Compare commits

...

146 Commits

Author SHA1 Message Date
Lance Release
f79295c697 Bump version: 0.24.2-beta.2 → 0.24.2 2025-07-25 20:31:15 +00:00
Lance Release
381fad9b65 Bump version: 0.24.2-beta.1 → 0.24.2-beta.2 2025-07-25 20:31:15 +00:00
Tristan Zajonc
055bf91d3e fix: handle empty list with schema in table creation (#2548)
## Summary
Fixes IndexError when creating tables with empty list data and a
provided schema. Previously, `_into_pyarrow_reader()` would attempt to
access `data[0]` on empty lists, causing an IndexError. Now properly
handles empty lists by using the provided schema.

Also adds regression tests for GitHub issues #1968 and #303 to prevent
future regressions with empty table scenarios.

## Changes
- Fix IndexError in `_into_pyarrow_reader()` for empty list + schema
case
- Add Optional[pa.Schema] parameter to handle empty data gracefully  
- Add `test_create_table_empty_list_with_schema` for the IndexError fix
- Add `test_create_empty_then_add_data` for issue #1968
- Add `test_search_empty_table` for issue #303

## Test plan
- [x] All new regression tests pass
- [x] Existing tests continue to pass
- [x] Code formatted with `make format`
2025-07-25 10:23:43 +08:00
Will Jones
050f0086b8 feat: upgrade Lance to v0.32.0 (#2543)
Changelog: https://github.com/lancedb/lance/releases/tag/v0.32.0

Fixes #2521
2025-07-24 19:22:53 -07:00
Tristan Zajonc
10fa23e0d6 fix(python): expose register function in embeddings module (#2544)
## Summary
Fixes #2541

**Problem**: The `register` function was not accessible via `from
lancedb.embeddings import register` as documented, causing ImportError
for users trying to create custom embedding functions.

**Solution**: Added `register` to the exports in
`python/lancedb/embeddings/__init__.py` to match the documented API and
follow the same pattern as other registry functions (`get_registry`,
`EmbeddingFunctionRegistry`).

**Root Cause**: The function existed in `lancedb.embeddings.registry`
but wasn't exposed through the main embeddings module interface.

## Changes
- Add `register` to imports in
`/python/python/lancedb/embeddings/__init__.py`

## Test Plan
- [x] Verified `from lancedb.embeddings import register` works as
documented
- [x] Confirmed existing embedding tests pass
- [x] Checked that the fix follows existing patterns (same as
`get_registry`)
- [x] Validated linting and formatting passes

## References
Fixes #2541
2025-07-24 15:30:06 -07:00
yihong
43d9fc28b0 fix: can not build on python3.9 for dev (#2477)
This patch fix can not build on python3.9 dev

the reason is that for ibm-watsonx-ai the min version is py3.10

more can check on `pyoven` https://pyoven.org/package/ibm-watsonx-ai/

also fix tiny md lint

---------

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-07-24 12:39:04 -07:00
aniaan
f45f0d0431 fix(python): correct type annotations in EmbeddingFunctionRegistry (#2478)
- Fix register() method's alias parameter type from 'str = None' to
'Optional[str] = None'
- Add return type annotation 'Type[EmbeddingFunction]' to get() method
- Import Type from typing module for proper type hints
2025-07-24 12:31:49 -07:00
Tristan Zajonc
b9e3c36d82 fix: replace broken documentation URLs in error messages (#2533)
Replaces broken 404 URL and unhelpful documentation links in type error
messages with working URL and inline list of supported data types.

**Before**: Points to
https://lancedb.github.io/lance/read_and_write.html (404 error)
**After**: Lists supported types inline and points to
https://lancedb.github.io/lancedb/guides/tables/
2025-07-24 12:30:27 -07:00
Chen Chongchen
3cd7dd3375 fix: to_pydantic typing (#2517)
currently, to_pydantic will always return LanceModel. If type checking
is enabled in my project. I have to use `cast(data,
List[RealModelType])` to solve type error. This PR uses generic to solve
this problem.
2025-07-24 12:30:15 -07:00
Tristan Zajonc
12d4ce4cfe fix: resolve flaky Node.js integration test for mirrored store (#2539)
## Summary
- Fixed flaky Node.js integration test for mirrored store functionality
- Converted callback-based `fs.readdir()` to `fs.promises.readdir()`
with proper async/await
- Used unique temporary directories to prevent test isolation issues
- Updated test expectations to match current IVF-PQ index file structure

## Problem
The mirrored store integration test was experiencing random failures in
CI with errors like:
- `expected 2 to equal 1` at various assertion points
- `done() called multiple times`

## Root Causes Identified
1. **Race conditions**: Mixing callback-based filesystem operations with
async functions created timing issues where assertions ran before
filesystem operations completed
2. **Test isolation**: Multiple tests shared the same temp directory
(`tmpdir()`), causing one test to see files from another
3. **Outdated expectations**: IVF-PQ indexes now create 2 files
(`auxiliary.idx` + `index.idx`) instead of 1, but the test expected only
1

## Solution
- Replace all `fs.readdir()` callbacks with `fs.promises.readdir()` and
`await`
- Use `fs.promises.mkdtemp()` to create unique temporary directories for
each test run
- Update index file count expectations from 1 to 2 files to match
current Lance behavior
- Add descriptive assertion labels for easier debugging

## Analysis
The mirroring implementation in `MirroringObjectStore::put_opts` is
synchronous - it awaits writes to both secondary (local) and primary
(S3) stores before returning. The test failures were due to
callback/async pattern mismatch and test isolation issues, not actual
async mirroring behavior.

## Test plan
- [x] Local tests are running without timing-based failures
- [x] Integration tests with AWS credentials pass in CI

This resolves the flaky failures including 'expected 2 to equal 1'
assertions and 'done() called multiple times' errors seen in CI runs.
2025-07-24 12:07:05 -07:00
Will Jones
3d1f102087 feat: allow Python and Typescript users to create Sessions (#2530)
## Summary
- Exposes `Session` in Python and Typescript so users can set the
`index_cache_size_bytes` and `metadata_cache_size_bytes`
* The `Session` is attached to the `Connection`, and thus shared across
all tables in that connection.
- Adds deprecation warnings for table-level cache configuration


🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-07-24 12:06:29 -07:00
Tristan Zajonc
81afd8a42f fix: use local random state in FTS test fixtures to prevent flaky failures (#2532)
## Summary
Fixes intermittent CI failures in `test_search_fts[False]` where boolean
FTS queries were returning fewer results than expected due to
non-deterministic test data generation.

## Problem
The test was using global `random` and `np.random` without seeding,
causing the boolean query `MatchQuery("puppy", "text") &
MatchQuery("runs", "text")` to sometimes return only 3 results instead
of the expected 5, leading to `AssertionError: assert 3 == 5`.

## Solution
- Replace global random calls with local `random.Random(42)` and
`np.random.RandomState(42)` objects in test fixtures
- Ensures deterministic test data while maintaining test isolation
- No impact on other tests since random state is scoped to fixtures only

## Test Results
-  `test_search_fts[False]` now passes consistently
-  All other FTS tests continue to pass 
-  No regression in other test suites (verified with `test_basic`)
-  Maintains existing test behavior and coverage
2025-07-24 11:30:02 -07:00
Tristan Zajonc
c2aa03615a fix: correct grammar in LanceDB cloud connection error message (#2537)
## Summary

Fixed a minor grammar error in the error message for missing API key
when connecting to LanceDB cloud.

## Changes

- Changed 'api_key is required to connected LanceDB cloud' to 'api_key
is required to connect to LanceDB cloud'
- Location: `python/python/lancedb/__init__.py:95`

## Test plan

- Error message formatting is correct and grammatical
- No functional changes to existing behavior
2025-07-24 09:56:06 -07:00
Tristan Zajonc
d2c6759e7f fix: use import stubs to prevent MLX doctest collection failures (#2536)
## Summary
- Add `create_import_stub()` helper to `embeddings/utils.py` for
handling optional dependencies
- Fix MLX doctest collection failures by using import stubs in
`gte_mlx_model.py`
- Module now imports successfully for doctest collection even when MLX
is not installed

## Changes
- **New utility function**: `create_import_stub()` creates placeholder
objects that allow class inheritance but raise helpful errors when used
- **Updated MLX model**: Uses import stubs instead of direct imports
that fail immediately
- **Graceful degradation**: Clear error messages when MLX functionality
is accessed without MLX installed

## Test Results
-  `pytest --doctest-modules python/lancedb` now passes (with and
without MLX installed)
-  All existing tests continue to pass
-  MLX functionality works normally when MLX is installed
-  Helpful error messages when MLX functionality is used without MLX
installed

Fixes #2538

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-07-23 16:25:33 -07:00
Weston Pace
94fb9f364a feat: update lance version to 0.32.0-b2 (#2525) 2025-07-23 12:23:10 -07:00
Will Jones
fbff244ed8 chore: add claude md files (#2531)
Gives basic context to Claude about how to do common tasks in the repo.
2025-07-23 12:20:36 -07:00
Xuanwo
7e7466d224 ci: enable trust publishing for rust crates (#2529) 2025-07-23 14:53:52 +08:00
Lance Release
cceaf27d79 Bump version: 0.21.2-beta.0 → 0.21.2-beta.1 2025-07-22 15:41:13 +00:00
Lance Release
7a15337e03 Bump version: 0.24.2-beta.0 → 0.24.2-beta.1 2025-07-22 15:40:17 +00:00
BubbleCal
96c66fd087 feat: support multivector for JS SDK (#2527)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-22 21:19:34 +08:00
Will Jones
0579303602 feat: allow setting custom Session on ListingDatabase (#2526)
## Summary

Add support for providing a custom `Session` when connecting to a
`ListingDatabase`. This allows users to configure object store
registries, caching, and other session-related settings while
maintaining full backward compatibility.

## Usage Example

```rust
use std::sync::Arc;
use lancedb::connect;

let custom_session = Arc::new(lance::session::Session::default());

let db = connect("/path/to/database")
    .session(custom_session)
    .execute()
    .await?;
```

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-authored-by: Claude <noreply@anthropic.com>
2025-07-21 16:28:39 -07:00
Jack Ye
75edb8756c feat(java): integrate lance-namespace to lancedb Java SDK (#2524) 2025-07-21 14:21:21 -07:00
Will Jones
88283110f4 fix: handle input with missing columns when using embedding functions (#2516)
## Summary

Fixes #2515 by implementing comprehensive support for missing columns in
Arrow table inputs when using embedding functions.

### Problem
Previously, when an Arrow table was passed to `fromDataToBuffer` with
missing columns and a schema containing embedding functions, the system
would fail because `applyEmbeddingsFromMetadata` expected all columns to
be present in the table.

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-07-18 15:54:25 -07:00
Lance Release
b3a637fdeb Bump version: 0.21.1 → 0.21.2-beta.0 2025-07-18 16:03:28 +00:00
Lance Release
ce24457531 Bump version: 0.24.1 → 0.24.2-beta.0 2025-07-18 16:02:37 +00:00
BubbleCal
087fe6343d test: fix random data may break test case (#2514)
this test adds a new vector and then performs vector search with
distance range.
this may fail if the new vector becomes the closest one to the query
vector

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-18 16:15:06 +08:00
Wyatt Alt
ab8cbe62dd fix: excessive object storage handle creation in create_table (#2505)
This fixes two bugs with create_table storage handle reuse. First issue
is, the database object did not previously carry a session that
create_table operations could reuse for create_table operations.

Second issue is, the inheritance logic for create_table and open_table
was causing empty storage options (i.e Some({})) to get sent, instead of
None. Lance handles these differently:

* When None is set, the object store held in the session's storage
registry that was created at "connect" is used. This value stays in the
cache long-term (probably as long as the db reference is held).
* When Some({}) is sent, LanceDB will create a new connection and cache
it for an empty key. However, that cached value will remain valid only
as long as the client holds a reference to the table. After that, the
cache is poisoned and the next create_table with the same key, will
create a new connection. This confounds reuse if e.g python gc's the
table object before another table is created.

My feeling is that the second path, if intentional, is probably meant to
serve cases where tables are overriding settings and the cached
connection is assumed not to be generally applicable. The bug is we were
engaging that mechanism for all tables.
2025-07-17 16:27:23 -07:00
Ayush Chaurasia
f076bb41f4 feat: add support for returning all scores with rerankers (#2509)
Previously `return_score="all"` was supported only for the default
reranker (RRF) and not the model based rerankers.
This adds support for keeping all scores in the base reranker so that
all model based rerankers can use it. Its a slower path than keeping
just the relevance score but can be useful in debugging
2025-07-15 21:03:03 +05:30
BubbleCal
902fb83d54 fix: set_lance_version may miss features when upgrading lance (#2510)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-15 20:11:10 +08:00
BubbleCal
779118339f chore: upgrade lance to 0.31.2-beta.3 (#2508)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-15 17:08:11 +08:00
BubbleCal
03b62599d7 feat: support ngram tokenizer (#2507)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-15 16:36:08 +08:00
Benjamin Schmidt
4c999fb651 chore: fix cleanupOlderThan docs (#2504)
Thanks for all your work.

The docstring for `OptimizeOptions ` seems to reference a non-existent
method on `Table`. I believe this is the correct example for
`cleanupOlderThan`.

This also appears in the generated docs, but I assume they live
downstream from this code?
2025-07-15 16:23:10 +08:00
Lance Release
6d23d32ab5 Bump version: 0.21.1-beta.2 → 0.21.1 2025-07-10 21:36:59 +00:00
Lance Release
704cec34e1 Bump version: 0.21.1-beta.1 → 0.21.1-beta.2 2025-07-10 21:36:26 +00:00
Lance Release
a300a238db Bump version: 0.24.1-beta.2 → 0.24.1 2025-07-10 21:36:02 +00:00
Lance Release
a41ff1df0a Bump version: 0.24.1-beta.1 → 0.24.1-beta.2 2025-07-10 21:36:02 +00:00
Weston Pace
77b005d849 feat: update lance to 0.31.1 (#2501)
This is preparation for a stable release
2025-07-10 14:35:29 -07:00
CyrusAttoun
167fccc427 fix: change 'return' to 'raise' for unimplemented remote table function (#2484)
just noticed that we're doing a 'return' instead of a 'raise' while
trying to get remote functionality working for my project. I went ahead
and implemented tests for both of the unimplemented functions (to_pandas
and to_arrow) while I was in there.

---------

Co-authored-by: Cyrus Attoun <jattoun1@gmail.com>
2025-07-09 14:27:08 -07:00
Lance Release
2bffbcefa5 Bump version: 0.21.1-beta.0 → 0.21.1-beta.1 2025-07-09 05:54:20 +00:00
Lance Release
905552f993 Bump version: 0.24.1-beta.0 → 0.24.1-beta.1 2025-07-09 05:53:28 +00:00
BubbleCal
e4898c9313 chore: sync node package-lock (#2491)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-09 12:34:03 +08:00
BubbleCal
cab36d94b2 feat: support to specify num_partitions and num_bits (#2488) 2025-07-09 11:36:09 +08:00
Weston Pace
b64252d4fd chore: don't require exact version of half (#2489)
I can't find any reason for pinning this dependency and the fact that it
is pinned can be kind of annoying to use downstream (e.g. datafusion
currently requires >= 2.6).
2025-07-08 08:36:04 -07:00
Lance Release
6fc006072c Bump version: 0.21.0 → 0.21.1-beta.0 2025-07-07 21:01:30 +00:00
Lance Release
d4bb59b542 Bump version: 0.24.0 → 0.24.1-beta.0 2025-07-07 21:00:38 +00:00
Wyatt Alt
6b2dd6de51 chore: update lance to 31.1-beta.2 (#2487) 2025-07-07 12:53:16 -07:00
BubbleCal
dbccd9e4f1 chore: upgrade lance to 0.31.1-beta.1 (#2486)
this also upgrades:
- datafusion 47.0 -> 48.0
- half 2.5.0 -> 2.6.0

to be consistent with lance

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-07 22:16:43 +08:00
Will Jones
b12ebfed4c fix: only monotonically update dataset (#2479)
Make sure we only update the latest version if it's actually newer. This
is important if there are concurrent queries, as they can take different
amounts of time.
2025-07-01 08:29:37 -07:00
Weston Pace
1dadb2aefa feat: upgrade to lance 0.31.0-beta.1 (#2469)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Chores**
* Updated dependencies to newer versions for improved compatibility and
stability.

* **Refactor**
* Improved internal handling of data ranges and stream lifetimes for
enhanced performance and reliability.
* Simplified code style for Python query object conversions without
affecting functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-30 11:10:53 -07:00
Haoyu Weng
eb9784d7f2 feat(python): batch Ollama embed calls (#2453)
Other embedding integrations such as Cohere and OpenAI already send
requests in batches. We should do that for Ollama too to improve
throughput.

The Ollama [`.embed`
API](63ca747622/ollama/_client.py (L359-L378))
was added in version 0.3.0 (almost a year ago) so I updated the version
requirement in pyproject.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved compatibility with newer versions of the "ollama" package by
requiring version 0.3.0 or higher.
- Enhanced embedding generation to process batches of texts more
efficiently and reliably.
- **Refactor**
	- Improved type consistency and clarity for embedding-related methods.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-30 08:28:14 -07:00
Kilerd Chan
ba755626cc fix: expose parsing error coming from invalid object store uri (#2475)
this PR is to expose the error from `ListingCatalog::open_path` which
unwrap the Result coming from `ObjectStore::from_uri` to avoid panic
2025-06-30 10:33:18 +08:00
Keming
7760799cb8 docs: fix multivector notebook markdown style (#2447)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Improved formatting and clarity in instructional text within the
Multivector on LanceDB notebook.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-27 15:34:01 -07:00
Will Jones
4beb2d2877 fix(python): make sure explain_plan works with FTS queries (#2466)
## Summary

Fixes issue #2465 where FTS explain plans only showed basic `LanceScan`
instead of detailed execution plans with FTS query details, limits, and
offsets.

## Root Cause

The `FTSQuery::explain_plan()` and `analyze_plan()` methods were missing
the `.full_text_search()` call before calling explain/analyze plan,
causing them to operate on the base query without FTS context.

## Changes

- **Fixed** `explain_plan()` and `analyze_plan()` in `src/query.rs` to
call `.full_text_search()`
- **Added comprehensive test coverage** for FTS explain plans with
limits, offsets, and filters
- **Updated existing tests** to expect correct behavior instead of buggy
behavior

## Before/After

**Before (broken):**
```
LanceScan: uri=..., projection=[...], row_id=false, row_addr=false, ordered=true
```

**After (fixed):**
```
ProjectionExec: expr=[id@2 as id, text@3 as text, _score@1 as _score]
  Take: columns="_rowid, _score, (id), (text)"
    CoalesceBatchesExec: target_batch_size=1024
      GlobalLimitExec: skip=2, fetch=4
        MatchQuery: query=test
```

## Test Plan

- [x] All new FTS explain plan tests pass 
- [x] Existing tests continue to pass
- [x] FTS queries now show proper execution plans with MatchQuery,
limits, filters

Closes #2465

🤖 Generated with [Claude Code](https://claude.ai/code)

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Tests**
* Added new test cases to verify explain plan output for full-text
search, vector queries with pagination, and queries with filters.

* **Bug Fixes**
* Improved the accuracy of explain plan and analysis output for
full-text search queries, ensuring the correct query details are
reflected.

* **Refactor**
* Enhanced the formatting and hierarchical structure of execution plans
for hybrid queries, providing clearer and more detailed plan
representations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-06-26 23:35:14 -07:00
Lance Release
a00b8595d1 Bump version: 0.21.0-beta.0 → 0.21.0 2025-06-20 05:47:06 +00:00
Lance Release
9c8314b4fd Bump version: 0.20.1-beta.2 → 0.21.0-beta.0 2025-06-20 05:46:27 +00:00
Lance Release
c625b6f2b2 Bump version: 0.24.0-beta.0 → 0.24.0 2025-06-20 05:46:05 +00:00
Lance Release
bec8fe6547 Bump version: 0.23.1-beta.2 → 0.24.0-beta.0 2025-06-20 05:46:04 +00:00
BubbleCal
dc1150c011 chore: upgrade lance to 0.30.0 (#2451)
lance [release
details](https://github.com/lancedb/lance/releases/tag/v0.30.0)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated dependency specifications to use exact version numbers instead
of referencing a git repository and tag.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-20 11:27:20 +08:00
Will Jones
afaefc6264 ci: fix package lock again (#2449)
We are able to push commits over here:
cb7293e073/.github/workflows/make-release-commit.yml (L88-L95)

So I think it's safe to assume this will work.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated workflow configuration to improve authentication and branch
targeting for automated release processes.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-19 08:51:48 -07:00
BubbleCal
cb70ff8cee feat!: switch default FTS to native lance FTS (#2428)
This switches the default FTS to native lance FTS for Python sync table
API, the other APIs have switched to native implementation already

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- The default behavior for creating a full-text search index now uses
the new implementation rather than the legacy one.
- **Bug Fixes**
- Improved handling and error messages for phrase queries in full-text
search.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-19 10:38:34 +08:00
BubbleCal
cbb5a841b1 feat: support prefix matching and must_not clause (#2441) 2025-06-19 10:32:32 +08:00
Lance Release
c72f6770fd Bump version: 0.20.1-beta.1 → 0.20.1-beta.2 2025-06-18 23:33:57 +00:00
Lance Release
e5a80a5e86 Bump version: 0.23.1-beta.1 → 0.23.1-beta.2 2025-06-18 23:33:05 +00:00
Will Jones
8d0a7fad1f ci: try again to fix node lockfiles (#2445)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the release workflow to explicitly check out the main branch
during the publishing process.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 14:45:39 -07:00
LuQQiu
b80d4d0134 chore: update Lance to v0.30.0-beta.1 (#2444)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved stability and
compatibility.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 14:15:39 -07:00
satya-nutella
9645fe52c2 fix: improve error handling and embedding logic in arrow.ts (#2433)
- Enhanced error messages for schema inference failures to suggest
providing an explicit schema.
- Updated embedding application logic to check for existing destination
columns, allowing for filling embeddings in columns that are all null.
- Added comments for clarity on handling existing columns during
embedding application.

