mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 13:29:57 +00:00
Compare commits
31 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
96933d7df8 | ||
|
|
d369233b3d | ||
|
|
43a670ed4b | ||
|
|
cb9a00a28d | ||
|
|
72af977a73 | ||
|
|
7cecb71df0 | ||
|
|
285071e5c8 | ||
|
|
114866fbcf | ||
|
|
5387c0e243 | ||
|
|
53d1535de1 | ||
|
|
b2f88f0b29 | ||
|
|
f2e3989831 | ||
|
|
83ae52938a | ||
|
|
267aa83bf8 | ||
|
|
cc72050206 | ||
|
|
72543c8b9d | ||
|
|
97d6210c33 | ||
|
|
a3d0c27b0a | ||
|
|
b23d8abcdd | ||
|
|
e3ea5cf9b9 | ||
|
|
4f8b086175 | ||
|
|
72330fb759 | ||
|
|
e3b2c5f438 | ||
|
|
66a881b33a | ||
|
|
a7515d6ee2 | ||
|
|
587c0824af | ||
|
|
b38a4269d0 | ||
|
|
119d88b9db | ||
|
|
74f660d223 | ||
|
|
b2b0979b90 | ||
|
|
ee2a40b182 |
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.13.0-beta.1"
|
||||
current_version = "0.13.0"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
@@ -87,6 +87,16 @@ glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-linux-arm64-musl\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-linux-arm64-musl\": \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-linux-x64-musl\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-linux-x64-musl\": \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""
|
||||
|
||||
@@ -31,6 +31,9 @@ rustflags = [
|
||||
[target.x86_64-unknown-linux-gnu]
|
||||
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
|
||||
|
||||
[target.x86_64-unknown-linux-musl]
|
||||
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=-crt-static,+avx2,+fma,+f16c"]
|
||||
|
||||
[target.aarch64-apple-darwin]
|
||||
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
|
||||
|
||||
|
||||
1
.github/workflows/nodejs.yml
vendored
1
.github/workflows/nodejs.yml
vendored
@@ -104,7 +104,6 @@ jobs:
|
||||
OPENAI_BASE_URL: http://0.0.0.0:8000
|
||||
run: |
|
||||
python ci/mock_openai.py &
|
||||
ss -ltnp | grep :8000
|
||||
cd nodejs/examples
|
||||
npm test
|
||||
macos:
|
||||
|
||||
502
.github/workflows/npm-publish.yml
vendored
502
.github/workflows/npm-publish.yml
vendored
@@ -101,7 +101,7 @@ jobs:
|
||||
path: |
|
||||
nodejs/dist/*.node
|
||||
|
||||
node-linux:
|
||||
node-linux-gnu:
|
||||
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
|
||||
runs-on: ${{ matrix.config.runner }}
|
||||
# Only runs on tags that matches the make-release action
|
||||
@@ -137,11 +137,63 @@ jobs:
|
||||
- name: Upload Linux Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: node-native-linux-${{ matrix.config.arch }}
|
||||
name: node-native-linux-${{ matrix.config.arch }}-gnu
|
||||
path: |
|
||||
node/dist/lancedb-vectordb-linux*.tgz
|
||||
|
||||
nodejs-linux:
|
||||
node-linux-musl:
|
||||
name: vectordb (${{ matrix.config.arch}}-unknown-linux-musl)
|
||||
runs-on: ubuntu-latest
|
||||
container: alpine:edge
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
config:
|
||||
- arch: x86_64
|
||||
- arch: aarch64
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Install common dependencies
|
||||
run: |
|
||||
apk add protobuf-dev curl clang mold grep npm bash
|
||||
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
|
||||
echo "source $HOME/.cargo/env" >> saved_env
|
||||
echo "export CC=clang" >> saved_env
|
||||
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
|
||||
- name: Configure aarch64 build
|
||||
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||
run: |
|
||||
source "$HOME/.cargo/env"
|
||||
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
|
||||
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
|
||||
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
|
||||
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
|
||||
curl -sSf $apk_url > apk_list
|
||||
for pkg in gcc libgcc musl; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
|
||||
mkdir -p $sysroot_lib
|
||||
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
|
||||
cp usr/lib/libgcc_s.so.1 $sysroot_lib
|
||||
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
|
||||
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
|
||||
echo '!<arch>' > $sysroot_lib/libdl.a
|
||||
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
|
||||
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
|
||||
echo "export RUSTFLAGS='-Ctarget-cpu=apple-m1 -Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
|
||||
- name: Build Linux Artifacts
|
||||
run: |
|
||||
source ./saved_env
|
||||
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }}
|
||||
- name: Upload Linux Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: node-native-linux-${{ matrix.config.arch }}-musl
|
||||
path: |
|
||||
node/dist/lancedb-vectordb-linux*.tgz
|
||||
|
||||
nodejs-linux-gnu:
|
||||
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||
runs-on: ${{ matrix.config.runner }}
|
||||
# Only runs on tags that matches the make-release action
|
||||
@@ -178,7 +230,7 @@ jobs:
|
||||
- name: Upload Linux Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: nodejs-native-linux-${{ matrix.config.arch }}
|
||||
name: nodejs-native-linux-${{ matrix.config.arch }}-gnu
|
||||
path: |
|
||||
nodejs/dist/*.node
|
||||
# The generic files are the same in all distros so we just pick
|
||||
@@ -192,6 +244,62 @@ jobs:
|
||||
nodejs/dist/*
|
||||
!nodejs/dist/*.node
|
||||
|
||||
nodejs-linux-musl:
|
||||
name: lancedb (${{ matrix.config.arch}}-unknown-linux-musl
|
||||
runs-on: ubuntu-latest
|
||||
container: alpine:edge
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
config:
|
||||
- arch: x86_64
|
||||
- arch: aarch64
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Install common dependencies
|
||||
run: |
|
||||
apk add protobuf-dev curl clang mold grep npm bash openssl-dev openssl-libs-static
|
||||
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
|
||||
echo "source $HOME/.cargo/env" >> saved_env
|
||||
echo "export CC=clang" >> saved_env
|
||||
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
|
||||
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=/usr/include" >> saved_env
|
||||
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=/usr/lib" >> saved_env
|
||||
- name: Configure aarch64 build
|
||||
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||
run: |
|
||||
source "$HOME/.cargo/env"
|
||||
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
|
||||
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
|
||||
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
|
||||
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
|
||||
curl -sSf $apk_url > apk_list
|
||||
for pkg in gcc libgcc musl openssl-dev openssl-libs-static; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
|
||||
mkdir -p $sysroot_lib
|
||||
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
|
||||
cp usr/lib/libgcc_s.so.1 $sysroot_lib
|
||||
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
|
||||
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
|
||||
echo '!<arch>' > $sysroot_lib/libdl.a
|
||||
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
|
||||
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
|
||||
echo "export RUSTFLAGS='-Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
|
||||
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=$(realpath usr/include)" >> saved_env
|
||||
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=$(realpath usr/lib)" >> saved_env
|
||||
- name: Build Linux Artifacts
|
||||
run: |
|
||||
source ./saved_env
|
||||
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
|
||||
- name: Upload Linux Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: nodejs-native-linux-${{ matrix.config.arch }}-musl
|
||||
path: |
|
||||
nodejs/dist/*.node
|
||||
|
||||
node-windows:
|
||||
name: vectordb ${{ matrix.target }}
|
||||
runs-on: windows-2022
|
||||
@@ -226,108 +334,109 @@ jobs:
|
||||
path: |
|
||||
node/dist/lancedb-vectordb-win32*.tgz
|
||||
|
||||
node-windows-arm64:
|
||||
name: vectordb win32-arm64-msvc
|
||||
runs-on: windows-4x-arm
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Install Git
|
||||
run: |
|
||||
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
|
||||
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
|
||||
shell: powershell
|
||||
- name: Add Git to PATH
|
||||
run: |
|
||||
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
|
||||
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
|
||||
shell: powershell
|
||||
- name: Configure Git symlinks
|
||||
run: git config --global core.symlinks true
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.13"
|
||||
- name: Install Visual Studio Build Tools
|
||||
run: |
|
||||
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
|
||||
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
|
||||
"--installPath", "C:\BuildTools", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
|
||||
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
|
||||
shell: powershell
|
||||
- name: Add Visual Studio Build Tools to PATH
|
||||
run: |
|
||||
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
|
||||
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
|
||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
|
||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
|
||||
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
|
||||
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
|
||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
|
||||
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
|
||||
# node-windows-arm64:
|
||||
# name: vectordb win32-arm64-msvc
|
||||
# runs-on: windows-4x-arm
|
||||
# if: startsWith(github.ref, 'refs/tags/v')
|
||||
# steps:
|
||||
# - uses: actions/checkout@v4
|
||||
# - name: Install Git
|
||||
# run: |
|
||||
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
|
||||
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
|
||||
# shell: powershell
|
||||
# - name: Add Git to PATH
|
||||
# run: |
|
||||
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
|
||||
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
|
||||
# shell: powershell
|
||||
# - name: Configure Git symlinks
|
||||
# run: git config --global core.symlinks true
|
||||
# - uses: actions/checkout@v4
|
||||
# - uses: actions/setup-python@v5
|
||||
# with:
|
||||
# python-version: "3.13"
|
||||
# - name: Install Visual Studio Build Tools
|
||||
# run: |
|
||||
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
|
||||
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
|
||||
# "--installPath", "C:\BuildTools", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
|
||||
# shell: powershell
|
||||
# - name: Add Visual Studio Build Tools to PATH
|
||||
# run: |
|
||||
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
|
||||
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
|
||||
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
|
||||
|
||||
# Add MSVC runtime libraries to LIB
|
||||
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
|
||||
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
|
||||
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
|
||||
Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
|
||||
# # Add MSVC runtime libraries to LIB
|
||||
# $env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
|
||||
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
|
||||
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
|
||||
# Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
|
||||
|
||||
# Add INCLUDE paths
|
||||
$env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
|
||||
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
|
||||
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
|
||||
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
|
||||
Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
|
||||
shell: powershell
|
||||
- name: Install Rust
|
||||
run: |
|
||||
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
|
||||
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
|
||||
shell: powershell
|
||||
- name: Add Rust to PATH
|
||||
run: |
|
||||
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
|
||||
shell: powershell
|
||||
# # Add INCLUDE paths
|
||||
# $env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
|
||||
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
|
||||
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
|
||||
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
|
||||
# Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
|
||||
# shell: powershell
|
||||
# - name: Install Rust
|
||||
# run: |
|
||||
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
|
||||
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
|
||||
# shell: powershell
|
||||
# - name: Add Rust to PATH
|
||||
# run: |
|
||||
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
|
||||
# shell: powershell
|
||||
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
- name: Install 7-Zip ARM
|
||||
run: |
|
||||
New-Item -Path 'C:\7zip' -ItemType Directory
|
||||
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
|
||||
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
|
||||
shell: powershell
|
||||
- name: Add 7-Zip to PATH
|
||||
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
|
||||
shell: powershell
|
||||
- name: Install Protoc v21.12
|
||||
working-directory: C:\
|
||||
run: |
|
||||
if (Test-Path 'C:\protoc') {
|
||||
Write-Host "Protoc directory exists, skipping installation"
|
||||
return
|
||||
}
|
||||
New-Item -Path 'C:\protoc' -ItemType Directory
|
||||
Set-Location C:\protoc
|
||||
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
|
||||
shell: powershell
|
||||
- name: Add Protoc to PATH
|
||||
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||
shell: powershell
|
||||
- name: Build Windows native node modules
|
||||
run: .\ci\build_windows_artifacts.ps1 aarch64-pc-windows-msvc
|
||||
- name: Upload Windows ARM64 Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: node-native-windows-arm64
|
||||
path: |
|
||||
node/dist/*.node
|
||||
# - uses: Swatinem/rust-cache@v2
|
||||
# with:
|
||||
# workspaces: rust
|
||||
# - name: Install 7-Zip ARM
|
||||
# run: |
|
||||
# New-Item -Path 'C:\7zip' -ItemType Directory
|
||||
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
|
||||
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
|
||||
# shell: powershell
|
||||
# - name: Add 7-Zip to PATH
|
||||
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
|
||||
# shell: powershell
|
||||
# - name: Install Protoc v21.12
|
||||
# working-directory: C:\
|
||||
# run: |
|
||||
# if (Test-Path 'C:\protoc') {
|
||||
# Write-Host "Protoc directory exists, skipping installation"
|
||||
# return
|
||||
# }
|
||||
# New-Item -Path 'C:\protoc' -ItemType Directory
|
||||
# Set-Location C:\protoc
|
||||
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
|
||||
# shell: powershell
|
||||
# - name: Add Protoc to PATH
|
||||
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||
# shell: powershell
|
||||
# - name: Build Windows native node modules
|
||||
# run: .\ci\build_windows_artifacts.ps1 aarch64-pc-windows-msvc
|
||||
# - name: Upload Windows ARM64 Artifacts
|
||||
# uses: actions/upload-artifact@v4
|
||||
# with:
|
||||
# name: node-native-windows-arm64
|
||||
# path: |
|
||||
# node/dist/*.node
|
||||
|
||||
nodejs-windows:
|
||||
name: lancedb ${{ matrix.target }}
|
||||
@@ -363,102 +472,103 @@ jobs:
|
||||
path: |
|
||||
nodejs/dist/*.node
|
||||
|
||||
nodejs-windows-arm64:
|
||||
name: lancedb win32-arm64-msvc
|
||||
runs-on: windows-4x-arm
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Install Git
|
||||
run: |
|
||||
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
|
||||
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
|
||||
shell: powershell
|
||||
- name: Add Git to PATH
|
||||
run: |
|
||||
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
|
||||
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
|
||||
shell: powershell
|
||||
- name: Configure Git symlinks
|
||||
run: git config --global core.symlinks true
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.13"
|
||||
- name: Install Visual Studio Build Tools
|
||||
run: |
|
||||
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
|
||||
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
|
||||
"--installPath", "C:\BuildTools", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
|
||||
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
|
||||
shell: powershell
|
||||
- name: Add Visual Studio Build Tools to PATH
|
||||
run: |
|
||||
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
|
||||
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
|
||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
|
||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
|
||||
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
|
||||
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
|
||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
|
||||
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
|
||||
# nodejs-windows-arm64:
|
||||
# name: lancedb win32-arm64-msvc
|
||||
# runs-on: windows-4x-arm
|
||||
# if: startsWith(github.ref, 'refs/tags/v')
|
||||
# steps:
|
||||
# - uses: actions/checkout@v4
|
||||
# - name: Install Git
|
||||
# run: |
|
||||
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
|
||||
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
|
||||
# shell: powershell
|
||||
# - name: Add Git to PATH
|
||||
# run: |
|
||||
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
|
||||
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
|
||||
# shell: powershell
|
||||
# - name: Configure Git symlinks
|
||||
# run: git config --global core.symlinks true
|
||||
# - uses: actions/checkout@v4
|
||||
# - uses: actions/setup-python@v5
|
||||
# with:
|
||||
# python-version: "3.13"
|
||||
# - name: Install Visual Studio Build Tools
|
||||
# run: |
|
||||
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
|
||||
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
|
||||
# "--installPath", "C:\BuildTools", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
|
||||
# shell: powershell
|
||||
# - name: Add Visual Studio Build Tools to PATH
|
||||
# run: |
|
||||
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
|
||||
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
|
||||
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
|
||||
|
||||
$env:LIB = ""
|
||||
Add-Content $env:GITHUB_ENV "LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
|
||||
shell: powershell
|
||||
- name: Install Rust
|
||||
run: |
|
||||
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
|
||||
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
|
||||
shell: powershell
|
||||
- name: Add Rust to PATH
|
||||
run: |
|
||||
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
|
||||
shell: powershell
|
||||
# $env:LIB = ""
|
||||
# Add-Content $env:GITHUB_ENV "LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
|
||||
# shell: powershell
|
||||
# - name: Install Rust
|
||||
# run: |
|
||||
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
|
||||
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
|
||||
# shell: powershell
|
||||
# - name: Add Rust to PATH
|
||||
# run: |
|
||||
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
|
||||
# shell: powershell
|
||||
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
- name: Install 7-Zip ARM
|
||||
run: |
|
||||
New-Item -Path 'C:\7zip' -ItemType Directory
|
||||
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
|
||||
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
|
||||
shell: powershell
|
||||
- name: Add 7-Zip to PATH
|
||||
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
|
||||
shell: powershell
|
||||
- name: Install Protoc v21.12
|
||||
working-directory: C:\
|
||||
run: |
|
||||
if (Test-Path 'C:\protoc') {
|
||||
Write-Host "Protoc directory exists, skipping installation"
|
||||
return
|
||||
}
|
||||
New-Item -Path 'C:\protoc' -ItemType Directory
|
||||
Set-Location C:\protoc
|
||||
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
|
||||
shell: powershell
|
||||
- name: Add Protoc to PATH
|
||||
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||
shell: powershell
|
||||
- name: Build Windows native node modules
|
||||
run: .\ci\build_windows_artifacts_nodejs.ps1 aarch64-pc-windows-msvc
|
||||
- name: Upload Windows ARM64 Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: nodejs-native-windows-arm64
|
||||
path: |
|
||||
nodejs/dist/*.node
|
||||
# - uses: Swatinem/rust-cache@v2
|
||||
# with:
|
||||
# workspaces: rust
|
||||
# - name: Install 7-Zip ARM
|
||||
# run: |
|
||||
# New-Item -Path 'C:\7zip' -ItemType Directory
|
||||
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
|
||||
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
|
||||
# shell: powershell
|
||||
# - name: Add 7-Zip to PATH
|
||||
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
|
||||
# shell: powershell
|
||||
# - name: Install Protoc v21.12
|
||||
# working-directory: C:\
|
||||
# run: |
|
||||
# if (Test-Path 'C:\protoc') {
|
||||
# Write-Host "Protoc directory exists, skipping installation"
|
||||
# return
|
||||
# }
|
||||
# New-Item -Path 'C:\protoc' -ItemType Directory
|
||||
# Set-Location C:\protoc
|
||||
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
|
||||
# shell: powershell
|
||||
# - name: Add Protoc to PATH
|
||||
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||
# shell: powershell
|
||||
# - name: Build Windows native node modules
|
||||
# run: .\ci\build_windows_artifacts_nodejs.ps1 aarch64-pc-windows-msvc
|
||||
# - name: Upload Windows ARM64 Artifacts
|
||||
# uses: actions/upload-artifact@v4
|
||||
# with:
|
||||
# name: nodejs-native-windows-arm64
|
||||
# path: |
|
||||
# nodejs/dist/*.node
|
||||
|
||||
release:
|
||||
name: vectordb NPM Publish
|
||||
needs: [node, node-macos, node-linux, node-windows, node-windows-arm64]
|
||||
needs: [node, node-macos, node-linux-gnu, node-linux-musl, node-windows]
|
||||
runs-on: ubuntu-latest
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
@@ -476,7 +586,7 @@ jobs:
|
||||
env:
