Compare commits

..

11 Commits

64 changed files with 2219 additions and 7923 deletions

View File

@@ -31,7 +31,7 @@ jobs:
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
rustup update && rustup default
- name: Set up Python
uses: actions/setup-python@v5
with:
@@ -41,8 +41,8 @@ jobs:
- name: Build Python
working-directory: python
run: |
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r ../docs/requirements.txt
python -m pip install -e .
python -m pip install -r ../docs/requirements.txt
- name: Set up node
uses: actions/setup-node@v3
with:

View File

@@ -49,7 +49,7 @@ jobs:
- name: Build Python
working-directory: docs/test
run:
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r requirements.txt
python -m pip install -r requirements.txt
- name: Create test files
run: |
cd docs/test

View File

@@ -53,9 +53,6 @@ jobs:
cargo clippy --all --all-features -- -D warnings
npm ci
npm run lint-ci
- name: Lint examples
working-directory: nodejs/examples
run: npm ci && npm run lint-ci
linux:
name: Linux (NodeJS ${{ matrix.node-version }})
timeout-minutes: 30
@@ -94,19 +91,6 @@ jobs:
env:
S3_TEST: "1"
run: npm run test
- name: Setup examples
working-directory: nodejs/examples
run: npm ci
- name: Test examples
working-directory: ./
env:
OPENAI_API_KEY: test
OPENAI_BASE_URL: http://0.0.0.0:8000
run: |
python ci/mock_openai.py &
ss -ltnp | grep :8000
cd nodejs/examples
npm test
macos:
timeout-minutes: 30
runs-on: "macos-14"

View File

@@ -232,7 +232,21 @@ jobs:
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/checkout@v4
- name: Cache installations
id: cache-installs
uses: actions/cache@v4
with:
path: |
C:\Program Files\Git
C:\BuildTools
C:\Program Files (x86)\Windows Kits
C:\Program Files\7-Zip
C:\protoc
key: ${{ runner.os }}-arm64-installs-v1
restore-keys: |
${{ runner.os }}-arm64-installs-
- name: Install Git
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
@@ -249,6 +263,7 @@ jobs:
with:
python-version: "3.13"
- name: Install Visual Studio Build Tools
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
@@ -297,6 +312,7 @@ jobs:
with:
workspaces: rust
- name: Install 7-Zip ARM
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
New-Item -Path 'C:\7zip' -ItemType Directory
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
@@ -306,6 +322,7 @@ jobs:
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
shell: powershell
- name: Install Protoc v21.12
if: steps.cache-installs.outputs.cache-hit != 'true'
working-directory: C:\
run: |
if (Test-Path 'C:\protoc') {
@@ -369,7 +386,21 @@ jobs:
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/checkout@v4
- name: Cache installations
id: cache-installs
uses: actions/cache@v4
with:
path: |
C:\Program Files\Git
C:\BuildTools
C:\Program Files (x86)\Windows Kits
C:\Program Files\7-Zip
C:\protoc
key: ${{ runner.os }}-arm64-installs-v1
restore-keys: |
${{ runner.os }}-arm64-installs-
- name: Install Git
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
@@ -386,6 +417,7 @@ jobs:
with:
python-version: "3.13"
- name: Install Visual Studio Build Tools
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
@@ -424,6 +456,7 @@ jobs:
with:
workspaces: rust
- name: Install 7-Zip ARM
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
New-Item -Path 'C:\7zip' -ItemType Directory
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
@@ -433,6 +466,7 @@ jobs:
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
shell: powershell
- name: Install Protoc v21.12
if: steps.cache-installs.outputs.cache-hit != 'true'
working-directory: C:\
run: |
if (Test-Path 'C:\protoc') {

View File

@@ -138,7 +138,7 @@ jobs:
run: rm -rf target/wheels
windows:
name: "Windows: ${{ matrix.config.name }}"
timeout-minutes: 60
timeout-minutes: 30
strategy:
matrix:
config:

View File

@@ -50,7 +50,6 @@ jobs:
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --workspace --tests --all-features -- -D warnings
linux:
timeout-minutes: 30
# To build all features, we need more disk space than is available
@@ -92,7 +91,6 @@ jobs:
run: cargo test --all-features
- name: Run examples
run: cargo run --example simple
macos:
timeout-minutes: 30
strategy:
@@ -120,7 +118,6 @@ jobs:
- name: Run tests
# Run with everything except the integration tests.
run: cargo test --features remote,fp16kernels
windows:
runs-on: windows-2022
steps:
@@ -142,11 +139,24 @@ jobs:
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build
cargo test
windows-arm64:
runs-on: windows-4x-arm
steps:
- name: Cache installations
id: cache-installs
uses: actions/cache@v4
with:
path: |
C:\Program Files\Git
C:\BuildTools
C:\Program Files (x86)\Windows Kits
C:\Program Files\7-Zip
C:\protoc
key: ${{ runner.os }}-arm64-installs-v1
restore-keys: |
${{ runner.os }}-arm64-installs-
- name: Install Git
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
@@ -163,6 +173,7 @@ jobs:
with:
python-version: "3.13"
- name: Install Visual Studio Build Tools
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
@@ -206,10 +217,12 @@ jobs:
run: |
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
shell: powershell
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install 7-Zip ARM
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
New-Item -Path 'C:\7zip' -ItemType Directory
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
@@ -219,11 +232,12 @@ jobs:
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
shell: powershell
- name: Install Protoc v21.12
if: steps.cache-installs.outputs.cache-hit != 'true'
working-directory: C:\
run: |
if (Test-Path 'C:\protoc') {
Write-Host "Protoc directory exists, skipping installation"
return
Write-Host "Protoc directory exists, skipping installation"
return
}
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc

View File

@@ -21,15 +21,13 @@ categories = ["database-implementations"]
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
[workspace.dependencies]
lance = { "version" = "=0.19.2", "features" = [
"dynamodb",
], git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
lance-index = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
lance-linalg = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
lance-table = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
lance-testing = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
lance-datafusion = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
lance-encoding = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
lance = { "version" = "=0.19.2", "features" = ["dynamodb"], path = "../lance/rust/lance"}
lance-index = { "version" = "=0.19.2", path = "../lance/rust/lance-index"}
lance-linalg = { "version" = "=0.19.2", path = "../lance/rust/lance-linalg"}
lance-testing = { "version" = "=0.19.2", path = "../lance/rust/lance-testing"}
lance-datafusion = { "version" = "=0.19.2", path = "../lance/rust/lance-datafusion"}
lance-encoding = { "version" = "=0.19.2", path = "../lance/rust/lance-encoding"}
lance-table = { "version" = "=0.19.2", path = "../lance/rust/lance-table"}
# Note that this one does not include pyarrow
arrow = { version = "52.2", optional = false }
arrow-array = "52.2"

View File

@@ -1,57 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
"""A zero-dependency mock OpenAI embeddings API endpoint for testing purposes."""
import argparse
import json
import http.server
class MockOpenAIRequestHandler(http.server.BaseHTTPRequestHandler):
def do_POST(self):
content_length = int(self.headers["Content-Length"])
post_data = self.rfile.read(content_length)
post_data = json.loads(post_data.decode("utf-8"))
# See: https://platform.openai.com/docs/api-reference/embeddings/create
if isinstance(post_data["input"], str):
num_inputs = 1
else:
num_inputs = len(post_data["input"])
model = post_data.get("model", "text-embedding-ada-002")
data = []
for i in range(num_inputs):
data.append({
"object": "embedding",
"embedding": [0.1] * 1536,
"index": i,
})
response = {
"object": "list",
"data": data,
"model": model,
"usage": {
"prompt_tokens": 0,
"total_tokens": 0,
}
}
self.send_response(200)
self.send_header("Content-type", "application/json")
self.end_headers()
self.wfile.write(json.dumps(response).encode("utf-8"))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Mock OpenAI embeddings API endpoint")
parser.add_argument("--port", type=int, default=8000, help="Port to listen on")
args = parser.parse_args()
port = args.port
print(f"server started on port {port}. Press Ctrl-C to stop.")
print(f"To use, set OPENAI_BASE_URL=http://localhost:{port} in your environment.")
with http.server.HTTPServer(("0.0.0.0", port), MockOpenAIRequestHandler) as server:
server.serve_forever()

