Compare commits

..

1 Commits

Author SHA1 Message Date
Lei Xu
2704a4522c Bump to 0.1.11 2023-07-17 12:45:17 -07:00
147 changed files with 1601 additions and 9851 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.3.0
current_version = 0.1.13
commit = True
message = Bump version: {current_version} → {new_version}
tag = True

View File

@@ -52,8 +52,4 @@ jobs:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
tags: true
- uses: ./.github/workflows/update_package_lock
if: ${{ inputs.dry_run }} == "false"
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -9,7 +9,6 @@ on:
- node/**
- rust/ffi/node/**
- .github/workflows/node.yml
- docker-compose.yml
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
@@ -71,7 +70,7 @@ jobs:
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
npm install --no-save ./dist/vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
@@ -102,62 +101,9 @@ jobs:
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
npm install --no-save ./dist/vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: |
npm run test
aws-integtest:
timeout-minutes: 45
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: node
env:
AWS_ACCESS_KEY_ID: ACCESSKEY
AWS_SECRET_ACCESS_KEY: SECRETKEY
AWS_DEFAULT_REGION: us-west-2
# this one is for s3
AWS_ENDPOINT: http://localhost:4566
# this one is for dynamodb
DYNAMODB_ENDPOINT: http://localhost:4566
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 18
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: start local stack
run: docker compose -f ../docker-compose.yml up -d --wait
- name: create s3
run: aws s3 mb s3://lancedb-integtest --endpoint $AWS_ENDPOINT
- name: create ddb
run: |
aws dynamodb create-table \
--table-name lancedb-integtest \
--attribute-definitions '[{"AttributeName": "base_uri", "AttributeType": "S"}, {"AttributeName": "version", "AttributeType": "N"}]' \
--key-schema '[{"AttributeName": "base_uri", "KeyType": "HASH"}, {"AttributeName": "version", "KeyType": "RANGE"}]' \
--provisioned-throughput '{"ReadCapacityUnits": 10, "WriteCapacityUnits": 10}' \
--endpoint-url $DYNAMODB_ENDPOINT
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: npm run integration-test

View File

@@ -62,35 +62,59 @@ jobs:
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3
with:
name: native-darwin
name: darwin-native
path: |
node/dist/lancedb-vectordb-darwin*.tgz
node/dist/vectordb-darwin*.tgz
node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
name: node-linux (${{ matrix.arch}}-unknown-linux-${{ matrix.libc }})
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
runner: buildjet-4vcpu-ubuntu-2204-arm
libc:
- gnu
# TODO: re-enable musl once we have refactored to pre-built containers
# Right now we have to build node from source which is too expensive.
# - musl
arch:
- x86_64
# Building on aarch64 is too slow for now
# - aarch64
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Build Linux Artifacts
- name: Change owner to root (for npm)
# The docker container is run as root, so we need the files to be owned by root
# Otherwise npm is a nightmare: https://github.com/npm/cli/issues/3773
run: sudo chown -R root:root .
- name: Set up QEMU
if: ${{ matrix.arch == 'aarch64' }}
uses: docker/setup-qemu-action@v2
with:
platforms: arm64
- name: Build Linux GNU native node modules
if: ${{ matrix.libc == 'gnu' }}
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
docker run \
-v $(pwd):/io -w /io \
rust:1.70-bookworm \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-gnu
- name: Build musl Linux native node modules
if: ${{ matrix.libc == 'musl' }}
run: |
docker run --platform linux/arm64/v8 \
-v $(pwd):/io -w /io \
quay.io/pypa/musllinux_1_1_${{ matrix.arch }} \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-musl
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
with:
name: native-linux
name: linux-native
path: |
node/dist/lancedb-vectordb-linux*.tgz
node/dist/vectordb-linux*.tgz
node-windows:
runs-on: windows-2022
@@ -121,12 +145,12 @@ jobs:
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v3
with:
name: native-windows
name: windows-native
path: |
node/dist/lancedb-vectordb-win32*.tgz
node/dist/vectordb-win32*.tgz
release:
needs: [node, node-macos, node-linux, node-windows]
needs: [node, node-macos, node-linux]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -137,7 +161,6 @@ jobs:
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: 'https://registry.npmjs.org'
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
@@ -146,18 +169,3 @@ jobs:
for filename in *.tgz; do
npm publish $filename
done
update-package-lock:
needs: [release]
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -30,7 +30,7 @@ jobs:
python-version: 3.${{ matrix.python-minor-version }}
- name: Install lancedb
run: |
pip install -e .[tests]
pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort
- name: Black
@@ -38,7 +38,7 @@ jobs:
- name: isort
run: isort --check --diff --quiet .
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
run: pytest -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
mac:
@@ -59,40 +59,10 @@ jobs:
python-version: "3.11"
- name: Install lancedb
run: |
pip install -e .[tests]
pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black
- name: Black
run: black --check --diff --no-color --quiet .
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
pydantic1x:
timeout-minutes: 30
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.9
- name: Install lancedb
run: |
pip install "pydantic<2"
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort
- name: Black
run: black --check --diff --no-color --quiet .
- name: isort
run: isort --check --diff --quiet .
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
run: pytest -x -v --durations=30 tests

View File

@@ -1,26 +0,0 @@
name: Trigger vectordb-recipers workflow
on:
push:
branches: [ main ]
pull_request:
paths:
- .github/workflows/trigger-vectordb-recipes.yml
workflow_dispatch:
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Trigger vectordb-recipes workflow
uses: actions/github-script@v6
with:
github-token: ${{ secrets.VECTORDB_RECIPES_ACTION_TOKEN }}
script: |
const result = await github.rest.actions.createWorkflowDispatch({
owner: 'lancedb',
repo: 'vectordb-recipes',
workflow_id: 'examples-test.yml',
ref: 'main'
});
console.log(result);

View File

@@ -1,33 +0,0 @@
name: update_package_lock
description: "Update node's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./node
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -1,19 +0,0 @@
name: Update package-lock.json
on:
workflow_dispatch:
jobs:
publish:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -1,27 +1,16 @@
[workspace]
members = ["rust/ffi/node", "rust/vectordb"]
# Python package needs to be built by maturin.
exclude = ["python"]
members = [
"rust/vectordb",
"rust/ffi/node"
]
resolver = "2"
[workspace.dependencies]
lance = { "version" = "=0.8.3", "features" = ["dynamodb"] }
lance-linalg = { "version" = "=0.8.3" }
lance-testing = { "version" = "=0.8.3" }
# Note that this one does not include pyarrow
arrow = { version = "43.0.0", optional = false }
arrow-array = "43.0"
arrow-data = "43.0"
arrow-ipc = "43.0"
arrow-ord = "43.0"
arrow-schema = "43.0"
arrow-arith = "43.0"
arrow-cast = "43.0"
chrono = "0.4.23"
half = { "version" = "=2.2.1", default-features = false, features = [
"num-traits"
] }
log = "0.4"
lance = "=0.5.8"
arrow-array = "42.0"
arrow-data = "42.0"
arrow-schema = "42.0"
arrow-ipc = "42.0"
half = { "version" = "2.2.1", default-features = false }
object_store = "0.6.1"
snafu = "0.7.4"
url = "2"

View File

@@ -33,8 +33,6 @@ The key features of LanceDB include:
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* GPU support in building vector index(*).
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
@@ -54,7 +52,8 @@ const table = await db.createTable('vectors',
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
const query = table.search([0.1, 0.3]).limit(2);
const query = table.search([0.1, 0.3]);
query.limit = 20;
const results = await query.execute();
```
@@ -71,7 +70,7 @@ db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_pandas()
result = table.search([100, 100]).limit(2).to_df()
```
## Blogs, Tutorials & Videos

83
ci/build_linux_artifacts.sh Executable file → Normal file
View File

@@ -1,19 +1,72 @@
#!/bin/bash
# Builds the Linux artifacts (node binaries).
# Usage: ./build_linux_artifacts.sh [target]
# Targets supported:
# - x86_64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-musl
# - x86_64-unknown-linux-musl
# TODO: refactor this into a Docker container we can pull
set -e
ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_node
docker build \
-t lancedb-node-manylinux \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
.
popd
setup_dependencies() {
echo "Installing system dependencies..."
if [[ $1 == *musl ]]; then
# musllinux
apk add openssl-dev
else
# rust / debian
apt update
apt install -y libssl-dev protobuf-compiler
fi
}
docker run \
-v $(pwd):/io -w /io \
lancedb-node-manylinux \
bash ci/manylinux_node/build.sh $ARCH
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
if [[ $1 == *musl ]]; then
# This node version is 15, we need 16 or higher:
# apk add nodejs-current npm
# So instead we install from source (nvm doesn't provide binaries for musl):
nvm install -s --no-progress 17
else
nvm install --no-progress 17 # latest that supports glibc 2.17
fi
}
build_node_binary() {
echo "Building node library for $1..."
pushd node
npm ci
if [[ $1 == *musl ]]; then
# This is needed for cargo to allow build cdylibs with musl
export RUSTFLAGS="-C target-feature=-crt-static"
fi
# Cargo can run out of memory while pulling dependencies, especially when running
# in QEMU. This is a workaround for that.
export CARGO_NET_GIT_FETCH_WITH_CLI=true
# We don't pass in target, since the native target here already matches
# We need to pass OPENSSL_LIB_DIR and OPENSSL_INCLUDE_DIR for static build to work https://github.com/sfackler/rust-openssl/issues/877
OPENSSL_STATIC=1 OPENSSL_LIB_DIR=/usr/lib/x86_64-linux-gnu OPENSSL_INCLUDE_DIR=/usr/include/openssl/ npm run build-release
npm run pack-build
popd
}
TARGET=${1:-x86_64-unknown-linux-gnu}
# Others:
# aarch64-unknown-linux-gnu
# x86_64-unknown-linux-musl
# aarch64-unknown-linux-musl
setup_dependencies $TARGET
install_node $TARGET
build_node_binary $TARGET

View File

@@ -1,31 +0,0 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

View File

@@ -1,19 +0,0 @@
#!/bin/bash
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
set -e
ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
cd node
npm ci
npm run build-release
npm run pack-build

View File

@@ -1,26 +0,0 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -1,15 +0,0 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

View File

@@ -1,18 +0,0 @@
version: "3.9"
services:
localstack:
image: localstack/localstack:0.14
ports:
- 4566:4566
environment:
- SERVICES=s3,dynamodb
- DEBUG=1
- LS_LOG=trace
- DOCKER_HOST=unix:///var/run/docker.sock
- AWS_ACCESS_KEY_ID=ACCESSKEY
- AWS_SECRET_ACCESS_KEY=SECRETKEY
healthcheck:
test: [ "CMD", "curl", "-f", "http://localhost:4566/health" ]
interval: 5s
retries: 3
start_period: 10s

View File

@@ -1,6 +1,5 @@
site_name: LanceDB Docs
repo_url: https://github.com/lancedb/lancedb
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
repo_name: lancedb/lancedb
docs_dir: src
@@ -11,17 +10,6 @@ theme:
features:
- content.code.copy
- content.tabs.link
- content.action.edit
- toc.follow
- toc.integrate
- navigation.top
- navigation.tabs
- navigation.tabs.sticky
- navigation.footer
- navigation.tracking
- navigation.instant
- navigation.indexes
- navigation.expand
icon:
repo: fontawesome/brands/github
custom_dir: overrides
@@ -65,79 +53,32 @@ markdown_extensions:
- md_in_html
nav:
- Home:
- 🏢 Home: index.md
- 💡 Basics: basic.md
- 📚 Guides:
- Create Ingest Update Delete: guides/tables.md
- Vector Search: search.md
- SQL filters: sql.md
- Indexing: ann_indexes.md
- 🧬 Embeddings: embedding.md
- 🔍 Python full-text search: fts.md
- 🔌 Integrations:
- integrations/index.md
- Pandas and PyArrow: python/arrow.md
- DuckDB: python/duckdb.md
- LangChain 🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain JS/TS 🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- 🐍 Python examples:
- examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 🌐 Javascript examples:
- Examples: examples/index_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- ⚙️ CLI & Config: cli_config.md
- Home: index.md
- Basics: basic.md
- Guides:
- Create Ingest Update Delete: guides/tables.md
- Vector Search: search.md
- SQL filters: sql.md
- Indexing: ann_indexes.md
- Embeddings: embedding.md
- Python full-text search: fts.md
- Integrations:
- integrations/index.md
- Python integrations:
- Pandas and PyArrow: python/arrow.md
- DuckDB: python/duckdb.md
- LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain JS/TS 🦜️🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- Python examples:
- examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- Javascript examples:
- examples/index_js.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- References:
- Vector Search: search.md
- SQL filters: sql.md
- Indexing: ann_indexes.md
- API references:
- Python API: python/python.md
- Javascript API: javascript/modules.md
- LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms
extra_css:
- styles/global.css
extra:
analytics:
provider: google
property: G-B7NFM40W74

View File

@@ -6,7 +6,7 @@ LanceDB provides many parameters to fine-tune the index's size, the speed of que
Currently, LanceDB does *not* automatically create the ANN index.
LanceDB has optimized code for KNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
If you can live with < 100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
In the future we will look to automatically create and configure the ANN index.
@@ -68,12 +68,6 @@ a single PQ code.
<figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption>
</figure>
### Use GPU to build vector index
Lance Python SDK has experimental GPU support for creating IVF index.
You can specify the GPU device to train IVF partitions via
- **accelerator**: Specify to `"cuda"`` to enable GPU training.
## Querying an ANN Index
@@ -97,10 +91,10 @@ There are a couple of parameters that can be used to fine-tune the search:
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_pandas()
.to_df()
```
```
vector item _distance
vector item score
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
@@ -115,8 +109,9 @@ There are a couple of parameters that can be used to fine-tune the search:
.execute()
```
The search will return the data requested in addition to the distance of each item.
The search will return the data requested in addition to the score of each item.
**Note:** The score is the distance between the query vector and the element. A lower number means that the result is more relevant.
### Filtering (where clause)
@@ -124,7 +119,7 @@ You can further filter the elements returned by a search using a where clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_df()
```
=== "Javascript"
@@ -141,10 +136,10 @@ You can select the columns returned by the query using a select clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
tbl.search(np.random.random((1536))).select(["vector"]).to_df()
```
```
vector _distance
vector score
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
...
@@ -160,28 +155,28 @@ You can select the columns returned by the query using a select clause.
## FAQ
### When is it necessary to create an ANN vector index?
### When is it necessary to create an ANN vector index.
`LanceDB` has manually-tuned SIMD code for computing vector distances.
In our benchmarks, computing 100K pairs of 1K dimension vectors takes **less than 20ms**.
For small datasets (< 100K rows) or applications that can accept 100ms latency, vector indices are usually not necessary.
`LanceDB` has manually tuned SIMD code for computing vector distances.
In our benchmarks, computing 100K pairs of 1K dimension vectors only take less than 20ms.
For small dataset (<100K rows) or the applications which can accept 100ms latency, vector indices are usually not necessary.
For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how many memory will it take?
### How big is my index, and how many memory will it take.
In LanceDB, all vector indices are **disk-based**, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers.
Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index?
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index.
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
`num_sub_vectors` decides how many Product Quantization code to generate on each vector. Because
Product Quantization is a lossy compression of the original vector, the more `num_sub_vectors` usually results to
less space distortion, and thus yield better accuracy. However, similarly, more `num_sub_vectors` causes heavier I/O and
more PQ computation, thus, higher latency. `dimension / num_sub_vectors` should be aligned with 8 for better SIMD efficiency.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 170 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 205 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 953 KiB

View File

@@ -79,18 +79,6 @@ We'll cover the basics of using LanceDB on your local machine in this section.
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
### Creating an empty table
Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema.
=== "Python"
```python
import pyarrow as pa
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
tbl = db.create_table("empty_table", schema=schema)
```
## How to open an existing table
Once created, you can open a table using the following code:
@@ -123,15 +111,9 @@ After a table has been created, you can always add more data to it using
=== "Python"
```python
# Option 1: Add a list of dicts to a table
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
tbl.add(df)
```
=== "Javascript"
@@ -146,7 +128,7 @@ Once you've embedded the query, you can find its nearest neighbors using the fol
=== "Python"
```python
tbl.search([100, 100]).limit(2).to_pandas()
tbl.search([100, 100]).limit(2).to_df()
```
This returns a pandas DataFrame with the results.
@@ -156,63 +138,8 @@ Once you've embedded the query, you can find its nearest neighbors using the fol
const query = await tbl.search([100, 100]).limit(2).execute();
```
## How to delete rows from a table
Use the `delete()` method on tables to delete rows from a table. To choose
which rows to delete, provide a filter that matches on the metadata columns.
This can delete any number of rows that match the filter.
=== "Python"
```python
tbl.delete('item = "fizz"')
```
=== "Javascript"
```javascript
await tbl.delete('item = "fizz"')
```
The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause on a search. They can be as simple or complex as needed.
To see what expressions are supported, see the [SQL filters](sql.md) section.
=== "Python"
Read more: [lancedb.table.Table.delete][]
=== "Javascript"
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
## How to remove a table
Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
db.drop_table("my_table")
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
## What's next
This section covered the very basics of the LanceDB API.
LanceDB supports many additional features when creating indices to speed up search and options for search.
These are contained in the next section of the documentation.
## Note: Bundling vectorDB apps with webpack
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```

View File

@@ -1,37 +0,0 @@
## LanceDB CLI
Once lanceDB is installed, you can access the CLI using `lancedb` command on the console
```
lancedb
```
This lists out all the various command-line options available. You can get the usage or help for a particular command
```
lancedb {command} --help
```
## LanceDB config
LanceDB uses a global config file to store certain settings. These settings are configurable using the lanceDB cli.
To view your config settings, you can use:
```
lancedb config
```
These config parameters can be tuned using the cli.
```
lancedb {config_name} --{argument}
```
## LanceDB Opt-in Diagnostics
When enabled, LanceDB will send anonymous events to help us improve LanceDB. These diagnostics are used only for error reporting and no data is collected. Error & stats allow us to automate certain aspects of bug reporting, prioritization of fixes and feature requests.
These diagnostics are opt-in and can be enabled or disabled using the `lancedb diagnostics` command. These are enabled by default.
Get usage help.
```
lancedb diagnostics --help
```
Disable diagnostics
```
lancedb diagnostics --disabled
```
Enable diagnostics
```
lancedb diagnostics --enabled
```

View File

@@ -66,7 +66,7 @@ You can also use an external API like OpenAI to generate embeddings
to generate embeddings for each row.
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/python/#lancedb.embeddings.with_embeddings)
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
function to generate embeddings and add create a combined pyarrow table:
@@ -118,7 +118,7 @@ belong in the same latent space and your results will be nonsensical.
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
tbl.search(query_vector).limit(10).to_pandas()
tbl.search(query_vector).limit(10).to_df()
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.

View File

@@ -1,23 +0,0 @@
# Examples
Here are some of the examples, projects and applications using LanceDB python library. Some examples are covered in detail in the next sections. You can find more on [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes)
| Example | Interactive Envs | Scripts |
|-------- | ---------------- | ------ |
| | | |
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/main.py)|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/main.py) |
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/main.py)|
| [Multimodal CLIP: DiffusionDB](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/main.py) |
| [Multimodal CLIP: Youtube videos](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/main.py) |
| [Movie Recommender](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/main.py) |
| [Audio Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/main.py) |
| [Multimodal Image + Text Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/main.py) |
| [Evaluating Prompts with Prompttools](https://github.com/lancedb/vectordb-recipes/tree/main/examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | |
## Projects & Applications powered by LanceDB
| Project Name | Description | Screenshot |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds | ![YOLOExplorer](https://github.com/lancedb/vectordb-recipes/assets/15766192/ae513a29-8f15-4e0b-99a1-ccd8272b6131) |
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. | ![Chatbot](../assets/vercel-template.gif) |

View File

@@ -1,19 +0,0 @@
# Examples
Here are some of the examples, projects and applications using vectordb native javascript library.
Some examples are covered in detail in the next sections. You can find more on [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes)
| Example | Scripts |
|-------- | ------ |
| | |
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/index.js)|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/index.js)|
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/index.js)|
| [TransformersJS Embedding example](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/index.js) |
## Projects & Applications
| Project Name | Description | Screenshot |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds | ![YOLOExplorer](https://github.com/lancedb/vectordb-recipes/assets/15766192/ae513a29-8f15-4e0b-99a1-ccd8272b6131) |
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. | ![Chatbot](../assets/vercel-template.gif) |

View File

@@ -80,14 +80,14 @@ def handler(event, context):
# Shape of SIFT is (128,1M), d=float32
query_vector = np.array(event['query_vector'], dtype=np.float32)
rs = table.search(query_vector).limit(2).to_list()
rs = table.search(query_vector).limit(2).to_df()
return {
"statusCode": status_code,
"headers": {
"Content-Type": "application/json"
},
"body": json.dumps(rs)
"body": rs.to_json()
}
```

View File

@@ -1,61 +0,0 @@
# LanceDB Chatbot - Vercel Next.js Template
Use an AI chatbot with website context retrieved from a vector store like LanceDB. LanceDB is lightweight and can be embedded directly into Next.js, with data stored on-prem.
## One click deploy on Vercel
[![Deploy with Vercel](https://vercel.com/button)](https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flancedb%2Flancedb-vercel-chatbot&env=OPENAI_API_KEY&envDescription=OpenAI%20API%20Key%20for%20chat%20completion.&project-name=lancedb-vercel-chatbot&repository-name=lancedb-vercel-chatbot&demo-title=LanceDB%20Chatbot%20Demo&demo-description=Demo%20website%20chatbot%20with%20LanceDB.&demo-url=https%3A%2F%2Flancedb.vercel.app&demo-image=https%3A%2F%2Fi.imgur.com%2FazVJtvr.png)
![Demo website landing page](../assets/vercel-template.gif)
## Development
First, rename `.env.example` to `.env.local`, and fill out `OPENAI_API_KEY` with your OpenAI API key. You can get one [here](https://openai.com/blog/openai-api).
Run the development server:
```bash
npm run dev
# or
yarn dev
# or
pnpm dev
```
Open [http://localhost:3000](http://localhost:3000) with your browser to see the result.
This project uses [`next/font`](https://nextjs.org/docs/basic-features/font-optimization) to automatically optimize and load Inter, a custom Google Font.
## Learn More
To learn more about LanceDB or Next.js, take a look at the following resources:
- [LanceDB Documentation](https://lancedb.github.io/lancedb/) - learn about LanceDB, the developer-friendly serverless vector database.
- [Next.js Documentation](https://nextjs.org/docs) - learn about Next.js features and API.
- [Learn Next.js](https://nextjs.org/learn) - an interactive Next.js tutorial.
## LanceDB on Next.js and Vercel
FYI: these configurations have been pre-implemented in this template.
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying on Vercel.
```js
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
To deploy on Vercel, we need to make sure that the NodeJS runtime static file analysis for Vercel can find the binary, since LanceDB uses dynamic imports by default. We can do this by modifying `package.json` in the `scripts` section.
```json
{
...
"scripts": {
...
"vercel-build": "sed -i 's/nativeLib = require(`@lancedb\\/vectordb-\\${currentTarget()}`);/nativeLib = require(`@lancedb\\/vectordb-linux-x64-gnu`);/' node_modules/vectordb/native.js && next build",
...
},
...
}
```

View File

@@ -1,6 +1,6 @@
# Vector embedding search using TransformersJS
## Embed and query data from LanceDB using TransformersJS
## Embed and query data from LacneDB using TransformersJS
<img id="splash" width="400" alt="transformersjs" src="https://github.com/lancedb/lancedb/assets/43097991/88a31e30-3d6f-4eef-9216-4b7c688f1b4f">
@@ -99,7 +99,7 @@ Output of `results`:
id: 5,
text: 'Banana',
type: 'fruit',
_distance: 0.4919965863227844
score: 0.4919965863227844
},
{
vector: Float32Array(384) [
@@ -111,7 +111,7 @@ Output of `results`:
id: 1,
text: 'Cherry',
type: 'fruit',
_distance: 0.5540297031402588
score: 0.5540297031402588
}
]
```

View File

@@ -4,10 +4,4 @@
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
<a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab">
Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipesexamples/youtube_bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/examples/youtube_bot/index.js)
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)

View File

@@ -6,19 +6,17 @@ to make this available for JS as well.
## Installation
To use full text search, you must install the dependency `tantivy-py`:
To use full text search, you must install optional dependency tantivy-py:
# tantivy 0.20.1
```sh
pip install tantivy==0.20.1
```
# tantivy 0.19.2
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
## Quickstart
Assume:
1. `table` is a LanceDB Table
2. `text` is the name of the `Table` column that we want to index
2. `text` is the name of the Table column that we want to index
For example,
@@ -43,13 +41,7 @@ table.create_fts_index("text")
To search:
```python
table.search("puppy").limit(10).select(["text"]).to_list()
```
Which returns a list of dictionaries:
```python
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
df = table.search("puppy").limit(10).select(["text"]).to_df()
```
LanceDB automatically looks for an FTS index if the input is str.

