Compare commits

..

11 Commits

106 changed files with 2650 additions and 9820 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.13.1-beta.0"
current_version = "0.13.0-beta.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.
@@ -87,16 +87,6 @@ glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-arm64-musl\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-arm64-musl\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-musl\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-musl\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""

View File

@@ -31,9 +31,6 @@ rustflags = [
[target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
[target.x86_64-unknown-linux-musl]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=-crt-static,+avx2,+fma,+f16c"]
[target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]

View File

@@ -31,7 +31,7 @@ jobs:
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
rustup update && rustup default
- name: Set up Python
uses: actions/setup-python@v5
with:
@@ -41,8 +41,8 @@ jobs:
- name: Build Python
working-directory: python
run: |
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r ../docs/requirements.txt
python -m pip install -e .
python -m pip install -r ../docs/requirements.txt
- name: Set up node
uses: actions/setup-node@v3
with:

View File

@@ -49,7 +49,7 @@ jobs:
- name: Build Python
working-directory: docs/test
run:
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r requirements.txt
python -m pip install -r requirements.txt
- name: Create test files
run: |
cd docs/test

View File

@@ -53,9 +53,6 @@ jobs:
cargo clippy --all --all-features -- -D warnings
npm ci
npm run lint-ci
- name: Lint examples
working-directory: nodejs/examples
run: npm ci && npm run lint-ci
linux:
name: Linux (NodeJS ${{ matrix.node-version }})
timeout-minutes: 30
@@ -94,18 +91,6 @@ jobs:
env:
S3_TEST: "1"
run: npm run test
- name: Setup examples
working-directory: nodejs/examples
run: npm ci
- name: Test examples
working-directory: ./
env:
OPENAI_API_KEY: test
OPENAI_BASE_URL: http://0.0.0.0:8000
run: |
python ci/mock_openai.py &
cd nodejs/examples
npm test
macos:
timeout-minutes: 30
runs-on: "macos-14"

View File

@@ -101,7 +101,7 @@ jobs:
path: |
nodejs/dist/*.node
node-linux-gnu:
node-linux:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
@@ -137,63 +137,11 @@ jobs:
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-linux-${{ matrix.config.arch }}-gnu
name: node-native-linux-${{ matrix.config.arch }}
path: |
node/dist/lancedb-vectordb-linux*.tgz
node-linux-musl:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-musl)
runs-on: ubuntu-latest
container: alpine:edge
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install common dependencies
run: |
apk add protobuf-dev curl clang mold grep npm bash
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
source "$HOME/.cargo/env"
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
curl -sSf $apk_url > apk_list
for pkg in gcc libgcc musl; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
mkdir -p $sysroot_lib
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
cp usr/lib/libgcc_s.so.1 $sysroot_lib
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
echo '!<arch>' > $sysroot_lib/libdl.a
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=apple-m1 -Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
- name: Build Linux Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-linux-${{ matrix.config.arch }}-musl
path: |
node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux-gnu:
nodejs-linux:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
@@ -230,7 +178,7 @@ jobs:
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}-gnu
name: nodejs-native-linux-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
# The generic files are the same in all distros so we just pick
@@ -244,62 +192,6 @@ jobs:
nodejs/dist/*
!nodejs/dist/*.node
nodejs-linux-musl:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-musl
runs-on: ubuntu-latest
container: alpine:edge
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install common dependencies
run: |
apk add protobuf-dev curl clang mold grep npm bash openssl-dev openssl-libs-static
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=/usr/include" >> saved_env
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=/usr/lib" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
source "$HOME/.cargo/env"
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
curl -sSf $apk_url > apk_list
for pkg in gcc libgcc musl openssl-dev openssl-libs-static; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
mkdir -p $sysroot_lib
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
cp usr/lib/libgcc_s.so.1 $sysroot_lib
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
echo '!<arch>' > $sysroot_lib/libdl.a
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
echo "export RUSTFLAGS='-Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=$(realpath usr/include)" >> saved_env
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=$(realpath usr/lib)" >> saved_env
- name: Build Linux Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}-musl
path: |
nodejs/dist/*.node
node-windows:
name: vectordb ${{ matrix.target }}
runs-on: windows-2022
@@ -334,109 +226,125 @@ jobs:
path: |
node/dist/lancedb-vectordb-win32*.tgz
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
# node-windows-arm64:
# name: vectordb win32-arm64-msvc
# runs-on: windows-4x-arm
# if: startsWith(github.ref, 'refs/tags/v')
# steps:
# - uses: actions/checkout@v4
# - name: Install Git
# run: |
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
# shell: powershell
# - name: Add Git to PATH
# run: |
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
# shell: powershell
# - name: Configure Git symlinks
# run: git config --global core.symlinks true
# - uses: actions/checkout@v4
# - uses: actions/setup-python@v5
# with:
# python-version: "3.13"
# - name: Install Visual Studio Build Tools
# run: |
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
# "--installPath", "C:\BuildTools", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
# shell: powershell
# - name: Add Visual Studio Build Tools to PATH
# run: |
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
node-windows-arm64:
name: vectordb win32-arm64-msvc
runs-on: windows-4x-arm
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/checkout@v4
- name: Cache installations
id: cache-installs
uses: actions/cache@v4
with:
path: |
C:\Program Files\Git
C:\BuildTools
C:\Program Files (x86)\Windows Kits
C:\Program Files\7-Zip
C:\protoc
key: ${{ runner.os }}-arm64-installs-v1
restore-keys: |
${{ runner.os }}-arm64-installs-
- name: Install Git
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
shell: powershell
- name: Add Git to PATH
run: |
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
shell: powershell
- name: Configure Git symlinks
run: git config --global core.symlinks true
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.13"
- name: Install Visual Studio Build Tools
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
"--installPath", "C:\BuildTools", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
shell: powershell
- name: Add Visual Studio Build Tools to PATH
run: |
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# # Add MSVC runtime libraries to LIB
# $env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
# Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
# Add MSVC runtime libraries to LIB
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
# # Add INCLUDE paths
# $env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
# Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
# shell: powershell
# - name: Install Rust
# run: |
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
# shell: powershell
# - name: Add Rust to PATH
# run: |
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
# shell: powershell
# Add INCLUDE paths
$env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
shell: powershell
- name: Install Rust
run: |
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
shell: powershell
- name: Add Rust to PATH
run: |
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
shell: powershell
# - uses: Swatinem/rust-cache@v2
# with:
# workspaces: rust
# - name: Install 7-Zip ARM
# run: |
# New-Item -Path 'C:\7zip' -ItemType Directory
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
# shell: powershell
# - name: Add 7-Zip to PATH
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
# shell: powershell
# - name: Install Protoc v21.12
# working-directory: C:\
# run: |
# if (Test-Path 'C:\protoc') {
# Write-Host "Protoc directory exists, skipping installation"
# return
# }
# New-Item -Path 'C:\protoc' -ItemType Directory
# Set-Location C:\protoc
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
# shell: powershell
# - name: Add Protoc to PATH
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
# shell: powershell
# - name: Build Windows native node modules
# run: .\ci\build_windows_artifacts.ps1 aarch64-pc-windows-msvc
# - name: Upload Windows ARM64 Artifacts
# uses: actions/upload-artifact@v4
# with:
# name: node-native-windows-arm64
# path: |
# node/dist/*.node
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install 7-Zip ARM
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
New-Item -Path 'C:\7zip' -ItemType Directory
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
shell: powershell
- name: Add 7-Zip to PATH
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
shell: powershell
- name: Install Protoc v21.12
if: steps.cache-installs.outputs.cache-hit != 'true'
working-directory: C:\
run: |
if (Test-Path 'C:\protoc') {
Write-Host "Protoc directory exists, skipping installation"
return
}
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
shell: powershell
- name: Add Protoc to PATH
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts.ps1 aarch64-pc-windows-msvc
- name: Upload Windows ARM64 Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-windows-arm64
path: |
node/dist/*.node
nodejs-windows:
name: lancedb ${{ matrix.target }}
@@ -472,103 +380,119 @@ jobs:
path: |
nodejs/dist/*.node
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
# nodejs-windows-arm64:
# name: lancedb win32-arm64-msvc
# runs-on: windows-4x-arm
# if: startsWith(github.ref, 'refs/tags/v')
# steps:
# - uses: actions/checkout@v4
# - name: Install Git
# run: |
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
# shell: powershell
# - name: Add Git to PATH
# run: |
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
# shell: powershell
# - name: Configure Git symlinks
# run: git config --global core.symlinks true
# - uses: actions/checkout@v4
# - uses: actions/setup-python@v5
# with:
# python-version: "3.13"
# - name: Install Visual Studio Build Tools
# run: |
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
# "--installPath", "C:\BuildTools", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
# shell: powershell
# - name: Add Visual Studio Build Tools to PATH
# run: |
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
nodejs-windows-arm64:
name: lancedb win32-arm64-msvc
runs-on: windows-4x-arm
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/checkout@v4
- name: Cache installations
id: cache-installs
uses: actions/cache@v4
with:
path: |
C:\Program Files\Git
C:\BuildTools
C:\Program Files (x86)\Windows Kits
C:\Program Files\7-Zip
C:\protoc
key: ${{ runner.os }}-arm64-installs-v1
restore-keys: |
${{ runner.os }}-arm64-installs-
- name: Install Git
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
shell: powershell
- name: Add Git to PATH
run: |
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
shell: powershell
- name: Configure Git symlinks
run: git config --global core.symlinks true
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.13"
- name: Install Visual Studio Build Tools
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
"--installPath", "C:\BuildTools", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
shell: powershell
- name: Add Visual Studio Build Tools to PATH
run: |
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# $env:LIB = ""
# Add-Content $env:GITHUB_ENV "LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
# shell: powershell
# - name: Install Rust
# run: |
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
# shell: powershell
# - name: Add Rust to PATH
# run: |
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
# shell: powershell
$env:LIB = ""
Add-Content $env:GITHUB_ENV "LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
shell: powershell
- name: Install Rust
run: |
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
shell: powershell
- name: Add Rust to PATH
run: |
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
shell: powershell
# - uses: Swatinem/rust-cache@v2
# with:
# workspaces: rust
# - name: Install 7-Zip ARM
# run: |
# New-Item -Path 'C:\7zip' -ItemType Directory
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
# shell: powershell
# - name: Add 7-Zip to PATH
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
# shell: powershell
# - name: Install Protoc v21.12
# working-directory: C:\
# run: |
# if (Test-Path 'C:\protoc') {
# Write-Host "Protoc directory exists, skipping installation"
# return
# }
# New-Item -Path 'C:\protoc' -ItemType Directory
# Set-Location C:\protoc
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
# shell: powershell
# - name: Add Protoc to PATH
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
# shell: powershell
# - name: Build Windows native node modules
# run: .\ci\build_windows_artifacts_nodejs.ps1 aarch64-pc-windows-msvc
# - name: Upload Windows ARM64 Artifacts
# uses: actions/upload-artifact@v4
# with:
# name: nodejs-native-windows-arm64
# path: |
# nodejs/dist/*.node
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install 7-Zip ARM
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
New-Item -Path 'C:\7zip' -ItemType Directory
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
shell: powershell
- name: Add 7-Zip to PATH
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
shell: powershell
- name: Install Protoc v21.12
if: steps.cache-installs.outputs.cache-hit != 'true'
working-directory: C:\
run: |
if (Test-Path 'C:\protoc') {
Write-Host "Protoc directory exists, skipping installation"
return
}
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
shell: powershell
- name: Add Protoc to PATH
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts_nodejs.ps1 aarch64-pc-windows-msvc
- name: Upload Windows ARM64 Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-windows-arm64
path: |
nodejs/dist/*.node
release:
name: vectordb NPM Publish
needs: [node, node-macos, node-linux-gnu, node-linux-musl, node-windows]
needs: [node, node-macos, node-linux, node-windows, node-windows-arm64]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -586,7 +510,7 @@ jobs:
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: |
# Tag beta as "preview" instead of default "latest". See lancedb
# Tag beta as "preview" instead of default "latest". See lancedb
# npm publish step for more info.
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
PUBLISH_ARGS="--tag preview"
@@ -608,7 +532,7 @@ jobs:
release-nodejs:
name: lancedb NPM Publish
needs: [nodejs-macos, nodejs-linux-gnu, nodejs-linux-musl, nodejs-windows]
needs: [nodejs-macos, nodejs-linux, nodejs-windows, nodejs-windows-arm64]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')

View File

@@ -138,7 +138,7 @@ jobs:
run: rm -rf target/wheels
windows:
name: "Windows: ${{ matrix.config.name }}"
timeout-minutes: 60
timeout-minutes: 30
strategy:
matrix:
config:

View File

@@ -50,7 +50,6 @@ jobs:
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --workspace --tests --all-features -- -D warnings
linux:
timeout-minutes: 30
# To build all features, we need more disk space than is available
@@ -92,7 +91,6 @@ jobs:
run: cargo test --all-features
- name: Run examples
run: cargo run --example simple
macos:
timeout-minutes: 30
strategy:
@@ -120,7 +118,6 @@ jobs:
- name: Run tests
# Run with everything except the integration tests.
run: cargo test --features remote,fp16kernels
windows:
runs-on: windows-2022
steps:
@@ -142,11 +139,24 @@ jobs:
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build
cargo test
windows-arm64:
runs-on: windows-4x-arm
steps:
- name: Cache installations
id: cache-installs
uses: actions/cache@v4
with:
path: |
C:\Program Files\Git
C:\BuildTools
C:\Program Files (x86)\Windows Kits
C:\Program Files\7-Zip
C:\protoc
key: ${{ runner.os }}-arm64-installs-v1
restore-keys: |
${{ runner.os }}-arm64-installs-
- name: Install Git
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
@@ -163,6 +173,7 @@ jobs:
with:
python-version: "3.13"
- name: Install Visual Studio Build Tools
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
@@ -206,10 +217,12 @@ jobs:
run: |
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
shell: powershell
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install 7-Zip ARM
if: steps.cache-installs.outputs.cache-hit != 'true'
run: |
New-Item -Path 'C:\7zip' -ItemType Directory
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
@@ -219,11 +232,12 @@ jobs:
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
shell: powershell
- name: Install Protoc v21.12
if: steps.cache-installs.outputs.cache-hit != 'true'
working-directory: C:\
run: |
if (Test-Path 'C:\protoc') {
Write-Host "Protoc directory exists, skipping installation"
return
Write-Host "Protoc directory exists, skipping installation"
return
}
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc

View File

@@ -18,18 +18,16 @@ repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
[workspace.dependencies]
lance = { "version" = "=0.20.0", "features" = [
"dynamodb",
], git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-index = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-linalg = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-table = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-testing = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-datafusion = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-encoding = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance = { "version" = "=0.19.2", "features" = ["dynamodb"], path = "../lance/rust/lance"}
lance-index = { "version" = "=0.19.2", path = "../lance/rust/lance-index"}
lance-linalg = { "version" = "=0.19.2", path = "../lance/rust/lance-linalg"}
lance-testing = { "version" = "=0.19.2", path = "../lance/rust/lance-testing"}
lance-datafusion = { "version" = "=0.19.2", path = "../lance/rust/lance-datafusion"}
lance-encoding = { "version" = "=0.19.2", path = "../lance/rust/lance-encoding"}
lance-table = { "version" = "=0.19.2", path = "../lance/rust/lance-table"}
# Note that this one does not include pyarrow
arrow = { version = "52.2", optional = false }
arrow-array = "52.2"

