mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 13:29:57 +00:00
Compare commits
98 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f79295c697 | ||
|
|
381fad9b65 | ||
|
|
055bf91d3e | ||
|
|
050f0086b8 | ||
|
|
10fa23e0d6 | ||
|
|
43d9fc28b0 | ||
|
|
f45f0d0431 | ||
|
|
b9e3c36d82 | ||
|
|
3cd7dd3375 | ||
|
|
12d4ce4cfe | ||
|
|
3d1f102087 | ||
|
|
81afd8a42f | ||
|
|
c2aa03615a | ||
|
|
d2c6759e7f | ||
|
|
94fb9f364a | ||
|
|
fbff244ed8 | ||
|
|
7e7466d224 | ||
|
|
cceaf27d79 | ||
|
|
7a15337e03 | ||
|
|
96c66fd087 | ||
|
|
0579303602 | ||
|
|
75edb8756c | ||
|
|
88283110f4 | ||
|
|
b3a637fdeb | ||
|
|
ce24457531 | ||
|
|
087fe6343d | ||
|
|
ab8cbe62dd | ||
|
|
f076bb41f4 | ||
|
|
902fb83d54 | ||
|
|
779118339f | ||
|
|
03b62599d7 | ||
|
|
4c999fb651 | ||
|
|
6d23d32ab5 | ||
|
|
704cec34e1 | ||
|
|
a300a238db | ||
|
|
a41ff1df0a | ||
|
|
77b005d849 | ||
|
|
167fccc427 | ||
|
|
2bffbcefa5 | ||
|
|
905552f993 | ||
|
|
e4898c9313 | ||
|
|
cab36d94b2 | ||
|
|
b64252d4fd | ||
|
|
6fc006072c | ||
|
|
d4bb59b542 | ||
|
|
6b2dd6de51 | ||
|
|
dbccd9e4f1 | ||
|
|
b12ebfed4c | ||
|
|
1dadb2aefa | ||
|
|
eb9784d7f2 | ||
|
|
ba755626cc | ||
|
|
7760799cb8 | ||
|
|
4beb2d2877 | ||
|
|
a00b8595d1 | ||
|
|
9c8314b4fd | ||
|
|
c625b6f2b2 | ||
|
|
bec8fe6547 | ||
|
|
dc1150c011 | ||
|
|
afaefc6264 | ||
|
|
cb70ff8cee | ||
|
|
cbb5a841b1 | ||
|
|
c72f6770fd | ||
|
|
e5a80a5e86 | ||
|
|
8d0a7fad1f | ||
|
|
b80d4d0134 | ||
|
|
9645fe52c2 | ||
|
|
b77314168d | ||
|
|
e08d45e090 | ||
|
|
2e3ddb8382 | ||
|
|
627ca4c810 | ||
|
|
f8dae4ffe9 | ||
|
|
9eb6119468 | ||
|
|
59b57e30ed | ||
|
|
fec8d58f06 | ||
|
|
84ded9d678 | ||
|
|
65696d9713 | ||
|
|
e2f2ea32e4 | ||
|
|
d5f2eca754 | ||
|
|
7fa455a8a5 | ||
|
|
8f42b5874e | ||
|
|
274f19f560 | ||
|
|
fbcbc75b5b | ||
|
|
008f389bd0 | ||
|
|
91af6518d9 | ||
|
|
af6819762c | ||
|
|
7acece493d | ||
|
|
20e017fedc | ||
|
|
74e578b3c8 | ||
|
|
d92d9eb3d2 | ||
|
|
b6cdce7bc9 | ||
|
|
316b406265 | ||
|
|
8825c7c1dd | ||
|
|
81c85ff702 | ||
|
|
570f2154d5 | ||
|
|
0525c055fc | ||
|
|
38d11291da | ||
|
|
258e682574 | ||
|
|
d7afa600b8 |
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.19.2-beta.0"
|
||||
current_version = "0.21.2-beta.1"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
10
.github/workflows/cargo-publish.yml
vendored
10
.github/workflows/cargo-publish.yml
vendored
@@ -5,8 +5,8 @@ on:
|
||||
tags-ignore:
|
||||
# We don't publish pre-releases for Rust. Crates.io is just a source
|
||||
# distribution, so we don't need to publish pre-releases.
|
||||
- 'v*-beta*'
|
||||
- '*-v*' # for example, python-vX.Y.Z
|
||||
- "v*-beta*"
|
||||
- "*-v*" # for example, python-vX.Y.Z
|
||||
|
||||
env:
|
||||
# This env var is used by Swatinem/rust-cache@v2 for the cache
|
||||
@@ -19,6 +19,8 @@ env:
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-22.04
|
||||
permissions:
|
||||
id-token: write
|
||||
timeout-minutes: 30
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
@@ -31,6 +33,8 @@ jobs:
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- uses: rust-lang/crates-io-auth-action@v1
|
||||
id: auth
|
||||
- name: Publish the package
|
||||
run: |
|
||||
cargo publish -p lancedb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}
|
||||
cargo publish -p lancedb --all-features --token ${{ steps.auth.outputs.token }}
|
||||
|
||||
9
.github/workflows/make-release-commit.yml
vendored
9
.github/workflows/make-release-commit.yml
vendored
@@ -84,6 +84,7 @@ jobs:
|
||||
run: |
|
||||
pip install bump-my-version PyGithub packaging
|
||||
bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP
|
||||
bash ci/update_lockfiles.sh --amend
|
||||
- name: Push new version tag
|
||||
if: ${{ !inputs.dry_run }}
|
||||
uses: ad-m/github-push-action@master
|
||||
@@ -92,11 +93,3 @@ jobs:
|
||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||
branch: ${{ github.ref }}
|
||||
tags: true
|
||||
- uses: ./.github/workflows/update_package_lock
|
||||
if: ${{ !inputs.dry_run && inputs.other }}
|
||||
with:
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
- uses: ./.github/workflows/update_package_lock_nodejs
|
||||
if: ${{ !inputs.dry_run && inputs.other }}
|
||||
with:
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
2
.github/workflows/nodejs.yml
vendored
2
.github/workflows/nodejs.yml
vendored
@@ -116,7 +116,7 @@ jobs:
|
||||
set -e
|
||||
npm ci
|
||||
npm run docs
|
||||
if ! git diff --exit-code; then
|
||||
if ! git diff --exit-code -- . ':(exclude)Cargo.lock'; then
|
||||
echo "Docs need to be updated"
|
||||
echo "Run 'npm run docs', fix any warnings, and commit the changes."
|
||||
exit 1
|
||||
|
||||
34
.github/workflows/npm-publish.yml
vendored
34
.github/workflows/npm-publish.yml
vendored
@@ -505,6 +505,8 @@ jobs:
|
||||
name: vectordb NPM Publish
|
||||
needs: [node, node-macos, node-linux-gnu, node-windows]
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: write
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
steps:
|
||||
@@ -537,6 +539,20 @@ jobs:
|
||||
# We need to deprecate the old package to avoid confusion.
|
||||
# Each time we publish a new version, it gets undeprecated.
|
||||
run: npm deprecate vectordb "Use @lancedb/lancedb instead."
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: main
|
||||
- name: Update package-lock.json
|
||||
run: |
|
||||
git config user.name 'Lance Release'
|
||||
git config user.email 'lance-dev@lancedb.com'
|
||||
bash ci/update_lockfiles.sh
|
||||
- name: Push new commit
|
||||
uses: ad-m/github-push-action@master
|
||||
with:
|
||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||
branch: main
|
||||
- name: Notify Slack Action
|
||||
uses: ravsamhq/notify-slack-action@2.3.0
|
||||
if: ${{ always() }}
|
||||
@@ -546,21 +562,3 @@ jobs:
|
||||
notification_title: "{workflow} is failing"
|
||||
env:
|
||||
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
|
||||
|
||||
update-package-lock:
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
needs: [release]
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: write
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: main
|
||||
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- uses: ./.github/workflows/update_package_lock
|
||||
with:
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
33
.github/workflows/update_package_lock/action.yml
vendored
33
.github/workflows/update_package_lock/action.yml
vendored
@@ -1,33 +0,0 @@
|
||||
name: update_package_lock
|
||||
description: "Update node's package.lock"
|
||||
|
||||
inputs:
|
||||
github_token:
|
||||
required: true
|
||||
description: "github token for the repo"
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 20
|
||||
- name: Set git configs
|
||||
shell: bash
|
||||
run: |
|
||||
git config user.name 'Lance Release'
|
||||
git config user.email 'lance-dev@lancedb.com'
|
||||
- name: Update package-lock.json file
|
||||
working-directory: ./node
|
||||
run: |
|
||||
npm install
|
||||
git add package-lock.json
|
||||
git commit -m "Updating package-lock.json"
|
||||
shell: bash
|
||||
- name: Push changes
|
||||
if: ${{ inputs.dry_run }} == "false"
|
||||
uses: ad-m/github-push-action@master
|
||||
with:
|
||||
github_token: ${{ inputs.github_token }}
|
||||
branch: main
|
||||
tags: true
|
||||
@@ -1,33 +0,0 @@
|
||||
name: update_package_lock_nodejs
|
||||
description: "Update nodejs's package.lock"
|
||||
|
||||
inputs:
|
||||
github_token:
|
||||
required: true
|
||||
description: "github token for the repo"
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 20
|
||||
- name: Set git configs
|
||||
shell: bash
|
||||
run: |
|
||||
git config user.name 'Lance Release'
|
||||
git config user.email 'lance-dev@lancedb.com'
|
||||
- name: Update package-lock.json file
|
||||
working-directory: ./nodejs
|
||||
run: |
|
||||
npm install
|
||||
git add package-lock.json
|
||||
git commit -m "Updating package-lock.json"
|
||||
shell: bash
|
||||
- name: Push changes
|
||||
if: ${{ inputs.dry_run }} == "false"
|
||||
uses: ad-m/github-push-action@master
|
||||
with:
|
||||
github_token: ${{ inputs.github_token }}
|
||||
branch: main
|
||||
tags: true
|
||||
24
CLAUDE.md
Normal file
24
CLAUDE.md
Normal file
@@ -0,0 +1,24 @@
|
||||
LanceDB is a database designed for retrieval, including vector, full-text, and hybrid search.
|
||||
It is a wrapper around Lance. There are two backends: local (in-process like SQLite) and
|
||||
remote (against LanceDB Cloud).
|
||||
|
||||
The core of LanceDB is written in Rust. There are bindings in Python, Typescript, and Java.
|
||||
|
||||
Project layout:
|
||||
|
||||
* `rust/lancedb`: The LanceDB core Rust implementation.
|
||||
* `python`: The Python bindings, using PyO3.
|
||||
* `nodejs`: The Typescript bindings, using napi-rs
|
||||
* `java`: The Java bindings
|
||||
|
||||
(`rust/ffi` and `node/` are for a deprecated package. You can ignore them.)
|
||||
|
||||
Common commands:
|
||||
|
||||
* Check for compiler errors: `cargo check --features remote --tests --examples`
|
||||
* Run tests: `cargo test --features remote --tests`
|
||||
* Run specific test: `cargo test --features remote -p <package_name> --test <test_name>`
|
||||
* Lint: `cargo clippy --features remote --tests --examples`
|
||||
* Format: `cargo fmt --all`
|
||||
|
||||
Before committing changes, run formatting.
|
||||
1542
Cargo.lock
generated
1542
Cargo.lock
generated
File diff suppressed because it is too large
Load Diff
52
Cargo.toml
52
Cargo.toml
@@ -21,49 +21,49 @@ categories = ["database-implementations"]
|
||||
rust-version = "1.78.0"
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.29.0", "features" = ["dynamodb"], tag = "v0.29.0-beta.1", git="https://github.com/lancedb/lance.git" }
|
||||
lance-io = { version = "=0.29.0", tag = "v0.29.0-beta.1", git="https://github.com/lancedb/lance.git" }
|
||||
lance-index = { version = "=0.29.0", tag = "v0.29.0-beta.1", git="https://github.com/lancedb/lance.git" }
|
||||
lance-linalg = { version = "=0.29.0", tag = "v0.29.0-beta.1", git="https://github.com/lancedb/lance.git" }
|
||||
lance-table = { version = "=0.29.0", tag = "v0.29.0-beta.1", git="https://github.com/lancedb/lance.git" }
|
||||
lance-testing = { version = "=0.29.0", tag = "v0.29.0-beta.1", git="https://github.com/lancedb/lance.git" }
|
||||
lance-datafusion = { version = "=0.29.0", tag = "v0.29.0-beta.1", git="https://github.com/lancedb/lance.git" }
|
||||
lance-encoding = { version = "=0.29.0", tag = "v0.29.0-beta.1", git="https://github.com/lancedb/lance.git" }
|
||||
lance = { "version" = "=0.32.0", "features" = ["dynamodb"] }
|
||||
lance-io = "=0.32.0"
|
||||
lance-index = "=0.32.0"
|
||||
lance-linalg = "=0.32.0"
|
||||
lance-table = "=0.32.0"
|
||||
lance-testing = "=0.32.0"
|
||||
lance-datafusion = "=0.32.0"
|
||||
lance-encoding = "=0.32.0"
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "54.1", optional = false }
|
||||
arrow-array = "54.1"
|
||||
arrow-data = "54.1"
|
||||
arrow-ipc = "54.1"
|
||||
arrow-ord = "54.1"
|
||||
arrow-schema = "54.1"
|
||||
arrow-arith = "54.1"
|
||||
arrow-cast = "54.1"
|
||||
arrow = { version = "55.1", optional = false }
|
||||
arrow-array = "55.1"
|
||||
arrow-data = "55.1"
|
||||
arrow-ipc = "55.1"
|
||||
arrow-ord = "55.1"
|
||||
arrow-schema = "55.1"
|
||||
arrow-arith = "55.1"
|
||||
arrow-cast = "55.1"
|
||||
async-trait = "0"
|
||||
datafusion = { version = "46.0", default-features = false }
|
||||
datafusion-catalog = "46.0"
|
||||
datafusion-common = { version = "46.0", default-features = false }
|
||||
datafusion-execution = "46.0"
|
||||
datafusion-expr = "46.0"
|
||||
datafusion-physical-plan = "46.0"
|
||||
datafusion = { version = "48.0", default-features = false }
|
||||
datafusion-catalog = "48.0"
|
||||
datafusion-common = { version = "48.0", default-features = false }
|
||||
datafusion-execution = "48.0"
|
||||
datafusion-expr = "48.0"
|
||||
datafusion-physical-plan = "48.0"
|
||||
env_logger = "0.11"
|
||||
half = { "version" = "=2.4.1", default-features = false, features = [
|
||||
half = { "version" = "2.6.0", default-features = false, features = [
|
||||
"num-traits",
|
||||
] }
|
||||
futures = "0"
|
||||
log = "0.4"
|
||||
moka = { version = "0.12", features = ["future"] }
|
||||
object_store = "0.11.0"
|
||||
object_store = "0.12.0"
|
||||
pin-project = "1.0.7"
|
||||
snafu = "0.8"
|
||||
url = "2"
|
||||
num-traits = "0.2"
|
||||
rand = "0.8"
|
||||
rand = "0.9"
|
||||
regex = "1.10"
|
||||
lazy_static = "1"
|
||||
semver = "1.0.25"
|
||||
# Temporary pins to work around downstream issues
|
||||
# https://github.com/apache/arrow-rs/commit/2fddf85afcd20110ce783ed5b4cdeb82293da30b
|
||||
chrono = "=0.4.39"
|
||||
chrono = "=0.4.41"
|
||||
# https://github.com/RustCrypto/formats/issues/1684
|
||||
base64ct = "=1.6.0"
|
||||
# Workaround for: https://github.com/eira-fransham/crunchy/issues/13
|
||||
|
||||
188
ci/set_lance_version.py
Normal file
188
ci/set_lance_version.py
Normal file
@@ -0,0 +1,188 @@
|
||||
import argparse
|
||||
import sys
|
||||
import json
|
||||
|
||||
|
||||
def run_command(command: str) -> str:
|
||||
"""
|
||||
Run a shell command and return stdout as a string.
|
||||
If exit code is not 0, raise an exception with the stderr output.
|
||||
"""
|
||||
import subprocess
|
||||
|
||||
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
||||
if result.returncode != 0:
|
||||
raise Exception(f"Command failed with error: {result.stderr.strip()}")
|
||||
return result.stdout.strip()
|
||||
|
||||
|
||||
def get_latest_stable_version() -> str:
|
||||
version_line = run_command("cargo info lance | grep '^version:'")
|
||||
version = version_line.split(" ")[1].strip()
|
||||
return version
|
||||
|
||||
|
||||
def get_latest_preview_version() -> str:
|
||||
lance_tags = run_command(
|
||||
"git ls-remote --tags https://github.com/lancedb/lance.git | grep 'refs/tags/v[0-9beta.-]\\+$'"
|
||||
).splitlines()
|
||||
lance_tags = (
|
||||
tag.split("refs/tags/")[1]
|
||||
for tag in lance_tags
|
||||
if "refs/tags/" in tag and "beta" in tag
|
||||
)
|
||||
from packaging.version import Version
|
||||
|
||||
latest = max(
|
||||
(tag[1:] for tag in lance_tags if tag.startswith("v")), key=lambda t: Version(t)
|
||||
)
|
||||
return str(latest)
|
||||
|
||||
|
||||
def extract_features(line: str) -> list:
|
||||
"""
|
||||
Extracts the features from a line in Cargo.toml.
|
||||
Example: 'lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }'
|
||||
Returns: ['dynamodb']
|
||||
"""
|
||||
import re
|
||||
|
||||
match = re.search(r'"features"\s*=\s*\[\s*(.*?)\s*\]', line, re.DOTALL)
|
||||
if match:
|
||||
features_str = match.group(1)
|
||||
return [f.strip('"') for f in features_str.split(",") if len(f) > 0]
|
||||
return []
|
||||
|
||||
|
||||
def update_cargo_toml(line_updater):
|
||||
"""
|
||||
Updates the Cargo.toml file by applying the line_updater function to each line.
|
||||
The line_updater function should take a line as input and return the updated line.
|
||||
"""
|
||||
with open("Cargo.toml", "r") as f:
|
||||
lines = f.readlines()
|
||||
|
||||
new_lines = []
|
||||
lance_line = ""
|
||||
is_parsing_lance_line = False
|
||||
for line in lines:
|
||||
if line.startswith("lance"):
|
||||
# Update the line using the provided function
|
||||
if line.strip().endswith("}"):
|
||||
new_lines.append(line_updater(line))
|
||||
else:
|
||||
lance_line = line
|
||||
is_parsing_lance_line = True
|
||||
elif is_parsing_lance_line:
|
||||
lance_line += line
|
||||
if line.strip().endswith("}"):
|
||||
new_lines.append(line_updater(lance_line))
|
||||
lance_line = ""
|
||||
is_parsing_lance_line = False
|
||||
else:
|
||||
print("doesn't end with }:", line)
|
||||
else:
|
||||
# Keep the line unchanged
|
||||
new_lines.append(line)
|
||||
|
||||
with open("Cargo.toml", "w") as f:
|
||||
f.writelines(new_lines)
|
||||
|
||||
|
||||
def set_stable_version(version: str):
|
||||
"""
|
||||
Sets lines to
|
||||
lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }
|
||||
lance-io = "=0.29.0"
|
||||
...
|
||||
"""
|
||||
|
||||
def line_updater(line: str) -> str:
|
||||
package_name = line.split("=", maxsplit=1)[0].strip()
|
||||
features = extract_features(line)
|
||||
if features:
|
||||
return f'{package_name} = {{ "version" = "={version}", "features" = {json.dumps(features)} }}\n'
|
||||
else:
|
||||
return f'{package_name} = "={version}"\n'
|
||||
|
||||
update_cargo_toml(line_updater)
|
||||
|
||||
|
||||
def set_preview_version(version: str):
|
||||
"""
|
||||
Sets lines to
|
||||
lance = { "version" = "=0.29.0", "features" = ["dynamodb"], tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance-io = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
...
|
||||
"""
|
||||
|
||||
def line_updater(line: str) -> str:
|
||||
package_name = line.split("=", maxsplit=1)[0].strip()
|
||||
features = extract_features(line)
|
||||
base_version = version.split("-")[0] # Get the base version without beta suffix
|
||||
if features:
|
||||
return f'{package_name} = {{ "version" = "={base_version}", "features" = {json.dumps(features)}, "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
|
||||
else:
|
||||
return f'{package_name} = {{ "version" = "={base_version}", "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
|
||||
|
||||
update_cargo_toml(line_updater)
|
||||
|
||||
|
||||
def set_local_version():
|
||||
"""
|
||||
Sets lines to
|
||||
lance = { path = "../lance/rust/lance", features = ["dynamodb"] }
|
||||
lance-io = { path = "../lance/rust/lance-io" }
|
||||
...
|
||||
"""
|
||||
|
||||
def line_updater(line: str) -> str:
|
||||
package_name = line.split("=", maxsplit=1)[0].strip()
|
||||
features = extract_features(line)
|
||||
if features:
|
||||
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}", "features" = {json.dumps(features)} }}\n'
|
||||
else:
|
||||
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}" }}\n'
|
||||
|
||||
update_cargo_toml(line_updater)
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(description="Set the version of the Lance package.")
|
||||
parser.add_argument(
|
||||
"version",
|
||||
type=str,
|
||||
help="The version to set for the Lance package. Use 'stable' for the latest stable version, 'preview' for latest preview version, or a specific version number (e.g., '0.1.0'). You can also specify 'local' to use a local path.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.version == "stable":
|
||||
latest_stable_version = get_latest_stable_version()
|
||||
print(
|
||||
f"Found latest stable version: \033[1mv{latest_stable_version}\033[0m",
|
||||
file=sys.stderr,
|
||||
)
|
||||
set_stable_version(latest_stable_version)
|
||||
elif args.version == "preview":
|
||||
latest_preview_version = get_latest_preview_version()
|
||||
print(
|
||||
f"Found latest preview version: \033[1mv{latest_preview_version}\033[0m",
|
||||
file=sys.stderr,
|
||||
)
|
||||
set_preview_version(latest_preview_version)
|
||||
elif args.version == "local":
|
||||
set_local_version()
|
||||
else:
|
||||
# Parse the version number.
|
||||
version = args.version
|
||||
# Ignore initial v if present.
|
||||
if version.startswith("v"):
|
||||
version = version[1:]
|
||||
|
||||
if "beta" in version:
|
||||
set_preview_version(version)
|
||||
else:
|
||||
set_stable_version(version)
|
||||
|
||||
print("Updating lockfiles...", file=sys.stderr, end="")
|
||||
run_command("cargo metadata > /dev/null")
|
||||
print(" done.", file=sys.stderr)
|
||||
30
ci/update_lockfiles.sh
Executable file
30
ci/update_lockfiles.sh
Executable file
@@ -0,0 +1,30 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
AMEND=false
|
||||
|
||||
for arg in "$@"; do
|
||||
if [[ "$arg" == "--amend" ]]; then
|
||||
AMEND=true
|
||||
fi
|
||||
done
|
||||
|
||||
# This updates the lockfile without building
|
||||
cargo metadata --quiet > /dev/null
|
||||
|
||||
pushd nodejs || exit 1
|
||||
npm install --package-lock-only --silent
|
||||
popd
|
||||
pushd node || exit 1
|
||||
npm install --package-lock-only --silent
|
||||
popd
|
||||
|
||||
if git diff --quiet --exit-code; then
|
||||
echo "No lockfile changes to commit; skipping amend."
|
||||
elif $AMEND; then
|
||||
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
|
||||
git commit --amend --no-edit
|
||||
else
|
||||
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
|
||||
git commit -m "Update lockfiles"
|
||||
fi
|
||||
5
docs/overrides/partials/main.html
Normal file
5
docs/overrides/partials/main.html
Normal file
@@ -0,0 +1,5 @@
|
||||
{% extends "base.html" %}
|
||||
|
||||
{% block announce %}
|
||||
📚 Starting June 1st, 2025, please use <a href="https://lancedb.github.io/documentation" target="_blank" rel="noopener noreferrer">lancedb.github.io/documentation</a> for the latest docs.
|
||||
{% endblock %}
|
||||
12
docs/package-lock.json
generated
12
docs/package-lock.json
generated
@@ -19,7 +19,7 @@
|
||||
},
|
||||
"../node": {
|
||||
"name": "vectordb",
|
||||
"version": "0.12.0",
|
||||
"version": "0.21.2-beta.0",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -65,11 +65,11 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.12.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.12.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.12.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.12.0"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.21.2-beta.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.21.2-beta.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.21.2-beta.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.21.2-beta.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.21.2-beta.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
|
||||
@@ -1,7 +1,9 @@
|
||||
# SQL Querying
|
||||
|
||||
You can use DuckDB and Apache Datafusion to query your LanceDB tables using SQL.
|
||||
This guide will show how to query Lance tables them using both.
|
||||
|
||||
We will re-use the dataset [created previously](./pandas_and_pyarrow.md):
|
||||
We will re-use the dataset [created previously](./tables.md):
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
@@ -27,21 +29,17 @@ arrow_table = table.to_lance()
|
||||
duckdb.query("SELECT * FROM arrow_table")
|
||||
```
|
||||
|
||||
```
|
||||
┌─────────────┬─────────┬────────┐
|
||||
│ vector │ item │ price │
|
||||
│ float[] │ varchar │ double │
|
||||
├─────────────┼─────────┼────────┤
|
||||
│ [3.1, 4.1] │ foo │ 10.0 │
|
||||
│ [5.9, 26.5] │ bar │ 20.0 │
|
||||
└─────────────┴─────────┴────────┘
|
||||
```
|
||||
| vector | item | price |
|
||||
| ----------- | ---- | ----- |
|
||||
| [3.1, 4.1] | foo | 10.0 |
|
||||
| [5.9, 26.5] | bar | 20.0 |
|
||||
|
||||
## Querying a LanceDB Table with Apache Datafusion
|
||||
|
||||
Have the required imports before doing any querying.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
|
||||
--8<-- "python/python/tests/docs/test_guide_tables.py:import-session-context"
|
||||
@@ -51,16 +49,12 @@ Have the required imports before doing any querying.
|
||||
Register the table created with the Datafusion session context.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
--8<-- "python/python/tests/docs/test_guide_tables.py:lance_sql_basic"
|
||||
```
|
||||
|
||||
```
|
||||
┌─────────────┬─────────┬────────┐
|
||||
│ vector │ item │ price │
|
||||
│ float[] │ varchar │ double │
|
||||
├─────────────┼─────────┼────────┤
|
||||
│ [3.1, 4.1] │ foo │ 10.0 │
|
||||
│ [5.9, 26.5] │ bar │ 20.0 │
|
||||
└─────────────┴─────────┴────────┘
|
||||
```
|
||||
| vector | item | price |
|
||||
| ----------- | ---- | ----- |
|
||||
| [3.1, 4.1] | foo | 10.0 |
|
||||
| [5.9, 26.5] | bar | 20.0 |
|
||||
|
||||
53
docs/src/js/classes/BooleanQuery.md
Normal file
53
docs/src/js/classes/BooleanQuery.md
Normal file
@@ -0,0 +1,53 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / BooleanQuery
|
||||
|
||||
# Class: BooleanQuery
|
||||
|
||||
Represents a full-text query interface.
|
||||
This interface defines the structure and behavior for full-text queries,
|
||||
including methods to retrieve the query type and convert the query to a dictionary format.
|
||||
|
||||
## Implements
|
||||
|
||||
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
|
||||
|
||||
## Constructors
|
||||
|
||||
### new BooleanQuery()
|
||||
|
||||
```ts
|
||||
new BooleanQuery(queries): BooleanQuery
|
||||
```
|
||||
|
||||
Creates an instance of BooleanQuery.