Fixes https://github.com/lancedb/lancedb/issues/2183

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **Bug Fixes**
  - Improved error messages for schema inference to enhance readability.
- Prevented redundant embedding application by skipping columns that
already contain data, avoiding unnecessary errors and computations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 12:45:11 -07:00
Lance Release
b77314168d Bump version: 0.20.1-beta.0 → 0.20.1-beta.1 2025-06-17 23:22:50 +00:00
Lance Release
e08d45e090 Bump version: 0.23.1-beta.0 → 0.23.1-beta.1 2025-06-17 23:22:00 +00:00
Will Jones
2e3ddb8382 ci: fix lockfile failure for vectordb node (#2443)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated release workflow to set a specific Git user name and email for
automated commits during the package publishing process.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-17 15:14:11 -07:00
Wyatt Alt
627ca4c810 chore: update lance to v0.29.1-beta.2 (#2442)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies to use a newer version of the Lance
library.
- **New Features**
- Added support for a new query occurrence type labeled "MUST NOT" in
search filters.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-17 14:02:13 -07:00
Lance Release
f8dae4ffe9 Bump version: 0.20.0 → 0.20.1-beta.0 2025-06-16 16:30:14 +00:00
Lance Release
9eb6119468 Bump version: 0.23.0 → 0.23.1-beta.0 2025-06-16 16:29:22 +00:00
Weston Pace
59b57e30ed feat: add maximum and minimum nprobes properties (#2430)
This exposes the maximum_nprobes and minimum_nprobes feature that was
added in https://github.com/lancedb/lance/pull/3903

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for specifying minimum and maximum probe counts in
vector search queries, allowing finer control over search behavior.
- Users can now independently set minimum and maximum probes for vector
and hybrid queries via new methods and parameters in Python, Node.js,
and Rust APIs.

- **Bug Fixes**
- Improved parameter validation to ensure correct usage of minimum and
maximum probe values.

- **Tests**
- Expanded test coverage to validate correct handling, serialization,
and error cases for the new probe parameters.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-13 15:18:29 -07:00
BubbleCal
fec8d58f06 feat: support a bunch or FTS features in JS SDK (#2431)
- operator for match query
- slop for phrase query
- boolean query

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Introduced support for boolean full-text search queries with AND/OR
logic and occurrence conditions.
- Added operator options for match and multi-match queries to control
term combination logic.
- Enabled phrase queries to specify proximity (slop) for flexible phrase
matching.
- Added new enumerations (`Operator`, `Occur`) and the `BooleanQuery`
class for enhanced query expressiveness.

- **Bug Fixes**
- Improved validation and error handling for invalid operator and
occurrence inputs in full-text queries.

- **Tests**
- Expanded test coverage with new cases for boolean queries and
operator-based full-text searches.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-12 17:04:19 +08:00
BubbleCal
84ded9d678 feat: support new FTS features in python SDK (#2411)
- AND operator
- phrase query slop param
- boolean query

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for combining full-text search queries using AND/OR
operators, enabling more flexible query composition.
- Introduced new query types and parameters, including boolean queries,
operator selection, occurrence constraints, and phrase slop for advanced
search scenarios.
- Enhanced asynchronous search to accept rich full-text query objects
directly.

- **Bug Fixes**
- Improved handling and validation of full-text search queries in both
synchronous and asynchronous search operations.

- **Tests**
- Updated and expanded tests to cover new full-text query types and
their usage in search functions.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-06 14:33:46 +08:00
Wyatt Alt
65696d9713 chore: update lance in lancedb (#2424)
This updates lance to v0.29.1-beta.1.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated workspace dependencies for improved consistency and
reliability. No changes to user-facing functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 19:06:51 -07:00
Will Jones
e2f2ea32e4 ci: fix vectordb release (#2422)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the release workflow to include an additional step for
improved process reliability. No changes to user-facing functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 17:06:02 -07:00
Lance Release
d5f2eca754 Bump version: 0.20.0-beta.3 → 0.20.0 2025-06-04 21:08:31 +00:00
Lance Release
7fa455a8a5 Bump version: 0.20.0-beta.2 → 0.20.0-beta.3 2025-06-04 21:07:59 +00:00
Lance Release
8f42b5874e Bump version: 0.23.0-beta.3 → 0.23.0 2025-06-04 21:07:39 +00:00
Lance Release
274f19f560 Bump version: 0.23.0-beta.2 → 0.23.0-beta.3 2025-06-04 21:07:38 +00:00
Will Jones
fbcbc75b5b feat: upgrade lance to stable version (#2420)
Adds a script to change the lance dependency easily. To make this
change, I just had to run:

```bash
python ci/set_lance_version.py stable
```

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added a script to automate updating the Lance package version in
project dependencies.
- **Chores**
- Updated workflows to improve lockfile management and automate updates
during releases and publishing.
- Switched Lance dependencies from git-based references to fixed version
numbers for improved stability.
- Enhanced lockfile update script with an option to amend commits and
quieter output.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-06-04 13:34:30 -07:00
Will Jones
008f389bd0 ci: commit updated Cargo.lock (#2418)
Follow up to #2416

Forgot to do `git add`.
Also need to delete old actions updating package lock.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
  - Removed legacy workflows related to updating package lock files.
- Improved the update lockfiles script to ensure updated lockfiles are
always included in amended commits.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 08:40:38 -07:00
Lance Release
91af6518d9 Updating package-lock.json 2025-06-04 07:15:07 +00:00
Lance Release
af6819762c Updating package-lock.json 2025-06-04 07:14:50 +00:00
Lance Release
7acece493d Bump version: 0.20.0-beta.1 → 0.20.0-beta.2 2025-06-04 07:14:39 +00:00
Lance Release
20e017fedc Bump version: 0.23.0-beta.1 → 0.23.0-beta.2 2025-06-04 07:13:44 +00:00
Jack Ye
74e578b3c8 feat: upgrade lance to v0.29.0-beta.2 (#2419)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated various internal dependencies to newer versions for improved
stability and compatibility.
  - Increased the version number for the Python package.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-03 15:16:26 -07:00
Lance Release
d92d9eb3d2 Updating package-lock.json 2025-06-03 16:28:18 +00:00
Lance Release
b6cdce7bc9 Updating package-lock.json 2025-06-03 16:28:02 +00:00
Lance Release
316b406265 Bump version: 0.20.0-beta.0 → 0.20.0-beta.1 2025-06-03 16:27:53 +00:00
Lance Release
8825c7c1dd Bump version: 0.23.0-beta.0 → 0.23.0-beta.1 2025-06-03 16:26:58 +00:00
David Myriel
81c85ff702 docs: announcement for Documentation (#2410)
Just letting people know where to look starting June 1st. 

Both docsites should be pointing to lancedb.github.io/documentation.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Added a notification banner to the documentation site informing users
about a new URL for accessing the latest documentation starting June
1st, 2025. The message includes a clickable link that opens in a new
tab.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-06-03 08:55:02 -07:00
Will Jones
570f2154d5 ci: automatically update Cargo.lock (#2416)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated workflow to ignore changes in the `Cargo.lock` file during
documentation checks, reducing unnecessary workflow failures.
- Enhanced release process by adding automated lockfile updates for
Node.js and Rust components.
- Removed an obsolete package-lock update job from the publishing
workflow to streamline releases.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-03 07:49:21 -07:00
Lance Release
0525c055fc Updating package-lock.json 2025-05-31 04:29:20 +00:00
Lance Release
38d11291da Updating package-lock.json 2025-05-31 03:48:11 +00:00
Lance Release
258e682574 Updating package-lock.json 2025-05-31 03:47:55 +00:00
Lance Release
d7afa600b8 Bump version: 0.19.2-beta.0 → 0.20.0-beta.0 2025-05-31 03:47:37 +00:00
Lance Release
5c7303ab2e Bump version: 0.22.2-beta.0 → 0.23.0-beta.0 2025-05-31 03:47:13 +00:00
Will Jones
5895ef4039 ci: revert unnecessary version bump (#2415)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Downgraded version numbers for the Node.js, Python, and Rust packages.
No other user-facing changes were made.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-30 16:51:14 -07:00
Jack Ye
0528cd858a fix: avoid failing list_indices for any unknown index (#2413)
Closes #2412 

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Bug Fixes**
- Improved the reliability of listing indices by logging warnings for
errors and skipping problematic entries, ensuring successful results are
returned.
- Internal indices used for optimization are now excluded from the
visible list of indices.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-30 14:43:12 -07:00
Jack Ye
6582f43422 feat: upgrade lance to v0.29.0-beta.1 (#2414)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved stability and
compatibility. No user-facing changes.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-30 13:47:41 -07:00
BubbleCal
5c7f63388d feat!: upgrade lance to v0.28.0 (#2404)
this introduces some breaking changes in terms of rust API of creating
FTS index, and the default index params changed

Signed-off-by: BubbleCal <bubble-cal@outlook.com>

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Updated default settings for full-text search (FTS) index creation:
stemming, stop word removal, and ASCII folding are now enabled by
default, while token position storage is disabled by default.

- **Refactor**
- Simplified and streamlined the configuration and handling of FTS index
parameters for improved maintainability and consistency across
interfaces.
- Enhanced serialization and request construction for FTS index
parameters to reduce manual handling and improve code clarity.
- Improved test coverage by explicitly enabling positional indexing in
FTS tests to support phrase queries.

- **Chores**
- Upgraded all internal dependencies related to FTS indexing to the
latest version for enhanced compatibility and performance.
- Updated package versions for Node.js, Python, and Rust components to
the latest beta releases.
- Improved CI workflows by adding Rust toolchain setup with formatting
and linting tools.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2025-05-29 15:19:24 -07:00
Renato Marroquin
d0bc671cac docs: add example for querying a lance table with SQL (#2389)
Adds example for querying a dataset with SQL

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Added new guides on querying LanceDB tables using SQL with DuckDB and
Apache Datafusion.
- Included detailed instructions for integrating LanceDB with Datafusion
in Python.
- Updated navigation to include Datafusion and SQL querying
documentation.
- Improved formatting in TypeScript and vectordb update examples for
consistency.

- **Tests**
- Added a new test demonstrating SQL querying on Lance tables via
DataFusion integration.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2025-05-29 06:14:38 -07:00
David Myriel
d37e17593d [doc] Add New Readme Page (#2405)
Added a new readme for better navigation, updated language and more
detail

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Updated the README with a modernized header, improved structure, and
clearer descriptions of features and architecture.
- Expanded and reorganized key features and product offerings for better
clarity.
- Simplified installation instructions and added a table of SDK
interfaces with documentation links.
- Enhanced community and contributor sections with new visuals and links
to social and support channels.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-27 17:45:17 +02:00
Lance Release
cb726d370e Updating package-lock.json 2025-05-23 22:36:54 +00:00
Lance Release
23ee132546 Updating package-lock.json 2025-05-23 21:58:58 +00:00
Lance Release
7fa090d330 Updating package-lock.json 2025-05-23 21:58:43 +00:00
Lance Release
07bc1c5397 Bump version: 0.19.1 → 0.19.2-beta.0 2025-05-23 21:58:31 +00:00
Lance Release
d7a9dbb9fc Bump version: 0.22.1 → 0.22.2-beta.0 2025-05-23 21:58:17 +00:00
Jack Ye
00487afc7d feat: upgrade lance to v0.27.3-beta.2 (#2403)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved compatibility and
stability. No changes to user-facing features.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-23 14:53:13 -07:00
BubbleCal
1902d65aad docs: update the num_partitions recommendation (#2401) 2025-05-23 23:45:37 +08:00
Lance Release
c4fbb65b8e Updating package-lock.json 2025-05-22 07:06:03 +00:00
Lance Release
875ed7ae6f Updating package-lock.json 2025-05-22 05:58:59 +00:00
Lance Release
95a46a57ba Updating package-lock.json 2025-05-22 05:58:43 +00:00
Lance Release
51561e31a0 Bump version: 0.19.1-beta.6 → 0.19.1 2025-05-22 05:58:05 +00:00
Lance Release
7b19120578 Bump version: 0.19.1-beta.5 → 0.19.1-beta.6 2025-05-22 05:58:00 +00:00
Lance Release
745c34a6a9 Bump version: 0.22.1-beta.6 → 0.22.1 2025-05-22 05:57:20 +00:00
Lance Release
db8fa2454d Bump version: 0.22.1-beta.5 → 0.22.1-beta.6 2025-05-22 05:57:20 +00:00
Lei Xu
a67a7b4b42 chore: use stable lance (#2398)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated workspace dependencies to use a stable release version for
improved consistency and reliability. No changes to application features
or functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-21 22:34:29 -07:00
Lei Xu
496846e532 chore: bump lance version (#2397)
- Bump lance version and prepare a new release.
- Bump rust toolchain to 1.86, because GHA ubuntu does not have 1.83
`cargo-fmt` anymore
2025-05-21 14:15:55 -07:00
Ayush Chaurasia
dadcfebf8e docs: add logos in genkit docs page (#2391)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Added an integration banner image to the beginning of the
Genkitx-LanceDB documentation.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-20 01:40:12 +05:30
Lance Release
67033dbd7f Updating package-lock.json 2025-05-16 00:25:41 +00:00
Lance Release
05a85cfc2a Updating package-lock.json 2025-05-15 23:44:27 +00:00
Lance Release
40c5d3d72b Updating package-lock.json 2025-05-15 23:44:10 +00:00
Lance Release
198f0f80c6 Bump version: 0.19.1-beta.4 → 0.19.1-beta.5 2025-05-15 23:43:32 +00:00
Lance Release
e3f2fd3892 Bump version: 0.22.1-beta.4 → 0.22.1-beta.5 2025-05-15 23:42:46 +00:00
Wyatt Alt
f401ccc599 chore: update lance to 0.27.1-beta.1 (#2388)
This is for fe14671f1

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies to newer versions for improved stability
and performance. No changes to features or functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-15 16:09:01 -07:00
Ayush Chaurasia
81b59139f8 docs: add genkit integration docs (#2383)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Added a comprehensive guide for integrating LanceDB with Genkit,
including installation instructions, setup, indexing, retrieval, and
building a custom RAG pipeline with example code and screenshots.
- Updated the documentation navigation to include the new Genkit
integration, making it accessible from the site menu.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-12 18:18:07 +05:30
ayush chaurasia
1026781ab6 Revert "update"
This reverts commit 9c699b8cd9.
2025-05-11 21:04:59 +05:30
ayush chaurasia
9c699b8cd9 update 2025-05-11 21:01:53 +05:30
Lance Release
34bec59bc3 Updating package-lock.json 2025-05-08 21:34:37 +00:00
Lance Release
a5fbbf0d66 Updating package-lock.json 2025-05-08 20:20:18 +00:00
Lance Release
b42721167b Updating package-lock.json 2025-05-08 20:20:00 +00:00
Lance Release
543dec9ff0 Bump version: 0.19.1-beta.3 → 0.19.1-beta.4 2025-05-08 20:19:17 +00:00
Lance Release
04f962f6b0 Bump version: 0.22.1-beta.3 → 0.22.1-beta.4 2025-05-08 20:18:40 +00:00
LuQQiu
19e896ff69 chore: add default for result structs (#2377)
add default for result structs, when values are not provided, will go
with the default values

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Improved internal handling of table operation results to support
default values. No changes to user-facing features or functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-08 13:09:11 -07:00
Will Jones
272e4103b2 feat: provide timeout parameter for merge_insert (#2378)
Provides the ability to set a timeout for merge insert. The default
underlying timeout is however long the first attempt takes, or if there
are multiple attempts, 30 seconds. This has two use cases:

1. Make the timeout shorter, when you want to fail if it takes too long.
2. Allow taking more time to do retries.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for specifying a timeout when performing merge insert
operations in Python, Node.js, and Rust APIs.
- Introduced a new option to control the maximum allowed execution time
for merge inserts, including retry timeout handling.

- **Documentation**
- Updated and added documentation to describe the new timeout option and
its usage in APIs.

- **Tests**
- Added and updated tests to verify correct timeout behavior during
merge insert operations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-08 13:07:05 -07:00
Wyatt Alt
75c257ebb6 fix: return IndexNotExist on remote drop index 404 (#2380)
Prior to this commit, attempting to drop an index that did not exist
would return a TableNotFound error stating that the target table does
not exist -- even when it did exist. Instead, we now return an
IndexNotFound error.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved error handling when attempting to drop a non-existent index,
providing a more accurate error message.
- **Tests**
- Added a test to verify correct error reporting when dropping an index
that does not exist.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-07 17:24:05 -07:00
Wyatt Alt
9ee152eb42 fix: support __len__ on remote table (#2379)
This moves the __len__ method from LanceTable and RemoteTable to Table
so that child classes don't need to implement their own. In the process,
it fixes the implementation of RemoteTable's length method, which was
previously missing a return statement.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Refactor**
- Centralized the table length functionality in the base table class,
simplifying subclass behavior.
- Removed redundant or non-functional length methods from specific table
classes.

- **Tests**
- Added a new test to verify correct table length reporting for remote
tables.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-07 17:23:39 -07:00
LuQQiu
c9ae1b1737 fix: add restore with tag in python and nodejs API (#2374)
add restore with tag API in python and nodejs API and add tests to guard
them

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- The restore functionality now supports using version tags in addition
to numeric version identifiers, allowing you to revert tables to a state
marked by a tag.
- **Bug Fixes**
  - Restoring with an unknown tag now properly raises an error.
- **Documentation**
- Updated documentation and examples to clarify that restore accepts
both version numbers and tags.
- **Tests**
- Added new tests to verify restore behavior with version tags and error
handling for unknown tags.
  - Added tests for checkout and restore operations involving tags.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-06 16:12:58 -07:00
Lance Release
89dc80c42a Updating package-lock.json 2025-05-06 03:53:49 +00:00
Wyatt Alt
7b020ac799 chore: run cargo update (#2376) 2025-05-05 20:26:42 -07:00
Lance Release
529e774bbb Updating package-lock.json 2025-05-06 02:45:45 +00:00
Lance Release
7c12239305 Updating package-lock.json 2025-05-06 02:45:29 +00:00
Lance Release
d83424d6b4 Bump version: 0.19.1-beta.2 → 0.19.1-beta.3 2025-05-06 02:45:06 +00:00
149 changed files with 6476 additions and 2098 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.19.1-beta.2"
current_version = "0.21.2-beta.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -5,8 +5,8 @@ on:
tags-ignore:
# We don't publish pre-releases for Rust. Crates.io is just a source
# distribution, so we don't need to publish pre-releases.
- 'v*-beta*'
- '*-v*' # for example, python-vX.Y.Z
- "v*-beta*"
- "*-v*" # for example, python-vX.Y.Z
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
@@ -19,6 +19,8 @@ env:
jobs:
build:
runs-on: ubuntu-22.04
permissions:
id-token: write
timeout-minutes: 30
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -31,6 +33,8 @@ jobs:
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- uses: rust-lang/crates-io-auth-action@v1
id: auth
- name: Publish the package
run: |
cargo publish -p lancedb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}
cargo publish -p lancedb --all-features --token ${{ steps.auth.outputs.token }}

View File

@@ -35,6 +35,9 @@ jobs:
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
@@ -68,6 +71,9 @@ jobs:
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
@@ -110,4 +116,3 @@ jobs:
-Djdk.reflect.useDirectMethodHandle=false \
-Dio.netty.tryReflectionSetAccessible=true"
JAVA_HOME=$JAVA_17 mvn clean test

View File

@@ -84,6 +84,7 @@ jobs:
run: |
pip install bump-my-version PyGithub packaging
bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP
bash ci/update_lockfiles.sh --amend
- name: Push new version tag
if: ${{ !inputs.dry_run }}
uses: ad-m/github-push-action@master
@@ -92,11 +93,3 @@ jobs:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: ${{ github.ref }}
tags: true
- uses: ./.github/workflows/update_package_lock
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
- uses: ./.github/workflows/update_package_lock_nodejs
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -47,6 +47,9 @@ jobs:
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- name: Lint
run: |
cargo fmt --all -- --check
@@ -113,7 +116,7 @@ jobs:
set -e
npm ci
npm run docs
if ! git diff --exit-code; then
if ! git diff --exit-code -- . ':(exclude)Cargo.lock'; then
echo "Docs need to be updated"
echo "Run 'npm run docs', fix any warnings, and commit the changes."
exit 1

View File

@@ -505,6 +505,8 @@ jobs:
name: vectordb NPM Publish
needs: [node, node-macos, node-linux-gnu, node-windows]
runs-on: ubuntu-latest
permissions:
contents: write
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
@@ -537,6 +539,20 @@ jobs:
# We need to deprecate the old package to avoid confusion.
# Each time we publish a new version, it gets undeprecated.
run: npm deprecate vectordb "Use @lancedb/lancedb instead."
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
- name: Update package-lock.json
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
bash ci/update_lockfiles.sh
- name: Push new commit
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
@@ -546,21 +562,3 @@ jobs:
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
update-package-lock:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release]
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -24,8 +24,8 @@ runs:
- name: pytest (with integration)
shell: bash
if: ${{ inputs.integration == 'true' }}
run: pytest -m "not slow" -x -v --durations=30 python/python/tests
run: pytest -m "not slow" -vv --durations=30 python/python/tests
- name: pytest (no integration tests)
shell: bash
if: ${{ inputs.integration != 'true' }}
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/python/tests
run: pytest -m "not slow and not s3_test" -vv --durations=30 python/python/tests

View File

@@ -40,6 +40,9 @@ jobs:
with:
fetch-depth: 0
lfs: true
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
@@ -160,8 +163,8 @@ jobs:
strategy:
matrix:
target:
- x86_64-pc-windows-msvc
- aarch64-pc-windows-msvc
- x86_64-pc-windows-msvc
- aarch64-pc-windows-msvc
defaults:
run:
working-directory: rust/lancedb

View File

@@ -1,33 +0,0 @@
name: update_package_lock
description: "Update node's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./node
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -1,33 +0,0 @@
name: update_package_lock_nodejs
description: "Update nodejs's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./nodejs
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

24
CLAUDE.md Normal file
View File

@@ -0,0 +1,24 @@
LanceDB is a database designed for retrieval, including vector, full-text, and hybrid search.
It is a wrapper around Lance. There are two backends: local (in-process like SQLite) and
remote (against LanceDB Cloud).
The core of LanceDB is written in Rust. There are bindings in Python, Typescript, and Java.
Project layout:
* `rust/lancedb`: The LanceDB core Rust implementation.
* `python`: The Python bindings, using PyO3.
* `nodejs`: The Typescript bindings, using napi-rs
* `java`: The Java bindings
(`rust/ffi` and `node/` are for a deprecated package. You can ignore them.)
Common commands:
* Check for compiler errors: `cargo check --features remote --tests --examples`
* Run tests: `cargo test --features remote --tests`
* Run specific test: `cargo test --features remote -p <package_name> --test <test_name>`
* Lint: `cargo clippy --features remote --tests --examples`
* Format: `cargo fmt --all`
Before committing changes, run formatting.

