Compare commits

..

31 Commits

Author SHA1 Message Date
Lance Release
96933d7df8 Bump version: 0.16.0 → 0.16.1-beta.0 2024-11-21 21:52:39 +00:00
Lei Xu
d369233b3d feat: bump lance to 0.20.0b2 (#1865)
Bump lance version.
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0-beta.2
2024-11-21 13:16:59 -08:00
QianZhu
43a670ed4b fix: limit docstring change (#1860) 2024-11-21 10:50:50 -08:00
Bert
cb9a00a28d feat: add list_versions to typescript, rust and remote python sdks (#1850)
Will require update to lance dependency to bring in this change which
makes the version serializable
https://github.com/lancedb/lance/pull/3143
2024-11-21 13:35:14 -05:00
Max Epstein
72af977a73 fix(CohereReranker): updated default model_name param to newest v3 (#1862) 2024-11-21 09:02:49 -08:00
Bert
7cecb71df0 feat: support for checkout and checkout_latest in remote sdks (#1863) 2024-11-21 11:28:46 -05:00
QianZhu
285071e5c8 docs: full-text search doc update (#1861)
Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2024-11-20 21:07:30 -08:00
QianZhu
114866fbcf docs: OSS doc improvement (#1859)
OSS doc improvement - HNSW index parameter explanation and others.

---------

Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2024-11-20 17:51:11 -08:00
Frank Liu
5387c0e243 docs: add Voyage models to sidebar (#1858) 2024-11-20 14:20:14 -08:00
Mr. Doge
53d1535de1 ci: musl x64,arm64 (#1853)
untested 4 artifacts at:
https://github.com/FuPeiJiang/lancedb/actions/runs/11926579058
node-native-linux-aarch64-musl 22.6 MB
node-native-linux-x86_64-musl 23.6 MB
nodejs-native-linux-aarch64-musl 26.7 MB
nodejs-native-linux-x86_64-musl 27 MB

this follows the same process as:
https://github.com/lancedb/lancedb/pull/1816#issuecomment-2484816669

Closes #1388
Closes #1107

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-11-20 10:53:19 -08:00
BubbleCal
b2f88f0b29 feat: support to sepcify ef search param (#1844)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-19 23:12:25 +08:00
fzowl
f2e3989831 docs: voyageai embedding in the index (#1813)
The code to support VoyageAI embedding and rerank models was added in
the https://github.com/lancedb/lancedb/pull/1799 PR.
Some of the documentation changes was also made, here adding the
VoyageAI embedding doc link to the index page.

These are my first PRs in lancedb and while i checked the
documentation/code structure, i might missed something important. Please
let me know if any changes required!
2024-11-18 14:34:16 -08:00
Emmanuel Ferdman
83ae52938a docs: update migration reference (#1837)
# PR Summary
PR fixes the `migration.md` reference in `docs/src/guides/tables.md`. On
the way, it also fixes some typos found in that document.

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2024-11-18 14:33:32 -08:00
Lei Xu
267aa83bf8 feat(python): check vector query is not None (#1847)
Fix the type hints of `nearest_to` method, and raise `ValueError` when
the input is None
2024-11-18 14:15:22 -08:00
Will Jones
cc72050206 chore: update package locks (#1845)
Also ran `npm audit`.
2024-11-18 13:44:06 -08:00
Will Jones
72543c8b9d test(python): test with_row_id in sync query (#1835)
Also remove weird `MockTable` fixture.
2024-11-18 11:32:52 -08:00
Will Jones
97d6210c33 ci: remove invalid references (#1834)
Fix release job
2024-11-18 11:32:44 -08:00
Ho Kim
a3d0c27b0a feat: add support for rustls (#1842)
Hello, this is a simple PR that supports `rustls-tls` feature.

The `reqwest`\`s default TLS `default-tls` is enabled by default, to
dismiss the side-effect.

The user can use `rustls-tls` like this:

```toml
lancedb = { version = "*", default-features = false, features = ["rustls-tls"] }
```
2024-11-18 10:36:20 -08:00
BubbleCal
b23d8abcdd docs: introduce incremental indexing for FTS (#1789)
don't merge it before https://github.com/lancedb/lancedb/pull/1769
merged

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-18 20:21:28 +08:00
Rob Meng
e3ea5cf9b9 chore: bump lance to 0.19.3 (#1839) 2024-11-16 14:57:52 -05:00
Lance Release
4f8b086175 Updating package-lock.json 2024-11-15 20:18:16 +00:00
Lance Release
72330fb759 Bump version: 0.13.0-beta.3 → 0.13.0 2024-11-15 20:17:59 +00:00
Lance Release
e3b2c5f438 Bump version: 0.13.0-beta.2 → 0.13.0-beta.3 2024-11-15 20:17:55 +00:00
Lance Release
66a881b33a Bump version: 0.16.0-beta.2 → 0.16.0 2024-11-15 20:17:34 +00:00
Lance Release
a7515d6ee2 Bump version: 0.16.0-beta.1 → 0.16.0-beta.2 2024-11-15 20:17:34 +00:00
Will Jones
587c0824af feat: flexible null handling and insert subschemas in Python (#1827)
* Test that we can insert subschemas (omit nullable columns) in Python.
* More work is needed to support this in Node. See:
https://github.com/lancedb/lancedb/issues/1832
* Test that we can insert data with nullable schema but no nulls in
non-nullable schema.
* Add `"null"` option for `on_bad_vectors` where we fill with null if
the vector is bad.
* Make null values not considered bad if the field itself is nullable.
2024-11-15 11:33:00 -08:00
Will Jones
b38a4269d0 fix(node): make openai and huggingface optional dependencies (#1809)
BREAKING CHANGE: openai and huggingface now have separate entrypoints.

Closes [#1624](https://github.com/lancedb/lancedb/issues/1624)
2024-11-14 15:04:35 -08:00
Will Jones
119d88b9db ci: disable Windows Arm64 until the release builds work (#1833)
Started to actually fix this, but it was taking too long
https://github.com/lancedb/lancedb/pull/1831
2024-11-14 15:04:23 -08:00
StevenSu
74f660d223 feat: add new feature, add amazon bedrock embedding function (#1788)
Add amazon bedrock embedding function to rust sdk.

1.  Add BedrockEmbeddingModel ( lancedb/src/embeddings/bedrock.rs)
2. Add example lancedb/examples/bedrock.rs
2024-11-14 11:04:59 -08:00
Lance Release
b2b0979b90 Updating package-lock.json 2024-11-14 04:42:38 +00:00
Lance Release
ee2a40b182 Bump version: 0.13.0-beta.1 → 0.13.0-beta.2 2024-11-14 04:42:19 +00:00
65 changed files with 1922 additions and 404 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.13.0-beta.1"
current_version = "0.13.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.
@@ -87,6 +87,16 @@ glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-arm64-musl\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-arm64-musl\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-musl\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-musl\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""

View File

@@ -31,6 +31,9 @@ rustflags = [
[target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
[target.x86_64-unknown-linux-musl]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=-crt-static,+avx2,+fma,+f16c"]
[target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]

View File

@@ -104,7 +104,6 @@ jobs:
OPENAI_BASE_URL: http://0.0.0.0:8000
run: |
python ci/mock_openai.py &
ss -ltnp | grep :8000
cd nodejs/examples
npm test
macos:

View File

@@ -101,7 +101,7 @@ jobs:
path: |
nodejs/dist/*.node
node-linux:
node-linux-gnu:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
@@ -137,11 +137,63 @@ jobs:
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-linux-${{ matrix.config.arch }}
name: node-native-linux-${{ matrix.config.arch }}-gnu
path: |
node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux:
node-linux-musl:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-musl)
runs-on: ubuntu-latest
container: alpine:edge
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install common dependencies
run: |
apk add protobuf-dev curl clang mold grep npm bash
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
source "$HOME/.cargo/env"
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
curl -sSf $apk_url > apk_list
for pkg in gcc libgcc musl; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
mkdir -p $sysroot_lib
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
cp usr/lib/libgcc_s.so.1 $sysroot_lib
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
echo '!<arch>' > $sysroot_lib/libdl.a
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=apple-m1 -Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
- name: Build Linux Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-linux-${{ matrix.config.arch }}-musl
path: |
node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux-gnu:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
@@ -178,7 +230,7 @@ jobs:
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}
name: nodejs-native-linux-${{ matrix.config.arch }}-gnu
path: |
nodejs/dist/*.node
# The generic files are the same in all distros so we just pick
@@ -192,6 +244,62 @@ jobs:
nodejs/dist/*
!nodejs/dist/*.node
nodejs-linux-musl:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-musl
runs-on: ubuntu-latest
container: alpine:edge
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install common dependencies
run: |
apk add protobuf-dev curl clang mold grep npm bash openssl-dev openssl-libs-static
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=/usr/include" >> saved_env
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=/usr/lib" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
source "$HOME/.cargo/env"
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
curl -sSf $apk_url > apk_list
for pkg in gcc libgcc musl openssl-dev openssl-libs-static; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
mkdir -p $sysroot_lib
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
cp usr/lib/libgcc_s.so.1 $sysroot_lib
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
echo '!<arch>' > $sysroot_lib/libdl.a
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
echo "export RUSTFLAGS='-Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=$(realpath usr/include)" >> saved_env
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=$(realpath usr/lib)" >> saved_env
- name: Build Linux Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}-musl
path: |
nodejs/dist/*.node
node-windows:
name: vectordb ${{ matrix.target }}
runs-on: windows-2022
@@ -226,108 +334,109 @@ jobs:
path: |
node/dist/lancedb-vectordb-win32*.tgz
node-windows-arm64:
name: vectordb win32-arm64-msvc
runs-on: windows-4x-arm
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/checkout@v4
- name: Install Git
run: |
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
shell: powershell
- name: Add Git to PATH
run: |
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
shell: powershell
- name: Configure Git symlinks
run: git config --global core.symlinks true
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.13"
- name: Install Visual Studio Build Tools
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
"--installPath", "C:\BuildTools", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
shell: powershell
- name: Add Visual Studio Build Tools to PATH
run: |
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
# node-windows-arm64:
# name: vectordb win32-arm64-msvc
# runs-on: windows-4x-arm
# if: startsWith(github.ref, 'refs/tags/v')
# steps:
# - uses: actions/checkout@v4
# - name: Install Git
# run: |
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
# shell: powershell
# - name: Add Git to PATH
# run: |
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
# shell: powershell
# - name: Configure Git symlinks
# run: git config --global core.symlinks true
# - uses: actions/checkout@v4
# - uses: actions/setup-python@v5
# with:
# python-version: "3.13"
# - name: Install Visual Studio Build Tools
# run: |
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
# "--installPath", "C:\BuildTools", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
# shell: powershell
# - name: Add Visual Studio Build Tools to PATH
# run: |
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# Add MSVC runtime libraries to LIB
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
# # Add MSVC runtime libraries to LIB
# $env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
# Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
# Add INCLUDE paths
$env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
shell: powershell
- name: Install Rust
run: |
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
shell: powershell
- name: Add Rust to PATH
run: |
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
shell: powershell
# # Add INCLUDE paths
# $env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
# Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
# shell: powershell
# - name: Install Rust
# run: |
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
# shell: powershell
# - name: Add Rust to PATH
# run: |
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
# shell: powershell
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install 7-Zip ARM
run: |
New-Item -Path 'C:\7zip' -ItemType Directory
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
shell: powershell
- name: Add 7-Zip to PATH
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
shell: powershell
- name: Install Protoc v21.12
working-directory: C:\
run: |
if (Test-Path 'C:\protoc') {
Write-Host "Protoc directory exists, skipping installation"
return
}
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
shell: powershell
- name: Add Protoc to PATH
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts.ps1 aarch64-pc-windows-msvc
- name: Upload Windows ARM64 Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-windows-arm64
path: |
node/dist/*.node
# - uses: Swatinem/rust-cache@v2
# with:
# workspaces: rust
# - name: Install 7-Zip ARM
# run: |
# New-Item -Path 'C:\7zip' -ItemType Directory
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
# shell: powershell
# - name: Add 7-Zip to PATH
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
# shell: powershell
# - name: Install Protoc v21.12
# working-directory: C:\
# run: |
# if (Test-Path 'C:\protoc') {
# Write-Host "Protoc directory exists, skipping installation"
# return
# }
# New-Item -Path 'C:\protoc' -ItemType Directory
# Set-Location C:\protoc
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
# shell: powershell
# - name: Add Protoc to PATH
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
# shell: powershell
# - name: Build Windows native node modules
# run: .\ci\build_windows_artifacts.ps1 aarch64-pc-windows-msvc
# - name: Upload Windows ARM64 Artifacts
# uses: actions/upload-artifact@v4
# with:
# name: node-native-windows-arm64
# path: |
# node/dist/*.node
nodejs-windows:
name: lancedb ${{ matrix.target }}
@@ -363,102 +472,103 @@ jobs:
path: |
nodejs/dist/*.node
nodejs-windows-arm64:
name: lancedb win32-arm64-msvc
runs-on: windows-4x-arm
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/checkout@v4
- name: Install Git
run: |
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
shell: powershell
- name: Add Git to PATH
run: |
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
shell: powershell
- name: Configure Git symlinks
run: git config --global core.symlinks true
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.13"
- name: Install Visual Studio Build Tools
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
"--installPath", "C:\BuildTools", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
shell: powershell
- name: Add Visual Studio Build Tools to PATH
run: |
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
# nodejs-windows-arm64:
# name: lancedb win32-arm64-msvc
# runs-on: windows-4x-arm
# if: startsWith(github.ref, 'refs/tags/v')
# steps:
# - uses: actions/checkout@v4
# - name: Install Git
# run: |
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
# shell: powershell
# - name: Add Git to PATH
# run: |
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
# shell: powershell
# - name: Configure Git symlinks
# run: git config --global core.symlinks true
# - uses: actions/checkout@v4
# - uses: actions/setup-python@v5
# with:
# python-version: "3.13"
# - name: Install Visual Studio Build Tools
# run: |
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
# "--installPath", "C:\BuildTools", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
# shell: powershell
# - name: Add Visual Studio Build Tools to PATH
# run: |
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
$env:LIB = ""
Add-Content $env:GITHUB_ENV "LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
shell: powershell
- name: Install Rust
run: |
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
shell: powershell
- name: Add Rust to PATH
run: |
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
shell: powershell
# $env:LIB = ""
# Add-Content $env:GITHUB_ENV "LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
# shell: powershell
# - name: Install Rust
# run: |
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
# shell: powershell
# - name: Add Rust to PATH
# run: |
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
# shell: powershell
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install 7-Zip ARM
run: |
New-Item -Path 'C:\7zip' -ItemType Directory
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
shell: powershell
- name: Add 7-Zip to PATH
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
shell: powershell
- name: Install Protoc v21.12
working-directory: C:\
run: |
if (Test-Path 'C:\protoc') {
Write-Host "Protoc directory exists, skipping installation"
return
}
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
shell: powershell
- name: Add Protoc to PATH
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts_nodejs.ps1 aarch64-pc-windows-msvc
- name: Upload Windows ARM64 Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-windows-arm64
path: |
nodejs/dist/*.node
# - uses: Swatinem/rust-cache@v2
# with:
# workspaces: rust
# - name: Install 7-Zip ARM
# run: |
# New-Item -Path 'C:\7zip' -ItemType Directory
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
# shell: powershell
# - name: Add 7-Zip to PATH
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
# shell: powershell
# - name: Install Protoc v21.12
# working-directory: C:\
# run: |
# if (Test-Path 'C:\protoc') {
# Write-Host "Protoc directory exists, skipping installation"
# return
# }
# New-Item -Path 'C:\protoc' -ItemType Directory
# Set-Location C:\protoc
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
# shell: powershell
# - name: Add Protoc to PATH
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
# shell: powershell
# - name: Build Windows native node modules
# run: .\ci\build_windows_artifacts_nodejs.ps1 aarch64-pc-windows-msvc
# - name: Upload Windows ARM64 Artifacts
# uses: actions/upload-artifact@v4
# with:
# name: nodejs-native-windows-arm64
# path: |
# nodejs/dist/*.node
release:
name: vectordb NPM Publish
needs: [node, node-macos, node-linux, node-windows, node-windows-arm64]
needs: [node, node-macos, node-linux-gnu, node-linux-musl, node-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -476,7 +586,7 @@ jobs:
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: |
# Tag beta as "preview" instead of default "latest". See lancedb
# Tag beta as "preview" instead of default "latest". See lancedb
# npm publish step for more info.
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
PUBLISH_ARGS="--tag preview"
@@ -498,7 +608,7 @@ jobs:
release-nodejs:
name: lancedb NPM Publish
needs: [nodejs-macos, nodejs-linux, nodejs-windows, nodejs-windows-arm64]
needs: [nodejs-macos, nodejs-linux-gnu, nodejs-linux-musl, nodejs-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')