View File

@@ -11,8 +11,7 @@ fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
#Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
source $HOME/.bashrc
cd nodejs
npm ci

View File

@@ -5,14 +5,13 @@ ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
#Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
source $HOME/.bashrc
cd node
npm ci

View File

@@ -1,57 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
"""A zero-dependency mock OpenAI embeddings API endpoint for testing purposes."""
import argparse
import json
import http.server
class MockOpenAIRequestHandler(http.server.BaseHTTPRequestHandler):
def do_POST(self):
content_length = int(self.headers["Content-Length"])
post_data = self.rfile.read(content_length)
post_data = json.loads(post_data.decode("utf-8"))
# See: https://platform.openai.com/docs/api-reference/embeddings/create
if isinstance(post_data["input"], str):
num_inputs = 1
else:
num_inputs = len(post_data["input"])
model = post_data.get("model", "text-embedding-ada-002")
data = []
for i in range(num_inputs):
data.append({
"object": "embedding",
"embedding": [0.1] * 1536,
"index": i,
})
response = {
"object": "list",
"data": data,
"model": model,
"usage": {
"prompt_tokens": 0,
"total_tokens": 0,
}
}
self.send_response(200)
self.send_header("Content-type", "application/json")
self.end_headers()
self.wfile.write(json.dumps(response).encode("utf-8"))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Mock OpenAI embeddings API endpoint")
parser.add_argument("--port", type=int, default=8000, help="Port to listen on")
args = parser.parse_args()
port = args.port
print(f"server started on port {port}. Press Ctrl-C to stop.")
print(f"To use, set OPENAI_BASE_URL=http://localhost:{port} in your environment.")
with http.server.HTTPServer(("0.0.0.0", port), MockOpenAIRequestHandler) as server:
server.serve_forever()

View File

@@ -138,7 +138,6 @@ nav:
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Voyage AI Rerankers: reranking/voyageai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
@@ -166,7 +165,6 @@ nav:
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Voyage AI Embeddings: embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md

21
docs/package-lock.json generated
View File

@@ -19,7 +19,7 @@
},
"../node": {
"name": "vectordb",
"version": "0.12.0",
"version": "0.4.6",
"cpu": [
"x64",
"arm64"
@@ -31,7 +31,9 @@
"win32"
],
"dependencies": {
"@apache-arrow/ts": "^14.0.2",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0"
},
"devDependencies": {
@@ -44,7 +46,6 @@
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
"chai-as-promised": "^7.1.1",
@@ -61,19 +62,15 @@
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "^5.1.0",
"typescript": "*",
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.12.0",
"@lancedb/vectordb-darwin-x64": "0.12.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0",
"@lancedb/vectordb-linux-x64-gnu": "0.12.0",
"@lancedb/vectordb-win32-x64-msvc": "0.12.0"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
"apache-arrow": "^14.0.2"
"@lancedb/vectordb-darwin-arm64": "0.4.6",
"@lancedb/vectordb-darwin-x64": "0.4.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
}
},
"../node/node_modules/apache-arrow": {

View File

@@ -45,9 +45,9 @@ Lance supports `IVF_PQ` index type by default.
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
```typescript
--8<--- "nodejs/examples/ann_indexes.test.ts:import"
--8<--- "nodejs/examples/ann_indexes.ts:import"
--8<-- "nodejs/examples/ann_indexes.test.ts:ingest"
--8<-- "nodejs/examples/ann_indexes.ts:ingest"
```
=== "vectordb (deprecated)"
@@ -140,15 +140,13 @@ There are a couple of parameters that can be used to fine-tune the search:
- **limit** (default: 10): The amount of results that will be returned
- **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/>
Most of the time, setting nprobes to cover 5-15% of the dataset should achieve high recall with low latency.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, `nprobes` should be set to ~20-40. This value can be adjusted to achieve the optimal balance between search latency and search quality. <br/>
Most of the time, setting nprobes to cover 5-10% of the dataset should achieve high recall with low latency.<br/>
e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/>
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, setting the `refine_factor` to 200 will initially retrieve the top 4,000 candidates (top k * refine_factor) from all searched partitions. These candidates are then reranked to determine the final top 20 results.<br/>
!!! note
Both `nprobes` and `refine_factor` are only applicable if an ANN index is present. If specified on a table without an ANN index, those parameters are ignored.
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
=== "Python"
@@ -171,7 +169,7 @@ There are a couple of parameters that can be used to fine-tune the search:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.test.ts:search1"
--8<-- "nodejs/examples/ann_indexes.ts:search1"
```
=== "vectordb (deprecated)"
@@ -205,7 +203,7 @@ You can further filter the elements returned by a search using a where clause.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.test.ts:search2"
--8<-- "nodejs/examples/ann_indexes.ts:search2"
```
=== "vectordb (deprecated)"
@@ -237,7 +235,7 @@ You can select the columns returned by the query using a select clause.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.test.ts:search3"
--8<-- "nodejs/examples/ann_indexes.ts:search3"
```
=== "vectordb (deprecated)"
@@ -277,15 +275,7 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
!!! note
if `num_sub_vectors` is set to be greater than the vector dimension, you will see errors like `attempt to divide by zero`
### How to choose `m` and `ef_construction` for `IVF_HNSW_*` index?
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.

View File

@@ -157,7 +157,7 @@ recommend switching to stable releases.
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
--8<-- "nodejs/examples/basic.test.ts:connect"
--8<-- "nodejs/examples/basic.ts:connect"
```
=== "vectordb (deprecated)"
@@ -212,7 +212,7 @@ table.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_table"
--8<-- "nodejs/examples/basic.ts:create_table"
```
=== "vectordb (deprecated)"
@@ -268,7 +268,7 @@ similar to a `CREATE TABLE` statement in SQL.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
--8<-- "nodejs/examples/basic.ts:create_empty_table"
```
=== "vectordb (deprecated)"
@@ -298,7 +298,7 @@ Once created, you can open a table as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:open_table"
--8<-- "nodejs/examples/basic.ts:open_table"
```
=== "vectordb (deprecated)"
@@ -327,7 +327,7 @@ If you forget the name of your table, you can always get a listing of all table
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:table_names"
--8<-- "nodejs/examples/basic.ts:table_names"
```
=== "vectordb (deprecated)"
@@ -357,7 +357,7 @@ After a table has been created, you can always add more data to it as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:add_data"
--8<-- "nodejs/examples/basic.ts:add_data"
```
=== "vectordb (deprecated)"
@@ -389,7 +389,7 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:vector_search"
--8<-- "nodejs/examples/basic.ts:vector_search"
```
=== "vectordb (deprecated)"
@@ -429,7 +429,7 @@ LanceDB allows you to create an ANN index on a table as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_index"
--8<-- "nodejs/examples/basic.ts:create_index"
```
=== "vectordb (deprecated)"
@@ -469,7 +469,7 @@ This can delete any number of rows that match the filter.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:delete_rows"
--8<-- "nodejs/examples/basic.ts:delete_rows"
```
=== "vectordb (deprecated)"
@@ -527,7 +527,7 @@ Use the `drop_table()` method on the database to remove a table.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:drop_table"
--8<-- "nodejs/examples/basic.ts:drop_table"
```
=== "vectordb (deprecated)"
@@ -561,8 +561,8 @@ You can use the embedding API when working with embedding models. It automatical
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/embedding.test.ts:imports"
--8<-- "nodejs/examples/embedding.test.ts:openai_embeddings"
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:openai_embeddings"
```
=== "Rust"

View File

@@ -57,13 +57,6 @@ Then the greedy search routine operates as follows:
## Usage
There are three key parameters to set when constructing an HNSW index:
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `m`: The number of neighbors to select for each vector in the HNSW graph.
* `ef_construction`: The number of candidates to evaluate during the construction of the HNSW graph.
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
### Construct index

View File

@@ -58,10 +58,8 @@ In Python, the index can be created as follows:
# Make sure you have enough data in the table for an effective training step
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
```
!!! note
`num_partitions`=256 and `num_sub_vectors`=96 does not work for every dataset. Those values needs to be adjusted for your particular dataset.
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See [here](../ann_indexes.md/#how-to-choose-num_partitions-and-num_sub_vectors-for-ivf_pq-index) for best practices on choosing these parameters.
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See the [FAQs](#faq) below for best practices on choosing these parameters.
### Query the index

View File

@@ -20,7 +20,7 @@ Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|--------|---------|
| `name` | `str` | `None` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
| `name` | `str` | `"voyage-3"` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |

View File

@@ -47,9 +47,9 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.test.ts:imports"
--8<--- "nodejs/examples/custom_embedding_function.ts:imports"
--8<--- "nodejs/examples/custom_embedding_function.test.ts:embedding_impl"
--8<--- "nodejs/examples/custom_embedding_function.ts:embedding_impl"
```
@@ -78,7 +78,7 @@ Now you can use this embedding function to create your table schema and that's i
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.test.ts:call_custom_function"
--8<--- "nodejs/examples/custom_embedding_function.ts:call_custom_function"
```
!!! note

View File

@@ -53,7 +53,6 @@ These functions are registered by default to handle text embeddings.
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="Jina Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/jina_embedding.md) |
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/aws_bedrock.png" alt="AWS Bedrock Icon" width="120" height="35">](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/watsonx.png" alt="Watsonx Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
| [**VoyageAI Embeddings**](available_embedding_models/text_embedding_functions/voyageai_embedding.md "voyageai") | 🌕 Voyage AI provides cutting-edge embedding and rerankers. This will help you get started with **VoyageAI** embedding models using LanceDB. Using voyageai API requires voyageai package. Install it via `pip`. | [<img src="https://www.voyageai.com/logo.svg" alt="VoyageAI Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/voyageai_embedding.md) |
@@ -67,7 +66,6 @@ These functions are registered by default to handle text embeddings.
[jina-key]: "jina"
[aws-key]: "bedrock-text"
[watsonx-key]: "watsonx"
[voyageai-key]: "voyageai"
## Multi-modal Embedding Functions🖼

View File

@@ -94,8 +94,8 @@ the embeddings at all:
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/embedding.test.ts:imports"
--8<-- "nodejs/examples/embedding.test.ts:embedding_function"
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:embedding_function"
```
=== "vectordb (deprecated)"
@@ -150,7 +150,7 @@ need to worry about it when you query the table:
.toArray()
```
=== "vectordb (deprecated)"
=== "vectordb (deprecated)
```ts
const results = await table

View File

@@ -51,8 +51,8 @@ LanceDB registers the OpenAI embeddings function in the registry as `openai`. Yo
=== "TypeScript"
```typescript
--8<--- "nodejs/examples/embedding.test.ts:imports"
--8<--- "nodejs/examples/embedding.test.ts:openai_embeddings"
--8<--- "nodejs/examples/embedding.ts:imports"
--8<--- "nodejs/examples/embedding.ts:openai_embeddings"
```
=== "Rust"
@@ -121,10 +121,12 @@ class Words(LanceModel):
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add([
{"text": "hello world"},
{"text": "goodbye world"}
])
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]

View File

@@ -114,45 +114,12 @@ table.create_fts_index("text",
LanceDB full text search supports to filter the search results by a condition, both pre-filtering and post-filtering are supported.
This can be invoked via the familiar `where` syntax.
With pre-filtering:
This can be invoked via the familiar `where` syntax:
=== "Python"
```python
table.search("puppy").limit(10).where("meta='foo'", prefilte=True).to_list()
```
=== "TypeScript"
```typescript
await tbl
.search("puppy")
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.prefilter(true)
.toArray();
```
=== "Rust"
```rust
table
.query()
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.limit(10)
.only_if("meta='foo'")
.execute()
.await?;
```
With post-filtering:
=== "Python"
```python
table.search("puppy").limit(10).where("meta='foo'", prefilte=False).to_list()
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
=== "TypeScript"
@@ -163,7 +130,6 @@ With post-filtering:
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.prefilter(false)
.toArray();
```
@@ -174,7 +140,6 @@ With post-filtering:
.query()
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.postfilter()
.limit(10)
.only_if("meta='foo'")
.execute()
@@ -195,35 +160,3 @@ To search for a phrase, the index must be created with `with_position=True`:
table.create_fts_index("text", use_tantivy=False, with_position=True)
```
This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.
## Incremental indexing
LanceDB supports incremental indexing, which means you can add new records to the table without reindexing the entire table.
This can make the query more efficient, especially when the table is large and the new records are relatively small.
=== "Python"
```python
table.add([{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"}])
table.optimize()
```
=== "TypeScript"
```typescript
await tbl.add([{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" }]);
await tbl.optimize();
```
=== "Rust"
```rust
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
tbl.add(more_data).execute().await?;
tbl.optimize(OptimizeAction::All).execute().await?;
```
!!! note
New data added after creating the FTS index will appear in search results while incremental index is still progress, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates this merging process, minimizing the impact on search speed.

View File

@@ -153,7 +153,9 @@ table.create_fts_index(["title", "content"], use_tantivy=True, writer_heap_size=
## Current limitations
1. New data added after creating the FTS index will appear in search results, but with increased latency due to a flat search on the unindexed portion. Re-indexing with `create_fts_index` will reduce latency. LanceDB Cloud automates this merging process, minimizing the impact on search speed.
1. Currently we do not yet support incremental writes.
If you add data after FTS index creation, it won't be reflected
in search results until you do a full reindex.
2. We currently only support local filesystem paths for the FTS index.
This is a tantivy limitation. We've implemented an object store plugin

View File

@@ -85,13 +85,13 @@ Initialize a LanceDB connection and create a table
```ts
--8<-- "nodejs/examples/basic.test.ts:create_table"
--8<-- "nodejs/examples/basic.ts:create_table"
```
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use `apache-arrow` to declare a schema
```ts
--8<-- "nodejs/examples/basic.test.ts:create_table_with_schema"
--8<-- "nodejs/examples/basic.ts:create_table_with_schema"
```
!!! info "Note"
@@ -100,14 +100,14 @@ Initialize a LanceDB connection and create a table
passed in will NOT be appended to the table in that case.
```ts
--8<-- "nodejs/examples/basic.test.ts:create_table_exists_ok"
--8<-- "nodejs/examples/basic.ts:create_table_exists_ok"
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
```ts
--8<-- "nodejs/examples/basic.test.ts:create_table_overwrite"
--8<-- "nodejs/examples/basic.ts:create_table_overwrite"
```
=== "vectordb (deprecated)"
@@ -227,7 +227,7 @@ LanceDB supports float16 data type!
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_f16_table"
--8<-- "nodejs/examples/basic.ts:create_f16_table"
```
=== "vectordb (deprecated)"
@@ -274,7 +274,7 @@ table = db.create_table(table_name, schema=Content)
Sometimes your data model may contain nested objects.
For example, you may want to store the document string
and the document source name as a nested Document object:
and the document soure name as a nested Document object:
```python
class Document(BaseModel):
@@ -455,7 +455,7 @@ You can create an empty table for scenarios where you want to add data to the ta
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
--8<-- "nodejs/examples/basic.ts:create_empty_table"
```
=== "vectordb (deprecated)"
@@ -466,7 +466,7 @@ You can create an empty table for scenarios where you want to add data to the ta
## Adding to a table
After a table has been created, you can always add more data to it using the `add` method
After a table has been created, you can always add more data to it usind the `add` method
=== "Python"
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
@@ -535,7 +535,7 @@ After a table has been created, you can always add more data to it using the `ad
```
??? "Ingesting Pydantic models with LanceDB embedding API"
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` field as None to allow LanceDB to automatically vectorize the data.
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` feild as None to allow LanceDB to automatically vectorize the data.
```python
import lancedb
@@ -790,27 +790,6 @@ Use the `drop_table()` method on the database to remove a table.
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
## Handling bad vectors
In LanceDB Python, you can use the `on_bad_vectors` parameter to choose how
invalid vector values are handled. Invalid vectors are vectors that are not valid
because:
1. They are the wrong dimension
2. They contain NaN values
3. They are null but are on a non-nullable field
By default, LanceDB will raise an error if it encounters a bad vector. You can
also choose one of the following options:
* `drop`: Ignore rows with bad vectors
* `fill`: Replace bad values (NaNs) or missing values (too few dimensions) with
the fill value specified in the `fill_value` parameter. An input like
`[1.0, NaN, 3.0]` will be replaced with `[1.0, 0.0, 3.0]` if `fill_value=0.0`.
* `null`: Replace bad vectors with null (only works if the column is nullable).
A bad vector `[1.0, NaN, 3.0]` will be replaced with `null` if the column is
nullable. If the vector column is non-nullable, then bad vectors will cause an
error
## Consistency
@@ -880,4 +859,4 @@ There are three possible settings for `read_consistency_interval`:
Learn the best practices on creating an ANN index and getting the most out of it.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](../migration.md) for more information.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.

File diff suppressed because it is too large Load Diff

View File

@@ -117,14 +117,8 @@ lists the indices that LanceDb supports.
::: lancedb.index.LabelList
::: lancedb.index.FTS
::: lancedb.index.IvfPq
::: lancedb.index.HnswPq
::: lancedb.index.HnswSq
## Querying (Asynchronous)
Queries allow you to return data from your database. Basic queries can be

View File

@@ -6,9 +6,6 @@ This re-ranker uses the [Cohere](https://cohere.ai/) API to rerank the search re
!!! note
Supported Query Types: Hybrid, Vector, FTS
```shell
pip install cohere
```
```python
import numpy