|
||||
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
|
||||
run: |
|
||||
# Tag beta as "preview" instead of default "latest". See lancedb
|
||||
# Tag beta as "preview" instead of default "latest". See lancedb
|
||||
# npm publish step for more info.
|
||||
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
|
||||
PUBLISH_ARGS="--tag preview"
|
||||
@@ -498,7 +608,7 @@ jobs:
|
||||
|
||||
release-nodejs:
|
||||
name: lancedb NPM Publish
|
||||
needs: [nodejs-macos, nodejs-linux, nodejs-windows, nodejs-windows-arm64]
|
||||
needs: [nodejs-macos, nodejs-linux-gnu, nodejs-linux-musl, nodejs-windows]
|
||||
runs-on: ubuntu-latest
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
|
||||
18
Cargo.toml
18
Cargo.toml
@@ -18,18 +18,18 @@ repository = "https://github.com/lancedb/lancedb"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
keywords = ["lancedb", "lance", "database", "vector", "search"]
|
||||
categories = ["database-implementations"]
|
||||
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
|
||||
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.19.2", "features" = [
|
||||
lance = { "version" = "=0.20.0", "features" = [
|
||||
"dynamodb",
|
||||
], git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
|
||||
lance-index = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
|
||||
lance-linalg = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
|
||||
lance-table = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
|
||||
lance-testing = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
|
||||
lance-datafusion = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
|
||||
lance-encoding = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
|
||||
], git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||
lance-index = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||
lance-linalg = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||
lance-table = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||
lance-testing = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||
lance-datafusion = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||
lance-encoding = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "52.2", optional = false }
|
||||
arrow-array = "52.2"
|
||||
|
||||
@@ -11,7 +11,8 @@ fi
|
||||
export OPENSSL_STATIC=1
|
||||
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
||||
|
||||
source $HOME/.bashrc
|
||||
#Alpine doesn't have .bashrc
|
||||
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
|
||||
|
||||
cd nodejs
|
||||
npm ci
|
||||
|
||||
@@ -5,13 +5,14 @@ ARCH=${1:-x86_64}
|
||||
|
||||
if [ "$ARCH" = "x86_64" ]; then
|
||||
export OPENSSL_LIB_DIR=/usr/local/lib64/
|
||||
else
|
||||
else
|
||||
export OPENSSL_LIB_DIR=/usr/local/lib/
|
||||
fi
|
||||
export OPENSSL_STATIC=1
|
||||
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
||||
|
||||
source $HOME/.bashrc
|
||||
#Alpine doesn't have .bashrc
|
||||
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
|
||||
|
||||
cd node
|
||||
npm ci
|
||||
|
||||
@@ -138,6 +138,7 @@ nav:
|
||||
- Jina Reranker: reranking/jina.md
|
||||
- OpenAI Reranker: reranking/openai.md
|
||||
- AnswerDotAi Rerankers: reranking/answerdotai.md
|
||||
- Voyage AI Rerankers: reranking/voyageai.md
|
||||
- Building Custom Rerankers: reranking/custom_reranker.md
|
||||
- Example: notebooks/lancedb_reranking.ipynb
|
||||
- Filtering: sql.md
|
||||
@@ -165,6 +166,7 @@ nav:
|
||||
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
|
||||
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
|
||||
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
|
||||
- Voyage AI Embeddings: embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
|
||||
- Multimodal Embedding Functions:
|
||||
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
|
||||
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
|
||||
|
||||
21
docs/package-lock.json
generated
21
docs/package-lock.json
generated
@@ -19,7 +19,7 @@
|
||||
},
|
||||
"../node": {
|
||||
"name": "vectordb",
|
||||
"version": "0.4.6",
|
||||
"version": "0.12.0",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -31,9 +31,7 @@
|
||||
"win32"
|
||||
],
|
||||
"dependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
"@neon-rs/load": "^0.0.74",
|
||||
"apache-arrow": "^14.0.2",
|
||||
"axios": "^1.4.0"
|
||||
},
|
||||
"devDependencies": {
|
||||
@@ -46,6 +44,7 @@
|
||||
"@types/temp": "^0.9.1",
|
||||
"@types/uuid": "^9.0.3",
|
||||
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||
"apache-arrow-old": "npm:apache-arrow@13.0.0",
|
||||
"cargo-cp-artifact": "^0.1",
|
||||
"chai": "^4.3.7",
|
||||
"chai-as-promised": "^7.1.1",
|
||||
@@ -62,15 +61,19 @@
|
||||
"ts-node-dev": "^2.0.0",
|
||||
"typedoc": "^0.24.7",
|
||||
"typedoc-plugin-markdown": "^3.15.3",
|
||||
"typescript": "*",
|
||||
"typescript": "^5.1.0",
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.6",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.6",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.12.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.12.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.12.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.12.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
"apache-arrow": "^14.0.2"
|
||||
}
|
||||
},
|
||||
"../node/node_modules/apache-arrow": {
|
||||
|
||||
@@ -277,7 +277,15 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
|
||||
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
|
||||
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
|
||||
|
||||
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
|
||||
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
|
||||
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
|
||||
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
|
||||
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
|
||||
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
|
||||
|
||||
!!! note
|
||||
if `num_sub_vectors` is set to be greater than the vector dimension, you will see errors like `attempt to divide by zero`
|
||||
|
||||
### How to choose `m` and `ef_construction` for `IVF_HNSW_*` index?
|
||||
|
||||
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
|
||||
|
||||
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase
|
||||
@@ -57,6 +57,13 @@ Then the greedy search routine operates as follows:
|
||||
|
||||
## Usage
|
||||
|
||||
There are three key parameters to set when constructing an HNSW index:
|
||||
|
||||
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
|
||||
* `m`: The number of neighbors to select for each vector in the HNSW graph.
|
||||
* `ef_construction`: The number of candidates to evaluate during the construction of the HNSW graph.
|
||||
|
||||
|
||||
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
|
||||
|
||||
### Construct index
|
||||
|
||||
@@ -58,8 +58,10 @@ In Python, the index can be created as follows:
|
||||
# Make sure you have enough data in the table for an effective training step
|
||||
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
|
||||
```
|
||||
!!! note
|
||||
`num_partitions`=256 and `num_sub_vectors`=96 does not work for every dataset. Those values needs to be adjusted for your particular dataset.
|
||||
|
||||
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See the [FAQs](#faq) below for best practices on choosing these parameters.
|
||||
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See [here](../ann_indexes.md/#how-to-choose-num_partitions-and-num_sub_vectors-for-ivf_pq-index) for best practices on choosing these parameters.
|
||||
|
||||
|
||||
### Query the index
|
||||
|
||||
@@ -20,7 +20,7 @@ Supported parameters (to be passed in `create` method) are:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|--------|---------|
|
||||
| `name` | `str` | `"voyage-3"` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
|
||||
| `name` | `str` | `None` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
|
||||
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
|
||||
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |
|
||||
|
||||
|
||||
@@ -53,6 +53,7 @@ These functions are registered by default to handle text embeddings.
|
||||
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="Jina Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/jina_embedding.md) |
|
||||
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/aws_bedrock.png" alt="AWS Bedrock Icon" width="120" height="35">](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
|
||||
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/watsonx.png" alt="Watsonx Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
|
||||
| [**VoyageAI Embeddings**](available_embedding_models/text_embedding_functions/voyageai_embedding.md "voyageai") | 🌕 Voyage AI provides cutting-edge embedding and rerankers. This will help you get started with **VoyageAI** embedding models using LanceDB. Using voyageai API requires voyageai package. Install it via `pip`. | [<img src="https://www.voyageai.com/logo.svg" alt="VoyageAI Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/voyageai_embedding.md) |
|
||||
|
||||
|
||||
|
||||
@@ -66,6 +67,7 @@ These functions are registered by default to handle text embeddings.
|
||||
[jina-key]: "jina"
|
||||
[aws-key]: "bedrock-text"
|
||||
[watsonx-key]: "watsonx"
|
||||
[voyageai-key]: "voyageai"
|
||||
|
||||
|
||||
## Multi-modal Embedding Functions🖼️
|
||||
|
||||
@@ -114,12 +114,45 @@ table.create_fts_index("text",
|
||||
|
||||
LanceDB full text search supports to filter the search results by a condition, both pre-filtering and post-filtering are supported.
|
||||
|
||||
This can be invoked via the familiar `where` syntax:
|
||||
|
||||
This can be invoked via the familiar `where` syntax.
|
||||
|
||||
With pre-filtering:
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
table.search("puppy").limit(10).where("meta='foo'").to_list()
|
||||
table.search("puppy").limit(10).where("meta='foo'", prefilte=True).to_list()
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
await tbl
|
||||
.search("puppy")
|
||||
.select(["id", "doc"])
|
||||
.limit(10)
|
||||
.where("meta='foo'")
|
||||
.prefilter(true)
|
||||
.toArray();
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
table
|
||||
.query()
|
||||
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
|
||||
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
||||
.limit(10)
|
||||
.only_if("meta='foo'")
|
||||
.execute()
|
||||
.await?;
|
||||
```
|
||||
|
||||
With post-filtering:
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
table.search("puppy").limit(10).where("meta='foo'", prefilte=False).to_list()
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
@@ -130,6 +163,7 @@ This can be invoked via the familiar `where` syntax:
|
||||
.select(["id", "doc"])
|
||||
.limit(10)
|
||||
.where("meta='foo'")
|
||||
.prefilter(false)
|
||||
.toArray();
|
||||
```
|
||||
|
||||
@@ -140,6 +174,7 @@ This can be invoked via the familiar `where` syntax:
|
||||
.query()
|
||||
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
|
||||
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
||||
.postfilter()
|
||||
.limit(10)
|
||||
.only_if("meta='foo'")
|
||||
.execute()
|
||||
@@ -160,3 +195,35 @@ To search for a phrase, the index must be created with `with_position=True`:
|
||||
table.create_fts_index("text", use_tantivy=False, with_position=True)
|
||||
```
|
||||
This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.
|
||||
|
||||
|
||||
## Incremental indexing
|
||||
|
||||
LanceDB supports incremental indexing, which means you can add new records to the table without reindexing the entire table.
|
||||
|
||||
This can make the query more efficient, especially when the table is large and the new records are relatively small.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
table.add([{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"}])
|
||||
table.optimize()
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
await tbl.add([{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" }]);
|
||||
await tbl.optimize();
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
|
||||
tbl.add(more_data).execute().await?;
|
||||
tbl.optimize(OptimizeAction::All).execute().await?;
|
||||
```
|
||||
!!! note
|
||||
|
||||
New data added after creating the FTS index will appear in search results while incremental index is still progress, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates this merging process, minimizing the impact on search speed.
|
||||
@@ -153,9 +153,7 @@ table.create_fts_index(["title", "content"], use_tantivy=True, writer_heap_size=
|
||||
|
||||
## Current limitations
|
||||
|
||||
1. Currently we do not yet support incremental writes.
|
||||
If you add data after FTS index creation, it won't be reflected
|
||||
in search results until you do a full reindex.
|
||||
1. New data added after creating the FTS index will appear in search results, but with increased latency due to a flat search on the unindexed portion. Re-indexing with `create_fts_index` will reduce latency. LanceDB Cloud automates this merging process, minimizing the impact on search speed.
|
||||
|
||||
2. We currently only support local filesystem paths for the FTS index.
|
||||
This is a tantivy limitation. We've implemented an object store plugin
|
||||
|
||||
@@ -274,7 +274,7 @@ table = db.create_table(table_name, schema=Content)
|
||||
|
||||
Sometimes your data model may contain nested objects.
|
||||
For example, you may want to store the document string
|
||||
and the document soure name as a nested Document object:
|
||||
and the document source name as a nested Document object:
|
||||
|
||||
```python
|
||||
class Document(BaseModel):
|
||||
@@ -466,7 +466,7 @@ You can create an empty table for scenarios where you want to add data to the ta
|
||||
|
||||
## Adding to a table
|
||||
|
||||
After a table has been created, you can always add more data to it usind the `add` method
|
||||
After a table has been created, you can always add more data to it using the `add` method
|
||||
|
||||
=== "Python"
|
||||
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
|
||||
@@ -535,7 +535,7 @@ After a table has been created, you can always add more data to it usind the `ad
|
||||
```
|
||||
|
||||
??? "Ingesting Pydantic models with LanceDB embedding API"
|
||||
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` feild as None to allow LanceDB to automatically vectorize the data.
|
||||
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` field as None to allow LanceDB to automatically vectorize the data.