View File

@@ -18,18 +18,18 @@ repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
[workspace.dependencies]
lance = { "version" = "=0.19.2", "features" = [
lance = { "version" = "=0.20.0", "features" = [
"dynamodb",
], git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
lance-index = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
lance-linalg = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
lance-table = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
lance-testing = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
lance-datafusion = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
lance-encoding = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
], git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-index = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-linalg = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-table = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-testing = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-datafusion = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-encoding = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
# Note that this one does not include pyarrow
arrow = { version = "52.2", optional = false }
arrow-array = "52.2"

View File

@@ -11,7 +11,8 @@ fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
#Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
cd nodejs
npm ci

View File

@@ -5,13 +5,14 @@ ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
#Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
cd node
npm ci

View File

@@ -138,6 +138,7 @@ nav:
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Voyage AI Rerankers: reranking/voyageai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
@@ -165,6 +166,7 @@ nav:
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Voyage AI Embeddings: embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md

21
docs/package-lock.json generated
View File

@@ -19,7 +19,7 @@
},
"../node": {
"name": "vectordb",
"version": "0.4.6",
"version": "0.12.0",
"cpu": [
"x64",
"arm64"
@@ -31,9 +31,7 @@
"win32"
],
"dependencies": {
"@apache-arrow/ts": "^14.0.2",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0"
},
"devDependencies": {
@@ -46,6 +44,7 @@
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
"chai-as-promised": "^7.1.1",
@@ -62,15 +61,19 @@
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*",
"typescript": "^5.1.0",
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.6",
"@lancedb/vectordb-darwin-x64": "0.4.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
"@lancedb/vectordb-darwin-arm64": "0.12.0",
"@lancedb/vectordb-darwin-x64": "0.12.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0",
"@lancedb/vectordb-linux-x64-gnu": "0.12.0",
"@lancedb/vectordb-win32-x64-msvc": "0.12.0"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
"apache-arrow": "^14.0.2"
}
},
"../node/node_modules/apache-arrow": {

View File

@@ -277,7 +277,15 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
!!! note
if `num_sub_vectors` is set to be greater than the vector dimension, you will see errors like `attempt to divide by zero`
### How to choose `m` and `ef_construction` for `IVF_HNSW_*` index?
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase

View File

@@ -57,6 +57,13 @@ Then the greedy search routine operates as follows:
## Usage
There are three key parameters to set when constructing an HNSW index:
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `m`: The number of neighbors to select for each vector in the HNSW graph.
* `ef_construction`: The number of candidates to evaluate during the construction of the HNSW graph.
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
### Construct index

View File

@@ -58,8 +58,10 @@ In Python, the index can be created as follows:
# Make sure you have enough data in the table for an effective training step
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
```
!!! note
`num_partitions`=256 and `num_sub_vectors`=96 does not work for every dataset. Those values needs to be adjusted for your particular dataset.
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See the [FAQs](#faq) below for best practices on choosing these parameters.
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See [here](../ann_indexes.md/#how-to-choose-num_partitions-and-num_sub_vectors-for-ivf_pq-index) for best practices on choosing these parameters.
### Query the index

View File

@@ -20,7 +20,7 @@ Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|--------|---------|
| `name` | `str` | `"voyage-3"` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
| `name` | `str` | `None` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |

View File

@@ -53,6 +53,7 @@ These functions are registered by default to handle text embeddings.
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="Jina Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/jina_embedding.md) |
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/aws_bedrock.png" alt="AWS Bedrock Icon" width="120" height="35">](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/watsonx.png" alt="Watsonx Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
| [**VoyageAI Embeddings**](available_embedding_models/text_embedding_functions/voyageai_embedding.md "voyageai") | 🌕 Voyage AI provides cutting-edge embedding and rerankers. This will help you get started with **VoyageAI** embedding models using LanceDB. Using voyageai API requires voyageai package. Install it via `pip`. | [<img src="https://www.voyageai.com/logo.svg" alt="VoyageAI Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/voyageai_embedding.md) |
@@ -66,6 +67,7 @@ These functions are registered by default to handle text embeddings.
[jina-key]: "jina"
[aws-key]: "bedrock-text"
[watsonx-key]: "watsonx"
[voyageai-key]: "voyageai"
## Multi-modal Embedding Functions🖼

View File

@@ -114,12 +114,45 @@ table.create_fts_index("text",
LanceDB full text search supports to filter the search results by a condition, both pre-filtering and post-filtering are supported.
This can be invoked via the familiar `where` syntax:
This can be invoked via the familiar `where` syntax.
With pre-filtering:
=== "Python"
```python
table.search("puppy").limit(10).where("meta='foo'").to_list()
table.search("puppy").limit(10).where("meta='foo'", prefilte=True).to_list()
```
=== "TypeScript"
```typescript
await tbl
.search("puppy")
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.prefilter(true)
.toArray();
```
=== "Rust"
```rust
table
.query()
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.limit(10)
.only_if("meta='foo'")
.execute()
.await?;
```
With post-filtering:
=== "Python"
```python
table.search("puppy").limit(10).where("meta='foo'", prefilte=False).to_list()
```
=== "TypeScript"
@@ -130,6 +163,7 @@ This can be invoked via the familiar `where` syntax:
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.prefilter(false)
.toArray();
```
@@ -140,6 +174,7 @@ This can be invoked via the familiar `where` syntax:
.query()
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.postfilter()
.limit(10)
.only_if("meta='foo'")
.execute()
@@ -160,3 +195,35 @@ To search for a phrase, the index must be created with `with_position=True`:
table.create_fts_index("text", use_tantivy=False, with_position=True)
```
This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.
## Incremental indexing
LanceDB supports incremental indexing, which means you can add new records to the table without reindexing the entire table.
This can make the query more efficient, especially when the table is large and the new records are relatively small.
=== "Python"
```python
table.add([{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"}])
table.optimize()
```
=== "TypeScript"
```typescript
await tbl.add([{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" }]);
await tbl.optimize();
```
=== "Rust"
```rust
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
tbl.add(more_data).execute().await?;
tbl.optimize(OptimizeAction::All).execute().await?;
```
!!! note
New data added after creating the FTS index will appear in search results while incremental index is still progress, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates this merging process, minimizing the impact on search speed.

View File

@@ -153,9 +153,7 @@ table.create_fts_index(["title", "content"], use_tantivy=True, writer_heap_size=
## Current limitations
1. Currently we do not yet support incremental writes.
If you add data after FTS index creation, it won't be reflected
in search results until you do a full reindex.
1. New data added after creating the FTS index will appear in search results, but with increased latency due to a flat search on the unindexed portion. Re-indexing with `create_fts_index` will reduce latency. LanceDB Cloud automates this merging process, minimizing the impact on search speed.
2. We currently only support local filesystem paths for the FTS index.
This is a tantivy limitation. We've implemented an object store plugin

View File

@@ -274,7 +274,7 @@ table = db.create_table(table_name, schema=Content)
Sometimes your data model may contain nested objects.
For example, you may want to store the document string
and the document soure name as a nested Document object:
and the document source name as a nested Document object:
```python
class Document(BaseModel):
@@ -466,7 +466,7 @@ You can create an empty table for scenarios where you want to add data to the ta
## Adding to a table
After a table has been created, you can always add more data to it usind the `add` method
After a table has been created, you can always add more data to it using the `add` method
=== "Python"
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
@@ -535,7 +535,7 @@ After a table has been created, you can always add more data to it usind the `ad
```
??? "Ingesting Pydantic models with LanceDB embedding API"
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` feild as None to allow LanceDB to automatically vectorize the data.
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` field as None to allow LanceDB to automatically vectorize the data.
```python
import lancedb
@@ -790,6 +790,27 @@ Use the `drop_table()` method on the database to remove a table.
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
## Handling bad vectors
In LanceDB Python, you can use the `on_bad_vectors` parameter to choose how
invalid vector values are handled. Invalid vectors are vectors that are not valid
because:
1. They are the wrong dimension
2. They contain NaN values
3. They are null but are on a non-nullable field
By default, LanceDB will raise an error if it encounters a bad vector. You can
also choose one of the following options:
* `drop`: Ignore rows with bad vectors
* `fill`: Replace bad values (NaNs) or missing values (too few dimensions) with
the fill value specified in the `fill_value` parameter. An input like
`[1.0, NaN, 3.0]` will be replaced with `[1.0, 0.0, 3.0]` if `fill_value=0.0`.
* `null`: Replace bad vectors with null (only works if the column is nullable).
A bad vector `[1.0, NaN, 3.0]` will be replaced with `null` if the column is
nullable. If the vector column is non-nullable, then bad vectors will cause an
error
## Consistency
@@ -859,4 +880,4 @@ There are three possible settings for `read_consistency_interval`:
Learn the best practices on creating an ANN index and getting the most out of it.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](../migration.md) for more information.

