deprecated. Use data storage version instead.
|
||||
|
||||
@@ -12,7 +12,9 @@ A description of an index currently configured on a column
|
||||
|
||||
### columns
|
||||
|
||||
> **columns**: `string`[]
|
||||
```ts
|
||||
columns: string[];
|
||||
```
|
||||
|
||||
The columns in the index
|
||||
|
||||
@@ -23,7 +25,9 @@ be more columns to represent composite indices.
|
||||
|
||||
### indexType
|
||||
|
||||
> **indexType**: `string`
|
||||
```ts
|
||||
indexType: string;
|
||||
```
|
||||
|
||||
The type of the index
|
||||
|
||||
@@ -31,6 +35,8 @@ The type of the index
|
||||
|
||||
### name
|
||||
|
||||
> **name**: `string`
|
||||
```ts
|
||||
name: string;
|
||||
```
|
||||
|
||||
The name of the index
|
||||
|
||||
@@ -1,19 +0,0 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / IndexMetadata
|
||||
|
||||
# Interface: IndexMetadata
|
||||
|
||||
## Properties
|
||||
|
||||
### indexType?
|
||||
|
||||
> `optional` **indexType**: `string`
|
||||
|
||||
***
|
||||
|
||||
### metricType?
|
||||
|
||||
> `optional` **metricType**: `string`
|
||||
@@ -10,7 +10,9 @@
|
||||
|
||||
### config?
|
||||
|
||||
> `optional` **config**: [`Index`](../classes/Index.md)
|
||||
```ts
|
||||
optional config: Index;
|
||||
```
|
||||
|
||||
Advanced index configuration
|
||||
|
||||
@@ -26,7 +28,9 @@ will be used to determine the most useful kind of index to create.
|
||||
|
||||
### replace?
|
||||
|
||||
> `optional` **replace**: `boolean`
|
||||
```ts
|
||||
optional replace: boolean;
|
||||
```
|
||||
|
||||
Whether to replace the existing index
|
||||
|
||||
|
||||
@@ -8,32 +8,52 @@
|
||||
|
||||
## Properties
|
||||
|
||||
### indexType?
|
||||
### distanceType?
|
||||
|
||||
> `optional` **indexType**: `string`
|
||||
```ts
|
||||
optional distanceType: string;
|
||||
```
|
||||
|
||||
The type of the distance function used by the index. This is only
|
||||
present for vector indices. Scalar and full text search indices do
|
||||
not have a distance function.
|
||||
|
||||
***
|
||||
|
||||
### indexType
|
||||
|
||||
```ts
|
||||
indexType: string;
|
||||
```
|
||||
|
||||
The type of the index
|
||||
|
||||
***
|
||||
|
||||
### indices
|
||||
|
||||
> **indices**: [`IndexMetadata`](IndexMetadata.md)[]
|
||||
|
||||
The metadata for each index
|
||||
|
||||
***
|
||||
|
||||
### numIndexedRows
|
||||
|
||||
> **numIndexedRows**: `number`
|
||||
```ts
|
||||
numIndexedRows: number;
|
||||
```
|
||||
|
||||
The number of rows indexed by the index
|
||||
|
||||
***
|
||||
|
||||
### numIndices?
|
||||
|
||||
```ts
|
||||
optional numIndices: number;
|
||||
```
|
||||
|
||||
The number of parts this index is split into.
|
||||
|
||||
***
|
||||
|
||||
### numUnindexedRows
|
||||
|
||||
> **numUnindexedRows**: `number`
|
||||
```ts
|
||||
numUnindexedRows: number;
|
||||
```
|
||||
|
||||
The number of rows not indexed
|
||||
|
||||
@@ -12,7 +12,9 @@ Options to create an `IVF_PQ` index
|
||||
|
||||
### distanceType?
|
||||
|
||||
> `optional` **distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
|
||||
```ts
|
||||
optional distanceType: "l2" | "cosine" | "dot";
|
||||
```
|
||||
|
||||
Distance type to use to build the index.
|
||||
|
||||
@@ -50,7 +52,9 @@ L2 norm is 1), then dot distance is equivalent to the cosine distance.
|
||||
|
||||
### maxIterations?
|
||||
|
||||
> `optional` **maxIterations**: `number`
|
||||
```ts
|
||||
optional maxIterations: number;
|
||||
```
|
||||
|
||||
Max iteration to train IVF kmeans.
|
||||
|
||||
@@ -66,7 +70,9 @@ The default value is 50.
|
||||
|
||||
### numPartitions?
|
||||
|
||||
> `optional` **numPartitions**: `number`
|
||||
```ts
|
||||
optional numPartitions: number;
|
||||
```
|
||||
|
||||
The number of IVF partitions to create.
|
||||
|
||||
@@ -82,7 +88,9 @@ part of the search (searching within a partition) will be slow.
|
||||
|
||||
### numSubVectors?
|
||||
|
||||
> `optional` **numSubVectors**: `number`
|
||||
```ts
|
||||
optional numSubVectors: number;
|
||||
```
|
||||
|
||||
Number of sub-vectors of PQ.
|
||||
|
||||
@@ -101,7 +109,9 @@ will likely result in poor performance.
|
||||
|
||||
### sampleRate?
|
||||
|
||||
> `optional` **sampleRate**: `number`
|
||||
```ts
|
||||
optional sampleRate: number;
|
||||
```
|
||||
|
||||
The number of vectors, per partition, to sample when training IVF kmeans.
|
||||
|
||||
|
||||
39
docs/src/js/interfaces/OptimizeOptions.md
Normal file
39
docs/src/js/interfaces/OptimizeOptions.md
Normal file
@@ -0,0 +1,39 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / OptimizeOptions
|
||||
|
||||
# Interface: OptimizeOptions
|
||||
|
||||
## Properties
|
||||
|
||||
### cleanupOlderThan
|
||||
|
||||
```ts
|
||||
cleanupOlderThan: Date;
|
||||
```
|
||||
|
||||
If set then all versions older than the given date
|
||||
be removed. The current version will never be removed.