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
@@ -790,6 +790,27 @@ Use the `drop_table()` method on the database to remove a table.
|
||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||
If the table does not exist an exception is raised.
|
||||
|
||||
## Handling bad vectors
|
||||
|
||||
In LanceDB Python, you can use the `on_bad_vectors` parameter to choose how
|
||||
invalid vector values are handled. Invalid vectors are vectors that are not valid
|
||||
because:
|
||||
|
||||
1. They are the wrong dimension
|
||||
2. They contain NaN values
|
||||
3. They are null but are on a non-nullable field
|
||||
|
||||
By default, LanceDB will raise an error if it encounters a bad vector. You can
|
||||
also choose one of the following options:
|
||||
|
||||
* `drop`: Ignore rows with bad vectors
|
||||
* `fill`: Replace bad values (NaNs) or missing values (too few dimensions) with
|
||||
the fill value specified in the `fill_value` parameter. An input like
|
||||
`[1.0, NaN, 3.0]` will be replaced with `[1.0, 0.0, 3.0]` if `fill_value=0.0`.
|
||||
* `null`: Replace bad vectors with null (only works if the column is nullable).
|
||||
A bad vector `[1.0, NaN, 3.0]` will be replaced with `null` if the column is
|
||||
nullable. If the vector column is non-nullable, then bad vectors will cause an
|
||||
error
|
||||
|
||||
## Consistency
|
||||
|
||||
@@ -859,4 +880,4 @@ There are three possible settings for `read_consistency_interval`:
|
||||
|
||||
Learn the best practices on creating an ANN index and getting the most out of it.
|
||||
|
||||
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.
|
||||
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](../migration.md) for more information.
|
||||
|
||||
@@ -6,6 +6,9 @@ This re-ranker uses the [Cohere](https://cohere.ai/) API to rerank the search re
|
||||
!!! note
|
||||
Supported Query Types: Hybrid, Vector, FTS
|
||||
|
||||
```shell
|
||||
pip install cohere
|
||||
```
|
||||
|
||||
```python
|
||||
import numpy
|
||||
|
||||
@@ -9,6 +9,7 @@ LanceDB comes with some built-in rerankers. Some of the rerankers that are avail
|
||||
| `CrossEncoderReranker` | Uses a cross-encoder model to rerank search results | Vector, FTS, Hybrid |
|
||||
| `ColbertReranker` | Uses a colbert model to rerank search results | Vector, FTS, Hybrid |
|
||||
| `OpenaiReranker`(Experimental) | Uses OpenAI's chat model to rerank search results | Vector, FTS, Hybrid |
|
||||
| `VoyageAIReranker` | Uses voyageai Reranker API to rerank results | Vector, FTS, Hybrid |
|
||||
|
||||
|
||||
## Using a Reranker
|
||||
@@ -73,6 +74,7 @@ LanceDB comes with some built-in rerankers. Here are some of the rerankers that
|
||||
- [Jina Reranker](./jina.md)
|
||||
- [AnswerDotAI Rerankers](./answerdotai.md)
|
||||
- [Reciprocal Rank Fusion Reranker](./rrf.md)
|
||||
- [VoyageAI Reranker](./voyageai.md)
|
||||
|
||||
## Creating Custom Rerankers
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
<parent>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.13.0-beta.1</version>
|
||||
<version>0.13.0-final.0</version>
|
||||
<relativePath>../pom.xml</relativePath>
|
||||
</parent>
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.13.0-beta.1</version>
|
||||
<version>0.13.0-final.0</version>
|
||||
<packaging>pom</packaging>
|
||||
|
||||
<name>LanceDB Parent</name>
|
||||
|
||||
52
node/package-lock.json
generated
52
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -52,12 +52,12 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-darwin-x64": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.13.0-beta.1"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.13.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.13.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.13.0",
|
||||
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.13.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
@@ -328,9 +328,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.13.0-beta.1",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.13.0-beta.1.tgz",
|
||||
"integrity": "sha512-beOrf6selCzzhLgDG8Nibma4nO/CSnA1wUKRmlJHEPtGcg7PW18z6MP/nfwQMpMR/FLRfTo8pPTbpzss47MiQQ==",
|
||||
"version": "0.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.13.0.tgz",
|
||||
"integrity": "sha512-8hdcjkRmgrdQYf1jN+DyZae40LIv8UUfnWy70Uid5qy63sSvRW/+MvIdqIPFr9QlLUXmpyyQuX0y3bZhUR99cQ==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -340,9 +340,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.13.0-beta.1",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.13.0-beta.1.tgz",
|
||||
"integrity": "sha512-YdraGRF/RbJRkKh0v3xT03LUhq47T2GtCvJ5gZp8wKlh4pHa8LuhLU0DIdvmG/DT5vuQA+td8HDkBm/e3EOdNg==",
|
||||
"version": "0.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.13.0.tgz",
|
||||
"integrity": "sha512-fWzAY4l5SQtNfMYh80v+M66ugZHhdxbkpk5mNEv6Zsug3DL6kRj3Uv31/i0wgzY6F5G3LUlbjZerN+eTnDLwOw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -352,9 +352,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.13.0-beta.1",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.13.0-beta.1.tgz",
|
||||
"integrity": "sha512-Pp0O/uhEqof1oLaWrNbv+Ym+q8kBkiCqaA5+2eAZ6a3e9U+Ozkvb0FQrHuyi9adJ5wKQ4NabyQE9BMf2bYpOnQ==",
|
||||
"version": "0.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.13.0.tgz",
|
||||
"integrity": "sha512-ltwAT9baOSuR5YiGykQXPC8/HGYF13vpI47qxhP9yfgiz9pA8EUn8p8YrBRzq7J4DIZ4b8JSVDXQnMIqEtB4Kg==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -364,9 +364,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.13.0-beta.1",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.13.0-beta.1.tgz",
|
||||
"integrity": "sha512-y8nxOye4egfWF5FGED9EfkmZ1O5HnRLU4a61B8m5JSpkivO9v2epTcbYN0yt/7ZFCgtqMfJ8VW4Mi7qQcz3KDA==",
|
||||
"version": "0.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.13.0.tgz",
|
||||
"integrity": "sha512-MiT/RBlMPGGRh7BX+MXwRuNiiUnKmuDcHH8nm88IH28T7TQxXIbA9w6UpSg5m9f3DgKQI2K8oLi29oKIB8ZwDQ==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -376,9 +376,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.13.0-beta.1",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.13.0-beta.1.tgz",
|
||||
"integrity": "sha512-STMDP9dp0TBLkB3ro+16pKcGy6bmbhRuEZZZ1Tp5P75yTPeVh4zIgWkidMdU1qBbEYM7xacnsp9QAwgLnMU/Ow==",
|
||||
"version": "0.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.13.0.tgz",
|
||||
"integrity": "sha512-SovP/hwWYLJIy65DKbVuXlBPTb/nwvVpTO6dh9zRch+L5ek6JmVAkwsfeTS2p5bMa8VPujsCXYUAVuCDEJU8wg==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -1501,9 +1501,9 @@
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/cross-spawn": {
|
||||
"version": "7.0.3",
|
||||
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
|
||||
"integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
|
||||
"version": "7.0.6",
|
||||
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz",
|
||||
"integrity": "sha512-uV2QOWP2nWzsy2aMp8aRibhi9dlzF5Hgh5SHaB9OiTGEyDTiJJyx0uy51QXdyWbtAHNua4XJzUKca3OzKUd3vA==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"path-key": "^3.1.0",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"main": "dist/index.js",
|
||||
"types": "dist/index.d.ts",
|
||||
@@ -89,11 +89,13 @@
|
||||
}
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-darwin-x64": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0-beta.1"
|
||||
"@lancedb/vectordb-darwin-x64": "0.13.0",
|
||||
"@lancedb/vectordb-darwin-arm64": "0.13.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.13.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0",
|
||||
"@lancedb/vectordb-linux-x64-musl": "0.13.0",
|
||||
"@lancedb/vectordb-linux-arm64-musl": "0.13.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.13.0",
|
||||
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
[package]
|
||||
name = "lancedb-nodejs"
|
||||
edition.workspace = true
|
||||
version = "0.13.0-beta.1"
|
||||
version = "0.13.0"
|
||||
license.workspace = true
|
||||
description.workspace = true
|
||||
repository.workspace = true
|
||||
|
||||
@@ -187,6 +187,81 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
|
||||
},
|
||||
);
|
||||
|
||||
// TODO: https://github.com/lancedb/lancedb/issues/1832
|
||||
it.skip("should be able to omit nullable fields", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const schema = new arrow.Schema([
|
||||
new arrow.Field(
|
||||
"vector",
|
||||
new arrow.FixedSizeList(
|
||||
2,
|
||||
new arrow.Field("item", new arrow.Float64()),
|
||||
),
|
||||
true,
|
||||
),
|
||||
new arrow.Field("item", new arrow.Utf8(), true),
|
||||
new arrow.Field("price", new arrow.Float64(), false),
|
||||
]);
|
||||
const table = await db.createEmptyTable("test", schema);
|
||||
|
||||
const data1 = { item: "foo", price: 10.0 };
|
||||
await table.add([data1]);
|
||||
const data2 = { vector: [3.1, 4.1], price: 2.0 };
|
||||
await table.add([data2]);
|
||||
const data3 = { vector: [5.9, 26.5], item: "bar", price: 3.0 };
|
||||
await table.add([data3]);
|
||||
|
||||
let res = await table.query().limit(10).toArray();
|
||||
const resVector = res.map((r) => r.get("vector").toArray());
|
||||
expect(resVector).toEqual([null, data2.vector, data3.vector]);
|
||||
const resItem = res.map((r) => r.get("item").toArray());
|
||||
expect(resItem).toEqual(["foo", null, "bar"]);
|
||||
const resPrice = res.map((r) => r.get("price").toArray());
|
||||
expect(resPrice).toEqual([10.0, 2.0, 3.0]);
|
||||
|
||||
const data4 = { item: "foo" };
|
||||
// We can't omit a column if it's not nullable
|
||||
await expect(table.add([data4])).rejects.toThrow("Invalid user input");
|
||||
|
||||
// But we can alter columns to make them nullable
|
||||
await table.alterColumns([{ path: "price", nullable: true }]);
|
||||
await table.add([data4]);
|
||||
|
||||
res = (await table.query().limit(10).toArray()).map((r) => r.toJSON());
|
||||
expect(res).toEqual([data1, data2, data3, data4]);
|
||||
});
|
||||
|
||||
it("should be able to insert nullable data for non-nullable fields", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const schema = new arrow.Schema([
|
||||
new arrow.Field("x", new arrow.Float64(), false),
|
||||
new arrow.Field("id", new arrow.Utf8(), false),
|
||||
]);
|
||||
const table = await db.createEmptyTable("test", schema);
|
||||
|
||||
const data1 = { x: 4.1, id: "foo" };
|
||||
await table.add([data1]);
|
||||
const res = (await table.query().toArray())[0];
|
||||
expect(res.x).toEqual(data1.x);
|
||||
expect(res.id).toEqual(data1.id);
|
||||
|
||||
const data2 = { x: null, id: "bar" };
|
||||
await expect(table.add([data2])).rejects.toThrow(
|
||||
"declared as non-nullable but contains null values",
|
||||
);
|
||||
|
||||
// But we can alter columns to make them nullable
|
||||
await table.alterColumns([{ path: "x", nullable: true }]);
|
||||
await table.add([data2]);
|
||||
|
||||
const res2 = await table.query().toArray();
|
||||
expect(res2.length).toBe(2);
|
||||
expect(res2[0].x).toEqual(data1.x);
|
||||
expect(res2[0].id).toEqual(data1.id);
|
||||
expect(res2[1].x).toBeNull();
|
||||
expect(res2[1].id).toEqual(data2.id);
|
||||
});
|
||||
|
||||
it("should return the table as an instance of an arrow table", async () => {
|
||||
const arrowTbl = await table.toArrow();
|
||||
expect(arrowTbl).toBeInstanceOf(ArrowTable);
|
||||
@@ -402,6 +477,54 @@ describe("When creating an index", () => {
|
||||
expect(rst.numRows).toBe(1);
|
||||
});
|
||||
|
||||
it("should create and search IVF_HNSW indices", async () => {
|
||||
await tbl.createIndex("vec", {
|
||||
config: Index.hnswSq(),
|
||||
});
|
||||
|
||||
// check index directory
|
||||
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
|
||||
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||
const indices = await tbl.listIndices();
|
||||
expect(indices.length).toBe(1);
|
||||
expect(indices[0]).toEqual({
|
||||
name: "vec_idx",
|
||||
indexType: "IvfHnswSq",
|
||||
columns: ["vec"],
|
||||
});
|
||||
|
||||
// Search without specifying the column
|
||||
let rst = await tbl
|
||||
.query()
|
||||
.limit(2)
|
||||
.nearestTo(queryVec)
|
||||
.distanceType("dot")
|
||||
.toArrow();
|
||||
expect(rst.numRows).toBe(2);
|
||||
|
||||
// Search using `vectorSearch`
|
||||
rst = await tbl.vectorSearch(queryVec).limit(2).toArrow();
|
||||
expect(rst.numRows).toBe(2);
|
||||
|
||||
// Search with specifying the column
|
||||
const rst2 = await tbl
|
||||
.query()
|
||||
.limit(2)
|
||||
.nearestTo(queryVec)
|
||||
.column("vec")
|
||||
.toArrow();
|
||||
expect(rst2.numRows).toBe(2);
|
||||
expect(rst.toString()).toEqual(rst2.toString());
|
||||
|
||||
// test offset
|
||||
rst = await tbl.query().limit(2).offset(1).nearestTo(queryVec).toArrow();
|
||||
expect(rst.numRows).toBe(1);
|
||||
|
||||
// test ef
|
||||
rst = await tbl.query().limit(2).nearestTo(queryVec).ef(100).toArrow();
|
||||
expect(rst.numRows).toBe(2);
|
||||
});
|
||||
|
||||
it("should be able to query unindexed data", async () => {
|
||||
await tbl.createIndex("vec");
|
||||
await tbl.add([
|
||||
|
||||
@@ -6,12 +6,16 @@ import { withTempDirectory } from "./util.ts";
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
import "@lancedb/lancedb/embedding/transformers";
|
||||
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
|
||||
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
|
||||
import { Utf8 } from "apache-arrow";
|
||||
|
||||
test("full text search", async () => {
|
||||
await withTempDirectory(async (databaseDir) => {
|
||||
const db = await lancedb.connect(databaseDir);
|
||||
const func = await getRegistry().get("huggingface").create();
|
||||
console.log(getRegistry());
|
||||
const func = (await getRegistry()
|
||||
.get("huggingface")
|
||||
?.create()) as EmbeddingFunction;
|
||||
|
||||
const facts = [
|
||||
"Albert Einstein was a theoretical physicist.",
|
||||
@@ -56,4 +60,4 @@ test("full text search", async () => {
|
||||
|
||||
expect(actual[0]["text"]).toBe("The human body has 206 bones.");
|
||||
});
|
||||
});
|
||||
}, 100_000);
|
||||
|
||||
@@ -19,9 +19,6 @@ import { EmbeddingFunctionConfig, getRegistry } from "./registry";
|
||||
|
||||
export { EmbeddingFunction, TextEmbeddingFunction } from "./embedding_function";
|
||||
|
||||
// We need to explicitly export '*' so that the `register` decorator actually registers the class.
|
||||
export * from "./openai";
|
||||
export * from "./transformers";
|
||||
export * from "./registry";
|
||||
|
||||
/**
|
||||
|
||||
@@ -17,8 +17,6 @@ import {
|
||||
type EmbeddingFunctionConstructor,
|
||||
} from "./embedding_function";
|
||||
import "reflect-metadata";
|
||||
import { OpenAIEmbeddingFunction } from "./openai";
|
||||
import { TransformersEmbeddingFunction } from "./transformers";
|
||||
|
||||
type CreateReturnType<T> = T extends { init: () => Promise<void> }
|
||||
? Promise<T>
|
||||
@@ -73,10 +71,6 @@ export class EmbeddingFunctionRegistry {
|
||||
};
|
||||
}
|
||||
|
||||
get(name: "openai"): EmbeddingFunctionCreate<OpenAIEmbeddingFunction>;
|
||||
get(
|
||||
name: "huggingface",
|
||||
): EmbeddingFunctionCreate<TransformersEmbeddingFunction>;
|
||||
get<T extends EmbeddingFunction<unknown>>(
|
||||
name: string,
|
||||
): EmbeddingFunctionCreate<T> | undefined;
|
||||
|
||||
@@ -385,6 +385,20 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the number of candidates to consider during the search
|
||||
*
|
||||
* This argument is only used when the vector column has an HNSW index.
|
||||
* If there is no index then this value is ignored.
|
||||
*
|
||||
* Increasing this value will increase the recall of your query but will
|
||||
* also increase the latency of your query. The default value is 1.5*limit.
|
||||
*/
|
||||
ef(ef: number): VectorQuery {
|
||||
super.doCall((inner) => inner.ef(ef));
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the vector column to query
|
||||
*
|
||||
|
||||
@@ -87,6 +87,12 @@ export interface OptimizeOptions {
|
||||
deleteUnverified: boolean;
|
||||
}
|
||||
|
||||
export interface Version {
|
||||
version: number;
|
||||
timestamp: Date;
|
||||
metadata: Record<string, string>;
|
||||
}
|
||||
|
||||
/**
|
||||
* A Table is a collection of Records in a LanceDB Database.