View File

@@ -6,6 +6,9 @@ This re-ranker uses the [Cohere](https://cohere.ai/) API to rerank the search re
!!! note
Supported Query Types: Hybrid, Vector, FTS
```shell
pip install cohere
```
```python
import numpy

View File

@@ -9,6 +9,7 @@ LanceDB comes with some built-in rerankers. Some of the rerankers that are avail
| `CrossEncoderReranker` | Uses a cross-encoder model to rerank search results | Vector, FTS, Hybrid |
| `ColbertReranker` | Uses a colbert model to rerank search results | Vector, FTS, Hybrid |
| `OpenaiReranker`(Experimental) | Uses OpenAI's chat model to rerank search results | Vector, FTS, Hybrid |
| `VoyageAIReranker` | Uses voyageai Reranker API to rerank results | Vector, FTS, Hybrid |
## Using a Reranker
@@ -73,6 +74,7 @@ LanceDB comes with some built-in rerankers. Here are some of the rerankers that
- [Jina Reranker](./jina.md)
- [AnswerDotAI Rerankers](./answerdotai.md)
- [Reciprocal Rank Fusion Reranker](./rrf.md)
- [VoyageAI Reranker](./voyageai.md)
## Creating Custom Rerankers

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.13.0-beta.1</version>
<version>0.13.0-final.0</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.13.0-beta.1</version>
<version>0.13.0-final.0</version>
<packaging>pom</packaging>
<name>LanceDB Parent</name>

52
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.13.0-beta.1",
"version": "0.13.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.13.0-beta.1",
"version": "0.13.0",
"cpu": [
"x64",
"arm64"
@@ -52,12 +52,12 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.13.0-beta.1",
"@lancedb/vectordb-darwin-x64": "0.13.0-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.13.0-beta.1",
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.13.0-beta.1"
"@lancedb/vectordb-darwin-arm64": "0.13.0",
"@lancedb/vectordb-darwin-x64": "0.13.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0",
"@lancedb/vectordb-linux-x64-gnu": "0.13.0",
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0",
"@lancedb/vectordb-win32-x64-msvc": "0.13.0"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
@@ -328,9 +328,9 @@
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.13.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.13.0-beta.1.tgz",
"integrity": "sha512-beOrf6selCzzhLgDG8Nibma4nO/CSnA1wUKRmlJHEPtGcg7PW18z6MP/nfwQMpMR/FLRfTo8pPTbpzss47MiQQ==",
"version": "0.13.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.13.0.tgz",
"integrity": "sha512-8hdcjkRmgrdQYf1jN+DyZae40LIv8UUfnWy70Uid5qy63sSvRW/+MvIdqIPFr9QlLUXmpyyQuX0y3bZhUR99cQ==",
"cpu": [
"arm64"
],
@@ -340,9 +340,9 @@
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.13.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.13.0-beta.1.tgz",
"integrity": "sha512-YdraGRF/RbJRkKh0v3xT03LUhq47T2GtCvJ5gZp8wKlh4pHa8LuhLU0DIdvmG/DT5vuQA+td8HDkBm/e3EOdNg==",
"version": "0.13.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.13.0.tgz",
"integrity": "sha512-fWzAY4l5SQtNfMYh80v+M66ugZHhdxbkpk5mNEv6Zsug3DL6kRj3Uv31/i0wgzY6F5G3LUlbjZerN+eTnDLwOw==",
"cpu": [
"x64"
],
@@ -352,9 +352,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.13.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.13.0-beta.1.tgz",
"integrity": "sha512-Pp0O/uhEqof1oLaWrNbv+Ym+q8kBkiCqaA5+2eAZ6a3e9U+Ozkvb0FQrHuyi9adJ5wKQ4NabyQE9BMf2bYpOnQ==",
"version": "0.13.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.13.0.tgz",
"integrity": "sha512-ltwAT9baOSuR5YiGykQXPC8/HGYF13vpI47qxhP9yfgiz9pA8EUn8p8YrBRzq7J4DIZ4b8JSVDXQnMIqEtB4Kg==",
"cpu": [
"arm64"
],
@@ -364,9 +364,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.13.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.13.0-beta.1.tgz",
"integrity": "sha512-y8nxOye4egfWF5FGED9EfkmZ1O5HnRLU4a61B8m5JSpkivO9v2epTcbYN0yt/7ZFCgtqMfJ8VW4Mi7qQcz3KDA==",
"version": "0.13.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.13.0.tgz",
"integrity": "sha512-MiT/RBlMPGGRh7BX+MXwRuNiiUnKmuDcHH8nm88IH28T7TQxXIbA9w6UpSg5m9f3DgKQI2K8oLi29oKIB8ZwDQ==",
"cpu": [
"x64"
],
@@ -376,9 +376,9 @@
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.13.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.13.0-beta.1.tgz",
"integrity": "sha512-STMDP9dp0TBLkB3ro+16pKcGy6bmbhRuEZZZ1Tp5P75yTPeVh4zIgWkidMdU1qBbEYM7xacnsp9QAwgLnMU/Ow==",
"version": "0.13.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.13.0.tgz",
"integrity": "sha512-SovP/hwWYLJIy65DKbVuXlBPTb/nwvVpTO6dh9zRch+L5ek6JmVAkwsfeTS2p5bMa8VPujsCXYUAVuCDEJU8wg==",
"cpu": [
"x64"
],
@@ -1501,9 +1501,9 @@
"dev": true
},
"node_modules/cross-spawn": {
"version": "7.0.3",
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
"integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
"version": "7.0.6",
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz",
"integrity": "sha512-uV2QOWP2nWzsy2aMp8aRibhi9dlzF5Hgh5SHaB9OiTGEyDTiJJyx0uy51QXdyWbtAHNua4XJzUKca3OzKUd3vA==",
"dev": true,
"dependencies": {
"path-key": "^3.1.0",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.13.0-beta.1",
"version": "0.13.0",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -89,11 +89,13 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.13.0-beta.1",
"@lancedb/vectordb-darwin-x64": "0.13.0-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.13.0-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.13.0-beta.1",
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0-beta.1"
"@lancedb/vectordb-darwin-x64": "0.13.0",
"@lancedb/vectordb-darwin-arm64": "0.13.0",
"@lancedb/vectordb-linux-x64-gnu": "0.13.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0",
"@lancedb/vectordb-linux-x64-musl": "0.13.0",
"@lancedb/vectordb-linux-arm64-musl": "0.13.0",
"@lancedb/vectordb-win32-x64-msvc": "0.13.0",
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0"
}
}

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.13.0-beta.1"
version = "0.13.0"
license.workspace = true
description.workspace = true
repository.workspace = true

View File

@@ -187,6 +187,81 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
},
);
// TODO: https://github.com/lancedb/lancedb/issues/1832
it.skip("should be able to omit nullable fields", async () => {
const db = await connect(tmpDir.name);
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float64()),
),
true,
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float64(), false),
]);
const table = await db.createEmptyTable("test", schema);
const data1 = { item: "foo", price: 10.0 };
await table.add([data1]);
const data2 = { vector: [3.1, 4.1], price: 2.0 };
await table.add([data2]);
const data3 = { vector: [5.9, 26.5], item: "bar", price: 3.0 };
await table.add([data3]);
let res = await table.query().limit(10).toArray();
const resVector = res.map((r) => r.get("vector").toArray());
expect(resVector).toEqual([null, data2.vector, data3.vector]);
const resItem = res.map((r) => r.get("item").toArray());
expect(resItem).toEqual(["foo", null, "bar"]);
const resPrice = res.map((r) => r.get("price").toArray());
expect(resPrice).toEqual([10.0, 2.0, 3.0]);
const data4 = { item: "foo" };
// We can't omit a column if it's not nullable
await expect(table.add([data4])).rejects.toThrow("Invalid user input");
// But we can alter columns to make them nullable
await table.alterColumns([{ path: "price", nullable: true }]);
await table.add([data4]);
res = (await table.query().limit(10).toArray()).map((r) => r.toJSON());
expect(res).toEqual([data1, data2, data3, data4]);
});
it("should be able to insert nullable data for non-nullable fields", async () => {
const db = await connect(tmpDir.name);
const schema = new arrow.Schema([
new arrow.Field("x", new arrow.Float64(), false),
new arrow.Field("id", new arrow.Utf8(), false),
]);
const table = await db.createEmptyTable("test", schema);
const data1 = { x: 4.1, id: "foo" };
await table.add([data1]);
const res = (await table.query().toArray())[0];
expect(res.x).toEqual(data1.x);
expect(res.id).toEqual(data1.id);
const data2 = { x: null, id: "bar" };
await expect(table.add([data2])).rejects.toThrow(
"declared as non-nullable but contains null values",
);
// But we can alter columns to make them nullable
await table.alterColumns([{ path: "x", nullable: true }]);
await table.add([data2]);
const res2 = await table.query().toArray();
expect(res2.length).toBe(2);
expect(res2[0].x).toEqual(data1.x);
expect(res2[0].id).toEqual(data1.id);
expect(res2[1].x).toBeNull();
expect(res2[1].id).toEqual(data2.id);
});
it("should return the table as an instance of an arrow table", async () => {
const arrowTbl = await table.toArrow();
expect(arrowTbl).toBeInstanceOf(ArrowTable);
@@ -402,6 +477,54 @@ describe("When creating an index", () => {
expect(rst.numRows).toBe(1);
});
it("should create and search IVF_HNSW indices", async () => {
await tbl.createIndex("vec", {
config: Index.hnswSq(),
});
// check index directory
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
const indices = await tbl.listIndices();
expect(indices.length).toBe(1);
expect(indices[0]).toEqual({
name: "vec_idx",
indexType: "IvfHnswSq",
columns: ["vec"],
});
// Search without specifying the column
let rst = await tbl
.query()
.limit(2)
.nearestTo(queryVec)
.distanceType("dot")
.toArrow();
expect(rst.numRows).toBe(2);
// Search using `vectorSearch`
rst = await tbl.vectorSearch(queryVec).limit(2).toArrow();
expect(rst.numRows).toBe(2);
// Search with specifying the column
const rst2 = await tbl
.query()
.limit(2)
.nearestTo(queryVec)
.column("vec")
.toArrow();
expect(rst2.numRows).toBe(2);
expect(rst.toString()).toEqual(rst2.toString());
// test offset
rst = await tbl.query().limit(2).offset(1).nearestTo(queryVec).toArrow();
expect(rst.numRows).toBe(1);
// test ef
rst = await tbl.query().limit(2).nearestTo(queryVec).ef(100).toArrow();
expect(rst.numRows).toBe(2);
});
it("should be able to query unindexed data", async () => {
await tbl.createIndex("vec");
await tbl.add([

View File

@@ -6,12 +6,16 @@ import { withTempDirectory } from "./util.ts";
import * as lancedb from "@lancedb/lancedb";
import "@lancedb/lancedb/embedding/transformers";
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
import { Utf8 } from "apache-arrow";
test("full text search", async () => {
await withTempDirectory(async (databaseDir) => {
const db = await lancedb.connect(databaseDir);
const func = await getRegistry().get("huggingface").create();
console.log(getRegistry());
const func = (await getRegistry()
.get("huggingface")
?.create()) as EmbeddingFunction;
const facts = [
"Albert Einstein was a theoretical physicist.",
@@ -56,4 +60,4 @@ test("full text search", async () => {
expect(actual[0]["text"]).toBe("The human body has 206 bones.");
});
});
}, 100_000);

View File

@@ -19,9 +19,6 @@ import { EmbeddingFunctionConfig, getRegistry } from "./registry";
export { EmbeddingFunction, TextEmbeddingFunction } from "./embedding_function";
// We need to explicitly export '*' so that the `register` decorator actually registers the class.
export * from "./openai";
export * from "./transformers";
export * from "./registry";
/**

View File

@@ -17,8 +17,6 @@ import {
type EmbeddingFunctionConstructor,
} from "./embedding_function";
import "reflect-metadata";
import { OpenAIEmbeddingFunction } from "./openai";
import { TransformersEmbeddingFunction } from "./transformers";
type CreateReturnType<T> = T extends { init: () => Promise<void> }
? Promise<T>
@@ -73,10 +71,6 @@ export class EmbeddingFunctionRegistry {
};
}
get(name: "openai"): EmbeddingFunctionCreate<OpenAIEmbeddingFunction>;
get(
name: "huggingface",
): EmbeddingFunctionCreate<TransformersEmbeddingFunction>;
get<T extends EmbeddingFunction<unknown>>(
name: string,
): EmbeddingFunctionCreate<T> | undefined;

View File

@@ -385,6 +385,20 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
return this;
}
/**
* Set the number of candidates to consider during the search
*
* This argument is only used when the vector column has an HNSW index.
* If there is no index then this value is ignored.
*
* Increasing this value will increase the recall of your query but will
