Compare commits

..

1 Commits

Author SHA1 Message Date
Lei Xu
2704a4522c Bump to 0.1.11 2023-07-17 12:45:17 -07:00
171 changed files with 1720 additions and 14847 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.3.9
current_version = 0.1.13
commit = True
message = Bump version: {current_version} → {new_version}
tag = True

View File

@@ -25,35 +25,31 @@ jobs:
bump-version:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.10"
- name: Bump version, create tag and commit
run: |
pip install bump2version
bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
tags: true
- uses: ./.github/workflows/update_package_lock
if: ${{ inputs.dry_run }} == "false"
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
- name: Check out main
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.10"
- name: Bump version, create tag and commit
run: |
pip install bump2version
bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
tags: true

View File

@@ -9,11 +9,6 @@ on:
- node/**
- rust/ffi/node/**
- .github/workflows/node.yml
- docker-compose.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
@@ -75,7 +70,7 @@ jobs:
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
npm install --no-save ./dist/vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
@@ -106,62 +101,9 @@ jobs:
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
npm install --no-save ./dist/vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: |
npm run test
aws-integtest:
timeout-minutes: 45
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: node
env:
AWS_ACCESS_KEY_ID: ACCESSKEY
AWS_SECRET_ACCESS_KEY: SECRETKEY
AWS_DEFAULT_REGION: us-west-2
# this one is for s3
AWS_ENDPOINT: http://localhost:4566
# this one is for dynamodb
DYNAMODB_ENDPOINT: http://localhost:4566
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 18
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: start local stack
run: docker compose -f ../docker-compose.yml up -d --wait
- name: create s3
run: aws s3 mb s3://lancedb-integtest --endpoint $AWS_ENDPOINT
- name: create ddb
run: |
aws dynamodb create-table \
--table-name lancedb-integtest \
--attribute-definitions '[{"AttributeName": "base_uri", "AttributeType": "S"}, {"AttributeName": "version", "AttributeType": "N"}]' \
--key-schema '[{"AttributeName": "base_uri", "KeyType": "HASH"}, {"AttributeName": "version", "KeyType": "RANGE"}]' \
--provisioned-throughput '{"ReadCapacityUnits": 10, "WriteCapacityUnits": 10}' \
--endpoint-url $DYNAMODB_ENDPOINT
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: npm run integration-test

View File

@@ -38,7 +38,7 @@ jobs:
node/vectordb-*.tgz
node-macos:
runs-on: macos-13
runs-on: macos-12
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
@@ -46,51 +46,75 @@ jobs:
matrix:
target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3
with:
name: native-darwin
path: |
node/dist/lancedb-vectordb-darwin*.tgz
- name: Checkout
uses: actions/checkout@v3
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3
with:
name: darwin-native
path: |
node/dist/vectordb-darwin*.tgz
node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
name: node-linux (${{ matrix.arch}}-unknown-linux-${{ matrix.libc }})
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
runner: buildjet-4vcpu-ubuntu-2204-arm
libc:
- gnu
# TODO: re-enable musl once we have refactored to pre-built containers
# Right now we have to build node from source which is too expensive.
# - musl
arch:
- x86_64
# Building on aarch64 is too slow for now
# - aarch64
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
with:
name: native-linux
path: |
node/dist/lancedb-vectordb-linux*.tgz
- name: Checkout
uses: actions/checkout@v3
- name: Change owner to root (for npm)
# The docker container is run as root, so we need the files to be owned by root
# Otherwise npm is a nightmare: https://github.com/npm/cli/issues/3773
run: sudo chown -R root:root .
- name: Set up QEMU
if: ${{ matrix.arch == 'aarch64' }}
uses: docker/setup-qemu-action@v2
with:
platforms: arm64
- name: Build Linux GNU native node modules
if: ${{ matrix.libc == 'gnu' }}
run: |
docker run \
-v $(pwd):/io -w /io \
rust:1.70-bookworm \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-gnu
- name: Build musl Linux native node modules
if: ${{ matrix.libc == 'musl' }}
run: |
docker run --platform linux/arm64/v8 \
-v $(pwd):/io -w /io \
quay.io/pypa/musllinux_1_1_${{ matrix.arch }} \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-musl
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
with:
name: linux-native
path: |
node/dist/vectordb-linux*.tgz
node-windows:
runs-on: windows-2022
@@ -121,12 +145,12 @@ jobs:
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v3
with:
name: native-windows
name: windows-native
path: |
node/dist/lancedb-vectordb-win32*.tgz
node/dist/vectordb-win32*.tgz
release:
needs: [node, node-macos, node-linux, node-windows]
needs: [node, node-macos, node-linux]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -137,7 +161,6 @@ jobs:
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: 'https://registry.npmjs.org'
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
@@ -146,18 +169,3 @@ jobs:
for filename in *.tgz; do
npm publish $filename
done
update-package-lock:
needs: [release]
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -8,11 +8,6 @@ on:
paths:
- python/**
- .github/workflows/python.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs:
linux:
timeout-minutes: 30
@@ -35,21 +30,20 @@ jobs:
python-version: 3.${{ matrix.python-minor-version }}
- name: Install lancedb
run: |
pip install -e .[tests]
pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock ruff
- name: Lint
run: ruff format --check .
pip install pytest pytest-mock black isort
- name: Black
run: black --check --diff --no-color --quiet .
- name: isort
run: isort --check --diff --quiet .
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
run: pytest -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
mac:
timeout-minutes: 30
strategy:
matrix:
mac-runner: [ "macos-13", "macos-13-xlarge" ]
runs-on: "${{ matrix.mac-runner }}"
runs-on: "macos-12"
defaults:
run:
shell: bash
@@ -65,38 +59,10 @@ jobs:
python-version: "3.11"
- name: Install lancedb
run: |
pip install -e .[tests]
pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
pydantic1x:
timeout-minutes: 30
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.9
- name: Install lancedb
run: |
pip install "pydantic<2"
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort
- name: Black
run: black --check --diff --no-color --quiet .
- name: isort
run: isort --check --diff --quiet .
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
run: pytest -x -v --durations=30 tests

View File

@@ -10,10 +10,6 @@ on:
- rust/**
- .github/workflows/rust.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
@@ -48,11 +44,8 @@ jobs:
- name: Run tests
run: cargo test --all-features
macos:
runs-on: macos-12
timeout-minutes: 30
strategy:
matrix:
mac-runner: [ "macos-13", "macos-13-xlarge" ]
runs-on: "${{ matrix.mac-runner }}"
defaults:
run:
shell: bash

View File

@@ -1,26 +0,0 @@
name: Trigger vectordb-recipers workflow
on:
push:
branches: [ main ]
pull_request:
paths:
- .github/workflows/trigger-vectordb-recipes.yml
workflow_dispatch:
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Trigger vectordb-recipes workflow
uses: actions/github-script@v6
with:
github-token: ${{ secrets.VECTORDB_RECIPES_ACTION_TOKEN }}
script: |
const result = await github.rest.actions.createWorkflowDispatch({
owner: 'lancedb',
repo: 'vectordb-recipes',
workflow_id: 'examples-test.yml',
ref: 'main'
});
console.log(result);

View File

@@ -1,33 +0,0 @@
name: update_package_lock
description: "Update node's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./node
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -1,19 +0,0 @@
name: Update package-lock.json
on:
workflow_dispatch:
jobs:
publish:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -1,28 +1,16 @@
[workspace]
members = ["rust/ffi/node", "rust/vectordb"]
# Python package needs to be built by maturin.
exclude = ["python"]
members = [
"rust/vectordb",
"rust/ffi/node"
]
resolver = "2"
[workspace.dependencies]
lance = { "version" = "=0.8.17", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.8.17" }
lance-linalg = { "version" = "=0.8.17" }
lance-testing = { "version" = "=0.8.17" }
# Note that this one does not include pyarrow
arrow = { version = "47.0.0", optional = false }
arrow-array = "47.0"
arrow-data = "47.0"
arrow-ipc = "47.0"
arrow-ord = "47.0"
arrow-schema = "47.0"
arrow-arith = "47.0"
arrow-cast = "47.0"
chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [
"num-traits",
] }
log = "0.4"
object_store = "0.7.1"
snafu = "0.7.4"
url = "2"
lance = "=0.5.8"
arrow-array = "42.0"
arrow-data = "42.0"
arrow-schema = "42.0"
arrow-ipc = "42.0"
half = { "version" = "2.2.1", default-features = false }
object_store = "0.6.1"

157
README.md
View File

@@ -1,79 +1,78 @@
<div align="center">
<p align="center">
<img width="275" alt="LanceDB Logo" src="https://user-images.githubusercontent.com/917119/226205734-6063d87a-1ecc-45fe-85be-1dea6383a3d8.png">
**Developer-friendly, serverless vector database for AI applications**
<a href="https://lancedb.github.io/lancedb/">Documentation</a>
<a href="https://blog.lancedb.com/">Blog</a>
<a href="https://discord.gg/zMM32dvNtd">Discord</a>
<a href="https://twitter.com/lancedb">Twitter</a>
</p>
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
</p>
</div>
<hr />
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
The key features of LanceDB include:
* Production-scale vector search with no servers to manage.
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* GPU support in building vector index(*).
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
## Quick Start
**Javascript**
```shell
npm install vectordb
```
```javascript
const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb');
const table = await db.createTable('vectors',
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
const query = table.search([0.1, 0.3]).limit(2);
const results = await query.execute();
```
**Python**
```shell
pip install lancedb
```
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_pandas()
```
## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.eto.ai/benchmarking-random-access-in-lance-ed690757a826">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>
<div align="center">
<p align="center">
<img width="275" alt="LanceDB Logo" src="https://user-images.githubusercontent.com/917119/226205734-6063d87a-1ecc-45fe-85be-1dea6383a3d8.png">
**Developer-friendly, serverless vector database for AI applications**
<a href="https://lancedb.github.io/lancedb/">Documentation</a>
<a href="https://blog.lancedb.com/">Blog</a>
<a href="https://discord.gg/zMM32dvNtd">Discord</a>
<a href="https://twitter.com/lancedb">Twitter</a>
</p>
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
</p>
</div>
<hr />
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
The key features of LanceDB include:
* Production-scale vector search with no servers to manage.
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
## Quick Start
**Javascript**
```shell
npm install vectordb
```
```javascript
const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb');
const table = await db.createTable('vectors',
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
const query = table.search([0.1, 0.3]);
query.limit = 20;
const results = await query.execute();
```
**Python**
```shell
pip install lancedb
```
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df()
```
## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.eto.ai/benchmarking-random-access-in-lance-ed690757a826">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>

83
ci/build_linux_artifacts.sh Executable file → Normal file
View File

@@ -1,19 +1,72 @@
#!/bin/bash
# Builds the Linux artifacts (node binaries).
# Usage: ./build_linux_artifacts.sh [target]
# Targets supported:
# - x86_64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-musl
# - x86_64-unknown-linux-musl
# TODO: refactor this into a Docker container we can pull
set -e
ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_node
docker build \
-t lancedb-node-manylinux \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
.
popd
setup_dependencies() {
echo "Installing system dependencies..."
if [[ $1 == *musl ]]; then
# musllinux
apk add openssl-dev
else
# rust / debian
apt update
apt install -y libssl-dev protobuf-compiler
fi
}
docker run \
-v $(pwd):/io -w /io \
lancedb-node-manylinux \
bash ci/manylinux_node/build.sh $ARCH
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
if [[ $1 == *musl ]]; then
# This node version is 15, we need 16 or higher:
# apk add nodejs-current npm
# So instead we install from source (nvm doesn't provide binaries for musl):
nvm install -s --no-progress 17
else
nvm install --no-progress 17 # latest that supports glibc 2.17
fi
}
build_node_binary() {
echo "Building node library for $1..."
pushd node
npm ci
if [[ $1 == *musl ]]; then
# This is needed for cargo to allow build cdylibs with musl
export RUSTFLAGS="-C target-feature=-crt-static"
fi
# Cargo can run out of memory while pulling dependencies, especially when running
# in QEMU. This is a workaround for that.
export CARGO_NET_GIT_FETCH_WITH_CLI=true
# We don't pass in target, since the native target here already matches
# We need to pass OPENSSL_LIB_DIR and OPENSSL_INCLUDE_DIR for static build to work https://github.com/sfackler/rust-openssl/issues/877
OPENSSL_STATIC=1 OPENSSL_LIB_DIR=/usr/lib/x86_64-linux-gnu OPENSSL_INCLUDE_DIR=/usr/include/openssl/ npm run build-release
npm run pack-build
popd
}
TARGET=${1:-x86_64-unknown-linux-gnu}
# Others:
# aarch64-unknown-linux-gnu
# x86_64-unknown-linux-musl
# aarch64-unknown-linux-musl
setup_dependencies $TARGET
install_node $TARGET
build_node_binary $TARGET

View File

@@ -1,7 +1,6 @@
# Builds the macOS artifacts (node binaries).
# Usage: ./ci/build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() {
# Building here for the sake of easier debugging.

View File

@@ -1,31 +0,0 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

View File

@@ -1,19 +0,0 @@
#!/bin/bash
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
set -e
ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
cd node
npm ci
npm run build-release
npm run pack-build

View File

@@ -1,26 +0,0 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -1,15 +0,0 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

View File

@@ -1,18 +0,0 @@
version: "3.9"
services:
localstack:
image: localstack/localstack:0.14
ports:
- 4566:4566
environment:
- SERVICES=s3,dynamodb
- DEBUG=1
- LS_LOG=trace
- DOCKER_HOST=unix:///var/run/docker.sock
- AWS_ACCESS_KEY_ID=ACCESSKEY
- AWS_SECRET_ACCESS_KEY=SECRETKEY
healthcheck:
test: [ "CMD", "curl", "-f", "http://localhost:4566/health" ]
interval: 5s
retries: 3
start_period: 10s

View File

@@ -1,26 +0,0 @@
# LanceDB Documentation
LanceDB docs are deployed to https://lancedb.github.io/lancedb/.
Docs is built and deployed automatically by [Github Actions](.github/workflows/docs.yml)
whenever a commit is pushed to the `main` branch. So it is possible for the docs to show
unreleased features.
## Building the docs
### Setup
1. Install LanceDB. From LanceDB repo root: `pip install -e python`
2. Install dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt`
3. Make sure you have node and npm setup
4. Make sure protobuf and libssl are installed
### Building node module and create markdown files
See [Javascript docs README](docs/src/javascript/README.md)
### Build docs
From LanceDB repo root:
Run: `PYTHONPATH=. mkdocs build -f docs/mkdocs.yml`
If successful, you should see a `docs/site` directory that you can verify locally.

View File

@@ -1,7 +1,5 @@
site_name: LanceDB Docs
site_url: https://lancedb.github.io/lancedb/
repo_url: https://github.com/lancedb/lancedb
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
repo_name: lancedb/lancedb
docs_dir: src
@@ -12,17 +10,6 @@ theme:
features:
- content.code.copy
- content.tabs.link
- content.action.edit
- toc.follow
- toc.integrate
- navigation.top
- navigation.tabs
- navigation.tabs.sticky
- navigation.footer
- navigation.tracking
- navigation.instant
- navigation.indexes
- navigation.expand
icon:
repo: fontawesome/brands/github
custom_dir: overrides
@@ -38,7 +25,7 @@ plugins:
docstring_style: numpy
rendering:
heading_level: 4
show_source: true
show_source: false
show_symbol_type_in_heading: true
show_signature_annotations: true
show_root_heading: true
@@ -66,95 +53,32 @@ markdown_extensions:
- md_in_html
nav:
- Home:
- 🏢 Home: index.md
- 💡 Basics: basic.md
- 📚 Guides:
- Create Ingest Update Delete: guides/tables.md
- Vector Search: search.md
- SQL filters: sql.md
- Indexing: ann_indexes.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- 🧬 Embeddings:
- embeddings/index.md
- Ingest Embedding Functions: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md
- Create Custom Embedding Functions: embeddings/api.md
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Example - Multi-lingual semantic search: notebooks/multi_lingual_example.ipynb
- Example - MultiModal CLIP Embeddings: notebooks/DisappearingEmbeddingFunction.ipynb
- 🔍 Python full-text search: fts.md
- 🔌 Integrations:
- integrations/index.md
- Pandas and PyArrow: python/arrow.md
- DuckDB: python/duckdb.md
- LangChain 🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain JS/TS 🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- 🐍 Python examples:
- examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 🌐 Javascript examples:
- Examples: examples/index_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- ⚙️ CLI & Config: cli_config.md
- Home: index.md
- Basics: basic.md
- Guides:
- Create Ingest Update Delete: guides/tables.md
- Vector Search: search.md
- SQL filters: sql.md
- Indexing: ann_indexes.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Embeddings:
- embeddings/index.md
- Ingest Embedding Functions: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md
- Create Custom Embedding Functions: embeddings/api.md
- Example - Multi-lingual semantic search: notebooks/multi_lingual_example.ipynb
- Example - MultiModal CLIP Embeddings: notebooks/DisappearingEmbeddingFunction.ipynb
- Embeddings: embedding.md
- Python full-text search: fts.md
- Integrations:
- integrations/index.md
- Python integrations:
- Pandas and PyArrow: python/arrow.md
- DuckDB: python/duckdb.md
- LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain JS/TS 🦜️🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- Python examples:
- examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- Javascript examples:
- examples/index_js.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- References:
- Vector Search: search.md
- SQL filters: sql.md
- Indexing: ann_indexes.md
- API references:
- OSS Python API: python/python.md
- SaaS Python API: python/saas-python.md
- Python API: python/python.md
- Javascript API: javascript/modules.md
- LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms
extra_css:
- styles/global.css
extra:
analytics:
provider: google
property: G-B7NFM40W74

View File

@@ -6,7 +6,7 @@ LanceDB provides many parameters to fine-tune the index's size, the speed of que
Currently, LanceDB does *not* automatically create the ANN index.
LanceDB has optimized code for KNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
If you can live with < 100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
In the future we will look to automatically create and configure the ANN index.
@@ -68,44 +68,6 @@ a single PQ code.
<figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption>
</figure>
### Use GPU to build vector index
Lance Python SDK has experimental GPU support for creating IVF index.
Using GPU for index creation requires [PyTorch>2.0](https://pytorch.org/) being installed.
You can specify the GPU device to train IVF partitions via
- **accelerator**: Specify to ``cuda`` or ``mps`` (on Apple Silicon) to enable GPU training.
=== "Linux"
<!-- skip-test -->
``` { .python .copy }
# Create index using CUDA on Nvidia GPUs.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="cuda"
)
```
=== "Macos"
<!-- skip-test -->
```python
# Create index using MPS on Apple Silicon.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="mps"
)
```
Trouble shootings:
If you see ``AssertionError: Torch not compiled with CUDA enabled``, you need to [install
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
## Querying an ANN Index
@@ -129,10 +91,10 @@ There are a couple of parameters that can be used to fine-tune the search:
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_pandas()
.to_df()
```
```
vector item _distance
vector item score
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
@@ -147,8 +109,9 @@ There are a couple of parameters that can be used to fine-tune the search:
.execute()
```
The search will return the data requested in addition to the distance of each item.
The search will return the data requested in addition to the score of each item.
**Note:** The score is the distance between the query vector and the element. A lower number means that the result is more relevant.
### Filtering (where clause)
@@ -156,7 +119,7 @@ You can further filter the elements returned by a search using a where clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_df()
```
=== "Javascript"
@@ -173,10 +136,10 @@ You can select the columns returned by the query using a select clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
tbl.search(np.random.random((1536))).select(["vector"]).to_df()
```
```
vector _distance
vector score
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
...
@@ -192,28 +155,28 @@ You can select the columns returned by the query using a select clause.
## FAQ
### When is it necessary to create an ANN vector index?
### When is it necessary to create an ANN vector index.
`LanceDB` has manually-tuned SIMD code for computing vector distances.
In our benchmarks, computing 100K pairs of 1K dimension vectors takes **less than 20ms**.
For small datasets (< 100K rows) or applications that can accept 100ms latency, vector indices are usually not necessary.
`LanceDB` has manually tuned SIMD code for computing vector distances.
In our benchmarks, computing 100K pairs of 1K dimension vectors only take less than 20ms.
For small dataset (<100K rows) or the applications which can accept 100ms latency, vector indices are usually not necessary.
For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how many memory will it take?
### How big is my index, and how many memory will it take.
In LanceDB, all vector indices are **disk-based**, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers.
Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index?
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index.
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
`num_sub_vectors` decides how many Product Quantization code to generate on each vector. Because
Product Quantization is a lossy compression of the original vector, the more `num_sub_vectors` usually results to
less space distortion, and thus yield better accuracy. However, similarly, more `num_sub_vectors` causes heavier I/O and
more PQ computation, thus, higher latency. `dimension / num_sub_vectors` should be aligned with 8 for better SIMD efficiency.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 342 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 245 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 83 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 170 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 205 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 953 KiB