|
||||
*
|
||||
@@ -360,6 +366,11 @@ export abstract class Table {
|
||||
*/
|
||||
abstract checkoutLatest(): Promise<void>;
|
||||
|
||||
/**
|
||||
* List all the versions of the table
|
||||
*/
|
||||
abstract listVersions(): Promise<Version[]>;
|
||||
|
||||
/**
|
||||
* Restore the table to the currently checked out version
|
||||
*
|
||||
@@ -659,6 +670,14 @@ export class LocalTable extends Table {
|
||||
await this.inner.checkoutLatest();
|
||||
}
|
||||
|
||||
async listVersions(): Promise<Version[]> {
|
||||
return (await this.inner.listVersions()).map((version) => ({
|
||||
version: version.version,
|
||||
timestamp: new Date(version.timestamp / 1000),
|
||||
metadata: version.metadata,
|
||||
}));
|
||||
}
|
||||
|
||||
async restore(): Promise<void> {
|
||||
await this.inner.restore();
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-arm64",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.darwin-arm64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-x64",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.darwin-x64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-gnu",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-gnu.node",
|
||||
|
||||
3
nodejs/npm/linux-arm64-musl/README.md
Normal file
3
nodejs/npm/linux-arm64-musl/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# `@lancedb/lancedb-linux-arm64-musl`
|
||||
|
||||
This is the **aarch64-unknown-linux-musl** binary for `@lancedb/lancedb`
|
||||
13
nodejs/npm/linux-arm64-musl/package.json
Normal file
13
nodejs/npm/linux-arm64-musl/package.json
Normal file
@@ -0,0 +1,13 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-musl",
|
||||
"version": "0.13.0",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-musl.node",
|
||||
"files": ["lancedb.linux-arm64-musl.node"],
|
||||
"license": "Apache 2.0",
|
||||
"engines": {
|
||||
"node": ">= 18"
|
||||
},
|
||||
"libc": ["musl"]
|
||||
}
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-gnu",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-gnu.node",
|
||||
|
||||
3
nodejs/npm/linux-x64-musl/README.md
Normal file
3
nodejs/npm/linux-x64-musl/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# `@lancedb/lancedb-linux-x64-musl`
|
||||
|
||||
This is the **x86_64-unknown-linux-musl** binary for `@lancedb/lancedb`
|
||||
13
nodejs/npm/linux-x64-musl/package.json
Normal file
13
nodejs/npm/linux-x64-musl/package.json
Normal file
@@ -0,0 +1,13 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-musl",
|
||||
"version": "0.13.0",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-musl.node",
|
||||
"files": ["lancedb.linux-x64-musl.node"],
|
||||
"license": "Apache 2.0",
|
||||
"engines": {
|
||||
"node": ">= 18"
|
||||
},
|
||||
"libc": ["musl"]
|
||||
}
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-arm64-msvc",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"os": [
|
||||
"win32"
|
||||
],
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-x64-msvc",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"os": ["win32"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.win32-x64-msvc.node",
|
||||
|
||||
10
nodejs/package-lock.json
generated
10
nodejs/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@lancedb/lancedb",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -6052,9 +6052,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/cross-spawn": {
|
||||
"version": "7.0.3",
|
||||
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
|
||||
"integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
|
||||
"version": "7.0.6",
|
||||
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz",
|
||||
"integrity": "sha512-uV2QOWP2nWzsy2aMp8aRibhi9dlzF5Hgh5SHaB9OiTGEyDTiJJyx0uy51QXdyWbtAHNua4XJzUKca3OzKUd3vA==",
|
||||
"devOptional": true,
|
||||
"dependencies": {
|
||||
"path-key": "^3.1.0",
|
||||
|
||||
@@ -10,11 +10,13 @@
|
||||
"vector database",
|
||||
"ann"
|
||||
],
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"main": "dist/index.js",
|
||||
"exports": {
|
||||
".": "./dist/index.js",
|
||||
"./embedding": "./dist/embedding/index.js"
|
||||
"./embedding": "./dist/embedding/index.js",
|
||||
"./embedding/openai": "./dist/embedding/openai.js",
|
||||
"./embedding/transformers": "./dist/embedding/transformers.js"
|
||||
},
|
||||
"types": "dist/index.d.ts",
|
||||
"napi": {
|
||||
@@ -22,10 +24,12 @@
|
||||
"triples": {
|
||||
"defaults": false,
|
||||
"additional": [
|
||||
"aarch64-apple-darwin",
|
||||
"aarch64-unknown-linux-gnu",
|
||||
"x86_64-apple-darwin",
|
||||
"aarch64-apple-darwin",
|
||||
"x86_64-unknown-linux-gnu",
|
||||
"aarch64-unknown-linux-gnu",
|
||||
"x86_64-unknown-linux-musl",
|
||||
"aarch64-unknown-linux-musl",
|
||||
"x86_64-pc-windows-msvc"
|
||||
]
|
||||
}
|
||||
|
||||
@@ -167,6 +167,11 @@ impl VectorQuery {
|
||||
self.inner = self.inner.clone().nprobes(nprobe as usize);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn ef(&mut self, ef: u32) {
|
||||
self.inner = self.inner.clone().ef(ef as usize);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn bypass_vector_index(&mut self) {
|
||||
self.inner = self.inner.clone().bypass_vector_index()
|
||||
|
||||
@@ -12,6 +12,8 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::collections::HashMap;
|
||||
|
||||
use arrow_ipc::writer::FileWriter;
|
||||
use lancedb::ipc::ipc_file_to_batches;
|
||||
use lancedb::table::{
|
||||
@@ -226,6 +228,28 @@ impl Table {
|
||||
self.inner_ref()?.checkout_latest().await.default_error()
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn list_versions(&self) -> napi::Result<Vec<Version>> {
|
||||
self.inner_ref()?
|
||||
.list_versions()
|
||||
.await
|
||||
.map(|versions| {
|
||||
versions
|
||||
.iter()
|
||||
.map(|version| Version {
|
||||
version: version.version as i64,
|
||||
timestamp: version.timestamp.timestamp_micros(),
|
||||
metadata: version
|
||||
.metadata
|
||||
.iter()
|
||||
.map(|(k, v)| (k.clone(), v.clone()))
|
||||
.collect(),
|
||||
})
|
||||
.collect()
|
||||
})
|
||||
.default_error()
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn restore(&self) -> napi::Result<()> {
|
||||
self.inner_ref()?.restore().await.default_error()
|
||||
@@ -466,3 +490,10 @@ impl From<lancedb::index::IndexStatistics> for IndexStatistics {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
pub struct Version {
|
||||
pub version: i64,
|
||||
pub timestamp: i64,
|
||||
pub metadata: HashMap<String, String>,
|
||||
}
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.16.0-beta.1"
|
||||
current_version = "0.16.1-beta.0"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-python"
|
||||
version = "0.16.0-beta.1"
|
||||
version = "0.16.1-beta.0"
|
||||
edition.workspace = true
|
||||
description = "Python bindings for LanceDB"
|
||||
license.workspace = true
|
||||
@@ -15,7 +15,7 @@ crate-type = ["cdylib"]
|
||||
|
||||
[dependencies]
|
||||
arrow = { version = "52.1", features = ["pyarrow"] }
|
||||
lancedb = { path = "../rust/lancedb" }
|
||||
lancedb = { path = "../rust/lancedb", default-features = false }
|
||||
env_logger.workspace = true
|
||||
pyo3 = { version = "0.21", features = ["extension-module", "abi3-py38", "gil-refs"] }
|
||||
# Using this fork for now: https://github.com/awestlake87/pyo3-asyncio/issues/119
|
||||
@@ -33,6 +33,11 @@ pyo3-build-config = { version = "0.20.3", features = [
|
||||
] }
|
||||
|
||||
[features]
|
||||
default = ["remote"]
|
||||
default = ["default-tls", "remote"]
|
||||
fp16kernels = ["lancedb/fp16kernels"]
|
||||
remote = ["lancedb/remote"]
|
||||
|
||||
# TLS
|
||||
default-tls = ["lancedb/default-tls"]
|
||||
native-tls = ["lancedb/native-tls"]
|
||||
rustls-tls = ["lancedb/rustls-tls"]
|
||||
|
||||
@@ -4,7 +4,7 @@ name = "lancedb"
|
||||
dependencies = [
|
||||
"deprecation",
|
||||
"nest-asyncio~=1.0",
|
||||
"pylance==0.19.2",
|
||||
"pylance==0.20.0b2",
|
||||
"tqdm>=4.27.0",
|
||||
"pydantic>=1.10",
|
||||
"packaging",
|
||||
|
||||
@@ -131,6 +131,8 @@ class Query(pydantic.BaseModel):
|
||||
|
||||
fast_search: bool = False
|
||||
|
||||
ef: Optional[int] = None
|
||||
|
||||
|
||||
class LanceQueryBuilder(ABC):
|
||||
"""An abstract query builder. Subclasses are defined for vector search,
|
||||
@@ -257,6 +259,7 @@ class LanceQueryBuilder(ABC):
|
||||
self._with_row_id = False
|
||||
self._vector = None
|
||||
self._text = None
|
||||
self._ef = None
|
||||
|
||||
@deprecation.deprecated(
|
||||
deprecated_in="0.3.1",
|
||||
@@ -367,11 +370,13 @@ class LanceQueryBuilder(ABC):
|
||||
----------
|
||||
limit: int
|
||||
The maximum number of results to return.
|
||||
By default the query is limited to the first 10.
|
||||
Call this method and pass 0, a negative value,
|
||||
or None to remove the limit.
|
||||
*WARNING* if you have a large dataset, removing
|
||||
the limit can potentially result in reading a
|
||||
The default query limit is 10 results.
|
||||
For ANN/KNN queries, you must specify a limit.
|
||||
Entering 0, a negative number, or None will reset
|
||||
the limit to the default value of 10.
|
||||
*WARNING* if you have a large dataset, setting
|
||||
the limit to a large number, e.g. the table size,
|
||||
can potentially result in reading a
|
||||
large amount of data into memory and cause
|
||||
out of memory issues.
|
||||
|
||||
@@ -638,6 +643,28 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
self._nprobes = nprobes
|
||||
return self
|
||||
|
||||
def ef(self, ef: int) -> LanceVectorQueryBuilder:
|
||||
"""Set the number of candidates to consider during search.
|
||||
|
||||
Higher values will yield better recall (more likely to find vectors if
|
||||
they exist) at the expense of latency.
|
||||
|
||||
This only applies to the HNSW-related index.
|
||||
The default value is 1.5 * limit.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ef: int
|
||||
The number of candidates to consider during search.
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceVectorQueryBuilder
|
||||
The LanceQueryBuilder object.
|
||||
"""
|
||||
self._ef = ef
|
||||
return self
|
||||
|
||||
def refine_factor(self, refine_factor: int) -> LanceVectorQueryBuilder:
|
||||
"""Set the refine factor to use, increasing the number of vectors sampled.
|
||||
|
||||
@@ -700,6 +727,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
with_row_id=self._with_row_id,
|
||||
offset=self._offset,
|
||||
fast_search=self._fast_search,
|
||||
ef=self._ef,
|
||||
)
|
||||
result_set = self._table._execute_query(query, batch_size)
|
||||
if self._reranker is not None:
|
||||
@@ -1071,6 +1099,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
self._vector_query.nprobes(self._nprobes)
|
||||
if self._refine_factor:
|
||||
self._vector_query.refine_factor(self._refine_factor)
|
||||
if self._ef:
|
||||
self._vector_query.ef(self._ef)
|
||||
|
||||
with ThreadPoolExecutor() as executor:
|
||||
fts_future = executor.submit(self._fts_query.with_row_id(True).to_arrow)
|
||||
@@ -1197,6 +1227,29 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
self._nprobes = nprobes
|
||||
return self
|
||||
|
||||
def ef(self, ef: int) -> LanceHybridQueryBuilder:
|
||||
"""
|
||||
Set the number of candidates to consider during search.
|
||||
|
||||
Higher values will yield better recall (more likely to find vectors if
|
||||
they exist) at the expense of latency.
|
||||
|
||||
This only applies to the HNSW-related index.
|
||||
The default value is 1.5 * limit.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ef: int
|
||||
The number of candidates to consider during search.
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceHybridQueryBuilder
|
||||
The LanceHybridQueryBuilder object.
|
||||
"""
|
||||
self._ef = ef
|
||||
return self
|
||||
|
||||
def metric(self, metric: Literal["L2", "cosine", "dot"]) -> LanceHybridQueryBuilder:
|
||||
"""Set the distance metric to use.
|
||||
|
||||
@@ -1495,7 +1548,8 @@ class AsyncQuery(AsyncQueryBase):
|
||||
return pa.array(vec)
|
||||
|
||||
def nearest_to(
|
||||
self, query_vector: Optional[Union[VEC, Tuple, List[VEC]]] = None
|
||||
self,
|
||||
query_vector: Union[VEC, Tuple, List[VEC]],
|
||||
) -> AsyncVectorQuery:
|
||||
"""
|
||||
Find the nearest vectors to the given query vector.
|
||||
@@ -1542,6 +1596,9 @@ class AsyncQuery(AsyncQueryBase):
|
||||
will be added to the results. This column will contain the index of the
|
||||
query vector that the result is nearest to.
|
||||
"""
|
||||
if query_vector is None:
|
||||
raise ValueError("query_vector can not be None")
|
||||
|
||||
if (
|
||||
isinstance(query_vector, list)
|
||||
and len(query_vector) > 0
|
||||
@@ -1618,7 +1675,7 @@ class AsyncVectorQuery(AsyncQueryBase):
|
||||
"""
|
||||
Set the number of partitions to search (probe)
|
||||
|
||||
This argument is only used when the vector column has an IVF PQ index.
|
||||
This argument is only used when the vector column has an IVF-based index.
|
||||
If there is no index then this value is ignored.
|
||||
|
||||
The IVF stage of IVF PQ divides the input into partitions (clusters) of
|
||||
@@ -1640,6 +1697,21 @@ class AsyncVectorQuery(AsyncQueryBase):
|
||||
self._inner.nprobes(nprobes)
|
||||
return self
|
||||
|
||||
def ef(self, ef: int) -> AsyncVectorQuery:
|
||||
"""
|
||||
Set the number of candidates to consider during search
|
||||
|
||||
This argument is only used when the vector column has an HNSW index.
|
||||
If there is no index then this value is ignored.
|
||||
|
||||
Increasing this value will increase the recall of your query but will also
|
||||
increase the latency of your query. The default value is 1.5 * limit. This
|
||||
default is good for many cases but the best value to use will depend on your
|
||||
data and the recall that you need to achieve.
|
||||
"""
|
||||
self._inner.ef(ef)
|
||||
return self
|
||||
|
||||
def refine_factor(self, refine_factor: int) -> AsyncVectorQuery:
|
||||
"""
|
||||
A multiplier to control how many additional rows are taken during the refine
|
||||
|
||||
@@ -78,6 +78,10 @@ class RemoteTable(Table):
|
||||
self.schema.metadata
|
||||
)
|
||||
|
||||
def list_versions(self):
|
||||
"""List all versions of the table"""
|
||||
return self._loop.run_until_complete(self._table.list_versions())
|
||||
|
||||
def to_arrow(self) -> pa.Table:
|
||||
"""to_arrow() is not yet supported on LanceDB cloud."""
|
||||
raise NotImplementedError("to_arrow() is not yet supported on LanceDB cloud.")
|
||||
@@ -86,6 +90,12 @@ class RemoteTable(Table):
|
||||
"""to_pandas() is not yet supported on LanceDB cloud."""
|
||||
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
|
||||
|
||||
def checkout(self, version):
|
||||
return self._loop.run_until_complete(self._table.checkout(version))
|
||||
|
||||
def checkout_latest(self):
|
||||
return self._loop.run_until_complete(self._table.checkout_latest())
|
||||
|
||||
def list_indices(self):
|
||||
"""List all the indices on the table"""
|
||||
return self._loop.run_until_complete(self._table.list_indices())
|
||||
|
||||
@@ -41,7 +41,7 @@ class CohereReranker(Reranker):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = "rerank-english-v2.0",
|
||||
model_name: str = "rerank-english-v3.0",
|
||||
column: str = "text",
|
||||
top_n: Union[int, None] = None,
|
||||
return_score="relevance",
|
||||
|
||||
@@ -8,7 +8,7 @@ import inspect
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from datetime import timedelta
|
||||
from datetime import datetime, timedelta
|
||||
from functools import cached_property
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
@@ -1012,6 +1012,39 @@ class Table(ABC):
|
||||
The names of the columns to drop.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def checkout(self):
|
||||
"""
|
||||
Checks out a specific version of the Table
|
||||
|
||||
Any read operation on the table will now access the data at the checked out
|
||||
version. As a consequence, calling this method will disable any read consistency
|
||||
interval that was previously set.
|
||||
|
||||
This is a read-only operation that turns the table into a sort of "view"
|
||||
or "detached head". Other table instances will not be affected. To make the
|
||||
change permanent you can use the `[Self::restore]` method.
|
||||
|
||||
Any operation that modifies the table will fail while the table is in a checked
|
||||
out state.
|
||||
|
||||
To return the table to a normal state use `[Self::checkout_latest]`
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def checkout_latest(self):
|
||||
"""
|
||||
Ensures the table is pointing at the latest version
|
||||
|
||||
This can be used to manually update a table when the read_consistency_interval
|
||||
is None
|
||||
It can also be used to undo a `[Self::checkout]` operation
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def list_versions(self):
|
||||
"""List all versions of the table"""
|
||||
|
||||
@cached_property
|
||||
def _dataset_uri(self) -> str:
|
||||
return _table_uri(self._conn.uri, self.name)
|
||||
@@ -1567,7 +1600,7 @@ class LanceTable(Table):
|
||||
"append" and "overwrite".
|
||||
on_bad_vectors: str, default "error"
|
||||
What to do if any of the vectors are not the same size or contains NaNs.
|
||||
One of "error", "drop", "fill".
|
||||
One of "error", "drop", "fill", "null".
|
||||
fill_value: float, default 0.
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
|
||||
@@ -1851,7 +1884,7 @@ class LanceTable(Table):
|
||||
data but will validate against any schema that's specified.
|
||||
on_bad_vectors: str, default "error"
|
||||
What to do if any of the vectors are not the same size or contains NaNs.
|
||||
One of "error", "drop", "fill".
|
||||
One of "error", "drop", "fill", "null".
|
||||
fill_value: float, default 0.