|
||||
The default is 7 days
|
||||
|
||||
#### Example
|
||||
|
||||
```ts
|
||||
// Delete all versions older than 1 day
|
||||
const olderThan = new Date();
|
||||
olderThan.setDate(olderThan.getDate() - 1));
|
||||
tbl.cleanupOlderVersions(olderThan);
|
||||
|
||||
// Delete all versions except the current version
|
||||
tbl.cleanupOlderVersions(new Date());
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### deleteUnverified
|
||||
|
||||
```ts
|
||||
deleteUnverified: boolean;
|
||||
```
|
||||
90
docs/src/js/interfaces/RetryConfig.md
Normal file
90
docs/src/js/interfaces/RetryConfig.md
Normal file
@@ -0,0 +1,90 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / RetryConfig
|
||||
|
||||
# Interface: RetryConfig
|
||||
|
||||
Retry configuration for the remote HTTP client.
|
||||
|
||||
## Properties
|
||||
|
||||
### backoffFactor?
|
||||
|
||||
```ts
|
||||
optional backoffFactor: number;
|
||||
```
|
||||
|
||||
The backoff factor to apply between retries. Default is 0.25. Between each retry
|
||||
the client will wait for the amount of seconds:
|
||||
`{backoff factor} * (2 ** ({number of previous retries}))`. So for the default
|
||||
of 0.25, the first retry will wait 0.25 seconds, the second retry will wait 0.5
|
||||
seconds, the third retry will wait 1 second, etc.
|
||||
|
||||
You can also set this via the environment variable
|
||||
`LANCE_CLIENT_RETRY_BACKOFF_FACTOR`.
|
||||
|
||||
***
|
||||
|
||||
### backoffJitter?
|
||||
|
||||
```ts
|
||||
optional backoffJitter: number;
|
||||
```
|
||||
|
||||
The jitter to apply to the backoff factor, in seconds. Default is 0.25.
|
||||
|
||||
A random value between 0 and `backoff_jitter` will be added to the backoff
|
||||
factor in seconds. So for the default of 0.25 seconds, between 0 and 250
|
||||
milliseconds will be added to the sleep between each retry.
|
||||
|
||||
You can also set this via the environment variable
|
||||
`LANCE_CLIENT_RETRY_BACKOFF_JITTER`.
|
||||
|
||||
***
|
||||
|
||||
### connectRetries?
|
||||
|
||||
```ts
|
||||
optional connectRetries: number;
|
||||
```
|
||||
|
||||
The maximum number of retries for connection errors. Default is 3. You
|
||||
can also set this via the environment variable `LANCE_CLIENT_CONNECT_RETRIES`.
|
||||
|
||||
***
|
||||
|
||||
### readRetries?
|
||||
|
||||
```ts
|
||||
optional readRetries: number;
|
||||
```
|
||||
|
||||
The maximum number of retries for read errors. Default is 3. You can also
|
||||
set this via the environment variable `LANCE_CLIENT_READ_RETRIES`.
|
||||
|
||||
***
|
||||
|
||||
### retries?
|
||||
|
||||
```ts
|
||||
optional retries: number;
|
||||
```
|
||||
|
||||
The maximum number of retries for a request. Default is 3. You can also
|
||||
set this via the environment variable `LANCE_CLIENT_MAX_RETRIES`.
|
||||
|
||||
***
|
||||
|
||||
### statuses?
|
||||
|
||||
```ts
|
||||
optional statuses: number[];
|
||||
```
|
||||
|
||||
The HTTP status codes for which to retry the request. Default is
|
||||
[429, 500, 502, 503].
|
||||
|
||||
You can also set this via the environment variable
|
||||
`LANCE_CLIENT_RETRY_STATUSES`. Use a comma-separated list of integers.
|
||||
@@ -10,7 +10,9 @@
|
||||
|
||||
### limit?
|
||||
|
||||
> `optional` **limit**: `number`
|
||||
```ts
|
||||
optional limit: number;
|
||||
```
|
||||
|
||||
An optional limit to the number of results to return.
|
||||
|
||||
@@ -18,7 +20,9 @@ An optional limit to the number of results to return.
|
||||
|
||||
### startAfter?
|
||||
|
||||
> `optional` **startAfter**: `string`
|
||||
```ts
|
||||
optional startAfter: string;
|
||||
```
|
||||
|
||||
If present, only return names that come lexicographically after the
|
||||
supplied value.
|
||||
|
||||
46
docs/src/js/interfaces/TimeoutConfig.md
Normal file
46
docs/src/js/interfaces/TimeoutConfig.md
Normal file
@@ -0,0 +1,46 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / TimeoutConfig
|
||||
|
||||
# Interface: TimeoutConfig
|
||||
|
||||
Timeout configuration for remote HTTP client.
|
||||
|
||||
## Properties
|
||||
|
||||
### connectTimeout?
|
||||
|
||||
```ts
|
||||
optional connectTimeout: number;
|
||||
```
|
||||
|
||||
The timeout for establishing a connection in seconds. Default is 120
|
||||
seconds (2 minutes). This can also be set via the environment variable
|
||||
`LANCE_CLIENT_CONNECT_TIMEOUT`, as an integer number of seconds.
|
||||
|
||||
***
|
||||
|
||||
### poolIdleTimeout?
|
||||
|
||||
```ts
|
||||
optional poolIdleTimeout: number;
|
||||
```
|
||||
|
||||
The timeout for keeping idle connections in the connection pool in seconds.
|
||||
Default is 300 seconds (5 minutes). This can also be set via the
|
||||
environment variable `LANCE_CLIENT_CONNECTION_TIMEOUT`, as an integer
|
||||
number of seconds.
|
||||
|
||||
***
|
||||
|
||||
### readTimeout?
|
||||
|
||||
```ts
|
||||
optional readTimeout: number;
|
||||
```
|
||||
|
||||
The timeout for reading data from the server in seconds. Default is 300
|
||||
seconds (5 minutes). This can also be set via the environment variable
|
||||
`LANCE_CLIENT_READ_TIMEOUT`, as an integer number of seconds.
|
||||
@@ -10,7 +10,9 @@
|
||||
|
||||
### where
|
||||
|
||||
> **where**: `string`
|
||||
```ts
|
||||
where: string;
|
||||
```
|
||||
|
||||
A filter that limits the scope of the update.
|
||||
|
||||
|
||||
@@ -12,6 +12,8 @@ Write options when creating a Table.