View File

@@ -79,18 +79,6 @@ We'll cover the basics of using LanceDB on your local machine in this section.
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
### Creating an empty table
Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema.
=== "Python"
```python
import pyarrow as pa
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
tbl = db.create_table("empty_table", schema=schema)
```
## How to open an existing table
Once created, you can open a table using the following code:
@@ -123,15 +111,9 @@ After a table has been created, you can always add more data to it using
=== "Python"
```python
# Option 1: Add a list of dicts to a table
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
tbl.add(df)
```
=== "Javascript"
@@ -146,7 +128,7 @@ Once you've embedded the query, you can find its nearest neighbors using the fol
=== "Python"
```python
tbl.search([100, 100]).limit(2).to_pandas()
tbl.search([100, 100]).limit(2).to_df()
```
This returns a pandas DataFrame with the results.
@@ -156,63 +138,8 @@ Once you've embedded the query, you can find its nearest neighbors using the fol
const query = await tbl.search([100, 100]).limit(2).execute();
```
## How to delete rows from a table
Use the `delete()` method on tables to delete rows from a table. To choose
which rows to delete, provide a filter that matches on the metadata columns.
This can delete any number of rows that match the filter.
=== "Python"
```python
tbl.delete('item = "fizz"')
```
=== "Javascript"
```javascript
await tbl.delete('item = "fizz"')
```
The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause on a search. They can be as simple or complex as needed.
To see what expressions are supported, see the [SQL filters](sql.md) section.
=== "Python"
Read more: [lancedb.table.Table.delete][]
=== "Javascript"
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
## How to remove a table
Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
db.drop_table("my_table")
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
## What's next
This section covered the very basics of the LanceDB API.
LanceDB supports many additional features when creating indices to speed up search and options for search.
These are contained in the next section of the documentation.
## Note: Bundling vectorDB apps with webpack
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```

View File

@@ -1,37 +0,0 @@
## LanceDB CLI
Once lanceDB is installed, you can access the CLI using `lancedb` command on the console
```
lancedb
```
This lists out all the various command-line options available. You can get the usage or help for a particular command
```
lancedb {command} --help
```
## LanceDB config
LanceDB uses a global config file to store certain settings. These settings are configurable using the lanceDB cli.
To view your config settings, you can use:
```
lancedb config
```
These config parameters can be tuned using the cli.
```
lancedb {config_name} --{argument}
```
## LanceDB Opt-in Diagnostics
When enabled, LanceDB will send anonymous events to help us improve LanceDB. These diagnostics are used only for error reporting and no data is collected. Error & stats allow us to automate certain aspects of bug reporting, prioritization of fixes and feature requests.
These diagnostics are opt-in and can be enabled or disabled using the `lancedb diagnostics` command. These are enabled by default.
Get usage help.
```
lancedb diagnostics --help
```
Disable diagnostics
```
lancedb diagnostics --disabled
```
Enable diagnostics
```
lancedb diagnostics --enabled
```

View File

@@ -1,20 +1,13 @@
# Embedding
# Embedding Functions
Embeddings are high dimensional floating-point vector representations of your data or query. Anything can be embedded using some embedding model or function. Position of embedding in a high dimensional vector space has semantic significance to a degree that depends on the type of modal and training. These embeddings when projected in a 2-D space generally group similar entities close-by forming groups.
Embeddings are high dimensional floating-point vector representations of your data or query.
Anything can be embedded using some embedding model or function.
For a given embedding function, the output will always have the same number of dimensions.
![](../assets/embedding_intro.png)
## Creating an embedding function
# Creating an embedding function
LanceDB supports 2 major ways of vectorizing your data, explicit and implicit.
1. By manually embedding the data before ingesting in the table
2. By automatically embedding the data and query as they come, by ingesting embedding function information in the table itself! Covered in [Next Section](embedding_functions.md)
Whatever workflow you prefer, we have the tools to support you.
## Explicit Vectorization
In this workflow, you can create your embedding function and vectorize your data using lancedb's `with_embedding` function. Let's look at some examples.
Any function that takes as input a batch (list) of data and outputs a batch (list) of embeddings
can be used by LanceDB as an embedding function. The input and output batch sizes should be the same.
### HuggingFace example
@@ -73,7 +66,7 @@ You can also use an external API like OpenAI to generate embeddings
to generate embeddings for each row.
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/python/#lancedb.embeddings.with_embeddings)
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
function to generate embeddings and add create a combined pyarrow table:
@@ -125,7 +118,7 @@ belong in the same latent space and your results will be nonsensical.
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
tbl.search(query_vector).limit(10).to_pandas()
tbl.search(query_vector).limit(10).to_df()
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
@@ -141,9 +134,9 @@ belong in the same latent space and your results will be nonsensical.
The above snippet returns an array of records with the 10 closest vectors to the query.
## Implicit vectorization / Ingesting embedding functions
Representing multi-modal data as vector embeddings is becoming a standard practice. Embedding functions themselves be thought of as a part of the processing pipeline that each request(input) has to be passed through. After initial setup these components are not expected to change for a particular project.
## Roadmap
This is main motivation behind our new embedding functions API, that allow you simply set it up once and the table remembers it, effectively making the **embedding functions disappear in the background** so you don't have to worry about modelling and simply focus on the DB aspects of VectorDB.
Learn more in the Next Section
In the near future, we'll be integrating the embedding functions deeper into LanceDB<br/>.
The goal is that you just have to configure the function once when you create the table,
and then you'll never have to deal with embeddings / vectors after that unless you want to.
We'll also integrate more popular models and APIs.

View File

@@ -1,213 +0,0 @@
To use your own custom embedding function, you need to follow these 2 simple steps.
1. Create your embedding function by implementing the `EmbeddingFunction` interface
2. Register your embedding function in the global `EmbeddingFunctionRegistry`.
Let us see how this looks like in action.
![](../assets/embeddings_api.png)
`EmbeddingFunction` & `EmbeddingFunctionRegistry` handle low-level details for serializing schema and model information as metadata. To build a custom embdding function, you don't need to worry about those details and simply focus on setting up the model.
## `TextEmbeddingFunction` Interface
There is another optional layer of abstraction provided in form of `TextEmbeddingFunction`. You can use this if your model isn't multi-modal in nature and only operates on text. In such case both source and vector fields will have the same pathway for vectorization, so you simply just need to setup the model and rest is handled by `TextEmbeddingFunction`. You can read more about the class and its attributes in the class reference.
Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry`
```python
from lancedb.embeddings import register
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
name: str = "all-MiniLM-L6-v2"
# set more default instance vars like device, etc.
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
def generate_embeddings(self, texts):
return self._embedding_model().encode(list(texts), ...).tolist()
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
@cached(cache={})
def _embedding_model(self):
return sentence_transformers.SentenceTransformer(name)
```
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and defaul settings.
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
```python
from lancedb.pydantic import LanceModel, Vector
registry = EmbeddingFunctionRegistry.get_instance()
stransformer = registry.get("sentence-transformers").create()
class TextModelSchema(LanceModel):
vector: Vector(stransformer.ndims) = stransformer.VectorField()
text: str = stransformer.SourceField()
tbl = db.create_table("table", schema=TextModelSchema)
tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
result = tbl.search("world").limit(5)
```
NOTE:
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
## Multi-modal embedding function example
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support. LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
```python
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = self.safe_import("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in futures]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = self.safe_import("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor)
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
```

View File

@@ -1,208 +0,0 @@
There are various Embedding functions available out of the box with lancedb. We're working on supporting other popular embedding APIs.
## Text Embedding Functions
Here are the text embedding functions registered by default.
Embedding functions have inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential standoff.
Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the deafult value of 7.
### Sentence Transformers
Here are the parameters that you can set when registering a `sentence-transformers` object, and their default values:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"all-MiniLM-L6-v2"` | The name of the model. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model. |
```python
db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("sentence-transformers").create(device="cpu")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"}
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### OpenAIEmbeddings
LanceDB has OpenAI embeddings function in the registry by default. It is registered as `openai` and here are the parameters that you can customize when creating the instances
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
```python
db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("openai").create()
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"}
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### Instructor Embeddings
Instructor is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) by simply providing the task instruction, without any finetuning
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc.
More information about the model can be found here - https://github.com/xlang-ai/instructor-embedding
| Argument | Type | Default | Description |
|---|---|---|---|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
| `quantize` | `bool` | `False` | Whether to quantize the model |
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
```
## Multi-modal embedding functions
Multi-modal embedding functions allow you query your table using both images and text.
### OpenClipEmbeddings
We support CLIP model embeddings using the open souce alternbative, open-clip which support various customizations. It is registered as `open-clip` and supports following customizations.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
NOTE:
LanceDB supports ingesting images directly from accessible links.
```python
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("open-clip").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
[{"label": labels, "image_uri": uris, "image_bytes": image_bytes}]
)
```
Now we can search using text from both the default vector column and the custom vector column
```python
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
print(actual.label) # prints "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(frombytes.label)
```
Because we're using a multi-modal embedding function, we can also search using images
```python
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
print(actual.label == "dog")
# image search using a custom vector column
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(actual.label)
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue.

View File

@@ -1,95 +0,0 @@
Representing multi-modal data as vector embeddings is becoming a standard practice. Embedding functions themselves be thought of as a part of the processing pipeline that each request(input) has to be passed through. After initial setup these components are not expected to change for a particular project.
This is main motivation behind our new embedding functions API, that allow you simply set it up once and the table remembers it, effectively making the **embedding functions disappear in the background** so you don't have to worry about modelling and simply focus on the DB aspects of VectorDB.
You can simply follow these steps and forget about the details of your embedding functions as long as you don't intend to change it.
### Step 1 - Define the embedding function
We have some pre-defined embedding functions in the global registry with more coming soon. Here's let's an implementation of CLIP as example.
```
registry = EmbeddingFunctionRegistry.get_instance()
clip = registry.get("open-clip").create()
```
You can also define your own embedding function by implementing the `EmbeddingFunction` abstract base interface. It subclasses PyDantic Model which can be utilized to write complex schemas simply as we'll see next!
### Step 2 - Define the Data Model or Schema
Our embedding function from the previous section abstracts away all the details about the models and dimensions required to define the schema. You can simply set a feild as **source** or **vector** column. Here's how
```python
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
```
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for `vector` column & `SourceField` tells that when adding data, automatically use the embedding function to encode `image_uri`.
### Step 3 - Create LanceDB Table
Now that we have chosen/defined our embedding function and the schema, we can create the table
```python
db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
```
That's it! We have ingested all the information needed to embed source and query inputs. We can now forget about the model and dimension details and start to build or VectorDB
### Step 4 - Ingest lots of data and run vector search!
Now you can just add the data and it'll be vectorized automatically
```python
table.add([{"image_uri": u} for u in uris])
```
Our OpenCLIP query embedding function support querying via both text and images.
```python
result = table.search("dog")
```
Let's query an image
```python
p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
table.search(query_image)
```
### Rate limit Handling
`EmbeddingFunction` class wraps the calls for source and query embedding generation inside a rate limit handler that retries the requests with exponential backoff after successive failures. By default the maximum retires is set to 7. You can tune it by setting it to a different number or disable it by setting it to 0.
Example
----
```python
clip = registry.get("open-clip").create() # Defaults to 7 max retries
clip = registry.get("open-clip").create(max_retries=10) # Increase max retries to 10
clip = registry.get("open-clip").create(max_retries=0) # Retries disabled
````
NOTE:
Embedding functions can also fail due to other errors that have nothing to do with rate limits. This is why the error is also logged.
### A little fun with PyDantic
LanceDB is integrated with PyDantic. Infact we've used the integration in the above example to define the schema. It is also being used behing the scene by the embdding function API to ingest useful information as table metadata.
You can also use it for adding utility operations in the schema. For example, in our multi-modal example, you can search images using text or another image. Let us define a utility function to plot the image.
```python
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
@property
def image(self):
return Image.open(self.image_uri)
```
Now, you can covert your search results to pydantic model and use this property.
```python
rs = table.search(query_image).limit(3).to_pydantic(Pets)
rs[2].image
```
![](../assets/dog_clip_output.png)
Now that you've the basic idea about LanceDB embedding function, let us now dive deeper into the API that you can use to implement your own embedding functions!

View File

@@ -1,165 +0,0 @@
# How to Load Image Embeddings into LanceDB
With the rise of Large Multimodal Models (LMMs) such as [GPT-4 Vision](https://blog.roboflow.com/gpt-4-vision/), the need for storing image embeddings is growing. The most effective way to store text and image embeddings is in a vector database such as LanceDB. Vector databases are a special kind of data store that enables efficient search over stored embeddings.
[CLIP](https://blog.roboflow.com/openai-clip/), a multimodal model developed by OpenAI, is commonly used to calculate image embeddings. These embeddings can then be used with a vector database to build a semantic search engine that you can query using images or text. For example, you could use LanceDB and CLIP embeddings to build a search engine for a database of folders.
In this guide, we are going to show you how to use Roboflow Inference to load image embeddings into LanceDB. Without further ado, lets get started!
## Step #1: Install Roboflow Inference
[Roboflow Inference](https://inference.roboflow.com) enables you to run state-of-the-art computer vision models with minimal configuration. Inference supports a range of models, from fine-tuned object detection, classification, and segmentation models to foundation models like CLIP. We will use Inference to calculate CLIP image embeddings.
Inference provides a HTTP API through which you can run vision models.
Inference powers the Roboflow hosted API, and is available as an open source utility. In this guide, we are going to run Inference locally, which enables you to calculate CLIP embeddings on your own hardware. We will also show you how to use the hosted Roboflow CLIP API, which is ideal if you need to scale and do not want to manage a system for calculating embeddings.
To get started, first install the Inference CLI:
```
pip install inference-cli
```
Next, install Docker. Refer to the official Docker installation instructions for your operating system to get Docker set up. Once Docker is ready, you can start Inference using the following command:
```
inference server start
```
An Inference server will start running at http://localhost:9001.
## Step #2: Set Up a LanceDB Vector Database
Now that we have Inference running, we can set up a LanceDB vector database. You can run LanceDB in JavaScript and Python. For this guide, we will use the Python API. But, you can take the HTTP requests we make below and change them to JavaScript if required.
For this guide, we are going to search the [COCO 128 dataset](https://universe.roboflow.com/team-roboflow/coco-128), which contains a wide range of objects. The variability in objects present in this dataset makes it a good dataset to demonstrate the capabilities of vector search. If you want to use this dataset, you can download [COCO 128 from Roboflow Universe](https://universe.roboflow.com/team-roboflow/coco-128). With that said, you can search whatever folder of images you want.
Once you have a dataset ready, install LanceDB with the following command:
```
pip install lancedb
```
We also need to install a specific commit of `tantivy`, a dependency of the LanceDB full text search engine we will use later in this guide:
```
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
```
Create a new Python file and add the following code:
```python
import cv2
import supervision as sv
import requests
import lancedb
db = lancedb.connect("./embeddings")
IMAGE_DIR = "images/"
API_KEY = os.environ.get("ROBOFLOW_API_KEY")
SERVER_URL = "http://localhost:9001"
results = []
for i, image in enumerate(os.listdir(IMAGE_DIR)):
infer_clip_payload = {
#Images can be provided as urls or as base64 encoded strings
"image": {
"type": "base64",
"value": base64.b64encode(open(IMAGE_DIR + image, "rb").read()).decode("utf-8"),
},
}
res = requests.post(
f"{SERVER_URL}/clip/embed_image?api_key={API_KEY}",
json=infer_clip_payload,
)
embeddings = res.json()['embeddings']
print("Calculated embedding for image: ", image)
image = {"vector": embeddings[0], "name": os.path.join(IMAGE_DIR, image)}
results.append(image)
tbl = db.create_table("images", data=results)
tbl.create_fts_index("name")
```
To use the code above, you will need a Roboflow API key. [Learn how to retrieve a Roboflow API key](https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key). Run the following command to set up your API key in your environment:
```
export ROBOFLOW_API_KEY=""
```
Replace the `IMAGE_DIR` value with the folder in which you are storing the images for which you want to calculate embeddings. If you want to use the Roboflow CLIP API to calculate embeddings, replace the `SERVER_URL` value with `https://infer.roboflow.com`.
Run the script above to create a new LanceDB database. This database will be stored on your local machine. The database will be called `embeddings` and the table will be called `images`.
The script above calculates all embeddings for a folder then creates a new table. To add additional images, use the following code:
```python
def make_batches():
for i in range(5):
yield [
{"vector": [3.1, 4.1], "name": "image1.png"},
{"vector": [5.9, 26.5], "name": "image2.png"}
]
tbl = db.open_table("images")
tbl.add(make_batches())
```
Replacing the `make_batches()` function with code to load embeddings for images.
## Step #3: Run a Search Query
We are now ready to run a search query. To run a search query, we need a text embedding that represents a text query. We can use this embedding to search our LanceDB database for an entry.
Lets calculate a text embedding for the query “cat”, then run a search query:
```python
infer_clip_payload = {
"text": "cat",
}
res = requests.post(
f"{SERVER_URL}/clip/embed_text?api_key={API_KEY}",
json=infer_clip_payload,
)
embeddings = res.json()['embeddings']
df = tbl.search(embeddings[0]).limit(3).to_list()
print("Results:")
for i in df:
print(i["name"])
```
This code will search for the three images most closely related to the prompt “cat”. The names of the most similar three images will be printed to the console. Here are the three top results:
```
dataset/images/train/000000000650_jpg.rf.1b74ba165c5a3513a3211d4a80b69e1c.jpg
dataset/images/train/000000000138_jpg.rf.af439ef1c55dd8a4e4b142d186b9c957.jpg
dataset/images/train/000000000165_jpg.rf.eae14d5509bf0c9ceccddbb53a5f0c66.jpg
```
Lets open the top image:
![Cat](https://media.roboflow.com/cat_lancedb.jpg)
The top image was a cat. Our search was successful.
## Conclusion
LanceDB is a vector database that you can use to store and efficiently search your image embeddings. You can use Roboflow Inference, a scalable computer vision inference server, to calculate CLIP embeddings that you can store in LanceDB.
You can use Inference and LanceDB together to build a range of applications with image embeddings, from a media search engine to a retrieval-augmented generation pipeline for use with LMMs.
To learn more about Inference and its capabilities, refer to the Inference documentation.

View File

@@ -1,23 +0,0 @@
# Examples
Here are some of the examples, projects and applications using LanceDB python library. Some examples are covered in detail in the next sections. You can find more on [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes)
| Example | Interactive Envs | Scripts |
|-------- | ---------------- | ------ |
| | | |
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/main.py)|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/main.py) |
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/main.py)|
| [Multimodal CLIP: DiffusionDB](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/main.py) |
| [Multimodal CLIP: Youtube videos](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/main.py) |
| [Movie Recommender](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/main.py) |
| [Audio Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/main.py) |
| [Multimodal Image + Text Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/main.py) |
| [Evaluating Prompts with Prompttools](https://github.com/lancedb/vectordb-recipes/tree/main/examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | |
## Projects & Applications powered by LanceDB
| Project Name | Description | Screenshot |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds | ![YOLOExplorer](https://github.com/lancedb/vectordb-recipes/assets/15766192/ae513a29-8f15-4e0b-99a1-ccd8272b6131) |
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. | ![Chatbot](../assets/vercel-template.gif) |

View File

@@ -1,19 +0,0 @@
# Examples
Here are some of the examples, projects and applications using vectordb native javascript library.
Some examples are covered in detail in the next sections. You can find more on [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes)
| Example | Scripts |
|-------- | ------ |
| | |
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/index.js)|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/index.js)|
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/index.js)|
| [TransformersJS Embedding example](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/index.js) |
## Projects & Applications
| Project Name | Description | Screenshot |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds | ![YOLOExplorer](https://github.com/lancedb/vectordb-recipes/assets/15766192/ae513a29-8f15-4e0b-99a1-ccd8272b6131) |
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. | ![Chatbot](../assets/vercel-template.gif) |

View File

@@ -80,14 +80,14 @@ def handler(event, context):
# Shape of SIFT is (128,1M), d=float32
query_vector = np.array(event['query_vector'], dtype=np.float32)
rs = table.search(query_vector).limit(2).to_list()
rs = table.search(query_vector).limit(2).to_df()
return {
"statusCode": status_code,
"headers": {
"Content-Type": "application/json"
},
"body": json.dumps(rs)
"body": rs.to_json()
}
```

View File

@@ -1,61 +0,0 @@
# LanceDB Chatbot - Vercel Next.js Template
Use an AI chatbot with website context retrieved from a vector store like LanceDB. LanceDB is lightweight and can be embedded directly into Next.js, with data stored on-prem.
## One click deploy on Vercel
[![Deploy with Vercel](https://vercel.com/button)](https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flancedb%2Flancedb-vercel-chatbot&env=OPENAI_API_KEY&envDescription=OpenAI%20API%20Key%20for%20chat%20completion.&project-name=lancedb-vercel-chatbot&repository-name=lancedb-vercel-chatbot&demo-title=LanceDB%20Chatbot%20Demo&demo-description=Demo%20website%20chatbot%20with%20LanceDB.&demo-url=https%3A%2F%2Flancedb.vercel.app&demo-image=https%3A%2F%2Fi.imgur.com%2FazVJtvr.png)
![Demo website landing page](../assets/vercel-template.gif)
## Development
First, rename `.env.example` to `.env.local`, and fill out `OPENAI_API_KEY` with your OpenAI API key. You can get one [here](https://openai.com/blog/openai-api).
Run the development server:
```bash
npm run dev
# or
yarn dev
# or
pnpm dev
```
Open [http://localhost:3000](http://localhost:3000) with your browser to see the result.
This project uses [`next/font`](https://nextjs.org/docs/basic-features/font-optimization) to automatically optimize and load Inter, a custom Google Font.
## Learn More
To learn more about LanceDB or Next.js, take a look at the following resources:
- [LanceDB Documentation](https://lancedb.github.io/lancedb/) - learn about LanceDB, the developer-friendly serverless vector database.
- [Next.js Documentation](https://nextjs.org/docs) - learn about Next.js features and API.
- [Learn Next.js](https://nextjs.org/learn) - an interactive Next.js tutorial.
## LanceDB on Next.js and Vercel
FYI: these configurations have been pre-implemented in this template.
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying on Vercel.
```js
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
To deploy on Vercel, we need to make sure that the NodeJS runtime static file analysis for Vercel can find the binary, since LanceDB uses dynamic imports by default. We can do this by modifying `package.json` in the `scripts` section.
```json
{
...
"scripts": {
...
"vercel-build": "sed -i 's/nativeLib = require(`@lancedb\\/vectordb-\\${currentTarget()}`);/nativeLib = require(`@lancedb\\/vectordb-linux-x64-gnu`);/' node_modules/vectordb/native.js && next build",
...
},
...
}
```

View File

@@ -1,6 +1,6 @@
# Vector embedding search using TransformersJS
## Embed and query data from LanceDB using TransformersJS
## Embed and query data from LacneDB using TransformersJS
<img id="splash" width="400" alt="transformersjs" src="https://github.com/lancedb/lancedb/assets/43097991/88a31e30-3d6f-4eef-9216-4b7c688f1b4f">
@@ -99,7 +99,7 @@ Output of `results`:
id: 5,
text: 'Banana',
type: 'fruit',
_distance: 0.4919965863227844
score: 0.4919965863227844
},
{
vector: Float32Array(384) [
@@ -111,7 +111,7 @@ Output of `results`:
id: 1,
text: 'Cherry',
type: 'fruit',
_distance: 0.5540297031402588
score: 0.5540297031402588
}
]
```

View File

@@ -4,10 +4,4 @@
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
<a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab">
Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipesexamples/youtube_bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/examples/youtube_bot/index.js)
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)

View File

@@ -6,19 +6,17 @@ to make this available for JS as well.
## Installation
To use full text search, you must install the dependency `tantivy-py`:
To use full text search, you must install optional dependency tantivy-py:
# tantivy 0.20.1
```sh
pip install tantivy==0.20.1
```
# tantivy 0.19.2
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
## Quickstart
Assume:
1. `table` is a LanceDB Table
2. `text` is the name of the `Table` column that we want to index
2. `text` is the name of the Table column that we want to index
For example,
@@ -43,13 +41,7 @@ table.create_fts_index("text")
To search:
```python
table.search("puppy").limit(10).select(["text"]).to_list()
```
Which returns a list of dictionaries:
```python
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
df = table.search("puppy").limit(10).select(["text"]).to_df()
```
LanceDB automatically looks for an FTS index if the input is str.