2144
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -21,55 +21,52 @@ categories = ["database-implementations"]
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.27.0", "features" = ["dynamodb"], tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-io = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-index = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-linalg = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-table = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-testing = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-datafusion = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-encoding = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance = { "version" = "=0.32.0", "features" = ["dynamodb"] }
lance-io = "=0.32.0"
lance-index = "=0.32.0"
lance-linalg = "=0.32.0"
lance-table = "=0.32.0"
lance-testing = "=0.32.0"
lance-datafusion = "=0.32.0"
lance-encoding = "=0.32.0"
# Note that this one does not include pyarrow
arrow = { version = "54.1", optional = false }
arrow-array = "54.1"
arrow-data = "54.1"
arrow-ipc = "54.1"
arrow-ord = "54.1"
arrow-schema = "54.1"
arrow-arith = "54.1"
arrow-cast = "54.1"
arrow = { version = "55.1", optional = false }
arrow-array = "55.1"
arrow-data = "55.1"
arrow-ipc = "55.1"
arrow-ord = "55.1"
arrow-schema = "55.1"
arrow-arith = "55.1"
arrow-cast = "55.1"
async-trait = "0"
datafusion = { version = "46.0", default-features = false }
datafusion-catalog = "46.0"
datafusion-common = { version = "46.0", default-features = false }
datafusion-execution = "46.0"
datafusion-expr = "46.0"
datafusion-physical-plan = "46.0"
datafusion = { version = "48.0", default-features = false }
datafusion-catalog = "48.0"
datafusion-common = { version = "48.0", default-features = false }
datafusion-execution = "48.0"
datafusion-expr = "48.0"
datafusion-physical-plan = "48.0"
env_logger = "0.11"
half = { "version" = "=2.4.1", default-features = false, features = [
half = { "version" = "2.6.0", default-features = false, features = [
"num-traits",
] }
futures = "0"
log = "0.4"
moka = { version = "0.12", features = ["future"] }
object_store = "0.11.0"
object_store = "0.12.0"
pin-project = "1.0.7"
snafu = "0.8"
url = "2"
num-traits = "0.2"
rand = "0.8"
rand = "0.9"
regex = "1.10"
lazy_static = "1"
semver = "1.0.25"
# Temporary pins to work around downstream issues
# https://github.com/apache/arrow-rs/commit/2fddf85afcd20110ce783ed5b4cdeb82293da30b
chrono = "=0.4.39"
chrono = "=0.4.41"
# https://github.com/RustCrypto/formats/issues/1684
base64ct = "=1.6.0"
# Workaround for: https://github.com/eira-fransham/crunchy/issues/13
crunchy = "=0.2.2"
# Workaround for: https://github.com/Lokathor/bytemuck/issues/306
bytemuck_derive = ">=1.8.1, <1.9.0"

129
README.md
View File

@@ -1,94 +1,97 @@
<a href="https://cloud.lancedb.com" target="_blank">
<img src="https://github.com/user-attachments/assets/92dad0a2-2a37-4ce1-b783-0d1b4f30a00c" alt="LanceDB Cloud Public Beta" width="100%" style="max-width: 100%;">
</a>
<div align="center">
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://github.com/user-attachments/assets/ac270358-333e-4bea-a132-acefaa94040e">
<source media="(prefers-color-scheme: light)" srcset="https://github.com/user-attachments/assets/b864d814-0d29-4784-8fd9-807297c758c0">
<img alt="LanceDB Logo" src="https://github.com/user-attachments/assets/b864d814-0d29-4784-8fd9-807297c758c0" width=300>
</picture>
[![LanceDB](docs/src/assets/hero-header.png)](https://lancedb.com)
[![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
**Search More, Manage Less**
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
[![Gurubase](https://img.shields.io/badge/Gurubase-Ask%20LanceDB%20Guru-006BFF?style=for-the-badge)](https://gurubase.io/g/lancedb)
<img src="docs/src/assets/lancedb.png" alt="LanceDB" width="50%">
</p>
# **The Multimodal AI Lakehouse**
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
[**How to Install** ](#how-to-install) ✦ [**Detailed Documentation**](https://lancedb.github.io/lancedb/) ✦ [**Tutorials and Recipes**](https://github.com/lancedb/vectordb-recipes/tree/main) ✦ [**Contributors**](#contributors)
**The ultimate multimodal data platform for AI/ML applications.**
LanceDB is designed for fast, scalable, and production-ready vector search. It is built on top of the Lance columnar format. You can store, index, and search over petabytes of multimodal data and vectors with ease.
LanceDB is a central location where developers can build, train and analyze their AI workloads.
</p>
</div>
<hr />
<br>
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
## **Demo: Multimodal Search by Keyword, Vector or with SQL**
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
The key features of LanceDB include:
## **Star LanceDB to get updates!**
* Production-scale vector search with no servers to manage.
<details>
<summary>⭐ Click here ⭐ to see how fast we're growing!</summary>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
<img width="100%" src="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
</picture>
</details>
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
## **Key Features**:
* Support for vector similarity search, full-text search and SQL.
- **Fast Vector Search**: Search billions of vectors in milliseconds with state-of-the-art indexing.
- **Comprehensive Search**: Support for vector similarity search, full-text search and SQL.
- **Multimodal Support**: Store, query and filter vectors, metadata and multimodal data (text, images, videos, point clouds, and more).
- **Advanced Features**: Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. GPU support in building vector index.
* Native Python and Javascript/Typescript support.
### **Products**:
- **Open Source & Local**: 100% open source, runs locally or in your cloud. No vendor lock-in.
- **Cloud and Enterprise**: Production-scale vector search with no servers to manage. Complete data sovereignty and security.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
### **Ecosystem**:
- **Columnar Storage**: Built on the Lance columnar format for efficient storage and analytics.
- **Seamless Integration**: Python, Node.js, Rust, and REST APIs for easy integration. Native Python and Javascript/Typescript support.
- **Rich Ecosystem**: Integrations with [**LangChain** 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [**LlamaIndex** 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
* GPU support in building vector index(*).
## **How to Install**:
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
Follow the [Quickstart](https://lancedb.github.io/lancedb/basic/) doc to set up LanceDB locally.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
**API & SDK:** We also support Python, Typescript and Rust SDKs
## Quick Start
| Interface | Documentation |
|-----------|---------------|
| Python SDK | https://lancedb.github.io/lancedb/python/python/ |
| Typescript SDK | https://lancedb.github.io/lancedb/js/globals/ |
| Rust SDK | https://docs.rs/lancedb/latest/lancedb/index.html |
| REST API | https://docs.lancedb.com/api-reference/introduction |
**Javascript**
```shell
npm install @lancedb/lancedb
```
## **Join Us and Contribute**
```javascript
import * as lancedb from "@lancedb/lancedb";
We welcome contributions from everyone! Whether you're a developer, researcher, or just someone who wants to help out.
const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("vectors", [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 },
], {mode: 'overwrite'});
If you have any suggestions or feature requests, please feel free to open an issue on GitHub or discuss it on our [**Discord**](https://discord.gg/G5DcmnZWKB) server.
[**Check out the GitHub Issues**](https://github.com/lancedb/lancedb/issues) if you would like to work on the features that are planned for the future. If you have any suggestions or feature requests, please feel free to open an issue on GitHub.
## **Contributors**
<a href="https://github.com/lancedb/lancedb/graphs/contributors">
<img src="https://contrib.rocks/image?repo=lancedb/lancedb" />
</a>
const query = table.vectorSearch([0.1, 0.3]).limit(2);
const results = await query.toArray();
## **Stay in Touch With Us**
<div align="center">
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.query().where("price >= 10").toArray();
```
</br>
**Python**
```shell
pip install lancedb
```
[![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_pandas()
```
## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.lancedb.com/benchmarking-random-access-in-lance/">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/vectordb-recipes/tree/main/examples/Youtube-Search-QA-Bot">Build a question and answer bot with LanceDB</a>
</div>

188
ci/set_lance_version.py Normal file
View File

@@ -0,0 +1,188 @@
import argparse
import sys
import json
def run_command(command: str) -> str:
"""
Run a shell command and return stdout as a string.
If exit code is not 0, raise an exception with the stderr output.
"""
import subprocess
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode != 0:
raise Exception(f"Command failed with error: {result.stderr.strip()}")
return result.stdout.strip()
def get_latest_stable_version() -> str:
version_line = run_command("cargo info lance | grep '^version:'")
version = version_line.split(" ")[1].strip()
return version
def get_latest_preview_version() -> str:
lance_tags = run_command(
"git ls-remote --tags https://github.com/lancedb/lance.git | grep 'refs/tags/v[0-9beta.-]\\+$'"
).splitlines()
lance_tags = (
tag.split("refs/tags/")[1]
for tag in lance_tags
if "refs/tags/" in tag and "beta" in tag
)
from packaging.version import Version
latest = max(
(tag[1:] for tag in lance_tags if tag.startswith("v")), key=lambda t: Version(t)
)
return str(latest)
def extract_features(line: str) -> list:
"""
Extracts the features from a line in Cargo.toml.
Example: 'lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }'
Returns: ['dynamodb']
"""
import re
match = re.search(r'"features"\s*=\s*\[\s*(.*?)\s*\]', line, re.DOTALL)
if match:
features_str = match.group(1)
return [f.strip('"') for f in features_str.split(",") if len(f) > 0]
return []
def update_cargo_toml(line_updater):
"""
Updates the Cargo.toml file by applying the line_updater function to each line.
The line_updater function should take a line as input and return the updated line.
"""
with open("Cargo.toml", "r") as f:
lines = f.readlines()
new_lines = []
lance_line = ""
is_parsing_lance_line = False
for line in lines:
if line.startswith("lance"):
# Update the line using the provided function
if line.strip().endswith("}"):
new_lines.append(line_updater(line))
else:
lance_line = line
is_parsing_lance_line = True
elif is_parsing_lance_line:
lance_line += line
if line.strip().endswith("}"):
new_lines.append(line_updater(lance_line))
lance_line = ""
is_parsing_lance_line = False
else:
print("doesn't end with }:", line)
else:
# Keep the line unchanged
new_lines.append(line)
with open("Cargo.toml", "w") as f:
f.writelines(new_lines)
def set_stable_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }
lance-io = "=0.29.0"
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "version" = "={version}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = "={version}"\n'
update_cargo_toml(line_updater)
def set_preview_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"], tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-io = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
base_version = version.split("-")[0] # Get the base version without beta suffix
if features:
return f'{package_name} = {{ "version" = "={base_version}", "features" = {json.dumps(features)}, "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
else:
return f'{package_name} = {{ "version" = "={base_version}", "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
update_cargo_toml(line_updater)
def set_local_version():
"""
Sets lines to
lance = { path = "../lance/rust/lance", features = ["dynamodb"] }
lance-io = { path = "../lance/rust/lance-io" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}" }}\n'
update_cargo_toml(line_updater)
parser = argparse.ArgumentParser(description="Set the version of the Lance package.")
parser.add_argument(
"version",
type=str,
help="The version to set for the Lance package. Use 'stable' for the latest stable version, 'preview' for latest preview version, or a specific version number (e.g., '0.1.0'). You can also specify 'local' to use a local path.",
)
args = parser.parse_args()
if args.version == "stable":
latest_stable_version = get_latest_stable_version()
print(
f"Found latest stable version: \033[1mv{latest_stable_version}\033[0m",
file=sys.stderr,
)
set_stable_version(latest_stable_version)
elif args.version == "preview":
latest_preview_version = get_latest_preview_version()
print(
f"Found latest preview version: \033[1mv{latest_preview_version}\033[0m",
file=sys.stderr,
)
set_preview_version(latest_preview_version)
elif args.version == "local":
set_local_version()
else:
# Parse the version number.
version = args.version
# Ignore initial v if present.
if version.startswith("v"):
version = version[1:]
if "beta" in version:
set_preview_version(version)
else:
set_stable_version(version)
print("Updating lockfiles...", file=sys.stderr, end="")
run_command("cargo metadata > /dev/null")
print(" done.", file=sys.stderr)

30
ci/update_lockfiles.sh Executable file
View File

@@ -0,0 +1,30 @@
#!/usr/bin/env bash
set -euo pipefail
AMEND=false
for arg in "$@"; do
if [[ "$arg" == "--amend" ]]; then
AMEND=true
fi
done
# This updates the lockfile without building
cargo metadata --quiet > /dev/null
pushd nodejs || exit 1
npm install --package-lock-only --silent
popd
pushd node || exit 1
npm install --package-lock-only --silent
popd
if git diff --quiet --exit-code; then
echo "No lockfile changes to commit; skipping amend."
elif $AMEND; then
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
git commit --amend --no-edit
else
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
git commit -m "Update lockfiles"
fi

View File

@@ -193,6 +193,7 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- Datafusion: python/datafusion.md
- LangChain:
- LangChain 🔗: integrations/langchain.md
- LangChain demo: notebooks/langchain_demo.ipynb
@@ -205,6 +206,7 @@ nav:
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- 🎯 Examples:
- Overview: examples/index.md
- 🐍 Python:
@@ -247,6 +249,7 @@ nav:
- Data management: concepts/data_management.md
- Guides:
- Working with tables: guides/tables.md
- Working with SQL: guides/sql_querying.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search (native): fts.md
@@ -323,6 +326,7 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- Datafusion: python/datafusion.md
- LangChain 🦜️🔗↗: integrations/langchain.md
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙↗: integrations/llamaIndex.md
@@ -331,6 +335,7 @@ nav:
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- Examples:
- examples/index.md
- 🐍 Python:

View File

@@ -0,0 +1,5 @@
{% extends "base.html" %}
{% block announce %}
📚 Starting June 1st, 2025, please use <a href="https://lancedb.github.io/documentation" target="_blank" rel="noopener noreferrer">lancedb.github.io/documentation</a> for the latest docs.
{% endblock %}

12
docs/package-lock.json generated
View File

@@ -19,7 +19,7 @@
},
"../node": {
"name": "vectordb",
"version": "0.12.0",
"version": "0.21.2-beta.0",
"cpu": [
"x64",
"arm64"
@@ -65,11 +65,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.12.0",
"@lancedb/vectordb-darwin-x64": "0.12.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0",
"@lancedb/vectordb-linux-x64-gnu": "0.12.0",
"@lancedb/vectordb-win32-x64-msvc": "0.12.0"
"@lancedb/vectordb-darwin-arm64": "0.21.2-beta.0",
"@lancedb/vectordb-darwin-x64": "0.21.2-beta.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.21.2-beta.0",
"@lancedb/vectordb-linux-x64-gnu": "0.21.2-beta.0",
"@lancedb/vectordb-win32-x64-msvc": "0.21.2-beta.0"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",

View File

@@ -291,7 +291,7 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 4K-8K rows lead to a good latency / recall.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 MiB

BIN
docs/src/assets/lancedb.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

View File

@@ -0,0 +1,60 @@
# SQL Querying
You can use DuckDB and Apache Datafusion to query your LanceDB tables using SQL.
This guide will show how to query Lance tables them using both.
We will re-use the dataset [created previously](./tables.md):
```python
import lancedb
db = lancedb.connect("data/sample-lancedb")
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
]
table = db.create_table("pd_table", data=data)
```
## Querying a LanceDB Table with DuckDb
The `to_lance` method converts the LanceDB table to a `LanceDataset`, which is accessible to DuckDB through the Arrow compatibility layer.
To query the resulting Lance dataset in DuckDB, all you need to do is reference the dataset by the same name in your SQL query.
```python
import duckdb
arrow_table = table.to_lance()
duckdb.query("SELECT * FROM arrow_table")
```
| vector | item | price |
| ----------- | ---- | ----- |
| [3.1, 4.1] | foo | 10.0 |
| [5.9, 26.5] | bar | 20.0 |
## Querying a LanceDB Table with Apache Datafusion
Have the required imports before doing any querying.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-session-context"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-ffi-dataset"
```
Register the table created with the Datafusion session context.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:lance_sql_basic"
```
| vector | item | price |
| ----------- | ---- | ----- |
| [3.1, 4.1] | foo | 10.0 |
| [5.9, 26.5] | bar | 20.0 |

View File

@@ -765,7 +765,7 @@ This can be used to update zero to all rows depending on how many rows match the
];
const tbl = await db.createTable("my_table", data)
await tbl.update({
await tbl.update({
values: { vector: [10, 10] },
where: "x = 2"
});
@@ -787,9 +787,9 @@ This can be used to update zero to all rows depending on how many rows match the
];
const tbl = await db.createTable("my_table", data)
await tbl.update({
where: "x = 2",
values: { vector: [10, 10] }
await tbl.update({
where: "x = 2",
values: { vector: [10, 10] }
});
```

View File

@@ -0,0 +1,183 @@
### genkitx-lancedb
This is a lancedb plugin for genkit framework. It allows you to use LanceDB for ingesting and rereiving data using genkit framework.
![integration-banner-genkit](https://github.com/user-attachments/assets/a6cc28af-98e9-4425-b87c-7ab139bd7893)
### Installation
```bash
pnpm install genkitx-lancedb
```
### Usage
Adding LanceDB plugin to your genkit instance.
```ts
import { lancedbIndexerRef, lancedb, lancedbRetrieverRef, WriteMode } from 'genkitx-lancedb';
import { textEmbedding004, vertexAI } from '@genkit-ai/vertexai';
import { gemini } from '@genkit-ai/vertexai';
import { z, genkit } from 'genkit';
import { Document } from 'genkit/retriever';
import { chunk } from 'llm-chunk';
import { readFile } from 'fs/promises';
import path from 'path';
import pdf from 'pdf-parse/lib/pdf-parse';
const ai = genkit({
plugins: [
// vertexAI provides the textEmbedding004 embedder
vertexAI(),
// the local vector store requires an embedder to translate from text to vector
lancedb([
{
dbUri: '.db', // optional lancedb uri, default to .db
tableName: 'table', // optional table name, default to table
embedder: textEmbedding004,
},
]),
],
});
```
You can run this app with the following command:
```bash
genkit start -- tsx --watch src/index.ts
```
This'll add LanceDB as a retriever and indexer to the genkit instance. You can see it in the GUI view
<img width="1710" alt="Screenshot 2025-05-11 at 7 21 05PM" src="https://github.com/user-attachments/assets/e752f7f4-785b-4797-a11e-72ab06a531b7" />
**Testing retrieval on a sample table**
Let's see the raw retrieval results
<img width="1710" alt="Screenshot 2025-05-11 at 7 21 05PM" src="https://github.com/user-attachments/assets/b8d356ed-8421-4790-8fc0-d6af563b9657" />
On running this query, you'll 5 results fetched from the lancedb table, where each result looks something like this:
<img width="1417" alt="Screenshot 2025-05-11 at 7 21 18PM" src="https://github.com/user-attachments/assets/77429525-36e2-4da6-a694-e58c1cf9eb83" />
## Creating a custom RAG flow
Now that we've seen how you can use LanceDB for in a genkit pipeline, let's refine the flow and create a RAG. A RAG flow will consist of an index and a retreiver with its outputs postprocessed an fed into an LLM for final response
### Creating custom indexer flows
You can also create custom indexer flows, utilizing more options and features provided by LanceDB.
```ts
export const menuPdfIndexer = lancedbIndexerRef({
// Using all defaults, for dbUri, tableName, and embedder, etc
});
const chunkingConfig = {
minLength: 1000,
maxLength: 2000,
splitter: 'sentence',
overlap: 100,
delimiters: '',
} as any;
async function extractTextFromPdf(filePath: string) {
const pdfFile = path.resolve(filePath);
const dataBuffer = await readFile(pdfFile);
const data = await pdf(dataBuffer);
return data.text;
}
export const indexMenu = ai.defineFlow(
{
name: 'indexMenu',
inputSchema: z.string().describe('PDF file path'),
outputSchema: z.void(),
},
async (filePath: string) => {
filePath = path.resolve(filePath);
// Read the pdf.
const pdfTxt = await ai.run('extract-text', () =>
extractTextFromPdf(filePath)
);
// Divide the pdf text into segments.
const chunks = await ai.run('chunk-it', async () =>
chunk(pdfTxt, chunkingConfig)
);
// Convert chunks of text into documents to store in the index.
const documents = chunks.map((text) => {
return Document.fromText(text, { filePath });
});
// Add documents to the index.
await ai.index({
indexer: menuPdfIndexer,
documents,
options: {
writeMode: WriteMode.Overwrite,
} as any
});
}
);
```
<img width="1316" alt="Screenshot 2025-05-11 at 8 35 56PM" src="https://github.com/user-attachments/assets/e2a20ce4-d1d0-4fa2-9a84-f2cc26e3a29f" />
In your console, you can see the logs
<img width="511" alt="Screenshot 2025-05-11 at 7 19 14PM" src="https://github.com/user-attachments/assets/243f26c5-ed38-40b6-b661-002f40f0423a" />
### Creating custom retriever flows
You can also create custom retriever flows, utilizing more options and features provided by LanceDB.
```ts
export const menuRetriever = lancedbRetrieverRef({
tableName: "table", // Use the same table name as the indexer.
displayName: "Menu", // Use a custom display name.
export const menuQAFlow = ai.defineFlow(
{ name: "Menu", inputSchema: z.string(), outputSchema: z.string() },
async (input: string) => {
// retrieve relevant documents
const docs = await ai.retrieve({
retriever: menuRetriever,
query: input,
options: {
k: 3,
},
});
const extractedContent = docs.map(doc => {
if (doc.content && Array.isArray(doc.content) && doc.content.length > 0) {
if (doc.content[0].media && doc.content[0].media.url) {
return doc.content[0].media.url;
}
}
return "No content found";
});
console.log("Extracted content:", extractedContent);
const { text } = await ai.generate({
model: gemini('gemini-2.0-flash'),
prompt: `
You are acting as a helpful AI assistant that can answer
questions about the food available on the menu at Genkit Grub Pub.
Use only the context provided to answer the question.
If you don't know, do not make up an answer.
Do not add or change items on the menu.
Context:
${extractedContent.join('\n\n')}
Question: ${input}`,
docs,
});
return text;
}
);
```
Now using our retrieval flow, we can ask question about the ingsted PDF
<img width="1306" alt="Screenshot 2025-05-11 at 7 18 45PM" src="https://github.com/user-attachments/assets/86c66b13-7c12-4d5f-9d81-ae36bfb1c346" />

View File

@@ -0,0 +1,53 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / BooleanQuery
# Class: BooleanQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new BooleanQuery()
```ts
new BooleanQuery(queries): BooleanQuery
```
Creates an instance of BooleanQuery.
#### Parameters
* **queries**: [[`Occur`](../enumerations/Occur.md), [`FullTextQuery`](../interfaces/FullTextQuery.md)][]
An array of (Occur, FullTextQuery objects) to combine.
Occur specifies whether the query must match, or should match.
#### Returns
[`BooleanQuery`](BooleanQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)

