Compare commits

..

1 Commits

Author SHA1 Message Date
Lei Xu
2704a4522c Bump to 0.1.11 2023-07-17 12:45:17 -07:00
107 changed files with 1259 additions and 4851 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.2.3
current_version = 0.1.13
commit = True
message = Bump version: {current_version} → {new_version}
tag = True

View File

@@ -25,35 +25,31 @@ jobs:
bump-version:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.10"
- name: Bump version, create tag and commit
run: |
pip install bump2version
bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
tags: true
- uses: ./.github/workflows/update_package_lock
if: ${{ inputs.dry_run }} == "false"
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
- name: Check out main
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.10"
- name: Bump version, create tag and commit
run: |
pip install bump2version
bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
tags: true

View File

@@ -70,7 +70,7 @@ jobs:
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
npm install --no-save ./dist/vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
@@ -101,7 +101,7 @@ jobs:
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
npm install --no-save ./dist/vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test

View File

@@ -46,51 +46,75 @@ jobs:
matrix:
target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3
with:
name: native-darwin
path: |
node/dist/lancedb-vectordb-darwin*.tgz
- name: Checkout
uses: actions/checkout@v3
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3
with:
name: darwin-native
path: |
node/dist/vectordb-darwin*.tgz
node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
name: node-linux (${{ matrix.arch}}-unknown-linux-${{ matrix.libc }})
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
runner: buildjet-4vcpu-ubuntu-2204-arm
libc:
- gnu
# TODO: re-enable musl once we have refactored to pre-built containers
# Right now we have to build node from source which is too expensive.
# - musl
arch:
- x86_64
# Building on aarch64 is too slow for now
# - aarch64
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
with:
name: native-linux
path: |
node/dist/lancedb-vectordb-linux*.tgz
- name: Checkout
uses: actions/checkout@v3
- name: Change owner to root (for npm)
# The docker container is run as root, so we need the files to be owned by root
# Otherwise npm is a nightmare: https://github.com/npm/cli/issues/3773
run: sudo chown -R root:root .
- name: Set up QEMU
if: ${{ matrix.arch == 'aarch64' }}
uses: docker/setup-qemu-action@v2
with:
platforms: arm64
- name: Build Linux GNU native node modules
if: ${{ matrix.libc == 'gnu' }}
run: |
docker run \
-v $(pwd):/io -w /io \
rust:1.70-bookworm \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-gnu
- name: Build musl Linux native node modules
if: ${{ matrix.libc == 'musl' }}
run: |
docker run --platform linux/arm64/v8 \
-v $(pwd):/io -w /io \
quay.io/pypa/musllinux_1_1_${{ matrix.arch }} \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-musl
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
with:
name: linux-native
path: |
node/dist/vectordb-linux*.tgz
node-windows:
runs-on: windows-2022
@@ -121,12 +145,12 @@ jobs:
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v3
with:
name: native-windows
name: windows-native
path: |
node/dist/lancedb-vectordb-win32*.tgz
node/dist/vectordb-win32*.tgz
release:
needs: [node, node-macos, node-linux, node-windows]
needs: [node, node-macos, node-linux]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -137,7 +161,6 @@ jobs:
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: 'https://registry.npmjs.org'
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
@@ -146,18 +169,3 @@ jobs:
for filename in *.tgz; do
npm publish $filename
done
update-package-lock:
needs: [release]
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -30,7 +30,7 @@ jobs:
python-version: 3.${{ matrix.python-minor-version }}
- name: Install lancedb
run: |
pip install -e .[tests]
pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort
- name: Black
@@ -59,7 +59,7 @@ jobs:
python-version: "3.11"
- name: Install lancedb
run: |
pip install -e .[tests]
pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black
- name: Black

View File

@@ -1,26 +0,0 @@
name: Trigger vectordb-recipers workflow
on:
push:
branches: [ main ]
pull_request:
paths:
- .github/workflows/trigger-vectordb-recipes.yml
workflow_dispatch:
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Trigger vectordb-recipes workflow
uses: actions/github-script@v6
with:
github-token: ${{ secrets.VECTORDB_RECIPES_ACTION_TOKEN }}
script: |
const result = await github.rest.actions.createWorkflowDispatch({
owner: 'lancedb',
repo: 'vectordb-recipes',
workflow_id: 'examples-test.yml',
ref: 'main'
});
console.log(result);

View File

@@ -1,33 +0,0 @@
name: update_package_lock
description: "Update node's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./node
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -1,19 +0,0 @@
name: Update package-lock.json
on:
workflow_dispatch:
jobs:
publish:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -6,11 +6,11 @@ members = [
resolver = "2"
[workspace.dependencies]
lance = "=0.6.5"
arrow-array = "43.0"
arrow-data = "43.0"
arrow-schema = "43.0"
arrow-ipc = "43.0"
half = { "version" = "=2.2.1", default-features = false }
lance = "=0.5.8"
arrow-array = "42.0"
arrow-data = "42.0"
arrow-schema = "42.0"
arrow-ipc = "42.0"
half = { "version" = "2.2.1", default-features = false }
object_store = "0.6.1"
snafu = "0.7.4"

83
ci/build_linux_artifacts.sh Executable file → Normal file
View File

@@ -1,19 +1,72 @@
#!/bin/bash
# Builds the Linux artifacts (node binaries).
# Usage: ./build_linux_artifacts.sh [target]
# Targets supported:
# - x86_64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-musl
# - x86_64-unknown-linux-musl
# TODO: refactor this into a Docker container we can pull
set -e
ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_node
docker build \
-t lancedb-node-manylinux \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
.
popd
setup_dependencies() {
echo "Installing system dependencies..."
if [[ $1 == *musl ]]; then
# musllinux
apk add openssl-dev
else
# rust / debian
apt update
apt install -y libssl-dev protobuf-compiler
fi
}
docker run \
-v $(pwd):/io -w /io \
lancedb-node-manylinux \
bash ci/manylinux_node/build.sh $ARCH
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
if [[ $1 == *musl ]]; then
# This node version is 15, we need 16 or higher:
# apk add nodejs-current npm
# So instead we install from source (nvm doesn't provide binaries for musl):
nvm install -s --no-progress 17
else
nvm install --no-progress 17 # latest that supports glibc 2.17
fi
}
build_node_binary() {
echo "Building node library for $1..."
pushd node
npm ci
if [[ $1 == *musl ]]; then
# This is needed for cargo to allow build cdylibs with musl
export RUSTFLAGS="-C target-feature=-crt-static"
fi
# Cargo can run out of memory while pulling dependencies, especially when running
# in QEMU. This is a workaround for that.
export CARGO_NET_GIT_FETCH_WITH_CLI=true
# We don't pass in target, since the native target here already matches
# We need to pass OPENSSL_LIB_DIR and OPENSSL_INCLUDE_DIR for static build to work https://github.com/sfackler/rust-openssl/issues/877
OPENSSL_STATIC=1 OPENSSL_LIB_DIR=/usr/lib/x86_64-linux-gnu OPENSSL_INCLUDE_DIR=/usr/include/openssl/ npm run build-release
npm run pack-build
popd
}
TARGET=${1:-x86_64-unknown-linux-gnu}
# Others:
# aarch64-unknown-linux-gnu
# x86_64-unknown-linux-musl
# aarch64-unknown-linux-musl
setup_dependencies $TARGET
install_node $TARGET
build_node_binary $TARGET

View File

@@ -1,31 +0,0 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

View File

@@ -1,19 +0,0 @@
#!/bin/bash
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
set -e
ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
cd node
npm ci
npm run build-release
npm run pack-build

View File

@@ -1,26 +0,0 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -1,15 +0,0 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

View File

@@ -1,6 +1,5 @@
site_name: LanceDB Docs
repo_url: https://github.com/lancedb/lancedb
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
repo_name: lancedb/lancedb
docs_dir: src
@@ -11,16 +10,6 @@ theme:
features:
- content.code.copy
- content.tabs.link
- content.action.edit
- toc.follow
- toc.integrate
- navigation.top
- navigation.tabs
- navigation.tabs.sticky
- navigation.footer
- navigation.tracking
- navigation.instant
- navigation.indexes
icon:
repo: fontawesome/brands/github
custom_dir: overrides
@@ -64,78 +53,32 @@ markdown_extensions:
- md_in_html
nav:
- Home:
- 🏢 Home: index.md
- 💡 Basics: basic.md
- 🧬 Embeddings: embedding.md
- 🔍 Python full-text search: fts.md
- 🔌 Integrations:
- integrations/index.md
- Pandas and PyArrow: python/arrow.md
- DuckDB: python/duckdb.md
- LangChain 🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain JS/TS 🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- 🐍 Python examples:
- examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 🌐 Javascript examples:
- Examples: examples/index_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 📚 Guides:
- Tables: guides/tables.md
- Vector Search: search.md
- SQL filters: sql.md
- Indexing: ann_indexes.md
- Home: index.md
- Basics: basic.md
- Embeddings: embedding.md
- Python full-text search: fts.md
- Integrations:
- integrations/index.md
- Python integrations:
- Pandas and PyArrow: python/arrow.md
- DuckDB: python/duckdb.md
- LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain JS/TS 🦜️🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- Python examples:
- examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- Javascript examples:
- examples/index_js.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- Guides:
- Tables: guides/tables.md
- References:
- Vector Search: search.md
- SQL filters: sql.md
- Indexing: ann_indexes.md
- API references:
- Python API: python/python.md
- Javascript API: javascript/modules.md
- LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms
extra_css:
- styles/global.css
extra:
analytics:
provider: google
property: G-B7NFM40W74

View File

@@ -94,7 +94,7 @@ There are a couple of parameters that can be used to fine-tune the search:
.to_df()
```
```
vector item _distance
vector item score
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
@@ -109,8 +109,9 @@ There are a couple of parameters that can be used to fine-tune the search:
.execute()
```
The search will return the data requested in addition to the distance of each item.
The search will return the data requested in addition to the score of each item.
**Note:** The score is the distance between the query vector and the element. A lower number means that the result is more relevant.
### Filtering (where clause)
@@ -138,7 +139,7 @@ You can select the columns returned by the query using a select clause.
tbl.search(np.random.random((1536))).select(["vector"]).to_df()
```
```
vector _distance
vector score
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
...

Binary file not shown.

Before

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 170 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 205 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 953 KiB

View File

@@ -79,18 +79,6 @@ We'll cover the basics of using LanceDB on your local machine in this section.
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
### Creating an empty table
Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema.
=== "Python"
```python
import pyarrow as pa
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
tbl = db.create_table("empty_table", schema=schema)
```
## How to open an existing table
Once created, you can open a table using the following code:
@@ -150,63 +138,8 @@ Once you've embedded the query, you can find its nearest neighbors using the fol
const query = await tbl.search([100, 100]).limit(2).execute();
```
## How to delete rows from a table
Use the `delete()` method on tables to delete rows from a table. To choose
which rows to delete, provide a filter that matches on the metadata columns.
This can delete any number of rows that match the filter.
=== "Python"
```python
tbl.delete('item = "fizz"')
```
=== "Javascript"
```javascript
await tbl.delete('item = "fizz"')
```
The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause on a search. They can be as simple or complex as needed.
To see what expressions are supported, see the [SQL filters](sql.md) section.
=== "Python"
Read more: [lancedb.table.Table.delete][]
=== "Javascript"
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
## How to remove a table
Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
db.drop_table("my_table")
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
## What's next
This section covered the very basics of the LanceDB API.
LanceDB supports many additional features when creating indices to speed up search and options for search.
These are contained in the next section of the documentation.
## Note: Bundling vectorDB apps with webpack
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```

View File

@@ -66,7 +66,7 @@ You can also use an external API like OpenAI to generate embeddings
to generate embeddings for each row.
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/python/#lancedb.embeddings.with_embeddings)
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
function to generate embeddings and add create a combined pyarrow table:

View File

@@ -1,23 +0,0 @@
# Examples
Here are some of the examples, projects and applications using LanceDB python library. Some examples are covered in detail in the next sections. You can find more on [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes)
| Example | Interactive Envs | Scripts |
|-------- | ---------------- | ------ |
| | | |
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/main.py)|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/main.py) |
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/main.py)|
| [Multimodal CLIP: DiffusionDB](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/main.py) |
| [Multimodal CLIP: Youtube videos](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/main.py) |
| [Movie Recommender](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/main.py) |
| [Audio Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/main.py) |
| [Multimodal Image + Text Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/main.py) |
| [Evaluating Prompts with Prompttools](https://github.com/lancedb/vectordb-recipes/tree/main/examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | |
## Projects & Applications powered by LanceDB
| Project Name | Description | Screenshot |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds | ![YOLOExplorer](https://github.com/lancedb/vectordb-recipes/assets/15766192/ae513a29-8f15-4e0b-99a1-ccd8272b6131) |
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. | ![Chatbot](../assets/vercel-template.gif) |

View File

@@ -1,19 +0,0 @@
# Examples
Here are some of the examples, projects and applications using vectordb native javascript library.
Some examples are covered in detail in the next sections. You can find more on [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes)
| Example | Scripts |
|-------- | ------ |
| | |
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/index.js)|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/index.js)|
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/index.js)|
| [TransformersJS Embedding example](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/index.js) |
## Projects & Applications
| Project Name | Description | Screenshot |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds | ![YOLOExplorer](https://github.com/lancedb/vectordb-recipes/assets/15766192/ae513a29-8f15-4e0b-99a1-ccd8272b6131) |
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. | ![Chatbot](../assets/vercel-template.gif) |

View File

@@ -1,61 +0,0 @@
# LanceDB Chatbot - Vercel Next.js Template
Use an AI chatbot with website context retrieved from a vector store like LanceDB. LanceDB is lightweight and can be embedded directly into Next.js, with data stored on-prem.
## One click deploy on Vercel
[![Deploy with Vercel](https://vercel.com/button)](https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flancedb%2Flancedb-vercel-chatbot&env=OPENAI_API_KEY&envDescription=OpenAI%20API%20Key%20for%20chat%20completion.&project-name=lancedb-vercel-chatbot&repository-name=lancedb-vercel-chatbot&demo-title=LanceDB%20Chatbot%20Demo&demo-description=Demo%20website%20chatbot%20with%20LanceDB.&demo-url=https%3A%2F%2Flancedb.vercel.app&demo-image=https%3A%2F%2Fi.imgur.com%2FazVJtvr.png)
![Demo website landing page](../assets/vercel-template.gif)
## Development
First, rename `.env.example` to `.env.local`, and fill out `OPENAI_API_KEY` with your OpenAI API key. You can get one [here](https://openai.com/blog/openai-api).
Run the development server:
```bash
npm run dev
# or
yarn dev
# or
pnpm dev
```
Open [http://localhost:3000](http://localhost:3000) with your browser to see the result.
This project uses [`next/font`](https://nextjs.org/docs/basic-features/font-optimization) to automatically optimize and load Inter, a custom Google Font.
## Learn More
To learn more about LanceDB or Next.js, take a look at the following resources:
- [LanceDB Documentation](https://lancedb.github.io/lancedb/) - learn about LanceDB, the developer-friendly serverless vector database.
- [Next.js Documentation](https://nextjs.org/docs) - learn about Next.js features and API.
- [Learn Next.js](https://nextjs.org/learn) - an interactive Next.js tutorial.
## LanceDB on Next.js and Vercel
FYI: these configurations have been pre-implemented in this template.
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying on Vercel.
```js
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
To deploy on Vercel, we need to make sure that the NodeJS runtime static file analysis for Vercel can find the binary, since LanceDB uses dynamic imports by default. We can do this by modifying `package.json` in the `scripts` section.
```json
{
...
"scripts": {
...
"vercel-build": "sed -i 's/nativeLib = require(`@lancedb\\/vectordb-\\${currentTarget()}`);/nativeLib = require(`@lancedb\\/vectordb-linux-x64-gnu`);/' node_modules/vectordb/native.js && next build",
...
},
...
}
```

View File

@@ -1,6 +1,6 @@
# Vector embedding search using TransformersJS
## Embed and query data from LanceDB using TransformersJS
## Embed and query data from LacneDB using TransformersJS
<img id="splash" width="400" alt="transformersjs" src="https://github.com/lancedb/lancedb/assets/43097991/88a31e30-3d6f-4eef-9216-4b7c688f1b4f">
@@ -99,7 +99,7 @@ Output of `results`:
id: 5,
text: 'Banana',
type: 'fruit',
_distance: 0.4919965863227844
score: 0.4919965863227844
},
{
vector: Float32Array(384) [
@@ -111,7 +111,7 @@ Output of `results`:
id: 1,
text: 'Cherry',
type: 'fruit',
_distance: 0.5540297031402588
score: 0.5540297031402588
}
]
```

View File

@@ -4,10 +4,4 @@
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
<a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab">
Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipesexamples/youtube_bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/examples/youtube_bot/index.js)
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)