|
||||
|
||||
### mode?
|
||||
|
||||
> `optional` **mode**: [`WriteMode`](../enumerations/WriteMode.md)
|
||||
```ts
|
||||
optional mode: WriteMode;
|
||||
```
|
||||
|
||||
Write mode for writing to a table.
|
||||
|
||||
@@ -12,16 +12,12 @@
|
||||
|
||||
- [EmbeddingFunction](classes/EmbeddingFunction.md)
|
||||
- [EmbeddingFunctionRegistry](classes/EmbeddingFunctionRegistry.md)
|
||||
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
|
||||
- [TextEmbeddingFunction](classes/TextEmbeddingFunction.md)
|
||||
|
||||
### Interfaces
|
||||
|
||||
- [EmbeddingFunctionConfig](interfaces/EmbeddingFunctionConfig.md)
|
||||
|
||||
### Type Aliases
|
||||
|
||||
- [OpenAIOptions](type-aliases/OpenAIOptions.md)
|
||||
|
||||
### Functions
|
||||
|
||||
- [LanceSchema](functions/LanceSchema.md)
|
||||
|
||||
@@ -10,7 +10,7 @@ An embedding function that automatically creates vector representation for a giv
|
||||
|
||||
## Extended by
|
||||
|
||||
- [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
|
||||
- [`TextEmbeddingFunction`](TextEmbeddingFunction.md)
|
||||
|
||||
## Type Parameters
|
||||
|
||||
@@ -22,7 +22,9 @@ An embedding function that automatically creates vector representation for a giv
|
||||
|
||||
### new EmbeddingFunction()
|
||||
|
||||
> **new EmbeddingFunction**<`T`, `M`>(): [`EmbeddingFunction`](EmbeddingFunction.md)<`T`, `M`>
|
||||
```ts
|
||||
new EmbeddingFunction<T, M>(): EmbeddingFunction<T, M>
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -32,13 +34,15 @@ An embedding function that automatically creates vector representation for a giv
|
||||
|
||||
### computeQueryEmbeddings()
|
||||
|
||||
> **computeQueryEmbeddings**(`data`): `Promise`<`number`[] \| `Float32Array` \| `Float64Array`>
|
||||
```ts
|
||||
computeQueryEmbeddings(data): Promise<number[] | Float32Array | Float64Array>
|
||||
```
|
||||
|
||||
Compute the embeddings for a single query
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **data**: `T`
|
||||
* **data**: `T`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -48,13 +52,15 @@ Compute the embeddings for a single query
|
||||
|
||||
### computeSourceEmbeddings()
|
||||
|
||||
> `abstract` **computeSourceEmbeddings**(`data`): `Promise`<`number`[][] \| `Float32Array`[] \| `Float64Array`[]>
|
||||
```ts
|
||||
abstract computeSourceEmbeddings(data): Promise<number[][] | Float32Array[] | Float64Array[]>
|
||||
```
|
||||
|
||||
Creates a vector representation for the given values.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **data**: `T`[]
|
||||
* **data**: `T`[]
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -64,7 +70,9 @@ Creates a vector representation for the given values.
|
||||
|
||||
### embeddingDataType()
|
||||
|
||||
> `abstract` **embeddingDataType**(): `Float`<`Floats`>
|
||||
```ts
|
||||
abstract embeddingDataType(): Float<Floats>
|
||||
```
|
||||
|
||||
The datatype of the embeddings
|
||||
|
||||
@@ -74,9 +82,23 @@ The datatype of the embeddings
|
||||
|
||||
***
|
||||
|
||||
### init()?
|
||||
|
||||
```ts
|
||||
optional init(): Promise<void>
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
|
||||
***
|
||||
|
||||
### ndims()
|
||||
|
||||
> **ndims**(): `undefined` \| `number`
|
||||
```ts
|
||||
ndims(): undefined | number
|
||||
```
|
||||
|
||||
The number of dimensions of the embeddings
|
||||
|
||||
@@ -88,15 +110,16 @@ The number of dimensions of the embeddings
|
||||
|
||||
### sourceField()
|
||||
|
||||
> **sourceField**(`optionsOrDatatype`): [`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||
```ts
|
||||
sourceField(optionsOrDatatype): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
|
||||
```
|
||||
|
||||
sourceField is used in combination with `LanceSchema` to provide a declarative data model
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **optionsOrDatatype**: `DataType`<`Type`, `any`> \| `Partial`<`FieldOptions`<`DataType`<`Type`, `any`>>>
|
||||
|
||||
The options for the field or the datatype
|
||||
* **optionsOrDatatype**: `DataType`<`Type`, `any`> \| `Partial`<`FieldOptions`<`DataType`<`Type`, `any`>>>
|
||||
The options for the field or the datatype
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -110,7 +133,9 @@ lancedb.LanceSchema
|
||||
|
||||
### toJSON()
|
||||
|
||||
> `abstract` **toJSON**(): `Partial`<`M`>
|
||||
```ts
|
||||
abstract toJSON(): Partial<M>
|
||||
```
|
||||
|
||||
Convert the embedding function to a JSON object
|
||||
It is used to serialize the embedding function to the schema
|
||||
@@ -145,13 +170,15 @@ class MyEmbeddingFunction extends EmbeddingFunction {
|
||||
|
||||
### vectorField()
|
||||
|
||||
> **vectorField**(`optionsOrDatatype`?): [`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||
```ts
|
||||
vectorField(optionsOrDatatype?): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
|
||||
```
|
||||
|
||||
vectorField is used in combination with `LanceSchema` to provide a declarative data model
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **optionsOrDatatype?**: `DataType`<`Type`, `any`> \| `Partial`<`FieldOptions`<`DataType`<`Type`, `any`>>>
|
||||
* **optionsOrDatatype?**: `DataType`<`Type`, `any`> \| `Partial`<`FieldOptions`<`DataType`<`Type`, `any`>>>
|
||||
|
||||
#### Returns
|
||||
|
||||
|
||||
@@ -15,7 +15,9 @@ or TextEmbeddingFunction and registering it with the registry
|
||||
|
||||
### new EmbeddingFunctionRegistry()
|
||||
|
||||
> **new EmbeddingFunctionRegistry**(): [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
|
||||
```ts
|
||||
new EmbeddingFunctionRegistry(): EmbeddingFunctionRegistry
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -25,11 +27,13 @@ or TextEmbeddingFunction and registering it with the registry
|
||||
|
||||
### functionToMetadata()
|
||||
|
||||
> **functionToMetadata**(`conf`): `Record`<`string`, `any`>
|
||||
```ts
|
||||
functionToMetadata(conf): Record<string, any>
