Compare commits

...

86 Commits

Author SHA1 Message Date
Lance Release
f79295c697 Bump version: 0.24.2-beta.2 → 0.24.2 2025-07-25 20:31:15 +00:00
Lance Release
381fad9b65 Bump version: 0.24.2-beta.1 → 0.24.2-beta.2 2025-07-25 20:31:15 +00:00
Tristan Zajonc
055bf91d3e fix: handle empty list with schema in table creation (#2548)
## Summary
Fixes IndexError when creating tables with empty list data and a
provided schema. Previously, `_into_pyarrow_reader()` would attempt to
access `data[0]` on empty lists, causing an IndexError. Now properly
handles empty lists by using the provided schema.

Also adds regression tests for GitHub issues #1968 and #303 to prevent
future regressions with empty table scenarios.

## Changes
- Fix IndexError in `_into_pyarrow_reader()` for empty list + schema
case
- Add Optional[pa.Schema] parameter to handle empty data gracefully  
- Add `test_create_table_empty_list_with_schema` for the IndexError fix
- Add `test_create_empty_then_add_data` for issue #1968
- Add `test_search_empty_table` for issue #303

## Test plan
- [x] All new regression tests pass
- [x] Existing tests continue to pass
- [x] Code formatted with `make format`
2025-07-25 10:23:43 +08:00
Will Jones
050f0086b8 feat: upgrade Lance to v0.32.0 (#2543)
Changelog: https://github.com/lancedb/lance/releases/tag/v0.32.0

Fixes #2521
2025-07-24 19:22:53 -07:00
Tristan Zajonc
10fa23e0d6 fix(python): expose register function in embeddings module (#2544)
## Summary
Fixes #2541

**Problem**: The `register` function was not accessible via `from
lancedb.embeddings import register` as documented, causing ImportError
for users trying to create custom embedding functions.

**Solution**: Added `register` to the exports in
`python/lancedb/embeddings/__init__.py` to match the documented API and
follow the same pattern as other registry functions (`get_registry`,
`EmbeddingFunctionRegistry`).

**Root Cause**: The function existed in `lancedb.embeddings.registry`
but wasn't exposed through the main embeddings module interface.

## Changes
- Add `register` to imports in
`/python/python/lancedb/embeddings/__init__.py`

## Test Plan
- [x] Verified `from lancedb.embeddings import register` works as
documented
- [x] Confirmed existing embedding tests pass
- [x] Checked that the fix follows existing patterns (same as
`get_registry`)
- [x] Validated linting and formatting passes

## References
Fixes #2541
2025-07-24 15:30:06 -07:00
yihong
43d9fc28b0 fix: can not build on python3.9 for dev (#2477)
This patch fix can not build on python3.9 dev

the reason is that for ibm-watsonx-ai the min version is py3.10

more can check on `pyoven` https://pyoven.org/package/ibm-watsonx-ai/

also fix tiny md lint

---------

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-07-24 12:39:04 -07:00
aniaan
f45f0d0431 fix(python): correct type annotations in EmbeddingFunctionRegistry (#2478)
- Fix register() method's alias parameter type from 'str = None' to
'Optional[str] = None'
- Add return type annotation 'Type[EmbeddingFunction]' to get() method
- Import Type from typing module for proper type hints
2025-07-24 12:31:49 -07:00
Tristan Zajonc
b9e3c36d82 fix: replace broken documentation URLs in error messages (#2533)
Replaces broken 404 URL and unhelpful documentation links in type error
messages with working URL and inline list of supported data types.

**Before**: Points to
https://lancedb.github.io/lance/read_and_write.html (404 error)
**After**: Lists supported types inline and points to
https://lancedb.github.io/lancedb/guides/tables/
2025-07-24 12:30:27 -07:00
Chen Chongchen
3cd7dd3375 fix: to_pydantic typing (#2517)
currently, to_pydantic will always return LanceModel. If type checking
is enabled in my project. I have to use `cast(data,
List[RealModelType])` to solve type error. This PR uses generic to solve
this problem.
2025-07-24 12:30:15 -07:00
Tristan Zajonc
12d4ce4cfe fix: resolve flaky Node.js integration test for mirrored store (#2539)
## Summary
- Fixed flaky Node.js integration test for mirrored store functionality
- Converted callback-based `fs.readdir()` to `fs.promises.readdir()`
with proper async/await
- Used unique temporary directories to prevent test isolation issues
- Updated test expectations to match current IVF-PQ index file structure

## Problem
The mirrored store integration test was experiencing random failures in
CI with errors like:
- `expected 2 to equal 1` at various assertion points
- `done() called multiple times`

## Root Causes Identified
1. **Race conditions**: Mixing callback-based filesystem operations with
async functions created timing issues where assertions ran before
filesystem operations completed
2. **Test isolation**: Multiple tests shared the same temp directory
(`tmpdir()`), causing one test to see files from another
3. **Outdated expectations**: IVF-PQ indexes now create 2 files
(`auxiliary.idx` + `index.idx`) instead of 1, but the test expected only
1

## Solution
- Replace all `fs.readdir()` callbacks with `fs.promises.readdir()` and
`await`
- Use `fs.promises.mkdtemp()` to create unique temporary directories for
each test run
- Update index file count expectations from 1 to 2 files to match
current Lance behavior
- Add descriptive assertion labels for easier debugging

## Analysis
The mirroring implementation in `MirroringObjectStore::put_opts` is
synchronous - it awaits writes to both secondary (local) and primary
(S3) stores before returning. The test failures were due to
callback/async pattern mismatch and test isolation issues, not actual
async mirroring behavior.

## Test plan
- [x] Local tests are running without timing-based failures
- [x] Integration tests with AWS credentials pass in CI

This resolves the flaky failures including 'expected 2 to equal 1'
assertions and 'done() called multiple times' errors seen in CI runs.
2025-07-24 12:07:05 -07:00
Will Jones
3d1f102087 feat: allow Python and Typescript users to create Sessions (#2530)
## Summary
- Exposes `Session` in Python and Typescript so users can set the
`index_cache_size_bytes` and `metadata_cache_size_bytes`
* The `Session` is attached to the `Connection`, and thus shared across
all tables in that connection.
- Adds deprecation warnings for table-level cache configuration


🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-07-24 12:06:29 -07:00
Tristan Zajonc
81afd8a42f fix: use local random state in FTS test fixtures to prevent flaky failures (#2532)
## Summary
Fixes intermittent CI failures in `test_search_fts[False]` where boolean
FTS queries were returning fewer results than expected due to
non-deterministic test data generation.

## Problem
The test was using global `random` and `np.random` without seeding,
causing the boolean query `MatchQuery("puppy", "text") &
MatchQuery("runs", "text")` to sometimes return only 3 results instead
of the expected 5, leading to `AssertionError: assert 3 == 5`.

## Solution
- Replace global random calls with local `random.Random(42)` and
`np.random.RandomState(42)` objects in test fixtures
- Ensures deterministic test data while maintaining test isolation
- No impact on other tests since random state is scoped to fixtures only

## Test Results
-  `test_search_fts[False]` now passes consistently
-  All other FTS tests continue to pass 
-  No regression in other test suites (verified with `test_basic`)
-  Maintains existing test behavior and coverage
2025-07-24 11:30:02 -07:00
Tristan Zajonc
c2aa03615a fix: correct grammar in LanceDB cloud connection error message (#2537)
## Summary

Fixed a minor grammar error in the error message for missing API key
when connecting to LanceDB cloud.

## Changes

- Changed 'api_key is required to connected LanceDB cloud' to 'api_key
is required to connect to LanceDB cloud'
- Location: `python/python/lancedb/__init__.py:95`

## Test plan

- Error message formatting is correct and grammatical
- No functional changes to existing behavior
2025-07-24 09:56:06 -07:00
Tristan Zajonc
d2c6759e7f fix: use import stubs to prevent MLX doctest collection failures (#2536)
## Summary
- Add `create_import_stub()` helper to `embeddings/utils.py` for
handling optional dependencies
- Fix MLX doctest collection failures by using import stubs in
`gte_mlx_model.py`
- Module now imports successfully for doctest collection even when MLX
is not installed

## Changes
- **New utility function**: `create_import_stub()` creates placeholder
objects that allow class inheritance but raise helpful errors when used
- **Updated MLX model**: Uses import stubs instead of direct imports
that fail immediately
- **Graceful degradation**: Clear error messages when MLX functionality
is accessed without MLX installed

## Test Results
-  `pytest --doctest-modules python/lancedb` now passes (with and
without MLX installed)
-  All existing tests continue to pass
-  MLX functionality works normally when MLX is installed
-  Helpful error messages when MLX functionality is used without MLX
installed

Fixes #2538

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-07-23 16:25:33 -07:00
Weston Pace
94fb9f364a feat: update lance version to 0.32.0-b2 (#2525) 2025-07-23 12:23:10 -07:00
Will Jones
fbff244ed8 chore: add claude md files (#2531)
Gives basic context to Claude about how to do common tasks in the repo.
2025-07-23 12:20:36 -07:00
Xuanwo
7e7466d224 ci: enable trust publishing for rust crates (#2529) 2025-07-23 14:53:52 +08:00
Lance Release
cceaf27d79 Bump version: 0.21.2-beta.0 → 0.21.2-beta.1 2025-07-22 15:41:13 +00:00
Lance Release
7a15337e03 Bump version: 0.24.2-beta.0 → 0.24.2-beta.1 2025-07-22 15:40:17 +00:00
BubbleCal
96c66fd087 feat: support multivector for JS SDK (#2527)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-22 21:19:34 +08:00
Will Jones
0579303602 feat: allow setting custom Session on ListingDatabase (#2526)
## Summary

Add support for providing a custom `Session` when connecting to a
`ListingDatabase`. This allows users to configure object store
registries, caching, and other session-related settings while
maintaining full backward compatibility.

## Usage Example

```rust
use std::sync::Arc;
use lancedb::connect;

let custom_session = Arc::new(lance::session::Session::default());

let db = connect("/path/to/database")
    .session(custom_session)
    .execute()
    .await?;
```

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-authored-by: Claude <noreply@anthropic.com>
2025-07-21 16:28:39 -07:00
Jack Ye
75edb8756c feat(java): integrate lance-namespace to lancedb Java SDK (#2524) 2025-07-21 14:21:21 -07:00
Will Jones
88283110f4 fix: handle input with missing columns when using embedding functions (#2516)
## Summary

Fixes #2515 by implementing comprehensive support for missing columns in
Arrow table inputs when using embedding functions.

### Problem
Previously, when an Arrow table was passed to `fromDataToBuffer` with
missing columns and a schema containing embedding functions, the system
would fail because `applyEmbeddingsFromMetadata` expected all columns to
be present in the table.

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-07-18 15:54:25 -07:00
Lance Release
b3a637fdeb Bump version: 0.21.1 → 0.21.2-beta.0 2025-07-18 16:03:28 +00:00
Lance Release
ce24457531 Bump version: 0.24.1 → 0.24.2-beta.0 2025-07-18 16:02:37 +00:00
BubbleCal
087fe6343d test: fix random data may break test case (#2514)
this test adds a new vector and then performs vector search with
distance range.
this may fail if the new vector becomes the closest one to the query
vector

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-18 16:15:06 +08:00
Wyatt Alt
ab8cbe62dd fix: excessive object storage handle creation in create_table (#2505)
This fixes two bugs with create_table storage handle reuse. First issue
is, the database object did not previously carry a session that
create_table operations could reuse for create_table operations.

Second issue is, the inheritance logic for create_table and open_table
was causing empty storage options (i.e Some({})) to get sent, instead of
None. Lance handles these differently:

* When None is set, the object store held in the session's storage
registry that was created at "connect" is used. This value stays in the
cache long-term (probably as long as the db reference is held).
* When Some({}) is sent, LanceDB will create a new connection and cache
it for an empty key. However, that cached value will remain valid only
as long as the client holds a reference to the table. After that, the
cache is poisoned and the next create_table with the same key, will
create a new connection. This confounds reuse if e.g python gc's the
table object before another table is created.

My feeling is that the second path, if intentional, is probably meant to
serve cases where tables are overriding settings and the cached
connection is assumed not to be generally applicable. The bug is we were
engaging that mechanism for all tables.
2025-07-17 16:27:23 -07:00
Ayush Chaurasia
f076bb41f4 feat: add support for returning all scores with rerankers (#2509)
Previously `return_score="all"` was supported only for the default
reranker (RRF) and not the model based rerankers.
This adds support for keeping all scores in the base reranker so that
all model based rerankers can use it. Its a slower path than keeping
just the relevance score but can be useful in debugging
2025-07-15 21:03:03 +05:30
BubbleCal
902fb83d54 fix: set_lance_version may miss features when upgrading lance (#2510)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-15 20:11:10 +08:00
BubbleCal
779118339f chore: upgrade lance to 0.31.2-beta.3 (#2508)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-15 17:08:11 +08:00
BubbleCal
03b62599d7 feat: support ngram tokenizer (#2507)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-15 16:36:08 +08:00
Benjamin Schmidt
4c999fb651 chore: fix cleanupOlderThan docs (#2504)
Thanks for all your work.

The docstring for `OptimizeOptions ` seems to reference a non-existent
method on `Table`. I believe this is the correct example for
`cleanupOlderThan`.

This also appears in the generated docs, but I assume they live
downstream from this code?
2025-07-15 16:23:10 +08:00
Lance Release
6d23d32ab5 Bump version: 0.21.1-beta.2 → 0.21.1 2025-07-10 21:36:59 +00:00
Lance Release
704cec34e1 Bump version: 0.21.1-beta.1 → 0.21.1-beta.2 2025-07-10 21:36:26 +00:00
Lance Release
a300a238db Bump version: 0.24.1-beta.2 → 0.24.1 2025-07-10 21:36:02 +00:00
Lance Release
a41ff1df0a Bump version: 0.24.1-beta.1 → 0.24.1-beta.2 2025-07-10 21:36:02 +00:00
Weston Pace
77b005d849 feat: update lance to 0.31.1 (#2501)
This is preparation for a stable release
2025-07-10 14:35:29 -07:00
CyrusAttoun
167fccc427 fix: change 'return' to 'raise' for unimplemented remote table function (#2484)
just noticed that we're doing a 'return' instead of a 'raise' while
trying to get remote functionality working for my project. I went ahead
and implemented tests for both of the unimplemented functions (to_pandas
and to_arrow) while I was in there.

---------

Co-authored-by: Cyrus Attoun <jattoun1@gmail.com>
2025-07-09 14:27:08 -07:00
Lance Release
2bffbcefa5 Bump version: 0.21.1-beta.0 → 0.21.1-beta.1 2025-07-09 05:54:20 +00:00
Lance Release
905552f993 Bump version: 0.24.1-beta.0 → 0.24.1-beta.1 2025-07-09 05:53:28 +00:00
BubbleCal
e4898c9313 chore: sync node package-lock (#2491)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-09 12:34:03 +08:00
BubbleCal
cab36d94b2 feat: support to specify num_partitions and num_bits (#2488) 2025-07-09 11:36:09 +08:00
Weston Pace
b64252d4fd chore: don't require exact version of half (#2489)
I can't find any reason for pinning this dependency and the fact that it
is pinned can be kind of annoying to use downstream (e.g. datafusion
currently requires >= 2.6).
2025-07-08 08:36:04 -07:00
Lance Release
6fc006072c Bump version: 0.21.0 → 0.21.1-beta.0 2025-07-07 21:01:30 +00:00
Lance Release
d4bb59b542 Bump version: 0.24.0 → 0.24.1-beta.0 2025-07-07 21:00:38 +00:00
Wyatt Alt
6b2dd6de51 chore: update lance to 31.1-beta.2 (#2487) 2025-07-07 12:53:16 -07:00
BubbleCal
dbccd9e4f1 chore: upgrade lance to 0.31.1-beta.1 (#2486)
this also upgrades:
- datafusion 47.0 -> 48.0
- half 2.5.0 -> 2.6.0

to be consistent with lance

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-07 22:16:43 +08:00
Will Jones
b12ebfed4c fix: only monotonically update dataset (#2479)
Make sure we only update the latest version if it's actually newer. This
is important if there are concurrent queries, as they can take different
amounts of time.
2025-07-01 08:29:37 -07:00
Weston Pace
1dadb2aefa feat: upgrade to lance 0.31.0-beta.1 (#2469)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Chores**
* Updated dependencies to newer versions for improved compatibility and
stability.

* **Refactor**
* Improved internal handling of data ranges and stream lifetimes for
enhanced performance and reliability.
* Simplified code style for Python query object conversions without
affecting functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-30 11:10:53 -07:00
Haoyu Weng
eb9784d7f2 feat(python): batch Ollama embed calls (#2453)
Other embedding integrations such as Cohere and OpenAI already send
requests in batches. We should do that for Ollama too to improve
throughput.

The Ollama [`.embed`
API](63ca747622/ollama/_client.py (L359-L378))
was added in version 0.3.0 (almost a year ago) so I updated the version
requirement in pyproject.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved compatibility with newer versions of the "ollama" package by
requiring version 0.3.0 or higher.
- Enhanced embedding generation to process batches of texts more
efficiently and reliably.
- **Refactor**
	- Improved type consistency and clarity for embedding-related methods.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-30 08:28:14 -07:00
Kilerd Chan
ba755626cc fix: expose parsing error coming from invalid object store uri (#2475)
this PR is to expose the error from `ListingCatalog::open_path` which
unwrap the Result coming from `ObjectStore::from_uri` to avoid panic
2025-06-30 10:33:18 +08:00
Keming
7760799cb8 docs: fix multivector notebook markdown style (#2447)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Improved formatting and clarity in instructional text within the
Multivector on LanceDB notebook.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-27 15:34:01 -07:00
Will Jones
4beb2d2877 fix(python): make sure explain_plan works with FTS queries (#2466)
## Summary

Fixes issue #2465 where FTS explain plans only showed basic `LanceScan`
instead of detailed execution plans with FTS query details, limits, and
offsets.

## Root Cause

The `FTSQuery::explain_plan()` and `analyze_plan()` methods were missing
the `.full_text_search()` call before calling explain/analyze plan,
causing them to operate on the base query without FTS context.

## Changes

- **Fixed** `explain_plan()` and `analyze_plan()` in `src/query.rs` to
call `.full_text_search()`
- **Added comprehensive test coverage** for FTS explain plans with
limits, offsets, and filters
- **Updated existing tests** to expect correct behavior instead of buggy
behavior

## Before/After

**Before (broken):**
```
LanceScan: uri=..., projection=[...], row_id=false, row_addr=false, ordered=true
```

**After (fixed):**
```
ProjectionExec: expr=[id@2 as id, text@3 as text, _score@1 as _score]
  Take: columns="_rowid, _score, (id), (text)"
    CoalesceBatchesExec: target_batch_size=1024
      GlobalLimitExec: skip=2, fetch=4
        MatchQuery: query=test
```

## Test Plan

- [x] All new FTS explain plan tests pass 
- [x] Existing tests continue to pass
- [x] FTS queries now show proper execution plans with MatchQuery,
limits, filters

Closes #2465

🤖 Generated with [Claude Code](https://claude.ai/code)

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Tests**
* Added new test cases to verify explain plan output for full-text
search, vector queries with pagination, and queries with filters.

* **Bug Fixes**
* Improved the accuracy of explain plan and analysis output for
full-text search queries, ensuring the correct query details are
reflected.

* **Refactor**
* Enhanced the formatting and hierarchical structure of execution plans
for hybrid queries, providing clearer and more detailed plan
representations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-06-26 23:35:14 -07:00
Lance Release
a00b8595d1 Bump version: 0.21.0-beta.0 → 0.21.0 2025-06-20 05:47:06 +00:00
Lance Release
9c8314b4fd Bump version: 0.20.1-beta.2 → 0.21.0-beta.0 2025-06-20 05:46:27 +00:00
Lance Release
c625b6f2b2 Bump version: 0.24.0-beta.0 → 0.24.0 2025-06-20 05:46:05 +00:00
Lance Release
bec8fe6547 Bump version: 0.23.1-beta.2 → 0.24.0-beta.0 2025-06-20 05:46:04 +00:00
BubbleCal
dc1150c011 chore: upgrade lance to 0.30.0 (#2451)
lance [release
details](https://github.com/lancedb/lance/releases/tag/v0.30.0)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated dependency specifications to use exact version numbers instead
of referencing a git repository and tag.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-20 11:27:20 +08:00
Will Jones
afaefc6264 ci: fix package lock again (#2449)
We are able to push commits over here:
cb7293e073/.github/workflows/make-release-commit.yml (L88-L95)

So I think it's safe to assume this will work.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated workflow configuration to improve authentication and branch
targeting for automated release processes.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-19 08:51:48 -07:00
BubbleCal
cb70ff8cee feat!: switch default FTS to native lance FTS (#2428)
This switches the default FTS to native lance FTS for Python sync table
API, the other APIs have switched to native implementation already

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- The default behavior for creating a full-text search index now uses
the new implementation rather than the legacy one.
- **Bug Fixes**
- Improved handling and error messages for phrase queries in full-text
search.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-19 10:38:34 +08:00
BubbleCal
cbb5a841b1 feat: support prefix matching and must_not clause (#2441) 2025-06-19 10:32:32 +08:00
Lance Release
c72f6770fd Bump version: 0.20.1-beta.1 → 0.20.1-beta.2 2025-06-18 23:33:57 +00:00
Lance Release
e5a80a5e86 Bump version: 0.23.1-beta.1 → 0.23.1-beta.2 2025-06-18 23:33:05 +00:00
Will Jones
8d0a7fad1f ci: try again to fix node lockfiles (#2445)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the release workflow to explicitly check out the main branch
during the publishing process.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 14:45:39 -07:00
LuQQiu
b80d4d0134 chore: update Lance to v0.30.0-beta.1 (#2444)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved stability and
compatibility.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 14:15:39 -07:00
satya-nutella
9645fe52c2 fix: improve error handling and embedding logic in arrow.ts (#2433)
- Enhanced error messages for schema inference failures to suggest
providing an explicit schema.
- Updated embedding application logic to check for existing destination
columns, allowing for filling embeddings in columns that are all null.
- Added comments for clarity on handling existing columns during
embedding application.

Fixes https://github.com/lancedb/lancedb/issues/2183

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **Bug Fixes**
  - Improved error messages for schema inference to enhance readability.
- Prevented redundant embedding application by skipping columns that
already contain data, avoiding unnecessary errors and computations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 12:45:11 -07:00
Lance Release
b77314168d Bump version: 0.20.1-beta.0 → 0.20.1-beta.1 2025-06-17 23:22:50 +00:00
Lance Release
e08d45e090 Bump version: 0.23.1-beta.0 → 0.23.1-beta.1 2025-06-17 23:22:00 +00:00
Will Jones
2e3ddb8382 ci: fix lockfile failure for vectordb node (#2443)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated release workflow to set a specific Git user name and email for
automated commits during the package publishing process.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-17 15:14:11 -07:00
Wyatt Alt
627ca4c810 chore: update lance to v0.29.1-beta.2 (#2442)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies to use a newer version of the Lance
library.
- **New Features**
- Added support for a new query occurrence type labeled "MUST NOT" in
search filters.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-17 14:02:13 -07:00
Lance Release
f8dae4ffe9 Bump version: 0.20.0 → 0.20.1-beta.0 2025-06-16 16:30:14 +00:00
Lance Release
9eb6119468 Bump version: 0.23.0 → 0.23.1-beta.0 2025-06-16 16:29:22 +00:00
Weston Pace
59b57e30ed feat: add maximum and minimum nprobes properties (#2430)
This exposes the maximum_nprobes and minimum_nprobes feature that was
added in https://github.com/lancedb/lance/pull/3903

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for specifying minimum and maximum probe counts in
vector search queries, allowing finer control over search behavior.
- Users can now independently set minimum and maximum probes for vector
and hybrid queries via new methods and parameters in Python, Node.js,
and Rust APIs.

- **Bug Fixes**
- Improved parameter validation to ensure correct usage of minimum and
maximum probe values.

- **Tests**
- Expanded test coverage to validate correct handling, serialization,
and error cases for the new probe parameters.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-13 15:18:29 -07:00
BubbleCal
fec8d58f06 feat: support a bunch or FTS features in JS SDK (#2431)
- operator for match query
- slop for phrase query
- boolean query

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Introduced support for boolean full-text search queries with AND/OR
logic and occurrence conditions.
- Added operator options for match and multi-match queries to control
term combination logic.
- Enabled phrase queries to specify proximity (slop) for flexible phrase
matching.
- Added new enumerations (`Operator`, `Occur`) and the `BooleanQuery`
class for enhanced query expressiveness.

- **Bug Fixes**
- Improved validation and error handling for invalid operator and
occurrence inputs in full-text queries.

- **Tests**
- Expanded test coverage with new cases for boolean queries and
operator-based full-text searches.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-12 17:04:19 +08:00
BubbleCal
84ded9d678 feat: support new FTS features in python SDK (#2411)
- AND operator
- phrase query slop param
- boolean query

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for combining full-text search queries using AND/OR
operators, enabling more flexible query composition.
- Introduced new query types and parameters, including boolean queries,
operator selection, occurrence constraints, and phrase slop for advanced
search scenarios.
- Enhanced asynchronous search to accept rich full-text query objects
directly.

- **Bug Fixes**
- Improved handling and validation of full-text search queries in both
synchronous and asynchronous search operations.

- **Tests**
- Updated and expanded tests to cover new full-text query types and
their usage in search functions.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-06 14:33:46 +08:00
Wyatt Alt
65696d9713 chore: update lance in lancedb (#2424)
This updates lance to v0.29.1-beta.1.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated workspace dependencies for improved consistency and
reliability. No changes to user-facing functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 19:06:51 -07:00
Will Jones
e2f2ea32e4 ci: fix vectordb release (#2422)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the release workflow to include an additional step for
improved process reliability. No changes to user-facing functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 17:06:02 -07:00
Lance Release
d5f2eca754 Bump version: 0.20.0-beta.3 → 0.20.0 2025-06-04 21:08:31 +00:00
Lance Release
7fa455a8a5 Bump version: 0.20.0-beta.2 → 0.20.0-beta.3 2025-06-04 21:07:59 +00:00
Lance Release
8f42b5874e Bump version: 0.23.0-beta.3 → 0.23.0 2025-06-04 21:07:39 +00:00
Lance Release
274f19f560 Bump version: 0.23.0-beta.2 → 0.23.0-beta.3 2025-06-04 21:07:38 +00:00
Will Jones
fbcbc75b5b feat: upgrade lance to stable version (#2420)
Adds a script to change the lance dependency easily. To make this
change, I just had to run:

```bash
python ci/set_lance_version.py stable
```

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added a script to automate updating the Lance package version in
project dependencies.
- **Chores**
- Updated workflows to improve lockfile management and automate updates
during releases and publishing.
- Switched Lance dependencies from git-based references to fixed version
numbers for improved stability.
- Enhanced lockfile update script with an option to amend commits and
quieter output.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-06-04 13:34:30 -07:00
Will Jones
008f389bd0 ci: commit updated Cargo.lock (#2418)
Follow up to #2416

Forgot to do `git add`.
Also need to delete old actions updating package lock.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
  - Removed legacy workflows related to updating package lock files.
- Improved the update lockfiles script to ensure updated lockfiles are
always included in amended commits.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 08:40:38 -07:00
Lance Release
91af6518d9 Updating package-lock.json 2025-06-04 07:15:07 +00:00
Lance Release
af6819762c Updating package-lock.json 2025-06-04 07:14:50 +00:00
Lance Release
7acece493d Bump version: 0.20.0-beta.1 → 0.20.0-beta.2 2025-06-04 07:14:39 +00:00
124 changed files with 4859 additions and 1482 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion] [tool.bumpversion]
current_version = "0.20.0-beta.1" current_version = "0.21.2-beta.1"
parse = """(?x) parse = """(?x)
(?P<major>0|[1-9]\\d*)\\. (?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\. (?P<minor>0|[1-9]\\d*)\\.