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **queries**: [[`Occur`](../enumerations/Occur.md), [`FullTextQuery`](../interfaces/FullTextQuery.md)][]
|
||||
An array of (Occur, FullTextQuery objects) to combine.
|
||||
Occur specifies whether the query must match, or should match.
|
||||
|
||||
#### Returns
|
||||
|
||||
[`BooleanQuery`](BooleanQuery.md)
|
||||
|
||||
## Methods
|
||||
|
||||
### queryType()
|
||||
|
||||
```ts
|
||||
queryType(): FullTextQueryType
|
||||
```
|
||||
|
||||
The type of the full-text query.
|
||||
|
||||
#### Returns
|
||||
|
||||
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)
|
||||
@@ -40,6 +40,8 @@ Creates an instance of MatchQuery.
|
||||
- `boost`: The boost factor for the query (default is 1.0).
|
||||
- `fuzziness`: The fuzziness level for the query (default is 0).
|
||||
- `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
|
||||
- `operator`: The logical operator to use for combining terms in the query (default is "OR").
|
||||
- `prefixLength`: The number of beginning characters being unchanged for fuzzy matching.
|
||||
|
||||
* **options.boost?**: `number`
|
||||
|
||||
@@ -47,6 +49,10 @@ Creates an instance of MatchQuery.
|
||||
|
||||
* **options.maxExpansions?**: `number`
|
||||
|
||||
* **options.operator?**: [`Operator`](../enumerations/Operator.md)
|
||||
|
||||
* **options.prefixLength?**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`MatchQuery`](MatchQuery.md)
|
||||
|
||||
@@ -38,9 +38,12 @@ Creates an instance of MultiMatchQuery.
|
||||
* **options?**
|
||||
Optional parameters for the multi-match query.
|
||||
- `boosts`: An array of boost factors for each column (default is 1.0 for all).
|
||||
- `operator`: The logical operator to use for combining terms in the query (default is "OR").
|
||||
|
||||
* **options.boosts?**: `number`[]
|
||||
|
||||
* **options.operator?**: [`Operator`](../enumerations/Operator.md)
|
||||
|
||||
#### Returns
|
||||
|
||||
[`MultiMatchQuery`](MultiMatchQuery.md)
|
||||
|
||||
@@ -19,7 +19,10 @@ including methods to retrieve the query type and convert the query to a dictiona
|
||||
### new PhraseQuery()
|
||||
|
||||
```ts
|
||||
new PhraseQuery(query, column): PhraseQuery
|
||||
new PhraseQuery(
|
||||
query,
|
||||
column,
|
||||
options?): PhraseQuery
|
||||
```
|
||||
|
||||
Creates an instance of `PhraseQuery`.
|
||||
@@ -32,6 +35,12 @@ Creates an instance of `PhraseQuery`.
|
||||
* **column**: `string`
|
||||
The name of the column to search within.
|
||||
|
||||
* **options?**
|
||||
Optional parameters for the phrase query.
|
||||
- `slop`: The maximum number of intervening unmatched positions allowed between words in the phrase (default is 0).
|
||||
|
||||
* **options.slop?**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`PhraseQuery`](PhraseQuery.md)
|
||||
|
||||
84
docs/src/js/classes/Session.md
Normal file
84
docs/src/js/classes/Session.md
Normal file
@@ -0,0 +1,84 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / Session
|
||||
|
||||
# Class: Session
|
||||
|
||||
A session for managing caches and object stores across LanceDB operations.
|
||||
|
||||
Sessions allow you to configure cache sizes for index and metadata caches,
|
||||
which can significantly impact performance for large datasets.
|
||||
|
||||
## Constructors
|
||||
|
||||
### new Session()
|
||||
|
||||
```ts
|
||||
new Session(indexCacheSizeBytes?, metadataCacheSizeBytes?): Session
|
||||
```
|
||||
|
||||
Create a new session with custom cache sizes.
|
||||
|
||||
# Parameters
|
||||
|
||||
- `index_cache_size_bytes`: The size of the index cache in bytes.
|
||||
Defaults to 6GB if not specified.
|
||||
- `metadata_cache_size_bytes`: The size of the metadata cache in bytes.
|
||||
Defaults to 1GB if not specified.
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **indexCacheSizeBytes?**: `null` \| `bigint`
|
||||
|
||||
* **metadataCacheSizeBytes?**: `null` \| `bigint`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Session`](Session.md)
|
||||
|
||||
## Methods
|
||||
|
||||
### approxNumItems()
|
||||
|
||||
```ts
|
||||
approxNumItems(): number
|
||||
```
|
||||
|
||||
Get the approximate number of items cached in the session.
|
||||
|
||||
#### Returns
|
||||
|
||||
`number`
|
||||
|
||||
***
|
||||
|
||||
### sizeBytes()
|
||||
|
||||
```ts
|
||||
sizeBytes(): bigint
|
||||
```
|
||||
|
||||
Get the current size of the session caches in bytes.
|
||||
|
||||
#### Returns
|
||||
|
||||
`bigint`
|
||||
|
||||
***
|
||||
|
||||
### default()
|
||||
|
||||
```ts
|
||||
static default(): Session
|
||||
```
|
||||
|
||||
Create a session with default cache sizes.
|
||||
|
||||
This is equivalent to creating a session with 6GB index cache
|
||||
and 1GB metadata cache.
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Session`](Session.md)
|
||||
@@ -612,7 +612,7 @@ of the given query
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **query**: `string` \| [`IntoVector`](../type-aliases/IntoVector.md) \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
|
||||
* **query**: `string` \| [`IntoVector`](../type-aliases/IntoVector.md) \| [`MultiVector`](../type-aliases/MultiVector.md) \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
|
||||
the query, a vector or string
|
||||
|
||||
* **queryType?**: `string`
|
||||
@@ -799,7 +799,7 @@ by `query`.
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **vector**: [`IntoVector`](../type-aliases/IntoVector.md)
|
||||
* **vector**: [`IntoVector`](../type-aliases/IntoVector.md) \| [`MultiVector`](../type-aliases/MultiVector.md)
|
||||
|
||||
#### Returns
|
||||
|
||||
|
||||
@@ -386,6 +386,53 @@ called then every valid row from the table will be returned.
|
||||
|
||||
***
|
||||
|
||||
### maximumNprobes()
|
||||
|
||||
```ts
|
||||
maximumNprobes(maximumNprobes): VectorQuery
|
||||
```
|
||||
|
||||
Set the maximum number of probes used.
|
||||
|
||||
This controls the maximum number of partitions that will be searched. If this
|
||||
number is greater than minimumNprobes then the excess partitions will _only_ be
|
||||
searched if we have not found enough results. This can be useful when there is
|
||||
a narrow filter to allow these queries to spend more time searching and avoid
|
||||
potential false negatives.
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **maximumNprobes**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
|
||||
***
|
||||
|
||||
### minimumNprobes()
|
||||
|
||||
```ts
|
||||
minimumNprobes(minimumNprobes): VectorQuery
|
||||
```
|
||||
|
||||
Set the minimum number of probes used.
|
||||
|
||||
This controls the minimum number of partitions that will be searched. This
|
||||
parameter will impact every query against a vector index, regardless of the
|
||||
filter. See `nprobes` for more details. Higher values will increase recall
|
||||
but will also increase latency.
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **minimumNprobes**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
|
||||
***
|
||||
|
||||
### nprobes()
|
||||
|
||||
```ts
|
||||
@@ -413,6 +460,10 @@ For best results we recommend tuning this parameter with a benchmark against
|
||||
your actual data to find the smallest possible value that will still give
|
||||
you the desired recall.
|
||||
|
||||
For more fine grained control over behavior when you have a very narrow filter
|
||||
you can use `minimumNprobes` and `maximumNprobes`. This method sets both
|
||||
the minimum and maximum to the same value.
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **nprobes**: `number`
|
||||
|
||||
@@ -15,6 +15,14 @@ Enum representing the types of full-text queries supported.
|
||||
|
||||
## Enumeration Members
|
||||
|
||||
### Boolean
|
||||
|
||||
```ts
|
||||
Boolean: "boolean";
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### Boost
|
||||
|
||||
```ts
|
||||
|
||||
37
docs/src/js/enumerations/Occur.md
Normal file
37
docs/src/js/enumerations/Occur.md
Normal file
@@ -0,0 +1,37 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / Occur
|
||||
|
||||
# Enumeration: Occur
|
||||
|
||||
Enum representing the occurrence of terms in full-text queries.
|
||||
|
||||
- `Must`: The term must be present in the document.
|
||||
- `Should`: The term should contribute to the document score, but is not required.
|
||||
- `MustNot`: The term must not be present in the document.
|
||||
|
||||
## Enumeration Members
|
||||
|
||||
### Must
|
||||
|
||||
```ts
|
||||
Must: "MUST";
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### MustNot
|
||||
|
||||
```ts
|
||||
MustNot: "MUST_NOT";
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### Should
|
||||
|
||||
```ts
|
||||
Should: "SHOULD";
|
||||
```
|
||||
28
docs/src/js/enumerations/Operator.md
Normal file
28
docs/src/js/enumerations/Operator.md
Normal file
@@ -0,0 +1,28 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / Operator
|
||||
|
||||
# Enumeration: Operator
|
||||
|
||||
Enum representing the logical operators used in full-text queries.
|
||||
|
||||
- `And`: All terms must match.
|
||||
- `Or`: At least one term must match.
|
||||
|
||||
## Enumeration Members
|
||||
|
||||
### And
|
||||
|
||||
```ts
|
||||
And: "AND";
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### Or
|
||||
|
||||
```ts
|
||||
Or: "OR";
|
||||
```
|
||||
@@ -6,10 +6,13 @@
|
||||
|
||||
# Function: connect()
|
||||
|
||||
## connect(uri, options)
|
||||
## connect(uri, options, session)
|
||||
|
||||
```ts
|
||||
function connect(uri, options?): Promise<Connection>
|
||||
function connect(
|
||||
uri,
|
||||
options?,
|
||||
session?): Promise<Connection>
|
||||
```
|
||||
|
||||
Connect to a LanceDB instance at the given URI.
|
||||
@@ -29,6 +32,8 @@ Accepted formats:
|
||||
* **options?**: `Partial`<[`ConnectionOptions`](../interfaces/ConnectionOptions.md)>
|
||||
The options to use when connecting to the database
|
||||
|
||||
* **session?**: [`Session`](../classes/Session.md)
|
||||
|
||||
### Returns
|
||||
|
||||
`Promise`<[`Connection`](../classes/Connection.md)>
|
||||
@@ -77,7 +82,7 @@ Accepted formats:
|
||||
|
||||
[ConnectionOptions](../interfaces/ConnectionOptions.md) for more details on the URI format.
|
||||
|
||||
### Example
|
||||
### Examples
|
||||
|
||||
```ts
|
||||
const conn = await connect({
|
||||
@@ -85,3 +90,11 @@ const conn = await connect({
|
||||
storageOptions: {timeout: "60s"}
|
||||
});
|
||||
```
|
||||
|
||||
```ts
|
||||
const session = Session.default();
|
||||
const conn = await connect({
|
||||
uri: "/path/to/database",
|
||||
session: session
|
||||
});
|
||||
```
|
||||
|
||||
@@ -12,9 +12,12 @@
|
||||
## Enumerations
|
||||
|
||||
- [FullTextQueryType](enumerations/FullTextQueryType.md)
|
||||
- [Occur](enumerations/Occur.md)
|
||||
- [Operator](enumerations/Operator.md)
|
||||
|
||||
## Classes
|
||||
|
||||
- [BooleanQuery](classes/BooleanQuery.md)
|
||||
- [BoostQuery](classes/BoostQuery.md)
|
||||
- [Connection](classes/Connection.md)
|
||||
- [Index](classes/Index.md)
|
||||
@@ -26,6 +29,7 @@
|
||||
- [Query](classes/Query.md)
|
||||
- [QueryBase](classes/QueryBase.md)
|
||||
- [RecordBatchIterator](classes/RecordBatchIterator.md)
|
||||
- [Session](classes/Session.md)
|
||||
- [Table](classes/Table.md)
|
||||
- [TagContents](classes/TagContents.md)
|
||||
- [Tags](classes/Tags.md)
|
||||
@@ -81,6 +85,7 @@
|
||||
- [FieldLike](type-aliases/FieldLike.md)
|
||||
- [IntoSql](type-aliases/IntoSql.md)
|
||||
- [IntoVector](type-aliases/IntoVector.md)
|
||||
- [MultiVector](type-aliases/MultiVector.md)
|
||||
- [RecordBatchLike](type-aliases/RecordBatchLike.md)
|
||||
- [SchemaLike](type-aliases/SchemaLike.md)
|
||||
- [TableLike](type-aliases/TableLike.md)
|
||||
|
||||
@@ -70,6 +70,17 @@ Defaults to 'us-east-1'.
|
||||
|
||||
***
|
||||
|
||||
### session?
|
||||
|
||||
```ts
|
||||
optional session: Session;
|
||||
```
|
||||
|
||||
(For LanceDB OSS only): the session to use for this connection. Holds
|
||||
shared caches and other session-specific state.
|
||||
|
||||
***
|
||||
|
||||
### storageOptions?
|
||||
|
||||
```ts
|
||||
|
||||
@@ -23,7 +23,7 @@ whether to remove punctuation
|
||||
### baseTokenizer?
|
||||
|
||||
```ts
|
||||
optional baseTokenizer: "raw" | "simple" | "whitespace";
|
||||
optional baseTokenizer: "raw" | "simple" | "whitespace" | "ngram";
|
||||
```
|
||||
|
||||
The tokenizer to use when building the index.
|
||||
@@ -71,6 +71,36 @@ tokens longer than this length will be ignored
|
||||
|
||||
***
|
||||
|
||||
### ngramMaxLength?
|
||||
|
||||
```ts
|
||||
optional ngramMaxLength: number;
|
||||
```
|
||||
|
||||
ngram max length
|
||||
|
||||
***
|
||||
|
||||
### ngramMinLength?
|
||||
|
||||
```ts
|
||||
optional ngramMinLength: number;
|
||||
```
|
||||
|
||||
ngram min length
|
||||
|
||||
***
|
||||
|
||||
### prefixOnly?
|
||||
|
||||
```ts
|
||||
optional prefixOnly: boolean;
|
||||
```
|
||||
|
||||
whether to only index the prefix of the token for ngram tokenizer
|
||||
|
||||
***
|
||||
|
||||
### removeStopWords?
|
||||
|
||||
```ts
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
|
||||
## Properties
|
||||
|
||||
### indexCacheSize?
|
||||
### ~~indexCacheSize?~~
|
||||
|
||||
```ts
|
||||
optional indexCacheSize: number;
|
||||
@@ -16,6 +16,11 @@ optional indexCacheSize: number;
|
||||
|
||||
Set the size of the index cache, specified as a number of entries
|
||||
|
||||
#### Deprecated
|
||||
|
||||
Use session-level cache configuration instead.
|
||||
Create a Session with custom cache sizes and pass it to the connect() function.
|
||||
|
||||
The exact meaning of an "entry" will depend on the type of index:
|
||||
- IVF: there is one entry for each IVF partition
|
||||
- BTREE: there is one entry for the entire index
|
||||
|
||||
@@ -24,10 +24,10 @@ The default is 7 days
|
||||
// Delete all versions older than 1 day
|
||||
const olderThan = new Date();
|
||||
olderThan.setDate(olderThan.getDate() - 1));
|
||||
tbl.cleanupOlderVersions(olderThan);
|
||||
tbl.optimize({cleanupOlderThan: olderThan});
|
||||
|
||||
// Delete all versions except the current version
|
||||
tbl.cleanupOlderVersions(new Date());
|
||||
tbl.optimize({cleanupOlderThan: new Date()});
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
11
docs/src/js/type-aliases/MultiVector.md
Normal file
11
docs/src/js/type-aliases/MultiVector.md
Normal file
@@ -0,0 +1,11 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / MultiVector
|
||||
|
||||
# Type Alias: MultiVector
|
||||
|
||||
```ts
|
||||
type MultiVector: IntoVector[];
|
||||
```
|
||||
@@ -428,7 +428,7 @@
|
||||
"\n",
|
||||
"**Why?** \n",
|
||||
"Embedding the UFO dataset and ingesting it into LanceDB takes **~2 hours on a T4 GPU**. To save time: \n",
|
||||
"- **Use the pre-prepared table with index created ** (provided below) to proceed directly to step7: search. \n",
|
||||
"- **Use the pre-prepared table with index created** (provided below) to proceed directly to **Step 7**: search. \n",
|
||||
"- **Step 5a** contains the full ingestion code for reference (run it only if necessary). \n",
|
||||
"- **Step 6** contains the details on creating the index on the multivector column"
|
||||
]
|
||||
|
||||
@@ -30,7 +30,8 @@ excluded_globs = [
|
||||
"../src/rag/advanced_techniques/*.md",
|
||||
"../src/guides/scalar_index.md",
|
||||
"../src/guides/storage.md",
|
||||
"../src/search.md"
|
||||
"../src/search.md",
|
||||
"../src/guides/sql_querying.md",
|
||||
]
|
||||
|
||||
python_prefix = "py"
|
||||
|
||||
@@ -7,3 +7,4 @@ tantivy==0.20.1
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
torch
|
||||
polars>=0.19, <=1.3.0
|
||||
datafusion
|
||||
|
||||
19
java/.mvn/wrapper/maven-wrapper.properties
vendored
Normal file
19
java/.mvn/wrapper/maven-wrapper.properties
vendored
Normal file
@@ -0,0 +1,19 @@
|
||||
# Licensed to the Apache Software Foundation (ASF) under one
|
||||
# or more contributor license agreements. See the NOTICE file
|
||||
# distributed with this work for additional information
|
||||
# regarding copyright ownership. The ASF licenses this file
|
||||
# to you under the Apache License, Version 2.0 (the
|
||||
# "License"); you may not use this file except in compliance
|
||||
# with the License. You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing,
|
||||
# software distributed under the License is distributed on an
|
||||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
# KIND, either express or implied. See the License for the
|
||||
# specific language governing permissions and limitations
|
||||
# under the License.
|
||||
wrapperVersion=3.3.2
|
||||
distributionType=only-script
|
||||
distributionUrl=https://repo.maven.apache.org/maven2/org/apache/maven/apache-maven/3.9.9/apache-maven-3.9.9-bin.zip
|
||||
37
java/README.md
Normal file
37
java/README.md
Normal file
@@ -0,0 +1,37 @@
|
||||
# LanceDB Java SDK
|
||||
|
||||
## Configuration and Initialization
|
||||
|
||||
### LanceDB Cloud
|
||||
|
||||
For LanceDB Cloud, use the simplified builder API:
|
||||
|
||||
```java
|
||||
import com.lancedb.lance.namespace.LanceRestNamespace;
|
||||
|
||||
// If your DB url is db://example-db, then your database here is example-db
|
||||
LanceRestNamespace namespace = LanceDBRestNamespaces.builder()
|
||||
.apiKey("your_lancedb_cloud_api_key")
|
||||
.database("your_database_name")
|
||||
.build();
|
||||
```
|
||||
|
||||
### LanceDB Enterprise
|
||||
|
||||
For Enterprise deployments, use your VPC endpoint:
|
||||
|
||||
```java
|
||||
LanceRestNamespace namespace = LanceDBRestNamespaces.builder()
|
||||
.apiKey("your_lancedb_enterprise_api_key")
|
||||
.database("your-top-dir") // Your top level folder under your cloud bucket, e.g. s3://your-bucket/your-top-dir/
|
||||
.hostOverride("http://<vpc_endpoint_dns_name>:80")
|
||||
.build();
|
||||
```
|
||||
|
||||
## Development
|
||||
|
||||
Build:
|
||||
|
||||
```shell
|
||||
./mvnw install
|
||||
```
|
||||
@@ -19,7 +19,7 @@ lancedb = { path = "../../../rust/lancedb" }
|
||||
lance = { workspace = true }
|
||||
arrow = { workspace = true, features = ["ffi"] }
|
||||
arrow-schema.workspace = true
|
||||
tokio = "1.23"
|
||||
tokio = "1.46"
|
||||
jni = "0.21.1"
|
||||
snafu.workspace = true
|
||||
lazy_static.workspace = true
|
||||
|
||||
@@ -8,18 +8,24 @@
|
||||
<parent>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.19.2-beta.0</version>
|
||||
<version>0.21.2-beta.1</version>
|
||||
<relativePath>../pom.xml</relativePath>
|
||||
</parent>
|
||||
|
||||
<artifactId>lancedb-core</artifactId>
|
||||
<name>LanceDB Core</name>
|
||||
<name>${project.artifactId}</name>
|
||||
<description>LanceDB Core</description>
|
||||
<packaging>jar</packaging>
|
||||
<properties>
|
||||
<rust.release.build>false</rust.release.build>
|
||||
</properties>
|
||||
|
||||
<dependencies>
|
||||
<dependency>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lance-namespace-core</artifactId>
|
||||
<version>0.0.1</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-vector</artifactId>
|
||||
|
||||
26
java/lance-namespace/pom.xml
Normal file
26
java/lance-namespace/pom.xml
Normal file
@@ -0,0 +1,26 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
|
||||
<project xmlns="http://maven.apache.org/POM/4.0.0"
|
||||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
||||
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
|
||||
<parent>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.21.2-beta.1</version>
|
||||
<relativePath>../pom.xml</relativePath>
|
||||
</parent>
|
||||
|
||||
<artifactId>lancedb-lance-namespace</artifactId>
|
||||
<name>${project.artifactId}</name>
|
||||
<description>LanceDB Java Integration with Lance Namespace</description>
|
||||
<packaging>jar</packaging>
|
||||
|
||||
<dependencies>
|
||||
<dependency>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lance-namespace-core</artifactId>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
</project>
|
||||
@@ -0,0 +1,146 @@
|
||||
/*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package com.lancedb.lancedb;
|
||||
|
||||
import com.lancedb.lance.namespace.LanceRestNamespace;
|
||||
import com.lancedb.lance.namespace.client.apache.ApiClient;
|
||||
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
import java.util.Optional;
|
||||
|
||||
/** Util class to help construct a {@link LanceRestNamespace} for LanceDB. */
|
||||
public class LanceDbRestNamespaces {
|
||||
private static final String DEFAULT_REGION = "us-east-1";
|
||||
private static final String CLOUD_URL_PATTERN = "https://%s.%s.api.lancedb.com";
|
||||
|
||||
private String apiKey;
|
||||
private String database;
|
||||
private Optional<String> hostOverride = Optional.empty();
|
||||
private Optional<String> region = Optional.empty();
|
||||
private Map<String, String> additionalConfig = new HashMap<>();
|
||||
|
||||
private LanceDbRestNamespaces() {}
|
||||
|
||||
/**
|
||||
* Create a new builder instance.
|
||||
*
|
||||
* @return A new LanceRestNamespaceBuilder
|
||||
*/
|
||||
public static LanceDbRestNamespaces builder() {
|
||||
return new LanceDbRestNamespaces();
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the API key (required).
|
||||
*
|
||||
* @param apiKey The LanceDB API key
|
||||
* @return This builder
|
||||
*/
|
||||
public LanceDbRestNamespaces apiKey(String apiKey) {
|
||||
if (apiKey == null || apiKey.trim().isEmpty()) {
|
||||
throw new IllegalArgumentException("API key cannot be null or empty");
|
||||
}
|
||||
this.apiKey = apiKey;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the database name (required).
|
||||
*
|
||||
* @param database The database name
|
||||
* @return This builder
|
||||
*/
|
||||
public LanceDbRestNamespaces database(String database) {
|
||||
if (database == null || database.trim().isEmpty()) {
|
||||
throw new IllegalArgumentException("Database cannot be null or empty");
|
||||
}
|
||||
this.database = database;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set a custom host override (optional). When set, this overrides the default LanceDB Cloud URL
|
||||
* construction. Use this for LanceDB Enterprise deployments.
|
||||
*
|
||||
* @param hostOverride The complete base URL (e.g., "http://your-vpc-endpoint:80")
|
||||
* @return This builder
|
||||
*/
|
||||
public LanceDbRestNamespaces hostOverride(String hostOverride) {
|
||||
this.hostOverride = Optional.ofNullable(hostOverride);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the region for LanceDB Cloud (optional). Defaults to "us-east-1" if not specified. This is
|
||||
* ignored when hostOverride is set.
|
||||
*
|
||||
* @param region The AWS region (e.g., "us-east-1", "eu-west-1")
|
||||
* @return This builder
|
||||
*/
|
||||
public LanceDbRestNamespaces region(String region) {
|
||||
this.region = Optional.ofNullable(region);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Add additional configuration parameters.
|
||||
*
|
||||
* @param key The configuration key
|
||||
* @param value The configuration value
|
||||
* @return This builder
|
||||
*/
|
||||
public LanceDbRestNamespaces config(String key, String value) {
|
||||
this.additionalConfig.put(key, value);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Build the LanceRestNamespace instance.
|
||||
*
|
||||
* @return A configured LanceRestNamespace
|
||||
* @throws IllegalStateException if required parameters are missing
|
||||
*/
|
||||
public LanceRestNamespace build() {
|
||||
// Validate required fields
|
||||
if (apiKey == null) {
|
||||
throw new IllegalStateException("API key is required");
|
||||
}
|
||||
if (database == null) {
|
||||
throw new IllegalStateException("Database is required");
|
||||
}
|
||||
|
||||
// Build configuration map
|
||||
Map<String, String> config = new HashMap<>(additionalConfig);
|
||||
config.put("headers.x-lancedb-database", database);
|
||||
config.put("headers.x-api-key", apiKey);
|
||||
|
||||
// Determine base URL
|
||||
String baseUrl;
|
||||
if (hostOverride.isPresent()) {
|
||||
baseUrl = hostOverride.get();
|
||||
config.put("host_override", hostOverride.get());
|
||||
} else {
|
||||
String effectiveRegion = region.orElse(DEFAULT_REGION);
|
||||
baseUrl = String.format(CLOUD_URL_PATTERN, database, effectiveRegion);
|
||||
config.put("region", effectiveRegion);
|
||||
}
|
||||
|
||||
// Create and configure ApiClient
|
||||
ApiClient apiClient = new ApiClient();
|
||||
apiClient.setBasePath(baseUrl);
|
||||
|
||||
return new LanceRestNamespace(apiClient, config);
|
||||
}
|
||||
}
|
||||
259
java/mvnw
vendored
Executable file
259
java/mvnw
vendored
Executable file
@@ -0,0 +1,259 @@
|
||||
#!/bin/sh
|
||||
# ----------------------------------------------------------------------------
|
||||
# Licensed to the Apache Software Foundation (ASF) under one
|
||||
# or more contributor license agreements. See the NOTICE file
|
||||
# distributed with this work for additional information
|
||||
# regarding copyright ownership. The ASF licenses this file
|
||||
# to you under the Apache License, Version 2.0 (the
|
||||
# "License"); you may not use this file except in compliance
|
||||
# with the License. You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing,
|
||||
# software distributed under the License is distributed on an
|
||||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
# KIND, either express or implied. See the License for the
|
||||
# specific language governing permissions and limitations
|
||||
# under the License.
|
||||
# ----------------------------------------------------------------------------
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Apache Maven Wrapper startup batch script, version 3.3.2