View File

@@ -1,408 +0,0 @@
<a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/tables_guide.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
A Table is a collection of Records in a LanceDB Database. You can follow along on colab!
## Creating a LanceDB Table
=== "Python"
### LanceDB Connection
```python
import lancedb
db = lancedb.connect("./.lancedb")
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
### From list of tuples or dictionaries
```python
import lancedb
db = lancedb.connect("./.lancedb")
data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
{"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
db.create_table("my_table", data)
db["my_table"].head()
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you can pass in mode="overwrite" to the createTable function.
```python
db.create_table("name", data, mode="overwrite")
```
### From pandas DataFrame
```python
import pandas as pd
data = pd.DataFrame({
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1],
"long": [-122.7, -74.1]
})
db.create_table("table2", data)
db["table2"].head()
```
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
```python
custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()),
pa.field("long", pa.float32())
])
table = db.create_table("table3", data, schema=custom_schema)
```
### From PyArrow Tables
You can also create LanceDB tables directly from pyarrow tables
```python
table = pa.Table.from_arrays(
[
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
db = lancedb.connect("db")
tbl = db.create_table("test1", table)
```
### From Pydantic Models
When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a pyarrow schema or a specialized
pydantic model called `LanceModel`.
For example, the following Content model specifies a table with 5 columns:
movie_id, vector, genres, title, and imdb_id. When you create a table, you can
pass the class as the value of the `schema` parameter to `create_table`.
The `vector` column is a `Vector` type, which is a specialized pydantic type that
can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`).
```python
from lancedb.pydantic import Vector, LanceModel
class Content(LanceModel):
movie_id: int
vector: Vector(128)
genres: str
title: str
imdb_id: int
@property
def imdb_url(self) -> str:
return f"https://www.imdb.com/title/tt{self.imdb_id}"
import pyarrow as pa
db = lancedb.connect("~/.lancedb")
table_name = "movielens_small"
table = db.create_table(table_name, schema=Content)
```
### Using Iterators / Writing Large Datasets
It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
LanceDB additionally supports pyarrow's `RecordBatch` Iterators or other generators producing supported data types.
Here's an example using using `RecordBatch` iterator for creating tables.
```python
import pyarrow as pa
def make_batches():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
db.create_table("table4", make_batches(), schema=schema)
```
You can also use iterators of other types like Pandas dataframe or Pylists directly in the above example.
## Creating Empty Table
You can also create empty tables in python. Initialize it with schema and later ingest data into it.
```python
import lancedb
import pyarrow as pa
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.string()),
pa.field("price", pa.float32()),
])
tbl = db.create_table("table5", schema=schema)
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
]
tbl.add(data=data)
```
You can also use Pydantic to specify the schema
```python
import lancedb
from lancedb.pydantic import LanceModel, vector
class Model(LanceModel):
vector: Vector(2)
tbl = db.create_table("table5", schema=Model.to_arrow_schema())
```
=== "Javascript/Typescript"
### VectorDB Connection
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
### Creating a Table
You can create a LanceDB table in javascript using an array of records.
```javascript
data
const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
## Open existing tables
If you forget the name of your table, you can always get a listing of all table names:
=== "Python"
### Get a list of existing Tables
```python
print(db.table_names())
```
=== "Javascript/Typescript"
```javascript
console.log(await db.tableNames());
```
Then, you can open any existing tables
=== "Python"
```python
tbl = db.open_table("my_table")
```
=== "Javascript/Typescript"
```javascript
const tbl = await db.openTable("my_table");
```
## Adding to a Table
After a table has been created, you can always add more data to it using
=== "Python"
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or a `Iterator[pa.RecordBatch]`. Here are some examples.
### Adding Pandas DataFrame
```python
df = pd.DataFrame({
"vector": [[1.3, 1.4], [9.5, 56.2]], "item": ["fizz", "buzz"], "price": [100.0, 200.0]
})
tbl.add(df)
```
You can also add a large dataset batch in one go using Iterator of any supported data types.
### Adding to table using Iterator
```python
def make_batches():
for i in range(5):
yield [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
]
tbl.add(make_batches())
```
The other arguments accepted:
| Name | Type | Description | Default |
|---|---|---|---|
| data | DATA | The data to insert into the table. | required |
| mode | str | The mode to use when writing the data. Valid values are "append" and "overwrite". | append |
| on_bad_vectors | str | What to do if any of the vectors are not the same size or contains NaNs. One of "error", "drop", "fill". | drop |
| fill value | float | The value to use when filling vectors: Only used if on_bad_vectors="fill". | 0.0 |
=== "Javascript/Typescript"
```javascript
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
```
## Deleting from a Table
Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter.
=== "Python"
```python
tbl.delete('item = "fizz"')
```
### Deleting row with specific column value
```python
import lancedb
data = [{"x": 1, "vector": [1, 2]},
{"x": 2, "vector": [3, 4]},
{"x": 3, "vector": [5, 6]}]
db = lancedb.connect("./.lancedb")
table = db.create_table("my_table", data)
table.to_pandas()
# x vector
# 0 1 [1.0, 2.0]
# 1 2 [3.0, 4.0]
# 2 3 [5.0, 6.0]
table.delete("x = 2")
table.to_pandas()
# x vector
# 0 1 [1.0, 2.0]
# 1 3 [5.0, 6.0]
```
### Delete from a list of values
```python
to_remove = [1, 5]
to_remove = ", ".join(str(v) for v in to_remove)
table.delete(f"x IN ({to_remove})")
table.to_pandas()
# x vector
# 0 3 [5.0, 6.0]
```
=== "Javascript/Typescript"
```javascript
await tbl.delete('item = "fizz"')
```
### Deleting row with specific column value
```javascript
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [1, 2]},
{id: 2, vector: [3, 4]},
{id: 3, vector: [5, 6]},
];
const tbl = await con.createTable("my_table", data)
await tbl.delete("id = 2")
await tbl.countRows() // Returns 2
```
### Delete from a list of values
```javascript
const to_remove = [1, 5];
await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1
```
### Updating a Table [Experimental]
EXPERIMENTAL: Update rows in the table (not threadsafe).
This can be used to update zero to all rows depending on how many rows match the where clause.
| Parameter | Type | Description |
|---|---|---|
| `where` | `str` | The SQL where clause to use when updating rows. For example, `'x = 2'` or `'x IN (1, 2, 3)'`. The filter must not be empty, or it will error. |
| `values` | `dict` | The values to update. The keys are the column names and the values are the values to set. |
=== "Python"
```python
import lancedb
import pandas as pd
# Create a lancedb connection
db = lancedb.connect("./.lancedb")
# Create a table from a pandas DataFrame
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
table = db.create_table("my_table", data)
# Update the table where x = 2
table.update(where="x = 2", values={"vector": [10, 10]})
# Get the updated table as a pandas DataFrame
df = table.to_pandas()
# Print the DataFrame
print(df)
```
Output
```shell
x vector
0 1 [1.0, 2.0]
1 3 [5.0, 6.0]
2 2 [10.0, 10.0]
```
## What's Next?
Learn how to Query your tables and create indices

View File

@@ -1,23 +1,20 @@
# LanceDB
# Welcome to LanceDB's Documentation
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
![Illustration](/lancedb/assets/ecosystem-illustration.png)
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
The key features of LanceDB include:
* Production-scale vector search with no servers to manage.
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Support for production-scale vector similarity search, full-text search and SQL, with no servers to manage.
* Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* Persisted on HDD, allowing scalability without breaking the bank.
* Ingest your favorite data formats directly, like pandas DataFrames, Pydantic objects and more.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
@@ -36,7 +33,7 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_list()
result = table.search([100, 100]).limit(2).to_df()
```
=== "Javascript"
@@ -67,9 +64,9 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
## Documentation Quick Links
* [`Basic Operations`](basic.md) - basic functionality of LanceDB.
* [`Embedding Functions`](embeddings/index.md) - functions for working with embeddings.
* [`Embedding Functions`](embedding.md) - functions for working with embeddings.
* [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries.
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
* [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem.
* [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK.
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Node SDK.
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Python SDK.

View File

@@ -1,21 +0,0 @@
# Integrations
## Data Formats
LanceDB supports ingesting from your favorite data tools.
![Illustration](/lancedb/assets/ecosystem-illustration.png)
## Tools
LanceDB is integrated with most of the popular AI tools, with more coming soon.
Get started using these examples and quick links.
| Integrations | |
|---|---:|
| <h3> LlamaIndex </h3>LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. Llama index integrates with LanceDB as the serverless VectorDB. <h3>[Lean More](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html) </h3> |<img src="../assets/llama-index.jpg" alt="image" width="150" height="auto">|
| <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Langchain TS</h3> Javascript bindings for Langchain. It integrates with LanceDB's serverless vectordb allowing you to build powerful AI applications through composibility using only serverless functions. <h3>[Learn More]( https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Voxel51</h3> It is an open source toolkit that enables you to build better computer vision workflows by improving the quality of your datasets and delivering insights about your models.<h3>[Learn More](./voxel51.md) | <img src="../assets/voxel.gif" alt="image" width="150" height="auto">|
| <h3>PromptTools</h3> Offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.<h3>[Learn More](./prompttools.md) | <img src="../assets/prompttools.jpeg" alt="image" width="150" height="auto">|

View File

@@ -1,7 +0,0 @@
[PromptTools](https://github.com/hegelai/prompttools) offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.
[Evaluating Prompts with PromptTools](./examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
![Alt text](https://prompttools.readthedocs.io/en/latest/_images/demo.gif "a title")

View File

@@ -1,71 +0,0 @@
![example](/assets/voxel.gif)
Basic recipe
____________
The basic workflow to use LanceDB to create a similarity index on your FiftyOne
datasets and use this to query your data is as follows:
1) Load a dataset into FiftyOne
2) Compute embedding vectors for samples or patches in your dataset, or select
a model to use to generate embeddings
3) Use the `compute_similarity()`
method to generate a LanceDB table for the samples or object
patches embeddings in a dataset by setting the parameter `backend="lancedb"` and
specifying a `brain_key` of your choice
4) Use this LanceDB table to query your data with
`sort_by_similarity()`
5) If desired, delete the table
The example below demonstrates this workflow.
!!! Note
You must install the LanceDB Python client to run this
```
pip install lancedb
```
```python
import fiftyone as fo
import fiftyone.brain as fob
import fiftyone.zoo as foz
# Step 1: Load your data into FiftyOne
dataset = foz.load_zoo_dataset("quickstart")
# Steps 2 and 3: Compute embeddings and create a similarity index
lancedb_index = fob.compute_similarity(
dataset,
model="clip-vit-base32-torch",
brain_key="lancedb_index",
backend="lancedb",
)
```
Once the similarity index has been generated, we can query our data in FiftyOne
by specifying the `brain_key`:
```python
# Step 4: Query your data
query = dataset.first().id # query by sample ID
view = dataset.sort_by_similarity(
query,
brain_key="lancedb_index",
k=10, # limit to 10 most similar samples
)
# Step 5 (optional): Cleanup
# Delete the LanceDB table
lancedb_index.cleanup()
# Delete run record from FiftyOne
dataset.delete_brain_run("lancedb_index")
```
More in depth walkthrough of the integration, visit the LanceDB guide on Voxel51 - [LaceDB x Voxel51](https://docs.voxel51.com/integrations/lancedb.html)

View File

@@ -10,10 +10,6 @@ A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb)
npm install vectordb
```
This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
yet support Windows or musl-based Linux (such as Alpine Linux).
## Usage
### Basic Example
@@ -32,34 +28,12 @@ The [examples](./examples) folder contains complete examples.
## Development
To build everything fresh:
```bash
npm install
npm run tsc
npm run build
```
Then you should be able to run the tests with:
Run the tests with
```bash
npm test
```
### Rebuilding Rust library
```bash
npm run build
```
### Rebuilding Typescript
```bash
npm run tsc
```
### Fix lints
To run the linter and have it automatically fix all errors
```bash

View File

@@ -17,7 +17,7 @@ A connection to a LanceDB database.
### Properties
- [\_db](LocalConnection.md#_db)
- [\_options](LocalConnection.md#_options)
- [\_uri](LocalConnection.md#_uri)
### Accessors
@@ -35,18 +35,18 @@ A connection to a LanceDB database.
### constructor
**new LocalConnection**(`db`, `options`)
**new LocalConnection**(`db`, `uri`)
#### Parameters
| Name | Type |
| :------ | :------ |
| `db` | `any` |
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) |
| `uri` | `string` |
#### Defined in
[index.ts:184](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L184)
[index.ts:132](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L132)
## Properties
@@ -56,17 +56,17 @@ A connection to a LanceDB database.
#### Defined in
[index.ts:182](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L182)
[index.ts:130](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L130)
___
### \_options
### \_uri
`Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
`Private` `Readonly` **\_uri**: `string`
#### Defined in
[index.ts:181](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L181)
[index.ts:129](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L129)
## Accessors
@@ -84,7 +84,7 @@ ___
#### Defined in
[index.ts:189](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L189)
[index.ts:137](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L137)
## Methods
@@ -112,7 +112,7 @@ Creates a new Table and initialize it with new data.
#### Defined in
[index.ts:230](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L230)
[index.ts:177](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L177)
**createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
@@ -134,7 +134,7 @@ Connection.createTable
#### Defined in
[index.ts:231](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L231)
[index.ts:178](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L178)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
@@ -165,36 +165,7 @@ Connection.createTable
#### Defined in
[index.ts:241](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L241)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `data` | `Record`<`string`, `unknown`\>[] |
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:242](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L242)
[index.ts:188](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L188)
___
@@ -219,7 +190,7 @@ ___
#### Defined in
[index.ts:266](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L266)
[index.ts:201](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L201)
___
@@ -245,7 +216,7 @@ Drop an existing table.
#### Defined in
[index.ts:276](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L276)
[index.ts:211](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L211)
___
@@ -271,7 +242,7 @@ Open a table in the database.
#### Defined in
[index.ts:205](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L205)
[index.ts:153](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L153)
**openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
@@ -300,34 +271,7 @@ Connection.openTable
#### Defined in
[index.ts:212](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L212)
**openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.openTable
#### Defined in
[index.ts:213](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L213)
[index.ts:160](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L160)
___
@@ -347,4 +291,4 @@ Get the names of all tables in the database.
#### Defined in
[index.ts:196](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L196)
[index.ts:144](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L144)

View File

@@ -24,7 +24,6 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
- [\_embeddings](LocalTable.md#_embeddings)
- [\_name](LocalTable.md#_name)
- [\_options](LocalTable.md#_options)
- [\_tbl](LocalTable.md#_tbl)
### Accessors
@@ -44,7 +43,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
### constructor
**new LocalTable**<`T`\>(`tbl`, `name`, `options`)
**new LocalTable**<`T`\>(`tbl`, `name`)
#### Type parameters
@@ -58,13 +57,12 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
| :------ | :------ |
| `tbl` | `any` |
| `name` | `string` |
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) |
#### Defined in
[index.ts:287](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L287)
[index.ts:221](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L221)
**new LocalTable**<`T`\>(`tbl`, `name`, `options`, `embeddings`)
**new LocalTable**<`T`\>(`tbl`, `name`, `embeddings`)
#### Type parameters
@@ -78,12 +76,11 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
| :------ | :------ | :------ |
| `tbl` | `any` | |
| `name` | `string` | |
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) | |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
#### Defined in
[index.ts:294](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L294)
[index.ts:227](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L227)
## Properties
@@ -93,7 +90,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
#### Defined in
[index.ts:284](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L284)
[index.ts:219](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L219)
___
@@ -103,17 +100,7 @@ ___
#### Defined in
[index.ts:283](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L283)
___
### \_options
`Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Defined in
[index.ts:285](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L285)
[index.ts:218](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L218)
___
@@ -123,7 +110,7 @@ ___
#### Defined in
[index.ts:282](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L282)
[index.ts:217](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L217)
## Accessors
@@ -141,7 +128,7 @@ ___
#### Defined in
[index.ts:302](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L302)
[index.ts:234](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L234)
## Methods
@@ -169,7 +156,7 @@ The number of rows added to the table
#### Defined in
[index.ts:320](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L320)
[index.ts:252](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L252)
___
@@ -189,7 +176,7 @@ Returns the number of rows in this table.
#### Defined in
[index.ts:362](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L362)
[index.ts:278](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L278)
___
@@ -207,7 +194,7 @@ VectorIndexParams.
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexParams` | [`IvfPQIndexConfig`](../interfaces/IvfPQIndexConfig.md) | The parameters of this Index, |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
#### Returns
@@ -219,7 +206,7 @@ VectorIndexParams.
#### Defined in
[index.ts:355](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L355)
[index.ts:271](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L271)
___
@@ -245,7 +232,7 @@ Delete rows from this table.
#### Defined in
[index.ts:371](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L371)
[index.ts:287](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L287)
___
@@ -273,7 +260,7 @@ The number of rows added to the table
#### Defined in
[index.ts:338](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L338)
[index.ts:262](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L262)
___
@@ -299,4 +286,4 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in
[index.ts:310](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L310)
[index.ts:242](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L242)

View File

@@ -40,7 +40,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L21)
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L21)
## Properties
@@ -50,7 +50,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L19)
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L19)
___
@@ -60,7 +60,7 @@ ___
#### Defined in
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L18)
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L18)
___
@@ -76,7 +76,7 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L50)
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L50)
## Methods
@@ -102,4 +102,4 @@ Creates a vector representation for the given values.
#### Defined in
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L38)
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L38)

View File

@@ -62,7 +62,7 @@ A builder for nearest neighbor queries for LanceDB.
#### Defined in
[index.ts:448](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L448)
[index.ts:362](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L362)
## Properties
@@ -72,7 +72,7 @@ A builder for nearest neighbor queries for LanceDB.
#### Defined in
[index.ts:446](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L446)
[index.ts:360](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L360)
___
@@ -82,7 +82,7 @@ ___
#### Defined in
[index.ts:444](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L444)
[index.ts:358](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L358)
___
@@ -92,7 +92,7 @@ ___
#### Defined in
[index.ts:440](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L440)
[index.ts:354](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L354)
___
@@ -102,7 +102,7 @@ ___
#### Defined in
[index.ts:445](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L445)
[index.ts:359](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L359)
___
@@ -112,7 +112,7 @@ ___
#### Defined in
[index.ts:442](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L442)
[index.ts:356](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L356)
___
@@ -122,7 +122,7 @@ ___
#### Defined in
[index.ts:438](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L438)
[index.ts:352](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L352)
___
@@ -132,7 +132,7 @@ ___
#### Defined in
[index.ts:439](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L439)
[index.ts:353](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L353)
___
@@ -142,7 +142,7 @@ ___
#### Defined in
[index.ts:441](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L441)
[index.ts:355](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L355)
___
@@ -152,7 +152,7 @@ ___
#### Defined in
[index.ts:443](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L443)
[index.ts:357](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L357)
___
@@ -162,7 +162,7 @@ ___
#### Defined in
[index.ts:437](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L437)
[index.ts:351](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L351)
___
@@ -188,7 +188,7 @@ A filter statement to be applied to this query.
#### Defined in
[index.ts:496](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L496)
[index.ts:410](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L410)
## Methods
@@ -210,7 +210,7 @@ Execute the query and return the results as an Array of Objects
#### Defined in
[index.ts:519](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L519)
[index.ts:433](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L433)
___
@@ -232,7 +232,7 @@ A filter statement to be applied to this query.
#### Defined in
[index.ts:491](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L491)
[index.ts:405](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L405)
___
@@ -254,7 +254,7 @@ Sets the number of results that will be returned
#### Defined in
[index.ts:464](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L464)
[index.ts:378](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L378)
___
@@ -280,7 +280,7 @@ MetricType for the different options
#### Defined in
[index.ts:511](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L511)
[index.ts:425](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L425)
___
@@ -302,7 +302,7 @@ The number of probes used. A higher number makes search more accurate but also s
#### Defined in
[index.ts:482](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L482)
[index.ts:396](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L396)
___
@@ -324,7 +324,7 @@ Refine the results by reading extra elements and re-ranking them in memory.
#### Defined in
[index.ts:473](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L473)
[index.ts:387](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L387)
___
@@ -346,4 +346,4 @@ Return only the specified columns.
#### Defined in
[index.ts:502](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L502)
[index.ts:416](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L416)

View File

@@ -22,7 +22,7 @@ Cosine distance
#### Defined in
[index.ts:567](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L567)
[index.ts:481](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L481)
___
@@ -34,7 +34,7 @@ Dot product
#### Defined in
[index.ts:572](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L572)
[index.ts:486](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L486)
___
@@ -46,4 +46,4 @@ Euclidean distance
#### Defined in
[index.ts:562](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L562)
[index.ts:476](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L476)