View File

@@ -5,8 +5,8 @@ on:
tags-ignore: tags-ignore:
# We don't publish pre-releases for Rust. Crates.io is just a source # We don't publish pre-releases for Rust. Crates.io is just a source
# distribution, so we don't need to publish pre-releases. # distribution, so we don't need to publish pre-releases.
- 'v*-beta*' - "v*-beta*"
- '*-v*' # for example, python-vX.Y.Z - "*-v*" # for example, python-vX.Y.Z
env: env:
# This env var is used by Swatinem/rust-cache@v2 for the cache # This env var is used by Swatinem/rust-cache@v2 for the cache
@@ -19,6 +19,8 @@ env:
jobs: jobs:
build: build:
runs-on: ubuntu-22.04 runs-on: ubuntu-22.04
permissions:
id-token: write
timeout-minutes: 30 timeout-minutes: 30
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -31,6 +33,8 @@ jobs:
run: | run: |
sudo apt update sudo apt update
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
- uses: rust-lang/crates-io-auth-action@v1
id: auth
- name: Publish the package - name: Publish the package
run: | run: |
cargo publish -p lancedb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }} cargo publish -p lancedb --all-features --token ${{ steps.auth.outputs.token }}

View File

@@ -84,7 +84,7 @@ jobs:
run: | run: |
pip install bump-my-version PyGithub packaging pip install bump-my-version PyGithub packaging
bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP
bash ci/update_lockfiles.sh bash ci/update_lockfiles.sh --amend
- name: Push new version tag - name: Push new version tag
if: ${{ !inputs.dry_run }} if: ${{ !inputs.dry_run }}
uses: ad-m/github-push-action@master uses: ad-m/github-push-action@master
@@ -93,11 +93,3 @@ jobs:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }} github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: ${{ github.ref }} branch: ${{ github.ref }}
tags: true tags: true
- uses: ./.github/workflows/update_package_lock
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
- uses: ./.github/workflows/update_package_lock_nodejs
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -505,6 +505,8 @@ jobs:
name: vectordb NPM Publish name: vectordb NPM Publish
needs: [node, node-macos, node-linux-gnu, node-windows] needs: [node, node-macos, node-linux-gnu, node-windows]
runs-on: ubuntu-latest runs-on: ubuntu-latest
permissions:
contents: write
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
steps: steps:
@@ -537,6 +539,20 @@ jobs:
# We need to deprecate the old package to avoid confusion. # We need to deprecate the old package to avoid confusion.
# Each time we publish a new version, it gets undeprecated. # Each time we publish a new version, it gets undeprecated.
run: npm deprecate vectordb "Use @lancedb/lancedb instead." run: npm deprecate vectordb "Use @lancedb/lancedb instead."
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
- name: Update package-lock.json
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
bash ci/update_lockfiles.sh
- name: Push new commit
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
- name: Notify Slack Action - name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0 uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }} if: ${{ always() }}

View File

@@ -1,33 +0,0 @@
name: update_package_lock
description: "Update node's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./node
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -1,33 +0,0 @@
name: update_package_lock_nodejs
description: "Update nodejs's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./nodejs
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

24
CLAUDE.md Normal file
View File

@@ -0,0 +1,24 @@
LanceDB is a database designed for retrieval, including vector, full-text, and hybrid search.
It is a wrapper around Lance. There are two backends: local (in-process like SQLite) and
remote (against LanceDB Cloud).
The core of LanceDB is written in Rust. There are bindings in Python, Typescript, and Java.
Project layout:
* `rust/lancedb`: The LanceDB core Rust implementation.
* `python`: The Python bindings, using PyO3.
* `nodejs`: The Typescript bindings, using napi-rs
* `java`: The Java bindings
(`rust/ffi` and `node/` are for a deprecated package. You can ignore them.)
Common commands:
* Check for compiler errors: `cargo check --features remote --tests --examples`
* Run tests: `cargo test --features remote --tests`
* Run specific test: `cargo test --features remote -p <package_name> --test <test_name>`
* Lint: `cargo clippy --features remote --tests --examples`
* Format: `cargo fmt --all`
Before committing changes, run formatting.

1110
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -21,14 +21,14 @@ categories = ["database-implementations"]
rust-version = "1.78.0" rust-version = "1.78.0"
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.29.0", "features" = ["dynamodb"], tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" } lance = { "version" = "=0.32.0", "features" = ["dynamodb"] }
lance-io = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" } lance-io = "=0.32.0"
lance-index = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" } lance-index = "=0.32.0"
lance-linalg = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" } lance-linalg = "=0.32.0"
lance-table = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" } lance-table = "=0.32.0"
lance-testing = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" } lance-testing = "=0.32.0"
lance-datafusion = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" } lance-datafusion = "=0.32.0"
lance-encoding = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" } lance-encoding = "=0.32.0"
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "55.1", optional = false } arrow = { version = "55.1", optional = false }
arrow-array = "55.1" arrow-array = "55.1"
@@ -39,20 +39,20 @@ arrow-schema = "55.1"
arrow-arith = "55.1" arrow-arith = "55.1"
arrow-cast = "55.1" arrow-cast = "55.1"
async-trait = "0" async-trait = "0"
datafusion = { version = "47.0", default-features = false } datafusion = { version = "48.0", default-features = false }
datafusion-catalog = "47.0" datafusion-catalog = "48.0"
datafusion-common = { version = "47.0", default-features = false } datafusion-common = { version = "48.0", default-features = false }
datafusion-execution = "47.0" datafusion-execution = "48.0"
datafusion-expr = "47.0" datafusion-expr = "48.0"
datafusion-physical-plan = "47.0" datafusion-physical-plan = "48.0"
env_logger = "0.11" env_logger = "0.11"
half = { "version" = "=2.5.0", default-features = false, features = [ half = { "version" = "2.6.0", default-features = false, features = [
"num-traits", "num-traits",
] } ] }
futures = "0" futures = "0"
log = "0.4" log = "0.4"
moka = { version = "0.12", features = ["future"] } moka = { version = "0.12", features = ["future"] }
object_store = "0.11.0" object_store = "0.12.0"
pin-project = "1.0.7" pin-project = "1.0.7"
snafu = "0.8" snafu = "0.8"
url = "2" url = "2"

188
ci/set_lance_version.py Normal file
View File

@@ -0,0 +1,188 @@
import argparse
import sys
import json
def run_command(command: str) -> str:
"""
Run a shell command and return stdout as a string.
If exit code is not 0, raise an exception with the stderr output.
"""
import subprocess
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode != 0:
raise Exception(f"Command failed with error: {result.stderr.strip()}")
return result.stdout.strip()
def get_latest_stable_version() -> str:
version_line = run_command("cargo info lance | grep '^version:'")
version = version_line.split(" ")[1].strip()
return version
def get_latest_preview_version() -> str:
lance_tags = run_command(
"git ls-remote --tags https://github.com/lancedb/lance.git | grep 'refs/tags/v[0-9beta.-]\\+$'"
).splitlines()
lance_tags = (
tag.split("refs/tags/")[1]
for tag in lance_tags
if "refs/tags/" in tag and "beta" in tag
)
from packaging.version import Version
latest = max(
(tag[1:] for tag in lance_tags if tag.startswith("v")), key=lambda t: Version(t)
)
return str(latest)
def extract_features(line: str) -> list:
"""
Extracts the features from a line in Cargo.toml.
Example: 'lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }'
Returns: ['dynamodb']
"""
import re
match = re.search(r'"features"\s*=\s*\[\s*(.*?)\s*\]', line, re.DOTALL)
if match:
features_str = match.group(1)
return [f.strip('"') for f in features_str.split(",") if len(f) > 0]
return []
def update_cargo_toml(line_updater):
"""
Updates the Cargo.toml file by applying the line_updater function to each line.
The line_updater function should take a line as input and return the updated line.
"""
with open("Cargo.toml", "r") as f:
lines = f.readlines()
new_lines = []
lance_line = ""
is_parsing_lance_line = False
for line in lines:
if line.startswith("lance"):
# Update the line using the provided function
if line.strip().endswith("}"):
new_lines.append(line_updater(line))
else:
lance_line = line
is_parsing_lance_line = True
elif is_parsing_lance_line:
lance_line += line
if line.strip().endswith("}"):
new_lines.append(line_updater(lance_line))
lance_line = ""
is_parsing_lance_line = False
else:
print("doesn't end with }:", line)
else:
# Keep the line unchanged
new_lines.append(line)
with open("Cargo.toml", "w") as f:
f.writelines(new_lines)
def set_stable_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }
lance-io = "=0.29.0"
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "version" = "={version}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = "={version}"\n'
update_cargo_toml(line_updater)
def set_preview_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"], tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-io = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
base_version = version.split("-")[0] # Get the base version without beta suffix
if features:
return f'{package_name} = {{ "version" = "={base_version}", "features" = {json.dumps(features)}, "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
else:
return f'{package_name} = {{ "version" = "={base_version}", "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
update_cargo_toml(line_updater)
def set_local_version():
"""
Sets lines to
lance = { path = "../lance/rust/lance", features = ["dynamodb"] }
lance-io = { path = "../lance/rust/lance-io" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}" }}\n'
update_cargo_toml(line_updater)
parser = argparse.ArgumentParser(description="Set the version of the Lance package.")
parser.add_argument(
"version",
type=str,
help="The version to set for the Lance package. Use 'stable' for the latest stable version, 'preview' for latest preview version, or a specific version number (e.g., '0.1.0'). You can also specify 'local' to use a local path.",
)
args = parser.parse_args()
if args.version == "stable":
latest_stable_version = get_latest_stable_version()
print(
f"Found latest stable version: \033[1mv{latest_stable_version}\033[0m",
file=sys.stderr,
)
set_stable_version(latest_stable_version)
elif args.version == "preview":
latest_preview_version = get_latest_preview_version()
print(
f"Found latest preview version: \033[1mv{latest_preview_version}\033[0m",
file=sys.stderr,
)
set_preview_version(latest_preview_version)
elif args.version == "local":
set_local_version()
else:
# Parse the version number.
version = args.version
# Ignore initial v if present.
if version.startswith("v"):
version = version[1:]
if "beta" in version:
set_preview_version(version)
else:
set_stable_version(version)
print("Updating lockfiles...", file=sys.stderr, end="")
run_command("cargo metadata > /dev/null")
print(" done.", file=sys.stderr)

View File

@@ -1,18 +1,30 @@
#!/usr/bin/env bash #!/usr/bin/env bash
set -euo pipefail set -euo pipefail
AMEND=false
for arg in "$@"; do
if [[ "$arg" == "--amend" ]]; then
AMEND=true
fi
done
# This updates the lockfile without building # This updates the lockfile without building
cargo metadata > /dev/null cargo metadata --quiet > /dev/null
pushd nodejs || exit 1 pushd nodejs || exit 1
npm install --package-lock-only npm install --package-lock-only --silent
popd popd
pushd node || exit 1 pushd node || exit 1
npm install --package-lock-only npm install --package-lock-only --silent
popd popd
if git diff --quiet --exit-code; then if git diff --quiet --exit-code; then
echo "No lockfile changes to commit; skipping amend." echo "No lockfile changes to commit; skipping amend."
else elif $AMEND; then
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
git commit --amend --no-edit git commit --amend --no-edit
else
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
git commit -m "Update lockfiles"
fi fi

12
docs/package-lock.json generated
View File

@@ -19,7 +19,7 @@
}, },
"../node": { "../node": {
"name": "vectordb", "name": "vectordb",
"version": "0.12.0", "version": "0.21.2-beta.0",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -65,11 +65,11 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.12.0", "@lancedb/vectordb-darwin-arm64": "0.21.2-beta.0",
"@lancedb/vectordb-darwin-x64": "0.12.0", "@lancedb/vectordb-darwin-x64": "0.21.2-beta.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0", "@lancedb/vectordb-linux-arm64-gnu": "0.21.2-beta.0",
"@lancedb/vectordb-linux-x64-gnu": "0.12.0", "@lancedb/vectordb-linux-x64-gnu": "0.21.2-beta.0",
"@lancedb/vectordb-win32-x64-msvc": "0.12.0" "@lancedb/vectordb-win32-x64-msvc": "0.21.2-beta.0"
}, },
"peerDependencies": { "peerDependencies": {
"@apache-arrow/ts": "^14.0.2", "@apache-arrow/ts": "^14.0.2",

View File

@@ -1,7 +1,9 @@
# SQL Querying
You can use DuckDB and Apache Datafusion to query your LanceDB tables using SQL. You can use DuckDB and Apache Datafusion to query your LanceDB tables using SQL.
This guide will show how to query Lance tables them using both. This guide will show how to query Lance tables them using both.
We will re-use the dataset [created previously](./pandas_and_pyarrow.md): We will re-use the dataset [created previously](./tables.md):
```python ```python
import lancedb import lancedb
@@ -27,21 +29,17 @@ arrow_table = table.to_lance()
duckdb.query("SELECT * FROM arrow_table") duckdb.query("SELECT * FROM arrow_table")
``` ```
``` | vector | item | price |
┌─────────────┬─────────┬────────┐ | ----------- | ---- | ----- |
│ vector │ item │ price | [3.1, 4.1] | foo | 10.0 |
│ float[] │ varchar │ double │ | [5.9, 26.5] | bar | 20.0 |
├─────────────┼─────────┼────────┤
│ [3.1, 4.1] │ foo │ 10.0 │
│ [5.9, 26.5] │ bar │ 20.0 │
└─────────────┴─────────┴────────┘
```
## Querying a LanceDB Table with Apache Datafusion ## Querying a LanceDB Table with Apache Datafusion
Have the required imports before doing any querying. Have the required imports before doing any querying.
=== "Python" === "Python"
```python ```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb" --8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-session-context" --8<-- "python/python/tests/docs/test_guide_tables.py:import-session-context"
@@ -51,16 +49,12 @@ Have the required imports before doing any querying.
Register the table created with the Datafusion session context. Register the table created with the Datafusion session context.
=== "Python" === "Python"
```python ```python
--8<-- "python/python/tests/docs/test_guide_tables.py:lance_sql_basic" --8<-- "python/python/tests/docs/test_guide_tables.py:lance_sql_basic"
``` ```
``` | vector | item | price |
┌─────────────┬─────────┬────────┐ | ----------- | ---- | ----- |
│ vector │ item │ price | [3.1, 4.1] | foo | 10.0 |
│ float[] │ varchar │ double │ | [5.9, 26.5] | bar | 20.0 |
├─────────────┼─────────┼────────┤
│ [3.1, 4.1] │ foo │ 10.0 │
│ [5.9, 26.5] │ bar │ 20.0 │
└─────────────┴─────────┴────────┘
```

View File

@@ -0,0 +1,53 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / BooleanQuery
# Class: BooleanQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new BooleanQuery()
```ts
new BooleanQuery(queries): BooleanQuery
```
Creates an instance of BooleanQuery.
#### Parameters
* **queries**: [[`Occur`](../enumerations/Occur.md), [`FullTextQuery`](../interfaces/FullTextQuery.md)][]
An array of (Occur, FullTextQuery objects) to combine.
Occur specifies whether the query must match, or should match.
#### Returns
[`BooleanQuery`](BooleanQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)

View File

@@ -40,6 +40,8 @@ Creates an instance of MatchQuery.
- `boost`: The boost factor for the query (default is 1.0). - `boost`: The boost factor for the query (default is 1.0).
- `fuzziness`: The fuzziness level for the query (default is 0). - `fuzziness`: The fuzziness level for the query (default is 0).
- `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50). - `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
- `operator`: The logical operator to use for combining terms in the query (default is "OR").
- `prefixLength`: The number of beginning characters being unchanged for fuzzy matching.
* **options.boost?**: `number` * **options.boost?**: `number`
@@ -47,6 +49,10 @@ Creates an instance of MatchQuery.
* **options.maxExpansions?**: `number` * **options.maxExpansions?**: `number`
* **options.operator?**: [`Operator`](../enumerations/Operator.md)
* **options.prefixLength?**: `number`
#### Returns #### Returns
[`MatchQuery`](MatchQuery.md) [`MatchQuery`](MatchQuery.md)

View File

@@ -38,9 +38,12 @@ Creates an instance of MultiMatchQuery.
* **options?** * **options?**
Optional parameters for the multi-match query. Optional parameters for the multi-match query.
- `boosts`: An array of boost factors for each column (default is 1.0 for all). - `boosts`: An array of boost factors for each column (default is 1.0 for all).
- `operator`: The logical operator to use for combining terms in the query (default is "OR").
* **options.boosts?**: `number`[] * **options.boosts?**: `number`[]
* **options.operator?**: [`Operator`](../enumerations/Operator.md)
#### Returns #### Returns
[`MultiMatchQuery`](MultiMatchQuery.md) [`MultiMatchQuery`](MultiMatchQuery.md)

View File

@@ -19,7 +19,10 @@ including methods to retrieve the query type and convert the query to a dictiona
### new PhraseQuery() ### new PhraseQuery()
```ts ```ts
new PhraseQuery(query, column): PhraseQuery new PhraseQuery(
query,
column,
options?): PhraseQuery
``` ```
Creates an instance of `PhraseQuery`. Creates an instance of `PhraseQuery`.
@@ -32,6 +35,12 @@ Creates an instance of `PhraseQuery`.
* **column**: `string` * **column**: `string`
The name of the column to search within. The name of the column to search within.
* **options?**
Optional parameters for the phrase query.
- `slop`: The maximum number of intervening unmatched positions allowed between words in the phrase (default is 0).
* **options.slop?**: `number`
#### Returns #### Returns
[`PhraseQuery`](PhraseQuery.md) [`PhraseQuery`](PhraseQuery.md)

View File

@@ -0,0 +1,84 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Session
# Class: Session
A session for managing caches and object stores across LanceDB operations.
Sessions allow you to configure cache sizes for index and metadata caches,
which can significantly impact performance for large datasets.
## Constructors
### new Session()
```ts
new Session(indexCacheSizeBytes?, metadataCacheSizeBytes?): Session
```
Create a new session with custom cache sizes.
# Parameters
- `index_cache_size_bytes`: The size of the index cache in bytes.
Defaults to 6GB if not specified.
- `metadata_cache_size_bytes`: The size of the metadata cache in bytes.
Defaults to 1GB if not specified.
#### Parameters
* **indexCacheSizeBytes?**: `null` \| `bigint`
* **metadataCacheSizeBytes?**: `null` \| `bigint`
#### Returns
[`Session`](Session.md)
## Methods
### approxNumItems()
```ts
approxNumItems(): number
```
Get the approximate number of items cached in the session.
#### Returns
`number`
***
### sizeBytes()
```ts
sizeBytes(): bigint
```
Get the current size of the session caches in bytes.
#### Returns
`bigint`
***
### default()
```ts
static default(): Session
```
Create a session with default cache sizes.
This is equivalent to creating a session with 6GB index cache
and 1GB metadata cache.
#### Returns
[`Session`](Session.md)

View File

@@ -612,7 +612,7 @@ of the given query
#### Parameters #### Parameters
* **query**: `string` \| [`IntoVector`](../type-aliases/IntoVector.md) \| [`FullTextQuery`](../interfaces/FullTextQuery.md) * **query**: `string` \| [`IntoVector`](../type-aliases/IntoVector.md) \| [`MultiVector`](../type-aliases/MultiVector.md) \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
the query, a vector or string the query, a vector or string
* **queryType?**: `string` * **queryType?**: `string`
@@ -799,7 +799,7 @@ by `query`.
#### Parameters #### Parameters
* **vector**: [`IntoVector`](../type-aliases/IntoVector.md) * **vector**: [`IntoVector`](../type-aliases/IntoVector.md) \| [`MultiVector`](../type-aliases/MultiVector.md)
#### Returns #### Returns

View File

@@ -386,6 +386,53 @@ called then every valid row from the table will be returned.
*** ***
### maximumNprobes()
```ts
maximumNprobes(maximumNprobes): VectorQuery
```
Set the maximum number of probes used.
This controls the maximum number of partitions that will be searched. If this
number is greater than minimumNprobes then the excess partitions will _only_ be
searched if we have not found enough results. This can be useful when there is
a narrow filter to allow these queries to spend more time searching and avoid
potential false negatives.
#### Parameters
* **maximumNprobes**: `number`
#### Returns
[`VectorQuery`](VectorQuery.md)
***
### minimumNprobes()
```ts
minimumNprobes(minimumNprobes): VectorQuery
```
Set the minimum number of probes used.
This controls the minimum number of partitions that will be searched. This
parameter will impact every query against a vector index, regardless of the
filter. See `nprobes` for more details. Higher values will increase recall
but will also increase latency.
#### Parameters
* **minimumNprobes**: `number`
#### Returns
[`VectorQuery`](VectorQuery.md)
***
### nprobes() ### nprobes()
```ts ```ts
@@ -413,6 +460,10 @@ For best results we recommend tuning this parameter with a benchmark against
your actual data to find the smallest possible value that will still give your actual data to find the smallest possible value that will still give
you the desired recall. you the desired recall.
For more fine grained control over behavior when you have a very narrow filter
you can use `minimumNprobes` and `maximumNprobes`. This method sets both
the minimum and maximum to the same value.
#### Parameters #### Parameters
* **nprobes**: `number` * **nprobes**: `number`

View File

@@ -15,6 +15,14 @@ Enum representing the types of full-text queries supported.
## Enumeration Members ## Enumeration Members
### Boolean
```ts
Boolean: "boolean";
```
***
### Boost ### Boost
```ts ```ts

View File

@@ -0,0 +1,37 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Occur
# Enumeration: Occur
Enum representing the occurrence of terms in full-text queries.
- `Must`: The term must be present in the document.
- `Should`: The term should contribute to the document score, but is not required.
- `MustNot`: The term must not be present in the document.
## Enumeration Members
### Must
```ts
Must: "MUST";
```
***
### MustNot
```ts
MustNot: "MUST_NOT";
```
***
### Should
```ts
Should: "SHOULD";
```

View File

@@ -0,0 +1,28 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Operator
# Enumeration: Operator
Enum representing the logical operators used in full-text queries.
- `And`: All terms must match.
- `Or`: At least one term must match.
## Enumeration Members
### And
```ts
And: "AND";
```
***
### Or
```ts
Or: "OR";
```

View File

@@ -6,10 +6,13 @@
# Function: connect() # Function: connect()
## connect(uri, options) ## connect(uri, options, session)
```ts ```ts
function connect(uri, options?): Promise<Connection> function connect(
uri,
options?,
session?): Promise<Connection>
``` ```
Connect to a LanceDB instance at the given URI. Connect to a LanceDB instance at the given URI.
@@ -29,6 +32,8 @@ Accepted formats:
* **options?**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md)&gt; * **options?**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md)&gt;
The options to use when connecting to the database The options to use when connecting to the database
* **session?**: [`Session`](../classes/Session.md)
### Returns ### Returns
`Promise`&lt;[`Connection`](../classes/Connection.md)&gt; `Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
@@ -77,7 +82,7 @@ Accepted formats:
[ConnectionOptions](../interfaces/ConnectionOptions.md) for more details on the URI format. [ConnectionOptions](../interfaces/ConnectionOptions.md) for more details on the URI format.
### Example ### Examples
```ts ```ts
const conn = await connect({ const conn = await connect({
@@ -85,3 +90,11 @@ const conn = await connect({
storageOptions: {timeout: "60s"} storageOptions: {timeout: "60s"}
}); });
``` ```
```ts
const session = Session.default();
const conn = await connect({
uri: "/path/to/database",
session: session
});
```

View File

@@ -12,9 +12,12 @@
## Enumerations ## Enumerations
- [FullTextQueryType](enumerations/FullTextQueryType.md) - [FullTextQueryType](enumerations/FullTextQueryType.md)
- [Occur](enumerations/Occur.md)
- [Operator](enumerations/Operator.md)
## Classes ## Classes
- [BooleanQuery](classes/BooleanQuery.md)
- [BoostQuery](classes/BoostQuery.md) - [BoostQuery](classes/BoostQuery.md)
- [Connection](classes/Connection.md) - [Connection](classes/Connection.md)
- [Index](classes/Index.md) - [Index](classes/Index.md)
@@ -26,6 +29,7 @@
- [Query](classes/Query.md) - [Query](classes/Query.md)
- [QueryBase](classes/QueryBase.md) - [QueryBase](classes/QueryBase.md)
- [RecordBatchIterator](classes/RecordBatchIterator.md) - [RecordBatchIterator](classes/RecordBatchIterator.md)
- [Session](classes/Session.md)
- [Table](classes/Table.md) - [Table](classes/Table.md)
- [TagContents](classes/TagContents.md) - [TagContents](classes/TagContents.md)
- [Tags](classes/Tags.md) - [Tags](classes/Tags.md)
@@ -81,6 +85,7 @@
- [FieldLike](type-aliases/FieldLike.md) - [FieldLike](type-aliases/FieldLike.md)
- [IntoSql](type-aliases/IntoSql.md) - [IntoSql](type-aliases/IntoSql.md)
- [IntoVector](type-aliases/IntoVector.md) - [IntoVector](type-aliases/IntoVector.md)
- [MultiVector](type-aliases/MultiVector.md)
- [RecordBatchLike](type-aliases/RecordBatchLike.md) - [RecordBatchLike](type-aliases/RecordBatchLike.md)
- [SchemaLike](type-aliases/SchemaLike.md) - [SchemaLike](type-aliases/SchemaLike.md)
- [TableLike](type-aliases/TableLike.md) - [TableLike](type-aliases/TableLike.md)

View File

@@ -70,6 +70,17 @@ Defaults to 'us-east-1'.
*** ***
### session?
```ts
optional session: Session;
```
(For LanceDB OSS only): the session to use for this connection. Holds
shared caches and other session-specific state.
***
### storageOptions? ### storageOptions?
```ts ```ts

View File

@@ -23,7 +23,7 @@ whether to remove punctuation
### baseTokenizer? ### baseTokenizer?
```ts ```ts
optional baseTokenizer: "raw" | "simple" | "whitespace"; optional baseTokenizer: "raw" | "simple" | "whitespace" | "ngram";
``` ```
The tokenizer to use when building the index. The tokenizer to use when building the index.
@@ -71,6 +71,36 @@ tokens longer than this length will be ignored
*** ***
### ngramMaxLength?
```ts
optional ngramMaxLength: number;
```
ngram max length
***
### ngramMinLength?
```ts
optional ngramMinLength: number;
```
ngram min length
***
### prefixOnly?
```ts
optional prefixOnly: boolean;
```
whether to only index the prefix of the token for ngram tokenizer
***
### removeStopWords? ### removeStopWords?
```ts ```ts

View File

@@ -8,7 +8,7 @@
## Properties ## Properties
### indexCacheSize? ### ~~indexCacheSize?~~
```ts ```ts
optional indexCacheSize: number; optional indexCacheSize: number;
@@ -16,6 +16,11 @@ optional indexCacheSize: number;
Set the size of the index cache, specified as a number of entries Set the size of the index cache, specified as a number of entries
#### Deprecated
Use session-level cache configuration instead.
Create a Session with custom cache sizes and pass it to the connect() function.
The exact meaning of an "entry" will depend on the type of index: The exact meaning of an "entry" will depend on the type of index:
- IVF: there is one entry for each IVF partition - IVF: there is one entry for each IVF partition
- BTREE: there is one entry for the entire index - BTREE: there is one entry for the entire index