View File

@@ -45,9 +45,9 @@ Lance supports `IVF_PQ` index type by default.
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
```typescript
--8<--- "nodejs/examples/ann_indexes.test.ts:import"
--8<--- "nodejs/examples/ann_indexes.ts:import"
--8<-- "nodejs/examples/ann_indexes.test.ts:ingest"
--8<-- "nodejs/examples/ann_indexes.ts:ingest"
```
=== "vectordb (deprecated)"
@@ -140,15 +140,13 @@ There are a couple of parameters that can be used to fine-tune the search:
- **limit** (default: 10): The amount of results that will be returned
- **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/>
Most of the time, setting nprobes to cover 5-15% of the dataset should achieve high recall with low latency.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, `nprobes` should be set to ~20-40. This value can be adjusted to achieve the optimal balance between search latency and search quality. <br/>
Most of the time, setting nprobes to cover 5-10% of the dataset should achieve high recall with low latency.<br/>
e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/>
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, setting the `refine_factor` to 200 will initially retrieve the top 4,000 candidates (top k * refine_factor) from all searched partitions. These candidates are then reranked to determine the final top 20 results.<br/>
!!! note
Both `nprobes` and `refine_factor` are only applicable if an ANN index is present. If specified on a table without an ANN index, those parameters are ignored.
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
=== "Python"
@@ -171,7 +169,7 @@ There are a couple of parameters that can be used to fine-tune the search:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.test.ts:search1"
--8<-- "nodejs/examples/ann_indexes.ts:search1"
```
=== "vectordb (deprecated)"
@@ -205,7 +203,7 @@ You can further filter the elements returned by a search using a where clause.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.test.ts:search2"
--8<-- "nodejs/examples/ann_indexes.ts:search2"
```
=== "vectordb (deprecated)"
@@ -237,7 +235,7 @@ You can select the columns returned by the query using a select clause.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.test.ts:search3"
--8<-- "nodejs/examples/ann_indexes.ts:search3"
```
=== "vectordb (deprecated)"

View File

@@ -157,7 +157,7 @@ recommend switching to stable releases.
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
--8<-- "nodejs/examples/basic.test.ts:connect"
--8<-- "nodejs/examples/basic.ts:connect"
```
=== "vectordb (deprecated)"
@@ -212,7 +212,7 @@ table.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_table"
--8<-- "nodejs/examples/basic.ts:create_table"
```
=== "vectordb (deprecated)"
@@ -268,7 +268,7 @@ similar to a `CREATE TABLE` statement in SQL.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
--8<-- "nodejs/examples/basic.ts:create_empty_table"
```
=== "vectordb (deprecated)"
@@ -298,7 +298,7 @@ Once created, you can open a table as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:open_table"
--8<-- "nodejs/examples/basic.ts:open_table"
```
=== "vectordb (deprecated)"
@@ -327,7 +327,7 @@ If you forget the name of your table, you can always get a listing of all table
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:table_names"
--8<-- "nodejs/examples/basic.ts:table_names"
```
=== "vectordb (deprecated)"
@@ -357,7 +357,7 @@ After a table has been created, you can always add more data to it as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:add_data"
--8<-- "nodejs/examples/basic.ts:add_data"
```
=== "vectordb (deprecated)"
@@ -389,7 +389,7 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:vector_search"
--8<-- "nodejs/examples/basic.ts:vector_search"
```
=== "vectordb (deprecated)"
@@ -429,7 +429,7 @@ LanceDB allows you to create an ANN index on a table as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_index"
--8<-- "nodejs/examples/basic.ts:create_index"
```
=== "vectordb (deprecated)"
@@ -469,7 +469,7 @@ This can delete any number of rows that match the filter.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:delete_rows"
--8<-- "nodejs/examples/basic.ts:delete_rows"
```
=== "vectordb (deprecated)"
@@ -527,7 +527,7 @@ Use the `drop_table()` method on the database to remove a table.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:drop_table"
--8<-- "nodejs/examples/basic.ts:drop_table"
```
=== "vectordb (deprecated)"
@@ -561,8 +561,8 @@ You can use the embedding API when working with embedding models. It automatical
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/embedding.test.ts:imports"
--8<-- "nodejs/examples/embedding.test.ts:openai_embeddings"
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:openai_embeddings"
```
=== "Rust"

View File

@@ -47,9 +47,9 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.test.ts:imports"
--8<--- "nodejs/examples/custom_embedding_function.ts:imports"
--8<--- "nodejs/examples/custom_embedding_function.test.ts:embedding_impl"
--8<--- "nodejs/examples/custom_embedding_function.ts:embedding_impl"
```
@@ -78,7 +78,7 @@ Now you can use this embedding function to create your table schema and that's i
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.test.ts:call_custom_function"
--8<--- "nodejs/examples/custom_embedding_function.ts:call_custom_function"
```
!!! note

View File

@@ -94,8 +94,8 @@ the embeddings at all:
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/embedding.test.ts:imports"
--8<-- "nodejs/examples/embedding.test.ts:embedding_function"
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:embedding_function"
```
=== "vectordb (deprecated)"
@@ -150,7 +150,7 @@ need to worry about it when you query the table:
.toArray()
```
=== "vectordb (deprecated)"
=== "vectordb (deprecated)
```ts
const results = await table

View File

@@ -51,8 +51,8 @@ LanceDB registers the OpenAI embeddings function in the registry as `openai`. Yo
=== "TypeScript"
```typescript
--8<--- "nodejs/examples/embedding.test.ts:imports"
--8<--- "nodejs/examples/embedding.test.ts:openai_embeddings"
--8<--- "nodejs/examples/embedding.ts:imports"
--8<--- "nodejs/examples/embedding.ts:openai_embeddings"
```
=== "Rust"
@@ -121,10 +121,12 @@ class Words(LanceModel):
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add([
{"text": "hello world"},
{"text": "goodbye world"}
])
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]

View File

@@ -85,13 +85,13 @@ Initialize a LanceDB connection and create a table
```ts
--8<-- "nodejs/examples/basic.test.ts:create_table"
--8<-- "nodejs/examples/basic.ts:create_table"
```
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use `apache-arrow` to declare a schema
```ts
--8<-- "nodejs/examples/basic.test.ts:create_table_with_schema"
--8<-- "nodejs/examples/basic.ts:create_table_with_schema"
```
!!! info "Note"
@@ -100,14 +100,14 @@ Initialize a LanceDB connection and create a table
passed in will NOT be appended to the table in that case.
```ts
--8<-- "nodejs/examples/basic.test.ts:create_table_exists_ok"
--8<-- "nodejs/examples/basic.ts:create_table_exists_ok"
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
```ts
--8<-- "nodejs/examples/basic.test.ts:create_table_overwrite"
--8<-- "nodejs/examples/basic.ts:create_table_overwrite"
```
=== "vectordb (deprecated)"
@@ -227,7 +227,7 @@ LanceDB supports float16 data type!
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_f16_table"
--8<-- "nodejs/examples/basic.ts:create_f16_table"
```
=== "vectordb (deprecated)"
@@ -455,7 +455,7 @@ You can create an empty table for scenarios where you want to add data to the ta
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
--8<-- "nodejs/examples/basic.ts:create_empty_table"
```
=== "vectordb (deprecated)"

File diff suppressed because it is too large Load Diff

View File

@@ -58,9 +58,9 @@ db.create_table("my_vectors", data=data)
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/search.test.ts:import"
--8<-- "nodejs/examples/search.ts:import"
--8<-- "nodejs/examples/search.test.ts:search1"
--8<-- "nodejs/examples/search.ts:search1"
```
@@ -89,7 +89,7 @@ By default, `l2` will be used as metric type. You can specify the metric type as
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/search.test.ts:search2"
--8<-- "nodejs/examples/search.ts:search2"
```
=== "vectordb (deprecated)"