* also increase the latency of your query. The default value is 1.5*limit.
*/
ef(ef: number): VectorQuery {
super.doCall((inner) => inner.ef(ef));
return this;
}
/**
* Set the vector column to query
*

View File

@@ -87,6 +87,12 @@ export interface OptimizeOptions {
deleteUnverified: boolean;
}
export interface Version {
version: number;
timestamp: Date;
metadata: Record<string, string>;
}
/**
* A Table is a collection of Records in a LanceDB Database.
*
@@ -360,6 +366,11 @@ export abstract class Table {
*/
abstract checkoutLatest(): Promise<void>;
/**
* List all the versions of the table
*/
abstract listVersions(): Promise<Version[]>;
/**
* Restore the table to the currently checked out version
*
@@ -659,6 +670,14 @@ export class LocalTable extends Table {
await this.inner.checkoutLatest();
}
async listVersions(): Promise<Version[]> {
return (await this.inner.listVersions()).map((version) => ({
version: version.version,
timestamp: new Date(version.timestamp / 1000),
metadata: version.metadata,
}));
}
async restore(): Promise<void> {
await this.inner.restore();
}

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.13.0-beta.1",
"version": "0.13.0",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.13.0-beta.1",
"version": "0.13.0",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.13.0-beta.1",
"version": "0.13.0",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -0,0 +1,3 @@
# `@lancedb/lancedb-linux-arm64-musl`
This is the **aarch64-unknown-linux-musl** binary for `@lancedb/lancedb`

View File

@@ -0,0 +1,13 @@
{
"name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.13.0",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node",
"files": ["lancedb.linux-arm64-musl.node"],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
},
"libc": ["musl"]
}

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.13.0-beta.1",
"version": "0.13.0",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -0,0 +1,3 @@
# `@lancedb/lancedb-linux-x64-musl`
This is the **x86_64-unknown-linux-musl** binary for `@lancedb/lancedb`

View File

@@ -0,0 +1,13 @@
{
"name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.13.0",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node",
"files": ["lancedb.linux-x64-musl.node"],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
},
"libc": ["musl"]
}

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.13.0-beta.1",
"version": "0.13.0",
"os": [
"win32"
],

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.13.0-beta.1",
"version": "0.13.0",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

View File

@@ -1,12 +1,12 @@
{
"name": "@lancedb/lancedb",
"version": "0.13.0-beta.1",
"version": "0.13.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "@lancedb/lancedb",
"version": "0.13.0-beta.1",
"version": "0.13.0",
"cpu": [
"x64",
"arm64"
@@ -6052,9 +6052,9 @@
}
},
"node_modules/cross-spawn": {
"version": "7.0.3",
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
"integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
"version": "7.0.6",
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz",
"integrity": "sha512-uV2QOWP2nWzsy2aMp8aRibhi9dlzF5Hgh5SHaB9OiTGEyDTiJJyx0uy51QXdyWbtAHNua4XJzUKca3OzKUd3vA==",
"devOptional": true,
"dependencies": {
"path-key": "^3.1.0",

View File

@@ -10,11 +10,13 @@
"vector database",
"ann"
],
"version": "0.13.0-beta.1",
"version": "0.13.0",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",
"./embedding": "./dist/embedding/index.js"
"./embedding": "./dist/embedding/index.js",
"./embedding/openai": "./dist/embedding/openai.js",
"./embedding/transformers": "./dist/embedding/transformers.js"
},
"types": "dist/index.d.ts",
"napi": {
@@ -22,10 +24,12 @@
"triples": {
"defaults": false,
"additional": [
"aarch64-apple-darwin",
"aarch64-unknown-linux-gnu",
"x86_64-apple-darwin",
"aarch64-apple-darwin",
"x86_64-unknown-linux-gnu",
"aarch64-unknown-linux-gnu",
"x86_64-unknown-linux-musl",
"aarch64-unknown-linux-musl",
"x86_64-pc-windows-msvc"
]
}

View File

@@ -167,6 +167,11 @@ impl VectorQuery {
self.inner = self.inner.clone().nprobes(nprobe as usize);
}
#[napi]
pub fn ef(&mut self, ef: u32) {
self.inner = self.inner.clone().ef(ef as usize);
}
#[napi]
pub fn bypass_vector_index(&mut self) {
self.inner = self.inner.clone().bypass_vector_index()

View File

@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::HashMap;
use arrow_ipc::writer::FileWriter;
use lancedb::ipc::ipc_file_to_batches;
use lancedb::table::{
@@ -226,6 +228,28 @@ impl Table {
self.inner_ref()?.checkout_latest().await.default_error()
}
#[napi(catch_unwind)]
pub async fn list_versions(&self) -> napi::Result<Vec<Version>> {
self.inner_ref()?
.list_versions()
.await
.map(|versions| {
versions
.iter()
.map(|version| Version {
version: version.version as i64,
timestamp: version.timestamp.timestamp_micros(),
metadata: version
.metadata
.iter()
.map(|(k, v)| (k.clone(), v.clone()))
.collect(),
})
.collect()
})
.default_error()
}
#[napi(catch_unwind)]
pub async fn restore(&self) -> napi::Result<()> {
self.inner_ref()?.restore().await.default_error()
@@ -466,3 +490,10 @@ impl From<lancedb::index::IndexStatistics> for IndexStatistics {
}
}
}
#[napi(object)]
pub struct Version {
pub version: i64,
pub timestamp: i64,
pub metadata: HashMap<String, String>,
}

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.16.0-beta.1"
current_version = "0.16.1-beta.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.16.0-beta.1"
version = "0.16.1-beta.0"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true
@@ -15,7 +15,7 @@ crate-type = ["cdylib"]
[dependencies]
arrow = { version = "52.1", features = ["pyarrow"] }
lancedb = { path = "../rust/lancedb" }
lancedb = { path = "../rust/lancedb", default-features = false }
env_logger.workspace = true
pyo3 = { version = "0.21", features = ["extension-module", "abi3-py38", "gil-refs"] }
# Using this fork for now: https://github.com/awestlake87/pyo3-asyncio/issues/119
@@ -33,6 +33,11 @@ pyo3-build-config = { version = "0.20.3", features = [
] }
[features]
default = ["remote"]
default = ["default-tls", "remote"]
fp16kernels = ["lancedb/fp16kernels"]
remote = ["lancedb/remote"]
# TLS
default-tls = ["lancedb/default-tls"]
native-tls = ["lancedb/native-tls"]
rustls-tls = ["lancedb/rustls-tls"]

View File

@@ -4,7 +4,7 @@ name = "lancedb"
dependencies = [
"deprecation",
"nest-asyncio~=1.0",
"pylance==0.19.2",
"pylance==0.20.0b2",
"tqdm>=4.27.0",
"pydantic>=1.10",
"packaging",

View File

@@ -131,6 +131,8 @@ class Query(pydantic.BaseModel):
fast_search: bool = False
ef: Optional[int] = None
class LanceQueryBuilder(ABC):
"""An abstract query builder. Subclasses are defined for vector search,
@@ -257,6 +259,7 @@ class LanceQueryBuilder(ABC):
self._with_row_id = False
self._vector = None
self._text = None
self._ef = None
@deprecation.deprecated(
deprecated_in="0.3.1",
@@ -367,11 +370,13 @@ class LanceQueryBuilder(ABC):
----------
limit: int
The maximum number of results to return.
By default the query is limited to the first 10.
Call this method and pass 0, a negative value,
or None to remove the limit.
*WARNING* if you have a large dataset, removing
the limit can potentially result in reading a
The default query limit is 10 results.
For ANN/KNN queries, you must specify a limit.
Entering 0, a negative number, or None will reset
the limit to the default value of 10.
*WARNING* if you have a large dataset, setting
the limit to a large number, e.g. the table size,
can potentially result in reading a
large amount of data into memory and cause
out of memory issues.
@@ -638,6 +643,28 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
self._nprobes = nprobes
return self
def ef(self, ef: int) -> LanceVectorQueryBuilder:
"""Set the number of candidates to consider during search.
Higher values will yield better recall (more likely to find vectors if
they exist) at the expense of latency.
This only applies to the HNSW-related index.
The default value is 1.5 * limit.
Parameters
----------
ef: int
The number of candidates to consider during search.
Returns
-------
LanceVectorQueryBuilder
The LanceQueryBuilder object.
"""
self._ef = ef
return self
def refine_factor(self, refine_factor: int) -> LanceVectorQueryBuilder:
"""Set the refine factor to use, increasing the number of vectors sampled.
@@ -700,6 +727,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
with_row_id=self._with_row_id,
offset=self._offset,
fast_search=self._fast_search,
ef=self._ef,
)
result_set = self._table._execute_query(query, batch_size)
if self._reranker is not None:
@@ -1071,6 +1099,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._vector_query.nprobes(self._nprobes)
if self._refine_factor:
self._vector_query.refine_factor(self._refine_factor)
if self._ef:
self._vector_query.ef(self._ef)
with ThreadPoolExecutor() as executor:
fts_future = executor.submit(self._fts_query.with_row_id(True).to_arrow)
@@ -1197,6 +1227,29 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._nprobes = nprobes
return self
def ef(self, ef: int) -> LanceHybridQueryBuilder:
"""
Set the number of candidates to consider during search.
Higher values will yield better recall (more likely to find vectors if
they exist) at the expense of latency.
This only applies to the HNSW-related index.
The default value is 1.5 * limit.
Parameters
----------
ef: int
The number of candidates to consider during search.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._ef = ef
return self
def metric(self, metric: Literal["L2", "cosine", "dot"]) -> LanceHybridQueryBuilder:
"""Set the distance metric to use.
@@ -1495,7 +1548,8 @@ class AsyncQuery(AsyncQueryBase):
return pa.array(vec)
def nearest_to(
self, query_vector: Optional[Union[VEC, Tuple, List[VEC]]] = None
self,
query_vector: Union[VEC, Tuple, List[VEC]],
) -> AsyncVectorQuery:
"""
Find the nearest vectors to the given query vector.
@@ -1542,6 +1596,9 @@ class AsyncQuery(AsyncQueryBase):
will be added to the results. This column will contain the index of the
query vector that the result is nearest to.
"""
if query_vector is None:
raise ValueError("query_vector can not be None")
if (
isinstance(query_vector, list)
and len(query_vector) > 0
@@ -1618,7 +1675,7 @@ class AsyncVectorQuery(AsyncQueryBase):
"""
Set the number of partitions to search (probe)
This argument is only used when the vector column has an IVF PQ index.
This argument is only used when the vector column has an IVF-based index.
If there is no index then this value is ignored.
The IVF stage of IVF PQ divides the input into partitions (clusters) of
@@ -1640,6 +1697,21 @@ class AsyncVectorQuery(AsyncQueryBase):
self._inner.nprobes(nprobes)
return self
def ef(self, ef: int) -> AsyncVectorQuery:
"""
Set the number of candidates to consider during search
This argument is only used when the vector column has an HNSW index.
If there is no index then this value is ignored.
Increasing this value will increase the recall of your query but will also
increase the latency of your query. The default value is 1.5 * limit. This
default is good for many cases but the best value to use will depend on your
data and the recall that you need to achieve.
"""
self._inner.ef(ef)
return self
def refine_factor(self, refine_factor: int) -> AsyncVectorQuery:
"""
A multiplier to control how many additional rows are taken during the refine

View File

@@ -78,6 +78,10 @@ class RemoteTable(Table):
self.schema.metadata
)
def list_versions(self):
"""List all versions of the table"""
return self._loop.run_until_complete(self._table.list_versions())
def to_arrow(self) -> pa.Table:
"""to_arrow() is not yet supported on LanceDB cloud."""
raise NotImplementedError("to_arrow() is not yet supported on LanceDB cloud.")
@@ -86,6 +90,12 @@ class RemoteTable(Table):
"""to_pandas() is not yet supported on LanceDB cloud."""
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
def checkout(self, version):
return self._loop.run_until_complete(self._table.checkout(version))
def checkout_latest(self):