|
||||
#
|
||||
# Optional ENV vars
|
||||
# -----------------
|
||||
# JAVA_HOME - location of a JDK home dir, required when download maven via java source
|
||||
# MVNW_REPOURL - repo url base for downloading maven distribution
|
||||
# MVNW_USERNAME/MVNW_PASSWORD - user and password for downloading maven
|
||||
# MVNW_VERBOSE - true: enable verbose log; debug: trace the mvnw script; others: silence the output
|
||||
# ----------------------------------------------------------------------------
|
||||
|
||||
set -euf
|
||||
[ "${MVNW_VERBOSE-}" != debug ] || set -x
|
||||
|
||||
# OS specific support.
|
||||
native_path() { printf %s\\n "$1"; }
|
||||
case "$(uname)" in
|
||||
CYGWIN* | MINGW*)
|
||||
[ -z "${JAVA_HOME-}" ] || JAVA_HOME="$(cygpath --unix "$JAVA_HOME")"
|
||||
native_path() { cygpath --path --windows "$1"; }
|
||||
;;
|
||||
esac
|
||||
|
||||
# set JAVACMD and JAVACCMD
|
||||
set_java_home() {
|
||||
# For Cygwin and MinGW, ensure paths are in Unix format before anything is touched
|
||||
if [ -n "${JAVA_HOME-}" ]; then
|
||||
if [ -x "$JAVA_HOME/jre/sh/java" ]; then
|
||||
# IBM's JDK on AIX uses strange locations for the executables
|
||||
JAVACMD="$JAVA_HOME/jre/sh/java"
|
||||
JAVACCMD="$JAVA_HOME/jre/sh/javac"
|
||||
else
|
||||
JAVACMD="$JAVA_HOME/bin/java"
|
||||
JAVACCMD="$JAVA_HOME/bin/javac"
|
||||
|
||||
if [ ! -x "$JAVACMD" ] || [ ! -x "$JAVACCMD" ]; then
|
||||
echo "The JAVA_HOME environment variable is not defined correctly, so mvnw cannot run." >&2
|
||||
echo "JAVA_HOME is set to \"$JAVA_HOME\", but \"\$JAVA_HOME/bin/java\" or \"\$JAVA_HOME/bin/javac\" does not exist." >&2
|
||||
return 1
|
||||
fi
|
||||
fi
|
||||
else
|
||||
JAVACMD="$(
|
||||
'set' +e
|
||||
'unset' -f command 2>/dev/null
|
||||
'command' -v java
|
||||
)" || :
|
||||
JAVACCMD="$(
|
||||
'set' +e
|
||||
'unset' -f command 2>/dev/null
|
||||
'command' -v javac
|
||||
)" || :
|
||||
|
||||
if [ ! -x "${JAVACMD-}" ] || [ ! -x "${JAVACCMD-}" ]; then
|
||||
echo "The java/javac command does not exist in PATH nor is JAVA_HOME set, so mvnw cannot run." >&2
|
||||
return 1
|
||||
fi
|
||||
fi
|
||||
}
|
||||
|
||||
# hash string like Java String::hashCode
|
||||
hash_string() {
|
||||
str="${1:-}" h=0
|
||||
while [ -n "$str" ]; do
|
||||
char="${str%"${str#?}"}"
|
||||
h=$(((h * 31 + $(LC_CTYPE=C printf %d "'$char")) % 4294967296))
|
||||
str="${str#?}"
|
||||
done
|
||||
printf %x\\n $h
|
||||
}
|
||||
|
||||
verbose() { :; }
|
||||
[ "${MVNW_VERBOSE-}" != true ] || verbose() { printf %s\\n "${1-}"; }
|
||||
|
||||
die() {
|
||||
printf %s\\n "$1" >&2
|
||||
exit 1
|
||||
}
|
||||
|
||||
trim() {
|
||||
# MWRAPPER-139:
|
||||
# Trims trailing and leading whitespace, carriage returns, tabs, and linefeeds.
|
||||
# Needed for removing poorly interpreted newline sequences when running in more
|
||||
# exotic environments such as mingw bash on Windows.
|
||||
printf "%s" "${1}" | tr -d '[:space:]'
|
||||
}
|
||||
|
||||
# parse distributionUrl and optional distributionSha256Sum, requires .mvn/wrapper/maven-wrapper.properties
|
||||
while IFS="=" read -r key value; do
|
||||
case "${key-}" in
|
||||
distributionUrl) distributionUrl=$(trim "${value-}") ;;
|
||||
distributionSha256Sum) distributionSha256Sum=$(trim "${value-}") ;;
|
||||
esac
|
||||
done <"${0%/*}/.mvn/wrapper/maven-wrapper.properties"
|
||||
[ -n "${distributionUrl-}" ] || die "cannot read distributionUrl property in ${0%/*}/.mvn/wrapper/maven-wrapper.properties"
|
||||
|
||||
case "${distributionUrl##*/}" in
|
||||
maven-mvnd-*bin.*)
|
||||
MVN_CMD=mvnd.sh _MVNW_REPO_PATTERN=/maven/mvnd/
|
||||
case "${PROCESSOR_ARCHITECTURE-}${PROCESSOR_ARCHITEW6432-}:$(uname -a)" in
|
||||
*AMD64:CYGWIN* | *AMD64:MINGW*) distributionPlatform=windows-amd64 ;;
|
||||
:Darwin*x86_64) distributionPlatform=darwin-amd64 ;;
|
||||
:Darwin*arm64) distributionPlatform=darwin-aarch64 ;;
|
||||
:Linux*x86_64*) distributionPlatform=linux-amd64 ;;
|
||||
*)
|
||||
echo "Cannot detect native platform for mvnd on $(uname)-$(uname -m), use pure java version" >&2
|
||||
distributionPlatform=linux-amd64
|
||||
;;
|
||||
esac
|
||||
distributionUrl="${distributionUrl%-bin.*}-$distributionPlatform.zip"
|
||||
;;
|
||||
maven-mvnd-*) MVN_CMD=mvnd.sh _MVNW_REPO_PATTERN=/maven/mvnd/ ;;
|
||||
*) MVN_CMD="mvn${0##*/mvnw}" _MVNW_REPO_PATTERN=/org/apache/maven/ ;;
|
||||
esac
|
||||
|
||||
# apply MVNW_REPOURL and calculate MAVEN_HOME
|
||||
# maven home pattern: ~/.m2/wrapper/dists/{apache-maven-<version>,maven-mvnd-<version>-<platform>}/<hash>
|
||||
[ -z "${MVNW_REPOURL-}" ] || distributionUrl="$MVNW_REPOURL$_MVNW_REPO_PATTERN${distributionUrl#*"$_MVNW_REPO_PATTERN"}"
|
||||
distributionUrlName="${distributionUrl##*/}"
|
||||
distributionUrlNameMain="${distributionUrlName%.*}"
|
||||
distributionUrlNameMain="${distributionUrlNameMain%-bin}"
|
||||
MAVEN_USER_HOME="${MAVEN_USER_HOME:-${HOME}/.m2}"
|
||||
MAVEN_HOME="${MAVEN_USER_HOME}/wrapper/dists/${distributionUrlNameMain-}/$(hash_string "$distributionUrl")"
|
||||
|
||||
exec_maven() {
|
||||
unset MVNW_VERBOSE MVNW_USERNAME MVNW_PASSWORD MVNW_REPOURL || :
|
||||
exec "$MAVEN_HOME/bin/$MVN_CMD" "$@" || die "cannot exec $MAVEN_HOME/bin/$MVN_CMD"
|
||||
}
|
||||
|
||||
if [ -d "$MAVEN_HOME" ]; then
|
||||
verbose "found existing MAVEN_HOME at $MAVEN_HOME"
|
||||
exec_maven "$@"
|
||||
fi
|
||||
|
||||
case "${distributionUrl-}" in
|
||||
*?-bin.zip | *?maven-mvnd-?*-?*.zip) ;;
|
||||
*) die "distributionUrl is not valid, must match *-bin.zip or maven-mvnd-*.zip, but found '${distributionUrl-}'" ;;
|
||||
esac
|
||||
|
||||
# prepare tmp dir
|
||||
if TMP_DOWNLOAD_DIR="$(mktemp -d)" && [ -d "$TMP_DOWNLOAD_DIR" ]; then
|
||||
clean() { rm -rf -- "$TMP_DOWNLOAD_DIR"; }
|
||||
trap clean HUP INT TERM EXIT
|
||||
else
|
||||
die "cannot create temp dir"
|
||||
fi
|
||||
|
||||
mkdir -p -- "${MAVEN_HOME%/*}"
|
||||
|
||||
# Download and Install Apache Maven
|
||||
verbose "Couldn't find MAVEN_HOME, downloading and installing it ..."
|
||||
verbose "Downloading from: $distributionUrl"
|
||||
verbose "Downloading to: $TMP_DOWNLOAD_DIR/$distributionUrlName"
|
||||
|
||||
# select .zip or .tar.gz
|
||||
if ! command -v unzip >/dev/null; then
|
||||
distributionUrl="${distributionUrl%.zip}.tar.gz"
|
||||
distributionUrlName="${distributionUrl##*/}"
|
||||
fi
|
||||
|
||||
# verbose opt
|
||||
__MVNW_QUIET_WGET=--quiet __MVNW_QUIET_CURL=--silent __MVNW_QUIET_UNZIP=-q __MVNW_QUIET_TAR=''
|
||||
[ "${MVNW_VERBOSE-}" != true ] || __MVNW_QUIET_WGET='' __MVNW_QUIET_CURL='' __MVNW_QUIET_UNZIP='' __MVNW_QUIET_TAR=v
|
||||
|
||||
# normalize http auth
|
||||
case "${MVNW_PASSWORD:+has-password}" in
|
||||
'') MVNW_USERNAME='' MVNW_PASSWORD='' ;;
|
||||
has-password) [ -n "${MVNW_USERNAME-}" ] || MVNW_USERNAME='' MVNW_PASSWORD='' ;;
|
||||
esac
|
||||
|
||||
if [ -z "${MVNW_USERNAME-}" ] && command -v wget >/dev/null; then
|
||||
verbose "Found wget ... using wget"
|
||||
wget ${__MVNW_QUIET_WGET:+"$__MVNW_QUIET_WGET"} "$distributionUrl" -O "$TMP_DOWNLOAD_DIR/$distributionUrlName" || die "wget: Failed to fetch $distributionUrl"
|
||||
elif [ -z "${MVNW_USERNAME-}" ] && command -v curl >/dev/null; then
|
||||
verbose "Found curl ... using curl"
|
||||
curl ${__MVNW_QUIET_CURL:+"$__MVNW_QUIET_CURL"} -f -L -o "$TMP_DOWNLOAD_DIR/$distributionUrlName" "$distributionUrl" || die "curl: Failed to fetch $distributionUrl"
|
||||
elif set_java_home; then
|
||||
verbose "Falling back to use Java to download"
|
||||
javaSource="$TMP_DOWNLOAD_DIR/Downloader.java"
|
||||
targetZip="$TMP_DOWNLOAD_DIR/$distributionUrlName"
|
||||
cat >"$javaSource" <<-END
|
||||
public class Downloader extends java.net.Authenticator
|
||||
{
|
||||
protected java.net.PasswordAuthentication getPasswordAuthentication()
|
||||
{
|
||||
return new java.net.PasswordAuthentication( System.getenv( "MVNW_USERNAME" ), System.getenv( "MVNW_PASSWORD" ).toCharArray() );
|
||||
}
|
||||
public static void main( String[] args ) throws Exception
|
||||
{
|
||||
setDefault( new Downloader() );
|
||||
java.nio.file.Files.copy( java.net.URI.create( args[0] ).toURL().openStream(), java.nio.file.Paths.get( args[1] ).toAbsolutePath().normalize() );
|
||||
}
|
||||
}
|
||||
END
|
||||
# For Cygwin/MinGW, switch paths to Windows format before running javac and java
|
||||
verbose " - Compiling Downloader.java ..."
|
||||
"$(native_path "$JAVACCMD")" "$(native_path "$javaSource")" || die "Failed to compile Downloader.java"
|
||||
verbose " - Running Downloader.java ..."
|
||||
"$(native_path "$JAVACMD")" -cp "$(native_path "$TMP_DOWNLOAD_DIR")" Downloader "$distributionUrl" "$(native_path "$targetZip")"
|
||||
fi
|
||||
|
||||
# If specified, validate the SHA-256 sum of the Maven distribution zip file
|
||||
if [ -n "${distributionSha256Sum-}" ]; then
|
||||
distributionSha256Result=false
|
||||
if [ "$MVN_CMD" = mvnd.sh ]; then
|
||||
echo "Checksum validation is not supported for maven-mvnd." >&2
|
||||
echo "Please disable validation by removing 'distributionSha256Sum' from your maven-wrapper.properties." >&2
|
||||
exit 1
|
||||
elif command -v sha256sum >/dev/null; then
|
||||
if echo "$distributionSha256Sum $TMP_DOWNLOAD_DIR/$distributionUrlName" | sha256sum -c >/dev/null 2>&1; then
|
||||
distributionSha256Result=true
|
||||
fi
|
||||
elif command -v shasum >/dev/null; then
|
||||
if echo "$distributionSha256Sum $TMP_DOWNLOAD_DIR/$distributionUrlName" | shasum -a 256 -c >/dev/null 2>&1; then
|
||||
distributionSha256Result=true
|
||||
fi
|
||||
else
|
||||
echo "Checksum validation was requested but neither 'sha256sum' or 'shasum' are available." >&2
|
||||
echo "Please install either command, or disable validation by removing 'distributionSha256Sum' from your maven-wrapper.properties." >&2
|
||||
exit 1
|
||||
fi
|
||||
if [ $distributionSha256Result = false ]; then
|
||||
echo "Error: Failed to validate Maven distribution SHA-256, your Maven distribution might be compromised." >&2
|
||||
echo "If you updated your Maven version, you need to update the specified distributionSha256Sum property." >&2
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
# unzip and move
|
||||
if command -v unzip >/dev/null; then
|
||||
unzip ${__MVNW_QUIET_UNZIP:+"$__MVNW_QUIET_UNZIP"} "$TMP_DOWNLOAD_DIR/$distributionUrlName" -d "$TMP_DOWNLOAD_DIR" || die "failed to unzip"
|
||||
else
|
||||
tar xzf${__MVNW_QUIET_TAR:+"$__MVNW_QUIET_TAR"} "$TMP_DOWNLOAD_DIR/$distributionUrlName" -C "$TMP_DOWNLOAD_DIR" || die "failed to untar"
|
||||
fi
|
||||
printf %s\\n "$distributionUrl" >"$TMP_DOWNLOAD_DIR/$distributionUrlNameMain/mvnw.url"
|
||||
mv -- "$TMP_DOWNLOAD_DIR/$distributionUrlNameMain" "$MAVEN_HOME" || [ -d "$MAVEN_HOME" ] || die "fail to move MAVEN_HOME"
|
||||
|
||||
clean || :
|
||||
exec_maven "$@"
|
||||
14
java/pom.xml
14
java/pom.xml
@@ -6,11 +6,10 @@
|
||||
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.19.2-beta.0</version>
|
||||
<version>0.21.2-beta.1</version>
|
||||
<packaging>pom</packaging>
|
||||
|
||||
<name>LanceDB Parent</name>
|
||||
<description>LanceDB vector database Java API</description>
|
||||
<name>${project.artifactId}</name>
|
||||
<description>LanceDB Java SDK Parent POM</description>
|
||||
<url>http://lancedb.com/</url>
|
||||
|
||||
<developers>
|
||||
@@ -29,6 +28,7 @@
|
||||
<properties>
|
||||
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
|
||||
<arrow.version>15.0.0</arrow.version>
|
||||
<lance-namespace.verison>0.0.1</lance-namespace.verison>
|
||||
<spotless.skip>false</spotless.skip>
|
||||
<spotless.version>2.30.0</spotless.version>
|
||||
<spotless.java.googlejavaformat.version>1.7</spotless.java.googlejavaformat.version>
|
||||
@@ -52,6 +52,7 @@
|
||||
|
||||
<modules>
|
||||
<module>core</module>
|
||||
<module>lance-namespace</module>
|
||||
</modules>
|
||||
|
||||
<scm>
|
||||
@@ -62,6 +63,11 @@
|
||||
|
||||
<dependencyManagement>
|
||||
<dependencies>
|
||||
<dependency>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lance-namespace-core</artifactId>
|
||||
<version>${lance-namespace.verison}</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-vector</artifactId>
|
||||
|
||||
49
node/package-lock.json
generated
49
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.19.2-beta.0",
|
||||
"version": "0.21.2-beta.1",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.19.2-beta.0",
|
||||
"version": "0.21.2-beta.1",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -52,11 +52,11 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.19.2-beta.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.19.2-beta.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.19.2-beta.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.19.2-beta.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.19.2-beta.0"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.21.2-beta.1",
|
||||
"@lancedb/vectordb-darwin-x64": "0.21.2-beta.1",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.21.2-beta.1",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.21.2-beta.1",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.21.2-beta.1"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
@@ -327,65 +327,60 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.19.2-beta.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.19.2-beta.0.tgz",
|
||||
"integrity": "sha512-d4UDhGOs+WLrBGBibtM7QC2jEFIvcpU58a6d+n8NA6yaBUDBDNjNQQcg2qGkDe433mysAoy7ilc+1+ftx4BtAA==",
|
||||
"version": "0.21.2-beta.1",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.21.2-beta.1.tgz",
|
||||
"integrity": "sha512-7QXVJNTei7PMuXRyyc+F3WGiudRNq9HfeOaMmMOJJpuCAO0zLq1pM9DCl5aPF5MddrodPHJxi+IWV+iAFH7zcg==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"license": "Apache-2.0",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"darwin"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.19.2-beta.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.19.2-beta.0.tgz",
|
||||
"integrity": "sha512-m8rlY2mEPnCCD6A944/ustc6t05s4RXBSWvXfIMNCO3w7wS4SgMjnDC/C3ogJujTkwE6aCAWvSuggAxca0Bveg==",
|
||||
"version": "0.21.2-beta.1",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.21.2-beta.1.tgz",
|
||||
"integrity": "sha512-M/TWcJ3WVc6DNFgG/lWI7L5tQ05IF3WoWuZfRfbbimGhRvY7xf1O3uOt+jMcNJCa5mHFGCg2SZDA8mebd/mL7g==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"license": "Apache-2.0",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"darwin"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.19.2-beta.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.19.2-beta.0.tgz",
|
||||
"integrity": "sha512-NFV0vB8IKULzadVah5W1EG8zLb+OAoe+vOd45cwfY7JrbhRQc3bWp6vCJtEBtasCw4nYX6N72eAnTfiubhNwzA==",
|
||||
"version": "0.21.2-beta.1",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.21.2-beta.1.tgz",
|
||||
"integrity": "sha512-OEsM9znf9DDmdwGuTg2EVu+ebwuWQ1lCx0cYy4+hNy3ntolwMC39ePg2H9WD9SsEnQ2vcGJgBJTQLPKgXww+iQ==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"license": "Apache-2.0",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.19.2-beta.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.19.2-beta.0.tgz",
|
||||
"integrity": "sha512-+t8CMurluZ9n5APKpqEA28GoMFXrIjSzzSxmkqRFmLSNvxzGWXph9QKAHUlgXoeglElIxpIfkucpIMvg7f85DA==",
|
||||
"version": "0.21.2-beta.1",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.21.2-beta.1.tgz",
|
||||
"integrity": "sha512-7FTq/O1zNzD71rgX2PEVmkct4jk2wc+ADU3rss+0VqoBSO9XeMqZEVD2WgZWuSTg6bYai//FHGDHSaknHBNsdw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"license": "Apache-2.0",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.19.2-beta.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.19.2-beta.0.tgz",
|
||||
"integrity": "sha512-TnBiFCHLrF3f7HPdGhCUnkqq2m1zUsWWNKH/ASfaTuu0ftqVVGahVLe/uSAXpx5y2W5Qd9WUpzecD7JIugg+kw==",
|
||||
"version": "0.21.2-beta.1",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.21.2-beta.1.tgz",
|
||||
"integrity": "sha512-mN1p/J0kdqy6MrlKtmA8set/PibqFPyytQJFAuxSLXC/rwD7vgqUCt0SI0zVWPGG7J5Y65kvdc99l7Yl7lJtwQ==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"license": "Apache-2.0",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"win32"
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.19.2-beta.0",
|
||||
"version": "0.21.2-beta.1",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"private": false,
|
||||
"main": "dist/index.js",
|
||||
@@ -89,10 +89,10 @@
|
||||
}
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-x64": "0.19.2-beta.0",
|
||||
"@lancedb/vectordb-darwin-arm64": "0.19.2-beta.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.19.2-beta.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.19.2-beta.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.19.2-beta.0"
|
||||
"@lancedb/vectordb-darwin-x64": "0.21.2-beta.1",
|
||||
"@lancedb/vectordb-darwin-arm64": "0.21.2-beta.1",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.21.2-beta.1",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.21.2-beta.1",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.21.2-beta.1"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -49,7 +49,7 @@ describe('LanceDB Mirrored Store Integration test', function () {
|
||||
it('s3://...?mirroredStore=... param is processed correctly', async function () {
|
||||
this.timeout(600000)
|
||||
|
||||
const dir = tmpdir()
|
||||
const dir = await fs.promises.mkdtemp(path.join(tmpdir(), 'lancedb-mirror-'))
|
||||
console.log(dir)
|
||||
const conn = await lancedb.connect({ uri: `s3://lancedb-integtest?mirroredStore=${dir}`, storageOptions: { allowHttp: 'true' } })
|
||||
const data = Array(200).fill({ vector: Array(128).fill(1.0), id: 0 })
|
||||
@@ -63,118 +63,93 @@ describe('LanceDB Mirrored Store Integration test', function () {
|
||||
const t = await conn.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite })
|
||||
|
||||
const mirroredPath = path.join(dir, `${tableName}.lance`)
|
||||
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
// there should be three dirs
|
||||
assert.equal(files.length, 3)
|
||||
assert.isTrue(files[0].isDirectory())
|
||||
assert.isTrue(files[1].isDirectory())
|
||||
|
||||
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].name.endsWith('.txn'))
|
||||
})
|
||||
const files = await fs.promises.readdir(mirroredPath, { withFileTypes: true })
|
||||
// there should be three dirs
|
||||
assert.equal(files.length, 3, 'files after table creation')
|
||||
assert.isTrue(files[0].isDirectory())
|
||||
assert.isTrue(files[1].isDirectory())
|
||||
|
||||
fs.readdir(path.join(mirroredPath, '_versions'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].name.endsWith('.manifest'))
|
||||
})
|
||||
const transactionFiles = await fs.promises.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true })
|
||||
assert.equal(transactionFiles.length, 1, 'transactionFiles after table creation')
|
||||
assert.isTrue(transactionFiles[0].name.endsWith('.txn'))
|
||||
|
||||
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].name.endsWith('.lance'))
|
||||
})
|
||||
})
|
||||
const versionFiles = await fs.promises.readdir(path.join(mirroredPath, '_versions'), { withFileTypes: true })
|
||||
assert.equal(versionFiles.length, 1, 'versionFiles after table creation')
|
||||
assert.isTrue(versionFiles[0].name.endsWith('.manifest'))
|
||||
|
||||
const dataFiles = await fs.promises.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true })
|
||||
assert.equal(dataFiles.length, 1, 'dataFiles after table creation')
|
||||
assert.isTrue(dataFiles[0].name.endsWith('.lance'))
|
||||
|
||||
// try create index and check if it's mirrored
|
||||
await t.createIndex({ column: 'vector', type: 'ivf_pq' })
|
||||
|
||||
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
// there should be four dirs
|
||||
assert.equal(files.length, 4)
|
||||
assert.isTrue(files[0].isDirectory())
|
||||
assert.isTrue(files[1].isDirectory())
|
||||
assert.isTrue(files[2].isDirectory())
|
||||
const filesAfterIndex = await fs.promises.readdir(mirroredPath, { withFileTypes: true })
|
||||
// there should be four dirs
|
||||
assert.equal(filesAfterIndex.length, 4, 'filesAfterIndex')
|
||||
assert.isTrue(filesAfterIndex[0].isDirectory())
|
||||
assert.isTrue(filesAfterIndex[1].isDirectory())
|
||||
assert.isTrue(filesAfterIndex[2].isDirectory())
|
||||
|
||||
// Two TXs now
|
||||
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 2)
|
||||
assert.isTrue(files[0].name.endsWith('.txn'))
|
||||
assert.isTrue(files[1].name.endsWith('.txn'))
|
||||
})
|
||||
// Two TXs now
|
||||
const transactionFilesAfterIndex = await fs.promises.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true })
|
||||
assert.equal(transactionFilesAfterIndex.length, 2, 'transactionFilesAfterIndex')
|
||||
assert.isTrue(transactionFilesAfterIndex[0].name.endsWith('.txn'))
|
||||
assert.isTrue(transactionFilesAfterIndex[1].name.endsWith('.txn'))
|
||||
|
||||
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].name.endsWith('.lance'))
|
||||
})
|
||||
const dataFilesAfterIndex = await fs.promises.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true })
|
||||
assert.equal(dataFilesAfterIndex.length, 1, 'dataFilesAfterIndex')
|
||||
assert.isTrue(dataFilesAfterIndex[0].name.endsWith('.lance'))
|
||||
|
||||
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].isDirectory())
|
||||
const indicesFiles = await fs.promises.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true })
|
||||
assert.equal(indicesFiles.length, 1, 'indicesFiles')
|
||||
assert.isTrue(indicesFiles[0].isDirectory())
|
||||
|
||||
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].isFile())
|
||||
assert.isTrue(files[0].name.endsWith('.idx'))
|
||||
})
|
||||
})
|
||||
})
|
||||
const indexFiles = await fs.promises.readdir(path.join(mirroredPath, '_indices', indicesFiles[0].name), { withFileTypes: true })
|
||||
console.log(`DEBUG indexFiles in ${indicesFiles[0].name}:`, indexFiles.map(f => `${f.name} (${f.isFile() ? 'file' : 'dir'})`))
|
||||
assert.equal(indexFiles.length, 2, 'indexFiles')
|
||||
const fileNames = indexFiles.map(f => f.name).sort()
|
||||
assert.isTrue(fileNames.includes('auxiliary.idx'), 'auxiliary.idx should be present')
|
||||
assert.isTrue(fileNames.includes('index.idx'), 'index.idx should be present')
|
||||
assert.isTrue(indexFiles.every(f => f.isFile()), 'all index files should be files')
|
||||
|
||||
// try delete and check if it's mirrored
|
||||
await t.delete('id = 0')
|
||||
|
||||
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
// there should be five dirs
|
||||
assert.equal(files.length, 5)
|
||||
assert.isTrue(files[0].isDirectory())
|
||||
assert.isTrue(files[1].isDirectory())
|
||||
assert.isTrue(files[2].isDirectory())
|
||||
assert.isTrue(files[3].isDirectory())
|
||||
assert.isTrue(files[4].isDirectory())
|
||||
const filesAfterDelete = await fs.promises.readdir(mirroredPath, { withFileTypes: true })
|
||||
// there should be five dirs
|
||||
assert.equal(filesAfterDelete.length, 5, 'filesAfterDelete')
|
||||
assert.isTrue(filesAfterDelete[0].isDirectory())
|
||||
assert.isTrue(filesAfterDelete[1].isDirectory())
|
||||
assert.isTrue(filesAfterDelete[2].isDirectory())
|
||||
assert.isTrue(filesAfterDelete[3].isDirectory())
|
||||
assert.isTrue(filesAfterDelete[4].isDirectory())
|
||||
|
||||
// Three TXs now
|
||||
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 3)
|
||||
assert.isTrue(files[0].name.endsWith('.txn'))
|
||||
assert.isTrue(files[1].name.endsWith('.txn'))
|
||||
})
|
||||
// Three TXs now
|
||||
const transactionFilesAfterDelete = await fs.promises.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true })
|
||||
assert.equal(transactionFilesAfterDelete.length, 3, 'transactionFilesAfterDelete')
|
||||
assert.isTrue(transactionFilesAfterDelete[0].name.endsWith('.txn'))
|
||||
assert.isTrue(transactionFilesAfterDelete[1].name.endsWith('.txn'))
|
||||
|
||||
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].name.endsWith('.lance'))
|
||||
})
|
||||
const dataFilesAfterDelete = await fs.promises.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true })
|
||||
assert.equal(dataFilesAfterDelete.length, 1, 'dataFilesAfterDelete')
|
||||
assert.isTrue(dataFilesAfterDelete[0].name.endsWith('.lance'))
|
||||
|
||||
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].isDirectory())
|
||||
const indicesFilesAfterDelete = await fs.promises.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true })
|
||||
assert.equal(indicesFilesAfterDelete.length, 1, 'indicesFilesAfterDelete')
|
||||
assert.isTrue(indicesFilesAfterDelete[0].isDirectory())
|
||||
|
||||
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
const indexFilesAfterDelete = await fs.promises.readdir(path.join(mirroredPath, '_indices', indicesFilesAfterDelete[0].name), { withFileTypes: true })
|
||||
console.log(`DEBUG indexFilesAfterDelete in ${indicesFilesAfterDelete[0].name}:`, indexFilesAfterDelete.map(f => `${f.name} (${f.isFile() ? 'file' : 'dir'})`))
|
||||
assert.equal(indexFilesAfterDelete.length, 2, 'indexFilesAfterDelete')
|
||||
const fileNamesAfterDelete = indexFilesAfterDelete.map(f => f.name).sort()
|
||||
assert.isTrue(fileNamesAfterDelete.includes('auxiliary.idx'), 'auxiliary.idx should be present after delete')
|
||||
assert.isTrue(fileNamesAfterDelete.includes('index.idx'), 'index.idx should be present after delete')
|
||||
assert.isTrue(indexFilesAfterDelete.every(f => f.isFile()), 'all index files should be files after delete')
|
||||
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].isFile())
|
||||
assert.isTrue(files[0].name.endsWith('.idx'))
|
||||
})
|
||||
})
|
||||
|
||||
fs.readdir(path.join(mirroredPath, '_deletions'), { withFileTypes: true }, (err, files) => {
|
||||
if (err != null) throw err
|
||||
assert.equal(files.length, 1)
|
||||
assert.isTrue(files[0].name.endsWith('.arrow'))
|
||||
})
|
||||
})
|
||||
const deletionFiles = await fs.promises.readdir(path.join(mirroredPath, '_deletions'), { withFileTypes: true })
|
||||
assert.equal(deletionFiles.length, 1, 'deletionFiles')
|
||||
assert.isTrue(deletionFiles[0].name.endsWith('.arrow'))
|
||||
})
|
||||
})
|
||||
|
||||
13
nodejs/CLAUDE.md
Normal file
13
nodejs/CLAUDE.md
Normal file
@@ -0,0 +1,13 @@
|
||||
These are the typescript bindings of LanceDB.