View File

@@ -1,411 +0,0 @@
<a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/tables_guide.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
A Table is a collection of Records in a LanceDB Database. You can follow along on colab!
## Creating a LanceDB Table
=== "Python"
### LanceDB Connection
```python
import lancedb
db = lancedb.connect("./.lancedb")
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
### From list of tuples or dictionaries
```python
import lancedb
db = lancedb.connect("./.lancedb")
data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
{"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
db.create_table("my_table", data)
db["my_table"].head()
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you can pass in mode="overwrite" to the createTable function.
```python
db.create_table("name", data, mode="overwrite")
```
### From pandas DataFrame
```python
import pandas as pd
data = pd.DataFrame({
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1],
"long": [-122.7, -74.1]
})
db.create_table("table2", data)
db["table2"].head()
```
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
```python
custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()),
pa.field("long", pa.float32())
])
table = db.create_table("table3", data, schema=custom_schema)
```
### From PyArrow Tables
You can also create LanceDB tables directly from pyarrow tables
```python
table = pa.Table.from_arrays(
[
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
db = lancedb.connect("db")
tbl = db.create_table("test1", table)
```
### From Pydantic Models
When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a pyarrow schema or a specialized
pydantic model called `LanceModel`.
For example, the following Content model specifies a table with 5 columns:
movie_id, vector, genres, title, and imdb_id. When you create a table, you can
pass the class as the value of the `schema` parameter to `create_table`.
The `vector` column is a `Vector` type, which is a specialized pydantic type that
can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`).
```python
from lancedb.pydantic import Vector, LanceModel
class Content(LanceModel):
movie_id: int
vector: Vector(128)
genres: str
title: str
imdb_id: int
@property
def imdb_url(self) -> str:
return f"https://www.imdb.com/title/tt{self.imdb_id}"
import pyarrow as pa
db = lancedb.connect("~/.lancedb")
table_name = "movielens_small"
table = db.create_table(table_name, schema=Content)
```
### Using Iterators / Writing Large Datasets
It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
LanceDB additionally supports pyarrow's `RecordBatch` Iterators or other generators producing supported data types.
Here's an example using using `RecordBatch` iterator for creating tables.
```python
import pyarrow as pa
def make_batches():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
db.create_table("table4", make_batches(), schema=schema)
```
You can also use iterators of other types like Pandas dataframe or Pylists directly in the above example.
## Creating Empty Table
You can also create empty tables in python. Initialize it with schema and later ingest data into it.
```python
import lancedb
import pyarrow as pa
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.string()),
pa.field("price", pa.float32()),
])
tbl = db.create_table("table5", schema=schema)
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
]
tbl.add(data=data)
```
You can also use Pydantic to specify the schema
```python
import lancedb
from lancedb.pydantic import LanceModel, vector
class Model(LanceModel):
vector: Vector(2)
tbl = db.create_table("table5", schema=Model.to_arrow_schema())
```
=== "Javascript/Typescript"
### VectorDB Connection
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
### Creating a Table
You can create a LanceDB table in javascript using an array of records.
```javascript
data
const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
## Open existing tables
If you forget the name of your table, you can always get a listing of all table names:
=== "Python"
### Get a list of existing Tables
```python
print(db.table_names())
```
=== "Javascript/Typescript"
```javascript
console.log(await db.tableNames());
```
Then, you can open any existing tables
=== "Python"
```python
tbl = db.open_table("my_table")
```
=== "Javascript/Typescript"
```javascript
const tbl = await db.openTable("my_table");
```
## Adding to a Table
After a table has been created, you can always add more data to it using
=== "Python"
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or a `Iterator[pa.RecordBatch]`. Here are some examples.
### Adding Pandas DataFrame
```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
tbl.add(df)
```
You can also add a large dataset batch in one go using Iterator of any supported data types.
### Adding to table using Iterator
```python
import pandas as pd
def make_batches():
for i in range(5):
yield pd.DataFrame(
{
"vector": [[3.1, 4.1], [1, 1]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
})
tbl.add(make_batches())
```
The other arguments accepted:
| Name | Type | Description | Default |
|---|---|---|---|
| data | DATA | The data to insert into the table. | required |
| mode | str | The mode to use when writing the data. Valid values are "append" and "overwrite". | append |
| on_bad_vectors | str | What to do if any of the vectors are not the same size or contains NaNs. One of "error", "drop", "fill". | drop |
| fill value | float | The value to use when filling vectors: Only used if on_bad_vectors="fill". | 0.0 |
=== "Javascript/Typescript"
```javascript
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
```
## Deleting from a Table
Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter.
=== "Python"
```python
tbl.delete('item = "fizz"')
```
### Deleting row with specific column value
```python
import lancedb
import pandas as pd
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
db = lancedb.connect("./.lancedb")
table = db.create_table("my_table", data)
table.to_pandas()
# x vector
# 0 1 [1.0, 2.0]
# 1 2 [3.0, 4.0]
# 2 3 [5.0, 6.0]
table.delete("x = 2")
table.to_pandas()
# x vector
# 0 1 [1.0, 2.0]
# 1 3 [5.0, 6.0]
```
### Delete from a list of values
```python
to_remove = [1, 5]
to_remove = ", ".join(str(v) for v in to_remove)
table.delete(f"x IN ({to_remove})")
table.to_pandas()
# x vector
# 0 3 [5.0, 6.0]
```
=== "Javascript/Typescript"
```javascript
await tbl.delete('item = "fizz"')
```
### Deleting row with specific column value
```javascript
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [1, 2]},
{id: 2, vector: [3, 4]},
{id: 3, vector: [5, 6]},
];
const tbl = await con.createTable("my_table", data)
await tbl.delete("id = 2")
await tbl.countRows() // Returns 2
```
### Delete from a list of values
```javascript
const to_remove = [1, 5];
await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1
```
### Updating a Table [Experimental]
EXPERIMENTAL: Update rows in the table (not threadsafe).
This can be used to update zero to all rows depending on how many rows match the where clause.
| Parameter | Type | Description |
|---|---|---|
| `where` | `str` | The SQL where clause to use when updating rows. For example, `'x = 2'` or `'x IN (1, 2, 3)'`. The filter must not be empty, or it will error. |
| `values` | `dict` | The values to update. The keys are the column names and the values are the values to set. |
=== "Python"
```python
import lancedb
import pandas as pd
# Create a lancedb connection
db = lancedb.connect("./.lancedb")
# Create a table from a pandas DataFrame
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
table = db.create_table("my_table", data)
# Update the table where x = 2
table.update(where="x = 2", values={"vector": [10, 10]})
# Get the updated table as a pandas DataFrame
df = table.to_pandas()
# Print the DataFrame
print(df)
```
Output
```shell
x vector
0 1 [1.0, 2.0]
1 3 [5.0, 6.0]
2 2 [10.0, 10.0]
```
## What's Next?
Learn how to Query your tables and create indices

View File

@@ -1,23 +1,20 @@
# LanceDB
# Welcome to LanceDB's Documentation
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
![Illustration](/lancedb/assets/ecosystem-illustration.png)
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
The key features of LanceDB include:
* Production-scale vector search with no servers to manage.
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Support for production-scale vector similarity search, full-text search and SQL, with no servers to manage.
* Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* Persisted on HDD, allowing scalability without breaking the bank.
* Ingest your favorite data formats directly, like pandas DataFrames, Pydantic objects and more.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
@@ -36,7 +33,7 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_list()
result = table.search([100, 100]).limit(2).to_df()
```
=== "Javascript"
@@ -72,4 +69,4 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
* [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem.
* [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK.
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Node SDK.
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Python SDK.

View File

@@ -1,21 +0,0 @@
# Integrations
## Data Formats
LanceDB supports ingesting from your favorite data tools.
![Illustration](/lancedb/assets/ecosystem-illustration.png)
## Tools
LanceDB is integrated with most of the popular AI tools, with more coming soon.
Get started using these examples and quick links.
| Integrations | |
|---|---:|
| <h3> LlamaIndex </h3>LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. Llama index integrates with LanceDB as the serverless VectorDB. <h3>[Lean More](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html) </h3> |<img src="../assets/llama-index.jpg" alt="image" width="150" height="auto">|
| <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Langchain TS</h3> Javascript bindings for Langchain. It integrates with LanceDB's serverless vectordb allowing you to build powerful AI applications through composibility using only serverless functions. <h3>[Learn More]( https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Voxel51</h3> It is an open source toolkit that enables you to build better computer vision workflows by improving the quality of your datasets and delivering insights about your models.<h3>[Learn More](./voxel51.md) | <img src="../assets/voxel.gif" alt="image" width="150" height="auto">|
| <h3>PromptTools</h3> Offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.<h3>[Learn More](./prompttools.md) | <img src="../assets/prompttools.jpeg" alt="image" width="150" height="auto">|

View File

@@ -1,7 +0,0 @@
[PromptTools](https://github.com/hegelai/prompttools) offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.
[Evaluating Prompts with PromptTools](./examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
![Alt text](https://prompttools.readthedocs.io/en/latest/_images/demo.gif "a title")

View File

@@ -1,71 +0,0 @@
![example](/assets/voxel.gif)
Basic recipe
____________
The basic workflow to use LanceDB to create a similarity index on your FiftyOne
datasets and use this to query your data is as follows:
1) Load a dataset into FiftyOne
2) Compute embedding vectors for samples or patches in your dataset, or select
a model to use to generate embeddings
3) Use the `compute_similarity()`
method to generate a LanceDB table for the samples or object
patches embeddings in a dataset by setting the parameter `backend="lancedb"` and
specifying a `brain_key` of your choice
4) Use this LanceDB table to query your data with
`sort_by_similarity()`
5) If desired, delete the table
The example below demonstrates this workflow.
!!! Note
You must install the LanceDB Python client to run this
```
pip install lancedb
```
```python
import fiftyone as fo
import fiftyone.brain as fob
import fiftyone.zoo as foz
# Step 1: Load your data into FiftyOne
dataset = foz.load_zoo_dataset("quickstart")
# Steps 2 and 3: Compute embeddings and create a similarity index
lancedb_index = fob.compute_similarity(
dataset,
model="clip-vit-base32-torch",
brain_key="lancedb_index",
backend="lancedb",
)
```
Once the similarity index has been generated, we can query our data in FiftyOne
by specifying the `brain_key`:
```python
# Step 4: Query your data
query = dataset.first().id # query by sample ID
view = dataset.sort_by_similarity(
query,
brain_key="lancedb_index",
k=10, # limit to 10 most similar samples
)
# Step 5 (optional): Cleanup
# Delete the LanceDB table
lancedb_index.cleanup()
# Delete run record from FiftyOne
dataset.delete_brain_run("lancedb_index")
```
More in depth walkthrough of the integration, visit the LanceDB guide on Voxel51 - [LaceDB x Voxel51](https://docs.voxel51.com/integrations/lancedb.html)

View File

@@ -10,10 +10,6 @@ A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb)
npm install vectordb
```
This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
yet support Windows or musl-based Linux (such as Alpine Linux).
## Usage
### Basic Example
@@ -32,34 +28,12 @@ The [examples](./examples) folder contains complete examples.
## Development
To build everything fresh:
```bash
npm install
npm run tsc
npm run build
```
Then you should be able to run the tests with:
Run the tests with
```bash
npm test
```
### Rebuilding Rust library
```bash
npm run build
```
### Rebuilding Typescript
```bash
npm run tsc
```
### Fix lints
To run the linter and have it automatically fix all errors
```bash

View File

@@ -17,7 +17,7 @@ A connection to a LanceDB database.
### Properties
- [\_db](LocalConnection.md#_db)
- [\_options](LocalConnection.md#_options)
- [\_uri](LocalConnection.md#_uri)
### Accessors
@@ -35,18 +35,18 @@ A connection to a LanceDB database.
### constructor
**new LocalConnection**(`db`, `options`)
**new LocalConnection**(`db`, `uri`)
#### Parameters
| Name | Type |
| :------ | :------ |
| `db` | `any` |
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) |
| `uri` | `string` |
#### Defined in
[index.ts:184](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L184)
[index.ts:132](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L132)
## Properties
@@ -56,17 +56,17 @@ A connection to a LanceDB database.
#### Defined in
[index.ts:182](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L182)
[index.ts:130](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L130)
___
### \_options
### \_uri
`Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
`Private` `Readonly` **\_uri**: `string`
#### Defined in
[index.ts:181](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L181)
[index.ts:129](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L129)
## Accessors
@@ -84,7 +84,7 @@ ___
#### Defined in
[index.ts:189](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L189)
[index.ts:137](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L137)
## Methods
@@ -112,7 +112,7 @@ Creates a new Table and initialize it with new data.
#### Defined in
[index.ts:230](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L230)
[index.ts:177](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L177)
**createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
@@ -134,7 +134,7 @@ Connection.createTable
#### Defined in
[index.ts:231](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L231)
[index.ts:178](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L178)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
@@ -165,36 +165,7 @@ Connection.createTable
#### Defined in
[index.ts:241](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L241)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `data` | `Record`<`string`, `unknown`\>[] |
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:242](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L242)
[index.ts:188](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L188)
___
@@ -219,7 +190,7 @@ ___
#### Defined in
[index.ts:266](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L266)
[index.ts:201](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L201)
___
@@ -245,7 +216,7 @@ Drop an existing table.
#### Defined in
[index.ts:276](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L276)
[index.ts:211](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L211)
___
@@ -271,7 +242,7 @@ Open a table in the database.
#### Defined in
[index.ts:205](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L205)
[index.ts:153](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L153)
**openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
@@ -300,34 +271,7 @@ Connection.openTable
#### Defined in
[index.ts:212](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L212)
**openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.openTable
#### Defined in
[index.ts:213](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L213)
[index.ts:160](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L160)
___
@@ -347,4 +291,4 @@ Get the names of all tables in the database.
#### Defined in
[index.ts:196](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L196)
[index.ts:144](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L144)

View File

@@ -24,7 +24,6 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
- [\_embeddings](LocalTable.md#_embeddings)
- [\_name](LocalTable.md#_name)
- [\_options](LocalTable.md#_options)
- [\_tbl](LocalTable.md#_tbl)
### Accessors
@@ -44,7 +43,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
### constructor
**new LocalTable**<`T`\>(`tbl`, `name`, `options`)
**new LocalTable**<`T`\>(`tbl`, `name`)
#### Type parameters
@@ -58,13 +57,12 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
| :------ | :------ |
| `tbl` | `any` |
| `name` | `string` |
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) |
#### Defined in
[index.ts:287](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L287)
[index.ts:221](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L221)
**new LocalTable**<`T`\>(`tbl`, `name`, `options`, `embeddings`)
**new LocalTable**<`T`\>(`tbl`, `name`, `embeddings`)
#### Type parameters
@@ -78,12 +76,11 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
| :------ | :------ | :------ |
| `tbl` | `any` | |
| `name` | `string` | |
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) | |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
#### Defined in
[index.ts:294](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L294)
[index.ts:227](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L227)
## Properties
@@ -93,7 +90,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
#### Defined in
[index.ts:284](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L284)
[index.ts:219](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L219)
___
@@ -103,17 +100,7 @@ ___
#### Defined in
[index.ts:283](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L283)
___
### \_options
`Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Defined in
[index.ts:285](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L285)
[index.ts:218](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L218)
___
@@ -123,7 +110,7 @@ ___
#### Defined in
[index.ts:282](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L282)
[index.ts:217](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L217)
## Accessors
@@ -141,7 +128,7 @@ ___
#### Defined in
[index.ts:302](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L302)
[index.ts:234](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L234)
## Methods
@@ -169,7 +156,7 @@ The number of rows added to the table
#### Defined in
[index.ts:320](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L320)
[index.ts:252](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L252)
___
@@ -189,7 +176,7 @@ Returns the number of rows in this table.
#### Defined in
[index.ts:362](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L362)
[index.ts:278](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L278)
___
@@ -207,7 +194,7 @@ VectorIndexParams.
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexParams` | [`IvfPQIndexConfig`](../interfaces/IvfPQIndexConfig.md) | The parameters of this Index, |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
#### Returns
@@ -219,7 +206,7 @@ VectorIndexParams.
#### Defined in
[index.ts:355](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L355)
[index.ts:271](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L271)
___
@@ -245,7 +232,7 @@ Delete rows from this table.
#### Defined in
[index.ts:371](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L371)
[index.ts:287](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L287)
___
@@ -273,7 +260,7 @@ The number of rows added to the table
#### Defined in
[index.ts:338](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L338)
[index.ts:262](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L262)
___
@@ -299,4 +286,4 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in
[index.ts:310](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L310)
[index.ts:242](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L242)

View File

@@ -40,7 +40,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L21)
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L21)
## Properties
@@ -50,7 +50,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L19)
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L19)
___
@@ -60,7 +60,7 @@ ___
#### Defined in
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L18)
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L18)
___
@@ -76,7 +76,7 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L50)
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L50)
## Methods
@@ -102,4 +102,4 @@ Creates a vector representation for the given values.
#### Defined in
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L38)
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L38)

View File

@@ -62,7 +62,7 @@ A builder for nearest neighbor queries for LanceDB.
#### Defined in
[index.ts:448](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L448)
[index.ts:362](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L362)
## Properties
@@ -72,7 +72,7 @@ A builder for nearest neighbor queries for LanceDB.
#### Defined in
[index.ts:446](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L446)
[index.ts:360](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L360)
___
@@ -82,7 +82,7 @@ ___
#### Defined in
[index.ts:444](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L444)
[index.ts:358](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L358)
___
@@ -92,7 +92,7 @@ ___
#### Defined in
[index.ts:440](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L440)
[index.ts:354](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L354)
___
@@ -102,7 +102,7 @@ ___
#### Defined in
[index.ts:445](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L445)
[index.ts:359](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L359)
___
@@ -112,7 +112,7 @@ ___
#### Defined in
[index.ts:442](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L442)
[index.ts:356](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L356)
___
@@ -122,7 +122,7 @@ ___
#### Defined in
[index.ts:438](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L438)
[index.ts:352](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L352)
___
@@ -132,7 +132,7 @@ ___
#### Defined in
[index.ts:439](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L439)
[index.ts:353](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L353)
___
@@ -142,7 +142,7 @@ ___
#### Defined in
[index.ts:441](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L441)
[index.ts:355](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L355)
___
@@ -152,7 +152,7 @@ ___
#### Defined in
[index.ts:443](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L443)
[index.ts:357](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L357)
___
@@ -162,7 +162,7 @@ ___
#### Defined in
[index.ts:437](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L437)
[index.ts:351](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L351)
___
@@ -188,7 +188,7 @@ A filter statement to be applied to this query.
#### Defined in
[index.ts:496](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L496)
[index.ts:410](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L410)
## Methods
@@ -210,7 +210,7 @@ Execute the query and return the results as an Array of Objects
#### Defined in
[index.ts:519](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L519)
[index.ts:433](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L433)
___
@@ -232,7 +232,7 @@ A filter statement to be applied to this query.
#### Defined in
[index.ts:491](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L491)
[index.ts:405](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L405)
___
@@ -254,7 +254,7 @@ Sets the number of results that will be returned
#### Defined in
[index.ts:464](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L464)
[index.ts:378](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L378)
___
@@ -280,7 +280,7 @@ MetricType for the different options
#### Defined in
[index.ts:511](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L511)
[index.ts:425](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L425)
___
@@ -302,7 +302,7 @@ The number of probes used. A higher number makes search more accurate but also s
#### Defined in
[index.ts:482](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L482)
[index.ts:396](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L396)
___
@@ -324,7 +324,7 @@ Refine the results by reading extra elements and re-ranking them in memory.
#### Defined in
[index.ts:473](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L473)
[index.ts:387](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L387)
___
@@ -346,4 +346,4 @@ Return only the specified columns.
#### Defined in
[index.ts:502](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L502)
[index.ts:416](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L416)

View File

@@ -22,7 +22,7 @@ Cosine distance
#### Defined in
[index.ts:567](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L567)
[index.ts:481](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L481)
___
@@ -34,7 +34,7 @@ Dot product
#### Defined in
[index.ts:572](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L572)
[index.ts:486](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L486)
___
@@ -46,4 +46,4 @@ Euclidean distance
#### Defined in
[index.ts:562](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L562)
[index.ts:476](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L476)

View File

@@ -22,7 +22,7 @@ Append new data to the table.
#### Defined in
[index.ts:552](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L552)
[index.ts:466](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L466)
___
@@ -34,7 +34,7 @@ Create a new [Table](../interfaces/Table.md).
#### Defined in
[index.ts:548](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L548)
[index.ts:462](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L462)
___
@@ -46,4 +46,4 @@ Overwrite the existing [Table](../interfaces/Table.md) if presented.
#### Defined in
[index.ts:550](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L550)
[index.ts:464](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L464)

View File

@@ -1,41 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / AwsCredentials
# Interface: AwsCredentials
## Table of contents
### Properties
- [accessKeyId](AwsCredentials.md#accesskeyid)
- [secretKey](AwsCredentials.md#secretkey)
- [sessionToken](AwsCredentials.md#sessiontoken)
## Properties
### accessKeyId
**accessKeyId**: `string`
#### Defined in
[index.ts:31](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L31)
___
### secretKey
**secretKey**: `string`
#### Defined in
[index.ts:33](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L33)
___
### sessionToken
`Optional` **sessionToken**: `string`
#### Defined in
[index.ts:35](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L35)

View File

@@ -32,7 +32,7 @@ Connection could be local against filesystem or remote against a server.
#### Defined in
[index.ts:70](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L70)
[index.ts:45](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L45)
## Methods
@@ -63,7 +63,7 @@ Creates a new Table and initialize it with new data.
#### Defined in
[index.ts:90](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L90)
[index.ts:65](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L65)
___
@@ -84,7 +84,7 @@ ___
#### Defined in
[index.ts:92](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L92)
[index.ts:67](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L67)
___
@@ -106,7 +106,7 @@ Drop an existing table.
#### Defined in
[index.ts:98](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L98)
[index.ts:73](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L73)
___
@@ -135,7 +135,7 @@ Open a table in the database.
#### Defined in
[index.ts:80](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L80)
[index.ts:55](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L55)
___
@@ -149,4 +149,4 @@ ___
#### Defined in
[index.ts:72](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L72)
[index.ts:47](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L47)

View File

@@ -1,30 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / ConnectionOptions
# Interface: ConnectionOptions
## Table of contents
### Properties
- [awsCredentials](ConnectionOptions.md#awscredentials)
- [uri](ConnectionOptions.md#uri)
## Properties
### awsCredentials
`Optional` **awsCredentials**: [`AwsCredentials`](AwsCredentials.md)
#### Defined in
[index.ts:40](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L40)
___
### uri
**uri**: `string`
#### Defined in
[index.ts:39](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L39)

View File

@@ -45,7 +45,7 @@ Creates a vector representation for the given values.
#### Defined in
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L27)
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/embedding_function.ts#L27)
___
@@ -57,4 +57,4 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L22)
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/embedding_function.ts#L22)