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
embedding_functions: list of EmbeddingFunctionModel, default None
|
||||
@@ -1959,6 +1992,7 @@ class LanceTable(Table):
|
||||
"metric": query.metric,
|
||||
"nprobes": query.nprobes,
|
||||
"refine_factor": query.refine_factor,
|
||||
"ef": query.ef,
|
||||
}
|
||||
return ds.scanner(
|
||||
columns=query.columns,
|
||||
@@ -2151,13 +2185,11 @@ def _sanitize_schema(
|
||||
vector column to fixed_size_list(float32) if necessary.
|
||||
on_bad_vectors: str, default "error"
|
||||
What to do if any of the vectors are not the same size or contains NaNs.
|
||||
One of "error", "drop", "fill".
|
||||
One of "error", "drop", "fill", "null".
|
||||
fill_value: float, default 0.
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
"""
|
||||
if schema is not None:
|
||||
if data.schema == schema:
|
||||
return data
|
||||
# cast the columns to the expected types
|
||||
data = data.combine_chunks()
|
||||
for field in schema:
|
||||
@@ -2177,6 +2209,7 @@ def _sanitize_schema(
|
||||
vector_column_name=field.name,
|
||||
on_bad_vectors=on_bad_vectors,
|
||||
fill_value=fill_value,
|
||||
table_schema=schema,
|
||||
)
|
||||
return pa.Table.from_arrays(
|
||||
[data[name] for name in schema.names], schema=schema
|
||||
@@ -2197,6 +2230,7 @@ def _sanitize_schema(
|
||||
def _sanitize_vector_column(
|
||||
data: pa.Table,
|
||||
vector_column_name: str,
|
||||
table_schema: Optional[pa.Schema] = None,
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
) -> pa.Table:
|
||||
@@ -2211,12 +2245,16 @@ def _sanitize_vector_column(
|
||||
The name of the vector column.
|
||||
on_bad_vectors: str, default "error"
|
||||
What to do if any of the vectors are not the same size or contains NaNs.
|
||||
One of "error", "drop", "fill".
|
||||
One of "error", "drop", "fill", "null".
|
||||
fill_value: float, default 0.0
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
"""
|
||||
# ChunkedArray is annoying to work with, so we combine chunks here
|
||||
vec_arr = data[vector_column_name].combine_chunks()
|
||||
if table_schema is not None:
|
||||
field = table_schema.field(vector_column_name)
|
||||
else:
|
||||
field = None
|
||||
typ = data[vector_column_name].type
|
||||
if pa.types.is_list(typ) or pa.types.is_large_list(typ):
|
||||
# if it's a variable size list array,
|
||||
@@ -2243,7 +2281,11 @@ def _sanitize_vector_column(
|
||||
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
|
||||
)
|
||||
else:
|
||||
if pc.any(pc.is_null(vec_arr.values, nan_is_null=True)).as_py():
|
||||
if (
|
||||
field is not None
|
||||
and not field.nullable
|
||||
and pc.any(pc.is_null(vec_arr.values)).as_py()
|
||||
) or (pc.any(pc.is_nan(vec_arr.values)).as_py()):
|
||||
data = _sanitize_nans(
|
||||
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
|
||||
)
|
||||
@@ -2287,6 +2329,12 @@ def _sanitize_jagged(data, fill_value, on_bad_vectors, vec_arr, vector_column_na
|
||||
)
|
||||
elif on_bad_vectors == "drop":
|
||||
data = data.filter(correct_ndims)
|
||||
elif on_bad_vectors == "null":
|
||||
data = data.set_column(
|
||||
data.column_names.index(vector_column_name),
|
||||
vector_column_name,
|
||||
pc.if_else(correct_ndims, vec_arr, pa.scalar(None)),
|
||||
)
|
||||
return data
|
||||
|
||||
|
||||
@@ -2303,7 +2351,8 @@ def _sanitize_nans(
|
||||
raise ValueError(
|
||||
f"Vector column {vector_column_name} has NaNs. "
|
||||
"Set on_bad_vectors='drop' to remove them, or "
|
||||
"set on_bad_vectors='fill' and fill_value=<value> to replace them."
|
||||
"set on_bad_vectors='fill' and fill_value=<value> to replace them. "
|
||||
"Or set on_bad_vectors='null' to replace them with null."
|
||||
)
|
||||
elif on_bad_vectors == "fill":
|
||||
if fill_value is None:
|
||||
@@ -2323,6 +2372,17 @@ def _sanitize_nans(
|
||||
np_arr = np_arr.reshape(-1, vec_arr.type.list_size)
|
||||
not_nulls = np.any(np_arr, axis=1)
|
||||
data = data.filter(~not_nulls)
|
||||
elif on_bad_vectors == "null":
|
||||
# null = pa.nulls(len(vec_arr)).cast(vec_arr.type)
|
||||
# values = pc.if_else(pc.is_nan(vec_arr.values), fill_value, vec_arr.values)
|
||||
np_arr = np.isnan(vec_arr.values.to_numpy(zero_copy_only=False))
|
||||
np_arr = np_arr.reshape(-1, vec_arr.type.list_size)
|
||||
no_nans = np.any(np_arr, axis=1)
|
||||
data = data.set_column(
|
||||
data.column_names.index(vector_column_name),
|
||||
vector_column_name,
|
||||
pc.if_else(no_nans, vec_arr, pa.scalar(None)),
|
||||
)
|
||||
return data
|
||||
|
||||
|
||||
@@ -2588,7 +2648,7 @@ class AsyncTable:
|
||||
"append" and "overwrite".
|
||||
on_bad_vectors: str, default "error"
|
||||
What to do if any of the vectors are not the same size or contains NaNs.
|
||||
One of "error", "drop", "fill".
|
||||
One of "error", "drop", "fill", "null".
|
||||
fill_value: float, default 0.
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
|
||||
@@ -2671,7 +2731,7 @@ class AsyncTable:
|
||||
|
||||
def vector_search(
|
||||
self,
|
||||
query_vector: Optional[Union[VEC, Tuple]] = None,
|
||||
query_vector: Union[VEC, Tuple],
|
||||
) -> AsyncVectorQuery:
|
||||
"""
|
||||
Search the table with a given query vector.
|
||||
@@ -2710,6 +2770,8 @@ class AsyncTable:
|
||||
async_query = async_query.refine_factor(query.refine_factor)
|
||||
if query.vector_column:
|
||||
async_query = async_query.column(query.vector_column)
|
||||
if query.ef:
|
||||
async_query = async_query.ef(query.ef)
|
||||
|
||||
if not query.prefilter:
|
||||
async_query = async_query.postfilter()
|
||||
@@ -2873,6 +2935,19 @@ class AsyncTable:
|
||||
"""
|
||||
return await self._inner.version()
|
||||
|
||||
async def list_versions(self):
|
||||
"""
|
||||
List all versions of the table
|
||||
"""
|
||||
versions = await self._inner.list_versions()
|
||||
for v in versions:
|
||||
ts_nanos = v["timestamp"]
|
||||
v["timestamp"] = datetime.fromtimestamp(ts_nanos // 1e9) + timedelta(
|
||||
microseconds=(ts_nanos % 1e9) // 1e3
|
||||
)
|
||||
|
||||
return versions
|
||||
|
||||
async def checkout(self, version):
|
||||
"""
|
||||
Checks out a specific version of the Table
|
||||
|
||||
@@ -81,14 +81,15 @@ def test_embedding_function(tmp_path):
|
||||
|
||||
|
||||
def test_embedding_with_bad_results(tmp_path):
|
||||
@register("mock-embedding")
|
||||
class MockEmbeddingFunction(TextEmbeddingFunction):
|
||||
@register("null-embedding")
|
||||
class NullEmbeddingFunction(TextEmbeddingFunction):
|
||||
def ndims(self):
|
||||
return 128
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
) -> list[Union[np.array, None]]:
|
||||
# Return None, which is bad if field is non-nullable
|
||||
return [
|
||||
None if i % 2 == 0 else np.random.randn(self.ndims())
|
||||
for i in range(len(texts))
|
||||
@@ -96,13 +97,17 @@ def test_embedding_with_bad_results(tmp_path):
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
registry = EmbeddingFunctionRegistry.get_instance()
|
||||
model = registry.get("mock-embedding").create()
|
||||
model = registry.get("null-embedding").create()
|
||||
|
||||
class Schema(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
table = db.create_table("test", schema=Schema, mode="overwrite")
|
||||
with pytest.raises(ValueError):
|
||||
# Default on_bad_vectors is "error"
|
||||
table.add([{"text": "hello world"}])
|
||||
|
||||
table.add(
|
||||
[{"text": "hello world"}, {"text": "bar"}],
|
||||
on_bad_vectors="drop",
|
||||
@@ -112,13 +117,33 @@ def test_embedding_with_bad_results(tmp_path):
|
||||
assert len(table) == 1
|
||||
assert df.iloc[0]["text"] == "bar"
|
||||
|
||||
# table = db.create_table("test2", schema=Schema, mode="overwrite")
|
||||
# table.add(
|
||||
# [{"text": "hello world"}, {"text": "bar"}],
|
||||
# )
|
||||
# assert len(table) == 2
|
||||
# tbl = table.to_arrow()
|
||||
# assert tbl["vector"].null_count == 1
|
||||
@register("nan-embedding")
|
||||
class NanEmbeddingFunction(TextEmbeddingFunction):
|
||||
def ndims(self):
|
||||
return 128
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
) -> list[Union[np.array, None]]:
|
||||
# Return NaN to produce bad vectors
|
||||
return [
|
||||
[np.NAN] * 128 if i % 2 == 0 else np.random.randn(self.ndims())
|
||||
for i in range(len(texts))
|
||||
]
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
registry = EmbeddingFunctionRegistry.get_instance()
|
||||
model = registry.get("nan-embedding").create()
|
||||
|
||||
table = db.create_table("test2", schema=Schema, mode="overwrite")
|
||||
table.alter_columns(dict(path="vector", nullable=True))
|
||||
table.add(
|
||||
[{"text": "hello world"}, {"text": "bar"}],
|
||||
on_bad_vectors="null",
|
||||
)
|
||||
assert len(table) == 2
|
||||
tbl = table.to_arrow()
|
||||
assert tbl["vector"].null_count == 1
|
||||
|
||||
|
||||
def test_with_existing_vectors(tmp_path):
|
||||
|
||||
@@ -1,21 +1,9 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
import unittest.mock as mock
|
||||
from datetime import timedelta
|
||||
from typing import Optional
|
||||
|
||||
import lance
|
||||
import lancedb
|
||||
from lancedb.index import IvfPq
|
||||
import numpy as np
|
||||
@@ -23,41 +11,15 @@ import pandas.testing as tm
|
||||
import pyarrow as pa
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
from lancedb.db import LanceDBConnection
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.query import AsyncQueryBase, LanceVectorQueryBuilder, Query
|
||||
from lancedb.table import AsyncTable, LanceTable
|
||||
|
||||
|
||||
class MockTable:
|
||||
def __init__(self, tmp_path):
|
||||
self.uri = tmp_path
|
||||
self._conn = LanceDBConnection(self.uri)
|
||||
|
||||
def to_lance(self):
|
||||
return lance.dataset(self.uri)
|
||||
|
||||
def _execute_query(self, query, batch_size: Optional[int] = None):
|
||||
ds = self.to_lance()
|
||||
return ds.scanner(
|
||||
columns=query.columns,
|
||||
filter=query.filter,
|
||||
prefilter=query.prefilter,
|
||||
nearest={
|
||||
"column": query.vector_column,
|
||||
"q": query.vector,
|
||||
"k": query.k,
|
||||
"metric": query.metric,
|
||||
"nprobes": query.nprobes,
|
||||
"refine_factor": query.refine_factor,
|
||||
},
|
||||
batch_size=batch_size,
|
||||
offset=query.offset,
|
||||
).to_reader()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def table(tmp_path) -> MockTable:
|
||||
@pytest.fixture(scope="module")
|
||||
def table(tmpdir_factory) -> lancedb.table.Table:
|
||||
tmp_path = str(tmpdir_factory.mktemp("data"))
|
||||
db = lancedb.connect(tmp_path)
|
||||
df = pa.table(
|
||||
{
|
||||
"vector": pa.array(
|
||||
@@ -68,8 +30,7 @@ def table(tmp_path) -> MockTable:
|
||||
"float_field": pa.array([1.0, 2.0]),
|
||||
}
|
||||
)
|
||||
lance.write_dataset(df, tmp_path)
|
||||
return MockTable(tmp_path)
|
||||
return db.create_table("test", df)
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@@ -126,6 +87,12 @@ def test_query_builder(table):
|
||||
assert all(np.array(rs[0]["vector"]) == [1, 2])
|
||||
|
||||
|
||||
def test_with_row_id(table: lancedb.table.Table):
|
||||
rs = table.search().with_row_id(True).to_arrow()
|
||||
assert "_rowid" in rs.column_names
|
||||
assert rs["_rowid"].to_pylist() == [0, 1]
|
||||
|
||||
|
||||
def test_vector_query_with_no_limit(table):
|
||||
with pytest.raises(ValueError):
|
||||
LanceVectorQueryBuilder(table, [0, 0], "vector").limit(0).select(
|
||||
@@ -365,6 +332,12 @@ async def test_query_to_pandas_async(table_async: AsyncTable):
|
||||
assert df.shape == (0, 4)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_none_query(table_async: AsyncTable):
|
||||
with pytest.raises(ValueError):
|
||||
await table_async.query().nearest_to(None).to_arrow()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_fast_search_async(tmp_path):
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
|
||||
@@ -103,6 +103,47 @@ async def test_async_remote_db():
|
||||
assert table_names == []
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_checkout():
|
||||
def handler(request):
|
||||
if request.path == "/v1/table/test/describe/":
|
||||
request.send_response(200)
|
||||
request.send_header("Content-Type", "application/json")
|
||||
request.end_headers()
|
||||
response = json.dumps({"version": 42, "schema": {"fields": []}})
|
||||
request.wfile.write(response.encode())
|
||||
return
|
||||
|
||||
content_len = int(request.headers.get("Content-Length"))
|
||||
body = request.rfile.read(content_len)
|
||||
body = json.loads(body)
|
||||
|
||||
print("body is", body)
|
||||
|
||||
count = 0
|
||||
if body["version"] == 1:
|
||||
count = 100
|
||||
elif body["version"] == 2:
|
||||
count = 200
|
||||
elif body["version"] is None:
|
||||
count = 300
|
||||
|
||||
request.send_response(200)
|
||||
request.send_header("Content-Type", "application/json")
|
||||
request.end_headers()
|
||||
request.wfile.write(json.dumps(count).encode())
|
||||
|
||||
async with mock_lancedb_connection_async(handler) as db:
|
||||
table = await db.open_table("test")
|
||||
assert await table.count_rows() == 300
|
||||
await table.checkout(1)
|
||||
assert await table.count_rows() == 100
|
||||
await table.checkout(2)
|
||||
assert await table.count_rows() == 200
|
||||
await table.checkout_latest()
|
||||
assert await table.count_rows() == 300
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_http_error():
|
||||
request_id_holder = {"request_id": None}
|
||||
@@ -185,8 +226,10 @@ def test_query_sync_minimal():
|
||||
"k": 10,
|
||||
"prefilter": False,
|
||||
"refine_factor": None,
|
||||
"ef": None,
|
||||
"vector": [1.0, 2.0, 3.0],
|
||||
"nprobes": 20,
|
||||
"version": None,
|
||||
}
|
||||
|
||||
return pa.table({"id": [1, 2, 3]})
|
||||
@@ -204,6 +247,7 @@ def test_query_sync_empty_query():
|
||||
"filter": "true",
|
||||
"vector": [],
|
||||
"columns": ["id"],
|
||||
"version": None,
|
||||
}
|
||||
|
||||
return pa.table({"id": [1, 2, 3]})
|
||||
@@ -223,11 +267,13 @@ def test_query_sync_maximal():
|
||||
"refine_factor": 10,
|
||||
"vector": [1.0, 2.0, 3.0],
|
||||
"nprobes": 5,
|
||||
"ef": None,
|
||||
"filter": "id > 0",
|
||||
"columns": ["id", "name"],
|
||||
"vector_column": "vector2",
|
||||
"fast_search": True,
|
||||
"with_row_id": True,
|
||||
"version": None,
|
||||
}
|
||||
|
||||
return pa.table({"id": [1, 2, 3], "name": ["a", "b", "c"]})
|
||||
@@ -266,6 +312,7 @@ def test_query_sync_fts():
|
||||
},
|
||||
"k": 10,
|
||||
"vector": [],
|
||||
"version": None,
|
||||
}
|
||||
|
||||
return pa.table({"id": [1, 2, 3]})
|
||||
@@ -282,6 +329,7 @@ def test_query_sync_fts():
|
||||
"k": 42,
|
||||
"vector": [],
|
||||
"with_row_id": True,
|
||||
"version": None,
|
||||
}
|
||||
|
||||
return pa.table({"id": [1, 2, 3]})
|
||||
@@ -307,6 +355,7 @@ def test_query_sync_hybrid():
|
||||
"k": 42,
|
||||
"vector": [],
|
||||
"with_row_id": True,
|
||||
"version": None,
|
||||
}
|
||||
return pa.table({"_rowid": [1, 2, 3], "_score": [0.1, 0.2, 0.3]})
|
||||
else:
|
||||
@@ -318,7 +367,9 @@ def test_query_sync_hybrid():
|
||||
"refine_factor": None,
|
||||
"vector": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
"nprobes": 20,
|
||||
"ef": None,
|
||||
"with_row_id": True,
|
||||
"version": None,
|
||||
}
|
||||
return pa.table({"_rowid": [1, 2, 3], "_distance": [0.1, 0.2, 0.3]})
|
||||
|
||||
|
||||
@@ -240,6 +240,121 @@ def test_add(db):
|
||||
_add(table, schema)
|
||||
|
||||
|
||||
def test_add_subschema(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
||||
pa.field("item", pa.string(), nullable=True),
|
||||
pa.field("price", pa.float64(), nullable=False),
|
||||
]
|
||||
)
|
||||
table = db.create_table("test", schema=schema)
|
||||
|
||||
data = {"price": 10.0, "item": "foo"}
|
||||
table.add([data])
|
||||
data = {"price": 2.0, "vector": [3.1, 4.1]}
|
||||
table.add([data])
|
||||
data = {"price": 3.0, "vector": [5.9, 26.5], "item": "bar"}
|
||||
table.add([data])
|
||||
|
||||
expected = pa.table(
|
||||
{
|
||||
"vector": [None, [3.1, 4.1], [5.9, 26.5]],
|
||||
"item": ["foo", None, "bar"],
|
||||
"price": [10.0, 2.0, 3.0],
|
||||
},
|
||||
schema=schema,
|
||||
)
|
||||
assert table.to_arrow() == expected
|
||||
|
||||
data = {"item": "foo"}
|
||||
# We can't omit a column if it's not nullable
|