View File

@@ -1,359 +0,0 @@
<a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/tables_guide.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
A Table is a collection of Records in a LanceDB Database. You can follow along on colab!
## Creating a LanceDB Table
=== "Python"
### LanceDB Connection
```python
import lancedb
db = lancedb.connect("./.lancedb")
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
### From list of tuples or dictionaries
```python
import lancedb
db = lancedb.connect("./.lancedb")
data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
{"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
db.create_table("my_table", data)
db["my_table"].head()
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you can pass in mode="overwrite" to the createTable function.
```python
db.create_table("name", data, mode="overwrite")
```
### From pandas DataFrame
```python
import pandas as pd
data = pd.DataFrame({
"vector": [[1.1, 1.2], [0.2, 1.8]],
"lat": [45.5, 40.1],
"long": [-122.7, -74.1]
})
db.create_table("table2", data)
db["table2"].head()
```
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
```python
custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("lat", pa.float32()),
pa.field("long", pa.float32())
])
table = db.create_table("table3", data, schema=custom_schema)
```
### From PyArrow Tables
You can also create LanceDB tables directly from pyarrow tables
```python
table = pa.Table.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]],
pa.list_(pa.float32(), 2)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
db = lancedb.connect("db")
tbl = db.create_table("test1", table)
```
### From Pydantic Models
LanceDB supports to create Apache Arrow Schema from a Pydantic BaseModel via pydantic_to_schema() method.
```python
from lancedb.pydantic import vector, LanceModel
class Content(LanceModel):
movie_id: int
vector: vector(128)
genres: str
title: str
imdb_id: int
@property
def imdb_url(self) -> str:
return f"https://www.imdb.com/title/tt{self.imdb_id}"
import pyarrow as pa
db = lancedb.connect("~/.lancedb")
table_name = "movielens_small"
table = db.create_table(table_name, schema=Content.to_arrow_schema())
```
### Using Iterators / Writing Large Datasets
It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
LanceDB additionally supports pyarrow's `RecordBatch` Iterators or other generators producing supported data types.
Here's an example using using `RecordBatch` iterator for creating tables.
```python
import pyarrow as pa
def make_batches():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]],
pa.list_(pa.float32(), 2)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
db.create_table("table4", make_batches(), schema=schema)
```
You can also use iterators of other types like Pandas dataframe or Pylists directly in the above example.
## Creating Empty Table
You can also create empty tables in python. Initialize it with schema and later ingest data into it.
```python
import lancedb
import pyarrow as pa
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.string()),
pa.field("price", pa.float32()),
])
tbl = db.create_table("table5", schema=schema)
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
]
tbl.add(data=data)
```
You can also use Pydantic to specify the schema
```python
import lancedb
from lancedb.pydantic import LanceModel, vector
class Model(LanceModel):
vector: vector(2)
tbl = db.create_table("table5", schema=Model.to_arrow_schema())
```
=== "Javascript/Typescript"
### VectorDB Connection
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
### Creating a Table
You can create a LanceDB table in javascript using an array of records.
```javascript
data
const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
## Open existing tables
If you forget the name of your table, you can always get a listing of all table names:
=== "Python"
### Get a list of existing Tables
```python
print(db.table_names())
```
=== "Javascript/Typescript"
```javascript
console.log(await db.tableNames());
```
Then, you can open any existing tables
=== "Python"
```python
tbl = db.open_table("my_table")
```
=== "Javascript/Typescript"
```javascript
const tbl = await db.openTable("my_table");
```
## Adding to a Table
After a table has been created, you can always add more data to it using
=== "Python"
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or a `Iterator[pa.RecordBatch]`. Here are some examples.
### Adding Pandas DataFrame
```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
tbl.add(df)
```
You can also add a large dataset batch in one go using Iterator of any supported data types.
### Adding to table using Iterator
```python
import pandas as pd
def make_batches():
for i in range(5):
yield pd.DataFrame(
{
"vector": [[3.1, 4.1], [1, 1]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
})
tbl.add(make_batches())
```
The other arguments accepted:
| Name | Type | Description | Default |
|---|---|---|---|
| data | DATA | The data to insert into the table. | required |
| mode | str | The mode to use when writing the data. Valid values are "append" and "overwrite". | append |
| on_bad_vectors | str | What to do if any of the vectors are not the same size or contains NaNs. One of "error", "drop", "fill". | drop |
| fill value | float | The value to use when filling vectors: Only used if on_bad_vectors="fill". | 0.0 |
=== "Javascript/Typescript"
```javascript
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
```
## Deleting from a Table
Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter.
=== "Python"
```python
tbl.delete('item = "fizz"')
```
### Deleting row with specific column value
```python
import lancedb
import pandas as pd
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
db = lancedb.connect("./.lancedb")
table = db.create_table("my_table", data)
table.to_pandas()
# x vector
# 0 1 [1.0, 2.0]
# 1 2 [3.0, 4.0]
# 2 3 [5.0, 6.0]
table.delete("x = 2")
table.to_pandas()
# x vector
# 0 1 [1.0, 2.0]
# 1 3 [5.0, 6.0]
```
### Delete from a list of values
```python
to_remove = [1, 5]
to_remove = ", ".join(str(v) for v in to_remove)
table.delete(f"x IN ({to_remove})")
table.to_pandas()
# x vector
# 0 3 [5.0, 6.0]
```
=== "Javascript/Typescript"
```javascript
await tbl.delete('item = "fizz"')
```
### Deleting row with specific column value
```javascript
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [1, 2]},
{id: 2, vector: [3, 4]},
{id: 3, vector: [5, 6]},
];
const tbl = await con.createTable("my_table", data)
await tbl.delete("id = 2")
await tbl.countRows() // Returns 2
```
### Delete from a list of values
```javascript
const to_remove = [1, 5];
await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1
```
## What's Next?
Learn how to Query your tables and create indices

View File

@@ -1,23 +1,20 @@
# LanceDB
# Welcome to LanceDB's Documentation
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
![Illustration](/lancedb/assets/ecosystem-illustration.png)
The key features of LanceDB include:
* Production-scale vector search with no servers to manage.
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Support for production-scale vector similarity search, full-text search and SQL, with no servers to manage.
* Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* Persisted on HDD, allowing scalability without breaking the bank.
* Ingest your favorite data formats directly, like pandas DataFrames, Pydantic objects and more.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
@@ -72,4 +69,4 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
* [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem.
* [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK.
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Node SDK.
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Python SDK.

View File

@@ -1,21 +0,0 @@
# Integrations
## Data Formats
LanceDB supports ingesting from your favorite data tools.
![Illustration](/lancedb/assets/ecosystem-illustration.png)
## Tools
LanceDB is integrated with most of the popular AI tools, with more coming soon.
Get started using these examples and quick links.
| Integrations | |
|---|---:|
| <h3> LlamaIndex </h3>LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. Llama index integrates with LanceDB as the serverless VectorDB. <h3>[Lean More](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html) </h3> |<img src="../assets/llama-index.jpg" alt="image" width="150" height="auto">|
| <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Langchain TS</h3> Javascript bindings for Langchain. It integrates with LanceDB's serverless vectordb allowing you to build powerful AI applications through composibility using only serverless functions. <h3>[Learn More]( https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Voxel51</h3> It is an open source toolkit that enables you to build better computer vision workflows by improving the quality of your datasets and delivering insights about your models.<h3>[Learn More](./voxel51.md) | <img src="../assets/voxel.gif" alt="image" width="150" height="auto">|
| <h3>PromptTools</h3> Offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.<h3>[Learn More](./prompttools.md) | <img src="../assets/prompttools.jpeg" alt="image" width="150" height="auto">|

View File

@@ -1,7 +0,0 @@
[PromptTools](https://github.com/hegelai/prompttools) offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.
[Evaluating Prompts with PromptTools](./examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
![Alt text](https://prompttools.readthedocs.io/en/latest/_images/demo.gif "a title")

View File

@@ -1,71 +0,0 @@
![example](/assets/voxel.gif)
Basic recipe
____________
The basic workflow to use LanceDB to create a similarity index on your FiftyOne
datasets and use this to query your data is as follows:
1) Load a dataset into FiftyOne
2) Compute embedding vectors for samples or patches in your dataset, or select
a model to use to generate embeddings
3) Use the `compute_similarity()`
method to generate a LanceDB table for the samples or object
patches embeddings in a dataset by setting the parameter `backend="lancedb"` and
specifying a `brain_key` of your choice
4) Use this LanceDB table to query your data with
`sort_by_similarity()`
5) If desired, delete the table
The example below demonstrates this workflow.
!!! Note
You must install the LanceDB Python client to run this
```
pip install lancedb
```
```python
import fiftyone as fo
import fiftyone.brain as fob
import fiftyone.zoo as foz
# Step 1: Load your data into FiftyOne
dataset = foz.load_zoo_dataset("quickstart")
# Steps 2 and 3: Compute embeddings and create a similarity index
lancedb_index = fob.compute_similarity(
dataset,
model="clip-vit-base32-torch",
brain_key="lancedb_index",
backend="lancedb",
)
```
Once the similarity index has been generated, we can query our data in FiftyOne
by specifying the `brain_key`:
```python
# Step 4: Query your data
query = dataset.first().id # query by sample ID
view = dataset.sort_by_similarity(
query,
brain_key="lancedb_index",
k=10, # limit to 10 most similar samples
)
# Step 5 (optional): Cleanup
# Delete the LanceDB table
lancedb_index.cleanup()
# Delete run record from FiftyOne
dataset.delete_brain_run("lancedb_index")
```
More in depth walkthrough of the integration, visit the LanceDB guide on Voxel51 - [LaceDB x Voxel51](https://docs.voxel51.com/integrations/lancedb.html)

View File

@@ -10,10 +10,6 @@ A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb)
npm install vectordb
```
This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
yet support Windows or musl-based Linux (such as Alpine Linux).
## Usage
### Basic Example
@@ -32,34 +28,12 @@ The [examples](./examples) folder contains complete examples.
## Development
To build everything fresh:
```bash
npm install
npm run tsc
npm run build
```
Then you should be able to run the tests with:
Run the tests with
```bash
npm test
```
### Rebuilding Rust library
```bash
npm run build
```
### Rebuilding Typescript
```bash
npm run tsc
```
### Fix lints
To run the linter and have it automatically fix all errors
```bash

View File

@@ -17,7 +17,7 @@ A connection to a LanceDB database.
### Properties
- [\_db](LocalConnection.md#_db)
- [\_options](LocalConnection.md#_options)
- [\_uri](LocalConnection.md#_uri)
### Accessors
@@ -35,18 +35,18 @@ A connection to a LanceDB database.
### constructor
**new LocalConnection**(`db`, `options`)
**new LocalConnection**(`db`, `uri`)
#### Parameters
| Name | Type |
| :------ | :------ |
| `db` | `any` |
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) |
| `uri` | `string` |
#### Defined in
[index.ts:184](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L184)
[index.ts:132](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L132)
## Properties
@@ -56,17 +56,17 @@ A connection to a LanceDB database.
#### Defined in
[index.ts:182](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L182)
[index.ts:130](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L130)
___
### \_options
### \_uri
`Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
`Private` `Readonly` **\_uri**: `string`
#### Defined in
[index.ts:181](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L181)
[index.ts:129](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L129)
## Accessors
@@ -84,7 +84,7 @@ ___
#### Defined in
[index.ts:189](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L189)
[index.ts:137](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L137)
## Methods
@@ -112,7 +112,7 @@ Creates a new Table and initialize it with new data.
#### Defined in
[index.ts:230](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L230)
[index.ts:177](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L177)
**createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
@@ -134,7 +134,7 @@ Connection.createTable
#### Defined in
[index.ts:231](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L231)
[index.ts:178](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L178)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
@@ -165,36 +165,7 @@ Connection.createTable
#### Defined in
[index.ts:241](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L241)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `data` | `Record`<`string`, `unknown`\>[] |
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:242](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L242)
[index.ts:188](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L188)
___
@@ -219,7 +190,7 @@ ___
#### Defined in
[index.ts:266](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L266)
[index.ts:201](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L201)
___
@@ -245,7 +216,7 @@ Drop an existing table.
#### Defined in
[index.ts:276](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L276)
[index.ts:211](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L211)
___
@@ -271,7 +242,7 @@ Open a table in the database.
#### Defined in
[index.ts:205](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L205)
[index.ts:153](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L153)
**openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
@@ -300,34 +271,7 @@ Connection.openTable
#### Defined in
[index.ts:212](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L212)
**openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.openTable
#### Defined in
[index.ts:213](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L213)
[index.ts:160](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L160)
___
@@ -347,4 +291,4 @@ Get the names of all tables in the database.
#### Defined in
[index.ts:196](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L196)
[index.ts:144](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L144)

View File

@@ -24,7 +24,6 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
- [\_embeddings](LocalTable.md#_embeddings)
- [\_name](LocalTable.md#_name)
- [\_options](LocalTable.md#_options)
- [\_tbl](LocalTable.md#_tbl)
### Accessors
@@ -44,7 +43,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
### constructor
**new LocalTable**<`T`\>(`tbl`, `name`, `options`)
**new LocalTable**<`T`\>(`tbl`, `name`)
#### Type parameters
@@ -58,13 +57,12 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
| :------ | :------ |
| `tbl` | `any` |
| `name` | `string` |
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) |
#### Defined in
[index.ts:287](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L287)
[index.ts:221](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L221)
**new LocalTable**<`T`\>(`tbl`, `name`, `options`, `embeddings`)
**new LocalTable**<`T`\>(`tbl`, `name`, `embeddings`)
#### Type parameters
@@ -78,12 +76,11 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
| :------ | :------ | :------ |
| `tbl` | `any` | |
| `name` | `string` | |
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) | |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
#### Defined in
[index.ts:294](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L294)
[index.ts:227](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L227)
## Properties
@@ -93,7 +90,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
#### Defined in
[index.ts:284](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L284)
[index.ts:219](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L219)
___
@@ -103,17 +100,7 @@ ___
#### Defined in
[index.ts:283](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L283)
___
### \_options
`Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Defined in
[index.ts:285](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L285)
[index.ts:218](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L218)
___
@@ -123,7 +110,7 @@ ___
#### Defined in
[index.ts:282](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L282)
[index.ts:217](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L217)
## Accessors
@@ -141,7 +128,7 @@ ___
#### Defined in
[index.ts:302](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L302)
[index.ts:234](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L234)
## Methods
@@ -169,7 +156,7 @@ The number of rows added to the table
#### Defined in
[index.ts:320](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L320)
[index.ts:252](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L252)
___
@@ -189,7 +176,7 @@ Returns the number of rows in this table.
#### Defined in
[index.ts:362](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L362)
[index.ts:278](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L278)
___
@@ -207,7 +194,7 @@ VectorIndexParams.
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexParams` | [`IvfPQIndexConfig`](../interfaces/IvfPQIndexConfig.md) | The parameters of this Index, |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
#### Returns
@@ -219,7 +206,7 @@ VectorIndexParams.
#### Defined in
[index.ts:355](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L355)
[index.ts:271](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L271)
___
@@ -245,7 +232,7 @@ Delete rows from this table.
#### Defined in
[index.ts:371](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L371)
[index.ts:287](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L287)
___
@@ -273,7 +260,7 @@ The number of rows added to the table
#### Defined in
[index.ts:338](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L338)
[index.ts:262](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L262)
___
@@ -299,4 +286,4 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in
[index.ts:310](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L310)
[index.ts:242](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L242)

View File

@@ -40,7 +40,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L21)
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L21)
## Properties
@@ -50,7 +50,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L19)
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L19)
___
@@ -60,7 +60,7 @@ ___
#### Defined in
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L18)
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L18)
___
@@ -76,7 +76,7 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L50)
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L50)
## Methods
@@ -102,4 +102,4 @@ Creates a vector representation for the given values.
#### Defined in
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L38)
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L38)

View File

@@ -62,7 +62,7 @@ A builder for nearest neighbor queries for LanceDB.
#### Defined in
[index.ts:448](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L448)
[index.ts:362](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L362)
## Properties
@@ -72,7 +72,7 @@ A builder for nearest neighbor queries for LanceDB.
#### Defined in
[index.ts:446](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L446)
[index.ts:360](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L360)
___
@@ -82,7 +82,7 @@ ___
#### Defined in
[index.ts:444](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L444)
[index.ts:358](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L358)
___
@@ -92,7 +92,7 @@ ___
#### Defined in
[index.ts:440](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L440)
[index.ts:354](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L354)
___
@@ -102,7 +102,7 @@ ___
#### Defined in
[index.ts:445](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L445)
[index.ts:359](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L359)
___
@@ -112,7 +112,7 @@ ___
#### Defined in
[index.ts:442](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L442)
[index.ts:356](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L356)
___
@@ -122,7 +122,7 @@ ___
#### Defined in
[index.ts:438](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L438)
[index.ts:352](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L352)
___
@@ -132,7 +132,7 @@ ___
#### Defined in
[index.ts:439](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L439)
[index.ts:353](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L353)
___
@@ -142,7 +142,7 @@ ___
#### Defined in
[index.ts:441](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L441)
[index.ts:355](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L355)
___
@@ -152,7 +152,7 @@ ___
#### Defined in
[index.ts:443](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L443)
[index.ts:357](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L357)
___
@@ -162,7 +162,7 @@ ___
#### Defined in
[index.ts:437](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L437)
[index.ts:351](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L351)
___
@@ -188,7 +188,7 @@ A filter statement to be applied to this query.
#### Defined in
[index.ts:496](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L496)
[index.ts:410](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L410)
## Methods
@@ -210,7 +210,7 @@ Execute the query and return the results as an Array of Objects
#### Defined in
[index.ts:519](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L519)
[index.ts:433](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L433)
___
@@ -232,7 +232,7 @@ A filter statement to be applied to this query.
#### Defined in
[index.ts:491](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L491)
[index.ts:405](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L405)
___
@@ -254,7 +254,7 @@ Sets the number of results that will be returned
#### Defined in
[index.ts:464](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L464)
[index.ts:378](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L378)
___
@@ -280,7 +280,7 @@ MetricType for the different options
#### Defined in
[index.ts:511](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L511)
[index.ts:425](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L425)
___
@@ -302,7 +302,7 @@ The number of probes used. A higher number makes search more accurate but also s
#### Defined in
[index.ts:482](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L482)
[index.ts:396](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L396)
___
@@ -324,7 +324,7 @@ Refine the results by reading extra elements and re-ranking them in memory.
#### Defined in
[index.ts:473](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L473)
[index.ts:387](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L387)
___
@@ -346,4 +346,4 @@ Return only the specified columns.
#### Defined in
[index.ts:502](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L502)
[index.ts:416](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L416)

View File

@@ -22,7 +22,7 @@ Cosine distance
#### Defined in
[index.ts:567](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L567)
[index.ts:481](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L481)
___
@@ -34,7 +34,7 @@ Dot product
#### Defined in
[index.ts:572](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L572)
[index.ts:486](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L486)
___
@@ -46,4 +46,4 @@ Euclidean distance
#### Defined in
[index.ts:562](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L562)
[index.ts:476](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L476)

View File

@@ -22,7 +22,7 @@ Append new data to the table.
#### Defined in
[index.ts:552](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L552)
[index.ts:466](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L466)
___
@@ -34,7 +34,7 @@ Create a new [Table](../interfaces/Table.md).
#### Defined in
[index.ts:548](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L548)
[index.ts:462](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L462)
___
@@ -46,4 +46,4 @@ Overwrite the existing [Table](../interfaces/Table.md) if presented.
#### Defined in
[index.ts:550](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L550)
[index.ts:464](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L464)

View File

@@ -1,41 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / AwsCredentials
# Interface: AwsCredentials
## Table of contents
### Properties
- [accessKeyId](AwsCredentials.md#accesskeyid)
- [secretKey](AwsCredentials.md#secretkey)
- [sessionToken](AwsCredentials.md#sessiontoken)
## Properties
### accessKeyId
**accessKeyId**: `string`
#### Defined in
[index.ts:31](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L31)
___
### secretKey
**secretKey**: `string`
#### Defined in
[index.ts:33](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L33)
___
### sessionToken
`Optional` **sessionToken**: `string`
#### Defined in
[index.ts:35](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L35)

View File

@@ -32,7 +32,7 @@ Connection could be local against filesystem or remote against a server.
#### Defined in
[index.ts:70](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L70)
[index.ts:45](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L45)
## Methods
@@ -63,7 +63,7 @@ Creates a new Table and initialize it with new data.
#### Defined in
[index.ts:90](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L90)
[index.ts:65](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L65)
___
@@ -84,7 +84,7 @@ ___
#### Defined in
[index.ts:92](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L92)
[index.ts:67](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L67)
___
@@ -106,7 +106,7 @@ Drop an existing table.
#### Defined in
[index.ts:98](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L98)
[index.ts:73](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L73)
___
@@ -135,7 +135,7 @@ Open a table in the database.
#### Defined in
[index.ts:80](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L80)
[index.ts:55](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L55)
___
@@ -149,4 +149,4 @@ ___
#### Defined in
[index.ts:72](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L72)
[index.ts:47](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L47)

View File

@@ -1,30 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / ConnectionOptions
# Interface: ConnectionOptions
## Table of contents
### Properties
- [awsCredentials](ConnectionOptions.md#awscredentials)
- [uri](ConnectionOptions.md#uri)
## Properties
### awsCredentials
`Optional` **awsCredentials**: [`AwsCredentials`](AwsCredentials.md)
#### Defined in
[index.ts:40](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L40)
___
### uri
**uri**: `string`
#### Defined in
[index.ts:39](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L39)

View File

@@ -45,7 +45,7 @@ Creates a vector representation for the given values.
#### Defined in
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L27)
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/embedding_function.ts#L27)
___
@@ -57,4 +57,4 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L22)
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/embedding_function.ts#L22)

View File

@@ -1,149 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / IvfPQIndexConfig
# Interface: IvfPQIndexConfig
## Table of contents
### Properties
- [column](IvfPQIndexConfig.md#column)
- [index\_name](IvfPQIndexConfig.md#index_name)
- [max\_iters](IvfPQIndexConfig.md#max_iters)
- [max\_opq\_iters](IvfPQIndexConfig.md#max_opq_iters)
- [metric\_type](IvfPQIndexConfig.md#metric_type)
- [num\_bits](IvfPQIndexConfig.md#num_bits)
- [num\_partitions](IvfPQIndexConfig.md#num_partitions)
- [num\_sub\_vectors](IvfPQIndexConfig.md#num_sub_vectors)
- [replace](IvfPQIndexConfig.md#replace)
- [type](IvfPQIndexConfig.md#type)
- [use\_opq](IvfPQIndexConfig.md#use_opq)
## Properties
### column
`Optional` **column**: `string`
The column to be indexed
#### Defined in
[index.ts:382](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L382)
___
### index\_name
`Optional` **index\_name**: `string`
A unique name for the index
#### Defined in
[index.ts:387](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L387)
___
### max\_iters
`Optional` **max\_iters**: `number`
The max number of iterations for kmeans training.
#### Defined in
[index.ts:402](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L402)
___
### max\_opq\_iters
`Optional` **max\_opq\_iters**: `number`
Max number of iterations to train OPQ, if `use_opq` is true.
#### Defined in
[index.ts:421](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L421)
___
### metric\_type
`Optional` **metric\_type**: [`MetricType`](../enums/MetricType.md)
Metric type, L2 or Cosine
#### Defined in
[index.ts:392](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L392)
___
### num\_bits
`Optional` **num\_bits**: `number`
The number of bits to present one PQ centroid.
#### Defined in
[index.ts:416](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L416)
___
### num\_partitions
`Optional` **num\_partitions**: `number`
The number of partitions this index
#### Defined in
[index.ts:397](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L397)
___
### num\_sub\_vectors
`Optional` **num\_sub\_vectors**: `number`
Number of subvectors to build PQ code
#### Defined in
[index.ts:412](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L412)
___
### replace
`Optional` **replace**: `boolean`
Replace an existing index with the same name if it exists.
#### Defined in
[index.ts:426](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L426)
___
### type
**type**: ``"ivf_pq"``
#### Defined in
[index.ts:428](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L428)
___
### use\_opq
• `Optional` **use\_opq**: `boolean`
Train as optimized product quantization.
#### Defined in
[index.ts:407](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L407)

View File

@@ -52,7 +52,7 @@ The number of rows added to the table
#### Defined in
[index.ts:120](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L120)
[index.ts:95](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L95)
___
@@ -72,13 +72,13 @@ Returns the number of rows in this table.
#### Defined in
[index.ts:140](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L140)
[index.ts:115](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L115)
___
### createIndex
**createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`<`any`\>
**createIndex**: (`indexParams`: `IvfPQIndexConfig`) => `Promise`<`any`\>
#### Type declaration
@@ -94,7 +94,7 @@ VectorIndexParams.
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexParams` | [`IvfPQIndexConfig`](IvfPQIndexConfig.md) | The parameters of this Index, |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
##### Returns
@@ -102,7 +102,7 @@ VectorIndexParams.
#### Defined in
[index.ts:135](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L135)
[index.ts:110](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L110)
___
@@ -116,37 +116,11 @@ ___
Delete rows from this table.
This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
**`Examples`**
```ts
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [1, 2]},
{id: 2, vector: [3, 4]},
{id: 3, vector: [5, 6]},
];
const tbl = await con.createTable("my_table", data)
await tbl.delete("id = 2")
await tbl.countRows() // Returns 2
```
If you have a list of values to delete, you can combine them into a
stringified list and use the `IN` operator:
```ts
const to_remove = [1, 5];
await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1
```
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. |
##### Returns
@@ -154,7 +128,7 @@ await tbl.countRows() // Returns 1
#### Defined in
[index.ts:174](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L174)
[index.ts:122](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L122)
___
@@ -164,7 +138,7 @@ ___
#### Defined in
[index.ts:106](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L106)
[index.ts:81](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L81)
___
@@ -192,7 +166,7 @@ The number of rows added to the table
#### Defined in
[index.ts:128](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L128)
[index.ts:103](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L103)
___
@@ -218,4 +192,4 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in
[index.ts:112](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L112)
[index.ts:87](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L87)

View File

@@ -18,11 +18,8 @@
### Interfaces
- [AwsCredentials](interfaces/AwsCredentials.md)
- [Connection](interfaces/Connection.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
- [IvfPQIndexConfig](interfaces/IvfPQIndexConfig.md)
- [Table](interfaces/Table.md)
### Type Aliases
@@ -37,11 +34,11 @@
### VectorIndexParams
Ƭ **VectorIndexParams**: [`IvfPQIndexConfig`](interfaces/IvfPQIndexConfig.md)
Ƭ **VectorIndexParams**: `IvfPQIndexConfig`
#### Defined in
[index.ts:431](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L431)
[index.ts:345](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L345)
## Functions
@@ -63,20 +60,4 @@ Connect to a LanceDB instance at the given URI
#### Defined in
[index.ts:47](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L47)
**connect**(`opts`): `Promise`<[`Connection`](interfaces/Connection.md)\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `opts` | `Partial`<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> |
#### Returns
`Promise`<[`Connection`](interfaces/Connection.md)\>
#### Defined in
[index.ts:48](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L48)
[index.ts:34](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L34)

View File

@@ -10,11 +10,7 @@
"\n",
"This Q&A bot will allow you to query your own documentation easily using questions. We'll also demonstrate the use of LangChain and LanceDB using the OpenAI API. \n",
"\n",
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well\n",
"\n",
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
"\n",
"Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/Code-Documentation-QA-Bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/Code-Documentation-QA-Bot/index.js)"
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well"
]
},
{
@@ -185,7 +181,7 @@
"id": "c3852dd3",
"metadata": {},
"source": [
"# Generating embeddings from our docs\n",
"# Generating emebeddings from our docs\n",
"\n",
"Now that we have our raw documents loaded, we need to pre-process them to generate embeddings:"
]

View File

@@ -1,14 +1,5 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![example](https://github.com/lancedb/vectordb-recipes/assets/15766192/799f94a1-a01d-4a5b-a627-2a733bbb4227)\n",
"\n",
" <a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/multimodal_clip/main.py) |"
]
},
{
"cell_type": "code",
"execution_count": 2,
@@ -51,19 +42,6 @@
"## First run setup: Download data and pre-process"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"### Get dataset\n",
"\n",
"!wget https://eto-public.s3.us-west-2.amazonaws.com/datasets/diffusiondb_lance.tar.gz\n",
"!tar -xvf diffusiondb_lance.tar.gz\n",
"!mv diffusiondb_test rawdata.lance\n"
]
},
{
"cell_type": "code",
"execution_count": 30,
@@ -269,7 +247,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.11.4 64-bit",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -283,12 +261,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
},
"vscode": {
"interpreter": {
"hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e"
}
"version": "3.11.3"
}
},
"nbformat": 4,

View File

@@ -1,831 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d24eb4c6-e246-44ca-ba7c-6eae7923bd4c",
"metadata": {},
"source": [
"## LanceDB Tables\n",
"A Table is a collection of Records in a LanceDB Database.\n",
"\n",
"![illustration](../assets/ecosystem-illustration.png)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "c1b4e34b-a49c-471d-a343-a5940bb5138a",
"metadata": {},
"outputs": [],
"source": [
"!pip install lancedb -qq"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "4e5a8d07-d9a1-48c1-913a-8e0629289579",
"metadata": {},
"outputs": [],
"source": [
"import lancedb\n",
"db = lancedb.connect(\"./.lancedb\")"
]
},
{
"cell_type": "markdown",
"id": "66fb93d5-3551-406b-99b2-488442d61d06",
"metadata": {},
"source": [
"LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.\n",
"\n",
" ### From list of tuples or dictionaries"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5df12f66-8d99-43ad-8d0b-22189ec0a6b9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"pyarrow.Table\n",
"vector: fixed_size_list<item: float>[2]\n",
" child 0, item: float\n",
"lat: double\n",
"long: double\n",
"----\n",
"vector: [[[1.1,1.2],[0.2,1.8]]]\n",
"lat: [[45.5,40.1]]\n",
"long: [[-122.7,-74.1]]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import lancedb\n",
"\n",
"db = lancedb.connect(\"./.lancedb\")\n",
"\n",
"data = [{\"vector\": [1.1, 1.2], \"lat\": 45.5, \"long\": -122.7},\n",
" {\"vector\": [0.2, 1.8], \"lat\": 40.1, \"long\": -74.1}]\n",
"\n",
"db.create_table(\"my_table\", data)\n",
"\n",
"db[\"my_table\"].head()"
]
},
{
"cell_type": "markdown",
"id": "10ce802f-1a10-49ee-8ee3-a9bfb302d86c",
"metadata": {},
"source": [
"## From pandas DataFrame\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f4d87ae9-0ccb-48eb-b31d-bb8f2370e47e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"pyarrow.Table\n",
"vector: fixed_size_list<item: float>[2]\n",
" child 0, item: float\n",
"lat: double\n",
"long: double\n",
"----\n",
"vector: [[[1.1,1.2],[0.2,1.8]]]\n",
"lat: [[45.5,40.1]]\n",
"long: [[-122.7,-74.1]]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"data = pd.DataFrame({\n",
" \"vector\": [[1.1, 1.2], [0.2, 1.8]],\n",
" \"lat\": [45.5, 40.1],\n",
" \"long\": [-122.7, -74.1]\n",
"})\n",
"\n",
"db.create_table(\"table2\", data)\n",
"\n",
"db[\"table2\"].head() "
]
},
{
"cell_type": "markdown",
"id": "4be81469-5b57-4f78-9c72-3938c0378d9d",
"metadata": {},
"source": [
"Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "25f34bcf-fca0-4431-8601-eac95d1bd347",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"vector: fixed_size_list<item: float>[2]\n",
" child 0, item: float\n",
"lat: float\n",
"long: float"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pyarrow as pa\n",
"\n",
"custom_schema = pa.schema([\n",
"pa.field(\"vector\", pa.list_(pa.float32(), 2)),\n",
"pa.field(\"lat\", pa.float32()),\n",
"pa.field(\"long\", pa.float32())\n",
"])\n",
"\n",
"table = db.create_table(\"table3\", data, schema=custom_schema, mode=\"overwrite\")\n",
"table.schema"
]
},
{
"cell_type": "markdown",
"id": "4df51925-7ca2-4005-9c72-38b3d26240c6",
"metadata": {},
"source": [
"### From PyArrow Tables\n",
"\n",
"You can also create LanceDB tables directly from pyarrow tables"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "90a880f6-be43-4c9d-ba65-0b05197c0f6f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"vector: fixed_size_list<item: float>[2]\n",
" child 0, item: float\n",
"item: string\n",
"price: double"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"table = pa.Table.from_arrays(\n",
" [\n",
" pa.array([[3.1, 4.1], [5.9, 26.5]],\n",
" pa.list_(pa.float32(), 2)),\n",
" pa.array([\"foo\", \"bar\"]),\n",
" pa.array([10.0, 20.0]),\n",
" ],\n",
" [\"vector\", \"item\", \"price\"],\n",
" )\n",
"\n",
"db = lancedb.connect(\"db\")\n",
"\n",
"tbl = db.create_table(\"test1\", table, mode=\"overwrite\")\n",
"tbl.schema"
]
},
{
"cell_type": "markdown",
"id": "0f36c51c-d902-449d-8292-700e53990c32",
"metadata": {},
"source": [
"### From Pydantic Models\n",
"\n",
"LanceDB supports to create Apache Arrow Schema from a Pydantic BaseModel."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "d81121d7-e4b7-447c-a48c-974b6ebb464a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"movie_id: int64 not null\n",
"vector: fixed_size_list<item: float>[128] not null\n",
" child 0, item: float\n",
"genres: string not null\n",
"title: string not null\n",
"imdb_id: int64 not null"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from lancedb.pydantic import vector, LanceModel\n",
"\n",
"class Content(LanceModel):\n",
" movie_id: int\n",
" vector: vector(128)\n",
" genres: str\n",
" title: str\n",
" imdb_id: int\n",
" \n",
" @property\n",
" def imdb_url(self) -> str:\n",
" return f\"https://www.imdb.com/title/tt{self.imdb_id}\"\n",
"\n",
"import pyarrow as pa\n",
"db = lancedb.connect(\"~/.lancedb\")\n",
"table_name = \"movielens_small\"\n",
"table = db.create_table(table_name, schema=Content)\n",
"table.schema"
]
},
{
"cell_type": "markdown",
"id": "860e1f77-e860-46a9-98b7-b2979092ccd6",
"metadata": {},
"source": [
"### Using Iterators / Writing Large Datasets\n",
"\n",
"It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`\n",
"\n",
"LanceDB additionally supports pyarrow's `RecordBatch` Iterators or other generators producing supported data types.\n",
"\n",
"## Here's an example using using `RecordBatch` iterator for creating tables."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "bc247142-4e3c-41a2-b94c-8e00d2c2a508",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LanceTable(table4)"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pyarrow as pa\n",
"\n",
"def make_batches():\n",
" for i in range(5):\n",
" yield pa.RecordBatch.from_arrays(\n",
" [\n",
" pa.array([[3.1, 4.1], [5.9, 26.5]],\n",
" pa.list_(pa.float32(), 2)),\n",
" pa.array([\"foo\", \"bar\"]),\n",
" pa.array([10.0, 20.0]),\n",
" ],\n",
" [\"vector\", \"item\", \"price\"],\n",
" )\n",
"\n",
"schema = pa.schema([\n",
" pa.field(\"vector\", pa.list_(pa.float32(), 2)),\n",
" pa.field(\"item\", pa.utf8()),\n",
" pa.field(\"price\", pa.float32()),\n",
"])\n",
"\n",
"db.create_table(\"table4\", make_batches(), schema=schema)"
]
},
{
"cell_type": "markdown",
"id": "94f7dd2b-bae4-4bdf-8534-201437c31027",
"metadata": {},
"source": [
"### Using pandas `DataFrame` Iterator and Pydantic Schema\n",
"\n",
"You can set the schema via pyarrow schema object or using Pydantic object"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "25ad3523-e0c9-4c28-b3df-38189c4e0e5f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"vector: fixed_size_list<item: float>[2] not null\n",
" child 0, item: float\n",
"item: string not null\n",
"price: double not null"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pyarrow as pa\n",
"import pandas as pd\n",
"\n",
"class PydanticSchema(LanceModel):\n",
" vector: vector(2)\n",
" item: str\n",
" price: float\n",
"\n",
"def make_batches():\n",
" for i in range(5):\n",
" yield pd.DataFrame(\n",
" {\n",
" \"vector\": [[3.1, 4.1], [1, 1]],\n",
" \"item\": [\"foo\", \"bar\"],\n",
" \"price\": [10.0, 20.0],\n",
" })\n",
"\n",
"tbl = db.create_table(\"table5\", make_batches(), schema=PydanticSchema)\n",
"tbl.schema"
]
},
{
"cell_type": "markdown",
"id": "4aa955e9-fcd0-4c99-b644-f218f3bb3f1a",
"metadata": {},
"source": [
"## Creating Empty Table\n",
"\n",
"You can create an empty table by just passing the schema and later add to it using `table.add()`"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "2814173a-eacc-4dd8-a64d-6312b44582cc",
"metadata": {},
"outputs": [],
"source": [
"import lancedb\n",
"from lancedb.pydantic import LanceModel, vector\n",
"\n",
"class Model(LanceModel):\n",
" vector: vector(2)\n",
"\n",
"tbl = db.create_table(\"table6\", schema=Model.to_arrow_schema())"
]
},
{
"cell_type": "markdown",
"id": "1d1b0f5c-a1d9-459f-8614-8376b6f577e1",
"metadata": {},
"source": [
"## Open Existing Tables\n",
"\n",
"If you forget the name of your table, you can always get a listing of all table names:\n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "df9e13c0-41f6-437f-9dfa-2fd71d3d9c45",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['table6', 'table4', 'table5', 'movielens_small']"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db.table_names()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "9343f5ad-6024-42ee-ac2f-6c1471df8679",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>vector</th>\n",
" <th>item</th>\n",
" <th>price</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>[3.1, 4.1]</td>\n",
" <td>foo</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>[5.9, 26.5]</td>\n",
" <td>bar</td>\n",
" <td>20.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>[3.1, 4.1]</td>\n",
" <td>foo</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>[5.9, 26.5]</td>\n",
" <td>bar</td>\n",
" <td>20.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>[3.1, 4.1]</td>\n",
" <td>foo</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>[5.9, 26.5]</td>\n",
" <td>bar</td>\n",
" <td>20.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>[3.1, 4.1]</td>\n",
" <td>foo</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>[5.9, 26.5]</td>\n",
" <td>bar</td>\n",
" <td>20.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>[3.1, 4.1]</td>\n",
" <td>foo</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>[5.9, 26.5]</td>\n",
" <td>bar</td>\n",
" <td>20.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" vector item price\n",
"0 [3.1, 4.1] foo 10.0\n",
"1 [5.9, 26.5] bar 20.0\n",
"2 [3.1, 4.1] foo 10.0\n",
"3 [5.9, 26.5] bar 20.0\n",
"4 [3.1, 4.1] foo 10.0\n",
"5 [5.9, 26.5] bar 20.0\n",
"6 [3.1, 4.1] foo 10.0\n",
"7 [5.9, 26.5] bar 20.0\n",
"8 [3.1, 4.1] foo 10.0\n",
"9 [5.9, 26.5] bar 20.0"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tbl = db.open_table(\"table4\")\n",
"tbl.to_pandas()"
]
},
{
"cell_type": "markdown",
"id": "5019246f-12e3-4f78-88a8-9f4939802c76",
"metadata": {},
"source": [
"## Adding to table\n",
"After a table has been created, you can always add more data to it using\n",
"\n",
"You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or a `Iterator[pa.RecordBatch]`. Here are some examples."
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "8a56250f-73a1-4c26-a6ad-5c7a0ce3a9ab",
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame([{\"vector\": [1.3, 1.4], \"item\": \"fizz\", \"price\": 100.0},\n",
" {\"vector\": [9.5, 56.2], \"item\": \"buzz\", \"price\": 200.0}])\n",
"tbl.add(df)"
]
},
{
"cell_type": "markdown",
"id": "9985f6ee-67e1-45a9-b233-94e3d121ecbf",
"metadata": {},
"source": [
"You can also add a large dataset batch in one go using Iterator of supported data types\n",
"\n",
"### Adding via Iterator\n",
"\n",
"here, we'll use pandas DataFrame Iterator"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "030c7057-b98e-4e2f-be14-b8c1f927f83c",
"metadata": {},
"outputs": [],
"source": [
"\n",
"import pandas as pd\n",
"\n",
"def make_batches():\n",
" for i in range(5):\n",
" yield pd.DataFrame(\n",
" {\n",
" \"vector\": [[3.1, 4.1], [1, 1]],\n",
" \"item\": [\"foo\", \"bar\"],\n",
" \"price\": [10.0, 20.0],\n",
" })\n",
"tbl.add(make_batches())"
]
},
{
"cell_type": "markdown",
"id": "b8316d5d-0a23-4675-b0ee-178711db873a",
"metadata": {},
"source": [
"## Deleting from a Table\n",
"\n",
"Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter, like:\n",
"\n",
"\n",
"```python\n",
"tbl.delete('item = \"fizz\"')\n",
"```\n"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "e7a17de2-08d2-41b7-bd05-f63d1045ab1f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"32\n"
]
},
{
"data": {
"text/plain": [
"17"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(len(tbl))\n",
" \n",
"tbl.delete(\"price = 20.0\")\n",
" \n",
"len(tbl)"
]
},
{
"cell_type": "markdown",
"id": "74ac180b-5432-4c14-b1a8-22c35ac83af8",
"metadata": {},
"source": [
"### Delete from a list of values"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "fe3310bd-08f4-4a22-a63b-b3127d22f9f7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" vector item price\n",
"0 [3.1, 4.1] foo 10.0\n",
"1 [3.1, 4.1] foo 10.0\n",
"2 [3.1, 4.1] foo 10.0\n",
"3 [3.1, 4.1] foo 10.0\n",
"4 [3.1, 4.1] foo 10.0\n",
"5 [1.3, 1.4] fizz 100.0\n",
"6 [9.5, 56.2] buzz 200.0\n",
"7 [3.1, 4.1] foo 10.0\n",
"8 [3.1, 4.1] foo 10.0\n",
"9 [3.1, 4.1] foo 10.0\n",
"10 [3.1, 4.1] foo 10.0\n",
"11 [3.1, 4.1] foo 10.0\n",
"12 [3.1, 4.1] foo 10.0\n",
"13 [3.1, 4.1] foo 10.0\n",
"14 [3.1, 4.1] foo 10.0\n",
"15 [3.1, 4.1] foo 10.0\n",
"16 [3.1, 4.1] foo 10.0\n"
]
},
{
"ename": "OSError",
"evalue": "LanceError(IO): Error during planning: column foo does not exist",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[30], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m to_remove \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mstr\u001b[39m(v) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m to_remove)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(tbl\u001b[38;5;241m.\u001b[39mto_pandas())\n\u001b[0;32m----> 4\u001b[0m \u001b[43mtbl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mitem IN (\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mto_remove\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m)\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 5\u001b[0m tbl\u001b[38;5;241m.\u001b[39mto_pandas()\n",
"File \u001b[0;32m~/Documents/lancedb/lancedb/python/lancedb/table.py:610\u001b[0m, in \u001b[0;36mLanceTable.delete\u001b[0;34m(self, where)\u001b[0m\n\u001b[1;32m 609\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdelete\u001b[39m(\u001b[38;5;28mself\u001b[39m, where: \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m--> 610\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mwhere\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Documents/lancedb/lancedb/env/lib/python3.11/site-packages/lance/dataset.py:489\u001b[0m, in \u001b[0;36mLanceDataset.delete\u001b[0;34m(self, predicate)\u001b[0m\n\u001b[1;32m 487\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(predicate, pa\u001b[38;5;241m.\u001b[39mcompute\u001b[38;5;241m.\u001b[39mExpression):\n\u001b[1;32m 488\u001b[0m predicate \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(predicate)\n\u001b[0;32m--> 489\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpredicate\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mOSError\u001b[0m: LanceError(IO): Error during planning: column foo does not exist"
]
}
],
"source": [
"to_remove = [\"foo\", \"buzz\"]\n",
"to_remove = \", \".join(str(v) for v in to_remove)\n",
"print(tbl.to_pandas())\n",
"tbl.delete(f\"item IN ({to_remove})\")\n"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "87d5bc21-847f-4c81-b56e-f6dbe5d05aac",
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(\n",
" {\n",
" \"vector\": [[3.1, 4.1], [1, 1]],\n",
" \"item\": [\"foo\", \"bar\"],\n",
" \"price\": [10.0, 20.0],\n",
" })\n",
"\n",
"tbl = db.create_table(\"table7\", data=df, mode=\"overwrite\")"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "9cba4519-eb3a-4941-ab7e-873d762e750f",
"metadata": {},
"outputs": [],
"source": [
"to_remove = [10.0, 20.0]\n",
"to_remove = \", \".join(str(v) for v in to_remove)\n",
"\n",
"tbl.delete(f\"price IN ({to_remove})\")"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "5bdc9801-d5ed-4871-92d0-88b27108e788",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>vector</th>\n",
" <th>item</th>\n",
" <th>price</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [vector, item, price]\n",
"Index: []"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tbl.to_pandas()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "752d33d4-ce1c-48e5-90d2-c85f0982182d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -8,12 +8,7 @@
"source": [
"# Youtube Transcript Search QA Bot\n",
"\n",
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily.\n",
"\n",
"\n",
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\">\n",
"\n",
"Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/youtube_bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/youtube_bot/index.js)\n"
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily."
]
},
{

View File

@@ -79,7 +79,7 @@ print(df)
```
```
vector item price _distance
vector item price score
0 [5.9, 26.5] bar 20.0 14257.05957
```