return self._loop.run_until_complete(self._table.checkout_latest())
def list_indices(self):
"""List all the indices on the table"""
return self._loop.run_until_complete(self._table.list_indices())

View File

@@ -41,7 +41,7 @@ class CohereReranker(Reranker):
def __init__(
self,
model_name: str = "rerank-english-v2.0",
model_name: str = "rerank-english-v3.0",
column: str = "text",
top_n: Union[int, None] = None,
return_score="relevance",

View File

@@ -8,7 +8,7 @@ import inspect
import time
from abc import ABC, abstractmethod
from dataclasses import dataclass
from datetime import timedelta
from datetime import datetime, timedelta
from functools import cached_property
from typing import (
TYPE_CHECKING,
@@ -1012,6 +1012,39 @@ class Table(ABC):
The names of the columns to drop.
"""
@abstractmethod
def checkout(self):
"""
Checks out a specific version of the Table
Any read operation on the table will now access the data at the checked out
version. As a consequence, calling this method will disable any read consistency
interval that was previously set.
This is a read-only operation that turns the table into a sort of "view"
or "detached head". Other table instances will not be affected. To make the
change permanent you can use the `[Self::restore]` method.
Any operation that modifies the table will fail while the table is in a checked
out state.
To return the table to a normal state use `[Self::checkout_latest]`
"""
@abstractmethod
def checkout_latest(self):
"""
Ensures the table is pointing at the latest version
This can be used to manually update a table when the read_consistency_interval
is None
It can also be used to undo a `[Self::checkout]` operation
"""
@abstractmethod
def list_versions(self):
"""List all versions of the table"""
@cached_property
def _dataset_uri(self) -> str:
return _table_uri(self._conn.uri, self.name)
@@ -1567,7 +1600,7 @@ class LanceTable(Table):
"append" and "overwrite".
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
One of "error", "drop", "fill", "null".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
@@ -1851,7 +1884,7 @@ class LanceTable(Table):
data but will validate against any schema that's specified.
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
One of "error", "drop", "fill", "null".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
embedding_functions: list of EmbeddingFunctionModel, default None
@@ -1959,6 +1992,7 @@ class LanceTable(Table):
"metric": query.metric,
"nprobes": query.nprobes,
"refine_factor": query.refine_factor,
"ef": query.ef,
}
return ds.scanner(
columns=query.columns,
@@ -2151,13 +2185,11 @@ def _sanitize_schema(
vector column to fixed_size_list(float32) if necessary.
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
One of "error", "drop", "fill", "null".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
"""
if schema is not None:
if data.schema == schema:
return data
# cast the columns to the expected types
data = data.combine_chunks()
for field in schema:
@@ -2177,6 +2209,7 @@ def _sanitize_schema(
vector_column_name=field.name,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
table_schema=schema,
)
return pa.Table.from_arrays(
[data[name] for name in schema.names], schema=schema
@@ -2197,6 +2230,7 @@ def _sanitize_schema(
def _sanitize_vector_column(
data: pa.Table,
vector_column_name: str,
table_schema: Optional[pa.Schema] = None,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
) -> pa.Table:
@@ -2211,12 +2245,16 @@ def _sanitize_vector_column(
The name of the vector column.
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
One of "error", "drop", "fill", "null".
fill_value: float, default 0.0
The value to use when filling vectors. Only used if on_bad_vectors="fill".
"""
# ChunkedArray is annoying to work with, so we combine chunks here
vec_arr = data[vector_column_name].combine_chunks()
if table_schema is not None:
field = table_schema.field(vector_column_name)
else:
field = None
typ = data[vector_column_name].type
if pa.types.is_list(typ) or pa.types.is_large_list(typ):
# if it's a variable size list array,
@@ -2243,7 +2281,11 @@ def _sanitize_vector_column(
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
)
else:
if pc.any(pc.is_null(vec_arr.values, nan_is_null=True)).as_py():
if (
field is not None
and not field.nullable
and pc.any(pc.is_null(vec_arr.values)).as_py()
) or (pc.any(pc.is_nan(vec_arr.values)).as_py()):
data = _sanitize_nans(
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
)
@@ -2287,6 +2329,12 @@ def _sanitize_jagged(data, fill_value, on_bad_vectors, vec_arr, vector_column_na
)
elif on_bad_vectors == "drop":
data = data.filter(correct_ndims)
elif on_bad_vectors == "null":
data = data.set_column(
data.column_names.index(vector_column_name),
vector_column_name,
pc.if_else(correct_ndims, vec_arr, pa.scalar(None)),
)
return data
@@ -2303,7 +2351,8 @@ def _sanitize_nans(
raise ValueError(
f"Vector column {vector_column_name} has NaNs. "
"Set on_bad_vectors='drop' to remove them, or "
"set on_bad_vectors='fill' and fill_value=<value> to replace them."
"set on_bad_vectors='fill' and fill_value=<value> to replace them. "
"Or set on_bad_vectors='null' to replace them with null."
)
elif on_bad_vectors == "fill":
if fill_value is None:
@@ -2323,6 +2372,17 @@ def _sanitize_nans(
np_arr = np_arr.reshape(-1, vec_arr.type.list_size)
not_nulls = np.any(np_arr, axis=1)
data = data.filter(~not_nulls)
elif on_bad_vectors == "null":
# null = pa.nulls(len(vec_arr)).cast(vec_arr.type)
# values = pc.if_else(pc.is_nan(vec_arr.values), fill_value, vec_arr.values)
np_arr = np.isnan(vec_arr.values.to_numpy(zero_copy_only=False))
np_arr = np_arr.reshape(-1, vec_arr.type.list_size)
no_nans = np.any(np_arr, axis=1)
data = data.set_column(
data.column_names.index(vector_column_name),
vector_column_name,
pc.if_else(no_nans, vec_arr, pa.scalar(None)),
)
return data
@@ -2588,7 +2648,7 @@ class AsyncTable:
"append" and "overwrite".
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
One of "error", "drop", "fill", "null".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
@@ -2671,7 +2731,7 @@ class AsyncTable:
def vector_search(
self,
query_vector: Optional[Union[VEC, Tuple]] = None,
query_vector: Union[VEC, Tuple],
) -> AsyncVectorQuery:
"""
Search the table with a given query vector.
@@ -2710,6 +2770,8 @@ class AsyncTable:
async_query = async_query.refine_factor(query.refine_factor)
if query.vector_column:
async_query = async_query.column(query.vector_column)
if query.ef:
async_query = async_query.ef(query.ef)
if not query.prefilter:
async_query = async_query.postfilter()
@@ -2873,6 +2935,19 @@ class AsyncTable:
"""
return await self._inner.version()
async def list_versions(self):
"""
List all versions of the table
"""
versions = await self._inner.list_versions()
for v in versions:
ts_nanos = v["timestamp"]
v["timestamp"] = datetime.fromtimestamp(ts_nanos // 1e9) + timedelta(
microseconds=(ts_nanos % 1e9) // 1e3
)
return versions
async def checkout(self, version):
"""
Checks out a specific version of the Table

View File

@@ -81,14 +81,15 @@ def test_embedding_function(tmp_path):
def test_embedding_with_bad_results(tmp_path):
@register("mock-embedding")
class MockEmbeddingFunction(TextEmbeddingFunction):
@register("null-embedding")
class NullEmbeddingFunction(TextEmbeddingFunction):
def ndims(self):
return 128
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> list[Union[np.array, None]]:
# Return None, which is bad if field is non-nullable
return [
None if i % 2 == 0 else np.random.randn(self.ndims())
for i in range(len(texts))
@@ -96,13 +97,17 @@ def test_embedding_with_bad_results(tmp_path):
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
model = registry.get("mock-embedding").create()
model = registry.get("null-embedding").create()
class Schema(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("test", schema=Schema, mode="overwrite")
with pytest.raises(ValueError):
# Default on_bad_vectors is "error"
table.add([{"text": "hello world"}])
table.add(
[{"text": "hello world"}, {"text": "bar"}],
on_bad_vectors="drop",
@@ -112,13 +117,33 @@ def test_embedding_with_bad_results(tmp_path):
assert len(table) == 1
assert df.iloc[0]["text"] == "bar"
# table = db.create_table("test2", schema=Schema, mode="overwrite")
# table.add(
# [{"text": "hello world"}, {"text": "bar"}],
# )
# assert len(table) == 2
# tbl = table.to_arrow()
# assert tbl["vector"].null_count == 1
@register("nan-embedding")
class NanEmbeddingFunction(TextEmbeddingFunction):
def ndims(self):
return 128
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> list[Union[np.array, None]]:
# Return NaN to produce bad vectors
return [
[np.NAN] * 128 if i % 2 == 0 else np.random.randn(self.ndims())
for i in range(len(texts))
]
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
model = registry.get("nan-embedding").create()
table = db.create_table("test2", schema=Schema, mode="overwrite")
table.alter_columns(dict(path="vector", nullable=True))
table.add(
[{"text": "hello world"}, {"text": "bar"}],
on_bad_vectors="null",
)
assert len(table) == 2
tbl = table.to_arrow()
assert tbl["vector"].null_count == 1
def test_with_existing_vectors(tmp_path):

View File

@@ -1,21 +1,9 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
import unittest.mock as mock
from datetime import timedelta
from typing import Optional
import lance
import lancedb
from lancedb.index import IvfPq
import numpy as np
@@ -23,41 +11,15 @@ import pandas.testing as tm
import pyarrow as pa
import pytest
import pytest_asyncio
from lancedb.db import LanceDBConnection
from lancedb.pydantic import LanceModel, Vector
from lancedb.query import AsyncQueryBase, LanceVectorQueryBuilder, Query
from lancedb.table import AsyncTable, LanceTable
class MockTable:
def __init__(self, tmp_path):
self.uri = tmp_path
self._conn = LanceDBConnection(self.uri)
def to_lance(self):
return lance.dataset(self.uri)
def _execute_query(self, query, batch_size: Optional[int] = None):
ds = self.to_lance()
return ds.scanner(
columns=query.columns,
filter=query.filter,
prefilter=query.prefilter,
nearest={
"column": query.vector_column,
"q": query.vector,
"k": query.k,
"metric": query.metric,
"nprobes": query.nprobes,
"refine_factor": query.refine_factor,
},
batch_size=batch_size,
offset=query.offset,
).to_reader()
@pytest.fixture
def table(tmp_path) -> MockTable:
@pytest.fixture(scope="module")
def table(tmpdir_factory) -> lancedb.table.Table:
tmp_path = str(tmpdir_factory.mktemp("data"))
db = lancedb.connect(tmp_path)
df = pa.table(
{
"vector": pa.array(
@@ -68,8 +30,7 @@ def table(tmp_path) -> MockTable:
"float_field": pa.array([1.0, 2.0]),
}
)
lance.write_dataset(df, tmp_path)
return MockTable(tmp_path)
return db.create_table("test", df)
@pytest_asyncio.fixture
@@ -126,6 +87,12 @@ def test_query_builder(table):
assert all(np.array(rs[0]["vector"]) == [1, 2])
def test_with_row_id(table: lancedb.table.Table):
rs = table.search().with_row_id(True).to_arrow()
assert "_rowid" in rs.column_names
assert rs["_rowid"].to_pylist() == [0, 1]
def test_vector_query_with_no_limit(table):
with pytest.raises(ValueError):
LanceVectorQueryBuilder(table, [0, 0], "vector").limit(0).select(
@@ -365,6 +332,12 @@ async def test_query_to_pandas_async(table_async: AsyncTable):
assert df.shape == (0, 4)
@pytest.mark.asyncio
async def test_none_query(table_async: AsyncTable):
with pytest.raises(ValueError):
await table_async.query().nearest_to(None).to_arrow()
@pytest.mark.asyncio
async def test_fast_search_async(tmp_path):
db = await lancedb.connect_async(tmp_path)

View File

@@ -103,6 +103,47 @@ async def test_async_remote_db():
assert table_names == []
@pytest.mark.asyncio
async def test_async_checkout():
def handler(request):
if request.path == "/v1/table/test/describe/":
request.send_response(200)
request.send_header("Content-Type", "application/json")
request.end_headers()
response = json.dumps({"version": 42, "schema": {"fields": []}})
request.wfile.write(response.encode())
return