|
||||
The core Rust library is in the `../rust/lancedb` directory, the rust binding
|
||||
code is in the `src/` directory and the typescript bindings are in
|
||||
the `lancedb/` directory.
|
||||
|
||||
Whenever you change the Rust code, you will need to recompile: `npm run build`.
|
||||
|
||||
Common commands:
|
||||
* Build: `npm run build`
|
||||
* Lint: `npm run lint`
|
||||
* Fix lints: `npm run lint-fix`
|
||||
* Test: `npm test`
|
||||
* Run single test file: `npm test __test__/arrow.test.ts`
|
||||
@@ -1,7 +1,7 @@
|
||||
[package]
|
||||
name = "lancedb-nodejs"
|
||||
edition.workspace = true
|
||||
version = "0.19.2-beta.0"
|
||||
version = "0.21.2-beta.1"
|
||||
license.workspace = true
|
||||
description.workspace = true
|
||||
repository.workspace = true
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
import { Schema } from "apache-arrow";
|
||||
import { Bool, Field, Int32, List, Schema, Struct, Utf8 } from "apache-arrow";
|
||||
|
||||
import * as arrow15 from "apache-arrow-15";
|
||||
import * as arrow16 from "apache-arrow-16";
|
||||
@@ -11,10 +11,12 @@ import * as arrow18 from "apache-arrow-18";
|
||||
import {
|
||||
convertToTable,
|
||||
fromBufferToRecordBatch,
|
||||
fromDataToBuffer,
|
||||
fromRecordBatchToBuffer,
|
||||
fromTableToBuffer,
|
||||
makeArrowTable,
|
||||
makeEmptyTable,
|
||||
tableFromIPC,
|
||||
} from "../lancedb/arrow";
|
||||
import {
|
||||
EmbeddingFunction,
|
||||
@@ -375,8 +377,221 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
expect(table2.schema).toEqual(schema);
|
||||
});
|
||||
|
||||
it("will handle missing columns in schema alignment when using embeddings", async function () {
|
||||
const schema = new Schema(
|
||||
[
|
||||
new Field("domain", new Utf8(), true),
|
||||
new Field("name", new Utf8(), true),
|
||||
new Field("description", new Utf8(), true),
|
||||
],
|
||||
new Map([["embedding_functions", JSON.stringify([])]]),
|
||||
);
|
||||
|
||||
const data = [
|
||||
{ domain: "google.com", name: "Google" },
|
||||
{ domain: "facebook.com", name: "Facebook" },
|
||||
];
|
||||
|
||||
const table = await convertToTable(data, undefined, { schema });
|
||||
|
||||
expect(table.numCols).toBe(3);
|
||||
expect(table.numRows).toBe(2);
|
||||
|
||||
const descriptionColumn = table.getChild("description");
|
||||
expect(descriptionColumn).toBeDefined();
|
||||
expect(descriptionColumn?.nullCount).toBe(2);
|
||||
expect(descriptionColumn?.toArray()).toEqual([null, null]);
|
||||
|
||||
expect(table.getChild("domain")?.toArray()).toEqual([
|
||||
"google.com",
|
||||
"facebook.com",
|
||||
]);
|
||||
expect(table.getChild("name")?.toArray()).toEqual([
|
||||
"Google",
|
||||
"Facebook",
|
||||
]);
|
||||
});
|
||||
|
||||
it("will handle completely missing nested struct columns", async function () {
|
||||
const schema = new Schema(
|
||||
[
|
||||
new Field("id", new Utf8(), true),
|
||||
new Field("name", new Utf8(), true),
|
||||
new Field(
|
||||
"metadata",
|
||||
new Struct([
|
||||
new Field("version", new Int32(), true),
|
||||
new Field("author", new Utf8(), true),
|
||||
new Field(
|
||||
"tags",
|
||||
new List(new Field("item", new Utf8(), true)),
|
||||
true,
|
||||
),
|
||||
]),
|
||||
true,
|
||||
),
|
||||
],
|
||||
new Map([["embedding_functions", JSON.stringify([])]]),
|
||||
);
|
||||
|
||||
const data = [
|
||||
{ id: "doc1", name: "Document 1" },
|
||||
{ id: "doc2", name: "Document 2" },
|
||||
];
|
||||
|
||||
const table = await convertToTable(data, undefined, { schema });
|
||||
|
||||
expect(table.numCols).toBe(3);
|
||||
expect(table.numRows).toBe(2);
|
||||
|
||||
const buf = await fromTableToBuffer(table);
|
||||
const retrievedTable = tableFromIPC(buf);
|
||||
|
||||
const rows = [];
|
||||
for (let i = 0; i < retrievedTable.numRows; i++) {
|
||||
rows.push(retrievedTable.get(i));
|
||||
}
|
||||
|
||||
expect(rows[0].metadata.version).toBe(null);
|
||||
expect(rows[0].metadata.author).toBe(null);
|
||||
expect(rows[0].metadata.tags).toBe(null);
|
||||
expect(rows[0].id).toBe("doc1");
|
||||
expect(rows[0].name).toBe("Document 1");
|
||||
});
|
||||
|
||||
it("will handle partially missing nested struct fields", async function () {
|
||||
const schema = new Schema(
|
||||
[
|
||||
new Field("id", new Utf8(), true),
|
||||
new Field(
|
||||
"metadata",
|
||||
new Struct([
|
||||
new Field("version", new Int32(), true),
|
||||
new Field("author", new Utf8(), true),
|
||||
new Field("created_at", new Utf8(), true),
|
||||
]),
|
||||
true,
|
||||
),
|
||||
],
|
||||
new Map([["embedding_functions", JSON.stringify([])]]),
|
||||
);
|
||||
|
||||
const data = [
|
||||
{ id: "doc1", metadata: { version: 1, author: "Alice" } },
|
||||
{ id: "doc2", metadata: { version: 2 } },
|
||||
];
|
||||
|
||||
const table = await convertToTable(data, undefined, { schema });
|
||||
|
||||
expect(table.numCols).toBe(2);
|
||||
expect(table.numRows).toBe(2);
|
||||
|
||||
const metadataColumn = table.getChild("metadata");
|
||||
expect(metadataColumn).toBeDefined();
|
||||
expect(metadataColumn?.type.toString()).toBe(
|
||||
"Struct<{version:Int32, author:Utf8, created_at:Utf8}>",
|
||||
);
|
||||
});
|
||||
|
||||
it("will handle multiple levels of nested structures", async function () {
|
||||
const schema = new Schema(
|
||||
[
|
||||
new Field("id", new Utf8(), true),
|
||||
new Field(
|
||||
"config",
|
||||
new Struct([
|
||||
new Field("database", new Utf8(), true),
|
||||
new Field(
|
||||
"connection",
|
||||
new Struct([
|
||||
new Field("host", new Utf8(), true),
|
||||
new Field("port", new Int32(), true),
|
||||
new Field(
|
||||
"ssl",
|
||||
new Struct([
|
||||
new Field("enabled", new Bool(), true),
|
||||
new Field("cert_path", new Utf8(), true),
|
||||
]),
|
||||
true,
|
||||
),
|
||||
]),
|
||||
true,
|
||||
),
|
||||
]),
|
||||
true,
|
||||
),
|
||||
],
|
||||
new Map([["embedding_functions", JSON.stringify([])]]),
|
||||
);
|
||||
|
||||
const data = [
|
||||
{
|
||||
id: "config1",
|
||||
config: {
|
||||
database: "postgres",
|
||||
connection: { host: "localhost" },
|
||||
},
|
||||
},
|
||||
{
|
||||
id: "config2",
|
||||
config: { database: "mysql" },
|
||||
},
|
||||
{
|
||||
id: "config3",
|
||||
},
|
||||
];
|
||||
|
||||
const table = await convertToTable(data, undefined, { schema });
|
||||
|
||||
expect(table.numCols).toBe(2);
|
||||
expect(table.numRows).toBe(3);
|
||||
|
||||
const configColumn = table.getChild("config");
|
||||
expect(configColumn).toBeDefined();
|
||||
expect(configColumn?.type.toString()).toBe(
|
||||
"Struct<{database:Utf8, connection:Struct<{host:Utf8, port:Int32, ssl:Struct<{enabled:Bool, cert_path:Utf8}>}>}>",
|
||||
);
|
||||
});
|
||||
|
||||
it("will handle missing columns in Arrow table input when using embeddings", async function () {
|
||||
const incompleteTable = makeArrowTable([
|
||||
{ domain: "google.com", name: "Google" },
|
||||
{ domain: "facebook.com", name: "Facebook" },
|
||||
]);
|
||||
|
||||
const schema = new Schema(
|
||||
[
|
||||
new Field("domain", new Utf8(), true),
|
||||
new Field("name", new Utf8(), true),
|
||||
new Field("description", new Utf8(), true),
|
||||
],
|
||||
new Map([["embedding_functions", JSON.stringify([])]]),
|
||||
);
|
||||
|
||||
const buf = await fromDataToBuffer(incompleteTable, undefined, schema);
|
||||
|
||||
expect(buf.byteLength).toBeGreaterThan(0);
|
||||
|
||||
const retrievedTable = tableFromIPC(buf);
|
||||
expect(retrievedTable.numCols).toBe(3);
|
||||
expect(retrievedTable.numRows).toBe(2);
|
||||
|
||||
const descriptionColumn = retrievedTable.getChild("description");
|
||||
expect(descriptionColumn).toBeDefined();
|
||||
expect(descriptionColumn?.nullCount).toBe(2);
|
||||
expect(descriptionColumn?.toArray()).toEqual([null, null]);
|
||||
|
||||
expect(retrievedTable.getChild("domain")?.toArray()).toEqual([
|
||||
"google.com",
|
||||
"facebook.com",
|
||||
]);
|
||||
expect(retrievedTable.getChild("name")?.toArray()).toEqual([
|
||||
"Google",
|
||||
"Facebook",
|
||||
]);
|
||||
});
|
||||
|
||||
it("should correctly retain values in nested struct fields", async function () {
|
||||
// Define test data with nested struct
|
||||
const testData = [
|
||||
{
|
||||
id: "doc1",
|
||||
@@ -400,10 +615,8 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
},
|
||||
];
|
||||
|
||||
// Create Arrow table from the data
|
||||
const table = makeArrowTable(testData);
|
||||
|
||||
// Verify schema has the nested struct fields
|
||||
const metadataField = table.schema.fields.find(
|
||||
(f) => f.name === "metadata",
|
||||
);
|
||||
@@ -417,23 +630,17 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
"text",
|
||||
]);
|
||||
|
||||
// Convert to buffer and back (simulating storage and retrieval)
|
||||
const buf = await fromTableToBuffer(table);
|
||||
const retrievedTable = tableFromIPC(buf);
|
||||
|
||||
// Verify the retrieved table has the same structure
|
||||
const rows = [];
|
||||
for (let i = 0; i < retrievedTable.numRows; i++) {
|
||||
rows.push(retrievedTable.get(i));
|
||||
}
|
||||
|
||||
// Check values in the first row
|
||||
const firstRow = rows[0];
|
||||
expect(firstRow.id).toBe("doc1");
|
||||
expect(firstRow.vector.toJSON()).toEqual([1, 2, 3]);
|
||||
|
||||
// Verify metadata values are preserved (this is where the bug is)
|
||||
expect(firstRow.metadata).toBeDefined();
|
||||
expect(firstRow.metadata.filePath).toBe("/path/to/file1.ts");
|
||||
expect(firstRow.metadata.startLine).toBe(10);
|
||||
expect(firstRow.metadata.endLine).toBe(20);
|
||||
@@ -592,14 +799,14 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
).rejects.toThrow("column vector was missing");
|
||||
});
|
||||
|
||||
it("will provide a nice error if run twice", async function () {
|
||||
it("will skip embedding application if already applied", async function () {
|
||||
const records = sampleRecords();
|
||||
const table = await convertToTable(records, dummyEmbeddingConfig);
|
||||
|
||||
// fromTableToBuffer will try and apply the embeddings again
|
||||
await expect(
|
||||
fromTableToBuffer(table, dummyEmbeddingConfig),
|
||||
).rejects.toThrow("already existed");
|
||||
// but should skip since the column already has non-null values
|
||||
const result = await fromTableToBuffer(table, dummyEmbeddingConfig);
|
||||
expect(result.byteLength).toBeGreaterThan(0);
|
||||
});
|
||||
});
|
||||
|
||||
|
||||
46
nodejs/__test__/session.test.ts
Normal file
46
nodejs/__test__/session.test.ts
Normal file
@@ -0,0 +1,46 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
import * as tmp from "tmp";
|
||||
import { Session, connect } from "../lancedb";
|
||||
|
||||
describe("Session", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
beforeEach(() => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
afterEach(() => tmpDir.removeCallback());
|
||||
|
||||
it("should configure cache sizes and work with database operations", async () => {
|
||||
// Create session with small cache limits for testing
|
||||
const indexCacheSize = BigInt(1024 * 1024); // 1MB
|
||||
const metadataCacheSize = BigInt(512 * 1024); // 512KB
|
||||
|
||||
const session = new Session(indexCacheSize, metadataCacheSize);
|
||||
|
||||
// Record initial cache state
|
||||
const initialCacheSize = session.sizeBytes();
|
||||
const initialCacheItems = session.approxNumItems();
|
||||
|
||||
// Test session works with database connection
|
||||
const db = await connect({ uri: tmpDir.name, session: session });
|
||||
|
||||
// Create and use a table to exercise the session
|
||||
const data = Array.from({ length: 100 }, (_, i) => ({
|
||||
id: i,
|
||||
text: `item ${i}`,
|
||||
}));
|
||||
const table = await db.createTable("test", data);
|
||||
const results = await table.query().limit(5).toArray();
|
||||
|
||||
expect(results).toHaveLength(5);
|
||||
|
||||
// Verify cache usage increased after operations
|
||||
const finalCacheSize = session.sizeBytes();
|
||||
const finalCacheItems = session.approxNumItems();
|
||||
|
||||
expect(finalCacheSize).toBeGreaterThan(initialCacheSize); // Cache should have grown
|
||||
expect(finalCacheItems).toBeGreaterThanOrEqual(initialCacheItems); // Items should not decrease
|
||||
expect(initialCacheSize).toBeLessThan(indexCacheSize + metadataCacheSize); // Within limits
|
||||
});
|
||||
});
|
||||
@@ -33,7 +33,12 @@ import {
|
||||
register,
|
||||
} from "../lancedb/embedding";
|
||||
import { Index } from "../lancedb/indices";
|
||||
import { instanceOfFullTextQuery } from "../lancedb/query";
|
||||
import {
|
||||
BooleanQuery,
|
||||
Occur,
|
||||
Operator,
|
||||
instanceOfFullTextQuery,
|
||||
} from "../lancedb/query";
|
||||
import exp = require("constants");
|
||||
|
||||
describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
@@ -363,9 +368,9 @@ describe("merge insert", () => {
|
||||
{ a: 4, b: "z" },
|
||||
];
|
||||
|
||||
expect(
|
||||
JSON.parse(JSON.stringify((await table.toArrow()).toArray())),
|
||||
).toEqual(expected);
|
||||
const result = (await table.toArrow()).toArray().sort((a, b) => a.a - b.a);
|
||||
|
||||
expect(result.map((row) => ({ ...row }))).toEqual(expected);
|
||||
});
|
||||
test("conditional update", async () => {
|
||||
const newData = [
|
||||
@@ -554,6 +559,32 @@ describe("When creating an index", () => {
|
||||
rst = await tbl.query().limit(2).offset(1).nearestTo(queryVec).toArrow();
|
||||
expect(rst.numRows).toBe(1);
|
||||
|
||||
// test nprobes
|
||||
rst = await tbl.query().nearestTo(queryVec).limit(2).nprobes(50).toArrow();
|
||||
expect(rst.numRows).toBe(2);
|
||||
rst = await tbl
|
||||
.query()
|
||||
.nearestTo(queryVec)
|
||||
.limit(2)
|
||||
.minimumNprobes(15)
|
||||
.toArrow();
|
||||
expect(rst.numRows).toBe(2);
|
||||
rst = await tbl
|
||||
.query()
|
||||
.nearestTo(queryVec)
|
||||
.limit(2)
|
||||
.minimumNprobes(10)
|
||||
.maximumNprobes(20)
|
||||
.toArrow();
|
||||
expect(rst.numRows).toBe(2);
|
||||
|
||||
expect(() => tbl.query().nearestTo(queryVec).minimumNprobes(0)).toThrow(
|
||||
"Invalid input, minimum_nprobes must be greater than 0",
|
||||
);
|
||||
expect(() => tbl.query().nearestTo(queryVec).maximumNprobes(5)).toThrow(
|
||||
"Invalid input, maximum_nprobes must be greater than minimum_nprobes",
|
||||
);
|
||||
|
||||
await tbl.dropIndex("vec_idx");
|
||||
const indices2 = await tbl.listIndices();
|
||||
expect(indices2.length).toBe(0);
|
||||
@@ -1531,6 +1562,18 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
|
||||
const results = await table.search("hello").toArray();
|
||||
expect(results[0].text).toBe(data[0].text);
|
||||
|
||||
const results2 = await table
|
||||
.search(new MatchQuery("hello world", "text"))
|
||||
.toArray();
|
||||
expect(results2.length).toBe(2);
|
||||
|
||||
const results3 = await table
|
||||
.search(
|
||||
new MatchQuery("hello world", "text", { operator: Operator.And }),
|
||||
)
|
||||
.toArray();
|
||||
expect(results3.length).toBe(1);
|
||||
});
|
||||
|
||||
test("full text search without lowercase", async () => {
|
||||
@@ -1607,6 +1650,114 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
expect(resultSet.has("fob")).toBe(true);
|
||||
expect(resultSet.has("fo")).toBe(true);
|
||||
expect(resultSet.has("food")).toBe(true);
|
||||
|
||||
const prefixResults = await table
|
||||
.search(
|
||||
new MatchQuery("foo", "text", { fuzziness: 3, prefixLength: 3 }),
|
||||
)
|
||||
.toArray();
|
||||
expect(prefixResults.length).toBe(2);
|
||||
const resultSet2 = new Set(prefixResults.map((r) => r.text));
|
||||
expect(resultSet2.has("foo")).toBe(true);
|
||||
expect(resultSet2.has("food")).toBe(true);
|
||||
});
|
||||
|
||||
test("full text search boolean query", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = [
|
||||
{ text: "The cat and dog are playing" },
|
||||
{ text: "The cat is sleeping" },
|
||||
{ text: "The dog is barking" },
|
||||
{ text: "The dog chases the cat" },
|
||||
];
|
||||
const table = await db.createTable("test", data);
|
||||
await table.createIndex("text", {
|
||||
config: Index.fts({ withPosition: false }),
|
||||
});
|
||||
|
||||
const shouldResults = await table
|
||||
.search(
|
||||
new BooleanQuery([
|
||||
[Occur.Should, new MatchQuery("cat", "text")],
|
||||
[Occur.Should, new MatchQuery("dog", "text")],
|
||||
]),
|
||||
)
|
||||
.toArray();
|
||||
expect(shouldResults.length).toBe(4);
|
||||
|
||||
const mustResults = await table
|
||||
.search(
|
||||
new BooleanQuery([
|
||||
[Occur.Must, new MatchQuery("cat", "text")],
|
||||
[Occur.Must, new MatchQuery("dog", "text")],
|
||||
]),
|
||||
)
|
||||
.toArray();
|
||||
expect(mustResults.length).toBe(2);
|
||||
|
||||
const mustNotResults = await table
|
||||
.search(
|
||||
new BooleanQuery([
|
||||
[Occur.Must, new MatchQuery("cat", "text")],
|
||||
[Occur.MustNot, new MatchQuery("dog", "text")],
|
||||
]),
|
||||
)
|
||||
.toArray();
|
||||
expect(mustNotResults.length).toBe(1);
|
||||
});
|
||||
|
||||
test("full text search ngram", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = [
|
||||
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
|
||||
{ text: "lance database", vector: [0.4, 0.5, 0.6] },
|
||||
{ text: "lance is cool", vector: [0.7, 0.8, 0.9] },
|
||||
];
|
||||
const table = await db.createTable("test", data);
|
||||
await table.createIndex("text", {
|
||||
config: Index.fts({ baseTokenizer: "ngram" }),
|
||||
});
|
||||
|
||||
const results = await table.search("lan").toArray();
|
||||
expect(results.length).toBe(2);
|
||||
const resultSet = new Set(results.map((r) => r.text));
|
||||
expect(resultSet.has("lance database")).toBe(true);
|
||||
expect(resultSet.has("lance is cool")).toBe(true);
|
||||
|
||||
const results2 = await table.search("nce").toArray(); // spellchecker:disable-line
|
||||
expect(results2.length).toBe(2);
|
||||
const resultSet2 = new Set(results2.map((r) => r.text));
|
||||
expect(resultSet2.has("lance database")).toBe(true);
|
||||
expect(resultSet2.has("lance is cool")).toBe(true);
|
||||
|
||||
// the default min_ngram_length is 3, so "la" should not match
|
||||
const results3 = await table.search("la").toArray();
|
||||
expect(results3.length).toBe(0);
|
||||
|
||||
// test setting min_ngram_length and prefix_only
|
||||
await table.createIndex("text", {
|
||||
config: Index.fts({
|
||||
baseTokenizer: "ngram",
|
||||
ngramMinLength: 2,
|
||||
prefixOnly: true,
|
||||
}),
|
||||
replace: true,
|
||||
});
|
||||
|
||||
const results4 = await table.search("lan").toArray();
|
||||
expect(results4.length).toBe(2);
|
||||
const resultSet4 = new Set(results4.map((r) => r.text));
|
||||
expect(resultSet4.has("lance database")).toBe(true);
|
||||
expect(resultSet4.has("lance is cool")).toBe(true);
|
||||
|
||||
const results5 = await table.search("nce").toArray(); // spellchecker:disable-line
|
||||
expect(results5.length).toBe(0);
|
||||
|
||||
const results6 = await table.search("la").toArray();
|
||||
expect(results6.length).toBe(2);
|
||||
const resultSet6 = new Set(results6.map((r) => r.text));
|
||||
expect(resultSet6.has("lance database")).toBe(true);
|
||||
expect(resultSet6.has("lance is cool")).toBe(true);
|
||||
});
|
||||
|
||||
test.each([
|
||||
@@ -1712,4 +1863,43 @@ describe("column name options", () => {
|
||||
expect(results[0].query_index).toBe(0);
|
||||
expect(results[1].query_index).toBe(1);
|
||||
});
|
||||
|
||||
test("index and search multivectors", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = [];
|
||||
// generate 512 random multivectors
|
||||
for (let i = 0; i < 256; i++) {
|
||||
data.push({
|
||||
multivector: Array.from({ length: 10 }, () =>
|
||||
Array(2).fill(Math.random()),
|
||||
),
|
||||
});
|
||||
}
|
||||
const table = await db.createTable("multivectors", data, {
|
||||
schema: new Schema([
|
||||
new Field(
|
||||
"multivector",
|
||||
new List(
|
||||
new Field(
|
||||
"item",
|
||||
new FixedSizeList(2, new Field("item", new Float32())),
|
||||
),
|
||||
),
|
||||
),
|
||||
]),
|
||||
});
|
||||
|
||||
const results = await table.search(data[0].multivector).limit(10).toArray();
|
||||
expect(results.length).toBe(10);
|
||||
|
||||
await table.createIndex("multivector", {
|
||||
config: Index.ivfPq({ numPartitions: 2, distanceType: "cosine" }),
|
||||
});
|
||||
|
||||
const results2 = await table
|
||||
.search(data[0].multivector)
|
||||
.limit(10)
|
||||
.toArray();
|
||||
expect(results2.length).toBe(10);
|
||||
});
|
||||
});
|
||||
|
||||
@@ -107,6 +107,20 @@ export type IntoVector =
|
||||
| number[]
|
||||
| Promise<Float32Array | Float64Array | number[]>;
|
||||
|
||||
export type MultiVector = IntoVector[];
|
||||
|
||||
export function isMultiVector(value: unknown): value is MultiVector {
|
||||
return Array.isArray(value) && isIntoVector(value[0]);
|
||||
}
|
||||
|
||||
export function isIntoVector(value: unknown): value is IntoVector {
|
||||
return (
|
||||
value instanceof Float32Array ||
|
||||
value instanceof Float64Array ||
|
||||
(Array.isArray(value) && !Array.isArray(value[0]))
|
||||
);
|
||||
}
|
||||
|
||||
export function isArrowTable(value: object): value is TableLike {
|
||||
if (value instanceof ArrowTable) return true;
|
||||
return "schema" in value && "batches" in value;
|
||||
@@ -417,7 +431,9 @@ function inferSchema(
|
||||
} else {
|
||||
const inferredType = inferType(value, path, opts);
|
||||
if (inferredType === undefined) {
|
||||
throw new Error(`Failed to infer data type for field ${path.join(".")} at row ${rowI}. \
|
||||
throw new Error(`Failed to infer data type for field ${path.join(
|
||||
".",
|
||||
)} at row ${rowI}. \
|
||||
Consider providing an explicit schema.`);
|
||||
}
|
||||
pathTree.set(path, inferredType);
|
||||
@@ -799,11 +815,17 @@ async function applyEmbeddingsFromMetadata(
|
||||
`Cannot apply embedding function because the source column '${functionEntry.sourceColumn}' was not present in the data`,
|
||||
);
|
||||
}
|
||||
|
||||
// Check if destination column exists and handle accordingly
|
||||
if (columns[destColumn] !== undefined) {
|
||||
throw new Error(
|
||||
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`,
|
||||
);
|
||||
const existingColumn = columns[destColumn];
|
||||
// If the column exists but is all null, we can fill it with embeddings
|
||||
if (existingColumn.nullCount !== existingColumn.length) {
|
||||
// Column has non-null values, skip embedding application
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
if (table.batches.length > 1) {
|
||||
throw new Error(
|
||||
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",
|
||||
@@ -831,6 +853,15 @@ async function applyEmbeddingsFromMetadata(
|
||||
const vector = makeVector(vectors, destType);
|
||||
columns[destColumn] = vector;
|
||||
}
|
||||
|
||||
// Add any missing columns from the schema as null vectors
|
||||
for (const field of schema.fields) {
|
||||
if (!(field.name in columns)) {
|
||||
const nullValues = new Array(table.numRows).fill(null);
|
||||
columns[field.name] = makeVector(nullValues, field.type);
|
||||
}
|
||||
}
|
||||
|
||||
const newTable = new ArrowTable(columns);
|
||||
return alignTable(newTable, schema);
|
||||
}
|
||||
@@ -903,11 +934,23 @@ async function applyEmbeddings<T>(
|
||||
);
|
||||
}
|
||||
} else {
|
||||
// Check if destination column exists and handle accordingly
|
||||
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
|
||||
throw new Error(
|
||||
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`,
|
||||
);
|
||||
const existingColumn = newColumns[destColumn];
|
||||
// If the column exists but is all null, we can fill it with embeddings
|
||||
if (existingColumn.nullCount !== existingColumn.length) {
|
||||
// Column has non-null values, skip embedding application and return table as-is
|
||||
let newTable = new ArrowTable(newColumns);
|
||||
if (schema != null) {
|
||||
newTable = alignTable(newTable, schema as Schema);
|
||||
}
|
||||
return new ArrowTable(
|
||||
new Schema(newTable.schema.fields, schemaMetadata),
|
||||
newTable.batches,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
if (table.batches.length > 1) {
|
||||
throw new Error(
|
||||
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",
|
||||
@@ -967,7 +1010,21 @@ export async function convertToTable(
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
makeTableOptions?: Partial<MakeArrowTableOptions>,
|
||||
): Promise<ArrowTable> {
|
||||
const table = makeArrowTable(data, makeTableOptions);
|
||||
let processedData = data;
|
||||
|
||||
// If we have a schema with embedding metadata, we need to preprocess the data
|
||||
// to ensure all nested fields are present
|
||||
if (
|
||||
makeTableOptions?.schema &&
|
||||
makeTableOptions.schema.metadata?.has("embedding_functions")
|
||||
) {
|
||||
processedData = ensureNestedFieldsExist(
|
||||
data,
|
||||
makeTableOptions.schema as Schema,
|
||||
);
|
||||
}
|
||||
|
||||
const table = makeArrowTable(processedData, makeTableOptions);
|
||||
return await applyEmbeddings(table, embeddings, makeTableOptions?.schema);
|
||||
}
|
||||
|
||||
@@ -1060,7 +1117,16 @@ export async function fromDataToBuffer(
|
||||
schema = sanitizeSchema(schema);
|
||||
}
|
||||
if (isArrowTable(data)) {
|
||||
return fromTableToBuffer(sanitizeTable(data), embeddings, schema);
|
||||
const table = sanitizeTable(data);
|
||||
// If we have a schema with embedding functions, we need to ensure all columns exist
|
||||
// before applying embeddings, since applyEmbeddingsFromMetadata expects all columns
|
||||
// to be present in the table
|
||||
if (schema && schema.metadata?.has("embedding_functions")) {
|
||||
const alignedTable = alignTableToSchema(table, schema);
|
||||
return fromTableToBuffer(alignedTable, embeddings, schema);
|
||||
} else {
|
||||
return fromTableToBuffer(table, embeddings, schema);
|
||||
}
|
||||
} else {
|
||||
const table = await convertToTable(data, embeddings, { schema });
|
||||
return fromTableToBuffer(table);
|
||||
@@ -1129,7 +1195,7 @@ function alignBatch(batch: RecordBatch, schema: Schema): RecordBatch {
|
||||
type: new Struct(schema.fields),
|
||||
length: batch.numRows,
|
||||
nullCount: batch.nullCount,
|
||||
children: alignedChildren,
|
||||
children: alignedChildren as unknown as ArrowData<DataType>[],
|
||||
});
|
||||
return new RecordBatch(schema, newData);
|
||||
}
|
||||
@@ -1201,6 +1267,79 @@ function validateSchemaEmbeddings(
|
||||
return new Schema(fields, schema.metadata);
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensures that all nested fields defined in the schema exist in the data,
|
||||
* filling missing fields with null values.