||||
with pytest.raises(OSError, match="Invalid user input"):
|
||||
table.add([data])
|
||||
|
||||
# We can add it if we make the column nullable
|
||||
table.alter_columns(dict(path="price", nullable=True))
|
||||
table.add([data])
|
||||
|
||||
expected_schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
||||
pa.field("item", pa.string(), nullable=True),
|
||||
pa.field("price", pa.float64(), nullable=True),
|
||||
]
|
||||
)
|
||||
expected = pa.table(
|
||||
{
|
||||
"vector": [None, [3.1, 4.1], [5.9, 26.5], None],
|
||||
"item": ["foo", None, "bar", "foo"],
|
||||
"price": [10.0, 2.0, 3.0, None],
|
||||
},
|
||||
schema=expected_schema,
|
||||
)
|
||||
assert table.to_arrow() == expected
|
||||
|
||||
|
||||
def test_add_nullability(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), 2), nullable=False),
|
||||
pa.field("id", pa.string(), nullable=False),
|
||||
]
|
||||
)
|
||||
table = db.create_table("test", schema=schema)
|
||||
|
||||
nullable_schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
||||
pa.field("id", pa.string(), nullable=True),
|
||||
]
|
||||
)
|
||||
data = pa.table(
|
||||
{
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
"id": ["foo", "bar"],
|
||||
},
|
||||
schema=nullable_schema,
|
||||
)
|
||||
# We can add nullable schema if it doesn't actually contain nulls
|
||||
table.add(data)
|
||||
|
||||
expected = data.cast(schema)
|
||||
assert table.to_arrow() == expected
|
||||
|
||||
data = pa.table(
|
||||
{
|
||||
"vector": [None],
|
||||
"id": ["baz"],
|
||||
},
|
||||
schema=nullable_schema,
|
||||
)
|
||||
# We can't add nullable schema if it contains nulls
|
||||
with pytest.raises(Exception, match="Vector column vector has NaNs"):
|
||||
table.add(data)
|
||||
|
||||
# But we can make it nullable
|
||||
table.alter_columns(dict(path="vector", nullable=True))
|
||||
table.add(data)
|
||||
|
||||
expected_schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
||||
pa.field("id", pa.string(), nullable=False),
|
||||
]
|
||||
)
|
||||
expected = pa.table(
|
||||
{
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5], None],
|
||||
"id": ["foo", "bar", "baz"],
|
||||
},
|
||||
schema=expected_schema,
|
||||
)
|
||||
assert table.to_arrow() == expected
|
||||
|
||||
|
||||
def test_add_pydantic_model(db):
|
||||
# https://github.com/lancedb/lancedb/issues/562
|
||||
|
||||
|
||||
@@ -195,6 +195,10 @@ impl VectorQuery {
|
||||
self.inner = self.inner.clone().nprobes(nprobe as usize);
|
||||
}
|
||||
|
||||
pub fn ef(&mut self, ef: u32) {
|
||||
self.inner = self.inner.clone().ef(ef as usize);
|
||||
}
|
||||
|
||||
pub fn bypass_vector_index(&mut self) {
|
||||
self.inner = self.inner.clone().bypass_vector_index()
|
||||
}
|
||||
|
||||
@@ -8,7 +8,7 @@ use lancedb::table::{
|
||||
use pyo3::{
|
||||
exceptions::{PyRuntimeError, PyValueError},
|
||||
pyclass, pymethods,
|
||||
types::{PyDict, PyDictMethods, PyString},
|
||||
types::{IntoPyDict, PyDict, PyDictMethods, PyString},
|
||||
Bound, FromPyObject, PyAny, PyRef, PyResult, Python, ToPyObject,
|
||||
};
|
||||
use pyo3_asyncio_0_21::tokio::future_into_py;
|
||||
@@ -246,6 +246,33 @@ impl Table {
|
||||
)
|
||||
}
|
||||
|
||||
pub fn list_versions(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
||||
let inner = self_.inner_ref()?.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
let versions = inner.list_versions().await.infer_error()?;
|
||||
let versions_as_dict = Python::with_gil(|py| {
|
||||
versions
|
||||
.iter()
|
||||
.map(|v| {
|
||||
let dict = PyDict::new_bound(py);
|
||||
dict.set_item("version", v.version).unwrap();
|
||||
dict.set_item(
|
||||
"timestamp",
|
||||
v.timestamp.timestamp_nanos_opt().unwrap_or_default(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let tup: Vec<(&String, &String)> = v.metadata.iter().collect();
|
||||
dict.set_item("metadata", tup.into_py_dict(py)).unwrap();
|
||||
dict.to_object(py)
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
});
|
||||
|
||||
Ok(versions_as_dict)
|
||||
})
|
||||
}
|
||||
|
||||
pub fn checkout(self_: PyRef<'_, Self>, version: u64) -> PyResult<Bound<'_, PyAny>> {
|
||||
let inner = self_.inner_ref()?.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-node"
|
||||
version = "0.13.0-beta.1"
|
||||
version = "0.13.0"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
license.workspace = true
|
||||
edition.workspace = true
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb"
|
||||
version = "0.13.0-beta.1"
|
||||
version = "0.13.0"
|
||||
edition.workspace = true
|
||||
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
||||
license.workspace = true
|
||||
@@ -46,10 +46,18 @@ serde = { version = "^1" }
|
||||
serde_json = { version = "1" }
|
||||
async-openai = { version = "0.20.0", optional = true }
|
||||
serde_with = { version = "3.8.1" }
|
||||
aws-sdk-bedrockruntime = { version = "1.27.0", optional = true }
|
||||
# For remote feature
|
||||
reqwest = { version = "0.12.0", features = ["gzip", "json", "stream"], optional = true }
|
||||
rand = { version = "0.8.3", features = ["small_rng"], optional = true}
|
||||
http = { version = "1", optional = true } # Matching what is in reqwest
|
||||
reqwest = { version = "0.12.0", default-features = false, features = [
|
||||
"charset",
|
||||
"gzip",
|
||||
"http2",
|
||||
"json",
|
||||
"macos-system-configuration",
|
||||
"stream",
|
||||
], optional = true }
|
||||
rand = { version = "0.8.3", features = ["small_rng"], optional = true }
|
||||
http = { version = "1", optional = true } # Matching what is in reqwest
|
||||
uuid = { version = "1.7.0", features = ["v4"], optional = true }
|
||||
polars-arrow = { version = ">=0.37,<0.40.0", optional = true }
|
||||
polars = { version = ">=0.37,<0.40.0", optional = true }
|
||||
@@ -72,11 +80,13 @@ aws-config = { version = "1.0" }
|
||||
aws-smithy-runtime = { version = "1.3" }
|
||||
http-body = "1" # Matching reqwest
|
||||
|
||||
|
||||
[features]
|
||||
default = []
|
||||
default = ["default-tls"]
|
||||
remote = ["dep:reqwest", "dep:http", "dep:rand", "dep:uuid"]
|
||||
fp16kernels = ["lance-linalg/fp16kernels"]
|
||||
s3-test = []
|
||||
bedrock = ["dep:aws-sdk-bedrockruntime"]
|
||||
openai = ["dep:async-openai", "dep:reqwest"]
|
||||
polars = ["dep:polars-arrow", "dep:polars"]
|
||||
sentence-transformers = [
|
||||
@@ -87,6 +97,11 @@ sentence-transformers = [
|
||||
"dep:tokenizers"
|
||||
]
|
||||
|
||||
# TLS
|
||||
default-tls = ["reqwest?/default-tls"]
|
||||
native-tls = ["reqwest?/native-tls"]
|
||||
rustls-tls = ["reqwest?/rustls-tls"]
|
||||
|
||||
[[example]]
|
||||
name = "openai"
|
||||
required-features = ["openai"]
|
||||
@@ -94,3 +109,7 @@ required-features = ["openai"]
|
||||
[[example]]
|
||||
name = "sentence_transformers"
|
||||
required-features = ["sentence-transformers"]
|
||||
|
||||
[[example]]
|
||||
name = "bedrock"
|
||||
required-features = ["bedrock"]
|
||||
|
||||
89
rust/lancedb/examples/bedrock.rs
Normal file
89
rust/lancedb/examples/bedrock.rs
Normal file
@@ -0,0 +1,89 @@
|
||||
use std::{iter::once, sync::Arc};
|
||||
|
||||
use arrow_array::{Float64Array, Int32Array, RecordBatch, RecordBatchIterator, StringArray};
|
||||
use arrow_schema::{DataType, Field, Schema};
|
||||
use aws_config::Region;
|
||||
use aws_sdk_bedrockruntime::Client;
|
||||
use futures::StreamExt;
|
||||
use lancedb::{
|
||||
arrow::IntoArrow,
|
||||
connect,
|
||||
embeddings::{bedrock::BedrockEmbeddingFunction, EmbeddingDefinition, EmbeddingFunction},
|
||||
query::{ExecutableQuery, QueryBase},
|
||||
Result,
|
||||
};
|
||||
|
||||
#[tokio::main]
|
||||
async fn main() -> Result<()> {
|
||||
let tempdir = tempfile::tempdir().unwrap();
|
||||
let tempdir = tempdir.path().to_str().unwrap();
|
||||
|
||||
// create Bedrock embedding function
|
||||
let region: String = "us-east-1".to_string();
|
||||
let config = aws_config::defaults(aws_config::BehaviorVersion::latest())
|
||||
.region(Region::new(region))
|
||||
.load()
|
||||
.await;
|
||||
|
||||
let embedding = Arc::new(BedrockEmbeddingFunction::new(
|
||||
Client::new(&config), // AWS Region
|
||||
));
|
||||
|
||||
let db = connect(tempdir).execute().await?;
|
||||
db.embedding_registry()
|
||||
.register("bedrock", embedding.clone())?;
|
||||
|
||||
let table = db
|
||||
.create_table("vectors", make_data())
|
||||
.add_embedding(EmbeddingDefinition::new(
|
||||
"text",
|
||||
"bedrock",
|
||||
Some("embeddings"),
|
||||
))?
|
||||
.execute()
|
||||
.await?;
|
||||
|
||||
// execute vector search
|
||||
let query = Arc::new(StringArray::from_iter_values(once("something warm")));
|
||||
let query_vector = embedding.compute_query_embeddings(query)?;
|
||||
let mut results = table
|
||||
.vector_search(query_vector)?
|
||||
.limit(1)
|
||||
.execute()
|
||||
.await?;
|
||||
|
||||
let rb = results.next().await.unwrap()?;
|
||||
let out = rb
|
||||
.column_by_name("text")
|
||||
.unwrap()
|
||||
.as_any()
|
||||
.downcast_ref::<StringArray>()
|
||||
.unwrap();
|
||||
let text = out.iter().next().unwrap().unwrap();
|
||||
println!("Closest match: {}", text);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn make_data() -> impl IntoArrow {
|
||||
let schema = Schema::new(vec![
|
||||
Field::new("id", DataType::Int32, true),
|
||||
Field::new("text", DataType::Utf8, false),
|
||||
Field::new("price", DataType::Float64, false),
|
||||
]);
|
||||
|
||||
let id = Int32Array::from(vec![1, 2, 3, 4]);
|
||||
let text = StringArray::from_iter_values(vec![
|
||||
"Black T-Shirt",
|
||||
"Leather Jacket",
|
||||
"Winter Parka",
|
||||
"Hooded Sweatshirt",
|
||||
]);
|
||||
let price = Float64Array::from(vec![10.0, 50.0, 100.0, 30.0]);
|
||||
let schema = Arc::new(schema);
|
||||
let rb = RecordBatch::try_new(
|
||||
schema.clone(),
|
||||
vec![Arc::new(id), Arc::new(text), Arc::new(price)],
|
||||
)
|
||||
.unwrap();
|
||||
Box::new(RecordBatchIterator::new(vec![Ok(rb)], schema))
|
||||
}
|
||||
@@ -17,6 +17,9 @@ pub mod openai;
|
||||
#[cfg(feature = "sentence-transformers")]
|
||||
pub mod sentence_transformers;
|
||||
|
||||
#[cfg(feature = "bedrock")]
|
||||
pub mod bedrock;
|
||||
|
||||
use lance::arrow::RecordBatchExt;
|
||||
use std::{
|
||||
borrow::Cow,
|
||||
|
||||
210
rust/lancedb/src/embeddings/bedrock.rs
Normal file
210
rust/lancedb/src/embeddings/bedrock.rs
Normal file
@@ -0,0 +1,210 @@
|
||||
use aws_sdk_bedrockruntime::Client as BedrockClient;
|
||||
use std::{borrow::Cow, fmt::Formatter, str::FromStr, sync::Arc};
|
||||
|
||||
use arrow::array::{AsArray, Float32Builder};
|
||||
use arrow_array::{Array, ArrayRef, FixedSizeListArray, Float32Array};
|
||||
use arrow_data::ArrayData;
|
||||
use arrow_schema::DataType;
|
||||
use serde_json::{json, Value};
|
||||
|
||||
use super::EmbeddingFunction;
|
||||
use crate::{Error, Result};
|
||||
|
||||
use tokio::runtime::Handle;
|
||||
use tokio::task::block_in_place;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub enum BedrockEmbeddingModel {
|
||||
TitanEmbedding,
|
||||
CohereLarge,
|
||||
}
|
||||
|
||||
impl BedrockEmbeddingModel {
|
||||
fn ndims(&self) -> usize {
|
||||
match self {
|
||||
Self::TitanEmbedding => 1536,
|
||||
Self::CohereLarge => 1024,
|
||||
}
|
||||
}
|
||||
|
||||
fn model_id(&self) -> &str {
|
||||
match self {
|
||||
Self::TitanEmbedding => "amazon.titan-embed-text-v1",
|
||||
Self::CohereLarge => "cohere.embed-english-v3",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl FromStr for BedrockEmbeddingModel {
|
||||
type Err = Error;
|
||||
|
||||
fn from_str(s: &str) -> std::result::Result<Self, Self::Err> {
|
||||
match s {
|
||||
"titan-embed-text-v1" => Ok(Self::TitanEmbedding),
|
||||
"cohere-embed-english-v3" => Ok(Self::CohereLarge),
|
||||
_ => Err(Error::InvalidInput {
|
||||
message: "Invalid model. Available models are: 'titan-embed-text-v1', 'cohere-embed-english-v3'".to_string()
|
||||
}),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct BedrockEmbeddingFunction {
|
||||
model: BedrockEmbeddingModel,
|
||||
client: BedrockClient,
|
||||
}
|
||||
|
||||
impl BedrockEmbeddingFunction {
|
||||
pub fn new(client: BedrockClient) -> Self {
|
||||
Self {
|
||||
model: BedrockEmbeddingModel::TitanEmbedding,
|
||||
client,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn with_model(client: BedrockClient, model: BedrockEmbeddingModel) -> Self {
|
||||
Self { model, client }
|
||||
}
|
||||
}
|
||||
|
||||
impl EmbeddingFunction for BedrockEmbeddingFunction {
|
||||
fn name(&self) -> &str {
|
||||
"bedrock"
|
||||
}
|
||||
|
||||
fn source_type(&self) -> Result<Cow<DataType>> {
|
||||
Ok(Cow::Owned(DataType::Utf8))
|
||||
}
|
||||
|
||||
fn dest_type(&self) -> Result<Cow<DataType>> {
|
||||
let n_dims = self.model.ndims();
|
||||
Ok(Cow::Owned(DataType::new_fixed_size_list(
|
||||
DataType::Float32,
|
||||
n_dims as i32,
|
||||
false,
|
||||
)))
|
||||
}
|
||||
|
||||
fn compute_source_embeddings(&self, source: ArrayRef) -> Result<ArrayRef> {
|
||||
let len = source.len();
|
||||
let n_dims = self.model.ndims();
|
||||
let inner = self.compute_inner(source)?;
|
||||
|
||||
let fsl = DataType::new_fixed_size_list(DataType::Float32, n_dims as i32, false);
|
||||
|
||||
let array_data = ArrayData::builder(fsl)
|
||||
.len(len)
|
||||
.add_child_data(inner.into_data())
|
||||
.build()?;
|
||||
|
||||
Ok(Arc::new(FixedSizeListArray::from(array_data)))
|
||||
}
|
||||
|
||||
fn compute_query_embeddings(&self, input: Arc<dyn Array>) -> Result<Arc<dyn Array>> {
|
||||
let arr = self.compute_inner(input)?;
|
||||
Ok(Arc::new(arr))
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for BedrockEmbeddingFunction {
|
||||
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("BedrockEmbeddingFunction")
|
||||
.field("model", &self.model)
|
||||
// Skip client field as it doesn't implement Debug
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl BedrockEmbeddingFunction {
|
||||
fn compute_inner(&self, source: Arc<dyn Array>) -> Result<Float32Array> {
|
||||
if source.is_nullable() {
|
||||
return Err(Error::InvalidInput {
|
||||
message: "Expected non-nullable data type".to_string(),
|
||||
});
|
||||
}
|
||||
|
||||
if !matches!(source.data_type(), DataType::Utf8 | DataType::LargeUtf8) {
|
||||
return Err(Error::InvalidInput {
|
||||
message: "Expected Utf8 data type".to_string(),
|
||||
});
|
||||
}
|
||||
|
||||
let mut builder = Float32Builder::new();
|
||||
|
||||
let texts = match source.data_type() {
|
||||
DataType::Utf8 => source
|
||||
.as_string::<i32>()
|
||||
.into_iter()
|
||||
.map(|s| s.expect("array is non-nullable").to_string())
|
||||
.collect::<Vec<String>>(),
|
||||
DataType::LargeUtf8 => source
|
||||
.as_string::<i64>()
|
||||
.into_iter()
|
||||
.map(|s| s.expect("array is non-nullable").to_string())
|
||||
.collect::<Vec<String>>(),
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
for text in texts {
|
||||
let request_body = match self.model {
|
||||
BedrockEmbeddingModel::TitanEmbedding => {
|
||||
json!({
|
||||
"inputText": text
|
||||
})
|
||||
}
|
||||
BedrockEmbeddingModel::CohereLarge => {
|
||||
json!({
|
||||
"texts": [text],
|
||||
"input_type": "search_document"
|
||||
})
|
||||
}
|
||||
};
|
||||
|
||||
let client = self.client.clone();
|
||||
let model_id = self.model.model_id().to_string();
|
||||
let request_body = request_body.clone();
|
||||
|
||||
let response = block_in_place(move || {
|
||||
Handle::current().block_on(async move {
|
||||
client
|
||||
.invoke_model()
|
||||
.model_id(model_id)
|
||||
.body(aws_sdk_bedrockruntime::primitives::Blob::new(
|
||||
serde_json::to_vec(&request_body).unwrap(),
|
||||
))
|
||||
.send()
|
||||
.await
|
||||
})
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
let response_json: Value =
|
||||
serde_json::from_slice(response.body.as_ref()).map_err(|e| Error::Runtime {
|
||||
message: format!("Failed to parse response: {}", e),
|
||||
})?;
|
||||
|
||||
let embedding = match self.model {
|
||||
BedrockEmbeddingModel::TitanEmbedding => response_json["embedding"]
|
||||
.as_array()
|
||||
.ok_or_else(|| Error::Runtime {
|
||||
message: "Missing embedding in response".to_string(),
|
||||
})?