View File

@@ -22,7 +22,7 @@ Append new data to the table.
#### Defined in
[index.ts:552](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L552)
[index.ts:466](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L466)
___
@@ -34,7 +34,7 @@ Create a new [Table](../interfaces/Table.md).
#### Defined in
[index.ts:548](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L548)
[index.ts:462](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L462)
___
@@ -46,4 +46,4 @@ Overwrite the existing [Table](../interfaces/Table.md) if presented.
#### Defined in
[index.ts:550](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L550)
[index.ts:464](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L464)

View File

@@ -1,41 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / AwsCredentials
# Interface: AwsCredentials
## Table of contents
### Properties
- [accessKeyId](AwsCredentials.md#accesskeyid)
- [secretKey](AwsCredentials.md#secretkey)
- [sessionToken](AwsCredentials.md#sessiontoken)
## Properties
### accessKeyId
**accessKeyId**: `string`
#### Defined in
[index.ts:31](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L31)
___
### secretKey
**secretKey**: `string`
#### Defined in
[index.ts:33](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L33)
___
### sessionToken
`Optional` **sessionToken**: `string`
#### Defined in
[index.ts:35](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L35)

View File

@@ -32,7 +32,7 @@ Connection could be local against filesystem or remote against a server.
#### Defined in
[index.ts:70](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L70)
[index.ts:45](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L45)
## Methods
@@ -63,7 +63,7 @@ Creates a new Table and initialize it with new data.
#### Defined in
[index.ts:90](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L90)
[index.ts:65](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L65)
___
@@ -84,7 +84,7 @@ ___
#### Defined in
[index.ts:92](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L92)
[index.ts:67](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L67)
___
@@ -106,7 +106,7 @@ Drop an existing table.
#### Defined in
[index.ts:98](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L98)
[index.ts:73](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L73)
___
@@ -135,7 +135,7 @@ Open a table in the database.
#### Defined in
[index.ts:80](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L80)
[index.ts:55](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L55)
___
@@ -149,4 +149,4 @@ ___
#### Defined in
[index.ts:72](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L72)
[index.ts:47](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L47)

View File

@@ -1,30 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / ConnectionOptions
# Interface: ConnectionOptions
## Table of contents
### Properties
- [awsCredentials](ConnectionOptions.md#awscredentials)
- [uri](ConnectionOptions.md#uri)
## Properties
### awsCredentials
`Optional` **awsCredentials**: [`AwsCredentials`](AwsCredentials.md)
#### Defined in
[index.ts:40](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L40)
___
### uri
**uri**: `string`
#### Defined in
[index.ts:39](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L39)

View File

@@ -45,7 +45,7 @@ Creates a vector representation for the given values.
#### Defined in
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L27)
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/embedding_function.ts#L27)
___
@@ -57,4 +57,4 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L22)
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/embedding_function.ts#L22)

View File

@@ -1,149 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / IvfPQIndexConfig
# Interface: IvfPQIndexConfig
## Table of contents
### Properties
- [column](IvfPQIndexConfig.md#column)
- [index\_name](IvfPQIndexConfig.md#index_name)
- [max\_iters](IvfPQIndexConfig.md#max_iters)
- [max\_opq\_iters](IvfPQIndexConfig.md#max_opq_iters)
- [metric\_type](IvfPQIndexConfig.md#metric_type)
- [num\_bits](IvfPQIndexConfig.md#num_bits)
- [num\_partitions](IvfPQIndexConfig.md#num_partitions)
- [num\_sub\_vectors](IvfPQIndexConfig.md#num_sub_vectors)
- [replace](IvfPQIndexConfig.md#replace)
- [type](IvfPQIndexConfig.md#type)
- [use\_opq](IvfPQIndexConfig.md#use_opq)
## Properties
### column
`Optional` **column**: `string`
The column to be indexed
#### Defined in
[index.ts:382](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L382)
___
### index\_name
`Optional` **index\_name**: `string`
A unique name for the index
#### Defined in
[index.ts:387](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L387)
___
### max\_iters
`Optional` **max\_iters**: `number`
The max number of iterations for kmeans training.
#### Defined in
[index.ts:402](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L402)
___
### max\_opq\_iters
`Optional` **max\_opq\_iters**: `number`
Max number of iterations to train OPQ, if `use_opq` is true.
#### Defined in
[index.ts:421](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L421)
___
### metric\_type
`Optional` **metric\_type**: [`MetricType`](../enums/MetricType.md)
Metric type, L2 or Cosine
#### Defined in
[index.ts:392](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L392)
___
### num\_bits
`Optional` **num\_bits**: `number`
The number of bits to present one PQ centroid.
#### Defined in
[index.ts:416](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L416)
___
### num\_partitions
`Optional` **num\_partitions**: `number`
The number of partitions this index
#### Defined in
[index.ts:397](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L397)
___
### num\_sub\_vectors
`Optional` **num\_sub\_vectors**: `number`
Number of subvectors to build PQ code
#### Defined in
[index.ts:412](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L412)
___
### replace
`Optional` **replace**: `boolean`
Replace an existing index with the same name if it exists.
#### Defined in
[index.ts:426](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L426)
___
### type
**type**: ``"ivf_pq"``
#### Defined in
[index.ts:428](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L428)
___
### use\_opq
• `Optional` **use\_opq**: `boolean`
Train as optimized product quantization.
#### Defined in
[index.ts:407](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L407)

View File

@@ -52,7 +52,7 @@ The number of rows added to the table
#### Defined in
[index.ts:120](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L120)
[index.ts:95](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L95)
___
@@ -72,13 +72,13 @@ Returns the number of rows in this table.
#### Defined in
[index.ts:140](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L140)
[index.ts:115](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L115)
___
### createIndex
**createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`<`any`\>
**createIndex**: (`indexParams`: `IvfPQIndexConfig`) => `Promise`<`any`\>
#### Type declaration
@@ -94,7 +94,7 @@ VectorIndexParams.
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexParams` | [`IvfPQIndexConfig`](IvfPQIndexConfig.md) | The parameters of this Index, |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
##### Returns
@@ -102,7 +102,7 @@ VectorIndexParams.
#### Defined in
[index.ts:135](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L135)
[index.ts:110](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L110)
___
@@ -116,37 +116,11 @@ ___
Delete rows from this table.
This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
**`Examples`**
```ts
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [1, 2]},
{id: 2, vector: [3, 4]},
{id: 3, vector: [5, 6]},
];
const tbl = await con.createTable("my_table", data)
await tbl.delete("id = 2")
await tbl.countRows() // Returns 2
```
If you have a list of values to delete, you can combine them into a
stringified list and use the `IN` operator:
```ts
const to_remove = [1, 5];
await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1
```
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. |
##### Returns
@@ -154,7 +128,7 @@ await tbl.countRows() // Returns 1
#### Defined in
[index.ts:174](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L174)
[index.ts:122](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L122)
___
@@ -164,7 +138,7 @@ ___
#### Defined in
[index.ts:106](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L106)
[index.ts:81](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L81)
___
@@ -192,7 +166,7 @@ The number of rows added to the table
#### Defined in
[index.ts:128](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L128)
[index.ts:103](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L103)
___
@@ -218,4 +192,4 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in
[index.ts:112](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L112)
[index.ts:87](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L87)

View File

@@ -18,11 +18,8 @@
### Interfaces
- [AwsCredentials](interfaces/AwsCredentials.md)
- [Connection](interfaces/Connection.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
- [IvfPQIndexConfig](interfaces/IvfPQIndexConfig.md)
- [Table](interfaces/Table.md)
### Type Aliases
@@ -37,11 +34,11 @@
### VectorIndexParams
Ƭ **VectorIndexParams**: [`IvfPQIndexConfig`](interfaces/IvfPQIndexConfig.md)
Ƭ **VectorIndexParams**: `IvfPQIndexConfig`
#### Defined in
[index.ts:431](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L431)
[index.ts:345](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L345)
## Functions
@@ -63,20 +60,4 @@ Connect to a LanceDB instance at the given URI
#### Defined in
[index.ts:47](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L47)
**connect**(`opts`): `Promise`<[`Connection`](interfaces/Connection.md)\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `opts` | `Partial`<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> |
#### Returns
`Promise`<[`Connection`](interfaces/Connection.md)\>
#### Defined in
[index.ts:48](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L48)
[index.ts:34](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L34)

File diff suppressed because one or more lines are too long

View File

@@ -10,11 +10,7 @@
"\n",
"This Q&A bot will allow you to query your own documentation easily using questions. We'll also demonstrate the use of LangChain and LanceDB using the OpenAI API. \n",
"\n",
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well\n",
"\n",
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
"\n",
"Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/Code-Documentation-QA-Bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/Code-Documentation-QA-Bot/index.js)"
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well"
]
},
{
@@ -144,7 +140,7 @@
"source": [
"# Pre-processing and loading the documentation\n",
"\n",
"Next, let's pre-process and load the documentation. To make sure we don't need to do this repeatedly if we were updating code, we're caching it using pickle so we can retrieve it again (this could take a few minutes to run the first time you do it). We'll also add some more metadata to the docs here such as the title and version of the code:"
"Next, let's pre-process and load the documentation. To make sure we don't need to do this repeatedly if we were updating code, we're caching it using pickle so we can retrieve it again (this could take a few minutes to run the first time yyou do it). We'll also add some more metadata to the docs here such as the title and version of the code:"
]
},
{
@@ -185,7 +181,7 @@
"id": "c3852dd3",
"metadata": {},
"source": [
"# Generating embeddings from our docs\n",
"# Generating emebeddings from our docs\n",
"\n",
"Now that we have our raw documents loaded, we need to pre-process them to generate embeddings:"
]
@@ -255,7 +251,7 @@
"id": "28d93b85",
"metadata": {},
"source": [
"And that's it! We're all set up. The next step is to run some queries, let's try a few:"
"And thats it! We're all setup. The next step is to run some queries, let's try a few:"
]
},
{

File diff suppressed because one or more lines are too long

View File

@@ -1,14 +1,5 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![example](https://github.com/lancedb/vectordb-recipes/assets/15766192/799f94a1-a01d-4a5b-a627-2a733bbb4227)\n",
"\n",
" <a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/multimodal_clip/main.py) |"
]
},
{
"cell_type": "code",
"execution_count": 2,
@@ -19,11 +10,11 @@
"output_type": "stream",
"text": [
"\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
@@ -39,7 +30,6 @@
"outputs": [],
"source": [
"import io\n",
"\n",
"import PIL\n",
"import duckdb\n",
"import lancedb"
@@ -52,19 +42,6 @@
"## First run setup: Download data and pre-process"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"### Get dataset\n",
"\n",
"!wget https://eto-public.s3.us-west-2.amazonaws.com/datasets/diffusiondb_lance.tar.gz\n",
"!tar -xvf diffusiondb_lance.tar.gz\n",
"!mv diffusiondb_test rawdata.lance\n"
]
},
{
"cell_type": "code",
"execution_count": 30,
@@ -159,18 +136,18 @@
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"embedding = embed_func('{query}')\\n\"\n",
" \"tbl.search(embedding).limit(9).to_pandas()\"\n",
" \"tbl.search(embedding).limit(9).to_df()\"\n",
" )\n",
" return (_extract(tbl.search(emb).limit(9).to_pandas()), code)\n",
" return (_extract(tbl.search(emb).limit(9).to_df()), code)\n",
"\n",
"def find_image_keywords(query):\n",
" code = (\n",
" \"import lancedb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"tbl.search('{query}').limit(9).to_pandas()\"\n",
" f\"tbl.search('{query}').limit(9).to_df()\"\n",
" )\n",
" return (_extract(tbl.search(query).limit(9).to_pandas()), code)\n",
" return (_extract(tbl.search(query).limit(9).to_df()), code)\n",
"\n",
"def find_image_sql(query):\n",
" code = (\n",
@@ -270,7 +247,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.11.4 64-bit",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -284,12 +261,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
},
"vscode": {
"interpreter": {
"hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e"
}
"version": "3.11.3"
}
},
"nbformat": 4,

File diff suppressed because it is too large Load Diff

View File

@@ -1,825 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d24eb4c6-e246-44ca-ba7c-6eae7923bd4c",
"metadata": {},
"source": [
"## LanceDB Tables\n",
"A Table is a collection of Records in a LanceDB Database.\n",
"\n",
"![illustration](../assets/ecosystem-illustration.png)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "c1b4e34b-a49c-471d-a343-a5940bb5138a",
"metadata": {},
"outputs": [],
"source": [
"!pip install lancedb -qq"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "4e5a8d07-d9a1-48c1-913a-8e0629289579",
"metadata": {},
"outputs": [],
"source": [
"import lancedb\n",
"db = lancedb.connect(\"./.lancedb\")"
]
},
{
"cell_type": "markdown",
"id": "66fb93d5-3551-406b-99b2-488442d61d06",
"metadata": {},
"source": [
"LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.\n",
"\n",
" ### From list of tuples or dictionaries"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5df12f66-8d99-43ad-8d0b-22189ec0a6b9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"pyarrow.Table\n",
"vector: fixed_size_list<item: float>[2]\n",
" child 0, item: float\n",
"lat: double\n",
"long: double\n",
"----\n",
"vector: [[[1.1,1.2],[0.2,1.8]]]\n",
"lat: [[45.5,40.1]]\n",
"long: [[-122.7,-74.1]]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import lancedb\n",
"\n",
"db = lancedb.connect(\"./.lancedb\")\n",
"\n",
"data = [{\"vector\": [1.1, 1.2], \"lat\": 45.5, \"long\": -122.7},\n",
" {\"vector\": [0.2, 1.8], \"lat\": 40.1, \"long\": -74.1}]\n",
"\n",
"db.create_table(\"my_table\", data)\n",
"\n",
"db[\"my_table\"].head()"
]
},
{
"cell_type": "markdown",
"id": "10ce802f-1a10-49ee-8ee3-a9bfb302d86c",
"metadata": {},
"source": [
"## From pandas DataFrame\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f4d87ae9-0ccb-48eb-b31d-bb8f2370e47e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"pyarrow.Table\n",
"vector: fixed_size_list<item: float>[2]\n",
" child 0, item: float\n",
"lat: double\n",
"long: double\n",
"----\n",
"vector: [[[1.1,1.2],[0.2,1.8]]]\n",
"lat: [[45.5,40.1]]\n",
"long: [[-122.7,-74.1]]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = [\n",
" {\"vector\": [1.1, 1.2], \"lat\": 45.5, \"long\": -122.7},\n",
" {\"vector\": [0.2, 1.8], \"lat\": 40.1, \"long\": -74.1},\n",
"]\n",
"\n",
"db.create_table(\"table2\", data)\n",
"\n",
"db[\"table2\"].head() "
]
},
{
"cell_type": "markdown",
"id": "4be81469-5b57-4f78-9c72-3938c0378d9d",
"metadata": {},
"source": [
"Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "25f34bcf-fca0-4431-8601-eac95d1bd347",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"vector: fixed_size_list<item: float>[2]\n",
" child 0, item: float\n",
"lat: float\n",
"long: float"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pyarrow as pa\n",
"\n",
"custom_schema = pa.schema([\n",
"pa.field(\"vector\", pa.list_(pa.float32(), 2)),\n",
"pa.field(\"lat\", pa.float32()),\n",
"pa.field(\"long\", pa.float32())\n",
"])\n",
"\n",
"table = db.create_table(\"table3\", data, schema=custom_schema, mode=\"overwrite\")\n",
"table.schema"
]
},
{
"cell_type": "markdown",
"id": "4df51925-7ca2-4005-9c72-38b3d26240c6",
"metadata": {},
"source": [
"### From PyArrow Tables\n",
"\n",
"You can also create LanceDB tables directly from pyarrow tables"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "90a880f6-be43-4c9d-ba65-0b05197c0f6f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"vector: fixed_size_list<item: float>[2]\n",
" child 0, item: float\n",
"item: string\n",
"price: double"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"table = pa.Table.from_arrays(\n",
" [\n",
" pa.array([[3.1, 4.1], [5.9, 26.5]],\n",
" pa.list_(pa.float32(), 2)),\n",
" pa.array([\"foo\", \"bar\"]),\n",
" pa.array([10.0, 20.0]),\n",
" ],\n",
" [\"vector\", \"item\", \"price\"],\n",
" )\n",
"\n",
"db = lancedb.connect(\"db\")\n",
"\n",
"tbl = db.create_table(\"test1\", table, mode=\"overwrite\")\n",
"tbl.schema"
]
},
{
"cell_type": "markdown",
"id": "0f36c51c-d902-449d-8292-700e53990c32",
"metadata": {},
"source": [
"### From Pydantic Models\n",
"\n",
"LanceDB supports to create Apache Arrow Schema from a Pydantic BaseModel."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "d81121d7-e4b7-447c-a48c-974b6ebb464a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"movie_id: int64 not null\n",
"vector: fixed_size_list<item: float>[128] not null\n",
" child 0, item: float\n",
"genres: string not null\n",
"title: string not null\n",
"imdb_id: int64 not null"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from lancedb.pydantic import Vector, LanceModel\n",
"\n",
"class Content(LanceModel):\n",
" movie_id: int\n",
" vector: Vector(128)\n",
" genres: str\n",
" title: str\n",
" imdb_id: int\n",
" \n",
" @property\n",
" def imdb_url(self) -> str:\n",
" return f\"https://www.imdb.com/title/tt{self.imdb_id}\"\n",
"\n",
"import pyarrow as pa\n",
"db = lancedb.connect(\"~/.lancedb\")\n",
"table_name = \"movielens_small\"\n",
"table = db.create_table(table_name, schema=Content)\n",
"table.schema"
]
},
{
"cell_type": "markdown",
"id": "860e1f77-e860-46a9-98b7-b2979092ccd6",
"metadata": {},
"source": [
"### Using Iterators / Writing Large Datasets\n",
"\n",
"It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`\n",
"\n",
"LanceDB additionally supports pyarrow's `RecordBatch` Iterators or other generators producing supported data types.\n",
"\n",
"## Here's an example using using `RecordBatch` iterator for creating tables."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "bc247142-4e3c-41a2-b94c-8e00d2c2a508",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LanceTable(table4)"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pyarrow as pa\n",
"\n",
"def make_batches():\n",
" for i in range(5):\n",
" yield pa.RecordBatch.from_arrays(\n",
" [\n",
" pa.array([[3.1, 4.1], [5.9, 26.5]],\n",
" pa.list_(pa.float32(), 2)),\n",
" pa.array([\"foo\", \"bar\"]),\n",
" pa.array([10.0, 20.0]),\n",
" ],\n",
" [\"vector\", \"item\", \"price\"],\n",
" )\n",
"\n",
"schema = pa.schema([\n",
" pa.field(\"vector\", pa.list_(pa.float32(), 2)),\n",
" pa.field(\"item\", pa.utf8()),\n",
" pa.field(\"price\", pa.float32()),\n",
"])\n",
"\n",
"db.create_table(\"table4\", make_batches(), schema=schema)"
]
},
{
"cell_type": "markdown",
"id": "94f7dd2b-bae4-4bdf-8534-201437c31027",
"metadata": {},
"source": [
"### Using pandas `DataFrame` Iterator and Pydantic Schema\n",
"\n",
"You can set the schema via pyarrow schema object or using Pydantic object"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "25ad3523-e0c9-4c28-b3df-38189c4e0e5f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"vector: fixed_size_list<item: float>[2] not null\n",
" child 0, item: float\n",
"item: string not null\n",
"price: double not null"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pyarrow as pa\n",
"import pandas as pd\n",
"\n",
"class PydanticSchema(LanceModel):\n",
" vector: Vector(2)\n",
" item: str\n",
" price: float\n",
"\n",
"def make_batches():\n",
" for i in range(5):\n",
" yield pd.DataFrame(\n",
" {\n",
" \"vector\": [[3.1, 4.1], [1, 1]],\n",
" \"item\": [\"foo\", \"bar\"],\n",
" \"price\": [10.0, 20.0],\n",
" })\n",
"\n",
"tbl = db.create_table(\"table5\", make_batches(), schema=PydanticSchema)\n",
"tbl.schema"
]
},
{
"cell_type": "markdown",
"id": "4aa955e9-fcd0-4c99-b644-f218f3bb3f1a",
"metadata": {},
"source": [
"## Creating Empty Table\n",
"\n",
"You can create an empty table by just passing the schema and later add to it using `table.add()`"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "2814173a-eacc-4dd8-a64d-6312b44582cc",
"metadata": {},
"outputs": [],
"source": [
"import lancedb\n",
"from lancedb.pydantic import LanceModel, Vector\n",
"\n",
"class Model(LanceModel):\n",
" vector: Vector(2)\n",
"\n",
"tbl = db.create_table(\"table6\", schema=Model.to_arrow_schema())"
]
},
{
"cell_type": "markdown",
"id": "1d1b0f5c-a1d9-459f-8614-8376b6f577e1",
"metadata": {},
"source": [
"## Open Existing Tables\n",
"\n",
"If you forget the name of your table, you can always get a listing of all table names:\n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "df9e13c0-41f6-437f-9dfa-2fd71d3d9c45",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['table6', 'table4', 'table5', 'movielens_small']"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db.table_names()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "9343f5ad-6024-42ee-ac2f-6c1471df8679",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>vector</th>\n",
" <th>item</th>\n",
" <th>price</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>[3.1, 4.1]</td>\n",
" <td>foo</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>[5.9, 26.5]</td>\n",
" <td>bar</td>\n",
" <td>20.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>[3.1, 4.1]</td>\n",
" <td>foo</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>[5.9, 26.5]</td>\n",
" <td>bar</td>\n",
" <td>20.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>[3.1, 4.1]</td>\n",
" <td>foo</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>[5.9, 26.5]</td>\n",
" <td>bar</td>\n",
" <td>20.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>[3.1, 4.1]</td>\n",
" <td>foo</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>[5.9, 26.5]</td>\n",
" <td>bar</td>\n",
" <td>20.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>[3.1, 4.1]</td>\n",
" <td>foo</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>[5.9, 26.5]</td>\n",
" <td>bar</td>\n",
" <td>20.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" vector item price\n",
"0 [3.1, 4.1] foo 10.0\n",
"1 [5.9, 26.5] bar 20.0\n",
"2 [3.1, 4.1] foo 10.0\n",
"3 [5.9, 26.5] bar 20.0\n",
"4 [3.1, 4.1] foo 10.0\n",
"5 [5.9, 26.5] bar 20.0\n",
"6 [3.1, 4.1] foo 10.0\n",
"7 [5.9, 26.5] bar 20.0\n",
"8 [3.1, 4.1] foo 10.0\n",
"9 [5.9, 26.5] bar 20.0"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tbl = db.open_table(\"table4\")\n",
"tbl.to_pandas()"
]
},
{
"cell_type": "markdown",
"id": "5019246f-12e3-4f78-88a8-9f4939802c76",
"metadata": {},
"source": [
"## Adding to table\n",
"After a table has been created, you can always add more data to it using\n",
"\n",
"You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or a `Iterator[pa.RecordBatch]`. Here are some examples."
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "8a56250f-73a1-4c26-a6ad-5c7a0ce3a9ab",
"metadata": {},
"outputs": [],
"source": [
"data = [\n",
" {\"vector\": [1.3, 1.4], \"item\": \"fizz\", \"price\": 100.0},\n",
" {\"vector\": [9.5, 56.2], \"item\": \"buzz\", \"price\": 200.0}\n",
"]\n",
"tbl.add(data)"
]
},
{
"cell_type": "markdown",
"id": "9985f6ee-67e1-45a9-b233-94e3d121ecbf",
"metadata": {},
"source": [
"You can also add a large dataset batch in one go using Iterator of supported data types\n",
"\n",
"### Adding via Iterator\n",
"\n",
"here, we'll use pandas DataFrame Iterator"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "030c7057-b98e-4e2f-be14-b8c1f927f83c",
"metadata": {},
"outputs": [],
"source": [
"def make_batches():\n",
" for i in range(5):\n",
" yield [\n",
" {\"vector\": [3.1, 4.1], \"item\": \"foo\", \"price\": 10.0},\n",
" {\"vector\": [1, 1], \"item\": \"bar\", \"price\": 20.0},\n",
" ]\n",
"tbl.add(make_batches())"
]
},
{
"cell_type": "markdown",
"id": "b8316d5d-0a23-4675-b0ee-178711db873a",
"metadata": {},
"source": [
"## Deleting from a Table\n",
"\n",
"Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter, like:\n",
"\n",
"\n",
"```python\n",
"tbl.delete('item = \"fizz\"')\n",
"```\n"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "e7a17de2-08d2-41b7-bd05-f63d1045ab1f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"32\n"
]
},
{
"data": {
"text/plain": [
"17"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(len(tbl))\n",
" \n",
"tbl.delete(\"price = 20.0\")\n",
" \n",
"len(tbl)"
]
},
{
"cell_type": "markdown",
"id": "74ac180b-5432-4c14-b1a8-22c35ac83af8",
"metadata": {},
"source": [
"### Delete from a list of values"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "fe3310bd-08f4-4a22-a63b-b3127d22f9f7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" vector item price\n",
"0 [3.1, 4.1] foo 10.0\n",
"1 [3.1, 4.1] foo 10.0\n",
"2 [3.1, 4.1] foo 10.0\n",
"3 [3.1, 4.1] foo 10.0\n",
"4 [3.1, 4.1] foo 10.0\n",
"5 [1.3, 1.4] fizz 100.0\n",
"6 [9.5, 56.2] buzz 200.0\n",
"7 [3.1, 4.1] foo 10.0\n",
"8 [3.1, 4.1] foo 10.0\n",
"9 [3.1, 4.1] foo 10.0\n",
"10 [3.1, 4.1] foo 10.0\n",
"11 [3.1, 4.1] foo 10.0\n",
"12 [3.1, 4.1] foo 10.0\n",
"13 [3.1, 4.1] foo 10.0\n",
"14 [3.1, 4.1] foo 10.0\n",
"15 [3.1, 4.1] foo 10.0\n",
"16 [3.1, 4.1] foo 10.0\n"
]
},
{
"ename": "OSError",
"evalue": "LanceError(IO): Error during planning: column foo does not exist",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[30], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m to_remove \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mstr\u001b[39m(v) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m to_remove)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(tbl\u001b[38;5;241m.\u001b[39mto_pandas())\n\u001b[0;32m----> 4\u001b[0m \u001b[43mtbl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mitem IN (\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mto_remove\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m)\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 5\u001b[0m tbl\u001b[38;5;241m.\u001b[39mto_pandas()\n",
"File \u001b[0;32m~/Documents/lancedb/lancedb/python/lancedb/table.py:610\u001b[0m, in \u001b[0;36mLanceTable.delete\u001b[0;34m(self, where)\u001b[0m\n\u001b[1;32m 609\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdelete\u001b[39m(\u001b[38;5;28mself\u001b[39m, where: \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m--> 610\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mwhere\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Documents/lancedb/lancedb/env/lib/python3.11/site-packages/lance/dataset.py:489\u001b[0m, in \u001b[0;36mLanceDataset.delete\u001b[0;34m(self, predicate)\u001b[0m\n\u001b[1;32m 487\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(predicate, pa\u001b[38;5;241m.\u001b[39mcompute\u001b[38;5;241m.\u001b[39mExpression):\n\u001b[1;32m 488\u001b[0m predicate \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(predicate)\n\u001b[0;32m--> 489\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpredicate\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mOSError\u001b[0m: LanceError(IO): Error during planning: column foo does not exist"
]
}
],
"source": [
"to_remove = [\"foo\", \"buzz\"]\n",
"to_remove = \", \".join(str(v) for v in to_remove)\n",
"print(tbl.to_pandas())\n",
"tbl.delete(f\"item IN ({to_remove})\")\n"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "87d5bc21-847f-4c81-b56e-f6dbe5d05aac",
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(\n",
" {\n",
" \"vector\": [[3.1, 4.1], [1, 1]],\n",
" \"item\": [\"foo\", \"bar\"],\n",
" \"price\": [10.0, 20.0],\n",
" })\n",
"\n",
"tbl = db.create_table(\"table7\", data=df, mode=\"overwrite\")"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "9cba4519-eb3a-4941-ab7e-873d762e750f",
"metadata": {},
"outputs": [],
"source": [
"to_remove = [10.0, 20.0]\n",
"to_remove = \", \".join(str(v) for v in to_remove)\n",
"\n",
"tbl.delete(f\"price IN ({to_remove})\")"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "5bdc9801-d5ed-4871-92d0-88b27108e788",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>vector</th>\n",
" <th>item</th>\n",
" <th>price</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [vector, item, price]\n",
"Index: []"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tbl.to_pandas()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "752d33d4-ce1c-48e5-90d2-c85f0982182d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -8,12 +8,7 @@
"source": [
"# Youtube Transcript Search QA Bot\n",
"\n",
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily.\n",
"\n",
"\n",
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\">\n",
"\n",
"Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/youtube_bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/youtube_bot/index.js)\n"
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily."
]
},
{
@@ -27,11 +22,11 @@
"output_type": "stream",
"text": [
"\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
@@ -184,7 +179,7 @@
"df = (contextualize(data.to_pandas())\n",
" .groupby(\"title\").text_col(\"text\")\n",
" .window(20).stride(4)\n",
" .to_pandas())\n",
" .to_df())\n",
"df.head(1)"
]
},
@@ -603,7 +598,7 @@
"outputs": [],
"source": [
"# Use LanceDB to get top 3 most relevant context\n",
"context = tbl.search(emb).limit(3).to_pandas()"
"context = tbl.search(emb).limit(3).to_df()"
]
},
{