View File

@@ -9,7 +9,6 @@ LanceDB comes with some built-in rerankers. Some of the rerankers that are avail
| `CrossEncoderReranker` | Uses a cross-encoder model to rerank search results | Vector, FTS, Hybrid |
| `ColbertReranker` | Uses a colbert model to rerank search results | Vector, FTS, Hybrid |
| `OpenaiReranker`(Experimental) | Uses OpenAI's chat model to rerank search results | Vector, FTS, Hybrid |
| `VoyageAIReranker` | Uses voyageai Reranker API to rerank results | Vector, FTS, Hybrid |
## Using a Reranker
@@ -74,7 +73,6 @@ LanceDB comes with some built-in rerankers. Here are some of the rerankers that
- [Jina Reranker](./jina.md)
- [AnswerDotAI Rerankers](./answerdotai.md)
- [Reciprocal Rank Fusion Reranker](./rrf.md)
- [VoyageAI Reranker](./voyageai.md)
## Creating Custom Rerankers

View File

@@ -58,9 +58,9 @@ db.create_table("my_vectors", data=data)
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/search.test.ts:import"
--8<-- "nodejs/examples/search.ts:import"
--8<-- "nodejs/examples/search.test.ts:search1"
--8<-- "nodejs/examples/search.ts:search1"
```
@@ -89,7 +89,7 @@ By default, `l2` will be used as metric type. You can specify the metric type as
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/search.test.ts:search2"
--8<-- "nodejs/examples/search.ts:search2"
```
=== "vectordb (deprecated)"