|
||||
.iter()
|
||||
.map(|v| v.as_f64().unwrap() as f32)
|
||||
.collect::<Vec<f32>>(),
|
||||
BedrockEmbeddingModel::CohereLarge => response_json["embeddings"][0]
|
||||
.as_array()
|
||||
.ok_or_else(|| Error::Runtime {
|
||||
message: "Missing embeddings in response".to_string(),
|
||||
})?
|
||||
.iter()
|
||||
.map(|v| v.as_f64().unwrap() as f32)
|
||||
.collect::<Vec<f32>>(),
|
||||
};
|
||||
|
||||
builder.append_slice(&embedding);
|
||||
}
|
||||
|
||||
Ok(builder.finish())
|
||||
}
|
||||
}
|
||||
@@ -704,6 +704,9 @@ pub struct VectorQuery {
|
||||
// IVF PQ - ANN search.
|
||||
pub(crate) query_vector: Vec<Arc<dyn Array>>,
|
||||
pub(crate) nprobes: usize,
|
||||
// The number of candidates to return during the refine step for HNSW,
|
||||
// defaults to 1.5 * limit.
|
||||
pub(crate) ef: Option<usize>,
|
||||
pub(crate) refine_factor: Option<u32>,
|
||||
pub(crate) distance_type: Option<DistanceType>,
|
||||
/// Default is true. Set to false to enforce a brute force search.
|
||||
@@ -717,6 +720,7 @@ impl VectorQuery {
|
||||
column: None,
|
||||
query_vector: Vec::new(),
|
||||
nprobes: 20,
|
||||
ef: None,
|
||||
refine_factor: None,
|
||||
distance_type: None,
|
||||
use_index: true,
|
||||
@@ -776,6 +780,18 @@ impl VectorQuery {
|
||||
self
|
||||
}
|
||||
|
||||
/// Set the number of candidates to return during the refine step for HNSW
|
||||
///
|
||||
/// This argument is only used when the vector column has an HNSW index.
|
||||
/// If there is no index then this value is ignored.
|
||||
///
|
||||
/// Increasing this value will increase the recall of your query but will
|
||||
/// also increase the latency of your query. The default value is 1.5*limit.
|
||||
pub fn ef(mut self, ef: usize) -> Self {
|
||||
self.ef = Some(ef);
|
||||
self
|
||||
}
|
||||
|
||||
/// A multiplier to control how many additional rows are taken during the refine step
|
||||
///
|
||||
/// This argument is only used when the vector column has an IVF PQ index.
|
||||
|
||||
@@ -19,9 +19,10 @@ use http::header::CONTENT_TYPE;
|
||||
use http::StatusCode;
|
||||
use lance::arrow::json::JsonSchema;
|
||||
use lance::dataset::scanner::DatasetRecordBatchStream;
|
||||
use lance::dataset::{ColumnAlteration, NewColumnTransform};
|
||||
use lance::dataset::{ColumnAlteration, NewColumnTransform, Version};
|
||||
use lance_datafusion::exec::OneShotExec;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use tokio::sync::RwLock;
|
||||
|
||||
use crate::{
|
||||
connection::NoData,
|
||||
@@ -43,17 +44,32 @@ pub struct RemoteTable<S: HttpSend = Sender> {
|
||||
#[allow(dead_code)]
|
||||
client: RestfulLanceDbClient<S>,
|
||||
name: String,
|
||||
|
||||
version: RwLock<Option<u64>>,
|
||||
}
|
||||
|
||||
impl<S: HttpSend> RemoteTable<S> {
|
||||
pub fn new(client: RestfulLanceDbClient<S>, name: String) -> Self {
|
||||
Self { client, name }
|
||||
Self {
|
||||
client,
|
||||
name,
|
||||
version: RwLock::new(None),
|
||||
}
|
||||
}
|
||||
|
||||
async fn describe(&self) -> Result<TableDescription> {
|
||||
let request = self
|
||||
let version = self.current_version().await;
|
||||
self.describe_version(version).await
|
||||
}
|
||||
|
||||
async fn describe_version(&self, version: Option<u64>) -> Result<TableDescription> {
|
||||
let mut request = self
|
||||
.client
|
||||
.post(&format!("/v1/table/{}/describe/", self.name));
|
||||
|
||||
let body = serde_json::json!({ "version": version });
|
||||
request = request.json(&body);
|
||||
|
||||
let (request_id, response) = self.client.send(request, true).await?;
|
||||
|
||||
let response = self.check_table_response(&request_id, response).await?;
|
||||
@@ -196,6 +212,7 @@ impl<S: HttpSend> RemoteTable<S> {
|
||||
body["prefilter"] = query.base.prefilter.into();
|
||||
body["distance_type"] = serde_json::json!(query.distance_type.unwrap_or_default());
|
||||
body["nprobes"] = query.nprobes.into();
|
||||
body["ef"] = query.ef.into();
|
||||
body["refine_factor"] = query.refine_factor.into();
|
||||
if let Some(vector_column) = query.column.as_ref() {
|
||||
body["vector_column"] = serde_json::Value::String(vector_column.clone());
|
||||
@@ -250,6 +267,24 @@ impl<S: HttpSend> RemoteTable<S> {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async fn check_mutable(&self) -> Result<()> {
|
||||
let read_guard = self.version.read().await;
|
||||
match *read_guard {
|
||||
None => Ok(()),
|
||||
Some(version) => Err(Error::NotSupported {
|
||||
message: format!(
|
||||
"Cannot mutate table reference fixed at version {}. Call checkout_latest() to get a mutable table reference.",
|
||||
version
|
||||
)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
async fn current_version(&self) -> Option<u64> {
|
||||
let read_guard = self.version.read().await;
|
||||
*read_guard
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Deserialize)]
|
||||
@@ -277,7 +312,11 @@ mod test_utils {
|
||||
T: Into<reqwest::Body>,
|
||||
{
|
||||
let client = client_with_handler(handler);
|
||||
Self { client, name }
|
||||
Self {
|
||||
client,
|
||||
name,
|
||||
version: RwLock::new(None),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -296,21 +335,62 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
||||
async fn version(&self) -> Result<u64> {
|
||||
self.describe().await.map(|desc| desc.version)
|
||||
}
|
||||
async fn checkout(&self, _version: u64) -> Result<()> {
|
||||
Err(Error::NotSupported {
|
||||
message: "checkout is not supported on LanceDB cloud.".into(),
|
||||
})
|
||||
async fn checkout(&self, version: u64) -> Result<()> {
|
||||
// check that the version exists
|
||||
self.describe_version(Some(version))
|
||||
.await
|
||||
.map_err(|e| match e {
|
||||
// try to map the error to a more user-friendly error telling them
|
||||
// specifically that the version does not exist
|
||||
Error::TableNotFound { name } => Error::TableNotFound {
|
||||
name: format!("{} (version: {})", name, version),
|
||||
},
|
||||
e => e,
|
||||
})?;
|
||||
|
||||
let mut write_guard = self.version.write().await;
|
||||
*write_guard = Some(version);
|
||||
Ok(())
|
||||
}
|
||||
async fn checkout_latest(&self) -> Result<()> {
|
||||
Err(Error::NotSupported {
|
||||
message: "checkout is not supported on LanceDB cloud.".into(),
|
||||
})
|
||||
let mut write_guard = self.version.write().await;
|
||||
*write_guard = None;
|
||||
Ok(())
|
||||
}
|
||||
async fn restore(&self) -> Result<()> {
|
||||
self.check_mutable().await?;
|
||||
Err(Error::NotSupported {
|
||||
message: "restore is not supported on LanceDB cloud.".into(),
|
||||
})
|
||||
}
|
||||
|
||||
async fn list_versions(&self) -> Result<Vec<Version>> {
|
||||
let request = self
|
||||
.client
|
||||
.post(&format!("/v1/table/{}/version/list/", self.name));
|
||||
let (request_id, response) = self.client.send(request, true).await?;
|
||||
let response = self.check_table_response(&request_id, response).await?;
|
||||
|
||||
#[derive(Deserialize)]
|
||||
struct ListVersionsResponse {
|
||||
versions: Vec<Version>,
|
||||
}
|
||||
|
||||
let body = response.text().await.err_to_http(request_id.clone())?;
|
||||
let body: ListVersionsResponse =
|
||||
serde_json::from_str(&body).map_err(|err| Error::Http {
|
||||
source: format!(
|
||||
"Failed to parse list_versions response: {}, body: {}",
|
||||
err, body
|
||||
)
|
||||
.into(),
|
||||
request_id,
|
||||
status_code: None,
|
||||
})?;
|
||||
|
||||
Ok(body.versions)
|
||||
}
|
||||
|
||||
async fn schema(&self) -> Result<SchemaRef> {
|
||||
let schema = self.describe().await?.schema;
|
||||
Ok(Arc::new(schema.try_into()?))
|
||||
@@ -320,10 +400,13 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
||||
.client
|
||||
.post(&format!("/v1/table/{}/count_rows/", self.name));
|
||||
|
||||
let version = self.current_version().await;
|
||||
|
||||
if let Some(filter) = filter {
|
||||
request = request.json(&serde_json::json!({ "predicate": filter }));
|
||||
request = request.json(&serde_json::json!({ "predicate": filter, "version": version }));
|
||||
} else {
|
||||
request = request.json(&serde_json::json!({}));
|
||||
let body = serde_json::json!({ "version": version });
|
||||
request = request.json(&body);
|
||||
}
|
||||
|
||||
let (request_id, response) = self.client.send(request, true).await?;
|
||||
@@ -343,6 +426,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
||||
add: AddDataBuilder<NoData>,
|
||||
data: Box<dyn RecordBatchReader + Send>,
|
||||
) -> Result<()> {
|
||||
self.check_mutable().await?;
|
||||
let body = Self::reader_as_body(data)?;
|
||||
let mut request = self
|
||||
.client
|
||||
@@ -371,7 +455,8 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
||||
) -> Result<Arc<dyn ExecutionPlan>> {
|
||||
let request = self.client.post(&format!("/v1/table/{}/query/", self.name));
|
||||
|
||||
let body = serde_json::Value::Object(Default::default());
|
||||
let version = self.current_version().await;
|
||||
let body = serde_json::json!({ "version": version });
|
||||
let bodies = Self::apply_vector_query_params(body, query)?;
|
||||
|
||||
let mut futures = Vec::with_capacity(bodies.len());
|
||||
@@ -406,7 +491,8 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
||||
.post(&format!("/v1/table/{}/query/", self.name))
|
||||
.header(CONTENT_TYPE, JSON_CONTENT_TYPE);
|
||||
|
||||
let mut body = serde_json::Value::Object(Default::default());
|
||||
let version = self.current_version().await;
|
||||
let mut body = serde_json::json!({ "version": version });
|
||||
Self::apply_query_params(&mut body, query)?;
|
||||
// Empty vector can be passed if no vector search is performed.
|
||||
body["vector"] = serde_json::Value::Array(Vec::new());
|
||||
@@ -420,6 +506,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
||||
Ok(DatasetRecordBatchStream::new(stream))
|
||||
}
|
||||
async fn update(&self, update: UpdateBuilder) -> Result<u64> {
|
||||
self.check_mutable().await?;
|
||||
let request = self
|
||||
.client
|
||||
.post(&format!("/v1/table/{}/update/", self.name));
|
||||
@@ -441,6 +528,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
||||
Ok(0) // TODO: support returning number of modified rows once supported in SaaS.