View File

@@ -1,7 +1,6 @@
# Pydantic
[Pydantic](https://docs.pydantic.dev/latest/) is a data validation library in Python.
LanceDB integrates with Pydantic for schema inference, data ingestion, and query result casting.
## Schema

View File

@@ -56,4 +56,4 @@ pip install lancedb
::: lancedb.pydantic.vector
::: lancedb.pydantic.LanceModel

View File

@@ -3,13 +3,4 @@
--md-primary-fg-color--dark: #4338ca;
--md-text-font: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";
--md-code-font: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
}
.md-nav__item, .md-tabs__item {
font-size: large;
}
/* Maximum space for text block */
.md-grid {
max-width: 90%;
}
}

View File

@@ -2,17 +2,18 @@ const glob = require("glob");
const fs = require("fs");
const path = require("path");
const globString = "../src/**/*.md";
const excludedGlobs = [
const excludedFiles = [
"../src/fts.md",
"../src/embedding.md",
"../src/examples/*.md",
"../src/guides/tables.md",
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
"../src/examples/transformerjs_embedding_search_nodejs.md",
"../src/examples/youtube_transcript_bot_with_nodejs.md",
];
const nodePrefix = "javascript";
const nodeFile = ".js";
const nodeFolder = "node";
const globString = "../src/**/*.md";
const asyncPrefix = "(async () => {\n";
const asyncSuffix = "})();";
@@ -31,7 +32,6 @@ function* yieldLines(lines, prefix, suffix) {
}
const files = glob.sync(globString, { recursive: true });
const excludedFiles = glob.sync(excludedGlobs, { recursive: true });
for (const file of files.filter((file) => !excludedFiles.includes(file))) {
const lines = [];
@@ -49,4 +49,4 @@ for (const file of files.filter((file) => !excludedFiles.includes(file))) {
fs.mkdirSync(path.dirname(outPath), { recursive: true });
fs.writeFileSync(outPath, asyncPrefix + "\n" + lines.join("\n") + asyncSuffix);
}
}
}

View File

@@ -2,21 +2,18 @@ import glob
from typing import Iterator
from pathlib import Path
glob_string = "../src/**/*.md"
excluded_globs = [
excluded_files = [
"../src/fts.md",
"../src/embedding.md",
"../src/examples/*.md",
"../src/integrations/voxel51.md",
"../src/guides/tables.md"
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
"../src/examples/youtube_transcript_bot_with_nodejs.md"
]
python_prefix = "py"
python_file = ".py"
python_folder = "python"
files = glob.glob(glob_string, recursive=True)
excluded_files = [f for excluded_glob in excluded_globs for f in glob.glob(excluded_glob, recursive=True)]
glob_string = "../src/**/*.md"
def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
in_code_block = False
@@ -32,7 +29,7 @@ def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
elif in_code_block:
yield line[strip_length:]
for file in filter(lambda file: file not in excluded_files, files):
for file in filter(lambda file: file not in excluded_files, glob.glob(glob_string, recursive=True)):
with open(file, "r") as f:
lines = list(yield_lines(iter(f), "```", "```"))
@@ -41,4 +38,4 @@ for file in filter(lambda file: file not in excluded_files, files):
print(out_path)
out_path.parent.mkdir(exist_ok=True, parents=True)
with open(out_path, "w") as out:
out.writelines(lines)
out.writelines(lines)

View File

@@ -50,7 +50,7 @@ async function example() {
{ id: 5, text: 'Banana', type: 'fruit' }
]
const table = await db.createTable('food_table', data, embed_fun)
const table = await db.createTable('food_table', data, "create", embed_fun)
// Query the table

View File

@@ -10,7 +10,7 @@
"license": "Apache-2.0",
"dependencies": {
"@xenova/transformers": "^2.4.1",
"vectordb": "file:../.."
"vectordb": "^0.1.12"
}
}

View File

@@ -12,25 +12,26 @@
// See the License for the specific language governing permissions and
// limitations under the License.
const { currentTarget } = require('@neon-rs/load')
const { currentTarget } = require('@neon-rs/load');
let nativeLib
let nativeLib;
try {
// When developing locally, give preference to the local built library
nativeLib = require('./index.node')
} catch {
try {
nativeLib = require(`@lancedb/vectordb-${currentTarget()}`)
} catch (e) {
throw new Error(`vectordb: failed to load native library.
You may need to run \`npm install @lancedb/vectordb-${currentTarget()}\`.
nativeLib = require(`vectordb-${currentTarget()}`);
} catch (e) {
try {
// Might be developing locally, so try that. But don't expose that error
// to the user.
nativeLib = require("./index.node");
} catch {
throw new Error(`vectordb: failed to load native library.
You may need to run \`npm install vectordb-${currentTarget()}\`.
If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
Source error: ${e}`)
}
Source error: ${e}`);
}
}
// Dynamic require for runtime.
module.exports = nativeLib
module.exports = nativeLib;