View File

@@ -40,6 +40,8 @@ Creates an instance of MatchQuery.
- `boost`: The boost factor for the query (default is 1.0).
- `fuzziness`: The fuzziness level for the query (default is 0).
- `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
- `operator`: The logical operator to use for combining terms in the query (default is "OR").
- `prefixLength`: The number of beginning characters being unchanged for fuzzy matching.
* **options.boost?**: `number`
@@ -47,6 +49,10 @@ Creates an instance of MatchQuery.
* **options.maxExpansions?**: `number`
* **options.operator?**: [`Operator`](../enumerations/Operator.md)
* **options.prefixLength?**: `number`
#### Returns
[`MatchQuery`](MatchQuery.md)

View File

@@ -33,7 +33,7 @@ Construct a MergeInsertBuilder. __Internal use only.__
### execute()
```ts
execute(data): Promise<MergeResult>
execute(data, execOptions?): Promise<MergeResult>
```
Executes the merge insert operation
@@ -42,6 +42,8 @@ Executes the merge insert operation
* **data**: [`Data`](../type-aliases/Data.md)
* **execOptions?**: `Partial`&lt;[`WriteExecutionOptions`](../interfaces/WriteExecutionOptions.md)&gt;
#### Returns
`Promise`&lt;[`MergeResult`](../interfaces/MergeResult.md)&gt;

View File

@@ -38,9 +38,12 @@ Creates an instance of MultiMatchQuery.
* **options?**
Optional parameters for the multi-match query.
- `boosts`: An array of boost factors for each column (default is 1.0 for all).
- `operator`: The logical operator to use for combining terms in the query (default is "OR").
* **options.boosts?**: `number`[]
* **options.operator?**: [`Operator`](../enumerations/Operator.md)
#### Returns
[`MultiMatchQuery`](MultiMatchQuery.md)

View File

@@ -19,7 +19,10 @@ including methods to retrieve the query type and convert the query to a dictiona
### new PhraseQuery()
```ts
new PhraseQuery(query, column): PhraseQuery
new PhraseQuery(
query,
column,
options?): PhraseQuery
```
Creates an instance of `PhraseQuery`.
@@ -32,6 +35,12 @@ Creates an instance of `PhraseQuery`.
* **column**: `string`
The name of the column to search within.
* **options?**
Optional parameters for the phrase query.
- `slop`: The maximum number of intervening unmatched positions allowed between words in the phrase (default is 0).
* **options.slop?**: `number`
#### Returns
[`PhraseQuery`](PhraseQuery.md)

View File

@@ -0,0 +1,84 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Session
# Class: Session
A session for managing caches and object stores across LanceDB operations.
Sessions allow you to configure cache sizes for index and metadata caches,
which can significantly impact performance for large datasets.
## Constructors
### new Session()
```ts
new Session(indexCacheSizeBytes?, metadataCacheSizeBytes?): Session
```
Create a new session with custom cache sizes.
# Parameters
- `index_cache_size_bytes`: The size of the index cache in bytes.
Defaults to 6GB if not specified.
- `metadata_cache_size_bytes`: The size of the metadata cache in bytes.
Defaults to 1GB if not specified.
#### Parameters
* **indexCacheSizeBytes?**: `null` \| `bigint`
* **metadataCacheSizeBytes?**: `null` \| `bigint`
#### Returns
[`Session`](Session.md)
## Methods
### approxNumItems()
```ts
approxNumItems(): number
```
Get the approximate number of items cached in the session.
#### Returns
`number`
***
### sizeBytes()
```ts
sizeBytes(): bigint
```
Get the current size of the session caches in bytes.
#### Returns
`bigint`
***
### default()
```ts
static default(): Session
```
Create a session with default cache sizes.
This is equivalent to creating a session with 6GB index cache
and 1GB metadata cache.
#### Returns
[`Session`](Session.md)

View File

@@ -612,7 +612,7 @@ of the given query
#### Parameters
* **query**: `string` \| [`IntoVector`](../type-aliases/IntoVector.md) \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
* **query**: `string` \| [`IntoVector`](../type-aliases/IntoVector.md) \| [`MultiVector`](../type-aliases/MultiVector.md) \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
the query, a vector or string
* **queryType?**: `string`
@@ -799,7 +799,7 @@ by `query`.
#### Parameters
* **vector**: [`IntoVector`](../type-aliases/IntoVector.md)
* **vector**: [`IntoVector`](../type-aliases/IntoVector.md) \| [`MultiVector`](../type-aliases/MultiVector.md)
#### Returns

View File

@@ -386,6 +386,53 @@ called then every valid row from the table will be returned.
***
### maximumNprobes()
```ts
maximumNprobes(maximumNprobes): VectorQuery
```
Set the maximum number of probes used.
This controls the maximum number of partitions that will be searched. If this
number is greater than minimumNprobes then the excess partitions will _only_ be
searched if we have not found enough results. This can be useful when there is
a narrow filter to allow these queries to spend more time searching and avoid
potential false negatives.
#### Parameters
* **maximumNprobes**: `number`
#### Returns
[`VectorQuery`](VectorQuery.md)
***
### minimumNprobes()
```ts
minimumNprobes(minimumNprobes): VectorQuery
```
Set the minimum number of probes used.
This controls the minimum number of partitions that will be searched. This
parameter will impact every query against a vector index, regardless of the
filter. See `nprobes` for more details. Higher values will increase recall
but will also increase latency.
#### Parameters
* **minimumNprobes**: `number`
#### Returns
[`VectorQuery`](VectorQuery.md)
***
### nprobes()
```ts
@@ -413,6 +460,10 @@ For best results we recommend tuning this parameter with a benchmark against
your actual data to find the smallest possible value that will still give
you the desired recall.
For more fine grained control over behavior when you have a very narrow filter
you can use `minimumNprobes` and `maximumNprobes`. This method sets both
the minimum and maximum to the same value.
#### Parameters
* **nprobes**: `number`

View File

@@ -15,6 +15,14 @@ Enum representing the types of full-text queries supported.
## Enumeration Members
### Boolean
```ts
Boolean: "boolean";
```
***
### Boost
```ts

View File

@@ -0,0 +1,37 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Occur
# Enumeration: Occur
Enum representing the occurrence of terms in full-text queries.
- `Must`: The term must be present in the document.
- `Should`: The term should contribute to the document score, but is not required.
- `MustNot`: The term must not be present in the document.
## Enumeration Members
### Must
```ts
Must: "MUST";
```
***
### MustNot
```ts
MustNot: "MUST_NOT";
```
***
### Should
```ts
Should: "SHOULD";
```

View File

@@ -0,0 +1,28 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Operator
# Enumeration: Operator
Enum representing the logical operators used in full-text queries.
- `And`: All terms must match.
- `Or`: At least one term must match.
## Enumeration Members
### And
```ts
And: "AND";
```
***
### Or
```ts
Or: "OR";
```

View File

@@ -6,10 +6,13 @@
# Function: connect()
## connect(uri, options)
## connect(uri, options, session)
```ts
function connect(uri, options?): Promise<Connection>
function connect(
uri,
options?,
session?): Promise<Connection>
```
Connect to a LanceDB instance at the given URI.
@@ -29,6 +32,8 @@ Accepted formats:
* **options?**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md)&gt;
The options to use when connecting to the database
* **session?**: [`Session`](../classes/Session.md)
### Returns
`Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
@@ -77,7 +82,7 @@ Accepted formats:
[ConnectionOptions](../interfaces/ConnectionOptions.md) for more details on the URI format.
### Example
### Examples
```ts
const conn = await connect({
@@ -85,3 +90,11 @@ const conn = await connect({
storageOptions: {timeout: "60s"}
});
```
```ts
const session = Session.default();
const conn = await connect({
uri: "/path/to/database",
session: session
});
```

View File

@@ -12,9 +12,12 @@
## Enumerations
- [FullTextQueryType](enumerations/FullTextQueryType.md)
- [Occur](enumerations/Occur.md)
- [Operator](enumerations/Operator.md)
## Classes
- [BooleanQuery](classes/BooleanQuery.md)
- [BoostQuery](classes/BoostQuery.md)
- [Connection](classes/Connection.md)
- [Index](classes/Index.md)
@@ -26,6 +29,7 @@
- [Query](classes/Query.md)
- [QueryBase](classes/QueryBase.md)
- [RecordBatchIterator](classes/RecordBatchIterator.md)
- [Session](classes/Session.md)
- [Table](classes/Table.md)
- [TagContents](classes/TagContents.md)
- [Tags](classes/Tags.md)
@@ -72,6 +76,7 @@
- [UpdateOptions](interfaces/UpdateOptions.md)
- [UpdateResult](interfaces/UpdateResult.md)
- [Version](interfaces/Version.md)
- [WriteExecutionOptions](interfaces/WriteExecutionOptions.md)
## Type Aliases
@@ -80,6 +85,7 @@
- [FieldLike](type-aliases/FieldLike.md)
- [IntoSql](type-aliases/IntoSql.md)
- [IntoVector](type-aliases/IntoVector.md)
- [MultiVector](type-aliases/MultiVector.md)
- [RecordBatchLike](type-aliases/RecordBatchLike.md)
- [SchemaLike](type-aliases/SchemaLike.md)
- [TableLike](type-aliases/TableLike.md)

View File

@@ -70,6 +70,17 @@ Defaults to 'us-east-1'.
***
### session?
```ts
optional session: Session;
```
(For LanceDB OSS only): the session to use for this connection. Holds
shared caches and other session-specific state.
***
### storageOptions?
```ts

View File

@@ -23,7 +23,7 @@ whether to remove punctuation
### baseTokenizer?
```ts
optional baseTokenizer: "raw" | "simple" | "whitespace";
optional baseTokenizer: "raw" | "simple" | "whitespace" | "ngram";
```
The tokenizer to use when building the index.
@@ -71,6 +71,36 @@ tokens longer than this length will be ignored
***
### ngramMaxLength?
```ts
optional ngramMaxLength: number;
```
ngram max length
***
### ngramMinLength?
```ts
optional ngramMinLength: number;
```
ngram min length
***
### prefixOnly?
```ts
optional prefixOnly: boolean;
```
whether to only index the prefix of the token for ngram tokenizer
***
### removeStopWords?
```ts

View File

@@ -8,7 +8,7 @@
## Properties
### indexCacheSize?
### ~~indexCacheSize?~~
```ts
optional indexCacheSize: number;
@@ -16,6 +16,11 @@ optional indexCacheSize: number;
Set the size of the index cache, specified as a number of entries
#### Deprecated
Use session-level cache configuration instead.
Create a Session with custom cache sizes and pass it to the connect() function.
The exact meaning of an "entry" will depend on the type of index:
- IVF: there is one entry for each IVF partition
- BTREE: there is one entry for the entire index

View File

@@ -24,10 +24,10 @@ The default is 7 days
// Delete all versions older than 1 day
const olderThan = new Date();
olderThan.setDate(olderThan.getDate() - 1));
tbl.cleanupOlderVersions(olderThan);
tbl.optimize({cleanupOlderThan: olderThan});
// Delete all versions except the current version
tbl.cleanupOlderVersions(new Date());
tbl.optimize({cleanupOlderThan: new Date()});
```
***

View File

@@ -0,0 +1,26 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / WriteExecutionOptions
# Interface: WriteExecutionOptions
## Properties
### timeoutMs?
```ts
optional timeoutMs: number;
```
Maximum time to run the operation before cancelling it.
By default, there is a 30-second timeout that is only enforced after the
first attempt. This is to prevent spending too long retrying to resolve
conflicts. For example, if a write attempt takes 20 seconds and fails,
the second attempt will be cancelled after 10 seconds, hitting the
30-second timeout. However, a write that takes one hour and succeeds on the
first attempt will not be cancelled.
When this is set, the timeout is enforced on all attempts, including the first.

View File

@@ -0,0 +1,11 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / MultiVector
# Type Alias: MultiVector
```ts
type MultiVector: IntoVector[];
```

View File

@@ -428,7 +428,7 @@
"\n",
"**Why?** \n",
"Embedding the UFO dataset and ingesting it into LanceDB takes **~2 hours on a T4 GPU**. To save time: \n",
"- **Use the pre-prepared table with index created ** (provided below) to proceed directly to step7: search. \n",
"- **Use the pre-prepared table with index created** (provided below) to proceed directly to **Step 7**: search. \n",
"- **Step 5a** contains the full ingestion code for reference (run it only if necessary). \n",
"- **Step 6** contains the details on creating the index on the multivector column"
]

View File

@@ -0,0 +1,53 @@
# Apache Datafusion
In Python, LanceDB tables can also be queried with [Apache Datafusion](https://datafusion.apache.org/), an extensible query engine written in Rust that uses Apache Arrow as its in-memory format. This means you can write complex SQL queries to analyze your data in LanceDB.
This integration is done via [Datafusion FFI](https://docs.rs/datafusion-ffi/latest/datafusion_ffi/), which provides a native integration between LanceDB and Datafusion.
The Datafusion FFI allows to pass down column selections and basic filters to LanceDB, reducing the amount of scanned data when executing your query. Additionally, the integration allows streaming data from LanceDB tables which allows to do aggregation larger-than-memory.
We can demonstrate this by first installing `datafusion` and `lancedb`.
```shell
pip install datafusion lancedb
```
We will re-use the dataset [created previously](./pandas_and_pyarrow.md):
```python
import lancedb
from datafusion import SessionContext
from lance import FFILanceTableProvider
db = lancedb.connect("data/sample-lancedb")
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
]
lance_table = db.create_table("lance_table", data)
ctx = SessionContext()
ffi_lance_table = FFILanceTableProvider(
lance_table.to_lance(), with_row_id=True, with_row_addr=True
)
ctx.register_table_provider("ffi_lance_table", ffi_lance_table)
```
The `to_lance` method converts the LanceDB table to a `LanceDataset`, which is accessible to Datafusion through the Datafusion FFI integration layer.
To query the resulting Lance dataset in Datafusion, you first need to register the dataset with Datafusion and then just reference it by the same name in your SQL query.
```python
ctx.table("ffi_lance_table")
ctx.sql("SELECT * FROM ffi_lance_table")
```
```
┌─────────────┬─────────┬────────┬─────────────────┬─────────────────┐
│ vector │ item │ price │ _rowid │ _rowaddr │
│ float[] │ varchar │ double │ bigint unsigned │ bigint unsigned │
├─────────────┼─────────┼────────┼─────────────────┼─────────────────┤
│ [3.1, 4.1] │ foo │ 10.0 │ 0 │ 0 │
│ [5.9, 26.5] │ bar │ 20.0 │ 1 │ 1 │
└─────────────┴─────────┴────────┴─────────────────┴─────────────────┘
```

View File

@@ -30,7 +30,8 @@ excluded_globs = [
"../src/rag/advanced_techniques/*.md",
"../src/guides/scalar_index.md",
"../src/guides/storage.md",
"../src/search.md"
"../src/search.md",
"../src/guides/sql_querying.md",
]
python_prefix = "py"

View File

@@ -7,3 +7,4 @@ tantivy==0.20.1
--extra-index-url https://download.pytorch.org/whl/cpu
torch
polars>=0.19, <=1.3.0
datafusion

View File

@@ -0,0 +1,19 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
wrapperVersion=3.3.2
distributionType=only-script
distributionUrl=https://repo.maven.apache.org/maven2/org/apache/maven/apache-maven/3.9.9/apache-maven-3.9.9-bin.zip

37
java/README.md Normal file
View File

@@ -0,0 +1,37 @@
# LanceDB Java SDK
## Configuration and Initialization
### LanceDB Cloud
For LanceDB Cloud, use the simplified builder API:
```java
import com.lancedb.lance.namespace.LanceRestNamespace;
// If your DB url is db://example-db, then your database here is example-db
LanceRestNamespace namespace = LanceDBRestNamespaces.builder()
.apiKey("your_lancedb_cloud_api_key")
.database("your_database_name")
.build();
```
### LanceDB Enterprise
For Enterprise deployments, use your VPC endpoint:
```java
LanceRestNamespace namespace = LanceDBRestNamespaces.builder()
.apiKey("your_lancedb_enterprise_api_key")
.database("your-top-dir") // Your top level folder under your cloud bucket, e.g. s3://your-bucket/your-top-dir/
.hostOverride("http://<vpc_endpoint_dns_name>:80")
.build();
```
## Development
Build:
```shell
./mvnw install
```

View File

@@ -19,7 +19,7 @@ lancedb = { path = "../../../rust/lancedb" }
lance = { workspace = true }
arrow = { workspace = true, features = ["ffi"] }
arrow-schema.workspace = true
tokio = "1.23"
tokio = "1.46"
jni = "0.21.1"
snafu.workspace = true
lazy_static.workspace = true

View File

@@ -8,18 +8,24 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.19.1-beta.2</version>
<version>0.21.2-beta.1</version>
<relativePath>../pom.xml</relativePath>
</parent>
<artifactId>lancedb-core</artifactId>
<name>LanceDB Core</name>
<name>${project.artifactId}</name>
<description>LanceDB Core</description>
<packaging>jar</packaging>
<properties>
<rust.release.build>false</rust.release.build>
</properties>
<dependencies>
<dependency>
<groupId>com.lancedb</groupId>
<artifactId>lance-namespace-core</artifactId>
<version>0.0.1</version>
</dependency>
<dependency>
<groupId>org.apache.arrow</groupId>
<artifactId>arrow-vector</artifactId>

View File

@@ -0,0 +1,26 @@
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.21.2-beta.1</version>
<relativePath>../pom.xml</relativePath>
</parent>
<artifactId>lancedb-lance-namespace</artifactId>
<name>${project.artifactId}</name>
<description>LanceDB Java Integration with Lance Namespace</description>
<packaging>jar</packaging>
<dependencies>
<dependency>
<groupId>com.lancedb</groupId>
<artifactId>lance-namespace-core</artifactId>
</dependency>
</dependencies>
</project>

View File

@@ -0,0 +1,146 @@
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.lancedb.lancedb;
import com.lancedb.lance.namespace.LanceRestNamespace;
import com.lancedb.lance.namespace.client.apache.ApiClient;
import java.util.HashMap;
import java.util.Map;
import java.util.Optional;
/** Util class to help construct a {@link LanceRestNamespace} for LanceDB. */
public class LanceDbRestNamespaces {
private static final String DEFAULT_REGION = "us-east-1";
private static final String CLOUD_URL_PATTERN = "https://%s.%s.api.lancedb.com";
private String apiKey;
private String database;
private Optional<String> hostOverride = Optional.empty();
private Optional<String> region = Optional.empty();
private Map<String, String> additionalConfig = new HashMap<>();
private LanceDbRestNamespaces() {}
/**
* Create a new builder instance.
*
* @return A new LanceRestNamespaceBuilder
*/
public static LanceDbRestNamespaces builder() {
return new LanceDbRestNamespaces();
}
/**
* Set the API key (required).
*
* @param apiKey The LanceDB API key
* @return This builder
*/
public LanceDbRestNamespaces apiKey(String apiKey) {
if (apiKey == null || apiKey.trim().isEmpty()) {
throw new IllegalArgumentException("API key cannot be null or empty");
}
this.apiKey = apiKey;
return this;
}
/**
* Set the database name (required).
*
* @param database The database name
* @return This builder
*/
public LanceDbRestNamespaces database(String database) {
if (database == null || database.trim().isEmpty()) {
throw new IllegalArgumentException("Database cannot be null or empty");
}
this.database = database;
return this;
}
/**
* Set a custom host override (optional). When set, this overrides the default LanceDB Cloud URL
* construction. Use this for LanceDB Enterprise deployments.
*
* @param hostOverride The complete base URL (e.g., "http://your-vpc-endpoint:80")
* @return This builder
*/
public LanceDbRestNamespaces hostOverride(String hostOverride) {
this.hostOverride = Optional.ofNullable(hostOverride);
return this;
}
/**
* Set the region for LanceDB Cloud (optional). Defaults to "us-east-1" if not specified. This is
* ignored when hostOverride is set.
*
* @param region The AWS region (e.g., "us-east-1", "eu-west-1")
* @return This builder
*/
public LanceDbRestNamespaces region(String region) {
this.region = Optional.ofNullable(region);
return this;
}
/**
* Add additional configuration parameters.
*
* @param key The configuration key
* @param value The configuration value
* @return This builder
*/
public LanceDbRestNamespaces config(String key, String value) {
this.additionalConfig.put(key, value);
return this;
}
/**
* Build the LanceRestNamespace instance.
*
* @return A configured LanceRestNamespace
* @throws IllegalStateException if required parameters are missing
*/
public LanceRestNamespace build() {
// Validate required fields
if (apiKey == null) {
throw new IllegalStateException("API key is required");
}
if (database == null) {
throw new IllegalStateException("Database is required");
}
// Build configuration map
Map<String, String> config = new HashMap<>(additionalConfig);
config.put("headers.x-lancedb-database", database);
config.put("headers.x-api-key", apiKey);
// Determine base URL
String baseUrl;
if (hostOverride.isPresent()) {
baseUrl = hostOverride.get();
config.put("host_override", hostOverride.get());
} else {
String effectiveRegion = region.orElse(DEFAULT_REGION);
baseUrl = String.format(CLOUD_URL_PATTERN, database, effectiveRegion);
config.put("region", effectiveRegion);
}
// Create and configure ApiClient
ApiClient apiClient = new ApiClient();
apiClient.setBasePath(baseUrl);
return new LanceRestNamespace(apiClient, config);
}
}