View File

@@ -1,149 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / IvfPQIndexConfig
# Interface: IvfPQIndexConfig
## Table of contents
### Properties
- [column](IvfPQIndexConfig.md#column)
- [index\_name](IvfPQIndexConfig.md#index_name)
- [max\_iters](IvfPQIndexConfig.md#max_iters)
- [max\_opq\_iters](IvfPQIndexConfig.md#max_opq_iters)
- [metric\_type](IvfPQIndexConfig.md#metric_type)
- [num\_bits](IvfPQIndexConfig.md#num_bits)
- [num\_partitions](IvfPQIndexConfig.md#num_partitions)
- [num\_sub\_vectors](IvfPQIndexConfig.md#num_sub_vectors)
- [replace](IvfPQIndexConfig.md#replace)
- [type](IvfPQIndexConfig.md#type)
- [use\_opq](IvfPQIndexConfig.md#use_opq)
## Properties
### column
`Optional` **column**: `string`
The column to be indexed
#### Defined in
[index.ts:382](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L382)
___
### index\_name
`Optional` **index\_name**: `string`
A unique name for the index
#### Defined in
[index.ts:387](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L387)
___
### max\_iters
`Optional` **max\_iters**: `number`
The max number of iterations for kmeans training.
#### Defined in
[index.ts:402](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L402)
___
### max\_opq\_iters
`Optional` **max\_opq\_iters**: `number`
Max number of iterations to train OPQ, if `use_opq` is true.
#### Defined in
[index.ts:421](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L421)
___
### metric\_type
`Optional` **metric\_type**: [`MetricType`](../enums/MetricType.md)
Metric type, L2 or Cosine
#### Defined in
[index.ts:392](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L392)
___
### num\_bits
`Optional` **num\_bits**: `number`
The number of bits to present one PQ centroid.
#### Defined in
[index.ts:416](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L416)
___
### num\_partitions
`Optional` **num\_partitions**: `number`
The number of partitions this index
#### Defined in
[index.ts:397](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L397)
___
### num\_sub\_vectors
`Optional` **num\_sub\_vectors**: `number`
Number of subvectors to build PQ code
#### Defined in
[index.ts:412](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L412)
___
### replace
`Optional` **replace**: `boolean`
Replace an existing index with the same name if it exists.
#### Defined in
[index.ts:426](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L426)
___
### type
**type**: ``"ivf_pq"``
#### Defined in
[index.ts:428](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L428)
___
### use\_opq
• `Optional` **use\_opq**: `boolean`
Train as optimized product quantization.
#### Defined in
[index.ts:407](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L407)

View File

@@ -52,7 +52,7 @@ The number of rows added to the table
#### Defined in
[index.ts:120](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L120)
[index.ts:95](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L95)
___
@@ -72,13 +72,13 @@ Returns the number of rows in this table.
#### Defined in
[index.ts:140](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L140)
[index.ts:115](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L115)
___
### createIndex
**createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`<`any`\>
**createIndex**: (`indexParams`: `IvfPQIndexConfig`) => `Promise`<`any`\>
#### Type declaration
@@ -94,7 +94,7 @@ VectorIndexParams.
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexParams` | [`IvfPQIndexConfig`](IvfPQIndexConfig.md) | The parameters of this Index, |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
##### Returns
@@ -102,7 +102,7 @@ VectorIndexParams.
#### Defined in
[index.ts:135](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L135)
[index.ts:110](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L110)
___
@@ -116,37 +116,11 @@ ___
Delete rows from this table.
This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
**`Examples`**
```ts
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [1, 2]},
{id: 2, vector: [3, 4]},
{id: 3, vector: [5, 6]},
];
const tbl = await con.createTable("my_table", data)
await tbl.delete("id = 2")
await tbl.countRows() // Returns 2
```
If you have a list of values to delete, you can combine them into a
stringified list and use the `IN` operator:
```ts
const to_remove = [1, 5];
await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1
```
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. |
##### Returns
@@ -154,7 +128,7 @@ await tbl.countRows() // Returns 1
#### Defined in
[index.ts:174](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L174)
[index.ts:122](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L122)
___
@@ -164,7 +138,7 @@ ___
#### Defined in
[index.ts:106](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L106)
[index.ts:81](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L81)
___
@@ -192,7 +166,7 @@ The number of rows added to the table
#### Defined in
[index.ts:128](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L128)
[index.ts:103](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L103)
___
@@ -218,4 +192,4 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in
[index.ts:112](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L112)
[index.ts:87](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L87)

View File

@@ -18,11 +18,8 @@
### Interfaces
- [AwsCredentials](interfaces/AwsCredentials.md)
- [Connection](interfaces/Connection.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
- [IvfPQIndexConfig](interfaces/IvfPQIndexConfig.md)
- [Table](interfaces/Table.md)
### Type Aliases
@@ -37,11 +34,11 @@
### VectorIndexParams
Ƭ **VectorIndexParams**: [`IvfPQIndexConfig`](interfaces/IvfPQIndexConfig.md)
Ƭ **VectorIndexParams**: `IvfPQIndexConfig`
#### Defined in
[index.ts:431](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L431)
[index.ts:345](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L345)
## Functions
@@ -63,20 +60,4 @@ Connect to a LanceDB instance at the given URI
#### Defined in
[index.ts:47](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L47)
**connect**(`opts`): `Promise`<[`Connection`](interfaces/Connection.md)\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `opts` | `Partial`<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> |
#### Returns
`Promise`<[`Connection`](interfaces/Connection.md)\>
#### Defined in
[index.ts:48](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L48)
[index.ts:34](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L34)

View File

@@ -10,11 +10,7 @@
"\n",
"This Q&A bot will allow you to query your own documentation easily using questions. We'll also demonstrate the use of LangChain and LanceDB using the OpenAI API. \n",
"\n",
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well\n",
"\n",
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
"\n",
"Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/Code-Documentation-QA-Bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/Code-Documentation-QA-Bot/index.js)"
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well"
]
},
{
@@ -144,7 +140,7 @@
"source": [
"# Pre-processing and loading the documentation\n",
"\n",
"Next, let's pre-process and load the documentation. To make sure we don't need to do this repeatedly if we were updating code, we're caching it using pickle so we can retrieve it again (this could take a few minutes to run the first time you do it). We'll also add some more metadata to the docs here such as the title and version of the code:"
"Next, let's pre-process and load the documentation. To make sure we don't need to do this repeatedly if we were updating code, we're caching it using pickle so we can retrieve it again (this could take a few minutes to run the first time yyou do it). We'll also add some more metadata to the docs here such as the title and version of the code:"
]
},
{
@@ -185,7 +181,7 @@
"id": "c3852dd3",
"metadata": {},
"source": [
"# Generating embeddings from our docs\n",
"# Generating emebeddings from our docs\n",
"\n",
"Now that we have our raw documents loaded, we need to pre-process them to generate embeddings:"
]
@@ -255,7 +251,7 @@
"id": "28d93b85",
"metadata": {},
"source": [
"And that's it! We're all set up. The next step is to run some queries, let's try a few:"
"And thats it! We're all setup. The next step is to run some queries, let's try a few:"
]
},
{

View File

@@ -1,14 +1,5 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![example](https://github.com/lancedb/vectordb-recipes/assets/15766192/799f94a1-a01d-4a5b-a627-2a733bbb4227)\n",
"\n",
" <a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/multimodal_clip/main.py) |"
]
},
{
"cell_type": "code",
"execution_count": 2,
@@ -19,11 +10,11 @@
"output_type": "stream",
"text": [
"\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
@@ -39,7 +30,6 @@
"outputs": [],
"source": [
"import io\n",
"\n",
"import PIL\n",
"import duckdb\n",
"import lancedb"
@@ -52,19 +42,6 @@
"## First run setup: Download data and pre-process"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"### Get dataset\n",
"\n",
"!wget https://eto-public.s3.us-west-2.amazonaws.com/datasets/diffusiondb_lance.tar.gz\n",
"!tar -xvf diffusiondb_lance.tar.gz\n",
"!mv diffusiondb_test rawdata.lance\n"
]
},
{
"cell_type": "code",
"execution_count": 30,
@@ -159,18 +136,18 @@
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"embedding = embed_func('{query}')\\n\"\n",
" \"tbl.search(embedding).limit(9).to_pandas()\"\n",
" \"tbl.search(embedding).limit(9).to_df()\"\n",
" )\n",
" return (_extract(tbl.search(emb).limit(9).to_pandas()), code)\n",
" return (_extract(tbl.search(emb).limit(9).to_df()), code)\n",
"\n",
"def find_image_keywords(query):\n",
" code = (\n",
" \"import lancedb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"tbl.search('{query}').limit(9).to_pandas()\"\n",
" f\"tbl.search('{query}').limit(9).to_df()\"\n",
" )\n",
" return (_extract(tbl.search(query).limit(9).to_pandas()), code)\n",
" return (_extract(tbl.search(query).limit(9).to_df()), code)\n",
"\n",
"def find_image_sql(query):\n",
" code = (\n",
@@ -270,7 +247,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.11.4 64-bit",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -284,12 +261,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
},
"vscode": {
"interpreter": {
"hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e"
}
"version": "3.11.3"
}
},
"nbformat": 4,

View File

@@ -1,831 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d24eb4c6-e246-44ca-ba7c-6eae7923bd4c",
"metadata": {},
"source": [
"## LanceDB Tables\n",
"A Table is a collection of Records in a LanceDB Database.\n",
"\n",
"![illustration](../assets/ecosystem-illustration.png)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "c1b4e34b-a49c-471d-a343-a5940bb5138a",
"metadata": {},
"outputs": [],
"source": [
"!pip install lancedb -qq"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "4e5a8d07-d9a1-48c1-913a-8e0629289579",
"metadata": {},
"outputs": [],
"source": [
"import lancedb\n",
"db = lancedb.connect(\"./.lancedb\")"
]
},
{
"cell_type": "markdown",
"id": "66fb93d5-3551-406b-99b2-488442d61d06",
"metadata": {},
"source": [
"LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.\n",
"\n",
" ### From list of tuples or dictionaries"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5df12f66-8d99-43ad-8d0b-22189ec0a6b9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"pyarrow.Table\n",
"vector: fixed_size_list<item: float>[2]\n",
" child 0, item: float\n",
"lat: double\n",
"long: double\n",
"----\n",
"vector: [[[1.1,1.2],[0.2,1.8]]]\n",
"lat: [[45.5,40.1]]\n",
"long: [[-122.7,-74.1]]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import lancedb\n",
"\n",
"db = lancedb.connect(\"./.lancedb\")\n",
"\n",
"data = [{\"vector\": [1.1, 1.2], \"lat\": 45.5, \"long\": -122.7},\n",
" {\"vector\": [0.2, 1.8], \"lat\": 40.1, \"long\": -74.1}]\n",
"\n",
"db.create_table(\"my_table\", data)\n",
"\n",
"db[\"my_table\"].head()"
]
},
{
"cell_type": "markdown",
"id": "10ce802f-1a10-49ee-8ee3-a9bfb302d86c",
"metadata": {},
"source": [
"## From pandas DataFrame\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f4d87ae9-0ccb-48eb-b31d-bb8f2370e47e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"pyarrow.Table\n",
"vector: fixed_size_list<item: float>[2]\n",
" child 0, item: float\n",
"lat: double\n",
"long: double\n",
"----\n",
"vector: [[[1.1,1.2],[0.2,1.8]]]\n",
"lat: [[45.5,40.1]]\n",
"long: [[-122.7,-74.1]]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"data = pd.DataFrame({\n",
" \"vector\": [[1.1, 1.2], [0.2, 1.8]],\n",
" \"lat\": [45.5, 40.1],\n",
" \"long\": [-122.7, -74.1]\n",
"})\n",
"\n",
"db.create_table(\"table2\", data)\n",
"\n",
"db[\"table2\"].head() "
]
},
{
"cell_type": "markdown",
"id": "4be81469-5b57-4f78-9c72-3938c0378d9d",
"metadata": {},
"source": [
"Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "25f34bcf-fca0-4431-8601-eac95d1bd347",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"vector: fixed_size_list<item: float>[2]\n",
" child 0, item: float\n",
"lat: float\n",
"long: float"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pyarrow as pa\n",
"\n",
"custom_schema = pa.schema([\n",
"pa.field(\"vector\", pa.list_(pa.float32(), 2)),\n",
"pa.field(\"lat\", pa.float32()),\n",
"pa.field(\"long\", pa.float32())\n",
"])\n",
"\n",
"table = db.create_table(\"table3\", data, schema=custom_schema, mode=\"overwrite\")\n",
"table.schema"
]
},
{
"cell_type": "markdown",
"id": "4df51925-7ca2-4005-9c72-38b3d26240c6",
"metadata": {},
"source": [
"### From PyArrow Tables\n",
"\n",
"You can also create LanceDB tables directly from pyarrow tables"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "90a880f6-be43-4c9d-ba65-0b05197c0f6f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"vector: fixed_size_list<item: float>[2]\n",
" child 0, item: float\n",
"item: string\n",
"price: double"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"table = pa.Table.from_arrays(\n",
" [\n",
" pa.array([[3.1, 4.1], [5.9, 26.5]],\n",
" pa.list_(pa.float32(), 2)),\n",
" pa.array([\"foo\", \"bar\"]),\n",
" pa.array([10.0, 20.0]),\n",
" ],\n",
" [\"vector\", \"item\", \"price\"],\n",
" )\n",
"\n",
"db = lancedb.connect(\"db\")\n",
"\n",
"tbl = db.create_table(\"test1\", table, mode=\"overwrite\")\n",
"tbl.schema"
]
},
{
"cell_type": "markdown",
"id": "0f36c51c-d902-449d-8292-700e53990c32",
"metadata": {},
"source": [
"### From Pydantic Models\n",
"\n",
"LanceDB supports to create Apache Arrow Schema from a Pydantic BaseModel."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "d81121d7-e4b7-447c-a48c-974b6ebb464a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"movie_id: int64 not null\n",
"vector: fixed_size_list<item: float>[128] not null\n",
" child 0, item: float\n",
"genres: string not null\n",
"title: string not null\n",
"imdb_id: int64 not null"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from lancedb.pydantic import Vector, LanceModel\n",
"\n",
"class Content(LanceModel):\n",
" movie_id: int\n",
" vector: Vector(128)\n",
" genres: str\n",
" title: str\n",
" imdb_id: int\n",
" \n",
" @property\n",
" def imdb_url(self) -> str:\n",
" return f\"https://www.imdb.com/title/tt{self.imdb_id}\"\n",
"\n",
"import pyarrow as pa\n",
"db = lancedb.connect(\"~/.lancedb\")\n",
"table_name = \"movielens_small\"\n",
"table = db.create_table(table_name, schema=Content)\n",
"table.schema"
]
},
{
"cell_type": "markdown",
"id": "860e1f77-e860-46a9-98b7-b2979092ccd6",
"metadata": {},
"source": [
"### Using Iterators / Writing Large Datasets\n",
"\n",
"It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`\n",
"\n",
"LanceDB additionally supports pyarrow's `RecordBatch` Iterators or other generators producing supported data types.\n",
"\n",
"## Here's an example using using `RecordBatch` iterator for creating tables."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "bc247142-4e3c-41a2-b94c-8e00d2c2a508",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LanceTable(table4)"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pyarrow as pa\n",
"\n",
"def make_batches():\n",
" for i in range(5):\n",
" yield pa.RecordBatch.from_arrays(\n",
" [\n",
" pa.array([[3.1, 4.1], [5.9, 26.5]],\n",
" pa.list_(pa.float32(), 2)),\n",
" pa.array([\"foo\", \"bar\"]),\n",
" pa.array([10.0, 20.0]),\n",
" ],\n",
" [\"vector\", \"item\", \"price\"],\n",
" )\n",
"\n",
"schema = pa.schema([\n",
" pa.field(\"vector\", pa.list_(pa.float32(), 2)),\n",
" pa.field(\"item\", pa.utf8()),\n",
" pa.field(\"price\", pa.float32()),\n",
"])\n",
"\n",
"db.create_table(\"table4\", make_batches(), schema=schema)"
]
},
{
"cell_type": "markdown",
"id": "94f7dd2b-bae4-4bdf-8534-201437c31027",
"metadata": {},
"source": [
"### Using pandas `DataFrame` Iterator and Pydantic Schema\n",
"\n",
"You can set the schema via pyarrow schema object or using Pydantic object"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "25ad3523-e0c9-4c28-b3df-38189c4e0e5f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"vector: fixed_size_list<item: float>[2] not null\n",
" child 0, item: float\n",
"item: string not null\n",
"price: double not null"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pyarrow as pa\n",
"import pandas as pd\n",
"\n",
"class PydanticSchema(LanceModel):\n",
" vector: Vector(2)\n",
" item: str\n",
" price: float\n",
"\n",
"def make_batches():\n",
" for i in range(5):\n",
" yield pd.DataFrame(\n",
" {\n",
" \"vector\": [[3.1, 4.1], [1, 1]],\n",
" \"item\": [\"foo\", \"bar\"],\n",
" \"price\": [10.0, 20.0],\n",
" })\n",
"\n",
"tbl = db.create_table(\"table5\", make_batches(), schema=PydanticSchema)\n",
"tbl.schema"
]
},
{
"cell_type": "markdown",
"id": "4aa955e9-fcd0-4c99-b644-f218f3bb3f1a",
"metadata": {},
"source": [
"## Creating Empty Table\n",
"\n",
"You can create an empty table by just passing the schema and later add to it using `table.add()`"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "2814173a-eacc-4dd8-a64d-6312b44582cc",
"metadata": {},
"outputs": [],
"source": [
"import lancedb\n",
"from lancedb.pydantic import LanceModel, Vector\n",
"\n",
"class Model(LanceModel):\n",
" vector: Vector(2)\n",
"\n",
"tbl = db.create_table(\"table6\", schema=Model.to_arrow_schema())"
]
},
{
"cell_type": "markdown",
"id": "1d1b0f5c-a1d9-459f-8614-8376b6f577e1",
"metadata": {},
"source": [
"## Open Existing Tables\n",
"\n",
"If you forget the name of your table, you can always get a listing of all table names:\n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "df9e13c0-41f6-437f-9dfa-2fd71d3d9c45",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['table6', 'table4', 'table5', 'movielens_small']"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db.table_names()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "9343f5ad-6024-42ee-ac2f-6c1471df8679",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>vector</th>\n",
" <th>item</th>\n",
" <th>price</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>[3.1, 4.1]</td>\n",
" <td>foo</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>[5.9, 26.5]</td>\n",
" <td>bar</td>\n",
" <td>20.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>[3.1, 4.1]</td>\n",
" <td>foo</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>[5.9, 26.5]</td>\n",
" <td>bar</td>\n",
" <td>20.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>[3.1, 4.1]</td>\n",
" <td>foo</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>[5.9, 26.5]</td>\n",
" <td>bar</td>\n",
" <td>20.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>[3.1, 4.1]</td>\n",
" <td>foo</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>[5.9, 26.5]</td>\n",
" <td>bar</td>\n",
" <td>20.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>[3.1, 4.1]</td>\n",
" <td>foo</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>[5.9, 26.5]</td>\n",
" <td>bar</td>\n",
" <td>20.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" vector item price\n",
"0 [3.1, 4.1] foo 10.0\n",
"1 [5.9, 26.5] bar 20.0\n",
"2 [3.1, 4.1] foo 10.0\n",
"3 [5.9, 26.5] bar 20.0\n",
"4 [3.1, 4.1] foo 10.0\n",
"5 [5.9, 26.5] bar 20.0\n",
"6 [3.1, 4.1] foo 10.0\n",
"7 [5.9, 26.5] bar 20.0\n",
"8 [3.1, 4.1] foo 10.0\n",
"9 [5.9, 26.5] bar 20.0"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tbl = db.open_table(\"table4\")\n",
"tbl.to_pandas()"
]
},
{
"cell_type": "markdown",
"id": "5019246f-12e3-4f78-88a8-9f4939802c76",
"metadata": {},
"source": [
"## Adding to table\n",
"After a table has been created, you can always add more data to it using\n",
"\n",
"You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or a `Iterator[pa.RecordBatch]`. Here are some examples."
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "8a56250f-73a1-4c26-a6ad-5c7a0ce3a9ab",
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame([{\"vector\": [1.3, 1.4], \"item\": \"fizz\", \"price\": 100.0},\n",
" {\"vector\": [9.5, 56.2], \"item\": \"buzz\", \"price\": 200.0}])\n",
"tbl.add(df)"
]
},
{
"cell_type": "markdown",
"id": "9985f6ee-67e1-45a9-b233-94e3d121ecbf",
"metadata": {},
"source": [
"You can also add a large dataset batch in one go using Iterator of supported data types\n",
"\n",
"### Adding via Iterator\n",
"\n",
"here, we'll use pandas DataFrame Iterator"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "030c7057-b98e-4e2f-be14-b8c1f927f83c",
"metadata": {},
"outputs": [],
"source": [
"\n",
"import pandas as pd\n",
"\n",
"def make_batches():\n",
" for i in range(5):\n",
" yield pd.DataFrame(\n",
" {\n",
" \"vector\": [[3.1, 4.1], [1, 1]],\n",
" \"item\": [\"foo\", \"bar\"],\n",
" \"price\": [10.0, 20.0],\n",
" })\n",
"tbl.add(make_batches())"
]
},
{
"cell_type": "markdown",
"id": "b8316d5d-0a23-4675-b0ee-178711db873a",
"metadata": {},
"source": [
"## Deleting from a Table\n",
"\n",
"Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter, like:\n",
"\n",
"\n",
"```python\n",
"tbl.delete('item = \"fizz\"')\n",
"```\n"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "e7a17de2-08d2-41b7-bd05-f63d1045ab1f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"32\n"
]
},
{
"data": {
"text/plain": [
"17"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(len(tbl))\n",
" \n",
"tbl.delete(\"price = 20.0\")\n",
" \n",
"len(tbl)"
]
},
{
"cell_type": "markdown",
"id": "74ac180b-5432-4c14-b1a8-22c35ac83af8",
"metadata": {},
"source": [
"### Delete from a list of values"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "fe3310bd-08f4-4a22-a63b-b3127d22f9f7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" vector item price\n",
"0 [3.1, 4.1] foo 10.0\n",
"1 [3.1, 4.1] foo 10.0\n",
"2 [3.1, 4.1] foo 10.0\n",
"3 [3.1, 4.1] foo 10.0\n",
"4 [3.1, 4.1] foo 10.0\n",
"5 [1.3, 1.4] fizz 100.0\n",
"6 [9.5, 56.2] buzz 200.0\n",
"7 [3.1, 4.1] foo 10.0\n",
"8 [3.1, 4.1] foo 10.0\n",
"9 [3.1, 4.1] foo 10.0\n",
"10 [3.1, 4.1] foo 10.0\n",
"11 [3.1, 4.1] foo 10.0\n",
"12 [3.1, 4.1] foo 10.0\n",
"13 [3.1, 4.1] foo 10.0\n",
"14 [3.1, 4.1] foo 10.0\n",
"15 [3.1, 4.1] foo 10.0\n",
"16 [3.1, 4.1] foo 10.0\n"
]
},
{
"ename": "OSError",
"evalue": "LanceError(IO): Error during planning: column foo does not exist",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[30], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m to_remove \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mstr\u001b[39m(v) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m to_remove)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(tbl\u001b[38;5;241m.\u001b[39mto_pandas())\n\u001b[0;32m----> 4\u001b[0m \u001b[43mtbl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mitem IN (\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mto_remove\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m)\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 5\u001b[0m tbl\u001b[38;5;241m.\u001b[39mto_pandas()\n",
"File \u001b[0;32m~/Documents/lancedb/lancedb/python/lancedb/table.py:610\u001b[0m, in \u001b[0;36mLanceTable.delete\u001b[0;34m(self, where)\u001b[0m\n\u001b[1;32m 609\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdelete\u001b[39m(\u001b[38;5;28mself\u001b[39m, where: \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m--> 610\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mwhere\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Documents/lancedb/lancedb/env/lib/python3.11/site-packages/lance/dataset.py:489\u001b[0m, in \u001b[0;36mLanceDataset.delete\u001b[0;34m(self, predicate)\u001b[0m\n\u001b[1;32m 487\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(predicate, pa\u001b[38;5;241m.\u001b[39mcompute\u001b[38;5;241m.\u001b[39mExpression):\n\u001b[1;32m 488\u001b[0m predicate \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(predicate)\n\u001b[0;32m--> 489\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpredicate\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mOSError\u001b[0m: LanceError(IO): Error during planning: column foo does not exist"
]
}
],
"source": [
"to_remove = [\"foo\", \"buzz\"]\n",
"to_remove = \", \".join(str(v) for v in to_remove)\n",
"print(tbl.to_pandas())\n",
"tbl.delete(f\"item IN ({to_remove})\")\n"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "87d5bc21-847f-4c81-b56e-f6dbe5d05aac",
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(\n",
" {\n",
" \"vector\": [[3.1, 4.1], [1, 1]],\n",
" \"item\": [\"foo\", \"bar\"],\n",
" \"price\": [10.0, 20.0],\n",
" })\n",
"\n",
"tbl = db.create_table(\"table7\", data=df, mode=\"overwrite\")"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "9cba4519-eb3a-4941-ab7e-873d762e750f",
"metadata": {},
"outputs": [],
"source": [
"to_remove = [10.0, 20.0]\n",
"to_remove = \", \".join(str(v) for v in to_remove)\n",
"\n",
"tbl.delete(f\"price IN ({to_remove})\")"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "5bdc9801-d5ed-4871-92d0-88b27108e788",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>vector</th>\n",
" <th>item</th>\n",
" <th>price</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [vector, item, price]\n",
"Index: []"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tbl.to_pandas()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "752d33d4-ce1c-48e5-90d2-c85f0982182d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -8,12 +8,7 @@
"source": [
"# Youtube Transcript Search QA Bot\n",
"\n",
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily.\n",
"\n",
"\n",
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\">\n",
"\n",
"Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/youtube_bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/youtube_bot/index.js)\n"
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily."
]
},
{
@@ -27,11 +22,11 @@
"output_type": "stream",
"text": [
"\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
@@ -184,7 +179,7 @@
"df = (contextualize(data.to_pandas())\n",
" .groupby(\"title\").text_col(\"text\")\n",
" .window(20).stride(4)\n",
" .to_pandas())\n",
" .to_df())\n",
"df.head(1)"
]
},
@@ -603,7 +598,7 @@
"outputs": [],
"source": [
"# Use LanceDB to get top 3 most relevant context\n",
"context = tbl.search(emb).limit(3).to_pandas()"
"context = tbl.search(emb).limit(3).to_df()"
]
},
{