|
||||
*/
|
||||
export function ensureNestedFieldsExist(
|
||||
data: Array<Record<string, unknown>>,
|
||||
schema: Schema,
|
||||
): Array<Record<string, unknown>> {
|
||||
return data.map((row) => {
|
||||
const completeRow: Record<string, unknown> = {};
|
||||
|
||||
for (const field of schema.fields) {
|
||||
if (field.name in row) {
|
||||
if (
|
||||
field.type.constructor.name === "Struct" &&
|
||||
row[field.name] !== null &&
|
||||
row[field.name] !== undefined
|
||||
) {
|
||||
// Handle nested struct
|
||||
const nestedValue = row[field.name] as Record<string, unknown>;
|
||||
completeRow[field.name] = ensureStructFieldsExist(
|
||||
nestedValue,
|
||||
field.type,
|
||||
);
|
||||
} else {
|
||||
// Non-struct field or null struct value
|
||||
completeRow[field.name] = row[field.name];
|
||||
}
|
||||
} else {
|
||||
// Field is missing from the data - set to null
|
||||
completeRow[field.name] = null;
|
||||
}
|
||||
}
|
||||
|
||||
return completeRow;
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Recursively ensures that all fields in a struct type exist in the data,
|
||||
* filling missing fields with null values.
|
||||
*/
|
||||
function ensureStructFieldsExist(
|
||||
data: Record<string, unknown>,
|
||||
structType: Struct,
|
||||
): Record<string, unknown> {
|
||||
const completeStruct: Record<string, unknown> = {};
|
||||
|
||||
for (const childField of structType.children) {
|
||||
if (childField.name in data) {
|
||||
if (
|
||||
childField.type.constructor.name === "Struct" &&
|
||||
data[childField.name] !== null &&
|
||||
data[childField.name] !== undefined
|
||||
) {
|
||||
// Recursively handle nested struct
|
||||
completeStruct[childField.name] = ensureStructFieldsExist(
|
||||
data[childField.name] as Record<string, unknown>,
|
||||
childField.type,
|
||||
);
|
||||
} else {
|
||||
// Non-struct field or null struct value
|
||||
completeStruct[childField.name] = data[childField.name];
|
||||
}
|
||||
} else {
|
||||
// Field is missing - set to null
|
||||
completeStruct[childField.name] = null;
|
||||
}
|
||||
}
|
||||
|
||||
return completeStruct;
|
||||
}
|
||||
|
||||
interface JsonDataType {
|
||||
type: string;
|
||||
fields?: JsonField[];
|
||||
@@ -1334,3 +1473,64 @@ function fieldToJson(field: Field): JsonField {
|
||||
metadata: field.metadata,
|
||||
};
|
||||
}
|
||||
|
||||
function alignTableToSchema(
|
||||
table: ArrowTable,
|
||||
targetSchema: Schema,
|
||||
): ArrowTable {
|
||||
const existingColumns = new Map<string, Vector>();
|
||||
|
||||
// Map existing columns
|
||||
for (const field of table.schema.fields) {
|
||||
existingColumns.set(field.name, table.getChild(field.name)!);
|
||||
}
|
||||
|
||||
// Create vectors for all fields in target schema
|
||||
const alignedColumns: Record<string, Vector> = {};
|
||||
|
||||
for (const field of targetSchema.fields) {
|
||||
if (existingColumns.has(field.name)) {
|
||||
// Column exists, use it
|
||||
alignedColumns[field.name] = existingColumns.get(field.name)!;
|
||||
} else {
|
||||
// Column missing, create null vector
|
||||
alignedColumns[field.name] = createNullVector(field, table.numRows);
|
||||
}
|
||||
}
|
||||
|
||||
// Create new table with aligned schema and columns
|
||||
return new ArrowTable(targetSchema, alignedColumns);
|
||||
}
|
||||
|
||||
function createNullVector(field: Field, numRows: number): Vector {
|
||||
if (field.type.constructor.name === "Struct") {
|
||||
// For struct types, create a struct with null fields
|
||||
const structType = field.type as Struct;
|
||||
const childVectors = structType.children.map((childField) =>
|
||||
createNullVector(childField, numRows),
|
||||
);
|
||||
|
||||
// Create struct data
|
||||
const structData = makeData({
|
||||
type: structType,
|
||||
length: numRows,
|
||||
nullCount: 0,
|
||||
children: childVectors.map((v) => v.data[0]),
|
||||
});
|
||||
|
||||
return arrowMakeVector(structData);
|
||||
} else {
|
||||
// For other types, create a vector of nulls
|
||||
const nullBitmap = new Uint8Array(Math.ceil(numRows / 8));
|
||||
// All bits are 0, meaning all values are null
|
||||
|
||||
const data = makeData({
|
||||
type: field.type,
|
||||
length: numRows,
|
||||
nullCount: numRows,
|
||||
nullBitmap,
|
||||
});
|
||||
|
||||
return arrowMakeVector(data);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -85,6 +85,9 @@ export interface OpenTableOptions {
|
||||
/**
|
||||
* Set the size of the index cache, specified as a number of entries
|
||||
*
|
||||
* @deprecated Use session-level cache configuration instead.
|
||||
* Create a Session with custom cache sizes and pass it to the connect() function.
|
||||
*
|
||||
* The exact meaning of an "entry" will depend on the type of index:
|
||||
* - IVF: there is one entry for each IVF partition
|
||||
* - BTREE: there is one entry for the entire index
|
||||
|
||||
@@ -10,6 +10,7 @@ import {
|
||||
import {
|
||||
ConnectionOptions,
|
||||
Connection as LanceDbConnection,
|
||||
Session,
|
||||
} from "./native.js";
|
||||
|
||||
export {
|
||||
@@ -51,6 +52,8 @@ export {
|
||||
OpenTableOptions,
|
||||
} from "./connection";
|
||||
|
||||
export { Session } from "./native.js";
|
||||
|
||||
export {
|
||||
ExecutableQuery,
|
||||
Query,
|
||||
@@ -64,7 +67,10 @@ export {
|
||||
PhraseQuery,
|
||||
BoostQuery,
|
||||
MultiMatchQuery,
|
||||
BooleanQuery,
|
||||
FullTextQueryType,
|
||||
Operator,
|
||||
Occur,
|
||||
} from "./query";
|
||||
|
||||
export {
|
||||
@@ -97,6 +103,7 @@ export {
|
||||
RecordBatchLike,
|
||||
DataLike,
|
||||
IntoVector,
|
||||
MultiVector,
|
||||
} from "./arrow";
|
||||
export { IntoSql, packBits } from "./util";
|
||||
|
||||
@@ -127,6 +134,7 @@ export { IntoSql, packBits } from "./util";
|
||||
export async function connect(
|
||||
uri: string,
|
||||
options?: Partial<ConnectionOptions>,
|
||||
session?: Session,
|
||||
): Promise<Connection>;
|
||||
/**
|
||||
* Connect to a LanceDB instance at the given URI.
|
||||
@@ -145,31 +153,43 @@ export async function connect(
|
||||
* storageOptions: {timeout: "60s"}
|
||||
* });
|
||||
* ```
|
||||
*
|
||||
* @example
|
||||
* ```ts
|
||||
* const session = Session.default();
|
||||
* const conn = await connect({
|
||||
* uri: "/path/to/database",
|
||||
* session: session
|
||||
* });
|
||||
* ```
|
||||
*/
|
||||
export async function connect(
|
||||
options: Partial<ConnectionOptions> & { uri: string },
|
||||
): Promise<Connection>;
|
||||
export async function connect(
|
||||
uriOrOptions: string | (Partial<ConnectionOptions> & { uri: string }),
|
||||
options: Partial<ConnectionOptions> = {},
|
||||
options?: Partial<ConnectionOptions>,
|
||||
): Promise<Connection> {
|
||||
let uri: string | undefined;
|
||||
let finalOptions: Partial<ConnectionOptions> = {};
|
||||
|
||||
if (typeof uriOrOptions !== "string") {
|
||||
const { uri: uri_, ...opts } = uriOrOptions;
|
||||
uri = uri_;
|
||||
options = opts;
|
||||
finalOptions = opts;
|
||||
} else {
|
||||
uri = uriOrOptions;
|
||||
finalOptions = options || {};
|
||||
}
|
||||
|
||||
if (!uri) {
|
||||
throw new Error("uri is required");
|
||||
}
|
||||
|
||||
options = (options as ConnectionOptions) ?? {};
|
||||
(<ConnectionOptions>options).storageOptions = cleanseStorageOptions(
|
||||
(<ConnectionOptions>options).storageOptions,
|
||||
finalOptions = (finalOptions as ConnectionOptions) ?? {};
|
||||
(<ConnectionOptions>finalOptions).storageOptions = cleanseStorageOptions(
|
||||
(<ConnectionOptions>finalOptions).storageOptions,
|
||||
);
|
||||
const nativeConn = await LanceDbConnection.new(uri, options);
|
||||
const nativeConn = await LanceDbConnection.new(uri, finalOptions);
|
||||
return new LocalConnection(nativeConn);
|
||||
}
|
||||
|
||||
@@ -439,7 +439,7 @@ export interface FtsOptions {
|
||||
*
|
||||
* "raw" - Raw tokenizer. This tokenizer does not split the text into tokens and indexes the entire text as a single token.
|
||||
*/
|
||||
baseTokenizer?: "simple" | "whitespace" | "raw";
|
||||
baseTokenizer?: "simple" | "whitespace" | "raw" | "ngram";
|
||||
|
||||
/**
|
||||
* language for stemming and stop words
|
||||
@@ -472,6 +472,21 @@ export interface FtsOptions {
|
||||
* whether to remove punctuation
|
||||
*/
|
||||
asciiFolding?: boolean;
|
||||
|
||||
/**
|
||||
* ngram min length
|
||||
*/
|
||||
ngramMinLength?: number;
|
||||
|
||||
/**
|
||||
* ngram max length
|
||||
*/
|
||||
ngramMaxLength?: number;
|
||||
|
||||
/**
|
||||
* whether to only index the prefix of the token for ngram tokenizer
|
||||
*/
|
||||
prefixOnly?: boolean;
|
||||
}
|
||||
|
||||
export class Index {
|
||||
@@ -608,6 +623,9 @@ export class Index {
|
||||
options?.stem,
|
||||
options?.removeStopWords,
|
||||
options?.asciiFolding,
|
||||
options?.ngramMinLength,
|
||||
options?.ngramMaxLength,
|
||||
options?.prefixOnly,
|
||||
),
|
||||
);
|
||||
}
|
||||
|
||||
@@ -448,6 +448,10 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
|
||||
* For best results we recommend tuning this parameter with a benchmark against
|
||||
* your actual data to find the smallest possible value that will still give
|
||||
* you the desired recall.
|
||||
*
|
||||
* For more fine grained control over behavior when you have a very narrow filter
|
||||
* you can use `minimumNprobes` and `maximumNprobes`. This method sets both
|
||||
* the minimum and maximum to the same value.
|
||||
*/
|
||||
nprobes(nprobes: number): VectorQuery {
|
||||
super.doCall((inner) => inner.nprobes(nprobes));
|
||||
@@ -455,6 +459,33 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the minimum number of probes used.
|
||||
*
|
||||
* This controls the minimum number of partitions that will be searched. This
|
||||
* parameter will impact every query against a vector index, regardless of the
|
||||
* filter. See `nprobes` for more details. Higher values will increase recall
|
||||
* but will also increase latency.
|
||||
*/
|
||||
minimumNprobes(minimumNprobes: number): VectorQuery {
|
||||
super.doCall((inner) => inner.minimumNprobes(minimumNprobes));
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the maximum number of probes used.
|
||||
*
|
||||
* This controls the maximum number of partitions that will be searched. If this
|
||||
* number is greater than minimumNprobes then the excess partitions will _only_ be
|
||||
* searched if we have not found enough results. This can be useful when there is
|
||||
* a narrow filter to allow these queries to spend more time searching and avoid
|
||||
* potential false negatives.
|
||||
*/
|
||||
maximumNprobes(maximumNprobes: number): VectorQuery {
|
||||
super.doCall((inner) => inner.maximumNprobes(maximumNprobes));
|
||||
return this;
|
||||
}
|
||||
|
||||
/*
|
||||
* Set the distance range to use
|
||||
*
|
||||
@@ -762,6 +793,31 @@ export enum FullTextQueryType {
|
||||
MatchPhrase = "match_phrase",
|
||||
Boost = "boost",
|
||||
MultiMatch = "multi_match",
|
||||
Boolean = "boolean",
|
||||
}
|
||||
|
||||
/**
|
||||
* Enum representing the logical operators used in full-text queries.
|
||||
*
|
||||
* - `And`: All terms must match.
|
||||
* - `Or`: At least one term must match.
|
||||
*/
|
||||
export enum Operator {
|
||||
And = "AND",
|
||||
Or = "OR",
|
||||
}
|
||||
|
||||
/**
|
||||
* Enum representing the occurrence of terms in full-text queries.
|
||||
*
|
||||
* - `Must`: The term must be present in the document.
|
||||
* - `Should`: The term should contribute to the document score, but is not required.
|
||||
* - `MustNot`: The term must not be present in the document.
|
||||
*/
|
||||
export enum Occur {
|
||||
Should = "SHOULD",
|
||||
Must = "MUST",
|
||||
MustNot = "MUST_NOT",
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -791,6 +847,7 @@ export function instanceOfFullTextQuery(obj: any): obj is FullTextQuery {
|
||||
export class MatchQuery implements FullTextQuery {
|
||||
/** @ignore */
|
||||
public readonly inner: JsFullTextQuery;
|
||||
|
||||
/**
|
||||
* Creates an instance of MatchQuery.
|
||||
*
|
||||
@@ -800,6 +857,8 @@ export class MatchQuery implements FullTextQuery {
|
||||
* - `boost`: The boost factor for the query (default is 1.0).
|
||||
* - `fuzziness`: The fuzziness level for the query (default is 0).
|
||||
* - `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
|
||||
* - `operator`: The logical operator to use for combining terms in the query (default is "OR").
|
||||
* - `prefixLength`: The number of beginning characters being unchanged for fuzzy matching.
|
||||
*/
|
||||
constructor(
|
||||
query: string,
|
||||
@@ -808,6 +867,8 @@ export class MatchQuery implements FullTextQuery {
|
||||
boost?: number;
|
||||
fuzziness?: number;
|
||||
maxExpansions?: number;
|
||||
operator?: Operator;
|
||||
prefixLength?: number;
|
||||
},
|
||||
) {
|
||||
let fuzziness = options?.fuzziness;
|
||||
@@ -820,6 +881,8 @@ export class MatchQuery implements FullTextQuery {
|
||||
options?.boost ?? 1.0,
|
||||
fuzziness,
|
||||
options?.maxExpansions ?? 50,
|
||||
options?.operator ?? Operator.Or,
|
||||
options?.prefixLength ?? 0,
|
||||
);
|
||||
}
|
||||
|
||||
@@ -836,9 +899,11 @@ export class PhraseQuery implements FullTextQuery {
|
||||
*
|
||||
* @param query - The phrase to search for in the specified column.
|
||||
* @param column - The name of the column to search within.
|
||||
* @param options - Optional parameters for the phrase query.
|
||||
* - `slop`: The maximum number of intervening unmatched positions allowed between words in the phrase (default is 0).
|
||||
*/
|
||||
constructor(query: string, column: string) {
|
||||
this.inner = JsFullTextQuery.phraseQuery(query, column);
|
||||
constructor(query: string, column: string, options?: { slop?: number }) {
|
||||
this.inner = JsFullTextQuery.phraseQuery(query, column, options?.slop ?? 0);
|
||||
}
|
||||
|
||||
queryType(): FullTextQueryType {
|
||||
@@ -889,18 +954,21 @@ export class MultiMatchQuery implements FullTextQuery {
|
||||
* @param columns - An array of column names to search within.
|
||||
* @param options - Optional parameters for the multi-match query.
|
||||
* - `boosts`: An array of boost factors for each column (default is 1.0 for all).
|
||||
* - `operator`: The logical operator to use for combining terms in the query (default is "OR").
|
||||
*/
|
||||
constructor(
|
||||
query: string,
|
||||
columns: string[],
|
||||
options?: {
|
||||
boosts?: number[];
|
||||
operator?: Operator;
|
||||
},
|
||||
) {
|
||||
this.inner = JsFullTextQuery.multiMatchQuery(
|
||||
query,
|
||||
columns,
|
||||
options?.boosts,
|
||||
options?.operator ?? Operator.Or,
|
||||
);
|
||||
}
|
||||
|
||||
@@ -908,3 +976,23 @@ export class MultiMatchQuery implements FullTextQuery {
|
||||
return FullTextQueryType.MultiMatch;
|
||||
}
|
||||
}
|
||||
|
||||
export class BooleanQuery implements FullTextQuery {
|
||||
/** @ignore */
|
||||
public readonly inner: JsFullTextQuery;
|
||||
/**
|
||||
* Creates an instance of BooleanQuery.
|
||||
*
|
||||
* @param queries - An array of (Occur, FullTextQuery objects) to combine.
|
||||
* Occur specifies whether the query must match, or should match.
|
||||
*/
|
||||
constructor(queries: [Occur, FullTextQuery][]) {
|
||||
this.inner = JsFullTextQuery.booleanQuery(
|
||||
queries.map(([occur, query]) => [occur, query.inner]),
|
||||
);
|
||||
}
|
||||
|
||||
queryType(): FullTextQueryType {
|
||||
return FullTextQueryType.Boolean;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -6,9 +6,11 @@ import {
|
||||
Data,
|
||||
DataType,
|
||||
IntoVector,
|
||||
MultiVector,
|
||||
Schema,
|
||||
dataTypeToJson,
|
||||
fromDataToBuffer,
|
||||
isMultiVector,
|
||||
tableFromIPC,
|
||||
} from "./arrow";
|
||||
|
||||
@@ -75,10 +77,10 @@ export interface OptimizeOptions {
|
||||
* // Delete all versions older than 1 day
|
||||
* const olderThan = new Date();
|
||||
* olderThan.setDate(olderThan.getDate() - 1));
|
||||
* tbl.cleanupOlderVersions(olderThan);
|
||||
* tbl.optimize({cleanupOlderThan: olderThan});
|
||||
*
|
||||
* // Delete all versions except the current version
|
||||
* tbl.cleanupOlderVersions(new Date());
|
||||
* tbl.optimize({cleanupOlderThan: new Date()});
|
||||
*/
|
||||
cleanupOlderThan: Date;
|
||||
deleteUnverified: boolean;
|
||||
@@ -346,7 +348,7 @@ export abstract class Table {
|
||||
* if the query is a string and no embedding function is defined, it will be treated as a full text search query
|
||||
*/
|
||||
abstract search(
|
||||
query: string | IntoVector | FullTextQuery,
|
||||
query: string | IntoVector | MultiVector | FullTextQuery,
|
||||
queryType?: string,
|
||||
ftsColumns?: string | string[],
|
||||
): VectorQuery | Query;
|
||||
@@ -357,7 +359,7 @@ export abstract class Table {
|
||||
* is the same thing as calling `nearestTo` on the builder returned
|
||||
* by `query`. @see {@link Query#nearestTo} for more details.
|
||||
*/
|
||||
abstract vectorSearch(vector: IntoVector): VectorQuery;
|
||||
abstract vectorSearch(vector: IntoVector | MultiVector): VectorQuery;
|
||||
/**
|
||||
* Add new columns with defined values.
|
||||
* @param {AddColumnsSql[]} newColumnTransforms pairs of column names and
|
||||
@@ -668,7 +670,7 @@ export class LocalTable extends Table {
|
||||
}
|
||||
|
||||
search(
|
||||
query: string | IntoVector | FullTextQuery,
|
||||
query: string | IntoVector | MultiVector | FullTextQuery,
|
||||
queryType: string = "auto",
|
||||
ftsColumns?: string | string[],
|
||||
): VectorQuery | Query {
|
||||
@@ -715,7 +717,15 @@ export class LocalTable extends Table {
|
||||
return this.query().nearestTo(queryPromise);
|
||||
}
|
||||
|
||||
vectorSearch(vector: IntoVector): VectorQuery {
|
||||
vectorSearch(vector: IntoVector | MultiVector): VectorQuery {
|
||||
if (isMultiVector(vector)) {
|
||||
const query = this.query().nearestTo(vector[0]);
|
||||
for (const v of vector.slice(1)) {
|
||||
query.addQueryVector(v);
|
||||
}
|
||||
return query;
|
||||
}
|
||||
|
||||
return this.query().nearestTo(vector);
|
||||
}
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-arm64",
|
||||
"version": "0.19.2-beta.0",
|
||||
"version": "0.21.2-beta.1",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.darwin-arm64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-x64",
|
||||
"version": "0.19.2-beta.0",
|
||||
"version": "0.21.2-beta.1",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.darwin-x64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-gnu",
|
||||
"version": "0.19.2-beta.0",
|
||||
"version": "0.21.2-beta.1",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-musl",
|
||||
"version": "0.19.2-beta.0",
|
||||
"version": "0.21.2-beta.1",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-musl.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-gnu",
|
||||
"version": "0.19.2-beta.0",
|
||||
"version": "0.21.2-beta.1",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-musl",
|
||||
"version": "0.19.2-beta.0",
|
||||
"version": "0.21.2-beta.1",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-musl.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-arm64-msvc",
|
||||
"version": "0.19.2-beta.0",
|
||||
"version": "0.21.2-beta.1",
|
||||
"os": [
|
||||
"win32"
|
||||
],
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-x64-msvc",
|
||||
"version": "0.19.2-beta.0",
|
||||
"version": "0.21.2-beta.1",
|
||||
"os": ["win32"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.win32-x64-msvc.node",
|
||||
|
||||
4
nodejs/package-lock.json
generated
4
nodejs/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb",
|
||||
"version": "0.19.2-beta.0",
|
||||
"version": "0.21.2-beta.1",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@lancedb/lancedb",
|
||||
"version": "0.19.2-beta.0",
|
||||
"version": "0.21.2-beta.1",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
"ann"
|
||||
],
|
||||
"private": false,
|
||||
"version": "0.19.2-beta.0",
|
||||
"version": "0.21.2-beta.1",
|
||||
"main": "dist/index.js",
|
||||
"exports": {
|
||||
".": "./dist/index.js",
|
||||
|
||||
@@ -74,6 +74,10 @@ impl Connection {
|
||||
builder = builder.host_override(&host_override);
|
||||
}
|
||||
|
||||
if let Some(session) = options.session {
|
||||
builder = builder.session(session.inner.clone());
|
||||
}
|
||||
|
||||
Ok(Self::inner_new(builder.execute().await.default_error()?))
|
||||
}
|
||||
|
||||
|
||||
@@ -123,6 +123,9 @@ impl Index {
|
||||
stem: Option<bool>,
|
||||
remove_stop_words: Option<bool>,
|
||||
ascii_folding: Option<bool>,
|
||||
ngram_min_length: Option<u32>,
|
||||
ngram_max_length: Option<u32>,
|
||||
prefix_only: Option<bool>,
|
||||
) -> Self {
|
||||
let mut opts = FtsIndexBuilder::default();
|
||||
if let Some(with_position) = with_position {
|
||||
@@ -149,6 +152,15 @@ impl Index {
|
||||
if let Some(ascii_folding) = ascii_folding {
|
||||
opts = opts.ascii_folding(ascii_folding);
|
||||
}
|
||||
if let Some(ngram_min_length) = ngram_min_length {
|
||||
opts = opts.ngram_min_length(ngram_min_length);
|
||||
}
|
||||
if let Some(ngram_max_length) = ngram_max_length {
|
||||
opts = opts.ngram_max_length(ngram_max_length);
|
||||
}
|
||||
if let Some(prefix_only) = prefix_only {
|
||||
opts = opts.ngram_prefix_only(prefix_only);
|
||||
}
|
||||
|
||||
Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::FTS(opts))),
|
||||
|
||||
@@ -14,6 +14,7 @@ pub mod merge;
|
||||
mod query;
|
||||
pub mod remote;
|
||||
mod rerankers;
|
||||
mod session;
|
||||
mod table;
|
||||
mod util;
|
||||
|
||||
@@ -34,6 +35,9 @@ pub struct ConnectionOptions {
|
||||
///
|
||||
/// The available options are described at https://lancedb.github.io/lancedb/guides/storage/
|
||||
pub storage_options: Option<HashMap<String, String>>,
|
||||
/// (For LanceDB OSS only): the session to use for this connection. Holds
|
||||
/// shared caches and other session-specific state.
|
||||
pub session: Option<session::Session>,
|
||||
|
||||
/// (For LanceDB cloud only): configuration for the remote HTTP client.