411
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.2.3",
"version": "0.1.13",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.2.3",
"version": "0.1.13",
"cpu": [
"x64",
"arm64"
@@ -20,11 +20,10 @@
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0",
"axios": "^1.4.0"
"apache-arrow": "^12.0.0"
},
"devDependencies": {
"@neon-rs/cli": "^0.0.160",
"@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1",
@@ -51,11 +50,11 @@
"typescript": "*"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.2.3",
"@lancedb/vectordb-darwin-x64": "0.2.3",
"@lancedb/vectordb-linux-arm64-gnu": "0.2.3",
"@lancedb/vectordb-linux-x64-gnu": "0.2.3",
"@lancedb/vectordb-win32-x64-msvc": "0.2.3"
"vectordb-darwin-arm64": "0.1.13",
"vectordb-darwin-x64": "0.1.13",
"vectordb-linux-arm64-gnu": "0.1.13",
"vectordb-linux-x64-gnu": "0.1.13",
"vectordb-win32-x64-msvc": "0.1.13"
}
},
"node_modules/@apache-arrow/ts": {
@@ -85,97 +84,6 @@
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
},
"node_modules/@cargo-messages/android-arm-eabi": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/android-arm-eabi/-/android-arm-eabi-0.0.160.tgz",
"integrity": "sha512-PTgCEmBHEPKJbxwlHVXB3aGES+NqpeBvn6hJNYWIkET3ZQCSJnScMlIDQXEkWndK7J+hW3Or3H32a93B/MbbfQ==",
"cpu": [
"arm"
],
"dev": true,
"optional": true,
"os": [
"android"
]
},
"node_modules/@cargo-messages/darwin-arm64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-arm64/-/darwin-arm64-0.0.160.tgz",
"integrity": "sha512-YSVUuc8TUTi/XmZVg9KrH0bDywKLqC1zeTyZYAYDDmqVDZW9KeTnbBUECKRs56iyHeO+kuEkVW7MKf7j2zb/FA==",
"cpu": [
"arm64"
],
"dev": true,
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@cargo-messages/darwin-x64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-x64/-/darwin-x64-0.0.160.tgz",
"integrity": "sha512-U+YlAR+9tKpBljnNPWMop5YhvtwfIPQSAaUYN2llteC7ZNU5/cv8CGT1vm7uFNxr2LeGuAtRbzIh2gUmTV8mng==",
"cpu": [
"x64"
],
"dev": true,
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@cargo-messages/linux-arm-gnueabihf": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-arm-gnueabihf/-/linux-arm-gnueabihf-0.0.160.tgz",
"integrity": "sha512-wqAelTzVv1E7Ls4aviqUbem5xjzCaJQxQtVnLhv6pf1k0UyEHCS2WdufFFmWcojGe7QglI4uve3KTe01MKYj0A==",
"cpu": [
"arm"
],
"dev": true,
"optional": true,
"os": [
"linux"
]
},
"node_modules/@cargo-messages/linux-x64-gnu": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-x64-gnu/-/linux-x64-gnu-0.0.160.tgz",
"integrity": "sha512-LQ6e7O7YYkWfDNIi/53q2QG/+lZok72LOG+NKDVCrrY4TYUcrTqWAybOV6IlkVntKPnpx8YB95umSQGeVuvhpQ==",
"cpu": [
"x64"
],
"dev": true,
"optional": true,
"os": [
"linux"
]
},
"node_modules/@cargo-messages/win32-arm64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-arm64-msvc/-/win32-arm64-msvc-0.0.160.tgz",
"integrity": "sha512-VDMBhyun02gIDwmEhkYP1W9Z0tYqn4drgY5Iua1qV2tYOU58RVkWhzUYxM9rzYbnwKZlltgM46J/j5QZ3VaFrA==",
"cpu": [
"arm64"
],
"dev": true,
"optional": true,
"os": [
"win32"
]
},
"node_modules/@cargo-messages/win32-x64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-x64-msvc/-/win32-x64-msvc-0.0.160.tgz",
"integrity": "sha512-vnoglDxF6zj0W/Co9D0H/bgnrhUuO5EumIf9v3ujLtBH94rAX11JsXh/FgC/8wQnQSsLyWSq70YxNS2wdETxjA==",
"cpu": [
"x64"
],
"dev": true,
"optional": true,
"os": [
"win32"
]
},
"node_modules/@cspotcode/source-map-support": {
"version": "0.8.1",
"resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz",
@@ -314,82 +222,13 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.3.tgz",
"integrity": "sha512-/9dRCXrV/UsZv3fqAC/Q+D2FPKXMRprcb+a77tt4I0Iy5iGT55UDRfpaXvmJeKquhTJkZ0AuyoK5BmOh7cY41w==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.3.tgz",
"integrity": "sha512-p06WkjmdVwDxkH8ghIWh59SCgUhjXBpy1gQISgktouymqfoFbBHz7vmeI6VO1oBA5ji6vSgGZxqjmeLRKM6blA==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.3.tgz",
"integrity": "sha512-cSDcJgfbnRmCXZ3AoRWpCAa07PMdB/k8m1LjmxnhpOnP1ohg1eUl99jwPCgd+5GK+iZmezRqbyO+YXlgsCp7GQ==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.3.tgz",
"integrity": "sha512-AFA3J4hBYapGC37iXheiN6tGruitx5bmoWXkUcDv/qAaE4tizVZHB9cgx9ThTB0RDsvZEOZ5zCy7BOzPH+oCOg==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.3.tgz",
"integrity": "sha512-LI1mz1HdcpNXTM7HbcLdXz0qvUU4LxSqRC7/kMU918VlOeWy/PnryRrjHnCjcgciGzu1rVlvCqRPh7fVwaG6Kg==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
"integrity": "sha512-GQjzHPJVTOARbX3nP/fAWqBq7JlQ8XgfYlCa+iwzIXf0LC1EyfJTX+vqGD/36b9lKoyY01Z/aDUB9o/qF6ztHA==",
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
"integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
"dev": true,
"bin": {
"neon": "index.js"
},
"optionalDependencies": {
"@cargo-messages/android-arm-eabi": "0.0.160",
"@cargo-messages/darwin-arm64": "0.0.160",
"@cargo-messages/darwin-x64": "0.0.160",
"@cargo-messages/linux-arm-gnueabihf": "0.0.160",
"@cargo-messages/linux-x64-gnu": "0.0.160",
"@cargo-messages/win32-arm64-msvc": "0.0.160",
"@cargo-messages/win32-x64-msvc": "0.0.160"
}
},
"node_modules/@neon-rs/load": {
@@ -1003,7 +842,8 @@
"node_modules/asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q=="
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
"dev": true
},
"node_modules/available-typed-arrays": {
"version": "1.0.5",
@@ -1018,13 +858,12 @@
}
},
"node_modules/axios": {
"version": "1.4.0",
"resolved": "https://registry.npmjs.org/axios/-/axios-1.4.0.tgz",
"integrity": "sha512-S4XCWMEmzvo64T9GfvQDOXgYRDJ/wsSZc7Jvdgx5u1sd0JwsuPLqb3SYmusag+edF6ziyMensPVqLTSc1PiSEA==",
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"dependencies": {
"follow-redirects": "^1.15.0",
"form-data": "^4.0.0",
"proxy-from-env": "^1.1.0"
"follow-redirects": "^1.14.8"
}
},
"node_modules/balanced-match": {
@@ -1255,6 +1094,7 @@
"version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"dev": true,
"dependencies": {
"delayed-stream": "~1.0.0"
},
@@ -1477,6 +1317,7 @@
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"dev": true,
"engines": {
"node": ">=0.4.0"
}
@@ -2243,6 +2084,7 @@
"version": "1.15.2",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==",
"dev": true,
"funding": [
{
"type": "individual",
@@ -2271,6 +2113,7 @@
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"dev": true,
"dependencies": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
@@ -3144,6 +2987,7 @@
"version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"dev": true,
"engines": {
"node": ">= 0.6"
}
@@ -3152,6 +2996,7 @@
"version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"dev": true,
"dependencies": {
"mime-db": "1.52.0"
},
@@ -3445,15 +3290,6 @@
"form-data": "^4.0.0"
}
},
"node_modules/openai/node_modules/axios": {
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"dependencies": {
"follow-redirects": "^1.14.8"
}
},
"node_modules/optionator": {
"version": "0.9.1",
"resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.1.tgz",
@@ -3605,11 +3441,6 @@
"node": ">= 0.8.0"
}
},
"node_modules/proxy-from-env": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/proxy-from-env/-/proxy-from-env-1.1.0.tgz",
"integrity": "sha512-D+zkORCbA9f1tdWRK0RaCR3GPv50cMxcrz4X8k5LTSUD1Dkw47mKJEZQNunItRTkWwgtaUSo1RVFRIG9ZXiFYg=="
},
"node_modules/punycode": {
"version": "2.3.0",
"resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz",
@@ -4457,6 +4288,42 @@
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
"dev": true
},
"node_modules/vectordb-darwin-arm64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.13.tgz",
"integrity": "sha512-9lLuX5P8m75EfP85pfC4LxO9J7Tzu4LngX55BVAdFe6qPRHu+iHmLw0QYYSVDqNm3GtDr2qFJlL2ILlsApyYyg==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/vectordb-darwin-x64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.13.tgz",
"integrity": "sha512-5mkhBJlcfAqcty7Ww2csgYogq+b0NhtllAbag9IIznvqfcrvITU0H0vm5LGWbRuE/BUUxC25MJhm93YWBzqEVA==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/vectordb-linux-x64-gnu": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.13.tgz",
"integrity": "sha512-fU+sIHUkXyMdrWjggT93p0blKD+pbgr+x01tn9d2/pbA1ePo2AwuE86rYPA+BjyCUE1QifPgKadzGVVpqWYmnQ==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/vscode-oniguruma": {
"version": "1.7.0",
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",
@@ -4702,55 +4569,6 @@
}
}
},
"@cargo-messages/android-arm-eabi": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/android-arm-eabi/-/android-arm-eabi-0.0.160.tgz",
"integrity": "sha512-PTgCEmBHEPKJbxwlHVXB3aGES+NqpeBvn6hJNYWIkET3ZQCSJnScMlIDQXEkWndK7J+hW3Or3H32a93B/MbbfQ==",
"dev": true,
"optional": true
},
"@cargo-messages/darwin-arm64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-arm64/-/darwin-arm64-0.0.160.tgz",
"integrity": "sha512-YSVUuc8TUTi/XmZVg9KrH0bDywKLqC1zeTyZYAYDDmqVDZW9KeTnbBUECKRs56iyHeO+kuEkVW7MKf7j2zb/FA==",
"dev": true,
"optional": true
},
"@cargo-messages/darwin-x64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-x64/-/darwin-x64-0.0.160.tgz",
"integrity": "sha512-U+YlAR+9tKpBljnNPWMop5YhvtwfIPQSAaUYN2llteC7ZNU5/cv8CGT1vm7uFNxr2LeGuAtRbzIh2gUmTV8mng==",
"dev": true,
"optional": true
},
"@cargo-messages/linux-arm-gnueabihf": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-arm-gnueabihf/-/linux-arm-gnueabihf-0.0.160.tgz",
"integrity": "sha512-wqAelTzVv1E7Ls4aviqUbem5xjzCaJQxQtVnLhv6pf1k0UyEHCS2WdufFFmWcojGe7QglI4uve3KTe01MKYj0A==",
"dev": true,
"optional": true
},
"@cargo-messages/linux-x64-gnu": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-x64-gnu/-/linux-x64-gnu-0.0.160.tgz",
"integrity": "sha512-LQ6e7O7YYkWfDNIi/53q2QG/+lZok72LOG+NKDVCrrY4TYUcrTqWAybOV6IlkVntKPnpx8YB95umSQGeVuvhpQ==",
"dev": true,
"optional": true
},
"@cargo-messages/win32-arm64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-arm64-msvc/-/win32-arm64-msvc-0.0.160.tgz",
"integrity": "sha512-VDMBhyun02gIDwmEhkYP1W9Z0tYqn4drgY5Iua1qV2tYOU58RVkWhzUYxM9rzYbnwKZlltgM46J/j5QZ3VaFrA==",
"dev": true,
"optional": true
},
"@cargo-messages/win32-x64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-x64-msvc/-/win32-x64-msvc-0.0.160.tgz",
"integrity": "sha512-vnoglDxF6zj0W/Co9D0H/bgnrhUuO5EumIf9v3ujLtBH94rAX11JsXh/FgC/8wQnQSsLyWSq70YxNS2wdETxjA==",
"dev": true,
"optional": true
},
"@cspotcode/source-map-support": {
"version": "0.8.1",
"resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz",
@@ -4851,50 +4669,11 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"@lancedb/vectordb-darwin-arm64": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.3.tgz",
"integrity": "sha512-/9dRCXrV/UsZv3fqAC/Q+D2FPKXMRprcb+a77tt4I0Iy5iGT55UDRfpaXvmJeKquhTJkZ0AuyoK5BmOh7cY41w==",
"optional": true
},
"@lancedb/vectordb-darwin-x64": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.3.tgz",
"integrity": "sha512-p06WkjmdVwDxkH8ghIWh59SCgUhjXBpy1gQISgktouymqfoFbBHz7vmeI6VO1oBA5ji6vSgGZxqjmeLRKM6blA==",
"optional": true
},
"@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.3.tgz",
"integrity": "sha512-cSDcJgfbnRmCXZ3AoRWpCAa07PMdB/k8m1LjmxnhpOnP1ohg1eUl99jwPCgd+5GK+iZmezRqbyO+YXlgsCp7GQ==",
"optional": true
},
"@lancedb/vectordb-linux-x64-gnu": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.3.tgz",
"integrity": "sha512-AFA3J4hBYapGC37iXheiN6tGruitx5bmoWXkUcDv/qAaE4tizVZHB9cgx9ThTB0RDsvZEOZ5zCy7BOzPH+oCOg==",
"optional": true
},
"@lancedb/vectordb-win32-x64-msvc": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.3.tgz",
"integrity": "sha512-LI1mz1HdcpNXTM7HbcLdXz0qvUU4LxSqRC7/kMU918VlOeWy/PnryRrjHnCjcgciGzu1rVlvCqRPh7fVwaG6Kg==",
"optional": true
},
"@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
"integrity": "sha512-GQjzHPJVTOARbX3nP/fAWqBq7JlQ8XgfYlCa+iwzIXf0LC1EyfJTX+vqGD/36b9lKoyY01Z/aDUB9o/qF6ztHA==",
"dev": true,
"requires": {
"@cargo-messages/android-arm-eabi": "0.0.160",
"@cargo-messages/darwin-arm64": "0.0.160",
"@cargo-messages/darwin-x64": "0.0.160",
"@cargo-messages/linux-arm-gnueabihf": "0.0.160",
"@cargo-messages/linux-x64-gnu": "0.0.160",
"@cargo-messages/win32-arm64-msvc": "0.0.160",
"@cargo-messages/win32-x64-msvc": "0.0.160"
}
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
"integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
"dev": true
},
"@neon-rs/load": {
"version": "0.0.74",
@@ -5356,7 +5135,8 @@
"asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q=="
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
"dev": true
},
"available-typed-arrays": {
"version": "1.0.5",
@@ -5365,13 +5145,12 @@
"dev": true
},
"axios": {
"version": "1.4.0",
"resolved": "https://registry.npmjs.org/axios/-/axios-1.4.0.tgz",
"integrity": "sha512-S4XCWMEmzvo64T9GfvQDOXgYRDJ/wsSZc7Jvdgx5u1sd0JwsuPLqb3SYmusag+edF6ziyMensPVqLTSc1PiSEA==",
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"requires": {
"follow-redirects": "^1.15.0",
"form-data": "^4.0.0",
"proxy-from-env": "^1.1.0"
"follow-redirects": "^1.14.8"
}
},
"balanced-match": {
@@ -5551,6 +5330,7 @@
"version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"dev": true,
"requires": {
"delayed-stream": "~1.0.0"
}
@@ -5717,7 +5497,8 @@
"delayed-stream": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ=="
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"dev": true
},
"diff": {
"version": "4.0.2",
@@ -6287,7 +6068,8 @@
"follow-redirects": {
"version": "1.15.2",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA=="
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==",
"dev": true
},
"for-each": {
"version": "0.3.3",
@@ -6302,6 +6084,7 @@
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"dev": true,
"requires": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
@@ -6915,12 +6698,14 @@
"mime-db": {
"version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg=="
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"dev": true
},
"mime-types": {
"version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"dev": true,
"requires": {
"mime-db": "1.52.0"
}
@@ -7146,17 +6931,6 @@
"requires": {
"axios": "^0.26.0",
"form-data": "^4.0.0"
},
"dependencies": {
"axios": {
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"requires": {
"follow-redirects": "^1.14.8"
}
}
}
},
"optionator": {
@@ -7265,11 +7039,6 @@
"integrity": "sha512-vkcDPrRZo1QZLbn5RLGPpg/WmIQ65qoWWhcGKf/b5eplkkarX0m9z8ppCat4mlOqUsWpyNuYgO3VRyrYHSzX5g==",
"dev": true
},
"proxy-from-env": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/proxy-from-env/-/proxy-from-env-1.1.0.tgz",
"integrity": "sha512-D+zkORCbA9f1tdWRK0RaCR3GPv50cMxcrz4X8k5LTSUD1Dkw47mKJEZQNunItRTkWwgtaUSo1RVFRIG9ZXiFYg=="
},
"punycode": {
"version": "2.3.0",
"resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz",
@@ -7850,6 +7619,24 @@
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
"dev": true
},
"vectordb-darwin-arm64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.13.tgz",
"integrity": "sha512-9lLuX5P8m75EfP85pfC4LxO9J7Tzu4LngX55BVAdFe6qPRHu+iHmLw0QYYSVDqNm3GtDr2qFJlL2ILlsApyYyg==",
"optional": true
},
"vectordb-darwin-x64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.13.tgz",
"integrity": "sha512-5mkhBJlcfAqcty7Ww2csgYogq+b0NhtllAbag9IIznvqfcrvITU0H0vm5LGWbRuE/BUUxC25MJhm93YWBzqEVA==",
"optional": true
},
"vectordb-linux-x64-gnu": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.13.tgz",
"integrity": "sha512-fU+sIHUkXyMdrWjggT93p0blKD+pbgr+x01tn9d2/pbA1ePo2AwuE86rYPA+BjyCUE1QifPgKadzGVVpqWYmnQ==",
"optional": true
},
"vscode-oniguruma": {
"version": "1.7.0",
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.2.3",
"version": "0.1.13",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -9,7 +9,7 @@
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
"build-release": "npm run build -- --release",
"test": "npm run tsc && mocha -recursive dist/test",
"lint": "eslint native.js src --ext .js,.ts",
"lint": "eslint src --ext .js,.ts",
"clean": "rm -rf node_modules *.node dist/",
"pack-build": "neon pack-build",
"check-npm": "printenv && which node && which npm && npm --version"
@@ -27,7 +27,7 @@
"author": "Lance Devs",
"license": "Apache-2.0",
"devDependencies": {
"@neon-rs/cli": "^0.0.160",
"@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1",
@@ -56,8 +56,7 @@
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0",
"axios": "^1.4.0"
"apache-arrow": "^12.0.0"
},
"os": [
"darwin",
@@ -70,18 +69,18 @@
],
"neon": {
"targets": {
"x86_64-apple-darwin": "@lancedb/vectordb-darwin-x64",
"aarch64-apple-darwin": "@lancedb/vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "@lancedb/vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "@lancedb/vectordb-linux-arm64-gnu",
"x86_64-pc-windows-msvc": "@lancedb/vectordb-win32-x64-msvc"
"x86_64-apple-darwin": "vectordb-darwin-x64",
"aarch64-apple-darwin": "vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "vectordb-linux-arm64-gnu",
"x86_64-pc-windows-msvc": "vectordb-win32-x64-msvc"
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.2.3",
"@lancedb/vectordb-darwin-x64": "0.2.3",
"@lancedb/vectordb-linux-arm64-gnu": "0.2.3",
"@lancedb/vectordb-linux-x64-gnu": "0.2.3",
"@lancedb/vectordb-win32-x64-msvc": "0.2.3"
"vectordb-darwin-arm64": "0.1.13",
"vectordb-darwin-x64": "0.1.13",
"vectordb-linux-arm64-gnu": "0.1.13",
"vectordb-linux-x64-gnu": "0.1.13",
"vectordb-win32-x64-msvc": "0.1.13"
}
}

View File

@@ -13,19 +13,18 @@
// limitations under the License.
import {
Field, type FixedSizeListBuilder,
Field,
Float32,
List, type ListBuilder,
makeBuilder,
RecordBatchFileWriter,
Utf8,
Table, Utf8,
type Vector,
FixedSizeList,
vectorFromArray, type Schema, Table as ArrowTable
vectorFromArray
} from 'apache-arrow'
import { type EmbeddingFunction } from './index'
// Converts an Array of records into an Arrow Table, optionally applying an embeddings function to it.
export async function convertToTable<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<ArrowTable> {
export async function convertToTable<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table> {
if (data.length === 0) {
throw new Error('At least one record needs to be provided')
}
@@ -35,8 +34,8 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
for (const columnsKey of columns) {
if (columnsKey === 'vector') {
const listBuilder = newVectorListBuilder()
const vectorSize = (data[0].vector as any[]).length
const listBuilder = newVectorBuilder(vectorSize)
for (const datum of data) {
if ((datum[columnsKey] as any[]).length !== vectorSize) {
throw new Error(`Invalid vector size, expected ${vectorSize}`)
@@ -53,7 +52,9 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
if (columnsKey === embeddings?.sourceColumn) {
const vectors = await embeddings.embed(values as T[])
records.vector = vectorFromArray(vectors, newVectorType(vectors[0].length))
const listBuilder = newVectorListBuilder()
vectors.map(v => listBuilder.append(v))
records.vector = listBuilder.finish().toVector()
}
if (typeof values[0] === 'string') {
@@ -65,47 +66,20 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
}
}
return new ArrowTable(records)
return new Table(records)
}
// Creates a new Arrow ListBuilder that stores a Vector column
function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
function newVectorListBuilder (): ListBuilder<Float32, any> {
const children = new Field<Float32>('item', new Float32())
const list = new List(children)
return makeBuilder({
type: newVectorType(dim)
type: list
})
}
// Creates the Arrow Type for a Vector column with dimension `dim`
function newVectorType (dim: number): FixedSizeList<Float32> {
const children = new Field<Float32>('item', new Float32())
return new FixedSizeList(dim, children)
}
// Converts an Array of records into Arrow IPC format
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
const table = await convertToTable(data, embeddings)
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Arrow Table into Arrow IPC format
export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
if (embeddings !== undefined) {
const source = table.getChild(embeddings.sourceColumn)
if (source === null) {
throw new Error(`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Creates an empty Arrow Table
export function createEmptyTable (schema: Schema): ArrowTable {
return new ArrowTable(schema)
}

View File

@@ -26,8 +26,3 @@ export interface EmbeddingFunction<T> {
*/
embed: (data: T[]) => Promise<number[][]>
}
export function isEmbeddingFunction<T> (value: any): value is EmbeddingFunction<T> {
return typeof value.sourceColumn === 'string' &&
typeof value.embed === 'function'
}