View File

@@ -39,6 +39,7 @@ to lazily generate data:
from typing import Iterable
import pyarrow as pa
import lancedb
def make_batches() -> Iterable[pa.RecordBatch]:
for i in range(5):
@@ -73,12 +74,12 @@ table = db.open_table("pd_table")
query_vector = [100, 100]
# Pandas DataFrame
df = table.search(query_vector).limit(1).to_pandas()
df = table.search(query_vector).limit(1).to_df()
print(df)
```
```
vector item price _distance
vector item price score
0 [5.9, 26.5] bar 20.0 14257.05957
```
@@ -88,12 +89,12 @@ If you have more complex criteria, you can always apply the filter to the result
```python
# Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_pandas()
results = table.search([100, 100]).where("price < 15").to_df()
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
# Apply the filter via Pandas
df = results = table.search([100, 100]).to_pandas()
df = results = table.search([100, 100]).to_df()
results = df[df.price < 15]
assert len(results) == 1
assert results["item"].iloc[0] == "foo"

View File

@@ -11,13 +11,15 @@ pip install duckdb lancedb
We will re-use [the dataset created previously](./arrow.md):
```python
import pandas as pd
import lancedb
db = lancedb.connect("data/sample-lancedb")
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
]
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pd_table", data=data)
arrow_table = table.to_arrow()
```

View File

@@ -1,7 +1,6 @@
# Pydantic
[Pydantic](https://docs.pydantic.dev/latest/) is a data validation library in Python.
LanceDB integrates with Pydantic for schema inference, data ingestion, and query result casting.
## Schema
@@ -13,10 +12,10 @@ via [pydantic_to_schema()](python.md##lancedb.pydantic.pydantic_to_schema) metho
## Vector Field
LanceDB provides a [`Vector(dim)`](python.md#lancedb.pydantic.Vector) method to define a
LanceDB provides a [`vector(dim)`](python.md#lancedb.pydantic.vector) method to define a
vector Field in a Pydantic Model.
::: lancedb.pydantic.Vector
::: lancedb.pydantic.vector
## Type Conversion
@@ -33,4 +32,4 @@ Current supported type conversions:
| `str` | `pyarrow.utf8()` |
| `list` | `pyarrow.List` |
| `BaseModel` | `pyarrow.Struct` |
| `Vector(n)` | `pyarrow.FixedSizeList(float32, n)` |
| `vector(n)` | `pyarrow.FixedSizeList(float32, n)` |

View File

@@ -22,22 +22,14 @@ pip install lancedb
::: lancedb.query.LanceQueryBuilder
::: lancedb.query.LanceFtsQueryBuilder
## Embeddings
::: lancedb.embeddings.registry.EmbeddingFunctionRegistry
::: lancedb.embeddings.base.EmbeddingFunction
::: lancedb.embeddings.base.TextEmbeddingFunction
::: lancedb.embeddings.sentence_transformers.SentenceTransformerEmbeddings
::: lancedb.embeddings.openai.OpenAIEmbeddings
::: lancedb.embeddings.open_clip.OpenClipEmbeddings
::: lancedb.embeddings.with_embeddings
::: lancedb.embeddings.EmbeddingFunction
## Context
::: lancedb.context.contextualize
@@ -54,7 +46,7 @@ pip install lancedb
## Utilities
::: lancedb.schema.vector
::: lancedb.vector
## Integrations
@@ -64,4 +56,4 @@ pip install lancedb
::: lancedb.pydantic.vector
::: lancedb.pydantic.LanceModel

View File

@@ -1,18 +0,0 @@
# LanceDB Python API Reference
## Installation
```shell
pip install lancedb
```
## Connection
::: lancedb.connect
::: lancedb.remote.db.RemoteDBConnection
## Table
::: lancedb.remote.table.RemoteTable

View File

@@ -1 +0,0 @@
User-agent: *

View File

@@ -1,4 +0,0 @@
window.addEventListener("DOMContentLoaded", (event) => {
!function(t,e){var o,n,p,r;e.__SV||(window.posthog=e,e._i=[],e.init=function(i,s,a){function g(t,e){var o=e.split(".");2==o.length&&(t=t[o[0]],e=o[1]),t[e]=function(){t.push([e].concat(Array.prototype.slice.call(arguments,0)))}}(p=t.createElement("script")).type="text/javascript",p.async=!0,p.src=s.api_host+"/static/array.js",(r=t.getElementsByTagName("script")[0]).parentNode.insertBefore(p,r);var u=e;for(void 0!==a?u=e[a]=[]:a="posthog",u.people=u.people||[],u.toString=function(t){var e="posthog";return"posthog"!==a&&(e+="."+a),t||(e+=" (stub)"),e},u.people.toString=function(){return u.toString(1)+".people (stub)"},o="capture identify alias people.set people.set_once set_config register register_once unregister opt_out_capturing has_opted_out_capturing opt_in_capturing reset isFeatureEnabled onFeatureFlags getFeatureFlag getFeatureFlagPayload reloadFeatureFlags group updateEarlyAccessFeatureEnrollment getEarlyAccessFeatures getActiveMatchingSurveys getSurveys".split(" "),n=0;n<o.length;n++)g(u,o[n]);e._i.push([i,s,a])},e.__SV=1)}(document,window.posthog||[]);
posthog.init('phc_oENDjGgHtmIDrV6puUiFem2RB4JA8gGWulfdulmMdZP',{api_host:'https://app.posthog.com'})
});

View File

@@ -4,7 +4,7 @@
In a recommendation system or search engine, you can find similar products from
the one you searched.
In LLM and other AI applications,
each data point can be [presented by the embeddings generated from some models](embeddings/index.md),
each data point can be [presented by the embeddings generated from some models](embedding.md),
it returns the most relevant features.
A search in high-dimensional vector space, is to find `K-Nearest-Neighbors (KNN)` of the query vector.
@@ -25,8 +25,8 @@ Currently, we support the following metrics:
### Flat Search
If you do not create a vector index, LanceDB would need to exhaustively scan the entire vector column (via `Flat Search`)
and compute the distance for *every* vector in order to find the closest matches. This is effectively a KNN search.
If LanceDB does not create a vector index, LanceDB would need to scan (`Flat Search`) the entire vector column
and compute the distance for each vector in order to find the closest matches.
<!-- Setup Code
@@ -67,7 +67,7 @@ await db_setup.createTable('my_vectors', data)
df = tbl.search(np.random.random((1536))) \
.limit(10) \
.to_list()
.to_df()
```
=== "JavaScript"
@@ -92,7 +92,7 @@ as well.
df = tbl.search(np.random.random((1536))) \
.metric("cosine") \
.limit(10) \
.to_list()
.to_df()
```
@@ -110,7 +110,7 @@ as well.
To accelerate vector retrievals, it is common to build vector indices.
A vector index is a data structure specifically designed to efficiently organize and
search vector data based on their similarity via the chosen distance metric.
search vector data based on their similarity or distance metrics.
By constructing a vector index, you can reduce the search space and avoid the need
for brute-force scanning of the entire vector column.

View File

@@ -3,13 +3,4 @@
--md-primary-fg-color--dark: #4338ca;
--md-text-font: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";
--md-code-font: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
}
.md-nav__item, .md-tabs__item {
font-size: large;
}
/* Maximum space for text block */
.md-grid {
max-width: 90%;
}
}

View File

@@ -2,18 +2,18 @@ const glob = require("glob");
const fs = require("fs");
const path = require("path");
const globString = "../src/**/*.md";
const excludedGlobs = [
const excludedFiles = [
"../src/fts.md",
"../src/embedding.md",
"../src/examples/*.md",
"../src/guides/tables.md",
"../src/embeddings/*.md",
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
"../src/examples/transformerjs_embedding_search_nodejs.md",
"../src/examples/youtube_transcript_bot_with_nodejs.md",
];
const nodePrefix = "javascript";
const nodeFile = ".js";
const nodeFolder = "node";
const globString = "../src/**/*.md";
const asyncPrefix = "(async () => {\n";
const asyncSuffix = "})();";
@@ -32,7 +32,6 @@ function* yieldLines(lines, prefix, suffix) {
}
const files = glob.sync(globString, { recursive: true });
const excludedFiles = glob.sync(excludedGlobs, { recursive: true });
for (const file of files.filter((file) => !excludedFiles.includes(file))) {
const lines = [];
@@ -50,4 +49,4 @@ for (const file of files.filter((file) => !excludedFiles.includes(file))) {
fs.mkdirSync(path.dirname(outPath), { recursive: true });
fs.writeFileSync(outPath, asyncPrefix + "\n" + lines.join("\n") + asyncSuffix);
}
}
}

View File

@@ -2,60 +2,39 @@ import glob
from typing import Iterator
from pathlib import Path
glob_string = "../src/**/*.md"
excluded_globs = [
excluded_files = [
"../src/fts.md",
"../src/embedding.md",
"../src/examples/*.md",
"../src/integrations/voxel51.md",
"../src/guides/tables.md",
"../src/python/duckdb.md",
"../src/embeddings/*.md",
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
"../src/examples/youtube_transcript_bot_with_nodejs.md"
]
python_prefix = "py"
python_file = ".py"
python_folder = "python"
files = glob.glob(glob_string, recursive=True)
excluded_files = [
f
for excluded_glob in excluded_globs
for f in glob.glob(excluded_glob, recursive=True)
]
glob_string = "../src/**/*.md"
def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
in_code_block = False
# Python code has strict indentation
strip_length = 0
skip_test = False
for line in lines:
if "skip-test" in line:
skip_test = True
if line.strip().startswith(prefix + python_prefix):
in_code_block = True
strip_length = len(line) - len(line.lstrip())
elif in_code_block and line.strip().startswith(suffix):
in_code_block = False
if not skip_test:
yield "\n"
skip_test = False
yield "\n"
elif in_code_block:
if not skip_test:
yield line[strip_length:]
yield line[strip_length:]
for file in filter(lambda file: file not in excluded_files, files):
for file in filter(lambda file: file not in excluded_files, glob.glob(glob_string, recursive=True)):
with open(file, "r") as f:
lines = list(yield_lines(iter(f), "```", "```"))
if len(lines) > 0:
print(lines)
out_path = (
Path(python_folder)
/ Path(file).name.strip(".md")
/ (Path(file).name.strip(".md") + python_file)
)
out_path = Path(python_folder) / Path(file).name.strip(".md") / (Path(file).name.strip(".md") + python_file)
print(out_path)
out_path.parent.mkdir(exist_ok=True, parents=True)
with open(out_path, "w") as out:

View File

@@ -1,8 +1,5 @@
-e ../../python
lancedb @ git+https://github.com/lancedb/lancedb.git#egg=subdir&subdirectory=python
numpy
pandas
pylance
duckdb
--extra-index-url https://download.pytorch.org/whl/cpu
torch
duckdb

View File

@@ -10,7 +10,7 @@ npm install vectordb
This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
yet support musl-based Linux (such as Alpine Linux).
yet support Windows or musl-based Linux (such as Alpine Linux).
## Usage

View File

@@ -50,7 +50,7 @@ async function example() {
{ id: 5, text: 'Banana', type: 'fruit' }
]
const table = await db.createTable('food_table', data, embed_fun)
const table = await db.createTable('food_table', data, "create", embed_fun)
// Query the table

View File

@@ -10,7 +10,7 @@
"license": "Apache-2.0",
"dependencies": {
"@xenova/transformers": "^2.4.1",
"vectordb": "file:../.."
"vectordb": "^0.1.12"
}
}

View File

@@ -12,25 +12,26 @@
// See the License for the specific language governing permissions and
// limitations under the License.
const { currentTarget } = require('@neon-rs/load')
const { currentTarget } = require('@neon-rs/load');
let nativeLib
let nativeLib;
try {
// When developing locally, give preference to the local built library
nativeLib = require('./index.node')
} catch {
try {
nativeLib = require(`@lancedb/vectordb-${currentTarget()}`)
} catch (e) {
throw new Error(`vectordb: failed to load native library.
You may need to run \`npm install @lancedb/vectordb-${currentTarget()}\`.
nativeLib = require(`vectordb-${currentTarget()}`);
} catch (e) {
try {
// Might be developing locally, so try that. But don't expose that error
// to the user.
nativeLib = require("./index.node");
} catch {
throw new Error(`vectordb: failed to load native library.
You may need to run \`npm install vectordb-${currentTarget()}\`.
If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
Source error: ${e}`)
}
Source error: ${e}`);
}
}
// Dynamic require for runtime.
module.exports = nativeLib
module.exports = nativeLib;