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **conf**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)
|
||||
* **conf**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -39,7 +43,9 @@ or TextEmbeddingFunction and registering it with the registry
|
||||
|
||||
### get()
|
||||
|
||||
> **get**<`T`, `Name`>(`name`): `Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`<[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)> : `undefined` \| `EmbeddingFunctionCreate`<`T`>
|
||||
```ts
|
||||
get<T>(name): undefined | EmbeddingFunctionCreate<T>
|
||||
```
|
||||
|
||||
Fetch an embedding function by name
|
||||
|
||||
@@ -47,27 +53,26 @@ Fetch an embedding function by name
|
||||
|
||||
• **T** *extends* [`EmbeddingFunction`](EmbeddingFunction.md)<`unknown`, `FunctionOptions`>
|
||||
|
||||
• **Name** *extends* `string` = `""`
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **name**: `Name` *extends* `"openai"` ? `"openai"` : `string`
|
||||
|
||||
The name of the function
|
||||
* **name**: `string`
|
||||
The name of the function
|
||||
|
||||
#### Returns
|
||||
|
||||
`Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`<[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)> : `undefined` \| `EmbeddingFunctionCreate`<`T`>
|
||||
`undefined` \| `EmbeddingFunctionCreate`<`T`>
|
||||
|
||||
***
|
||||
|
||||
### getTableMetadata()
|
||||
|
||||
> **getTableMetadata**(`functions`): `Map`<`string`, `string`>
|
||||
```ts
|
||||
getTableMetadata(functions): Map<string, string>
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **functions**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)[]
|
||||
* **functions**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)[]
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -75,9 +80,25 @@ The name of the function
|
||||
|
||||
***
|
||||
|
||||
### length()
|
||||
|
||||
```ts
|
||||
length(): number
|
||||
```
|
||||
|
||||
Get the number of registered functions
|
||||
|
||||
#### Returns
|
||||
|
||||
`number`
|
||||
|
||||
***
|
||||
|
||||
### register()
|
||||
|
||||
> **register**<`T`>(`this`, `alias`?): (`ctor`) => `any`
|
||||
```ts
|
||||
register<T>(this, alias?): (ctor) => any
|
||||
```
|
||||
|
||||
Register an embedding function
|
||||
|
||||
@@ -87,9 +108,9 @@ Register an embedding function
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
|
||||
* **this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
|
||||
|
||||
• **alias?**: `string`
|
||||
* **alias?**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -97,7 +118,7 @@ Register an embedding function
|
||||
|
||||
##### Parameters
|
||||
|
||||
• **ctor**: `T`
|
||||
* **ctor**: `T`
|
||||
|
||||
##### Returns
|
||||
|
||||
@@ -111,13 +132,15 @@ Error if the function is already registered
|
||||
|
||||
### reset()
|
||||
|
||||
> **reset**(`this`): `void`
|
||||
```ts
|
||||
reset(this): void
|
||||
```
|
||||
|
||||
reset the registry to the initial state
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
|
||||
* **this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
|
||||
|
||||
#### Returns
|
||||
|
||||
|
||||
@@ -2,31 +2,33 @@
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIEmbeddingFunction
|
||||
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / TextEmbeddingFunction
|
||||
|
||||
# Class: OpenAIEmbeddingFunction
|
||||
# Class: `abstract` TextEmbeddingFunction<M>
|
||||
|
||||
An embedding function that automatically creates vector representation for a given column.
|
||||
an abstract class for implementing embedding functions that take text as input
|
||||
|
||||
## Extends
|
||||
|
||||
- [`EmbeddingFunction`](EmbeddingFunction.md)<`string`, `Partial`<[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)>>
|
||||
- [`EmbeddingFunction`](EmbeddingFunction.md)<`string`, `M`>
|
||||
|
||||
## Type Parameters
|
||||
|
||||
• **M** *extends* `FunctionOptions` = `FunctionOptions`
|
||||
|
||||
## Constructors
|
||||
|
||||
### new OpenAIEmbeddingFunction()
|
||||
### new TextEmbeddingFunction()
|
||||
|
||||
> **new OpenAIEmbeddingFunction**(`options`): [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options**: `Partial`<[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)> = `...`
|
||||
```ts
|
||||
new TextEmbeddingFunction<M>(): TextEmbeddingFunction<M>
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
|
||||
[`TextEmbeddingFunction`](TextEmbeddingFunction.md)<`M`>
|
||||
|
||||
#### Overrides
|
||||
#### Inherited from
|
||||
|
||||
[`EmbeddingFunction`](EmbeddingFunction.md).[`constructor`](EmbeddingFunction.md#constructors)
|
||||
|
||||
@@ -34,17 +36,19 @@ An embedding function that automatically creates vector representation for a giv
|
||||
|
||||
### computeQueryEmbeddings()
|
||||
|
||||
> **computeQueryEmbeddings**(`data`): `Promise`<`number`[]>
|
||||
```ts
|
||||
computeQueryEmbeddings(data): Promise<number[] | Float32Array | Float64Array>
|
||||
```
|
||||
|
||||
Compute the embeddings for a single query
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **data**: `string`
|
||||
* **data**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`[]>
|
||||
`Promise`<`number`[] \| `Float32Array` \| `Float64Array`>
|
||||
|
||||
#### Overrides
|
||||
|
||||
@@ -54,17 +58,19 @@ Compute the embeddings for a single query
|
||||
|
||||
### computeSourceEmbeddings()
|
||||
|
||||
> **computeSourceEmbeddings**(`data`): `Promise`<`number`[][]>
|
||||
```ts
|
||||
computeSourceEmbeddings(data): Promise<number[][] | Float32Array[] | Float64Array[]>
|
||||
```
|
||||
|
||||
Creates a vector representation for the given values.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **data**: `string`[]
|
||||
* **data**: `string`[]
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`[][]>
|
||||
`Promise`<`number`[][] \| `Float32Array`[] \| `Float64Array`[]>
|
||||
|
||||
#### Overrides
|
||||
|
||||
@@ -74,7 +80,9 @@ Creates a vector representation for the given values.