View File

@@ -49,7 +49,7 @@ const tbl = await db.createTable('myVectors', data)
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.test.ts:search"
--8<-- "nodejs/examples/filtering.ts:search"
```
=== "vectordb (deprecated)"
@@ -91,7 +91,7 @@ For example, the following filter string is acceptable:
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.test.ts:vec_search"
--8<-- "nodejs/examples/filtering.ts:vec_search"
```
=== "vectordb (deprecated)"
@@ -169,7 +169,7 @@ You can also filter your data without search.
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.test.ts:sql_search"
--8<-- "nodejs/examples/filtering.ts:sql_search"
```
=== "vectordb (deprecated)"

View File

@@ -998,18 +998,4 @@ describe("column name options", () => {
const results = await table.query().where("`camelCase` = 1").toArray();
expect(results[0].camelCase).toBe(1);
});
test("can make multiple vector queries in one go", async () => {
const results = await table
.query()
.nearestTo([0.1, 0.2])
.addQueryVector([0.1, 0.2])
.limit(1)
.toArray();
console.log(results);
expect(results.length).toBe(2);
results.sort((a, b) => a.query_index - b.query_index);
expect(results[0].query_index).toBe(0);
expect(results[1].query_index).toBe(1);
});
});

View File

@@ -9,8 +9,7 @@
"**/native.js",
"**/native.d.ts",
"**/npm/**/*",
"**/.vscode/**",
"./examples/*"
"**/.vscode/**"
]
},
"formatter": {

View File

@@ -1,57 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
import { VectorQuery } from "@lancedb/lancedb";
// --8<-- [end:import]
import { withTempDirectory } from "./util.ts";
test("ann index examples", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:ingest]
const db = await lancedb.connect(databaseDir);
const data = Array.from({ length: 5_000 }, (_, i) => ({
vector: Array(128).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
const table = await db.createTable("my_vectors", data, {
mode: "overwrite",
});
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 10,
numSubVectors: 16,
}),
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const search = table.search(Array(128).fill(1.2)).limit(2) as VectorQuery;
const results1 = await search.nprobes(20).refineFactor(10).toArray();
// --8<-- [end:search1]
expect(results1.length).toBe(2);
// --8<-- [start:search2]
const results2 = await table
.search(Array(128).fill(1.2))
.where("id != '1141'")
.limit(2)
.toArray();
// --8<-- [end:search2]
expect(results2.length).toBe(2);
// --8<-- [start:search3]
const results3 = await table
.search(Array(128).fill(1.2))
.select(["id"])
.limit(2)
.toArray();
// --8<-- [end:search3]
expect(results3.length).toBe(2);
});
}, 100_000);

View File

@@ -0,0 +1,49 @@
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
// --8<-- [end:import]
// --8<-- [start:ingest]
const db = await lancedb.connect("/tmp/lancedb/");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
const table = await db.createTable("my_vectors", data, { mode: "overwrite" });
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 16,
numSubVectors: 48,
}),
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const _results1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.toArray();
// --8<-- [end:search1]
// --8<-- [start:search2]
const _results2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.toArray();
// --8<-- [end:search2]
// --8<-- [start:search3]
const _results3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.toArray();
// --8<-- [end:search3]
console.log("Ann indexes: done");

View File

@@ -1,175 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
import {
Field,
FixedSizeList,
Float16,
Int32,
Schema,
Utf8,
} from "apache-arrow";
// --8<-- [end:imports]
import { withTempDirectory } from "./util.ts";
test("basic table examples", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:connect]
const db = await lancedb.connect(databaseDir);
// --8<-- [end:connect]
{
// --8<-- [start:create_table]
const _tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ mode: "overwrite" },
);
// --8<-- [end:create_table]
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
{
// --8<-- [start:create_table_exists_ok]
const tbl = await db.createTable("myTable", data, {
existOk: true,
});
// --8<-- [end:create_table_exists_ok]
expect(await tbl.countRows()).toBe(2);
}
{
// --8<-- [start:create_table_overwrite]
const tbl = await db.createTable("myTable", data, {
mode: "overwrite",
});
// --8<-- [end:create_table_overwrite]
expect(await tbl.countRows()).toBe(2);
}
}
await db.dropTable("myTable");
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const tbl = await db.createTable("myTable", data, {
schema,
});
// --8<-- [end:create_table_with_schema]
expect(await tbl.countRows()).toBe(2);
}
{
// --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
]);
const emptyTbl = await db.createEmptyTable("empty_table", schema);
// --8<-- [end:create_empty_table]
expect(await emptyTbl.countRows()).toBe(0);
}
{
// --8<-- [start:open_table]
const _tbl = await db.openTable("myTable");
// --8<-- [end:open_table]
}
{
// --8<-- [start:table_names]
const tableNames = await db.tableNames();
// --8<-- [end:table_names]
expect(tableNames).toEqual(["empty_table", "myTable"]);
}
const tbl = await db.openTable("myTable");
{
// --8<-- [start:add_data]
const data = [
{ vector: [1.3, 1.4], item: "fizz", price: 100.0 },
{ vector: [9.5, 56.2], item: "buzz", price: 200.0 },
];
await tbl.add(data);
// --8<-- [end:add_data]
}
{
// --8<-- [start:vector_search]
const res = await tbl.search([100, 100]).limit(2).toArray();
// --8<-- [end:vector_search]
expect(res.length).toBe(2);
}
{
const data = Array.from({ length: 1000 })
.fill(null)
.map(() => ({
vector: [Math.random(), Math.random()],
item: "autogen",
price: Math.round(Math.random() * 100),
}));
await tbl.add(data);
}
// --8<-- [start:create_index]
await tbl.createIndex("vector");
// --8<-- [end:create_index]
// --8<-- [start:delete_rows]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete_rows]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
await db.dropTable("empty_table");
{
// --8<-- [start:create_f16_table]
const db = await lancedb.connect(databaseDir);
const dim = 16;
const total = 10;
const f16Schema = new Schema([
new Field("id", new Int32()),
new Field(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]);
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random),
})),
{ schema: f16Schema },
);
const _table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table]
await db.dropTable("f16_tbl");
}
});
});

162
nodejs/examples/basic.ts Normal file
View File

@@ -0,0 +1,162 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
import {
Field,
FixedSizeList,
Float16,
Int32,
Schema,
Utf8,
} from "apache-arrow";
// --8<-- [end:imports]
// --8<-- [start:connect]
const uri = "/tmp/lancedb/";
const db = await lancedb.connect(uri);
// --8<-- [end:connect]
{
// --8<-- [start:create_table]
const tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ mode: "overwrite" },
);
// --8<-- [end:create_table]
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
{
// --8<-- [start:create_table_exists_ok]
const tbl = await db.createTable("myTable", data, {
existsOk: true,
});
// --8<-- [end:create_table_exists_ok]
}
{
// --8<-- [start:create_table_overwrite]
const _tbl = await db.createTable("myTable", data, {
mode: "overwrite",
});
// --8<-- [end:create_table_overwrite]
}
}
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const _tbl = await db.createTable("myTable", data, {
schema,
});
// --8<-- [end:create_table_with_schema]
}
{
// --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
]);
const empty_tbl = await db.createEmptyTable("empty_table", schema);
// --8<-- [end:create_empty_table]
}
{
// --8<-- [start:open_table]
const _tbl = await db.openTable("myTable");
// --8<-- [end:open_table]
}
{
// --8<-- [start:table_names]
const tableNames = await db.tableNames();
console.log(tableNames);
// --8<-- [end:table_names]
}
const tbl = await db.openTable("myTable");
{
// --8<-- [start:add_data]
const data = [
{ vector: [1.3, 1.4], item: "fizz", price: 100.0 },
{ vector: [9.5, 56.2], item: "buzz", price: 200.0 },
];
await tbl.add(data);
// --8<-- [end:add_data]
}
{
// --8<-- [start:vector_search]
const _res = tbl.search([100, 100]).limit(2).toArray();
// --8<-- [end:vector_search]
}
{
const data = Array.from({ length: 1000 })
.fill(null)
.map(() => ({
vector: [Math.random(), Math.random()],
item: "autogen",
price: Math.round(Math.random() * 100),
}));
await tbl.add(data);
}
// --8<-- [start:create_index]
await tbl.createIndex("vector");
// --8<-- [end:create_index]
// --8<-- [start:delete_rows]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete_rows]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
await db.dropTable("empty_table");
{
// --8<-- [start:create_f16_table]
const db = await lancedb.connect("/tmp/lancedb");
const dim = 16;
const total = 10;
const f16Schema = new Schema([
new Field("id", new Int32()),
new Field(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]);
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random),
})),
{ schema: f16Schema },
);
const _table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table]
await db.dropTable("f16_tbl");
}

View File

@@ -1,76 +0,0 @@
import { FeatureExtractionPipeline, pipeline } from "@huggingface/transformers";
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import {
LanceSchema,
TextEmbeddingFunction,
getRegistry,
register,
} from "@lancedb/lancedb/embedding";
// --8<-- [end:imports]
import { withTempDirectory } from "./util.ts";
// --8<-- [start:embedding_impl]
@register("sentence-transformers")
class SentenceTransformersEmbeddings extends TextEmbeddingFunction {
name = "Xenova/all-miniLM-L6-v2";
#ndims!: number;
extractor!: FeatureExtractionPipeline;