View File

@@ -24,10 +24,10 @@ The default is 7 days
// Delete all versions older than 1 day // Delete all versions older than 1 day
const olderThan = new Date(); const olderThan = new Date();
olderThan.setDate(olderThan.getDate() - 1)); olderThan.setDate(olderThan.getDate() - 1));
tbl.cleanupOlderVersions(olderThan); tbl.optimize({cleanupOlderThan: olderThan});
// Delete all versions except the current version // Delete all versions except the current version
tbl.cleanupOlderVersions(new Date()); tbl.optimize({cleanupOlderThan: new Date()});
``` ```
*** ***

View File

@@ -0,0 +1,11 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / MultiVector
# Type Alias: MultiVector
```ts
type MultiVector: IntoVector[];
```

View File

@@ -428,7 +428,7 @@
"\n", "\n",
"**Why?** \n", "**Why?** \n",
"Embedding the UFO dataset and ingesting it into LanceDB takes **~2 hours on a T4 GPU**. To save time: \n", "Embedding the UFO dataset and ingesting it into LanceDB takes **~2 hours on a T4 GPU**. To save time: \n",
"- **Use the pre-prepared table with index created ** (provided below) to proceed directly to step7: search. \n", "- **Use the pre-prepared table with index created** (provided below) to proceed directly to **Step 7**: search. \n",
"- **Step 5a** contains the full ingestion code for reference (run it only if necessary). \n", "- **Step 5a** contains the full ingestion code for reference (run it only if necessary). \n",
"- **Step 6** contains the details on creating the index on the multivector column" "- **Step 6** contains the details on creating the index on the multivector column"
] ]

View File

@@ -30,7 +30,8 @@ excluded_globs = [
"../src/rag/advanced_techniques/*.md", "../src/rag/advanced_techniques/*.md",
"../src/guides/scalar_index.md", "../src/guides/scalar_index.md",
"../src/guides/storage.md", "../src/guides/storage.md",
"../src/search.md" "../src/search.md",
"../src/guides/sql_querying.md",
] ]
python_prefix = "py" python_prefix = "py"

View File

@@ -7,3 +7,4 @@ tantivy==0.20.1
--extra-index-url https://download.pytorch.org/whl/cpu --extra-index-url https://download.pytorch.org/whl/cpu
torch torch
polars>=0.19, <=1.3.0 polars>=0.19, <=1.3.0
datafusion

View File

@@ -0,0 +1,19 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
wrapperVersion=3.3.2
distributionType=only-script
distributionUrl=https://repo.maven.apache.org/maven2/org/apache/maven/apache-maven/3.9.9/apache-maven-3.9.9-bin.zip

37
java/README.md Normal file
View File

@@ -0,0 +1,37 @@
# LanceDB Java SDK
## Configuration and Initialization
### LanceDB Cloud
For LanceDB Cloud, use the simplified builder API:
```java
import com.lancedb.lance.namespace.LanceRestNamespace;
// If your DB url is db://example-db, then your database here is example-db
LanceRestNamespace namespace = LanceDBRestNamespaces.builder()
.apiKey("your_lancedb_cloud_api_key")
.database("your_database_name")
.build();
```
### LanceDB Enterprise
For Enterprise deployments, use your VPC endpoint:
```java
LanceRestNamespace namespace = LanceDBRestNamespaces.builder()
.apiKey("your_lancedb_enterprise_api_key")
.database("your-top-dir") // Your top level folder under your cloud bucket, e.g. s3://your-bucket/your-top-dir/
.hostOverride("http://<vpc_endpoint_dns_name>:80")
.build();
```
## Development
Build:
```shell
./mvnw install
```

View File

@@ -19,7 +19,7 @@ lancedb = { path = "../../../rust/lancedb" }
lance = { workspace = true } lance = { workspace = true }
arrow = { workspace = true, features = ["ffi"] } arrow = { workspace = true, features = ["ffi"] }
arrow-schema.workspace = true arrow-schema.workspace = true
tokio = "1.23" tokio = "1.46"
jni = "0.21.1" jni = "0.21.1"
snafu.workspace = true snafu.workspace = true
lazy_static.workspace = true lazy_static.workspace = true

View File

@@ -8,18 +8,24 @@
<parent> <parent>
<groupId>com.lancedb</groupId> <groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId> <artifactId>lancedb-parent</artifactId>
<version>0.20.0-beta.1</version> <version>0.21.2-beta.1</version>
<relativePath>../pom.xml</relativePath> <relativePath>../pom.xml</relativePath>
</parent> </parent>
<artifactId>lancedb-core</artifactId> <artifactId>lancedb-core</artifactId>
<name>LanceDB Core</name> <name>${project.artifactId}</name>
<description>LanceDB Core</description>
<packaging>jar</packaging> <packaging>jar</packaging>
<properties> <properties>
<rust.release.build>false</rust.release.build> <rust.release.build>false</rust.release.build>
</properties> </properties>
<dependencies> <dependencies>
<dependency>
<groupId>com.lancedb</groupId>
<artifactId>lance-namespace-core</artifactId>
<version>0.0.1</version>
</dependency>
<dependency> <dependency>
<groupId>org.apache.arrow</groupId> <groupId>org.apache.arrow</groupId>
<artifactId>arrow-vector</artifactId> <artifactId>arrow-vector</artifactId>

View File

@@ -0,0 +1,26 @@
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.21.2-beta.1</version>
<relativePath>../pom.xml</relativePath>
</parent>
<artifactId>lancedb-lance-namespace</artifactId>
<name>${project.artifactId}</name>
<description>LanceDB Java Integration with Lance Namespace</description>
<packaging>jar</packaging>
<dependencies>
<dependency>
<groupId>com.lancedb</groupId>
<artifactId>lance-namespace-core</artifactId>
</dependency>
</dependencies>
</project>

View File

@@ -0,0 +1,146 @@
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.lancedb.lancedb;
import com.lancedb.lance.namespace.LanceRestNamespace;
import com.lancedb.lance.namespace.client.apache.ApiClient;
import java.util.HashMap;
import java.util.Map;
import java.util.Optional;
/** Util class to help construct a {@link LanceRestNamespace} for LanceDB. */
public class LanceDbRestNamespaces {
private static final String DEFAULT_REGION = "us-east-1";
private static final String CLOUD_URL_PATTERN = "https://%s.%s.api.lancedb.com";
private String apiKey;
private String database;
private Optional<String> hostOverride = Optional.empty();
private Optional<String> region = Optional.empty();
private Map<String, String> additionalConfig = new HashMap<>();
private LanceDbRestNamespaces() {}
/**
* Create a new builder instance.
*
* @return A new LanceRestNamespaceBuilder
*/
public static LanceDbRestNamespaces builder() {
return new LanceDbRestNamespaces();
}
/**
* Set the API key (required).
*
* @param apiKey The LanceDB API key
* @return This builder
*/
public LanceDbRestNamespaces apiKey(String apiKey) {
if (apiKey == null || apiKey.trim().isEmpty()) {
throw new IllegalArgumentException("API key cannot be null or empty");
}
this.apiKey = apiKey;
return this;
}
/**
* Set the database name (required).
*
* @param database The database name
* @return This builder
*/
public LanceDbRestNamespaces database(String database) {
if (database == null || database.trim().isEmpty()) {
throw new IllegalArgumentException("Database cannot be null or empty");
}
this.database = database;
return this;
}
/**
* Set a custom host override (optional). When set, this overrides the default LanceDB Cloud URL
* construction. Use this for LanceDB Enterprise deployments.
*
* @param hostOverride The complete base URL (e.g., "http://your-vpc-endpoint:80")
* @return This builder
*/
public LanceDbRestNamespaces hostOverride(String hostOverride) {
this.hostOverride = Optional.ofNullable(hostOverride);
return this;
}
/**
* Set the region for LanceDB Cloud (optional). Defaults to "us-east-1" if not specified. This is
* ignored when hostOverride is set.
*
* @param region The AWS region (e.g., "us-east-1", "eu-west-1")
* @return This builder
*/
public LanceDbRestNamespaces region(String region) {
this.region = Optional.ofNullable(region);
return this;
}
/**
* Add additional configuration parameters.
*
* @param key The configuration key
* @param value The configuration value
* @return This builder
*/
public LanceDbRestNamespaces config(String key, String value) {
this.additionalConfig.put(key, value);
return this;
}
/**
* Build the LanceRestNamespace instance.
*
* @return A configured LanceRestNamespace
* @throws IllegalStateException if required parameters are missing
*/
public LanceRestNamespace build() {
// Validate required fields
if (apiKey == null) {
throw new IllegalStateException("API key is required");
}
if (database == null) {
throw new IllegalStateException("Database is required");
}
// Build configuration map
Map<String, String> config = new HashMap<>(additionalConfig);
config.put("headers.x-lancedb-database", database);
config.put("headers.x-api-key", apiKey);
// Determine base URL
String baseUrl;
if (hostOverride.isPresent()) {
baseUrl = hostOverride.get();
config.put("host_override", hostOverride.get());
} else {
String effectiveRegion = region.orElse(DEFAULT_REGION);
baseUrl = String.format(CLOUD_URL_PATTERN, database, effectiveRegion);
config.put("region", effectiveRegion);
}
// Create and configure ApiClient
ApiClient apiClient = new ApiClient();
apiClient.setBasePath(baseUrl);
return new LanceRestNamespace(apiClient, config);
}
}

259
java/mvnw vendored Executable file
View File

@@ -0,0 +1,259 @@
#!/bin/sh
# ----------------------------------------------------------------------------
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# ----------------------------------------------------------------------------
# ----------------------------------------------------------------------------
# Apache Maven Wrapper startup batch script, version 3.3.2
#
# Optional ENV vars
# -----------------
# JAVA_HOME - location of a JDK home dir, required when download maven via java source
# MVNW_REPOURL - repo url base for downloading maven distribution
# MVNW_USERNAME/MVNW_PASSWORD - user and password for downloading maven
# MVNW_VERBOSE - true: enable verbose log; debug: trace the mvnw script; others: silence the output
# ----------------------------------------------------------------------------
set -euf
[ "${MVNW_VERBOSE-}" != debug ] || set -x
# OS specific support.
native_path() { printf %s\\n "$1"; }
case "$(uname)" in
CYGWIN* | MINGW*)
[ -z "${JAVA_HOME-}" ] || JAVA_HOME="$(cygpath --unix "$JAVA_HOME")"
native_path() { cygpath --path --windows "$1"; }
;;
esac
# set JAVACMD and JAVACCMD
set_java_home() {
# For Cygwin and MinGW, ensure paths are in Unix format before anything is touched
if [ -n "${JAVA_HOME-}" ]; then
if [ -x "$JAVA_HOME/jre/sh/java" ]; then
# IBM's JDK on AIX uses strange locations for the executables
JAVACMD="$JAVA_HOME/jre/sh/java"
JAVACCMD="$JAVA_HOME/jre/sh/javac"
else
JAVACMD="$JAVA_HOME/bin/java"
JAVACCMD="$JAVA_HOME/bin/javac"
if [ ! -x "$JAVACMD" ] || [ ! -x "$JAVACCMD" ]; then
echo "The JAVA_HOME environment variable is not defined correctly, so mvnw cannot run." >&2
echo "JAVA_HOME is set to \"$JAVA_HOME\", but \"\$JAVA_HOME/bin/java\" or \"\$JAVA_HOME/bin/javac\" does not exist." >&2
return 1
fi
fi
else
JAVACMD="$(
'set' +e
'unset' -f command 2>/dev/null
'command' -v java
)" || :
JAVACCMD="$(
'set' +e
'unset' -f command 2>/dev/null
'command' -v javac
)" || :
if [ ! -x "${JAVACMD-}" ] || [ ! -x "${JAVACCMD-}" ]; then
echo "The java/javac command does not exist in PATH nor is JAVA_HOME set, so mvnw cannot run." >&2
return 1
fi
fi
}
# hash string like Java String::hashCode
hash_string() {
str="${1:-}" h=0
while [ -n "$str" ]; do
char="${str%"${str#?}"}"
h=$(((h * 31 + $(LC_CTYPE=C printf %d "'$char")) % 4294967296))
str="${str#?}"
done
printf %x\\n $h
}
verbose() { :; }
[ "${MVNW_VERBOSE-}" != true ] || verbose() { printf %s\\n "${1-}"; }
die() {
printf %s\\n "$1" >&2
exit 1
}
trim() {
# MWRAPPER-139:
# Trims trailing and leading whitespace, carriage returns, tabs, and linefeeds.
# Needed for removing poorly interpreted newline sequences when running in more
# exotic environments such as mingw bash on Windows.
printf "%s" "${1}" | tr -d '[:space:]'
}
# parse distributionUrl and optional distributionSha256Sum, requires .mvn/wrapper/maven-wrapper.properties
while IFS="=" read -r key value; do
case "${key-}" in
distributionUrl) distributionUrl=$(trim "${value-}") ;;
distributionSha256Sum) distributionSha256Sum=$(trim "${value-}") ;;
esac
done <"${0%/*}/.mvn/wrapper/maven-wrapper.properties"
[ -n "${distributionUrl-}" ] || die "cannot read distributionUrl property in ${0%/*}/.mvn/wrapper/maven-wrapper.properties"
case "${distributionUrl##*/}" in
maven-mvnd-*bin.*)
MVN_CMD=mvnd.sh _MVNW_REPO_PATTERN=/maven/mvnd/
case "${PROCESSOR_ARCHITECTURE-}${PROCESSOR_ARCHITEW6432-}:$(uname -a)" in
*AMD64:CYGWIN* | *AMD64:MINGW*) distributionPlatform=windows-amd64 ;;
:Darwin*x86_64) distributionPlatform=darwin-amd64 ;;
:Darwin*arm64) distributionPlatform=darwin-aarch64 ;;
:Linux*x86_64*) distributionPlatform=linux-amd64 ;;
*)
echo "Cannot detect native platform for mvnd on $(uname)-$(uname -m), use pure java version" >&2
distributionPlatform=linux-amd64
;;
esac
distributionUrl="${distributionUrl%-bin.*}-$distributionPlatform.zip"
;;
maven-mvnd-*) MVN_CMD=mvnd.sh _MVNW_REPO_PATTERN=/maven/mvnd/ ;;
*) MVN_CMD="mvn${0##*/mvnw}" _MVNW_REPO_PATTERN=/org/apache/maven/ ;;
esac
# apply MVNW_REPOURL and calculate MAVEN_HOME
# maven home pattern: ~/.m2/wrapper/dists/{apache-maven-<version>,maven-mvnd-<version>-<platform>}/<hash>
[ -z "${MVNW_REPOURL-}" ] || distributionUrl="$MVNW_REPOURL$_MVNW_REPO_PATTERN${distributionUrl#*"$_MVNW_REPO_PATTERN"}"
distributionUrlName="${distributionUrl##*/}"
distributionUrlNameMain="${distributionUrlName%.*}"
distributionUrlNameMain="${distributionUrlNameMain%-bin}"
MAVEN_USER_HOME="${MAVEN_USER_HOME:-${HOME}/.m2}"
MAVEN_HOME="${MAVEN_USER_HOME}/wrapper/dists/${distributionUrlNameMain-}/$(hash_string "$distributionUrl")"
exec_maven() {
unset MVNW_VERBOSE MVNW_USERNAME MVNW_PASSWORD MVNW_REPOURL || :
exec "$MAVEN_HOME/bin/$MVN_CMD" "$@" || die "cannot exec $MAVEN_HOME/bin/$MVN_CMD"
}
if [ -d "$MAVEN_HOME" ]; then
verbose "found existing MAVEN_HOME at $MAVEN_HOME"
exec_maven "$@"
fi
case "${distributionUrl-}" in
*?-bin.zip | *?maven-mvnd-?*-?*.zip) ;;
*) die "distributionUrl is not valid, must match *-bin.zip or maven-mvnd-*.zip, but found '${distributionUrl-}'" ;;
esac
# prepare tmp dir
if TMP_DOWNLOAD_DIR="$(mktemp -d)" && [ -d "$TMP_DOWNLOAD_DIR" ]; then
clean() { rm -rf -- "$TMP_DOWNLOAD_DIR"; }
trap clean HUP INT TERM EXIT
else
die "cannot create temp dir"
fi
mkdir -p -- "${MAVEN_HOME%/*}"
# Download and Install Apache Maven
verbose "Couldn't find MAVEN_HOME, downloading and installing it ..."
verbose "Downloading from: $distributionUrl"
verbose "Downloading to: $TMP_DOWNLOAD_DIR/$distributionUrlName"
# select .zip or .tar.gz
if ! command -v unzip >/dev/null; then
distributionUrl="${distributionUrl%.zip}.tar.gz"
distributionUrlName="${distributionUrl##*/}"
fi
# verbose opt
__MVNW_QUIET_WGET=--quiet __MVNW_QUIET_CURL=--silent __MVNW_QUIET_UNZIP=-q __MVNW_QUIET_TAR=''
[ "${MVNW_VERBOSE-}" != true ] || __MVNW_QUIET_WGET='' __MVNW_QUIET_CURL='' __MVNW_QUIET_UNZIP='' __MVNW_QUIET_TAR=v
# normalize http auth
case "${MVNW_PASSWORD:+has-password}" in
'') MVNW_USERNAME='' MVNW_PASSWORD='' ;;
has-password) [ -n "${MVNW_USERNAME-}" ] || MVNW_USERNAME='' MVNW_PASSWORD='' ;;
esac
if [ -z "${MVNW_USERNAME-}" ] && command -v wget >/dev/null; then
verbose "Found wget ... using wget"
wget ${__MVNW_QUIET_WGET:+"$__MVNW_QUIET_WGET"} "$distributionUrl" -O "$TMP_DOWNLOAD_DIR/$distributionUrlName" || die "wget: Failed to fetch $distributionUrl"
elif [ -z "${MVNW_USERNAME-}" ] && command -v curl >/dev/null; then
verbose "Found curl ... using curl"
curl ${__MVNW_QUIET_CURL:+"$__MVNW_QUIET_CURL"} -f -L -o "$TMP_DOWNLOAD_DIR/$distributionUrlName" "$distributionUrl" || die "curl: Failed to fetch $distributionUrl"
elif set_java_home; then
verbose "Falling back to use Java to download"
javaSource="$TMP_DOWNLOAD_DIR/Downloader.java"
targetZip="$TMP_DOWNLOAD_DIR/$distributionUrlName"
cat >"$javaSource" <<-END
public class Downloader extends java.net.Authenticator
{
protected java.net.PasswordAuthentication getPasswordAuthentication()
{
return new java.net.PasswordAuthentication( System.getenv( "MVNW_USERNAME" ), System.getenv( "MVNW_PASSWORD" ).toCharArray() );
}
public static void main( String[] args ) throws Exception
{
setDefault( new Downloader() );
java.nio.file.Files.copy( java.net.URI.create( args[0] ).toURL().openStream(), java.nio.file.Paths.get( args[1] ).toAbsolutePath().normalize() );
}
}
END
# For Cygwin/MinGW, switch paths to Windows format before running javac and java
verbose " - Compiling Downloader.java ..."
"$(native_path "$JAVACCMD")" "$(native_path "$javaSource")" || die "Failed to compile Downloader.java"
verbose " - Running Downloader.java ..."
"$(native_path "$JAVACMD")" -cp "$(native_path "$TMP_DOWNLOAD_DIR")" Downloader "$distributionUrl" "$(native_path "$targetZip")"
fi
# If specified, validate the SHA-256 sum of the Maven distribution zip file
if [ -n "${distributionSha256Sum-}" ]; then
distributionSha256Result=false
if [ "$MVN_CMD" = mvnd.sh ]; then
echo "Checksum validation is not supported for maven-mvnd." >&2
echo "Please disable validation by removing 'distributionSha256Sum' from your maven-wrapper.properties." >&2
exit 1
elif command -v sha256sum >/dev/null; then
if echo "$distributionSha256Sum $TMP_DOWNLOAD_DIR/$distributionUrlName" | sha256sum -c >/dev/null 2>&1; then
distributionSha256Result=true
fi
elif command -v shasum >/dev/null; then
if echo "$distributionSha256Sum $TMP_DOWNLOAD_DIR/$distributionUrlName" | shasum -a 256 -c >/dev/null 2>&1; then
distributionSha256Result=true
fi
else
echo "Checksum validation was requested but neither 'sha256sum' or 'shasum' are available." >&2
echo "Please install either command, or disable validation by removing 'distributionSha256Sum' from your maven-wrapper.properties." >&2
exit 1
fi
if [ $distributionSha256Result = false ]; then
echo "Error: Failed to validate Maven distribution SHA-256, your Maven distribution might be compromised." >&2
echo "If you updated your Maven version, you need to update the specified distributionSha256Sum property." >&2
exit 1
fi
fi
# unzip and move
if command -v unzip >/dev/null; then
unzip ${__MVNW_QUIET_UNZIP:+"$__MVNW_QUIET_UNZIP"} "$TMP_DOWNLOAD_DIR/$distributionUrlName" -d "$TMP_DOWNLOAD_DIR" || die "failed to unzip"
else
tar xzf${__MVNW_QUIET_TAR:+"$__MVNW_QUIET_TAR"} "$TMP_DOWNLOAD_DIR/$distributionUrlName" -C "$TMP_DOWNLOAD_DIR" || die "failed to untar"
fi
printf %s\\n "$distributionUrl" >"$TMP_DOWNLOAD_DIR/$distributionUrlNameMain/mvnw.url"
mv -- "$TMP_DOWNLOAD_DIR/$distributionUrlNameMain" "$MAVEN_HOME" || [ -d "$MAVEN_HOME" ] || die "fail to move MAVEN_HOME"
clean || :
exec_maven "$@"

View File

@@ -6,11 +6,10 @@
<groupId>com.lancedb</groupId> <groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId> <artifactId>lancedb-parent</artifactId>
<version>0.20.0-beta.1</version> <version>0.21.2-beta.1</version>
<packaging>pom</packaging> <packaging>pom</packaging>
<name>${project.artifactId}</name>
<name>LanceDB Parent</name> <description>LanceDB Java SDK Parent POM</description>
<description>LanceDB vector database Java API</description>
<url>http://lancedb.com/</url> <url>http://lancedb.com/</url>
<developers> <developers>
@@ -29,6 +28,7 @@
<properties> <properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<arrow.version>15.0.0</arrow.version> <arrow.version>15.0.0</arrow.version>
<lance-namespace.verison>0.0.1</lance-namespace.verison>
<spotless.skip>false</spotless.skip> <spotless.skip>false</spotless.skip>
<spotless.version>2.30.0</spotless.version> <spotless.version>2.30.0</spotless.version>
<spotless.java.googlejavaformat.version>1.7</spotless.java.googlejavaformat.version> <spotless.java.googlejavaformat.version>1.7</spotless.java.googlejavaformat.version>
@@ -52,6 +52,7 @@
<modules> <modules>
<module>core</module> <module>core</module>
<module>lance-namespace</module>
</modules> </modules>
<scm> <scm>
@@ -62,6 +63,11 @@
<dependencyManagement> <dependencyManagement>
<dependencies> <dependencies>
<dependency>
<groupId>com.lancedb</groupId>
<artifactId>lance-namespace-core</artifactId>
<version>${lance-namespace.verison}</version>
</dependency>
<dependency> <dependency>
<groupId>org.apache.arrow</groupId> <groupId>org.apache.arrow</groupId>
<artifactId>arrow-vector</artifactId> <artifactId>arrow-vector</artifactId>

49
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -52,11 +52,11 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.20.0-beta.1", "@lancedb/vectordb-darwin-arm64": "0.21.2-beta.1",
"@lancedb/vectordb-darwin-x64": "0.20.0-beta.1", "@lancedb/vectordb-darwin-x64": "0.21.2-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.20.0-beta.1", "@lancedb/vectordb-linux-arm64-gnu": "0.21.2-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.20.0-beta.1", "@lancedb/vectordb-linux-x64-gnu": "0.21.2-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.20.0-beta.1" "@lancedb/vectordb-win32-x64-msvc": "0.21.2-beta.1"
}, },
"peerDependencies": { "peerDependencies": {
"@apache-arrow/ts": "^14.0.2", "@apache-arrow/ts": "^14.0.2",
@@ -327,65 +327,60 @@
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": { "node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.20.0-beta.1.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.21.2-beta.1.tgz",
"integrity": "sha512-yds8wFjni68RfA+KziTz/8v4YKku1i6q4JF8I2EhpzDI8tT0fk1YqGlVhtdn9fHDWq/9m1M05kGVuyzLypZ2Yw==", "integrity": "sha512-7QXVJNTei7PMuXRyyc+F3WGiudRNq9HfeOaMmMOJJpuCAO0zLq1pM9DCl5aPF5MddrodPHJxi+IWV+iAFH7zcg==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
"license": "Apache-2.0",
"optional": true, "optional": true,
"os": [ "os": [
"darwin" "darwin"
] ]
}, },
"node_modules/@lancedb/vectordb-darwin-x64": { "node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.20.0-beta.1.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.21.2-beta.1.tgz",
"integrity": "sha512-oF2MNtkWaJQWyUSIKU/zrbgygK94MzomUKc/Z9CYs7Ar3PI4CIfG72e5o/Zbhjpl318BkR4AbQQYX8BZaNIPVw==", "integrity": "sha512-M/TWcJ3WVc6DNFgG/lWI7L5tQ05IF3WoWuZfRfbbimGhRvY7xf1O3uOt+jMcNJCa5mHFGCg2SZDA8mebd/mL7g==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
"license": "Apache-2.0",
"optional": true, "optional": true,
"os": [ "os": [
"darwin" "darwin"
] ]
}, },
"node_modules/@lancedb/vectordb-linux-arm64-gnu": { "node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.20.0-beta.1.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.21.2-beta.1.tgz",
"integrity": "sha512-3Si0+K5T4awMiUVu0dD9NizcqIiGnEdsTu4YxbKKq1aI4xoaHrYGERkz58mtIFoBQHfre42ujPDoahTkAQ1j/Q==", "integrity": "sha512-OEsM9znf9DDmdwGuTg2EVu+ebwuWQ1lCx0cYy4+hNy3ntolwMC39ePg2H9WD9SsEnQ2vcGJgBJTQLPKgXww+iQ==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
"license": "Apache-2.0",
"optional": true, "optional": true,
"os": [ "os": [
"linux" "linux"
] ]
}, },
"node_modules/@lancedb/vectordb-linux-x64-gnu": { "node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.20.0-beta.1.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.21.2-beta.1.tgz",
"integrity": "sha512-5umO9XaDIxmqUiFnWaHxJtgkCO7oFWtEvLtzM4hG1mkEnwnE3bmXEO+cm+jPro7zwdKEzsnXh0GoCSUvuHk0tA==", "integrity": "sha512-7FTq/O1zNzD71rgX2PEVmkct4jk2wc+ADU3rss+0VqoBSO9XeMqZEVD2WgZWuSTg6bYai//FHGDHSaknHBNsdw==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
"license": "Apache-2.0",
"optional": true, "optional": true,
"os": [ "os": [
"linux" "linux"
] ]
}, },
"node_modules/@lancedb/vectordb-win32-x64-msvc": { "node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.20.0-beta.1.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.21.2-beta.1.tgz",
"integrity": "sha512-EKyDamAi3RmDTu+BFYxr41eGLggZ3FVGu289gCprzljk38d8uxdgKhvDtYN9FWoMew4VvVk/EJQJx6L8sJJRng==", "integrity": "sha512-mN1p/J0kdqy6MrlKtmA8set/PibqFPyytQJFAuxSLXC/rwD7vgqUCt0SI0zVWPGG7J5Y65kvdc99l7Yl7lJtwQ==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
"license": "Apache-2.0",
"optional": true, "optional": true,
"os": [ "os": [
"win32" "win32"

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"private": false, "private": false,
"main": "dist/index.js", "main": "dist/index.js",
@@ -89,10 +89,10 @@
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-x64": "0.20.0-beta.1", "@lancedb/vectordb-darwin-x64": "0.21.2-beta.1",
"@lancedb/vectordb-darwin-arm64": "0.20.0-beta.1", "@lancedb/vectordb-darwin-arm64": "0.21.2-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.20.0-beta.1", "@lancedb/vectordb-linux-x64-gnu": "0.21.2-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.20.0-beta.1", "@lancedb/vectordb-linux-arm64-gnu": "0.21.2-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.20.0-beta.1" "@lancedb/vectordb-win32-x64-msvc": "0.21.2-beta.1"
} }
} }

View File

@@ -49,7 +49,7 @@ describe('LanceDB Mirrored Store Integration test', function () {
it('s3://...?mirroredStore=... param is processed correctly', async function () { it('s3://...?mirroredStore=... param is processed correctly', async function () {
this.timeout(600000) this.timeout(600000)
const dir = tmpdir() const dir = await fs.promises.mkdtemp(path.join(tmpdir(), 'lancedb-mirror-'))
console.log(dir) console.log(dir)
const conn = await lancedb.connect({ uri: `s3://lancedb-integtest?mirroredStore=${dir}`, storageOptions: { allowHttp: 'true' } }) const conn = await lancedb.connect({ uri: `s3://lancedb-integtest?mirroredStore=${dir}`, storageOptions: { allowHttp: 'true' } })
const data = Array(200).fill({ vector: Array(128).fill(1.0), id: 0 }) const data = Array(200).fill({ vector: Array(128).fill(1.0), id: 0 })
@@ -63,118 +63,93 @@ describe('LanceDB Mirrored Store Integration test', function () {
const t = await conn.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite }) const t = await conn.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite })
const mirroredPath = path.join(dir, `${tableName}.lance`) const mirroredPath = path.join(dir, `${tableName}.lance`)
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err const files = await fs.promises.readdir(mirroredPath, { withFileTypes: true })
// there should be three dirs // there should be three dirs
assert.equal(files.length, 3) assert.equal(files.length, 3, 'files after table creation')
assert.isTrue(files[0].isDirectory()) assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory()) assert.isTrue(files[1].isDirectory())
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => { const transactionFiles = await fs.promises.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true })
if (err != null) throw err assert.equal(transactionFiles.length, 1, 'transactionFiles after table creation')
assert.equal(files.length, 1) assert.isTrue(transactionFiles[0].name.endsWith('.txn'))
assert.isTrue(files[0].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, '_versions'), { withFileTypes: true }, (err, files) => { const versionFiles = await fs.promises.readdir(path.join(mirroredPath, '_versions'), { withFileTypes: true })
if (err != null) throw err assert.equal(versionFiles.length, 1, 'versionFiles after table creation')
assert.equal(files.length, 1) assert.isTrue(versionFiles[0].name.endsWith('.manifest'))
assert.isTrue(files[0].name.endsWith('.manifest'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => { const dataFiles = await fs.promises.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true })
if (err != null) throw err assert.equal(dataFiles.length, 1, 'dataFiles after table creation')
assert.equal(files.length, 1) assert.isTrue(dataFiles[0].name.endsWith('.lance'))
assert.isTrue(files[0].name.endsWith('.lance'))
})
})
// try create index and check if it's mirrored // try create index and check if it's mirrored
await t.createIndex({ column: 'vector', type: 'ivf_pq' }) await t.createIndex({ column: 'vector', type: 'ivf_pq' })
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => { const filesAfterIndex = await fs.promises.readdir(mirroredPath, { withFileTypes: true })
if (err != null) throw err
// there should be four dirs // there should be four dirs
assert.equal(files.length, 4) assert.equal(filesAfterIndex.length, 4, 'filesAfterIndex')
assert.isTrue(files[0].isDirectory()) assert.isTrue(filesAfterIndex[0].isDirectory())
assert.isTrue(files[1].isDirectory()) assert.isTrue(filesAfterIndex[1].isDirectory())
assert.isTrue(files[2].isDirectory()) assert.isTrue(filesAfterIndex[2].isDirectory())
// Two TXs now // Two TXs now
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => { const transactionFilesAfterIndex = await fs.promises.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true })
if (err != null) throw err assert.equal(transactionFilesAfterIndex.length, 2, 'transactionFilesAfterIndex')
assert.equal(files.length, 2) assert.isTrue(transactionFilesAfterIndex[0].name.endsWith('.txn'))
assert.isTrue(files[0].name.endsWith('.txn')) assert.isTrue(transactionFilesAfterIndex[1].name.endsWith('.txn'))
assert.isTrue(files[1].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => { const dataFilesAfterIndex = await fs.promises.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true })
if (err != null) throw err assert.equal(dataFilesAfterIndex.length, 1, 'dataFilesAfterIndex')
assert.equal(files.length, 1) assert.isTrue(dataFilesAfterIndex[0].name.endsWith('.lance'))
assert.isTrue(files[0].name.endsWith('.lance'))
})
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => { const indicesFiles = await fs.promises.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true })
if (err != null) throw err assert.equal(indicesFiles.length, 1, 'indicesFiles')
assert.equal(files.length, 1) assert.isTrue(indicesFiles[0].isDirectory())
assert.isTrue(files[0].isDirectory())
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => { const indexFiles = await fs.promises.readdir(path.join(mirroredPath, '_indices', indicesFiles[0].name), { withFileTypes: true })
if (err != null) throw err console.log(`DEBUG indexFiles in ${indicesFiles[0].name}:`, indexFiles.map(f => `${f.name} (${f.isFile() ? 'file' : 'dir'})`))
assert.equal(indexFiles.length, 2, 'indexFiles')
assert.equal(files.length, 1) const fileNames = indexFiles.map(f => f.name).sort()
assert.isTrue(files[0].isFile()) assert.isTrue(fileNames.includes('auxiliary.idx'), 'auxiliary.idx should be present')
assert.isTrue(files[0].name.endsWith('.idx')) assert.isTrue(fileNames.includes('index.idx'), 'index.idx should be present')
}) assert.isTrue(indexFiles.every(f => f.isFile()), 'all index files should be files')
})
})
// try delete and check if it's mirrored // try delete and check if it's mirrored
await t.delete('id = 0') await t.delete('id = 0')
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => { const filesAfterDelete = await fs.promises.readdir(mirroredPath, { withFileTypes: true })
if (err != null) throw err
// there should be five dirs // there should be five dirs
assert.equal(files.length, 5) assert.equal(filesAfterDelete.length, 5, 'filesAfterDelete')
assert.isTrue(files[0].isDirectory()) assert.isTrue(filesAfterDelete[0].isDirectory())
assert.isTrue(files[1].isDirectory()) assert.isTrue(filesAfterDelete[1].isDirectory())
assert.isTrue(files[2].isDirectory()) assert.isTrue(filesAfterDelete[2].isDirectory())
assert.isTrue(files[3].isDirectory()) assert.isTrue(filesAfterDelete[3].isDirectory())
assert.isTrue(files[4].isDirectory()) assert.isTrue(filesAfterDelete[4].isDirectory())
// Three TXs now // Three TXs now
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => { const transactionFilesAfterDelete = await fs.promises.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true })
if (err != null) throw err assert.equal(transactionFilesAfterDelete.length, 3, 'transactionFilesAfterDelete')
assert.equal(files.length, 3) assert.isTrue(transactionFilesAfterDelete[0].name.endsWith('.txn'))
assert.isTrue(files[0].name.endsWith('.txn')) assert.isTrue(transactionFilesAfterDelete[1].name.endsWith('.txn'))
assert.isTrue(files[1].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => { const dataFilesAfterDelete = await fs.promises.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true })
if (err != null) throw err assert.equal(dataFilesAfterDelete.length, 1, 'dataFilesAfterDelete')
assert.equal(files.length, 1) assert.isTrue(dataFilesAfterDelete[0].name.endsWith('.lance'))
assert.isTrue(files[0].name.endsWith('.lance'))
})
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => { const indicesFilesAfterDelete = await fs.promises.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true })
if (err != null) throw err assert.equal(indicesFilesAfterDelete.length, 1, 'indicesFilesAfterDelete')
assert.equal(files.length, 1) assert.isTrue(indicesFilesAfterDelete[0].isDirectory())
assert.isTrue(files[0].isDirectory())
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => { const indexFilesAfterDelete = await fs.promises.readdir(path.join(mirroredPath, '_indices', indicesFilesAfterDelete[0].name), { withFileTypes: true })
if (err != null) throw err console.log(`DEBUG indexFilesAfterDelete in ${indicesFilesAfterDelete[0].name}:`, indexFilesAfterDelete.map(f => `${f.name} (${f.isFile() ? 'file' : 'dir'})`))
assert.equal(indexFilesAfterDelete.length, 2, 'indexFilesAfterDelete')
const fileNamesAfterDelete = indexFilesAfterDelete.map(f => f.name).sort()
assert.isTrue(fileNamesAfterDelete.includes('auxiliary.idx'), 'auxiliary.idx should be present after delete')
assert.isTrue(fileNamesAfterDelete.includes('index.idx'), 'index.idx should be present after delete')