content_len = int(request.headers.get("Content-Length"))
body = request.rfile.read(content_len)
body = json.loads(body)
print("body is", body)
count = 0
if body["version"] == 1:
count = 100
elif body["version"] == 2:
count = 200
elif body["version"] is None:
count = 300
request.send_response(200)
request.send_header("Content-Type", "application/json")
request.end_headers()
request.wfile.write(json.dumps(count).encode())
async with mock_lancedb_connection_async(handler) as db:
table = await db.open_table("test")
assert await table.count_rows() == 300
await table.checkout(1)
assert await table.count_rows() == 100
await table.checkout(2)
assert await table.count_rows() == 200
await table.checkout_latest()
assert await table.count_rows() == 300
@pytest.mark.asyncio
async def test_http_error():
request_id_holder = {"request_id": None}
@@ -185,8 +226,10 @@ def test_query_sync_minimal():
"k": 10,
"prefilter": False,
"refine_factor": None,
"ef": None,
"vector": [1.0, 2.0, 3.0],
"nprobes": 20,
"version": None,
}
return pa.table({"id": [1, 2, 3]})
@@ -204,6 +247,7 @@ def test_query_sync_empty_query():
"filter": "true",
"vector": [],
"columns": ["id"],
"version": None,
}
return pa.table({"id": [1, 2, 3]})
@@ -223,11 +267,13 @@ def test_query_sync_maximal():
"refine_factor": 10,
"vector": [1.0, 2.0, 3.0],
"nprobes": 5,
"ef": None,
"filter": "id > 0",
"columns": ["id", "name"],
"vector_column": "vector2",
"fast_search": True,
"with_row_id": True,
"version": None,
}
return pa.table({"id": [1, 2, 3], "name": ["a", "b", "c"]})
@@ -266,6 +312,7 @@ def test_query_sync_fts():
},
"k": 10,
"vector": [],
"version": None,
}
return pa.table({"id": [1, 2, 3]})
@@ -282,6 +329,7 @@ def test_query_sync_fts():
"k": 42,
"vector": [],
"with_row_id": True,
"version": None,
}
return pa.table({"id": [1, 2, 3]})
@@ -307,6 +355,7 @@ def test_query_sync_hybrid():
"k": 42,
"vector": [],
"with_row_id": True,
"version": None,
}
return pa.table({"_rowid": [1, 2, 3], "_score": [0.1, 0.2, 0.3]})
else:
@@ -318,7 +367,9 @@ def test_query_sync_hybrid():
"refine_factor": None,
"vector": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
"nprobes": 20,
"ef": None,
"with_row_id": True,
"version": None,
}
return pa.table({"_rowid": [1, 2, 3], "_distance": [0.1, 0.2, 0.3]})

View File

@@ -240,6 +240,121 @@ def test_add(db):
_add(table, schema)
def test_add_subschema(tmp_path):
db = lancedb.connect(tmp_path)
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
pa.field("item", pa.string(), nullable=True),
pa.field("price", pa.float64(), nullable=False),
]
)
table = db.create_table("test", schema=schema)
data = {"price": 10.0, "item": "foo"}
table.add([data])
data = {"price": 2.0, "vector": [3.1, 4.1]}
table.add([data])
data = {"price": 3.0, "vector": [5.9, 26.5], "item": "bar"}
table.add([data])
expected = pa.table(
{
"vector": [None, [3.1, 4.1], [5.9, 26.5]],
"item": ["foo", None, "bar"],
"price": [10.0, 2.0, 3.0],
},
schema=schema,
)
assert table.to_arrow() == expected
data = {"item": "foo"}
# We can't omit a column if it's not nullable
with pytest.raises(OSError, match="Invalid user input"):
table.add([data])
# We can add it if we make the column nullable
table.alter_columns(dict(path="price", nullable=True))
table.add([data])
expected_schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
pa.field("item", pa.string(), nullable=True),
pa.field("price", pa.float64(), nullable=True),
]
)
expected = pa.table(
{
"vector": [None, [3.1, 4.1], [5.9, 26.5], None],
"item": ["foo", None, "bar", "foo"],
"price": [10.0, 2.0, 3.0, None],
},
schema=expected_schema,
)
assert table.to_arrow() == expected
def test_add_nullability(tmp_path):
db = lancedb.connect(tmp_path)
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2), nullable=False),
pa.field("id", pa.string(), nullable=False),
]
)
table = db.create_table("test", schema=schema)
nullable_schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
pa.field("id", pa.string(), nullable=True),
]
)
data = pa.table(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"id": ["foo", "bar"],
},
schema=nullable_schema,
)
# We can add nullable schema if it doesn't actually contain nulls
table.add(data)
expected = data.cast(schema)
assert table.to_arrow() == expected
data = pa.table(
{
"vector": [None],
"id": ["baz"],
},
schema=nullable_schema,
)
# We can't add nullable schema if it contains nulls
with pytest.raises(Exception, match="Vector column vector has NaNs"):
table.add(data)
# But we can make it nullable
table.alter_columns(dict(path="vector", nullable=True))
table.add(data)
expected_schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
pa.field("id", pa.string(), nullable=False),
]
)
expected = pa.table(
{
"vector": [[3.1, 4.1], [5.9, 26.5], None],
"id": ["foo", "bar", "baz"],
},
schema=expected_schema,
)
assert table.to_arrow() == expected
def test_add_pydantic_model(db):
# https://github.com/lancedb/lancedb/issues/562

View File

@@ -195,6 +195,10 @@ impl VectorQuery {
self.inner = self.inner.clone().nprobes(nprobe as usize);
}
pub fn ef(&mut self, ef: u32) {
self.inner = self.inner.clone().ef(ef as usize);
}
pub fn bypass_vector_index(&mut self) {
self.inner = self.inner.clone().bypass_vector_index()
}

View File

@@ -8,7 +8,7 @@ use lancedb::table::{
use pyo3::{
exceptions::{PyRuntimeError, PyValueError},
pyclass, pymethods,
types::{PyDict, PyDictMethods, PyString},
types::{IntoPyDict, PyDict, PyDictMethods, PyString},
Bound, FromPyObject, PyAny, PyRef, PyResult, Python, ToPyObject,
};
use pyo3_asyncio_0_21::tokio::future_into_py;
@@ -246,6 +246,33 @@ impl Table {
)
}
pub fn list_versions(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner_ref()?.clone();
future_into_py(self_.py(), async move {
let versions = inner.list_versions().await.infer_error()?;
let versions_as_dict = Python::with_gil(|py| {
versions
.iter()
.map(|v| {
let dict = PyDict::new_bound(py);
dict.set_item("version", v.version).unwrap();
dict.set_item(
"timestamp",
v.timestamp.timestamp_nanos_opt().unwrap_or_default(),
)
.unwrap();
let tup: Vec<(&String, &String)> = v.metadata.iter().collect();
dict.set_item("metadata", tup.into_py_dict(py)).unwrap();
dict.to_object(py)
})
.collect::<Vec<_>>()
});
Ok(versions_as_dict)
})
}
pub fn checkout(self_: PyRef<'_, Self>, version: u64) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner_ref()?.clone();
future_into_py(self_.py(), async move {

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-node"
version = "0.13.0-beta.1"
version = "0.13.0"
description = "Serverless, low-latency vector database for AI applications"
license.workspace = true
edition.workspace = true

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb"
version = "0.13.0-beta.1"
version = "0.13.0"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true
@@ -46,10 +46,18 @@ serde = { version = "^1" }
serde_json = { version = "1" }
async-openai = { version = "0.20.0", optional = true }
serde_with = { version = "3.8.1" }
aws-sdk-bedrockruntime = { version = "1.27.0", optional = true }
# For remote feature
reqwest = { version = "0.12.0", features = ["gzip", "json", "stream"], optional = true }
rand = { version = "0.8.3", features = ["small_rng"], optional = true}
http = { version = "1", optional = true } # Matching what is in reqwest
reqwest = { version = "0.12.0", default-features = false, features = [
"charset",
"gzip",
"http2",
"json",
"macos-system-configuration",
"stream",
], optional = true }
rand = { version = "0.8.3", features = ["small_rng"], optional = true }
http = { version = "1", optional = true } # Matching what is in reqwest
uuid = { version = "1.7.0", features = ["v4"], optional = true }
polars-arrow = { version = ">=0.37,<0.40.0", optional = true }
polars = { version = ">=0.37,<0.40.0", optional = true }
@@ -72,11 +80,13 @@ aws-config = { version = "1.0" }
aws-smithy-runtime = { version = "1.3" }
http-body = "1" # Matching reqwest
[features]
default = []
default = ["default-tls"]
remote = ["dep:reqwest", "dep:http", "dep:rand", "dep:uuid"]
fp16kernels = ["lance-linalg/fp16kernels"]
s3-test = []
bedrock = ["dep:aws-sdk-bedrockruntime"]
openai = ["dep:async-openai", "dep:reqwest"]
polars = ["dep:polars-arrow", "dep:polars"]
sentence-transformers = [
@@ -87,6 +97,11 @@ sentence-transformers = [
"dep:tokenizers"
]
# TLS
default-tls = ["reqwest?/default-tls"]
native-tls = ["reqwest?/native-tls"]
rustls-tls = ["reqwest?/rustls-tls"]
[[example]]
name = "openai"
required-features = ["openai"]
@@ -94,3 +109,7 @@ required-features = ["openai"]
[[example]]
name = "sentence_transformers"
required-features = ["sentence-transformers"]
[[example]]
name = "bedrock"
required-features = ["bedrock"]

View File

@@ -0,0 +1,89 @@
use std::{iter::once, sync::Arc};
use arrow_array::{Float64Array, Int32Array, RecordBatch, RecordBatchIterator, StringArray};
use arrow_schema::{DataType, Field, Schema};
use aws_config::Region;
use aws_sdk_bedrockruntime::Client;
use futures::StreamExt;
use lancedb::{
arrow::IntoArrow,
connect,
embeddings::{bedrock::BedrockEmbeddingFunction, EmbeddingDefinition, EmbeddingFunction},
query::{ExecutableQuery, QueryBase},
Result,
};
#[tokio::main]
async fn main() -> Result<()> {
let tempdir = tempfile::tempdir().unwrap();
let tempdir = tempdir.path().to_str().unwrap();
// create Bedrock embedding function
let region: String = "us-east-1".to_string();
let config = aws_config::defaults(aws_config::BehaviorVersion::latest())
.region(Region::new(region))
.load()
.await;
let embedding = Arc::new(BedrockEmbeddingFunction::new(
Client::new(&config), // AWS Region
));
let db = connect(tempdir).execute().await?;
db.embedding_registry()
.register("bedrock", embedding.clone())?;
let table = db
.create_table("vectors", make_data())
.add_embedding(EmbeddingDefinition::new(
"text",
"bedrock",
Some("embeddings"),
))?
.execute()
.await?;
// execute vector search
let query = Arc::new(StringArray::from_iter_values(once("something warm")));
let query_vector = embedding.compute_query_embeddings(query)?;
let mut results = table
.vector_search(query_vector)?
.limit(1)
.execute()
.await?;
let rb = results.next().await.unwrap()?;
let out = rb
.column_by_name("text")
.unwrap()
.as_any()
.downcast_ref::<StringArray>()
.unwrap();
let text = out.iter().next().unwrap().unwrap();
println!("Closest match: {}", text);
Ok(())
}
fn make_data() -> impl IntoArrow {
let schema = Schema::new(vec![
Field::new("id", DataType::Int32, true),
Field::new("text", DataType::Utf8, false),
Field::new("price", DataType::Float64, false),
]);
let id = Int32Array::from(vec![1, 2, 3, 4]);
let text = StringArray::from_iter_values(vec![
"Black T-Shirt",
"Leather Jacket",
"Winter Parka",
"Hooded Sweatshirt",
]);
let price = Float64Array::from(vec![10.0, 50.0, 100.0, 30.0]);
let schema = Arc::new(schema);
let rb = RecordBatch::try_new(
schema.clone(),
vec![Arc::new(id), Arc::new(text), Arc::new(price)],
)
.unwrap();
Box::new(RecordBatchIterator::new(vec![Ok(rb)], schema))
}

View File

@@ -17,6 +17,9 @@ pub mod openai;
#[cfg(feature = "sentence-transformers")]
pub mod sentence_transformers;
#[cfg(feature = "bedrock")]
pub mod bedrock;
use lance::arrow::RecordBatchExt;
use std::{
borrow::Cow,

View File

@@ -0,0 +1,210 @@
use aws_sdk_bedrockruntime::Client as BedrockClient;
use std::{borrow::Cow, fmt::Formatter, str::FromStr, sync::Arc};
use arrow::array::{AsArray, Float32Builder};
use arrow_array::{Array, ArrayRef, FixedSizeListArray, Float32Array};
use arrow_data::ArrayData;
use arrow_schema::DataType;
use serde_json::{json, Value};
use super::EmbeddingFunction;
use crate::{Error, Result};
use tokio::runtime::Handle;
use tokio::task::block_in_place;
#[derive(Debug)]
pub enum BedrockEmbeddingModel {
TitanEmbedding,
CohereLarge,
}
impl BedrockEmbeddingModel {
fn ndims(&self) -> usize {
match self {
Self::TitanEmbedding => 1536,
Self::CohereLarge => 1024,
}
}
fn model_id(&self) -> &str {
match self {
Self::TitanEmbedding => "amazon.titan-embed-text-v1",
Self::CohereLarge => "cohere.embed-english-v3",
}
}
}
impl FromStr for BedrockEmbeddingModel {