259
java/mvnw vendored Executable file
View File

@@ -0,0 +1,259 @@
#!/bin/sh
# ----------------------------------------------------------------------------
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# ----------------------------------------------------------------------------
# ----------------------------------------------------------------------------
# Apache Maven Wrapper startup batch script, version 3.3.2
#
# Optional ENV vars
# -----------------
# JAVA_HOME - location of a JDK home dir, required when download maven via java source
# MVNW_REPOURL - repo url base for downloading maven distribution
# MVNW_USERNAME/MVNW_PASSWORD - user and password for downloading maven
# MVNW_VERBOSE - true: enable verbose log; debug: trace the mvnw script; others: silence the output
# ----------------------------------------------------------------------------
set -euf
[ "${MVNW_VERBOSE-}" != debug ] || set -x
# OS specific support.
native_path() { printf %s\\n "$1"; }
case "$(uname)" in
CYGWIN* | MINGW*)
[ -z "${JAVA_HOME-}" ] || JAVA_HOME="$(cygpath --unix "$JAVA_HOME")"
native_path() { cygpath --path --windows "$1"; }
;;
esac
# set JAVACMD and JAVACCMD
set_java_home() {
# For Cygwin and MinGW, ensure paths are in Unix format before anything is touched
if [ -n "${JAVA_HOME-}" ]; then
if [ -x "$JAVA_HOME/jre/sh/java" ]; then
# IBM's JDK on AIX uses strange locations for the executables
JAVACMD="$JAVA_HOME/jre/sh/java"
JAVACCMD="$JAVA_HOME/jre/sh/javac"
else
JAVACMD="$JAVA_HOME/bin/java"
JAVACCMD="$JAVA_HOME/bin/javac"
if [ ! -x "$JAVACMD" ] || [ ! -x "$JAVACCMD" ]; then
echo "The JAVA_HOME environment variable is not defined correctly, so mvnw cannot run." >&2
echo "JAVA_HOME is set to \"$JAVA_HOME\", but \"\$JAVA_HOME/bin/java\" or \"\$JAVA_HOME/bin/javac\" does not exist." >&2
return 1
fi
fi
else
JAVACMD="$(
'set' +e
'unset' -f command 2>/dev/null
'command' -v java
)" || :
JAVACCMD="$(
'set' +e
'unset' -f command 2>/dev/null
'command' -v javac
)" || :
if [ ! -x "${JAVACMD-}" ] || [ ! -x "${JAVACCMD-}" ]; then
echo "The java/javac command does not exist in PATH nor is JAVA_HOME set, so mvnw cannot run." >&2
return 1
fi
fi
}
# hash string like Java String::hashCode
hash_string() {
str="${1:-}" h=0
while [ -n "$str" ]; do
char="${str%"${str#?}"}"
h=$(((h * 31 + $(LC_CTYPE=C printf %d "'$char")) % 4294967296))
str="${str#?}"
done
printf %x\\n $h
}
verbose() { :; }
[ "${MVNW_VERBOSE-}" != true ] || verbose() { printf %s\\n "${1-}"; }
die() {
printf %s\\n "$1" >&2
exit 1
}
trim() {
# MWRAPPER-139:
# Trims trailing and leading whitespace, carriage returns, tabs, and linefeeds.
# Needed for removing poorly interpreted newline sequences when running in more
# exotic environments such as mingw bash on Windows.
printf "%s" "${1}" | tr -d '[:space:]'
}
# parse distributionUrl and optional distributionSha256Sum, requires .mvn/wrapper/maven-wrapper.properties
while IFS="=" read -r key value; do
case "${key-}" in
distributionUrl) distributionUrl=$(trim "${value-}") ;;
distributionSha256Sum) distributionSha256Sum=$(trim "${value-}") ;;
esac
done <"${0%/*}/.mvn/wrapper/maven-wrapper.properties"
[ -n "${distributionUrl-}" ] || die "cannot read distributionUrl property in ${0%/*}/.mvn/wrapper/maven-wrapper.properties"
case "${distributionUrl##*/}" in
maven-mvnd-*bin.*)
MVN_CMD=mvnd.sh _MVNW_REPO_PATTERN=/maven/mvnd/
case "${PROCESSOR_ARCHITECTURE-}${PROCESSOR_ARCHITEW6432-}:$(uname -a)" in
*AMD64:CYGWIN* | *AMD64:MINGW*) distributionPlatform=windows-amd64 ;;
:Darwin*x86_64) distributionPlatform=darwin-amd64 ;;
:Darwin*arm64) distributionPlatform=darwin-aarch64 ;;
:Linux*x86_64*) distributionPlatform=linux-amd64 ;;
*)
echo "Cannot detect native platform for mvnd on $(uname)-$(uname -m), use pure java version" >&2
distributionPlatform=linux-amd64
;;
esac
distributionUrl="${distributionUrl%-bin.*}-$distributionPlatform.zip"
;;
maven-mvnd-*) MVN_CMD=mvnd.sh _MVNW_REPO_PATTERN=/maven/mvnd/ ;;
*) MVN_CMD="mvn${0##*/mvnw}" _MVNW_REPO_PATTERN=/org/apache/maven/ ;;
esac
# apply MVNW_REPOURL and calculate MAVEN_HOME
# maven home pattern: ~/.m2/wrapper/dists/{apache-maven-<version>,maven-mvnd-<version>-<platform>}/<hash>
[ -z "${MVNW_REPOURL-}" ] || distributionUrl="$MVNW_REPOURL$_MVNW_REPO_PATTERN${distributionUrl#*"$_MVNW_REPO_PATTERN"}"
distributionUrlName="${distributionUrl##*/}"
distributionUrlNameMain="${distributionUrlName%.*}"
distributionUrlNameMain="${distributionUrlNameMain%-bin}"
MAVEN_USER_HOME="${MAVEN_USER_HOME:-${HOME}/.m2}"
MAVEN_HOME="${MAVEN_USER_HOME}/wrapper/dists/${distributionUrlNameMain-}/$(hash_string "$distributionUrl")"
exec_maven() {
unset MVNW_VERBOSE MVNW_USERNAME MVNW_PASSWORD MVNW_REPOURL || :
exec "$MAVEN_HOME/bin/$MVN_CMD" "$@" || die "cannot exec $MAVEN_HOME/bin/$MVN_CMD"
}
if [ -d "$MAVEN_HOME" ]; then
verbose "found existing MAVEN_HOME at $MAVEN_HOME"
exec_maven "$@"
fi
case "${distributionUrl-}" in
*?-bin.zip | *?maven-mvnd-?*-?*.zip) ;;
*) die "distributionUrl is not valid, must match *-bin.zip or maven-mvnd-*.zip, but found '${distributionUrl-}'" ;;
esac
# prepare tmp dir
if TMP_DOWNLOAD_DIR="$(mktemp -d)" && [ -d "$TMP_DOWNLOAD_DIR" ]; then
clean() { rm -rf -- "$TMP_DOWNLOAD_DIR"; }
trap clean HUP INT TERM EXIT
else
die "cannot create temp dir"
fi
mkdir -p -- "${MAVEN_HOME%/*}"
# Download and Install Apache Maven
verbose "Couldn't find MAVEN_HOME, downloading and installing it ..."
verbose "Downloading from: $distributionUrl"
verbose "Downloading to: $TMP_DOWNLOAD_DIR/$distributionUrlName"
# select .zip or .tar.gz
if ! command -v unzip >/dev/null; then
distributionUrl="${distributionUrl%.zip}.tar.gz"
distributionUrlName="${distributionUrl##*/}"
fi
# verbose opt
__MVNW_QUIET_WGET=--quiet __MVNW_QUIET_CURL=--silent __MVNW_QUIET_UNZIP=-q __MVNW_QUIET_TAR=''
[ "${MVNW_VERBOSE-}" != true ] || __MVNW_QUIET_WGET='' __MVNW_QUIET_CURL='' __MVNW_QUIET_UNZIP='' __MVNW_QUIET_TAR=v
# normalize http auth
case "${MVNW_PASSWORD:+has-password}" in
'') MVNW_USERNAME='' MVNW_PASSWORD='' ;;
has-password) [ -n "${MVNW_USERNAME-}" ] || MVNW_USERNAME='' MVNW_PASSWORD='' ;;
esac
if [ -z "${MVNW_USERNAME-}" ] && command -v wget >/dev/null; then
verbose "Found wget ... using wget"
wget ${__MVNW_QUIET_WGET:+"$__MVNW_QUIET_WGET"} "$distributionUrl" -O "$TMP_DOWNLOAD_DIR/$distributionUrlName" || die "wget: Failed to fetch $distributionUrl"
elif [ -z "${MVNW_USERNAME-}" ] && command -v curl >/dev/null; then
verbose "Found curl ... using curl"
curl ${__MVNW_QUIET_CURL:+"$__MVNW_QUIET_CURL"} -f -L -o "$TMP_DOWNLOAD_DIR/$distributionUrlName" "$distributionUrl" || die "curl: Failed to fetch $distributionUrl"
elif set_java_home; then
verbose "Falling back to use Java to download"
javaSource="$TMP_DOWNLOAD_DIR/Downloader.java"
targetZip="$TMP_DOWNLOAD_DIR/$distributionUrlName"
cat >"$javaSource" <<-END
public class Downloader extends java.net.Authenticator
{
protected java.net.PasswordAuthentication getPasswordAuthentication()
{
return new java.net.PasswordAuthentication( System.getenv( "MVNW_USERNAME" ), System.getenv( "MVNW_PASSWORD" ).toCharArray() );
}
public static void main( String[] args ) throws Exception
{
setDefault( new Downloader() );
java.nio.file.Files.copy( java.net.URI.create( args[0] ).toURL().openStream(), java.nio.file.Paths.get( args[1] ).toAbsolutePath().normalize() );
}
}
END
# For Cygwin/MinGW, switch paths to Windows format before running javac and java
verbose " - Compiling Downloader.java ..."
"$(native_path "$JAVACCMD")" "$(native_path "$javaSource")" || die "Failed to compile Downloader.java"
verbose " - Running Downloader.java ..."
"$(native_path "$JAVACMD")" -cp "$(native_path "$TMP_DOWNLOAD_DIR")" Downloader "$distributionUrl" "$(native_path "$targetZip")"
fi
# If specified, validate the SHA-256 sum of the Maven distribution zip file
if [ -n "${distributionSha256Sum-}" ]; then
distributionSha256Result=false
if [ "$MVN_CMD" = mvnd.sh ]; then
echo "Checksum validation is not supported for maven-mvnd." >&2
echo "Please disable validation by removing 'distributionSha256Sum' from your maven-wrapper.properties." >&2
exit 1
elif command -v sha256sum >/dev/null; then
if echo "$distributionSha256Sum $TMP_DOWNLOAD_DIR/$distributionUrlName" | sha256sum -c >/dev/null 2>&1; then
distributionSha256Result=true
fi
elif command -v shasum >/dev/null; then
if echo "$distributionSha256Sum $TMP_DOWNLOAD_DIR/$distributionUrlName" | shasum -a 256 -c >/dev/null 2>&1; then
distributionSha256Result=true
fi
else
echo "Checksum validation was requested but neither 'sha256sum' or 'shasum' are available." >&2
echo "Please install either command, or disable validation by removing 'distributionSha256Sum' from your maven-wrapper.properties." >&2
exit 1
fi
if [ $distributionSha256Result = false ]; then
echo "Error: Failed to validate Maven distribution SHA-256, your Maven distribution might be compromised." >&2
echo "If you updated your Maven version, you need to update the specified distributionSha256Sum property." >&2
exit 1
fi
fi
# unzip and move
if command -v unzip >/dev/null; then
unzip ${__MVNW_QUIET_UNZIP:+"$__MVNW_QUIET_UNZIP"} "$TMP_DOWNLOAD_DIR/$distributionUrlName" -d "$TMP_DOWNLOAD_DIR" || die "failed to unzip"
else
tar xzf${__MVNW_QUIET_TAR:+"$__MVNW_QUIET_TAR"} "$TMP_DOWNLOAD_DIR/$distributionUrlName" -C "$TMP_DOWNLOAD_DIR" || die "failed to untar"
fi
printf %s\\n "$distributionUrl" >"$TMP_DOWNLOAD_DIR/$distributionUrlNameMain/mvnw.url"
mv -- "$TMP_DOWNLOAD_DIR/$distributionUrlNameMain" "$MAVEN_HOME" || [ -d "$MAVEN_HOME" ] || die "fail to move MAVEN_HOME"
clean || :
exec_maven "$@"

View File

@@ -6,11 +6,10 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.19.1-beta.2</version>
<version>0.21.2-beta.1</version>
<packaging>pom</packaging>
<name>LanceDB Parent</name>
<description>LanceDB vector database Java API</description>
<name>${project.artifactId}</name>
<description>LanceDB Java SDK Parent POM</description>
<url>http://lancedb.com/</url>
<developers>
@@ -29,6 +28,7 @@
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<arrow.version>15.0.0</arrow.version>
<lance-namespace.verison>0.0.1</lance-namespace.verison>
<spotless.skip>false</spotless.skip>
<spotless.version>2.30.0</spotless.version>
<spotless.java.googlejavaformat.version>1.7</spotless.java.googlejavaformat.version>
@@ -52,6 +52,7 @@
<modules>
<module>core</module>
<module>lance-namespace</module>
</modules>
<scm>
@@ -62,6 +63,11 @@
<dependencyManagement>
<dependencies>
<dependency>
<groupId>com.lancedb</groupId>
<artifactId>lance-namespace-core</artifactId>
<version>${lance-namespace.verison}</version>
</dependency>
<dependency>
<groupId>org.apache.arrow</groupId>
<artifactId>arrow-vector</artifactId>

54
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.19.1-beta.2",
"version": "0.21.2-beta.1",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.19.1-beta.2",
"version": "0.21.2-beta.1",
"cpu": [
"x64",
"arm64"
@@ -52,11 +52,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.19.1-beta.2",
"@lancedb/vectordb-darwin-x64": "0.19.1-beta.2",
"@lancedb/vectordb-linux-arm64-gnu": "0.19.1-beta.2",
"@lancedb/vectordb-linux-x64-gnu": "0.19.1-beta.2",
"@lancedb/vectordb-win32-x64-msvc": "0.19.1-beta.2"
"@lancedb/vectordb-darwin-arm64": "0.21.2-beta.1",
"@lancedb/vectordb-darwin-x64": "0.21.2-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.21.2-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.21.2-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.21.2-beta.1"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
@@ -327,57 +327,65 @@
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.19.1-beta.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.19.1-beta.2.tgz",
"integrity": "sha512-mG0ZXL4y70GUynzGHAVfFfKLzjrro6iYRY09RWXGdapHHliZIIsLZIo+hdX4sJHjjq7MRoMbJEWtR5Wwc9t3+Q==",
"version": "0.21.2-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.21.2-beta.1.tgz",
"integrity": "sha512-7QXVJNTei7PMuXRyyc+F3WGiudRNq9HfeOaMmMOJJpuCAO0zLq1pM9DCl5aPF5MddrodPHJxi+IWV+iAFH7zcg==",
"cpu": [
"arm64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.19.1-beta.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.19.1-beta.2.tgz",
"integrity": "sha512-dvhUtOG4DzFotF9pJkLfxjbj4IXTkFja+jMBZ77Udh+IvbFXuORAYfIOopP65yxKXdzXU3Tk20owt+LgQZbJjQ==",
"version": "0.21.2-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.21.2-beta.1.tgz",
"integrity": "sha512-M/TWcJ3WVc6DNFgG/lWI7L5tQ05IF3WoWuZfRfbbimGhRvY7xf1O3uOt+jMcNJCa5mHFGCg2SZDA8mebd/mL7g==",
"cpu": [
"x64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.19.1-beta.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.19.1-beta.2.tgz",
"integrity": "sha512-Onmbqk0LutVIF65ljKfdRqyG/W6nXO9NTlxB6BO71f6X9Fqh2Sv7WOZjj3Ku3KK/5mcOguMCQde4qgLVmUbJdw==",
"version": "0.21.2-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.21.2-beta.1.tgz",
"integrity": "sha512-OEsM9znf9DDmdwGuTg2EVu+ebwuWQ1lCx0cYy4+hNy3ntolwMC39ePg2H9WD9SsEnQ2vcGJgBJTQLPKgXww+iQ==",
"cpu": [
"arm64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.19.1-beta.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.19.1-beta.2.tgz",
"integrity": "sha512-QeZEgPQiollqgtbXXIPP/58M94f5cEk6md4k3ICl79N6hs5V+E0BrTPGYlSPZCE32B6AIGzjYCgiIDea/jvshw==",
"version": "0.21.2-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.21.2-beta.1.tgz",
"integrity": "sha512-7FTq/O1zNzD71rgX2PEVmkct4jk2wc+ADU3rss+0VqoBSO9XeMqZEVD2WgZWuSTg6bYai//FHGDHSaknHBNsdw==",
"cpu": [
"x64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.21.2-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.21.2-beta.1.tgz",
"integrity": "sha512-mN1p/J0kdqy6MrlKtmA8set/PibqFPyytQJFAuxSLXC/rwD7vgqUCt0SI0zVWPGG7J5Y65kvdc99l7Yl7lJtwQ==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.19.1-beta.2",
"version": "0.21.2-beta.1",
"description": " Serverless, low-latency vector database for AI applications",
"private": false,
"main": "dist/index.js",
@@ -89,10 +89,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-x64": "0.19.1-beta.2",
"@lancedb/vectordb-darwin-arm64": "0.19.1-beta.2",
"@lancedb/vectordb-linux-x64-gnu": "0.19.1-beta.2",
"@lancedb/vectordb-linux-arm64-gnu": "0.19.1-beta.2",
"@lancedb/vectordb-win32-x64-msvc": "0.19.1-beta.2"
"@lancedb/vectordb-darwin-x64": "0.21.2-beta.1",
"@lancedb/vectordb-darwin-arm64": "0.21.2-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.21.2-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.21.2-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.21.2-beta.1"
}
}

View File

@@ -49,7 +49,7 @@ describe('LanceDB Mirrored Store Integration test', function () {
it('s3://...?mirroredStore=... param is processed correctly', async function () {
this.timeout(600000)
const dir = tmpdir()
const dir = await fs.promises.mkdtemp(path.join(tmpdir(), 'lancedb-mirror-'))
console.log(dir)
const conn = await lancedb.connect({ uri: `s3://lancedb-integtest?mirroredStore=${dir}`, storageOptions: { allowHttp: 'true' } })
const data = Array(200).fill({ vector: Array(128).fill(1.0), id: 0 })
@@ -63,118 +63,93 @@ describe('LanceDB Mirrored Store Integration test', function () {
const t = await conn.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite })
const mirroredPath = path.join(dir, `${tableName}.lance`)
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be three dirs
assert.equal(files.length, 3)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.txn'))
})
const files = await fs.promises.readdir(mirroredPath, { withFileTypes: true })
// there should be three dirs
assert.equal(files.length, 3, 'files after table creation')
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
fs.readdir(path.join(mirroredPath, '_versions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.manifest'))
})
const transactionFiles = await fs.promises.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true })
assert.equal(transactionFiles.length, 1, 'transactionFiles after table creation')
assert.isTrue(transactionFiles[0].name.endsWith('.txn'))
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
})
const versionFiles = await fs.promises.readdir(path.join(mirroredPath, '_versions'), { withFileTypes: true })
assert.equal(versionFiles.length, 1, 'versionFiles after table creation')
assert.isTrue(versionFiles[0].name.endsWith('.manifest'))
const dataFiles = await fs.promises.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true })
assert.equal(dataFiles.length, 1, 'dataFiles after table creation')
assert.isTrue(dataFiles[0].name.endsWith('.lance'))
// try create index and check if it's mirrored
await t.createIndex({ column: 'vector', type: 'ivf_pq' })
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be four dirs
assert.equal(files.length, 4)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
assert.isTrue(files[2].isDirectory())
const filesAfterIndex = await fs.promises.readdir(mirroredPath, { withFileTypes: true })
// there should be four dirs
assert.equal(filesAfterIndex.length, 4, 'filesAfterIndex')
assert.isTrue(filesAfterIndex[0].isDirectory())
assert.isTrue(filesAfterIndex[1].isDirectory())
assert.isTrue(filesAfterIndex[2].isDirectory())
// Two TXs now
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 2)
assert.isTrue(files[0].name.endsWith('.txn'))
assert.isTrue(files[1].name.endsWith('.txn'))
})
// Two TXs now
const transactionFilesAfterIndex = await fs.promises.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true })
assert.equal(transactionFilesAfterIndex.length, 2, 'transactionFilesAfterIndex')
assert.isTrue(transactionFilesAfterIndex[0].name.endsWith('.txn'))
assert.isTrue(transactionFilesAfterIndex[1].name.endsWith('.txn'))
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
const dataFilesAfterIndex = await fs.promises.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true })
assert.equal(dataFilesAfterIndex.length, 1, 'dataFilesAfterIndex')
assert.isTrue(dataFilesAfterIndex[0].name.endsWith('.lance'))
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isDirectory())
const indicesFiles = await fs.promises.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true })
assert.equal(indicesFiles.length, 1, 'indicesFiles')
assert.isTrue(indicesFiles[0].isDirectory())
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isFile())
assert.isTrue(files[0].name.endsWith('.idx'))
})
})
})
const indexFiles = await fs.promises.readdir(path.join(mirroredPath, '_indices', indicesFiles[0].name), { withFileTypes: true })
console.log(`DEBUG indexFiles in ${indicesFiles[0].name}:`, indexFiles.map(f => `${f.name} (${f.isFile() ? 'file' : 'dir'})`))
assert.equal(indexFiles.length, 2, 'indexFiles')
const fileNames = indexFiles.map(f => f.name).sort()
assert.isTrue(fileNames.includes('auxiliary.idx'), 'auxiliary.idx should be present')
assert.isTrue(fileNames.includes('index.idx'), 'index.idx should be present')
assert.isTrue(indexFiles.every(f => f.isFile()), 'all index files should be files')
// try delete and check if it's mirrored
await t.delete('id = 0')
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be five dirs
assert.equal(files.length, 5)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
assert.isTrue(files[2].isDirectory())
assert.isTrue(files[3].isDirectory())
assert.isTrue(files[4].isDirectory())
const filesAfterDelete = await fs.promises.readdir(mirroredPath, { withFileTypes: true })
// there should be five dirs
assert.equal(filesAfterDelete.length, 5, 'filesAfterDelete')
assert.isTrue(filesAfterDelete[0].isDirectory())
assert.isTrue(filesAfterDelete[1].isDirectory())
assert.isTrue(filesAfterDelete[2].isDirectory())
assert.isTrue(filesAfterDelete[3].isDirectory())
assert.isTrue(filesAfterDelete[4].isDirectory())
// Three TXs now
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 3)
assert.isTrue(files[0].name.endsWith('.txn'))
assert.isTrue(files[1].name.endsWith('.txn'))
})
// Three TXs now
const transactionFilesAfterDelete = await fs.promises.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true })
assert.equal(transactionFilesAfterDelete.length, 3, 'transactionFilesAfterDelete')
assert.isTrue(transactionFilesAfterDelete[0].name.endsWith('.txn'))
assert.isTrue(transactionFilesAfterDelete[1].name.endsWith('.txn'))
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
const dataFilesAfterDelete = await fs.promises.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true })
assert.equal(dataFilesAfterDelete.length, 1, 'dataFilesAfterDelete')
assert.isTrue(dataFilesAfterDelete[0].name.endsWith('.lance'))
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isDirectory())
const indicesFilesAfterDelete = await fs.promises.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true })
assert.equal(indicesFilesAfterDelete.length, 1, 'indicesFilesAfterDelete')
assert.isTrue(indicesFilesAfterDelete[0].isDirectory())
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
const indexFilesAfterDelete = await fs.promises.readdir(path.join(mirroredPath, '_indices', indicesFilesAfterDelete[0].name), { withFileTypes: true })
console.log(`DEBUG indexFilesAfterDelete in ${indicesFilesAfterDelete[0].name}:`, indexFilesAfterDelete.map(f => `${f.name} (${f.isFile() ? 'file' : 'dir'})`))
assert.equal(indexFilesAfterDelete.length, 2, 'indexFilesAfterDelete')
const fileNamesAfterDelete = indexFilesAfterDelete.map(f => f.name).sort()
assert.isTrue(fileNamesAfterDelete.includes('auxiliary.idx'), 'auxiliary.idx should be present after delete')
assert.isTrue(fileNamesAfterDelete.includes('index.idx'), 'index.idx should be present after delete')
assert.isTrue(indexFilesAfterDelete.every(f => f.isFile()), 'all index files should be files after delete')
assert.equal(files.length, 1)
assert.isTrue(files[0].isFile())
assert.isTrue(files[0].name.endsWith('.idx'))
})
})
fs.readdir(path.join(mirroredPath, '_deletions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.arrow'))
})
})
const deletionFiles = await fs.promises.readdir(path.join(mirroredPath, '_deletions'), { withFileTypes: true })
assert.equal(deletionFiles.length, 1, 'deletionFiles')
assert.isTrue(deletionFiles[0].name.endsWith('.arrow'))
})
})