|
||||
|
||||
### embeddingDataType()
|
||||
|
||||
> **embeddingDataType**(): `Float`<`Floats`>
|
||||
```ts
|
||||
embeddingDataType(): Float<Floats>
|
||||
```
|
||||
|
||||
The datatype of the embeddings
|
||||
|
||||
@@ -88,17 +96,53 @@ The datatype of the embeddings
|
||||
|
||||
***
|
||||
|
||||
### generateEmbeddings()
|
||||
|
||||
```ts
|
||||
abstract generateEmbeddings(texts, ...args): Promise<number[][] | Float32Array[] | Float64Array[]>
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **texts**: `string`[]
|
||||
|
||||
* ...**args**: `any`[]
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`[][] \| `Float32Array`[] \| `Float64Array`[]>
|
||||
|
||||
***
|
||||
|
||||
### init()?
|
||||
|
||||
```ts
|
||||
optional init(): Promise<void>
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`EmbeddingFunction`](EmbeddingFunction.md).[`init`](EmbeddingFunction.md#init)
|
||||
|
||||
***
|
||||
|
||||
### ndims()
|
||||
|
||||
> **ndims**(): `number`
|
||||
```ts
|
||||
ndims(): undefined | number
|
||||
```
|
||||
|
||||
The number of dimensions of the embeddings
|
||||
|
||||
#### Returns
|
||||
|
||||
`number`
|
||||
`undefined` \| `number`
|
||||
|
||||
#### Overrides
|
||||
#### Inherited from
|
||||
|
||||
[`EmbeddingFunction`](EmbeddingFunction.md).[`ndims`](EmbeddingFunction.md#ndims)
|
||||
|
||||
@@ -106,16 +150,12 @@ The number of dimensions of the embeddings
|
||||
|
||||
### sourceField()
|
||||
|
||||
> **sourceField**(`optionsOrDatatype`): [`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||
```ts
|
||||
sourceField(): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
|
||||
```
|
||||
|
||||
sourceField is used in combination with `LanceSchema` to provide a declarative data model
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **optionsOrDatatype**: `DataType`<`Type`, `any`> \| `Partial`<`FieldOptions`<`DataType`<`Type`, `any`>>>
|
||||
|
||||
The options for the field or the datatype
|
||||
|
||||
#### Returns
|
||||
|
||||
[`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||
@@ -124,7 +164,7 @@ The options for the field or the datatype
|
||||
|
||||
lancedb.LanceSchema
|
||||
|
||||
#### Inherited from
|
||||
#### Overrides
|
||||
|
||||
[`EmbeddingFunction`](EmbeddingFunction.md).[`sourceField`](EmbeddingFunction.md#sourcefield)
|
||||
|
||||
@@ -132,7 +172,9 @@ lancedb.LanceSchema
|
||||
|
||||
### toJSON()
|
||||
|
||||
> **toJSON**(): `object`
|
||||
```ts
|
||||
abstract toJSON(): Partial<M>
|
||||
```
|
||||
|
||||
Convert the embedding function to a JSON object
|
||||
It is used to serialize the embedding function to the schema
|
||||
@@ -144,11 +186,7 @@ If it does not, the embedding function will not be able to be recreated, or coul
|
||||
|
||||
#### Returns
|
||||
|
||||
`object`
|
||||
|
||||
##### model
|
||||
|
||||
> **model**: `string` & `object` \| `"text-embedding-ada-002"` \| `"text-embedding-3-small"` \| `"text-embedding-3-large"`
|
||||
`Partial`<`M`>
|
||||
|
||||
#### Example
|
||||
|
||||
@@ -167,7 +205,7 @@ class MyEmbeddingFunction extends EmbeddingFunction {
|
||||
}
|
||||
```
|
||||
|
||||
#### Overrides
|
||||
#### Inherited from
|
||||
|
||||
[`EmbeddingFunction`](EmbeddingFunction.md).[`toJSON`](EmbeddingFunction.md#tojson)
|
||||
|
||||
@@ -175,13 +213,15 @@ class MyEmbeddingFunction extends EmbeddingFunction {
|
||||
|
||||
### vectorField()
|
||||
|
||||
> **vectorField**(`optionsOrDatatype`?): [`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||
```ts
|
||||
vectorField(optionsOrDatatype?): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
|
||||
```
|
||||
|
||||
vectorField is used in combination with `LanceSchema` to provide a declarative data model
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **optionsOrDatatype?**: `DataType`<`Type`, `any`> \| `Partial`<`FieldOptions`<`DataType`<`Type`, `any`>>>
|
||||
* **optionsOrDatatype?**: `DataType`<`Type`, `any`> \| `Partial`<`FieldOptions`<`DataType`<`Type`, `any`>>>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -6,13 +6,15 @@
|
||||
|
||||
# Function: LanceSchema()
|
||||
|
||||
> **LanceSchema**(`fields`): `Schema`
|
||||
```ts
|
||||
function LanceSchema(fields): Schema
|
||||
```
|
||||
|
||||
Create a schema with embedding functions.