View File

@@ -74,12 +74,12 @@ table = db.open_table("pd_table")
query_vector = [100, 100]
# Pandas DataFrame
df = table.search(query_vector).limit(1).to_pandas()
df = table.search(query_vector).limit(1).to_df()
print(df)
```
```
vector item price _distance
vector item price score
0 [5.9, 26.5] bar 20.0 14257.05957
```
@@ -89,12 +89,12 @@ If you have more complex criteria, you can always apply the filter to the result
```python
# Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_pandas()
results = table.search([100, 100]).where("price < 15").to_df()
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
# Apply the filter via Pandas
df = results = table.search([100, 100]).to_pandas()
df = results = table.search([100, 100]).to_df()
results = df[df.price < 15]
assert len(results) == 1
assert results["item"].iloc[0] == "foo"

View File

@@ -1,7 +1,6 @@
# Pydantic
[Pydantic](https://docs.pydantic.dev/latest/) is a data validation library in Python.
LanceDB integrates with Pydantic for schema inference, data ingestion, and query result casting.
## Schema
@@ -13,10 +12,10 @@ via [pydantic_to_schema()](python.md##lancedb.pydantic.pydantic_to_schema) metho
## Vector Field
LanceDB provides a [`Vector(dim)`](python.md#lancedb.pydantic.Vector) method to define a
LanceDB provides a [`vector(dim)`](python.md#lancedb.pydantic.vector) method to define a
vector Field in a Pydantic Model.
::: lancedb.pydantic.Vector
::: lancedb.pydantic.vector
## Type Conversion
@@ -33,4 +32,4 @@ Current supported type conversions:
| `str` | `pyarrow.utf8()` |
| `list` | `pyarrow.List` |
| `BaseModel` | `pyarrow.Struct` |
| `Vector(n)` | `pyarrow.FixedSizeList(float32, n)` |
| `vector(n)` | `pyarrow.FixedSizeList(float32, n)` |

View File

@@ -26,20 +26,10 @@ pip install lancedb
## Embeddings
::: lancedb.embeddings.functions.EmbeddingFunctionRegistry
::: lancedb.embeddings.functions.EmbeddingFunction
::: lancedb.embeddings.functions.TextEmbeddingFunction
::: lancedb.embeddings.functions.SentenceTransformerEmbeddings
::: lancedb.embeddings.functions.OpenAIEmbeddings
::: lancedb.embeddings.functions.OpenClipEmbeddings
::: lancedb.embeddings.with_embeddings
::: lancedb.embeddings.EmbeddingFunction
## Context
::: lancedb.context.contextualize
@@ -66,4 +56,4 @@ pip install lancedb
::: lancedb.pydantic.vector
::: lancedb.pydantic.LanceModel

View File

@@ -25,8 +25,8 @@ Currently, we support the following metrics:
### Flat Search
If you do not create a vector index, LanceDB would need to exhaustively scan the entire vector column (via `Flat Search`)
and compute the distance for *every* vector in order to find the closest matches. This is effectively a KNN search.
If LanceDB does not create a vector index, LanceDB would need to scan (`Flat Search`) the entire vector column
and compute the distance for each vector in order to find the closest matches.
<!-- Setup Code
@@ -67,7 +67,7 @@ await db_setup.createTable('my_vectors', data)
df = tbl.search(np.random.random((1536))) \
.limit(10) \
.to_list()
.to_df()
```
=== "JavaScript"
@@ -92,7 +92,7 @@ as well.
df = tbl.search(np.random.random((1536))) \
.metric("cosine") \
.limit(10) \
.to_list()
.to_df()
```
@@ -110,7 +110,7 @@ as well.
To accelerate vector retrievals, it is common to build vector indices.
A vector index is a data structure specifically designed to efficiently organize and
search vector data based on their similarity via the chosen distance metric.
search vector data based on their similarity or distance metrics.
By constructing a vector index, you can reduce the search space and avoid the need
for brute-force scanning of the entire vector column.

View File

@@ -4,12 +4,3 @@
--md-text-font: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";
--md-code-font: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
}
.md-nav__item, .md-tabs__item {
font-size: large;
}
/* Maximum space for text block */
.md-grid {
max-width: 90%;
}

View File

@@ -2,17 +2,18 @@ const glob = require("glob");
const fs = require("fs");
const path = require("path");
const globString = "../src/**/*.md";
const excludedGlobs = [
const excludedFiles = [
"../src/fts.md",
"../src/embedding.md",
"../src/examples/*.md",
"../src/guides/tables.md",
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
"../src/examples/transformerjs_embedding_search_nodejs.md",
"../src/examples/youtube_transcript_bot_with_nodejs.md",
];
const nodePrefix = "javascript";
const nodeFile = ".js";
const nodeFolder = "node";
const globString = "../src/**/*.md";
const asyncPrefix = "(async () => {\n";
const asyncSuffix = "})();";
@@ -31,7 +32,6 @@ function* yieldLines(lines, prefix, suffix) {
}
const files = glob.sync(globString, { recursive: true });
const excludedFiles = glob.sync(excludedGlobs, { recursive: true });
for (const file of files.filter((file) => !excludedFiles.includes(file))) {
const lines = [];

View File

@@ -2,22 +2,18 @@ import glob
from typing import Iterator
from pathlib import Path
glob_string = "../src/**/*.md"
excluded_globs = [
excluded_files = [
"../src/fts.md",
"../src/embedding.md",
"../src/examples/*.md",
"../src/integrations/voxel51.md",
"../src/guides/tables.md",
"../src/python/duckdb.md",
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
"../src/examples/youtube_transcript_bot_with_nodejs.md"
]
python_prefix = "py"
python_file = ".py"
python_folder = "python"
files = glob.glob(glob_string, recursive=True)
excluded_files = [f for excluded_glob in excluded_globs for f in glob.glob(excluded_glob, recursive=True)]
glob_string = "../src/**/*.md"
def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
in_code_block = False
@@ -33,7 +29,7 @@ def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
elif in_code_block:
yield line[strip_length:]
for file in filter(lambda file: file not in excluded_files, files):
for file in filter(lambda file: file not in excluded_files, glob.glob(glob_string, recursive=True)):
with open(file, "r") as f:
lines = list(yield_lines(iter(f), "```", "```"))

View File

@@ -1,8 +1,5 @@
-e ../../python
lancedb @ git+https://github.com/lancedb/lancedb.git#egg=subdir&subdirectory=python
numpy
pandas
pylance
duckdb
--extra-index-url https://download.pytorch.org/whl/cpu
torch

View File

@@ -50,7 +50,7 @@ async function example() {
{ id: 5, text: 'Banana', type: 'fruit' }
]
const table = await db.createTable('food_table', data, embed_fun)
const table = await db.createTable('food_table', data, "create", embed_fun)
// Query the table

View File

@@ -10,7 +10,7 @@
"license": "Apache-2.0",
"dependencies": {
"@xenova/transformers": "^2.4.1",
"vectordb": "file:../.."
"vectordb": "^0.1.12"
}
}

View File

@@ -12,25 +12,26 @@
// See the License for the specific language governing permissions and
// limitations under the License.
const { currentTarget } = require('@neon-rs/load')
const { currentTarget } = require('@neon-rs/load');
let nativeLib
let nativeLib;
try {
// When developing locally, give preference to the local built library
nativeLib = require('./index.node')
} catch {
nativeLib = require(`vectordb-${currentTarget()}`);
} catch (e) {
try {
nativeLib = require(`@lancedb/vectordb-${currentTarget()}`)
} catch (e) {
// Might be developing locally, so try that. But don't expose that error
// to the user.
nativeLib = require("./index.node");
} catch {
throw new Error(`vectordb: failed to load native library.
You may need to run \`npm install @lancedb/vectordb-${currentTarget()}\`.
You may need to run \`npm install vectordb-${currentTarget()}\`.
If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
Source error: ${e}`)
Source error: ${e}`);
}
}
// Dynamic require for runtime.
module.exports = nativeLib
module.exports = nativeLib;

442
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.3.0",
"version": "0.1.13",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.3.0",
"version": "0.1.13",
"cpu": [
"x64",
"arm64"
@@ -20,18 +20,16 @@
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0",
"axios": "^1.4.0"
"apache-arrow": "^12.0.0"
},
"devDependencies": {
"@neon-rs/cli": "^0.0.160",
"@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
@@ -49,15 +47,14 @@
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*",
"uuid": "^9.0.0"
"typescript": "*"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.0",
"@lancedb/vectordb-darwin-x64": "0.3.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.0",
"@lancedb/vectordb-linux-x64-gnu": "0.3.0",
"@lancedb/vectordb-win32-x64-msvc": "0.3.0"
"vectordb-darwin-arm64": "0.1.13",
"vectordb-darwin-x64": "0.1.13",
"vectordb-linux-arm64-gnu": "0.1.13",
"vectordb-linux-x64-gnu": "0.1.13",
"vectordb-win32-x64-msvc": "0.1.13"
}
},
"node_modules/@apache-arrow/ts": {
@@ -87,97 +84,6 @@
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
},
"node_modules/@cargo-messages/android-arm-eabi": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/android-arm-eabi/-/android-arm-eabi-0.0.160.tgz",
"integrity": "sha512-PTgCEmBHEPKJbxwlHVXB3aGES+NqpeBvn6hJNYWIkET3ZQCSJnScMlIDQXEkWndK7J+hW3Or3H32a93B/MbbfQ==",
"cpu": [
"arm"
],
"dev": true,
"optional": true,
"os": [
"android"
]
},
"node_modules/@cargo-messages/darwin-arm64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-arm64/-/darwin-arm64-0.0.160.tgz",
"integrity": "sha512-YSVUuc8TUTi/XmZVg9KrH0bDywKLqC1zeTyZYAYDDmqVDZW9KeTnbBUECKRs56iyHeO+kuEkVW7MKf7j2zb/FA==",
"cpu": [
"arm64"
],
"dev": true,
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@cargo-messages/darwin-x64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-x64/-/darwin-x64-0.0.160.tgz",
"integrity": "sha512-U+YlAR+9tKpBljnNPWMop5YhvtwfIPQSAaUYN2llteC7ZNU5/cv8CGT1vm7uFNxr2LeGuAtRbzIh2gUmTV8mng==",
"cpu": [
"x64"
],
"dev": true,
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@cargo-messages/linux-arm-gnueabihf": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-arm-gnueabihf/-/linux-arm-gnueabihf-0.0.160.tgz",
"integrity": "sha512-wqAelTzVv1E7Ls4aviqUbem5xjzCaJQxQtVnLhv6pf1k0UyEHCS2WdufFFmWcojGe7QglI4uve3KTe01MKYj0A==",
"cpu": [
"arm"
],
"dev": true,
"optional": true,
"os": [
"linux"
]
},
"node_modules/@cargo-messages/linux-x64-gnu": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-x64-gnu/-/linux-x64-gnu-0.0.160.tgz",
"integrity": "sha512-LQ6e7O7YYkWfDNIi/53q2QG/+lZok72LOG+NKDVCrrY4TYUcrTqWAybOV6IlkVntKPnpx8YB95umSQGeVuvhpQ==",
"cpu": [
"x64"
],
"dev": true,
"optional": true,
"os": [
"linux"
]
},
"node_modules/@cargo-messages/win32-arm64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-arm64-msvc/-/win32-arm64-msvc-0.0.160.tgz",
"integrity": "sha512-VDMBhyun02gIDwmEhkYP1W9Z0tYqn4drgY5Iua1qV2tYOU58RVkWhzUYxM9rzYbnwKZlltgM46J/j5QZ3VaFrA==",
"cpu": [
"arm64"
],
"dev": true,
"optional": true,
"os": [
"win32"
]
},
"node_modules/@cargo-messages/win32-x64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-x64-msvc/-/win32-x64-msvc-0.0.160.tgz",
"integrity": "sha512-vnoglDxF6zj0W/Co9D0H/bgnrhUuO5EumIf9v3ujLtBH94rAX11JsXh/FgC/8wQnQSsLyWSq70YxNS2wdETxjA==",
"cpu": [
"x64"
],
"dev": true,
"optional": true,
"os": [
"win32"
]
},
"node_modules/@cspotcode/source-map-support": {
"version": "0.8.1",
"resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz",
@@ -316,82 +222,13 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.0.tgz",
"integrity": "sha512-Fg+k/cSnqmNQlSWyDp0PpaAJ67kAISfZAD+zZ3mcE8/3ml2I/wM/GVjPy2zeiQX9aR93lG1mZXFSNTDUc74tWQ==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.0.tgz",
"integrity": "sha512-CXp4b/brMbnBPZuGzKIOskd9uD90R73rWubaJ0du/Kt6fcyQX1dM1wEhWTLxI6eKf8IDL/R9QLL2cIahm1J86w==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.0.tgz",
"integrity": "sha512-1bjaRzYcDsWIRUbO2K/f+ohNmNvCgKcrrOhmiXSHVlYY8kH1LUMFZj+BhqBC0Ea0Stt7/1rsRLMRXRtaeVOEHw==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.0.tgz",
"integrity": "sha512-BEDIJ6ReGAi+tLTS/RzxIw621yo1UUUiVNTzPGV2didyiJCr1chIGbES+39d/wiFQM43Xs3CBZLNzp+jKkv0/w==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.0.tgz",
"integrity": "sha512-7K2kbWbShuifQF/6L/tWSz2DhKfIreHKlBdVOuBTYYOReQMHn5cJxgwuFgQHqMubZ9zcagtHpmo+Wtqd034OKQ==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
"integrity": "sha512-GQjzHPJVTOARbX3nP/fAWqBq7JlQ8XgfYlCa+iwzIXf0LC1EyfJTX+vqGD/36b9lKoyY01Z/aDUB9o/qF6ztHA==",
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
"integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
"dev": true,
"bin": {
"neon": "index.js"
},
"optionalDependencies": {
"@cargo-messages/android-arm-eabi": "0.0.160",
"@cargo-messages/darwin-arm64": "0.0.160",
"@cargo-messages/darwin-x64": "0.0.160",
"@cargo-messages/linux-arm-gnueabihf": "0.0.160",
"@cargo-messages/linux-x64-gnu": "0.0.160",
"@cargo-messages/win32-arm64-msvc": "0.0.160",
"@cargo-messages/win32-x64-msvc": "0.0.160"
}
},
"node_modules/@neon-rs/load": {
@@ -598,12 +435,6 @@
"@types/node": "*"
}
},
"node_modules/@types/uuid": {
"version": "9.0.3",
"resolved": "https://registry.npmjs.org/@types/uuid/-/uuid-9.0.3.tgz",
"integrity": "sha512-taHQQH/3ZyI3zP8M/puluDEIEvtQHVYcC6y3N8ijFtAd28+Ey/G4sg1u2gB01S8MwybLOKAp9/yCMu/uR5l3Ug==",
"dev": true
},
"node_modules/@typescript-eslint/eslint-plugin": {
"version": "5.59.1",
"resolved": "https://registry.npmjs.org/@typescript-eslint/eslint-plugin/-/eslint-plugin-5.59.1.tgz",
@@ -1011,7 +842,8 @@
"node_modules/asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q=="
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
"dev": true
},
"node_modules/available-typed-arrays": {
"version": "1.0.5",
@@ -1026,13 +858,12 @@
}
},
"node_modules/axios": {
"version": "1.4.0",
"resolved": "https://registry.npmjs.org/axios/-/axios-1.4.0.tgz",
"integrity": "sha512-S4XCWMEmzvo64T9GfvQDOXgYRDJ/wsSZc7Jvdgx5u1sd0JwsuPLqb3SYmusag+edF6ziyMensPVqLTSc1PiSEA==",
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"dependencies": {
"follow-redirects": "^1.15.0",
"form-data": "^4.0.0",
"proxy-from-env": "^1.1.0"
"follow-redirects": "^1.14.8"
}
},
"node_modules/balanced-match": {
@@ -1263,6 +1094,7 @@
"version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"dev": true,
"dependencies": {
"delayed-stream": "~1.0.0"
},
@@ -1485,6 +1317,7 @@
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"dev": true,
"engines": {
"node": ">=0.4.0"
}
@@ -2251,6 +2084,7 @@
"version": "1.15.2",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==",
"dev": true,
"funding": [
{
"type": "individual",
@@ -2279,6 +2113,7 @@
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"dev": true,
"dependencies": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
@@ -3152,6 +2987,7 @@
"version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"dev": true,
"engines": {
"node": ">= 0.6"
}
@@ -3160,6 +2996,7 @@
"version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"dev": true,
"dependencies": {
"mime-db": "1.52.0"
},
@@ -3453,15 +3290,6 @@
"form-data": "^4.0.0"
}
},
"node_modules/openai/node_modules/axios": {
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"dependencies": {
"follow-redirects": "^1.14.8"
}
},
"node_modules/optionator": {
"version": "0.9.1",
"resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.1.tgz",
@@ -3613,11 +3441,6 @@
"node": ">= 0.8.0"
}
},
"node_modules/proxy-from-env": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/proxy-from-env/-/proxy-from-env-1.1.0.tgz",
"integrity": "sha512-D+zkORCbA9f1tdWRK0RaCR3GPv50cMxcrz4X8k5LTSUD1Dkw47mKJEZQNunItRTkWwgtaUSo1RVFRIG9ZXiFYg=="
},
"node_modules/punycode": {
"version": "2.3.0",
"resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz",
@@ -4459,21 +4282,48 @@
"punycode": "^2.1.0"
}
},
"node_modules/uuid": {
"version": "9.0.0",
"resolved": "https://registry.npmjs.org/uuid/-/uuid-9.0.0.tgz",
"integrity": "sha512-MXcSTerfPa4uqyzStbRoTgt5XIe3x5+42+q1sDuy3R5MDk66URdLMOZe5aPX/SQd+kuYAh0FdP/pO28IkQyTeg==",
"dev": true,
"bin": {
"uuid": "dist/bin/uuid"
}
},
"node_modules/v8-compile-cache-lib": {
"version": "3.0.1",
"resolved": "https://registry.npmjs.org/v8-compile-cache-lib/-/v8-compile-cache-lib-3.0.1.tgz",
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
"dev": true
},
"node_modules/vectordb-darwin-arm64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.13.tgz",
"integrity": "sha512-9lLuX5P8m75EfP85pfC4LxO9J7Tzu4LngX55BVAdFe6qPRHu+iHmLw0QYYSVDqNm3GtDr2qFJlL2ILlsApyYyg==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/vectordb-darwin-x64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.13.tgz",
"integrity": "sha512-5mkhBJlcfAqcty7Ww2csgYogq+b0NhtllAbag9IIznvqfcrvITU0H0vm5LGWbRuE/BUUxC25MJhm93YWBzqEVA==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/vectordb-linux-x64-gnu": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.13.tgz",
"integrity": "sha512-fU+sIHUkXyMdrWjggT93p0blKD+pbgr+x01tn9d2/pbA1ePo2AwuE86rYPA+BjyCUE1QifPgKadzGVVpqWYmnQ==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/vscode-oniguruma": {
"version": "1.7.0",
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",
@@ -4719,55 +4569,6 @@
}
}
},
"@cargo-messages/android-arm-eabi": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/android-arm-eabi/-/android-arm-eabi-0.0.160.tgz",
"integrity": "sha512-PTgCEmBHEPKJbxwlHVXB3aGES+NqpeBvn6hJNYWIkET3ZQCSJnScMlIDQXEkWndK7J+hW3Or3H32a93B/MbbfQ==",
"dev": true,
"optional": true
},
"@cargo-messages/darwin-arm64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-arm64/-/darwin-arm64-0.0.160.tgz",
"integrity": "sha512-YSVUuc8TUTi/XmZVg9KrH0bDywKLqC1zeTyZYAYDDmqVDZW9KeTnbBUECKRs56iyHeO+kuEkVW7MKf7j2zb/FA==",
"dev": true,
"optional": true
},
"@cargo-messages/darwin-x64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-x64/-/darwin-x64-0.0.160.tgz",
"integrity": "sha512-U+YlAR+9tKpBljnNPWMop5YhvtwfIPQSAaUYN2llteC7ZNU5/cv8CGT1vm7uFNxr2LeGuAtRbzIh2gUmTV8mng==",
"dev": true,
"optional": true
},
"@cargo-messages/linux-arm-gnueabihf": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-arm-gnueabihf/-/linux-arm-gnueabihf-0.0.160.tgz",
"integrity": "sha512-wqAelTzVv1E7Ls4aviqUbem5xjzCaJQxQtVnLhv6pf1k0UyEHCS2WdufFFmWcojGe7QglI4uve3KTe01MKYj0A==",
"dev": true,
"optional": true
},
"@cargo-messages/linux-x64-gnu": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-x64-gnu/-/linux-x64-gnu-0.0.160.tgz",
"integrity": "sha512-LQ6e7O7YYkWfDNIi/53q2QG/+lZok72LOG+NKDVCrrY4TYUcrTqWAybOV6IlkVntKPnpx8YB95umSQGeVuvhpQ==",
"dev": true,
"optional": true
},
"@cargo-messages/win32-arm64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-arm64-msvc/-/win32-arm64-msvc-0.0.160.tgz",
"integrity": "sha512-VDMBhyun02gIDwmEhkYP1W9Z0tYqn4drgY5Iua1qV2tYOU58RVkWhzUYxM9rzYbnwKZlltgM46J/j5QZ3VaFrA==",
"dev": true,
"optional": true
},
"@cargo-messages/win32-x64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-x64-msvc/-/win32-x64-msvc-0.0.160.tgz",
"integrity": "sha512-vnoglDxF6zj0W/Co9D0H/bgnrhUuO5EumIf9v3ujLtBH94rAX11JsXh/FgC/8wQnQSsLyWSq70YxNS2wdETxjA==",
"dev": true,
"optional": true
},
"@cspotcode/source-map-support": {
"version": "0.8.1",
"resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz",
@@ -4868,50 +4669,11 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"@lancedb/vectordb-darwin-arm64": {
"version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.0.tgz",
"integrity": "sha512-Fg+k/cSnqmNQlSWyDp0PpaAJ67kAISfZAD+zZ3mcE8/3ml2I/wM/GVjPy2zeiQX9aR93lG1mZXFSNTDUc74tWQ==",
"optional": true
},
"@lancedb/vectordb-darwin-x64": {
"version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.0.tgz",
"integrity": "sha512-CXp4b/brMbnBPZuGzKIOskd9uD90R73rWubaJ0du/Kt6fcyQX1dM1wEhWTLxI6eKf8IDL/R9QLL2cIahm1J86w==",
"optional": true
},
"@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.0.tgz",
"integrity": "sha512-1bjaRzYcDsWIRUbO2K/f+ohNmNvCgKcrrOhmiXSHVlYY8kH1LUMFZj+BhqBC0Ea0Stt7/1rsRLMRXRtaeVOEHw==",
"optional": true
},
"@lancedb/vectordb-linux-x64-gnu": {
"version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.0.tgz",
"integrity": "sha512-BEDIJ6ReGAi+tLTS/RzxIw621yo1UUUiVNTzPGV2didyiJCr1chIGbES+39d/wiFQM43Xs3CBZLNzp+jKkv0/w==",
"optional": true
},
"@lancedb/vectordb-win32-x64-msvc": {
"version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.0.tgz",
"integrity": "sha512-7K2kbWbShuifQF/6L/tWSz2DhKfIreHKlBdVOuBTYYOReQMHn5cJxgwuFgQHqMubZ9zcagtHpmo+Wtqd034OKQ==",
"optional": true
},
"@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
"integrity": "sha512-GQjzHPJVTOARbX3nP/fAWqBq7JlQ8XgfYlCa+iwzIXf0LC1EyfJTX+vqGD/36b9lKoyY01Z/aDUB9o/qF6ztHA==",
"dev": true,
"requires": {
"@cargo-messages/android-arm-eabi": "0.0.160",
"@cargo-messages/darwin-arm64": "0.0.160",
"@cargo-messages/darwin-x64": "0.0.160",
"@cargo-messages/linux-arm-gnueabihf": "0.0.160",
"@cargo-messages/linux-x64-gnu": "0.0.160",
"@cargo-messages/win32-arm64-msvc": "0.0.160",
"@cargo-messages/win32-x64-msvc": "0.0.160"
}
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
"integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
"dev": true
},
"@neon-rs/load": {
"version": "0.0.74",
@@ -5110,12 +4872,6 @@
"@types/node": "*"
}
},
"@types/uuid": {
"version": "9.0.3",
"resolved": "https://registry.npmjs.org/@types/uuid/-/uuid-9.0.3.tgz",
"integrity": "sha512-taHQQH/3ZyI3zP8M/puluDEIEvtQHVYcC6y3N8ijFtAd28+Ey/G4sg1u2gB01S8MwybLOKAp9/yCMu/uR5l3Ug==",
"dev": true
},
"@typescript-eslint/eslint-plugin": {
"version": "5.59.1",
"resolved": "https://registry.npmjs.org/@typescript-eslint/eslint-plugin/-/eslint-plugin-5.59.1.tgz",
@@ -5379,7 +5135,8 @@
"asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q=="
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
"dev": true
},
"available-typed-arrays": {
"version": "1.0.5",
@@ -5388,13 +5145,12 @@
"dev": true
},
"axios": {
"version": "1.4.0",
"resolved": "https://registry.npmjs.org/axios/-/axios-1.4.0.tgz",
"integrity": "sha512-S4XCWMEmzvo64T9GfvQDOXgYRDJ/wsSZc7Jvdgx5u1sd0JwsuPLqb3SYmusag+edF6ziyMensPVqLTSc1PiSEA==",
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"requires": {
"follow-redirects": "^1.15.0",
"form-data": "^4.0.0",
"proxy-from-env": "^1.1.0"
"follow-redirects": "^1.14.8"
}
},
"balanced-match": {
@@ -5574,6 +5330,7 @@
"version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"dev": true,
"requires": {
"delayed-stream": "~1.0.0"
}
@@ -5740,7 +5497,8 @@
"delayed-stream": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ=="
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"dev": true
},
"diff": {
"version": "4.0.2",
@@ -6310,7 +6068,8 @@
"follow-redirects": {
"version": "1.15.2",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA=="
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==",
"dev": true
},
"for-each": {
"version": "0.3.3",
@@ -6325,6 +6084,7 @@
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"dev": true,
"requires": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
@@ -6938,12 +6698,14 @@
"mime-db": {
"version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg=="
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"dev": true
},
"mime-types": {
"version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"dev": true,
"requires": {
"mime-db": "1.52.0"
}
@@ -7169,17 +6931,6 @@
"requires": {
"axios": "^0.26.0",
"form-data": "^4.0.0"
},
"dependencies": {
"axios": {
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"requires": {
"follow-redirects": "^1.14.8"
}
}
}
},
"optionator": {
@@ -7288,11 +7039,6 @@
"integrity": "sha512-vkcDPrRZo1QZLbn5RLGPpg/WmIQ65qoWWhcGKf/b5eplkkarX0m9z8ppCat4mlOqUsWpyNuYgO3VRyrYHSzX5g==",
"dev": true
},
"proxy-from-env": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/proxy-from-env/-/proxy-from-env-1.1.0.tgz",
"integrity": "sha512-D+zkORCbA9f1tdWRK0RaCR3GPv50cMxcrz4X8k5LTSUD1Dkw47mKJEZQNunItRTkWwgtaUSo1RVFRIG9ZXiFYg=="
},
"punycode": {
"version": "2.3.0",
"resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz",
@@ -7867,18 +7613,30 @@
"punycode": "^2.1.0"
}
},
"uuid": {
"version": "9.0.0",
"resolved": "https://registry.npmjs.org/uuid/-/uuid-9.0.0.tgz",
"integrity": "sha512-MXcSTerfPa4uqyzStbRoTgt5XIe3x5+42+q1sDuy3R5MDk66URdLMOZe5aPX/SQd+kuYAh0FdP/pO28IkQyTeg==",
"dev": true
},
"v8-compile-cache-lib": {
"version": "3.0.1",
"resolved": "https://registry.npmjs.org/v8-compile-cache-lib/-/v8-compile-cache-lib-3.0.1.tgz",
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
"dev": true
},
"vectordb-darwin-arm64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.13.tgz",
"integrity": "sha512-9lLuX5P8m75EfP85pfC4LxO9J7Tzu4LngX55BVAdFe6qPRHu+iHmLw0QYYSVDqNm3GtDr2qFJlL2ILlsApyYyg==",
"optional": true
},
"vectordb-darwin-x64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.13.tgz",
"integrity": "sha512-5mkhBJlcfAqcty7Ww2csgYogq+b0NhtllAbag9IIznvqfcrvITU0H0vm5LGWbRuE/BUUxC25MJhm93YWBzqEVA==",
"optional": true
},
"vectordb-linux-x64-gnu": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.13.tgz",
"integrity": "sha512-fU+sIHUkXyMdrWjggT93p0blKD+pbgr+x01tn9d2/pbA1ePo2AwuE86rYPA+BjyCUE1QifPgKadzGVVpqWYmnQ==",
"optional": true
},
"vscode-oniguruma": {
"version": "1.7.0",
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.3.0",
"version": "0.1.13",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -9,8 +9,7 @@
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
"build-release": "npm run build -- --release",
"test": "npm run tsc && mocha -recursive dist/test",
"integration-test": "npm run tsc && mocha -recursive dist/integration_test",
"lint": "eslint native.js src --ext .js,.ts",
"lint": "eslint src --ext .js,.ts",
"clean": "rm -rf node_modules *.node dist/",
"pack-build": "neon pack-build",
"check-npm": "printenv && which node && which npm && npm --version"
@@ -28,14 +27,13 @@
"author": "Lance Devs",
"license": "Apache-2.0",
"devDependencies": {
"@neon-rs/cli": "^0.0.160",
"@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
@@ -53,14 +51,12 @@
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*",
"uuid": "^9.0.0"
"typescript": "*"
},
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0",
"axios": "^1.4.0"
"apache-arrow": "^12.0.0"
},
"os": [
"darwin",
@@ -73,18 +69,18 @@
],
"neon": {
"targets": {
"x86_64-apple-darwin": "@lancedb/vectordb-darwin-x64",
"aarch64-apple-darwin": "@lancedb/vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "@lancedb/vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "@lancedb/vectordb-linux-arm64-gnu",
"x86_64-pc-windows-msvc": "@lancedb/vectordb-win32-x64-msvc"
"x86_64-apple-darwin": "vectordb-darwin-x64",
"aarch64-apple-darwin": "vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "vectordb-linux-arm64-gnu",
"x86_64-pc-windows-msvc": "vectordb-win32-x64-msvc"
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.0",
"@lancedb/vectordb-darwin-x64": "0.3.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.0",
"@lancedb/vectordb-linux-x64-gnu": "0.3.0",
"@lancedb/vectordb-win32-x64-msvc": "0.3.0"
"vectordb-darwin-arm64": "0.1.13",
"vectordb-darwin-x64": "0.1.13",
"vectordb-linux-arm64-gnu": "0.1.13",
"vectordb-linux-x64-gnu": "0.1.13",
"vectordb-win32-x64-msvc": "0.1.13"
}
}