|
||||
pub client_config: Option<remote::ClientConfig>,
|
||||
|
||||
@@ -4,7 +4,8 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use lancedb::index::scalar::{
|
||||
BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, PhraseQuery,
|
||||
BooleanQuery, BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, Occur,
|
||||
Operator, PhraseQuery,
|
||||
};
|
||||
use lancedb::query::ExecutableQuery;
|
||||
use lancedb::query::Query as LanceDbQuery;
|
||||
@@ -177,6 +178,31 @@ impl VectorQuery {
|
||||
self.inner = self.inner.clone().nprobes(nprobe as usize);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn minimum_nprobes(&mut self, minimum_nprobe: u32) -> napi::Result<()> {
|
||||
self.inner = self
|
||||
.inner
|
||||
.clone()
|
||||
.minimum_nprobes(minimum_nprobe as usize)
|
||||
.default_error()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn maximum_nprobes(&mut self, maximum_nprobes: u32) -> napi::Result<()> {
|
||||
let maximum_nprobes = if maximum_nprobes == 0 {
|
||||
None
|
||||
} else {
|
||||
Some(maximum_nprobes as usize)
|
||||
};
|
||||
self.inner = self
|
||||
.inner
|
||||
.clone()
|
||||
.maximum_nprobes(maximum_nprobes)
|
||||
.default_error()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn distance_range(&mut self, lower_bound: Option<f64>, upper_bound: Option<f64>) {
|
||||
// napi doesn't support f32, so we have to convert to f32
|
||||
@@ -308,6 +334,8 @@ impl JsFullTextQuery {
|
||||
boost: f64,
|
||||
fuzziness: Option<u32>,
|
||||
max_expansions: u32,
|
||||
operator: String,
|
||||
prefix_length: u32,
|
||||
) -> napi::Result<Self> {
|
||||
Ok(Self {
|
||||
inner: MatchQuery::new(query)
|
||||
@@ -315,14 +343,23 @@ impl JsFullTextQuery {
|
||||
.with_boost(boost as f32)
|
||||
.with_fuzziness(fuzziness)
|
||||
.with_max_expansions(max_expansions as usize)
|
||||
.with_operator(
|
||||
Operator::try_from(operator.as_str()).map_err(|e| {
|
||||
napi::Error::from_reason(format!("Invalid operator: {}", e))
|
||||
})?,
|
||||
)
|
||||
.with_prefix_length(prefix_length)
|
||||
.into(),
|
||||
})
|
||||
}
|
||||
|
||||
#[napi(factory)]
|
||||
pub fn phrase_query(query: String, column: String) -> napi::Result<Self> {
|
||||
pub fn phrase_query(query: String, column: String, slop: u32) -> napi::Result<Self> {
|
||||
Ok(Self {
|
||||
inner: PhraseQuery::new(query).with_column(Some(column)).into(),
|
||||
inner: PhraseQuery::new(query)
|
||||
.with_column(Some(column))
|
||||
.with_slop(slop)
|
||||
.into(),
|
||||
})
|
||||
}
|
||||
|
||||
@@ -348,6 +385,7 @@ impl JsFullTextQuery {
|
||||
query: String,
|
||||
columns: Vec<String>,
|
||||
boosts: Option<Vec<f64>>,
|
||||
operator: String,
|
||||
) -> napi::Result<Self> {
|
||||
let q = match boosts {
|
||||
Some(boosts) => MultiMatchQuery::try_new(query, columns)
|
||||
@@ -358,7 +396,37 @@ impl JsFullTextQuery {
|
||||
napi::Error::from_reason(format!("Failed to create multi match query: {}", e))
|
||||
})?;
|
||||
|
||||
Ok(Self { inner: q.into() })
|
||||
let operator = Operator::try_from(operator.as_str()).map_err(|e| {
|
||||
napi::Error::from_reason(format!("Invalid operator for multi match query: {}", e))
|
||||
})?;
|
||||
|
||||
Ok(Self {
|
||||
inner: q.with_operator(operator).into(),
|
||||
})
|
||||
}
|
||||
|
||||
#[napi(factory)]
|
||||
pub fn boolean_query(queries: Vec<(String, &JsFullTextQuery)>) -> napi::Result<Self> {
|
||||
let mut sub_queries = Vec::with_capacity(queries.len());
|
||||
for (occur, q) in queries {
|
||||
let occur = Occur::try_from(occur.as_str())
|
||||
.map_err(|e| napi::Error::from_reason(e.to_string()))?;
|
||||
sub_queries.push((occur, q.inner.clone()));
|
||||
}
|
||||
Ok(Self {
|
||||
inner: BooleanQuery::new(sub_queries).into(),
|
||||
})
|
||||
}
|
||||
|
||||
#[napi(getter)]
|
||||
pub fn query_type(&self) -> String {
|
||||
match self.inner {
|
||||
FtsQuery::Match(_) => "match".to_string(),
|
||||
FtsQuery::Phrase(_) => "phrase".to_string(),
|
||||
FtsQuery::Boost(_) => "boost".to_string(),
|
||||
FtsQuery::MultiMatch(_) => "multi_match".to_string(),
|
||||
FtsQuery::Boolean(_) => "boolean".to_string(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
102
nodejs/src/session.rs
Normal file
102
nodejs/src/session.rs
Normal file
@@ -0,0 +1,102 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use lancedb::{ObjectStoreRegistry, Session as LanceSession};
|
||||
use napi::bindgen_prelude::*;
|
||||
use napi_derive::*;
|
||||
|
||||
/// A session for managing caches and object stores across LanceDB operations.
|
||||
///
|
||||
/// Sessions allow you to configure cache sizes for index and metadata caches,
|
||||
/// which can significantly impact memory use and performance. They can
|
||||
/// also be re-used across multiple connections to share the same cache state.
|
||||
#[napi]
|
||||
#[derive(Clone)]
|
||||
pub struct Session {
|
||||
pub(crate) inner: Arc<LanceSession>,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for Session {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("Session")
|
||||
.field("size_bytes", &self.inner.size_bytes())
|
||||
.field("approx_num_items", &self.inner.approx_num_items())
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
#[napi]
|
||||
impl Session {
|
||||
/// Create a new session with custom cache sizes.
|
||||
///
|
||||
/// # Parameters
|
||||
///
|
||||
/// - `index_cache_size_bytes`: The size of the index cache in bytes.
|
||||
/// Index data is stored in memory in this cache to speed up queries.
|
||||
/// Defaults to 6GB if not specified.
|
||||
/// - `metadata_cache_size_bytes`: The size of the metadata cache in bytes.
|
||||
/// The metadata cache stores file metadata and schema information in memory.
|
||||
/// This cache improves scan and write performance.
|
||||
/// Defaults to 1GB if not specified.
|
||||
#[napi(constructor)]
|
||||
pub fn new(
|
||||
index_cache_size_bytes: Option<BigInt>,
|
||||
metadata_cache_size_bytes: Option<BigInt>,
|
||||
) -> napi::Result<Self> {
|
||||
let index_cache_size = index_cache_size_bytes
|
||||
.map(|size| size.get_u64().1 as usize)
|
||||
.unwrap_or(6 * 1024 * 1024 * 1024); // 6GB default
|
||||
|
||||
let metadata_cache_size = metadata_cache_size_bytes
|
||||
.map(|size| size.get_u64().1 as usize)
|
||||
.unwrap_or(1024 * 1024 * 1024); // 1GB default
|
||||
|
||||
let session = LanceSession::new(
|
||||
index_cache_size,
|
||||
metadata_cache_size,
|
||||
Arc::new(ObjectStoreRegistry::default()),
|
||||
);
|
||||
|
||||
Ok(Self {
|
||||
inner: Arc::new(session),
|
||||
})
|
||||
}
|
||||
|
||||
/// Create a session with default cache sizes.
|
||||
///
|
||||
/// This is equivalent to creating a session with 6GB index cache
|
||||
/// and 1GB metadata cache.
|
||||
#[napi(factory)]
|
||||
pub fn default() -> Self {
|
||||
Self {
|
||||
inner: Arc::new(LanceSession::default()),
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the current size of the session caches in bytes.
|
||||
#[napi]
|
||||
pub fn size_bytes(&self) -> BigInt {
|
||||
BigInt::from(self.inner.size_bytes())
|
||||
}
|
||||
|
||||
/// Get the approximate number of items cached in the session.
|
||||
#[napi]
|
||||
pub fn approx_num_items(&self) -> u32 {
|
||||
self.inner.approx_num_items() as u32
|
||||
}
|
||||
}
|
||||
|
||||
// Implement FromNapiValue for Session to work with napi(object)
|
||||
impl napi::bindgen_prelude::FromNapiValue for Session {
|
||||
unsafe fn from_napi_value(
|
||||
env: napi::sys::napi_env,
|
||||
napi_val: napi::sys::napi_value,
|
||||
) -> napi::Result<Self> {
|
||||
let object: napi::bindgen_prelude::ClassInstance<Session> =
|
||||
napi::bindgen_prelude::ClassInstance::from_napi_value(env, napi_val)?;
|
||||
let copy = object.clone();
|
||||
Ok(copy)
|
||||
}
|
||||
}
|
||||
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.23.0-beta.0"
|
||||
current_version = "0.24.2"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
19
python/CLAUDE.md
Normal file
19
python/CLAUDE.md
Normal file
@@ -0,0 +1,19 @@
|
||||
These are the Python bindings of LanceDB.
|
||||
The core Rust library is in the `../rust/lancedb` directory, the rust binding
|
||||
code is in the `src/` directory and the Python bindings are in the `lancedb/` directory.
|
||||
|
||||
Common commands:
|
||||
|
||||
* Build: `make develop`
|
||||
* Format: `make format`
|
||||
* Lint: `make check`
|
||||
* Fix lints: `make fix`
|
||||
* Test: `make test`
|
||||
* Doc test: `make doctest`
|
||||
|
||||
Before committing changes, run lints and then formatting.
|
||||
|
||||
When you change the Rust code, you will need to recompile the Python bindings: `make develop`.
|
||||
|
||||
When you export new types from Rust to Python, you must manually update `python/lancedb/_lancedb.pyi`
|
||||
with the corresponding type hints. You can run `pyright` to check for type errors in the Python code.
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-python"
|
||||
version = "0.23.0-beta.0"
|
||||
version = "0.24.2"
|
||||
edition.workspace = true
|
||||
description = "Python bindings for LanceDB"
|
||||
license.workspace = true
|
||||
@@ -14,11 +14,11 @@ name = "_lancedb"
|
||||
crate-type = ["cdylib"]
|
||||
|
||||
[dependencies]
|
||||
arrow = { version = "54.1", features = ["pyarrow"] }
|
||||
arrow = { version = "55.1", features = ["pyarrow"] }
|
||||
lancedb = { path = "../rust/lancedb", default-features = false }
|
||||
env_logger.workspace = true
|
||||
pyo3 = { version = "0.23", features = ["extension-module", "abi3-py39"] }
|
||||
pyo3-async-runtimes = { version = "0.23", features = [
|
||||
pyo3 = { version = "0.24", features = ["extension-module", "abi3-py39"] }
|
||||
pyo3-async-runtimes = { version = "0.24", features = [
|
||||
"attributes",
|
||||
"tokio-runtime",
|
||||
] }
|
||||
@@ -27,7 +27,7 @@ futures.workspace = true
|
||||
tokio = { version = "1.40", features = ["sync"] }
|
||||
|
||||
[build-dependencies]
|
||||
pyo3-build-config = { version = "0.23", features = [
|
||||
pyo3-build-config = { version = "0.24", features = [
|
||||
"extension-module",
|
||||
"abi3-py39",
|
||||
] }
|
||||
|
||||
@@ -85,8 +85,8 @@ embeddings = [
|
||||
"boto3>=1.28.57",
|
||||
"awscli>=1.29.57",
|
||||
"botocore>=1.31.57",
|
||||
"ollama",
|
||||
"ibm-watsonx-ai>=1.1.2",
|
||||
'ibm-watsonx-ai>=1.1.2; python_version >= "3.10"',
|
||||
"ollama>=0.3.0",
|
||||
]
|
||||
azure = ["adlfs>=2024.2.0"]
|
||||
|
||||
|
||||
@@ -18,6 +18,7 @@ from .remote import ClientConfig
|
||||
from .remote.db import RemoteDBConnection
|
||||
from .schema import vector
|
||||
from .table import AsyncTable
|
||||
from ._lancedb import Session
|
||||
|
||||
|
||||
def connect(
|
||||
@@ -30,6 +31,7 @@ def connect(
|
||||
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
|
||||
client_config: Union[ClientConfig, Dict[str, Any], None] = None,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
session: Optional[Session] = None,
|
||||
**kwargs: Any,
|
||||
) -> DBConnection:
|
||||
"""Connect to a LanceDB database.
|
||||
@@ -64,6 +66,12 @@ def connect(
|
||||
storage_options: dict, optional
|
||||
Additional options for the storage backend. See available options at
|
||||
<https://lancedb.github.io/lancedb/guides/storage/>
|
||||
session: Session, optional
|
||||
(For LanceDB OSS only)
|
||||
A session to use for this connection. Sessions allow you to configure
|
||||
cache sizes for index and metadata caches, which can significantly
|
||||
impact memory use and performance. They can also be re-used across
|
||||
multiple connections to share the same cache state.
|
||||
|
||||
Examples
|
||||
--------
|
||||
@@ -92,7 +100,7 @@ def connect(
|
||||
if api_key is None:
|
||||
api_key = os.environ.get("LANCEDB_API_KEY")
|
||||
if api_key is None:
|
||||
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
|
||||
raise ValueError(f"api_key is required to connect to LanceDB cloud: {uri}")
|
||||
if isinstance(request_thread_pool, int):
|
||||
request_thread_pool = ThreadPoolExecutor(request_thread_pool)
|
||||
return RemoteDBConnection(
|
||||
@@ -113,6 +121,7 @@ def connect(
|
||||
uri,
|
||||
read_consistency_interval=read_consistency_interval,
|
||||
storage_options=storage_options,
|
||||
session=session,
|
||||
)
|
||||
|
||||
|
||||
@@ -125,6 +134,7 @@ async def connect_async(
|
||||
read_consistency_interval: Optional[timedelta] = None,
|
||||
client_config: Optional[Union[ClientConfig, Dict[str, Any]]] = None,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
session: Optional[Session] = None,
|
||||
) -> AsyncConnection:
|
||||
"""Connect to a LanceDB database.
|
||||
|
||||
@@ -158,6 +168,12 @@ async def connect_async(
|
||||
storage_options: dict, optional
|
||||
Additional options for the storage backend. See available options at
|
||||
<https://lancedb.github.io/lancedb/guides/storage/>
|
||||
session: Session, optional
|
||||
(For LanceDB OSS only)
|
||||
A session to use for this connection. Sessions allow you to configure
|
||||
cache sizes for index and metadata caches, which can significantly
|
||||
impact memory use and performance. They can also be re-used across
|
||||
multiple connections to share the same cache state.
|
||||
|
||||
Examples
|
||||
--------
|
||||
@@ -197,6 +213,7 @@ async def connect_async(
|
||||
read_consistency_interval_secs,
|
||||
client_config,
|
||||
storage_options,
|
||||
session,
|
||||
)
|
||||
)
|
||||
|
||||
@@ -212,6 +229,7 @@ __all__ = [
|
||||
"DBConnection",
|
||||
"LanceDBConnection",
|
||||
"RemoteDBConnection",
|
||||
"Session",
|
||||
"__version__",
|
||||
]
|
||||
|
||||
|
||||
@@ -6,6 +6,19 @@ import pyarrow as pa
|
||||
from .index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq, FTS
|
||||
from .remote import ClientConfig
|
||||
|
||||
class Session:
|
||||
def __init__(
|
||||
self,
|
||||
index_cache_size_bytes: Optional[int] = None,
|
||||
metadata_cache_size_bytes: Optional[int] = None,
|
||||
): ...
|
||||
@staticmethod
|
||||
def default() -> "Session": ...
|
||||
@property
|
||||
def size_bytes(self) -> int: ...
|
||||
@property
|
||||
def approx_num_items(self) -> int: ...
|
||||
|
||||
class Connection(object):
|
||||
uri: str
|
||||
async def table_names(
|
||||
@@ -89,6 +102,7 @@ async def connect(
|
||||
read_consistency_interval: Optional[float],
|
||||
client_config: Optional[Union[ClientConfig, Dict[str, Any]]],
|
||||
storage_options: Optional[Dict[str, str]],
|
||||
session: Optional[Session],
|
||||
) -> Connection: ...
|
||||
|
||||
class RecordBatchStream:
|
||||
@@ -143,6 +157,8 @@ class VectorQuery:
|
||||
def postfilter(self): ...
|
||||
def refine_factor(self, refine_factor: int): ...
|
||||
def nprobes(self, nprobes: int): ...
|
||||
def minimum_nprobes(self, minimum_nprobes: int): ...
|
||||
def maximum_nprobes(self, maximum_nprobes: int): ...
|
||||
def bypass_vector_index(self): ...
|
||||
def nearest_to_text(self, query: dict) -> HybridQuery: ...
|
||||
def to_query_request(self) -> PyQueryRequest: ...
|
||||
@@ -158,6 +174,8 @@ class HybridQuery:
|
||||
def distance_type(self, distance_type: str): ...
|
||||
def refine_factor(self, refine_factor: int): ...
|
||||
def nprobes(self, nprobes: int): ...
|
||||
def minimum_nprobes(self, minimum_nprobes: int): ...
|
||||
def maximum_nprobes(self, maximum_nprobes: int): ...
|
||||
def bypass_vector_index(self): ...
|
||||
def to_vector_query(self) -> VectorQuery: ...
|
||||
def to_fts_query(self) -> FTSQuery: ...
|
||||
@@ -165,23 +183,21 @@ class HybridQuery:
|
||||
def get_with_row_id(self) -> bool: ...
|
||||
def to_query_request(self) -> PyQueryRequest: ...
|
||||
|
||||
class PyFullTextSearchQuery:
|
||||
columns: Optional[List[str]]
|
||||
query: str
|
||||
limit: Optional[int]
|
||||
wand_factor: Optional[float]
|
||||
class FullTextQuery:
|
||||
pass
|
||||
|
||||
class PyQueryRequest:
|
||||
limit: Optional[int]
|
||||
offset: Optional[int]
|
||||
filter: Optional[Union[str, bytes]]
|
||||
full_text_search: Optional[PyFullTextSearchQuery]
|
||||
full_text_search: Optional[FullTextQuery]
|
||||
select: Optional[Union[str, List[str]]]
|
||||
fast_search: Optional[bool]
|
||||
with_row_id: Optional[bool]
|
||||
column: Optional[str]
|
||||
query_vector: Optional[List[pa.Array]]
|
||||
nprobes: Optional[int]
|
||||
minimum_nprobes: Optional[int]
|
||||
maximum_nprobes: Optional[int]
|
||||
lower_bound: Optional[float]
|
||||
upper_bound: Optional[float]
|
||||
ef: Optional[int]
|
||||
|
||||
@@ -94,9 +94,9 @@ def data_to_reader(
|
||||
else:
|
||||
raise TypeError(
|
||||
f"Unknown data type {type(data)}. "
|
||||
"Please check "
|
||||
"https://lancedb.github.io/lance/read_and_write.html "
|
||||
"to see supported types."
|
||||
"Supported types: list of dicts, pandas DataFrame, polars DataFrame, "
|
||||
"pyarrow Table/RecordBatch, or Pydantic models. "
|
||||
"See https://lancedb.github.io/lancedb/guides/tables/ for examples."
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -37,6 +37,7 @@ if TYPE_CHECKING:
|
||||
from ._lancedb import Connection as LanceDbConnection
|
||||
from .common import DATA, URI
|
||||
from .embeddings import EmbeddingFunctionConfig
|
||||
from ._lancedb import Session
|
||||
|
||||
|
||||
class DBConnection(EnforceOverrides):
|
||||
@@ -247,6 +248,9 @@ class DBConnection(EnforceOverrides):
|
||||
name: str
|
||||
The name of the table.
|
||||
index_cache_size: int, default 256
|
||||
**Deprecated**: Use session-level cache configuration instead.
|
||||
Create a Session with custom cache sizes and pass it to lancedb.connect().
|
||||
|
||||
Set the size of the index cache, specified as a number of entries
|
||||
|
||||
The exact meaning of an "entry" will depend on the type of index:
|
||||
@@ -354,6 +358,7 @@ class LanceDBConnection(DBConnection):
|
||||
*,
|
||||
read_consistency_interval: Optional[timedelta] = None,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
session: Optional[Session] = None,
|
||||
):
|
||||
if not isinstance(uri, Path):
|
||||
scheme = get_uri_scheme(uri)
|
||||
@@ -367,6 +372,7 @@ class LanceDBConnection(DBConnection):
|
||||
self._entered = False
|
||||
self.read_consistency_interval = read_consistency_interval
|
||||
self.storage_options = storage_options
|
||||
self.session = session
|
||||
|
||||
if read_consistency_interval is not None:
|
||||
read_consistency_interval_secs = read_consistency_interval.total_seconds()
|
||||
@@ -382,6 +388,7 @@ class LanceDBConnection(DBConnection):
|
||||
read_consistency_interval_secs,
|
||||
None,
|
||||
storage_options,
|
||||
session,
|
||||
)
|
||||
|
||||
self._conn = AsyncConnection(LOOP.run(do_connect()))
|
||||
@@ -475,6 +482,17 @@ class LanceDBConnection(DBConnection):
|
||||
-------
|
||||
A LanceTable object representing the table.
|
||||
"""
|
||||
if index_cache_size is not None:
|
||||
import warnings
|
||||
|
||||
warnings.warn(
|
||||
"index_cache_size is deprecated. Use session-level cache "
|
||||
"configuration instead. Create a Session with custom cache sizes "
|
||||
"and pass it to lancedb.connect().",
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
return LanceTable.open(
|
||||
self,
|
||||
name,
|
||||
@@ -820,6 +838,9 @@ class AsyncConnection(object):
|
||||
See available options at
|
||||
<https://lancedb.github.io/lancedb/guides/storage/>
|
||||
index_cache_size: int, default 256
|
||||
**Deprecated**: Use session-level cache configuration instead.
|
||||
Create a Session with custom cache sizes and pass it to lancedb.connect().
|
||||
|
||||
Set the size of the index cache, specified as a number of entries
|
||||
|
||||
The exact meaning of an "entry" will depend on the type of index:
|
||||
|
||||
@@ -11,7 +11,7 @@ from .instructor import InstructorEmbeddingFunction
|
||||
from .ollama import OllamaEmbeddings
|
||||
from .open_clip import OpenClipEmbeddings
|
||||
from .openai import OpenAIEmbeddings
|
||||
from .registry import EmbeddingFunctionRegistry, get_registry
|
||||
from .registry import EmbeddingFunctionRegistry, get_registry, register
|
||||
from .sentence_transformers import SentenceTransformerEmbeddings
|
||||
from .gte import GteEmbeddings
|
||||
from .transformers import TransformersEmbeddingFunction, ColbertEmbeddings
|
||||
|
||||
@@ -9,11 +9,14 @@ from huggingface_hub import snapshot_download
|
||||
from pydantic import BaseModel
|
||||
from transformers import BertTokenizer
|
||||
|
||||
from .utils import create_import_stub
|
||||
|
||||
try:
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
except ImportError:
|
||||
raise ImportError("You need to install MLX to use this model use - pip install mlx")
|
||||
mx = create_import_stub("mlx.core", "mlx")
|
||||
nn = create_import_stub("mlx.nn", "mlx")
|
||||
|
||||
|
||||
def average_pool(last_hidden_state: mx.array, attention_mask: mx.array) -> mx.array:
|
||||
@@ -72,7 +75,7 @@ class TransformerEncoder(nn.Module):
|
||||
super().__init__()
|
||||
self.layers = [
|
||||
TransformerEncoderLayer(dims, num_heads, mlp_dims)
|
||||
for i in range(num_layers)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
|
||||
def __call__(self, x, mask):
|
||||
|
||||
@@ -2,14 +2,15 @@
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
from functools import cached_property
|
||||
from typing import TYPE_CHECKING, List, Optional, Union
|
||||
from typing import TYPE_CHECKING, List, Optional, Sequence, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..util import attempt_import_or_raise
|
||||
from .base import TextEmbeddingFunction
|
||||
from .registry import register
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import numpy as np
|
||||
import ollama
|
||||
|
||||
|
||||
@@ -28,23 +29,21 @@ class OllamaEmbeddings(TextEmbeddingFunction):
|
||||
keep_alive: Optional[Union[float, str]] = None
|
||||
ollama_client_kwargs: Optional[dict] = {}
|
||||
|
||||
def ndims(self):
|
||||
def ndims(self) -> int:
|
||||
return len(self.generate_embeddings(["foo"])[0])
|
||||
|
||||
def _compute_embedding(self, text) -> Union["np.array", None]:
|
||||
return (
|
||||
self._ollama_client.embeddings(
|
||||
model=self.name,
|
||||
prompt=text,
|
||||
options=self.options,
|
||||
keep_alive=self.keep_alive,
|
||||
)["embedding"]
|
||||
or None
|
||||
def _compute_embedding(self, text: Sequence[str]) -> Sequence[Sequence[float]]:
|
||||
response = self._ollama_client.embed(
|
||||
model=self.name,
|
||||
input=text,
|
||||
options=self.options,
|
||||
keep_alive=self.keep_alive,
|
||||
)
|
||||
return response.embeddings
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], "np.ndarray"]
|
||||
) -> list[Union["np.array", None]]:
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
) -> list[Union[np.array, None]]:
|
||||
"""
|
||||
Get the embeddings for the given texts
|
||||
|
||||
@@ -54,8 +53,8 @@ class OllamaEmbeddings(TextEmbeddingFunction):
|
||||
The texts to embed
|
||||
"""
|
||||
# TODO retry, rate limit, token limit
|
||||
embeddings = [self._compute_embedding(text) for text in texts]
|
||||
return embeddings
|
||||
embeddings = self._compute_embedding(texts)
|
||||
return list(embeddings)
|
||||
|
||||
@cached_property
|
||||
def _ollama_client(self) -> "ollama.Client":
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
import json
|
||||
from typing import Dict, Optional
|
||||
from typing import Dict, Optional, Type
|
||||
|
||||
from .base import EmbeddingFunction, EmbeddingFunctionConfig
|
||||
|
||||
@@ -43,7 +43,7 @@ class EmbeddingFunctionRegistry:
|
||||
self._functions = {}
|
||||
self._variables = {}
|
||||
|
||||
def register(self, alias: str = None):
|
||||
def register(self, alias: Optional[str] = None):
|
||||
"""
|
||||
This creates a decorator that can be used to register
|
||||
an EmbeddingFunction.
|
||||
@@ -75,7 +75,7 @@ class EmbeddingFunctionRegistry:
|
||||
"""
|
||||
self._functions = {}
|
||||
|
||||
def get(self, name: str):
|
||||
def get(self, name: str) -> Type[EmbeddingFunction]:
|
||||
"""
|
||||
Fetch an embedding function class by name
|
||||
|
||||
|
||||
@@ -21,6 +21,36 @@ from ..dependencies import pandas as pd
|
||||
from ..util import attempt_import_or_raise
|
||||
|
||||
|
||||
def create_import_stub(module_name: str, package_name: str = None):
|
||||
"""
|
||||
Create a stub module that allows class definition but fails when used.
|
||||
This allows modules to be imported for doctest collection even when
|
||||
optional dependencies are not available.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
module_name : str
|
||||
The name of the module to create a stub for
|
||||
package_name : str, optional
|
||||
The package name to suggest in the error message
|
||||
|
||||
Returns
|
||||
-------
|
||||
object
|
||||
A stub object that can be used in place of the module
|
||||
"""
|
||||
|
||||
class _ImportStub:
|
||||
def __getattr__(self, name):
|
||||
return _ImportStub # Return stub for chained access like nn.Module
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
pkg = package_name or module_name
|
||||
raise ImportError(f"You need to install {pkg} to use this functionality")
|
||||
|
||||
return _ImportStub()
|
||||
|
||||
|
||||
# ruff: noqa: PERF203
|
||||
def retry(tries=10, delay=1, max_delay=30, backoff=3, jitter=1):
|
||||
def wrapper(fn):
|
||||
|
||||
@@ -137,6 +137,9 @@ class FTS:
|
||||
stem: bool = True
|
||||
remove_stop_words: bool = True
|
||||
ascii_folding: bool = True
|
||||
ngram_min_length: int = 3
|
||||
ngram_max_length: int = 3
|
||||
prefix_only: bool = False
|
||||
|
||||
|
||||
@dataclass
|
||||
|
||||
@@ -4,7 +4,6 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
import abc
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from enum import Enum
|
||||
from datetime import timedelta
|
||||
@@ -15,7 +14,7 @@ from typing import (
|
||||
Literal,
|
||||
Optional,
|
||||
Tuple,
|
||||
Type,
|
||||
TypeVar,
|
||||
Union,
|
||||
Any,
|
||||
)
|
||||
@@ -59,6 +58,8 @@ if TYPE_CHECKING:
|
||||
else:
|
||||
from typing_extensions import Self
|
||||
|
||||
T = TypeVar("T", bound="LanceModel")
|
||||
|
||||
|
||||
# Pydantic validation function for vector queries
|
||||
def ensure_vector_query(
|
||||
@@ -88,15 +89,28 @@ def ensure_vector_query(
|
||||
return val
|
||||
|
||||
|
||||
class FullTextQueryType(Enum):
|
||||
class FullTextQueryType(str, Enum):
|
||||
MATCH = "match"
|
||||
MATCH_PHRASE = "match_phrase"
|
||||
BOOST = "boost"
|
||||
MULTI_MATCH = "multi_match"
|
||||
BOOLEAN = "boolean"
|
||||
|
||||
|
||||
class FullTextQuery(abc.ABC, pydantic.BaseModel):
|
||||
@abc.abstractmethod
|
||||
class FullTextOperator(str, Enum):
|
||||
AND = "AND"
|
||||
OR = "OR"
|
||||
|
||||
|
||||
class Occur(str, Enum):
|
||||
SHOULD = "SHOULD"
|
||||
MUST = "MUST"
|
||||
MUST_NOT = "MUST_NOT"
|
||||
|
||||
|
||||
@pydantic.dataclasses.dataclass
|
||||
class FullTextQuery(ABC):
|
||||
@abstractmethod
|
||||
def query_type(self) -> FullTextQueryType:
|
||||
"""
|
||||
Get the query type of the query.