13
nodejs/CLAUDE.md Normal file
View File

@@ -0,0 +1,13 @@
These are the typescript bindings of LanceDB.
The core Rust library is in the `../rust/lancedb` directory, the rust binding
code is in the `src/` directory and the typescript bindings are in
the `lancedb/` directory.
Whenever you change the Rust code, you will need to recompile: `npm run build`.
Common commands:
* Build: `npm run build`
* Lint: `npm run lint`
* Fix lints: `npm run lint-fix`
* Test: `npm test`
* Run single test file: `npm test __test__/arrow.test.ts`

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.19.1-beta.2"
version = "0.21.2-beta.1"
license.workspace = true
description.workspace = true
repository.workspace = true
@@ -30,6 +30,7 @@ log.workspace = true
# Workaround for build failure until we can fix it.
aws-lc-sys = "=0.28.0"
aws-lc-rs = "=1.13.0"
[build-dependencies]
napi-build = "2.1"

View File

@@ -1,7 +1,7 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { Schema } from "apache-arrow";
import { Bool, Field, Int32, List, Schema, Struct, Utf8 } from "apache-arrow";
import * as arrow15 from "apache-arrow-15";
import * as arrow16 from "apache-arrow-16";
@@ -11,10 +11,12 @@ import * as arrow18 from "apache-arrow-18";
import {
convertToTable,
fromBufferToRecordBatch,
fromDataToBuffer,
fromRecordBatchToBuffer,
fromTableToBuffer,
makeArrowTable,
makeEmptyTable,
tableFromIPC,
} from "../lancedb/arrow";
import {
EmbeddingFunction,
@@ -375,8 +377,221 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
expect(table2.schema).toEqual(schema);
});
it("will handle missing columns in schema alignment when using embeddings", async function () {
const schema = new Schema(
[
new Field("domain", new Utf8(), true),
new Field("name", new Utf8(), true),
new Field("description", new Utf8(), true),
],
new Map([["embedding_functions", JSON.stringify([])]]),
);
const data = [
{ domain: "google.com", name: "Google" },
{ domain: "facebook.com", name: "Facebook" },
];
const table = await convertToTable(data, undefined, { schema });
expect(table.numCols).toBe(3);
expect(table.numRows).toBe(2);
const descriptionColumn = table.getChild("description");
expect(descriptionColumn).toBeDefined();
expect(descriptionColumn?.nullCount).toBe(2);
expect(descriptionColumn?.toArray()).toEqual([null, null]);
expect(table.getChild("domain")?.toArray()).toEqual([
"google.com",
"facebook.com",
]);
expect(table.getChild("name")?.toArray()).toEqual([
"Google",
"Facebook",
]);
});
it("will handle completely missing nested struct columns", async function () {
const schema = new Schema(
[
new Field("id", new Utf8(), true),
new Field("name", new Utf8(), true),
new Field(
"metadata",
new Struct([
new Field("version", new Int32(), true),
new Field("author", new Utf8(), true),
new Field(
"tags",
new List(new Field("item", new Utf8(), true)),
true,
),
]),
true,
),
],
new Map([["embedding_functions", JSON.stringify([])]]),
);
const data = [
{ id: "doc1", name: "Document 1" },
{ id: "doc2", name: "Document 2" },
];
const table = await convertToTable(data, undefined, { schema });
expect(table.numCols).toBe(3);
expect(table.numRows).toBe(2);
const buf = await fromTableToBuffer(table);
const retrievedTable = tableFromIPC(buf);
const rows = [];
for (let i = 0; i < retrievedTable.numRows; i++) {
rows.push(retrievedTable.get(i));
}
expect(rows[0].metadata.version).toBe(null);
expect(rows[0].metadata.author).toBe(null);
expect(rows[0].metadata.tags).toBe(null);
expect(rows[0].id).toBe("doc1");
expect(rows[0].name).toBe("Document 1");
});
it("will handle partially missing nested struct fields", async function () {
const schema = new Schema(
[
new Field("id", new Utf8(), true),
new Field(
"metadata",
new Struct([
new Field("version", new Int32(), true),
new Field("author", new Utf8(), true),
new Field("created_at", new Utf8(), true),
]),
true,
),
],
new Map([["embedding_functions", JSON.stringify([])]]),
);
const data = [
{ id: "doc1", metadata: { version: 1, author: "Alice" } },
{ id: "doc2", metadata: { version: 2 } },
];
const table = await convertToTable(data, undefined, { schema });
expect(table.numCols).toBe(2);
expect(table.numRows).toBe(2);
const metadataColumn = table.getChild("metadata");
expect(metadataColumn).toBeDefined();
expect(metadataColumn?.type.toString()).toBe(
"Struct<{version:Int32, author:Utf8, created_at:Utf8}>",
);
});
it("will handle multiple levels of nested structures", async function () {
const schema = new Schema(
[
new Field("id", new Utf8(), true),
new Field(
"config",
new Struct([
new Field("database", new Utf8(), true),
new Field(
"connection",
new Struct([
new Field("host", new Utf8(), true),
new Field("port", new Int32(), true),
new Field(
"ssl",
new Struct([
new Field("enabled", new Bool(), true),
new Field("cert_path", new Utf8(), true),
]),
true,
),
]),
true,
),
]),
true,
),
],
new Map([["embedding_functions", JSON.stringify([])]]),
);
const data = [
{
id: "config1",
config: {
database: "postgres",
connection: { host: "localhost" },
},
},
{
id: "config2",
config: { database: "mysql" },
},
{
id: "config3",
},
];
const table = await convertToTable(data, undefined, { schema });
expect(table.numCols).toBe(2);
expect(table.numRows).toBe(3);
const configColumn = table.getChild("config");
expect(configColumn).toBeDefined();
expect(configColumn?.type.toString()).toBe(
"Struct<{database:Utf8, connection:Struct<{host:Utf8, port:Int32, ssl:Struct<{enabled:Bool, cert_path:Utf8}>}>}>",
);
});
it("will handle missing columns in Arrow table input when using embeddings", async function () {
const incompleteTable = makeArrowTable([
{ domain: "google.com", name: "Google" },
{ domain: "facebook.com", name: "Facebook" },
]);
const schema = new Schema(
[
new Field("domain", new Utf8(), true),
new Field("name", new Utf8(), true),
new Field("description", new Utf8(), true),
],
new Map([["embedding_functions", JSON.stringify([])]]),
);
const buf = await fromDataToBuffer(incompleteTable, undefined, schema);
expect(buf.byteLength).toBeGreaterThan(0);
const retrievedTable = tableFromIPC(buf);
expect(retrievedTable.numCols).toBe(3);
expect(retrievedTable.numRows).toBe(2);
const descriptionColumn = retrievedTable.getChild("description");
expect(descriptionColumn).toBeDefined();
expect(descriptionColumn?.nullCount).toBe(2);
expect(descriptionColumn?.toArray()).toEqual([null, null]);
expect(retrievedTable.getChild("domain")?.toArray()).toEqual([
"google.com",
"facebook.com",
]);
expect(retrievedTable.getChild("name")?.toArray()).toEqual([
"Google",
"Facebook",
]);
});
it("should correctly retain values in nested struct fields", async function () {
// Define test data with nested struct
const testData = [
{
id: "doc1",
@@ -400,10 +615,8 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
},
];
// Create Arrow table from the data
const table = makeArrowTable(testData);
// Verify schema has the nested struct fields
const metadataField = table.schema.fields.find(
(f) => f.name === "metadata",
);
@@ -417,23 +630,17 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
"text",
]);
// Convert to buffer and back (simulating storage and retrieval)
const buf = await fromTableToBuffer(table);
const retrievedTable = tableFromIPC(buf);
// Verify the retrieved table has the same structure
const rows = [];
for (let i = 0; i < retrievedTable.numRows; i++) {
rows.push(retrievedTable.get(i));
}
// Check values in the first row
const firstRow = rows[0];
expect(firstRow.id).toBe("doc1");
expect(firstRow.vector.toJSON()).toEqual([1, 2, 3]);
// Verify metadata values are preserved (this is where the bug is)
expect(firstRow.metadata).toBeDefined();
expect(firstRow.metadata.filePath).toBe("/path/to/file1.ts");
expect(firstRow.metadata.startLine).toBe(10);
expect(firstRow.metadata.endLine).toBe(20);
@@ -592,14 +799,14 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
).rejects.toThrow("column vector was missing");
});
it("will provide a nice error if run twice", async function () {
it("will skip embedding application if already applied", async function () {
const records = sampleRecords();
const table = await convertToTable(records, dummyEmbeddingConfig);
// fromTableToBuffer will try and apply the embeddings again
await expect(
fromTableToBuffer(table, dummyEmbeddingConfig),
).rejects.toThrow("already existed");
// but should skip since the column already has non-null values
const result = await fromTableToBuffer(table, dummyEmbeddingConfig);
expect(result.byteLength).toBeGreaterThan(0);
});
});

View File

@@ -0,0 +1,46 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import * as tmp from "tmp";
import { Session, connect } from "../lancedb";
describe("Session", () => {
let tmpDir: tmp.DirResult;
beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
afterEach(() => tmpDir.removeCallback());
it("should configure cache sizes and work with database operations", async () => {
// Create session with small cache limits for testing
const indexCacheSize = BigInt(1024 * 1024); // 1MB
const metadataCacheSize = BigInt(512 * 1024); // 512KB
const session = new Session(indexCacheSize, metadataCacheSize);
// Record initial cache state
const initialCacheSize = session.sizeBytes();
const initialCacheItems = session.approxNumItems();
// Test session works with database connection
const db = await connect({ uri: tmpDir.name, session: session });
// Create and use a table to exercise the session
const data = Array.from({ length: 100 }, (_, i) => ({
id: i,
text: `item ${i}`,
}));
const table = await db.createTable("test", data);
const results = await table.query().limit(5).toArray();
expect(results).toHaveLength(5);
// Verify cache usage increased after operations
const finalCacheSize = session.sizeBytes();
const finalCacheItems = session.approxNumItems();
expect(finalCacheSize).toBeGreaterThan(initialCacheSize); // Cache should have grown
expect(finalCacheItems).toBeGreaterThanOrEqual(initialCacheItems); // Items should not decrease
expect(initialCacheSize).toBeLessThan(indexCacheSize + metadataCacheSize); // Within limits
});
});

View File

@@ -33,7 +33,12 @@ import {
register,
} from "../lancedb/embedding";
import { Index } from "../lancedb/indices";
import { instanceOfFullTextQuery } from "../lancedb/query";
import {
BooleanQuery,
Occur,
Operator,
instanceOfFullTextQuery,
} from "../lancedb/query";
import exp = require("constants");
describe.each([arrow15, arrow16, arrow17, arrow18])(
@@ -349,7 +354,7 @@ describe("merge insert", () => {
.mergeInsert("a")
.whenMatchedUpdateAll()
.whenNotMatchedInsertAll()
.execute(newData);
.execute(newData, { timeoutMs: 10_000 });
expect(mergeInsertRes).toHaveProperty("version");
expect(mergeInsertRes.version).toBe(2);
expect(mergeInsertRes.numInsertedRows).toBe(1);
@@ -363,9 +368,9 @@ describe("merge insert", () => {
{ a: 4, b: "z" },
];
expect(
JSON.parse(JSON.stringify((await table.toArrow()).toArray())),
).toEqual(expected);
const result = (await table.toArrow()).toArray().sort((a, b) => a.a - b.a);
expect(result.map((row) => ({ ...row }))).toEqual(expected);
});
test("conditional update", async () => {
const newData = [
@@ -463,6 +468,20 @@ describe("merge insert", () => {
res = res.sort((a, b) => a.a - b.a);
expect(res).toEqual(expected);
});
test("timeout", async () => {
const newData = [
{ a: 2, b: "x" },
{ a: 4, b: "z" },
];
await expect(
table
.mergeInsert("a")
.whenMatchedUpdateAll()
.whenNotMatchedInsertAll()
.execute(newData, { timeoutMs: 0 }),
).rejects.toThrow("merge insert timed out");
});
});
describe("When creating an index", () => {
@@ -540,6 +559,32 @@ describe("When creating an index", () => {
rst = await tbl.query().limit(2).offset(1).nearestTo(queryVec).toArrow();
expect(rst.numRows).toBe(1);
// test nprobes
rst = await tbl.query().nearestTo(queryVec).limit(2).nprobes(50).toArrow();
expect(rst.numRows).toBe(2);
rst = await tbl
.query()
.nearestTo(queryVec)
.limit(2)
.minimumNprobes(15)
.toArrow();
expect(rst.numRows).toBe(2);
rst = await tbl
.query()
.nearestTo(queryVec)
.limit(2)
.minimumNprobes(10)
.maximumNprobes(20)
.toArrow();
expect(rst.numRows).toBe(2);
expect(() => tbl.query().nearestTo(queryVec).minimumNprobes(0)).toThrow(
"Invalid input, minimum_nprobes must be greater than 0",
);
expect(() => tbl.query().nearestTo(queryVec).maximumNprobes(5)).toThrow(
"Invalid input, maximum_nprobes must be greater than minimum_nprobes",
);
await tbl.dropIndex("vec_idx");
const indices2 = await tbl.listIndices();
expect(indices2.length).toBe(0);
@@ -1287,6 +1332,32 @@ describe("when dealing with tags", () => {
await table.checkoutLatest();
expect(await table.version()).toBe(4);
});
it("can checkout and restore tags", async () => {
const conn = await connect(tmpDir.name, {
readConsistencyInterval: 0,
});
const table = await conn.createTable("my_table", [
{ id: 1n, vector: [0.1, 0.2] },
]);
expect(await table.version()).toBe(1);
expect(await table.countRows()).toBe(1);
const tagsManager = await table.tags();
const tag1 = "tag1";
await tagsManager.create(tag1, 1);
await table.add([{ id: 2n, vector: [0.3, 0.4] }]);
const tag2 = "tag2";
await tagsManager.create(tag2, 2);
expect(await table.version()).toBe(2);
await table.checkout(tag1);
expect(await table.version()).toBe(1);
await table.restore();
expect(await table.version()).toBe(3);
expect(await table.countRows()).toBe(1);
await table.add([{ id: 3n, vector: [0.5, 0.6] }]);
expect(await table.countRows()).toBe(2);
});
});
describe("when optimizing a dataset", () => {
@@ -1466,7 +1537,9 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts(),
config: Index.fts({
withPosition: true,
}),
});
const results = await table.search("lance").toArray();
@@ -1489,6 +1562,18 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
const results = await table.search("hello").toArray();
expect(results[0].text).toBe(data[0].text);
const results2 = await table
.search(new MatchQuery("hello world", "text"))
.toArray();
expect(results2.length).toBe(2);
const results3 = await table
.search(
new MatchQuery("hello world", "text", { operator: Operator.And }),
)
.toArray();
expect(results3.length).toBe(1);
});
test("full text search without lowercase", async () => {
@@ -1519,7 +1604,9 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts(),
config: Index.fts({
withPosition: true,
}),
});
const results = await table.search("world").toArray();
@@ -1563,6 +1650,114 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
expect(resultSet.has("fob")).toBe(true);
expect(resultSet.has("fo")).toBe(true);
expect(resultSet.has("food")).toBe(true);
const prefixResults = await table
.search(
new MatchQuery("foo", "text", { fuzziness: 3, prefixLength: 3 }),
)
.toArray();
expect(prefixResults.length).toBe(2);
const resultSet2 = new Set(prefixResults.map((r) => r.text));
expect(resultSet2.has("foo")).toBe(true);
expect(resultSet2.has("food")).toBe(true);
});
test("full text search boolean query", async () => {
const db = await connect(tmpDir.name);
const data = [
{ text: "The cat and dog are playing" },
{ text: "The cat is sleeping" },
{ text: "The dog is barking" },
{ text: "The dog chases the cat" },
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts({ withPosition: false }),
});
const shouldResults = await table
.search(
new BooleanQuery([
[Occur.Should, new MatchQuery("cat", "text")],
[Occur.Should, new MatchQuery("dog", "text")],
]),
)
.toArray();
expect(shouldResults.length).toBe(4);
const mustResults = await table
.search(
new BooleanQuery([
[Occur.Must, new MatchQuery("cat", "text")],
[Occur.Must, new MatchQuery("dog", "text")],
]),
)
.toArray();
expect(mustResults.length).toBe(2);
const mustNotResults = await table
.search(
new BooleanQuery([
[Occur.Must, new MatchQuery("cat", "text")],
[Occur.MustNot, new MatchQuery("dog", "text")],
]),
)
.toArray();
expect(mustNotResults.length).toBe(1);
});
test("full text search ngram", async () => {
const db = await connect(tmpDir.name);
const data = [
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
{ text: "lance database", vector: [0.4, 0.5, 0.6] },
{ text: "lance is cool", vector: [0.7, 0.8, 0.9] },
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts({ baseTokenizer: "ngram" }),
});
const results = await table.search("lan").toArray();
expect(results.length).toBe(2);
const resultSet = new Set(results.map((r) => r.text));
expect(resultSet.has("lance database")).toBe(true);
expect(resultSet.has("lance is cool")).toBe(true);
const results2 = await table.search("nce").toArray(); // spellchecker:disable-line
expect(results2.length).toBe(2);
const resultSet2 = new Set(results2.map((r) => r.text));
expect(resultSet2.has("lance database")).toBe(true);
expect(resultSet2.has("lance is cool")).toBe(true);
// the default min_ngram_length is 3, so "la" should not match
const results3 = await table.search("la").toArray();
expect(results3.length).toBe(0);
// test setting min_ngram_length and prefix_only
await table.createIndex("text", {
config: Index.fts({
baseTokenizer: "ngram",
ngramMinLength: 2,
prefixOnly: true,
}),
replace: true,
});
const results4 = await table.search("lan").toArray();
expect(results4.length).toBe(2);
const resultSet4 = new Set(results4.map((r) => r.text));
expect(resultSet4.has("lance database")).toBe(true);
expect(resultSet4.has("lance is cool")).toBe(true);
const results5 = await table.search("nce").toArray(); // spellchecker:disable-line
expect(results5.length).toBe(0);
const results6 = await table.search("la").toArray();
expect(results6.length).toBe(2);
const resultSet6 = new Set(results6.map((r) => r.text));
expect(resultSet6.has("lance database")).toBe(true);
expect(resultSet6.has("lance is cool")).toBe(true);
});
test.each([
@@ -1668,4 +1863,43 @@ describe("column name options", () => {
expect(results[0].query_index).toBe(0);
expect(results[1].query_index).toBe(1);
});
test("index and search multivectors", async () => {
const db = await connect(tmpDir.name);
const data = [];
// generate 512 random multivectors
for (let i = 0; i < 256; i++) {
data.push({
multivector: Array.from({ length: 10 }, () =>
Array(2).fill(Math.random()),
),
});
}
const table = await db.createTable("multivectors", data, {
schema: new Schema([
new Field(
"multivector",
new List(
new Field(
"item",
new FixedSizeList(2, new Field("item", new Float32())),
),
),
),
]),
});
const results = await table.search(data[0].multivector).limit(10).toArray();
expect(results.length).toBe(10);
await table.createIndex("multivector", {
config: Index.ivfPq({ numPartitions: 2, distanceType: "cosine" }),
});
const results2 = await table
.search(data[0].multivector)
.limit(10)
.toArray();
expect(results2.length).toBe(10);
});
});