View File

@@ -49,7 +49,7 @@ const tbl = await db.createTable('myVectors', data)
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.test.ts:search"
--8<-- "nodejs/examples/filtering.ts:search"
```
=== "vectordb (deprecated)"
@@ -91,7 +91,7 @@ For example, the following filter string is acceptable:
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.test.ts:vec_search"
--8<-- "nodejs/examples/filtering.ts:vec_search"
```
=== "vectordb (deprecated)"
@@ -169,7 +169,7 @@ You can also filter your data without search.
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.test.ts:sql_search"
--8<-- "nodejs/examples/filtering.ts:sql_search"
```
=== "vectordb (deprecated)"

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.13.1-beta.0</version>
<version>0.13.0-beta.1</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.13.1-beta.0</version>
<version>0.13.0-beta.1</version>
<packaging>pom</packaging>
<name>LanceDB Parent</name>

84
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.13.1-beta.0",
"version": "0.13.0-beta.1",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.13.1-beta.0",
"version": "0.13.0-beta.1",
"cpu": [
"x64",
"arm64"
@@ -52,14 +52,12 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.13.1-beta.0",
"@lancedb/vectordb-darwin-x64": "0.13.1-beta.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.13.1-beta.0",
"@lancedb/vectordb-linux-arm64-musl": "0.13.1-beta.0",
"@lancedb/vectordb-linux-x64-gnu": "0.13.1-beta.0",
"@lancedb/vectordb-linux-x64-musl": "0.13.1-beta.0",
"@lancedb/vectordb-win32-arm64-msvc": "0.13.1-beta.0",
"@lancedb/vectordb-win32-x64-msvc": "0.13.1-beta.0"
"@lancedb/vectordb-darwin-arm64": "0.13.0-beta.1",
"@lancedb/vectordb-darwin-x64": "0.13.0-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.13.0-beta.1",
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.13.0-beta.1"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
@@ -329,6 +327,66 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.13.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.13.0-beta.1.tgz",
"integrity": "sha512-beOrf6selCzzhLgDG8Nibma4nO/CSnA1wUKRmlJHEPtGcg7PW18z6MP/nfwQMpMR/FLRfTo8pPTbpzss47MiQQ==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.13.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.13.0-beta.1.tgz",
"integrity": "sha512-YdraGRF/RbJRkKh0v3xT03LUhq47T2GtCvJ5gZp8wKlh4pHa8LuhLU0DIdvmG/DT5vuQA+td8HDkBm/e3EOdNg==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.13.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.13.0-beta.1.tgz",
"integrity": "sha512-Pp0O/uhEqof1oLaWrNbv+Ym+q8kBkiCqaA5+2eAZ6a3e9U+Ozkvb0FQrHuyi9adJ5wKQ4NabyQE9BMf2bYpOnQ==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.13.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.13.0-beta.1.tgz",
"integrity": "sha512-y8nxOye4egfWF5FGED9EfkmZ1O5HnRLU4a61B8m5JSpkivO9v2epTcbYN0yt/7ZFCgtqMfJ8VW4Mi7qQcz3KDA==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.13.0-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.13.0-beta.1.tgz",
"integrity": "sha512-STMDP9dp0TBLkB3ro+16pKcGy6bmbhRuEZZZ1Tp5P75yTPeVh4zIgWkidMdU1qBbEYM7xacnsp9QAwgLnMU/Ow==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
@@ -1443,9 +1501,9 @@
"dev": true
},
"node_modules/cross-spawn": {
"version": "7.0.6",
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz",
"integrity": "sha512-uV2QOWP2nWzsy2aMp8aRibhi9dlzF5Hgh5SHaB9OiTGEyDTiJJyx0uy51QXdyWbtAHNua4XJzUKca3OzKUd3vA==",
"version": "7.0.3",
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
"integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
"dev": true,
"dependencies": {
"path-key": "^3.1.0",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.13.1-beta.0",
"version": "0.13.0-beta.1",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -89,13 +89,11 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-x64": "0.13.1-beta.0",
"@lancedb/vectordb-darwin-arm64": "0.13.1-beta.0",
"@lancedb/vectordb-linux-x64-gnu": "0.13.1-beta.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.13.1-beta.0",
"@lancedb/vectordb-linux-x64-musl": "0.13.1-beta.0",
"@lancedb/vectordb-linux-arm64-musl": "0.13.1-beta.0",
"@lancedb/vectordb-win32-x64-msvc": "0.13.1-beta.0",
"@lancedb/vectordb-win32-arm64-msvc": "0.13.1-beta.0"
"@lancedb/vectordb-darwin-arm64": "0.13.0-beta.1",
"@lancedb/vectordb-darwin-x64": "0.13.0-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.13.0-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.13.0-beta.1",
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0-beta.1"
}
}

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.13.1-beta.0"
version = "0.13.0-beta.1"
license.workspace = true
description.workspace = true
repository.workspace = true

View File

@@ -187,81 +187,6 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
},
);
// TODO: https://github.com/lancedb/lancedb/issues/1832
it.skip("should be able to omit nullable fields", async () => {
const db = await connect(tmpDir.name);
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float64()),
),
true,
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float64(), false),
]);
const table = await db.createEmptyTable("test", schema);
const data1 = { item: "foo", price: 10.0 };
await table.add([data1]);
const data2 = { vector: [3.1, 4.1], price: 2.0 };
await table.add([data2]);
const data3 = { vector: [5.9, 26.5], item: "bar", price: 3.0 };
await table.add([data3]);
let res = await table.query().limit(10).toArray();
const resVector = res.map((r) => r.get("vector").toArray());
expect(resVector).toEqual([null, data2.vector, data3.vector]);
const resItem = res.map((r) => r.get("item").toArray());
expect(resItem).toEqual(["foo", null, "bar"]);
const resPrice = res.map((r) => r.get("price").toArray());
expect(resPrice).toEqual([10.0, 2.0, 3.0]);
const data4 = { item: "foo" };
// We can't omit a column if it's not nullable
await expect(table.add([data4])).rejects.toThrow("Invalid user input");
// But we can alter columns to make them nullable
await table.alterColumns([{ path: "price", nullable: true }]);
await table.add([data4]);
res = (await table.query().limit(10).toArray()).map((r) => r.toJSON());
expect(res).toEqual([data1, data2, data3, data4]);
});
it("should be able to insert nullable data for non-nullable fields", async () => {
const db = await connect(tmpDir.name);
const schema = new arrow.Schema([
new arrow.Field("x", new arrow.Float64(), false),
new arrow.Field("id", new arrow.Utf8(), false),
]);
const table = await db.createEmptyTable("test", schema);
const data1 = { x: 4.1, id: "foo" };
await table.add([data1]);
const res = (await table.query().toArray())[0];
expect(res.x).toEqual(data1.x);
expect(res.id).toEqual(data1.id);
const data2 = { x: null, id: "bar" };
await expect(table.add([data2])).rejects.toThrow(
"declared as non-nullable but contains null values",
);
// But we can alter columns to make them nullable
await table.alterColumns([{ path: "x", nullable: true }]);
await table.add([data2]);
const res2 = await table.query().toArray();
expect(res2.length).toBe(2);
expect(res2[0].x).toEqual(data1.x);
expect(res2[0].id).toEqual(data1.id);
expect(res2[1].x).toBeNull();
expect(res2[1].id).toEqual(data2.id);
});
it("should return the table as an instance of an arrow table", async () => {
const arrowTbl = await table.toArrow();
expect(arrowTbl).toBeInstanceOf(ArrowTable);
@@ -477,54 +402,6 @@ describe("When creating an index", () => {
expect(rst.numRows).toBe(1);
});
it("should create and search IVF_HNSW indices", async () => {
await tbl.createIndex("vec", {
config: Index.hnswSq(),
});
// check index directory
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
const indices = await tbl.listIndices();
expect(indices.length).toBe(1);
expect(indices[0]).toEqual({
name: "vec_idx",
indexType: "IvfHnswSq",
columns: ["vec"],
});
// Search without specifying the column
let rst = await tbl
.query()
.limit(2)
.nearestTo(queryVec)
.distanceType("dot")
.toArrow();
expect(rst.numRows).toBe(2);
// Search using `vectorSearch`
rst = await tbl.vectorSearch(queryVec).limit(2).toArrow();
expect(rst.numRows).toBe(2);
// Search with specifying the column
const rst2 = await tbl
.query()
.limit(2)
.nearestTo(queryVec)
.column("vec")
.toArrow();
expect(rst2.numRows).toBe(2);
expect(rst.toString()).toEqual(rst2.toString());
// test offset
rst = await tbl.query().limit(2).offset(1).nearestTo(queryVec).toArrow();
expect(rst.numRows).toBe(1);
// test ef
rst = await tbl.query().limit(2).nearestTo(queryVec).ef(100).toArrow();
expect(rst.numRows).toBe(2);
});
it("should be able to query unindexed data", async () => {
await tbl.createIndex("vec");
await tbl.add([
@@ -1121,18 +998,4 @@ describe("column name options", () => {
const results = await table.query().where("`camelCase` = 1").toArray();
expect(results[0].camelCase).toBe(1);
});
test("can make multiple vector queries in one go", async () => {
const results = await table
.query()
.nearestTo([0.1, 0.2])
.addQueryVector([0.1, 0.2])
.limit(1)
.toArray();
console.log(results);
expect(results.length).toBe(2);
results.sort((a, b) => a.query_index - b.query_index);
expect(results[0].query_index).toBe(0);
expect(results[1].query_index).toBe(1);
});
});

View File

@@ -9,8 +9,7 @@
"**/native.js",
"**/native.d.ts",
"**/npm/**/*",
"**/.vscode/**",
"./examples/*"
"**/.vscode/**"
]
},
"formatter": {

View File

@@ -1,57 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
import { VectorQuery } from "@lancedb/lancedb";
// --8<-- [end:import]
import { withTempDirectory } from "./util.ts";
test("ann index examples", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:ingest]
const db = await lancedb.connect(databaseDir);
const data = Array.from({ length: 5_000 }, (_, i) => ({
vector: Array(128).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
const table = await db.createTable("my_vectors", data, {
mode: "overwrite",
});
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 10,
numSubVectors: 16,
}),
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const search = table.search(Array(128).fill(1.2)).limit(2) as VectorQuery;
const results1 = await search.nprobes(20).refineFactor(10).toArray();
// --8<-- [end:search1]
expect(results1.length).toBe(2);
// --8<-- [start:search2]
const results2 = await table
.search(Array(128).fill(1.2))
.where("id != '1141'")
.limit(2)
.toArray();
// --8<-- [end:search2]
expect(results2.length).toBe(2);
// --8<-- [start:search3]
const results3 = await table
.search(Array(128).fill(1.2))
.select(["id"])
.limit(2)
.toArray();
// --8<-- [end:search3]
expect(results3.length).toBe(2);
});
}, 100_000);

View File

@@ -0,0 +1,49 @@
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
// --8<-- [end:import]
// --8<-- [start:ingest]
const db = await lancedb.connect("/tmp/lancedb/");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
const table = await db.createTable("my_vectors", data, { mode: "overwrite" });
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 16,
numSubVectors: 48,
}),
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const _results1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.toArray();
// --8<-- [end:search1]
// --8<-- [start:search2]
const _results2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.toArray();
// --8<-- [end:search2]
// --8<-- [start:search3]
const _results3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.toArray();
// --8<-- [end:search3]
console.log("Ann indexes: done");

View File

@@ -1,175 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
import {
Field,
FixedSizeList,
Float16,
Int32,
Schema,
Utf8,
} from "apache-arrow";
// --8<-- [end:imports]
import { withTempDirectory } from "./util.ts";
test("basic table examples", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:connect]
const db = await lancedb.connect(databaseDir);
// --8<-- [end:connect]
{
// --8<-- [start:create_table]
const _tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ mode: "overwrite" },
);
// --8<-- [end:create_table]
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
{
// --8<-- [start:create_table_exists_ok]
const tbl = await db.createTable("myTable", data, {
existOk: true,
});
// --8<-- [end:create_table_exists_ok]
expect(await tbl.countRows()).toBe(2);
}
{
// --8<-- [start:create_table_overwrite]
const tbl = await db.createTable("myTable", data, {
mode: "overwrite",
});
// --8<-- [end:create_table_overwrite]
expect(await tbl.countRows()).toBe(2);
}
}
await db.dropTable("myTable");
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const tbl = await db.createTable("myTable", data, {
schema,
});
// --8<-- [end:create_table_with_schema]
expect(await tbl.countRows()).toBe(2);
}
{
// --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
]);
const emptyTbl = await db.createEmptyTable("empty_table", schema);
// --8<-- [end:create_empty_table]
expect(await emptyTbl.countRows()).toBe(0);
}
{
// --8<-- [start:open_table]
const _tbl = await db.openTable("myTable");
// --8<-- [end:open_table]
}
{
// --8<-- [start:table_names]
const tableNames = await db.tableNames();
// --8<-- [end:table_names]
expect(tableNames).toEqual(["empty_table", "myTable"]);
}
const tbl = await db.openTable("myTable");
{
// --8<-- [start:add_data]
const data = [
{ vector: [1.3, 1.4], item: "fizz", price: 100.0 },
{ vector: [9.5, 56.2], item: "buzz", price: 200.0 },
];
await tbl.add(data);
// --8<-- [end:add_data]
}
{
// --8<-- [start:vector_search]
const res = await tbl.search([100, 100]).limit(2).toArray();
// --8<-- [end:vector_search]
expect(res.length).toBe(2);
}
{
const data = Array.from({ length: 1000 })
.fill(null)
.map(() => ({
vector: [Math.random(), Math.random()],
item: "autogen",
price: Math.round(Math.random() * 100),
}));
await tbl.add(data);
}
// --8<-- [start:create_index]
await tbl.createIndex("vector");
// --8<-- [end:create_index]
// --8<-- [start:delete_rows]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete_rows]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
await db.dropTable("empty_table");
{
// --8<-- [start:create_f16_table]
const db = await lancedb.connect(databaseDir);
const dim = 16;
const total = 10;
const f16Schema = new Schema([
new Field("id", new Int32()),
new Field(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]);
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random),
})),
{ schema: f16Schema },
);
const _table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table]
await db.dropTable("f16_tbl");
}
});
});

162
nodejs/examples/basic.ts Normal file
View File

@@ -0,0 +1,162 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
import {
Field,
FixedSizeList,
Float16,
Int32,
Schema,
Utf8,
} from "apache-arrow";
// --8<-- [end:imports]
// --8<-- [start:connect]
const uri = "/tmp/lancedb/";
const db = await lancedb.connect(uri);
// --8<-- [end:connect]
{
// --8<-- [start:create_table]
const tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ mode: "overwrite" },
);
// --8<-- [end:create_table]
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
{
// --8<-- [start:create_table_exists_ok]
const tbl = await db.createTable("myTable", data, {
existsOk: true,
});
// --8<-- [end:create_table_exists_ok]
}
{
// --8<-- [start:create_table_overwrite]
const _tbl = await db.createTable("myTable", data, {
mode: "overwrite",
});
// --8<-- [end:create_table_overwrite]
}
}
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const _tbl = await db.createTable("myTable", data, {
schema,
});
// --8<-- [end:create_table_with_schema]
}
{
// --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
]);
const empty_tbl = await db.createEmptyTable("empty_table", schema);
// --8<-- [end:create_empty_table]
}
{
// --8<-- [start:open_table]
const _tbl = await db.openTable("myTable");
// --8<-- [end:open_table]
}
{
// --8<-- [start:table_names]
const tableNames = await db.tableNames();
console.log(tableNames);
// --8<-- [end:table_names]
}
const tbl = await db.openTable("myTable");
{
// --8<-- [start:add_data]
const data = [
{ vector: [1.3, 1.4], item: "fizz", price: 100.0 },
{ vector: [9.5, 56.2], item: "buzz", price: 200.0 },
];
await tbl.add(data);
// --8<-- [end:add_data]
}
{
// --8<-- [start:vector_search]
const _res = tbl.search([100, 100]).limit(2).toArray();
// --8<-- [end:vector_search]
}
{
const data = Array.from({ length: 1000 })
.fill(null)
.map(() => ({
vector: [Math.random(), Math.random()],
item: "autogen",
price: Math.round(Math.random() * 100),
}));
await tbl.add(data);
}
// --8<-- [start:create_index]
await tbl.createIndex("vector");
// --8<-- [end:create_index]
// --8<-- [start:delete_rows]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete_rows]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
await db.dropTable("empty_table");
{
// --8<-- [start:create_f16_table]
const db = await lancedb.connect("/tmp/lancedb");
const dim = 16;
const total = 10;
const f16Schema = new Schema([
new Field("id", new Int32()),
new Field(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]);
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random),
})),
{ schema: f16Schema },