type Err = Error;
fn from_str(s: &str) -> std::result::Result<Self, Self::Err> {
match s {
"titan-embed-text-v1" => Ok(Self::TitanEmbedding),
"cohere-embed-english-v3" => Ok(Self::CohereLarge),
_ => Err(Error::InvalidInput {
message: "Invalid model. Available models are: 'titan-embed-text-v1', 'cohere-embed-english-v3'".to_string()
}),
}
}
}
pub struct BedrockEmbeddingFunction {
model: BedrockEmbeddingModel,
client: BedrockClient,
}
impl BedrockEmbeddingFunction {
pub fn new(client: BedrockClient) -> Self {
Self {
model: BedrockEmbeddingModel::TitanEmbedding,
client,
}
}
pub fn with_model(client: BedrockClient, model: BedrockEmbeddingModel) -> Self {
Self { model, client }
}
}
impl EmbeddingFunction for BedrockEmbeddingFunction {
fn name(&self) -> &str {
"bedrock"
}
fn source_type(&self) -> Result<Cow<DataType>> {
Ok(Cow::Owned(DataType::Utf8))
}
fn dest_type(&self) -> Result<Cow<DataType>> {
let n_dims = self.model.ndims();
Ok(Cow::Owned(DataType::new_fixed_size_list(
DataType::Float32,
n_dims as i32,
false,
)))
}
fn compute_source_embeddings(&self, source: ArrayRef) -> Result<ArrayRef> {
let len = source.len();
let n_dims = self.model.ndims();
let inner = self.compute_inner(source)?;
let fsl = DataType::new_fixed_size_list(DataType::Float32, n_dims as i32, false);
let array_data = ArrayData::builder(fsl)
.len(len)
.add_child_data(inner.into_data())
.build()?;
Ok(Arc::new(FixedSizeListArray::from(array_data)))
}
fn compute_query_embeddings(&self, input: Arc<dyn Array>) -> Result<Arc<dyn Array>> {
let arr = self.compute_inner(input)?;
Ok(Arc::new(arr))
}
}
impl std::fmt::Debug for BedrockEmbeddingFunction {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_struct("BedrockEmbeddingFunction")
.field("model", &self.model)
// Skip client field as it doesn't implement Debug
.finish()
}
}
impl BedrockEmbeddingFunction {
fn compute_inner(&self, source: Arc<dyn Array>) -> Result<Float32Array> {
if source.is_nullable() {
return Err(Error::InvalidInput {
message: "Expected non-nullable data type".to_string(),
});
}
if !matches!(source.data_type(), DataType::Utf8 | DataType::LargeUtf8) {
return Err(Error::InvalidInput {
message: "Expected Utf8 data type".to_string(),
});
}
let mut builder = Float32Builder::new();
let texts = match source.data_type() {
DataType::Utf8 => source
.as_string::<i32>()
.into_iter()
.map(|s| s.expect("array is non-nullable").to_string())
.collect::<Vec<String>>(),
DataType::LargeUtf8 => source
.as_string::<i64>()
.into_iter()
.map(|s| s.expect("array is non-nullable").to_string())
.collect::<Vec<String>>(),
_ => unreachable!(),
};
for text in texts {
let request_body = match self.model {
BedrockEmbeddingModel::TitanEmbedding => {
json!({
"inputText": text
})
}
BedrockEmbeddingModel::CohereLarge => {
json!({
"texts": [text],
"input_type": "search_document"
})
}
};
let client = self.client.clone();
let model_id = self.model.model_id().to_string();
let request_body = request_body.clone();
let response = block_in_place(move || {
Handle::current().block_on(async move {
client
.invoke_model()
.model_id(model_id)
.body(aws_sdk_bedrockruntime::primitives::Blob::new(
serde_json::to_vec(&request_body).unwrap(),
))
.send()
.await
})
})
.unwrap();
let response_json: Value =
serde_json::from_slice(response.body.as_ref()).map_err(|e| Error::Runtime {
message: format!("Failed to parse response: {}", e),
})?;
let embedding = match self.model {
BedrockEmbeddingModel::TitanEmbedding => response_json["embedding"]
.as_array()
.ok_or_else(|| Error::Runtime {
message: "Missing embedding in response".to_string(),
})?
.iter()
.map(|v| v.as_f64().unwrap() as f32)
.collect::<Vec<f32>>(),
BedrockEmbeddingModel::CohereLarge => response_json["embeddings"][0]
.as_array()
.ok_or_else(|| Error::Runtime {
message: "Missing embeddings in response".to_string(),
})?
.iter()
.map(|v| v.as_f64().unwrap() as f32)
.collect::<Vec<f32>>(),
};
builder.append_slice(&embedding);
}
Ok(builder.finish())
}
}

View File

@@ -704,6 +704,9 @@ pub struct VectorQuery {
// IVF PQ - ANN search.
pub(crate) query_vector: Vec<Arc<dyn Array>>,
pub(crate) nprobes: usize,
// The number of candidates to return during the refine step for HNSW,
// defaults to 1.5 * limit.
pub(crate) ef: Option<usize>,
pub(crate) refine_factor: Option<u32>,
pub(crate) distance_type: Option<DistanceType>,
/// Default is true. Set to false to enforce a brute force search.
@@ -717,6 +720,7 @@ impl VectorQuery {
column: None,
query_vector: Vec::new(),
nprobes: 20,
ef: None,
refine_factor: None,
distance_type: None,
use_index: true,
@@ -776,6 +780,18 @@ impl VectorQuery {
self
}
/// Set the number of candidates to return during the refine step for HNSW
///
/// This argument is only used when the vector column has an HNSW index.
/// If there is no index then this value is ignored.
///
/// Increasing this value will increase the recall of your query but will
/// also increase the latency of your query. The default value is 1.5*limit.
pub fn ef(mut self, ef: usize) -> Self {
self.ef = Some(ef);
self
}
/// A multiplier to control how many additional rows are taken during the refine step
///
/// This argument is only used when the vector column has an IVF PQ index.

View File

@@ -19,9 +19,10 @@ use http::header::CONTENT_TYPE;
use http::StatusCode;
use lance::arrow::json::JsonSchema;
use lance::dataset::scanner::DatasetRecordBatchStream;
use lance::dataset::{ColumnAlteration, NewColumnTransform};
use lance::dataset::{ColumnAlteration, NewColumnTransform, Version};
use lance_datafusion::exec::OneShotExec;
use serde::{Deserialize, Serialize};
use tokio::sync::RwLock;
use crate::{
connection::NoData,
@@ -43,17 +44,32 @@ pub struct RemoteTable<S: HttpSend = Sender> {
#[allow(dead_code)]
client: RestfulLanceDbClient<S>,
name: String,
version: RwLock<Option<u64>>,
}
impl<S: HttpSend> RemoteTable<S> {
pub fn new(client: RestfulLanceDbClient<S>, name: String) -> Self {
Self { client, name }
Self {
client,
name,
version: RwLock::new(None),
}
}
async fn describe(&self) -> Result<TableDescription> {
let request = self
let version = self.current_version().await;
self.describe_version(version).await
}
async fn describe_version(&self, version: Option<u64>) -> Result<TableDescription> {
let mut request = self
.client
.post(&format!("/v1/table/{}/describe/", self.name));
let body = serde_json::json!({ "version": version });
request = request.json(&body);
let (request_id, response) = self.client.send(request, true).await?;
let response = self.check_table_response(&request_id, response).await?;
@@ -196,6 +212,7 @@ impl<S: HttpSend> RemoteTable<S> {
body["prefilter"] = query.base.prefilter.into();
body["distance_type"] = serde_json::json!(query.distance_type.unwrap_or_default());
body["nprobes"] = query.nprobes.into();
body["ef"] = query.ef.into();
body["refine_factor"] = query.refine_factor.into();
if let Some(vector_column) = query.column.as_ref() {
body["vector_column"] = serde_json::Value::String(vector_column.clone());
@@ -250,6 +267,24 @@ impl<S: HttpSend> RemoteTable<S> {
}
}
}
async fn check_mutable(&self) -> Result<()> {
let read_guard = self.version.read().await;
match *read_guard {
None => Ok(()),
Some(version) => Err(Error::NotSupported {
message: format!(
"Cannot mutate table reference fixed at version {}. Call checkout_latest() to get a mutable table reference.",
version
)
})
}
}
async fn current_version(&self) -> Option<u64> {
let read_guard = self.version.read().await;
*read_guard
}
}
#[derive(Deserialize)]
@@ -277,7 +312,11 @@ mod test_utils {
T: Into<reqwest::Body>,
{
let client = client_with_handler(handler);
Self { client, name }
Self {
client,
name,
version: RwLock::new(None),
}
}
}
}
@@ -296,21 +335,62 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
async fn version(&self) -> Result<u64> {
self.describe().await.map(|desc| desc.version)
}
async fn checkout(&self, _version: u64) -> Result<()> {
Err(Error::NotSupported {
message: "checkout is not supported on LanceDB cloud.".into(),
})
async fn checkout(&self, version: u64) -> Result<()> {
// check that the version exists
self.describe_version(Some(version))
.await
.map_err(|e| match e {
// try to map the error to a more user-friendly error telling them
// specifically that the version does not exist
Error::TableNotFound { name } => Error::TableNotFound {
name: format!("{} (version: {})", name, version),
},
e => e,
})?;
let mut write_guard = self.version.write().await;
*write_guard = Some(version);
Ok(())
}
async fn checkout_latest(&self) -> Result<()> {
Err(Error::NotSupported {
message: "checkout is not supported on LanceDB cloud.".into(),
})
let mut write_guard = self.version.write().await;
*write_guard = None;
Ok(())
}
async fn restore(&self) -> Result<()> {
self.check_mutable().await?;
Err(Error::NotSupported {
message: "restore is not supported on LanceDB cloud.".into(),
})
}
async fn list_versions(&self) -> Result<Vec<Version>> {
let request = self
.client
.post(&format!("/v1/table/{}/version/list/", self.name));
let (request_id, response) = self.client.send(request, true).await?;
let response = self.check_table_response(&request_id, response).await?;
#[derive(Deserialize)]
struct ListVersionsResponse {
versions: Vec<Version>,
}
let body = response.text().await.err_to_http(request_id.clone())?;
let body: ListVersionsResponse =
serde_json::from_str(&body).map_err(|err| Error::Http {
source: format!(
"Failed to parse list_versions response: {}, body: {}",
err, body
)
.into(),
request_id,
status_code: None,
})?;
Ok(body.versions)
}
async fn schema(&self) -> Result<SchemaRef> {
let schema = self.describe().await?.schema;
Ok(Arc::new(schema.try_into()?))
@@ -320,10 +400,13 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
.client
.post(&format!("/v1/table/{}/count_rows/", self.name));
let version = self.current_version().await;
if let Some(filter) = filter {
request = request.json(&serde_json::json!({ "predicate": filter }));
request = request.json(&serde_json::json!({ "predicate": filter, "version": version }));
} else {
request = request.json(&serde_json::json!({}));
let body = serde_json::json!({ "version": version });
request = request.json(&body);
}
let (request_id, response) = self.client.send(request, true).await?;
@@ -343,6 +426,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
add: AddDataBuilder<NoData>,
data: Box<dyn RecordBatchReader + Send>,
) -> Result<()> {
self.check_mutable().await?;
let body = Self::reader_as_body(data)?;
let mut request = self
.client
@@ -371,7 +455,8 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
) -> Result<Arc<dyn ExecutionPlan>> {
let request = self.client.post(&format!("/v1/table/{}/query/", self.name));
let body = serde_json::Value::Object(Default::default());
let version = self.current_version().await;
let body = serde_json::json!({ "version": version });
let bodies = Self::apply_vector_query_params(body, query)?;
let mut futures = Vec::with_capacity(bodies.len());
@@ -406,7 +491,8 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
.post(&format!("/v1/table/{}/query/", self.name))
.header(CONTENT_TYPE, JSON_CONTENT_TYPE);
let mut body = serde_json::Value::Object(Default::default());
let version = self.current_version().await;
let mut body = serde_json::json!({ "version": version });
Self::apply_query_params(&mut body, query)?;
// Empty vector can be passed if no vector search is performed.
body["vector"] = serde_json::Value::Array(Vec::new());
@@ -420,6 +506,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
Ok(DatasetRecordBatchStream::new(stream))
}
async fn update(&self, update: UpdateBuilder) -> Result<u64> {
self.check_mutable().await?;
let request = self
.client
.post(&format!("/v1/table/{}/update/", self.name));
@@ -441,6 +528,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
Ok(0) // TODO: support returning number of modified rows once supported in SaaS.
}
async fn delete(&self, predicate: &str) -> Result<()> {
self.check_mutable().await?;
let body = serde_json::json!({ "predicate": predicate });
let request = self