async init() {
this.extractor = await pipeline("feature-extraction", this.name, {
dtype: "fp32",
});
this.#ndims = await this.generateEmbeddings(["hello"]).then(
(e) => e[0].length,
);
}
ndims() {
return this.#ndims;
}
toJSON() {
return {
name: this.name,
};
}
async generateEmbeddings(texts: string[]) {
const output = await this.extractor(texts, {
pooling: "mean",
normalize: true,
});
return output.tolist();
}
}
// -8<-- [end:embedding_impl]
test("Registry examples", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:call_custom_function]
const registry = getRegistry();
const sentenceTransformer = await registry
.get<SentenceTransformersEmbeddings>("sentence-transformers")!
.create();
const schema = LanceSchema({
vector: sentenceTransformer.vectorField(),
text: sentenceTransformer.sourceField(),
});
const db = await lancedb.connect(databaseDir);
const table = await db.createEmptyTable("table", schema, {
mode: "overwrite",
});
await table.add([{ text: "hello" }, { text: "world" }]);
const results = await table.search("greeting").limit(1).toArray();
// -8<-- [end:call_custom_function]
expect(results.length).toBe(1);
});
}, 100_000);

View File

@@ -0,0 +1,64 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import {
LanceSchema,
TextEmbeddingFunction,
getRegistry,
register,
} from "@lancedb/lancedb/embedding";
import { pipeline } from "@xenova/transformers";
// --8<-- [end:imports]
// --8<-- [start:embedding_impl]
@register("sentence-transformers")
class SentenceTransformersEmbeddings extends TextEmbeddingFunction {
name = "Xenova/all-miniLM-L6-v2";
#ndims!: number;
extractor: any;
async init() {
this.extractor = await pipeline("feature-extraction", this.name);
this.#ndims = await this.generateEmbeddings(["hello"]).then(
(e) => e[0].length,
);
}
ndims() {
return this.#ndims;
}
toJSON() {
return {
name: this.name,
};
}
async generateEmbeddings(texts: string[]) {
const output = await this.extractor(texts, {
pooling: "mean",
normalize: true,
});
return output.tolist();
}
}
// -8<-- [end:embedding_impl]
// --8<-- [start:call_custom_function]
const registry = getRegistry();
const sentenceTransformer = await registry
.get<SentenceTransformersEmbeddings>("sentence-transformers")!
.create();
const schema = LanceSchema({
vector: sentenceTransformer.vectorField(),
text: sentenceTransformer.sourceField(),
});
const db = await lancedb.connect("/tmp/db");
const table = await db.createEmptyTable("table", schema, { mode: "overwrite" });
await table.add([{ text: "hello" }, { text: "world" }]);
const results = await table.search("greeting").limit(1).toArray();
console.log(results[0].text);
// -8<-- [end:call_custom_function]

View File

@@ -1,96 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import "@lancedb/lancedb/embedding/openai";
import { LanceSchema, getRegistry, register } from "@lancedb/lancedb/embedding";
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
import { type Float, Float32, Utf8 } from "apache-arrow";
// --8<-- [end:imports]
import { withTempDirectory } from "./util.ts";
const openAiTest = process.env.OPENAI_API_KEY == null ? test.skip : test;
openAiTest("openai embeddings", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:openai_embeddings]
const db = await lancedb.connect(databaseDir);
const func = getRegistry()
.get("openai")
?.create({ model: "text-embedding-ada-002" }) as EmbeddingFunction;
const wordsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createEmptyTable("words", wordsSchema, {
mode: "overwrite",
});
await tbl.add([{ text: "hello world" }, { text: "goodbye world" }]);
const query = "greetings";
const actual = (await tbl.search(query).limit(1).toArray())[0];
// --8<-- [end:openai_embeddings]
expect(actual).toHaveProperty("text");
});
});
test("custom embedding function", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:embedding_function]
const db = await lancedb.connect(databaseDir);
@register("my_embedding")
class MyEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {};
}
ndims() {
return 3;
}
embeddingDataType(): Float {
return new Float32();
}
async computeQueryEmbeddings(_data: string) {
// This is a placeholder for a real embedding function
return [1, 2, 3];
}
async computeSourceEmbeddings(data: string[]) {
// This is a placeholder for a real embedding function
return Array.from({ length: data.length }).fill([
1, 2, 3,
]) as number[][];
}
}
const func = new MyEmbeddingFunction();
const data = [{ text: "pepperoni" }, { text: "pineapple" }];
// Option 1: manually specify the embedding function
const table = await db.createTable("vectors", data, {
embeddingFunction: {
function: func,
sourceColumn: "text",
vectorColumn: "vector",
},
mode: "overwrite",
});
// Option 2: provide the embedding function through a schema
const schema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const table2 = await db.createTable("vectors2", data, {
schema,
mode: "overwrite",
});
// --8<-- [end:embedding_function]
expect(await table.countRows()).toBe(2);
expect(await table2.countRows()).toBe(2);
});
});

View File

@@ -0,0 +1,83 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import { LanceSchema, getRegistry, register } from "@lancedb/lancedb/embedding";
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
import { type Float, Float32, Utf8 } from "apache-arrow";
// --8<-- [end:imports]
{
// --8<-- [start:openai_embeddings]
const db = await lancedb.connect("/tmp/db");
const func = getRegistry()
.get("openai")
?.create({ model: "text-embedding-ada-002" }) as EmbeddingFunction;
const wordsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createEmptyTable("words", wordsSchema, {
mode: "overwrite",
});
await tbl.add([{ text: "hello world" }, { text: "goodbye world" }]);
const query = "greetings";
const actual = (await (await tbl.search(query)).limit(1).toArray())[0];
// --8<-- [end:openai_embeddings]
console.log("result = ", actual.text);
}
{
// --8<-- [start:embedding_function]
const db = await lancedb.connect("/tmp/db");
@register("my_embedding")
class MyEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {};
}
ndims() {
return 3;
}
embeddingDataType(): Float {
return new Float32();
}
async computeQueryEmbeddings(_data: string) {
// This is a placeholder for a real embedding function
return [1, 2, 3];
}
async computeSourceEmbeddings(data: string[]) {
// This is a placeholder for a real embedding function
return Array.from({ length: data.length }).fill([1, 2, 3]) as number[][];
}
}
const func = new MyEmbeddingFunction();
const data = [{ text: "pepperoni" }, { text: "pineapple" }];
// Option 1: manually specify the embedding function
const table = await db.createTable("vectors", data, {
embeddingFunction: {
function: func,
sourceColumn: "text",
vectorColumn: "vector",
},
mode: "overwrite",
});
// Option 2: provide the embedding function through a schema
const schema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const table2 = await db.createTable("vectors2", data, {
schema,
mode: "overwrite",
});
// --8<-- [end:embedding_function]
}

View File

@@ -1,42 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
import * as lancedb from "@lancedb/lancedb";
import { withTempDirectory } from "./util.ts";
test("filtering examples", async () => {
await withTempDirectory(async (databaseDir) => {
const db = await lancedb.connect(databaseDir);
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
// --8<-- [start:search]
const _result = await tbl
.search(Array(1536).fill(0.5))
.limit(1)
.where("id = 10")
.toArray();
// --8<-- [end:search]
// --8<-- [start:vec_search]
const result = await (
tbl.search(Array(1536).fill(0)) as lancedb.VectorQuery
)
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.postfilter()
.toArray();
// --8<-- [end:vec_search]
expect(result.length).toBe(0);
// --8<-- [start:sql_search]
await tbl.query().where("id = 10").limit(10).toArray();
// --8<-- [end:sql_search]
});
});

View File

@@ -0,0 +1,34 @@
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
// --8<-- [start:search]
const _result = await tbl
.search(Array(1536).fill(0.5))
.limit(1)
.where("id = 10")
.toArray();
// --8<-- [end:search]
// --8<-- [start:vec_search]
await tbl
.search(Array(1536).fill(0))
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.postfilter()
.toArray();
// --8<-- [end:vec_search]
// --8<-- [start:sql_search]
await tbl.query().where("id = 10").limit(10).toArray();
// --8<-- [end:sql_search]
console.log("SQL search: done");

View File

@@ -1,45 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
import * as lancedb from "@lancedb/lancedb";
import { withTempDirectory } from "./util.ts";
test("full text search", async () => {
await withTempDirectory(async (databaseDir) => {
const db = await lancedb.connect(databaseDir);
const words = [
"apple",
"banana",
"cherry",
"date",
"elderberry",
"fig",
"grape",
];
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
doc: words[i % words.length],
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
await tbl.createIndex("doc", {
config: lancedb.Index.fts(),
});
// --8<-- [start:full_text_search]
const result = await tbl
.query()
.nearestToText("apple")
.select(["id", "doc"])
.limit(10)
.toArray();
expect(result.length).toBe(10);
// --8<-- [end:full_text_search]
});
});

View File

@@ -0,0 +1,52 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const words = [
"apple",
"banana",
"cherry",
"date",
"elderberry",
"fig",
"grape",
];
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
doc: words[i % words.length],
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
await tbl.createIndex("doc", {
config: lancedb.Index.fts(),
});
// --8<-- [start:full_text_search]
let result = await tbl
.search("apple")
.select(["id", "doc"])
.limit(10)
.toArray();
console.log(result);
// --8<-- [end:full_text_search]