assert.isTrue(indexFilesAfterDelete.every(f => f.isFile()), 'all index files should be files after delete')
assert.equal(files.length, 1) const deletionFiles = await fs.promises.readdir(path.join(mirroredPath, '_deletions'), { withFileTypes: true })
assert.isTrue(files[0].isFile()) assert.equal(deletionFiles.length, 1, 'deletionFiles')
assert.isTrue(files[0].name.endsWith('.idx')) assert.isTrue(deletionFiles[0].name.endsWith('.arrow'))
})
})
fs.readdir(path.join(mirroredPath, '_deletions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.arrow'))
})
})
}) })
}) })

13
nodejs/CLAUDE.md Normal file
View File

@@ -0,0 +1,13 @@
These are the typescript bindings of LanceDB.
The core Rust library is in the `../rust/lancedb` directory, the rust binding
code is in the `src/` directory and the typescript bindings are in
the `lancedb/` directory.
Whenever you change the Rust code, you will need to recompile: `npm run build`.
Common commands:
* Build: `npm run build`
* Lint: `npm run lint`
* Fix lints: `npm run lint-fix`
* Test: `npm test`
* Run single test file: `npm test __test__/arrow.test.ts`

View File

@@ -1,7 +1,7 @@
[package] [package]
name = "lancedb-nodejs" name = "lancedb-nodejs"
edition.workspace = true edition.workspace = true
version = "0.20.0-beta.1" version = "0.21.2-beta.1"
license.workspace = true license.workspace = true
description.workspace = true description.workspace = true
repository.workspace = true repository.workspace = true

View File

@@ -1,7 +1,7 @@
// SPDX-License-Identifier: Apache-2.0 // SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors // SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { Schema } from "apache-arrow"; import { Bool, Field, Int32, List, Schema, Struct, Utf8 } from "apache-arrow";
import * as arrow15 from "apache-arrow-15"; import * as arrow15 from "apache-arrow-15";
import * as arrow16 from "apache-arrow-16"; import * as arrow16 from "apache-arrow-16";
@@ -11,10 +11,12 @@ import * as arrow18 from "apache-arrow-18";
import { import {
convertToTable, convertToTable,
fromBufferToRecordBatch, fromBufferToRecordBatch,
fromDataToBuffer,
fromRecordBatchToBuffer, fromRecordBatchToBuffer,
fromTableToBuffer, fromTableToBuffer,
makeArrowTable, makeArrowTable,
makeEmptyTable, makeEmptyTable,
tableFromIPC,
} from "../lancedb/arrow"; } from "../lancedb/arrow";
import { import {
EmbeddingFunction, EmbeddingFunction,
@@ -375,8 +377,221 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
expect(table2.schema).toEqual(schema); expect(table2.schema).toEqual(schema);
}); });
it("will handle missing columns in schema alignment when using embeddings", async function () {
const schema = new Schema(
[
new Field("domain", new Utf8(), true),
new Field("name", new Utf8(), true),
new Field("description", new Utf8(), true),
],
new Map([["embedding_functions", JSON.stringify([])]]),
);
const data = [
{ domain: "google.com", name: "Google" },
{ domain: "facebook.com", name: "Facebook" },
];
const table = await convertToTable(data, undefined, { schema });
expect(table.numCols).toBe(3);
expect(table.numRows).toBe(2);
const descriptionColumn = table.getChild("description");
expect(descriptionColumn).toBeDefined();
expect(descriptionColumn?.nullCount).toBe(2);
expect(descriptionColumn?.toArray()).toEqual([null, null]);
expect(table.getChild("domain")?.toArray()).toEqual([
"google.com",
"facebook.com",
]);
expect(table.getChild("name")?.toArray()).toEqual([
"Google",
"Facebook",
]);
});
it("will handle completely missing nested struct columns", async function () {
const schema = new Schema(
[
new Field("id", new Utf8(), true),
new Field("name", new Utf8(), true),
new Field(
"metadata",
new Struct([
new Field("version", new Int32(), true),
new Field("author", new Utf8(), true),
new Field(
"tags",
new List(new Field("item", new Utf8(), true)),
true,
),
]),
true,
),
],
new Map([["embedding_functions", JSON.stringify([])]]),
);
const data = [
{ id: "doc1", name: "Document 1" },
{ id: "doc2", name: "Document 2" },
];
const table = await convertToTable(data, undefined, { schema });
expect(table.numCols).toBe(3);
expect(table.numRows).toBe(2);
const buf = await fromTableToBuffer(table);
const retrievedTable = tableFromIPC(buf);
const rows = [];
for (let i = 0; i < retrievedTable.numRows; i++) {
rows.push(retrievedTable.get(i));
}
expect(rows[0].metadata.version).toBe(null);
expect(rows[0].metadata.author).toBe(null);
expect(rows[0].metadata.tags).toBe(null);
expect(rows[0].id).toBe("doc1");
expect(rows[0].name).toBe("Document 1");
});
it("will handle partially missing nested struct fields", async function () {
const schema = new Schema(
[
new Field("id", new Utf8(), true),
new Field(
"metadata",
new Struct([
new Field("version", new Int32(), true),
new Field("author", new Utf8(), true),
new Field("created_at", new Utf8(), true),
]),
true,
),
],
new Map([["embedding_functions", JSON.stringify([])]]),
);
const data = [
{ id: "doc1", metadata: { version: 1, author: "Alice" } },
{ id: "doc2", metadata: { version: 2 } },
];
const table = await convertToTable(data, undefined, { schema });
expect(table.numCols).toBe(2);
expect(table.numRows).toBe(2);
const metadataColumn = table.getChild("metadata");
expect(metadataColumn).toBeDefined();
expect(metadataColumn?.type.toString()).toBe(
"Struct<{version:Int32, author:Utf8, created_at:Utf8}>",
);
});
it("will handle multiple levels of nested structures", async function () {
const schema = new Schema(
[
new Field("id", new Utf8(), true),
new Field(
"config",
new Struct([
new Field("database", new Utf8(), true),
new Field(
"connection",
new Struct([
new Field("host", new Utf8(), true),
new Field("port", new Int32(), true),
new Field(
"ssl",
new Struct([
new Field("enabled", new Bool(), true),
new Field("cert_path", new Utf8(), true),
]),
true,
),
]),
true,
),
]),
true,
),
],
new Map([["embedding_functions", JSON.stringify([])]]),
);
const data = [
{
id: "config1",
config: {
database: "postgres",
connection: { host: "localhost" },
},
},
{
id: "config2",
config: { database: "mysql" },
},
{
id: "config3",
},
];
const table = await convertToTable(data, undefined, { schema });
expect(table.numCols).toBe(2);
expect(table.numRows).toBe(3);
const configColumn = table.getChild("config");
expect(configColumn).toBeDefined();
expect(configColumn?.type.toString()).toBe(
"Struct<{database:Utf8, connection:Struct<{host:Utf8, port:Int32, ssl:Struct<{enabled:Bool, cert_path:Utf8}>}>}>",
);
});
it("will handle missing columns in Arrow table input when using embeddings", async function () {
const incompleteTable = makeArrowTable([
{ domain: "google.com", name: "Google" },
{ domain: "facebook.com", name: "Facebook" },
]);
const schema = new Schema(
[
new Field("domain", new Utf8(), true),
new Field("name", new Utf8(), true),
new Field("description", new Utf8(), true),
],
new Map([["embedding_functions", JSON.stringify([])]]),
);
const buf = await fromDataToBuffer(incompleteTable, undefined, schema);
expect(buf.byteLength).toBeGreaterThan(0);
const retrievedTable = tableFromIPC(buf);
expect(retrievedTable.numCols).toBe(3);
expect(retrievedTable.numRows).toBe(2);
const descriptionColumn = retrievedTable.getChild("description");
expect(descriptionColumn).toBeDefined();
expect(descriptionColumn?.nullCount).toBe(2);
expect(descriptionColumn?.toArray()).toEqual([null, null]);
expect(retrievedTable.getChild("domain")?.toArray()).toEqual([
"google.com",
"facebook.com",
]);
expect(retrievedTable.getChild("name")?.toArray()).toEqual([
"Google",
"Facebook",
]);
});
it("should correctly retain values in nested struct fields", async function () { it("should correctly retain values in nested struct fields", async function () {
// Define test data with nested struct
const testData = [ const testData = [
{ {
id: "doc1", id: "doc1",
@@ -400,10 +615,8 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
}, },
]; ];
// Create Arrow table from the data
const table = makeArrowTable(testData); const table = makeArrowTable(testData);
// Verify schema has the nested struct fields
const metadataField = table.schema.fields.find( const metadataField = table.schema.fields.find(
(f) => f.name === "metadata", (f) => f.name === "metadata",
); );
@@ -417,23 +630,17 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
"text", "text",
]); ]);
// Convert to buffer and back (simulating storage and retrieval)
const buf = await fromTableToBuffer(table); const buf = await fromTableToBuffer(table);
const retrievedTable = tableFromIPC(buf); const retrievedTable = tableFromIPC(buf);
// Verify the retrieved table has the same structure
const rows = []; const rows = [];
for (let i = 0; i < retrievedTable.numRows; i++) { for (let i = 0; i < retrievedTable.numRows; i++) {
rows.push(retrievedTable.get(i)); rows.push(retrievedTable.get(i));
} }
// Check values in the first row
const firstRow = rows[0]; const firstRow = rows[0];
expect(firstRow.id).toBe("doc1"); expect(firstRow.id).toBe("doc1");
expect(firstRow.vector.toJSON()).toEqual([1, 2, 3]); expect(firstRow.vector.toJSON()).toEqual([1, 2, 3]);
// Verify metadata values are preserved (this is where the bug is)
expect(firstRow.metadata).toBeDefined();
expect(firstRow.metadata.filePath).toBe("/path/to/file1.ts"); expect(firstRow.metadata.filePath).toBe("/path/to/file1.ts");
expect(firstRow.metadata.startLine).toBe(10); expect(firstRow.metadata.startLine).toBe(10);
expect(firstRow.metadata.endLine).toBe(20); expect(firstRow.metadata.endLine).toBe(20);
@@ -592,14 +799,14 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
).rejects.toThrow("column vector was missing"); ).rejects.toThrow("column vector was missing");
}); });
it("will provide a nice error if run twice", async function () { it("will skip embedding application if already applied", async function () {
const records = sampleRecords(); const records = sampleRecords();
const table = await convertToTable(records, dummyEmbeddingConfig); const table = await convertToTable(records, dummyEmbeddingConfig);
// fromTableToBuffer will try and apply the embeddings again // fromTableToBuffer will try and apply the embeddings again
await expect( // but should skip since the column already has non-null values
fromTableToBuffer(table, dummyEmbeddingConfig), const result = await fromTableToBuffer(table, dummyEmbeddingConfig);
).rejects.toThrow("already existed"); expect(result.byteLength).toBeGreaterThan(0);
}); });
}); });

View File

@@ -0,0 +1,46 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import * as tmp from "tmp";
import { Session, connect } from "../lancedb";
describe("Session", () => {
let tmpDir: tmp.DirResult;
beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
afterEach(() => tmpDir.removeCallback());
it("should configure cache sizes and work with database operations", async () => {
// Create session with small cache limits for testing
const indexCacheSize = BigInt(1024 * 1024); // 1MB
const metadataCacheSize = BigInt(512 * 1024); // 512KB
const session = new Session(indexCacheSize, metadataCacheSize);
// Record initial cache state
const initialCacheSize = session.sizeBytes();
const initialCacheItems = session.approxNumItems();
// Test session works with database connection
const db = await connect({ uri: tmpDir.name, session: session });
// Create and use a table to exercise the session
const data = Array.from({ length: 100 }, (_, i) => ({
id: i,
text: `item ${i}`,
}));
const table = await db.createTable("test", data);
const results = await table.query().limit(5).toArray();
expect(results).toHaveLength(5);
// Verify cache usage increased after operations
const finalCacheSize = session.sizeBytes();
const finalCacheItems = session.approxNumItems();
expect(finalCacheSize).toBeGreaterThan(initialCacheSize); // Cache should have grown
expect(finalCacheItems).toBeGreaterThanOrEqual(initialCacheItems); // Items should not decrease
expect(initialCacheSize).toBeLessThan(indexCacheSize + metadataCacheSize); // Within limits
});
});

View File

@@ -33,7 +33,12 @@ import {
register, register,
} from "../lancedb/embedding"; } from "../lancedb/embedding";
import { Index } from "../lancedb/indices"; import { Index } from "../lancedb/indices";
import { instanceOfFullTextQuery } from "../lancedb/query"; import {
BooleanQuery,
Occur,
Operator,
instanceOfFullTextQuery,
} from "../lancedb/query";
import exp = require("constants"); import exp = require("constants");
describe.each([arrow15, arrow16, arrow17, arrow18])( describe.each([arrow15, arrow16, arrow17, arrow18])(
@@ -363,9 +368,9 @@ describe("merge insert", () => {
{ a: 4, b: "z" }, { a: 4, b: "z" },
]; ];
expect( const result = (await table.toArrow()).toArray().sort((a, b) => a.a - b.a);
JSON.parse(JSON.stringify((await table.toArrow()).toArray())),
).toEqual(expected); expect(result.map((row) => ({ ...row }))).toEqual(expected);
}); });
test("conditional update", async () => { test("conditional update", async () => {
const newData = [ const newData = [
@@ -554,6 +559,32 @@ describe("When creating an index", () => {
rst = await tbl.query().limit(2).offset(1).nearestTo(queryVec).toArrow(); rst = await tbl.query().limit(2).offset(1).nearestTo(queryVec).toArrow();
expect(rst.numRows).toBe(1); expect(rst.numRows).toBe(1);
// test nprobes
rst = await tbl.query().nearestTo(queryVec).limit(2).nprobes(50).toArrow();
expect(rst.numRows).toBe(2);
rst = await tbl
.query()
.nearestTo(queryVec)
.limit(2)
.minimumNprobes(15)
.toArrow();
expect(rst.numRows).toBe(2);
rst = await tbl
.query()
.nearestTo(queryVec)
.limit(2)
.minimumNprobes(10)
.maximumNprobes(20)
.toArrow();
expect(rst.numRows).toBe(2);
expect(() => tbl.query().nearestTo(queryVec).minimumNprobes(0)).toThrow(
"Invalid input, minimum_nprobes must be greater than 0",
);
expect(() => tbl.query().nearestTo(queryVec).maximumNprobes(5)).toThrow(
"Invalid input, maximum_nprobes must be greater than minimum_nprobes",
);
await tbl.dropIndex("vec_idx"); await tbl.dropIndex("vec_idx");
const indices2 = await tbl.listIndices(); const indices2 = await tbl.listIndices();
expect(indices2.length).toBe(0); expect(indices2.length).toBe(0);
@@ -1531,6 +1562,18 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
const results = await table.search("hello").toArray(); const results = await table.search("hello").toArray();
expect(results[0].text).toBe(data[0].text); expect(results[0].text).toBe(data[0].text);
const results2 = await table
.search(new MatchQuery("hello world", "text"))
.toArray();
expect(results2.length).toBe(2);
const results3 = await table
.search(
new MatchQuery("hello world", "text", { operator: Operator.And }),
)
.toArray();
expect(results3.length).toBe(1);
}); });
test("full text search without lowercase", async () => { test("full text search without lowercase", async () => {
@@ -1607,6 +1650,114 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
expect(resultSet.has("fob")).toBe(true); expect(resultSet.has("fob")).toBe(true);
expect(resultSet.has("fo")).toBe(true); expect(resultSet.has("fo")).toBe(true);
expect(resultSet.has("food")).toBe(true); expect(resultSet.has("food")).toBe(true);
const prefixResults = await table
.search(
new MatchQuery("foo", "text", { fuzziness: 3, prefixLength: 3 }),
)
.toArray();
expect(prefixResults.length).toBe(2);
const resultSet2 = new Set(prefixResults.map((r) => r.text));
expect(resultSet2.has("foo")).toBe(true);
expect(resultSet2.has("food")).toBe(true);
});
test("full text search boolean query", async () => {
const db = await connect(tmpDir.name);
const data = [
{ text: "The cat and dog are playing" },
{ text: "The cat is sleeping" },
{ text: "The dog is barking" },
{ text: "The dog chases the cat" },
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts({ withPosition: false }),
});
const shouldResults = await table
.search(
new BooleanQuery([
[Occur.Should, new MatchQuery("cat", "text")],
[Occur.Should, new MatchQuery("dog", "text")],
]),
)
.toArray();
expect(shouldResults.length).toBe(4);
const mustResults = await table
.search(
new BooleanQuery([
[Occur.Must, new MatchQuery("cat", "text")],
[Occur.Must, new MatchQuery("dog", "text")],
]),
)
.toArray();
expect(mustResults.length).toBe(2);
const mustNotResults = await table
.search(
new BooleanQuery([
[Occur.Must, new MatchQuery("cat", "text")],
[Occur.MustNot, new MatchQuery("dog", "text")],
]),
)
.toArray();
expect(mustNotResults.length).toBe(1);
});
test("full text search ngram", async () => {
const db = await connect(tmpDir.name);
const data = [
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
{ text: "lance database", vector: [0.4, 0.5, 0.6] },
{ text: "lance is cool", vector: [0.7, 0.8, 0.9] },
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts({ baseTokenizer: "ngram" }),
});
const results = await table.search("lan").toArray();
expect(results.length).toBe(2);
const resultSet = new Set(results.map((r) => r.text));
expect(resultSet.has("lance database")).toBe(true);
expect(resultSet.has("lance is cool")).toBe(true);
const results2 = await table.search("nce").toArray(); // spellchecker:disable-line
expect(results2.length).toBe(2);
const resultSet2 = new Set(results2.map((r) => r.text));
expect(resultSet2.has("lance database")).toBe(true);
expect(resultSet2.has("lance is cool")).toBe(true);
// the default min_ngram_length is 3, so "la" should not match
const results3 = await table.search("la").toArray();
expect(results3.length).toBe(0);
// test setting min_ngram_length and prefix_only
await table.createIndex("text", {
config: Index.fts({
baseTokenizer: "ngram",
ngramMinLength: 2,
prefixOnly: true,
}),
replace: true,
});
const results4 = await table.search("lan").toArray();
expect(results4.length).toBe(2);
const resultSet4 = new Set(results4.map((r) => r.text));
expect(resultSet4.has("lance database")).toBe(true);
expect(resultSet4.has("lance is cool")).toBe(true);
const results5 = await table.search("nce").toArray(); // spellchecker:disable-line
expect(results5.length).toBe(0);
const results6 = await table.search("la").toArray();
expect(results6.length).toBe(2);
const resultSet6 = new Set(results6.map((r) => r.text));
expect(resultSet6.has("lance database")).toBe(true);
expect(resultSet6.has("lance is cool")).toBe(true);
}); });
test.each([ test.each([
@@ -1712,4 +1863,43 @@ describe("column name options", () => {
expect(results[0].query_index).toBe(0); expect(results[0].query_index).toBe(0);
expect(results[1].query_index).toBe(1); expect(results[1].query_index).toBe(1);
}); });
test("index and search multivectors", async () => {
const db = await connect(tmpDir.name);
const data = [];
// generate 512 random multivectors
for (let i = 0; i < 256; i++) {
data.push({
multivector: Array.from({ length: 10 }, () =>
Array(2).fill(Math.random()),
),
});
}
const table = await db.createTable("multivectors", data, {
schema: new Schema([
new Field(
"multivector",
new List(
new Field(
"item",
new FixedSizeList(2, new Field("item", new Float32())),
),
),
),
]),
});
const results = await table.search(data[0].multivector).limit(10).toArray();
expect(results.length).toBe(10);
await table.createIndex("multivector", {
config: Index.ivfPq({ numPartitions: 2, distanceType: "cosine" }),
});
const results2 = await table
.search(data[0].multivector)
.limit(10)
.toArray();
expect(results2.length).toBe(10);
});
}); });

View File

@@ -107,6 +107,20 @@ export type IntoVector =
| number[] | number[]
| Promise<Float32Array | Float64Array | number[]>; | Promise<Float32Array | Float64Array | number[]>;
export type MultiVector = IntoVector[];
export function isMultiVector(value: unknown): value is MultiVector {
return Array.isArray(value) && isIntoVector(value[0]);
}
export function isIntoVector(value: unknown): value is IntoVector {
return (
value instanceof Float32Array ||
value instanceof Float64Array ||
(Array.isArray(value) && !Array.isArray(value[0]))
);
}
export function isArrowTable(value: object): value is TableLike { export function isArrowTable(value: object): value is TableLike {
if (value instanceof ArrowTable) return true; if (value instanceof ArrowTable) return true;
return "schema" in value && "batches" in value; return "schema" in value && "batches" in value;
@@ -417,7 +431,9 @@ function inferSchema(
} else { } else {
const inferredType = inferType(value, path, opts); const inferredType = inferType(value, path, opts);
if (inferredType === undefined) { if (inferredType === undefined) {
throw new Error(`Failed to infer data type for field ${path.join(".")} at row ${rowI}. \ throw new Error(`Failed to infer data type for field ${path.join(
".",
)} at row ${rowI}. \
Consider providing an explicit schema.`); Consider providing an explicit schema.`);
} }
pathTree.set(path, inferredType); pathTree.set(path, inferredType);
@@ -799,11 +815,17 @@ async function applyEmbeddingsFromMetadata(
`Cannot apply embedding function because the source column '${functionEntry.sourceColumn}' was not present in the data`, `Cannot apply embedding function because the source column '${functionEntry.sourceColumn}' was not present in the data`,
); );
} }
// Check if destination column exists and handle accordingly
if (columns[destColumn] !== undefined) { if (columns[destColumn] !== undefined) {
throw new Error( const existingColumn = columns[destColumn];
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`, // If the column exists but is all null, we can fill it with embeddings
); if (existingColumn.nullCount !== existingColumn.length) {
// Column has non-null values, skip embedding application
continue;
} }
}
if (table.batches.length > 1) { if (table.batches.length > 1) {
throw new Error( throw new Error(
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch", "Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",
@@ -831,6 +853,15 @@ async function applyEmbeddingsFromMetadata(
const vector = makeVector(vectors, destType); const vector = makeVector(vectors, destType);
columns[destColumn] = vector; columns[destColumn] = vector;
} }
// Add any missing columns from the schema as null vectors
for (const field of schema.fields) {
if (!(field.name in columns)) {
const nullValues = new Array(table.numRows).fill(null);
columns[field.name] = makeVector(nullValues, field.type);
}
}
const newTable = new ArrowTable(columns); const newTable = new ArrowTable(columns);
return alignTable(newTable, schema); return alignTable(newTable, schema);
} }
@@ -903,11 +934,23 @@ async function applyEmbeddings<T>(
); );
} }
} else { } else {
// Check if destination column exists and handle accordingly
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) { if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
throw new Error( const existingColumn = newColumns[destColumn];
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`, // If the column exists but is all null, we can fill it with embeddings
if (existingColumn.nullCount !== existingColumn.length) {
// Column has non-null values, skip embedding application and return table as-is
let newTable = new ArrowTable(newColumns);
if (schema != null) {
newTable = alignTable(newTable, schema as Schema);
}
return new ArrowTable(
new Schema(newTable.schema.fields, schemaMetadata),
newTable.batches,
); );
} }
}
if (table.batches.length > 1) { if (table.batches.length > 1) {
throw new Error( throw new Error(
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch", "Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",
@@ -967,7 +1010,21 @@ export async function convertToTable(
embeddings?: EmbeddingFunctionConfig, embeddings?: EmbeddingFunctionConfig,
makeTableOptions?: Partial<MakeArrowTableOptions>, makeTableOptions?: Partial<MakeArrowTableOptions>,
): Promise<ArrowTable> { ): Promise<ArrowTable> {
const table = makeArrowTable(data, makeTableOptions); let processedData = data;
// If we have a schema with embedding metadata, we need to preprocess the data
// to ensure all nested fields are present
if (
makeTableOptions?.schema &&
makeTableOptions.schema.metadata?.has("embedding_functions")
) {
processedData = ensureNestedFieldsExist(
data,
makeTableOptions.schema as Schema,
);
}
const table = makeArrowTable(processedData, makeTableOptions);
return await applyEmbeddings(table, embeddings, makeTableOptions?.schema); return await applyEmbeddings(table, embeddings, makeTableOptions?.schema);
} }
@@ -1060,7 +1117,16 @@ export async function fromDataToBuffer(
schema = sanitizeSchema(schema); schema = sanitizeSchema(schema);
} }
if (isArrowTable(data)) { if (isArrowTable(data)) {
return fromTableToBuffer(sanitizeTable(data), embeddings, schema); const table = sanitizeTable(data);
// If we have a schema with embedding functions, we need to ensure all columns exist
// before applying embeddings, since applyEmbeddingsFromMetadata expects all columns
// to be present in the table
if (schema && schema.metadata?.has("embedding_functions")) {
const alignedTable = alignTableToSchema(table, schema);
return fromTableToBuffer(alignedTable, embeddings, schema);
} else {
return fromTableToBuffer(table, embeddings, schema);
}
} else { } else {
const table = await convertToTable(data, embeddings, { schema }); const table = await convertToTable(data, embeddings, { schema });
return fromTableToBuffer(table); return fromTableToBuffer(table);
@@ -1129,7 +1195,7 @@ function alignBatch(batch: RecordBatch, schema: Schema): RecordBatch {
type: new Struct(schema.fields), type: new Struct(schema.fields),
length: batch.numRows, length: batch.numRows,
nullCount: batch.nullCount, nullCount: batch.nullCount,
children: alignedChildren, children: alignedChildren as unknown as ArrowData<DataType>[],
}); });
return new RecordBatch(schema, newData); return new RecordBatch(schema, newData);
} }
@@ -1201,6 +1267,79 @@ function validateSchemaEmbeddings(
return new Schema(fields, schema.metadata); return new Schema(fields, schema.metadata);
} }
/**
* Ensures that all nested fields defined in the schema exist in the data,
* filling missing fields with null values.
*/
export function ensureNestedFieldsExist(
data: Array<Record<string, unknown>>,
schema: Schema,
): Array<Record<string, unknown>> {
return data.map((row) => {
const completeRow: Record<string, unknown> = {};
for (const field of schema.fields) {
if (field.name in row) {
if (
field.type.constructor.name === "Struct" &&
row[field.name] !== null &&
row[field.name] !== undefined
) {
// Handle nested struct
const nestedValue = row[field.name] as Record<string, unknown>;
completeRow[field.name] = ensureStructFieldsExist(
nestedValue,
field.type,
);
} else {
// Non-struct field or null struct value
completeRow[field.name] = row[field.name];
}
} else {
// Field is missing from the data - set to null
completeRow[field.name] = null;
}
}
return completeRow;
});
}
/**
* Recursively ensures that all fields in a struct type exist in the data,
* filling missing fields with null values.
*/
function ensureStructFieldsExist(
data: Record<string, unknown>,
structType: Struct,
): Record<string, unknown> {
const completeStruct: Record<string, unknown> = {};
for (const childField of structType.children) {
if (childField.name in data) {
if (
childField.type.constructor.name === "Struct" &&
data[childField.name] !== null &&
data[childField.name] !== undefined
) {
// Recursively handle nested struct
completeStruct[childField.name] = ensureStructFieldsExist(
data[childField.name] as Record<string, unknown>,
childField.type,
);
} else {
// Non-struct field or null struct value
completeStruct[childField.name] = data[childField.name];
}
} else {
// Field is missing - set to null
completeStruct[childField.name] = null;
}
}
return completeStruct;
}
interface JsonDataType { interface JsonDataType {
type: string; type: string;
fields?: JsonField[]; fields?: JsonField[];
@@ -1334,3 +1473,64 @@ function fieldToJson(field: Field): JsonField {
metadata: field.metadata, metadata: field.metadata,
}; };
} }
function alignTableToSchema(
table: ArrowTable,
targetSchema: Schema,
): ArrowTable {
const existingColumns = new Map<string, Vector>();
// Map existing columns
for (const field of table.schema.fields) {
existingColumns.set(field.name, table.getChild(field.name)!);
}
// Create vectors for all fields in target schema
const alignedColumns: Record<string, Vector> = {};
for (const field of targetSchema.fields) {
if (existingColumns.has(field.name)) {
// Column exists, use it
alignedColumns[field.name] = existingColumns.get(field.name)!;
} else {
// Column missing, create null vector
alignedColumns[field.name] = createNullVector(field, table.numRows);
}
}
// Create new table with aligned schema and columns
return new ArrowTable(targetSchema, alignedColumns);
}
function createNullVector(field: Field, numRows: number): Vector {
if (field.type.constructor.name === "Struct") {
// For struct types, create a struct with null fields
const structType = field.type as Struct;
const childVectors = structType.children.map((childField) =>
createNullVector(childField, numRows),
);
// Create struct data
const structData = makeData({
type: structType,
length: numRows,
nullCount: 0,
children: childVectors.map((v) => v.data[0]),
});
return arrowMakeVector(structData);
} else {
// For other types, create a vector of nulls
const nullBitmap = new Uint8Array(Math.ceil(numRows / 8));
// All bits are 0, meaning all values are null
const data = makeData({
type: field.type,
length: numRows,
nullCount: numRows,
nullBitmap,
});
return arrowMakeVector(data);
}
}

View File

@@ -85,6 +85,9 @@ export interface OpenTableOptions {
/** /**
* Set the size of the index cache, specified as a number of entries * Set the size of the index cache, specified as a number of entries
* *
* @deprecated Use session-level cache configuration instead.
* Create a Session with custom cache sizes and pass it to the connect() function.
*
* The exact meaning of an "entry" will depend on the type of index: * The exact meaning of an "entry" will depend on the type of index:
* - IVF: there is one entry for each IVF partition * - IVF: there is one entry for each IVF partition
* - BTREE: there is one entry for the entire index * - BTREE: there is one entry for the entire index

View File

@@ -10,6 +10,7 @@ import {
import { import {
ConnectionOptions, ConnectionOptions,
Connection as LanceDbConnection, Connection as LanceDbConnection,
Session,
} from "./native.js"; } from "./native.js";
export { export {
@@ -51,6 +52,8 @@ export {
OpenTableOptions, OpenTableOptions,
} from "./connection"; } from "./connection";
export { Session } from "./native.js";
export { export {
ExecutableQuery, ExecutableQuery,
Query, Query,
@@ -64,7 +67,10 @@ export {
PhraseQuery, PhraseQuery,
BoostQuery, BoostQuery,
MultiMatchQuery, MultiMatchQuery,
BooleanQuery,
FullTextQueryType, FullTextQueryType,
Operator,
Occur,
} from "./query"; } from "./query";
export { export {
@@ -97,6 +103,7 @@ export {
RecordBatchLike, RecordBatchLike,
DataLike, DataLike,
IntoVector, IntoVector,
MultiVector,
} from "./arrow"; } from "./arrow";
export { IntoSql, packBits } from "./util"; export { IntoSql, packBits } from "./util";
@@ -127,6 +134,7 @@ export { IntoSql, packBits } from "./util";
export async function connect( export async function connect(
uri: string, uri: string,
options?: Partial<ConnectionOptions>, options?: Partial<ConnectionOptions>,
session?: Session,
): Promise<Connection>; ): Promise<Connection>;
/** /**
* Connect to a LanceDB instance at the given URI. * Connect to a LanceDB instance at the given URI.
@@ -145,31 +153,43 @@ export async function connect(
* storageOptions: {timeout: "60s"} * storageOptions: {timeout: "60s"}
* }); * });
* ``` * ```
*
* @example
* ```ts
* const session = Session.default();
* const conn = await connect({
* uri: "/path/to/database",
* session: session
* });
* ```
*/ */
export async function connect( export async function connect(
options: Partial<ConnectionOptions> & { uri: string }, options: Partial<ConnectionOptions> & { uri: string },
): Promise<Connection>; ): Promise<Connection>;
export async function connect( export async function connect(
uriOrOptions: string | (Partial<ConnectionOptions> & { uri: string }), uriOrOptions: string | (Partial<ConnectionOptions> & { uri: string }),
options: Partial<ConnectionOptions> = {}, options?: Partial<ConnectionOptions>,
): Promise<Connection> { ): Promise<Connection> {
let uri: string | undefined; let uri: string | undefined;
let finalOptions: Partial<ConnectionOptions> = {};
if (typeof uriOrOptions !== "string") { if (typeof uriOrOptions !== "string") {
const { uri: uri_, ...opts } = uriOrOptions; const { uri: uri_, ...opts } = uriOrOptions;
uri = uri_; uri = uri_;
options = opts; finalOptions = opts;
} else { } else {
uri = uriOrOptions; uri = uriOrOptions;
finalOptions = options || {};
} }
if (!uri) { if (!uri) {
throw new Error("uri is required"); throw new Error("uri is required");
} }
options = (options as ConnectionOptions) ?? {}; finalOptions = (finalOptions as ConnectionOptions) ?? {};
(<ConnectionOptions>options).storageOptions = cleanseStorageOptions( (<ConnectionOptions>finalOptions).storageOptions = cleanseStorageOptions(
(<ConnectionOptions>options).storageOptions, (<ConnectionOptions>finalOptions).storageOptions,
); );
const nativeConn = await LanceDbConnection.new(uri, options); const nativeConn = await LanceDbConnection.new(uri, finalOptions);
return new LocalConnection(nativeConn); return new LocalConnection(nativeConn);
} }