|
||||
|
||||
## Parameters
|
||||
|
||||
• **fields**: `Record`<`string`, `object` \| [`object`, `Map`<`string`, [`EmbeddingFunction`](../classes/EmbeddingFunction.md)<`any`, `FunctionOptions`>>]>
|
||||
* **fields**: `Record`<`string`, `object` \| [`object`, `Map`<`string`, [`EmbeddingFunction`](../classes/EmbeddingFunction.md)<`any`, `FunctionOptions`>>]>
|
||||
|
||||
## Returns
|
||||
|
||||
|
||||
@@ -6,7 +6,9 @@
|
||||
|
||||
# Function: getRegistry()
|
||||
|
||||
> **getRegistry**(): [`EmbeddingFunctionRegistry`](../classes/EmbeddingFunctionRegistry.md)
|
||||
```ts
|
||||
function getRegistry(): EmbeddingFunctionRegistry
|
||||
```
|
||||
|
||||
Utility function to get the global instance of the registry
|
||||
|
||||
|
||||
@@ -6,11 +6,13 @@
|
||||
|
||||
# Function: register()
|
||||
|
||||
> **register**(`name`?): (`ctor`) => `any`
|
||||
```ts
|
||||
function register(name?): (ctor) => any
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
• **name?**: `string`
|
||||
* **name?**: `string`
|
||||
|
||||
## Returns
|
||||
|
||||
@@ -18,7 +20,7 @@
|
||||
|
||||
### Parameters
|
||||
|
||||
• **ctor**: `EmbeddingFunctionConstructor`<[`EmbeddingFunction`](../classes/EmbeddingFunction.md)<`any`, `FunctionOptions`>>
|
||||
* **ctor**: `EmbeddingFunctionConstructor`<[`EmbeddingFunction`](../classes/EmbeddingFunction.md)<`any`, `FunctionOptions`>>
|
||||
|
||||
### Returns
|
||||
|
||||
|
||||
@@ -10,16 +10,22 @@
|
||||
|
||||
### function
|
||||
|
||||
> **function**: [`EmbeddingFunction`](../classes/EmbeddingFunction.md)<`any`, `FunctionOptions`>
|
||||
```ts
|
||||
function: EmbeddingFunction<any, FunctionOptions>;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### sourceColumn
|
||||
|
||||
> **sourceColumn**: `string`
|
||||
```ts
|
||||
sourceColumn: string;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### vectorColumn?
|
||||
|
||||
> `optional` **vectorColumn**: `string`
|
||||
```ts
|
||||
optional vectorColumn: string;
|
||||
```
|
||||
|
||||
@@ -1,19 +0,0 @@
|
||||
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIOptions
|
||||
|
||||
# Type Alias: OpenAIOptions
|
||||
|
||||
> **OpenAIOptions**: `object`
|
||||
|
||||
## Type declaration
|
||||
|
||||
### apiKey
|
||||
|
||||
> **apiKey**: `string`
|
||||
|
||||
### model
|
||||
|
||||
> **model**: `EmbeddingCreateParams`\[`"model"`\]
|
||||
@@ -6,6 +6,8 @@
|
||||
|
||||
# Type Alias: Data
|
||||
|
||||
> **Data**: `Record`<`string`, `unknown`>[] \| `TableLike`
|
||||
```ts
|
||||
type Data: Record<string, unknown>[] | TableLike;
|
||||
```
|
||||
|
||||
Data type accepted by NodeJS SDK
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,16 @@
|
||||
# Python API Reference
|
||||
|
||||
This section contains the API reference for the OSS Python API.
|
||||
This section contains the API reference for the Python API. There is a
|
||||
synchronous and an asynchronous API client.
|
||||
|
||||
The general flow of using the API is:
|
||||
|
||||
1. Use [lancedb.connect][] or [lancedb.connect_async][] to connect to a database.
|
||||
2. Use the returned [lancedb.DBConnection][] or [lancedb.AsyncConnection][] to
|
||||
create or open tables.
|
||||
3. Use the returned [lancedb.table.Table][] or [lancedb.AsyncTable][] to query
|
||||
or modify tables.
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
|
||||
@@ -6,6 +6,9 @@ This re-ranker uses the [Cohere](https://cohere.ai/) API to rerank the search re
|
||||
!!! note
|
||||
Supported Query Types: Hybrid, Vector, FTS
|
||||
|
||||
```shell
|
||||
pip install cohere
|
||||
```
|
||||
|
||||
```python
|
||||
import numpy
|
||||
|
||||
@@ -9,6 +9,7 @@ LanceDB comes with some built-in rerankers. Some of the rerankers that are avail
|
||||
| `CrossEncoderReranker` | Uses a cross-encoder model to rerank search results | Vector, FTS, Hybrid |
|
||||
| `ColbertReranker` | Uses a colbert model to rerank search results | Vector, FTS, Hybrid |
|
||||
| `OpenaiReranker`(Experimental) | Uses OpenAI's chat model to rerank search results | Vector, FTS, Hybrid |
|
||||
| `VoyageAIReranker` | Uses voyageai Reranker API to rerank results | Vector, FTS, Hybrid |
|
||||
|
||||
|
||||
## Using a Reranker
|
||||
@@ -73,6 +74,7 @@ LanceDB comes with some built-in rerankers. Here are some of the rerankers that
|
||||
- [Jina Reranker](./jina.md)
|
||||
- [AnswerDotAI Rerankers](./answerdotai.md)
|
||||
- [Reciprocal Rank Fusion Reranker](./rrf.md)
|
||||
- [VoyageAI Reranker](./voyageai.md)
|
||||
|
||||
## Creating Custom Rerankers
|
||||
|
||||
|
||||
77
docs/src/reranking/voyageai.md
Normal file
77
docs/src/reranking/voyageai.md
Normal file
@@ -0,0 +1,77 @@
|
||||
# Voyage AI Reranker
|
||||
|
||||
Voyage AI provides cutting-edge embedding and rerankers.
|
||||
|
||||
This re-ranker uses the [VoyageAI](https://docs.voyageai.com/docs/) API to rerank the search results. You can use this re-ranker by passing `VoyageAIReranker()` to the `rerank()` method. Note that you'll either need to set the `VOYAGE_API_KEY` environment variable or pass the `api_key` argument to use this re-ranker.