);
const _table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table]
await db.dropTable("f16_tbl");
}

View File

@@ -1,76 +0,0 @@
import { FeatureExtractionPipeline, pipeline } from "@huggingface/transformers";
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import {
LanceSchema,
TextEmbeddingFunction,
getRegistry,
register,
} from "@lancedb/lancedb/embedding";
// --8<-- [end:imports]
import { withTempDirectory } from "./util.ts";
// --8<-- [start:embedding_impl]
@register("sentence-transformers")
class SentenceTransformersEmbeddings extends TextEmbeddingFunction {
name = "Xenova/all-miniLM-L6-v2";
#ndims!: number;
extractor!: FeatureExtractionPipeline;
async init() {
this.extractor = await pipeline("feature-extraction", this.name, {
dtype: "fp32",
});
this.#ndims = await this.generateEmbeddings(["hello"]).then(
(e) => e[0].length,
);
}
ndims() {
return this.#ndims;
}
toJSON() {
return {
name: this.name,
};
}
async generateEmbeddings(texts: string[]) {
const output = await this.extractor(texts, {
pooling: "mean",
normalize: true,
});
return output.tolist();
}
}
// -8<-- [end:embedding_impl]
test("Registry examples", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:call_custom_function]
const registry = getRegistry();
const sentenceTransformer = await registry
.get<SentenceTransformersEmbeddings>("sentence-transformers")!
.create();
const schema = LanceSchema({
vector: sentenceTransformer.vectorField(),
text: sentenceTransformer.sourceField(),
});
const db = await lancedb.connect(databaseDir);
const table = await db.createEmptyTable("table", schema, {
mode: "overwrite",
});
await table.add([{ text: "hello" }, { text: "world" }]);
const results = await table.search("greeting").limit(1).toArray();
// -8<-- [end:call_custom_function]
expect(results.length).toBe(1);
});
}, 100_000);

View File

@@ -0,0 +1,64 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import {
LanceSchema,
TextEmbeddingFunction,
getRegistry,
register,
} from "@lancedb/lancedb/embedding";
import { pipeline } from "@xenova/transformers";
// --8<-- [end:imports]
// --8<-- [start:embedding_impl]
@register("sentence-transformers")
class SentenceTransformersEmbeddings extends TextEmbeddingFunction {
name = "Xenova/all-miniLM-L6-v2";
#ndims!: number;
extractor: any;
async init() {
this.extractor = await pipeline("feature-extraction", this.name);
this.#ndims = await this.generateEmbeddings(["hello"]).then(
(e) => e[0].length,
);
}
ndims() {
return this.#ndims;
}
toJSON() {
return {
name: this.name,
};
}
async generateEmbeddings(texts: string[]) {
const output = await this.extractor(texts, {
pooling: "mean",
normalize: true,
});
return output.tolist();
}
}
// -8<-- [end:embedding_impl]
// --8<-- [start:call_custom_function]
const registry = getRegistry();
const sentenceTransformer = await registry
.get<SentenceTransformersEmbeddings>("sentence-transformers")!
.create();
const schema = LanceSchema({
vector: sentenceTransformer.vectorField(),
text: sentenceTransformer.sourceField(),
});
const db = await lancedb.connect("/tmp/db");
const table = await db.createEmptyTable("table", schema, { mode: "overwrite" });
await table.add([{ text: "hello" }, { text: "world" }]);
const results = await table.search("greeting").limit(1).toArray();
console.log(results[0].text);
// -8<-- [end:call_custom_function]

View File

@@ -1,96 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import "@lancedb/lancedb/embedding/openai";
import { LanceSchema, getRegistry, register } from "@lancedb/lancedb/embedding";
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
import { type Float, Float32, Utf8 } from "apache-arrow";
// --8<-- [end:imports]
import { withTempDirectory } from "./util.ts";
const openAiTest = process.env.OPENAI_API_KEY == null ? test.skip : test;
openAiTest("openai embeddings", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:openai_embeddings]
const db = await lancedb.connect(databaseDir);
const func = getRegistry()
.get("openai")
?.create({ model: "text-embedding-ada-002" }) as EmbeddingFunction;
const wordsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createEmptyTable("words", wordsSchema, {
mode: "overwrite",
});
await tbl.add([{ text: "hello world" }, { text: "goodbye world" }]);
const query = "greetings";
const actual = (await tbl.search(query).limit(1).toArray())[0];
// --8<-- [end:openai_embeddings]
expect(actual).toHaveProperty("text");
});
});
test("custom embedding function", async () => {
await withTempDirectory(async (databaseDir) => {
// --8<-- [start:embedding_function]
const db = await lancedb.connect(databaseDir);
@register("my_embedding")
class MyEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {};
}
ndims() {
return 3;
}
embeddingDataType(): Float {
return new Float32();
}
async computeQueryEmbeddings(_data: string) {
// This is a placeholder for a real embedding function
return [1, 2, 3];
}
async computeSourceEmbeddings(data: string[]) {
// This is a placeholder for a real embedding function
return Array.from({ length: data.length }).fill([
1, 2, 3,
]) as number[][];
}
}
const func = new MyEmbeddingFunction();
const data = [{ text: "pepperoni" }, { text: "pineapple" }];
// Option 1: manually specify the embedding function
const table = await db.createTable("vectors", data, {
embeddingFunction: {
function: func,
sourceColumn: "text",
vectorColumn: "vector",
},
mode: "overwrite",
});
// Option 2: provide the embedding function through a schema
const schema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const table2 = await db.createTable("vectors2", data, {
schema,
mode: "overwrite",
});
// --8<-- [end:embedding_function]
expect(await table.countRows()).toBe(2);
expect(await table2.countRows()).toBe(2);
});
});

View File

@@ -0,0 +1,83 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import { LanceSchema, getRegistry, register } from "@lancedb/lancedb/embedding";
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
import { type Float, Float32, Utf8 } from "apache-arrow";
// --8<-- [end:imports]
{
// --8<-- [start:openai_embeddings]
const db = await lancedb.connect("/tmp/db");
const func = getRegistry()
.get("openai")
?.create({ model: "text-embedding-ada-002" }) as EmbeddingFunction;
const wordsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createEmptyTable("words", wordsSchema, {
mode: "overwrite",
});
await tbl.add([{ text: "hello world" }, { text: "goodbye world" }]);
const query = "greetings";
const actual = (await (await tbl.search(query)).limit(1).toArray())[0];
// --8<-- [end:openai_embeddings]
console.log("result = ", actual.text);
}
{
// --8<-- [start:embedding_function]
const db = await lancedb.connect("/tmp/db");
@register("my_embedding")
class MyEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {};
}
ndims() {
return 3;
}
embeddingDataType(): Float {
return new Float32();
}
async computeQueryEmbeddings(_data: string) {
// This is a placeholder for a real embedding function
return [1, 2, 3];
}
async computeSourceEmbeddings(data: string[]) {
// This is a placeholder for a real embedding function
return Array.from({ length: data.length }).fill([1, 2, 3]) as number[][];
}
}
const func = new MyEmbeddingFunction();
const data = [{ text: "pepperoni" }, { text: "pineapple" }];
// Option 1: manually specify the embedding function
const table = await db.createTable("vectors", data, {
embeddingFunction: {
function: func,
sourceColumn: "text",
vectorColumn: "vector",
},
mode: "overwrite",
});
// Option 2: provide the embedding function through a schema
const schema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const table2 = await db.createTable("vectors2", data, {
schema,
mode: "overwrite",
});
// --8<-- [end:embedding_function]
}

View File

@@ -1,42 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
import * as lancedb from "@lancedb/lancedb";
import { withTempDirectory } from "./util.ts";
test("filtering examples", async () => {
await withTempDirectory(async (databaseDir) => {
const db = await lancedb.connect(databaseDir);
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
// --8<-- [start:search]
const _result = await tbl
.search(Array(1536).fill(0.5))
.limit(1)
.where("id = 10")
.toArray();
// --8<-- [end:search]
// --8<-- [start:vec_search]
const result = await (
tbl.search(Array(1536).fill(0)) as lancedb.VectorQuery
)
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.postfilter()
.toArray();
// --8<-- [end:vec_search]
expect(result.length).toBe(0);
// --8<-- [start:sql_search]
await tbl.query().where("id = 10").limit(10).toArray();
// --8<-- [end:sql_search]
});
});

View File

@@ -0,0 +1,34 @@
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
// --8<-- [start:search]
const _result = await tbl
.search(Array(1536).fill(0.5))
.limit(1)
.where("id = 10")
.toArray();
// --8<-- [end:search]
// --8<-- [start:vec_search]
await tbl
.search(Array(1536).fill(0))
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.postfilter()
.toArray();
// --8<-- [end:vec_search]
// --8<-- [start:sql_search]
await tbl.query().where("id = 10").limit(10).toArray();
// --8<-- [end:sql_search]
console.log("SQL search: done");

View File

@@ -1,45 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
import * as lancedb from "@lancedb/lancedb";
import { withTempDirectory } from "./util.ts";
test("full text search", async () => {
await withTempDirectory(async (databaseDir) => {
const db = await lancedb.connect(databaseDir);
const words = [
"apple",
"banana",
"cherry",
"date",
"elderberry",
"fig",
"grape",
];
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
doc: words[i % words.length],
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
await tbl.createIndex("doc", {
config: lancedb.Index.fts(),
});
// --8<-- [start:full_text_search]
const result = await tbl
.query()
.nearestToText("apple")
.select(["id", "doc"])
.limit(10)
.toArray();
expect(result.length).toBe(10);
// --8<-- [end:full_text_search]
});
});

View File

@@ -0,0 +1,52 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const words = [
"apple",
"banana",
"cherry",
"date",
"elderberry",
"fig",
"grape",
];
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
doc: words[i % words.length],
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
await tbl.createIndex("doc", {
config: lancedb.Index.fts(),
});
// --8<-- [start:full_text_search]
let result = await tbl
.search("apple")
.select(["id", "doc"])
.limit(10)
.toArray();
console.log(result);
// --8<-- [end:full_text_search]
console.log("SQL search: done");

View File

@@ -1,6 +0,0 @@
/** @type {import('ts-jest').JestConfigWithTsJest} */
module.exports = {
preset: "ts-jest",
testEnvironment: "node",
testPathIgnorePatterns: ["./dist"],
};

View File

@@ -0,0 +1,27 @@
{
"compilerOptions": {
// Enable latest features
"lib": ["ESNext", "DOM"],
"target": "ESNext",
"module": "ESNext",
"moduleDetection": "force",
"jsx": "react-jsx",
"allowJs": true,
// Bundler mode
"moduleResolution": "bundler",
"allowImportingTsExtensions": true,
"verbatimModuleSyntax": true,
"noEmit": true,
// Best practices
"strict": true,
"skipLibCheck": true,
"noFallthroughCasesInSwitch": true,
// Some stricter flags (disabled by default)
"noUnusedLocals": false,
"noUnusedParameters": false,
"noPropertyAccessFromIndexSignature": false
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -5,29 +5,24 @@
"main": "index.js",
"type": "module",
"scripts": {
"//1": "--experimental-vm-modules is needed to run jest with sentence-transformers",
"//2": "--testEnvironment is needed to run jest with sentence-transformers",
"//3": "See: https://github.com/huggingface/transformers.js/issues/57",
"test": "node --experimental-vm-modules node_modules/.bin/jest --testEnvironment jest-environment-node-single-context --verbose",
"lint": "biome check *.ts && biome format *.ts",
"lint-ci": "biome ci .",
"lint-fix": "biome check --write *.ts && npm run format",
"format": "biome format --write *.ts"
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"@huggingface/transformers": "^3.0.2",
"@lancedb/lancedb": "file:../dist",
"openai": "^4.29.2",
"sharp": "^0.33.5"
"@lancedb/lancedb": "file:../",
"@xenova/transformers": "^2.17.2"
},
"devDependencies": {
"@biomejs/biome": "^1.7.3",
"@jest/globals": "^29.7.0",
"jest": "^29.7.0",
"jest-environment-node-single-context": "^29.4.0",
"ts-jest": "^29.2.5",
"typescript": "^5.5.4"
},
"compilerOptions": {
"target": "ESNext",
"module": "ESNext",
"moduleResolution": "Node",
"strict": true,
"esModuleInterop": true,
"skipLibCheck": true,
"forceConsistentCasingInFileNames": true
}
}

View File

@@ -1,42 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
// --8<-- [end:import]
import { withTempDirectory } from "./util.ts";
test("full text search", async () => {
await withTempDirectory(async (databaseDir) => {
{
const db = await lancedb.connect(databaseDir);
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(128).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
await db.createTable("my_vectors", data);
}
// --8<-- [start:search1]
const db = await lancedb.connect(databaseDir);
const tbl = await db.openTable("my_vectors");
const results1 = await tbl.search(Array(128).fill(1.2)).limit(10).toArray();
// --8<-- [end:search1]
expect(results1.length).toBe(10);
// --8<-- [start:search2]
const results2 = await (
tbl.search(Array(128).fill(1.2)) as lancedb.VectorQuery
)
.distanceType("cosine")
.limit(10)
.toArray();
// --8<-- [end:search2]
expect(results2.length).toBe(10);
});
});

38
nodejs/examples/search.ts Normal file
View File

@@ -0,0 +1,38 @@
// --8<-- [end:import]
import * as fs from "node:fs";
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
async function setup() {
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
const db = await lancedb.connect("data/sample-lancedb");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
await db.createTable("my_vectors", data);
}
await setup();
// --8<-- [start:search1]
const db = await lancedb.connect("data/sample-lancedb");
const tbl = await db.openTable("my_vectors");
const _results1 = await tbl.search(Array(1536).fill(1.2)).limit(10).toArray();
// --8<-- [end:search1]
// --8<-- [start:search2]
const _results2 = await tbl
.search(Array(1536).fill(1.2))
.distanceType("cosine")
.limit(10)
.toArray();
console.log(_results2);
// --8<-- [end:search2]
console.log("search: done");

View File

@@ -0,0 +1,50 @@
import * as lancedb from "@lancedb/lancedb";
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
import { Utf8 } from "apache-arrow";
const db = await lancedb.connect("/tmp/db");
const func = await getRegistry().get("huggingface").create();
const facts = [
"Albert Einstein was a theoretical physicist.",
"The capital of France is Paris.",
"The Great Wall of China is one of the Seven Wonders of the World.",
"Python is a popular programming language.",
"Mount Everest is the highest mountain in the world.",
"Leonardo da Vinci painted the Mona Lisa.",
"Shakespeare wrote Hamlet.",
"The human body has 206 bones.",
"The speed of light is approximately 299,792 kilometers per second.",
"Water boils at 100 degrees Celsius.",
"The Earth orbits the Sun.",
"The Pyramids of Giza are located in Egypt.",
"Coffee is one of the most popular beverages in the world.",
"Tokyo is the capital city of Japan.",
"Photosynthesis is the process by which plants make their food.",
"The Pacific Ocean is the largest ocean on Earth.",
"Mozart was a prolific composer of classical music.",
"The Internet is a global network of computers.",
"Basketball is a sport played with a ball and a hoop.",
"The first computer virus was created in 1983.",
"Artificial neural networks are inspired by the human brain.",
"Deep learning is a subset of machine learning.",
"IBM's Watson won Jeopardy! in 2011.",
"The first computer programmer was Ada Lovelace.",
"The first chatbot was ELIZA, created in the 1960s.",
].map((text) => ({ text }));
const factsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createTable("facts", facts, {
mode: "overwrite",
schema: factsSchema,
});
const query = "How many bones are in the human body?";
const actual = await tbl.search(query).limit(1).toArray();
console.log("Answer: ", actual[0]["text"]);

View File

@@ -1,63 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { expect, test } from "@jest/globals";
import { withTempDirectory } from "./util.ts";
import * as lancedb from "@lancedb/lancedb";
import "@lancedb/lancedb/embedding/transformers";
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
import { Utf8 } from "apache-arrow";
test("full text search", async () => {
await withTempDirectory(async (databaseDir) => {
const db = await lancedb.connect(databaseDir);
console.log(getRegistry());
const func = (await getRegistry()
.get("huggingface")
?.create()) as EmbeddingFunction;
const facts = [
"Albert Einstein was a theoretical physicist.",
"The capital of France is Paris.",
"The Great Wall of China is one of the Seven Wonders of the World.",
"Python is a popular programming language.",
"Mount Everest is the highest mountain in the world.",