View File

@@ -107,6 +107,20 @@ export type IntoVector =
| number[]
| Promise<Float32Array | Float64Array | number[]>;
export type MultiVector = IntoVector[];
export function isMultiVector(value: unknown): value is MultiVector {
return Array.isArray(value) && isIntoVector(value[0]);
}
export function isIntoVector(value: unknown): value is IntoVector {
return (
value instanceof Float32Array ||
value instanceof Float64Array ||
(Array.isArray(value) && !Array.isArray(value[0]))
);
}
export function isArrowTable(value: object): value is TableLike {
if (value instanceof ArrowTable) return true;
return "schema" in value && "batches" in value;
@@ -417,7 +431,9 @@ function inferSchema(
} else {
const inferredType = inferType(value, path, opts);
if (inferredType === undefined) {
throw new Error(`Failed to infer data type for field ${path.join(".")} at row ${rowI}. \
throw new Error(`Failed to infer data type for field ${path.join(
".",
)} at row ${rowI}. \
Consider providing an explicit schema.`);
}
pathTree.set(path, inferredType);
@@ -799,11 +815,17 @@ async function applyEmbeddingsFromMetadata(
`Cannot apply embedding function because the source column '${functionEntry.sourceColumn}' was not present in the data`,
);
}
// Check if destination column exists and handle accordingly
if (columns[destColumn] !== undefined) {
throw new Error(
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`,
);
const existingColumn = columns[destColumn];
// If the column exists but is all null, we can fill it with embeddings
if (existingColumn.nullCount !== existingColumn.length) {
// Column has non-null values, skip embedding application
continue;
}
}
if (table.batches.length > 1) {
throw new Error(
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",
@@ -831,6 +853,15 @@ async function applyEmbeddingsFromMetadata(
const vector = makeVector(vectors, destType);
columns[destColumn] = vector;
}
// Add any missing columns from the schema as null vectors
for (const field of schema.fields) {
if (!(field.name in columns)) {
const nullValues = new Array(table.numRows).fill(null);
columns[field.name] = makeVector(nullValues, field.type);
}
}
const newTable = new ArrowTable(columns);
return alignTable(newTable, schema);
}
@@ -903,11 +934,23 @@ async function applyEmbeddings<T>(
);
}
} else {
// Check if destination column exists and handle accordingly
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
throw new Error(
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`,
);
const existingColumn = newColumns[destColumn];
// If the column exists but is all null, we can fill it with embeddings
if (existingColumn.nullCount !== existingColumn.length) {
// Column has non-null values, skip embedding application and return table as-is
let newTable = new ArrowTable(newColumns);
if (schema != null) {
newTable = alignTable(newTable, schema as Schema);
}
return new ArrowTable(
new Schema(newTable.schema.fields, schemaMetadata),
newTable.batches,
);
}
}
if (table.batches.length > 1) {
throw new Error(
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",
@@ -967,7 +1010,21 @@ export async function convertToTable(
embeddings?: EmbeddingFunctionConfig,
makeTableOptions?: Partial<MakeArrowTableOptions>,
): Promise<ArrowTable> {
const table = makeArrowTable(data, makeTableOptions);
let processedData = data;
// If we have a schema with embedding metadata, we need to preprocess the data
// to ensure all nested fields are present
if (
makeTableOptions?.schema &&
makeTableOptions.schema.metadata?.has("embedding_functions")
) {
processedData = ensureNestedFieldsExist(
data,
makeTableOptions.schema as Schema,
);
}
const table = makeArrowTable(processedData, makeTableOptions);
return await applyEmbeddings(table, embeddings, makeTableOptions?.schema);
}
@@ -1060,7 +1117,16 @@ export async function fromDataToBuffer(
schema = sanitizeSchema(schema);
}
if (isArrowTable(data)) {
return fromTableToBuffer(sanitizeTable(data), embeddings, schema);
const table = sanitizeTable(data);
// If we have a schema with embedding functions, we need to ensure all columns exist
// before applying embeddings, since applyEmbeddingsFromMetadata expects all columns
// to be present in the table
if (schema && schema.metadata?.has("embedding_functions")) {
const alignedTable = alignTableToSchema(table, schema);
return fromTableToBuffer(alignedTable, embeddings, schema);
} else {
return fromTableToBuffer(table, embeddings, schema);
}
} else {
const table = await convertToTable(data, embeddings, { schema });
return fromTableToBuffer(table);
@@ -1129,7 +1195,7 @@ function alignBatch(batch: RecordBatch, schema: Schema): RecordBatch {
type: new Struct(schema.fields),
length: batch.numRows,
nullCount: batch.nullCount,
children: alignedChildren,
children: alignedChildren as unknown as ArrowData<DataType>[],
});
return new RecordBatch(schema, newData);
}
@@ -1201,6 +1267,79 @@ function validateSchemaEmbeddings(
return new Schema(fields, schema.metadata);
}
/**
* Ensures that all nested fields defined in the schema exist in the data,
* filling missing fields with null values.
*/
export function ensureNestedFieldsExist(
data: Array<Record<string, unknown>>,
schema: Schema,
): Array<Record<string, unknown>> {
return data.map((row) => {
const completeRow: Record<string, unknown> = {};
for (const field of schema.fields) {
if (field.name in row) {
if (
field.type.constructor.name === "Struct" &&
row[field.name] !== null &&
row[field.name] !== undefined
) {
// Handle nested struct
const nestedValue = row[field.name] as Record<string, unknown>;
completeRow[field.name] = ensureStructFieldsExist(
nestedValue,
field.type,
);
} else {
// Non-struct field or null struct value
completeRow[field.name] = row[field.name];
}
} else {
// Field is missing from the data - set to null
completeRow[field.name] = null;
}
}
return completeRow;
});
}
/**
* Recursively ensures that all fields in a struct type exist in the data,
* filling missing fields with null values.
*/
function ensureStructFieldsExist(
data: Record<string, unknown>,
structType: Struct,
): Record<string, unknown> {
const completeStruct: Record<string, unknown> = {};
for (const childField of structType.children) {
if (childField.name in data) {
if (
childField.type.constructor.name === "Struct" &&
data[childField.name] !== null &&
data[childField.name] !== undefined
) {
// Recursively handle nested struct
completeStruct[childField.name] = ensureStructFieldsExist(
data[childField.name] as Record<string, unknown>,
childField.type,
);
} else {
// Non-struct field or null struct value
completeStruct[childField.name] = data[childField.name];
}
} else {
// Field is missing - set to null
completeStruct[childField.name] = null;
}
}
return completeStruct;
}
interface JsonDataType {
type: string;
fields?: JsonField[];
@@ -1334,3 +1473,64 @@ function fieldToJson(field: Field): JsonField {
metadata: field.metadata,
};
}
function alignTableToSchema(
table: ArrowTable,
targetSchema: Schema,
): ArrowTable {
const existingColumns = new Map<string, Vector>();
// Map existing columns
for (const field of table.schema.fields) {
existingColumns.set(field.name, table.getChild(field.name)!);
}
// Create vectors for all fields in target schema
const alignedColumns: Record<string, Vector> = {};
for (const field of targetSchema.fields) {
if (existingColumns.has(field.name)) {
// Column exists, use it
alignedColumns[field.name] = existingColumns.get(field.name)!;
} else {
// Column missing, create null vector
alignedColumns[field.name] = createNullVector(field, table.numRows);
}
}
// Create new table with aligned schema and columns
return new ArrowTable(targetSchema, alignedColumns);
}
function createNullVector(field: Field, numRows: number): Vector {
if (field.type.constructor.name === "Struct") {
// For struct types, create a struct with null fields
const structType = field.type as Struct;
const childVectors = structType.children.map((childField) =>
createNullVector(childField, numRows),
);
// Create struct data
const structData = makeData({
type: structType,
length: numRows,
nullCount: 0,
children: childVectors.map((v) => v.data[0]),
});
return arrowMakeVector(structData);
} else {
// For other types, create a vector of nulls
const nullBitmap = new Uint8Array(Math.ceil(numRows / 8));
// All bits are 0, meaning all values are null
const data = makeData({
type: field.type,
length: numRows,
nullCount: numRows,
nullBitmap,
});
return arrowMakeVector(data);
}
}

View File

@@ -85,6 +85,9 @@ export interface OpenTableOptions {
/**
* Set the size of the index cache, specified as a number of entries
*
* @deprecated Use session-level cache configuration instead.
* Create a Session with custom cache sizes and pass it to the connect() function.
*
* The exact meaning of an "entry" will depend on the type of index:
* - IVF: there is one entry for each IVF partition
* - BTREE: there is one entry for the entire index