View File

@@ -13,19 +13,17 @@
// limitations under the License.
import {
type Schema,
Table as ArrowTable
RecordBatchFileWriter,
type Table as ArrowTable,
tableFromIPC,
Vector
} from 'apache-arrow'
import { createEmptyTable, fromRecordsToBuffer, fromTableToBuffer } from './arrow'
import { fromRecordsToBuffer } from './arrow'
import type { EmbeddingFunction } from './embedding/embedding_function'
import { RemoteConnection } from './remote'
import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete } = require('../native.js')
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete } = require('../native.js')
export { Query }
export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai'
@@ -39,52 +37,7 @@ export interface AwsCredentials {
export interface ConnectionOptions {
uri: string
awsCredentials?: AwsCredentials
awsRegion?: string
// API key for the remote connections
apiKey?: string
// Region to connect
region?: string
// override the host for the remote connections
hostOverride?: string
}
function getAwsArgs (opts: ConnectionOptions): any[] {
const callArgs = []
const awsCredentials = opts.awsCredentials
if (awsCredentials !== undefined) {
callArgs.push(awsCredentials.accessKeyId)
callArgs.push(awsCredentials.secretKey)
callArgs.push(awsCredentials.sessionToken)
} else {
callArgs.push(undefined)
callArgs.push(undefined)
callArgs.push(undefined)
}
callArgs.push(opts.awsRegion)
return callArgs
}
export interface CreateTableOptions<T> {
// Name of Table
name: string
// Data to insert into the Table
data?: Array<Record<string, unknown>> | ArrowTable | undefined
// Optional Arrow Schema for this table
schema?: Schema | undefined
// Optional embedding function used to create embeddings
embeddingFunction?: EmbeddingFunction<T> | undefined
// WriteOptions for this operation
writeOptions?: WriteOptions | undefined
}
/**
@@ -101,16 +54,9 @@ export async function connect (arg: string | Partial<ConnectionOptions>): Promis
// opts = { uri: arg.uri, awsCredentials = arg.awsCredentials }
opts = Object.assign({
uri: '',
awsCredentials: undefined,
apiKey: undefined,
region: 'us-west-2'
awsCredentials: undefined
}, arg)
}
if (opts.uri.startsWith('db://')) {
// Remote connection
return new RemoteConnection(opts)
}
const db = await databaseNew(opts.uri)
return new LocalConnection(db, opts)
}
@@ -133,51 +79,17 @@ export interface Connection {
*/
openTable<T>(name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
/**
* Creates a new Table, optionally initializing it with new data.
*
* @param {string} name - The name of the table.
* @param data - Array of Records to be inserted into the table
* @param schema - An Arrow Schema that describe this table columns
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
* @param {WriteOptions} writeOptions - The write options to use when creating the table.
*/
createTable<T> ({ name, data, schema, embeddingFunction, writeOptions }: CreateTableOptions<T>): Promise<Table<T>>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
*/
createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {WriteOptions} options - The write options to use when creating the table.
*/
createTable (name: string, data: Array<Record<string, unknown>>, options: WriteOptions): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {WriteMode} mode - The write mode to use when creating the table.
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
*/
createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
* @param {WriteOptions} options - The write options to use when creating the table.
*/
createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>, options: WriteOptions): Promise<Table<T>>
createTable<T>(name: string, data: Array<Record<string, unknown>>, mode?: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
createTableArrow(name: string, table: ArrowTable): Promise<Table>
/**
* Drop an existing table.
@@ -230,34 +142,7 @@ export interface Table<T = number[]> {
/**
* Delete rows from this table.
*
* This can be used to delete a single row, many rows, all rows, or
* sometimes no rows (if your predicate matches nothing).
*
* @param filter A filter in the same format used by a sql WHERE clause. The
* filter must not be empty.
*
* @examples
*
* ```ts
* const con = await lancedb.connect("./.lancedb")
* const data = [
* {id: 1, vector: [1, 2]},
* {id: 2, vector: [3, 4]},
* {id: 3, vector: [5, 6]},
* ];
* const tbl = await con.createTable("my_table", data)
* await tbl.delete("id = 2")
* await tbl.countRows() // Returns 2
* ```
*
* If you have a list of values to delete, you can combine them into a
* stringified list and use the `IN` operator:
*
* ```ts
* const to_remove = [1, 5];
* await tbl.delete(`id IN (${to_remove.join(",")})`)
* await tbl.countRows() // Returns 1
* ```
* @param filter A filter in the same format used by a sql WHERE clause.
*/
delete: (filter: string) => Promise<void>
}
@@ -266,21 +151,21 @@ export interface Table<T = number[]> {
* A connection to a LanceDB database.
*/
export class LocalConnection implements Connection {
private readonly _options: () => ConnectionOptions
private readonly _options: ConnectionOptions
private readonly _db: any
constructor (db: any, options: ConnectionOptions) {
this._options = () => options
this._options = options
this._db = db
}
get uri (): string {
return this._options().uri
return this._options.uri
}
/**
* Get the names of all tables in the database.
*/
* Get the names of all tables in the database.
*/
async tableNames (): Promise<string[]> {
return databaseTableNames.call(this._db)
}
@@ -291,7 +176,6 @@ export class LocalConnection implements Connection {
* @param name The name of the table.
*/
async openTable (name: string): Promise<Table>
/**
* Open a table in the database.
*
@@ -301,66 +185,61 @@ export class LocalConnection implements Connection {
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
const tbl = await databaseOpenTable.call(this._db, name, ...getAwsArgs(this._options()))
const tbl = await databaseOpenTable.call(this._db, name)
if (embeddings !== undefined) {
return new LocalTable(tbl, name, this._options(), embeddings)
return new LocalTable(tbl, name, this._options, embeddings)
} else {
return new LocalTable(tbl, name, this._options())
return new LocalTable(tbl, name, this._options)
}
}
async createTable<T> (name: string | CreateTableOptions<T>, data?: Array<Record<string, unknown>>, optsOrEmbedding?: WriteOptions | EmbeddingFunction<T>, opt?: WriteOptions): Promise<Table<T>> {
if (typeof name === 'string') {
let writeOptions: WriteOptions = new DefaultWriteOptions()
if (opt !== undefined && isWriteOptions(opt)) {
writeOptions = opt
} else if (optsOrEmbedding !== undefined && isWriteOptions(optsOrEmbedding)) {
writeOptions = optsOrEmbedding
}
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
* @param mode The write mode to use when creating the table.
*/
async createTable (name: string, data: Array<Record<string, unknown>>, mode?: WriteMode): Promise<Table>
async createTable (name: string, data: Array<Record<string, unknown>>, mode: WriteMode): Promise<Table>
let embeddings: undefined | EmbeddingFunction<T>
if (optsOrEmbedding !== undefined && isEmbeddingFunction(optsOrEmbedding)) {
embeddings = optsOrEmbedding
}
return await this.createTableImpl({ name, data, embeddingFunction: embeddings, writeOptions })
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
* @param mode The write mode to use when creating the table.
* @param embeddings An embedding function to use on this Table
*/
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
if (mode === undefined) {
mode = WriteMode.Create
}
const createArgs = [this._db, name, await fromRecordsToBuffer(data, embeddings), mode.toLowerCase()]
if (this._options.awsCredentials !== undefined) {
createArgs.push(this._options.awsCredentials.accessKeyId)
createArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
createArgs.push(this._options.awsCredentials.sessionToken)
}
}
const tbl = await tableCreate.call(...createArgs)
if (embeddings !== undefined) {
return new LocalTable(tbl, name, this._options, embeddings)
} else {
return new LocalTable(tbl, name, this._options)
}
return await this.createTableImpl(name)
}
private async createTableImpl<T> ({ name, data, schema, embeddingFunction, writeOptions = new DefaultWriteOptions() }: {
name: string
data?: Array<Record<string, unknown>> | ArrowTable | undefined
schema?: Schema | undefined
embeddingFunction?: EmbeddingFunction<T> | undefined
writeOptions?: WriteOptions | undefined
}): Promise<Table<T>> {
let buffer: Buffer
function isEmpty (data: Array<Record<string, unknown>> | ArrowTable<any>): boolean {
if (data instanceof ArrowTable) {
return data.data.length === 0
}
return data.length === 0
}
if ((data === undefined) || isEmpty(data)) {
if (schema === undefined) {
throw new Error('Either data or schema needs to defined')
}
buffer = await fromTableToBuffer(createEmptyTable(schema))
} else if (data instanceof ArrowTable) {
buffer = await fromTableToBuffer(data, embeddingFunction)
} else {
// data is Array<Record<...>>
buffer = await fromRecordsToBuffer(data, embeddingFunction)
}
const tbl = await tableCreate.call(this._db, name, buffer, writeOptions?.writeMode?.toString(), ...getAwsArgs(this._options()))
if (embeddingFunction !== undefined) {
return new LocalTable(tbl, name, this._options(), embeddingFunction)
} else {
return new LocalTable(tbl, name, this._options())
}
async createTableArrow (name: string, table: ArrowTable): Promise<Table> {
const writer = RecordBatchFileWriter.writeAll(table)
await tableCreate.call(this._db, name, Buffer.from(await writer.toUint8Array()))
return await this.openTable(name)
}
/**
@@ -373,10 +252,10 @@ export class LocalConnection implements Connection {
}
export class LocalTable<T = number[]> implements Table<T> {
private _tbl: any
private readonly _tbl: any
private readonly _name: string
private readonly _embeddings?: EmbeddingFunction<T>
private readonly _options: () => ConnectionOptions
private readonly _options: ConnectionOptions
constructor (tbl: any, name: string, options: ConnectionOptions)
/**
@@ -390,7 +269,7 @@ export class LocalTable<T = number[]> implements Table<T> {
this._tbl = tbl
this._name = name
this._embeddings = embeddings
this._options = () => options
this._options = options
}
get name (): string {
@@ -402,7 +281,7 @@ export class LocalTable<T = number[]> implements Table<T> {
* @param query The query search term
*/
search (query: T): Query<T> {
return new Query(query, this._tbl, this._embeddings)
return new Query(this._tbl, query, this._embeddings)
}
/**
@@ -412,12 +291,15 @@ export class LocalTable<T = number[]> implements Table<T> {
* @return The number of rows added to the table
*/
async add (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(
this._tbl,
await fromRecordsToBuffer(data, this._embeddings),
WriteMode.Append.toString(),
...getAwsArgs(this._options())
).then((newTable: any) => { this._tbl = newTable })
const callArgs = [this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Append.toString()]
if (this._options.awsCredentials !== undefined) {
callArgs.push(this._options.awsCredentials.accessKeyId)
callArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
callArgs.push(this._options.awsCredentials.sessionToken)
}
}
return tableAdd.call(...callArgs)
}
/**
@@ -427,12 +309,15 @@ export class LocalTable<T = number[]> implements Table<T> {
* @return The number of rows added to the table
*/
async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(
this._tbl,
await fromRecordsToBuffer(data, this._embeddings),
WriteMode.Overwrite.toString(),
...getAwsArgs(this._options())
).then((newTable: any) => { this._tbl = newTable })
const callArgs = [this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString()]
if (this._options.awsCredentials !== undefined) {
callArgs.push(this._options.awsCredentials.accessKeyId)
callArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
callArgs.push(this._options.awsCredentials.sessionToken)
}
}
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString())
}
/**
@@ -441,7 +326,7 @@ export class LocalTable<T = number[]> implements Table<T> {
* @param indexParams The parameters of this Index, @see VectorIndexParams.
*/
async createIndex (indexParams: VectorIndexParams): Promise<any> {
return tableCreateVectorIndex.call(this._tbl, indexParams).then((newTable: any) => { this._tbl = newTable })
return tableCreateVectorIndex.call(this._tbl, indexParams)
}
/**
@@ -457,7 +342,7 @@ export class LocalTable<T = number[]> implements Table<T> {
* @param filter A filter in the same format used by a sql WHERE clause.
*/
async delete (filter: string): Promise<void> {
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
return tableDelete.call(this._tbl, filter)
}
}
@@ -518,6 +403,116 @@ export interface IvfPQIndexConfig {
export type VectorIndexParams = IvfPQIndexConfig
/**
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query<T = number[]> {
private readonly _tbl: any
private readonly _query: T
private _queryVector?: number[]
private _limit: number
private _refineFactor?: number
private _nprobes: number
private _select?: string[]
private _filter?: string
private _metricType?: MetricType
private readonly _embeddings?: EmbeddingFunction<T>
constructor (tbl: any, query: T, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._query = query
this._limit = 10
this._nprobes = 20
this._refineFactor = undefined
this._select = undefined
this._filter = undefined
this._metricType = undefined
this._embeddings = embeddings
}
/***
* Sets the number of results that will be returned
* @param value number of results
*/
limit (value: number): Query<T> {
this._limit = value
return this
}
/**
* Refine the results by reading extra elements and re-ranking them in memory.
* @param value refine factor to use in this query.
*/
refineFactor (value: number): Query<T> {
this._refineFactor = value
return this
}
/**
* The number of probes used. A higher number makes search more accurate but also slower.
* @param value The number of probes used.
*/
nprobes (value: number): Query<T> {
this._nprobes = value
return this
}
/**
* A filter statement to be applied to this query.
* @param value A filter in the same format used by a sql WHERE clause.
*/
filter (value: string): Query<T> {
this._filter = value
return this
}
where = this.filter
/** Return only the specified columns.
*
* @param value Only select the specified columns. If not specified, all columns will be returned.
*/
select (value: string[]): Query<T> {
this._select = value
return this
}
/**
* The MetricType used for this Query.
* @param value The metric to the. @see MetricType for the different options
*/
metricType (value: MetricType): Query<T> {
this._metricType = value
return this
}
/**
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
this._queryVector = this._query as number[]
}
const buffer = await tableSearch.call(this._tbl, this)
const data = tableFromIPC(buffer)
return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {}
Object.keys(entry).forEach((key: string) => {
if (entry[key] instanceof Vector) {
newObject[key] = (entry[key] as Vector).toArray()
} else {
newObject[key] = entry[key]
}
})
return newObject as unknown as T
})
}
}
/**
* Write mode for writing a table.
*/
@@ -530,23 +525,6 @@ export enum WriteMode {
Append = 'append'
}
/**
* Write options when creating a Table.
*/
export interface WriteOptions {
/** A {@link WriteMode} to use on this operation */
writeMode?: WriteMode
}
export class DefaultWriteOptions implements WriteOptions {
writeMode = WriteMode.Create
}
export function isWriteOptions (value: any): value is WriteOptions {
return Object.keys(value).length === 1 &&
(value.writeMode === undefined || typeof value.writeMode === 'string')
}
/**
* Distance metrics type.
*/

View File

@@ -1,141 +0,0 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { Vector, tableFromIPC } from 'apache-arrow'
import { type EmbeddingFunction } from './embedding/embedding_function'
import { type MetricType } from '.'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { tableSearch } = require('../native.js')
/**
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query<T = number[]> {
private readonly _query: T
private readonly _tbl?: any
private _queryVector?: number[]
private _limit: number
private _refineFactor?: number
private _nprobes: number
private _select?: string[]
private _filter?: string
private _metricType?: MetricType
protected readonly _embeddings?: EmbeddingFunction<T>
constructor (query: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._query = query
this._limit = 10
this._nprobes = 20
this._refineFactor = undefined
this._select = undefined
this._filter = undefined
this._metricType = undefined
this._embeddings = embeddings
}
/***
* Sets the number of results that will be returned
* @param value number of results
*/
limit (value: number): Query<T> {
this._limit = value
return this
}
/**
* Refine the results by reading extra elements and re-ranking them in memory.
* @param value refine factor to use in this query.
*/
refineFactor (value: number): Query<T> {
this._refineFactor = value
return this
}
/**
* The number of probes used. A higher number makes search more accurate but also slower.
* @param value The number of probes used.
*/
nprobes (value: number): Query<T> {
this._nprobes = value
return this
}
/**
* A filter statement to be applied to this query.
* @param value A filter in the same format used by a sql WHERE clause.
*/
filter (value: string): Query<T> {
this._filter = value
return this
}
where = this.filter
/** Return only the specified columns.
*
* @param value Only select the specified columns. If not specified, all columns will be returned.
*/
select (value: string[]): Query<T> {
this._select = value
return this
}
/**
* The MetricType used for this Query.
* @param value The metric to the. @see MetricType for the different options
*/
metricType (value: MetricType): Query<T> {
this._metricType = value
return this
}
/**
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
this._queryVector = this._query as number[]
}
const isElectron = this.isElectron()
const buffer = await tableSearch.call(this._tbl, this, isElectron)
const data = tableFromIPC(buffer)
return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {}
Object.keys(entry).forEach((key: string) => {
if (entry[key] instanceof Vector) {
newObject[key] = (entry[key] as Vector).toArray()
} else {
newObject[key] = entry[key]
}
})
return newObject as unknown as T
})
}
// See https://github.com/electron/electron/issues/2288
private isElectron (): boolean {
try {
// eslint-disable-next-line no-prototype-builtins
return (process?.versions?.hasOwnProperty('electron') || navigator?.userAgent?.toLowerCase()?.includes(' electron'))
} catch (e) {
return false
}
}
}

View File

@@ -1,137 +0,0 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import axios, { type AxiosResponse } from 'axios'
import { tableFromIPC, type Table as ArrowTable } from 'apache-arrow'
export class HttpLancedbClient {
private readonly _url: string
private readonly _apiKey: () => string
public constructor (
url: string,
apiKey: string,
private readonly _dbName?: string
) {
this._url = url
this._apiKey = () => apiKey
}
get uri (): string {
return this._url
}
public async search (
tableName: string,
vector: number[],
k: number,
nprobes: number,
refineFactor?: number,
columns?: string[],
filter?: string
): Promise<ArrowTable<any>> {
const response = await axios.post(
`${this._url}/v1/table/${tableName}/query/`,
{
vector,
k,
nprobes,
refineFactor,
columns,
filter
},
{
headers: {
'Content-Type': 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
responseType: 'arraybuffer',
timeout: 10000
}
).catch((err) => {
console.error('error: ', err)
return err.response
})
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
)
}
const table = tableFromIPC(response.data)
return table
}
/**
* Sent GET request.
*/
public async get (path: string, params?: Record<string, string | number>): Promise<AxiosResponse> {
const response = await axios.get(
`${this._url}${path}`,
{
headers: {
'Content-Type': 'application/json',
'x-api-key': this._apiKey()
},
params,
timeout: 10000
}
).catch((err) => {
console.error('error: ', err)
return err.response
})
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
)
}
return response
}
/**
* Sent POST request.
*/
public async post (path: string, data?: any, params?: Record<string, string | number>): Promise<AxiosResponse> {
const response = await axios.post(
`${this._url}${path}`,
data,
{
headers: {
'Content-Type': 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
params,
timeout: 30000
}
).catch((err) => {
console.error('error: ', err)
return err.response
})
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
)
}
return response
}
}

View File

@@ -1,162 +0,0 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import {
type EmbeddingFunction, type Table, type VectorIndexParams, type Connection,
type ConnectionOptions, type CreateTableOptions, type WriteOptions
} from '../index'
import { Query } from '../query'
import { Vector } from 'apache-arrow'
import { HttpLancedbClient } from './client'
/**
* Remote connection.
*/
export class RemoteConnection implements Connection {
private readonly _client: HttpLancedbClient
private readonly _dbName: string
constructor (opts: ConnectionOptions) {
if (!opts.uri.startsWith('db://')) {
throw new Error(`Invalid remote DB URI: ${opts.uri}`)
}
if (opts.apiKey === undefined || opts.region === undefined) {
throw new Error('API key and region are not supported for remote connections')
}
this._dbName = opts.uri.slice('db://'.length)
let server: string
if (opts.hostOverride === undefined) {
server = `https://${this._dbName}.${opts.region}.api.lancedb.com`
} else {
server = opts.hostOverride
}
this._client = new HttpLancedbClient(server, opts.apiKey, opts.hostOverride === undefined ? undefined : this._dbName)
}
get uri (): string {
// add the lancedb+ prefix back
return 'db://' + this._client.uri
}
async tableNames (): Promise<string[]> {
const response = await this._client.get('/v1/table/')
return response.data.tables
}
async openTable (name: string): Promise<Table>
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
if (embeddings !== undefined) {
return new RemoteTable(this._client, name, embeddings)
} else {
return new RemoteTable(this._client, name)
}
}
async createTable<T> (name: string | CreateTableOptions<T>, data?: Array<Record<string, unknown>>, optsOrEmbedding?: WriteOptions | EmbeddingFunction<T>, opt?: WriteOptions): Promise<Table<T>> {
throw new Error('Not implemented')
}
async dropTable (name: string): Promise<void> {
await this._client.post(`/v1/table/${name}/drop/`)
}
}
export class RemoteQuery<T = number[]> extends Query<T> {
constructor (query: T, private readonly _client: HttpLancedbClient,
private readonly _name: string, embeddings?: EmbeddingFunction<T>) {
super(query, undefined, embeddings)
}
// TODO: refactor this to a base class + queryImpl pattern
async execute<T = Record<string, unknown>>(): Promise<T[]> {
const embeddings = this._embeddings
const query = (this as any)._query
let queryVector: number[]
if (embeddings !== undefined) {
queryVector = (await embeddings.embed([query]))[0]
} else {
queryVector = query as number[]
}
const data = await this._client.search(
this._name,
queryVector,
(this as any)._limit,
(this as any)._nprobes,
(this as any)._refineFactor,
(this as any)._select,
(this as any)._filter
)
return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {}
Object.keys(entry).forEach((key: string) => {
if (entry[key] instanceof Vector) {
newObject[key] = (entry[key] as Vector).toArray()
} else {
newObject[key] = entry[key]
}
})
return newObject as unknown as T
})
}
}
// we are using extend until we have next next version release
// Table and Connection has both been refactored to interfaces
export class RemoteTable<T = number[]> implements Table<T> {
private readonly _client: HttpLancedbClient
private readonly _embeddings?: EmbeddingFunction<T>
private readonly _name: string
constructor (client: HttpLancedbClient, name: string)
constructor (client: HttpLancedbClient, name: string, embeddings: EmbeddingFunction<T>)
constructor (client: HttpLancedbClient, name: string, embeddings?: EmbeddingFunction<T>) {
this._client = client
this._name = name
this._embeddings = embeddings
}
get name (): string {
return this._name
}
search (query: T): Query<T> {
return new RemoteQuery(query, this._client, this._name)//, this._embeddings_new)
}
async add (data: Array<Record<string, unknown>>): Promise<number> {
throw new Error('Not implemented')
}
async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
throw new Error('Not implemented')
}
async createIndex (indexParams: VectorIndexParams): Promise<any> {
throw new Error('Not implemented')
}
async countRows (): Promise<number> {
throw new Error('Not implemented')
}
async delete (filter: string): Promise<void> {
throw new Error('Not implemented')
}
}

View File

@@ -16,7 +16,6 @@ import { describe } from 'mocha'
import { assert } from 'chai'
import { OpenAIEmbeddingFunction } from '../../embedding/openai'
import { isEmbeddingFunction } from '../../embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { OpenAIApi } = require('openai')
@@ -48,10 +47,4 @@ describe('OpenAPIEmbeddings', function () {
assert.deepEqual(vectors[1], stubValue.data.data[1].embedding)
})
})
describe('isEmbeddingFunction', function () {
it('should match the isEmbeddingFunction guard', function () {
assert.isTrue(isEmbeddingFunction(new OpenAIEmbeddingFunction('text', 'sk-key')))
})
})
})

View File

@@ -47,9 +47,7 @@ describe('LanceDB S3 client', function () {
}
}
const table = await createTestDB(opts, 2, 20)
console.log(table)
const con = await lancedb.connect(opts)
console.log(con)
assert.equal(con.uri, opts.uri)
const results = await table.search([0.1, 0.3]).limit(5).execute()
@@ -72,5 +70,5 @@ async function createTestDB (opts: ConnectionOptions, numDimensions: number = 2,
data.push({ id: i + 1, name: `name_${i}`, price: i + 10, is_active: (i % 2 === 0), vector })
}
return await con.createTable('vectors_2', data)
return await con.createTable('vectors', data)
}