"Leonardo da Vinci painted the Mona Lisa.",
"Shakespeare wrote Hamlet.",
"The human body has 206 bones.",
"The speed of light is approximately 299,792 kilometers per second.",
"Water boils at 100 degrees Celsius.",
"The Earth orbits the Sun.",
"The Pyramids of Giza are located in Egypt.",
"Coffee is one of the most popular beverages in the world.",
"Tokyo is the capital city of Japan.",
"Photosynthesis is the process by which plants make their food.",
"The Pacific Ocean is the largest ocean on Earth.",
"Mozart was a prolific composer of classical music.",
"The Internet is a global network of computers.",
"Basketball is a sport played with a ball and a hoop.",
"The first computer virus was created in 1983.",
"Artificial neural networks are inspired by the human brain.",
"Deep learning is a subset of machine learning.",
"IBM's Watson won Jeopardy! in 2011.",
"The first computer programmer was Ada Lovelace.",
"The first chatbot was ELIZA, created in the 1960s.",
].map((text) => ({ text }));
const factsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createTable("facts", facts, {
mode: "overwrite",
schema: factsSchema,
});
const query = "How many bones are in the human body?";
const actual = await tbl.search(query).limit(1).toArray();
expect(actual[0]["text"]).toBe("The human body has 206 bones.");
});
}, 100_000);

View File

@@ -1,17 +0,0 @@
{
"include": ["*.test.ts"],
"compilerOptions": {
"target": "es2022",
"module": "NodeNext",
"declaration": true,
"outDir": "./dist",
"strict": true,
"allowJs": true,
"resolveJsonModule": true,
"emitDecoratorMetadata": true,
"experimentalDecorators": true,
"moduleResolution": "NodeNext",
"allowImportingTsExtensions": true,
"emitDeclarationOnly": true
}
}

View File

@@ -1,16 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import * as fs from "fs";
import { tmpdir } from "os";
import * as path from "path";
export async function withTempDirectory(
fn: (tempDir: string) => Promise<void>,
) {
const tmpDirPath = fs.mkdtempSync(path.join(tmpdir(), "temp-dir-"));
try {
await fn(tmpDirPath);
} finally {
fs.rmSync(tmpDirPath, { recursive: true });
}
}

View File

@@ -4,5 +4,4 @@ module.exports = {
testEnvironment: "node",
moduleDirectories: ["node_modules", "./dist"],
moduleFileExtensions: ["js", "ts"],
modulePathIgnorePatterns: ["<rootDir>/examples/"],
};

View File

@@ -19,6 +19,9 @@ import { EmbeddingFunctionConfig, getRegistry } from "./registry";
export { EmbeddingFunction, TextEmbeddingFunction } from "./embedding_function";
// We need to explicitly export '*' so that the `register` decorator actually registers the class.
export * from "./openai";
export * from "./transformers";
export * from "./registry";
/**

View File

@@ -17,6 +17,8 @@ import {
type EmbeddingFunctionConstructor,
} from "./embedding_function";
import "reflect-metadata";
import { OpenAIEmbeddingFunction } from "./openai";
import { TransformersEmbeddingFunction } from "./transformers";
type CreateReturnType<T> = T extends { init: () => Promise<void> }
? Promise<T>
@@ -71,6 +73,10 @@ export class EmbeddingFunctionRegistry {
};
}
get(name: "openai"): EmbeddingFunctionCreate<OpenAIEmbeddingFunction>;
get(
name: "huggingface",
): EmbeddingFunctionCreate<TransformersEmbeddingFunction>;
get<T extends EmbeddingFunction<unknown>>(
name: string,
): EmbeddingFunctionCreate<T> | undefined;

View File

@@ -47,8 +47,8 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
string,
Partial<XenovaTransformerOptions>
> {
#model?: import("@huggingface/transformers").PreTrainedModel;
#tokenizer?: import("@huggingface/transformers").PreTrainedTokenizer;
#model?: import("@xenova/transformers").PreTrainedModel;
#tokenizer?: import("@xenova/transformers").PreTrainedTokenizer;
#modelName: XenovaTransformerOptions["model"];
#initialized = false;
#tokenizerOptions: XenovaTransformerOptions["tokenizerOptions"];
@@ -92,19 +92,18 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
try {
// SAFETY:
// since typescript transpiles `import` to `require`, we need to do this in an unsafe way
// We can't use `require` because `@huggingface/transformers` is an ESM module
// We can't use `require` because `@xenova/transformers` is an ESM module
// and we can't use `import` directly because typescript will transpile it to `require`.
// and we want to remain compatible with both ESM and CJS modules
// so we use `eval` to bypass typescript for this specific import.
transformers = await eval('import("@huggingface/transformers")');
transformers = await eval('import("@xenova/transformers")');
} catch (e) {
throw new Error(`error loading @huggingface/transformers\nReason: ${e}`);
throw new Error(`error loading @xenova/transformers\nReason: ${e}`);
}
try {
this.#model = await transformers.AutoModel.from_pretrained(
this.#modelName,
{ dtype: "fp32" },
);
} catch (e) {
throw new Error(
@@ -129,8 +128,7 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
} else {
const config = this.#model!.config;
// biome-ignore lint/style/useNamingConvention: we don't control this name.
const ndims = (config as unknown as { hidden_size: number }).hidden_size;
const ndims = config["hidden_size"];
if (!ndims) {
throw new Error(
"hidden_size not found in model config, you may need to manually specify the embedding dimensions. ",
@@ -185,7 +183,7 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
}
const tensorDiv = (
src: import("@huggingface/transformers").Tensor,
src: import("@xenova/transformers").Tensor,
divBy: number,
) => {
for (let i = 0; i < src.data.length; ++i) {

View File

@@ -385,20 +385,6 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
return this;
}
/**
* Set the number of candidates to consider during the search
*
* This argument is only used when the vector column has an HNSW index.
* If there is no index then this value is ignored.
*
* Increasing this value will increase the recall of your query but will
* also increase the latency of your query. The default value is 1.5*limit.
*/
ef(ef: number): VectorQuery {
super.doCall((inner) => inner.ef(ef));
return this;
}
/**
* Set the vector column to query
*
@@ -506,42 +492,6 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
super.doCall((inner) => inner.bypassVectorIndex());
return this;
}
/*
* Add a query vector to the search
*
* This method can be called multiple times to add multiple query vectors
* to the search. If multiple query vectors are added, then they will be searched
* in parallel, and the results will be concatenated. A column called `query_index`
* will be added to indicate the index of the query vector that produced the result.
*
* Performance wise, this is equivalent to running multiple queries concurrently.
*/
addQueryVector(vector: IntoVector): VectorQuery {
if (vector instanceof Promise) {
const res = (async () => {
try {
const v = await vector;
const arr = Float32Array.from(v);
//
// biome-ignore lint/suspicious/noExplicitAny: we need to get the `inner`, but js has no package scoping
const value: any = this.addQueryVector(arr);
const inner = value.inner as
| NativeVectorQuery
| Promise<NativeVectorQuery>;
return inner;
} catch (e) {
return Promise.reject(e);
}
})();
return new VectorQuery(res);
} else {
super.doCall((inner) => {
inner.addQueryVector(Float32Array.from(vector));
});
return this;
}
}
}
/** A builder for LanceDB queries. */
@@ -621,9 +571,4 @@ export class Query extends QueryBase<NativeQuery> {
return new VectorQuery(vectorQuery);
}
}
nearestToText(query: string, columns?: string[]): Query {
this.doCall((inner) => inner.fullTextSearch(query, columns));
return this;
}
}

View File

@@ -87,12 +87,6 @@ export interface OptimizeOptions {
deleteUnverified: boolean;
}
export interface Version {
version: number;
timestamp: Date;
metadata: Record<string, string>;
}
/**
* A Table is a collection of Records in a LanceDB Database.
*
@@ -366,11 +360,6 @@ export abstract class Table {
*/
abstract checkoutLatest(): Promise<void>;
/**
* List all the versions of the table
*/
abstract listVersions(): Promise<Version[]>;
/**
* Restore the table to the currently checked out version
*
@@ -670,14 +659,6 @@ export class LocalTable extends Table {
await this.inner.checkoutLatest();
}
async listVersions(): Promise<Version[]> {
return (await this.inner.listVersions()).map((version) => ({
version: version.version,
timestamp: new Date(version.timestamp / 1000),
metadata: version.metadata,
}));
}
async restore(): Promise<void> {
await this.inner.restore();
}

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.13.1-beta.0",
"version": "0.13.0-beta.1",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.13.1-beta.0",
"version": "0.13.0-beta.1",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.13.1-beta.0",
"version": "0.13.0-beta.1",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,3 +0,0 @@
# `@lancedb/lancedb-linux-arm64-musl`
This is the **aarch64-unknown-linux-musl** binary for `@lancedb/lancedb`

View File

@@ -1,13 +0,0 @@
{
"name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.13.1-beta.0",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node",
"files": ["lancedb.linux-arm64-musl.node"],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
},
"libc": ["musl"]
}

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.13.1-beta.0",
"version": "0.13.0-beta.1",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,3 +0,0 @@
# `@lancedb/lancedb-linux-x64-musl`
This is the **x86_64-unknown-linux-musl** binary for `@lancedb/lancedb`

View File

@@ -1,13 +0,0 @@
{
"name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.13.1-beta.0",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node",
"files": ["lancedb.linux-x64-musl.node"],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
},
"libc": ["musl"]
}

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.13.1-beta.0",
"version": "0.13.0-beta.1",
"os": [
"win32"
],

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.13.1-beta.0",
"version": "0.13.0-beta.1",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

1438
nodejs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -10,13 +10,11 @@
"vector database",
"ann"
],
"version": "0.13.1-beta.0",
"version": "0.13.0-beta.1",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",
"./embedding": "./dist/embedding/index.js",
"./embedding/openai": "./dist/embedding/openai.js",
"./embedding/transformers": "./dist/embedding/transformers.js"
"./embedding": "./dist/embedding/index.js"
},
"types": "dist/index.d.ts",
"napi": {
@@ -24,12 +22,10 @@
"triples": {
"defaults": false,
"additional": [
"x86_64-apple-darwin",
"aarch64-apple-darwin",
"x86_64-unknown-linux-gnu",
"aarch64-unknown-linux-gnu",
"x86_64-unknown-linux-musl",
"aarch64-unknown-linux-musl",
"x86_64-apple-darwin",
"x86_64-unknown-linux-gnu",
"x86_64-pc-windows-msvc"
]
}
@@ -89,7 +85,7 @@
"reflect-metadata": "^0.2.2"
},
"optionalDependencies": {
"@huggingface/transformers": "^3.0.2",
"@xenova/transformers": ">=2.17 < 3",
"openai": "^4.29.2"
},
"peerDependencies": {

View File

@@ -135,16 +135,6 @@ impl VectorQuery {
self.inner = self.inner.clone().column(&column);
}
#[napi]
pub fn add_query_vector(&mut self, vector: Float32Array) -> Result<()> {
self.inner = self
.inner
.clone()
.add_query_vector(vector.as_ref())
.default_error()?;
Ok(())
}
#[napi]
pub fn distance_type(&mut self, distance_type: String) -> napi::Result<()> {
let distance_type = parse_distance_type(distance_type)?;
@@ -167,11 +157,6 @@ impl VectorQuery {
self.inner = self.inner.clone().nprobes(nprobe as usize);
}
#[napi]
pub fn ef(&mut self, ef: u32) {
self.inner = self.inner.clone().ef(ef as usize);
}
#[napi]
pub fn bypass_vector_index(&mut self) {
self.inner = self.inner.clone().bypass_vector_index()

View File

@@ -12,8 +12,6 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::HashMap;
use arrow_ipc::writer::FileWriter;
use lancedb::ipc::ipc_file_to_batches;
use lancedb::table::{
@@ -228,28 +226,6 @@ impl Table {
self.inner_ref()?.checkout_latest().await.default_error()
}
#[napi(catch_unwind)]
pub async fn list_versions(&self) -> napi::Result<Vec<Version>> {
self.inner_ref()?
.list_versions()
.await
.map(|versions| {
versions
.iter()
.map(|version| Version {
version: version.version as i64,
timestamp: version.timestamp.timestamp_micros(),
metadata: version
.metadata
.iter()
.map(|(k, v)| (k.clone(), v.clone()))
.collect(),
})
.collect()
})
.default_error()
}
#[napi(catch_unwind)]
pub async fn restore(&self) -> napi::Result<()> {
self.inner_ref()?.restore().await.default_error()
@@ -490,10 +466,3 @@ impl From<lancedb::index::IndexStatistics> for IndexStatistics {
}
}
}
#[napi(object)]
pub struct Version {
pub version: i64,
pub timestamp: i64,
pub metadata: HashMap<String, String>,
}

View File

@@ -12,7 +12,7 @@
"experimentalDecorators": true,
"moduleResolution": "Node"
},
"exclude": ["./dist/*", "./examples/*"],
"exclude": ["./dist/*"],
"typedocOptions": {
"entryPoints": ["lancedb/index.ts"],
"out": "../docs/src/javascript/",

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.16.1-beta.0"
current_version = "0.16.0-beta.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.16.1-beta.0"
version = "0.16.0-beta.0"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true
@@ -15,7 +15,7 @@ crate-type = ["cdylib"]
[dependencies]
arrow = { version = "52.1", features = ["pyarrow"] }
lancedb = { path = "../rust/lancedb", default-features = false }
lancedb = { path = "../rust/lancedb" }
env_logger.workspace = true
pyo3 = { version = "0.21", features = ["extension-module", "abi3-py38", "gil-refs"] }
# Using this fork for now: https://github.com/awestlake87/pyo3-asyncio/issues/119
@@ -33,11 +33,6 @@ pyo3-build-config = { version = "0.20.3", features = [
] }
[features]
default = ["default-tls", "remote"]
default = ["remote"]
fp16kernels = ["lancedb/fp16kernels"]
remote = ["lancedb/remote"]
# TLS
default-tls = ["lancedb/default-tls"]
native-tls = ["lancedb/native-tls"]
rustls-tls = ["lancedb/rustls-tls"]

View File

@@ -4,7 +4,7 @@ name = "lancedb"
dependencies = [
"deprecation",
"nest-asyncio~=1.0",
"pylance==0.20.0b2",
"pylance==0.19.2-beta.3",
"tqdm>=4.27.0",
"pydantic>=1.10",
"packaging",

View File

@@ -1,6 +1,15 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from typing import Dict, Optional
@@ -161,7 +170,7 @@ def register(name):
return __REGISTRY__.get_instance().register(name)
def get_registry() -> EmbeddingFunctionRegistry:
def get_registry():
"""
Utility function to get the global instance of the registry

View File

@@ -110,7 +110,16 @@ class FTS:
remove_stop_words: bool = False,
ascii_folding: bool = False,
):
self._inner = LanceDbIndex.fts(with_position=with_position)
self._inner = LanceDbIndex.fts(
with_position=with_position,
base_tokenizer=base_tokenizer,
language=language,
max_token_length=max_token_length,
lower_case=lower_case,
stem=stem,
remove_stop_words=remove_stop_words,
ascii_folding=ascii_folding,
)
class HnswPq:

View File

@@ -131,8 +131,6 @@ class Query(pydantic.BaseModel):
fast_search: bool = False
ef: Optional[int] = None
class LanceQueryBuilder(ABC):
"""An abstract query builder. Subclasses are defined for vector search,
@@ -259,7 +257,6 @@ class LanceQueryBuilder(ABC):
self._with_row_id = False
self._vector = None
self._text = None
self._ef = None
@deprecation.deprecated(
deprecated_in="0.3.1",
@@ -370,13 +367,11 @@ class LanceQueryBuilder(ABC):
----------
limit: int
The maximum number of results to return.
The default query limit is 10 results.
For ANN/KNN queries, you must specify a limit.
Entering 0, a negative number, or None will reset
the limit to the default value of 10.
*WARNING* if you have a large dataset, setting
the limit to a large number, e.g. the table size,
can potentially result in reading a
By default the query is limited to the first 10.
Call this method and pass 0, a negative value,
or None to remove the limit.
*WARNING* if you have a large dataset, removing
the limit can potentially result in reading a
large amount of data into memory and cause
out of memory issues.
@@ -643,28 +638,6 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
self._nprobes = nprobes
return self
def ef(self, ef: int) -> LanceVectorQueryBuilder:
"""Set the number of candidates to consider during search.
Higher values will yield better recall (more likely to find vectors if
they exist) at the expense of latency.
This only applies to the HNSW-related index.
The default value is 1.5 * limit.
Parameters
----------
ef: int
The number of candidates to consider during search.
Returns
-------
LanceVectorQueryBuilder
The LanceQueryBuilder object.
"""
self._ef = ef
return self
def refine_factor(self, refine_factor: int) -> LanceVectorQueryBuilder:
"""Set the refine factor to use, increasing the number of vectors sampled.
@@ -727,7 +700,6 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
with_row_id=self._with_row_id,
offset=self._offset,
fast_search=self._fast_search,
ef=self._ef,
)
result_set = self._table._execute_query(query, batch_size)
if self._reranker is not None:
@@ -971,16 +943,12 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