|
||||
|
||||
|
||||
!!! note
|
||||
Supported Query Types: Hybrid, Vector, FTS
|
||||
|
||||
|
||||
```python
|
||||
import numpy
|
||||
import lancedb
|
||||
from lancedb.embeddings import get_registry
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.rerankers import VoyageAIReranker
|
||||
|
||||
embedder = get_registry().get("sentence-transformers").create()
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
|
||||
class Schema(LanceModel):
|
||||
text: str = embedder.SourceField()
|
||||
vector: Vector(embedder.ndims()) = embedder.VectorField()
|
||||
|
||||
data = [
|
||||
{"text": "hello world"},
|
||||
{"text": "goodbye world"}
|
||||
]
|
||||
tbl = db.create_table("test", schema=Schema, mode="overwrite")
|
||||
tbl.add(data)
|
||||
reranker = VoyageAIReranker(model_name="rerank-2")
|
||||
|
||||
# Run vector search with a reranker
|
||||
result = tbl.search("hello").rerank(reranker=reranker).to_list()
|
||||
|
||||
# Run FTS search with a reranker
|
||||
result = tbl.search("hello", query_type="fts").rerank(reranker=reranker).to_list()
|
||||
|
||||
# Run hybrid search with a reranker
|
||||
tbl.create_fts_index("text", replace=True)
|
||||
result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list()
|
||||
|
||||
```
|
||||
|
||||
Accepted Arguments
|
||||
----------------
|
||||
| Argument | Type | Default | Description |
|
||||
| --- | --- | --- | --- |
|
||||
| `model_name` | `str` | `None` | The name of the reranker model to use. Available models are: rerank-2, rerank-2-lite |
|
||||
| `column` | `str` | `"text"` | The name of the column to use as input to the cross encoder model. |
|
||||
| `top_n` | `str` | `None` | The number of results to return. If None, will return all results. |
|
||||
| `api_key` | `str` | `None` | The API key for the Voyage AI API. If not provided, the `VOYAGE_API_KEY` environment variable is used. |
|
||||
| `return_score` | str | `"relevance"` | Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score. If "all" is supported, will return relevance score along with the vector and/or fts scores depending on query type |
|
||||
| `truncation` | `bool` | `None` | Whether to truncate the input to satisfy the "context length limit" on the query and the documents. |
|
||||
|
||||
|
||||
## Supported Scores for each query type
|
||||
You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:
|
||||
|
||||
### Hybrid Search
|
||||
|`return_score`| Status | Description |
|
||||
| --- | --- | --- |
|
||||
| `relevance` | ✅ Supported | Returns only have the `_relevance_score` column |
|
||||
| `all` | ❌ Not Supported | Returns have vector(`_distance`) and FTS(`score`) along with Hybrid Search score(`_relevance_score`) |
|
||||
|
||||
### Vector Search
|
||||
|`return_score`| Status | Description |
|
||||
| --- | --- | --- |
|
||||
| `relevance` | ✅ Supported | Returns only have the `_relevance_score` column |
|
||||
| `all` | ✅ Supported | Returns have vector(`_distance`) along with Hybrid Search score(`_relevance_score`) |
|
||||
|
||||
### FTS Search
|
||||
|`return_score`| Status | Description |
|
||||
| --- | --- | --- |
|
||||
| `relevance` | ✅ Supported | Returns only have the `_relevance_score` column |
|
||||
| `all` | ✅ Supported | Returns have FTS(`score`) along with Hybrid Search score(`_relevance_score`) |
|
||||
@@ -58,9 +58,9 @@ db.create_table("my_vectors", data=data)
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/search.ts:import"
|
||||
--8<-- "nodejs/examples/search.test.ts:import"
|
||||
|
||||
--8<-- "nodejs/examples/search.ts:search1"
|
||||
--8<-- "nodejs/examples/search.test.ts:search1"
|
||||
```
|
||||
|
||||
|
||||
@@ -89,7 +89,7 @@ By default, `l2` will be used as metric type. You can specify the metric type as
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/search.ts:search2"
|
||||
--8<-- "nodejs/examples/search.test.ts:search2"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
@@ -7,6 +7,10 @@ performed on the top-k results returned by the vector search. However, pre-filte
|
||||
option that performs the filter prior to vector search. This can be useful to narrow down on
|
||||
the search space on a very large dataset to reduce query latency.
|
||||
|
||||
Note that both pre-filtering and post-filtering can yield false positives. For pre-filtering, if the filter is too selective, it might eliminate relevant items that the vector search would have otherwise identified as a good match. In this case, increasing `nprobes` parameter will help reduce such false positives. It is recommended to set `use_index=false` if you know that the filter is highly selective.
|
||||
|
||||
Similarly, a highly selective post-filter can lead to false positives. Increasing both `nprobes` and `refine_factor` can mitigate this issue. When deciding between pre-filtering and post-filtering, pre-filtering is generally the safer choice if you're uncertain.
|
||||
|
||||
<!-- Setup Code
|
||||
```python
|
||||
import lancedb
|
||||
@@ -49,7 +53,7 @@ const tbl = await db.createTable('myVectors', data)
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/filtering.ts:search"
|
||||
--8<-- "nodejs/examples/filtering.test.ts:search"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -57,6 +61,9 @@ const tbl = await db.createTable('myVectors', data)
|
||||
```ts
|
||||
--8<-- "docs/src/sql_legacy.ts:search"
|
||||
```
|
||||
!!! note
|
||||
|
||||
Creating a [scalar index](guides/scalar_index.md) accelerates filtering
|
||||
|
||||
## SQL filters
|
||||
|
||||
@@ -91,7 +98,7 @@ For example, the following filter string is acceptable:
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/filtering.ts:vec_search"
|
||||
--8<-- "nodejs/examples/filtering.test.ts:vec_search"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -169,7 +176,7 @@ You can also filter your data without search.
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/filtering.ts:sql_search"
|
||||
--8<-- "nodejs/examples/filtering.test.ts:sql_search"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
33
docs/src/troubleshooting.md
Normal file
33
docs/src/troubleshooting.md
Normal file
@@ -0,0 +1,33 @@
|
||||
## Getting help
|
||||
|
||||
The following sections provide various diagnostics and troubleshooting tips for LanceDB.
|
||||
These can help you provide additional information when asking questions or making
|
||||
error reports.
|
||||
|
||||
For trouble shooting, the best place to ask is in our Discord, under the relevant
|
||||
language channel. By asking in the language-specific channel, it makes it more
|
||||
likely that someone who knows the answer will see your question.