console.log("SQL search: done");

View File

@@ -1,6 +0,0 @@
/** @type {import('ts-jest').JestConfigWithTsJest} */
module.exports = {
preset: "ts-jest",
testEnvironment: "node",
testPathIgnorePatterns: ["./dist"],
};

View File

@@ -0,0 +1,27 @@
{
"compilerOptions": {
// Enable latest features
"lib": ["ESNext", "DOM"],
"target": "ESNext",
"module": "ESNext",
"moduleDetection": "force",
"jsx": "react-jsx",
"allowJs": true,
// Bundler mode
"moduleResolution": "bundler",
"allowImportingTsExtensions": true,
"verbatimModuleSyntax": true,
"noEmit": true,
// Best practices
"strict": true,
"skipLibCheck": true,
"noFallthroughCasesInSwitch": true,
// Some stricter flags (disabled by default)
"noUnusedLocals": false,
"noUnusedParameters": false,
"noPropertyAccessFromIndexSignature": false
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -5,29 +5,24 @@
"main": "index.js",
"type": "module",
"scripts": {
"//1": "--experimental-vm-modules is needed to run jest with sentence-transformers",
"//2": "--testEnvironment is needed to run jest with sentence-transformers",
"//3": "See: https://github.com/huggingface/transformers.js/issues/57",
"test": "node --experimental-vm-modules node_modules/.bin/jest --testEnvironment jest-environment-node-single-context --verbose",
"lint": "biome check *.ts && biome format *.ts",
"lint-ci": "biome ci .",
"lint-fix": "biome check --write *.ts && npm run format",
"format": "biome format --write *.ts"
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"@huggingface/transformers": "^3.0.2",
"@lancedb/lancedb": "file:../dist",
"openai": "^4.29.2",
"sharp": "^0.33.5"
"@lancedb/lancedb": "file:../",
"@xenova/transformers": "^2.17.2"
},
"devDependencies": {
"@biomejs/biome": "^1.7.3",
"@jest/globals": "^29.7.0",
"jest": "^29.7.0",
"jest-environment-node-single-context": "^29.4.0",
"ts-jest": "^29.2.5",
"typescript": "^5.5.4"
},
"compilerOptions": {
"target": "ESNext",
"module": "ESNext",
"moduleResolution": "Node",
"strict": true,
"esModuleInterop": true,
"skipLibCheck": true,
"forceConsistentCasingInFileNames": true
}
}

View File

@@ -1,42 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
// --8<-- [end:import]
import { withTempDirectory } from "./util.ts";
test("full text search", async () => {
await withTempDirectory(async (databaseDir) => {
{
const db = await lancedb.connect(databaseDir);
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(128).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
await db.createTable("my_vectors", data);
}
// --8<-- [start:search1]
const db = await lancedb.connect(databaseDir);
const tbl = await db.openTable("my_vectors");
const results1 = await tbl.search(Array(128).fill(1.2)).limit(10).toArray();
// --8<-- [end:search1]
expect(results1.length).toBe(10);
// --8<-- [start:search2]
const results2 = await (
tbl.search(Array(128).fill(1.2)) as lancedb.VectorQuery
)
.distanceType("cosine")
.limit(10)
.toArray();
// --8<-- [end:search2]
expect(results2.length).toBe(10);
});
});

38
nodejs/examples/search.ts Normal file
View File

@@ -0,0 +1,38 @@
// --8<-- [end:import]
import * as fs from "node:fs";
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
async function setup() {
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
const db = await lancedb.connect("data/sample-lancedb");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
await db.createTable("my_vectors", data);
}
await setup();
// --8<-- [start:search1]
const db = await lancedb.connect("data/sample-lancedb");
const tbl = await db.openTable("my_vectors");
const _results1 = await tbl.search(Array(1536).fill(1.2)).limit(10).toArray();
// --8<-- [end:search1]
// --8<-- [start:search2]
const _results2 = await tbl
.search(Array(1536).fill(1.2))
.distanceType("cosine")
.limit(10)
.toArray();
console.log(_results2);
// --8<-- [end:search2]
console.log("search: done");

View File

@@ -0,0 +1,50 @@
import * as lancedb from "@lancedb/lancedb";
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
import { Utf8 } from "apache-arrow";
const db = await lancedb.connect("/tmp/db");
const func = await getRegistry().get("huggingface").create();
const facts = [
"Albert Einstein was a theoretical physicist.",
"The capital of France is Paris.",
"The Great Wall of China is one of the Seven Wonders of the World.",
"Python is a popular programming language.",
"Mount Everest is the highest mountain in the world.",
"Leonardo da Vinci painted the Mona Lisa.",
"Shakespeare wrote Hamlet.",
"The human body has 206 bones.",
"The speed of light is approximately 299,792 kilometers per second.",
"Water boils at 100 degrees Celsius.",
"The Earth orbits the Sun.",
"The Pyramids of Giza are located in Egypt.",
"Coffee is one of the most popular beverages in the world.",
"Tokyo is the capital city of Japan.",
"Photosynthesis is the process by which plants make their food.",
"The Pacific Ocean is the largest ocean on Earth.",
"Mozart was a prolific composer of classical music.",
"The Internet is a global network of computers.",
"Basketball is a sport played with a ball and a hoop.",
"The first computer virus was created in 1983.",
"Artificial neural networks are inspired by the human brain.",
"Deep learning is a subset of machine learning.",
"IBM's Watson won Jeopardy! in 2011.",
"The first computer programmer was Ada Lovelace.",
"The first chatbot was ELIZA, created in the 1960s.",
].map((text) => ({ text }));
const factsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createTable("facts", facts, {
mode: "overwrite",
schema: factsSchema,
});
const query = "How many bones are in the human body?";
const actual = await tbl.search(query).limit(1).toArray();
console.log("Answer: ", actual[0]["text"]);

View File

@@ -1,59 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
import { withTempDirectory } from "./util.ts";
import * as lancedb from "@lancedb/lancedb";
import "@lancedb/lancedb/embedding/transformers";
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
import { Utf8 } from "apache-arrow";
test("full text search", async () => {
await withTempDirectory(async (databaseDir) => {
const db = await lancedb.connect(databaseDir);
const func = await getRegistry().get("huggingface").create();
const facts = [
"Albert Einstein was a theoretical physicist.",
"The capital of France is Paris.",
"The Great Wall of China is one of the Seven Wonders of the World.",
"Python is a popular programming language.",
"Mount Everest is the highest mountain in the world.",
"Leonardo da Vinci painted the Mona Lisa.",
"Shakespeare wrote Hamlet.",
"The human body has 206 bones.",
"The speed of light is approximately 299,792 kilometers per second.",
"Water boils at 100 degrees Celsius.",
"The Earth orbits the Sun.",
"The Pyramids of Giza are located in Egypt.",
"Coffee is one of the most popular beverages in the world.",
"Tokyo is the capital city of Japan.",
"Photosynthesis is the process by which plants make their food.",
"The Pacific Ocean is the largest ocean on Earth.",
"Mozart was a prolific composer of classical music.",
"The Internet is a global network of computers.",
"Basketball is a sport played with a ball and a hoop.",
"The first computer virus was created in 1983.",
"Artificial neural networks are inspired by the human brain.",
"Deep learning is a subset of machine learning.",
"IBM's Watson won Jeopardy! in 2011.",
"The first computer programmer was Ada Lovelace.",
"The first chatbot was ELIZA, created in the 1960s.",
].map((text) => ({ text }));
const factsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createTable("facts", facts, {
mode: "overwrite",
schema: factsSchema,
});
const query = "How many bones are in the human body?";
const actual = await tbl.search(query).limit(1).toArray();
expect(actual[0]["text"]).toBe("The human body has 206 bones.");
});
});

View File

@@ -1,17 +0,0 @@
{
"include": ["*.test.ts"],
"compilerOptions": {
"target": "es2022",
"module": "NodeNext",
"declaration": true,
"outDir": "./dist",
"strict": true,
"allowJs": true,
"resolveJsonModule": true,
"emitDecoratorMetadata": true,
"experimentalDecorators": true,
"moduleResolution": "NodeNext",
"allowImportingTsExtensions": true,
"emitDeclarationOnly": true
}
}

View File

@@ -1,16 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import * as fs from "fs";
import { tmpdir } from "os";
import * as path from "path";
export async function withTempDirectory(
fn: (tempDir: string) => Promise<void>,
) {
const tmpDirPath = fs.mkdtempSync(path.join(tmpdir(), "temp-dir-"));
try {
await fn(tmpDirPath);
} finally {
fs.rmSync(tmpDirPath, { recursive: true });
}
}

View File

@@ -4,5 +4,4 @@ module.exports = {
testEnvironment: "node",
moduleDirectories: ["node_modules", "./dist"],
moduleFileExtensions: ["js", "ts"],
modulePathIgnorePatterns: ["<rootDir>/examples/"],
};

View File

@@ -47,8 +47,8 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
string,
Partial<XenovaTransformerOptions>
> {
#model?: import("@huggingface/transformers").PreTrainedModel;
#tokenizer?: import("@huggingface/transformers").PreTrainedTokenizer;
#model?: import("@xenova/transformers").PreTrainedModel;
#tokenizer?: import("@xenova/transformers").PreTrainedTokenizer;
#modelName: XenovaTransformerOptions["model"];
#initialized = false;
#tokenizerOptions: XenovaTransformerOptions["tokenizerOptions"];
@@ -92,19 +92,18 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
try {
// SAFETY:
// since typescript transpiles `import` to `require`, we need to do this in an unsafe way
// We can't use `require` because `@huggingface/transformers` is an ESM module
// We can't use `require` because `@xenova/transformers` is an ESM module
// and we can't use `import` directly because typescript will transpile it to `require`.
// and we want to remain compatible with both ESM and CJS modules