View File

@@ -439,7 +439,7 @@ export interface FtsOptions {
* *
* "raw" - Raw tokenizer. This tokenizer does not split the text into tokens and indexes the entire text as a single token. * "raw" - Raw tokenizer. This tokenizer does not split the text into tokens and indexes the entire text as a single token.
*/ */
baseTokenizer?: "simple" | "whitespace" | "raw"; baseTokenizer?: "simple" | "whitespace" | "raw" | "ngram";
/** /**
* language for stemming and stop words * language for stemming and stop words
@@ -472,6 +472,21 @@ export interface FtsOptions {
* whether to remove punctuation * whether to remove punctuation
*/ */
asciiFolding?: boolean; asciiFolding?: boolean;
/**
* ngram min length
*/
ngramMinLength?: number;
/**
* ngram max length
*/
ngramMaxLength?: number;
/**
* whether to only index the prefix of the token for ngram tokenizer
*/
prefixOnly?: boolean;
} }
export class Index { export class Index {
@@ -608,6 +623,9 @@ export class Index {
options?.stem, options?.stem,
options?.removeStopWords, options?.removeStopWords,
options?.asciiFolding, options?.asciiFolding,
options?.ngramMinLength,
options?.ngramMaxLength,
options?.prefixOnly,
), ),
); );
} }

View File

@@ -448,6 +448,10 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
* For best results we recommend tuning this parameter with a benchmark against * For best results we recommend tuning this parameter with a benchmark against
* your actual data to find the smallest possible value that will still give * your actual data to find the smallest possible value that will still give
* you the desired recall. * you the desired recall.
*
* For more fine grained control over behavior when you have a very narrow filter
* you can use `minimumNprobes` and `maximumNprobes`. This method sets both
* the minimum and maximum to the same value.
*/ */
nprobes(nprobes: number): VectorQuery { nprobes(nprobes: number): VectorQuery {
super.doCall((inner) => inner.nprobes(nprobes)); super.doCall((inner) => inner.nprobes(nprobes));
@@ -455,6 +459,33 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
return this; return this;
} }
/**
* Set the minimum number of probes used.
*
* This controls the minimum number of partitions that will be searched. This
* parameter will impact every query against a vector index, regardless of the
* filter. See `nprobes` for more details. Higher values will increase recall
* but will also increase latency.
*/
minimumNprobes(minimumNprobes: number): VectorQuery {
super.doCall((inner) => inner.minimumNprobes(minimumNprobes));
return this;
}
/**
* Set the maximum number of probes used.
*
* This controls the maximum number of partitions that will be searched. If this
* number is greater than minimumNprobes then the excess partitions will _only_ be
* searched if we have not found enough results. This can be useful when there is
* a narrow filter to allow these queries to spend more time searching and avoid
* potential false negatives.
*/
maximumNprobes(maximumNprobes: number): VectorQuery {
super.doCall((inner) => inner.maximumNprobes(maximumNprobes));
return this;
}
/* /*
* Set the distance range to use * Set the distance range to use
* *
@@ -762,6 +793,31 @@ export enum FullTextQueryType {
MatchPhrase = "match_phrase", MatchPhrase = "match_phrase",
Boost = "boost", Boost = "boost",
MultiMatch = "multi_match", MultiMatch = "multi_match",
Boolean = "boolean",
}
/**
* Enum representing the logical operators used in full-text queries.
*
* - `And`: All terms must match.
* - `Or`: At least one term must match.
*/
export enum Operator {
And = "AND",
Or = "OR",
}
/**
* Enum representing the occurrence of terms in full-text queries.
*
* - `Must`: The term must be present in the document.
* - `Should`: The term should contribute to the document score, but is not required.
* - `MustNot`: The term must not be present in the document.
*/
export enum Occur {
Should = "SHOULD",
Must = "MUST",
MustNot = "MUST_NOT",
} }
/** /**
@@ -791,6 +847,7 @@ export function instanceOfFullTextQuery(obj: any): obj is FullTextQuery {
export class MatchQuery implements FullTextQuery { export class MatchQuery implements FullTextQuery {
/** @ignore */ /** @ignore */
public readonly inner: JsFullTextQuery; public readonly inner: JsFullTextQuery;
/** /**
* Creates an instance of MatchQuery. * Creates an instance of MatchQuery.
* *
@@ -800,6 +857,8 @@ export class MatchQuery implements FullTextQuery {
* - `boost`: The boost factor for the query (default is 1.0). * - `boost`: The boost factor for the query (default is 1.0).
* - `fuzziness`: The fuzziness level for the query (default is 0). * - `fuzziness`: The fuzziness level for the query (default is 0).
* - `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50). * - `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
* - `operator`: The logical operator to use for combining terms in the query (default is "OR").
* - `prefixLength`: The number of beginning characters being unchanged for fuzzy matching.
*/ */
constructor( constructor(
query: string, query: string,
@@ -808,6 +867,8 @@ export class MatchQuery implements FullTextQuery {
boost?: number; boost?: number;
fuzziness?: number; fuzziness?: number;
maxExpansions?: number; maxExpansions?: number;
operator?: Operator;
prefixLength?: number;
}, },
) { ) {
let fuzziness = options?.fuzziness; let fuzziness = options?.fuzziness;
@@ -820,6 +881,8 @@ export class MatchQuery implements FullTextQuery {
options?.boost ?? 1.0, options?.boost ?? 1.0,
fuzziness, fuzziness,
options?.maxExpansions ?? 50, options?.maxExpansions ?? 50,
options?.operator ?? Operator.Or,
options?.prefixLength ?? 0,
); );
} }
@@ -836,9 +899,11 @@ export class PhraseQuery implements FullTextQuery {
* *
* @param query - The phrase to search for in the specified column. * @param query - The phrase to search for in the specified column.
* @param column - The name of the column to search within. * @param column - The name of the column to search within.
* @param options - Optional parameters for the phrase query.
* - `slop`: The maximum number of intervening unmatched positions allowed between words in the phrase (default is 0).
*/ */
constructor(query: string, column: string) { constructor(query: string, column: string, options?: { slop?: number }) {
this.inner = JsFullTextQuery.phraseQuery(query, column); this.inner = JsFullTextQuery.phraseQuery(query, column, options?.slop ?? 0);
} }
queryType(): FullTextQueryType { queryType(): FullTextQueryType {
@@ -889,18 +954,21 @@ export class MultiMatchQuery implements FullTextQuery {
* @param columns - An array of column names to search within. * @param columns - An array of column names to search within.
* @param options - Optional parameters for the multi-match query. * @param options - Optional parameters for the multi-match query.
* - `boosts`: An array of boost factors for each column (default is 1.0 for all). * - `boosts`: An array of boost factors for each column (default is 1.0 for all).
* - `operator`: The logical operator to use for combining terms in the query (default is "OR").
*/ */
constructor( constructor(
query: string, query: string,
columns: string[], columns: string[],
options?: { options?: {
boosts?: number[]; boosts?: number[];
operator?: Operator;
}, },
) { ) {
this.inner = JsFullTextQuery.multiMatchQuery( this.inner = JsFullTextQuery.multiMatchQuery(
query, query,
columns, columns,
options?.boosts, options?.boosts,
options?.operator ?? Operator.Or,
); );
} }
@@ -908,3 +976,23 @@ export class MultiMatchQuery implements FullTextQuery {
return FullTextQueryType.MultiMatch; return FullTextQueryType.MultiMatch;
} }
} }
export class BooleanQuery implements FullTextQuery {
/** @ignore */
public readonly inner: JsFullTextQuery;
/**
* Creates an instance of BooleanQuery.
*
* @param queries - An array of (Occur, FullTextQuery objects) to combine.
* Occur specifies whether the query must match, or should match.
*/
constructor(queries: [Occur, FullTextQuery][]) {
this.inner = JsFullTextQuery.booleanQuery(
queries.map(([occur, query]) => [occur, query.inner]),
);
}
queryType(): FullTextQueryType {
return FullTextQueryType.Boolean;
}
}

View File

@@ -6,9 +6,11 @@ import {
Data, Data,
DataType, DataType,
IntoVector, IntoVector,
MultiVector,
Schema, Schema,
dataTypeToJson, dataTypeToJson,
fromDataToBuffer, fromDataToBuffer,
isMultiVector,
tableFromIPC, tableFromIPC,
} from "./arrow"; } from "./arrow";
@@ -75,10 +77,10 @@ export interface OptimizeOptions {
* // Delete all versions older than 1 day * // Delete all versions older than 1 day
* const olderThan = new Date(); * const olderThan = new Date();
* olderThan.setDate(olderThan.getDate() - 1)); * olderThan.setDate(olderThan.getDate() - 1));
* tbl.cleanupOlderVersions(olderThan); * tbl.optimize({cleanupOlderThan: olderThan});
* *
* // Delete all versions except the current version * // Delete all versions except the current version
* tbl.cleanupOlderVersions(new Date()); * tbl.optimize({cleanupOlderThan: new Date()});
*/ */
cleanupOlderThan: Date; cleanupOlderThan: Date;
deleteUnverified: boolean; deleteUnverified: boolean;
@@ -346,7 +348,7 @@ export abstract class Table {
* if the query is a string and no embedding function is defined, it will be treated as a full text search query * if the query is a string and no embedding function is defined, it will be treated as a full text search query
*/ */
abstract search( abstract search(
query: string | IntoVector | FullTextQuery, query: string | IntoVector | MultiVector | FullTextQuery,
queryType?: string, queryType?: string,
ftsColumns?: string | string[], ftsColumns?: string | string[],
): VectorQuery | Query; ): VectorQuery | Query;
@@ -357,7 +359,7 @@ export abstract class Table {
* is the same thing as calling `nearestTo` on the builder returned * is the same thing as calling `nearestTo` on the builder returned
* by `query`. @see {@link Query#nearestTo} for more details. * by `query`. @see {@link Query#nearestTo} for more details.
*/ */
abstract vectorSearch(vector: IntoVector): VectorQuery; abstract vectorSearch(vector: IntoVector | MultiVector): VectorQuery;
/** /**
* Add new columns with defined values. * Add new columns with defined values.
* @param {AddColumnsSql[]} newColumnTransforms pairs of column names and * @param {AddColumnsSql[]} newColumnTransforms pairs of column names and
@@ -668,7 +670,7 @@ export class LocalTable extends Table {
} }
search( search(
query: string | IntoVector | FullTextQuery, query: string | IntoVector | MultiVector | FullTextQuery,
queryType: string = "auto", queryType: string = "auto",
ftsColumns?: string | string[], ftsColumns?: string | string[],
): VectorQuery | Query { ): VectorQuery | Query {
@@ -715,7 +717,15 @@ export class LocalTable extends Table {
return this.query().nearestTo(queryPromise); return this.query().nearestTo(queryPromise);
} }
vectorSearch(vector: IntoVector): VectorQuery { vectorSearch(vector: IntoVector | MultiVector): VectorQuery {
if (isMultiVector(vector)) {
const query = this.query().nearestTo(vector[0]);
for (const v of vector.slice(1)) {
query.addQueryVector(v);
}
return query;
}
return this.query().nearestTo(vector); return this.query().nearestTo(vector);
} }

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-darwin-arm64", "name": "@lancedb/lancedb-darwin-arm64",
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"os": ["darwin"], "os": ["darwin"],
"cpu": ["arm64"], "cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node", "main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-darwin-x64", "name": "@lancedb/lancedb-darwin-x64",
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"os": ["darwin"], "os": ["darwin"],
"cpu": ["x64"], "cpu": ["x64"],
"main": "lancedb.darwin-x64.node", "main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-linux-arm64-gnu", "name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"os": ["linux"], "os": ["linux"],
"cpu": ["arm64"], "cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node", "main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-linux-arm64-musl", "name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"os": ["linux"], "os": ["linux"],
"cpu": ["arm64"], "cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node", "main": "lancedb.linux-arm64-musl.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-linux-x64-gnu", "name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"os": ["linux"], "os": ["linux"],
"cpu": ["x64"], "cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node", "main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-linux-x64-musl", "name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"os": ["linux"], "os": ["linux"],
"cpu": ["x64"], "cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node", "main": "lancedb.linux-x64-musl.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-win32-arm64-msvc", "name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"os": [ "os": [
"win32" "win32"
], ],

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-win32-x64-msvc", "name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"os": ["win32"], "os": ["win32"],
"cpu": ["x64"], "cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node", "main": "lancedb.win32-x64-msvc.node",

View File

@@ -1,12 +1,12 @@
{ {
"name": "@lancedb/lancedb", "name": "@lancedb/lancedb",
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "@lancedb/lancedb", "name": "@lancedb/lancedb",
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"

View File

@@ -11,7 +11,7 @@
"ann" "ann"
], ],
"private": false, "private": false,
"version": "0.20.0-beta.1", "version": "0.21.2-beta.1",
"main": "dist/index.js", "main": "dist/index.js",
"exports": { "exports": {
".": "./dist/index.js", ".": "./dist/index.js",

View File

@@ -74,6 +74,10 @@ impl Connection {
builder = builder.host_override(&host_override); builder = builder.host_override(&host_override);
} }
if let Some(session) = options.session {
builder = builder.session(session.inner.clone());
}
Ok(Self::inner_new(builder.execute().await.default_error()?)) Ok(Self::inner_new(builder.execute().await.default_error()?))
} }

View File

@@ -123,6 +123,9 @@ impl Index {
stem: Option<bool>, stem: Option<bool>,
remove_stop_words: Option<bool>, remove_stop_words: Option<bool>,
ascii_folding: Option<bool>, ascii_folding: Option<bool>,
ngram_min_length: Option<u32>,
ngram_max_length: Option<u32>,
prefix_only: Option<bool>,
) -> Self { ) -> Self {
let mut opts = FtsIndexBuilder::default(); let mut opts = FtsIndexBuilder::default();
if let Some(with_position) = with_position { if let Some(with_position) = with_position {
@@ -149,6 +152,15 @@ impl Index {
if let Some(ascii_folding) = ascii_folding { if let Some(ascii_folding) = ascii_folding {
opts = opts.ascii_folding(ascii_folding); opts = opts.ascii_folding(ascii_folding);
} }
if let Some(ngram_min_length) = ngram_min_length {
opts = opts.ngram_min_length(ngram_min_length);
}
if let Some(ngram_max_length) = ngram_max_length {
opts = opts.ngram_max_length(ngram_max_length);
}
if let Some(prefix_only) = prefix_only {
opts = opts.ngram_prefix_only(prefix_only);
}
Self { Self {
inner: Mutex::new(Some(LanceDbIndex::FTS(opts))), inner: Mutex::new(Some(LanceDbIndex::FTS(opts))),

View File

@@ -14,6 +14,7 @@ pub mod merge;
mod query; mod query;
pub mod remote; pub mod remote;
mod rerankers; mod rerankers;
mod session;
mod table; mod table;
mod util; mod util;
@@ -34,6 +35,9 @@ pub struct ConnectionOptions {
/// ///
/// The available options are described at https://lancedb.github.io/lancedb/guides/storage/ /// The available options are described at https://lancedb.github.io/lancedb/guides/storage/
pub storage_options: Option<HashMap<String, String>>, pub storage_options: Option<HashMap<String, String>>,
/// (For LanceDB OSS only): the session to use for this connection. Holds
/// shared caches and other session-specific state.
pub session: Option<session::Session>,
/// (For LanceDB cloud only): configuration for the remote HTTP client. /// (For LanceDB cloud only): configuration for the remote HTTP client.
pub client_config: Option<remote::ClientConfig>, pub client_config: Option<remote::ClientConfig>,

View File

@@ -4,7 +4,8 @@
use std::sync::Arc; use std::sync::Arc;
use lancedb::index::scalar::{ use lancedb::index::scalar::{
BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, PhraseQuery, BooleanQuery, BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, Occur,
Operator, PhraseQuery,
}; };
use lancedb::query::ExecutableQuery; use lancedb::query::ExecutableQuery;
use lancedb::query::Query as LanceDbQuery; use lancedb::query::Query as LanceDbQuery;
@@ -177,6 +178,31 @@ impl VectorQuery {
self.inner = self.inner.clone().nprobes(nprobe as usize); self.inner = self.inner.clone().nprobes(nprobe as usize);
} }
#[napi]
pub fn minimum_nprobes(&mut self, minimum_nprobe: u32) -> napi::Result<()> {
self.inner = self
.inner
.clone()
.minimum_nprobes(minimum_nprobe as usize)
.default_error()?;
Ok(())
}
#[napi]
pub fn maximum_nprobes(&mut self, maximum_nprobes: u32) -> napi::Result<()> {
let maximum_nprobes = if maximum_nprobes == 0 {
None
} else {
Some(maximum_nprobes as usize)
};
self.inner = self
.inner
.clone()
.maximum_nprobes(maximum_nprobes)
.default_error()?;
Ok(())
}
#[napi] #[napi]
pub fn distance_range(&mut self, lower_bound: Option<f64>, upper_bound: Option<f64>) { pub fn distance_range(&mut self, lower_bound: Option<f64>, upper_bound: Option<f64>) {
// napi doesn't support f32, so we have to convert to f32 // napi doesn't support f32, so we have to convert to f32
@@ -308,6 +334,8 @@ impl JsFullTextQuery {
boost: f64, boost: f64,
fuzziness: Option<u32>, fuzziness: Option<u32>,
max_expansions: u32, max_expansions: u32,
operator: String,
prefix_length: u32,
) -> napi::Result<Self> { ) -> napi::Result<Self> {
Ok(Self { Ok(Self {
inner: MatchQuery::new(query) inner: MatchQuery::new(query)
@@ -315,14 +343,23 @@ impl JsFullTextQuery {
.with_boost(boost as f32) .with_boost(boost as f32)
.with_fuzziness(fuzziness) .with_fuzziness(fuzziness)
.with_max_expansions(max_expansions as usize) .with_max_expansions(max_expansions as usize)
.with_operator(
Operator::try_from(operator.as_str()).map_err(|e| {
napi::Error::from_reason(format!("Invalid operator: {}", e))
})?,
)
.with_prefix_length(prefix_length)
.into(), .into(),
}) })
} }
#[napi(factory)] #[napi(factory)]
pub fn phrase_query(query: String, column: String) -> napi::Result<Self> { pub fn phrase_query(query: String, column: String, slop: u32) -> napi::Result<Self> {
Ok(Self { Ok(Self {
inner: PhraseQuery::new(query).with_column(Some(column)).into(), inner: PhraseQuery::new(query)
.with_column(Some(column))
.with_slop(slop)
.into(),
}) })
} }
@@ -348,6 +385,7 @@ impl JsFullTextQuery {
query: String, query: String,
columns: Vec<String>, columns: Vec<String>,
boosts: Option<Vec<f64>>, boosts: Option<Vec<f64>>,
operator: String,
) -> napi::Result<Self> { ) -> napi::Result<Self> {
let q = match boosts { let q = match boosts {
Some(boosts) => MultiMatchQuery::try_new(query, columns) Some(boosts) => MultiMatchQuery::try_new(query, columns)
@@ -358,7 +396,37 @@ impl JsFullTextQuery {
napi::Error::from_reason(format!("Failed to create multi match query: {}", e)) napi::Error::from_reason(format!("Failed to create multi match query: {}", e))
})?; })?;
Ok(Self { inner: q.into() }) let operator = Operator::try_from(operator.as_str()).map_err(|e| {
napi::Error::from_reason(format!("Invalid operator for multi match query: {}", e))
})?;
Ok(Self {
inner: q.with_operator(operator).into(),
})
}
#[napi(factory)]
pub fn boolean_query(queries: Vec<(String, &JsFullTextQuery)>) -> napi::Result<Self> {
let mut sub_queries = Vec::with_capacity(queries.len());
for (occur, q) in queries {
let occur = Occur::try_from(occur.as_str())
.map_err(|e| napi::Error::from_reason(e.to_string()))?;
sub_queries.push((occur, q.inner.clone()));
}
Ok(Self {
inner: BooleanQuery::new(sub_queries).into(),
})
}
#[napi(getter)]
pub fn query_type(&self) -> String {
match self.inner {
FtsQuery::Match(_) => "match".to_string(),
FtsQuery::Phrase(_) => "phrase".to_string(),
FtsQuery::Boost(_) => "boost".to_string(),
FtsQuery::MultiMatch(_) => "multi_match".to_string(),
FtsQuery::Boolean(_) => "boolean".to_string(),
}
} }
} }

102
nodejs/src/session.rs Normal file
View File

@@ -0,0 +1,102 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::sync::Arc;
use lancedb::{ObjectStoreRegistry, Session as LanceSession};
use napi::bindgen_prelude::*;
use napi_derive::*;
/// A session for managing caches and object stores across LanceDB operations.
///
/// Sessions allow you to configure cache sizes for index and metadata caches,
/// which can significantly impact memory use and performance. They can
/// also be re-used across multiple connections to share the same cache state.
#[napi]
#[derive(Clone)]
pub struct Session {
pub(crate) inner: Arc<LanceSession>,
}
impl std::fmt::Debug for Session {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Session")
.field("size_bytes", &self.inner.size_bytes())
.field("approx_num_items", &self.inner.approx_num_items())
.finish()
}
}
#[napi]
impl Session {
/// Create a new session with custom cache sizes.
///
/// # Parameters
///
/// - `index_cache_size_bytes`: The size of the index cache in bytes.
/// Index data is stored in memory in this cache to speed up queries.
/// Defaults to 6GB if not specified.
/// - `metadata_cache_size_bytes`: The size of the metadata cache in bytes.
/// The metadata cache stores file metadata and schema information in memory.
/// This cache improves scan and write performance.
/// Defaults to 1GB if not specified.
#[napi(constructor)]
pub fn new(
index_cache_size_bytes: Option<BigInt>,
metadata_cache_size_bytes: Option<BigInt>,
) -> napi::Result<Self> {
let index_cache_size = index_cache_size_bytes
.map(|size| size.get_u64().1 as usize)
.unwrap_or(6 * 1024 * 1024 * 1024); // 6GB default
let metadata_cache_size = metadata_cache_size_bytes
.map(|size| size.get_u64().1 as usize)
.unwrap_or(1024 * 1024 * 1024); // 1GB default
let session = LanceSession::new(
index_cache_size,
metadata_cache_size,
Arc::new(ObjectStoreRegistry::default()),
);
Ok(Self {
inner: Arc::new(session),
})
}
/// Create a session with default cache sizes.
///
/// This is equivalent to creating a session with 6GB index cache
/// and 1GB metadata cache.
#[napi(factory)]
pub fn default() -> Self {
Self {
inner: Arc::new(LanceSession::default()),
}
}
/// Get the current size of the session caches in bytes.
#[napi]
pub fn size_bytes(&self) -> BigInt {
BigInt::from(self.inner.size_bytes())
}
/// Get the approximate number of items cached in the session.
#[napi]
pub fn approx_num_items(&self) -> u32 {
self.inner.approx_num_items() as u32
}
}
// Implement FromNapiValue for Session to work with napi(object)
impl napi::bindgen_prelude::FromNapiValue for Session {
unsafe fn from_napi_value(
env: napi::sys::napi_env,
napi_val: napi::sys::napi_value,
) -> napi::Result<Self> {
let object: napi::bindgen_prelude::ClassInstance<Session> =
napi::bindgen_prelude::ClassInstance::from_napi_value(env, napi_val)?;
let copy = object.clone();
Ok(copy)
}
}

View File

@@ -1,5 +1,5 @@
[tool.bumpversion] [tool.bumpversion]
current_version = "0.23.0-beta.2" current_version = "0.24.2"
parse = """(?x) parse = """(?x)
(?P<major>0|[1-9]\\d*)\\. (?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\. (?P<minor>0|[1-9]\\d*)\\.