class LanceEmptyQueryBuilder(LanceQueryBuilder):
def to_arrow(self) -> pa.Table:
query = Query(
ds = self._table.to_lance()
return ds.to_table(
columns=self._columns,
filter=self._where,
k=self._limit or 10,
with_row_id=self._with_row_id,
vector=[],
# not actually respected in remote query
offset=self._offset or 0,
limit=self._limit,
)
return self._table._execute_query(query).read_all()
def rerank(self, reranker: Reranker) -> LanceEmptyQueryBuilder:
"""Rerank the results using the specified reranker.
@@ -1099,8 +1067,6 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._vector_query.nprobes(self._nprobes)
if self._refine_factor:
self._vector_query.refine_factor(self._refine_factor)
if self._ef:
self._vector_query.ef(self._ef)
with ThreadPoolExecutor() as executor:
fts_future = executor.submit(self._fts_query.with_row_id(True).to_arrow)
@@ -1227,29 +1193,6 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._nprobes = nprobes
return self
def ef(self, ef: int) -> LanceHybridQueryBuilder:
"""
Set the number of candidates to consider during search.
Higher values will yield better recall (more likely to find vectors if
they exist) at the expense of latency.
This only applies to the HNSW-related index.
The default value is 1.5 * limit.
Parameters
----------
ef: int
The number of candidates to consider during search.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._ef = ef
return self
def metric(self, metric: Literal["L2", "cosine", "dot"]) -> LanceHybridQueryBuilder:
"""Set the distance metric to use.
@@ -1548,8 +1491,7 @@ class AsyncQuery(AsyncQueryBase):
return pa.array(vec)
def nearest_to(
self,
query_vector: Union[VEC, Tuple, List[VEC]],
self, query_vector: Optional[Union[VEC, Tuple]] = None
) -> AsyncVectorQuery:
"""
Find the nearest vectors to the given query vector.
@@ -1587,33 +1529,10 @@ class AsyncQuery(AsyncQueryBase):
Vector searches always have a [limit][]. If `limit` has not been called then
a default `limit` of 10 will be used.
Typically, a single vector is passed in as the query. However, you can also
pass in multiple vectors. This can be useful if you want to find the nearest
vectors to multiple query vectors. This is not expected to be faster than
making multiple queries concurrently; it is just a convenience method.
If multiple vectors are passed in then an additional column `query_index`
will be added to the results. This column will contain the index of the
query vector that the result is nearest to.
"""
if query_vector is None:
raise ValueError("query_vector can not be None")
if (
isinstance(query_vector, list)
and len(query_vector) > 0
and not isinstance(query_vector[0], (float, int))
):
# multiple have been passed
query_vectors = [AsyncQuery._query_vec_to_array(v) for v in query_vector]
new_self = self._inner.nearest_to(query_vectors[0])
for v in query_vectors[1:]:
new_self.add_query_vector(v)
return AsyncVectorQuery(new_self)
else:
return AsyncVectorQuery(
self._inner.nearest_to(AsyncQuery._query_vec_to_array(query_vector))
)
return AsyncVectorQuery(
self._inner.nearest_to(AsyncQuery._query_vec_to_array(query_vector))
)
def nearest_to_text(
self, query: str, columns: Union[str, List[str]] = []
@@ -1675,7 +1594,7 @@ class AsyncVectorQuery(AsyncQueryBase):
"""
Set the number of partitions to search (probe)
This argument is only used when the vector column has an IVF-based index.
This argument is only used when the vector column has an IVF PQ index.
If there is no index then this value is ignored.
The IVF stage of IVF PQ divides the input into partitions (clusters) of
@@ -1697,21 +1616,6 @@ class AsyncVectorQuery(AsyncQueryBase):
self._inner.nprobes(nprobes)
return self
def ef(self, ef: int) -> AsyncVectorQuery:
"""
Set the number of candidates to consider during search
This argument is only used when the vector column has an HNSW index.
If there is no index then this value is ignored.
Increasing this value will increase the recall of your query but will also
increase the latency of your query. The default value is 1.5 * limit. This
default is good for many cases but the best value to use will depend on your
data and the recall that you need to achieve.
"""
self._inner.ef(ef)
return self
def refine_factor(self, refine_factor: int) -> AsyncVectorQuery:
"""
A multiplier to control how many additional rows are taken during the refine

View File

@@ -78,10 +78,6 @@ class RemoteTable(Table):
self.schema.metadata
)
def list_versions(self):
"""List all versions of the table"""
return self._loop.run_until_complete(self._table.list_versions())
def to_arrow(self) -> pa.Table:
"""to_arrow() is not yet supported on LanceDB cloud."""
raise NotImplementedError("to_arrow() is not yet supported on LanceDB cloud.")
@@ -90,12 +86,6 @@ class RemoteTable(Table):
"""to_pandas() is not yet supported on LanceDB cloud."""
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
def checkout(self, version):
return self._loop.run_until_complete(self._table.checkout(version))
def checkout_latest(self):
return self._loop.run_until_complete(self._table.checkout_latest())
def list_indices(self):
"""List all the indices on the table"""
return self._loop.run_until_complete(self._table.list_indices())
@@ -142,8 +132,25 @@ class RemoteTable(Table):
*,
replace: bool = False,
with_position: bool = True,
# tokenizer configs:
base_tokenizer: str = "simple",
language: str = "English",
max_token_length: Optional[int] = 40,
lower_case: bool = True,
stem: bool = False,
remove_stop_words: bool = False,
ascii_folding: bool = False,
):
config = FTS(with_position=with_position)
config = FTS(
with_position=with_position,
base_tokenizer=base_tokenizer,
language=language,
max_token_length=max_token_length,
lower_case=lower_case,
stem=stem,
remove_stop_words=remove_stop_words,
ascii_folding=ascii_folding,
)
self._loop.run_until_complete(
self._table.create_index(column, config=config, replace=replace)
)
@@ -337,6 +344,10 @@ class RemoteTable(Table):
- and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
# empty query builder is not supported in saas, raise error
if query is None and query_type != "hybrid":
raise ValueError("Empty query is not supported")
return LanceQueryBuilder.create(
self,
query,

View File

@@ -41,7 +41,7 @@ class CohereReranker(Reranker):
def __init__(
self,
model_name: str = "rerank-english-v3.0",
model_name: str = "rerank-english-v2.0",
column: str = "text",
top_n: Union[int, None] = None,
return_score="relevance",

View File

@@ -13,7 +13,7 @@
import os
from functools import cached_property
from typing import Optional
from typing import Union, Optional
import pyarrow as pa

View File

@@ -8,7 +8,7 @@ import inspect
import time
from abc import ABC, abstractmethod
from dataclasses import dataclass
from datetime import datetime, timedelta
from datetime import timedelta
from functools import cached_property
from typing import (
TYPE_CHECKING,
@@ -73,21 +73,6 @@ pl = safe_import_polars()
QueryType = Literal["vector", "fts", "hybrid", "auto"]
def _pd_schema_without_embedding_funcs(
schema: Optional[pa.Schema], columns: List[str]
) -> Optional[pa.Schema]:
"""Return a schema without any embedding function columns"""
if schema is None:
return None
embedding_functions = EmbeddingFunctionRegistry.get_instance().parse_functions(
schema.metadata
)
if not embedding_functions:
return schema
columns = set(columns)
return pa.schema([field for field in schema if field.name in columns])
def _coerce_to_table(data, schema: Optional[pa.Schema] = None) -> pa.Table:
if _check_for_hugging_face(data):
# Huggingface datasets
@@ -118,10 +103,10 @@ def _coerce_to_table(data, schema: Optional[pa.Schema] = None) -> pa.Table:
elif isinstance(data[0], pa.RecordBatch):
return pa.Table.from_batches(data, schema=schema)
else:
return pa.Table.from_pylist(data, schema=schema)
return pa.Table.from_pylist(data)
elif _check_for_pandas(data) and isinstance(data, pd.DataFrame):
raw_schema = _pd_schema_without_embedding_funcs(schema, data.columns.to_list())
table = pa.Table.from_pandas(data, preserve_index=False, schema=raw_schema)
# Do not add schema here, since schema may contains the vector column
table = pa.Table.from_pandas(data, preserve_index=False)
# Do not serialize Pandas metadata
meta = table.schema.metadata if table.schema.metadata is not None else {}
meta = {k: v for k, v in meta.items() if k != b"pandas"}
@@ -187,8 +172,6 @@ def sanitize_create_table(
schema = schema.to_arrow_schema()
if data is not None:
if metadata is None and schema is not None:
metadata = schema.metadata
data, schema = _sanitize_data(
data,
schema,
@@ -1012,39 +995,6 @@ class Table(ABC):
The names of the columns to drop.
"""
@abstractmethod
def checkout(self):
"""
Checks out a specific version of the Table
Any read operation on the table will now access the data at the checked out
version. As a consequence, calling this method will disable any read consistency
interval that was previously set.
This is a read-only operation that turns the table into a sort of "view"
or "detached head". Other table instances will not be affected. To make the
change permanent you can use the `[Self::restore]` method.
Any operation that modifies the table will fail while the table is in a checked
out state.
To return the table to a normal state use `[Self::checkout_latest]`
"""
@abstractmethod
def checkout_latest(self):
"""
Ensures the table is pointing at the latest version
This can be used to manually update a table when the read_consistency_interval
is None
It can also be used to undo a `[Self::checkout]` operation
"""
@abstractmethod
def list_versions(self):
"""List all versions of the table"""
@cached_property
def _dataset_uri(self) -> str:
return _table_uri(self._conn.uri, self.name)
@@ -1600,7 +1550,7 @@ class LanceTable(Table):
"append" and "overwrite".
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill", "null".
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
@@ -1884,7 +1834,7 @@ class LanceTable(Table):
data but will validate against any schema that's specified.
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill", "null".
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
embedding_functions: list of EmbeddingFunctionModel, default None
@@ -1992,7 +1942,6 @@ class LanceTable(Table):
"metric": query.metric,
"nprobes": query.nprobes,
"refine_factor": query.refine_factor,
"ef": query.ef,
}
return ds.scanner(
columns=query.columns,
@@ -2185,11 +2134,13 @@ def _sanitize_schema(
vector column to fixed_size_list(float32) if necessary.
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill", "null".
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
"""
if schema is not None:
if data.schema == schema:
return data
# cast the columns to the expected types
data = data.combine_chunks()
for field in schema:
@@ -2209,7 +2160,6 @@ def _sanitize_schema(
vector_column_name=field.name,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
table_schema=schema,
)
return pa.Table.from_arrays(
[data[name] for name in schema.names], schema=schema
@@ -2230,7 +2180,6 @@ def _sanitize_schema(
def _sanitize_vector_column(
data: pa.Table,
vector_column_name: str,
table_schema: Optional[pa.Schema] = None,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
) -> pa.Table:
@@ -2245,16 +2194,12 @@ def _sanitize_vector_column(
The name of the vector column.
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill", "null".
One of "error", "drop", "fill".
fill_value: float, default 0.0
The value to use when filling vectors. Only used if on_bad_vectors="fill".
"""
# ChunkedArray is annoying to work with, so we combine chunks here
vec_arr = data[vector_column_name].combine_chunks()
if table_schema is not None:
field = table_schema.field(vector_column_name)
else:
field = None
typ = data[vector_column_name].type
if pa.types.is_list(typ) or pa.types.is_large_list(typ):
# if it's a variable size list array,
@@ -2281,11 +2226,7 @@ def _sanitize_vector_column(
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
)
else:
if (
field is not None
and not field.nullable
and pc.any(pc.is_null(vec_arr.values)).as_py()
) or (pc.any(pc.is_nan(vec_arr.values)).as_py()):
if pc.any(pc.is_null(vec_arr.values, nan_is_null=True)).as_py():
data = _sanitize_nans(
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
)
@@ -2329,12 +2270,6 @@ def _sanitize_jagged(data, fill_value, on_bad_vectors, vec_arr, vector_column_na
)
elif on_bad_vectors == "drop":
data = data.filter(correct_ndims)
elif on_bad_vectors == "null":
data = data.set_column(
data.column_names.index(vector_column_name),
vector_column_name,
pc.if_else(correct_ndims, vec_arr, pa.scalar(None)),
)
return data
@@ -2351,8 +2286,7 @@ def _sanitize_nans(
raise ValueError(
f"Vector column {vector_column_name} has NaNs. "
"Set on_bad_vectors='drop' to remove them, or "
"set on_bad_vectors='fill' and fill_value=<value> to replace them. "
"Or set on_bad_vectors='null' to replace them with null."
"set on_bad_vectors='fill' and fill_value=<value> to replace them."
)
elif on_bad_vectors == "fill":
if fill_value is None:
@@ -2372,17 +2306,6 @@ def _sanitize_nans(
np_arr = np_arr.reshape(-1, vec_arr.type.list_size)
not_nulls = np.any(np_arr, axis=1)
data = data.filter(~not_nulls)
elif on_bad_vectors == "null":
# null = pa.nulls(len(vec_arr)).cast(vec_arr.type)
# values = pc.if_else(pc.is_nan(vec_arr.values), fill_value, vec_arr.values)
np_arr = np.isnan(vec_arr.values.to_numpy(zero_copy_only=False))
np_arr = np_arr.reshape(-1, vec_arr.type.list_size)
no_nans = np.any(np_arr, axis=1)
data = data.set_column(
data.column_names.index(vector_column_name),
vector_column_name,
pc.if_else(no_nans, vec_arr, pa.scalar(None)),
)
return data
@@ -2648,7 +2571,7 @@ class AsyncTable:
"append" and "overwrite".
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill", "null".
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
@@ -2731,7 +2654,7 @@ class AsyncTable:
def vector_search(
self,
query_vector: Union[VEC, Tuple],
query_vector: Optional[Union[VEC, Tuple]] = None,
) -> AsyncVectorQuery:
"""
Search the table with a given query vector.
@@ -2770,8 +2693,6 @@ class AsyncTable:
async_query = async_query.refine_factor(query.refine_factor)
if query.vector_column:
async_query = async_query.column(query.vector_column)
if query.ef:
async_query = async_query.ef(query.ef)
if not query.prefilter:
async_query = async_query.postfilter()
@@ -2935,19 +2856,6 @@ class AsyncTable:
"""
return await self._inner.version()
async def list_versions(self):
"""
List all versions of the table
"""
versions = await self._inner.list_versions()
for v in versions:
ts_nanos = v["timestamp"]
v["timestamp"] = datetime.fromtimestamp(ts_nanos // 1e9) + timedelta(
microseconds=(ts_nanos % 1e9) // 1e3
)
return versions
async def checkout(self, version):
"""
Checks out a specific version of the Table

View File

@@ -1,6 +1,15 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
from unittest.mock import MagicMock, patch
@@ -9,7 +18,6 @@ import lancedb
import numpy as np
import pyarrow as pa
import pytest
import pandas as pd
from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.embeddings import (
EmbeddingFunctionConfig,
@@ -81,15 +89,14 @@ def test_embedding_function(tmp_path):
def test_embedding_with_bad_results(tmp_path):
@register("null-embedding")
class NullEmbeddingFunction(TextEmbeddingFunction):
@register("mock-embedding")
class MockEmbeddingFunction(TextEmbeddingFunction):
def ndims(self):
return 128
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> list[Union[np.array, None]]:
# Return None, which is bad if field is non-nullable
return [
None if i % 2 == 0 else np.random.randn(self.ndims())
for i in range(len(texts))
@@ -97,17 +104,13 @@ def test_embedding_with_bad_results(tmp_path):
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
model = registry.get("null-embedding").create()
model = registry.get("mock-embedding").create()
class Schema(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("test", schema=Schema, mode="overwrite")
with pytest.raises(ValueError):
# Default on_bad_vectors is "error"
table.add([{"text": "hello world"}])
table.add(
[{"text": "hello world"}, {"text": "bar"}],
on_bad_vectors="drop",
@@ -117,169 +120,13 @@ def test_embedding_with_bad_results(tmp_path):
assert len(table) == 1
assert df.iloc[0]["text"] == "bar"
@register("nan-embedding")
class NanEmbeddingFunction(TextEmbeddingFunction):
def ndims(self):
return 128
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> list[Union[np.array, None]]:
# Return NaN to produce bad vectors
return [
[np.NAN] * 128 if i % 2 == 0 else np.random.randn(self.ndims())
for i in range(len(texts))
]
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
model = registry.get("nan-embedding").create()
table = db.create_table("test2", schema=Schema, mode="overwrite")
table.alter_columns(dict(path="vector", nullable=True))
table.add(
[{"text": "hello world"}, {"text": "bar"}],
on_bad_vectors="null",
)
assert len(table) == 2
tbl = table.to_arrow()
assert tbl["vector"].null_count == 1