// so we use `eval` to bypass typescript for this specific import.
transformers = await eval('import("@huggingface/transformers")');
transformers = await eval('import("@xenova/transformers")');
} catch (e) {
throw new Error(`error loading @huggingface/transformers\nReason: ${e}`);
throw new Error(`error loading @xenova/transformers\nReason: ${e}`);
}
try {
this.#model = await transformers.AutoModel.from_pretrained(
this.#modelName,
{ dtype: "fp32" },
);
} catch (e) {
throw new Error(
@@ -129,8 +128,7 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
} else {
const config = this.#model!.config;
// biome-ignore lint/style/useNamingConvention: we don't control this name.
const ndims = (config as unknown as { hidden_size: number }).hidden_size;
const ndims = config["hidden_size"];
if (!ndims) {
throw new Error(
"hidden_size not found in model config, you may need to manually specify the embedding dimensions. ",
@@ -185,7 +183,7 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
}
const tensorDiv = (
src: import("@huggingface/transformers").Tensor,
src: import("@xenova/transformers").Tensor,
divBy: number,
) => {
for (let i = 0; i < src.data.length; ++i) {

View File

@@ -492,42 +492,6 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
super.doCall((inner) => inner.bypassVectorIndex());
return this;
}
/*
* Add a query vector to the search
*
* This method can be called multiple times to add multiple query vectors
* to the search. If multiple query vectors are added, then they will be searched
* in parallel, and the results will be concatenated. A column called `query_index`
* will be added to indicate the index of the query vector that produced the result.
*
* Performance wise, this is equivalent to running multiple queries concurrently.
*/
addQueryVector(vector: IntoVector): VectorQuery {
if (vector instanceof Promise) {
const res = (async () => {
try {
const v = await vector;
const arr = Float32Array.from(v);
//
// biome-ignore lint/suspicious/noExplicitAny: we need to get the `inner`, but js has no package scoping
const value: any = this.addQueryVector(arr);
const inner = value.inner as
| NativeVectorQuery
| Promise<NativeVectorQuery>;
return inner;
} catch (e) {
return Promise.reject(e);
}
})();
return new VectorQuery(res);
} else {
super.doCall((inner) => {
inner.addQueryVector(Float32Array.from(vector));
});
return this;
}
}
}
/** A builder for LanceDB queries. */
@@ -607,9 +571,4 @@ export class Query extends QueryBase<NativeQuery> {
return new VectorQuery(vectorQuery);
}
}
nearestToText(query: string, columns?: string[]): Query {
this.doCall((inner) => inner.fullTextSearch(query, columns));
return this;
}
}

1432
nodejs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -85,7 +85,7 @@
"reflect-metadata": "^0.2.2"
},
"optionalDependencies": {
"@huggingface/transformers": "^3.0.2",
"@xenova/transformers": ">=2.17 < 3",
"openai": "^4.29.2"
},
"peerDependencies": {

View File

@@ -135,16 +135,6 @@ impl VectorQuery {
self.inner = self.inner.clone().column(&column);
}
#[napi]
pub fn add_query_vector(&mut self, vector: Float32Array) -> Result<()> {
self.inner = self
.inner
.clone()
.add_query_vector(vector.as_ref())
.default_error()?;
Ok(())
}
#[napi]
pub fn distance_type(&mut self, distance_type: String) -> napi::Result<()> {
let distance_type = parse_distance_type(distance_type)?;

View File

@@ -12,7 +12,7 @@
"experimentalDecorators": true,
"moduleResolution": "Node"
},
"exclude": ["./dist/*", "./examples/*"],
"exclude": ["./dist/*"],
"typedocOptions": {
"entryPoints": ["lancedb/index.ts"],
"out": "../docs/src/javascript/",

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.16.0-beta.1"
current_version = "0.16.0-beta.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.16.0-beta.1"
version = "0.16.0-beta.0"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true

View File

@@ -4,7 +4,7 @@ name = "lancedb"
dependencies = [
"deprecation",
"nest-asyncio~=1.0",
"pylance==0.19.2",
"pylance==0.19.2-beta.3",
"tqdm>=4.27.0",
"pydantic>=1.10",
"packaging",

View File

@@ -1,6 +1,15 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from typing import Dict, Optional
@@ -161,7 +170,7 @@ def register(name):
return __REGISTRY__.get_instance().register(name)
def get_registry() -> EmbeddingFunctionRegistry:
def get_registry():
"""
Utility function to get the global instance of the registry

View File

@@ -110,7 +110,16 @@ class FTS:
remove_stop_words: bool = False,
ascii_folding: bool = False,
):
self._inner = LanceDbIndex.fts(with_position=with_position)
self._inner = LanceDbIndex.fts(
with_position=with_position,
base_tokenizer=base_tokenizer,
language=language,
max_token_length=max_token_length,
lower_case=lower_case,
stem=stem,
remove_stop_words=remove_stop_words,
ascii_folding=ascii_folding,
)
class HnswPq:

View File

@@ -943,16 +943,12 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
class LanceEmptyQueryBuilder(LanceQueryBuilder):
def to_arrow(self) -> pa.Table:
query = Query(
ds = self._table.to_lance()
return ds.to_table(
columns=self._columns,
filter=self._where,
k=self._limit or 10,
with_row_id=self._with_row_id,
vector=[],
# not actually respected in remote query
offset=self._offset or 0,
limit=self._limit,
)
return self._table._execute_query(query).read_all()
def rerank(self, reranker: Reranker) -> LanceEmptyQueryBuilder:
"""Rerank the results using the specified reranker.
@@ -1495,7 +1491,7 @@ class AsyncQuery(AsyncQueryBase):
return pa.array(vec)
def nearest_to(
self, query_vector: Optional[Union[VEC, Tuple, List[VEC]]] = None
self, query_vector: Optional[Union[VEC, Tuple]] = None
) -> AsyncVectorQuery:
"""
Find the nearest vectors to the given query vector.
@@ -1533,30 +1529,10 @@ class AsyncQuery(AsyncQueryBase):
Vector searches always have a [limit][]. If `limit` has not been called then
a default `limit` of 10 will be used.
Typically, a single vector is passed in as the query. However, you can also
pass in multiple vectors. This can be useful if you want to find the nearest
vectors to multiple query vectors. This is not expected to be faster than
making multiple queries concurrently; it is just a convenience method.
If multiple vectors are passed in then an additional column `query_index`
will be added to the results. This column will contain the index of the
query vector that the result is nearest to.
"""
if (
isinstance(query_vector, list)
and len(query_vector) > 0
and not isinstance(query_vector[0], (float, int))
):
# multiple have been passed
query_vectors = [AsyncQuery._query_vec_to_array(v) for v in query_vector]
new_self = self._inner.nearest_to(query_vectors[0])
for v in query_vectors[1:]:
new_self.add_query_vector(v)
return AsyncVectorQuery(new_self)
else:
return AsyncVectorQuery(
self._inner.nearest_to(AsyncQuery._query_vec_to_array(query_vector))
)
return AsyncVectorQuery(
self._inner.nearest_to(AsyncQuery._query_vec_to_array(query_vector))
)
def nearest_to_text(
self, query: str, columns: Union[str, List[str]] = []

View File

@@ -132,8 +132,25 @@ class RemoteTable(Table):
*,
replace: bool = False,
with_position: bool = True,
# tokenizer configs:
base_tokenizer: str = "simple",
language: str = "English",
max_token_length: Optional[int] = 40,
lower_case: bool = True,
stem: bool = False,
remove_stop_words: bool = False,
ascii_folding: bool = False,
):
config = FTS(with_position=with_position)
config = FTS(
with_position=with_position,
base_tokenizer=base_tokenizer,
language=language,
max_token_length=max_token_length,
lower_case=lower_case,
stem=stem,
remove_stop_words=remove_stop_words,
ascii_folding=ascii_folding,
)
self._loop.run_until_complete(
self._table.create_index(column, config=config, replace=replace)
)
@@ -327,6 +344,10 @@ class RemoteTable(Table):
- and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
# empty query builder is not supported in saas, raise error
if query is None and query_type != "hybrid":
raise ValueError("Empty query is not supported")
return LanceQueryBuilder.create(
self,
query,

View File

@@ -13,7 +13,7 @@
import os
from functools import cached_property
from typing import Optional
from typing import Union, Optional
import pyarrow as pa

View File

@@ -73,21 +73,6 @@ pl = safe_import_polars()
QueryType = Literal["vector", "fts", "hybrid", "auto"]
def _pd_schema_without_embedding_funcs(
schema: Optional[pa.Schema], columns: List[str]
) -> Optional[pa.Schema]:
"""Return a schema without any embedding function columns"""
if schema is None:
return None
embedding_functions = EmbeddingFunctionRegistry.get_instance().parse_functions(
schema.metadata
)
if not embedding_functions:
return schema
columns = set(columns)
return pa.schema([field for field in schema if field.name in columns])
def _coerce_to_table(data, schema: Optional[pa.Schema] = None) -> pa.Table:
if _check_for_hugging_face(data):
# Huggingface datasets
@@ -118,10 +103,10 @@ def _coerce_to_table(data, schema: Optional[pa.Schema] = None) -> pa.Table:
elif isinstance(data[0], pa.RecordBatch):
return pa.Table.from_batches(data, schema=schema)
else:
return pa.Table.from_pylist(data, schema=schema)
return pa.Table.from_pylist(data)
elif _check_for_pandas(data) and isinstance(data, pd.DataFrame):
raw_schema = _pd_schema_without_embedding_funcs(schema, data.columns.to_list())
table = pa.Table.from_pandas(data, preserve_index=False, schema=raw_schema)
# Do not add schema here, since schema may contains the vector column
table = pa.Table.from_pandas(data, preserve_index=False)
# Do not serialize Pandas metadata
meta = table.schema.metadata if table.schema.metadata is not None else {}
meta = {k: v for k, v in meta.items() if k != b"pandas"}
@@ -187,8 +172,6 @@ def sanitize_create_table(
schema = schema.to_arrow_schema()
if data is not None:
if metadata is None and schema is not None:
metadata = schema.metadata
data, schema = _sanitize_data(
data,
schema,

View File

@@ -1,6 +1,15 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
from unittest.mock import MagicMock, patch
@@ -9,7 +18,6 @@ import lancedb
import numpy as np
import pyarrow as pa
import pytest
import pandas as pd
from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.embeddings import (
EmbeddingFunctionConfig,
@@ -121,142 +129,6 @@ def test_embedding_with_bad_results(tmp_path):
# assert tbl["vector"].null_count == 1
def test_with_existing_vectors(tmp_path):
@register("mock-embedding")
class MockEmbeddingFunction(TextEmbeddingFunction):
def ndims(self):
return 128
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
return [np.random.randn(self.ndims()).tolist() for _ in range(len(texts))]
registry = get_registry()
model = registry.get("mock-embedding").create()
class Schema(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=Schema, mode="overwrite")
tbl.add([{"text": "hello world", "vector": np.zeros(128).tolist()}])
embeddings = tbl.to_arrow()["vector"].to_pylist()
assert not np.any(embeddings), "all zeros"
def test_embedding_function_with_pandas(tmp_path):
@register("mock-embedding")
class _MockEmbeddingFunction(TextEmbeddingFunction):
def ndims(self):
return 128
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
return [np.random.randn(self.ndims()).tolist() for _ in range(len(texts))]
registery = get_registry()
func = registery.get("mock-embedding").create()
class TestSchema(LanceModel):
text: str = func.SourceField()
val: int
vector: Vector(func.ndims()) = func.VectorField()
df = pd.DataFrame(
{
"text": ["hello world", "goodbye world"],
"val": [1, 2],
"not-used": ["s1", "s3"],
}
)
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=TestSchema, mode="overwrite", data=df)
schema = tbl.schema
assert schema.field("text").type == pa.string()
assert schema.field("val").type == pa.int64()
assert schema.field("vector").type == pa.list_(pa.float32(), 128)
df = pd.DataFrame(
{
"text": ["extra", "more"],
"val": [4, 5],
"misc-col": ["s1", "s3"],
}
)
tbl.add(df)
assert tbl.count_rows() == 4
embeddings = tbl.to_arrow()["vector"]
assert embeddings.null_count == 0
df = pd.DataFrame(
{
"text": ["with", "embeddings"],
"val": [6, 7],
"vector": [np.zeros(128).tolist(), np.zeros(128).tolist()],
}
)
tbl.add(df)
embeddings = tbl.search().where("val > 5").to_arrow()["vector"].to_pylist()
assert not np.any(embeddings), "all zeros"
def test_multiple_embeddings_for_pandas(tmp_path):
@register("mock-embedding")
class MockFunc1(TextEmbeddingFunction):
def ndims(self):
return 128
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
return [np.random.randn(self.ndims()).tolist() for _ in range(len(texts))]
@register("mock-embedding2")
class MockFunc2(TextEmbeddingFunction):
def ndims(self):
return 512
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
return [np.random.randn(self.ndims()).tolist() for _ in range(len(texts))]
registery = get_registry()
func1 = registery.get("mock-embedding").create()
func2 = registery.get("mock-embedding2").create()
class TestSchema(LanceModel):
text: str = func1.SourceField()
val: int
vec1: Vector(func1.ndims()) = func1.VectorField()
prompt: str = func2.SourceField()
vec2: Vector(func2.ndims()) = func2.VectorField()
df = pd.DataFrame(
{
"text": ["hello world", "goodbye world"],
"val": [1, 2],
"prompt": ["hello", "goodbye"],
}
)
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=TestSchema, mode="overwrite", data=df)
schema = tbl.schema
assert schema.field("text").type == pa.string()
assert schema.field("val").type == pa.int64()
assert schema.field("vec1").type == pa.list_(pa.float32(), 128)
assert schema.field("prompt").type == pa.string()
assert schema.field("vec2").type == pa.list_(pa.float32(), 512)
assert tbl.count_rows() == 2
@pytest.mark.slow
def test_embedding_function_rate_limit(tmp_path):
def _get_schema_from_model(model):

View File

@@ -197,23 +197,6 @@ def test_query_sync_minimal():
assert data == expected
def test_query_sync_empty_query():
def handler(body):
assert body == {
"k": 10,
"filter": "true",
"vector": [],
"columns": ["id"],
}
return pa.table({"id": [1, 2, 3]})
with query_test_table(handler) as table:
data = table.search(None).where("true").select(["id"]).limit(10).to_list()
expected = [{"id": 1}, {"id": 2}, {"id": 3}]
assert data == expected
def test_query_sync_maximal():
def handler(body):
assert body == {
@@ -246,17 +229,6 @@ def test_query_sync_maximal():
)
def test_query_sync_multiple_vectors():
def handler(_body):
return pa.table({"id": [1]})
with query_test_table(handler) as table:
results = table.search([[1, 2, 3], [4, 5, 6]]).limit(1).to_list()
assert len(results) == 2
results.sort(key=lambda x: x["query_index"])
assert results == [{"id": 1, "query_index": 0}, {"id": 1, "query_index": 1}]
def test_query_sync_fts():
def handler(body):
assert body == {

View File

@@ -892,15 +892,10 @@ def test_empty_query(db):
table = LanceTable.create(db, "my_table2", data=[{"id": i} for i in range(100)])
df = table.search().select(["id"]).to_pandas()
assert len(df) == 10
# None is the same as default
df = table.search().select(["id"]).limit(None).to_pandas()
assert len(df) == 10
# invalid limist is the same as None, wihch is the same as default
assert len(df) == 100
df = table.search().select(["id"]).limit(-1).to_pandas()
assert len(df) == 10
# valid limit should work
df = table.search().select(["id"]).limit(42).to_pandas()
assert len(df) == 42
assert len(df) == 100
def test_search_with_schema_inf_single_vector(db):

View File

@@ -142,13 +142,6 @@ impl VectorQuery {
self.inner = self.inner.clone().only_if(predicate);
}
pub fn add_query_vector(&mut self, vector: Bound<'_, PyAny>) -> PyResult<()> {
let data: ArrayData = ArrayData::from_pyarrow_bound(&vector)?;
let array = make_array(data);
self.inner = self.inner.clone().add_query_vector(array).infer_error()?;
Ok(())
}
pub fn select(&mut self, columns: Vec<(String, String)>) {
self.inner = self.inner.clone().select(Select::dynamic(&columns));
}

View File

@@ -475,7 +475,6 @@ impl<T: HasQuery> QueryBase for T {
/// Options for controlling the execution of a query
#[non_exhaustive]
#[derive(Debug, Clone)]
pub struct QueryExecutionOptions {
/// The maximum number of rows that will be contained in a single
/// `RecordBatch` delivered by the query.
@@ -651,7 +650,7 @@ impl Query {
pub fn nearest_to(self, vector: impl IntoQueryVector) -> Result<VectorQuery> {
let mut vector_query = self.into_vector();
let query_vector = vector.to_query_vector(&DataType::Float32, "default")?;
vector_query.query_vector.push(query_vector);
vector_query.query_vector = Some(query_vector);
Ok(vector_query)
}
}
@@ -702,7 +701,7 @@ pub struct VectorQuery {
// the column based on the dataset's schema.
pub(crate) column: Option<String>,
// IVF PQ - ANN search.
pub(crate) query_vector: Vec<Arc<dyn Array>>,
pub(crate) query_vector: Option<Arc<dyn Array>>,
pub(crate) nprobes: usize,
pub(crate) refine_factor: Option<u32>,
pub(crate) distance_type: Option<DistanceType>,
@@ -715,7 +714,7 @@ impl VectorQuery {
Self {
base,
column: None,
query_vector: Vec::new(),
query_vector: None,
nprobes: 20,
refine_factor: None,
distance_type: None,
@@ -735,22 +734,6 @@ impl VectorQuery {
self
}
/// Add another query vector to the search.
///
/// Multiple searches will be dispatched as part of the query.
/// This is a convenience method for adding multiple query vectors
/// to the search. It is not expected to be faster than issuing
/// multiple queries concurrently.
///
/// The output data will contain an additional columns `query_index` which
/// will contain the index of the query vector that was used to generate the
/// result.
pub fn add_query_vector(mut self, vector: impl IntoQueryVector) -> Result<Self> {
let query_vector = vector.to_query_vector(&DataType::Float32, "default")?;
self.query_vector.push(query_vector);
Ok(self)
}
/// Set the number of partitions to search (probe)
///
/// This argument is only used when the vector column has an IVF PQ index.
@@ -871,7 +854,6 @@ mod tests {
use std::sync::Arc;
use super::*;
use arrow::{compute::concat_batches, datatypes::Int32Type};
use arrow_array::{
cast::AsArray, Float32Array, Int32Array, RecordBatch, RecordBatchIterator,
RecordBatchReader,
@@ -901,10 +883,7 @@ mod tests {
let vector = Float32Array::from_iter_values([0.1, 0.2]);
let query = table.query().nearest_to(&[0.1, 0.2]).unwrap();
assert_eq!(
*query.query_vector.first().unwrap().as_ref().as_primitive(),
vector
);
assert_eq!(*query.query_vector.unwrap().as_ref().as_primitive(), vector);
let new_vector = Float32Array::from_iter_values([9.8, 8.7]);
@@ -920,7 +899,7 @@ mod tests {
.refine_factor(999);
assert_eq!(
*query.query_vector.first().unwrap().as_ref().as_primitive(),
*query.query_vector.unwrap().as_ref().as_primitive(),
new_vector
);
assert_eq!(query.base.limit.unwrap(), 100);
@@ -1218,34 +1197,4 @@ mod tests {
assert!(batch.column_by_name("_rowid").is_some());
}
}
#[tokio::test]
async fn test_multiple_query_vectors() {
let tmp_dir = tempdir().unwrap();
let table = make_test_table(&tmp_dir).await;
let query = table
.query()
.nearest_to(&[0.1, 0.2, 0.3, 0.4])
.unwrap()
.add_query_vector(&[0.5, 0.6, 0.7, 0.8])
.unwrap()
.limit(1);
let plan = query.explain_plan(true).await.unwrap();
assert!(plan.contains("UnionExec"));
let results = query
.execute()
.await
.unwrap()
.try_collect::<Vec<_>>()
.await
.unwrap();
let results = concat_batches(&results[0].schema(), &results).unwrap();
assert_eq!(results.num_rows(), 2); // One result for each query vector.
let query_index = results["query_index"].as_primitive::<Int32Type>();
// We don't guarantee order.
assert!(query_index.values().contains(&0));
assert!(query_index.values().contains(&1));