View File

@@ -10,6 +10,7 @@ import {
import {
ConnectionOptions,
Connection as LanceDbConnection,
Session,
} from "./native.js";
export {
@@ -51,6 +52,8 @@ export {
OpenTableOptions,
} from "./connection";
export { Session } from "./native.js";
export {
ExecutableQuery,
Query,
@@ -64,7 +67,10 @@ export {
PhraseQuery,
BoostQuery,
MultiMatchQuery,
BooleanQuery,
FullTextQueryType,
Operator,
Occur,
} from "./query";
export {
@@ -86,7 +92,7 @@ export {
ColumnAlteration,
} from "./table";
export { MergeInsertBuilder } from "./merge";
export { MergeInsertBuilder, WriteExecutionOptions } from "./merge";
export * as embedding from "./embedding";
export * as rerankers from "./rerankers";
@@ -97,6 +103,7 @@ export {
RecordBatchLike,
DataLike,
IntoVector,
MultiVector,
} from "./arrow";
export { IntoSql, packBits } from "./util";
@@ -127,6 +134,7 @@ export { IntoSql, packBits } from "./util";
export async function connect(
uri: string,
options?: Partial<ConnectionOptions>,
session?: Session,
): Promise<Connection>;
/**
* Connect to a LanceDB instance at the given URI.
@@ -145,31 +153,43 @@ export async function connect(
* storageOptions: {timeout: "60s"}
* });
* ```
*
* @example
* ```ts
* const session = Session.default();
* const conn = await connect({
* uri: "/path/to/database",
* session: session
* });
* ```
*/
export async function connect(
options: Partial<ConnectionOptions> & { uri: string },
): Promise<Connection>;
export async function connect(
uriOrOptions: string | (Partial<ConnectionOptions> & { uri: string }),
options: Partial<ConnectionOptions> = {},
options?: Partial<ConnectionOptions>,
): Promise<Connection> {
let uri: string | undefined;
let finalOptions: Partial<ConnectionOptions> = {};
if (typeof uriOrOptions !== "string") {
const { uri: uri_, ...opts } = uriOrOptions;
uri = uri_;
options = opts;
finalOptions = opts;
} else {
uri = uriOrOptions;
finalOptions = options || {};
}
if (!uri) {
throw new Error("uri is required");
}
options = (options as ConnectionOptions) ?? {};
(<ConnectionOptions>options).storageOptions = cleanseStorageOptions(
(<ConnectionOptions>options).storageOptions,
finalOptions = (finalOptions as ConnectionOptions) ?? {};
(<ConnectionOptions>finalOptions).storageOptions = cleanseStorageOptions(
(<ConnectionOptions>finalOptions).storageOptions,
);
const nativeConn = await LanceDbConnection.new(uri, options);
const nativeConn = await LanceDbConnection.new(uri, finalOptions);
return new LocalConnection(nativeConn);
}

View File

@@ -439,7 +439,7 @@ export interface FtsOptions {
*
* "raw" - Raw tokenizer. This tokenizer does not split the text into tokens and indexes the entire text as a single token.
*/
baseTokenizer?: "simple" | "whitespace" | "raw";
baseTokenizer?: "simple" | "whitespace" | "raw" | "ngram";
/**
* language for stemming and stop words
@@ -472,6 +472,21 @@ export interface FtsOptions {
* whether to remove punctuation
*/
asciiFolding?: boolean;
/**
* ngram min length
*/
ngramMinLength?: number;
/**
* ngram max length
*/
ngramMaxLength?: number;
/**
* whether to only index the prefix of the token for ngram tokenizer
*/
prefixOnly?: boolean;
}
export class Index {
@@ -608,6 +623,9 @@ export class Index {
options?.stem,
options?.removeStopWords,
options?.asciiFolding,
options?.ngramMinLength,
options?.ngramMaxLength,
options?.prefixOnly,
),
);
}

View File

@@ -75,7 +75,10 @@ export class MergeInsertBuilder {
*
* @returns {Promise<MergeResult>} the merge result
*/
async execute(data: Data): Promise<MergeResult> {
async execute(
data: Data,
execOptions?: Partial<WriteExecutionOptions>,
): Promise<MergeResult> {
let schema: Schema;
if (this.#schema instanceof Promise) {
schema = await this.#schema;
@@ -83,7 +86,28 @@ export class MergeInsertBuilder {
} else {
schema = this.#schema;
}
if (execOptions?.timeoutMs !== undefined) {
this.#native.setTimeout(execOptions.timeoutMs);
}
const buffer = await fromDataToBuffer(data, undefined, schema);
return await this.#native.execute(buffer);
}
}
export interface WriteExecutionOptions {
/**
* Maximum time to run the operation before cancelling it.
*
* By default, there is a 30-second timeout that is only enforced after the
* first attempt. This is to prevent spending too long retrying to resolve
* conflicts. For example, if a write attempt takes 20 seconds and fails,
* the second attempt will be cancelled after 10 seconds, hitting the
* 30-second timeout. However, a write that takes one hour and succeeds on the
* first attempt will not be cancelled.
*
* When this is set, the timeout is enforced on all attempts, including the first.
*/
timeoutMs?: number;
}

View File

@@ -448,6 +448,10 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
* For best results we recommend tuning this parameter with a benchmark against
* your actual data to find the smallest possible value that will still give
* you the desired recall.
*
* For more fine grained control over behavior when you have a very narrow filter
* you can use `minimumNprobes` and `maximumNprobes`. This method sets both
* the minimum and maximum to the same value.
*/
nprobes(nprobes: number): VectorQuery {
super.doCall((inner) => inner.nprobes(nprobes));
@@ -455,6 +459,33 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
return this;
}
/**
* Set the minimum number of probes used.
*
* This controls the minimum number of partitions that will be searched. This
* parameter will impact every query against a vector index, regardless of the
* filter. See `nprobes` for more details. Higher values will increase recall
* but will also increase latency.
*/
minimumNprobes(minimumNprobes: number): VectorQuery {
super.doCall((inner) => inner.minimumNprobes(minimumNprobes));
return this;
}
/**
* Set the maximum number of probes used.
*
* This controls the maximum number of partitions that will be searched. If this
* number is greater than minimumNprobes then the excess partitions will _only_ be
* searched if we have not found enough results. This can be useful when there is
* a narrow filter to allow these queries to spend more time searching and avoid
* potential false negatives.
*/
maximumNprobes(maximumNprobes: number): VectorQuery {
super.doCall((inner) => inner.maximumNprobes(maximumNprobes));
return this;
}
/*
* Set the distance range to use
*
@@ -762,6 +793,31 @@ export enum FullTextQueryType {
MatchPhrase = "match_phrase",
Boost = "boost",
MultiMatch = "multi_match",
Boolean = "boolean",
}
/**
* Enum representing the logical operators used in full-text queries.
*
* - `And`: All terms must match.
* - `Or`: At least one term must match.
*/
export enum Operator {
And = "AND",
Or = "OR",
}
/**
* Enum representing the occurrence of terms in full-text queries.
*
* - `Must`: The term must be present in the document.
* - `Should`: The term should contribute to the document score, but is not required.
* - `MustNot`: The term must not be present in the document.
*/
export enum Occur {
Should = "SHOULD",
Must = "MUST",
MustNot = "MUST_NOT",
}
/**
@@ -791,6 +847,7 @@ export function instanceOfFullTextQuery(obj: any): obj is FullTextQuery {
export class MatchQuery implements FullTextQuery {
/** @ignore */
public readonly inner: JsFullTextQuery;
/**
* Creates an instance of MatchQuery.
*
@@ -800,6 +857,8 @@ export class MatchQuery implements FullTextQuery {
* - `boost`: The boost factor for the query (default is 1.0).
* - `fuzziness`: The fuzziness level for the query (default is 0).
* - `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
* - `operator`: The logical operator to use for combining terms in the query (default is "OR").
* - `prefixLength`: The number of beginning characters being unchanged for fuzzy matching.
*/
constructor(
query: string,
@@ -808,6 +867,8 @@ export class MatchQuery implements FullTextQuery {
boost?: number;
fuzziness?: number;
maxExpansions?: number;
operator?: Operator;
prefixLength?: number;
},
) {
let fuzziness = options?.fuzziness;
@@ -820,6 +881,8 @@ export class MatchQuery implements FullTextQuery {
options?.boost ?? 1.0,
fuzziness,
options?.maxExpansions ?? 50,
options?.operator ?? Operator.Or,
options?.prefixLength ?? 0,
);
}
@@ -836,9 +899,11 @@ export class PhraseQuery implements FullTextQuery {
*
* @param query - The phrase to search for in the specified column.
* @param column - The name of the column to search within.
* @param options - Optional parameters for the phrase query.
* - `slop`: The maximum number of intervening unmatched positions allowed between words in the phrase (default is 0).
*/
constructor(query: string, column: string) {
this.inner = JsFullTextQuery.phraseQuery(query, column);
constructor(query: string, column: string, options?: { slop?: number }) {
this.inner = JsFullTextQuery.phraseQuery(query, column, options?.slop ?? 0);
}
queryType(): FullTextQueryType {
@@ -889,18 +954,21 @@ export class MultiMatchQuery implements FullTextQuery {
* @param columns - An array of column names to search within.
* @param options - Optional parameters for the multi-match query.
* - `boosts`: An array of boost factors for each column (default is 1.0 for all).
* - `operator`: The logical operator to use for combining terms in the query (default is "OR").
*/
constructor(
query: string,
columns: string[],
options?: {
boosts?: number[];
operator?: Operator;
},
) {
this.inner = JsFullTextQuery.multiMatchQuery(
query,
columns,
options?.boosts,
options?.operator ?? Operator.Or,
);
}
@@ -908,3 +976,23 @@ export class MultiMatchQuery implements FullTextQuery {
return FullTextQueryType.MultiMatch;
}
}
export class BooleanQuery implements FullTextQuery {
/** @ignore */
public readonly inner: JsFullTextQuery;
/**
* Creates an instance of BooleanQuery.
*
* @param queries - An array of (Occur, FullTextQuery objects) to combine.
* Occur specifies whether the query must match, or should match.
*/
constructor(queries: [Occur, FullTextQuery][]) {
this.inner = JsFullTextQuery.booleanQuery(
queries.map(([occur, query]) => [occur, query.inner]),
);
}
queryType(): FullTextQueryType {
return FullTextQueryType.Boolean;
}
}

View File

@@ -6,9 +6,11 @@ import {
Data,
DataType,
IntoVector,
MultiVector,
Schema,
dataTypeToJson,
fromDataToBuffer,
isMultiVector,
tableFromIPC,
} from "./arrow";
@@ -75,10 +77,10 @@ export interface OptimizeOptions {
* // Delete all versions older than 1 day
* const olderThan = new Date();
* olderThan.setDate(olderThan.getDate() - 1));
* tbl.cleanupOlderVersions(olderThan);
* tbl.optimize({cleanupOlderThan: olderThan});
*
* // Delete all versions except the current version
* tbl.cleanupOlderVersions(new Date());
* tbl.optimize({cleanupOlderThan: new Date()});
*/
cleanupOlderThan: Date;
deleteUnverified: boolean;
@@ -346,7 +348,7 @@ export abstract class Table {
* if the query is a string and no embedding function is defined, it will be treated as a full text search query
*/
abstract search(
query: string | IntoVector | FullTextQuery,
query: string | IntoVector | MultiVector | FullTextQuery,
queryType?: string,
ftsColumns?: string | string[],
): VectorQuery | Query;
@@ -357,7 +359,7 @@ export abstract class Table {
* is the same thing as calling `nearestTo` on the builder returned
* by `query`. @see {@link Query#nearestTo} for more details.
*/
abstract vectorSearch(vector: IntoVector): VectorQuery;
abstract vectorSearch(vector: IntoVector | MultiVector): VectorQuery;
/**
* Add new columns with defined values.
* @param {AddColumnsSql[]} newColumnTransforms pairs of column names and
@@ -668,7 +670,7 @@ export class LocalTable extends Table {
}
search(
query: string | IntoVector | FullTextQuery,
query: string | IntoVector | MultiVector | FullTextQuery,
queryType: string = "auto",
ftsColumns?: string | string[],
): VectorQuery | Query {
@@ -715,7 +717,15 @@ export class LocalTable extends Table {
return this.query().nearestTo(queryPromise);
}
vectorSearch(vector: IntoVector): VectorQuery {
vectorSearch(vector: IntoVector | MultiVector): VectorQuery {
if (isMultiVector(vector)) {
const query = this.query().nearestTo(vector[0]);
for (const v of vector.slice(1)) {
query.addQueryVector(v);
}
return query;
}
return this.query().nearestTo(vector);
}

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.19.1-beta.2",
"version": "0.21.2-beta.1",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.19.1-beta.2",
"version": "0.21.2-beta.1",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.19.1-beta.2",
"version": "0.21.2-beta.1",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.19.1-beta.2",
"version": "0.21.2-beta.1",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.19.1-beta.2",
"version": "0.21.2-beta.1",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.19.1-beta.2",
"version": "0.21.2-beta.1",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.19.1-beta.2",
"version": "0.21.2-beta.1",
"os": [
"win32"
],

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.19.1-beta.2",
"version": "0.21.2-beta.1",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

View File

@@ -1,12 +1,12 @@
{
"name": "@lancedb/lancedb",
"version": "0.19.1-beta.2",
"version": "0.21.2-beta.1",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "@lancedb/lancedb",
"version": "0.19.1-beta.2",
"version": "0.21.2-beta.1",
"cpu": [
"x64",
"arm64"

View File

@@ -11,7 +11,7 @@
"ann"
],
"private": false,
"version": "0.19.1-beta.2",
"version": "0.21.2-beta.1",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",

View File

@@ -74,6 +74,10 @@ impl Connection {
builder = builder.host_override(&host_override);
}
if let Some(session) = options.session {
builder = builder.session(session.inner.clone());
}
Ok(Self::inner_new(builder.execute().await.default_error()?))
}

View File

@@ -123,34 +123,44 @@ impl Index {
stem: Option<bool>,
remove_stop_words: Option<bool>,
ascii_folding: Option<bool>,
ngram_min_length: Option<u32>,
ngram_max_length: Option<u32>,
prefix_only: Option<bool>,
) -> Self {
let mut opts = FtsIndexBuilder::default();
let mut tokenizer_configs = opts.tokenizer_configs.clone();
if let Some(with_position) = with_position {
opts = opts.with_position(with_position);
}
if let Some(base_tokenizer) = base_tokenizer {
tokenizer_configs = tokenizer_configs.base_tokenizer(base_tokenizer);
opts = opts.base_tokenizer(base_tokenizer);
}
if let Some(language) = language {
tokenizer_configs = tokenizer_configs.language(&language).unwrap();
opts = opts.language(&language).unwrap();
}
if let Some(max_token_length) = max_token_length {
tokenizer_configs = tokenizer_configs.max_token_length(Some(max_token_length as usize));
opts = opts.max_token_length(Some(max_token_length as usize));
}
if let Some(lower_case) = lower_case {
tokenizer_configs = tokenizer_configs.lower_case(lower_case);
opts = opts.lower_case(lower_case);
}
if let Some(stem) = stem {
tokenizer_configs = tokenizer_configs.stem(stem);
opts = opts.stem(stem);
}
if let Some(remove_stop_words) = remove_stop_words {
tokenizer_configs = tokenizer_configs.remove_stop_words(remove_stop_words);
opts = opts.remove_stop_words(remove_stop_words);
}
if let Some(ascii_folding) = ascii_folding {
tokenizer_configs = tokenizer_configs.ascii_folding(ascii_folding);
opts = opts.ascii_folding(ascii_folding);
}
if let Some(ngram_min_length) = ngram_min_length {
opts = opts.ngram_min_length(ngram_min_length);
}
if let Some(ngram_max_length) = ngram_max_length {
opts = opts.ngram_max_length(ngram_max_length);
}
if let Some(prefix_only) = prefix_only {
opts = opts.ngram_prefix_only(prefix_only);
}
opts.tokenizer_configs = tokenizer_configs;
Self {
inner: Mutex::new(Some(LanceDbIndex::FTS(opts))),

View File

@@ -14,6 +14,7 @@ pub mod merge;
mod query;
pub mod remote;
mod rerankers;
mod session;
mod table;
mod util;
@@ -34,6 +35,9 @@ pub struct ConnectionOptions {
///
/// The available options are described at https://lancedb.github.io/lancedb/guides/storage/
pub storage_options: Option<HashMap<String, String>>,
/// (For LanceDB OSS only): the session to use for this connection. Holds
/// shared caches and other session-specific state.
pub session: Option<session::Session>,
/// (For LanceDB cloud only): configuration for the remote HTTP client.
pub client_config: Option<remote::ClientConfig>,

View File

@@ -1,6 +1,8 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::time::Duration;
use lancedb::{arrow::IntoArrow, ipc::ipc_file_to_batches, table::merge::MergeInsertBuilder};
use napi::bindgen_prelude::*;
use napi_derive::napi;
@@ -36,6 +38,11 @@ impl NativeMergeInsertBuilder {
this
}
#[napi]
pub fn set_timeout(&mut self, timeout: u32) {
self.inner.timeout(Duration::from_millis(timeout as u64));
}
#[napi(catch_unwind)]
pub async fn execute(&self, buf: Buffer) -> napi::Result<MergeResult> {
let data = ipc_file_to_batches(buf.to_vec())

View File

@@ -4,7 +4,8 @@
use std::sync::Arc;
use lancedb::index::scalar::{
BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, PhraseQuery,
BooleanQuery, BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, Occur,
Operator, PhraseQuery,
};
use lancedb::query::ExecutableQuery;
use lancedb::query::Query as LanceDbQuery;
@@ -177,6 +178,31 @@ impl VectorQuery {
self.inner = self.inner.clone().nprobes(nprobe as usize);
}
#[napi]
pub fn minimum_nprobes(&mut self, minimum_nprobe: u32) -> napi::Result<()> {
self.inner = self
.inner
.clone()
.minimum_nprobes(minimum_nprobe as usize)
.default_error()?;
Ok(())
}
#[napi]
pub fn maximum_nprobes(&mut self, maximum_nprobes: u32) -> napi::Result<()> {
let maximum_nprobes = if maximum_nprobes == 0 {
None
} else {
Some(maximum_nprobes as usize)
};
self.inner = self
.inner
.clone()
.maximum_nprobes(maximum_nprobes)
.default_error()?;
Ok(())
}
#[napi]
pub fn distance_range(&mut self, lower_bound: Option<f64>, upper_bound: Option<f64>) {
// napi doesn't support f32, so we have to convert to f32
@@ -308,6 +334,8 @@ impl JsFullTextQuery {
boost: f64,
fuzziness: Option<u32>,
max_expansions: u32,
operator: String,
prefix_length: u32,
) -> napi::Result<Self> {
Ok(Self {
inner: MatchQuery::new(query)
@@ -315,14 +343,23 @@ impl JsFullTextQuery {
.with_boost(boost as f32)
.with_fuzziness(fuzziness)
.with_max_expansions(max_expansions as usize)
.with_operator(
Operator::try_from(operator.as_str()).map_err(|e| {
napi::Error::from_reason(format!("Invalid operator: {}", e))
})?,
)
.with_prefix_length(prefix_length)
.into(),
})
}
#[napi(factory)]
pub fn phrase_query(query: String, column: String) -> napi::Result<Self> {
pub fn phrase_query(query: String, column: String, slop: u32) -> napi::Result<Self> {
Ok(Self {
inner: PhraseQuery::new(query).with_column(Some(column)).into(),
inner: PhraseQuery::new(query)
.with_column(Some(column))
.with_slop(slop)
.into(),
})
}
@@ -348,6 +385,7 @@ impl JsFullTextQuery {
query: String,
columns: Vec<String>,
boosts: Option<Vec<f64>>,
operator: String,
) -> napi::Result<Self> {
let q = match boosts {
Some(boosts) => MultiMatchQuery::try_new(query, columns)
@@ -358,7 +396,37 @@ impl JsFullTextQuery {
napi::Error::from_reason(format!("Failed to create multi match query: {}", e))
})?;
Ok(Self { inner: q.into() })
let operator = Operator::try_from(operator.as_str()).map_err(|e| {
napi::Error::from_reason(format!("Invalid operator for multi match query: {}", e))
})?;
Ok(Self {
inner: q.with_operator(operator).into(),
})
}
#[napi(factory)]
pub fn boolean_query(queries: Vec<(String, &JsFullTextQuery)>) -> napi::Result<Self> {
let mut sub_queries = Vec::with_capacity(queries.len());
for (occur, q) in queries {
let occur = Occur::try_from(occur.as_str())
.map_err(|e| napi::Error::from_reason(e.to_string()))?;
sub_queries.push((occur, q.inner.clone()));
}
Ok(Self {
inner: BooleanQuery::new(sub_queries).into(),
})
}
#[napi(getter)]
pub fn query_type(&self) -> String {
match self.inner {
FtsQuery::Match(_) => "match".to_string(),
FtsQuery::Phrase(_) => "phrase".to_string(),
FtsQuery::Boost(_) => "boost".to_string(),
FtsQuery::MultiMatch(_) => "multi_match".to_string(),
FtsQuery::Boolean(_) => "boolean".to_string(),
}
}
}

102
nodejs/src/session.rs Normal file
View File

@@ -0,0 +1,102 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::sync::Arc;
use lancedb::{ObjectStoreRegistry, Session as LanceSession};
use napi::bindgen_prelude::*;
use napi_derive::*;
/// A session for managing caches and object stores across LanceDB operations.
///
/// Sessions allow you to configure cache sizes for index and metadata caches,
/// which can significantly impact memory use and performance. They can
/// also be re-used across multiple connections to share the same cache state.
#[napi]
#[derive(Clone)]
pub struct Session {
pub(crate) inner: Arc<LanceSession>,
}
impl std::fmt::Debug for Session {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Session")
.field("size_bytes", &self.inner.size_bytes())
.field("approx_num_items", &self.inner.approx_num_items())
.finish()
}
}
#[napi]
impl Session {
/// Create a new session with custom cache sizes.
///
/// # Parameters
///
/// - `index_cache_size_bytes`: The size of the index cache in bytes.
/// Index data is stored in memory in this cache to speed up queries.
/// Defaults to 6GB if not specified.
/// - `metadata_cache_size_bytes`: The size of the metadata cache in bytes.
/// The metadata cache stores file metadata and schema information in memory.
/// This cache improves scan and write performance.
/// Defaults to 1GB if not specified.
#[napi(constructor)]
pub fn new(
index_cache_size_bytes: Option<BigInt>,
metadata_cache_size_bytes: Option<BigInt>,
) -> napi::Result<Self> {
let index_cache_size = index_cache_size_bytes
.map(|size| size.get_u64().1 as usize)
.unwrap_or(6 * 1024 * 1024 * 1024); // 6GB default
let metadata_cache_size = metadata_cache_size_bytes
.map(|size| size.get_u64().1 as usize)
.unwrap_or(1024 * 1024 * 1024); // 1GB default
let session = LanceSession::new(
index_cache_size,
metadata_cache_size,
Arc::new(ObjectStoreRegistry::default()),
);
Ok(Self {
inner: Arc::new(session),
})
}
/// Create a session with default cache sizes.
///
/// This is equivalent to creating a session with 6GB index cache
/// and 1GB metadata cache.
#[napi(factory)]
pub fn default() -> Self {
Self {
inner: Arc::new(LanceSession::default()),
}
}
/// Get the current size of the session caches in bytes.
#[napi]
pub fn size_bytes(&self) -> BigInt {
BigInt::from(self.inner.size_bytes())
}
/// Get the approximate number of items cached in the session.
#[napi]
pub fn approx_num_items(&self) -> u32 {
self.inner.approx_num_items() as u32
}
}
// Implement FromNapiValue for Session to work with napi(object)
impl napi::bindgen_prelude::FromNapiValue for Session {
unsafe fn from_napi_value(
env: napi::sys::napi_env,
napi_val: napi::sys::napi_value,
) -> napi::Result<Self> {
let object: napi::bindgen_prelude::ClassInstance<Session> =
napi::bindgen_prelude::ClassInstance::from_napi_value(env, napi_val)?;
let copy = object.clone();
Ok(copy)
}
}

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.22.1-beta.3"
current_version = "0.24.2"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

19
python/CLAUDE.md Normal file
View File

@@ -0,0 +1,19 @@
These are the Python bindings of LanceDB.
The core Rust library is in the `../rust/lancedb` directory, the rust binding
code is in the `src/` directory and the Python bindings are in the `lancedb/` directory.
Common commands:
* Build: `make develop`
* Format: `make format`
* Lint: `make check`
* Fix lints: `make fix`
* Test: `make test`
* Doc test: `make doctest`
Before committing changes, run lints and then formatting.
When you change the Rust code, you will need to recompile the Python bindings: `make develop`.
When you export new types from Rust to Python, you must manually update `python/lancedb/_lancedb.pyi`
with the corresponding type hints. You can run `pyright` to check for type errors in the Python code.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.22.1-beta.3"
version = "0.24.2"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true
@@ -14,11 +14,11 @@ name = "_lancedb"
crate-type = ["cdylib"]
[dependencies]
arrow = { version = "54.1", features = ["pyarrow"] }
arrow = { version = "55.1", features = ["pyarrow"] }
lancedb = { path = "../rust/lancedb", default-features = false }
env_logger.workspace = true
pyo3 = { version = "0.23", features = ["extension-module", "abi3-py39"] }
pyo3-async-runtimes = { version = "0.23", features = [
pyo3 = { version = "0.24", features = ["extension-module", "abi3-py39"] }
pyo3-async-runtimes = { version = "0.24", features = [
"attributes",
"tokio-runtime",
] }
@@ -27,7 +27,7 @@ futures.workspace = true
tokio = { version = "1.40", features = ["sync"] }
[build-dependencies]
pyo3-build-config = { version = "0.23", features = [
pyo3-build-config = { version = "0.24", features = [
"extension-module",
"abi3-py39",
] }

View File

@@ -60,6 +60,7 @@ tests = [
"pyarrow-stubs",
"pylance>=0.25",
"requests",
"datafusion",
]
dev = [
"ruff",
@@ -84,8 +85,8 @@ embeddings = [
"boto3>=1.28.57",
"awscli>=1.29.57",
"botocore>=1.31.57",
"ollama",
"ibm-watsonx-ai>=1.1.2",
'ibm-watsonx-ai>=1.1.2; python_version >= "3.10"',
"ollama>=0.3.0",
]
azure = ["adlfs>=2024.2.0"]

View File

@@ -18,6 +18,7 @@ from .remote import ClientConfig
from .remote.db import RemoteDBConnection
from .schema import vector
from .table import AsyncTable
from ._lancedb import Session
def connect(
@@ -30,6 +31,7 @@ def connect(
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
client_config: Union[ClientConfig, Dict[str, Any], None] = None,
storage_options: Optional[Dict[str, str]] = None,
session: Optional[Session] = None,
**kwargs: Any,
) -> DBConnection:
"""Connect to a LanceDB database.
@@ -64,6 +66,12 @@ def connect(
storage_options: dict, optional
Additional options for the storage backend. See available options at
<https://lancedb.github.io/lancedb/guides/storage/>
session: Session, optional
(For LanceDB OSS only)
A session to use for this connection. Sessions allow you to configure
cache sizes for index and metadata caches, which can significantly
impact memory use and performance. They can also be re-used across
multiple connections to share the same cache state.
Examples
--------
@@ -92,7 +100,7 @@ def connect(
if api_key is None:
api_key = os.environ.get("LANCEDB_API_KEY")
if api_key is None:
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
raise ValueError(f"api_key is required to connect to LanceDB cloud: {uri}")
if isinstance(request_thread_pool, int):
request_thread_pool = ThreadPoolExecutor(request_thread_pool)
return RemoteDBConnection(
@@ -113,6 +121,7 @@ def connect(
uri,
read_consistency_interval=read_consistency_interval,
storage_options=storage_options,
session=session,
)
@@ -125,6 +134,7 @@ async def connect_async(
read_consistency_interval: Optional[timedelta] = None,
client_config: Optional[Union[ClientConfig, Dict[str, Any]]] = None,
storage_options: Optional[Dict[str, str]] = None,
session: Optional[Session] = None,
) -> AsyncConnection:
"""Connect to a LanceDB database.
@@ -158,6 +168,12 @@ async def connect_async(
storage_options: dict, optional
Additional options for the storage backend. See available options at
<https://lancedb.github.io/lancedb/guides/storage/>
session: Session, optional
(For LanceDB OSS only)
A session to use for this connection. Sessions allow you to configure
cache sizes for index and metadata caches, which can significantly
impact memory use and performance. They can also be re-used across
multiple connections to share the same cache state.
Examples
--------
@@ -197,6 +213,7 @@ async def connect_async(
read_consistency_interval_secs,
client_config,
storage_options,
session,
)
)
@@ -212,6 +229,7 @@ __all__ = [
"DBConnection",
"LanceDBConnection",
"RemoteDBConnection",
"Session",
"__version__",
]

View File

@@ -6,6 +6,19 @@ import pyarrow as pa
from .index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq, FTS
from .remote import ClientConfig
class Session:
def __init__(
self,
index_cache_size_bytes: Optional[int] = None,
metadata_cache_size_bytes: Optional[int] = None,
): ...
@staticmethod
def default() -> "Session": ...
@property
def size_bytes(self) -> int: ...
@property
def approx_num_items(self) -> int: ...
class Connection(object):
uri: str
async def table_names(
@@ -51,7 +64,7 @@ class Table:
async def version(self) -> int: ...
async def checkout(self, version: Union[int, str]): ...
async def checkout_latest(self): ...
async def restore(self, version: Optional[int] = None): ...
async def restore(self, version: Optional[Union[int, str]] = None): ...
async def list_indices(self) -> list[IndexConfig]: ...
async def delete(self, filter: str) -> DeleteResult: ...
async def add_columns(self, columns: list[tuple[str, str]]) -> AddColumnsResult: ...
@@ -89,6 +102,7 @@ async def connect(
read_consistency_interval: Optional[float],
client_config: Optional[Union[ClientConfig, Dict[str, Any]]],
storage_options: Optional[Dict[str, str]],
session: Optional[Session],
) -> Connection: ...
class RecordBatchStream:
@@ -143,6 +157,8 @@ class VectorQuery:
def postfilter(self): ...
def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ...
def minimum_nprobes(self, minimum_nprobes: int): ...
def maximum_nprobes(self, maximum_nprobes: int): ...
def bypass_vector_index(self): ...
def nearest_to_text(self, query: dict) -> HybridQuery: ...
def to_query_request(self) -> PyQueryRequest: ...
@@ -158,6 +174,8 @@ class HybridQuery:
def distance_type(self, distance_type: str): ...
def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ...
def minimum_nprobes(self, minimum_nprobes: int): ...
def maximum_nprobes(self, maximum_nprobes: int): ...
def bypass_vector_index(self): ...
def to_vector_query(self) -> VectorQuery: ...
def to_fts_query(self) -> FTSQuery: ...
@@ -165,23 +183,21 @@ class HybridQuery:
def get_with_row_id(self) -> bool: ...
def to_query_request(self) -> PyQueryRequest: ...
class PyFullTextSearchQuery:
columns: Optional[List[str]]
query: str
limit: Optional[int]
wand_factor: Optional[float]
class FullTextQuery:
pass
class PyQueryRequest:
limit: Optional[int]
offset: Optional[int]
filter: Optional[Union[str, bytes]]
full_text_search: Optional[PyFullTextSearchQuery]
full_text_search: Optional[FullTextQuery]
select: Optional[Union[str, List[str]]]
fast_search: Optional[bool]
with_row_id: Optional[bool]
column: Optional[str]
query_vector: Optional[List[pa.Array]]
nprobes: Optional[int]
minimum_nprobes: Optional[int]
maximum_nprobes: Optional[int]
lower_bound: Optional[float]
upper_bound: Optional[float]
ef: Optional[int]

View File

@@ -94,9 +94,9 @@ def data_to_reader(
else:
raise TypeError(
f"Unknown data type {type(data)}. "
"Please check "
"https://lancedb.github.io/lance/read_and_write.html "
"to see supported types."
"Supported types: list of dicts, pandas DataFrame, polars DataFrame, "
"pyarrow Table/RecordBatch, or Pydantic models. "
"See https://lancedb.github.io/lancedb/guides/tables/ for examples."
)

View File

@@ -37,6 +37,7 @@ if TYPE_CHECKING:
from ._lancedb import Connection as LanceDbConnection
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
from ._lancedb import Session
class DBConnection(EnforceOverrides):
@@ -247,6 +248,9 @@ class DBConnection(EnforceOverrides):
name: str
The name of the table.
index_cache_size: int, default 256
**Deprecated**: Use session-level cache configuration instead.
Create a Session with custom cache sizes and pass it to lancedb.connect().
Set the size of the index cache, specified as a number of entries
The exact meaning of an "entry" will depend on the type of index:
@@ -354,6 +358,7 @@ class LanceDBConnection(DBConnection):
*,
read_consistency_interval: Optional[timedelta] = None,
storage_options: Optional[Dict[str, str]] = None,
session: Optional[Session] = None,
):
if not isinstance(uri, Path):
scheme = get_uri_scheme(uri)
@@ -367,6 +372,7 @@ class LanceDBConnection(DBConnection):
self._entered = False
self.read_consistency_interval = read_consistency_interval
self.storage_options = storage_options
self.session = session
if read_consistency_interval is not None:
read_consistency_interval_secs = read_consistency_interval.total_seconds()
@@ -382,6 +388,7 @@ class LanceDBConnection(DBConnection):
read_consistency_interval_secs,
None,
storage_options,
session,
)
self._conn = AsyncConnection(LOOP.run(do_connect()))
@@ -475,6 +482,17 @@ class LanceDBConnection(DBConnection):
-------
A LanceTable object representing the table.
"""
if index_cache_size is not None:
import warnings
warnings.warn(
"index_cache_size is deprecated. Use session-level cache "
"configuration instead. Create a Session with custom cache sizes "
"and pass it to lancedb.connect().",
DeprecationWarning,
stacklevel=2,
)
return LanceTable.open(
self,
name,
@@ -820,6 +838,9 @@ class AsyncConnection(object):
See available options at
<https://lancedb.github.io/lancedb/guides/storage/>
index_cache_size: int, default 256
**Deprecated**: Use session-level cache configuration instead.
Create a Session with custom cache sizes and pass it to lancedb.connect().
Set the size of the index cache, specified as a number of entries
The exact meaning of an "entry" will depend on the type of index:

View File

@@ -11,7 +11,7 @@ from .instructor import InstructorEmbeddingFunction
from .ollama import OllamaEmbeddings
from .open_clip import OpenClipEmbeddings
from .openai import OpenAIEmbeddings
from .registry import EmbeddingFunctionRegistry, get_registry
from .registry import EmbeddingFunctionRegistry, get_registry, register
from .sentence_transformers import SentenceTransformerEmbeddings
from .gte import GteEmbeddings
from .transformers import TransformersEmbeddingFunction, ColbertEmbeddings

View File

@@ -9,11 +9,14 @@ from huggingface_hub import snapshot_download
from pydantic import BaseModel
from transformers import BertTokenizer
from .utils import create_import_stub
try:
import mlx.core as mx
import mlx.nn as nn
except ImportError:
raise ImportError("You need to install MLX to use this model use - pip install mlx")
mx = create_import_stub("mlx.core", "mlx")
nn = create_import_stub("mlx.nn", "mlx")
def average_pool(last_hidden_state: mx.array, attention_mask: mx.array) -> mx.array:
@@ -72,7 +75,7 @@ class TransformerEncoder(nn.Module):
super().__init__()
self.layers = [
TransformerEncoderLayer(dims, num_heads, mlp_dims)
for i in range(num_layers)
for _ in range(num_layers)
]
def __call__(self, x, mask):

View File

@@ -2,14 +2,15 @@
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
from functools import cached_property
from typing import TYPE_CHECKING, List, Optional, Union
from typing import TYPE_CHECKING, List, Optional, Sequence, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
if TYPE_CHECKING:
import numpy as np
import ollama
@@ -28,23 +29,21 @@ class OllamaEmbeddings(TextEmbeddingFunction):
keep_alive: Optional[Union[float, str]] = None
ollama_client_kwargs: Optional[dict] = {}
def ndims(self):
def ndims(self) -> int:
return len(self.generate_embeddings(["foo"])[0])
def _compute_embedding(self, text) -> Union["np.array", None]:
return (
self._ollama_client.embeddings(
model=self.name,
prompt=text,
options=self.options,
keep_alive=self.keep_alive,
)["embedding"]
or None
def _compute_embedding(self, text: Sequence[str]) -> Sequence[Sequence[float]]:
response = self._ollama_client.embed(
model=self.name,
input=text,
options=self.options,
keep_alive=self.keep_alive,
)
return response.embeddings
def generate_embeddings(
self, texts: Union[List[str], "np.ndarray"]
) -> list[Union["np.array", None]]:
self, texts: Union[List[str], np.ndarray]
) -> list[Union[np.array, None]]:
"""
Get the embeddings for the given texts
@@ -54,8 +53,8 @@ class OllamaEmbeddings(TextEmbeddingFunction):
The texts to embed
"""
# TODO retry, rate limit, token limit
embeddings = [self._compute_embedding(text) for text in texts]
return embeddings
embeddings = self._compute_embedding(texts)
return list(embeddings)
@cached_property
def _ollama_client(self) -> "ollama.Client":

View File

@@ -2,7 +2,7 @@
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
import json
from typing import Dict, Optional
from typing import Dict, Optional, Type
from .base import EmbeddingFunction, EmbeddingFunctionConfig
@@ -43,7 +43,7 @@ class EmbeddingFunctionRegistry:
self._functions = {}
self._variables = {}
def register(self, alias: str = None):
def register(self, alias: Optional[str] = None):
"""
This creates a decorator that can be used to register
an EmbeddingFunction.
@@ -75,7 +75,7 @@ class EmbeddingFunctionRegistry:
"""
self._functions = {}
def get(self, name: str):
def get(self, name: str) -> Type[EmbeddingFunction]:
"""
Fetch an embedding function class by name

View File

@@ -21,6 +21,36 @@ from ..dependencies import pandas as pd
from ..util import attempt_import_or_raise
def create_import_stub(module_name: str, package_name: str = None):
"""
Create a stub module that allows class definition but fails when used.
This allows modules to be imported for doctest collection even when
optional dependencies are not available.
Parameters
----------
module_name : str
The name of the module to create a stub for
package_name : str, optional
The package name to suggest in the error message
Returns
-------
object
A stub object that can be used in place of the module
"""
class _ImportStub:
def __getattr__(self, name):
return _ImportStub # Return stub for chained access like nn.Module
def __call__(self, *args, **kwargs):
pkg = package_name or module_name
raise ImportError(f"You need to install {pkg} to use this functionality")
return _ImportStub()
# ruff: noqa: PERF203
def retry(tries=10, delay=1, max_delay=30, backoff=3, jitter=1):
def wrapper(fn):

Some files were not shown because too many files have changed in this diff Show More