View File

@@ -13,19 +13,18 @@
// limitations under the License.
import {
Field, type FixedSizeListBuilder,
Field,
Float32,
List, type ListBuilder,
makeBuilder,
RecordBatchFileWriter,
Utf8,
Table, Utf8,
type Vector,
FixedSizeList,
vectorFromArray, type Schema, Table as ArrowTable
vectorFromArray
} from 'apache-arrow'
import { type EmbeddingFunction } from './index'
// Converts an Array of records into an Arrow Table, optionally applying an embeddings function to it.
export async function convertToTable<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<ArrowTable> {
export async function convertToTable<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table> {
if (data.length === 0) {
throw new Error('At least one record needs to be provided')
}
@@ -35,8 +34,8 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
for (const columnsKey of columns) {
if (columnsKey === 'vector') {
const listBuilder = newVectorListBuilder()
const vectorSize = (data[0].vector as any[]).length
const listBuilder = newVectorBuilder(vectorSize)
for (const datum of data) {
if ((datum[columnsKey] as any[]).length !== vectorSize) {
throw new Error(`Invalid vector size, expected ${vectorSize}`)
@@ -53,7 +52,9 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
if (columnsKey === embeddings?.sourceColumn) {
const vectors = await embeddings.embed(values as T[])
records.vector = vectorFromArray(vectors, newVectorType(vectors[0].length))
const listBuilder = newVectorListBuilder()
vectors.map(v => listBuilder.append(v))
records.vector = listBuilder.finish().toVector()
}
if (typeof values[0] === 'string') {
@@ -65,47 +66,20 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
}
}
return new ArrowTable(records)
return new Table(records)
}
// Creates a new Arrow ListBuilder that stores a Vector column
function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
function newVectorListBuilder (): ListBuilder<Float32, any> {
const children = new Field<Float32>('item', new Float32())
const list = new List(children)
return makeBuilder({
type: newVectorType(dim)
type: list
})
}
// Creates the Arrow Type for a Vector column with dimension `dim`
function newVectorType (dim: number): FixedSizeList<Float32> {
const children = new Field<Float32>('item', new Float32())
return new FixedSizeList(dim, children)
}
// Converts an Array of records into Arrow IPC format
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
const table = await convertToTable(data, embeddings)
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Arrow Table into Arrow IPC format
export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
if (embeddings !== undefined) {
const source = table.getChild(embeddings.sourceColumn)
if (source === null) {
throw new Error(`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Creates an empty Arrow Table
export function createEmptyTable (schema: Schema): ArrowTable {
return new ArrowTable(schema)
}

View File

@@ -26,8 +26,3 @@ export interface EmbeddingFunction<T> {
*/
embed: (data: T[]) => Promise<number[][]>
}
export function isEmbeddingFunction<T> (value: any): value is EmbeddingFunction<T> {
return typeof value.sourceColumn === 'string' &&
typeof value.embed === 'function'
}

View File

@@ -13,19 +13,17 @@
// limitations under the License.
import {
type Schema,
Table as ArrowTable
RecordBatchFileWriter,
type Table as ArrowTable,
tableFromIPC,
Vector
} from 'apache-arrow'
import { createEmptyTable, fromRecordsToBuffer, fromTableToBuffer } from './arrow'
import { fromRecordsToBuffer } from './arrow'
import type { EmbeddingFunction } from './embedding/embedding_function'
import { RemoteConnection } from './remote'
import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles } = require('../native.js')
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete } = require('../native.js')
export { Query }
export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai'
@@ -39,52 +37,7 @@ export interface AwsCredentials {
export interface ConnectionOptions {
uri: string
awsCredentials?: AwsCredentials
awsRegion?: string
// API key for the remote connections
apiKey?: string
// Region to connect
region?: string
// override the host for the remote connections
hostOverride?: string
}
function getAwsArgs (opts: ConnectionOptions): any[] {
const callArgs = []
const awsCredentials = opts.awsCredentials
if (awsCredentials !== undefined) {
callArgs.push(awsCredentials.accessKeyId)
callArgs.push(awsCredentials.secretKey)
callArgs.push(awsCredentials.sessionToken)
} else {
callArgs.push(undefined)
callArgs.push(undefined)
callArgs.push(undefined)
}
callArgs.push(opts.awsRegion)
return callArgs
}
export interface CreateTableOptions<T> {
// Name of Table
name: string
// Data to insert into the Table
data?: Array<Record<string, unknown>> | ArrowTable | undefined
// Optional Arrow Schema for this table
schema?: Schema | undefined
// Optional embedding function used to create embeddings
embeddingFunction?: EmbeddingFunction<T> | undefined
// WriteOptions for this operation
writeOptions?: WriteOptions | undefined
}
/**
@@ -101,16 +54,9 @@ export async function connect (arg: string | Partial<ConnectionOptions>): Promis
// opts = { uri: arg.uri, awsCredentials = arg.awsCredentials }
opts = Object.assign({
uri: '',
awsCredentials: undefined,
apiKey: undefined,
region: 'us-west-2'
awsCredentials: undefined
}, arg)
}
if (opts.uri.startsWith('db://')) {
// Remote connection
return new RemoteConnection(opts)
}
const db = await databaseNew(opts.uri)
return new LocalConnection(db, opts)
}
@@ -133,51 +79,17 @@ export interface Connection {
*/
openTable<T>(name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
/**
* Creates a new Table, optionally initializing it with new data.
*
* @param {string} name - The name of the table.
* @param data - Array of Records to be inserted into the table
* @param schema - An Arrow Schema that describe this table columns
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
* @param {WriteOptions} writeOptions - The write options to use when creating the table.
*/
createTable<T> ({ name, data, schema, embeddingFunction, writeOptions }: CreateTableOptions<T>): Promise<Table<T>>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
*/
createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {WriteOptions} options - The write options to use when creating the table.
*/
createTable (name: string, data: Array<Record<string, unknown>>, options: WriteOptions): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {WriteMode} mode - The write mode to use when creating the table.
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
*/
createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
* @param {WriteOptions} options - The write options to use when creating the table.
*/
createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>, options: WriteOptions): Promise<Table<T>>
createTable<T>(name: string, data: Array<Record<string, unknown>>, mode?: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
createTableArrow(name: string, table: ArrowTable): Promise<Table>
/**
* Drop an existing table.
@@ -230,34 +142,7 @@ export interface Table<T = number[]> {
/**
* Delete rows from this table.
*
* This can be used to delete a single row, many rows, all rows, or
* sometimes no rows (if your predicate matches nothing).
*
* @param filter A filter in the same format used by a sql WHERE clause. The
* filter must not be empty.
*
* @examples
*
* ```ts
* const con = await lancedb.connect("./.lancedb")
* const data = [
* {id: 1, vector: [1, 2]},
* {id: 2, vector: [3, 4]},
* {id: 3, vector: [5, 6]},
* ];
* const tbl = await con.createTable("my_table", data)
* await tbl.delete("id = 2")
* await tbl.countRows() // Returns 2
* ```
*
* If you have a list of values to delete, you can combine them into a
* stringified list and use the `IN` operator:
*
* ```ts
* const to_remove = [1, 5];
* await tbl.delete(`id IN (${to_remove.join(",")})`)
* await tbl.countRows() // Returns 1
* ```
* @param filter A filter in the same format used by a sql WHERE clause.
*/
delete: (filter: string) => Promise<void>
}
@@ -266,16 +151,16 @@ export interface Table<T = number[]> {
* A connection to a LanceDB database.
*/
export class LocalConnection implements Connection {
private readonly _options: () => ConnectionOptions
private readonly _options: ConnectionOptions
private readonly _db: any
constructor (db: any, options: ConnectionOptions) {
this._options = () => options
this._options = options
this._db = db
}
get uri (): string {
return this._options().uri
return this._options.uri
}
/**
@@ -291,7 +176,6 @@ export class LocalConnection implements Connection {
* @param name The name of the table.
*/
async openTable (name: string): Promise<Table>
/**
* Open a table in the database.
*
@@ -301,66 +185,61 @@ export class LocalConnection implements Connection {
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
const tbl = await databaseOpenTable.call(this._db, name, ...getAwsArgs(this._options()))
const tbl = await databaseOpenTable.call(this._db, name)
if (embeddings !== undefined) {
return new LocalTable(tbl, name, this._options(), embeddings)
return new LocalTable(tbl, name, this._options, embeddings)
} else {
return new LocalTable(tbl, name, this._options())
return new LocalTable(tbl, name, this._options)
}
}
async createTable<T> (name: string | CreateTableOptions<T>, data?: Array<Record<string, unknown>>, optsOrEmbedding?: WriteOptions | EmbeddingFunction<T>, opt?: WriteOptions): Promise<Table<T>> {
if (typeof name === 'string') {
let writeOptions: WriteOptions = new DefaultWriteOptions()
if (opt !== undefined && isWriteOptions(opt)) {
writeOptions = opt
} else if (optsOrEmbedding !== undefined && isWriteOptions(optsOrEmbedding)) {
writeOptions = optsOrEmbedding
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
* @param mode The write mode to use when creating the table.
*/
async createTable (name: string, data: Array<Record<string, unknown>>, mode?: WriteMode): Promise<Table>
async createTable (name: string, data: Array<Record<string, unknown>>, mode: WriteMode): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
* @param mode The write mode to use when creating the table.
* @param embeddings An embedding function to use on this Table
*/
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
if (mode === undefined) {
mode = WriteMode.Create
}
let embeddings: undefined | EmbeddingFunction<T>
if (optsOrEmbedding !== undefined && isEmbeddingFunction(optsOrEmbedding)) {
embeddings = optsOrEmbedding
const createArgs = [this._db, name, await fromRecordsToBuffer(data, embeddings), mode.toLowerCase()]
if (this._options.awsCredentials !== undefined) {
createArgs.push(this._options.awsCredentials.accessKeyId)
createArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
createArgs.push(this._options.awsCredentials.sessionToken)
}
return await this.createTableImpl({ name, data, embeddingFunction: embeddings, writeOptions })
}
return await this.createTableImpl(name)
}
private async createTableImpl<T> ({ name, data, schema, embeddingFunction, writeOptions = new DefaultWriteOptions() }: {
name: string
data?: Array<Record<string, unknown>> | ArrowTable | undefined
schema?: Schema | undefined
embeddingFunction?: EmbeddingFunction<T> | undefined
writeOptions?: WriteOptions | undefined
}): Promise<Table<T>> {
let buffer: Buffer
const tbl = await tableCreate.call(...createArgs)
function isEmpty (data: Array<Record<string, unknown>> | ArrowTable<any>): boolean {
if (data instanceof ArrowTable) {
return data.data.length === 0
}
return data.length === 0
}
if ((data === undefined) || isEmpty(data)) {
if (schema === undefined) {
throw new Error('Either data or schema needs to defined')
}
buffer = await fromTableToBuffer(createEmptyTable(schema))
} else if (data instanceof ArrowTable) {
buffer = await fromTableToBuffer(data, embeddingFunction)
if (embeddings !== undefined) {
return new LocalTable(tbl, name, this._options, embeddings)
} else {
// data is Array<Record<...>>
buffer = await fromRecordsToBuffer(data, embeddingFunction)
return new LocalTable(tbl, name, this._options)
}
}
const tbl = await tableCreate.call(this._db, name, buffer, writeOptions?.writeMode?.toString(), ...getAwsArgs(this._options()))
if (embeddingFunction !== undefined) {
return new LocalTable(tbl, name, this._options(), embeddingFunction)
} else {
return new LocalTable(tbl, name, this._options())
}
async createTableArrow (name: string, table: ArrowTable): Promise<Table> {
const writer = RecordBatchFileWriter.writeAll(table)
await tableCreate.call(this._db, name, Buffer.from(await writer.toUint8Array()))
return await this.openTable(name)
}
/**
@@ -373,10 +252,10 @@ export class LocalConnection implements Connection {
}
export class LocalTable<T = number[]> implements Table<T> {
private _tbl: any
private readonly _tbl: any
private readonly _name: string
private readonly _embeddings?: EmbeddingFunction<T>
private readonly _options: () => ConnectionOptions
private readonly _options: ConnectionOptions
constructor (tbl: any, name: string, options: ConnectionOptions)
/**
@@ -390,7 +269,7 @@ export class LocalTable<T = number[]> implements Table<T> {
this._tbl = tbl
this._name = name
this._embeddings = embeddings
this._options = () => options
this._options = options
}
get name (): string {
@@ -402,7 +281,7 @@ export class LocalTable<T = number[]> implements Table<T> {
* @param query The query search term
*/
search (query: T): Query<T> {
return new Query(query, this._tbl, this._embeddings)
return new Query(this._tbl, query, this._embeddings)
}
/**
@@ -412,12 +291,15 @@ export class LocalTable<T = number[]> implements Table<T> {
* @return The number of rows added to the table
*/
async add (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(
this._tbl,
await fromRecordsToBuffer(data, this._embeddings),
WriteMode.Append.toString(),
...getAwsArgs(this._options())
).then((newTable: any) => { this._tbl = newTable })
const callArgs = [this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Append.toString()]
if (this._options.awsCredentials !== undefined) {
callArgs.push(this._options.awsCredentials.accessKeyId)
callArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
callArgs.push(this._options.awsCredentials.sessionToken)
}
}
return tableAdd.call(...callArgs)
}
/**
@@ -427,12 +309,15 @@ export class LocalTable<T = number[]> implements Table<T> {
* @return The number of rows added to the table
*/
async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(
this._tbl,
await fromRecordsToBuffer(data, this._embeddings),
WriteMode.Overwrite.toString(),
...getAwsArgs(this._options())
).then((newTable: any) => { this._tbl = newTable })
const callArgs = [this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString()]
if (this._options.awsCredentials !== undefined) {
callArgs.push(this._options.awsCredentials.accessKeyId)
callArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
callArgs.push(this._options.awsCredentials.sessionToken)
}
}
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString())
}
/**
@@ -441,7 +326,7 @@ export class LocalTable<T = number[]> implements Table<T> {
* @param indexParams The parameters of this Index, @see VectorIndexParams.
*/
async createIndex (indexParams: VectorIndexParams): Promise<any> {
return tableCreateVectorIndex.call(this._tbl, indexParams).then((newTable: any) => { this._tbl = newTable })
return tableCreateVectorIndex.call(this._tbl, indexParams)
}
/**
@@ -457,113 +342,8 @@ export class LocalTable<T = number[]> implements Table<T> {
* @param filter A filter in the same format used by a sql WHERE clause.
*/
async delete (filter: string): Promise<void> {
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
return tableDelete.call(this._tbl, filter)
}
/**
* Clean up old versions of the table, freeing disk space.
*
* @param olderThan The minimum age in minutes of the versions to delete. If not
* provided, defaults to two weeks.
* @param deleteUnverified Because they may be part of an in-progress
* transaction, uncommitted files newer than 7 days old are
* not deleted by default. This means that failed transactions
* can leave around data that takes up disk space for up to
* 7 days. You can override this safety mechanism by setting
* this option to `true`, only if you promise there are no
* in progress writes while you run this operation. Failure to
* uphold this promise can lead to corrupted tables.
* @returns
*/
async cleanupOldVersions (olderThan?: number, deleteUnverified?: boolean): Promise<CleanupStats> {
return tableCleanupOldVersions.call(this._tbl, olderThan, deleteUnverified)
.then((res: { newTable: any, metrics: CleanupStats }) => {
this._tbl = res.newTable
return res.metrics
})
}
/**
* Run the compaction process on the table.
*
* This can be run after making several small appends to optimize the table
* for faster reads.
*
* @param options Advanced options configuring compaction. In most cases, you
* can omit this arguments, as the default options are sensible
* for most tables.
* @returns Metrics about the compaction operation.
*/
async compactFiles (options?: CompactionOptions): Promise<CompactionMetrics> {
const optionsArg = options ?? {}
return tableCompactFiles.call(this._tbl, optionsArg)
.then((res: { newTable: any, metrics: CompactionMetrics }) => {
this._tbl = res.newTable
return res.metrics
})
}
}
export interface CleanupStats {
/**
* The number of bytes removed from disk.
*/
bytesRemoved: number
/**
* The number of old table versions removed.
*/
oldVersions: number
}
export interface CompactionOptions {
/**
* The number of rows per fragment to target. Fragments that have fewer rows
* will be compacted into adjacent fragments to produce larger fragments.
* Defaults to 1024 * 1024.
*/
targetRowsPerFragment?: number
/**
* The maximum number of rows per group. Defaults to 1024.
*/
maxRowsPerGroup?: number
/**
* If true, fragments that have rows that are deleted may be compacted to
* remove the deleted rows. This can improve the performance of queries.
* Default is true.
*/
materializeDeletions?: boolean
/**
* A number between 0 and 1, representing the proportion of rows that must be
* marked deleted before a fragment is a candidate for compaction to remove
* the deleted rows. Default is 10%.
*/
materializeDeletionsThreshold?: number
/**
* The number of threads to use for compaction. If not provided, defaults to
* the number of cores on the machine.
*/
numThreads?: number
}
export interface CompactionMetrics {
/**
* The number of fragments that were removed.
*/
fragmentsRemoved: number
/**
* The number of new fragments that were created.
*/
fragmentsAdded: number
/**
* The number of files that were removed. Each fragment may have more than one
* file.
*/
filesRemoved: number
/**
* The number of files added. This is typically equal to the number of
* fragments added.
*/
filesAdded: number
}
/// Config to build IVF_PQ index.
@@ -623,6 +403,116 @@ export interface IvfPQIndexConfig {
export type VectorIndexParams = IvfPQIndexConfig
/**
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query<T = number[]> {
private readonly _tbl: any
private readonly _query: T
private _queryVector?: number[]
private _limit: number
private _refineFactor?: number
private _nprobes: number
private _select?: string[]
private _filter?: string
private _metricType?: MetricType
private readonly _embeddings?: EmbeddingFunction<T>
constructor (tbl: any, query: T, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._query = query
this._limit = 10
this._nprobes = 20
this._refineFactor = undefined
this._select = undefined
this._filter = undefined
this._metricType = undefined
this._embeddings = embeddings
}
/***
* Sets the number of results that will be returned
* @param value number of results
*/
limit (value: number): Query<T> {
this._limit = value
return this
}
/**
* Refine the results by reading extra elements and re-ranking them in memory.
* @param value refine factor to use in this query.
*/
refineFactor (value: number): Query<T> {
this._refineFactor = value
return this
}
/**
* The number of probes used. A higher number makes search more accurate but also slower.
* @param value The number of probes used.
*/
nprobes (value: number): Query<T> {
this._nprobes = value
return this
}
/**
* A filter statement to be applied to this query.
* @param value A filter in the same format used by a sql WHERE clause.
*/
filter (value: string): Query<T> {
this._filter = value
return this
}
where = this.filter
/** Return only the specified columns.
*
* @param value Only select the specified columns. If not specified, all columns will be returned.
*/
select (value: string[]): Query<T> {
this._select = value
return this
}
/**
* The MetricType used for this Query.
* @param value The metric to the. @see MetricType for the different options
*/
metricType (value: MetricType): Query<T> {
this._metricType = value
return this
}
/**
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
this._queryVector = this._query as number[]
}
const buffer = await tableSearch.call(this._tbl, this)
const data = tableFromIPC(buffer)
return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {}
Object.keys(entry).forEach((key: string) => {
if (entry[key] instanceof Vector) {
newObject[key] = (entry[key] as Vector).toArray()
} else {
newObject[key] = entry[key]
}
})
return newObject as unknown as T
})
}
}
/**
* Write mode for writing a table.
*/
@@ -635,23 +525,6 @@ export enum WriteMode {
Append = 'append'
}
/**
* Write options when creating a Table.
*/
export interface WriteOptions {
/** A {@link WriteMode} to use on this operation */
writeMode?: WriteMode
}
export class DefaultWriteOptions implements WriteOptions {
writeMode = WriteMode.Create
}
export function isWriteOptions (value: any): value is WriteOptions {
return Object.keys(value).length === 1 &&
(value.writeMode === undefined || typeof value.writeMode === 'string')
}
/**
* Distance metrics type.
*/