def test_with_existing_vectors(tmp_path):
@register("mock-embedding")
class MockEmbeddingFunction(TextEmbeddingFunction):
def ndims(self):
return 128
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
return [np.random.randn(self.ndims()).tolist() for _ in range(len(texts))]
registry = get_registry()
model = registry.get("mock-embedding").create()
class Schema(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=Schema, mode="overwrite")
tbl.add([{"text": "hello world", "vector": np.zeros(128).tolist()}])
embeddings = tbl.to_arrow()["vector"].to_pylist()
assert not np.any(embeddings), "all zeros"
def test_embedding_function_with_pandas(tmp_path):
@register("mock-embedding")
class _MockEmbeddingFunction(TextEmbeddingFunction):
def ndims(self):
return 128
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
return [np.random.randn(self.ndims()).tolist() for _ in range(len(texts))]
registery = get_registry()
func = registery.get("mock-embedding").create()
class TestSchema(LanceModel):
text: str = func.SourceField()
val: int
vector: Vector(func.ndims()) = func.VectorField()
df = pd.DataFrame(
{
"text": ["hello world", "goodbye world"],
"val": [1, 2],
"not-used": ["s1", "s3"],
}
)
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=TestSchema, mode="overwrite", data=df)
schema = tbl.schema
assert schema.field("text").type == pa.string()
assert schema.field("val").type == pa.int64()
assert schema.field("vector").type == pa.list_(pa.float32(), 128)
df = pd.DataFrame(
{
"text": ["extra", "more"],
"val": [4, 5],
"misc-col": ["s1", "s3"],
}
)
tbl.add(df)
assert tbl.count_rows() == 4
embeddings = tbl.to_arrow()["vector"]
assert embeddings.null_count == 0
df = pd.DataFrame(
{
"text": ["with", "embeddings"],
"val": [6, 7],
"vector": [np.zeros(128).tolist(), np.zeros(128).tolist()],
}
)
tbl.add(df)
embeddings = tbl.search().where("val > 5").to_arrow()["vector"].to_pylist()
assert not np.any(embeddings), "all zeros"
def test_multiple_embeddings_for_pandas(tmp_path):
@register("mock-embedding")
class MockFunc1(TextEmbeddingFunction):
def ndims(self):
return 128
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
return [np.random.randn(self.ndims()).tolist() for _ in range(len(texts))]
@register("mock-embedding2")
class MockFunc2(TextEmbeddingFunction):
def ndims(self):
return 512
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
return [np.random.randn(self.ndims()).tolist() for _ in range(len(texts))]
registery = get_registry()
func1 = registery.get("mock-embedding").create()
func2 = registery.get("mock-embedding2").create()
class TestSchema(LanceModel):
text: str = func1.SourceField()
val: int
vec1: Vector(func1.ndims()) = func1.VectorField()
prompt: str = func2.SourceField()
vec2: Vector(func2.ndims()) = func2.VectorField()
df = pd.DataFrame(
{
"text": ["hello world", "goodbye world"],
"val": [1, 2],
"prompt": ["hello", "goodbye"],
}
)
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=TestSchema, mode="overwrite", data=df)
schema = tbl.schema
assert schema.field("text").type == pa.string()
assert schema.field("val").type == pa.int64()
assert schema.field("vec1").type == pa.list_(pa.float32(), 128)
assert schema.field("prompt").type == pa.string()
assert schema.field("vec2").type == pa.list_(pa.float32(), 512)
assert tbl.count_rows() == 2
# table = db.create_table("test2", schema=Schema, mode="overwrite")
# table.add(
# [{"text": "hello world"}, {"text": "bar"}],
# )
# assert len(table) == 2
# tbl = table.to_arrow()
# assert tbl["vector"].null_count == 1
@pytest.mark.slow

View File

@@ -1,9 +1,21 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest.mock as mock
from datetime import timedelta
from typing import Optional
import lance
import lancedb
from lancedb.index import IvfPq
import numpy as np
@@ -11,15 +23,41 @@ import pandas.testing as tm
import pyarrow as pa
import pytest
import pytest_asyncio
from lancedb.db import LanceDBConnection
from lancedb.pydantic import LanceModel, Vector
from lancedb.query import AsyncQueryBase, LanceVectorQueryBuilder, Query
from lancedb.table import AsyncTable, LanceTable
@pytest.fixture(scope="module")
def table(tmpdir_factory) -> lancedb.table.Table:
tmp_path = str(tmpdir_factory.mktemp("data"))
db = lancedb.connect(tmp_path)
class MockTable:
def __init__(self, tmp_path):
self.uri = tmp_path
self._conn = LanceDBConnection(self.uri)
def to_lance(self):
return lance.dataset(self.uri)
def _execute_query(self, query, batch_size: Optional[int] = None):
ds = self.to_lance()
return ds.scanner(
columns=query.columns,
filter=query.filter,
prefilter=query.prefilter,
nearest={
"column": query.vector_column,
"q": query.vector,
"k": query.k,
"metric": query.metric,
"nprobes": query.nprobes,
"refine_factor": query.refine_factor,
},
batch_size=batch_size,
offset=query.offset,
).to_reader()
@pytest.fixture
def table(tmp_path) -> MockTable:
df = pa.table(
{
"vector": pa.array(
@@ -30,7 +68,8 @@ def table(tmpdir_factory) -> lancedb.table.Table:
"float_field": pa.array([1.0, 2.0]),
}
)
return db.create_table("test", df)
lance.write_dataset(df, tmp_path)
return MockTable(tmp_path)
@pytest_asyncio.fixture
@@ -87,12 +126,6 @@ def test_query_builder(table):
assert all(np.array(rs[0]["vector"]) == [1, 2])
def test_with_row_id(table: lancedb.table.Table):
rs = table.search().with_row_id(True).to_arrow()
assert "_rowid" in rs.column_names
assert rs["_rowid"].to_pylist() == [0, 1]
def test_vector_query_with_no_limit(table):
with pytest.raises(ValueError):
LanceVectorQueryBuilder(table, [0, 0], "vector").limit(0).select(
@@ -332,12 +365,6 @@ async def test_query_to_pandas_async(table_async: AsyncTable):
assert df.shape == (0, 4)
@pytest.mark.asyncio
async def test_none_query(table_async: AsyncTable):
with pytest.raises(ValueError):
await table_async.query().nearest_to(None).to_arrow()
@pytest.mark.asyncio
async def test_fast_search_async(tmp_path):
db = await lancedb.connect_async(tmp_path)

View File

@@ -103,47 +103,6 @@ async def test_async_remote_db():
assert table_names == []
@pytest.mark.asyncio
async def test_async_checkout():
def handler(request):
if request.path == "/v1/table/test/describe/":
request.send_response(200)
request.send_header("Content-Type", "application/json")
request.end_headers()
response = json.dumps({"version": 42, "schema": {"fields": []}})
request.wfile.write(response.encode())
return
content_len = int(request.headers.get("Content-Length"))
body = request.rfile.read(content_len)
body = json.loads(body)
print("body is", body)
count = 0
if body["version"] == 1:
count = 100
elif body["version"] == 2:
count = 200
elif body["version"] is None:
count = 300
request.send_response(200)
request.send_header("Content-Type", "application/json")
request.end_headers()
request.wfile.write(json.dumps(count).encode())
async with mock_lancedb_connection_async(handler) as db:
table = await db.open_table("test")
assert await table.count_rows() == 300
await table.checkout(1)
assert await table.count_rows() == 100
await table.checkout(2)
assert await table.count_rows() == 200
await table.checkout_latest()
assert await table.count_rows() == 300
@pytest.mark.asyncio
async def test_http_error():
request_id_holder = {"request_id": None}
@@ -226,10 +185,8 @@ def test_query_sync_minimal():
"k": 10,
"prefilter": False,
"refine_factor": None,
"ef": None,
"vector": [1.0, 2.0, 3.0],
"nprobes": 20,
"version": None,
}
return pa.table({"id": [1, 2, 3]})
@@ -240,24 +197,6 @@ def test_query_sync_minimal():
assert data == expected
def test_query_sync_empty_query():
def handler(body):
assert body == {
"k": 10,
"filter": "true",
"vector": [],
"columns": ["id"],
"version": None,
}
return pa.table({"id": [1, 2, 3]})
with query_test_table(handler) as table:
data = table.search(None).where("true").select(["id"]).limit(10).to_list()
expected = [{"id": 1}, {"id": 2}, {"id": 3}]
assert data == expected
def test_query_sync_maximal():
def handler(body):
assert body == {
@@ -267,13 +206,11 @@ def test_query_sync_maximal():
"refine_factor": 10,
"vector": [1.0, 2.0, 3.0],
"nprobes": 5,
"ef": None,
"filter": "id > 0",
"columns": ["id", "name"],
"vector_column": "vector2",
"fast_search": True,
"with_row_id": True,
"version": None,
}
return pa.table({"id": [1, 2, 3], "name": ["a", "b", "c"]})
@@ -292,17 +229,6 @@ def test_query_sync_maximal():
)
def test_query_sync_multiple_vectors():
def handler(_body):
return pa.table({"id": [1]})
with query_test_table(handler) as table:
results = table.search([[1, 2, 3], [4, 5, 6]]).limit(1).to_list()
assert len(results) == 2
results.sort(key=lambda x: x["query_index"])
assert results == [{"id": 1, "query_index": 0}, {"id": 1, "query_index": 1}]
def test_query_sync_fts():
def handler(body):
assert body == {
@@ -312,7 +238,6 @@ def test_query_sync_fts():
},
"k": 10,
"vector": [],
"version": None,
}
return pa.table({"id": [1, 2, 3]})
@@ -329,7 +254,6 @@ def test_query_sync_fts():
"k": 42,
"vector": [],
"with_row_id": True,
"version": None,
}
return pa.table({"id": [1, 2, 3]})
@@ -355,7 +279,6 @@ def test_query_sync_hybrid():
"k": 42,
"vector": [],
"with_row_id": True,
"version": None,
}
return pa.table({"_rowid": [1, 2, 3], "_score": [0.1, 0.2, 0.3]})
else:
@@ -367,9 +290,7 @@ def test_query_sync_hybrid():
"refine_factor": None,
"vector": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
"nprobes": 20,
"ef": None,
"with_row_id": True,
"version": None,
}
return pa.table({"_rowid": [1, 2, 3], "_distance": [0.1, 0.2, 0.3]})

View File

@@ -240,121 +240,6 @@ def test_add(db):
_add(table, schema)
def test_add_subschema(tmp_path):
db = lancedb.connect(tmp_path)
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
pa.field("item", pa.string(), nullable=True),
pa.field("price", pa.float64(), nullable=False),
]
)
table = db.create_table("test", schema=schema)
data = {"price": 10.0, "item": "foo"}
table.add([data])
data = {"price": 2.0, "vector": [3.1, 4.1]}
table.add([data])
data = {"price": 3.0, "vector": [5.9, 26.5], "item": "bar"}
table.add([data])
expected = pa.table(
{
"vector": [None, [3.1, 4.1], [5.9, 26.5]],
"item": ["foo", None, "bar"],
"price": [10.0, 2.0, 3.0],
},
schema=schema,
)
assert table.to_arrow() == expected
data = {"item": "foo"}
# We can't omit a column if it's not nullable
with pytest.raises(OSError, match="Invalid user input"):
table.add([data])
# We can add it if we make the column nullable
table.alter_columns(dict(path="price", nullable=True))
table.add([data])
expected_schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
pa.field("item", pa.string(), nullable=True),
pa.field("price", pa.float64(), nullable=True),
]
)
expected = pa.table(
{
"vector": [None, [3.1, 4.1], [5.9, 26.5], None],
"item": ["foo", None, "bar", "foo"],
"price": [10.0, 2.0, 3.0, None],
},
schema=expected_schema,
)
assert table.to_arrow() == expected
def test_add_nullability(tmp_path):
db = lancedb.connect(tmp_path)
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2), nullable=False),
pa.field("id", pa.string(), nullable=False),
]
)
table = db.create_table("test", schema=schema)
nullable_schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
pa.field("id", pa.string(), nullable=True),
]
)
data = pa.table(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"id": ["foo", "bar"],
},
schema=nullable_schema,
)
# We can add nullable schema if it doesn't actually contain nulls
table.add(data)
expected = data.cast(schema)
assert table.to_arrow() == expected
data = pa.table(
{
"vector": [None],
"id": ["baz"],
},
schema=nullable_schema,
)
# We can't add nullable schema if it contains nulls
with pytest.raises(Exception, match="Vector column vector has NaNs"):
table.add(data)
# But we can make it nullable
table.alter_columns(dict(path="vector", nullable=True))
table.add(data)
expected_schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
pa.field("id", pa.string(), nullable=False),
]
)
expected = pa.table(
{
"vector": [[3.1, 4.1], [5.9, 26.5], None],
"id": ["foo", "bar", "baz"],
},
schema=expected_schema,
)
assert table.to_arrow() == expected
def test_add_pydantic_model(db):
# https://github.com/lancedb/lancedb/issues/562
@@ -1007,15 +892,10 @@ def test_empty_query(db):
table = LanceTable.create(db, "my_table2", data=[{"id": i} for i in range(100)])
df = table.search().select(["id"]).to_pandas()
assert len(df) == 10
# None is the same as default
df = table.search().select(["id"]).limit(None).to_pandas()
assert len(df) == 10
# invalid limist is the same as None, wihch is the same as default
assert len(df) == 100
df = table.search().select(["id"]).limit(-1).to_pandas()
assert len(df) == 10
# valid limit should work
df = table.search().select(["id"]).limit(42).to_pandas()
assert len(df) == 42
assert len(df) == 100
def test_search_with_schema_inf_single_vector(db):

View File

@@ -142,13 +142,6 @@ impl VectorQuery {
self.inner = self.inner.clone().only_if(predicate);
}
pub fn add_query_vector(&mut self, vector: Bound<'_, PyAny>) -> PyResult<()> {
let data: ArrayData = ArrayData::from_pyarrow_bound(&vector)?;
let array = make_array(data);
self.inner = self.inner.clone().add_query_vector(array).infer_error()?;
Ok(())
}
pub fn select(&mut self, columns: Vec<(String, String)>) {
self.inner = self.inner.clone().select(Select::dynamic(&columns));
}
@@ -195,10 +188,6 @@ impl VectorQuery {
self.inner = self.inner.clone().nprobes(nprobe as usize);
}
pub fn ef(&mut self, ef: u32) {
self.inner = self.inner.clone().ef(ef as usize);
}
pub fn bypass_vector_index(&mut self) {
self.inner = self.inner.clone().bypass_vector_index()
}

View File

@@ -8,7 +8,7 @@ use lancedb::table::{
use pyo3::{
exceptions::{PyRuntimeError, PyValueError},
pyclass, pymethods,
types::{IntoPyDict, PyDict, PyDictMethods, PyString},
types::{PyDict, PyDictMethods, PyString},
Bound, FromPyObject, PyAny, PyRef, PyResult, Python, ToPyObject,
};
use pyo3_asyncio_0_21::tokio::future_into_py;
@@ -246,33 +246,6 @@ impl Table {
)
}
pub fn list_versions(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner_ref()?.clone();
future_into_py(self_.py(), async move {
let versions = inner.list_versions().await.infer_error()?;
let versions_as_dict = Python::with_gil(|py| {
versions
.iter()
.map(|v| {
let dict = PyDict::new_bound(py);
dict.set_item("version", v.version).unwrap();
dict.set_item(
"timestamp",
v.timestamp.timestamp_nanos_opt().unwrap_or_default(),
)
.unwrap();
let tup: Vec<(&String, &String)> = v.metadata.iter().collect();
dict.set_item("metadata", tup.into_py_dict(py)).unwrap();
dict.to_object(py)
})
.collect::<Vec<_>>()
});
Ok(versions_as_dict)
})
}
pub fn checkout(self_: PyRef<'_, Self>, version: u64) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner_ref()?.clone();
future_into_py(self_.py(), async move {

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-node"
version = "0.13.1-beta.0"
version = "0.13.0-beta.1"
description = "Serverless, low-latency vector database for AI applications"
license.workspace = true
edition.workspace = true

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb"
version = "0.13.1-beta.0"
version = "0.13.0-beta.1"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true
@@ -46,18 +46,10 @@ serde = { version = "^1" }
serde_json = { version = "1" }
async-openai = { version = "0.20.0", optional = true }
serde_with = { version = "3.8.1" }
aws-sdk-bedrockruntime = { version = "1.27.0", optional = true }
# For remote feature
reqwest = { version = "0.12.0", default-features = false, features = [
"charset",
"gzip",
"http2",
"json",
"macos-system-configuration",
"stream",
], optional = true }
rand = { version = "0.8.3", features = ["small_rng"], optional = true }
http = { version = "1", optional = true } # Matching what is in reqwest
reqwest = { version = "0.12.0", features = ["gzip", "json", "stream"], optional = true }
rand = { version = "0.8.3", features = ["small_rng"], optional = true}
http = { version = "1", optional = true } # Matching what is in reqwest
uuid = { version = "1.7.0", features = ["v4"], optional = true }
polars-arrow = { version = ">=0.37,<0.40.0", optional = true }
polars = { version = ">=0.37,<0.40.0", optional = true }
@@ -80,13 +72,11 @@ aws-config = { version = "1.0" }
aws-smithy-runtime = { version = "1.3" }
http-body = "1" # Matching reqwest
[features]
default = ["default-tls"]
default = []
remote = ["dep:reqwest", "dep:http", "dep:rand", "dep:uuid"]
fp16kernels = ["lance-linalg/fp16kernels"]
s3-test = []
bedrock = ["dep:aws-sdk-bedrockruntime"]
openai = ["dep:async-openai", "dep:reqwest"]
polars = ["dep:polars-arrow", "dep:polars"]
sentence-transformers = [
@@ -97,11 +87,6 @@ sentence-transformers = [
"dep:tokenizers"
]
# TLS
default-tls = ["reqwest?/default-tls"]
native-tls = ["reqwest?/native-tls"]
rustls-tls = ["reqwest?/rustls-tls"]
[[example]]
name = "openai"
required-features = ["openai"]
@@ -109,7 +94,3 @@ required-features = ["openai"]
[[example]]
name = "sentence_transformers"
required-features = ["sentence-transformers"]
[[example]]
name = "bedrock"
required-features = ["bedrock"]

Some files were not shown because too many files have changed in this diff Show More