|
||||
}
|
||||
async fn delete(&self, predicate: &str) -> Result<()> {
|
||||
self.check_mutable().await?;
|
||||
let body = serde_json::json!({ "predicate": predicate });
|
||||
let request = self
|
||||
.client
|
||||
@@ -452,6 +540,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
||||
}
|
||||
|
||||
async fn create_index(&self, mut index: IndexBuilder) -> Result<()> {
|
||||
self.check_mutable().await?;
|
||||
let request = self
|
||||
.client
|
||||
.post(&format!("/v1/table/{}/create_index/", self.name));
|
||||
@@ -530,6 +619,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
||||
params: MergeInsertBuilder,
|
||||
new_data: Box<dyn RecordBatchReader + Send>,
|
||||
) -> Result<()> {
|
||||
self.check_mutable().await?;
|
||||
let query = MergeInsertRequest::try_from(params)?;
|
||||
let body = Self::reader_as_body(new_data)?;
|
||||
let request = self
|
||||
@@ -546,6 +636,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
||||
Ok(())
|
||||
}
|
||||
async fn optimize(&self, _action: OptimizeAction) -> Result<OptimizeStats> {
|
||||
self.check_mutable().await?;
|
||||
Err(Error::NotSupported {
|
||||
message: "optimize is not supported on LanceDB cloud.".into(),
|
||||
})
|
||||
@@ -555,16 +646,19 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
||||
_transforms: NewColumnTransform,
|
||||
_read_columns: Option<Vec<String>>,
|
||||
) -> Result<()> {
|
||||
self.check_mutable().await?;
|
||||
Err(Error::NotSupported {
|
||||
message: "add_columns is not yet supported.".into(),
|
||||
})
|
||||
}
|
||||
async fn alter_columns(&self, _alterations: &[ColumnAlteration]) -> Result<()> {
|
||||
self.check_mutable().await?;
|
||||
Err(Error::NotSupported {
|
||||
message: "alter_columns is not yet supported.".into(),
|
||||
})
|
||||
}
|
||||
async fn drop_columns(&self, _columns: &[&str]) -> Result<()> {
|
||||
self.check_mutable().await?;
|
||||
Err(Error::NotSupported {
|
||||
message: "drop_columns is not yet supported.".into(),
|
||||
})
|
||||
@@ -572,9 +666,13 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
||||
|
||||
async fn list_indices(&self) -> Result<Vec<IndexConfig>> {
|
||||
// Make request to list the indices
|
||||
let request = self
|
||||
let mut request = self
|
||||
.client
|
||||
.post(&format!("/v1/table/{}/index/list/", self.name));
|
||||
let version = self.current_version().await;
|
||||
let body = serde_json::json!({ "version": version });
|
||||
request = request.json(&body);
|
||||
|
||||
let (request_id, response) = self.client.send(request, true).await?;
|
||||
let response = self.check_table_response(&request_id, response).await?;
|
||||
|
||||
@@ -624,10 +722,14 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
||||
}
|
||||
|
||||
async fn index_stats(&self, index_name: &str) -> Result<Option<IndexStatistics>> {
|
||||
let request = self.client.post(&format!(
|
||||
let mut request = self.client.post(&format!(
|
||||
"/v1/table/{}/index/{}/stats/",
|
||||
self.name, index_name
|
||||
));
|
||||
let version = self.current_version().await;
|
||||
let body = serde_json::json!({ "version": version });
|
||||
request = request.json(&body);
|
||||
|
||||
let (request_id, response) = self.client.send(request, true).await?;
|
||||
|
||||
if response.status() == StatusCode::NOT_FOUND {
|
||||
@@ -701,6 +803,7 @@ mod tests {
|
||||
use arrow::{array::AsArray, compute::concat_batches, datatypes::Int32Type};
|
||||
use arrow_array::{Int32Array, RecordBatch, RecordBatchIterator};
|
||||
use arrow_schema::{DataType, Field, Schema};
|
||||
use chrono::{DateTime, Utc};
|
||||
use futures::{future::BoxFuture, StreamExt, TryFutureExt};
|
||||
use lance_index::scalar::FullTextSearchQuery;
|
||||
use reqwest::Body;
|
||||
@@ -805,7 +908,10 @@ mod tests {
|
||||
request.headers().get("Content-Type").unwrap(),
|
||||
JSON_CONTENT_TYPE
|
||||
);
|
||||
assert_eq!(request.body().unwrap().as_bytes().unwrap(), br#"{}"#);
|
||||
assert_eq!(
|
||||
request.body().unwrap().as_bytes().unwrap(),
|
||||
br#"{"version":null}"#
|
||||
);
|
||||
|
||||
http::Response::builder().status(200).body("42").unwrap()
|
||||
});
|
||||
@@ -822,7 +928,7 @@ mod tests {
|
||||
);
|
||||
assert_eq!(
|
||||
request.body().unwrap().as_bytes().unwrap(),
|
||||
br#"{"predicate":"a > 10"}"#
|
||||
br#"{"predicate":"a > 10","version":null}"#
|
||||
);
|
||||
|
||||
http::Response::builder().status(200).body("42").unwrap()
|
||||
@@ -1121,7 +1227,9 @@ mod tests {
|
||||
"prefilter": true,
|
||||
"distance_type": "l2",
|
||||
"nprobes": 20,
|
||||
"ef": Option::<usize>::None,
|
||||
"refine_factor": null,
|
||||
"version": null,
|
||||
});
|
||||
// Pass vector separately to make sure it matches f32 precision.
|
||||
expected_body["vector"] = vec![0.1f32, 0.2, 0.3].into();
|
||||
@@ -1166,7 +1274,9 @@ mod tests {
|
||||
"bypass_vector_index": true,
|
||||
"columns": ["a", "b"],
|
||||
"nprobes": 12,
|
||||
"ef": Option::<usize>::None,
|
||||
"refine_factor": 2,
|
||||
"version": null,
|
||||
});
|
||||
// Pass vector separately to make sure it matches f32 precision.
|
||||
expected_body["vector"] = vec![0.1f32, 0.2, 0.3].into();
|
||||
@@ -1222,6 +1332,7 @@ mod tests {
|
||||
"k": 10,
|
||||
"vector": [],
|
||||
"with_row_id": true,
|
||||
"version": null
|
||||
});
|
||||
assert_eq!(body, expected_body);
|
||||
|
||||
@@ -1407,6 +1518,51 @@ mod tests {
|
||||
assert_eq!(indices, expected);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_list_versions() {
|
||||
let table = Table::new_with_handler("my_table", |request| {
|
||||
assert_eq!(request.method(), "POST");
|
||||
assert_eq!(request.url().path(), "/v1/table/my_table/version/list/");
|
||||
|
||||
let version1 = lance::dataset::Version {
|
||||
version: 1,
|
||||
timestamp: "2024-01-01T00:00:00Z".parse().unwrap(),
|
||||
metadata: Default::default(),
|
||||
};
|
||||
let version2 = lance::dataset::Version {
|
||||
version: 2,
|
||||
timestamp: "2024-02-01T00:00:00Z".parse().unwrap(),
|
||||
metadata: Default::default(),
|
||||
};
|
||||
let response_body = serde_json::json!({
|
||||
"versions": [
|
||||
version1,
|
||||
version2,
|
||||
]
|
||||
});
|
||||
let response_body = serde_json::to_string(&response_body).unwrap();
|
||||
|
||||
http::Response::builder()
|
||||
.status(200)
|
||||
.body(response_body)
|
||||
.unwrap()
|
||||
});
|
||||
|
||||
let versions = table.list_versions().await.unwrap();
|
||||
assert_eq!(versions.len(), 2);
|
||||
assert_eq!(versions[0].version, 1);
|
||||
assert_eq!(
|
||||
versions[0].timestamp,
|
||||
"2024-01-01T00:00:00Z".parse::<DateTime<Utc>>().unwrap()
|
||||
);
|
||||
assert_eq!(versions[1].version, 2);
|
||||
assert_eq!(
|
||||
versions[1].timestamp,
|
||||
"2024-02-01T00:00:00Z".parse::<DateTime<Utc>>().unwrap()
|
||||
);
|
||||
// assert_eq!(versions, expected);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_index_stats() {
|
||||
let table = Table::new_with_handler("my_table", |request| {
|
||||
@@ -1451,4 +1607,195 @@ mod tests {
|
||||
let indices = table.index_stats("my_index").await.unwrap();
|
||||
assert!(indices.is_none());
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_passes_version() {
|
||||
let table = Table::new_with_handler("my_table", |request| {
|
||||
let body = request.body().unwrap().as_bytes().unwrap();
|
||||
let body: serde_json::Value = serde_json::from_slice(body).unwrap();
|
||||
let version = body
|
||||
.as_object()
|
||||
.unwrap()
|
||||
.get("version")
|
||||
.unwrap()
|
||||
.as_u64()
|
||||
.unwrap();
|
||||
assert_eq!(version, 42);
|
||||
|
||||
let response_body = match request.url().path() {
|
||||
"/v1/table/my_table/describe/" => {
|
||||
serde_json::json!({
|
||||
"version": 42,
|
||||
"schema": { "fields": [] }
|
||||
})
|
||||
}
|
||||
"/v1/table/my_table/index/list/" => {
|
||||
serde_json::json!({
|
||||
"indexes": []
|
||||
})
|
||||
}
|
||||
"/v1/table/my_table/index/my_idx/stats/" => {
|
||||
serde_json::json!({
|
||||
"num_indexed_rows": 100000,
|
||||
"num_unindexed_rows": 0,
|
||||
"index_type": "IVF_PQ",
|
||||
"distance_type": "l2"
|
||||
})
|
||||
}
|
||||
"/v1/table/my_table/count_rows/" => {
|
||||
serde_json::json!(1000)
|
||||
}
|
||||
"/v1/table/my_table/query/" => {
|
||||
let expected_data = RecordBatch::try_new(
|
||||
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)])),
|
||||
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
|
||||
)
|
||||
.unwrap();
|
||||
let expected_data_ref = expected_data.clone();
|
||||
let response_body = write_ipc_file(&expected_data_ref);
|
||||
return http::Response::builder()
|
||||
.status(200)
|
||||
.header(CONTENT_TYPE, ARROW_FILE_CONTENT_TYPE)
|
||||
.body(response_body)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
path => panic!("Unexpected path: {}", path),
|
||||
};
|
||||
|
||||
http::Response::builder()
|
||||
.status(200)
|
||||
.body(
|
||||
serde_json::to_string(&response_body)
|
||||
.unwrap()
|
||||
.as_bytes()
|
||||
.to_vec(),
|
||||
)
|
||||
.unwrap()
|
||||
});
|
||||
|
||||
table.checkout(42).await.unwrap();
|
||||
|
||||
// ensure that version is passed to the /describe endpoint
|
||||
let version = table.version().await.unwrap();
|
||||
assert_eq!(version, 42);
|
||||
|
||||
// ensure it's passed to other read API calls
|
||||
table.list_indices().await.unwrap();
|
||||
table.index_stats("my_idx").await.unwrap();
|
||||
table.count_rows(None).await.unwrap();
|
||||
table
|
||||
.query()
|
||||
.nearest_to(vec![0.1, 0.2, 0.3])
|
||||
.unwrap()
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_fails_if_checkout_version_doesnt_exist() {
|
||||
let table = Table::new_with_handler("my_table", |request| {
|
||||
let body = request.body().unwrap().as_bytes().unwrap();
|
||||
let body: serde_json::Value = serde_json::from_slice(body).unwrap();
|
||||
let version = body
|
||||
.as_object()
|
||||
.unwrap()
|
||||
.get("version")
|
||||
.unwrap()
|
||||
.as_u64()
|
||||
.unwrap();
|
||||
if version != 42 {
|
||||
return http::Response::builder()
|
||||
.status(404)
|
||||
.body(format!("Table my_table (version: {}) not found", version))
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
let response_body = match request.url().path() {
|
||||
"/v1/table/my_table/describe/" => {
|
||||
serde_json::json!({
|
||||
"version": 42,
|
||||
"schema": { "fields": [] }
|
||||
})
|
||||
}
|
||||
_ => panic!("Unexpected path"),
|
||||
};
|
||||
|
||||
http::Response::builder()
|
||||
.status(200)
|
||||
.body(serde_json::to_string(&response_body).unwrap())
|
||||
.unwrap()
|
||||
});
|
||||
|
||||
let res = table.checkout(43).await;
|
||||
println!("{:?}", res);
|
||||
assert!(
|
||||
matches!(res, Err(Error::TableNotFound { name }) if name == "my_table (version: 43)")
|
||||
);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_timetravel_immutable() {
|
||||
let table = Table::new_with_handler::<String>("my_table", |request| {
|
||||
let response_body = match request.url().path() {
|
||||
"/v1/table/my_table/describe/" => {
|
||||
serde_json::json!({
|
||||
"version": 42,
|
||||
"schema": { "fields": [] }
|
||||
})
|
||||
}
|
||||
_ => panic!("Should not have made a request: {:?}", request),
|
||||
};
|
||||
|
||||
http::Response::builder()
|
||||
.status(200)
|
||||
.body(serde_json::to_string(&response_body).unwrap())
|
||||
.unwrap()
|
||||
});
|
||||
|
||||
table.checkout(42).await.unwrap();
|
||||
|
||||
// Ensure that all mutable operations fail.
|
||||
let res = table
|
||||
.update()
|
||||
.column("a", "a + 1")
|
||||
.column("b", "b - 1")
|
||||
.only_if("b > 10")
|
||||
.execute()
|
||||
.await;
|
||||
assert!(matches!(res, Err(Error::NotSupported { .. })));
|
||||
|
||||
let batch = RecordBatch::try_new(
|
||||
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)])),
|
||||
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
|
||||
)
|
||||
.unwrap();
|
||||
let data = Box::new(RecordBatchIterator::new(
|
||||
[Ok(batch.clone())],
|
||||
batch.schema(),
|
||||
));
|
||||
let res = table.merge_insert(&["some_col"]).execute(data).await;
|
||||
assert!(matches!(res, Err(Error::NotSupported { .. })));
|
||||
|
||||
let res = table.delete("id in (1, 2, 3)").await;
|
||||
assert!(matches!(res, Err(Error::NotSupported { .. })));
|
||||
|
||||
let data = RecordBatch::try_new(
|
||||
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)])),
|
||||
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
|
||||
)
|
||||
.unwrap();
|
||||
let res = table
|
||||
.add(RecordBatchIterator::new([Ok(data.clone())], data.schema()))
|
||||
.execute()
|
||||
.await;
|
||||
assert!(matches!(res, Err(Error::NotSupported { .. })));
|
||||
|
||||
let res = table
|
||||
.create_index(&["a"], Index::IvfPq(Default::default()))
|
||||
.execute()
|
||||
.await;
|
||||
assert!(matches!(res, Err(Error::NotSupported { .. })));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -37,7 +37,7 @@ pub use lance::dataset::ColumnAlteration;
|
||||
pub use lance::dataset::NewColumnTransform;
|
||||
pub use lance::dataset::ReadParams;
|
||||
use lance::dataset::{
|
||||
Dataset, UpdateBuilder as LanceUpdateBuilder, WhenMatched, WriteMode, WriteParams,
|
||||
Dataset, UpdateBuilder as LanceUpdateBuilder, Version, WhenMatched, WriteMode, WriteParams,
|
||||
};
|
||||
use lance::dataset::{MergeInsertBuilder as LanceMergeInsertBuilder, WhenNotMatchedBySource};
|
||||
use lance::io::WrappingObjectStore;
|
||||
@@ -426,6 +426,7 @@ pub(crate) trait TableInternal: std::fmt::Display + std::fmt::Debug + Send + Syn
|
||||
async fn checkout(&self, version: u64) -> Result<()>;
|
||||
async fn checkout_latest(&self) -> Result<()>;
|
||||
async fn restore(&self) -> Result<()>;
|
||||
async fn list_versions(&self) -> Result<Vec<Version>>;
|
||||
async fn table_definition(&self) -> Result<TableDefinition>;
|
||||
fn dataset_uri(&self) -> &str;
|
||||
}
|
||||
@@ -955,6 +956,11 @@ impl Table {
|
||||
self.inner.restore().await
|
||||
}
|
||||
|
||||
/// List all the versions of the table
|
||||
pub async fn list_versions(&self) -> Result<Vec<Version>> {
|
||||
self.inner.list_versions().await
|
||||
}
|
||||
|
||||
/// List all indices that have been created with [`Self::create_index`]
|
||||
pub async fn list_indices(&self) -> Result<Vec<IndexConfig>> {
|
||||
self.inner.list_indices().await
|
||||
@@ -1319,7 +1325,7 @@ impl NativeTable {
|
||||
let (indices, mf) = futures::try_join!(dataset.load_indices(), dataset.latest_manifest())?;
|
||||
Ok(indices
|
||||
.iter()
|
||||
.map(|i| VectorIndex::new_from_format(&mf, i))
|
||||
.map(|i| VectorIndex::new_from_format(&(mf.0), i))
|
||||
.collect())
|
||||
}
|
||||
|
||||
@@ -1707,6 +1713,10 @@ impl TableInternal for NativeTable {
|
||||
self.dataset.reload().await
|
||||
}
|
||||
|
||||
async fn list_versions(&self) -> Result<Vec<Version>> {
|
||||
Ok(self.dataset.get().await?.versions().await?)
|
||||
}
|
||||
|
||||
async fn restore(&self) -> Result<()> {
|
||||
let version =
|
||||
self.dataset
|
||||
@@ -1904,6 +1914,9 @@ impl TableInternal for NativeTable {
|
||||
query.base.offset.map(|offset| offset as i64),
|
||||
)?;
|
||||
scanner.nprobs(query.nprobes);
|
||||
if let Some(ef) = query.ef {
|
||||
scanner.ef(ef);
|
||||
}
|
||||
scanner.use_index(query.use_index);
|
||||
scanner.prefilter(query.base.prefilter);
|
||||
match query.base.select {
|
||||
|
||||
Reference in New Issue
Block a user