View File

@@ -18,8 +18,7 @@ import * as chai from 'chai'
import * as chaiAsPromised from 'chai-as-promised'
import * as lancedb from '../index'
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions } from '../index'
import { Field, Int32, makeVector, Schema, Utf8, Table as ArrowTable, vectorFromArray } from 'apache-arrow'
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode } from '../index'
const expect = chai.expect
const assert = chai.assert
@@ -108,9 +107,9 @@ describe('LanceDB client', function () {
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.1]).select(['is_active']).execute()
assert.equal(results.length, 2)
// vector and _distance are always returned
// vector and score are always returned
assert.isDefined(results[0].vector)
assert.isDefined(results[0]._distance)
assert.isDefined(results[0].score)
assert.isDefined(results[0].is_active)
assert.isUndefined(results[0].id)
@@ -120,45 +119,6 @@ describe('LanceDB client', function () {
})
describe('when creating a new dataset', function () {
it('create an empty table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('id', new Int32()), new Field('name', new Utf8())]
)
const table = await con.createTable({ name: 'vectors', schema })
assert.equal(table.name, 'vectors')
assert.deepEqual(await con.tableNames(), ['vectors'])
})
it('create a table with a empty data array', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('id', new Int32()), new Field('name', new Utf8())]
)
const table = await con.createTable({ name: 'vectors', schema, data: [] })
assert.equal(table.name, 'vectors')
assert.deepEqual(await con.tableNames(), ['vectors'])
})
it('create a table from an Arrow Table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const i32s = new Int32Array(new Array<number>(10))
const i32 = makeVector(i32s)
const data = new ArrowTable({ vector: i32 })
const table = await con.createTable({ name: 'vectors', data })
assert.equal(table.name, 'vectors')
assert.equal(await table.countRows(), 10)
assert.deepEqual(await con.tableNames(), ['vectors'])
})
it('creates a new table from javascript objects', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
@@ -174,18 +134,6 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2)
})
it('fails to create a new table when the vector column is missing', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ id: 1, price: 10 }
]
const create = con.createTable('missing_vector', data)
await expect(create).to.be.rejectedWith(Error, 'column \'vector\' is missing')
})
it('use overwrite flag to overwrite existing table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
@@ -196,7 +144,7 @@ describe('LanceDB client', function () {
]
const tableName = 'overwrite'
await con.createTable(tableName, data, { writeMode: WriteMode.Create })
await con.createTable(tableName, data, WriteMode.Create)
const newData = [
{ id: 1, vector: [0.1, 0.2], price: 10 },
@@ -206,7 +154,7 @@ describe('LanceDB client', function () {
await expect(con.createTable(tableName, newData)).to.be.rejectedWith(Error, 'already exists')
const table = await con.createTable(tableName, newData, { writeMode: WriteMode.Overwrite })
const table = await con.createTable(tableName, newData, WriteMode.Overwrite)
assert.equal(table.name, tableName)
assert.equal(await table.countRows(), 3)
})
@@ -282,22 +230,6 @@ describe('LanceDB client', function () {
// Default replace = true
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
}).timeout(50_000)
it('it should fail when the column is not a vector', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
await expect(createIndex).to.be.rejectedWith(/VectorIndex requires the column data type to be fixed size list of float32s/)
})
it('it should fail when the column is not a vector', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: -1, max_iters: 2, num_sub_vectors: 2 })
await expect(createIndex).to.be.rejectedWith('num_partitions: must be > 0')
})
})
describe('when using a custom embedding function', function () {
@@ -327,21 +259,7 @@ describe('LanceDB client', function () {
{ price: 10, name: 'foo' },
{ price: 50, name: 'bar' }
]
const table = await con.createTable('vectors', data, embeddings, { writeMode: WriteMode.Create })
const results = await table.search('foo').execute()
assert.equal(results.length, 2)
})
it('should create embeddings for Arrow Table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const embeddingFunction = new TextEmbedding('name')
const names = vectorFromArray(['foo', 'bar'], new Utf8())
const data = new ArrowTable({ name: names })
const table = await con.createTable({ name: 'vectors', data, embeddingFunction })
assert.equal(table.name, 'vectors')
const table = await con.createTable('vectors', data, WriteMode.Create, embeddings)
const results = await table.search('foo').execute()
assert.equal(results.length, 2)
})
@@ -350,7 +268,7 @@ describe('LanceDB client', function () {
describe('Query object', function () {
it('sets custom parameters', async function () {
const query = new Query([0.1, 0.3])
const query = new Query(undefined, [0.1, 0.3])
.limit(1)
.metricType(MetricType.Cosine)
.refineFactor(100)
@@ -399,20 +317,3 @@ describe('Drop table', function () {
assert.deepEqual(await con.tableNames(), ['t2'])
})
})
describe('WriteOptions', function () {
context('#isWriteOptions', function () {
it('should not match empty object', function () {
assert.equal(isWriteOptions({}), false)
})
it('should match write options', function () {
assert.equal(isWriteOptions({ writeMode: WriteMode.Create }), true)
})
it('should match undefined write mode', function () {
assert.equal(isWriteOptions({ writeMode: undefined }), true)
})
it('should match default write options', function () {
assert.equal(isWriteOptions(new DefaultWriteOptions()), true)
})
})
})

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.2.1
current_version = 0.1.8
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True

View File

@@ -19,11 +19,7 @@ from .schema import vector
def connect(
uri: URI,
*,
api_key: Optional[str] = None,
region: str = "us-west-2",
host_override: Optional[str] = None,
uri: URI, *, api_key: Optional[str] = None, region: str = "us-west-2"
) -> DBConnection:
"""Connect to a LanceDB database.
@@ -59,5 +55,5 @@ def connect(
if isinstance(uri, str) and uri.startswith("db://"):
if api_key is None:
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
return RemoteDBConnection(uri, api_key, region, host_override)
return RemoteDBConnection(uri, api_key, region)
return LanceDBConnection(uri)

View File

@@ -11,18 +11,17 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Iterable, List, Union
from typing import List, Union
import numpy as np
import pandas as pd
import pyarrow as pa
from .util import safe_import_pandas
pd = safe_import_pandas()
DATA = Union[List[dict], dict, "pd.DataFrame", pa.Table, Iterable[pa.RecordBatch]]
VEC = Union[list, np.ndarray, pa.Array, pa.ChunkedArray]
URI = Union[str, Path]
# TODO support generator
DATA = Union[List[dict], dict, pd.DataFrame]
VECTOR_COLUMN_NAME = "vector"

View File

@@ -12,13 +12,12 @@
# limitations under the License.
from __future__ import annotations
import pandas as pd
from .exceptions import MissingColumnError, MissingValueError
from .util import safe_import_pandas
pd = safe_import_pandas()
def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
def contextualize(raw_df: pd.DataFrame) -> Contextualizer:
"""Create a Contextualizer object for the given DataFrame.
Used to create context windows. Context windows are rolling subsets of text
@@ -176,12 +175,8 @@ class Contextualizer:
self._min_window_size = min_window_size
return self
def to_df(self) -> "pd.DataFrame":
def to_df(self) -> pd.DataFrame:
"""Create the context windows and return a DataFrame."""
if pd is None:
raise ImportError(
"pandas is required to create context windows using lancedb"
)
if self._text_col not in self._raw_df.columns.tolist():
raise MissingColumnError(self._text_col)

View File

@@ -16,15 +16,15 @@ from __future__ import annotations
import os
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Optional
from typing import Dict, Iterable, List, Optional, Tuple, Union
import pandas as pd
import pyarrow as pa
from pyarrow import fs
from .common import DATA, URI
from .pydantic import LanceModel
from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme
from .util import get_uri_location, get_uri_scheme
class DBConnection(ABC):
@@ -39,8 +39,10 @@ class DBConnection(ABC):
def create_table(
self,
name: str,
data: Optional[DATA] = None,
schema: Optional[pa.Schema, LanceModel] = None,
data: Optional[
Union[List[dict], dict, pd.DataFrame, pa.Table, Iterable[pa.RecordBatch]],
] = None,
schema: Optional[pa.Schema] = None,
mode: str = "create",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
@@ -53,7 +55,7 @@ class DBConnection(ABC):
The name of the table.
data: list, tuple, dict, pd.DataFrame; optional
The data to initialize the table. User must provide at least one of `data` or `schema`.
schema: pyarrow.Schema or LanceModel; optional
schema: pyarrow.Schema; optional
The schema of the table.
mode: str; default "create"
The mode to use when creating the table. Can be either "create" or "overwrite".
@@ -149,14 +151,14 @@ class DBConnection(ABC):
... for i in range(5):
... yield pa.RecordBatch.from_arrays(
... [
... pa.array([[3.1, 4.1], [5.9, 26.5]], pa.list_(pa.float32(), 2)),
... pa.array([[3.1, 4.1], [5.9, 26.5]]),
... pa.array(["foo", "bar"]),
... pa.array([10.0, 20.0]),
... ],
... ["vector", "item", "price"],
... )
>>> schema=pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("vector", pa.list_(pa.float32())),
... pa.field("item", pa.utf8()),
... pa.field("price", pa.float32()),
... ])
@@ -193,13 +195,6 @@ class DBConnection(ABC):
"""
raise NotImplementedError
def drop_database(self):
"""
Drop database
This is the same thing as dropping all the tables
"""
raise NotImplementedError
class LanceDBConnection(DBConnection):
"""
@@ -257,7 +252,7 @@ class LanceDBConnection(DBConnection):
A list of table names.
"""
try:
filesystem, path = fs_from_uri(self.uri)
filesystem, path = fs.FileSystem.from_uri(self.uri)
except pa.ArrowInvalid:
raise NotImplementedError("Unsupported scheme: " + self.uri)
@@ -284,8 +279,8 @@ class LanceDBConnection(DBConnection):
def create_table(
self,
name: str,
data: Optional[DATA] = None,
schema: Optional[pa.Schema, LanceModel] = None,
data: Optional[Union[List[dict], dict, pd.DataFrame]] = None,
schema: pa.Schema = None,
mode: str = "create",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
@@ -324,24 +319,14 @@ class LanceDBConnection(DBConnection):
"""
return LanceTable.open(self, name)
def drop_table(self, name: str, ignore_missing: bool = False):
def drop_table(self, name: str):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
ignore_missing: bool, default False
If True, ignore if the table does not exist.
"""
try:
filesystem, path = fs_from_uri(self.uri)
table_path = os.path.join(path, name + ".lance")
filesystem.delete_dir(table_path)
except FileNotFoundError:
if not ignore_missing:
raise
def drop_database(self):
filesystem, path = fs_from_uri(self.uri)
filesystem.delete_dir(path)
filesystem, path = pa.fs.FileSystem.from_uri(self.uri)
table_path = os.path.join(path, name + ".lance")
filesystem.delete_dir(table_path)

View File

@@ -16,19 +16,15 @@ import sys
from typing import Callable, Union
import numpy as np
import pandas as pd
import pyarrow as pa
from lance.vector import vec_to_table
from retry import retry
from .util import safe_import_pandas
pd = safe_import_pandas()
DATA = Union[pa.Table, "pd.DataFrame"]
def with_embeddings(
func: Callable,
data: DATA,
data: Union[pa.Table, pd.DataFrame],
column: str = "text",
wrap_api: bool = True,
show_progress: bool = False,
@@ -64,7 +60,7 @@ def with_embeddings(
func = func.batch_size(batch_size)
if show_progress:
func = func.show_progress()
if pd is not None and isinstance(data, pd.DataFrame):
if isinstance(data, pd.DataFrame):
data = pa.Table.from_pandas(data, preserve_index=False)
embeddings = func(data[column].to_numpy())
table = vec_to_table(np.array(embeddings))

View File

@@ -11,7 +11,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pydantic (v1 / v2) adapter for LanceDB"""
"""Pydantic adapter for LanceDB"""
from __future__ import annotations
@@ -19,19 +19,11 @@ import inspect
import sys
import types
from abc import ABC, abstractmethod
from typing import Any, Callable, Dict, Generator, List, Type, Union, _GenericAlias
from typing import Any, List, Type, Union, _GenericAlias
import numpy as np
import pyarrow as pa
import pydantic
import semver
PYDANTIC_VERSION = semver.Version.parse(pydantic.__version__)
try:
from pydantic_core import CoreSchema, core_schema
except ImportError:
if PYDANTIC_VERSION >= (2,):
raise
from pydantic_core import CoreSchema, core_schema
class FixedSizeListMixin(ABC):
@@ -81,9 +73,6 @@ def vector(
# TODO: make a public parameterized type.
class FixedSizeList(list, FixedSizeListMixin):
def __repr__(self):
return f"FixedSizeList(dim={dim})"
@staticmethod
def dim() -> int:
return dim
@@ -105,25 +94,6 @@ def vector(
),
)
@classmethod
def __get_validators__(cls) -> Generator[Callable, None, None]:
yield cls.validate
# For pydantic v1
@classmethod
def validate(cls, v):
if not isinstance(v, (list, range, np.ndarray)) or len(v) != dim:
raise TypeError("A list of numbers or numpy.ndarray is needed")
return v
if PYDANTIC_VERSION < (2, 0):
@classmethod
def __modify_schema__(cls, field_schema: Dict[str, Any]):
field_schema["items"] = {"type": "number"}
field_schema["maxItems"] = dim
field_schema["minItems"] = dim
return FixedSizeList
@@ -150,20 +120,11 @@ def _py_type_to_arrow_type(py_type: Type[Any]) -> pa.DataType:
)
if PYDANTIC_VERSION.major < 2:
def _pydantic_model_to_fields(model: pydantic.BaseModel) -> List[pa.Field]:
return [
_pydantic_to_field(name, field) for name, field in model.__fields__.items()
]
else:
def _pydantic_model_to_fields(model: pydantic.BaseModel) -> List[pa.Field]:
return [
_pydantic_to_field(name, field)
for name, field in model.model_fields.items()
]
def _pydantic_model_to_fields(model: pydantic.BaseModel) -> List[pa.Field]:
fields = []
for name, field in model.model_fields.items():
fields.append(_pydantic_to_field(name, field))
return fields
def _pydantic_to_arrow_type(field: pydantic.fields.FieldInfo) -> pa.DataType:
@@ -249,42 +210,3 @@ def pydantic_to_schema(model: Type[pydantic.BaseModel]) -> pa.Schema:
"""
fields = _pydantic_model_to_fields(model)
return pa.schema(fields)
class LanceModel(pydantic.BaseModel):
"""
A Pydantic Model base class that can be converted to a LanceDB Table.
Examples
--------
>>> import lancedb
>>> from lancedb.pydantic import LanceModel, vector
>>>
>>> class TestModel(LanceModel):
... name: str
... vector: vector(2)
...
>>> db = lancedb.connect("/tmp")
>>> table = db.create_table("test", schema=TestModel.to_arrow_schema())
>>> table.add([
... TestModel(name="test", vector=[1.0, 2.0])
... ])
>>> table.search([0., 0.]).limit(1).to_pydantic(TestModel)
[TestModel(name='test', vector=FixedSizeList(dim=2))]
"""
@classmethod
def to_arrow_schema(cls):
"""
Get the Arrow Schema for this model.
"""
return pydantic_to_schema(cls)
@classmethod
def field_names(cls) -> List[str]:
"""
Get the field names of this model.
"""
if PYDANTIC_VERSION.major < 2:
return list(cls.__fields__.keys())
return list(cls.model_fields.keys())

View File

@@ -13,20 +13,17 @@
from __future__ import annotations
from typing import List, Literal, Optional, Type, Union
from typing import List, Literal, Optional, Union
import numpy as np
import pandas as pd
import pyarrow as pa
import pydantic
from pydantic import BaseModel
from .common import VECTOR_COLUMN_NAME
from .pydantic import LanceModel
from .util import safe_import_pandas
pd = safe_import_pandas()
class Query(pydantic.BaseModel):
class Query(BaseModel):
"""A Query"""
vector_column: str = VECTOR_COLUMN_NAME
@@ -73,8 +70,8 @@ class LanceQueryBuilder:
... .select(["b"])
... .limit(2)
... .to_df())
b vector _distance
0 6 [0.4, 0.4] 0.0
b vector score
0 6 [0.4, 0.4] 0.0
"""
def __init__(
@@ -201,11 +198,11 @@ class LanceQueryBuilder:
self._refine_factor = refine_factor
return self
def to_df(self) -> "pd.DataFrame":
def to_df(self) -> pd.DataFrame:
"""
Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
and also the "score" column which is the distance between the query
vector and the returned vector.
"""
@@ -217,7 +214,7 @@ class LanceQueryBuilder:
[Apache Arrow Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table).
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
and also the "score" column which is the distance between the query
vector and the returned vectors.
"""
vector = self._query if isinstance(self._query, list) else self._query.tolist()
@@ -233,26 +230,9 @@ class LanceQueryBuilder:
)
return self._table._execute_query(query)
def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]:
"""Return the table as a list of pydantic models.
Parameters
----------
model: Type[LanceModel]
The pydantic model to use.
Returns
-------
List[LanceModel]
"""
return [
model(**{k: v for k, v in row.items() if k in model.field_names()})
for row in self.to_arrow().to_pylist()
]
class LanceFtsQueryBuilder(LanceQueryBuilder):
def to_arrow(self) -> pa.Table:
def to_arrow(self) -> pd.Table:
try:
import tantivy
except ImportError:

View File

@@ -48,16 +48,11 @@ class RestfulLanceDBClient:
db_name: str
region: str
api_key: Credential
host_override: Optional[str] = attr.field(default=None)
closed: bool = attr.field(default=False, init=False)
@functools.cached_property
def session(self) -> aiohttp.ClientSession:
url = (
self.host_override
or f"https://{self.db_name}.{self.region}.api.lancedb.com"
)
url = f"https://{self.db_name}.{self.region}.api.lancedb.com"
return aiohttp.ClientSession(url)
async def close(self):
@@ -71,8 +66,6 @@ class RestfulLanceDBClient:
}
if self.region == "local": # Local test mode
headers["Host"] = f"{self.db_name}.{self.region}.api.lancedb.com"
if self.host_override:
headers["x-lancedb-database"] = self.db_name
return headers
@staticmethod
@@ -97,12 +90,7 @@ class RestfulLanceDBClient:
"""Send a GET request and returns the deserialized response payload."""
if isinstance(params, BaseModel):
params: Dict[str, Any] = params.dict(exclude_none=True)
async with self.session.get(
uri,
params=params,
headers=self.headers,
timeout=aiohttp.ClientTimeout(total=30),
) as resp:
async with self.session.get(uri, params=params, headers=self.headers) as resp:
await self._check_status(resp)
return await resp.json()
@@ -110,11 +98,10 @@ class RestfulLanceDBClient:
async def post(
self,
uri: str,
data: Optional[Union[Dict[str, Any], BaseModel, bytes]] = None,
data: Union[Dict[str, Any], BaseModel, bytes],
params: Optional[Dict[str, Any]] = None,
content_type: Optional[str] = None,
deserialize: Callable = lambda resp: resp.json(),
request_id: Optional[str] = None,
) -> Dict[str, Any]:
"""Send a POST request and returns the deserialized response payload.
@@ -123,8 +110,6 @@ class RestfulLanceDBClient:
uri : str
The uri to send the POST request to.
data: Union[Dict[str, Any], BaseModel]
request_id: Optional[str]
Optional client side request id to be sent in the request headers.
"""
if isinstance(data, BaseModel):
@@ -137,13 +122,10 @@ class RestfulLanceDBClient:
headers = self.headers.copy()
if content_type is not None:
headers["content-type"] = content_type
if request_id is not None:
headers["x-request-id"] = request_id
async with self.session.post(
uri,
headers=headers,
params=params,
timeout=aiohttp.ClientTimeout(total=30),
**req_kwargs,
) as resp:
resp: aiohttp.ClientResponse = resp
@@ -159,7 +141,5 @@ class RestfulLanceDBClient:
@_check_not_closed
async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
"""Query a table."""
tbl = await self.post(
f"/v1/table/{table_name}/query/", query, deserialize=_read_ipc
)
tbl = await self.post(f"/v1/table/{table_name}/", query, deserialize=_read_ipc)
return VectorQueryResult(tbl)

View File

@@ -13,13 +13,14 @@
import asyncio
import uuid
from typing import List, Optional
from typing import List
from urllib.parse import urlparse
import pyarrow as pa
from lancedb.common import DATA
from lancedb.db import DBConnection
from lancedb.schema import schema_to_json
from lancedb.table import Table, _sanitize_data
from .arrow import to_ipc_binary
@@ -29,22 +30,14 @@ from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient
class RemoteDBConnection(DBConnection):
"""A connection to a remote LanceDB database."""
def __init__(
self,
db_url: str,
api_key: str,
region: str,
host_override: Optional[str] = None,
):
def __init__(self, db_url: str, api_key: str, region: str):
"""Connect to a remote LanceDB database."""
parsed = urlparse(db_url)
if parsed.scheme != "db":
raise ValueError(f"Invalid scheme: {parsed.scheme}, only accepts db://")
self.db_name = parsed.netloc
self.api_key = api_key
self._client = RestfulLanceDBClient(
self.db_name, region, api_key, host_override
)
self._client = RestfulLanceDBClient(self.db_name, region, api_key)
try:
self._loop = asyncio.get_running_loop()
except RuntimeError:
@@ -102,24 +95,10 @@ class RemoteDBConnection(DBConnection):
self._loop.run_until_complete(
self._client.post(
f"/v1/table/{name}/create/",
f"/v1/table/{name}/create",
data=data,
request_id=request_id,
params={"request_id": request_id},
content_type=ARROW_STREAM_CONTENT_TYPE,
)
)
return RemoteTable(self, name)
def drop_table(self, name: str):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
"""
self._loop.run_until_complete(
self._client.post(
f"/v1/table/{name}/drop/",
)
)

View File

@@ -16,11 +16,11 @@ from functools import cached_property
from typing import Union
import pyarrow as pa
from lance import json_to_schema
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
from ..query import LanceQueryBuilder
from ..query import LanceQueryBuilder, Query
from ..schema import json_to_schema
from ..table import Query, Table, _sanitize_data
from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE
@@ -33,27 +33,19 @@ class RemoteTable(Table):
self._name = name
def __repr__(self) -> str:
return f"RemoteTable({self._conn.db_name}.{self._name})"
return f"RemoteTable({self._conn.db_name}.{self.name})"
@cached_property
def schema(self) -> pa.Schema:
"""Return the schema of the table."""
resp = self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/describe/")
self._conn._client.get(f"/v1/table/{self._name}/describe")
)
schema = json_to_schema(resp["schema"])
return schema
def to_arrow(self) -> pa.Table:
"""Return the table as an Arrow table."""
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
def to_pandas(self):
"""Return the table as a Pandas DataFrame.
Intercept `to_arrow()` for better error message.
"""
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
raise NotImplementedError
def create_index(
self,
@@ -81,12 +73,13 @@ class RemoteTable(Table):
self._conn._loop.run_until_complete(
self._conn._client.post(
f"/v1/table/{self._name}/insert/",
f"/v1/table/{self._name}/insert",
data=payload,
params={"request_id": request_id, "mode": mode},
content_type=ARROW_STREAM_CONTENT_TYPE,
)
)
return len(data)
def search(
self, query: Union[VEC, str], vector_column: str = VECTOR_COLUMN_NAME
@@ -96,6 +89,3 @@ class RemoteTable(Table):
def _execute_query(self, query: Query) -> pa.Table:
result = self._conn._client.query(self._name, query)
return self._conn._loop.run_until_complete(result).to_arrow()
def delete(self, predicate: str):
raise NotImplementedError

View File

@@ -12,7 +12,11 @@
# limitations under the License.
"""Schema related utilities."""
from typing import Any, Dict, Type
import pyarrow as pa
from lance import json_to_schema, schema_to_json
def vector(dimension: int, value_type: pa.DataType = pa.float32()) -> pa.DataType:

View File

@@ -13,7 +13,6 @@
from __future__ import annotations
import inspect
import os
from abc import ABC, abstractmethod
from functools import cached_property
@@ -21,57 +20,35 @@ from typing import Iterable, List, Union
import lance
import numpy as np
import pandas as pd
import pyarrow as pa
import pyarrow.compute as pc
import pyarrow.fs
from lance import LanceDataset
from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .pydantic import LanceModel
from .query import LanceFtsQueryBuilder, LanceQueryBuilder, Query
from .util import fs_from_uri, safe_import_pandas
pd = safe_import_pandas()
def _sanitize_data(data, schema, on_bad_vectors, fill_value):
if isinstance(data, list):
# convert to list of dict if data is a bunch of LanceModels
if isinstance(data[0], LanceModel):
schema = data[0].__class__.to_arrow_schema()
data = [dict(d) for d in data]
data = pa.Table.from_pylist(data)
data = _sanitize_schema(
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
if isinstance(data, dict):
data = vec_to_table(data)
if pd is not None and isinstance(data, pd.DataFrame):
data = pa.Table.from_pandas(data, preserve_index=False)
if isinstance(data, pd.DataFrame):
data = pa.Table.from_pandas(data)
data = _sanitize_schema(
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
# Do not serialize Pandas metadata
metadata = data.schema.metadata if data.schema.metadata is not None else {}
metadata = {k: v for k, v in metadata.items() if k != b"pandas"}
schema = data.schema.with_metadata(metadata)
data = pa.Table.from_arrays(data.columns, schema=schema)
if isinstance(data, Iterable):
data = _to_record_batch_generator(data, schema, on_bad_vectors, fill_value)
if not isinstance(data, (pa.Table, Iterable)):
raise TypeError(f"Unsupported data type: {type(data)}")
return data
def _to_record_batch_generator(data: Iterable, schema, on_bad_vectors, fill_value):
for batch in data:
if not isinstance(batch, pa.RecordBatch):
table = _sanitize_data(batch, schema, on_bad_vectors, fill_value)
for batch in table.to_batches():
yield batch
yield batch
class Table(ABC):
"""
A [Table](Table) is a collection of Records in a LanceDB [Database](Database).
@@ -97,28 +74,28 @@ class Table(ABC):
Can append new data with [Table.add()][lancedb.table.Table.add].
>>> table.add([{"vector": [0.5, 1.3], "b": 4}])
2
Can query the table with [Table.search][lancedb.table.Table.search].
>>> table.search([0.4, 0.4]).select(["b"]).to_df()
b vector _distance
0 4 [0.5, 1.3] 0.82
1 2 [1.1, 1.2] 1.13
b vector score
0 4 [0.5, 1.3] 0.82
1 2 [1.1, 1.2] 1.13
Search queries are much faster when an index is created. See
[Table.create_index][lancedb.table.Table.create_index].
"""
@property
@abstractmethod
def schema(self) -> pa.Schema:
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) of
"""Return the [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) of
this [Table](Table)
"""
raise NotImplementedError
def to_pandas(self):
def to_pandas(self) -> pd.DataFrame:
"""Return the table as a pandas DataFrame.
Returns
@@ -174,7 +151,7 @@ class Table(ABC):
mode: str = "append",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
):
) -> int:
"""Add more data to the [Table](Table).
Parameters
@@ -190,6 +167,10 @@ class Table(ABC):
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
Returns
-------
int
The number of vectors in the table.
"""
raise NotImplementedError
@@ -212,7 +193,7 @@ class Table(ABC):
LanceQueryBuilder
A query builder object representing the query.
Once executed, the query returns selected columns, the vector,
and also the "_distance" column which is the distance between the query
and also the "score" column which is the distance between the query
vector and the returned vector.
"""
raise NotImplementedError
@@ -221,51 +202,6 @@ class Table(ABC):
def _execute_query(self, query: Query) -> pa.Table:
pass
@abstractmethod
def delete(self, where: str):
"""Delete rows from the table.
This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
Parameters
----------
where: str
The SQL where clause to use when deleting rows. For example, 'x = 2'
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
Examples
--------
>>> import lancedb
>>> import pandas as pd
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data)
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 2 [3.0, 4.0]
2 3 [5.0, 6.0]
>>> table.delete("x = 2")
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 3 [5.0, 6.0]
If you have a list of values to delete, you can combine them into a
stringified list and use the `IN` operator:
>>> to_remove = [1, 5]
>>> to_remove = ", ".join([str(v) for v in to_remove])
>>> to_remove
'1, 5'
>>> table.delete(f"x IN ({to_remove})")
>>> table.to_pandas()
x vector
0 3 [5.0, 6.0]
"""
raise NotImplementedError
class LanceTable(Table):
"""
@@ -279,11 +215,10 @@ class LanceTable(Table):
self.name = name
self._version = version
def _reset_dataset(self, version=None):
def _reset_dataset(self):
try:
if "_dataset" in self.__dict__:
del self.__dict__["_dataset"]
self._version = version
except AttributeError:
pass
@@ -309,9 +244,7 @@ class LanceTable(Table):
def checkout(self, version: int):
"""Checkout a version of the table. This is an in-place operation.
This allows viewing previous versions of the table. If you wish to
keep writing to the dataset starting from an old version, then use
the `restore` function instead.
This allows viewing previous versions of the table.
Parameters
----------
@@ -329,6 +262,7 @@ class LanceTable(Table):
vector type
0 [1.1, 0.9] vector
>>> table.add([{"vector": [0.5, 0.2], "type": "vector"}])
2
>>> table.version
2
>>> table.checkout(1)
@@ -339,49 +273,7 @@ class LanceTable(Table):
max_ver = max([v["version"] for v in self._dataset.versions()])
if version < 1 or version > max_ver:
raise ValueError(f"Invalid version {version}")
self._reset_dataset(version=version)
def restore(self, version: int):
"""Restore a version of the table. This is an in-place operation.
This creates a new version where the data is equivalent to the
specified previous version. Note that this creates a new snapshot.
Parameters
----------
version : int
The version to restore.
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", [{"vector": [1.1, 0.9], "type": "vector"}])
>>> table.version
1
>>> table.to_pandas()
vector type
0 [1.1, 0.9] vector
>>> table.add([{"vector": [0.5, 0.2], "type": "vector"}])
>>> table.version
2
>>> table.restore(1)
>>> table.to_pandas()
vector type
0 [1.1, 0.9] vector
>>> len(table.list_versions())
3
"""
max_ver = max([v["version"] for v in self._dataset.versions()])
if version < 1 or version >= max_ver:
raise ValueError(f"Invalid version {version}")
if version == max_ver:
self._reset_dataset()
return
self.checkout(version)
data = self.to_arrow()
self.checkout(max_ver)
self.add(data, mode="overwrite")
self._version = version
self._reset_dataset()
def __len__(self):
@@ -397,7 +289,7 @@ class LanceTable(Table):
"""Return the first n rows of the table."""
return self._dataset.head(n)
def to_pandas(self) -> "pd.DataFrame":
def to_pandas(self) -> pd.DataFrame:
"""Return the table as a pandas DataFrame.
Returns
@@ -472,7 +364,7 @@ class LanceTable(Table):
mode: str = "append",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
):
) -> int:
"""Add data to the table.
Parameters
@@ -497,8 +389,9 @@ class LanceTable(Table):
data = _sanitize_data(
data, self.schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
lance.write_dataset(data, self._dataset_uri, schema=self.schema, mode=mode)
lance.write_dataset(data, self._dataset_uri, mode=mode)
self._reset_dataset()
return len(self)
def search(
self, query: Union[VEC, str], vector_column_name=VECTOR_COLUMN_NAME
@@ -518,7 +411,7 @@ class LanceTable(Table):
LanceQueryBuilder
A query builder object representing the query.
Once executed, the query returns selected columns, the vector,
and also the "_distance" column which is the distance between the query
and also the "score" column which is the distance between the query
vector and the returned vector.
"""
if isinstance(query, str):
@@ -569,7 +462,7 @@ class LanceTable(Table):
data: list-of-dict, dict, pd.DataFrame, default None
The data to insert into the table.
At least one of `data` or `schema` must be provided.
schema: pa.Schema or LanceModel, optional
schema: dict, optional
The schema of the table. If not provided, the schema is inferred from the data.
At least one of `data` or `schema` must be provided.
mode: str, default "create"
@@ -582,8 +475,6 @@ class LanceTable(Table):
The value to use when filling vectors. Only used if on_bad_vectors="fill".
"""
tbl = LanceTable(db, name)
if inspect.isclass(schema) and issubclass(schema, LanceModel):
schema = schema.to_arrow_schema()
if data is not None:
data = _sanitize_data(
data, schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
@@ -598,15 +489,38 @@ class LanceTable(Table):
@classmethod
def open(cls, db, name):
tbl = cls(db, name)
fs, path = fs_from_uri(tbl._dataset_uri)
file_info = fs.get_file_info(path)
if file_info.type != pa.fs.FileType.Directory:
if not os.path.exists(tbl._dataset_uri):
raise FileNotFoundError(
f"Table {name} does not exist. Please first call db.create_table({name}, data)"
)
return tbl
def delete(self, where: str):
"""Delete rows from the table.
Parameters
----------
where: str
The SQL where clause to use when deleting rows.
Examples
--------
>>> import lancedb
>>> import pandas as pd
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data)
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 2 [3.0, 4.0]
2 3 [5.0, 6.0]
>>> table.delete("x = 2")
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 3 [5.0, 6.0]
"""
self._dataset.delete(where)
def _execute_query(self, query: Query) -> pa.Table:

View File

@@ -11,12 +11,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Tuple
from urllib.parse import urlparse
import pyarrow.fs as pa_fs
def get_uri_scheme(uri: str) -> str:
"""
@@ -63,24 +59,3 @@ def get_uri_location(uri: str) -> str:
return parsed.path
else:
return parsed.netloc + parsed.path
def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
"""
Get a PyArrow FileSystem from a URI, handling extra environment variables.
"""
if get_uri_scheme(uri) == "s3":
fs = pa_fs.S3FileSystem(endpoint_override=os.environ.get("AWS_ENDPOINT"))
path = get_uri_location(uri)
return fs, path
return pa_fs.FileSystem.from_uri(uri)
def safe_import_pandas():
try:
import pandas as pd
return pd
except ImportError:
return None

View File

@@ -1,18 +1,11 @@
[project]
name = "lancedb"
version = "0.2.1"
dependencies = [
"pylance==0.6.5",
"ratelimiter",
"retry",
"tqdm",
"aiohttp",
"pydantic",
"attr",
"semver>=3.0"
]
version = "0.1.11"
dependencies = ["pylance~=0.5.8", "ratelimiter", "retry", "tqdm", "aiohttp", "pydantic>=2", "attr"]
description = "lancedb"
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
authors = [
{ name = "LanceDB Devs", email = "dev@lancedb.com" },
]
license = { file = "LICENSE" }
readme = "README.md"
requires-python = ">=3.8"
@@ -43,13 +36,19 @@ classifiers = [
repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies]
tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio"]
dev = ["ruff", "pre-commit", "black"]
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
tests = [
"pytest", "pytest-mock", "pytest-asyncio"
]
dev = [
"ruff", "pre-commit", "black"
]
docs = [
"mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"
]
[build-system]
requires = ["setuptools", "wheel"]
requires = [
"setuptools",
"wheel",
]
build-backend = "setuptools.build_meta"
[tool.isort]
profile = "black"

View File

@@ -17,7 +17,6 @@ import pyarrow as pa
import pytest
import lancedb
from lancedb.pydantic import LanceModel, vector
def test_basic(tmp_path):
@@ -77,78 +76,30 @@ def test_ingest_pd(tmp_path):
assert db.open_table("test").name == db["test"].name
def test_ingest_iterator(tmp_path):
class PydanticSchema(LanceModel):
vector: vector(2)
item: str
price: float
arrow_schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
]
)
def make_batches():
for _ in range(5):
yield from [
# pandas
pd.DataFrame(
{
"vector": [[3.1, 4.1], [1, 1]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
),
# pylist
def test_ingest_record_batch_iterator(tmp_path):
def batch_reader():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
pa.array([[3.1, 4.1], [5.9, 26.5]]),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
# recordbatch
pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]], pa.list_(pa.float32(), 2)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
),
# pa Table
pa.Table.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]], pa.list_(pa.float32(), 2)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
),
# pydantic list
[
PydanticSchema(vector=[3.1, 4.1], item="foo", price=10.0),
PydanticSchema(vector=[5.9, 26.5], item="bar", price=20.0),
]
# TODO: test pydict separately. it is unique column number and names contraint
["vector", "item", "price"],
)
db = lancedb.connect(tmp_path)
tbl = db.create_table(
"test",
batch_reader(),
schema=pa.schema(
[
pa.field("vector", pa.list_(pa.float32())),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
]
def run_tests(schema):
db = lancedb.connect(tmp_path)
tbl = db.create_table("table2", make_batches(), schema=schema, mode="overwrite")
tbl.to_pandas()
assert tbl.search([3.1, 4.1]).limit(1).to_df()["_distance"][0] == 0.0
assert tbl.search([5.9, 26.5]).limit(1).to_df()["_distance"][0] == 0.0
tbl_len = len(tbl)
tbl.add(make_batches())
assert len(tbl) == tbl_len * 2
assert len(tbl.list_versions()) == 2
db.drop_database()
run_tests(arrow_schema)
run_tests(PydanticSchema)
),
)
def test_create_mode(tmp_path):
@@ -198,51 +149,6 @@ def test_delete_table(tmp_path):
db.create_table("test", data=data)
assert db.table_names() == ["test"]
# dropping a table that does not exist should pass
# if ignore_missing=True
db.drop_table("does_not_exist", ignore_missing=True)
def test_drop_database(tmp_path):
db = lancedb.connect(tmp_path)
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
new_data = pd.DataFrame(
{
"vector": [[5.1, 4.1], [5.9, 10.5]],
"item": ["kiwi", "avocado"],
"price": [12.0, 17.0],
}
)
db.create_table("test", data=data)
with pytest.raises(Exception):
db.create_table("test", data=data)
assert db.table_names() == ["test"]
db.create_table("new_test", data=new_data)
db.drop_database()
assert db.table_names() == []
# it should pass when no tables are present
db.create_table("test", data=new_data)
db.drop_table("test")
assert db.table_names() == []
db.drop_database()
assert db.table_names() == []
# creating an empty database with schema
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
db.create_table("empty_table", schema=schema)
# dropping a empty database should pass
db.drop_database()
assert db.table_names() == []
def test_empty_or_nonexistent_table(tmp_path):
db = lancedb.connect(tmp_path)
@@ -252,14 +158,8 @@ def test_empty_or_nonexistent_table(tmp_path):
with pytest.raises(Exception):
db.open_table("does_not_exist")
schema = pa.schema([pa.field("a", pa.int64(), nullable=False)])
test = db.create_table("test", schema=schema)
class TestModel(LanceModel):
a: int
test2 = db.create_table("test2", schema=TestModel)
assert test.schema == test2.schema
schema = pa.schema([pa.field("a", pa.int32())])
db.create_table("test", schema=schema)
def test_replace_index(tmp_path):

View File

@@ -66,7 +66,7 @@ def test_search_index(tmp_path, table):
results = ldb.fts.search_index(index, query="puppy", limit=10)
assert len(results) == 2
assert len(results[0]) == 10 # row_ids
assert len(results[1]) == 10 # _distance
assert len(results[1]) == 10 # scores
def test_create_index_from_table(tmp_path, table):

View File

@@ -20,7 +20,7 @@ import pyarrow as pa
import pydantic
import pytest
from lancedb.pydantic import PYDANTIC_VERSION, LanceModel, pydantic_to_schema, vector
from lancedb.pydantic import pydantic_to_schema, vector
@pytest.mark.skipif(
@@ -111,16 +111,10 @@ def test_fixed_size_list_field():
li: List[int]
data = TestModel(vec=list(range(16)), li=[1, 2, 3])
if PYDANTIC_VERSION >= (2,):
assert json.loads(data.model_dump_json()) == {
"vec": list(range(16)),
"li": [1, 2, 3],
}
else:
assert data.dict() == {
"vec": list(range(16)),
"li": [1, 2, 3],
}
assert json.loads(data.model_dump_json()) == {
"vec": list(range(16)),
"li": [1, 2, 3],
}
schema = pydantic_to_schema(TestModel)
assert schema == pa.schema(
@@ -130,11 +124,7 @@ def test_fixed_size_list_field():
]
)
if PYDANTIC_VERSION >= (2,):
json_schema = TestModel.model_json_schema()
else:
json_schema = TestModel.schema()
json_schema = TestModel.model_json_schema()
assert json_schema == {
"properties": {
"vec": {
@@ -163,13 +153,3 @@ def test_fixed_size_list_validation():
TestModel(vec=range(7))
TestModel(vec=range(8))
def test_lance_model():
class TestModel(LanceModel):
vec: vector(16)
li: List[int]
schema = pydantic_to_schema(TestModel)
assert schema == TestModel.to_arrow_schema()
assert TestModel.field_names() == ["vec", "li"]

View File

@@ -20,7 +20,6 @@ import pyarrow as pa
import pytest
from lancedb.db import LanceDBConnection
from lancedb.pydantic import LanceModel, vector
from lancedb.query import LanceQueryBuilder, Query
from lancedb.table import LanceTable
@@ -65,24 +64,6 @@ def table(tmp_path) -> MockTable:
return MockTable(tmp_path)
def test_cast(table):
class TestModel(LanceModel):
vector: vector(2)
id: int
str_field: str
float_field: float
q = LanceQueryBuilder(table, [0, 0], "vector").limit(1)
results = q.to_pydantic(TestModel)
assert len(results) == 1
r0 = results[0]
assert isinstance(r0, TestModel)
assert r0.id == 1
assert r0.vector == [1, 2]
assert r0.str_field == "a"
assert r0.float_field == 1.0
def test_query_builder(table):
df = LanceQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df()
assert df["id"].values[0] == 1
@@ -108,11 +89,11 @@ def test_query_builder_with_metric(table):
.limit(1)
.to_df()
)
assert df_cosine._distance[0] == pytest.approx(
assert df_cosine.score[0] == pytest.approx(
cosine_distance(query, df_cosine.vector[0]),
abs=1e-6,
)
assert 0 <= df_cosine._distance[0] <= 1
assert 0 <= df_cosine.score[0] <= 1
def test_query_builder_with_different_vector_column():

View File

@@ -13,16 +13,15 @@
import functools
from pathlib import Path
from typing import List
from unittest.mock import PropertyMock, patch
import numpy as np
import pandas as pd
import pyarrow as pa
import pytest
from lance.vector import vec_to_table
from lancedb.db import LanceDBConnection
from lancedb.pydantic import LanceModel, vector
from lancedb.table import LanceTable
@@ -136,23 +135,12 @@ def test_add(db):
_add(table, schema)
def test_add_pydantic_model(db):
class TestModel(LanceModel):
vector: vector(16)
li: List[int]
data = TestModel(vector=list(range(16)), li=[1, 2, 3])
table = LanceTable.create(db, "test", data=[data])
assert len(table) == 1
assert table.schema == TestModel.to_arrow_schema()
def _add(table, schema):
# table = LanceTable(db, "test")
assert len(table) == 2
table.add([{"vector": [6.3, 100.5], "item": "new", "price": 30.0}])
assert len(table) == 3
count = table.add([{"vector": [6.3, 100.5], "item": "new", "price": 30.0}])
assert count == 3
expected = pa.Table.from_arrays(
[
@@ -268,15 +256,3 @@ def test_add_with_nans(db):
arrow_tbl = table.to_lance().to_table(filter="item == 'bar'")
v = arrow_tbl["vector"].to_pylist()[0]
assert np.allclose(v, np.array([0.0, 0.0]))
def test_restore(db):
table = LanceTable.create(
db,
"my_table",
data=[{"vector": [1.1, 0.9], "type": "vector"}],
)
table.add([{"vector": [0.5, 0.2], "type": "vector"}])
table.restore(1)
assert len(table.list_versions()) == 3
assert len(table) == 1

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb-node"
version = "0.2.3"
version = "0.1.13"
description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
edition = "2018"
@@ -13,7 +13,6 @@ crate-type = ["cdylib"]
arrow-array = { workspace = true }
arrow-ipc = { workspace = true }
arrow-schema = { workspace = true }
conv = "0.3.3"
once_cell = "1"
futures = "0.3"
half = { workspace = true }
@@ -22,6 +21,5 @@ vectordb = { path = "../../vectordb" }
tokio = { version = "1.23", features = ["rt-multi-thread"] }
neon = {version = "0.10.1", default-features = false, features = ["channel-api", "napi-6", "promise-api", "task-api"] }
object_store = { workspace = true, features = ["aws"] }
snafu = { workspace = true }
async-trait = "0"
env_logger = "0"

View File

@@ -13,46 +13,50 @@
// limitations under the License.
use std::io::Cursor;
use std::ops::Deref;
use std::sync::Arc;
use arrow_array::RecordBatch;
use arrow_array::cast::as_list_array;
use arrow_array::{Array, FixedSizeListArray, RecordBatch};
use arrow_ipc::reader::FileReader;
use arrow_ipc::writer::FileWriter;
use arrow_schema::SchemaRef;
use vectordb::table::VECTOR_COLUMN_NAME;
use arrow_schema::{DataType, Field, Schema};
use lance::arrow::{FixedSizeListArrayExt, RecordBatchExt};
use crate::error::{MissingColumnSnafu, Result};
use snafu::prelude::*;
pub(crate) fn convert_record_batch(record_batch: RecordBatch) -> RecordBatch {
let column = record_batch
.column_by_name("vector")
.cloned()
.expect("vector column is missing");
// TODO: we should just consume the underlaying js buffer in the future instead of this arrow around a bunch of times
let arr = as_list_array(column.as_ref());
let list_size = arr.values().len() / record_batch.num_rows();
let r =
FixedSizeListArray::try_new_from_values(arr.values().to_owned(), list_size as i32).unwrap();
fn validate_vector_column(record_batch: &RecordBatch) -> Result<()> {
record_batch
.column_by_name(VECTOR_COLUMN_NAME)
.map(|_| ())
.context(MissingColumnSnafu { name: VECTOR_COLUMN_NAME })
let schema = Arc::new(Schema::new(vec![Field::new(
"vector",
DataType::FixedSizeList(
Arc::new(Field::new("item", DataType::Float32, true)),
list_size as i32,
),
true,
)]));
let mut new_batch = RecordBatch::try_new(schema.clone(), vec![Arc::new(r)]).unwrap();
if record_batch.num_columns() > 1 {
let rb = record_batch.drop_column("vector").unwrap();
new_batch = new_batch.merge(&rb).unwrap();
}
new_batch
}
pub(crate) fn arrow_buffer_to_record_batch(slice: &[u8]) -> Result<(Vec<RecordBatch>, SchemaRef)> {
pub(crate) fn arrow_buffer_to_record_batch(slice: &[u8]) -> Vec<RecordBatch> {
let mut batches: Vec<RecordBatch> = Vec::new();
let file_reader = FileReader::try_new(Cursor::new(slice), None)?;
let schema = file_reader.schema().clone();
let fr = FileReader::try_new(Cursor::new(slice), None);
let file_reader = fr.unwrap();
for b in file_reader {
let record_batch = b?;
validate_vector_column(&record_batch)?;
let record_batch = convert_record_batch(b.unwrap());
batches.push(record_batch);
}
Ok((batches, schema))
}
pub(crate) fn record_batch_to_buffer(batches: Vec<RecordBatch>) -> Result<Vec<u8>> {
if batches.is_empty() {
return Ok(Vec::new());
}
let schema = batches.get(0).unwrap().schema();
let mut fr = FileWriter::try_new(Vec::new(), schema.deref())?;
for batch in batches.iter() {
fr.write(batch)?
}
fr.finish()?;
Ok(fr.into_inner()?)
batches
}