424
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.3.9",
"version": "0.1.13",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.3.9",
"version": "0.1.13",
"cpu": [
"x64",
"arm64"
@@ -20,18 +20,16 @@
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0",
"axios": "^1.4.0"
"apache-arrow": "^12.0.0"
},
"devDependencies": {
"@neon-rs/cli": "^0.0.160",
"@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
@@ -49,15 +47,14 @@
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*",
"uuid": "^9.0.0"
"typescript": "*"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.9",
"@lancedb/vectordb-darwin-x64": "0.3.9",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.9",
"@lancedb/vectordb-linux-x64-gnu": "0.3.9",
"@lancedb/vectordb-win32-x64-msvc": "0.3.9"
"vectordb-darwin-arm64": "0.1.13",
"vectordb-darwin-x64": "0.1.13",
"vectordb-linux-arm64-gnu": "0.1.13",
"vectordb-linux-x64-gnu": "0.1.13",
"vectordb-win32-x64-msvc": "0.1.13"
}
},
"node_modules/@apache-arrow/ts": {
@@ -87,97 +84,6 @@
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
},
"node_modules/@cargo-messages/android-arm-eabi": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/android-arm-eabi/-/android-arm-eabi-0.0.160.tgz",
"integrity": "sha512-PTgCEmBHEPKJbxwlHVXB3aGES+NqpeBvn6hJNYWIkET3ZQCSJnScMlIDQXEkWndK7J+hW3Or3H32a93B/MbbfQ==",
"cpu": [
"arm"
],
"dev": true,
"optional": true,
"os": [
"android"
]
},
"node_modules/@cargo-messages/darwin-arm64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-arm64/-/darwin-arm64-0.0.160.tgz",
"integrity": "sha512-YSVUuc8TUTi/XmZVg9KrH0bDywKLqC1zeTyZYAYDDmqVDZW9KeTnbBUECKRs56iyHeO+kuEkVW7MKf7j2zb/FA==",
"cpu": [
"arm64"
],
"dev": true,
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@cargo-messages/darwin-x64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-x64/-/darwin-x64-0.0.160.tgz",
"integrity": "sha512-U+YlAR+9tKpBljnNPWMop5YhvtwfIPQSAaUYN2llteC7ZNU5/cv8CGT1vm7uFNxr2LeGuAtRbzIh2gUmTV8mng==",
"cpu": [
"x64"
],
"dev": true,
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@cargo-messages/linux-arm-gnueabihf": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-arm-gnueabihf/-/linux-arm-gnueabihf-0.0.160.tgz",
"integrity": "sha512-wqAelTzVv1E7Ls4aviqUbem5xjzCaJQxQtVnLhv6pf1k0UyEHCS2WdufFFmWcojGe7QglI4uve3KTe01MKYj0A==",
"cpu": [
"arm"
],
"dev": true,
"optional": true,
"os": [
"linux"
]
},
"node_modules/@cargo-messages/linux-x64-gnu": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-x64-gnu/-/linux-x64-gnu-0.0.160.tgz",
"integrity": "sha512-LQ6e7O7YYkWfDNIi/53q2QG/+lZok72LOG+NKDVCrrY4TYUcrTqWAybOV6IlkVntKPnpx8YB95umSQGeVuvhpQ==",
"cpu": [
"x64"
],
"dev": true,
"optional": true,
"os": [
"linux"
]
},
"node_modules/@cargo-messages/win32-arm64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-arm64-msvc/-/win32-arm64-msvc-0.0.160.tgz",
"integrity": "sha512-VDMBhyun02gIDwmEhkYP1W9Z0tYqn4drgY5Iua1qV2tYOU58RVkWhzUYxM9rzYbnwKZlltgM46J/j5QZ3VaFrA==",
"cpu": [
"arm64"
],
"dev": true,
"optional": true,
"os": [
"win32"
]
},
"node_modules/@cargo-messages/win32-x64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-x64-msvc/-/win32-x64-msvc-0.0.160.tgz",
"integrity": "sha512-vnoglDxF6zj0W/Co9D0H/bgnrhUuO5EumIf9v3ujLtBH94rAX11JsXh/FgC/8wQnQSsLyWSq70YxNS2wdETxjA==",
"cpu": [
"x64"
],
"dev": true,
"optional": true,
"os": [
"win32"
]
},
"node_modules/@cspotcode/source-map-support": {
"version": "0.8.1",
"resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz",
@@ -316,70 +222,13 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.9.tgz",
"integrity": "sha512-4xXQoPheyIl1P5kRoKmZtaAHFrYdL9pw5yq+r6ewIx0TCemN4LSvzSUTqM5nZl3QPU8FeL0CGD8Gt2gMU0HQ2A==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.9.tgz",
"integrity": "sha512-WIxCZKnLeSlz0PGURtKSX6hJ4CYE2o5P+IFmmuWOWB1uNapQu6zOpea6rNxcRFHUA0IJdO02lVxVfn2hDX4SMg==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.9.tgz",
"integrity": "sha512-bQbcV9adKzYbJLNzDjk9OYsMnT2IjmieLfb4IQ1hj5IUoWfbg80Bd0+gZUnrmrhG6fe56TIriFZYQR9i7TSE9Q==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.9.tgz",
"integrity": "sha512-7EXI7P1QvAfgJNPWWBMDOkoJ696gSBAClcyEJNYg0JV21jVFZRwJVI3bZXflesWduFi/mTuzPkFFA68us1u19A==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
"integrity": "sha512-GQjzHPJVTOARbX3nP/fAWqBq7JlQ8XgfYlCa+iwzIXf0LC1EyfJTX+vqGD/36b9lKoyY01Z/aDUB9o/qF6ztHA==",
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
"integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
"dev": true,
"bin": {
"neon": "index.js"
},
"optionalDependencies": {
"@cargo-messages/android-arm-eabi": "0.0.160",
"@cargo-messages/darwin-arm64": "0.0.160",
"@cargo-messages/darwin-x64": "0.0.160",
"@cargo-messages/linux-arm-gnueabihf": "0.0.160",
"@cargo-messages/linux-x64-gnu": "0.0.160",
"@cargo-messages/win32-arm64-msvc": "0.0.160",
"@cargo-messages/win32-x64-msvc": "0.0.160"
}
},
"node_modules/@neon-rs/load": {
@@ -586,12 +435,6 @@
"@types/node": "*"
}
},
"node_modules/@types/uuid": {
"version": "9.0.3",
"resolved": "https://registry.npmjs.org/@types/uuid/-/uuid-9.0.3.tgz",
"integrity": "sha512-taHQQH/3ZyI3zP8M/puluDEIEvtQHVYcC6y3N8ijFtAd28+Ey/G4sg1u2gB01S8MwybLOKAp9/yCMu/uR5l3Ug==",
"dev": true
},
"node_modules/@typescript-eslint/eslint-plugin": {
"version": "5.59.1",
"resolved": "https://registry.npmjs.org/@typescript-eslint/eslint-plugin/-/eslint-plugin-5.59.1.tgz",
@@ -999,7 +842,8 @@
"node_modules/asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q=="
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
"dev": true
},
"node_modules/available-typed-arrays": {
"version": "1.0.5",
@@ -1014,13 +858,12 @@
}
},
"node_modules/axios": {
"version": "1.4.0",
"resolved": "https://registry.npmjs.org/axios/-/axios-1.4.0.tgz",
"integrity": "sha512-S4XCWMEmzvo64T9GfvQDOXgYRDJ/wsSZc7Jvdgx5u1sd0JwsuPLqb3SYmusag+edF6ziyMensPVqLTSc1PiSEA==",
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"dependencies": {
"follow-redirects": "^1.15.0",
"form-data": "^4.0.0",
"proxy-from-env": "^1.1.0"
"follow-redirects": "^1.14.8"
}
},
"node_modules/balanced-match": {
@@ -1251,6 +1094,7 @@
"version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"dev": true,
"dependencies": {
"delayed-stream": "~1.0.0"
},
@@ -1473,6 +1317,7 @@
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"dev": true,
"engines": {
"node": ">=0.4.0"
}
@@ -2239,6 +2084,7 @@
"version": "1.15.2",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==",
"dev": true,
"funding": [
{
"type": "individual",
@@ -2267,6 +2113,7 @@
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"dev": true,
"dependencies": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
@@ -3140,6 +2987,7 @@
"version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"dev": true,
"engines": {
"node": ">= 0.6"
}
@@ -3148,6 +2996,7 @@
"version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"dev": true,
"dependencies": {
"mime-db": "1.52.0"
},
@@ -3441,15 +3290,6 @@
"form-data": "^4.0.0"
}
},
"node_modules/openai/node_modules/axios": {
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"dependencies": {
"follow-redirects": "^1.14.8"
}
},
"node_modules/optionator": {
"version": "0.9.1",
"resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.1.tgz",
@@ -3601,11 +3441,6 @@
"node": ">= 0.8.0"
}
},
"node_modules/proxy-from-env": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/proxy-from-env/-/proxy-from-env-1.1.0.tgz",
"integrity": "sha512-D+zkORCbA9f1tdWRK0RaCR3GPv50cMxcrz4X8k5LTSUD1Dkw47mKJEZQNunItRTkWwgtaUSo1RVFRIG9ZXiFYg=="
},
"node_modules/punycode": {
"version": "2.3.0",
"resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz",
@@ -4447,21 +4282,48 @@
"punycode": "^2.1.0"
}
},
"node_modules/uuid": {
"version": "9.0.0",
"resolved": "https://registry.npmjs.org/uuid/-/uuid-9.0.0.tgz",
"integrity": "sha512-MXcSTerfPa4uqyzStbRoTgt5XIe3x5+42+q1sDuy3R5MDk66URdLMOZe5aPX/SQd+kuYAh0FdP/pO28IkQyTeg==",
"dev": true,
"bin": {
"uuid": "dist/bin/uuid"
}
},
"node_modules/v8-compile-cache-lib": {
"version": "3.0.1",
"resolved": "https://registry.npmjs.org/v8-compile-cache-lib/-/v8-compile-cache-lib-3.0.1.tgz",
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
"dev": true
},
"node_modules/vectordb-darwin-arm64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.13.tgz",
"integrity": "sha512-9lLuX5P8m75EfP85pfC4LxO9J7Tzu4LngX55BVAdFe6qPRHu+iHmLw0QYYSVDqNm3GtDr2qFJlL2ILlsApyYyg==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/vectordb-darwin-x64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.13.tgz",
"integrity": "sha512-5mkhBJlcfAqcty7Ww2csgYogq+b0NhtllAbag9IIznvqfcrvITU0H0vm5LGWbRuE/BUUxC25MJhm93YWBzqEVA==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/vectordb-linux-x64-gnu": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.13.tgz",
"integrity": "sha512-fU+sIHUkXyMdrWjggT93p0blKD+pbgr+x01tn9d2/pbA1ePo2AwuE86rYPA+BjyCUE1QifPgKadzGVVpqWYmnQ==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/vscode-oniguruma": {
"version": "1.7.0",
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",
@@ -4707,55 +4569,6 @@
}
}
},
"@cargo-messages/android-arm-eabi": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/android-arm-eabi/-/android-arm-eabi-0.0.160.tgz",
"integrity": "sha512-PTgCEmBHEPKJbxwlHVXB3aGES+NqpeBvn6hJNYWIkET3ZQCSJnScMlIDQXEkWndK7J+hW3Or3H32a93B/MbbfQ==",
"dev": true,
"optional": true
},
"@cargo-messages/darwin-arm64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-arm64/-/darwin-arm64-0.0.160.tgz",
"integrity": "sha512-YSVUuc8TUTi/XmZVg9KrH0bDywKLqC1zeTyZYAYDDmqVDZW9KeTnbBUECKRs56iyHeO+kuEkVW7MKf7j2zb/FA==",
"dev": true,
"optional": true
},
"@cargo-messages/darwin-x64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-x64/-/darwin-x64-0.0.160.tgz",
"integrity": "sha512-U+YlAR+9tKpBljnNPWMop5YhvtwfIPQSAaUYN2llteC7ZNU5/cv8CGT1vm7uFNxr2LeGuAtRbzIh2gUmTV8mng==",
"dev": true,
"optional": true
},
"@cargo-messages/linux-arm-gnueabihf": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-arm-gnueabihf/-/linux-arm-gnueabihf-0.0.160.tgz",
"integrity": "sha512-wqAelTzVv1E7Ls4aviqUbem5xjzCaJQxQtVnLhv6pf1k0UyEHCS2WdufFFmWcojGe7QglI4uve3KTe01MKYj0A==",
"dev": true,
"optional": true
},
"@cargo-messages/linux-x64-gnu": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-x64-gnu/-/linux-x64-gnu-0.0.160.tgz",
"integrity": "sha512-LQ6e7O7YYkWfDNIi/53q2QG/+lZok72LOG+NKDVCrrY4TYUcrTqWAybOV6IlkVntKPnpx8YB95umSQGeVuvhpQ==",
"dev": true,
"optional": true
},
"@cargo-messages/win32-arm64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-arm64-msvc/-/win32-arm64-msvc-0.0.160.tgz",
"integrity": "sha512-VDMBhyun02gIDwmEhkYP1W9Z0tYqn4drgY5Iua1qV2tYOU58RVkWhzUYxM9rzYbnwKZlltgM46J/j5QZ3VaFrA==",
"dev": true,
"optional": true
},
"@cargo-messages/win32-x64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-x64-msvc/-/win32-x64-msvc-0.0.160.tgz",
"integrity": "sha512-vnoglDxF6zj0W/Co9D0H/bgnrhUuO5EumIf9v3ujLtBH94rAX11JsXh/FgC/8wQnQSsLyWSq70YxNS2wdETxjA==",
"dev": true,
"optional": true
},
"@cspotcode/source-map-support": {
"version": "0.8.1",
"resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz",
@@ -4856,44 +4669,11 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"@lancedb/vectordb-darwin-x64": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.9.tgz",
"integrity": "sha512-4xXQoPheyIl1P5kRoKmZtaAHFrYdL9pw5yq+r6ewIx0TCemN4LSvzSUTqM5nZl3QPU8FeL0CGD8Gt2gMU0HQ2A==",
"optional": true
},
"@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.9.tgz",
"integrity": "sha512-WIxCZKnLeSlz0PGURtKSX6hJ4CYE2o5P+IFmmuWOWB1uNapQu6zOpea6rNxcRFHUA0IJdO02lVxVfn2hDX4SMg==",
"optional": true
},
"@lancedb/vectordb-linux-x64-gnu": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.9.tgz",
"integrity": "sha512-bQbcV9adKzYbJLNzDjk9OYsMnT2IjmieLfb4IQ1hj5IUoWfbg80Bd0+gZUnrmrhG6fe56TIriFZYQR9i7TSE9Q==",
"optional": true
},
"@lancedb/vectordb-win32-x64-msvc": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.9.tgz",
"integrity": "sha512-7EXI7P1QvAfgJNPWWBMDOkoJ696gSBAClcyEJNYg0JV21jVFZRwJVI3bZXflesWduFi/mTuzPkFFA68us1u19A==",
"optional": true
},
"@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
"integrity": "sha512-GQjzHPJVTOARbX3nP/fAWqBq7JlQ8XgfYlCa+iwzIXf0LC1EyfJTX+vqGD/36b9lKoyY01Z/aDUB9o/qF6ztHA==",
"dev": true,
"requires": {
"@cargo-messages/android-arm-eabi": "0.0.160",
"@cargo-messages/darwin-arm64": "0.0.160",
"@cargo-messages/darwin-x64": "0.0.160",
"@cargo-messages/linux-arm-gnueabihf": "0.0.160",
"@cargo-messages/linux-x64-gnu": "0.0.160",
"@cargo-messages/win32-arm64-msvc": "0.0.160",
"@cargo-messages/win32-x64-msvc": "0.0.160"
}
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
"integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
"dev": true
},
"@neon-rs/load": {
"version": "0.0.74",
@@ -5092,12 +4872,6 @@
"@types/node": "*"
}
},
"@types/uuid": {
"version": "9.0.3",
"resolved": "https://registry.npmjs.org/@types/uuid/-/uuid-9.0.3.tgz",
"integrity": "sha512-taHQQH/3ZyI3zP8M/puluDEIEvtQHVYcC6y3N8ijFtAd28+Ey/G4sg1u2gB01S8MwybLOKAp9/yCMu/uR5l3Ug==",
"dev": true
},
"@typescript-eslint/eslint-plugin": {
"version": "5.59.1",
"resolved": "https://registry.npmjs.org/@typescript-eslint/eslint-plugin/-/eslint-plugin-5.59.1.tgz",
@@ -5361,7 +5135,8 @@
"asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q=="
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
"dev": true
},
"available-typed-arrays": {
"version": "1.0.5",
@@ -5370,13 +5145,12 @@
"dev": true
},
"axios": {
"version": "1.4.0",
"resolved": "https://registry.npmjs.org/axios/-/axios-1.4.0.tgz",
"integrity": "sha512-S4XCWMEmzvo64T9GfvQDOXgYRDJ/wsSZc7Jvdgx5u1sd0JwsuPLqb3SYmusag+edF6ziyMensPVqLTSc1PiSEA==",
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"requires": {
"follow-redirects": "^1.15.0",
"form-data": "^4.0.0",
"proxy-from-env": "^1.1.0"
"follow-redirects": "^1.14.8"
}
},
"balanced-match": {
@@ -5556,6 +5330,7 @@
"version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"dev": true,
"requires": {
"delayed-stream": "~1.0.0"
}
@@ -5722,7 +5497,8 @@
"delayed-stream": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ=="
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"dev": true
},
"diff": {
"version": "4.0.2",
@@ -6292,7 +6068,8 @@
"follow-redirects": {
"version": "1.15.2",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA=="
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==",
"dev": true
},
"for-each": {
"version": "0.3.3",
@@ -6307,6 +6084,7 @@
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"dev": true,
"requires": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
@@ -6920,12 +6698,14 @@
"mime-db": {
"version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg=="
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"dev": true
},
"mime-types": {
"version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"dev": true,
"requires": {
"mime-db": "1.52.0"
}
@@ -7151,17 +6931,6 @@
"requires": {
"axios": "^0.26.0",
"form-data": "^4.0.0"
},
"dependencies": {
"axios": {
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"requires": {
"follow-redirects": "^1.14.8"
}
}
}
},
"optionator": {
@@ -7270,11 +7039,6 @@
"integrity": "sha512-vkcDPrRZo1QZLbn5RLGPpg/WmIQ65qoWWhcGKf/b5eplkkarX0m9z8ppCat4mlOqUsWpyNuYgO3VRyrYHSzX5g==",
"dev": true
},
"proxy-from-env": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/proxy-from-env/-/proxy-from-env-1.1.0.tgz",
"integrity": "sha512-D+zkORCbA9f1tdWRK0RaCR3GPv50cMxcrz4X8k5LTSUD1Dkw47mKJEZQNunItRTkWwgtaUSo1RVFRIG9ZXiFYg=="
},
"punycode": {
"version": "2.3.0",
"resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz",
@@ -7849,18 +7613,30 @@
"punycode": "^2.1.0"
}
},
"uuid": {
"version": "9.0.0",
"resolved": "https://registry.npmjs.org/uuid/-/uuid-9.0.0.tgz",
"integrity": "sha512-MXcSTerfPa4uqyzStbRoTgt5XIe3x5+42+q1sDuy3R5MDk66URdLMOZe5aPX/SQd+kuYAh0FdP/pO28IkQyTeg==",
"dev": true
},
"v8-compile-cache-lib": {
"version": "3.0.1",
"resolved": "https://registry.npmjs.org/v8-compile-cache-lib/-/v8-compile-cache-lib-3.0.1.tgz",
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
"dev": true
},
"vectordb-darwin-arm64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.13.tgz",
"integrity": "sha512-9lLuX5P8m75EfP85pfC4LxO9J7Tzu4LngX55BVAdFe6qPRHu+iHmLw0QYYSVDqNm3GtDr2qFJlL2ILlsApyYyg==",
"optional": true
},
"vectordb-darwin-x64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.13.tgz",
"integrity": "sha512-5mkhBJlcfAqcty7Ww2csgYogq+b0NhtllAbag9IIznvqfcrvITU0H0vm5LGWbRuE/BUUxC25MJhm93YWBzqEVA==",
"optional": true
},
"vectordb-linux-x64-gnu": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.13.tgz",
"integrity": "sha512-fU+sIHUkXyMdrWjggT93p0blKD+pbgr+x01tn9d2/pbA1ePo2AwuE86rYPA+BjyCUE1QifPgKadzGVVpqWYmnQ==",
"optional": true
},
"vscode-oniguruma": {
"version": "1.7.0",
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.3.9",
"version": "0.1.13",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -9,8 +9,7 @@
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
"build-release": "npm run build -- --release",
"test": "npm run tsc && mocha -recursive dist/test",
"integration-test": "npm run tsc && mocha -recursive dist/integration_test",
"lint": "eslint native.js src --ext .js,.ts",
"lint": "eslint src --ext .js,.ts",
"clean": "rm -rf node_modules *.node dist/",
"pack-build": "neon pack-build",
"check-npm": "printenv && which node && which npm && npm --version"
@@ -28,14 +27,13 @@
"author": "Lance Devs",
"license": "Apache-2.0",
"devDependencies": {
"@neon-rs/cli": "^0.0.160",
"@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
@@ -53,14 +51,12 @@
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*",
"uuid": "^9.0.0"
"typescript": "*"
},
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0",
"axios": "^1.4.0"
"apache-arrow": "^12.0.0"
},
"os": [
"darwin",
@@ -73,18 +69,18 @@
],
"neon": {
"targets": {
"x86_64-apple-darwin": "@lancedb/vectordb-darwin-x64",
"aarch64-apple-darwin": "@lancedb/vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "@lancedb/vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "@lancedb/vectordb-linux-arm64-gnu",
"x86_64-pc-windows-msvc": "@lancedb/vectordb-win32-x64-msvc"
"x86_64-apple-darwin": "vectordb-darwin-x64",
"aarch64-apple-darwin": "vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "vectordb-linux-arm64-gnu",
"x86_64-pc-windows-msvc": "vectordb-win32-x64-msvc"
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.9",
"@lancedb/vectordb-darwin-x64": "0.3.9",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.9",
"@lancedb/vectordb-linux-x64-gnu": "0.3.9",
"@lancedb/vectordb-win32-x64-msvc": "0.3.9"
"vectordb-darwin-arm64": "0.1.13",
"vectordb-darwin-x64": "0.1.13",
"vectordb-linux-arm64-gnu": "0.1.13",
"vectordb-linux-x64-gnu": "0.1.13",
"vectordb-win32-x64-msvc": "0.1.13"
}
}