|
||||
|
||||
## Enabling logging
|
||||
|
||||
To provide more information, especially for LanceDB Cloud related issues, enable
|
||||
debug logging. You can set the `LANCEDB_LOG` environment variable:
|
||||
|
||||
```shell
|
||||
export LANCEDB_LOG=debug
|
||||
```
|
||||
|
||||
You can turn off colors and formatting in the logs by setting
|
||||
|
||||
```shell
|
||||
export LANCEDB_LOG_STYLE=never
|
||||
```
|
||||
|
||||
## Explaining query plans
|
||||
|
||||
If you have slow queries or unexpected query results, it can be helpful to
|
||||
print the resolved query plan. You can use the `explain_plan` method to do this:
|
||||
|
||||
* Python Sync: [LanceQueryBuilder.explain_plan][lancedb.query.LanceQueryBuilder.explain_plan]
|
||||
* Python Async: [AsyncQueryBase.explain_plan][lancedb.query.AsyncQueryBase.explain_plan]
|
||||
* Node @lancedb/lancedb: [LanceQueryBuilder.explainPlan](/lancedb/js/classes/QueryBase/#explainplan)
|
||||
@@ -3,7 +3,7 @@ numpy
|
||||
pandas
|
||||
pylance
|
||||
duckdb
|
||||
tantivy==0.20.1
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
torch
|
||||
polars>=0.19, <=1.3.0
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
<parent>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.11.1-beta.0</version>
|
||||
<version>0.14.1-beta.1</version>
|
||||
<relativePath>../pom.xml</relativePath>
|
||||
</parent>
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.11.1-beta.0</version>
|
||||
<version>0.14.1-beta.1</version>
|
||||
<packaging>pom</packaging>
|
||||
|
||||
<name>LanceDB Parent</name>
|
||||
|
||||
23
node/package-lock.json
generated
23
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.11.1-beta.0",
|
||||
"version": "0.14.1-beta.1",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.11.1-beta.0",
|
||||
"version": "0.14.1-beta.1",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -52,11 +52,14 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.11.1-beta.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.11.1-beta.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.11.1-beta.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.11.1-beta.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.11.1-beta.0"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.14.1-beta.1",
|
||||
"@lancedb/vectordb-darwin-x64": "0.14.1-beta.1",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.14.1-beta.1",
|
||||
"@lancedb/vectordb-linux-arm64-musl": "0.14.1-beta.1",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.14.1-beta.1",
|
||||
"@lancedb/vectordb-linux-x64-musl": "0.14.1-beta.1",
|
||||
"@lancedb/vectordb-win32-arm64-msvc": "0.14.1-beta.1",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.14.1-beta.1"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
@@ -1440,9 +1443,9 @@
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/cross-spawn": {
|
||||
"version": "7.0.3",
|
||||
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
|
||||
"integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
|
||||
"version": "7.0.6",
|
||||
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz",
|
||||
"integrity": "sha512-uV2QOWP2nWzsy2aMp8aRibhi9dlzF5Hgh5SHaB9OiTGEyDTiJJyx0uy51QXdyWbtAHNua4XJzUKca3OzKUd3vA==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"path-key": "^3.1.0",
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.11.1-beta.0",
|
||||
"version": "0.14.1-beta.1",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"private": false,
|
||||
"main": "dist/index.js",
|
||||
"types": "dist/index.d.ts",
|
||||
"scripts": {
|
||||
@@ -84,14 +85,20 @@
|
||||
"aarch64-apple-darwin": "@lancedb/vectordb-darwin-arm64",
|
||||
"x86_64-unknown-linux-gnu": "@lancedb/vectordb-linux-x64-gnu",
|
||||
"aarch64-unknown-linux-gnu": "@lancedb/vectordb-linux-arm64-gnu",
|
||||
"x86_64-pc-windows-msvc": "@lancedb/vectordb-win32-x64-msvc"
|
||||
"x86_64-unknown-linux-musl": "@lancedb/vectordb-linux-x64-musl",
|
||||
"aarch64-unknown-linux-musl": "@lancedb/vectordb-linux-arm64-musl",
|
||||
"x86_64-pc-windows-msvc": "@lancedb/vectordb-win32-x64-msvc",
|
||||
"aarch64-pc-windows-msvc": "@lancedb/vectordb-win32-arm64-msvc"
|
||||
}
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.11.1-beta.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.11.1-beta.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.11.1-beta.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.11.1-beta.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.11.1-beta.0"
|
||||
"@lancedb/vectordb-darwin-x64": "0.14.1-beta.1",
|
||||
"@lancedb/vectordb-darwin-arm64": "0.14.1-beta.1",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.14.1-beta.1",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.14.1-beta.1",
|
||||
"@lancedb/vectordb-linux-x64-musl": "0.14.1-beta.1",
|
||||
"@lancedb/vectordb-linux-arm64-musl": "0.14.1-beta.1",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.14.1-beta.1",
|
||||
"@lancedb/vectordb-win32-arm64-msvc": "0.14.1-beta.1"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import axios, { type AxiosResponse, type ResponseType } from 'axios'
|
||||
import axios, { type AxiosError, type AxiosResponse, type ResponseType } from 'axios'
|
||||
|
||||
import { tableFromIPC, type Table as ArrowTable } from 'apache-arrow'
|
||||
|
||||
@@ -197,7 +197,7 @@ export class HttpLancedbClient {
|
||||
response = await callWithMiddlewares(req, this._middlewares)
|
||||
return response
|
||||
} catch (err: any) {
|
||||
console.error('error: ', err)
|
||||
console.error(serializeErrorAsJson(err))
|
||||
if (err.response === undefined) {
|
||||
throw new Error(`Network Error: ${err.message as string}`)
|
||||
}
|
||||
@@ -247,7 +247,8 @@ export class HttpLancedbClient {
|
||||
|
||||
// return response
|
||||
} catch (err: any) {
|
||||
console.error('error: ', err)
|
||||
console.error(serializeErrorAsJson(err))
|
||||
|
||||
if (err.response === undefined) {
|
||||
throw new Error(`Network Error: ${err.message as string}`)
|
||||
}
|
||||
@@ -287,3 +288,15 @@ export class HttpLancedbClient {
|
||||
return clone
|
||||
}
|
||||
}
|
||||
|
||||
function serializeErrorAsJson(err: AxiosError) {
|
||||
const error = JSON.parse(JSON.stringify(err, Object.getOwnPropertyNames(err)))
|
||||
error.response = err.response != null
|
||||
? JSON.parse(JSON.stringify(
|
||||
err.response,
|
||||
// config contains the request data, too noisy
|
||||
Object.getOwnPropertyNames(err.response).filter(prop => prop !== 'config')
|
||||
))
|
||||
: null
|
||||
return JSON.stringify({ error })
|
||||
}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user