19
python/CLAUDE.md Normal file
View File

@@ -0,0 +1,19 @@
These are the Python bindings of LanceDB.
The core Rust library is in the `../rust/lancedb` directory, the rust binding
code is in the `src/` directory and the Python bindings are in the `lancedb/` directory.
Common commands:
* Build: `make develop`
* Format: `make format`
* Lint: `make check`
* Fix lints: `make fix`
* Test: `make test`
* Doc test: `make doctest`
Before committing changes, run lints and then formatting.
When you change the Rust code, you will need to recompile the Python bindings: `make develop`.
When you export new types from Rust to Python, you must manually update `python/lancedb/_lancedb.pyi`
with the corresponding type hints. You can run `pyright` to check for type errors in the Python code.

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "lancedb-python" name = "lancedb-python"
version = "0.23.0-beta.2" version = "0.24.2"
edition.workspace = true edition.workspace = true
description = "Python bindings for LanceDB" description = "Python bindings for LanceDB"
license.workspace = true license.workspace = true

View File

@@ -85,8 +85,8 @@ embeddings = [
"boto3>=1.28.57", "boto3>=1.28.57",
"awscli>=1.29.57", "awscli>=1.29.57",
"botocore>=1.31.57", "botocore>=1.31.57",
"ollama", 'ibm-watsonx-ai>=1.1.2; python_version >= "3.10"',
"ibm-watsonx-ai>=1.1.2", "ollama>=0.3.0",
] ]
azure = ["adlfs>=2024.2.0"] azure = ["adlfs>=2024.2.0"]

View File

@@ -18,6 +18,7 @@ from .remote import ClientConfig
from .remote.db import RemoteDBConnection from .remote.db import RemoteDBConnection
from .schema import vector from .schema import vector
from .table import AsyncTable from .table import AsyncTable
from ._lancedb import Session
def connect( def connect(
@@ -30,6 +31,7 @@ def connect(
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None, request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
client_config: Union[ClientConfig, Dict[str, Any], None] = None, client_config: Union[ClientConfig, Dict[str, Any], None] = None,
storage_options: Optional[Dict[str, str]] = None, storage_options: Optional[Dict[str, str]] = None,
session: Optional[Session] = None,
**kwargs: Any, **kwargs: Any,
) -> DBConnection: ) -> DBConnection:
"""Connect to a LanceDB database. """Connect to a LanceDB database.
@@ -64,6 +66,12 @@ def connect(
storage_options: dict, optional storage_options: dict, optional
Additional options for the storage backend. See available options at Additional options for the storage backend. See available options at
<https://lancedb.github.io/lancedb/guides/storage/> <https://lancedb.github.io/lancedb/guides/storage/>
session: Session, optional
(For LanceDB OSS only)
A session to use for this connection. Sessions allow you to configure
cache sizes for index and metadata caches, which can significantly
impact memory use and performance. They can also be re-used across
multiple connections to share the same cache state.
Examples Examples
-------- --------
@@ -92,7 +100,7 @@ def connect(
if api_key is None: if api_key is None:
api_key = os.environ.get("LANCEDB_API_KEY") api_key = os.environ.get("LANCEDB_API_KEY")
if api_key is None: if api_key is None:
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}") raise ValueError(f"api_key is required to connect to LanceDB cloud: {uri}")
if isinstance(request_thread_pool, int): if isinstance(request_thread_pool, int):
request_thread_pool = ThreadPoolExecutor(request_thread_pool) request_thread_pool = ThreadPoolExecutor(request_thread_pool)
return RemoteDBConnection( return RemoteDBConnection(
@@ -113,6 +121,7 @@ def connect(
uri, uri,
read_consistency_interval=read_consistency_interval, read_consistency_interval=read_consistency_interval,
storage_options=storage_options, storage_options=storage_options,
session=session,
) )
@@ -125,6 +134,7 @@ async def connect_async(
read_consistency_interval: Optional[timedelta] = None, read_consistency_interval: Optional[timedelta] = None,
client_config: Optional[Union[ClientConfig, Dict[str, Any]]] = None, client_config: Optional[Union[ClientConfig, Dict[str, Any]]] = None,
storage_options: Optional[Dict[str, str]] = None, storage_options: Optional[Dict[str, str]] = None,
session: Optional[Session] = None,
) -> AsyncConnection: ) -> AsyncConnection:
"""Connect to a LanceDB database. """Connect to a LanceDB database.
@@ -158,6 +168,12 @@ async def connect_async(
storage_options: dict, optional storage_options: dict, optional
Additional options for the storage backend. See available options at Additional options for the storage backend. See available options at
<https://lancedb.github.io/lancedb/guides/storage/> <https://lancedb.github.io/lancedb/guides/storage/>
session: Session, optional
(For LanceDB OSS only)
A session to use for this connection. Sessions allow you to configure
cache sizes for index and metadata caches, which can significantly
impact memory use and performance. They can also be re-used across
multiple connections to share the same cache state.
Examples Examples
-------- --------
@@ -197,6 +213,7 @@ async def connect_async(
read_consistency_interval_secs, read_consistency_interval_secs,
client_config, client_config,
storage_options, storage_options,
session,
) )
) )
@@ -212,6 +229,7 @@ __all__ = [
"DBConnection", "DBConnection",
"LanceDBConnection", "LanceDBConnection",
"RemoteDBConnection", "RemoteDBConnection",
"Session",
"__version__", "__version__",
] ]

View File

@@ -6,6 +6,19 @@ import pyarrow as pa
from .index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq, FTS from .index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq, FTS
from .remote import ClientConfig from .remote import ClientConfig
class Session:
def __init__(
self,
index_cache_size_bytes: Optional[int] = None,
metadata_cache_size_bytes: Optional[int] = None,
): ...
@staticmethod
def default() -> "Session": ...
@property
def size_bytes(self) -> int: ...
@property
def approx_num_items(self) -> int: ...
class Connection(object): class Connection(object):
uri: str uri: str
async def table_names( async def table_names(
@@ -89,6 +102,7 @@ async def connect(
read_consistency_interval: Optional[float], read_consistency_interval: Optional[float],
client_config: Optional[Union[ClientConfig, Dict[str, Any]]], client_config: Optional[Union[ClientConfig, Dict[str, Any]]],
storage_options: Optional[Dict[str, str]], storage_options: Optional[Dict[str, str]],
session: Optional[Session],
) -> Connection: ... ) -> Connection: ...
class RecordBatchStream: class RecordBatchStream:
@@ -143,6 +157,8 @@ class VectorQuery:
def postfilter(self): ... def postfilter(self): ...
def refine_factor(self, refine_factor: int): ... def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ... def nprobes(self, nprobes: int): ...
def minimum_nprobes(self, minimum_nprobes: int): ...
def maximum_nprobes(self, maximum_nprobes: int): ...
def bypass_vector_index(self): ... def bypass_vector_index(self): ...
def nearest_to_text(self, query: dict) -> HybridQuery: ... def nearest_to_text(self, query: dict) -> HybridQuery: ...
def to_query_request(self) -> PyQueryRequest: ... def to_query_request(self) -> PyQueryRequest: ...
@@ -158,6 +174,8 @@ class HybridQuery:
def distance_type(self, distance_type: str): ... def distance_type(self, distance_type: str): ...
def refine_factor(self, refine_factor: int): ... def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ... def nprobes(self, nprobes: int): ...
def minimum_nprobes(self, minimum_nprobes: int): ...
def maximum_nprobes(self, maximum_nprobes: int): ...
def bypass_vector_index(self): ... def bypass_vector_index(self): ...
def to_vector_query(self) -> VectorQuery: ... def to_vector_query(self) -> VectorQuery: ...
def to_fts_query(self) -> FTSQuery: ... def to_fts_query(self) -> FTSQuery: ...
@@ -165,23 +183,21 @@ class HybridQuery:
def get_with_row_id(self) -> bool: ... def get_with_row_id(self) -> bool: ...
def to_query_request(self) -> PyQueryRequest: ... def to_query_request(self) -> PyQueryRequest: ...
class PyFullTextSearchQuery: class FullTextQuery:
columns: Optional[List[str]] pass
query: str
limit: Optional[int]
wand_factor: Optional[float]
class PyQueryRequest: class PyQueryRequest:
limit: Optional[int] limit: Optional[int]
offset: Optional[int] offset: Optional[int]
filter: Optional[Union[str, bytes]] filter: Optional[Union[str, bytes]]
full_text_search: Optional[PyFullTextSearchQuery] full_text_search: Optional[FullTextQuery]
select: Optional[Union[str, List[str]]] select: Optional[Union[str, List[str]]]
fast_search: Optional[bool] fast_search: Optional[bool]
with_row_id: Optional[bool] with_row_id: Optional[bool]
column: Optional[str] column: Optional[str]
query_vector: Optional[List[pa.Array]] query_vector: Optional[List[pa.Array]]
nprobes: Optional[int] minimum_nprobes: Optional[int]
maximum_nprobes: Optional[int]
lower_bound: Optional[float] lower_bound: Optional[float]
upper_bound: Optional[float] upper_bound: Optional[float]
ef: Optional[int] ef: Optional[int]

View File

@@ -94,9 +94,9 @@ def data_to_reader(
else: else:
raise TypeError( raise TypeError(
f"Unknown data type {type(data)}. " f"Unknown data type {type(data)}. "
"Please check " "Supported types: list of dicts, pandas DataFrame, polars DataFrame, "
"https://lancedb.github.io/lance/read_and_write.html " "pyarrow Table/RecordBatch, or Pydantic models. "
"to see supported types." "See https://lancedb.github.io/lancedb/guides/tables/ for examples."
) )

View File

@@ -37,6 +37,7 @@ if TYPE_CHECKING:
from ._lancedb import Connection as LanceDbConnection from ._lancedb import Connection as LanceDbConnection
from .common import DATA, URI from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig from .embeddings import EmbeddingFunctionConfig
from ._lancedb import Session
class DBConnection(EnforceOverrides): class DBConnection(EnforceOverrides):
@@ -247,6 +248,9 @@ class DBConnection(EnforceOverrides):
name: str name: str
The name of the table. The name of the table.
index_cache_size: int, default 256 index_cache_size: int, default 256
**Deprecated**: Use session-level cache configuration instead.
Create a Session with custom cache sizes and pass it to lancedb.connect().
Set the size of the index cache, specified as a number of entries Set the size of the index cache, specified as a number of entries
The exact meaning of an "entry" will depend on the type of index: The exact meaning of an "entry" will depend on the type of index:
@@ -354,6 +358,7 @@ class LanceDBConnection(DBConnection):
*, *,
read_consistency_interval: Optional[timedelta] = None, read_consistency_interval: Optional[timedelta] = None,
storage_options: Optional[Dict[str, str]] = None, storage_options: Optional[Dict[str, str]] = None,
session: Optional[Session] = None,
): ):
if not isinstance(uri, Path): if not isinstance(uri, Path):
scheme = get_uri_scheme(uri) scheme = get_uri_scheme(uri)
@@ -367,6 +372,7 @@ class LanceDBConnection(DBConnection):
self._entered = False self._entered = False
self.read_consistency_interval = read_consistency_interval self.read_consistency_interval = read_consistency_interval
self.storage_options = storage_options self.storage_options = storage_options
self.session = session
if read_consistency_interval is not None: if read_consistency_interval is not None:
read_consistency_interval_secs = read_consistency_interval.total_seconds() read_consistency_interval_secs = read_consistency_interval.total_seconds()
@@ -382,6 +388,7 @@ class LanceDBConnection(DBConnection):
read_consistency_interval_secs, read_consistency_interval_secs,
None, None,
storage_options, storage_options,
session,
) )
self._conn = AsyncConnection(LOOP.run(do_connect())) self._conn = AsyncConnection(LOOP.run(do_connect()))
@@ -475,6 +482,17 @@ class LanceDBConnection(DBConnection):
------- -------
A LanceTable object representing the table. A LanceTable object representing the table.
""" """
if index_cache_size is not None:
import warnings
warnings.warn(
"index_cache_size is deprecated. Use session-level cache "
"configuration instead. Create a Session with custom cache sizes "
"and pass it to lancedb.connect().",
DeprecationWarning,
stacklevel=2,
)
return LanceTable.open( return LanceTable.open(
self, self,
name, name,
@@ -820,6 +838,9 @@ class AsyncConnection(object):
See available options at See available options at
<https://lancedb.github.io/lancedb/guides/storage/> <https://lancedb.github.io/lancedb/guides/storage/>
index_cache_size: int, default 256 index_cache_size: int, default 256
**Deprecated**: Use session-level cache configuration instead.
Create a Session with custom cache sizes and pass it to lancedb.connect().
Set the size of the index cache, specified as a number of entries Set the size of the index cache, specified as a number of entries
The exact meaning of an "entry" will depend on the type of index: The exact meaning of an "entry" will depend on the type of index:

View File

@@ -11,7 +11,7 @@ from .instructor import InstructorEmbeddingFunction
from .ollama import OllamaEmbeddings from .ollama import OllamaEmbeddings
from .open_clip import OpenClipEmbeddings from .open_clip import OpenClipEmbeddings
from .openai import OpenAIEmbeddings from .openai import OpenAIEmbeddings
from .registry import EmbeddingFunctionRegistry, get_registry from .registry import EmbeddingFunctionRegistry, get_registry, register
from .sentence_transformers import SentenceTransformerEmbeddings from .sentence_transformers import SentenceTransformerEmbeddings
from .gte import GteEmbeddings from .gte import GteEmbeddings
from .transformers import TransformersEmbeddingFunction, ColbertEmbeddings from .transformers import TransformersEmbeddingFunction, ColbertEmbeddings

View File

@@ -9,11 +9,14 @@ from huggingface_hub import snapshot_download
from pydantic import BaseModel from pydantic import BaseModel
from transformers import BertTokenizer from transformers import BertTokenizer
from .utils import create_import_stub
try: try:
import mlx.core as mx import mlx.core as mx
import mlx.nn as nn import mlx.nn as nn
except ImportError: except ImportError:
raise ImportError("You need to install MLX to use this model use - pip install mlx") mx = create_import_stub("mlx.core", "mlx")
nn = create_import_stub("mlx.nn", "mlx")
def average_pool(last_hidden_state: mx.array, attention_mask: mx.array) -> mx.array: def average_pool(last_hidden_state: mx.array, attention_mask: mx.array) -> mx.array:
@@ -72,7 +75,7 @@ class TransformerEncoder(nn.Module):
super().__init__() super().__init__()
self.layers = [ self.layers = [
TransformerEncoderLayer(dims, num_heads, mlp_dims) TransformerEncoderLayer(dims, num_heads, mlp_dims)
for i in range(num_layers) for _ in range(num_layers)
] ]
def __call__(self, x, mask): def __call__(self, x, mask):

View File

@@ -2,14 +2,15 @@
# SPDX-FileCopyrightText: Copyright The LanceDB Authors # SPDX-FileCopyrightText: Copyright The LanceDB Authors
from functools import cached_property from functools import cached_property
from typing import TYPE_CHECKING, List, Optional, Union from typing import TYPE_CHECKING, List, Optional, Sequence, Union
import numpy as np
from ..util import attempt_import_or_raise from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
if TYPE_CHECKING: if TYPE_CHECKING:
import numpy as np
import ollama import ollama
@@ -28,23 +29,21 @@ class OllamaEmbeddings(TextEmbeddingFunction):
keep_alive: Optional[Union[float, str]] = None keep_alive: Optional[Union[float, str]] = None
ollama_client_kwargs: Optional[dict] = {} ollama_client_kwargs: Optional[dict] = {}
def ndims(self): def ndims(self) -> int:
return len(self.generate_embeddings(["foo"])[0]) return len(self.generate_embeddings(["foo"])[0])
def _compute_embedding(self, text) -> Union["np.array", None]: def _compute_embedding(self, text: Sequence[str]) -> Sequence[Sequence[float]]:
return ( response = self._ollama_client.embed(
self._ollama_client.embeddings(
model=self.name, model=self.name,
prompt=text, input=text,
options=self.options, options=self.options,
keep_alive=self.keep_alive, keep_alive=self.keep_alive,
)["embedding"]
or None
) )
return response.embeddings
def generate_embeddings( def generate_embeddings(
self, texts: Union[List[str], "np.ndarray"] self, texts: Union[List[str], np.ndarray]
) -> list[Union["np.array", None]]: ) -> list[Union[np.array, None]]:
""" """
Get the embeddings for the given texts Get the embeddings for the given texts
@@ -54,8 +53,8 @@ class OllamaEmbeddings(TextEmbeddingFunction):
The texts to embed The texts to embed
""" """
# TODO retry, rate limit, token limit # TODO retry, rate limit, token limit
embeddings = [self._compute_embedding(text) for text in texts] embeddings = self._compute_embedding(texts)
return embeddings return list(embeddings)
@cached_property @cached_property
def _ollama_client(self) -> "ollama.Client": def _ollama_client(self) -> "ollama.Client":

View File

@@ -2,7 +2,7 @@
# SPDX-FileCopyrightText: Copyright The LanceDB Authors # SPDX-FileCopyrightText: Copyright The LanceDB Authors
import json import json
from typing import Dict, Optional from typing import Dict, Optional, Type
from .base import EmbeddingFunction, EmbeddingFunctionConfig from .base import EmbeddingFunction, EmbeddingFunctionConfig
@@ -43,7 +43,7 @@ class EmbeddingFunctionRegistry:
self._functions = {} self._functions = {}
self._variables = {} self._variables = {}
def register(self, alias: str = None): def register(self, alias: Optional[str] = None):
""" """
This creates a decorator that can be used to register This creates a decorator that can be used to register
an EmbeddingFunction. an EmbeddingFunction.
@@ -75,7 +75,7 @@ class EmbeddingFunctionRegistry:
""" """
self._functions = {} self._functions = {}
def get(self, name: str): def get(self, name: str) -> Type[EmbeddingFunction]:
""" """
Fetch an embedding function class by name Fetch an embedding function class by name

View File

@@ -21,6 +21,36 @@ from ..dependencies import pandas as pd
from ..util import attempt_import_or_raise from ..util import attempt_import_or_raise
def create_import_stub(module_name: str, package_name: str = None):
"""
Create a stub module that allows class definition but fails when used.
This allows modules to be imported for doctest collection even when
optional dependencies are not available.
Parameters
----------
module_name : str
The name of the module to create a stub for
package_name : str, optional
The package name to suggest in the error message
Returns
-------
object
A stub object that can be used in place of the module
"""
class _ImportStub:
def __getattr__(self, name):
return _ImportStub # Return stub for chained access like nn.Module
def __call__(self, *args, **kwargs):
pkg = package_name or module_name
raise ImportError(f"You need to install {pkg} to use this functionality")
return _ImportStub()
# ruff: noqa: PERF203 # ruff: noqa: PERF203
def retry(tries=10, delay=1, max_delay=30, backoff=3, jitter=1): def retry(tries=10, delay=1, max_delay=30, backoff=3, jitter=1):
def wrapper(fn): def wrapper(fn):

View File

@@ -137,6 +137,9 @@ class FTS:
stem: bool = True stem: bool = True
remove_stop_words: bool = True remove_stop_words: bool = True
ascii_folding: bool = True ascii_folding: bool = True
ngram_min_length: int = 3
ngram_max_length: int = 3
prefix_only: bool = False
@dataclass @dataclass