View File

@@ -13,19 +13,18 @@
// limitations under the License.
import {
Field, type FixedSizeListBuilder,
Field,
Float32,
List, type ListBuilder,
makeBuilder,
RecordBatchFileWriter,
Utf8,
Table, Utf8,
type Vector,
FixedSizeList,
vectorFromArray, type Schema, Table as ArrowTable, RecordBatchStreamWriter
vectorFromArray
} from 'apache-arrow'
import { type EmbeddingFunction } from './index'
// Converts an Array of records into an Arrow Table, optionally applying an embeddings function to it.
export async function convertToTable<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<ArrowTable> {
export async function convertToTable<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table> {
if (data.length === 0) {
throw new Error('At least one record needs to be provided')
}
@@ -35,8 +34,8 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
for (const columnsKey of columns) {
if (columnsKey === 'vector') {
const listBuilder = newVectorListBuilder()
const vectorSize = (data[0].vector as any[]).length
const listBuilder = newVectorBuilder(vectorSize)
for (const datum of data) {
if ((datum[columnsKey] as any[]).length !== vectorSize) {
throw new Error(`Invalid vector size, expected ${vectorSize}`)
@@ -53,7 +52,9 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
if (columnsKey === embeddings?.sourceColumn) {
const vectors = await embeddings.embed(values as T[])
records.vector = vectorFromArray(vectors, newVectorType(vectors[0].length))
const listBuilder = newVectorListBuilder()
vectors.map(v => listBuilder.append(v))
records.vector = listBuilder.finish().toVector()
}
if (typeof values[0] === 'string') {
@@ -65,73 +66,20 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
}
}
return new ArrowTable(records)
return new Table(records)
}
// Creates a new Arrow ListBuilder that stores a Vector column
function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
function newVectorListBuilder (): ListBuilder<Float32, any> {
const children = new Field<Float32>('item', new Float32())
const list = new List(children)
return makeBuilder({
type: newVectorType(dim)
type: list
})
}
// Creates the Arrow Type for a Vector column with dimension `dim`
function newVectorType (dim: number): FixedSizeList<Float32> {
// Somewhere we always default to have the elements nullable, so we need to set it to true
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements
const children = new Field<Float32>('item', new Float32(), true)
return new FixedSizeList(dim, children)
}
// Converts an Array of records into Arrow IPC format
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
const table = await convertToTable(data, embeddings)
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Array of records into Arrow IPC stream format
export async function fromRecordsToStreamBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
const table = await convertToTable(data, embeddings)
const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Arrow Table into Arrow IPC format
export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
if (embeddings !== undefined) {
const source = table.getChild(embeddings.sourceColumn)
if (source === null) {
throw new Error(`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Arrow Table into Arrow IPC stream format
export async function fromTableToStreamBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
if (embeddings !== undefined) {
const source = table.getChild(embeddings.sourceColumn)
if (source === null) {
throw new Error(`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Creates an empty Arrow Table
export function createEmptyTable (schema: Schema): ArrowTable {
return new ArrowTable(schema)
}

View File

@@ -26,8 +26,3 @@ export interface EmbeddingFunction<T> {
*/
embed: (data: T[]) => Promise<number[][]>
}
export function isEmbeddingFunction<T> (value: any): value is EmbeddingFunction<T> {
return typeof value.sourceColumn === 'string' &&
typeof value.embed === 'function'
}

View File

@@ -13,19 +13,17 @@
// limitations under the License.
import {
type Schema,
Table as ArrowTable
RecordBatchFileWriter,
type Table as ArrowTable,
tableFromIPC,
Vector
} from 'apache-arrow'
import { createEmptyTable, fromRecordsToBuffer, fromTableToBuffer } from './arrow'
import { fromRecordsToBuffer } from './arrow'
import type { EmbeddingFunction } from './embedding/embedding_function'
import { RemoteConnection } from './remote'
import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats } = require('../native.js')
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete } = require('../native.js')
export { Query }
export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai'
@@ -39,52 +37,7 @@ export interface AwsCredentials {
export interface ConnectionOptions {
uri: string
awsCredentials?: AwsCredentials
awsRegion?: string
// API key for the remote connections
apiKey?: string
// Region to connect
region?: string
// override the host for the remote connections
hostOverride?: string
}
function getAwsArgs (opts: ConnectionOptions): any[] {
const callArgs = []
const awsCredentials = opts.awsCredentials
if (awsCredentials !== undefined) {
callArgs.push(awsCredentials.accessKeyId)
callArgs.push(awsCredentials.secretKey)
callArgs.push(awsCredentials.sessionToken)
} else {
callArgs.push(undefined)
callArgs.push(undefined)
callArgs.push(undefined)
}
callArgs.push(opts.awsRegion)
return callArgs
}
export interface CreateTableOptions<T> {
// Name of Table
name: string
// Data to insert into the Table
data?: Array<Record<string, unknown>> | ArrowTable | undefined
// Optional Arrow Schema for this table
schema?: Schema | undefined
// Optional embedding function used to create embeddings
embeddingFunction?: EmbeddingFunction<T> | undefined
// WriteOptions for this operation
writeOptions?: WriteOptions | undefined
}
/**
@@ -101,16 +54,9 @@ export async function connect (arg: string | Partial<ConnectionOptions>): Promis
// opts = { uri: arg.uri, awsCredentials = arg.awsCredentials }
opts = Object.assign({
uri: '',
awsCredentials: undefined,
apiKey: undefined,
region: 'us-west-2'
awsCredentials: undefined
}, arg)
}
if (opts.uri.startsWith('db://')) {
// Remote connection
return new RemoteConnection(opts)
}
const db = await databaseNew(opts.uri)
return new LocalConnection(db, opts)
}
@@ -133,51 +79,17 @@ export interface Connection {
*/
openTable<T>(name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
/**
* Creates a new Table, optionally initializing it with new data.
*
* @param {string} name - The name of the table.
* @param data - Array of Records to be inserted into the table
* @param schema - An Arrow Schema that describe this table columns
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
* @param {WriteOptions} writeOptions - The write options to use when creating the table.
*/
createTable<T> ({ name, data, schema, embeddingFunction, writeOptions }: CreateTableOptions<T>): Promise<Table<T>>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
*/
createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {WriteOptions} options - The write options to use when creating the table.
*/
createTable (name: string, data: Array<Record<string, unknown>>, options: WriteOptions): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {WriteMode} mode - The write mode to use when creating the table.
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
*/
createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
* @param {WriteOptions} options - The write options to use when creating the table.
*/
createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>, options: WriteOptions): Promise<Table<T>>
createTable<T>(name: string, data: Array<Record<string, unknown>>, mode?: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
createTableArrow(name: string, table: ArrowTable): Promise<Table>
/**
* Drop an existing table.
@@ -230,78 +142,30 @@ export interface Table<T = number[]> {
/**
* Delete rows from this table.
*
* This can be used to delete a single row, many rows, all rows, or
* sometimes no rows (if your predicate matches nothing).
*
* @param filter A filter in the same format used by a sql WHERE clause. The
* filter must not be empty.
*
* @examples
*
* ```ts
* const con = await lancedb.connect("./.lancedb")
* const data = [
* {id: 1, vector: [1, 2]},
* {id: 2, vector: [3, 4]},
* {id: 3, vector: [5, 6]},
* ];
* const tbl = await con.createTable("my_table", data)
* await tbl.delete("id = 2")
* await tbl.countRows() // Returns 2
* ```
*
* If you have a list of values to delete, you can combine them into a
* stringified list and use the `IN` operator:
*
* ```ts
* const to_remove = [1, 5];
* await tbl.delete(`id IN (${to_remove.join(",")})`)
* await tbl.countRows() // Returns 1
* ```
* @param filter A filter in the same format used by a sql WHERE clause.
*/
delete: (filter: string) => Promise<void>
/**
* List the indicies on this table.
*/
listIndices: () => Promise<VectorIndex[]>
/**
* Get statistics about an index.
*/
indexStats: (indexUuid: string) => Promise<IndexStats>
}
export interface VectorIndex {
columns: string[]
name: string
uuid: string
}
export interface IndexStats {
numIndexedRows: number | null
numUnindexedRows: number | null
}
/**
* A connection to a LanceDB database.
*/
export class LocalConnection implements Connection {
private readonly _options: () => ConnectionOptions
private readonly _options: ConnectionOptions
private readonly _db: any
constructor (db: any, options: ConnectionOptions) {
this._options = () => options
this._options = options
this._db = db
}
get uri (): string {
return this._options().uri
return this._options.uri
}
/**
* Get the names of all tables in the database.
*/
* Get the names of all tables in the database.
*/
async tableNames (): Promise<string[]> {
return databaseTableNames.call(this._db)
}
@@ -312,7 +176,6 @@ export class LocalConnection implements Connection {
* @param name The name of the table.
*/
async openTable (name: string): Promise<Table>
/**
* Open a table in the database.
*
@@ -322,66 +185,61 @@ export class LocalConnection implements Connection {
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
const tbl = await databaseOpenTable.call(this._db, name, ...getAwsArgs(this._options()))
const tbl = await databaseOpenTable.call(this._db, name)
if (embeddings !== undefined) {
return new LocalTable(tbl, name, this._options(), embeddings)
return new LocalTable(tbl, name, this._options, embeddings)
} else {
return new LocalTable(tbl, name, this._options())
return new LocalTable(tbl, name, this._options)
}
}
async createTable<T> (name: string | CreateTableOptions<T>, data?: Array<Record<string, unknown>>, optsOrEmbedding?: WriteOptions | EmbeddingFunction<T>, opt?: WriteOptions): Promise<Table<T>> {
if (typeof name === 'string') {
let writeOptions: WriteOptions = new DefaultWriteOptions()
if (opt !== undefined && isWriteOptions(opt)) {
writeOptions = opt
} else if (optsOrEmbedding !== undefined && isWriteOptions(optsOrEmbedding)) {
writeOptions = optsOrEmbedding
}
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
* @param mode The write mode to use when creating the table.
*/
async createTable (name: string, data: Array<Record<string, unknown>>, mode?: WriteMode): Promise<Table>
async createTable (name: string, data: Array<Record<string, unknown>>, mode: WriteMode): Promise<Table>
let embeddings: undefined | EmbeddingFunction<T>
if (optsOrEmbedding !== undefined && isEmbeddingFunction(optsOrEmbedding)) {
embeddings = optsOrEmbedding
}
return await this.createTableImpl({ name, data, embeddingFunction: embeddings, writeOptions })
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
* @param mode The write mode to use when creating the table.
* @param embeddings An embedding function to use on this Table
*/
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
if (mode === undefined) {
mode = WriteMode.Create
}
const createArgs = [this._db, name, await fromRecordsToBuffer(data, embeddings), mode.toLowerCase()]
if (this._options.awsCredentials !== undefined) {
createArgs.push(this._options.awsCredentials.accessKeyId)
createArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
createArgs.push(this._options.awsCredentials.sessionToken)
}
}
const tbl = await tableCreate.call(...createArgs)
if (embeddings !== undefined) {
return new LocalTable(tbl, name, this._options, embeddings)
} else {
return new LocalTable(tbl, name, this._options)
}
return await this.createTableImpl(name)
}
private async createTableImpl<T> ({ name, data, schema, embeddingFunction, writeOptions = new DefaultWriteOptions() }: {
name: string
data?: Array<Record<string, unknown>> | ArrowTable | undefined
schema?: Schema | undefined
embeddingFunction?: EmbeddingFunction<T> | undefined
writeOptions?: WriteOptions | undefined
}): Promise<Table<T>> {
let buffer: Buffer
function isEmpty (data: Array<Record<string, unknown>> | ArrowTable<any>): boolean {
if (data instanceof ArrowTable) {
return data.data.length === 0
}
return data.length === 0
}
if ((data === undefined) || isEmpty(data)) {
if (schema === undefined) {
throw new Error('Either data or schema needs to defined')
}
buffer = await fromTableToBuffer(createEmptyTable(schema))
} else if (data instanceof ArrowTable) {
buffer = await fromTableToBuffer(data, embeddingFunction)
} else {
// data is Array<Record<...>>
buffer = await fromRecordsToBuffer(data, embeddingFunction)
}
const tbl = await tableCreate.call(this._db, name, buffer, writeOptions?.writeMode?.toString(), ...getAwsArgs(this._options()))
if (embeddingFunction !== undefined) {
return new LocalTable(tbl, name, this._options(), embeddingFunction)
} else {
return new LocalTable(tbl, name, this._options())
}
async createTableArrow (name: string, table: ArrowTable): Promise<Table> {
const writer = RecordBatchFileWriter.writeAll(table)
await tableCreate.call(this._db, name, Buffer.from(await writer.toUint8Array()))
return await this.openTable(name)
}
/**
@@ -394,10 +252,10 @@ export class LocalConnection implements Connection {
}
export class LocalTable<T = number[]> implements Table<T> {
private _tbl: any
private readonly _tbl: any
private readonly _name: string
private readonly _embeddings?: EmbeddingFunction<T>
private readonly _options: () => ConnectionOptions
private readonly _options: ConnectionOptions
constructor (tbl: any, name: string, options: ConnectionOptions)
/**
@@ -411,7 +269,7 @@ export class LocalTable<T = number[]> implements Table<T> {
this._tbl = tbl
this._name = name
this._embeddings = embeddings
this._options = () => options
this._options = options
}
get name (): string {
@@ -423,7 +281,7 @@ export class LocalTable<T = number[]> implements Table<T> {
* @param query The query search term
*/
search (query: T): Query<T> {
return new Query(query, this._tbl, this._embeddings)
return new Query(this._tbl, query, this._embeddings)
}
/**
@@ -433,12 +291,15 @@ export class LocalTable<T = number[]> implements Table<T> {
* @return The number of rows added to the table
*/
async add (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(
this._tbl,
await fromRecordsToBuffer(data, this._embeddings),
WriteMode.Append.toString(),
...getAwsArgs(this._options())
).then((newTable: any) => { this._tbl = newTable })
const callArgs = [this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Append.toString()]
if (this._options.awsCredentials !== undefined) {
callArgs.push(this._options.awsCredentials.accessKeyId)
callArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
callArgs.push(this._options.awsCredentials.sessionToken)
}
}
return tableAdd.call(...callArgs)
}
/**
@@ -448,12 +309,15 @@ export class LocalTable<T = number[]> implements Table<T> {
* @return The number of rows added to the table
*/
async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(
this._tbl,
await fromRecordsToBuffer(data, this._embeddings),
WriteMode.Overwrite.toString(),
...getAwsArgs(this._options())
).then((newTable: any) => { this._tbl = newTable })
const callArgs = [this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString()]
if (this._options.awsCredentials !== undefined) {
callArgs.push(this._options.awsCredentials.accessKeyId)
callArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
callArgs.push(this._options.awsCredentials.sessionToken)
}
}
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString())
}
/**
@@ -462,7 +326,7 @@ export class LocalTable<T = number[]> implements Table<T> {
* @param indexParams The parameters of this Index, @see VectorIndexParams.
*/
async createIndex (indexParams: VectorIndexParams): Promise<any> {
return tableCreateVectorIndex.call(this._tbl, indexParams).then((newTable: any) => { this._tbl = newTable })
return tableCreateVectorIndex.call(this._tbl, indexParams)
}
/**
@@ -478,121 +342,8 @@ export class LocalTable<T = number[]> implements Table<T> {
* @param filter A filter in the same format used by a sql WHERE clause.
*/
async delete (filter: string): Promise<void> {
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
return tableDelete.call(this._tbl, filter)
}
/**
* Clean up old versions of the table, freeing disk space.
*
* @param olderThan The minimum age in minutes of the versions to delete. If not
* provided, defaults to two weeks.
* @param deleteUnverified Because they may be part of an in-progress
* transaction, uncommitted files newer than 7 days old are
* not deleted by default. This means that failed transactions
* can leave around data that takes up disk space for up to
* 7 days. You can override this safety mechanism by setting
* this option to `true`, only if you promise there are no
* in progress writes while you run this operation. Failure to
* uphold this promise can lead to corrupted tables.
* @returns
*/
async cleanupOldVersions (olderThan?: number, deleteUnverified?: boolean): Promise<CleanupStats> {
return tableCleanupOldVersions.call(this._tbl, olderThan, deleteUnverified)
.then((res: { newTable: any, metrics: CleanupStats }) => {
this._tbl = res.newTable
return res.metrics
})
}
/**
* Run the compaction process on the table.
*
* This can be run after making several small appends to optimize the table
* for faster reads.
*
* @param options Advanced options configuring compaction. In most cases, you
* can omit this arguments, as the default options are sensible
* for most tables.
* @returns Metrics about the compaction operation.
*/
async compactFiles (options?: CompactionOptions): Promise<CompactionMetrics> {
const optionsArg = options ?? {}
return tableCompactFiles.call(this._tbl, optionsArg)
.then((res: { newTable: any, metrics: CompactionMetrics }) => {
this._tbl = res.newTable
return res.metrics
})
}
async listIndices (): Promise<VectorIndex[]> {
return tableListIndices.call(this._tbl)
}
async indexStats (indexUuid: string): Promise<IndexStats> {
return tableIndexStats.call(this._tbl, indexUuid)
}
}
export interface CleanupStats {
/**
* The number of bytes removed from disk.
*/
bytesRemoved: number
/**
* The number of old table versions removed.
*/
oldVersions: number
}
export interface CompactionOptions {
/**
* The number of rows per fragment to target. Fragments that have fewer rows
* will be compacted into adjacent fragments to produce larger fragments.
* Defaults to 1024 * 1024.
*/
targetRowsPerFragment?: number
/**
* The maximum number of rows per group. Defaults to 1024.
*/
maxRowsPerGroup?: number
/**
* If true, fragments that have rows that are deleted may be compacted to
* remove the deleted rows. This can improve the performance of queries.
* Default is true.
*/
materializeDeletions?: boolean
/**
* A number between 0 and 1, representing the proportion of rows that must be
* marked deleted before a fragment is a candidate for compaction to remove
* the deleted rows. Default is 10%.
*/
materializeDeletionsThreshold?: number
/**
* The number of threads to use for compaction. If not provided, defaults to
* the number of cores on the machine.
*/
numThreads?: number
}
export interface CompactionMetrics {
/**
* The number of fragments that were removed.
*/
fragmentsRemoved: number
/**
* The number of new fragments that were created.
*/
fragmentsAdded: number
/**
* The number of files that were removed. Each fragment may have more than one
* file.
*/
filesRemoved: number
/**
* The number of files added. This is typically equal to the number of
* fragments added.
*/
filesAdded: number
}
/// Config to build IVF_PQ index.
@@ -652,6 +403,116 @@ export interface IvfPQIndexConfig {
export type VectorIndexParams = IvfPQIndexConfig
/**
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query<T = number[]> {
private readonly _tbl: any
private readonly _query: T
private _queryVector?: number[]
private _limit: number
private _refineFactor?: number
private _nprobes: number
private _select?: string[]
private _filter?: string
private _metricType?: MetricType
private readonly _embeddings?: EmbeddingFunction<T>
constructor (tbl: any, query: T, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._query = query
this._limit = 10
this._nprobes = 20
this._refineFactor = undefined
this._select = undefined
this._filter = undefined
this._metricType = undefined
this._embeddings = embeddings
}
/***
* Sets the number of results that will be returned
* @param value number of results
*/
limit (value: number): Query<T> {
this._limit = value
return this
}
/**
* Refine the results by reading extra elements and re-ranking them in memory.
* @param value refine factor to use in this query.
*/
refineFactor (value: number): Query<T> {
this._refineFactor = value
return this
}
/**
* The number of probes used. A higher number makes search more accurate but also slower.
* @param value The number of probes used.
*/
nprobes (value: number): Query<T> {
this._nprobes = value
return this
}
/**
* A filter statement to be applied to this query.
* @param value A filter in the same format used by a sql WHERE clause.
*/
filter (value: string): Query<T> {
this._filter = value
return this
}
where = this.filter
/** Return only the specified columns.
*
* @param value Only select the specified columns. If not specified, all columns will be returned.
*/
select (value: string[]): Query<T> {
this._select = value
return this
}
/**
* The MetricType used for this Query.
* @param value The metric to the. @see MetricType for the different options
*/
metricType (value: MetricType): Query<T> {
this._metricType = value
return this
}
/**
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
this._queryVector = this._query as number[]
}
const buffer = await tableSearch.call(this._tbl, this)
const data = tableFromIPC(buffer)
return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {}
Object.keys(entry).forEach((key: string) => {
if (entry[key] instanceof Vector) {
newObject[key] = (entry[key] as Vector).toArray()
} else {
newObject[key] = entry[key]
}
})
return newObject as unknown as T
})
}
}
/**
* Write mode for writing a table.
*/
@@ -664,23 +525,6 @@ export enum WriteMode {
Append = 'append'
}
/**
* Write options when creating a Table.
*/
export interface WriteOptions {
/** A {@link WriteMode} to use on this operation */
writeMode?: WriteMode
}
export class DefaultWriteOptions implements WriteOptions {
writeMode = WriteMode.Create
}
export function isWriteOptions (value: any): value is WriteOptions {
return Object.keys(value).length === 1 &&
(value.writeMode === undefined || typeof value.writeMode === 'string')
}
/**
* Distance metrics type.
*/

View File

@@ -1,180 +0,0 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { describe } from 'mocha'
import * as chai from 'chai'
import * as chaiAsPromised from 'chai-as-promised'
import { v4 as uuidv4 } from 'uuid'
import * as lancedb from '../index'
import { tmpdir } from 'os'
import * as fs from 'fs'
import * as path from 'path'
const assert = chai.assert
chai.use(chaiAsPromised)
describe('LanceDB AWS Integration test', function () {
it('s3+ddb schema is processed correctly', async function () {
this.timeout(15000)
// WARNING: specifying engine is NOT a publicly supported feature in lancedb yet
// THE API WILL CHANGE
const conn = await lancedb.connect('s3://lancedb-integtest?engine=ddb&ddbTableName=lancedb-integtest')
const data = [{ vector: Array(128).fill(1.0) }]
const tableName = uuidv4()
let table = await conn.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite })
const futs = [table.add(data), table.add(data), table.add(data), table.add(data), table.add(data)]
await Promise.allSettled(futs)
table = await conn.openTable(tableName)
assert.equal(await table.countRows(), 6)
})
})
describe('LanceDB Mirrored Store Integration test', function () {
it('s3://...?mirroredStore=... param is processed correctly', async function () {
this.timeout(600000)
const dir = tmpdir()
console.log(dir)
const conn = await lancedb.connect(`s3://lancedb-integtest?mirroredStore=${dir}`)
const data = Array(200).fill({ vector: Array(128).fill(1.0), id: 0 })
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 1 }))
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 2 }))
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 3 }))
const tableName = uuidv4()
// try create table and check if it's mirrored
const t = await conn.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite })
const mirroredPath = path.join(dir, `${tableName}.lance`)
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be three dirs
assert.equal(files.length, 3)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, '_versions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.manifest'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
})
// try create index and check if it's mirrored
await t.createIndex({ column: 'vector', type: 'ivf_pq' })
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be four dirs
assert.equal(files.length, 4)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
assert.isTrue(files[2].isDirectory())
// Two TXs now
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 2)
assert.isTrue(files[0].name.endsWith('.txn'))
assert.isTrue(files[1].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isDirectory())
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isFile())
assert.isTrue(files[0].name.endsWith('.idx'))
})
})
})
// try delete and check if it's mirrored
await t.delete('id = 0')
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be five dirs
assert.equal(files.length, 5)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
assert.isTrue(files[2].isDirectory())
assert.isTrue(files[3].isDirectory())
assert.isTrue(files[4].isDirectory())
// Three TXs now
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 3)
assert.isTrue(files[0].name.endsWith('.txn'))
assert.isTrue(files[1].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isDirectory())
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isFile())
assert.isTrue(files[0].name.endsWith('.idx'))
})
})
fs.readdir(path.join(mirroredPath, '_deletions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.arrow'))
})
})
})
})