View File

@@ -1,173 +0,0 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { describe } from 'mocha'
import * as chai from 'chai'
import * as chaiAsPromised from 'chai-as-promised'
import { v4 as uuidv4 } from 'uuid'
import * as lancedb from '../index'
import { tmpdir } from 'os'
import * as fs from 'fs'
import * as path from 'path'
const assert = chai.assert
chai.use(chaiAsPromised)
describe('LanceDB AWS Integration test', function () {
it('s3+ddb schema is processed correctly', async function () {
this.timeout(15000)
// WARNING: specifying engine is NOT a publicly supported feature in lancedb yet
// THE API WILL CHANGE
const conn = await lancedb.connect('s3://lancedb-integtest?engine=ddb&ddbTableName=lancedb-integtest')
const data = [{ vector: Array(128).fill(1.0) }]
const tableName = uuidv4()
let table = await conn.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite })
const futs = [table.add(data), table.add(data), table.add(data), table.add(data), table.add(data)]
await Promise.allSettled(futs)
table = await conn.openTable(tableName)
assert.equal(await table.countRows(), 6)
})
})
describe('LanceDB Mirrored Store Integration test', function () {
it('s3://...?mirroredStore=... param is processed correctly', async function () {
this.timeout(600000)
const dir = tmpdir()
console.log(dir)
const conn = await lancedb.connect(`s3://lancedb-integtest?mirroredStore=${dir}`)
const data = Array(200).fill({ vector: Array(128).fill(1.0), id: 0 })
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 1 }))
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 2 }))
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 3 }))
const tableName = uuidv4()
// try create table and check if it's mirrored
const t = await conn.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite })
const mirroredPath = path.join(dir, `${tableName}.lance`)
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be two dirs
assert.equal(files.length, 2)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
})
// try create index and check if it's mirrored
await t.createIndex({ column: 'vector', type: 'ivf_pq' })
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be two dirs
assert.equal(files.length, 3)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
assert.isTrue(files[2].isDirectory())
// Two TXs now
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 2)
assert.isTrue(files[0].name.endsWith('.txn'))
assert.isTrue(files[1].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isDirectory())
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isFile())
assert.isTrue(files[0].name.endsWith('.idx'))
})
})
})
// try delete and check if it's mirrored
await t.delete('id = 0')
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be two dirs
assert.equal(files.length, 4)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
assert.isTrue(files[2].isDirectory())
assert.isTrue(files[3].isDirectory())
// Three TXs now
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 3)
assert.isTrue(files[0].name.endsWith('.txn'))
assert.isTrue(files[1].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isDirectory())
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isFile())
assert.isTrue(files[0].name.endsWith('.idx'))
})
})
fs.readdir(path.join(mirroredPath, '_deletions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.arrow'))
})
})
})
})

View File

@@ -1,141 +0,0 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { Vector, tableFromIPC } from 'apache-arrow'
import { type EmbeddingFunction } from './embedding/embedding_function'
import { type MetricType } from '.'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { tableSearch } = require('../native.js')
/**
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query<T = number[]> {
private readonly _query: T
private readonly _tbl?: any
private _queryVector?: number[]
private _limit: number
private _refineFactor?: number
private _nprobes: number
private _select?: string[]
private _filter?: string
private _metricType?: MetricType
protected readonly _embeddings?: EmbeddingFunction<T>
constructor (query: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._query = query
this._limit = 10
this._nprobes = 20
this._refineFactor = undefined
this._select = undefined
this._filter = undefined
this._metricType = undefined
this._embeddings = embeddings
}
/***
* Sets the number of results that will be returned
* @param value number of results
*/
limit (value: number): Query<T> {
this._limit = value
return this
}
/**
* Refine the results by reading extra elements and re-ranking them in memory.
* @param value refine factor to use in this query.
*/
refineFactor (value: number): Query<T> {
this._refineFactor = value
return this
}
/**
* The number of probes used. A higher number makes search more accurate but also slower.
* @param value The number of probes used.
*/
nprobes (value: number): Query<T> {
this._nprobes = value
return this
}
/**
* A filter statement to be applied to this query.
* @param value A filter in the same format used by a sql WHERE clause.
*/
filter (value: string): Query<T> {
this._filter = value
return this
}
where = this.filter
/** Return only the specified columns.
*
* @param value Only select the specified columns. If not specified, all columns will be returned.
*/
select (value: string[]): Query<T> {
this._select = value
return this
}
/**
* The MetricType used for this Query.
* @param value The metric to the. @see MetricType for the different options
*/
metricType (value: MetricType): Query<T> {
this._metricType = value
return this
}
/**
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
this._queryVector = this._query as number[]
}
const isElectron = this.isElectron()
const buffer = await tableSearch.call(this._tbl, this, isElectron)
const data = tableFromIPC(buffer)
return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {}
Object.keys(entry).forEach((key: string) => {
if (entry[key] instanceof Vector) {
newObject[key] = (entry[key] as Vector).toArray()
} else {
newObject[key] = entry[key]
}
})
return newObject as unknown as T
})
}
// See https://github.com/electron/electron/issues/2288
private isElectron (): boolean {
try {
// eslint-disable-next-line no-prototype-builtins
return (process?.versions?.hasOwnProperty('electron') || navigator?.userAgent?.toLowerCase()?.includes(' electron'))
} catch (e) {
return false
}
}
}

View File

@@ -1,137 +0,0 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import axios, { type AxiosResponse } from 'axios'
import { tableFromIPC, type Table as ArrowTable } from 'apache-arrow'
export class HttpLancedbClient {
private readonly _url: string
private readonly _apiKey: () => string
public constructor (
url: string,
apiKey: string,
private readonly _dbName?: string
) {
this._url = url
this._apiKey = () => apiKey
}
get uri (): string {
return this._url
}
public async search (
tableName: string,
vector: number[],
k: number,
nprobes: number,
refineFactor?: number,
columns?: string[],
filter?: string
): Promise<ArrowTable<any>> {
const response = await axios.post(
`${this._url}/v1/table/${tableName}/query/`,
{
vector,
k,
nprobes,
refineFactor,
columns,
filter
},
{
headers: {
'Content-Type': 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
responseType: 'arraybuffer',
timeout: 10000
}
).catch((err) => {
console.error('error: ', err)
return err.response
})
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
)
}
const table = tableFromIPC(response.data)
return table
}
/**
* Sent GET request.
*/
public async get (path: string, params?: Record<string, string | number>): Promise<AxiosResponse> {
const response = await axios.get(
`${this._url}${path}`,
{
headers: {
'Content-Type': 'application/json',
'x-api-key': this._apiKey()
},
params,
timeout: 10000
}
).catch((err) => {
console.error('error: ', err)
return err.response
})
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
)
}
return response
}
/**
* Sent POST request.
*/
public async post (path: string, data?: any, params?: Record<string, string | number>): Promise<AxiosResponse> {
const response = await axios.post(
`${this._url}${path}`,
data,
{
headers: {
'Content-Type': 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
params,
timeout: 30000
}
).catch((err) => {
console.error('error: ', err)
return err.response
})
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
)
}
return response
}
}

View File

@@ -1,162 +0,0 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import {
type EmbeddingFunction, type Table, type VectorIndexParams, type Connection,
type ConnectionOptions, type CreateTableOptions, type WriteOptions
} from '../index'
import { Query } from '../query'
import { Vector } from 'apache-arrow'
import { HttpLancedbClient } from './client'
/**
* Remote connection.
*/
export class RemoteConnection implements Connection {
private readonly _client: HttpLancedbClient
private readonly _dbName: string
constructor (opts: ConnectionOptions) {
if (!opts.uri.startsWith('db://')) {
throw new Error(`Invalid remote DB URI: ${opts.uri}`)
}
if (opts.apiKey === undefined || opts.region === undefined) {
throw new Error('API key and region are not supported for remote connections')
}
this._dbName = opts.uri.slice('db://'.length)
let server: string
if (opts.hostOverride === undefined) {
server = `https://${this._dbName}.${opts.region}.api.lancedb.com`
} else {
server = opts.hostOverride
}
this._client = new HttpLancedbClient(server, opts.apiKey, opts.hostOverride === undefined ? undefined : this._dbName)
}
get uri (): string {
// add the lancedb+ prefix back
return 'db://' + this._client.uri
}
async tableNames (): Promise<string[]> {
const response = await this._client.get('/v1/table/')
return response.data.tables
}
async openTable (name: string): Promise<Table>
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
if (embeddings !== undefined) {
return new RemoteTable(this._client, name, embeddings)
} else {
return new RemoteTable(this._client, name)
}
}
async createTable<T> (name: string | CreateTableOptions<T>, data?: Array<Record<string, unknown>>, optsOrEmbedding?: WriteOptions | EmbeddingFunction<T>, opt?: WriteOptions): Promise<Table<T>> {
throw new Error('Not implemented')
}
async dropTable (name: string): Promise<void> {
await this._client.post(`/v1/table/${name}/drop/`)
}
}
export class RemoteQuery<T = number[]> extends Query<T> {
constructor (query: T, private readonly _client: HttpLancedbClient,
private readonly _name: string, embeddings?: EmbeddingFunction<T>) {
super(query, undefined, embeddings)
}
// TODO: refactor this to a base class + queryImpl pattern
async execute<T = Record<string, unknown>>(): Promise<T[]> {
const embeddings = this._embeddings
const query = (this as any)._query
let queryVector: number[]
if (embeddings !== undefined) {
queryVector = (await embeddings.embed([query]))[0]
} else {
queryVector = query as number[]
}
const data = await this._client.search(
this._name,
queryVector,
(this as any)._limit,
(this as any)._nprobes,
(this as any)._refineFactor,
(this as any)._select,
(this as any)._filter
)
return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {}
Object.keys(entry).forEach((key: string) => {
if (entry[key] instanceof Vector) {
newObject[key] = (entry[key] as Vector).toArray()
} else {
newObject[key] = entry[key]
}
})
return newObject as unknown as T
})
}
}
// we are using extend until we have next next version release
// Table and Connection has both been refactored to interfaces
export class RemoteTable<T = number[]> implements Table<T> {
private readonly _client: HttpLancedbClient
private readonly _embeddings?: EmbeddingFunction<T>
private readonly _name: string
constructor (client: HttpLancedbClient, name: string)
constructor (client: HttpLancedbClient, name: string, embeddings: EmbeddingFunction<T>)
constructor (client: HttpLancedbClient, name: string, embeddings?: EmbeddingFunction<T>) {
this._client = client
this._name = name
this._embeddings = embeddings
}
get name (): string {
return this._name
}
search (query: T): Query<T> {
return new RemoteQuery(query, this._client, this._name)//, this._embeddings_new)
}
async add (data: Array<Record<string, unknown>>): Promise<number> {
throw new Error('Not implemented')
}
async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
throw new Error('Not implemented')
}
async createIndex (indexParams: VectorIndexParams): Promise<any> {
throw new Error('Not implemented')
}
async countRows (): Promise<number> {
throw new Error('Not implemented')
}
async delete (filter: string): Promise<void> {
throw new Error('Not implemented')
}
}

View File

@@ -16,7 +16,6 @@ import { describe } from 'mocha'
import { assert } from 'chai'
import { OpenAIEmbeddingFunction } from '../../embedding/openai'
import { isEmbeddingFunction } from '../../embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { OpenAIApi } = require('openai')
@@ -48,10 +47,4 @@ describe('OpenAPIEmbeddings', function () {
assert.deepEqual(vectors[1], stubValue.data.data[1].embedding)
})
})
describe('isEmbeddingFunction', function () {
it('should match the isEmbeddingFunction guard', function () {
assert.isTrue(isEmbeddingFunction(new OpenAIEmbeddingFunction('text', 'sk-key')))
})
})
})

View File

@@ -47,9 +47,7 @@ describe('LanceDB S3 client', function () {
}
}
const table = await createTestDB(opts, 2, 20)
console.log(table)
const con = await lancedb.connect(opts)
console.log(con)
assert.equal(con.uri, opts.uri)
const results = await table.search([0.1, 0.3]).limit(5).execute()
@@ -72,5 +70,5 @@ async function createTestDB (opts: ConnectionOptions, numDimensions: number = 2,
data.push({ id: i + 1, name: `name_${i}`, price: i + 10, is_active: (i % 2 === 0), vector })
}
return await con.createTable('vectors_2', data)
return await con.createTable('vectors', data)
}

View File

@@ -18,8 +18,7 @@ import * as chai from 'chai'
import * as chaiAsPromised from 'chai-as-promised'
import * as lancedb from '../index'
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions, type LocalTable } from '../index'
import { FixedSizeList, Field, Int32, makeVector, Schema, Utf8, Table as ArrowTable, vectorFromArray, Float32 } from 'apache-arrow'
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode } from '../index'
const expect = chai.expect
const assert = chai.assert
@@ -108,9 +107,9 @@ describe('LanceDB client', function () {
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.1]).select(['is_active']).execute()
assert.equal(results.length, 2)
// vector and _distance are always returned
// vector and score are always returned
assert.isDefined(results[0].vector)
assert.isDefined(results[0]._distance)
assert.isDefined(results[0].score)
assert.isDefined(results[0].is_active)
assert.isUndefined(results[0].id)
@@ -120,45 +119,6 @@ describe('LanceDB client', function () {
})
describe('when creating a new dataset', function () {
it('create an empty table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('id', new Int32()), new Field('name', new Utf8())]
)
const table = await con.createTable({ name: 'vectors', schema })
assert.equal(table.name, 'vectors')
assert.deepEqual(await con.tableNames(), ['vectors'])
})
it('create a table with a empty data array', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('id', new Int32()), new Field('name', new Utf8())]
)
const table = await con.createTable({ name: 'vectors', schema, data: [] })
assert.equal(table.name, 'vectors')
assert.deepEqual(await con.tableNames(), ['vectors'])
})
it('create a table from an Arrow Table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const i32s = new Int32Array(new Array<number>(10))
const i32 = makeVector(i32s)
const data = new ArrowTable({ vector: i32 })
const table = await con.createTable({ name: 'vectors', data })
assert.equal(table.name, 'vectors')
assert.equal(await table.countRows(), 10)
assert.deepEqual(await con.tableNames(), ['vectors'])
})
it('creates a new table from javascript objects', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
@@ -174,18 +134,6 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2)
})
it('fails to create a new table when the vector column is missing', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ id: 1, price: 10 }
]
const create = con.createTable('missing_vector', data)
await expect(create).to.be.rejectedWith(Error, 'column \'vector\' is missing')
})
it('use overwrite flag to overwrite existing table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
@@ -196,7 +144,7 @@ describe('LanceDB client', function () {
]
const tableName = 'overwrite'
await con.createTable(tableName, data, { writeMode: WriteMode.Create })
await con.createTable(tableName, data, WriteMode.Create)
const newData = [
{ id: 1, vector: [0.1, 0.2], price: 10 },
@@ -206,7 +154,7 @@ describe('LanceDB client', function () {
await expect(con.createTable(tableName, newData)).to.be.rejectedWith(Error, 'already exists')
const table = await con.createTable(tableName, newData, { writeMode: WriteMode.Overwrite })
const table = await con.createTable(tableName, newData, WriteMode.Overwrite)
assert.equal(table.name, tableName)
assert.equal(await table.countRows(), 3)
})
@@ -258,36 +206,6 @@ describe('LanceDB client', function () {
})
})
describe('when searching an empty dataset', function () {
it('should not fail', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('vector', new FixedSizeList(128, new Field('float32', new Float32())))]
)
const table = await con.createTable({ name: 'vectors', schema })
const result = await table.search(Array(128).fill(0.1)).execute()
assert.isEmpty(result)
})
})
describe('when searching an empty-after-delete dataset', function () {
it('should not fail', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('vector', new FixedSizeList(128, new Field('float32', new Float32())))]
)
const table = await con.createTable({ name: 'vectors', schema })
await table.add([{ vector: Array(128).fill(0.1) }])
await table.delete('vector IS NOT NULL')
const result = await table.search(Array(128).fill(0.1)).execute()
assert.isEmpty(result)
})
})
describe('when creating a vector index', function () {
it('overwrite all records in a table', async function () {
const uri = await createTestDB(32, 300)
@@ -312,22 +230,6 @@ describe('LanceDB client', function () {
// Default replace = true
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
}).timeout(50_000)
it('it should fail when the column is not a vector', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
await expect(createIndex).to.be.rejectedWith(/VectorIndex requires the column data type to be fixed size list of float32s/)
})
it('it should fail when the column is not a vector', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: -1, max_iters: 2, num_sub_vectors: 2 })
await expect(createIndex).to.be.rejectedWith('num_partitions: must be > 0')
})
})
describe('when using a custom embedding function', function () {
@@ -357,21 +259,7 @@ describe('LanceDB client', function () {
{ price: 10, name: 'foo' },
{ price: 50, name: 'bar' }
]
const table = await con.createTable('vectors', data, embeddings, { writeMode: WriteMode.Create })
const results = await table.search('foo').execute()
assert.equal(results.length, 2)
})
it('should create embeddings for Arrow Table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const embeddingFunction = new TextEmbedding('name')
const names = vectorFromArray(['foo', 'bar'], new Utf8())
const data = new ArrowTable({ name: names })
const table = await con.createTable({ name: 'vectors', data, embeddingFunction })
assert.equal(table.name, 'vectors')
const table = await con.createTable('vectors', data, WriteMode.Create, embeddings)
const results = await table.search('foo').execute()
assert.equal(results.length, 2)
})
@@ -380,7 +268,7 @@ describe('LanceDB client', function () {
describe('Query object', function () {
it('sets custom parameters', async function () {
const query = new Query([0.1, 0.3])
const query = new Query(undefined, [0.1, 0.3])
.limit(1)
.metricType(MetricType.Cosine)
.refineFactor(100)
@@ -429,62 +317,3 @@ describe('Drop table', function () {
assert.deepEqual(await con.tableNames(), ['t2'])
})
})
describe('WriteOptions', function () {
context('#isWriteOptions', function () {
it('should not match empty object', function () {
assert.equal(isWriteOptions({}), false)
})
it('should match write options', function () {
assert.equal(isWriteOptions({ writeMode: WriteMode.Create }), true)
})
it('should match undefined write mode', function () {
assert.equal(isWriteOptions({ writeMode: undefined }), true)
})
it('should match default write options', function () {
assert.equal(isWriteOptions(new DefaultWriteOptions()), true)
})
})
})
describe('Compact and cleanup', function () {
it('can cleanup after compaction', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ price: 10, name: 'foo', vector: [1, 2, 3] },
{ price: 50, name: 'bar', vector: [4, 5, 6] }
]
const table = await con.createTable('t1', data) as LocalTable
const newData = [
{ price: 30, name: 'baz', vector: [7, 8, 9] }
]
await table.add(newData)
const compactionMetrics = await table.compactFiles({
numThreads: 2
})
assert.equal(compactionMetrics.fragmentsRemoved, 2)
assert.equal(compactionMetrics.fragmentsAdded, 1)
assert.equal(await table.countRows(), 3)
await table.cleanupOldVersions()
assert.equal(await table.countRows(), 3)
// should have no effect, but this validates the arguments are parsed.
await table.compactFiles({
targetRowsPerFragment: 1024 * 10,
maxRowsPerGroup: 1024,
materializeDeletions: true,
materializeDeletionsThreshold: 0.5,
numThreads: 2
})
const cleanupMetrics = await table.cleanupOldVersions(0, true)
assert.isAtLeast(cleanupMetrics.bytesRemoved, 1)
assert.isAtLeast(cleanupMetrics.oldVersions, 1)
assert.equal(await table.countRows(), 3)
})
})