View File

@@ -1,96 +0,0 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow_schema::ArrowError;
use neon::context::Context;
use neon::prelude::NeonResult;
use snafu::Snafu;
#[derive(Debug, Snafu)]
#[snafu(visibility(pub(crate)))]
pub enum Error {
#[snafu(display("column '{name}' is missing"))]
MissingColumn { name: String },
#[snafu(display("{name}: {message}"))]
RangeError { name: String, message: String },
#[snafu(display("{index_type} is not a valid index type"))]
InvalidIndexType { index_type: String },
#[snafu(display("{message}"))]
LanceDB { message: String },
#[snafu(display("{message}"))]
Neon { message: String },
}
pub type Result<T> = std::result::Result<T, Error>;
impl From<vectordb::error::Error> for Error {
fn from(e: vectordb::error::Error) -> Self {
Self::LanceDB {
message: e.to_string(),
}
}
}
impl From<lance::Error> for Error {
fn from(e: lance::Error) -> Self {
Self::LanceDB {
message: e.to_string(),
}
}
}
impl From<ArrowError> for Error {
fn from(value: ArrowError) -> Self {
Self::LanceDB {
message: value.to_string(),
}
}
}
impl From<neon::result::Throw> for Error {
fn from(value: neon::result::Throw) -> Self {
Self::Neon {
message: value.to_string(),
}
}
}
impl<T> From<std::sync::mpsc::SendError<T>> for Error {
fn from(value: std::sync::mpsc::SendError<T>) -> Self {
Self::Neon {
message: value.to_string(),
}
}
}
/// ResultExt is used to transform a [`Result`] into a [`NeonResult`],
/// so it can be returned as a JavaScript error
/// Copied from [Neon](https://github.com/neon-bindings/neon/blob/4c2e455a9e6814f1ba0178616d63caec7f4df317/crates/neon/src/result/mod.rs#L88)
pub trait ResultExt<T> {
fn or_throw<'a, C: Context<'a>>(self, cx: &mut C) -> NeonResult<T>;
}
/// Implement ResultExt for the std Result so it can be used any Result type
impl<T, E> ResultExt<T> for std::result::Result<T, E>
where
E: std::fmt::Display,
{
fn or_throw<'a, C: Context<'a>>(self, cx: &mut C) -> NeonResult<T> {
match self {
Ok(value) => Ok(value),
Err(error) => cx.throw_error(error.to_string()),
}
}
}

View File

@@ -12,38 +12,40 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::convert::TryFrom;
use lance::index::vector::ivf::IvfBuildParams;
use lance::index::vector::pq::PQBuildParams;
use lance::index::vector::MetricType;
use neon::context::FunctionContext;
use neon::prelude::*;
use std::convert::TryFrom;
use vectordb::index::vector::{IvfPQIndexBuilder, VectorIndexBuilder};
use crate::error::Error::InvalidIndexType;
use crate::error::ResultExt;
use crate::neon_ext::js_object_ext::JsObjectExt;
use crate::runtime;
use crate::table::JsTable;
use crate::{runtime, JsTable};
pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let index_params = cx.argument::<JsObject>(0)?;
let index_params_builder = get_index_params_builder(&mut cx, index_params).or_throw(&mut cx)?;
let index_params_builder = get_index_params_builder(&mut cx, index_params).unwrap();
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let channel = cx.channel();
let mut table = js_table.table.clone();
let table = js_table.table.clone();
rt.spawn(async move {
let idx_result = table.create_index(&index_params_builder).await;
rt.block_on(async move {
let add_result = table
.lock()
.unwrap()
.create_index(&index_params_builder)
.await;
deferred.settle_with(&channel, move |mut cx| {
idx_result.or_throw(&mut cx)?;
Ok(cx.boxed(JsTable::from(table)))
add_result
.map(|_| cx.undefined())
.or_else(|err| cx.throw_error(err.to_string()))
});
});
Ok(promise)
@@ -52,21 +54,27 @@ pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsP
fn get_index_params_builder(
cx: &mut FunctionContext,
obj: Handle<JsObject>,
) -> crate::error::Result<impl VectorIndexBuilder> {
let idx_type = obj.get::<JsString, _, _>(cx, "type")?.value(cx);
) -> Result<impl VectorIndexBuilder, String> {
let idx_type = obj
.get::<JsString, _, _>(cx, "type")
.map_err(|t| t.to_string())?
.value(cx);
match idx_type.as_str() {
"ivf_pq" => {
let mut index_builder: IvfPQIndexBuilder = IvfPQIndexBuilder::new();
let mut pq_params = PQBuildParams::default();
obj.get_opt::<JsString, _, _>(cx, "column")?
obj.get_opt::<JsString, _, _>(cx, "column")
.map_err(|t| t.to_string())?
.map(|s| index_builder.column(s.value(cx)));
obj.get_opt::<JsString, _, _>(cx, "index_name")?
obj.get_opt::<JsString, _, _>(cx, "index_name")
.map_err(|t| t.to_string())?
.map(|s| index_builder.index_name(s.value(cx)));
obj.get_opt::<JsString, _, _>(cx, "metric_type")?
obj.get_opt::<JsString, _, _>(cx, "metric_type")
.map_err(|t| t.to_string())?
.map(|s| MetricType::try_from(s.value(cx).as_str()))
.map(|mt| {
let metric_type = mt.unwrap();
@@ -74,8 +82,15 @@ fn get_index_params_builder(
pq_params.metric_type = metric_type;
});
let num_partitions = obj.get_opt_usize(cx, "num_partitions")?;
let max_iters = obj.get_opt_usize(cx, "max_iters")?;
let num_partitions = obj
.get_opt::<JsNumber, _, _>(cx, "num_partitions")
.map_err(|t| t.to_string())?
.map(|s| s.value(cx) as usize);
let max_iters = obj
.get_opt::<JsNumber, _, _>(cx, "max_iters")
.map_err(|t| t.to_string())?
.map(|s| s.value(cx) as usize);
num_partitions.map(|np| {
let max_iters = max_iters.unwrap_or(50);
@@ -87,28 +102,32 @@ fn get_index_params_builder(
index_builder.ivf_params(ivf_params)
});
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")?
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")
.map_err(|t| t.to_string())?
.map(|s| pq_params.use_opq = s.value(cx));
obj.get_opt_usize(cx, "num_sub_vectors")?
.map(|s| pq_params.num_sub_vectors = s);
obj.get_opt::<JsNumber, _, _>(cx, "num_sub_vectors")
.map_err(|t| t.to_string())?
.map(|s| pq_params.num_sub_vectors = s.value(cx) as usize);
obj.get_opt_usize(cx, "num_bits")?
.map(|s| pq_params.num_bits = s);
obj.get_opt::<JsNumber, _, _>(cx, "num_bits")
.map_err(|t| t.to_string())?
.map(|s| pq_params.num_bits = s.value(cx) as usize);
obj.get_opt_usize(cx, "max_iters")?
.map(|s| pq_params.max_iters = s);
obj.get_opt::<JsNumber, _, _>(cx, "max_iters")
.map_err(|t| t.to_string())?
.map(|s| pq_params.max_iters = s.value(cx) as usize);
obj.get_opt_usize(cx, "max_opq_iters")?
.map(|s| pq_params.max_opq_iters = s);
obj.get_opt::<JsNumber, _, _>(cx, "max_opq_iters")
.map_err(|t| t.to_string())?
.map(|s| pq_params.max_opq_iters = s.value(cx) as usize);
obj.get_opt::<JsBoolean, _, _>(cx, "replace")?
obj.get_opt::<JsBoolean, _, _>(cx, "replace")
.map_err(|t| t.to_string())?
.map(|s| index_builder.replace(s.value(cx)));
Ok(index_builder)
}
index_type => Err(InvalidIndexType {
index_type: index_type.into(),
}),
t => Err(format!("{} is not a valid index type", t).to_string()),
}
}

View File

@@ -12,30 +12,34 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use std::collections::HashMap;
use std::convert::TryFrom;
use std::ops::Deref;
use std::sync::{Arc, Mutex};
use arrow_array::{Float32Array, RecordBatchIterator};
use arrow_ipc::writer::FileWriter;
use async_trait::async_trait;
use futures::{TryFutureExt, TryStreamExt};
use lance::dataset::{ReadParams, WriteMode, WriteParams};
use lance::index::vector::MetricType;
use lance::io::object_store::ObjectStoreParams;
use neon::prelude::*;
use neon::types::buffer::TypedArray;
use object_store::aws::{AwsCredential, AwsCredentialProvider};
use object_store::CredentialProvider;
use once_cell::sync::OnceCell;
use tokio::runtime::Runtime;
use vectordb::database::Database;
use vectordb::table::ReadParams;
use vectordb::error::Error;
use vectordb::table::{OpenTableParams, Table};
use crate::error::ResultExt;
use crate::query::JsQuery;
use crate::table::JsTable;
use crate::arrow::arrow_buffer_to_record_batch;
mod arrow;
mod convert;
mod error;
mod index;
mod neon_ext;
mod query;
mod table;
struct JsDatabase {
database: Arc<Database>,
@@ -43,8 +47,14 @@ struct JsDatabase {
impl Finalize for JsDatabase {}
struct JsTable {
table: Arc<Mutex<Table>>,
}
impl Finalize for JsTable {}
// TODO: object_store didn't export this type so I copied it.
// Make a request to object_store to export this type
// Make a requiest to object_store to export this type
#[derive(Debug)]
pub struct StaticCredentialProvider<T> {
credential: Arc<T>,
@@ -76,7 +86,7 @@ fn runtime<'a, C: Context<'a>>(cx: &mut C) -> NeonResult<&'static Runtime> {
LOG.get_or_init(|| env_logger::init());
RUNTIME.get_or_try_init(|| Runtime::new().or_throw(cx))
RUNTIME.get_or_try_init(|| Runtime::new().or_else(|err| cx.throw_error(err.to_string())))
}
fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
@@ -91,7 +101,7 @@ fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
deferred.settle_with(&channel, move |mut cx| {
let db = JsDatabase {
database: Arc::new(database.or_throw(&mut cx)?),
database: Arc::new(database.or_else(|err| cx.throw_error(err.to_string()))?),
};
Ok(cx.boxed(db))
});
@@ -113,7 +123,7 @@ fn database_table_names(mut cx: FunctionContext) -> JsResult<JsPromise> {
let tables_rst = database.table_names().await;
deferred.settle_with(&channel, move |mut cx| {
let tables = tables_rst.or_throw(&mut cx)?;
let tables = tables_rst.or_else(|err| cx.throw_error(err.to_string()))?;
let table_names = convert::vec_str_to_array(&tables, &mut cx);
table_names
});
@@ -121,28 +131,26 @@ fn database_table_names(mut cx: FunctionContext) -> JsResult<JsPromise> {
Ok(promise)
}
/// Get AWS creds arguments from the context
/// Consumes 3 arguments
fn get_aws_creds(
fn get_aws_creds<T>(
cx: &mut FunctionContext,
arg_starting_location: i32,
) -> NeonResult<Option<AwsCredentialProvider>> {
) -> Result<Option<AwsCredentialProvider>, NeonResult<T>> {
let secret_key_id = cx
.argument_opt(arg_starting_location)
.filter(|arg| arg.is_a::<JsString, _>(cx))
.and_then(|arg| arg.downcast_or_throw::<JsString, FunctionContext>(cx).ok())
.map(|arg| arg.downcast_or_throw::<JsString, FunctionContext>(cx).ok())
.flatten()
.map(|v| v.value(cx));
let secret_key = cx
.argument_opt(arg_starting_location + 1)
.filter(|arg| arg.is_a::<JsString, _>(cx))
.and_then(|arg| arg.downcast_or_throw::<JsString, FunctionContext>(cx).ok())
.map(|arg| arg.downcast_or_throw::<JsString, FunctionContext>(cx).ok())
.flatten()
.map(|v| v.value(cx));
let temp_token = cx
.argument_opt(arg_starting_location + 2)
.filter(|arg| arg.is_a::<JsString, _>(cx))
.and_then(|arg| arg.downcast_or_throw::<JsString, FunctionContext>(cx).ok())
.map(|arg| arg.downcast_or_throw::<JsString, FunctionContext>(cx).ok())
.flatten()
.map(|v| v.value(cx));
match (secret_key_id, secret_key, temp_token) {
@@ -154,21 +162,7 @@ fn get_aws_creds(
}),
))),
(None, None, None) => Ok(None),
_ => cx.throw_error("Invalid credentials configuration"),
}
}
/// Get AWS region arguments from the context
fn get_aws_region(cx: &mut FunctionContext, arg_location: i32) -> NeonResult<Option<String>> {
let region = cx
.argument_opt(arg_location)
.filter(|arg| arg.is_a::<JsString, _>(cx))
.map(|arg| arg.downcast_or_throw::<JsString, FunctionContext>(cx));
match region {
Some(Ok(region)) => Ok(Some(region.value(cx))),
None => Ok(None),
Some(Err(e)) => Err(e),
_ => Err(cx.throw_error("Invalid credentials configuration")),
}
}
@@ -178,14 +172,14 @@ fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
.downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?;
let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
let aws_creds = get_aws_creds(&mut cx, 1)?;
let aws_creds = match get_aws_creds(&mut cx, 1) {
Ok(creds) => creds,
Err(err) => return err,
};
let aws_region = get_aws_region(&mut cx, 4)?;
let params = ReadParams {
let param = ReadParams {
store_options: Some(ObjectStoreParams {
aws_credentials: aws_creds,
aws_region,
..ObjectStoreParams::default()
}),
..ReadParams::default()
@@ -197,11 +191,20 @@ fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
let (deferred, promise) = cx.promise();
rt.spawn(async move {
let table_rst = database.open_table_with_params(&table_name, &params).await;
let table_rst = database
.open_table_with_params(
&table_name,
OpenTableParams {
open_table_params: param,
},
)
.await;
deferred.settle_with(&channel, move |mut cx| {
let js_table = JsTable::from(table_rst.or_throw(&mut cx)?);
Ok(cx.boxed(js_table))
let table = Arc::new(Mutex::new(
table_rst.or_else(|err| cx.throw_error(err.to_string()))?,
));
Ok(cx.boxed(JsTable { table }))
});
});
Ok(promise)
@@ -221,24 +224,245 @@ fn database_drop_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
rt.spawn(async move {
let result = database.drop_table(&table_name).await;
deferred.settle_with(&channel, move |mut cx| {
result.or_throw(&mut cx)?;
result.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(cx.null())
});
});
Ok(promise)
}
fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let query_obj = cx.argument::<JsObject>(0)?;
let limit = query_obj
.get::<JsNumber, _, _>(&mut cx, "_limit")?
.value(&mut cx);
let select = query_obj
.get_opt::<JsArray, _, _>(&mut cx, "_select")?
.map(|arr| {
let js_array = arr.deref();
let mut projection_vec: Vec<String> = Vec::new();
for i in 0..js_array.len(&mut cx) {
let entry: Handle<JsString> = js_array.get(&mut cx, i).unwrap();
projection_vec.push(entry.value(&mut cx));
}
projection_vec
});
let filter = query_obj
.get_opt::<JsString, _, _>(&mut cx, "_filter")?
.map(|s| s.value(&mut cx));
let refine_factor = query_obj
.get_opt::<JsNumber, _, _>(&mut cx, "_refineFactor")?
.map(|s| s.value(&mut cx))
.map(|i| i as u32);
let nprobes = query_obj
.get::<JsNumber, _, _>(&mut cx, "_nprobes")?
.value(&mut cx) as usize;
let metric_type = query_obj
.get_opt::<JsString, _, _>(&mut cx, "_metricType")?
.map(|s| s.value(&mut cx))
.map(|s| MetricType::try_from(s.as_str()).unwrap());
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
let query_vector = query_obj.get::<JsArray, _, _>(&mut cx, "_queryVector")?;
let query = convert::js_array_to_vec(query_vector.deref(), &mut cx);
rt.spawn(async move {
let builder = table
.lock()
.unwrap()
.search(Float32Array::from(query))
.limit(limit as usize)
.refine_factor(refine_factor)
.nprobes(nprobes)
.filter(filter)
.metric_type(metric_type)
.select(select);
let record_batch_stream = builder.execute();
let results = record_batch_stream
.and_then(|stream| stream.try_collect::<Vec<_>>().map_err(Error::from))
.await;
deferred.settle_with(&channel, move |mut cx| {
let results = results.or_else(|err| cx.throw_error(err.to_string()))?;
let vector: Vec<u8> = Vec::new();
if results.is_empty() {
return cx.buffer(0);
}
let schema = results.get(0).unwrap().schema();
let mut fr = FileWriter::try_new(vector, schema.deref())
.or_else(|err| cx.throw_error(err.to_string()))?;
for batch in results.iter() {
fr.write(batch)
.or_else(|err| cx.throw_error(err.to_string()))?;
}
fr.finish().or_else(|err| cx.throw_error(err.to_string()))?;
let buf = fr
.into_inner()
.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(JsBuffer::external(&mut cx, buf))
});
});
Ok(promise)
}
fn table_create(mut cx: FunctionContext) -> JsResult<JsPromise> {
let db = cx
.this()
.downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?;
let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
let buffer = cx.argument::<JsBuffer>(1)?;
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx));
let schema = batches[0].schema();
// Write mode
let mode = match cx.argument::<JsString>(2)?.value(&mut cx).as_str() {
"overwrite" => WriteMode::Overwrite,
"append" => WriteMode::Append,
"create" => WriteMode::Create,
_ => return cx.throw_error("Table::create only supports 'overwrite' and 'create' modes"),
};
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let database = db.database.clone();
let aws_creds = match get_aws_creds(&mut cx, 3) {
Ok(creds) => creds,
Err(err) => return err,
};
let params = WriteParams {
store_params: Some(ObjectStoreParams {
aws_credentials: aws_creds,
..ObjectStoreParams::default()
}),
mode: mode,
..WriteParams::default()
};
rt.block_on(async move {
let batch_reader = RecordBatchIterator::new(batches.into_iter().map(Ok), schema);
let table_rst = database
.create_table(&table_name, batch_reader, Some(params))
.await;
deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new(
table_rst.or_else(|err| cx.throw_error(err.to_string()))?,
));
Ok(cx.boxed(JsTable { table }))
});
});
Ok(promise)
}
fn table_add(mut cx: FunctionContext) -> JsResult<JsPromise> {
let write_mode_map: HashMap<&str, WriteMode> = HashMap::from([
("create", WriteMode::Create),
("append", WriteMode::Append),
("overwrite", WriteMode::Overwrite),
]);
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let buffer = cx.argument::<JsBuffer>(0)?;
let write_mode = cx.argument::<JsString>(1)?.value(&mut cx);
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx));
let schema = batches[0].schema();
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
let write_mode = write_mode_map.get(write_mode.as_str()).cloned();
let aws_creds = match get_aws_creds(&mut cx, 2) {
Ok(creds) => creds,
Err(err) => return err,
};
let params = WriteParams {
store_params: Some(ObjectStoreParams {
aws_credentials: aws_creds,
..ObjectStoreParams::default()
}),
mode: write_mode.unwrap_or(WriteMode::Append),
..WriteParams::default()
};
rt.block_on(async move {
let batch_reader = RecordBatchIterator::new(batches.into_iter().map(Ok), schema);
let add_result = table.lock().unwrap().add(batch_reader, Some(params)).await;
deferred.settle_with(&channel, move |mut cx| {
let _added = add_result.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(cx.boolean(true))
});
});
Ok(promise)
}
fn table_count_rows(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
rt.block_on(async move {
let num_rows_result = table.lock().unwrap().count_rows().await;
deferred.settle_with(&channel, move |mut cx| {
let num_rows = num_rows_result.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(cx.number(num_rows as f64))
});
});
Ok(promise)
}
fn table_delete(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
let predicate = cx.argument::<JsString>(0)?.value(&mut cx);
let delete_result = rt.block_on(async move { table.lock().unwrap().delete(&predicate).await });
deferred.settle_with(&channel, move |mut cx| {
delete_result.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(cx.undefined())
});
Ok(promise)
}
#[neon::main]
fn main(mut cx: ModuleContext) -> NeonResult<()> {
cx.export_function("databaseNew", database_new)?;
cx.export_function("databaseTableNames", database_table_names)?;
cx.export_function("databaseOpenTable", database_open_table)?;
cx.export_function("databaseDropTable", database_drop_table)?;
cx.export_function("tableSearch", JsQuery::js_search)?;
cx.export_function("tableCreate", JsTable::js_create)?;
cx.export_function("tableAdd", JsTable::js_add)?;
cx.export_function("tableCountRows", JsTable::js_count_rows)?;
cx.export_function("tableDelete", JsTable::js_delete)?;
cx.export_function("tableSearch", table_search)?;
cx.export_function("tableCreate", table_create)?;
cx.export_function("tableAdd", table_add)?;
cx.export_function("tableCountRows", table_count_rows)?;
cx.export_function("tableDelete", table_delete)?;
cx.export_function(
"tableCreateVectorIndex",
index::vector::table_create_vector_index,

View File

@@ -1,15 +0,0 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
pub mod js_object_ext;

View File

@@ -1,82 +0,0 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::error::{Error, Result};
use neon::prelude::*;
// extends neon's [JsObject] with helper functions to extract properties
pub trait JsObjectExt {
fn get_opt_u32(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<u32>>;
fn get_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<usize>;
fn get_opt_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<usize>>;
}
impl JsObjectExt for JsObject {
fn get_opt_u32(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<u32>> {
let val_opt = self
.get_opt::<JsNumber, _, _>(cx, key)?
.map(|s| f64_to_u32_safe(s.value(cx), key));
val_opt.transpose()
}
fn get_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<usize> {
let val = self.get::<JsNumber, _, _>(cx, key)?.value(cx);
f64_to_usize_safe(val, key)
}
fn get_opt_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<usize>> {
let val_opt = self
.get_opt::<JsNumber, _, _>(cx, key)?
.map(|s| f64_to_usize_safe(s.value(cx), key));
val_opt.transpose()
}
}
fn f64_to_u32_safe(n: f64, key: &str) -> Result<u32> {
use conv::*;
n.approx_as::<u32>().map_err(|e| match e {
FloatError::NegOverflow(_) => Error::RangeError {
name: key.into(),
message: "must be > 0".to_string(),
},
FloatError::PosOverflow(_) => Error::RangeError {
name: key.into(),
message: format!("must be < {}", u32::MAX),
},
FloatError::NotANumber(_) => Error::RangeError {
name: key.into(),
message: "not a valid number".to_string(),
},
})
}
fn f64_to_usize_safe(n: f64, key: &str) -> Result<usize> {
use conv::*;
n.approx_as::<usize>().map_err(|e| match e {
FloatError::NegOverflow(_) => Error::RangeError {
name: key.into(),
message: "must be > 0".to_string(),
},
FloatError::PosOverflow(_) => Error::RangeError {
name: key.into(),
message: format!("must be < {}", usize::MAX),
},
FloatError::NotANumber(_) => Error::RangeError {
name: key.into(),
message: "not a valid number".to_string(),
},
})
}

Some files were not shown because too many files have changed in this diff Show More