|
||||
@@ -106,193 +120,178 @@ class FullTextQuery(abc.ABC, pydantic.BaseModel):
|
||||
str
|
||||
The type of the query.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def to_dict(self) -> dict:
|
||||
def __and__(self, other: "FullTextQuery") -> "FullTextQuery":
|
||||
"""
|
||||
Convert the query to a dictionary.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
The query as a dictionary.
|
||||
"""
|
||||
|
||||
|
||||
class MatchQuery(FullTextQuery):
|
||||
query: str
|
||||
column: str
|
||||
boost: float = 1.0
|
||||
fuzziness: int = 0
|
||||
max_expansions: int = 50
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
query: str,
|
||||
column: str,
|
||||
*,
|
||||
boost: float = 1.0,
|
||||
fuzziness: int = 0,
|
||||
max_expansions: int = 50,
|
||||
):
|
||||
"""
|
||||
Match query for full-text search.
|
||||
Combine two queries with a logical AND operation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
query : str
|
||||
The query string to match against.
|
||||
column : str
|
||||
The name of the column to match against.
|
||||
boost : float, default 1.0
|
||||
The boost factor for the query.
|
||||
The score of each matching document is multiplied by this value.
|
||||
fuzziness : int, optional
|
||||
The maximum edit distance for each term in the match query.
|
||||
Defaults to 0 (exact match).
|
||||
If None, fuzziness is applied automatically by the rules:
|
||||
- 0 for terms with length <= 2
|
||||
- 1 for terms with length <= 5
|
||||
- 2 for terms with length > 5
|
||||
max_expansions : int, optional
|
||||
The maximum number of terms to consider for fuzzy matching.
|
||||
Defaults to 50.
|
||||
other : FullTextQuery
|
||||
The other query to combine with.
|
||||
|
||||
Returns
|
||||
-------
|
||||
FullTextQuery
|
||||
A new query that combines both queries with AND.
|
||||
"""
|
||||
super().__init__(
|
||||
query=query,
|
||||
column=column,
|
||||
boost=boost,
|
||||
fuzziness=fuzziness,
|
||||
max_expansions=max_expansions,
|
||||
)
|
||||
return BooleanQuery([(Occur.MUST, self), (Occur.MUST, other)])
|
||||
|
||||
def __or__(self, other: "FullTextQuery") -> "FullTextQuery":
|
||||
"""
|
||||
Combine two queries with a logical OR operation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : FullTextQuery
|
||||
The other query to combine with.
|
||||
|
||||
Returns
|
||||
-------
|
||||
FullTextQuery
|
||||
A new query that combines both queries with OR.
|
||||
"""
|
||||
return BooleanQuery([(Occur.SHOULD, self), (Occur.SHOULD, other)])
|
||||
|
||||
|
||||
@pydantic.dataclasses.dataclass
|
||||
class MatchQuery(FullTextQuery):
|
||||
"""
|
||||
Match query for full-text search.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
query : str
|
||||
The query string to match against.
|
||||
column : str
|
||||
The name of the column to match against.
|
||||
boost : float, default 1.0
|
||||
The boost factor for the query.
|
||||
The score of each matching document is multiplied by this value.
|
||||
fuzziness : int, optional
|
||||
The maximum edit distance for each term in the match query.
|
||||
Defaults to 0 (exact match).
|
||||
If None, fuzziness is applied automatically by the rules:
|
||||
- 0 for terms with length <= 2
|
||||
- 1 for terms with length <= 5
|
||||
- 2 for terms with length > 5
|
||||
max_expansions : int, optional
|
||||
The maximum number of terms to consider for fuzzy matching.
|
||||
Defaults to 50.
|
||||
operator : FullTextOperator, default OR
|
||||
The operator to use for combining the query results.
|
||||
Can be either `AND` or `OR`.
|
||||
If `AND`, all terms in the query must match.
|
||||
If `OR`, at least one term in the query must match.
|
||||
prefix_length : int, optional
|
||||
The number of beginning characters being unchanged for fuzzy matching.
|
||||
This is useful to achieve prefix matching.
|
||||
"""
|
||||
|
||||
query: str
|
||||
column: str
|
||||
boost: float = pydantic.Field(1.0, kw_only=True)
|
||||
fuzziness: int = pydantic.Field(0, kw_only=True)
|
||||
max_expansions: int = pydantic.Field(50, kw_only=True)
|
||||
operator: FullTextOperator = pydantic.Field(FullTextOperator.OR, kw_only=True)
|
||||
prefix_length: int = pydantic.Field(0, kw_only=True)
|
||||
|
||||
def query_type(self) -> FullTextQueryType:
|
||||
return FullTextQueryType.MATCH
|
||||
|
||||
def to_dict(self) -> dict:
|
||||
return {
|
||||
"match": {
|
||||
self.column: {
|
||||
"query": self.query,
|
||||
"boost": self.boost,
|
||||
"fuzziness": self.fuzziness,
|
||||
"max_expansions": self.max_expansions,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@pydantic.dataclasses.dataclass
|
||||
class PhraseQuery(FullTextQuery):
|
||||
"""
|
||||
Phrase query for full-text search.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
query : str
|
||||
The query string to match against.
|
||||
column : str
|
||||
The name of the column to match against.
|
||||
"""
|
||||
|
||||
query: str
|
||||
column: str
|
||||
|
||||
def __init__(self, query: str, column: str):
|
||||
"""
|
||||
Phrase query for full-text search.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
query : str
|
||||
The query string to match against.
|
||||
column : str
|
||||
The name of the column to match against.
|
||||
"""
|
||||
super().__init__(query=query, column=column)
|
||||
slop: int = pydantic.Field(0, kw_only=True)
|
||||
|
||||
def query_type(self) -> FullTextQueryType:
|
||||
return FullTextQueryType.MATCH_PHRASE
|
||||
|
||||
def to_dict(self) -> dict:
|
||||
return {
|
||||
"match_phrase": {
|
||||
self.column: self.query,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@pydantic.dataclasses.dataclass
|
||||
class BoostQuery(FullTextQuery):
|
||||
"""
|
||||
Boost query for full-text search.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
positive : dict
|
||||
The positive query object.
|
||||
negative : dict
|
||||
The negative query object.
|
||||
negative_boost : float, default 0.5
|
||||
The boost factor for the negative query.
|
||||
"""
|
||||
|
||||
positive: FullTextQuery
|
||||
negative: FullTextQuery
|
||||
negative_boost: float = 0.5
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
positive: FullTextQuery,
|
||||
negative: FullTextQuery,
|
||||
*,
|
||||
negative_boost: float = 0.5,
|
||||
):
|
||||
"""
|
||||
Boost query for full-text search.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
positive : dict
|
||||
The positive query object.
|
||||
negative : dict
|
||||
The negative query object.
|
||||
negative_boost : float
|
||||
The boost factor for the negative query.
|
||||
"""
|
||||
super().__init__(
|
||||
positive=positive, negative=negative, negative_boost=negative_boost
|
||||
)
|
||||
negative_boost: float = pydantic.Field(0.5, kw_only=True)
|
||||
|
||||
def query_type(self) -> FullTextQueryType:
|
||||
return FullTextQueryType.BOOST
|
||||
|
||||
def to_dict(self) -> dict:
|
||||
return {
|
||||
"boost": {
|
||||
"positive": self.positive.to_dict(),
|
||||
"negative": self.negative.to_dict(),
|
||||
"negative_boost": self.negative_boost,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@pydantic.dataclasses.dataclass
|
||||
class MultiMatchQuery(FullTextQuery):
|
||||
"""
|
||||
Multi-match query for full-text search.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
query : str | list[Query]
|
||||
If a string, the query string to match against.
|
||||
columns : list[str]
|
||||
The list of columns to match against.
|
||||
boosts : list[float], optional
|
||||
The list of boost factors for each column. If not provided,
|
||||
all columns will have the same boost factor.
|
||||
operator : FullTextOperator, default OR
|
||||
The operator to use for combining the query results.
|
||||
Can be either `AND` or `OR`.
|
||||
It would be applied to all columns individually.
|
||||
For example, if the operator is `AND`,
|
||||
then the query "hello world" is equal to
|
||||
`match("hello AND world", column1) OR match("hello AND world", column2)`.
|
||||
"""
|
||||
|
||||
query: str
|
||||
columns: list[str]
|
||||
boosts: list[float]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
query: str,
|
||||
columns: list[str],
|
||||
*,
|
||||
boosts: Optional[list[float]] = None,
|
||||
):
|
||||
"""
|
||||
Multi-match query for full-text search.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
query : str
|
||||
The query string to match against.
|
||||
|
||||
columns : list[str]
|
||||
The list of columns to match against.
|
||||
|
||||
boosts : list[float], optional
|
||||
The list of boost factors for each column. If not provided,
|
||||
all columns will have the same boost factor.
|
||||
"""
|
||||
if boosts is None:
|
||||
boosts = [1.0] * len(columns)
|
||||
super().__init__(query=query, columns=columns, boosts=boosts)
|
||||
boosts: Optional[list[float]] = pydantic.Field(None, kw_only=True)
|
||||
operator: FullTextOperator = pydantic.Field(FullTextOperator.OR, kw_only=True)
|
||||
|
||||
def query_type(self) -> FullTextQueryType:
|
||||
return FullTextQueryType.MULTI_MATCH
|
||||
|
||||
def to_dict(self) -> dict:
|
||||
return {
|
||||
"multi_match": {
|
||||
"query": self.query,
|
||||
"columns": self.columns,
|
||||
"boost": self.boosts,
|
||||
}
|
||||
}
|
||||
|
||||
@pydantic.dataclasses.dataclass
|
||||
class BooleanQuery(FullTextQuery):
|
||||
"""
|
||||
Boolean query for full-text search.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
queries : list[tuple(Occur, FullTextQuery)]
|
||||
The list of queries with their occurrence requirements.
|
||||
"""
|
||||
|
||||
queries: list[tuple[Occur, FullTextQuery]]
|
||||
|
||||
def query_type(self) -> FullTextQueryType:
|
||||
return FullTextQueryType.BOOLEAN
|
||||
|
||||
|
||||
class FullTextSearchQuery(pydantic.BaseModel):
|
||||
@@ -445,8 +444,18 @@ class Query(pydantic.BaseModel):
|
||||
# which columns to return in the results
|
||||
columns: Optional[Union[List[str], Dict[str, str]]] = None
|
||||
|
||||
# number of IVF partitions to search
|
||||
nprobes: Optional[int] = None
|
||||
# minimum number of IVF partitions to search
|
||||
#
|
||||
# If None then a default value (20) will be used.
|
||||
minimum_nprobes: Optional[int] = None
|
||||
|
||||
# maximum number of IVF partitions to search
|
||||
#
|
||||
# If None then a default value (20) will be used.
|
||||
#
|
||||
# If 0 then no limit will be applied and all partitions could be searched
|
||||
# if needed to satisfy the limit.
|
||||
maximum_nprobes: Optional[int] = None
|
||||
|
||||
# lower bound for distance search
|
||||
lower_bound: Optional[float] = None
|
||||
@@ -484,7 +493,8 @@ class Query(pydantic.BaseModel):
|
||||
query.vector_column = req.column
|
||||
query.vector = req.query_vector
|
||||
query.distance_type = req.distance_type
|
||||
query.nprobes = req.nprobes
|
||||
query.minimum_nprobes = req.minimum_nprobes
|
||||
query.maximum_nprobes = req.maximum_nprobes
|
||||
query.lower_bound = req.lower_bound
|
||||
query.upper_bound = req.upper_bound
|
||||
query.ef = req.ef
|
||||
@@ -493,10 +503,8 @@ class Query(pydantic.BaseModel):
|
||||
query.postfilter = req.postfilter
|
||||
if req.full_text_search is not None:
|
||||
query.full_text_query = FullTextSearchQuery(
|
||||
columns=req.full_text_search.columns,
|
||||
query=req.full_text_search.query,
|
||||
limit=req.full_text_search.limit,
|
||||
wand_factor=req.full_text_search.wand_factor,
|
||||
columns=None,
|
||||
query=req.full_text_search,
|
||||
)
|
||||
return query
|
||||
|
||||
@@ -740,8 +748,8 @@ class LanceQueryBuilder(ABC):
|
||||
return self.to_arrow(timeout=timeout).to_pylist()
|
||||
|
||||
def to_pydantic(
|
||||
self, model: Type[LanceModel], *, timeout: Optional[timedelta] = None
|
||||
) -> List[LanceModel]:
|
||||
self, model: type[T], *, timeout: Optional[timedelta] = None
|
||||
) -> list[T]:
|
||||
"""Return the table as a list of pydantic models.
|
||||
|
||||
Parameters
|
||||
@@ -900,11 +908,11 @@ class LanceQueryBuilder(ABC):
|
||||
>>> plan = table.search(query).explain_plan(True)
|
||||
>>> print(plan) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
|
||||
ProjectionExec: expr=[vector@0 as vector, _distance@2 as _distance]
|
||||
GlobalLimitExec: skip=0, fetch=10
|
||||
FilterExec: _distance@2 IS NOT NULL
|
||||
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
|
||||
KNNVectorDistance: metric=l2
|
||||
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
|
||||
GlobalLimitExec: skip=0, fetch=10
|
||||
FilterExec: _distance@2 IS NOT NULL
|
||||
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
|
||||
KNNVectorDistance: metric=l2
|
||||
LanceRead: uri=..., projection=[vector], ...
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@@ -934,19 +942,19 @@ class LanceQueryBuilder(ABC):
|
||||
>>> plan = table.search(query).analyze_plan()
|
||||
>>> print(plan) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
|
||||
AnalyzeExec verbose=true, metrics=[]
|
||||
ProjectionExec: expr=[...], metrics=[...]
|
||||
GlobalLimitExec: skip=0, fetch=10, metrics=[...]
|
||||
FilterExec: _distance@2 IS NOT NULL,
|
||||
metrics=[output_rows=..., elapsed_compute=...]
|
||||
SortExec: TopK(fetch=10), expr=[...],
|
||||
preserve_partitioning=[...],
|
||||
metrics=[output_rows=..., elapsed_compute=..., row_replacements=...]
|
||||
KNNVectorDistance: metric=l2,
|
||||
metrics=[output_rows=..., elapsed_compute=..., output_batches=...]
|
||||
LanceScan: uri=..., projection=[vector], row_id=true,
|
||||
row_addr=false, ordered=false,
|
||||
metrics=[output_rows=..., elapsed_compute=...,
|
||||
bytes_read=..., iops=..., requests=...]
|
||||
TracedExec, metrics=[]
|
||||
ProjectionExec: expr=[...], metrics=[...]
|
||||
GlobalLimitExec: skip=0, fetch=10, metrics=[...]
|
||||
FilterExec: _distance@2 IS NOT NULL,
|
||||
metrics=[output_rows=..., elapsed_compute=...]
|
||||
SortExec: TopK(fetch=10), expr=[...],
|
||||
preserve_partitioning=[...],
|
||||
metrics=[output_rows=..., elapsed_compute=..., row_replacements=...]
|
||||
KNNVectorDistance: metric=l2,
|
||||
metrics=[output_rows=..., elapsed_compute=..., output_batches=...]
|
||||
LanceRead: uri=..., projection=[vector], ...
|
||||
metrics=[output_rows=..., elapsed_compute=...,
|
||||
bytes_read=..., iops=..., requests=...]
|
||||
|
||||
Returns
|
||||
-------
|
||||
@@ -1047,7 +1055,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
super().__init__(table)
|
||||
self._query = query
|
||||
self._distance_type = None
|
||||
self._nprobes = None
|
||||
self._minimum_nprobes = None
|
||||
self._maximum_nprobes = None
|
||||
self._lower_bound = None
|
||||
self._upper_bound = None
|
||||
self._refine_factor = None
|
||||
@@ -1110,6 +1119,10 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
See discussion in [Querying an ANN Index][querying-an-ann-index] for
|
||||
tuning advice.
|
||||
|
||||
This method sets both the minimum and maximum number of probes to the same
|
||||
value. See `minimum_nprobes` and `maximum_nprobes` for more fine-grained
|
||||
control.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nprobes: int
|
||||
@@ -1120,7 +1133,36 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
LanceVectorQueryBuilder
|
||||
The LanceQueryBuilder object.
|
||||
"""
|
||||
self._nprobes = nprobes
|
||||
self._minimum_nprobes = nprobes
|
||||
self._maximum_nprobes = nprobes
|
||||
return self
|
||||
|
||||
def minimum_nprobes(self, minimum_nprobes: int) -> LanceVectorQueryBuilder:
|
||||
"""Set the minimum number of probes to use.
|
||||
|
||||
See `nprobes` for more details.
|
||||
|
||||
These partitions will be searched on every vector query and will increase recall
|
||||
at the expense of latency.
|
||||
"""
|
||||
self._minimum_nprobes = minimum_nprobes
|
||||
return self
|
||||
|
||||
def maximum_nprobes(self, maximum_nprobes: int) -> LanceVectorQueryBuilder:
|
||||
"""Set the maximum number of probes to use.
|
||||
|
||||
See `nprobes` for more details.
|
||||
|
||||
If this value is greater than `minimum_nprobes` then the excess partitions
|
||||
will be searched only if we have not found enough results.
|
||||
|
||||
This can be useful when there is a narrow filter to allow these queries to
|
||||
spend more time searching and avoid potential false negatives.
|
||||
|
||||
If this value is 0 then no limit will be applied and all partitions could be
|
||||
searched if needed to satisfy the limit.
|
||||
"""
|
||||
self._maximum_nprobes = maximum_nprobes
|
||||
return self
|
||||
|
||||
def distance_range(
|
||||
@@ -1224,7 +1266,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
limit=self._limit,
|
||||
distance_type=self._distance_type,
|
||||
columns=self._columns,
|
||||
nprobes=self._nprobes,
|
||||
minimum_nprobes=self._minimum_nprobes,
|
||||
maximum_nprobes=self._maximum_nprobes,
|
||||
lower_bound=self._lower_bound,
|
||||
upper_bound=self._upper_bound,
|
||||
refine_factor=self._refine_factor,
|
||||
@@ -1333,6 +1376,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
if query_string is not None and not isinstance(query_string, str):
|
||||
raise ValueError("Reranking currently only supports string queries")
|
||||
self._str_query = query_string if query_string is not None else self._str_query
|
||||
if reranker.score == "all":
|
||||
self.with_row_id(True)
|
||||
return self
|
||||
|
||||
def bypass_vector_index(self) -> LanceVectorQueryBuilder:
|
||||
@@ -1410,10 +1455,13 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
|
||||
query = self._query
|
||||
if self._phrase_query:
|
||||
raise NotImplementedError(
|
||||
"Phrase query is not yet supported in Lance FTS. "
|
||||
"Use tantivy-based index instead for now."
|
||||
)
|
||||
if isinstance(query, str):
|
||||
if not query.startswith('"') or not query.endswith('"'):
|
||||
query = f'"{query}"'
|
||||
elif isinstance(query, FullTextQuery) and not isinstance(
|
||||
query, PhraseQuery
|
||||
):
|
||||
raise TypeError("Please use PhraseQuery for phrase queries.")
|
||||
query = self.to_query_object()
|
||||
results = self._table._execute_query(query, timeout=timeout)
|
||||
results = results.read_all()
|
||||
@@ -1525,6 +1573,8 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
The LanceQueryBuilder object.
|
||||
"""
|
||||
self._reranker = reranker
|
||||
if reranker.score == "all":
|
||||
self.with_row_id(True)
|
||||
return self
|
||||
|
||||
|
||||
@@ -1588,7 +1638,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
self._fts_columns = fts_columns
|
||||
self._norm = None
|
||||
self._reranker = None
|
||||
self._nprobes = None
|
||||
self._minimum_nprobes = None
|
||||
self._maximum_nprobes = None
|
||||
self._refine_factor = None
|
||||
self._distance_type = None
|
||||
self._phrase_query = None
|
||||
@@ -1800,6 +1851,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
|
||||
self._norm = normalize
|
||||
self._reranker = reranker
|
||||
if reranker.score == "all":
|
||||
self.with_row_id(True)
|
||||
|
||||
return self
|
||||
|
||||
@@ -1820,7 +1873,24 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
LanceHybridQueryBuilder
|
||||
The LanceHybridQueryBuilder object.
|
||||
"""
|
||||
self._nprobes = nprobes
|
||||
self._minimum_nprobes = nprobes
|
||||
self._maximum_nprobes = nprobes
|
||||
return self
|
||||
|
||||
def minimum_nprobes(self, minimum_nprobes: int) -> LanceHybridQueryBuilder:
|
||||
"""Set the minimum number of probes to use.
|
||||
|
||||
See `nprobes` for more details.
|
||||
"""
|
||||
self._minimum_nprobes = minimum_nprobes
|
||||
return self
|
||||
|
||||
def maximum_nprobes(self, maximum_nprobes: int) -> LanceHybridQueryBuilder:
|
||||
"""Set the maximum number of probes to use.
|
||||
|
||||
See `nprobes` for more details.
|
||||
"""
|
||||
self._maximum_nprobes = maximum_nprobes
|
||||
return self
|
||||
|
||||
def distance_range(
|
||||
@@ -1975,7 +2045,7 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
FilterExec: _distance@2 IS NOT NULL
|
||||
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
|
||||
KNNVectorDistance: metric=l2
|
||||
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
|
||||
LanceRead: uri=..., projection=[vector], ...
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@@ -2049,8 +2119,10 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
self._fts_query.phrase_query(True)
|
||||
if self._distance_type:
|
||||
self._vector_query.metric(self._distance_type)
|
||||
if self._nprobes:
|
||||
self._vector_query.nprobes(self._nprobes)
|
||||
if self._minimum_nprobes:
|
||||
self._vector_query.minimum_nprobes(self._minimum_nprobes)
|
||||
if self._maximum_nprobes is not None:
|
||||
self._vector_query.maximum_nprobes(self._maximum_nprobes)
|
||||
if self._refine_factor:
|
||||
self._vector_query.refine_factor(self._refine_factor)
|
||||
if self._ef:
|
||||
@@ -2359,7 +2431,7 @@ class AsyncQueryBase(object):
|
||||
FilterExec: _distance@2 IS NOT NULL
|
||||
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
|
||||
KNNVectorDistance: metric=l2
|
||||
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
|
||||
LanceRead: uri=..., projection=[vector], ...
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@@ -2513,7 +2585,7 @@ class AsyncQuery(AsyncQueryBase):
|
||||
self._inner.nearest_to_text({"query": query, "columns": columns})
|
||||
)
|
||||
# FullTextQuery object
|
||||
return AsyncFTSQuery(self._inner.nearest_to_text({"query": query.to_dict()}))
|
||||
return AsyncFTSQuery(self._inner.nearest_to_text({"query": query}))
|
||||
|
||||
|
||||
class AsyncFTSQuery(AsyncQueryBase):
|
||||
@@ -2661,6 +2733,34 @@ class AsyncVectorQueryBase:
|
||||
self._inner.nprobes(nprobes)
|
||||
return self
|
||||
|
||||
def minimum_nprobes(self, minimum_nprobes: int) -> Self:
|
||||
"""Set the minimum number of probes to use.
|
||||
|
||||
See `nprobes` for more details.
|
||||
|
||||
These partitions will be searched on every indexed vector query and will
|
||||
increase recall at the expense of latency.
|
||||
"""
|
||||
self._inner.minimum_nprobes(minimum_nprobes)
|
||||
return self
|
||||
|
||||
def maximum_nprobes(self, maximum_nprobes: int) -> Self:
|
||||
"""Set the maximum number of probes to use.
|
||||
|
||||
See `nprobes` for more details.
|
||||
|
||||
If this value is greater than `minimum_nprobes` then the excess partitions
|
||||
will be searched only if we have not found enough results.
|
||||
|
||||
This can be useful when there is a narrow filter to allow these queries to
|
||||
spend more time searching and avoid potential false negatives.
|
||||
|
||||
If this value is 0 then no limit will be applied and all partitions could be
|
||||
searched if needed to satisfy the limit.
|
||||
"""
|
||||
self._inner.maximum_nprobes(maximum_nprobes)
|
||||
return self
|
||||
|
||||
def distance_range(
|
||||
self, lower_bound: Optional[float] = None, upper_bound: Optional[float] = None
|
||||
) -> Self:
|
||||
@@ -2835,7 +2935,7 @@ class AsyncVectorQuery(AsyncQueryBase, AsyncVectorQueryBase):
|
||||
self._inner.nearest_to_text({"query": query, "columns": columns})
|
||||
)
|
||||
# FullTextQuery object
|
||||
return AsyncHybridQuery(self._inner.nearest_to_text({"query": query.to_dict()}))
|
||||
return AsyncHybridQuery(self._inner.nearest_to_text({"query": query}))
|
||||
|
||||
async def to_batches(
|
||||
self,
|
||||
@@ -2950,15 +3050,21 @@ class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
|
||||
>>> asyncio.run(doctest_example()) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
|
||||
Vector Search Plan:
|
||||
ProjectionExec: expr=[vector@0 as vector, text@3 as text, _distance@2 as _distance]
|
||||
Take: columns="vector, _rowid, _distance, (text)"
|
||||
CoalesceBatchesExec: target_batch_size=1024
|
||||
GlobalLimitExec: skip=0, fetch=10
|
||||
FilterExec: _distance@2 IS NOT NULL
|
||||
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
|
||||
KNNVectorDistance: metric=l2
|
||||
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
|
||||
Take: columns="vector, _rowid, _distance, (text)"
|
||||
CoalesceBatchesExec: target_batch_size=1024
|
||||
GlobalLimitExec: skip=0, fetch=10
|
||||
FilterExec: _distance@2 IS NOT NULL
|
||||
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
|
||||
KNNVectorDistance: metric=l2
|
||||
LanceRead: uri=..., projection=[vector], ...
|
||||
<BLANKLINE>
|
||||
FTS Search Plan:
|
||||
LanceScan: uri=..., projection=[vector, text], row_id=false, row_addr=false, ordered=true
|
||||
ProjectionExec: expr=[vector@2 as vector, text@3 as text, _score@1 as _score]
|
||||
Take: columns="_rowid, _score, (vector), (text)"
|
||||
CoalesceBatchesExec: target_batch_size=1024
|
||||
GlobalLimitExec: skip=0, fetch=10
|
||||
MatchQuery: query=hello
|
||||
<BLANKLINE>
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
@@ -18,7 +18,7 @@ from lancedb._lancedb import (
|
||||
UpdateResult,
|
||||
)
|
||||
from lancedb.embeddings.base import EmbeddingFunctionConfig
|
||||
from lancedb.index import FTS, BTree, Bitmap, HnswPq, HnswSq, IvfFlat, IvfPq, LabelList
|
||||
from lancedb.index import FTS, BTree, Bitmap, HnswSq, IvfFlat, IvfPq, LabelList
|
||||
from lancedb.remote.db import LOOP
|
||||
import pyarrow as pa
|
||||
|
||||
@@ -89,7 +89,7 @@ class RemoteTable(Table):
|
||||
|
||||
def to_pandas(self):
|
||||
"""to_pandas() is not yet supported on LanceDB cloud."""
|
||||
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
|
||||
raise NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
|
||||
|
||||
def checkout(self, version: Union[int, str]):
|
||||
return LOOP.run(self._table.checkout(version))
|
||||
@@ -158,6 +158,9 @@ class RemoteTable(Table):
|
||||
stem: bool = True,
|
||||
remove_stop_words: bool = True,
|
||||
ascii_folding: bool = True,
|
||||
ngram_min_length: int = 3,
|
||||
ngram_max_length: int = 3,
|
||||
prefix_only: bool = False,
|
||||
):
|
||||
config = FTS(
|
||||
with_position=with_position,
|
||||
@@ -168,6 +171,9 @@ class RemoteTable(Table):
|
||||
stem=stem,
|
||||
remove_stop_words=remove_stop_words,
|
||||
ascii_folding=ascii_folding,
|
||||
ngram_min_length=ngram_min_length,
|
||||
ngram_max_length=ngram_max_length,
|
||||
prefix_only=prefix_only,
|
||||
)
|
||||
LOOP.run(
|
||||
self._table.create_index(
|
||||
@@ -186,6 +192,8 @@ class RemoteTable(Table):
|
||||
accelerator: Optional[str] = None,
|
||||
index_type="vector",
|
||||
wait_timeout: Optional[timedelta] = None,
|
||||
*,
|
||||
num_bits: int = 8,
|
||||
):
|
||||
"""Create an index on the table.