.client
@@ -452,6 +540,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
}
async fn create_index(&self, mut index: IndexBuilder) -> Result<()> {
self.check_mutable().await?;
let request = self
.client
.post(&format!("/v1/table/{}/create_index/", self.name));
@@ -530,6 +619,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
params: MergeInsertBuilder,
new_data: Box<dyn RecordBatchReader + Send>,
) -> Result<()> {
self.check_mutable().await?;
let query = MergeInsertRequest::try_from(params)?;
let body = Self::reader_as_body(new_data)?;
let request = self
@@ -546,6 +636,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
Ok(())
}
async fn optimize(&self, _action: OptimizeAction) -> Result<OptimizeStats> {
self.check_mutable().await?;
Err(Error::NotSupported {
message: "optimize is not supported on LanceDB cloud.".into(),
})
@@ -555,16 +646,19 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
_transforms: NewColumnTransform,
_read_columns: Option<Vec<String>>,
) -> Result<()> {
self.check_mutable().await?;
Err(Error::NotSupported {
message: "add_columns is not yet supported.".into(),
})
}
async fn alter_columns(&self, _alterations: &[ColumnAlteration]) -> Result<()> {
self.check_mutable().await?;
Err(Error::NotSupported {
message: "alter_columns is not yet supported.".into(),
})
}
async fn drop_columns(&self, _columns: &[&str]) -> Result<()> {
self.check_mutable().await?;
Err(Error::NotSupported {
message: "drop_columns is not yet supported.".into(),
})
@@ -572,9 +666,13 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
async fn list_indices(&self) -> Result<Vec<IndexConfig>> {
// Make request to list the indices
let request = self
let mut request = self
.client
.post(&format!("/v1/table/{}/index/list/", self.name));
let version = self.current_version().await;
let body = serde_json::json!({ "version": version });
request = request.json(&body);
let (request_id, response) = self.client.send(request, true).await?;
let response = self.check_table_response(&request_id, response).await?;
@@ -624,10 +722,14 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
}
async fn index_stats(&self, index_name: &str) -> Result<Option<IndexStatistics>> {
let request = self.client.post(&format!(
let mut request = self.client.post(&format!(
"/v1/table/{}/index/{}/stats/",
self.name, index_name
));
let version = self.current_version().await;
let body = serde_json::json!({ "version": version });
request = request.json(&body);
let (request_id, response) = self.client.send(request, true).await?;
if response.status() == StatusCode::NOT_FOUND {
@@ -701,6 +803,7 @@ mod tests {
use arrow::{array::AsArray, compute::concat_batches, datatypes::Int32Type};
use arrow_array::{Int32Array, RecordBatch, RecordBatchIterator};
use arrow_schema::{DataType, Field, Schema};
use chrono::{DateTime, Utc};
use futures::{future::BoxFuture, StreamExt, TryFutureExt};
use lance_index::scalar::FullTextSearchQuery;
use reqwest::Body;
@@ -805,7 +908,10 @@ mod tests {
request.headers().get("Content-Type").unwrap(),
JSON_CONTENT_TYPE
);
assert_eq!(request.body().unwrap().as_bytes().unwrap(), br#"{}"#);
assert_eq!(
request.body().unwrap().as_bytes().unwrap(),
br#"{"version":null}"#
);
http::Response::builder().status(200).body("42").unwrap()
});
@@ -822,7 +928,7 @@ mod tests {
);
assert_eq!(
request.body().unwrap().as_bytes().unwrap(),
br#"{"predicate":"a > 10"}"#
br#"{"predicate":"a > 10","version":null}"#
);
http::Response::builder().status(200).body("42").unwrap()
@@ -1121,7 +1227,9 @@ mod tests {
"prefilter": true,
"distance_type": "l2",
"nprobes": 20,
"ef": Option::<usize>::None,
"refine_factor": null,
"version": null,
});
// Pass vector separately to make sure it matches f32 precision.
expected_body["vector"] = vec![0.1f32, 0.2, 0.3].into();
@@ -1166,7 +1274,9 @@ mod tests {
"bypass_vector_index": true,
"columns": ["a", "b"],
"nprobes": 12,
"ef": Option::<usize>::None,
"refine_factor": 2,
"version": null,
});
// Pass vector separately to make sure it matches f32 precision.
expected_body["vector"] = vec![0.1f32, 0.2, 0.3].into();
@@ -1222,6 +1332,7 @@ mod tests {
"k": 10,
"vector": [],
"with_row_id": true,
"version": null
});
assert_eq!(body, expected_body);
@@ -1407,6 +1518,51 @@ mod tests {
assert_eq!(indices, expected);
}
#[tokio::test]
async fn test_list_versions() {
let table = Table::new_with_handler("my_table", |request| {
assert_eq!(request.method(), "POST");
assert_eq!(request.url().path(), "/v1/table/my_table/version/list/");
let version1 = lance::dataset::Version {
version: 1,
timestamp: "2024-01-01T00:00:00Z".parse().unwrap(),
metadata: Default::default(),
};
let version2 = lance::dataset::Version {
version: 2,
timestamp: "2024-02-01T00:00:00Z".parse().unwrap(),
metadata: Default::default(),
};
let response_body = serde_json::json!({
"versions": [
version1,
version2,
]
});
let response_body = serde_json::to_string(&response_body).unwrap();
http::Response::builder()
.status(200)
.body(response_body)
.unwrap()
});
let versions = table.list_versions().await.unwrap();
assert_eq!(versions.len(), 2);
assert_eq!(versions[0].version, 1);
assert_eq!(
versions[0].timestamp,
"2024-01-01T00:00:00Z".parse::<DateTime<Utc>>().unwrap()
);
assert_eq!(versions[1].version, 2);
assert_eq!(
versions[1].timestamp,
"2024-02-01T00:00:00Z".parse::<DateTime<Utc>>().unwrap()
);
// assert_eq!(versions, expected);
}
#[tokio::test]
async fn test_index_stats() {
let table = Table::new_with_handler("my_table", |request| {
@@ -1451,4 +1607,195 @@ mod tests {
let indices = table.index_stats("my_index").await.unwrap();
assert!(indices.is_none());
}
#[tokio::test]
async fn test_passes_version() {
let table = Table::new_with_handler("my_table", |request| {
let body = request.body().unwrap().as_bytes().unwrap();
let body: serde_json::Value = serde_json::from_slice(body).unwrap();
let version = body
.as_object()
.unwrap()
.get("version")
.unwrap()
.as_u64()
.unwrap();
assert_eq!(version, 42);
let response_body = match request.url().path() {
"/v1/table/my_table/describe/" => {
serde_json::json!({
"version": 42,
"schema": { "fields": [] }
})
}
"/v1/table/my_table/index/list/" => {
serde_json::json!({
"indexes": []
})
}
"/v1/table/my_table/index/my_idx/stats/" => {
serde_json::json!({
"num_indexed_rows": 100000,
"num_unindexed_rows": 0,
"index_type": "IVF_PQ",
"distance_type": "l2"
})
}
"/v1/table/my_table/count_rows/" => {
serde_json::json!(1000)
}
"/v1/table/my_table/query/" => {
let expected_data = RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)])),
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
)
.unwrap();
let expected_data_ref = expected_data.clone();
let response_body = write_ipc_file(&expected_data_ref);
return http::Response::builder()
.status(200)
.header(CONTENT_TYPE, ARROW_FILE_CONTENT_TYPE)
.body(response_body)
.unwrap();
}
path => panic!("Unexpected path: {}", path),
};
http::Response::builder()
.status(200)
.body(
serde_json::to_string(&response_body)
.unwrap()
.as_bytes()
.to_vec(),
)
.unwrap()
});
table.checkout(42).await.unwrap();
// ensure that version is passed to the /describe endpoint
let version = table.version().await.unwrap();
assert_eq!(version, 42);
// ensure it's passed to other read API calls
table.list_indices().await.unwrap();
table.index_stats("my_idx").await.unwrap();
table.count_rows(None).await.unwrap();
table
.query()
.nearest_to(vec![0.1, 0.2, 0.3])
.unwrap()
.execute()
.await
.unwrap();
}
#[tokio::test]
async fn test_fails_if_checkout_version_doesnt_exist() {
let table = Table::new_with_handler("my_table", |request| {
let body = request.body().unwrap().as_bytes().unwrap();
let body: serde_json::Value = serde_json::from_slice(body).unwrap();
let version = body
.as_object()
.unwrap()
.get("version")
.unwrap()
.as_u64()
.unwrap();
if version != 42 {
return http::Response::builder()
.status(404)
.body(format!("Table my_table (version: {}) not found", version))
.unwrap();
}
let response_body = match request.url().path() {
"/v1/table/my_table/describe/" => {
serde_json::json!({
"version": 42,
"schema": { "fields": [] }
})
}
_ => panic!("Unexpected path"),
};
http::Response::builder()
.status(200)
.body(serde_json::to_string(&response_body).unwrap())
.unwrap()
});
let res = table.checkout(43).await;
println!("{:?}", res);
assert!(
matches!(res, Err(Error::TableNotFound { name }) if name == "my_table (version: 43)")
);
}
#[tokio::test]
async fn test_timetravel_immutable() {
let table = Table::new_with_handler::<String>("my_table", |request| {
let response_body = match request.url().path() {
"/v1/table/my_table/describe/" => {
serde_json::json!({
"version": 42,
"schema": { "fields": [] }
})
}
_ => panic!("Should not have made a request: {:?}", request),
};
http::Response::builder()
.status(200)
.body(serde_json::to_string(&response_body).unwrap())
.unwrap()
});
table.checkout(42).await.unwrap();
// Ensure that all mutable operations fail.
let res = table
.update()
.column("a", "a + 1")
.column("b", "b - 1")
.only_if("b > 10")
.execute()
.await;
assert!(matches!(res, Err(Error::NotSupported { .. })));
let batch = RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)])),
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
)
.unwrap();
let data = Box::new(RecordBatchIterator::new(
[Ok(batch.clone())],
batch.schema(),
));
let res = table.merge_insert(&["some_col"]).execute(data).await;
assert!(matches!(res, Err(Error::NotSupported { .. })));
let res = table.delete("id in (1, 2, 3)").await;
assert!(matches!(res, Err(Error::NotSupported { .. })));
let data = RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)])),
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
)
.unwrap();
let res = table
.add(RecordBatchIterator::new([Ok(data.clone())], data.schema()))
.execute()
.await;
assert!(matches!(res, Err(Error::NotSupported { .. })));
let res = table
.create_index(&["a"], Index::IvfPq(Default::default()))
.execute()
.await;
assert!(matches!(res, Err(Error::NotSupported { .. })));
}
}

View File

@@ -37,7 +37,7 @@ pub use lance::dataset::ColumnAlteration;
pub use lance::dataset::NewColumnTransform;
pub use lance::dataset::ReadParams;
use lance::dataset::{
Dataset, UpdateBuilder as LanceUpdateBuilder, WhenMatched, WriteMode, WriteParams,
Dataset, UpdateBuilder as LanceUpdateBuilder, Version, WhenMatched, WriteMode, WriteParams,
};
use lance::dataset::{MergeInsertBuilder as LanceMergeInsertBuilder, WhenNotMatchedBySource};
use lance::io::WrappingObjectStore;
@@ -426,6 +426,7 @@ pub(crate) trait TableInternal: std::fmt::Display + std::fmt::Debug + Send + Syn
async fn checkout(&self, version: u64) -> Result<()>;
async fn checkout_latest(&self) -> Result<()>;
async fn restore(&self) -> Result<()>;
async fn list_versions(&self) -> Result<Vec<Version>>;
async fn table_definition(&self) -> Result<TableDefinition>;
fn dataset_uri(&self) -> &str;
}
@@ -955,6 +956,11 @@ impl Table {
self.inner.restore().await
}
/// List all the versions of the table
pub async fn list_versions(&self) -> Result<Vec<Version>> {
self.inner.list_versions().await
}
/// List all indices that have been created with [`Self::create_index`]
pub async fn list_indices(&self) -> Result<Vec<IndexConfig>> {
self.inner.list_indices().await
@@ -1319,7 +1325,7 @@ impl NativeTable {
let (indices, mf) = futures::try_join!(dataset.load_indices(), dataset.latest_manifest())?;
Ok(indices
.iter()
.map(|i| VectorIndex::new_from_format(&mf, i))
.map(|i| VectorIndex::new_from_format(&(mf.0), i))
.collect())
}
@@ -1707,6 +1713,10 @@ impl TableInternal for NativeTable {
self.dataset.reload().await
}
async fn list_versions(&self) -> Result<Vec<Version>> {
Ok(self.dataset.get().await?.versions().await?)
}
async fn restore(&self) -> Result<()> {
let version =
self.dataset
@@ -1904,6 +1914,9 @@ impl TableInternal for NativeTable {
query.base.offset.map(|offset| offset as i64),
)?;
scanner.nprobs(query.nprobes);
if let Some(ef) = query.ef {
scanner.ef(ef);
}
scanner.use_index(query.use_index);
scanner.prefilter(query.base.prefilter);
match query.base.select {