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.3.1
current_version = 0.1.8
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True

View File

@@ -16,7 +16,7 @@ pip install lancedb
import lancedb
db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>')
table = db.open_table('my_table')
results = table.search([0.1, 0.3]).limit(20).to_list()
results = table.search([0.1, 0.3]).limit(20).to_df()
print(results)
```

View File

@@ -11,23 +11,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib.metadata
from typing import Optional
__version__ = importlib.metadata.version("lancedb")
from .db import URI, DBConnection, LanceDBConnection
from .remote.db import RemoteDBConnection
from .schema import vector
from .utils import sentry_log
def connect(
uri: URI,
*,
api_key: Optional[str] = None,
region: str = "us-west-2",
host_override: Optional[str] = None,
uri: URI, *, api_key: Optional[str] = None, region: str = "us-west-2"
) -> DBConnection:
"""Connect to a LanceDB database.
@@ -35,13 +27,9 @@ def connect(
----------
uri: str or Path
The uri of the database.
api_key: str, optional
api_token: str, optional
If presented, connect to LanceDB cloud.
Otherwise, connect to a database on file system or cloud storage.
region: str, default "us-west-2"
The region to use for LanceDB Cloud.
host_override: str, optional
The override url for LanceDB Cloud.
Examples
--------
@@ -67,5 +55,5 @@ def connect(
if isinstance(uri, str) and uri.startswith("db://"):
if api_key is None:
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
return RemoteDBConnection(uri, api_key, region, host_override)
return RemoteDBConnection(uri, api_key, region)
return LanceDBConnection(uri)

View File

@@ -1,12 +0,0 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@@ -1,46 +0,0 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import click
from lancedb.utils import CONFIG
@click.group()
@click.version_option(help="LanceDB command line interface entry point")
def cli():
"LanceDB command line interface"
diagnostics_help = """
Enable or disable LanceDB diagnostics. When enabled, LanceDB will send anonymous events to help us improve LanceDB.
These diagnostics are used only for error reporting and no data is collected. You can find more about diagnosis on
our docs: https://lancedb.github.io/lancedb/cli_config/
"""
@cli.command(help=diagnostics_help)
@click.option("--enabled/--disabled", default=True)
def diagnostics(enabled):
CONFIG.update({"diagnostics": True if enabled else False})
click.echo("LanceDB diagnostics is %s" % ("enabled" if enabled else "disabled"))
@cli.command(help="Show current LanceDB configuration")
def config():
# TODO: pretty print as table with colors and formatting
click.echo("Current LanceDB configuration:")
cfg = CONFIG.copy()
cfg.pop("uuid") # Don't show uuid as it is not configurable
for item, amount in cfg.items():
click.echo("{} ({})".format(item, amount))

View File

@@ -11,18 +11,17 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Iterable, List, Union
from typing import List, Union
import numpy as np
import pandas as pd
import pyarrow as pa
from .util import safe_import_pandas
pd = safe_import_pandas()
DATA = Union[List[dict], dict, "pd.DataFrame", pa.Table, Iterable[pa.RecordBatch]]
VEC = Union[list, np.ndarray, pa.Array, pa.ChunkedArray]
URI = Union[str, Path]
# TODO support generator
DATA = Union[List[dict], dict, pd.DataFrame]
VECTOR_COLUMN_NAME = "vector"

View File

@@ -1,10 +1,7 @@
import os
import numpy as np
import pytest
from .embeddings import EmbeddingFunctionRegistry, TextEmbeddingFunction
# import lancedb so we don't have to in every example
@@ -17,24 +14,3 @@ def doctest_setup(monkeypatch, tmpdir):
monkeypatch.setitem(os.environ, "COLUMNS", "80")
# Work in a temporary directory
monkeypatch.chdir(tmpdir)
registry = EmbeddingFunctionRegistry.get_instance()
@registry.register("test")
class MockTextEmbeddingFunction(TextEmbeddingFunction):
"""
Return the hash of the first 10 characters
"""
def generate_embeddings(self, texts):
return [self._compute_one_embedding(row) for row in texts]
def _compute_one_embedding(self, row):
emb = np.array([float(hash(c)) for c in row[:10]])
emb /= np.linalg.norm(emb)
return emb
def ndims(self):
return 10

View File

@@ -12,16 +12,12 @@
# limitations under the License.
from __future__ import annotations
import deprecation
import pandas as pd
from . import __version__
from .exceptions import MissingColumnError, MissingValueError
from .util import safe_import_pandas
pd = safe_import_pandas()
def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
def contextualize(raw_df: pd.DataFrame) -> Contextualizer:
"""Create a Contextualizer object for the given DataFrame.
Used to create context windows. Context windows are rolling subsets of text
@@ -46,7 +42,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
this how many tokens, but depending on the input data, it could be sentences,
paragraphs, messages, etc.
>>> contextualize(data).window(3).stride(1).text_col('token').to_pandas()
>>> contextualize(data).window(3).stride(1).text_col('token').to_df()
token document_id
0 The quick brown 1
1 quick brown fox 1
@@ -59,7 +55,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
8 dog I love 1
9 I love sandwiches 2
10 love sandwiches 2
>>> contextualize(data).window(7).stride(1).min_window_size(7).text_col('token').to_pandas()
>>> contextualize(data).window(7).stride(1).min_window_size(7).text_col('token').to_df()
token document_id
0 The quick brown fox jumped over the 1
1 quick brown fox jumped over the lazy 1
@@ -71,7 +67,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
``stride`` determines how many rows to skip between each window start. This can
be used to reduce the total number of windows generated.
>>> contextualize(data).window(4).stride(2).text_col('token').to_pandas()
>>> contextualize(data).window(4).stride(2).text_col('token').to_df()
token document_id
0 The quick brown fox 1
2 brown fox jumped over 1
@@ -84,7 +80,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
context windows that don't cross document boundaries. In this case, we can
pass ``document_id`` as the group by.
>>> contextualize(data).window(4).stride(2).text_col('token').groupby('document_id').to_pandas()
>>> contextualize(data).window(4).stride(2).text_col('token').groupby('document_id').to_df()
token document_id
0 The quick brown fox 1
2 brown fox jumped over 1
@@ -96,14 +92,14 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
This can be used to trim the last few context windows which have size less than
``min_window_size``. By default context windows of size 1 are skipped.
>>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_pandas()
>>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_df()
token document_id
0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1
6 the lazy dog 1
9 I love sandwiches 2
>>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_pandas()
>>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_df()
token document_id
0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1
@@ -179,21 +175,8 @@ class Contextualizer:
self._min_window_size = min_window_size
return self
@deprecation.deprecated(
deprecated_in="0.3.1",
removed_in="0.4.0",
current_version=__version__,
details="Use the bar function instead",
)
def to_df(self) -> "pd.DataFrame":
return self.to_pandas()
def to_pandas(self) -> "pd.DataFrame":
def to_df(self) -> pd.DataFrame:
"""Create the context windows and return a DataFrame."""
if pd is None:
raise ImportError(
"pandas is required to create context windows using lancedb"
)
if self._text_col not in self._raw_df.columns.tolist():
raise MissingColumnError(self._text_col)

View File

@@ -16,16 +16,15 @@ from __future__ import annotations
import os
from abc import ABC, abstractmethod
from pathlib import Path
from typing import List, Optional, Union
from typing import Dict, Iterable, List, Optional, Tuple, Union
import pandas as pd
import pyarrow as pa
from pyarrow import fs
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel
from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme
from .util import get_uri_location, get_uri_scheme
class DBConnection(ABC):
@@ -40,8 +39,10 @@ class DBConnection(ABC):
def create_table(
self,
name: str,
data: Optional[DATA] = None,
schema: Optional[Union[pa.Schema, LanceModel]] = None,
data: Optional[
Union[List[dict], dict, pd.DataFrame, pa.Table, Iterable[pa.RecordBatch]],
] = None,
schema: Optional[pa.Schema] = None,
mode: str = "create",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
@@ -54,7 +55,7 @@ class DBConnection(ABC):
The name of the table.
data: list, tuple, dict, pd.DataFrame; optional
The data to initialize the table. User must provide at least one of `data` or `schema`.
schema: pyarrow.Schema or LanceModel; optional
schema: pyarrow.Schema; optional
The schema of the table.
mode: str; default "create"
The mode to use when creating the table. Can be either "create" or "overwrite".
@@ -150,14 +151,14 @@ class DBConnection(ABC):
... for i in range(5):
... yield pa.RecordBatch.from_arrays(
... [
... pa.array([[3.1, 4.1], [5.9, 26.5]], pa.list_(pa.float32(), 2)),
... pa.array([[3.1, 4.1], [5.9, 26.5]]),
... pa.array(["foo", "bar"]),
... pa.array([10.0, 20.0]),
... ],
... ["vector", "item", "price"],
... )
>>> schema=pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("vector", pa.list_(pa.float32())),
... pa.field("item", pa.utf8()),
... pa.field("price", pa.float32()),
... ])
@@ -194,13 +195,6 @@ class DBConnection(ABC):
"""
raise NotImplementedError
def drop_database(self):
"""
Drop database
This is the same thing as dropping all the tables
"""
raise NotImplementedError
class LanceDBConnection(DBConnection):
"""
@@ -258,7 +252,7 @@ class LanceDBConnection(DBConnection):
A list of table names.
"""
try:
filesystem, path = fs_from_uri(self.uri)
filesystem, path = fs.FileSystem.from_uri(self.uri)
except pa.ArrowInvalid:
raise NotImplementedError("Unsupported scheme: " + self.uri)
@@ -285,12 +279,11 @@ class LanceDBConnection(DBConnection):
def create_table(
self,
name: str,
data: Optional[DATA] = None,
schema: Optional[Union[pa.Schema, LanceModel]] = None,
data: Optional[Union[List[dict], dict, pd.DataFrame]] = None,
schema: pa.Schema = None,
mode: str = "create",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> LanceTable:
"""Create a table in the database.
@@ -309,7 +302,6 @@ class LanceDBConnection(DBConnection):
mode=mode,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
embedding_functions=embedding_functions,
)
return tbl
@@ -327,24 +319,14 @@ class LanceDBConnection(DBConnection):
"""
return LanceTable.open(self, name)
def drop_table(self, name: str, ignore_missing: bool = False):
def drop_table(self, name: str):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
ignore_missing: bool, default False
If True, ignore if the table does not exist.
"""
try:
filesystem, path = fs_from_uri(self.uri)
filesystem, path = pa.fs.FileSystem.from_uri(self.uri)
table_path = os.path.join(path, name + ".lance")
filesystem.delete_dir(table_path)
except FileNotFoundError:
if not ignore_missing:
raise
def drop_database(self):
filesystem, path = fs_from_uri(self.uri)
filesystem.delete_dir(path)

View File

@@ -1,4 +1,4 @@
# Copyright (c) 2023. LanceDB Developers
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -16,20 +16,15 @@ import sys
from typing import Callable, Union
import numpy as np
import pandas as pd
import pyarrow as pa
from lance.vector import vec_to_table
from retry import retry
from ..util import safe_import_pandas
from ..utils.general import LOGGER
pd = safe_import_pandas()
DATA = Union[pa.Table, "pd.DataFrame"]
def with_embeddings(
func: Callable,
data: DATA,
data: Union[pa.Table, pd.DataFrame],
column: str = "text",
wrap_api: bool = True,
show_progress: bool = False,
@@ -59,24 +54,20 @@ def with_embeddings(
pa.Table
The input table with a new column called "vector" containing the embeddings.
"""
func = FunctionWrapper(func)
func = EmbeddingFunction(func)
if wrap_api:
func = func.retry().rate_limit()
func = func.batch_size(batch_size)
if show_progress:
func = func.show_progress()
if pd is not None and isinstance(data, pd.DataFrame):
if isinstance(data, pd.DataFrame):
data = pa.Table.from_pandas(data, preserve_index=False)
embeddings = func(data[column].to_numpy())
table = vec_to_table(np.array(embeddings))
return data.append_column("vector", table["vector"])
class FunctionWrapper:
"""
A wrapper for embedding functions that adds rate limiting, retries, and batching.
"""
class EmbeddingFunction:
def __init__(self, func: Callable):
self.func = func
self.rate_limiter_kwargs = {}
@@ -153,8 +144,3 @@ class FunctionWrapper:
yield from tqdm(_chunker(arr), total=math.ceil(length / self._batch_size))
else:
yield from _chunker(arr)
def api_key_not_found_help(provider):
LOGGER.error(f"Could not find API key for {provider}.")
raise ValueError(f"Please set the {provider.upper()}_API_KEY environment variable.")

View File

@@ -1,25 +0,0 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .cohere import CohereEmbeddingFunction
from .functions import (
EmbeddingFunction,
EmbeddingFunctionConfig,
EmbeddingFunctionRegistry,
OpenAIEmbeddings,
OpenClipEmbeddings,
SentenceTransformerEmbeddings,
TextEmbeddingFunction,
)
from .utils import with_embeddings

View File

@@ -1,86 +0,0 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import ClassVar, List, Union
import numpy as np
from .functions import TextEmbeddingFunction, register
from .utils import api_key_not_found_help
@register("cohere")
class CohereEmbeddingFunction(TextEmbeddingFunction):
"""
An embedding function that uses the Cohere API
https://docs.cohere.com/docs/multilingual-language-models
Parameters
----------
name: str, default "embed-multilingual-v2.0"
The name of the model to use. See the Cohere documentation for a list of available models.
Examples
--------
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
cohere = EmbeddingFunctionRegistry.get_instance().get("cohere").create(name="embed-multilingual-v2.0")
class TextModel(LanceModel):
text: str = cohere.SourceField()
vector: Vector(cohere.ndims()) = cohere.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
"""
name: str = "embed-multilingual-v2.0"
client: ClassVar = None
def ndims(self):
# TODO: fix hardcoding
return 768
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
# TODO retry, rate limit, token limit
self._init_client()
rs = CohereEmbeddingFunction.client.embed(texts=texts, model=self.name)
return [emb for emb in rs.embeddings]
def _init_client(self):
cohere = self.safe_import("cohere")
if CohereEmbeddingFunction.client is None:
if os.environ.get("COHERE_API_KEY") is None:
api_key_not_found_help("cohere")
CohereEmbeddingFunction.client = cohere.Client(os.environ["COHERE_API_KEY"])

View File

@@ -1,578 +0,0 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import concurrent.futures
import importlib
import io
import json
import os
import socket
import urllib.error
import urllib.parse as urlparse
import urllib.request
from abc import ABC, abstractmethod
from typing import Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from cachetools import cached
from pydantic import BaseModel, Field, PrivateAttr
from tqdm import tqdm
class EmbeddingFunctionRegistry:
"""
This is a singleton class used to register embedding functions
and fetch them by name. It also handles serializing and deserializing.
You can implement your own embedding function by subclassing EmbeddingFunction
or TextEmbeddingFunction and registering it with the registry.
Examples
--------
>>> registry = EmbeddingFunctionRegistry.get_instance()
>>> @registry.register("my-embedding-function")
... class MyEmbeddingFunction(EmbeddingFunction):
... def ndims(self) -> int:
... return 128
...
... def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
... return self.compute_source_embeddings(query, *args, **kwargs)
...
... def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
... return [np.random.rand(self.ndims()) for _ in range(len(texts))]
...
>>> registry.get("my-embedding-function")
<class 'lancedb.embeddings.functions.MyEmbeddingFunction'>
"""
@classmethod
def get_instance(cls):
return __REGISTRY__
def __init__(self):
self._functions = {}
def register(self, alias: str = None):
"""
This creates a decorator that can be used to register
an EmbeddingFunction.
Parameters
----------
alias : Optional[str]
a human friendly name for the embedding function. If not
provided, the class name will be used.
"""
# This is a decorator for a class that inherits from BaseModel
# It adds the class to the registry
def decorator(cls):
if not issubclass(cls, EmbeddingFunction):
raise TypeError("Must be a subclass of EmbeddingFunction")
if cls.__name__ in self._functions:
raise KeyError(f"{cls.__name__} was already registered")
key = alias or cls.__name__
self._functions[key] = cls
cls.__embedding_function_registry_alias__ = alias
return cls
return decorator
def reset(self):
"""
Reset the registry to its initial state
"""
self._functions = {}
def get(self, name: str):
"""
Fetch an embedding function class by name
Parameters
----------
name : str
The name of the embedding function to fetch
Either the alias or the class name if no alias was provided
during registration
"""
return self._functions[name]
def parse_functions(
self, metadata: Optional[Dict[bytes, bytes]]
) -> Dict[str, "EmbeddingFunctionConfig"]:
"""
Parse the metadata from an arrow table and
return a mapping of the vector column to the
embedding function and source column
Parameters
----------
metadata : Optional[Dict[bytes, bytes]]
The metadata from an arrow table. Note that
the keys and values are bytes (pyarrow api)
Returns
-------
functions : dict
A mapping of vector column name to embedding function.
An empty dict is returned if input is None or does not
contain b"embedding_functions".
"""
if metadata is None or b"embedding_functions" not in metadata:
return {}
serialized = metadata[b"embedding_functions"]
raw_list = json.loads(serialized.decode("utf-8"))
return {
obj["vector_column"]: EmbeddingFunctionConfig(
vector_column=obj["vector_column"],
source_column=obj["source_column"],
function=self.get(obj["name"])(**obj["model"]),
)
for obj in raw_list
}
def function_to_metadata(self, conf: "EmbeddingFunctionConfig"):
"""
Convert the given embedding function and source / vector column configs
into a config dictionary that can be serialized into arrow metadata
"""
func = conf.function
name = getattr(
func, "__embedding_function_registry_alias__", func.__class__.__name__
)
json_data = func.safe_model_dump()
return {
"name": name,
"model": json_data,
"source_column": conf.source_column,
"vector_column": conf.vector_column,
}
def get_table_metadata(self, func_list):
"""
Convert a list of embedding functions and source / vector configs
into a config dictionary that can be serialized into arrow metadata
"""
if func_list is None or len(func_list) == 0:
return None
json_data = [self.function_to_metadata(func) for func in func_list]
# Note that metadata dictionary values must be bytes
# so we need to json dump then utf8 encode
metadata = json.dumps(json_data, indent=2).encode("utf-8")
return {"embedding_functions": metadata}
# Global instance
__REGISTRY__ = EmbeddingFunctionRegistry()
TEXT = Union[str, List[str], pa.Array, pa.ChunkedArray, np.ndarray]
IMAGES = Union[
str, bytes, List[str], List[bytes], pa.Array, pa.ChunkedArray, np.ndarray
]
class EmbeddingFunction(BaseModel, ABC):
"""
An ABC for embedding functions.
All concrete embedding functions must implement the following:
1. compute_query_embeddings() which takes a query and returns a list of embeddings
2. get_source_embeddings() which returns a list of embeddings for the source column
For text data, the two will be the same. For multi-modal data, the source column
might be images and the vector column might be text.
3. ndims method which returns the number of dimensions of the vector column
"""
_ndims: int = PrivateAttr()
@classmethod
def create(cls, **kwargs):
"""
Create an instance of the embedding function
"""
return cls(**kwargs)
@abstractmethod
def compute_query_embeddings(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for a given user query
"""
pass
@abstractmethod
def compute_source_embeddings(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for the source column in the database
"""
pass
def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(texts, str):
texts = [texts]
elif isinstance(texts, pa.Array):
texts = texts.to_pylist()
elif isinstance(texts, pa.ChunkedArray):
texts = texts.combine_chunks().to_pylist()
return texts
@classmethod
def safe_import(cls, module: str, mitigation=None):
"""
Import the specified module. If the module is not installed,
raise an ImportError with a helpful message.
Parameters
----------
module : str
The name of the module to import
mitigation : Optional[str]
The package(s) to install to mitigate the error.
If not provided then the module name will be used.
"""
try:
return importlib.import_module(module)
except ImportError:
raise ImportError(f"Please install {mitigation or module}")
def safe_model_dump(self):
from ..pydantic import PYDANTIC_VERSION
if PYDANTIC_VERSION.major < 2:
return dict(self)
return self.model_dump()
@abstractmethod
def ndims(self):
"""
Return the dimensions of the vector column
"""
pass
def SourceField(self, **kwargs):
"""
Creates a pydantic Field that can automatically annotate
the source column for this embedding function
"""
return Field(json_schema_extra={"source_column_for": self}, **kwargs)
def VectorField(self, **kwargs):
"""
Creates a pydantic Field that can automatically annotate
the target vector column for this embedding function
"""
return Field(json_schema_extra={"vector_column_for": self}, **kwargs)
class EmbeddingFunctionConfig(BaseModel):
"""
This model encapsulates the configuration for a embedding function
in a lancedb table. It holds the embedding function, the source column,
and the vector column
"""
vector_column: str
source_column: str
function: EmbeddingFunction
class TextEmbeddingFunction(EmbeddingFunction):
"""
A callable ABC for embedding functions that take text as input
"""
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
return self.compute_source_embeddings(query, *args, **kwargs)
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
texts = self.sanitize_input(texts)
return self.generate_embeddings(texts)
@abstractmethod
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Generate the embeddings for the given texts
"""
pass
# @EmbeddingFunctionRegistry.get_instance().register(name) doesn't work in 3.8
register = lambda name: EmbeddingFunctionRegistry.get_instance().register(name)
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
"""
An embedding function that uses the sentence-transformers library
https://huggingface.co/sentence-transformers
"""
name: str = "all-MiniLM-L6-v2"
device: str = "cpu"
normalize: bool = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
@property
def embedding_model(self):
"""
Get the sentence-transformers embedding model specified by the
name and device. This is cached so that the model is only loaded
once per process.
"""
return self.__class__.get_embedding_model(self.name, self.device)
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
return self.embedding_model.encode(
list(texts),
convert_to_numpy=True,
normalize_embeddings=self.normalize,
).tolist()
@classmethod
@cached(cache={})
def get_embedding_model(cls, name, device):
"""
Get the sentence-transformers embedding model specified by the
name and device. This is cached so that the model is only loaded
once per process.
Parameters
----------
name : str
The name of the model to load
device : str
The device to load the model on
TODO: use lru_cache instead with a reasonable/configurable maxsize
"""
sentence_transformers = cls.safe_import(
"sentence_transformers", "sentence-transformers"
)
return sentence_transformers.SentenceTransformer(name, device=device)
@register("openai")
class OpenAIEmbeddings(TextEmbeddingFunction):
"""
An embedding function that uses the OpenAI API
https://platform.openai.com/docs/guides/embeddings
"""
name: str = "text-embedding-ada-002"
def ndims(self):
# TODO don't hardcode this
return 1536
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
# TODO retry, rate limit, token limit
openai = self.safe_import("openai")
rs = openai.Embedding.create(input=texts, model=self.name)["data"]
return [v["embedding"] for v in rs]
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
"""