}
}

View File

@@ -6,7 +6,7 @@ use crate::index::IndexStatistics;
use crate::query::Select;
use crate::table::AddDataMode;
use crate::utils::{supported_btree_data_type, supported_vector_data_type};
use crate::{Error, Table};
use crate::Error;
use arrow_array::RecordBatchReader;
use arrow_ipc::reader::FileReader;
use arrow_schema::{DataType, SchemaRef};
@@ -185,71 +185,6 @@ impl<S: HttpSend> RemoteTable<S> {
Ok(())
}
fn apply_vector_query_params(
mut body: serde_json::Value,
query: &VectorQuery,
) -> Result<Vec<serde_json::Value>> {
Self::apply_query_params(&mut body, &query.base)?;
// Apply general parameters, before we dispatch based on number of query vectors.
body["prefilter"] = query.base.prefilter.into();
body["distance_type"] = serde_json::json!(query.distance_type.unwrap_or_default());
body["nprobes"] = query.nprobes.into();
body["refine_factor"] = query.refine_factor.into();
if let Some(vector_column) = query.column.as_ref() {
body["vector_column"] = serde_json::Value::String(vector_column.clone());
}
if !query.use_index {
body["bypass_vector_index"] = serde_json::Value::Bool(true);
}
fn vector_to_json(vector: &arrow_array::ArrayRef) -> Result<serde_json::Value> {
match vector.data_type() {
DataType::Float32 => {
let array = vector
.as_any()
.downcast_ref::<arrow_array::Float32Array>()
.unwrap();
Ok(serde_json::Value::Array(
array
.values()
.iter()
.map(|v| {
serde_json::Value::Number(
serde_json::Number::from_f64(*v as f64).unwrap(),
)
})
.collect(),
))
}
_ => Err(Error::InvalidInput {
message: "VectorQuery vector must be of type Float32".into(),
}),
}
}
match query.query_vector.len() {
0 => {
// Server takes empty vector, not null or undefined.
body["vector"] = serde_json::Value::Array(Vec::new());
Ok(vec![body])
}
1 => {
body["vector"] = vector_to_json(&query.query_vector[0])?;
Ok(vec![body])
}
_ => {
let mut bodies = Vec::with_capacity(query.query_vector.len());
for vector in &query.query_vector {
let mut body = body.clone();
body["vector"] = vector_to_json(vector)?;
bodies.push(body);
}
Ok(bodies)
}
}
}
}
#[derive(Deserialize)]
@@ -371,29 +306,51 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
) -> Result<Arc<dyn ExecutionPlan>> {
let request = self.client.post(&format!("/v1/table/{}/query/", self.name));
let body = serde_json::Value::Object(Default::default());
let bodies = Self::apply_vector_query_params(body, query)?;
let mut body = serde_json::Value::Object(Default::default());
Self::apply_query_params(&mut body, &query.base)?;
let mut futures = Vec::with_capacity(bodies.len());
for body in bodies {
let request = request.try_clone().unwrap().json(&body);
let future = async move {
let (request_id, response) = self.client.send(request, true).await?;
self.read_arrow_stream(&request_id, response).await
};
futures.push(future);
}
let streams = futures::future::try_join_all(futures).await?;
if streams.len() == 1 {
let stream = streams.into_iter().next().unwrap();
Ok(Arc::new(OneShotExec::new(stream)))
body["prefilter"] = query.base.prefilter.into();
body["distance_type"] = serde_json::json!(query.distance_type.unwrap_or_default());
body["nprobes"] = query.nprobes.into();
body["refine_factor"] = query.refine_factor.into();
let vector: Vec<f32> = if let Some(vector) = query.query_vector.as_ref() {
match vector.data_type() {
DataType::Float32 => vector
.as_any()
.downcast_ref::<arrow_array::Float32Array>()
.unwrap()
.values()
.iter()
.cloned()
.collect(),
_ => {
return Err(Error::InvalidInput {
message: "VectorQuery vector must be of type Float32".into(),
})
}
}
} else {
let stream_execs = streams
.into_iter()
.map(|stream| Arc::new(OneShotExec::new(stream)) as Arc<dyn ExecutionPlan>)
.collect();
Table::multi_vector_plan(stream_execs)
// Server takes empty vector, not null or undefined.
Vec::new()
};
body["vector"] = serde_json::json!(vector);
if let Some(vector_column) = query.column.as_ref() {
body["vector_column"] = serde_json::Value::String(vector_column.clone());
}
if !query.use_index {
body["bypass_vector_index"] = serde_json::Value::Bool(true);
}
let request = request.json(&body);
let (request_id, response) = self.client.send(request, true).await?;
let stream = self.read_arrow_stream(&request_id, response).await?;
Ok(Arc::new(OneShotExec::new(stream)))
}
async fn plain_query(
@@ -698,7 +655,6 @@ mod tests {
use super::*;
use arrow::{array::AsArray, compute::concat_batches, datatypes::Int32Type};
use arrow_array::{Int32Array, RecordBatch, RecordBatchIterator};
use arrow_schema::{DataType, Field, Schema};
use futures::{future::BoxFuture, StreamExt, TryFutureExt};
@@ -1251,52 +1207,6 @@ mod tests {
.unwrap();
}
#[tokio::test]
async fn test_query_multiple_vectors() {
let table = Table::new_with_handler("my_table", |request| {
assert_eq!(request.method(), "POST");
assert_eq!(request.url().path(), "/v1/table/my_table/query/");
assert_eq!(
request.headers().get("Content-Type").unwrap(),
JSON_CONTENT_TYPE
);
let data = RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)])),
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
)
.unwrap();
let response_body = write_ipc_file(&data);
http::Response::builder()
.status(200)
.header(CONTENT_TYPE, ARROW_FILE_CONTENT_TYPE)
.body(response_body)
.unwrap()
});
let query = table
.query()
.nearest_to(vec![0.1, 0.2, 0.3])
.unwrap()
.add_query_vector(vec![0.4, 0.5, 0.6])
.unwrap();
let plan = query.explain_plan(true).await.unwrap();
assert!(plan.contains("UnionExec"), "Plan: {}", plan);
let results = query
.execute()
.await
.unwrap()
.try_collect::<Vec<_>>()
.await
.unwrap();
let results = concat_batches(&results[0].schema(), &results).unwrap();
let query_index = results["query_index"].as_primitive::<Int32Type>();
// We don't guarantee order.
assert!(query_index.values().contains(&0));
assert!(query_index.values().contains(&1));
}
#[tokio::test]
async fn test_create_index() {
let cases = [

View File

@@ -24,9 +24,6 @@ use arrow_array::{RecordBatchIterator, RecordBatchReader};
use arrow_schema::{Field, Schema, SchemaRef};
use async_trait::async_trait;
use datafusion_physical_plan::display::DisplayableExecutionPlan;
use datafusion_physical_plan::projection::ProjectionExec;
use datafusion_physical_plan::repartition::RepartitionExec;
use datafusion_physical_plan::union::UnionExec;
use datafusion_physical_plan::ExecutionPlan;
use futures::{StreamExt, TryStreamExt};
use lance::dataset::builder::DatasetBuilder;
@@ -975,57 +972,6 @@ impl Table {
) -> Result<Option<IndexStatistics>> {
self.inner.index_stats(index_name.as_ref()).await
}
// Take many execution plans and map them into a single plan that adds
// a query_index column and unions them.
pub(crate) fn multi_vector_plan(
plans: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
if plans.is_empty() {
return Err(Error::InvalidInput {
message: "No plans provided".to_string(),
});
}
// Projection to keeping all existing columns
let first_plan = plans[0].clone();
let project_all_columns = first_plan
.schema()
.fields()
.iter()
.enumerate()
.map(|(i, field)| {
let expr =
datafusion_physical_plan::expressions::Column::new(field.name().as_str(), i);
let expr = Arc::new(expr) as Arc<dyn datafusion_physical_plan::PhysicalExpr>;
(expr, field.name().clone())
})
.collect::<Vec<_>>();
let projected_plans = plans
.into_iter()
.enumerate()
.map(|(plan_i, plan)| {
let query_index = datafusion_common::ScalarValue::Int32(Some(plan_i as i32));
let query_index_expr =
datafusion_physical_plan::expressions::Literal::new(query_index);
let query_index_expr =
Arc::new(query_index_expr) as Arc<dyn datafusion_physical_plan::PhysicalExpr>;
let mut projections = vec![(query_index_expr, "query_index".to_string())];
projections.extend_from_slice(&project_all_columns);
let projection = ProjectionExec::try_new(projections, plan).unwrap();
Arc::new(projection) as Arc<dyn datafusion_physical_plan::ExecutionPlan>
})
.collect::<Vec<_>>();
let unioned = Arc::new(UnionExec::new(projected_plans));
// We require 1 partition in the final output
let repartitioned = RepartitionExec::try_new(
unioned,
datafusion_physical_plan::Partitioning::RoundRobinBatch(1),
)
.unwrap();
Ok(Arc::new(repartitioned))
}
}
impl From<NativeTable> for Table {
@@ -1838,25 +1784,9 @@ impl TableInternal for NativeTable {
) -> Result<Arc<dyn ExecutionPlan>> {
let ds_ref = self.dataset.get().await?;
if query.query_vector.len() > 1 {
// If there are multiple query vectors, create a plan for each of them and union them.
let query_vecs = query.query_vector.clone();
let plan_futures = query_vecs
.into_iter()
.map(|query_vector| {
let mut sub_query = query.clone();
sub_query.query_vector = vec![query_vector];
let options_ref = options.clone();
async move { self.create_plan(&sub_query, options_ref).await }
})
.collect::<Vec<_>>();
let plans = futures::future::try_join_all(plan_futures).await?;
return Table::multi_vector_plan(plans);
}
let mut scanner: Scanner = ds_ref.scan();
if let Some(query_vector) = query.query_vector.first() {
if let Some(query_vector) = query.query_vector.as_ref() {
// If there is a vector query, default to limit=10 if unspecified
let column = if let Some(col) = query.column.as_ref() {
col.clone()
@@ -1898,11 +1828,18 @@ impl TableInternal for NativeTable {
query_vector,
query.base.limit.unwrap_or(DEFAULT_TOP_K),
)?;
scanner.limit(
query.base.limit.map(|limit| limit as i64),
query.base.offset.map(|offset| offset as i64),
)?;
} else {
// If there is no vector query, it's ok to not have a limit
scanner.limit(
query.base.limit.map(|limit| limit as i64),
query.base.offset.map(|offset| offset as i64),
)?;
}
scanner.limit(
query.base.limit.map(|limit| limit as i64),
query.base.offset.map(|offset| offset as i64),
)?;
scanner.nprobs(query.nprobes);
scanner.use_index(query.use_index);
scanner.prefilter(query.base.prefilter);