|
||||
Currently, the only parameters that matter are
|
||||
@@ -220,11 +228,6 @@ class RemoteTable(Table):
|
||||
>>> table.create_index("l2", "vector") # doctest: +SKIP
|
||||
"""
|
||||
|
||||
if num_partitions is not None:
|
||||
logging.warning(
|
||||
"num_partitions is not supported on LanceDB cloud."
|
||||
"This parameter will be tuned automatically."
|
||||
)
|
||||
if num_sub_vectors is not None:
|
||||
logging.warning(
|
||||
"num_sub_vectors is not supported on LanceDB cloud."
|
||||
@@ -244,13 +247,21 @@ class RemoteTable(Table):
|
||||
|
||||
index_type = index_type.upper()
|
||||
if index_type == "VECTOR" or index_type == "IVF_PQ":
|
||||
config = IvfPq(distance_type=metric)
|
||||
config = IvfPq(
|
||||
distance_type=metric,
|
||||
num_partitions=num_partitions,
|
||||
num_sub_vectors=num_sub_vectors,
|
||||
num_bits=num_bits,
|
||||
)
|
||||
elif index_type == "IVF_HNSW_PQ":
|
||||
config = HnswPq(distance_type=metric)
|
||||
raise ValueError(
|
||||
"IVF_HNSW_PQ is not supported on LanceDB cloud."
|
||||
"Please use IVF_HNSW_SQ instead."
|
||||
)
|
||||
elif index_type == "IVF_HNSW_SQ":
|
||||
config = HnswSq(distance_type=metric)
|
||||
config = HnswSq(distance_type=metric, num_partitions=num_partitions)
|
||||
elif index_type == "IVF_FLAT":
|
||||
config = IvfFlat(distance_type=metric)
|
||||
config = IvfFlat(distance_type=metric, num_partitions=num_partitions)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unknown vector index type: {index_type}. Valid options are"
|
||||
|
||||
@@ -74,9 +74,7 @@ class AnswerdotaiRerankers(Reranker):
|
||||
if self.score == "relevance":
|
||||
combined_results = self._keep_relevance_score(combined_results)
|
||||
elif self.score == "all":
|
||||
raise NotImplementedError(
|
||||
"Answerdotai Reranker does not support score='all' yet"
|
||||
)
|
||||
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
|
||||
combined_results = combined_results.sort_by(
|
||||
[("_relevance_score", "descending")]
|
||||
)
|
||||
|
||||
@@ -232,6 +232,39 @@ class Reranker(ABC):
|
||||
|
||||
return deduped_table
|
||||
|
||||
def _merge_and_keep_scores(self, vector_results: pa.Table, fts_results: pa.Table):
|
||||
"""
|
||||
Merge the results from the vector and FTS search and keep the scores.
|
||||
This op is slower than just keeping relevance score but can be useful
|
||||
for debugging.
|
||||
"""
|
||||
# add nulls to fts results for _distance
|
||||
if "_distance" not in fts_results.column_names:
|
||||
fts_results = fts_results.append_column(
|
||||
"_distance",
|
||||
pa.array([None] * len(fts_results), type=pa.float32()),
|
||||
)
|
||||
# add nulls to vector results for _score
|
||||
if "_score" not in vector_results.column_names:
|
||||
vector_results = vector_results.append_column(
|
||||
"_score",
|
||||
pa.array([None] * len(vector_results), type=pa.float32()),
|
||||
)
|
||||
|
||||
# combine them and fill the scores
|
||||
vector_results_dict = {row["_rowid"]: row for row in vector_results.to_pylist()}
|
||||
fts_results_dict = {row["_rowid"]: row for row in fts_results.to_pylist()}
|
||||
|
||||
# merge them into vector_results
|
||||
for key, value in fts_results_dict.items():
|
||||
if key in vector_results_dict:
|
||||
vector_results_dict[key]["_score"] = value["_score"]
|
||||
else:
|
||||
vector_results_dict[key] = value
|
||||
|
||||
combined = pa.Table.from_pylist(list(vector_results_dict.values()))
|
||||
return combined
|
||||
|
||||
def _keep_relevance_score(self, combined_results: pa.Table):
|
||||
if self.score == "relevance":
|
||||
if "_score" in combined_results.column_names:
|
||||
|
||||
@@ -92,14 +92,14 @@ class CohereReranker(Reranker):
|
||||
vector_results: pa.Table,
|
||||
fts_results: pa.Table,
|
||||
):
|
||||
combined_results = self.merge_results(vector_results, fts_results)
|
||||
if self.score == "all":
|
||||
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
|
||||
else:
|
||||
combined_results = self.merge_results(vector_results, fts_results)
|
||||
combined_results = self._rerank(combined_results, query)
|
||||
if self.score == "relevance":
|
||||
combined_results = self._keep_relevance_score(combined_results)
|
||||
elif self.score == "all":
|
||||
raise NotImplementedError(
|
||||
"return_score='all' not implemented for cohere reranker"
|
||||
)
|
||||
|
||||
return combined_results
|
||||
|
||||
def rerank_vector(self, query: str, vector_results: pa.Table):
|
||||
|
||||
@@ -81,15 +81,15 @@ class CrossEncoderReranker(Reranker):
|
||||
vector_results: pa.Table,
|
||||
fts_results: pa.Table,
|
||||
):
|
||||
combined_results = self.merge_results(vector_results, fts_results)
|
||||
if self.score == "all":
|
||||
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
|
||||
else:
|
||||
combined_results = self.merge_results(vector_results, fts_results)
|
||||
combined_results = self._rerank(combined_results, query)
|
||||
# sort the results by _score
|
||||
if self.score == "relevance":
|
||||
combined_results = self._keep_relevance_score(combined_results)
|
||||
elif self.score == "all":
|
||||
raise NotImplementedError(
|
||||
"return_score='all' not implemented for CrossEncoderReranker"
|
||||
)
|
||||
|
||||
combined_results = combined_results.sort_by(
|
||||
[("_relevance_score", "descending")]
|
||||
)
|
||||
|
||||
@@ -97,14 +97,14 @@ class JinaReranker(Reranker):
|
||||
vector_results: pa.Table,
|
||||
fts_results: pa.Table,
|
||||
):
|
||||
combined_results = self.merge_results(vector_results, fts_results)
|
||||
if self.score == "all":
|
||||
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
|
||||
else:
|
||||
combined_results = self.merge_results(vector_results, fts_results)
|
||||
combined_results = self._rerank(combined_results, query)
|
||||
if self.score == "relevance":
|
||||
combined_results = self._keep_relevance_score(combined_results)
|
||||
elif self.score == "all":
|
||||
raise NotImplementedError(
|
||||
"return_score='all' not implemented for JinaReranker"
|
||||
)
|
||||
|
||||
return combined_results
|
||||
|
||||
def rerank_vector(self, query: str, vector_results: pa.Table):
|
||||
|
||||
@@ -88,14 +88,13 @@ class OpenaiReranker(Reranker):
|
||||
vector_results: pa.Table,
|
||||
fts_results: pa.Table,
|
||||
):
|
||||
combined_results = self.merge_results(vector_results, fts_results)
|
||||
if self.score == "all":
|
||||
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
|
||||
else:
|
||||
combined_results = self.merge_results(vector_results, fts_results)
|
||||
combined_results = self._rerank(combined_results, query)
|
||||
if self.score == "relevance":
|
||||
combined_results = self._keep_relevance_score(combined_results)
|
||||
elif self.score == "all":
|
||||
raise NotImplementedError(
|
||||
"OpenAI Reranker does not support score='all' yet"
|
||||
)
|
||||
|
||||
combined_results = combined_results.sort_by(
|
||||
[("_relevance_score", "descending")]
|
||||
|
||||
@@ -94,14 +94,14 @@ class VoyageAIReranker(Reranker):
|
||||
vector_results: pa.Table,
|
||||
fts_results: pa.Table,
|
||||
):
|
||||
combined_results = self.merge_results(vector_results, fts_results)
|
||||
if self.score == "all":
|
||||
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
|
||||
else:
|
||||
combined_results = self.merge_results(vector_results, fts_results)
|
||||
combined_results = self._rerank(combined_results, query)
|
||||
if self.score == "relevance":
|
||||
combined_results = self._keep_relevance_score(combined_results)
|
||||
elif self.score == "all":
|
||||
raise NotImplementedError(
|
||||
"return_score='all' not implemented for voyageai reranker"
|
||||
)
|
||||
|
||||
return combined_results
|
||||
|
||||
def rerank_vector(self, query: str, vector_results: pa.Table):
|
||||
|
||||
@@ -102,7 +102,9 @@ if TYPE_CHECKING:
|
||||
)
|
||||
|
||||
|
||||
def _into_pyarrow_reader(data) -> pa.RecordBatchReader:
|
||||
def _into_pyarrow_reader(
|
||||
data, schema: Optional[pa.Schema] = None
|
||||
) -> pa.RecordBatchReader:
|
||||
from lancedb.dependencies import datasets
|
||||
|
||||
if _check_for_hugging_face(data):
|
||||
@@ -123,6 +125,12 @@ def _into_pyarrow_reader(data) -> pa.RecordBatchReader:
|
||||
raise ValueError("Cannot add a single dictionary to a table. Use a list.")
|
||||
|
||||
if isinstance(data, list):
|
||||
# Handle empty list case
|
||||
if not data:
|
||||
if schema is None:
|
||||
raise ValueError("Cannot create table from empty list without a schema")
|
||||
return pa.Table.from_pylist(data, schema=schema).to_reader()
|
||||
|
||||
# convert to list of dict if data is a bunch of LanceModels
|
||||
if isinstance(data[0], LanceModel):
|
||||
schema = data[0].__class__.to_arrow_schema()
|
||||
@@ -165,9 +173,9 @@ def _into_pyarrow_reader(data) -> pa.RecordBatchReader:
|
||||
else:
|
||||
raise TypeError(
|
||||
f"Unknown data type {type(data)}. "
|
||||
"Please check "
|
||||
"https://lancedb.github.io/lancedb/python/python/ "
|
||||
"to see supported types."
|
||||
"Supported types: list of dicts, pandas DataFrame, polars DataFrame, "
|
||||
"pyarrow Table/RecordBatch, or Pydantic models. "
|
||||
"See https://lancedb.github.io/lancedb/guides/tables/ for examples."
|
||||
)
|
||||
|
||||
|
||||
@@ -236,7 +244,7 @@ def _sanitize_data(
|
||||
# 1. There might be embedding columns missing that will be added
|
||||
# in the add_embeddings step.
|
||||
# 2. If `allow_subschemas` is True, there might be columns missing.
|
||||
reader = _into_pyarrow_reader(data)
|
||||
reader = _into_pyarrow_reader(data, target_schema)
|
||||
|
||||
reader = _append_vector_columns(reader, target_schema, metadata=metadata)
|
||||
|
||||
@@ -827,7 +835,7 @@ class Table(ABC):
|
||||
ordering_field_names: Optional[Union[str, List[str]]] = None,
|
||||
replace: bool = False,
|
||||
writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
|
||||
use_tantivy: bool = True,
|
||||
use_tantivy: bool = False,
|
||||
tokenizer_name: Optional[str] = None,
|
||||
with_position: bool = False,
|
||||
# tokenizer configs:
|
||||
@@ -838,6 +846,9 @@ class Table(ABC):
|
||||
stem: bool = True,
|
||||
remove_stop_words: bool = True,
|
||||
ascii_folding: bool = True,
|
||||
ngram_min_length: int = 3,
|
||||
ngram_max_length: int = 3,
|
||||
prefix_only: bool = False,
|
||||
wait_timeout: Optional[timedelta] = None,
|
||||
):
|
||||
"""Create a full-text search index on the table.
|
||||
@@ -864,7 +875,7 @@ class Table(ABC):
|
||||
The tokenizer to use for the index. Can be "raw", "default" or the 2 letter
|
||||
language code followed by "_stem". So for english it would be "en_stem".
|
||||
For available languages see: https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html
|
||||
use_tantivy: bool, default True
|
||||
use_tantivy: bool, default False
|
||||
If True, use the legacy full-text search implementation based on tantivy.
|
||||
If False, use the new full-text search implementation based on lance-index.
|
||||
with_position: bool, default False
|
||||
@@ -877,6 +888,7 @@ class Table(ABC):
|
||||
- "simple": Splits text by whitespace and punctuation.
|
||||
- "whitespace": Split text by whitespace, but not punctuation.
|
||||
- "raw": No tokenization. The entire text is treated as a single token.
|
||||
- "ngram": N-Gram tokenizer.
|
||||
language : str, default "English"
|
||||
The language to use for tokenization.
|
||||
max_token_length : int, default 40
|
||||
@@ -894,6 +906,12 @@ class Table(ABC):
|
||||
ascii_folding : bool, default True
|
||||
Whether to fold ASCII characters. This converts accented characters to
|
||||
their ASCII equivalent. For example, "café" would be converted to "cafe".
|
||||
ngram_min_length: int, default 3
|
||||
The minimum length of an n-gram.
|
||||
ngram_max_length: int, default 3
|
||||
The maximum length of an n-gram.
|
||||
prefix_only: bool, default False
|
||||
Whether to only index the prefix of the token for ngram tokenizer.
|
||||
wait_timeout: timedelta, optional
|
||||
The timeout to wait if indexing is asynchronous.
|
||||
"""
|
||||
@@ -1970,7 +1988,7 @@ class LanceTable(Table):
|
||||
ordering_field_names: Optional[Union[str, List[str]]] = None,
|
||||
replace: bool = False,
|
||||
writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
|
||||
use_tantivy: bool = True,
|
||||
use_tantivy: bool = False,
|
||||
tokenizer_name: Optional[str] = None,
|
||||
with_position: bool = False,
|
||||
# tokenizer configs:
|
||||
@@ -1981,6 +1999,9 @@ class LanceTable(Table):
|
||||
stem: bool = True,
|
||||
remove_stop_words: bool = True,
|
||||
ascii_folding: bool = True,
|
||||
ngram_min_length: int = 3,
|
||||
ngram_max_length: int = 3,
|
||||
prefix_only: bool = False,
|
||||
):
|
||||
if not use_tantivy:
|
||||
if not isinstance(field_names, str):
|
||||
@@ -1996,6 +2017,9 @@ class LanceTable(Table):
|
||||
"stem": stem,
|
||||
"remove_stop_words": remove_stop_words,
|
||||
"ascii_folding": ascii_folding,
|
||||
"ngram_min_length": ngram_min_length,
|
||||
"ngram_max_length": ngram_max_length,
|
||||
"prefix_only": prefix_only,
|
||||
}
|
||||
else:
|
||||
tokenizer_configs = self.infer_tokenizer_configs(tokenizer_name)
|
||||
@@ -2065,6 +2089,9 @@ class LanceTable(Table):
|
||||
"stem": False,
|
||||
"remove_stop_words": False,
|
||||
"ascii_folding": False,
|
||||
"ngram_min_length": 3,
|
||||
"ngram_max_length": 3,
|
||||
"prefix_only": False,
|
||||
}
|
||||
elif tokenizer_name == "raw":
|
||||
return {
|
||||
@@ -2075,6 +2102,9 @@ class LanceTable(Table):
|
||||
"stem": False,
|
||||
"remove_stop_words": False,
|
||||
"ascii_folding": False,
|
||||
"ngram_min_length": 3,
|
||||
"ngram_max_length": 3,
|
||||
"prefix_only": False,
|
||||
}
|
||||
elif tokenizer_name == "whitespace":
|
||||
return {
|
||||
@@ -2085,6 +2115,9 @@ class LanceTable(Table):
|
||||
"stem": False,
|
||||
"remove_stop_words": False,
|
||||
"ascii_folding": False,
|
||||
"ngram_min_length": 3,
|
||||
"ngram_max_length": 3,
|
||||
"prefix_only": False,
|
||||
}
|
||||
|
||||
# or it's with language stemming with pattern like "en_stem"
|
||||
@@ -2103,6 +2136,9 @@ class LanceTable(Table):
|
||||
"stem": True,
|
||||
"remove_stop_words": False,
|
||||
"ascii_folding": False,
|
||||
"ngram_min_length": 3,
|
||||
"ngram_max_length": 3,
|
||||
"prefix_only": False,
|
||||
}
|
||||
|
||||
def add(
|
||||
@@ -3637,8 +3673,10 @@ class AsyncTable:
|
||||
)
|
||||
if query.distance_type is not None:
|
||||
async_query = async_query.distance_type(query.distance_type)
|
||||
if query.nprobes is not None:
|
||||
async_query = async_query.nprobes(query.nprobes)
|
||||
if query.minimum_nprobes is not None:
|
||||
async_query = async_query.minimum_nprobes(query.minimum_nprobes)
|
||||
if query.maximum_nprobes is not None:
|
||||
async_query = async_query.maximum_nprobes(query.maximum_nprobes)
|
||||
if query.refine_factor is not None:
|
||||
async_query = async_query.refine_factor(query.refine_factor)
|
||||
if query.vector_column:
|
||||
|
||||
@@ -25,4 +25,4 @@ IndexType = Literal[
|
||||
]
|
||||
|
||||
# Tokenizer literals
|
||||
BaseTokenizerType = Literal["simple", "raw", "whitespace"]
|
||||
BaseTokenizerType = Literal["simple", "raw", "whitespace", "ngram"]
|
||||
|
||||
@@ -6,7 +6,7 @@ import lancedb
|
||||
|
||||
# --8<-- [end:import-lancedb]
|
||||
# --8<-- [start:import-numpy]
|
||||
from lancedb.query import BoostQuery, MatchQuery
|
||||
from lancedb.query import BooleanQuery, BoostQuery, MatchQuery, Occur
|
||||
import numpy as np
|
||||
import pyarrow as pa
|
||||
|
||||
@@ -191,6 +191,15 @@ def test_fts_fuzzy_query():
|
||||
"food", # 1 insertion
|
||||
}
|
||||
|
||||
results = table.search(
|
||||
MatchQuery("foo", "text", fuzziness=1, prefix_length=3)
|
||||
).to_pandas()
|
||||
assert len(results) == 2
|
||||
assert set(results["text"].to_list()) == {
|
||||
"foo",
|
||||
"food",
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
|
||||
@@ -240,6 +249,60 @@ def test_fts_boost_query():
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
|
||||
)
|
||||
def test_fts_boolean_query(tmp_path):
|
||||
uri = tmp_path / "boolean-example"
|
||||
db = lancedb.connect(uri)
|
||||
table = db.create_table(
|
||||
"my_table_fts_boolean",
|
||||
data=[
|
||||
{"text": "The cat and dog are playing"},
|
||||
{"text": "The cat is sleeping"},
|
||||
{"text": "The dog is barking"},
|
||||
{"text": "The dog chases the cat"},
|
||||
],
|
||||
mode="overwrite",
|
||||
)
|
||||
table.create_fts_index("text", use_tantivy=False, replace=True)
|
||||
|
||||
# SHOULD
|
||||
results = table.search(
|
||||
MatchQuery("cat", "text") | MatchQuery("dog", "text")
|
||||
).to_pandas()
|
||||
assert len(results) == 4
|
||||
assert set(results["text"].to_list()) == {
|
||||
"The cat and dog are playing",
|
||||
"The cat is sleeping",
|
||||
"The dog is barking",
|
||||
"The dog chases the cat",
|
||||
}
|
||||
# MUST
|
||||
results = table.search(
|
||||
MatchQuery("cat", "text") & MatchQuery("dog", "text")
|
||||
).to_pandas()
|
||||
assert len(results) == 2
|
||||
assert set(results["text"].to_list()) == {
|
||||
"The cat and dog are playing",
|
||||
"The dog chases the cat",
|
||||
}
|
||||
|
||||
# MUST NOT
|
||||
results = table.search(
|
||||
BooleanQuery(
|
||||
[
|
||||
(Occur.MUST, MatchQuery("cat", "text")),
|
||||
(Occur.MUST_NOT, MatchQuery("dog", "text")),
|
||||
]
|
||||
)
|
||||
).to_pandas()
|
||||
assert len(results) == 1
|
||||
assert set(results["text"].to_list()) == {
|
||||
"The cat is sleeping",
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
|
||||
)
|
||||
|
||||
@@ -33,8 +33,11 @@ tantivy = pytest.importorskip("tantivy")
|
||||
|
||||
@pytest.fixture
|
||||
def table(tmp_path) -> ldb.table.LanceTable:
|
||||
# Use local random state to avoid affecting other tests
|
||||
rng = np.random.RandomState(42)
|
||||
local_random = random.Random(42)
|
||||
db = ldb.connect(tmp_path)
|
||||
vectors = [np.random.randn(128) for _ in range(100)]
|
||||
vectors = [rng.randn(128) for _ in range(100)]
|
||||
|
||||
text_nouns = ("puppy", "car")
|
||||
text2_nouns = ("rabbit", "girl", "monkey")
|
||||
@@ -44,10 +47,10 @@ def table(tmp_path) -> ldb.table.LanceTable:
|
||||
text = [
|
||||
" ".join(
|
||||
[
|
||||
text_nouns[random.randrange(0, len(text_nouns))],
|
||||
verbs[random.randrange(0, 5)],
|
||||
adv[random.randrange(0, 5)],
|
||||
adj[random.randrange(0, 5)],
|
||||
text_nouns[local_random.randrange(0, len(text_nouns))],
|
||||
verbs[local_random.randrange(0, 5)],
|
||||
adv[local_random.randrange(0, 5)],
|
||||
adj[local_random.randrange(0, 5)],
|
||||
]
|
||||
)
|
||||
for _ in range(100)
|
||||
@@ -55,15 +58,15 @@ def table(tmp_path) -> ldb.table.LanceTable:
|
||||
text2 = [
|
||||
" ".join(
|
||||
[
|
||||
text2_nouns[random.randrange(0, len(text2_nouns))],
|
||||
verbs[random.randrange(0, 5)],
|
||||
adv[random.randrange(0, 5)],
|
||||
adj[random.randrange(0, 5)],
|
||||
text2_nouns[local_random.randrange(0, len(text2_nouns))],
|
||||
verbs[local_random.randrange(0, 5)],
|
||||
adv[local_random.randrange(0, 5)],
|
||||
adj[local_random.randrange(0, 5)],
|
||||
]
|
||||
)
|
||||
for _ in range(100)
|
||||
]
|
||||
count = [random.randint(1, 10000) for _ in range(100)]
|
||||
count = [local_random.randint(1, 10000) for _ in range(100)]
|
||||
table = db.create_table(
|
||||
"test",
|
||||
data=pd.DataFrame(
|
||||
@@ -82,8 +85,11 @@ def table(tmp_path) -> ldb.table.LanceTable:
|
||||
|
||||
@pytest.fixture
|
||||
async def async_table(tmp_path) -> ldb.table.AsyncTable:
|
||||
# Use local random state to avoid affecting other tests
|
||||
rng = np.random.RandomState(42)
|
||||
local_random = random.Random(42)
|
||||
db = await ldb.connect_async(tmp_path)
|
||||
vectors = [np.random.randn(128) for _ in range(100)]
|
||||
vectors = [rng.randn(128) for _ in range(100)]
|
||||
|
||||
text_nouns = ("puppy", "car")
|
||||
text2_nouns = ("rabbit", "girl", "monkey")
|
||||
@@ -93,10 +99,10 @@ async def async_table(tmp_path) -> ldb.table.AsyncTable:
|
||||
text = [
|
||||
" ".join(
|
||||
[
|
||||
text_nouns[random.randrange(0, len(text_nouns))],
|
||||
verbs[random.randrange(0, 5)],
|
||||
adv[random.randrange(0, 5)],
|
||||
adj[random.randrange(0, 5)],
|
||||
text_nouns[local_random.randrange(0, len(text_nouns))],
|
||||
verbs[local_random.randrange(0, 5)],
|
||||
adv[local_random.randrange(0, 5)],
|
||||
adj[local_random.randrange(0, 5)],
|
||||
]
|
||||
)
|
||||
for _ in range(100)
|
||||
@@ -104,15 +110,15 @@ async def async_table(tmp_path) -> ldb.table.AsyncTable:
|
||||
text2 = [
|
||||
" ".join(
|
||||
[
|
||||
text2_nouns[random.randrange(0, len(text2_nouns))],
|
||||
verbs[random.randrange(0, 5)],
|
||||
adv[random.randrange(0, 5)],
|
||||
adj[random.randrange(0, 5)],
|
||||
text2_nouns[local_random.randrange(0, len(text2_nouns))],
|
||||
verbs[local_random.randrange(0, 5)],
|
||||
adv[local_random.randrange(0, 5)],
|
||||
adj[local_random.randrange(0, 5)],
|
||||
]
|
||||
)
|
||||
for _ in range(100)
|
||||
]
|
||||
count = [random.randint(1, 10000) for _ in range(100)]
|
||||
count = [local_random.randint(1, 10000) for _ in range(100)]
|
||||
table = await db.create_table(
|
||||
"test",
|
||||
data=pd.DataFrame(
|
||||
@@ -215,6 +221,19 @@ def test_search_fts(table, use_tantivy):
|
||||
assert len(results) == 5
|
||||
assert len(results[0]) == 3 # id, text, _score
|
||||
|
||||
# Test boolean query
|
||||
results = (
|
||||
table.search(MatchQuery("puppy", "text") & MatchQuery("runs", "text"))
|
||||
.select(["id", "text"])
|
||||
.limit(5)
|
||||
.to_list()
|
||||
)
|
||||
assert len(results) == 5
|
||||
assert len(results[0]) == 3 # id, text, _score
|
||||
for r in results:
|
||||
assert "puppy" in r["text"]
|
||||
assert "runs" in r["text"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_fts_select_async(async_table):
|
||||
@@ -656,3 +675,46 @@ def test_fts_on_list(mem_db: DBConnection):
|
||||
|
||||
res = table.search(PhraseQuery("lance database", "text")).limit(5).to_list()
|
||||
assert len(res) == 2
|
||||
|
||||
|
||||
def test_fts_ngram(mem_db: DBConnection):
|
||||
data = pa.table({"text": ["hello world", "lance database", "lance is cool"]})
|
||||
table = mem_db.create_table("test", data=data)
|
||||
table.create_fts_index("text", use_tantivy=False, base_tokenizer="ngram")
|
||||
|
||||
results = table.search("lan", query_type="fts").limit(10).to_list()
|
||||
assert len(results) == 2
|
||||
assert set(r["text"] for r in results) == {"lance database", "lance is cool"}
|
||||
|
||||
results = (
|
||||
table.search("nce", query_type="fts").limit(10).to_list()
|
||||
) # spellchecker:disable-line
|
||||
assert len(results) == 2
|
||||
assert set(r["text"] for r in results) == {"lance database", "lance is cool"}
|
||||
|
||||
# the default min_ngram_length is 3, so "la" should not match
|
||||
results = table.search("la", query_type="fts").limit(10).to_list()
|
||||
assert len(results) == 0
|
||||
|
||||
# test setting min_ngram_length and prefix_only
|
||||
table.create_fts_index(
|
||||
"text",
|
||||
use_tantivy=False,
|
||||
base_tokenizer="ngram",
|
||||
replace=True,
|
||||
ngram_min_length=2,
|
||||
prefix_only=True,
|
||||
)
|
||||
|
||||
results = table.search("lan", query_type="fts").limit(10).to_list()
|
||||
assert len(results) == 2
|
||||
assert set(r["text"] for r in results) == {"lance database", "lance is cool"}
|
||||
|
||||
results = (
|
||||
table.search("nce", query_type="fts").limit(10).to_list()
|
||||
) # spellchecker:disable-line
|
||||
assert len(results) == 0
|
||||
|
||||
results = table.search("la", query_type="fts").limit(10).to_list()
|
||||
assert len(results) == 2
|
||||
assert set(r["text"] for r in results) == {"lance database", "lance is cool"}
|
||||
|
||||
@@ -166,7 +166,7 @@ async def test_explain_plan(table: AsyncTable):
|
||||
assert "Vector Search Plan" in plan
|
||||
assert "KNNVectorDistance" in plan
|
||||
assert "FTS Search Plan" in plan
|
||||
assert "LanceScan" in plan
|
||||
assert "LanceRead" in plan
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user