View File

@@ -1,148 +0,0 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { Vector, tableFromIPC } from 'apache-arrow'
import { type EmbeddingFunction } from './embedding/embedding_function'
import { type MetricType } from '.'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { tableSearch } = require('../native.js')
/**
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query<T = number[]> {
private readonly _query: T
private readonly _tbl?: any
private _queryVector?: number[]
private _limit: number
private _refineFactor?: number
private _nprobes: number
private _select?: string[]
private _filter?: string
private _metricType?: MetricType
private _prefilter: boolean
protected readonly _embeddings?: EmbeddingFunction<T>
constructor (query: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._query = query
this._limit = 10
this._nprobes = 20
this._refineFactor = undefined
this._select = undefined
this._filter = undefined
this._metricType = undefined
this._embeddings = embeddings
this._prefilter = false
}
/***
* Sets the number of results that will be returned
* @param value number of results
*/
limit (value: number): Query<T> {
this._limit = value
return this
}
/**
* Refine the results by reading extra elements and re-ranking them in memory.
* @param value refine factor to use in this query.
*/
refineFactor (value: number): Query<T> {
this._refineFactor = value
return this
}
/**
* The number of probes used. A higher number makes search more accurate but also slower.
* @param value The number of probes used.
*/
nprobes (value: number): Query<T> {
this._nprobes = value
return this
}
/**
* A filter statement to be applied to this query.
* @param value A filter in the same format used by a sql WHERE clause.
*/
filter (value: string): Query<T> {
this._filter = value
return this
}
where = this.filter
/** Return only the specified columns.
*
* @param value Only select the specified columns. If not specified, all columns will be returned.
*/
select (value: string[]): Query<T> {
this._select = value
return this
}
/**
* The MetricType used for this Query.
* @param value The metric to the. @see MetricType for the different options
*/
metricType (value: MetricType): Query<T> {
this._metricType = value
return this
}
prefilter (value: boolean): Query<T> {
this._prefilter = value
return this
}
/**
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
this._queryVector = this._query as number[]
}
const isElectron = this.isElectron()
const buffer = await tableSearch.call(this._tbl, this, isElectron)
const data = tableFromIPC(buffer)
return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {}
Object.keys(entry).forEach((key: string) => {
if (entry[key] instanceof Vector) {
newObject[key] = (entry[key] as Vector).toArray()
} else {
newObject[key] = entry[key]
}
})
return newObject as unknown as T
})
}
// See https://github.com/electron/electron/issues/2288
private isElectron (): boolean {
try {
// eslint-disable-next-line no-prototype-builtins
return (process?.versions?.hasOwnProperty('electron') || navigator?.userAgent?.toLowerCase()?.includes(' electron'))
} catch (e) {
return false
}
}
}

View File

@@ -1,154 +0,0 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import axios, { type AxiosResponse } from 'axios'
import { tableFromIPC, type Table as ArrowTable } from 'apache-arrow'
export class HttpLancedbClient {
private readonly _url: string
private readonly _apiKey: () => string
public constructor (
url: string,
apiKey: string,
private readonly _dbName?: string
) {
this._url = url
this._apiKey = () => apiKey
}
get uri (): string {
return this._url
}
public async search (
tableName: string,
vector: number[],
k: number,
nprobes: number,
prefilter: boolean,
refineFactor?: number,
columns?: string[],
filter?: string
): Promise<ArrowTable<any>> {
const response = await axios.post(
`${this._url}/v1/table/${tableName}/query/`,
{
vector,
k,
nprobes,
refineFactor,
columns,
filter,
prefilter
},
{
headers: {
'Content-Type': 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
responseType: 'arraybuffer',
timeout: 10000
}
).catch((err) => {
console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response
})
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
)
}
const table = tableFromIPC(response.data)
return table
}
/**
* Sent GET request.
*/
public async get (path: string, params?: Record<string, string | number>): Promise<AxiosResponse> {
const response = await axios.get(
`${this._url}${path}`,
{
headers: {
'Content-Type': 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
params,
timeout: 10000
}
).catch((err) => {
console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response
})
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
)
}
return response
}
/**
* Sent POST request.
*/
public async post (
path: string,
data?: any,
params?: Record<string, string | number>,
content?: string | undefined
): Promise<AxiosResponse> {
const response = await axios.post(
`${this._url}${path}`,
data,
{
headers: {
'Content-Type': content ?? 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
params,
timeout: 30000
}
).catch((err) => {
console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response
})
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
)
}
return response
}
}

View File

@@ -1,265 +0,0 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import {
type EmbeddingFunction, type Table, type VectorIndexParams, type Connection,
type ConnectionOptions, type CreateTableOptions, type VectorIndex,
type WriteOptions,
type IndexStats
} from '../index'
import { Query } from '../query'
import { Vector, Table as ArrowTable } from 'apache-arrow'
import { HttpLancedbClient } from './client'
import { isEmbeddingFunction } from '../embedding/embedding_function'
import { createEmptyTable, fromRecordsToStreamBuffer, fromTableToStreamBuffer } from '../arrow'
/**
* Remote connection.
*/
export class RemoteConnection implements Connection {
private readonly _client: HttpLancedbClient
private readonly _dbName: string
constructor (opts: ConnectionOptions) {
if (!opts.uri.startsWith('db://')) {
throw new Error(`Invalid remote DB URI: ${opts.uri}`)
}
if (opts.apiKey === undefined || opts.region === undefined) {
throw new Error('API key and region are not supported for remote connections')
}
this._dbName = opts.uri.slice('db://'.length)
let server: string
if (opts.hostOverride === undefined) {
server = `https://${this._dbName}.${opts.region}.api.lancedb.com`
} else {
server = opts.hostOverride
}
this._client = new HttpLancedbClient(server, opts.apiKey, opts.hostOverride === undefined ? undefined : this._dbName)
}
get uri (): string {
// add the lancedb+ prefix back
return 'db://' + this._client.uri
}
async tableNames (): Promise<string[]> {
const response = await this._client.get('/v1/table/')
return response.data.tables
}
async openTable (name: string): Promise<Table>
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
if (embeddings !== undefined) {
return new RemoteTable(this._client, name, embeddings)
} else {
return new RemoteTable(this._client, name)
}
}
async createTable<T> (nameOrOpts: string | CreateTableOptions<T>, data?: Array<Record<string, unknown>>, optsOrEmbedding?: WriteOptions | EmbeddingFunction<T>, opt?: WriteOptions): Promise<Table<T>> {
// Logic copied from LocatlConnection, refactor these to a base class + connectionImpl pattern
let schema
let embeddings: undefined | EmbeddingFunction<T>
let tableName: string
if (typeof nameOrOpts === 'string') {
if (optsOrEmbedding !== undefined && isEmbeddingFunction(optsOrEmbedding)) {
embeddings = optsOrEmbedding
}
tableName = nameOrOpts
} else {
schema = nameOrOpts.schema
embeddings = nameOrOpts.embeddingFunction
tableName = nameOrOpts.name
}
let buffer: Buffer
function isEmpty (data: Array<Record<string, unknown>> | ArrowTable<any>): boolean {
if (data instanceof ArrowTable) {
return data.data.length === 0
}
return data.length === 0
}
if ((data === undefined) || isEmpty(data)) {
if (schema === undefined) {
throw new Error('Either data or schema needs to defined')
}
buffer = await fromTableToStreamBuffer(createEmptyTable(schema))
} else if (data instanceof ArrowTable) {
buffer = await fromTableToStreamBuffer(data, embeddings)
} else {
// data is Array<Record<...>>
buffer = await fromRecordsToStreamBuffer(data, embeddings)
}
const res = await this._client.post(
`/v1/table/${tableName}/create/`,
buffer,
undefined,
'application/vnd.apache.arrow.stream'
)
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
if (embeddings === undefined) {
return new RemoteTable(this._client, tableName)
} else {
return new RemoteTable(this._client, tableName, embeddings)
}
}
async dropTable (name: string): Promise<void> {
await this._client.post(`/v1/table/${name}/drop/`)
}
}
export class RemoteQuery<T = number[]> extends Query<T> {
constructor (query: T, private readonly _client: HttpLancedbClient,
private readonly _name: string, embeddings?: EmbeddingFunction<T>) {
super(query, undefined, embeddings)
}
// TODO: refactor this to a base class + queryImpl pattern
async execute<T = Record<string, unknown>>(): Promise<T[]> {
const embeddings = this._embeddings
const query = (this as any)._query
let queryVector: number[]
if (embeddings !== undefined) {
queryVector = (await embeddings.embed([query]))[0]
} else {
queryVector = query as number[]
}
const data = await this._client.search(
this._name,
queryVector,
(this as any)._limit,
(this as any)._nprobes,
(this as any)._prefilter,
(this as any)._refineFactor,
(this as any)._select,
(this as any)._filter
)
return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {}
Object.keys(entry).forEach((key: string) => {
if (entry[key] instanceof Vector) {
newObject[key] = (entry[key] as Vector).toArray()
} else {
newObject[key] = entry[key]
}
})
return newObject as unknown as T
})
}
}
// we are using extend until we have next next version release
// Table and Connection has both been refactored to interfaces
export class RemoteTable<T = number[]> implements Table<T> {
private readonly _client: HttpLancedbClient
private readonly _embeddings?: EmbeddingFunction<T>
private readonly _name: string
constructor (client: HttpLancedbClient, name: string)
constructor (client: HttpLancedbClient, name: string, embeddings: EmbeddingFunction<T>)
constructor (client: HttpLancedbClient, name: string, embeddings?: EmbeddingFunction<T>) {
this._client = client
this._name = name
this._embeddings = embeddings
}
get name (): string {
return this._name
}
search (query: T): Query<T> {
return new RemoteQuery(query, this._client, this._name)//, this._embeddings_new)
}
async add (data: Array<Record<string, unknown>>): Promise<number> {
const buffer = await fromRecordsToStreamBuffer(data, this._embeddings)
const res = await this._client.post(
`/v1/table/${this._name}/insert/`,
buffer,
{
mode: 'append'
},
'application/vnd.apache.arrow.stream'
)
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
return data.length
}
async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
const buffer = await fromRecordsToStreamBuffer(data, this._embeddings)
const res = await this._client.post(
`/v1/table/${this._name}/insert/`,
buffer,
{
mode: 'overwrite'
},
'application/vnd.apache.arrow.stream'
)
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
return data.length
}
async createIndex (indexParams: VectorIndexParams): Promise<any> {
throw new Error('Not implemented')
}
async countRows (): Promise<number> {
const result = await this._client.post(`/v1/table/${this._name}/describe/`)
return result.data?.stats?.num_rows
}
async delete (filter: string): Promise<void> {
await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter })
}
async listIndices (): Promise<VectorIndex[]> {
const results = await this._client.post(`/v1/table/${this._name}/index/list/`)
return results.data.indexes?.map((index: any) => ({
columns: index.columns,
name: index.index_name,
uuid: index.index_uuid
}))
}
async indexStats (indexUuid: string): Promise<IndexStats> {
const results = await this._client.post(`/v1/table/${this._name}/index/${indexUuid}/stats/`)
return {
numIndexedRows: results.data.num_indexed_rows,
numUnindexedRows: results.data.num_unindexed_rows
}
}
}

View File

@@ -16,7 +16,6 @@ import { describe } from 'mocha'
import { assert } from 'chai'
import { OpenAIEmbeddingFunction } from '../../embedding/openai'
import { isEmbeddingFunction } from '../../embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { OpenAIApi } = require('openai')
@@ -48,10 +47,4 @@ describe('OpenAPIEmbeddings', function () {
assert.deepEqual(vectors[1], stubValue.data.data[1].embedding)
})
})
describe('isEmbeddingFunction', function () {
it('should match the isEmbeddingFunction guard', function () {
assert.isTrue(isEmbeddingFunction(new OpenAIEmbeddingFunction('text', 'sk-key')))
})
})
})

View File

@@ -47,9 +47,7 @@ describe('LanceDB S3 client', function () {
}
}
const table = await createTestDB(opts, 2, 20)
console.log(table)
const con = await lancedb.connect(opts)
console.log(con)
assert.equal(con.uri, opts.uri)
const results = await table.search([0.1, 0.3]).limit(5).execute()
@@ -72,5 +70,5 @@ async function createTestDB (opts: ConnectionOptions, numDimensions: number = 2,
data.push({ id: i + 1, name: `name_${i}`, price: i + 10, is_active: (i % 2 === 0), vector })
}
return await con.createTable('vectors_2', data)
return await con.createTable('vectors', data)
}

View File

@@ -18,8 +18,7 @@ import * as chai from 'chai'
import * as chaiAsPromised from 'chai-as-promised'
import * as lancedb from '../index'
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions, type LocalTable } from '../index'
import { FixedSizeList, Field, Int32, makeVector, Schema, Utf8, Table as ArrowTable, vectorFromArray, Float32 } from 'apache-arrow'
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode } from '../index'
const expect = chai.expect
const assert = chai.assert
@@ -102,29 +101,15 @@ describe('LanceDB client', function () {
assertResults(results)
})
it('should correctly process prefilter/postfilter', async function () {
const uri = await createTestDB(16, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
// post filter should return less than the limit
let results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(false).execute()
assert.isTrue(results.length < 10)
// pre filter should return exactly the limit
results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(true).execute()
assert.isTrue(results.length === 10)
})
it('select only a subset of columns', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.1]).select(['is_active']).execute()
assert.equal(results.length, 2)
// vector and _distance are always returned
// vector and score are always returned
assert.isDefined(results[0].vector)
assert.isDefined(results[0]._distance)
assert.isDefined(results[0].score)
assert.isDefined(results[0].is_active)
assert.isUndefined(results[0].id)
@@ -134,45 +119,6 @@ describe('LanceDB client', function () {
})
describe('when creating a new dataset', function () {
it('create an empty table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('id', new Int32()), new Field('name', new Utf8())]
)
const table = await con.createTable({ name: 'vectors', schema })
assert.equal(table.name, 'vectors')
assert.deepEqual(await con.tableNames(), ['vectors'])
})
it('create a table with a empty data array', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('id', new Int32()), new Field('name', new Utf8())]
)
const table = await con.createTable({ name: 'vectors', schema, data: [] })
assert.equal(table.name, 'vectors')
assert.deepEqual(await con.tableNames(), ['vectors'])
})
it('create a table from an Arrow Table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const i32s = new Int32Array(new Array<number>(10))
const i32 = makeVector(i32s)
const data = new ArrowTable({ vector: i32 })
const table = await con.createTable({ name: 'vectors', data })
assert.equal(table.name, 'vectors')
assert.equal(await table.countRows(), 10)
assert.deepEqual(await con.tableNames(), ['vectors'])
})
it('creates a new table from javascript objects', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
@@ -188,18 +134,6 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2)
})
it('fails to create a new table when the vector column is missing', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ id: 1, price: 10 }
]
const create = con.createTable('missing_vector', data)
await expect(create).to.be.rejectedWith(Error, 'column \'vector\' is missing')
})
it('use overwrite flag to overwrite existing table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
@@ -210,7 +144,7 @@ describe('LanceDB client', function () {
]
const tableName = 'overwrite'
await con.createTable(tableName, data, { writeMode: WriteMode.Create })
await con.createTable(tableName, data, WriteMode.Create)
const newData = [
{ id: 1, vector: [0.1, 0.2], price: 10 },
@@ -220,7 +154,7 @@ describe('LanceDB client', function () {
await expect(con.createTable(tableName, newData)).to.be.rejectedWith(Error, 'already exists')
const table = await con.createTable(tableName, newData, { writeMode: WriteMode.Overwrite })
const table = await con.createTable(tableName, newData, WriteMode.Overwrite)
assert.equal(table.name, tableName)
assert.equal(await table.countRows(), 3)
})
@@ -272,37 +206,6 @@ describe('LanceDB client', function () {
})
})
describe('when searching an empty dataset', function () {
it('should not fail', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('vector', new FixedSizeList(128, new Field('float32', new Float32())))]
)
const table = await con.createTable({ name: 'vectors', schema })
const result = await table.search(Array(128).fill(0.1)).execute()
assert.isEmpty(result)
})
})
describe('when searching an empty-after-delete dataset', function () {
it('should not fail', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('vector', new FixedSizeList(128, new Field('float32', new Float32())))]
)
const table = await con.createTable({ name: 'vectors', schema })
await table.add([{ vector: Array(128).fill(0.1) }])
// https://github.com/lancedb/lance/issues/1635
await table.delete('true')
const result = await table.search(Array(128).fill(0.1)).execute()
assert.isEmpty(result)
})
})
describe('when creating a vector index', function () {
it('overwrite all records in a table', async function () {
const uri = await createTestDB(32, 300)
@@ -327,40 +230,6 @@ describe('LanceDB client', function () {
// Default replace = true
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
}).timeout(50_000)
it('it should fail when the column is not a vector', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
await expect(createIndex).to.be.rejectedWith(/VectorIndex requires the column data type to be fixed size list of float32s/)
})
it('it should fail when the column is not a vector', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: -1, max_iters: 2, num_sub_vectors: 2 })
await expect(createIndex).to.be.rejectedWith('num_partitions: must be > 0')
})
it('should be able to list index and stats', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
const indices = await table.listIndices()
expect(indices).to.have.lengthOf(1)
expect(indices[0].name).to.equal('vector_idx')
expect(indices[0].uuid).to.not.be.equal(undefined)
expect(indices[0].columns).to.have.lengthOf(1)
expect(indices[0].columns[0]).to.equal('vector')
const stats = await table.indexStats(indices[0].uuid)
expect(stats.numIndexedRows).to.equal(300)
expect(stats.numUnindexedRows).to.equal(0)
}).timeout(50_000)
})
describe('when using a custom embedding function', function () {
@@ -390,64 +259,16 @@ describe('LanceDB client', function () {
{ price: 10, name: 'foo' },
{ price: 50, name: 'bar' }
]
const table = await con.createTable('vectors', data, embeddings, { writeMode: WriteMode.Create })
const table = await con.createTable('vectors', data, WriteMode.Create, embeddings)
const results = await table.search('foo').execute()
assert.equal(results.length, 2)
})
it('should create embeddings for Arrow Table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const embeddingFunction = new TextEmbedding('name')
const names = vectorFromArray(['foo', 'bar'], new Utf8())
const data = new ArrowTable({ name: names })
const table = await con.createTable({ name: 'vectors', data, embeddingFunction })
assert.equal(table.name, 'vectors')
const results = await table.search('foo').execute()
assert.equal(results.length, 2)
})
})
})
describe('Remote LanceDB client', function () {
describe('when the server is not reachable', function () {
it('produces a network error', async function () {
const con = await lancedb.connect({
uri: 'db://test-1234',
region: 'asdfasfasfdf',
apiKey: 'some-api-key'
})
// GET
try {
await con.tableNames()
} catch (err) {
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
}
// POST
try {
await con.createTable({ name: 'vectors', schema: new Schema([]) })
} catch (err) {
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
}
// Search
const table = await con.openTable('vectors')
try {
await table.search([0.1, 0.3]).execute()
} catch (err) {
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
}
})
})
})
describe('Query object', function () {
it('sets custom parameters', async function () {
const query = new Query([0.1, 0.3])
const query = new Query(undefined, [0.1, 0.3])
.limit(1)
.metricType(MetricType.Cosine)
.refineFactor(100)
@@ -496,62 +317,3 @@ describe('Drop table', function () {
assert.deepEqual(await con.tableNames(), ['t2'])
})
})
describe('WriteOptions', function () {
context('#isWriteOptions', function () {
it('should not match empty object', function () {
assert.equal(isWriteOptions({}), false)
})
it('should match write options', function () {
assert.equal(isWriteOptions({ writeMode: WriteMode.Create }), true)
})
it('should match undefined write mode', function () {
assert.equal(isWriteOptions({ writeMode: undefined }), true)
})
it('should match default write options', function () {
assert.equal(isWriteOptions(new DefaultWriteOptions()), true)
})
})
})
describe('Compact and cleanup', function () {
it('can cleanup after compaction', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ price: 10, name: 'foo', vector: [1, 2, 3] },
{ price: 50, name: 'bar', vector: [4, 5, 6] }
]
const table = await con.createTable('t1', data) as LocalTable
const newData = [
{ price: 30, name: 'baz', vector: [7, 8, 9] }
]
await table.add(newData)
const compactionMetrics = await table.compactFiles({
numThreads: 2
})
assert.equal(compactionMetrics.fragmentsRemoved, 2)
assert.equal(compactionMetrics.fragmentsAdded, 1)
assert.equal(await table.countRows(), 3)
await table.cleanupOldVersions()
assert.equal(await table.countRows(), 3)
// should have no effect, but this validates the arguments are parsed.
await table.compactFiles({
targetRowsPerFragment: 1024 * 10,
maxRowsPerGroup: 1024,
materializeDeletions: true,
materializeDeletionsThreshold: 0.5,
numThreads: 2
})
const cleanupMetrics = await table.cleanupOldVersions(0, true)
assert.isAtLeast(cleanupMetrics.bytesRemoved, 1)
assert.isAtLeast(cleanupMetrics.oldVersions, 1)
assert.equal(await table.countRows(), 3)
})
})

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.3.4
current_version = 0.1.8
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True

Some files were not shown because too many files have changed in this diff Show More