An embedding function that uses the OpenClip API
For multi-modal text-to-image search
https://github.com/mlfoundations/open_clip
"""
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip")
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = self.safe_import("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in tqdm(futures)]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = self.safe_import("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor.to(self.device))
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
def url_retrieve(url: str):
"""
Parameters
----------
url: str
URL to download from
"""
try:
with urllib.request.urlopen(url) as conn:
return conn.read()
except (socket.gaierror, urllib.error.URLError) as err:
raise ConnectionError("could not download {} due to {}".format(url, err))

View File

@@ -11,7 +11,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pydantic (v1 / v2) adapter for LanceDB"""
"""Pydantic adapter for LanceDB"""
from __future__ import annotations
@@ -19,21 +19,11 @@ import inspect
import sys
import types
from abc import ABC, abstractmethod
from typing import Any, Callable, Dict, Generator, List, Type, Union, _GenericAlias
from typing import Any, List, Type, Union, _GenericAlias
import numpy as np
import pyarrow as pa
import pydantic
import semver
from .embeddings import EmbeddingFunctionRegistry
PYDANTIC_VERSION = semver.Version.parse(pydantic.__version__)
try:
from pydantic_core import CoreSchema, core_schema
except ImportError:
if PYDANTIC_VERSION >= (2,):
raise
from pydantic_core import CoreSchema, core_schema
class FixedSizeListMixin(ABC):
@@ -48,19 +38,7 @@ class FixedSizeListMixin(ABC):
raise NotImplementedError
def vector(dim: int, value_type: pa.DataType = pa.float32()):
# TODO: remove in future release
from warnings import warn
warn(
"lancedb.pydantic.vector() is deprecated, use lancedb.pydantic.Vector instead."
"This function will be removed in future release",
DeprecationWarning,
)
return Vector(dim, value_type)
def Vector(
def vector(
dim: int, value_type: pa.DataType = pa.float32()
) -> Type[FixedSizeListMixin]:
"""Pydantic Vector Type.
@@ -79,12 +57,12 @@ def Vector(
--------
>>> import pydantic
>>> from lancedb.pydantic import Vector
>>> from lancedb.pydantic import vector
...
>>> class MyModel(pydantic.BaseModel):
... id: int
... url: str
... embeddings: Vector(768)
... embeddings: vector(768)
>>> schema = pydantic_to_schema(MyModel)
>>> assert schema == pa.schema([
... pa.field("id", pa.int64(), False),
@@ -95,9 +73,6 @@ def Vector(
# TODO: make a public parameterized type.
class FixedSizeList(list, FixedSizeListMixin):
def __repr__(self):
return f"FixedSizeList(dim={dim})"
@staticmethod
def dim() -> int:
return dim
@@ -119,25 +94,6 @@ def Vector(
),
)
@classmethod
def __get_validators__(cls) -> Generator[Callable, None, None]:
yield cls.validate
# For pydantic v1
@classmethod
def validate(cls, v):
if not isinstance(v, (list, range, np.ndarray)) or len(v) != dim:
raise TypeError("A list of numbers or numpy.ndarray is needed")
return cls(v)
if PYDANTIC_VERSION < (2, 0):
@classmethod
def __modify_schema__(cls, field_schema: Dict[str, Any]):
field_schema["items"] = {"type": "number"}
field_schema["maxItems"] = dim
field_schema["minItems"] = dim
return FixedSizeList
@@ -164,20 +120,11 @@ def _py_type_to_arrow_type(py_type: Type[Any]) -> pa.DataType:
)
if PYDANTIC_VERSION.major < 2:
def _pydantic_model_to_fields(model: pydantic.BaseModel) -> List[pa.Field]:
return [
_pydantic_to_field(name, field) for name, field in model.__fields__.items()
]
else:
def _pydantic_model_to_fields(model: pydantic.BaseModel) -> List[pa.Field]:
return [
_pydantic_to_field(name, field)
for name, field in model.model_fields.items()
]
def _pydantic_model_to_fields(model: pydantic.BaseModel) -> List[pa.Field]:
fields = []
for name, field in model.model_fields.items():
fields.append(_pydantic_to_field(name, field))
return fields
def _pydantic_to_arrow_type(field: pydantic.fields.FieldInfo) -> pa.DataType:
@@ -238,103 +185,28 @@ def pydantic_to_schema(model: Type[pydantic.BaseModel]) -> pa.Schema:
>>> from typing import List, Optional
>>> import pydantic
>>> from lancedb.pydantic import pydantic_to_schema
...
>>> class InnerModel(pydantic.BaseModel):
... a: str
... b: Optional[float]
>>>
>>> class FooModel(pydantic.BaseModel):
... id: int
... s: str
... s: Optional[str] = None
... vec: List[float]
... li: List[int]
...
... inner: InnerModel
>>> schema = pydantic_to_schema(FooModel)
>>> assert schema == pa.schema([
... pa.field("id", pa.int64(), False),
... pa.field("s", pa.utf8(), False),
... pa.field("s", pa.utf8(), True),
... pa.field("vec", pa.list_(pa.float64()), False),
... pa.field("li", pa.list_(pa.int64()), False),
... pa.field("inner", pa.struct([
... pa.field("a", pa.utf8(), False),
... pa.field("b", pa.float64(), True),
... ]), False),
... ])
"""
fields = _pydantic_model_to_fields(model)
return pa.schema(fields)
class LanceModel(pydantic.BaseModel):
"""
A Pydantic Model base class that can be converted to a LanceDB Table.
Examples
--------
>>> import lancedb
>>> from lancedb.pydantic import LanceModel, Vector
>>>
>>> class TestModel(LanceModel):
... name: str
... vector: Vector(2)
...
>>> db = lancedb.connect("/tmp")
>>> table = db.create_table("test", schema=TestModel.to_arrow_schema())
>>> table.add([
... TestModel(name="test", vector=[1.0, 2.0])
... ])
>>> table.search([0., 0.]).limit(1).to_pydantic(TestModel)
[TestModel(name='test', vector=FixedSizeList(dim=2))]
"""
@classmethod
def to_arrow_schema(cls):
"""
Get the Arrow Schema for this model.
"""
schema = pydantic_to_schema(cls)
functions = cls.parse_embedding_functions()
if len(functions) > 0:
metadata = EmbeddingFunctionRegistry.get_instance().get_table_metadata(
functions
)
schema = schema.with_metadata(metadata)
return schema
@classmethod
def field_names(cls) -> List[str]:
"""
Get the field names of this model.
"""
return list(cls.safe_get_fields().keys())
@classmethod
def safe_get_fields(cls):
if PYDANTIC_VERSION.major < 2:
return cls.__fields__
return cls.model_fields
@classmethod
def parse_embedding_functions(cls) -> List["EmbeddingFunctionConfig"]:
"""
Parse the embedding functions from this model.
"""
from .embeddings import EmbeddingFunctionConfig
vec_and_function = []
for name, field_info in cls.safe_get_fields().items():
func = get_extras(field_info, "vector_column_for")
if func is not None:
vec_and_function.append([name, func])
configs = []
for vec, func in vec_and_function:
for source, field_info in cls.safe_get_fields().items():
src_func = get_extras(field_info, "source_column_for")
if src_func == func:
configs.append(
EmbeddingFunctionConfig(
source_column=source, vector_column=vec, function=func
)
)
return configs
def get_extras(field_info: pydantic.fields.FieldInfo, key: str) -> Any:
"""
Get the extra metadata from a Pydantic FieldInfo.
"""
if PYDANTIC_VERSION.major >= 2:
return (field_info.json_schema_extra or {}).get(key)
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)

View File

@@ -13,23 +13,17 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import List, Literal, Optional, Type, Union
from typing import List, Literal, Optional, Union
import deprecation
import numpy as np
import pandas as pd
import pyarrow as pa
import pydantic
from pydantic import BaseModel
from . import __version__
from .common import VECTOR_COLUMN_NAME
from .pydantic import LanceModel
from .util import safe_import_pandas
pd = safe_import_pandas()
class Query(pydantic.BaseModel):
class Query(BaseModel):
"""A Query"""
vector_column: str = VECTOR_COLUMN_NAME
@@ -40,9 +34,6 @@ class Query(pydantic.BaseModel):
# sql filter to refine the query with
filter: Optional[str] = None
# if True then apply the filter before vector search
prefilter: bool = False
# top k results to return
k: int
@@ -60,139 +51,44 @@ class Query(pydantic.BaseModel):
refine_factor: Optional[int] = None
class LanceQueryBuilder(ABC):
@classmethod
def create(
cls,
class LanceQueryBuilder:
"""
A builder for nearest neighbor queries for LanceDB.
Examples
--------
>>> import lancedb
>>> data = [{"vector": [1.1, 1.2], "b": 2},
... {"vector": [0.5, 1.3], "b": 4},
... {"vector": [0.4, 0.4], "b": 6},
... {"vector": [0.4, 0.4], "b": 10}]
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data=data)
>>> (table.search([0.4, 0.4])
... .metric("cosine")
... .where("b < 10")
... .select(["b"])
... .limit(2)
... .to_df())
b vector score
0 6 [0.4, 0.4] 0.0
"""
def __init__(
self,
table: "lancedb.table.Table",
query: Optional[Union[np.ndarray, str, "PIL.Image.Image"]],
query_type: str,
vector_column_name: str,
) -> LanceQueryBuilder:
if query is None:
return LanceEmptyQueryBuilder(table)
# convert "auto" query_type to "vector" or "fts"
# and convert the query to vector if needed
query, query_type = cls._resolve_query(
table, query, query_type, vector_column_name
)
if isinstance(query, str):
# fts
return LanceFtsQueryBuilder(table, query)
if isinstance(query, list):
query = np.array(query, dtype=np.float32)
elif isinstance(query, np.ndarray):
query = query.astype(np.float32)
else:
raise TypeError(f"Unsupported query type: {type(query)}")
return LanceVectorQueryBuilder(table, query, vector_column_name)
@classmethod
def _resolve_query(cls, table, query, query_type, vector_column_name):
# If query_type is fts, then query must be a string.
# otherwise raise TypeError
if query_type == "fts":
if not isinstance(query, str):
raise TypeError(f"'fts' queries must be a string: {type(query)}")
return query, query_type
elif query_type == "vector":
if not isinstance(query, (list, np.ndarray)):
conf = table.embedding_functions.get(vector_column_name)
if conf is not None:
query = conf.function.compute_query_embeddings(query)[0]
else:
msg = f"No embedding function for {vector_column_name}"
raise ValueError(msg)
return query, query_type
elif query_type == "auto":
if isinstance(query, (list, np.ndarray)):
return query, "vector"
else:
conf = table.embedding_functions.get(vector_column_name)
if conf is not None:
query = conf.function.compute_query_embeddings(query)[0]
return query, "vector"
else:
return query, "fts"
else:
raise ValueError(
f"Invalid query_type, must be 'vector', 'fts', or 'auto': {query_type}"
)
def __init__(self, table: "lancedb.table.Table"):
query: Union[np.ndarray, str],
vector_column: str = VECTOR_COLUMN_NAME,
):
self._metric = "L2"
self._nprobes = 20
self._refine_factor = None
self._table = table
self._query = query
self._limit = 10
self._columns = None
self._where = None
@deprecation.deprecated(
deprecated_in="0.3.1",
removed_in="0.4.0",
current_version=__version__,
details="Use the bar function instead",
)
def to_df(self) -> "pd.DataFrame":
"""
Deprecated alias for `to_pandas()`. Please use `to_pandas()` instead.
Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
return self.to_pandas()
def to_pandas(self) -> "pd.DataFrame":
"""
Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
return self.to_arrow().to_pandas()
@abstractmethod
def to_arrow(self) -> pa.Table:
"""
Execute the query and return the results as an
[Apache Arrow Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table).
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
vector and the returned vectors.
"""
raise NotImplementedError
def to_list(self) -> List[dict]:
"""
Execute the query and return the results as a list of dictionaries.
Each list entry is a dictionary with the selected column names as keys,
or all table columns if `select` is not called. The vector and the "_distance"
fields are returned whether or not they're explicitly selected.
"""
return self.to_arrow().to_pylist()
def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]:
"""Return the table as a list of pydantic models.
Parameters
----------
model: Type[LanceModel]
The pydantic model to use.
Returns
-------
List[LanceModel]
"""
return [
model(**{k: v for k, v in row.items() if k in model.field_names()})
for row in self.to_arrow().to_pylist()
]
self._vector_column = vector_column
def limit(self, limit: int) -> LanceQueryBuilder:
"""Set the maximum number of results to return.
@@ -226,7 +122,7 @@ class LanceQueryBuilder(ABC):
self._columns = columns
return self
def where(self, where) -> LanceQueryBuilder:
def where(self, where: str) -> LanceQueryBuilder:
"""Set the where clause.
Parameters
@@ -242,45 +138,7 @@ class LanceQueryBuilder(ABC):
self._where = where
return self
class LanceVectorQueryBuilder(LanceQueryBuilder):
"""
A builder for nearest neighbor queries for LanceDB.
Examples
--------
>>> import lancedb
>>> data = [{"vector": [1.1, 1.2], "b": 2},
... {"vector": [0.5, 1.3], "b": 4},
... {"vector": [0.4, 0.4], "b": 6},
... {"vector": [0.4, 0.4], "b": 10}]
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data=data)
>>> (table.search([0.4, 0.4])
... .metric("cosine")
... .where("b < 10")
... .select(["b"])
... .limit(2)
... .to_pandas())
b vector _distance
0 6 [0.4, 0.4] 0.0
"""
def __init__(
self,
table: "lancedb.table.Table",
query: Union[np.ndarray, list, "PIL.Image.Image"],
vector_column: str = VECTOR_COLUMN_NAME,
):
super().__init__(table)
self._query = query
self._metric = "L2"
self._nprobes = 20
self._refine_factor = None
self._vector_column = vector_column
self._prefilter = False
def metric(self, metric: Literal["L2", "cosine"]) -> LanceVectorQueryBuilder:
def metric(self, metric: Literal["L2", "cosine"]) -> LanceQueryBuilder:
"""Set the distance metric to use.
Parameters
@@ -290,13 +148,13 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
Returns
-------
LanceVectorQueryBuilder
LanceQueryBuilder
The LanceQueryBuilder object.
"""
self._metric = metric
return self
def nprobes(self, nprobes: int) -> LanceVectorQueryBuilder:
def nprobes(self, nprobes: int) -> LanceQueryBuilder:
"""Set the number of probes to use.
Higher values will yield better recall (more likely to find vectors if
@@ -312,13 +170,13 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
Returns
-------
LanceVectorQueryBuilder
LanceQueryBuilder
The LanceQueryBuilder object.
"""
self._nprobes = nprobes
return self
def refine_factor(self, refine_factor: int) -> LanceVectorQueryBuilder:
def refine_factor(self, refine_factor: int) -> LanceQueryBuilder:
"""Set the refine factor to use, increasing the number of vectors sampled.
As an example, a refine factor of 2 will sample 2x as many vectors as
@@ -334,26 +192,35 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
Returns
-------
LanceVectorQueryBuilder
LanceQueryBuilder
The LanceQueryBuilder object.
"""
self._refine_factor = refine_factor
return self
def to_df(self) -> pd.DataFrame:
"""
Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector
and also the "score" column which is the distance between the query
vector and the returned vector.
"""
return self.to_arrow().to_pandas()
def to_arrow(self) -> pa.Table:
"""
Execute the query and return the results as an
[Apache Arrow Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table).
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
and also the "score" column which is the distance between the query
vector and the returned vectors.
"""
vector = self._query if isinstance(self._query, list) else self._query.tolist()
query = Query(
vector=vector,
filter=self._where,
prefilter=self._prefilter,
k=self._limit,
metric=self._metric,
columns=self._columns,
@@ -363,37 +230,9 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
)
return self._table._execute_query(query)
def where(self, where: str, prefilter: bool = False) -> LanceVectorQueryBuilder:
"""Set the where clause.
Parameters
----------
where: str
The where clause.
prefilter: bool, default False
If True, apply the filter before vector search, otherwise the
filter is applied on the result of vector search.
This feature is **EXPERIMENTAL** and may be removed and modified
without warning in the future. Currently this is only supported
in OSS and can only be used with a table that does not have an ANN
index.
Returns
-------
LanceQueryBuilder
The LanceQueryBuilder object.
"""
self._where = where
self._prefilter = prefilter
return self
class LanceFtsQueryBuilder(LanceQueryBuilder):
def __init__(self, table: "lancedb.table.Table", query: str):
super().__init__(table)
self._query = query
def to_arrow(self) -> pa.Table:
def to_arrow(self) -> pd.Table:
try:
import tantivy
except ImportError:
@@ -416,13 +255,3 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
output_tbl = output_tbl.append_column("score", scores)
return output_tbl
class LanceEmptyQueryBuilder(LanceQueryBuilder):
def to_arrow(self) -> pa.Table:
ds = self._table.to_lance()
return ds.to_table(
columns=self._columns,
filter=self._where,
limit=self._limit,
)

View File

@@ -14,7 +14,7 @@
import abc
from typing import List, Optional
import attrs
import attr
import pyarrow as pa
from pydantic import BaseModel
@@ -44,7 +44,7 @@ class VectorQuery(BaseModel):
refine_factor: Optional[int] = None
@attrs.define
@attr.define
class VectorQueryResult:
# for now the response is directly seralized into a pandas dataframe
tbl: pa.Table

View File

@@ -16,7 +16,7 @@ import functools
from typing import Any, Callable, Dict, Optional, Union
import aiohttp
import attrs
import attr
import pyarrow as pa
from pydantic import BaseModel
@@ -43,21 +43,16 @@ async def _read_ipc(resp: aiohttp.ClientResponse) -> pa.Table:
return reader.read_all()
@attrs.define(slots=False)
@attr.define(slots=False)
class RestfulLanceDBClient:
db_name: str
region: str
api_key: Credential
host_override: Optional[str] = attrs.field(default=None)
closed: bool = attrs.field(default=False, init=False)
closed: bool = attr.field(default=False, init=False)
@functools.cached_property
def session(self) -> aiohttp.ClientSession:
url = (
self.host_override
or f"https://{self.db_name}.{self.region}.api.lancedb.com"
)
url = f"https://{self.db_name}.{self.region}.api.lancedb.com"
return aiohttp.ClientSession(url)
async def close(self):
@@ -71,8 +66,6 @@ class RestfulLanceDBClient:
}
if self.region == "local": # Local test mode
headers["Host"] = f"{self.db_name}.{self.region}.api.lancedb.com"
if self.host_override:
headers["x-lancedb-database"] = self.db_name
return headers
@staticmethod
@@ -97,12 +90,7 @@ class RestfulLanceDBClient:
"""Send a GET request and returns the deserialized response payload."""
if isinstance(params, BaseModel):
params: Dict[str, Any] = params.dict(exclude_none=True)
async with self.session.get(
uri,
params=params,
headers=self.headers,
timeout=aiohttp.ClientTimeout(total=30),
) as resp:
async with self.session.get(uri, params=params, headers=self.headers) as resp:
await self._check_status(resp)
return await resp.json()
@@ -110,11 +98,10 @@ class RestfulLanceDBClient:
async def post(
self,
uri: str,
data: Optional[Union[Dict[str, Any], BaseModel, bytes]] = None,
data: Union[Dict[str, Any], BaseModel, bytes],
params: Optional[Dict[str, Any]] = None,
content_type: Optional[str] = None,
deserialize: Callable = lambda resp: resp.json(),
request_id: Optional[str] = None,
) -> Dict[str, Any]:
"""Send a POST request and returns the deserialized response payload.
@@ -123,8 +110,6 @@ class RestfulLanceDBClient:
uri : str
The uri to send the POST request to.
data: Union[Dict[str, Any], BaseModel]
request_id: Optional[str]
Optional client side request id to be sent in the request headers.
"""
if isinstance(data, BaseModel):
@@ -137,13 +122,10 @@ class RestfulLanceDBClient:
headers = self.headers.copy()
if content_type is not None:
headers["content-type"] = content_type
if request_id is not None:
headers["x-request-id"] = request_id
async with self.session.post(
uri,
headers=headers,
params=params,
timeout=aiohttp.ClientTimeout(total=30),
**req_kwargs,
) as resp:
resp: aiohttp.ClientResponse = resp
@@ -159,7 +141,5 @@ class RestfulLanceDBClient:
@_check_not_closed
async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
"""Query a table."""
tbl = await self.post(
f"/v1/table/{table_name}/query/", query, deserialize=_read_ipc
)
tbl = await self.post(f"/v1/table/{table_name}/", query, deserialize=_read_ipc)
return VectorQueryResult(tbl)

View File

@@ -13,14 +13,16 @@
import asyncio
import uuid
from typing import List, Optional
from typing import List
from urllib.parse import urlparse
import pyarrow as pa
from ..common import DATA
from ..db import DBConnection
from ..table import Table, _sanitize_data
from lancedb.common import DATA
from lancedb.db import DBConnection
from lancedb.schema import schema_to_json
from lancedb.table import Table, _sanitize_data
from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient
@@ -28,22 +30,14 @@ from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient
class RemoteDBConnection(DBConnection):
"""A connection to a remote LanceDB database."""
def __init__(
self,
db_url: str,
api_key: str,
region: str,
host_override: Optional[str] = None,
):
def __init__(self, db_url: str, api_key: str, region: str):
"""Connect to a remote LanceDB database."""
parsed = urlparse(db_url)
if parsed.scheme != "db":
raise ValueError(f"Invalid scheme: {parsed.scheme}, only accepts db://")
self.db_name = parsed.netloc
self.api_key = api_key
self._client = RestfulLanceDBClient(
self.db_name, region, api_key, host_override
)
self._client = RestfulLanceDBClient(self.db_name, region, api_key)
try:
self._loop = asyncio.get_running_loop()
except RuntimeError:
@@ -101,24 +95,10 @@ class RemoteDBConnection(DBConnection):
self._loop.run_until_complete(
self._client.post(
f"/v1/table/{name}/create/",
f"/v1/table/{name}/create",
data=data,
request_id=request_id,
params={"request_id": request_id},
content_type=ARROW_STREAM_CONTENT_TYPE,
)
)
return RemoteTable(self, name)
def drop_table(self, name: str):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
"""
self._loop.run_until_complete(
self._client.post(
f"/v1/table/{name}/drop/",
)
)

View File

@@ -13,14 +13,14 @@
import uuid
from functools import cached_property
from typing import Optional, Union
from typing import Union
import pyarrow as pa
from lance import json_to_schema
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
from ..query import LanceVectorQueryBuilder
from ..query import LanceQueryBuilder, Query
from ..schema import json_to_schema
from ..table import Query, Table, _sanitize_data
from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE
@@ -33,27 +33,19 @@ class RemoteTable(Table):
self._name = name
def __repr__(self) -> str:
return f"RemoteTable({self._conn.db_name}.{self._name})"
return f"RemoteTable({self._conn.db_name}.{self.name})"
@cached_property
def schema(self) -> pa.Schema:
"""Return the schema of the table."""
resp = self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/describe/")
self._conn._client.get(f"/v1/table/{self._name}/describe")
)
schema = json_to_schema(resp["schema"])
return schema
def to_arrow(self) -> pa.Table:
"""Return the table as an Arrow table."""
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
def to_pandas(self):
"""Return the table as a Pandas DataFrame.
Intercept `to_arrow()` for better error message.
"""
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
raise NotImplementedError
def create_index(
self,
@@ -62,7 +54,6 @@ class RemoteTable(Table):
num_sub_vectors=96,
vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True,
accelerator: Optional[str] = None,
):
raise NotImplementedError
@@ -74,11 +65,7 @@ class RemoteTable(Table):
fill_value: float = 0.0,
) -> int:
data = _sanitize_data(
data,
self.schema,
metadata=None,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
data, self.schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
payload = to_ipc_binary(data)
@@ -86,23 +73,19 @@ class RemoteTable(Table):
self._conn._loop.run_until_complete(
self._conn._client.post(
f"/v1/table/{self._name}/insert/",
f"/v1/table/{self._name}/insert",
data=payload,
params={"request_id": request_id, "mode": mode},
content_type=ARROW_STREAM_CONTENT_TYPE,
)
)
return len(data)
def search(
self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME
) -> LanceVectorQueryBuilder:
return LanceVectorQueryBuilder(self, query, vector_column_name)
self, query: Union[VEC, str], vector_column: str = VECTOR_COLUMN_NAME
) -> LanceQueryBuilder:
return LanceQueryBuilder(self, query, vector_column)
def _execute_query(self, query: Query) -> pa.Table:
if query.prefilter:
raise NotImplementedError("Cloud support for prefiltering is coming soon")
result = self._conn._client.query(self._name, query)
return self._conn._loop.run_until_complete(result).to_arrow()
def delete(self, predicate: str):
raise NotImplementedError

Some files were not shown because too many files have changed in this diff Show More