View File

@@ -4,7 +4,6 @@
from __future__ import annotations from __future__ import annotations
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
import abc
from concurrent.futures import ThreadPoolExecutor from concurrent.futures import ThreadPoolExecutor
from enum import Enum from enum import Enum
from datetime import timedelta from datetime import timedelta
@@ -15,7 +14,7 @@ from typing import (
Literal, Literal,
Optional, Optional,
Tuple, Tuple,
Type, TypeVar,
Union, Union,
Any, Any,
) )
@@ -59,6 +58,8 @@ if TYPE_CHECKING:
else: else:
from typing_extensions import Self from typing_extensions import Self
T = TypeVar("T", bound="LanceModel")
# Pydantic validation function for vector queries # Pydantic validation function for vector queries
def ensure_vector_query( def ensure_vector_query(
@@ -88,15 +89,28 @@ def ensure_vector_query(
return val return val
class FullTextQueryType(Enum): class FullTextQueryType(str, Enum):
MATCH = "match" MATCH = "match"
MATCH_PHRASE = "match_phrase" MATCH_PHRASE = "match_phrase"
BOOST = "boost" BOOST = "boost"
MULTI_MATCH = "multi_match" MULTI_MATCH = "multi_match"
BOOLEAN = "boolean"
class FullTextQuery(abc.ABC, pydantic.BaseModel): class FullTextOperator(str, Enum):
@abc.abstractmethod AND = "AND"
OR = "OR"
class Occur(str, Enum):
SHOULD = "SHOULD"
MUST = "MUST"
MUST_NOT = "MUST_NOT"
@pydantic.dataclasses.dataclass
class FullTextQuery(ABC):
@abstractmethod
def query_type(self) -> FullTextQueryType: def query_type(self) -> FullTextQueryType:
""" """
Get the query type of the query. Get the query type of the query.
@@ -106,35 +120,43 @@ class FullTextQuery(abc.ABC, pydantic.BaseModel):
str str
The type of the query. The type of the query.
""" """
pass
@abc.abstractmethod def __and__(self, other: "FullTextQuery") -> "FullTextQuery":
def to_dict(self) -> dict:
""" """
Convert the query to a dictionary. Combine two queries with a logical AND operation.
Parameters
----------
other : FullTextQuery
The other query to combine with.
Returns Returns
------- -------
dict FullTextQuery
The query as a dictionary. A new query that combines both queries with AND.
""" """
return BooleanQuery([(Occur.MUST, self), (Occur.MUST, other)])
def __or__(self, other: "FullTextQuery") -> "FullTextQuery":
"""
Combine two queries with a logical OR operation.
Parameters
----------
other : FullTextQuery
The other query to combine with.
Returns
-------
FullTextQuery
A new query that combines both queries with OR.
"""
return BooleanQuery([(Occur.SHOULD, self), (Occur.SHOULD, other)])
@pydantic.dataclasses.dataclass
class MatchQuery(FullTextQuery): class MatchQuery(FullTextQuery):
query: str
column: str
boost: float = 1.0
fuzziness: int = 0
max_expansions: int = 50
def __init__(
self,
query: str,
column: str,
*,
boost: float = 1.0,
fuzziness: int = 0,
max_expansions: int = 50,
):
""" """
Match query for full-text search. Match query for full-text search.
@@ -157,36 +179,30 @@ class MatchQuery(FullTextQuery):
max_expansions : int, optional max_expansions : int, optional
The maximum number of terms to consider for fuzzy matching. The maximum number of terms to consider for fuzzy matching.
Defaults to 50. Defaults to 50.
operator : FullTextOperator, default OR
The operator to use for combining the query results.
Can be either `AND` or `OR`.
If `AND`, all terms in the query must match.
If `OR`, at least one term in the query must match.
prefix_length : int, optional
The number of beginning characters being unchanged for fuzzy matching.
This is useful to achieve prefix matching.
""" """
super().__init__(
query=query, query: str
column=column, column: str
boost=boost, boost: float = pydantic.Field(1.0, kw_only=True)
fuzziness=fuzziness, fuzziness: int = pydantic.Field(0, kw_only=True)
max_expansions=max_expansions, max_expansions: int = pydantic.Field(50, kw_only=True)
) operator: FullTextOperator = pydantic.Field(FullTextOperator.OR, kw_only=True)
prefix_length: int = pydantic.Field(0, kw_only=True)
def query_type(self) -> FullTextQueryType: def query_type(self) -> FullTextQueryType:
return FullTextQueryType.MATCH return FullTextQueryType.MATCH
def to_dict(self) -> dict:
return {
"match": {
self.column: {
"query": self.query,
"boost": self.boost,
"fuzziness": self.fuzziness,
"max_expansions": self.max_expansions,
}
}
}
@pydantic.dataclasses.dataclass
class PhraseQuery(FullTextQuery): class PhraseQuery(FullTextQuery):
query: str
column: str
def __init__(self, query: str, column: str):
""" """
Phrase query for full-text search. Phrase query for full-text search.
@@ -197,31 +213,17 @@ class PhraseQuery(FullTextQuery):
column : str column : str
The name of the column to match against. The name of the column to match against.
""" """
super().__init__(query=query, column=column)
query: str
column: str
slop: int = pydantic.Field(0, kw_only=True)
def query_type(self) -> FullTextQueryType: def query_type(self) -> FullTextQueryType:
return FullTextQueryType.MATCH_PHRASE return FullTextQueryType.MATCH_PHRASE
def to_dict(self) -> dict:
return {
"match_phrase": {
self.column: self.query,
}
}
@pydantic.dataclasses.dataclass
class BoostQuery(FullTextQuery): class BoostQuery(FullTextQuery):
positive: FullTextQuery
negative: FullTextQuery
negative_boost: float = 0.5
def __init__(
self,
positive: FullTextQuery,
negative: FullTextQuery,
*,
negative_boost: float = 0.5,
):
""" """
Boost query for full-text search. Boost query for full-text search.
@@ -231,68 +233,65 @@ class BoostQuery(FullTextQuery):
The positive query object. The positive query object.
negative : dict negative : dict
The negative query object. The negative query object.
negative_boost : float negative_boost : float, default 0.5
The boost factor for the negative query. The boost factor for the negative query.
""" """
super().__init__(
positive=positive, negative=negative, negative_boost=negative_boost positive: FullTextQuery
) negative: FullTextQuery
negative_boost: float = pydantic.Field(0.5, kw_only=True)
def query_type(self) -> FullTextQueryType: def query_type(self) -> FullTextQueryType:
return FullTextQueryType.BOOST return FullTextQueryType.BOOST
def to_dict(self) -> dict:
return {
"boost": {
"positive": self.positive.to_dict(),
"negative": self.negative.to_dict(),
"negative_boost": self.negative_boost,
}
}
@pydantic.dataclasses.dataclass
class MultiMatchQuery(FullTextQuery): class MultiMatchQuery(FullTextQuery):
query: str
columns: list[str]
boosts: list[float]
def __init__(
self,
query: str,
columns: list[str],
*,
boosts: Optional[list[float]] = None,
):
""" """
Multi-match query for full-text search. Multi-match query for full-text search.
Parameters Parameters
---------- ----------
query : str query : str | list[Query]
The query string to match against. If a string, the query string to match against.
columns : list[str] columns : list[str]
The list of columns to match against. The list of columns to match against.
boosts : list[float], optional boosts : list[float], optional
The list of boost factors for each column. If not provided, The list of boost factors for each column. If not provided,
all columns will have the same boost factor. all columns will have the same boost factor.
operator : FullTextOperator, default OR
The operator to use for combining the query results.
Can be either `AND` or `OR`.
It would be applied to all columns individually.
For example, if the operator is `AND`,
then the query "hello world" is equal to
`match("hello AND world", column1) OR match("hello AND world", column2)`.
""" """
if boosts is None:
boosts = [1.0] * len(columns) query: str
super().__init__(query=query, columns=columns, boosts=boosts) columns: list[str]
boosts: Optional[list[float]] = pydantic.Field(None, kw_only=True)
operator: FullTextOperator = pydantic.Field(FullTextOperator.OR, kw_only=True)
def query_type(self) -> FullTextQueryType: def query_type(self) -> FullTextQueryType:
return FullTextQueryType.MULTI_MATCH return FullTextQueryType.MULTI_MATCH
def to_dict(self) -> dict:
return { @pydantic.dataclasses.dataclass
"multi_match": { class BooleanQuery(FullTextQuery):
"query": self.query, """
"columns": self.columns, Boolean query for full-text search.
"boost": self.boosts,
} Parameters
} ----------
queries : list[tuple(Occur, FullTextQuery)]
The list of queries with their occurrence requirements.
"""
queries: list[tuple[Occur, FullTextQuery]]
def query_type(self) -> FullTextQueryType:
return FullTextQueryType.BOOLEAN
class FullTextSearchQuery(pydantic.BaseModel): class FullTextSearchQuery(pydantic.BaseModel):
@@ -445,8 +444,18 @@ class Query(pydantic.BaseModel):
# which columns to return in the results # which columns to return in the results
columns: Optional[Union[List[str], Dict[str, str]]] = None columns: Optional[Union[List[str], Dict[str, str]]] = None
# number of IVF partitions to search # minimum number of IVF partitions to search
nprobes: Optional[int] = None #
# If None then a default value (20) will be used.
minimum_nprobes: Optional[int] = None
# maximum number of IVF partitions to search
#
# If None then a default value (20) will be used.
#
# If 0 then no limit will be applied and all partitions could be searched
# if needed to satisfy the limit.
maximum_nprobes: Optional[int] = None
# lower bound for distance search # lower bound for distance search
lower_bound: Optional[float] = None lower_bound: Optional[float] = None
@@ -484,7 +493,8 @@ class Query(pydantic.BaseModel):
query.vector_column = req.column query.vector_column = req.column
query.vector = req.query_vector query.vector = req.query_vector
query.distance_type = req.distance_type query.distance_type = req.distance_type
query.nprobes = req.nprobes query.minimum_nprobes = req.minimum_nprobes
query.maximum_nprobes = req.maximum_nprobes
query.lower_bound = req.lower_bound query.lower_bound = req.lower_bound
query.upper_bound = req.upper_bound query.upper_bound = req.upper_bound
query.ef = req.ef query.ef = req.ef
@@ -493,10 +503,8 @@ class Query(pydantic.BaseModel):
query.postfilter = req.postfilter query.postfilter = req.postfilter
if req.full_text_search is not None: if req.full_text_search is not None:
query.full_text_query = FullTextSearchQuery( query.full_text_query = FullTextSearchQuery(
columns=req.full_text_search.columns, columns=None,
query=req.full_text_search.query, query=req.full_text_search,
limit=req.full_text_search.limit,
wand_factor=req.full_text_search.wand_factor,
) )
return query return query
@@ -740,8 +748,8 @@ class LanceQueryBuilder(ABC):
return self.to_arrow(timeout=timeout).to_pylist() return self.to_arrow(timeout=timeout).to_pylist()
def to_pydantic( def to_pydantic(
self, model: Type[LanceModel], *, timeout: Optional[timedelta] = None self, model: type[T], *, timeout: Optional[timedelta] = None
) -> List[LanceModel]: ) -> list[T]:
"""Return the table as a list of pydantic models. """Return the table as a list of pydantic models.
Parameters Parameters
@@ -904,7 +912,7 @@ class LanceQueryBuilder(ABC):
FilterExec: _distance@2 IS NOT NULL FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false] SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2 KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false LanceRead: uri=..., projection=[vector], ...
Parameters Parameters
---------- ----------
@@ -934,6 +942,7 @@ class LanceQueryBuilder(ABC):
>>> plan = table.search(query).analyze_plan() >>> plan = table.search(query).analyze_plan()
>>> print(plan) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE >>> print(plan) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
AnalyzeExec verbose=true, metrics=[] AnalyzeExec verbose=true, metrics=[]
TracedExec, metrics=[]
ProjectionExec: expr=[...], metrics=[...] ProjectionExec: expr=[...], metrics=[...]
GlobalLimitExec: skip=0, fetch=10, metrics=[...] GlobalLimitExec: skip=0, fetch=10, metrics=[...]
FilterExec: _distance@2 IS NOT NULL, FilterExec: _distance@2 IS NOT NULL,
@@ -943,8 +952,7 @@ class LanceQueryBuilder(ABC):
metrics=[output_rows=..., elapsed_compute=..., row_replacements=...] metrics=[output_rows=..., elapsed_compute=..., row_replacements=...]
KNNVectorDistance: metric=l2, KNNVectorDistance: metric=l2,
metrics=[output_rows=..., elapsed_compute=..., output_batches=...] metrics=[output_rows=..., elapsed_compute=..., output_batches=...]
LanceScan: uri=..., projection=[vector], row_id=true, LanceRead: uri=..., projection=[vector], ...
row_addr=false, ordered=false,
metrics=[output_rows=..., elapsed_compute=..., metrics=[output_rows=..., elapsed_compute=...,
bytes_read=..., iops=..., requests=...] bytes_read=..., iops=..., requests=...]
@@ -1047,7 +1055,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
super().__init__(table) super().__init__(table)
self._query = query self._query = query
self._distance_type = None self._distance_type = None
self._nprobes = None self._minimum_nprobes = None
self._maximum_nprobes = None
self._lower_bound = None self._lower_bound = None
self._upper_bound = None self._upper_bound = None
self._refine_factor = None self._refine_factor = None
@@ -1110,6 +1119,10 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
See discussion in [Querying an ANN Index][querying-an-ann-index] for See discussion in [Querying an ANN Index][querying-an-ann-index] for
tuning advice. tuning advice.
This method sets both the minimum and maximum number of probes to the same
value. See `minimum_nprobes` and `maximum_nprobes` for more fine-grained
control.
Parameters Parameters
---------- ----------
nprobes: int nprobes: int
@@ -1120,7 +1133,36 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
LanceVectorQueryBuilder LanceVectorQueryBuilder
The LanceQueryBuilder object. The LanceQueryBuilder object.
""" """
self._nprobes = nprobes self._minimum_nprobes = nprobes
self._maximum_nprobes = nprobes
return self
def minimum_nprobes(self, minimum_nprobes: int) -> LanceVectorQueryBuilder:
"""Set the minimum number of probes to use.
See `nprobes` for more details.
These partitions will be searched on every vector query and will increase recall
at the expense of latency.
"""
self._minimum_nprobes = minimum_nprobes
return self
def maximum_nprobes(self, maximum_nprobes: int) -> LanceVectorQueryBuilder:
"""Set the maximum number of probes to use.
See `nprobes` for more details.
If this value is greater than `minimum_nprobes` then the excess partitions
will be searched only if we have not found enough results.
This can be useful when there is a narrow filter to allow these queries to
spend more time searching and avoid potential false negatives.
If this value is 0 then no limit will be applied and all partitions could be
searched if needed to satisfy the limit.
"""
self._maximum_nprobes = maximum_nprobes
return self return self
def distance_range( def distance_range(
@@ -1224,7 +1266,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
limit=self._limit, limit=self._limit,
distance_type=self._distance_type, distance_type=self._distance_type,
columns=self._columns, columns=self._columns,
nprobes=self._nprobes, minimum_nprobes=self._minimum_nprobes,
maximum_nprobes=self._maximum_nprobes,
lower_bound=self._lower_bound, lower_bound=self._lower_bound,
upper_bound=self._upper_bound, upper_bound=self._upper_bound,
refine_factor=self._refine_factor, refine_factor=self._refine_factor,
@@ -1333,6 +1376,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
if query_string is not None and not isinstance(query_string, str): if query_string is not None and not isinstance(query_string, str):
raise ValueError("Reranking currently only supports string queries") raise ValueError("Reranking currently only supports string queries")
self._str_query = query_string if query_string is not None else self._str_query self._str_query = query_string if query_string is not None else self._str_query
if reranker.score == "all":
self.with_row_id(True)
return self return self
def bypass_vector_index(self) -> LanceVectorQueryBuilder: def bypass_vector_index(self) -> LanceVectorQueryBuilder:
@@ -1410,10 +1455,13 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
query = self._query query = self._query
if self._phrase_query: if self._phrase_query:
raise NotImplementedError( if isinstance(query, str):
"Phrase query is not yet supported in Lance FTS. " if not query.startswith('"') or not query.endswith('"'):
"Use tantivy-based index instead for now." query = f'"{query}"'
) elif isinstance(query, FullTextQuery) and not isinstance(
query, PhraseQuery
):
raise TypeError("Please use PhraseQuery for phrase queries.")
query = self.to_query_object() query = self.to_query_object()
results = self._table._execute_query(query, timeout=timeout) results = self._table._execute_query(query, timeout=timeout)
results = results.read_all() results = results.read_all()
@@ -1525,6 +1573,8 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
The LanceQueryBuilder object. The LanceQueryBuilder object.
""" """
self._reranker = reranker self._reranker = reranker
if reranker.score == "all":
self.with_row_id(True)
return self return self
@@ -1588,7 +1638,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._fts_columns = fts_columns self._fts_columns = fts_columns
self._norm = None self._norm = None
self._reranker = None self._reranker = None
self._nprobes = None self._minimum_nprobes = None
self._maximum_nprobes = None
self._refine_factor = None self._refine_factor = None
self._distance_type = None self._distance_type = None
self._phrase_query = None self._phrase_query = None
@@ -1800,6 +1851,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._norm = normalize self._norm = normalize
self._reranker = reranker self._reranker = reranker
if reranker.score == "all":
self.with_row_id(True)
return self return self
@@ -1820,7 +1873,24 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
LanceHybridQueryBuilder LanceHybridQueryBuilder
The LanceHybridQueryBuilder object. The LanceHybridQueryBuilder object.
""" """
self._nprobes = nprobes self._minimum_nprobes = nprobes
self._maximum_nprobes = nprobes
return self
def minimum_nprobes(self, minimum_nprobes: int) -> LanceHybridQueryBuilder:
"""Set the minimum number of probes to use.
See `nprobes` for more details.
"""
self._minimum_nprobes = minimum_nprobes
return self
def maximum_nprobes(self, maximum_nprobes: int) -> LanceHybridQueryBuilder:
"""Set the maximum number of probes to use.
See `nprobes` for more details.
"""
self._maximum_nprobes = maximum_nprobes
return self return self
def distance_range( def distance_range(
@@ -1975,7 +2045,7 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
FilterExec: _distance@2 IS NOT NULL FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false] SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2 KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false LanceRead: uri=..., projection=[vector], ...
Parameters Parameters
---------- ----------
@@ -2049,8 +2119,10 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._fts_query.phrase_query(True) self._fts_query.phrase_query(True)
if self._distance_type: if self._distance_type:
self._vector_query.metric(self._distance_type) self._vector_query.metric(self._distance_type)
if self._nprobes: if self._minimum_nprobes:
self._vector_query.nprobes(self._nprobes) self._vector_query.minimum_nprobes(self._minimum_nprobes)
if self._maximum_nprobes is not None:
self._vector_query.maximum_nprobes(self._maximum_nprobes)
if self._refine_factor: if self._refine_factor:
self._vector_query.refine_factor(self._refine_factor) self._vector_query.refine_factor(self._refine_factor)
if self._ef: if self._ef:
@@ -2359,7 +2431,7 @@ class AsyncQueryBase(object):
FilterExec: _distance@2 IS NOT NULL FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false] SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2 KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false LanceRead: uri=..., projection=[vector], ...
Parameters Parameters
---------- ----------
@@ -2513,7 +2585,7 @@ class AsyncQuery(AsyncQueryBase):
self._inner.nearest_to_text({"query": query, "columns": columns}) self._inner.nearest_to_text({"query": query, "columns": columns})
) )
# FullTextQuery object # FullTextQuery object
return AsyncFTSQuery(self._inner.nearest_to_text({"query": query.to_dict()})) return AsyncFTSQuery(self._inner.nearest_to_text({"query": query}))
class AsyncFTSQuery(AsyncQueryBase): class AsyncFTSQuery(AsyncQueryBase):
@@ -2661,6 +2733,34 @@ class AsyncVectorQueryBase:
self._inner.nprobes(nprobes) self._inner.nprobes(nprobes)
return self return self
def minimum_nprobes(self, minimum_nprobes: int) -> Self:
"""Set the minimum number of probes to use.
See `nprobes` for more details.
These partitions will be searched on every indexed vector query and will
increase recall at the expense of latency.
"""
self._inner.minimum_nprobes(minimum_nprobes)
return self
def maximum_nprobes(self, maximum_nprobes: int) -> Self:
"""Set the maximum number of probes to use.
See `nprobes` for more details.
If this value is greater than `minimum_nprobes` then the excess partitions
will be searched only if we have not found enough results.
This can be useful when there is a narrow filter to allow these queries to
spend more time searching and avoid potential false negatives.
If this value is 0 then no limit will be applied and all partitions could be
searched if needed to satisfy the limit.
"""
self._inner.maximum_nprobes(maximum_nprobes)
return self
def distance_range( def distance_range(
self, lower_bound: Optional[float] = None, upper_bound: Optional[float] = None self, lower_bound: Optional[float] = None, upper_bound: Optional[float] = None
) -> Self: ) -> Self:
@@ -2835,7 +2935,7 @@ class AsyncVectorQuery(AsyncQueryBase, AsyncVectorQueryBase):
self._inner.nearest_to_text({"query": query, "columns": columns}) self._inner.nearest_to_text({"query": query, "columns": columns})
) )
# FullTextQuery object # FullTextQuery object
return AsyncHybridQuery(self._inner.nearest_to_text({"query": query.to_dict()})) return AsyncHybridQuery(self._inner.nearest_to_text({"query": query}))
async def to_batches( async def to_batches(
self, self,
@@ -2956,9 +3056,15 @@ class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
FilterExec: _distance@2 IS NOT NULL FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false] SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2 KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false LanceRead: uri=..., projection=[vector], ...
<BLANKLINE>
FTS Search Plan: FTS Search Plan:
LanceScan: uri=..., projection=[vector, text], row_id=false, row_addr=false, ordered=true ProjectionExec: expr=[vector@2 as vector, text@3 as text, _score@1 as _score]
Take: columns="_rowid, _score, (vector), (text)"
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=10
MatchQuery: query=hello
<BLANKLINE>
Parameters Parameters
---------- ----------

View File

@@ -18,7 +18,7 @@ from lancedb._lancedb import (
UpdateResult, UpdateResult,
) )
from lancedb.embeddings.base import EmbeddingFunctionConfig from lancedb.embeddings.base import EmbeddingFunctionConfig
from lancedb.index import FTS, BTree, Bitmap, HnswPq, HnswSq, IvfFlat, IvfPq, LabelList from lancedb.index import FTS, BTree, Bitmap, HnswSq, IvfFlat, IvfPq, LabelList
from lancedb.remote.db import LOOP from lancedb.remote.db import LOOP
import pyarrow as pa import pyarrow as pa
@@ -89,7 +89,7 @@ class RemoteTable(Table):
def to_pandas(self): def to_pandas(self):
"""to_pandas() is not yet supported on LanceDB cloud.""" """to_pandas() is not yet supported on LanceDB cloud."""
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.") raise NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
def checkout(self, version: Union[int, str]): def checkout(self, version: Union[int, str]):
return LOOP.run(self._table.checkout(version)) return LOOP.run(self._table.checkout(version))
@@ -158,6 +158,9 @@ class RemoteTable(Table):
stem: bool = True, stem: bool = True,
remove_stop_words: bool = True, remove_stop_words: bool = True,
ascii_folding: bool = True, ascii_folding: bool = True,
ngram_min_length: int = 3,
ngram_max_length: int = 3,
prefix_only: bool = False,
): ):
config = FTS( config = FTS(
with_position=with_position, with_position=with_position,
@@ -168,6 +171,9 @@ class RemoteTable(Table):
stem=stem, stem=stem,
remove_stop_words=remove_stop_words, remove_stop_words=remove_stop_words,
ascii_folding=ascii_folding, ascii_folding=ascii_folding,
ngram_min_length=ngram_min_length,
ngram_max_length=ngram_max_length,
prefix_only=prefix_only,
) )
LOOP.run( LOOP.run(
self._table.create_index( self._table.create_index(
@@ -186,6 +192,8 @@ class RemoteTable(Table):
accelerator: Optional[str] = None, accelerator: Optional[str] = None,
index_type="vector", index_type="vector",
wait_timeout: Optional[timedelta] = None, wait_timeout: Optional[timedelta] = None,
*,
num_bits: int = 8,
): ):
"""Create an index on the table. """Create an index on the table.
Currently, the only parameters that matter are Currently, the only parameters that matter are
@@ -220,11 +228,6 @@ class RemoteTable(Table):
>>> table.create_index("l2", "vector") # doctest: +SKIP >>> table.create_index("l2", "vector") # doctest: +SKIP
""" """
if num_partitions is not None:
logging.warning(
"num_partitions is not supported on LanceDB cloud."
"This parameter will be tuned automatically."
)
if num_sub_vectors is not None: if num_sub_vectors is not None:
logging.warning( logging.warning(
"num_sub_vectors is not supported on LanceDB cloud." "num_sub_vectors is not supported on LanceDB cloud."
@@ -244,13 +247,21 @@ class RemoteTable(Table):
index_type = index_type.upper() index_type = index_type.upper()
if index_type == "VECTOR" or index_type == "IVF_PQ": if index_type == "VECTOR" or index_type == "IVF_PQ":
config = IvfPq(distance_type=metric) config = IvfPq(
distance_type=metric,
num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors,
num_bits=num_bits,
)
elif index_type == "IVF_HNSW_PQ": elif index_type == "IVF_HNSW_PQ":
config = HnswPq(distance_type=metric) raise ValueError(
"IVF_HNSW_PQ is not supported on LanceDB cloud."
"Please use IVF_HNSW_SQ instead."
)
elif index_type == "IVF_HNSW_SQ": elif index_type == "IVF_HNSW_SQ":
config = HnswSq(distance_type=metric) config = HnswSq(distance_type=metric, num_partitions=num_partitions)
elif index_type == "IVF_FLAT": elif index_type == "IVF_FLAT":
config = IvfFlat(distance_type=metric) config = IvfFlat(distance_type=metric, num_partitions=num_partitions)
else: else:
raise ValueError( raise ValueError(
f"Unknown vector index type: {index_type}. Valid options are" f"Unknown vector index type: {index_type}. Valid options are"

View File

@@ -74,9 +74,7 @@ class AnswerdotaiRerankers(Reranker):
if self.score == "relevance": if self.score == "relevance":
combined_results = self._keep_relevance_score(combined_results) combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all": elif self.score == "all":
raise NotImplementedError( combined_results = self._merge_and_keep_scores(vector_results, fts_results)
"Answerdotai Reranker does not support score='all' yet"
)
combined_results = combined_results.sort_by( combined_results = combined_results.sort_by(
[("_relevance_score", "descending")] [("_relevance_score", "descending")]
) )

View File

@@ -232,6 +232,39 @@ class Reranker(ABC):
return deduped_table return deduped_table
def _merge_and_keep_scores(self, vector_results: pa.Table, fts_results: pa.Table):
"""
Merge the results from the vector and FTS search and keep the scores.
This op is slower than just keeping relevance score but can be useful
for debugging.
"""
# add nulls to fts results for _distance
if "_distance" not in fts_results.column_names:
fts_results = fts_results.append_column(
"_distance",
pa.array([None] * len(fts_results), type=pa.float32()),
)
# add nulls to vector results for _score
if "_score" not in vector_results.column_names:
vector_results = vector_results.append_column(
"_score",
pa.array([None] * len(vector_results), type=pa.float32()),
)
# combine them and fill the scores
vector_results_dict = {row["_rowid"]: row for row in vector_results.to_pylist()}
fts_results_dict = {row["_rowid"]: row for row in fts_results.to_pylist()}
# merge them into vector_results
for key, value in fts_results_dict.items():
if key in vector_results_dict:
vector_results_dict[key]["_score"] = value["_score"]
else:
vector_results_dict[key] = value
combined = pa.Table.from_pylist(list(vector_results_dict.values()))
return combined
def _keep_relevance_score(self, combined_results: pa.Table): def _keep_relevance_score(self, combined_results: pa.Table):
if self.score == "relevance": if self.score == "relevance":
if "_score" in combined_results.column_names: if "_score" in combined_results.column_names:

View File

@@ -92,14 +92,14 @@ class CohereReranker(Reranker):
vector_results: pa.Table, vector_results: pa.Table,
fts_results: pa.Table, fts_results: pa.Table,
): ):
if self.score == "all":
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
else:
combined_results = self.merge_results(vector_results, fts_results) combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query) combined_results = self._rerank(combined_results, query)
if self.score == "relevance": if self.score == "relevance":
combined_results = self._keep_relevance_score(combined_results) combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"return_score='all' not implemented for cohere reranker"
)
return combined_results return combined_results
def rerank_vector(self, query: str, vector_results: pa.Table): def rerank_vector(self, query: str, vector_results: pa.Table):

View File

@@ -81,15 +81,15 @@ class CrossEncoderReranker(Reranker):
vector_results: pa.Table, vector_results: pa.Table,
fts_results: pa.Table, fts_results: pa.Table,
): ):
if self.score == "all":
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
else:
combined_results = self.merge_results(vector_results, fts_results) combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query) combined_results = self._rerank(combined_results, query)
# sort the results by _score # sort the results by _score
if self.score == "relevance": if self.score == "relevance":
combined_results = self._keep_relevance_score(combined_results) combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"return_score='all' not implemented for CrossEncoderReranker"
)
combined_results = combined_results.sort_by( combined_results = combined_results.sort_by(
[("_relevance_score", "descending")] [("_relevance_score", "descending")]
) )

View File

@@ -97,14 +97,14 @@ class JinaReranker(Reranker):
vector_results: pa.Table, vector_results: pa.Table,
fts_results: pa.Table, fts_results: pa.Table,
): ):
if self.score == "all":
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
else:
combined_results = self.merge_results(vector_results, fts_results) combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query) combined_results = self._rerank(combined_results, query)
if self.score == "relevance": if self.score == "relevance":
combined_results = self._keep_relevance_score(combined_results) combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"return_score='all' not implemented for JinaReranker"
)
return combined_results return combined_results
def rerank_vector(self, query: str, vector_results: pa.Table): def rerank_vector(self, query: str, vector_results: pa.Table):

View File

@@ -88,14 +88,13 @@ class OpenaiReranker(Reranker):
vector_results: pa.Table, vector_results: pa.Table,
fts_results: pa.Table, fts_results: pa.Table,
): ):
if self.score == "all":
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
else:
combined_results = self.merge_results(vector_results, fts_results) combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query) combined_results = self._rerank(combined_results, query)
if self.score == "relevance": if self.score == "relevance":
combined_results = self._keep_relevance_score(combined_results) combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"OpenAI Reranker does not support score='all' yet"
)
combined_results = combined_results.sort_by( combined_results = combined_results.sort_by(
[("_relevance_score", "descending")] [("_relevance_score", "descending")]

View File

@@ -94,14 +94,14 @@ class VoyageAIReranker(Reranker):
vector_results: pa.Table, vector_results: pa.Table,
fts_results: pa.Table, fts_results: pa.Table,
): ):
if self.score == "all":
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
else:
combined_results = self.merge_results(vector_results, fts_results) combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query) combined_results = self._rerank(combined_results, query)
if self.score == "relevance": if self.score == "relevance":
combined_results = self._keep_relevance_score(combined_results) combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"return_score='all' not implemented for voyageai reranker"
)
return combined_results return combined_results
def rerank_vector(self, query: str, vector_results: pa.Table): def rerank_vector(self, query: str, vector_results: pa.Table):

View File

@@ -102,7 +102,9 @@ if TYPE_CHECKING:
) )
def _into_pyarrow_reader(data) -> pa.RecordBatchReader: def _into_pyarrow_reader(
data, schema: Optional[pa.Schema] = None
) -> pa.RecordBatchReader:
from lancedb.dependencies import datasets from lancedb.dependencies import datasets
if _check_for_hugging_face(data): if _check_for_hugging_face(data):
@@ -123,6 +125,12 @@ def _into_pyarrow_reader(data) -> pa.RecordBatchReader:
raise ValueError("Cannot add a single dictionary to a table. Use a list.") raise ValueError("Cannot add a single dictionary to a table. Use a list.")
if isinstance(data, list): if isinstance(data, list):
# Handle empty list case
if not data:
if schema is None:
raise ValueError("Cannot create table from empty list without a schema")
return pa.Table.from_pylist(data, schema=schema).to_reader()
# convert to list of dict if data is a bunch of LanceModels # convert to list of dict if data is a bunch of LanceModels
if isinstance(data[0], LanceModel): if isinstance(data[0], LanceModel):
schema = data[0].__class__.to_arrow_schema() schema = data[0].__class__.to_arrow_schema()
@@ -165,9 +173,9 @@ def _into_pyarrow_reader(data) -> pa.RecordBatchReader:
else: else:
raise TypeError( raise TypeError(
f"Unknown data type {type(data)}. " f"Unknown data type {type(data)}. "
"Please check " "Supported types: list of dicts, pandas DataFrame, polars DataFrame, "
"https://lancedb.github.io/lancedb/python/python/ " "pyarrow Table/RecordBatch, or Pydantic models. "
"to see supported types." "See https://lancedb.github.io/lancedb/guides/tables/ for examples."
) )
@@ -236,7 +244,7 @@ def _sanitize_data(
# 1. There might be embedding columns missing that will be added # 1. There might be embedding columns missing that will be added
# in the add_embeddings step. # in the add_embeddings step.
# 2. If `allow_subschemas` is True, there might be columns missing. # 2. If `allow_subschemas` is True, there might be columns missing.
reader = _into_pyarrow_reader(data) reader = _into_pyarrow_reader(data, target_schema)
reader = _append_vector_columns(reader, target_schema, metadata=metadata) reader = _append_vector_columns(reader, target_schema, metadata=metadata)
@@ -827,7 +835,7 @@ class Table(ABC):
ordering_field_names: Optional[Union[str, List[str]]] = None, ordering_field_names: Optional[Union[str, List[str]]] = None,
replace: bool = False, replace: bool = False,
writer_heap_size: Optional[int] = 1024 * 1024 * 1024, writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
use_tantivy: bool = True, use_tantivy: bool = False,
tokenizer_name: Optional[str] = None, tokenizer_name: Optional[str] = None,
with_position: bool = False, with_position: bool = False,
# tokenizer configs: # tokenizer configs:
@@ -838,6 +846,9 @@ class Table(ABC):
stem: bool = True, stem: bool = True,
remove_stop_words: bool = True, remove_stop_words: bool = True,
ascii_folding: bool = True, ascii_folding: bool = True,
ngram_min_length: int = 3,
ngram_max_length: int = 3,
prefix_only: bool = False,
wait_timeout: Optional[timedelta] = None, wait_timeout: Optional[timedelta] = None,
): ):
"""Create a full-text search index on the table. """Create a full-text search index on the table.
@@ -864,7 +875,7 @@ class Table(ABC):
The tokenizer to use for the index. Can be "raw", "default" or the 2 letter The tokenizer to use for the index. Can be "raw", "default" or the 2 letter
language code followed by "_stem". So for english it would be "en_stem". language code followed by "_stem". So for english it would be "en_stem".
For available languages see: https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html For available languages see: https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html
use_tantivy: bool, default True use_tantivy: bool, default False
If True, use the legacy full-text search implementation based on tantivy. If True, use the legacy full-text search implementation based on tantivy.
If False, use the new full-text search implementation based on lance-index. If False, use the new full-text search implementation based on lance-index.
with_position: bool, default False with_position: bool, default False
@@ -877,6 +888,7 @@ class Table(ABC):
- "simple": Splits text by whitespace and punctuation. - "simple": Splits text by whitespace and punctuation.
- "whitespace": Split text by whitespace, but not punctuation. - "whitespace": Split text by whitespace, but not punctuation.
- "raw": No tokenization. The entire text is treated as a single token. - "raw": No tokenization. The entire text is treated as a single token.
- "ngram": N-Gram tokenizer.
language : str, default "English" language : str, default "English"
The language to use for tokenization. The language to use for tokenization.
max_token_length : int, default 40 max_token_length : int, default 40
@@ -894,6 +906,12 @@ class Table(ABC):
ascii_folding : bool, default True ascii_folding : bool, default True
Whether to fold ASCII characters. This converts accented characters to Whether to fold ASCII characters. This converts accented characters to
their ASCII equivalent. For example, "café" would be converted to "cafe". their ASCII equivalent. For example, "café" would be converted to "cafe".
ngram_min_length: int, default 3
The minimum length of an n-gram.
ngram_max_length: int, default 3
The maximum length of an n-gram.
prefix_only: bool, default False
Whether to only index the prefix of the token for ngram tokenizer.
wait_timeout: timedelta, optional wait_timeout: timedelta, optional
The timeout to wait if indexing is asynchronous. The timeout to wait if indexing is asynchronous.
""" """
@@ -1970,7 +1988,7 @@ class LanceTable(Table):
ordering_field_names: Optional[Union[str, List[str]]] = None, ordering_field_names: Optional[Union[str, List[str]]] = None,
replace: bool = False, replace: bool = False,
writer_heap_size: Optional[int] = 1024 * 1024 * 1024, writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
use_tantivy: bool = True, use_tantivy: bool = False,
tokenizer_name: Optional[str] = None, tokenizer_name: Optional[str] = None,
with_position: bool = False, with_position: bool = False,
# tokenizer configs: # tokenizer configs:
@@ -1981,6 +1999,9 @@ class LanceTable(Table):
stem: bool = True, stem: bool = True,
remove_stop_words: bool = True, remove_stop_words: bool = True,
ascii_folding: bool = True, ascii_folding: bool = True,
ngram_min_length: int = 3,
ngram_max_length: int = 3,
prefix_only: bool = False,
): ):
if not use_tantivy: if not use_tantivy:
if not isinstance(field_names, str): if not isinstance(field_names, str):
@@ -1996,6 +2017,9 @@ class LanceTable(Table):
"stem": stem, "stem": stem,
"remove_stop_words": remove_stop_words, "remove_stop_words": remove_stop_words,
"ascii_folding": ascii_folding, "ascii_folding": ascii_folding,
"ngram_min_length": ngram_min_length,
"ngram_max_length": ngram_max_length,
"prefix_only": prefix_only,
} }
else: else:
tokenizer_configs = self.infer_tokenizer_configs(tokenizer_name) tokenizer_configs = self.infer_tokenizer_configs(tokenizer_name)
@@ -2065,6 +2089,9 @@ class LanceTable(Table):
"stem": False, "stem": False,
"remove_stop_words": False, "remove_stop_words": False,
"ascii_folding": False, "ascii_folding": False,
"ngram_min_length": 3,
"ngram_max_length": 3,
"prefix_only": False,
} }
elif tokenizer_name == "raw": elif tokenizer_name == "raw":
return { return {
@@ -2075,6 +2102,9 @@ class LanceTable(Table):
"stem": False, "stem": False,
"remove_stop_words": False, "remove_stop_words": False,
"ascii_folding": False, "ascii_folding": False,
"ngram_min_length": 3,
"ngram_max_length": 3,
"prefix_only": False,
} }
elif tokenizer_name == "whitespace": elif tokenizer_name == "whitespace":
return { return {
@@ -2085,6 +2115,9 @@ class LanceTable(Table):
"stem": False, "stem": False,
"remove_stop_words": False, "remove_stop_words": False,
"ascii_folding": False, "ascii_folding": False,
"ngram_min_length": 3,
"ngram_max_length": 3,
"prefix_only": False,
} }
# or it's with language stemming with pattern like "en_stem" # or it's with language stemming with pattern like "en_stem"
@@ -2103,6 +2136,9 @@ class LanceTable(Table):
"stem": True, "stem": True,
"remove_stop_words": False, "remove_stop_words": False,
"ascii_folding": False, "ascii_folding": False,
"ngram_min_length": 3,
"ngram_max_length": 3,
"prefix_only": False,
} }
def add( def add(
@@ -3637,8 +3673,10 @@ class AsyncTable:
) )
if query.distance_type is not None: if query.distance_type is not None:
async_query = async_query.distance_type(query.distance_type) async_query = async_query.distance_type(query.distance_type)
if query.nprobes is not None: if query.minimum_nprobes is not None:
async_query = async_query.nprobes(query.nprobes) async_query = async_query.minimum_nprobes(query.minimum_nprobes)
if query.maximum_nprobes is not None:
async_query = async_query.maximum_nprobes(query.maximum_nprobes)
if query.refine_factor is not None: if query.refine_factor is not None:
async_query = async_query.refine_factor(query.refine_factor) async_query = async_query.refine_factor(query.refine_factor)
if query.vector_column: if query.vector_column:

View File

@@ -25,4 +25,4 @@ IndexType = Literal[
] ]
# Tokenizer literals # Tokenizer literals
BaseTokenizerType = Literal["simple", "raw", "whitespace"] BaseTokenizerType = Literal["simple", "raw", "whitespace", "ngram"]

View File

@@ -6,7 +6,7 @@ import lancedb
# --8<-- [end:import-lancedb] # --8<-- [end:import-lancedb]
# --8<-- [start:import-numpy] # --8<-- [start:import-numpy]
from lancedb.query import BoostQuery, MatchQuery from lancedb.query import BooleanQuery, BoostQuery, MatchQuery, Occur
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
@@ -191,6 +191,15 @@ def test_fts_fuzzy_query():
"food", # 1 insertion "food", # 1 insertion
} }
results = table.search(
MatchQuery("foo", "text", fuzziness=1, prefix_length=3)
).to_pandas()
assert len(results) == 2
assert set(results["text"].to_list()) == {
"foo",
"food",
}
@pytest.mark.skipif( @pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905" os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
@@ -240,6 +249,60 @@ def test_fts_boost_query():
) )
@pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
)
def test_fts_boolean_query(tmp_path):
uri = tmp_path / "boolean-example"
db = lancedb.connect(uri)
table = db.create_table(
"my_table_fts_boolean",
data=[
{"text": "The cat and dog are playing"},
{"text": "The cat is sleeping"},
{"text": "The dog is barking"},
{"text": "The dog chases the cat"},
],
mode="overwrite",
)
table.create_fts_index("text", use_tantivy=False, replace=True)
# SHOULD
results = table.search(
MatchQuery("cat", "text") | MatchQuery("dog", "text")
).to_pandas()
assert len(results) == 4
assert set(results["text"].to_list()) == {
"The cat and dog are playing",
"The cat is sleeping",
"The dog is barking",
"The dog chases the cat",
}
# MUST
results = table.search(
MatchQuery("cat", "text") & MatchQuery("dog", "text")
).to_pandas()
assert len(results) == 2
assert set(results["text"].to_list()) == {
"The cat and dog are playing",
"The dog chases the cat",
}
# MUST NOT
results = table.search(
BooleanQuery(
[
(Occur.MUST, MatchQuery("cat", "text")),
(Occur.MUST_NOT, MatchQuery("dog", "text")),
]
)
).to_pandas()
assert len(results) == 1
assert set(results["text"].to_list()) == {
"The cat is sleeping",
}
@pytest.mark.skipif( @pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905" os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
) )

View File

@@ -33,8 +33,11 @@ tantivy = pytest.importorskip("tantivy")
@pytest.fixture @pytest.fixture
def table(tmp_path) -> ldb.table.LanceTable: def table(tmp_path) -> ldb.table.LanceTable:
# Use local random state to avoid affecting other tests
rng = np.random.RandomState(42)
local_random = random.Random(42)
db = ldb.connect(tmp_path) db = ldb.connect(tmp_path)
vectors = [np.random.randn(128) for _ in range(100)] vectors = [rng.randn(128) for _ in range(100)]
text_nouns = ("puppy", "car") text_nouns = ("puppy", "car")
text2_nouns = ("rabbit", "girl", "monkey") text2_nouns = ("rabbit", "girl", "monkey")
@@ -44,10 +47,10 @@ def table(tmp_path) -> ldb.table.LanceTable:
text = [ text = [
" ".join( " ".join(
[ [
text_nouns[random.randrange(0, len(text_nouns))], text_nouns[local_random.randrange(0, len(text_nouns))],
verbs[random.randrange(0, 5)], verbs[local_random.randrange(0, 5)],
adv[random.randrange(0, 5)], adv[local_random.randrange(0, 5)],
adj[random.randrange(0, 5)], adj[local_random.randrange(0, 5)],
] ]
) )
for _ in range(100) for _ in range(100)
@@ -55,15 +58,15 @@ def table(tmp_path) -> ldb.table.LanceTable:
text2 = [ text2 = [
" ".join( " ".join(
[ [
text2_nouns[random.randrange(0, len(text2_nouns))], text2_nouns[local_random.randrange(0, len(text2_nouns))],
verbs[random.randrange(0, 5)], verbs[local_random.randrange(0, 5)],
adv[random.randrange(0, 5)], adv[local_random.randrange(0, 5)],
adj[random.randrange(0, 5)], adj[local_random.randrange(0, 5)],
] ]
) )
for _ in range(100) for _ in range(100)
] ]
count = [random.randint(1, 10000) for _ in range(100)] count = [local_random.randint(1, 10000) for _ in range(100)]
table = db.create_table( table = db.create_table(
"test", "test",
data=pd.DataFrame( data=pd.DataFrame(
@@ -82,8 +85,11 @@ def table(tmp_path) -> ldb.table.LanceTable:
@pytest.fixture @pytest.fixture
async def async_table(tmp_path) -> ldb.table.AsyncTable: async def async_table(tmp_path) -> ldb.table.AsyncTable:
# Use local random state to avoid affecting other tests
rng = np.random.RandomState(42)
local_random = random.Random(42)
db = await ldb.connect_async(tmp_path) db = await ldb.connect_async(tmp_path)
vectors = [np.random.randn(128) for _ in range(100)] vectors = [rng.randn(128) for _ in range(100)]
text_nouns = ("puppy", "car") text_nouns = ("puppy", "car")
text2_nouns = ("rabbit", "girl", "monkey") text2_nouns = ("rabbit", "girl", "monkey")
@@ -93,10 +99,10 @@ async def async_table(tmp_path) -> ldb.table.AsyncTable:
text = [ text = [
" ".join( " ".join(
[ [
text_nouns[random.randrange(0, len(text_nouns))], text_nouns[local_random.randrange(0, len(text_nouns))],
verbs[random.randrange(0, 5)], verbs[local_random.randrange(0, 5)],
adv[random.randrange(0, 5)], adv[local_random.randrange(0, 5)],
adj[random.randrange(0, 5)], adj[local_random.randrange(0, 5)],
] ]
) )
for _ in range(100) for _ in range(100)
@@ -104,15 +110,15 @@ async def async_table(tmp_path) -> ldb.table.AsyncTable:
text2 = [ text2 = [
" ".join( " ".join(
[ [
text2_nouns[random.randrange(0, len(text2_nouns))], text2_nouns[local_random.randrange(0, len(text2_nouns))],
verbs[random.randrange(0, 5)], verbs[local_random.randrange(0, 5)],
adv[random.randrange(0, 5)], adv[local_random.randrange(0, 5)],
adj[random.randrange(0, 5)], adj[local_random.randrange(0, 5)],
] ]
) )
for _ in range(100) for _ in range(100)
] ]
count = [random.randint(1, 10000) for _ in range(100)] count = [local_random.randint(1, 10000) for _ in range(100)]
table = await db.create_table( table = await db.create_table(
"test", "test",
data=pd.DataFrame( data=pd.DataFrame(
@@ -215,6 +221,19 @@ def test_search_fts(table, use_tantivy):
assert len(results) == 5 assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score assert len(results[0]) == 3 # id, text, _score
# Test boolean query
results = (
table.search(MatchQuery("puppy", "text") & MatchQuery("runs", "text"))
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
for r in results:
assert "puppy" in r["text"]
assert "runs" in r["text"]
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_fts_select_async(async_table): async def test_fts_select_async(async_table):
@@ -656,3 +675,46 @@ def test_fts_on_list(mem_db: DBConnection):
res = table.search(PhraseQuery("lance database", "text")).limit(5).to_list() res = table.search(PhraseQuery("lance database", "text")).limit(5).to_list()
assert len(res) == 2 assert len(res) == 2
def test_fts_ngram(mem_db: DBConnection):
data = pa.table({"text": ["hello world", "lance database", "lance is cool"]})
table = mem_db.create_table("test", data=data)
table.create_fts_index("text", use_tantivy=False, base_tokenizer="ngram")
results = table.search("lan", query_type="fts").limit(10).to_list()
assert len(results) == 2
assert set(r["text"] for r in results) == {"lance database", "lance is cool"}
results = (
table.search("nce", query_type="fts").limit(10).to_list()
) # spellchecker:disable-line
assert len(results) == 2
assert set(r["text"] for r in results) == {"lance database", "lance is cool"}
# the default min_ngram_length is 3, so "la" should not match
results = table.search("la", query_type="fts").limit(10).to_list()
assert len(results) == 0
# test setting min_ngram_length and prefix_only
table.create_fts_index(
"text",
use_tantivy=False,
base_tokenizer="ngram",
replace=True,
ngram_min_length=2,
prefix_only=True,
)
results = table.search("lan", query_type="fts").limit(10).to_list()
assert len(results) == 2
assert set(r["text"] for r in results) == {"lance database", "lance is cool"}
results = (
table.search("nce", query_type="fts").limit(10).to_list()
) # spellchecker:disable-line
assert len(results) == 0
results = table.search("la", query_type="fts").limit(10).to_list()
assert len(results) == 2
assert set(r["text"] for r in results) == {"lance database", "lance is cool"}

View File

@@ -166,7 +166,7 @@ async def test_explain_plan(table: AsyncTable):
assert "Vector Search Plan" in plan assert "Vector Search Plan" in plan
assert "KNNVectorDistance" in plan assert "KNNVectorDistance" in plan
assert "FTS Search Plan" in plan assert "FTS Search Plan" in plan
assert "LanceScan" in plan assert "LanceRead" in plan
@pytest.mark.asyncio @pytest.mark.asyncio

View File

@@ -25,6 +25,8 @@ from lancedb.query import (
AsyncQueryBase, AsyncQueryBase,
AsyncVectorQuery, AsyncVectorQuery,
LanceVectorQueryBuilder, LanceVectorQueryBuilder,
MatchQuery,
PhraseQuery,
Query, Query,
FullTextSearchQuery, FullTextSearchQuery,
) )
@@ -270,7 +272,9 @@ async def test_distance_range_with_new_rows_async():
# append more rows so that execution plan would be mixed with ANN & Flat KNN # append more rows so that execution plan would be mixed with ANN & Flat KNN
new_data = pa.table( new_data = pa.table(
{ {
"vector": pa.FixedShapeTensorArray.from_numpy_ndarray(np.random.rand(4, 2)), "vector": pa.FixedShapeTensorArray.from_numpy_ndarray(
np.random.rand(4, 2) + 1
),
} }
) )
await table.add(new_data) await table.add(new_data)
@@ -437,6 +441,33 @@ def test_query_builder_with_filter(table):
assert all(np.array(rs[0]["vector"]) == [3, 4]) assert all(np.array(rs[0]["vector"]) == [3, 4])
def test_invalid_nprobes_sync(table):
with pytest.raises(ValueError, match="minimum_nprobes must be greater than 0"):
LanceVectorQueryBuilder(table, [0, 0], "vector").minimum_nprobes(0).to_list()
with pytest.raises(
ValueError, match="maximum_nprobes must be greater than minimum_nprobes"
):
LanceVectorQueryBuilder(table, [0, 0], "vector").maximum_nprobes(5).to_list()
with pytest.raises(
ValueError, match="minimum_nprobes must be less or equal to maximum_nprobes"
):
LanceVectorQueryBuilder(table, [0, 0], "vector").minimum_nprobes(100).to_list()
@pytest.mark.asyncio
async def test_invalid_nprobes_async(table_async: AsyncTable):
with pytest.raises(ValueError, match="minimum_nprobes must be greater than 0"):
await table_async.vector_search([0, 0]).minimum_nprobes(0).to_list()
with pytest.raises(
ValueError, match="maximum_nprobes must be greater than minimum_nprobes"
):
await table_async.vector_search([0, 0]).maximum_nprobes(5).to_list()
with pytest.raises(
ValueError, match="minimum_nprobes must be less or equal to maximum_nprobes"
):
await table_async.vector_search([0, 0]).minimum_nprobes(100).to_list()
def test_query_builder_with_prefilter(table): def test_query_builder_with_prefilter(table):
df = ( df = (
LanceVectorQueryBuilder(table, [0, 0], "vector") LanceVectorQueryBuilder(table, [0, 0], "vector")
@@ -583,6 +614,21 @@ async def test_query_async(table_async: AsyncTable):
table_async.query().nearest_to(pa.array([1, 2])).nprobes(10), table_async.query().nearest_to(pa.array([1, 2])).nprobes(10),
expected_num_rows=2, expected_num_rows=2,
) )
await check_query(
table_async.query().nearest_to(pa.array([1, 2])).minimum_nprobes(10),
expected_num_rows=2,
)
await check_query(
table_async.query().nearest_to(pa.array([1, 2])).maximum_nprobes(30),
expected_num_rows=2,
)
await check_query(
table_async.query()
.nearest_to(pa.array([1, 2]))
.minimum_nprobes(10)
.maximum_nprobes(20),
expected_num_rows=2,
)
await check_query( await check_query(
table_async.query().nearest_to(pa.array([1, 2])).bypass_vector_index(), table_async.query().nearest_to(pa.array([1, 2])).bypass_vector_index(),
expected_num_rows=2, expected_num_rows=2,
@@ -731,6 +777,83 @@ async def test_explain_plan_async(table_async: AsyncTable):
assert "KNN" in plan assert "KNN" in plan
@pytest.mark.asyncio
async def test_explain_plan_fts(table_async: AsyncTable):
"""Test explain plan for FTS queries"""
# Create FTS index
from lancedb.index import FTS
await table_async.create_index("text", config=FTS())
# Test pure FTS query
query = await table_async.search("dog", query_type="fts", fts_columns="text")
plan = await query.explain_plan()
# Should show FTS details (issue #2465 is now fixed)
assert "MatchQuery: query=dog" in plan
assert "GlobalLimitExec" in plan # Default limit
# Test FTS query with limit
query_with_limit = await table_async.search(
"dog", query_type="fts", fts_columns="text"
)
plan_with_limit = await query_with_limit.limit(1).explain_plan()
assert "MatchQuery: query=dog" in plan_with_limit
assert "GlobalLimitExec: skip=0, fetch=1" in plan_with_limit
# Test FTS query with offset and limit
query_with_offset = await table_async.search(
"dog", query_type="fts", fts_columns="text"
)
plan_with_offset = await query_with_offset.offset(1).limit(1).explain_plan()
assert "MatchQuery: query=dog" in plan_with_offset
assert "GlobalLimitExec: skip=1, fetch=1" in plan_with_offset
@pytest.mark.asyncio
async def test_explain_plan_vector_with_limit_offset(table_async: AsyncTable):
"""Test explain plan for vector queries with limit and offset"""
# Test vector query with limit
plan_with_limit = await (
table_async.query().nearest_to(pa.array([1, 2])).limit(1).explain_plan()
)
assert "KNN" in plan_with_limit
assert "GlobalLimitExec: skip=0, fetch=1" in plan_with_limit
# Test vector query with offset and limit
plan_with_offset = await (
table_async.query()
.nearest_to(pa.array([1, 2]))
.offset(1)
.limit(1)
.explain_plan()
)
assert "KNN" in plan_with_offset
assert "GlobalLimitExec: skip=1, fetch=1" in plan_with_offset
@pytest.mark.asyncio
async def test_explain_plan_with_filters(table_async: AsyncTable):
"""Test explain plan for queries with filters"""
# Test vector query with filter
plan_with_filter = await (
table_async.query().nearest_to(pa.array([1, 2])).where("id = 1").explain_plan()
)
assert "KNN" in plan_with_filter
assert "LanceRead" in plan_with_filter
# Test FTS query with filter
from lancedb.index import FTS
await table_async.create_index("text", config=FTS())
query_fts_filter = await table_async.search(
"dog", query_type="fts", fts_columns="text"
)
plan_fts_filter = await query_fts_filter.where("id = 1").explain_plan()
assert "MatchQuery: query=dog" in plan_fts_filter
assert "LanceRead" in plan_fts_filter
assert "full_filter=id = Int64(1)" in plan_fts_filter # Should show filter details
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_query_camelcase_async(tmp_path): async def test_query_camelcase_async(tmp_path):
db = await lancedb.connect_async(tmp_path) db = await lancedb.connect_async(tmp_path)
@@ -909,7 +1032,39 @@ def test_query_serialization_sync(table: lancedb.table.Table):
q = table.search([5.0, 6.0]).nprobes(10).refine_factor(5).to_query_object() q = table.search([5.0, 6.0]).nprobes(10).refine_factor(5).to_query_object()
check_set_props( check_set_props(
q, vector_column="vector", vector=[5.0, 6.0], nprobes=10, refine_factor=5 q,
vector_column="vector",
vector=[5.0, 6.0],
minimum_nprobes=10,
maximum_nprobes=10,
refine_factor=5,
)
q = table.search([5.0, 6.0]).minimum_nprobes(10).to_query_object()
check_set_props(
q,
vector_column="vector",
vector=[5.0, 6.0],
minimum_nprobes=10,
maximum_nprobes=None,
)
q = table.search([5.0, 6.0]).nprobes(50).to_query_object()
check_set_props(
q,
vector_column="vector",
vector=[5.0, 6.0],
minimum_nprobes=50,
maximum_nprobes=50,
)
q = table.search([5.0, 6.0]).maximum_nprobes(10).to_query_object()
check_set_props(
q,
vector_column="vector",
vector=[5.0, 6.0],
maximum_nprobes=10,
minimum_nprobes=None,
) )
q = table.search([5.0, 6.0]).distance_range(0.0, 1.0).to_query_object() q = table.search([5.0, 6.0]).distance_range(0.0, 1.0).to_query_object()
@@ -961,7 +1116,8 @@ async def test_query_serialization_async(table_async: AsyncTable):
limit=10, limit=10,
vector=sample_vector, vector=sample_vector,
postfilter=False, postfilter=False,
nprobes=20, minimum_nprobes=20,
maximum_nprobes=20,
with_row_id=False, with_row_id=False,
bypass_vector_index=False, bypass_vector_index=False,
) )
@@ -971,7 +1127,20 @@ async def test_query_serialization_async(table_async: AsyncTable):
q, q,
vector=sample_vector, vector=sample_vector,
postfilter=False, postfilter=False,
nprobes=20, minimum_nprobes=20,
maximum_nprobes=20,
with_row_id=False,
bypass_vector_index=False,
limit=10,
)
q = (await table_async.search([5.0, 6.0])).nprobes(50).to_query_object()
check_set_props(
q,
vector=sample_vector,
postfilter=False,
minimum_nprobes=50,
maximum_nprobes=50,
with_row_id=False, with_row_id=False,
bypass_vector_index=False, bypass_vector_index=False,
limit=10, limit=10,
@@ -990,7 +1159,8 @@ async def test_query_serialization_async(table_async: AsyncTable):
filter="id = 1", filter="id = 1",
postfilter=True, postfilter=True,
vector=sample_vector, vector=sample_vector,
nprobes=20, minimum_nprobes=20,
maximum_nprobes=20,
with_row_id=False, with_row_id=False,
bypass_vector_index=False, bypass_vector_index=False,
) )
@@ -1004,7 +1174,8 @@ async def test_query_serialization_async(table_async: AsyncTable):
check_set_props( check_set_props(
q, q,
vector=sample_vector, vector=sample_vector,
nprobes=10, minimum_nprobes=10,
maximum_nprobes=10,
refine_factor=5, refine_factor=5,
postfilter=False, postfilter=False,
with_row_id=False, with_row_id=False,
@@ -1012,6 +1183,18 @@ async def test_query_serialization_async(table_async: AsyncTable):
limit=10, limit=10,
) )
q = (await table_async.search([5.0, 6.0])).minimum_nprobes(5).to_query_object()
check_set_props(
q,
vector=sample_vector,
minimum_nprobes=5,
maximum_nprobes=20,
postfilter=False,
with_row_id=False,
bypass_vector_index=False,
limit=10,
)
q = ( q = (
(await table_async.search([5.0, 6.0])) (await table_async.search([5.0, 6.0]))
.distance_range(0.0, 1.0) .distance_range(0.0, 1.0)
@@ -1023,7 +1206,8 @@ async def test_query_serialization_async(table_async: AsyncTable):
lower_bound=0.0, lower_bound=0.0,
upper_bound=1.0, upper_bound=1.0,
postfilter=False, postfilter=False,
nprobes=20, minimum_nprobes=20,
maximum_nprobes=20,
with_row_id=False, with_row_id=False,
bypass_vector_index=False, bypass_vector_index=False,
limit=10, limit=10,
@@ -1035,7 +1219,8 @@ async def test_query_serialization_async(table_async: AsyncTable):
distance_type="cosine", distance_type="cosine",
vector=sample_vector, vector=sample_vector,
postfilter=False, postfilter=False,
nprobes=20, minimum_nprobes=20,
maximum_nprobes=20,
with_row_id=False, with_row_id=False,
bypass_vector_index=False, bypass_vector_index=False,
limit=10, limit=10,
@@ -1047,7 +1232,8 @@ async def test_query_serialization_async(table_async: AsyncTable):
ef=7, ef=7,
vector=sample_vector, vector=sample_vector,
postfilter=False, postfilter=False,
nprobes=20, minimum_nprobes=20,
maximum_nprobes=20,
with_row_id=False, with_row_id=False,
bypass_vector_index=False, bypass_vector_index=False,
limit=10, limit=10,
@@ -1059,24 +1245,34 @@ async def test_query_serialization_async(table_async: AsyncTable):
bypass_vector_index=True, bypass_vector_index=True,
vector=sample_vector, vector=sample_vector,
postfilter=False, postfilter=False,
nprobes=20, minimum_nprobes=20,
maximum_nprobes=20,
with_row_id=False, with_row_id=False,
limit=10, limit=10,
) )
# FTS queries # FTS queries
q = (await table_async.search("foo")).limit(10).to_query_object() match_query = MatchQuery("foo", "text")
q = (await table_async.search(match_query)).limit(10).to_query_object()
check_set_props( check_set_props(
q, q,
limit=10, limit=10,
full_text_query=FullTextSearchQuery(columns=[], query="foo"), full_text_query=FullTextSearchQuery(columns=None, query=match_query),
with_row_id=False, with_row_id=False,
) )
q = (await table_async.search("foo", query_type="fts")).to_query_object() q = (await table_async.search(match_query)).to_query_object()
check_set_props( check_set_props(
q, q,
full_text_query=FullTextSearchQuery(columns=[], query="foo"), full_text_query=FullTextSearchQuery(columns=None, query=match_query),
with_row_id=False,
)
phrase_query = PhraseQuery("foo", "text", slop=1)
q = (await table_async.search(phrase_query)).to_query_object()
check_set_props(
q,
full_text_query=FullTextSearchQuery(columns=None, query=phrase_query),
with_row_id=False, with_row_id=False,
) )
@@ -1143,3 +1339,20 @@ async def test_query_timeout_async(tmp_path):
.nearest_to([0.0, 0.0]) .nearest_to([0.0, 0.0])
.to_list(timeout=timedelta(0)) .to_list(timeout=timedelta(0))
) )
def test_search_empty_table(mem_db):
"""Test searching on empty table should not crash
Regression test for issue #303:
https://github.com/lancedb/lancedb/issues/303
Searching on empty table produces scary error message
"""
schema = pa.schema(
[pa.field("vector", pa.list_(pa.float32(), 2)), pa.field("id", pa.int64())]
)
table = mem_db.create_table("test_empty_search", schema=schema)
# Search on empty table should return empty results, not crash
results = table.search([1.0, 2.0]).limit(5).to_list()
assert results == []

View File

@@ -210,6 +210,25 @@ async def test_retry_error():
assert cause.status_code == 429 assert cause.status_code == 429
def test_table_unimplemented_functions():
def handler(request):
if request.path == "/v1/table/test/create/?mode=create":
request.send_response(200)
request.send_header("Content-Type", "application/json")
request.end_headers()
request.wfile.write(b"{}")
else:
request.send_response(404)
request.end_headers()
with mock_lancedb_connection(handler) as db:
table = db.create_table("test", [{"id": 1}])
with pytest.raises(NotImplementedError):
table.to_arrow()
with pytest.raises(NotImplementedError):
table.to_pandas()
def test_table_add_in_threadpool(): def test_table_add_in_threadpool():
def handler(request): def handler(request):
if request.path == "/v1/table/test/insert/": if request.path == "/v1/table/test/insert/":
@@ -496,6 +515,8 @@ def test_query_sync_minimal():
"ef": None, "ef": None,
"vector": [1.0, 2.0, 3.0], "vector": [1.0, 2.0, 3.0],
"nprobes": 20, "nprobes": 20,
"minimum_nprobes": 20,
"maximum_nprobes": 20,
"version": None, "version": None,
} }
@@ -536,6 +557,8 @@ def test_query_sync_maximal():
"refine_factor": 10, "refine_factor": 10,
"vector": [1.0, 2.0, 3.0], "vector": [1.0, 2.0, 3.0],
"nprobes": 5, "nprobes": 5,
"minimum_nprobes": 5,
"maximum_nprobes": 5,
"lower_bound": None, "lower_bound": None,
"upper_bound": None, "upper_bound": None,
"ef": None, "ef": None,
@@ -564,6 +587,66 @@ def test_query_sync_maximal():
) )
def test_query_sync_nprobes():
def handler(body):
assert body == {
"distance_type": "l2",
"k": 10,
"prefilter": True,
"fast_search": True,
"vector_column": "vector2",
"refine_factor": None,
"lower_bound": None,
"upper_bound": None,
"ef": None,
"vector": [1.0, 2.0, 3.0],
"nprobes": 5,
"minimum_nprobes": 5,
"maximum_nprobes": 15,
"version": None,
}
return pa.table({"id": [1, 2, 3], "name": ["a", "b", "c"]})
with query_test_table(handler) as table:
(
table.search([1, 2, 3], vector_column_name="vector2", fast_search=True)
.minimum_nprobes(5)
.maximum_nprobes(15)
.to_list()
)
def test_query_sync_no_max_nprobes():
def handler(body):
assert body == {
"distance_type": "l2",
"k": 10,
"prefilter": True,
"fast_search": True,
"vector_column": "vector2",
"refine_factor": None,
"lower_bound": None,
"upper_bound": None,
"ef": None,
"vector": [1.0, 2.0, 3.0],
"nprobes": 5,
"minimum_nprobes": 5,
"maximum_nprobes": 0,
"version": None,
}
return pa.table({"id": [1, 2, 3], "name": ["a", "b", "c"]})
with query_test_table(handler) as table:
(
table.search([1, 2, 3], vector_column_name="vector2", fast_search=True)
.minimum_nprobes(5)
.maximum_nprobes(0)
.to_list()
)
@pytest.mark.parametrize("server_version", [Version("0.1.0"), Version("0.2.0")]) @pytest.mark.parametrize("server_version", [Version("0.1.0"), Version("0.2.0")])
def test_query_sync_batch_queries(server_version): def test_query_sync_batch_queries(server_version):
def handler(body): def handler(body):
@@ -666,6 +749,8 @@ def test_query_sync_hybrid():
"refine_factor": None, "refine_factor": None,
"vector": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "vector": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
"nprobes": 20, "nprobes": 20,
"minimum_nprobes": 20,
"maximum_nprobes": 20,
"lower_bound": None, "lower_bound": None,
"upper_bound": None, "upper_bound": None,
"ef": None, "ef": None,

Some files were not shown because too many files have changed in this diff Show More